Fundamental Properties of Lambda-calculus

Tobias Nipkow
Stefan Berghofer

January 18, 2026

Contents

1 Basic definitions of Lambda-calculus
1.1 Lambda-terms in de Bruijn notation and substitution
1.2 Beta-reduction o
1.3 Congruenceruleso
1.4 Substitution-lemmas
1.5 Equivalence proof for optimized substitution.
1.6 Preservation theorems

2 Abstract commutation and confluence notions
2.1 Basic definitionso o
2.2 Basiclemmas
2.3 Church-Rosser
2.4 Newman’slemma

3 Parallel reduction and a complete developments
3.1 Parallel reduction
3.2 Inclusions
3.3 Misc properties of par-beta
3.4 Confluence (directly)
3.5 Complete developments
3.6 Confluence (via complete developments)

4 Eta-reduction
4.1 Definition of eta-reduction and relatives
4.2 Properties of eta, subst and free
4.3 Confluenceof eta
4.4 Congruence rules for eta™
4.5 Commutation of beta and eta
4.6 Implicit definition of eta
4.7 Eta-postponement theorem

10
10

13
13
13
14
14
14
14

5 Application of a term to a list of terms 22

6 Simply-typed lambda terms 25
6.1 Environments L o 25
6.2 Types and typingrules. 26
6.3 Someexamples 26
6.4 Listsoftypes 26
6.5 n-ary function types 28
6.6 Lifting preserves well-typedness 30
6.7 Substitution lemmaso 30
6.8 Subject reduction 30
6.9 Alternative induction rule for types 31
7 Lifting an order to lists of elements 31
8 Lifting beta-reduction to lists 34
9 Inductive characterization of terminating lambda terms 35
9.1 Terminating lambda terms 35
9.2 Every term in IT terminates 36
9.3 Every terminating term isin IT 36
10 Strong normalization for simply-typed lambda calculus 37
10.1 Properties of IT 37
10.2 Well-typed substitution preserves termination 39
10.3 Well-typed terms are strongly normalizing 42

11 Inductive characterization of lambda terms in normal form 43

11.1 Terms in normal form 43
11.2 Properties of NF 45
12 Standardization 48
12.1 Standard reduction relation 48
12.2 Leftmost reduction and weakly normalizing terms 52
13 Weak normalization for simply-typed lambda calculus 55
13.1 Main theorems 55
13.2 Extracting the program 60
13.3 Generating executable code 64

[TOCE

| Commutation | | Lambda | | ListOrder | | [HOL-Library]

| ParRed | | ListApplication |

| Eta | | LambdaType | | ListBeta |

| InductTermi | | NormalForm |

| StrongNorm | | WeakNorm | | Standardization

1 Basic definitions of Lambda-calculus

theory Lambda
imports Main
begin

declare [[syntaz-ambiguity-warning = false]]

1.1 Lambda-terms in de Bruijn notation and substitution

datatype dB =
Var nat
| App dB dB (infixl <°» 200)
| Abs dB

primrec
lift :: [dB, nat] => dB
where
lift (Var i) k = (if i < k then Var i else Var (i + 1))
| lift (s°t) k=1Uliftsk°lfttk
| lift (Abs s) k = Abs (lift s (k + 1))

primrec
subst :: [dB, dB, nat] => dB (s-[-'/-]> [800, 0, 0] 300)
where
subst-Var: (Var i)[s/k] =
(if k < ithen Var (i — 1) else if i = k then s else Var i)
| subst-App: (t ° u)[s/k] = t[s/k] ° u[s/k]
| subst-Abs: (Abs t)[s/k] = Abs (t[lift s 0 | k+1])

declare subst-Var [simp del]

Optimized versions of subst and lift.

primrec
liftn :: [nat, dB, nat] => dB
where
liftn n (Var i) k = (if ¢ < k then Var i else Var (i + n))
| liftnn (s°t) k=liftnnsk°liftnntk
| liftn n (Abs s) k = Abs (liftn n s (k + 1))

primrec
substn :: [dB, dB, nat] => dB
where
substn (Var i) s k =
(if k < ithen Var (i — 1) else if i = k then liftn k s 0 else Var)
| substn (t ° u) s k = substn t s k ° substn u s k
| substn (Abs t) s k = Abs (substn t s (k + 1))

1.2 Beta-reduction

inductive beta :: [dB, dB] => bool (infixl <—g> 50)
where
beta [simp, introl]: Abs s ° t —g s[t/0]
| appL [simp, introl]: s gt = s°u —g t°u
| appR [simp, introl]: s 5t = u°s =g u’t
| abs [simp, introl]: s —g t => Abs s —3 Abs t

abbreviation
beta-reds :: [dB, dB] => bool (infixl <—3* 50) where
s =% t == beta™ st

inductive-cases beta-cases [elim!]:
Var i —g t
Abs r —g s
5°t—gu

declare if-not-P [simp] not-less-eq [simp]
— don’t add r-into-rtranclintro!]

1.3 Congruence rules

lemma rtrancl-beta-Abs [introl]:
s —p* s’ = Abs s =" Abs s’
by (induct set: rtranclp) (blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-beta-AppL:
s—p* s = s°t—op" st
by (induct set: rtranclp) (blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-beta-AppR:
t =gt = s°t =" s°t
by (induct set: rtranclp) (blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-beta-App [intro]:
[s =p* sit =»p* t] = s°t —=p"s'°t
by (blast intro: rtrancl-beta-AppL rtrancl-beta-AppR intro: rtranclp-trans)

1.4 Substitution-lemmas
lemma subst-eq [simpl: (Var k)[u/k] = u
by (simp add: subst-Var)

lemma subst-gt [simp]: i < j = (Var j)[u/i] = Var (j — 1)
by (simp add: subst-Var)

lemma subst-lt [simp]: § < i = (Var j)[u/i] = Varj
by (simp add: subst-Var)

lemma [lift-lift:
i< k+ 1= Ulft (liftti) (Suck)=1lft (Lifttk)q
by (induct t arbitrary: i k) auto

lemma lift-subst [simp]:
j<i+ 1= Uft(t[s/j]) i = (lftt i+ 1)) [lift si/ j]
by (induct t arbitrary: i j s)
(simp-all add: diff-Suc subst-Var lift-lift split: nat.split)

lemma [lift-subst-lt:
i <j+ 1= Uft (t[s/f]) i = (lLift t i) [lift si /) j+ 1]
by (induct t arbitrary: i j s) (simp-all add: subst-Var lift-lift)

lemma subst-lift [simp):
(Lift t k)[s/k] =t
by (induct t arbitrary: k s) simp-all

lemma subst-subst:
i <j+ 1= tllift vi/ Sucjllulv/j/i] = tlu/i][v/]]
by (induct t arbitrary: i j u v)
(simp-all add: diff-Suc subst-Var lift-lift [symmetric] lift-subst-lt
split: nat.split)

1.5 Equivalence proof for optimized substitution

lemma liftn-0 [simp)]: liftn 0t k = ¢
by (induct t arbitrary: k) (simp-all add: subst-Var)

lemma liftn-lift [simp]: liftn (Suc n) t k = lift (liftn n t k) k
by (induct t arbitrary: k) (simp-all add: subst-Var)

lemma substn-subst-n [simp]: substn t s n = tlliftn n s 0 / n]
by (induct t arbitrary: n) (simp-all add: subst-Var)

theorem substn-subst-0: substn t s 0 = t[s/0]
by simp

1.6 Preservation theorems

Not used in Church-Rosser proof, but in Strong Normalization.

theorem subst-preserves-beta [simpl:
r—g s = r[t/i] —p s[t/q]
by (induct arbitrary: t i set: beta) (simp-all add: subst-subst [symmetric])

theorem subst-preserves-beta” r —g* s = r[t/i] —5* s[t/1]
proof (induct set: rtranclp)

case base

then show ?case

by (iprover intro: rtrancl-refl)
next
case (step y 2)
then show ?Zcase
by (iprover intro: rtranclp.simps subst-preserves-beta)
qed

theorem lift-preserves-beta [simp):
r—gs=lift ri =g liftsi
by (induct arbitrary: i set: beta) auto

theorem lift-preserves-beta”: r —g* s = lift r i —g* lift s i
proof (induct set: rtranclp)
case base
then show ?case
by (iprover intro: rtrancl-refl)
next
case (step y 2)
then show ?case
by (iprover intro: lift-preserves-beta rtranclp.simps)
qed

theorem subst-preserves-beta?2 [simp|: v —g s = t[r/i] —3* t[s/{]
proof (induct t arbitrary: r s ©)
case (Var z)
then show ?Zcase
by (simp add: subst-Var r-into-rtranclp)
next
case (App t1 t2)
then show ?case
by (simp add: rtrancl-beta-App)
next
case (Abs t)
then show ?case by (simp add: rtrancl-beta-Abs)
qed

theorem subst-preserves-beta2”: r —5* s = t[r/i] —5* t[s/1]
proof (induct set: rtranclp)

case base

then show Zcase by (iprover intro: rtrancl-refl)
next

case (step y 2)

then show ?case

by (iprover intro: rtranclp-trans subst-preserves-beta?2)

qed

end

2 Abstract commutation and confluence notions

theory Commutation
imports Main
begin

declare [[syntaz-ambiguity-warning = false]]

2.1 Basic definitions

definition
square :: ['a => 'a => bool, 'a => 'a => bool, 'a => 'a => bool, 'a => 'a =>
bool] => bool where
square RS T U =
Vzy. Rry——> W z.Szz——>Fu TyuA Uzu)))

definition
commute :: ['a => 'a => bool, 'a => 'a => bool] => bool where
commute R S = square R S S R

definition
diamond :: (‘a => 'a => bool) => bool where
diamond R = commute R R

definition
Church-Rosser :: ('a => 'a => bool) => bool where
Church-Rosser R =
(Vzy (sup R (RTPH)* 2y — (2. R** 22 A R*™* y 2))

abbreviation
confluent :: (‘a => 'a => bool) => bool where
confluent R == diamond (R**)

2.2 Basic lemmas

square

lemma square-sym: square R S T U ==> square SR U T
apply (unfold square-def)
apply blast
done

lemma square-subset:
[| square RS T U; T < T'|] ==> square RS T' U
apply (unfold square-def)
apply (blast dest: predicate2D)
done

lemma square-reficl:
[| square R ST (R==); S < T || ==> square (R==) S T (R=7)

apply (unfold square-def)
apply (blast dest: predicate2D)
done

lemma square-rtrancl:
square R S S T ==> square (R**) S S (T**)
apply (unfold square-def)
apply (intro strip)
apply (erule rtranclp-induct)
apply blast
apply (blast intro: rtranclp.rtrancl-into-rtrancl)
done

lemma square-rtrancl-reficl-commute:
square R S (§**) (R==) ==> commute (R**) (S**)
apply (unfold commute-def)
apply (fastforce dest: square-reflcl square-sym [THEN square-rtrancl])
done

commaute

lemma commute-sym: commute R S ==> commute S R
apply (unfold commute-def)
apply (blast intro: square-sym)
done

lemma commute-rtrancl: commute R S ==> commute (R**) (5**)
apply (unfold commute-def)
apply (blast intro: square-rtrancl square-sym)
done

lemma commute-Un:
[| commute R T; commute S T || ==> commute (sup R S) T
apply (unfold commute-def square-def)
apply blast
done

diamond, confluence, and union

lemma diamond-Un:
[| diamond R; diamond S; commute R S || ==> diamond (sup R S)
apply (unfold diamond-def)
apply (blast intro: commute-Un commute-sym)
done

lemma diamond-confluent: diamond R ==> confluent R
apply (unfold diamond-def)
apply (erule commute-rtrancl)
done

lemma square-reficl-confluent:
square R R (R==) (R==) ==> confluent R
apply (unfold diamond-def)
apply (fast intro: square-rtrancl-reflcl-commute elim: square-subset)
done

lemma confluent-Un:
[| confluent R; confluent S; commute (R**) (S**) || ==> confluent (sup R S)
apply (rule rtranclp-sup-rtranclp [THEN subst])
apply (blast dest: diamond-Un intro: diamond-confluent)
done

lemma diamond-to-confluence:
[| diamond R; T < R; R < T** || ==> confluent T
apply (force intro: diamond-confluent
dest: rtranclp-subset [symmetric])
done

2.3 Church-Rosser

lemma Church-Rosser-confluent: Church-Rosser R = confluent R
apply (unfold square-def commute-def diamond-def Church-Rosser-def)
apply (tactic <safe-tac (put-claset HOL-cs context)))
apply (tactic «
blast-tac (put-claset HOL-cs context addls
[@{thm sup-ge2} RS Q@Q{thm rtranclp-mono} RS Q@{thm predicate2D} RS
@{thm rtranclp-trans},
@{thm rtranclp-conversel }, @{thm conversepl },
Q@Q{thm sup-gel} RS Q{thm rtranclp-mono} RS Q{thm predicate2D}]) 1)
apply (erule rtranclp-induct)
apply blast
apply (blast del: rtranclp.rtrancl-refl intro: rtranclp-trans)
done

2.4 Newman’s lemma

Proof by Stefan Berghofer

theorem newman:
assumes wf: wfP (R~171)
and lc: Aabc. Rab= Rac=
Jdd. R**bdANR™*cd
shows Abc. R** a b= R** a0 c =
Jd. R**bdANR*cd
using wf
proof induct
case (less z b ¢)
have zc: R** x ¢ by fact
have zb: R** z b by fact thus ?case
proof (rule converse-rtranclpE)

10

assume z = b

with zc have R** b ¢ by simp

thus ?thesis by iprover

next

fix y

assume zy: Rz y

assume yb: R** y b

from xzc show ?thesis

proof (rule converse-rtranclpE)
assume z = ¢
with zb have R** ¢ b by simp
thus ?thesis by iprover

next
fix y’
assume y'c: R** y' ¢
assume zy”" R x y’
with zy have Ju. R** y u A R** y’ u by (rule lc)
then obtain v where yu: R** y u and y’u: R** y’' u by iprover
from zy have R~!=! y z ..
from this and yb yu have 3d. R** b d A R** u d by (rule less)
then obtain v where bv: R** b v and wv: R** u v by iprover
from zy’ have R~171 4/ z ..
moreover from y'u and wv have R** y’ v by (rule rtranclp-trans)
moreover note y’c
ultimately have 3d. R** v d A R** ¢ d by (rule less)
then obtain w where vw: R** v w and cw: R** ¢ w by iprover
from bv vw have R** b w by (rule rtranclp-trans)
with cw show ?thesis by iprover

qed

qed
qed

Alternative version. Partly automated by Tobias Nipkow. Takes 2 minutes
(2002).

