
Examples for program extraction in Higher-Order
Logic

Stefan Berghofer

January 18, 2026

Contents
1 Auxiliary lemmas used in program extraction examples 1

2 Quotient and remainder 2

3 Greatest common divisor 2

4 Warshall’s algorithm 3

5 Higman’s lemma 5
5.1 Extracting the program . 8
5.2 Some examples . 9

6 The pigeonhole principle 10

7 Euclid’s theorem 12

1 Auxiliary lemmas used in program extraction
examples

theory Util
imports Main
begin

Decidability of equality on natural numbers.
lemma nat-eq-dec:

∧
n::nat. m = n ∨ m 6= n

〈proof 〉

Well-founded induction on natural numbers, derived using the standard
structural induction rule.
lemma nat-wf-ind:

assumes R:
∧

x::nat. (
∧

y. y < x =⇒ P y) =⇒ P x

1

shows P z
〈proof 〉

Bounded search for a natural number satisfying a decidable predicate.
lemma search:

assumes dec:
∧

x::nat. P x ∨ ¬ P x
shows (∃ x<y. P x) ∨ ¬ (∃ x<y. P x)
〈proof 〉

end

2 Quotient and remainder
theory QuotRem
imports Util HOL−Library.Realizers
begin

Derivation of quotient and remainder using program extraction.
theorem division: ∃ r q. a = Suc b ∗ q + r ∧ r ≤ b
〈proof 〉

extract division

The program extracted from the above proof looks as follows

division ≡
λx xa.

nat-induct-P x (0 , 0)
(λa H . let (x, y) = H

in case nat-eq-dec x xa of Left ⇒ (0 , Suc y)
| Right ⇒ (Suc x, y))

The corresponding correctness theorem is

a = Suc b ∗ snd (division a b) + fst (division a b) ∧ fst (division a b) ≤ b

lemma division 9 2 = (0 , 3) 〈proof 〉

end

3 Greatest common divisor
theory Greatest-Common-Divisor
imports QuotRem
begin

theorem greatest-common-divisor :∧
n::nat. Suc m < n =⇒

2

∃ k n1 m1 . k ∗ n1 = n ∧ k ∗ m1 = Suc m ∧
(∀ l l1 l2 . l ∗ l1 = n −→ l ∗ l2 = Suc m −→ l ≤ k)

〈proof 〉

extract greatest-common-divisor

The extracted program for computing the greatest common divisor is

greatest-common-divisor ≡
λx. nat-wf-ind-P x

(λx H2 xa.
let (xa, y) = division xa x
in nat-exhaust-P xa (Suc x, y, 1)

(λnat. let (x, ya) = H2 nat (Suc x); (xa, ya) = ya
in (x, xa ∗ y + ya, xa)))

instantiation nat :: default
begin

definition default = (0 ::nat)

instance 〈proof 〉

end

instantiation prod :: (default, default) default
begin

definition default = (default, default)

instance 〈proof 〉

end

instantiation fun :: (type, default) default
begin

definition default = (λx. default)

instance 〈proof 〉

end

lemma greatest-common-divisor 7 12 = (4 , 3 , 2) 〈proof 〉

end

4 Warshall’s algorithm
theory Warshall

3

imports HOL−Library.Realizers
begin

Derivation of Warshall’s algorithm using program extraction, based on Berger,
Schwichtenberg and Seisenberger [1].
datatype b = T | F

primrec is-path ′ :: (′a ⇒ ′a ⇒ b) ⇒ ′a ⇒ ′a list ⇒ ′a ⇒ bool
where

is-path ′ r x [] z ←→ r x z = T
| is-path ′ r x (y # ys) z ←→ r x y = T ∧ is-path ′ r y ys z

definition is-path :: (nat ⇒ nat ⇒ b) ⇒ (nat ∗ nat list ∗ nat) ⇒ nat ⇒ nat ⇒
nat ⇒ bool

