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1 Basic definitions of Lambda-calculus

theory Lambda
imports Main
begin

declare [[syntaz-ambiguity-warning = false]]

1.1 Lambda-terms in de Bruijn notation and substitution

datatype dB =
Var nat
| App dB dB (infixl <°» 200)
| Abs dB

primrec
lift :: [dB, nat] => dB
where
lift (Var i) k = (if i < k then Var i else Var (i + 1))
| lift (s°t) k=1Uliftsk°lfttk
| lift (Abs s) k = Abs (lift s (k + 1))

primrec
subst :: [dB, dB, nat] => dB (s-[-'/-]> [800, 0, 0] 300)
where
subst-Var: (Var i)[s/k] =
(if k < ithen Var (i — 1) else if i = k then s else Var i)
| subst-App: (t ° u)[s/k] = t[s/k] ° u[s/k]
| subst-Abs: (Abs t)[s/k] = Abs (t[lift s 0 | k+1])

declare subst-Var [simp del]

Optimized versions of subst and lift.

primrec
liftn :: [nat, dB, nat] => dB
where
liftn n (Var i) k = (if ¢ < k then Var i else Var (i + n))
| liftnn (s°t) k=liftnnsk°liftnntk
| liftn n (Abs s) k = Abs (liftn n s (k + 1))

primrec
substn :: [dB, dB, nat] => dB
where
substn (Var i) s k =
(if k < ithen Var (i — 1) else if i = k then liftn k s 0 else Var )
| substn (t ° u) s k = substn t s k ° substn u s k
| substn (Abs t) s k = Abs (substn t s (k + 1))



1.2 Beta-reduction

inductive beta :: [dB, dB] => bool (infixl <—g> 50)
where
beta [simp, introl]: Abs s ° t —g s[t/0]
| appL [simp, introl]: s gt = s°u —g t°u
| appR [simp, introl]: s 5t = u°s =g u’t
| abs [simp, introl]: s —g t => Abs s —3 Abs t

abbreviation
beta-reds :: [dB, dB] => bool (infixl <—3* 50) where
s =% t == beta™ st

inductive-cases beta-cases [elim!]:
Var i —g t
Abs r —g s
5°t—gu

declare if-not-P [simp] not-less-eq [simp]
— don’t add r-into-rtranclintro!]

1.3 Congruence rules

lemma rtrancl-beta-Abs [introl]:
s —p* s’ = Abs s =" Abs s’
by (induct set: rtranclp) (blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-beta-AppL:
s—p* s = s°t—op" st
by (induct set: rtranclp) (blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-beta-AppR:
t =gt = s°t =" s°t
by (induct set: rtranclp) (blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-beta-App [intro]:
[s =p* sit =»p* t] = s°t —=p"s'°t
by (blast intro: rtrancl-beta-AppL rtrancl-beta-AppR intro: rtranclp-trans)

1.4 Substitution-lemmas
lemma subst-eq [simpl: (Var k)[u/k] = u
by (simp add: subst-Var)

lemma subst-gt [simp]: i < j = (Var j)[u/i] = Var (j — 1)
by (simp add: subst-Var)

lemma subst-lt [simp]: § < i = (Var j)[u/i] = Varj
by (simp add: subst-Var)



lemma [lift-lift:
i< k+ 1= Ulft (liftti) (Suck)=1lft (Lifttk)q
by (induct t arbitrary: i k) auto

lemma lift-subst [simp]:
j<i+ 1= Uft(t[s/j]) i = (lftt i+ 1)) [lift si/ j]
by (induct t arbitrary: i j s)
(simp-all add: diff-Suc subst-Var lift-lift split: nat.split)

lemma [lift-subst-lt:
i <j+ 1= Uft (t[s/f]) i = (lLift t i) [lift si /) j+ 1]
by (induct t arbitrary: i j s) (simp-all add: subst-Var lift-lift)

lemma subst-lift [simp):
(Lift t k)[s/k] =t
by (induct t arbitrary: k s) simp-all

lemma subst-subst:
i <j+ 1= tllift vi/ Sucjllulv/j/i] = tlu/i][v/]]
by (induct t arbitrary: i j u v)
(simp-all add: diff-Suc subst-Var lift-lift [symmetric] lift-subst-lt
split: nat.split)

1.5 Equivalence proof for optimized substitution

lemma liftn-0 [simp)]: liftn 0t k = ¢
by (induct t arbitrary: k) (simp-all add: subst-Var)

lemma liftn-lift [simp]: liftn (Suc n) t k = lift (liftn n t k) k
by (induct t arbitrary: k) (simp-all add: subst-Var)

lemma substn-subst-n [simp]: substn t s n = tlliftn n s 0 / n]
by (induct t arbitrary: n) (simp-all add: subst-Var)

theorem substn-subst-0: substn t s 0 = t[s/0]
by simp

1.6 Preservation theorems

Not used in Church-Rosser proof, but in Strong Normalization.

theorem subst-preserves-beta [simpl:
r—g s = r[t/i] —p s[t/q]
by (induct arbitrary: t i set: beta) (simp-all add: subst-subst [symmetric])

theorem subst-preserves-beta” r —g* s = r[t/i] —5* s[t/1]
proof (induct set: rtranclp)

case base

then show ?case



by (iprover intro: rtrancl-refl)
next
case (step y 2)
then show ?Zcase
by (iprover intro: rtranclp.simps subst-preserves-beta)
qed

theorem lift-preserves-beta [simp):
r—gs=lift ri =g liftsi
by (induct arbitrary: i set: beta) auto

theorem lift-preserves-beta”: r —g* s = lift r i —g* lift s i
proof (induct set: rtranclp)
case base
then show ?case
by (iprover intro: rtrancl-refl)
next
case (step y 2)
then show ?case
by (iprover intro: lift-preserves-beta rtranclp.simps)
qed

theorem subst-preserves-beta?2 [simp|: v —g s = t[r/i] —3* t[s/{]
proof (induct t arbitrary: r s ©)
case (Var z)
then show ?Zcase
by (simp add: subst-Var r-into-rtranclp)
next
case (App t1 t2)
then show ?case
by (simp add: rtrancl-beta-App)
next
case (Abs t)
then show ?case by (simp add: rtrancl-beta-Abs)
qed

theorem subst-preserves-beta2”: r —5* s = t[r/i] —5* t[s/1]
proof (induct set: rtranclp)

case base

then show Zcase by (iprover intro: rtrancl-refl)
next

case (step y 2)

then show ?case

by (iprover intro: rtranclp-trans subst-preserves-beta?2)

qed

end



2 Abstract commutation and confluence notions

theory Commutation
imports Main
begin

declare [[syntaz-ambiguity-warning = false]]

2.1 Basic definitions

definition
square :: ['a => 'a => bool, 'a => 'a => bool, 'a => 'a => bool, 'a => 'a =>
bool] => bool where
square RS T U =
Vzy. Rry——> W z.Szz——>Fu TyuA Uzu)))

definition
commute :: ['a => 'a => bool, 'a => 'a => bool] => bool where
commute R S = square R S S R

definition
diamond :: (‘a => 'a => bool) => bool where
diamond R = commute R R

definition
Church-Rosser :: ('a => 'a => bool) => bool where
Church-Rosser R =
(Vzy (sup R (RTPH)* 2y — (2. R** 22 A R*™* y 2))

abbreviation
confluent :: (‘a => 'a => bool) => bool where
confluent R == diamond (R**)

2.2 Basic lemmas

square

lemma square-sym: square R S T U ==> square SR U T
apply (unfold square-def)
apply blast
done

lemma square-subset:
[| square RS T U; T < T'|] ==> square RS T' U
apply (unfold square-def)
apply (blast dest: predicate2D)
done

lemma square-reficl:
[| square R ST (R==); S < T || ==> square (R==) S T (R=7)



apply (unfold square-def)
apply (blast dest: predicate2D)
done

lemma square-rtrancl:
square R S S T ==> square (R**) S S (T**)
apply (unfold square-def)
apply (intro strip)
apply (erule rtranclp-induct)
apply blast
apply (blast intro: rtranclp.rtrancl-into-rtrancl)
done

lemma square-rtrancl-reficl-commute:
square R S (§**) (R==) ==> commute (R**) (S**)
apply (unfold commute-def)
apply (fastforce dest: square-reflcl square-sym [THEN square-rtrancl])
done

commaute

lemma commute-sym: commute R S ==> commute S R
apply (unfold commute-def)
apply (blast intro: square-sym)
done

lemma commute-rtrancl: commute R S ==> commute (R**) (5**)
apply (unfold commute-def)
apply (blast intro: square-rtrancl square-sym)
done

lemma commute-Un:
[| commute R T; commute S T || ==> commute (sup R S) T
apply (unfold commute-def square-def)
apply blast
done

diamond, confluence, and union

lemma diamond-Un:
[| diamond R; diamond S; commute R S || ==> diamond (sup R S)
apply (unfold diamond-def)
apply (blast intro: commute-Un commute-sym)
done

lemma diamond-confluent: diamond R ==> confluent R
apply (unfold diamond-def)
apply (erule commute-rtrancl)
done



lemma square-reficl-confluent:
square R R (R==) (R==) ==> confluent R
apply (unfold diamond-def)
apply (fast intro: square-rtrancl-reflcl-commute elim: square-subset)
done

lemma confluent-Un:
[| confluent R; confluent S; commute (R**) (S**) || ==> confluent (sup R S)
apply (rule rtranclp-sup-rtranclp [THEN subst])
apply (blast dest: diamond-Un intro: diamond-confluent)
done

lemma diamond-to-confluence:
[| diamond R; T < R; R < T** || ==> confluent T
apply (force intro: diamond-confluent
dest: rtranclp-subset [symmetric])
done

2.3 Church-Rosser

lemma Church-Rosser-confluent: Church-Rosser R = confluent R
apply (unfold square-def commute-def diamond-def Church-Rosser-def)
apply (tactic <safe-tac (put-claset HOL-cs context)))
apply (tactic «
blast-tac (put-claset HOL-cs context addls
[@{thm sup-ge2} RS Q@Q{thm rtranclp-mono} RS Q@{thm predicate2D} RS
@{thm rtranclp-trans},
@{thm rtranclp-conversel }, @{thm conversepl },
Q@Q{thm sup-gel} RS Q{thm rtranclp-mono} RS Q{thm predicate2D}]) 1)
apply (erule rtranclp-induct)
apply blast
apply (blast del: rtranclp.rtrancl-refl intro: rtranclp-trans)
done

2.4 Newman’s lemma

Proof by Stefan Berghofer

theorem newman:
assumes wf: wfP (R~171)
and lc: Aabc. Rab= Rac=
Jdd. R**bdANR™*cd
shows Abc. R** a b= R** a0 c =
Jd. R**bdANR*cd
using wf
proof induct
case (less z b ¢)
have zc: R** x ¢ by fact
have zb: R** z b by fact thus ?case
proof (rule converse-rtranclpE)
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assume z = b

with zc have R** b ¢ by simp

thus ?thesis by iprover

next

fix y

assume zy: Rz y

assume yb: R** y b

from xzc show ?thesis

proof (rule converse-rtranclpE)
assume z = ¢
with zb have R** ¢ b by simp
thus ?thesis by iprover

next
fix y’
assume y'c: R** y' ¢
assume zy”" R x y’
with zy have Ju. R** y u A R** y’ u by (rule lc)
then obtain v where yu: R** y u and y’u: R** y’' u by iprover
from zy have R~!=! y z ..
from this and yb yu have 3d. R** b d A R** u d by (rule less)
then obtain v where bv: R** b v and wv: R** u v by iprover
from zy’ have R~171 4/ z ..
moreover from y'u and wv have R** y’ v by (rule rtranclp-trans)
moreover note y’c
ultimately have 3d. R** v d A R** ¢ d by (rule less)
then obtain w where vw: R** v w and cw: R** ¢ w by iprover
from bv vw have R** b w by (rule rtranclp-trans)
with cw show ?thesis by iprover

qed

qed
qed

Alternative version. Partly automated by Tobias Nipkow. Takes 2 minutes
(2002).