This is the maximal amount of automation possible using blast.

theorem newman’:
assumes wf: wfP (R~171)
and lc: Aabc. Rab=— Rac=
3d. R** bd AN R** cd
shows Abc. R** a b= R** 0 ¢c =
3d. R** bd AN R** cd
using wf
proof induct
case (less z b c)
note IH = <Ay bc. [R717 yz; R* y b; R** y (]
= 3d. R** bdANR"* cd
have zc: R** x ¢ by fact
have zb: R** = b by fact
thus ?Zcase

11

proof (rule converse-rtranclpFE)
assume z = b
with zc have R** b ¢ by simp
thus ?thesis by iprover
next
fix y
assume zy: Rz y
assume yb: R** y b
from xzc show ?thesis
proof (rule converse-rtranclpE)
assume = ¢
with zb have R** ¢ b by simp
thus ?thesis by iprover
next
fix y’
assume y’c: R** y' ¢
assume zy” Rz y’
with zy obtain u where u: R** y u R** y' u
by (blast dest: lc)
from yb u y'c show ?thesis
by (blast del: rtranclp.rtrancl-refl
intro: rtranclp-trans
dest: IH [OF conversepl, OF zy| IH [OF conversepl, OF zy'])
qed
qed
qed

Using the coherent logic prover, the proof of the induction step is completely
automatic.

lemma eg-imp-rtranclp: x = y = r** z y
by simp

theorem newman'”:
assumes wf: wfP (R~171)
and lc: N\abc. Rab= Rac=
Jd. R** bd ANR** cd
shows Abec. R** a b = R*™ a ¢c =
dd. R** bd AR cd
using wf
proof induct
case (less z b c)
note IH = <Ay bc. [R717 yz; R** y b; R** y (]
= 3d. R*™* bdANR"* cd
show ?Zcase
by (coherent
(R** z ¢ «(R** b
refl [where ‘a='a] sym
eq-imp-rtranclp
r-into-rtranclp [of R]

12

rtranclp-trans

le IH [OF conversepl]

converse-rtranclpE)
qed

end

3 Parallel reduction and a complete developments

theory ParRed imports Lambda Commutation begin

3.1 Parallel reduction

inductive par-beta :: [dB, dB] => bool (infixl «(=>) 50)
where
var [simp, introl]: Var n => Var n
| abs [simp, introl]: s => t ==> Abs s => Abs ¢
| app [simp, introl]: [| s => sy t =>t' || ==> st =>s"°t’
| beta [simp, introl]: [| s => s/} t => t' || ==> (Abs s) ° t => s'[t'/0]

inductive-cases par-beta-cases [elim!]:
Var n =>t
Abs s => Abs t
(Abs s) °t =>u
s°t=>u
Abs s =>t

3.2 Inclusions

beta C par-beta C beta™*

lemma par-beta-varL [simp]:
(Var n =>t) = (t = Var n)
by blast

lemma par-beta-refl [simp]: t => ¢
by (induct t) simp-all

lemma beta-subset-par-beta: beta <= par-beta
apply (rule predicate2l)
apply (erule beta.induct)
apply (blast intro!: par-beta-refl)+
done

lemma par-beta-subset-beta: par-beta < beta™*
apply (rule predicate2l)
apply (erule par-beta.induct)
apply blast
apply (blast del: rtranclp.rtrancl-refl intro: rtranclp.rtrancl-into-rtrancl)+

13

— rtrancl-refl complicates the proof by increasing the branching factor
done

3.3 Misc properties of par-beta

lemma par-beta-lift [simp):
t=>t'= lifttn=>1lftt'n
by (induct t arbitrary: t' n) fastforce+

lemma par-beta-subst:
s=>s' =t =>t'= t[s/n] => t'[s'/n]
apply (induct t arbitrary: s s’ t' n)
apply (simp add: subst-Var)
apply (erule par-beta-cases)
apply simp
apply (simp add: subst-subst [symmetric])
apply (fastforce introl: par-beta-lift)
apply fastforce
done

3.4 Confluence (directly)

lemma diamond-par-beta: diamond par-beta
apply (unfold diamond-def commute-def square-def)
apply (rule impI [THEN alll [THEN alll]])
apply (erule par-beta.induct)
apply (blast introl: par-beta-subst)+
done

3.5 Complete developments

fun
cd :: dB => dB
where
ed (Var n) = Varn
| ecd (Varn©°t)=Varn®cdt
| cd ((s1°s2)°t)=cd(sl°s2)°cdt
| cd (Abs u° t) = (cd u)cd t/0]
| cd (Abs s) = Abs (cd s)

A~ N S

lemma par-beta-cd: s => t = t => cd s
apply (induct s arbitrary: t rule: cd.induct)
apply auto
apply (fast intro!: par-beta-subst)
done

3.6 Confluence (via complete developments)

lemma diamond-par-beta2: diamond par-beta
unfolding diamond-def commute-def square-def

14

by (blast intro: par-beta-cd)

theorem beta-confluent: confluent beta
by (rule diamond-par-beta?2 diamond-to-confluence
par-beta-subset-beta beta-subset-par-beta)-+

end

4 Eta-reduction

theory Fta imports ParRed begin

4.1 Definition of eta-reduction and relatives

primrec
free :: dB => nat => bool
where
free (Var j) i = (j = i)
| free (s ° t) i = (free s i V free t 1)
| free (Abs s) i = free s (i + 1)

inductive
eta :: [dB, dB] => bool (infixl <—,» 50)
where
eta [simp, intro]: - free s 0 ==> Abs (s ° Var 0) —, s[dummy/0]
| appL [simp, intro]: s =, t ==>s°u =, t°u
| appR [simp, intro]: s =, t ==>u°s =, u°t
| abs [simp, intro): s —, t ==> Abs s —, Abst

abbreviation
eta-reds :: [dB, dB] => bool (infixl «(—,*> 50) where
s =" t==cta"" st

abbreviation
eta-red0 :: [dB, dB] => bool (infixl <—,~) 50) where
§—p- t==c¢la™" st

inductive-cases eta-cases [elim!]:
Abs s =y 2
§°t—=pu
Var i —, t

4.2 Properties of eta, subst and free

lemma subst-not-free [simpl: = free s i = s[t/i] = s[u/1]
by (induct s arbitrary: i t u) (simp-all add: subst-Var)

lemma free-lift [simp]:
free (lift tk)i= (i <kANfreetiVk<iAfreet(i—1))

15

apply (induct t arbitrary: i k)
apply (auto cong: conj-cong)
done

lemma free-subst [simp]:
free (s[t/k]) i =
(free s k A free t i V free s (if i < k then i else i + 1))

apply (induct s arbitrary: i k t)

prefer 2

apply simp

apply blast

prefer 2

apply simp
apply (simp add: diff-Suc subst-Var split: nat.split)
done

lemma free-eta: s —, t ==> free t i = free s i
by (induct arbitrary: i set: eta) (simp-all cong: conj-cong)

lemma not-free-eta:
[| s =yt freesi|] ==> - freeti
by (simp add: free-eta)

lemma eta-subst [simp]:
§ =y t ==> s[u/i] —, tlu/i]
by (induct arbitrary: u i set: eta) (simp-all add: subst-subst [symmetric])

theorem lift-subst-dummy: — free s { = lift (s|dummy/i]) i = s
by (induct s arbitrary: i dummy) simp-all

4.3 Confluence of eta

lemma square-eta: square eta eta (eta==) (eta™")
apply (unfold square-def id-def)
apply (rule impl [THEN alll [THEN alll]])
apply (erule eta.induct)
apply (slowsimp intro: subst-not-free eta-subst free-eta [THEN iffD1])
apply safe
prefer 5
apply (blast intro!: eta-subst intro: free-eta [THEN iffD1])
apply blast+
done

theorem eta-confluent: confluent eta
apply (rule square-eta [THEN square-reficl-confluent])
done

4.4 Congruence rules for eta*

lemma rtrancl-eta-Abs: s —,* s’ ==> Abs s —,* Abs s’

16

by (induct set: rtranclp)
(blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-eta-AppL: s —," s' ==>s°t —,* s’ ° 1
by (induct set: rtranclp)
(blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-eta-AppR: t —,* t' ==>s°t =, s ° t’
by (induct set: rtranclp) (blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-eta-App:
| s = s/t =" t|]==>s°t—=,"s"°t
by (blast introl: rtrancl-eta-AppL rtrancl-eta-AppR intro: rtranclp-trans)

4.5 Commutation of beta and eta

lemma free-beta:
s =gt ==> freet i = free s i
by (induct arbitrary: i set: beta) auto

lemma beta-subst [intro]: s =5 t ==> s[u/i] =3 t{u/1]
by (induct arbitrary: u i set: beta) (simp-all add: subst-subst [symmetric])

lemma subst-Var-Suc [simp]: t[Var i/i] = t[Var(i)/i + 1]
by (induct t arbitrary: ©) (auto elim!: linorder-neqE simp: subst-Var)

lemma eta-lift [simp|: s =, t ==> lift s i —, lift t i
by (induct arbitrary: i set: eta) simp-all

lemma rtrancl-eta-subst: s —, t = u[s/i| —,* u[t/1i]
apply (induct u arbitrary: s t i)
apply (simp-all add: subst-Var)
apply blast
apply (blast intro: rtrancl-eta-App)
apply (blast intro!: rtrancl-eta-Abs eta-lift)
done

lemma rtrancl-eta-subst”:
fixes st :: dB
assumes eta: § —,* 1t
shows s[u/i] —,* t[u/i] using eta
by induct (iprover intro: eta-subst)+

lemma rtrancl-eta-subst’”:
fixes st :: dB
assumes eta: § —,* 1t
shows u[s/i] —,* u[t/i] using eta
by induct (iprover intro: rtrancl-eta-subst rtranclp-trans)+

17

lemma square-beta-eta: square beta eta (eta™) (beta==)

apply (unfold square-def)

apply (rule impI [THEN alll [THEN alll)])

apply (erule beta.induct)
apply (slowsimp intro: rtrancl-eta-subst eta-subst)
apply (blast intro: rtrancl-eta-AppL)

apply (blast intro: rtrancl-eta-AppR)

apply simp

apply (slowsimp intro: rtrancl-eta-Abs free-beta
iff del: dB.distinct simp: dB.distinct)

done

lemma confluent-beta-eta: confluent (sup beta eta)
apply (assumption |
rule square-rtrancl-reficl-commute confluent-Un
beta-confluent eta-confluent square-beta-eta)+
done

4.6 Implicit definition of eta
Abs (lift s 0 ° Var 0) —y s

lemma not-free-iff-lifted:
(= free s i) = (3t. s = lift t ©)
apply (induct s arbitrary: ©)
apply simp
apply (rule iffT)
apply (erule linorder-neqE)
apply (rename-tac nat a, rule-tac x = Var nat in ezl)
apply simp
apply (rename-tac nat a, rule-tac x = Var (nat — 1) in exl)
apply simp
apply clarify
apply (rule notE)
prefer 2
apply assumption
apply (erule thin-rl)
apply (case-tac t)
apply simp
apply simp
apply simp
apply simp
apply (erule thin-rl)
apply (erule thin-rl)
apply (rule iffI)
apply (elim conjE exFE)
apply (rename-tac ul u2)
apply (rule-tac z = ul ° u2 in exl)
apply simp
apply (erule exFE)

18

apply (erule rev-mp)
apply (case-tac t)
apply simp
apply simp
apply blast
apply simp
apply simp
apply (erule thin-rl)
apply (rule iffT)
apply (erule exE)
apply (rule-tac x = Abs t in exl)
apply simp
apply (erule exFE)
apply (erule rev-mp)
apply (case-tac t)
apply simp
apply simp
apply simp
apply blast
done

theorem ezplicit-is-implicit:
(Vs u. (= free s 0) ——> R (Abs (s ° Var 0)) (s[u/0])) =
(Vs. R (Abs (lift s 0 ° Var 0)) s)
by (auto simp add: not-free-iff-lifted)

4.7 Eta-postponement theorem

Based on a paper proof due to Andreas Abel. Unlike the proof by Masako
Takahashi [4], it does not use parallel eta reduction, which only seems to
complicate matters unnecessarily.