where is-path r p i j k ←→
fst p = j ∧ snd (snd p) = k ∧
list-all (λx. x < i) (fst (snd p)) ∧
is-path ′ r (fst p) (fst (snd p)) (snd (snd p))

definition conc :: ′a × ′a list × ′a ⇒ ′a × ′a list × ′a ⇒ ′a × ′a list ∗ ′a
where conc p q = (fst p, fst (snd p) @ fst q # fst (snd q), snd (snd q))

theorem is-path ′-snoc [simp]:
∧

x. is-path ′ r x (ys @ [y]) z = (is-path ′ r x ys y ∧
r y z = T)
〈proof 〉

theorem list-all-scoc [simp]: list-all P (xs @ [x]) ←→ P x ∧ list-all P xs
〈proof 〉

theorem list-all-lemma: list-all P xs =⇒ (
∧

x. P x =⇒ Q x) =⇒ list-all Q xs
〈proof 〉

theorem lemma1 :
∧

p. is-path r p i j k =⇒ is-path r p (Suc i) j k
〈proof 〉

theorem lemma2 :
∧

p. is-path r p 0 j k =⇒ r j k = T
〈proof 〉

theorem is-path ′-conc: is-path ′ r j xs i =⇒ is-path ′ r i ys k =⇒
is-path ′ r j (xs @ i # ys) k
〈proof 〉

theorem lemma3 :∧
p q. is-path r p i j i =⇒ is-path r q i i k =⇒
is-path r (conc p q) (Suc i) j k
〈proof 〉

theorem lemma5 :∧
p. is-path r p (Suc i) j k =⇒ ¬ is-path r p i j k =⇒

4

(∃ q. is-path r q i j i) ∧ (∃ q ′. is-path r q ′ i i k)
〈proof 〉

theorem lemma5 ′:∧
p. is-path r p (Suc i) j k =⇒ ¬ is-path r p i j k =⇒
¬ (∀ q. ¬ is-path r q i j i) ∧ ¬ (∀ q ′. ¬ is-path r q ′ i i k)
〈proof 〉

theorem warshall:
∧

j k. ¬ (∃ p. is-path r p i j k) ∨ (∃ p. is-path r p i j k)
〈proof 〉

extract warshall

The program extracted from the above proof looks as follows

warshall ≡
λx xa xb xc.

nat-induct-P xa
(λxa xb. case x xa xb of T ⇒ Some (xa, [], xb) | F ⇒ None)
(λx H2 xa xb.

case H2 xa xb of
None ⇒

case H2 xa x of None ⇒ None
| Some q ⇒

case H2 x xb of None ⇒ None | Some qa ⇒ Some (conc q qa)
| Some q ⇒ Some q)

xb xc

The corresponding correctness theorem is

case warshall r i j k of None ⇒ ∀ x. ¬ is-path r x i j k
| Some q ⇒ is-path r q i j k

〈ML〉

end

5 Higman’s lemma
theory Higman
imports Main
begin

Formalization by Stefan Berghofer and Monika Seisenberger, based on Co-
quand and Fridlender [2].
datatype letter = A | B

inductive emb :: letter list ⇒ letter list ⇒ bool
where

5

emb0 [Pure.intro]: emb [] bs
| emb1 [Pure.intro]: emb as bs =⇒ emb as (b # bs)
| emb2 [Pure.intro]: emb as bs =⇒ emb (a # as) (a # bs)

inductive L :: letter list ⇒ letter list list ⇒ bool
for v :: letter list

where
L0 [Pure.intro]: emb w v =⇒ L v (w # ws)
| L1 [Pure.intro]: L v ws =⇒ L v (w # ws)

inductive good :: letter list list ⇒ bool
where

good0 [Pure.intro]: L w ws =⇒ good (w # ws)
| good1 [Pure.intro]: good ws =⇒ good (w # ws)

inductive R :: letter ⇒ letter list list ⇒ letter list list ⇒ bool
for a :: letter

where
R0 [Pure.intro]: R a [] []
| R1 [Pure.intro]: R a vs ws =⇒ R a (w # vs) ((a # w) # ws)

