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1 Basic definitions of Lambda-calculus
theory Lambda
imports Main
begin

declare [[syntax-ambiguity-warning = false]]

1.1 Lambda-terms in de Bruijn notation and substitution
datatype dB =

Var nat
| App dB dB (infixl ‹°› 200 )
| Abs dB

primrec
lift :: [dB, nat] => dB

where
lift (Var i) k = (if i < k then Var i else Var (i + 1 ))

| lift (s ° t) k = lift s k ° lift t k
| lift (Abs s) k = Abs (lift s (k + 1 ))

primrec
subst :: [dB, dB, nat] => dB (‹-[- ′/-]› [300 , 0 , 0 ] 300 )

where
subst-Var : (Var i)[s/k] =
(if k < i then Var (i − 1 ) else if i = k then s else Var i)

| subst-App: (t ° u)[s/k] = t[s/k] ° u[s/k]
| subst-Abs: (Abs t)[s/k] = Abs (t[lift s 0 / k+1 ])

declare subst-Var [simp del]

Optimized versions of subst and lift.
primrec

liftn :: [nat, dB, nat] => dB
where

liftn n (Var i) k = (if i < k then Var i else Var (i + n))
| liftn n (s ° t) k = liftn n s k ° liftn n t k
| liftn n (Abs s) k = Abs (liftn n s (k + 1 ))

primrec
substn :: [dB, dB, nat] => dB

where
substn (Var i) s k =
(if k < i then Var (i − 1 ) else if i = k then liftn k s 0 else Var i)

| substn (t ° u) s k = substn t s k ° substn u s k
| substn (Abs t) s k = Abs (substn t s (k + 1 ))
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1.2 Beta-reduction
inductive beta :: [dB, dB] => bool (infixl ‹→β› 50 )

where
beta [simp, intro!]: Abs s ° t →β s[t/0 ]

| appL [simp, intro!]: s →β t =⇒ s ° u →β t ° u
| appR [simp, intro!]: s →β t =⇒ u ° s →β u ° t
| abs [simp, intro!]: s →β t =⇒ Abs s →β Abs t

abbreviation
beta-reds :: [dB, dB] => bool (infixl ‹→β

∗› 50 ) where
s →β

∗ t == beta∗∗ s t

inductive-cases beta-cases [elim!]:
Var i →β t
Abs r →β s
s ° t →β u

declare if-not-P [simp] not-less-eq [simp]
— don’t add r-into-rtrancl[intro!]

1.3 Congruence rules
lemma rtrancl-beta-Abs [intro!]:

s →β
∗ s ′ =⇒ Abs s →β

∗ Abs s ′

〈proof 〉

lemma rtrancl-beta-AppL:
s →β

∗ s ′ =⇒ s ° t →β
∗ s ′ ° t

〈proof 〉

lemma rtrancl-beta-AppR:
t →β

∗ t ′ =⇒ s ° t →β
∗ s ° t ′

〈proof 〉

lemma rtrancl-beta-App [intro]:
[[s →β

∗ s ′; t →β
∗ t ′]] =⇒ s ° t →β

∗ s ′ ° t ′

〈proof 〉

1.4 Substitution-lemmas
lemma subst-eq [simp]: (Var k)[u/k] = u
〈proof 〉

lemma subst-gt [simp]: i < j =⇒ (Var j)[u/i] = Var (j − 1 )
〈proof 〉

lemma subst-lt [simp]: j < i =⇒ (Var j)[u/i] = Var j
〈proof 〉
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lemma lift-lift:
i < k + 1 =⇒ lift (lift t i) (Suc k) = lift (lift t k) i

〈proof 〉

lemma lift-subst [simp]:
j < i + 1 =⇒ lift (t[s/j]) i = (lift t (i + 1 )) [lift s i / j]

〈proof 〉

lemma lift-subst-lt:
i < j + 1 =⇒ lift (t[s/j]) i = (lift t i) [lift s i / j + 1 ]

〈proof 〉

lemma subst-lift [simp]:
(lift t k)[s/k] = t

〈proof 〉

lemma subst-subst:
i < j + 1 =⇒ t[lift v i / Suc j][u[v/j]/i] = t[u/i][v/j]

〈proof 〉

1.5 Equivalence proof for optimized substitution
lemma liftn-0 [simp]: liftn 0 t k = t
〈proof 〉

lemma liftn-lift [simp]: liftn (Suc n) t k = lift (liftn n t k) k
〈proof 〉

lemma substn-subst-n [simp]: substn t s n = t[liftn n s 0 / n]
〈proof 〉

theorem substn-subst-0 : substn t s 0 = t[s/0 ]
〈proof 〉

1.6 Preservation theorems

Not used in Church-Rosser proof, but in Strong Normalization.

theorem subst-preserves-beta [simp]:
r →β s =⇒ r [t/i] →β s[t/i]

〈proof 〉

theorem subst-preserves-beta ′: r →β
∗ s =⇒ r [t/i] →β

∗ s[t/i]
〈proof 〉

theorem lift-preserves-beta [simp]:
r →β s =⇒ lift r i →β lift s i

〈proof 〉
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theorem lift-preserves-beta ′: r →β
∗ s =⇒ lift r i →β

∗ lift s i
〈proof 〉

theorem subst-preserves-beta2 [simp]: r →β s =⇒ t[r/i] →β
∗ t[s/i]

〈proof 〉

theorem subst-preserves-beta2 ′: r →β
∗ s =⇒ t[r/i] →β

∗ t[s/i]
〈proof 〉

end

2 Abstract commutation and confluence notions
theory Commutation
imports Main
begin

declare [[syntax-ambiguity-warning = false]]

2.1 Basic definitions
definition

square :: [ ′a => ′a => bool, ′a => ′a => bool, ′a => ′a => bool, ′a => ′a =>
bool] => bool where

square R S T U =
(∀ x y. R x y −−> (∀ z. S x z −−> (∃ u. T y u ∧ U z u)))

definition
commute :: [ ′a => ′a => bool, ′a => ′a => bool] => bool where
commute R S = square R S S R

definition
diamond :: ( ′a => ′a => bool) => bool where
diamond R = commute R R

definition
Church-Rosser :: ( ′a => ′a => bool) => bool where
Church-Rosser R =
(∀ x y. (sup R (R−1−1))∗∗ x y −→ (∃ z. R∗∗ x z ∧ R∗∗ y z))

abbreviation
confluent :: ( ′a => ′a => bool) => bool where
confluent R == diamond (R∗∗)
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2.2 Basic lemmas
square
lemma square-sym: square R S T U ==> square S R U T
〈proof 〉

lemma square-subset:
[| square R S T U ; T ≤ T ′ |] ==> square R S T ′ U

〈proof 〉

lemma square-reflcl:
[| square R S T (R==); S ≤ T |] ==> square (R==) S T (R==)

