State Spaces: The Locale Way

Norbert Schirmer

January 18, 2026

Contents
1 Introduction 1
2 Distinctness of Names in a Binary Tree 1
2.1 The Binary Tree, 2
2.2 Distinctness of Nodes 2
2.3 Containment of Trees 3
3 State Space Representation as Function 14
4 Setup for State Space Locales 16
5 Syntax for State Space Lookup and Update 17
6 Examples 18
6.1 Benchmarks 22

1

Introduction

These theories introduce a new command called statespace. It’s usage
is similar to records. However, the command does not introduce a new
type but an abstract specification based on the locale infrastructure. This
leads to extra flexibility in composing state space components, in particular
multiple inheritance and renaming of components.

The state space infrastructure basically manages the following things:

distinctness of field names
projections / injections from / to an abstract value type

syntax translations for lookup and update, hiding the projections and
injections

simplification procedure for lookups / updates, similar to records

Overview In Section 2 we define distinctness of the nodes in a binary tree
and provide the basic prover tools to support efficient distinctness reasoning
for field names managed by state spaces. The state is represented as a
function from (abstract) names to (abstract) values as introduced in Section
3. The basic setup for state spaces is in Section 4. Some syntax for lookup
and updates is added in Section 5. Finally Section 6 explains the usage of
state spaces by examples.

2 Distinctness of Names in a Binary Tree

theory DistinctTreeProver
imports Main
begin

A state space manages a set of (abstract) names and assumes that the names
are distinct. The names are stored as parameters of a locale and distinctness
as an assumption. The most common request is to proof distinctness of
two given names. We maintain the names in a balanced binary tree and
formulate a predicate that all nodes in the tree have distinct names. This
setup leads to logarithmic certificates.

2.1 The Binary Tree

datatype ‘a tree = Node 'a tree 'a bool 'a tree | Tip

The boolean flag in the node marks the content of the node as deleted,
without having to build a new tree. We prefer the boolean flag to an option
type, so that the ML-layer can still use the node content to facilitate binary
search in the tree. The ML code keeps the nodes sorted using the term
order. We do not have to push ordering to the HOL level.

2.2 Distinctness of Nodes

primrec set-of :: 'a tree = 'a set
where
set-of Tip = {}
| set-of (Node lx dr) = (if d then {} else {z}) U set-of | U set-of r

primrec all-distinct :: 'a tree = bool
where
all-distinct Tip = True
| all-distinct (Node l z d r) =
((dV (z & set-of L N x & set-of) A
set-of I N set-of r = {} A
all-distinct I A all-distinct r)

Given a binary tree t for which all-distinct holds, given two different nodes
contained in the tree, we want to write a ML function that generates a
logarithmic certificate that the content of the nodes is distinct. We use the
following lemmas to achieve this.

lemma all-distinct-left: all-distinct (Node | x b r) = all-distinct |
by simp

lemma all-distinct-right: all-distinct (Node | x b r) = all-distinct r
by simp

lemma distinct-left: all-distinct (Node | x False r) = y € set-of | = z # y
by auto

lemma distinct-right: all-distinct (Node | z False 1) = y € set-of r = ¢ # y
by auto

lemma distinct-left-right:
all-distinct (Node l zb 1) = ¢ € set-of |l = y € set-of r = x # y
by auto

lemma in-set-root: x € set-of (Node | x False r)
by simp

lemma in-set-left: y € set-of | = y € set-of (Node l x False r)
by simp

lemma in-set-right: y € set-of r = y € set-of (Node l z False r)
by simp

lemma swap-neq: © # y = y # x
by blast

lemma neg-to-eq-False: £y —> (x=y)=False
by simp

2.3 Containment of Trees

When deriving a state space from other ones, we create a new name tree
which contains all the names of the parent state spaces and assume the
predicate all-distinct. We then prove that the new locale interprets all parent
locales. Hence we have to show that the new distinctness assumption on
all names implies the distinctness assumptions of the parent locales. This
proof is implemented in ML. We do this efficiently by defining a kind of
containment check of trees by “subtraction”. We subtract the parent tree
from the new tree. If this succeeds we know that all-distinct of the new
tree implies all-distinct of the parent tree. The resulting certificate is of the
order n * log m where n is the size of the (smaller) parent tree and m the

size of the (bigger) new tree.

primrec delete :: ‘a = 'a tree = 'a tree option
where
delete x Tip = None
| delete z (Node |y d r) = (case delete x | of
Some ' =
(case delete x 1 of
Some r' = Some (Node l' y (d V (z=y)) r’)
| None = Some (Node I y (d V (z=y)) 1))
| None =
(case delete x 1 of
Some v’ = Some (Node ly (d V (z=y)) 1)
| None = if x=y N —d then Some (Node |l y True r)
else None))

lemma delete-Some-set-of: delete . t = Some t' = set-of t’ C set-of ¢
proof (induct t arbitrary: t’)
case Tip thus ?case by simp
next
case (Node ly d)
have del: delete z (Node | y d r) = Some t' by fact
show ?Zcase
proof (cases delete z 1)
case (Some l')
note z-I-Some = this
with Node.hyps
have 1’-I: set-of I’ C set-of |
by simp
show ?thesis
proof (cases delete x r)
case (Some r')
with Node.hyps
have set-of r' C set-of r
by simp
with [’-1 Some z-I-Some del
show ?thesis
by (auto split: if-split-asm)
next
case None
with [’-1 Some z-I-Some del
show ?thesis
by (fastforce split: if-split-asm)
qed
next
case None
note z-I-None = this
show ?thesis
proof (cases delete x r)

case (Some r')
with Node.hyps
have set-of r’ C set-of r
by simp
with Some z-I-None del
show ?thesis
by (fastforce split: if-split-asm)
next
case None
with z-I-None del
show ?thesis
by (fastforce split: if-split-asm)
qed
qed
qed

lemma delete-Some-all-distinct:
delete x t = Some t' = all-distinct t = all-distinct t’
proof (induct t arbitrary: t’)
case Tip thus ?case by simp
next
case (Node ly d)
have del: delete © (Node | y d r) = Some t' by fact
have all-distinct (Node | y d r) by fact
then obtain
dist-l: all-distinct | and
dist-r: all-distinct r and
d: dV (y ¢ set-of | A y ¢ set-of r) and
dist-l-r: set-of I N set-of r = {}
by auto
show ?Zcase
proof (cases delete z 1)
case (Some l')
note z-I-Some = this
from Node.hyps (1) [OF Some dist-I|
have dist-l": all-distinct I’
by simp
from delete-Some-set-of [OF xz-I-Some]
have [’-I: set-of I’ C set-of L.
show ?thesis
proof (cases delete 1)
case (Some r)
from Node.hyps (2) [OF Some dist-r]
have dist-r": all-distinct '
by simp
from delete-Some-set-of [OF Some]
have set-of v’ C set-of r.

