Measure and Probability Theory

January 18, 2026

Contents

1

10 Independent families of events, event sets, and random vari-

Probability measure

1.1 Introduce binder for probability
1.2 Distributions o

Distribution Functions

2.1 Propertiesof cdf’so
2.2 Uniqueness i

Weak Convergence of Functions and Distributions
Weak Convergence of Functions

Weak Convergence of Distributions

Skorohod’s theorem

The Giry monad

7.1 Sub-probability spaces
7.2 Properties of “return” L.

7.3 Join ...
7.4 Giry monad on probability spaces.

Projective Family

Infinite Product Measure

9.1 Sequence Space e

ables

11 Convolution Measure

16
17
18

20

20

20

20

23
23
27
30
36

39

44
46

48

55

12 Information theory 58
12.1 Information theory 58
12.2 Kullback—Leibler divergence 58
12.3 Finite Entropy oo oo 60
12.4 Mutual Information 61
12,5 Entropyo 63
12.6 Conditional Mutual Information 64
12.7 Conditional Entropy 65
12.8 Equalities 66

13 Properties of Various Distributions 68
13.1 Erlango 69
13.2 Exponential distribution 71
13.3 Uniform distribution 73
13.4 Normal distribution 75

14 Characteristic Functions 80
14.1 Application of the FTC: integrating e’z 80
14.2 The Characteristic Function of a Real Measure. 80
14.3 Independence 81
14.4 Approximations to e™® 81
14.5 Calculation of the Characteristic Function of the Standard

Distribution 83

15 Helly’s selection theorem 84

16 Integral of sinc 85
16.1 Various preparatory integrals 85

17 The sinc function, and the sine integral (Si) 86
17.1 The final theorems: boundedness and scalability 87

18 The Levy inversion theorem, and the Levy continuity theo-

rem. 88
18.1 The Levy inversion theorem 88
18.2 The Levy continuity theorem 89
19 The Central Limit Theorem 89
20 Probability mass function 91
20.1 PMF as measure e 91
20.2 Monad Interpretation 95
20.3 PMFs as function 100
20.4 Conditional Probabilities 103

20.5 Relator 104

20.6 Distributions o 108
20.6.1 Bernoulli Distribution 108

20.6.2 Geometric Distribution 109

20.6.3 Uniform Multiset Distribution 110

20.6.4 Uniform Distribution 110

20.6.5 Poisson Distribution 112

20.6.6 Binomial Distribution 112

20.7 Negative Binomial distribution 114
20.8 PMFs from association lists 116

21 Code generation for PMFs 118
21.1 General code generation setup 118
21.2 Code abbreviations for integrals and probabilities 125

22 Finite Maps 127
22.1 Domain and Application 127
22.2 Constructor of Finite Maps 128
22.3 Product set of Finite Maps 128
22.3.1 Basic Propertiesof Pi’ 129

22.4 Topological Space of Finite Maps 129
22.5 Metric Space of Finite Maps 130
22.6 Complete Space of Finite Maps 131
22.7 Second Countable Space of Finite Maps 131
22.8 Polish Space of Finite Maps 132
22.9 Product Measurable Space of Finite Maps 132
22.10Isomorphism between Functions and Finite Maps 137

23 Projective Limit 139
23.1 Sequences of Finite Maps in Compact Sets. 139
23.2 Daniell-Kolmogorov Theorem 140
24 Random Permutations 141
25 Discrete subprobability distribution 143
25.1 Auxiliary materialo oo 143
25.1.1 More about extended reals 143

25.1.2 More about ‘a option, 144

25.1.3 A relator for sets that treats sets like predicates. . . . 146

25.1.4 Monotonicity ruleso 147

25.1.5 Bijections o oo 147

25.2 Subprobability mass function 147
25.3 Support 150
25.4 Functorial structure 150

25.5 Monad operations 152

25.5.1 Return. o o

2552 Bind
25.6 Relator
25.7 From ‘a pmf to 'a spmf
25.8 Weight of a subprobability
25.9 From density tospmfs
25.100rdering on spmfs oo o Lo
25.11CCPO structure for the flat ccpo ord-option (=)

25.11.1 Admissibility of rel-spmf
25.12Restrictions on spmfso
25.13Subprobability distributions of sets
25.14Losslessness Lo o
25.15Scaling
25.16Conditional spmfs00 oL
25.17Product spmf
25.18Assertions
2500TEY © o o o o e e
25.20Miscellaneouso oo

26 Indexed products of PMFs
26.1 Preliminaries
26.2 Definition
26.3 Dependent product sets with a default
26.4 Common PMF operations on products
26.5 Merging and splitting PMF products
26.6 Additional properties
26.7 Applications

27 Hoeffding’s Lemma and Hoeffding’s Inequality
27.1 Hoeffding’s Lemma oL
27.2 Hoeffding’s Inequality
27.3 Hoeffding’s inequality for i.i.d. bounded random variables . .
27.4 Hoeffding’s Inequality for the Binomial distribution
27.5 Tail bounds for the negative binomial distribution

28 Conditional Expectation
28.1 Restricting a measure to a sub-sigma-algebra
28.2 Nonnegative conditional expectation
28.3 Real conditional expectation.

29 The essential supremum

30 Stopping times
30.1 Stopping Time

152
152
154
156
157
159
159
161
166
167
169
171
173
175
176
177
178
180

180
180
180
182
183
184
185
186

186
186
188
190
191
193

202
203
205
207

212

214

31 Filtration
31.1 o-algebra of a Stopping Time

[Pure]
[1Hou

[HOL-Library]

[HOL-Combinatorics] | | [HOL-Computational_Algebra]

[HOL-Real_Asymp]

[HOL-Analysis]

Discrete_Topology | | Essential_Supremum | | Fin_Map | | Probability_Measure | | Stopping_Time |] Tree_Space

Conditional_Expectation | | Distribution_Functions | | Giry_Monad
Weak_Convergence | | Projective_Family | | Probability_Mass_Function
Helly_Selection | | Infinite_Product_Measure | | PMF_Impl | | Random_Permutations | | SPMF |

Projective_Limit Independent_Family | | Stream_Space

/\

Convolution | | Information

Product_PMF

Distributions

Hoeffding

[Characterictic Functione | | Sinc Intearal |

THEORY “Probability-Measure” 7

1 Probability measure

theory Probability-Measure
imports HOL— Analysis. Analysis
begin

locale prob-space = finite-measure +
assumes emeasure-space-1: emeasure M (space M) = 1

lemma prob-spacel [Pure.introl]:
assumes *: emeasure M (space M) = 1
shows prob-space M

{proof)

lemma prob-space-imp-sigma-finite: prob-space M = sigma-finite-measure M
(proof)

abbreviation (in prob-space) events = sets M

abbreviation (in prob-space) prob = measure M

abbreviation (in prob-space) random-variable M’ X = X € measurable M M’
abbreviation (in prob-space) expectation = integral® M

abbreviation (in prob-space) variance X = integral® M (\z. (X © — expectation
X)?)

lemma (in prob-space) finite-measure [simp|: finite-measure M
(proof)

lemma (in prob-space) prob-space-distr:
assumes f: f € measurable M M' shows prob-space (distr M M’ f)
(proof)

lemma prob-space-distrD:

assumes f: [€ measurable M N and M: prob-space (distr M N f) shows
prob-space M
(proof)

lemma (in prob-space) prob-space: prob (space M) = 1

(proof)

lemma (in prob-space) prob-le-1[simp, intro]: prob A < 1
(proof)

lemma (in prob-space) not-empty: space M # {}
(proof)

lemma (in prob-space) emeasure-eq-1-AE:
Sesets M = AExzin M. x € S = emeasure M S = 1
(proof)

THEORY “Probability-Measure” 8

lemma (in prob-space) emeasure-le-1: emeasure M S < 1
{proof)

lemma (in prob-space) emeasure-ge-1-iff: emeasure M A > 1 +— emeasure M A
=1
(proof)

lemma (in prob-space) AE-iff-emeasure-eq-1:
assumes [measurable]: Measurable.pred M P
shows (AFE z in M. P z) +— emeasure M {z€space M. P z} = 1

(proof)

lemma (in prob-space) measure-le-1: emeasure M X < 1
{proof)

lemma (in prob-space) measure-ge-1-iff: measure M A > 1 <— measure M A =
1

{proof)

lemma (in prob-space) AE-I-eq-1:
assumes emeasure M {z€space M. P x} = 1 {x€space M. P x} € sets M
shows AEzin M. P x

(proof)

lemma prob-space-restrict-space:
S € sets M = emeasure M S = 1 = prob-space (restrict-space M S)

{proof)

lemma (in prob-space) prob-compl:
assumes A: A € events
shows prob (space M — A) = 1 — prob A
(proof)

lemma (in prob-space) AE-in-set-eq-1:
assumes A[measurable]: A € events shows (AE xin M. z € A) «— prob A =
1

(proof)

lemma (in prob-space) AE-False: (AE = in M. False) +— False
(proof)

lemma (in prob-space) AE-prob-1:
assumes prob A = 1 shows AEzin M.z € A

(proof)

lemma (in prob-space) AE-const[simp]: (AE z in M. P) +— P
{proof)

lemma (in prob-space) ae-filter-bot: ae-filter M # bot

THEORY “Probability-Measure”

{proof)

lemma (in prob-space) AE-contr:
assumes ae: AF win M. Pw AE win M. - Pw
shows Fulse

(proof)

lemma (in prob-space) integral-ge-const:
fixes ¢ :: real
shows integrable M f = (AEzin M. ¢ < fz) = ¢ < ([z. fz OM)
(proof)

lemma (in prob-space) integral-le-const:
fixes ¢ :: real
shows integrable M f = (AEzin M. fz < ¢) = ([z. fz OM) < ¢
(proof)

lemma (in prob-space) nn-integral-ge-const:
(AEzin M. c< fz) = ¢ < ([T fz OM)
(proof)

lemma (in prob-space) expectation-less:
fixes X :: - = real
assumes [simp|: integrable M X
assumes gt: AEzin M. Xz <b
shows expectation X < b

(proof)

lemma (in prob-space) expectation-greater:
fixes X :: - = real
assumes [simp|: integrable M X
assumes gt: AEzin M. a < Xx
shows a < expectation X

(proof)

lemma (in prob-space) jensens-inequality:
fixes ¢ :: real = real
assumes X: integrable M X AExin M. Xz € I
assumes I: [= {a <.< b} VI={a<.} VI={.<b}VvI=UNIV
assumes ¢: integrable M (Az. q (X z)) convex-on I q
shows ¢ (expectation X) < expectation (Az. q (X z))

(proof)

lemma (in prob-space) finite-borel-measurable-integrable:
assumes f€ borel-measurable M
and finite (f(space M))
shows integrable M f

{proof)

THEORY “Probability-Measure” 10

1.1 Introduce binder for probability

syntax

-prob :: pttrn = logic = logic = logic (<("P'((/- in -./ -)")»)
syntax-consts

-prob == measure
translations

P(z in M. P) => CONST measure M {x € CONST space M. P}

(ML)

definition
cond-prob M P Q =Plwin M. Pw A Q) / Plwin M. Q w)

syntax

-conditional-prob :: pttrn = logic = logic = logic = logic (<("P'(- in -. - |/ -)))
syntax-consts

-conditional-prob == cond-prob
translations

P(zin M. P| Q) => CONST cond-prob M (Az. P) (Az. Q)

lemma (in prob-space) AE-E-prob:
assumes ae: AEzin M. Px
obtains S where S C {z € space M. P z} S € events prob S = 1

(proof)

lemma (in prob-space) prob-neg: {x€space M. P z} € events = P(z in M. -~ P
z)=1—Plxin M. Pz)
(proof)

lemma (in prob-space) prob-eq-AFE:

(AEzin M. Pz +— Q) = {z€space M. P z} € events = {xEspace M. Q
z} € events = P(xin M. Pz) = P(zin M. Q z)

(proof)

lemma (in prob-space) prob-eq-0-AE:
assumes not: AE z in M. — P x shows P(z in M. Pz) = 0
(proof)

lemma (in prob-space) prob-Collect-eq-0:
{z € space M. Pz} € sets M = Pz in M. Pz) = 0 «— (AEzin M. - P 1)
(proof)

lemma (in prob-space) prob-Collect-eq-1:
{z € space M. Pz} € sets M = P(zin M. Pz) =1 <— (AEzin M. P 1)
(proof)

lemma (in prob-space) prob-eq-0:
A€ sets M = prob A =0 <«— (AEzin M. z ¢ A)
(proof)

THEORY “Probability-Measure” 11

lemma (in prob-space) prob-eg-1:
Acsets M = probA=1<+— (AEzin M.z € A)
(proof)

lemma (in prob-space) prob-sums:
assumes P: An. {z€space M. P n z} € events
assumes Q: {z€space M. Q z} € events
assumes ae: AExin M. (WVn. Pnaz — Qz) A (Qz — (I!n. Pnzx))
shows (An. P(z in M. P n x)) sums P(xzin M. Q z)

(proof)

lemma (in prob-space) prob-sum:
assumes [simp, intro]: finite I
assumes P: An. n € I = {z€space M. P n z} € events
assumes Q: {z€space M. Q z} € events
assumes ae: AExin M. (WVnel. Pnz — Q) A (Q z — (3!n€l. Pn x))
shows P(zin M. Q z) = (D nel. P(zin M. P n x))

(proof)

lemma (in prob-space) prob-EX-countable:
assumes sets: N\i. i € I = {z€space M. P iz} € sets M and I: countable I
assumes disj: AE zin M. Viel. Vjel. Pix — Pjx — i=j
shows P(z in M. 3iel. Piz) = ([*i. P(zin M. P iz) dcount-space I)
(proof)

lemma (in prob-space) cond-prob-eq-AE:

assumes P: AEzin M. Q x — Pz <— P’ z {z€space M. P z} € events
{z€space M. P’ z} € events

assumes @Q: AE zin M. Q z +— Q' x {z€space M. Q z} € events {zEspace
M. Q' z} € events

shows cond-prob M P) = cond-prob M P’ Q'

{proof)

lemma (in prob-space) joint-distribution- Times-le-fst:
random-variable MX X — random-variable MY Y — A € sets MX — B €
sets MY
= emeasure (distr M (MX @y MY) (Az. (X z, Y 2))) (A x B) < emeasure
(distr M MX X) A

{proof)

lemma (in prob-space) joint-distribution- Times-le-snd:
random-variable MX X = random-variable MY Y = A € sets MX — B €
sets MY
= emeasure (distr M (MX @y MY) (Mz. (X z, Y z))) (A x B) < emeasure
(distr M MY Y) B

(proof)

THEORY “Probability-Measure” 12

lemma (in prob-space) variance-eq:
fixes X :: 'a = real
assumes [simp|: integrable M X
assumes [simp]: integrable M (Az. (X z)?)
shows variance X = expectation (\z. (X z)?) — (expectation X)?
(proof)

lemma (in prob-space) variance-positive: 0 < variance (X::'a = real)
{proof)

lemma (in prob-space) variance-mean-zero:
expectation X = 0 = variance X = expectation (Az. (X z)72)

{proof)

theorem (in prob-space) Chebyshev-inequality:
assumes [measurable]: random-variable borel f
assumes integrable M (A\z. fz ~ 2)
defines y = expectation f
assumes a > 0
shows prob {z€space M. |fx — p| > a} < variance f | a®
unfolding pu-def
proof (rule second-moment-method)
have integrable: integrable M f
using assms by (blast dest: square-integrable-imp-integrable)
show integrable M (\z. (f ¥ — expectation f)?)
using assms integrable unfolding power2-eq-square ring-distribs
by (intro Bochner-Integration.integrable-diff) auto
qed (use assms in auto)

locale pair-prob-space = pair-sigma-finite M1 M2 + M1: prob-space M1 + M2:
prob-space M2 for M1 M2

sublocale pair-prob-space C P?: prob-space M1 Q) pr M2

(proof)

locale product-prob-space = product-sigma-finite M for M :: 'i = 'a measure +
fixes I :: 'i set

assumes prob-space: \i. prob-space (M 1)

sublocale product-prob-space C M?: prob-space M i for i
(proof)

locale finite-product-prob-space = finite-product-sigma-finite M I + product-prob-space
MI for M 1

sublocale finite-product-prob-space C prob-space My i€l. M i

{(proof)

lemma (in finite-product-prob-space) prob-times:

THEORY “Probability-Measure” 13

assumes X: A\i. i € I = X i € sets (M 1)
shows prob (Ilg i€l. X i) = ([[i€l. M.prob i (X 7))
(proof)

lemma product-prob-spacel:
assumes Ai. prob-space (M 7)
shows product-prob-space M
(proof)

1.2 Distributions

definition distributed :: 'a measure = 'b measure = ('a = 'b) = (b = ennreal)
= bool
where

distributed M N X f <—

distr M N X = density N f A f € borel-measurable N N X € measurable M N

lemma
assumes distributed M N X f
shows distributed-distr-eq-density: distr M N X = density N f
and distributed-measurable: X € measurable M N
and distributed-borel-measurable: f € borel-measurable N

{proof)

lemma
assumes D: distributed M N X f
shows distributed-measurable’|measurable-dest):
g € measurable L M = (Az. X (g z)) € measurable L N
and distributed-borel-measurable’[measurable-dest):
h € measurable L N => (Az. f (h x)) € borel-measurable L

{proof)

lemma distributed-real-measurable:
(Az. z € space N = 0 < fx) = distributed M N X (A\z. ennreal (f z)) = f
€ borel-measurable N

{proof)

lemma distributed-real-measurable’:
(Az. z € space N = 0 < fz) = distributed M N X (Az. ennreal (f z)) =
h € measurable L N = (Az. f (h z)) € borel-measurable L

{proof)

lemma joint-distributed-measurablel :
distributed M (S @ m T) (Az. (X z, Y z)) f = hl € measurable N M = (\z.
X (k1 z)) € measurable N S

{proof)

lemma joint-distributed-measurable2:
distributed M (S @ m T) (Mz. (X z, Y z)) f = h2 € measurable N M = (\z.

THEORY “Probability-Measure” 14

Y (h2 z)) € measurable N T
{proof)

lemma distributed-count-space:
assumes X: distributed M (count-space A) X P and a: a € A and A: finite A
shows P a = emeasure M (X —*{a} N space M)

(proof)

lemma distributed-cong-density:
(AEzin N. fz = g) = g € borel-measurable N = f € borel-measurable N
_—
distributed M N X f <— distributed M N X g

{proof)

lemma (in prob-space) distributed-imp-emeasure-nonzero:
assumes X: distributed M MX X Pz
shows emeasure MX {x € space MX. Prx # 0} # 0

(proof)

lemma subdensity:
assumes 1: T € measurable P @
assumes f: distributed M P X f
assumes g: distributed M QQ Y g
assumes Y: Y =T o X
shows AEzinP.g(Tz)=0— fz=20
{proof)

lemma subdensity-real:

fixes g :: ‘a = real and f :: 'b = real

assumes T: T € measurable P Q

assumes f: distributed M P X f

assumes g: distributed M Q Y g

assumes Y: Y =T o X

shows (AEzin P. 0 < g (Tz)) = (AEzin P. 0 < fz) = AEzinP.g (T
z)=0—fz =20

(proof)

lemma distributed-emeasure:
distributed M N X f = A € sets N => emeasure M (X —° A N space M) =
([*a. fz = indicator A x ON)

{proof)

lemma distributed-nn-integral:

distributed M N X f = g € borel-measurable N = ([Tz. fz * g z ON) =
(J*z. g (X z) OM)

(proof)

lemma distributed-integral:
distributed M N X f = g € borel-measurable N = (A\z. = € space N = 0 <

THEORY “Probability-Measure” 15

fz) =
([z.fzxgazdN)=([z g (Xz) M)
{proof)

lemma distributed-transform-integral:

assumes Pz: distributed M N X Pr Az. © € space N = 0 < Pz x

assumes distributed M P Y Py Nz. © € space P — 0 < Py z

assumes Y: Y =T o Xand T: T € measurable N P and f: f € borel-measurable
P

shows ([z. Pyx x fz OP) = ([x. Pxz x f (T z) ON)

(proof)

lemma (in prob-space) distributed-unique:
assumes Pzx: distributed M S X Pz
assumes Py: distributed M S X Py
shows AE xzin S. Pt x = Py x

(proof)

lemma (in prob-space) distributed-jointl:

assumes sigma-finite-measure S sigma-finite-measure T

assumes X|[measurable]: X € measurable M S and Y[measurable]: Y € measur-
able M T

assumes [measurable]: f € borel-measurable (S Qa T) and f: AE zin S Q m
T.0< fz

assumes eq: NA B. A € sets S = B € sets T =

emeasure M {z € space M. Xz € AN Yz e B} = ([Tz. ([1y f (2, y) *

indicator B y OT) * indicator A = 9S5)

shows distributed M (S @ u T) (Az. (X z, Ya)) f

{proof)

lemma (in prob-space) distributed-swap:
assumes sigma-finite-measure S sigma-finite-measure T
assumes Pry: distributed M (S @ m T) (A\z. (X z, Y z)) Pay
shows distributed M (T @ v S) (Mz. (Yo, X z)) (A(z, y). Pry (y, z))

(proof)

lemma (in prob-space) distr-marginall:
assumes sigma-finite-measure S sigma-finite-measure T
assumes Pry: distributed M (S @ m T) (A\z. (X z, Y z)) Pay
defines Pz = A\z. ([*z. Pay (z, 2) OT)
shows distributed M S X Pz

(proof)

lemma (in prob-space) distr-marginal2:
assumes S: sigma-finite-measure S and T: sigma-finite-measure T
assumes Pzy: distributed M (S @ T) (Az. (X 2, Y 2)) Py
shows distributed M T Y (Xy. ([2. Pry (z, y) 99))

(proof)

THEORY “Probability-Measure” 16

lemma (in prob-space) distributed-marginal-eq-joint1:
assumes 71 sigma-finite-measure T
assumes S: sigma-finite-measure S
assumes Pzx: distributed M S X Pz
assumes Pry: distributed M (S @ m T) (\z. (X z, Y z)) Pay
shows AE zin S. Prz = ([*y. Pry (z, y) 0T)

{proof)

lemma (in prob-space) distributed-marginal-eq-joint2:
assumes T sigma-finite-measure T
assumes S: sigma-finite-measure S
assumes Py: distributed M T Y Py
assumes Pzy: distributed M (S @ m T) (A\z. (X z, Y z)) Pay
shows AE yin T. Py y = ([Tz. Pzy (z, y) 95)
(proof)

lemma (in prob-space) distributed-joint-indep':

assumes S: sigma-finite-measure S and T: sigma-finite-measure T

assumes X[measurable]: distributed M S X Pz and Y[measurable]: distributed
MTY Py

assumes indep: distr M S X @ p distr M TY = distr M (S Qum T) (Az. (X
z, Yx))

shows distributed M (S @ nm T) (Az. (X z, Y 2)) (M, y). Prz x Py y)

