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1 Basic definitions of Lambda-calculus
theory Lambda
imports Main
begin

declare [[syntax-ambiguity-warning = false]]

1.1 Lambda-terms in de Bruijn notation and substitution
datatype dB =

Var nat
| App dB dB (infixl ‹°› 200 )
| Abs dB

primrec
lift :: [dB, nat] => dB

where
lift (Var i) k = (if i < k then Var i else Var (i + 1 ))

| lift (s ° t) k = lift s k ° lift t k
| lift (Abs s) k = Abs (lift s (k + 1 ))

primrec
subst :: [dB, dB, nat] => dB (‹-[- ′/-]› [300 , 0 , 0 ] 300 )

where
subst-Var : (Var i)[s/k] =
(if k < i then Var (i − 1 ) else if i = k then s else Var i)

| subst-App: (t ° u)[s/k] = t[s/k] ° u[s/k]
| subst-Abs: (Abs t)[s/k] = Abs (t[lift s 0 / k+1 ])

declare subst-Var [simp del]

Optimized versions of subst and lift.
primrec

liftn :: [nat, dB, nat] => dB
where

liftn n (Var i) k = (if i < k then Var i else Var (i + n))
| liftn n (s ° t) k = liftn n s k ° liftn n t k
| liftn n (Abs s) k = Abs (liftn n s (k + 1 ))

primrec
substn :: [dB, dB, nat] => dB

where
substn (Var i) s k =
(if k < i then Var (i − 1 ) else if i = k then liftn k s 0 else Var i)

| substn (t ° u) s k = substn t s k ° substn u s k
| substn (Abs t) s k = Abs (substn t s (k + 1 ))
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1.2 Beta-reduction
inductive beta :: [dB, dB] => bool (infixl ‹→β› 50 )

where
beta [simp, intro!]: Abs s ° t →β s[t/0 ]

| appL [simp, intro!]: s →β t =⇒ s ° u →β t ° u
| appR [simp, intro!]: s →β t =⇒ u ° s →β u ° t
| abs [simp, intro!]: s →β t =⇒ Abs s →β Abs t

abbreviation
beta-reds :: [dB, dB] => bool (infixl ‹→β

∗› 50 ) where
s →β

∗ t == beta∗∗ s t

inductive-cases beta-cases [elim!]:
Var i →β t
Abs r →β s
s ° t →β u

declare if-not-P [simp] not-less-eq [simp]
— don’t add r-into-rtrancl[intro!]

1.3 Congruence rules
lemma rtrancl-beta-Abs [intro!]:

s →β
∗ s ′ =⇒ Abs s →β

∗ Abs s ′

by (induct set: rtranclp) (blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-beta-AppL:
s →β

∗ s ′ =⇒ s ° t →β
∗ s ′ ° t

by (induct set: rtranclp) (blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-beta-AppR:
t →β

∗ t ′ =⇒ s ° t →β
∗ s ° t ′

by (induct set: rtranclp) (blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-beta-App [intro]:
[[s →β

∗ s ′; t →β
∗ t ′]] =⇒ s ° t →β

∗ s ′ ° t ′

by (blast intro!: rtrancl-beta-AppL rtrancl-beta-AppR intro: rtranclp-trans)

1.4 Substitution-lemmas
lemma subst-eq [simp]: (Var k)[u/k] = u

by (simp add: subst-Var)

lemma subst-gt [simp]: i < j =⇒ (Var j)[u/i] = Var (j − 1 )
by (simp add: subst-Var)

lemma subst-lt [simp]: j < i =⇒ (Var j)[u/i] = Var j
by (simp add: subst-Var)
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lemma lift-lift:
i < k + 1 =⇒ lift (lift t i) (Suc k) = lift (lift t k) i

by (induct t arbitrary: i k) auto

lemma lift-subst [simp]:
j < i + 1 =⇒ lift (t[s/j]) i = (lift t (i + 1 )) [lift s i / j]

by (induct t arbitrary: i j s)
(simp-all add: diff-Suc subst-Var lift-lift split: nat.split)

lemma lift-subst-lt:
i < j + 1 =⇒ lift (t[s/j]) i = (lift t i) [lift s i / j + 1 ]

by (induct t arbitrary: i j s) (simp-all add: subst-Var lift-lift)

lemma subst-lift [simp]:
(lift t k)[s/k] = t

by (induct t arbitrary: k s) simp-all

lemma subst-subst:
i < j + 1 =⇒ t[lift v i / Suc j][u[v/j]/i] = t[u/i][v/j]

by (induct t arbitrary: i j u v)
(simp-all add: diff-Suc subst-Var lift-lift [symmetric] lift-subst-lt

split: nat.split)

1.5 Equivalence proof for optimized substitution
lemma liftn-0 [simp]: liftn 0 t k = t

by (induct t arbitrary: k) (simp-all add: subst-Var)

lemma liftn-lift [simp]: liftn (Suc n) t k = lift (liftn n t k) k
by (induct t arbitrary: k) (simp-all add: subst-Var)

lemma substn-subst-n [simp]: substn t s n = t[liftn n s 0 / n]
by (induct t arbitrary: n) (simp-all add: subst-Var)

theorem substn-subst-0 : substn t s 0 = t[s/0 ]
by simp

1.6 Preservation theorems

Not used in Church-Rosser proof, but in Strong Normalization.

theorem subst-preserves-beta [simp]:
r →β s =⇒ r [t/i] →β s[t/i]

by (induct arbitrary: t i set: beta) (simp-all add: subst-subst [symmetric])

theorem subst-preserves-beta ′: r →β
∗ s =⇒ r [t/i] →β

∗ s[t/i]
proof (induct set: rtranclp)

case base
then show ?case
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by (iprover intro: rtrancl-refl)
next

case (step y z)
then show ?case

by (iprover intro: rtranclp.simps subst-preserves-beta)
qed

theorem lift-preserves-beta [simp]:
r →β s =⇒ lift r i →β lift s i

by (induct arbitrary: i set: beta) auto

theorem lift-preserves-beta ′: r →β
∗ s =⇒ lift r i →β

∗ lift s i
proof (induct set: rtranclp)

case base
then show ?case

by (iprover intro: rtrancl-refl)
next

case (step y z)
then show ?case

by (iprover intro: lift-preserves-beta rtranclp.simps)
qed

theorem subst-preserves-beta2 [simp]: r →β s =⇒ t[r/i] →β
∗ t[s/i]

proof (induct t arbitrary: r s i)
case (Var x)
then show ?case

by (simp add: subst-Var r-into-rtranclp)
next

case (App t1 t2 )
then show ?case

by (simp add: rtrancl-beta-App)
next

case (Abs t)
then show ?case by (simp add: rtrancl-beta-Abs)

qed

theorem subst-preserves-beta2 ′: r →β
∗ s =⇒ t[r/i] →β

∗ t[s/i]
proof (induct set: rtranclp)

case base
then show ?case by (iprover intro: rtrancl-refl)

next
case (step y z)
then show ?case

by (iprover intro: rtranclp-trans subst-preserves-beta2 )
qed

end
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2 Abstract commutation and confluence notions
theory Commutation
imports Main
begin

declare [[syntax-ambiguity-warning = false]]

2.1 Basic definitions
definition

square :: [ ′a => ′a => bool, ′a => ′a => bool, ′a => ′a => bool, ′a => ′a =>
bool] => bool where

square R S T U =
(∀ x y. R x y −−> (∀ z. S x z −−> (∃ u. T y u ∧ U z u)))

definition
commute :: [ ′a => ′a => bool, ′a => ′a => bool] => bool where
commute R S = square R S S R

definition
diamond :: ( ′a => ′a => bool) => bool where
diamond R = commute R R

definition
Church-Rosser :: ( ′a => ′a => bool) => bool where
Church-Rosser R =
(∀ x y. (sup R (R−1−1))∗∗ x y −→ (∃ z. R∗∗ x z ∧ R∗∗ y z))

abbreviation
confluent :: ( ′a => ′a => bool) => bool where
confluent R == diamond (R∗∗)

2.2 Basic lemmas
square
lemma square-sym: square R S T U ==> square S R U T

apply (unfold square-def )
apply blast
done

lemma square-subset:
[| square R S T U ; T ≤ T ′ |] ==> square R S T ′ U

apply (unfold square-def )
apply (blast dest: predicate2D)
done

lemma square-reflcl:
[| square R S T (R==); S ≤ T |] ==> square (R==) S T (R==)
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apply (unfold square-def )
apply (blast dest: predicate2D)
done

lemma square-rtrancl:
square R S S T ==> square (R∗∗) S S (T∗∗)

apply (unfold square-def )
apply (intro strip)
apply (erule rtranclp-induct)
apply blast

apply (blast intro: rtranclp.rtrancl-into-rtrancl)
done

lemma square-rtrancl-reflcl-commute:
square R S (S∗∗) (R==) ==> commute (R∗∗) (S∗∗)

apply (unfold commute-def )
apply (fastforce dest: square-reflcl square-sym [THEN square-rtrancl])
done

commute
lemma commute-sym: commute R S ==> commute S R

apply (unfold commute-def )
apply (blast intro: square-sym)
done

lemma commute-rtrancl: commute R S ==> commute (R∗∗) (S∗∗)
apply (unfold commute-def )
apply (blast intro: square-rtrancl square-sym)
done

lemma commute-Un:
[| commute R T ; commute S T |] ==> commute (sup R S) T

apply (unfold commute-def square-def )
apply blast
done

diamond, confluence, and union
lemma diamond-Un:

[| diamond R; diamond S ; commute R S |] ==> diamond (sup R S)
apply (unfold diamond-def )
apply (blast intro: commute-Un commute-sym)
done

lemma diamond-confluent: diamond R ==> confluent R
apply (unfold diamond-def )
apply (erule commute-rtrancl)
done
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lemma square-reflcl-confluent:
square R R (R==) (R==) ==> confluent R

apply (unfold diamond-def )
apply (fast intro: square-rtrancl-reflcl-commute elim: square-subset)
done

lemma confluent-Un:
[| confluent R; confluent S ; commute (R∗∗) (S∗∗) |] ==> confluent (sup R S)

apply (rule rtranclp-sup-rtranclp [THEN subst])
apply (blast dest: diamond-Un intro: diamond-confluent)
done

lemma diamond-to-confluence:
[| diamond R; T ≤ R; R ≤ T∗∗ |] ==> confluent T

apply (force intro: diamond-confluent
dest: rtranclp-subset [symmetric])

done

2.3 Church-Rosser
lemma Church-Rosser-confluent: Church-Rosser R = confluent R

apply (unfold square-def commute-def diamond-def Church-Rosser-def )
apply (tactic ‹safe-tac (put-claset HOL-cs context )›)
apply (tactic ‹

blast-tac (put-claset HOL-cs context addIs
[@{thm sup-ge2} RS @{thm rtranclp-mono} RS @{thm predicate2D} RS

@{thm rtranclp-trans},
@{thm rtranclp-converseI}, @{thm conversepI},
@{thm sup-ge1} RS @{thm rtranclp-mono} RS @{thm predicate2D}]) 1 ›)

apply (erule rtranclp-induct)
apply blast

apply (blast del: rtranclp.rtrancl-refl intro: rtranclp-trans)
done

2.4 Newman’s lemma

Proof by Stefan Berghofer
theorem newman:

assumes wf : wfP (R−1−1)
and lc:

∧
a b c. R a b =⇒ R a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
shows

∧
b c. R∗∗ a b =⇒ R∗∗ a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
using wf

proof induct
case (less x b c)
have xc: R∗∗ x c by fact
have xb: R∗∗ x b by fact thus ?case
proof (rule converse-rtranclpE)
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assume x = b
with xc have R∗∗ b c by simp
thus ?thesis by iprover

next
fix y
assume xy: R x y
assume yb: R∗∗ y b
from xc show ?thesis
proof (rule converse-rtranclpE)

assume x = c
with xb have R∗∗ c b by simp
thus ?thesis by iprover

next
fix y ′

assume y ′c: R∗∗ y ′ c
assume xy ′: R x y ′

with xy have ∃ u. R∗∗ y u ∧ R∗∗ y ′ u by (rule lc)
then obtain u where yu: R∗∗ y u and y ′u: R∗∗ y ′ u by iprover
from xy have R−1−1 y x ..
from this and yb yu have ∃ d. R∗∗ b d ∧ R∗∗ u d by (rule less)
then obtain v where bv: R∗∗ b v and uv: R∗∗ u v by iprover
from xy ′ have R−1−1 y ′ x ..
moreover from y ′u and uv have R∗∗ y ′ v by (rule rtranclp-trans)
moreover note y ′c
ultimately have ∃ d. R∗∗ v d ∧ R∗∗ c d by (rule less)
then obtain w where vw: R∗∗ v w and cw: R∗∗ c w by iprover
from bv vw have R∗∗ b w by (rule rtranclp-trans)
with cw show ?thesis by iprover

qed
qed

qed

Alternative version. Partly automated by Tobias Nipkow. Takes 2 minutes
(2002).
This is the maximal amount of automation possible using blast.
theorem newman ′:

assumes wf : wfP (R−1−1)
and lc:

∧
a b c. R a b =⇒ R a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
shows

∧
b c. R∗∗ a b =⇒ R∗∗ a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
using wf

proof induct
case (less x b c)
note IH = ‹

∧
y b c. [[R−1−1 y x; R∗∗ y b; R∗∗ y c]]
=⇒ ∃ d. R∗∗ b d ∧ R∗∗ c d›

have xc: R∗∗ x c by fact
have xb: R∗∗ x b by fact
thus ?case
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proof (rule converse-rtranclpE)
assume x = b
with xc have R∗∗ b c by simp
thus ?thesis by iprover

next
fix y
assume xy: R x y
assume yb: R∗∗ y b
from xc show ?thesis
proof (rule converse-rtranclpE)

assume x = c
with xb have R∗∗ c b by simp
thus ?thesis by iprover

next
fix y ′

assume y ′c: R∗∗ y ′ c
assume xy ′: R x y ′

with xy obtain u where u: R∗∗ y u R∗∗ y ′ u
by (blast dest: lc)

from yb u y ′c show ?thesis
by (blast del: rtranclp.rtrancl-refl

intro: rtranclp-trans
dest: IH [OF conversepI , OF xy] IH [OF conversepI , OF xy ′])

qed
qed

qed

Using the coherent logic prover, the proof of the induction step is completely
automatic.
lemma eq-imp-rtranclp: x = y =⇒ r∗∗ x y

by simp

theorem newman ′′:
assumes wf : wfP (R−1−1)
and lc:

∧
a b c. R a b =⇒ R a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
shows

∧
b c. R∗∗ a b =⇒ R∗∗ a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
using wf

proof induct
case (less x b c)
note IH = ‹

∧
y b c. [[R−1−1 y x; R∗∗ y b; R∗∗ y c]]
=⇒ ∃ d. R∗∗ b d ∧ R∗∗ c d›

show ?case
by (coherent

‹R∗∗ x c› ‹R∗∗ x b›
refl [where ′a= ′a] sym
eq-imp-rtranclp
r-into-rtranclp [of R]
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rtranclp-trans
lc IH [OF conversepI ]
converse-rtranclpE)

qed

end

3 Parallel reduction and a complete developments
theory ParRed imports Lambda Commutation begin

3.1 Parallel reduction
inductive par-beta :: [dB, dB] => bool (infixl ‹=>› 50 )

where
var [simp, intro!]: Var n => Var n

| abs [simp, intro!]: s => t ==> Abs s => Abs t
| app [simp, intro!]: [| s => s ′; t => t ′ |] ==> s ° t => s ′ ° t ′

| beta [simp, intro!]: [| s => s ′; t => t ′ |] ==> (Abs s) ° t => s ′[t ′/0 ]

inductive-cases par-beta-cases [elim!]:
Var n => t
Abs s => Abs t
(Abs s) ° t => u
s ° t => u
Abs s => t

3.2 Inclusions

beta ⊆ par-beta ⊆ beta∗

lemma par-beta-varL [simp]:
(Var n => t) = (t = Var n)

by blast

lemma par-beta-refl [simp]: t => t
by (induct t) simp-all

lemma beta-subset-par-beta: beta <= par-beta
apply (rule predicate2I )
apply (erule beta.induct)

apply (blast intro!: par-beta-refl)+
done

lemma par-beta-subset-beta: par-beta ≤ beta∗∗

apply (rule predicate2I )
apply (erule par-beta.induct)

apply blast
apply (blast del: rtranclp.rtrancl-refl intro: rtranclp.rtrancl-into-rtrancl)+
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— rtrancl-refl complicates the proof by increasing the branching factor
done

3.3 Misc properties of par-beta
lemma par-beta-lift [simp]:

t => t ′ =⇒ lift t n => lift t ′ n
by (induct t arbitrary: t ′ n) fastforce+

lemma par-beta-subst:
s => s ′ =⇒ t => t ′ =⇒ t[s/n] => t ′[s ′/n]

apply (induct t arbitrary: s s ′ t ′ n)
apply (simp add: subst-Var)

apply (erule par-beta-cases)
apply simp

apply (simp add: subst-subst [symmetric])
apply (fastforce intro!: par-beta-lift)

apply fastforce
done

3.4 Confluence (directly)
lemma diamond-par-beta: diamond par-beta

apply (unfold diamond-def commute-def square-def )
apply (rule impI [THEN allI [THEN allI ]])
apply (erule par-beta.induct)

apply (blast intro!: par-beta-subst)+
done

3.5 Complete developments
fun

cd :: dB => dB
where

cd (Var n) = Var n
| cd (Var n ° t) = Var n ° cd t
| cd ((s1 ° s2 ) ° t) = cd (s1 ° s2 ) ° cd t
| cd (Abs u ° t) = (cd u)[cd t/0 ]
| cd (Abs s) = Abs (cd s)

lemma par-beta-cd: s => t =⇒ t => cd s
apply (induct s arbitrary: t rule: cd.induct)

apply auto
apply (fast intro!: par-beta-subst)
done

3.6 Confluence (via complete developments)
lemma diamond-par-beta2 : diamond par-beta

unfolding diamond-def commute-def square-def
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by (blast intro: par-beta-cd)

theorem beta-confluent: confluent beta
by (rule diamond-par-beta2 diamond-to-confluence

par-beta-subset-beta beta-subset-par-beta)+

end

4 Eta-reduction
theory Eta imports ParRed begin

4.1 Definition of eta-reduction and relatives
primrec

free :: dB => nat => bool
where

free (Var j) i = (j = i)
| free (s ° t) i = (free s i ∨ free t i)
| free (Abs s) i = free s (i + 1 )

inductive
eta :: [dB, dB] => bool (infixl ‹→η› 50 )

where
eta [simp, intro]: ¬ free s 0 ==> Abs (s ° Var 0 ) →η s[dummy/0 ]

| appL [simp, intro]: s →η t ==> s ° u →η t ° u
| appR [simp, intro]: s →η t ==> u ° s →η u ° t
| abs [simp, intro]: s →η t ==> Abs s →η Abs t

abbreviation
eta-reds :: [dB, dB] => bool (infixl ‹→η

∗› 50 ) where
s →η

∗ t == eta∗∗ s t

abbreviation
eta-red0 :: [dB, dB] => bool (infixl ‹→η

=› 50 ) where
s →η

= t == eta== s t

inductive-cases eta-cases [elim!]:
Abs s →η z
s ° t →η u
Var i →η t

4.2 Properties of eta, subst and free
lemma subst-not-free [simp]: ¬ free s i =⇒ s[t/i] = s[u/i]

by (induct s arbitrary: i t u) (simp-all add: subst-Var)

lemma free-lift [simp]:
free (lift t k) i = (i < k ∧ free t i ∨ k < i ∧ free t (i − 1 ))
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apply (induct t arbitrary: i k)
apply (auto cong: conj-cong)
done

lemma free-subst [simp]:
free (s[t/k]) i =
(free s k ∧ free t i ∨ free s (if i < k then i else i + 1 ))

apply (induct s arbitrary: i k t)
prefer 2
apply simp
apply blast

prefer 2
apply simp

apply (simp add: diff-Suc subst-Var split: nat.split)
done

lemma free-eta: s →η t ==> free t i = free s i
by (induct arbitrary: i set: eta) (simp-all cong: conj-cong)

lemma not-free-eta:
[| s →η t; ¬ free s i |] ==> ¬ free t i

by (simp add: free-eta)

lemma eta-subst [simp]:
s →η t ==> s[u/i] →η t[u/i]

by (induct arbitrary: u i set: eta) (simp-all add: subst-subst [symmetric])

theorem lift-subst-dummy: ¬ free s i =⇒ lift (s[dummy/i]) i = s
by (induct s arbitrary: i dummy) simp-all

4.3 Confluence of eta
lemma square-eta: square eta eta (eta==) (eta==)

apply (unfold square-def id-def )
apply (rule impI [THEN allI [THEN allI ]])
apply (erule eta.induct)

apply (slowsimp intro: subst-not-free eta-subst free-eta [THEN iffD1 ])
apply safe

prefer 5
apply (blast intro!: eta-subst intro: free-eta [THEN iffD1 ])

apply blast+
done

theorem eta-confluent: confluent eta
apply (rule square-eta [THEN square-reflcl-confluent])
done

4.4 Congruence rules for eta∗

lemma rtrancl-eta-Abs: s →η
∗ s ′ ==> Abs s →η

∗ Abs s ′
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by (induct set: rtranclp)
(blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-eta-AppL: s →η
∗ s ′ ==> s ° t →η

∗ s ′ ° t
by (induct set: rtranclp)
(blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-eta-AppR: t →η
∗ t ′ ==> s ° t →η

∗ s ° t ′

by (induct set: rtranclp) (blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-eta-App:
[| s →η

∗ s ′; t →η
∗ t ′ |] ==> s ° t →η

∗ s ′ ° t ′

by (blast intro!: rtrancl-eta-AppL rtrancl-eta-AppR intro: rtranclp-trans)

4.5 Commutation of beta and eta
lemma free-beta:

s →β t ==> free t i =⇒ free s i
by (induct arbitrary: i set: beta) auto

lemma beta-subst [intro]: s →β t ==> s[u/i] →β t[u/i]
by (induct arbitrary: u i set: beta) (simp-all add: subst-subst [symmetric])

lemma subst-Var-Suc [simp]: t[Var i/i] = t[Var(i)/i + 1 ]
by (induct t arbitrary: i) (auto elim!: linorder-neqE simp: subst-Var)

lemma eta-lift [simp]: s →η t ==> lift s i →η lift t i
by (induct arbitrary: i set: eta) simp-all

lemma rtrancl-eta-subst: s →η t =⇒ u[s/i] →η
∗ u[t/i]

apply (induct u arbitrary: s t i)
apply (simp-all add: subst-Var)
apply blast

apply (blast intro: rtrancl-eta-App)
apply (blast intro!: rtrancl-eta-Abs eta-lift)
done

lemma rtrancl-eta-subst ′:
fixes s t :: dB
assumes eta: s →η

∗ t
shows s[u/i] →η

∗ t[u/i] using eta
by induct (iprover intro: eta-subst)+

lemma rtrancl-eta-subst ′′:
fixes s t :: dB
assumes eta: s →η

∗ t
shows u[s/i] →η

∗ u[t/i] using eta
by induct (iprover intro: rtrancl-eta-subst rtranclp-trans)+
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lemma square-beta-eta: square beta eta (eta∗∗) (beta==)
apply (unfold square-def )
apply (rule impI [THEN allI [THEN allI ]])
apply (erule beta.induct)

apply (slowsimp intro: rtrancl-eta-subst eta-subst)
apply (blast intro: rtrancl-eta-AppL)

apply (blast intro: rtrancl-eta-AppR)
apply simp
apply (slowsimp intro: rtrancl-eta-Abs free-beta

iff del: dB.distinct simp: dB.distinct)
done

lemma confluent-beta-eta: confluent (sup beta eta)
apply (assumption |

rule square-rtrancl-reflcl-commute confluent-Un
beta-confluent eta-confluent square-beta-eta)+

done

4.6 Implicit definition of eta

Abs (lift s 0 ° Var 0 ) →η s
lemma not-free-iff-lifted:

(¬ free s i) = (∃ t. s = lift t i)
apply (induct s arbitrary: i)

apply simp
apply (rule iffI )
apply (erule linorder-neqE)
apply (rename-tac nat a, rule-tac x = Var nat in exI )
apply simp

apply (rename-tac nat a, rule-tac x = Var (nat − 1 ) in exI )
apply simp

apply clarify
apply (rule notE)
prefer 2
apply assumption

apply (erule thin-rl)
apply (case-tac t)

apply simp
apply simp

apply simp
apply simp
apply (erule thin-rl)
apply (erule thin-rl)
apply (rule iffI )
apply (elim conjE exE)
apply (rename-tac u1 u2 )
apply (rule-tac x = u1 ° u2 in exI )
apply simp

apply (erule exE)

18



apply (erule rev-mp)
apply (case-tac t)

apply simp
apply simp
apply blast

apply simp
apply simp
apply (erule thin-rl)
apply (rule iffI )
apply (erule exE)
apply (rule-tac x = Abs t in exI )
apply simp

apply (erule exE)
apply (erule rev-mp)
apply (case-tac t)

apply simp
apply simp

apply simp
apply blast
done

theorem explicit-is-implicit:
(∀ s u. (¬ free s 0 ) −−> R (Abs (s ° Var 0 )) (s[u/0 ])) =
(∀ s. R (Abs (lift s 0 ° Var 0 )) s)

by (auto simp add: not-free-iff-lifted)

4.7 Eta-postponement theorem

Based on a paper proof due to Andreas Abel. Unlike the proof by Masako
Takahashi [4], it does not use parallel eta reduction, which only seems to
complicate matters unnecessarily.
theorem eta-case:

fixes s :: dB
assumes free: ¬ free s 0
and s: s[dummy/0 ] => u
shows ∃ t ′. Abs (s ° Var 0 ) => t ′ ∧ t ′ →η

∗ u
proof −

from s have lift (s[dummy/0 ]) 0 => lift u 0 by (simp del: lift-subst)
with free have s => lift u 0 by (simp add: lift-subst-dummy del: lift-subst)
hence Abs (s ° Var 0 ) => Abs (lift u 0 ° Var 0 ) by simp
moreover have ¬ free (lift u 0 ) 0 by simp
hence Abs (lift u 0 ° Var 0 ) →η lift u 0 [dummy/0 ]

by (rule eta.eta)
hence Abs (lift u 0 ° Var 0 ) →η

∗ u by simp
ultimately show ?thesis by iprover

qed

theorem eta-par-beta:
assumes st: s →η t
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and tu: t => u
shows ∃ t ′. s => t ′ ∧ t ′ →η

∗ u using tu st
proof (induct arbitrary: s)

case (var n)
thus ?case by (iprover intro: par-beta-refl)

next
case (abs s ′ t)
note abs ′ = this
from ‹s →η Abs s ′› show ?case
proof cases

case (eta s ′′ dummy)
from abs have Abs s ′ => Abs t by simp
with eta have s ′′[dummy/0 ] => Abs t by simp
with ‹¬ free s ′′ 0 › have ∃ t ′. Abs (s ′′ ° Var 0 ) => t ′ ∧ t ′ →η

∗ Abs t
by (rule eta-case)

with eta show ?thesis by simp
next

case (abs r)
from ‹r →η s ′›
obtain t ′ where r : r => t ′ and t ′: t ′ →η

∗ t by (iprover dest: abs ′)
from r have Abs r => Abs t ′ ..
moreover from t ′ have Abs t ′ →η

∗ Abs t by (rule rtrancl-eta-Abs)
ultimately show ?thesis using abs by simp iprover

qed
next

case (app u u ′ t t ′)
from ‹s →η u ° t› show ?case
proof cases

case (eta s ′ dummy)
from app have u ° t => u ′ ° t ′ by simp
with eta have s ′[dummy/0 ] => u ′ ° t ′ by simp
with ‹¬ free s ′ 0 › have ∃ r . Abs (s ′ ° Var 0 ) => r ∧ r →η

∗ u ′ ° t ′

by (rule eta-case)
with eta show ?thesis by simp

next
case (appL s ′)
from ‹s ′ →η u›
obtain r where s ′: s ′ => r and r : r →η

∗ u ′ by (iprover dest: app)
from s ′ and app have s ′ ° t => r ° t ′ by simp
moreover from r have r ° t ′ →η

∗ u ′ ° t ′ by (simp add: rtrancl-eta-AppL)
ultimately show ?thesis using appL by simp iprover

next
case (appR s ′)
from ‹s ′ →η t›
obtain r where s ′: s ′ => r and r : r →η

∗ t ′ by (iprover dest: app)
from s ′ and app have u ° s ′ => u ′ ° r by simp
moreover from r have u ′ ° r →η