This is the maximal amount of automation possible using blast.

theorem newman’:
assumes wf: wfP (R~171)
and lc: Aabc. Rab=— Rac=
3d. R** bd AN R** cd
shows Abc. R** a b= R** 0 ¢c =
3d. R** bd AN R** cd
using wf
proof induct
case (less z b c)
note IH = <Ay bc. [R717 yz; R* y b; R** y (]
= 3d. R** bdANR"* cd
have zc: R** x ¢ by fact
have zb: R** = b by fact
thus ?Zcase

11



proof (rule converse-rtranclpFE)
assume z = b
with zc have R** b ¢ by simp
thus ?thesis by iprover
next
fix y
assume zy: Rz y
assume yb: R** y b
from xzc show ?thesis
proof (rule converse-rtranclpE)
assume = ¢
with zb have R** ¢ b by simp
thus ?thesis by iprover
next
fix y’
assume y’c: R** y' ¢
assume zy” Rz y’
with zy obtain u where u: R** y u R** y' u
by (blast dest: lc)
from yb u y'c show ?thesis
by (blast del: rtranclp.rtrancl-refl
intro: rtranclp-trans
dest: IH [OF conversepl, OF zy| IH [OF conversepl, OF zy'])
qed
qed
qed

Using the coherent logic prover, the proof of the induction step is completely
automatic.

lemma eg-imp-rtranclp: x = y = r** z y
by simp

theorem newman'”:
assumes wf: wfP (R~171)
and lc: N\abc. Rab= Rac=
Jd. R** bd ANR** cd
shows Abec. R** a b = R*™ a ¢c =
dd. R** bd AR cd
using wf
proof induct
case (less z b c)
note IH = <Ay bc. [R717 yz; R** y b; R** y (]
= 3d. R*™* bdANR"* cd
show ?Zcase
by (coherent
(R** z ¢ «(R** b
refl [where ‘a='a] sym
eq-imp-rtranclp
r-into-rtranclp [of R]

12



rtranclp-trans

le IH [OF conversepl]

converse-rtranclpE)
qed

end

3 Parallel reduction and a complete developments

theory ParRed imports Lambda Commutation begin

3.1 Parallel reduction

inductive par-beta :: [dB, dB] => bool (infixl «(=>) 50)
where
var [simp, introl]: Var n => Var n
| abs [simp, introl]: s => t ==> Abs s => Abs ¢
| app [simp, introl]: [| s => sy t =>t' || ==> st =>s"°t’
| beta [simp, introl]: [| s => s/} t => t' || ==> (Abs s) ° t => s'[t'/0]

inductive-cases par-beta-cases [elim!]:
Var n =>t
Abs s => Abs t
(Abs s) °t =>u
s°t=>u
Abs s =>t

3.2 Inclusions

beta C par-beta C beta™*

lemma par-beta-varL [simp]:
(Var n =>t) = (t = Var n)
by blast

lemma par-beta-refl [simp]: t => ¢
by (induct t) simp-all

lemma beta-subset-par-beta: beta <= par-beta
apply (rule predicate2l)
apply (erule beta.induct)
apply (blast intro!: par-beta-refl)+
done

lemma par-beta-subset-beta: par-beta < beta™*
apply (rule predicate2l)
apply (erule par-beta.induct)
apply blast
apply (blast del: rtranclp.rtrancl-refl intro: rtranclp.rtrancl-into-rtrancl)+

13



— rtrancl-refl complicates the proof by increasing the branching factor
done

3.3 Misc properties of par-beta

lemma par-beta-lift [simp):
t=>t'= lifttn=>1lftt'n
by (induct t arbitrary: t' n) fastforce+

lemma par-beta-subst:
s=>s' =t =>t'= t[s/n] => t'[s'/n]
apply (induct t arbitrary: s s’ t' n)
apply (simp add: subst-Var)
apply (erule par-beta-cases)
apply simp
apply (simp add: subst-subst [symmetric])
apply (fastforce introl: par-beta-lift)
apply fastforce
done

3.4 Confluence (directly)

lemma diamond-par-beta: diamond par-beta
apply (unfold diamond-def commute-def square-def)
apply (rule impI [THEN alll [THEN alll]])
apply (erule par-beta.induct)
apply (blast introl: par-beta-subst)+
done

3.5 Complete developments

fun
cd :: dB => dB
where
ed (Var n) = Varn
| ecd (Varn©°t)=Varn®cdt
| cd ((s1°s2)°t)=cd(sl°s2)°cdt
| cd (Abs u° t) = (cd u)cd t/0]
| cd (Abs s) = Abs (cd s)

A~ N S

lemma par-beta-cd: s => t = t => cd s
apply (induct s arbitrary: t rule: cd.induct)
apply auto
apply (fast intro!: par-beta-subst)
done

3.6 Confluence (via complete developments)

lemma diamond-par-beta2: diamond par-beta
unfolding diamond-def commute-def square-def

14



by (blast intro: par-beta-cd)

theorem beta-confluent: confluent beta
by (rule diamond-par-beta?2 diamond-to-confluence
par-beta-subset-beta beta-subset-par-beta)-+

end

4 Eta-reduction

theory Fta imports ParRed begin

4.1 Definition of eta-reduction and relatives

primrec
free :: dB => nat => bool
where
free (Var j) i = (j = i)
| free (s ° t) i = (free s i V free t 1)
| free (Abs s) i = free s (i + 1)

inductive
eta :: [dB, dB] => bool (infixl <—,» 50)
where
eta [simp, intro]: - free s 0 ==> Abs (s ° Var 0) —, s[dummy/0]
| appL [simp, intro]: s =, t ==>s°u =, t°u
| appR [simp, intro]: s =, t ==>u°s =, u°t
| abs [simp, intro): s —, t ==> Abs s —, Abst

abbreviation
eta-reds :: [dB, dB] => bool (infixl «(—,*> 50) where
s =" t==cta"" st

abbreviation
eta-red0 :: [dB, dB] => bool (infixl <—,~) 50) where
§—p- t==c¢la™" st

inductive-cases eta-cases [elim!]:
Abs s =y 2
§°t—=pu
Var i —, t

4.2 Properties of eta, subst and free

lemma subst-not-free [simpl: = free s i = s[t/i] = s[u/1]
by (induct s arbitrary: i t u) (simp-all add: subst-Var)

lemma free-lift [simp]:
free (lift tk)i= (i <kANfreetiVk<iAfreet(i—1))

15



apply (induct t arbitrary: i k)
apply (auto cong: conj-cong)
done

lemma free-subst [simp]:
free (s[t/k]) i =
(free s k A free t i V free s (if i < k then i else i + 1))

apply (induct s arbitrary: i k t)

prefer 2

apply simp

apply blast

prefer 2

apply simp
apply (simp add: diff-Suc subst-Var split: nat.split)
done

lemma free-eta: s —, t ==> free t i = free s i
by (induct arbitrary: i set: eta) (simp-all cong: conj-cong)

lemma not-free-eta:
[| s =yt freesi|] ==> - freeti
by (simp add: free-eta)

lemma eta-subst [simp]:
§ =y t ==> s[u/i] —, tlu/i]
by (induct arbitrary: u i set: eta) (simp-all add: subst-subst [symmetric])

theorem lift-subst-dummy: — free s { = lift (s|dummy/i]) i = s
by (induct s arbitrary: i dummy) simp-all

4.3 Confluence of eta

lemma square-eta: square eta eta (eta==) (eta™")
apply (unfold square-def id-def)
apply (rule impl [THEN alll [THEN alll]])
apply (erule eta.induct)
apply (slowsimp intro: subst-not-free eta-subst free-eta [THEN iffD1])
apply safe
prefer 5
apply (blast intro!: eta-subst intro: free-eta [THEN iffD1])
apply blast+
done

theorem eta-confluent: confluent eta
apply (rule square-eta [THEN square-reficl-confluent])
done

4.4 Congruence rules for eta*

lemma rtrancl-eta-Abs: s —,* s’ ==> Abs s —,* Abs s’

16



by (induct set: rtranclp)
(blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-eta-AppL: s —," s' ==>s°t —,* s’ ° 1
by (induct set: rtranclp)
(blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-eta-AppR: t —,* t' ==>s°t =, s ° t’
by (induct set: rtranclp) (blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-eta-App:
| s = s/t =" t|]==>s°t—=,"s"°t
by (blast introl: rtrancl-eta-AppL rtrancl-eta-AppR intro: rtranclp-trans)

4.5 Commutation of beta and eta

lemma free-beta:
s =gt ==> freet i = free s i
by (induct arbitrary: i set: beta) auto

lemma beta-subst [intro]: s =5 t ==> s[u/i] =3 t{u/1]
by (induct arbitrary: u i set: beta) (simp-all add: subst-subst [symmetric])

lemma subst-Var-Suc [simp]: t[Var i/i] = t[Var(i)/i + 1]
by (induct t arbitrary: ©) (auto elim!: linorder-neqE simp: subst-Var)

lemma eta-lift [simp|: s =, t ==> lift s i —, lift t i
by (induct arbitrary: i set: eta) simp-all

lemma rtrancl-eta-subst: s —, t = u[s/i| —,* u[t/1i]
apply (induct u arbitrary: s t i)
apply (simp-all add: subst-Var)
apply blast
apply (blast intro: rtrancl-eta-App)
apply (blast intro!: rtrancl-eta-Abs eta-lift)
done

lemma rtrancl-eta-subst”:
fixes st :: dB
assumes eta: § —,* 1t
shows s[u/i] —,* t[u/i] using eta
by induct (iprover intro: eta-subst)+

lemma rtrancl-eta-subst’”:
fixes st :: dB
assumes eta: § —,* 1t
shows u[s/i] —,* u[t/i] using eta
by induct (iprover intro: rtrancl-eta-subst rtranclp-trans)+
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lemma square-beta-eta: square beta eta (eta™) (beta==)

apply (unfold square-def)

apply (rule impI [THEN alll [THEN alll)])

apply (erule beta.induct)
apply (slowsimp intro: rtrancl-eta-subst eta-subst)
apply (blast intro: rtrancl-eta-AppL)

apply (blast intro: rtrancl-eta-AppR)

apply simp

apply (slowsimp intro: rtrancl-eta-Abs free-beta
iff del: dB.distinct simp: dB.distinct)

done

lemma confluent-beta-eta: confluent (sup beta eta)
apply (assumption |
rule square-rtrancl-reficl-commute confluent-Un
beta-confluent eta-confluent square-beta-eta)+
done

4.6 Implicit definition of eta
Abs (lift s 0 ° Var 0) —y s

lemma not-free-iff-lifted:
(= free s i) = (3t. s = lift t ©)
apply (induct s arbitrary: ©)
apply simp
apply (rule iffT)
apply (erule linorder-neqE)
apply (rename-tac nat a, rule-tac x = Var nat in ezl)
apply simp
apply (rename-tac nat a, rule-tac x = Var (nat — 1) in exl)
apply simp
apply clarify
apply (rule notE)
prefer 2
apply assumption
apply (erule thin-rl)
apply (case-tac t)
apply simp
apply simp
apply simp
apply simp
apply (erule thin-rl)
apply (erule thin-rl)
apply (rule iffI)
apply (elim conjE exFE)
apply (rename-tac ul u2)
apply (rule-tac z = ul ° u2 in exl)
apply simp
apply (erule exFE)
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apply (erule rev-mp)
apply (case-tac t)
apply simp
apply simp
apply blast
apply simp
apply simp
apply (erule thin-rl)
apply (rule iffT)
apply (erule exE)
apply (rule-tac x = Abs t in exl)
apply simp
apply (erule exFE)
apply (erule rev-mp)
apply (case-tac t)
apply simp
apply simp
apply simp
apply blast
done

theorem ezplicit-is-implicit:
(Vs u. (= free s 0) ——> R (Abs (s ° Var 0)) (s[u/0])) =
(Vs. R (Abs (lift s 0 ° Var 0)) s)
by (auto simp add: not-free-iff-lifted)

4.7 Eta-postponement theorem

Based on a paper proof due to Andreas Abel. Unlike the proof by Masako
Takahashi [4], it does not use parallel eta reduction, which only seems to
complicate matters unnecessarily.

theorem eta-case:
fixes s :: dB
assumes free: = free s 0
and s: s[dummy/0] => u
shows 3t Abs (s ® Var 0) =>t' At/ —=," u
proof —
from s have lift (s[dummy/0]) 0 => lift u 0 by (simp del: lift-subst)
with free have s => lift u 0 by (simp add: lift-subst-dummy del: lift-subst)
hence Abs (s ° Var 0) => Abs (lift w 0 ° Var 0) by simp
moreover have — free (lift w 0) 0 by simp
hence Abs (lift w 0 ° Var 0) —, lift v 0[dummy/ 0]
by (rule eta.eta)
hence Abs (lift uw 0 ° Var 0) —,* u by simp
ultimately show “thesis by iprover
qed

theorem eta-par-beta:
assumes st: s —, ¢
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and tu: t => u
shows 3t". s => t' A t' —,* u using tu st
proof (induct arbitrary: s)
case (var n)
thus ?case by (iprover intro: par-beta-refl)
next
case (abs s’ t)
note abs’ = this
from «s —, Abs s’» show ?case
proof cases
case (eta s" dummy)
from abs have Abs s’ => Abs t by simp
with eta have s'[dummy/0] => Abs t by simp
with <= free s’ 0> have 3t". Abs (s” ° Var 0) => t' AN t' —,* Abs t
by (rule eta-case)
with eta show ?thesis by simp
next
case (abs )
from «r —, s"
obtain t’ where r: r => t’ and t": t' —,* t by (iprover dest: abs’)
from r have Abs r => Abs t’ ..
moreover from ¢’ have Abs t' —,* Abs t by (rule rtrancl-eta-Abs)
ultimately show ?thesis using abs by simp iprover
qed
next
case (app v u'tt’)
from ¢s —, u ° t» show Zcase
proof cases
case (eta s’ dummy)
from app have u ° t => u by simp
with eta have s'[dummy/0] => u'° t' by simp
with (- free s’ 0> have 3r. Abs (s’ ° Var 0) =>r A1 =" u'°t’
by (rule eta-case)
with eta show ?thesis by simp
next
case (applL s’)
from «s" —, w
obtain r where s s’ => r and r: r —,* u’ by (iprover dest: app)
from s’ and app have s’ ° ¢t => r ° t' by simp
moreover from r have r ° t' —,* v’ ° t’ by (simp add: rtrancl-eta-AppL)
ultimately show ?thesis using appL by simp iprover
next
case (appR s')
from s’ —, ©
obtain r where s s’ => r and r: r —,* t’' by (iprover dest: app)
from s’ and app have u ° s’ => u’° r by simp
moreover from r have v’ ° r —,* u'° t' by (simp add: rtrancl-eta-AppR)
ultimately show #thesis using appR by simp iprover
qed