〈proof 〉

lemma square-rtrancl:
square R S S T ==> square (R∗∗) S S (T∗∗)

〈proof 〉

lemma square-rtrancl-reflcl-commute:
square R S (S∗∗) (R==) ==> commute (R∗∗) (S∗∗)

〈proof 〉

commute
lemma commute-sym: commute R S ==> commute S R
〈proof 〉

lemma commute-rtrancl: commute R S ==> commute (R∗∗) (S∗∗)
〈proof 〉

lemma commute-Un:
[| commute R T ; commute S T |] ==> commute (sup R S) T

〈proof 〉

diamond, confluence, and union
lemma diamond-Un:

[| diamond R; diamond S ; commute R S |] ==> diamond (sup R S)
〈proof 〉

lemma diamond-confluent: diamond R ==> confluent R
〈proof 〉

lemma square-reflcl-confluent:
square R R (R==) (R==) ==> confluent R

〈proof 〉

lemma confluent-Un:
[| confluent R; confluent S ; commute (R∗∗) (S∗∗) |] ==> confluent (sup R S)

8



〈proof 〉

lemma diamond-to-confluence:
[| diamond R; T ≤ R; R ≤ T∗∗ |] ==> confluent T

〈proof 〉

2.3 Church-Rosser
lemma Church-Rosser-confluent: Church-Rosser R = confluent R
〈proof 〉

2.4 Newman’s lemma

Proof by Stefan Berghofer
theorem newman:

assumes wf : wfP (R−1−1)
and lc:

∧
a b c. R a b =⇒ R a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
shows

∧
b c. R∗∗ a b =⇒ R∗∗ a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
〈proof 〉

Alternative version. Partly automated by Tobias Nipkow. Takes 2 minutes
(2002).
This is the maximal amount of automation possible using blast.
theorem newman ′:

assumes wf : wfP (R−1−1)
and lc:

∧
a b c. R a b =⇒ R a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
shows

∧
b c. R∗∗ a b =⇒ R∗∗ a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
〈proof 〉

Using the coherent logic prover, the proof of the induction step is completely
automatic.
lemma eq-imp-rtranclp: x = y =⇒ r∗∗ x y
〈proof 〉

theorem newman ′′:
assumes wf : wfP (R−1−1)
and lc:

∧
a b c. R a b =⇒ R a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
shows

∧
b c. R∗∗ a b =⇒ R∗∗ a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
〈proof 〉

end
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3 Parallel reduction and a complete developments
theory ParRed imports Lambda Commutation begin

3.1 Parallel reduction
inductive par-beta :: [dB, dB] => bool (infixl ‹=>› 50 )

where
var [simp, intro!]: Var n => Var n

| abs [simp, intro!]: s => t ==> Abs s => Abs t
| app [simp, intro!]: [| s => s ′; t => t ′ |] ==> s ° t => s ′ ° t ′

| beta [simp, intro!]: [| s => s ′; t => t ′ |] ==> (Abs s) ° t => s ′[t ′/0 ]

inductive-cases par-beta-cases [elim!]:
Var n => t
Abs s => Abs t
(Abs s) ° t => u
s ° t => u
Abs s => t

3.2 Inclusions

beta ⊆ par-beta ⊆ beta∗

lemma par-beta-varL [simp]:
(Var n => t) = (t = Var n)

〈proof 〉

lemma par-beta-refl [simp]: t => t
〈proof 〉

lemma beta-subset-par-beta: beta <= par-beta
〈proof 〉

lemma par-beta-subset-beta: par-beta ≤ beta∗∗

〈proof 〉

3.3 Misc properties of par-beta
lemma par-beta-lift [simp]:

t => t ′ =⇒ lift t n => lift t ′ n
〈proof 〉

lemma par-beta-subst:
s => s ′ =⇒ t => t ′ =⇒ t[s/n] => t ′[s ′/n]

〈proof 〉

3.4 Confluence (directly)
lemma diamond-par-beta: diamond par-beta
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〈proof 〉

3.5 Complete developments
fun

cd :: dB => dB
where

cd (Var n) = Var n
| cd (Var n ° t) = Var n ° cd t
| cd ((s1 ° s2 ) ° t) = cd (s1 ° s2 ) ° cd t
| cd (Abs u ° t) = (cd u)[cd t/0 ]
| cd (Abs s) = Abs (cd s)

lemma par-beta-cd: s => t =⇒ t => cd s
〈proof 〉

3.6 Confluence (via complete developments)
lemma diamond-par-beta2 : diamond par-beta
〈proof 〉

theorem beta-confluent: confluent beta
〈proof 〉

end

4 Eta-reduction
theory Eta imports ParRed begin

4.1 Definition of eta-reduction and relatives
primrec

free :: dB => nat => bool
where

free (Var j) i = (j = i)
| free (s ° t) i = (free s i ∨ free t i)
| free (Abs s) i = free s (i + 1 )

inductive
eta :: [dB, dB] => bool (infixl ‹→η› 50 )

where
eta [simp, intro]: ¬ free s 0 ==> Abs (s ° Var 0 ) →η s[dummy/0 ]

| appL [simp, intro]: s →η t ==> s ° u →η t ° u
| appR [simp, intro]: s →η t ==> u ° s →η u ° t
| abs [simp, intro]: s →η t ==> Abs s →η Abs t

abbreviation
eta-reds :: [dB, dB] => bool (infixl ‹→η

∗› 50 ) where
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s →η
∗ t == eta∗∗ s t

abbreviation
eta-red0 :: [dB, dB] => bool (infixl ‹→η

=› 50 ) where
s →η

= t == eta== s t

inductive-cases eta-cases [elim!]:
Abs s →η z
s ° t →η u
Var i →η t

4.2 Properties of eta, subst and free
lemma subst-not-free [simp]: ¬ free s i =⇒ s[t/i] = s[u/i]
〈proof 〉

lemma free-lift [simp]:
free (lift t k) i = (i < k ∧ free t i ∨ k < i ∧ free t (i − 1 ))