theorem eta-case:
fixes s :: dB
assumes free: = free s 0
and s: s[dummy/0] => u
shows 3t Abs (s ® Var 0) =>t' At/ —=," u
proof —
from s have lift (s[dummy/0]) 0 => lift u 0 by (simp del: lift-subst)
with free have s => lift u 0 by (simp add: lift-subst-dummy del: lift-subst)
hence Abs (s ° Var 0) => Abs (lift w 0 ° Var 0) by simp
moreover have — free (lift w 0) 0 by simp
hence Abs (lift w 0 ° Var 0) —, lift v 0[dummy/ 0]
by (rule eta.eta)
hence Abs (lift uw 0 ° Var 0) —,* u by simp
ultimately show “thesis by iprover
qed

theorem eta-par-beta:
assumes st: s —, ¢

19

and tu: t => u
shows 3t". s => t' A t' —,* u using tu st
proof (induct arbitrary: s)
case (var n)
thus ?case by (iprover intro: par-beta-refl)
next
case (abs s’ t)
note abs’ = this
from «s —, Abs s’» show ?case
proof cases
case (eta s" dummy)
from abs have Abs s’ => Abs t by simp
with eta have s'[dummy/0] => Abs t by simp
with <= free s’ 0> have 3t". Abs (s” ° Var 0) => t' AN t' —,* Abs t
by (rule eta-case)
with eta show ?thesis by simp
next
case (abs)
from «r —, s"
obtain t’ where r: r => t’ and t": t' —,* t by (iprover dest: abs’)
from r have Abs r => Abs t’ ..
moreover from ¢’ have Abs t' —,* Abs t by (rule rtrancl-eta-Abs)
ultimately show ?thesis using abs by simp iprover
qed
next
case (app v u'tt’)
from ¢s —, u ° t» show Zcase
proof cases
case (eta s’ dummy)
from app have u ° t => u by simp
with eta have s'[dummy/0] => u'° t' by simp
with (- free s’ 0> have 3r. Abs (s’ ° Var 0) =>r A1 =" u'°t’
by (rule eta-case)
with eta show ?thesis by simp
next
case (applL s’)
from «s" —, w
obtain r where s s’ => r and r: r —,* u’ by (iprover dest: app)
from s’ and app have s’ ° ¢t => r ° t' by simp
moreover from r have r ° t' —,* v’ ° t’ by (simp add: rtrancl-eta-AppL)
ultimately show ?thesis using appL by simp iprover
next
case (appR s')
from s’ —, ©
obtain r where s s’ => r and r: r —,* t’' by (iprover dest: app)
from s’ and app have u ° s’ => u’° r by simp
moreover from r have v’ ° r —,* u'° t' by (simp add: rtrancl-eta-AppR)
ultimately show #thesis using appR by simp iprover
qed

lotl

20

next
case (beta u u’ t t')
from «s —, Abs u ° ¢» show ?case
proof cases
case (eta s’ dummy)
from beta have Abs u ° t => u'[t’/0] by simp
with eta have s'[dummy/0] => u'[t’/0] by simp
with <= free s 0> have 3r. Abs (s’ ° Var 0) => r A r —,* u/[t"/0]
by (rule eta-case)
with eta show ?thesis by simp
next
case (appL s’)
from (s’ —, Abs u) show ?thesis
proof cases
case (eta 8" dummy)
have Abs (lift u 1) = lift (Abs u) 0 by simp
also from eta have ... = s by (simp add: lift-subst-dummy del: lift-subst)
finally have s: s = Abs (Abs (lift uw 1) ° Var 0) ° t using appL and eta by
stmp
from beta have lift u 1 => lift v’ 1 by simp
hence Abs (lift u 1) ° Var 0 => lift u’ 1[Var 0/0]
using par-beta.var ..
hence Abs (Abs (lift w 1) ° Var 0) ° t => lift w’ 1[Var 0/0][t'/0]
using <t => t’ ..
with s have s => /[t'/0] by simp
thus “thesis by iprover
next
case (abs r)
from r —, w
obtain r” where r: r => r’"and r'": r" —,* u' by (iprover dest: beta)
from r and beta have Abs r ° t => r’/[t'/0] by simp
moreover from r’ have r'[t'/0] —,* u'[t'/0]
by (rule rtrancl-eta-subst’)
ultimately show ?thesis using abs and appL by simp iprover
qed
next
case (appR s')
from s’ —, ©
obtain r where s s’ => r and r: r —,* t’ by (iprover dest: beta)
from s’ and beta have Abs u ° s’ => u'[r/0] by simp
moreover from r have u'[r/0] —,* u'[t"/0]
by (rule rtrancl-eta-subst’’)
ultimately show #thesis using appR by simp iprover
qed
qed

theorem eta-postponement”:

assumes eta: s —,* t and beta: t => u
shows 3t". s => t' At/ —,* u using eta beta

21

proof (induct arbitrary: u)
case base
thus ?case by blast
next
case (step s’ s" ')
then obtain ¢’ where s s’ => t"and t": ¢t' —,* s
by (auto dest: eta-par-beta)
from s’ obtain ¢’ where s: s => t'" and t": t"" —,* t’ using step
by blast
from t” and t’ have t”" —,* s"" by (rule rtranclp-trans)
with s show ?case by iprover
qed

1

theorem eta-postponement:

assumes (sup beta eta)*™ st

shows (beta** OO eta**) s t using assms
proof induct

case base
show ?case by blast
next

case (step s’ ")
from step(3) obtain ¢’ where s: s —g* t" and t": t' —,* s’ by blast
from step(2) show ?Zcase
proof
assume s’ —g s’
with beta-subset-par-beta have s’ => s’ ..
with ¢’ obtain ¢/ where st: t' => t" and tu: t'" —,* s
by (auto dest: eta-postponement’)
from par-beta-subset-beta st have t' —z* t' ..
with s have s —3* t" by (rule rtranclp-trans)
thus ?thesis using tu ..
next
assume s’ —, s’
with ¢’ have t' —,* s
with s show Zthesis ..
qed
qed

"

11
.o

end

5 Application of a term to a list of terms

theory ListApplication imports Lambda begin

abbreviation
list-application :: dB => dB list => dB (infixl <°°) 150) where
t °° ts == foldl (°) t ts

lemma apps-eq-tail-conv [iff]: (r °° ts = s °° ts) = (r = s)

22

by (induct ts rule: rev-induct) auto

lemma Var-eg-apps-conv [iff]: (Var m = s °° ss) = (Var m = s A ss = [])
by (induct ss arbitrary: s) auto

lemma Var-apps-eg- Var-apps-conv [iff]:
(Var m °° rs = Varn °° ss) = (m = n A rs = ss)
apply (induct rs arbitrary: ss rule: rev-induct)
apply simp
apply blast
apply (induct-tac ss rule: rev-induct)
apply auto
done

lemma App-eq-foldl-conv:
(r°s=1t°ts) =
(ifts=1 thenr°s=t
else (Iss. ts =ssQ [s] A7 =1°°ss))
apply (rule-tac s = ts in rev-ezhaust)
apply auto
done

lemma Abs-eq-apps-conv [iff]:
(Abs = 5°°ss) = (Absr = s A ss =[]
by (induct ss rule: rev-induct) auto

lemma apps-eq-Abs-conv [iff]: (s °° ss = Abs 1) = (s = Abs r A ss = [])
by (induct ss rule: rev-induct) auto

lemma Abs-apps-eq-Abs-apps-conv [iff]:
(Abs 1r °° rs = Abs s °° ss) = (r = s A 15 = 85)
apply (induct rs arbitrary: ss rule: rev-induct)
apply simp
apply blast
apply (induct-tac ss rule: rev-induct)
apply auto
done

lemma Abs-App-neg-Var-apps [iff]:
Abs s ° t # Var n °° ss
by (induct ss arbitrary: s t rule: rev-induct) auto

lemma Var-apps-neq-Abs-apps [iff]:
Var n °° ts # Abs r °° ss
apply (induct ss arbitrary: ts rule: rev-induct)
apply simp
apply (induct-tac ts rule: rev-induct)
apply auto
done

23

lemma ex-head-tail:
Jtsh.t=h°ts A((3n. h= Varn) VvV (3u. h = Abs u))
apply (induct t)
apply (rule-tac x =[] in exl)
apply simp
apply clarify
apply (rename-tac ts1 ts2 h1 h2)
apply (rule-tac x = ts1 @Q [h2 °° ts2] in exl)
apply simp
apply simp
done

lemma size-apps [simpl:
size (1 °° rs) = size r + foldl (+) 0 (map size rs) + length rs
by (induct rs rule: rev-induct) auto

lemma lem0: [| (0:nat) < k;m <=n|==>m<n+k
by simp

lemma lift-map [simp]:
Lift (¢ °° ts) ¢ = lift t @ °° map (At. lift t ©) ts
by (induct ts arbitrary: t) simp-all

lemma subst-map [simp):
subst (¢ °° ts) u i = subst t u i °° map (At. subst t u i) ts
by (induct ts arbitrary: t) simp-all

lemma app-last: (¢t °° ts) ° u =1 °° (ts Q [u])
by simp

A customized induction schema for °°.

lemma lem:
assumes !In ts. Vt € set ts. Pt ==> P (Var n °° ts)
and Nlu ts. [| Pu; Vit € set ts. Pt|] ==> P (Abs u °° ts)
shows sizet =n = Pt
apply (induct n arbitrary: t rule: nat-less-induct)
apply (cut-tac t = t in ex-head-tail)
apply clarify
apply (erule disjE)
apply clarify
apply (rule assms)
apply clarify
apply (erule allE, erule impE)
prefer 2
apply (erule allE, erule mp, rule refl)
apply simp
apply (simp only: foldl-conv-fold add.commute fold-plus-sum-list-rev)
apply (fastforce simp add: sum-list-map-removel)

24

apply clarify
apply (rule assms)
apply (erule allE, erule impE)
prefer 2
apply (erule allE, erule mp, rule refl)
apply simp
apply clarify
apply (erule allE, erule impFE)
prefer 2
apply (erule allE, erule mp, rule refl)
apply simp
apply (rule le-imp-less-Suc)
apply (rule trans-le-add1)
apply (rule trans-le-add?2)
apply (simp only: foldl-conv-fold add.commute fold-plus-sum-list-rev)
apply (simp add: member-le-sum-list)
done

Py

theorem Apps-dB-induct:
assumes !In ts. Vt € set ts. Pt ==> P (Var n °° ts)

and lu ts. [| Pu; Vit € set ts. Pt|] ==> P (Abs u °° ts)
shows Pt
apply (rule-tac t = t in lem)

prefer 3

apply (rule refl)
using assms apply iprover+
done

end

6 Simply-typed lambda terms
theory LambdaType imports ListApplication begin

6.1 Environments

definition
shift = (nat = 'a) = nat = ‘a = nat = ‘o («-(=-) [90, 0, 0] 91) where
e(iza) = (A\j. if j < i then e jelseif j = i then a else e (j — 1))

lemma shift-eq [simp]: i = j = (e(i:T)) j=T
by (simp add: shift-def)

lemma shift-gt [simp|: j < i = (e(i:T)) j=¢ej
by (simp add: shift-def)

lemma shift-lt [simp]: i < j = (e(¢:T)) j=¢€e(j — 1)
by (simp add: shift-def)

25

lemma shift-commute [simp]: e(i:U){(0:T) = e{0:T)(Suc i:U)
by (rule ext) (simp-all add: shift-def split: nat.split)

6.2 Types and typing rules

datatype type =
Atom nat
| Fun type type (infixr <= 200)

inductive typing :: (nat = type) = dB = type = bool («-F -: - [50, 50, 50]
50)
where
Var [introl]: enve = T = envk Varz: T
| Abs [introl]: env(0:T)F t: U = envt Abst: (T = U)
| App [introl]: envbk s: T = U= ekt t: T = envt (s°t): U

inductive-cases typing-elims [elim!]:

e Vari: T

eFt°u:T

etk Abst: T
primrec

typings = (nat = type) = dB list = type list = bool
where

typings e [| Ts = (Ts = [])
| typings e (t # ts) Ts =
(case Ts of
[| = False
| T# Ts= et t: T A typings e ts Ts)

abbreviation
typings-rel :: (nat = type) = dB list = type list = bool
(«- 1 -: - [50, 50, 50] 50) where
env = ts : Ts == typings env ts Ts

abbreviation
funs :: type list = type = type (infixr «(=» 200) where
Ts = T == foldr Fun Ts T

6.3 Some examples

schematic-goal e - Abs (Abs (Abs (Var 1 ° (Var 2 ° Var 1 ° Var 0)))) : ¢T
by force

schematic-goal e = Abs (Abs (Abs (Var 2 ° Var 0 ° (Var 1 ° Var 0)))) : ?T
by force

6.4 Lists of types

lemma lists-typings:

26

et ts: Ts = listsp (A\t. 3T. et ¢: T) ts
proof (induct ts arbitrary: Ts)
case Nil
then show ?case
by simp
next
case c: (Cons a ts)
show ?Zcase
proof (cases Ts)
case Nil
with ¢ show ?thesis
by simp
next
case (Cons T list)
with ¢ show %thesis by force
qged
qed

lemma types-snoc: eb-ts: Ts = eF t: T = el tsQ [t] : T5 Q [T
by (induct ts arbitrary: Ts) (auto split: list.split-asm)

lemma types-snoc-eq: e b= ts @ [¢] : Ts Q [T] =
(etts: Tsnekt:T)
proof (induct ts arbitrary: Ts)
case Nil
then show “case
by (auto split: list.split)
next
case (Cons a ts)
have = el ts @ [¢] : []
by (cases ts Q [t]; simp)
with Cons show ?Zcase
by (auto split: list.split)
qed

Cannot use rev-exhaust from the List theory, since it is not constructive

lemma rev-ezhaust? [extraction-expand):
obtains (Nil) xs =[] | (snoc) ys y where zs = ys Q [y]
proof —
have §: xs = rev ys = thesis for ys
by (cases ys) (simp-all add: local.Nil snoc)
show thesis
using § [of rev xs| by simp
qed

lemma types-snock:

assumes (e b ts @Q [t] : Ts»

obtains Us and U where «Ts = Us Q [U] et ts: Us» <e bt : U
proof (cases Ts rule: rev-exhaust?2)

27

case Nil
with assms show ?thesis
by (cases ts Q [t]) simp-all
next
case (snoc Us U)
with assms have e - ts @Q [t] : Us Q [U] by simp
then have et ts: Us et t: U by (simp-all add: types-snoc-eq)
with snoc show %thesis by (rule that)
qed