lotl
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next
case (beta u u’ t t')
from «s —, Abs u ° ¢» show ?case
proof cases
case (eta s’ dummy)
from beta have Abs u ° t => u'[t’/0] by simp
with eta have s'[dummy/0] => u'[t’/0] by simp
with <= free s 0> have 3r. Abs (s’ ° Var 0) => r A r —,* u/[t"/0]
by (rule eta-case)
with eta show ?thesis by simp
next
case (appL s’)
from (s’ —, Abs u) show ?thesis
proof cases
case (eta 8" dummy)
have Abs (lift u 1) = lift (Abs u) 0 by simp
also from eta have ... = s by (simp add: lift-subst-dummy del: lift-subst)
finally have s: s = Abs (Abs (lift uw 1) ° Var 0) ° t using appL and eta by
stmp
from beta have lift u 1 => lift v’ 1 by simp
hence Abs (lift u 1) ° Var 0 => lift u’ 1[Var 0/0]
using par-beta.var ..
hence Abs (Abs (lift w 1) ° Var 0) ° t => lift w’ 1[Var 0/0][t'/0]
using <t => t’ ..
with s have s => /[t'/0] by simp
thus “thesis by iprover
next
case (abs r)
from r —, w
obtain r” where r: r => r’"and r'": r" —,* u' by (iprover dest: beta)
from r and beta have Abs r ° t => r’/[t'/0] by simp
moreover from r’ have r'[t'/0] —,* u'[t'/0]
by (rule rtrancl-eta-subst’)
ultimately show ?thesis using abs and appL by simp iprover
qed
next
case (appR s')
from s’ —, ©
obtain r where s s’ => r and r: r —,* t’ by (iprover dest: beta)
from s’ and beta have Abs u ° s’ => u'[r/0] by simp
moreover from r have u'[r/0] —,* u'[t"/0]
by (rule rtrancl-eta-subst’’)
ultimately show #thesis using appR by simp iprover
qed
qed

theorem eta-postponement”:

assumes eta: s —,* t and beta: t => u
shows 3t". s => t' At/ —,* u using eta beta
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proof (induct arbitrary: u)
case base
thus ?case by blast
next
case (step s’ s" ')
then obtain ¢’ where s s’ => t"and t": ¢t' —,* s
by (auto dest: eta-par-beta)
from s’ obtain ¢’ where s: s => t'" and t": t"" —,* t’ using step
by blast
from t” and t’ have t”" —,* s"" by (rule rtranclp-trans)
with s show ?case by iprover
qed

1

theorem eta-postponement:

assumes (sup beta eta)*™ st

shows (beta** OO eta**) s t using assms
proof induct

case base
show ?case by blast
next

case (step s’ ")
from step(3) obtain ¢’ where s: s —g* t" and t": t' —,* s’ by blast
from step(2) show ?Zcase
proof
assume s’ —g s’
with beta-subset-par-beta have s’ => s’ ..
with ¢’ obtain ¢/ where st: t' => t" and tu: t'" —,* s
by (auto dest: eta-postponement’)
from par-beta-subset-beta st have t' —z* t' ..
with s have s —3* t" by (rule rtranclp-trans)
thus ?thesis using tu ..
next
assume s’ —, s’
with ¢’ have t' —,* s
with s show Zthesis ..
qed
qed

"

11
.o

end

5 Application of a term to a list of terms

theory ListApplication imports Lambda begin

abbreviation
list-application :: dB => dB list => dB (infixl <°°) 150) where
t °° ts == foldl (°) t ts

lemma apps-eq-tail-conv [iff]: (r °° ts = s °° ts) = (r = s)
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by (induct ts rule: rev-induct) auto

lemma Var-eg-apps-conv [iff]: (Var m = s °° ss) = (Var m = s A ss = [])
by (induct ss arbitrary: s) auto

lemma Var-apps-eg- Var-apps-conv [iff]:
(Var m °° rs = Varn °° ss) = (m = n A rs = ss)
apply (induct rs arbitrary: ss rule: rev-induct)
apply simp
apply blast
apply (induct-tac ss rule: rev-induct)
apply auto
done

lemma App-eq-foldl-conv:
(r°s=1t°ts) =
(ifts=1 thenr°s=t
else (Iss. ts =ssQ [s] A7 =1°°ss))
apply (rule-tac s = ts in rev-ezhaust)
apply auto
done

lemma Abs-eq-apps-conv [iff]:
(Abs = 5°°ss) = (Absr = s A ss =[]
by (induct ss rule: rev-induct) auto

lemma apps-eq-Abs-conv [iff]: (s °° ss = Abs 1) = (s = Abs r A ss = [])
by (induct ss rule: rev-induct) auto

lemma Abs-apps-eq-Abs-apps-conv [iff]:
(Abs 1r °° rs = Abs s °° ss) = (r = s A 15 = 85)
apply (induct rs arbitrary: ss rule: rev-induct)
apply simp
apply blast
apply (induct-tac ss rule: rev-induct)
apply auto
done

lemma Abs-App-neg-Var-apps [iff]:
Abs s ° t # Var n °° ss
by (induct ss arbitrary: s t rule: rev-induct) auto

lemma Var-apps-neq-Abs-apps [iff]:
Var n °° ts # Abs r °° ss
apply (induct ss arbitrary: ts rule: rev-induct)
apply simp
apply (induct-tac ts rule: rev-induct)
apply auto
done
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lemma ex-head-tail:
Jtsh.t=h°ts A((3n. h= Varn) VvV (3u. h = Abs u))
apply (induct t)
apply (rule-tac x =[] in exl)
apply simp
apply clarify
apply (rename-tac ts1 ts2 h1 h2)
apply (rule-tac x = ts1 @Q [h2 °° ts2] in exl)
apply simp
apply simp
done

lemma size-apps [simpl:
size (1 °° rs) = size r + foldl (+) 0 (map size rs) + length rs
by (induct rs rule: rev-induct) auto

lemma lem0: [| (0:nat) < k;m <=n|==>m<n+k
by simp

lemma lift-map [simp]:
Lift (¢ °° ts) ¢ = lift t @ °° map (At. lift t ©) ts
by (induct ts arbitrary: t) simp-all

lemma subst-map [simp):
subst (¢ °° ts) u i = subst t u i °° map (At. subst t u i) ts
by (induct ts arbitrary: t) simp-all

lemma app-last: (¢t °° ts) ° u =1 °° (ts Q [u])
by simp

A customized induction schema for °°.

lemma lem:
assumes !In ts. Vt € set ts. Pt ==> P (Var n °° ts)
and Nlu ts. [| Pu; Vit € set ts. Pt|] ==> P (Abs u °° ts)
shows sizet =n = Pt
apply (induct n arbitrary: t rule: nat-less-induct)
apply (cut-tac t = t in ex-head-tail)
apply clarify
apply (erule disjE)
apply clarify
apply (rule assms)
apply clarify
apply (erule allE, erule impE)
prefer 2
apply (erule allE, erule mp, rule refl)
apply simp
apply (simp only: foldl-conv-fold add.commute fold-plus-sum-list-rev)
apply (fastforce simp add: sum-list-map-removel)
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apply clarify
apply (rule assms)
apply (erule allE, erule impE)
prefer 2
apply (erule allE, erule mp, rule refl)
apply simp
apply clarify
apply (erule allE, erule impFE)
prefer 2
apply (erule allE, erule mp, rule refl)
apply simp
apply (rule le-imp-less-Suc)
apply (rule trans-le-add1)
apply (rule trans-le-add?2)
apply (simp only: foldl-conv-fold add.commute fold-plus-sum-list-rev)
apply (simp add: member-le-sum-list)
done

Py

theorem Apps-dB-induct:
assumes !In ts. Vt € set ts. Pt ==> P (Var n °° ts)

and lu ts. [| Pu; Vit € set ts. Pt|] ==> P (Abs u °° ts)
shows Pt
apply (rule-tac t = t in lem)

prefer 3

apply (rule refl)
using assms apply iprover+
done

end

6 Simply-typed lambda terms
theory LambdaType imports ListApplication begin

6.1 Environments

definition
shift = (nat = 'a) = nat = ‘a = nat = ‘o («-(=-) [90, 0, 0] 91) where
e(iza) = (A\j. if j < i then e jelseif j = i then a else e (j — 1))

lemma shift-eq [simp]: i = j = (e(i:T)) j=T
by (simp add: shift-def)

lemma shift-gt [simp|: j < i = (e(i:T)) j=¢ej
by (simp add: shift-def)

lemma shift-lt [simp]: i < j = (e(¢:T)) j=¢€e(j — 1)
by (simp add: shift-def)
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lemma shift-commute [simp]: e(i:U){(0:T) = e{0:T)(Suc i:U)
by (rule ext) (simp-all add: shift-def split: nat.split)

6.2 Types and typing rules

datatype type =
Atom nat
| Fun type type  (infixr <= 200)

inductive typing :: (nat = type) = dB = type = bool («-F -: - [50, 50, 50]
50)
where
Var [introl]: enve = T = envk Varz: T
| Abs [introl]: env(0:T)F t: U = envt Abst: (T = U)
| App [introl]: envbk s: T = U= ekt t: T = envt (s°t): U

inductive-cases typing-elims [elim!]:

e Vari: T

eFt°u:T

etk Abst: T
primrec

typings = (nat = type) = dB list = type list = bool
where

typings e [| Ts = (Ts = [])
| typings e (t # ts) Ts =
(case Ts of
[| = False
| T# Ts= et t: T A typings e ts Ts)

abbreviation
typings-rel :: (nat = type) = dB list = type list = bool
(«- 1 -: - [50, 50, 50] 50) where
env = ts : Ts == typings env ts Ts

abbreviation
funs :: type list = type = type (infixr «(=» 200) where
Ts = T == foldr Fun Ts T

6.3 Some examples

schematic-goal e - Abs (Abs (Abs (Var 1 ° (Var 2 ° Var 1 ° Var 0)))) : ¢T
by force

schematic-goal e = Abs (Abs (Abs (Var 2 ° Var 0 ° (Var 1 ° Var 0)))) : ?T
by force

6.4 Lists of types

lemma lists-typings:
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et ts: Ts = listsp (A\t. 3T. et ¢: T) ts
proof (induct ts arbitrary: Ts)
case Nil
then show ?case
by simp
next
case c: (Cons a ts)
show ?Zcase
proof (cases Ts)
case Nil
with ¢ show ?thesis
by simp
next
case (Cons T list)
with ¢ show %thesis by force
qged
qed

lemma types-snoc: eb-ts: Ts = eF t: T = el tsQ [t] : T5 Q [T
by (induct ts arbitrary: Ts) (auto split: list.split-asm)

lemma types-snoc-eq: e b= ts @ [¢] : Ts Q [T] =
(etts: Tsnekt:T)
proof (induct ts arbitrary: Ts)
case Nil
then show “case
by (auto split: list.split)
next
case (Cons a ts)
have = el ts @ [¢] : []
by (cases ts Q [t]; simp)
with Cons show ?Zcase
by (auto split: list.split)
qed

Cannot use rev-exhaust from the List theory, since it is not constructive

lemma rev-ezhaust? [extraction-expand):
obtains (Nil) xs =[] | (snoc) ys y where zs = ys Q [y]
proof —
have §: xs = rev ys = thesis for ys
by (cases ys) (simp-all add: local.Nil snoc)
show thesis
using § [of rev xs| by simp
qed

lemma types-snock:

assumes (e b ts @Q [t] : Ts»

obtains Us and U where «Ts = Us Q [U] et ts: Us» <e bt : U
proof (cases Ts rule: rev-exhaust?2)
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case Nil
with assms show ?thesis
by (cases ts Q [t]) simp-all
next
case (snoc Us U)
with assms have e - ts @Q [t] : Us Q [U] by simp
then have et ts: Us et t: U by (simp-all add: types-snoc-eq)
with snoc show %thesis by (rule that)
qed

6.5 mn-ary function types

lemma list-app-typeD:
eFt®ts: T = 3dTs. e t: Ts= T Nelts: Ts
proof (induct ts arbitrary: t T)
case Nil
then show “case by auto
next
case (Consa bt T)
then show ?case
by (auto simp: split: list.split)
qed

lemma list-app-typekE:
eFtots: T= (NTs.ebt: Ts=>=T= ek ts: Ts= C) = C
using list-app-typeD by iprover

lemma list-app-typel:
ebt:Ts==T=—celtts: Ts= et ts: T
by (induct ts arbitrary: t Ts) (auto simp add: split: list.split-asm)

For the specific case where the head of the term is a variable, the following
theorems allow to infer the types of the arguments without analyzing the
typing derivation. This is crucial for program extraction.

