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1 Probability measure
theory Probability-Measure

imports HOL−Analysis.Analysis
begin

locale prob-space = finite-measure +
assumes emeasure-space-1 : emeasure M (space M ) = 1

lemma prob-spaceI [Pure.intro!]:
assumes ∗: emeasure M (space M ) = 1
shows prob-space M
〈proof 〉

lemma prob-space-imp-sigma-finite: prob-space M =⇒ sigma-finite-measure M
〈proof 〉

abbreviation (in prob-space) events ≡ sets M
abbreviation (in prob-space) prob ≡ measure M
abbreviation (in prob-space) random-variable M ′ X ≡ X ∈ measurable M M ′

abbreviation (in prob-space) expectation ≡ integralL M
abbreviation (in prob-space) variance X ≡ integralL M (λx. (X x − expectation
X)2)

lemma (in prob-space) finite-measure [simp]: finite-measure M
〈proof 〉

lemma (in prob-space) prob-space-distr :
assumes f : f ∈ measurable M M ′ shows prob-space (distr M M ′ f )
〈proof 〉

lemma prob-space-distrD:
assumes f : f ∈ measurable M N and M : prob-space (distr M N f ) shows

prob-space M
〈proof 〉

lemma (in prob-space) prob-space: prob (space M ) = 1
〈proof 〉

lemma (in prob-space) prob-le-1 [simp, intro]: prob A ≤ 1
〈proof 〉

lemma (in prob-space) not-empty: space M 6= {}
〈proof 〉

lemma (in prob-space) emeasure-eq-1-AE :
S ∈ sets M =⇒ AE x in M . x ∈ S =⇒ emeasure M S = 1
〈proof 〉
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lemma (in prob-space) emeasure-le-1 : emeasure M S ≤ 1
〈proof 〉

lemma (in prob-space) emeasure-ge-1-iff : emeasure M A ≥ 1 ←→ emeasure M A
= 1
〈proof 〉

lemma (in prob-space) AE-iff-emeasure-eq-1 :
assumes [measurable]: Measurable.pred M P
shows (AE x in M . P x) ←→ emeasure M {x∈space M . P x} = 1
〈proof 〉

lemma (in prob-space) measure-le-1 : emeasure M X ≤ 1
〈proof 〉

lemma (in prob-space) measure-ge-1-iff : measure M A ≥ 1 ←→ measure M A =
1
〈proof 〉

lemma (in prob-space) AE-I-eq-1 :
assumes emeasure M {x∈space M . P x} = 1 {x∈space M . P x} ∈ sets M
shows AE x in M . P x
〈proof 〉

lemma prob-space-restrict-space:
S ∈ sets M =⇒ emeasure M S = 1 =⇒ prob-space (restrict-space M S)
〈proof 〉

lemma (in prob-space) prob-compl:
assumes A: A ∈ events
shows prob (space M − A) = 1 − prob A
〈proof 〉

lemma (in prob-space) AE-in-set-eq-1 :
assumes A[measurable]: A ∈ events shows (AE x in M . x ∈ A) ←→ prob A =

1
〈proof 〉

lemma (in prob-space) AE-False: (AE x in M . False) ←→ False
〈proof 〉

lemma (in prob-space) AE-prob-1 :
assumes prob A = 1 shows AE x in M . x ∈ A
〈proof 〉

lemma (in prob-space) AE-const[simp]: (AE x in M . P) ←→ P
〈proof 〉

lemma (in prob-space) ae-filter-bot: ae-filter M 6= bot
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〈proof 〉

lemma (in prob-space) AE-contr :
assumes ae: AE ω in M . P ω AE ω in M . ¬ P ω
shows False
〈proof 〉

lemma (in prob-space) integral-ge-const:
fixes c :: real
shows integrable M f =⇒ (AE x in M . c ≤ f x) =⇒ c ≤ (

∫
x. f x ∂M )

〈proof 〉

lemma (in prob-space) integral-le-const:
fixes c :: real
shows integrable M f =⇒ (AE x in M . f x ≤ c) =⇒ (

∫
x. f x ∂M ) ≤ c

〈proof 〉

lemma (in prob-space) nn-integral-ge-const:
(AE x in M . c ≤ f x) =⇒ c ≤ (

∫
+x. f x ∂M )

〈proof 〉

lemma (in prob-space) expectation-less:
fixes X :: - ⇒ real
assumes [simp]: integrable M X
assumes gt: AE x in M . X x < b
shows expectation X < b
〈proof 〉

lemma (in prob-space) expectation-greater :
fixes X :: - ⇒ real
assumes [simp]: integrable M X
assumes gt: AE x in M . a < X x
shows a < expectation X
〈proof 〉

lemma (in prob-space) jensens-inequality:
fixes q :: real ⇒ real
assumes X : integrable M X AE x in M . X x ∈ I
assumes I : I = {a <..< b} ∨ I = {a <..} ∨ I = {..< b} ∨ I = UNIV
assumes q: integrable M (λx. q (X x)) convex-on I q
shows q (expectation X) ≤ expectation (λx. q (X x))
〈proof 〉

lemma (in prob-space) finite-borel-measurable-integrable:
assumes f∈ borel-measurable M
and finite (f‘(space M ))
shows integrable M f
〈proof 〉
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1.1 Introduce binder for probability
syntax

-prob :: pttrn ⇒ logic ⇒ logic ⇒ logic (‹( ′P ′((/- in -./ -) ′))›)
syntax-consts

-prob == measure
translations
P(x in M . P) => CONST measure M {x ∈ CONST space M . P}

〈ML〉

definition
cond-prob M P Q = P(ω in M . P ω ∧ Q ω) / P(ω in M . Q ω)

syntax
-conditional-prob :: pttrn ⇒ logic ⇒ logic ⇒ logic ⇒ logic (‹( ′P ′(- in -. - |/ - ′))›)

syntax-consts
-conditional-prob == cond-prob

translations
P(x in M . P | Q) => CONST cond-prob M (λx. P) (λx. Q)

lemma (in prob-space) AE-E-prob:
assumes ae: AE x in M . P x
obtains S where S ⊆ {x ∈ space M . P x} S ∈ events prob S = 1
〈proof 〉

lemma (in prob-space) prob-neg: {x∈space M . P x} ∈ events =⇒ P(x in M . ¬ P
x) = 1 − P(x in M . P x)
〈proof 〉

lemma (in prob-space) prob-eq-AE :
(AE x in M . P x ←→ Q x) =⇒ {x∈space M . P x} ∈ events =⇒ {x∈space M . Q

x} ∈ events =⇒ P(x in M . P x) = P(x in M . Q x)
〈proof 〉

lemma (in prob-space) prob-eq-0-AE :
assumes not: AE x in M . ¬ P x shows P(x in M . P x) = 0
〈proof 〉

lemma (in prob-space) prob-Collect-eq-0 :
{x ∈ space M . P x} ∈ sets M =⇒ P(x in M . P x) = 0 ←→ (AE x in M . ¬ P x)
〈proof 〉

lemma (in prob-space) prob-Collect-eq-1 :
{x ∈ space M . P x} ∈ sets M =⇒ P(x in M . P x) = 1 ←→ (AE x in M . P x)
〈proof 〉

lemma (in prob-space) prob-eq-0 :
A ∈ sets M =⇒ prob A = 0 ←→ (AE x in M . x /∈ A)
〈proof 〉
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lemma (in prob-space) prob-eq-1 :
A ∈ sets M =⇒ prob A = 1 ←→ (AE x in M . x ∈ A)
〈proof 〉

lemma (in prob-space) prob-sums:
assumes P:

∧
n. {x∈space M . P n x} ∈ events

assumes Q: {x∈space M . Q x} ∈ events
assumes ae: AE x in M . (∀n. P n x −→ Q x) ∧ (Q x −→ (∃ !n. P n x))
shows (λn. P(x in M . P n x)) sums P(x in M . Q x)
〈proof 〉

lemma (in prob-space) prob-sum:
assumes [simp, intro]: finite I
assumes P:

∧
n. n ∈ I =⇒ {x∈space M . P n x} ∈ events

assumes Q: {x∈space M . Q x} ∈ events
assumes ae: AE x in M . (∀n∈I . P n x −→ Q x) ∧ (Q x −→ (∃ !n∈I . P n x))
shows P(x in M . Q x) = (

∑
n∈I . P(x in M . P n x))

〈proof 〉

lemma (in prob-space) prob-EX-countable:
assumes sets:

∧
i. i ∈ I =⇒ {x∈space M . P i x} ∈ sets M and I : countable I

assumes disj: AE x in M . ∀ i∈I . ∀ j∈I . P i x −→ P j x −→ i = j
shows P(x in M . ∃ i∈I . P i x) = (

∫
+i. P(x in M . P i x) ∂count-space I )

〈proof 〉

lemma (in prob-space) cond-prob-eq-AE :
assumes P: AE x in M . Q x −→ P x ←→ P ′ x {x∈space M . P x} ∈ events
{x∈space M . P ′ x} ∈ events

assumes Q: AE x in M . Q x ←→ Q ′ x {x∈space M . Q x} ∈ events {x∈space
M . Q ′ x} ∈ events

shows cond-prob M P Q = cond-prob M P ′ Q ′

〈proof 〉

lemma (in prob-space) joint-distribution-Times-le-fst:
random-variable MX X =⇒ random-variable MY Y =⇒ A ∈ sets MX =⇒ B ∈

sets MY
=⇒ emeasure (distr M (MX

⊗
M MY ) (λx. (X x, Y x))) (A × B) ≤ emeasure

(distr M MX X) A
〈proof 〉

lemma (in prob-space) joint-distribution-Times-le-snd:
random-variable MX X =⇒ random-variable MY Y =⇒ A ∈ sets MX =⇒ B ∈

sets MY
=⇒ emeasure (distr M (MX

⊗
M MY ) (λx. (X x, Y x))) (A × B) ≤ emeasure

(distr M MY Y ) B
〈proof 〉
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lemma (in prob-space) variance-eq:
fixes X :: ′a ⇒ real
assumes [simp]: integrable M X
assumes [simp]: integrable M (λx. (X x)2)
shows variance X = expectation (λx. (X x)2) − (expectation X)2

〈proof 〉

lemma (in prob-space) variance-positive: 0 ≤ variance (X :: ′a ⇒ real)
〈proof 〉

lemma (in prob-space) variance-mean-zero:
expectation X = 0 =⇒ variance X = expectation (λx. (X x)^2 )
〈proof 〉

theorem (in prob-space) Chebyshev-inequality:
assumes [measurable]: random-variable borel f
assumes integrable M (λx. f x ^ 2 )
defines µ ≡ expectation f
assumes a > 0
shows prob {x∈space M . |f x − µ| ≥ a} ≤ variance f / a2

unfolding µ-def
proof (rule second-moment-method)

have integrable: integrable M f
using assms by (blast dest: square-integrable-imp-integrable)

show integrable M (λx. (f x − expectation f )2)
using assms integrable unfolding power2-eq-square ring-distribs
by (intro Bochner-Integration.integrable-diff ) auto

qed (use assms in auto)

locale pair-prob-space = pair-sigma-finite M1 M2 + M1 : prob-space M1 + M2 :
prob-space M2 for M1 M2

sublocale pair-prob-space ⊆ P?: prob-space M1
⊗

M M2
〈proof 〉

locale product-prob-space = product-sigma-finite M for M :: ′i ⇒ ′a measure +
fixes I :: ′i set
assumes prob-space:

∧
i. prob-space (M i)

sublocale product-prob-space ⊆ M?: prob-space M i for i
〈proof 〉

locale finite-product-prob-space = finite-product-sigma-finite M I + product-prob-space
M I for M I

sublocale finite-product-prob-space ⊆ prob-space ΠM i∈I . M i
〈proof 〉

lemma (in finite-product-prob-space) prob-times:
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assumes X :
∧

i. i ∈ I =⇒ X i ∈ sets (M i)
shows prob (ΠE i∈I . X i) = (

∏
i∈I . M .prob i (X i))

〈proof 〉

lemma product-prob-spaceI :
assumes

∧
i. prob-space (M i)

shows product-prob-space M
〈proof 〉

1.2 Distributions
definition distributed :: ′a measure ⇒ ′b measure ⇒ ( ′a ⇒ ′b) ⇒ ( ′b ⇒ ennreal)
⇒ bool
where

distributed M N X f ←→
distr M N X = density N f ∧ f ∈ borel-measurable N ∧ X ∈ measurable M N

lemma
assumes distributed M N X f
shows distributed-distr-eq-density: distr M N X = density N f

and distributed-measurable: X ∈ measurable M N
and distributed-borel-measurable: f ∈ borel-measurable N
〈proof 〉

lemma
assumes D: distributed M N X f
shows distributed-measurable ′[measurable-dest]:

g ∈ measurable L M =⇒ (λx. X (g x)) ∈ measurable L N
and distributed-borel-measurable ′[measurable-dest]:

h ∈ measurable L N =⇒ (λx. f (h x)) ∈ borel-measurable L
〈proof 〉

lemma distributed-real-measurable:
(
∧

x. x ∈ space N =⇒ 0 ≤ f x) =⇒ distributed M N X (λx. ennreal (f x)) =⇒ f
∈ borel-measurable N
〈proof 〉

lemma distributed-real-measurable ′:
(
∧

x. x ∈ space N =⇒ 0 ≤ f x) =⇒ distributed M N X (λx. ennreal (f x)) =⇒
h ∈ measurable L N =⇒ (λx. f (h x)) ∈ borel-measurable L
〈proof 〉

lemma joint-distributed-measurable1 :
distributed M (S

⊗
M T ) (λx. (X x, Y x)) f =⇒ h1 ∈ measurable N M =⇒ (λx.

X (h1 x)) ∈ measurable N S
〈proof 〉

lemma joint-distributed-measurable2 :
distributed M (S

⊗
M T ) (λx. (X x, Y x)) f =⇒ h2 ∈ measurable N M =⇒ (λx.
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Y (h2 x)) ∈ measurable N T
〈proof 〉

lemma distributed-count-space:
assumes X : distributed M (count-space A) X P and a: a ∈ A and A: finite A
shows P a = emeasure M (X −‘ {a} ∩ space M )
〈proof 〉

lemma distributed-cong-density:
(AE x in N . f x = g x) =⇒ g ∈ borel-measurable N =⇒ f ∈ borel-measurable N

=⇒
distributed M N X f ←→ distributed M N X g
〈proof 〉

lemma (in prob-space) distributed-imp-emeasure-nonzero:
assumes X : distributed M MX X Px
shows emeasure MX {x ∈ space MX . Px x 6= 0} 6= 0
〈proof 〉

lemma subdensity:
assumes T : T ∈ measurable P Q
assumes f : distributed M P X f
assumes g: distributed M Q Y g
assumes Y : Y = T ◦ X
shows AE x in P. g (T x) = 0 −→ f x = 0
〈proof 〉

lemma subdensity-real:
fixes g :: ′a ⇒ real and f :: ′b ⇒ real
assumes T : T ∈ measurable P Q
assumes f : distributed M P X f
assumes g: distributed M Q Y g
assumes Y : Y = T ◦ X
shows (AE x in P. 0 ≤ g (T x)) =⇒ (AE x in P. 0 ≤ f x) =⇒ AE x in P. g (T

x) = 0 −→ f x = 0
〈proof 〉

lemma distributed-emeasure:
distributed M N X f =⇒ A ∈ sets N =⇒ emeasure M (X −‘ A ∩ space M ) =

(
∫

+x. f x ∗ indicator A x ∂N )
〈proof 〉

lemma distributed-nn-integral:
distributed M N X f =⇒ g ∈ borel-measurable N =⇒ (

∫
+x. f x ∗ g x ∂N ) =

(
∫

+x. g (X x) ∂M )
〈proof 〉

lemma distributed-integral:
distributed M N X f =⇒ g ∈ borel-measurable N =⇒ (

∧
x. x ∈ space N =⇒ 0 ≤
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f x) =⇒
(
∫

x. f x ∗ g x ∂N ) = (
∫

x. g (X x) ∂M )
〈proof 〉

lemma distributed-transform-integral:
assumes Px: distributed M N X Px

∧
x. x ∈ space N =⇒ 0 ≤ Px x

assumes distributed M P Y Py
∧

x. x ∈ space P =⇒ 0 ≤ Py x
assumes Y : Y = T ◦ X and T : T ∈ measurable N P and f : f ∈ borel-measurable

P
shows (

∫
x. Py x ∗ f x ∂P) = (

∫
x. Px x ∗ f (T x) ∂N )

〈proof 〉

lemma (in prob-space) distributed-unique:
assumes Px: distributed M S X Px
assumes Py: distributed M S X Py
shows AE x in S . Px x = Py x
〈proof 〉

lemma (in prob-space) distributed-jointI :
assumes sigma-finite-measure S sigma-finite-measure T
assumes X [measurable]: X ∈ measurable M S and Y [measurable]: Y ∈ measur-

able M T
assumes [measurable]: f ∈ borel-measurable (S

⊗
M T ) and f : AE x in S

⊗
M

T . 0 ≤ f x
assumes eq:

∧
A B. A ∈ sets S =⇒ B ∈ sets T =⇒

emeasure M {x ∈ space M . X x ∈ A ∧ Y x ∈ B} = (
∫

+x. (
∫

+y. f (x, y) ∗
indicator B y ∂T ) ∗ indicator A x ∂S)

shows distributed M (S
⊗

M T ) (λx. (X x, Y x)) f
〈proof 〉

lemma (in prob-space) distributed-swap:
assumes sigma-finite-measure S sigma-finite-measure T
assumes Pxy: distributed M (S

⊗
M T ) (λx. (X x , Y x)) Pxy

shows distributed M (T
⊗

M S) (λx. (Y x, X x)) (λ(x, y). Pxy (y, x))
〈proof 〉

lemma (in prob-space) distr-marginal1 :
assumes sigma-finite-measure S sigma-finite-measure T
assumes Pxy: distributed M (S

⊗
M T ) (λx. (X x , Y x)) Pxy

defines Px ≡ λx. (
∫

+z. Pxy (x, z) ∂T )
shows distributed M S X Px
〈proof 〉

lemma (in prob-space) distr-marginal2 :
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes Pxy: distributed M (S

⊗
M T ) (λx. (X x , Y x)) Pxy

shows distributed M T Y (λy. (
∫

+x. Pxy (x, y) ∂S))
〈proof 〉
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lemma (in prob-space) distributed-marginal-eq-joint1 :
assumes T : sigma-finite-measure T
assumes S : sigma-finite-measure S
assumes Px: distributed M S X Px
assumes Pxy: distributed M (S

⊗
M T ) (λx. (X x , Y x)) Pxy

shows AE x in S . Px x = (
∫

+y. Pxy (x, y) ∂T )
〈proof 〉

lemma (in prob-space) distributed-marginal-eq-joint2 :
assumes T : sigma-finite-measure T
assumes S : sigma-finite-measure S
assumes Py: distributed M T Y Py
assumes Pxy: distributed M (S

⊗
M T ) (λx. (X x , Y x)) Pxy

shows AE y in T . Py y = (
∫

+x. Pxy (x, y) ∂S)
〈proof 〉

lemma (in prob-space) distributed-joint-indep ′:
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes X [measurable]: distributed M S X Px and Y [measurable]: distributed

M T Y Py
assumes indep: distr M S X

⊗
M distr M T Y = distr M (S

⊗
M T ) (λx. (X

x, Y x))
shows distributed M (S

⊗
M T ) (λx. (X x, Y x)) (λ(x, y). Px x ∗ Py y)

〈proof 〉

lemma distributed-integrable:
distributed M N X f =⇒ g ∈ borel-measurable N =⇒ (

∧
x. x ∈ space N =⇒ 0 ≤

f x) =⇒
integrable N (λx. f x ∗ g x) ←→ integrable M (λx. g (X x))
〈proof 〉

lemma distributed-transform-integrable:
assumes Px: distributed M N X Px

∧
x. x ∈ space N =⇒ 0 ≤ Px x

assumes distributed M P Y Py
∧

x. x ∈ space P =⇒ 0 ≤ Py x
assumes Y : Y = (λx. T (X x)) and T : T ∈ measurable N P and f : f ∈

borel-measurable P
shows integrable P (λx. Py x ∗ f x) ←→ integrable N (λx. Px x ∗ f (T x))
〈proof 〉

lemma distributed-integrable-var :
fixes X :: ′a ⇒ real
shows distributed M lborel X (λx. ennreal (f x)) =⇒ (

∧
x. 0 ≤ f x) =⇒

integrable lborel (λx. f x ∗ x) =⇒ integrable M X
〈proof 〉

lemma (in prob-space) distributed-variance:
fixes f ::real ⇒ real
assumes D: distributed M lborel X f and [simp]:

∧
x. 0 ≤ f x

shows variance X = (
∫

x. x2 ∗ f (x + expectation X) ∂lborel)
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〈proof 〉

lemma (in prob-space) variance-affine:
fixes f ::real ⇒ real
assumes [arith]: b 6= 0
assumes D[intro]: distributed M lborel X f
assumes [simp]: prob-space (density lborel f )
assumes I [simp]: integrable M X
assumes I2 [simp]: integrable M (λx. (X x)2)
shows variance (λx. a + b ∗ X x) = b2 ∗ variance X
〈proof 〉

definition
simple-distributed M X f ←→
(∀ x. 0 ≤ f x) ∧
distributed M (count-space (X‘space M )) X (λx. ennreal (f x)) ∧
finite (X‘space M )

lemma simple-distributed-nonneg[dest]: simple-distributed M X f =⇒ 0 ≤ f x
〈proof 〉

lemma simple-distributed:
simple-distributed M X Px =⇒ distributed M (count-space (X‘space M )) X Px
〈proof 〉

lemma simple-distributed-finite[dest]: simple-distributed M X P =⇒ finite (X‘space
M )
〈proof 〉

lemma (in prob-space) distributed-simple-function-superset:
assumes X : simple-function M X

∧
x. x ∈ X ‘ space M =⇒ P x = measure M

(X −‘ {x} ∩ space M )
assumes A: X‘space M ⊆ A finite A
defines S ≡ count-space A and P ′ ≡ (λx. if x ∈ X‘space M then P x else 0 )
shows distributed M S X P ′

〈proof 〉

lemma (in prob-space) simple-distributedI :
assumes X : simple-function M X∧

x. 0 ≤ P x∧
x. x ∈ X ‘ space M =⇒ P x = measure M (X −‘ {x} ∩ space M )

shows simple-distributed M X P
〈proof 〉

lemma simple-distributed-joint-finite:
assumes X : simple-distributed M (λx. (X x , Y x)) Px
shows finite (X ‘ space M ) finite (Y ‘ space M )
〈proof 〉
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lemma simple-distributed-joint2-finite:
assumes X : simple-distributed M (λx. (X x , Y x , Z x)) Px
shows finite (X ‘ space M ) finite (Y ‘ space M ) finite (Z ‘ space M )
〈proof 〉

lemma simple-distributed-simple-function:
simple-distributed M X Px =⇒ simple-function M X
〈proof 〉

lemma simple-distributed-measure:
simple-distributed M X P =⇒ a ∈ X‘space M =⇒ P a = measure M (X −‘ {a}
∩ space M )
〈proof 〉

lemma (in prob-space) simple-distributed-joint:
assumes X : simple-distributed M (λx. (X x , Y x)) Px
defines S ≡ count-space (X‘space M )

⊗
M count-space (Y‘space M )

defines P ≡ (λx. if x ∈ (λx. (X x, Y x))‘space M then Px x else 0 )
shows distributed M S (λx. (X x, Y x)) P
〈proof 〉

lemma (in prob-space) simple-distributed-joint2 :
assumes X : simple-distributed M (λx. (X x , Y x , Z x)) Px
defines S ≡ count-space (X‘space M )

⊗
M count-space (Y‘space M )

⊗
M

count-space (Z‘space M )
defines P ≡ (λx. if x ∈ (λx. (X x, Y x , Z x))‘space M then Px x else 0 )
shows distributed M S (λx. (X x, Y x , Z x)) P
〈proof 〉

lemma (in prob-space) simple-distributed-sum-space:
assumes X : simple-distributed M X f
shows sum f (X‘space M ) = 1
〈proof 〉

lemma (in prob-space) distributed-marginal-eq-joint-simple:
assumes Px: simple-function M X
assumes Py: simple-distributed M Y Py
assumes Pxy: simple-distributed M (λx. (X x , Y x)) Pxy
assumes y: y ∈ Y‘space M
shows Py y = (

∑
x∈X‘space M . if (x, y) ∈ (λx. (X x , Y x)) ‘ space M then Pxy

(x, y) else 0 )
〈proof 〉

lemma distributedI-real:
fixes f :: ′a ⇒ real
assumes gen: sets M1 = sigma-sets (space M1 ) E and Int-stable E

and A: range A ⊆ E (
⋃

i::nat. A i) = space M1
∧

i. emeasure (distr M M1 X)
(A i) 6= ∞

and X : X ∈ measurable M M1
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and f : f ∈ borel-measurable M1 AE x in M1 . 0 ≤ f x
and eq:

∧
A. A ∈ E =⇒ emeasure M (X −‘ A ∩ space M ) = (

∫
+ x. f x ∗

indicator A x ∂M1 )
shows distributed M M1 X f
〈proof 〉

lemma distributedI-borel-atMost:
fixes f :: real ⇒ real
assumes [measurable]: X ∈ borel-measurable M

and [measurable]: f ∈ borel-measurable borel and f [simp]: AE x in lborel. 0 ≤
f x

and g-eq:
∧

a. (
∫

+x. f x ∗ indicator {..a} x ∂lborel) = ennreal (g a)
and M-eq:

∧
a. emeasure M {x∈space M . X x ≤ a} = ennreal (g a)

shows distributed M lborel X f
〈proof 〉

lemma (in prob-space) uniform-distributed-params:
assumes X : distributed M MX X (λx. indicator A x / measure MX A)
shows A ∈ sets MX measure MX A 6= 0
〈proof 〉

lemma prob-space-uniform-measure:
assumes A: emeasure M A 6= 0 emeasure M A 6= ∞
shows prob-space (uniform-measure M A)
〈proof 〉

lemma prob-space-uniform-count-measure: finite A =⇒ A 6= {} =⇒ prob-space
(uniform-count-measure A)
〈proof 〉

lemma (in prob-space) measure-uniform-measure-eq-cond-prob:
assumes [measurable]: Measurable.pred M P Measurable.pred M Q
shows P(x in uniform-measure M {x∈space M . Q x}. P x) = P(x in M . P x |

Q x)
〈proof 〉

lemma prob-space-point-measure:
finite S =⇒ (

∧
s. s ∈ S =⇒ 0 ≤ p s) =⇒ (

∑
s∈S . p s) = 1 =⇒ prob-space

(point-measure S p)
〈proof 〉

lemma (in prob-space) distr-pair-fst: distr (N
⊗

M M ) N fst = N
〈proof 〉

lemma (in product-prob-space) distr-reorder :
assumes inj-on t J t ∈ J → K finite K
shows distr (PiM K M ) (PiM J (λx. M (t x))) (λω. λn∈J . ω (t n)) = PiM J

(λx. M (t x))
〈proof 〉
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lemma (in product-prob-space) distr-restrict:
J ⊆ K =⇒ finite K =⇒ (ΠM i∈J . M i) = distr (ΠM i∈K . M i) (ΠM i∈J . M

i) (λf . restrict f J )
〈proof 〉

lemma (in product-prob-space) emeasure-prod-emb[simp]:
assumes L: J ⊆ L finite L and X : X ∈ sets (PiM J M )
shows emeasure (PiM L M ) (prod-emb L M J X) = emeasure (PiM J M ) X
〈proof 〉

lemma emeasure-distr-restrict:
assumes I ⊆ K and Q[measurable-cong]: sets Q = sets (PiM K M ) and

A[measurable]: A ∈ sets (PiM I M )
shows emeasure (distr Q (PiM I M ) (λω. restrict ω I )) A = emeasure Q

(prod-emb K M I A)
〈proof 〉

lemma (in prob-space) prob-space-completion: prob-space (completion M )
〈proof 〉

lemma distr-PiM-finite-prob-space:
assumes fin: finite I
assumes product-prob-space M
assumes product-prob-space M ′

assumes [measurable]:
∧

i. i ∈ I =⇒ f ∈ measurable (M i) (M ′ i)
shows distr (PiM I M ) (PiM I M ′) (compose I f ) = PiM I (λi. distr (M i)

(M ′ i) f )
〈proof 〉

end

2 Distribution Functions

Shows that the cumulative distribution function (cdf) of a distribution (a
measure on the reals) is nondecreasing and right continuous, which tends to
0 and 1 in either direction.
Conversely, every such function is the cdf of a unique distribution. This
direction defines the measure in the obvious way on half-open intervals, and
then applies the Caratheodory extension theorem.
theory Distribution-Functions

imports Probability-Measure
begin

lemma UN-Ioc-eq-UNIV : (
⋃

n. { −real n <.. real n}) = UNIV
〈proof 〉
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2.1 Properties of cdf’s
definition

cdf :: real measure ⇒ real ⇒ real
where

cdf M ≡ λx. measure M {..x}

lemma cdf-def2 : cdf M x = measure M {..x}
〈proof 〉

locale finite-borel-measure = finite-measure M for M :: real measure +
assumes M-is-borel: sets M = sets borel

begin

lemma sets-M [intro]: a ∈ sets borel =⇒ a ∈ sets M
〈proof 〉

lemma cdf-diff-eq:
assumes x < y
shows cdf M y − cdf M x = measure M {x<..y}
〈proof 〉

lemma cdf-nondecreasing: x ≤ y =⇒ cdf M x ≤ cdf M y
〈proof 〉

lemma borel-UNIV : space M = UNIV
〈proof 〉

lemma cdf-nonneg: cdf M x ≥ 0
〈proof 〉

lemma cdf-bounded: cdf M x ≤ measure M (space M )
〈proof 〉

lemma cdf-lim-infty:
((λi. cdf M (real i)) −−−−→ measure M (space M ))
〈proof 〉

lemma cdf-lim-at-top: (cdf M −−−→ measure M (space M )) at-top
〈proof 〉

lemma cdf-lim-neg-infty: ((λi. cdf M (− real i)) −−−−→ 0 )
〈proof 〉

lemma cdf-lim-at-bot: (cdf M −−−→ 0 ) at-bot
〈proof 〉

lemma cdf-is-right-cont: continuous (at-right a) (cdf M )
〈proof 〉
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lemma cdf-at-left: (cdf M −−−→ measure M {..<a}) (at-left a)
〈proof 〉

lemma isCont-cdf : isCont (cdf M ) x ←→ measure M {x} = 0
〈proof 〉

lemma countable-atoms: countable {x. measure M {x} > 0}
〈proof 〉

end

locale real-distribution = prob-space M for M :: real measure +
assumes events-eq-borel [simp, measurable-cong]: sets M = sets borel

begin

lemma finite-borel-measure-M : finite-borel-measure M
〈proof 〉

sublocale finite-borel-measure M
〈proof 〉

lemma space-eq-univ [simp]: space M = UNIV
〈proof 〉

lemma cdf-bounded-prob:
∧

x. cdf M x ≤ 1
〈proof 〉

lemma cdf-lim-infty-prob: (λi. cdf M (real i)) −−−−→ 1
〈proof 〉

lemma cdf-lim-at-top-prob: (cdf M −−−→ 1 ) at-top
〈proof 〉

lemma measurable-finite-borel [simp]:
f ∈ borel-measurable borel =⇒ f ∈ borel-measurable M
〈proof 〉

end

lemma (in prob-space) real-distribution-distr [intro, simp]:
random-variable borel X =⇒ real-distribution (distr M borel X)
〈proof 〉

2.2 Uniqueness
lemma (in finite-borel-measure) emeasure-Ioc:

assumes a ≤ b shows emeasure M {a <.. b} = cdf M b − cdf M a
〈proof 〉
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lemma cdf-unique ′:
fixes M1 M2
assumes finite-borel-measure M1 and finite-borel-measure M2
assumes cdf M1 = cdf M2
shows M1 = M2
〈proof 〉

lemma cdf-unique:
real-distribution M1 =⇒ real-distribution M2 =⇒ cdf M1 = cdf M2 =⇒ M1 =

M2
〈proof 〉

lemma
fixes F :: real ⇒ real
assumes nondecF :

∧
x y. x ≤ y =⇒ F x ≤ F y

and right-cont-F :
∧

a. continuous (at-right a) F
and lim-F-at-bot : (F −−−→ 0 ) at-bot
and lim-F-at-top : (F −−−→ m) at-top
and m: 0 ≤ m

shows interval-measure-UNIV : emeasure (interval-measure F) UNIV = m
and finite-borel-measure-interval-measure: finite-borel-measure (interval-measure

F)
〈proof 〉

lemma real-distribution-interval-measure:
fixes F :: real ⇒ real
assumes nondecF :

∧
x y. x ≤ y =⇒ F x ≤ F y and

right-cont-F :
∧

a. continuous (at-right a) F and
lim-F-at-bot : (F −−−→ 0 ) at-bot and
lim-F-at-top : (F −−−→ 1 ) at-top

shows real-distribution (interval-measure F)
〈proof 〉

lemma
fixes F :: real ⇒ real
assumes nondecF :

∧
x y. x ≤ y =⇒ F x ≤ F y and

right-cont-F :
∧

a. continuous (at-right a) F and
lim-F-at-bot : (F −−−→ 0 ) at-bot

shows emeasure-interval-measure-Iic: emeasure (interval-measure F) {.. x} = F
x

and measure-interval-measure-Iic: measure (interval-measure F) {.. x} = F x
〈proof 〉

lemma cdf-interval-measure:
(
∧

x y. x ≤ y =⇒ F x ≤ F y) =⇒ (
∧

a. continuous (at-right a) F) =⇒ (F −−−→
0 ) at-bot =⇒ cdf (interval-measure F) = F
〈proof 〉

end
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3 Weak Convergence of Functions and Distribu-
tions

Properties of weak convergence of functions and measures, including the
portmanteau theorem.
theory Weak-Convergence

imports Distribution-Functions
begin

4 Weak Convergence of Functions
definition

weak-conv :: (nat ⇒ (real ⇒ real)) ⇒ (real ⇒ real) ⇒ bool
where

weak-conv F-seq F ≡ ∀ x. isCont F x −→ (λn. F-seq n x) −−−−→ F x

5 Weak Convergence of Distributions
definition

weak-conv-m :: (nat ⇒ real measure) ⇒ real measure ⇒ bool
where

weak-conv-m M-seq M ≡ weak-conv (λn. cdf (M-seq n)) (cdf M )

6 Skorohod’s theorem
locale right-continuous-mono =

fixes f :: real ⇒ real and a b :: real
assumes cont:

∧
x. continuous (at-right x) f

assumes mono: mono f
assumes bot: (f −−−→ a) at-bot
assumes top: (f −−−→ b) at-top

begin

abbreviation I :: real ⇒ real where
I ω ≡ Inf {x. ω ≤ f x}

lemma pseudoinverse: assumes a < ω ω < b shows ω ≤ f x ←→ I ω ≤ x
〈proof 〉

lemma pseudoinverse ′: ∀ω∈{a<..<b}. ∀ x. ω ≤ f x ←→ I ω ≤ x
〈proof 〉

lemma mono-I : mono-on {a <..< b} I
〈proof 〉

end
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locale cdf-distribution = real-distribution
begin

abbreviation C ≡ cdf M

sublocale right-continuous-mono C 0 1
〈proof 〉

lemma measurable-C [measurable]: C ∈ borel-measurable borel
〈proof 〉

lemma measurable-CI [measurable]: I ∈ borel-measurable (restrict-space borel {0<..<1})
〈proof 〉

lemma emeasure-distr-I : emeasure (distr (restrict-space lborel {0<..<1 ::real}) borel
I ) UNIV = 1
〈proof 〉

lemma distr-I-eq-M : distr (restrict-space lborel {0<..<1 ::real}) borel I = M (is
?I = -)
〈proof 〉

end

context
fixes µ :: nat ⇒ real measure

and M :: real measure
assumes µ:

∧
n. real-distribution (µ n)

assumes M : real-distribution M
assumes µ-to-M : weak-conv-m µ M

begin

theorem Skorohod:
∃ (Ω :: real measure) (Y-seq :: nat ⇒ real ⇒ real) (Y :: real ⇒ real).

prob-space Ω ∧
(∀n. Y-seq n ∈ measurable Ω borel) ∧
(∀n. distr Ω borel (Y-seq n) = µ n) ∧
Y ∈ measurable Ω lborel ∧
distr Ω borel Y = M ∧
(∀ x ∈ space Ω. (λn. Y-seq n x) −−−−→ Y x)

〈proof 〉

The Portmanteau theorem, that is, the equivalence of various definitions of
weak convergence.
theorem weak-conv-imp-bdd-ae-continuous-conv:

fixes
f :: real ⇒ ′a::{banach, second-countable-topology}
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assumes
discont-null: M ({x. ¬ isCont f x}) = 0 and
f-bdd:

∧
x. norm (f x) ≤ B and

[measurable]: f ∈ borel-measurable borel
shows
(λ n. integralL (µ n) f ) −−−−→ integralL M f

〈proof 〉

theorem weak-conv-imp-integral-bdd-continuous-conv:
fixes f :: real ⇒ ′a::{banach, second-countable-topology}
assumes∧

x. isCont f x and∧
x. norm (f x) ≤ B

shows
(λ n. integralL (µ n) f ) −−−−→ integralL M f
〈proof 〉

theorem weak-conv-imp-continuity-set-conv:
fixes f :: real ⇒ real
assumes [measurable]: A ∈ sets borel and M (frontier A) = 0
shows (λn. measure (µ n) A) −−−−→ measure M A
〈proof 〉

end

definition
cts-step :: real ⇒ real ⇒ real ⇒ real

where
cts-step a b x ≡ if x ≤ a then 1 else if x ≥ b then 0 else (b − x) / (b − a)

lemma cts-step-uniformly-continuous:
assumes [arith]: a < b
shows uniformly-continuous-on UNIV (cts-step a b)
〈proof 〉

lemma (in real-distribution) integrable-cts-step: a < b =⇒ integrable M (cts-step
a b)
〈proof 〉

lemma (in real-distribution) cdf-cts-step:
assumes [arith]: x < y
shows cdf M x ≤ integralL M (cts-step x y) and integralL M (cts-step x y) ≤

cdf M y
〈proof 〉

context
fixes M-seq :: nat ⇒ real measure

and M :: real measure
assumes distr-M-seq [simp]:

∧
n. real-distribution (M-seq n)
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assumes distr-M [simp]: real-distribution M
begin

theorem continuity-set-conv-imp-weak-conv:
fixes f :: real ⇒ real
assumes ∗:

∧
A. A ∈ sets borel =⇒ M (frontier A) = 0 =⇒ (λ n. (measure

(M-seq n) A)) −−−−→ measure M A
shows weak-conv-m M-seq M
〈proof 〉

theorem integral-cts-step-conv-imp-weak-conv:
assumes integral-conv:

∧
x y. x < y =⇒ (λn. integralL (M-seq n) (cts-step x y))

−−−−→ integralL M (cts-step x y)
shows weak-conv-m M-seq M
〈proof 〉

theorem integral-bdd-continuous-conv-imp-weak-conv:
assumes∧

f . (
∧

x. isCont f x) =⇒ (
∧

x. abs (f x) ≤ 1 ) =⇒ (λn. integralL (M-seq n)
f ::real) −−−−→ integralL M f

shows
weak-conv-m M-seq M
〈proof 〉

end

end

7 The Giry monad
theory Giry-Monad

imports Probability-Measure HOL−Library.Monad-Syntax
begin

7.1 Sub-probability spaces
locale subprob-space = finite-measure +

assumes emeasure-space-le-1 : emeasure M (space M ) ≤ 1
assumes subprob-not-empty: space M 6= {}

lemma subprob-spaceI [Pure.intro!]:
assumes ∗: emeasure M (space M ) ≤ 1
assumes space M 6= {}
shows subprob-space M
〈proof 〉

lemma (in subprob-space) emeasure-subprob-space-less-top: emeasure M A 6= top
〈proof 〉
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lemma prob-space-imp-subprob-space:
prob-space M =⇒ subprob-space M
〈proof 〉

lemma subprob-space-imp-sigma-finite: subprob-space M =⇒ sigma-finite-measure
M
〈proof 〉

sublocale prob-space ⊆ subprob-space
〈proof 〉

lemma subprob-space-sigma [simp]: Ω 6= {} =⇒ subprob-space (sigma Ω X)
〈proof 〉

lemma subprob-space-null-measure: space M 6= {} =⇒ subprob-space (null-measure
M )
〈proof 〉

lemma (in subprob-space) subprob-space-distr :
assumes f : f ∈ measurable M M ′ and space M ′ 6= {} shows subprob-space (distr

M M ′ f )
〈proof 〉

lemma (in subprob-space) subprob-emeasure-le-1 : emeasure M X ≤ 1
〈proof 〉

lemma (in subprob-space) subprob-measure-le-1 : measure M X ≤ 1
〈proof 〉

lemma (in subprob-space) nn-integral-le-const:
assumes 0 ≤ c AE x in M . f x ≤ c
shows (

∫
+x. f x ∂M ) ≤ c

〈proof 〉

lemma emeasure-density-distr-interval:
fixes h :: real ⇒ real and g :: real ⇒ real and g ′ :: real ⇒ real
assumes [simp]: a ≤ b
assumes Mf [measurable]: f ∈ borel-measurable borel
assumes Mg[measurable]: g ∈ borel-measurable borel
assumes Mg ′[measurable]: g ′ ∈ borel-measurable borel
assumes Mh[measurable]: h ∈ borel-measurable borel
assumes prob: subprob-space (density lborel f )
assumes nonnegf :

∧
x. f x ≥ 0

assumes derivg:
∧

x. x ∈ {a..b} =⇒ (g has-real-derivative g ′ x) (at x)
assumes contg ′: continuous-on {a..b} g ′

assumes mono: strict-mono-on {a..b} g and inv:
∧

x. h x ∈ {a..b} =⇒ g (h x)
= x

assumes range: {a..b} ⊆ range h
shows emeasure (distr (density lborel f ) lborel h) {a..b} =
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emeasure (density lborel (λx. f (g x) ∗ g ′ x)) {a..b}
〈proof 〉

locale pair-subprob-space =
pair-sigma-finite M1 M2 + M1 : subprob-space M1 + M2 : subprob-space M2 for

M1 M2

sublocale pair-subprob-space ⊆ P?: subprob-space M1
⊗

M M2
〈proof 〉

lemma subprob-space-null-measure-iff :
subprob-space (null-measure M ) ←→ space M 6= {}
〈proof 〉

lemma subprob-space-restrict-space:
assumes M : subprob-space M
and A: A ∩ space M ∈ sets M A ∩ space M 6= {}
shows subprob-space (restrict-space M A)
〈proof 〉

definition subprob-algebra :: ′a measure ⇒ ′a measure measure where
subprob-algebra K =
(SUP A ∈ sets K . vimage-algebra {M . subprob-space M ∧ sets M = sets K}

(λM . emeasure M A) borel)

lemma space-subprob-algebra: space (subprob-algebra A) = {M . subprob-space M
∧ sets M = sets A}
〈proof 〉

lemma subprob-algebra-cong: sets M = sets N =⇒ subprob-algebra M = sub-
prob-algebra N
〈proof 〉

lemma measurable-emeasure-subprob-algebra[measurable]:
a ∈ sets A =⇒ (λM . emeasure M a) ∈ borel-measurable (subprob-algebra A)
〈proof 〉

lemma measurable-measure-subprob-algebra[measurable]:
a ∈ sets A =⇒ (λM . measure M a) ∈ borel-measurable (subprob-algebra A)
〈proof 〉

lemma subprob-measurableD:
assumes N : N ∈ measurable M (subprob-algebra S) and x: x ∈ space M
shows space (N x) = space S

and sets (N x) = sets S
and measurable (N x) K = measurable S K
and measurable K (N x) = measurable K S
〈proof 〉
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〈ML〉

context
fixes K M N assumes K : K ∈ measurable M (subprob-algebra N )

begin

lemma subprob-space-kernel: a ∈ space M =⇒ subprob-space (K a)
〈proof 〉

lemma sets-kernel: a ∈ space M =⇒ sets (K a) = sets N
〈proof 〉

lemma measurable-emeasure-kernel[measurable]:
A ∈ sets N =⇒ (λa. emeasure (K a) A) ∈ borel-measurable M
〈proof 〉

end

lemma measurable-subprob-algebra:
(
∧

a. a ∈ space M =⇒ subprob-space (K a)) =⇒
(
∧

a. a ∈ space M =⇒ sets (K a) = sets N ) =⇒
(
∧

A. A ∈ sets N =⇒ (λa. emeasure (K a) A) ∈ borel-measurable M ) =⇒
K ∈ measurable M (subprob-algebra N )
〈proof 〉

lemma measurable-submarkov:
K ∈ measurable M (subprob-algebra M ) ←→
(∀ x∈space M . subprob-space (K x) ∧ sets (K x) = sets M ) ∧
(∀A∈sets M . (λx. emeasure (K x) A) ∈ measurable M borel)

〈proof 〉

lemma measurable-subprob-algebra-generated:
assumes eq: sets N = sigma-sets Ω G and Int-stable G G ⊆ Pow Ω
assumes subsp:

∧
a. a ∈ space M =⇒ subprob-space (K a)

assumes sets:
∧

a. a ∈ space M =⇒ sets (K a) = sets N
assumes

∧
A. A ∈ G =⇒ (λa. emeasure (K a) A) ∈ borel-measurable M

assumes Ω: (λa. emeasure (K a) Ω) ∈ borel-measurable M
shows K ∈ measurable M (subprob-algebra N )
〈proof 〉

lemma space-subprob-algebra-empty-iff :
space (subprob-algebra N ) = {} ←→ space N = {}
〈proof 〉

lemma nn-integral-measurable-subprob-algebra[measurable]:
assumes f : f ∈ borel-measurable N
shows (λM . integralN M f ) ∈ borel-measurable (subprob-algebra N ) (is - ∈ ?B)
〈proof 〉
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lemma measurable-distr :
assumes [measurable]: f ∈ measurable M N
shows (λM ′. distr M ′ N f ) ∈ measurable (subprob-algebra M ) (subprob-algebra

N )
〈proof 〉

lemma emeasure-space-subprob-algebra[measurable]:
(λa. emeasure a (space a)) ∈ borel-measurable (subprob-algebra N )
〈proof 〉

lemma integrable-measurable-subprob-algebra[measurable]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes [measurable]: f ∈ borel-measurable N
shows Measurable.pred (subprob-algebra N ) (λM . integrable M f )
〈proof 〉

lemma integral-measurable-subprob-algebra[measurable]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes f [measurable]: f ∈ borel-measurable N
shows (λM . integralL M f ) ∈ subprob-algebra N →M borel
〈proof 〉

lemma measurable-pair-measure:
assumes f : f ∈ measurable M (subprob-algebra N )
assumes g: g ∈ measurable M (subprob-algebra L)
shows (λx. f x

⊗
M g x) ∈ measurable M (subprob-algebra (N

⊗
M L))

〈proof 〉

lemma restrict-space-measurable:
assumes X : X 6= {} X ∈ sets K
assumes N : N ∈ measurable M (subprob-algebra K )
shows (λx. restrict-space (N x) X) ∈ measurable M (subprob-algebra (restrict-space

K X))
〈proof 〉

7.2 Properties of “return”
definition return :: ′a measure ⇒ ′a ⇒ ′a measure where

return R x = measure-of (space R) (sets R) (λA. indicator A x)

lemma space-return[simp]: space (return M x) = space M
〈proof 〉

lemma sets-return[simp]: sets (return M x) = sets M
〈proof 〉

lemma measurable-return1 [simp]: measurable (return N x) L = measurable N L
〈proof 〉
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lemma measurable-return2 [simp]: measurable L (return N x) = measurable L N
〈proof 〉

lemma return-sets-cong: sets M = sets N =⇒ return M = return N
〈proof 〉

lemma return-cong: sets A = sets B =⇒ return A x = return B x
〈proof 〉

lemma emeasure-return[simp]:
assumes A ∈ sets M
shows emeasure (return M x) A = indicator A x
〈proof 〉

lemma prob-space-return: x ∈ space M =⇒ prob-space (return M x)
〈proof 〉

lemma subprob-space-return: x ∈ space M =⇒ subprob-space (return M x)
〈proof 〉

lemma subprob-space-return-ne:
assumes space M 6= {} shows subprob-space (return M x)
〈proof 〉

lemma measure-return: assumes X : X ∈ sets M shows measure (return M x) X
= indicator X x
〈proof 〉

lemma AE-return:
assumes [simp]: x ∈ space M and [measurable]: Measurable.pred M P
shows (AE y in return M x . P y) ←→ P x
〈proof 〉

lemma nn-integral-return:
assumes x ∈ space M g ∈ borel-measurable M
shows (

∫
+ a. g a ∂return M x) = g x

〈proof 〉

lemma integral-return:
fixes g :: - ⇒ ′a :: {banach, second-countable-topology}
assumes x ∈ space M g ∈ borel-measurable M
shows (

∫
a. g a ∂return M x) = g x

〈proof 〉

lemma return-measurable[measurable]: return N ∈ measurable N (subprob-algebra
N )
〈proof 〉
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lemma distr-return:
assumes f ∈ measurable M N and x ∈ space M
shows distr (return M x) N f = return N (f x)
〈proof 〉

lemma return-restrict-space:
Ω ∈ sets M =⇒ return (restrict-space M Ω) x = restrict-space (return M x) Ω
〈proof 〉

lemma measurable-distr2 :
assumes f [measurable]: case-prod f ∈ measurable (L

⊗
M M ) N

assumes g[measurable]: g ∈ measurable L (subprob-algebra M )
shows (λx. distr (g x) N (f x)) ∈ measurable L (subprob-algebra N )
〈proof 〉

lemma nn-integral-measurable-subprob-algebra2 :
assumes f [measurable]: (λ(x, y). f x y) ∈ borel-measurable (M

⊗
M N )

assumes N [measurable]: L ∈ measurable M (subprob-algebra N )
shows (λx. integralN (L x) (f x)) ∈ borel-measurable M
〈proof 〉

lemma emeasure-measurable-subprob-algebra2 :
assumes A[measurable]: (SIGMA x:space M . A x) ∈ sets (M

⊗
M N )

assumes L[measurable]: L ∈ measurable M (subprob-algebra N )
shows (λx. emeasure (L x) (A x)) ∈ borel-measurable M
〈proof 〉

lemma measure-measurable-subprob-algebra2 :
assumes A[measurable]: (SIGMA x:space M . A x) ∈ sets (M

⊗
M N )

assumes L[measurable]: L ∈ measurable M (subprob-algebra N )
shows (λx. measure (L x) (A x)) ∈ borel-measurable M
〈proof 〉

definition select-sets M = (SOME N . sets M = sets (subprob-algebra N ))

lemma select-sets1 :
sets M = sets (subprob-algebra N ) =⇒ sets M = sets (subprob-algebra (select-sets

M ))
〈proof 〉

lemma sets-select-sets[simp]:
assumes sets: sets M = sets (subprob-algebra N )
shows sets (select-sets M ) = sets N
〈proof 〉

lemma space-select-sets[simp]:
sets M = sets (subprob-algebra N ) =⇒ space (select-sets M ) = space N
〈proof 〉
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7.3 Join
definition join :: ′a measure measure ⇒ ′a measure where

join M = measure-of (space (select-sets M )) (sets (select-sets M )) (λB.
∫

+ M ′.
emeasure M ′ B ∂M )

lemma
shows space-join[simp]: space (join M ) = space (select-sets M )

and sets-join[simp]: sets (join M ) = sets (select-sets M )
〈proof 〉

lemma emeasure-join:
assumes M [simp, measurable-cong]: sets M = sets (subprob-algebra N ) and A:

A ∈ sets N
shows emeasure (join M ) A = (

∫
+ M ′. emeasure M ′ A ∂M )

〈proof 〉

lemma measurable-join:
join ∈ measurable (subprob-algebra (subprob-algebra N )) (subprob-algebra N )
〈proof 〉

lemma nn-integral-join:
assumes f : f ∈ borel-measurable N

and M [measurable-cong]: sets M = sets (subprob-algebra N )
shows (

∫
+x. f x ∂join M ) = (

∫
+M ′.