with dist-1" dist-r’ l’-l Some z-I-Some del d dist-I-r

show ?thesis
by fastforce
next
case None
with I’-] dist-l" z-I-Some del d dist-I-r dist-r
show ?thesis
by fastforce
qed
next
case None
note z-l-None = this
show ?thesis
proof (cases delete z r)
case (Some 1)
with Node.hyps (2) [OF Some dist-r]
have dist-r": all-distinct v’
by simp
from delete-Some-set-of [OF Some]
have set-of r’ C set-of r.
with Some dist-r’ z-I-None del dist-1 d dist-I-r
show ?thesis
by fastforce
next
case None
with z-I-None del dist-l dist-r d dist-l-r
show ?thesis
by (fastforce split: if-split-asm)
qed
qed
qed

lemma delete-None-set-of-conv: delete © t = None = (x ¢ set-of t)
proof (induct t)
case Tip thus ?case by simp

next
case (Node ly d)
thus ?case
by (auto split: option.splits)
qed

lemma delete-Some-x-set-of:
delete © t = Some t' = x € set-of t N\ x© & set-of t’
proof (induct t arbitrary: t')
case Tip thus ?case by simp
next
case (Node l y d 1)
have del: delete x (Node | y d r) = Some t' by fact
show Zcase
proof (cases delete x 1)

case (Some l')
note z-l-Some = this
from Node.hyps (1) [OF Some]
obtain z-I: x € set-of l z ¢ set-of I
by simp
show ?thesis
proof (cases delete x r)
case (Some r’)
from Node.hyps (2) [OF Some]
obtain z-r: © € set-of r z ¢ set-of 1’
by simp
from z-r -1 Some x-I-Some del
show ?thesis
by (clarsimp split: if-split-asm)
next
case None
then have z ¢ set-of r
by (simp add: delete-None-set-of-conv)
with 2-l None x-I-Some del
show ?thesis
by (clarsimp split: if-split-asm)
qed
next
case None
note z-I-None = this
then have z-notin-l: © ¢ set-of |
by (simp add: delete-None-set-of-conv)
show ?thesis
proof (cases delete z r)
case (Some r’)
from Node.hyps (2) [OF Some]
obtain z-r: © € set-of r z ¢ set-of 1’
by simp
from z-r z-notin-l Some z-I-None del
show ?thesis
by (clarsimp split: if-split-asm)
next
case None
then have z ¢ set-of r
by (simp add: delete-None-set-of-conv)
with None z-I-None x-notin-1 del
show ?thesis
by (clarsimp split: if-split-asm)
qed
qed
qed

primrec subtract :: 'a tree = 'a tree = 'a tree option

where
subtract Tip t = Some t
| subtract (Node lz b) t =
(case delete x t of
Some t' = (case subtract 1 t' of
Some t"" = subtract r t”’
| None = None)
| None = None)

lemma subtract-Some-set-of-res:
subtract t1 to = Some t = set-of t C set-of ty
proof (induct t1 arbitrary: to t)
case Tip thus ?case by simp
next
case (Node Lz b r)
have sub: subtract (Node l z b 1) to = Some t by fact
show ?Zcase
proof (cases delete x t3)
case (Some t2")
note del-z-Some = this
from delete-Some-set-of [OF Some]
have t2'-t2: set-of to' C set-of t5 .
show ?thesis
proof (cases subtract | t3')
case (Some t3")
note sub-I-Some = this
from Node.hyps (1) [OF Some]
have t2"-t2": set-of t2"" C set-of ta' .
show ?thesis
proof (cases subtract r to"’)
case (Some t3"")
from Node.hyps (2) [OF Some |
have set-of t2""" C set-of t5'' .
with Some sub-I-Some del-z-Some sub t2''-t2' t2'-t2
show ?thesis
by simp
next
case None
with del-z-Some sub-I-Some sub
show ?thesis
by simp
qed
next
case None
with del-z-Some sub
show ?thesis
by simp
qed
next

case None
with sub show ?thesis by simp
qed
qed

lemma subtract-Some-set-of:
subtract t1 to = Some t => set-of t1 C set-of ty
proof (induct t1 arbitrary: to t)
case Tip thus ?case by simp
next
case (Node l z d r)
have sub: subtract (Node l x d r) t2 = Some t by fact
show ?Zcase
proof (cases delete x t3)
case (Some t3)
note del-z-Some = this
from delete-Some-set-of [OF Some]
have t2'-t2: set-of ty’ C set-of to .
from delete-None-set-of-conv [of x ta] Some
have z-t2: x € set-of to
by simp
show ?thesis
proof (cases subtract | t3")
case (Some t2")
note sub-I-Some = this
from Node.hyps (1) [OF Some]
have [-t2": set-of | C set-of to' .
from subtract-Some-set-of-res [OF Some]
have t2"-t2": set-of t3"" C set-of t2' .
show ?thesis
proof (cases subtract r to"')
case (Some t3"")
from Node.hyps (2) [OF Some |
have r-ty'": set-of r C set-of to'" .
from Some sub-I-Some del-z-Some sub r-to'' 1-t2' t2/-t2 t2"-t2' x-t2
show ?thesis
by auto
next
case None
with del-z-Some sub-I-Some sub
show ?thesis
by simp
qed
next
case None
with del-z-Some sub
show ?thesis
by simp
qed

next
case None
with sub show ?thesis by simp
qed
qed

lemma subtract-Some-all-distinct-res:
subtract t1 to = Some t = all-distinct to = all-distinct t
proof (induct t; arbitrary: ta t)
case Tip thus ?case by simp
next
case (Node l z d 1)
have sub: subtract (Node l x d r) t2 = Some t by fact
have dist-t2: all-distinct to by fact
show ?case
proof (cases delete x t3)
case (Some t3)
note del-xz-Some = this
from delete-Some-all-distinct [OF Some dist-12]
have dist-t2": all-distinct to' .
show ?thesis
proof (cases subtract | t3")
case (Some t3"")
note sub-I-Some = this
from Node.hyps (1) [OF Some dist-t2]
have dist-t2'": all-distinct to'' .
show ?thesis
proof (cases subtract r ta")
case (Some t2"")
from Node.hyps (2) [OF Some dist-t2"
have dist-t2'"": all-distinct to'"" .
from Some sub-I-Some del-z-Some sub
dist-t2""
show ?thesis
by simp
next
case None
with del-z-Some sub-I-Some sub
show ?thesis
by simp
qed
next
case None
with del-z-Some sub
show ?thesis
by simp
qed
next
case None