theorem var-app-type-eq:
eFVari®ts: T = ek Vari®ts: U= T=0U
by (induct ts arbitrary: T U rule: rev-induct) auto

lemma var-app-types: et Var i °° ts*°us: T = el ts: Ts =
et Vari°®ts: U= 3Us. U=Us= T ANelus: Us
proof (induct us arbitrary: ts Ts U)
case Nil
then show ?Zcase
by (simp add: var-app-type-eq)
next
case (Cons a b ts Ts U)
then show ?case
apply atomize
apply (case-tac U)
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apply (rule FalseE)
apply simp
apply (erule list-app-typeE)
apply (ind-cases et °u: T for t u T)
apply (rename-tac nat Ts' T')
apply (drule-tac T=Atom nat and U=T' = Ts' = T in var-app-type-eq)
apply assumption
apply simp
apply (rename-tac typel type2)
apply (erule-tac z=ts @ [a] in allE)
apply (erule-tac z=Ts Q [typel] in allE)
apply (erule-tac x=type2 in allE)
apply simp
apply (erule impFE)
apply (rule types-snoc)
apply assumption
apply (erule list-app-typeE)
apply (ind-cases et °u: T for t u T)
using var-app-type-eq apply fastforce
apply (erule impFE)
apply (rule typing. App)
apply assumption
apply (erule list-app-typeE)
apply (ind-cases et t°u: T for t u T)
using var-app-type-eq apply fastforce
apply (erule ezE)
apply (rule-tac z=typel # Us in exl)
apply simp
apply (erule list-app-typeE)
apply (ind-cases et °u: T for t u T)
using var-app-type-eq by fastforce
qed

lemma var-app-typeskE: e Var i °° ts: T —
(ANTs.e-Vari:Ts= T = el ts: Ts = P) = P
by (iprover intro: typing. Var dest: var-app-types [of - - [], simplified])

lemma abs-typek:
assumes e - Abst: T AU V. e(0:U)Ft: V= P
shows P
proof (cases T)
case (Atom x1)
with assms(1) show %thesis
apply—
apply (rule FalseE)
apply (erule typing.cases)
apply simp-all
done
next
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case (Fun typel type2)

with assms show ?thesis
apply atomize
apply (erule-tac z=typel in allE)
apply (erule-tac z=type2 in allE)
apply (erule mp)
apply (erule typing.cases)

apply simp-all
done
qed

6.6 Lifting preserves well-typedness

lemma lift-type [introl]: et : T = e(e:U) F lift ti: T
by (induct arbitrary: i U set: typing) auto

lemma [ift-types:
el ts: Ts = e(i:U) & (map (A\t. lift ¢ 7) ts) : Ts
by (induct ts arbitrary: Ts) (auto split: list.split)

6.7 Substitution lemmas

lemma subst-lemma:
eFt:T=¢ru:U=e=e(i:U)= e Ftu/i]: T
proof (induct arbitrary: e’ i U u set: typing)
case (Var envz T)
then show ?Zcase
by (force simp add: shift-def)
next
case (Abs env Tt U)
then show ?case by force
qed auto

lemma substs-lemma:
eFu:T= e(i:T)F ts: Ts =
e b (map (At. t{u/d]) ts) : Ts
proof (induct ts arbitrary: Ts)
case Nil
then show ?case
by auto
next
case (Cons a ts)
with subst-lemma show ?case
by (auto split: list.split)
qed

6.8 Subject reduction

lemma subject-reduction: et : T =t =g t' = et t': T
proof (induct arbitrary: t' set: typing)
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case (App env s T U t)
with subst-lemma show Zcase
by auto
qed auto

theorem subject-reduction”: t —g* t' = ebFt: T = et t': T
by (induct set: rtranclp) (iprover intro: subject-reduction)—+

6.9 Alternative induction rule for types

lemma type-induct [induct type]:
assumes
(NT. (\NT1 T2. T = T1 = T2 = P T1) =
(NT1 T2. T = T1 = T2 = P T2) = P T)
shows P T
proof (induct T)
case Atom
show ?Zcase by (rule assms) simp-all
next
case Fun
show ?Zcase by (rule assms) (insert Fun, simp-all)
qed

end

7 Lifting an order to lists of elements

theory ListOrder
imports Main
begin

declare [[syntax-ambiguity-warning = false]]

Lifting an order to lists of elements, relating exactly one element.

definition
stepl :: (‘a => 'a => bool) => 'a list => 'a list => bool where
stepl r =
(Ayszs. us z 2" vs. s =us Q z # vs Arz' z A ys =
us Q 2" # vs)

lemma step1-converse [simp|: stepl (r~1=1) = (stepl r)~1~1
apply (unfold step1-def)
apply (blast introl: order-antisym)
done

lemma in-stepl-converse [iff]: (stepl (r=171) zy) = ((stepl r)~ 71 z y)
apply auto

done
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lemma not-Nil-step1 [iff]: — stepl r || xs
apply (unfold step1-def)
apply blast
done

lemma not-step1-Nil [iff]: — stepl r xs []
apply (unfold step1-def)
apply blast
done

lemma Cons-step1-Cons [iff]:
(stepd v (y # y5) (v # 29)) =
(ryz ANas=ysV a =y A stepl T ys xs)
apply (unfold step1-def)
apply (rule iffT)
apply (erule exFE)
apply (rename-tac ts)
apply (case-tac ts)
apply fastforce
apply force
apply (erule disjE)
apply blast
apply (blast intro: Cons-eq-appendl)
done

lemma append-step1I:
stepl T ys xs N vs = us V ys = xs A stepl r vs us
==> stepl r (ys Q vs) (zs Q us)
apply (unfold step1-def)
apply auto
apply blast
apply (blast intro: append-eg-appendl)
done

lemma Cons-steplE [elim!]:
assumes stepl r ys (x # xs)
and ly. ys =y # s = ryz = R
and !!zs. ys = x # 2s = stepl r 2s xs = R
shows R
using assms
apply (cases ys)
apply (simp add: step1-def)
apply blast
done

lemma Snoc-step1-SnocD:

stepl v (ys @ [y]) (zs @ [z])
==> (stepl Tysaxs ANy=xV ys =18 A 1y x)
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apply (unfold step1-def)

apply (clarify del: disjCI)

apply (rename-tac vs)

apply (rule-tac xs = vs in rev-ezhaust)
apply force

apply simp

apply blast

done

lemma Cons-acc-step1I [intro!]:
Wellfounded.accp r © ==> Wellfounded.accp (stepl r) xs = Wellfounded.accp

(stepl r) (z # xs)

apply (induct arbitrary: xs set: Wellfounded.accp)

apply (erule thin-rl)

apply (erule accp-induct)

apply (rule accp.accl)

apply blast

done

lemma lists-accD: listsp (Wellfounded.accp r) xs ==> Wellfounded.accp (stepl r)
xs

apply (induct set: listsp)

apply (rule accp.accl)

apply simp

apply (rule accp.accl)

apply (fast dest: acep-downward)

done

lemma ex-stepll:
|z € setas;ryz|]
==> Jys. stepl r ys xs \ y € set ys
apply (unfold step1-def)
apply (drule in-set-conv-decomp [THEN iffD1])

apply force
done

lemma lists-accl: Wellfounded.accp (stepl r) xs ==> listsp ( Wellfounded.accp 1)
xs

apply (induct set: Wellfounded.accp)

apply clarify

apply (rule accp.accl)

apply (drule-tac r=r in exz-step1I, assumption)

apply blast

done

end

33



8 Lifting beta-reduction to lists
theory ListBeta imports ListApplication ListOrder begin

Lifting beta-reduction to lists of terms, reducing exactly one element.

abbreviation
list-beta :: dB list => dB list => bool (infixl <(=>) 50) where
rs => ss == stepl beta rs ss

lemma head- Var-reduction:

Varn °° rs —g v => Jss. rs => ss A v = Varn °° ss
apply (induct w == Var n °° rs v arbitrary: rs set: beta)
apply simp
apply (rule-tac zs = rs in rev-ezhaust)
apply simp

apply (atomize, force intro: append-step1l)

apply (rule-tac s = rs in rev-exhaust)

apply simp

apply (auto 0 3 intro: disjI2 [THEN append-step1I))
done

lemma apps-betasE [elim!]:
assumes major: v °° rs =g §

and cases: Ir’. [| r =g r’ys=7r"°rs|| ==> R
Nrs'. [ rs =>rs’;y s =1 °° rs’ || ==> R
Wt wus. [| = Abs t; rs = u # us; s = t{u/0] °° us || ==> R
shows R
proof —

from major have
3r.r—=gr' ' ANs=1"rs)V
Frs.rs=>rs' Ns=r"°>rs)V
(Ftwus. r=Abst A rs=u# us A s=t[u/0] °° us)
apply (induct w == r °° rs s arbitrary: r rs set: beta)
apply (case-tac r)
apply simp
apply (simp add: App-eq-foldl-conv)
apply (split if-split-asm)
apply simp
apply blast
apply simp
apply (simp add: App-eq-foldi-conv)
apply (split if-split-asm)
apply simp
apply simp
apply (drule App-eq-foldl-conv [THEN iffD1])
apply (split if-split-asm)
apply simp
apply blast
apply (force intro!: disjI1 [THEN append-step1I])
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apply (drule App-eq-foldl-conv [THEN iffD1])
apply (split if-split-asm)
apply simp
apply blast
apply (clarify, auto 0 3 intro!: exl intro: append-step1I)
done
with cases show ?thesis by blast
qed

lemma apps-preserves-beta [simp]:
r—g s==>71"°585 —g5° ss
by (induct ss rule: rev-induct) auto

lemma apps-preserves-beta2 [simp):
r—g* s ==>71"° 385 5" 5° ss
apply (induct set: rtranclp)
apply blast
apply (blast intro: apps-preserves-beta rtranclp.rtrancl-into-rtrancl)
done

lemma apps-preserves-betas [simp]:
rs => 85 => 1 °° 15 =g T °° 58
apply (induct rs arbitrary: ss rule: rev-induct)
apply simp
apply simp
apply (rule-tac xs = ss in rev-exhaust)
apply simp
apply simp
apply (drule Snoc-step1-SnocD)
apply blast
done

end

9 Inductive characterization of terminating lambda
terms

theory InductTermi imports ListBeta begin

9.1 Terminating lambda terms

inductive IT :: dB => bool
where
Var [intro): listsp IT rs ==> IT (Var n °° rs)
| Lambda [intro]: IT r ==> IT (Abs r)
| Beta [intro]: IT ((r[s/0]) °° ss) ==> IT s ==> IT ((Abs T ° s) °° ss)
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9.2 Every term in /7 terminates

lemma double-induction-lemma [rule-format]:
termip beta s ==> Vt. termip beta t ——>
(Vrss. t=r[s/0] °° ss ——> termip beta (Abs T ° s °° ss))
apply (erule accp-induct)
apply (rule alll)
apply (rule impI)
apply (erule thin-rl)
apply (erule accp-induct)
apply clarify
apply (rule accp.accl)
apply (safe elim!: apps-betasE)
apply (blast intro: subst-preserves-beta apps-preserves-beta)
apply (blast intro: apps-preserves-beta2 subst-preserves-beta2 rtranclp-conversel
dest: accp-downwards)
apply (blast dest: apps-preserves-betas)
done

lemma IT-implies-termi: IT t ==> termip beta t
apply (induct set: IT)
apply (drule rev-predicate1D [OF - listsp-mono [where B=termip betal])
apply (fast intro!: predicatell)
apply (drule lists-accD)
apply (erule accp-induct)
apply (rule acep.accl)
apply (blast dest: head-Var-reduction)
apply (erule accp-induct)
apply (rule accp.accl)
apply blast
apply (blast intro: double-induction-lemma)
done

Py

9.3 Every terminating term is in /T
declare Var-apps-neq-Abs-apps [symmetric, simp)

lemma [simp, THEN not-sym, simp|: Var n °° ss # Abs r ° s °° ts
by (simp add: foldl-Cons [symmetric] del: foldl-Cons)

lemma [simp]:
(AbsT° s ss=Absr'° s ss) = (r=r"ANs=s"Ass=ss
by (simp add: foldl-Cons [symmetric] del: foldl-Cons)
inductive-cases [elim!]:
IT (Var n °° ss)
IT (Abs t)
IT (Abs T ° s °° ts)

theorem termi-implies-IT: termip beta r ==> IT r
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apply (erule accp-induct)
apply (rename-tac 1)
apply (erule thin-rl)
apply (erule rev-mp)
apply simp
apply (rule-tac t = r in Apps-dB-induct)
apply clarify
apply (rule IT .intros)
apply clarify
apply (drule bspec, assumption)
apply (erule mp)
apply clarify
apply (drule-tac r=beta in conversepl)
apply (drule-tac r=beta='~1 in ex-stepll, assumption)
apply clarify
apply (rename-tac us)
apply (erule-tac x = Var n °° us in allE)
apply force
apply (rename-tac u ts)
apply (case-tac ts)
apply simp
apply blast
apply (rename-tac s ss)
apply simp
apply clarify
apply (rule IT.intros)
apply (blast intro: apps-preserves-beta)
apply (erule mp)
apply clarify
apply (rename-tac t)
apply (erule-tac © = Abs u ° t °° ss in allE)

apply force
done

end

10 Strong normalization for simply-typed lambda
calculus

theory StrongNorm imports LambdaType InductTermi begin

Formalization by Stefan Berghofer. Partly based on a paper proof by Felix
Joachimski and Ralph Matthes [1].

