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Chapter 1

Introduction

This document describes a link between Isabelle/HOL and the SPARK/Ada
tool suite for the verification of high-integrity software. Using this link,
verification problems can be tackled that are beyond reach of the proof
tools currently available for SPARK. A number of examples can be found in
the directory HOL/SPARK/Examples in the Isabelle distribution. An open-
source version of the SPARK tool suite is available free of charge from
libre.adacore.com.

In the remainder of §1, we give an introduction to SPARK and the HOL-SPARK
link. The verification of an example program is described in §2. In §3, we
explain the principles underlying the generation of verification conditions
for SPARK programs. Finally, 84 describes the commands provided by the
HOL-SPARK link, as well as the encoding of SPARK types in HOL.

1.1 SPARK

SPARK [1] is a subset of the Ada language that has been designed to al-
low verification of high-integrity software. It is missing certain features
of Ada that can make programs difficult to verify, such as access types, dy-
namic data structures, and recursion. SPARK allows to prove absence of run-
time exceptions, as well as partial correctness using pre- and postconditions.
Loops can be annotated with invariants, and each procedure must have a
dataflow annotation, specifying the dependencies of the output parameters
on the input parameters of the procedure. Since SPARK annotations are
just written as comments, SPARK programs can be compiled by an ordinary
Ada compiler such as GNAT. SPARK comes with a number of tools, notably
the Examiner that, given a SPARK program as an input, performs a dataflow


http://libre.adacore.com

analysis and generates verification conditions (VCs) that must be proved in
order for the program to be exception-free and partially correct. The VCs
generated by the Examiner are formulae expressed in a language called
FDL, which is first-order logic extended with arithmetic operators, arrays,
records, and enumeration types. For example, the FDL expression

for_all(i: integer, ((i >= min) and (i <= max)) ->
(element(a, [i]) = 0))

states that all elements of the array a with indices greater or equal to min
and smaller or equal to max are 0. VCs are processed by another SPARK
tool called the Simplifier that either completely solves VCs or transforms
them into simpler, equivalent conditions. The latter VCs can then be pro-
cessed using another tool called the Proof Checker. While the Simplifier
tries to prove VCs in a completely automatic way, the Proof Checker re-
quires user interaction, which enables it to prove formulae that are beyond
the scope of the Simplifier. The steps that are required to manually prove
a VC are recorded in a log file by the Proof Checker. Finally, this log file,
together with the output of the other SPARK tools mentioned above, is read
by a tool called POGS (Proof ObliGation Summariser) that produces a ta-
ble mentioning for each VC the method by which it has been proved. In
order to overcome the limitations of FDL and to express complex speci-
fications, SPARK allows the user to declare so-called proof functions. The
desired properties of such functions are described by postulating a set of
rules that can be used by the Simplifier and Proof Checker [1, §11.7]. An
obvious drawback of this approach is that incorrect rules can easily intro-
duce inconsistencies.

1.2 HOL-SPARK

The HOL-SPARK verification environment, which is built on top of Isabelle’s
object logic HOL, is intended as an alternative to the SPARK Proof Checker,
and improves on it in a number of ways. HOL-SPARK allows Isabelle to
directly parse files generated by the Examiner and Simplifier, and provides
a special proof command to conduct proofs of VCs, which can make use
of the full power of Isabelle’s rich collection of proof methods. Proofs can
be conducted using Isabelle’s graphical user interface, which makes it easy
to navigate through larger proof scripts. Moreover, proof functions can be
introduced in a definitional way, for example by using Isabelle’s package for
recursive functions, rather than by just stating their properties as axioms,
which avoids introducing inconsistencies.
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Figure 1.1: SPARK program verification tool chain




Figure 1.1 shows the integration of HOL-SPARK into the tool chain for the
verification of SPARK programs. HOL-SPARK processes declarations (*.£fd1)
and rules (x.rls) produced by the Examiner, as well as simplified VCs
(x.siv) produced by the SparRk Simplifier. Alternatively, the original un-
simplified VCs (*.vcg) produced by the Examiner can be used as well.
Processing of the SPARK files is triggered by an Isabelle theory file (x.thy),
which also contains the proofs for the VCs contained in the *.siv or *.vcg
files. Once that all verification conditions have been successfully proved,
Isabelle generates a proof review file (x.prv) notifying the POGS tool of
the VCs that have been discharged.