10

with sub show ?thesis by simp
qed
qed

lemma subtract-Some-dist-res:
subtract t1 to = Some t = set-of t1 N set-of t = {}
proof (induct t1 arbitrary: to t)
case Tip thus ?case by simp
next
case (Node l z d r)
have sub: subtract (Node l x d r) t2 = Some t by fact
show Zcase
proof (cases delete x t3)
case (Some t3)
note del-z-Some = this
from delete-Some-z-set-of [OF Some]
obtain z-t2: z € set-of to and z-not-t2": z ¢ set-of to’
by simp
from delete-Some-set-of [OF Some]
have t2'-t2: set-of to' C set-of t5 .
show ?thesis
proof (cases subtract | t3")
case (Some t2")
note sub-I-Some = this
from Node.hyps (1) [OF Some]
have dist-I-t2'" set-of | N set-of t2"" = {}.
from subtract-Some-set-of-res [OF Some]
have t2"-t2": set-of t3"" C set-of t2' .
show ?thesis
proof (cases subtract r to"')
case (Some t3"")
from Node.hyps (2) [OF Some]
have dist-r-t2""": set-of r N set-of t2""" = {} .
from subtract-Some-set-of-res [OF Some]
have t2'"-t2'": set-of ty""" C set-of to''.

from Some sub-I-Some del-z-Some sub t2'"-t2" dist-1-t2" dist-r-t2'"
t2"-t2' t2'-t2 x-not-t2’
show ?thesis
by auto
next
case None
with del-z-Some sub-I-Some sub
show ?thesis
by simp
qed
next
case None

11

with del-z-Some sub
show ?Zthesis

by simp
qed
next
case None
with sub show ?thesis by simp
qed
qed

lemma subtract-Some-all-distinct:
subtract t1 to = Some t = all-distinct to = all-distinct tq
proof (induct t1 arbitrary: to t)
case Tip thus ?case by simp
next
case (Node l z d r)
have sub: subtract (Node l z d r) t2 = Some t by fact
have dist-t2: all-distinct to by fact
show ?Zcase
proof (cases delete x ts)
case (Some t3)
note del-z-Some = this
from delete-Some-all-distinct [OF Some dist-t2 |
have dist-t2": all-distinct to' .
from delete-Some-set-of [OF Some]
have t2'-t2: set-of to' C set-of t5 .
from delete-Some-z-set-of [OF Some]
obtain 2-t2: z € set-of to and z-not-t2" x ¢ set-of ta’
by simp

show %thesis
proof (cases subtract | t2")
case (Some t3"")
note sub-I-Some = this
from Node.hyps (1) [OF Some dist-t2']
have dist-1: all-distinct | .
from subtract-Some-all-distinct-res [OF Some dist-t2’)
have dist-t2"": all-distinct to'' .
from subtract-Some-set-of [OF Some]
have [-t2" set-of | C set-of t2' .
from subtract-Some-set-of-res [OF Some]
have t2"-t2": set-of t3'' C set-of ta' .
from subtract-Some-dist-res [OF Some]
have dist-I-t2"" set-of | N set-of t2"" = {}.
show ?thesis
proof (cases subtract r to"')
case (Some t3"")
from Node.hyps (2) [OF Some dist-t2"]
have dist-r: all-distinct r .

12

from subtract-Some-set-of [OF Some]

have r-t2": set-of r C set-of t2"' .

from subtract-Some-dist-res [OF Some]
have dist-r-t2""": set-of r N set-of t2""" = {}.

from dist-1 dist-r Some sub-I-Some del-z-Some r-t2'" I-t2' z-t2 z-not-t2’
t2"-t2" dist-1-t2"" dist-r-t2""
show ?thesis
by auto
next
case None
with del-z-Some sub-I-Some sub
show ?thesis
by simp
qed
next
case None
with del-z-Some sub
show ?thesis
by simp
qed
next
case None
with sub show ?thesis by simp
qed
qged

lemma delete-left:
assumes dist: all-distinct (Node [y d r)
assumes del-l: delete z | = Some I’
shows delete © (Node |y d r) = Some (Node I’ y d)
proof —
from delete-Some-z-set-of [OF del-l|
obtain z: z € set-of [
by simp
with dist
have delete x r = None
by (cases delete z 1) (auto dest:delete-Some-x-set-of)

with z
show ?thesis
using del-l dist
by (auto split: option.splits)
qed

lemma delete-right:

assumes dist: all-distinct (Node 1y d 1)
assumes del-r: delete x v = Some 1’

13

shows delete x (Node | y d r) = Some (Node Iy d r’)
proof —
from delete-Some-z-set-of [OF del-r]
obtain z: z € set-of r
by simp
with dist
have delete x | = None
by (cases delete x 1) (auto dest:delete-Some-z-set-of)

with z
show ?thesis
using del-r dist
by (auto split: option.splits)
qed

lemma delete-root:
assumes dist: all-distinct (Node | z False)
shows delete x (Node | x False r) = Some (Node | x True r)
proof —
from dist have delete x 1 = None
by (cases delete z 1) (auto dest:delete-Some-x-set-of)
moreover
from dist have delete x | = None
by (cases delete x 1) (auto dest:delete-Some-z-set-of)
ultimately show ?thesis
using dist
by (auto split: option.splits)
qed

lemma subtract-Node:

assumes del: delete x t = Some t’
assumes sub-l: subtract | t' = Some t'’
assumes sub-r: subtract r t'"" = Some t'"’
shows subtract (Node | x False 1) t = Some
using del sub-l sub-r

by simp

t///

lemma subtract-Tip: subtract Tip t = Some t
by simp

Now we have all the theorems in place that are needed for the certificate
generating ML functions.

ML-file <distinct-tree-prover. ML)

end

3 State Space Representation as Function

theory StateFun imports DistinctTreeProver

14

begin

The state space is represented as a function from names to values. We
neither fix the type of names nor the type of values. We define lookup and
update functions and provide simprocs that simplify expressions containing
these, similar to HOL-records.

The lookup and update function get constructor/destructor functions as
parameters. These are used to embed various HOL-types into the abstract
value type. Conceptually the abstract value type is a sum of all types that
we attempt to store in the state space.