inductive T :: letter ⇒ letter list list ⇒ letter list list ⇒ bool
for a :: letter

where
T0 [Pure.intro]: a 6= b =⇒ R b ws zs =⇒ T a (w # zs) ((a # w) # zs)
| T1 [Pure.intro]: T a ws zs =⇒ T a (w # ws) ((a # w) # zs)
| T2 [Pure.intro]: a 6= b =⇒ T a ws zs =⇒ T a ws ((b # w) # zs)

inductive bar :: letter list list ⇒ bool
where

bar1 [Pure.intro]: good ws =⇒ bar ws
| bar2 [Pure.intro]: (

∧
w. bar (w # ws)) =⇒ bar ws

theorem prop1 : bar ([] # ws)
〈proof 〉

theorem lemma1 : L as ws =⇒ L (a # as) ws
〈proof 〉

lemma lemma2 ′: R a vs ws =⇒ L as vs =⇒ L (a # as) ws
〈proof 〉

lemma lemma2 : R a vs ws =⇒ good vs =⇒ good ws
〈proof 〉

lemma lemma3 ′: T a vs ws =⇒ L as vs =⇒ L (a # as) ws
〈proof 〉

lemma lemma3 : T a ws zs =⇒ good ws =⇒ good zs

6

〈proof 〉

lemma lemma4 : R a ws zs =⇒ ws 6= [] =⇒ T a ws zs
〈proof 〉

lemma letter-neq: a 6= b =⇒ c 6= a =⇒ c = b for a b c :: letter
〈proof 〉

lemma letter-eq-dec: a = b ∨ a 6= b for a b :: letter
〈proof 〉

theorem prop2 :
assumes ab: a 6= b and bar : bar xs
shows

∧
ys zs. bar ys =⇒ T a xs zs =⇒ T b ys zs =⇒ bar zs

〈proof 〉

theorem prop3 :
assumes bar : bar xs
shows

∧
zs. xs 6= [] =⇒ R a xs zs =⇒ bar zs

〈proof 〉

theorem higman: bar []
〈proof 〉

primrec is-prefix :: ′a list ⇒ (nat ⇒ ′a) ⇒ bool
where

is-prefix [] f = True
| is-prefix (x # xs) f = (x = f (length xs) ∧ is-prefix xs f)

theorem L-idx:
assumes L: L w ws
shows is-prefix ws f =⇒ ∃ i. emb (f i) w ∧ i < length ws
〈proof 〉

theorem good-idx:
assumes good: good ws
shows is-prefix ws f =⇒ ∃ i j. emb (f i) (f j) ∧ i < j
〈proof 〉

theorem bar-idx:
assumes bar : bar ws
shows is-prefix ws f =⇒ ∃ i j. emb (f i) (f j) ∧ i < j
〈proof 〉

Strong version: yields indices of words that can be embedded into each other.
theorem higman-idx: ∃ (i::nat) j. emb (f i) (f j) ∧ i < j
〈proof 〉

Weak version: only yield sequence containing words that can be embedded

7

into each other.
theorem good-prefix-lemma:

assumes bar : bar ws
shows is-prefix ws f =⇒ ∃ vs. is-prefix vs f ∧ good vs
〈proof 〉

theorem good-prefix: ∃ vs. is-prefix vs f ∧ good vs
〈proof 〉

end

5.1 Extracting the program
theory Higman-Extraction
imports Higman HOL−Library.Realizers HOL−Library.Open-State-Syntax
begin

declare R.induct [ind-realizer]
declare T .induct [ind-realizer]
declare L.induct [ind-realizer]
declare good.induct [ind-realizer]
declare bar .induct [ind-realizer]

extract higman-idx

Program extracted from the proof of higman-idx:

higman-idx ≡ λx. bar-idx x higman

Corresponding correctness theorem:

emb (f (fst (higman-idx f))) (f (snd (higman-idx f))) ∧
fst (higman-idx f) < snd (higman-idx f)