(proof)

lemma distributed-integrable:
distributed M N X f = g € borel-measurable N = (A\z. © € space N = 0 <
fz) =
integrable N (A\z. fx x g x) +— integrable M (A\z. g (X z))
(proof)

lemma distributed-transform-integrable:

assumes Pz: distributed M N X Pr A\z. © € space N = 0 < Prx

assumes distributed M P Y Py Nz. © € space P — 0 < Py z

assumes Y: Y = (Az. T (X z)) and T: T € measurable N P and f: f €
borel-measurable P

shows integrable P (Ax. Py x % fx) «— integrable N (Axz. Px z * f (T z))

(proof)

lemma distributed-integrable-var:
fixes X :: ‘a = real
shows distributed M lborel X (Az. ennreal (f z)) = (Az. 0 < fz) =
integrable lborel (\z. f z * T) = integrable M X

{proof)

lemma (in prob-space) distributed-variance:
fixes f::real = real
assumes D: distributed M lborel X f and [simp]: Nz. 0 < fz
shows variance X = ([z. 2% = f (z + expectation X) dlborel)

THEORY “Probability-Measure” 17

(proof)

lemma (in prob-space) variance-affine:
fixes f::real = real
assumes [arith]: b # 0
assumes D[intro]: distributed M lborel X f
assumes [simpl: prob-space (density lborel f)
assumes [[simp]: integrable M X
assumes [2[simp)|: integrable M (\z. (X x)?)
shows variance (A\z. a + b x X z) = b% * variance X

(proof)

definition
simple-distributed M X f «—
V. 0 < fzx) A
distributed M (count-space (X‘space M)) X (Az. ennreal (f x)) A
finite (X‘space M)

lemma simple-distributed-nonneg|dest]: simple-distributed M X f = 0 < fz
(proof)

lemma simple-distributed:
simple-distributed M X Pr = distributed M (count-space (X‘space M)) X Pz

{proof)

lemma simple-distributed-finite[dest]: simple-distributed M X P = finite (X ‘space
M)
{proof)

lemma (in prob-space) distributed-simple-function-superset:
assumes X: simple-function M X A\z. x € X ¢ space M = P x = measure M
(X —“{z} N space M)
assumes A: X‘space M C A finite A
defines S = count-space A and P’ = (\xz. if © € X‘space M then P x else 0)
shows distributed M S X P’

{proof)

lemma (in prob-space) simple-distributedl:
assumes X: simple-function M X
Ne. 0 < Pz
Nz. 2 € X “space M = P z = measure M (X —‘{z} N space M)
shows simple-distributed M X P

{proof)

lemma simple-distributed-joint-finite:
assumes X: simple-distributed M (A\z. (X z, Y z)) Px
shows finite (X space M) finite (Y ¢ space M)
(proof)

THEORY “Probability-Measure” 18

lemma simple-distributed-joint2-finite:

assumes X: simple-distributed M (\z. (X z, Y z, Z z)) Pz

shows finite (X ‘ space M) finite (Y ‘ space M) finite (Z ¢ space M)
(proof)

lemma simple-distributed-simple-function:
simple-distributed M X Pr = simple-function M X
(proof)

lemma simple-distributed-measure:
simple-distributed M X P => a € X‘space M = P a = measure M (X —*{a}
N space M)

{proof)

lemma (in prob-space) simple-distributed-joint:
assumes X: simple-distributed M (A\z. (X z, Y z)) Px
defines S = count-space (X‘space M) Q) p count-space (Yspace M)
defines P = (Az. if v € (A\z. (X z, Y z)) ‘space M then Px z else 0)
shows distributed M S (Az. (X z, Y z)) P

(proof)

lemma (in prob-space) simple-distributed-joint2:
assumes X: simple-distributed M (\z. (X z, Y z, Z z)) Pz
defines S = count-space (X‘space M) @y count-space (Yispace M) @
count-space (Z‘space M)
defines P = (Az. if c € (\z. (X z, Yz, Z x)) ‘space M then Pz x else 0)
shows distributed M S (\x. (X z, Yz, Zz)) P
(proof)

lemma (in prob-space) simple-distributed-sum-space:
assumes X: simple-distributed M X f
shows sum f (X‘space M) = 1

(proof)

lemma (in prob-space) distributed-marginal-eq-joint-simple:

assumes Pz: simple-function M X

assumes Py: simple-distributed M Y Py

assumes Pzy: simple-distributed M (Az. (X z, Y z)) Pxy

assumes y: y € Y'space M

shows Py y = (3 z€X‘space M. if (z,y) € (Az. (X z, Y)) ‘ space M then Pxy
(z, y) else 0)
(proof)

lemma distributedl-real:
fixes [:: 'a = real
assumes gen: sets M1 = sigma-sets (space M1) E and Int-stable E
and A: range A C F (Ji::nat. A i) = space M1 \i. emeasure (distr M M1 X)
(44) # o0
and X: X € measurable M M1

THEORY “Probability-Measure” 19

and f: f € borel-measurable M1 AE z in M1. 0 < fzx
and eg: NA. A € E = emeasure M (X —° A N space M) = ([T z. fx x
indicator A x OM1)
shows distributed M M1 X f

(proof)

lemma distributedI-borel-atMost:
fixes f :: real = real
assumes [measurable]: X € borel-measurable M
and [measurable]: f € borel-measurable borel and f[simp|: AE z in lborel. 0 <
fx
and g-eq: Na. ([Tz. fz * indicator {..a} z Olborel) = ennreal (g a)
and M-eq: Na. emeasure M {x€space M. X x < a} = ennreal (g a)
shows distributed M Iborel X f

(proof)

lemma (in prob-space) uniform-distributed-params:
assumes X: distributed M MX X (Az. indicator A x | measure MX A)
shows A € sets MX measure MX A # 0

(proof)

lemma prob-space-uniform-measure:
assumes A: emeasure M A # 0 emeasure M A # oo
shows prob-space (uniform-measure M A)

(proof)

lemma prob-space-uniform-count-measure: finite A = A # {} = prob-space
(uniform-count-measure A)

{proof)

lemma (in prob-space) measure-uniform-measure-eq-cond-prob:

assumes [measurable]: Measurable.pred M P Measurable.pred M Q

shows P(z in uniform-measure M {x€space M. Q z}. P x) = P(xin M. P x|
Q)
(proof)

lemma prob-space-point-measure:

finite S = (N\s. s € S = 0 <ps) = (> s€S. ps) =1 = prob-space
(point-measure S p)

(proof)

lemma (in prob-space) distr-pair-fst: distr (N @ p M) N fst = N
(proof)

lemma (in product-prob-space) distr-reorder:

assumes inj-ont Jt € J — K finite K

shows distr (PiM K M) (Pipy J (Az. M (t z))) (Qw. An€J. w (t n)) = PiM J
(Az. M (tz))

(proof)

THEORY “Distribution-Functions” 20

lemma (in product-prob-space) distr-restrict:

J C K = finite K = (Il i€J. M i) = distr (Il i€K. M i) (Il i€J. M
i) (Mf. restrict f J)

(proof)

lemma (in product-prob-space) emeasure-prod-emb[simpl:
assumes L: J C L finite L and X: X € sets (Pips J M)
shows emeasure (Pipy L M) (prod-emb L M J X) = emeasure (Pipy J M) X

(proof)

lemma emeasure-distr-restrict:

assumes I C K and Q[measurable-cong]: sets @ = sets (PiM K M) and
Almeasurable]: A € sets (PiM I M)

shows emeasure (distr Q (PiM I M) (Aw. restrict w I)) A = emeasure Q
(prod-emb K M I A)

(proof)

lemma (in prob-space) prob-space-completion: prob-space (completion M)
(proof)

lemma distr-PiM-finite-prob-space:

assumes fin: finite I

assumes product-prob-space M

assumes product-prob-space M’

assumes [measurable]: N\i. i € I = f € measurable (M i) (M’)

shows distr (PiM I M) (PiM I M') (compose I f) = PiM I (\i. distr (M 1)
(M"1) f)
(proof)

end

2 Distribution Functions

Shows that the cumulative distribution function (cdf) of a distribution (a
measure on the reals) is nondecreasing and right continuous, which tends to
0 and 1 in either direction.

Conversely, every such function is the cdf of a unique distribution. This
direction defines the measure in the obvious way on half-open intervals, and
then applies the Caratheodory extension theorem.

theory Distribution-Functions
imports Probability-Measure
begin

lemma UN-Ioc-eq-UNIV: (Un. { —real n <.. real n}) = UNIV
{proof)

THEORY “Distribution-Functions”

2.1 Properties of cdf’s

definition

cdf :: real measure = real = real
where

cdf M = Ax. measure M {..x}

lemma cdf-def2: cdf M x = measure M {..z}
(proof)

locale finite-borel-measure = finite-measure M for M :: real measure +
assumes M-is-borel: sets M = sets borel
begin

lemma sets-Mintro]: a € sets borel = a € sets M
(proof)

lemma cdf-diff-eq:
assumes z < y
shows cdf My — cdf M © = measure M {z<..y}

(proof)

lemma cdf-nondecreasing: x < y = cdf M x < cdf M y
(proof)

lemma borel-UNIV: space M = UNIV
(proof)

lemma cdf-nonneg: cdf Mz > 0
(proof)

lemma cdf-bounded: cdf M z < measure M (space M)
(proof)

lemma cdf-lim-infty:
((Mi. edf M (real i)) ——— measure M (space M))
(proof)

lemma cdf-lim-at-top: (cdf M —— measure M (space M)) at-top
(proof)

lemma cdf-lim-neg-infty: (Ai. cdf M (— real i)) —— 0)
(proof)

lemma cdf-lim-at-bot: (cdf M —— 0) at-bot
(proof)

lemma cdf-is-right-cont: continuous (at-right a) (cdf M)
(proof)

21

THEORY “Distribution-Functions”

lemma cdf-at-left: (cdf M —— measure M {..<a}) (at-left a)
(proof)

lemma isCont-cdf: isCont (cdf M) x +— measure M {z} = 0

(proof)

lemma countable-atoms: countable {x. measure M {z} > 0}
{proof)

end

locale real-distribution = prob-space M for M :: real measure +
assumes events-eg-borel [simp, measurable-congl: sets M = sets borel
begin

lemma finite-borel-measure-M: finite-borel-measure M
{proof)

sublocale finite-borel-measure M
(proof)

lemma space-eq-univ [simp]: space M = UNIV
(proof)

lemma cdf-bounded-prob: Nxz. cdf Mz < 1
(proof)

lemma cdf-lim-infty-prob: (Ai. cdf M (real i)) —— 1
(proof)

lemma cdf-lim-at-top-prob: (cdf M —— 1) at-top
(proof)

lemma measurable-finite-borel [simp]:
f € borel-measurable borel =—> f € borel-measurable M

{proof)

end

lemma (in prob-space) real-distribution-distr [intro, simp):
random-variable borel X = real-distribution (distr M borel X)
(proof)

2.2 Uniqueness

lemma (in finite-borel-measure) emeasure-Ioc:
assumes a < b shows emeasure M {a <.. b} = cdf M b — cdf M a

(proof)

22

THEORY “Weak-Convergence” 23

lemma cdf-unique’:
fixes M1 M2
assumes finite-borel-measure M1 and finite-borel-measure M2
assumes cdf M1 = cdf M2
shows M1 = M2

(proof)

lemma cdf-unique:
real-distribution M1 = real-distribution M2 —> cdf M1 = cdf M2 — M1 =
M2

(proof)

lemma
fixes F' :: real = real
assumes nondecF : Nzy. 2 <y=— Faxz < Fy
and right-cont-F : \a. continuous (at-right a) F
and lim-F-at-bot : (F —— 0) at-bot
and lim-F-at-top : (F —— m) at-top
and m: 0 < m
shows interval-measure-UNIV: emeasure (interval-measure F) UNIV = m
and finite-borel-measure-interval-measure: finite-borel-measure (interval-measure
F)
(proof)

lemma real-distribution-interval-measure:
fixes F' :: real = real
assumes nondecF : N zy. x < y= Fz < F y and
right-cont-F : \a. continuous (at-right a) F and
lim-F-at-bot : (F —— 0) at-bot and
lim-F-at-top : (F —— 1) at-top
shows real-distribution (interval-measure F)
(proof)

lemma
fixes F' :: real = real
assumes nondecF : N zy. 2 <y = Fz < Fyand
right-cont-F : Na. continuous (at-right a) F and
lim-F-at-bot : (F —— 0) at-bot
shows emeasure-interval-measure-Iic: emeasure (interval-measure F) {.. z} = F
T
and measure-interval-measure-Tic: measure (interval-measure F) {.. 2} = F z

(proof)

lemma cdf-interval-measure:

ANzy 2 <y= Fz < Fy) = (\a. continuous (at-right a) F) = (F ——
0) at-bot = cdf (interval-measure F) = F

(proof)

end

THEORY “Weak-Convergence” 24

3 Weak Convergence of Functions and Distribu-
tions

Properties of weak convergence of functions and measures, including the
portmanteau theorem.

theory Weak-Convergence
imports Distribution-Functions
begin

4 Weak Convergence of Functions

definition
weak-conv :: (nat = (real = real)) = (real = real) = bool
where
weak-conv F-seq F =V z. isCont F' v — (An. F-seqnz) —— F

5 Weak Convergence of Distributions

definition

weak-conv-m :: (nat = real measure) = real measure = bool
where

weak-conv-m M-seq M = weak-conv (An. cdf (M-seq n)) (cdf M)

6 Skorohod’s theorem

locale right-continuous-mono =
fixes f :: real = real and a b :: real
assumes cont: Az. continuous (at-right x) f
assumes mono: mono f
assumes bot: (f —— a) at-bot
assumes top: (f —— b) at-top

begin

abbreviation [:: real = real where
Tw=Inf{z w<fz}

lemma pseudoinverse: assumes ¢ < ww < bshowsw < fr+— Tw <z

(proof)

lemma pseudoinverse”: Vwe{a<..<b}. Vz.w < fz+— Tw <z
(proof)

lemma mono-I: mono-on {a <..< b} I
{proof)

end

THEORY “Weak-Convergence” 25

locale cdf-distribution = real-distribution
begin

abbreviation C' = cdf M

sublocale right-continuous-mono C 0 1
(proof)

lemma measurable-C[measurable]: C' € borel-measurable borel
(proof)

lemma measurable-CI[measurable]: I € borel-measurable (restrict-space borel {0<..<1})
{proof)

lemma emeasure-distr-1: emeasure (distr (restrict-space lborel {0<..<1::real}) borel
I) UNIV = 1
(proof)

lemma distr-I-eq-M: distr (restrict-space lborel {0<..<1:real}) borel I = M (is
oI = -)
(proof)

end

context
fixes u :: nat = real measure
and M :: real measure
assumes p: An. real-distribution (p n)
assumes M: real-distribution M
assumes [-to-M: weak-conv-m u M
begin

theorem Skorohod:
3 (Q :: real measure) (Y-seq :: nat = real = real) (Y :: real = real).
prob-space Q0 A
(Vn. Y-seq n € measurable Q borel) A
(V. distr Q borel (Y-seqn) = pn) A
Y € measurable Q0 lborel N
distr borel Y = M A
(Vz € space Q. (An. Y-seqn z) —— Y x)

(proof)

The Portmanteau theorem, that is, the equivalence of various definitions of
weak convergence.

theorem weak-conv-imp-bdd-ae-continuous-conv:
fixes
f i real = 'a::{banach, second-countable-topology}

THEORY “Weak-Convergence” 26

assumes
discont-null: M ({z. = isCont f z}) = 0 and
f-bdd: Az. norm (f z) < B and
[measurable]: f € borel-measurable borel
shows
(X n. integral® (u n) f) —— integral® M f
(proof)

theorem weak-conv-imp-integral-bdd-continuous-conuv:
fixes f :: real = 'a::{banach, second-countable-topology}
assumes
Nz. isCont f x and
Nz. norm (fz) < B
shows
(X n. integral” (u n) f) —— integrall M f
(proof)

theorem weak-conv-imp-continuity-set-conv:
fixes f :: real = real
assumes [measurable]: A € sets borel and M (frontier A) = 0
shows (An. measure (u n) A) —— measure M A

(proof)

end

definition
cts-step :: real = real = real = real
where
cts-step a b x = if v < a then 1 else if x > b then 0 else (b — z) / (b — a)

lemma cts-step-uniformly-continuous:
assumes [arith]: a < b
shows uniformly-continuous-on UNIV (cts-step a b)

{proof)

lemma (in real-distribution) integrable-cts-step: a < b = integrable M (cts-step
ab)
{proof)

lemma (in real-distribution) cdf-cts-step:

assumes [arith]: © < y

shows cdf M = < integral’ M (cts-step x y) and integral® M (cts-step z y) <
cdf My
(proof)

context
fixes M-seq :: nat = real measure
and M :: real measure
assumes distr-M-seq [simp]: \n. real-distribution (M-seq n)

THEORY “Giry-Monad” 27

assumes distr-M [simp]: real-distribution M
begin

theorem continuity-set-conv-imp-weak-conv:

fixes f :: real = real

assumes x: NA. A € sets borel = M (frontier A) = 0 = () n. (measure
(M-seq n) A)) —— measure M A

shows weak-conv-m M-seq M

(proof)

theorem integral-cts-step-conv-imp-weak-conuv:

assumes integral-conv: Nz y. * < y = (An. integrall’ (M-seq n) (cts-step z y))
—— integral® M (cts-step z y)

shows weak-conv-m M-seq M

(proof)

theorem integral-bdd-continuous-conv-imp-weak-conv:
assumes
Af. (Az. isCont f z) = (Az. abs (f z) < 1) = (An. integral” (M-seq n)
fureal) ——— integral® M f
shows
weak-conv-m M-seq M
(proof)

end

end

7 The Giry monad

theory Giry-Monad
imports Probability-Measure HOL— Library. Monad-Syntaz
begin

7.1 Sub-probability spaces

locale subprob-space = finite-measure +
assumes emeasure-space-le-1: emeasure M (space M) < 1
assumes subprob-not-empty: space M # {}

lemma subprob-spacel [Pure.introl]:
assumes *: emeasure M (space M) < 1
assumes space M # {}
shows subprob-space M

(proof)

lemma (in subprob-space) emeasure-subprob-space-less-top: emeasure M A # top
(proof)

THEORY “Giry-Monad” 28

lemma prob-space-imp-subprob-space:
prob-space M = subprob-space M
(proof)

lemma subprob-space-imp-sigma-finite: subprob-space M = sigma-finite-measure
M
(proof)

sublocale prob-space C subprob-space
(proof)

lemma subprob-space-sigma [simp]: Q # {} = subprob-space (sigma X)
(proof)

lemma subprob-space-null-measure: space M # {} = subprob-space (null-measure
M)
(proof)

lemma (in subprob-space) subprob-space-distr:

assumes f: f € measurable M M’ and space M’ # {} shows subprob-space (distr
MM’ f)
(proof)

lemma (in subprob-space) subprob-emeasure-le-1: emeasure M X < 1
(proof)

lemma (in subprob-space) subprob-measure-le-1: measure M X < 1
(proof)

lemma (in subprob-space) nn-integral-le-const:
assumes 0 < cAEzin M. fz < ¢
shows ([Tz. fz OM) < ¢

(proof)

lemma emeasure-density-distr-interval:

fixes h :: real = real and ¢ :: real = real and g’ :: real = real

assumes [simp]: a < b

assumes Mf[measurable]: f € borel-measurable borel

assumes Mg[measurable]: g € borel-measurable borel

assumes Mg'[measurable]: g’ € borel-measurable borel

assumes Mh[measurable]: h € borel-measurable borel

assumes prob: subprob-space (density lborel f)

assumes nonnegf: Az. fz > 0

assumes derivg: Az. x € {a..b} = (g has-real-derivative ¢’) (at x)

assumes contg”: continuous-on {a..b} g’

assumes mono: strict-mono-on {a..b} g and inv: Az. h z € {a..b} = g (h)
=z

assumes range: {a..b} C range h

shows emeasure (distr (density lborel f) lborel h) {a..b} =

THEORY “Giry-Monad” 29

emeasure (density lborel (A\z. f (g z) * ¢’)) {a..b}
(proof)

locale pair-subprob-space =
pair-sigma-finite M1 M2 4+ M1: subprob-space M1 + M2: subprob-space M2 for
M1 M2

sublocale pair-subprob-space C P?: subprob-space M1 @ ny M2
(proof)

lemma subprob-space-null-measure-iff:
subprob-space (null-measure M) +— space M # {}

{proof)

lemma subprob-space-restrict-space:
assumes M: subprob-space M
and A: A N space M € sets M A N space M # {}
shows subprob-space (restrict-space M A)

(proof)

definition subprob-algebra :: 'a measure = 'a measure measure where
subprob-algebra K =
(SUP A € sets K. vimage-algebra {M. subprob-space M N sets M = sets K}
(AM. emeasure M A) borel)

lemma space-subprob-algebra: space (subprob-algebra A) = {M. subprob-space M
A sets M = sets A}

{proof)

lemma subprob-algebra-cong: sets M = sets N = subprob-algebra M = sub-
prob-algebra N

(proof)

lemma measurable-emeasure-subprob-algebra|measurable]:
a € sets A = (AM. emeasure M a) € borel-measurable (subprob-algebra A)

{proof)

lemma measurable-measure-subprob-algebra[measurable]:
a € sets A = (AM. measure M a) € borel-measurable (subprob-algebra A)

{proof)

lemma subprob-measurableD:
assumes N: N € measurable M (subprob-algebra S) and x: x € space M
shows space (N z) = space S
and sets (N z) = sets S
and measurable (N z) K = measurable S K
and measurable K (N x) = measurable K S

(proof)

THEORY “Giry-Monad”

(ML)

context
fixes K M N assumes K: K € measurable M (subprob-algebra N)
begin

lemma subprob-space-kernel: a € space M = subprob-space (K a)
(proof)

lemma sets-kernel: a € space M = sets (K a) = sets N
{proof)

lemma measurable-emeasure-kernel[measurable]:
A € sets N = (Aa. emeasure (K a) A) € borel-measurable M

(proof)

end

lemma measurable-subprob-algebra:
(Aa. a € space M = subprob-space (K a)) =
(Aa. a € space M = sets (K a) = sets N) =
(ANA. A € sets N => (Aa. emeasure (K a) A) € borel-measurable M) =
K € measurable M (subprob-algebra N)