10.1 Properties of IT

lemma lift-IT [introl]: IT t = IT (lift ¢ 7)
apply (induct arbitrary: i set: IT)
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apply (simp (no-asm))
apply (rule conjI)
apply
(rule impl,
rule IT. Var,
erule listsp.induct,
stmp (no-asm),
stmp (no-asm),
rule listsp. Cons,
blast,
assumption)+
apply auto
done

lemma lifts-IT: listsp IT ts = listsp IT (map (At. lift t 0) ts)
by (induct ts) auto

lemma subst-Var-IT: IT r = IT (r[Var i/j])
apply (induct arbitrary: i j set: IT)

Case Var:

apply (simp (no-asm) add: subst-Var)
apply
((rule congI impI)+,

rule IT. Var,

erule listsp.induct,

stmp (no-asm),

stmp (no-asm),

rule listsp.Cons,

fast,

assumption)+

Case Lambda:

apply atomize

apply simp

apply (rule IT.Lambda)
apply fast

Case Beta:

apply atomize

apply (simp (no-asm-use) add: subst-subst [symmetric])
apply (rule IT.Beta)

apply auto

done

lemma Var-IT: IT (Var n)
apply (subgoal-tac IT (Var n °°[]))

apply simp
apply (rule IT.Var)

38



apply (rule listsp.Nil)
done

lemma app-Var-IT: IT t = IT (t ° Var i)
apply (induct set: IT)
apply (subst app-last)
apply (rule IT.Var)
apply simp
apply (rule listsp.Cons)
apply (rule Var-IT)
apply (rule listsp.Nil)
apply (rule IT.Beta [where ?ss = [, unfolded foldl-Nil [THEN eg-reflectionl]])
apply (erule subst-Var-IT)
apply (rule Var-IT)
apply (subst app-last)
apply (rule IT.Beta)
apply (subst app-last [symmetric])
apply assumption
apply assumption
done

10.2 Well-typed substitution preserves termination

lemma subst-type-I1T":
NteTui. ITt= e(i:U)Ft: T =
ITyu= et u: U= IT (t[u/i])
(is PROP ?P Uis Nte Tui. -= PROP ?Qte TuiU)
proof (induct U)
fix Tt
assume MI1: ANT1 T2. T = T1 = T2 = PROP ?P T1
assume MI2: N\T1 T2. T = T1 = T2 = PROP ?P T2
assume [Tt
thus Ae T’ wi. PROP ?Qte T'ui T
proof induct
fixeT ui
assume ulT: IT u
assume ul: et u: T
{
case (Var rsn el T'1 ul il)
assume nT: e(i:T) F Varn °° rs: T’
let 2ty = At. 3T e(i:T) ¢ : T’
let 2R =Xt. Ve T ui.
e(it:TYFt: T — ITu— ek u: T — IT (tu/i])
show IT ((Var n °° rs)[u/i])
proof (cases n = i)
case True
show ?thesis
proof (cases rs)
case Nil
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with «IT True show ¢thesis by simp
next
case (Cons a as)
with nT have e(i:T) F Var n ° a °° as : T' by simp
then obtain T
where headT: e(i:T) - Varn°®a: Ts= T’
and argsT: e(i:T) = as : Ts
by (rule list-app-typeFE)
from headT obtain T
where varT: e(i:T) - Varn : T" = Ts = T’
and argT: e(i:T) Fa: T"
by cases simp-all
from varT True have T: T =T" = Ts= T’
by cases auto
with «T have vT" et u: T" = Ts = T' by simp
from T have IT ((Var 0 °° map (At. lift t 0)
(map (. t[u/i)) as)[(u ° a[u/i})/0)
proof (rule MI2)
from T have IT ((lift w 0 ° Var 0)[a[u/7]/0])
proof (rule MI1)
have IT (lift v 0) by (rule lift-IT [OF uIT])
thus IT (lift w 0 ° Var 0) by (rule app-Var-IT)
show e(0:T") F lift w0 ° Var 0 : Ts = T’
proof (rule typing.App)
show e(0: TV liftu 0 : T"= Ts= T’
by (rule lift-type) (rule uT")
show e(0:T"Y + Var 0 : T"
by (rule typing. Var) simp
qed
from Var have ?R a by cases (simp-all add: Cons)
with argT wIT uT show IT (a[u/i]) by simp
from argT uT show e & a[u/i] : T"
by (rule subst-lemma) simp
qed
thus IT (u ° a[u/i]) by simp
from Var have listsp 7R as
by cases (simp-all add: Cons)
moreover from argsT have listsp 7ty as
by (rule lists-typings)
ultimately have listsp (At. R t A Pty t) as
by simp
hence listsp IT (map (At. lift t 0) (map (At. t{u/d]) as))
(is listsp IT (?ls as))
proof induct

case Nil
show ?case by fastforce
next

case (Cons b bs)
hence I: ?R b by simp
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from Cons obtain U where ¢(i:T) F b : U by fast
with «T wIT I have IT (b[u/i]) by simp
hence IT (lift (b[u/d]) 0) by (rule lift-IT)
hence listsp IT (lift (b[u/i]) 0 # ?ls bs)
by (rule listsp.Cons) (rule Cons)
thus “case by simp
qed
thus IT (Var 0 °° ?ls as) by (rule IT. Var)
have ¢(0:Ts = Tk Var 0 : Ts= T’
by (rule typing. Var) simp
moreover from uT argsT have e = map (At. t[u/i]) as :
by (rule substs-lemma)
hence ¢(0:Ts = T') & %ls as : Ts
by (rule lift-types)
ultimately show e(0:Ts = T') F Var 0 °° ?ls as : T’
by (rule list-app-typel)
from argT uT have e - afu/i] : T"
by (rule subst-lemma) (rule refl)
with «T’ show e b u ° a[u/i] : Ts = T’
by (rule typing.App)
qed
with Cons True show ?thesis
by (simp add: comp-def)
qed
next
case False
from Var have listsp ?R rs by simp
moreover from nT obtain Ts where e(i:T) + rs : Ts
by (rule list-app-typeFE)
hence listsp 7ty rs by (rule lists-typings)
ultimately have listsp (At. R t A ty ) rs
by simp
hence listsp IT (map (Az. z[u/i]) rs)
proof induct

case Nil
show ?case by fastforce
next

case (Cons a as)
hence I: R a by simp
from Cons obtain U where ¢(i:T) F a : U by fast
with «T «IT I have IT (a[u/i]) by simp
hence listsp IT (a[u/i] # map (At. t[u/i]) as)
by (rule listsp.Cons) (rule Cons)
thus ?case by simp
qed
with False show ?thesis by (auto simp add: subst-Var)
qed
next
case (Lambda r el T'1 ul i)
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assume e(i:T) - Absr: T'
and Ae T' uwi. PROP ?QreT ui T
with «IT uT show IT (Abs r[u/i])
by fastforce
next
case (Beta ra as el T'1 ul i)
assume T: e(i:T) - Absr ° a° as: T’
assume SI1: Ne T’ wi. PROP ?2Q (r[a/0] *° as) e T ui T
assume SI2: Ae T’ ui. PROP ?Qae T'ui T
have IT (Abs (r[lift u 0/Suc i]) ° a[u/i] °° map (At. t[u/i]) as)
proof (rule IT.Beta)
have Abs r ° a °° as —p r[a/0] °° as
by (rule apps-preserves-beta) (rule beta.beta)
with T have e(i:T) F r[a/0] °° as : T’
by (rule subject-reduction)
hence IT ((r[a/0] °° as)[u/i])
using ulT uT by (rule SI1)
thus IT (r[lift w 0/Suc i|[a]u/7]/0] °° map (At. t[u/i]) as)
by (simp del: subst-map add: subst-subst subst-map [symmetric])
from T obtain U where e(i:T) - Absr °a: U
by (rule list-app-typeE) fast
then obtain 7' where e(i:T) - a : T by cases simp-all
thus IT (a[u/i]) using wIT uT by (rule SI2)
qed
thus IT ((Abs r ° a °° as)[u/i]) by simp
}
qed
qed

10.3 Well-typed terms are strongly normalizing

lemma type-implies-1T:
assumes et ¢ : T
shows IT ¢
using assms
proof induct
case Var
show ?case by (rule Var-IT)
next
case Abs
show ?case by (rule IT.Lambda) (rule Abs)
next
case (App e s T U t)
have IT ((Var 0 ° lift t 0)[s/0])
proof (rule subst-type-I1T)
have IT (lift t 0) using <IT t» by (rule lift-IT)
hence listsp IT [lift t 0] by (rule listsp.Cons) (rule listsp.Nil)
hence IT (Var 0 °° [lift ¢t 0]) by (rule IT. Var)
also have Var 0 °° [lift t 0] = Var 0 ° lift t 0 by simp
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finally show IT ... .
have ¢(0:T = U)F Var 0 : T = U
by (rule typing. Var) simp
moreover have e¢(0:T = U) F liftt 0 : T
by (rule lift-type) (rule App.hyps)
ultimately show ¢(0:T = U)F Var 0 ° liftt 0 : U
by (rule typing.App)
show IT s by fact
show et s: T = U by fact
qged
thus ?case by simp
qed

theorem type-implies-termi: e =t : T = termip beta t
proof —

assume et t: T

hence IT t by (rule type-implies-IT)

thus ?thesis by (rule IT-implies-termsi)
qed

end

11 Inductive characterization of lambda terms in
normal form

theory NormalForm
imports ListBeta
begin

11.1 Terms in normal form

definition
listall :: (Ya = bool) = 'a list = bool where
listall P xs = (V4. i < length xs — P (zs ! 1))

declare listall-def [extraction-expand-def]

theorem listall-nil: listall P ||
by (simp add: listall-def)

theorem listall-nil-eq [simp)]: listall P [| = True
by (iprover intro: listall-nil)

theorem listall-cons: P & = listall P xs = listall P (z # xs)
apply (simp add: listall-def)
apply (rule alll impI)+
apply (case-tac i)
apply simp+
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done

theorem listall-cons-eq [simp)]: listall P (z # xzs) = (P z A listall P xs)
apply (rule iffI)
prefer 2
apply (erule conjF)
apply (erule listall-cons)
apply assumption
apply (unfold listall-def)
apply (rule conjI)
apply (erule-tac x=0 in allE)
apply simp
apply simp
apply (rule alll)
apply (erule-tac =Suc i in allE)
apply simp
done

lemma listall-conjl: listall (Az. Pz N Q x) xs = listall P xs
by (induct zs) simp-all

lemma listall-conj2: listall (Az. P x A Q x) xs = listall Q zs
by (induct zs) simp-all

lemma listall-app: listall P (zs @ ys) = (listall P xs A listall P ys)
by (induct xs; intro iffI; simp)

lemma listall-snoc [simp]: listall P (xs Q [z]) = (listall P xs A P )
by (rule iffI; simp add: listall-app)

lemma listall-cong [cong, extraction-expand):
xs = ys = listall P xs = listall P ys
— Currently needed for strange technical reasons
by (unfold listall-def) simp

listsp is equivalent to listall, but cannot be used for program extraction.

lemma listall-listsp-eq: listall P xs = listsp P xs
by (induct zs) (auto intro: listsp.intros)

inductive NF :: dB = bool
where
App: listall NF ts = NF (Var z °° ts)
| Abs: NF t = NF (Abs t)
monos listall-def

lemma nat-eq-dec: An:nat. m =nV m #n
proof (induction m)

case (

then show ?case
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by (cases n; simp only: nat.simps; iprover)
next
case (Suc m)
then show ?Zcase
by (cases n; simp only: nat.simps; iprover)
qed

lemma nat-le-dec: An:nat. m < nV = (m < n)
proof (induction m)
case (
then show ?case
by (cases n; simp only: order.irrefl zero-less-Suc; iprover)
next
case (Suc m)
then show ?Zcase
by (cases n; simp only: not-less-zero Suc-less-eq; iprover)
qed

lemma App-NF-D: assumes NF: NF' (Var n °° ts)
shows listall NF' ts using NF
by cases simp-all