〈proof 〉

lemma free-subst [simp]:
free (s[t/k]) i =
(free s k ∧ free t i ∨ free s (if i < k then i else i + 1 ))

〈proof 〉

lemma free-eta: s →η t ==> free t i = free s i
〈proof 〉

lemma not-free-eta:
[| s →η t; ¬ free s i |] ==> ¬ free t i

〈proof 〉

lemma eta-subst [simp]:
s →η t ==> s[u/i] →η t[u/i]

〈proof 〉

theorem lift-subst-dummy: ¬ free s i =⇒ lift (s[dummy/i]) i = s
〈proof 〉

4.3 Confluence of eta
lemma square-eta: square eta eta (eta==) (eta==)
〈proof 〉

theorem eta-confluent: confluent eta
〈proof 〉

4.4 Congruence rules for eta∗

lemma rtrancl-eta-Abs: s →η
∗ s ′ ==> Abs s →η

∗ Abs s ′
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〈proof 〉

lemma rtrancl-eta-AppL: s →η
∗ s ′ ==> s ° t →η

∗ s ′ ° t
〈proof 〉

lemma rtrancl-eta-AppR: t →η
∗ t ′ ==> s ° t →η

∗ s ° t ′

〈proof 〉

lemma rtrancl-eta-App:
[| s →η

∗ s ′; t →η
∗ t ′ |] ==> s ° t →η

∗ s ′ ° t ′

〈proof 〉

4.5 Commutation of beta and eta
lemma free-beta:

s →β t ==> free t i =⇒ free s i
〈proof 〉

lemma beta-subst [intro]: s →β t ==> s[u/i] →β t[u/i]
〈proof 〉

lemma subst-Var-Suc [simp]: t[Var i/i] = t[Var(i)/i + 1 ]
〈proof 〉

lemma eta-lift [simp]: s →η t ==> lift s i →η lift t i
〈proof 〉

lemma rtrancl-eta-subst: s →η t =⇒ u[s/i] →η
∗ u[t/i]

〈proof 〉

lemma rtrancl-eta-subst ′:
fixes s t :: dB
assumes eta: s →η

∗ t
shows s[u/i] →η

∗ t[u/i] 〈proof 〉

lemma rtrancl-eta-subst ′′:
fixes s t :: dB
assumes eta: s →η

∗ t
shows u[s/i] →η

∗ u[t/i] 〈proof 〉

lemma square-beta-eta: square beta eta (eta∗∗) (beta==)
〈proof 〉

lemma confluent-beta-eta: confluent (sup beta eta)
〈proof 〉

4.6 Implicit definition of eta

Abs (lift s 0 ° Var 0 ) →η s
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lemma not-free-iff-lifted:
(¬ free s i) = (∃ t. s = lift t i)

〈proof 〉

theorem explicit-is-implicit:
(∀ s u. (¬ free s 0 ) −−> R (Abs (s ° Var 0 )) (s[u/0 ])) =
(∀ s. R (Abs (lift s 0 ° Var 0 )) s)

〈proof 〉

4.7 Eta-postponement theorem

Based on a paper proof due to Andreas Abel. Unlike the proof by Masako
Takahashi [4], it does not use parallel eta reduction, which only seems to
complicate matters unnecessarily.
theorem eta-case:

fixes s :: dB
assumes free: ¬ free s 0
and s: s[dummy/0 ] => u
shows ∃ t ′. Abs (s ° Var 0 ) => t ′ ∧ t ′ →η

∗ u
〈proof 〉

theorem eta-par-beta:
assumes st: s →η t
and tu: t => u
shows ∃ t ′. s => t ′ ∧ t ′ →η

∗ u 〈proof 〉

theorem eta-postponement ′:
assumes eta: s →η

∗ t and beta: t => u
shows ∃ t ′. s => t ′ ∧ t ′ →η

∗ u 〈proof 〉

theorem eta-postponement:
assumes (sup beta eta)∗∗ s t
shows (beta∗∗ OO eta∗∗) s t 〈proof 〉

end

5 Application of a term to a list of terms
theory ListApplication imports Lambda begin

abbreviation
list-application :: dB => dB list => dB (infixl ‹°°› 150 ) where
t °° ts == foldl (°) t ts

lemma apps-eq-tail-conv [iff ]: (r °° ts = s °° ts) = (r = s)
〈proof 〉

lemma Var-eq-apps-conv [iff ]: (Var m = s °° ss) = (Var m = s ∧ ss = [])
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〈proof 〉

lemma Var-apps-eq-Var-apps-conv [iff ]:
(Var m °° rs = Var n °° ss) = (m = n ∧ rs = ss)

〈proof 〉

lemma App-eq-foldl-conv:
(r ° s = t °° ts) =
(if ts = [] then r ° s = t
else (∃ ss. ts = ss @ [s] ∧ r = t °° ss))

〈proof 〉

lemma Abs-eq-apps-conv [iff ]:
(Abs r = s °° ss) = (Abs r = s ∧ ss = [])

〈proof 〉

lemma apps-eq-Abs-conv [iff ]: (s °° ss = Abs r) = (s = Abs r ∧ ss = [])
〈proof 〉

lemma Abs-apps-eq-Abs-apps-conv [iff ]:
(Abs r °° rs = Abs s °° ss) = (r = s ∧ rs = ss)

〈proof 〉

lemma Abs-App-neq-Var-apps [iff ]:
Abs s ° t 6= Var n °° ss

〈proof 〉

lemma Var-apps-neq-Abs-apps [iff ]:
Var n °° ts 6= Abs r °° ss

〈proof 〉

lemma ex-head-tail:
∃ ts h. t = h °° ts ∧ ((∃n. h = Var n) ∨ (∃ u. h = Abs u))
〈proof 〉

lemma size-apps [simp]:
size (r °° rs) = size r + foldl (+) 0 (map size rs) + length rs
〈proof 〉

lemma lem0 : [| (0 ::nat) < k; m <= n |] ==> m < n + k
〈proof 〉

lemma lift-map [simp]:
lift (t °° ts) i = lift t i °° map (λt. lift t i) ts

〈proof 〉

lemma subst-map [simp]:
subst (t °° ts) u i = subst t u i °° map (λt. subst t u i) ts