6.5 mn-ary function types

lemma list-app-typeD:
eFt®ts: T = 3dTs. e t: Ts= T Nelts: Ts
proof (induct ts arbitrary: t T)
case Nil
then show “case by auto
next
case (Consa bt T)
then show ?case
by (auto simp: split: list.split)
qed

lemma list-app-typekE:
eFtots: T= (NTs.ebt: Ts=>=T= ek ts: Ts= C) = C
using list-app-typeD by iprover

lemma list-app-typel:
ebt:Ts==T=—celtts: Ts= et ts: T
by (induct ts arbitrary: t Ts) (auto simp add: split: list.split-asm)

For the specific case where the head of the term is a variable, the following
theorems allow to infer the types of the arguments without analyzing the
typing derivation. This is crucial for program extraction.

theorem var-app-type-eq:
eFVari®ts: T = ek Vari®ts: U= T=0U
by (induct ts arbitrary: T U rule: rev-induct) auto

lemma var-app-types: et Var i °° ts*°us: T = el ts: Ts =
et Vari°®ts: U= 3Us. U=Us= T ANelus: Us
proof (induct us arbitrary: ts Ts U)
case Nil
then show ?Zcase
by (simp add: var-app-type-eq)
next
case (Cons a b ts Ts U)
then show ?case
apply atomize
apply (case-tac U)

28

apply (rule FalseE)
apply simp
apply (erule list-app-typeE)
apply (ind-cases et °u: T for t u T)
apply (rename-tac nat Ts' T')
apply (drule-tac T=Atom nat and U=T' = Ts' = T in var-app-type-eq)
apply assumption
apply simp
apply (rename-tac typel type2)
apply (erule-tac z=ts @ [a] in allE)
apply (erule-tac z=Ts Q [typel] in allE)
apply (erule-tac x=type2 in allE)
apply simp
apply (erule impFE)
apply (rule types-snoc)
apply assumption
apply (erule list-app-typeE)
apply (ind-cases et °u: T for t u T)
using var-app-type-eq apply fastforce
apply (erule impFE)
apply (rule typing. App)
apply assumption
apply (erule list-app-typeE)
apply (ind-cases et t°u: T for t u T)
using var-app-type-eq apply fastforce
apply (erule ezE)
apply (rule-tac z=typel # Us in exl)
apply simp
apply (erule list-app-typeE)
apply (ind-cases et °u: T for t u T)
using var-app-type-eq by fastforce
qed

lemma var-app-typeskE: e Var i °° ts: T —
(ANTs.e-Vari:Ts= T = el ts: Ts = P) = P
by (iprover intro: typing. Var dest: var-app-types [of - - [], simplified])

lemma abs-typek:
assumes e - Abst: T AU V. e(0:U)Ft: V= P
shows P
proof (cases T)
case (Atom x1)
with assms(1) show %thesis
apply—
apply (rule FalseE)
apply (erule typing.cases)
apply simp-all
done
next

29

case (Fun typel type2)

with assms show ?thesis
apply atomize
apply (erule-tac z=typel in allE)
apply (erule-tac z=type2 in allE)
apply (erule mp)
apply (erule typing.cases)

apply simp-all
done
qed

6.6 Lifting preserves well-typedness

lemma lift-type [introl]: et : T = e(e:U) F lift ti: T
by (induct arbitrary: i U set: typing) auto

lemma [ift-types:
el ts: Ts = e(i:U) & (map (A\t. lift ¢ 7) ts) : Ts
by (induct ts arbitrary: Ts) (auto split: list.split)

6.7 Substitution lemmas

lemma subst-lemma:
eFt:T=¢ru:U=e=e(i:U)= e Ftu/i]: T
proof (induct arbitrary: e’ i U u set: typing)
case (Var envz T)
then show ?Zcase
by (force simp add: shift-def)
next
case (Abs env Tt U)
then show ?case by force
qed auto

lemma substs-lemma:
eFu:T= e(i:T)F ts: Ts =
e b (map (At. t{u/d]) ts) : Ts
proof (induct ts arbitrary: Ts)
case Nil
then show ?case
by auto
next
case (Cons a ts)
with subst-lemma show ?case
by (auto split: list.split)
qed

6.8 Subject reduction

lemma subject-reduction: et : T =t =g t' = et t': T
proof (induct arbitrary: t' set: typing)

30

case (App env s T U t)
with subst-lemma show Zcase
by auto
qed auto

theorem subject-reduction”: t —g* t' = ebFt: T = et t': T
by (induct set: rtranclp) (iprover intro: subject-reduction)—+

6.9 Alternative induction rule for types

lemma type-induct [induct type]:
assumes
(NT. (\NT1 T2. T = T1 = T2 = P T1) =
(NT1 T2. T = T1 = T2 = P T2) = P T)
shows P T
proof (induct T)
case Atom
show ?Zcase by (rule assms) simp-all
next
case Fun
show ?Zcase by (rule assms) (insert Fun, simp-all)
qed

end

7 Lifting an order to lists of elements

theory ListOrder
imports Main
begin

declare [[syntax-ambiguity-warning = false]]

Lifting an order to lists of elements, relating exactly one element.

definition
stepl :: (‘a => 'a => bool) => 'a list => 'a list => bool where
stepl r =
(Ayszs. us z 2" vs. s =us Q z # vs Arz' z A ys =
us Q 2" # vs)

lemma step1-converse [simp|: stepl (r~1=1) = (stepl r)~1~1
apply (unfold step1-def)
apply (blast introl: order-antisym)
done

lemma in-stepl-converse [iff]: (stepl (r=171) zy) = ((stepl r)~ 71 z y)
apply auto

done

31

lemma not-Nil-step1 [iff]: — stepl r || xs
apply (unfold step1-def)
apply blast
done

lemma not-step1-Nil [iff]: — stepl r xs []
apply (unfold step1-def)
apply blast
done

lemma Cons-step1-Cons [iff]:
(stepd v (y # y5) (v # 29)) =
(ryz ANas=ysV a =y A stepl T ys xs)
apply (unfold step1-def)
apply (rule iffT)
apply (erule exFE)
apply (rename-tac ts)
apply (case-tac ts)
apply fastforce
apply force
apply (erule disjE)
apply blast
apply (blast intro: Cons-eq-appendl)
done

lemma append-step1I:
stepl T ys xs N vs = us V ys = xs A stepl r vs us
==> stepl r (ys Q vs) (zs Q us)
apply (unfold step1-def)
apply auto
apply blast
apply (blast intro: append-eg-appendl)
done

lemma Cons-steplE [elim!]:
assumes stepl r ys (x # xs)
and ly. ys =y # s = ryz = R
and !!zs. ys = x # 2s = stepl r 2s xs = R
shows R
using assms
apply (cases ys)
apply (simp add: step1-def)
apply blast
done

lemma Snoc-step1-SnocD:

stepl v (ys @ [y]) (zs @ [z])
==> (stepl Tysaxs ANy=xV ys =18 A 1y x)

32

apply (unfold step1-def)

apply (clarify del: disjCI)

apply (rename-tac vs)

apply (rule-tac xs = vs in rev-ezhaust)
apply force

apply simp

apply blast

done

lemma Cons-acc-step1I [intro!]:
Wellfounded.accp r © ==> Wellfounded.accp (stepl r) xs = Wellfounded.accp

(stepl r) (z # xs)

apply (induct arbitrary: xs set: Wellfounded.accp)

apply (erule thin-rl)

apply (erule accp-induct)

apply (rule accp.accl)

apply blast

done

lemma lists-accD: listsp (Wellfounded.accp r) xs ==> Wellfounded.accp (stepl r)
xs

apply (induct set: listsp)

apply (rule accp.accl)

apply simp

apply (rule accp.accl)

apply (fast dest: acep-downward)

done

lemma ex-stepll:
|z € setas;ryz|]
==> Jys. stepl r ys xs \ y € set ys
apply (unfold step1-def)
apply (drule in-set-conv-decomp [THEN iffD1])

apply force
done

lemma lists-accl: Wellfounded.accp (stepl r) xs ==> listsp (Wellfounded.accp 1)
xs

apply (induct set: Wellfounded.accp)

apply clarify

apply (rule accp.accl)

apply (drule-tac r=r in exz-step1I, assumption)

apply blast

done

end

33

8 Lifting beta-reduction to lists
theory ListBeta imports ListApplication ListOrder begin

Lifting beta-reduction to lists of terms, reducing exactly one element.

abbreviation
list-beta :: dB list => dB list => bool (infixl <(=>) 50) where
rs => ss == stepl beta rs ss

lemma head- Var-reduction:

Varn °° rs —g v => Jss. rs => ss A v = Varn °° ss
apply (induct w == Var n °° rs v arbitrary: rs set: beta)
apply simp
apply (rule-tac zs = rs in rev-ezhaust)
apply simp

apply (atomize, force intro: append-step1l)

apply (rule-tac s = rs in rev-exhaust)

apply simp

apply (auto 0 3 intro: disjI2 [THEN append-step1I))
done

lemma apps-betasE [elim!]:
assumes major: v °° rs =g §

and cases: Ir’. [| r =g r’ys=7r"°rs|| ==> R
Nrs'. [rs =>rs’;y s =1 °° rs’ || ==> R
Wt wus. [| = Abs t; rs = u # us; s = t{u/0] °° us || ==> R
shows R
proof —

from major have
3r.r—=gr' ' ANs=1"rs)V
Frs.rs=>rs' Ns=r"°>rs)V
(Ftwus. r=Abst A rs=u# us A s=t[u/0] °° us)
apply (induct w == r °° rs s arbitrary: r rs set: beta)
apply (case-tac r)
apply simp
apply (simp add: App-eq-foldl-conv)
apply (split if-split-asm)
apply simp
apply blast
apply simp
apply (simp add: App-eq-foldi-conv)
apply (split if-split-asm)
apply simp
apply simp
apply (drule App-eq-foldl-conv [THEN iffD1])
apply (split if-split-asm)
apply simp
apply blast
apply (force intro!: disjI1 [THEN append-step1I])

34

apply (drule App-eq-foldl-conv [THEN iffD1])
apply (split if-split-asm)
apply simp
apply blast
apply (clarify, auto 0 3 intro!: exl intro: append-step1I)
done
with cases show ?thesis by blast
qed

lemma apps-preserves-beta [simp]:
r—g s==>71"°585 —g5° ss
by (induct ss rule: rev-induct) auto

lemma apps-preserves-beta2 [simp):
r—g* s ==>71"° 385 5" 5° ss
apply (induct set: rtranclp)
apply blast
apply (blast intro: apps-preserves-beta rtranclp.rtrancl-into-rtrancl)
done

lemma apps-preserves-betas [simp]:
rs => 85 => 1 °° 15 =g T °° 58
apply (induct rs arbitrary: ss rule: rev-induct)
apply simp
apply simp
apply (rule-tac xs = ss in rev-exhaust)
apply simp
apply simp
apply (drule Snoc-step1-SnocD)
apply blast
done

end

9 Inductive characterization of terminating lambda
terms

theory InductTermi imports ListBeta begin

9.1 Terminating lambda terms

inductive IT :: dB => bool
where
Var [intro): listsp IT rs ==> IT (Var n °° rs)
| Lambda [intro]: IT r ==> IT (Abs r)
| Beta [intro]: IT ((r[s/0]) °° ss) ==> IT s ==> IT ((Abs T ° s) °° ss)

35

9.2 Every term in /7 terminates

lemma double-induction-lemma [rule-format]:
termip beta s ==> Vt. termip beta t ——>
(Vrss. t=r[s/0] °° ss ——> termip beta (Abs T ° s °° ss))
apply (erule accp-induct)
apply (rule alll)
apply (rule impI)
apply (erule thin-rl)
apply (erule accp-induct)
apply clarify
apply (rule accp.accl)
apply (safe elim!: apps-betasE)
apply (blast intro: subst-preserves-beta apps-preserves-beta)
apply (blast intro: apps-preserves-beta2 subst-preserves-beta2 rtranclp-conversel
dest: accp-downwards)
apply (blast dest: apps-preserves-betas)
done

lemma IT-implies-termi: IT t ==> termip beta t
apply (induct set: IT)
apply (drule rev-predicate1D [OF - listsp-mono [where B=termip betal])
apply (fast intro!: predicatell)
apply (drule lists-accD)
apply (erule accp-induct)
apply (rule acep.accl)
apply (blast dest: head-Var-reduction)
apply (erule accp-induct)
apply (rule accp.accl)
apply blast
apply (blast intro: double-induction-lemma)
done

Py

9.3 Every terminating term is in /T
declare Var-apps-neq-Abs-apps [symmetric, simp)

lemma [simp, THEN not-sym, simp|: Var n °° ss # Abs r ° s °° ts
by (simp add: foldl-Cons [symmetric] del: foldl-Cons)

lemma [simp]:
(AbsT° s ss=Absr'° s ss) = (r=r"ANs=s"Ass=ss
by (simp add: foldl-Cons [symmetric] del: foldl-Cons)
inductive-cases [elim!]:
IT (Var n °° ss)
IT (Abs t)
IT (Abs T ° s °° ts)

theorem termi-implies-IT: termip beta r ==> IT r

36

apply (erule accp-induct)
apply (rename-tac 1)
apply (erule thin-rl)
apply (erule rev-mp)
apply simp
apply (rule-tac t = r in Apps-dB-induct)
apply clarify
apply (rule IT .intros)
apply clarify
apply (drule bspec, assumption)
apply (erule mp)
apply clarify
apply (drule-tac r=beta in conversepl)
apply (drule-tac r=beta='~1 in ex-stepll, assumption)
apply clarify
apply (rename-tac us)
apply (erule-tac x = Var n °° us in allE)
apply force
apply (rename-tac u ts)
apply (case-tac ts)
apply simp
apply blast
apply (rename-tac s ss)
apply simp
apply clarify
apply (rule IT.intros)
apply (blast intro: apps-preserves-beta)
apply (erule mp)
apply clarify
apply (rename-tac t)
apply (erule-tac © = Abs u ° t °° ss in allE)

apply force
done

end

10 Strong normalization for simply-typed lambda
calculus

theory StrongNorm imports LambdaType InductTermi begin

Formalization by Stefan Berghofer. Partly based on a paper proof by Felix
Joachimski and Ralph Matthes [1].