The update is actually generalized to a map function. The map supplies
better compositionality, especially if you think of nested state spaces.

definition K-statefun :: ‘a = 'b = 'a where K-statefun ¢ x = ¢

lemma K-statefun-apply [simp]: K-statefun ¢ z = ¢
by (simp add: K-statefun-def)

lemma K-statefun-comp [simp]: (K-statefun ¢ o f) = K-statefun c
by (rule ext) (simp add: comp-def)

lemma K-statefun-cong [cong|: K-statefun ¢ x = K-statefun c
by (rule refl)

definition lookup :: ('v = 'a) = 'n = ('n = v) = 'a
where lookup destr n s = destr (s n)

definition update ::
('v="al)= (a2 = v) = 'n = (Yal = 'a2) = ('n = v) = ('n = v)
where update destr constr n fs = s(n := constr (f (destr (s n)))

lemma lookup-update-same:
(A\v. destr (constr v) = v) = lookup destr n (update destr constr n fs) =
f (destr (s n))
by (simp add: lookup-def update-def)

lemma lookup-update-id-same:
lookup destr n (update destr’ id n (K-statefun (lookup id n s')) s) =
lookup destr n s’
by (simp add: lookup-def update-def)

lemma lookup-update-other:
n#m = lookup destr n (update destr’ constr m f s) = lookup destr n s
by (simp add: lookup-def update-def)

lemma id-id-cancel: id (id) = z
by (simp add: id-def)

15

lemma destr-contstr-comp-id: (\v. destr (constr v) = v) = destr o constr = id
by (rule ext) simp

lemma block-conj-cong: (P A Q) = (P A Q)
by simp

lemma conji-False: P = False = (P N Q)) = False
by simp

lemma conj2-False: @ = False = (P A Q) = False
by simp

lemma conj-True: P = True = @Q = True = (P A Q) = True
by simp

lemma conj-cong: P=P' = Q= Q' = (PN Q)= (P'A Q)
by simp

lemma update-apply: (update destr constr n f s x) =
(if z=n then constr (f (destr (s n))) else s x)
by (simp add: update-def)

lemma ex-id: Iz. idz =y
by (simp add: id-def)

lemma swap-ex-eq:
ds. fs =z = True =
ds.x=fs= True
apply (rule eg-reflection)
apply auto
done

lemmas meta-ext = eg-reflection [OF ext]

lemma update d ¢ n (K-statespace (lookup d n s)) s = s
apply (simp add: update-def lookup-def)
apply (rule ext)
apply simp

0oops

end

4 Setup for State Space Locales

theory StateSpaceLocale imports StateFun

16

keywords statespace :: thy-defn
begin

ML-file <state-space. ML»
ML-file <state-fun.ML»

For every type that is to be stored in a state space, an instance of this locale
is imported in order convert the abstract and concrete values.

locale project-inject =
fixes project :: 'value = 'a
and inject :: 'a = 'value
assumes project-inject-cancel [statefun-simp|: project (inject x) = x
begin

lemma ex-project [statefun-simp|: 3 v. project v = x
proof
show project (inject) = x
by (rule project-inject-cancel)
qed

lemma project-inject-comp-id [statefun-simp|: project o inject = id
by (rule ext) (simp add: project-inject-cancel)

lemma project-inject-comp-cancel[statefun-simpl: f o project o inject = f
by (rule ext) (simp add: project-inject-cancel)

end

end

5 Syntax for State Space Lookup and Update

theory StateSpaceSyntax
imports StateSpaceLocale
begin

The state space syntax is kept in an extra theory so that you can choose if
you want to use it or not.

syntax
-statespace-lookup :: ('a = 'b) = 'a = ‘c (<~ [60, 60] 60)
-statespace-update :: (‘'a = 'b) = ‘a = ‘¢ = (‘la = 'b)
-statespace-updates :: ('a = 'b) = updbinds = (‘a = 'b) («-<->» [900, 0] 900)

translations
-statespace-updates f (-updbinds b bs) ==
-statespace-updates (-statespace-updates f b) bs
s<x:=y> == -statespace-update s x y

17

parse-translation
¢
[(syntax-const -statespace-lookup, StateSpace.lookup-tr),
(syntax-const «-statespace-updatey, StateSpace.update-tr)]
)

print-translation
¢
[(const-syntax lookup, StateSpace.lookup-tr’),
(comnst-syntax cupdatey, StateSpace.update-tr’)]
)

end

6 Examples

theory StateSpaceEx
imports StateSpaceLocale StateSpaceSyntax
begin

Did you ever dream about records with multiple inheritance? Then you
should definitely have a look at statespaces. They may be what you are
dreaming of. Or at least almost ...

Isabelle allows to add new top-level commands to the system. Building on
the locale infrastructure, we provide a command statespace like this:

statespace vars =
n:nat

b::bool

print-locale vars-namespace
print-locale vars-valuetypes
print-locale vars

This resembles a record definition, but introduces sophisticated locale in-
frastructure instead of HOL type schemes. The resulting context postulates
two distinct names n and b and projection / injection functions that convert
from abstract values to nat and bool. The logical content of the locale is:

locale vars’ =
fixes n::'name and b::'name
assumes distinct [n, b

fixes project-nat::'value = nat and inject-nat::nat = "value
assumes An. project-nat (inject-nat n) = n

18

fixes project-bool::"value = bool and inject-bool::bool = "value
assumes Ab. project-bool (inject-bool b) = b

The HOL predicate distinct describes distinctness of all names in the con-
text. Locale vars’ defines the raw logical content that is defined in the state
space locale. We also maintain non-logical context information to support
the user:

e Syntax for state lookup and updates that automatically inserts the
corresponding projection and injection functions.

e Setup for the proof tools that exploit the distinctness information and
the cancellation of projections and injections in deductions and sim-
plifications.

This extra-logical information is added to the locale in form of declara-
tions, which associate the name of a variable to the corresponding pro-
jection and injection functions to handle the syntax transformations,
and a link from the variable name to the corresponding distinctness
theorem. As state spaces are merged or extended there are multiple
distinctness theorems in the context. Our declarations take care that
the link always points to the strongest distinctness assumption. With
these declarations in place, a lookup can be written as s-n, which is
translated to project-nat (s n), and an update as s(n := 2), which is
translated to s(n := inject-nat 2). We can now establish the following
lemma:

lemma (in vars) foo: s<n := 2>-b = s-b by simp

Here the simplifier was able to refer to distinctness of b and n to solve the
equation. The resulting lemma is also recorded in locale vars for later use
and is automatically propagated to all its interpretations. Here is another
example:

statespace ‘a varsX = NB: vars [n=N, b=DB] + vars + z::'a

The state space varsX imports two copies of the state space vars, where one
has the variables renamed to upper-case letters, and adds another variable x
of type ‘a. This type is fixed inside the state space but may get instantiated
later on, analogous to type parameters of an ML-functor. The distinctness
assumption is now distinct [N, B, n, b, z], from this we can derive both
distinct [N, B] and distinct [n, b], the distinction assumptions for the two
versions of locale vars above. Moreover we have all necessary projection
and injection assumptions available. These assumptions together allow us
to establish state space varsX as an interpretation of both instances of locale
vars. Hence we inherit both variants of theorem foo: s(N := 2)-B = s-B as

19

well as s(n := 2)-b = s-b. These are immediate consequences of the locale
interpretation action.

The declarations for syntax and the distinctness theorems also observe the
morphisms generated by the locale package due to the renaming n = N:

lemma (in varsX) foo: s(N := 2)-xz = s-z by simp

To assure scalability towards many distinct names, the distinctness predicate
is refined to operate on balanced trees. Thus we get logarithmic certificates
for the distinctness of two names by the distinctness of the paths in the tree.
Asked for the distinctness of two names, our tool produces the paths of the
variables in the tree (this is implemented in Isabelle/ML, outside the logic)
and returns a certificate corresponding to the different paths. Merging state
spaces requires to prove that the combined distinctness assumption implies
the distinctness assumptions of the components. Such a proof is of the order
m -logn, where n and m are the number of nodes in the larger and smaller
tree, respectively.