∫
+x. f x ∂M ′ ∂M )

〈proof 〉

lemma measurable-join1 :
[[ f ∈ measurable N K ; sets M = sets (subprob-algebra N ) ]]
=⇒ f ∈ measurable (join M ) K
〈proof 〉

lemma
fixes f :: - ⇒ real
assumes f-measurable [measurable]: f ∈ borel-measurable N
and f-bounded:

∧
x. x ∈ space N =⇒ |f x| ≤ B

and M [measurable-cong]: sets M = sets (subprob-algebra N )
and fin: finite-measure M
and M-bounded: AE M ′ in M . emeasure M ′ (space M ′) ≤ ennreal B ′

shows integrable-join: integrable (join M ) f (is ?integrable)
and integral-join: integralL (join M ) f =

∫
M ′. integralL M ′ f ∂M (is ?integral)

〈proof 〉

lemma join-assoc:
assumes M [measurable-cong]: sets M = sets (subprob-algebra (subprob-algebra

N ))
shows join (distr M (subprob-algebra N ) join) = join (join M )
〈proof 〉

lemma join-return:
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assumes sets M = sets N and subprob-space M
shows join (return (subprob-algebra N ) M ) = M
〈proof 〉

lemma join-return ′:
assumes sets N = sets M
shows join (distr M (subprob-algebra N ) (return N )) = M
〈proof 〉

lemma join-distr-distr :
fixes f :: ′a ⇒ ′b and M :: ′a measure measure and N :: ′b measure
assumes sets M = sets (subprob-algebra R) and f ∈ measurable R N
shows join (distr M (subprob-algebra N ) (λM . distr M N f )) = distr (join M )

N f (is ?r = ?l)
〈proof 〉

definition bind :: ′a measure ⇒ ( ′a ⇒ ′b measure) ⇒ ′b measure where
bind M f = (if space M = {} then count-space {} else

join (distr M (subprob-algebra (f (SOME x. x ∈ space M ))) f ))

adhoc-overloading Monad-Syntax.bind 
 bind

lemma bind-empty:
space M = {} =⇒ bind M f = count-space {}
〈proof 〉

lemma bind-nonempty:
space M 6= {} =⇒ bind M f = join (distr M (subprob-algebra (f (SOME x. x ∈

space M ))) f )
〈proof 〉

lemma sets-bind-empty: sets M = {} =⇒ sets (bind M f ) = {{}}
〈proof 〉

lemma space-bind-empty: space M = {} =⇒ space (bind M f ) = {}
〈proof 〉

lemma sets-bind[simp, measurable-cong]:
assumes f :

∧
x. x ∈ space M =⇒ sets (f x) = sets N and M : space M 6= {}

shows sets (bind M f ) = sets N
〈proof 〉

lemma space-bind[simp]:
assumes

∧
x. x ∈ space M =⇒ sets (f x) = sets N and space M 6= {}

shows space (bind M f ) = space N
〈proof 〉

lemma bind-cong-All:
assumes ∀ x ∈ space M . f x = g x
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shows bind M f = bind M g
〈proof 〉

lemma bind-cong:
M = N =⇒ (

∧
x. x ∈ space M =⇒ f x = g x) =⇒ bind M f = bind N g

〈proof 〉

lemma bind-nonempty ′:
assumes f ∈ measurable M (subprob-algebra N ) x ∈ space M
shows bind M f = join (distr M (subprob-algebra N ) f )
〈proof 〉

lemma bind-nonempty ′′:
assumes f ∈ measurable M (subprob-algebra N ) space M 6= {}
shows bind M f = join (distr M (subprob-algebra N ) f )
〈proof 〉

lemma emeasure-bind:
[[space M 6= {}; f ∈ measurable M (subprob-algebra N );X ∈ sets N ]]
=⇒ emeasure (M >>= f ) X =

∫
+x. emeasure (f x) X ∂M

〈proof 〉

lemma nn-integral-bind:
assumes f : f ∈ borel-measurable B
assumes N : N ∈ measurable M (subprob-algebra B)
shows (

∫
+x. f x ∂(M >>= N )) = (

∫
+x.

∫
+y. f y ∂N x ∂M )

〈proof 〉

lemma AE-bind:
assumes N [measurable]: N ∈ measurable M (subprob-algebra B)
assumes P[measurable]: Measurable.pred B P
shows (AE x in M >>= N . P x) ←→ (AE x in M . AE y in N x. P y)
〈proof 〉

lemma measurable-bind ′:
assumes M1 : f ∈ measurable M (subprob-algebra N ) and

M2 : case-prod g ∈ measurable (M
⊗

M N ) (subprob-algebra R)
shows (λx. bind (f x) (g x)) ∈ measurable M (subprob-algebra R)
〈proof 〉

lemma measurable-bind[measurable (raw)]:
assumes M1 : f ∈ measurable M (subprob-algebra N ) and

M2 : (λx. g (fst x) (snd x)) ∈ measurable (M
⊗

M N ) (subprob-algebra R)
shows (λx. bind (f x) (g x)) ∈ measurable M (subprob-algebra R)
〈proof 〉

lemma measurable-bind2 :
assumes f ∈ measurable M (subprob-algebra N ) and g ∈ measurable N (subprob-algebra

R)
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shows (λx. bind (f x) g) ∈ measurable M (subprob-algebra R)
〈proof 〉

lemma subprob-space-bind:
assumes subprob-space M f ∈ measurable M (subprob-algebra N )
shows subprob-space (M >>= f )
〈proof 〉

lemma
fixes f :: - ⇒ real
assumes f-measurable [measurable]: f ∈ borel-measurable K
and f-bounded:

∧
x. x ∈ space K =⇒ |f x| ≤ B

and N [measurable]: N ∈ measurable M (subprob-algebra K )
and fin: finite-measure M
and M-bounded: AE x in M . emeasure (N x) (space (N x)) ≤ ennreal B ′

shows integrable-bind: integrable (bind M N ) f (is ?integrable)
and integral-bind: integralL (bind M N ) f =

∫
x. integralL (N x) f ∂M (is

?integral)
〈proof 〉

lemma (in prob-space) prob-space-bind:
assumes ae: AE x in M . prob-space (N x)

and N [measurable]: N ∈ measurable M (subprob-algebra S)
shows prob-space (M >>= N )
〈proof 〉

lemma (in subprob-space) bind-in-space:
A ∈ measurable M (subprob-algebra N ) =⇒ (M >>= A) ∈ space (subprob-algebra

N )
〈proof 〉

lemma (in subprob-space) measure-bind:
assumes f : f ∈ measurable M (subprob-algebra N ) and X : X ∈ sets N
shows measure (M >>= f ) X =

∫
x. measure (f x) X ∂M

〈proof 〉

lemma emeasure-bind-const:
space M 6= {} =⇒ X ∈ sets N =⇒ subprob-space N =⇒

emeasure (M >>= (λx. N )) X = emeasure N X ∗ emeasure M (space M )
〈proof 〉

lemma emeasure-bind-const ′:
assumes subprob-space M subprob-space N
shows emeasure (M >>= (λx. N )) X = emeasure N X ∗ emeasure M (space M )
〈proof 〉

lemma emeasure-bind-const-prob-space:
assumes prob-space M subprob-space N
shows emeasure (M >>= (λx. N )) X = emeasure N X
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〈proof 〉

lemma bind-return:
assumes f ∈ measurable M (subprob-algebra N ) and x ∈ space M
shows bind (return M x) f = f x
〈proof 〉

lemma bind-return ′:
shows bind M (return M ) = M
〈proof 〉

lemma distr-bind:
assumes N : N ∈ measurable M (subprob-algebra K ) space M 6= {}
assumes f : f ∈ measurable K R
shows distr (M >>= N ) R f = (M >>= (λx. distr (N x) R f ))
〈proof 〉

lemma bind-distr :
assumes f [measurable]: f ∈ measurable M X
assumes N [measurable]: N ∈ measurable X (subprob-algebra K ) and space M 6=
{}

shows (distr M X f >>= N ) = (M >>= (λx. N (f x)))
〈proof 〉

lemma bind-count-space-singleton:
assumes subprob-space (f x)
shows count-space {x} >>= f = f x
〈proof 〉

lemma restrict-space-bind:
assumes N : N ∈ measurable M (subprob-algebra K )
assumes space M 6= {}
assumes X [simp]: X ∈ sets K X 6= {}
shows restrict-space (bind M N ) X = bind M (λx. restrict-space (N x) X)
〈proof 〉

lemma bind-restrict-space:
assumes A: A ∩ space M 6= {} A ∩ space M ∈ sets M
and f : f ∈ measurable (restrict-space M A) (subprob-algebra N )
shows restrict-space M A >>= f = M >>= (λx. if x ∈ A then f x else null-measure

(f (SOME x. x ∈ A ∧ x ∈ space M )))
(is ?lhs = ?rhs is - = M >>= ?f )
〈proof 〉

lemma bind-const ′: [[prob-space M ; subprob-space N ]] =⇒ M >>= (λx. N ) = N
〈proof 〉

lemma bind-return-distr :
assumes space M 6= {} f ∈ measurable M N



THEORY “Giry-Monad” 39

shows bind M (return N ◦ f ) = distr M N f
〈proof 〉

lemma bind-return-distr ′:
space M 6= {} =⇒ f ∈ measurable M N =⇒ bind M (λx. return N (f x)) = distr

M N f
〈proof 〉

lemma bind-assoc:
fixes f :: ′a ⇒ ′b measure and g :: ′b ⇒ ′c measure
assumes M1 : f ∈ measurable M (subprob-algebra N ) and M2 : g ∈ measurable

N (subprob-algebra R)
shows bind (bind M f ) g = bind M (λx. bind (f x) g)
〈proof 〉

lemma double-bind-assoc:
assumes Mg: g ∈ measurable N (subprob-algebra N ′)
assumes Mf : f ∈ measurable M (subprob-algebra M ′)
assumes Mh: case-prod h ∈ measurable (M

⊗
M M ′) N

shows do {x ← M ; y ← f x; g (h x y)} = do {x ← M ; y ← f x; return N (h x
y)} >>= g
〈proof 〉

lemma (in prob-space) M-in-subprob[measurable (raw)]: M ∈ space (subprob-algebra
M )
〈proof 〉

lemma (in pair-prob-space) pair-measure-eq-bind:
(M1

⊗
M M2 ) = (M1 >>= (λx. M2 >>= (λy. return (M1

⊗
M M2 ) (x, y))))

〈proof 〉

lemma (in pair-prob-space) bind-rotate:
assumes C [measurable]: (λ(x, y). C x y) ∈ measurable (M1

⊗
M M2 ) (subprob-algebra

N )
shows (M1 >>= (λx. M2 >>= (λy. C x y))) = (M2 >>= (λy. M1 >>= (λx. C x

y)))
〈proof 〉

lemma bind-return ′′: sets M = sets N =⇒ M >>= return N = M
〈proof 〉

lemma (in prob-space) distr-const[simp]:
c ∈ space N =⇒ distr M N (λx. c) = return N c
〈proof 〉

lemma return-count-space-eq-density:
return (count-space M ) x = density (count-space M ) (indicator {x})
〈proof 〉
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lemma null-measure-in-space-subprob-algebra [simp]:
null-measure M ∈ space (subprob-algebra M ) ←→ space M 6= {}
〈proof 〉

7.4 Giry monad on probability spaces
definition prob-algebra :: ′a measure ⇒ ′a measure measure where

prob-algebra K = restrict-space (subprob-algebra K ) {M . prob-space M}

lemma space-prob-algebra: space (prob-algebra M ) = {N . sets N = sets M ∧
prob-space N}
〈proof 〉

lemma measurable-measure-prob-algebra[measurable]:
a ∈ sets A =⇒ (λM . Sigma-Algebra.measure M a) ∈ prob-algebra A →M borel
〈proof 〉

lemma measurable-prob-algebraD:
f ∈ N →M prob-algebra M =⇒ f ∈ N →M subprob-algebra M
〈proof 〉

lemma measure-measurable-prob-algebra2 :
Sigma (space M ) A ∈ sets (M

⊗
M N ) =⇒ L ∈ M →M prob-algebra N =⇒

(λx. Sigma-Algebra.measure (L x) (A x)) ∈ borel-measurable M
〈proof 〉

lemma measurable-prob-algebraI :
(
∧

x. x ∈ space N =⇒ prob-space (f x)) =⇒ f ∈ N →M subprob-algebra M =⇒
f ∈ N →M prob-algebra M
〈proof 〉

lemma measurable-distr-prob-space:
assumes f : f ∈ M →M N
shows (λM ′. distr M ′ N f ) ∈ prob-algebra M →M prob-algebra N
〈proof 〉

lemma measurable-return-prob-space[measurable]: return N ∈ N →M prob-algebra
N
〈proof 〉

lemma measurable-distr-prob-space2 [measurable (raw)]:
assumes f : g ∈ L →M prob-algebra M (λ(x, y). f x y) ∈ L

⊗
M M →M N

shows (λx. distr (g x) N (f x)) ∈ L →M prob-algebra N
〈proof 〉

lemma measurable-bind-prob-space:
assumes f : f ∈ M →M prob-algebra N and g: g ∈ N →M prob-algebra R
shows (λx. bind (f x) g) ∈ M →M prob-algebra R
〈proof 〉
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lemma measurable-bind-prob-space2 [measurable (raw)]:
assumes f : f ∈ M →M prob-algebra N and g: (λ(x, y). g x y) ∈ (M

⊗
M N )

→M prob-algebra R
shows (λx. bind (f x) (g x)) ∈ M →M prob-algebra R
〈proof 〉

lemma measurable-prob-algebra-generated:
assumes eq: sets N = sigma-sets Ω G and Int-stable G G ⊆ Pow Ω
assumes subsp:

∧
a. a ∈ space M =⇒ prob-space (K a)

assumes sets:
∧

a. a ∈ space M =⇒ sets (K a) = sets N
assumes

∧
A. A ∈ G =⇒ (λa. emeasure (K a) A) ∈ borel-measurable M

shows K ∈ measurable M (prob-algebra N )
〈proof 〉

lemma in-space-prob-algebra:
x ∈ space (prob-algebra M ) =⇒ emeasure x (space M ) = 1
〈proof 〉

lemma prob-space-pair :
assumes prob-space M prob-space N shows prob-space (M

⊗
M N )

〈proof 〉

lemma measurable-pair-prob[measurable]:
f ∈ M →M prob-algebra N =⇒ g ∈ M →M prob-algebra L =⇒ (λx. f x

⊗
M g

x) ∈ M →M prob-algebra (N
⊗

M L)
〈proof 〉

lemma emeasure-bind-prob-algebra:
assumes A: A ∈ space (prob-algebra N )
assumes B: B ∈ N →M prob-algebra L
assumes X : X ∈ sets L
shows emeasure (bind A B) X = (

∫
+x. emeasure (B x) X ∂A)

〈proof 〉

lemma prob-space-bind ′:
assumes A: A ∈ space (prob-algebra M ) and B: B ∈ M →M prob-algebra N

shows prob-space (A >>= B)
〈proof 〉

lemma sets-bind ′:
assumes A: A ∈ space (prob-algebra M ) and B: B ∈ M →M prob-algebra N

shows sets (A >>= B) = sets N
〈proof 〉

lemma bind-cong-AE ′:
assumes M : M ∈ space (prob-algebra L)

and f : f ∈ L →M prob-algebra N and g: g ∈ L →M prob-algebra N
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and ae: AE x in M . f x = g x
shows bind M f = bind M g
〈proof 〉

lemma density-discrete:
countable A =⇒ sets N = Set.Pow A =⇒ (

∧
x. f x ≥ 0 ) =⇒ (

∧
x. x ∈ A =⇒ f

x = emeasure N {x}) =⇒
density (count-space A) f = N
〈proof 〉

lemma distr-density-discrete:
fixes f ′

assumes countable A
assumes f ′ ∈ borel-measurable M
assumes g ∈ measurable M (count-space A)
defines f ≡ λx.

∫
+t. (if g t = x then 1 else 0 ) ∗ f ′ t ∂M

assumes
∧

x. x ∈ space M =⇒ g x ∈ A
shows density (count-space A) (λx. f x) = distr (density M f ′) (count-space A) g
〈proof 〉

lemma bind-cong-AE :
assumes M = N
assumes f : f ∈ measurable N (subprob-algebra B)
assumes g: g ∈ measurable N (subprob-algebra B)
assumes ae: AE x in N . f x = g x
shows bind M f = bind N g
〈proof 〉

lemma bind-cong-simp: M = N =⇒ (
∧

x. x∈space M =simp=> f x = g x) =⇒
bind M f = bind N g
〈proof 〉

lemma sets-bind-measurable:
assumes f : f ∈ measurable M (subprob-algebra B)
assumes M : space M 6= {}
shows sets (M >>= f ) = sets B
〈proof 〉

lemma space-bind-measurable:
assumes f : f ∈ measurable M (subprob-algebra B)
assumes M : space M 6= {}
shows space (M >>= f ) = space B
〈proof 〉

lemma bind-distr-return:
f ∈ M →M N =⇒ g ∈ N →M L =⇒ space M 6= {} =⇒

distr M N f >>= (λx. return L (g x)) = distr M L (λx. g (f x))
〈proof 〉
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lemma (in prob-space) AE-eq-constD:
assumes AE x in M . x = y
shows M = return M y y ∈ space M
〈proof 〉

end

8 Projective Family
theory Projective-Family
imports Giry-Monad
begin

lemma vimage-restrict-preserve-mono:
assumes J : J ⊆ I
and sets: A ⊆ (ΠE i∈J . S i) B ⊆ (ΠE i∈J . S i) and ne: (ΠE i∈I . S i) 6= {}
and eq: (λx. restrict x J ) −‘ A ∩ (ΠE i∈I . S i) ⊆ (λx. restrict x J ) −‘ B ∩ (ΠE

i∈I . S i)
shows A ⊆ B
〈proof 〉

locale projective-family =
fixes I :: ′i set and P :: ′i set ⇒ ( ′i ⇒ ′a) measure and M :: ′i ⇒ ′a measure
assumes P:

∧
J H . J ⊆ H =⇒ finite H =⇒ H ⊆ I =⇒ P J = distr (P H ) (PiM

J M ) (λf . restrict f J )
assumes prob-space-P:

∧
J . finite J =⇒ J ⊆ I =⇒ prob-space (P J )

begin

lemma sets-P: finite J =⇒ J ⊆ I =⇒ sets (P J ) = sets (PiM J M )
〈proof 〉

lemma space-P: finite J =⇒ J ⊆ I =⇒ space (P J ) = space (PiM J M )
〈proof 〉

lemma not-empty-M : i ∈ I =⇒ space (M i) 6= {}
〈proof 〉

lemma not-empty: space (PiM I M ) 6= {}
〈proof 〉

abbreviation
emb L K ≡ prod-emb L M K

lemma emb-preserve-mono:
assumes J ⊆ L L ⊆ I and sets: X ∈ sets (PiM J M ) Y ∈ sets (PiM J M )
assumes emb L J X ⊆ emb L J Y
shows X ⊆ Y
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〈proof 〉

lemma emb-injective:
assumes L: J ⊆ L L ⊆ I and X : X ∈ sets (PiM J M ) and Y : Y ∈ sets (PiM

J M )
shows emb L J X = emb L J Y =⇒ X = Y
〈proof 〉

lemma emeasure-P: J ⊆ K =⇒ finite K =⇒ K ⊆ I =⇒ X ∈ sets (PiM J M )
=⇒ P K (emb K J X) = P J X
〈proof 〉

inductive-set generator :: ( ′i ⇒ ′a) set set where
finite J =⇒ J ⊆ I =⇒ X ∈ sets (PiM J M ) =⇒ emb I J X ∈ generator

lemma algebra-generator : algebra (space (PiM I M )) generator
〈proof 〉

interpretation generator : algebra space (PiM I M ) generator
〈proof 〉

lemma sets-PiM-generator : sets (PiM I M ) = sigma-sets (space (PiM I M )) gen-
erator
〈proof 〉

definition mu-G (‹µG›) where
µG A = (THE x . ∀ J⊆I . finite J −→ (∀X∈sets (PiM J M ). A = emb I J X −→

x = emeasure (P J ) X))

definition lim :: ( ′i ⇒ ′a) measure where
lim = extend-measure (space (PiM I M )) generator (λx. x) µG

lemma space-lim[simp]: space lim = space (PiM I M )
〈proof 〉

lemma sets-lim[simp, measurable]: sets lim = sets (PiM I M )
〈proof 〉

lemma mu-G-spec:
assumes J : finite J J ⊆ I X ∈ sets (PiM J M )
shows µG (emb I J X) = emeasure (P J ) X
〈proof 〉

lemma positive-mu-G: positive generator µG
〈proof 〉

lemma additive-mu-G: additive generator µG
〈proof 〉
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lemma emeasure-lim:
assumes JX : finite J J ⊆ I X ∈ sets (PiM J M )
assumes cont:

∧
J X . (

∧
i. J i ⊆ I ) =⇒ incseq J =⇒ (

∧
i. finite (J i)) =⇒ (

∧
i.

X i ∈ sets (PiM (J i) M )) =⇒
decseq (λi. emb I (J i) (X i)) =⇒ 0 < (INF i. P (J i) (X i)) =⇒ (

⋂
i. emb I

(J i) (X i)) 6= {}
shows emeasure lim (emb I J X) = P J X
〈proof 〉

end

sublocale product-prob-space ⊆ projective-family I λJ . PiM J M M
〈proof 〉

Proof due to Ionescu Tulcea.

locale Ionescu-Tulcea =
fixes P :: nat ⇒ (nat ⇒ ′a) ⇒ ′a measure and M :: nat ⇒ ′a measure
assumes P[measurable]:

∧
i. P i ∈ measurable (PiM {0 ..<i} M ) (subprob-algebra

(M i))
assumes prob-space-P:

∧
i x. x ∈ space (PiM {0 ..<i} M ) =⇒ prob-space (P i

x)
begin

lemma non-empty[simp]: space (M i) 6= {}
〈proof 〉

lemma space-PiM-not-empty[simp]: space (PiM UNIV M ) 6= {}
〈proof 〉

lemma space-P: x ∈ space (PiM {0 ..<n} M ) =⇒ space (P n x) = space (M n)
〈proof 〉

lemma sets-P[measurable-cong]: x ∈ space (PiM {0 ..<n} M ) =⇒ sets (P n x) =
sets (M n)
〈proof 〉

definition eP :: nat ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a) measure where
eP n ω = distr (P n ω) (PiM {0 ..<Suc n} M ) (fun-upd ω n)

lemma measurable-eP[measurable]:
eP n ∈ measurable (PiM {0 ..< n} M ) (subprob-algebra (PiM {0 ..<Suc n} M ))
〈proof 〉

lemma space-eP:
x ∈ space (PiM {0 ..<n} M ) =⇒ space (eP n x) = space (PiM {0 ..<Suc n} M )
〈proof 〉

lemma sets-eP[measurable]:
x ∈ space (PiM {0 ..<n} M ) =⇒ sets (eP n x) = sets (PiM {0 ..<Suc n} M )
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〈proof 〉

lemma prob-space-eP: x ∈ space (PiM {0 ..<n} M ) =⇒ prob-space (eP n x)
〈proof 〉

lemma nn-integral-eP:
ω ∈ space (PiM {0 ..<n} M ) =⇒ f ∈ borel-measurable (PiM {0 ..<Suc n} M )

=⇒
(
∫

+x. f x ∂eP n ω) = (
∫

+x. f (fun-upd ω n x) ∂P n ω)
〈proof 〉

lemma emeasure-eP:
assumes ω[simp]: ω ∈ space (PiM {0 ..<n} M ) and A[measurable]: A ∈ sets

(PiM {0 ..<Suc n} M )
shows eP n ω A = P n ω ((λx. fun-upd ω n x) −‘ A ∩ space (M n))
〈proof 〉

primrec C :: nat ⇒ nat ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a) measure where
C n 0 ω = return (PiM {0 ..<n} M ) ω
| C n (Suc m) ω = C n m ω >>= eP (n + m)

lemma measurable-C [measurable]:
C n m ∈ measurable (PiM {0 ..<n} M ) (subprob-algebra (PiM {0 ..<n + m} M ))
〈proof 〉

lemma space-C :
x ∈ space (PiM {0 ..<n} M ) =⇒ space (C n m x) = space (PiM {0 ..<n + m}

M )
〈proof 〉

lemma sets-C [measurable-cong]:
x ∈ space (PiM {0 ..<n} M ) =⇒ sets (C n m x) = sets (PiM {0 ..<n + m} M )
〈proof 〉

lemma prob-space-C : x ∈ space (PiM {0 ..<n} M ) =⇒ prob-space (C n m x)
〈proof 〉

lemma split-C :
assumes ω: ω ∈ space (PiM {0 ..<n} M ) shows (C n m ω >>= C (n + m) l) =

C n (m + l) ω
〈proof 〉

lemma nn-integral-C :
assumes m ≤ m ′ and f [measurable]: f ∈ borel-measurable (PiM {0 ..<n+m}

M )
and nonneg:

∧
x. x ∈ space (PiM {0 ..<n+m} M ) =⇒ 0 ≤ f x

and x: x ∈ space (PiM {0 ..<n} M )
shows (

∫
+x. f x ∂C n m x) = (

∫
+x. f (restrict x {0 ..<n+m}) ∂C n m ′ x)
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〈proof 〉

lemma emeasure-C :
assumes m ≤ m ′ and A[measurable]: A ∈ sets (PiM {0 ..<n+m} M ) and [simp]:

x ∈ space (PiM {0 ..<n} M )
shows emeasure (C n m ′ x) (prod-emb {0 ..<n + m ′} M {0 ..<n+m} A) =

emeasure (C n m x) A
〈proof 〉

lemma distr-C :
assumes m ≤ m ′ and [simp]: x ∈ space (PiM {0 ..<n} M )
shows C n m x = distr (C n m ′ x) (PiM {0 ..<n+m} M ) (λx. restrict x

{0 ..<n+m})
〈proof 〉

definition up-to :: nat set ⇒ nat where
up-to J = (LEAST n. ∀ i≥n. i /∈ J )

lemma up-to-less: finite J =⇒ i ∈ J =⇒ i < up-to J
〈proof 〉

lemma up-to-iff : finite J =⇒ up-to J ≤ n ←→ (∀ i∈J . i < n)
〈proof 〉

lemma up-to-iff-Ico: finite J =⇒ up-to J ≤ n ←→ J ⊆ {0 ..<n}
〈proof 〉

lemma up-to: finite J =⇒ J ⊆ {0 ..< up-to J}
〈proof 〉

lemma up-to-mono: J ⊆ H =⇒ finite H =⇒ up-to J ≤ up-to H
〈proof 〉

definition CI :: nat set ⇒ (nat ⇒ ′a) measure where
CI J = distr (C 0 (up-to J ) (λx. undefined)) (PiM J M ) (λf . restrict f J )

sublocale PF : projective-family UNIV CI
〈proof 〉

lemma emeasure-CI ′:
finite J =⇒ X ∈ sets (PiM J M ) =⇒ CI J X = C 0 (up-to J ) (λ-. undefined)

(PF .emb {0 ..<up-to J} J X)
〈proof 〉

lemma emeasure-CI :
J ⊆ {0 ..<n} =⇒ X ∈ sets (PiM J M ) =⇒ CI J X = C 0 n (λ-. undefined)

(PF .emb {0 ..<n} J X)
〈proof 〉
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lemma lim:
assumes J : finite J and X : X ∈ sets (PiM J M )
shows emeasure PF .lim (PF .emb UNIV J X) = emeasure (CI J ) X
〈proof 〉

lemma distr-lim: assumes J [simp]: finite J shows distr PF .lim (PiM J M ) (λx.
restrict x J ) = CI J
〈proof 〉

end

lemma (in product-prob-space) emeasure-lim-emb:
assumes ∗: finite J J ⊆ I X ∈ sets (PiM J M )
shows emeasure lim (emb I J X) = emeasure (PiM J M ) X
〈proof 〉

end

9 Infinite Product Measure
theory Infinite-Product-Measure

imports Probability-Measure Projective-Family
begin

lemma (in product-prob-space) distr-PiM-restrict-finite:
assumes finite J J ⊆ I
shows distr (PiM I M ) (PiM J M ) (λx. restrict x J ) = PiM J M
〈proof 〉

lemma (in product-prob-space) emeasure-PiM-emb ′:
J ⊆ I =⇒ finite J =⇒ X ∈ sets (PiM J M ) =⇒ emeasure (PiM I M ) (emb I J

X) = PiM J M X
〈proof 〉

lemma (in product-prob-space) emeasure-PiM-emb:
J ⊆ I =⇒ finite J =⇒ (

∧
i. i ∈ J =⇒ X i ∈ sets (M i)) =⇒

emeasure (PiM I M ) (emb I J (PiE J X)) = (
∏

i∈J . emeasure (M i) (X i))
〈proof 〉

sublocale product-prob-space ⊆ P?: prob-space PiM I M
〈proof 〉

lemma prob-space-PiM :
assumes M :

∧
i. i ∈ I =⇒ prob-space (M i) shows prob-space (PiM I M )

〈proof 〉

lemma (in product-prob-space) emeasure-PiM-Collect:
assumes X : J ⊆ I finite J

∧
i. i ∈ J =⇒ X i ∈ sets (M i)

shows emeasure (PiM I M ) {x∈space (PiM I M ). ∀ i∈J . x i ∈ X i} = (
∏

i∈J .
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emeasure (M i) (X i))
〈proof 〉

lemma (in product-prob-space) emeasure-PiM-Collect-single:
assumes X : i ∈ I A ∈ sets (M i)
shows emeasure (PiM I M ) {x∈space (PiM I M ). x i ∈ A} = emeasure (M i) A
〈proof 〉

lemma (in product-prob-space) measure-PiM-emb:
assumes J ⊆ I finite J

∧
i. i ∈ J =⇒ X i ∈ sets (M i)

shows measure (PiM I M ) (emb I J (PiE J X)) = (
∏

i∈J . measure (M i) (X
i))
〈proof 〉

lemma sets-Collect-single ′:
i ∈ I =⇒ {x∈space (M i). P x} ∈ sets (M i) =⇒ {x∈space (PiM I M ). P (x i)}
∈ sets (PiM I M )
〈proof 〉

lemma (in finite-product-prob-space) finite-measure-PiM-emb:
(
∧

i. i ∈ I =⇒ A i ∈ sets (M i)) =⇒ measure (PiM I M ) (PiE I A) = (
∏

i∈I .
measure (M i) (A i))
〈proof 〉

lemma (in product-prob-space) PiM-component:
assumes i ∈ I
shows distr (PiM I M ) (M i) (λω. ω i) = M i
〈proof 〉

lemma (in product-prob-space) PiM-eq:
assumes M ′: sets M ′ = sets (PiM I M )
assumes eq:

∧
J F . finite J =⇒ J ⊆ I =⇒ (

∧
j. j ∈ J =⇒ F j ∈ sets (M j)) =⇒

emeasure M ′ (prod-emb I M J (ΠE j∈J . F j)) = (
∏

j∈J . emeasure (M j) (F
j))

shows M ′ = (PiM I M )
〈proof 〉

lemma (in product-prob-space) AE-component: i ∈ I =⇒ AE x in M i. P x =⇒
AE x in PiM I M . P (x i)
〈proof 〉

lemma emeasure-PiM-emb:
assumes M :

∧
i. i ∈ I =⇒ prob-space (M i)

assumes J : J ⊆ I finite J and A:
∧

i. i ∈ J =⇒ A i ∈ sets (M i)
shows emeasure (PiM I M ) (prod-emb I M J (PiE J A)) = (

∏
i∈J . emeasure

(M i) (A i))
〈proof 〉

lemma distr-pair-PiM-eq-PiM :
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fixes i ′ :: ′i and I :: ′i set and M :: ′i ⇒ ′a measure
assumes M :

∧
i. i ∈ I =⇒ prob-space (M i) prob-space (M i ′)

shows distr (M i ′
⊗

M (ΠM i∈I . M i)) (ΠM i∈insert i ′ I . M i) (λ(x, X). X(i ′
:= x)) =

(ΠM i∈insert i ′ I . M i) (is ?L = -)
〈proof 〉

lemma distr-PiM-reindex:
assumes M :

∧
i. i ∈ K =⇒ prob-space (M i)

assumes f : inj-on f I f ∈ I → K
shows distr (PiM K M ) (ΠM i∈I . M (f i)) (λω. λn∈I . ω (f n)) = (ΠM i∈I . M

(f i))
(is distr ?K ?I ?t = ?I )

〈proof 〉

lemma distr-PiM-component:
assumes M :

∧
i. i ∈ I =⇒ prob-space (M i)

assumes i ∈ I
shows distr (PiM I M ) (M i) (λω. ω i) = M i
〈proof 〉

lemma AE-PiM-component:
(
∧

i. i ∈ I =⇒ prob-space (M i)) =⇒ i ∈ I =⇒ AE x in M i. P x =⇒ AE x in
PiM I M . P (x i)
〈proof 〉

lemma decseq-emb-PiE :
incseq J =⇒ decseq (λi. prod-emb I M (J i) (ΠE j∈J i. X j))
〈proof 〉

9.1 Sequence space
definition comb-seq :: nat ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a) where

comb-seq i ω ω ′ j = (if j < i then ω j else ω ′ (j − i))

lemma split-comb-seq: P (comb-seq i ω ω ′ j) ←→ (j < i −→ P (ω j)) ∧ (∀ k. j =
i + k −→ P (ω ′ k))
〈proof 〉

lemma split-comb-seq-asm: P (comb-seq i ω ω ′ j) ←→ ¬ ((j < i ∧ ¬ P (ω j)) ∨
(∃ k. j = i + k ∧ ¬ P (ω ′ k)))
〈proof 〉

lemma measurable-comb-seq:
(λ(ω, ω ′). comb-seq i ω ω ′) ∈ measurable ((ΠM i∈UNIV . M )

⊗
M (ΠM i∈UNIV .

M )) (ΠM i∈UNIV . M )
〈proof 〉

lemma measurable-comb-seq ′[measurable (raw)]:
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assumes f : f ∈ measurable N (ΠM i∈UNIV . M ) and g: g ∈ measurable N (ΠM

i∈UNIV . M )
shows (λx. comb-seq i (f x) (g x)) ∈ measurable N (ΠM i∈UNIV . M )
〈proof 〉

lemma comb-seq-0 : comb-seq 0 ω ω ′ = ω ′

〈proof 〉

lemma comb-seq-Suc: comb-seq (Suc n) ω ω ′ = comb-seq n ω (case-nat (ω n) ω ′)
〈proof 〉

lemma comb-seq-Suc-0 [simp]: comb-seq (Suc 0 ) ω = case-nat (ω 0 )
〈proof 〉

lemma comb-seq-less: i < n =⇒ comb-seq n ω ω ′ i = ω i
〈proof 〉

lemma comb-seq-add: comb-seq n ω ω ′ (i + n) = ω ′ i
〈proof 〉

lemma case-nat-comb-seq: case-nat s ′ (comb-seq n ω ω ′) (i + n) = case-nat
(case-nat s ′ ω n) ω ′ i
〈proof 〉

lemma case-nat-comb-seq ′:
case-nat s (comb-seq i ω ω ′) = comb-seq (Suc i) (case-nat s ω) ω ′

〈proof 〉

locale sequence-space = product-prob-space λi. M UNIV :: nat set for M
begin

abbreviation S ≡ ΠM i∈UNIV ::nat set. M

lemma infprod-in-sets[intro]:
fixes E :: nat ⇒ ′a set assumes E :

∧
i. E i ∈ sets M

shows Pi UNIV E ∈ sets S
〈proof 〉

lemma measure-PiM-countable:
fixes E :: nat ⇒ ′a set assumes E :

∧
i. E i ∈ sets M

shows (λn.
∏

i≤n. measure M (E i)) −−−−→ measure S (Pi UNIV E)
〈proof 〉

lemma nat-eq-diff-eq:
fixes a b c :: nat
shows c ≤ b =⇒ a = b − c ←→ a + c = b
〈proof 〉

lemma PiM-comb-seq:
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distr (S
⊗

M S) S (λ(ω, ω ′). comb-seq i ω ω ′) = S (is ?D = -)
〈proof 〉

lemma PiM-iter :
distr (M

⊗
M S) S (λ(s, ω). case-nat s ω) = S (is ?D = -)

〈proof 〉

end

lemma PiM-return:
assumes finite I
assumes [measurable]:

∧
i. i ∈ I =⇒ {a i} ∈ sets (M i)

shows PiM I (λi. return (M i) (a i)) = return (PiM I M ) (restrict a I )
〈proof 〉

lemma distr-PiM-finite-prob-space ′:
assumes fin: finite I
assumes

∧
i. i ∈ I =⇒ prob-space (M i)

assumes
∧

i. i ∈ I =⇒ prob-space (M ′ i)
assumes [measurable]:

∧
i. i ∈ I =⇒ f ∈ measurable (M i) (M ′ i)

shows distr (PiM I M ) (PiM I M ′) (compose I f ) = PiM I (λi. distr (M i)
(M ′ i) f )
〈proof 〉

end

10 Independent families of events, event sets, and
random variables

theory Independent-Family
imports Infinite-Product-Measure

begin

definition (in prob-space)
indep-sets F I ←→ (∀ i∈I . F i ⊆ events) ∧
(∀ J⊆I . J 6= {} −→ finite J −→ (∀A∈Pi J F . prob (

⋂
j∈J . A j) = (

∏
j∈J .

prob (A j))))

definition (in prob-space)
indep-set A B ←→ indep-sets (case-bool A B) UNIV

definition (in prob-space)
indep-events-def-alt: indep-events A I ←→ indep-sets (λi. {A i}) I

lemma (in prob-space) indep-events-def :
indep-events A I ←→ (A‘I ⊆ events) ∧
(∀ J⊆I . J 6= {} −→ finite J −→ prob (

⋂
j∈J . A j) = (

∏
j∈J . prob (A j)))

〈proof 〉
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lemma (in prob-space) indep-eventsI :
(
∧

i. i ∈ I =⇒ F i ∈ sets M ) =⇒ (
∧

J . J ⊆ I =⇒ finite J =⇒ J 6= {} =⇒ prob
(
⋂

i∈J . F i) = (
∏

i∈J . prob (F i))) =⇒ indep-events F I
〈proof 〉

definition (in prob-space)
indep-event A B ←→ indep-events (case-bool A B) UNIV

lemma (in prob-space) indep-sets-cong:
I = J =⇒ (

∧
i. i ∈ I =⇒ F i = G i) =⇒ indep-sets F I ←→ indep-sets G J

〈proof 〉

lemma (in prob-space) indep-events-finite-index-events:
indep-events F I ←→ (∀ J⊆I . J 6= {} −→ finite J −→ indep-events F J )
〈proof 〉

lemma (in prob-space) indep-sets-finite-index-sets:
indep-sets F I ←→ (∀ J⊆I . J 6= {} −→ finite J −→ indep-sets F J )
〈proof 〉

lemma (in prob-space) indep-sets-mono-index:
J ⊆ I =⇒ indep-sets F I =⇒ indep-sets F J
〈proof 〉

lemma (in prob-space) indep-sets-mono-sets:
assumes indep: indep-sets F I
assumes mono:

∧
i. i∈I =⇒ G i ⊆ F i

shows indep-sets G I
〈proof 〉

lemma (in prob-space) indep-sets-mono:
assumes indep: indep-sets F I
assumes mono: J ⊆ I

∧
i. i∈J =⇒ G i ⊆ F i

shows indep-sets G J
〈proof 〉

lemma (in prob-space) indep-setsI :
assumes

∧
i. i ∈ I =⇒ F i ⊆ events

and
∧

A J . J 6= {} =⇒ J ⊆ I =⇒ finite J =⇒ (∀ j∈J . A j ∈ F j) =⇒ prob
(
⋂

j∈J . A j) = (
∏

j∈J . prob (A j))
shows indep-sets F I
〈proof 〉

lemma (in prob-space) indep-setsD:
assumes indep-sets F I and J ⊆ I J 6= {} finite J ∀ j∈J . A j ∈ F j
shows prob (

⋂
j∈J . A j) = (

∏
j∈J . prob (A j))

〈proof 〉
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lemma (in prob-space) indep-setI :
assumes ev: A ⊆ events B ⊆ events

and indep:
∧

a b. a ∈ A =⇒ b ∈ B =⇒ prob (a ∩ b) = prob a ∗ prob b
shows indep-set A B
〈proof 〉

lemma (in prob-space) indep-setD:
assumes indep: indep-set A B and ev: a ∈ A b ∈ B
shows prob (a ∩ b) = prob a ∗ prob b
〈proof 〉

lemma (in prob-space)
assumes indep: indep-set A B
shows indep-setD-ev1 : A ⊆ events

and indep-setD-ev2 : B ⊆ events
〈proof 〉

lemma (in prob-space) indep-sets-Dynkin:
assumes indep: indep-sets F I
shows indep-sets (λi. Dynkin (space M ) (F i)) I
(is indep-sets ?F I )

〈proof 〉

lemma (in prob-space) indep-sets-sigma:
assumes indep: indep-sets F I
assumes stable:

∧
i. i ∈ I =⇒ Int-stable (F i)

shows indep-sets (λi. sigma-sets (space M ) (F i)) I
〈proof 〉

lemma (in prob-space) indep-sets-sigma-sets-iff :
assumes

∧
i. i ∈ I =⇒ Int-stable (F i)

shows indep-sets (λi. sigma-sets (space M ) (F i)) I ←→ indep-sets F I
〈proof 〉

definition (in prob-space)
indep-vars-def2 : indep-vars M ′ X I ←→
(∀ i∈I . random-variable (M ′ i) (X i)) ∧
indep-sets (λi. { X i −‘ A ∩ space M | A. A ∈ sets (M ′ i)}) I

definition (in prob-space)
indep-var Ma A Mb B ←→ indep-vars (case-bool Ma Mb) (case-bool A B) UNIV

lemma (in prob-space) indep-vars-def :
indep-vars M ′ X I ←→
(∀ i∈I . random-variable (M ′ i) (X i)) ∧
indep-sets (λi. sigma-sets (space M ) { X i −‘ A ∩ space M | A. A ∈ sets (M ′

i)}) I
〈proof 〉
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lemma (in prob-space) indep-var-eq:
indep-var S X T Y ←→
(random-variable S X ∧ random-variable T Y ) ∧
indep-set
(sigma-sets (space M ) { X −‘ A ∩ space M | A. A ∈ sets S})
(sigma-sets (space M ) { Y −‘ A ∩ space M | A. A ∈ sets T})

〈proof 〉

lemma (in prob-space) indep-sets2-eq:
indep-set A B ←→ A ⊆ events ∧ B ⊆ events ∧ (∀ a∈A. ∀ b∈B. prob (a ∩ b) =

prob a ∗ prob b)
〈proof 〉

lemma (in prob-space) indep-set-sigma-sets:
assumes indep-set A B
assumes A: Int-stable A and B: Int-stable B
shows indep-set (sigma-sets (space M ) A) (sigma-sets (space M ) B)
〈proof 〉

lemma (in prob-space) indep-eventsI-indep-vars:
assumes indep: indep-vars N X I
assumes P:

∧
i. i ∈ I =⇒ {x∈space (N i). P i x} ∈ sets (N i)

shows indep-events (λi. {x∈space M . P i (X i x)}) I
〈proof 〉

lemma (in prob-space) indep-sets-collect-sigma:
fixes I :: ′j ⇒ ′i set and J :: ′j set and E :: ′i ⇒ ′a set set
assumes indep: indep-sets E (

⋃
j∈J . I j)

assumes Int-stable:
∧

i j. j ∈ J =⇒ i ∈ I j =⇒ Int-stable (E i)
assumes disjoint: disjoint-family-on I J
shows indep-sets (λj. sigma-sets (space M ) (

⋃
i∈I j. E i)) J

〈proof 〉

lemma (in prob-space) indep-vars-restrict:
assumes ind: indep-vars M ′ X I and K :

∧
j. j ∈ L =⇒ K j ⊆ I and J :

disjoint-family-on K L
shows indep-vars (λj. PiM (K j) M ′) (λj ω. restrict (λi. X i ω) (K j)) L
〈proof 〉

lemma (in prob-space) indep-var-restrict:
assumes ind: indep-vars M ′ X I and AB: A ∩ B = {} A ⊆ I B ⊆ I
shows indep-var (PiM A M ′) (λω. restrict (λi. X i ω) A) (PiM B M ′) (λω.

restrict (λi. X i ω) B)
〈proof 〉

lemma (in prob-space) indep-vars-subset:
assumes indep-vars M ′ X I J ⊆ I
shows indep-vars M ′ X J
〈proof 〉
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lemma (in prob-space) indep-vars-cong:
I = J =⇒ (

∧
i. i ∈ I =⇒ X i = Y i) =⇒ (

∧
i. i ∈ I =⇒ M ′ i = N ′ i) =⇒

indep-vars M ′ X I ←→ indep-vars N ′ Y J
〈proof 〉

definition (in prob-space) tail-events where
tail-events A = (

⋂
n. sigma-sets (space M ) (

⋃
(A ‘ {n..})))

lemma (in prob-space) tail-events-sets:
assumes A:

∧
i::nat. A i ⊆ events

shows tail-events A ⊆ events
〈proof 〉

lemma (in prob-space) sigma-algebra-tail-events:
assumes

∧
i::nat. sigma-algebra (space M ) (A i)

shows sigma-algebra (space M ) (tail-events A)
〈proof 〉

lemma (in prob-space) kolmogorov-0-1-law:
fixes A :: nat ⇒ ′a set set
assumes

∧
i::nat. sigma-algebra (space M ) (A i)

assumes indep: indep-sets A UNIV
and X : X ∈ tail-events A
shows prob X = 0 ∨ prob X = 1
〈proof 〉

lemma (in prob-space) borel-0-1-law:
fixes F :: nat ⇒ ′a set
assumes F2 : indep-events F UNIV
shows prob (

⋂
n.

⋃
m∈{n..}. F m) = 0 ∨ prob (

⋂
n.

⋃
m∈{n..}. F m) = 1

〈proof 〉

lemma (in prob-space) borel-0-1-law-AE :
fixes P :: nat ⇒ ′a ⇒ bool
assumes indep-events (λm. {x∈space M . P m x}) UNIV (is indep-events ?P -)
shows (AE x in M . infinite {m. P m x}) ∨ (AE x in M . finite {m. P m x})
〈proof 〉

lemma (in prob-space) indep-sets-finite:
assumes I : I 6= {} finite I

and F :
∧

i. i ∈ I =⇒ F i ⊆ events
∧

i. i ∈ I =⇒ space M ∈ F i
shows indep-sets F I ←→ (∀A∈Pi I F . prob (

⋂
j∈I . A j) = (

∏
j∈I . prob (A

j)))
〈proof 〉

lemma (in prob-space) indep-vars-finite:
fixes I :: ′i set
assumes I : I 6= {} finite I
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and M ′:
∧

i. i ∈ I =⇒ sets (M ′ i) = sigma-sets (space (M ′ i)) (E i)
and rv:

∧
i. i ∈ I =⇒ random-variable (M ′ i) (X i)

and Int-stable:
∧

i. i ∈ I =⇒ Int-stable (E i)
and space:

∧
i. i ∈ I =⇒ space (M ′ i) ∈ E i and closed:

∧
i. i ∈ I =⇒ E i ⊆

Pow (space (M ′ i))
shows indep-vars M ′ X I ←→
(∀A∈(Π i∈I . E i). prob (

⋂
j∈I . X j −‘ A j ∩ space M ) = (

∏
j∈I . prob (X j

−‘ A j ∩ space M )))
〈proof 〉

lemma (in prob-space) indep-vars-compose:
assumes indep-vars M ′ X I
assumes rv:

∧
i. i ∈ I =⇒ Y i ∈ measurable (M ′ i) (N i)

shows indep-vars N (λi. Y i ◦ X i) I
〈proof 〉

lemma (in prob-space) indep-vars-compose2 :
assumes indep-vars M ′ X I
assumes rv:

∧
i. i ∈ I =⇒ Y i ∈ measurable (M ′ i) (N i)

shows indep-vars N (λi x. Y i (X i x)) I
〈proof 〉

lemma (in prob-space) indep-var-compose:
assumes indep-var M1 X1 M2 X2 Y1 ∈ measurable M1 N1 Y2 ∈ measurable

M2 N2
shows indep-var N1 (Y1 ◦ X1 ) N2 (Y2 ◦ X2 )
〈proof 〉

lemma (in prob-space) indep-vars-Min:
fixes X :: ′i ⇒ ′a ⇒ real
assumes I : finite I i /∈ I and indep: indep-vars (λ-. borel) X (insert i I )
shows indep-var borel (X i) borel (λω. Min ((λi. X i ω)‘I ))
〈proof 〉

lemma (in prob-space) indep-vars-sum:
fixes X :: ′i ⇒ ′a ⇒ real
assumes I : finite I i /∈ I and indep: indep-vars (λ-. borel) X (insert i I )
shows indep-var borel (X i) borel (λω.

∑
i∈I . X i ω)

〈proof 〉

lemma (in prob-space) indep-vars-prod:
fixes X :: ′i ⇒ ′a ⇒ real
assumes I : finite I i /∈ I and indep: indep-vars (λ-. borel) X (insert i I )
shows indep-var borel (X i) borel (λω.

∏
i∈I . X i ω)

〈proof 〉

lemma (in prob-space) indep-varsD-finite:
assumes X : indep-vars M ′ X I
assumes I : I 6= {} finite I

∧
i. i ∈ I =⇒ A i ∈ sets (M ′ i)
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shows prob (
⋂

i∈I . X i −‘ A i ∩ space M ) = (
∏

i∈I . prob (X i −‘ A i ∩ space
M ))
〈proof 〉

lemma (in prob-space) indep-varsD:
assumes X : indep-vars M ′ X I
assumes I : J 6= {} finite J J ⊆ I

∧
i. i ∈ J =⇒ A i ∈ sets (M ′ i)

shows prob (
⋂

i∈J . X i −‘ A i ∩ space M ) = (
∏

i∈J . prob (X i −‘ A i ∩ space
M ))
〈proof 〉

lemma (in prob-space) indep-vars-iff-distr-eq-PiM :
fixes I :: ′i set and X :: ′i ⇒ ′a ⇒ ′b
assumes I 6= {}
assumes rv:

∧
i. random-variable (M ′ i) (X i)

shows indep-vars M ′ X I ←→
distr M (ΠM i∈I . M ′ i) (λx. λi∈I . X i x) = (ΠM i∈I . distr M (M ′ i) (X i))

〈proof 〉

lemma (in prob-space) indep-vars-iff-distr-eq-PiM ′:
fixes I :: ′i set and X :: ′i ⇒ ′a ⇒ ′b
assumes I 6= {}
assumes rv:

∧
i. i ∈ I =⇒ random-variable (M ′ i) (X i)

shows indep-vars M ′ X I ←→
distr M (ΠM i∈I . M ′ i) (λx. λi∈I . X i x) = (ΠM i∈I . distr M (M ′ i)

(X i))
〈proof 〉

lemma (in prob-space) indep-varD:
assumes indep: indep-var Ma A Mb B
assumes sets: Xa ∈ sets Ma Xb ∈ sets Mb
shows prob ((λx. (A x, B x)) −‘ (Xa × Xb) ∩ space M ) =

prob (A −‘ Xa ∩ space M ) ∗ prob (B −‘ Xb ∩ space M )
〈proof 〉

lemma (in prob-space) prob-indep-random-variable:
assumes ind[simp]: indep-var N X N Y
assumes [simp]: A ∈ sets N B ∈ sets N
shows P(x in M . X x ∈ A ∧ Y x ∈ B) = P(x in M . X x ∈ A) ∗ P(x in M . Y x
∈ B)
〈proof 〉

lemma (in prob-space)
assumes indep-var S X T Y
shows indep-var-rv1 : random-variable S X

and indep-var-rv2 : random-variable T Y
〈proof 〉

lemma (in prob-space) indep-var-distribution-eq:
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indep-var S X T Y ←→ random-variable S X ∧ random-variable T Y ∧
distr M S X

⊗
M distr M T Y = distr M (S

⊗
M T ) (λx. (X x, Y x)) (is -

←→ - ∧ - ∧ ?S
⊗

M ?T = ?J )
〈proof 〉

lemma (in prob-space) distributed-joint-indep:
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes X : distributed M S X Px and Y : distributed M T Y Py
assumes indep: indep-var S X T Y
shows distributed M (S

⊗
M T ) (λx. (X x, Y x)) (λ(x, y). Px x ∗ Py y)

〈proof 〉

lemma (in prob-space) indep-vars-nn-integral:
assumes I : finite I indep-vars (λ-. borel) X I

∧
i ω. i ∈ I =⇒ 0 ≤ X i ω

shows (
∫

+ω. (
∏

i∈I . X i ω) ∂M ) = (
∏

i∈I .
∫

+ω. X i ω ∂M )
〈proof 〉

lemma (in prob-space)
fixes X :: ′i ⇒ ′a ⇒ ′b::{real-normed-field, banach, second-countable-topology}
assumes I : finite I indep-vars (λ-. borel) X I

∧
i. i ∈ I =⇒ integrable M (X i)

shows indep-vars-lebesgue-integral: (
∫
ω. (

∏
i∈I . X i ω) ∂M ) = (

∏
i∈I .