10.1 Properties of IT

lemma lift-IT [introl]: IT t = IT (lift ¢ 7)
apply (induct arbitrary: i set: IT)

37

apply (simp (no-asm))
apply (rule conjI)
apply
(rule impl,
rule IT. Var,
erule listsp.induct,
stmp (no-asm),
stmp (no-asm),
rule listsp. Cons,
blast,
assumption)+
apply auto
done

lemma lifts-IT: listsp IT ts = listsp IT (map (At. lift t 0) ts)
by (induct ts) auto

lemma subst-Var-IT: IT r = IT (r[Var i/j])
apply (induct arbitrary: i j set: IT)

Case Var:

apply (simp (no-asm) add: subst-Var)
apply
((rule congI impI)+,

rule IT. Var,

erule listsp.induct,

stmp (no-asm),

stmp (no-asm),

rule listsp.Cons,

fast,

assumption)+

Case Lambda:

apply atomize

apply simp

apply (rule IT.Lambda)
apply fast

Case Beta:

apply atomize

apply (simp (no-asm-use) add: subst-subst [symmetric])
apply (rule IT.Beta)

apply auto

done

lemma Var-IT: IT (Var n)
apply (subgoal-tac IT (Var n °°[]))

apply simp
apply (rule IT.Var)

38

apply (rule listsp.Nil)
done

lemma app-Var-IT: IT t = IT (t ° Var i)
apply (induct set: IT)
apply (subst app-last)
apply (rule IT.Var)
apply simp
apply (rule listsp.Cons)
apply (rule Var-IT)
apply (rule listsp.Nil)
apply (rule IT.Beta [where ?ss = [, unfolded foldl-Nil [THEN eg-reflectionl]])
apply (erule subst-Var-IT)
apply (rule Var-IT)
apply (subst app-last)
apply (rule IT.Beta)
apply (subst app-last [symmetric])
apply assumption
apply assumption
done

10.2 Well-typed substitution preserves termination

lemma subst-type-I1T":
NteTui. ITt= e(i:U)Ft: T =
ITyu= et u: U= IT (t[u/i])
(is PROP ?P Uis Nte Tui. -= PROP ?Qte TuiU)
proof (induct U)
fix Tt
assume MI1: ANT1 T2. T = T1 = T2 = PROP ?P T1
assume MI2: N\T1 T2. T = T1 = T2 = PROP ?P T2
assume [Tt
thus Ae T’ wi. PROP ?Qte T'ui T
proof induct
fixeT ui
assume ulT: IT u
assume ul: et u: T
{
case (Var rsn el T'1 ul il)
assume nT: e(i:T) F Varn °° rs: T’
let 2ty = At. 3T e(i:T) ¢ : T’
let 2R =Xt. Ve T ui.
e(it:TYFt: T — ITu— ek u: T — IT (tu/i])
show IT ((Var n °° rs)[u/i])
proof (cases n = i)
case True
show ?thesis
proof (cases rs)
case Nil

39

with «IT True show ¢thesis by simp
next
case (Cons a as)
with nT have e(i:T) F Var n ° a °° as : T' by simp
then obtain T
where headT: e(i:T) - Varn°®a: Ts= T’
and argsT: e(i:T) = as : Ts
by (rule list-app-typeFE)
from headT obtain T
where varT: e(i:T) - Varn : T" = Ts = T’
and argT: e(i:T) Fa: T"
by cases simp-all
from varT True have T: T =T" = Ts= T’
by cases auto
with «T have vT" et u: T" = Ts = T' by simp
from T have IT ((Var 0 °° map (At. lift t 0)
(map (. t[u/i)) as)[(u ° a[u/i})/0)
proof (rule MI2)
from T have IT ((lift w 0 ° Var 0)[a[u/7]/0])
proof (rule MI1)
have IT (lift v 0) by (rule lift-IT [OF uIT])
thus IT (lift w 0 ° Var 0) by (rule app-Var-IT)
show e(0:T") F lift w0 ° Var 0 : Ts = T’
proof (rule typing.App)
show e(0: TV liftu 0 : T"= Ts= T’
by (rule lift-type) (rule uT")
show e(0:T"Y + Var 0 : T"
by (rule typing. Var) simp
qed
from Var have ?R a by cases (simp-all add: Cons)
with argT wIT uT show IT (a[u/i]) by simp
from argT uT show e & a[u/i] : T"
by (rule subst-lemma) simp
qed
thus IT (u ° a[u/i]) by simp
from Var have listsp 7R as
by cases (simp-all add: Cons)
moreover from argsT have listsp 7ty as
by (rule lists-typings)
ultimately have listsp (At. R t A Pty t) as
by simp
hence listsp IT (map (At. lift t 0) (map (At. t{u/d]) as))
(is listsp IT (?ls as))
proof induct

case Nil
show ?case by fastforce
next

case (Cons b bs)
hence I: ?R b by simp

40

from Cons obtain U where ¢(i:T) F b : U by fast
with «T wIT I have IT (b[u/i]) by simp
hence IT (lift (b[u/d]) 0) by (rule lift-IT)
hence listsp IT (lift (b[u/i]) 0 # ?ls bs)
by (rule listsp.Cons) (rule Cons)
thus “case by simp
qed
thus IT (Var 0 °° ?ls as) by (rule IT. Var)
have ¢(0:Ts = Tk Var 0 : Ts= T’
by (rule typing. Var) simp
moreover from uT argsT have e = map (At. t[u/i]) as :
by (rule substs-lemma)
hence ¢(0:Ts = T') & %ls as : Ts
by (rule lift-types)
ultimately show e(0:Ts = T') F Var 0 °° ?ls as : T’
by (rule list-app-typel)
from argT uT have e - afu/i] : T"
by (rule subst-lemma) (rule refl)
with «T’ show e b u ° a[u/i] : Ts = T’
by (rule typing.App)
qed
with Cons True show ?thesis
by (simp add: comp-def)
qed
next
case False
from Var have listsp ?R rs by simp
moreover from nT obtain Ts where e(i:T) + rs : Ts
by (rule list-app-typeFE)
hence listsp 7ty rs by (rule lists-typings)
ultimately have listsp (At. R t A ty) rs
by simp
hence listsp IT (map (Az. z[u/i]) rs)
proof induct

case Nil
show ?case by fastforce
next

case (Cons a as)
hence I: R a by simp
from Cons obtain U where ¢(i:T) F a : U by fast
with «T «IT I have IT (a[u/i]) by simp
hence listsp IT (a[u/i] # map (At. t[u/i]) as)
by (rule listsp.Cons) (rule Cons)
thus ?case by simp
qed
with False show ?thesis by (auto simp add: subst-Var)
qed
next
case (Lambda r el T'1 ul i)

41

assume e(i:T) - Absr: T'
and Ae T' uwi. PROP ?QreT ui T
with «IT uT show IT (Abs r[u/i])
by fastforce
next
case (Beta ra as el T'1 ul i)
assume T: e(i:T) - Absr ° a° as: T’
assume SI1: Ne T’ wi. PROP ?2Q (r[a/0] *° as) e T ui T
assume SI2: Ae T’ ui. PROP ?Qae T'ui T
have IT (Abs (r[lift u 0/Suc i]) ° a[u/i] °° map (At. t[u/i]) as)
proof (rule IT.Beta)
have Abs r ° a °° as —p r[a/0] °° as
by (rule apps-preserves-beta) (rule beta.beta)
with T have e(i:T) F r[a/0] °° as : T’
by (rule subject-reduction)
hence IT ((r[a/0] °° as)[u/i])
using ulT uT by (rule SI1)
thus IT (r[lift w 0/Suc i|[a]u/7]/0] °° map (At. t[u/i]) as)
by (simp del: subst-map add: subst-subst subst-map [symmetric])
from T obtain U where e(i:T) - Absr °a: U
by (rule list-app-typeE) fast
then obtain 7' where e(i:T) - a : T by cases simp-all
thus IT (a[u/i]) using wIT uT by (rule SI2)
qed
thus IT ((Abs r ° a °° as)[u/i]) by simp
}
qed
qed

10.3 Well-typed terms are strongly normalizing

lemma type-implies-1T:
assumes et ¢ : T
shows IT ¢
using assms
proof induct
case Var
show ?case by (rule Var-IT)
next
case Abs
show ?case by (rule IT.Lambda) (rule Abs)
next
case (App e s T U t)
have IT ((Var 0 ° lift t 0)[s/0])
proof (rule subst-type-I1T)
have IT (lift t 0) using <IT t» by (rule lift-IT)
hence listsp IT [lift t 0] by (rule listsp.Cons) (rule listsp.Nil)
hence IT (Var 0 °° [lift ¢t 0]) by (rule IT. Var)
also have Var 0 °° [lift t 0] = Var 0 ° lift t 0 by simp

42

finally show IT
have ¢(0:T = U)F Var 0 : T = U
by (rule typing. Var) simp
moreover have e¢(0:T = U) F liftt 0 : T
by (rule lift-type) (rule App.hyps)
ultimately show ¢(0:T = U)F Var 0 ° liftt 0 : U
by (rule typing.App)
show IT s by fact
show et s: T = U by fact
qged
thus ?case by simp
qed

theorem type-implies-termi: e =t : T = termip beta t
proof —

assume et t: T

hence IT t by (rule type-implies-IT)

thus ?thesis by (rule IT-implies-termsi)
qed

end

11 Inductive characterization of lambda terms in
normal form

theory NormalForm
imports ListBeta
begin

11.1 Terms in normal form

definition
listall :: (Ya = bool) = 'a list = bool where
listall P xs = (V4. i < length xs — P (zs ! 1))

declare listall-def [extraction-expand-def]

theorem listall-nil: listall P ||
by (simp add: listall-def)

theorem listall-nil-eq [simp)]: listall P [| = True
by (iprover intro: listall-nil)

theorem listall-cons: P & = listall P xs = listall P (z # xs)
apply (simp add: listall-def)
apply (rule alll impI)+
apply (case-tac i)
apply simp+

43

done

theorem listall-cons-eq [simp)]: listall P (z # xzs) = (P z A listall P xs)
apply (rule iffI)
prefer 2
apply (erule conjF)
apply (erule listall-cons)
apply assumption
apply (unfold listall-def)
apply (rule conjI)
apply (erule-tac x=0 in allE)
apply simp
apply simp
apply (rule alll)
apply (erule-tac =Suc i in allE)
apply simp
done

lemma listall-conjl: listall (Az. Pz N Q x) xs = listall P xs
by (induct zs) simp-all

lemma listall-conj2: listall (Az. P x A Q x) xs = listall Q zs
by (induct zs) simp-all

lemma listall-app: listall P (zs @ ys) = (listall P xs A listall P ys)
by (induct xs; intro iffI; simp)

lemma listall-snoc [simp]: listall P (xs Q [z]) = (listall P xs A P)
by (rule iffI; simp add: listall-app)

lemma listall-cong [cong, extraction-expand):
xs = ys = listall P xs = listall P ys
— Currently needed for strange technical reasons
by (unfold listall-def) simp

listsp is equivalent to listall, but cannot be used for program extraction.

lemma listall-listsp-eq: listall P xs = listsp P xs
by (induct zs) (auto intro: listsp.intros)

inductive NF :: dB = bool
where
App: listall NF ts = NF (Var z °° ts)
| Abs: NF t = NF (Abs t)
monos listall-def

lemma nat-eq-dec: An:nat. m =nV m #n
proof (induction m)

case (

then show ?case

44

by (cases n; simp only: nat.simps; iprover)
next
case (Suc m)
then show ?Zcase
by (cases n; simp only: nat.simps; iprover)
qed

lemma nat-le-dec: An:nat. m < nV = (m < n)
proof (induction m)
case (
then show ?case
by (cases n; simp only: order.irrefl zero-less-Suc; iprover)
next
case (Suc m)
then show ?Zcase
by (cases n; simp only: not-less-zero Suc-less-eq; iprover)
qed

lemma App-NF-D: assumes NF: NF' (Var n °° ts)
shows listall NF' ts using NF
by cases simp-all

11.2 Properties of NF

lemma Var-NF: NF (Var n)
proof —
have NF (Var n °° [])
by (rule NF.App) simp
then show ?thesis by simp
qed

lemma Abs-NF:
assumes NF: NF' (Abs t °° ts)
shows ts = [| using NF
proof cases
case (App us 17)
thus ?thesis by (simp add: Var-apps-neq-Abs-apps [THEN not-sym))
next
case (Abs u)
thus %thesis by simp
qged

lemma subst-terms-NF': listall NF' ts =
listall (At. Vi j. NF (¢[Var i/j))) ts =
listall NF (map (At. t[Var i/j]) ts)
by (induct ts) simp-all

lemma subst-Var-NF: NF t = NF (t[Var i/j))
apply (induct arbitrary: i j set: NF)