〈proof 〉

15



lemma app-last: (t °° ts) ° u = t °° (ts @ [u])
〈proof 〉

A customized induction schema for °°.
lemma lem:

assumes !!n ts. ∀ t ∈ set ts. P t ==> P (Var n °° ts)
and !!u ts. [| P u; ∀ t ∈ set ts. P t |] ==> P (Abs u °° ts)

shows size t = n =⇒ P t
〈proof 〉

theorem Apps-dB-induct:
assumes !!n ts. ∀ t ∈ set ts. P t ==> P (Var n °° ts)

and !!u ts. [| P u; ∀ t ∈ set ts. P t |] ==> P (Abs u °° ts)
shows P t
〈proof 〉

end

6 Simply-typed lambda terms
theory LambdaType imports ListApplication begin

6.1 Environments
definition

shift :: (nat ⇒ ′a) ⇒ nat ⇒ ′a ⇒ nat ⇒ ′a (‹-〈-:-〉› [90 , 0 , 0 ] 91 ) where
e〈i:a〉 = (λj. if j < i then e j else if j = i then a else e (j − 1 ))

lemma shift-eq [simp]: i = j =⇒ (e〈i:T 〉) j = T
〈proof 〉

lemma shift-gt [simp]: j < i =⇒ (e〈i:T 〉) j = e j
〈proof 〉

lemma shift-lt [simp]: i < j =⇒ (e〈i:T 〉) j = e (j − 1 )
〈proof 〉

lemma shift-commute [simp]: e〈i:U 〉〈0 :T 〉 = e〈0 :T 〉〈Suc i:U 〉
〈proof 〉

6.2 Types and typing rules
datatype type =

Atom nat
| Fun type type (infixr ‹⇒› 200 )

inductive typing :: (nat ⇒ type) ⇒ dB ⇒ type ⇒ bool (‹- ` - : -› [50 , 50 , 50 ]
50 )
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where
Var [intro!]: env x = T =⇒ env ` Var x : T

| Abs [intro!]: env〈0 :T 〉 ` t : U =⇒ env ` Abs t : (T ⇒ U )
| App [intro!]: env ` s : T ⇒ U =⇒ env ` t : T =⇒ env ` (s ° t) : U

inductive-cases typing-elims [elim!]:
e ` Var i : T
e ` t ° u : T
e ` Abs t : T

primrec
typings :: (nat ⇒ type) ⇒ dB list ⇒ type list ⇒ bool

where
typings e [] Ts = (Ts = [])

| typings e (t # ts) Ts =
(case Ts of
[] ⇒ False

| T # Ts ⇒ e ` t : T ∧ typings e ts Ts)

abbreviation
typings-rel :: (nat ⇒ type) ⇒ dB list ⇒ type list ⇒ bool
(‹- `̀ - : -› [50 , 50 , 50 ] 50 ) where

env `̀ ts : Ts == typings env ts Ts

abbreviation
funs :: type list ⇒ type ⇒ type (infixr ‹V› 200 ) where
Ts V T == foldr Fun Ts T

6.3 Some examples
schematic-goal e ` Abs (Abs (Abs (Var 1 ° (Var 2 ° Var 1 ° Var 0 )))) : ?T
〈proof 〉

schematic-goal e ` Abs (Abs (Abs (Var 2 ° Var 0 ° (Var 1 ° Var 0 )))) : ?T
〈proof 〉

6.4 Lists of types
lemma lists-typings:

e `̀ ts : Ts =⇒ listsp (λt. ∃T . e ` t : T ) ts
〈proof 〉

lemma types-snoc: e `̀ ts : Ts =⇒ e ` t : T =⇒ e `̀ ts @ [t] : Ts @ [T ]
〈proof 〉

lemma types-snoc-eq: e `̀ ts @ [t] : Ts @ [T ] =
(e `̀ ts : Ts ∧ e ` t : T )

〈proof 〉

Cannot use rev-exhaust from the List theory, since it is not constructive
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lemma rev-exhaust2 [extraction-expand]:
obtains (Nil) xs = [] | (snoc) ys y where xs = ys @ [y]

〈proof 〉

lemma types-snocE :
assumes ‹e `̀ ts @ [t] : Ts›
obtains Us and U where ‹Ts = Us @ [U ]› ‹e `̀ ts : Us› ‹e ` t : U ›

〈proof 〉

6.5 n-ary function types
lemma list-app-typeD:

e ` t °° ts : T =⇒ ∃Ts. e ` t : Ts V T ∧ e `̀ ts : Ts
〈proof 〉

lemma list-app-typeE :
e ` t °° ts : T =⇒ (

∧
Ts. e ` t : Ts V T =⇒ e `̀ ts : Ts =⇒ C ) =⇒ C

〈proof 〉

lemma list-app-typeI :
e ` t : Ts V T =⇒ e `̀ ts : Ts =⇒ e ` t °° ts : T

〈proof 〉

For the specific case where the head of the term is a variable, the following
theorems allow to infer the types of the arguments without analyzing the
typing derivation. This is crucial for program extraction.
theorem var-app-type-eq:

e ` Var i °° ts : T =⇒ e ` Var i °° ts : U =⇒ T = U
〈proof 〉

lemma var-app-types: e ` Var i °° ts °° us : T =⇒ e `̀ ts : Ts =⇒
e ` Var i °° ts : U =⇒ ∃Us. U = Us V T ∧ e `̀ us : Us

〈proof 〉

lemma var-app-typesE : e ` Var i °° ts : T =⇒
(
∧

Ts. e ` Var i : Ts V T =⇒ e `̀ ts : Ts =⇒ P) =⇒ P
〈proof 〉

lemma abs-typeE :
assumes e ` Abs t : T

∧
U V . e〈0 :U 〉 ` t : V =⇒ P

shows P
〈proof 〉

6.6 Lifting preserves well-typedness
lemma lift-type [intro!]: e ` t : T =⇒ e〈i:U 〉 ` lift t i : T
〈proof 〉

lemma lift-types:
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e `̀ ts : Ts =⇒ e〈i:U 〉 `̀ (map (λt. lift t i) ts) : Ts
〈proof 〉