∫
ω. X

i ω ∂M ) (is ?eq)
and indep-vars-integrable: integrable M (λω. (

∏
i∈I . X i ω)) (is ?int)

〈proof 〉

lemma (in prob-space)
fixes X1 X2 :: ′a ⇒ ′b::{real-normed-field, banach, second-countable-topology}
assumes indep-var borel X1 borel X2 integrable M X1 integrable M X2
shows indep-var-lebesgue-integral: (

∫
ω. X1 ω ∗ X2 ω ∂M ) = (

∫
ω. X1 ω ∂M )

∗ (
∫
ω. X2 ω ∂M ) (is ?eq)

and indep-var-integrable: integrable M (λω. X1 ω ∗ X2 ω) (is ?int)
〈proof 〉

end

11 Convolution Measure
theory Convolution

imports Independent-Family
begin

lemma (in finite-measure) sigma-finite-measure: sigma-finite-measure M
〈proof 〉

definition convolution :: ( ′a :: ordered-euclidean-space) measure ⇒ ′a measure ⇒
′a measure (infix ‹?› 50 ) where

convolution M N = distr (M
⊗

M N ) borel (λ(x, y). x + y)

lemma
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shows space-convolution[simp]: space (convolution M N ) = space borel
and sets-convolution[simp]: sets (convolution M N ) = sets borel
and measurable-convolution1 [simp]: measurable A (convolution M N ) = mea-

surable A borel
and measurable-convolution2 [simp]: measurable (convolution M N ) B = mea-

surable borel B
〈proof 〉

lemma nn-integral-convolution:
assumes finite-measure M finite-measure N
assumes [measurable-cong]: sets N = sets borel sets M = sets borel
assumes [measurable]: f ∈ borel-measurable borel
shows (

∫
+x. f x ∂convolution M N ) = (

∫
+x.

∫
+y. f (x + y) ∂N ∂M )

〈proof 〉

lemma convolution-emeasure:
assumes A ∈ sets borel finite-measure M finite-measure N
assumes [simp]: sets N = sets borel sets M = sets borel
assumes [simp]: space M = space N space N = space borel
shows emeasure (M ? N ) A =

∫
+x. (emeasure N {a. a + x ∈ A}) ∂M

〈proof 〉

lemma convolution-emeasure ′:
assumes [simp]:A ∈ sets borel
assumes [simp]: finite-measure M finite-measure N
assumes [simp]: sets N = sets borel sets M = sets borel
shows emeasure (M ? N ) A =

∫
+x.

∫
+y. (indicator A (x + y)) ∂N ∂M

〈proof 〉

lemma convolution-finite:
assumes [simp]: finite-measure M finite-measure N
assumes [measurable-cong]: sets N = sets borel sets M = sets borel
shows finite-measure (M ? N )
〈proof 〉

lemma convolution-emeasure-3 :
assumes [simp, measurable]: A ∈ sets borel
assumes [simp]: finite-measure M finite-measure N finite-measure L
assumes [simp]: sets N = sets borel sets M = sets borel sets L = sets borel
shows emeasure (L ? (M ? N )) A =

∫
+x.

∫
+y.

∫
+z. indicator A (x + y + z)

∂N ∂M ∂L
〈proof 〉

lemma convolution-emeasure-3 ′:
assumes [simp, measurable]:A ∈ sets borel
assumes [simp]: finite-measure M finite-measure N finite-measure L
assumes [measurable-cong, simp]: sets N = sets borel sets M = sets borel sets L

= sets borel
shows emeasure ((L ? M ) ? N ) A =

∫
+x.

∫
+y.

∫
+z. indicator A (x + y + z)
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∂N ∂M ∂L
〈proof 〉

lemma convolution-commutative:
assumes [simp]: finite-measure M finite-measure N
assumes [measurable-cong, simp]: sets N = sets borel sets M = sets borel
shows (M ? N ) = (N ? M )
〈proof 〉

lemma convolution-associative:
assumes [simp]: finite-measure M finite-measure N finite-measure L
assumes [simp]: sets N = sets borel sets M = sets borel sets L = sets borel
shows (L ? (M ? N )) = ((L ? M ) ? N )
〈proof 〉

lemma (in prob-space) sum-indep-random-variable:
assumes ind: indep-var borel X borel Y
assumes [simp, measurable]: random-variable borel X
assumes [simp, measurable]: random-variable borel Y
shows distr M borel (λx. X x + Y x) = convolution (distr M borel X) (distr M

borel Y )
〈proof 〉

lemma (in prob-space) sum-indep-random-variable-lborel:
assumes ind: indep-var borel X borel Y
assumes [simp, measurable]: random-variable lborel X
assumes [simp, measurable]:random-variable lborel Y
shows distr M lborel (λx. X x + Y x) = convolution (distr M lborel X) (distr

M lborel Y )
〈proof 〉

lemma convolution-density:
fixes f g :: real ⇒ ennreal
assumes [measurable]: f ∈ borel-measurable borel g ∈ borel-measurable borel
assumes [simp]:finite-measure (density lborel f ) finite-measure (density lborel g)
shows density lborel f ? density lborel g = density lborel (λx.

∫
+y. f (x − y) ∗

g y ∂lborel)
(is ?l = ?r)

〈proof 〉

lemma (in prob-space) distributed-finite-measure-density:
distributed M N X f =⇒ finite-measure (density N f )
〈proof 〉

lemma (in prob-space) distributed-convolution:
fixes f :: real ⇒ -
fixes g :: real ⇒ -
assumes indep: indep-var borel X borel Y
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assumes X : distributed M lborel X f
assumes Y : distributed M lborel Y g
shows distributed M lborel (λx. X x + Y x) (λx.

∫
+y. f (x − y) ∗ g y ∂lborel)

〈proof 〉

lemma prob-space-convolution-density:
fixes f :: real ⇒ -
fixes g:: real ⇒ -
assumes [measurable]: f∈ borel-measurable borel
assumes [measurable]: g∈ borel-measurable borel
assumes gt-0 [simp]:

∧
x. 0 ≤ f x

∧
x. 0 ≤ g x

assumes prob-space (density lborel f ) (is prob-space ?F)
assumes prob-space (density lborel g) (is prob-space ?G)
shows prob-space (density lborel (λx.

∫
+y. f (x − y) ∗ g y ∂lborel)) (is prob-space

?D)
〈proof 〉

end

12 Information theory
theory Information
imports

Independent-Family
begin

12.1 Information theory
locale information-space = prob-space +

fixes b :: real assumes b-gt-1 : 1 < b

Introduce some simplification rules for logarithm of base b.
lemmas log-simps = log-mult log-inverse log-divide

12.2 Kullback−Leibler divergence

The Kullback−Leibler divergence is also known as relative entropy or Kullback−Leibler
distance.
definition

entropy-density b M N = log b ◦ enn2real ◦ RN-deriv M N

definition
KL-divergence b M N = integralL N (entropy-density b M N )

lemma measurable-entropy-density[measurable]: entropy-density b M N ∈ borel-measurable
M
〈proof 〉
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lemma (in sigma-finite-measure) KL-density:
fixes f :: ′a ⇒ real
assumes 1 < b
assumes f [measurable]: f ∈ borel-measurable M and nn: AE x in M . 0 ≤ f x
shows KL-divergence b M (density M f ) = (

∫
x. f x ∗ log b (f x) ∂M )

〈proof 〉

lemma (in sigma-finite-measure) KL-density-density:
fixes f g :: ′a ⇒ real
assumes 1 < b
assumes f : f ∈ borel-measurable M AE x in M . 0 ≤ f x
assumes g: g ∈ borel-measurable M AE x in M . 0 ≤ g x
assumes ac: AE x in M . f x = 0 −→ g x = 0
shows KL-divergence b (density M f ) (density M g) = (

∫
x. g x ∗ log b (g x / f

x) ∂M )
〈proof 〉

lemma (in information-space) KL-gt-0 :
fixes D :: ′a ⇒ real
assumes prob-space (density M D)
assumes D: D ∈ borel-measurable M AE x in M . 0 ≤ D x
assumes int: integrable M (λx. D x ∗ log b (D x))
assumes A: density M D 6= M
shows 0 < KL-divergence b M (density M D)
〈proof 〉

lemma (in sigma-finite-measure) KL-same-eq-0 : KL-divergence b M M = 0
〈proof 〉

lemma (in information-space) KL-eq-0-iff-eq:
fixes D :: ′a ⇒ real
assumes prob-space (density M D)
assumes D: D ∈ borel-measurable M AE x in M . 0 ≤ D x
assumes int: integrable M (λx. D x ∗ log b (D x))
shows KL-divergence b M (density M D) = 0 ←→ density M D = M
〈proof 〉

lemma (in information-space) KL-eq-0-iff-eq-ac:
fixes D :: ′a ⇒ real
assumes prob-space N
assumes ac: absolutely-continuous M N sets N = sets M
assumes int: integrable N (entropy-density b M N )
shows KL-divergence b M N = 0 ←→ N = M
〈proof 〉

lemma (in information-space) KL-nonneg:
assumes prob-space (density M D)
assumes D: D ∈ borel-measurable M AE x in M . 0 ≤ D x
assumes int: integrable M (λx. D x ∗ log b (D x))
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shows 0 ≤ KL-divergence b M (density M D)
〈proof 〉

lemma (in sigma-finite-measure) KL-density-density-nonneg:
fixes f g :: ′a ⇒ real
assumes 1 < b
assumes f : f ∈ borel-measurable M AE x in M . 0 ≤ f x prob-space (density M

f )
assumes g: g ∈ borel-measurable M AE x in M . 0 ≤ g x prob-space (density M

g)
assumes ac: AE x in M . f x = 0 −→ g x = 0
assumes int: integrable M (λx. g x ∗ log b (g x / f x))
shows 0 ≤ KL-divergence b (density M f ) (density M g)
〈proof 〉

12.3 Finite Entropy
definition (in information-space) finite-entropy :: ′b measure ⇒ ( ′a ⇒ ′b) ⇒ ( ′b
⇒ real) ⇒ bool
where

finite-entropy S X f ←→
distributed M S X f ∧
integrable S (λx. f x ∗ log b (f x)) ∧
(∀ x∈space S . 0 ≤ f x)

lemma (in information-space) finite-entropy-simple-function:
assumes X : simple-function M X
shows finite-entropy (count-space (X‘space M )) X (λa. measure M {x ∈ space

M . X x = a})
〈proof 〉

lemma ac-fst:
assumes sigma-finite-measure T
shows absolutely-continuous S (distr (S

⊗
M T ) S fst)

〈proof 〉

lemma ac-snd:
assumes sigma-finite-measure T
shows absolutely-continuous T (distr (S

⊗
M T ) T snd)

〈proof 〉

lemma (in information-space) finite-entropy-integrable:
finite-entropy S X Px =⇒ integrable S (λx. Px x ∗ log b (Px x))
〈proof 〉

lemma (in information-space) finite-entropy-distributed:
finite-entropy S X Px =⇒ distributed M S X Px
〈proof 〉
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lemma (in information-space) finite-entropy-nn:
finite-entropy S X Px =⇒ x ∈ space S =⇒ 0 ≤ Px x
〈proof 〉

lemma (in information-space) finite-entropy-measurable:
finite-entropy S X Px =⇒ Px ∈ S →M borel
〈proof 〉

lemma (in information-space) subdensity-finite-entropy:
fixes g :: ′b ⇒ real and f :: ′c ⇒ real
assumes T : T ∈ measurable P Q
assumes f : finite-entropy P X f
assumes g: finite-entropy Q Y g
assumes Y : Y = T ◦ X
shows AE x in P. g (T x) = 0 −→ f x = 0
〈proof 〉

lemma (in information-space) finite-entropy-integrable-transform:
finite-entropy S X Px =⇒ distributed M T Y Py =⇒ (

∧
x. x ∈ space T =⇒ 0 ≤

Py x) =⇒
X = (λx. f (Y x)) =⇒ f ∈ measurable T S =⇒ integrable T (λx. Py x ∗ log b

(Px (f x)))
〈proof 〉

12.4 Mutual Information
definition (in prob-space)

mutual-information b S T X Y =
KL-divergence b (distr M S X

⊗
M distr M T Y ) (distr M (S

⊗
M T ) (λx.

(X x, Y x)))

lemma (in information-space) mutual-information-indep-vars:
fixes S T X Y
defines P ≡ distr M S X

⊗
M distr M T Y

defines Q ≡ distr M (S
⊗

M T ) (λx. (X x, Y x))
shows indep-var S X T Y ←→
(random-variable S X ∧ random-variable T Y ∧

absolutely-continuous P Q ∧ integrable Q (entropy-density b P Q) ∧
mutual-information b S T X Y = 0 )

〈proof 〉

abbreviation (in information-space)
mutual-information-Pow (‹I ′(- ; - ′)›) where
I(X ; Y ) ≡ mutual-information b (count-space (X‘space M )) (count-space (Y‘space

M )) X Y

lemma (in information-space)
fixes Pxy :: ′b × ′c ⇒ real and Px :: ′b ⇒ real and Py :: ′c ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
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assumes Fx: finite-entropy S X Px and Fy: finite-entropy T Y Py
assumes Fxy: finite-entropy (S

⊗
M T ) (λx. (X x , Y x)) Pxy

defines f ≡ λx. Pxy x ∗ log b (Pxy x / (Px (fst x) ∗ Py (snd x)))
shows mutual-information-distr ′: mutual-information b S T X Y = integralL (S⊗
M T ) f (is ?M = ?R)
and mutual-information-nonneg ′: 0 ≤ mutual-information b S T X Y

〈proof 〉

lemma (in information-space)
fixes Pxy :: ′b × ′c ⇒ real and Px :: ′b ⇒ real and Py :: ′c ⇒ real
assumes sigma-finite-measure S sigma-finite-measure T
assumes Px: distributed M S X Px and Px-nn:

∧
x. x ∈ space S =⇒ 0 ≤ Px x

and Py: distributed M T Y Py and Py-nn:
∧

y. y ∈ space T =⇒ 0 ≤ Py y
and Pxy: distributed M (S

⊗
M T ) (λx. (X x , Y x)) Pxy

and Pxy-nn:
∧

x y. x ∈ space S =⇒ y ∈ space T =⇒ 0 ≤ Pxy (x, y)
defines f ≡ λx. Pxy x ∗ log b (Pxy x / (Px (fst x) ∗ Py (snd x)))
shows mutual-information-distr : mutual-information b S T X Y = integralL (S⊗
M T ) f (is ?M = ?R)
and mutual-information-nonneg: integrable (S

⊗
M T ) f =⇒ 0 ≤ mutual-information

b S T X Y
〈proof 〉

lemma (in information-space)
fixes Pxy :: ′b × ′c ⇒ real and Px :: ′b ⇒ real and Py :: ′c ⇒ real
assumes sigma-finite-measure S sigma-finite-measure T
assumes Px[measurable]: distributed M S X Px and Px-nn:

∧
x. x ∈ space S =⇒

0 ≤ Px x
and Py[measurable]: distributed M T Y Py and Py-nn:

∧
x. x ∈ space T =⇒

0 ≤ Py x
and Pxy[measurable]: distributed M (S

⊗
M T ) (λx. (X x, Y x)) Pxy

and Pxy-nn:
∧

x. x ∈ space (S
⊗

M T ) =⇒ 0 ≤ Pxy x
assumes ae: AE x in S . AE y in T . Pxy (x, y) = Px x ∗ Py y
shows mutual-information-eq-0 : mutual-information b S T X Y = 0
〈proof 〉

lemma (in information-space) mutual-information-simple-distributed:
assumes X : simple-distributed M X Px and Y : simple-distributed M Y Py
assumes XY : simple-distributed M (λx. (X x , Y x)) Pxy
shows I(X ; Y ) = (

∑
(x, y)∈(λx. (X x, Y x))‘space M . Pxy (x, y) ∗ log b (Pxy

(x, y) / (Px x ∗ Py y)))
〈proof 〉

lemma (in information-space)
fixes Pxy :: ′b × ′c ⇒ real and Px :: ′b ⇒ real and Py :: ′c ⇒ real
assumes Px: simple-distributed M X Px and Py: simple-distributed M Y Py
assumes Pxy: simple-distributed M (λx. (X x , Y x)) Pxy
assumes ae: ∀ x∈space M . Pxy (X x , Y x) = Px (X x) ∗ Py (Y x)
shows mutual-information-eq-0-simple: I(X ; Y ) = 0
〈proof 〉
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12.5 Entropy
definition (in prob-space) entropy :: real ⇒ ′b measure ⇒ ( ′a ⇒ ′b)⇒ real where

entropy b S X = − KL-divergence b S (distr M S X)

abbreviation (in information-space)
entropy-Pow (‹H ′(- ′)›) where
H(X) ≡ entropy b (count-space (X‘space M )) X

lemma (in prob-space) distributed-RN-deriv:
assumes X : distributed M S X Px
shows AE x in S . RN-deriv S (density S Px) x = Px x
〈proof 〉

lemma (in information-space)
fixes X :: ′a ⇒ ′b
assumes X [measurable]: distributed M MX X f and nn:

∧
x. x ∈ space MX =⇒

0 ≤ f x
shows entropy-distr : entropy b MX X = − (

∫
x. f x ∗ log b (f x) ∂MX) (is ?eq)

〈proof 〉

lemma (in information-space) entropy-le:
fixes Px :: ′b ⇒ real and MX :: ′b measure
assumes X [measurable]: distributed M MX X Px and Px-nn[simp]:

∧
x. x ∈

space MX =⇒ 0 ≤ Px x
and fin: emeasure MX {x ∈ space MX . Px x 6= 0} 6= top
and int: integrable MX (λx. − Px x ∗ log b (Px x))
shows entropy b MX X ≤ log b (measure MX {x ∈ space MX . Px x 6= 0})
〈proof 〉

lemma (in information-space) entropy-le-space:
fixes Px :: ′b ⇒ real and MX :: ′b measure
assumes X : distributed M MX X Px and Px-nn[simp]:

∧
x. x ∈ space MX =⇒

0 ≤ Px x
and fin: finite-measure MX
and int: integrable MX (λx. − Px x ∗ log b (Px x))
shows entropy b MX X ≤ log b (measure MX (space MX))
〈proof 〉

lemma (in information-space) entropy-uniform:
assumes X : distributed M MX X (λx. indicator A x / measure MX A) (is

distributed - - - ?f )
shows entropy b MX X = log b (measure MX A)
〈proof 〉

lemma (in information-space) entropy-simple-distributed:
simple-distributed M X f =⇒ H(X) = − (

∑
x∈X‘space M . f x ∗ log b (f x))

〈proof 〉

lemma (in information-space) entropy-le-card-not-0 :
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assumes X : simple-distributed M X f
shows H(X) ≤ log b (card (X ‘ space M ∩ {x. f x 6= 0}))
〈proof 〉

lemma (in information-space) entropy-le-card:
assumes X : simple-distributed M X f
shows H(X) ≤ log b (real (card (X ‘ space M )))
〈proof 〉

12.6 Conditional Mutual Information
definition (in prob-space)

conditional-mutual-information b MX MY MZ X Y Z ≡
mutual-information b MX (MY

⊗
M MZ ) X (λx. (Y x , Z x)) −

mutual-information b MX MZ X Z

abbreviation (in information-space)
conditional-mutual-information-Pow (‹I ′( - ; - | - ′)›) where
I(X ; Y | Z ) ≡ conditional-mutual-information b
(count-space (X ‘ space M )) (count-space (Y ‘ space M )) (count-space (Z ‘ space

M )) X Y Z

lemma (in information-space)
assumes S : sigma-finite-measure S and T : sigma-finite-measure T and P:

sigma-finite-measure P
assumes Px[measurable]: distributed M S X Px

and Px-nn[simp]:
∧

x. x ∈ space S =⇒ 0 ≤ Px x
assumes Pz[measurable]: distributed M P Z Pz

and Pz-nn[simp]:
∧

z. z ∈ space P =⇒ 0 ≤ Pz z
assumes Pyz[measurable]: distributed M (T

⊗
M P) (λx. (Y x, Z x)) Pyz

and Pyz-nn[simp]:
∧

y z. y ∈ space T =⇒ z ∈ space P =⇒ 0 ≤ Pyz (y, z)
assumes Pxz[measurable]: distributed M (S

⊗
M P) (λx. (X x , Z x)) Pxz

and Pxz-nn[simp]:
∧

x z. x ∈ space S =⇒ z ∈ space P =⇒ 0 ≤ Pxz (x, z)
assumes Pxyz[measurable]: distributed M (S

⊗
M T

⊗
M P) (λx. (X x, Y x, Z

x)) Pxyz
and Pxyz-nn[simp]:

∧
x y z. x ∈ space S =⇒ y ∈ space T =⇒ z ∈ space P =⇒

0 ≤ Pxyz (x, y, z)
assumes I1 : integrable (S

⊗
M T

⊗
M P) (λ(x, y, z). Pxyz (x, y, z) ∗ log b

(Pxyz (x, y, z) / (Px x ∗ Pyz (y, z))))
assumes I2 : integrable (S

⊗
M T

⊗
M P) (λ(x, y, z). Pxyz (x, y, z) ∗ log b

(Pxz (x, z) / (Px x ∗ Pz z)))
shows conditional-mutual-information-generic-eq: conditional-mutual-information

b S T P X Y Z
= (

∫
(x, y, z). Pxyz (x, y, z) ∗ log b (Pxyz (x, y, z) / (Pxz (x, z) ∗ (Pyz (y,z)

/ Pz z))) ∂(S
⊗

M T
⊗

M P)) (is ?eq)
and conditional-mutual-information-generic-nonneg: 0 ≤ conditional-mutual-information

b S T P X Y Z (is ?nonneg)
〈proof 〉
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lemma (in information-space)
fixes Px :: - ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T and P:

sigma-finite-measure P
assumes Fx: finite-entropy S X Px
assumes Fz: finite-entropy P Z Pz
assumes Fyz: finite-entropy (T

⊗
M P) (λx. (Y x, Z x)) Pyz

assumes Fxz: finite-entropy (S
⊗

M P) (λx. (X x , Z x)) Pxz
assumes Fxyz: finite-entropy (S

⊗
M T

⊗
M P) (λx. (X x , Y x, Z x)) Pxyz

shows conditional-mutual-information-generic-eq ′: conditional-mutual-information
b S T P X Y Z

= (
∫
(x, y, z). Pxyz (x, y, z) ∗ log b (Pxyz (x, y, z) / (Pxz (x, z) ∗ (Pyz (y,z)

/ Pz z))) ∂(S
⊗

M T
⊗

M P)) (is ?eq)
and conditional-mutual-information-generic-nonneg ′: 0 ≤ conditional-mutual-information

b S T P X Y Z (is ?nonneg)
〈proof 〉

lemma (in information-space) conditional-mutual-information-eq:
assumes Pz: simple-distributed M Z Pz
assumes Pyz: simple-distributed M (λx. (Y x, Z x)) Pyz
assumes Pxz: simple-distributed M (λx. (X x , Z x)) Pxz
assumes Pxyz: simple-distributed M (λx. (X x , Y x , Z x)) Pxyz
shows I(X ; Y | Z ) =
(
∑

(x, y, z)∈(λx. (X x, Y x, Z x))‘space M . Pxyz (x, y, z) ∗ log b (Pxyz (x, y,
z) / (Pxz (x, z) ∗ (Pyz (y,z) / Pz z))))
〈proof 〉

lemma (in information-space) conditional-mutual-information-nonneg:
assumes X : simple-function M X and Y : simple-function M Y and Z : sim-

ple-function M Z
shows 0 ≤ I(X ; Y | Z )
〈proof 〉

12.7 Conditional Entropy
definition (in prob-space)

conditional-entropy b S T X Y = − (
∫
(x, y). log b (enn2real (RN-deriv (S

⊗
M

T ) (distr M (S
⊗

M T ) (λx. (X x , Y x))) (x, y)) /
enn2real (RN-deriv T (distr M T Y ) y)) ∂distr M (S

⊗
M T ) (λx. (X x, Y

x)))

abbreviation (in information-space)
conditional-entropy-Pow (‹H ′(- | - ′)›) where
H(X | Y ) ≡ conditional-entropy b (count-space (X‘space M )) (count-space (Y‘space

M )) X Y

lemma (in information-space) conditional-entropy-generic-eq:
fixes Pxy :: - ⇒ real and Py :: ′c ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
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assumes Py[measurable]: distributed M T Y Py and Py-nn[simp]:
∧

x. x ∈ space
T =⇒ 0 ≤ Py x

assumes Pxy[measurable]: distributed M (S
⊗

M T ) (λx. (X x, Y x)) Pxy
and Pxy-nn[simp]:

∧
x y. x ∈ space S =⇒ y ∈ space T =⇒ 0 ≤ Pxy (x, y)

shows conditional-entropy b S T X Y = − (
∫
(x, y). Pxy (x, y) ∗ log b (Pxy (x,

y) / Py y) ∂(S
⊗

M T ))
〈proof 〉

lemma (in information-space) conditional-entropy-eq-entropy:
fixes Px :: ′b ⇒ real and Py :: ′c ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes Py[measurable]: distributed M T Y Py

and Py-nn[simp]:
∧

x. x ∈ space T =⇒ 0 ≤ Py x
assumes Pxy[measurable]: distributed M (S

⊗
M T ) (λx. (X x, Y x)) Pxy

and Pxy-nn[simp]:
∧

x y. x ∈ space S =⇒ y ∈ space T =⇒ 0 ≤ Pxy (x, y)
assumes I1 : integrable (S

⊗
M T ) (λx. Pxy x ∗ log b (Pxy x))

assumes I2 : integrable (S
⊗

M T ) (λx. Pxy x ∗ log b (Py (snd x)))
shows conditional-entropy b S T X Y = entropy b (S

⊗
M T ) (λx. (X x, Y x))

− entropy b T Y
〈proof 〉

lemma (in information-space) conditional-entropy-eq-entropy-simple:
assumes X : simple-function M X and Y : simple-function M Y
shows H(X | Y ) = entropy b (count-space (X‘space M )

⊗
M count-space (Y‘space

M )) (λx. (X x , Y x)) − H(Y )
〈proof 〉

lemma (in information-space) conditional-entropy-eq:
assumes Y : simple-distributed M Y Py
assumes XY : simple-distributed M (λx. (X x , Y x)) Pxy

shows H(X | Y ) = − (
∑

(x, y)∈(λx. (X x, Y x)) ‘ space M . Pxy (x, y) ∗ log
b (Pxy (x, y) / Py y))
〈proof 〉

lemma (in information-space) conditional-mutual-information-eq-conditional-entropy:
assumes X : simple-function M X and Y : simple-function M Y
shows I(X ; X | Y ) = H(X | Y )
〈proof 〉

lemma (in information-space) conditional-entropy-nonneg:
assumes X : simple-function M X and Y : simple-function M Y shows 0 ≤ H(X
| Y )
〈proof 〉

12.8 Equalities
lemma (in information-space) mutual-information-eq-entropy-conditional-entropy-distr :

fixes Px :: ′b ⇒ real and Py :: ′c ⇒ real and Pxy :: ( ′b × ′c) ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
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assumes Px[measurable]: distributed M S X Px
and Px-nn[simp]:

∧
x. x ∈ space S =⇒ 0 ≤ Px x

and Py[measurable]: distributed M T Y Py
and Py-nn[simp]:

∧
x. x ∈ space T =⇒ 0 ≤ Py x

and Pxy[measurable]: distributed M (S
⊗

M T ) (λx. (X x, Y x)) Pxy
and Pxy-nn[simp]:

∧
x y. x ∈ space S =⇒ y ∈ space T =⇒ 0 ≤ Pxy (x, y)

assumes Ix: integrable(S
⊗

M T ) (λx. Pxy x ∗ log b (Px (fst x)))
assumes Iy: integrable(S

⊗
M T ) (λx. Pxy x ∗ log b (Py (snd x)))

assumes Ixy: integrable(S
⊗

M T ) (λx. Pxy x ∗ log b (Pxy x))
shows mutual-information b S T X Y = entropy b S X + entropy b T Y −

entropy b (S
⊗

M T ) (λx. (X x , Y x))
〈proof 〉

lemma (in information-space) mutual-information-eq-entropy-conditional-entropy ′:
fixes Px :: ′b ⇒ real and Py :: ′c ⇒ real and Pxy :: ( ′b × ′c) ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes Px: distributed M S X Px

∧
x. x ∈ space S =⇒ 0 ≤ Px x

and Py: distributed M T Y Py
∧

x. x ∈ space T =⇒ 0 ≤ Py x
assumes Pxy: distributed M (S

⊗
M T ) (λx. (X x , Y x)) Pxy∧

x. x ∈ space (S
⊗

M T ) =⇒ 0 ≤ Pxy x
assumes Ix: integrable(S

⊗
M T ) (λx. Pxy x ∗ log b (Px (fst x)))

assumes Iy: integrable(S
⊗

M T ) (λx. Pxy x ∗ log b (Py (snd x)))
assumes Ixy: integrable(S

⊗
M T ) (λx. Pxy x ∗ log b (Pxy x))

shows mutual-information b S T X Y = entropy b S X − conditional-entropy b
S T X Y
〈proof 〉

lemma (in information-space) mutual-information-eq-entropy-conditional-entropy:
assumes sf-X : simple-function M X and sf-Y : simple-function M Y
shows I(X ; Y ) = H(X) − H(X | Y )
〈proof 〉

lemma (in information-space) mutual-information-nonneg-simple:
assumes sf-X : simple-function M X and sf-Y : simple-function M Y
shows 0 ≤ I(X ; Y )
〈proof 〉

lemma (in information-space) conditional-entropy-less-eq-entropy:
assumes X : simple-function M X and Z : simple-function M Z
shows H(X | Z ) ≤ H(X)
〈proof 〉

lemma (in information-space)
fixes Px :: ′b ⇒ real and Py :: ′c ⇒ real and Pxy :: ( ′b × ′c) ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes Px: finite-entropy S X Px and Py: finite-entropy T Y Py
assumes Pxy: finite-entropy (S

⊗
M T ) (λx. (X x , Y x)) Pxy

shows conditional-entropy b S T X Y ≤ entropy b S X
〈proof 〉
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lemma (in information-space) entropy-chain-rule:
assumes X : simple-function M X and Y : simple-function M Y
shows H(λx. (X x, Y x)) = H(X) + H(Y |X)
〈proof 〉

lemma (in information-space) entropy-partition:
assumes X : simple-function M X
shows H(X) = H(f ◦ X) + H(X |f ◦ X)
〈proof 〉

corollary (in information-space) entropy-data-processing:
assumes simple-function M X shows H(f ◦ X) ≤ H(X)
〈proof 〉

corollary (in information-space) entropy-of-inj:
assumes X : simple-function M X and inj: inj-on f (X‘space M )
shows H(f ◦ X) = H(X)
〈proof 〉

end

13 Properties of Various Distributions
theory Distributions

imports Convolution Information
begin

lemma (in prob-space) distributed-affine:
fixes f :: real ⇒ ennreal
assumes f : distributed M lborel X f
assumes c: c 6= 0
shows distributed M lborel (λx. t + c ∗ X x) (λx. f ((x − t) / c) / |c|)
〈proof 〉

lemma (in prob-space) distributed-affineI :
fixes f :: real ⇒ ennreal and c :: real
assumes f : distributed M lborel (λx. (X x − t) / c) (λx. |c| ∗ f (x ∗ c + t))
assumes c: c 6= 0
shows distributed M lborel X f
〈proof 〉

lemma (in prob-space) distributed-AE2 :
assumes [measurable]: distributed M N X f Measurable.pred N P
shows (AE x in M . P (X x)) ←→ (AE x in N . 0 < f x −→ P x)
〈proof 〉
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13.1 Erlang
lemma nn-intergal-power-times-exp-Icc:

assumes [arith]: 0 ≤ a
shows (

∫
+x. ennreal (x^k ∗ exp (−x)) ∗ indicator {0 .. a} x ∂lborel) =

(1 − (
∑

n≤k. (a^n ∗ exp (−a)) / fact n)) ∗ fact k (is ?I = -)
〈proof 〉

lemma nn-intergal-power-times-exp-Ici:
shows (

∫
+x. ennreal (x^k ∗ exp (−x)) ∗ indicator {0 ..} x ∂lborel) = real-of-nat

(fact k)
〈proof 〉

definition erlang-density :: nat ⇒ real ⇒ real ⇒ real where
erlang-density k l x = (if x < 0 then 0 else (l^(Suc k) ∗ x^k ∗ exp (− l ∗ x)) /

fact k)

definition erlang-CDF :: nat ⇒ real ⇒ real ⇒ real where
erlang-CDF k l x = (if x < 0 then 0 else 1 − (

∑
n≤k. ((l ∗ x)^n ∗ exp (− l ∗

x) / fact n)))

lemma erlang-density-nonneg[simp]: 0 ≤ l =⇒ 0 ≤ erlang-density k l x
〈proof 〉

lemma borel-measurable-erlang-density[measurable]: erlang-density k l ∈ borel-measurable
borel
〈proof 〉

lemma erlang-CDF-transform: 0 < l =⇒ erlang-CDF k l a = erlang-CDF k 1 (l
∗ a)
〈proof 〉

lemma erlang-CDF-nonneg[simp]: assumes 0 < l shows 0 ≤ erlang-CDF k l x
〈proof 〉

lemma nn-integral-erlang-density:
assumes [arith]: 0 < l
shows (

∫
+ x. ennreal (erlang-density k l x) ∗ indicator {.. a} x ∂lborel) =

erlang-CDF k l a
〈proof 〉

lemma emeasure-erlang-density:
0 < l =⇒ emeasure (density lborel (erlang-density k l)) {.. a} = erlang-CDF k l

a
〈proof 〉

lemma nn-integral-erlang-ith-moment:
fixes k i :: nat and l :: real
assumes [arith]: 0 < l
shows (

∫
+ x. ennreal (erlang-density k l x ∗ x ^ i) ∂lborel) = fact (k + i) /
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(fact k ∗ l ^ i)
〈proof 〉

lemma prob-space-erlang-density:
assumes l[arith]: 0 < l
shows prob-space (density lborel (erlang-density k l)) (is prob-space ?D)
〈proof 〉

lemma (in prob-space) erlang-distributed-le:
assumes D: distributed M lborel X (erlang-density k l)
assumes [simp, arith]: 0 < l 0 ≤ a
shows P(x in M . X x ≤ a) = erlang-CDF k l a
〈proof 〉

lemma (in prob-space) erlang-distributed-gt:
assumes D[simp]: distributed M lborel X (erlang-density k l)
assumes [arith]: 0 < l 0 ≤ a
shows P(x in M . a < X x ) = 1 − (erlang-CDF k l a)
〈proof 〉

lemma erlang-CDF-at0 : erlang-CDF k l 0 = 0
〈proof 〉

lemma erlang-distributedI :
assumes X [measurable]: X ∈ borel-measurable M and [arith]: 0 < l
and X-distr :

∧
a. 0 ≤ a =⇒ emeasure M {x∈space M . X x ≤ a} = erlang-CDF

k l a
shows distributed M lborel X (erlang-density k l)
〈proof 〉

lemma (in prob-space) erlang-distributed-iff :
assumes [arith]: 0<l
shows distributed M lborel X (erlang-density k l) ←→
(X ∈ borel-measurable M ∧ 0 < l ∧ (∀ a≥0 . P(x in M . X x ≤ a) = erlang-CDF

k l a ))
〈proof 〉

lemma (in prob-space) erlang-distributed-mult-const:
assumes erlX : distributed M lborel X (erlang-density k l)
assumes a-pos[arith]: 0 < α 0 < l
shows distributed M lborel (λx. α ∗ X x) (erlang-density k (l / α))
〈proof 〉

lemma (in prob-space) has-bochner-integral-erlang-ith-moment:
fixes k i :: nat and l :: real
assumes [arith]: 0 < l and D: distributed M lborel X (erlang-density k l)
shows has-bochner-integral M (λx. X x ^ i) (fact (k + i) / (fact k ∗ l ^ i))
〈proof 〉
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lemma (in prob-space) erlang-ith-moment-integrable:
0 < l =⇒ distributed M lborel X (erlang-density k l) =⇒ integrable M (λx. X x

^ i)
〈proof 〉

lemma (in prob-space) erlang-ith-moment:
0 < l =⇒ distributed M lborel X (erlang-density k l) =⇒

expectation (λx. X x ^ i) = fact (k + i) / (fact k ∗ l ^ i)
〈proof 〉

lemma (in prob-space) erlang-distributed-variance:
assumes [arith]: 0 < l and distributed M lborel X (erlang-density k l)
shows variance X = (k + 1 ) / l2
〈proof 〉

13.2 Exponential distribution
abbreviation exponential-density :: real ⇒ real ⇒ real where

exponential-density ≡ erlang-density 0

lemma exponential-density-def :
exponential-density l x = (if x < 0 then 0 else l ∗ exp (− x ∗ l))
〈proof 〉

lemma erlang-CDF-0 : erlang-CDF 0 l a = (if 0 ≤ a then 1 − exp (− l ∗ a) else
0 )
〈proof 〉

lemma prob-space-exponential-density: 0 < l =⇒ prob-space (density lborel (exponential-density
l))
〈proof 〉

lemma (in prob-space) exponential-distributedD-le:
assumes D: distributed M lborel X (exponential-density l) and a: 0 ≤ a and l:

0 < l
shows P(x in M . X x ≤ a) = 1 − exp (− a ∗ l)
〈proof 〉

lemma (in prob-space) exponential-distributedD-gt:
assumes D: distributed M lborel X (exponential-density l) and a: 0 ≤ a and l:

0 < l
shows P(x in M . a < X x ) = exp (− a ∗ l)
〈proof 〉

lemma (in prob-space) exponential-distributed-memoryless:
assumes D: distributed M lborel X (exponential-density l) and a: 0 ≤ a and l:

0 < l and t: 0 ≤ t
shows P(x in M . a + t < X x | a < X x) = P(x in M . t < X x)
〈proof 〉
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lemma exponential-distributedI :
assumes X [measurable]: X ∈ borel-measurable M and [arith]: 0 < l

and X-distr :
∧

a. 0 ≤ a =⇒ emeasure M {x∈space M . X x ≤ a} = 1 − exp
(− a ∗ l)

shows distributed M lborel X (exponential-density l)
〈proof 〉

lemma (in prob-space) exponential-distributed-iff :
assumes 0 < l
shows distributed M lborel X (exponential-density l) ←→
(X ∈ borel-measurable M ∧ (∀ a≥0 . P(x in M . X x ≤ a) = 1 − exp (− a ∗ l)))
〈proof 〉

lemma (in prob-space) exponential-distributed-expectation:
0 < l =⇒ distributed M lborel X (exponential-density l) =⇒ expectation X = 1

/ l
〈proof 〉

lemma exponential-density-nonneg: 0 < l =⇒ 0 ≤ exponential-density l x
〈proof 〉

lemma (in prob-space) exponential-distributed-min:
assumes 0 < l 0 < u
assumes expX : distributed M lborel X (exponential-density l)
assumes expY : distributed M lborel Y (exponential-density u)
assumes ind: indep-var borel X borel Y
shows distributed M lborel (λx. min (X x) (Y x)) (exponential-density (l + u))
〈proof 〉

lemma (in prob-space) exponential-distributed-Min:
assumes finI : finite I
assumes A: I 6= {}
assumes l:

∧
i. i ∈ I =⇒ 0 < l i

assumes expX :
∧

i. i ∈ I =⇒ distributed M lborel (X i) (exponential-density (l
i))

assumes ind: indep-vars (λi. borel) X I
shows distributed M lborel (λx. Min ((λi. X i x)‘I )) (exponential-density (

∑
i∈I .

l i))
〈proof 〉

lemma (in prob-space) exponential-distributed-variance:
0 < l =⇒ distributed M lborel X (exponential-density l) =⇒ variance X = 1 / l2
〈proof 〉

lemma nn-integral-zero ′: AE x in M . f x = 0 =⇒ (
∫

+x. f x ∂M ) = 0
〈proof 〉
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lemma convolution-erlang-density:
fixes k1 k2 :: nat
assumes [simp, arith]: 0 < l
shows (λx.

∫
+y. ennreal (erlang-density k1 l (x − y)) ∗ ennreal (erlang-density

k2 l y) ∂lborel) =
(erlang-density (Suc k1 + Suc k2 − 1 ) l)
(is ?LHS = ?RHS)

〈proof 〉

lemma (in prob-space) sum-indep-erlang:
assumes indep: indep-var borel X borel Y
assumes [simp, arith]: 0 < l
assumes erlX : distributed M lborel X (erlang-density k1 l)
assumes erlY : distributed M lborel Y (erlang-density k2 l)
shows distributed M lborel (λx. X x + Y x) (erlang-density (Suc k1 + Suc k2 −

1 ) l)
〈proof 〉

lemma (in prob-space) erlang-distributed-sum:
assumes finI : finite I
assumes A: I 6= {}
assumes [simp, arith]: 0 < l
assumes expX :

∧
i. i ∈ I =⇒ distributed M lborel (X i) (erlang-density (k i) l)

assumes ind: indep-vars (λi. borel) X I
shows distributed M lborel (λx.

∑
i∈I . X i x) (erlang-density ((

∑
i∈I . Suc (k

i)) − 1 ) l)
〈proof 〉

lemma (in prob-space) exponential-distributed-sum:
assumes finI : finite I
assumes A: I 6= {}
assumes l: 0 < l
assumes expX :

∧
i. i ∈ I =⇒ distributed M lborel (X i) (exponential-density l)

assumes ind: indep-vars (λi. borel) X I
shows distributed M lborel (λx.

∑
i∈I . X i x) (erlang-density ((card I ) − 1 ) l)

〈proof 〉

lemma (in information-space) entropy-exponential:
assumes l[simp, arith]: 0 < l
assumes D: distributed M lborel X (exponential-density l)
shows entropy b lborel X = log b (exp 1 / l)
〈proof 〉

13.3 Uniform distribution
lemma uniform-distrI :

assumes X : X ∈ measurable M M ′

and A: A ∈ sets M ′ emeasure M ′ A 6= ∞ emeasure M ′ A 6= 0
assumes distr :

∧
B. B ∈ sets M ′ =⇒ emeasure M (X −‘ B ∩ space M ) =
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emeasure M ′ (A ∩ B) / emeasure M ′ A
shows distr M M ′ X = uniform-measure M ′ A
〈proof 〉

lemma uniform-distrI-borel:
fixes A :: real set
assumes X [measurable]: X ∈ borel-measurable M and A: emeasure lborel A =

ennreal r 0 < r
and [measurable]: A ∈ sets borel

assumes distr :
∧

a. emeasure M {x∈space M . X x ≤ a} = emeasure lborel (A ∩
{.. a}) / r

shows distributed M lborel X (λx. indicator A x / measure lborel A)
〈proof 〉

lemma (in prob-space) uniform-distrI-borel-atLeastAtMost:
fixes a b :: real
assumes X : X ∈ borel-measurable M and a < b
assumes distr :

∧
t. a ≤ t =⇒ t ≤ b =⇒ P(x in M . X x ≤ t) = (t − a) / (b −

a)
shows distributed M lborel X (λx. indicator {a..b} x / measure lborel {a..b})
〈proof 〉

lemma (in prob-space) uniform-distributed-measure:
fixes a b :: real
assumes D: distributed M lborel X (λx. indicator {a .. b} x / measure lborel {a

.. b})
assumes t: a ≤ t t ≤ b
shows P(x in M . X x ≤ t) = (t − a) / (b − a)
〈proof 〉

lemma (in prob-space) uniform-distributed-bounds:
fixes a b :: real
assumes D: distributed M lborel X (λx. indicator {a .. b} x / measure lborel {a

.. b})
shows a < b
〈proof 〉

lemma (in prob-space) uniform-distributed-iff :
fixes a b :: real
shows distributed M lborel X (λx. indicator {a..b} x / measure lborel {a..b})←→
(X ∈ borel-measurable M ∧ a < b ∧ (∀ t∈{a .. b}. P(x in M . X x ≤ t)= (t −

a) / (b − a)))
〈proof 〉

lemma (in prob-space) uniform-distributed-expectation:
fixes a b :: real
assumes D: distributed M lborel X (λx. indicator {a .. b} x / measure lborel {a

.. b})
shows expectation X = (a + b) / 2
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〈proof 〉

lemma (in prob-space) uniform-distributed-variance:
fixes a b :: real
assumes D: distributed M lborel X (λx. indicator {a .. b} x / measure lborel {a

.. b})
shows variance X = (b − a)2 / 12
〈proof 〉

13.4 Normal distribution
definition normal-density :: real ⇒ real ⇒ real ⇒ real where

normal-density µ σ x = 1 / sqrt (2 ∗ pi ∗ σ2) ∗ exp (−(x − µ)2/ (2 ∗ σ2))

abbreviation std-normal-density :: real ⇒ real where
std-normal-density ≡ normal-density 0 1

lemma std-normal-density-def : std-normal-density x = (1 / sqrt (2 ∗ pi)) ∗ exp
(− x2 / 2 )
〈proof 〉

lemma normal-density-nonneg[simp]: 0 ≤ normal-density µ σ x
〈proof 〉

lemma normal-density-pos: 0 < σ =⇒ 0 < normal-density µ σ x
〈proof 〉

lemma borel-measurable-normal-density[measurable]: normal-density µ σ ∈ borel-measurable
borel
〈proof 〉

lemma gaussian-moment-0 :
has-bochner-integral lborel (λx. indicator {0 ..} x ∗R exp (− x2)) (sqrt pi / 2 )
〈proof 〉

lemma gaussian-moment-1 :
has-bochner-integral lborel (λx::real. indicator {0 ..} x ∗R (exp (− x2) ∗ x)) (1 /

2 )
〈proof 〉

lemma
fixes k :: nat
shows gaussian-moment-even-pos:

has-bochner-integral lborel (λx::real. indicator {0 ..} x ∗R (exp (−x2)∗x^(2 ∗
k)))

((sqrt pi / 2 ) ∗ (fact (2 ∗ k) / (2 ^ (2 ∗ k) ∗ fact k)))
(is ?even)

and gaussian-moment-odd-pos:
has-bochner-integral lborel (λx::real. indicator {0 ..} x ∗R (exp (−x2)∗x^(2 ∗
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k + 1 ))) (fact k / 2 )
(is ?odd)

〈proof 〉

context
fixes k :: nat and µ σ :: real assumes [arith]: 0 < σ

begin

lemma normal-moment-even:
has-bochner-integral lborel (λx. normal-density µ σ x ∗ (x − µ) ^ (2 ∗ k)) (fact

(2 ∗ k) / ((2 / σ2)^k ∗ fact k))
〈proof 〉

lemma normal-moment-abs-odd:
has-bochner-integral lborel (λx. normal-density µ σ x ∗ |x − µ|^(2 ∗ k + 1 )) (2^k
∗ σ^(2 ∗ k + 1 ) ∗ fact k ∗ sqrt (2 / pi))
〈proof 〉

lemma normal-moment-odd:
has-bochner-integral lborel (λx. normal-density µ σ x ∗ (x − µ)^(2 ∗ k + 1 )) 0
〈proof 〉

lemma integral-normal-moment-even:
integralL lborel (λx. normal-density µ σ x ∗ (x − µ)^(2 ∗ k)) = fact (2 ∗ k) /

((2 / σ2)^k ∗ fact k)
〈proof 〉

lemma integral-normal-moment-abs-odd:
integralL lborel (λx. normal-density µ σ x ∗ |x − µ|^(2 ∗ k + 1 )) = 2 ^ k ∗ σ

^ (2 ∗ k + 1 ) ∗ fact k ∗ sqrt (2 / pi)
〈proof 〉

lemma integral-normal-moment-odd:
integralL lborel (λx. normal-density µ σ x ∗ (x − µ)^(2 ∗ k + 1 )) = 0
〈proof 〉

end

context
fixes σ :: real
assumes σ-pos[arith]: 0 < σ

begin

lemma normal-moment-nz-1 : has-bochner-integral lborel (λx. normal-density µ σ
x ∗ x) µ
〈proof 〉

lemma integral-normal-moment-nz-1 :
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integralL lborel (λx. normal-density µ σ x ∗ x) = µ
〈proof 〉

lemma integrable-normal-moment-nz-1 : integrable lborel (λx. normal-density µ σ
x ∗ x)
〈proof 〉

lemma integrable-normal-moment: integrable lborel (λx. normal-density µ σ x ∗
(x − µ)^k)
〈proof 〉

lemma integrable-normal-moment-abs: integrable lborel (λx. normal-density µ σ x
∗ |x − µ|^k)
〈proof 〉

lemma integrable-normal-density[simp, intro]: integrable lborel (normal-density µ
σ)
〈proof 〉

lemma integral-normal-density[simp]: (
∫

x. normal-density µ σ x ∂lborel) = 1
〈proof 〉

lemma prob-space-normal-density:
prob-space (density lborel (normal-density µ σ))
〈proof 〉

end

context
fixes k :: nat

begin

lemma std-normal-moment-even:
has-bochner-integral lborel (λx. std-normal-density x ∗ x ^ (2 ∗ k)) (fact (2 ∗ k)

/ (2^k ∗ fact k))
〈proof 〉

lemma std-normal-moment-abs-odd:
has-bochner-integral lborel (λx. std-normal-density x ∗ |x|^(2 ∗ k + 1 )) (sqrt

(2/pi) ∗ 2^k ∗ fact k)
〈proof 〉

lemma std-normal-moment-odd:
has-bochner-integral lborel (λx. std-normal-density x ∗ x^(2 ∗ k + 1 )) 0
〈proof 〉

lemma integral-std-normal-moment-even:
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integralL lborel (λx. std-normal-density x ∗ x^(2∗k)) = fact (2 ∗ k) / (2^k ∗ fact
k)
〈proof 〉

lemma integral-std-normal-moment-abs-odd:
integralL lborel (λx. std-normal-density x ∗ |x|^(2 ∗ k + 1 )) = sqrt (2 / pi) ∗

2^k ∗ fact k
〈proof 〉

lemma integral-std-normal-moment-odd:
integralL lborel (λx. std-normal-density x ∗ x^(2 ∗ k + 1 )) = 0
〈proof 〉

lemma integrable-std-normal-moment-abs: integrable lborel (λx. std-normal-density
x ∗ |x|^k)
〈proof 〉

lemma integrable-std-normal-moment: integrable lborel (λx. std-normal-density x
∗ x^k)
〈proof 〉

end

lemma (in prob-space) normal-density-affine:
assumes X : distributed M lborel X (normal-density µ σ)
assumes [simp, arith]: 0 < σ α 6= 0
shows distributed M lborel (λx. β + α ∗ X x) (normal-density (β + α ∗ µ) (|α|
∗ σ))
〈proof 〉

lemma (in prob-space) normal-standard-normal-convert:
assumes pos-var [simp, arith]: 0 < σ
shows distributed M lborel X (normal-density µ σ) = distributed M lborel (λx.

(X x − µ) / σ) std-normal-density
〈proof 〉

lemma conv-normal-density-zero-mean:
assumes [simp, arith]: 0 < σ 0 < τ
shows (λx.

∫
+y. ennreal (normal-density 0 σ (x − y) ∗ normal-density 0 τ y)

∂lborel) =
normal-density 0 (sqrt (σ2 + τ2)) (is ?LHS = ?RHS)

〈proof 〉

lemma conv-std-normal-density:
(λx.