Chapter 2

Verifying an Example Program

We will now explain the usage of the SPARK verification environment by
proving the correctness of an example program. As an example, we use a
program for computing the greatest common divisor of two natural numbers
shown in Fig. 2.1, which has been taken from the book about SPARK by
Barnes [1, §11.6].

2.1 Importing SPARK VCs into Isabelle

In order to specify that the SPARK procedure G_C_D behaves like its mathe-
matical counterpart, Barnes introduces a proof function Ged in the package
specification. Invoking the SPARK Examiner and Simplifier on this pro-
gram yields a file g_c_d.siv containing the simplified VCs, as well as files
g_c_d.fdl and g_c_d.rls, containing FDL declarations and rules, respec-
tively. The files generated by SPARK are assumed to reside in the subdi-
rectory greatest_common_divisor. For G_C_D the Examiner generates ten
VCs, eight of which are proved automatically by the Simplifier. We now
show how to prove the remaining two VCs interactively using HOL-SPARK.
For this purpose, we create a theory Greatest_Common_Divisor, which is
shown in Fig. 2.2. A theory file always starts with the keyword theory
followed by the name of the theory, which must be the same as the file
name. The theory name is followed by the keyword imports and a list of
theories imported by the current theory. All theories using the HOL-SPARK
verification environment must import the theory SPARK. In addition, we
also include the GCD theory. The list of imported theories is followed by the
begin keyword. In order to interactively process the theory shown in Fig.
2.2, we start Isabelle with the command

isabelle jedit -1 HOL-SPARK Greatest_Common_Divisor.thy
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package Greatest_Common_Divisor
is

—--# function Gcd(4, B: Natural) return Natural;

procedure G_C_D(M, N: in Natural; G: out Natural);
--# derives G from M, N;
-—# pre M >= 0 and N > 0;
--# post G = Ged(M,N);

end Greatest_Common Divisor;

package body Greatest_Common_Divisor
is

procedure G_C_D(M, N: in Natural; G: out Natural)
is
C, D, R: Integer;
begin
C :=M; D := N;
while D /= 0 loop
--# assert ¢ >= 0 and D > 0 and Gecd(C, D) = Gecd(M, N);
R := C rem D;
C :=D; D :=R;

end Greatest_Common_Divisor;

Figure 2.1: SPARK program for computing the greatest common divisor



theory Greatest_Common_Divisor
imports "HOL-SPARK.SPARK"
begin

spark_proof_functions
ged = "ged :: int = int = int"

spark_open <greatest_common_divisor/g_c_d>

spark _vc procedure_g_c_d_4
proof -
from <0 < d> have "0 < c mod d" by (rule pos_mod_sign)
with <0 < ¢» <0 < d> <c - ¢ sdivd * d # 0> show 7C1
by (simp add: sdiv_pos_pos minus_div_mult_eq_mod [symmetric])
next
from <0 < ¢> <0 < d> <gecd ¢ d = gcd m n> show 7C2
by (simp add: sdiv_pos_pos minus_div_mult_eq_mod [symmetric]
gcd_non_O0_int)
ged

spark vc procedure_g_c_d_11
proof -
from <0 < ¢c> <0< d> <c - csdivd*xd=0»
have "d dvd c"
by (auto simp add: sdiv_pos_pos dvd_def ac_simps)
with <0 < d> <gcd ¢ d = gcd m n> show ?7C1
by simp
ged