{proof)

lemma measurable-submarkouv:
K € measurable M (subprob-algebra M) <—
(Vzespace M. subprob-space (K x) N sets (K x) = sets M) A
(VAesets M. (Az. emeasure (K x) A) € measurable M borel)

(proof)

lemma measurable-subprob-algebra-generated:
assumes eq: sets N = sigma-sets Q G and Int-stable G G C Pow (2
assumes subsp: Na. a € space M = subprob-space (K a)
assumes sets: Na. a € space M = sets (K a) = sets N
assumes \A. A € G = (A\a. emeasure (K a) A) € borel-measurable M
assumes 2: (Aa. emeasure (K a) Q) € borel-measurable M
shows K € measurable M (subprob-algebra N)

(proof)

lemma space-subprob-algebra-empty-iff:
space (subprob-algebra N) = {} +— space N = {}
(proof)

lemma nn-integral-measurable-subprob-algebra|measurable]:
assumes f: f € borel-measurable N

30

shows (AM. integral¥ M f) € borel-measurable (subprob-algebra N) (is - € ?B)

(proof)

THEORY “Giry-Monad” 31

lemma measurable-distr:

assumes [measurable]: f € measurable M N

shows (AM'. distr M’ N f) € measurable (subprob-algebra M) (subprob-algebra
N)
(proof)

lemma emeasure-space-subprob-algebra[measurable]:
(Aa. emeasure a (space a)) € borel-measurable (subprob-algebra N)

(proof)

lemma integrable-measurable-subprob-algebra|measurable):
fixes f :: 'a = 'b::{banach, second-countable-topology}
assumes [measurable]: f € borel-measurable N
shows Measurable.pred (subprob-algebra N) (AM. integrable M f)

(proof)

lemma integral-measurable-subprob-algebra|measurable]:
fixes f :: 'a = 'b::{banach, second-countable-topology}
assumes [[measurable]: f € borel-measurable N
shows (AM. integral® M f) € subprob-algebra N —y; borel

(proof)

lemma measurable-pair-measure:
assumes f: f € measurable M (subprob-algebra N)
assumes g: g € measurable M (subprob-algebra L)
shows (Az. fz @ am g x) € measurable M (subprob-algebra (N @ ar L))

(proof)

lemma restrict-space-measurable:

assumes X: X # {} X € sets K

assumes N: N € measurable M (subprob-algebra K)

shows (A\z. restrict-space (N z) X) € measurable M (subprob-algebra (restrict-space
K X))

(proof)
7.2 Properties of “return”

definition return :: ‘a measure = ‘a = ’'a measure where
return R © = measure-of (space R) (sets R) (AA. indicator A x)

lemma space-return[simpl: space (return M z) = space M
{proof)

lemma sets-return[simp): sets (return M x) = sets M
{proof)

lemma measurable-returni [simp]: measurable (return N z) L = measurable N L
{proof)

THEORY “Giry-Monad” 32

lemma measurable-return2|simp|: measurable L (return N x) = measurable L N
{proof)

lemma return-sets-cong: sets M = sets N = return M = return N
(proof)

lemma return-cong: sets A = sets B = return A © = return B z
(proof)

lemma emeasure-return|simp]:
assumes A € sets M
shows emeasure (return M z) A = indicator A z

(proof)

lemma prob-space-return: © € space M = prob-space (return M x)
(proof)

lemma subprob-space-return: x € space M = subprob-space (return M x)
(proof)

lemma subprob-space-return-ne:
assumes space M # {} shows subprob-space (return M z)
{proof)

lemma measure-return: assumes X: X € sets M shows measure (return M z) X
= indicator X «
{proof)

lemma AFE-return:
assumes [simp]: z € space M and [measurable]: Measurable.pred M P
shows (AE y in return M z. P y) +— Pz

(proof)

lemma nn-integral-return:
assumes x € space M g € borel-measurable M
shows ([a. g a Oreturn M z) = gz

(proof)

lemma integral-return:
fixes g :: - = ’a :: {banach, second-countable-topology}
assumes x € space M g € borel-measurable M
shows ([a. g a dreturn M z) = g«

(proof)

lemma return-measurable[measurable]: return N € measurable N (subprob-algebra
N)
{proof)

THEORY “Giry-Monad” 33

lemma distr-return:
assumes f € measurable M N and z € space M
shows distr (return M z) N f = return N (f z)

{proof)

lemma return-restrict-space:
Q€ sets M = return (restrict-space M Q) z = restrict-space (return M x)

{proof)

lemma measurable-distr2:
assumes f[measurable]: case-prod f € measurable (L @ p M) N
assumes g[measurable]: g € measurable L (subprob-algebra M)
shows (Az. distr (g) N (f z)) € measurable L (subprob-algebra N)

(proof)

lemma nn-integral-measurable-subprob-algebra?2:
assumes f[measurable]: (A(z, y). fz y) € borel-measurable (M @ rr N)
assumes N[measurable]: L € measurable M (subprob-algebra N)
shows (Az. integral™ (L z) (f x)) € borel-measurable M

(proof)

lemma emeasure-measurable-subprob-algebra2:
assumes A[measurable]: (SIGMA z:space M. A z) € sets (M @y N)
assumes L[measurable]: L € measurable M (subprob-algebra N)
shows (Az. emeasure (L z) (A z)) € borel-measurable M

(proof)

lemma measure-measurable-subprob-algebra2:
assumes A[measurable]: (SIGMA z:space M. A z) € sets (M @ m N)
assumes L[measurable]: L € measurable M (subprob-algebra N)
shows (Az. measure (L x) (A z)) € borel-measurable M

(proof)

definition select-sets M = (SOME N. sets M = sets (subprob-algebra N))

lemma select-setsi:

sets M = sets (subprob-algebra N) = sets M = sets (subprob-algebra (select-sets
M))

(proof)

lemma sets-select-sets[simp]:
assumes sets: sets M = sets (subprob-algebra N)
shows sets (select-sets M) = sets N

{proof)

lemma space-select-sets[simp):
sets M = sets (subprob-algebra N) = space (select-sets M) = space N

(proof)

THEORY “Giry-Monad” 34

7.3 Join

definition join :: ‘a measure measure = 'a measure where
join M = measure-of (space (select-sets M)) (sets (select-sets M)) (AB. [+ M'.
emeasure M’ B OM)

lemma
shows space-join[simp]: space (join M) = space (select-sets M)
and sets-join[simp]: sets (join M) = sets (select-sets M)
{proof)

lemma emeasure-join:

assumes M |[simp, measurable-cong|: sets M = sets (subprob-algebra N) and A:
A € sets N

shows emeasure (join M) A = ([T M’ emeasure M' A OM)

(proof)

lemma measurable-join:
join € measurable (subprob-algebra (subprob-algebra N)) (subprob-algebra N)

(proof)

lemma nn-integral-join:
assumes f: f € borel-measurable N
and M [measurable-cong|: sets M = sets (subprob-algebra N)
shows ([Tz. fz djoin M) = ([TM'. [Tz fz oM OM)
(proof)

lemma measurable-joini:
[f € measurable N K; sets M = sets (subprob-algebra N) |
= f € measurable (join M) K

(proof)

lemma

fixes f :: - = real

assumes f-measurable [measurable]: f € borel-measurable N

and f-bounded: N\z. x € space N = |fz| < B

and M [measurable-cong|: sets M = sets (subprob-algebra N)

and fin: finite-measure M

and M-bounded: AE M' in M. emeasure M’ (space M') < ennreal B’

shows integrable-join: integrable (join M) f (is Zintegrable)

and integral-join: integral” (join M) f = [M’. integral® M’ f OM (is Zintegral)
(proof)

lemma join-assoc:

assumes M [measurable-cong|: sets M = sets (subprob-algebra (subprob-algebra
N))

shows join (distr M (subprob-algebra N) join) = join (join M)
(proof)

lemma join-return:

THEORY “Giry-Monad” 35

assumes sets M = sets N and subprob-space M
shows join (return (subprob-algebra N) M) = M
{proof)

lemma join-return’”:
assumes sets N = sets M
shows join (distr M (subprob-algebra N) (return N)) = M

(proof)

lemma join-distr-distr:

fixes f :: 'a = 'band M :: 'a measure measure and N :: 'b measure

assumes sets M = sets (subprob-algebra R) and f € measurable R N

shows join (distr M (subprob-algebra N) (AM. distr M N f)) = distr (join M)
Nf (is 2r = 2])
(proof)

definition bind :: ‘a measure = (‘a = 'b measure) = 'b measure where
bind M f = (if space M = {} then count-space {} else
join (distr M (subprob-algebra (f (SOME z. z € space M))) f))

adhoc-overloading Monad-Syntaz.bind = bind

lemma bind-empty:
space M = {} = bind M f = count-space {}
{proof)

lemma bind-nonempty:

space M # {} = bind M f = join (distr M (subprob-algebra (f (SOME x. z €
space M))) f)

{proof)

lemma sets-bind-empty: sets M = {} = sets (bind M f) = {{}}
{proof)

lemma space-bind-empty: space M = {} = space (bind M) = {}
{proof)

lemma sets-bind[simp, measurable-cong|:
assumes f: \z. z € space M = sets (f x) = sets N and M: space M # {}
shows sets (bind M f) = sets N

{proof)

lemma space-bind|simp):
assumes Az. x € space M = sets (f x) = sets N and space M # {}
shows space (bind M f) = space N

{proof)

lemma bind-cong-All:
assumes Vz € space M. fz =gz

THEORY “Giry-Monad” 36

shows bind M f = bind M ¢
(proof)

lemma bind-cong:
M=N= (Az.z € space M = fx =gz) = bind M f = bind N g
(proof)

lemma bind-nonempty”:
assumes f € measurable M (subprob-algebra N) © € space M
shows bind M f = join (distr M (subprob-algebra N) f)

(proof)

lemma bind-nonempty’”:
assumes | € measurable M (subprob-algebra N) space M # {}
shows bind M f = join (distr M (subprob-algebra N) f)

(proof)

lemma emeasure-bind:
[space M # {}; f € measurable M (subprob-algebra N);X € sets N]
— emeasure (M >= f) X = [Tz. emeasure (f z) X OM

(proof)

lemma nn-integral-bind:

assumes f: f € borel-measurable B

assumes N: N € measurable M (subprob-algebra B)

shows ([tz. fz (M >= N)) = ([Tz. [ty. fy INz OM)
(proof)

lemma AFE-bind:
assumes N[measurable]: N € measurable M (subprob-algebra B)
assumes P[measurable]: Measurable.pred B P
shows (AE zin M >= N. Px) +— (AEzin M. AE y in N z. P y)

(proof)

lemma measurable-bind":
assumes M1: f € measurable M (subprob-algebra N) and
M2: case-prod g € measurable (M @ ar N) (subprob-algebra R)
shows (Az. bind (f z) (g z)) € measurable M (subprob-algebra R)

(proof)

lemma measurable-bind|[measurable (raw)):
assumes M1: f € measurable M (subprob-algebra N) and
M2: (Az. g (fst) (snd z)) € measurable (M @y N) (subprob-algebra R)
shows (Az. bind (f z) (g z)) € measurable M (subprob-algebra R)

{proof)

lemma measurable-bind2:
assumes | € measurable M (subprob-algebra N) and g € measurable N (subprob-algebra
R)

THEORY “Giry-Monad” 37

shows (Az. bind (f z) g) € measurable M (subprob-algebra R)
(proof)

lemma subprob-space-bind:
assumes subprob-space M f € measurable M (subprob-algebra N)
shows subprob-space (M >= f)

(proof)

lemma
fixes f :: - = real
assumes f-measurable [measurable]: f € borel-measurable K
and f-bounded: \z. x € space K = |fz| < B
and N [measurable]: N € measurable M (subprob-algebra K)
and fin: finite-measure M
and M-bounded: AE x in M. emeasure (N z) (space (N z)) < ennreal B’
shows integrable-bind: integrable (bind M N) f (is %integrable)
and integral-bind: integral’ (bind M N) f = [. integral® (N z) f OM (is
Zintegral)
(proof)

lemma (in prob-space) prob-space-bind:
assumes ae: AE x in M. prob-space (N x)
and N[measurable]: N € measurable M (subprob-algebra S)
shows prob-space (M >= N)

(proof)

lemma (in subprob-space) bind-in-space:

A € measurable M (subprob-algebra N) = (M >= A) € space (subprob-algebra
N)

{proof)

lemma (in subprob-space) measure-bind:
assumes f: f € measurable M (subprob-algebra N) and X: X € sets N
shows measure (M >= f) X = [z. measure (f z) X OM

(proof)

lemma emeasure-bind-const:
space M # {} = X € sets N => subprob-space N =
emeasure (M >= (Az. N)) X = emeasure N X x emeasure M (space M)

{proof)

lemma emeasure-bind-const”:
assumes subprob-space M subprob-space N
shows emeasure (M >= (Az. N)) X = emeasure N X * emeasure M (space M)

(proof)

lemma emeasure-bind-const-prob-space:
assumes prob-space M subprob-space N
shows emeasure (M >= (Az. N)) X = emeasure N X

THEORY “Giry-Monad” 38

{proof)

lemma bind-return:
assumes | € measurable M (subprob-algebra N) and = € space M
shows bind (return M z) f = fz

{proof)

lemma bind-return’:
shows bind M (return M) = M

(proof)

lemma distr-bind:
assumes N: N € measurable M (subprob-algebra K) space M # {}
assumes f: f € measurable K R
shows distr (M >= N) R f = (M >= (\x. distr (N z) R f))

(proof)

lemma bind-distr:

assumes f[measurable]: f € measurable M X

assumes N[measurable]: N € measurable X (subprob-algebra K) and space M #
{

shows (distr M X f >= N) = (M >= (Az. N (f z)))
(proof)

lemma bind-count-space-singleton:
assumes subprob-space (f)
shows count-space {z} >=f = fz

(proof)

lemma restrict-space-bind:
assumes N: N € measurable M (subprob-algebra K)
assumes space M # {}
assumes X|[simp]: X € sets K X # {}
shows restrict-space (bind M N) X = bind M (Ax. restrict-space (N z) X)

(proof)

lemma bind-restrict-space:

assumes A: A N space M # {} AN space M € sets M

and f: f € measurable (restrict-space M A) (subprob-algebra N)

shows restrict-space M A >= [= M >= (Az. if € A then f z else null-measure
(f (SOME z. 2 € A N\ x € space M)))

(is ?lhs = ?rhsis - = M >= ?f)

(proof)

lemma bind-const’: [prob-space M; subprob-space N| = M >= (Az. N) = N
(proof)

lemma bind-return-distr:
assumes space M # {} f € measurable M N

THEORY “Giry-Monad” 39

shows bind M (return N o f) = distr M N f
(proof)

lemma bind-return-distr':

space M # {} = f € measurable M N = bind M (A\z. return N (f x)) = distr
MN

(proof)

lemma bind-assoc:

fixes f :: 'a = 'b measure and g :: 'b = 'c measure

assumes MI1: f € measurable M (subprob-algebra N) and M2: g € measurable
N (subprob-algebra R)

shows bind (bind M f) g = bind M (Az. bind (f z) g)
(proof)

lemma double-bind-assoc:

assumes Mg: g € measurable N (subprob-algebra N')

assumes Mf: f € measurable M (subprob-algebra M)

assumes Mh: case-prod h € measurable (M @y M) N

shows do {z + M; y <+ fz; g (haxy)} = do{x+ M;y <« fz; return N (h z
y)} >=g
(proof)

lemma (in prob-space) M-in-subprob[measurable (raw)]: M € space (subprob-algebra
M)
(proof)

lemma (in pair-prob-space) pair-measure-eq-bind:
(M1 @ pm M2) = (M1 >= (Az. M2 >= (Ay. return (M1 @ v M2) (z, y))))
(proof)

lemma (in pair-prob-space) bind-rotate:

assumes C[measurable]: (A\(z, y). Czy) € measurable (M1 @ pr M2) (subprob-algebra
N)

shows (M1 >= (Az. M2 >= (\y. Czy))) = (M2 >= (A\y. M1 >= (\z. Cz
v)
(proof)

lemma bind-return’: sets M = sets N => M >= return N = M
(proof)

lemma (in prob-space) distr-const[simp]:
¢ € space N = distr M N (Az. ¢) = return N ¢
(proof)

lemma return-count-space-eq-density:
return (count-space M) x = density (count-space M) (indicator {z})

(proof)

THEORY “Giry-Monad” 40

lemma null-measure-in-space-subprob-algebra [simp]:
null-measure M € space (subprob-algebra M) <— space M # {}
(proof)

7.4 Giry monad on probability spaces

definition prob-algebra :: ‘a measure = 'a measure measure where
prob-algebra K = restrict-space (subprob-algebra K) {M. prob-space M}

lemma space-prob-algebra: space (prob-algebra M) = {N. sets N = sets M A
prob-space N}
(proof)

lemma measurable-measure-prob-algebra|measurable]:
a € sets A = (AM. Sigma-Algebra.measure M a) € prob-algebra A — p; borel

{proof)

lemma measurable-prob-algebraD:
f € N —p prob-algebra M = f € N —; subprob-algebra M
(proof)

lemma measure-measurable-prob-algebra?2:
Sigma (space M) A € sets (M @ n N) = L € M — s prob-algebra N =
(Az. Sigma-Algebra.measure (L z) (A z)) € borel-measurable M
(proof)

lemma measurable-prob-algebral:
(Az. z € space N => prob-space (f ©)) = f € N —p; subprob-algebra M —
f € N — prob-algebra M

(proof)

lemma measurable-distr-prob-space:
assumes f: f € M —y N
shows (AM'. distr M’ N f) € prob-algebra M — s prob-algebra N

(proof)

lemma measurable-return-prob-space[measurable]: return N € N — s prob-algebra
N

{proof)

lemma measurable-distr-prob-space2|[measurable (raw)]:
assumes f: g € L —pr prob-algebra M (M\(z, y). fzy) € LQm M —py N
shows (Az. distr (g z) N (fz)) € L = prob-algebra N
{proof)

lemma measurable-bind-prob-space:
assumes f: f € M — s prob-algebra N and g: ¢ € N —; prob-algebra R
shows (Az. bind (fz) g) € M —p prob-algebra R

{proof)

THEORY “Giry-Monad” 41

lemma measurable-bind-prob-space2[measurable (raw)]:

assumes f: f € M — s prob-algebra N and g: (M(z, y). gz y) € (M @ pr N)
— 1 prob-algebra R

shows (Az. bind (fz) (g z)) € M —pr prob-algebra R

{proof)

lemma measurable-prob-algebra-generated:
assumes eq: sets N = sigma-sets G and Int-stable G G C Pow 2
assumes subsp: Na. a € space M => prob-space (K a)
assumes sets: A\a. a € space M = sets (K a) = sets N
assumes AA. A € G = (Aa. emeasure (K a) A) € borel-measurable M
shows K € measurable M (prob-algebra N)

(proof)

lemma in-space-prob-algebra:
z € space (prob-algebra M) = emeasure © (space M) = 1
{proof)

lemma prob-space-pair:
assumes prob-space M prob-space N shows prob-space (M @ pr N)
(proof)

lemma measurable-pair-prob[measurable]:

f € M — prob-algebra N = g € M — s prob-algebra L = (Az. fx @ g
z) € M —p prob-algebra (N @ ar L)

(proof)

lemma emeasure-bind-prob-algebra:
assumes A: A € space (prob-algebra N)
assumes B: B € N —; prob-algebra L
assumes X: X € sets L
shows emeasure (bind A B) X = ([*z. emeasure (B z) X 0A)

{proof)

lemma prob-space-bind’:
assumes A: A € space (prob-algebra M) and B: B € M —) prob-algebra N
shows prob-space (A >= B)

{proof)

lemma sets-bind’:
assumes A: A € space (prob-algebra M) and B: B € M —) prob-algebra N
shows sets (A >= B) = sets N

{proof)

lemma bind-cong-AE":
assumes M: M € space (prob-algebra L)
and f: f € L —p prob-algebra N and g: g € L — 5 prob-algebra N

THEORY “Giry-Monad” 42

and ae: AExin M. fr=gz
shows bind M f = bind M ¢

(proof)

lemma density-discrete:
countable A = sets N = Set.Pow A = (N\z. fz > 0) = (A\z. 2 € A =
xz = emeasure N {z}) =
density (count-space A) f = N
(proof)

lemma distr-density-discrete:
fixes f’
assumes countable A
assumes [’ € borel-measurable M
assumes g € measurable M (count-space A)
defines f = \z. [Tt. (if gt = x then 1 else 0) = f' t OM
assumes A\z. = € space M = gz € A
shows density (count-space A) (Az. fz) = distr (density M f') (count-space A) g

(proof)

lemma bind-cong-AFE:
assumes M = N
assumes f: f € measurable N (subprob-algebra B)
assumes ¢g: g € measurable N (subprob-algebra B)
assumes ae: AExin N. fr =gz
shows bind M f = bind N g

(proof)

lemma bind-cong-simp: M = N = (A\z. z€space M =simp=> fz = g z) =
bind M f = bind N g
(proof)

lemma sets-bind-measurable:
assumes f: f € measurable M (subprob-algebra B)
assumes M: space M # {}
shows sets (M >= f) = sets B

(proof)

lemma space-bind-measurable:
assumes f: f € measurable M (subprob-algebra B)
assumes M: space M # {}
shows space (M >= f) = space B
(proof)

lemma bind-distr-return:
feM—oy N= g N =y L= space M # {} =
distr M N f >= (Az. return L (g z)) = distr M L (Ax. g (f x))
(proof)

THEORY “Projective-Family” 43

lemma (in prob-space) AE-eq-constD:
assumes AEzin M.z =y
shows M = return M y y € space M

(proof)

end

8 Projective Family

theory Projective-Family
imports Giry-Monad
begin

lemma vimage-restrict-preserve-mono:
assumes J: J C [
and sets: A C (Ilg ieJ. Si) B C (Ilg ieJ. S i) and ne: (Ilg iel. Si) # {}
and eq: (Az. restrict v J) —< AN (Ilg i€l. S i) C (A\z. restrict z J) — BN (Ilg
iel. S 1)
shows A C B
(proof)

locale projective-family =
fixes I :: 'i set and P :: 'i set = (i = ’a) measure and M :: i = 'a measure
assumes P: AJH. JC H= finite H— H C I — P J = distr (P H) (PiM
J M) (Nf. restrict fJ)
assumes prob-space-P: \J. finite] = J C I = prob-space (P J)
begin

lemma sets-P: finite] — J C I = sets (P J) = sets (PiM J M)
{proof)

lemma space-P: finite J = J C I = space (P J) = space (PiM J M)
{proof)

lemma not-empty-M: i € I = space (M i) # {}
(proof)

lemma not-empty: space (PiM I M) # {}
{proof)

abbreviation
emb L K = prod-emb L M K

lemma emb-preserve-mono:
assumes J C L L C I and sets: X € sets (Piyg J M) Y € sets (Piyg J M)
assumes emb L J X Cemb L JY
shows X C Y