∗ u ′ ° t ′ by (simp add: rtrancl-eta-AppR)
ultimately show ?thesis using appR by simp iprover

qed
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next
case (beta u u ′ t t ′)
from ‹s →η Abs u ° t› show ?case
proof cases

case (eta s ′ dummy)
from beta have Abs u ° t => u ′[t ′/0 ] by simp
with eta have s ′[dummy/0 ] => u ′[t ′/0 ] by simp
with ‹¬ free s ′ 0 › have ∃ r . Abs (s ′ ° Var 0 ) => r ∧ r →η

∗ u ′[t ′/0 ]
by (rule eta-case)

with eta show ?thesis by simp
next

case (appL s ′)
from ‹s ′ →η Abs u› show ?thesis
proof cases

case (eta s ′′ dummy)
have Abs (lift u 1 ) = lift (Abs u) 0 by simp
also from eta have . . . = s ′′ by (simp add: lift-subst-dummy del: lift-subst)
finally have s: s = Abs (Abs (lift u 1 ) ° Var 0 ) ° t using appL and eta by

simp
from beta have lift u 1 => lift u ′ 1 by simp
hence Abs (lift u 1 ) ° Var 0 => lift u ′ 1 [Var 0/0 ]

using par-beta.var ..
hence Abs (Abs (lift u 1 ) ° Var 0 ) ° t => lift u ′ 1 [Var 0/0 ][t ′/0 ]

using ‹t => t ′› ..
with s have s => u ′[t ′/0 ] by simp
thus ?thesis by iprover

next
case (abs r)
from ‹r →η u›
obtain r ′′ where r : r => r ′′ and r ′′: r ′′ →η

∗ u ′ by (iprover dest: beta)
from r and beta have Abs r ° t => r ′′[t ′/0 ] by simp
moreover from r ′′ have r ′′[t ′/0 ] →η

∗ u ′[t ′/0 ]
by (rule rtrancl-eta-subst ′)

ultimately show ?thesis using abs and appL by simp iprover
qed

next
case (appR s ′)
from ‹s ′ →η t›
obtain r where s ′: s ′ => r and r : r →η

∗ t ′ by (iprover dest: beta)
from s ′ and beta have Abs u ° s ′ => u ′[r/0 ] by simp
moreover from r have u ′[r/0 ] →η

∗ u ′[t ′/0 ]
by (rule rtrancl-eta-subst ′′)

ultimately show ?thesis using appR by simp iprover
qed

qed

theorem eta-postponement ′:
assumes eta: s →η

∗ t and beta: t => u
shows ∃ t ′. s => t ′ ∧ t ′ →η

∗ u using eta beta
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proof (induct arbitrary: u)
case base
thus ?case by blast

next
case (step s ′ s ′′ s ′′′)
then obtain t ′ where s ′: s ′ => t ′ and t ′: t ′ →η

∗ s ′′′

by (auto dest: eta-par-beta)
from s ′ obtain t ′′ where s: s => t ′′ and t ′′: t ′′ →η

∗ t ′ using step
by blast

from t ′′ and t ′ have t ′′ →η
∗ s ′′′ by (rule rtranclp-trans)

with s show ?case by iprover
qed

theorem eta-postponement:
assumes (sup beta eta)∗∗ s t
shows (beta∗∗ OO eta∗∗) s t using assms

proof induct
case base
show ?case by blast

next
case (step s ′ s ′′)
from step(3 ) obtain t ′ where s: s →β

∗ t ′ and t ′: t ′ →η
∗ s ′ by blast

from step(2 ) show ?case
proof

assume s ′ →β s ′′

with beta-subset-par-beta have s ′ => s ′′ ..
with t ′ obtain t ′′ where st: t ′ => t ′′ and tu: t ′′ →η

∗ s ′′

by (auto dest: eta-postponement ′)
from par-beta-subset-beta st have t ′ →β

∗ t ′′ ..
with s have s →β

∗ t ′′ by (rule rtranclp-trans)
thus ?thesis using tu ..

next
assume s ′ →η s ′′

with t ′ have t ′ →η
∗ s ′′ ..

with s show ?thesis ..
qed

qed

end

5 Application of a term to a list of terms
theory ListApplication imports Lambda begin

abbreviation
list-application :: dB => dB list => dB (infixl ‹°°› 150 ) where
t °° ts == foldl (°) t ts

lemma apps-eq-tail-conv [iff ]: (r °° ts = s °° ts) = (r = s)
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by (induct ts rule: rev-induct) auto

lemma Var-eq-apps-conv [iff ]: (Var m = s °° ss) = (Var m = s ∧ ss = [])
by (induct ss arbitrary: s) auto

lemma Var-apps-eq-Var-apps-conv [iff ]:
(Var m °° rs = Var n °° ss) = (m = n ∧ rs = ss)

apply (induct rs arbitrary: ss rule: rev-induct)
apply simp
apply blast

apply (induct-tac ss rule: rev-induct)
apply auto

done

lemma App-eq-foldl-conv:
(r ° s = t °° ts) =
(if ts = [] then r ° s = t
else (∃ ss. ts = ss @ [s] ∧ r = t °° ss))

apply (rule-tac xs = ts in rev-exhaust)
apply auto

done

lemma Abs-eq-apps-conv [iff ]:
(Abs r = s °° ss) = (Abs r = s ∧ ss = [])

by (induct ss rule: rev-induct) auto

lemma apps-eq-Abs-conv [iff ]: (s °° ss = Abs r) = (s = Abs r ∧ ss = [])
by (induct ss rule: rev-induct) auto

lemma Abs-apps-eq-Abs-apps-conv [iff ]:
(Abs r °° rs = Abs s °° ss) = (r = s ∧ rs = ss)

apply (induct rs arbitrary: ss rule: rev-induct)
apply simp
apply blast

apply (induct-tac ss rule: rev-induct)
apply auto

done

lemma Abs-App-neq-Var-apps [iff ]:
Abs s ° t 6= Var n °° ss

by (induct ss arbitrary: s t rule: rev-induct) auto

lemma Var-apps-neq-Abs-apps [iff ]:
Var n °° ts 6= Abs r °° ss

apply (induct ss arbitrary: ts rule: rev-induct)
apply simp

apply (induct-tac ts rule: rev-induct)
apply auto

done
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lemma ex-head-tail:
∃ ts h. t = h °° ts ∧ ((∃n. h = Var n) ∨ (∃ u. h = Abs u))
apply (induct t)

apply (rule-tac x = [] in exI )
apply simp

apply clarify
apply (rename-tac ts1 ts2 h1 h2 )
apply (rule-tac x = ts1 @ [h2 °° ts2 ] in exI )
apply simp

apply simp
done

lemma size-apps [simp]:
size (r °° rs) = size r + foldl (+) 0 (map size rs) + length rs
by (induct rs rule: rev-induct) auto

lemma lem0 : [| (0 ::nat) < k; m <= n |] ==> m < n + k
by simp

lemma lift-map [simp]:
lift (t °° ts) i = lift t i °° map (λt. lift t i) ts

by (induct ts arbitrary: t) simp-all

lemma subst-map [simp]:
subst (t °° ts) u i = subst t u i °° map (λt. subst t u i) ts

by (induct ts arbitrary: t) simp-all

lemma app-last: (t °° ts) ° u = t °° (ts @ [u])
by simp

A customized induction schema for °°.
lemma lem:

assumes !!n ts. ∀ t ∈ set ts. P t ==> P (Var n °° ts)
and !!u ts. [| P u; ∀ t ∈ set ts. P t |] ==> P (Abs u °° ts)

shows size t = n =⇒ P t
apply (induct n arbitrary: t rule: nat-less-induct)
apply (cut-tac t = t in ex-head-tail)
apply clarify
apply (erule disjE)
apply clarify
apply (rule assms)
apply clarify
apply (erule allE , erule impE)
prefer 2
apply (erule allE , erule mp, rule refl)

apply simp
apply (simp only: foldl-conv-fold add.commute fold-plus-sum-list-rev)
apply (fastforce simp add: sum-list-map-remove1 )
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apply clarify
apply (rule assms)
apply (erule allE , erule impE)
prefer 2
apply (erule allE , erule mp, rule refl)

apply simp
apply clarify
apply (erule allE , erule impE)
prefer 2
apply (erule allE , erule mp, rule refl)

apply simp
apply (rule le-imp-less-Suc)
apply (rule trans-le-add1 )
apply (rule trans-le-add2 )
apply (simp only: foldl-conv-fold add.commute fold-plus-sum-list-rev)
apply (simp add: member-le-sum-list)
done

theorem Apps-dB-induct:
assumes !!n ts. ∀ t ∈ set ts. P t ==> P (Var n °° ts)

and !!u ts. [| P u; ∀ t ∈ set ts. P t |] ==> P (Abs u °° ts)
shows P t
apply (rule-tac t = t in lem)

prefer 3
apply (rule refl)
using assms apply iprover+

done

end

6 Simply-typed lambda terms
theory LambdaType imports ListApplication begin

6.1 Environments
definition

shift :: (nat ⇒ ′a) ⇒ nat ⇒ ′a ⇒ nat ⇒ ′a (‹-〈-:-〉› [90 , 0 , 0 ] 91 ) where
e〈i:a〉 = (λj. if j < i then e j else if j = i then a else e (j − 1 ))

lemma shift-eq [simp]: i = j =⇒ (e〈i:T 〉) j = T
by (simp add: shift-def )

lemma shift-gt [simp]: j < i =⇒ (e〈i:T 〉) j = e j
by (simp add: shift-def )

lemma shift-lt [simp]: i < j =⇒ (e〈i:T 〉) j = e (j − 1 )
by (simp add: shift-def )
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lemma shift-commute [simp]: e〈i:U 〉〈0 :T 〉 = e〈0 :T 〉〈Suc i:U 〉
by (rule ext) (simp-all add: shift-def split: nat.split)

6.2 Types and typing rules
datatype type =

Atom nat
| Fun type type (infixr ‹⇒› 200 )

inductive typing :: (nat ⇒ type) ⇒ dB ⇒ type ⇒ bool (‹- ` - : -› [50 , 50 , 50 ]
50 )

where
Var [intro!]: env x = T =⇒ env ` Var x : T

| Abs [intro!]: env〈0 :T 〉 ` t : U =⇒ env ` Abs t : (T ⇒ U )
| App [intro!]: env ` s : T ⇒ U =⇒ env ` t : T =⇒ env ` (s ° t) : U

inductive-cases typing-elims [elim!]:
e ` Var i : T
e ` t ° u : T
e ` Abs t : T

primrec
typings :: (nat ⇒ type) ⇒ dB list ⇒ type list ⇒ bool

where
typings e [] Ts = (Ts = [])

| typings e (t # ts) Ts =
(case Ts of
[] ⇒ False

| T # Ts ⇒ e ` t : T ∧ typings e ts Ts)

abbreviation
typings-rel :: (nat ⇒ type) ⇒ dB list ⇒ type list ⇒ bool
(‹- `̀ - : -› [50 , 50 , 50 ] 50 ) where

env `̀ ts : Ts == typings env ts Ts

abbreviation
funs :: type list ⇒ type ⇒ type (infixr ‹V› 200 ) where
Ts V T == foldr Fun Ts T

6.3 Some examples
schematic-goal e ` Abs (Abs (Abs (Var 1 ° (Var 2 ° Var 1 ° Var 0 )))) : ?T

by force

schematic-goal e ` Abs (Abs (Abs (Var 2 ° Var 0 ° (Var 1 ° Var 0 )))) : ?T
by force

6.4 Lists of types
lemma lists-typings:
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e `̀ ts : Ts =⇒ listsp (λt. ∃T . e ` t : T ) ts
proof (induct ts arbitrary: Ts)

case Nil
then show ?case

by simp
next

case c: (Cons a ts)
show ?case
proof (cases Ts)

case Nil
with c show ?thesis

by simp
next

case (Cons T list)
with c show ?thesis by force

qed
qed

lemma types-snoc: e `̀ ts : Ts =⇒ e ` t : T =⇒ e `̀ ts @ [t] : Ts @ [T ]
by (induct ts arbitrary: Ts) (auto split: list.split-asm)

lemma types-snoc-eq: e `̀ ts @ [t] : Ts @ [T ] =
(e `̀ ts : Ts ∧ e ` t : T )

proof (induct ts arbitrary: Ts)
case Nil
then show ?case

by (auto split: list.split)
next

case (Cons a ts)
have ¬ e `̀ ts @ [t] : []
by (cases ts @ [t]; simp)
with Cons show ?case

by (auto split: list.split)
qed

Cannot use rev-exhaust from the List theory, since it is not constructive
lemma rev-exhaust2 [extraction-expand]:

obtains (Nil) xs = [] | (snoc) ys y where xs = ys @ [y]
proof −

have §: xs = rev ys =⇒ thesis for ys
by (cases ys) (simp-all add: local.Nil snoc)

show thesis
using § [of rev xs] by simp

qed

lemma types-snocE :
assumes ‹e `̀ ts @ [t] : Ts›
obtains Us and U where ‹Ts = Us @ [U ]› ‹e `̀ ts : Us› ‹e ` t : U ›

proof (cases Ts rule: rev-exhaust2 )
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case Nil
with assms show ?thesis

by (cases ts @ [t]) simp-all
next

case (snoc Us U )
with assms have e `̀ ts @ [t] : Us @ [U ] by simp
then have e `̀ ts : Us e ` t : U by (simp-all add: types-snoc-eq)
with snoc show ?thesis by (rule that)

qed

6.5 n-ary function types
lemma list-app-typeD:

e ` t °° ts : T =⇒ ∃Ts. e ` t : Ts V T ∧ e `̀ ts : Ts
proof (induct ts arbitrary: t T )

case Nil
then show ?case by auto

next
case (Cons a b t T )
then show ?case

by (auto simp: split: list.split)
qed

lemma list-app-typeE :
e ` t °° ts : T =⇒ (

∧
Ts. e ` t : Ts V T =⇒ e `̀ ts : Ts =⇒ C ) =⇒ C

using list-app-typeD by iprover

lemma list-app-typeI :
e ` t : Ts V T =⇒ e `̀ ts : Ts =⇒ e ` t °° ts : T

by (induct ts arbitrary: t Ts) (auto simp add: split: list.split-asm)