11.2 Properties of NF

lemma Var-NF: NF (Var n)
proof —
have NF (Var n °° [])
by (rule NF.App) simp
then show ?thesis by simp
qed

lemma Abs-NF:
assumes NF: NF' (Abs t °° ts)
shows ts = [| using NF
proof cases
case (App us 17)
thus ?thesis by (simp add: Var-apps-neq-Abs-apps [THEN not-sym))
next
case (Abs u)
thus %thesis by simp
qged

lemma subst-terms-NF': listall NF' ts =
listall (At. Vi j. NF (¢[Var i/j))) ts =
listall NF (map (At. t[Var i/j]) ts)
by (induct ts) simp-all

lemma subst-Var-NF: NF t = NF (t[Var i/j))
apply (induct arbitrary: i j set: NF)
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apply simp

apply (frule listall-conj1)

apply (drule listall-conj2)

apply (drule-tac i=i and j=j in subst-terms-NF')
apply assumption

apply (rule-tac m1=xz and n1=j in nat-eq-dec [THEN disjE))
apply simp
apply (erule NF.App)

apply (rule-tac m1=j and nl=z in nat-le-dec [THEN disjE))
apply (simp-all add: NF.App NF.Abs)

done

lemma app-Var-NF: NF t = 3t". t ° Var i —g* t' N NF t'
apply (induct set: NF')
apply (simplesubst app-last) — Using subst makes extraction fail
apply (rule exI)
apply (rule conjI)
apply (rule rtranclp.rtrancl-refl)
apply (rule NF.App)
apply (drule listall-conj1)
apply (simp add: listall-app)
apply (rule Var-NF)
apply (iprover intro: rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-refl beta subst-Var-NF')
done

lemma lift-terms-NF: listall NF ts =
listall (\t. Vi. NF (lift t 7)) ts =
listall NF' (map (At. lift ¢ @) ts)
by (induct ts) simp-all

lemma lift-NF: NF t = NF (lift t i)

apply (induct arbitrary: i set: NF)

apply (frule listall-conj1)

apply (drule listall-conj2)

apply (drule-tac i=i in lift-terms-NF')
apply assumption

apply (rule-tac m1=x and ni=i in nat-le-dec [THEN disjE))
apply (simp-all add: NF.App NF.Abs)

done

NF characterizes exactly the terms that are in normal form.

lemma NF-eq: NFt = (Yt'. =t =5 t')
proof
assume NF' ¢
then have At = ¢t —g t'
proof induct
case (App ts t)
show ?case
proof
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assume Vart °° ts =g t’
then obtain rs where ts => rs
by (iprover dest: head-Var-reduction)
with App show Fulse
by (induct rs arbitrary: ts) auto
qed
next
case (Abs t)
show ?case
proof
assume Abs t —p t’
then show Fulse using Abs by cases simp-all
qed
qed
then show Vi’ =t —g t' ..
next
assume H: Vit =t —g t’
then show NF' ¢
proof (induct t rule: Apps-dB-induct)
case (1 n ts)
then have Vis'. = ts => ts’
by (iprover intro: apps-preserves-betas)
with 1(1) have listall NF ts
by (induct ts) auto
then show ?case by (rule NF.App)
next
case (2 u ts)
show ?case
proof (cases ts)
case Nil
from 2 have Vu'. = u —g u’
by (auto intro: apps-preserves-beta)
then have NF u by (rule 2)
then have NF' (Abs u) by (rule NF.Abs)
with Nil show ?thesis by simp
next
case (Cons r rs)
have Abs u ° r —5 ul[r/0] ..
then have Abs u ° r °° rs —g ul[r/0] °° rs
by (rule apps-preserves-beta)
with Cons have Abs u °° ts —g ul[r/0] °° rs
by simp
with 2 show ?thesis by iprover
qed
qed
qed

end
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12 Standardization

theory Standardization
imports NormalForm
begin

Based on lecture notes by Ralph Matthes [3], original proof idea due to
Ralph Loader [2].

12.1 Standard reduction relation

declare listrel-mono [mono-set|

inductive

sred :: dB = dB = bool (infixl <—4> 50)

and sredlist :: dB list = dB list = bool (infix] ([—]> 50)
where

s [—s) t = listrelp (—) st
| Var: rs [—s] 18’ = Var z °° rs =5 Var x °° rs
| Abs: r —5 1/ = s5 [=5] ss' = Abs r °° ss =5 Abs 1’ °° s’
| Beta: r[s/0] °° ss —5 t => Abs 1 ° 5 °° 55 — ¢

o !

lemma refi-listrelp: ¥V x€set xs. R x © = listrelp R xs xs
by (induct zs) (auto intro: listrelp.intros)

lemma refl-sred: t —4 t
by (induct t rule: Apps-dB-induct) (auto intro: refl-listrelp sred.intros)

lemma refl-sreds: ts [—] ts
by (simp add: refl-sred refl-listrelp)

lemma listrelp-conj1: listrelp Axy. Rz y AN Sz y) zy = listrelp Rxy
by (erule listrelp.induct) (auto intro: listrelp.intros)

lemma listrelp-conj2: listrelp Az y. Rz y AN Sz y) xy = listrelp Sz y
by (erule listrelp.induct) (auto intro: listrelp.intros)

lemma listrelp-app:
assumes xsys: listrelp R s ys
shows listrelp R xs’ ys' = listrelp R (xs @ xs’) (ys Q ys’) using zsys
by (induct arbitrary: xs’ ys') (auto intro: listrelp.intros)

lemma lemmal:
assumes 7: 7 —¢ ' and s: s =, §
shows 7 ° s —, r’ ° s’ using r
proof induct
case (Var rs rs’ x)
then have rs [—;] rs’ by (rule listrelp-conj1)
moreover have [s| [—;] [s'] by (iprover intro: s listrelp.intros)

/
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ultimately have rs @ [s] [—;] rs’ @ [s/] by (rule listrelp-app)
hence Var z °° (rs @Q [s]) =5 Var z °° (rs’ Q [s']) by (rule sred. Var)
thus ?case by (simp only: app-last)

next
case (Abs r r' ss ss’)
from Abs(3) have ss [—5] ss’ by (rule listrelp-conj1)
moreover have [s] [—;] [s'] by (iprover intro: s listrelp.intros)
ultimately have ss @ [s] [—;] ss’ @ [s'] by (rule listrelp-app)
with «r —; /> have Abs r °° (ss Q [s]) —5 Abs v’ °° (ss’ Q [s'])

by (rule sred.Abs)

thus ?case by (simp only: app-last)

next
case (Beta r u ss t)
hence r[u/0] °° (ss Q [s]) =5 t ° s’ by (simp only: app-last)
hence Abs r ° u °° (ss Q [s]) =5 t ° s’ by (rule sred.Beta)
thus ?case by (simp only: app-last)

qed

lemma lemmal:
assumes ts: ts [—] ts’
shows r —, 1’ = 1 °° ts —, 7’ °° ts’' using ts
by (induct arbitrary: v r') (auto intro: lemmal)

lemma lemma2-1:
assumes beta: t —g u
shows t — u using beta
proof induct
case (beta s t)
have Abs s ° t °° [| =5 s[t/0] °° [] by (iprover intro: sred.Beta refl-sred)
thus ?case by simp
next
case (appL st u)
thus ?case by (iprover intro: lemmal refl-sred)
next
case (appR st u)
thus ?case by (iprover intro: lemmal refi-sred)
next
case (abs s t)
hence Abs s °° [| =4 Abs t °° [| by (iprover intro: sred.Abs listrelp. Nil)
thus ?case by simp
qed

lemma listrelp-betas:
assumes ts: listrelp (—g*) ts ts’
shows At t'. t —g* t' =t °° ts —5* t’ °° ts’ using ts
by induct auto

lemma lemma2-2:
assumes t: t =5 U
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shows ¢ —3* u using ¢
by induct (auto dest: listrelp-conj2
intro: listrelp-betas apps-preserves-beta converse-rtranclp-into-rtranclp)

lemma sred-lift:
assumes S: § —5
shows lift s i — lift t i using s
proof (induct arbitrary: 7)
case (Var rs rs’ z)
hence map (At. lift t i) rs [—s] map (\t. lift ¢ ) rs’
by induct (auto intro: listrelp.intros)
thus ?case by (cases x < 1) (auto intro: sred.Var)
next
case (Abs r r' ss ss’)
from Abs(8) have map (At. lift t i) ss [—s] map (At lift t i) ss’
by induct (auto intro: listrelp.intros)
thus ?case by (auto intro: sred.Abs Abs)
next
case (Beta r s ss t)
thus ?case by (auto intro: sred.Beta)
qed

lemma lemma3:
assumes 7r: r —>g 1’
shows s =4 s’ = r[s/z] — r'[s'/z] using r
proof (induct arbitrary: s s’ x)
case (Var rs rs’ y)
hence map (\t. t[s/z]) rs [—s] map (At. t[s'/z]) rs’
by induct (auto intro: listrelp.intros Var)
moreover have Var y[s/z] =5 Var y[s'/z]
proof (cases y < x)
case True thus ?thesis by simp (rule refl-sred)
next
case Fulse
thus ?thesis
by (cases y = z) (auto simp add: Var intro: refl-sred)
qged
ultimately show ?case by simp (rule lemmal’)
next
case (Abs r r' ss ss’)
from Abs(4) have lift s 0 —; lift s’ 0 by (rule sred-lift)
hence r[lift s 0/Suc z] =5 r'[lift s’ 0/Suc z] by (fast intro: Abs.hyps)
moreover from Abs(3) have map (At. t[s/xz]) ss [—s] map (At. t[s’/z]) ss’
by induct (auto intro: listrelp.intros Abs)
ultimately show ?case by simp (rule sred.Abs)
next
case (Beta r u ss t)
thus ?case by (auto simp add: subst-subst intro: sred.Beta)
qed
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lemma lemmay4-aux:
assumes rs: listrelp (At u. t =5 u A (Vr.u =g r —> t =4 1)) rs s’
shows rs’ => ss = rs [—;] ss using rs
proof (induct arbitrary: ss)
case Nil
thus ?case by cases (auto intro: listrelp. Nil)
next
case (Cons z y xs ys)
note Cons’ = Cons
show Zcase
proof (cases ss)
case Nil with Cons show ?thesis by simp
next
case (Cons y’ ys')
hence ss: ss = y’ # ys' by simp
from Cons Cons’ have y —g y' A ys' = ys V y' = y A ys => ys’' by simp
hence = # zs [—5] y' # ys'
proof
assume H: y =g y' A ys' = ys
with Cons’ have z —, 3’ by blast
moreover from Cons’ have zs [—] ys by (iprover dest: listrelp-conj1)
ultimately have = # xs [—] y' # ys by (rule listrelp. Cons)
with H show ?thesis by simp
next
assume H: y' = y A ys => ys’
with Cons’ have z —, 3y’ by blast
moreover from H have zs [—;] ys’ by (blast intro: Cons’)
ultimately show ?thesis by (rule listrelp. Cons)
qed
with ss show Zthesis by simp
qed
qed

lemma lemmay:
assumes r: r —>5 1’
shows r’ =5 r' = r —, r'’ using r
proof (induct arbitrary: r'’)
case (Var rs rs’ x)
then obtain ss where 7s: s’ => ssand r'": "' = Var z °° ss
by (blast dest: head-Var-reduction)
from Var(1) rs have rs [—] ss by (rule lemma4-aux)
hence Var z °° rs —¢ Var z °° ss by (rule sred. Var)
with r” show ?case by simp
next
case (Abs r r' ss ss’)
from <Abs r' °° ss’ = r'"» show Zcase
proof
fix s

o
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assume 1’ r’ = 5 °° ss
assume Abs r’ —g s
then obtain '’ where s: s = Abs r'"" and """ r' =3 r""" by cases auto
from r'"" have r —, r'" by (blast intro: Abs)
moreover from Abs have ss [—;] ss’ by (iprover dest: listrelp-conj1)
ultimately have Abs r °° ss —, Abs r'" °° ss’ by (rule sred.Abs)
with r”/ s show Abs r °° ss —, r'’ by simp

next
fix rs’
assume ss’ => rs’
with Abs(3) have ss [—4] s’ by (rule lemma4-auz)
with <r —¢ r/) have Abs r °° ss —, Abs r' °° rs’ by (rule sred.Abs)
moreover assume 1’/ = Abs r’ °° rs’
ultimately show Abs r °° ss —, '’ by simp

next
fix t u’ us’
assume ss’ = u’ # us’
with Abs(3) obtain u us where

ss: ss = u # us and u: u =, v’ and us: us [—4] us’
by cases (auto dest!: listrelp-conjl)

have r[u/0] —s r'[u’/0] using Abs(1) and u by (rule lemma3)
with us have r[u/0] °° us =5 r'[u’/0] °° us’ by (rule lemmal’)
hence Abs r ° u °° us —5 r'[u’/0] °° us’ by (rule sred.Beta)
moreover assume Abs r’' = Abs ¢t and r'' = t[u’/0] °° us’
ultimately show Abs r °° ss —, '/ using ss by simp

qged

next

case (Beta r s ss t)

show Zcase
by (rule sred.Beta) (rule Beta)+

qed

lemma rtrancl-beta-sred:
assumes r: 7 —g* 1’
shows r —, r/ using r
by induct (iprover intro: refl-sred lemma4 )+