Program extracted from the proof of higman:

higman ≡
bar2 [] (rec-list (prop1 []) (λa w H . prop3 a [a # w] H (R1 [] [] w R0)))

Program extracted from the proof of prop1 :

prop1 ≡
λx. bar2 ([] # x) (λw. bar1 (w # [] # x) (good0 w ([] # x) (L0 [] x)))

Program extracted from the proof of prop2 :

prop2 ≡
λx xa xb xc H .

compat-barT .rec-split-barT
(λws xa xb xba H Ha Haa. bar1 xba (lemma3 x Ha xa))

8

(λws xb r xba xbb H .
compat-barT .rec-split-barT (λws x xb H Ha. bar1 xb (lemma3 xa Ha x))
(λwsa xb ra xc H Ha.

bar2 xc
(λw. case w of [] ⇒ prop1 xc

| a # list ⇒
case letter-eq-dec a x of
Left ⇒

r list wsa ((x # list) # xc) (bar2 wsa xb)
(T1 ws xc list H) (T2 x wsa xc list Ha)

| Right ⇒
ra list ((xa # list) # xc) (T2 xa ws xc list H)
(T1 wsa xc list Ha)))

H xbb)
H xb xc

Program extracted from the proof of prop3 :

prop3 ≡
λx xa H .

compat-barT .rec-split-barT (λws xa xb H . bar1 xb (lemma2 x H xa))
(λws xa r xb H .

bar2 xb
(rec-list (prop1 xb)
(λa w Ha.

case letter-eq-dec a x of
Left ⇒ r w ((x # w) # xb) (R1 ws xb w H)
| Right ⇒

prop2 a x ws ((a # w) # xb) Ha (bar2 ws xa)
(T0 x ws xb w H) (T2 a ws xb w (lemma4 x H)))))

H xa

5.2 Some examples
instantiation LT and TT :: default
begin

definition default = L0 [] []

definition default = T0 A [] [] [] R0

instance 〈proof 〉

end

function mk-word-aux :: nat ⇒ Random.seed ⇒ letter list × Random.seed
where

mk-word-aux k = exec {
i ← Random.range 10 ;

9

(if i > 7 ∧ k > 2 ∨ k > 1000 then Pair []
else exec {

let l = (if i mod 2 = 0 then A else B);
ls ← mk-word-aux (Suc k);
Pair (l # ls)
})}

〈proof 〉
termination
〈proof 〉

definition mk-word :: Random.seed ⇒ letter list × Random.seed
where mk-word = mk-word-aux 0

primrec mk-word-s :: nat ⇒ Random.seed ⇒ letter list × Random.seed
where

mk-word-s 0 = mk-word
| mk-word-s (Suc n) = exec {

- ← mk-word;
mk-word-s n
}

definition g1 :: nat ⇒ letter list
where g1 s = fst (mk-word-s s (20000 , 1))

definition g2 :: nat ⇒ letter list
where g2 s = fst (mk-word-s s (50000 , 1))

fun f1 :: nat ⇒ letter list
where

f1 0 = [A, A]
| f1 (Suc 0) = [B]
| f1 (Suc (Suc 0)) = [A, B]
| f1 - = []

fun f2 :: nat ⇒ letter list
where

f2 0 = [A, A]
| f2 (Suc 0) = [B]
| f2 (Suc (Suc 0)) = [B, A]
| f2 - = []

〈ML〉

end

6 The pigeonhole principle
theory Pigeonhole
imports Util HOL−Library.Realizers HOL−Library.Code-Target-Numeral

10

begin

We formalize two proofs of the pigeonhole principle, which lead to extracted
programs of quite different complexity. The original formalization of these
proofs in Nuprl is due to Aleksey Nogin [3].
This proof yields a polynomial program.
theorem pigeonhole:∧

f . (
∧

i. i ≤ Suc n =⇒ f i ≤ n) =⇒ ∃ i j. i ≤ Suc n ∧ j < i ∧ f i = f j
〈proof 〉

The following proof, although quite elegant from a mathematical point of
view, leads to an exponential program:
theorem pigeonhole-slow:∧

f . (
∧

i. i ≤ Suc n =⇒ f i ≤ n) =⇒ ∃ i j. i ≤ Suc n ∧ j < i ∧ f i = f j
〈proof 〉

extract pigeonhole pigeonhole-slow

The programs extracted from the above proofs look as follows:

pigeonhole ≡
λx. nat-induct-P x (λx. (Suc 0 , 0))