spark_end

end

Figure 2.2: Correctness proof for the greatest common divisor program



The option “~1 HOL-SPARK” instructs Isabelle to load the right object logic
image containing the verification environment. Each proof function oc-
curring in the specification of a SPARK program must be linked with a
corresponding Isabelle function. This is accomplished by the command
spark_proof functions, which expects a list of equations of the form name
= term, where name is the name of the proof function and term is the cor-
responding Isabelle term. In the case of gcd, both the SPARK proof func-
tion and its Isabelle counterpart happen to have the same name. Isabelle
checks that the type of the term linked with a proof function agrees with the
type of the function declared in the *.£d1 file. It is worth noting that the
spark proof functions command can be invoked both outside, i.e. before
spark_open, and inside the environment, i.e. after spark_open, but be-
fore any spark_ve command. The former variant is useful when having to
declare proof functions that are shared by several procedures, whereas the
latter has the advantage that the type of the proof function can be checked
immediately, since the VCs, and hence also the declarations of proof func-
tions in the *.fd1 file have already been loaded. We now instruct Isabelle
to open a new verification environment and load a set of VCs. This is done
using the command spark_open, which must be given the name of a *.siv
file as an argument. Behind the scenes, Isabelle parses this file and the cor-
responding *.fdl and *.r1s files, and converts the VCs to Isabelle terms.
Using the command spark_status, the user can display the current VCs
together with their status (proved, unproved). The variants spark_status
(proved) and spark_status (unproved) show only proved and unproved
VCs, respectively. For g_c_d.siv, the output of spark_status is shown in
Fig. 2.3. To minimize the number of assumptions, and hence the size of the
VCs, FDL rules of the form “... may_be_replaced_by ...” are turned into
native Isabelle definitions, whereas other rules are modelled as assump-
tions.

2.2 Proving the VCs

The two open VCs are procedure_g_c_d_4 and procedure_g _c_d_11, both
of which contain the gcd proof function that the SPARK Simplifier does
not know anything about. The proof of a particular VC can be started
with the spark _vc command, which is similar to the standard lemma and
theorem commands, with the difference that it only takes a name of a
VC but no formula as an argument. A VC can have several conclusions
that can be referenced by the identifiers ?C1, ?C2, etc. If there is just one
conclusion, it can also be referenced by ?thesis. It is important to note



Context:

fixes m "int"

and n :: "int"

and C "int"

and d :: "int"

assumes g_c_d_rulesl: "0 < integer__size"
and g c_d_rules6: "O < natural__size"
notes definition

defns = ‘integer_ _first = - 2147483648°

‘integer__last = 2147483647

Definitions:

g c_d_rules2: integer_ _first = - 2147483648
g c_d_rules3: integer__last = 2147483647

Verification conditions:
path(s) from assertion of line 10 to assertion of line 10

procedure_g_c_d_4 (unproved)
assumes H1: "0 < ¢"

and H2: "0 < 4"

and H3: "gcd ¢ d = gcd m n"

shows "0 < c - c sdivd x d"

and "gcd d (¢ - c sdivd *d) = gcdmn

path(s) from assertion of line 10 to finish

procedure_g _c_d_11 (unproved)
assumes H1l: "0 < c¢"

and H2: "0 < 4"
and H3: "gcd ¢ d = gcd m n"
shows "d = gcd m n"

Figure 2.3: Output of spark_status for g_c_d.siv
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that the div operator of FDL behaves differently from the div operator of
Isabelle/HOL on negative numbers. The former always truncates towards
zero, whereas the latter truncates towards minus infinity. This is why the
FDL div operator is mapped to the sdiv operator in Isabelle/HOL, which
is defined as

a sdiv b = sgn a * sgn b * (|a] div [b])

For example, we have that - 5 sdiv 4 = - 1, but- 5 div 4 = - 2. For
non-negative dividend and divisor, sdiv is equivalent to div, as witnessed
by theorem sdiv_pos_pos:

0<a=—0<b=— asdivb=adiv b

In contrast, the behaviour of the FDL mod operator is equivalent to the one
of Isabelle/HOL. Moreover, since FDL has no counterpart of the SPARK op-
erator rem, the SPARK expression ¢ rem d just becomes ¢ - ¢ sdiv 4 * d
in Isabelle. The first conclusion of procedure_g_c_d_4 requires us to prove
that the remainder of c and d is greater than 0. To do this, we use the theo-
remminus_div_mult_eq mod [symmetric] describing the correspondence
between div and mod

amod b=a-adivb xDb

together with the theorem pos_mod_sign saying that the result of the mod
operator is non-negative when applied to a non-negative divisor:

0<1=0<%nmod1l

We will also need the aforementioned theorem sdiv_pos_pos in order for
the standard Isabelle/HOL theorems about div to be applicable to the VC,
which is formulated using sdiv rather that div. Note that the proof uses
‘0 < c“and ‘0 < df rather than H1 and H2 to refer to the hypotheses of
the current VC. While the latter variant seems more compact, it is not par-
ticularly robust, since the numbering of hypotheses can easily change if the
corresponding program is modified, making the proof script hard to adjust
when there are many hypotheses. Moreover, proof scripts using abbrevia-
tions like H1 and H2 are hard to read without assistance from Isabelle. The
second conclusion of procedure_g_c_d_4 requires us to prove that the gcd
of d and the remainder of ¢ and d is equal to the gcd of the original input
values m and n, which is the actual invariant of the procedure. This is a
consequence of theorem gcd_non_0_int

0<y = gcdxy=gedy (x mod y)
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Again, we also need theorems minus_div_mult_eq mod [symmetric] and
sdiv_pos_pos to justify that SPARK’s rem operator is equivalent to Isabelle’s
mod operator for non-negative operands. The VC procedure_g _c_d_11 says
that if the loop invariant holds before the last iteration of the loop, the post-
condition of the procedure will hold after execution of the loop body. To
prove this, we observe that the remainder of ¢ and d, and hence ¢ mod dis
0 when exiting the loop. This implies that gcd ¢ d = d, since c is divisible
by 4, so the conclusion follows using the assumption gcd ¢ d = gcd m n.
This concludes the proofs of the open VCs, and hence the SPARK verification
environment can be closed using the command spark end. This command
checks that all VCs have been proved and issues an error message if there
are remaining unproved VCs. Moreover, Isabelle checks that there is no
open SPARK verification environment when the final end command of a
theory is encountered.

2.3 Optimizing the proof

When looking at the program from Fig. 2.1 once again, several optimiza-
tions come to mind. First of all, like the input parameters of the proce-
dure, the local variables C, D, and R can be declared as Natural rather than
Integer. Since natural numbers are non-negative by construction, the val-
ues computed by the algorithm are trivially proved to be non-negative.
Since we are working with non-negative numbers, we can also just use
SPARK’s mod operator instead of rem, which spares us an application of
theorems minus_div_mult_eq mod [symmetric] and sdiv_pos_pos. Fi-
nally, as noted by Barnes [1, §11.5], we can simplify matters by placing
the assert statement between while and loop rather than directly after the
loop. In the former case, the loop invariant has to be proved only once,
whereas in the latter case, it has to be proved twice: since the assert occurs
after the check of the exit condition, the invariant has to be proved for the
path from the assert statement to the assert statement, and for the path
from the assert statement to the postcondition. In the case of the G_C_D
procedure, this might not seem particularly problematic, since the proof of
the invariant is very simple, but it can unnecessarily complicate matters if
the proof of the invariant is non-trivial. The simplified program for com-
puting the greatest common divisor, together with its correctness proof, is
shown in Fig. 2.4. Since the package specification has not changed, we
only show the body of the packages. The two VCs can now be proved by a
single application of Isabelle’s proof method simp.
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package body Simple_Greatest_Common_Divisor
is

procedure G_C_D (M, N : in Natural; G : out Natural)
is
C, D, R : Natural;
begin
C :=M; D :=N;
while D /= 0
--# assert Ged (C, D) = Ged (M, N);
loop
R := C mod D;
C :=D; D :=R;
end loop;
G := C;
end G_C_D;

end Simple_Greatest_Common_Divisor;

theory Simple_Greatest_Common_Divisor
imports "HOL-SPARK.SPARK"
begin

spark_proof_functions
gcd = "ged :: int = int = int"

spark_open <simple_greatest_common_divisor/g_c_d>
spark_vc procedure_g_c_d_4
using <0 < d> <gcd ¢ d = gcd m n>
by (simp add: gcd_non_0_int)
spark_vc procedure_g_c_d_9
using <0 < c> <gcd ¢ 0 = gcd m n>
by simp
spark_end

end

Figure 2.4: Simplified greatest common divisor program and proof
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Chapter 3

Principles of VC generation

In this section, we will discuss some aspects of VC generation that are
useful for understanding and optimizing the VCs produced by the SPARK
Examiner.