12.2 Leftmost reduction and weakly normalizing terms

inductive
Ired :: dB = dB = bool (infixl <—p» 50)
and lredlist :: dB list = dB list = bool (infixl (—]» 50)
where
s [=] t = listrelp (=) s t
| Var: rs [—] rs' = Var z °° rs —; Var z °° rs’
| Abs: v — 1’ = Abs r —; Abs r'
| Beta: r[s/0] °° ss —; t => Abs 1 °5°° ss = t

lemma lred-imp-sred:
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assumes lred: s —; ¢
shows s — t using lred
proof induct
case (Var rs rs’ x)
then have rs [—;] rs’
by induct (iprover intro: listrelp.intros)+
then show ?case by (rule sred.Var)
next
case (Abs r ')
from «r —, '
have Abs r °° [] =5 Abs r' °° [| using listrelp.Nil
by (rule sred.Abs)
then show ?case by simp
next
case (Beta r s ss t)
from «r[s/0] °° ss =, t
show ?case by (rule sred.Beta)
qed

inductive WN :: dB => bool
where
Var: listsp WN rs = WN (Var n °° rs)
| Lambda: WN r = WN (Abs r)
| Beta: WN ((r[s/0]) °° ss) = WN ((Abs r ° s) °° ss)

lemma listrelp-imp-listsp1:
assumes H: listrelp (A\z y. P ) zs ys
shows listsp P xs using H
by induct auto

lemma listrelp-imp-listsp2:
assumes H: listrelp (A\z y. P y) zs ys
shows listsp P ys using H
by induct auto

lemma lemmad:
assumes lred: v —; r’
shows WN r and NF r’ using Ired
by induct
(iprover dest: listrelp-conjl1 listrelp-conj2
listrelp-imp-listsp1 listrelp-imp-listsp2 intro: WN .intros
NF'.intros [simplified listall-listsp-eq])+

lemma lemma6:

assumes wn: WN r

shows 3r’. r —; r’ using wn
proof induct

case (Var rs n)

then have 3 rs’. rs [—] rs’
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by induct (iprover intro: listrelp.intros)+
then show Zcase by (iprover intro: lred. Var)
qed (iprover intro: lred.intros)+

lemma lemma7:
assumes 71: 1 —>, T
shows NF r’' = r —; r’ using r

proof induct
case (Var rs rs’ z)
from «NF (Var z °° rs’)» have listall NF rs’

by cases simp-all

with Var(1) have rs [—] rs’
proof induct

/!

case Nil
show ?case by (rule listrelp. Nil)
next

case (Cons z y xs ys)
hence z —; y and zs [—] ys by simp-all
thus ?case by (rule listrelp.Cons)
qed
thus ?case by (rule lred. Var)
next
case (Abs r r' ss ss')
from «NF (Abs v’ °° ss’)»
have ss” ss’ =[] by (rule Abs-NF)
from Abs(3) have ss: ss = [] using ss’
by cases simp-all
from ss’ Abs have NF (Abs r') by simp
hence NF' r' by cases simp-all
with Abs have r —; r’ by simp
hence Abs r —; Abs v’ by (rule lred.Abs)
with ss ss’ show ?case by simp
next
case (Beta r s ss t)
hence 7[s/0] °° ss —; t by simp
thus ?case by (rule lred.Beta)
qed

lemma WN-eq: WN ¢t = (3t’. t —* t' A NF t')
proof

assume WN ¢

then have 3t’. ¢ —; t' by (rule lemma6)

then obtain ¢’ where t": t —; t'..

then have NF: NF t' by (rule lemma¥)

from ¢’ have t —, t’' by (rule lred-imp-sred)

then have ¢ —g* t’ by (rule lemma2-2)

with NF show 3¢’ t —g* t' A NF t’ by iprover
next

assume 3t’. t —g* t' A NF ¢t/
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then obtain ¢’ where t": ¢t —3* ¢’ and NF: NF t’
by iprover
from ¢’ have t —; t’ by (rule rtrancl-beta-sred)
then have ¢ —; ¢’ using NF by (rule lemma?7)
then show WN t by (rule lemma5)
qed

end

13 Weak normalization for simply-typed lambda
calculus

theory WeakNorm
imports LambdaType NormalForm HOL— Library. Realizers HOL— Library. Code- Target-Int
begin

Formalization by Stefan Berghofer. Partly based on a paper proof by Felix
Joachimski and Ralph Matthes [1].

13.1 Main theorems

lemma norm-list:
assumes f-compat: N\t t'. t —g* t' = ft —p* f 1’
and f-NF: \t. NFt = NF (ft)
and uNF: NFuand uT: et u: T
shows AUs. e(i:T) I as : Us =
listall M. Ve T wi. e(i:T)Ft: T —
NFuy— ek u: T — (3t tlu/i] =p* t' AN NF 1)) as =
Jas’. Vji. Varj°® map (Mt. f (t{u/i])) as —*
Var j °° map fas’ A NF (Var j °° map f as’)
(is AUs. - = listall YR as = Jas’. ?ex Us as as’)
proof (induct as rule: rev-induct)
case (Nil Us)
with Var-NF have ?ex Us [] [| by simp
thus “case ..
next
case (snoc b bs Us)
have e(i:T) = bs @ [b] : Us by fact
then obtain Vs W where Us: Us = Vs @ |
and bs: e(i:T) b bs: Vsand bT: e(i:T) +
by (rule types-snocE)
from snoc have listall ?R bs by simp
with bs have Jbs’. ?ex Vs bs bs’ by (rule snoc)
then obtain bs’ where bsred: Var j °° map (At. f (t[u/i])) bs —g* Varj °° map
f bs’
and bsNF: NF (Var j °° map f bs’) for j
by iprover
from snoc have ?R b by simp

14
b: W
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with T and uNF and uT have 3b". b[u/i] —5* b’ A NF b’
by iprover
then obtain b’ where bred: b[u/i] —5* b’ and bDNF: NF b’
by iprover
from bsNF' [of 0] have listall NF (map f bs’)
by (rule App-NF-D)
moreover have NF (f b') using bNF by (rule f-NF)
ultimately have listall NF (map f (bs’ Q [b']))
by simp
hence Aj. NF (Var j °° map f (bs’ Q [b])) by (rule NF.App)
moreover from bred have f (b[u/i]) —g* f b’
by (rule f-compat)
with bsred have
Ni- (Var G °° map (At. f (t[u/i])) bs) ° f (blu/i]) —
(Var j °° map fbs’) ° fb' by (rule rtrancl-beta- App)
ultimately have ?ex Us (bs @ [b]) (bs’ @ [b]) by simp
thus “case ..
qed

lemma subst-type-NF:

NeTui NFt = e(i:U)Ft: T = NFu= et u:
—g" t' N NFt'

(is PROP ?PUis Nt e Tui. -=— PROP ?Qte TuiU)
proof (induct U)

fix Tt

let PR =Xt. Ve T ui.

U = 3¢t t{u/i]

e(i:T)Ft:T'— NFu— ek u: T — (3t tlu/i] =" t' AN NF ')

assume MI1: NT1 T2. T = T1 = T2 — PROP ?P T1
assume MI2: NT1 T2. T = T1 = T2 = PROP ?P T2
assume NF'{
thus Ae T’ wi. PROP ?Qte T ' ui T
proof induct
fix e T' u i assume uNF: NF v and uT: et u: T
{
case (App tsz el T'1 ul il)
assume e(i:T) + Varz °° ts: T’
then obtain Us
where varT: e(i:T) - Varz: Us = T’
and argsT: e(i:T) + ts: Us
by (rule var-app-typesE)

from nat-eg-dec show 3t’. (Var z °° ts)[u/i] —p* t' A NF t'

proof

assume eq: r = 1

show ?thesis

proof (cases ts)
case Nil
with eq have (Var z °° [|)[u/i] —3* u by simp
with Nil and uNF show ?thesis by simp iprover

next
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case (Cons a as)
with argsT obtain T’ Ts where Us: Us = T # Ts
by (cases Us) (rule FalseE, simp)
from varT and Us have varT: e(i:T) F Varz : T = Ts = T’
by simp
from varT eq have T: T = T = Ts = T' by cases auto
with «T have uT" et u: T" = Ts = T' by simp
from argsT Us Cons have argsT": e(i:T) & as : Ts by simp
from argsT Us Cons have argT: e(i:T) F a : T" by simp
from argT uT refl have aT: e F a[u/i] : T by (rule subst-lemma)
from App and Cons have listall ?R as by simp (iprover dest: listall-conj2)
with lift-preserves-beta’ lift-NF uNF uT argsT’
have Jas’. Vj. Var j °° map (At. lift (¢[u/i]) 0) as —p*
Var j °° map (A\t. lift t 0) as’ A
NF (Var j °° map (At. lift t 0) as’) by (rule norm-list)
then obtain as’ where
asred: Var 0 °° map (At. lift (t{u/i]) 0) as —5*
Var 0 °° map (At. lift t 0) as’
and asNF: NF (Var 0 °° map (At. lift t 0) as’) by iprover
from App and Cons have ?R a by simp
with argT and uNF and uT have Ja’. a[u/i] —g* a’ A NF o’
by iprover
then obtain o’ where ared: a[u/i] —3* o’ and aNF: NF o’ by iprover
from uNF have NF (lift v 0) by (rule lift--NF)
hence Ju’. lift u 0 ° Var 0 —g* v’ A NF u’ by (rule app-Var-NF)
then obtain u’ where ured: lift w 0 ° Var 0 —5* v’ and u'NF: NF u’
by iprover
from T and «'NF have Jua. u'[a’/0] —g* ua A NF ua
proof (rule MI1)
have e(0:T") F lift w0 ° Var 0 : Ts = T’
proof (rule typing.App)
from uT’ show e(0:T") Flift uw 0 : T" = Ts = T’ by (rule lift-type)
show e(0:T"y = Var 0 : T" by (rule typing. Var) simp
qed
with ured show e(0:T") b u’: Ts = T’ by (rule subject-reduction’)
from ared aT show e - a’: T" by (rule subject-reduction’)
show NF a’ by fact
qed
then obtain ua where uared: u'la’/0] —5* ua and uaNF: NF ua
by iprover
from ared have (lift w 0 ° Var 0)[a[u/i]/0] —g* (lift w 0 ° Var 0)[a’/0]
by (rule subst-preserves-beta2’)
also from wured have (lift uw 0 ° Var 0)[a’/0] —5* u'[a’/0]
by (rule subst-preserves-beta’)
also note uared
finally have (lift u 0 ° Var 0)[alu/i]/0] —5* ua .
hence uared”: u ° alu/i] —5* ua by simp
from T asNF - uaNF have Jr. (Var 0 °° map (At. lift t 0) as’)[ua/0]
—>5* r ANNFr
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proof (rule MI2)
have ¢(0:Ts = T') b Var 0 °° map (At. lift (t[u/i]) 0) as: T’
proof (rule list-app-typel)
show e(0:Ts = T') &+ Var 0 : Ts = T’ by (rule typing. Var) simp
from uT argsT' have e & map (At. t[u/i]) as: TS
by (rule substs-lemma)
hence ¢(0:Ts = T') & map (At. lift t 0) (map (A¢. t{u/d]) as) : Ts
by (rule lift-types)
thus e(0:Ts = T & map (A¢. lift (t[u/d]) 0) as: Ts
by (simp-all add: o-def)
qed
with asred show €(0:Ts = T') & Var 0 °° map (A\t. lift t 0) as’: T’
by (rule subject-reduction’)
from argT uT refl have e - alu/i] : T'" by (rule subst-lemma)
with vT’ have e b u ° a[u/i] : Ts = T' by (rule typing.App)
with wared’ show e b ua : Ts = T' by (rule subject-reduction’)
qed
then obtain r where rred: (Var 0 °° map (At. lift t 0) as’)[ua/0] —p* r
and rf: NF r by iprover
from asred have
(Var 0 °° map (A¢t. lift (t[u/d]) 0) as)[u ® alu/i]/0] —g*
(Var 0 °° map (At. lift t 0) as”)[u ° a[u/i]/0]
by (rule subst-preserves-beta’)
also from uared’ have (Var 0 °° map (At. lift t 0) as’)[u ° a[u/i]/0] —p*
(Var 0 °° map (At. lift t 0) as)[ua/0] by (rule subst-preserves-beta2’)
also note rred
finally have (Var 0 °° map (At. lift (t[u/7]) 0) as)[u ° alu/i]/0] —p* T .
with rnf Cons eq show ?thesis
by (simp add: o-def) iprover
qed
next
assume neq: T % i
from App have listall 7R ts by (iprover dest: listall-conj2)
with uNF uT argsT
have 3 ts". Vj. Var j °° map (M. t{u/i]) ts —p* Varj°° ts’ A
NF (Var j °° ts') (is I ts’. Zex ts')
by (rule norm-list [of At. t, simplified])
then obtain ts’ where NF: ?ex ts' ..
from nat-le-dec show ?thesis
proof
assume { < T
with NF show ?thesis by simp iprover
next
assume — (i < z)
with NF neq show ?thesis by (simp add: subst-Var) iprover
qed
qed
next
case (Abs rel T'1 ul il)
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assume absT: e(i:T) - Absr: T’
then obtain R S where e(0:R)(Suc i:T) + r: S by (rule abs-typeE) simp
moreover have NF (lift u 0) using <NF w by (rule lift-NF)
moreover have e(0:R) F lift u 0 : T using uT by (rule lift-type)
ultimately have 3¢. r[lift u 0/Suc i] —g* t' A NF t' by (rule Abs)
thus 3¢’ Abs ru/i] —g* t' N NF t’
by simp (iprover intro: rtrancl-beta-Abs NF.Abs)
}

qed
qed

— A computationally relevant copy of e - ¢ : T
inductive rtyping :: (nat = type) = dB = type = bool («-tg -: - [50, 50, 50]
50)
where
Var:ex =T = ebg Varx: T
| Abs: e(0:T)Fpt: U= etpr Abst: (T = U)
| App: ebrs: T=U=ctrpt: T=ebr(s°t): U

lemma rtyping-imp-typing: etFp t: T = ek t: T
apply (induct set: rtyping)
apply (erule typing. Var)
apply (erule typing.Abs)
apply (erule typing.App)
apply assumption
done

theorem type-NF':
assumes et t: T
shows 3t". t —g* t' A NF t' using assms
proof induct
case Var
show ?case by (iprover intro: Var-NF)
next
case Abs
thus ?case by (iprover intro: rtrancl-beta-Abs NF'.Abs)
next
case (App e s T U t)
from App obtain s’ t’ where
sred: s —3* s’ and NF s’
and tred: t —g* t' and tNF: NF t’ by iprover
have Ju. (Var 0 ° lift t' 0)[s’/0] —p* u AN NF u
proof (rule subst-type-NF')
have NF (lift t' 0) using tNF by (rule lift-NF)
hence listall NF [lift t' 0] by (rule listall-cons) (rule listall-nil)
hence NF (Var 0 °° [lift t' 0]) by (rule NF.App)
thus NF (Var 0 ° lift t' 0) by simp
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show e¢(0:T = U) & Var 0 ° liftt' 0 : U
proof (rule typing.App)
show e¢(0:T = U)F Var 0 : T = U
by (rule typing. Var) simp
from tred have et t': T
by (rule subject-reduction’) (rule rtyping-imp-typing, rule App.hyps)
thus e(0:T = U) - liftt’ 0 : T
by (rule lift-type)
qed
from sred show et s': T = U
by (rule subject-reduction’) (rule rtyping-imp-typing, rule App.hyps)
show NF' s’ by fact
qed
then obtain u where ured: s’ ° t' —3* u and unf: NF u by simp iprover
from sred tred have s ° t —g* s’ ° t’ by (rule rtrancl-beta-App)
hence s ° t —g* u using ured by (rule rtranclp-trans)
with unf show ?case by iprover
qed

