
Fundamental Properties of Lambda-calculus

Tobias Nipkow
Stefan Berghofer

January 18, 2026

Contents
1 Basic definitions of Lambda-calculus 4

1.1 Lambda-terms in de Bruijn notation and substitution 4
1.2 Beta-reduction . 5
1.3 Congruence rules . 5
1.4 Substitution-lemmas . 5
1.5 Equivalence proof for optimized substitution 6
1.6 Preservation theorems . 6

2 Abstract commutation and confluence notions 8
2.1 Basic definitions . 8
2.2 Basic lemmas . 8
2.3 Church-Rosser . 10
2.4 Newman’s lemma . 10

3 Parallel reduction and a complete developments 13
3.1 Parallel reduction . 13
3.2 Inclusions . 13
3.3 Misc properties of par-beta . 14
3.4 Confluence (directly) . 14
3.5 Complete developments . 14
3.6 Confluence (via complete developments) 14

4 Eta-reduction 15
4.1 Definition of eta-reduction and relatives 15
4.2 Properties of eta, subst and free 15
4.3 Confluence of eta . 16
4.4 Congruence rules for eta∗ . 16
4.5 Commutation of beta and eta 17
4.6 Implicit definition of eta . 18
4.7 Eta-postponement theorem 19

1

5 Application of a term to a list of terms 22

6 Simply-typed lambda terms 25
6.1 Environments . 25
6.2 Types and typing rules . 26
6.3 Some examples . 26
6.4 Lists of types . 26
6.5 n-ary function types . 28
6.6 Lifting preserves well-typedness 30
6.7 Substitution lemmas . 30
6.8 Subject reduction . 30
6.9 Alternative induction rule for types 31

7 Lifting an order to lists of elements 31

8 Lifting beta-reduction to lists 34

9 Inductive characterization of terminating lambda terms 35
9.1 Terminating lambda terms . 35
9.2 Every term in IT terminates 36
9.3 Every terminating term is in IT 36

10 Strong normalization for simply-typed lambda calculus 37
10.1 Properties of IT . 37
10.2 Well-typed substitution preserves termination 39
10.3 Well-typed terms are strongly normalizing 42

11 Inductive characterization of lambda terms in normal form 43
11.1 Terms in normal form . 43
11.2 Properties of NF . 45

12 Standardization 48
12.1 Standard reduction relation 48
12.2 Leftmost reduction and weakly normalizing terms 52

13 Weak normalization for simply-typed lambda calculus 55
13.1 Main theorems . 55
13.2 Extracting the program . 60
13.3 Generating executable code 64

2

Commutation

Eta

InductTermi

Lambda

LambdaType

ListApplication

ListBeta

ListOrder

NormalForm

ParRed

StandardizationStrongNorm WeakNorm

[HOL-Library]

[HOL]

[Pure]

[Tools]

3

1 Basic definitions of Lambda-calculus
theory Lambda
imports Main
begin

declare [[syntax-ambiguity-warning = false]]

1.1 Lambda-terms in de Bruijn notation and substitution
datatype dB =

Var nat
| App dB dB (infixl ‹°› 200)
| Abs dB

primrec
lift :: [dB, nat] => dB

where
lift (Var i) k = (if i < k then Var i else Var (i + 1))

| lift (s ° t) k = lift s k ° lift t k
| lift (Abs s) k = Abs (lift s (k + 1))

primrec
subst :: [dB, dB, nat] => dB (‹-[- ′/-]› [300 , 0 , 0] 300)

where
subst-Var : (Var i)[s/k] =
(if k < i then Var (i − 1) else if i = k then s else Var i)

| subst-App: (t ° u)[s/k] = t[s/k] ° u[s/k]
| subst-Abs: (Abs t)[s/k] = Abs (t[lift s 0 / k+1])

declare subst-Var [simp del]

Optimized versions of subst and lift.
primrec

liftn :: [nat, dB, nat] => dB
where

liftn n (Var i) k = (if i < k then Var i else Var (i + n))
| liftn n (s ° t) k = liftn n s k ° liftn n t k
| liftn n (Abs s) k = Abs (liftn n s (k + 1))

primrec
substn :: [dB, dB, nat] => dB

where
substn (Var i) s k =
(if k < i then Var (i − 1) else if i = k then liftn k s 0 else Var i)

| substn (t ° u) s k = substn t s k ° substn u s k
| substn (Abs t) s k = Abs (substn t s (k + 1))

4

1.2 Beta-reduction
inductive beta :: [dB, dB] => bool (infixl ‹→β› 50)

where
beta [simp, intro!]: Abs s ° t →β s[t/0]

| appL [simp, intro!]: s →β t =⇒ s ° u →β t ° u
| appR [simp, intro!]: s →β t =⇒ u ° s →β u ° t
| abs [simp, intro!]: s →β t =⇒ Abs s →β Abs t

abbreviation
beta-reds :: [dB, dB] => bool (infixl ‹→β

∗› 50) where
s →β

∗ t == beta∗∗ s t

inductive-cases beta-cases [elim!]:
Var i →β t
Abs r →β s
s ° t →β u

declare if-not-P [simp] not-less-eq [simp]
— don’t add r-into-rtrancl[intro!]

1.3 Congruence rules
lemma rtrancl-beta-Abs [intro!]:

s →β
∗ s ′ =⇒ Abs s →β

∗ Abs s ′

by (induct set: rtranclp) (blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-beta-AppL:
s →β

∗ s ′ =⇒ s ° t →β
∗ s ′ ° t

by (induct set: rtranclp) (blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-beta-AppR:
t →β

∗ t ′ =⇒ s ° t →β
∗ s ° t ′

by (induct set: rtranclp) (blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-beta-App [intro]:
[[s →β

∗ s ′; t →β
∗ t ′]] =⇒ s ° t →β

∗ s ′ ° t ′

by (blast intro!: rtrancl-beta-AppL rtrancl-beta-AppR intro: rtranclp-trans)

1.4 Substitution-lemmas
lemma subst-eq [simp]: (Var k)[u/k] = u

by (simp add: subst-Var)

lemma subst-gt [simp]: i < j =⇒ (Var j)[u/i] = Var (j − 1)
by (simp add: subst-Var)

lemma subst-lt [simp]: j < i =⇒ (Var j)[u/i] = Var j
by (simp add: subst-Var)

5

lemma lift-lift:
i < k + 1 =⇒ lift (lift t i) (Suc k) = lift (lift t k) i

by (induct t arbitrary: i k) auto

lemma lift-subst [simp]:
j < i + 1 =⇒ lift (t[s/j]) i = (lift t (i + 1)) [lift s i / j]

by (induct t arbitrary: i j s)
(simp-all add: diff-Suc subst-Var lift-lift split: nat.split)

lemma lift-subst-lt:
i < j + 1 =⇒ lift (t[s/j]) i = (lift t i) [lift s i / j + 1]

by (induct t arbitrary: i j s) (simp-all add: subst-Var lift-lift)

lemma subst-lift [simp]:
(lift t k)[s/k] = t

by (induct t arbitrary: k s) simp-all

lemma subst-subst:
i < j + 1 =⇒ t[lift v i / Suc j][u[v/j]/i] = t[u/i][v/j]

by (induct t arbitrary: i j u v)
(simp-all add: diff-Suc subst-Var lift-lift [symmetric] lift-subst-lt

split: nat.split)

1.5 Equivalence proof for optimized substitution
lemma liftn-0 [simp]: liftn 0 t k = t

by (induct t arbitrary: k) (simp-all add: subst-Var)

lemma liftn-lift [simp]: liftn (Suc n) t k = lift (liftn n t k) k
by (induct t arbitrary: k) (simp-all add: subst-Var)

lemma substn-subst-n [simp]: substn t s n = t[liftn n s 0 / n]
by (induct t arbitrary: n) (simp-all add: subst-Var)

theorem substn-subst-0 : substn t s 0 = t[s/0]
by simp

1.6 Preservation theorems

Not used in Church-Rosser proof, but in Strong Normalization.

theorem subst-preserves-beta [simp]:
r →β s =⇒ r [t/i] →β s[t/i]

by (induct arbitrary: t i set: beta) (simp-all add: subst-subst [symmetric])

theorem subst-preserves-beta ′: r →β
∗ s =⇒ r [t/i] →β

∗ s[t/i]
proof (induct set: rtranclp)

case base
then show ?case

6

by (iprover intro: rtrancl-refl)
next

case (step y z)
then show ?case

by (iprover intro: rtranclp.simps subst-preserves-beta)
qed

theorem lift-preserves-beta [simp]:
r →β s =⇒ lift r i →β lift s i

by (induct arbitrary: i set: beta) auto

theorem lift-preserves-beta ′: r →β
∗ s =⇒ lift r i →β

∗ lift s i
proof (induct set: rtranclp)

case base
then show ?case

by (iprover intro: rtrancl-refl)
next

case (step y z)
then show ?case

by (iprover intro: lift-preserves-beta rtranclp.simps)
qed

theorem subst-preserves-beta2 [simp]: r →β s =⇒ t[r/i] →β
∗ t[s/i]

proof (induct t arbitrary: r s i)
case (Var x)
then show ?case

by (simp add: subst-Var r-into-rtranclp)
next

case (App t1 t2)
then show ?case

by (simp add: rtrancl-beta-App)
next

case (Abs t)
then show ?case by (simp add: rtrancl-beta-Abs)

qed

theorem subst-preserves-beta2 ′: r →β
∗ s =⇒ t[r/i] →β

∗ t[s/i]
proof (induct set: rtranclp)

case base
then show ?case by (iprover intro: rtrancl-refl)

next
case (step y z)
then show ?case

by (iprover intro: rtranclp-trans subst-preserves-beta2)
qed

end

7

2 Abstract commutation and confluence notions
theory Commutation
imports Main
begin

declare [[syntax-ambiguity-warning = false]]

2.1 Basic definitions
definition

square :: [′a => ′a => bool, ′a => ′a => bool, ′a => ′a => bool, ′a => ′a =>
bool] => bool where

square R S T U =
(∀ x y. R x y −−> (∀ z. S x z −−> (∃ u. T y u ∧ U z u)))

definition
commute :: [′a => ′a => bool, ′a => ′a => bool] => bool where
commute R S = square R S S R

definition
diamond :: (′a => ′a => bool) => bool where
diamond R = commute R R

definition
Church-Rosser :: (′a => ′a => bool) => bool where
Church-Rosser R =
(∀ x y. (sup R (R−1−1))∗∗ x y −→ (∃ z. R∗∗ x z ∧ R∗∗ y z))

abbreviation
confluent :: (′a => ′a => bool) => bool where
confluent R == diamond (R∗∗)

2.2 Basic lemmas
square
lemma square-sym: square R S T U ==> square S R U T

apply (unfold square-def)
apply blast
done

lemma square-subset:
[| square R S T U ; T ≤ T ′ |] ==> square R S T ′ U

apply (unfold square-def)
apply (blast dest: predicate2D)
done

lemma square-reflcl:
[| square R S T (R==); S ≤ T |] ==> square (R==) S T (R==)

8

apply (unfold square-def)
apply (blast dest: predicate2D)
done

lemma square-rtrancl:
square R S S T ==> square (R∗∗) S S (T∗∗)

apply (unfold square-def)
apply (intro strip)
apply (erule rtranclp-induct)
apply blast

apply (blast intro: rtranclp.rtrancl-into-rtrancl)
done

lemma square-rtrancl-reflcl-commute:
square R S (S∗∗) (R==) ==> commute (R∗∗) (S∗∗)

apply (unfold commute-def)
apply (fastforce dest: square-reflcl square-sym [THEN square-rtrancl])
done

commute
lemma commute-sym: commute R S ==> commute S R

apply (unfold commute-def)
apply (blast intro: square-sym)
done

lemma commute-rtrancl: commute R S ==> commute (R∗∗) (S∗∗)
apply (unfold commute-def)
apply (blast intro: square-rtrancl square-sym)
done

lemma commute-Un:
[| commute R T ; commute S T |] ==> commute (sup R S) T

apply (unfold commute-def square-def)
apply blast
done

diamond, confluence, and union
lemma diamond-Un:

[| diamond R; diamond S ; commute R S |] ==> diamond (sup R S)
apply (unfold diamond-def)
apply (blast intro: commute-Un commute-sym)
done

lemma diamond-confluent: diamond R ==> confluent R
apply (unfold diamond-def)
apply (erule commute-rtrancl)
done

9

lemma square-reflcl-confluent:
square R R (R==) (R==) ==> confluent R

apply (unfold diamond-def)
apply (fast intro: square-rtrancl-reflcl-commute elim: square-subset)
done

lemma confluent-Un:
[| confluent R; confluent S ; commute (R∗∗) (S∗∗) |] ==> confluent (sup R S)

apply (rule rtranclp-sup-rtranclp [THEN subst])
apply (blast dest: diamond-Un intro: diamond-confluent)
done

lemma diamond-to-confluence:
[| diamond R; T ≤ R; R ≤ T∗∗ |] ==> confluent T

apply (force intro: diamond-confluent
dest: rtranclp-subset [symmetric])

done

2.3 Church-Rosser
lemma Church-Rosser-confluent: Church-Rosser R = confluent R

apply (unfold square-def commute-def diamond-def Church-Rosser-def)
apply (tactic ‹safe-tac (put-claset HOL-cs context)›)
apply (tactic ‹

blast-tac (put-claset HOL-cs context addIs
[@{thm sup-ge2} RS @{thm rtranclp-mono} RS @{thm predicate2D} RS

@{thm rtranclp-trans},
@{thm rtranclp-converseI}, @{thm conversepI},
@{thm sup-ge1} RS @{thm rtranclp-mono} RS @{thm predicate2D}]) 1 ›)

apply (erule rtranclp-induct)
apply blast

apply (blast del: rtranclp.rtrancl-refl intro: rtranclp-trans)
done

2.4 Newman’s lemma

Proof by Stefan Berghofer
theorem newman:

assumes wf : wfP (R−1−1)
and lc:

∧
a b c. R a b =⇒ R a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
shows

∧
b c. R∗∗ a b =⇒ R∗∗ a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
using wf

proof induct
case (less x b c)
have xc: R∗∗ x c by fact
have xb: R∗∗ x b by fact thus ?case
proof (rule converse-rtranclpE)

