real_asymp: Semi-Automatic Real Asymptotics
in Isabelle/HOL

Manuel Eberl

18 January 2026

Contents

1

2

Introduction

Supported Operations

Proving Limits and Asymptotic Properties
Diagnostic Commands

Extensibility

5.1 Basic fact collections L.
5.2 Expanding Custom Operations
5.3 Extending the Sign Oracle

1 INTRODUCTION 2
(ML)

1 Introduction

This document describes the real_asymp package that provides a number
of tools related to the asymptotics of real-valued functions. These tools are:

e The real-asymp method to prove limits, statements involving Landau
symbols (‘Big-O’ etc.), and asymptotic equivalence (~)

e The real-limit command to compute the limit of a real-valued func-
tion at a certain point

e The real-expansion command to compute the asymptotic expansion
of a real-valued function at a certain point

These three tools will be described in the following sections.

2 Supported Operations
The real_asymp package fully supports the following operations:

 Basic arithmetic (addition, subtraction, multiplication, division)
e Powers with constant natural exponent

o exp, In, log, sqrt, root k (for a constant k)

e sin, cos, tan at finite points

e sinh, cosh, tanh

e min, mazx, abs

Additionally, the following operations are supported in a ‘best effort’ fashion
using asymptotic upper/lower bounds:

e Powers with variable natural exponent
e sin and cos at o0

e floor, ceiling, frac, and mod

Additionally, the arctan function is partially supported. The method may
fail when the argument to arctan contains functions of different order of
growth.

3 PROVING LIMITS AND ASYMPTOTIC PROPERTIES 3

3 Proving Limits and Asymptotic Properties

real-asymp : method

—{ real_asymp

opt

fallback

stmpmod
(aca) (O thms |—
N edd aS
del i
) /

b=

The real-asymp method is a semi-automatic proof method for proving certain
statements related to the asymptotic behaviour of real-valued functions. In
the following, let f and g be functions of type real = real and F and G real
filters.

The functions f and ¢ can be built from the operations mentioned before
and may contain free variables. The filters F' and G can be either +o0 or a
finite point in R, possibly with approach from the left or from the right.

The class of statements that is supported by real-asymp then consists of:

o Limits, i.e. filterlim f F G

o Landau symbols, i.e. f € O[F](g) and analogously for o, 2, w, ©

3 PROVING LIMITS AND ASYMPTOTIC PROPERTIES 4

o Asymptotic equivalence, i.e. f ~[F] g

e Asymptotic inequalities, i.e. Vp xin F. fz < g x

For typical problems arising in practice that do not contain free variables,
real-asymp tends to succeed fully automatically within fractions of seconds,

e.g.:
lemma «filterlim (Az::real. (1 + 1 / x) powr z) (nhds (exp 1)) at-top
(proof)

What makes the method semi-automatic is the fact that it has to internally
determine the sign of real-valued constants and identical zeroness of real-
valued functions, and while the internal heuristics for this work very well
most of the time, there are situations where the method fails to determine
the sign of a constant, in which case the user needs to go back and supply
more information about the sign of that constant in order to get a result.

A simple example is the following:

lemma <filterlim (Az::real. exp (a * x)) at-top at-top)
(proof)

Here, real-asymp outputs an error message stating that it could not deter-
mine the sign of the free variable a. In this case, the user must add the
assumption a > 0 and give it to real-asymp.

lemma
assumes a > 0»
shows «filterlim (Az::real. exp (a *) al-top at-top

{proof)

Additional modifications to the simpset that is used for determining signs
can also be made with simp add: modifiers etc. in the same way as when
using the simp method directly.

The same situation can also occur without free variables if the constant
in question is a complicated expression that the simplifier does not know
enough ebout, e.g. pi — exp 1.

In order to trace problems with sign determination, the (verbose) option
can be passed to real-asymp. It will then print a detailed error message
whenever it encounters a sign determination problem that it cannot solve.

The (fallback) flag causes the method not to use asymptotic interval arith-
metic, but only the much simpler core mechanism of computing a single
Multiseries expansion for the input function. There should normally be no
need to use this flag; however, the core part of the code has been tested much
more rigorously than the asymptotic interval part. In case there is some im-
plementation problem with it for a problem that can be solved without it,
the (fallback) option can be used until that problem is resolved.

4 DIAGNOSTIC COMMANDS 5

4 Diagnostic Commands

real-limit : context —
real-expansion : context —

limitopt
— real_expansion)
g expansionopt Q

limitopt

expansionopt

(O-Grrie)r-0)

real-limit computes the limit of the given function f(z) for as z tends to
the specified limit point. Additional facts can be provided with the
facts option, similarly to the using command with real-asymp. The
limit point given by the limit option must be one of the filters at-top,
at-bot, at-left, or at-right. If no limit point is given, at-top is used by
default.

