
Fundamental Properties of Lambda-calculus

Tobias Nipkow
Stefan Berghofer

January 18, 2026

Contents
1 Basic definitions of Lambda-calculus 4

1.1 Lambda-terms in de Bruijn notation and substitution 4
1.2 Beta-reduction . 5
1.3 Congruence rules . 5
1.4 Substitution-lemmas . 5
1.5 Equivalence proof for optimized substitution 6
1.6 Preservation theorems . 6

2 Abstract commutation and confluence notions 7
2.1 Basic definitions . 7
2.2 Basic lemmas . 8
2.3 Church-Rosser . 9
2.4 Newman’s lemma . 9

3 Parallel reduction and a complete developments 10
3.1 Parallel reduction . 10
3.2 Inclusions . 10
3.3 Misc properties of par-beta . 10
3.4 Confluence (directly) . 10
3.5 Complete developments . 11
3.6 Confluence (via complete developments) 11

4 Eta-reduction 11
4.1 Definition of eta-reduction and relatives 11
4.2 Properties of eta, subst and free 12
4.3 Confluence of eta . 12
4.4 Congruence rules for eta∗ . 12
4.5 Commutation of beta and eta 13
4.6 Implicit definition of eta . 13
4.7 Eta-postponement theorem 14

1

5 Application of a term to a list of terms 14

6 Simply-typed lambda terms 16
6.1 Environments . 16
6.2 Types and typing rules . 16
6.3 Some examples . 17
6.4 Lists of types . 17
6.5 n-ary function types . 18
6.6 Lifting preserves well-typedness 18
6.7 Substitution lemmas . 19
6.8 Subject reduction . 19
6.9 Alternative induction rule for types 19

7 Lifting an order to lists of elements 19

8 Lifting beta-reduction to lists 21

9 Inductive characterization of terminating lambda terms 21
9.1 Terminating lambda terms . 21
9.2 Every term in IT terminates 22
9.3 Every terminating term is in IT 22

10 Strong normalization for simply-typed lambda calculus 22
10.1 Properties of IT . 22
10.2 Well-typed substitution preserves termination 23
10.3 Well-typed terms are strongly normalizing 23

11 Inductive characterization of lambda terms in normal form 23
11.1 Terms in normal form . 23
11.2 Properties of NF . 25

12 Standardization 25
12.1 Standard reduction relation 25
12.2 Leftmost reduction and weakly normalizing terms 27

13 Weak normalization for simply-typed lambda calculus 28
13.1 Main theorems . 28
13.2 Extracting the program . 29
13.3 Generating executable code 32

2

Commutation

Eta

InductTermi

Lambda

LambdaType

ListApplication

ListBeta

ListOrder

NormalForm

ParRed

StandardizationStrongNorm WeakNorm

[HOL-Library]

[HOL]

[Pure]

[Tools]

3

1 Basic definitions of Lambda-calculus
theory Lambda
imports Main
begin

declare [[syntax-ambiguity-warning = false]]

1.1 Lambda-terms in de Bruijn notation and substitution
datatype dB =

Var nat
| App dB dB (infixl ‹°› 200)
| Abs dB

primrec
lift :: [dB, nat] => dB

where
lift (Var i) k = (if i < k then Var i else Var (i + 1))

| lift (s ° t) k = lift s k ° lift t k
| lift (Abs s) k = Abs (lift s (k + 1))

primrec
subst :: [dB, dB, nat] => dB (‹-[- ′/-]› [300 , 0 , 0] 300)

where
subst-Var : (Var i)[s/k] =
(if k < i then Var (i − 1) else if i = k then s else Var i)

| subst-App: (t ° u)[s/k] = t[s/k] ° u[s/k]
| subst-Abs: (Abs t)[s/k] = Abs (t[lift s 0 / k+1])

declare subst-Var [simp del]

Optimized versions of subst and lift.
primrec

liftn :: [nat, dB, nat] => dB
where

liftn n (Var i) k = (if i < k then Var i else Var (i + n))
| liftn n (s ° t) k = liftn n s k ° liftn n t k
| liftn n (Abs s) k = Abs (liftn n s (k + 1))

primrec
substn :: [dB, dB, nat] => dB

where
substn (Var i) s k =
(if k < i then Var (i − 1) else if i = k then liftn k s 0 else Var i)

| substn (t ° u) s k = substn t s k ° substn u s k
| substn (Abs t) s k = Abs (substn t s (k + 1))

4

1.2 Beta-reduction
inductive beta :: [dB, dB] => bool (infixl ‹→β› 50)

where
beta [simp, intro!]: Abs s ° t →β s[t/0]

| appL [simp, intro!]: s →β t =⇒ s ° u →β t ° u
| appR [simp, intro!]: s →β t =⇒ u ° s →β u ° t
| abs [simp, intro!]: s →β t =⇒ Abs s →β Abs t

abbreviation
beta-reds :: [dB, dB] => bool (infixl ‹→β

∗› 50) where
s →β

∗ t == beta∗∗ s t

inductive-cases beta-cases [elim!]:
Var i →β t
Abs r →β s
s ° t →β u

declare if-not-P [simp] not-less-eq [simp]
— don’t add r-into-rtrancl[intro!]

1.3 Congruence rules
lemma rtrancl-beta-Abs [intro!]:

s →β
∗ s ′ =⇒ Abs s →β

∗ Abs s ′

〈proof 〉

lemma rtrancl-beta-AppL:
s →β

∗ s ′ =⇒ s ° t →β
∗ s ′ ° t

〈proof 〉

lemma rtrancl-beta-AppR:
t →β

∗ t ′ =⇒ s ° t →β
∗ s ° t ′

〈proof 〉

lemma rtrancl-beta-App [intro]:
[[s →β

∗ s ′; t →β
∗ t ′]] =⇒ s ° t →β

∗ s ′ ° t ′

〈proof 〉

1.4 Substitution-lemmas
lemma subst-eq [simp]: (Var k)[u/k] = u
〈proof 〉

lemma subst-gt [simp]: i < j =⇒ (Var j)[u/i] = Var (j − 1)
〈proof 〉

lemma subst-lt [simp]: j < i =⇒ (Var j)[u/i] = Var j
〈proof 〉

5

lemma lift-lift:
i < k + 1 =⇒ lift (lift t i) (Suc k) = lift (lift t k) i

〈proof 〉

lemma lift-subst [simp]:
j < i + 1 =⇒ lift (t[s/j]) i = (lift t (i + 1)) [lift s i / j]

〈proof 〉

lemma lift-subst-lt:
i < j + 1 =⇒ lift (t[s/j]) i = (lift t i) [lift s i / j + 1]

〈proof 〉

lemma subst-lift [simp]:
(lift t k)[s/k] = t

〈proof 〉

lemma subst-subst:
i < j + 1 =⇒ t[lift v i / Suc j][u[v/j]/i] = t[u/i][v/j]