∫
+y. ennreal (std-normal-density (x − y) ∗ std-normal-density y) ∂lborel)

=
(normal-density 0 (sqrt 2 ))
〈proof 〉
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lemma (in prob-space) add-indep-normal:
assumes indep: indep-var borel X borel Y
assumes pos-var [arith]: 0 < σ 0 < τ
assumes normalX [simp]: distributed M lborel X (normal-density µ σ)
assumes normalY [simp]: distributed M lborel Y (normal-density ν τ)
shows distributed M lborel (λx. X x + Y x) (normal-density (µ + ν) (sqrt (σ2

+ τ2)))
〈proof 〉

lemma (in prob-space) diff-indep-normal:
assumes indep[simp]: indep-var borel X borel Y
assumes [simp, arith]: 0 < σ 0 < τ
assumes normalX [simp]: distributed M lborel X (normal-density µ σ)
assumes normalY [simp]: distributed M lborel Y (normal-density ν τ)
shows distributed M lborel (λx. X x − Y x) (normal-density (µ − ν) (sqrt (σ2

+ τ2)))
〈proof 〉

lemma (in prob-space) sum-indep-normal:
assumes finite I I 6= {} indep-vars (λi. borel) X I
assumes

∧
i. i ∈ I =⇒ 0 < σ i

assumes normal:
∧

i. i ∈ I =⇒ distributed M lborel (X i) (normal-density (µ i)
(σ i))

shows distributed M lborel (λx.
∑

i∈I . X i x) (normal-density (
∑

i∈I . µ i) (sqrt
(
∑

i∈I . (σ i)2)))
〈proof 〉

lemma (in prob-space) standard-normal-distributed-expectation:
assumes D: distributed M lborel X std-normal-density
shows expectation X = 0
〈proof 〉

lemma (in prob-space) normal-distributed-expectation:
assumes σ[arith]: 0 < σ
assumes D: distributed M lborel X (normal-density µ σ)
shows expectation X = µ
〈proof 〉

lemma (in prob-space) normal-distributed-variance:
fixes a b :: real
assumes [simp, arith]: 0 < σ
assumes D: distributed M lborel X (normal-density µ σ)
shows variance X = σ2

〈proof 〉

lemma (in prob-space) standard-normal-distributed-variance:
distributed M lborel X std-normal-density =⇒ variance X = 1
〈proof 〉
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lemma (in information-space) entropy-normal-density:
assumes [arith]: 0 < σ
assumes D: distributed M lborel X (normal-density µ σ)
shows entropy b lborel X = log b (2 ∗ pi ∗ exp 1 ∗ σ2) / 2
〈proof 〉

end

14 Characteristic Functions
theory Characteristic-Functions

imports Weak-Convergence Independent-Family Distributions
begin

lemma mult-min-right: a ≥ 0 =⇒ (a :: real) ∗ min b c = min (a ∗ b) (a ∗ c)
〈proof 〉

lemma sequentially-even-odd:
assumes E : eventually (λn. P (2 ∗ n)) sequentially and O: eventually (λn. P

(2 ∗ n + 1 )) sequentially
shows eventually P sequentially
〈proof 〉

lemma limseq-even-odd:
assumes (λn. f (2 ∗ n)) −−−−→ (l :: ′a :: topological-space)

and (λn. f (2 ∗ n + 1 )) −−−−→ l
shows f −−−−→ l
〈proof 〉

14.1 Application of the FTC: integrating eix

abbreviation iexp :: real ⇒ complex where
iexp ≡ (λx. exp (i ∗ complex-of-real x))

lemma isCont-iexp [simp]: isCont iexp x
〈proof 〉

lemma has-vector-derivative-iexp[derivative-intros]:
(iexp has-vector-derivative i ∗ iexp x) (at x within s)
〈proof 〉

lemma interval-integral-iexp:
fixes a b :: real
shows (CLBINT x=a..b. iexp x) = i ∗ iexp a − i ∗ iexp b
〈proof 〉

14.2 The Characteristic Function of a Real Measure.
definition
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char :: real measure ⇒ real ⇒ complex
where char M t ≡ CLINT x |M . iexp (t ∗ x)

lemma (in real-distribution) char-zero: char M 0 = 1
〈proof 〉

lemma (in prob-space) integrable-iexp:
assumes f : f ∈ borel-measurable M

∧
x. Im (f x) = 0

shows integrable M (λx. exp (i ∗ (f x)))
〈proof 〉

lemma (in real-distribution) cmod-char-le-1 : norm (char M t) ≤ 1
〈proof 〉

lemma (in real-distribution) isCont-char : isCont (char M ) t
〈proof 〉

lemma (in real-distribution) char-measurable [measurable]: char M ∈ borel-measurable
borel
〈proof 〉

14.3 Independence
lemma (in prob-space) char-distr-add:

fixes X1 X2 :: ′a ⇒ real and t :: real
assumes indep-var borel X1 borel X2
shows char (distr M borel (λω. X1 ω + X2 ω)) t =

char (distr M borel X1 ) t ∗ char (distr M borel X2 ) t
〈proof 〉

lemma (in prob-space) char-distr-sum:
indep-vars (λi. borel) X A =⇒

char (distr M borel (λω.
∑

i∈A. X i ω)) t = (
∏

i∈A. char (distr M borel (X
i)) t)
〈proof 〉

14.4 Approximations to eix

Proofs from Billingsley, page 343.
lemma CLBINT-I0c-power-mirror-iexp:

fixes x :: real and n :: nat
defines f s m ≡ complex-of-real ((x − s) ^ m)
shows (CLBINT s=0 ..x. f s n ∗ iexp s) =

x^Suc n / Suc n + (i / Suc n) ∗ (CLBINT s=0 ..x. f s (Suc n) ∗ iexp s)
〈proof 〉

lemma iexp-eq1 :
fixes x :: real
defines f s m ≡ complex-of-real ((x − s) ^ m)
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shows iexp x =
(
∑

k ≤ n. (i ∗ x)^k / (fact k)) + ((i ^ (Suc n)) / (fact n)) ∗ (CLBINT s=0 ..x.
(f s n) ∗ (iexp s)) (is ?P n)
〈proof 〉

lemma iexp-eq2 :
fixes x :: real
defines f s m ≡ complex-of-real ((x − s) ^ m)
shows iexp x = (

∑
k≤Suc n. (i∗x)^k/fact k) + i^Suc n/fact n ∗ (CLBINT

s=0 ..x. f s n∗(iexp s − 1 ))
〈proof 〉

lemma abs-LBINT-I0c-abs-power-diff :
|LBINT s=0 ..x. |(x − s)^n|| = |x ^ (Suc n) / (Suc n)|
〈proof 〉

lemma iexp-approx1 : cmod (iexp x − (
∑

k ≤ n. (i ∗ x)^k / fact k)) ≤ |x|^(Suc
n) / fact (Suc n)
〈proof 〉

lemma iexp-approx2 : cmod (iexp x − (
∑

k ≤ n. (i ∗ x)^k / fact k)) ≤ 2 ∗ |x|^n
/ fact n
〈proof 〉

lemma (in real-distribution) char-approx1 :
assumes integrable-moments:

∧
k. k ≤ n =⇒ integrable M (λx. x^k)

shows cmod (char M t − (
∑

k ≤ n. ((i ∗ t)^k / fact k) ∗ expectation (λx. x^k)))
≤

(2∗|t|^n / fact n) ∗ expectation (λx. |x|^n) (is cmod (char M t − ?t1 ) ≤ -)
〈proof 〉

lemma (in real-distribution) char-approx2 :
assumes integrable-moments:

∧
k. k ≤ n =⇒ integrable M (λx. x ^ k)

shows cmod (char M t − (
∑

k ≤ n. ((i ∗ t)^k / fact k) ∗ expectation (λx. x^k)))
≤

(|t|^n / fact (Suc n)) ∗ expectation (λx. min (2 ∗ |x|^n ∗ Suc n) (|t| ∗ |x|^Suc
n))

(is cmod (char M t − ?t1 ) ≤ -)
〈proof 〉

lemma (in real-distribution) char-approx3 :
fixes t
assumes

integrable-1 : integrable M (λx. x) and
integral-1 : expectation (λx. x) = 0 and
integrable-2 : integrable M (λx. x^2 ) and
integral-2 : variance (λx. x) = σ2

shows cmod (char M t − (1 − t^2 ∗ σ2 / 2 )) ≤
(t^2 / 6 ) ∗ expectation (λx. min (6 ∗ x^2 ) (abs t ∗ (abs x)^3 ) )



THEORY “Characteristic-Functions” 87

〈proof 〉

This is a more familiar textbook formulation in terms of random variables,
but we will use the previous version for the CLT.
lemma (in prob-space) char-approx3 ′:

fixes µ :: real measure and X
assumes rv-X [simp]: random-variable borel X

and [simp]: integrable M X integrable M (λx. (X x)^2 ) expectation X = 0
and var-X : variance X = σ2
and µ-def : µ = distr M borel X

shows cmod (char µ t − (1 − t^2 ∗ σ2 / 2 )) ≤
(t^2 / 6 ) ∗ expectation (λx. min (6 ∗ (X x)^2 ) (|t| ∗ |X x |^3 ))
〈proof 〉

this is the formulation in the book – in terms of a random variable *with*
the distribution, rather the distribution itself. I don’t know which is more
useful, though in principal we can go back and forth between them.
lemma (in prob-space) char-approx1 ′:

fixes µ :: real measure and X
assumes integrable-moments :

∧
k. k ≤ n =⇒ integrable M (λx. X x ^ k)

and rv-X [measurable]: random-variable borel X
and µ-distr : distr M borel X = µ

shows cmod (char µ t − (
∑

k ≤ n. ((i ∗ t)^k / fact k) ∗ expectation (λx. (X
x)^k))) ≤

(2 ∗ |t|^n / fact n) ∗ expectation (λx. |X x |^n)
〈proof 〉

14.5 Calculation of the Characteristic Function of the Stan-
dard Distribution

abbreviation
std-normal-distribution ≡ density lborel std-normal-density

lemma real-dist-normal-dist: real-distribution std-normal-distribution
〈proof 〉

lemma std-normal-distribution-even-moments:
fixes k :: nat
shows (LINT x|std-normal-distribution. x^(2 ∗ k)) = fact (2 ∗ k) / (2^k ∗ fact

k)
and integrable std-normal-distribution (λx. x^(2 ∗ k))
〈proof 〉

lemma integrable-std-normal-distribution-moment: integrable std-normal-distribution
(λx. x^k)
〈proof 〉

lemma integral-std-normal-distribution-moment-odd:
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odd k =⇒ integralL std-normal-distribution (λx. x^k) = 0
〈proof 〉

lemma std-normal-distribution-even-moments-abs:
fixes k :: nat
shows (LINT x|std-normal-distribution. |x|^(2 ∗ k)) = fact (2 ∗ k) / (2^k ∗ fact

k)
〈proof 〉

lemma std-normal-distribution-odd-moments-abs:
fixes k :: nat
shows (LINT x|std-normal-distribution. |x|^(2 ∗ k + 1 )) = sqrt (2 / pi) ∗ 2 ^

k ∗ fact k
〈proof 〉

theorem char-std-normal-distribution:
char std-normal-distribution = (λt. complex-of-real (exp (− (t^2 ) / 2 )))
〈proof 〉

end

15 Helly’s selection theorem

The set of bounded, monotone, right continuous functions is sequentially
compact
theory Helly-Selection

imports HOL−Library.Diagonal-Subsequence Weak-Convergence
begin

lemma minus-one-less: x − 1 < (x::real)
〈proof 〉

theorem Helly-selection:
fixes f :: nat ⇒ real ⇒ real
assumes rcont:

∧
n x. continuous (at-right x) (f n)

assumes mono:
∧

n. mono (f n)
assumes bdd:

∧
n x. |f n x| ≤ M

shows ∃ s. strict-mono (s::nat ⇒ nat) ∧ (∃F . (∀ x. continuous (at-right x) F) ∧
mono F ∧ (∀ x. |F x| ≤ M ) ∧

(∀ x. continuous (at x) F −→ (λn. f (s n) x) −−−−→ F x))
〈proof 〉

definition
tight :: (nat ⇒ real measure) ⇒ bool

where
tight µ ≡ (∀n. real-distribution (µ n)) ∧ (∀ (ε::real)>0 . ∃ a b::real. a < b ∧ (∀n.
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measure (µ n) {a<..b} > 1 − ε))

theorem tight-imp-convergent-subsubsequence:
assumes µ: tight µ strict-mono s
shows ∃ r M . strict-mono (r :: nat ⇒ nat) ∧ real-distribution M ∧ weak-conv-m

(µ ◦ s ◦ r) M
〈proof 〉

corollary tight-subseq-weak-converge:
fixes µ :: nat ⇒ real measure and M :: real measure
assumes

∧
n. real-distribution (µ n) real-distribution M and tight: tight µ and

subseq:
∧

s ν. strict-mono s =⇒ real-distribution ν =⇒ weak-conv-m (µ ◦ s) ν
=⇒ weak-conv-m (µ ◦ s) M

shows weak-conv-m µ M
〈proof 〉

end

16 Integral of sinc
theory Sinc-Integral

imports Distributions
begin

16.1 Various preparatory integrals

Naming convention The theorem name consists of the following parts:

• Kind of integral: has-bochner-integral / integrable / LBINT

• Interval: Interval (0 / infinity / open / closed) (infinity / open / closed)

• Name of the occurring constants: power, exp, m (for minus), scale, sin,
. . .

lemma has-bochner-integral-I0i-power-exp-m ′:
has-bochner-integral lborel (λx. x^k ∗ exp (−x) ∗ indicator {0 ..} x::real) (fact k)
〈proof 〉

lemma has-bochner-integral-I0i-power-exp-m:
has-bochner-integral lborel (λx. x^k ∗ exp (−x) ∗ indicator {0 <..} x::real) (fact

k)
〈proof 〉

lemma integrable-I0i-exp-mscale: 0 < (u::real) =⇒ set-integrable lborel {0 <..}
(λx. exp (−(x ∗ u)))
〈proof 〉
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lemma LBINT-I0i-exp-mscale: 0 < (u::real) =⇒ LBINT x=0 ..∞. exp (−(x ∗ u))
= 1 / u
〈proof 〉

lemma LBINT-I0c-exp-mscale-sin:
LBINT x=0 ..t. exp (−(u ∗ x)) ∗ sin x =
(1 / (1 + u^2 )) ∗ (1 − exp (−(u ∗ t)) ∗ (u ∗ sin t + cos t)) (is - = ?F t)
〈proof 〉

lemma LBINT-I0i-exp-mscale-sin:
assumes 0 < x
shows LBINT u=0 ..∞. |exp (−u ∗ x) ∗ sin x| = |sin x| / x
〈proof 〉

lemma
shows integrable-inverse-1-plus-square:

set-integrable lborel (einterval (−∞) ∞) (λx. inverse (1 + x^2 ))
and LBINT-inverse-1-plus-square:

LBINT x=−∞..∞. inverse (1 + x^2 ) = pi
〈proof 〉

lemma
shows integrable-I0i-1-div-plus-square:

interval-lebesgue-integrable lborel 0 ∞ (λx. 1 / (1 + x^2 ))
and LBINT-I0i-1-div-plus-square:

LBINT x=0 ..∞. 1 / (1 + x^2 ) = pi / 2
〈proof 〉

17 The sinc function, and the sine integral (Si)
abbreviation sinc :: real ⇒ real where

sinc ≡ (λx. if x = 0 then 1 else sin x / x)

lemma sinc-at-0 : ((λx. sin x / x::real) −−−→ 1 ) (at 0 )
〈proof 〉

lemma isCont-sinc: isCont sinc x
〈proof 〉

lemma continuous-on-sinc[continuous-intros]:
continuous-on S f =⇒ continuous-on S (λx. sinc (f x))
〈proof 〉

lemma borel-measurable-sinc[measurable]: sinc ∈ borel-measurable borel
〈proof 〉

lemma sinc-AE : AE x in lborel. sin x / x = sinc x
〈proof 〉
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definition Si :: real ⇒ real where Si t ≡ LBINT x=0 ..t. sin x / x

lemma sinc-neg [simp]: sinc (− x) = sinc x
〈proof 〉

lemma Si-alt-def : Si t = LBINT x=0 ..t. sinc x
〈proof 〉

lemma Si-neg:
assumes T ≥ 0 shows Si (− T ) = − Si T
〈proof 〉

lemma integrable-sinc ′:
interval-lebesgue-integrable lborel (ereal 0 ) (ereal T ) (λt. sin (t ∗ ϑ) / t)
〈proof 〉

lemma DERIV-Si: (Si has-real-derivative sinc x) (at x)
〈proof 〉

lemma isCont-Si: isCont Si x
〈proof 〉

lemma borel-measurable-Si[measurable]: Si ∈ borel-measurable borel
〈proof 〉

lemma Si-at-top-LBINT :
((λt. (LBINT x=0 ..∞. exp (−(x ∗ t)) ∗ (x ∗ sin t + cos t) / (1 + x^2 ))) −−−→

0 ) at-top
〈proof 〉

lemma Si-at-top-integrable:
assumes t ≥ 0
shows interval-lebesgue-integrable lborel 0 ∞ (λx. exp (− (x ∗ t)) ∗ (x ∗ sin t +

cos t) / (1 + x2))
〈proof 〉

lemma Si-at-top: (Si −−−→ pi / 2 ) at-top
〈proof 〉

17.1 The final theorems: boundedness and scalability
lemma bounded-Si: ∃B. ∀T . |Si T | ≤ B
〈proof 〉

lemma LBINT-I0c-sin-scale-divide:
assumes T ≥ 0
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shows LBINT t=0 ..T . sin (t ∗ ϑ) / t = sgn ϑ ∗ Si (T ∗ |ϑ|)
〈proof 〉

end

18 The Levy inversion theorem, and the Levy con-
tinuity theorem.

theory Levy
imports Characteristic-Functions Helly-Selection Sinc-Integral

begin

18.1 The Levy inversion theorem
lemma Levy-Inversion-aux1 :

fixes a b :: real
assumes a ≤ b
shows ((λt. (iexp (−(t ∗ a)) − iexp (−(t ∗ b))) / (i ∗ t)) −−−→ b − a) (at 0 )
(is (?F −−−→ -) (at -))

〈proof 〉

lemma Levy-Inversion-aux2 :
fixes a b t :: real
assumes a ≤ b and t 6= 0
shows cmod ((iexp (t ∗ b) − iexp (t ∗ a)) / (i ∗ t)) ≤ b − a (is ?F ≤ -)
〈proof 〉

theorem (in real-distribution) Levy-Inversion:
fixes a b :: real
assumes a ≤ b
defines µ ≡ measure M and ϕ ≡ char M
assumes µ {a} = 0 and µ {b} = 0
shows (λT . 1 / (2 ∗ pi) ∗ (CLBINT t=−T ..T . (iexp (−(t ∗ a)) − iexp (−(t ∗

b))) / (i ∗ t) ∗ ϕ t))
−−−−→ µ {a<..b}
(is (λT . 1 / (2 ∗ pi) ∗ (CLBINT t=−T ..T . ?F t ∗ ϕ t)) −−−−→ of-real (µ

{a<..b}))
〈proof 〉

theorem Levy-uniqueness:
fixes M1 M2 :: real measure
assumes real-distribution M1 real-distribution M2 and

char M1 = char M2
shows M1 = M2
〈proof 〉
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18.2 The Levy continuity theorem
theorem levy-continuity1 :

fixes M :: nat ⇒ real measure and M ′ :: real measure
assumes

∧
n. real-distribution (M n) real-distribution M ′ weak-conv-m M M ′

shows (λn. char (M n) t) −−−−→ char M ′ t
〈proof 〉

theorem levy-continuity:
fixes M :: nat ⇒ real measure and M ′ :: real measure
assumes real-distr-M :

∧
n. real-distribution (M n)

and real-distr-M ′: real-distribution M ′

and char-conv:
∧

t. (λn. char (M n) t) −−−−→ char M ′ t
shows weak-conv-m M M ′

〈proof 〉

end

19 The Central Limit Theorem
theory Central-Limit-Theorem

imports Levy
begin

theorem (in prob-space) central-limit-theorem-zero-mean:
fixes X :: nat ⇒ ′a ⇒ real

and µ :: real measure
and σ :: real
and S :: nat ⇒ ′a ⇒ real

assumes X-indep: indep-vars (λi. borel) X UNIV
and X-mean-0 :

∧
n. expectation (X n) = 0

and σ-pos: σ > 0
and X-square-integrable:

∧
n. integrable M (λx. (X n x)2)

and X-variance:
∧

n. variance (X n) = σ2

and X-distrib:
∧

n. distr M borel (X n) = µ
defines S n ≡ λx.

∑
i<n. X i x

shows weak-conv-m (λn. distr M borel (λx. S n x / sqrt (n ∗ σ2))) std-normal-distribution
〈proof 〉

theorem (in prob-space) central-limit-theorem:
fixes X :: nat ⇒ ′a ⇒ real

and µ :: real measure
and σ :: real
and S :: nat ⇒ ′a ⇒ real

assumes X-indep: indep-vars (λi. borel) X UNIV
and X-mean:

∧
n. expectation (X n) = m

and σ-pos: σ > 0
and X-square-integrable:

∧
n. integrable M (λx. (X n x)2)

and X-variance:
∧

n. variance (X n) = σ2
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and X-distrib:
∧

n. distr M borel (X n) = µ
defines X ′ i x ≡ X i x − m
shows weak-conv-m (λn. distr M borel (λx. (

∑
i<n. X ′ i x) / sqrt (n∗σ2)))

std-normal-distribution
〈proof 〉

end

theory Discrete-Topology
imports HOL−Analysis.Analysis
begin

Copy of discrete types with discrete topology. This space is polish.
typedef ′a discrete = UNIV :: ′a set
morphisms of-discrete discrete
〈proof 〉

instantiation discrete :: (type) metric-space
begin

definition dist-discrete :: ′a discrete ⇒ ′a discrete ⇒ real
where dist-discrete n m = (if n = m then 0 else 1 )

definition uniformity-discrete :: ( ′a discrete × ′a discrete) filter where
(uniformity::( ′a discrete × ′a discrete) filter) = (INF e∈{0 <..}. principal {(x,

y). dist x y < e})

definition open-discrete :: ′a discrete set ⇒ bool where
(open:: ′a discrete set ⇒ bool) U ←→ (∀ x∈U . eventually (λ(x ′, y). x ′ = x −→ y
∈ U ) uniformity)

instance 〈proof 〉
end

lemma open-discrete: open (S :: ′a discrete set)
〈proof 〉

instance discrete :: (type) complete-space
〈proof 〉

instance discrete :: (countable) countable
〈proof 〉

instance discrete :: (countable) second-countable-topology
〈proof 〉

instance discrete :: (countable) polish-space 〈proof 〉
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end

20 Probability mass function
theory Probability-Mass-Function
imports

Giry-Monad
HOL−Library.Multiset

begin

Conflicting notation from HOL−Analysis.Infinite-Sum
no-notation Infinite-Sum.abs-summable-on (infixr ‹abs ′-summable ′-on› 46 )

lemma AE-emeasure-singleton:
assumes x: emeasure M {x} 6= 0 and ae: AE x in M . P x shows P x
〈proof 〉

lemma AE-measure-singleton: measure M {x} 6= 0 =⇒ AE x in M . P x =⇒ P x
〈proof 〉

lemma (in finite-measure) AE-support-countable:
assumes [simp]: sets M = UNIV
shows (AE x in M . measure M {x} 6= 0 ) ←→ (∃S . countable S ∧ (AE x in M .

x ∈ S))
〈proof 〉

20.1 PMF as measure
typedef ′a pmf = {M :: ′a measure. prob-space M ∧ sets M = UNIV ∧ (AE x in
M . measure M {x} 6= 0 )}

morphisms measure-pmf Abs-pmf
〈proof 〉

declare [[coercion measure-pmf ]]

lemma prob-space-measure-pmf : prob-space (measure-pmf p)
〈proof 〉

interpretation measure-pmf : prob-space measure-pmf M for M
〈proof 〉

interpretation measure-pmf : subprob-space measure-pmf M for M
〈proof 〉

lemma subprob-space-measure-pmf : subprob-space (measure-pmf x)
〈proof 〉

locale pmf-as-measure
begin
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setup-lifting type-definition-pmf

end

context
begin

interpretation pmf-as-measure 〈proof 〉

lemma sets-measure-pmf [simp]: sets (measure-pmf p) = UNIV
〈proof 〉

lemma sets-measure-pmf-count-space[measurable-cong]:
sets (measure-pmf M ) = sets (count-space UNIV )
〈proof 〉

lemma space-measure-pmf [simp]: space (measure-pmf p) = UNIV
〈proof 〉

lemma measure-pmf-UNIV [simp]: measure (measure-pmf p) UNIV = 1
〈proof 〉

lemma measure-pmf-in-subprob-algebra[measurable (raw)]: measure-pmf x ∈ space
(subprob-algebra (count-space UNIV ))
〈proof 〉

lemma measurable-pmf-measure1 [simp]: measurable (M :: ′a pmf ) N = UNIV →
space N
〈proof 〉

lemma measurable-pmf-measure2 [simp]: measurable N (M :: ′a pmf ) = measurable
N (count-space UNIV )
〈proof 〉

lemma measurable-pair-restrict-pmf2 :
assumes countable A
assumes [measurable]:

∧
y. y ∈ A =⇒ (λx. f (x, y)) ∈ measurable M L

shows f ∈ measurable (M
⊗

M restrict-space (measure-pmf N ) A) L (is f ∈
measurable ?M -)
〈proof 〉

lemma measurable-pair-restrict-pmf1 :
assumes countable A
assumes [measurable]:

∧
x. x ∈ A =⇒ (λy. f (x, y)) ∈ measurable N L

shows f ∈ measurable (restrict-space (measure-pmf M ) A
⊗

M N ) L
〈proof 〉

lift-definition pmf :: ′a pmf ⇒ ′a ⇒ real is λM x. measure M {x} 〈proof 〉
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lift-definition set-pmf :: ′a pmf ⇒ ′a set is λM . {x. measure M {x} 6= 0} 〈proof 〉
declare [[coercion set-pmf ]]

lemma AE-measure-pmf : AE x in (M :: ′a pmf ). x ∈ M
〈proof 〉

lemma emeasure-pmf-single-eq-zero-iff :
fixes M :: ′a pmf
shows emeasure M {y} = 0 ←→ y /∈ M
〈proof 〉

lemma AE-measure-pmf-iff : (AE x in measure-pmf M . P x) ←→ (∀ y∈M . P y)
〈proof 〉

lemma AE-pmfI : (
∧

y. y ∈ set-pmf M =⇒ P y) =⇒ almost-everywhere (measure-pmf
M ) P
〈proof 〉

lemma countable-set-pmf [simp]: countable (set-pmf p)
〈proof 〉

lemma pmf-positive: x ∈ set-pmf p =⇒ 0 < pmf p x
〈proof 〉

lemma pmf-nonneg[simp]: 0 ≤ pmf p x
〈proof 〉

lemma pmf-not-neg [simp]: ¬pmf p x < 0
〈proof 〉

lemma pmf-pos [simp]: pmf p x 6= 0 =⇒ pmf p x > 0
〈proof 〉

lemma pmf-le-1 : pmf p x ≤ 1
〈proof 〉

lemma set-pmf-not-empty: set-pmf M 6= {}
〈proof 〉

lemma set-pmf-iff : x ∈ set-pmf M ←→ pmf M x 6= 0
〈proof 〉

lemma pmf-positive-iff : 0 < pmf p x ←→ x ∈ set-pmf p
〈proof 〉

lemma set-pmf-eq: set-pmf M = {x. pmf M x 6= 0}
〈proof 〉
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lemma set-pmf-eq ′: set-pmf p = {x. pmf p x > 0}
〈proof 〉

lemma emeasure-pmf-single:
fixes M :: ′a pmf
shows emeasure M {x} = pmf M x
〈proof 〉

lemma measure-pmf-single: measure (measure-pmf M ) {x} = pmf M x
〈proof 〉

lemma emeasure-measure-pmf-finite: finite S =⇒ emeasure (measure-pmf M ) S
= (

∑
s∈S . pmf M s)

〈proof 〉

lemma measure-measure-pmf-finite: finite S =⇒ measure (measure-pmf M ) S =
sum (pmf M ) S
〈proof 〉

lemma sum-pmf-eq-1 :
assumes finite A set-pmf p ⊆ A
shows (

∑
x∈A. pmf p x) = 1

〈proof 〉

lemma nn-integral-measure-pmf-support:
fixes f :: ′a ⇒ ennreal
assumes f : finite A and nn:

∧
x. x ∈ A =⇒ 0 ≤ f x

∧
x. x ∈ set-pmf M =⇒ x

/∈ A =⇒ f x = 0
shows (

∫
+x. f x ∂measure-pmf M ) = (

∑
x∈A. f x ∗ pmf M x)

〈proof 〉

lemma nn-integral-measure-pmf-finite:
fixes f :: ′a ⇒ ennreal
assumes f : finite (set-pmf M ) and nn:

∧
x. x ∈ set-pmf M =⇒ 0 ≤ f x

shows (
∫

+x. f x ∂measure-pmf M ) = (
∑

x∈set-pmf M . f x ∗ pmf M x)
〈proof 〉

lemma integrable-measure-pmf-finite:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows finite (set-pmf M ) =⇒ integrable M f
〈proof 〉

lemma integral-measure-pmf-real:
assumes [simp]: finite A and

∧
a. a ∈ set-pmf M =⇒ f a 6= 0 =⇒ a ∈ A

shows (
∫

x. f x ∂measure-pmf M ) = (
∑

a∈A. f a ∗ pmf M a)
〈proof 〉

lemma integrable-pmf : integrable (count-space X) (pmf M )
〈proof 〉
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lemma integral-pmf : (
∫

x. pmf M x ∂count-space X) = measure M X
〈proof 〉

lemma integral-pmf-restrict:
(f :: ′a ⇒ ′b::{banach, second-countable-topology}) ∈ borel-measurable (count-space

UNIV ) =⇒
(
∫

x. f x ∂measure-pmf M ) = (
∫

x. f x ∂restrict-space M M )
〈proof 〉

lemma emeasure-pmf : emeasure (M :: ′a pmf ) M = 1
〈proof 〉

lemma emeasure-pmf-UNIV [simp]: emeasure (measure-pmf M ) UNIV = 1
〈proof 〉

lemma in-null-sets-measure-pmfI :
A ∩ set-pmf p = {} =⇒ A ∈ null-sets (measure-pmf p)
〈proof 〉

lemma measure-subprob: measure-pmf M ∈ space (subprob-algebra (count-space
UNIV ))
〈proof 〉

20.2 Monad Interpretation
lemma measurable-measure-pmf [measurable]:
(λx. measure-pmf (M x)) ∈ measurable (count-space UNIV ) (subprob-algebra

(count-space UNIV ))
〈proof 〉

lemma bind-measure-pmf-cong:
assumes

∧
x. A x ∈ space (subprob-algebra N )

∧
x. B x ∈ space (subprob-algebra

N )
assumes

∧
i. i ∈ set-pmf x =⇒ A i = B i

shows bind (measure-pmf x) A = bind (measure-pmf x) B
〈proof 〉

lift-definition bind-pmf :: ′a pmf ⇒ ( ′a ⇒ ′b pmf ) ⇒ ′b pmf is bind
〈proof 〉

adhoc-overloading Monad-Syntax.bind 
 bind-pmf

lemma ennreal-pmf-bind: pmf (bind-pmf N f ) i = (
∫

+x. pmf (f x) i ∂measure-pmf
N )
〈proof 〉

lemma pmf-bind: pmf (bind-pmf N f ) i = (
∫

x. pmf (f x) i ∂measure-pmf N )
〈proof 〉
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lemma bind-pmf-const[simp]: bind-pmf M (λx. c) = c
〈proof 〉

lemma set-bind-pmf [simp]: set-pmf (bind-pmf M N ) = (
⋃

M∈set-pmf M . set-pmf
(N M ))
〈proof 〉

lemma bind-pmf-cong [fundef-cong]:
assumes p = q
shows (

∧
x. x ∈ set-pmf q =⇒ f x = g x) =⇒ bind-pmf p f = bind-pmf q g

〈proof 〉

lemma bind-pmf-cong-simp:
p = q =⇒ (

∧
x. x ∈ set-pmf q =simp=> f x = g x) =⇒ bind-pmf p f = bind-pmf

q g
〈proof 〉

lemma measure-pmf-bind: measure-pmf (bind-pmf M f ) = (measure-pmf M >>=
(λx. measure-pmf (f x)))
〈proof 〉

lemma nn-integral-bind-pmf [simp]: (
∫

+x. f x ∂bind-pmf M N ) = (
∫

+x.
∫

+y. f y
∂N x ∂M )
〈proof 〉

lemma emeasure-bind-pmf [simp]: emeasure (bind-pmf M N ) X = (
∫

+x. emeasure
(N x) X ∂M )
〈proof 〉

lift-definition return-pmf :: ′a ⇒ ′a pmf is return (count-space UNIV )
〈proof 〉

lemma bind-return-pmf : bind-pmf (return-pmf x) f = f x
〈proof 〉

lemma set-return-pmf [simp]: set-pmf (return-pmf x) = {x}
〈proof 〉

lemma bind-return-pmf ′: bind-pmf N return-pmf = N
〈proof 〉

lemma bind-assoc-pmf : bind-pmf (bind-pmf A B) C = bind-pmf A (λx. bind-pmf
(B x) C )
〈proof 〉

definition map-pmf f M = bind-pmf M (λx. return-pmf (f x))

lemma map-bind-pmf : map-pmf f (bind-pmf M g) = bind-pmf M (λx. map-pmf f
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(g x))
〈proof 〉

lemma bind-map-pmf : bind-pmf (map-pmf f M ) g = bind-pmf M (λx. g (f x))
〈proof 〉

lemma map-pmf-transfer [transfer-rule]:
rel-fun (=) (rel-fun cr-pmf cr-pmf ) (λf M . distr M (count-space UNIV ) f )

map-pmf
〈proof 〉

lemma map-pmf-rep-eq:
measure-pmf (map-pmf f M ) = distr (measure-pmf M ) (count-space UNIV ) f
〈proof 〉

lemma map-pmf-id[simp]: map-pmf id = id
〈proof 〉

lemma map-pmf-ident[simp]: map-pmf (λx. x) = (λx. x)
〈proof 〉

lemma map-pmf-compose: map-pmf (f ◦ g) = map-pmf f ◦ map-pmf g
〈proof 〉

lemma map-pmf-comp: map-pmf f (map-pmf g M ) = map-pmf (λx. f (g x)) M
〈proof 〉

lemma map-pmf-cong: p = q =⇒ (
∧

x. x ∈ set-pmf q =⇒ f x = g x) =⇒ map-pmf
f p = map-pmf g q
〈proof 〉

lemma pmf-set-map: set-pmf ◦ map-pmf f = (‘) f ◦ set-pmf
〈proof 〉

lemma set-map-pmf [simp]: set-pmf (map-pmf f M ) = f‘set-pmf M
〈proof 〉

lemma emeasure-map-pmf [simp]: emeasure (map-pmf f M ) X = emeasure M (f
−‘ X)
〈proof 〉

lemma measure-map-pmf [simp]: measure (map-pmf f M ) X = measure M (f −‘
X)
〈proof 〉

lemma nn-integral-map-pmf [simp]: (
∫

+x. f x ∂map-pmf g M ) = (
∫

+x. f (g x)
∂M )
〈proof 〉
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lemma ennreal-pmf-map: pmf (map-pmf f p) x = (
∫

+ y. indicator (f −‘ {x}) y
∂measure-pmf p)
〈proof 〉

lemma pmf-map: pmf (map-pmf f p) x = measure p (f −‘ {x})
〈proof 〉

lemma nn-integral-pmf : (
∫

+ x. pmf p x ∂count-space A) = emeasure (measure-pmf
p) A
〈proof 〉

lemma integral-map-pmf [simp]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows integralL (map-pmf g p) f = integralL p (λx. f (g x))
〈proof 〉

lemma integrable-map-pmf-eq [simp]:
fixes g :: ′a ⇒ ′b::{banach, second-countable-topology}
shows integrable (map-pmf f p) g ←→ integrable (measure-pmf p) (λx. g (f x))
〈proof 〉

lemma integrable-map-pmf [intro]:
fixes g :: ′a ⇒ ′b::{banach, second-countable-topology}
shows integrable (measure-pmf p) (λx. g (f x)) =⇒ integrable (map-pmf f p) g
〈proof 〉

lemma pmf-abs-summable [intro]: pmf p abs-summable-on A
〈proof 〉

lemma measure-pmf-conv-infsetsum: measure (measure-pmf p) A = infsetsum (pmf
p) A
〈proof 〉

lemma infsetsum-pmf-eq-1 :
assumes set-pmf p ⊆ A
shows infsetsum (pmf p) A = 1
〈proof 〉

lemma map-return-pmf [simp]: map-pmf f (return-pmf x) = return-pmf (f x)
〈proof 〉

lemma map-pmf-const[simp]: map-pmf (λ-. c) M = return-pmf c
〈proof 〉

lemma pmf-return [simp]: pmf (return-pmf x) y = indicator {y} x
〈proof 〉

lemma nn-integral-return-pmf [simp]: 0 ≤ f x =⇒ (
∫

+x. f x ∂return-pmf x) = f x
〈proof 〉
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lemma emeasure-return-pmf [simp]: emeasure (return-pmf x) X = indicator X x
〈proof 〉

lemma measure-return-pmf [simp]: measure-pmf .prob (return-pmf x) A = indica-
tor A x
〈proof 〉

lemma return-pmf-inj[simp]: return-pmf x = return-pmf y ←→ x = y
〈proof 〉

lemma map-pmf-eq-return-pmf-iff :
map-pmf f p = return-pmf x ←→ (∀ y ∈ set-pmf p. f y = x)
〈proof 〉

definition pair-pmf A B = bind-pmf A (λx. bind-pmf B (λy. return-pmf (x, y)))

lemma pmf-pair : pmf (pair-pmf M N ) (a, b) = pmf M a ∗ pmf N b
〈proof 〉

lemma set-pair-pmf [simp]: set-pmf (pair-pmf A B) = set-pmf A × set-pmf B
〈proof 〉

lemma measure-pmf-in-subprob-space[measurable (raw)]:
measure-pmf M ∈ space (subprob-algebra (count-space UNIV ))
〈proof 〉

lemma nn-integral-pair-pmf ′: (
∫

+x. f x ∂pair-pmf A B) = (
∫

+a.
∫

+b. f (a, b)
∂B ∂A)
〈proof 〉

lemma bind-pair-pmf :
assumes M [measurable]: M ∈ measurable (count-space UNIV

⊗
M count-space

UNIV ) (subprob-algebra N )
shows measure-pmf (pair-pmf A B) >>= M = (measure-pmf A >>= (λx. mea-

sure-pmf B >>= (λy. M (x, y))))
(is ?L = ?R)

〈proof 〉

lemma map-fst-pair-pmf : map-pmf fst (pair-pmf A B) = A
〈proof 〉

lemma map-snd-pair-pmf : map-pmf snd (pair-pmf A B) = B
〈proof 〉

lemma nn-integral-pmf ′:
inj-on f A =⇒ (

∫
+x. pmf p (f x) ∂count-space A) = emeasure p (f ‘ A)

〈proof 〉
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lemma pmf-le-0-iff [simp]: pmf M p ≤ 0 ←→ pmf M p = 0
〈proof 〉

lemma min-pmf-0 [simp]: min (pmf M p) 0 = 0 min 0 (pmf M p) = 0
〈proof 〉

lemma pmf-eq-0-set-pmf : pmf M p = 0 ←→ p /∈ set-pmf M
〈proof 〉

lemma pmf-map-inj: inj-on f (set-pmf M ) =⇒ x ∈ set-pmf M =⇒ pmf (map-pmf
f M ) (f x) = pmf M x
〈proof 〉

lemma pair-return-pmf [simp]: pair-pmf (return-pmf x) (return-pmf y) = return-pmf
(x, y)
〈proof 〉

lemma pmf-map-inj ′: inj f =⇒ pmf (map-pmf f M ) (f x) = pmf M x
〈proof 〉

lemma expectation-pair-pmf-fst [simp]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows measure-pmf .expectation (pair-pmf p q) (λx. f (fst x)) = measure-pmf .expectation

p f
〈proof 〉

lemma expectation-pair-pmf-snd [simp]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows measure-pmf .expectation (pair-pmf p q) (λx. f (snd x)) = measure-pmf .expectation

q f
〈proof 〉

lemma pmf-map-outside: x /∈ f ‘ set-pmf M =⇒ pmf (map-pmf f M ) x = 0
〈proof 〉

lemma measurable-set-pmf [measurable]: Measurable.pred (count-space UNIV ) (λx.
x ∈ set-pmf M )
〈proof 〉

20.3 PMFs as function
context

fixes f :: ′a ⇒ real
assumes nonneg:

∧
x. 0 ≤ f x

assumes prob: (
∫

+x. f x ∂count-space UNIV ) = 1
begin

lift-definition embed-pmf :: ′a pmf is density (count-space UNIV ) (ennreal ◦ f )
〈proof 〉
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lemma pmf-embed-pmf : pmf embed-pmf x = f x
〈proof 〉

lemma set-embed-pmf : set-pmf embed-pmf = {x. f x 6= 0}
〈proof 〉

end

lemma embed-pmf-transfer :
rel-fun (eq-onp (λf . (∀ x. 0 ≤ f x) ∧ (

∫
+x. ennreal (f x) ∂count-space UNIV )

= 1 )) pmf-as-measure.cr-pmf (λf . density (count-space UNIV ) (ennreal ◦ f )) em-
bed-pmf
〈proof 〉

lemma measure-pmf-eq-density: measure-pmf p = density (count-space UNIV )
(pmf p)
〈proof 〉

lemma td-pmf-embed-pmf :
type-definition pmf embed-pmf {f :: ′a ⇒ real. (∀ x. 0 ≤ f x) ∧ (

∫
+x. ennreal (f

x) ∂count-space UNIV ) = 1}
〈proof 〉

end

lemma nn-integral-measure-pmf : (
∫

+ x. f x ∂measure-pmf p) =
∫

+ x. ennreal
(pmf p x) ∗ f x ∂count-space UNIV
〈proof 〉

lemma integral-measure-pmf :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes A: finite A
shows (

∧
a. a ∈ set-pmf M =⇒ f a 6= 0 =⇒ a ∈ A) =⇒ (LINT x |M . f x) =

(
∑

a∈A. pmf M a ∗R f a)
〈proof 〉

lemma expectation-return-pmf [simp]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows measure-pmf .expectation (return-pmf x) f = f x
〈proof 〉

lemma pmf-expectation-bind:
fixes p :: ′a pmf and f :: ′a ⇒ ′b pmf

and h :: ′b ⇒ ′c::{banach, second-countable-topology}
assumes finite A

∧
x. x ∈ A =⇒ finite (set-pmf (f x)) set-pmf p ⊆ A

shows measure-pmf .expectation (p >>= f ) h =
(
∑

a∈A. pmf p a ∗R measure-pmf .expectation (f a) h)
〈proof 〉
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lemma continuous-on-LINT-pmf : — This is dominated convergence!?
fixes f :: ′i ⇒ ′a::topological-space ⇒ ′b::{banach, second-countable-topology}
assumes f :

∧
i. i ∈ set-pmf M =⇒ continuous-on A (f i)

and bnd:
∧

a i. a ∈ A =⇒ i ∈ set-pmf M =⇒ norm (f i a) ≤ B
shows continuous-on A (λa. LINT i|M . f i a)
〈proof 〉

lemma continuous-on-LBINT :
fixes f :: real ⇒ real
assumes f :

∧
b. a ≤ b =⇒ set-integrable lborel {a..b} f

shows continuous-on UNIV (λb. LBINT x :{a..b}. f x)
〈proof 〉

locale pmf-as-function
begin

setup-lifting td-pmf-embed-pmf

lemma set-pmf-transfer [transfer-rule]:
assumes bi-total A
shows rel-fun (pcr-pmf A) (rel-set A) (λf . {x. f x 6= 0}) set-pmf
〈proof 〉

end

context
begin

interpretation pmf-as-function 〈proof 〉

lemma pmf-eqI : (
∧

i. pmf M i = pmf N i) =⇒ M = N
〈proof 〉

lemma pmf-eq-iff : M = N ←→ (∀ i. pmf M i = pmf N i)
〈proof 〉

lemma pmf-neq-exists-less:
assumes M 6= N
shows ∃ x. pmf M x < pmf N x
〈proof 〉

lemma bind-commute-pmf : bind-pmf A (λx. bind-pmf B (C x)) = bind-pmf B (λy.
bind-pmf A (λx. C x y))
〈proof 〉

lemma pair-map-pmf1 : pair-pmf (map-pmf f A) B = map-pmf (apfst f ) (pair-pmf
A B)
〈proof 〉
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lemma pair-map-pmf2 : pair-pmf A (map-pmf f B) = map-pmf (apsnd f ) (pair-pmf
A B)
〈proof 〉

lemma map-pair : map-pmf (λ(a, b). (f a, g b)) (pair-pmf A B) = pair-pmf (map-pmf
f A) (map-pmf g B)
〈proof 〉

end

lemma pair-return-pmf1 : pair-pmf (return-pmf x) y = map-pmf (Pair x) y
〈proof 〉

lemma pair-return-pmf2 : pair-pmf x (return-pmf y) = map-pmf (λx. (x, y)) x
〈proof 〉

lemma pair-pair-pmf : pair-pmf (pair-pmf u v) w = map-pmf (λ(x, (y, z)). ((x,
y), z)) (pair-pmf u (pair-pmf v w))
〈proof 〉

lemma pair-commute-pmf : pair-pmf x y = map-pmf (λ(x, y). (y, x)) (pair-pmf y
x)
〈proof 〉

lemma set-pmf-subset-singleton: set-pmf p ⊆ {x} ←→ p = return-pmf x
〈proof 〉

lemma bind-eq-return-pmf :
bind-pmf p f = return-pmf x ←→ (∀ y∈set-pmf p. f y = return-pmf x)
(is ?lhs ←→ ?rhs)
〈proof 〉

lemma pmf-False-conv-True: pmf p False = 1 − pmf p True
〈proof 〉

lemma pmf-True-conv-False: pmf p True = 1 − pmf p False
〈proof 〉

20.4 Conditional Probabilities
lemma measure-pmf-zero-iff : measure (measure-pmf p) s = 0 ←→ set-pmf p ∩ s
= {}
〈proof 〉

context
fixes p :: ′a pmf and s :: ′a set
assumes not-empty: set-pmf p ∩ s 6= {}

begin



THEORY “Probability-Mass-Function” 108

interpretation pmf-as-measure 〈proof 〉

lemma emeasure-measure-pmf-not-zero: emeasure (measure-pmf p) s 6= 0
〈proof 〉

lemma measure-measure-pmf-not-zero: measure (measure-pmf p) s 6= 0
〈proof 〉

lift-definition cond-pmf :: ′a pmf is
uniform-measure (measure-pmf p) s
〈proof 〉

lemma pmf-cond: pmf cond-pmf x = (if x ∈ s then pmf p x / measure p s else 0 )
〈proof 〉

lemma set-cond-pmf [simp]: set-pmf cond-pmf = set-pmf p ∩ s
〈proof 〉

end

lemma measure-pmf-posI : x ∈ set-pmf p =⇒ x ∈ A =⇒ measure-pmf .prob p A >
0
〈proof 〉

lemma cond-map-pmf :
assumes set-pmf p ∩ f −‘ s 6= {}
shows cond-pmf (map-pmf f p) s = map-pmf f (cond-pmf p (f −‘ s))
〈proof 〉

lemma bind-cond-pmf-cancel:
assumes [simp]:

∧
x. x ∈ set-pmf p =⇒ set-pmf q ∩ {y. R x y} 6= {}

assumes [simp]:
∧

y. y ∈ set-pmf q =⇒ set-pmf p ∩ {x. R x y} 6= {}
assumes [simp]:

∧
x y. x ∈ set-pmf p =⇒ y ∈ set-pmf q =⇒ R x y =⇒ measure

q {y. R x y} = measure p {x. R x y}
shows bind-pmf p (λx. cond-pmf q {y. R x y}) = q
〈proof 〉

20.5 Relator
inductive rel-pmf :: ( ′a ⇒ ′b ⇒ bool) ⇒ ′a pmf ⇒ ′b pmf ⇒ bool
for R p q
where
[[
∧

x y. (x, y) ∈ set-pmf pq =⇒ R x y;
map-pmf fst pq = p; map-pmf snd pq = q ]]

=⇒ rel-pmf R p q

lemma rel-pmfI :
assumes R: rel-set R (set-pmf p) (set-pmf q)
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assumes eq:
∧

x y. x ∈ set-pmf p =⇒ y ∈ set-pmf q =⇒ R x y =⇒
measure p {x. R x y} = measure q {y. R x y}

shows rel-pmf R p q
〈proof 〉

lemma rel-pmf-imp-rel-set: rel-pmf R p q =⇒ rel-set R (set-pmf p) (set-pmf q)
〈proof 〉

lemma rel-pmfD-measure:
assumes rel-R: rel-pmf R p q and R:

∧
a b. R a b =⇒ R a y ←→ R x b

assumes x ∈ set-pmf p y ∈ set-pmf q
shows measure p {x. R x y} = measure q {y. R x y}
〈proof 〉

lemma rel-pmf-measureD:
assumes rel-pmf R p q
shows measure (measure-pmf p) A ≤ measure (measure-pmf q) {y. ∃ x∈A. R x

y} (is ?lhs ≤ ?rhs)
〈proof 〉

lemma rel-pmf-iff-measure:
assumes symp R transp R
shows rel-pmf R p q ←→

rel-set R (set-pmf p) (set-pmf q) ∧
(∀ x∈set-pmf p. ∀ y∈set-pmf q. R x y −→ measure p {x. R x y} = measure q

{y. R x y})
〈proof 〉

lemma quotient-rel-set-disjoint:
equivp R =⇒ C ∈ UNIV // {(x, y). R x y} =⇒ rel-set R A B =⇒ A ∩ C = {}
←→ B ∩ C = {}
〈proof 〉

lemma quotientD: equiv X R =⇒ A ∈ X // R =⇒ x ∈ A =⇒ A = R ‘‘ {x}
〈proof 〉

lemma rel-pmf-iff-equivp:
assumes equivp R
shows rel-pmf R p q ←→ (∀C∈UNIV // {(x, y). R x y}. measure p C = measure

q C )
(is - ←→ (∀C∈-//?R. -))

〈proof 〉

bnf pmf : ′a pmf map: map-pmf sets: set-pmf bd : card-suc natLeq rel: rel-pmf
〈proof 〉

lemma map-pmf-idI : (
∧

x. x ∈ set-pmf p =⇒ f x = x) =⇒ map-pmf f p = p
〈proof 〉
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lemma rel-pmf-conj[simp]:
rel-pmf (λx y. P ∧ Q x y) x y ←→ P ∧ rel-pmf Q x y
rel-pmf (λx y. Q x y ∧ P) x y ←→ P ∧ rel-pmf Q x y
〈proof 〉

lemma rel-pmf-top[simp]: rel-pmf top = top
〈proof 〉

lemma rel-pmf-return-pmf1 : rel-pmf R (return-pmf x) M ←→ (∀ a∈M . R x a)
〈proof 〉

lemma rel-pmf-return-pmf2 : rel-pmf R M (return-pmf x) ←→ (∀ a∈M . R a x)
〈proof 〉

lemma rel-return-pmf [simp]: rel-pmf R (return-pmf x1 ) (return-pmf x2 ) = R x1
x2
〈proof 〉

lemma rel-pmf-False[simp]: rel-pmf (λx y. False) x y = False
〈proof 〉

lemma rel-pmf-rel-prod:
rel-pmf (rel-prod R S) (pair-pmf A A ′) (pair-pmf B B ′) ←→ rel-pmf R A B ∧

rel-pmf S A ′ B ′

〈proof 〉

lemma rel-pmf-reflI :
assumes

∧
x. x ∈ set-pmf p =⇒ P x x

shows rel-pmf P p p
〈proof 〉

lemma rel-pmf-bij-betw:
assumes f : bij-betw f (set-pmf p) (set-pmf q)
and eq:

∧
x. x ∈ set-pmf p =⇒ pmf p x = pmf q (f x)

shows rel-pmf (λx y. f x = y) p q
〈proof 〉

context
begin

interpretation pmf-as-measure 〈proof 〉

definition join-pmf M = bind-pmf M (λx. x)

lemma bind-eq-join-pmf : bind-pmf M f = join-pmf (map-pmf f M )
〈proof 〉

lemma join-eq-bind-pmf : join-pmf M = bind-pmf M id
〈proof 〉
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lemma pmf-join: pmf (join-pmf N ) i = (
∫

M . pmf M i ∂measure-pmf N )
〈proof 〉

lemma ennreal-pmf-join: ennreal (pmf (join-pmf N ) i) = (
∫

+M . pmf M i ∂mea-
sure-pmf N )
〈proof 〉

lemma set-pmf-join-pmf [simp]: set-pmf (join-pmf f ) = (
⋃

p∈set-pmf f . set-pmf
p)
〈proof 〉

lemma join-return-pmf : join-pmf (return-pmf M ) = M
〈proof 〉

lemma map-join-pmf : map-pmf f (join-pmf AA) = join-pmf (map-pmf (map-pmf
f ) AA)
〈proof 〉

lemma join-map-return-pmf : join-pmf (map-pmf return-pmf A) = A
〈proof 〉

end

lemma rel-pmf-joinI :
assumes rel-pmf (rel-pmf P) p q
shows rel-pmf P (join-pmf p) (join-pmf q)
〈proof 〉

lemma rel-pmf-bindI :
assumes pq: rel-pmf R p q
and fg:

∧
x y. R x y =⇒ rel-pmf P (f x) (g y)

shows rel-pmf P (bind-pmf p f ) (bind-pmf q g)
〈proof 〉

Proof that rel-pmf preserves orders. Antisymmetry proof follows Thm. 1
in N. Saheb-Djahromi, Cpo’s of measures for nondeterminism, Theoretical
Computer Science 12(1):19–37, 1980, https://doi.org/10.1016/0304-3975(80)
90003-1
lemma

assumes ∗: rel-pmf R p q
and refl: reflp R and trans: transp R
shows measure-Ici: measure p {y. R x y} ≤ measure q {y. R x y} (is ?thesis1 )
and measure-Ioi: measure p {y. R x y ∧ ¬ R y x} ≤ measure q {y. R x y ∧ ¬

R y x} (is ?thesis2 )
〈proof 〉

lemma rel-pmf-inf :
fixes p q :: ′a pmf

https://doi.org/10.1016/0304-3975(80)90003-1
https://doi.org/10.1016/0304-3975(80)90003-1
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assumes 1 : rel-pmf R p q
assumes 2 : rel-pmf R q p
and refl: reflp R and trans: transp R
shows rel-pmf (inf R R−1−1) p q
〈proof 〉

lemma rel-pmf-antisym:
fixes p q :: ′a pmf
assumes 1 : rel-pmf R p q
assumes 2 : rel-pmf R q p
and refl: reflp R and trans: transp R and antisym: antisymp R
shows p = q
〈proof 〉

lemma reflp-rel-pmf : reflp R =⇒ reflp (rel-pmf R)
〈proof 〉

lemma antisymp-rel-pmf :
[[ reflp R; transp R; antisymp R ]]
=⇒ antisymp (rel-pmf R)
〈proof 〉

lemma transp-rel-pmf :
assumes transp R
shows transp (rel-pmf R)
〈proof 〉

20.6 Distributions
context
begin

interpretation pmf-as-function 〈proof 〉

20.6.1 Bernoulli Distribution
lift-definition bernoulli-pmf :: real ⇒ bool pmf is
λp b. ((λp. if b then p else 1 − p) ◦ min 1 ◦ max 0 ) p
〈proof 〉

lemma pmf-bernoulli-True[simp]: 0 ≤ p =⇒ p ≤ 1 =⇒ pmf (bernoulli-pmf p)
True = p
〈proof 〉

lemma pmf-bernoulli-False[simp]: 0 ≤ p =⇒ p ≤ 1 =⇒ pmf (bernoulli-pmf p)
False = 1 − p
〈proof 〉

lemma set-pmf-bernoulli[simp]: 0 < p =⇒ p < 1 =⇒ set-pmf (bernoulli-pmf p)
= UNIV
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〈proof 〉

lemma nn-integral-bernoulli-pmf [simp]:
assumes [simp]: 0 ≤ p p ≤ 1

∧
x. 0 ≤ f x

shows (
∫

+x. f x ∂bernoulli-pmf p) = f True ∗ p + f False ∗ (1 − p)
〈proof 〉

lemma integral-bernoulli-pmf [simp]:
assumes [simp]: 0 ≤ p p ≤ 1
shows (

∫
x. f x ∂bernoulli-pmf p) = f True ∗ p + f False ∗ (1 − p)

〈proof 〉

lemma pmf-bernoulli-half [simp]: pmf (bernoulli-pmf (1 / 2 )) x = 1 / 2
〈proof 〉

lemma measure-pmf-bernoulli-half : measure-pmf (bernoulli-pmf (1 / 2 )) = uni-
form-count-measure UNIV
〈proof 〉

20.6.2 Geometric Distribution
context

fixes p :: real assumes p[arith]: 0 < p p ≤ 1
begin

lift-definition geometric-pmf :: nat pmf is λn. (1 − p)^n ∗ p
〈proof 〉

lemma pmf-geometric[simp]: pmf geometric-pmf n = (1 − p)^n ∗ p
〈proof 〉

end

lemma geometric-pmf-1 [simp]: geometric-pmf 1 = return-pmf 0
〈proof 〉

lemma set-pmf-geometric: 0 < p =⇒ p < 1 =⇒ set-pmf (geometric-pmf p) =
UNIV
〈proof 〉

lemma geometric-sums-times-n:
fixes c:: ′a::{banach,real-normed-field}
assumes norm c < 1
shows (λn. c^n ∗ of-nat n) sums (c / (1 − c)2)
〈proof 〉

lemma geometric-sums-times-norm:
fixes c:: ′a::{banach,real-normed-field}
assumes norm c < 1
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shows (λn. norm (c^n ∗ of-nat n)) sums (norm c / (1 − norm c)2)
〈proof 〉

lemma integrable-real-geometric-pmf :
assumes p ∈ {0<..1}
shows integrable (geometric-pmf p) real
〈proof 〉

lemma expectation-geometric-pmf :
assumes p ∈ {0<..1}
shows measure-pmf .expectation (geometric-pmf p) real = (1 − p) / p
〈proof 〉

lemma geometric-bind-pmf-unfold:
assumes p ∈ {0<..1}
shows geometric-pmf p =

do {b ← bernoulli-pmf p;
if b then return-pmf 0 else map-pmf Suc (geometric-pmf p)}

〈proof 〉

20.6.3 Uniform Multiset Distribution
context

fixes M :: ′a multiset assumes M-not-empty: M 6= {#}
begin

lift-definition pmf-of-multiset :: ′a pmf is λx. count M x / size M
〈proof 〉

lemma pmf-of-multiset[simp]: pmf pmf-of-multiset x = count M x / size M
〈proof 〉

lemma set-pmf-of-multiset[simp]: set-pmf pmf-of-multiset = set-mset M
〈proof 〉

end

20.6.4 Uniform Distribution
context

fixes S :: ′a set assumes S-not-empty: S 6= {} and S-finite: finite S
begin

lift-definition pmf-of-set :: ′a pmf is λx. indicator S x / card S
〈proof 〉

lemma pmf-of-set[simp]: pmf pmf-of-set x = indicator S x / card S
〈proof 〉

lemma set-pmf-of-set[simp]: set-pmf pmf-of-set = S
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〈proof 〉

lemma emeasure-pmf-of-set-space[simp]: emeasure pmf-of-set S = 1
〈proof 〉

lemma nn-integral-pmf-of-set: nn-integral (measure-pmf pmf-of-set) f = sum f S
/ card S
〈proof 〉

lemma integral-pmf-of-set: integralL (measure-pmf pmf-of-set) f = sum f S / card
S
〈proof 〉

lemma emeasure-pmf-of-set: emeasure (measure-pmf pmf-of-set) A = card (S ∩
A) / card S
〈proof 〉

lemma measure-pmf-of-set: measure (measure-pmf pmf-of-set) A = card (S ∩ A)
/ card S
〈proof 〉

end

lemma pmf-expectation-bind-pmf-of-set:
fixes A :: ′a set and f :: ′a ⇒ ′b pmf

and h :: ′b ⇒ ′c::{banach, second-countable-topology}
assumes A 6= {} finite A

∧
x. x ∈ A =⇒ finite (set-pmf (f x))

shows measure-pmf .expectation (pmf-of-set A >>= f ) h =
(
∑

a∈A. measure-pmf .expectation (f a) h /R real (card A))
〈proof 〉

lemma map-pmf-of-set:
assumes finite A A 6= {}
shows map-pmf f (pmf-of-set A) = pmf-of-multiset (image-mset f (mset-set

A))
(is ?lhs = ?rhs)

〈proof 〉

lemma pmf-bind-pmf-of-set:
assumes A 6= {} finite A
shows pmf (bind-pmf (pmf-of-set A) f ) x =

(
∑

xa∈A. pmf (f xa) x) / real-of-nat (card A) (is ?lhs = ?rhs)
〈proof 〉

lemma pmf-of-set-singleton: pmf-of-set {x} = return-pmf x
〈proof 〉

lemma map-pmf-of-set-inj:
assumes f : inj-on f A
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and [simp]: A 6= {} finite A
shows map-pmf f (pmf-of-set A) = pmf-of-set (f ‘ A) (is ?lhs = ?rhs)
〈proof 〉

lemma map-pmf-of-set-bij-betw:
assumes bij-betw f A B A 6= {} finite A
shows map-pmf f (pmf-of-set A) = pmf-of-set B
〈proof 〉

Choosing an element uniformly at random from the union of a disjoint family
of finite non-empty sets with the same size is the same as first choosing a
set from the family uniformly at random and then choosing an element from
the chosen set uniformly at random.
lemma pmf-of-set-UN :

assumes finite (
⋃
(f ‘ A)) A 6= {}

∧
x. x ∈ A =⇒ f x 6= {}∧

x. x ∈ A =⇒ card (f x) = n disjoint-family-on f A
shows pmf-of-set (

⋃
(f ‘ A)) = do {x ← pmf-of-set A; pmf-of-set (f x)}

(is ?lhs = ?rhs)
〈proof 〉

lemma bernoulli-pmf-half-conv-pmf-of-set: bernoulli-pmf (1 / 2 ) = pmf-of-set UNIV
〈proof 〉

20.6.5 Poisson Distribution
context

fixes rate :: real assumes rate-pos: 0 < rate
begin

lift-definition poisson-pmf :: nat pmf is λk. rate ^ k / fact k ∗ exp (−rate)
〈proof 〉

lemma pmf-poisson[simp]: pmf poisson-pmf k = rate ^ k / fact k ∗ exp (−rate)
〈proof 〉

lemma set-pmf-poisson[simp]: set-pmf poisson-pmf = UNIV
〈proof 〉

end

20.6.6 Binomial Distribution
context

fixes n :: nat and p :: real assumes p-nonneg: 0 ≤ p and p-le-1 : p ≤ 1
begin

lift-definition binomial-pmf :: nat pmf is λk. (n choose k) ∗ p^k ∗ (1 − p)^(n −
k)
〈proof 〉
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lemma pmf-binomial[simp]: pmf binomial-pmf k = (n choose k) ∗ p^k ∗ (1 −
p)^(n − k)
〈proof 〉

lemma set-pmf-binomial-eq: set-pmf binomial-pmf = (if p = 0 then {0} else if p
= 1 then {n} else {.. n})
〈proof 〉

end

end

lemma set-pmf-binomial-0 [simp]: set-pmf (binomial-pmf n 0 ) = {0}
〈proof 〉

lemma set-pmf-binomial-1 [simp]: set-pmf (binomial-pmf n 1 ) = {n}
〈proof 〉

lemma set-pmf-binomial[simp]: 0 < p =⇒ p < 1 =⇒ set-pmf (binomial-pmf n p)
= {..n}
〈proof 〉

lemma finite-set-pmf-binomial-pmf [intro]: p ∈ {0 ..1} =⇒ finite (set-pmf (binomial-pmf
n p))
〈proof 〉

lemma expectation-binomial-pmf ′:
fixes f :: nat ⇒ ′a :: {banach, second-countable-topology}
assumes p: p ∈ {0 ..1}
shows measure-pmf .expectation (binomial-pmf n p) f =

(
∑

k≤n. (real (n choose k) ∗ p ^ k ∗ (1 − p) ^ (n − k)) ∗R f k)
〈proof 〉

lemma integrable-binomial-pmf [simp, intro]:
fixes f :: nat ⇒ ′a :: {banach, second-countable-topology}
assumes p: p ∈ {0 ..1}
shows integrable (binomial-pmf n p) f
〈proof 〉

context includes lifting-syntax
begin

lemma bind-pmf-parametric [transfer-rule]:
(rel-pmf A ===> (A ===> rel-pmf B) ===> rel-pmf B) bind-pmf bind-pmf
〈proof 〉

lemma return-pmf-parametric [transfer-rule]: (A ===> rel-pmf A) return-pmf
return-pmf
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〈proof 〉

end

primrec replicate-pmf :: nat ⇒ ′a pmf ⇒ ′a list pmf where
replicate-pmf 0 - = return-pmf []
| replicate-pmf (Suc n) p = do {x ← p; xs ← replicate-pmf n p; return-pmf (x#xs)}

lemma replicate-pmf-1 : replicate-pmf 1 p = map-pmf (λx. [x]) p
〈proof 〉

lemma set-replicate-pmf :
set-pmf (replicate-pmf n p) = {xs∈lists (set-pmf p). length xs = n}
〈proof 〉

lemma replicate-pmf-distrib:
replicate-pmf (m + n) p =

do {xs ← replicate-pmf m p; ys ← replicate-pmf n p; return-pmf (xs @ ys)}
〈proof 〉

lemma power-diff ′:
assumes b ≤ a
shows x ^ (a − b) = (if x = 0 ∧ a = b then 1 else x ^ a / (x:: ′a::field) ^ b)
〈proof 〉

lemma binomial-pmf-Suc:
assumes p ∈ {0 ..1}
shows binomial-pmf (Suc n) p =

do {b ← bernoulli-pmf p;
k ← binomial-pmf n p;
return-pmf ((if b then 1 else 0 ) + k)} (is - = ?rhs)

〈proof 〉

lemma binomial-pmf-0 : p ∈ {0 ..1} =⇒ binomial-pmf 0 p = return-pmf 0
〈proof 〉

lemma binomial-pmf-altdef :
assumes p ∈ {0 ..1}
shows binomial-pmf n p = map-pmf (length ◦ filter id) (replicate-pmf n

(bernoulli-pmf p))
〈proof 〉

20.7 Negative Binomial distribution

The negative binomial distribution counts the number of times a weighted
coin comes up tails before having come up heads n times. In other words:
how many failures do we see before seeing the n-th success?
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An alternative view is that the negative binomial distribution is the sum of
n i.i.d. geometric variables (this is the definition that we use).
Note that there are sometimes different conventions for this distributions
in the literature; for instance, sometimes the number of attempts is counted
instead of the number of failures. This only shifts the entire distribution by a
constant number and is thus not a big difference. I think that the convention
we use is the most natural one since the support of the distribution starts
at 0, whereas for the other convention it starts at n.
primrec neg-binomial-pmf :: nat ⇒ real ⇒ nat pmf where

neg-binomial-pmf 0 p = return-pmf 0
| neg-binomial-pmf (Suc n) p =

map-pmf (λ(x,y). (x + y)) (pair-pmf (geometric-pmf p) (neg-binomial-pmf n
p))

lemma neg-binomial-pmf-Suc-0 [simp]: neg-binomial-pmf (Suc 0 ) p = geomet-
ric-pmf p
〈proof 〉

lemmas neg-binomial-pmf-Suc [simp del] = neg-binomial-pmf .simps(2 )

lemma neg-binomial-prob-1 [simp]: neg-binomial-pmf n 1 = return-pmf 0
〈proof 〉

We can now show the aforementioned intuition about counting the failures
before the n-th success with the following recurrence:
lemma neg-binomial-pmf-unfold:

assumes p: p ∈ {0<..1}
shows neg-binomial-pmf (Suc n) p =

do {b ← bernoulli-pmf p;
if b then neg-binomial-pmf n p else map-pmf Suc (neg-binomial-pmf

(Suc n) p)}
(is - = ?rhs)
〈proof 〉

Next, we show an explicit formula for the probability mass function of the
negative binomial distribution:
lemma pmf-neg-binomial:

assumes p: p ∈ {0<..1}
shows pmf (neg-binomial-pmf n p) k = real ((k + n − 1 ) choose k) ∗ p ^ n ∗

(1 − p) ^ k
〈proof 〉

lemma gbinomial-0-left: 0 gchoose k = (if k = 0 then 1 else 0 )
〈proof 〉

The following alternative formula highlights why it is called ‘negative bino-
mial distribution’:
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lemma pmf-neg-binomial ′:
assumes p: p ∈ {0<..1}
shows pmf (neg-binomial-pmf n p) k = (−1 ) ^ k ∗ ((−real n) gchoose k) ∗ p

^ n ∗ (1 − p) ^ k
〈proof 〉

The cumulative distribution function of the negative binomial distribution
can be expressed in terms of that of the ‘normal’ binomial distribution.
lemma prob-neg-binomial-pmf-atMost:

assumes p: p ∈ {0<..1}
shows measure-pmf .prob (neg-binomial-pmf n p) {..k} =

measure-pmf .prob (binomial-pmf (n + k) (1 − p)) {..k}
〈proof 〉

lemma prob-neg-binomial-pmf-lessThan:
assumes p: p ∈ {0<..1}
shows measure-pmf .prob (neg-binomial-pmf n p) {..<k} =

measure-pmf .prob (binomial-pmf (n + k − 1 ) (1 − p)) {..<k}
〈proof 〉

The expected value of the negative binomial distribution is n(1− p)/p:
lemma nn-integral-neg-binomial-pmf-real:

assumes p: p ∈ {0<..1}
shows nn-integral (measure-pmf (neg-binomial-pmf n p)) of-nat = ennreal (n ∗

(1 − p) / p)
〈proof 〉

lemma integrable-neg-binomial-pmf-real:
assumes p: p ∈ {0<..1}
shows integrable (measure-pmf (neg-binomial-pmf n p)) real
〈proof 〉

lemma expectation-neg-binomial-pmf :
assumes p: p ∈ {0<..1}
shows measure-pmf .expectation (neg-binomial-pmf n p) real = n ∗ (1 − p) / p
〈proof 〉

20.8 PMFs from association lists
definition pmf-of-list :: ( ′a × real) list ⇒ ′a pmf where

pmf-of-list xs = embed-pmf (λx. sum-list (map snd (filter (λz. fst z = x) xs)))

definition pmf-of-list-wf where
pmf-of-list-wf xs ←→ (∀ x∈set (map snd xs) . x ≥ 0 ) ∧ sum-list (map snd xs) =

1

lemma pmf-of-list-wfI :
(
∧

x. x ∈ set (map snd xs) =⇒ x ≥ 0 ) =⇒ sum-list (map snd xs) = 1 =⇒
pmf-of-list-wf xs
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〈proof 〉

context
begin

private lemma pmf-of-list-aux:
assumes

∧
x. x ∈ set (map snd xs) =⇒ x ≥ 0

assumes sum-list (map snd xs) = 1
shows (

∫
+ x. ennreal (sum-list (map snd [z←xs . fst z = x])) ∂count-space

UNIV ) = 1
〈proof 〉

lemma pmf-pmf-of-list:
assumes pmf-of-list-wf xs
shows pmf (pmf-of-list xs) x = sum-list (map snd (filter (λz. fst z = x) xs))
〈proof 〉

end

lemma set-pmf-of-list:
assumes pmf-of-list-wf xs
shows set-pmf (pmf-of-list xs) ⊆ set (map fst xs)
〈proof 〉

lemma finite-set-pmf-of-list:
assumes pmf-of-list-wf xs
shows finite (set-pmf (pmf-of-list xs))
〈proof 〉

lemma emeasure-Int-set-pmf :
emeasure (measure-pmf p) (A ∩ set-pmf p) = emeasure (measure-pmf p) A
〈proof 〉

lemma measure-Int-set-pmf :
measure (measure-pmf p) (A ∩ set-pmf p) = measure (measure-pmf p) A
〈proof 〉

lemma measure-prob-cong-0 :
assumes

∧
x. x ∈ A − B =⇒ pmf p x = 0

assumes
∧

x. x ∈ B − A =⇒ pmf p x = 0
shows measure (measure-pmf p) A = measure (measure-pmf p) B
〈proof 〉

lemma emeasure-pmf-of-list:
assumes pmf-of-list-wf xs
shows emeasure (pmf-of-list xs) A = ennreal (sum-list (map snd (filter (λx. fst

x ∈ A) xs)))
〈proof 〉
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lemma measure-pmf-of-list:
assumes pmf-of-list-wf xs
shows measure (pmf-of-list xs) A = sum-list (map snd (filter (λx. fst x ∈ A)

xs))
〈proof 〉

lemma sum-list-nonneg-eq-zero-iff :
fixes xs :: ′a :: linordered-ab-group-add list
shows (

∧
x. x ∈ set xs =⇒ x ≥ 0 ) =⇒ sum-list xs = 0 ←→ set xs ⊆ {0}

〈proof 〉

lemma sum-list-filter-nonzero:
sum-list (filter (λx. x 6= 0 ) xs) = sum-list xs
〈proof 〉

lemma set-pmf-of-list-eq:
assumes pmf-of-list-wf xs

∧
x. x ∈ snd ‘ set xs =⇒ x > 0

shows set-pmf (pmf-of-list xs) = fst ‘ set xs
〈proof 〉

lemma pmf-of-list-remove-zeros:
assumes pmf-of-list-wf xs
defines xs ′ ≡ filter (λz. snd z 6= 0 ) xs
shows pmf-of-list-wf xs ′ pmf-of-list xs ′ = pmf-of-list xs
〈proof 〉

end

21 Code generation for PMFs
theory PMF-Impl
imports Probability-Mass-Function HOL−Library.AList-Mapping
begin

21.1 General code generation setup
definition pmf-of-mapping :: ( ′a, real) mapping ⇒ ′a pmf where

pmf-of-mapping m = embed-pmf (Mapping.lookup-default 0 m)

lemma nn-integral-lookup-default:
fixes m :: ( ′a, real) mapping
assumes finite (Mapping.keys m) All-mapping m (λ- x. x ≥ 0 )
shows nn-integral (count-space UNIV ) (λk. ennreal (Mapping.lookup-default 0

m k)) =
ennreal (

∑
k∈Mapping.keys m. Mapping.lookup-default 0 m k)

〈proof 〉



THEORY “PMF-Impl” 123

lemma pmf-of-mapping:
assumes finite (Mapping.keys m) All-mapping m (λ- p. p ≥ 0 )
assumes (

∑
x∈Mapping.keys m. Mapping.lookup-default 0 m x) = 1

shows pmf (pmf-of-mapping m) x = Mapping.lookup-default 0 m x
〈proof 〉

lemma pmf-of-set-pmf-of-mapping:
assumes A 6= {} set xs = A distinct xs
shows pmf-of-set A = pmf-of-mapping (Mapping.tabulate xs (λ-. 1 / real (length

xs)))
(is ?lhs = ?rhs)

〈proof 〉

lift-definition mapping-of-pmf :: ′a pmf ⇒ ( ′a, real) mapping is
λp x. if pmf p x = 0 then None else Some (pmf p x) 〈proof 〉

lemma lookup-default-mapping-of-pmf :
Mapping.lookup-default 0 (mapping-of-pmf p) x = pmf p x
〈proof 〉

context
begin

interpretation pmf-as-function 〈proof 〉

lemma nn-integral-pmf-eq-1 : (
∫

+ x. ennreal (pmf p x) ∂count-space UNIV ) = 1
〈proof 〉

end

lemma pmf-of-mapping-mapping-of-pmf [code abstype]:
pmf-of-mapping (mapping-of-pmf p) = p
〈proof 〉

lemma mapping-of-pmfI :
assumes

∧
x. x ∈ Mapping.keys m =⇒ Mapping.lookup m x = Some (pmf p x)

assumes Mapping.keys m = set-pmf p
shows mapping-of-pmf p = m
〈proof 〉

lemma mapping-of-pmfI ′:
assumes

∧
x. x ∈ Mapping.keys m =⇒ Mapping.lookup-default 0 m x = pmf p x

assumes Mapping.keys m = set-pmf p
shows mapping-of-pmf p = m
〈proof 〉

lemma return-pmf-code [code abstract]:
mapping-of-pmf (return-pmf x) = Mapping.update x 1 Mapping.empty
〈proof 〉
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lemma pmf-of-set-code-aux:
assumes A 6= {} set xs = A distinct xs
shows mapping-of-pmf (pmf-of-set A) = Mapping.tabulate xs (λ-. 1 / real

(length xs))
〈proof 〉

definition pmf-of-set-impl where
pmf-of-set-impl A = mapping-of-pmf (pmf-of-set A)

lemma pmf-of-set-impl-code-alt:
assumes A 6= {} finite A
shows pmf-of-set-impl A =

(let p = 1 / real (card A)
in Finite-Set.fold (λx. Mapping.update x p) Mapping.empty A)

〈proof 〉

lemma pmf-of-set-impl-code [code]:
pmf-of-set-impl (set xs) =
(if xs = [] then

Code.abort (STR ′′pmf-of-set of empty set ′′) (λ-. mapping-of-pmf (pmf-of-set
(set xs)))

else let xs ′ = remdups xs; p = 1 / real (length xs ′) in
Mapping.tabulate xs ′ (λ-. p))

〈proof 〉

lemma pmf-of-set-code [code abstract]:
mapping-of-pmf (pmf-of-set A) = pmf-of-set-impl A
〈proof 〉

lemma pmf-of-multiset-pmf-of-mapping:
assumes A 6= {#} set xs = set-mset A distinct xs
shows mapping-of-pmf (pmf-of-multiset A) = Mapping.tabulate xs (λx. count

A x / real (size A))
〈proof 〉

definition pmf-of-multiset-impl where
pmf-of-multiset-impl A = mapping-of-pmf (pmf-of-multiset A)

lemma pmf-of-multiset-impl-code-alt:
assumes A 6= {#}
shows pmf-of-multiset-impl A =

(let p = 1 / real (size A)
in fold-mset (λx. Mapping.map-default x 0 ((+) p)) Mapping.empty A)

〈proof 〉

lemma pmf-of-multiset-impl-code [code]:
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pmf-of-multiset-impl (mset xs) =
(if xs = [] then

Code.abort (STR ′′pmf-of-multiset of empty multiset ′′)
(λ-. mapping-of-pmf (pmf-of-multiset (mset xs)))

else let xs ′ = remdups xs; p = 1 / real (length xs) in
Mapping.tabulate xs ′ (λx. real (count (mset xs) x) ∗ p))

〈proof 〉

lemma pmf-of-multiset-code [code abstract]:
mapping-of-pmf (pmf-of-multiset A) = pmf-of-multiset-impl A
〈proof 〉

lemma bernoulli-pmf-code [code abstract]:
mapping-of-pmf (bernoulli-pmf p) =

(if p ≤ 0 then Mapping.update False 1 Mapping.empty
else if p ≥ 1 then Mapping.update True 1 Mapping.empty
else Mapping.update False (1 − p) (Mapping.update True p Mapping.empty))

〈proof 〉

lemma pmf-code [code]: pmf p x = Mapping.lookup-default 0 (mapping-of-pmf p)
x
〈proof 〉

lemma set-pmf-code [code]: set-pmf p = Mapping.keys (mapping-of-pmf p)
〈proof 〉

lemma keys-mapping-of-pmf [simp]: Mapping.keys (mapping-of-pmf p) = set-pmf
p
〈proof 〉

definition fold-combine-plus where
fold-combine-plus = comm-monoid-set.F (Mapping.combine ((+) :: real ⇒ -))

Mapping.empty

context
begin

interpretation fold-combine-plus: combine-mapping-abel-semigroup (+) :: real ⇒
-
〈proof 〉 lemma lookup-default-fold-combine-plus:
fixes A :: ′b set and f :: ′b ⇒ ( ′a, real) mapping
assumes finite A
shows Mapping.lookup-default 0 (fold-combine-plus f A) x =

(
∑

y∈A. Mapping.lookup-default 0 (f y) x)
〈proof 〉 lemma keys-fold-combine-plus:
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finite A =⇒ Mapping.keys (fold-combine-plus f A) = (
⋃

x∈A. Mapping.keys (f
x))
〈proof 〉 lemma fold-combine-plus-code [code]:
fold-combine-plus g (set xs) = foldr (λx. Mapping.combine (+) (g x)) (remdups

xs) Mapping.empty
〈proof 〉 lemma lookup-default-0-map-values:
assumes f x 0 = 0
shows Mapping.lookup-default 0 (Mapping.map-values f m) x = f x (Mapping.lookup-default

0 m x)
〈proof 〉 lemma mapping-of-bind-pmf :
assumes finite (set-pmf p)
shows mapping-of-pmf (bind-pmf p f ) =

fold-combine-plus (λx. Mapping.map-values (λ-. (∗) (pmf p x))
(mapping-of-pmf (f x))) (set-pmf p)

〈proof 〉

lift-definition bind-pmf-aux :: ′a pmf ⇒ ( ′a ⇒ ′b pmf ) ⇒ ′a set ⇒ ( ′b, real)
mapping is
λ(p :: ′a pmf ) (f :: ′a ⇒ ′b pmf ) (A:: ′a set) (x:: ′b).

if x ∈ (
⋃

y∈A. set-pmf (f y)) then
Some (measure-pmf .expectation p (λy. indicator A y ∗ pmf (f y) x))

else None 〈proof 〉

lemma keys-bind-pmf-aux [simp]:
Mapping.keys (bind-pmf-aux p f A) = (

⋃
x∈A. set-pmf (f x))

〈proof 〉

lemma lookup-default-bind-pmf-aux:
Mapping.lookup-default 0 (bind-pmf-aux p f A) x =

(if x ∈ (
⋃

y∈A. set-pmf (f y)) then
measure-pmf .expectation p (λy. indicator A y ∗ pmf (f y) x) else 0 )

〈proof 〉

lemma lookup-default-bind-pmf-aux ′ [simp]:
Mapping.lookup-default 0 (bind-pmf-aux p f (set-pmf p)) x = pmf (bind-pmf p f )

x
〈proof 〉

lemma bind-pmf-aux-correct:
mapping-of-pmf (bind-pmf p f ) = bind-pmf-aux p f (set-pmf p)
〈proof 〉

lemma bind-pmf-aux-code-aux:
assumes finite A
shows bind-pmf-aux p f A =

fold-combine-plus (λx. Mapping.map-values (λ-. (∗) (pmf p x))
(mapping-of-pmf (f x))) A (is ?lhs = ?rhs)

〈proof 〉
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lemma bind-pmf-aux-code [code]:
bind-pmf-aux p f (set xs) =

fold-combine-plus (λx. Mapping.map-values (λ-. (∗) (pmf p x))
(mapping-of-pmf (f x))) (set xs)

〈proof 〉

lemmas bind-pmf-code [code abstract] = bind-pmf-aux-correct

end

hide-const (open) fold-combine-plus

lift-definition cond-pmf-impl :: ′a pmf ⇒ ′a set ⇒ ( ′a, real) mapping option is
λp A. if A ∩ set-pmf p = {} then None else

Some (λx. if x ∈ A ∩ set-pmf p then Some (pmf p x / measure-pmf .prob p A)
else None) 〈proof 〉

lemma cond-pmf-impl-code-alt:
assumes finite A
shows cond-pmf-impl p A = (

let C = A ∩ set-pmf p;
prob = (

∑
x∈C . pmf p x)

in if prob = 0 then
None

else
Some (Mapping.map-values (λ- y. y / prob)
(Mapping.filter (λk -. k ∈ C ) (mapping-of-pmf p))))

〈proof 〉

lemma cond-pmf-impl-code [code]:
cond-pmf-impl p (set xs) = (

let C = set xs ∩ set-pmf p;
prob = (

∑
x∈C . pmf p x)

in if prob = 0 then
None

else
Some (Mapping.map-values (λ- y. y / prob)
(Mapping.filter (λk -. k ∈ C ) (mapping-of-pmf p))))

〈proof 〉

lemma cond-pmf-code [code abstract]:
mapping-of-pmf (cond-pmf p A) =

(case cond-pmf-impl p A of
None ⇒ Code.abort (STR ′′cond-pmf with set of probability 0 ′′)

(λ-. mapping-of-pmf (cond-pmf p A))
| Some m ⇒ m)

〈proof 〉
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lemma binomial-pmf-code [code abstract]:
mapping-of-pmf (binomial-pmf n p) = (

if p < 0 ∨ p > 1 then
Code.abort (STR ′′binomial-pmf with invalid probability ′′)
(λ-. mapping-of-pmf (binomial-pmf n p))

else if p = 0 then Mapping.update 0 1 Mapping.empty
else if p = 1 then Mapping.update n 1 Mapping.empty
else Mapping.tabulate [0 ..<Suc n] (λk. real (n choose k) ∗ p ^ k ∗ (1 − p) ^

(n − k)))
〈proof 〉

lemma pred-pmf-code [code]:
pred-pmf P p = (∀ x∈set-pmf p. P x)
〈proof 〉

lemma mapping-of-pmf-pmf-of-list:
assumes

∧
x. x ∈ snd ‘ set xs =⇒ x > 0 sum-list (map snd xs) = 1

shows mapping-of-pmf (pmf-of-list xs) =
Mapping.tabulate (remdups (map fst xs))
(λx. sum-list (map snd (filter (λz. fst z = x) xs)))

〈proof 〉

lemma mapping-of-pmf-pmf-of-list ′:
assumes pmf-of-list-wf xs
defines xs ′ ≡ filter (λz. snd z 6= 0 ) xs
shows mapping-of-pmf (pmf-of-list xs) =

Mapping.tabulate (remdups (map fst xs ′))
(λx. sum-list (map snd (filter (λz. fst z = x) xs ′))) (is - = ?rhs)

〈proof 〉

lemma pmf-of-list-wf-code [code]:
pmf-of-list-wf xs ←→ list-all (λz. snd z ≥ 0 ) xs ∧ sum-list (map snd xs) = 1
〈proof 〉

lemma pmf-of-list-code [code abstract]:
mapping-of-pmf (pmf-of-list xs) = (

if pmf-of-list-wf xs then
let xs ′ = filter (λz. snd z 6= 0 ) xs
in Mapping.tabulate (remdups (map fst xs ′))

(λx. sum-list (map snd (filter (λz. fst z = x) xs ′)))
else
Code.abort (STR ′′Invalid list for pmf-of-list ′′) (λ-. mapping-of-pmf (pmf-of-list

xs)))
〈proof 〉

lemma mapping-of-pmf-eq-iff [simp]:
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mapping-of-pmf p = mapping-of-pmf q ←→ p = (q :: ′a pmf )
〈proof 〉

21.2 Code abbreviations for integrals and probabilities

Integrals and probabilities are defined for general measures, so we cannot
give any code equations directly. We can, however, specialise these constants
them to PMFs, give code equations for these specialised constants, and tell
the code generator to unfold the original constants to the specialised ones
whenever possible.
definition pmf-integral where

pmf-integral p f = lebesgue-integral (measure-pmf p) (f :: - ⇒ real)

definition pmf-set-integral where
pmf-set-integral p f A = lebesgue-integral (measure-pmf p) (λx. indicator A x ∗ f

x :: real)

definition pmf-prob where
pmf-prob p A = measure-pmf .prob p A

lemma pmf-prob-compl: pmf-prob p (−A) = 1 − pmf-prob p A
〈proof 〉

lemma pmf-integral-pmf-set-integral [code]:
pmf-integral p f = pmf-set-integral p f (set-pmf p)
〈proof 〉

lemma pmf-prob-pmf-set-integral:
pmf-prob p A = pmf-set-integral p (λ-. 1 ) A
〈proof 〉

lemma pmf-set-integral-code-alt-finite:
finite A =⇒ pmf-set-integral p f A = (

∑
x∈A. pmf p x ∗ f x)

〈proof 〉

lemma pmf-set-integral-code [code]:
pmf-set-integral p f (set xs) = (

∑
x∈set xs. pmf p x ∗ f x)

〈proof 〉

lemma pmf-prob-code-alt-finite:
finite A =⇒ pmf-prob p A = (

∑
x∈A. pmf p x)

〈proof 〉

lemma pmf-prob-code [code]:
pmf-prob p (set xs) = (

∑
x∈set xs. pmf p x)

pmf-prob p (List.coset xs) = 1 − (
∑

x∈set xs. pmf p x)
〈proof 〉
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lemma pmf-prob-code-unfold [code-abbrev]: pmf-prob p = measure-pmf .prob p
〈proof 〉

lemma pmf-integral-code-unfold [code-abbrev]: pmf-integral p = measure-pmf .expectation
p
〈proof 〉

definition pmf-of-alist xs = embed-pmf (λx. case map-of xs x of Some p ⇒ p |
None ⇒ 0 )

lemma pmf-of-mapping-Mapping [code-post]:
pmf-of-mapping (Mapping xs) = pmf-of-alist xs
〈proof 〉

instantiation pmf :: (equal) equal
begin

definition equal-pmf p q = (mapping-of-pmf p = mapping-of-pmf (q :: ′a pmf ))

instance 〈proof 〉
end

definition single :: ′a ⇒ ′a multiset where
single s = {#s#}

instantiation pmf :: (random) random
begin

context
includes state-combinator-syntax and term-syntax

begin

definition
pmfify :: ( ′b::typerep multiset × (unit ⇒ Code-Evaluation.term)) ⇒

′b × (unit ⇒ Code-Evaluation.term) ⇒
′b pmf × (unit ⇒ Code-Evaluation.term) where

[code-unfold]: pmfify A x =
Code-Evaluation.valtermify pmf-of-multiset {·}
(Code-Evaluation.valtermify (+) {·} A {·}
(Code-Evaluation.valtermify single {·} x))

definition
Quickcheck-Random.random i =
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Quickcheck-Random.random i ◦→ (λA.
Quickcheck-Random.random i ◦→ (λx. Pair (pmfify A x)))

instance 〈proof 〉

end

end

instantiation pmf :: (full-exhaustive) full-exhaustive
begin

definition full-exhaustive-pmf :: ( ′a pmf × (unit ⇒ term) ⇒ (bool × term list)
option) ⇒ natural ⇒ (bool × term list) option
where

full-exhaustive-pmf f i =
Quickcheck-Exhaustive.full-exhaustive (λA.

Quickcheck-Exhaustive.full-exhaustive (λx. f (pmfify A x)) i) i

instance 〈proof 〉

end

end

22 Finite Maps
theory Fin-Map

imports HOL−Analysis.Finite-Product-Measure HOL−Library.Finite-Map
begin

The fmap type can be instantiated to polish-space, needed for the proof of
projective limit. extensional functions are used for the representation in
order to stay close to the developments of (finite) products PiE and their
sigma-algebra PiM .
type-notation fmap (‹(‹notation=‹infix fmap››- ⇒F /-)› [22 , 21 ] 21 )

unbundle fmap.lifting

22.1 Domain and Application
lift-definition domain::( ′i ⇒F

′a) ⇒ ′i set is dom 〈proof 〉

lemma finite-domain[simp, intro]: finite (domain P)
〈proof 〉

lift-definition proj :: ( ′i ⇒F
′a) ⇒ ′i ⇒ ′a

(‹(‹indent=1 notation=‹mixfix proj›› ′(- ′)F )› [0 ] 1000 ) is
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λf x. if x ∈ dom f then the (f x) else undefined 〈proof 〉

declare [[coercion proj]]

lemma extensional-proj[simp, intro]: (P)F ∈ extensional (domain P)
〈proof 〉

lemma proj-undefined[simp, intro]: i /∈ domain P =⇒ P i = undefined
〈proof 〉

lemma finmap-eq-iff : P = Q ←→ (domain P = domain Q ∧ (∀ i∈domain P. P i
= Q i))
〈proof 〉

22.2 Constructor of Finite Maps
lift-definition finmap-of :: ′i set ⇒ ( ′i ⇒ ′a) ⇒ ( ′i ⇒F

′a) is
λI f x. if x ∈ I ∧ finite I then Some (f x) else None
〈proof 〉

lemma proj-finmap-of [simp]:
assumes finite inds
shows (finmap-of inds f )F = restrict f inds
〈proof 〉

lemma domain-finmap-of [simp]:
assumes finite inds
shows domain (finmap-of inds f ) = inds
〈proof 〉

lemma finmap-of-eq-iff [simp]:
assumes finite i finite j
shows finmap-of i m = finmap-of j n ←→ i = j ∧ (∀ k∈i. m k= n k)
〈proof 〉

lemma finmap-of-inj-on-extensional-finite:
assumes finite K
assumes S ⊆ extensional K
shows inj-on (finmap-of K ) S
〈proof 〉

22.3 Product set of Finite Maps

This is Pi for Finite Maps, most of this is copied
definition Pi ′ :: ′i set ⇒ ( ′i ⇒ ′a set) ⇒ ( ′i ⇒F

′a) set where
Pi ′ I A = { P. domain P = I ∧ (∀ i. i ∈ I −→ (P)F i ∈ A i) }

syntax
-Pi ′ :: [pttrn, ′a set, ′b set] => ( ′a => ′b) set
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(‹(‹indent=3 notation=‹binder Π ′››Π ′′ -∈-./ -)› 10 )
syntax-consts

-Pi ′ == Pi ′
translations
Π ′ x∈A. B == CONST Pi ′ A (λx. B)

22.3.1 Basic Properties of Pi ′

lemma Pi ′-I [intro!]: domain f = A =⇒ (
∧

x. x ∈ A =⇒ f x ∈ B x) =⇒ f ∈ Pi ′
A B
〈proof 〉

lemma Pi ′-I ′[simp]: domain f = A =⇒ (
∧

x. x ∈ A −→ f x ∈ B x) =⇒ f ∈ Pi ′
A B
〈proof 〉

lemma Pi ′-mem: f∈ Pi ′ A B =⇒ x ∈ A =⇒ f x ∈ B x
〈proof 〉

lemma Pi ′-iff : f ∈ Pi ′ I X ←→ domain f = I ∧ (∀ i∈I . f i ∈ X i)
〈proof 〉

lemma Pi ′E [elim]:
f ∈ Pi ′ A B =⇒ (f x ∈ B x =⇒ domain f = A =⇒ Q) =⇒ (x /∈ A =⇒ Q) =⇒

Q
〈proof 〉

lemma in-Pi ′-cong:
domain f = domain g =⇒ (

∧
w. w ∈ A =⇒ f w = g w) =⇒ f ∈ Pi ′ A B ←→ g

∈ Pi ′ A B
〈proof 〉

lemma Pi ′-eq-empty[simp]:
assumes finite A shows (Pi ′ A B) = {} ←→ (∃ x∈A. B x = {})
〈proof 〉

lemma Pi ′-mono: (
∧

x. x ∈ A =⇒ B x ⊆ C x) =⇒ Pi ′ A B ⊆ Pi ′ A C
〈proof 〉

lemma Pi-Pi ′: finite A =⇒ (PiE A B) = proj ‘ Pi ′ A B
〈proof 〉

22.4 Topological Space of Finite Maps
instantiation fmap :: (type, topological-space) topological-space
begin

definition open-fmap :: ( ′a ⇒F
′b) set ⇒ bool where

[code del]: open-fmap = generate-topology {Pi ′ a b|a b. ∀ i∈a. open (b i)}
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lemma open-Pi ′I : (
∧

i. i ∈ I =⇒ open (A i)) =⇒ open (Pi ′ I A)
〈proof 〉

instance 〈proof 〉

end

lemma open-restricted-space:
shows open {m. P (domain m)}
〈proof 〉

lemma closed-restricted-space:
shows closed {m. P (domain m)}
〈proof 〉

lemma tendsto-proj: ((λx. x) −−−→ a) F =⇒ ((λx. (x)F i) −−−→ (a)F i) F
〈proof 〉

lemma continuous-proj:
shows continuous-on s (λx. (x)F i)
〈proof 〉

instance fmap :: (type, first-countable-topology) first-countable-topology
〈proof 〉

22.5 Metric Space of Finite Maps
instantiation fmap :: (type, metric-space) dist
begin

definition dist-fmap where
dist P Q = Max (range (λi. dist ((P)F i) ((Q)F i))) + (if domain P = domain

Q then 0 else 1 )

instance 〈proof 〉
end

instantiation fmap :: (type, metric-space) uniformity-dist
begin

definition [code del]:
(uniformity :: (( ′a, ′b) fmap × ( ′a ⇒F

′b)) filter) =
(INF e∈{0 <..}. principal {(x, y). dist x y < e})

instance
〈proof 〉

end

declare uniformity-Abort[where ′a=( ′a ⇒F
′b::metric-space), code]
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instantiation fmap :: (type, metric-space) metric-space
begin

lemma finite-proj-image ′: x /∈ domain P =⇒ finite ((P)F ‘ S)
〈proof 〉

lemma finite-proj-image: finite ((P)F ‘ S)
〈proof 〉

lemma finite-proj-diag: finite ((λi. d ((P)F i) ((Q)F i)) ‘ S)
〈proof 〉

lemma dist-le-1-imp-domain-eq:
shows dist P Q < 1 =⇒ domain P = domain Q
〈proof 〉

lemma dist-proj:
shows dist ((x)F i) ((y)F i) ≤ dist x y
〈proof 〉

lemma dist-finmap-lessI :
assumes domain P = domain Q
assumes 0 < e
assumes

∧
i. i ∈ domain P =⇒ dist (P i) (Q i) < e

shows dist P Q < e
〈proof 〉

instance
〈proof 〉

end

22.6 Complete Space of Finite Maps
lemma tendsto-finmap:

fixes f ::nat ⇒ ( ′i ⇒F ( ′a::metric-space))
assumes ind-f :

∧
n. domain (f n) = domain g

assumes proj-g:
∧

i. i ∈ domain g =⇒ (λn. (f n) i) −−−−→ g i
shows f −−−−→ g
〈proof 〉

instance fmap :: (type, complete-space) complete-space
〈proof 〉

22.7 Second Countable Space of Finite Maps
instantiation fmap :: (countable, second-countable-topology) second-countable-topology
begin
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definition basis-proj:: ′b set set
where basis-proj = (SOME B. countable B ∧ topological-basis B)

lemma countable-basis-proj: countable basis-proj and basis-proj: topological-basis
basis-proj
〈proof 〉

definition basis-finmap::( ′a ⇒F
′b) set set

where basis-finmap = {Pi ′ I S |I S . finite I ∧ (∀ i ∈ I . S i ∈ basis-proj)}

lemma in-basis-finmapI :
assumes finite I assumes

∧
i. i ∈ I =⇒ S i ∈ basis-proj

shows Pi ′ I S ∈ basis-finmap
〈proof 〉

lemma basis-finmap-eq:
assumes basis-proj 6= {}
shows basis-finmap = (λf . Pi ′ (domain f ) (λi. from-nat-into basis-proj ((f )F

i))) ‘
(UNIV ::( ′a ⇒F nat) set) (is - = ?f ‘ -)
〈proof 〉

lemma basis-finmap-eq-empty: basis-proj = {} =⇒ basis-finmap = {Pi ′ {} unde-
fined}
〈proof 〉

lemma countable-basis-finmap: countable basis-finmap
〈proof 〉

lemma finmap-topological-basis:
topological-basis basis-finmap
〈proof 〉

lemma range-enum-basis-finmap-imp-open:
assumes x ∈ basis-finmap
shows open x
〈proof 〉

instance 〈proof 〉

end

22.8 Polish Space of Finite Maps
instance fmap :: (countable, polish-space) polish-space 〈proof 〉

22.9 Product Measurable Space of Finite Maps
definition PiF I M ≡
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sigma (
⋃

J ∈ I . (Π ′ j∈J . space (M j))) {(Π ′ j∈J . X j) |X J . J ∈ I ∧ X ∈ (Π
j∈J . sets (M j))}

abbreviation
PiF I M ≡ PiF I M

syntax
-PiF :: pttrn ⇒ ′i set ⇒ ′a measure ⇒ ( ′i => ′a) measure
(‹(‹indent=3 notation=‹binder ΠF ››ΠF -∈-./ -)› 10 )

syntax-consts
-PiF == PiF

translations
ΠF x∈I . M == CONST PiF I (%x. M )

lemma PiF-gen-subset: {(Π ′ j∈J . X j) |X J . J ∈ I ∧ X ∈ (Π j∈J . sets (M j))}
⊆

Pow (
⋃

J ∈ I . (Π ′ j∈J . space (M j)))
〈proof 〉

lemma space-PiF : space (PiF I M ) = (
⋃

J ∈ I . (Π ′ j∈J . space (M j)))
〈proof 〉

lemma sets-PiF :
sets (PiF I M ) = sigma-sets (

⋃
J ∈ I . (Π ′ j∈J . space (M j)))

{(Π ′ j∈J . X j) |X J . J ∈ I ∧ X ∈ (Π j∈J . sets (M j))}
〈proof 〉

lemma sets-PiF-singleton:
sets (PiF {I} M ) = sigma-sets (Π ′ j∈I . space (M j))
{(Π ′ j∈I . X j) |X . X ∈ (Π j∈I . sets (M j))}
〈proof 〉

lemma in-sets-PiFI :
assumes X = (Pi ′ J S) J ∈ I

∧
i. i∈J =⇒ S i ∈ sets (M i)

shows X ∈ sets (PiF I M )
〈proof 〉

lemma product-in-sets-PiFI :
assumes J ∈ I

∧
i. i∈J =⇒ S i ∈ sets (M i)

shows (Pi ′ J S) ∈ sets (PiF I M )
〈proof 〉

lemma singleton-space-subset-in-sets:
fixes J
assumes J ∈ I
assumes finite J
shows space (PiF {J} M ) ∈ sets (PiF I M )
〈proof 〉
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lemma singleton-subspace-set-in-sets:
assumes A: A ∈ sets (PiF {J} M )
assumes finite J
assumes J ∈ I
shows A ∈ sets (PiF I M )
〈proof 〉

lemma finite-measurable-singletonI :
assumes finite I
assumes

∧
J . J ∈ I =⇒ finite J

assumes MN :
∧

J . J ∈ I =⇒ A ∈ measurable (PiF {J} M ) N
shows A ∈ measurable (PiF I M ) N
〈proof 〉

lemma countable-finite-comprehension:
fixes f :: ′a::countable set ⇒ -
assumes

∧
s. P s =⇒ finite s

assumes
∧

s. P s =⇒ f s ∈ sets M
shows

⋃
{f s|s. P s} ∈ sets M

〈proof 〉

lemma space-subset-in-sets:
fixes J :: ′a::countable set set
assumes J ⊆ I
assumes

∧
j. j ∈ J =⇒ finite j

shows space (PiF J M ) ∈ sets (PiF I M )
〈proof 〉

lemma subspace-set-in-sets:
fixes J :: ′a::countable set set
assumes A: A ∈ sets (PiF J M )
assumes J ⊆ I
assumes

∧
j. j ∈ J =⇒ finite j

shows A ∈ sets (PiF I M )
〈proof 〉

lemma countable-measurable-PiFI :
fixes I :: ′a::countable set set
assumes MN :

∧
J . J ∈ I =⇒ finite J =⇒ A ∈ measurable (PiF {J} M ) N

shows A ∈ measurable (PiF I M ) N
〈proof 〉

lemma measurable-PiF :
assumes f :

∧
x. x ∈ space N =⇒ domain (f x) ∈ I ∧ (∀ i∈domain (f x). (f x) i

∈ space (M i))
assumes S :

∧
J S . J ∈ I =⇒ (

∧
i. i ∈ J =⇒ S i ∈ sets (M i)) =⇒

f −‘ (Pi ′ J S) ∩ space N ∈ sets N
shows f ∈ measurable N (PiF I M )
〈proof 〉
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lemma restrict-sets-measurable:
assumes A: A ∈ sets (PiF I M ) and J ⊆ I
shows A ∩ {m. domain m ∈ J} ∈ sets (PiF J M )
〈proof 〉

lemma measurable-finmap-of :
assumes f :

∧
i. (∃ x ∈ space N . i ∈ J x) =⇒ (λx. f x i) ∈ measurable N (M i)

assumes J :
∧

x. x ∈ space N =⇒ J x ∈ I
∧

x. x ∈ space N =⇒ finite (J x)
assumes JN :

∧
S . {x. J x = S} ∩ space N ∈ sets N

shows (λx. finmap-of (J x) (f x)) ∈ measurable N (PiF I M )
〈proof 〉

lemma measurable-PiM-finmap-of :
assumes finite J
shows finmap-of J ∈ measurable (PiM J M ) (PiF {J} M )
〈proof 〉

lemma proj-measurable-singleton:
assumes A ∈ sets (M i)
shows (λx. (x)F i) −‘ A ∩ space (PiF {I} M ) ∈ sets (PiF {I} M )
〈proof 〉

lemma measurable-proj-singleton:
assumes i ∈ I
shows (λx. (x)F i) ∈ measurable (PiF {I} M ) (M i)
〈proof 〉

lemma measurable-proj-countable:
fixes I :: ′a::countable set set
assumes y ∈ space (M i)
shows (λx. if i ∈ domain x then (x)F i else y) ∈ measurable (PiF I M ) (M i)
〈proof 〉

lemma measurable-restrict-proj:
assumes J ∈ II finite J
shows finmap-of J ∈ measurable (PiM J M ) (PiF II M )
〈proof 〉

lemma measurable-proj-PiM :
fixes J K :: ′a::countable set and I :: ′a set set
assumes finite J J ∈ I
assumes x ∈ space (PiM J M )
shows proj ∈ measurable (PiF {J} M ) (PiM J M )
〈proof 〉

lemma space-PiF-singleton-eq-product:
assumes finite I
shows space (PiF {I} M ) = (Π ′ i∈I . space (M i))
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〈proof 〉

adapted from sets (PiM ?I ?M ) = sigma-sets (ΠE i∈?I . space (?M i)) {{f
∈ ΠE i∈?I . space (?M i). f i ∈ A} |i A. i ∈ ?I ∧ A ∈ sets (?M i)}
lemma sets-PiF-single:

assumes finite I I 6= {}
shows sets (PiF {I} M ) =

sigma-sets (Π ′ i∈I . space (M i))
{{f∈Π ′ i∈I . space (M i). f i ∈ A} | i A. i ∈ I ∧ A ∈ sets (M i)}

(is - = sigma-sets ?Ω ?R)
〈proof 〉

adapted from (
∧

i. i ∈ ?I =⇒ ?A i = ?B i) =⇒ PiE ?I ?A = PiE ?I ?B
lemma Pi ′-cong:

assumes finite I
assumes

∧
i. i ∈ I =⇒ f i = g i

shows Pi ′ I f = Pi ′ I g
〈proof 〉

adapted from [[finite ?I ;
∧

i n m. [[i ∈ ?I ; n ≤ m]] =⇒ ?A n i ⊆ ?A m i]]
=⇒ (

⋃
n Pi ?I (?A n)) = (Π i∈?I .