As explained by Barnes [1, §11.5], the SPARK Examiner unfolds the loop

for I in T range L .. U loop
--# assert P (I);
S;

end loop;

to

if L <= U then
I :=1L;
loop
—-# assert P (I);
S;
exit when I = U;
I =1+ 1;
end loop;
end if;

Due to this treatment of for-loops, the user essentially has to prove twice
that S preserves the invariant P, namely for the path from the assertion
to the assertion and from the assertion to the next cut point following the
loop. The preservation of the invariant has to be proved even more often
when the loop is followed by an if-statement. For trivial invariants, this
might not seem like a big problem, but in realistic applications, where in-
variants are complex, this can be a major inconvenience. Often, the proofs
of the invariant differ only in a few variables, so it is tempting to just copy
and modify existing proof scripts, but this leads to proofs that are hard to

14



package Loop_Invariant
is

type Word32 is mod 2 ** 32;

procedure Procl (A : in Natural; B : in Word32; C : out Word32);
--# derives C from 4, B;
-—# post Word32 (A) * B = C;

procedure Proc2 (A : in Natural; B : in Word32; C : out Word32);
--# derives C from A4, B;
-—# post Word32 (4) * B = C;

end Loop_Invariant;

package body Loop_Invariant
is

procedure Procl (A : in Natural; B : in Word32; C : out Word32)
is
begin
C := 0;
for I in Natural range 1 .. A
--# assert Word32 (I - 1) * B = C;
loop
C := C + B;
end loop;
end Procli;

procedure Proc2 (A : in Natural; B : in Word32; C : out Word32)
is
begin
C := 0;
for I in Natural range 1 .. A
--# assert Word32 (I - 1) * B = C;
loop
C := C + B;
--# assert Word32 (I) * B = C;
end loop;
end Proc2;

end Loop_Invariant;
Figure 3.1: Assertions in for-loops
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precondition

(1—1)%bmod 23 =0

(i—1)*bmod 2% =c —
assertion (i+1—1)*bmod?23? =
(c + b) mod 232

(a—1)xbmod 232 =¢c —
a * bmod 232 = (c + b) mod 232

-1<a —
a*bmod 232 = 0

[postcondition]

Figure 3.2: Control flow graph for procedure Proc1

precondition

—1<a —

axbmod 232 =0 (1—1)*bmod 23 =0

assertion 1

(i—1)*bmod 2% = ¢
.

i* bmod 232 =
(c + b) mod 232

ixbmod?23? =¢ —
(i+1—1)xbmod 2 =¢

assertion 2

axbmod?23? =¢ —
axbmod 232 = ¢

[postcondition]

Figure 3.3: Control flow graph for procedure Proc2
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maintain. The problem of having to prove the invariant several times can
be avoided by rephrasing the above for-loop to

for I in T range L .. U loop
—-# assert P (I);
S;
--# assert P (I + 1)

end loop;

The VC for the path from the second assertion to the first assertion is trivial
and can usually be proved automatically by the SPARK Simplifier, whereas
the VC for the path from the first assertion to the second assertion actually
expresses the fact that S preserves the invariant.

We illustrate this technique using the example package shown in Fig. 3.1.
It contains two procedures Procl and Proc2, both of which implement
multiplication via addition. The procedures have the same specification,
but in Proci1, only one assert statement is placed at the beginning of the
loop, whereas Proc2 employs the trick explained above. After applying the
SPARK Simplifier to the VCs generated for Proc1, two very similar VCs

loop__1__i * b mod 232 = ((loop__1__i - 1) * b mod 232 + b) mod 232
and
a*bmod 232 = ((a - 1) * b mod 232 + b) mod 232

remain, whereas for Proc2, only the first of the above VCs remains. Why
placing assert statements both at the beginning and at the end of the loop
body simplifies the proof of the invariant should become obvious when
looking at Fig. 3.2 and Fig. 3.3 showing the control flow graphs for Proc1
and Proc2, respectively. The nodes in the graph correspond to cut points
in the program, and the paths between the cut points are annotated with
the corresponding VCs. To reduce the size of the graphs, we do not show
nodes and edges corresponding to runtime checks. The VCs for the path
bypassing the loop and for the path from the precondition to the (first)
assertion are the same for both procedures. The graph for Proc1 contains
two VCs expressing that the invariant is preserved by the execution of the
loop body: one for the path from the assertion to the assertion, and another
one for the path from the assertion to the conclusion, which corresponds to
the last iteration of the loop. The latter VC can be obtained from the former
by simply replacing ¢ by a. In contrast, the graph for Proc2 contains only
one such VC for the path from assertion 1 to assertion 2. The VC for the
path from assertion 2 to assertion 1 is trivial, and so is the VC for the path

17



from assertion 2 to the postcondition, expressing that the loop invariant
implies the postcondition when the loop has terminated.
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Chapter 4

HOL-SPARK Reference

This section is intended as a quick reference for the HOL-SPARK verification
environment. In §4.1, we give a summary of the commands provided by
the HOL-SPARK, while §4.2 contains a description of how particular types
of SPARK and FDL are modelled in Isabelle.