6.7 Substitution lemmas
lemma subst-lemma:

e ` t : T =⇒ e ′ ` u : U =⇒ e = e ′〈i:U 〉 =⇒ e ′ ` t[u/i] : T
〈proof 〉

lemma substs-lemma:
e ` u : T =⇒ e〈i:T 〉 `̀ ts : Ts =⇒

e `̀ (map (λt. t[u/i]) ts) : Ts
〈proof 〉

6.8 Subject reduction
lemma subject-reduction: e ` t : T =⇒ t →β t ′ =⇒ e ` t ′ : T
〈proof 〉

theorem subject-reduction ′: t →β
∗ t ′ =⇒ e ` t : T =⇒ e ` t ′ : T

〈proof 〉

6.9 Alternative induction rule for types
lemma type-induct [induct type]:

assumes
(
∧

T . (
∧

T1 T2 . T = T1 ⇒ T2 =⇒ P T1 ) =⇒
(
∧

T1 T2 . T = T1 ⇒ T2 =⇒ P T2 ) =⇒ P T )
shows P T

〈proof 〉

end

7 Lifting an order to lists of elements
theory ListOrder
imports Main
begin

declare [[syntax-ambiguity-warning = false]]

Lifting an order to lists of elements, relating exactly one element.
definition

step1 :: ( ′a => ′a => bool) => ′a list => ′a list => bool where
step1 r =
(λys xs. ∃ us z z ′ vs. xs = us @ z # vs ∧ r z ′ z ∧ ys =

us @ z ′ # vs)
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lemma step1-converse [simp]: step1 (r−1−1) = (step1 r)−1−1

〈proof 〉

lemma in-step1-converse [iff ]: (step1 (r−1−1) x y) = ((step1 r)−1−1 x y)
〈proof 〉

lemma not-Nil-step1 [iff ]: ¬ step1 r [] xs
〈proof 〉

lemma not-step1-Nil [iff ]: ¬ step1 r xs []
〈proof 〉

lemma Cons-step1-Cons [iff ]:
(step1 r (y # ys) (x # xs)) =
(r y x ∧ xs = ys ∨ x = y ∧ step1 r ys xs)

〈proof 〉

lemma append-step1I :
step1 r ys xs ∧ vs = us ∨ ys = xs ∧ step1 r vs us
==> step1 r (ys @ vs) (xs @ us)

〈proof 〉

lemma Cons-step1E [elim!]:
assumes step1 r ys (x # xs)

and !!y. ys = y # xs =⇒ r y x =⇒ R
and !!zs. ys = x # zs =⇒ step1 r zs xs =⇒ R

shows R
〈proof 〉

lemma Snoc-step1-SnocD:
step1 r (ys @ [y]) (xs @ [x])
==> (step1 r ys xs ∧ y = x ∨ ys = xs ∧ r y x)

〈proof 〉

lemma Cons-acc-step1I [intro!]:
Wellfounded.accp r x ==> Wellfounded.accp (step1 r) xs =⇒ Wellfounded.accp

(step1 r) (x # xs)
〈proof 〉

lemma lists-accD: listsp (Wellfounded.accp r) xs ==> Wellfounded.accp (step1 r)
xs
〈proof 〉

lemma ex-step1I :
[| x ∈ set xs; r y x |]
==> ∃ ys. step1 r ys xs ∧ y ∈ set ys

〈proof 〉

lemma lists-accI : Wellfounded.accp (step1 r) xs ==> listsp (Wellfounded.accp r)
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xs
〈proof 〉

end

8 Lifting beta-reduction to lists
theory ListBeta imports ListApplication ListOrder begin

Lifting beta-reduction to lists of terms, reducing exactly one element.
abbreviation

list-beta :: dB list => dB list => bool (infixl ‹=>› 50 ) where
rs => ss == step1 beta rs ss

lemma head-Var-reduction:
Var n °° rs →β v =⇒ ∃ ss. rs => ss ∧ v = Var n °° ss
〈proof 〉

lemma apps-betasE [elim!]:
assumes major : r °° rs →β s

and cases: !!r ′. [| r →β r ′; s = r ′ °° rs |] ==> R
!!rs ′. [| rs => rs ′; s = r °° rs ′ |] ==> R
!!t u us. [| r = Abs t; rs = u # us; s = t[u/0 ] °° us |] ==> R

shows R
〈proof 〉

lemma apps-preserves-beta [simp]:
r →β s ==> r °° ss →β s °° ss

〈proof 〉

lemma apps-preserves-beta2 [simp]:
r →β

∗ s ==> r °° ss →β
∗ s °° ss

〈proof 〉

lemma apps-preserves-betas [simp]:
rs => ss =⇒ r °° rs →β r °° ss

〈proof 〉

end

9 Inductive characterization of terminating lambda
terms

theory InductTermi imports ListBeta begin

9.1 Terminating lambda terms
inductive IT :: dB => bool
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where
Var [intro]: listsp IT rs ==> IT (Var n °° rs)

| Lambda [intro]: IT r ==> IT (Abs r)
| Beta [intro]: IT ((r [s/0 ]) °° ss) ==> IT s ==> IT ((Abs r ° s) °° ss)

9.2 Every term in IT terminates
lemma double-induction-lemma [rule-format]:

termip beta s ==> ∀ t. termip beta t −−>
(∀ r ss. t = r [s/0 ] °° ss −−> termip beta (Abs r ° s °° ss))

〈proof 〉

lemma IT-implies-termi: IT t ==> termip beta t
〈proof 〉

9.3 Every terminating term is in IT
declare Var-apps-neq-Abs-apps [symmetric, simp]

lemma [simp, THEN not-sym, simp]: Var n °° ss 6= Abs r ° s °° ts
〈proof 〉

lemma [simp]:
(Abs r ° s °° ss = Abs r ′ ° s ′ °° ss ′) = (r = r ′ ∧ s = s ′ ∧ ss = ss ′)
〈proof 〉

inductive-cases [elim!]:
IT (Var n °° ss)
IT (Abs t)
IT (Abs r ° s °° ts)

theorem termi-implies-IT : termip beta r ==> IT r
〈proof 〉

end

10 Strong normalization for simply-typed lambda
calculus

theory StrongNorm imports LambdaType InductTermi begin

Formalization by Stefan Berghofer. Partly based on a paper proof by Felix
Joachimski and Ralph Matthes [1].