45

apply simp

apply (frule listall-conj1)

apply (drule listall-conj2)

apply (drule-tac i=i and j=j in subst-terms-NF')
apply assumption

apply (rule-tac m1=xz and n1=j in nat-eq-dec [THEN disjE))
apply simp
apply (erule NF.App)

apply (rule-tac m1=j and nl=z in nat-le-dec [THEN disjE))
apply (simp-all add: NF.App NF.Abs)

done

lemma app-Var-NF: NF t = 3t". t ° Var i —g* t' N NF t'
apply (induct set: NF')
apply (simplesubst app-last) — Using subst makes extraction fail
apply (rule exI)
apply (rule conjI)
apply (rule rtranclp.rtrancl-refl)
apply (rule NF.App)
apply (drule listall-conj1)
apply (simp add: listall-app)
apply (rule Var-NF)
apply (iprover intro: rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-refl beta subst-Var-NF')
done

lemma lift-terms-NF: listall NF ts =
listall (\t. Vi. NF (lift t 7)) ts =
listall NF' (map (At. lift ¢ @) ts)
by (induct ts) simp-all

lemma lift-NF: NF t = NF (lift t i)

apply (induct arbitrary: i set: NF)

apply (frule listall-conj1)

apply (drule listall-conj2)

apply (drule-tac i=i in lift-terms-NF')
apply assumption

apply (rule-tac m1=x and ni=i in nat-le-dec [THEN disjE))
apply (simp-all add: NF.App NF.Abs)

done

NF characterizes exactly the terms that are in normal form.

lemma NF-eq: NFt = (Yt'. =t =5 t')
proof
assume NF' ¢
then have At = ¢t —g t'
proof induct
case (App ts t)
show ?case
proof

46

assume Vart °° ts =g t’
then obtain rs where ts => rs
by (iprover dest: head-Var-reduction)
with App show Fulse
by (induct rs arbitrary: ts) auto
qed
next
case (Abs t)
show ?case
proof
assume Abs t —p t’
then show Fulse using Abs by cases simp-all
qed
qed
then show Vi’ =t —g t' ..
next
assume H: Vit =t —g t’
then show NF' ¢
proof (induct t rule: Apps-dB-induct)
case (1 n ts)
then have Vis'. = ts => ts’
by (iprover intro: apps-preserves-betas)
with 1(1) have listall NF ts
by (induct ts) auto
then show ?case by (rule NF.App)
next
case (2 u ts)
show ?case
proof (cases ts)
case Nil
from 2 have Vu'. = u —g u’
by (auto intro: apps-preserves-beta)
then have NF u by (rule 2)
then have NF' (Abs u) by (rule NF.Abs)
with Nil show ?thesis by simp
next
case (Cons r rs)
have Abs u ° r —5 ul[r/0] ..
then have Abs u ° r °° rs —g ul[r/0] °° rs
by (rule apps-preserves-beta)
with Cons have Abs u °° ts —g ul[r/0] °° rs
by simp
with 2 show ?thesis by iprover
qed
qed
qed

end

47

12 Standardization

theory Standardization
imports NormalForm
begin

Based on lecture notes by Ralph Matthes [3], original proof idea due to
Ralph Loader [2].

12.1 Standard reduction relation

declare listrel-mono [mono-set|

inductive

sred :: dB = dB = bool (infixl <—4> 50)

and sredlist :: dB list = dB list = bool (infix] ([—]> 50)
where

s [—s) t = listrelp (—) st
| Var: rs [—s] 18’ = Var z °° rs =5 Var x °° rs
| Abs: r —5 1/ = s5 [=5] ss' = Abs r °° ss =5 Abs 1’ °° s’
| Beta: r[s/0] °° ss —5 t => Abs 1 ° 5 °° 55 — ¢

o !

lemma refi-listrelp: ¥V x€set xs. R x © = listrelp R xs xs
by (induct zs) (auto intro: listrelp.intros)

lemma refl-sred: t —4 t
by (induct t rule: Apps-dB-induct) (auto intro: refl-listrelp sred.intros)

lemma refl-sreds: ts [—] ts
by (simp add: refl-sred refl-listrelp)

lemma listrelp-conj1: listrelp Axy. Rz y AN Sz y) zy = listrelp Rxy
by (erule listrelp.induct) (auto intro: listrelp.intros)

lemma listrelp-conj2: listrelp Az y. Rz y AN Sz y) xy = listrelp Sz y
by (erule listrelp.induct) (auto intro: listrelp.intros)

lemma listrelp-app:
assumes xsys: listrelp R s ys
shows listrelp R xs’ ys' = listrelp R (xs @ xs’) (ys Q ys’) using zsys
by (induct arbitrary: xs’ ys') (auto intro: listrelp.intros)

lemma lemmal:
assumes 7: 7 —¢ ' and s: s =, §
shows 7 ° s —, r’ ° s’ using r
proof induct
case (Var rs rs’ x)
then have rs [—;] rs’ by (rule listrelp-conj1)
moreover have [s| [—;] [s'] by (iprover intro: s listrelp.intros)

/

48

ultimately have rs @ [s] [—;] rs’ @ [s/] by (rule listrelp-app)
hence Var z °° (rs @Q [s]) =5 Var z °° (rs’ Q [s']) by (rule sred. Var)
thus ?case by (simp only: app-last)

next
case (Abs r r' ss ss’)
from Abs(3) have ss [—5] ss’ by (rule listrelp-conj1)
moreover have [s] [—;] [s'] by (iprover intro: s listrelp.intros)
ultimately have ss @ [s] [—;] ss’ @ [s'] by (rule listrelp-app)
with «r —; /> have Abs r °° (ss Q [s]) —5 Abs v’ °° (ss’ Q [s'])

by (rule sred.Abs)

thus ?case by (simp only: app-last)

next
case (Beta r u ss t)
hence r[u/0] °° (ss Q [s]) =5 t ° s’ by (simp only: app-last)
hence Abs r ° u °° (ss Q [s]) =5 t ° s’ by (rule sred.Beta)
thus ?case by (simp only: app-last)

qed

lemma lemmal:
assumes ts: ts [—] ts’
shows r —, 1’ = 1 °° ts —, 7’ °° ts’' using ts
by (induct arbitrary: v r') (auto intro: lemmal)

lemma lemma2-1:
assumes beta: t —g u
shows t — u using beta
proof induct
case (beta s t)
have Abs s ° t °° [| =5 s[t/0] °° [] by (iprover intro: sred.Beta refl-sred)
thus ?case by simp
next
case (appL st u)
thus ?case by (iprover intro: lemmal refl-sred)
next
case (appR st u)
thus ?case by (iprover intro: lemmal refi-sred)
next
case (abs s t)
hence Abs s °° [| =4 Abs t °° [| by (iprover intro: sred.Abs listrelp. Nil)
thus ?case by simp
qed

lemma listrelp-betas:
assumes ts: listrelp (—g*) ts ts’
shows At t'. t —g* t' =t °° ts —5* t’ °° ts’ using ts
by induct auto

lemma lemma2-2:
assumes t: t =5 U

49

shows ¢ —3* u using ¢
by induct (auto dest: listrelp-conj2
intro: listrelp-betas apps-preserves-beta converse-rtranclp-into-rtranclp)

lemma sred-lift:
assumes S: § —5
shows lift s i — lift t i using s
proof (induct arbitrary: 7)
case (Var rs rs’ z)
hence map (At. lift t i) rs [—s] map (\t. lift ¢) rs’
by induct (auto intro: listrelp.intros)
thus ?case by (cases x < 1) (auto intro: sred.Var)
next
case (Abs r r' ss ss’)
from Abs(8) have map (At. lift t i) ss [—s] map (At lift t i) ss’
by induct (auto intro: listrelp.intros)
thus ?case by (auto intro: sred.Abs Abs)
next
case (Beta r s ss t)
thus ?case by (auto intro: sred.Beta)
qed

lemma lemma3:
assumes 7r: r —>g 1’
shows s =4 s’ = r[s/z] — r'[s'/z] using r
proof (induct arbitrary: s s’ x)
case (Var rs rs’ y)
hence map (\t. t[s/z]) rs [—s] map (At. t[s'/z]) rs’
by induct (auto intro: listrelp.intros Var)
moreover have Var y[s/z] =5 Var y[s'/z]
proof (cases y < x)
case True thus ?thesis by simp (rule refl-sred)
next
case Fulse
thus ?thesis
by (cases y = z) (auto simp add: Var intro: refl-sred)
qged
ultimately show ?case by simp (rule lemmal’)
next
case (Abs r r' ss ss’)
from Abs(4) have lift s 0 —; lift s’ 0 by (rule sred-lift)
hence r[lift s 0/Suc z] =5 r'[lift s’ 0/Suc z] by (fast intro: Abs.hyps)
moreover from Abs(3) have map (At. t[s/xz]) ss [—s] map (At. t[s’/z]) ss’
by induct (auto intro: listrelp.intros Abs)
ultimately show ?case by simp (rule sred.Abs)
next
case (Beta r u ss t)
thus ?case by (auto simp add: subst-subst intro: sred.Beta)
qed

50

lemma lemmay4-aux:
assumes rs: listrelp (At u. t =5 u A (Vr.u =g r —> t =4 1)) rs s’
shows rs’ => ss = rs [—;] ss using rs
proof (induct arbitrary: ss)
case Nil
thus ?case by cases (auto intro: listrelp. Nil)
next
case (Cons z y xs ys)
note Cons’ = Cons
show Zcase
proof (cases ss)
case Nil with Cons show ?thesis by simp
next
case (Cons y’ ys')
hence ss: ss = y’ # ys' by simp
from Cons Cons’ have y —g y' A ys' = ys V y' = y A ys => ys’' by simp
hence = # zs [—5] y' # ys'
proof
assume H: y =g y' A ys' = ys
with Cons’ have z —, 3’ by blast
moreover from Cons’ have zs [—] ys by (iprover dest: listrelp-conj1)
ultimately have = # xs [—] y' # ys by (rule listrelp. Cons)
with H show ?thesis by simp
next
assume H: y' = y A ys => ys’
with Cons’ have z —, 3y’ by blast
moreover from H have zs [—;] ys’ by (blast intro: Cons’)
ultimately show ?thesis by (rule listrelp. Cons)
qed
with ss show Zthesis by simp
qed
qed

lemma lemmay:
assumes r: r —>5 1’
shows r’ =5 r' = r —, r'’ using r
proof (induct arbitrary: r'’)
case (Var rs rs’ x)
then obtain ss where 7s: s’ => ssand r'": "' = Var z °° ss
by (blast dest: head-Var-reduction)
from Var(1) rs have rs [—] ss by (rule lemma4-aux)
hence Var z °° rs —¢ Var z °° ss by (rule sred. Var)
with r” show ?case by simp
next
case (Abs r r' ss ss’)
from <Abs r' °° ss’ = r'"» show Zcase
proof
fix s

o

o1

1 /!

assume 1’ r’ = 5 °° ss
assume Abs r’ —g s
then obtain '’ where s: s = Abs r'"" and """ r' =3 r""" by cases auto
from r'"" have r —, r'" by (blast intro: Abs)
moreover from Abs have ss [—;] ss’ by (iprover dest: listrelp-conj1)
ultimately have Abs r °° ss —, Abs r'" °° ss’ by (rule sred.Abs)
with r”/ s show Abs r °° ss —, r'’ by simp

next
fix rs’
assume ss’ => rs’
with Abs(3) have ss [—4] s’ by (rule lemma4-auz)
with <r —¢ r/) have Abs r °° ss —, Abs r' °° rs’ by (rule sred.Abs)
moreover assume 1’/ = Abs r’ °° rs’
ultimately show Abs r °° ss —, '’ by simp

next
fix t u’ us’
assume ss’ = u’ # us’
with Abs(3) obtain u us where

ss: ss = u # us and u: u =, v’ and us: us [—4] us’
by cases (auto dest!: listrelp-conjl)

have r[u/0] —s r'[u’/0] using Abs(1) and u by (rule lemma3)
with us have r[u/0] °° us =5 r'[u’/0] °° us’ by (rule lemmal’)
hence Abs r ° u °° us —5 r'[u’/0] °° us’ by (rule sred.Beta)
moreover assume Abs r’' = Abs ¢t and r'' = t[u’/0] °° us’
ultimately show Abs r °° ss —, '/ using ss by simp

qged

next

case (Beta r s ss t)

show Zcase
by (rule sred.Beta) (rule Beta)+

qed

lemma rtrancl-beta-sred:
assumes r: 7 —g* 1’
shows r —, r/ using r
by induct (iprover intro: refl-sred lemma4)+

12.2 Leftmost reduction and weakly normalizing terms

inductive
Ired :: dB = dB = bool (infixl <—p» 50)
and lredlist :: dB list = dB list = bool (infixl (—]» 50)
where
s [=] t = listrelp (=) s t
| Var: rs [—] rs' = Var z °° rs —; Var z °° rs’
| Abs: v — 1’ = Abs r —; Abs r'
| Beta: r[s/0] °° ss —; t => Abs 1 °5°° ss = t

lemma lred-imp-sred:

52

assumes lred: s —; ¢
shows s — t using lred
proof induct
case (Var rs rs’ x)
then have rs [—;] rs’
by induct (iprover intro: listrelp.intros)+
then show ?case by (rule sred.Var)
next
case (Abs r ')
from «r —, '
have Abs r °° [] =5 Abs r' °° [| using listrelp.Nil
by (rule sred.Abs)
then show ?case by simp
next
case (Beta r s ss t)
from «r[s/0] °° ss =, t
show ?case by (rule sred.Beta)
qed

inductive WN :: dB => bool
where
Var: listsp WN rs = WN (Var n °° rs)
| Lambda: WN r = WN (Abs r)
| Beta: WN ((r[s/0]) °° ss) = WN ((Abs r ° s) °° ss)

lemma listrelp-imp-listsp1:
assumes H: listrelp (A\z y. P) zs ys
shows listsp P xs using H
by induct auto

lemma listrelp-imp-listsp2:
assumes H: listrelp (A\z y. P y) zs ys
shows listsp P ys using H
by induct auto

lemma lemmad:
assumes lred: v —; r’
shows WN r and NF r’ using Ired
by induct
(iprover dest: listrelp-conjl1 listrelp-conj2
listrelp-imp-listsp1 listrelp-imp-listsp2 intro: WN .intros
NF'.intros [simplified listall-listsp-eq])+

lemma lemma6:

assumes wn: WN r

shows 3r’. r —; r’ using wn
proof induct

case (Var rs n)

then have 3 rs’. rs [—] rs’