10

assume x = b
with xc have R∗∗ b c by simp
thus ?thesis by iprover

next
fix y
assume xy: R x y
assume yb: R∗∗ y b
from xc show ?thesis
proof (rule converse-rtranclpE)

assume x = c
with xb have R∗∗ c b by simp
thus ?thesis by iprover

next
fix y ′

assume y ′c: R∗∗ y ′ c
assume xy ′: R x y ′

with xy have ∃ u. R∗∗ y u ∧ R∗∗ y ′ u by (rule lc)
then obtain u where yu: R∗∗ y u and y ′u: R∗∗ y ′ u by iprover
from xy have R−1−1 y x ..
from this and yb yu have ∃ d. R∗∗ b d ∧ R∗∗ u d by (rule less)
then obtain v where bv: R∗∗ b v and uv: R∗∗ u v by iprover
from xy ′ have R−1−1 y ′ x ..
moreover from y ′u and uv have R∗∗ y ′ v by (rule rtranclp-trans)
moreover note y ′c
ultimately have ∃ d. R∗∗ v d ∧ R∗∗ c d by (rule less)
then obtain w where vw: R∗∗ v w and cw: R∗∗ c w by iprover
from bv vw have R∗∗ b w by (rule rtranclp-trans)
with cw show ?thesis by iprover

qed
qed

qed

Alternative version. Partly automated by Tobias Nipkow. Takes 2 minutes
(2002).
This is the maximal amount of automation possible using blast.
theorem newman ′:

assumes wf : wfP (R−1−1)
and lc:

∧
a b c. R a b =⇒ R a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
shows

∧
b c. R∗∗ a b =⇒ R∗∗ a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
using wf

proof induct
case (less x b c)
note IH = ‹

∧
y b c. [[R−1−1 y x; R∗∗ y b; R∗∗ y c]]
=⇒ ∃ d. R∗∗ b d ∧ R∗∗ c d›

have xc: R∗∗ x c by fact
have xb: R∗∗ x b by fact
thus ?case

11

proof (rule converse-rtranclpE)
assume x = b
with xc have R∗∗ b c by simp
thus ?thesis by iprover

next
fix y
assume xy: R x y
assume yb: R∗∗ y b
from xc show ?thesis
proof (rule converse-rtranclpE)

assume x = c
with xb have R∗∗ c b by simp
thus ?thesis by iprover

next
fix y ′

assume y ′c: R∗∗ y ′ c
assume xy ′: R x y ′

with xy obtain u where u: R∗∗ y u R∗∗ y ′ u
by (blast dest: lc)

from yb u y ′c show ?thesis
by (blast del: rtranclp.rtrancl-refl

intro: rtranclp-trans
dest: IH [OF conversepI , OF xy] IH [OF conversepI , OF xy ′])

qed
qed

qed

Using the coherent logic prover, the proof of the induction step is completely
automatic.
lemma eq-imp-rtranclp: x = y =⇒ r∗∗ x y

by simp

theorem newman ′′:
assumes wf : wfP (R−1−1)
and lc:

∧
a b c. R a b =⇒ R a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
shows

∧
b c. R∗∗ a b =⇒ R∗∗ a c =⇒

∃ d. R∗∗ b d ∧ R∗∗ c d
using wf

proof induct
case (less x b c)
note IH = ‹

∧
y b c. [[R−1−1 y x; R∗∗ y b; R∗∗ y c]]
=⇒ ∃ d. R∗∗ b d ∧ R∗∗ c d›

show ?case
by (coherent

‹R∗∗ x c› ‹R∗∗ x b›
refl [where ′a= ′a] sym
eq-imp-rtranclp
r-into-rtranclp [of R]

12

rtranclp-trans
lc IH [OF conversepI]
converse-rtranclpE)

qed

end

3 Parallel reduction and a complete developments
theory ParRed imports Lambda Commutation begin

3.1 Parallel reduction
inductive par-beta :: [dB, dB] => bool (infixl ‹=>› 50)

where
var [simp, intro!]: Var n => Var n

| abs [simp, intro!]: s => t ==> Abs s => Abs t
| app [simp, intro!]: [| s => s ′; t => t ′ |] ==> s ° t => s ′ ° t ′

| beta [simp, intro!]: [| s => s ′; t => t ′ |] ==> (Abs s) ° t => s ′[t ′/0]

inductive-cases par-beta-cases [elim!]:
Var n => t
Abs s => Abs t
(Abs s) ° t => u
s ° t => u
Abs s => t

3.2 Inclusions

beta ⊆ par-beta ⊆ beta∗

lemma par-beta-varL [simp]:
(Var n => t) = (t = Var n)

by blast

lemma par-beta-refl [simp]: t => t
by (induct t) simp-all

lemma beta-subset-par-beta: beta <= par-beta
apply (rule predicate2I)
apply (erule beta.induct)

apply (blast intro!: par-beta-refl)+
done

lemma par-beta-subset-beta: par-beta ≤ beta∗∗

apply (rule predicate2I)
apply (erule par-beta.induct)

apply blast
apply (blast del: rtranclp.rtrancl-refl intro: rtranclp.rtrancl-into-rtrancl)+

13

— rtrancl-refl complicates the proof by increasing the branching factor
done

3.3 Misc properties of par-beta
lemma par-beta-lift [simp]:

t => t ′ =⇒ lift t n => lift t ′ n
by (induct t arbitrary: t ′ n) fastforce+

lemma par-beta-subst:
s => s ′ =⇒ t => t ′ =⇒ t[s/n] => t ′[s ′/n]

apply (induct t arbitrary: s s ′ t ′ n)
apply (simp add: subst-Var)

apply (erule par-beta-cases)
apply simp

apply (simp add: subst-subst [symmetric])
apply (fastforce intro!: par-beta-lift)

apply fastforce
done

3.4 Confluence (directly)
lemma diamond-par-beta: diamond par-beta

apply (unfold diamond-def commute-def square-def)
apply (rule impI [THEN allI [THEN allI]])
apply (erule par-beta.induct)

apply (blast intro!: par-beta-subst)+
done

3.5 Complete developments
fun

cd :: dB => dB
where

cd (Var n) = Var n
| cd (Var n ° t) = Var n ° cd t
| cd ((s1 ° s2) ° t) = cd (s1 ° s2) ° cd t
| cd (Abs u ° t) = (cd u)[cd t/0]
| cd (Abs s) = Abs (cd s)

lemma par-beta-cd: s => t =⇒ t => cd s
apply (induct s arbitrary: t rule: cd.induct)

apply auto
apply (fast intro!: par-beta-subst)
done

3.6 Confluence (via complete developments)
lemma diamond-par-beta2 : diamond par-beta

unfolding diamond-def commute-def square-def

14

by (blast intro: par-beta-cd)

theorem beta-confluent: confluent beta
by (rule diamond-par-beta2 diamond-to-confluence

par-beta-subset-beta beta-subset-par-beta)+

end

4 Eta-reduction
theory Eta imports ParRed begin

4.1 Definition of eta-reduction and relatives
primrec

free :: dB => nat => bool
where

free (Var j) i = (j = i)
| free (s ° t) i = (free s i ∨ free t i)
| free (Abs s) i = free s (i + 1)

inductive
eta :: [dB, dB] => bool (infixl ‹→η› 50)

where
eta [simp, intro]: ¬ free s 0 ==> Abs (s ° Var 0) →η s[dummy/0]

| appL [simp, intro]: s →η t ==> s ° u →η t ° u
| appR [simp, intro]: s →η t ==> u ° s →η u ° t
| abs [simp, intro]: s →η t ==> Abs s →η Abs t

abbreviation
eta-reds :: [dB, dB] => bool (infixl ‹→η

∗› 50) where
s →η

∗ t == eta∗∗ s t

abbreviation
eta-red0 :: [dB, dB] => bool (infixl ‹→η

=› 50) where
s →η

= t == eta== s t

inductive-cases eta-cases [elim!]:
Abs s →η z
s ° t →η u
Var i →η t

4.2 Properties of eta, subst and free
lemma subst-not-free [simp]: ¬ free s i =⇒ s[t/i] = s[u/i]

by (induct s arbitrary: i t u) (simp-all add: subst-Var)

lemma free-lift [simp]:
free (lift t k) i = (i < k ∧ free t i ∨ k < i ∧ free t (i − 1))

15

apply (induct t arbitrary: i k)
apply (auto cong: conj-cong)
done

lemma free-subst [simp]:
free (s[t/k]) i =
(free s k ∧ free t i ∨ free s (if i < k then i else i + 1))

apply (induct s arbitrary: i k t)
prefer 2
apply simp
apply blast

prefer 2
apply simp

apply (simp add: diff-Suc subst-Var split: nat.split)
done

lemma free-eta: s →η t ==> free t i = free s i
by (induct arbitrary: i set: eta) (simp-all cong: conj-cong)

lemma not-free-eta:
[| s →η t; ¬ free s i |] ==> ¬ free t i

by (simp add: free-eta)

lemma eta-subst [simp]:
s →η t ==> s[u/i] →η t[u/i]

by (induct arbitrary: u i set: eta) (simp-all add: subst-subst [symmetric])

theorem lift-subst-dummy: ¬ free s i =⇒ lift (s[dummy/i]) i = s
by (induct s arbitrary: i dummy) simp-all

4.3 Confluence of eta
lemma square-eta: square eta eta (eta==) (eta==)

apply (unfold square-def id-def)
apply (rule impI [THEN allI [THEN allI]])
apply (erule eta.induct)

apply (slowsimp intro: subst-not-free eta-subst free-eta [THEN iffD1])
apply safe

prefer 5
apply (blast intro!: eta-subst intro: free-eta [THEN iffD1])

apply blast+
done

theorem eta-confluent: confluent eta
apply (rule square-eta [THEN square-reflcl-confluent])
done

4.4 Congruence rules for eta∗

lemma rtrancl-eta-Abs: s →η
∗ s ′ ==> Abs s →η

∗ Abs s ′

16

by (induct set: rtranclp)
(blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-eta-AppL: s →η
∗ s ′ ==> s ° t →η

∗ s ′ ° t
by (induct set: rtranclp)
(blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-eta-AppR: t →η
∗ t ′ ==> s ° t →η

∗ s ° t ′

by (induct set: rtranclp) (blast intro: rtranclp.rtrancl-into-rtrancl)+

lemma rtrancl-eta-App:
[| s →η

∗ s ′; t →η
∗ t ′ |] ==> s ° t →η

∗ s ′ ° t ′

by (blast intro!: rtrancl-eta-AppL rtrancl-eta-AppR intro: rtranclp-trans)

4.5 Commutation of beta and eta
lemma free-beta:

s →β t ==> free t i =⇒ free s i
by (induct arbitrary: i set: beta) auto

lemma beta-subst [intro]: s →β t ==> s[u/i] →β t[u/i]
by (induct arbitrary: u i set: beta) (simp-all add: subst-subst [symmetric])

lemma subst-Var-Suc [simp]: t[Var i/i] = t[Var(i)/i + 1]
by (induct t arbitrary: i) (auto elim!: linorder-neqE simp: subst-Var)

lemma eta-lift [simp]: s →η t ==> lift s i →η lift t i
by (induct arbitrary: i set: eta) simp-all

lemma rtrancl-eta-subst: s →η t =⇒ u[s/i] →η
∗ u[t/i]

apply (induct u arbitrary: s t i)
apply (simp-all add: subst-Var)
apply blast

apply (blast intro: rtrancl-eta-App)
apply (blast intro!: rtrancl-eta-Abs eta-lift)
done

lemma rtrancl-eta-subst ′:
fixes s t :: dB
assumes eta: s →η

∗ t
shows s[u/i] →η

∗ t[u/i] using eta
by induct (iprover intro: eta-subst)+

lemma rtrancl-eta-subst ′′:
fixes s t :: dB
assumes eta: s →η

∗ t
shows u[s/i] →η

∗ u[t/i] using eta
by induct (iprover intro: rtrancl-eta-subst rtranclp-trans)+

17

lemma square-beta-eta: square beta eta (eta∗∗) (beta==)
apply (unfold square-def)
apply (rule impI [THEN allI [THEN allI]])
apply (erule beta.induct)

apply (slowsimp intro: rtrancl-eta-subst eta-subst)
apply (blast intro: rtrancl-eta-AppL)

apply (blast intro: rtrancl-eta-AppR)
apply simp
apply (slowsimp intro: rtrancl-eta-Abs free-beta

iff del: dB.distinct simp: dB.distinct)
done

lemma confluent-beta-eta: confluent (sup beta eta)
apply (assumption |

rule square-rtrancl-reflcl-commute confluent-Un
beta-confluent eta-confluent square-beta-eta)+

done

4.6 Implicit definition of eta

Abs (lift s 0 ° Var 0) →η s
lemma not-free-iff-lifted:

(¬ free s i) = (∃ t. s = lift t i)
apply (induct s arbitrary: i)

apply simp
apply (rule iffI)
apply (erule linorder-neqE)
apply (rename-tac nat a, rule-tac x = Var nat in exI)
apply simp

apply (rename-tac nat a, rule-tac x = Var (nat − 1) in exI)
apply simp

apply clarify
apply (rule notE)
prefer 2
apply assumption

apply (erule thin-rl)
apply (case-tac t)

apply simp
apply simp

apply simp
apply simp
apply (erule thin-rl)
apply (erule thin-rl)
apply (rule iffI)
apply (elim conjE exE)
apply (rename-tac u1 u2)
apply (rule-tac x = u1 ° u2 in exI)
apply simp

apply (erule exE)

18

apply (erule rev-mp)
apply (case-tac t)

apply simp
apply simp
apply blast

apply simp
apply simp
apply (erule thin-rl)
apply (rule iffI)
apply (erule exE)
apply (rule-tac x = Abs t in exI)
apply simp

apply (erule exE)
apply (erule rev-mp)
apply (case-tac t)

apply simp
apply simp

apply simp
apply blast
done

theorem explicit-is-implicit:
(∀ s u. (¬ free s 0) −−> R (Abs (s ° Var 0)) (s[u/0])) =
(∀ s. R (Abs (lift s 0 ° Var 0)) s)

by (auto simp add: not-free-iff-lifted)

4.7 Eta-postponement theorem

Based on a paper proof due to Andreas Abel. Unlike the proof by Masako
Takahashi [4], it does not use parallel eta reduction, which only seems to
complicate matters unnecessarily.
theorem eta-case:

fixes s :: dB
assumes free: ¬ free s 0
and s: s[dummy/0] => u
shows ∃ t ′. Abs (s ° Var 0) => t ′ ∧ t ′ →η

∗ u
proof −

from s have lift (s[dummy/0]) 0 => lift u 0 by (simp del: lift-subst)
with free have s => lift u 0 by (simp add: lift-subst-dummy del: lift-subst)
hence Abs (s ° Var 0) => Abs (lift u 0 ° Var 0) by simp
moreover have ¬ free (lift u 0) 0 by simp
hence Abs (lift u 0 ° Var 0) →η lift u 0 [dummy/0]

by (rule eta.eta)
hence Abs (lift u 0 ° Var 0) →η

∗ u by simp
ultimately show ?thesis by iprover

qed

theorem eta-par-beta:
assumes st: s →η t

19

and tu: t => u
shows ∃ t ′. s => t ′ ∧ t ′ →η

∗ u using tu st
proof (induct arbitrary: s)

case (var n)
thus ?case by (iprover intro: par-beta-refl)

next
case (abs s ′ t)
note abs ′ = this
from ‹s →η Abs s ′› show ?case
proof cases

case (eta s ′′ dummy)
from abs have Abs s ′ => Abs t by simp
with eta have s ′′[dummy/0] => Abs t by simp
with ‹¬ free s ′′ 0 › have ∃ t ′. Abs (s ′′ ° Var 0) => t ′ ∧ t ′ →η