THEORY “Projective-Family” 44

(proof)

lemma emb-injective:

assumes L: J C L L C T and X: X € sets (Pipgy J M) and Y: Y € sets (Pip
J M)

shows emb L J X =embLJY —= X =Y

(proof)

lemma emeasure-P: J C K = finite K = K C I = X € sets (PiM J M)
= PK(embKJX)=PJX

(proof)

inductive-set generator :: (i = 'a) set set where
finite] = J C I = X € sets (Pipg J M) = emb I J X € generator

lemma algebra-generator: algebra (space (PiM I M)) generator
(proof)

interpretation generator: algebra space (PiM I M) generator
(proof)

lemma sets-PiM-generator: sets (PiM I M) = sigma-sets (space (PiM I M)) gen-
erator

(proof)

definition mu-G («uG»>) where
wG A = (THE z. VJCI. finite J — (V X€sets (Pipy JM). A=emblJX —
z = emeasure (P J) X))

definition lim :: (i = 'a) measure where
lim = extend-measure (space (PiM I M)) generator (Az. z) uG

lemma space-lim[simp|: space lim = space (PiM I M)
{proof)

lemma sets-lim[simp, measurable]: sets lim = sets (PiM I M)
(proof)

lemma mu-G-spec:
assumes J: finite J J C I X € sets (Piyg J M)
shows puG (emb I J X) = emeasure (P J) X

(proof)

lemma positive-mu-G: positive generator uG
(proof)

lemma additive-mu-G: additive generator uG
(proof)

THEORY “Projective-Family” 45

lemma emeasure-lim:
assumes JX: finite J J C I X € sets (PiM J M)
assumes cont: AJ X. (A\i. Ji C I) = incseq J = (\i. finite (J 7)) = (\i.
X i€ sets (PIM (Ji) M)) =
decseq (Ai. emb I (Ji) (Xi)) = 0 < (INFi. P (Ji)(X1%) = (Ni. embI

(/i) (X 7)) # {}
shows emeasure lim (emb I J X) =P J X

(proof)
end

sublocale product-prob-space C projective-family I \J. PiM J M M
(proof)

Proof due to Ionescu Tulcea.

locale Ionescu-Tulcea =
fixes P :: nat = (nat = 'a) = 'a measure and M :: nat = 'a measure
assumes P[measurable]: \i. P i € measurable (PiM {0..<i} M) (subprob-algebra
(1 1)
assumes prob-space-P: N\i z. © € space (PiM {0..<i} M) = prob-space (P i

z)

begin

lemma non-empty[simp): space (M i) # {}
(proof)

lemma space-PiM-not-empty[simp|: space (PiM UNIV M) # {}
{proof)

lemma space-P: © € space (PiM {0..<n} M) = space (P n x) = space (M n)
{proof)

lemma sets-P[measurable-cong|: x € space (PiM {0..<n} M) = sets (P n z) =
sets (M n)
{proof)

definition eP :: nat = (nat = 'a) = (nat = 'a) measure where
eP nw = distr (P nw) (PiM {0..<Suc n} M) (fun-upd w n)

lemma measurable-eP[measurable]:
eP n € measurable (PiM {0..< n} M) (subprob-algebra (PiM {0..<Suc n} M))

{proof)

lemma space-eP:
z € space (PiM {0..<n} M) = space (eP n z) = space (PiM {0..<Suc n} M)
{proof)

lemma sets-eP[measurable]:

z € space (PiM {0..<n} M) = sets (eP n z) = sets (PiM {0..<Suc n} M)

THEORY “Projective-Family” 46

{proof)

lemma prob-space-eP: x € space (PiM {0..<n} M) = prob-space (eP n x)
{proof)

lemma nn-integral-eP:
w € space (PiM {0..<n} M) = f € borel-measurable (PiM {0..<Suc n} M)
—
([Tz. fz dePnw)=([Ta f (fun-upd w n z) OP n w)
{proof)

lemma emeasure-eP:

assumes w([simp|: w € space (PiM {0..<n} M) and A[measurable]: A € sets
(PiM {0..<Suc n} M)

shows ePnw A =P nw (Az. fun-upd w n) —° A N space (M n))

(proof)

primrec C :: nat = nat = (nat = ‘a) = (nat = 'a) measure where
Cn 0w = return (PiM {0..<n} M) w
| Cn (Sucm)w=Cnmuw>=eP (n+ m)

lemma measurable-C[measurable]:
C n m € measurable (PiM {0..<n} M) (subprob-algebra (PiM {0..<n + m} M))

{proof)

lemma space-C"

z € space (PiM {0..<n} M) = space (C n m x) = space (PiM {0..<n + m}
M)

{proof)

lemma sets-C[measurable-cong|:
z € space (PiM {0..<n} M) = sets (C'n m z) = sets (PiM {0..<n + m} M)
{proof)

lemma prob-space-C: z € space (PiM {0..<n} M) = prob-space (C n m x)

(proof)

lemma split-C"

assumes w: w € space (PiM {0..<n} M) shows (Cnmw >= C (n+ m) () =
Cn(m+1)w
(proof)

lemma nn-integral-C:
assumes m < m’ and f[measurable]: f € borel-measurable (PiM {0..<n+m}
)
and nonneg: Az. z € space (PiM {0.<n+m} M) = 0 < fz
and z: z € space (PiM {0..<n} M)
shows ([Tz. fz dCnmaz) = ([Ta. [(restrict x {0..<n+m}) IC n m’ z)

THEORY “Projective-Family” 47

{proof)

lemma emeasure-C":

assumes m < m’and A[measurable]: A € sets (PiM {0..<n+m} M) and [simp]:
z € space (PiM {0..<n} M)

shows emeasure (C' n m’ z) (prod-emb {0.<n + m’} M {0..<n+m} A) =
emeasure (C'nm x) A

{proof)

lemma distr-C":

assumes m < m’ and [simp]: z € space (PiM {0..<n} M)

shows C' n m z = distr (C n m’' z) (PiM {0..<n+m} M) (A\z. restrict =
{0..<n+m})
{proof)

definition up-to :: nat set = nat where
up-to J = (LEAST n.Vi>n. i ¢ J)

lemma up-to-less: finite] — i € J = i < up-to J
(proof)

lemma up-to-iff: finite J = up-to J < n «— (Vi€J. i < n)
(proof)

lemma up-to-iff-Ico: finite J = up-to J < n «— J C {0..<n}
(proof)

lemma up-to: finite J = J C {0..< up-to J}
(proof)

lemma up-to-mono: J C H = finite H = up-to J < up-to H
(proof)

definition CI :: nat set = (nat = 'a) measure where
CI J = distr (C 0 (up-to J) (Az. undefined)) (PiM J M) (M\f. restrict f J)

sublocale PF: projective-family UNIV CI
(proof)

lemma emeasure-CI":
finite] = X € sets (PiM J M) = CI JX = C 0 (up-to J) (A-. undefined)
(PF.emb {0..<up-to J} J X)

{proof)

lemma emeasure-CI:
JC{0.<n} = X € sets (PIMJ M) = CIJX = C 0n (A undefined)
(PF.emb {0..<n} J X)

(proof)

THEORY “Infinite-Product-Measure” 48

lemma lim:
assumes J: finite J and X: X € sets (PiM J M)
shows emeasure PF.lim (PF.emb UNIV J X) = emeasure (CI J) X

(proof)

lemma distr-lim: assumes J[simp): finite J shows distr PF.lim (PiM J M) (\z.
restrict x J) = CI J

{proof)

end

lemma (in product-prob-space) emeasure-lim-emb:
assumes *: finite J J C I X € sets (PiM J M)
shows emeasure lim (emb I J X) = emeasure (Pipy J M) X

(proof)

end

9 Infinite Product Measure

theory Infinite- Product-Measure
imports Probability-Measure Projective-Family
begin

lemma (in product-prob-space) distr-PiM-restrict-finite:
assumes finite J J C [
shows distr (PiM I M) (PiM J M) (Az. restrict © J) = PIiM J M

(proof)

lemma (in product-prob-space) emeasure-PiM-emb':

J C I = finite] = X € sets (PiM J M) = emeasure (Pipy I M) (emb I J
X)=PiMJMX

(proof)

lemma (in product-prob-space) emeasure-PiM-emb:
JCI = finite] = (N\i. i€ J = X i€ sets (M1i)) =
emeasure (Pipg I M) (emb I J (Pig J X)) = ([] i€J. emeasure (M i) (X 1))
(proof)

sublocale product-prob-space C P?: prob-space Pipr I M
(proof)

lemma prob-space-PiM:
assumes M: \i. i € I = prob-space (M i) shows prob-space (PiM I M)
(proof)

lemma (in product-prob-space) emeasure-PiM-Collect:
assumes X: J C [finite J N\i. i € J = X i € sets (M i)
shows emeasure (Pipg I M) {x€space (Pipyy I M). Vied. i€ X i} = (]] i€d.

THEORY “Infinite-Product-Measure” 49

emeasure (M) (X 1))
{(proof)

lemma (in product-prob-space) emeasure-PiM-Collect-single:
assumes X: i € [A € sets (M i)
shows emeasure (Pipr I M) {x€space (Pipy I M). xi € A} = emeasure (M i) A

{proof)

lemma (in product-prob-space) measure-PiM-emb:

assumes J C [finite J N\i. i € J = X i € sets (M 1)

shows measure (PiM I M) (emb I J (Pig J X)) = ([[i€J. measure (M i) (X
i)

(proof)

lemma sets-Collect-single’:

i € I = {z€space (M 7). Pz} € sets (M i) = {xz€space (PIM I M). P (z i)}
€ sets (PiM I M)

(proof)

lemma (in finite-product-prob-space) finite-measure- PiM-emb:

(Ni. i € I = A i € sets (M i)) = measure (PiM I M) (Pig I A) = (J]i€l.
measure (M 1) (A 1))

(proof)

lemma (in product-prob-space) PiM-component:
assumes i € |
shows distr (PiM I M) (M i) Mw. w i) = M i

(proof)

lemma (in product-prob-space) PiM-eq:
assumes M": sets M' = sets (PiM I M)
assumes eq: AJ F. finite] —= J C I = (N\j.j€ J = Fj€ sets (Mj)) =
emeasure M’ (prod-emb I M J (Ilg jeJ. F 7)) = ([1j€J. emeasure (M j) (F
7))
shows M’ = (PiM I M)
(proof)

lemma (in product-prob-space) AE-component: i € [= AE xin M i. P x =
AE xin PIMI M. P (z 1)

{proof)

lemma emeasure-PiM-emb:

assumes M: Ai. i € I = prob-space (M i)

assumes J: J C [finite J and A: \i. i € J = A i € sets (M i)

shows emeasure (Pipy I M) (prod-emb I M J (Pig J A)) = ([[i€J. emeasure
(M i) (A 9)
(proof)

lemma distr-pair-PiM-eq-PiM:

THEORY “Infinite-Product-Measure” 50

fixes i’ :: iand I :: "i set and M :: 'i = 'a measure
assumes M: Ai. i € I = prob-space (M i) prob-space (M i’)
shows distr (M i’ @ p (U i€l M Q) (I i€insert ' I. M) (A(z, X). X (3’
= 1)) =
(I1ps i€insert i' I. M i) (is 2L = -)
(proof)

lemma distr-PiM-reindex:

assumes M: \i. i € K = prob-space (M 1)

assumes f: inj-on fIfel - K

shows distr (Pipy K M) (ILyy i€l. M (7)) (Aw. An€l. w (fn)) = (I i€l. M
(f 1))

(is distr 7K 21 2t = ¢I)
(proof)

lemma distr-PiM-component:
assumes M: Ai. i € I = prob-space (M i)
assumes 7 € [
shows distr (Pipg I M) (M i) Qw. w i) = Mi

(proof)

lemma AE-PiM-component:

(A\i. i € I = prob-space (M i)) = i€l = AEzin Mi. Pz = AF zin
PiMIM. P (z1)

(proof)

lemma decseq-emb-PiE:
incseq J = decseq (Ai. prod-emb I M (J i) (Ilg jeJ i. X j))
{proof)

9.1 Sequence space

definition comb-seq :: nat = (nat = 'a) = (nat = 'a) = (nat = ’a) where
comb-seq i w w'j = (if j < i then w j else w’ (j — 1))

lemma split-comb-seq: P (comb-seq i w w'j) «— (j < i — P (wf) AN (Vk. j=
i+ k— P (w'k)
{proof)

lemma split-comb-seq-asm: P (comb-seq i w w' j) +— = ((j < i A= P (wj)V
Fk.j=i+ kA= P (Wk))
(proof)

lemma measurable-comb-seq:

(Mw, w’). comb-seq i w w’) € measurable (Up; (€ UNIV. M) @ nr (Upr i€ UNIV.
M)) (IIp i€ UNIV. M)
(proof)

lemma measurable-comb-seq’[measurable (raw)]:

THEORY “Infinite-Product-Measure” 51

assumes [: f € measurable N (IIp; i€ UNIV. M) and g: g € measurable N (Ips
i€ UNIV. M)
shows (Az. comb-seq i (f) (g x)) € measurable N (IIr i€ UNIV. M)

{proof)

lemma comb-seq-0: comb-seq 0 w w’' = w’
(proof)

lemma comb-seq-Suc: comb-seq (Suc n) w w’ = comb-seq n w (case-nat (w n) w’)
{proof)

lemma comb-seq-Suc-0[simp]: comb-seq (Suc 0) w = case-nat (w 0)
{proof)

lemma comb-seq-less: 1 < n = comb-seqn w w' i = w i
(proof)

lemma comb-seq-add: comb-seqn w w’ (i + n) = w' i
{proof)

lemma case-nat-comb-seq: case-nat s’ (comb-seq n w w’) (i + n) = case-nat
(case-nat 8" w n) w' i
{proof)

lemma case-nat-comb-seq’:
case-nat s (comb-seq i w w') = comb-seq (Suc i) (case-nat s w) w

{proof)

/

locale sequence-space = product-prob-space Ai. M UNIV :: nat set for M
begin

abbreviation S = II,; 1€ UNIV ::nat set. M

lemma infprod-in-sets|intro):
fixes E :: nat = 'a set assumes E: \i. E i € sets M
shows Pi UNIV E € sets S

(proof)

lemma measure-PiM-countable:
fixes E :: nat = 'a set assumes E: \i. E i € sets M
shows (An. [[i<n. measure M (E i)) —— measure S (Pi UNIV E)

(proof)

lemma nat-eq-diff-eq:
fixes a b ¢ :: nat
shows c<b—a=b—c+—a+c=0

(proof)

lemma PiM-comb-seq:

THEORY “Independent-Family” 52

distr (S @ m S) S (Mw, w’). comb-seq i ww’) =8 (is D = -)
(proof)

lemma PiM-iter:
distr (M @ ar S) S (A(s, w). case-nat s w) = S (is ¢D = -)
(proof)

end

lemma PiM-return:
assumes finite 1
assumes [measurable]: N\i. i € I = {a i} € sets (M i)
shows PiM I (Ai. return (M @) (a ©)) = return (PiM I M) (restrict a I)

(proof)

lemma distr-PiM-finite-prob-space’:

assumes fin: finite I

assumes A\i. i € I = prob-space (M 1)

assumes Ai. i € I = prob-space (M’ i)

assumes [measurable]: N\i. i € I = f € measurable (M i) (M’)

shows distr (PiM I M) (PiM I M') (compose I f) = PiM I (\i. distr (M i)
(M) f)
{proof)

end

10 Independent families of events, event sets, and
random variables

theory Independent-Family
imports Infinite- Product-Measure
begin

definition (in prob-space)
indep-sets F' I «— (Vi€l. F i C events) A
(VJICIL. J # {} — finite J —s (YA€Pi J F. prob (jeJ. A j) = ([]jeJ.
prob (A j))))

definition (in prob-space)
indep-set A B <— indep-sets (case-bool A B) UNIV

definition (in prob-space)
indep-events-def-alt: indep-events A I <— indep-sets (Ai. {A i}) I

lemma (in prob-space) indep-events-def:
indep-events A I +— (AD C events) A
(VJCI. J # {} — finite J — prob (N jeJ. A j) = (J[j€J. prob (4 j)))
(proof)

THEORY “Independent-Family” 53

lemma (in prob-space) indep-eventsl:

(Ni.i el = Fié€sets M) = (\J. J C I = finite] = J # {} = prob
(Nied. Fi)=([[i€J. prob (F i))) = indep-events F I

(proof)

definition (in prob-space)
indep-event A B <— indep-events (case-bool A B) UNIV

lemma (in prob-space) indep-sets-cong:
I=J= (A\i.-i €] = Fi= Gi) = indep-sets F' I +— indep-sets G J
(proof)

lemma (in prob-space) indep-events-finite-indez-events:
indep-events F I +— (Y JCI. J # {} — finite J — indep-events F J)
(proof)

lemma (in prob-space) indep-sets-finite-indezx-sets:
indep-sets F' I «+— (VJCI. J # {} — finite J — indep-sets F J)
(proof)

lemma (in prob-space) indep-sets-mono-indexz:
J C I = indep-sets F' I = indep-sets F' J
(proof)

lemma (in prob-space) indep-sets-mono-sets:
assumes indep: indep-sets F' I
assumes mono: N\i. i€l = GiC F i
shows indep-sets G I

(proof)

lemma (in prob-space) indep-sets-mono:
assumes indep: indep-sets F' I
assumes mono: J C I N\i. ieJ = GiC Fi
shows indep-sets G J
(proof)

lemma (in prob-space) indep-setsl:
assumes Ai. i € [= F i C events
and NAJ. J#{} = J C I = finite] = (VjeJ. Aj e Fj) = prob
(Njet. A j) = (I1j€. prob (4)
shows indep-sets F I
(proof)

lemma (in prob-space) indep-setsD:
assumes indep-sets F I and J C IJ # {} finite JVjeJ. Aje€ Fj
shows prob (jeJ. A j) = ([[j€J. prob (A 7))
(proof)

THEORY “Independent-Family” 54

lemma (in prob-space) indep-setl:
assumes ev: A C events B C events
and indep: Nab. a € A= b € B = prob (a N b) = prob a * prob b
shows indep-set A B

(proof)

lemma (in prob-space) indep-setD:
assumes indep: indep-set A B and ev: a € A b€ B
shows prob (a N b) = prob a * prob b

(proof)

lemma (in prob-space)
assumes indep: indep-set A B
shows indep-setD-evl: A C events
and indep-setD-ev2: B C events

(proof)

lemma (in prob-space) indep-sets-Dynkin:
assumes indep: indep-sets F' I
shows indep-sets (\i. Dynkin (space M) (F i)) I
(is indep-sets ?F I)
(proof)

lemma (in prob-space) indep-sets-sigmas:
assumes indep: indep-sets F' I
assumes stable: A\i. i € I = Int-stable (F i)
shows indep-sets (N\i. sigma-sets (space M) (F 7)) I
(proof)

lemma (in prob-space) indep-sets-sigma-sets-iff:
assumes Ai. i € [= Int-stable (F i)
shows indep-sets (\i. sigma-sets (space M) (F 1)) I <— indep-sets F I

(proof)

definition (in prob-space)
indep-vars-def2: indep-vars M' X I <—
(Viel. random-variable (M’) (X 7)) A
indep-sets (Ni. { X i —“ AN space M | A. A € sets (M'9)}) I

definition (in prob-space)
indep-var Ma A Mb B <— indep-vars (case-bool Ma Mb) (case-bool A B) UNIV

lemma (in prob-space) indep-vars-def:
indep-vars M’ X I <—
(Viel. random-variable (M’ i) (X 7)) A
indep-sets (A\i. sigma-sets (space M) { X i —° A N space M | A. A € sets (M’
Dp 1

(proof)

THEORY “Independent-Family” 55

lemma (in prob-space) indep-var-eq:
indep-var S X T'Y +—
(random-variable S X A random-variable T Y) A
indep-set
(sigma-sets (space M) { X —“ A N space M | A. A € sets S})
(sigma-sets (space M) { Y —“ AN space M | A. A € sets T})

{proof)

lemma (in prob-space) indep-sets2-eq:
indep-set A B +— A C events N B C events A (Va€A. YbEB. prob (a N b) =
prob a * prob b)

{proof)

lemma (in prob-space) indep-set-sigma-sets:

assumes indep-set A B

assumes A: Int-stable A and B: Int-stable B

shows indep-set (sigma-sets (space M) A) (sigma-sets (space M) B)
(proof)

lemma (in prob-space) indep-eventsI-indep-vars:
assumes indep: indep-vars N X I
assumes P: A\i. i € I = {z€space (N i). P iz} € sets (N i)
shows indep-events (A\i. {x€space M. P i (X ix)}) I

(proof)

lemma (in prob-space) indep-sets-collect-sigma:
fixes I :: 'j = i set and J :: 'j set and F :: i = 'a set set
assumes indep: indep-sets E (|JjeJ. I j)
assumes Int-stable: N\i j. j € J = i € I j = Int-stable (E i)
assumes disjoint: disjoint-family-on I J
shows indep-sets (N\j. sigma-sets (space M) ((Ji€lj. Ei)) J
(proof)

lemma (in prob-space) indep-vars-restrict:
assumes ind: indep-vars M’ X I and K: \j. j € L = K j C I and J:
disjoint-family-on K L
shows indep-vars (Aj. PiM (K j) M) (A\j w. restrict (Ai. X i w) (K 7)) L
(proof)

lemma (in prob-space) indep-var-restrict:

assumes ind: indep-vars M’ X I and AB: ANB={} ACIBCI

shows indep-var (PiM A M') (Aw. restrict (Mi. X ¢ w) A) (PiM B M) (Mw.
restrict (Ni. X i w) B)
(proof)

lemma (in prob-space) indep-vars-subset:
assumes indep-vars M’ X1 J C I
shows indep-vars M’ X J

{proof)

THEORY “Independent-Family” 56

lemma (in prob-space) indep-vars-cong:

I=J= Ni.ie]l=Xi=Yi) = (Ni.ie]l = M i=Ni =
indep-vars M’ X I <— indep-vars N' Y J

(proof)

definition (in prob-space) tail-events where
tail-events A = ((\n. sigma-sets (space M) (J (4 “{n..})))

lemma (in prob-space) tail-events-sets:
assumes A: Ai:nat. A i C events
shows tail-events A C events