〈proof 〉

1.5 Equivalence proof for optimized substitution
lemma liftn-0 [simp]: liftn 0 t k = t
〈proof 〉

lemma liftn-lift [simp]: liftn (Suc n) t k = lift (liftn n t k) k
〈proof 〉

lemma substn-subst-n [simp]: substn t s n = t[liftn n s 0 / n]
〈proof 〉

theorem substn-subst-0 : substn t s 0 = t[s/0]
〈proof 〉

1.6 Preservation theorems

Not used in Church-Rosser proof, but in Strong Normalization.

theorem subst-preserves-beta [simp]:
r →β s =⇒ r [t/i] →β s[t/i]

〈proof 〉

theorem subst-preserves-beta ′: r →β
∗ s =⇒ r [t/i] →β

∗ s[t/i]
〈proof 〉

theorem lift-preserves-beta [simp]:
r →β s =⇒ lift r i →β lift s i

〈proof 〉

6

theorem lift-preserves-beta ′: r →β
∗ s =⇒ lift r i →β

∗ lift s i
〈proof 〉

theorem subst-preserves-beta2 [simp]: r →β s =⇒ t[r/i] →β
∗ t[s/i]

〈proof 〉

theorem subst-preserves-beta2 ′: r →β
∗ s =⇒ t[r/i] →β

∗ t[s/i]
〈proof 〉

end

2 Abstract commutation and confluence notions
theory Commutation
imports Main
begin

declare [[syntax-ambiguity-warning = false]]

2.1 Basic definitions
definition

square :: [′a => ′a => bool, ′a => ′a => bool, ′a => ′a => bool, ′a => ′a =>
bool] => bool where

square R S T U =
(∀ x y. R x y −−> (∀ z. S x z −−> (∃ u. T y u ∧ U z u)))

definition
commute :: [′a => ′a => bool, ′a => ′a => bool] => bool where
commute R S = square R S S R

definition
diamond :: (′a => ′a => bool) => bool where
diamond R = commute R R

definition
Church-Rosser :: (′a => ′a => bool) => bool where
Church-Rosser R =
(∀ x y. (sup R (R−1−1))∗∗ x y −→ (∃ z. R∗∗ x z ∧ R∗∗ y z))

abbreviation
confluent :: (′a => ′a => bool) => bool where
confluent R == diamond (R∗∗)

7

2.2 Basic lemmas
square
lemma square-sym: square R S T U ==> square S R U T
〈proof 〉

lemma square-subset:
[| square R S T U ; T ≤ T ′ |] ==> square R S T ′ U

〈proof 〉

lemma square-reflcl:
[| square R S T (R==); S ≤ T |] ==> square (R==) S T (R==)

〈proof 〉

lemma square-rtrancl:
square R S S T ==> square (R∗∗) S S (T∗∗)

〈proof 〉

lemma square-rtrancl-reflcl-commute:
square R S (S∗∗) (R==) ==> commute (R∗∗) (S∗∗)

〈proof 〉

commute
lemma commute-sym: commute R S ==> commute S R
〈proof 〉

lemma commute-rtrancl: commute R S ==> commute (R∗∗) (S∗∗)
〈proof 〉

lemma commute-Un:
[| commute R T ; commute S T |] ==> commute (sup R S) T

〈proof 〉

diamond, confluence, and union
lemma diamond-Un:

[| diamond R; diamond S ; commute R S |] ==> diamond (sup R S)
〈proof 〉

lemma diamond-confluent: diamond R ==> confluent R
〈proof 〉

lemma square-reflcl-confluent:
square R R (R==) (R==) ==> confluent R

〈proof 〉

lemma confluent-Un:
[| confluent R; confluent S ; commute (R∗∗) (S∗∗) |] ==> confluent (sup R S)

8

〈proof 〉

lemma diamond-to-confluence:
[| diamond R; T ≤ R; R ≤ T∗∗ |] ==> confluent T

〈proof 〉

2.3 Church-Rosser
lemma Church-Rosser-confluent: Church-Rosser R = confluent R
〈proof 〉

2.4 Newman’s lemma

Proof by Stefan Berghofer
theorem newman:

assumes wf : wfP (R−1−1)
and lc:

∧
a b c. R a b =⇒ R a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
shows

∧
b c. R∗∗ a b =⇒ R∗∗ a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
〈proof 〉

Alternative version. Partly automated by Tobias Nipkow. Takes 2 minutes
(2002).
This is the maximal amount of automation possible using blast.
theorem newman ′:

assumes wf : wfP (R−1−1)
and lc:

∧
a b c. R a b =⇒ R a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
shows

∧
b c. R∗∗ a b =⇒ R∗∗ a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
〈proof 〉

Using the coherent logic prover, the proof of the induction step is completely
automatic.
lemma eq-imp-rtranclp: x = y =⇒ r∗∗ x y
〈proof 〉

theorem newman ′′:
assumes wf : wfP (R−1−1)
and lc:

∧
a b c. R a b =⇒ R a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
shows

∧
b c. R∗∗ a b =⇒ R∗∗ a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
〈proof 〉

end

9

3 Parallel reduction and a complete developments
theory ParRed imports Lambda Commutation begin

3.1 Parallel reduction
inductive par-beta :: [dB, dB] => bool (infixl ‹=>› 50)

where
var [simp, intro!]: Var n => Var n

| abs [simp, intro!]: s => t ==> Abs s => Abs t
| app [simp, intro!]: [| s => s ′; t => t ′ |] ==> s ° t => s ′ ° t ′

| beta [simp, intro!]: [| s => s ′; t => t ′ |] ==> (Abs s) ° t => s ′[t ′/0]

inductive-cases par-beta-cases [elim!]:
Var n => t
Abs s => Abs t
(Abs s) ° t => u
s ° t => u
Abs s => t

3.2 Inclusions

beta ⊆ par-beta ⊆ beta∗

lemma par-beta-varL [simp]:
(Var n => t) = (t = Var n)

〈proof 〉

lemma par-beta-refl [simp]: t => t
〈proof 〉

lemma beta-subset-par-beta: beta <= par-beta
〈proof 〉

lemma par-beta-subset-beta: par-beta ≤ beta∗∗

〈proof 〉

3.3 Misc properties of par-beta
lemma par-beta-lift [simp]:

t => t ′ =⇒ lift t n => lift t ′ n
〈proof 〉

lemma par-beta-subst:
s => s ′ =⇒ t => t ′ =⇒ t[s/n] => t ′[s ′/n]