(λx H2 xa.
nat-induct-P (Suc (Suc x)) default
(λx H2 .

case search (Suc x) (λxb. nat-eq-dec (xa (Suc x)) (xa xb)) of
None ⇒ let (x, y) = H2 in (x, y) | Some p ⇒ (Suc x, p)))

pigeonhole-slow ≡
λx. nat-induct-P x (λx. (Suc 0 , 0))

(λx H2 xa.
case search (Suc (Suc x))

(λxb. nat-eq-dec (xa (Suc (Suc x))) (xa xb)) of
None ⇒

let (x, y) =
H2 (λi. if xa i = Suc x then xa (Suc (Suc x)) else xa i)

in (x, y)
| Some p ⇒ (Suc (Suc x), p))

The program for searching for an element in an array is

search ≡
λx H . nat-induct-P x None

(λy Ha.
case Ha of None ⇒ case H y of Left ⇒ Some y | Right ⇒ None
| Some p ⇒ Some p)

The correctness statement for pigeonhole is

11

(
∧

i. i ≤ Suc n =⇒ f i ≤ n) =⇒
fst (pigeonhole n f) ≤ Suc n ∧
snd (pigeonhole n f) < fst (pigeonhole n f) ∧
f (fst (pigeonhole n f)) = f (snd (pigeonhole n f))

In order to analyze the speed of the above programs, we generate ML code
from them.
instantiation nat :: default
begin

definition default = (0 ::nat)

instance 〈proof 〉

end

instantiation prod :: (default, default) default
begin

definition default = (default, default)

instance 〈proof 〉

end

definition test n u = pigeonhole (nat-of-integer n) (λm. m − 1)
definition test ′ n u = pigeonhole-slow (nat-of-integer n) (λm. m − 1)
definition test ′′ u = pigeonhole 8 (List.nth [0 , 1 , 2 , 3 , 4 , 5 , 6 , 3 , 7 , 8])

〈ML〉

end

7 Euclid’s theorem
theory Euclid
imports

HOL−Computational-Algebra.Primes
Util
HOL−Library.Code-Target-Numeral
HOL−Library.Realizers

begin

A constructive version of the proof of Euclid’s theorem by Markus Wenzel
and Freek Wiedijk [4].
lemma factor-greater-one1 : n = m ∗ k =⇒ m < n =⇒ k < n =⇒ Suc 0 < m
〈proof 〉

12

lemma factor-greater-one2 : n = m ∗ k =⇒ m < n =⇒ k < n =⇒ Suc 0 < k
〈proof 〉

lemma prod-mn-less-k: 0 < n =⇒ 0 < k =⇒ Suc 0 < m =⇒ m ∗ n = k =⇒ n
< k
〈proof 〉

lemma prime-eq: prime (p::nat) ←→ 1 < p ∧ (∀m. m dvd p −→ 1 < m −→ m
= p)
〈proof 〉

lemma prime-eq ′: prime (p::nat) ←→ 1 < p ∧ (∀m k. p = m ∗ k −→ 1 < m −→
m = p)
〈proof 〉

lemma not-prime-ex-mk:
assumes n: Suc 0 < n
shows (∃m k. Suc 0 < m ∧ Suc 0 < k ∧ m < n ∧ k < n ∧ n = m ∗ k) ∨ prime

n
〈proof 〉

lemma dvd-factorial: 0 < m =⇒ m ≤ n =⇒ m dvd fact n
〈proof 〉

lemma dvd-prod [iff]: n dvd (
∏

m::nat ∈# mset (n # ns). m)
〈proof 〉

definition all-prime :: nat list ⇒ bool
where all-prime ps ←→ (∀ p∈set ps. prime p)