For the specific case where the head of the term is a variable, the following
theorems allow to infer the types of the arguments without analyzing the
typing derivation. This is crucial for program extraction.
theorem var-app-type-eq:

e ` Var i °° ts : T =⇒ e ` Var i °° ts : U =⇒ T = U
by (induct ts arbitrary: T U rule: rev-induct) auto

lemma var-app-types: e ` Var i °° ts °° us : T =⇒ e `̀ ts : Ts =⇒
e ` Var i °° ts : U =⇒ ∃Us. U = Us V T ∧ e `̀ us : Us

proof (induct us arbitrary: ts Ts U )
case Nil
then show ?case

by (simp add: var-app-type-eq)
next

case (Cons a b ts Ts U )
then show ?case

apply atomize
apply (case-tac U )

28



apply (rule FalseE)
apply simp
apply (erule list-app-typeE)
apply (ind-cases e ` t ° u : T for t u T )
apply (rename-tac nat Ts ′ T ′)
apply (drule-tac T=Atom nat and U=T ′ ⇒ Ts ′ V T in var-app-type-eq)
apply assumption

apply simp
apply (rename-tac type1 type2 )
apply (erule-tac x=ts @ [a] in allE)
apply (erule-tac x=Ts @ [type1 ] in allE)
apply (erule-tac x=type2 in allE)
apply simp
apply (erule impE)
apply (rule types-snoc)
apply assumption

apply (erule list-app-typeE)
apply (ind-cases e ` t ° u : T for t u T )

using var-app-type-eq apply fastforce
apply (erule impE)
apply (rule typing.App)
apply assumption

apply (erule list-app-typeE)
apply (ind-cases e ` t ° u : T for t u T )

using var-app-type-eq apply fastforce
apply (erule exE)
apply (rule-tac x=type1 # Us in exI )
apply simp
apply (erule list-app-typeE)
apply (ind-cases e ` t ° u : T for t u T )
using var-app-type-eq by fastforce

qed

lemma var-app-typesE : e ` Var i °° ts : T =⇒
(
∧

Ts. e ` Var i : Ts V T =⇒ e `̀ ts : Ts =⇒ P) =⇒ P
by (iprover intro: typing.Var dest: var-app-types [of - - [], simplified])

lemma abs-typeE :
assumes e ` Abs t : T

∧
U V . e〈0 :U 〉 ` t : V =⇒ P

shows P
proof (cases T )

case (Atom x1 )
with assms(1 ) show ?thesis

apply−
apply (rule FalseE)
apply (erule typing.cases)

apply simp-all
done

next
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case (Fun type1 type2 )
with assms show ?thesis

apply atomize
apply (erule-tac x=type1 in allE)
apply (erule-tac x=type2 in allE)
apply (erule mp)
apply (erule typing.cases)

apply simp-all
done

qed

6.6 Lifting preserves well-typedness
lemma lift-type [intro!]: e ` t : T =⇒ e〈i:U 〉 ` lift t i : T

by (induct arbitrary: i U set: typing) auto

lemma lift-types:
e `̀ ts : Ts =⇒ e〈i:U 〉 `̀ (map (λt. lift t i) ts) : Ts
by (induct ts arbitrary: Ts) (auto split: list.split)

6.7 Substitution lemmas
lemma subst-lemma:

e ` t : T =⇒ e ′ ` u : U =⇒ e = e ′〈i:U 〉 =⇒ e ′ ` t[u/i] : T
proof (induct arbitrary: e ′ i U u set: typing)

case (Var env x T )
then show ?case

by (force simp add: shift-def )
next

case (Abs env T t U )
then show ?case by force

qed auto

lemma substs-lemma:
e ` u : T =⇒ e〈i:T 〉 `̀ ts : Ts =⇒

e `̀ (map (λt. t[u/i]) ts) : Ts
proof (induct ts arbitrary: Ts)

case Nil
then show ?case

by auto
next

case (Cons a ts)
with subst-lemma show ?case

by (auto split: list.split)
qed

6.8 Subject reduction
lemma subject-reduction: e ` t : T =⇒ t →β t ′ =⇒ e ` t ′ : T
proof (induct arbitrary: t ′ set: typing)
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case (App env s T U t)
with subst-lemma show ?case

by auto
qed auto

theorem subject-reduction ′: t →β
∗ t ′ =⇒ e ` t : T =⇒ e ` t ′ : T

by (induct set: rtranclp) (iprover intro: subject-reduction)+

6.9 Alternative induction rule for types
lemma type-induct [induct type]:

assumes
(
∧

T . (
∧

T1 T2 . T = T1 ⇒ T2 =⇒ P T1 ) =⇒
(
∧

T1 T2 . T = T1 ⇒ T2 =⇒ P T2 ) =⇒ P T )
shows P T

proof (induct T )
case Atom
show ?case by (rule assms) simp-all

next
case Fun
show ?case by (rule assms) (insert Fun, simp-all)

qed

end

7 Lifting an order to lists of elements
theory ListOrder
imports Main
begin

declare [[syntax-ambiguity-warning = false]]

Lifting an order to lists of elements, relating exactly one element.
definition

step1 :: ( ′a => ′a => bool) => ′a list => ′a list => bool where
step1 r =
(λys xs. ∃ us z z ′ vs. xs = us @ z # vs ∧ r z ′ z ∧ ys =

us @ z ′ # vs)

lemma step1-converse [simp]: step1 (r−1−1) = (step1 r)−1−1

apply (unfold step1-def )
apply (blast intro!: order-antisym)
done

lemma in-step1-converse [iff ]: (step1 (r−1−1) x y) = ((step1 r)−1−1 x y)
apply auto
done
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lemma not-Nil-step1 [iff ]: ¬ step1 r [] xs
apply (unfold step1-def )
apply blast
done

lemma not-step1-Nil [iff ]: ¬ step1 r xs []
apply (unfold step1-def )
apply blast
done

lemma Cons-step1-Cons [iff ]:
(step1 r (y # ys) (x # xs)) =
(r y x ∧ xs = ys ∨ x = y ∧ step1 r ys xs)

apply (unfold step1-def )
apply (rule iffI )
apply (erule exE)
apply (rename-tac ts)
apply (case-tac ts)
apply fastforce

apply force
apply (erule disjE)
apply blast

apply (blast intro: Cons-eq-appendI )
done

lemma append-step1I :
step1 r ys xs ∧ vs = us ∨ ys = xs ∧ step1 r vs us
==> step1 r (ys @ vs) (xs @ us)

apply (unfold step1-def )
apply auto
apply blast

apply (blast intro: append-eq-appendI )
done

lemma Cons-step1E [elim!]:
assumes step1 r ys (x # xs)

and !!y. ys = y # xs =⇒ r y x =⇒ R
and !!zs. ys = x # zs =⇒ step1 r zs xs =⇒ R

shows R
using assms
apply (cases ys)
apply (simp add: step1-def )

apply blast
done

lemma Snoc-step1-SnocD:
step1 r (ys @ [y]) (xs @ [x])
==> (step1 r ys xs ∧ y = x ∨ ys = xs ∧ r y x)
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apply (unfold step1-def )
apply (clarify del: disjCI )
apply (rename-tac vs)
apply (rule-tac xs = vs in rev-exhaust)
apply force

apply simp
apply blast
done

lemma Cons-acc-step1I [intro!]:
Wellfounded.accp r x ==> Wellfounded.accp (step1 r) xs =⇒ Wellfounded.accp

(step1 r) (x # xs)
apply (induct arbitrary: xs set: Wellfounded.accp)
apply (erule thin-rl)
apply (erule accp-induct)
apply (rule accp.accI )
apply blast
done

lemma lists-accD: listsp (Wellfounded.accp r) xs ==> Wellfounded.accp (step1 r)
xs

apply (induct set: listsp)
apply (rule accp.accI )
apply simp

apply (rule accp.accI )
apply (fast dest: accp-downward)
done

lemma ex-step1I :
[| x ∈ set xs; r y x |]
==> ∃ ys. step1 r ys xs ∧ y ∈ set ys

apply (unfold step1-def )
apply (drule in-set-conv-decomp [THEN iffD1 ])
apply force
done

lemma lists-accI : Wellfounded.accp (step1 r) xs ==> listsp (Wellfounded.accp r)
xs

apply (induct set: Wellfounded.accp)
apply clarify
apply (rule accp.accI )
apply (drule-tac r=r in ex-step1I , assumption)
apply blast
done

end
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8 Lifting beta-reduction to lists
theory ListBeta imports ListApplication ListOrder begin

Lifting beta-reduction to lists of terms, reducing exactly one element.
abbreviation

list-beta :: dB list => dB list => bool (infixl ‹=>› 50 ) where
rs => ss == step1 beta rs ss

lemma head-Var-reduction:
Var n °° rs →β v =⇒ ∃ ss. rs => ss ∧ v = Var n °° ss
apply (induct u == Var n °° rs v arbitrary: rs set: beta)

apply simp
apply (rule-tac xs = rs in rev-exhaust)
apply simp

apply (atomize, force intro: append-step1I )
apply (rule-tac xs = rs in rev-exhaust)
apply simp
apply (auto 0 3 intro: disjI2 [THEN append-step1I ])

done

lemma apps-betasE [elim!]:
assumes major : r °° rs →β s

and cases: !!r ′. [| r →β r ′; s = r ′ °° rs |] ==> R
!!rs ′. [| rs => rs ′; s = r °° rs ′ |] ==> R
!!t u us. [| r = Abs t; rs = u # us; s = t[u/0 ] °° us |] ==> R

shows R
proof −

from major have
(∃ r ′. r →β r ′ ∧ s = r ′ °° rs) ∨
(∃ rs ′. rs => rs ′ ∧ s = r °° rs ′) ∨
(∃ t u us. r = Abs t ∧ rs = u # us ∧ s = t[u/0 ] °° us)
apply (induct u == r °° rs s arbitrary: r rs set: beta)

apply (case-tac r)
apply simp

apply (simp add: App-eq-foldl-conv)
apply (split if-split-asm)
apply simp
apply blast

apply simp
apply (simp add: App-eq-foldl-conv)
apply (split if-split-asm)
apply simp

apply simp
apply (drule App-eq-foldl-conv [THEN iffD1 ])
apply (split if-split-asm)
apply simp
apply blast

apply (force intro!: disjI1 [THEN append-step1I ])
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apply (drule App-eq-foldl-conv [THEN iffD1 ])
apply (split if-split-asm)
apply simp
apply blast

apply (clarify, auto 0 3 intro!: exI intro: append-step1I )
done

with cases show ?thesis by blast
qed

lemma apps-preserves-beta [simp]:
r →β s ==> r °° ss →β s °° ss

by (induct ss rule: rev-induct) auto

lemma apps-preserves-beta2 [simp]:
r →β

∗ s ==> r °° ss →β
∗ s °° ss

apply (induct set: rtranclp)
apply blast

apply (blast intro: apps-preserves-beta rtranclp.rtrancl-into-rtrancl)
done

lemma apps-preserves-betas [simp]:
rs => ss =⇒ r °° rs →β r °° ss

apply (induct rs arbitrary: ss rule: rev-induct)
apply simp

apply simp
apply (rule-tac xs = ss in rev-exhaust)
apply simp

apply simp
apply (drule Snoc-step1-SnocD)
apply blast
done

end

9 Inductive characterization of terminating lambda
terms

theory InductTermi imports ListBeta begin

9.1 Terminating lambda terms
inductive IT :: dB => bool

where
Var [intro]: listsp IT rs ==> IT (Var n °° rs)

| Lambda [intro]: IT r ==> IT (Abs r)
| Beta [intro]: IT ((r [s/0 ]) °° ss) ==> IT s ==> IT ((Abs r ° s) °° ss)
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9.2 Every term in IT terminates
lemma double-induction-lemma [rule-format]:

termip beta s ==> ∀ t. termip beta t −−>
(∀ r ss. t = r [s/0 ] °° ss −−> termip beta (Abs r ° s °° ss))

apply (erule accp-induct)
apply (rule allI )
apply (rule impI )
apply (erule thin-rl)
apply (erule accp-induct)
apply clarify
apply (rule accp.accI )
apply (safe elim!: apps-betasE)

apply (blast intro: subst-preserves-beta apps-preserves-beta)
apply (blast intro: apps-preserves-beta2 subst-preserves-beta2 rtranclp-converseI

dest: accp-downwards)
apply (blast dest: apps-preserves-betas)
done

lemma IT-implies-termi: IT t ==> termip beta t
apply (induct set: IT )

apply (drule rev-predicate1D [OF - listsp-mono [where B=termip beta]])
apply (fast intro!: predicate1I )
apply (drule lists-accD)
apply (erule accp-induct)
apply (rule accp.accI )
apply (blast dest: head-Var-reduction)

apply (erule accp-induct)
apply (rule accp.accI )
apply blast

apply (blast intro: double-induction-lemma)
done

9.3 Every terminating term is in IT
declare Var-apps-neq-Abs-apps [symmetric, simp]

lemma [simp, THEN not-sym, simp]: Var n °° ss 6= Abs r ° s °° ts
by (simp add: foldl-Cons [symmetric] del: foldl-Cons)

lemma [simp]:
(Abs r ° s °° ss = Abs r ′ ° s ′ °° ss ′) = (r = r ′ ∧ s = s ′ ∧ ss = ss ′)
by (simp add: foldl-Cons [symmetric] del: foldl-Cons)

inductive-cases [elim!]:
IT (Var n °° ss)
IT (Abs t)
IT (Abs r ° s °° ts)

theorem termi-implies-IT : termip beta r ==> IT r
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apply (erule accp-induct)
apply (rename-tac r)
apply (erule thin-rl)
apply (erule rev-mp)
apply simp
apply (rule-tac t = r in Apps-dB-induct)
apply clarify
apply (rule IT .intros)
apply clarify
apply (drule bspec, assumption)
apply (erule mp)
apply clarify
apply (drule-tac r=beta in conversepI )
apply (drule-tac r=beta−1−1 in ex-step1I , assumption)
apply clarify
apply (rename-tac us)
apply (erule-tac x = Var n °° us in allE)
apply force
apply (rename-tac u ts)
apply (case-tac ts)
apply simp
apply blast

apply (rename-tac s ss)
apply simp
apply clarify
apply (rule IT .intros)
apply (blast intro: apps-preserves-beta)

apply (erule mp)
apply clarify
apply (rename-tac t)
apply (erule-tac x = Abs u ° t °° ss in allE)
apply force
done

end

10 Strong normalization for simply-typed lambda
calculus

theory StrongNorm imports LambdaType InductTermi begin

Formalization by Stefan Berghofer. Partly based on a paper proof by Felix
Joachimski and Ralph Matthes [1].