〈proof 〉

3.4 Confluence (directly)
lemma diamond-par-beta: diamond par-beta

10

〈proof 〉

3.5 Complete developments
fun

cd :: dB => dB
where

cd (Var n) = Var n
| cd (Var n ° t) = Var n ° cd t
| cd ((s1 ° s2) ° t) = cd (s1 ° s2) ° cd t
| cd (Abs u ° t) = (cd u)[cd t/0]
| cd (Abs s) = Abs (cd s)

lemma par-beta-cd: s => t =⇒ t => cd s
〈proof 〉

3.6 Confluence (via complete developments)
lemma diamond-par-beta2 : diamond par-beta
〈proof 〉

theorem beta-confluent: confluent beta
〈proof 〉

end

4 Eta-reduction
theory Eta imports ParRed begin

4.1 Definition of eta-reduction and relatives
primrec

free :: dB => nat => bool
where

free (Var j) i = (j = i)
| free (s ° t) i = (free s i ∨ free t i)
| free (Abs s) i = free s (i + 1)

inductive
eta :: [dB, dB] => bool (infixl ‹→η› 50)

where
eta [simp, intro]: ¬ free s 0 ==> Abs (s ° Var 0) →η s[dummy/0]

| appL [simp, intro]: s →η t ==> s ° u →η t ° u
| appR [simp, intro]: s →η t ==> u ° s →η u ° t
| abs [simp, intro]: s →η t ==> Abs s →η Abs t

abbreviation
eta-reds :: [dB, dB] => bool (infixl ‹→η

∗› 50) where

11

s →η
∗ t == eta∗∗ s t

abbreviation
eta-red0 :: [dB, dB] => bool (infixl ‹→η

=› 50) where
s →η

= t == eta== s t

inductive-cases eta-cases [elim!]:
Abs s →η z
s ° t →η u
Var i →η t

4.2 Properties of eta, subst and free
lemma subst-not-free [simp]: ¬ free s i =⇒ s[t/i] = s[u/i]
〈proof 〉

lemma free-lift [simp]:
free (lift t k) i = (i < k ∧ free t i ∨ k < i ∧ free t (i − 1))

〈proof 〉

lemma free-subst [simp]:
free (s[t/k]) i =
(free s k ∧ free t i ∨ free s (if i < k then i else i + 1))

〈proof 〉

lemma free-eta: s →η t ==> free t i = free s i
〈proof 〉

lemma not-free-eta:
[| s →η t; ¬ free s i |] ==> ¬ free t i

〈proof 〉

lemma eta-subst [simp]:
s →η t ==> s[u/i] →η t[u/i]

〈proof 〉

theorem lift-subst-dummy: ¬ free s i =⇒ lift (s[dummy/i]) i = s
〈proof 〉

4.3 Confluence of eta
lemma square-eta: square eta eta (eta==) (eta==)
〈proof 〉

theorem eta-confluent: confluent eta
〈proof 〉

4.4 Congruence rules for eta∗

lemma rtrancl-eta-Abs: s →η
∗ s ′ ==> Abs s →η

∗ Abs s ′

12

〈proof 〉

lemma rtrancl-eta-AppL: s →η
∗ s ′ ==> s ° t →η

∗ s ′ ° t
〈proof 〉

lemma rtrancl-eta-AppR: t →η
∗ t ′ ==> s ° t →η

∗ s ° t ′

〈proof 〉

lemma rtrancl-eta-App:
[| s →η

∗ s ′; t →η
∗ t ′ |] ==> s ° t →η

∗ s ′ ° t ′

〈proof 〉

4.5 Commutation of beta and eta
lemma free-beta:

s →β t ==> free t i =⇒ free s i
〈proof 〉

lemma beta-subst [intro]: s →β t ==> s[u/i] →β t[u/i]
〈proof 〉

lemma subst-Var-Suc [simp]: t[Var i/i] = t[Var(i)/i + 1]
〈proof 〉

lemma eta-lift [simp]: s →η t ==> lift s i →η lift t i
〈proof 〉

lemma rtrancl-eta-subst: s →η t =⇒ u[s/i] →η
∗ u[t/i]

〈proof 〉

lemma rtrancl-eta-subst ′:
fixes s t :: dB
assumes eta: s →η

∗ t
shows s[u/i] →η

∗ t[u/i] 〈proof 〉

lemma rtrancl-eta-subst ′′:
fixes s t :: dB
assumes eta: s →η

∗ t
shows u[s/i] →η

∗ u[t/i] 〈proof 〉

lemma square-beta-eta: square beta eta (eta∗∗) (beta==)
〈proof 〉

lemma confluent-beta-eta: confluent (sup beta eta)
〈proof 〉

4.6 Implicit definition of eta

Abs (lift s 0 ° Var 0) →η s

13

lemma not-free-iff-lifted:
(¬ free s i) = (∃ t. s = lift t i)

〈proof 〉

theorem explicit-is-implicit:
(∀ s u. (¬ free s 0) −−> R (Abs (s ° Var 0)) (s[u/0])) =
(∀ s. R (Abs (lift s 0 ° Var 0)) s)

〈proof 〉

4.7 Eta-postponement theorem

Based on a paper proof due to Andreas Abel. Unlike the proof by Masako
Takahashi [4], it does not use parallel eta reduction, which only seems to
complicate matters unnecessarily.
theorem eta-case:

fixes s :: dB
assumes free: ¬ free s 0
and s: s[dummy/0] => u
shows ∃ t ′. Abs (s ° Var 0) => t ′ ∧ t ′ →η

∗ u
〈proof 〉

theorem eta-par-beta:
assumes st: s →η t
and tu: t => u
shows ∃ t ′. s => t ′ ∧ t ′ →η

∗ u 〈proof 〉

theorem eta-postponement ′:
assumes eta: s →η

∗ t and beta: t => u
shows ∃ t ′. s => t ′ ∧ t ′ →η

∗ u 〈proof 〉

theorem eta-postponement:
assumes (sup beta eta)∗∗ s t
shows (beta∗∗ OO eta∗∗) s t 〈proof 〉

end

5 Application of a term to a list of terms
theory ListApplication imports Lambda begin

abbreviation
list-application :: dB => dB list => dB (infixl ‹°°› 150) where
t °° ts == foldl (°) t ts

lemma apps-eq-tail-conv [iff]: (r °° ts = s °° ts) = (r = s)
〈proof 〉

lemma Var-eq-apps-conv [iff]: (Var m = s °° ss) = (Var m = s ∧ ss = [])

14

〈proof 〉

lemma Var-apps-eq-Var-apps-conv [iff]:
(Var m °° rs = Var n °° ss) = (m = n ∧ rs = ss)

〈proof 〉

lemma App-eq-foldl-conv:
(r ° s = t °° ts) =
(if ts = [] then r ° s = t
else (∃ ss. ts = ss @ [s] ∧ r = t °° ss))

〈proof 〉

lemma Abs-eq-apps-conv [iff]:
(Abs r = s °° ss) = (Abs r = s ∧ ss = [])

〈proof 〉

lemma apps-eq-Abs-conv [iff]: (s °° ss = Abs r) = (s = Abs r ∧ ss = [])
〈proof 〉

lemma Abs-apps-eq-Abs-apps-conv [iff]:
(Abs r °° rs = Abs s °° ss) = (r = s ∧ rs = ss)