We continue with more examples.

statespace 'a foo =
frnat=nat

a::int

b::nat

c

='a

lemma (in foo) fool:
shows s{a := i)-a = i
by simp

lemma (in foo) foo2:
shows (s{a:=i))-a = i
by simp

lemma (in foo) foo3:
shows (s{a:=%))-b = s-b
by simp

lemma (in foo) foo4:
shows (s{a:=i,b:=j,c:=k,a:=x)) = (s(b:=j,c:=k,a:=x))
by simp

statespace bar =
b::bool

c::string

lemma (in bar) barl:

20

shows (s{(b:=True))-¢c = s-c
by simp

You can define a derived state space by inheriting existing state spaces,
renaming of components if you like, and by declaring new components.

statespace (‘a,’d) loo = 'a foo + bar [b=B,c=C] +
X::'b

lemma (in loo) loo1:
shows s(a:=i)-B = s-B
proof —
thm fool

The Lemma fool from the parent state space is also available here:

have s<a:=i>-a = 1
by (rule fool)
thm bari

Note the renaming of the parameters in Lemma barl:
?s(B = True)-C = %s-C

have s<B:=True>-C = s-C
by (rule barl)
show ?thesis
by simp
qged

statespace ‘a dup = FA: 'a foo [f=F, a=A] + 'a foo +
zint

lemma (in dup)
shows s<a = i>2 = sz
by simp

lemma (in dup)
shows s<A := i>a = s-a
by simp

lemma (in dup)
shows s<A = i>2 = sz

by simp

There were known problems with syntax-declarations. They only worked
when the context is already completely built. This is now overcome. e.g.:

21

locale fooX = foo +
assumes s<a:=i>-b =k

We can also put statespaces side-by-side by using ordinary locale expres-
sions (instead of the statespace).

locale side-by-side = foo + bar where b=B::'a and ¢=C for B C

context side-by-side

begin

Simplification within one of the statespaces works as expected.

lemma s<B := i>-C = s-C

by simp

lemma s<a := i>-b = s-b
by simp

In contrast to the statespace loo there is no ’inter’ statespace distinctness
between the names of foo and bar.

end

Sharing of names in side-by-side statespaces is also possible as long as they
are mapped to the same type.

statespace varsl = n::nat m::nat
statespace vars2 = n::nat k::nat

locale varsi-vars2 = varsl + vars2

context varsl-vars2
begin

Note that the distinctness theorem for vars? is selected here to do the proof.

lemma s<n := i>-m = s-m
by simp

Note that the distinctness theorem for vars2 is selected here to do the proof.

lemma s<n := i>-k = s-k
by simp

Still there is no inter-statespace distinctness.

lemma s<k := i>m = sm

00ps
end

statespace merge-varsl-vars2 = varsl + vars?2

22

context merge-varsl-vars2
begin

When defining a statespace instead of a side-by-side locale we get the dis-
tinctness of all variables.

lemma s<k := i>-m = s-m
by simp
end

6.1 Benchmarks

Here are some bigger examples for benchmarking.

ML ¢
fun make-benchmark n =
writeln (Active.sendback-markup-command
(statespace benchmark ~ string-of-int n = =\n
(cat-lines (map (fn i => A 7 string-of-int i ~ ::nat) (1 upto n)))));
)

0.2s

statespace benchmark100 = Al::nat A2:nat A3::nat A4::nat A5::nat
A6::nat A7::nat A8::nat A9::nat A10::nat All::nat A12::nat A18::nat
Alj:nat A15:nat A16::nat A17::nat A18::nat A19::nat A20::nat
A21:nat A22:nat A23::nat A2 ::nat A25::nat A26::nat A27::nat
A28::nat A29::nat A30::nat A31::nat A32::nat A33::nat A34::nat
A835::nat AS6::nat A37::nat A38::nat A89::nat A40::nat A4l::nat
A42::nat A43::nat Af4:nat Af5::nat A46::nat A47::nat A48::nat
A49::nat A50::nat A51::nat A52::nat A53::nat A5/ ::nat A55::nat
A56::nat A57::nat A58::nat A59::nat A60::nat A61::nat A62::nat
A63::nat A64::nat A65::nat A66::nat A67::nat A68::nat A69::nat
A70:mat A71::nat A72::nat A73:nat A7) ::nat A75::nat A76::nat
AT77::nat A78::nat A79::nat A80::nat A81::mat A82::nat A83::nat
A84::nat A85::nat A86::nat A8T::nat A88::nat A89::nat A90::nat
A91::nat A92::nat A93::nat A94::nat A95::nat A96::nat A97::nat
A98::nat A99::nat A100::nat

2.4s

statespace benchmark500 = Al::nat A2:nat A3::nat A4::nat A5::nat
A6::nat A7::nat A8::nat A9::nat A10::nat All::nat A12::nat A18::nat
Alj:nat A15::nat A16::nat A17::nat A18::nat A19::nat A20::nat
A21:nat A22::nat A23::nat A24::nat A25::nat A26::nat A27::nat
A28::nat A29::nat A30::nat A31::nat A32::nat A33::nat A34::nat
A85::nat A36::nat A37::nat A88::nat A39::nat A40::nat A41::nat
A42:nat A43::nat A4 nat A45:nat A46::nat A47::nat A48::nat
A49::nat A50::nat A51::nat A52::nat A53::nat A5/ ::nat A55::nat
Ab56:nat A57::nat A58::nat A59::nat A60::nat AG1::nat A62::nat
A63::nat A64::nat A65::nat A66::nat A67::nat A68::nat A69::nat
A70::mat AT71::nat A72::nat A73:nat A7) ::nat A75::nat A76::nat

23

AT7:
A8
A91::
A98::