⋃
n ?A n i)

lemma Pi ′-UN :
fixes A :: nat ⇒ ′i ⇒ ′a set
assumes finite I
assumes mono:

∧
i n m. i ∈ I =⇒ n ≤ m =⇒ A n i ⊆ A m i

shows (
⋃

n. Pi ′ I (A n)) = Pi ′ I (λi.
⋃

n. A n i)
〈proof 〉

adapted from [[
∧

i. i ∈ ?I =⇒ ∃S⊆?E i. countable S ∧ ?Ω i =
⋃

S ;
∧

i.
i ∈ ?I =⇒ ?E i ⊆ Pow (?Ω i);

∧
j. j ∈ ?J =⇒ finite j;

⋃
?J = ?I ]] =⇒

sets (PiM ?I (λi. sigma (?Ω i) (?E i))) = sets (sigma (PiE ?I ?Ω) {{f ∈
PiE ?I ?Ω. ∀ i∈j. f i ∈ A i} |A j. j ∈ ?J ∧ A ∈ Pi j ?E})
lemma sigma-fprod-algebra-sigma-eq:

fixes E :: ′i ⇒ ′a set set and S :: ′i ⇒ nat ⇒ ′a set
assumes [simp]: finite I I 6= {}

and S-union:
∧

i. i ∈ I =⇒ (
⋃

j. S i j) = space (M i)
and S-in-E :

∧
i. i ∈ I =⇒ range (S i) ⊆ E i

assumes E-closed:
∧

i. i ∈ I =⇒ E i ⊆ Pow (space (M i))
and E-generates:

∧
i. i ∈ I =⇒ sets (M i) = sigma-sets (space (M i)) (E i)

defines P == { Pi ′ I F | F . ∀ i∈I . F i ∈ E i }
shows sets (PiF {I} M ) = sigma-sets (space (PiF {I} M )) P
〈proof 〉

lemma product-open-generates-sets-PiF-single:
assumes I 6= {}
assumes [simp]: finite I
shows sets (PiF {I} (λ-. borel:: ′b::second-countable-topology measure)) =
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sigma-sets (space (PiF {I} (λ-. borel))) {Pi ′ I F |F . (∀ i∈I . F i ∈ Collect
open)}
〈proof 〉

lemma finmap-UNIV [simp]: (
⋃

J∈Collect finite. Π ′ j∈J . UNIV ) = UNIV 〈proof 〉

lemma borel-eq-PiF-borel:
shows (borel :: ( ′i::countable ⇒F

′a::polish-space) measure) =
PiF (Collect finite) (λ-. borel :: ′a measure)
〈proof 〉

22.10 Isomorphism between Functions and Finite Maps
lemma measurable-finmap-compose:

shows (λm. compose J m f ) ∈ measurable (PiM (f ‘ J ) (λ-. M )) (PiM J (λ-.
M ))
〈proof 〉

lemma measurable-compose-inv:
assumes inj:

∧
j. j ∈ J =⇒ f ′ (f j) = j

shows (λm. compose (f ‘ J ) m f ′) ∈ measurable (PiM J (λ-. M )) (PiM (f ‘ J )
(λ-. M ))
〈proof 〉

locale function-to-finmap =
fixes J :: ′a set and f :: ′a ⇒ ′b::countable and f ′

assumes [simp]: finite J
assumes inv: i ∈ J =⇒ f ′ (f i) = i

begin

to measure finmaps
definition fm = (finmap-of (f ‘ J )) o (λg. compose (f ‘ J ) g f ′)

lemma domain-fm[simp]: domain (fm x) = f ‘ J
〈proof 〉

lemma fm-restrict[simp]: fm (restrict y J ) = fm y
〈proof 〉

lemma fm-product:
assumes

∧
i. space (M i) = UNIV

shows fm −‘ Pi ′ (f ‘ J ) S ∩ space (PiM J M ) = (ΠE j ∈ J . S (f j))
〈proof 〉

lemma fm-measurable:
assumes f ‘ J ∈ N
shows fm ∈ measurable (PiM J (λ-. M )) (PiF N (λ-. M ))
〈proof 〉
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lemma proj-fm:
assumes x ∈ J
shows fm m (f x) = m x
〈proof 〉

lemma inj-on-compose-f ′: inj-on (λg. compose (f ‘ J ) g f ′) (extensional J )
〈proof 〉

lemma inj-on-fm:
assumes

∧
i. space (M i) = UNIV

shows inj-on fm (space (PiM J M ))
〈proof 〉

to measure functions
definition mf = (λg. compose J g f ) o proj

lemma mf-fm:
assumes x ∈ space (PiM J (λ-. M ))
shows mf (fm x) = x
〈proof 〉

lemma mf-measurable:
assumes space M = UNIV
shows mf ∈ measurable (PiF {f ‘ J} (λ-. M )) (PiM J (λ-. M ))
〈proof 〉

lemma fm-image-measurable:
assumes space M = UNIV
assumes X ∈ sets (PiM J (λ-. M ))
shows fm ‘ X ∈ sets (PiF {f ‘ J} (λ-. M ))
〈proof 〉

lemma fm-image-measurable-finite:
assumes space M = UNIV
assumes X ∈ sets (PiM J (λ-. M :: ′c measure))
shows fm ‘ X ∈ sets (PiF (Collect finite) (λ-. M :: ′c measure))
〈proof 〉

measure on finmaps
definition mapmeasure M N = distr M (PiF (Collect finite) N ) (fm)

lemma sets-mapmeasure[simp]: sets (mapmeasure M N ) = sets (PiF (Collect fi-
nite) N )
〈proof 〉

lemma space-mapmeasure[simp]: space (mapmeasure M N ) = space (PiF (Collect
finite) N )
〈proof 〉
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lemma mapmeasure-PiF :
assumes s1 : space M = space (PiM J (λ-. N ))
assumes s2 : sets M = sets (PiM J (λ-. N ))
assumes space N = UNIV
assumes X ∈ sets (PiF (Collect finite) (λ-. N ))
shows emeasure (mapmeasure M (λ-. N )) X = emeasure M ((fm −‘ X ∩ exten-

sional J ))
〈proof 〉

lemma mapmeasure-PiM :
fixes N :: ′c measure
assumes s1 : space M = space (PiM J (λ-. N ))
assumes s2 : sets M = (PiM J (λ-. N ))
assumes N : space N = UNIV
assumes X : X ∈ sets M
shows emeasure M X = emeasure (mapmeasure M (λ-. N )) (fm ‘ X)
〈proof 〉

end

end

23 Projective Limit
theory Projective-Limit
imports

Fin-Map
Infinite-Product-Measure
HOL−Library.Diagonal-Subsequence

begin

23.1 Sequences of Finite Maps in Compact Sets
locale finmap-seqs-into-compact =

fixes K ::nat ⇒ (nat ⇒F
′a::metric-space) set and f ::nat ⇒ (nat ⇒F

′a) and
M

assumes compact:
∧

n. compact (K n)
assumes f-in-K :

∧
n. K n 6= {}

assumes domain-K :
∧

n. k ∈ K n =⇒ domain k = domain (f n)
assumes proj-in-K :∧

t n m. m ≥ n =⇒ t ∈ domain (f n) =⇒ (f m)F t ∈ (λk. (k)F t) ‘ K n
begin

lemma proj-in-K ′: (∃n. ∀m ≥ n. (f m)F t ∈ (λk. (k)F t) ‘ K n)
〈proof 〉

lemma proj-in-KE :
obtains n where

∧
m. m ≥ n =⇒ (f m)F t ∈ (λk. (k)F t) ‘ K n

〈proof 〉
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lemma compact-projset:
shows compact ((λk. (k)F i) ‘ K n)
〈proof 〉

end

lemma compactE ′:
fixes S :: ′a :: metric-space set
assumes compact S ∀n≥m. f n ∈ S
obtains l r where l ∈ S strict-mono (r ::nat⇒nat) ((f ◦ r) −−−→ l) sequentially
〈proof 〉

sublocale finmap-seqs-into-compact ⊆ subseqs λn s. (∃ l. (λi. ((f o s) i)F n) −−−−→
l)
〈proof 〉

lemma (in finmap-seqs-into-compact) diagonal-tendsto: ∃ l. (λi. (f (diagseq i))F
n) −−−−→ l
〈proof 〉

23.2 Daniell-Kolmogorov Theorem

Existence of Projective Limit
locale polish-projective = projective-family I P λ-. borel:: ′a::polish-space measure

for I :: ′i set and P
begin

lemma emeasure-lim-emb:
assumes X : J ⊆ I finite J X ∈ sets (ΠM i∈J . borel)
shows lim (emb I J X) = P J X
〈proof 〉

lemma measure-lim-emb:
J ⊆ I =⇒ finite J =⇒ X ∈ sets (ΠM i∈J . borel) =⇒ measure lim (emb I J X)

= measure (P J ) X
〈proof 〉

end

hide-const (open) PiF
hide-const (open) PiF
hide-const (open) Pi ′
hide-const (open) finmap-of
hide-const (open) proj
hide-const (open) domain
hide-const (open) basis-finmap

sublocale polish-projective ⊆ P: prob-space lim
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〈proof 〉

locale polish-product-prob-space =
product-prob-space λ-. borel::( ′a::polish-space) measure I for I :: ′i set

sublocale polish-product-prob-space ⊆ P: polish-projective I λJ . PiM J (λ-. borel::( ′a)
measure)
〈proof 〉

lemma (in polish-product-prob-space) limP-eq-PiM : lim = PiM I (λ-. borel)
〈proof 〉

end

24 Random Permutations
theory Random-Permutations
imports

HOL−Combinatorics.Multiset-Permutations
Probability-Mass-Function

begin

Choosing a set permutation (i.e. a distinct list with the same elements as
the set) uniformly at random is the same as first choosing the first element
of the list and then choosing the rest of the list as a permutation of the
remaining set.
lemma random-permutation-of-set:

assumes finite A A 6= {}
shows pmf-of-set (permutations-of-set A) =

do {
x ← pmf-of-set A;
xs ← pmf-of-set (permutations-of-set (A − {x}));
return-pmf (x#xs)
} (is ?lhs = ?rhs)

〈proof 〉

A generic fold function that takes a function, an initial state, and a set and
chooses a random order in which it then traverses the set in the same fashion
as a left fold over a list. We first give a recursive definition.
function fold-random-permutation :: ( ′a ⇒ ′b ⇒ ′b) ⇒ ′b ⇒ ′a set ⇒ ′b pmf
where

fold-random-permutation f x {} = return-pmf x
| ¬finite A =⇒ fold-random-permutation f x A = return-pmf x
| finite A =⇒ A 6= {} =⇒

fold-random-permutation f x A =
pmf-of-set A >>= (λa. fold-random-permutation f (f a x) (A − {a}))

〈proof 〉
termination 〈proof 〉
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We can now show that the above recursive definition is equivalent to choosing
a random set permutation and folding over it (in any direction).
lemma fold-random-permutation-foldl:

assumes finite A
shows fold-random-permutation f x A =

map-pmf (foldl (λx y. f y x) x) (pmf-of-set (permutations-of-set A))
〈proof 〉

lemma fold-random-permutation-foldr :
assumes finite A
shows fold-random-permutation f x A =

map-pmf (λxs. foldr f xs x) (pmf-of-set (permutations-of-set A))
〈proof 〉

lemma fold-random-permutation-fold:
assumes finite A
shows fold-random-permutation f x A =

map-pmf (λxs. fold f xs x) (pmf-of-set (permutations-of-set A))
〈proof 〉

lemma fold-random-permutation-code [code]:
fold-random-permutation f x (set xs) =

map-pmf (foldl (λx y. f y x) x) (pmf-of-set (permutations-of-set (set xs)))
〈proof 〉

We now introduce a slightly generalised version of the above fold operation
that does not simply return the result in the end, but applies a monadic bind
to it. This may seem somewhat arbitrary, but it is a common use case, e.g.
in the Social Decision Scheme of Random Serial Dictatorship, where voters
narrow down a set of possible winners in a random order and the winner is
chosen from the remaining set uniformly at random.
function fold-bind-random-permutation

:: ( ′a ⇒ ′b ⇒ ′b) ⇒ ( ′b ⇒ ′c pmf ) ⇒ ′b ⇒ ′a set ⇒ ′c pmf where
fold-bind-random-permutation f g x {} = g x
| ¬finite A =⇒ fold-bind-random-permutation f g x A = g x
| finite A =⇒ A 6= {} =⇒

fold-bind-random-permutation f g x A =
pmf-of-set A >>= (λa. fold-bind-random-permutation f g (f a x) (A − {a}))

〈proof 〉
termination 〈proof 〉

We now show that the recursive definition is equivalent to a random fold
followed by a monadic bind.
lemma fold-bind-random-permutation-altdef [code]:

fold-bind-random-permutation f g x A = fold-random-permutation f x A >>= g
〈proof 〉

We can now derive the following nice monadic representations of the com-
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bined fold-and-bind:
lemma fold-bind-random-permutation-foldl:

assumes finite A
shows fold-bind-random-permutation f g x A =

do {xs ← pmf-of-set (permutations-of-set A); g (foldl (λx y. f y x) x xs)}
〈proof 〉

lemma fold-bind-random-permutation-foldr :
assumes finite A
shows fold-bind-random-permutation f g x A =

do {xs ← pmf-of-set (permutations-of-set A); g (foldr f xs x)}
〈proof 〉

lemma fold-bind-random-permutation-fold:
assumes finite A
shows fold-bind-random-permutation f g x A =

do {xs ← pmf-of-set (permutations-of-set A); g (fold f xs x)}
〈proof 〉

The following useful lemma allows us to swap partitioning a set w. r. t. a
predicate and drawing a random permutation of that set.
lemma partition-random-permutations:

assumes finite A
shows map-pmf (partition P) (pmf-of-set (permutations-of-set A)) =

pair-pmf (pmf-of-set (permutations-of-set {x∈A. P x}))
(pmf-of-set (permutations-of-set {x∈A. ¬P x})) (is ?lhs = ?rhs)

〈proof 〉

end

25 Discrete subprobability distribution
theory SPMF imports

Probability-Mass-Function
HOL−Library.Complete-Partial-Order2
HOL−Library.Rewrite

begin

25.1 Auxiliary material
lemma cSUP-singleton [simp]: (SUP x∈{x}. f x :: - :: conditionally-complete-lattice)
= f x
〈proof 〉

25.1.1 More about extended reals
lemma [simp]:

shows ennreal-max-0 : ennreal (max 0 x) = ennreal x
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and ennreal-max-0 ′: ennreal (max x 0 ) = ennreal x
〈proof 〉

lemma e2ennreal-0 [simp]: e2ennreal 0 = 0
〈proof 〉

lemma enn2real-bot [simp]: enn2real ⊥ = 0
〈proof 〉

lemma continuous-at-ennreal[continuous-intros]: continuous F f =⇒ continuous F
(λx. ennreal (f x))
〈proof 〉

lemma ennreal-Sup:
assumes ∗: (SUP a∈A. ennreal a) 6= >
and A 6= {}
shows ennreal (Sup A) = (SUP a∈A. ennreal a)
〈proof 〉

lemma ennreal-SUP:
[[ (SUP a∈A. ennreal (f a)) 6= >; A 6= {} ]] =⇒ ennreal (SUP a∈A. f a) = (SUP

a∈A. ennreal (f a))
〈proof 〉

lemma ennreal-lt-0 : x < 0 =⇒ ennreal x = 0
〈proof 〉

25.1.2 More about ′a option
lemma None-in-map-option-image [simp]: None ∈ map-option f ‘ A ←→ None ∈
A
〈proof 〉

lemma Some-in-map-option-image [simp]: Some x ∈ map-option f ‘ A ←→ (∃ y.
x = f y ∧ Some y ∈ A)
〈proof 〉

lemma case-option-collapse: case-option x (λ-. x) = (λ-. x)
〈proof 〉

lemma case-option-id: case-option None Some = id
〈proof 〉

inductive ord-option :: ( ′a ⇒ ′b ⇒ bool) ⇒ ′a option ⇒ ′b option ⇒ bool
for ord :: ′a ⇒ ′b ⇒ bool

where
None: ord-option ord None x
| Some: ord x y =⇒ ord-option ord (Some x) (Some y)
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inductive-simps ord-option-simps [simp]:
ord-option ord None x
ord-option ord x None
ord-option ord (Some x) (Some y)
ord-option ord (Some x) None

inductive-simps ord-option-eq-simps [simp]:
ord-option (=) None y
ord-option (=) (Some x) y

lemma ord-option-reflI : (
∧

y. y ∈ set-option x =⇒ ord y y) =⇒ ord-option ord x
x
〈proof 〉

lemma reflp-ord-option: reflp ord =⇒ reflp (ord-option ord)
〈proof 〉

lemma ord-option-trans:
[[ ord-option ord x y; ord-option ord y z;∧

a b c. [[ a ∈ set-option x; b ∈ set-option y; c ∈ set-option z; ord a b; ord b c
]] =⇒ ord a c ]]
=⇒ ord-option ord x z
〈proof 〉

lemma transp-ord-option: transp ord =⇒ transp (ord-option ord)
〈proof 〉

lemma antisymp-ord-option: antisymp ord =⇒ antisymp (ord-option ord)
〈proof 〉

lemma ord-option-chainD:
Complete-Partial-Order .chain (ord-option ord) Y
=⇒ Complete-Partial-Order .chain ord {x. Some x ∈ Y }
〈proof 〉

definition lub-option :: ( ′a set ⇒ ′b) ⇒ ′a option set ⇒ ′b option
where lub-option lub Y = (if Y ⊆ {None} then None else Some (lub {x. Some

x ∈ Y }))

lemma map-lub-option: map-option f (lub-option lub Y ) = lub-option (f ◦ lub) Y
〈proof 〉

lemma lub-option-upper :
assumes Complete-Partial-Order .chain (ord-option ord) Y x ∈ Y

and lub-upper :
∧

Y x. [[ Complete-Partial-Order .chain ord Y ; x ∈ Y ]] =⇒ ord
x (lub Y )

shows ord-option ord x (lub-option lub Y )
〈proof 〉
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lemma lub-option-least:
assumes Y : Complete-Partial-Order .chain (ord-option ord) Y

and upper :
∧

x. x ∈ Y =⇒ ord-option ord x y
assumes lub-least:

∧
Y y. [[ Complete-Partial-Order .chain ord Y ;

∧
x. x ∈ Y =⇒

ord x y ]] =⇒ ord (lub Y ) y
shows ord-option ord (lub-option lub Y ) y
〈proof 〉

lemma lub-map-option: lub-option lub (map-option f ‘ Y ) = lub-option (lub ◦ (‘)
f ) Y
〈proof 〉

lemma ord-option-mono: [[ ord-option A x y;
∧

x y. A x y =⇒ B x y ]] =⇒
ord-option B x y
〈proof 〉

lemma ord-option-mono ′ [mono]:
(
∧

x y. A x y −→ B x y) =⇒ ord-option A x y −→ ord-option B x y
〈proof 〉

lemma ord-option-compp: ord-option (A OO B) = ord-option A OO ord-option B
〈proof 〉

lemma ord-option-inf : inf (ord-option A) (ord-option B) = ord-option (inf A B)
(is ?lhs = ?rhs)
〈proof 〉

lemma ord-option-map2 : ord-option ord x (map-option f y) = ord-option (λx y.
ord x (f y)) x y
〈proof 〉

lemma ord-option-map1 : ord-option ord (map-option f x) y = ord-option (λx y.
ord (f x) y) x y
〈proof 〉

lemma option-ord-Some1-iff : option-ord (Some x) y ←→ y = Some x
〈proof 〉

25.1.3 A relator for sets that treats sets like predicates
context includes lifting-syntax
begin

definition rel-pred :: ( ′a ⇒ ′b ⇒ bool) ⇒ ′a set ⇒ ′b set ⇒ bool
where rel-pred R A B = (R ===> (=)) (λx. x ∈ A) (λy. y ∈ B)

lemma rel-predI : (R ===> (=)) (λx. x ∈ A) (λy. y ∈ B) =⇒ rel-pred R A B
〈proof 〉
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lemma rel-predD: [[ rel-pred R A B; R x y ]] =⇒ x ∈ A ←→ y ∈ B
〈proof 〉

lemma Collect-parametric: ((A ===> (=)) ===> rel-pred A) Collect Collect
— Declare this rule as transfer-rule only locally because it blows up the search

space for transfer (in combination with Collect-transfer)
〈proof 〉

end

25.1.4 Monotonicity rules
lemma monotone-gfp-eadd1 : monotone (≥) (≥) (λx. x + y :: enat)
〈proof 〉

lemma monotone-gfp-eadd2 : monotone (≥) (≥) (λy. x + y :: enat)
〈proof 〉

lemma mono2mono-gfp-eadd[THEN gfp.mono2mono2 , cont-intro, simp]:
shows monotone-eadd: monotone (rel-prod (≥) (≥)) (≥) (λ(x, y). x + y :: enat)
〈proof 〉

lemma eadd-gfp-partial-function-mono [partial-function-mono]:
[[ monotone (fun-ord (≥)) (≥) f ; monotone (fun-ord (≥)) (≥) g ]]
=⇒ monotone (fun-ord (≥)) (≥) (λx. f x + g x :: enat)
〈proof 〉

lemma mono2mono-ereal[THEN lfp.mono2mono]:
shows monotone-ereal: monotone (≤) (≤) ereal
〈proof 〉

lemma mono2mono-ennreal[THEN lfp.mono2mono]:
shows monotone-ennreal: monotone (≤) (≤) ennreal
〈proof 〉

25.1.5 Bijections
lemma bi-unique-rel-set-bij-betw:

assumes unique: bi-unique R
and rel: rel-set R A B
shows ∃ f . bij-betw f A B ∧ (∀ x∈A. R x (f x))
〈proof 〉

lemma bij-betw-rel-setD: bij-betw f A B =⇒ rel-set (λx y. y = f x) A B
〈proof 〉

25.2 Subprobability mass function
type-synonym ′a spmf = ′a option pmf
translations (type) ′a spmf ↽ (type) ′a option pmf
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definition measure-spmf :: ′a spmf ⇒ ′a measure
where measure-spmf p = distr (restrict-space (measure-pmf p) (range Some))

(count-space UNIV ) the

abbreviation spmf :: ′a spmf ⇒ ′a ⇒ real
where spmf p x ≡ pmf p (Some x)

lemma space-measure-spmf : space (measure-spmf p) = UNIV
〈proof 〉

lemma sets-measure-spmf [simp, measurable-cong]: sets (measure-spmf p) = sets
(count-space UNIV )
〈proof 〉

lemma measure-spmf-not-bot [simp]: measure-spmf p 6= ⊥
〈proof 〉

lemma measurable-the-measure-pmf-Some [measurable, simp]:
the ∈ measurable (restrict-space (measure-pmf p) (range Some)) (count-space

UNIV )
〈proof 〉

lemma measurable-spmf-measure1 [simp]: measurable (measure-spmf M ) N = UNIV
→ space N
〈proof 〉

lemma measurable-spmf-measure2 [simp]: measurable N (measure-spmf M ) = mea-
surable N (count-space UNIV )
〈proof 〉

lemma subprob-space-measure-spmf [simp, intro!]: subprob-space (measure-spmf p)
〈proof 〉

interpretation measure-spmf : subprob-space measure-spmf p for p
〈proof 〉

lemma finite-measure-spmf [simp]: finite-measure (measure-spmf p)
〈proof 〉

lemma spmf-conv-measure-spmf : spmf p x = measure (measure-spmf p) {x}
〈proof 〉

lemma emeasure-measure-spmf-conv-measure-pmf :
emeasure (measure-spmf p) A = emeasure (measure-pmf p) (Some ‘ A)
〈proof 〉

lemma measure-measure-spmf-conv-measure-pmf :
measure (measure-spmf p) A = measure (measure-pmf p) (Some ‘ A)
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〈proof 〉

lemma emeasure-spmf-map-pmf-Some [simp]:
emeasure (measure-spmf (map-pmf Some p)) A = emeasure (measure-pmf p) A
〈proof 〉

lemma measure-spmf-map-pmf-Some [simp]:
measure (measure-spmf (map-pmf Some p)) A = measure (measure-pmf p) A
〈proof 〉

lemma nn-integral-measure-spmf : (
∫

+ x. f x ∂measure-spmf p) =
∫

+ x. ennreal
(spmf p x) ∗ f x ∂count-space UNIV
(is ?lhs = ?rhs)
〈proof 〉

lemma integral-measure-spmf :
assumes integrable (measure-spmf p) f
shows (

∫
x. f x ∂measure-spmf p) =

∫
x. spmf p x ∗ f x ∂count-space UNIV

〈proof 〉

lemma emeasure-spmf-single: emeasure (measure-spmf p) {x} = spmf p x
〈proof 〉

lemma measurable-measure-spmf [measurable]:
(λx. measure-spmf (M x)) ∈ measurable (count-space UNIV ) (subprob-algebra

(count-space UNIV ))
〈proof 〉

lemma nn-integral-measure-spmf-conv-measure-pmf :
assumes [measurable]: f ∈ borel-measurable (count-space UNIV )
shows nn-integral (measure-spmf p) f = nn-integral (restrict-space (measure-pmf

p) (range Some)) (f ◦ the)
〈proof 〉

lemma measure-spmf-in-space-subprob-algebra [simp]:
measure-spmf p ∈ space (subprob-algebra (count-space UNIV ))
〈proof 〉

lemma nn-integral-spmf-neq-top: (
∫

+ x. spmf p x ∂count-space UNIV ) 6= >
〈proof 〉

lemma SUP-spmf-neq-top ′: (SUP p∈Y . ennreal (spmf p x)) 6= >
〈proof 〉

lemma SUP-spmf-neq-top: (SUP i. ennreal (spmf (Y i) x)) 6= >
〈proof 〉

lemma SUP-emeasure-spmf-neq-top: (SUP p∈Y . emeasure (measure-spmf p) A)
6= >
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〈proof 〉

25.3 Support
definition set-spmf :: ′a spmf ⇒ ′a set

where set-spmf p = set-pmf p >>= set-option

lemma set-spmf-rep-eq: set-spmf p = {x. measure (measure-spmf p) {x} 6= 0}
〈proof 〉

lemma in-set-spmf : x ∈ set-spmf p ←→ Some x ∈ set-pmf p
〈proof 〉

lemma AE-measure-spmf-iff [simp]: (AE x in measure-spmf p. P x)←→ (∀ x∈set-spmf
p. P x)
〈proof 〉

lemma spmf-eq-0-set-spmf : spmf p x = 0 ←→ x /∈ set-spmf p
〈proof 〉

lemma in-set-spmf-iff-spmf : x ∈ set-spmf p ←→ spmf p x 6= 0
〈proof 〉

lemma set-spmf-return-pmf-None [simp]: set-spmf (return-pmf None) = {}
〈proof 〉

lemma countable-set-spmf [simp]: countable (set-spmf p)
〈proof 〉

lemma spmf-eqI :
assumes

∧
i. spmf p i = spmf q i

shows p = q
〈proof 〉

lemma integral-measure-spmf-restrict:
fixes f :: ′a ⇒ ′b :: {banach, second-countable-topology}
shows (

∫
x. f x ∂measure-spmf M ) = (

∫
x. f x ∂restrict-space (measure-spmf

M ) (set-spmf M ))
〈proof 〉

lemma nn-integral-measure-spmf ′:
(
∫

+ x. f x ∂measure-spmf p) =
∫

+ x. ennreal (spmf p x) ∗ f x ∂count-space
(set-spmf p)
〈proof 〉

25.4 Functorial structure
abbreviation map-spmf :: ( ′a ⇒ ′b) ⇒ ′a spmf ⇒ ′b spmf

where map-spmf f ≡ map-pmf (map-option f )
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context begin
〈ML〉

lemma map-comp: map-spmf f (map-spmf g p) = map-spmf (f ◦ g) p
〈proof 〉

lemma map-id0 : map-spmf id = id
〈proof 〉

lemma map-id [simp]: map-spmf id p = p
〈proof 〉

lemma map-ident [simp]: map-spmf (λx. x) p = p
〈proof 〉

end

lemma set-map-spmf [simp]: set-spmf (map-spmf f p) = f ‘ set-spmf p
〈proof 〉

lemma map-spmf-cong:
[[ p = q;

∧
x. x ∈ set-spmf q =⇒ f x = g x ]] =⇒ map-spmf f p = map-spmf g q

〈proof 〉

lemma map-spmf-cong-simp:
[[ p = q;

∧
x. x ∈ set-spmf q =simp=> f x = g x ]]

=⇒ map-spmf f p = map-spmf g q
〈proof 〉

lemma map-spmf-idI : (
∧

x. x ∈ set-spmf p =⇒ f x = x) =⇒ map-spmf f p = p
〈proof 〉

lemma emeasure-map-spmf :
emeasure (measure-spmf (map-spmf f p)) A = emeasure (measure-spmf p) (f −‘

A)
〈proof 〉

lemma measure-map-spmf : measure (measure-spmf (map-spmf f p)) A = measure
(measure-spmf p) (f −‘ A)
〈proof 〉

lemma measure-map-spmf-conv-distr :
measure-spmf (map-spmf f p) = distr (measure-spmf p) (count-space UNIV ) f
〈proof 〉

lemma spmf-map-pmf-Some [simp]: spmf (map-pmf Some p) i = pmf p i
〈proof 〉

lemma spmf-map-inj: [[ inj-on f (set-spmf M ); x ∈ set-spmf M ]] =⇒ spmf (map-spmf
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f M ) (f x) = spmf M x
〈proof 〉

lemma spmf-map-inj ′: inj f =⇒ spmf (map-spmf f M ) (f x) = spmf M x
〈proof 〉

lemma spmf-map-outside: x /∈ f ‘ set-spmf M =⇒ spmf (map-spmf f M ) x = 0
〈proof 〉

lemma ennreal-spmf-map: ennreal (spmf (map-spmf f p) x) = emeasure (measure-spmf
p) (f −‘ {x})
〈proof 〉

lemma spmf-map: spmf (map-spmf f p) x = measure (measure-spmf p) (f −‘ {x})
〈proof 〉

lemma ennreal-spmf-map-conv-nn-integral:
ennreal (spmf (map-spmf f p) x) = integralN (measure-spmf p) (indicator (f −‘
{x}))
〈proof 〉

25.5 Monad operations
25.5.1 Return
abbreviation return-spmf :: ′a ⇒ ′a spmf

where return-spmf x ≡ return-pmf (Some x)

lemma pmf-return-spmf : pmf (return-spmf x) y = indicator {y} (Some x)
〈proof 〉

lemma measure-spmf-return-spmf : measure-spmf (return-spmf x) = Giry-Monad.return
(count-space UNIV ) x
〈proof 〉

lemma measure-spmf-return-pmf-None [simp]: measure-spmf (return-pmf None)
= null-measure (count-space UNIV )
〈proof 〉

lemma set-return-spmf [simp]: set-spmf (return-spmf x) = {x}
〈proof 〉

25.5.2 Bind
definition bind-spmf :: ′a spmf ⇒ ( ′a ⇒ ′b spmf ) ⇒ ′b spmf

where bind-spmf x f = bind-pmf x (λa. case a of None ⇒ return-pmf None |
Some a ′⇒ f a ′)

adhoc-overloading Monad-Syntax.bind 
 bind-spmf
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lemma return-None-bind-spmf [simp]: return-pmf None >>= (f :: ′a ⇒ -) = re-
turn-pmf None
〈proof 〉

lemma return-bind-spmf [simp]: return-spmf x >>= f = f x
〈proof 〉

lemma bind-return-spmf [simp]: x >>= return-spmf = x
〈proof 〉

lemma bind-spmf-assoc [simp]:
fixes x :: ′a spmf and f :: ′a ⇒ ′b spmf and g :: ′b ⇒ ′c spmf
shows (x >>= f ) >>= g = x >>= (λy. f y >>= g)
〈proof 〉

lemma pmf-bind-spmf-None: pmf (p >>= f ) None = pmf p None +
∫

x. pmf (f
x) None ∂measure-spmf p
(is ?lhs = ?rhs)
〈proof 〉

lemma spmf-bind: spmf (p >>= f ) y =
∫

x. spmf (f x) y ∂measure-spmf p
〈proof 〉

lemma ennreal-spmf-bind: ennreal (spmf (p >>= f ) x) =
∫

+ y. spmf (f y) x ∂mea-
sure-spmf p
〈proof 〉

lemma measure-spmf-bind-pmf : measure-spmf (p >>= f ) = measure-pmf p >>=
measure-spmf ◦ f
(is ?lhs = ?rhs)
〈proof 〉

lemma measure-spmf-bind: measure-spmf (p >>= f ) = measure-spmf p >>= mea-
sure-spmf ◦ f
(is ?lhs = ?rhs)
〈proof 〉

lemma map-spmf-bind-spmf : map-spmf f (bind-spmf p g) = bind-spmf p (map-spmf
f ◦ g)
〈proof 〉

lemma bind-map-spmf : map-spmf f p >>= g = p >>= g ◦ f
〈proof 〉

lemma spmf-bind-leI :
assumes

∧
y. y ∈ set-spmf p =⇒ spmf (f y) x ≤ r

and 0 ≤ r
shows spmf (bind-spmf p f ) x ≤ r
〈proof 〉
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lemma map-spmf-conv-bind-spmf : map-spmf f p = (p >>= (λx. return-spmf (f x)))
〈proof 〉

lemma bind-spmf-cong:
[[ p = q;

∧
x. x ∈ set-spmf q =⇒ f x = g x ]] =⇒ bind-spmf p f = bind-spmf q g

〈proof 〉

lemma bind-spmf-cong-simp:
[[ p = q;

∧
x. x ∈ set-spmf q =simp=> f x = g x ]]

=⇒ bind-spmf p f = bind-spmf q g
〈proof 〉

lemma set-bind-spmf : set-spmf (M >>= f ) = set-spmf M >>= (set-spmf ◦ f )
〈proof 〉

lemma bind-spmf-const-return-None [simp]: bind-spmf p (λ-. return-pmf None) =
return-pmf None
〈proof 〉

lemma bind-commute-spmf :
bind-spmf p (λx. bind-spmf q (f x)) = bind-spmf q (λy. bind-spmf p (λx. f x y))
(is ?lhs = ?rhs)
〈proof 〉

25.6 Relator
abbreviation rel-spmf :: ( ′a ⇒ ′b ⇒ bool) ⇒ ′a spmf ⇒ ′b spmf ⇒ bool

where rel-spmf R ≡ rel-pmf (rel-option R)

lemma rel-spmf-mono:
[[rel-spmf A f g;

∧
x y. A x y =⇒ B x y ]] =⇒ rel-spmf B f g

〈proof 〉

lemma rel-spmf-mono-strong:
[[ rel-spmf A f g;

∧
x y. [[ A x y; x ∈ set-spmf f ; y ∈ set-spmf g ]] =⇒ B x y ]] =⇒

rel-spmf B f g
〈proof 〉

lemma rel-spmf-reflI : (
∧

x. x ∈ set-spmf p =⇒ P x x) =⇒ rel-spmf P p p
〈proof 〉

lemma rel-spmfI [intro?]:
[[
∧

x y. (x, y) ∈ set-spmf pq =⇒ P x y; map-spmf fst pq = p; map-spmf snd pq
= q ]]
=⇒ rel-spmf P p q
〈proof 〉

lemma rel-spmfE [elim?, consumes 1 , case-names rel-spmf ]:
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assumes rel-spmf P p q
obtains pq where∧

x y. (x, y) ∈ set-spmf pq =⇒ P x y
p = map-spmf fst pq
q = map-spmf snd pq
〈proof 〉

lemma rel-spmf-simps:
rel-spmf R p q ←→ (∃ pq. (∀ (x, y)∈set-spmf pq. R x y) ∧ map-spmf fst pq = p ∧

map-spmf snd pq = q)
〈proof 〉

lemma spmf-rel-map:
shows spmf-rel-map1 :

∧
R f x . rel-spmf R (map-spmf f x) = rel-spmf (λx. R (f

x)) x
and spmf-rel-map2 :

∧
R x g y. rel-spmf R x (map-spmf g y) = rel-spmf (λx y.

R x (g y)) x y
〈proof 〉

lemma spmf-rel-conversep: rel-spmf R−1−1 = (rel-spmf R)−1−1

〈proof 〉

lemma spmf-rel-eq: rel-spmf (=) = (=)
〈proof 〉

context includes lifting-syntax
begin

lemma bind-spmf-parametric [transfer-rule]:
(rel-spmf A ===> (A ===> rel-spmf B) ===> rel-spmf B) bind-spmf bind-spmf
〈proof 〉

lemma return-spmf-parametric: (A ===> rel-spmf A) return-spmf return-spmf
〈proof 〉

lemma map-spmf-parametric: ((A ===> B) ===> rel-spmf A ===> rel-spmf
B) map-spmf map-spmf
〈proof 〉

lemma rel-spmf-parametric:
((A ===> B ===> (=)) ===> rel-spmf A ===> rel-spmf B ===> (=))

rel-spmf rel-spmf
〈proof 〉

lemma set-spmf-parametric [transfer-rule]:
(rel-spmf A ===> rel-set A) set-spmf set-spmf
〈proof 〉

lemma return-spmf-None-parametric:
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(rel-spmf A) (return-pmf None) (return-pmf None)
〈proof 〉

end

lemma rel-spmf-bindI :
[[ rel-spmf R p q;

∧
x y. R x y =⇒ rel-spmf P (f x) (g y) ]]

=⇒ rel-spmf P (p >>= f ) (q >>= g)
〈proof 〉

lemma rel-spmf-bind-reflI :
(
∧

x. x ∈ set-spmf p =⇒ rel-spmf P (f x) (g x)) =⇒ rel-spmf P (p >>= f ) (p >>=
g)
〈proof 〉

lemma rel-pmf-return-pmfI : P x y =⇒ rel-pmf P (return-pmf x) (return-pmf y)
〈proof 〉

context includes lifting-syntax
begin

We do not yet have a relator for ′a measure, so we combine Sigma-Algebra.measure
and measure-pmf
lemma measure-pmf-parametric:
(rel-pmf A ===> rel-pred A ===> (=)) (λp. measure (measure-pmf p)) (λq.

measure (measure-pmf q))
〈proof 〉

lemma measure-spmf-parametric:
(rel-spmf A ===> rel-pred A ===> (=)) (λp. measure (measure-spmf p)) (λq.

measure (measure-spmf q))
〈proof 〉

end

25.7 From ′a pmf to ′a spmf
definition spmf-of-pmf :: ′a pmf ⇒ ′a spmf

where spmf-of-pmf = map-pmf Some

lemma set-spmf-spmf-of-pmf [simp]: set-spmf (spmf-of-pmf p) = set-pmf p
〈proof 〉

lemma spmf-spmf-of-pmf [simp]: spmf (spmf-of-pmf p) x = pmf p x
〈proof 〉

lemma pmf-spmf-of-pmf-None [simp]: pmf (spmf-of-pmf p) None = 0
〈proof 〉
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lemma emeasure-spmf-of-pmf [simp]: emeasure (measure-spmf (spmf-of-pmf p))
A = emeasure (measure-pmf p) A
〈proof 〉

lemma measure-spmf-spmf-of-pmf [simp]: measure-spmf (spmf-of-pmf p) = mea-
sure-pmf p
〈proof 〉

lemma map-spmf-of-pmf [simp]: map-spmf f (spmf-of-pmf p) = spmf-of-pmf (map-pmf
f p)
〈proof 〉

lemma rel-spmf-spmf-of-pmf [simp]: rel-spmf R (spmf-of-pmf p) (spmf-of-pmf q)
= rel-pmf R p q
〈proof 〉

lemma spmf-of-pmf-return-pmf [simp]: spmf-of-pmf (return-pmf x) = return-spmf
x
〈proof 〉

lemma bind-spmf-of-pmf [simp]: bind-spmf (spmf-of-pmf p) f = bind-pmf p f
〈proof 〉

lemma set-spmf-bind-pmf : set-spmf (bind-pmf p f ) = Set.bind (set-pmf p) (set-spmf
◦ f )
〈proof 〉

lemma spmf-of-pmf-bind: spmf-of-pmf (bind-pmf p f ) = bind-pmf p (λx. spmf-of-pmf
(f x))
〈proof 〉

lemma bind-pmf-return-spmf : p >>= (λx. return-spmf (f x)) = spmf-of-pmf (map-pmf
f p)
〈proof 〉

25.8 Weight of a subprobability
abbreviation weight-spmf :: ′a spmf ⇒ real

where weight-spmf p ≡ measure (measure-spmf p) (space (measure-spmf p))

lemma weight-spmf-def : weight-spmf p = measure (measure-spmf p) UNIV
〈proof 〉

lemma weight-spmf-le-1 : weight-spmf p ≤ 1
〈proof 〉

lemma weight-return-spmf [simp]: weight-spmf (return-spmf x) = 1
〈proof 〉
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lemma weight-return-pmf-None [simp]: weight-spmf (return-pmf None) = 0
〈proof 〉

lemma weight-map-spmf [simp]: weight-spmf (map-spmf f p) = weight-spmf p
〈proof 〉

lemma weight-spmf-of-pmf [simp]: weight-spmf (spmf-of-pmf p) = 1
〈proof 〉

lemma weight-spmf-nonneg: weight-spmf p ≥ 0
〈proof 〉

lemma (in finite-measure) integrable-weight-spmf [simp]:
(λx. weight-spmf (f x)) ∈ borel-measurable M =⇒ integrable M (λx. weight-spmf

(f x))
〈proof 〉

lemma weight-spmf-eq-nn-integral-spmf : weight-spmf p =
∫

+ x. spmf p x ∂count-space
UNIV
〈proof 〉

lemma weight-spmf-eq-nn-integral-support:
weight-spmf p =

∫
+ x. spmf p x ∂count-space (set-spmf p)

〈proof 〉

lemma pmf-None-eq-weight-spmf : pmf p None = 1 − weight-spmf p
〈proof 〉

lemma weight-spmf-conv-pmf-None: weight-spmf p = 1 − pmf p None
〈proof 〉

lemma weight-spmf-lt-0 : ¬ weight-spmf p < 0
〈proof 〉

lemma spmf-le-weight: spmf p x ≤ weight-spmf p
〈proof 〉

lemma weight-spmf-eq-0 : weight-spmf p = 0 ←→ p = return-pmf None
〈proof 〉

lemma weight-bind-spmf : weight-spmf (x >>= f ) = lebesgue-integral (measure-spmf
x) (weight-spmf ◦ f )
〈proof 〉

lemma rel-spmf-weightD: rel-spmf A p q =⇒ weight-spmf p = weight-spmf q
〈proof 〉

lemma rel-spmf-bij-betw:
assumes f : bij-betw f (set-spmf p) (set-spmf q)
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and eq:
∧

x. x ∈ set-spmf p =⇒ spmf p x = spmf q (f x)
shows rel-spmf (λx y. f x = y) p q
〈proof 〉

25.9 From density to spmfs
context fixes f :: ′a ⇒ real begin

definition embed-spmf :: ′a spmf
where embed-spmf = embed-pmf (λx. case x of None ⇒ 1 − enn2real (

∫
+ x.

ennreal (f x) ∂count-space UNIV ) | Some x ′⇒ max 0 (f x ′))

context
assumes prob: (

∫
+ x. ennreal (f x) ∂count-space UNIV ) ≤ 1

begin

lemma nn-integral-embed-spmf-eq-1 :
(
∫

+ x. ennreal (case x of None ⇒ 1 − enn2real (
∫

+ x. ennreal (f x) ∂count-space
UNIV ) | Some x ′⇒ max 0 (f x ′)) ∂count-space UNIV ) = 1
(is ?lhs = - is (

∫
+ x. ?f x ∂?M ) = -)

〈proof 〉

lemma pmf-embed-spmf-None: pmf embed-spmf None = 1 − enn2real (
∫

+ x. en-
nreal (f x) ∂count-space UNIV )
〈proof 〉

lemma spmf-embed-spmf [simp]: spmf embed-spmf x = max 0 (f x)
〈proof 〉

end

end

lemma embed-spmf-K-0 [simp]: embed-spmf (λ-. 0 ) = return-pmf None
〈proof 〉

25.10 Ordering on spmfs

rel-pmf does not preserve a ccpo structure. Counterexample by Saheb-
Djahromi: Take prefix order over bool llist and the set range (λn :: nat.
uniform (llist-n n)) where llist-n is the set of all llists of length n and
uniform returns a uniform distribution over the given set. The set forms
a chain in ord-pmf lprefix, but it has not an upper bound. Any upper
bound may contain only infinite lists in its support because otherwise it is
not greater than the n+1 -st element in the chain where n is the length of
the finite list. Moreover its support must contain all infinite lists, because
otherwise there is a finite list all of whose finite extensions are not in the
support - a contradiction to the upper bound property. Hence, the support
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is uncountable, but pmf’s only have countable support.
However, if all chains in the ccpo are finite, then it should preserve the ccpo
structure.
abbreviation ord-spmf :: ( ′a ⇒ ′a ⇒ bool) ⇒ ′a spmf ⇒ ′a spmf ⇒ bool

where ord-spmf ord ≡ rel-pmf (ord-option ord)

locale ord-spmf-syntax begin
notation ord-spmf (infix ‹vı› 60 )
end

lemma ord-spmf-map-spmf1 : ord-spmf R (map-spmf f p) = ord-spmf (λx. R (f x))
p
〈proof 〉

lemma ord-spmf-map-spmf2 : ord-spmf R p (map-spmf f q) = ord-spmf (λx y. R
x (f y)) p q
〈proof 〉

lemma ord-spmf-map-spmf12 : ord-spmf R (map-spmf f p) (map-spmf f q) = ord-spmf
(λx y. R (f x) (f y)) p q
〈proof 〉

lemmas ord-spmf-map-spmf = ord-spmf-map-spmf1 ord-spmf-map-spmf2 ord-spmf-map-spmf12

context fixes ord :: ′a ⇒ ′a ⇒ bool (structure) begin
interpretation ord-spmf-syntax 〈proof 〉

lemma ord-spmfI :
[[
∧

x y. (x, y) ∈ set-spmf pq =⇒ ord x y; map-spmf fst pq = p; map-spmf snd pq
= q ]]
=⇒ p v q
〈proof 〉

lemma ord-spmf-None [simp]: return-pmf None v x
〈proof 〉

lemma ord-spmf-reflI : (
∧

x. x ∈ set-spmf p =⇒ ord x x) =⇒ p v p
〈proof 〉

lemma rel-spmf-inf :
assumes p v q
and q v p
and refl: reflp ord
and trans: transp ord
shows rel-spmf (inf ord ord−1−1) p q
〈proof 〉

end
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lemma ord-spmf-return-spmf2 : ord-spmf R p (return-spmf y) ←→ (∀ x∈set-spmf
p. R x y)
〈proof 〉

lemma ord-spmf-mono: [[ ord-spmf A p q;
∧

x y. A x y =⇒ B x y ]] =⇒ ord-spmf
B p q
〈proof 〉

lemma ord-spmf-compp: ord-spmf (A OO B) = ord-spmf A OO ord-spmf B
〈proof 〉

lemma ord-spmf-bindI :
assumes pq: ord-spmf R p q

and fg:
∧

x y. R x y =⇒ ord-spmf P (f x) (g y)
shows ord-spmf P (p >>= f ) (q >>= g)
〈proof 〉

lemma ord-spmf-bind-reflI :
(
∧

x. x ∈ set-spmf p =⇒ ord-spmf R (f x) (g x)) =⇒ ord-spmf R (p >>= f ) (p >>=
g)
〈proof 〉

lemma ord-pmf-increaseI :
assumes le:

∧
x. spmf p x ≤ spmf q x

and refl:
∧

x. x ∈ set-spmf p =⇒ R x x
shows ord-spmf R p q
〈proof 〉

lemma ord-spmf-eq-leD:
assumes ord-spmf (=) p q
shows spmf p x ≤ spmf q x
〈proof 〉

lemma ord-spmf-eqD-set-spmf : ord-spmf (=) p q =⇒ set-spmf p ⊆ set-spmf q
〈proof 〉

lemma ord-spmf-eqD-emeasure:
ord-spmf (=) p q =⇒ emeasure (measure-spmf p) A ≤ emeasure (measure-spmf

q) A
〈proof 〉

lemma ord-spmf-eqD-measure-spmf : ord-spmf (=) p q =⇒ measure-spmf p ≤ mea-
sure-spmf q
〈proof 〉

25.11 CCPO structure for the flat ccpo ord-option (=)

context fixes Y :: ′a spmf set begin
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definition lub-spmf :: ′a spmf
where lub-spmf = embed-spmf (λx. enn2real (SUP p ∈ Y . ennreal (spmf p x)))

— We go through ennreal to have a sensible definition even if Y is empty.

lemma lub-spmf-empty [simp]: SPMF .lub-spmf {} = return-pmf None
〈proof 〉

context assumes chain: Complete-Partial-Order .chain (ord-spmf (=)) Y
begin

lemma chain-ord-spmf-eqD: Complete-Partial-Order .chain (≤) ((λp x. ennreal (spmf
p x)) ‘ Y )
(is Complete-Partial-Order .chain - (?f ‘ -))
〈proof 〉

lemma ord-spmf-eq-pmf-None-eq:
assumes le: ord-spmf (=) p q
and None: pmf p None = pmf q None
shows p = q
〈proof 〉

lemma ord-spmf-eqD-pmf-None:
assumes ord-spmf (=) x y
shows pmf x None ≥ pmf y None
〈proof 〉

Chains on ′a spmf maintain countable support. Thanks to Johannes Hölzl
for the proof idea.
lemma spmf-chain-countable: countable (

⋃
p∈Y . set-spmf p)

〈proof 〉

lemma lub-spmf-subprob: (
∫

+ x. (SUP p ∈ Y . ennreal (spmf p x)) ∂count-space
UNIV ) ≤ 1
〈proof 〉

lemma spmf-lub-spmf :
assumes Y 6= {}
shows spmf lub-spmf x = (SUP p ∈ Y . spmf p x)
〈proof 〉

lemma ennreal-spmf-lub-spmf : Y 6= {} =⇒ ennreal (spmf lub-spmf x) = (SUP
p∈Y . ennreal (spmf p x))
〈proof 〉

lemma lub-spmf-upper :
assumes p: p ∈ Y
shows ord-spmf (=) p lub-spmf
〈proof 〉
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lemma lub-spmf-least:
assumes z:

∧
x. x ∈ Y =⇒ ord-spmf (=) x z

shows ord-spmf (=) lub-spmf z
〈proof 〉

lemma set-lub-spmf : set-spmf lub-spmf = (
⋃

p∈Y . set-spmf p) (is ?lhs = ?rhs)
〈proof 〉

lemma emeasure-lub-spmf :
assumes Y : Y 6= {}
shows emeasure (measure-spmf lub-spmf ) A = (SUP y∈Y . emeasure (measure-spmf

y) A)
(is ?lhs = ?rhs)
〈proof 〉

lemma measure-lub-spmf :
assumes Y : Y 6= {}
shows measure (measure-spmf lub-spmf ) A = (SUP y∈Y . measure (measure-spmf

y) A) (is ?lhs = ?rhs)
〈proof 〉

lemma weight-lub-spmf :
assumes Y : Y 6= {}
shows weight-spmf lub-spmf = (SUP y∈Y . weight-spmf y)
〈proof 〉

lemma measure-spmf-lub-spmf :
assumes Y : Y 6= {}
shows measure-spmf lub-spmf = (SUP p∈Y . measure-spmf p) (is ?lhs = ?rhs)
〈proof 〉

end

end

lemma partial-function-definitions-spmf : partial-function-definitions (ord-spmf (=))
lub-spmf
(is partial-function-definitions ?R -)
〈proof 〉

lemma ccpo-spmf : class.ccpo lub-spmf (ord-spmf (=)) (mk-less (ord-spmf (=)))
〈proof 〉

interpretation spmf : partial-function-definitions ord-spmf (=) lub-spmf
rewrites lub-spmf {} ≡ return-pmf None
〈proof 〉