〈proof 〉

lemma Abs-App-neq-Var-apps [iff]:
Abs s ° t 6= Var n °° ss

〈proof 〉

lemma Var-apps-neq-Abs-apps [iff]:
Var n °° ts 6= Abs r °° ss

〈proof 〉

lemma ex-head-tail:
∃ ts h. t = h °° ts ∧ ((∃n. h = Var n) ∨ (∃ u. h = Abs u))
〈proof 〉

lemma size-apps [simp]:
size (r °° rs) = size r + foldl (+) 0 (map size rs) + length rs
〈proof 〉

lemma lem0 : [| (0 ::nat) < k; m <= n |] ==> m < n + k
〈proof 〉

lemma lift-map [simp]:
lift (t °° ts) i = lift t i °° map (λt. lift t i) ts

〈proof 〉

lemma subst-map [simp]:
subst (t °° ts) u i = subst t u i °° map (λt. subst t u i) ts

〈proof 〉

15

lemma app-last: (t °° ts) ° u = t °° (ts @ [u])
〈proof 〉

A customized induction schema for °°.
lemma lem:

assumes !!n ts. ∀ t ∈ set ts. P t ==> P (Var n °° ts)
and !!u ts. [| P u; ∀ t ∈ set ts. P t |] ==> P (Abs u °° ts)

shows size t = n =⇒ P t
〈proof 〉

theorem Apps-dB-induct:
assumes !!n ts. ∀ t ∈ set ts. P t ==> P (Var n °° ts)

and !!u ts. [| P u; ∀ t ∈ set ts. P t |] ==> P (Abs u °° ts)
shows P t
〈proof 〉

end

6 Simply-typed lambda terms
theory LambdaType imports ListApplication begin

6.1 Environments
definition

shift :: (nat ⇒ ′a) ⇒ nat ⇒ ′a ⇒ nat ⇒ ′a (‹-〈-:-〉› [90 , 0 , 0] 91) where
e〈i:a〉 = (λj. if j < i then e j else if j = i then a else e (j − 1))

lemma shift-eq [simp]: i = j =⇒ (e〈i:T 〉) j = T
〈proof 〉

lemma shift-gt [simp]: j < i =⇒ (e〈i:T 〉) j = e j
〈proof 〉

lemma shift-lt [simp]: i < j =⇒ (e〈i:T 〉) j = e (j − 1)
〈proof 〉

lemma shift-commute [simp]: e〈i:U 〉〈0 :T 〉 = e〈0 :T 〉〈Suc i:U 〉
〈proof 〉

6.2 Types and typing rules
datatype type =

Atom nat
| Fun type type (infixr ‹⇒› 200)

inductive typing :: (nat ⇒ type) ⇒ dB ⇒ type ⇒ bool (‹- ` - : -› [50 , 50 , 50]
50)

16

where
Var [intro!]: env x = T =⇒ env ` Var x : T

| Abs [intro!]: env〈0 :T 〉 ` t : U =⇒ env ` Abs t : (T ⇒ U)
| App [intro!]: env ` s : T ⇒ U =⇒ env ` t : T =⇒ env ` (s ° t) : U

inductive-cases typing-elims [elim!]:
e ` Var i : T
e ` t ° u : T
e ` Abs t : T

primrec
typings :: (nat ⇒ type) ⇒ dB list ⇒ type list ⇒ bool

where
typings e [] Ts = (Ts = [])

| typings e (t # ts) Ts =
(case Ts of
[] ⇒ False

| T # Ts ⇒ e ` t : T ∧ typings e ts Ts)

abbreviation
typings-rel :: (nat ⇒ type) ⇒ dB list ⇒ type list ⇒ bool
(‹- `̀ - : -› [50 , 50 , 50] 50) where

env `̀ ts : Ts == typings env ts Ts

abbreviation
funs :: type list ⇒ type ⇒ type (infixr ‹V› 200) where
Ts V T == foldr Fun Ts T

6.3 Some examples
schematic-goal e ` Abs (Abs (Abs (Var 1 ° (Var 2 ° Var 1 ° Var 0)))) : ?T
〈proof 〉

schematic-goal e ` Abs (Abs (Abs (Var 2 ° Var 0 ° (Var 1 ° Var 0)))) : ?T
〈proof 〉

6.4 Lists of types
lemma lists-typings:

e `̀ ts : Ts =⇒ listsp (λt. ∃T . e ` t : T) ts
〈proof 〉

lemma types-snoc: e `̀ ts : Ts =⇒ e ` t : T =⇒ e `̀ ts @ [t] : Ts @ [T]
〈proof 〉

lemma types-snoc-eq: e `̀ ts @ [t] : Ts @ [T] =
(e `̀ ts : Ts ∧ e ` t : T)

〈proof 〉

Cannot use rev-exhaust from the List theory, since it is not constructive

17

lemma rev-exhaust2 [extraction-expand]:
obtains (Nil) xs = [] | (snoc) ys y where xs = ys @ [y]

〈proof 〉

lemma types-snocE :
assumes ‹e `̀ ts @ [t] : Ts›
obtains Us and U where ‹Ts = Us @ [U]› ‹e `̀ ts : Us› ‹e ` t : U ›

〈proof 〉

6.5 n-ary function types
lemma list-app-typeD:

e ` t °° ts : T =⇒ ∃Ts. e ` t : Ts V T ∧ e `̀ ts : Ts
〈proof 〉

lemma list-app-typeE :
e ` t °° ts : T =⇒ (

∧
Ts. e ` t : Ts V T =⇒ e `̀ ts : Ts =⇒ C) =⇒ C

〈proof 〉

lemma list-app-typeI :
e ` t : Ts V T =⇒ e `̀ ts : Ts =⇒ e ` t °° ts : T

〈proof 〉

For the specific case where the head of the term is a variable, the following
theorems allow to infer the types of the arguments without analyzing the
typing derivation. This is crucial for program extraction.
theorem var-app-type-eq:

e ` Var i °° ts : T =⇒ e ` Var i °° ts : U =⇒ T = U
〈proof 〉

lemma var-app-types: e ` Var i °° ts °° us : T =⇒ e `̀ ts : Ts =⇒
e ` Var i °° ts : U =⇒ ∃Us. U = Us V T ∧ e `̀ us : Us

〈proof 〉

lemma var-app-typesE : e ` Var i °° ts : T =⇒
(
∧

Ts. e ` Var i : Ts V T =⇒ e `̀ ts : Ts =⇒ P) =⇒ P
〈proof 〉

lemma abs-typeE :
assumes e ` Abs t : T

∧
U V . e〈0 :U 〉 ` t : V =⇒ P

shows P
〈proof 〉

6.6 Lifting preserves well-typedness
lemma lift-type [intro!]: e ` t : T =⇒ e〈i:U 〉 ` lift t i : T
〈proof 〉

lemma lift-types:

18

e `̀ ts : Ts =⇒ e〈i:U 〉 `̀ (map (λt. lift t i) ts) : Ts
〈proof 〉

6.7 Substitution lemmas
lemma subst-lemma:

e ` t : T =⇒ e ′ ` u : U =⇒ e = e ′〈i:U 〉 =⇒ e ′ ` t[u/i] : T
〈proof 〉

lemma substs-lemma:
e ` u : T =⇒ e〈i:T 〉 `̀ ts : Ts =⇒

e `̀ (map (λt. t[u/i]) ts) : Ts
〈proof 〉

6.8 Subject reduction
lemma subject-reduction: e ` t : T =⇒ t →β t ′ =⇒ e ` t ′ : T
〈proof 〉

theorem subject-reduction ′: t →β
∗ t ′ =⇒ e ` t : T =⇒ e ` t ′ : T

〈proof 〉

6.9 Alternative induction rule for types
lemma type-induct [induct type]:

assumes
(
∧

T . (
∧

T1 T2 . T = T1 ⇒ T2 =⇒ P T1) =⇒
(
∧

T1 T2 . T = T1 ⇒ T2 =⇒ P T2) =⇒ P T)
shows P T

〈proof 〉

end

7 Lifting an order to lists of elements
theory ListOrder
imports Main
begin

declare [[syntax-ambiguity-warning = false]]

Lifting an order to lists of elements, relating exactly one element.
definition

step1 :: (′a => ′a => bool) => ′a list => ′a list => bool where
step1 r =
(λys xs. ∃ us z z ′ vs. xs = us @ z # vs ∧ r z ′ z ∧ ys =

us @ z ′ # vs)

19

lemma step1-converse [simp]: step1 (r−1−1) = (step1 r)−1−1

〈proof 〉

lemma in-step1-converse [iff]: (step1 (r−1−1) x y) = ((step1 r)−1−1 x y)
〈proof 〉

lemma not-Nil-step1 [iff]: ¬ step1 r [] xs
〈proof 〉

lemma not-step1-Nil [iff]: ¬ step1 r xs []
〈proof 〉

lemma Cons-step1-Cons [iff]:
(step1 r (y # ys) (x # xs)) =
(r y x ∧ xs = ys ∨ x = y ∧ step1 r ys xs)

〈proof 〉

lemma append-step1I :
step1 r ys xs ∧ vs = us ∨ ys = xs ∧ step1 r vs us
==> step1 r (ys @ vs) (xs @ us)

〈proof 〉

lemma Cons-step1E [elim!]:
assumes step1 r ys (x # xs)

and !!y. ys = y # xs =⇒ r y x =⇒ R
and !!zs. ys = x # zs =⇒ step1 r zs xs =⇒ R

shows R
〈proof 〉

lemma Snoc-step1-SnocD:
step1 r (ys @ [y]) (xs @ [x])
==> (step1 r ys xs ∧ y = x ∨ ys = xs ∧ r y x)

〈proof 〉

lemma Cons-acc-step1I [intro!]:
Wellfounded.accp r x ==> Wellfounded.accp (step1 r) xs =⇒ Wellfounded.accp

(step1 r) (x # xs)
〈proof 〉

lemma lists-accD: listsp (Wellfounded.accp r) xs ==> Wellfounded.accp (step1 r)
xs
〈proof 〉

lemma ex-step1I :
[| x ∈ set xs; r y x |]
==> ∃ ys. step1 r ys xs ∧ y ∈ set ys

〈proof 〉

lemma lists-accI : Wellfounded.accp (step1 r) xs ==> listsp (Wellfounded.accp r)

20

xs
〈proof 〉

end

8 Lifting beta-reduction to lists
theory ListBeta imports ListApplication ListOrder begin

Lifting beta-reduction to lists of terms, reducing exactly one element.
abbreviation

list-beta :: dB list => dB list => bool (infixl ‹=>› 50) where
rs => ss == step1 beta rs ss

lemma head-Var-reduction:
Var n °° rs →β v =⇒ ∃ ss. rs => ss ∧ v = Var n °° ss
〈proof 〉

lemma apps-betasE [elim!]:
assumes major : r °° rs →β s

and cases: !!r ′. [| r →β r ′; s = r ′ °° rs |] ==> R
!!rs ′. [| rs => rs ′; s = r °° rs ′ |] ==> R
!!t u us. [| r = Abs t; rs = u # us; s = t[u/0] °° us |] ==> R

shows R
〈proof 〉

lemma apps-preserves-beta [simp]:
r →β s ==> r °° ss →β s °° ss

〈proof 〉

lemma apps-preserves-beta2 [simp]:
r →β

∗ s ==> r °° ss →β
∗ s °° ss

〈proof 〉

lemma apps-preserves-betas [simp]:
rs => ss =⇒ r °° rs →β r °° ss

〈proof 〉

end

9 Inductive characterization of terminating lambda
terms

theory InductTermi imports ListBeta begin

9.1 Terminating lambda terms
inductive IT :: dB => bool

21

where
Var [intro]: listsp IT rs ==> IT (Var n °° rs)

| Lambda [intro]: IT r ==> IT (Abs r)
| Beta [intro]: IT ((r [s/0]) °° ss) ==> IT s ==> IT ((Abs r ° s) °° ss)

9.2 Every term in IT terminates
lemma double-induction-lemma [rule-format]:

termip beta s ==> ∀ t. termip beta t −−>
(∀ r ss. t = r [s/0] °° ss −−> termip beta (Abs r ° s °° ss))

〈proof 〉

lemma IT-implies-termi: IT t ==> termip beta t
〈proof 〉

9.3 Every terminating term is in IT
declare Var-apps-neq-Abs-apps [symmetric, simp]

lemma [simp, THEN not-sym, simp]: Var n °° ss 6= Abs r ° s °° ts
〈proof 〉

lemma [simp]:
(Abs r ° s °° ss = Abs r ′ ° s ′ °° ss ′) = (r = r ′ ∧ s = s ′ ∧ ss = ss ′)
〈proof 〉

inductive-cases [elim!]:
IT (Var n °° ss)
IT (Abs t)
IT (Abs r ° s °° ts)

theorem termi-implies-IT : termip beta r ==> IT r
〈proof 〉

end

10 Strong normalization for simply-typed lambda
calculus

theory StrongNorm imports LambdaType InductTermi begin

Formalization by Stefan Berghofer. Partly based on a paper proof by Felix
Joachimski and Ralph Matthes [1].