4.1 Commands

This section describes the syntax and effect of each of the commands pro-
vided by HOL-SPARK.

—Gpark_oper} name
L@» name @J

Opens a new SPARK verification environment and loads a *.siv file with
VCs. Alternatively, *.vcg files can be loaded using spark_open_veg. The
corresponding *.fdl and *.rls files must reside in the same directory
as the file given as an argument to the command. This command also
generates records and datatypes for the types specified in the *.£d1 file,
unless they have already been associated with user-defined Isabelle types
(see below). Since the full package name currently cannot be determined
from the files generated by the SPARK Examiner, the command also allows
to specify an optional package prefix in the format p;__...__p,. When
working with projects consisting of several packages, this is necessary in
order for the verification environment to be able to map proof functions
and types defined in Isabelle to their SPARK counterparts.

19



%park_proof_functions)T name @ term T

Associates a proof function with the given name to a term. The name
should be the full name of the proof function as it appears in the *.fdl
file, including the package prefix. This command can be used both in-
side and outside a verification environment. The latter variant is useful
for introducing proof functions that are shared by several procedures or
packages, whereas the former allows the given term to refer to the types
generated by spark _open for record or enumeration types specified in the
* . £d1 file.

mapping

mapping
@ name @ name @
— 5 )
N

Associates a SPARK type with the given name with an Isabelle type. This
command can only be used outside a verification environment. The given
type must be either a record or a datatype, where the names of fields or
constructors must either match those of the corresponding SPARK types
(modulo casing), or a mapping from SPARK to Isabelle names has to be
provided. This command is useful when having to define proof functions
referring to record or enumeration types that are shared by several pro-
cedures or packages. First, the types required by the proof functions can
be introduced using Isabelle’s commands for defining records or datatypes.
Having introduced the types, the proof functions can be defined in Isabelle.
Finally, both the proof functions and the types can be associated with their
SPARK counterparts.

20



— spark_status )

(proved)

(unproved)

Outputs the variables declared in the *.fd1 file, the rules declared in the
*.rls file, and all VCs, together with their status (proved, unproved). The
output can be restricted to the proved or unproved VCs by giving the cor-
responding option to the command.

—Gpark_v} name ——

Initiates the proof of the VC with the given name. Similar to the standard
lemma or theorem commands, this command must be followed by a se-
quence of proof commands. The command introduces the hypotheses H1
...Hn, as well as the identifiers ?C1 ...?Cm corresponding to the conclu-
sions of the VC.

Closes the current verification environment. Unless the incomplete option
is given, all VCs must have been proved, otherwise the command issues
an error message. As a side effect, the command generates a proof review
(*.prv) file to inform POGS of the proved VCs.

4.2 Types

The main types of FDL are integers, enumeration types, records, and ar-
rays. In the following sections, we describe how these types are modelled
in Isabelle.

4.2.1 Integers

The FDL type integer is modelled by the Isabelle type int. While the FDL
mod operator behaves in the same way as its Isabelle counterpart, this is
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sdiv_def: a sdiv b = sgn a * sgn b * (Ja div |b])
sdiv_minus_dividend: - a sdiv b = - (a sdiv b)
sdiv_minus divisor: a sdiv - b = - (a sdiv b)
sdiv_pos_pos: 0<a=— 0<b=— asdivb=adivb
sdiv_pos_neg: 0<a=b< 0= asdivb=- (adiv - b)
sdiv_neg_pos: a<0=0<b= asdivb=- (- adiv b)
sdiv_neg_neg: a<0=Db<0= asdivb=-adiv -b
Figure 4.1: Characteristic properties of sdiv