(proof)

lemma (in prob-space) sigma-algebra-tail-events:
assumes Ai:nat. sigma-algebra (space M) (A i)
shows sigma-algebra (space M) (tail-events A)
(proof)

lemma (in prob-space) kolmogorov-0-1-law:
fixes A :: nat = 'a set set
assumes Ai:nat. sigma-algebra (space M) (A i)
assumes indep: indep-sets A UNIV
and X: X € tail-events A
shows prob X = 0 V prob X = 1

(proof)

lemma (in prob-space) borel-0-1-law:

fixes F :: nat = 'a set

assumes F2: indep-events F UNIV

shows prob ((n. Ume{n..}. Fm) =0V prob (n. Jme{n..}. Fm) =1
(proof)

lemma (in prob-space) borel-0-1-law-AE:
fixes P :: nat = 'a = bool
assumes indep-events (Am. {x€space M. P m z}) UNIV (is indep-events ?P -)
shows (AFE z in M. infinite {m. P m x}) V (AE z in M. finite {m. P m z})

(proof)

lemma (in prob-space) indep-sets-finite:
assumes [I: I # {} finite I
and F: \i. i €] = F i C events \i. i € I = space M € F i
shows indep-sets F I «— (Y A€Pi I F. prob (Njel. A j) = ([[j€l. prob (A
)
(proof)

lemma (in prob-space) indep-vars-finite:
fixes I :: 7 set
assumes [I: I # {} finite I

THEORY “Independent-Family” 57

and M Ni. i € I = sets (M' i) = sigma-sets (space (M' 7)) (E i)

and rv: Ai. ¢ € I = random-variable (M’ i) (X i)

and Int-stable: \i. i € I = Int-stable (E 1)

and space: N\i. i € I = space (M’ i) € E i and closed: N\i. i €] = F i C
Pow (space (M’ 7))

shows indep-vars M’ X I +—

(VAe(II iel. E). prob (Njel. X j —° A j N space M) = ([[j€l. prob (X j
—“A j N space M)))
(proof)

lemma (in prob-space) indep-vars-compose:
assumes indep-vars M’ X I
assumes rv: N\i. i € I = Y i € measurable (M’ i) (N i)
shows indep-vars N (Mi. Yio X i) I

(proof)

lemma (in prob-space) indep-vars-compose2:
assumes indep-vars M' X I
assumes rv: N\i. i € I = Y i € measurable (M’ i) (N i)
shows indep-vars N (Miz. Yi(Xiz)) I

(proof)

lemma (in prob-space) indep-var-compose:

assumes indep-var M1 X1 M2 X2 Y1 € measurable M1 N1 Y2 € measurable
M2 N2

shows indep-var N1 (Y1 o X1) N2 (Y2 o X2)

(proof)

lemma (in prob-space) indep-vars-Min:
fixes X :: i = 'a = real
assumes I: finite [i ¢ I and indep: indep-vars (A-. borel) X (insert i I)
shows indep-var borel (X i) borel (Aw. Min ((Ai. X { w)I))

(proof)

lemma (in prob-space) indep-vars-sum:
fixes X :: i = 'a = real
assumes I: finite [i ¢ I and indep: indep-vars (A-. borel) X (insert i I)
shows indep-var borel (X) borel (Aw. Y i€l. X i w)

(proof)

lemma (in prob-space) indep-vars-prod:
fixes X :: i = 'a = real
assumes I: finite I ¢ ¢ I and indep: indep-vars (\-. borel) X (insert i I)
shows indep-var borel (X i) borel (Aw. [[i€l. X i w)

(proof)

lemma (in prob-space) indep-varsD-finite:
assumes X: indep-vars M' X I
assumes I: I # {} finite I N\i. i € I = A i € sets (M' 1)

THEORY “Independent-Family” 58

shows prob ((i€l. X i —“A i N space M) = ([[i€l. prob (X i —¢ A i N space
M))
(proof)

lemma (in prob-space) indep-varsD:

assumes X: indep-vars M' X I

assumes [: J # {} finite JJ C I Ni.i € J = A i€ sets (M’)

shows prob (i€J. X i —“A i N space M) = ([[i€J. prob (X i —° A i N space
M))
(proof)

lemma (in prob-space) indep-vars-iff-distr-eq-PiM:
fixes [:: “isetand X :: i = 'a = 'b
assumes [# {}
assumes rv: \i. random-variable (M’ i) (X i)
shows indep-vars M’ X I +—
distr M (I1py i€l. M’ i) (Az. Niel. X i x) = (I i€l. distr M (M’ ©) (X ©))
(proof)

lemma (in prob-space) indep-vars-iff-distr-eq-PiM "
fixes [:: ‘i setand X :: i = ‘a = 'b
assumes [# {}
assumes rv: A\i. ¢ € I = random-variable (M’ i) (X 1)
shows indep-vars M’ X I +—
distr M (I1p i€l. M’ 3) (Az. Niel. X i z) = (U i€l. distr M (M’ 9)
(X)

(proof)

lemma (in prob-space) indep-varD:
assumes indep: indep-var Ma A Mb B
assumes sets: Xa € sets Ma Xb € sets Mb
shows prob ((Az. (A z, Bx)) —‘ (Xa x Xb) N space M) =
prob (A —* Xa N space M) * prob (B —* Xb N space M)
(proof)

lemma (in prob-space) prob-indep-random-variable:

assumes ind[simp|: indep-var N X N Y

assumes [simp|: A € sets N B € sets N

shows P(zin M. Xe € ANYzeB)=PleainM. Xz e A)«PlzinM. Yz
€ B)
(proof)

lemma (in prob-space)
assumes indep-var S X T'Y
shows indep-var-rvl: random-variable S X
and indep-var-rv2: random-variable T 'Y

{(proof)

lemma (in prob-space) indep-var-distribution-eq:

THEORY “Convolution” 59

indep-var S X T 'Y <— random-variable S X A random-variable T Y A
distr M S X @ distr M TY = distr M (S Qum T) (Az. (X z, Y x)) (is -
— - N - A ?S@N[T = QJ)
(proof)

lemma (in prob-space) distributed-joint-indep:
assumes S: sigma-finite-measure S and T: sigma-finite-measure T
assumes X: distributed M S X Pz and Y: distributed M T'Y Py
assumes indep: indep-var S X T Y
shows distributed M (S @ n T) (Az. (X z, Y z)) (M, y). Prz x Pyy)

(proof)

lemma (in prob-space) indep-vars-nn-integral:
assumes [: finite I indep-vars (A-. borel) X I Niw. i€] = 0 < Xiw
shows ([tw. ([[i€l. X i w) OM) = ([Ti€l. [Tw. X iw OM)

(proof)

lemma (in prob-space)
fixes X :: 'i = ’‘a = 'b:{real-normed-field, banach, second-countable-topology}
assumes I: finite I indep-vars (A-. borel) X I N\i. i € I = integrable M (X i)
shows indep-vars-lebesgue-integral: ([w. ([[i€l. X i w) OM) = ([[i€l. [w. X
iw OM) (is ?eq)
and indep-vars-integrable: integrable M (Mw. ([]i€l. X i w)) (is ?int)
(proof)

lemma (in prob-space)
fixes X1 X2 :: 'a = 'b::{real-normed-field, banach, second-countable-topology}
assumes indep-var borel X1 borel X2 integrable M X1 integrable M X2
shows indep-var-lebesque-integral: ([w. X1 w * X2 w OM) = ([w. X1 w OM)
* ([w. X2 w OM) (is ?eq)
and indep-var-integrable: integrable M (Aw. X1 w x X2 w) (is %int)

(proof)

end

11 Convolution Measure

theory Convolution
imports Independent-Family
begin

lemma (in finite-measure) sigma-finite-measure: sigma-finite-measure M

{proof)
definition convolution :: (‘a :: ordered-euclidean-space) measure = 'a measure =
‘a measure (infix x> 50) where

convolution M N = distr (M @Q s N) borel (A\(z, y). © + y)

lemma

THEORY “Convolution” 60

shows space-convolution[simp]: space (convolution M N) = space borel
and sets-convolution[simp]: sets (convolution M N) = sets borel
and measurable-convolutionl [simp|: measurable A (convolution M N) = mea-
surable A borel
and measurable-convolution2[simp|: measurable (convolution M N) B = mea-
surable borel B

{proof)

lemma nn-integral-convolution:
assumes finite-measure M finite-measure N
assumes [measurable-cong|: sets N = sets borel sets M = sets borel
assumes [measurable]: f € borel-measurable borel

shows ([Tz. fz dconvolution M N) = ([Yz. [Ty. f (z + y) ON OM)
(proof)

lemma convolution-emeasure:
assumes A € sets borel finite-measure M finite-measure N
assumes [simp]: sets N = sets borel sets M = sets borel
assumes [simp|: space M = space N space N = space borel
shows emeasure (M x N) A = [Tx. (emeasure N {a. a + z € A}) OM

(proof)

lemma convolution-emeasure”:
assumes [simp]:A € sets borel
assumes [simp|: finite-measure M finite-measure N
assumes [simp|: sets N = sets borel sets M = sets borel
shows emeasure (M x N) A = [Tz, [Ty. (indicator A (z + y)) ON OM

{proof)

lemma convolution-finite:
assumes [simp]: finite-measure M finite-measure N
assumes [measurable-cong|: sets N = sets borel sets M = sets borel
shows finite-measure (M * N)

{proof)

lemma convolution-emeasure-3:
assumes [simp, measurable]: A € sets borel
assumes [simp]: finite-measure M finite-measure N finite-measure L
assumes [simp]: sets N = sets borel sets M = sets borel sets L = sets borel
shows emeasure (L * (M « N)) A= [Tz. [Ty. [Tz indicator A (z + y + 2)
ON OM OL
(proof)

lemma convolution-emeasure-3":
assumes [simp, measurable]:A € sets borel
assumes [simp|: finite-measure M finite-measure N finite-measure L
assumes [measurable-cong, simp|: sets N = sets borel sets M = sets borel sets L

= sets borel
shows emeasure (L x M) » N) A= [Tz. [Ty. [Tz indicator A (z + y + 2)

THEORY “Convolution” 61

ON OM OL
{proof)

lemma convolution-commutative:
assumes [simp|: finite-measure M finite-measure N
assumes [measurable-cong, simp|: sets N = sets borel sets M = sets borel
shows (M x N) = (N x M)

(proof)

lemma convolution-associative:
assumes [simp|: finite-measure M finite-measure N finite-measure L
assumes [simpl: sets N = sets borel sets M = sets borel sets L = sets borel
shows (L x (M x N)) = ((L* M) x N)
(proof)

lemma (in prob-space) sum-indep-random-variable:

assumes ind: indep-var borel X borel Y

assumes [simp, measurable]: random-variable borel X

assumes [simp, measurable]: random-variable borel Y

shows distr M borel (Ax. X © + Y z) = convolution (distr M borel X) (distr M
borel V)

{proof)

lemma (in prob-space) sum-indep-random-variable-lborel:

assumes ind: indep-var borel X borel Y

assumes [simp, measurable]: random-variable lborel X

assumes [simp, measurable]:random-variable lborel Y

shows distr M lborel (Az. X © + Y z) = convolution (distr M lborel X) (distr
M lborel Y)

{proof)

lemma convolution-density:
fixes f g :: real = ennreal
assumes [measurable]: f € borel-measurable borel g € borel-measurable borel
assumes [simp)|:finite-measure (density lborel f) finite-measure (density lborel g)
shows density lborel f x density lborel g = density lborel (Mz. [Ty. f (z — y) *
g y Olborel)
(is 7l = ?r)
(proof)

lemma (in prob-space) distributed-finite-measure-density:
distributed M N X f = finite-measure (density N f)
(proof)

lemma (in prob-space) distributed-convolution:
fixes f :: real = -
fixes g :: real = -
assumes indep: indep-var borel X borel Y

THEORY “Information” 62

assumes X: distributed M lborel X f
assumes Y: distributed M lborel Y g
shows distributed M lborel (Az. X z + Y z) (A\z. [Ty. f (z — y) * g y Olborel)

{proof)

lemma prob-space-convolution-density:
fixes f:: real = -
fixes g:: real = -
assumes [measurable]: f€ borel-measurable borel
assumes [measurable]: g€ borel-measurable borel
assumes gt-0[simp]: N\z. 0 < fz Nz. 0 < g =
assumes prob-space (density lborel f) (is prob-space ?F)
assumes prob-space (density lborel g) (is prob-space ?G)
shows prob-space (density lborel (Az. [Ty. f (z — y) x g y Olborel)) (is prob-space
?D)
(proof)

end

12 Information theory

theory Information
imports
Independent-Family
begin
12.1 Information theory

locale information-space = prob-space +
fixes b :: real assumes b-gt-1: 1 < b

Introduce some simplification rules for logarithm of base b.

lemmas log-simps = log-mult log-inverse log-divide

12.2 Kullback—Leibler divergence

The Kullback—Leibler divergence is also known as relative entropy or Kullback—Leibler
distance.

definition
entropy-density b M N = log b o ennZ2real o RN-deriv M N

definition
KL-divergence b M N = integral® N (entropy-density b M N)

lemma measurable-entropy-density[measurable]: entropy-density b M N € borel-measurable
M

{proof)

THEORY “Information” 63

lemma (in sigma-finite-measure) KL-density:
fixes [:: 'a = real
assumes I < b
assumes f[measurable]: f € borel-measurable M and nn: AE zin M. 0 < fz
shows KL-divergence b M (density M f) = ([=. fz % log b (f z) OM)
(proof)

lemma (in sigma-finite-measure) KL-density-density:

fixes fg :: 'a = real

assumes 1 < b

assumes f: f € borel-measurable M AE zin M. 0 < fzx

assumes ¢: g € borel-measurable M AE zin M. 0 < g x

assumes ac: AEzin M. fz =0 — gz =20

shows KL-divergence b (density M f) (density M g) = ([z. gz * logb (gz / f
z) OM)
(proof)

lemma (in information-space) KL-gt-0:
fixes D :: 'a = real
assumes prob-space (density M D)
assumes D: D € borel-measurable M AE x in M. 0 < Dz
assumes int: integrable M (Az. D x % log b (D z))
assumes A: density M D #+# M
shows 0 < KL-divergence b M (density M D)

(proof)

lemma (in sigma-finite-measure) KL-same-eq-0: KL-divergence b M M = 0

(proof)

lemma (in information-space) KL-eq-0-iff-eq:
fixes D :: 'a = real
assumes prob-space (density M D)
assumes D: D € borel-measurable M AE zin M. 0 < D x
assumes int: integrable M (Az. D x * log b (D z))
shows KL-divergence b M (density M D) = 0 <— density M D = M

{proof)

lemma (in information-space) KL-eq-0-iff-eq-ac:
fixes D :: 'a = real
assumes prob-space N
assumes ac: absolutely-continuous M N sets N = sets M
assumes int: integrable N (entropy-density b M N)
shows KL-divergence b M N = 0 <— N =M

(proof)

lemma (in information-space) KL-nonneg:
assumes prob-space (density M D)
assumes D: D € borel-measurable M AE zin M. 0 < Dz
assumes int: integrable M (Ax. D x x log b (D z))

THEORY “Information” 64

shows 0 < KL-divergence b M (density M D)
{proof)

lemma (in sigma-finite-measure) KL-density-density-nonneg:

fixes fg :: 'a = real

assumes 1 < b

assumes f: f € borel-measurable M AE x in M. 0 < f x prob-space (density M
)

assumes ¢: g € borel-measurable M AE x in M. 0 < g x prob-space (density M
9)

assumes ac: AExin M. fr =0 — gz =20

assumes int: integrable M (Az. g x * log b (g z / [x))

shows 0 < KL-divergence b (density M f) (density M g)

(proof)

12.3 Finite Entropy

definition (in information-space) finite-entropy :: 'b measure = (‘a = 'b) = ('b
= real) = bool
where
finite-entropy S X f +—
distributed M S X f A
integrable S (Ax. fz * log b (fz)) A
(Vazespace S. 0 < fx)

lemma (in information-space) finite-entropy-simple-function:

assumes X: simple-function M X

shows finite-entropy (count-space (X‘space M)) X (Aa. measure M {z € space
M. Xz=a})

(proof)

lemma ac-fst:
assumes sigma-finite-measure T
shows absolutely-continuous S (distr (S Q@ T) S fst)

(proof)

lemma ac-snd:
assumes sigma-finite-measure T
shows absolutely-continuous T (distr (S @ ap T) T snd)

(proof)

lemma (in information-space) finite-entropy-integrable:
finite-entropy S X Px = integrable S (Az. Pz xz * log b (Pz z))
(proof)

lemma (in information-space) finite-entropy-distributed:
finite-entropy S X Px = distributed M S X Px

{proof)

THEORY “Information” 65

lemma (in information-space) finite-entropy-nn:
finite-entropy S X Pr = x € space S = 0 < Prz
(proof)

lemma (in information-space) finite-entropy-measurable:
finite-entropy S X Pr = Pz € S —j; borel

{proof)

lemma (in information-space) subdensity-finite-entropy:
fixes g :: 'b = real and [:: 'c = real
assumes 1: T € measurable P Q
assumes f: finite-entropy P X f
assumes g¢: finite-entropy Q Y g
assumes Y: Y =T o X
shows AEzinP.g(Tx)=0— fz=20
(proof)

lemma (in information-space) finite-entropy-integrable-transform:
finite-entropy S X Pr = distributed M T Y Py = (A\z. z € space T = 0 <
Py z) =
X = (Az. f (Yz)) = f € measurable T S = integrable T (Az. Py xz % log b
(Pz (fz)))
(proof)

12.4 Mutual Information

definition (in prob-space)
mutual-information b S T X Y =
KL-divergence b (distr M S X @ ar distr M T'Y) (distr M (S @ m T) (Az.
(X z, Yx))

lemma (in information-space) mutual-information-indep-vars:

fixes STXY

defines P = distr M S X Q ar distr M T'Y

defines Q = distr M (S Q@ m T) (Az. (X z, YV z))

shows indep-var S X T Y +—

(random-variable S X A random-variable T 'Y A

absolutely-continuous P Q A integrable Q) (entropy-density b P Q) A
mutual-information b S T X Y = 0)

(proof)

abbreviation (in information-space)

mutual-information-Pow (<Z'(-; -')») where

Z(X ; Y) = mutual-information b (count-space (X ‘space M)) (count-space (Y space
M) XY

lemma (in information-space)
fixes Pry :: 'b X ¢ = real and Pz :: 'b = real and Py :: 'c = real
assumes S: sigma-finite-measure S and T: sigma-finite-measure T

THEORY “Information” 66

assumes Fz: finite-entropy S X Pr and Fy: finite-entropy T Y Py
assumes Fzy: finite-entropy (S Qv T) (Az. (X z, Y z)) Py
defines f = Az. Pzy x x log b (Pzy x / (Pz (fst) * Py (snd z)))
shows mutual-information-distr": mutual-information b S T X Y = integral™ (S
QRQum T) f (is 2M = ?R)
and mutual-information-nonneg”: 0 < mutual-information b S T X Y
(proof)

lemma (in information-space)
fixes Pry :: 'b X ‘¢ = real and Pz :: 'b = real and Py :: ‘¢ = real
assumes sigma-finite-measure S sigma-finite-measure T
assumes Pz: distributed M S X Pz and Pz-nn: Az. z € space S = 0 < Pz x
and Py: distributed M T'Y Py and Py-nn: A\y. y € space T — 0 < Py y
and Pzy: distributed M (S Qv T) (Az. (X z, Y z)) Pry
and Pzy-nn: Az y. € space S = y € space T = 0 < Py (z, y)
defines f = Az. Pzy x = log b (Pzy x / (Pz (fst) * Py (snd x)))
shows mutual-information-distr: mutual-information b S T X Y = integral® (S
Qu T) f(is M = ?R)
and mutual-information-nonneg: integrable (S @ ar T) f = 0 < mutual-information
bSTXY

(proof)

lemma (in information-space)
fixes Pry :: 'b X ¢ = real and Pz :: 'b = real and Py :: 'c = real
assumes sigma-finite-measure S sigma-finite-measure T
assumes Pz[measurable]: distributed M S X Px and Pz-nn: Az. z € space S =
0 < Pxrzx
and Py[measurable]: distributed M T Y Py and Py-nn: Az. xz € space T =
0 < Pyx
and Pzy[measurable]: distributed M (S @ m T) (Az. (X z, Y z)) Pry
and Pzy-nn: Az. z € space (S Qm T) = 0 < Pryzx
assumes ae: AExin S. AEyin T. Pry (z, y) = Pxz x Py y
shows mutual-information-eq-0: mutual-information b S T X Y = 0
(proof)

lemma (in information-space) mutual-information-simple-distributed:
assumes X: simple-distributed M X Px and Y: simple-distributed M Y Py
assumes XVY: simple-distributed M (A\z. (X z, Y z)) Py
shows Z(X ; V) = O (z, y)e(Az. (X z, Y 1)) ‘space M. Pzy (z, y) * log b (Pxy
(z,y) / (Pzxx Pyy)))
(proof)

lemma (in information-space)
fixes Pzy :: 'b X ‘¢ = real and Pz :: 'b = real and Py :: ¢ = real
assumes Px: simple-distributed M X Px and Py: simple-distributed M 'Y Py
assumes Pzxy: simple-distributed M (A\z. (X z, Y z)) Pzy
assumes ae: Vae€space M. Pry (X z, Yz) = Pr (X z) « Py (Y)
shows mutual-information-eq-0-simple: Z(X ; Y) = 0

(proof)

THEORY “Information” 67

12.5 Entropy

definition (in prob-space) entropy :: real = 'b measure = ('a = 'b) = real where
entropy b S X = — KL-divergence b S (distr M S X)

abbreviation (in information-space)
entropy-Pow («H'(-")>) where
H(X) = entropy b (count-space (X ‘space M)) X

lemma (in prob-space) distributed-RN-deriv:
assumes X: distributed M S X Pz
shows AE z in S. RN-deriv S (density S Px) x = Px x

(proof)

lemma (in information-space)

fixes X = 'a="b

assumes X|[measurable]: distributed M MX X f and nn: Az. € space MX —
0<fz

shows entropy-distr: entropy b MX X = — ([@. fx % log b (f z) OMX) (is ?eq)
(proof)

lemma (in information-space) entropy-le:

fixes Pz :: 'b = real and MX :: 'b measure

assumes X[measurable]: distributed M MX X Pz and Pz-nn[simp]: Nz. x €
space MX — 0 < Px x

and fin: emeasure MX {x € space MX. Pz x # 0} # top

and int: integrable MX (Ax. — Pz z * log b (Pz x))

shows entropy b MX X < log b (measure MX {z € space MX. Pz x # 0})