A105::
Al112:
A119::
A126::
A133::
A140::
A147::
A154::
Al61::
A168::
Al175::
A182::
A189::
A196::
A208::
A210::
A217::
A224::
A231::
A238::
A245::
A252::
A259::
A266::
A273::
A280::
A287::
A294::
A301::
AS808::
A315::
A322::
A329::
A336::
A843::
A850::
A357::
A36::
A371:
A378::
A885::
A392::
A399::
A406::
A418::

nat A78::
nat A85::
nat A92::
nat A99::
nat A106:
nat A113:
nat A120:
nat A127:
nat A134:
nat A141:
nat A148:
nat A155:
nat A162:
nat A169:
nat A176:
nat A183:
nat A190:
nat A197:
nat A204:
nat A211:
nat A218:
nat A225:
nat A232:
nat A239:
nat A246:
nat A253:
nat A260:
nat A267:
nat A27/:
nat A281:
nat A288:
nat A295:
nat A302:
nat A309:
nat A316:
nat A323:
nat A330:
nat A337:
nat A344:
nat A351:
nat A358:
nat A365:
nat A372:
nat A379:
nat A386:
nat A393:
nat A400:
nat A407:
nat A414:

nat A108::
nat A115::
nat A122::
nat A129::
nat A136::
nat A143::
nat A150::
nat A157::
nat A164::
nat A171::
nat A178::
nat A185::
nat A192::
nat A199::
nat A206::
nat A213::
nat A220::
nat A227::
nat A28 ::
nat A241::
nat A2/8::
nat A255::
nat A262::
nat A269::
nat A276::
nat A283::
nat A290::
nat A297::
nat A30/::
nat A311::
nat A318::
nat A325::
nat A332::
nat A339::
nat A346::
nat A353::
nat A360::
nat A367::
nat A374::
nat A381::
nat A388::
nat A395::
nat A402::
nat A409::
nat A416::

nat A109::
nat A116::
nat A123::
nat A130::
nat A137::
nat A144::
nat A151::
nat A158::
nat A165::
nat A172::
nat A179::
nat A186::
nat A193::
nat A200::
nat A207::
nat A214::
nat A221::
nat A228::
nat A235::
nat A242::
nat A249::
nat A256::
nat A263::
nat A270::
nat A277::
nat A28/ ::
nat A291::
nat A298::
nat A305::
nat A312::
nat A319::
nat A326::
nat A333::
nat A340::
nat A347::
nat A354::
nat A361::
nat A368::
nat A375::
nat A382::
nat A389::
nat A396::
nat A403::
nat A410::
nat A417::

24

nat A110::
nat A117::
nat A12/::
nat A131::
nat A138::
nat A145::
nat A152::
nat A159::
nat A166::
nat A173::
nat A180::
nat A187::
nat A19/::
nat A201::
nat A208::
nat A215::
nat A222::
nat A229::
nat A236::
nat A243::
nat A250::
nat A257::
nat A26/::
nat A271::
nat A278::
nat A285::
nat A292::
nat A299::
nat A306::
nat A313::
nat A320::
nat A327::
nat A38/::
nat A341::
nat A348::
nat A355::
nat A362::
nat A369::
nat A376::
nat A383::
nat A390::
nat A397::
nat A404::
nat A411::
nat A418::

nat A79::nat A80::nat A81::nat A82::nat A83::nat
nat A86::nat A87::nat A88::nat A89::nat A90::nat
nat A93::nat A94::nat A95::nat A96::nat A97::nat
nat A100::nat A101::nat A102::nat A103::nat A10/::nat
:nat A107::
nat A114::
nat A121::
:nat A128::
:nat A135::
nat A142::
:nat A149::
:nat A156::
nat A163::
:nat A170::
:nat A177::
:nat A184::
:nat A191::
:nat A198::
:nat A205::
:nat A212::
:nat A219::
:nat A226::
:nat A233::
:nat A240::
nat A247::
:nat A254::
:nat A261::
:nat A268::
nat A275::
:nat A282::
:nat A289::
:nat A296::
:nat A303::
:nat A310::
:nat A317::
:nat A324::
:nat A331::
:nat A338::
nat A845::
nat A352::
:nat A359::
:nat A366::
:nat A373::
:nat A380::
:nat A387::
:nat A894::
:nat A401::
:nat A408::
nat A415::

nat A111::
nat A118::
nat A125::
nat A132::
nat A139::
nat A146::
nat A153::
nat A160::
nat A167::
nat A174::
nat A181::
nat A188::
nat A195::
nat A202::
nat A209::
nat A216::
nat A223::
nat A230::
nat A237::
nat A244::
nat A251::
nat A258::
nat A265::
nat A272::
nat A279::
nat A286::
nat A293::
nat A300::
nat A307::
nat A31}::
nat A321::
nat A328::
nat A335::
nat A342::
nat A349::
nat A356::
nat A363::
nat A370::
nat A377::
nat A384::
nat A391::
nat A398::
nat A405::
nat A412::
nat A419::

nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat

A420::
A427::
A434::
A441::
A448::
A455::
A462::
A469::
A476::
A483::
A490::
A497::

9.0s

nat A421:
nat A428:
nat A435:
nat A442:
nat A449:
nat A456:
nat A463:
nat A470:
nat A477:
nat A484:
nat A491:
nat A498:

:nat A422::
:nat A429::
:nat A436::
nat A443::
:nat A450::
nat A457::
:nat A464::
nat A471::
:nat A478::
:nat A485::
:nat A492::
:nat A499::

nat A423::
nat A430::
nat A437::
nat A444::
nat A451::
nat A458::
nat A465::
nat A472:
nat A479::
nat A486::
nat A493::
nat A500::

nat A42/::
nat A481::
nat A438::
nat A445::
nat A452::
nat A459::
nat A466::
nat A473::
nat A480::
nat A487::
nat A494::

nat

nat A425::
nat A432::
nat A439::
nat A446::
nat A453::
nat A460::
nat A467::
nat A474::
nat A481::
nat A488::
nat A495::

nat A426::
nat A433::
nat A440::
nat A447::
nat A454::
nat A461::
nat A468::
nat A475::
nat A482::
nat A489::
nat A496::

nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat

statespace benchmark1000 = Al::nat A2:nat A3::nat Aj::nat A5::nat
Ab6::nat A7::nat A8::nat A9::nat A10::nat A11::nat A12:nat A13::nat

nat A15:nat A16::nat
nat A22:nat A23::nat
nat A29::nat A30::nat
nat A36::nat A37::nat
nat A43:nat A4 ::nat
nat A50::nat A51::nat
nat A57::nat A58::nat
nat A64::nat A65::nat
nat A71::nat A72::nat
nat A78:nat A79::nat
nat A85::nat A86::nat
nat A92::nat A93::nat
nat A99::nat A100::nat A101::nat A102::nat A103::nat A104::nat

Al4::
A21::
A28::
A85::
A42:
A49::
Ab56::
A63::
A70::
AT77::
A8
A91::
A98::

A105::
Al112::
A119::
A126::
A133:
A140::
A147::
Al154::
Al61::
A168::
A175:
A182::
A189::
A196::
A203::
A210::
A217::
A224::
A231::
A238::

nat A106:
nat A113:
nat A120:
nat A127:
nat A134:
nat A141:
nat A148:
nat A155:
nat A162:
nat A169:
nat A176:
nat A183:
nat A190:
nat A197:
nat A204:
nat A211:
nat A218:
nat A225:
nat A232:
nat A239:

:nat A107::
nat A114::
nat A121::
:nat A128::
:nat A135::
nat A142::
:nat A149::
nat A156::
:nat A163::
:nat A170::
:nat A177::
nat A184::
:nat A191::
:nat A198::
:nat A205::
:nat A212::
:nat A219::
:nat A226::
:nat A233::
nat A240::