AND_lower: 0<x= 0<xAND Y

OR_lower: 0<x=0<Ly=0<x0Ry

X0R_lower: 0<x=0<y=0<xX0Ry

AND_upperl: 0 < x = x AND y < x

AND _upper2: 0 <y = x ANDy <y

OR_upper: 0<x=3x<2 = y<2" — x0Ry<2"

XOR_upper: 0 < x =— x <2 — y <28 — x XO0R y < 2"

AND mod: x AND 2% - 1 = x mod 2%

Figure 4.2: Characteristic properties of bitwise operators

not the case for the div operator. As has already been mentioned in §2.2,
the div operator of SPARK always truncates towards zero, whereas the div
operator of Isabelle truncates towards minus infinity. Therefore, the FDL
div operator is mapped to the sdiv operator in Isabelle. The characteristic
theorems of sdiv, in particular those describing the relationship with the
standard div operator, are shown in Fig. 4.1

The bitwise logical operators of SPARK and FDL are modelled by the oper-
ators AND, OR and XOR from Isabelle’s Word library, all of which have type
int = int = int. A list of properties of these operators that are useful
in proofs about SPARK programs are shown in Fig. 4.2

4.2.2 Enumeration types

The FDL enumeration type

type t = (e1, €2, ..., €3);

is modelled by the Isabelle datatype
datatype t = ¢e; | es | ... | €,
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range_pos: range pos = {0..<int CARD(’a)}

less_pos: (x < y) = (pos x < pos y)
less_eq_pos: (x < y) = (pos x < pos y)
val_def: val = inv pos

succ_def: succ x = val (pos x + 1)

pred_def: pred x = val (pos x - 1)
first_el_def: first_el = val O

last_el_def: last_el = val (int CARD(’a) - 1)
inj_pos: inj pos

val_pos: val (pos x) = x

pos_val: z € range pos —> pos (val z) = z

first_el_smallest: first_el < x
last_el_greatest: x < last_el

pos_succ: x # last_el = pos (succ x) = pos x + 1
pos_pred: x # first_el = pos (pred x) = pos x - 1
succ_val: X € range pos = succ (val x) = val (x + 1)
pred_val: X € range pos —> pred (val x) = val (x - 1)

Figure 4.3: Generic properties of functions on enumeration types

The HOL-SPARK environment defines a type class spark_enum that captures
the characteristic properties of all enumeration types. It provides the fol-
lowing polymorphic functions and constants for all types ’a of this type
class:

pos
val

succ
pred
first_el
last_el

In addition, spark_enum is a subclass of the 1inorder type class, which al-
lows the comparison operators < and < to be used on enumeration types.
The polymorphic operations shown above enjoy a number of generic prop-
erties that hold for all enumeration types. These properties are listed in
Fig. 4.3. Moreover, Fig. 4.4 shows a list of properties that are specific to
each enumeration type ¢, such as the characteristic equations for val and
pos.
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t_ val: val 0 = e t_pos: pose; =0
val 1 = eg poses =1
val (n—1) = e, pose, =n—1

t_card: card(t) = n

t_first_el: first_el = e;
t_last_el: last_el = e,

Figure 4.4: Type-specific properties of functions on enumeration types

4.2.3 Records
The FDL record type
type t = record
St
fa i tn
end;

is modelled by the Isabelle record type

record t =

fi oo

fn 10ty
Records are constructed using the notation (f; = vy, ..., fu = v,), a
field f; of a record r is selected using the notation f; r, and the fields f and
f' of a record r can be updated using the notation r (f := v, f' := /).

4.2.4 Arrays
The FDL array type
type t = array [ty, ..., t,] of w;

is modelled by the Isabelle function type ¢; x - -- x t,, = u. Array updates
are written as A(zy := vy, ..., T, := y,). To allow updating an array
at a set of indices, HOL-SPARK provides the notation ... [:=] ..., which
can be combined with ... := ... and has the properties
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z € xs = (f(xs [:=] y)) z =y
z ¢ xs = (f(xs [:=] y)) z
f{x} [:=] y) = £(x := y)

]
Hh
N

Thus, we can write expressions like
A({0..9} [:=] 42, 15 := 99, {20..29} [:=] 0)

that would be cumbersome to write using single updates.