∗ Abs t
by (rule eta-case)

with eta show ?thesis by simp
next

case (abs r)
from ‹r →η s ′›
obtain t ′ where r : r => t ′ and t ′: t ′ →η

∗ t by (iprover dest: abs ′)
from r have Abs r => Abs t ′ ..
moreover from t ′ have Abs t ′ →η

∗ Abs t by (rule rtrancl-eta-Abs)
ultimately show ?thesis using abs by simp iprover

qed
next

case (app u u ′ t t ′)
from ‹s →η u ° t› show ?case
proof cases

case (eta s ′ dummy)
from app have u ° t => u ′ ° t ′ by simp
with eta have s ′[dummy/0] => u ′ ° t ′ by simp
with ‹¬ free s ′ 0 › have ∃ r . Abs (s ′ ° Var 0) => r ∧ r →η

∗ u ′ ° t ′

by (rule eta-case)
with eta show ?thesis by simp

next
case (appL s ′)
from ‹s ′ →η u›
obtain r where s ′: s ′ => r and r : r →η

∗ u ′ by (iprover dest: app)
from s ′ and app have s ′ ° t => r ° t ′ by simp
moreover from r have r ° t ′ →η

∗ u ′ ° t ′ by (simp add: rtrancl-eta-AppL)
ultimately show ?thesis using appL by simp iprover

next
case (appR s ′)
from ‹s ′ →η t›
obtain r where s ′: s ′ => r and r : r →η

∗ t ′ by (iprover dest: app)
from s ′ and app have u ° s ′ => u ′ ° r by simp
moreover from r have u ′ ° r →η

∗ u ′ ° t ′ by (simp add: rtrancl-eta-AppR)
ultimately show ?thesis using appR by simp iprover

qed

20

next
case (beta u u ′ t t ′)
from ‹s →η Abs u ° t› show ?case
proof cases

case (eta s ′ dummy)
from beta have Abs u ° t => u ′[t ′/0] by simp
with eta have s ′[dummy/0] => u ′[t ′/0] by simp
with ‹¬ free s ′ 0 › have ∃ r . Abs (s ′ ° Var 0) => r ∧ r →η

∗ u ′[t ′/0]
by (rule eta-case)

with eta show ?thesis by simp
next

case (appL s ′)
from ‹s ′ →η Abs u› show ?thesis
proof cases

case (eta s ′′ dummy)
have Abs (lift u 1) = lift (Abs u) 0 by simp
also from eta have . . . = s ′′ by (simp add: lift-subst-dummy del: lift-subst)
finally have s: s = Abs (Abs (lift u 1) ° Var 0) ° t using appL and eta by

simp
from beta have lift u 1 => lift u ′ 1 by simp
hence Abs (lift u 1) ° Var 0 => lift u ′ 1 [Var 0/0]

using par-beta.var ..
hence Abs (Abs (lift u 1) ° Var 0) ° t => lift u ′ 1 [Var 0/0][t ′/0]

using ‹t => t ′› ..
with s have s => u ′[t ′/0] by simp
thus ?thesis by iprover

next
case (abs r)
from ‹r →η u›
obtain r ′′ where r : r => r ′′ and r ′′: r ′′ →η

∗ u ′ by (iprover dest: beta)
from r and beta have Abs r ° t => r ′′[t ′/0] by simp
moreover from r ′′ have r ′′[t ′/0] →η

∗ u ′[t ′/0]
by (rule rtrancl-eta-subst ′)

ultimately show ?thesis using abs and appL by simp iprover
qed

next
case (appR s ′)
from ‹s ′ →η t›
obtain r where s ′: s ′ => r and r : r →η

∗ t ′ by (iprover dest: beta)
from s ′ and beta have Abs u ° s ′ => u ′[r/0] by simp
moreover from r have u ′[r/0] →η

∗ u ′[t ′/0]
by (rule rtrancl-eta-subst ′′)

ultimately show ?thesis using appR by simp iprover
qed

qed

theorem eta-postponement ′:
assumes eta: s →η

∗ t and beta: t => u
shows ∃ t ′. s => t ′ ∧ t ′ →η

∗ u using eta beta

21

proof (induct arbitrary: u)
case base
thus ?case by blast

next
case (step s ′ s ′′ s ′′′)
then obtain t ′ where s ′: s ′ => t ′ and t ′: t ′ →η

∗ s ′′′

by (auto dest: eta-par-beta)
from s ′ obtain t ′′ where s: s => t ′′ and t ′′: t ′′ →η

∗ t ′ using step
by blast

from t ′′ and t ′ have t ′′ →η
∗ s ′′′ by (rule rtranclp-trans)

with s show ?case by iprover
qed

theorem eta-postponement:
assumes (sup beta eta)∗∗ s t
shows (beta∗∗ OO eta∗∗) s t using assms

proof induct
case base
show ?case by blast

next
case (step s ′ s ′′)
from step(3) obtain t ′ where s: s →β

∗ t ′ and t ′: t ′ →η
∗ s ′ by blast

from step(2) show ?case
proof

assume s ′ →β s ′′

with beta-subset-par-beta have s ′ => s ′′ ..
with t ′ obtain t ′′ where st: t ′ => t ′′ and tu: t ′′ →η

∗ s ′′

by (auto dest: eta-postponement ′)
from par-beta-subset-beta st have t ′ →β

∗ t ′′ ..
with s have s →β

∗ t ′′ by (rule rtranclp-trans)
thus ?thesis using tu ..

next
assume s ′ →η s ′′

with t ′ have t ′ →η
∗ s ′′ ..

with s show ?thesis ..
qed

qed

end

5 Application of a term to a list of terms
theory ListApplication imports Lambda begin

abbreviation
list-application :: dB => dB list => dB (infixl ‹°°› 150) where
t °° ts == foldl (°) t ts

lemma apps-eq-tail-conv [iff]: (r °° ts = s °° ts) = (r = s)

22

by (induct ts rule: rev-induct) auto

lemma Var-eq-apps-conv [iff]: (Var m = s °° ss) = (Var m = s ∧ ss = [])
by (induct ss arbitrary: s) auto

lemma Var-apps-eq-Var-apps-conv [iff]:
(Var m °° rs = Var n °° ss) = (m = n ∧ rs = ss)

apply (induct rs arbitrary: ss rule: rev-induct)
apply simp
apply blast

apply (induct-tac ss rule: rev-induct)
apply auto

done

lemma App-eq-foldl-conv:
(r ° s = t °° ts) =
(if ts = [] then r ° s = t
else (∃ ss. ts = ss @ [s] ∧ r = t °° ss))

apply (rule-tac xs = ts in rev-exhaust)
apply auto

done

lemma Abs-eq-apps-conv [iff]:
(Abs r = s °° ss) = (Abs r = s ∧ ss = [])

by (induct ss rule: rev-induct) auto

lemma apps-eq-Abs-conv [iff]: (s °° ss = Abs r) = (s = Abs r ∧ ss = [])
by (induct ss rule: rev-induct) auto

lemma Abs-apps-eq-Abs-apps-conv [iff]:
(Abs r °° rs = Abs s °° ss) = (r = s ∧ rs = ss)

apply (induct rs arbitrary: ss rule: rev-induct)
apply simp
apply blast

apply (induct-tac ss rule: rev-induct)
apply auto

done

lemma Abs-App-neq-Var-apps [iff]:
Abs s ° t 6= Var n °° ss

by (induct ss arbitrary: s t rule: rev-induct) auto

lemma Var-apps-neq-Abs-apps [iff]:
Var n °° ts 6= Abs r °° ss

apply (induct ss arbitrary: ts rule: rev-induct)
apply simp

apply (induct-tac ts rule: rev-induct)
apply auto

done

23

lemma ex-head-tail:
∃ ts h. t = h °° ts ∧ ((∃n. h = Var n) ∨ (∃ u. h = Abs u))
apply (induct t)

apply (rule-tac x = [] in exI)
apply simp

apply clarify
apply (rename-tac ts1 ts2 h1 h2)
apply (rule-tac x = ts1 @ [h2 °° ts2] in exI)
apply simp

apply simp
done

lemma size-apps [simp]:
size (r °° rs) = size r + foldl (+) 0 (map size rs) + length rs
by (induct rs rule: rev-induct) auto

lemma lem0 : [| (0 ::nat) < k; m <= n |] ==> m < n + k
by simp

lemma lift-map [simp]:
lift (t °° ts) i = lift t i °° map (λt. lift t i) ts

by (induct ts arbitrary: t) simp-all

lemma subst-map [simp]:
subst (t °° ts) u i = subst t u i °° map (λt. subst t u i) ts

by (induct ts arbitrary: t) simp-all

lemma app-last: (t °° ts) ° u = t °° (ts @ [u])
by simp

A customized induction schema for °°.
lemma lem:

assumes !!n ts. ∀ t ∈ set ts. P t ==> P (Var n °° ts)
and !!u ts. [| P u; ∀ t ∈ set ts. P t |] ==> P (Abs u °° ts)

shows size t = n =⇒ P t
apply (induct n arbitrary: t rule: nat-less-induct)
apply (cut-tac t = t in ex-head-tail)
apply clarify
apply (erule disjE)
apply clarify
apply (rule assms)
apply clarify
apply (erule allE , erule impE)
prefer 2
apply (erule allE , erule mp, rule refl)

apply simp
apply (simp only: foldl-conv-fold add.commute fold-plus-sum-list-rev)
apply (fastforce simp add: sum-list-map-remove1)

24

apply clarify
apply (rule assms)
apply (erule allE , erule impE)
prefer 2
apply (erule allE , erule mp, rule refl)

apply simp
apply clarify
apply (erule allE , erule impE)
prefer 2
apply (erule allE , erule mp, rule refl)

apply simp
apply (rule le-imp-less-Suc)
apply (rule trans-le-add1)
apply (rule trans-le-add2)
apply (simp only: foldl-conv-fold add.commute fold-plus-sum-list-rev)
apply (simp add: member-le-sum-list)
done

theorem Apps-dB-induct:
assumes !!n ts. ∀ t ∈ set ts. P t ==> P (Var n °° ts)

and !!u ts. [| P u; ∀ t ∈ set ts. P t |] ==> P (Abs u °° ts)
shows P t
apply (rule-tac t = t in lem)

prefer 3
apply (rule refl)
using assms apply iprover+

done

end

6 Simply-typed lambda terms
theory LambdaType imports ListApplication begin

6.1 Environments
definition

shift :: (nat ⇒ ′a) ⇒ nat ⇒ ′a ⇒ nat ⇒ ′a (‹-〈-:-〉› [90 , 0 , 0] 91) where
e〈i:a〉 = (λj. if j < i then e j else if j = i then a else e (j − 1))

lemma shift-eq [simp]: i = j =⇒ (e〈i:T 〉) j = T
by (simp add: shift-def)

lemma shift-gt [simp]: j < i =⇒ (e〈i:T 〉) j = e j
by (simp add: shift-def)

lemma shift-lt [simp]: i < j =⇒ (e〈i:T 〉) j = e (j − 1)
by (simp add: shift-def)

25

lemma shift-commute [simp]: e〈i:U 〉〈0 :T 〉 = e〈0 :T 〉〈Suc i:U 〉
by (rule ext) (simp-all add: shift-def split: nat.split)

6.2 Types and typing rules
datatype type =

Atom nat
| Fun type type (infixr ‹⇒› 200)

inductive typing :: (nat ⇒ type) ⇒ dB ⇒ type ⇒ bool (‹- ` - : -› [50 , 50 , 50]
50)

where
Var [intro!]: env x = T =⇒ env ` Var x : T

| Abs [intro!]: env〈0 :T 〉 ` t : U =⇒ env ` Abs t : (T ⇒ U)
| App [intro!]: env ` s : T ⇒ U =⇒ env ` t : T =⇒ env ` (s ° t) : U

inductive-cases typing-elims [elim!]:
e ` Var i : T
e ` t ° u : T
e ` Abs t : T

primrec
typings :: (nat ⇒ type) ⇒ dB list ⇒ type list ⇒ bool

where
typings e [] Ts = (Ts = [])

| typings e (t # ts) Ts =
(case Ts of
[] ⇒ False

| T # Ts ⇒ e ` t : T ∧ typings e ts Ts)

abbreviation
typings-rel :: (nat ⇒ type) ⇒ dB list ⇒ type list ⇒ bool
(‹- `̀ - : -› [50 , 50 , 50] 50) where

env `̀ ts : Ts == typings env ts Ts

abbreviation
funs :: type list ⇒ type ⇒ type (infixr ‹V› 200) where
Ts V T == foldr Fun Ts T

6.3 Some examples
schematic-goal e ` Abs (Abs (Abs (Var 1 ° (Var 2 ° Var 1 ° Var 0)))) : ?T

by force

schematic-goal e ` Abs (Abs (Abs (Var 2 ° Var 0 ° (Var 1 ° Var 0)))) : ?T
by force

6.4 Lists of types
lemma lists-typings:

26

e `̀ ts : Ts =⇒ listsp (λt. ∃T . e ` t : T) ts
proof (induct ts arbitrary: Ts)

case Nil
then show ?case

by simp
next

case c: (Cons a ts)
show ?case
proof (cases Ts)

case Nil
with c show ?thesis

by simp
next

case (Cons T list)
with c show ?thesis by force

qed
qed

lemma types-snoc: e `̀ ts : Ts =⇒ e ` t : T =⇒ e `̀ ts @ [t] : Ts @ [T]
by (induct ts arbitrary: Ts) (auto split: list.split-asm)

lemma types-snoc-eq: e `̀ ts @ [t] : Ts @ [T] =
(e `̀ ts : Ts ∧ e ` t : T)

proof (induct ts arbitrary: Ts)
case Nil
then show ?case

by (auto split: list.split)
next

case (Cons a ts)
have ¬ e `̀ ts @ [t] : []
by (cases ts @ [t]; simp)
with Cons show ?case

by (auto split: list.split)
qed

Cannot use rev-exhaust from the List theory, since it is not constructive
lemma rev-exhaust2 [extraction-expand]:

obtains (Nil) xs = [] | (snoc) ys y where xs = ys @ [y]
proof −

have §: xs = rev ys =⇒ thesis for ys
by (cases ys) (simp-all add: local.Nil snoc)

show thesis
using § [of rev xs] by simp

qed

lemma types-snocE :
assumes ‹e `̀ ts @ [t] : Ts›
obtains Us and U where ‹Ts = Us @ [U]› ‹e `̀ ts : Us› ‹e ` t : U ›

proof (cases Ts rule: rev-exhaust2)