lemma all-prime-simps:
all-prime []
all-prime (p # ps) ←→ prime p ∧ all-prime ps
〈proof 〉

lemma all-prime-append: all-prime (ps @ qs) ←→ all-prime ps ∧ all-prime qs
〈proof 〉

lemma split-all-prime:
assumes all-prime ms and all-prime ns
shows ∃ qs. all-prime qs ∧
(
∏

m::nat ∈# mset qs. m) = (
∏

m::nat ∈# mset ms. m) ∗ (
∏

m::nat ∈# mset
ns. m)
(is ∃ qs. ?P qs ∧ ?Q qs)
〈proof 〉

lemma all-prime-nempty-g-one:
assumes all-prime ps and ps 6= []
shows Suc 0 < (

∏
m::nat ∈# mset ps. m)

13

〈proof 〉

lemma factor-exists: Suc 0 < n =⇒ (∃ ps. all-prime ps ∧ (
∏

m::nat ∈# mset ps.
m) = n)
〈proof 〉

lemma prime-factor-exists:
assumes N : (1 ::nat) < n
shows ∃ p. prime p ∧ p dvd n
〈proof 〉

Euclid’s theorem: there are infinitely many primes.
lemma Euclid: ∃ p::nat. prime p ∧ n < p
〈proof 〉

extract Euclid

The program extracted from the proof of Euclid’s theorem looks as follows.

Euclid ≡ λx. prime-factor-exists (fact x + 1)

The program corresponding to the proof of the factorization theorem is

factor-exists ≡
λx. nat-wf-ind-P x

(λx H2 .
case not-prime-ex-mk x of None ⇒ [x]
| Some p ⇒ let (x, y) = p in split-all-prime (H2 x) (H2 y))

instantiation nat :: default
begin

definition default = (0 ::nat)

instance 〈proof 〉

end

instantiation list :: (type) default
begin

definition default = []

instance 〈proof 〉

end

primrec iterate :: nat ⇒ (′a ⇒ ′a) ⇒ ′a ⇒ ′a list
where

14

iterate 0 f x = []
| iterate (Suc n) f x = (let y = f x in y # iterate n f y)

lemma factor-exists 1007 = [53 , 19] 〈proof 〉
lemma factor-exists 567 = [7 , 3 , 3 , 3 , 3] 〈proof 〉
lemma factor-exists 345 = [23 , 5 , 3] 〈proof 〉
lemma factor-exists 999 = [37 , 3 , 3 , 3] 〈proof 〉
lemma factor-exists 876 = [73 , 3 , 2 , 2] 〈proof 〉

lemma iterate 4 Euclid 0 = [2 , 3 , 7 , 71] 〈proof 〉

end

References

[1] U. Berger, H. Schwichtenberg, and M. Seisenberger. The Warshall algo-
rithm and Dickson’s lemma: Two examples of realistic program extrac-
tion. Journal of Automated Reasoning, 26:205–221, 2001.

[2] T. Coquand and D. Fridlender. A proof of Higman’s lemma by structural
induction. Technical report, Chalmers University, November 1993.

[3] A. Nogin. Writing constructive proofs yielding efficient extracted pro-
grams. In D. Galmiche, editor, Proceedings of the Workshop on Type-
Theoretic Languages: Proof Search and Semantics, volume 37 of Elec-
tronic Notes in Theoretical Computer Science. Elsevier Science Publish-
ers, 2000.

[4] M. Wenzel and F. Wiedijk. A comparison of the mathematical proof
languages Mizar and Isar. Journal of Automated Reasoning, 29(3-
4):389–411, 2002.

15

	Auxiliary lemmas used in program extraction examples
	Quotient and remainder
	Greatest common divisor
	Warshall's algorithm
	Higman's lemma
	Extracting the program
	Some examples

	The pigeonhole principle
	Euclid's theorem