4.3 User-defined proof functions and types

To illustrate the interplay between the commands for introducing user-
defined proof functions and types mentioned in §4.1, we now discuss a
larger example involving the definition of proof functions on complex types.
Assume we would like to define an array type, whose elements are records
that themselves contain arrays. Moreover, assume we would like to ini-
tialize all array elements and record fields of type Integer in an array of
this type with the value 0. The specification of package Complex Types
containing the definition of the array type, which we call Array_Type2,
is shown in Fig. 4.5. It also contains the declaration of a proof function
Initialized that is used to express that the array has been initialized.
The two other proof functions Initialized2 and Initialized3 are used
to reason about the initialization of the inner array. Since the array types
and proof functions may be used by several packages, such as the one
shown in Fig. 4.6, it is advantageous to define the proof functions in a cen-
tral theory that can be included by other theories containing proofs about
packages using Complex Types. We show this theory in Fig. 4.7. Since
the proof functions refer to the enumeration and record types defined in
Complex_Types, we need to define the Isabelle counterparts of these types
using the datatype and record commands in order to be able to write
down the definition of the proof functions. These types are linked to the
corresponding SPARK types using the spark_types command. Note that we
have to specify the full name of the SPARK functions including the package
prefix. Using the logic of Isabelle, we can then define functions involving
the enumeration and record types introduced above, and link them to the
corresponding SPARK proof functions. It is important that the definition
commands are preceeded by the spark_types command, since the defini-
tion of initialized3 uses the val function for enumeration types that is
only available once that day has been declared as a SPARK type.
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package Complex_Types
is

type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
subtype Array_Index is Natural range O .. 9;
type Array_Typel is array (Array_Index, Day) of Integer;
type Record_Type is
record
Fieldl : Array_Typel;

Field2 : Integer;
end record;

type Array_Type2 is array (Array_Index) of Record_Type;

--# function Initialized
-—# (A: Array_Type2; I : Natural) return Boolean;

--# function Initialized2
—--# (A: Array_Typel; I : Natural) return Boolean;

--# function Initialized3
—--# (4A: Array_Typel; I : Natural; K : Natural) return Boolean;

end Complex_Types;

Figure 4.5: Nested array and record types
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with Complex_Types;
--# inherit Complex_Types;

package Complex_Types_App
is

procedure Initialize (A : in out Complex_Types.Array_Type2);
—-# derives 4 from A4;

—--# post Complex_Types.Initialized (4, 10);
end Complex_Types_App;

package body Complex_Types_App
is

procedure Initialize (A :
is

begin

in out Complex_Types.Array_Type2)

for I in Complex_Types.Array_Index

--# assert Complex_Types.Initialized (4, I);
loop

for J in Complex_Types.Array_Index
--# assert

--# Complez_Types.Initialized (4, I) and
--# Complez_Types.Initialized2 (4 (I).Fieldl, J);

loop
for X in Complex_Types.Day
——# assert
——#

Complex_Types.Initialized (A, I) and
Complexz_Types.Initialized2 (A (I).Field1l, J) and
--# Complezx_Types.Initialized3

(A (I).Fieldl, J, Complexz_Types.Day’Pos (K));
loop

A (I).Fieldl (J, K) := 0;
end loop;
end loop;
A (I).Field2 := 0;
end loop;
end Initialize;

end Complex_Types_App;

Figure 4.6: Application of Complex_Types package
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theory Complex_Types
imports "HOL-SPARK.SPARK"
begin

datatype day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

record two _fields =
Fieldl :: "int X day = int"
Field2 :: int

spark_types
complex_types__day = day
complex_types__record_type = two_fields

definition
initialized3 :: "(int X day = int) = int = int = bool" where
"initialized3 A i k = (Vje{0..<k}. A (i, val j) = 0O)"

definition
initialized2 :: "(int X day = int) = int = bool" where
"initialized2 A i = (Vj€{0..<i}. initialized3 A j 7)"

definition
initialized :: "(int = two_fields) = int = bool" where

"initialized A i = (Vje{0..<i}.
initialized2 (Fieldl (A j)) 10 A Field2 (A j) = 0)"

spark_proof_functions
complex_types__initialized = initialized
complex_types__initialized2 = initialized2
complex_types__initialized3 = initialized3

end

Figure 4.7: Theory defining proof functions for complex types
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