(proof)

lemma (in information-space) entropy-le-space:

fixes Pz :: 'b = real and MX :: 'b measure

assumes X: distributed M MX X Pz and Pz-nn[simp|: Az. © € space MX —
0 < Pxrx

and fin: finite-measure MX

and int: integrable MX (Ax. — Px z * log b (Pz z))

shows entropy b MX X < log b (measure MX (space MX))

(proof)

lemma (in information-space) entropy-uniform:

assumes X: distributed M MX X (\z. indicator A z |/ measure MX A) (is
distributed - - - ?f)

shows entropy b MX X = log b (measure MX A)

(proof)

lemma (in information-space) entropy-simple-distributed:
simple-distributed M X f = H(X) = — O_z€X‘space M. fz * log b (f z))
(proof)

lemma (in information-space) entropy-le-card-not-0:

THEORY “Information” 68

assumes X: simple-distributed M X f
shows H(X) < log b (card (X ‘ space M N {z. fz # 0}))
(proof)

lemma (in information-space) entropy-le-card:
assumes X: simple-distributed M X f
shows H(X) < log b (real (card (X * space M)))
(proof)

12.6 Conditional Mutual Information

definition (in prob-space)
conditional-mutual-information b MX MY MZ X Y Z =
mutual-information b MX (MY @ n MZ) X (Ax. (Yz, Zx)) —
mutual-information b MX MZ X Z

abbreviation (in information-space)
conditional-mutual-information-Pow (<Z'(- ; - | - /)») where
I(X ; Y | Z) = conditional-mutual-information b
(count-space (X ‘ space M)) (count-space (Y ¢ space M)) (count-space (Z * space
M) XYZ

lemma (in information-space)
assumes S: sigma-finite-measure S and T: sigma-finite-measure T and P:
sigma-finite-measure P
assumes Pz[measurable]: distributed M S X Pz
and Pz-nn[simp]: Az. z € space S = 0 < Pz x
assumes Pz[measurable]: distributed M P Z Pz
and Pz-nn[simpl: \z. z € space P —= 0 < Pz z
assumes Pyz[measurable]: distributed M (T @ p P) (Az. (Y z, Z z)) Pyz
and Pyz-nn[simp|: Ny z. y € space T = z € space P = 0 < Pyz (y, 2)
assumes Prz[measurable]: distributed M (S @ nm P) (\z. (X z, Z x)) Pxz
and Pzz-nn[simpl: Az z. © € space S = z € space P = 0 < Pzz (z, z)
assumes Pzyz[measurable]: distributed M (S @ T @ m P) Mz, (X, Y, Z
x)) Pxyz
and Pzyz-nn[simp]: Az y z. x € space S => y € space T = z € space P =
0 < Pryz (z, y, 2)
assumes [1: integrable (S @m T Q@ v P) (M=, y, 2). Pryz (z, y, z) * log b
(Pryz (z, y, z) / (Prx * Pyz (y, 2))))
assumes I12: integrable (S Q@m T Qm P) (Mz, vy, 2). Pryz (z, y, z) * log b
(Pxz (z, z) /| (Pxz * Pz 2)))
shows conditional-mutual-information-generic-eq: conditional-mutual-information
bSTPXYZ
= ([(=, y, 2). Pryz (z, y, 2) * log b (Pzyz (z, y, z) / (Pzz (z, z) * (Pyz (y,2)
[P2 2)) (S @ T @ P)) (s 7eq)
and conditional-mutual-information-generic-nonneg: 0 < conditional-mutual-information
bSTPXYZ(is ?nonneg)

(proof)

THEORY “Information” 69

lemma (in information-space)
fixes Pz :: - = real
assumes S: sigma-finite-measure S and T: sigma-finite-measure T and P:
sigma-finite-measure P
assumes Fx: finite-entropy S X Px
assumes F2z: finite-entropy P Z Pz
assumes Fyz: finite-entropy (T @ m P) (A\z. (Y z, Z x)) Pyz
assumes Fuz: finite-entropy (S @ m P) (Az. (X z, Z z)) Pz
assumes Fzyz: finite-entropy (S @ um T Q@ ar P) Mz, (X z, Yz, Z z)) Pryz
shows conditional-mutual-information-generic-eq”: conditional-mutual-information
bSTPXYZ
= ([(z, y, 2). Pryz (z, y, 2) = log b (Pzyz (z, y, z) | (Pzz (2, 2) * (Pyz (y,2)
[P22)) 0(S @ T @ P)) (is %eq)
and conditional-mutual-information-generic-nonneg”: 0 < conditional-mutual-information
bSTPXYZ(is ?nonneg)

(proof)

lemma (in information-space) conditional-mutual-information-eq:

assumes Pz: simple-distributed M Z Pz

assumes Pyz: simple-distributed M (\x. (Y z, Z x)) Pyz

assumes Pzz: simple-distributed M (Az. (X z, Z x)) Pzz

assumes Pryz: simple-distributed M (\x. (X z, Y z, Z z)) Pxyz

shows Z(X ; Y | Z) =

O (z, y, 2)e(Mx. (X z, Yz, Zx))‘space M. Pryz (z, y, 2) * log b (Pzyz (z, y,
z) |/ (Pzz (z, z) * (Pyz (y,2) / Pz 2))))
{proof)

lemma (in information-space) conditional-mutual-information-nonneg:

assumes X: simple-function M X and Y: simple-function M Y and Z: sim-
ple-function M Z

shows 0 <Z(X ; Y| 2)
(proof)

12.7 Conditional Entropy

definition (in prob-space)
conditional-entropy b S T X Y = — ([(z, y). log b (enn2real (RN-deriv (S @ m
T) (distr M (S Qm T) (M. (X z, V) (2,9)/
enn2real (RN-deriv T (distr M T Y) y)) Odistr M (S Qum T) (M\z. (X z, YV

z)))

abbreviation (in information-space)

conditional-entropy-Pow (<H'(- | -')») where

H(X | Y) = conditional-entropy b (count-space (X ‘space M)) (count-space (Y space
M) XY

lemma (in information-space) conditional-entropy-generic-eq:
fixes Pzy :: - = real and Py :: ¢ = real
assumes S: sigma-finite-measure S and T: sigma-finite-measure T

THEORY “Information” 70

assumes Py[measurable]: distributed M T Y Py and Py-nn[simp|: \z. x € space
T—0< Pyz
assumes Pzy[measurable]: distributed M (S Q@ a T) (Az. (X z, Y z)) Pry
and Pzy-nn[simp]: Nz y. © € space S = y € space T = 0 < Py (z, y)
shows conditional-entropy b S T X Y = — ([(2, y). Pzy (z, y) * log b (Pzy (=,
y)/ Pyy) 0(S @u T))
(proof)

lemma (in information-space) conditional-entropy-eq-entropy:
fixes Pz :: 'b = real and Py :: 'c = real
assumes S: sigma-finite-measure S and T: sigma-finite-measure T
assumes Py[measurable]: distributed M T Y Py
and Py-nn[simp]: N\z. © € space T — 0 < Py x
assumes Pzy[measurable]: distributed M (S Q@ a T) (Az. (X z, Y z)) Pry
and Pzy-nn[simp]: Nz y. € space S = y € space T = 0 < Py (z, y)
assumes [1: integrable (S @ m T) (Ax. Pry x * log b (Pxy x))
assumes [12: integrable (S @ m T) (A\x. Pry x * log b (Py (snd x)))
shows conditional-entropy b S T X Y = entropy b (S @ T) (Az. (X z, Y 1))
— entropy b T'Y

(proof)

lemma (in information-space) conditional-entropy-eg-entropy-simple:

assumes X: simple-function M X and Y: simple-function M Y

shows H(X | Y) = entropy b (count-space (X ‘space M) @ nr count-space (Y space
M)) Mz. (X z, Y)) — H(Y)
{proof)

lemma (in information-space) conditional-entropy-eq:
assumes Y: simple-distributed M 'Y Py
assumes XVY: simple-distributed M (A\z. (X z, Y z)) Pxy

shows H(X | V) = — O (z, y)e(hz. (X z, Y)) ‘ space M. Pxy (z, y) * log
? (Pw;/> (z, y) / Py y))
proo

lemma (in information-space) conditional-mutual-information-eq-conditional-entropy:
assumes X: simple-function M X and Y: simple-function M Y
shows Z(X ; X | Y)=H(X|Y)

(proof)

lemma (in information-space) conditional-entropy-nonneg:

assumes X: simple-function M X and Y: simple-function M'Y shows 0 < H(X
| Y)

(proof)

12.8 Equalities

lemma (in information-space) mutual-information-eq-entropy-conditional-entropy-distr:
fixes Pz :: 'b = real and Py :: ‘¢ = real and Pzy :: (b x '¢) = real
assumes S: sigma-finite-measure S and T: sigma-finite-measure T

THEORY “Information” 71

assumes Pz[measurable]: distributed M S X Pz
and Pz-nn[simp]: Nz. z € space S = 0 < Px
and Py[measurable]: distributed M T Y Py
and Py-nn[simp]: A\z. © € space T — 0 < Py x
and Pzy[measurable]: distributed M (S @ m T) (Az. (X z, Y z)) Pry
and Pzy-nn[simp]: Nz y. € space S = y € space T = 0 < Pzxy (z, y)
assumes Iz: integrable(S @ ar T) (Az. Pry x * log b (Px (fst x)))
assumes [y: integrable(S @ apr T) (Az. Pry z = log b (Py (snd z)))
assumes Izy: integrable(S @ apr T) (Ax. Pzy x * log b (Pry x))
shows mutual-information b S T X Y = entropy b S X + entropy b T Y —
entropy b (S @um T) (Az. (X z, Y z))
(proof)

lemma (in information-space) mutual-information-eq-entropy-conditional-entropy”:
fixes Pz :: 'b = real and Py :: 'c = real and Pxy :: ('b x '¢) = real
assumes S: sigma-finite-measure S and T: sigma-finite-measure T
assumes Pz: distributed M S X Pz Az. © € space S = 0 < Prx
and Py: distributed M T'Y Py Nz. z € space T — 0 < Py x
assumes Pzy: distributed M (S @ T) (Mz. (X 2, Y 2)) Py
Nz. z € space (S @u T) = 0 < Py x
assumes Iz: integrable(S @ p T) (Ax. Py x * log b (Px (fst x)))
assumes [y: integrable(S @y T) (Az. Pry x % log b (Py (snd z)))
assumes Izy: integrable(S Q@ m T) (A\x. Pry x log b (Pry x))
shows mutual-information b S T X Y = entropy b S X — conditional-entropy b
STXY

(proof)

lemma (in information-space) mutual-information-eg-entropy-conditional-entropy:
assumes sf-X: simple-function M X and sf-Y: simple-function MY
shows Z(X ; V) =H(X) - H(X | V)

(proof)

lemma (in information-space) mutual-information-nonneg-simple:
assumes sf-X: simple-function M X and sf-Y: simple-function M'Y
shows 0 <Z(X;Y)

(proof)

lemma (in information-space) conditional-entropy-less-eg-entropy:
assumes X: simple-function M X and Z: simple-function M Z
shows H(X | Z) < H(X)

(proof)

lemma (in information-space)
fixes Pz :: 'b = real and Py :: 'c = real and Pxy :: ('b x '¢) = real
assumes S: sigma-finite-measure S and T: sigma-finite-measure T
assumes Pz finite-entropy S X Pz and Py: finite-entropy T Y Py
assumes Pry: finite-entropy (S Q@ pm T) (Az. (X z, Y x)) Pry
shows conditional-entropy b S T X Y < entropy b S X

(proof)

THEORY “Distributions”

lemma (in information-space) entropy-chain-rule:
assumes X: simple-function M X and Y: simple-function M Y
shows H(Az. (X z, Y z)) = H(X) + H(Y|X)

(proof)

lemma (in information-space) entropy-partition:
assumes X: simple-function M X
shows H(X) = H(f o X) + H(X|f o X)
(proof)

corollary (in information-space) entropy-data-processing:

assumes simple-function M X shows H(f o X) < H(X)
{proof)

corollary (in information-space) entropy-of-inj:
assumes X: simple-function M X and inj: inj-on f (X‘space M)
shows H(f o X) = H(X)

(proof)

end

13 Properties of Various Distributions

theory Distributions
imports Convolution Information
begin

lemma (in prob-space) distributed-affine:
fixes f :: real = ennreal
assumes f: distributed M lborel X f
assumes c: ¢ # 0
shows distributed M lborel (Az. t + ¢ * X z) (Mz. f ((z —t) / ¢) / |¢])

{proof)

lemma (in prob-space) distributed-affinel:
fixes f :: real = ennreal and c :: real
assumes f: distributed M lborel (Az. (X z —t) / ¢) (Az. || *x f (z * ¢ + 1))
assumes c: ¢ # 0
shows distributed M Iborel X f

(proof)

lemma (in prob-space) distributed-AE2:
assumes [measurable]: distributed M N X f Measurable.pred N P
shows (AEzin M. P (X)) ¢— (AEzin N. 0 < fz — P x)

(proof)

72

THEORY “Distributions” 73

13.1 Erlang

lemma nn-intergal-power-times-exp-Icc:
assumes [arith]: 0 < a
shows ([Tz. ennreal (z7k * exp (—x)) * indicator {0 .. a} x dlborel) =
(1 — O_n<k. (a"n * exp (—a)) / fact n)) x fact k (is ?2I = -)
(proof)

lemma nn-intergal-power-times-exp-Ici:

shows ([Tz. ennreal (z7k * exp (—z)) * indicator {0 ..} z dlborel) = real-of-nat
(fact k)
(proof)

definition erlang-density :: nat = real = real = real where
erlang-density k 1l x = (if x < 0 then 0 else (I"(Suc k) * 27k * exp (— | % x)) /
fact k)

definition erlang-CDF :: nat = real = real = real where
erlang-CDF k 1z = (if ¢ < 0 then 0 else 1 — (3 n<k. ((I * z)"n = exp (— I *

z) / fact n)))

lemma erlang-density-nonneg[simpl: 0 < | = 0 < erlang-density k | =
(proof)

lemma borel-measurable-erlang-density[measurable]: erlang-density k| € borel-measurable
borel

(proof)

lemma erlang-CDF-transform: 0 < | = erlang-CDF k| a = erlang-CDF k 1 (I
* a)
(proof)

lemma erlang-CDF-nonneg[simp]: assumes 0 < [shows 0 < erlang-CDF k | x

{proof)

lemma nn-integral-erlang-density:

assumes [arith]: 0 <1

shows ([t z. ennreal (erlang-density k | z) * indicator {.. a} z Olborel) =
erlang-CDF k1 a

(proof)

lemma emeasure-erlang-density:
0 < | = emeasure (density lborel (erlang-density k1)) {.. a} = erlang-CDF k1
a

{proof)

lemma nn-integral-erlang-ith-moment:
fixes k ¢ :: nat and [:: real
assumes [arith]: 0 <1
shows ([z. ennreal (erlang-density k 1 z * x ~ i) Olborel) = fact (k + i) /

THEORY “Distributions” 74

(fact k = 1 1)
(proof)

lemma prob-space-erlang-density:

assumes [[arith]: 0 < [

shows prob-space (density lborel (erlang-density k 1)) (is prob-space ?D)
(proof)

lemma (in prob-space) erlang-distributed-le:
assumes D: distributed M lborel X (erlang-density k 1)
assumes [simp, arith|: 0 <10 < a
shows P(z in M. X z < a) = erlang-CDF k l a
(proof)

lemma (in prob-space) erlang-distributed-gt:
assumes D[simp|: distributed M lborel X (erlang-density k I)
assumes [arith]: 0 <10 < a
shows P(zin M. a < Xz) =1 — (erlang-CDF k [a)

(proof)

lemma erlang-CDF-at0: erlang-CDF k10 = 0
(proof)

lemma erlang-distributedl:
assumes X|[measurable]: X € borel-measurable M and [arith]: 0 < 1
and X-distr: Na. 0 < a = emeasure M {z€space M. X z < a} = erlang-CDF
kEla
shows distributed M lborel X (erlang-density k 1)

(proof)

lemma (in prob-space) erlang-distributed-iff:
assumes [arith]: 0<I
shows distributed M lborel X (erlang-density k 1) +—
(X € borel-measurable M AN 0 <IN (Va>0.P(zin M. X z < a) = erlang-CDF
kla))

{proof)

lemma (in prob-space) erlang-distributed-mult-const:
assumes erlX: distributed M lborel X (erlang-density k)
assumes a-pos[arith]: 0 < a 0 <
shows distributed M lborel (A\z. a x X z) (erlang-density k (I / «))

(proof)

lemma (in prob-space) has-bochner-integral-erlang-ith-moment:
fixes k ¢ :: nat and [:: real
assumes [arith]: 0 < [and D: distributed M lborel X (erlang-density k 1)
shows has-bochner-integral M (Az. X z ~ i) (fact (k + i) / (fact k = 1 ™))

(proof)

THEORY “Distributions” 75

lemma (in prob-space) erlang-ith-moment-integrable:

0 < | = distributed M lborel X (erlang-density k 1) = integrable M (A\z. X
~4)

{proof)

lemma (in prob-space) erlang-ith-moment:
0 < | = distributed M lborel X (erlang-density k1) =
expectation (A\x. X ¢ ~ 1) = fact (k + @) / (fact k « | ~ 1)
{proof)

lemma (in prob-space) erlang-distributed-variance:
assumes [arith]: 0 < | and distributed M lborel X (erlang-density k 1)
shows variance X = (k + 1) / I

(proof)

13.2 Exponential distribution

abbreviation exrponential-density :: real = real = real where
exponential-density = erlang-density 0

lemma exponential-density-def:
exponential-density | © = (if x < 0 then 0 else | x exp (— z * 1))

{proof)

lemma erlang-CDF-0: erlang-CDF 01 a = (if 0 < a then I — exp (— | x a) else
0)
(proof)

lemma prob-space-exponential-density: 0 < | => prob-space (density lborel (exponential-density

)

{proof)

lemma (in prob-space) exponential-distributedD-le:

assumes D: distributed M lborel X (exponential-density [) and a: 0 < ¢ and I:
0 <l

shows P(zin M. Xz <a)=1 — exp (—ax*1l)

(proof)

lemma (in prob-space) exponential-distributed D-gt:

assumes D: distributed M lborel X (exponential-density [) and a: 0 < ¢ and I:
0 <1

shows P(zin M. a < Xz) =exp (— a 1)

(proof)

lemma (in prob-space) exponential-distributed-memoryless:

assumes D: distributed M lborel X (exponential-density 1) and a: 0 < a and :
0<land t: 0 <t

shows P(zin M. a+t< Xz|a< Xz)=PlxinM. t< Xzx)

(proof)

THEORY “Distributions” 76

lemma exponential-distributedl:
assumes X[measurable]: X € borel-measurable M and [arith]: 0 < |
and X-distr: Na. 0 < a = emeasure M {z€space M. X x < a} = 1 — exp
(—axl)
shows distributed M lborel X (exponential-density 1)
(proof)

lemma (in prob-space) exponential-distributed-iff:
assumes 0 < [
shows distributed M lborel X (exponential-density 1) +—
(X € borel-measurable M N (Va>0. P(zin M. Xz < a) =1 — exp (— a *1)))

{proof)

lemma (in prob-space) exponential-distributed-expectation:

0 < |l = distributed M lborel X (exponential-density) = expectation X = 1
/1

(proof)

lemma exponential-density-nonneg: 0 < | = 0 < exponential-density [x
(proof)

lemma (in prob-space) exponential-distributed-min:
assumes 0 < 10 < u
assumes expX: distributed M lborel X (exponential-density [)
assumes expY: distributed M lborel Y (exponential-density u)
assumes ind: indep-var borel X borel Y
shows distributed M lborel (Ax. min (X z) (Y z)) (exponential-density (I + u))

(proof)

lemma (in prob-space) exponential-distributed-Min:
assumes finl: finite I
assumes A: I # {}
assumes It N\i.ie€] = 0 <11
assumes expX: \i. i € I = distributed M lborel (X i) (exponential-density (I

i)

assumes ind: indep-vars (Ai. borel) X I
shows distributed M lborel (Az. Min ((Mi. X i z)‘I)) (exponential-density (> i€l.

1))
(proof)

lemma (in prob-space) exponential-distributed-variance:
0 < 1 = distributed M lborel X (exponential-density |) = variance X = 1] I?