Al17:nat A18:
A2/ ::nat A25:
A81::nat A32:
A38::nat A39:
A45:nat A46:
Ab52::nat A5S:
A59::nat A60:
A66::nat A6T:
A78:nat A7:
A80::nat A81:
A87::nat A8S:
A94::nat A9S5:

nat A108::
nat A115::
nat A122::
nat A129::
nat A136::
nat A143::
nat A150::
nat A157::
nat A164::
nat A171::
nat A178::
nat A185::
nat A192::
nat A199::
nat A206::
nat A213::
nat A220::
nat A227::
nat A23/::
nat A241::

nat A109::
nat A116::
nat A123::
nat A130::
nat A137::
nat A144::
nat A151::
nat A158::
nat A165::
nat A172::
nat A179::
nat A186::
nat A193::
nat A200::
nat A207::
nat A214::
nat A221::
nat A228::
nat A235::
nat A242::

25

:nat A19::
:nat A26::
:nat A33::
:nat A40::nat A4
:nat A47::nat A4
nat A5
:nat A61::
:nat AGS::
:nat A75::
:nat A82::
:nat A89::
:nat A96::

nat A110::
nat A117::
nat A124::
nat A131::
nat A138::
nat A145::
nat A152::
nat A159::
nat A166::
nat A173::
nat A180::
nat A187::
nat A19/::
nat A201::
nat A208::
nat A215::
nat A222::
nat A229::
nat A236::
nat A243::

nat A20::nat
nat A27::nat
nat A34::nat

1::nat
8::nat

nat A55::nat
nat A62::nat
nat A69::nat
nat A76::nat
nat A83::nat
nat A90::nat
nat A97::nat

nat A111::
nat A118::
nat A125::
nat A132::
nat A139::
nat A146::
nat A153::
nat A160::
nat A167::
nat A174::
nat A181::
nat A188::
nat A195::
nat A202::
nat A209::
nat A216::
nat A223::
nat A230::
nat A237::
nat A244::

nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat

A245::
A252::
A259::
A266::
A273::
A280::
A287::
A294::
A301::
A308::
A315::
AB322::
A829::
AS836::
AB348::
A350::
A357::
AS864::
A871::
A378::
A385::
A392::
A399::
A406::
A418::
A420::
A427::
A4834::
A4l
A448::
A4b5::
A462::
A469::
A476::
A483::
A490::
A497::
A504::
Ab11::
A518::
Ab525::
A532::
Ab539::
A546::
A553::
A560::
A567::
A57Y::
Ab581::

nat A246:
nat A253:
nat A260:
nat A267:
nat A274:
nat A281:
nat A288:
nat A295:
nat A302:
nat A309:
nat A316:
nat A323:
nat A330:
nat A337:
nat A344:
nat A351:
nat A358:
nat A365:
nat A372:
nat A379:
nat A386:
nat A393:
nat A400:
nat A407:
nat A414:
nat A421:
nat A428:
nat A435:
nat A442:
nat A449:
nat A456:
nat A463:
nat A470:
nat A477:
nat A484:
nat A491:
nat A498:
nat A505:
nat A512:
nat A519:
nat A526:
nat A533:
nat A540:
nat A547:
nat A55/:
nat A561:
nat A568:
nat A575:
nat A582:

nat A247::
nat A254::
:nat A261::
:nat A268::
:nat A275::
:nat A282::
:nat A289::
:nat A296::
:nat A303::
:nat A310::
:nat A317::
:nat A824::
:nat A331::
:nat A338::
:nat A345::
:nat A352::
:nat A359::
:nat A366::
:nat A873::
:nat A380::
:nat A387::
:nat A894::
:nat A401::
:nat A408::
nat A415::
:nat A422::
:nat A429::
:nat A436::
nat A443::
nat A450::
nat A457::
:nat A464::
nat A471::
:nat A478::
nat A485::
nat A492::
:nat A499::
:nat A506::
:nat A518::
:nat A520::
:nat A527::
:nat A534::
:nat A541::
nat A548::
:nat A555::
:nat A562::
:nat A569::
:nat A576::
:nat A583::

nat A248::
nat A255::
nat A262::
nat A269::
nat A276::
nat A283::
nat A290::
nat A297::
nat A304::
nat A311::
nat A318::
nat A325::
nat A832::
nat A339::
nat A346::
nat A353::
nat A360::
nat A367::
nat A374::
nat A381::
nat A388::
nat A395::
nat A402::
nat A409::
nat A416::
nat A423::
nat A430::
nat A437::
nat A444::
nat A451:
nat A458::
nat A465::
nat A472::
nat A479::
nat A486'::
nat A493::
nat A500::
nat A507::
nat A51)::
nat A521::
nat A528::
nat A535::
nat A542::
nat A549::
nat A556::
nat A563::
nat A570::
nat A577::
nat A58 ::

nat A249::
nat A256::
nat A263::
nat A270::
nat A277::
nat A28/ ::
nat A291 ::
nat A298::
nat A305::
nat A312::
nat A319::
nat A326::
nat A333::
nat A340::
nat A347::
nat A35/::
nat A361::
nat A368::
nat A375::
nat A382::
nat A389::
nat A396::
nat A403::
nat A410::
nat A417::
nat A424::
nat A481::
nat A438::
nat A445::
nat A452::
nat A459::
nat A466::
nat A473::
nat A480::
nat A487::
nat A494::
nat A501::
nat A508::
nat A515::
nat A522::
nat A529::
nat A536::
nat A543::
nat A550::
nat A557::
nat A564::
nat A571::
nat A578::
nat A585::

26

nat A250::
nat A257::
nat A26/::
nat A271
nat A278::
nat A285::
nat A292::
nat A299::
nat A306::
nat A313::
nat A320::
nat A327::
nat A38/::
nat A841::
nat A348::
nat A855::
nat A362::
nat A369::
nat A376::
nat A383::
nat A390::
nat A397::
nat A404::
nat A411::
nat A418::
nat A425::
nat A432::
nat A439::
nat A446::
nat A453::
nat A460::
nat A467::
nat A}74::
nat A481::
nat A488::
nat A495::
nat A502::
nat A509::
nat A516::
nat A523::
nat A530::
nat A537::
nat A544::
nat A551::
nat A558::
nat A565::
nat A572::
nat A579::
nat A586::

nat A251::
nat A258::
nat A265::
nat A272::
nat A279::
nat A286::
nat A293::
nat A300::
nat A307::
nat A814::
nat A321::
nat A328::
nat A335::
nat A342::
nat A349::
nat A356::
nat A363::
nat A370::
nat A377::
nat A384::
nat A391::
nat A398::
nat A405::
nat A412::
nat A419::
nat A426::
nat A438::
nat A440::
nat A447::
nat A454::
nat A461::
nat A468::
nat A475::
nat A482::
nat A489::
nat A496::
nat A508::
nat A510::
nat A517::
nat A524::
nat A531::
nat A538::
nat A545::
nat A552::
nat A559::
nat A566::
nat A573::
nat A580::
nat A587::

nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat

Ab588::
Ab595::
A602::
A609::
A616::
A623::
A630::
A637::
A644::
A651::
A658::
A665::
A672::
A679::
A686::
A693::
A700::
A707::
AT14::
AT21::
AT728::
A735::
AT742::
AT749::
A756::
AT763::
AT70::
AT
AT784::
A791::
A798::
A805::
A812::
A819::
A826::
A833::
A840::
A847::
A854::
A861::
A868::
A875::
A882::
A889::
A896::
A903::
A910::
A917::
A924::

nat A589:
nat A596:
nat A603:
nat A610:
nat A617:
nat A624:
nat A631:
nat A638:
nat A645:
nat A652:
nat A659:
nat A666:
nat A673:
nat A680:
nat A687:
nat A694:
nat A701:
nat A708:
nat A715:
nat A722:
nat A729:
nat A736:
nat A743:
nat A750:
nat A757:
nat A764:
nat A771:
nat A778:
nat A785:
nat A792:
nat A799:
nat A806:
nat A813:
nat A820:
nat A827:
nat A834:
nat A841:
nat A848:
nat A855:
nat A862:
nat A869:
nat A876:
nat A883:
nat A890:
nat A897:
nat A904:
nat A911:
nat A918:
nat A925:

:nat A590::
:nat A597::
:nat A604::
:nat A611::
:nat A618::
:nat A625::
:nat A632::
:nat A639::
nat A646::
:nat A653::
:nat A660::
:nat A667::
nat A674::
:nat A681::
:nat A688::
:nat A695::
:nat A702::
:nat A709::
:nat A716::
:nat A723::
:nat A730::
:nat A737::
nat A744::
:nat A751::
:nat A758::
:nat A765::
:nat A772::
:nat A779::
:nat A786::
:nat A793::
:nat A800::
:nat A807::
:nat A814::
:nat A821::
:nat A828::
:nat A835::
:nat A842::
:nat A849::
:nat A856::
:nat A863::
:nat A870::
:nat A877::
:nat A884::
:nat A891::
:nat A898::
:nat A905::
:nat A912::
:nat A919::
:nat A926::

nat A591::
nat A598::
nat A605::
nat A612::
nat A619::
nat A626::
nat A633::
nat A640::
nat A647::
nat A654::
nat A661::
nat A668::
nat A675::
nat A682::
nat A689::
nat A696::
nat A703::
nat A710::
nat A717::
nat A724::
nat A731::
nat A738::
nat A745::
nat A752::
nat A759::
nat A766::
nat A773::
nat A780::
nat A787::
nat A794::
nat A801::
nat A808::
nat A815::
nat A822::
nat A829::
nat A836::
nat A843::
nat A850::
nat A857::
nat A86/::
nat A871::
nat A878::
nat A885::
nat A892::
nat A899::
nat A906::
nat A913::
nat A920::
nat A927::

nat A592::
nat A599::
nat A606::
nat A613::
nat A620::
nat A627::
nat A63/::
nat A641::
nat A648::
nat A655::
nat A662::
nat A669::
nat A676::
nat A683::
nat A690::
nat A697::
nat A704::
nat A711::
nat A718::
nat A725::
nat A732::
nat A739::
nat A746::
nat A753::
nat A760::
nat A767::
nat A774::
nat A781::
nat A788::
nat A795::
nat A802::
nat A809::
nat A816::
nat A823::
nat A830::
nat A837::
nat A844::
nat A851::
nat A858::
nat A865::
nat A872::
nat A879::
nat A886::
nat A893::
nat A900::
nat A907::
nat A914::
nat A921::
nat A928::

27

nat A593::
nat A600::
nat A607::
nat A614::
nat A621::
nat A628::
nat A635::
nat A642::
nat A649::
nat A656::
nat A663::
nat A670::
nat A677::
nat A68/::
nat A691::
nat A698::
nat A705::
nat A712::
nat A719::
nat A726::
nat A733::
nat A740::
nat A747::
nat A754::
nat A761::
nat A768::
nat A775::
nat A782::
nat A789::
nat A796::
nat A803::
nat A810::
nat A817::
nat A82/::
nat A831::
nat A838::
nat A845::
nat A852::
nat A859::
nat A866::
nat A873::
nat A880::
nat A887::
nat A89/::
nat A901 ::
nat A908::
nat A915::
nat A922::
nat A929::

nat A59/::
nat A601::
nat A608::
nat A615::
nat A622::
nat A629::
nat A636::
nat A643::
nat A650::
nat A657::
nat A664::
nat A671::
nat A678::
nat A685::
nat A692::
nat A699::
nat A706::
nat A713::
nat A720::
nat A727::
nat A734::
nat A741::
nat A748::
nat A755::
nat A762::
nat A769::
nat A776::
nat A783::
nat A790::
nat A797::
nat A804::
nat A811::
nat A818::
nat A825::
nat A832::
nat A839::
nat A846::
nat A853::
nat A860::
nat A867::
nat A874::
nat A881::
nat A888::
nat A895::
nat A902::
nat A909::
nat A916::
nat A923::
nat A930::

nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat

A931::nat A932::nat A933::nat A93) :nat A935::nat A936::nat A937::nat
A938::nat A939::nat A940::nat A941::nat A942::nat A943::nat A944 :nat
A945::nat A946::nat A94T::nat A948:nat A949::nat A950::nat A951::nat
A952::nat A958::nat A95 ::nat A955::nat A956::nat A957::nat A958::nat
A959::nat A960::nat A961::nat A962::nat AI63::nat A6 ::nat AI65::nat
A966::nat AI6T::nat AI68::nat A969::nat A970::nat A971::nat A972::nat
A973::nat A97::nat A975::nat A976::nat A9T7::nat A978::nat A979::nat
A980::nat A981::nat A982::nat A983::nat A984 :nat A985::nat A986::nat
A987::nat A988::nat A989::nat A990::nat A991::nat A992::nat A993::nat
A994::nat A995::mat A996::nat A997::nat A998 :nat A999::nat A1000::nat

lemma (in benchmark100) test: s<Al := a>-A100 = s-A100 by simp
lemma (in benchmark500) test: s<Al := a>-A100 = s-A100 by simp
lemma (in benchmark1000) test: s<Al = a>-A100 = s-A100 by simp

end

28

	Introduction
	Distinctness of Names in a Binary Tree
	The Binary Tree
	Distinctness of Nodes
	Containment of Trees

	State Space Representation as Function
	Setup for State Space Locales
	Syntax for State Space Lookup and Update
	Examples
	Benchmarks