27

case Nil
with assms show ?thesis

by (cases ts @ [t]) simp-all
next

case (snoc Us U)
with assms have e `̀ ts @ [t] : Us @ [U] by simp
then have e `̀ ts : Us e ` t : U by (simp-all add: types-snoc-eq)
with snoc show ?thesis by (rule that)

qed

6.5 n-ary function types
lemma list-app-typeD:

e ` t °° ts : T =⇒ ∃Ts. e ` t : Ts V T ∧ e `̀ ts : Ts
proof (induct ts arbitrary: t T)

case Nil
then show ?case by auto

next
case (Cons a b t T)
then show ?case

by (auto simp: split: list.split)
qed

lemma list-app-typeE :
e ` t °° ts : T =⇒ (

∧
Ts. e ` t : Ts V T =⇒ e `̀ ts : Ts =⇒ C) =⇒ C

using list-app-typeD by iprover

lemma list-app-typeI :
e ` t : Ts V T =⇒ e `̀ ts : Ts =⇒ e ` t °° ts : T

by (induct ts arbitrary: t Ts) (auto simp add: split: list.split-asm)

For the specific case where the head of the term is a variable, the following
theorems allow to infer the types of the arguments without analyzing the
typing derivation. This is crucial for program extraction.
theorem var-app-type-eq:

e ` Var i °° ts : T =⇒ e ` Var i °° ts : U =⇒ T = U
by (induct ts arbitrary: T U rule: rev-induct) auto

lemma var-app-types: e ` Var i °° ts °° us : T =⇒ e `̀ ts : Ts =⇒
e ` Var i °° ts : U =⇒ ∃Us. U = Us V T ∧ e `̀ us : Us

proof (induct us arbitrary: ts Ts U)
case Nil
then show ?case

by (simp add: var-app-type-eq)
next

case (Cons a b ts Ts U)
then show ?case

apply atomize
apply (case-tac U)

28

apply (rule FalseE)
apply simp
apply (erule list-app-typeE)
apply (ind-cases e ` t ° u : T for t u T)
apply (rename-tac nat Ts ′ T ′)
apply (drule-tac T=Atom nat and U=T ′ ⇒ Ts ′ V T in var-app-type-eq)
apply assumption

apply simp
apply (rename-tac type1 type2)
apply (erule-tac x=ts @ [a] in allE)
apply (erule-tac x=Ts @ [type1] in allE)
apply (erule-tac x=type2 in allE)
apply simp
apply (erule impE)
apply (rule types-snoc)
apply assumption

apply (erule list-app-typeE)
apply (ind-cases e ` t ° u : T for t u T)

using var-app-type-eq apply fastforce
apply (erule impE)
apply (rule typing.App)
apply assumption

apply (erule list-app-typeE)
apply (ind-cases e ` t ° u : T for t u T)

using var-app-type-eq apply fastforce
apply (erule exE)
apply (rule-tac x=type1 # Us in exI)
apply simp
apply (erule list-app-typeE)
apply (ind-cases e ` t ° u : T for t u T)
using var-app-type-eq by fastforce

qed

lemma var-app-typesE : e ` Var i °° ts : T =⇒
(
∧

Ts. e ` Var i : Ts V T =⇒ e `̀ ts : Ts =⇒ P) =⇒ P
by (iprover intro: typing.Var dest: var-app-types [of - - [], simplified])

lemma abs-typeE :
assumes e ` Abs t : T

∧
U V . e〈0 :U 〉 ` t : V =⇒ P

shows P
proof (cases T)

case (Atom x1)
with assms(1) show ?thesis

apply−
apply (rule FalseE)
apply (erule typing.cases)

apply simp-all
done

next

29

case (Fun type1 type2)
with assms show ?thesis

apply atomize
apply (erule-tac x=type1 in allE)
apply (erule-tac x=type2 in allE)
apply (erule mp)
apply (erule typing.cases)

apply simp-all
done

qed

6.6 Lifting preserves well-typedness
lemma lift-type [intro!]: e ` t : T =⇒ e〈i:U 〉 ` lift t i : T

by (induct arbitrary: i U set: typing) auto

lemma lift-types:
e `̀ ts : Ts =⇒ e〈i:U 〉 `̀ (map (λt. lift t i) ts) : Ts
by (induct ts arbitrary: Ts) (auto split: list.split)

6.7 Substitution lemmas
lemma subst-lemma:

e ` t : T =⇒ e ′ ` u : U =⇒ e = e ′〈i:U 〉 =⇒ e ′ ` t[u/i] : T
proof (induct arbitrary: e ′ i U u set: typing)

case (Var env x T)
then show ?case

by (force simp add: shift-def)
next

case (Abs env T t U)
then show ?case by force

qed auto

lemma substs-lemma:
e ` u : T =⇒ e〈i:T 〉 `̀ ts : Ts =⇒

e `̀ (map (λt. t[u/i]) ts) : Ts
proof (induct ts arbitrary: Ts)

case Nil
then show ?case

by auto
next

case (Cons a ts)
with subst-lemma show ?case

by (auto split: list.split)
qed

6.8 Subject reduction
lemma subject-reduction: e ` t : T =⇒ t →β t ′ =⇒ e ` t ′ : T
proof (induct arbitrary: t ′ set: typing)

30

case (App env s T U t)
with subst-lemma show ?case

by auto
qed auto

theorem subject-reduction ′: t →β
∗ t ′ =⇒ e ` t : T =⇒ e ` t ′ : T

by (induct set: rtranclp) (iprover intro: subject-reduction)+

6.9 Alternative induction rule for types
lemma type-induct [induct type]:

assumes
(
∧

T . (
∧

T1 T2 . T = T1 ⇒ T2 =⇒ P T1) =⇒
(
∧

T1 T2 . T = T1 ⇒ T2 =⇒ P T2) =⇒ P T)
shows P T

proof (induct T)
case Atom
show ?case by (rule assms) simp-all

next
case Fun
show ?case by (rule assms) (insert Fun, simp-all)

qed

end

7 Lifting an order to lists of elements
theory ListOrder
imports Main
begin

declare [[syntax-ambiguity-warning = false]]

Lifting an order to lists of elements, relating exactly one element.
definition

step1 :: (′a => ′a => bool) => ′a list => ′a list => bool where
step1 r =
(λys xs. ∃ us z z ′ vs. xs = us @ z # vs ∧ r z ′ z ∧ ys =

us @ z ′ # vs)

lemma step1-converse [simp]: step1 (r−1−1) = (step1 r)−1−1

apply (unfold step1-def)
apply (blast intro!: order-antisym)
done

lemma in-step1-converse [iff]: (step1 (r−1−1) x y) = ((step1 r)−1−1 x y)
apply auto
done

31

lemma not-Nil-step1 [iff]: ¬ step1 r [] xs
apply (unfold step1-def)
apply blast
done

lemma not-step1-Nil [iff]: ¬ step1 r xs []
apply (unfold step1-def)
apply blast
done

lemma Cons-step1-Cons [iff]:
(step1 r (y # ys) (x # xs)) =
(r y x ∧ xs = ys ∨ x = y ∧ step1 r ys xs)

apply (unfold step1-def)
apply (rule iffI)
apply (erule exE)
apply (rename-tac ts)
apply (case-tac ts)
apply fastforce

apply force
apply (erule disjE)
apply blast

apply (blast intro: Cons-eq-appendI)
done

lemma append-step1I :
step1 r ys xs ∧ vs = us ∨ ys = xs ∧ step1 r vs us
==> step1 r (ys @ vs) (xs @ us)

apply (unfold step1-def)
apply auto
apply blast

apply (blast intro: append-eq-appendI)
done

lemma Cons-step1E [elim!]:
assumes step1 r ys (x # xs)

and !!y. ys = y # xs =⇒ r y x =⇒ R
and !!zs. ys = x # zs =⇒ step1 r zs xs =⇒ R

shows R
using assms
apply (cases ys)
apply (simp add: step1-def)

apply blast
done

lemma Snoc-step1-SnocD:
step1 r (ys @ [y]) (xs @ [x])
==> (step1 r ys xs ∧ y = x ∨ ys = xs ∧ r y x)

32

apply (unfold step1-def)
apply (clarify del: disjCI)
apply (rename-tac vs)
apply (rule-tac xs = vs in rev-exhaust)
apply force

apply simp
apply blast
done

lemma Cons-acc-step1I [intro!]:
Wellfounded.accp r x ==> Wellfounded.accp (step1 r) xs =⇒ Wellfounded.accp

(step1 r) (x # xs)
apply (induct arbitrary: xs set: Wellfounded.accp)
apply (erule thin-rl)
apply (erule accp-induct)
apply (rule accp.accI)
apply blast
done

lemma lists-accD: listsp (Wellfounded.accp r) xs ==> Wellfounded.accp (step1 r)
xs

apply (induct set: listsp)
apply (rule accp.accI)
apply simp

apply (rule accp.accI)
apply (fast dest: accp-downward)
done

lemma ex-step1I :
[| x ∈ set xs; r y x |]
==> ∃ ys. step1 r ys xs ∧ y ∈ set ys

apply (unfold step1-def)
apply (drule in-set-conv-decomp [THEN iffD1])
apply force
done

lemma lists-accI : Wellfounded.accp (step1 r) xs ==> listsp (Wellfounded.accp r)
xs

apply (induct set: Wellfounded.accp)
apply clarify
apply (rule accp.accI)
apply (drule-tac r=r in ex-step1I , assumption)
apply blast
done

end

33

8 Lifting beta-reduction to lists
theory ListBeta imports ListApplication ListOrder begin

Lifting beta-reduction to lists of terms, reducing exactly one element.
abbreviation

list-beta :: dB list => dB list => bool (infixl ‹=>› 50) where
rs => ss == step1 beta rs ss

lemma head-Var-reduction:
Var n °° rs →β v =⇒ ∃ ss. rs => ss ∧ v = Var n °° ss
apply (induct u == Var n °° rs v arbitrary: rs set: beta)

apply simp
apply (rule-tac xs = rs in rev-exhaust)
apply simp

apply (atomize, force intro: append-step1I)
apply (rule-tac xs = rs in rev-exhaust)
apply simp
apply (auto 0 3 intro: disjI2 [THEN append-step1I])

done

lemma apps-betasE [elim!]:
assumes major : r °° rs →β s

and cases: !!r ′. [| r →β r ′; s = r ′ °° rs |] ==> R
!!rs ′. [| rs => rs ′; s = r °° rs ′ |] ==> R
!!t u us. [| r = Abs t; rs = u # us; s = t[u/0] °° us |] ==> R

shows R
proof −

from major have
(∃ r ′. r →β r ′ ∧ s = r ′ °° rs) ∨
(∃ rs ′. rs => rs ′ ∧ s = r °° rs ′) ∨
(∃ t u us. r = Abs t ∧ rs = u # us ∧ s = t[u/0] °° us)
apply (induct u == r °° rs s arbitrary: r rs set: beta)

apply (case-tac r)
apply simp

apply (simp add: App-eq-foldl-conv)
apply (split if-split-asm)
apply simp
apply blast

apply simp
apply (simp add: App-eq-foldl-conv)
apply (split if-split-asm)
apply simp

apply simp
apply (drule App-eq-foldl-conv [THEN iffD1])
apply (split if-split-asm)
apply simp
apply blast

apply (force intro!: disjI1 [THEN append-step1I])

34

apply (drule App-eq-foldl-conv [THEN iffD1])
apply (split if-split-asm)
apply simp
apply blast

apply (clarify, auto 0 3 intro!: exI intro: append-step1I)
done

with cases show ?thesis by blast
qed

lemma apps-preserves-beta [simp]:
r →β s ==> r °° ss →β s °° ss

by (induct ss rule: rev-induct) auto

lemma apps-preserves-beta2 [simp]:
r →β

∗ s ==> r °° ss →β
∗ s °° ss

apply (induct set: rtranclp)
apply blast

apply (blast intro: apps-preserves-beta rtranclp.rtrancl-into-rtrancl)
done

lemma apps-preserves-betas [simp]:
rs => ss =⇒ r °° rs →β r °° ss

apply (induct rs arbitrary: ss rule: rev-induct)
apply simp

apply simp
apply (rule-tac xs = ss in rev-exhaust)
apply simp

apply simp
apply (drule Snoc-step1-SnocD)
apply blast
done

end

9 Inductive characterization of terminating lambda
terms

theory InductTermi imports ListBeta begin

9.1 Terminating lambda terms
inductive IT :: dB => bool

where
Var [intro]: listsp IT rs ==> IT (Var n °° rs)

| Lambda [intro]: IT r ==> IT (Abs r)
| Beta [intro]: IT ((r [s/0]) °° ss) ==> IT s ==> IT ((Abs r ° s) °° ss)

35

9.2 Every term in IT terminates
lemma double-induction-lemma [rule-format]:

termip beta s ==> ∀ t. termip beta t −−>
(∀ r ss. t = r [s/0] °° ss −−> termip beta (Abs r ° s °° ss))

apply (erule accp-induct)
apply (rule allI)
apply (rule impI)
apply (erule thin-rl)
apply (erule accp-induct)
apply clarify
apply (rule accp.accI)
apply (safe elim!: apps-betasE)

apply (blast intro: subst-preserves-beta apps-preserves-beta)
apply (blast intro: apps-preserves-beta2 subst-preserves-beta2 rtranclp-converseI

dest: accp-downwards)
apply (blast dest: apps-preserves-betas)
done

lemma IT-implies-termi: IT t ==> termip beta t
apply (induct set: IT)

apply (drule rev-predicate1D [OF - listsp-mono [where B=termip beta]])
apply (fast intro!: predicate1I)
apply (drule lists-accD)
apply (erule accp-induct)
apply (rule accp.accI)
apply (blast dest: head-Var-reduction)

apply (erule accp-induct)
apply (rule accp.accI)
apply blast

apply (blast intro: double-induction-lemma)
done

9.3 Every terminating term is in IT
declare Var-apps-neq-Abs-apps [symmetric, simp]

lemma [simp, THEN not-sym, simp]: Var n °° ss 6= Abs r ° s °° ts
by (simp add: foldl-Cons [symmetric] del: foldl-Cons)

lemma [simp]:
(Abs r ° s °° ss = Abs r ′ ° s ′ °° ss ′) = (r = r ′ ∧ s = s ′ ∧ ss = ss ′)
by (simp add: foldl-Cons [symmetric] del: foldl-Cons)

inductive-cases [elim!]:
IT (Var n °° ss)
IT (Abs t)
IT (Abs r ° s °° ts)

theorem termi-implies-IT : termip beta r ==> IT r

36

apply (erule accp-induct)
apply (rename-tac r)
apply (erule thin-rl)
apply (erule rev-mp)
apply simp
apply (rule-tac t = r in Apps-dB-induct)
apply clarify
apply (rule IT .intros)
apply clarify
apply (drule bspec, assumption)
apply (erule mp)
apply clarify
apply (drule-tac r=beta in conversepI)
apply (drule-tac r=beta−1−1 in ex-step1I , assumption)
apply clarify
apply (rename-tac us)
apply (erule-tac x = Var n °° us in allE)
apply force
apply (rename-tac u ts)
apply (case-tac ts)
apply simp
apply blast

apply (rename-tac s ss)
apply simp
apply clarify
apply (rule IT .intros)
apply (blast intro: apps-preserves-beta)

apply (erule mp)
apply clarify
apply (rename-tac t)
apply (erule-tac x = Abs u ° t °° ss in allE)
apply force
done

end

10 Strong normalization for simply-typed lambda
calculus

theory StrongNorm imports LambdaType InductTermi begin

Formalization by Stefan Berghofer. Partly based on a paper proof by Felix
Joachimski and Ralph Matthes [1].