10.1 Properties of IT
lemma lift-IT [intro!]: IT t =⇒ IT (lift t i)

apply (induct arbitrary: i set: IT )
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apply (simp (no-asm))
apply (rule conjI )
apply
(rule impI ,
rule IT .Var ,
erule listsp.induct,
simp (no-asm),
simp (no-asm),
rule listsp.Cons,
blast,
assumption)+

apply auto
done

lemma lifts-IT : listsp IT ts =⇒ listsp IT (map (λt. lift t 0 ) ts)
by (induct ts) auto

lemma subst-Var-IT : IT r =⇒ IT (r [Var i/j])
apply (induct arbitrary: i j set: IT )

Case Var :

apply (simp (no-asm) add: subst-Var)
apply
((rule conjI impI )+,

rule IT .Var ,
erule listsp.induct,
simp (no-asm),
simp (no-asm),
rule listsp.Cons,
fast,
assumption)+

Case Lambda:

apply atomize
apply simp
apply (rule IT .Lambda)
apply fast

Case Beta:

apply atomize
apply (simp (no-asm-use) add: subst-subst [symmetric])
apply (rule IT .Beta)
apply auto

done

lemma Var-IT : IT (Var n)
apply (subgoal-tac IT (Var n °° []))
apply simp

apply (rule IT .Var)
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apply (rule listsp.Nil)
done

lemma app-Var-IT : IT t =⇒ IT (t ° Var i)
apply (induct set: IT )

apply (subst app-last)
apply (rule IT .Var)
apply simp
apply (rule listsp.Cons)
apply (rule Var-IT )

apply (rule listsp.Nil)
apply (rule IT .Beta [where ?ss = [], unfolded foldl-Nil [THEN eq-reflection]])
apply (erule subst-Var-IT )

apply (rule Var-IT )
apply (subst app-last)
apply (rule IT .Beta)
apply (subst app-last [symmetric])
apply assumption

apply assumption
done

10.2 Well-typed substitution preserves termination
lemma subst-type-IT :∧

t e T u i. IT t =⇒ e〈i:U 〉 ` t : T =⇒
IT u =⇒ e ` u : U =⇒ IT (t[u/i])

(is PROP ?P U is
∧

t e T u i. - =⇒ PROP ?Q t e T u i U )
proof (induct U )

fix T t
assume MI1 :

∧
T1 T2 . T = T1 ⇒ T2 =⇒ PROP ?P T1

assume MI2 :
∧

T1 T2 . T = T1 ⇒ T2 =⇒ PROP ?P T2
assume IT t
thus

∧
e T ′ u i. PROP ?Q t e T ′ u i T

proof induct
fix e T ′ u i
assume uIT : IT u
assume uT : e ` u : T
{

case (Var rs n e1 T ′1 u1 i1 )
assume nT : e〈i:T 〉 ` Var n °° rs : T ′

let ?ty = λt. ∃T ′. e〈i:T 〉 ` t : T ′

let ?R = λt. ∀ e T ′ u i.
e〈i:T 〉 ` t : T ′ −→ IT u −→ e ` u : T −→ IT (t[u/i])

show IT ((Var n °° rs)[u/i])
proof (cases n = i)

case True
show ?thesis
proof (cases rs)

case Nil
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with uIT True show ?thesis by simp
next

case (Cons a as)
with nT have e〈i:T 〉 ` Var n ° a °° as : T ′ by simp
then obtain Ts

where headT : e〈i:T 〉 ` Var n ° a : Ts V T ′

and argsT : e〈i:T 〉 `̀ as : Ts
by (rule list-app-typeE)

from headT obtain T ′′

where varT : e〈i:T 〉 ` Var n : T ′′ ⇒ Ts V T ′

and argT : e〈i:T 〉 ` a : T ′′

by cases simp-all
from varT True have T : T = T ′′ ⇒ Ts V T ′

by cases auto
with uT have uT ′: e ` u : T ′′ ⇒ Ts V T ′ by simp
from T have IT ((Var 0 °° map (λt. lift t 0 )
(map (λt. t[u/i]) as))[(u ° a[u/i])/0 ])

proof (rule MI2 )
from T have IT ((lift u 0 ° Var 0 )[a[u/i]/0 ])
proof (rule MI1 )

have IT (lift u 0 ) by (rule lift-IT [OF uIT ])
thus IT (lift u 0 ° Var 0 ) by (rule app-Var-IT )
show e〈0 :T ′′〉 ` lift u 0 ° Var 0 : Ts V T ′

proof (rule typing.App)
show e〈0 :T ′′〉 ` lift u 0 : T ′′ ⇒ Ts V T ′

by (rule lift-type) (rule uT ′)
show e〈0 :T ′′〉 ` Var 0 : T ′′

by (rule typing.Var) simp
qed
from Var have ?R a by cases (simp-all add: Cons)
with argT uIT uT show IT (a[u/i]) by simp
from argT uT show e ` a[u/i] : T ′′

by (rule subst-lemma) simp
qed
thus IT (u ° a[u/i]) by simp
from Var have listsp ?R as

by cases (simp-all add: Cons)
moreover from argsT have listsp ?ty as

by (rule lists-typings)
ultimately have listsp (λt. ?R t ∧ ?ty t) as

by simp
hence listsp IT (map (λt. lift t 0 ) (map (λt. t[u/i]) as))
(is listsp IT (?ls as))

proof induct
case Nil
show ?case by fastforce

next
case (Cons b bs)
hence I : ?R b by simp
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from Cons obtain U where e〈i:T 〉 ` b : U by fast
with uT uIT I have IT (b[u/i]) by simp
hence IT (lift (b[u/i]) 0 ) by (rule lift-IT )
hence listsp IT (lift (b[u/i]) 0 # ?ls bs)

by (rule listsp.Cons) (rule Cons)
thus ?case by simp

qed
thus IT (Var 0 °° ?ls as) by (rule IT .Var)
have e〈0 :Ts V T ′〉 ` Var 0 : Ts V T ′

by (rule typing.Var) simp
moreover from uT argsT have e `̀ map (λt. t[u/i]) as : Ts

by (rule substs-lemma)
hence e〈0 :Ts V T ′〉 `̀ ?ls as : Ts

by (rule lift-types)
ultimately show e〈0 :Ts V T ′〉 ` Var 0 °° ?ls as : T ′

by (rule list-app-typeI )
from argT uT have e ` a[u/i] : T ′′

by (rule subst-lemma) (rule refl)
with uT ′ show e ` u ° a[u/i] : Ts V T ′

by (rule typing.App)
qed
with Cons True show ?thesis

by (simp add: comp-def )
qed

next
case False
from Var have listsp ?R rs by simp
moreover from nT obtain Ts where e〈i:T 〉 `̀ rs : Ts

by (rule list-app-typeE)
hence listsp ?ty rs by (rule lists-typings)
ultimately have listsp (λt. ?R t ∧ ?ty t) rs

by simp
hence listsp IT (map (λx. x[u/i]) rs)
proof induct

case Nil
show ?case by fastforce

next
case (Cons a as)
hence I : ?R a by simp
from Cons obtain U where e〈i:T 〉 ` a : U by fast
with uT uIT I have IT (a[u/i]) by simp
hence listsp IT (a[u/i] # map (λt. t[u/i]) as)

by (rule listsp.Cons) (rule Cons)
thus ?case by simp

qed
with False show ?thesis by (auto simp add: subst-Var)

qed
next

case (Lambda r e1 T ′1 u1 i1 )
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assume e〈i:T 〉 ` Abs r : T ′

and
∧

e T ′ u i. PROP ?Q r e T ′ u i T
with uIT uT show IT (Abs r [u/i])

by fastforce
next

case (Beta r a as e1 T ′1 u1 i1 )
assume T : e〈i:T 〉 ` Abs r ° a °° as : T ′

assume SI1 :
∧

e T ′ u i. PROP ?Q (r [a/0 ] °° as) e T ′ u i T
assume SI2 :

∧
e T ′ u i. PROP ?Q a e T ′ u i T

have IT (Abs (r [lift u 0/Suc i]) ° a[u/i] °° map (λt. t[u/i]) as)
proof (rule IT .Beta)

have Abs r ° a °° as →β r [a/0 ] °° as
by (rule apps-preserves-beta) (rule beta.beta)

with T have e〈i:T 〉 ` r [a/0 ] °° as : T ′

by (rule subject-reduction)
hence IT ((r [a/0 ] °° as)[u/i])

using uIT uT by (rule SI1 )
thus IT (r [lift u 0/Suc i][a[u/i]/0 ] °° map (λt. t[u/i]) as)

by (simp del: subst-map add: subst-subst subst-map [symmetric])
from T obtain U where e〈i:T 〉 ` Abs r ° a : U

by (rule list-app-typeE) fast
then obtain T ′′ where e〈i:T 〉 ` a : T ′′ by cases simp-all
thus IT (a[u/i]) using uIT uT by (rule SI2 )

qed
thus IT ((Abs r ° a °° as)[u/i]) by simp

}
qed

qed

10.3 Well-typed terms are strongly normalizing
lemma type-implies-IT :

assumes e ` t : T
shows IT t
using assms

proof induct
case Var
show ?case by (rule Var-IT )

next
case Abs
show ?case by (rule IT .Lambda) (rule Abs)

next
case (App e s T U t)
have IT ((Var 0 ° lift t 0 )[s/0 ])
proof (rule subst-type-IT )

have IT (lift t 0 ) using ‹IT t› by (rule lift-IT )
hence listsp IT [lift t 0 ] by (rule listsp.Cons) (rule listsp.Nil)
hence IT (Var 0 °° [lift t 0 ]) by (rule IT .Var)
also have Var 0 °° [lift t 0 ] = Var 0 ° lift t 0 by simp
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finally show IT . . . .
have e〈0 :T ⇒ U 〉 ` Var 0 : T ⇒ U

by (rule typing.Var) simp
moreover have e〈0 :T ⇒ U 〉 ` lift t 0 : T

by (rule lift-type) (rule App.hyps)
ultimately show e〈0 :T ⇒ U 〉 ` Var 0 ° lift t 0 : U

by (rule typing.App)
show IT s by fact
show e ` s : T ⇒ U by fact

qed
thus ?case by simp

qed

theorem type-implies-termi: e ` t : T =⇒ termip beta t
proof −

assume e ` t : T
hence IT t by (rule type-implies-IT )
thus ?thesis by (rule IT-implies-termi)

qed

end

11 Inductive characterization of lambda terms in
normal form

theory NormalForm
imports ListBeta
begin

11.1 Terms in normal form
definition

listall :: ( ′a ⇒ bool) ⇒ ′a list ⇒ bool where
listall P xs ≡ (∀ i. i < length xs −→ P (xs ! i))

declare listall-def [extraction-expand-def ]

theorem listall-nil: listall P []
by (simp add: listall-def )

theorem listall-nil-eq [simp]: listall P [] = True
by (iprover intro: listall-nil)

theorem listall-cons: P x =⇒ listall P xs =⇒ listall P (x # xs)
apply (simp add: listall-def )
apply (rule allI impI )+
apply (case-tac i)
apply simp+
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done

theorem listall-cons-eq [simp]: listall P (x # xs) = (P x ∧ listall P xs)
apply (rule iffI )
prefer 2
apply (erule conjE)
apply (erule listall-cons)
apply assumption
apply (unfold listall-def )
apply (rule conjI )
apply (erule-tac x=0 in allE)
apply simp
apply simp
apply (rule allI )
apply (erule-tac x=Suc i in allE)
apply simp
done

lemma listall-conj1 : listall (λx. P x ∧ Q x) xs =⇒ listall P xs
by (induct xs) simp-all

lemma listall-conj2 : listall (λx. P x ∧ Q x) xs =⇒ listall Q xs
by (induct xs) simp-all

lemma listall-app: listall P (xs @ ys) = (listall P xs ∧ listall P ys)
by (induct xs; intro iffI ; simp)

lemma listall-snoc [simp]: listall P (xs @ [x]) = (listall P xs ∧ P x)
by (rule iffI ; simp add: listall-app)

lemma listall-cong [cong, extraction-expand]:
xs = ys =⇒ listall P xs = listall P ys
— Currently needed for strange technical reasons
by (unfold listall-def ) simp

listsp is equivalent to listall, but cannot be used for program extraction.
lemma listall-listsp-eq: listall P xs = listsp P xs

by (induct xs) (auto intro: listsp.intros)

inductive NF :: dB ⇒ bool
where

App: listall NF ts =⇒ NF (Var x °° ts)
| Abs: NF t =⇒ NF (Abs t)
monos listall-def

lemma nat-eq-dec:
∧

n::nat. m = n ∨ m 6= n
proof (induction m)

case 0
then show ?case
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by (cases n; simp only: nat.simps; iprover)
next

case (Suc m)
then show ?case

by (cases n; simp only: nat.simps; iprover)
qed

lemma nat-le-dec:
∧

n::nat. m < n ∨ ¬ (m < n)
proof (induction m)

case 0
then show ?case

by (cases n; simp only: order .irrefl zero-less-Suc; iprover)
next

case (Suc m)
then show ?case

by (cases n; simp only: not-less-zero Suc-less-eq; iprover)
qed

lemma App-NF-D: assumes NF : NF (Var n °° ts)
shows listall NF ts using NF
by cases simp-all