10.1 Properties of IT
lemma lift-IT [intro!]: IT t =⇒ IT (lift t i)
〈proof 〉
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lemma lifts-IT : listsp IT ts =⇒ listsp IT (map (λt. lift t 0 ) ts)
〈proof 〉

lemma subst-Var-IT : IT r =⇒ IT (r [Var i/j])
〈proof 〉

lemma Var-IT : IT (Var n)
〈proof 〉

lemma app-Var-IT : IT t =⇒ IT (t ° Var i)
〈proof 〉

10.2 Well-typed substitution preserves termination
lemma subst-type-IT :∧

t e T u i. IT t =⇒ e〈i:U 〉 ` t : T =⇒
IT u =⇒ e ` u : U =⇒ IT (t[u/i])

(is PROP ?P U is
∧

t e T u i. - =⇒ PROP ?Q t e T u i U )
〈proof 〉

10.3 Well-typed terms are strongly normalizing
lemma type-implies-IT :

assumes e ` t : T
shows IT t
〈proof 〉

theorem type-implies-termi: e ` t : T =⇒ termip beta t
〈proof 〉

end

11 Inductive characterization of lambda terms in
normal form

theory NormalForm
imports ListBeta
begin

11.1 Terms in normal form
definition

listall :: ( ′a ⇒ bool) ⇒ ′a list ⇒ bool where
listall P xs ≡ (∀ i. i < length xs −→ P (xs ! i))

declare listall-def [extraction-expand-def ]

theorem listall-nil: listall P []
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〈proof 〉

theorem listall-nil-eq [simp]: listall P [] = True
〈proof 〉

theorem listall-cons: P x =⇒ listall P xs =⇒ listall P (x # xs)
〈proof 〉

theorem listall-cons-eq [simp]: listall P (x # xs) = (P x ∧ listall P xs)
〈proof 〉

lemma listall-conj1 : listall (λx. P x ∧ Q x) xs =⇒ listall P xs
〈proof 〉

lemma listall-conj2 : listall (λx. P x ∧ Q x) xs =⇒ listall Q xs
〈proof 〉

lemma listall-app: listall P (xs @ ys) = (listall P xs ∧ listall P ys)
〈proof 〉

lemma listall-snoc [simp]: listall P (xs @ [x]) = (listall P xs ∧ P x)
〈proof 〉

lemma listall-cong [cong, extraction-expand]:
xs = ys =⇒ listall P xs = listall P ys
— Currently needed for strange technical reasons
〈proof 〉

listsp is equivalent to listall, but cannot be used for program extraction.
lemma listall-listsp-eq: listall P xs = listsp P xs
〈proof 〉

inductive NF :: dB ⇒ bool
where

App: listall NF ts =⇒ NF (Var x °° ts)
| Abs: NF t =⇒ NF (Abs t)
monos listall-def

lemma nat-eq-dec:
∧

n::nat. m = n ∨ m 6= n
〈proof 〉

lemma nat-le-dec:
∧

n::nat. m < n ∨ ¬ (m < n)
〈proof 〉

lemma App-NF-D: assumes NF : NF (Var n °° ts)
shows listall NF ts 〈proof 〉
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11.2 Properties of NF
lemma Var-NF : NF (Var n)
〈proof 〉

lemma Abs-NF :
assumes NF : NF (Abs t °° ts)
shows ts = [] 〈proof 〉

lemma subst-terms-NF : listall NF ts =⇒
listall (λt. ∀ i j. NF (t[Var i/j])) ts =⇒
listall NF (map (λt. t[Var i/j]) ts)

〈proof 〉

lemma subst-Var-NF : NF t =⇒ NF (t[Var i/j])
〈proof 〉

lemma app-Var-NF : NF t =⇒ ∃ t ′. t ° Var i →β
∗ t ′ ∧ NF t ′

〈proof 〉

lemma lift-terms-NF : listall NF ts =⇒
listall (λt. ∀ i. NF (lift t i)) ts =⇒
listall NF (map (λt. lift t i) ts)

〈proof 〉

lemma lift-NF : NF t =⇒ NF (lift t i)
〈proof 〉

NF characterizes exactly the terms that are in normal form.
lemma NF-eq: NF t = (∀ t ′. ¬ t →β t ′)
〈proof 〉

end

12 Standardization
theory Standardization
imports NormalForm
begin

Based on lecture notes by Ralph Matthes [3], original proof idea due to
Ralph Loader [2].

12.1 Standard reduction relation
declare listrel-mono [mono-set]

inductive
sred :: dB ⇒ dB ⇒ bool (infixl ‹→s› 50 )
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and sredlist :: dB list ⇒ dB list ⇒ bool (infixl ‹[→s]› 50 )
where

s [→s] t ≡ listrelp (→s) s t
| Var : rs [→s] rs ′ =⇒ Var x °° rs →s Var x °° rs ′

| Abs: r →s r ′ =⇒ ss [→s] ss ′ =⇒ Abs r °° ss →s Abs r ′ °° ss ′

| Beta: r [s/0 ] °° ss →s t =⇒ Abs r ° s °° ss →s t

lemma refl-listrelp: ∀ x∈set xs. R x x =⇒ listrelp R xs xs
〈proof 〉

lemma refl-sred: t →s t
〈proof 〉

lemma refl-sreds: ts [→s] ts
〈proof 〉

lemma listrelp-conj1 : listrelp (λx y. R x y ∧ S x y) x y =⇒ listrelp R x y
〈proof 〉

lemma listrelp-conj2 : listrelp (λx y. R x y ∧ S x y) x y =⇒ listrelp S x y
〈proof 〉

lemma listrelp-app:
assumes xsys: listrelp R xs ys
shows listrelp R xs ′ ys ′ =⇒ listrelp R (xs @ xs ′) (ys @ ys ′) 〈proof 〉

lemma lemma1 :
assumes r : r →s r ′ and s: s →s s ′

shows r ° s →s r ′ ° s ′ 〈proof 〉

lemma lemma1 ′:
assumes ts: ts [→s] ts ′

shows r →s r ′ =⇒ r °° ts →s r ′ °° ts ′ 〈proof 〉

lemma lemma2-1 :
assumes beta: t →β u
shows t →s u 〈proof 〉

lemma listrelp-betas:
assumes ts: listrelp (→β

∗) ts ts ′

shows
∧

t t ′. t →β
∗ t ′ =⇒ t °° ts →β

∗ t ′ °° ts ′ 〈proof 〉

lemma lemma2-2 :
assumes t: t →s u
shows t →β

∗ u 〈proof 〉

lemma sred-lift:
assumes s: s →s t
shows lift s i →s lift t i 〈proof 〉
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lemma lemma3 :
assumes r : r →s r ′