13.2 Extracting the program

declare NF.induct [ind-realizer]

declare rtranclp.induct [ind-realizer irrelevant)

declare rtyping.induct [ind-realizer]

lemmas [eztraction-expand] = conj-assoc listall-cons-eq subst-all equal-alll

extract type-NF

lemma rtranclR-rtrancl-eq: rtranclpR r a b = r** a b
proof
show rtranclpR ra b = r** a b
apply (erule rtranclpR.induct)
apply (rule rtranclp.rtrancl-refl)
apply (metis rtranclp.rtrancl-into-rtrancl)
done
show r** a b = rtranclpR r a b
apply (erule rtranclp.induct)
apply (rule rtranclpR.rtrancl-refl)
apply (metis rtranclpR.rtrancl-into-rtrancl)
done
qged

lemma NFR-imp-NF: NFR nft — NF' t
apply (erule NFR.induct)
apply (rule NF.intros)
apply (simp add: listall-def)
apply (erule NF.intros)
done

The program corresponding to the proof of the central lemma, which per-
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subst-type-NF =
Az za xb zc xd ze H Ha.
type-induct-P xc
(Az H2 H2a za zaa zb zc zd H.
compat-NFT .rec-split-NF'T default
(Ats za zaa r b zc xd ze H.
var-app-typesE-P (zb(ze:z)) za ts
(AUs--. case nat-eq-dec za ze of
Left = case ts of [| = (zd, H)
| a # list =
case Us-- of [| = default
| TV-- # Ts-- =
let (z, y) =
norm-list (\t. lift t 0) zd xb ze list Ts--
(At. lift-NF 0) H
(listall-conj2-P-Q list (Ai. (zaa (Suc ©), r (Suc 7))));
(za, ya) = snd (zaa 0, r 0) zb T''-- zd ze H;
(zd, yb) = app-Var-NF 0 (lift-NF 0 H);
(za, ya) =
H2 T"-- (Ts-- = zc) zd zb (Ts-- = zc) za 0 yb ya;
(z, y) =
H2a T'"-- (Ts-- = xzc) (dB.Var 0 °° map (At. lift t 0) z)
zb zc za 0 (y 0) ya

in (z, y)
| Right =
let (z, y) =
let (z, y) =

norm-list (\t. t) zd zb ze ts Us-- (Ax H. H) H
(listall-conj2-P-Q ts (Az. (zaa z, T 2)))
in (z, \z. y z)
in case nat-le-dec ze xa of
Left = (dB.Var (za — Suc 0) °° z, y (za — Suc 0))
| Right = (dB.Var za °° z, y za)))
(At z v za zaa zb xc H.
abs-typeE-P zaa
(AU V. let (z, y) =
let (z, y) = r (Aa. (za(0:U)) a) V (lift zb 0) (Suc zc) (lift-NF 0 H)
in (dB.Abs z, NFT.Abs z y)
in (2, )))
H (Ma. zaa a) zb zc zd)
z za zd ze zb H Ha

Figure 1: Program extracted from subst-type-NF
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subst-Var-NF =
Az za H.
compat-NF T .rec-split-NF'T default
(Ats z za r zb zc.
case nat-eq-dec x xc of
Left = NFT.App (map (At. t[dB.Var zb/xzc]) ts) zb
(subst-terms-NF ts xb xc (listall-conjl-P-Q ts (Az. (za z, 1 2)))
(listall-conj2-P-Q ts (Az. (za z, r 2))))
| Right =
case nat-le-dec zc © of
Left = NFT.App (map (At. t[dB.Var zb/zc]) ts) (x — Suc 0)
(subst-terms-NF ts zb zc (listall-conjl-P-Q ts (Az. (za z, T 2)))
(listall-conj2-P-Q ts (Az. (za z, r 2))))
| Right =
NFT.App (map (At. t[dB.Var zb/zc]) ts) z
(subst-terms-NF ts b zc (listall-conj1-P-Q ts (Az. (za z, r 2)))
(listall-conj2-P-Q ts (Az. (za z, T 2)))))
(At z r za zaa. NFT.Abs (t[dB.Var (Suc za)/Suc zaa)) (r (Suc za) (Suc zaa))) H = za

app-Var-NF =
Az. compat-NFT .rec-split-NF'T default
(Ats za zaa 7.
(dB.Var za °° (ts Q [dB.Var z]),
NFT.App (ts @ [dB.Var z]) za
(snd (listall-app-P ts)
(listall-conj1-P-Q ts (Az. (zaa z, T 2)),
listall-cons-P (Var-NF z) listall-nil-eq-P))))
(At za r. let (xb, y) = rin (t[dB.Var z/0], subst-Var-NF x 0 za))

lift-NF =
Az H. compat-NFT .rec-split-NFT default
(Ats z za 7 zb.
case nat-le-dec z zb of
Left = NFT.App (map (At. lift t ab) ts) «
(lift-terms-NF ts xb (listall-conj1-P-Q ts (Az. (za z, T 2)))
(listall-conj2-P-Q ts (Az. (za z, r 2))))
| Right =
NFT.App (map (At. lift ¢ zb) ts) (Suc z)
(lift-terms-NF ts zb (listall-conj1-P-Q ts (Az. (za z, T 2)))
(listall-conj2-P-Q ts (Az. (za z, 7 2)))))
(At & 7 za. NFT.Abs (lift t (Suc za)) (r (Suc za))) H z

type-NF =
MH. rec-rtypingT (Ae z T. (dB.Var z, Var-NF z))
Ae Tt Uxr. let (z, y) = rin (dB.Abs z, NFT.Abs z y))
(Aes T Utxzar ra.
let (2, 3) = r; (a6, ya) = 7o
(z,9) =
let (z, y) =
subst-type-NF (dB.Var 0 ° lift za 0) e 0 (T = U) Uz
(NFT.App [lift za 0] 0 (listall-cons-P (lift-NF 0 ya) listall-nil-P)) y
in (z, y)
in (z, y))
H

Figure 2: Program extracted from lemmas and main theorem
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forms substitution and normalization, is shown in Figure 1. The correctness
theorem corresponding to the program subst-type-NF is

Nz. NFR z t =
e(tU)Ft: T =
(Aza. NFR za v =
eFu: U=
tlu/i] —p* fst (subst-type-NEF t e i U T u x za) A
NFR (snd (subst-type-NF t e i U T u x xa)) (fst (subst-type-NF t e i U
T vt xa)))

where NF'R is the realizability predicate corresponding to the datatype NF'T,
which is inductively defined by the rules
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Vi<length ts. NFR (nfs i) (ts ! i) = NFR (NFT.App ts x nfs) (dB.Var z °° ts)
NFR nft = NFR (NFT.Abs t nf) (dB.Abs t)

The programs corresponding to the main theorem type-NF, as well as to
some lemmas, are shown in Figure 2. The correctness statement for the
main function type-NF is

Nz. rtypingR v et T = t —5* fst (type-NF z) A NFR (snd (type-NF z)) (fst
(type-NF z))

where the realizability predicate rtypingR corresponding to the computa-
tionally relevant version of the typing judgement is inductively defined by
the rules

er = T = rtypingR (rtypingT.Var e x T) e (dB.Var z) T

rtypingR ty (e(0:T)) t U = rtypingR (rtypingT.Abs e Tt U ty) e (dB.Abs t) (T
= U)

rtypingR ty e s (T = U) =

rtypingR ty’ e t T = rtypingR (rtypingT.App e s T Ut tyty) e (s°t) U

13.3 Generating executable code

instantiation NFT :: default
begin

definition default = Dummy ()
instance ..
end

instantiation dB :: default
begin

definition default = dB.Var 0
instance ..
end

instantiation prod :: (default, default) default
begin

definition default = (default, default)
instance ..

end
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instantiation list :: (type) default
begin

definition default = ||
instance ..
end

instantiation fun :: (type, default) default
begin

definition default = (A\z. default)
instance ..
end

definition int-of-nat :: nat = int where
int-of-nat = of-nat

The following functions convert between Isabelle’s built-in term datatype
and the generated dB datatype. This allows to generate example terms
using Isabelle’s parser and inspect normalized terms using Isabelle’s pretty
printer.

ML ¢
val nat-of-integer = @Q{code nat} o @{code int-of-integer};

fun dBtype-of-typ (Type (fun, [T, U])) =
@{code Fun} (dBtype-of-typ T, dBtype-of-typ U)
| dBtype-of-typ (TFree (s, -)) = (case raw-explode s of
[/, a] => @{code Atom} (nat-of-integer (ord a — 97))
| - => error dBtype-of-typ: variable name)
| dBtype-of-typ - = error dBtype-of-typ: bad type;

fun dB-of-term (Bound i) = @{code dB.Var} (nat-of-integer i)
| dB-of-term (t $ u) = @Q{code dB.App} (dB-of-term t, dB-of-term u)
| dB-of-term (Abs (-, -, t)) = @Q{code dB.Abs} (dB-of-term t)
| dB-of-term - = error dB-of-term: bad term,

fun term-of-dB Ts (Type (fun, [T, U])) (@{code dB.Abs} dBt) =
Abs (x, T, term-of-dB (T :: Ts) U dBt)
| term-of-dB Ts - dBt = term-of-dB’ Ts dBt
and term-of-dB’ Ts (Q{code dB.Var} n) = Bound (Q{code integer-of-nat} n)
| term-of-dB’ Ts (@{code dB.App} (dBt, dBu)) =
let val t = term-of-dB’ Ts dBt
in case fastype-ofl (Ts, t) of
Type (fun, [T, -]) => t $ term-of-dB Ts T dBu
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| - => error term-of-dB: function type expected
end

| term-of-dB’ - - = error term-of-dB: term not in normal form,

fun typing-of-term Ts e (Bound i) =
@{code Var} (e, nat-of-integer i, dBtype-of-typ (nth Ts i))
| typing-of-term Ts e (t $ u) = (case fastype-of1 (Ts, t) of
Type (fun, [T, U]) => @{code App} (e, dB-of-term t,
dBtype-of-typ T, dBtype-of-typ U, dB-of-term u,
typing-of-term Ts e t, typing-of-term Ts e u)
| - => error typing-of-term: function type expected)
| typing-of-term Ts e (Abs (-, T, t)) =
let val dBT = dBtype-of-typ T
in @{code Abs} (e, dBT, dB-of-term t,
dBtype-of-typ (fastype-of1 (T :: Ts, t)),
typing-of-term (T :: Ts) (Q{code shift} e Q{code 0::nat} dBT) t)

end
| typing-of-term - - - = error typing-of-term: bad term;
fun dummyf - = error dummy;

val ctl = @{cterm %f. (%f x. [ (f (f2))) (%f = f (f (f (f ) /)};
val (dB1, -) = @Q{code type-NF'} (typing-of-term [| dummyf (Thm.term-of ctl));
val ct1’ = Thm.cterm-of Q{context} (term-of-dB [| (Thm.typ-of-cterm ct1) dB1);

val ct2 = @{cterm %f x. (%ox. fz x) (%z. fzx) (%z. fzz) (%z. fzz) (%z. f
zz) (%r. fzz) )}

val (dB2, -) = @Q{code type-NF'} (typing-of-term [| dummyf (Thm.term-of ct2));
val ct2’ = Thm.cterm-of @Q{context} (term-of-dB [| (Thm.typ-of-cterm ct2) dB2);
)

end
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