10.1 Properties of IT
lemma lift-IT [intro!]: IT t =⇒ IT (lift t i)
〈proof 〉

22

lemma lifts-IT : listsp IT ts =⇒ listsp IT (map (λt. lift t 0) ts)
〈proof 〉

lemma subst-Var-IT : IT r =⇒ IT (r [Var i/j])
〈proof 〉

lemma Var-IT : IT (Var n)
〈proof 〉

lemma app-Var-IT : IT t =⇒ IT (t ° Var i)
〈proof 〉

10.2 Well-typed substitution preserves termination
lemma subst-type-IT :∧

t e T u i. IT t =⇒ e〈i:U 〉 ` t : T =⇒
IT u =⇒ e ` u : U =⇒ IT (t[u/i])

(is PROP ?P U is
∧

t e T u i. - =⇒ PROP ?Q t e T u i U)
〈proof 〉

10.3 Well-typed terms are strongly normalizing
lemma type-implies-IT :

assumes e ` t : T
shows IT t
〈proof 〉

theorem type-implies-termi: e ` t : T =⇒ termip beta t
〈proof 〉

end

11 Inductive characterization of lambda terms in
normal form

theory NormalForm
imports ListBeta
begin

11.1 Terms in normal form
definition

listall :: (′a ⇒ bool) ⇒ ′a list ⇒ bool where
listall P xs ≡ (∀ i. i < length xs −→ P (xs ! i))

declare listall-def [extraction-expand-def]

theorem listall-nil: listall P []

23

〈proof 〉

theorem listall-nil-eq [simp]: listall P [] = True
〈proof 〉

theorem listall-cons: P x =⇒ listall P xs =⇒ listall P (x # xs)
〈proof 〉

theorem listall-cons-eq [simp]: listall P (x # xs) = (P x ∧ listall P xs)
〈proof 〉

lemma listall-conj1 : listall (λx. P x ∧ Q x) xs =⇒ listall P xs
〈proof 〉

lemma listall-conj2 : listall (λx. P x ∧ Q x) xs =⇒ listall Q xs
〈proof 〉

lemma listall-app: listall P (xs @ ys) = (listall P xs ∧ listall P ys)
〈proof 〉

lemma listall-snoc [simp]: listall P (xs @ [x]) = (listall P xs ∧ P x)
〈proof 〉

lemma listall-cong [cong, extraction-expand]:
xs = ys =⇒ listall P xs = listall P ys
— Currently needed for strange technical reasons
〈proof 〉

listsp is equivalent to listall, but cannot be used for program extraction.
lemma listall-listsp-eq: listall P xs = listsp P xs
〈proof 〉

inductive NF :: dB ⇒ bool
where

App: listall NF ts =⇒ NF (Var x °° ts)
| Abs: NF t =⇒ NF (Abs t)
monos listall-def

lemma nat-eq-dec:
∧

n::nat. m = n ∨ m 6= n
〈proof 〉

lemma nat-le-dec:
∧

n::nat. m < n ∨ ¬ (m < n)
〈proof 〉

lemma App-NF-D: assumes NF : NF (Var n °° ts)
shows listall NF ts 〈proof 〉

24

11.2 Properties of NF
lemma Var-NF : NF (Var n)
〈proof 〉

lemma Abs-NF :
assumes NF : NF (Abs t °° ts)
shows ts = [] 〈proof 〉

lemma subst-terms-NF : listall NF ts =⇒
listall (λt. ∀ i j. NF (t[Var i/j])) ts =⇒
listall NF (map (λt. t[Var i/j]) ts)

〈proof 〉

lemma subst-Var-NF : NF t =⇒ NF (t[Var i/j])
〈proof 〉

lemma app-Var-NF : NF t =⇒ ∃ t ′. t ° Var i →β
∗ t ′ ∧ NF t ′

〈proof 〉

lemma lift-terms-NF : listall NF ts =⇒
listall (λt. ∀ i. NF (lift t i)) ts =⇒
listall NF (map (λt. lift t i) ts)

〈proof 〉

lemma lift-NF : NF t =⇒ NF (lift t i)
〈proof 〉

NF characterizes exactly the terms that are in normal form.
lemma NF-eq: NF t = (∀ t ′. ¬ t →β t ′)
〈proof 〉

end

12 Standardization
theory Standardization
imports NormalForm
begin

Based on lecture notes by Ralph Matthes [3], original proof idea due to
Ralph Loader [2].

12.1 Standard reduction relation
declare listrel-mono [mono-set]

inductive
sred :: dB ⇒ dB ⇒ bool (infixl ‹→s› 50)

25

and sredlist :: dB list ⇒ dB list ⇒ bool (infixl ‹[→s]› 50)
where

s [→s] t ≡ listrelp (→s) s t
| Var : rs [→s] rs ′ =⇒ Var x °° rs →s Var x °° rs ′

| Abs: r →s r ′ =⇒ ss [→s] ss ′ =⇒ Abs r °° ss →s Abs r ′ °° ss ′

| Beta: r [s/0] °° ss →s t =⇒ Abs r ° s °° ss →s t

lemma refl-listrelp: ∀ x∈set xs. R x x =⇒ listrelp R xs xs
〈proof 〉

lemma refl-sred: t →s t
〈proof 〉

lemma refl-sreds: ts [→s] ts
〈proof 〉

lemma listrelp-conj1 : listrelp (λx y. R x y ∧ S x y) x y =⇒ listrelp R x y
〈proof 〉

lemma listrelp-conj2 : listrelp (λx y. R x y ∧ S x y) x y =⇒ listrelp S x y
〈proof 〉

lemma listrelp-app:
assumes xsys: listrelp R xs ys
shows listrelp R xs ′ ys ′ =⇒ listrelp R (xs @ xs ′) (ys @ ys ′) 〈proof 〉

lemma lemma1 :
assumes r : r →s r ′ and s: s →s s ′

shows r ° s →s r ′ ° s ′ 〈proof 〉

lemma lemma1 ′:
assumes ts: ts [→s] ts ′

shows r →s r ′ =⇒ r °° ts →s r ′ °° ts ′ 〈proof 〉

lemma lemma2-1 :
assumes beta: t →β u
shows t →s u 〈proof 〉

lemma listrelp-betas:
assumes ts: listrelp (→β

∗) ts ts ′

shows
∧

t t ′. t →β
∗ t ′ =⇒ t °° ts →β

∗ t ′ °° ts ′ 〈proof 〉

lemma lemma2-2 :
assumes t: t →s u
shows t →β

∗ u 〈proof 〉

lemma sred-lift:
assumes s: s →s t
shows lift s i →s lift t i 〈proof 〉

26

lemma lemma3 :
assumes r : r →s r ′

shows s →s s ′ =⇒ r [s/x] →s r ′[s ′/x] 〈proof 〉

lemma lemma4-aux:
assumes rs: listrelp (λt u. t →s u ∧ (∀ r . u →β r −→ t →s r)) rs rs ′

shows rs ′ => ss =⇒ rs [→s] ss 〈proof 〉

lemma lemma4 :
assumes r : r →s r ′

shows r ′ →β r ′′ =⇒ r →s r ′′ 〈proof 〉

lemma rtrancl-beta-sred:
assumes r : r →β

∗ r ′

shows r →s r ′ 〈proof 〉

12.2 Leftmost reduction and weakly normalizing terms
inductive

lred :: dB ⇒ dB ⇒ bool (infixl ‹→l› 50)
and lredlist :: dB list ⇒ dB list ⇒ bool (infixl ‹[→l]› 50)