93

by induct (iprover intro: listrelp.intros)+
then show Zcase by (iprover intro: lred. Var)
qed (iprover intro: lred.intros)+

lemma lemma7:
assumes 71: 1 —>, T
shows NF r’' = r —; r’ using r

proof induct
case (Var rs rs’ z)
from «NF (Var z °° rs’)» have listall NF rs’

by cases simp-all

with Var(1) have rs [—] rs’
proof induct

/!

case Nil
show ?case by (rule listrelp. Nil)
next

case (Cons z y xs ys)
hence z —; y and zs [—] ys by simp-all
thus ?case by (rule listrelp.Cons)
qed
thus ?case by (rule lred. Var)
next
case (Abs r r' ss ss')
from «NF (Abs v’ °° ss’)»
have ss” ss’ =[] by (rule Abs-NF)
from Abs(3) have ss: ss = [] using ss’
by cases simp-all
from ss’ Abs have NF (Abs r') by simp
hence NF' r' by cases simp-all
with Abs have r —; r’ by simp
hence Abs r —; Abs v’ by (rule lred.Abs)
with ss ss’ show ?case by simp
next
case (Beta r s ss t)
hence 7[s/0] °° ss —; t by simp
thus ?case by (rule lred.Beta)
qed

lemma WN-eq: WN ¢t = (3t’. t —* t' A NF t')
proof

assume WN ¢

then have 3t’. ¢ —; t' by (rule lemma6)

then obtain ¢’ where t": t —; t'..

then have NF: NF t' by (rule lemma¥)

from ¢’ have t —, t’' by (rule lred-imp-sred)

then have ¢ —g* t’ by (rule lemma2-2)

with NF show 3¢’ t —g* t' A NF t’ by iprover
next

assume 3t’. t —g* t' A NF ¢t/

54

then obtain ¢’ where t": ¢t —3* ¢’ and NF: NF t’
by iprover
from ¢’ have t —; t’ by (rule rtrancl-beta-sred)
then have ¢ —; ¢’ using NF by (rule lemma?7)
then show WN t by (rule lemma5)
qed

end

13 Weak normalization for simply-typed lambda
calculus

theory WeakNorm
imports LambdaType NormalForm HOL— Library. Realizers HOL— Library. Code- Target-Int
begin

Formalization by Stefan Berghofer. Partly based on a paper proof by Felix
Joachimski and Ralph Matthes [1].

13.1 Main theorems

lemma norm-list:
assumes f-compat: N\t t'. t —g* t' = ft —p* f 1’
and f-NF: \t. NFt = NF (ft)
and uNF: NFuand uT: et u: T
shows AUs. e(i:T) I as : Us =
listall M. Ve T wi. e(i:T)Ft: T —
NFuy— ek u: T — (3t tlu/i] =p* t' AN NF 1)) as =
Jas’. Vji. Varj°® map (Mt. f (t{u/i])) as —*
Var j °° map fas’ A NF (Var j °° map f as’)
(is AUs. - = listall YR as = Jas’. ?ex Us as as’)
proof (induct as rule: rev-induct)
case (Nil Us)
with Var-NF have ?ex Us [] [| by simp
thus “case ..
next
case (snoc b bs Us)
have e(i:T) = bs @ [b] : Us by fact
then obtain Vs W where Us: Us = Vs @ |
and bs: e(i:T) b bs: Vsand bT: e(i:T) +
by (rule types-snocE)
from snoc have listall ?R bs by simp
with bs have Jbs’. ?ex Vs bs bs’ by (rule snoc)
then obtain bs’ where bsred: Var j °° map (At. f (t[u/i])) bs —g* Varj °° map
f bs’
and bsNF: NF (Var j °° map f bs’) for j
by iprover
from snoc have ?R b by simp

14
b: W

95

with T and uNF and uT have 3b". b[u/i] —5* b’ A NF b’
by iprover
then obtain b’ where bred: b[u/i] —5* b’ and bDNF: NF b’
by iprover
from bsNF' [of 0] have listall NF (map f bs’)
by (rule App-NF-D)
moreover have NF (f b') using bNF by (rule f-NF)
ultimately have listall NF (map f (bs’ Q [b']))
by simp
hence Aj. NF (Var j °° map f (bs’ Q [b])) by (rule NF.App)
moreover from bred have f (b[u/i]) —g* f b’
by (rule f-compat)
with bsred have
Ni- (Var G °° map (At. f (t[u/i])) bs) ° f (blu/i]) —
(Var j °° map fbs’) ° fb' by (rule rtrancl-beta- App)
ultimately have ?ex Us (bs @ [b]) (bs’ @ [b]) by simp
thus “case ..
qed

lemma subst-type-NF:

NeTui NFt = e(i:U)Ft: T = NFu= et u:
—g" t' N NFt'

(is PROP ?PUis Nt e Tui. -=— PROP ?Qte TuiU)
proof (induct U)

fix Tt

let PR =Xt. Ve T ui.

U = 3¢t t{u/i]

e(i:T)Ft:T'— NFu— ek u: T — (3t tlu/i] =" t' AN NF ')

assume MI1: NT1 T2. T = T1 = T2 — PROP ?P T1
assume MI2: NT1 T2. T = T1 = T2 = PROP ?P T2
assume NF'{
thus Ae T’ wi. PROP ?Qte T ' ui T
proof induct
fix e T' u i assume uNF: NF v and uT: et u: T
{
case (App tsz el T'1 ul il)
assume e(i:T) + Varz °° ts: T’
then obtain Us
where varT: e(i:T) - Varz: Us = T’
and argsT: e(i:T) + ts: Us
by (rule var-app-typesE)

from nat-eg-dec show 3t’. (Var z °° ts)[u/i] —p* t' A NF t'

proof

assume eq: r = 1

show ?thesis

proof (cases ts)
case Nil
with eq have (Var z °° [|)[u/i] —3* u by simp
with Nil and uNF show ?thesis by simp iprover

next

o6

case (Cons a as)
with argsT obtain T’ Ts where Us: Us = T # Ts
by (cases Us) (rule FalseE, simp)
from varT and Us have varT: e(i:T) F Varz : T = Ts = T’
by simp
from varT eq have T: T = T = Ts = T' by cases auto
with «T have uT" et u: T" = Ts = T' by simp
from argsT Us Cons have argsT": e(i:T) & as : Ts by simp
from argsT Us Cons have argT: e(i:T) F a : T" by simp
from argT uT refl have aT: e F a[u/i] : T by (rule subst-lemma)
from App and Cons have listall ?R as by simp (iprover dest: listall-conj2)
with lift-preserves-beta’ lift-NF uNF uT argsT’
have Jas’. Vj. Var j °° map (At. lift (¢[u/i]) 0) as —p*
Var j °° map (A\t. lift t 0) as’ A
NF (Var j °° map (At. lift t 0) as’) by (rule norm-list)
then obtain as’ where
asred: Var 0 °° map (At. lift (t{u/i]) 0) as —5*
Var 0 °° map (At. lift t 0) as’
and asNF: NF (Var 0 °° map (At. lift t 0) as’) by iprover
from App and Cons have ?R a by simp
with argT and uNF and uT have Ja’. a[u/i] —g* a’ A NF o’
by iprover
then obtain o’ where ared: a[u/i] —3* o’ and aNF: NF o’ by iprover
from uNF have NF (lift v 0) by (rule lift--NF)
hence Ju’. lift u 0 ° Var 0 —g* v’ A NF u’ by (rule app-Var-NF)
then obtain u’ where ured: lift w 0 ° Var 0 —5* v’ and u'NF: NF u’
by iprover
from T and «'NF have Jua. u'[a’/0] —g* ua A NF ua
proof (rule MI1)
have e(0:T") F lift w0 ° Var 0 : Ts = T’
proof (rule typing.App)
from uT’ show e(0:T") Flift uw 0 : T" = Ts = T’ by (rule lift-type)
show e(0:T"y = Var 0 : T" by (rule typing. Var) simp
qed
with ured show e(0:T") b u’: Ts = T’ by (rule subject-reduction’)
from ared aT show e - a’: T" by (rule subject-reduction’)
show NF a’ by fact
qed
then obtain ua where uared: u'la’/0] —5* ua and uaNF: NF ua
by iprover
from ared have (lift w 0 ° Var 0)[a[u/i]/0] —g* (lift w 0 ° Var 0)[a’/0]
by (rule subst-preserves-beta2’)
also from wured have (lift uw 0 ° Var 0)[a’/0] —5* u'[a’/0]
by (rule subst-preserves-beta’)
also note uared
finally have (lift u 0 ° Var 0)[alu/i]/0] —5* ua .
hence uared”: u ° alu/i] —5* ua by simp
from T asNF - uaNF have Jr. (Var 0 °° map (At. lift t 0) as’)[ua/0]
—>5* r ANNFr

o7

proof (rule MI2)
have ¢(0:Ts = T') b Var 0 °° map (At. lift (t[u/i]) 0) as: T’
proof (rule list-app-typel)
show e(0:Ts = T') &+ Var 0 : Ts = T’ by (rule typing. Var) simp
from uT argsT' have e & map (At. t[u/i]) as: TS
by (rule substs-lemma)
hence ¢(0:Ts = T') & map (At. lift t 0) (map (A¢. t{u/d]) as) : Ts
by (rule lift-types)
thus e(0:Ts = T & map (A¢. lift (t[u/d]) 0) as: Ts
by (simp-all add: o-def)
qed
with asred show €(0:Ts = T') & Var 0 °° map (A\t. lift t 0) as’: T’
by (rule subject-reduction’)
from argT uT refl have e - alu/i] : T'" by (rule subst-lemma)
with vT’ have e b u ° a[u/i] : Ts = T' by (rule typing.App)
with wared’ show e b ua : Ts = T' by (rule subject-reduction’)
qed
then obtain r where rred: (Var 0 °° map (At. lift t 0) as’)[ua/0] —p* r
and rf: NF r by iprover
from asred have
(Var 0 °° map (A¢t. lift (t[u/d]) 0) as)[u ® alu/i]/0] —g*
(Var 0 °° map (At. lift t 0) as”)[u ° a[u/i]/0]
by (rule subst-preserves-beta’)
also from uared’ have (Var 0 °° map (At. lift t 0) as’)[u ° a[u/i]/0] —p*
(Var 0 °° map (At. lift t 0) as)[ua/0] by (rule subst-preserves-beta2’)
also note rred
finally have (Var 0 °° map (At. lift (t[u/7]) 0) as)[u ° alu/i]/0] —p* T .
with rnf Cons eq show ?thesis
by (simp add: o-def) iprover
qed
next
assume neq: T % i
from App have listall 7R ts by (iprover dest: listall-conj2)
with uNF uT argsT
have 3 ts". Vj. Var j °° map (M. t{u/i]) ts —p* Varj°° ts’ A
NF (Var j °° ts') (is I ts’. Zex ts')
by (rule norm-list [of At. t, simplified])
then obtain ts’ where NF: ?ex ts' ..
from nat-le-dec show ?thesis
proof
assume { < T
with NF show ?thesis by simp iprover
next
assume — (i < z)
with NF neq show ?thesis by (simp add: subst-Var) iprover
qed
qed
next
case (Abs rel T'1 ul il)

o8

assume absT: e(i:T) - Absr: T’
then obtain R S where e(0:R)(Suc i:T) + r: S by (rule abs-typeE) simp
moreover have NF (lift u 0) using <NF w by (rule lift-NF)
moreover have e(0:R) F lift u 0 : T using uT by (rule lift-type)
ultimately have 3¢. r[lift u 0/Suc i] —g* t' A NF t' by (rule Abs)
thus 3¢’ Abs ru/i] —g* t' N NF t’
by simp (iprover intro: rtrancl-beta-Abs NF.Abs)
}

qed
qed

— A computationally relevant copy of e - ¢ : T
inductive rtyping :: (nat = type) = dB = type = bool («-tg -: - [50, 50, 50]
50)
where
Var:ex =T = ebg Varx: T
| Abs: e(0:T)Fpt: U= etpr Abst: (T = U)
| App: ebrs: T=U=ctrpt: T=ebr(s°t): U

lemma rtyping-imp-typing: etFp t: T = ek t: T
apply (induct set: rtyping)
apply (erule typing. Var)
apply (erule typing.Abs)
apply (erule typing.App)
apply assumption
done

theorem type-NF':
assumes et t: T
shows 3t". t —g* t' A NF t' using assms
proof induct
case Var
show ?case by (iprover intro: Var-NF)
next
case Abs
thus ?case by (iprover intro: rtrancl-beta-Abs NF'.Abs)
next
case (App e s T U t)
from App obtain s’ t’ where
sred: s —3* s’ and NF s’
and tred: t —g* t' and tNF: NF t’ by iprover
have Ju. (Var 0 ° lift t' 0)[s’/0] —p* u AN NF u
proof (rule subst-type-NF')
have NF (lift t' 0) using tNF by (rule lift-NF)
hence listall NF [lift t' 0] by (rule listall-cons) (rule listall-nil)
hence NF (Var 0 °° [lift t' 0]) by (rule NF.App)
thus NF (Var 0 ° lift t' 0) by simp

99

show e¢(0:T = U) & Var 0 ° liftt' 0 : U
proof (rule typing.App)
show e¢(0:T = U)F Var 0 : T = U
by (rule typing. Var) simp
from tred have et t': T
by (rule subject-reduction’) (rule rtyping-imp-typing, rule App.hyps)
thus e(0:T = U) - liftt’ 0 : T
by (rule lift-type)
qed
from sred show et s': T = U
by (rule subject-reduction’) (rule rtyping-imp-typing, rule App.hyps)
show NF' s’ by fact
qed
then obtain u where ured: s’ ° t' —3* u and unf: NF u by simp iprover
from sred tred have s ° t —g* s’ ° t’ by (rule rtrancl-beta-App)
hence s ° t —g* u using ured by (rule rtranclp-trans)
with unf show ?case by iprover
qed