shows s →s s ′ =⇒ r [s/x] →s r ′[s ′/x] 〈proof 〉

lemma lemma4-aux:
assumes rs: listrelp (λt u. t →s u ∧ (∀ r . u →β r −→ t →s r)) rs rs ′

shows rs ′ => ss =⇒ rs [→s] ss 〈proof 〉

lemma lemma4 :
assumes r : r →s r ′

shows r ′ →β r ′′ =⇒ r →s r ′′ 〈proof 〉

lemma rtrancl-beta-sred:
assumes r : r →β

∗ r ′

shows r →s r ′ 〈proof 〉

12.2 Leftmost reduction and weakly normalizing terms
inductive

lred :: dB ⇒ dB ⇒ bool (infixl ‹→l› 50 )
and lredlist :: dB list ⇒ dB list ⇒ bool (infixl ‹[→l]› 50 )

where
s [→l] t ≡ listrelp (→l) s t

| Var : rs [→l] rs ′ =⇒ Var x °° rs →l Var x °° rs ′

| Abs: r →l r ′ =⇒ Abs r →l Abs r ′

| Beta: r [s/0 ] °° ss →l t =⇒ Abs r ° s °° ss →l t

lemma lred-imp-sred:
assumes lred: s →l t
shows s →s t 〈proof 〉

inductive WN :: dB => bool
where

Var : listsp WN rs =⇒ WN (Var n °° rs)
| Lambda: WN r =⇒ WN (Abs r)
| Beta: WN ((r [s/0 ]) °° ss) =⇒ WN ((Abs r ° s) °° ss)

lemma listrelp-imp-listsp1 :
assumes H : listrelp (λx y. P x) xs ys
shows listsp P xs 〈proof 〉

lemma listrelp-imp-listsp2 :
assumes H : listrelp (λx y. P y) xs ys
shows listsp P ys 〈proof 〉

lemma lemma5 :
assumes lred: r →l r ′

shows WN r and NF r ′ 〈proof 〉
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lemma lemma6 :
assumes wn: WN r
shows ∃ r ′. r →l r ′ 〈proof 〉

lemma lemma7 :
assumes r : r →s r ′

shows NF r ′ =⇒ r →l r ′ 〈proof 〉

lemma WN-eq: WN t = (∃ t ′. t →β
∗ t ′ ∧ NF t ′)

〈proof 〉

end

13 Weak normalization for simply-typed lambda
calculus

theory WeakNorm
imports LambdaType NormalForm HOL−Library.Realizers HOL−Library.Code-Target-Int
begin

Formalization by Stefan Berghofer. Partly based on a paper proof by Felix
Joachimski and Ralph Matthes [1].

13.1 Main theorems
lemma norm-list:

assumes f-compat:
∧

t t ′. t →β
∗ t ′ =⇒ f t →β

∗ f t ′

and f-NF :
∧

t. NF t =⇒ NF (f t)
and uNF : NF u and uT : e ` u : T
shows

∧
Us. e〈i:T 〉 `̀ as : Us =⇒

listall (λt. ∀ e T ′ u i. e〈i:T 〉 ` t : T ′ −→
NF u −→ e ` u : T −→ (∃ t ′. t[u/i] →β

∗ t ′ ∧ NF t ′)) as =⇒
∃ as ′. ∀ j. Var j °° map (λt. f (t[u/i])) as →β

∗

Var j °° map f as ′ ∧ NF (Var j °° map f as ′)
(is

∧
Us. - =⇒ listall ?R as =⇒ ∃ as ′. ?ex Us as as ′)

〈proof 〉

lemma subst-type-NF :∧
t e T u i. NF t =⇒ e〈i:U 〉 ` t : T =⇒ NF u =⇒ e ` u : U =⇒ ∃ t ′. t[u/i]

→β
∗ t ′ ∧ NF t ′

(is PROP ?P U is
∧

t e T u i. - =⇒ PROP ?Q t e T u i U )
〈proof 〉
inductive rtyping :: (nat ⇒ type) ⇒ dB ⇒ type ⇒ bool (‹- `R - : -› [50 , 50 , 50 ]
50 )

where
Var : e x = T =⇒ e `R Var x : T

| Abs: e〈0 :T 〉 `R t : U =⇒ e `R Abs t : (T ⇒ U )
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| App: e `R s : T ⇒ U =⇒ e `R t : T =⇒ e `R (s ° t) : U

lemma rtyping-imp-typing: e `R t : T =⇒ e ` t : T
〈proof 〉

theorem type-NF :
assumes e `R t : T
shows ∃ t ′. t →β

∗ t ′ ∧ NF t ′ 〈proof 〉

13.2 Extracting the program
declare NF .induct [ind-realizer ]
declare rtranclp.induct [ind-realizer irrelevant]
declare rtyping.induct [ind-realizer ]
lemmas [extraction-expand] = conj-assoc listall-cons-eq subst-all equal-allI

extract type-NF

lemma rtranclR-rtrancl-eq: rtranclpR r a b = r∗∗ a b
〈proof 〉

lemma NFR-imp-NF : NFR nf t =⇒ NF t
〈proof 〉

The program corresponding to the proof of the central lemma, which per-
forms substitution and normalization, is shown in Figure 1. The correctness
theorem corresponding to the program subst-type-NF is∧

x. NFR x t =⇒
e〈i:U 〉 ` t : T =⇒
(
∧

xa. NFR xa u =⇒
e ` u : U =⇒
t[u/i] →β

∗ fst (subst-type-NF t e i U T u x xa) ∧
NFR (snd (subst-type-NF t e i U T u x xa)) (fst (subst-type-NF t e i U

T u x xa)))

where NFR is the realizability predicate corresponding to the datatype NFT,
which is inductively defined by the rules
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subst-type-NF ≡
λx xa xb xc xd xe H Ha.

type-induct-P xc
(λx H2 H2a xa xaa xb xc xd H .

compat-NFT .rec-split-NFT default
(λts xa xaa r xb xc xd xe H .