〈ML〉



THEORY “SPMF” 168

declare spmf .leq-refl[simp]
declare admissible-leI [OF ccpo-spmf , cont-intro]

abbreviation mono-spmf ≡ monotone (fun-ord (ord-spmf (=))) (ord-spmf (=))

lemma lub-spmf-const [simp]: lub-spmf {p} = p
〈proof 〉

lemma bind-spmf-mono ′:
assumes fg: ord-spmf (=) f g

and hk:
∧

x :: ′a. ord-spmf (=) (h x) (k x)
shows ord-spmf (=) (f >>= h) (g >>= k)
〈proof 〉

lemma bind-spmf-mono [partial-function-mono]:
assumes mf : mono-spmf B and mg:

∧
y. mono-spmf (λf . C y f )

shows mono-spmf (λf . bind-spmf (B f ) (λy. C y f ))
〈proof 〉

lemma monotone-bind-spmf1 : monotone (ord-spmf (=)) (ord-spmf (=)) (λy. bind-spmf
y g)
〈proof 〉

lemma monotone-bind-spmf2 :
assumes g:

∧
x. monotone ord (ord-spmf (=)) (λy. g y x)

shows monotone ord (ord-spmf (=)) (λy. bind-spmf p (g y))
〈proof 〉

lemma bind-lub-spmf :
assumes chain: Complete-Partial-Order .chain (ord-spmf (=)) Y
shows bind-spmf (lub-spmf Y ) f = lub-spmf ((λp. bind-spmf p f ) ‘ Y ) (is ?lhs

= ?rhs)
〈proof 〉

lemma map-lub-spmf :
Complete-Partial-Order .chain (ord-spmf (=)) Y
=⇒ map-spmf f (lub-spmf Y ) = lub-spmf (map-spmf f ‘ Y )
〈proof 〉

lemma mcont-bind-spmf1 : mcont lub-spmf (ord-spmf (=)) lub-spmf (ord-spmf
(=)) (λy. bind-spmf y f )
〈proof 〉

lemma bind-lub-spmf2 :
assumes chain: Complete-Partial-Order .chain ord Y

and g:
∧

y. monotone ord (ord-spmf (=)) (g y)
shows bind-spmf x (λy. lub-spmf (g y ‘ Y )) = lub-spmf ((λp. bind-spmf x (λy.

g y p)) ‘ Y )
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(is ?lhs = ?rhs)
〈proof 〉

lemma mcont-bind-spmf [cont-intro]:
assumes f : mcont luba orda lub-spmf (ord-spmf (=)) f
and g:

∧
y. mcont luba orda lub-spmf (ord-spmf (=)) (g y)

shows mcont luba orda lub-spmf (ord-spmf (=)) (λx. bind-spmf (f x) (λy. g y
x))
〈proof 〉

lemma bind-pmf-mono [partial-function-mono]:
(
∧

y. mono-spmf (λf . C y f )) =⇒ mono-spmf (λf . bind-pmf p (λx. C x f ))
〈proof 〉

lemma map-spmf-mono [partial-function-mono]: mono-spmf B =⇒ mono-spmf (λg.
map-spmf f (B g))
〈proof 〉

lemma mcont-map-spmf [cont-intro]:
mcont luba orda lub-spmf (ord-spmf (=)) g
=⇒ mcont luba orda lub-spmf (ord-spmf (=)) (λx. map-spmf f (g x))
〈proof 〉

lemma monotone-set-spmf : monotone (ord-spmf (=)) (⊆) set-spmf
〈proof 〉

lemma cont-set-spmf : cont lub-spmf (ord-spmf (=)) Union (⊆) set-spmf
〈proof 〉

lemma mcont2mcont-set-spmf [THEN mcont2mcont, cont-intro]:
shows mcont-set-spmf : mcont lub-spmf (ord-spmf (=)) Union (⊆) set-spmf
〈proof 〉

lemma monotone-spmf : monotone (ord-spmf (=)) (≤) (λp. spmf p x)
〈proof 〉

lemma cont-spmf : cont lub-spmf (ord-spmf (=)) Sup (≤) (λp. spmf p x)
〈proof 〉

lemma mcont-spmf : mcont lub-spmf (ord-spmf (=)) Sup (≤) (λp. spmf p x)
〈proof 〉

lemma cont-ennreal-spmf : cont lub-spmf (ord-spmf (=)) Sup (≤) (λp. ennreal
(spmf p x))
〈proof 〉

lemma mcont2mcont-ennreal-spmf [THEN mcont2mcont, cont-intro]:
shows mcont-ennreal-spmf : mcont lub-spmf (ord-spmf (=)) Sup (≤) (λp. ennreal

(spmf p x))
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〈proof 〉

lemma nn-integral-map-spmf [simp]: nn-integral (measure-spmf (map-spmf f p))
g = nn-integral (measure-spmf p) (g ◦ f )
〈proof 〉

25.11.1 Admissibility of rel-spmf
lemma rel-spmf-measureD:

assumes rel-spmf R p q
shows measure (measure-spmf p) A ≤ measure (measure-spmf q) {y. ∃ x∈A. R

x y} (is ?lhs ≤ ?rhs)
〈proof 〉

locale rel-spmf-characterisation =
assumes rel-pmf-measureI :∧

(R :: ′a option ⇒ ′b option ⇒ bool) p q.
(
∧

A. measure (measure-pmf p) A ≤ measure (measure-pmf q) {y. ∃ x∈A. R x
y})

=⇒ rel-pmf R p q
— This assumption is shown to hold in general in the AFP entry MFMC-Countable.

begin

context fixes R :: ′a ⇒ ′b ⇒ bool begin

lemma rel-spmf-measureI :
assumes eq1 :

∧
A. measure (measure-spmf p) A ≤ measure (measure-spmf q)

{y. ∃ x∈A. R x y}
assumes eq2 : weight-spmf q ≤ weight-spmf p
shows rel-spmf R p q
〈proof 〉

lemma admissible-rel-spmf :
ccpo.admissible (prod-lub lub-spmf lub-spmf ) (rel-prod (ord-spmf (=)) (ord-spmf

(=))) (case-prod (rel-spmf R))
(is ccpo.admissible ?lub ?ord ?P)
〈proof 〉

lemma admissible-rel-spmf-mcont [cont-intro]:
[[ mcont lub ord lub-spmf (ord-spmf (=)) f ; mcont lub ord lub-spmf (ord-spmf

(=)) g ]]
=⇒ ccpo.admissible lub ord (λx. rel-spmf R (f x) (g x))
〈proof 〉

context includes lifting-syntax
begin

lemma fixp-spmf-parametric ′:
assumes f :

∧
x. monotone (ord-spmf (=)) (ord-spmf (=)) F
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and g:
∧

x. monotone (ord-spmf (=)) (ord-spmf (=)) G
and param: (rel-spmf R ===> rel-spmf R) F G

shows (rel-spmf R) (ccpo.fixp lub-spmf (ord-spmf (=)) F) (ccpo.fixp lub-spmf
(ord-spmf (=)) G)
〈proof 〉

lemma fixp-spmf-parametric:
assumes f :

∧
x. mono-spmf (λf . F f x)

and g:
∧

x. mono-spmf (λf . G f x)
and param: ((A ===> rel-spmf R) ===> A ===> rel-spmf R) F G
shows (A ===> rel-spmf R) (spmf .fixp-fun F) (spmf .fixp-fun G)
〈proof 〉

end

end

end

25.12 Restrictions on spmfs
definition restrict-spmf :: ′a spmf ⇒ ′a set ⇒ ′a spmf (infixl ‹�› 110 )

where p � A = map-pmf (λx. x >>= (λy. if y ∈ A then Some y else None)) p

lemma set-restrict-spmf [simp]: set-spmf (p � A) = set-spmf p ∩ A
〈proof 〉

lemma restrict-map-spmf : map-spmf f p � A = map-spmf f (p � (f −‘ A))
〈proof 〉

lemma restrict-restrict-spmf [simp]: p � A � B = p � (A ∩ B)
〈proof 〉

lemma restrict-spmf-empty [simp]: p � {} = return-pmf None
〈proof 〉

lemma restrict-spmf-UNIV [simp]: p � UNIV = p
〈proof 〉

lemma spmf-restrict-spmf-outside [simp]: x /∈ A =⇒ spmf (p � A) x = 0
〈proof 〉

lemma emeasure-restrict-spmf [simp]: emeasure (measure-spmf (p � A)) X =
emeasure (measure-spmf p) (X ∩ A)
〈proof 〉

lemma measure-restrict-spmf [simp]:
measure (measure-spmf (p � A)) X = measure (measure-spmf p) (X ∩ A)
〈proof 〉
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lemma spmf-restrict-spmf : spmf (p � A) x = (if x ∈ A then spmf p x else 0 )
〈proof 〉

lemma spmf-restrict-spmf-inside [simp]: x ∈ A =⇒ spmf (p � A) x = spmf p x
〈proof 〉

lemma pmf-restrict-spmf-None: pmf (p � A) None = pmf p None + measure
(measure-spmf p) (− A)
〈proof 〉

lemma restrict-spmf-trivial: (
∧

x. x ∈ set-spmf p =⇒ x ∈ A) =⇒ p � A = p
〈proof 〉

lemma restrict-spmf-trivial ′: set-spmf p ⊆ A =⇒ p � A = p
〈proof 〉

lemma restrict-return-spmf : return-spmf x � A = (if x ∈ A then return-spmf x
else return-pmf None)
〈proof 〉

lemma restrict-return-spmf-inside [simp]: x ∈ A =⇒ return-spmf x � A = re-
turn-spmf x
〈proof 〉

lemma restrict-return-spmf-outside [simp]: x /∈ A =⇒ return-spmf x � A = re-
turn-pmf None
〈proof 〉

lemma restrict-spmf-return-pmf-None [simp]: return-pmf None � A = return-pmf
None
〈proof 〉

lemma restrict-bind-pmf : bind-pmf p g � A = p >>= (λx. g x � A)
〈proof 〉

lemma restrict-bind-spmf : bind-spmf p g � A = p >>= (λx. g x � A)
〈proof 〉

lemma bind-restrict-pmf : bind-pmf (p � A) g = p >>= (λx. if x ∈ Some ‘ A then
g x else g None)
〈proof 〉

lemma bind-restrict-spmf : bind-spmf (p � A) g = p >>= (λx. if x ∈ A then g x
else return-pmf None)
〈proof 〉

lemma spmf-map-restrict: spmf (map-spmf fst (p � (snd −‘ {y}))) x = spmf p (x,
y)
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〈proof 〉

lemma measure-eqI-restrict-spmf :
assumes rel-spmf R (restrict-spmf p A) (restrict-spmf q B)
shows measure (measure-spmf p) A = measure (measure-spmf q) B
〈proof 〉

25.13 Subprobability distributions of sets
definition spmf-of-set :: ′a set ⇒ ′a spmf
where

spmf-of-set A = (if finite A ∧ A 6= {} then spmf-of-pmf (pmf-of-set A) else
return-pmf None)

lemma spmf-of-set: spmf (spmf-of-set A) x = indicator A x / card A
〈proof 〉

lemma pmf-spmf-of-set-None [simp]: pmf (spmf-of-set A) None = indicator {A.
infinite A ∨ A = {}} A
〈proof 〉

lemma set-spmf-of-set: set-spmf (spmf-of-set A) = (if finite A then A else {})
〈proof 〉

lemma set-spmf-of-set-finite [simp]: finite A =⇒ set-spmf (spmf-of-set A) = A
〈proof 〉

lemma spmf-of-set-singleton: spmf-of-set {x} = return-spmf x
〈proof 〉

lemma map-spmf-of-set-inj-on [simp]:
inj-on f A =⇒ map-spmf f (spmf-of-set A) = spmf-of-set (f ‘ A)
〈proof 〉

lemma spmf-of-pmf-pmf-of-set [simp]:
[[ finite A; A 6= {} ]] =⇒ spmf-of-pmf (pmf-of-set A) = spmf-of-set A
〈proof 〉

lemma weight-spmf-of-set:
weight-spmf (spmf-of-set A) = (if finite A ∧ A 6= {} then 1 else 0 )
〈proof 〉

lemma weight-spmf-of-set-finite [simp]: [[ finite A; A 6= {} ]] =⇒ weight-spmf
(spmf-of-set A) = 1
〈proof 〉

lemma weight-spmf-of-set-infinite [simp]: infinite A =⇒ weight-spmf (spmf-of-set
A) = 0
〈proof 〉
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lemma measure-spmf-spmf-of-set:
measure-spmf (spmf-of-set A) = (if finite A ∧ A 6= {} then measure-pmf (pmf-of-set

A) else null-measure (count-space UNIV ))
〈proof 〉

lemma emeasure-spmf-of-set:
emeasure (measure-spmf (spmf-of-set S)) A = card (S ∩ A) / card S
〈proof 〉

lemma measure-spmf-of-set:
measure (measure-spmf (spmf-of-set S)) A = card (S ∩ A) / card S
〈proof 〉

lemma nn-integral-spmf-of-set: nn-integral (measure-spmf (spmf-of-set A)) f =
sum f A / card A
〈proof 〉

lemma integral-spmf-of-set: integralL (measure-spmf (spmf-of-set A)) f = sum f
A / card A
〈proof 〉

notepad begin — pmf-of-set is not fully parametric.
〈proof 〉

end

lemma rel-pmf-of-set-bij:
assumes f : bij-betw f A B
and A: A 6= {} finite A
and B: B 6= {} finite B
and R:

∧
x. x ∈ A =⇒ R x (f x)

shows rel-pmf R (pmf-of-set A) (pmf-of-set B)
〈proof 〉

lemma rel-spmf-of-set-bij:
assumes f : bij-betw f A B
and R:

∧
x. x ∈ A =⇒ R x (f x)

shows rel-spmf R (spmf-of-set A) (spmf-of-set B)
〈proof 〉

context includes lifting-syntax
begin

lemma rel-spmf-of-set:
assumes bi-unique R
shows (rel-set R ===> rel-spmf R) spmf-of-set spmf-of-set
〈proof 〉

end
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lemma map-mem-spmf-of-set:
assumes finite B B 6= {}
shows map-spmf (λx. x ∈ A) (spmf-of-set B) = spmf-of-pmf (bernoulli-pmf

(card (A ∩ B) / card B))
(is ?lhs = ?rhs)
〈proof 〉

abbreviation coin-spmf :: bool spmf
where coin-spmf ≡ spmf-of-set UNIV

lemma map-eq-const-coin-spmf : map-spmf ((=) c) coin-spmf = coin-spmf
〈proof 〉

lemma bind-coin-spmf-eq-const: coin-spmf >>= (λx :: bool. return-spmf (b = x))
= coin-spmf
〈proof 〉

lemma bind-coin-spmf-eq-const ′: coin-spmf >>= (λx :: bool. return-spmf (x = b))
= coin-spmf
〈proof 〉

25.14 Losslessness
definition lossless-spmf :: ′a spmf ⇒ bool

where lossless-spmf p ←→ weight-spmf p = 1

lemma lossless-iff-pmf-None: lossless-spmf p ←→ pmf p None = 0
〈proof 〉

lemma lossless-return-spmf [iff ]: lossless-spmf (return-spmf x)
〈proof 〉

lemma lossless-return-pmf-None [iff ]: ¬ lossless-spmf (return-pmf None)
〈proof 〉

lemma lossless-map-spmf [simp]: lossless-spmf (map-spmf f p) ←→ lossless-spmf
p
〈proof 〉

lemma lossless-bind-spmf [simp]:
lossless-spmf (p >>= f ) ←→ lossless-spmf p ∧ (∀ x∈set-spmf p. lossless-spmf (f

x))
〈proof 〉

lemma lossless-weight-spmfD: lossless-spmf p =⇒ weight-spmf p = 1
〈proof 〉

lemma lossless-iff-set-pmf-None:
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lossless-spmf p ←→ None /∈ set-pmf p
〈proof 〉

lemma lossless-spmf-of-set [simp]: lossless-spmf (spmf-of-set A) ←→ finite A ∧ A
6= {}
〈proof 〉

lemma lossless-spmf-spmf-of-spmf [simp]: lossless-spmf (spmf-of-pmf p)
〈proof 〉

lemma lossless-spmf-bind-pmf [simp]:
lossless-spmf (bind-pmf p f ) ←→ (∀ x∈set-pmf p. lossless-spmf (f x))
〈proof 〉

lemma lossless-spmf-conv-spmf-of-pmf : lossless-spmf p ←→ (∃ p ′. p = spmf-of-pmf
p ′)
〈proof 〉

lemma spmf-False-conv-True: lossless-spmf p =⇒ spmf p False = 1 − spmf p True
〈proof 〉

lemma spmf-True-conv-False: lossless-spmf p =⇒ spmf p True = 1 − spmf p False
〈proof 〉

lemma bind-eq-return-spmf :
bind-spmf p f = return-spmf x ←→ (∀ y∈set-spmf p. f y = return-spmf x) ∧

lossless-spmf p
〈proof 〉

lemma rel-spmf-return-spmf2 :
rel-spmf R p (return-spmf x) ←→ lossless-spmf p ∧ (∀ a∈set-spmf p. R a x)
〈proof 〉

lemma rel-spmf-return-spmf1 :
rel-spmf R (return-spmf x) p ←→ lossless-spmf p ∧ (∀ a∈set-spmf p. R x a)
〈proof 〉

lemma rel-spmf-bindI1 :
assumes f :

∧
x. x ∈ set-spmf p =⇒ rel-spmf R (f x) q

and p: lossless-spmf p
shows rel-spmf R (bind-spmf p f ) q
〈proof 〉

lemma rel-spmf-bindI2 :
[[
∧

x. x ∈ set-spmf q =⇒ rel-spmf R p (f x); lossless-spmf q ]]
=⇒ rel-spmf R p (bind-spmf q f )
〈proof 〉
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25.15 Scaling
definition scale-spmf :: real ⇒ ′a spmf ⇒ ′a spmf
where

scale-spmf r p = embed-spmf (λx. min (inverse (weight-spmf p)) (max 0 r) ∗
spmf p x)

lemma scale-spmf-le-1 :
(
∫

+ x. min (inverse (weight-spmf p)) (max 0 r) ∗ spmf p x ∂count-space UNIV )
≤ 1 (is ?lhs ≤ -)
〈proof 〉

lemma spmf-scale-spmf : spmf (scale-spmf r p) x = max 0 (min (inverse (weight-spmf
p)) r) ∗ spmf p x (is ?lhs = ?rhs)
〈proof 〉

lemma real-inverse-le-1-iff : fixes x :: real
shows [[ 0 ≤ x; x ≤ 1 ]] =⇒ 1 / x ≤ 1 ←→ x = 1 ∨ x = 0
〈proof 〉

lemma spmf-scale-spmf ′: r ≤ 1 =⇒ spmf (scale-spmf r p) x = max 0 r ∗ spmf p
x
〈proof 〉

lemma scale-spmf-neg: r ≤ 0 =⇒ scale-spmf r p = return-pmf None
〈proof 〉

lemma scale-spmf-return-None [simp]: scale-spmf r (return-pmf None) = return-pmf
None
〈proof 〉

lemma scale-spmf-conv-bind-bernoulli:
assumes r ≤ 1
shows scale-spmf r p = bind-pmf (bernoulli-pmf r) (λb. if b then p else return-pmf

None) (is ?lhs = ?rhs)
〈proof 〉

lemma nn-integral-spmf : (
∫

+ x. spmf p x ∂count-space A) = emeasure (measure-spmf
p) A
〈proof 〉

lemma measure-spmf-scale-spmf : measure-spmf (scale-spmf r p) = scale-measure
(min (inverse (weight-spmf p)) r) (measure-spmf p)
〈proof 〉

lemma measure-spmf-scale-spmf ′:
assumes r ≤ 1
shows measure-spmf (scale-spmf r p) = scale-measure r (measure-spmf p)
〈proof 〉
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lemma scale-spmf-1 [simp]: scale-spmf 1 p = p
〈proof 〉

lemma scale-spmf-0 [simp]: scale-spmf 0 p = return-pmf None
〈proof 〉

lemma bind-scale-spmf :
assumes r : r ≤ 1
shows bind-spmf (scale-spmf r p) f = bind-spmf p (λx. scale-spmf r (f x))
(is ?lhs = ?rhs)
〈proof 〉

lemma scale-bind-spmf :
assumes r ≤ 1
shows scale-spmf r (bind-spmf p f ) = bind-spmf p (λx. scale-spmf r (f x))
(is ?lhs = ?rhs)
〈proof 〉

lemma bind-spmf-const: bind-spmf p (λx. q) = scale-spmf (weight-spmf p) q (is
?lhs = ?rhs)
〈proof 〉

lemma map-scale-spmf : map-spmf f (scale-spmf r p) = scale-spmf r (map-spmf f
p) (is ?lhs = ?rhs)
〈proof 〉

lemma set-scale-spmf : set-spmf (scale-spmf r p) = (if r > 0 then set-spmf p else
{})
〈proof 〉

lemma set-scale-spmf ′ [simp]: 0 < r =⇒ set-spmf (scale-spmf r p) = set-spmf p
〈proof 〉

lemma rel-spmf-scaleI :
assumes r > 0 =⇒ rel-spmf A p q
shows rel-spmf A (scale-spmf r p) (scale-spmf r q)
〈proof 〉

lemma weight-scale-spmf : weight-spmf (scale-spmf r p) = min 1 (max 0 r ∗
weight-spmf p)
〈proof 〉

lemma weight-scale-spmf ′ [simp]:
[[ 0 ≤ r ; r ≤ 1 ]] =⇒ weight-spmf (scale-spmf r p) = r ∗ weight-spmf p
〈proof 〉

lemma pmf-scale-spmf-None:
pmf (scale-spmf k p) None = 1 − min 1 (max 0 k ∗ (1 − pmf p None))
〈proof 〉
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lemma scale-scale-spmf :
scale-spmf r (scale-spmf r ′ p) = scale-spmf (r ∗ max 0 (min (inverse (weight-spmf

p)) r ′)) p
(is ?lhs = ?rhs)
〈proof 〉

lemma scale-scale-spmf ′ [simp]:
assumes 0 ≤ r r ≤ 1 0 ≤ r ′ r ′ ≤ 1
shows scale-spmf r (scale-spmf r ′ p) = scale-spmf (r ∗ r ′) p
〈proof 〉

lemma scale-spmf-eq-same: scale-spmf r p = p ←→ weight-spmf p = 0 ∨ r = 1
∨ r ≥ 1 ∧ weight-spmf p = 1
(is ?lhs ←→ ?rhs)
〈proof 〉

lemma map-const-spmf-of-set:
[[ finite A; A 6= {} ]] =⇒ map-spmf (λ-. c) (spmf-of-set A) = return-spmf c
〈proof 〉

25.16 Conditional spmfs
lemma set-pmf-Int-Some: set-pmf p ∩ Some ‘ A = {} ←→ set-spmf p ∩ A = {}
〈proof 〉

lemma measure-spmf-zero-iff : measure (measure-spmf p) A = 0 ←→ set-spmf p
∩ A = {}
〈proof 〉

definition cond-spmf :: ′a spmf ⇒ ′a set ⇒ ′a spmf
where cond-spmf p A = (if set-spmf p ∩ A = {} then return-pmf None else

cond-pmf p (Some ‘ A))

lemma set-cond-spmf [simp]: set-spmf (cond-spmf p A) = set-spmf p ∩ A
〈proof 〉

lemma cond-map-spmf [simp]: cond-spmf (map-spmf f p) A = map-spmf f (cond-spmf
p (f −‘ A))
〈proof 〉

lemma spmf-cond-spmf [simp]:
spmf (cond-spmf p A) x = (if x ∈ A then spmf p x / measure (measure-spmf p)

A else 0 )
〈proof 〉

lemma bind-eq-return-pmf-None:
bind-spmf p f = return-pmf None ←→ (∀ x∈set-spmf p. f x = return-pmf None)
〈proof 〉
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lemma return-pmf-None-eq-bind:
return-pmf None = bind-spmf p f ←→ (∀ x∈set-spmf p. f x = return-pmf None)
〈proof 〉

25.17 Product spmf
definition pair-spmf :: ′a spmf ⇒ ′b spmf ⇒ ( ′a × ′b) spmf
where pair-spmf p q = bind-pmf (pair-pmf p q) (λxy. case xy of (Some x, Some
y) ⇒ return-spmf (x, y) | - ⇒ return-pmf None)

lemma map-fst-pair-spmf [simp]: map-spmf fst (pair-spmf p q) = scale-spmf (weight-spmf
q) p
〈proof 〉

lemma map-snd-pair-spmf [simp]: map-spmf snd (pair-spmf p q) = scale-spmf
(weight-spmf p) q
〈proof 〉

lemma set-pair-spmf [simp]: set-spmf (pair-spmf p q) = set-spmf p × set-spmf q
〈proof 〉

lemma spmf-pair [simp]: spmf (pair-spmf p q) (x, y) = spmf p x ∗ spmf q y (is
?lhs = ?rhs)
〈proof 〉

lemma pair-map-spmf2 : pair-spmf p (map-spmf f q) = map-spmf (apsnd f ) (pair-spmf
p q)
〈proof 〉

lemma pair-map-spmf1 : pair-spmf (map-spmf f p) q = map-spmf (apfst f ) (pair-spmf
p q)
〈proof 〉

lemma pair-map-spmf : pair-spmf (map-spmf f p) (map-spmf g q) = map-spmf
(map-prod f g) (pair-spmf p q)
〈proof 〉

lemma pair-spmf-alt-def : pair-spmf p q = bind-spmf p (λx. bind-spmf q (λy. re-
turn-spmf (x, y)))
〈proof 〉

lemma weight-pair-spmf [simp]: weight-spmf (pair-spmf p q) = weight-spmf p ∗
weight-spmf q
〈proof 〉

lemma pair-scale-spmf1 :
r ≤ 1 =⇒ pair-spmf (scale-spmf r p) q = scale-spmf r (pair-spmf p q)
〈proof 〉
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lemma pair-scale-spmf2 :
r ≤ 1 =⇒ pair-spmf p (scale-spmf r q) = scale-spmf r (pair-spmf p q)
〈proof 〉

lemma pair-spmf-return-None1 [simp]: pair-spmf (return-pmf None) p = return-pmf
None
〈proof 〉

lemma pair-spmf-return-None2 [simp]: pair-spmf p (return-pmf None) = return-pmf
None
〈proof 〉

lemma pair-spmf-return-spmf1 : pair-spmf (return-spmf x) q = map-spmf (Pair
x) q
〈proof 〉

lemma pair-spmf-return-spmf2 : pair-spmf p (return-spmf y) = map-spmf (λx. (x,
y)) p
〈proof 〉

lemma pair-spmf-return-spmf [simp]: pair-spmf (return-spmf x) (return-spmf y)
= return-spmf (x, y)
〈proof 〉

lemma rel-pair-spmf-prod:
rel-spmf (rel-prod A B) (pair-spmf p q) (pair-spmf p ′ q ′) ←→
rel-spmf A (scale-spmf (weight-spmf q) p) (scale-spmf (weight-spmf q ′) p ′) ∧
rel-spmf B (scale-spmf (weight-spmf p) q) (scale-spmf (weight-spmf p ′) q ′)
(is ?lhs ←→ ?rhs is - ←→ ?A ∧ ?B is - ←→ rel-spmf - ?p ?p ′ ∧ rel-spmf - ?q

?q ′)
〈proof 〉

lemma pair-pair-spmf :
pair-spmf (pair-spmf p q) r = map-spmf (λ(x, (y, z)). ((x, y), z)) (pair-spmf p

(pair-spmf q r))
〈proof 〉

lemma pair-commute-spmf :
pair-spmf p q = map-spmf (λ(y, x). (x, y)) (pair-spmf q p)
〈proof 〉

25.18 Assertions
definition assert-spmf :: bool ⇒ unit spmf

where assert-spmf b = (if b then return-spmf () else return-pmf None)

lemma assert-spmf-simps [simp]:
assert-spmf True = return-spmf ()
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assert-spmf False = return-pmf None
〈proof 〉

lemma in-set-assert-spmf [simp]: x ∈ set-spmf (assert-spmf p) ←→ p
〈proof 〉

lemma set-spmf-assert-spmf-eq-empty [simp]: set-spmf (assert-spmf b) = {} ←→
¬ b
〈proof 〉

lemma lossless-assert-spmf [iff ]: lossless-spmf (assert-spmf b) ←→ b
〈proof 〉

25.19 Try
definition try-spmf :: ′a spmf ⇒ ′a spmf ⇒ ′a spmf
(‹(‹open-block notation=‹mixfix try-spmf ››TRY - ELSE -)› [0 ,60 ] 59 )

where TRY p ELSE q = bind-pmf p (λx. case x of None ⇒ q | Some y ⇒ re-
turn-spmf y)

lemma try-spmf-lossless [simp]:
assumes lossless-spmf p
shows TRY p ELSE q = p
〈proof 〉

lemma try-spmf-return-spmf1 : TRY return-spmf x ELSE q = return-spmf x
〈proof 〉

lemma try-spmf-return-None [simp]: TRY return-pmf None ELSE q = q
〈proof 〉

lemma try-spmf-return-pmf-None2 [simp]: TRY p ELSE return-pmf None = p
〈proof 〉

lemma map-try-spmf : map-spmf f (try-spmf p q) = try-spmf (map-spmf f p)
(map-spmf f q)
〈proof 〉

lemma try-spmf-bind-pmf : TRY (bind-pmf p f ) ELSE q = bind-pmf p (λx. TRY
(f x) ELSE q)
〈proof 〉

lemma try-spmf-bind-spmf-lossless:
lossless-spmf p =⇒ TRY (bind-spmf p f ) ELSE q = bind-spmf p (λx. TRY (f x)

ELSE q)
〈proof 〉

lemma try-spmf-bind-out:
lossless-spmf p =⇒ bind-spmf p (λx. TRY (f x) ELSE q) = TRY (bind-spmf p
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f ) ELSE q
〈proof 〉

lemma lossless-try-spmf [simp]:
lossless-spmf (TRY p ELSE q) ←→ lossless-spmf p ∨ lossless-spmf q
〈proof 〉

context includes lifting-syntax
begin

lemma try-spmf-parametric [transfer-rule]:
(rel-spmf A ===> rel-spmf A ===> rel-spmf A) try-spmf try-spmf
〈proof 〉

end

lemma try-spmf-cong:
[[ p = p ′; ¬ lossless-spmf p ′ =⇒ q = q ′ ]] =⇒ TRY p ELSE q = TRY p ′ ELSE q ′

〈proof 〉

lemma rel-spmf-try-spmf :
[[ rel-spmf R p p ′; ¬ lossless-spmf p ′ =⇒ rel-spmf R q q ′ ]]
=⇒ rel-spmf R (TRY p ELSE q) (TRY p ′ ELSE q ′)
〈proof 〉

lemma spmf-try-spmf :
spmf (TRY p ELSE q) x = spmf p x + pmf p None ∗ spmf q x
〈proof 〉

lemma try-scale-spmf-same [simp]: lossless-spmf p =⇒ TRY scale-spmf k p ELSE
p = p
〈proof 〉

lemma pmf-try-spmf-None [simp]: pmf (TRY p ELSE q) None = pmf p None ∗
pmf q None (is ?lhs = ?rhs)
〈proof 〉

lemma try-bind-spmf-lossless2 :
lossless-spmf q =⇒ TRY (bind-spmf p f ) ELSE q = TRY (p >>= (λx. TRY (f

x) ELSE q)) ELSE q
〈proof 〉

lemma try-bind-spmf-lossless2 ′:
fixes f :: ′a ⇒ ′b spmf shows
[[ NO-MATCH (λx :: ′a. try-spmf (g x :: ′b spmf ) (h x)) f ; lossless-spmf q ]]
=⇒ TRY (bind-spmf p f ) ELSE q = TRY (p >>= (λx :: ′a. TRY (f x) ELSE q))

ELSE q
〈proof 〉
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lemma try-bind-assert-spmf :
TRY (assert-spmf b >>= f ) ELSE q = (if b then TRY (f ()) ELSE q else q)
〈proof 〉

25.20 Miscellaneous
lemma assumes rel-spmf (λx y. bad1 x = bad2 y ∧ (¬ bad2 y −→ A x ←→ B
y)) p q (is rel-spmf ?A - -)
shows fundamental-lemma-bad: measure (measure-spmf p) {x. bad1 x} = measure

(measure-spmf q) {y. bad2 y} (is ?bad)
and fundamental-lemma: |measure (measure-spmf p) {x. A x} − measure (measure-spmf

q) {y. B y}| ≤
measure (measure-spmf p) {x. bad1 x} (is ?fundamental)

〈proof 〉

end

26 Indexed products of PMFs
theory Product-PMF

imports Probability-Mass-Function Independent-Family
begin

Conflicting notation from HOL−Analysis.Infinite-Sum
no-notation Infinite-Sum.abs-summable-on (infixr ‹abs ′-summable ′-on› 46 )

26.1 Preliminaries
lemma pmf-expectation-eq-infsetsum: measure-pmf .expectation p f = infsetsum
(λx. pmf p x ∗ f x) UNIV
〈proof 〉

lemma measure-pmf-prob-product:
assumes countable A countable B
shows measure-pmf .prob (pair-pmf M N ) (A × B) = measure-pmf .prob M A ∗

measure-pmf .prob N B
〈proof 〉

26.2 Definition

In analogy to PiM , we define an indexed product of PMFs. In the literature,
this is typically called taking a vector of independent random variables. Note
that the components do not have to be identically distributed.
The operation takes an explicit index set A and a function f that maps
each element from A to a PMF and defines the product measure

⊗
i∈A f(i)

, which is represented as a ( ′a ⇒ ′b) pmf.
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Note that unlike PiM , this only works for finite index sets. It could be
extended to countable sets and beyond, but the construction becomes some-
what more involved.
definition Pi-pmf :: ′a set ⇒ ′b ⇒ ( ′a ⇒ ′b pmf ) ⇒ ( ′a ⇒ ′b) pmf where

Pi-pmf A dflt p =
embed-pmf (λf . if (∀ x. x /∈ A −→ f x = dflt) then

∏
x∈A. pmf (p x) (f x)

else 0 )

A technical subtlety that needs to be addressed is this: Intuitively, the func-
tions in the support of a product distribution have domain A. However, since
HOL is a total logic, these functions must still return some value for inputs
outside A. The product measure PiM simply lets these functions return un-
defined in these cases. We chose a different solution here, which is to supply
a default value dflt that is returned in these cases.
As one possible application, one could model the result of n different inde-
pendent coin tosses as Pi-pmf {0 ..<n} False (λ-. bernoulli-pmf (1 / 2 )).
This returns a function of type nat ⇒ bool that maps every natural number
below n to the result of the corresponding coin toss, and every other natural
number to False.
lemma pmf-Pi:

assumes A: finite A
shows pmf (Pi-pmf A dflt p) f =

(if (∀ x. x /∈ A −→ f x = dflt) then
∏

x∈A. pmf (p x) (f x) else 0 )
〈proof 〉

lemma Pi-pmf-cong:
assumes A = A ′ dflt = dflt ′ ∧x. x ∈ A =⇒ f x = f ′ x
shows Pi-pmf A dflt f = Pi-pmf A ′ dflt ′ f ′

〈proof 〉

lemma pmf-Pi ′:
assumes finite A

∧
x. x /∈ A =⇒ f x = dflt

shows pmf (Pi-pmf A dflt p) f = (
∏

x∈A. pmf (p x) (f x))
〈proof 〉

lemma pmf-Pi-outside:
assumes finite A ∃ x. x /∈ A ∧ f x 6= dflt
shows pmf (Pi-pmf A dflt p) f = 0
〈proof 〉

lemma pmf-Pi-empty [simp]: Pi-pmf {} dflt p = return-pmf (λ-. dflt)
〈proof 〉

lemma set-Pi-pmf-subset: finite A =⇒ set-pmf (Pi-pmf A dflt p) ⊆ {f . ∀ x. x /∈
A −→ f x = dflt}
〈proof 〉
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26.3 Dependent product sets with a default

The following describes a dependent product of sets where the functions are
required to return the default value dflt outside their domain, in analogy to
PiE , which uses undefined.
definition PiE-dflt

where PiE-dflt A dflt B = {f . ∀ x. (x ∈ A −→ f x ∈ B x) ∧ (x /∈ A −→ f x =
dflt)}

lemma restrict-PiE-dflt: (λh. restrict h A) ‘ PiE-dflt A dflt B = PiE A B
〈proof 〉

lemma dflt-image-PiE : (λh x. if x ∈ A then h x else dflt) ‘ PiE A B = PiE-dflt
A dflt B
(is ?f ‘ ?X = ?Y )
〈proof 〉

lemma finite-PiE-dflt [intro]:
assumes finite A

∧
x. x ∈ A =⇒ finite (B x)

shows finite (PiE-dflt A d B)
〈proof 〉

lemma card-PiE-dflt:
assumes finite A

∧
x. x ∈ A =⇒ finite (B x)

shows card (PiE-dflt A d B) = (
∏

x∈A. card (B x))
〈proof 〉

lemma PiE-dflt-empty-iff [simp]: PiE-dflt A dflt B = {} ←→ (∃ x∈A. B x = {})
〈proof 〉

lemma set-Pi-pmf-subset ′:
assumes finite A
shows set-pmf (Pi-pmf A dflt p) ⊆ PiE-dflt A dflt (set-pmf ◦ p)
〈proof 〉

lemma set-Pi-pmf :
assumes finite A
shows set-pmf (Pi-pmf A dflt p) = PiE-dflt A dflt (set-pmf ◦ p)
〈proof 〉

The probability of an independent combination of events is precisely the
product of the probabilities of each individual event.
lemma measure-Pi-pmf-PiE-dflt:

assumes [simp]: finite A
shows measure-pmf .prob (Pi-pmf A dflt p) (PiE-dflt A dflt B) =

(
∏

x∈A. measure-pmf .prob (p x) (B x))
〈proof 〉

lemma measure-Pi-pmf-Pi:
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fixes t::nat
assumes [simp]: finite A
shows measure-pmf .prob (Pi-pmf A dflt p) (Pi A B) =

(
∏

x∈A. measure-pmf .prob (p x) (B x)) (is ?lhs = ?rhs)
〈proof 〉

26.4 Common PMF operations on products

Pi-pmf distributes over the ‘bind’ operation in the Giry monad:
lemma Pi-pmf-bind:

assumes finite A
shows Pi-pmf A d (λx. bind-pmf (p x) (q x)) =

do {f ← Pi-pmf A d ′ p; Pi-pmf A d (λx. q x (f x))} (is ?lhs = ?rhs)
〈proof 〉

lemma Pi-pmf-return-pmf [simp]:
assumes finite A
shows Pi-pmf A dflt (λx. return-pmf (f x)) = return-pmf (λx. if x ∈ A then f

x else dflt)
〈proof 〉

Analogously any componentwise mapping can be pulled outside the product:
lemma Pi-pmf-map:

assumes [simp]: finite A and f dflt = dflt ′

shows Pi-pmf A dflt ′ (λx. map-pmf f (g x)) = map-pmf (λh. f ◦ h) (Pi-pmf A
dflt g)
〈proof 〉

We can exchange the default value in a product of PMFs like this:
lemma Pi-pmf-default-swap:

assumes finite A
shows map-pmf (λf x. if x ∈ A then f x else dflt ′) (Pi-pmf A dflt p) =

Pi-pmf A dflt ′ p (is ?lhs = ?rhs)
〈proof 〉

The following rule allows reindexing the product:
lemma Pi-pmf-bij-betw:

assumes finite A bij-betw h A B
∧

x. x /∈ A =⇒ h x /∈ B
shows Pi-pmf A dflt (λ-. f ) = map-pmf (λg. g ◦ h) (Pi-pmf B dflt (λ-. f ))
(is ?lhs = ?rhs)

〈proof 〉

A product of uniform random choices is again a uniform distribution.
lemma Pi-pmf-of-set:

assumes finite A
∧

x. x ∈ A =⇒ finite (B x)
∧

x. x ∈ A =⇒ B x 6= {}
shows Pi-pmf A d (λx. pmf-of-set (B x)) = pmf-of-set (PiE-dflt A d B) (is

?lhs = ?rhs)
〈proof 〉
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26.5 Merging and splitting PMF products

The following lemma shows that we can add a single PMF to a product:
lemma Pi-pmf-insert:

assumes finite A x /∈ A
shows Pi-pmf (insert x A) dflt p = map-pmf (λ(y,f ). f (x:=y)) (pair-pmf (p

x) (Pi-pmf A dflt p))
〈proof 〉

lemma Pi-pmf-insert ′:
assumes finite A x /∈ A
shows Pi-pmf (insert x A) dflt p =

do {y ← p x; f ← Pi-pmf A dflt p; return-pmf (f (x := y))}
〈proof 〉

lemma Pi-pmf-singleton:
Pi-pmf {x} dflt p = map-pmf (λa b. if b = x then a else dflt) (p x)
〈proof 〉

Projecting a product of PMFs onto a component yields the expected result:
lemma Pi-pmf-component:

assumes finite A
shows map-pmf (λf . f x) (Pi-pmf A dflt p) = (if x ∈ A then p x else return-pmf

dflt)
〈proof 〉

We can take merge two PMF products on disjoint sets like this:
lemma Pi-pmf-union:

assumes finite A finite B A ∩ B = {}
shows Pi-pmf (A ∪ B) dflt p =

map-pmf (λ(f ,g) x. if x ∈ A then f x else g x)
(pair-pmf (Pi-pmf A dflt p) (Pi-pmf B dflt p)) (is - = map-pmf (?h A)

(?q A))
〈proof 〉

We can also project a product to a subset of the indices by mapping all the
other indices to the default value:
lemma Pi-pmf-subset:

assumes finite A A ′ ⊆ A
shows Pi-pmf A ′ dflt p = map-pmf (λf x . if x ∈ A ′ then f x else dflt) (Pi-pmf

A dflt p)
〈proof 〉

lemma Pi-pmf-subset ′:
fixes f :: ′a ⇒ ′b pmf
assumes finite A B ⊆ A

∧
x. x ∈ A − B =⇒ f x = return-pmf dflt

shows Pi-pmf A dflt f = Pi-pmf B dflt f
〈proof 〉
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lemma Pi-pmf-if-set:
assumes finite A
shows Pi-pmf A dflt (λx. if b x then f x else return-pmf dflt) =

Pi-pmf {x∈A. b x} dflt f
〈proof 〉

lemma Pi-pmf-if-set ′:
assumes finite A
shows Pi-pmf A dflt (λx. if b x then return-pmf dflt else f x) =

Pi-pmf {x∈A. ¬b x} dflt f
〈proof 〉

Lastly, we can delete a single component from a product:
lemma Pi-pmf-remove:

assumes finite A
shows Pi-pmf (A − {x}) dflt p = map-pmf (λf . f (x := dflt)) (Pi-pmf A dflt

p)
〈proof 〉

26.6 Additional properties
lemma nn-integral-prod-Pi-pmf :

assumes finite A
shows nn-integral (Pi-pmf A dflt p) (λy.

∏
x∈A. f x (y x)) = (

∏
x∈A.

nn-integral (p x) (f x))
〈proof 〉

lemma integrable-prod-Pi-pmf :
fixes f :: ′a ⇒ ′b ⇒ ′c :: {real-normed-field, second-countable-topology, banach}
assumes finite A and

∧
x. x ∈ A =⇒ integrable (measure-pmf (p x)) (f x)

shows integrable (measure-pmf (Pi-pmf A dflt p)) (λh.
∏

x∈A. f x (h x))
〈proof 〉

lemma expectation-prod-Pi-pmf :
fixes f :: - ⇒ - ⇒ real
assumes finite A
assumes

∧
x. x ∈ A =⇒ integrable (measure-pmf (p x)) (f x)

assumes
∧

x y. x ∈ A =⇒ y ∈ set-pmf (p x) =⇒ f x y ≥ 0
shows measure-pmf .expectation (Pi-pmf A dflt p) (λy.

∏
x∈A. f x (y x)) =

(
∏

x∈A. measure-pmf .expectation (p x) (λv. f x v))
〈proof 〉

lemma indep-vars-Pi-pmf :
assumes fin: finite I
shows prob-space.indep-vars (measure-pmf (Pi-pmf I dflt p))

(λ-. count-space UNIV ) (λx f . f x) I
〈proof 〉
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lemma
fixes h :: ′a :: comm-monoid-add ⇒ ′b::{banach, second-countable-topology}
assumes fin: finite I
assumes integrable:

∧
i. i ∈ I =⇒ integrable (measure-pmf (D i)) h

shows integrable-sum-Pi-pmf : integrable (Pi-pmf I dflt D) (λg.
∑

i∈I . h (g i))
and expectation-sum-Pi-pmf :

measure-pmf .expectation (Pi-pmf I dflt D) (λg.
∑

i∈I . h (g i)) =
(
∑

i∈I . measure-pmf .expectation (D i) h)
〈proof 〉

26.7 Applications

Choosing a subset of a set uniformly at random is equivalent to tossing a
fair coin independently for each element and collecting all the elements that
came up heads.
lemma pmf-of-set-Pow-conv-bernoulli:

assumes finite (A :: ′a set)
shows map-pmf (λb. {x∈A. b x}) (Pi-pmf A P (λ-. bernoulli-pmf (1/2 ))) =

pmf-of-set (Pow A)
〈proof 〉

A binomial distribution can be seen as the number of successes in n inde-
pendent coin tosses.
lemma binomial-pmf-altdef ′:

fixes A :: ′a set
assumes finite A and card A = n and p: p ∈ {0 ..1}
shows binomial-pmf n p =

map-pmf (λf . card {x∈A. f x}) (Pi-pmf A dflt (λ-. bernoulli-pmf p)) (is
?lhs = ?rhs)
〈proof 〉

end

27 Hoeffding’s Lemma and Hoeffding’s Inequality
theory Hoeffding

imports Product-PMF Independent-Family
begin

Hoeffding’s inequality shows that a sum of bounded independent random
variables is concentrated around its mean, with an exponential decay of the
tail probabilities.

27.1 Hoeffding’s Lemma
lemma convex-on-exp:

fixes l :: real
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assumes l ≥ 0
shows convex-on UNIV (λx. exp(l∗x))
〈proof 〉

lemma mult-const-minus-self-real-le:
fixes x :: real
shows x ∗ (c − x) ≤ c2 / 4
〈proof 〉

lemma Hoeffdings-lemma-aux:
fixes h p :: real
assumes h ≥ 0 and p ≥ 0
defines L ≡ (λh. −h ∗ p + ln (1 + p ∗ (exp h − 1 )))
shows L h ≤ h2 / 8
〈proof 〉

locale interval-bounded-random-variable = prob-space +
fixes f :: ′a ⇒ real and a b :: real
assumes random-variable [measurable]: random-variable borel f
assumes AE-in-interval: AE x in M . f x ∈ {a..b}

begin

lemma integrable [intro]: integrable M f
〈proof 〉

We first show Hoeffding’s lemma for distributions whose expectation is 0.
The general case will easily follow from this later.
lemma Hoeffdings-lemma-nn-integral-0 :

assumes l > 0 and E0 : expectation f = 0
shows nn-integral M (λx. exp (l ∗ f x)) ≤ ennreal (exp (l2 ∗ (b − a)2 / 8 ))
〈proof 〉

context
begin

interpretation shift: interval-bounded-random-variable M λx. f x − µ a − µ b −
µ

rewrites b − µ − (a − µ) ≡ b − a
〈proof 〉

lemma expectation-shift: expectation (λx. f x − expectation f ) = 0
〈proof 〉

lemmas Hoeffdings-lemma-nn-integral = shift.Hoeffdings-lemma-nn-integral-0 [OF
- expectation-shift]

end



THEORY “Hoeffding” 192

end

27.2 Hoeffding’s Inequality

Consider n independent real random variables X1, . . . , Xn that each almost
surely lie in a compact interval [ai, bi]. Hoeffding’s inequality states that the
distribution of the sum of the Xi is tightly concentrated around the sum of
the expected values: the probability of it being above or below the sum of
the expected values by more than some ε decreases exponentially with ε.
locale indep-interval-bounded-random-variables = prob-space +

fixes I :: ′b set and X :: ′b ⇒ ′a ⇒ real
fixes a b :: ′b ⇒ real
assumes fin: finite I
assumes indep: indep-vars (λ-. borel) X I
assumes AE-in-interval:

∧
i. i ∈ I =⇒ AE x in M . X i x ∈ {a i..b i}

begin

lemma random-variable [measurable]:
assumes i: i ∈ I
shows random-variable borel (X i)
〈proof 〉

lemma bounded-random-variable [intro]:
assumes i: i ∈ I
shows interval-bounded-random-variable M (X i) (a i) (b i)
〈proof 〉

end

locale Hoeffding-ineq = indep-interval-bounded-random-variables +
fixes µ :: real
defines µ ≡ (

∑
i∈I . expectation (X i))

begin

theorem Hoeffding-ineq-ge:
assumes ε ≥ 0
assumes (

∑
i∈I . (b i − a i)2) > 0

shows prob {x∈space M . (
∑

i∈I . X i x) ≥ µ + ε} ≤ exp (−2 ∗ ε2 / (
∑

i∈I .
(b i − a i)2))
proof (cases ε = 0 )

case [simp]: True
have prob {x∈space M . (

∑
i∈I . X i x) ≥ µ + ε} ≤ 1

by simp
thus ?thesis by simp

next
case False
with ‹ε ≥ 0 › have ε: ε > 0
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by auto

define d where d = (
∑

i∈I . (b i − a i)2)
define l :: real where l = 4 ∗ ε / d
have d: d > 0

using assms by (simp add: d-def )
have l: l > 0

using ε d by (simp add: l-def )
define µ ′ where µ ′ = (λi. expectation (X i))

have {x∈space M . (
∑

i∈I . X i x) ≥ µ + ε} = {x∈space M . (
∑

i∈I . X i x) −
µ ≥ ε}

by (simp add: algebra-simps)
hence ennreal (prob {x∈space M . (

∑
i∈I . X i x) ≥ µ + ε}) = emeasure M . . .

by (simp add: emeasure-eq-measure)
also have . . . ≤ ennreal (exp (−l∗ε)) ∗ (

∫
+x∈space M . exp (l ∗ ((

∑
i∈I . X i

x) − µ)) ∂M )
by (intro Chernoff-ineq-nn-integral-ge l) auto

also have (λx. (
∑

i∈I . X i x) − µ) = (λx. (
∑

i∈I . X i x − µ ′ i))
by (simp add: µ-def sum-subtractf µ ′-def )

also have (
∫

+x∈space M . exp (l ∗ ((
∑

i∈I . X i x − µ ′ i))) ∂M ) =
(
∫

+x. (
∏

i∈I . ennreal (exp (l ∗ (X i x − µ ′ i)))) ∂M )
by (intro nn-integral-cong)
(simp-all add: sum-distrib-left ring-distribs exp-diff exp-sum fin prod-ennreal)

also have . . . = (
∏

i∈I .
∫

+x. ennreal (exp (l ∗ (X i x − µ ′ i))) ∂M )
by (intro indep-vars-nn-integral fin indep-vars-compose2 [OF indep]) auto

also have ennreal (exp (−l ∗ ε)) ∗ . . . ≤
ennreal (exp (−l ∗ ε)) ∗ (

∏
i∈I . ennreal (exp (l2 ∗ (b i − a i)2 / 8 )))

proof (intro mult-left-mono prod-mono-ennreal)
fix i assume i: i ∈ I
from i interpret interval-bounded-random-variable M X i a i b i ..
show (

∫
+x. ennreal (exp (l ∗ (X i x − µ ′ i))) ∂M ) ≤ ennreal (exp (l2 ∗ (b i

− a i)2 / 8 ))
unfolding µ ′-def by (rule Hoeffdings-lemma-nn-integral) fact+

qed auto
also have . . . = ennreal (exp (−l∗ε) ∗ (

∏
i∈I . exp (l2 ∗ (b i − a i)2 / 8 )))

by (simp add: prod-ennreal prod-nonneg flip: ennreal-mult)
also have exp (−l∗ε) ∗ (

∏
i∈I . exp (l2 ∗ (b i − a i)2 / 8 )) = exp (d ∗ l2 / 8 −

l ∗ ε)
by (simp add: exp-diff exp-minus sum-divide-distrib sum-distrib-left

sum-distrib-right exp-sum fin divide-simps mult-ac d-def )
also have d ∗ l2 / 8 − l ∗ ε = −2 ∗ ε2 / d

using d by (simp add: l-def field-simps power2-eq-square)
finally show ?thesis

by (subst (asm) ennreal-le-iff ) (simp-all add: d-def )
qed

corollary Hoeffding-ineq-le:
assumes ε: ε ≥ 0
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assumes (
∑

i∈I . (b i − a i)2) > 0
shows prob {x∈space M . (

∑
i∈I . X i x) ≤ µ − ε} ≤ exp (−2 ∗ ε2 / (

∑
i∈I .