{proof)

lemma nn-integral-zero: AExzin M. fz =0 = ([Tz. fz OM) =0
(proof)

THEORY “Distributions” 77

lemma convolution-erlang-density:

fixes k1 ko :: nat

assumes [simp, arith]: 0 < |

shows (Az. [Ty. ennreal (erlang-density k1 | (z — y)) * ennreal (erlang-density
ko 1 y) Olborel) =

(erlang-density (Suc k1 + Suc kg — 1) 1)
(is ?LHS = ?RHS)

(proof)

lemma (in prob-space) sum-indep-erlang:

assumes indep: indep-var borel X borel Y

assumes [simp, arith]: 0 < |

assumes erlX: distributed M lborel X (erlang-density ki 1)

assumes erlY: distributed M lborel Y (erlang-density ko 1)

shows distributed M lborel (A\x. X + Y z) (erlang-density (Suc k1 + Suc ko —
I

(proof)

lemma (in prob-space) erlang-distributed-sum:
assumes finl : finite 1
assumes A: [# {}
assumes [simp, arith]: 0 <1
assumes expX: N\i. ¢ € I = distributed M lborel (X i) (erlang-density (k i) 1)
assumes ind: indep-vars (Ai. borel) X I
shows distributed M lborel (Az. Y i€l. X i z) (erlang-density ((>_ i€l. Suc (k
i) — 1) 1)
(proof)

lemma (in prob-space) exponential-distributed-sum:
assumes finl: finite I
assumes A: [# {}
assumes [: 0 < |
assumes expX: N\i. i € I = distributed M lborel (X i) (exponential-density I)
assumes ind: indep-vars (Ai. borel) X I
shows distributed M lborel (Az. Y i€l. X i z) (erlang-density ((card I) — 1) 1)

{proof)

lemma (in information-space) entropy-exponential:
assumes [[simp, arith]: 0 < |
assumes D: distributed M lborel X (exponential-density [)
shows entropy b lborel X = log b (exp 1 /1)

(proof)

13.3 Uniform distribution

lemma uniform-distri:
assumes X: X € measurable M M’
and A: A € sets M’ emeasure M’ A # oo emeasure M’ A # 0
assumes distr: AB. B € sets M’ = emeasure M (X —¢ B N space M) =

THEORY “Distributions” 78

emeasure M’ (A N B) / emeasure M' A
shows distr M M' X = uniform-measure M’ A

{proof)

lemma uniform-distri-borel:
fixes A :: real set
assumes X[measurable]: X € borel-measurable M and A: emeasure lborel A =
ennreal v 0 < r
and [measurable]: A € sets borel
assumes distr: N\a. emeasure M {x€space M. X z < a} = emeasure lborel (A N

{.a})/r

shows distributed M lborel X (Az. indicator A x | measure lborel A)
(proof)

lemma (in prob-space) uniform-distrI-borel-atLeastAtMost:

fixes a b :: real

assumes X: X € borel-measurable M and a < b

assumes distr: N\t. e <t =t<b=PlazinM Xz <t)=(t—-a)/ (b—
)

shows distributed M lborel X (Az. indicator {a..b} x / measure lborel {a..b})

(proof)

lemma (in prob-space) uniform-distributed-measure:

fixes a b :: real

assumes D: distributed M lborel X (Az. indicator {a .. b} x |/ measure lborel {a
. b})

assumes t: a < tt < b

shows P(zin M. Xz < t)=(t —a)/ (b— a)
(proof)

lemma (in prob-space) uniform-distributed-bounds:
fixes a b :: real
assumes D: distributed M lborel X (A\z. indicator {a .. b} x / measure lborel {a

)

shows a < b
(proof)

lemma (in prob-space) uniform-distributed-iff:
fixes a b :: real
shows distributed M lborel X (Az. indicator {a..b} = / measure lborel {a..b}) +—
(X € borel-measurable M N a < b A (Vte{a .. b}. P(zin M. Xz < t)= (t —
0 / (b o))

{proof)

lemma (in prob-space) uniform-distributed-ezpectation:
fixes a b :: real
assumes D: distributed M lborel X (A\z. indicator {a .. b} x |/ measure lborel {a

. b))

shows expectation X = (a + b) / 2

THEORY “Distributions” 79

(proof)

lemma (in prob-space) uniform-distributed-variance:

fixes a b :: real

assumes D: distributed M lborel X (A\z. indicator {a .. b} x / measure lborel {a
. b}

shows variance X = (b — a)? / 12
(proof)

13.4 Normal distribution

definition normal-density :: real = real = real = real where
normal-density pn o x = 1 / sqrt (2 * pi * 02) * exp (—(z — p)?/ (2 x o?))

abbreviation std-normal-density :: real = real where
std-normal-density = normal-density 0 1

lemma std-normal-density-def: std-normal-density © = (1 / sqrt (2 = pi)) = exp
(— o/ 2)
{proof)

lemma normal-density-nonneg[simp]: 0 < normal-density p o x
(proof)

lemma normal-density-pos: 0 < 0 => 0 < normal-density 1 o
(proof)

lemma borel-measurable-normal-density[measurable]: normal-density pu o € borel-measurable
borel

(proof)

lemma gaussian-moment-0:
has-bochner-integral lborel (Az. indicator {0..} = xp exp (— z?)) (sqrt pi | 2)
(proof)

lemma gaussian-moment-1:

has-bochner-integral lborel (Az::real. indicator {0..} x g (exp (— 2%) * z)) (1 /
2)
(proof)

lemma
fixes k :: nat
shows gaussian-moment-even-pos:
has-bochner-integral lborel (Ax::real. indicator {0..} x xg (exp (—z®)*xx (2 *
B)
((sgrt pi / 2) = (fact (2 x k) / (2 " (2 % k) x fact k)))
(is ?even)
and gaussian-moment-odd-pos:
has-bochner-integral lborel (Az::real. indicator {0..} x *r (exp (—2?)xz (2 *

THEORY “Distributions” 80

E+ 1)) (fact k | 2)

(is ?odd)
(proof)
context
fixes k :: nat and p o :: real assumes [arith]: 0 < o
begin

lemma normal-moment-even:

has-bochner-integral lborel (Az. normal-density p o x * (x — p) ~ (2 = k)) (fact
(2 xk)/((2) 07k * fact k))
(proof)

lemma normal-moment-abs-odd:

has-bochner-integral lborel (Azx. normal-density pn o x * |z — p| (2« k+ 1)) (27k
x 0 (2% k+ 1) * fact k = sqrt (2 / pi))
(proof)

lemma normal-moment-odd:
has-bochner-integral lborel (Ax. normal-density pp o x * (x — p) (2 «k + 1)) 0

(proof)

lemma integral-normal-moment-even:

integral® lborel (Az. normal-density p o x * (v — p) (2 * k)) = fact (2 * k) /
(2 / 0®) 7k * fact k)

(proof)

lemma integral-normal-moment-abs-odd:

integral® Iborel (Az. normal-density p o z x |v — p| (2% k+ 1)) =2 "k*o
T(2 x k4 1) * fact k * sqrt (2] pi)

{proof)

lemma integral-normal-moment-odd:
integral” Iborel (\z. normal-density o x * (x — p) (2 x k+ 1)) =0

{proof)

end

context

fixes o :: real

assumes o-poslarith]: 0 < o
begin

lemma normal-moment-nz-1: has-bochner-integral lborel (Ax. normal-density p o
T*T) N

{(proof)

lemma integral-normal-moment-nz-1:

THEORY “Distributions” 81

integral” Iborel (\z. normal-density p o = * z) =
{proof)

lemma integrable-normal-moment-nz-1: integrable lborel (Az. normal-density p o
T % T)
(proof)

lemma integrable-normal-moment: integrable lborel (Ax. normal-density u o x *
(z — 1) k)
{(proof)

lemma integrable-normal-moment-abs: integrable lborel (Ax. normal-density p o x
o — pl k)
(proof)

lemma integrable-normal-density[simp, intro]: integrable lborel (normal-density p
o)
(proof)

lemma integral-normal-density[simp: ([z. normal-density p o x dlborel) = 1
(proof)

lemma prob-space-normal-density:
prob-space (density lborel (normal-density 1 o))

{proof)

end

context
fixes k :: nat
begin

lemma std-normal-moment-even:

has-bochner-integral lborel (A\z. std-normal-density © * ~ (2 = k)) (fact (2 * k)
/ (27k * fact k))

(proof)

lemma std-normal-moment-abs-odd:

has-bochner-integral lborel (Az. std-normal-density x = |z| (2 = k + 1)) (sqrt
(2/pi) x 27k * fact k)

{proof)

lemma std-normal-moment-odd:
has-bochner-integral lborel (Az. std-normal-density z « (2 x k + 1)) 0

(proof)

lemma integral-std-normal-moment-even:

THEORY “Distributions” 82

integral” Iborel (\x. std-normal-density x * x7(2%k)) = fact (2 x k) / (27k * fact
k)
{proof)

lemma integral-std-normal-moment-abs-odd:

integral® lborel (\z. std-normal-density = |z| (2 * k + 1)) = sqrt (2 / pi) *
27k * fact k

(proof)

lemma integral-std-normal-moment-odd:
integrall lborel (Ax. std-normal-density z * z(2 x k + 1)) = 0
{proof)

lemma integrable-std-normal-moment-abs: integrable lborel (Ax. std-normal-density
z x |z| k)
(proof)

lemma integrable-std-normal-moment: integrable lborel (Ax. std-normal-density x
* k)
(proof)

end

lemma (in prob-space) normal-density-affine:

assumes X: distributed M lborel X (normal-density p o)

assumes [simp, arith]: 0 < o o # 0

shows distributed M lborel (Az. 8 + a * X x) (normal-density (8 + a * p) (|«
% 0))
(proof)

lemma (in prob-space) normal-standard-normal-convert:

assumes pos-var[simp, arith]: 0 < o

shows distributed M lborel X (normal-density p o) = distributed M lborel (Ax.
(X z — p) / o) std-normal-density

(proof)

lemma conv-normal-density-zero-mean:
assumes [simp, arith]: 0 < o 0 < T
shows (Az. [ty. ennreal (normal-density 0 o (z — y) * normal-density 0 T y)
Olborel) =
normal-density 0 (sqrt (0% + 72)) (is ?LHS = ?RHYS)
(proof)

lemma conv-std-normal-density:
(Az. [Ty. ennreal (std-normal-density (z — y) = std-normal-density y) Olborel)

(normal-density 0 (sqrt 2))
{proof)

THEORY “Distributions” 83

lemma (in prob-space) add-indep-normal:
assumes indep: indep-var borel X borel Y
assumes pos-var|arith]: 0 < o 0 < T
assumes normalX [simp]: distributed M lborel X (normal-density p o)
assumes normalY [simp]: distributed M lborel Y (normal-density v)
shows distributed M lborel (A\z. X = + Y z) (normal-density (u + v) (sqrt (o2
+17%)))
(proof)

lemma (in prob-space) diff-indep-normal:
assumes indep[simp|: indep-var borel X borel Y
assumes [simp, arith]: 0 < o 0 < T
assumes normalX[simpl: distributed M lborel X (normal-density p o)
assumes normalY [simp]: distributed M lborel Y (normal-density v)
shows distributed M lborel (A\x. X x — Y z) (normal-density (u — v) (sqrt (o2
+72))
(proof)

lemma (in prob-space) sum-indep-normal:

assumes finite I I # {} indep-vars (Xi. borel) X I

assumes \i. 1€ [= 0 <o i

assumes normal: Ni. i € I = distributed M lborel (X i) (normal-density (p 7)
(0 1)

shows distributed M lborel (A\xz. > i€l. X i z) (normal-density (> i€l. p i) (sqrt
(Nl (o i)

(proof)

lemma (in prob-space) standard-normal-distributed-expectation:
assumes D: distributed M lborel X std-normal-density
shows expectation X = 0

(proof)

lemma (in prob-space) normal-distributed-expectation:
assumes o[arith]: 0 < o
assumes D: distributed M lborel X (normal-density u o)
shows expectation X = u

(proof)

lemma (in prob-space) normal-distributed-variance:
fixes a b :: real
assumes [simp, arith]: 0 < o
assumes D: distributed M lborel X (normal-density p o)
shows variance X = o2

{proof)

lemma (in prob-space) standard-normal-distributed-variance:
distributed M lborel X std-normal-density = variance X = 1

(proof)

THEORY “Characteristic-Functions” 84

lemma (in information-space) entropy-normal-density:
assumes [arith]: 0 < o
assumes D: distributed M lborel X (normal-density u o)
shows entropy b lborel X = log b (2 * pi x exp 1 * 02) | 2

(proof)

end

14 Characteristic Functions

theory Characteristic-Functions
imports Weak-Convergence Independent-Family Distributions
begin

lemma mult-min-right: a > 0 = (a :: real) * min b ¢ = min (a * b) (a * ¢)
(proof)

lemma sequentially-even-odd:

assumes E: eventually (An. P (2 x n)) sequentially and O: eventually (An. P
(2 xn + 1)) sequentially

shows eventually P sequentially

(proof)

lemma limseq-even-odd:
assumes (An. f (2 % n)) —— (1 :: 'a :: topological-space)
and (An. f (2*n+ 1)) —— 1
shows f —— |

{proof)

14.1 Application of the FTC: integrating e’z

abbreviation texp :: real = complex where
iexp = (Az. exp (i x complex-of-real x))

lemma isCont-iexp [simp]: isCont iexp
(proof)

lemma has-vector-derivative-iexp|derivative-intros|:
(iexp has-vector-derivative i x iexp x) (at x within s)
{proof)

lemma interval-integral-iexp:
fixes a b :: real
shows (CLBINT xz=a..b. iexp) =i % iexp a — 1 * iexp b
(proof)

14.2 The Characteristic Function of a Real Measure.

definition

THEORY “Characteristic-Functions” 85

char :: real measure = real = complex

where char M t = CLINT z|M. iexp (¢ x x)

lemma (in real-distribution) char-zero: char M 0 = 1
(proof)

lemma (in prob-space) integrable-iexp:
assumes f: f € borel-measurable M Az. Im (fz) = 0
shows integrable M (Az. exp (i * (f z)))

{(proof)

lemma (in real-distribution) cmod-char-le-1: norm (char M t) < 1
(proof)

lemma (in real-distribution) isCont-char: isCont (char M) ¢
{proof)

lemma (in real-distribution) char-measurable [measurable]: char M € borel-measurable
borel

{proof)

14.3 Independence

lemma (in prob-space) char-distr-add:
fixes X1 X2 :: 'a = real and ¢ :: real
assumes indep-var borel X1 borel X2
shows char (distr M borel (Aw. X1 w4+ X2 w)) t =
char (distr M borel X1) t * char (distr M borel X2) t

(proof)

lemma (in prob-space) char-distr-sum:
indep-vars (Ai. borel) X A =
char (distr M borel (Mw. Y i€A. X i w)) t = ([[i€A. char (distr M borel (X
i) 1)
(proof)

14.4 Approximations to ¢

Proofs from Billingsley, page 343.

lemma CLBINT-I10c-power-mirror-iexp:
fixes z :: real and n :: nat
defines f s m = complez-of-real ((z — s) ~ m)
shows (CLBINT s=0..x. fsn x iexp s) =
7 Sucn / Sucn + (i / Sucn) x (CLBINT s=0..x. f s (Suc n) * iexp s)
(proof)

lemma iexp-eql:
fixes z :: real
defines f s m = complex-of-real ((z — s) ~ m)

THEORY “Characteristic-Functions” 86

shows iexp x =
Ok <n. (i*xz)k/ (factk)) + ((i " (Sucn)) / (fact n)) * (CLBINT s=0..x.
Efs n}>* (iexp s)) (is 2P n)
PTOOo,

lemma iexp-eq2:

fixes z :: real

defines f s m = complez-of-real ((z — s) ~ m)

shows iexp x = (3 k<Suc n. (ixz) k/fact k) + i Suc n/fact n x« (CLBINT
s=0..z. f s nx(iexp s — 1))
(proof)

lemma abs-LBINT-10c-abs-power-diff:
|LBINT s=0..xz. |(x — s) " n|| = |z ~ (Suc n) / (Suc n)]
(proof)

lemma iezp-approzl: cmod (iexp x — Dk < n. (i *)7k / fact k)) < |z| (Suc
n) / fact (Suc n)
(proof)

lemma iexp-approz2: cmod (iexp x — Ok < n. (i*)7k / fact k)) < 2 x |z|™n
/ fact n
(proof)

lemma (in real-distribution) char-approz1:

assumes integrable-moments: Nk. k < n = integrable M (Az. z7k)

shows cmod (char Mt — (O k < n. ((i x t) 7k / fact k) x expectation (Az. x7k)))
<

(2%|t| "n / fact n) x expectation (Az. |z|"n) (is cmod (char Mt — 2t1) < -)
(proof)

lemma (in real-distribution) char-approz2:
assumes integrable-moments: Nk. k < n = integrable M (A\z. © ~ k)
shows cmod (char Mt — Ok < n. ((i*t)"k / fact k) x expectation (Az. 27k)))
<
(It|"n / fact (Suc n)) * expectation (Az. min (2 * |z|"n * Suc n) (|t| * |z| Suc
n))
(is emod (char Mt — 2t1) < -)

(proof)

lemma (in real-distribution) char-approz3:

fixes ¢

assumes
integrable-1: integrable M (Az. z) and
integral-1: expectation (Az. z) = 0 and
integrable-2: integrable M (Az. z72) and
integral-2: variance (Azx. z) = o2

shows c¢cmod (char Mt — (1 — t72 %02 / 2)) <
(t72 /] 6) * expectation (Az. min (6 * x72) (abs t x (abs) 73))

THEORY “Characteristic-Functions” 87

(proof)

This is a more familiar textbook formulation in terms of random variables,
but we will use the previous version for the CLT.

lemma (in prob-space) char-approz3’:

fixes p :: real measure and X

assumes rv-X [simpl: random-variable borel X
and [simp]: integrable M X integrable M (Az. (X z)72) expectation X = 0
and var-X: variance X = 02
and p-def: pu = distr M borel X

shows c¢mod (char pt — (1 —t72 %02/ 2)) <
(t72 /] 6) * expectation (Az. min (6 * (X z)72) (|t * | X z|73))

(proof)

this is the formulation in the book — in terms of a random variable *with*
the distribution, rather the distribution itself. I don’t know which is more
useful, though in principal we can go back and forth between them.
lemma (in prob-space) char-approxl”:
fixes p :: real measure and X
assumes integrable-moments : Nk. k < n = integrable M (Az. X z " k)
and rv-X|[measurable]: random-variable borel X
and p-distr : distr M borel X =
shows cmod (char pt — (O k < n. ((i * t)7k / fact k) = ezpectation (Az. (X
z) k) <
(2 % |t| "n / fact n) * expectation (Az. |X x| "n)
(proof)

14.5 Calculation of the Characteristic Function of the Stan-
dard Distribution

abbreviation
std-normal-distribution = density lborel std-normal-density

lemma real-dist-normal-dist: real-distribution std-normal-distribution
(proof)

lemma std-normal-distribution-even-moments:
fixes k :: nat
shows (LINT z|std-normal-distribution. (2 * k)) = fact (2 % k) / (27k * fact
k)
and integrable std-normal-distribution (Az. £7(2 * k))
(proof)

lemma integrable-std-normal-distribution-moment: integrable std-normal-distribution
(A\z. k)
(proof)

lemma integral-std-normal-distribution-moment-odd:

THEORY “Helly-Selection” 88

odd k = integral® std-normal-distribution (A\z. k) = 0
{proof)

lemma std-normal-distribution-even-moments-abs:

fixes k :: nat

shows (LINT z|std-normal-distribution. |z| (2 = k)) = fact (2 x k) / (27k * fact
k)

(proof)

lemma std-normal-distribution-odd-moments-abs:

fixes k :: nat

shows (LINT z|std-normal-distribution. |z| (2 x k + 1)) = sqrt (2 [pi) * 2 ~
k * fact k

(proof)

theorem char-std-normal-distribution:
char std-normal-distribution = (At. complez-of-real (exp (— (t72) / 2)))

(proof)

end

15 Helly’s selection theorem

The set of bounded, monotone, right continuous functions is sequentially
compact

theory Helly-Selection
imports HOL— Library. Diagonal-Subsequence Weak-Convergence
begin

lemma minus-one-less: x — 1 < (z::real)
{proof)

theorem Helly-selection:

fixes f :: nat = real = real

assumes rcont: An z. continuous (at-right) (f n)

assumes mono: An. mono (f n)

assumes bdd: Anz. [fnz] < M

shows 3s. strict-mono (s:nat = nat) A (IF. (Y z. continuous (at-right x) F) A
mono F'AN (Vz. |F x| < M) A

(Vz. continuous (at z) F — (An. f (s n) t) —— F 1))

(proof)
definition

tight :: (nat = real measure) = bool
where

tight 1 = (V n. real-distribution (u n)) A (V(e:real)>0. Fa b:real. a < b A (V.

THEORY “Sinc-Integral” 89
measure (pr n) {a<..b} > 1 — ¢€))

theorem tight-imp-convergent-subsubsequence:

assumes pu: tight p strict-mono s

shows 37 M. strict-mono (r :: nat = nat) A real-distribution M A weak-conv-m
(Losor) M
(proof)

corollary tight-subseq-weak-converge:
fixes p :: nat = real measure and M :: real measure
assumes An. real-distribution (u n) real-distribution M and tight: tight p and
subseq: \s v. strict-mono s = real-distribution v => weak-conv-m (p o s) v
= weak-conv-m (p o s) M
shows weak-conv-m p M

(proof)

end

16 Integral of sinc

theory Sinc-Integral
imports Distributions
begin

16.1 Various preparatory integrals

Naming convention The theorem name consists of the following parts:

o Kind of integral: has-bochner-integral / integrable /| LBINT
o Interval: Interval (0 / infinity / open / closed) (infinity / open / closed)

o Name of the occurring constants: power, exp, m (for minus), scale, sin,

lemma has-bochner-integral-10i-power-exp-m':
has-bochner-integral lborel (A\z. 7k * exp (—x) * indicator {0 ..} z::real) (fact k)

(proof)

lemma has-bochner-integral-10i-power-exp-m:

has-bochner-integral lborel (Axz. 7k * exp (—x) x indicator {0 <..} z::real) (fact
k)

{proof)

lemma integrable-10i-exp-mscale: 0 < (u:real) = set-integrable lborel {0 <..}

(Az. exp (—(z * u)))
(proof)

THEORY “Sinc-Integral” 90

lemma LBINT-I0i-exp-mscale: 0 < (u::real) => LBINT z=0..00. exp (—(z * u))
=1/u
{proof)

lemma LBINT-10c-exp-mscale-sin:
LBINT z=0..t. exp (—(u * x)) * sin ¢ =
(1 /(1 +u"2) (1 —exp(—(uxt))*(ux*sint+ cost)) (is -= ?F t)
{proof)

lemma LBINT-10i-exp-mscale-sin:
assumes () < z
shows LBINT u=0..c0. |exp (—u * x) % sin z| = |sin z| / =

(proof)

lemma
shows integrable-inverse-1-plus-square:
set-integrable lborel (einterval (—o0) 00) (Az. inverse (1 + x72))
and LBINT-inverse-1-plus-square:
LBINT z=—00..00. inverse (1 + z72) = pi
(proof)

lemma
shows integrable-10i-1-div-plus-square:
interval-lebesgue-integrable lborel 0 oo (Az. 1 / (1 + z72))
and LBINT-10i-1-div-plus-square:
LBINT z=0..00. 1 /| (1 + 272) =pi / 2
(proof)

17 The sinc function, and the sine integral (Si)

abbreviation sinc :: real = real where
sinc = (Az. if ¢ = 0 then 1 else sin x / x)

lemma sinc-at-0: ((Az. sin ¢ / z:real) —— 1) (at 0)

(proof)

lemma isCont-sinc: isCont sinc x
(proof)

lemma continuous-on-sinc[continuous-intros|:
continuous-on S f = continuous-on S (Az. sinc (f z))

{proof)

lemma borel-measurable-sinc[measurable]: sinc € borel-measurable borel
{proof)

lemma sinc-AE: AE z in lborel. sin x | x = sinc x
(proof)

THEORY “Sinc-Integral” 91

definition Si :: real = real where Sit = LBINT z=0..t. sinz | x

lemma sinc-neg [simp]: sinc (— z) = sinc x
(proof)

lemma Si-alt-def : Sit = LBINT z=0..t. sinc x
(proof)

lemma Si-neg:
assumes T > 0 shows Si (— T) = — Si T

(proof)

lemma integrable-sinc’:
interval-lebesgue-integrable borel (ereal 0) (ereal T) (At. sin (t *) / t)
(proof)

lemma DERIV-Si: (Si has-real-derivative sinc x) (at)
(proof)

lemma isCont-Si: isCont Si x
(proof)

lemma borel-measurable-Si[measurable]: Si € borel-measurable borel
{proof)

lemma Si-at-top-LBINT:

((At. (LBINT z=0..00. exp (—(z x t)) * (z x sint + cos t) /] (1 + 272))) —
0) at-top
(proof)

lemma Si-at-top-integrable:

assumes t > (

shows interval-lebesgue-integrable lborel 0 oo (Az. exp (— (z * t)) * (z * sin t +
cos t) / (1 + x?))