11.2 Properties of NF
lemma Var-NF : NF (Var n)
proof −

have NF (Var n °° [])
by (rule NF .App) simp

then show ?thesis by simp
qed

lemma Abs-NF :
assumes NF : NF (Abs t °° ts)
shows ts = [] using NF

proof cases
case (App us i)
thus ?thesis by (simp add: Var-apps-neq-Abs-apps [THEN not-sym])

next
case (Abs u)
thus ?thesis by simp

qed

lemma subst-terms-NF : listall NF ts =⇒
listall (λt. ∀ i j. NF (t[Var i/j])) ts =⇒
listall NF (map (λt. t[Var i/j]) ts)

by (induct ts) simp-all

lemma subst-Var-NF : NF t =⇒ NF (t[Var i/j])
apply (induct arbitrary: i j set: NF)
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apply simp
apply (frule listall-conj1 )
apply (drule listall-conj2 )
apply (drule-tac i=i and j=j in subst-terms-NF)
apply assumption

apply (rule-tac m1=x and n1=j in nat-eq-dec [THEN disjE ])
apply simp
apply (erule NF .App)

apply (rule-tac m1=j and n1=x in nat-le-dec [THEN disjE ])
apply (simp-all add: NF .App NF .Abs)

done

lemma app-Var-NF : NF t =⇒ ∃ t ′. t ° Var i →β
∗ t ′ ∧ NF t ′

apply (induct set: NF)
apply (simplesubst app-last) — Using subst makes extraction fail
apply (rule exI )
apply (rule conjI )
apply (rule rtranclp.rtrancl-refl)

apply (rule NF .App)
apply (drule listall-conj1 )
apply (simp add: listall-app)
apply (rule Var-NF)

apply (iprover intro: rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-refl beta subst-Var-NF)
done

lemma lift-terms-NF : listall NF ts =⇒
listall (λt. ∀ i. NF (lift t i)) ts =⇒
listall NF (map (λt. lift t i) ts)

by (induct ts) simp-all

lemma lift-NF : NF t =⇒ NF (lift t i)
apply (induct arbitrary: i set: NF)
apply (frule listall-conj1 )
apply (drule listall-conj2 )
apply (drule-tac i=i in lift-terms-NF)
apply assumption

apply (rule-tac m1=x and n1=i in nat-le-dec [THEN disjE ])
apply (simp-all add: NF .App NF .Abs)

done

NF characterizes exactly the terms that are in normal form.
lemma NF-eq: NF t = (∀ t ′. ¬ t →β t ′)
proof

assume NF t
then have

∧
t ′. ¬ t →β t ′

proof induct
case (App ts t)
show ?case
proof
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assume Var t °° ts →β t ′

then obtain rs where ts => rs
by (iprover dest: head-Var-reduction)

with App show False
by (induct rs arbitrary: ts) auto

qed
next

case (Abs t)
show ?case
proof

assume Abs t →β t ′

then show False using Abs by cases simp-all
qed

qed
then show ∀ t ′. ¬ t →β t ′ ..

next
assume H : ∀ t ′. ¬ t →β t ′

then show NF t
proof (induct t rule: Apps-dB-induct)

case (1 n ts)
then have ∀ ts ′. ¬ ts => ts ′

by (iprover intro: apps-preserves-betas)
with 1 (1 ) have listall NF ts

by (induct ts) auto
then show ?case by (rule NF .App)

next
case (2 u ts)
show ?case
proof (cases ts)

case Nil
from 2 have ∀ u ′. ¬ u →β u ′

by (auto intro: apps-preserves-beta)
then have NF u by (rule 2 )
then have NF (Abs u) by (rule NF .Abs)
with Nil show ?thesis by simp

next
case (Cons r rs)
have Abs u ° r →β u[r/0 ] ..
then have Abs u ° r °° rs →β u[r/0 ] °° rs

by (rule apps-preserves-beta)
with Cons have Abs u °° ts →β u[r/0 ] °° rs

by simp
with 2 show ?thesis by iprover

qed
qed

qed

end
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12 Standardization
theory Standardization
imports NormalForm
begin

Based on lecture notes by Ralph Matthes [3], original proof idea due to
Ralph Loader [2].

12.1 Standard reduction relation
declare listrel-mono [mono-set]

inductive
sred :: dB ⇒ dB ⇒ bool (infixl ‹→s› 50 )
and sredlist :: dB list ⇒ dB list ⇒ bool (infixl ‹[→s]› 50 )

where
s [→s] t ≡ listrelp (→s) s t

| Var : rs [→s] rs ′ =⇒ Var x °° rs →s Var x °° rs ′

| Abs: r →s r ′ =⇒ ss [→s] ss ′ =⇒ Abs r °° ss →s Abs r ′ °° ss ′

| Beta: r [s/0 ] °° ss →s t =⇒ Abs r ° s °° ss →s t

lemma refl-listrelp: ∀ x∈set xs. R x x =⇒ listrelp R xs xs
by (induct xs) (auto intro: listrelp.intros)

lemma refl-sred: t →s t
by (induct t rule: Apps-dB-induct) (auto intro: refl-listrelp sred.intros)

lemma refl-sreds: ts [→s] ts
by (simp add: refl-sred refl-listrelp)

lemma listrelp-conj1 : listrelp (λx y. R x y ∧ S x y) x y =⇒ listrelp R x y
by (erule listrelp.induct) (auto intro: listrelp.intros)

lemma listrelp-conj2 : listrelp (λx y. R x y ∧ S x y) x y =⇒ listrelp S x y
by (erule listrelp.induct) (auto intro: listrelp.intros)

lemma listrelp-app:
assumes xsys: listrelp R xs ys
shows listrelp R xs ′ ys ′ =⇒ listrelp R (xs @ xs ′) (ys @ ys ′) using xsys
by (induct arbitrary: xs ′ ys ′) (auto intro: listrelp.intros)

lemma lemma1 :
assumes r : r →s r ′ and s: s →s s ′

shows r ° s →s r ′ ° s ′ using r
proof induct

case (Var rs rs ′ x)
then have rs [→s] rs ′ by (rule listrelp-conj1 )
moreover have [s] [→s] [s ′] by (iprover intro: s listrelp.intros)
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ultimately have rs @ [s] [→s] rs ′ @ [s ′] by (rule listrelp-app)
hence Var x °° (rs @ [s]) →s Var x °° (rs ′ @ [s ′]) by (rule sred.Var)
thus ?case by (simp only: app-last)

next
case (Abs r r ′ ss ss ′)
from Abs(3 ) have ss [→s] ss ′ by (rule listrelp-conj1 )
moreover have [s] [→s] [s ′] by (iprover intro: s listrelp.intros)
ultimately have ss @ [s] [→s] ss ′ @ [s ′] by (rule listrelp-app)
with ‹r →s r ′› have Abs r °° (ss @ [s]) →s Abs r ′ °° (ss ′ @ [s ′])

by (rule sred.Abs)
thus ?case by (simp only: app-last)

next
case (Beta r u ss t)
hence r [u/0 ] °° (ss @ [s]) →s t ° s ′ by (simp only: app-last)
hence Abs r ° u °° (ss @ [s]) →s t ° s ′ by (rule sred.Beta)
thus ?case by (simp only: app-last)

qed

lemma lemma1 ′:
assumes ts: ts [→s] ts ′

shows r →s r ′ =⇒ r °° ts →s r ′ °° ts ′ using ts
by (induct arbitrary: r r ′) (auto intro: lemma1 )

lemma lemma2-1 :
assumes beta: t →β u
shows t →s u using beta

proof induct
case (beta s t)
have Abs s ° t °° [] →s s[t/0 ] °° [] by (iprover intro: sred.Beta refl-sred)
thus ?case by simp

next
case (appL s t u)
thus ?case by (iprover intro: lemma1 refl-sred)

next
case (appR s t u)
thus ?case by (iprover intro: lemma1 refl-sred)

next
case (abs s t)
hence Abs s °° [] →s Abs t °° [] by (iprover intro: sred.Abs listrelp.Nil)
thus ?case by simp

qed

lemma listrelp-betas:
assumes ts: listrelp (→β

∗) ts ts ′

shows
∧

t t ′. t →β
∗ t ′ =⇒ t °° ts →β

∗ t ′ °° ts ′ using ts
by induct auto

lemma lemma2-2 :
assumes t: t →s u
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shows t →β
∗ u using t

by induct (auto dest: listrelp-conj2
intro: listrelp-betas apps-preserves-beta converse-rtranclp-into-rtranclp)

lemma sred-lift:
assumes s: s →s t
shows lift s i →s lift t i using s

proof (induct arbitrary: i)
case (Var rs rs ′ x)
hence map (λt. lift t i) rs [→s] map (λt. lift t i) rs ′

by induct (auto intro: listrelp.intros)
thus ?case by (cases x < i) (auto intro: sred.Var)

next
case (Abs r r ′ ss ss ′)
from Abs(3 ) have map (λt. lift t i) ss [→s] map (λt. lift t i) ss ′

by induct (auto intro: listrelp.intros)
thus ?case by (auto intro: sred.Abs Abs)

next
case (Beta r s ss t)
thus ?case by (auto intro: sred.Beta)

qed

lemma lemma3 :
assumes r : r →s r ′

shows s →s s ′ =⇒ r [s/x] →s r ′[s ′/x] using r
proof (induct arbitrary: s s ′ x)

case (Var rs rs ′ y)
hence map (λt. t[s/x]) rs [→s] map (λt. t[s ′/x]) rs ′

by induct (auto intro: listrelp.intros Var)
moreover have Var y[s/x] →s Var y[s ′/x]
proof (cases y < x)

case True thus ?thesis by simp (rule refl-sred)
next

case False
thus ?thesis

by (cases y = x) (auto simp add: Var intro: refl-sred)
qed
ultimately show ?case by simp (rule lemma1 ′)

next
case (Abs r r ′ ss ss ′)
from Abs(4 ) have lift s 0 →s lift s ′ 0 by (rule sred-lift)
hence r [lift s 0/Suc x] →s r ′[lift s ′ 0/Suc x] by (fast intro: Abs.hyps)
moreover from Abs(3 ) have map (λt. t[s/x]) ss [→s] map (λt. t[s ′/x]) ss ′

by induct (auto intro: listrelp.intros Abs)
ultimately show ?case by simp (rule sred.Abs)

next
case (Beta r u ss t)
thus ?case by (auto simp add: subst-subst intro: sred.Beta)

qed
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lemma lemma4-aux:
assumes rs: listrelp (λt u. t →s u ∧ (∀ r . u →β r −→ t →s r)) rs rs ′

shows rs ′ => ss =⇒ rs [→s] ss using rs
proof (induct arbitrary: ss)

case Nil
thus ?case by cases (auto intro: listrelp.Nil)

next
case (Cons x y xs ys)
note Cons ′ = Cons
show ?case
proof (cases ss)

case Nil with Cons show ?thesis by simp
next

case (Cons y ′ ys ′)
hence ss: ss = y ′ # ys ′ by simp
from Cons Cons ′ have y →β y ′ ∧ ys ′ = ys ∨ y ′ = y ∧ ys => ys ′ by simp
hence x # xs [→s] y ′ # ys ′

proof
assume H : y →β y ′ ∧ ys ′ = ys
with Cons ′ have x →s y ′ by blast
moreover from Cons ′ have xs [→s] ys by (iprover dest: listrelp-conj1 )
ultimately have x # xs [→s] y ′ # ys by (rule listrelp.Cons)
with H show ?thesis by simp

next
assume H : y ′ = y ∧ ys => ys ′

with Cons ′ have x →s y ′ by blast
moreover from H have xs [→s] ys ′ by (blast intro: Cons ′)
ultimately show ?thesis by (rule listrelp.Cons)

qed
with ss show ?thesis by simp

qed
qed

lemma lemma4 :
assumes r : r →s r ′

shows r ′ →β r ′′ =⇒ r →s r ′′ using r
proof (induct arbitrary: r ′′)

case (Var rs rs ′ x)
then obtain ss where rs: rs ′ => ss and r ′′: r ′′ = Var x °° ss

by (blast dest: head-Var-reduction)
from Var(1 ) rs have rs [→s] ss by (rule lemma4-aux)
hence Var x °° rs →s Var x °° ss by (rule sred.Var)
with r ′′ show ?case by simp

next
case (Abs r r ′ ss ss ′)
from ‹Abs r ′ °° ss ′ →β r ′′› show ?case
proof

fix s
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assume r ′′: r ′′ = s °° ss ′

assume Abs r ′ →β s
then obtain r ′′′ where s: s = Abs r ′′′ and r ′′′: r ′ →β r ′′′ by cases auto
from r ′′′ have r →s r ′′′ by (blast intro: Abs)
moreover from Abs have ss [→s] ss ′ by (iprover dest: listrelp-conj1 )
ultimately have Abs r °° ss →s Abs r ′′′ °° ss ′ by (rule sred.Abs)
with r ′′ s show Abs r °° ss →s r ′′ by simp

next
fix rs ′

assume ss ′ => rs ′

with Abs(3 ) have ss [→s] rs ′ by (rule lemma4-aux)
with ‹r →s r ′› have Abs r °° ss →s Abs r ′ °° rs ′ by (rule sred.Abs)
moreover assume r ′′ = Abs r ′ °° rs ′

ultimately show Abs r °° ss →s r ′′ by simp
next

fix t u ′ us ′

assume ss ′ = u ′ # us ′

with Abs(3 ) obtain u us where
ss: ss = u # us and u: u →s u ′ and us: us [→s] us ′

by cases (auto dest!: listrelp-conj1 )
have r [u/0 ] →s r ′[u ′/0 ] using Abs(1 ) and u by (rule lemma3 )
with us have r [u/0 ] °° us →s r ′[u ′/0 ] °° us ′ by (rule lemma1 ′)
hence Abs r ° u °° us →s r ′[u ′/0 ] °° us ′ by (rule sred.Beta)
moreover assume Abs r ′ = Abs t and r ′′ = t[u ′/0 ] °° us ′

ultimately show Abs r °° ss →s r ′′ using ss by simp
qed

next
case (Beta r s ss t)
show ?case

by (rule sred.Beta) (rule Beta)+
qed

lemma rtrancl-beta-sred:
assumes r : r →β

∗ r ′

shows r →s r ′ using r
by induct (iprover intro: refl-sred lemma4 )+

12.2 Leftmost reduction and weakly normalizing terms
inductive

lred :: dB ⇒ dB ⇒ bool (infixl ‹→l› 50 )
and lredlist :: dB list ⇒ dB list ⇒ bool (infixl ‹[→l]› 50 )

where
s [→l] t ≡ listrelp (→l) s t

| Var : rs [→l] rs ′ =⇒ Var x °° rs →l Var x °° rs ′

| Abs: r →l r ′ =⇒ Abs r →l Abs r ′

| Beta: r [s/0 ] °° ss →l t =⇒ Abs r ° s °° ss →l t

lemma lred-imp-sred:
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assumes lred: s →l t
shows s →s t using lred

proof induct
case (Var rs rs ′ x)
then have rs [→s] rs ′

by induct (iprover intro: listrelp.intros)+
then show ?case by (rule sred.Var)

next
case (Abs r r ′)
from ‹r →s r ′›
have Abs r °° [] →s Abs r ′ °° [] using listrelp.Nil

by (rule sred.Abs)
then show ?case by simp

next
case (Beta r s ss t)
from ‹r [s/0 ] °° ss →s t›
show ?case by (rule sred.Beta)