13.2 Extracting the program

declare NF.induct [ind-realizer]

declare rtranclp.induct [ind-realizer irrelevant)

declare rtyping.induct [ind-realizer]

lemmas [eztraction-expand] = conj-assoc listall-cons-eq subst-all equal-alll

extract type-NF

lemma rtranclR-rtrancl-eq: rtranclpR r a b = r** a b
proof
show rtranclpR ra b = r** a b
apply (erule rtranclpR.induct)
apply (rule rtranclp.rtrancl-refl)
apply (metis rtranclp.rtrancl-into-rtrancl)
done
show r** a b = rtranclpR r a b
apply (erule rtranclp.induct)
apply (rule rtranclpR.rtrancl-refl)
apply (metis rtranclpR.rtrancl-into-rtrancl)
done
qged

lemma NFR-imp-NF: NFR nft — NF' t
apply (erule NFR.induct)
apply (rule NF.intros)
apply (simp add: listall-def)
apply (erule NF.intros)
done

The program corresponding to the proof of the central lemma, which per-

60

subst-type-NF =
Az za xb zc xd ze H Ha.
type-induct-P xc
(Az H2 H2a za zaa zb zc zd H.
compat-NFT .rec-split-NF'T default
(Ats za zaa r b zc xd ze H.
var-app-typesE-P (zb(ze:z)) za ts
(AUs--. case nat-eq-dec za ze of
Left = case ts of [| = (zd, H)
| a # list =
case Us-- of [| = default
| TV-- # Ts-- =
let (z, y) =
norm-list (\t. lift t 0) zd xb ze list Ts--
(At. lift-NF 0) H
(listall-conj2-P-Q list (Ai. (zaa (Suc ©), r (Suc 7))));
(za, ya) = snd (zaa 0, r 0) zb T''-- zd ze H;
(zd, yb) = app-Var-NF 0 (lift-NF 0 H);
(za, ya) =
H2 T"-- (Ts-- = zc) zd zb (Ts-- = zc) za 0 yb ya;
(z, y) =
H2a T'"-- (Ts-- = xzc) (dB.Var 0 °° map (At. lift t 0) z)
zb zc za 0 (y 0) ya

in (z, y)
| Right =
let (z, y) =
let (z, y) =

norm-list (\t. t) zd zb ze ts Us-- (Ax H. H) H
(listall-conj2-P-Q ts (Az. (zaa z, T 2)))
in (z, \z. y z)
in case nat-le-dec ze xa of
Left = (dB.Var (za — Suc 0) °° z, y (za — Suc 0))
| Right = (dB.Var za °° z, y za)))
(At z v za zaa zb xc H.
abs-typeE-P zaa
(AU V. let (z, y) =
let (z, y) = r (Aa. (za(0:U)) a) V (lift zb 0) (Suc zc) (lift-NF 0 H)
in (dB.Abs z, NFT.Abs z y)
in (2,)))
H (Ma. zaa a) zb zc zd)
z za zd ze zb H Ha

Figure 1: Program extracted from subst-type-NF

61

subst-Var-NF =
Az za H.
compat-NF T .rec-split-NF'T default
(Ats z za r zb zc.
case nat-eq-dec x xc of
Left = NFT.App (map (At. t[dB.Var zb/xzc]) ts) zb
(subst-terms-NF ts xb xc (listall-conjl-P-Q ts (Az. (za z, 1 2)))
(listall-conj2-P-Q ts (Az. (za z, r 2))))
| Right =
case nat-le-dec zc © of
Left = NFT.App (map (At. t[dB.Var zb/zc]) ts) (x — Suc 0)
(subst-terms-NF ts zb zc (listall-conjl-P-Q ts (Az. (za z, T 2)))
(listall-conj2-P-Q ts (Az. (za z, r 2))))
| Right =
NFT.App (map (At. t[dB.Var zb/zc]) ts) z
(subst-terms-NF ts b zc (listall-conj1-P-Q ts (Az. (za z, r 2)))
(listall-conj2-P-Q ts (Az. (za z, T 2)))))
(At z r za zaa. NFT.Abs (t[dB.Var (Suc za)/Suc zaa)) (r (Suc za) (Suc zaa))) H = za

app-Var-NF =
Az. compat-NFT .rec-split-NF'T default
(Ats za zaa 7.
(dB.Var za °° (ts Q [dB.Var z]),
NFT.App (ts @ [dB.Var z]) za
(snd (listall-app-P ts)
(listall-conj1-P-Q ts (Az. (zaa z, T 2)),
listall-cons-P (Var-NF z) listall-nil-eq-P))))
(At za r. let (xb, y) = rin (t[dB.Var z/0], subst-Var-NF x 0 za))

lift-NF =
Az H. compat-NFT .rec-split-NFT default
(Ats z za 7 zb.
case nat-le-dec z zb of
Left = NFT.App (map (At. lift t ab) ts) «
(lift-terms-NF ts xb (listall-conj1-P-Q ts (Az. (za z, T 2)))
(listall-conj2-P-Q ts (Az. (za z, r 2))))
| Right =
NFT.App (map (At. lift ¢ zb) ts) (Suc z)
(lift-terms-NF ts zb (listall-conj1-P-Q ts (Az. (za z, T 2)))
(listall-conj2-P-Q ts (Az. (za z, 7 2)))))
(At & 7 za. NFT.Abs (lift t (Suc za)) (r (Suc za))) H z

type-NF =
MH. rec-rtypingT (Ae z T. (dB.Var z, Var-NF z))
Ae Tt Uxr. let (z, y) = rin (dB.Abs z, NFT.Abs z y))
(Aes T Utxzar ra.
let (2, 3) = r; (a6, ya) = 7o
(z,9) =
let (z, y) =
subst-type-NF (dB.Var 0 ° lift za 0) e 0 (T = U) Uz
(NFT.App [lift za 0] 0 (listall-cons-P (lift-NF 0 ya) listall-nil-P)) y
in (z, y)
in (z, y))
H

Figure 2: Program extracted from lemmas and main theorem

62

forms substitution and normalization, is shown in Figure 1. The correctness
theorem corresponding to the program subst-type-NF is

Nz. NFR z t =
e(tU)Ft: T =
(Aza. NFR za v =
eFu: U=
tlu/i] —p* fst (subst-type-NEF t e i U T u x za) A
NFR (snd (subst-type-NF t e i U T u x xa)) (fst (subst-type-NF t e i U
T vt xa)))

where NF'R is the realizability predicate corresponding to the datatype NF'T,
which is inductively defined by the rules

63

Vi<length ts. NFR (nfs i) (ts ! i) = NFR (NFT.App ts x nfs) (dB.Var z °° ts)
NFR nft = NFR (NFT.Abs t nf) (dB.Abs t)

The programs corresponding to the main theorem type-NF, as well as to
some lemmas, are shown in Figure 2. The correctness statement for the
main function type-NF is

Nz. rtypingR v et T = t —5* fst (type-NF z) A NFR (snd (type-NF z)) (fst
(type-NF z))

where the realizability predicate rtypingR corresponding to the computa-
tionally relevant version of the typing judgement is inductively defined by
the rules

er = T = rtypingR (rtypingT.Var e x T) e (dB.Var z) T

rtypingR ty (e(0:T)) t U = rtypingR (rtypingT.Abs e Tt U ty) e (dB.Abs t) (T
= U)

rtypingR ty e s (T = U) =

rtypingR ty’ e t T = rtypingR (rtypingT.App e s T Ut tyty) e (s°t) U

13.3 Generating executable code

instantiation NFT :: default
begin

definition default = Dummy ()
instance ..
end

instantiation dB :: default
begin

definition default = dB.Var 0
instance ..
end

instantiation prod :: (default, default) default
begin

definition default = (default, default)
instance ..

end

64

instantiation list :: (type) default
begin

definition default = ||
instance ..
end

instantiation fun :: (type, default) default
begin

definition default = (A\z. default)
instance ..
end

definition int-of-nat :: nat = int where
int-of-nat = of-nat

The following functions convert between Isabelle’s built-in term datatype
and the generated dB datatype. This allows to generate example terms
using Isabelle’s parser and inspect normalized terms using Isabelle’s pretty
printer.

ML ¢
val nat-of-integer = @Q{code nat} o @{code int-of-integer};

fun dBtype-of-typ (Type (fun, [T, U])) =
@{code Fun} (dBtype-of-typ T, dBtype-of-typ U)
| dBtype-of-typ (TFree (s, -)) = (case raw-explode s of
[/, a] => @{code Atom} (nat-of-integer (ord a — 97))
| - => error dBtype-of-typ: variable name)
| dBtype-of-typ - = error dBtype-of-typ: bad type;

fun dB-of-term (Bound i) = @{code dB.Var} (nat-of-integer i)
| dB-of-term (t $ u) = @Q{code dB.App} (dB-of-term t, dB-of-term u)
| dB-of-term (Abs (-, -, t)) = @Q{code dB.Abs} (dB-of-term t)
| dB-of-term - = error dB-of-term: bad term,

fun term-of-dB Ts (Type (fun, [T, U])) (@{code dB.Abs} dBt) =
Abs (x, T, term-of-dB (T :: Ts) U dBt)
| term-of-dB Ts - dBt = term-of-dB’ Ts dBt
and term-of-dB’ Ts (Q{code dB.Var} n) = Bound (Q{code integer-of-nat} n)
| term-of-dB’ Ts (@{code dB.App} (dBt, dBu)) =
let val t = term-of-dB’ Ts dBt
in case fastype-ofl (Ts, t) of
Type (fun, [T, -]) => t $ term-of-dB Ts T dBu

65

| - => error term-of-dB: function type expected
end

| term-of-dB’ - - = error term-of-dB: term not in normal form,

fun typing-of-term Ts e (Bound i) =
@{code Var} (e, nat-of-integer i, dBtype-of-typ (nth Ts i))
| typing-of-term Ts e (t $ u) = (case fastype-of1 (Ts, t) of
Type (fun, [T, U]) => @{code App} (e, dB-of-term t,
dBtype-of-typ T, dBtype-of-typ U, dB-of-term u,
typing-of-term Ts e t, typing-of-term Ts e u)
| - => error typing-of-term: function type expected)
| typing-of-term Ts e (Abs (-, T, t)) =
let val dBT = dBtype-of-typ T
in @{code Abs} (e, dBT, dB-of-term t,
dBtype-of-typ (fastype-of1 (T :: Ts, t)),
typing-of-term (T :: Ts) (Q{code shift} e Q{code 0::nat} dBT) t)

end
| typing-of-term - - - = error typing-of-term: bad term;
fun dummyf - = error dummy;

val ctl = @{cterm %f. (%f x. [(f (f2))) (%f = f (f (f (f) /)};
val (dB1, -) = @Q{code type-NF'} (typing-of-term [| dummyf (Thm.term-of ctl));
val ct1’ = Thm.cterm-of Q{context} (term-of-dB [| (Thm.typ-of-cterm ct1) dB1);

val ct2 = @{cterm %f x. (%ox. fz x) (%z. fzx) (%z. fzz) (%z. fzz) (%z. f
zz) (%r. fzz))}

val (dB2, -) = @Q{code type-NF'} (typing-of-term [| dummyf (Thm.term-of ct2));
val ct2’ = Thm.cterm-of @Q{context} (term-of-dB [| (Thm.typ-of-cterm ct2) dB2);
)

end

References

[1] F. Joachimski and R. Matthes. Short proofs of normalization for the
simply-typed A-calculus, permutative conversions and Gédel’s T. Archive
for Mathematical Logic, 42(1):59-87, 2003.

[2] R. Loader. Notes on Simply Typed Lambda Calculus. Technical Report
ECS-LFCS-98-381, Laboratory for Foundations of Computer Science,
School of Informatics, University of Edinburgh, 1998.

[3] R. Matthes. Lambda Calculus: A Case for Inductive Definitions. In
Lecture notes of the 12th European Summer School in Logic, Language
and Information (ESSLLI 2000). School of Computer Science, University
of Birmingham, August 2000.

66

[4] M. Takahashi. Parallel reductions in A-calculus. Information and Com-
putation, 118(1):120-127, April 1995.

67

	Basic definitions of Lambda-calculus
	Lambda-terms in de Bruijn notation and substitution
	Beta-reduction
	Congruence rules
	Substitution-lemmas
	Equivalence proof for optimized substitution
	Preservation theorems

	Abstract commutation and confluence notions
	Basic definitions
	Basic lemmas
	Church-Rosser
	Newman's lemma

	Parallel reduction and a complete developments
	Parallel reduction
	Inclusions
	Misc properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 par-beta
	Confluence (directly)
	Complete developments
	Confluence (via complete developments)

	Eta-reduction
	Definition of eta-reduction and relatives
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eta, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 subst and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 free
	Confluence of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eta
	Congruence rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eta*
	Commutation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 beta and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eta
	Implicit definition of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eta
	Eta-postponement theorem

	Application of a term to a list of terms
	Simply-typed lambda terms
	Environments
	Types and typing rules
	Some examples
	Lists of types
	n-ary function types
	Lifting preserves well-typedness
	Substitution lemmas
	Subject reduction
	Alternative induction rule for types

	Lifting an order to lists of elements
	Lifting beta-reduction to lists
	Inductive characterization of terminating lambda terms
	Terminating lambda terms
	Every term in 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 IT terminates
	Every terminating term is in 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 IT

	Strong normalization for simply-typed lambda calculus
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 IT
	Well-typed substitution preserves termination
	Well-typed terms are strongly normalizing

	Inductive characterization of lambda terms in normal form
	Terms in normal form
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 NF

	Standardization
	Standard reduction relation
	Leftmost reduction and weakly normalizing terms

	Weak normalization for simply-typed lambda calculus
	Main theorems
	Extracting the program
	Generating executable code