where
s [→l] t ≡ listrelp (→l) s t

| Var : rs [→l] rs ′ =⇒ Var x °° rs →l Var x °° rs ′

| Abs: r →l r ′ =⇒ Abs r →l Abs r ′

| Beta: r [s/0] °° ss →l t =⇒ Abs r ° s °° ss →l t

lemma lred-imp-sred:
assumes lred: s →l t
shows s →s t 〈proof 〉

inductive WN :: dB => bool
where

Var : listsp WN rs =⇒ WN (Var n °° rs)
| Lambda: WN r =⇒ WN (Abs r)
| Beta: WN ((r [s/0]) °° ss) =⇒ WN ((Abs r ° s) °° ss)

lemma listrelp-imp-listsp1 :
assumes H : listrelp (λx y. P x) xs ys
shows listsp P xs 〈proof 〉

lemma listrelp-imp-listsp2 :
assumes H : listrelp (λx y. P y) xs ys
shows listsp P ys 〈proof 〉

lemma lemma5 :
assumes lred: r →l r ′

shows WN r and NF r ′ 〈proof 〉

27

lemma lemma6 :
assumes wn: WN r
shows ∃ r ′. r →l r ′ 〈proof 〉

lemma lemma7 :
assumes r : r →s r ′

shows NF r ′ =⇒ r →l r ′ 〈proof 〉

lemma WN-eq: WN t = (∃ t ′. t →β
∗ t ′ ∧ NF t ′)

〈proof 〉

end

13 Weak normalization for simply-typed lambda
calculus

theory WeakNorm
imports LambdaType NormalForm HOL−Library.Realizers HOL−Library.Code-Target-Int
begin

Formalization by Stefan Berghofer. Partly based on a paper proof by Felix
Joachimski and Ralph Matthes [1].

13.1 Main theorems
lemma norm-list:

assumes f-compat:
∧

t t ′. t →β
∗ t ′ =⇒ f t →β

∗ f t ′

and f-NF :
∧

t. NF t =⇒ NF (f t)
and uNF : NF u and uT : e ` u : T
shows

∧
Us. e〈i:T 〉 `̀ as : Us =⇒

listall (λt. ∀ e T ′ u i. e〈i:T 〉 ` t : T ′ −→
NF u −→ e ` u : T −→ (∃ t ′. t[u/i] →β

∗ t ′ ∧ NF t ′)) as =⇒
∃ as ′. ∀ j. Var j °° map (λt. f (t[u/i])) as →β

∗

Var j °° map f as ′ ∧ NF (Var j °° map f as ′)
(is

∧
Us. - =⇒ listall ?R as =⇒ ∃ as ′. ?ex Us as as ′)

〈proof 〉

lemma subst-type-NF :∧
t e T u i. NF t =⇒ e〈i:U 〉 ` t : T =⇒ NF u =⇒ e ` u : U =⇒ ∃ t ′. t[u/i]

→β
∗ t ′ ∧ NF t ′

(is PROP ?P U is
∧

t e T u i. - =⇒ PROP ?Q t e T u i U)
〈proof 〉
inductive rtyping :: (nat ⇒ type) ⇒ dB ⇒ type ⇒ bool (‹- `R - : -› [50 , 50 , 50]
50)

where
Var : e x = T =⇒ e `R Var x : T

| Abs: e〈0 :T 〉 `R t : U =⇒ e `R Abs t : (T ⇒ U)

28

| App: e `R s : T ⇒ U =⇒ e `R t : T =⇒ e `R (s ° t) : U

lemma rtyping-imp-typing: e `R t : T =⇒ e ` t : T
〈proof 〉

theorem type-NF :
assumes e `R t : T
shows ∃ t ′. t →β

∗ t ′ ∧ NF t ′ 〈proof 〉

13.2 Extracting the program
declare NF .induct [ind-realizer]
declare rtranclp.induct [ind-realizer irrelevant]
declare rtyping.induct [ind-realizer]
lemmas [extraction-expand] = conj-assoc listall-cons-eq subst-all equal-allI

extract type-NF

lemma rtranclR-rtrancl-eq: rtranclpR r a b = r∗∗ a b
〈proof 〉

lemma NFR-imp-NF : NFR nf t =⇒ NF t
〈proof 〉

The program corresponding to the proof of the central lemma, which per-
forms substitution and normalization, is shown in Figure 1. The correctness
theorem corresponding to the program subst-type-NF is∧

x. NFR x t =⇒
e〈i:U 〉 ` t : T =⇒
(
∧

xa. NFR xa u =⇒
e ` u : U =⇒
t[u/i] →β

∗ fst (subst-type-NF t e i U T u x xa) ∧
NFR (snd (subst-type-NF t e i U T u x xa)) (fst (subst-type-NF t e i U

T u x xa)))

where NFR is the realizability predicate corresponding to the datatype NFT,
which is inductively defined by the rules

29

subst-type-NF ≡
λx xa xb xc xd xe H Ha.

type-induct-P xc
(λx H2 H2a xa xaa xb xc xd H .

compat-NFT .rec-split-NFT default
(λts xa xaa r xb xc xd xe H .

var-app-typesE-P (xb〈xe:x〉) xa ts
(λUs--. case nat-eq-dec xa xe of

Left ⇒ case ts of [] ⇒ (xd, H)
| a # list ⇒

case Us-- of [] ⇒ default
| T ′′-- # Ts-- ⇒

let (x, y) =
norm-list (λt. lift t 0) xd xb xe list Ts--
(λt. lift-NF 0) H
(listall-conj2-P-Q list (λi. (xaa (Suc i), r (Suc i))));

(xa, ya) = snd (xaa 0 , r 0) xb T ′′-- xd xe H ;
(xd, yb) = app-Var-NF 0 (lift-NF 0 H);
(xa, ya) =

H2 T ′′-- (Ts-- V xc) xd xb (Ts-- V xc) xa 0 yb ya;
(x, y) =

H2a T ′′-- (Ts-- V xc) (dB.Var 0 °° map (λt. lift t 0) x)
xb xc xa 0 (y 0) ya

in (x, y)
| Right ⇒

let (x, y) =
let (x, y) =

norm-list (λt. t) xd xb xe ts Us-- (λx H . H) H
(listall-conj2-P-Q ts (λz. (xaa z, r z)))

in (x, λx. y x)
in case nat-le-dec xe xa of

Left ⇒ (dB.Var (xa − Suc 0) °° x, y (xa − Suc 0))
| Right ⇒ (dB.Var xa °° x, y xa)))

(λt x r xa xaa xb xc H .
abs-typeE-P xaa
(λU V . let (x, y) =

let (x, y) = r (λa. (xa〈0 :U〉) a) V (lift xb 0) (Suc xc) (lift-NF 0 H)
in (dB.Abs x, NFT .Abs x y)

in (x, y)))
H (λa. xaa a) xb xc xd)

x xa xd xe xb H Ha

Figure 1: Program extracted from subst-type-NF

30

subst-Var-NF ≡
λx xa H .