qed

inductive WN :: dB => bool
where

Var : listsp WN rs =⇒ WN (Var n °° rs)
| Lambda: WN r =⇒ WN (Abs r)
| Beta: WN ((r [s/0 ]) °° ss) =⇒ WN ((Abs r ° s) °° ss)

lemma listrelp-imp-listsp1 :
assumes H : listrelp (λx y. P x) xs ys
shows listsp P xs using H
by induct auto

lemma listrelp-imp-listsp2 :
assumes H : listrelp (λx y. P y) xs ys
shows listsp P ys using H
by induct auto

lemma lemma5 :
assumes lred: r →l r ′

shows WN r and NF r ′ using lred
by induct
(iprover dest: listrelp-conj1 listrelp-conj2
listrelp-imp-listsp1 listrelp-imp-listsp2 intro: WN .intros
NF .intros [simplified listall-listsp-eq])+

lemma lemma6 :
assumes wn: WN r
shows ∃ r ′. r →l r ′ using wn

proof induct
case (Var rs n)
then have ∃ rs ′. rs [→l] rs ′
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by induct (iprover intro: listrelp.intros)+
then show ?case by (iprover intro: lred.Var)

qed (iprover intro: lred.intros)+

lemma lemma7 :
assumes r : r →s r ′

shows NF r ′ =⇒ r →l r ′ using r
proof induct

case (Var rs rs ′ x)
from ‹NF (Var x °° rs ′)› have listall NF rs ′

by cases simp-all
with Var(1 ) have rs [→l] rs ′

proof induct
case Nil
show ?case by (rule listrelp.Nil)

next
case (Cons x y xs ys)
hence x →l y and xs [→l] ys by simp-all
thus ?case by (rule listrelp.Cons)

qed
thus ?case by (rule lred.Var)

next
case (Abs r r ′ ss ss ′)
from ‹NF (Abs r ′ °° ss ′)›
have ss ′: ss ′ = [] by (rule Abs-NF)
from Abs(3 ) have ss: ss = [] using ss ′

by cases simp-all
from ss ′ Abs have NF (Abs r ′) by simp
hence NF r ′ by cases simp-all
with Abs have r →l r ′ by simp
hence Abs r →l Abs r ′ by (rule lred.Abs)
with ss ss ′ show ?case by simp

next
case (Beta r s ss t)
hence r [s/0 ] °° ss →l t by simp
thus ?case by (rule lred.Beta)

qed

lemma WN-eq: WN t = (∃ t ′. t →β
∗ t ′ ∧ NF t ′)

proof
assume WN t
then have ∃ t ′. t →l t ′ by (rule lemma6 )
then obtain t ′ where t ′: t →l t ′ ..
then have NF : NF t ′ by (rule lemma5 )
from t ′ have t →s t ′ by (rule lred-imp-sred)
then have t →β

∗ t ′ by (rule lemma2-2 )
with NF show ∃ t ′. t →β

∗ t ′ ∧ NF t ′ by iprover
next

assume ∃ t ′. t →β
∗ t ′ ∧ NF t ′
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then obtain t ′ where t ′: t →β
∗ t ′ and NF : NF t ′

by iprover
from t ′ have t →s t ′ by (rule rtrancl-beta-sred)
then have t →l t ′ using NF by (rule lemma7 )
then show WN t by (rule lemma5 )

qed

end

13 Weak normalization for simply-typed lambda
calculus

theory WeakNorm
imports LambdaType NormalForm HOL−Library.Realizers HOL−Library.Code-Target-Int
begin

Formalization by Stefan Berghofer. Partly based on a paper proof by Felix
Joachimski and Ralph Matthes [1].

13.1 Main theorems
lemma norm-list:

assumes f-compat:
∧

t t ′. t →β
∗ t ′ =⇒ f t →β

∗ f t ′

and f-NF :
∧

t. NF t =⇒ NF (f t)
and uNF : NF u and uT : e ` u : T
shows

∧
Us. e〈i:T 〉 `̀ as : Us =⇒

listall (λt. ∀ e T ′ u i. e〈i:T 〉 ` t : T ′ −→
NF u −→ e ` u : T −→ (∃ t ′. t[u/i] →β

∗ t ′ ∧ NF t ′)) as =⇒
∃ as ′. ∀ j. Var j °° map (λt. f (t[u/i])) as →β

∗

Var j °° map f as ′ ∧ NF (Var j °° map f as ′)
(is

∧
Us. - =⇒ listall ?R as =⇒ ∃ as ′. ?ex Us as as ′)

proof (induct as rule: rev-induct)
case (Nil Us)
with Var-NF have ?ex Us [] [] by simp
thus ?case ..

next
case (snoc b bs Us)
have e〈i:T 〉 `̀ bs @ [b] : Us by fact
then obtain Vs W where Us: Us = Vs @ [W ]

and bs: e〈i:T 〉 `̀ bs : Vs and bT : e〈i:T 〉 ` b : W
by (rule types-snocE)

from snoc have listall ?R bs by simp
with bs have ∃ bs ′. ?ex Vs bs bs ′ by (rule snoc)
then obtain bs ′ where bsred: Var j °° map (λt. f (t[u/i])) bs →β

∗ Var j °° map
f bs ′

and bsNF : NF (Var j °° map f bs ′) for j
by iprover

from snoc have ?R b by simp
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with bT and uNF and uT have ∃ b ′. b[u/i] →β
∗ b ′ ∧ NF b ′

by iprover
then obtain b ′ where bred: b[u/i] →β

∗ b ′ and bNF : NF b ′

by iprover
from bsNF [of 0 ] have listall NF (map f bs ′)

by (rule App-NF-D)
moreover have NF (f b ′) using bNF by (rule f-NF)
ultimately have listall NF (map f (bs ′ @ [b ′]))

by simp
hence

∧
j. NF (Var j °° map f (bs ′ @ [b ′])) by (rule NF .App)

moreover from bred have f (b[u/i]) →β
∗ f b ′

by (rule f-compat)
with bsred have∧

j. (Var j °° map (λt. f (t[u/i])) bs) ° f (b[u/i]) →β
∗

(Var j °° map f bs ′) ° f b ′ by (rule rtrancl-beta-App)
ultimately have ?ex Us (bs @ [b]) (bs ′ @ [b ′]) by simp
thus ?case ..

qed

lemma subst-type-NF :∧
t e T u i. NF t =⇒ e〈i:U 〉 ` t : T =⇒ NF u =⇒ e ` u : U =⇒ ∃ t ′. t[u/i]

→β
∗ t ′ ∧ NF t ′

(is PROP ?P U is
∧

t e T u i. - =⇒ PROP ?Q t e T u i U )
proof (induct U )

fix T t
let ?R = λt. ∀ e T ′ u i.

e〈i:T 〉 ` t : T ′ −→ NF u −→ e ` u : T −→ (∃ t ′. t[u/i] →β
∗ t ′ ∧ NF t ′)

assume MI1 :
∧

T1 T2 . T = T1 ⇒ T2 =⇒ PROP ?P T1
assume MI2 :

∧
T1 T2 . T = T1 ⇒ T2 =⇒ PROP ?P T2

assume NF t
thus

∧
e T ′ u i. PROP ?Q t e T ′ u i T

proof induct
fix e T ′ u i assume uNF : NF u and uT : e ` u : T
{

case (App ts x e1 T ′1 u1 i1 )
assume e〈i:T 〉 ` Var x °° ts : T ′

then obtain Us
where varT : e〈i:T 〉 ` Var x : Us V T ′

and argsT : e〈i:T 〉 `̀ ts : Us
by (rule var-app-typesE)

from nat-eq-dec show ∃ t ′. (Var x °° ts)[u/i] →β
∗ t ′ ∧ NF t ′

proof
assume eq: x = i
show ?thesis
proof (cases ts)

case Nil
with eq have (Var x °° [])[u/i] →β

∗ u by simp
with Nil and uNF show ?thesis by simp iprover

next
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case (Cons a as)
with argsT obtain T ′′ Ts where Us: Us = T ′′ # Ts

by (cases Us) (rule FalseE , simp)
from varT and Us have varT : e〈i:T 〉 ` Var x : T ′′ ⇒ Ts V T ′

by simp
from varT eq have T : T = T ′′ ⇒ Ts V T ′ by cases auto
with uT have uT ′: e ` u : T ′′ ⇒ Ts V T ′ by simp
from argsT Us Cons have argsT ′: e〈i:T 〉 `̀ as : Ts by simp
from argsT Us Cons have argT : e〈i:T 〉 ` a : T ′′ by simp
from argT uT refl have aT : e ` a[u/i] : T ′′ by (rule subst-lemma)

from App and Cons have listall ?R as by simp (iprover dest: listall-conj2 )
with lift-preserves-beta ′ lift-NF uNF uT argsT ′

have ∃ as ′. ∀ j. Var j °° map (λt. lift (t[u/i]) 0 ) as →β
∗

Var j °° map (λt. lift t 0 ) as ′ ∧
NF (Var j °° map (λt. lift t 0 ) as ′) by (rule norm-list)

then obtain as ′ where
asred: Var 0 °° map (λt. lift (t[u/i]) 0 ) as →β

∗

Var 0 °° map (λt. lift t 0 ) as ′

and asNF : NF (Var 0 °° map (λt. lift t 0 ) as ′) by iprover
from App and Cons have ?R a by simp
with argT and uNF and uT have ∃ a ′. a[u/i] →β

∗ a ′ ∧ NF a ′

by iprover
then obtain a ′ where ared: a[u/i] →β

∗ a ′ and aNF : NF a ′ by iprover
from uNF have NF (lift u 0 ) by (rule lift-NF)
hence ∃ u ′. lift u 0 ° Var 0 →β

∗ u ′ ∧ NF u ′ by (rule app-Var-NF)
then obtain u ′ where ured: lift u 0 ° Var 0 →β

∗ u ′ and u ′NF : NF u ′

by iprover
from T and u ′NF have ∃ ua. u ′[a ′/0 ] →β

∗ ua ∧ NF ua
proof (rule MI1 )

have e〈0 :T ′′〉 ` lift u 0 ° Var 0 : Ts V T ′

proof (rule typing.App)
from uT ′ show e〈0 :T ′′〉 ` lift u 0 : T ′′ ⇒ Ts V T ′ by (rule lift-type)
show e〈0 :T ′′〉 ` Var 0 : T ′′ by (rule typing.Var) simp

qed
with ured show e〈0 :T ′′〉 ` u ′ : Ts V T ′ by (rule subject-reduction ′)
from ared aT show e ` a ′ : T ′′ by (rule subject-reduction ′)
show NF a ′ by fact

qed
then obtain ua where uared: u ′[a ′/0 ] →β

∗ ua and uaNF : NF ua
by iprover

from ared have (lift u 0 ° Var 0 )[a[u/i]/0 ] →β
∗ (lift u 0 ° Var 0 )[a ′/0 ]

by (rule subst-preserves-beta2 ′)
also from ured have (lift u 0 ° Var 0 )[a ′/0 ] →β

∗ u ′[a ′/0 ]
by (rule subst-preserves-beta ′)

also note uared
finally have (lift u 0 ° Var 0 )[a[u/i]/0 ] →β

∗ ua .
hence uared ′: u ° a[u/i] →β

∗ ua by simp
from T asNF - uaNF have ∃ r . (Var 0 °° map (λt. lift t 0 ) as ′)[ua/0 ]

→β
∗ r ∧ NF r
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proof (rule MI2 )
have e〈0 :Ts V T ′〉 ` Var 0 °° map (λt. lift (t[u/i]) 0 ) as : T ′

proof (rule list-app-typeI )
show e〈0 :Ts V T ′〉 ` Var 0 : Ts V T ′ by (rule typing.Var) simp
from uT argsT ′ have e `̀ map (λt. t[u/i]) as : Ts

by (rule substs-lemma)
hence e〈0 :Ts V T ′〉 `̀ map (λt. lift t 0 ) (map (λt. t[u/i]) as) : Ts

by (rule lift-types)
thus e〈0 :Ts V T ′〉 `̀ map (λt. lift (t[u/i]) 0 ) as : Ts

by (simp-all add: o-def )
qed
with asred show e〈0 :Ts V T ′〉 ` Var 0 °° map (λt. lift t 0 ) as ′ : T ′

by (rule subject-reduction ′)
from argT uT refl have e ` a[u/i] : T ′′ by (rule subst-lemma)
with uT ′ have e ` u ° a[u/i] : Ts V T ′ by (rule typing.App)
with uared ′ show e ` ua : Ts V T ′ by (rule subject-reduction ′)

qed
then obtain r where rred: (Var 0 °° map (λt. lift t 0 ) as ′)[ua/0 ] →β

∗ r
and rnf : NF r by iprover

from asred have
(Var 0 °° map (λt. lift (t[u/i]) 0 ) as)[u ° a[u/i]/0 ] →β

∗

(Var 0 °° map (λt. lift t 0 ) as ′)[u ° a[u/i]/0 ]
by (rule subst-preserves-beta ′)

also from uared ′ have (Var 0 °° map (λt. lift t 0 ) as ′)[u ° a[u/i]/0 ] →β
∗

(Var 0 °° map (λt. lift t 0 ) as ′)[ua/0 ] by (rule subst-preserves-beta2 ′)
also note rred
finally have (Var 0 °° map (λt. lift (t[u/i]) 0 ) as)[u ° a[u/i]/0 ] →β

∗ r .
with rnf Cons eq show ?thesis

by (simp add: o-def ) iprover
qed

next
assume neq: x 6= i
from App have listall ?R ts by (iprover dest: listall-conj2 )
with uNF uT argsT
have ∃ ts ′. ∀ j. Var j °° map (λt. t[u/i]) ts →β

∗ Var j °° ts ′ ∧
NF (Var j °° ts ′) (is ∃ ts ′. ?ex ts ′)
by (rule norm-list [of λt. t, simplified])

then obtain ts ′ where NF : ?ex ts ′ ..
from nat-le-dec show ?thesis
proof

assume i < x
with NF show ?thesis by simp iprover

next
assume ¬ (i < x)
with NF neq show ?thesis by (simp add: subst-Var) iprover

qed
qed

next
case (Abs r e1 T ′1 u1 i1 )
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assume absT : e〈i:T 〉 ` Abs r : T ′

then obtain R S where e〈0 :R〉〈Suc i:T 〉 ` r : S by (rule abs-typeE) simp
moreover have NF (lift u 0 ) using ‹NF u› by (rule lift-NF)
moreover have e〈0 :R〉 ` lift u 0 : T using uT by (rule lift-type)
ultimately have ∃ t ′. r [lift u 0/Suc i] →β