10.1 Properties of IT
lemma lift-IT [intro!]: IT t =⇒ IT (lift t i)

apply (induct arbitrary: i set: IT)

37

apply (simp (no-asm))
apply (rule conjI)
apply
(rule impI ,
rule IT .Var ,
erule listsp.induct,
simp (no-asm),
simp (no-asm),
rule listsp.Cons,
blast,
assumption)+

apply auto
done

lemma lifts-IT : listsp IT ts =⇒ listsp IT (map (λt. lift t 0) ts)
by (induct ts) auto

lemma subst-Var-IT : IT r =⇒ IT (r [Var i/j])
apply (induct arbitrary: i j set: IT)

Case Var :

apply (simp (no-asm) add: subst-Var)
apply
((rule conjI impI)+,

rule IT .Var ,
erule listsp.induct,
simp (no-asm),
simp (no-asm),
rule listsp.Cons,
fast,
assumption)+

Case Lambda:

apply atomize
apply simp
apply (rule IT .Lambda)
apply fast

Case Beta:

apply atomize
apply (simp (no-asm-use) add: subst-subst [symmetric])
apply (rule IT .Beta)
apply auto

done

lemma Var-IT : IT (Var n)
apply (subgoal-tac IT (Var n °° []))
apply simp

apply (rule IT .Var)

38

apply (rule listsp.Nil)
done

lemma app-Var-IT : IT t =⇒ IT (t ° Var i)
apply (induct set: IT)

apply (subst app-last)
apply (rule IT .Var)
apply simp
apply (rule listsp.Cons)
apply (rule Var-IT)

apply (rule listsp.Nil)
apply (rule IT .Beta [where ?ss = [], unfolded foldl-Nil [THEN eq-reflection]])
apply (erule subst-Var-IT)

apply (rule Var-IT)
apply (subst app-last)
apply (rule IT .Beta)
apply (subst app-last [symmetric])
apply assumption

apply assumption
done

10.2 Well-typed substitution preserves termination
lemma subst-type-IT :∧

t e T u i. IT t =⇒ e〈i:U 〉 ` t : T =⇒
IT u =⇒ e ` u : U =⇒ IT (t[u/i])

(is PROP ?P U is
∧

t e T u i. - =⇒ PROP ?Q t e T u i U)
proof (induct U)

fix T t
assume MI1 :

∧
T1 T2 . T = T1 ⇒ T2 =⇒ PROP ?P T1

assume MI2 :
∧

T1 T2 . T = T1 ⇒ T2 =⇒ PROP ?P T2
assume IT t
thus

∧
e T ′ u i. PROP ?Q t e T ′ u i T

proof induct
fix e T ′ u i
assume uIT : IT u
assume uT : e ` u : T
{

case (Var rs n e1 T ′1 u1 i1)
assume nT : e〈i:T 〉 ` Var n °° rs : T ′

let ?ty = λt. ∃T ′. e〈i:T 〉 ` t : T ′

let ?R = λt. ∀ e T ′ u i.
e〈i:T 〉 ` t : T ′ −→ IT u −→ e ` u : T −→ IT (t[u/i])

show IT ((Var n °° rs)[u/i])
proof (cases n = i)

case True
show ?thesis
proof (cases rs)

case Nil

39

with uIT True show ?thesis by simp
next

case (Cons a as)
with nT have e〈i:T 〉 ` Var n ° a °° as : T ′ by simp
then obtain Ts

where headT : e〈i:T 〉 ` Var n ° a : Ts V T ′

and argsT : e〈i:T 〉 `̀ as : Ts
by (rule list-app-typeE)

from headT obtain T ′′

where varT : e〈i:T 〉 ` Var n : T ′′ ⇒ Ts V T ′

and argT : e〈i:T 〉 ` a : T ′′

by cases simp-all
from varT True have T : T = T ′′ ⇒ Ts V T ′

by cases auto
with uT have uT ′: e ` u : T ′′ ⇒ Ts V T ′ by simp
from T have IT ((Var 0 °° map (λt. lift t 0)
(map (λt. t[u/i]) as))[(u ° a[u/i])/0])

proof (rule MI2)
from T have IT ((lift u 0 ° Var 0)[a[u/i]/0])
proof (rule MI1)

have IT (lift u 0) by (rule lift-IT [OF uIT])
thus IT (lift u 0 ° Var 0) by (rule app-Var-IT)
show e〈0 :T ′′〉 ` lift u 0 ° Var 0 : Ts V T ′

proof (rule typing.App)
show e〈0 :T ′′〉 ` lift u 0 : T ′′ ⇒ Ts V T ′

by (rule lift-type) (rule uT ′)
show e〈0 :T ′′〉 ` Var 0 : T ′′

by (rule typing.Var) simp
qed
from Var have ?R a by cases (simp-all add: Cons)
with argT uIT uT show IT (a[u/i]) by simp
from argT uT show e ` a[u/i] : T ′′

by (rule subst-lemma) simp
qed
thus IT (u ° a[u/i]) by simp
from Var have listsp ?R as

by cases (simp-all add: Cons)
moreover from argsT have listsp ?ty as

by (rule lists-typings)
ultimately have listsp (λt. ?R t ∧ ?ty t) as

by simp
hence listsp IT (map (λt. lift t 0) (map (λt. t[u/i]) as))
(is listsp IT (?ls as))

proof induct
case Nil
show ?case by fastforce

next
case (Cons b bs)
hence I : ?R b by simp

40

from Cons obtain U where e〈i:T 〉 ` b : U by fast
with uT uIT I have IT (b[u/i]) by simp
hence IT (lift (b[u/i]) 0) by (rule lift-IT)
hence listsp IT (lift (b[u/i]) 0 # ?ls bs)

by (rule listsp.Cons) (rule Cons)
thus ?case by simp

qed
thus IT (Var 0 °° ?ls as) by (rule IT .Var)
have e〈0 :Ts V T ′〉 ` Var 0 : Ts V T ′

by (rule typing.Var) simp
moreover from uT argsT have e `̀ map (λt. t[u/i]) as : Ts

by (rule substs-lemma)
hence e〈0 :Ts V T ′〉 `̀ ?ls as : Ts

by (rule lift-types)
ultimately show e〈0 :Ts V T ′〉 ` Var 0 °° ?ls as : T ′

by (rule list-app-typeI)
from argT uT have e ` a[u/i] : T ′′

by (rule subst-lemma) (rule refl)
with uT ′ show e ` u ° a[u/i] : Ts V T ′

by (rule typing.App)
qed
with Cons True show ?thesis

by (simp add: comp-def)
qed

next
case False
from Var have listsp ?R rs by simp
moreover from nT obtain Ts where e〈i:T 〉 `̀ rs : Ts

by (rule list-app-typeE)
hence listsp ?ty rs by (rule lists-typings)
ultimately have listsp (λt. ?R t ∧ ?ty t) rs

by simp
hence listsp IT (map (λx. x[u/i]) rs)
proof induct

case Nil
show ?case by fastforce

next
case (Cons a as)
hence I : ?R a by simp
from Cons obtain U where e〈i:T 〉 ` a : U by fast
with uT uIT I have IT (a[u/i]) by simp
hence listsp IT (a[u/i] # map (λt. t[u/i]) as)

by (rule listsp.Cons) (rule Cons)
thus ?case by simp

qed
with False show ?thesis by (auto simp add: subst-Var)

qed
next

case (Lambda r e1 T ′1 u1 i1)

41

assume e〈i:T 〉 ` Abs r : T ′

and
∧

e T ′ u i. PROP ?Q r e T ′ u i T
with uIT uT show IT (Abs r [u/i])

by fastforce
next

case (Beta r a as e1 T ′1 u1 i1)
assume T : e〈i:T 〉 ` Abs r ° a °° as : T ′

assume SI1 :
∧

e T ′ u i. PROP ?Q (r [a/0] °° as) e T ′ u i T
assume SI2 :

∧
e T ′ u i. PROP ?Q a e T ′ u i T

have IT (Abs (r [lift u 0/Suc i]) ° a[u/i] °° map (λt. t[u/i]) as)
proof (rule IT .Beta)

have Abs r ° a °° as →β r [a/0] °° as
by (rule apps-preserves-beta) (rule beta.beta)

with T have e〈i:T 〉 ` r [a/0] °° as : T ′

by (rule subject-reduction)
hence IT ((r [a/0] °° as)[u/i])

using uIT uT by (rule SI1)
thus IT (r [lift u 0/Suc i][a[u/i]/0] °° map (λt. t[u/i]) as)

by (simp del: subst-map add: subst-subst subst-map [symmetric])
from T obtain U where e〈i:T 〉 ` Abs r ° a : U

by (rule list-app-typeE) fast
then obtain T ′′ where e〈i:T 〉 ` a : T ′′ by cases simp-all
thus IT (a[u/i]) using uIT uT by (rule SI2)

qed
thus IT ((Abs r ° a °° as)[u/i]) by simp

}
qed

qed

10.3 Well-typed terms are strongly normalizing
lemma type-implies-IT :

assumes e ` t : T
shows IT t
using assms

proof induct
case Var
show ?case by (rule Var-IT)

next
case Abs
show ?case by (rule IT .Lambda) (rule Abs)

next
case (App e s T U t)
have IT ((Var 0 ° lift t 0)[s/0])
proof (rule subst-type-IT)

have IT (lift t 0) using ‹IT t› by (rule lift-IT)
hence listsp IT [lift t 0] by (rule listsp.Cons) (rule listsp.Nil)
hence IT (Var 0 °° [lift t 0]) by (rule IT .Var)
also have Var 0 °° [lift t 0] = Var 0 ° lift t 0 by simp

42

finally show IT
have e〈0 :T ⇒ U 〉 ` Var 0 : T ⇒ U

by (rule typing.Var) simp
moreover have e〈0 :T ⇒ U 〉 ` lift t 0 : T

by (rule lift-type) (rule App.hyps)
ultimately show e〈0 :T ⇒ U 〉 ` Var 0 ° lift t 0 : U

by (rule typing.App)
show IT s by fact
show e ` s : T ⇒ U by fact

qed
thus ?case by simp

qed

theorem type-implies-termi: e ` t : T =⇒ termip beta t
proof −

assume e ` t : T
hence IT t by (rule type-implies-IT)
thus ?thesis by (rule IT-implies-termi)

qed

end

11 Inductive characterization of lambda terms in
normal form

theory NormalForm
imports ListBeta
begin

11.1 Terms in normal form
definition

listall :: (′a ⇒ bool) ⇒ ′a list ⇒ bool where
listall P xs ≡ (∀ i. i < length xs −→ P (xs ! i))

declare listall-def [extraction-expand-def]

theorem listall-nil: listall P []
by (simp add: listall-def)

theorem listall-nil-eq [simp]: listall P [] = True
by (iprover intro: listall-nil)

theorem listall-cons: P x =⇒ listall P xs =⇒ listall P (x # xs)
apply (simp add: listall-def)
apply (rule allI impI)+
apply (case-tac i)
apply simp+

43

done

theorem listall-cons-eq [simp]: listall P (x # xs) = (P x ∧ listall P xs)
apply (rule iffI)
prefer 2
apply (erule conjE)
apply (erule listall-cons)
apply assumption
apply (unfold listall-def)
apply (rule conjI)
apply (erule-tac x=0 in allE)
apply simp
apply simp
apply (rule allI)
apply (erule-tac x=Suc i in allE)
apply simp
done

lemma listall-conj1 : listall (λx. P x ∧ Q x) xs =⇒ listall P xs
by (induct xs) simp-all

lemma listall-conj2 : listall (λx. P x ∧ Q x) xs =⇒ listall Q xs
by (induct xs) simp-all

lemma listall-app: listall P (xs @ ys) = (listall P xs ∧ listall P ys)
by (induct xs; intro iffI ; simp)

lemma listall-snoc [simp]: listall P (xs @ [x]) = (listall P xs ∧ P x)
by (rule iffI ; simp add: listall-app)

lemma listall-cong [cong, extraction-expand]:
xs = ys =⇒ listall P xs = listall P ys
— Currently needed for strange technical reasons
by (unfold listall-def) simp

listsp is equivalent to listall, but cannot be used for program extraction.
lemma listall-listsp-eq: listall P xs = listsp P xs

by (induct xs) (auto intro: listsp.intros)

inductive NF :: dB ⇒ bool
where

App: listall NF ts =⇒ NF (Var x °° ts)
| Abs: NF t =⇒ NF (Abs t)
monos listall-def

lemma nat-eq-dec:
∧

n::nat. m = n ∨ m 6= n
proof (induction m)

case 0
then show ?case

44

by (cases n; simp only: nat.simps; iprover)
next

case (Suc m)
then show ?case

by (cases n; simp only: nat.simps; iprover)
qed

lemma nat-le-dec:
∧

n::nat. m < n ∨ ¬ (m < n)
proof (induction m)

case 0
then show ?case

by (cases n; simp only: order .irrefl zero-less-Suc; iprover)
next

case (Suc m)
then show ?case

by (cases n; simp only: not-less-zero Suc-less-eq; iprover)
qed

lemma App-NF-D: assumes NF : NF (Var n °° ts)
shows listall NF ts using NF
by cases simp-all

11.2 Properties of NF
lemma Var-NF : NF (Var n)
proof −

have NF (Var n °° [])
by (rule NF .App) simp

then show ?thesis by simp
qed

lemma Abs-NF :
assumes NF : NF (Abs t °° ts)
shows ts = [] using NF

proof cases
case (App us i)
thus ?thesis by (simp add: Var-apps-neq-Abs-apps [THEN not-sym])

next
case (Abs u)
thus ?thesis by simp

qed

lemma subst-terms-NF : listall NF ts =⇒
listall (λt. ∀ i j. NF (t[Var i/j])) ts =⇒
listall NF (map (λt. t[Var i/j]) ts)

by (induct ts) simp-all

lemma subst-Var-NF : NF t =⇒ NF (t[Var i/j])
apply (induct arbitrary: i j set: NF)