var-app-typesE-P (xb〈xe:x〉) xa ts
(λUs--. case nat-eq-dec xa xe of

Left ⇒ case ts of [] ⇒ (xd, H)
| a # list ⇒

case Us-- of [] ⇒ default
| T ′′-- # Ts-- ⇒

let (x, y) =
norm-list (λt. lift t 0 ) xd xb xe list Ts--
(λt. lift-NF 0 ) H
(listall-conj2-P-Q list (λi. (xaa (Suc i), r (Suc i))));

(xa, ya) = snd (xaa 0 , r 0 ) xb T ′′-- xd xe H ;
(xd, yb) = app-Var-NF 0 (lift-NF 0 H);
(xa, ya) =

H2 T ′′-- (Ts-- V xc) xd xb (Ts-- V xc) xa 0 yb ya;
(x, y) =

H2a T ′′-- (Ts-- V xc) (dB.Var 0 °° map (λt. lift t 0 ) x)
xb xc xa 0 (y 0 ) ya

in (x, y)
| Right ⇒

let (x, y) =
let (x, y) =

norm-list (λt. t) xd xb xe ts Us-- (λx H . H) H
(listall-conj2-P-Q ts (λz. (xaa z, r z)))

in (x, λx. y x)
in case nat-le-dec xe xa of

Left ⇒ (dB.Var (xa − Suc 0 ) °° x, y (xa − Suc 0 ))
| Right ⇒ (dB.Var xa °° x, y xa)))

(λt x r xa xaa xb xc H .
abs-typeE-P xaa
(λU V . let (x, y) =

let (x, y) = r (λa. (xa〈0 :U〉) a) V (lift xb 0 ) (Suc xc) (lift-NF 0 H)
in (dB.Abs x, NFT .Abs x y)

in (x, y)))
H (λa. xaa a) xb xc xd)

x xa xd xe xb H Ha

Figure 1: Program extracted from subst-type-NF
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subst-Var-NF ≡
λx xa H .

compat-NFT .rec-split-NFT default
(λts x xa r xb xc.

case nat-eq-dec x xc of
Left ⇒ NFT .App (map (λt. t[dB.Var xb/xc]) ts) xb

(subst-terms-NF ts xb xc (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z))))

| Right ⇒
case nat-le-dec xc x of
Left ⇒ NFT .App (map (λt. t[dB.Var xb/xc]) ts) (x − Suc 0 )

(subst-terms-NF ts xb xc (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z))))

| Right ⇒
NFT .App (map (λt. t[dB.Var xb/xc]) ts) x
(subst-terms-NF ts xb xc (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z)))))

(λt x r xa xaa. NFT .Abs (t[dB.Var (Suc xa)/Suc xaa]) (r (Suc xa) (Suc xaa))) H x xa

app-Var-NF ≡
λx. compat-NFT .rec-split-NFT default

(λts xa xaa r .
(dB.Var xa °° (ts @ [dB.Var x]),
NFT .App (ts @ [dB.Var x]) xa
(snd (listall-app-P ts)
(listall-conj1-P-Q ts (λz. (xaa z, r z)),
listall-cons-P (Var-NF x) listall-nil-eq-P))))

(λt xa r . let (xb, y) = r in (t[dB.Var x/0 ], subst-Var-NF x 0 xa))

lift-NF ≡
λx H . compat-NFT .rec-split-NFT default

(λts x xa r xb.
case nat-le-dec x xb of
Left ⇒ NFT .App (map (λt. lift t xb) ts) x

(lift-terms-NF ts xb (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z))))

| Right ⇒
NFT .App (map (λt. lift t xb) ts) (Suc x)
(lift-terms-NF ts xb (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z)))))

(λt x r xa. NFT .Abs (lift t (Suc xa)) (r (Suc xa))) H x

type-NF ≡
λH . rec-rtypingT (λe x T . (dB.Var x, Var-NF x))

(λe T t U x r . let (x, y) = r in (dB.Abs x, NFT .Abs x y))
(λe s T U t x xa r ra.

let (x, y) = r ; (xa, ya) = ra;
(x, y) =

let (x, y) =
subst-type-NF (dB.Var 0 ° lift xa 0 ) e 0 (T ⇒ U) U x
(NFT .App [lift xa 0 ] 0 (listall-cons-P (lift-NF 0 ya) listall-nil-P)) y

in (x, y)
in (x, y))

H

Figure 2: Program extracted from lemmas and main theorem
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∀ i<length ts. NFR (nfs i) (ts ! i) =⇒ NFR (NFT .App ts x nfs) (dB.Var x °° ts)
NFR nf t =⇒ NFR (NFT .Abs t nf ) (dB.Abs t)

The programs corresponding to the main theorem type-NF, as well as to
some lemmas, are shown in Figure 2. The correctness statement for the
main function type-NF is∧

x. rtypingR x e t T =⇒ t →β
∗ fst (type-NF x) ∧ NFR (snd (type-NF x)) (fst

(type-NF x))

where the realizability predicate rtypingR corresponding to the computa-
tionally relevant version of the typing judgement is inductively defined by
the rules

e x = T =⇒ rtypingR (rtypingT .Var e x T ) e (dB.Var x) T
rtypingR ty (e〈0 :T 〉) t U =⇒ rtypingR (rtypingT .Abs e T t U ty) e (dB.Abs t) (T
⇒ U )
rtypingR ty e s (T ⇒ U ) =⇒
rtypingR ty ′ e t T =⇒ rtypingR (rtypingT .App e s T U t ty ty ′) e (s ° t) U

13.3 Generating executable code
instantiation NFT :: default
begin

definition default = Dummy ()

instance 〈proof 〉

end

instantiation dB :: default
begin

definition default = dB.Var 0

instance 〈proof 〉

end

instantiation prod :: (default, default) default
begin

definition default = (default, default)

instance 〈proof 〉

end
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instantiation list :: (type) default
begin

definition default = []

instance 〈proof 〉

end

instantiation fun :: (type, default) default
begin

definition default = (λx. default)

instance 〈proof 〉

end

definition int-of-nat :: nat ⇒ int where
int-of-nat = of-nat

The following functions convert between Isabelle’s built-in term datatype
and the generated dB datatype. This allows to generate example terms
using Isabelle’s parser and inspect normalized terms using Isabelle’s pretty
printer.
〈ML〉

end
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