∗ t ′ ∧ NF t ′ by (rule Abs)
thus ∃ t ′. Abs r [u/i] →β

∗ t ′ ∧ NF t ′

by simp (iprover intro: rtrancl-beta-Abs NF .Abs)
}

qed
qed

— A computationally relevant copy of e ` t : T
inductive rtyping :: (nat ⇒ type) ⇒ dB ⇒ type ⇒ bool (‹- `R - : -› [50 , 50 , 50 ]
50 )

where
Var : e x = T =⇒ e `R Var x : T

| Abs: e〈0 :T 〉 `R t : U =⇒ e `R Abs t : (T ⇒ U )
| App: e `R s : T ⇒ U =⇒ e `R t : T =⇒ e `R (s ° t) : U

lemma rtyping-imp-typing: e `R t : T =⇒ e ` t : T
apply (induct set: rtyping)
apply (erule typing.Var)
apply (erule typing.Abs)
apply (erule typing.App)
apply assumption
done

theorem type-NF :
assumes e `R t : T
shows ∃ t ′. t →β

∗ t ′ ∧ NF t ′ using assms
proof induct

case Var
show ?case by (iprover intro: Var-NF)

next
case Abs
thus ?case by (iprover intro: rtrancl-beta-Abs NF .Abs)

next
case (App e s T U t)
from App obtain s ′ t ′ where

sred: s →β
∗ s ′ and NF s ′

and tred: t →β
∗ t ′ and tNF : NF t ′ by iprover

have ∃ u. (Var 0 ° lift t ′ 0 )[s ′/0 ] →β
∗ u ∧ NF u

proof (rule subst-type-NF)
have NF (lift t ′ 0 ) using tNF by (rule lift-NF)
hence listall NF [lift t ′ 0 ] by (rule listall-cons) (rule listall-nil)
hence NF (Var 0 °° [lift t ′ 0 ]) by (rule NF .App)
thus NF (Var 0 ° lift t ′ 0 ) by simp
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show e〈0 :T ⇒ U 〉 ` Var 0 ° lift t ′ 0 : U
proof (rule typing.App)

show e〈0 :T ⇒ U 〉 ` Var 0 : T ⇒ U
by (rule typing.Var) simp

from tred have e ` t ′ : T
by (rule subject-reduction ′) (rule rtyping-imp-typing, rule App.hyps)

thus e〈0 :T ⇒ U 〉 ` lift t ′ 0 : T
by (rule lift-type)

qed
from sred show e ` s ′ : T ⇒ U

by (rule subject-reduction ′) (rule rtyping-imp-typing, rule App.hyps)
show NF s ′ by fact

qed
then obtain u where ured: s ′ ° t ′ →β

∗ u and unf : NF u by simp iprover
from sred tred have s ° t →β

∗ s ′ ° t ′ by (rule rtrancl-beta-App)
hence s ° t →β

∗ u using ured by (rule rtranclp-trans)
with unf show ?case by iprover

qed

13.2 Extracting the program
declare NF .induct [ind-realizer ]
declare rtranclp.induct [ind-realizer irrelevant]
declare rtyping.induct [ind-realizer ]
lemmas [extraction-expand] = conj-assoc listall-cons-eq subst-all equal-allI

extract type-NF

lemma rtranclR-rtrancl-eq: rtranclpR r a b = r∗∗ a b
proof

show rtranclpR r a b =⇒ r∗∗ a b
apply (erule rtranclpR.induct)
apply (rule rtranclp.rtrancl-refl)

apply (metis rtranclp.rtrancl-into-rtrancl)
done

show r∗∗ a b =⇒ rtranclpR r a b
apply (erule rtranclp.induct)
apply (rule rtranclpR.rtrancl-refl)

apply (metis rtranclpR.rtrancl-into-rtrancl)
done

qed

lemma NFR-imp-NF : NFR nf t =⇒ NF t
apply (erule NFR.induct)
apply (rule NF .intros)
apply (simp add: listall-def )
apply (erule NF .intros)
done

The program corresponding to the proof of the central lemma, which per-

60



subst-type-NF ≡
λx xa xb xc xd xe H Ha.

type-induct-P xc
(λx H2 H2a xa xaa xb xc xd H .

compat-NFT .rec-split-NFT default
(λts xa xaa r xb xc xd xe H .

var-app-typesE-P (xb〈xe:x〉) xa ts
(λUs--. case nat-eq-dec xa xe of

Left ⇒ case ts of [] ⇒ (xd, H)
| a # list ⇒

case Us-- of [] ⇒ default
| T ′′-- # Ts-- ⇒

let (x, y) =
norm-list (λt. lift t 0 ) xd xb xe list Ts--
(λt. lift-NF 0 ) H
(listall-conj2-P-Q list (λi. (xaa (Suc i), r (Suc i))));

(xa, ya) = snd (xaa 0 , r 0 ) xb T ′′-- xd xe H ;
(xd, yb) = app-Var-NF 0 (lift-NF 0 H);
(xa, ya) =

H2 T ′′-- (Ts-- V xc) xd xb (Ts-- V xc) xa 0 yb ya;
(x, y) =

H2a T ′′-- (Ts-- V xc) (dB.Var 0 °° map (λt. lift t 0 ) x)
xb xc xa 0 (y 0 ) ya

in (x, y)
| Right ⇒

let (x, y) =
let (x, y) =

norm-list (λt. t) xd xb xe ts Us-- (λx H . H) H
(listall-conj2-P-Q ts (λz. (xaa z, r z)))

in (x, λx. y x)
in case nat-le-dec xe xa of

Left ⇒ (dB.Var (xa − Suc 0 ) °° x, y (xa − Suc 0 ))
| Right ⇒ (dB.Var xa °° x, y xa)))

(λt x r xa xaa xb xc H .
abs-typeE-P xaa
(λU V . let (x, y) =

let (x, y) = r (λa. (xa〈0 :U〉) a) V (lift xb 0 ) (Suc xc) (lift-NF 0 H)
in (dB.Abs x, NFT .Abs x y)

in (x, y)))
H (λa. xaa a) xb xc xd)

x xa xd xe xb H Ha

Figure 1: Program extracted from subst-type-NF
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subst-Var-NF ≡
λx xa H .

compat-NFT .rec-split-NFT default
(λts x xa r xb xc.

case nat-eq-dec x xc of
Left ⇒ NFT .App (map (λt. t[dB.Var xb/xc]) ts) xb

(subst-terms-NF ts xb xc (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z))))

| Right ⇒
case nat-le-dec xc x of
Left ⇒ NFT .App (map (λt. t[dB.Var xb/xc]) ts) (x − Suc 0 )

(subst-terms-NF ts xb xc (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z))))

| Right ⇒
NFT .App (map (λt. t[dB.Var xb/xc]) ts) x
(subst-terms-NF ts xb xc (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z)))))

(λt x r xa xaa. NFT .Abs (t[dB.Var (Suc xa)/Suc xaa]) (r (Suc xa) (Suc xaa))) H x xa

app-Var-NF ≡
λx. compat-NFT .rec-split-NFT default

(λts xa xaa r .
(dB.Var xa °° (ts @ [dB.Var x]),
NFT .App (ts @ [dB.Var x]) xa
(snd (listall-app-P ts)
(listall-conj1-P-Q ts (λz. (xaa z, r z)),
listall-cons-P (Var-NF x) listall-nil-eq-P))))

(λt xa r . let (xb, y) = r in (t[dB.Var x/0 ], subst-Var-NF x 0 xa))

lift-NF ≡
λx H . compat-NFT .rec-split-NFT default

(λts x xa r xb.
case nat-le-dec x xb of
Left ⇒ NFT .App (map (λt. lift t xb) ts) x

(lift-terms-NF ts xb (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z))))

| Right ⇒
NFT .App (map (λt. lift t xb) ts) (Suc x)
(lift-terms-NF ts xb (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z)))))

(λt x r xa. NFT .Abs (lift t (Suc xa)) (r (Suc xa))) H x

type-NF ≡
λH . rec-rtypingT (λe x T . (dB.Var x, Var-NF x))

(λe T t U x r . let (x, y) = r in (dB.Abs x, NFT .Abs x y))
(λe s T U t x xa r ra.

let (x, y) = r ; (xa, ya) = ra;
(x, y) =

let (x, y) =
subst-type-NF (dB.Var 0 ° lift xa 0 ) e 0 (T ⇒ U) U x
(NFT .App [lift xa 0 ] 0 (listall-cons-P (lift-NF 0 ya) listall-nil-P)) y

in (x, y)
in (x, y))

H

Figure 2: Program extracted from lemmas and main theorem
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forms substitution and normalization, is shown in Figure 1. The correctness
theorem corresponding to the program subst-type-NF is∧

x. NFR x t =⇒
e〈i:U 〉 ` t : T =⇒
(
∧

xa. NFR xa u =⇒
e ` u : U =⇒
t[u/i] →β

∗ fst (subst-type-NF t e i U T u x xa) ∧
NFR (snd (subst-type-NF t e i U T u x xa)) (fst (subst-type-NF t e i U

T u x xa)))

where NFR is the realizability predicate corresponding to the datatype NFT,
which is inductively defined by the rules
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∀ i<length ts. NFR (nfs i) (ts ! i) =⇒ NFR (NFT .App ts x nfs) (dB.Var x °° ts)
NFR nf t =⇒ NFR (NFT .Abs t nf ) (dB.Abs t)

The programs corresponding to the main theorem type-NF, as well as to
some lemmas, are shown in Figure 2. The correctness statement for the
main function type-NF is∧

x. rtypingR x e t T =⇒ t →β
∗ fst (type-NF x) ∧ NFR (snd (type-NF x)) (fst

(type-NF x))

where the realizability predicate rtypingR corresponding to the computa-
tionally relevant version of the typing judgement is inductively defined by
the rules

e x = T =⇒ rtypingR (rtypingT .Var e x T ) e (dB.Var x) T
rtypingR ty (e〈0 :T 〉) t U =⇒ rtypingR (rtypingT .Abs e T t U ty) e (dB.Abs t) (T
⇒ U )
rtypingR ty e s (T ⇒ U ) =⇒
rtypingR ty ′ e t T =⇒ rtypingR (rtypingT .App e s T U t ty ty ′) e (s ° t) U

13.3 Generating executable code
instantiation NFT :: default
begin

definition default = Dummy ()

instance ..

end

instantiation dB :: default
begin

definition default = dB.Var 0

instance ..

end

instantiation prod :: (default, default) default
begin

definition default = (default, default)

instance ..

end
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instantiation list :: (type) default
begin

definition default = []

instance ..

end

instantiation fun :: (type, default) default
begin

definition default = (λx. default)

instance ..

end

definition int-of-nat :: nat ⇒ int where
int-of-nat = of-nat

The following functions convert between Isabelle’s built-in term datatype
and the generated dB datatype. This allows to generate example terms
using Isabelle’s parser and inspect normalized terms using Isabelle’s pretty
printer.
ML ‹
val nat-of-integer = @{code nat} o @{code int-of-integer};

fun dBtype-of-typ (Type (fun, [T , U ])) =
@{code Fun} (dBtype-of-typ T , dBtype-of-typ U )

| dBtype-of-typ (TFree (s, -)) = (case raw-explode s of
[ ′, a] => @{code Atom} (nat-of-integer (ord a − 97 ))

| - => error dBtype-of-typ: variable name)
| dBtype-of-typ - = error dBtype-of-typ: bad type;

fun dB-of-term (Bound i) = @{code dB.Var} (nat-of-integer i)
| dB-of-term (t $ u) = @{code dB.App} (dB-of-term t, dB-of-term u)
| dB-of-term (Abs (-, -, t)) = @{code dB.Abs} (dB-of-term t)
| dB-of-term - = error dB-of-term: bad term;

fun term-of-dB Ts (Type (fun, [T , U ])) (@{code dB.Abs} dBt) =
Abs (x, T , term-of-dB (T :: Ts) U dBt)

| term-of-dB Ts - dBt = term-of-dB ′ Ts dBt
and term-of-dB ′ Ts (@{code dB.Var} n) = Bound (@{code integer-of-nat} n)
| term-of-dB ′ Ts (@{code dB.App} (dBt, dBu)) =

let val t = term-of-dB ′ Ts dBt
in case fastype-of1 (Ts, t) of

Type (fun, [T , -]) => t $ term-of-dB Ts T dBu
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| - => error term-of-dB: function type expected
end

| term-of-dB ′ - - = error term-of-dB: term not in normal form;

fun typing-of-term Ts e (Bound i) =
@{code Var} (e, nat-of-integer i, dBtype-of-typ (nth Ts i))

| typing-of-term Ts e (t $ u) = (case fastype-of1 (Ts, t) of
Type (fun, [T , U ]) => @{code App} (e, dB-of-term t,

dBtype-of-typ T , dBtype-of-typ U , dB-of-term u,
typing-of-term Ts e t, typing-of-term Ts e u)

| - => error typing-of-term: function type expected)
| typing-of-term Ts e (Abs (-, T , t)) =

let val dBT = dBtype-of-typ T
in @{code Abs} (e, dBT , dB-of-term t,

dBtype-of-typ (fastype-of1 (T :: Ts, t)),
typing-of-term (T :: Ts) (@{code shift} e @{code 0 ::nat} dBT ) t)

end
| typing-of-term - - - = error typing-of-term: bad term;

fun dummyf - = error dummy;

val ct1 = @{cterm %f . ((%f x. f (f (f x))) ((%f x. f (f (f (f x)))) f ))};
val (dB1 , -) = @{code type-NF} (typing-of-term [] dummyf (Thm.term-of ct1 ));
val ct1 ′ = Thm.cterm-of @{context} (term-of-dB [] (Thm.typ-of-cterm ct1 ) dB1 );

val ct2 = @{cterm %f x. (%x. f x x) ((%x. f x x) ((%x. f x x) ((%x. f x x) ((%x. f
x x) ((%x. f x x) x)))))};
val (dB2 , -) = @{code type-NF} (typing-of-term [] dummyf (Thm.term-of ct2 ));
val ct2 ′ = Thm.cterm-of @{context} (term-of-dB [] (Thm.typ-of-cterm ct2 ) dB2 );
›

end
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