45

apply simp
apply (frule listall-conj1)
apply (drule listall-conj2)
apply (drule-tac i=i and j=j in subst-terms-NF)
apply assumption

apply (rule-tac m1=x and n1=j in nat-eq-dec [THEN disjE])
apply simp
apply (erule NF .App)

apply (rule-tac m1=j and n1=x in nat-le-dec [THEN disjE])
apply (simp-all add: NF .App NF .Abs)

done

lemma app-Var-NF : NF t =⇒ ∃ t ′. t ° Var i →β
∗ t ′ ∧ NF t ′

apply (induct set: NF)
apply (simplesubst app-last) — Using subst makes extraction fail
apply (rule exI)
apply (rule conjI)
apply (rule rtranclp.rtrancl-refl)

apply (rule NF .App)
apply (drule listall-conj1)
apply (simp add: listall-app)
apply (rule Var-NF)

apply (iprover intro: rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-refl beta subst-Var-NF)
done

lemma lift-terms-NF : listall NF ts =⇒
listall (λt. ∀ i. NF (lift t i)) ts =⇒
listall NF (map (λt. lift t i) ts)

by (induct ts) simp-all

lemma lift-NF : NF t =⇒ NF (lift t i)
apply (induct arbitrary: i set: NF)
apply (frule listall-conj1)
apply (drule listall-conj2)
apply (drule-tac i=i in lift-terms-NF)
apply assumption

apply (rule-tac m1=x and n1=i in nat-le-dec [THEN disjE])
apply (simp-all add: NF .App NF .Abs)

done

NF characterizes exactly the terms that are in normal form.
lemma NF-eq: NF t = (∀ t ′. ¬ t →β t ′)
proof

assume NF t
then have

∧
t ′. ¬ t →β t ′

proof induct
case (App ts t)
show ?case
proof

46

assume Var t °° ts →β t ′

then obtain rs where ts => rs
by (iprover dest: head-Var-reduction)

with App show False
by (induct rs arbitrary: ts) auto

qed
next

case (Abs t)
show ?case
proof

assume Abs t →β t ′

then show False using Abs by cases simp-all
qed

qed
then show ∀ t ′. ¬ t →β t ′ ..

next
assume H : ∀ t ′. ¬ t →β t ′

then show NF t
proof (induct t rule: Apps-dB-induct)

case (1 n ts)
then have ∀ ts ′. ¬ ts => ts ′

by (iprover intro: apps-preserves-betas)
with 1 (1) have listall NF ts

by (induct ts) auto
then show ?case by (rule NF .App)

next
case (2 u ts)
show ?case
proof (cases ts)

case Nil
from 2 have ∀ u ′. ¬ u →β u ′

by (auto intro: apps-preserves-beta)
then have NF u by (rule 2)
then have NF (Abs u) by (rule NF .Abs)
with Nil show ?thesis by simp

next
case (Cons r rs)
have Abs u ° r →β u[r/0] ..
then have Abs u ° r °° rs →β u[r/0] °° rs

by (rule apps-preserves-beta)
with Cons have Abs u °° ts →β u[r/0] °° rs

by simp
with 2 show ?thesis by iprover

qed
qed

qed

end

47

12 Standardization
theory Standardization
imports NormalForm
begin

Based on lecture notes by Ralph Matthes [3], original proof idea due to
Ralph Loader [2].

12.1 Standard reduction relation
declare listrel-mono [mono-set]

inductive
sred :: dB ⇒ dB ⇒ bool (infixl ‹→s› 50)
and sredlist :: dB list ⇒ dB list ⇒ bool (infixl ‹[→s]› 50)

where
s [→s] t ≡ listrelp (→s) s t

| Var : rs [→s] rs ′ =⇒ Var x °° rs →s Var x °° rs ′

| Abs: r →s r ′ =⇒ ss [→s] ss ′ =⇒ Abs r °° ss →s Abs r ′ °° ss ′

| Beta: r [s/0] °° ss →s t =⇒ Abs r ° s °° ss →s t

lemma refl-listrelp: ∀ x∈set xs. R x x =⇒ listrelp R xs xs
by (induct xs) (auto intro: listrelp.intros)

lemma refl-sred: t →s t
by (induct t rule: Apps-dB-induct) (auto intro: refl-listrelp sred.intros)

lemma refl-sreds: ts [→s] ts
by (simp add: refl-sred refl-listrelp)

lemma listrelp-conj1 : listrelp (λx y. R x y ∧ S x y) x y =⇒ listrelp R x y
by (erule listrelp.induct) (auto intro: listrelp.intros)

lemma listrelp-conj2 : listrelp (λx y. R x y ∧ S x y) x y =⇒ listrelp S x y
by (erule listrelp.induct) (auto intro: listrelp.intros)

lemma listrelp-app:
assumes xsys: listrelp R xs ys
shows listrelp R xs ′ ys ′ =⇒ listrelp R (xs @ xs ′) (ys @ ys ′) using xsys
by (induct arbitrary: xs ′ ys ′) (auto intro: listrelp.intros)

lemma lemma1 :
assumes r : r →s r ′ and s: s →s s ′

shows r ° s →s r ′ ° s ′ using r
proof induct

case (Var rs rs ′ x)
then have rs [→s] rs ′ by (rule listrelp-conj1)
moreover have [s] [→s] [s ′] by (iprover intro: s listrelp.intros)

48

ultimately have rs @ [s] [→s] rs ′ @ [s ′] by (rule listrelp-app)
hence Var x °° (rs @ [s]) →s Var x °° (rs ′ @ [s ′]) by (rule sred.Var)
thus ?case by (simp only: app-last)

next
case (Abs r r ′ ss ss ′)
from Abs(3) have ss [→s] ss ′ by (rule listrelp-conj1)
moreover have [s] [→s] [s ′] by (iprover intro: s listrelp.intros)
ultimately have ss @ [s] [→s] ss ′ @ [s ′] by (rule listrelp-app)
with ‹r →s r ′› have Abs r °° (ss @ [s]) →s Abs r ′ °° (ss ′ @ [s ′])

by (rule sred.Abs)
thus ?case by (simp only: app-last)

next
case (Beta r u ss t)
hence r [u/0] °° (ss @ [s]) →s t ° s ′ by (simp only: app-last)
hence Abs r ° u °° (ss @ [s]) →s t ° s ′ by (rule sred.Beta)
thus ?case by (simp only: app-last)

qed

lemma lemma1 ′:
assumes ts: ts [→s] ts ′

shows r →s r ′ =⇒ r °° ts →s r ′ °° ts ′ using ts
by (induct arbitrary: r r ′) (auto intro: lemma1)

lemma lemma2-1 :
assumes beta: t →β u
shows t →s u using beta

proof induct
case (beta s t)
have Abs s ° t °° [] →s s[t/0] °° [] by (iprover intro: sred.Beta refl-sred)
thus ?case by simp

next
case (appL s t u)
thus ?case by (iprover intro: lemma1 refl-sred)

next
case (appR s t u)
thus ?case by (iprover intro: lemma1 refl-sred)

next
case (abs s t)
hence Abs s °° [] →s Abs t °° [] by (iprover intro: sred.Abs listrelp.Nil)
thus ?case by simp

qed

lemma listrelp-betas:
assumes ts: listrelp (→β

∗) ts ts ′

shows
∧

t t ′. t →β
∗ t ′ =⇒ t °° ts →β

∗ t ′ °° ts ′ using ts
by induct auto

lemma lemma2-2 :
assumes t: t →s u

49

shows t →β
∗ u using t

by induct (auto dest: listrelp-conj2
intro: listrelp-betas apps-preserves-beta converse-rtranclp-into-rtranclp)

lemma sred-lift:
assumes s: s →s t
shows lift s i →s lift t i using s

proof (induct arbitrary: i)
case (Var rs rs ′ x)
hence map (λt. lift t i) rs [→s] map (λt. lift t i) rs ′

by induct (auto intro: listrelp.intros)
thus ?case by (cases x < i) (auto intro: sred.Var)

next
case (Abs r r ′ ss ss ′)
from Abs(3) have map (λt. lift t i) ss [→s] map (λt. lift t i) ss ′

by induct (auto intro: listrelp.intros)
thus ?case by (auto intro: sred.Abs Abs)

next
case (Beta r s ss t)
thus ?case by (auto intro: sred.Beta)

qed

lemma lemma3 :
assumes r : r →s r ′

shows s →s s ′ =⇒ r [s/x] →s r ′[s ′/x] using r
proof (induct arbitrary: s s ′ x)

case (Var rs rs ′ y)
hence map (λt. t[s/x]) rs [→s] map (λt. t[s ′/x]) rs ′

by induct (auto intro: listrelp.intros Var)
moreover have Var y[s/x] →s Var y[s ′/x]
proof (cases y < x)

case True thus ?thesis by simp (rule refl-sred)
next

case False
thus ?thesis

by (cases y = x) (auto simp add: Var intro: refl-sred)
qed
ultimately show ?case by simp (rule lemma1 ′)

next
case (Abs r r ′ ss ss ′)
from Abs(4) have lift s 0 →s lift s ′ 0 by (rule sred-lift)
hence r [lift s 0/Suc x] →s r ′[lift s ′ 0/Suc x] by (fast intro: Abs.hyps)
moreover from Abs(3) have map (λt. t[s/x]) ss [→s] map (λt. t[s ′/x]) ss ′

by induct (auto intro: listrelp.intros Abs)
ultimately show ?case by simp (rule sred.Abs)

next
case (Beta r u ss t)
thus ?case by (auto simp add: subst-subst intro: sred.Beta)

qed

50

lemma lemma4-aux:
assumes rs: listrelp (λt u. t →s u ∧ (∀ r . u →β r −→ t →s r)) rs rs ′

shows rs ′ => ss =⇒ rs [→s] ss using rs
proof (induct arbitrary: ss)

case Nil
thus ?case by cases (auto intro: listrelp.Nil)

next
case (Cons x y xs ys)
note Cons ′ = Cons
show ?case
proof (cases ss)

case Nil with Cons show ?thesis by simp
next

case (Cons y ′ ys ′)
hence ss: ss = y ′ # ys ′ by simp
from Cons Cons ′ have y →β y ′ ∧ ys ′ = ys ∨ y ′ = y ∧ ys => ys ′ by simp
hence x # xs [→s] y ′ # ys ′

proof
assume H : y →β y ′ ∧ ys ′ = ys
with Cons ′ have x →s y ′ by blast
moreover from Cons ′ have xs [→s] ys by (iprover dest: listrelp-conj1)
ultimately have x # xs [→s] y ′ # ys by (rule listrelp.Cons)
with H show ?thesis by simp

next
assume H : y ′ = y ∧ ys => ys ′

with Cons ′ have x →s y ′ by blast
moreover from H have xs [→s] ys ′ by (blast intro: Cons ′)
ultimately show ?thesis by (rule listrelp.Cons)

qed
with ss show ?thesis by simp

qed
qed

lemma lemma4 :
assumes r : r →s r ′

shows r ′ →β r ′′ =⇒ r →s r ′′ using r
proof (induct arbitrary: r ′′)

case (Var rs rs ′ x)
then obtain ss where rs: rs ′ => ss and r ′′: r ′′ = Var x °° ss

by (blast dest: head-Var-reduction)
from Var(1) rs have rs [→s] ss by (rule lemma4-aux)
hence Var x °° rs →s Var x °° ss by (rule sred.Var)
with r ′′ show ?case by simp

next
case (Abs r r ′ ss ss ′)
from ‹Abs r ′ °° ss ′ →β r ′′› show ?case
proof

fix s

51

assume r ′′: r ′′ = s °° ss ′

assume Abs r ′ →β s
then obtain r ′′′ where s: s = Abs r ′′′ and r ′′′: r ′ →β r ′′′ by cases auto
from r ′′′ have r →s r ′′′ by (blast intro: Abs)
moreover from Abs have ss [→s] ss ′ by (iprover dest: listrelp-conj1)
ultimately have Abs r °° ss →s Abs r ′′′ °° ss ′ by (rule sred.Abs)
with r ′′ s show Abs r °° ss →s r ′′ by simp

next
fix rs ′

assume ss ′ => rs ′

with Abs(3) have ss [→s] rs ′ by (rule lemma4-aux)
with ‹r →s r ′› have Abs r °° ss →s Abs r ′ °° rs ′ by (rule sred.Abs)
moreover assume r ′′ = Abs r ′ °° rs ′

ultimately show Abs r °° ss →s r ′′ by simp
next

fix t u ′ us ′

assume ss ′ = u ′ # us ′

with Abs(3) obtain u us where
ss: ss = u # us and u: u →s u ′ and us: us [→s] us ′

by cases (auto dest!: listrelp-conj1)
have r [u/0] →s r ′[u ′/0] using Abs(1) and u by (rule lemma3)
with us have r [u/0] °° us →s r ′[u ′/0] °° us ′ by (rule lemma1 ′)
hence Abs r ° u °° us →s r ′[u ′/0] °° us ′ by (rule sred.Beta)
moreover assume Abs r ′ = Abs t and r ′′ = t[u ′/0] °° us ′

ultimately show Abs r °° ss →s r ′′ using ss by simp
qed

next
case (Beta r s ss t)
show ?case

by (rule sred.Beta) (rule Beta)+
qed

lemma rtrancl-beta-sred:
assumes r : r →β

∗ r ′

shows r →s r ′ using r
by induct (iprover intro: refl-sred lemma4)+

12.2 Leftmost reduction and weakly normalizing terms
inductive

lred :: dB ⇒ dB ⇒ bool (infixl ‹→l› 50)
and lredlist :: dB list ⇒ dB list ⇒ bool (infixl ‹[→l]› 50)

where
s [→l] t ≡ listrelp (→l) s t

| Var : rs [→l] rs ′ =⇒ Var x °° rs →l Var x °° rs ′

| Abs: r →l r ′ =⇒ Abs r →l Abs r ′

| Beta: r [s/0] °° ss →l t =⇒ Abs r ° s °° ss →l t

lemma lred-imp-sred:

52

assumes lred: s →l t
shows s →s t using lred

proof induct
case (Var rs rs ′ x)
then have rs [→s] rs ′

by induct (iprover intro: listrelp.intros)+
then show ?case by (rule sred.Var)

next
case (Abs r r ′)
from ‹r →s r ′›
have Abs r °° [] →s Abs r ′ °° [] using listrelp.Nil

by (rule sred.Abs)
then show ?case by simp

next
case (Beta r s ss t)
from ‹r [s/0] °° ss →s t›
show ?case by (rule sred.Beta)

qed

inductive WN :: dB => bool
where

Var : listsp WN rs =⇒ WN (Var n °° rs)
| Lambda: WN r =⇒ WN (Abs r)
| Beta: WN ((r [s/0]) °° ss) =⇒ WN ((Abs r ° s) °° ss)

lemma listrelp-imp-listsp1 :
assumes H : listrelp (λx y. P x) xs ys
shows listsp P xs using H
by induct auto

lemma listrelp-imp-listsp2 :
assumes H : listrelp (λx y. P y) xs ys
shows listsp P ys using H
by induct auto

lemma lemma5 :
assumes lred: r →l r ′

shows WN r and NF r ′ using lred
by induct
(iprover dest: listrelp-conj1 listrelp-conj2
listrelp-imp-listsp1 listrelp-imp-listsp2 intro: WN .intros
NF .intros [simplified listall-listsp-eq])+

lemma lemma6 :
assumes wn: WN r
shows ∃ r ′. r →l r ′ using wn

proof induct
case (Var rs n)
then have ∃ rs ′. rs [→l] rs ′

53

by induct (iprover intro: listrelp.intros)+
then show ?case by (iprover intro: lred.Var)

qed (iprover intro: lred.intros)+

lemma lemma7 :
assumes r : r →s r ′

shows NF r ′ =⇒ r →l r ′ using r
proof induct

case (Var rs rs ′ x)
from ‹NF (Var x °° rs ′)› have listall NF rs ′

by cases simp-all
with Var(1) have rs [→l] rs ′

proof induct
case Nil
show ?case by (rule listrelp.Nil)

next
case (Cons x y xs ys)
hence x →l y and xs [→l] ys by simp-all
thus ?case by (rule listrelp.Cons)

qed
thus ?case by (rule lred.Var)

next
case (Abs r r ′ ss ss ′)
from ‹NF (Abs r ′ °° ss ′)›
have ss ′: ss ′ = [] by (rule Abs-NF)
from Abs(3) have ss: ss = [] using ss ′

by cases simp-all
from ss ′ Abs have NF (Abs r ′) by simp
hence NF r ′ by cases simp-all
with Abs have r →l r ′ by simp
hence Abs r →l Abs r ′ by (rule lred.Abs)
with ss ss ′ show ?case by simp

next
case (Beta r s ss t)
hence r [s/0] °° ss →l t by simp
thus ?case by (rule lred.Beta)

qed

lemma WN-eq: WN t = (∃ t ′. t →β
∗ t ′ ∧ NF t ′)

proof
assume WN t
then have ∃ t ′. t →l t ′ by (rule lemma6)
then obtain t ′ where t ′: t →l t ′ ..
then have NF : NF t ′ by (rule lemma5)
from t ′ have t →s t ′ by (rule lred-imp-sred)
then have t →β

∗ t ′ by (rule lemma2-2)
with NF show ∃ t ′. t →β

∗ t ′ ∧ NF t ′ by iprover
next

assume ∃ t ′. t →β
∗ t ′ ∧ NF t ′

54

then obtain t ′ where t ′: t →β
∗ t ′ and NF : NF t ′

by iprover
from t ′ have t →s t ′ by (rule rtrancl-beta-sred)
then have t →l t ′ using NF by (rule lemma7)
then show WN t by (rule lemma5)

qed

end

13 Weak normalization for simply-typed lambda
calculus

theory WeakNorm
imports LambdaType NormalForm HOL−Library.Realizers HOL−Library.Code-Target-Int
begin

Formalization by Stefan Berghofer. Partly based on a paper proof by Felix
Joachimski and Ralph Matthes [1].

13.1 Main theorems
lemma norm-list:

assumes f-compat:
∧

t t ′. t →β
∗ t ′ =⇒ f t →β

∗ f t ′

and f-NF :
∧

t. NF t =⇒ NF (f t)
and uNF : NF u and uT : e ` u : T
shows

∧
Us. e〈i:T 〉 `̀ as : Us =⇒

listall (λt. ∀ e T ′ u i. e〈i:T 〉 ` t : T ′ −→
NF u −→ e ` u : T −→ (∃ t ′. t[u/i] →β

∗ t ′ ∧ NF t ′)) as =⇒
∃ as ′. ∀ j. Var j °° map (λt. f (t[u/i])) as →β

∗

Var j °° map f as ′ ∧ NF (Var j °° map f as ′)
(is

∧
Us. - =⇒ listall ?R as =⇒ ∃ as ′. ?ex Us as as ′)

proof (induct as rule: rev-induct)
case (Nil Us)
with Var-NF have ?ex Us [] [] by simp
thus ?case ..

next
case (snoc b bs Us)
have e〈i:T 〉 `̀ bs @ [b] : Us by fact
then obtain Vs W where Us: Us = Vs @ [W]

and bs: e〈i:T 〉 `̀ bs : Vs and bT : e〈i:T 〉 ` b : W
by (rule types-snocE)

from snoc have listall ?R bs by simp
with bs have ∃ bs ′. ?ex Vs bs bs ′ by (rule snoc)
then obtain bs ′ where bsred: Var j °° map (λt. f (t[u/i])) bs →β

∗ Var j °° map
f bs ′

and bsNF : NF (Var j °° map f bs ′) for j
by iprover

from snoc have ?R b by simp

55

with bT and uNF and uT have ∃ b ′. b[u/i] →β
∗ b ′ ∧ NF b ′

by iprover
then obtain b ′ where bred: b[u/i] →β

∗ b ′ and bNF : NF b ′

by iprover
from bsNF [of 0] have listall NF (map f bs ′)

by (rule App-NF-D)
moreover have NF (f b ′) using bNF by (rule f-NF)
ultimately have listall NF (map f (bs ′ @ [b ′]))

by simp
hence

∧
j. NF (Var j °° map f (bs ′ @ [b ′])) by (rule NF .App)

moreover from bred have f (b[u/i]) →β
∗ f b ′

by (rule f-compat)
with bsred have∧

j. (Var j °° map (λt. f (t[u/i])) bs) ° f (b[u/i]) →β
∗

(Var j °° map f bs ′) ° f b ′ by (rule rtrancl-beta-App)
ultimately have ?ex Us (bs @ [b]) (bs ′ @ [b ′]) by simp
thus ?case ..

qed

lemma subst-type-NF :∧
t e T u i. NF t =⇒ e〈i:U 〉 ` t : T =⇒ NF u =⇒ e ` u : U =⇒ ∃ t ′. t[u/i]

→β
∗ t ′ ∧ NF t ′

(is PROP ?P U is
∧

t e T u i. - =⇒ PROP ?Q t e T u i U)
proof (induct U)

fix T t
let ?R = λt. ∀ e T ′ u i.

e〈i:T 〉 ` t : T ′ −→ NF u −→ e ` u : T −→ (∃ t ′. t[u/i] →β
∗ t ′ ∧ NF t ′)

assume MI1 :
∧

T1 T2 . T = T1 ⇒ T2 =⇒ PROP ?P T1
assume MI2 :

∧
T1 T2 . T = T1 ⇒ T2 =⇒ PROP ?P T2

assume NF t
thus

∧
e T ′ u i. PROP ?Q t e T ′ u i T

proof induct
fix e T ′ u i assume uNF : NF u and uT : e ` u : T
{

case (App ts x e1 T ′1 u1 i1)
assume e〈i:T 〉 ` Var x °° ts : T ′

then obtain Us
where varT : e〈i:T 〉 ` Var x : Us V T ′

and argsT : e〈i:T 〉 `̀ ts : Us
by (rule var-app-typesE)

from nat-eq-dec show ∃ t ′. (Var x °° ts)[u/i] →β
∗ t ′ ∧ NF t ′

proof
assume eq: x = i
show ?thesis
proof (cases ts)

case Nil
with eq have (Var x °° [])[u/i] →β

∗ u by simp
with Nil and uNF show ?thesis by simp iprover

next

56

case (Cons a as)
with argsT obtain T ′′ Ts where Us: Us = T ′′ # Ts

by (cases Us) (rule FalseE , simp)
from varT and Us have varT : e〈i:T 〉 ` Var x : T ′′ ⇒ Ts V T ′

by simp
from varT eq have T : T = T ′′ ⇒ Ts V T ′ by cases auto
with uT have uT ′: e ` u : T ′′ ⇒ Ts V T ′ by simp
from argsT Us Cons have argsT ′: e〈i:T 〉 `̀ as : Ts by simp
from argsT Us Cons have argT : e〈i:T 〉 ` a : T ′′ by simp
from argT uT refl have aT : e ` a[u/i] : T ′′ by (rule subst-lemma)

from App and Cons have listall ?R as by simp (iprover dest: listall-conj2)
with lift-preserves-beta ′ lift-NF uNF uT argsT ′

have ∃ as ′. ∀ j. Var j °° map (λt. lift (t[u/i]) 0) as →β
∗

Var j °° map (λt. lift t 0) as ′ ∧
NF (Var j °° map (λt. lift t 0) as ′) by (rule norm-list)

then obtain as ′ where
asred: Var 0 °° map (λt. lift (t[u/i]) 0) as →β

∗

Var 0 °° map (λt. lift t 0) as ′

and asNF : NF (Var 0 °° map (λt. lift t 0) as ′) by iprover
from App and Cons have ?R a by simp
with argT and uNF and uT have ∃ a ′. a[u/i] →β

∗ a ′ ∧ NF a ′

by iprover
then obtain a ′ where ared: a[u/i] →β

∗ a ′ and aNF : NF a ′ by iprover
from uNF have NF (lift u 0) by (rule lift-NF)
hence ∃ u ′. lift u 0 ° Var 0 →β

∗ u ′ ∧ NF u ′ by (rule app-Var-NF)
then obtain u ′ where ured: lift u 0 ° Var 0 →β

∗ u ′ and u ′NF : NF u ′

by iprover
from T and u ′NF have ∃ ua. u ′[a ′/0] →β

∗ ua ∧ NF ua
proof (rule MI1)

have e〈0 :T ′′〉 ` lift u 0 ° Var 0 : Ts V T ′

proof (rule typing.App)
from uT ′ show e〈0 :T ′′〉 ` lift u 0 : T ′′ ⇒ Ts V T ′ by (rule lift-type)
show e〈0 :T ′′〉 ` Var 0 : T ′′ by (rule typing.Var) simp

qed
with ured show e〈0 :T ′′〉 ` u ′ : Ts V T ′ by (rule subject-reduction ′)
from ared aT show e ` a ′ : T ′′ by (rule subject-reduction ′)
show NF a ′ by fact

qed
then obtain ua where uared: u ′[a ′/0] →β

∗ ua and uaNF : NF ua
by iprover

from ared have (lift u 0 ° Var 0)[a[u/i]/0] →β
∗ (lift u 0 ° Var 0)[a ′/0]

by (rule subst-preserves-beta2 ′)
also from ured have (lift u 0 ° Var 0)[a ′/0] →β

∗ u ′[a ′/0]
by (rule subst-preserves-beta ′)

also note uared
finally have (lift u 0 ° Var 0)[a[u/i]/0] →β

∗ ua .
hence uared ′: u ° a[u/i] →β

∗ ua by simp
from T asNF - uaNF have ∃ r . (Var 0 °° map (λt. lift t 0) as ′)[ua/0]

→β
∗ r ∧ NF r

57

proof (rule MI2)
have e〈0 :Ts V T ′〉 ` Var 0 °° map (λt. lift (t[u/i]) 0) as : T ′

proof (rule list-app-typeI)
show e〈0 :Ts V T ′〉 ` Var 0 : Ts V T ′ by (rule typing.Var) simp
from uT argsT ′ have e `̀ map (λt. t[u/i]) as : Ts

by (rule substs-lemma)
hence e〈0 :Ts V T ′〉 `̀ map (λt. lift t 0) (map (λt. t[u/i]) as) : Ts

by (rule lift-types)
thus e〈0 :Ts V T ′〉 `̀ map (λt. lift (t[u/i]) 0) as : Ts

by (simp-all add: o-def)
qed
with asred show e〈0 :Ts V T ′〉 ` Var 0 °° map (λt. lift t 0) as ′ : T ′

by (rule subject-reduction ′)
from argT uT refl have e ` a[u/i] : T ′′ by (rule subst-lemma)
with uT ′ have e ` u ° a[u/i] : Ts V T ′ by (rule typing.App)
with uared ′ show e ` ua : Ts V T ′ by (rule subject-reduction ′)

qed
then obtain r where rred: (Var 0 °° map (λt. lift t 0) as ′)[ua/0] →β

∗ r
and rnf : NF r by iprover

from asred have
(Var 0 °° map (λt. lift (t[u/i]) 0) as)[u ° a[u/i]/0] →β

∗

(Var 0 °° map (λt. lift t 0) as ′)[u ° a[u/i]/0]
by (rule subst-preserves-beta ′)

also from uared ′ have (Var 0 °° map (λt. lift t 0) as ′)[u ° a[u/i]/0] →β
∗

(Var 0 °° map (λt. lift t 0) as ′)[ua/0] by (rule subst-preserves-beta2 ′)
also note rred
finally have (Var 0 °° map (λt. lift (t[u/i]) 0) as)[u ° a[u/i]/0] →β

∗ r .
with rnf Cons eq show ?thesis

by (simp add: o-def) iprover
qed

next
assume neq: x 6= i
from App have listall ?R ts by (iprover dest: listall-conj2)
with uNF uT argsT
have ∃ ts ′. ∀ j. Var j °° map (λt. t[u/i]) ts →β

∗ Var j °° ts ′ ∧
NF (Var j °° ts ′) (is ∃ ts ′. ?ex ts ′)
by (rule norm-list [of λt. t, simplified])

then obtain ts ′ where NF : ?ex ts ′ ..
from nat-le-dec show ?thesis
proof

assume i < x
with NF show ?thesis by simp iprover

next
assume ¬ (i < x)
with NF neq show ?thesis by (simp add: subst-Var) iprover

qed
qed

next
case (Abs r e1 T ′1 u1 i1)

58

assume absT : e〈i:T 〉 ` Abs r : T ′

then obtain R S where e〈0 :R〉〈Suc i:T 〉 ` r : S by (rule abs-typeE) simp
moreover have NF (lift u 0) using ‹NF u› by (rule lift-NF)
moreover have e〈0 :R〉 ` lift u 0 : T using uT by (rule lift-type)
ultimately have ∃ t ′. r [lift u 0/Suc i] →β

∗ t ′ ∧ NF t ′ by (rule Abs)
thus ∃ t ′. Abs r [u/i] →β

∗ t ′ ∧ NF t ′

by simp (iprover intro: rtrancl-beta-Abs NF .Abs)
}

qed
qed

— A computationally relevant copy of e ` t : T
inductive rtyping :: (nat ⇒ type) ⇒ dB ⇒ type ⇒ bool (‹- `R - : -› [50 , 50 , 50]
50)

where
Var : e x = T =⇒ e `R Var x : T

| Abs: e〈0 :T 〉 `R t : U =⇒ e `R Abs t : (T ⇒ U)
| App: e `R s : T ⇒ U =⇒ e `R t : T =⇒ e `R (s ° t) : U

lemma rtyping-imp-typing: e `R t : T =⇒ e ` t : T
apply (induct set: rtyping)
apply (erule typing.Var)
apply (erule typing.Abs)
apply (erule typing.App)
apply assumption
done

theorem type-NF :
assumes e `R t : T
shows ∃ t ′. t →β

∗ t ′ ∧ NF t ′ using assms
proof induct

case Var
show ?case by (iprover intro: Var-NF)

next
case Abs
thus ?case by (iprover intro: rtrancl-beta-Abs NF .Abs)

next
case (App e s T U t)
from App obtain s ′ t ′ where

sred: s →β
∗ s ′ and NF s ′

and tred: t →β
∗ t ′ and tNF : NF t ′ by iprover

have ∃ u. (Var 0 ° lift t ′ 0)[s ′/0] →β
∗ u ∧ NF u

proof (rule subst-type-NF)
have NF (lift t ′ 0) using tNF by (rule lift-NF)
hence listall NF [lift t ′ 0] by (rule listall-cons) (rule listall-nil)
hence NF (Var 0 °° [lift t ′ 0]) by (rule NF .App)
thus NF (Var 0 ° lift t ′ 0) by simp