compat-NFT .rec-split-NFT default
(λts x xa r xb xc.

case nat-eq-dec x xc of
Left ⇒ NFT .App (map (λt. t[dB.Var xb/xc]) ts) xb

(subst-terms-NF ts xb xc (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z))))

| Right ⇒
case nat-le-dec xc x of
Left ⇒ NFT .App (map (λt. t[dB.Var xb/xc]) ts) (x − Suc 0)

(subst-terms-NF ts xb xc (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z))))

| Right ⇒
NFT .App (map (λt. t[dB.Var xb/xc]) ts) x
(subst-terms-NF ts xb xc (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z)))))

(λt x r xa xaa. NFT .Abs (t[dB.Var (Suc xa)/Suc xaa]) (r (Suc xa) (Suc xaa))) H x xa

app-Var-NF ≡
λx. compat-NFT .rec-split-NFT default

(λts xa xaa r .
(dB.Var xa °° (ts @ [dB.Var x]),
NFT .App (ts @ [dB.Var x]) xa
(snd (listall-app-P ts)
(listall-conj1-P-Q ts (λz. (xaa z, r z)),
listall-cons-P (Var-NF x) listall-nil-eq-P))))

(λt xa r . let (xb, y) = r in (t[dB.Var x/0], subst-Var-NF x 0 xa))

lift-NF ≡
λx H . compat-NFT .rec-split-NFT default

(λts x xa r xb.
case nat-le-dec x xb of
Left ⇒ NFT .App (map (λt. lift t xb) ts) x

(lift-terms-NF ts xb (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z))))

| Right ⇒
NFT .App (map (λt. lift t xb) ts) (Suc x)
(lift-terms-NF ts xb (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z)))))

(λt x r xa. NFT .Abs (lift t (Suc xa)) (r (Suc xa))) H x

type-NF ≡
λH . rec-rtypingT (λe x T . (dB.Var x, Var-NF x))

(λe T t U x r . let (x, y) = r in (dB.Abs x, NFT .Abs x y))
(λe s T U t x xa r ra.

let (x, y) = r ; (xa, ya) = ra;
(x, y) =

let (x, y) =
subst-type-NF (dB.Var 0 ° lift xa 0) e 0 (T ⇒ U) U x
(NFT .App [lift xa 0] 0 (listall-cons-P (lift-NF 0 ya) listall-nil-P)) y

in (x, y)
in (x, y))

H

Figure 2: Program extracted from lemmas and main theorem

31

∀ i<length ts. NFR (nfs i) (ts ! i) =⇒ NFR (NFT .App ts x nfs) (dB.Var x °° ts)
NFR nf t =⇒ NFR (NFT .Abs t nf) (dB.Abs t)

The programs corresponding to the main theorem type-NF, as well as to
some lemmas, are shown in Figure 2. The correctness statement for the
main function type-NF is∧

x. rtypingR x e t T =⇒ t →β
∗ fst (type-NF x) ∧ NFR (snd (type-NF x)) (fst

(type-NF x))

where the realizability predicate rtypingR corresponding to the computa-
tionally relevant version of the typing judgement is inductively defined by
the rules

e x = T =⇒ rtypingR (rtypingT .Var e x T) e (dB.Var x) T
rtypingR ty (e〈0 :T 〉) t U =⇒ rtypingR (rtypingT .Abs e T t U ty) e (dB.Abs t) (T
⇒ U)
rtypingR ty e s (T ⇒ U) =⇒
rtypingR ty ′ e t T =⇒ rtypingR (rtypingT .App e s T U t ty ty ′) e (s ° t) U

13.3 Generating executable code
instantiation NFT :: default
begin

definition default = Dummy ()

instance 〈proof 〉

end

instantiation dB :: default
begin

definition default = dB.Var 0

instance 〈proof 〉

end

instantiation prod :: (default, default) default
begin

definition default = (default, default)

instance 〈proof 〉

end

32

instantiation list :: (type) default
begin

definition default = []

instance 〈proof 〉

end

instantiation fun :: (type, default) default
begin

definition default = (λx. default)

instance 〈proof 〉

end

definition int-of-nat :: nat ⇒ int where
int-of-nat = of-nat

The following functions convert between Isabelle’s built-in term datatype
and the generated dB datatype. This allows to generate example terms
using Isabelle’s parser and inspect normalized terms using Isabelle’s pretty
printer.
〈ML〉

end

References

[1] F. Joachimski and R. Matthes. Short proofs of normalization for the
simply-typed λ-calculus, permutative conversions and Gödel’s T. Archive
for Mathematical Logic, 42(1):59–87, 2003.

[2] R. Loader. Notes on Simply Typed Lambda Calculus. Technical Report
ECS-LFCS-98-381, Laboratory for Foundations of Computer Science,
School of Informatics, University of Edinburgh, 1998.

[3] R. Matthes. Lambda Calculus: A Case for Inductive Definitions. In
Lecture notes of the 12th European Summer School in Logic, Language
and Information (ESSLLI 2000). School of Computer Science, University
of Birmingham, August 2000.

[4] M. Takahashi. Parallel reductions in λ-calculus. Information and Com-
putation, 118(1):120–127, April 1995.

33

	Basic definitions of Lambda-calculus
	Lambda-terms in de Bruijn notation and substitution
	Beta-reduction
	Congruence rules
	Substitution-lemmas
	Equivalence proof for optimized substitution
	Preservation theorems

	Abstract commutation and confluence notions
	Basic definitions
	Basic lemmas
	Church-Rosser
	Newman's lemma

	Parallel reduction and a complete developments
	Parallel reduction
	Inclusions
	Misc properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 par-beta
	Confluence (directly)
	Complete developments
	Confluence (via complete developments)

	Eta-reduction
	Definition of eta-reduction and relatives
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eta, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 subst and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 free
	Confluence of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eta
	Congruence rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eta*
	Commutation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 beta and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eta
	Implicit definition of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eta
	Eta-postponement theorem

	Application of a term to a list of terms
	Simply-typed lambda terms
	Environments
	Types and typing rules
	Some examples
	Lists of types
	n-ary function types
	Lifting preserves well-typedness
	Substitution lemmas
	Subject reduction
	Alternative induction rule for types

	Lifting an order to lists of elements
	Lifting beta-reduction to lists
	Inductive characterization of terminating lambda terms
	Terminating lambda terms
	Every term in 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 IT terminates
	Every terminating term is in 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 IT

	Strong normalization for simply-typed lambda calculus
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 IT
	Well-typed substitution preserves termination
	Well-typed terms are strongly normalizing

	Inductive characterization of lambda terms in normal form
	Terms in normal form
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 NF

	Standardization
	Standard reduction relation
	Leftmost reduction and weakly normalizing terms

	Weak normalization for simply-typed lambda calculus
	Main theorems
	Extracting the program
	Generating executable code