(b i − a i)2))
〈proof 〉

corollary Hoeffding-ineq-abs-ge:
assumes ε: ε ≥ 0
assumes (

∑
i∈I . (b i − a i)2) > 0

shows prob {x∈space M . |(
∑

i∈I . X i x) − µ| ≥ ε} ≤ 2 ∗ exp (−2 ∗ ε2 /
(
∑

i∈I . (b i − a i)2))
〈proof 〉

end

27.3 Hoeffding’s inequality for i.i.d. bounded random vari-
ables

If we have n even identically-distributed random variables, the statement of
Hoeffding’s lemma simplifies a bit more: it shows that the probability that
the average of the Xi is more than ε above the expected value is no greater

than e
−2ny2

(b−a)2 .
This essentially gives us a more concrete version of the weak law of large
numbers: the law states that the probability vanishes for n → ∞ for any ε
> 0. Unlike Hoeffding’s inequality, it does not assume the variables to have
bounded support, but it does not provide concrete bounds.
locale iid-interval-bounded-random-variables = prob-space +

fixes I :: ′b set and X :: ′b ⇒ ′a ⇒ real and Y :: ′a ⇒ real
fixes a b :: real
assumes fin: finite I
assumes indep: indep-vars (λ-. borel) X I
assumes distr-X : i ∈ I =⇒ distr M borel (X i) = distr M borel Y
assumes rv-Y [measurable]: random-variable borel Y
assumes AE-in-interval: AE x in M . Y x ∈ {a..b}

begin

lemma random-variable [measurable]:
assumes i: i ∈ I
shows random-variable borel (X i)
〈proof 〉

sublocale X : indep-interval-bounded-random-variables M I X λ-. a λ-. b
〈proof 〉

lemma expectation-X [simp]:
assumes i: i ∈ I
shows expectation (X i) = expectation Y
〈proof 〉
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end

locale Hoeffding-ineq-iid = iid-interval-bounded-random-variables +
fixes µ :: real
defines µ ≡ expectation Y

begin

sublocale X : Hoeffding-ineq M I X λ-. a λ-. b real (card I ) ∗ µ
〈proof 〉

corollary
assumes ε: ε ≥ 0
assumes a < b I 6= {}
defines n ≡ card I
shows Hoeffding-ineq-ge:

prob {x∈space M . (
∑

i∈I . X i x) ≥ n ∗ µ + ε} ≤
exp (−2 ∗ ε2 / (n ∗ (b − a)2)) (is ?le)

and Hoeffding-ineq-le:
prob {x∈space M . (

∑
i∈I . X i x) ≤ n ∗ µ − ε} ≤

exp (−2 ∗ ε2 / (n ∗ (b − a)2)) (is ?ge)
and Hoeffding-ineq-abs-ge:

prob {x∈space M . |(
∑

i∈I . X i x) − n ∗ µ| ≥ ε} ≤
2 ∗ exp (−2 ∗ ε2 / (n ∗ (b − a)2)) (is ?abs-ge)

〈proof 〉

lemma
assumes ε: ε ≥ 0
assumes a < b I 6= {}
defines n ≡ card I
shows Hoeffding-ineq-ge ′:

prob {x∈space M . (
∑

i∈I . X i x) / n ≥ µ + ε} ≤
exp (−2 ∗ n ∗ ε2 / (b − a)2) (is ?ge)

and Hoeffding-ineq-le ′:
prob {x∈space M . (

∑
i∈I . X i x) / n ≤ µ − ε} ≤

exp (−2 ∗ n ∗ ε2 / (b − a)2) (is ?le)
and Hoeffding-ineq-abs-ge ′:

prob {x∈space M . |(
∑

i∈I . X i x) / n − µ| ≥ ε} ≤
2 ∗ exp (−2 ∗ n ∗ ε2 / (b − a)2) (is ?abs-ge)

〈proof 〉

end

27.4 Hoeffding’s Inequality for the Binomial distribution

We can now apply Hoeffding’s inequality to the Binomial distribution, which
can be seen as the sum of n i.i.d. coin flips (the support of each of which is
contained in [0, 1]).
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locale binomial-distribution =
fixes n :: nat and p :: real
assumes p: p ∈ {0 ..1}

begin

context
fixes coins :: (nat ⇒ bool) pmf and µ
assumes n: n > 0
defines coins ≡ Pi-pmf {..<n} False (λ-. bernoulli-pmf p)

begin

lemma coins-component:
assumes i: i < n
shows distr (measure-pmf coins) borel (λf . if f i then 1 else 0 ) =

distr (measure-pmf (bernoulli-pmf p)) borel (λb. if b then 1 else 0 )
〈proof 〉

lemma prob-binomial-pmf-conv-coins:
measure-pmf .prob (binomial-pmf n p) {x. P (real x)} =
measure-pmf .prob coins {x. P (

∑
i<n. if x i then 1 else 0 )}

〈proof 〉

interpretation Hoeffding-ineq-iid
coins {..<n} λi f . if f i then 1 else 0 λf . if f 0 then 1 else 0 0 1 p
〈proof 〉

corollary
fixes ε :: real
assumes ε: ε ≥ 0
shows prob-ge: measure-pmf .prob (binomial-pmf n p) {x. x ≥ n ∗ p + ε} ≤ exp

(−2 ∗ ε2 / n)
and prob-le: measure-pmf .prob (binomial-pmf n p) {x. x ≤ n ∗ p − ε} ≤ exp

(−2 ∗ ε2 / n)
and prob-abs-ge:

measure-pmf .prob (binomial-pmf n p) {x. |x − n ∗ p| ≥ ε} ≤ 2 ∗ exp (−2
∗ ε2 / n)
〈proof 〉

corollary
fixes ε :: real
assumes ε: ε ≥ 0
shows prob-ge ′: measure-pmf .prob (binomial-pmf n p) {x. x / n ≥ p + ε} ≤ exp

(−2 ∗ n ∗ ε2)
and prob-le ′: measure-pmf .prob (binomial-pmf n p) {x. x / n ≤ p − ε} ≤ exp

(−2 ∗ n ∗ ε2)
and prob-abs-ge ′:

measure-pmf .prob (binomial-pmf n p) {x. |x / n − p| ≥ ε} ≤ 2 ∗ exp (−2
∗ n ∗ ε2)
〈proof 〉
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end

end

27.5 Tail bounds for the negative binomial distribution

Since the tail probabilities of a negative Binomial distribution are equal
to the tail probabilities of some Binomial distribution, we can obtain tail
bounds for the negative Binomial distribution through the Hoeffding tail
bounds for the Binomial distribution.
context

fixes p q :: real
assumes p: p ∈ {0<..<1}
defines q ≡ 1 − p

begin

lemma prob-neg-binomial-pmf-ge-bound:
fixes n :: nat and k :: real
defines µ ≡ real n ∗ q / p
assumes k: k ≥ 0
shows measure-pmf .prob (neg-binomial-pmf n p) {x. real x ≥ µ + k}

≤ exp (− 2 ∗ p ^ 3 ∗ k2 / (n + p ∗ k))
〈proof 〉

lemma prob-neg-binomial-pmf-le-bound:
fixes n :: nat and k :: real
defines µ ≡ real n ∗ q / p
assumes k: k ≥ 0
shows measure-pmf .prob (neg-binomial-pmf n p) {x. real x ≤ µ − k}

≤ exp (−2 ∗ p ^ 3 ∗ k2 / (n − p ∗ k))
〈proof 〉

Due to the function exp(−l/x) being concave for x ≥ l
2 , the above two

bounds can be combined into the following one for moderate values of k.
(cf. https://math.stackexchange.com/questions/1565559)
lemma prob-neg-binomial-pmf-abs-ge-bound:

fixes n :: nat and k :: real
defines µ ≡ real n ∗ q / p
assumes k ≥ 0 and n-ge: n ≥ p ∗ k ∗ (p2 ∗ k + 1 )
shows measure-pmf .prob (neg-binomial-pmf n p) {x. |real x − µ| ≥ k} ≤

2 ∗ exp (−2 ∗ p ^ 3 ∗ k ^ 2 / n)
〈proof 〉

end

end

https://math.stackexchange.com/questions/1565559


THEORY “Stream-Space” 198

theory Stream-Space
imports

Infinite-Product-Measure
HOL−Library.Stream
HOL−Library.Linear-Temporal-Logic-on-Streams

begin

lemma stream-eq-Stream-iff : s = x ## t ←→ (shd s = x ∧ stl s = t)
〈proof 〉

lemma Stream-snth: (x ## s) !! n = (case n of 0 ⇒ x | Suc n ⇒ s !! n)
〈proof 〉

definition to-stream :: (nat ⇒ ′a) ⇒ ′a stream where
to-stream X = smap X nats

lemma to-stream-nat-case: to-stream (case-nat x X) = x ## to-stream X
〈proof 〉

lemma to-stream-in-streams: to-stream X ∈ streams S ←→ (∀n. X n ∈ S)
〈proof 〉

definition stream-space :: ′a measure ⇒ ′a stream measure where
stream-space M =
distr (ΠM i∈UNIV . M ) (vimage-algebra (streams (space M )) snth (ΠM i∈UNIV .

M )) to-stream

lemma space-stream-space: space (stream-space M ) = streams (space M )
〈proof 〉

lemma streams-stream-space[intro]: streams (space M ) ∈ sets (stream-space M )
〈proof 〉

lemma stream-space-Stream:
x ## ω ∈ space (stream-space M ) ←→ x ∈ space M ∧ ω ∈ space (stream-space

M )
〈proof 〉

lemma stream-space-eq-distr : stream-space M = distr (ΠM i∈UNIV . M ) (stream-space
M ) to-stream
〈proof 〉

lemma sets-stream-space-cong[measurable-cong]:
sets M = sets N =⇒ sets (stream-space M ) = sets (stream-space N )
〈proof 〉

lemma measurable-snth-PiM : (λω n. ω !! n) ∈ measurable (stream-space M ) (ΠM

i∈UNIV . M )
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〈proof 〉

lemma measurable-snth[measurable]: (λω. ω !! n) ∈ measurable (stream-space M )
M
〈proof 〉

lemma measurable-shd[measurable]: shd ∈ measurable (stream-space M ) M
〈proof 〉

lemma measurable-stream-space2 :
assumes f-snth:

∧
n. (λx. f x !! n) ∈ measurable N M

shows f ∈ measurable N (stream-space M )
〈proof 〉

lemma measurable-stream-coinduct[consumes 1 , case-names shd stl, coinduct set:
measurable]:

assumes F f
assumes h:

∧
f . F f =⇒ (λx. shd (f x)) ∈ measurable N M

assumes t:
∧

f . F f =⇒ F (λx. stl (f x))
shows f ∈ measurable N (stream-space M )
〈proof 〉

lemma measurable-sdrop[measurable]: sdrop n ∈ measurable (stream-space M ) (stream-space
M )
〈proof 〉

lemma measurable-stl[measurable]: (λω. stl ω) ∈ measurable (stream-space M )
(stream-space M )
〈proof 〉

lemma measurable-to-stream[measurable]: to-stream ∈ measurable (ΠM i∈UNIV .
M ) (stream-space M )
〈proof 〉

lemma measurable-Stream[measurable (raw)]:
assumes f [measurable]: f ∈ measurable N M
assumes g[measurable]: g ∈ measurable N (stream-space M )
shows (λx. f x ## g x) ∈ measurable N (stream-space M )
〈proof 〉

lemma measurable-smap[measurable]:
assumes X [measurable]: X ∈ measurable N M
shows smap X ∈ measurable (stream-space N ) (stream-space M )
〈proof 〉

lemma measurable-stake[measurable]:
stake i ∈ measurable (stream-space (count-space UNIV )) (count-space (UNIV ::

′a::countable list set))
〈proof 〉
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lemma measurable-shift[measurable]:
assumes f : f ∈ measurable N (stream-space M )
assumes [measurable]: g ∈ measurable N (stream-space M )
shows (λx. stake n (f x) @− g x) ∈ measurable N (stream-space M )
〈proof 〉

lemma measurable-case-stream-replace[measurable (raw)]:
(λx. f x (shd (g x)) (stl (g x))) ∈ measurable M N =⇒ (λx. case-stream (f x) (g

x)) ∈ measurable M N
〈proof 〉

lemma measurable-ev-at[measurable]:
assumes [measurable]: Measurable.pred (stream-space M ) P
shows Measurable.pred (stream-space M ) (ev-at P n)
〈proof 〉

lemma measurable-alw[measurable]:
Measurable.pred (stream-space M ) P =⇒ Measurable.pred (stream-space M ) (alw

P)
〈proof 〉

lemma measurable-ev[measurable]:
Measurable.pred (stream-space M ) P =⇒ Measurable.pred (stream-space M ) (ev

P)
〈proof 〉

lemma measurable-until:
assumes [measurable]: Measurable.pred (stream-space M ) ϕ Measurable.pred (stream-space

M ) ψ
shows Measurable.pred (stream-space M ) (ϕ until ψ)
〈proof 〉

lemma measurable-holds [measurable]: Measurable.pred M P =⇒ Measurable.pred
(stream-space M ) (holds P)
〈proof 〉

lemma measurable-hld[measurable]: assumes [measurable]: t ∈ sets M shows
Measurable.pred (stream-space M ) (HLD t)
〈proof 〉

lemma measurable-nxt[measurable (raw)]:
Measurable.pred (stream-space M ) P =⇒ Measurable.pred (stream-space M ) (nxt

P)
〈proof 〉

lemma measurable-suntil[measurable]:
assumes [measurable]: Measurable.pred (stream-space M ) Q Measurable.pred

(stream-space M ) P
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shows Measurable.pred (stream-space M ) (Q suntil P)
〈proof 〉

lemma measurable-szip:
(λ(ω1 , ω2 ). szip ω1 ω2 ) ∈ measurable (stream-space M

⊗
M stream-space N )

(stream-space (M
⊗

M N ))
〈proof 〉

lemma (in prob-space) prob-space-stream-space: prob-space (stream-space M )
〈proof 〉

lemma (in prob-space) nn-integral-stream-space:
assumes [measurable]: f ∈ borel-measurable (stream-space M )
shows (

∫
+X . f X ∂stream-space M ) = (

∫
+x. (

∫
+X . f (x ## X) ∂stream-space

M ) ∂M )
〈proof 〉

lemma (in prob-space) emeasure-stream-space:
assumes X [measurable]: X ∈ sets (stream-space M )
shows emeasure (stream-space M ) X = (

∫
+t. emeasure (stream-space M ) {x∈space

(stream-space M ). t ## x ∈ X } ∂M )
〈proof 〉

lemma (in prob-space) prob-stream-space:
assumes P[measurable]: {x∈space (stream-space M ). P x} ∈ sets (stream-space

M )
shows P(x in stream-space M . P x) = (

∫
+t. P(x in stream-space M . P (t ##

x)) ∂M )
〈proof 〉

lemma (in prob-space) AE-stream-space:
assumes [measurable]: Measurable.pred (stream-space M ) P
shows (AE X in stream-space M . P X) = (AE x in M . AE X in stream-space

M . P (x ## X))
〈proof 〉

lemma (in prob-space) AE-stream-all:
assumes [measurable]: Measurable.pred M P and P: AE x in M . P x
shows AE x in stream-space M . stream-all P x
〈proof 〉

lemma streams-sets:
assumes X [measurable]: X ∈ sets M shows streams X ∈ sets (stream-space M )
〈proof 〉

lemma sets-stream-space-in-sets:
assumes space: space N = streams (space M )
assumes sets:

∧
i. (λx. x !! i) ∈ measurable N M

shows sets (stream-space M ) ⊆ sets N
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〈proof 〉

lemma sets-stream-space-eq: sets (stream-space M ) =
sets (SUP i∈UNIV . vimage-algebra (streams (space M )) (λs. s !! i) M )
〈proof 〉

lemma sets-restrict-stream-space:
assumes S [measurable]: S ∈ sets M
shows sets (restrict-space (stream-space M ) (streams S)) = sets (stream-space

(restrict-space M S))
〈proof 〉

primrec sstart :: ′a set ⇒ ′a list ⇒ ′a stream set where
sstart S [] = streams S
| [simp del]: sstart S (x # xs) = (##) x ‘ sstart S xs

lemma in-sstart[simp]: s ∈ sstart S (x # xs) ←→ shd s = x ∧ stl s ∈ sstart S xs
〈proof 〉

lemma sstart-in-streams: xs ∈ lists S =⇒ sstart S xs ⊆ streams S
〈proof 〉

lemma sstart-eq: x ∈ streams S =⇒ x ∈ sstart S xs = (∀ i<length xs. x !! i = xs
! i)
〈proof 〉

lemma sstart-sets: sstart S xs ∈ sets (stream-space (count-space UNIV ))
〈proof 〉

lemma sigma-sets-singletons:
assumes countable S
shows sigma-sets S ((λs. {s})‘S) = Pow S
〈proof 〉

lemma sets-count-space-eq-sigma:
countable S =⇒ sets (count-space S) = sets (sigma S ((λs. {s})‘S))
〈proof 〉

lemma sets-stream-space-sstart:
assumes S [simp]: countable S
shows sets (stream-space (count-space S)) = sets (sigma (streams S) (sstart

S‘lists S ∪ {{}}))
〈proof 〉

lemma Int-stable-sstart: Int-stable (sstart S‘lists S ∪ {{}})
〈proof 〉

lemma stream-space-eq-sstart:
assumes S [simp]: countable S
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assumes P: prob-space M prob-space N
assumes ae: AE x in M . x ∈ streams S AE x in N . x ∈ streams S
assumes sets-M : sets M = sets (stream-space (count-space UNIV ))
assumes sets-N : sets N = sets (stream-space (count-space UNIV ))
assumes ∗:

∧
xs. xs 6= [] =⇒ xs ∈ lists S =⇒ emeasure M (sstart S xs) =

emeasure N (sstart S xs)
shows M = N
〈proof 〉

lemma sets-sstart[measurable]: sstart Ω xs ∈ sets (stream-space (count-space UNIV ))
〈proof 〉

primrec scylinder :: ′a set ⇒ ′a set list ⇒ ′a stream set
where

scylinder S [] = streams S
| scylinder S (A # As) = {ω∈streams S . shd ω ∈ A ∧ stl ω ∈ scylinder S As}

lemma scylinder-streams: scylinder S xs ⊆ streams S
〈proof 〉

lemma sets-scylinder : (∀ x∈set xs. x ∈ sets S) =⇒ scylinder (space S) xs ∈ sets
(stream-space S)
〈proof 〉

lemma stream-space-eq-scylinder :
assumes P: prob-space M prob-space N
assumes Int-stable G and S : sets S = sets (sigma (space S) G)

and C : countable C C ⊆ G
⋃

C = space S and G: G ⊆ Pow (space S)
assumes sets-M : sets M = sets (stream-space S)
assumes sets-N : sets N = sets (stream-space S)
assumes ∗:

∧
xs. xs 6= [] =⇒ xs ∈ lists G =⇒ emeasure M (scylinder (space S)

xs) = emeasure N (scylinder (space S) xs)
shows M = N
〈proof 〉

lemma stream-space-coinduct:
fixes R :: ′a stream measure ⇒ ′a stream measure ⇒ bool
assumes R A B
assumes R:

∧
A B. R A B =⇒ ∃K∈space (prob-algebra M ).

∃A ′∈M →M prob-algebra (stream-space M ). ∃B ′∈M →M prob-algebra (stream-space
M ).

(AE y in K . R (A ′ y) (B ′ y) ∨ A ′ y = B ′ y) ∧
A = do { y ← K ; ω ← A ′ y; return (stream-space M ) (y ## ω) } ∧
B = do { y ← K ; ω ← B ′ y; return (stream-space M ) (y ## ω) }

shows A = B
〈proof 〉

end
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theory Tree-Space
imports HOL−Analysis.Analysis HOL−Library.Tree

begin

lemma countable-lfp:
assumes step:

∧
Y . countable Y =⇒ countable (F Y )

and cont: Order-Continuity.sup-continuous F
shows countable (lfp F)
〈proof 〉

lemma countable-lfp-apply:
assumes step:

∧
Y x. (

∧
x. countable (Y x)) =⇒ countable (F Y x)

and cont: Order-Continuity.sup-continuous F
shows countable (lfp F x)
〈proof 〉

inductive-set trees :: ′a set ⇒ ′a tree set for S :: ′a set where
[intro!]: Leaf ∈ trees S
| l ∈ trees S =⇒ r ∈ trees S =⇒ v ∈ S =⇒ Node l v r ∈ trees S

lemma Node-in-trees-iff [simp]: Node l v r ∈ trees S ←→ (l ∈ trees S ∧ v ∈ S ∧
r ∈ trees S)
〈proof 〉

lemma trees-sub-lfp: trees S ⊆ lfp (λT . T ∪ {Leaf } ∪ (
⋃

l∈T . (
⋃

v∈S . (
⋃

r∈T .
{Node l v r}))))
〈proof 〉

lemma countable-trees: countable A =⇒ countable (trees A)
〈proof 〉

lemma trees-UNIV [simp]: trees UNIV = UNIV
〈proof 〉

instance tree :: (countable) countable
〈proof 〉

lemma map-in-trees[intro]: (
∧

x. x ∈ set-tree t =⇒ f x ∈ S) =⇒ map-tree f t ∈
trees S
〈proof 〉

primrec trees-cyl :: ′a set tree ⇒ ′a tree set where
trees-cyl Leaf = {Leaf }
| trees-cyl (Node l v r) = (

⋃
l ′∈trees-cyl l. (

⋃
v ′∈v. (

⋃
r ′∈trees-cyl r . {Node l ′ v ′

r ′})))

definition tree-sigma :: ′a measure ⇒ ′a tree measure
where
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tree-sigma M = sigma (trees (space M )) (trees-cyl ‘ trees (sets M ))

lemma Node-in-trees-cyl: Node l ′ v ′ r ′ ∈ trees-cyl t ←→
(∃ l v r . t = Node l v r ∧ l ′ ∈ trees-cyl l ∧ r ′ ∈ trees-cyl r ∧ v ′ ∈ v)
〈proof 〉

lemma trees-cyl-sub-trees:
assumes t ∈ trees A A ⊆ Pow B shows trees-cyl t ⊆ trees B
〈proof 〉

lemma trees-cyl-sets-in-space: trees-cyl ‘ trees (sets M ) ⊆ Pow (trees (space M ))
〈proof 〉

lemma space-tree-sigma: space (tree-sigma M ) = trees (space M )
〈proof 〉

lemma sets-tree-sigma-eq: sets (tree-sigma M ) = sigma-sets (trees (space M ))
(trees-cyl ‘ trees (sets M ))
〈proof 〉

lemma Leaf-in-space-tree-sigma [measurable, simp, intro]: Leaf ∈ space (tree-sigma
M )
〈proof 〉

lemma Leaf-in-tree-sigma [measurable, simp, intro]: {Leaf } ∈ sets (tree-sigma M )
〈proof 〉

lemma trees-cyl-map-treeI : t ∈ trees-cyl (map-tree (λx. A) t) if ∗: t ∈ trees A
〈proof 〉

lemma trees-cyl-map-in-sets:
(
∧

x. x ∈ set-tree t =⇒ f x ∈ sets M ) =⇒ trees-cyl (map-tree f t) ∈ sets (tree-sigma
M )
〈proof 〉

lemma Node-in-tree-sigma:
assumes L: X ∈ sets (M

⊗
M (tree-sigma M

⊗
M tree-sigma M ))

shows {Node l v r | l v r . (v, l, r) ∈ X} ∈ sets (tree-sigma M )
〈proof 〉

lemma measurable-left[measurable]: left ∈ tree-sigma M →M tree-sigma M
〈proof 〉

lemma measurable-right[measurable]: right ∈ tree-sigma M →M tree-sigma M
〈proof 〉

lemma measurable-value ′: value ∈ restrict-space (tree-sigma M ) (−{Leaf }) →M

M
〈proof 〉



THEORY “Conditional-Expectation” 206

lemma measurable-value[measurable (raw)]:
assumes f ∈ X →M tree-sigma M

and
∧

x. x ∈ space X =⇒ f x 6= Leaf
shows (λω. value (f ω)) ∈ X →M M
〈proof 〉

lemma measurable-Node [measurable]:
(λ(l,x,r). Node l x r) ∈ tree-sigma M

⊗
M M

⊗
M tree-sigma M →M tree-sigma

M
〈proof 〉

lemma measurable-Node ′ [measurable (raw)]:
assumes [measurable]: l ∈ B →M tree-sigma A
assumes [measurable]: x ∈ B →M A
assumes [measurable]: r ∈ B →M tree-sigma A
shows (λy. Node (l y) (x y) (r y)) ∈ B →M tree-sigma A
〈proof 〉

lemma measurable-rec-tree[measurable (raw)]:
assumes t: t ∈ B →M tree-sigma M
assumes l: l ∈ B →M A
assumes n: (λ(x, l, v, r , al, ar). n x l v r al ar) ∈
(B

⊗
M tree-sigma M

⊗
M M

⊗
M tree-sigma M

⊗
M A

⊗
M A) →M A (is

?N ∈ ?M →M A)
shows (λx. rec-tree (l x) (n x) (t x)) ∈ B →M A
〈proof 〉

lemma measurable-case-tree [measurable (raw)]:
assumes t ∈ B →M tree-sigma M
assumes l ∈ B →M A
assumes (λ(x, l, v, r). n x l v r)

∈ B
⊗

M tree-sigma M
⊗

M M
⊗

M tree-sigma M →M A
shows (λx. case-tree (l x) (n x) (t x)) ∈ B →M (A :: ′a measure)
〈proof 〉

hide-const (open) left
hide-const (open) right

end

28 Conditional Expectation
theory Conditional-Expectation
imports Probability-Measure
begin
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28.1 Restricting a measure to a sub-sigma-algebra
definition subalgebra:: ′a measure ⇒ ′a measure ⇒ bool where

subalgebra M F = ((space F = space M ) ∧ (sets F ⊆ sets M ))

lemma sub-measure-space:
assumes i: subalgebra M F
shows measure-space (space M ) (sets F) (emeasure M )
〈proof 〉

definition restr-to-subalg:: ′a measure ⇒ ′a measure ⇒ ′a measure where
restr-to-subalg M F = measure-of (space M ) (sets F) (emeasure M )

lemma space-restr-to-subalg:
space (restr-to-subalg M F) = space M
〈proof 〉

lemma sets-restr-to-subalg [measurable-cong]:
assumes subalgebra M F
shows sets (restr-to-subalg M F) = sets F
〈proof 〉

lemma emeasure-restr-to-subalg:
assumes subalgebra M F

A ∈ sets F
shows emeasure (restr-to-subalg M F) A = emeasure M A
〈proof 〉

lemma null-sets-restr-to-subalg:
assumes subalgebra M F
shows null-sets (restr-to-subalg M F) = null-sets M ∩ sets F
〈proof 〉

lemma AE-restr-to-subalg:
assumes subalgebra M F

AE x in (restr-to-subalg M F). P x
shows AE x in M . P x
〈proof 〉

lemma AE-restr-to-subalg2 :
assumes subalgebra M F

AE x in M . P x and [measurable]: P ∈ measurable F (count-space UNIV )
shows AE x in (restr-to-subalg M F). P x
〈proof 〉

lemma prob-space-restr-to-subalg:
assumes subalgebra M F

prob-space M
shows prob-space (restr-to-subalg M F)
〈proof 〉
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lemma finite-measure-restr-to-subalg:
assumes subalgebra M F

finite-measure M
shows finite-measure (restr-to-subalg M F)
〈proof 〉

lemma measurable-in-subalg:
assumes subalgebra M F

f ∈ measurable F N
shows f ∈ measurable (restr-to-subalg M F) N
〈proof 〉

lemma measurable-in-subalg ′:
assumes subalgebra M F

f ∈ measurable (restr-to-subalg M F) N
shows f ∈ measurable F N
〈proof 〉

lemma measurable-from-subalg:
assumes subalgebra M F

f ∈ measurable F N
shows f ∈ measurable M N
〈proof 〉

The following is the direct transposition of nn_integral_subalgebra (from
Nonnegative_Lebesgue_Integration) in the current notations, with the
removal of the useless assumption f ≥ 0.
lemma nn-integral-subalgebra2 :

assumes subalgebra M F and [measurable]: f ∈ borel-measurable F
shows (

∫
+ x. f x ∂(restr-to-subalg M F)) = (

∫
+ x. f x ∂M )

〈proof 〉

The following is the direct transposition of integral_subalgebra (from
Bochner_Integration) in the current notations.
lemma integral-subalgebra2 :

fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes subalgebra M F and
[measurable]: f ∈ borel-measurable F

shows (
∫

x. f x ∂(restr-to-subalg M F)) = (
∫

x. f x ∂M )
〈proof 〉

lemma integrable-from-subalg:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes subalgebra M F

integrable (restr-to-subalg M F) f
shows integrable M f
〈proof 〉
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lemma integrable-in-subalg:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes [measurable]: subalgebra M F

f ∈ borel-measurable F
integrable M f

shows integrable (restr-to-subalg M F) f
〈proof 〉

28.2 Nonnegative conditional expectation

The conditional expectation of a function f , on a measure space M , with re-
spect to a sub sigma algebra F , should be a function g which is F -measurable
whose integral on any F -set coincides with the integral of f . Such a func-
tion is uniquely defined almost everywhere. The most direct construction is
to use the measure fdM , restrict it to the sigma-algebra F , and apply the
Radon-Nikodym theorem to write it as gdM|F for some F -measurable func-
tion g. Another classical construction for L2 functions is done by orthogonal
projection on F -measurable functions, and then extending by density to L1.
The Radon-Nikodym point of view avoids the L2 machinery, and works for
all positive functions.
In this paragraph, we develop the definition and basic properties for non-
negative functions, as the basics of the general case. As in the definition of
integrals, the nonnegative case is done with ennreal-valued functions, with-
out any integrability assumption.
definition nn-cond-exp :: ′a measure ⇒ ′a measure ⇒ ( ′a ⇒ ennreal) ⇒ ( ′a ⇒
ennreal)
where

nn-cond-exp M F f =
(if f ∈ borel-measurable M ∧ subalgebra M F

then RN-deriv (restr-to-subalg M F) (restr-to-subalg (density M f ) F)
else (λ-. 0 ))

lemma
shows borel-measurable-nn-cond-exp [measurable]: nn-cond-exp M F f ∈ borel-measurable

F
and borel-measurable-nn-cond-exp2 [measurable]: nn-cond-exp M F f ∈ borel-measurable

M
〈proof 〉

The good setting for conditional expectations is the situation where the
subalgebra F gives rise to a sigma-finite measure space. To see what goes
wrong if it is not sigma-finite, think of R with the trivial sigma-algebra
{∅,R}. In this case, conditional expectations have to be constant functions,
so they have integral 0 or∞. This means that a positive integrable function
can have no meaningful conditional expectation.
locale sigma-finite-subalgebra =
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fixes M F :: ′a measure
assumes subalg: subalgebra M F

and sigma-fin-subalg: sigma-finite-measure (restr-to-subalg M F)

lemma sigma-finite-subalgebra-is-sigma-finite:
assumes sigma-finite-subalgebra M F
shows sigma-finite-measure M
〈proof 〉

sublocale sigma-finite-subalgebra ⊆ sigma-finite-measure
〈proof 〉

Conditional expectations are very often used in probability spaces. This is
a special case of the previous one, as we prove now.
locale finite-measure-subalgebra = finite-measure +

fixes F :: ′a measure
assumes subalg: subalgebra M F

lemma finite-measure-subalgebra-is-sigma-finite:
assumes finite-measure-subalgebra M F
shows sigma-finite-subalgebra M F
〈proof 〉

sublocale finite-measure-subalgebra ⊆ sigma-finite-subalgebra
〈proof 〉

context sigma-finite-subalgebra
begin

The next lemma is arguably the most fundamental property of conditional
expectation: when computing an expectation against an F -measurable func-
tion, it is equivalent to work with a function or with its F -conditional ex-
pectation.
This property (even for bounded test functions) characterizes conditional
expectations, as the second lemma below shows. From this point on, we
will only work with it, and forget completely about the definition using
Radon-Nikodym derivatives.
lemma nn-cond-exp-intg:

assumes [measurable]: f ∈ borel-measurable F g ∈ borel-measurable M
shows (

∫
+ x. f x ∗ nn-cond-exp M F g x ∂M ) = (

∫
+ x. f x ∗ g x ∂M )

〈proof 〉

lemma nn-cond-exp-charact:
assumes

∧
A. A ∈ sets F =⇒ (

∫
+ x ∈ A. f x ∂M ) = (

∫
+ x ∈ A. g x ∂M ) and

[measurable]: f ∈ borel-measurable M g ∈ borel-measurable F
shows AE x in M . g x = nn-cond-exp M F f x
〈proof 〉
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lemma nn-cond-exp-F-meas:
assumes f ∈ borel-measurable F
shows AE x in M . f x = nn-cond-exp M F f x
〈proof 〉

lemma nn-cond-exp-prod:
assumes [measurable]: f ∈ borel-measurable F g ∈ borel-measurable M
shows AE x in M . f x ∗ nn-cond-exp M F g x = nn-cond-exp M F (λx. f x ∗ g

x) x
〈proof 〉

lemma nn-cond-exp-sum:
assumes [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M
shows AE x in M . nn-cond-exp M F f x + nn-cond-exp M F g x = nn-cond-exp

M F (λx. f x + g x) x
〈proof 〉

lemma nn-cond-exp-cong:
assumes AE x in M . f x = g x

and [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M
shows AE x in M . nn-cond-exp M F f x = nn-cond-exp M F g x
〈proof 〉

lemma nn-cond-exp-mono:
assumes AE x in M . f x ≤ g x

and [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M
shows AE x in M . nn-cond-exp M F f x ≤ nn-cond-exp M F g x
〈proof 〉

lemma nested-subalg-is-sigma-finite:
assumes subalgebra M G subalgebra G F
shows sigma-finite-subalgebra M G
〈proof 〉

lemma nn-cond-exp-nested-subalg:
assumes subalgebra M G subalgebra G F

and [measurable]: f ∈ borel-measurable M
shows AE x in M . nn-cond-exp M F f x = nn-cond-exp M F (nn-cond-exp M G

f ) x
〈proof 〉

end

28.3 Real conditional expectation

Once conditional expectations of positive functions are defined, the defi-
nition for real-valued functions follows readily, by taking the difference of
positive and negative parts. One could also define a conditional expecta-
tion of vector-space valued functions, as in Bochner_Integral, but since
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the real-valued case is the most important, and quicker to formalize, I con-
centrate on it. (It is also essential for the case of the most general Pettis
integral.)
definition real-cond-exp :: ′a measure ⇒ ′a measure ⇒ ( ′a ⇒ real) ⇒ ( ′a ⇒ real)
where

real-cond-exp M F f =
(λx. enn2real(nn-cond-exp M F (λx. ennreal (f x)) x) − enn2real(nn-cond-exp

M F (λx. ennreal (−f x)) x))

lemma
shows borel-measurable-cond-exp [measurable]: real-cond-exp M F f ∈ borel-measurable

F
and borel-measurable-cond-exp2 [measurable]: real-cond-exp M F f ∈ borel-measurable

M
〈proof 〉

context sigma-finite-subalgebra
begin

lemma real-cond-exp-abs:
assumes [measurable]: f ∈ borel-measurable M
shows AE x in M . abs(real-cond-exp M F f x) ≤ nn-cond-exp M F (λx. ennreal

(abs(f x))) x
〈proof 〉

The next lemma shows that the conditional expectation is an F -measurable
function whose average against an F -measurable function f coincides with
the average of the original function against f . It is obtained as a consequence
of the same property for the positive conditional expectation, taking the
difference of the positive and the negative part. The proof is given first
assuming f ≥ 0 for simplicity, and then extended to the general case in
the subsequent lemma. The idea of the proof is essentially trivial, but the
implementation is slightly tedious as one should check all the integrability
properties of the different parts, and go back and forth between positive
integral and signed integrals, and between real-valued functions and ennreal-
valued functions.
Once this lemma is available, we will use it to characterize the conditional
expectation, and never come back to the original technical definition, as we
did in the case of the nonnegative conditional expectation.
lemma real-cond-exp-intg-fpos:

assumes integrable M (λx. f x ∗ g x) and f-pos[simp]:
∧

x. f x ≥ 0 and
[measurable]: f ∈ borel-measurable F g ∈ borel-measurable M

shows integrable M (λx. f x ∗ real-cond-exp M F g x)
(
∫

x. f x ∗ real-cond-exp M F g x ∂M ) = (
∫

x. f x ∗ g x ∂M )
〈proof 〉

lemma real-cond-exp-intg:
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assumes integrable M (λx. f x ∗ g x) and
[measurable]: f ∈ borel-measurable F g ∈ borel-measurable M

shows integrable M (λx. f x ∗ real-cond-exp M F g x)
(
∫

x. f x ∗ real-cond-exp M F g x ∂M ) = (
∫

x. f x ∗ g x ∂M )
〈proof 〉

lemma real-cond-exp-intA:
assumes [measurable]: integrable M f A ∈ sets F
shows (

∫
x ∈ A. f x ∂M ) = (

∫
x ∈ A. real-cond-exp M F f x ∂M )

〈proof 〉

lemma real-cond-exp-int [intro]:
assumes integrable M f
shows integrable M (real-cond-exp M F f ) (

∫
x. real-cond-exp M F f x ∂M ) =

(
∫

x. f x ∂M )
〈proof 〉

lemma real-cond-exp-charact:
assumes

∧
A. A ∈ sets F =⇒ (

∫
x ∈ A. f x ∂M ) = (

∫
x ∈ A. g x ∂M )

and [measurable]: integrable M f integrable M g
g ∈ borel-measurable F

shows AE x in M . real-cond-exp M F f x = g x
〈proof 〉

lemma real-cond-exp-F-meas [intro, simp]:
assumes integrable M f

f ∈ borel-measurable F
shows AE x in M . real-cond-exp M F f x = f x
〈proof 〉

lemma real-cond-exp-mult:
assumes [measurable]:f ∈ borel-measurable F g ∈ borel-measurable M integrable

M (λx. f x ∗ g x)
shows AE x in M . real-cond-exp M F (λx. f x ∗ g x) x = f x ∗ real-cond-exp M

F g x
〈proof 〉

lemma real-cond-exp-add [intro]:
assumes [measurable]: integrable M f integrable M g
shows AE x in M . real-cond-exp M F (λx. f x + g x) x = real-cond-exp M F f x

+ real-cond-exp M F g x
〈proof 〉

lemma real-cond-exp-cong:
assumes ae: AE x in M . f x = g x and [measurable]: f ∈ borel-measurable M g
∈ borel-measurable M

shows AE x in M . real-cond-exp M F f x = real-cond-exp M F g x
〈proof 〉
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lemma real-cond-exp-cmult [intro, simp]:
fixes c::real
assumes integrable M f
shows AE x in M . real-cond-exp M F (λx. c ∗ f x) x = c ∗ real-cond-exp M F f

x
〈proof 〉

lemma real-cond-exp-cdiv [intro, simp]:
fixes c::real
assumes integrable M f
shows AE x in M . real-cond-exp M F (λx. f x / c) x = real-cond-exp M F f x /

c
〈proof 〉

lemma real-cond-exp-diff [intro, simp]:
assumes [measurable]: integrable M f integrable M g
shows AE x in M . real-cond-exp M F (λx. f x − g x) x = real-cond-exp M F f x
− real-cond-exp M F g x
〈proof 〉

lemma real-cond-exp-pos [intro]:
assumes AE x in M . f x ≥ 0 and [measurable]: f ∈ borel-measurable M
shows AE x in M . real-cond-exp M F f x ≥ 0
〈proof 〉

lemma real-cond-exp-mono:
assumes AE x in M . f x ≤ g x and [measurable]: integrable M f integrable M g
shows AE x in M . real-cond-exp M F f x ≤ real-cond-exp M F g x
〈proof 〉

lemma (in −) measurable-P-restriction [measurable (raw)]:
assumes [measurable]: Measurable.pred M P A ∈ sets M
shows {x ∈ A. P x} ∈ sets M
〈proof 〉

lemma real-cond-exp-gr-c:
assumes [measurable]: integrable M f

and AE : AE x in M . f x > c
shows AE x in M . real-cond-exp M F f x > c
〈proof 〉

lemma real-cond-exp-less-c:
assumes [measurable]: integrable M f

and AE x in M . f x < c
shows AE x in M . real-cond-exp M F f x < c
〈proof 〉

lemma real-cond-exp-ge-c:
assumes [measurable]: integrable M f
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and AE x in M . f x ≥ c
shows AE x in M . real-cond-exp M F f x ≥ c
〈proof 〉

lemma real-cond-exp-le-c:
assumes [measurable]: integrable M f

and AE x in M . f x ≤ c
shows AE x in M . real-cond-exp M F f x ≤ c
〈proof 〉

lemma real-cond-exp-mono-strict:
assumes AE x in M . f x < g x and [measurable]: integrable M f integrable M g
shows AE x in M . real-cond-exp M F f x < real-cond-exp M F g x
〈proof 〉

lemma real-cond-exp-nested-subalg [intro, simp]:
assumes subalgebra M G subalgebra G F

and [measurable]: integrable M f
shows AE x in M . real-cond-exp M F (real-cond-exp M G f ) x = real-cond-exp

M F f x
〈proof 〉

lemma real-cond-exp-sum [intro, simp]:
fixes f :: ′b ⇒ ′a ⇒ real
assumes [measurable]:

∧
i. integrable M (f i)

shows AE x in M . real-cond-exp M F (λx.
∑

i∈I . f i x) x = (
∑

i∈I . real-cond-exp
M F (f i) x)
〈proof 〉

Jensen’s inequality, describing the behavior of the integral under a convex
function, admits a version for the conditional expectation, as follows.
theorem real-cond-exp-jensens-inequality:

fixes q :: real ⇒ real
assumes X : integrable M X AE x in M . X x ∈ I
assumes I : I = {a <..< b} ∨ I = {a <..} ∨ I = {..< b} ∨ I = UNIV
assumes q: integrable M (λx. q (X x)) convex-on I q q ∈ borel-measurable borel
shows AE x in M . real-cond-exp M F X x ∈ I

AE x in M . q (real-cond-exp M F X x) ≤ real-cond-exp M F (λx. q (X x)) x
〈proof 〉

Jensen’s inequality does not imply that q(E(X|F )) is integrable, as it only
proves an upper bound for it. Indeed, this is not true in general, as the
following counterexample shows:
on [1,∞) with Lebesgue measure, let F be the sigma-algebra generated by
the intervals [n, n + 1) for integer n. Let q(x) = −

√
x for x ≥ 0. Define X

which is equal to 1/n over [n, n + 1/n) and 2−n on [n + 1/n, n + 1). Then
X is integrable as

∑
1/n2 < ∞, and q(X) is integrable as

∑
1/n3/2 < ∞.

On the other hand, E(X|F ) is essentially equal to 1/n2 on [n, n + 1) (we
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neglect the term 2−n, we only put it there because X should take its values
in I = (0,∞)). Hence, q(E(X|F )) is equal to −1/n on [n, n+1), hence it is
not integrable.
However, this counterexample is essentially the only situation where this
function is not integrable, as shown by the next lemma.
lemma integrable-convex-cond-exp:

fixes q :: real ⇒ real
assumes X : integrable M X AE x in M . X x ∈ I
assumes I : I = {a <..< b} ∨ I = {a <..} ∨ I = {..< b} ∨ I = UNIV
assumes q: integrable M (λx. q (X x)) convex-on I q q ∈ borel-measurable borel
assumes H : emeasure M (space M ) = ∞ =⇒ 0 ∈ I
shows integrable M (λx. q (real-cond-exp M F X x))
〈proof 〉

end

end

theory Essential-Supremum
imports HOL−Analysis.Analysis
begin

lemma ae-filter-eq-bot-iff : ae-filter M = bot ←→ emeasure M (space M ) = 0
〈proof 〉

29 The essential supremum

In this paragraph, we define the essential supremum and give its basic prop-
erties. The essential supremum of a function is its maximum value if one is
allowed to throw away a set of measure 0. It is convenient to define it to be
infinity for non-measurable functions, as it allows for neater statements in
general. This is a prerequisiste to define the space L∞.
definition esssup:: ′a measure⇒ ( ′a⇒ ′b::{second-countable-topology, dense-linorder ,
linorder-topology, complete-linorder}) ⇒ ′b

where esssup M f = (if f ∈ borel-measurable M then Limsup (ae-filter M ) f else
top)

lemma esssup-non-measurable: f /∈ M →M borel =⇒ esssup M f = top
〈proof 〉

lemma esssup-eq-AE :
assumes f : f ∈ M →M borel shows esssup M f = Inf {z. AE x in M . f x ≤ z}
〈proof 〉

lemma esssup-eq: f ∈ M →M borel =⇒ esssup M f = Inf {z. emeasure M {x ∈
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space M . f x > z} = 0}
〈proof 〉

lemma esssup-zero-measure:
emeasure M {x ∈ space M . f x > esssup M f } = 0
〈proof 〉

lemma esssup-AE : AE x in M . f x ≤ esssup M f
〈proof 〉

lemma esssup-pos-measure:
f ∈ borel-measurable M =⇒ z < esssup M f =⇒ emeasure M {x ∈ space M . f x

> z} > 0
〈proof 〉

lemma esssup-I [intro]: f ∈ borel-measurable M =⇒ AE x in M . f x ≤ c =⇒
esssup M f ≤ c
〈proof 〉

lemma esssup-AE-mono: f ∈ borel-measurable M =⇒ AE x in M . f x ≤ g x =⇒
esssup M f ≤ esssup M g
〈proof 〉

lemma esssup-mono: f ∈ borel-measurable M =⇒ (
∧

x. f x ≤ g x) =⇒ esssup M
f ≤ esssup M g
〈proof 〉

lemma esssup-AE-cong:
f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒ AE x in M . f x = g x

=⇒ esssup M f = esssup M g
〈proof 〉

lemma esssup-const: emeasure M (space M ) 6= 0 =⇒ esssup M (λx. c) = c
〈proof 〉

lemma esssup-cmult: assumes c > (0 ::real) shows esssup M (λx. c ∗ f x::ereal)
= c ∗ esssup M f
〈proof 〉

lemma esssup-add:
esssup M (λx. f x + g x::ereal) ≤ esssup M f + esssup M g
〈proof 〉

lemma esssup-zero-space:
emeasure M (space M ) = 0 =⇒ f ∈ borel-measurable M =⇒ esssup M f = (−
∞::ereal)
〈proof 〉

end
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30 Stopping times
theory Stopping-Time

imports HOL−Analysis.Analysis
begin

30.1 Stopping Time

This is also called strong stopping time. Then stopping time is T with
alternative is T x < t measurable.
definition stopping-time :: ( ′t::linorder ⇒ ′a measure) ⇒ ( ′a ⇒ ′t) ⇒ bool
where

stopping-time F T = (∀ t. Measurable.pred (F t) (λx. T x ≤ t))

lemma stopping-time-cong: (
∧

t x. x ∈ space (F t) =⇒ T x = S x) =⇒ stop-
ping-time F T = stopping-time F S
〈proof 〉

lemma stopping-timeD: stopping-time F T =⇒ Measurable.pred (F t) (λx. T x ≤
t)
〈proof 〉

lemma stopping-timeD2 : stopping-time F T =⇒ Measurable.pred (F t) (λx. t <
T x)
〈proof 〉

lemma stopping-timeI [intro?]: (
∧

t. Measurable.pred (F t) (λx. T x ≤ t)) =⇒
stopping-time F T
〈proof 〉

lemma measurable-stopping-time:
fixes T :: ′a ⇒ ′t::{linorder-topology, second-countable-topology}
assumes T : stopping-time F T

and M :
∧

t. sets (F t) ⊆ sets M
∧

t. space (F t) = space M
shows T ∈ M →M borel
〈proof 〉

lemma stopping-time-const: stopping-time F (λx. c)
〈proof 〉

lemma stopping-time-min:
stopping-time F T =⇒ stopping-time F S =⇒ stopping-time F (λx. min (T x)

(S x))
〈proof 〉

lemma stopping-time-max:
stopping-time F T =⇒ stopping-time F S =⇒ stopping-time F (λx. max (T x)

(S x))
〈proof 〉
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31 Filtration
locale filtration =

fixes Ω :: ′a set and F :: ′t::{linorder-topology, second-countable-topology} ⇒ ′a
measure

assumes space-F :
∧

i. space (F i) = Ω
assumes sets-F-mono:

∧
i j. i ≤ j =⇒ sets (F i) ≤ sets (F j)

begin

31.1 σ-algebra of a Stopping Time
definition pre-sigma :: ( ′a ⇒ ′t) ⇒ ′a measure
where

pre-sigma T = sigma Ω {A. ∀ t. {ω∈A. T ω ≤ t} ∈ sets (F t)}

lemma space-pre-sigma: space (pre-sigma T ) = Ω
〈proof 〉

lemma measure-pre-sigma[simp]: emeasure (pre-sigma T ) = (λ-. 0 )
〈proof 〉

lemma sigma-algebra-pre-sigma:
assumes T : stopping-time F T
shows sigma-algebra Ω {A. ∀ t. {ω∈A. T ω ≤ t} ∈ sets (F t)}
〈proof 〉

lemma sets-pre-sigma: stopping-time F T =⇒ sets (pre-sigma T ) = {A. ∀ t. {ω∈A.
T ω ≤ t} ∈ sets (F t)}
〈proof 〉

lemma sets-pre-sigmaI : stopping-time F T =⇒ (
∧

t. {ω∈A. T ω ≤ t} ∈ sets (F
t)) =⇒ A ∈ sets (pre-sigma T )
〈proof 〉

lemma pred-pre-sigmaI :
assumes T : stopping-time F T
shows (

∧
t. Measurable.pred (F t) (λω. P ω ∧ T ω ≤ t)) =⇒ Measurable.pred

(pre-sigma T ) P
〈proof 〉

lemma sets-pre-sigmaD: stopping-time F T =⇒ A ∈ sets (pre-sigma T ) =⇒ {ω∈A.
T ω ≤ t} ∈ sets (F t)
〈proof 〉

lemma stopping-time-le-const: stopping-time F T =⇒ s ≤ t =⇒ Measurable.pred
(F t) (λω. T ω ≤ s)
〈proof 〉

lemma measurable-stopping-time-pre-sigma:
assumes T : stopping-time F T shows T ∈ pre-sigma T →M borel
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〈proof 〉

lemma mono-pre-sigma:
assumes T : stopping-time F T and S : stopping-time F S

and le:
∧
ω. ω ∈ Ω =⇒ T ω ≤ S ω

shows sets (pre-sigma T ) ⊆ sets (pre-sigma S)
〈proof 〉

lemma stopping-time-less-const:
assumes T : stopping-time F T shows Measurable.pred (F t) (λω. T ω < t)
〈proof 〉

lemma stopping-time-eq-const: stopping-time F T =⇒ Measurable.pred (F t) (λω.
T ω = t)
〈proof 〉

lemma stopping-time-less:
assumes T : stopping-time F T and S : stopping-time F S
shows Measurable.pred (pre-sigma T ) (λω. T ω < S ω)
〈proof 〉

end

lemma stopping-time-SUP-enat:
fixes T :: nat ⇒ ( ′a ⇒ enat)
shows (

∧
i. stopping-time F (T i)) =⇒ stopping-time F (SUP i. T i)

〈proof 〉

lemma less-eSuc-iff : a < eSuc b ←→ (a ≤ b ∧ a 6= ∞)
〈proof 〉

lemma stopping-time-Inf-enat:
fixes F :: enat ⇒ ′a measure
assumes F : filtration Ω F
assumes P:

∧
i. Measurable.pred (F i) (P i)

shows stopping-time F (λω. Inf {i. P i ω})
〈proof 〉

lemma stopping-time-Inf-nat:
fixes F :: nat ⇒ ′a measure
assumes F : filtration Ω F
assumes P:

∧
i. Measurable.pred (F i) (P i) and wf :

∧
i ω. ω ∈ Ω =⇒ ∃n. P n

ω
shows stopping-time F (λω. Inf {i. P i ω})
〈proof 〉

end
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theory Probability
imports

Central-Limit-Theorem
Discrete-Topology
PMF-Impl
Projective-Limit
Random-Permutations
SPMF
Product-PMF
Hoeffding
Stream-Space
Tree-Space
Conditional-Expectation
Essential-Supremum
Stopping-Time

begin

end
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