59

show e〈0 :T ⇒ U 〉 ` Var 0 ° lift t ′ 0 : U
proof (rule typing.App)

show e〈0 :T ⇒ U 〉 ` Var 0 : T ⇒ U
by (rule typing.Var) simp

from tred have e ` t ′ : T
by (rule subject-reduction ′) (rule rtyping-imp-typing, rule App.hyps)

thus e〈0 :T ⇒ U 〉 ` lift t ′ 0 : T
by (rule lift-type)

qed
from sred show e ` s ′ : T ⇒ U

by (rule subject-reduction ′) (rule rtyping-imp-typing, rule App.hyps)
show NF s ′ by fact

qed
then obtain u where ured: s ′ ° t ′ →β

∗ u and unf : NF u by simp iprover
from sred tred have s ° t →β

∗ s ′ ° t ′ by (rule rtrancl-beta-App)
hence s ° t →β

∗ u using ured by (rule rtranclp-trans)
with unf show ?case by iprover

qed

13.2 Extracting the program
declare NF .induct [ind-realizer]
declare rtranclp.induct [ind-realizer irrelevant]
declare rtyping.induct [ind-realizer]
lemmas [extraction-expand] = conj-assoc listall-cons-eq subst-all equal-allI

extract type-NF

lemma rtranclR-rtrancl-eq: rtranclpR r a b = r∗∗ a b
proof

show rtranclpR r a b =⇒ r∗∗ a b
apply (erule rtranclpR.induct)
apply (rule rtranclp.rtrancl-refl)

apply (metis rtranclp.rtrancl-into-rtrancl)
done

show r∗∗ a b =⇒ rtranclpR r a b
apply (erule rtranclp.induct)
apply (rule rtranclpR.rtrancl-refl)

apply (metis rtranclpR.rtrancl-into-rtrancl)
done

qed

lemma NFR-imp-NF : NFR nf t =⇒ NF t
apply (erule NFR.induct)
apply (rule NF .intros)
apply (simp add: listall-def)
apply (erule NF .intros)
done

The program corresponding to the proof of the central lemma, which per-

60

subst-type-NF ≡
λx xa xb xc xd xe H Ha.

type-induct-P xc
(λx H2 H2a xa xaa xb xc xd H .

compat-NFT .rec-split-NFT default
(λts xa xaa r xb xc xd xe H .

var-app-typesE-P (xb〈xe:x〉) xa ts
(λUs--. case nat-eq-dec xa xe of

Left ⇒ case ts of [] ⇒ (xd, H)
| a # list ⇒

case Us-- of [] ⇒ default
| T ′′-- # Ts-- ⇒

let (x, y) =
norm-list (λt. lift t 0) xd xb xe list Ts--
(λt. lift-NF 0) H
(listall-conj2-P-Q list (λi. (xaa (Suc i), r (Suc i))));

(xa, ya) = snd (xaa 0 , r 0) xb T ′′-- xd xe H ;
(xd, yb) = app-Var-NF 0 (lift-NF 0 H);
(xa, ya) =

H2 T ′′-- (Ts-- V xc) xd xb (Ts-- V xc) xa 0 yb ya;
(x, y) =

H2a T ′′-- (Ts-- V xc) (dB.Var 0 °° map (λt. lift t 0) x)
xb xc xa 0 (y 0) ya

in (x, y)
| Right ⇒

let (x, y) =
let (x, y) =

norm-list (λt. t) xd xb xe ts Us-- (λx H . H) H
(listall-conj2-P-Q ts (λz. (xaa z, r z)))

in (x, λx. y x)
in case nat-le-dec xe xa of

Left ⇒ (dB.Var (xa − Suc 0) °° x, y (xa − Suc 0))
| Right ⇒ (dB.Var xa °° x, y xa)))

(λt x r xa xaa xb xc H .
abs-typeE-P xaa
(λU V . let (x, y) =

let (x, y) = r (λa. (xa〈0 :U〉) a) V (lift xb 0) (Suc xc) (lift-NF 0 H)
in (dB.Abs x, NFT .Abs x y)

in (x, y)))
H (λa. xaa a) xb xc xd)

x xa xd xe xb H Ha

Figure 1: Program extracted from subst-type-NF

61

subst-Var-NF ≡
λx xa H .

compat-NFT .rec-split-NFT default
(λts x xa r xb xc.

case nat-eq-dec x xc of
Left ⇒ NFT .App (map (λt. t[dB.Var xb/xc]) ts) xb

(subst-terms-NF ts xb xc (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z))))

| Right ⇒
case nat-le-dec xc x of
Left ⇒ NFT .App (map (λt. t[dB.Var xb/xc]) ts) (x − Suc 0)

(subst-terms-NF ts xb xc (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z))))

| Right ⇒
NFT .App (map (λt. t[dB.Var xb/xc]) ts) x
(subst-terms-NF ts xb xc (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z)))))

(λt x r xa xaa. NFT .Abs (t[dB.Var (Suc xa)/Suc xaa]) (r (Suc xa) (Suc xaa))) H x xa

app-Var-NF ≡
λx. compat-NFT .rec-split-NFT default

(λts xa xaa r .
(dB.Var xa °° (ts @ [dB.Var x]),
NFT .App (ts @ [dB.Var x]) xa
(snd (listall-app-P ts)
(listall-conj1-P-Q ts (λz. (xaa z, r z)),
listall-cons-P (Var-NF x) listall-nil-eq-P))))

(λt xa r . let (xb, y) = r in (t[dB.Var x/0], subst-Var-NF x 0 xa))

lift-NF ≡
λx H . compat-NFT .rec-split-NFT default

(λts x xa r xb.
case nat-le-dec x xb of
Left ⇒ NFT .App (map (λt. lift t xb) ts) x

(lift-terms-NF ts xb (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z))))

| Right ⇒
NFT .App (map (λt. lift t xb) ts) (Suc x)
(lift-terms-NF ts xb (listall-conj1-P-Q ts (λz. (xa z, r z)))
(listall-conj2-P-Q ts (λz. (xa z, r z)))))

(λt x r xa. NFT .Abs (lift t (Suc xa)) (r (Suc xa))) H x

type-NF ≡
λH . rec-rtypingT (λe x T . (dB.Var x, Var-NF x))

(λe T t U x r . let (x, y) = r in (dB.Abs x, NFT .Abs x y))
(λe s T U t x xa r ra.

let (x, y) = r ; (xa, ya) = ra;
(x, y) =

let (x, y) =
subst-type-NF (dB.Var 0 ° lift xa 0) e 0 (T ⇒ U) U x
(NFT .App [lift xa 0] 0 (listall-cons-P (lift-NF 0 ya) listall-nil-P)) y

in (x, y)
in (x, y))

H

Figure 2: Program extracted from lemmas and main theorem

62

forms substitution and normalization, is shown in Figure 1. The correctness
theorem corresponding to the program subst-type-NF is∧

x. NFR x t =⇒
e〈i:U 〉 ` t : T =⇒
(
∧

xa. NFR xa u =⇒
e ` u : U =⇒
t[u/i] →β

∗ fst (subst-type-NF t e i U T u x xa) ∧
NFR (snd (subst-type-NF t e i U T u x xa)) (fst (subst-type-NF t e i U

T u x xa)))

where NFR is the realizability predicate corresponding to the datatype NFT,
which is inductively defined by the rules

63

∀ i<length ts. NFR (nfs i) (ts ! i) =⇒ NFR (NFT .App ts x nfs) (dB.Var x °° ts)
NFR nf t =⇒ NFR (NFT .Abs t nf) (dB.Abs t)

The programs corresponding to the main theorem type-NF, as well as to
some lemmas, are shown in Figure 2. The correctness statement for the
main function type-NF is∧

x. rtypingR x e t T =⇒ t →β
∗ fst (type-NF x) ∧ NFR (snd (type-NF x)) (fst

(type-NF x))

where the realizability predicate rtypingR corresponding to the computa-
tionally relevant version of the typing judgement is inductively defined by
the rules

e x = T =⇒ rtypingR (rtypingT .Var e x T) e (dB.Var x) T
rtypingR ty (e〈0 :T 〉) t U =⇒ rtypingR (rtypingT .Abs e T t U ty) e (dB.Abs t) (T
⇒ U)
rtypingR ty e s (T ⇒ U) =⇒
rtypingR ty ′ e t T =⇒ rtypingR (rtypingT .App e s T U t ty ty ′) e (s ° t) U

13.3 Generating executable code
instantiation NFT :: default
begin

definition default = Dummy ()

instance ..

end

instantiation dB :: default
begin

definition default = dB.Var 0

instance ..

end

instantiation prod :: (default, default) default
begin

definition default = (default, default)

instance ..

end

64

instantiation list :: (type) default
begin

definition default = []

instance ..

end

instantiation fun :: (type, default) default
begin

definition default = (λx. default)

instance ..

end

definition int-of-nat :: nat ⇒ int where
int-of-nat = of-nat

The following functions convert between Isabelle’s built-in term datatype
and the generated dB datatype. This allows to generate example terms
using Isabelle’s parser and inspect normalized terms using Isabelle’s pretty
printer.
ML ‹
val nat-of-integer = @{code nat} o @{code int-of-integer};

fun dBtype-of-typ (Type (fun, [T , U])) =
@{code Fun} (dBtype-of-typ T , dBtype-of-typ U)

| dBtype-of-typ (TFree (s, -)) = (case raw-explode s of
[′, a] => @{code Atom} (nat-of-integer (ord a − 97))

| - => error dBtype-of-typ: variable name)
| dBtype-of-typ - = error dBtype-of-typ: bad type;

fun dB-of-term (Bound i) = @{code dB.Var} (nat-of-integer i)
| dB-of-term (t $ u) = @{code dB.App} (dB-of-term t, dB-of-term u)
| dB-of-term (Abs (-, -, t)) = @{code dB.Abs} (dB-of-term t)
| dB-of-term - = error dB-of-term: bad term;

fun term-of-dB Ts (Type (fun, [T , U])) (@{code dB.Abs} dBt) =
Abs (x, T , term-of-dB (T :: Ts) U dBt)

| term-of-dB Ts - dBt = term-of-dB ′ Ts dBt
and term-of-dB ′ Ts (@{code dB.Var} n) = Bound (@{code integer-of-nat} n)
| term-of-dB ′ Ts (@{code dB.App} (dBt, dBu)) =

let val t = term-of-dB ′ Ts dBt
in case fastype-of1 (Ts, t) of

Type (fun, [T , -]) => t $ term-of-dB Ts T dBu

65

| - => error term-of-dB: function type expected
end

| term-of-dB ′ - - = error term-of-dB: term not in normal form;

fun typing-of-term Ts e (Bound i) =
@{code Var} (e, nat-of-integer i, dBtype-of-typ (nth Ts i))

| typing-of-term Ts e (t $ u) = (case fastype-of1 (Ts, t) of
Type (fun, [T , U]) => @{code App} (e, dB-of-term t,

dBtype-of-typ T , dBtype-of-typ U , dB-of-term u,
typing-of-term Ts e t, typing-of-term Ts e u)

| - => error typing-of-term: function type expected)
| typing-of-term Ts e (Abs (-, T , t)) =

let val dBT = dBtype-of-typ T
in @{code Abs} (e, dBT , dB-of-term t,

dBtype-of-typ (fastype-of1 (T :: Ts, t)),
typing-of-term (T :: Ts) (@{code shift} e @{code 0 ::nat} dBT) t)

end
| typing-of-term - - - = error typing-of-term: bad term;

fun dummyf - = error dummy;

val ct1 = @{cterm %f . ((%f x. f (f (f x))) ((%f x. f (f (f (f x)))) f))};
val (dB1 , -) = @{code type-NF} (typing-of-term [] dummyf (Thm.term-of ct1));
val ct1 ′ = Thm.cterm-of @{context} (term-of-dB [] (Thm.typ-of-cterm ct1) dB1);

val ct2 = @{cterm %f x. (%x. f x x) ((%x. f x x) ((%x. f x x) ((%x. f x x) ((%x. f
x x) ((%x. f x x) x)))))};
val (dB2 , -) = @{code type-NF} (typing-of-term [] dummyf (Thm.term-of ct2));
val ct2 ′ = Thm.cterm-of @{context} (term-of-dB [] (Thm.typ-of-cterm ct2) dB2);
›

end

References

[1] F. Joachimski and R. Matthes. Short proofs of normalization for the
simply-typed λ-calculus, permutative conversions and Gödel’s T. Archive
for Mathematical Logic, 42(1):59–87, 2003.

[2] R. Loader. Notes on Simply Typed Lambda Calculus. Technical Report
ECS-LFCS-98-381, Laboratory for Foundations of Computer Science,
School of Informatics, University of Edinburgh, 1998.

[3] R. Matthes. Lambda Calculus: A Case for Inductive Definitions. In
Lecture notes of the 12th European Summer School in Logic, Language
and Information (ESSLLI 2000). School of Computer Science, University
of Birmingham, August 2000.

66

[4] M. Takahashi. Parallel reductions in λ-calculus. Information and Com-
putation, 118(1):120–127, April 1995.

67

	Basic definitions of Lambda-calculus
	Lambda-terms in de Bruijn notation and substitution
	Beta-reduction
	Congruence rules
	Substitution-lemmas
	Equivalence proof for optimized substitution
	Preservation theorems

	Abstract commutation and confluence notions
	Basic definitions
	Basic lemmas
	Church-Rosser
	Newman's lemma

	Parallel reduction and a complete developments
	Parallel reduction
	Inclusions
	Misc properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 par-beta
	Confluence (directly)
	Complete developments
	Confluence (via complete developments)

	Eta-reduction
	Definition of eta-reduction and relatives
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eta, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 subst and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 free
	Confluence of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eta
	Congruence rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eta*
	Commutation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 beta and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eta
	Implicit definition of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eta
	Eta-postponement theorem

	Application of a term to a list of terms
	Simply-typed lambda terms
	Environments
	Types and typing rules
	Some examples
	Lists of types
	n-ary function types
	Lifting preserves well-typedness
	Substitution lemmas
	Subject reduction
	Alternative induction rule for types

	Lifting an order to lists of elements
	Lifting beta-reduction to lists
	Inductive characterization of terminating lambda terms
	Terminating lambda terms
	Every term in 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 IT terminates
	Every terminating term is in 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 IT

	Strong normalization for simply-typed lambda calculus
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 IT
	Well-typed substitution preserves termination
	Well-typed terms are strongly normalizing

	Inductive characterization of lambda terms in normal form
	Terms in normal form
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 NF

	Standardization
	Standard reduction relation
	Leftmost reduction and weakly normalizing terms

	Weak normalization for simply-typed lambda calculus
	Main theorems
	Extracting the program
	Generating executable code