The output of real-limit can be 0o, —oo, £o0, ¢ (for some real con-
stant ¢), 07, or 07. The + and — in the last case indicate whether
the approach is from above or from below (corresponding to at-right 0
and at-left 0); for technical reasons, this information is currently not
displayed if the limit is not 0.

If the given function does not tend to a definite limit (e.g. sin = for
r — 00), the command might nevertheless succeed to compute an
asymptotic upper and/or lower bound and display the limits of these
bounds instead.

5 EXTENSIBILITY 6

real-expansion works similarly to real-limit, but displays the first few
terms of the asymptotic multiseries expansion of the given function at
the given limit point and the order of growth of the remainder term.

In addition to the options already explained for the real-limit com-
mand, it takes an additional option ferms that controls how many of
the leading terms of the expansion are printed. If the (strict) modifier
is passed to the terms option, terms whose coefficient is 0 are dropped
from the output and do not count to the number of terms to be output.

By default, the first three terms are output and the strict option is
disabled.

Note that these two commands are intended for diagnostic use only. While
the central part of their implementation — finding a multiseries expansion
and reading off the limit — are the same as in the real-asymp method and
therefore trustworthy, there is a small amount of unverified code involved
in pre-processing and printing (e. g. for reducing all the different options for
the limit option to the at-top case).

5 Extensibility

5.1 Basic fact collections

The easiest way to add support for additional operations is to add corre-
sponding facts to one of the following fact collections. However, this only
works for particularly simple cases.

real-asymp-reify-simps specifies a list of (unconditional) equations that are
unfolded as a first step of real-asymp and the related commands. This
can be used to add support for operations that can be represented
easily by other operations that are already supported, such as sinh,
which is equal to Az. (exp x — exp (— z)) / (2::'a).

real-asymp-nat-reify and real-asymp-int-reify is used to convert operations
on natural numbers or integers to operations on real numbers. This
enables real-asymp to also work on functions that return a natural
number or an integer.

5.2 Expanding Custom Operations

Support for some non-trivial new operation f(z1, ..., z,) can be added
dynamically at any time, but it involves writing ML code and involves a

5 EXTENSIBILITY 7

significant amount of effort, especially when the function has essential sin-
gularities.

The first step is to write an ML function that takes as arguments

e the expansion context
o the term ¢ to expand (which will be of the form f(g1(z), ..., gn(2)))
o a list of n theorems of the form (g; expands-to G;) bs

o the current basis bs and returns a theorem of the form (t ezpands-to
F) bs’ and a new basis bs’ which must be a superset of the original
basis.

This function must then be registered as a handler for the operation by
proving a vacuous lemma of the form REAL-ASYMP-CUSTOM f (which is
only used for tagging) and passing that lemma and the expansion function
to Exp_Log_Expression.register_custom_from_thm in a local-setup in-
vocation.

If the expansion produced by the handler function contains new definitions,
corresponding evaluation equations must be added to the fact collection
real-asymp-eval-eqs. These equations must have the form h p; ... p,, = rhs
where h must be a constant of arity m (i. e. the function on the left-hand side
must be fully applied) and the p; can be patterns involving constructors.

New constructors for this pattern matching can be registered by adding a
theorem of the form REAL-ASYMP-EVAL-CONSTRUCTOR c to the fact
collection exp-log-eval-constructor, but this should be quite rare in practice.

Note that there is currently no way to add support for custom operations
in connection with ‘oscillating’ terms. The above mechanism only works if
all arguments of the new operation have an exact multiseries expansion.

5.3 Extending the Sign Oracle

By default, the real_asymp package uses the simplifier with the given simpset
and facts in order to determine the sign of real constants. This is done by
invoking the simplifier on goals like ¢ = 0, ¢ #£ 0, ¢ > 0, or ¢ < 0 or some
subset thereof, depending on the context.

If the simplifier cannot prove any of them, the entire method (or command)
invocation will fail. It is, however, possible to dynamically add additional
sign oracles that will be tried; the most obvious candidate for an oracle
that one may want to add or remove dynamically are approximation-based
tactics.

Adding such a tactic can be done by calling Multiseries_Expansion.register_sign_oracle.
Note that if the tactic cannot prove a goal, it should fail as fast as possible.

	Introduction
	Supported Operations
	Proving Limits and Asymptotic Properties
	Diagnostic Commands
	Extensibility
	Basic fact collections
	Expanding Custom Operations
	Extending the Sign Oracle