(proof)

lemma Si-at-top: (Si —— pi / 2) at-top
(proof)

17.1 The final theorems: boundedness and scalability
lemma bounded-Si: 3B.VT. |Si T| < B
(proof)

lemma LBINT-I0c-sin-scale-divide:
assumes 1T > (

THEORY “Levy” 92

shows LBINT t=0..T. sin (t * 9) / t = sgn 9 = Si (T = |9]|)
(proof)

end

18 The Levy inversion theorem, and the Levy con-
tinuity theorem.

theory Levy
imports Characteristic-Functions Helly-Selection Sinc-Integral
begin

18.1 The Levy inversion theorem

lemma Levy-Inversion-auzl:
fixes a b :: real
assumes a < b
shows ((At. (iexp (—(t * a)) — dexp (—(t x b)) / (i *t)) —— b — a) (at 0)
(is (?F —— -) (at -))
(proof)

lemma Levy-Inversion-auz2:

fixes a bt :: real

assumes o < band t # 0

shows cmod ((iexp (t x b) — iexp (t x a)) / (ixt) <b—a(is F < -)
(proof)

theorem (in real-distribution) Levy-Inversion:
fixes a b :: real
assumes a < b
defines p = measure M and ¢ = char M
assumes p {a} = 0 and p {b} = 0
shows (AT. 1 / (2 % pi) *x (CLBINT t=—T..T. (iexp (—(t * a)) — iexp (—(¢ *
D)) / G+ 1) * o 1))
— p {a<. b}
(is (AT. 1 /(2 % pi) * (CLBINT t=—T..T. ?F't x ¢ t)) —— of-real (u
{a<..b}))
(proof)

theorem Levy-uniqueness:
fixes M1 M2 :: real measure
assumes real-distribution M1 real-distribution M2 and
char M1 = char M2
shows M1 = M2

(proof)

THEORY “Central-Limit-Theorem” 93

18.2 The Levy continuity theorem

theorem levy-continuityl:
fixes M :: nat = real measure and M’ :: real measure
assumes An. real-distribution (M n) real-distribution M' weak-conv-m M M’
shows (An. char (M n) t) —— char M’ t

{proof)

theorem levy-continuity:
fixes M :: nat = real measure and M’ :: real measure
assumes real-distr-M : An. real-distribution (M n)
and real-distr-M": real-distribution M’
and char-conv: At. (An. char (M n) t) —— char M’ t
shows weak-conv-m M M’

(proof)

end

19 The Central Limit Theorem

theory Central-Limit-Theorem
imports Levy
begin

theorem (in prob-space) central-limit-theorem-zero-mean:
fixes X :: nat = ’‘a = real
and p :: real measure
and o :: real
and S :: nat = 'a = real
assumes X-indep: indep-vars (\i. borel) X UNIV
and X-mean-0: An. expectation (X n) = 0
and o-pos: ¢ > 0
and X-square-integrable: \n. integrable M (\z. (X n z)?)
and X-variance: \n. variance (X n) = o?
and X-distrib: \n. distr M borel (X n) = p
defines Sn = Az. Y i<n. X iz
shows weak-conv-m (An. distr M borel (Az. Sn x| sqrt (n * 02))) std-normal-distribution

(proof)

theorem (in prob-space) central-limit-theorem:

fixes X :: nat = ’‘a = real
and p :: real measure
and o :: real
and S :: nat = 'a = real

assumes X-indep: indep-vars (Mi. borel) X UNIV
and X-mean: A\n. expectation (X n) = m
and o-pos: 0 > 0
and X-square-integrable: \n. integrable M (\z. (X n z)?)
and X-variance: \n. variance (X n) = o2

THEORY “Discrete-Topology” 94

and X-distrib: An. distr M borel (X n) = p
defines X' iz =Xiz —m
shows weak-conv-m (An. distr M borel (A\z. (3. i<n. X' i z) / sqrt (nxc?)))
std-normal-distribution

(proof)

end

theory Discrete-Topology
imports HOL— Analysis. Analysis
begin

Copy of discrete types with discrete topology. This space is polish.

typedef ’a discrete = UNIV::'a set
morphisms of-discrete discrete

(proof)

instantiation discrete :: (type) metric-space
begin

definition dist-discrete :: 'a discrete = 'a discrete = real
where dist-discrete n m = (if n = m then 0 else 1)

definition uniformity-discrete :: ('a discrete x 'a discrete) filter where
(uniformity::('a discrete x ’'a discrete) filter) = (INF ec{0 <..}. principal {(z,
y). dist z y < e})

definition open-discrete :: 'a discrete set = bool where
(open::'a discrete set = bool) U <— (VzeU. eventually (A(z/, y). z' =2 — y
€ U) uniformity)

instance (proof)
end

lemma open-discrete: open (S :: 'a discrete set)
{proof)

instance discrete :: (type) complete-space

(proof)

instance discrete :: (countable) countable
(proof)

instance discrete :: (countable) second-countable-topology

(proof)

instance discrete :: (countable) polish-space (proof)

THEORY “Probability-Mass-Function” 95

end

20 Probability mass function

theory Probability-Mass-Function
imports

Giry-Monad

HOL- Library. Multiset
begin

Conflicting notation from HOL— Analysis. Infinite-Sum

no-notation Infinite-Sum.abs-summable-on (infixr <abs’-summable’-on> 46)

lemma AE-emeasure-singleton:
assumes z: emeasure M {z} # 0 and ae: AE z in M. P x shows Pz

(proof)

lemma AFE-measure-singleton: measure M {¢} # 0 = AFzin M. Px = Pz
(proof)

lemma (in finite-measure) AE-support-countable:

assumes [simp|: sets M = UNIV

shows (AE x in M. measure M {z} # 0) «— (3 5. countable S N\ (AE z in M.
z € S))
(proof)

20.1 PMF as measure

typedef ‘a pmf = {M :: 'a measure. prob-space M A sets M = UNIV A (AE x in
M. measure M {z} # 0)}
morphisms measure-pmf Abs-pmf

{proof)
declare [[coercion measure-pmf]]

lemma prob-space-measure-pmf: prob-space (measure-pmf p)
(proof)

interpretation measure-pmf: prob-space measure-pmf M for M
(proof)

interpretation measure-pmf: subprob-space measure-pmf M for M
(proof)

lemma subprob-space-measure-pmf: subprob-space (measure-pmf x)
(proof)

locale pmf-as-measure
begin

THEORY “Probability-Mass-Function” 96

setup-lifting type-definition-pmf
end

context
begin

interpretation pmjf-as-measure (proof)

lemma sets-measure-pmf[simp|: sets (measure-pmf p) = UNIV
(proof)

lemma sets-measure-pmf-count-space[measurable-congl:
sets (measure-pmf M) = sets (count-space UNIV)

(proof)

lemma space-measure-pmf|[simp): space (measure-pmf p) = UNIV
(proof)

lemma measure-pmf-UNIV [simp]: measure (measure-pmf p) UNIV = 1

(proof)

lemma measure-pmf-in-subprob-algebra|measurable (raw)]: measure-pmf © € space
(subprob-algebra (count-space UNIV))

(proof)

lemma measurable-pmf-measurel [simp]: measurable (M :: 'a pmf) N = UNIV —
space N

{proof)

lemma measurable-pmf-measure2[simp]: measurable N (M :: 'a pmf) = measurable
N (count-space UNIV)

{proof)

lemma measurable-pair-restrict-pmf2:

assumes countable A

assumes [measurable]: Ny. y € A = (Az. f (z, y)) € measurable M L

shows f € measurable (M) p restrict-space (measure-pmf N) A) L (is f €
measurable M -)
(proof)

lemma measurable-pair-restrict-pmf1:
assumes countable A
assumes [measurable]: Az. © € A = (Ay. f (z, y)) € measurable N L
shows f € measurable (restrict-space (measure-pmf M) A @ p N) L

{(proof)

lift-definition pmf :: ‘a pmf = 'a = real is AM z. measure M {z} {proof)

THEORY “Probability-Mass-Function” 97

lift-definition set-pmf :: ‘a pmf = 'a set is AM. {z. measure M {z} # 0} (proof)
declare [[coercion set-pmf]]

lemma AFE-measure-pmf: AE x in (M::'a pmf). x € M
(proof)

lemma emeasure-pmf-single-eq-zero-iff:
fixes M :: 'a pmf
shows emeasure M {y} = 0 +— y ¢ M
(proof)

lemma AFE-measure-pmf-iff: (AE x in measure-pmf M. P z) «+— (VyeM. P y)
(proof)

lemma AE-pmfI: (\y. y € set-pmf M = P y) = almost-everywhere (measure-pmf
M) P
(proof)

lemma countable-set-pmf [simp]: countable (set-pmf p)
(proof)

lemma pmf-positive: x € set-pmfp =— 0 < pmfp z
(proof)

lemma pmf-nonneg[simp]: 0 < pmf p
(proof)

lemma pmf-not-neg [simp]: —pmfp z < 0
(proof)

lemma pmf-pos [simp]: pmfp x # 0 = pmfpz > 0
(proof)

lemma pmf-le-1: pmfp z < 1

{proof)

lemma set-pmf-not-empty: set-pmf M # {}
(proof)

lemma set-pmf-iff: x € set-pmf M «— pmf M z # 0
(proof)

lemma pmf-positive-iff: 0 < pmfp x <— = € set-pmf p
(proof)

lemma set-pmf-eq: set-pmf M = {x. pmf M « # 0}
(proof)

THEORY “Probability-Mass-Function” 98

lemma set-pmf-eq”: set-pmf p = {x. pmfp x> 0}
(proof)

lemma emeasure-pmf-single:
fixes M :: 'a pmf
shows emeasure M {z} = pmf M z
(proof)

lemma measure-pmf-single: measure (measure-pmf M) {x} = pmf M z
(proof)

lemma emeasure-measure-pmf-finite: finite S = emeasure (measure-pmf M) S

= (>_seS. pmf M s)
{proof)

lemma measure-measure-pmf-finite: finite S = measure (measure-pmf M) S =
sum (pmf M) S
(proof)

lemma sum-pmf-eq-1:
assumes finite A set-pmfp C A
shows (> z€A. pmfpzx) =1
(proof)

lemma nn-integral-measure-pmf-support:

fixes f :: 'a = ennreal

assumes f: finite A and nn: Ax. x € A = 0 < fz N\z. z € set-pmf M = =z
¢A= fz=20

shows ([Tz. fz Omeasure-pmf M) = (3. xz€A. fx * pmf M z)
(proof)

lemma nn-integral-measure-pmf-finite:
fixes f :: 'a = ennreal
assumes f: finite (set-pmf M) and nn: Az. z € set-pmf M — 0 < fz
shows ([Tz. fz Omeasure-pmf M) = (3 x€set-pmf M. [z x pmf M z)
(proof)

lemma integrable-measure-pmf-finite:
fixes f :: 'a = 'b::{banach, second-countable-topology}
shows finite (set-pmf M) = integrable M f
(proof)

lemma integral-measure-pmf-real:
assumes [simp]: finite A and Aa. a € set-pmf M = fa# 0 = a€ A
shows ([z. f z Omeasure-pmf M) = (}_ a€A. f a * pmf M a)

(proof)

lemma integrable-pmf: integrable (count-space X) (pmf M)
(proof)

THEORY “Probability-Mass-Function” 99

lemma integral-pmf: ([x. pmf M x dcount-space X) = measure M X
(proof)

lemma integral-pmf-restrict:
(f::'a = "b::{banach, second-countable-topology}) € borel-measurable (count-space
UNIV) =
([z. fx Omeasure-pmf M) = ([z. f z Orestrict-space M M)

{proof)

lemma emeasure-pmf: emeasure (M::'a pmf) M = 1

(proof)

lemma emeasure-pmf-UNIV [simp]: emeasure (measure-pmf M) UNIV = 1

(proof)

lemma in-null-sets-measure-pmfI:
A N set-pmf p = {} = A € null-sets (measure-pmf p)

(proof)

lemma measure-subprob: measure-pmf M € space (subprob-algebra (count-space
UNIV))
(proof)

20.2 Monad Interpretation

lemma measurable-measure-pmf|measurable]:
(Az. measure-pmf (M z)) € measurable (count-space UNIV) (subprob-algebra
(count-space UNIV'))

(proof)

lemma bind-measure-pmf-cong:

assumes A\z. A x € space (subprob-algebra N) Ax. B x € space (subprob-algebra
N)

assumes Ai. i € set-pmfr — Ai=Bi

shows bind (measure-pmf) A = bind (measure-pmf z) B
(proof)

lift-definition bind-pmf :: ‘a pmf = (‘a = 'b pmf) = 'b pmf is bind
{proof)

adhoc-overloading Monad-Syntaz.bind = bind-pmf

lemma ennreal-pmf-bind: pmf (bind-pmf N f) i = ([Tz. pmf (fz) i Omeasure-pmf
N)
(proof)

lemma pmf-bind: pmf (bind-pmf N f) i = ([z. pmf (f z) i Omeasure-pmf N)
(proof)

THEORY “Probability-Mass-Function” 100

lemma bind-pmf-const[simp|: bind-pmf M (Az. ¢) = ¢
(proof)

lemma set-bind-pmf[simp]: set-pmf (bind-pmf M N) = (| M eset-pmf M. set-pmf
(N M))
(proof)

lemma bind-pmf-cong [fundef-congl:
assumes p = ¢
shows (Az. z € set-pmf ¢ = fz = g x) = bind-pmf p f = bind-pmf q g
(proof)

lemma bind-pmf-cong-simp:

p=q¢= (\z. x € set-pmf ¢ =simp=> fz = g x) = bind-pmf p f = bind-pmf
q9g

(proof)

lemma measure-pmf-bind: measure-pmf (bind-pmf M f) = (measure-pmf M >=
(Az. measure-pmf (f z)))
(proof)

lemma nn-integral-bind-pmf(simp|: ([Tz. f x Obind-pmf M N) = ([Tz. [Ty. fy
ON z OM)
(proof)

+

lemma emeasure-bind-pmf|simp]: emeasure (bind-pmf M N) X = ([tz. emeasure

(N z) X OM)
(proof)

lift-definition return-pmf :: '‘a = 'a pmf is return (count-space UNIV)
(proof)

lemma bind-return-pmf: bind-pmf (return-pmfz) f = fz
(proof)

lemma set-return-pmf|[simpl: set-pmf (return-pmf z) = {x}
{proof)

lemma bind-return-pmf’: bind-pmf N return-pmf = N
(proof)

lemma bind-assoc-pmf: bind-pmf (bind-pmf A B) C = bind-pmf A (Az. bind-pmf
(Bz) C)
(proof)

definition map-pmf f M = bind-pmf M (Az. return-pmf (f z))

lemma map-bind-pmf: map-pmf f (bind-pmf M g) = bind-pmf M (Ax. map-pmf f

THEORY “Probability-Mass-Function” 101

(9))
{proof)

lemma bind-map-pmf: bind-pmf (map-pmf f M) g = bind-pmf M (Az. g (f z))
(proof)

lemma map-pmf-transfer[transfer-rule]:

rel-fun (=) (rel-fun cr-pmf cr-pmf) (A M. distr M (count-space UNIV) f)
map-pmf
{(proof)

lemma map-pmf-rep-eq:
measure-pmf (map-pmf f M) = distr (measure-pmf M) (count-space UNIV') f
(proof)

lemma map-pmf-id[simpl: map-pmf id = id
(proof)

lemma map-pmf-ident[simp]: map-pmf (Az. x) = (Az.)
(proof)

lemma map-pmf-compose: map-pmf (f o g) = map-pmf f o map-pmf g
(proof)

lemma map-pmf-comp: map-pmf f (map-pmf g M) = map-pmf (Az. f (g z)) M
(proof)

lemma map-pmf-cong: p = ¢ = (A\z. = € set-pmf ¢ = fz = g £) = map-pmf
fp = map-pmf g q
(proof)

lemma pmf-set-map: set-pmf o map-pmf f = (°) f o set-pmf
(proof)

lemma set-map-pmf[simp|: set-pmf (map-pmf f M) = f'set-pmf M
(proof)

lemma emeasure-map-pmf|[simpl: emeasure (map-pmf f M) X = emeasure M (f
—4X)
(proof)

¢

lemma measure-map-pmf|[simpl: measure (map-pmf f M) X = measure M (f —
X)
(proof)

lemma nn-integral-map-pmf(simp): ([Tz. fx Omap-pmf g M) = ([Tz. f (g z)
OM)
(proof)

THEORY “Probability-Mass-Function” 102

lemma ennreal-pmf-map: pmf (map-pmf f p) = = ([1 y. indicator (f —*{z}) y
Omeasure-pmf p)
(proof)

lemma pmf-map: pmf (map-pmf f p) x = measure p (f —*{z})
(proof)

lemma nn-integral-pmf: ([~ z. pmf p x dcount-space A) = emeasure (measure-pmf
p) A
{(proof)

lemma integral-map-pmf[simp]:
fixes f :: 'a = 'b::{banach, second-countable-topology}
shows integral® (map-pmf g p) f = integral* p (\z. f (g 7))
(proof)

lemma integrable-map-pmf-eq [simp:
fixes g :: 'a = 'b::{banach, second-countable-topology}
shows integrable (map-pmf f p) g «— integrable (measure-pmf p) (Az. g (f z))
(proof)

lemma integrable-map-pmf [introl:
fixes g :: 'a = 'b::{banach, second-countable-topology}
shows integrable (measure-pmf p) (Az. g (f ©)) = integrable (map-pmf f p) ¢
(proof)

lemma pmf-abs-summable [intro]: pmf p abs-summable-on A
(proof)

lemma measure-pmf-conv-infsetsum: measure (measure-pmf p) A = infsetsum (pmf

p) A
(proof)

lemma infsetsum-pmf-eq-1:
assumes set-pmfp C A
shows infsetsum (pmf p) A = 1
(proof)

lemma map-return-pmf [simp|: map-pmf [(return-pmf x) = return-pmf (f z)
(proof)

lemma map-pmf-const[simpl: map-pmf (A-. ¢) M = return-pmf c
(proof)

lemma pmf-return [simp]: pmf (return-pmf z) y = indicator {y}
(proof)

lemma nn-integral-return-pmf(simp): 0 < fz = ([Tz. fz Oreturn-pmf z) = fz

{proof)

THEORY “Probability-Mass-Function” 103

lemma emeasure-return-pmf[simpl: emeasure (return-pmf z) X = indicator X x
(proof)

lemma measure-return-pmf [simp|: measure-pmf.prob (return-pmf x) A = indica-
tor A x
(proof)

lemma return-pmf-inj[simpl: return-pmf x = return-pmfy «<— x =y
(proof)

lemma map-pmf-eq-return-pmf-iff:
map-pmf [p = return-pmf z «— (Vy € set-pmf p. fy = x)
(proof)

definition pair-pmf A B = bind-pmf A (Az. bind-pmf B (\y. return-pmf (z, y)))

lemma pmf-pair: pmf (pair-pmf M N) (a, b) = pmf M a * pmf N b
(proof)

lemma set-pair-pmf[simp]: set-pmf (pair-pmf A B) = set-pmf A x set-pmf B
(proof)

lemma measure-pmf-in-subprob-space[measurable (raw)]:
measure-pmf M € space (subprob-algebra (count-space UNIV))

(proof)

lemma nn-integral-pair-pmf”: ([*z. f z Opair-pmf A B) = ([Ta. [Tb. f (a, b)
0B 0A)
(proof)

lemma bind-pair-pmf:
assumes M [measurable]: M € measurable (count-space UNIV Q) py count-space
UNIV) (subprob-algebra N)
shows measure-pmf (pair-pmf A B) >= M = (measure-pmf A >= (Az. mea-
sure-pmf B >= (A\y. M (z, v))))
(is 7L = 7R)
(proof)

lemma map-fst-pair-pmf: map-pmf fst (pair-pmf A B) = A
(proof)

lemma map-snd-pair-pmf: map-pmf snd (pair-pmf A B) = B
(proof)

lemma nn-integral-pmf":
inj-on f A = ([*x. pmf p (f z) Dcount-space A) = emeasure p (f < A)
{proof)

THEORY “Probability-Mass-Function” 104

lemma pmf-le-0-iff [simp]: pmf M p < 0 <— pmf M p =0
(proof)

lemma min-pmf-0[simpl: min (pmf M p) 0 = 0 min 0 (pmf M p) = 0
(proof)

lemma pmf-eq-0-set-pmf: pmf M p = 0 <— p ¢ set-pmf M
(proof)

lemma pmf-map-ing: inj-on f (set-pmf M) = x € set-pmf M = pmf (map-pmf
M) (fz) =pmf Mz
(proof)

lemma pair-return-pmf [simp]: pair-pmf (return-pmf) (return-pmfy) = return-pmf
(=, y)
(proof)

lemma pmf-map-inj” inj f = pmf (map-pmf f M) (fz) = pmf M z
(proof)

lemma expectation-pair-pmf-fst [simpl:

fixes [:: 'a = 'b::{banach, second-countable-topology}

shows measure-pmf.expectation (pair-pmfp q) (Az. f (fst x)) = measure-pmf.expectation
pf
(proof)

lemma expectation-pair-pmf-snd [simp]:

fixes f :: 'a = 'b::{banach, second-countable-topology}

shows measure-pmf.expectation (pair-pmf p q) (Az. f (snd x)) = measure-pmf.expectation
af
{proof)

lemma pmf-map-outside: x ¢ f < set-pmf M = pmf (map-pmf f M) z = 0
(proof)

lemma measurable-set-pmf|measurable]: Measurable.pred (count-space UNIV) (Az.
z € set-pmf M)
{proof)

20.3 PMFs as function

context

fixes [:: 'a = real

assumes nonneg: N\z. 0 < fz

assumes prob: ([Tz. fx dcount-space UNIV) = 1
begin

lift-definition embed-pmf :: 'a pmf is density (count-space UNIV) (ennreal o f)
(proof)

THEORY “Probability-Mass-Function” 105

lemma pmf-embed-pmf: pmf embed-pmfz = fzx
(proof)

lemma set-embed-pmf: set-pmf embed-pmf = {z. fx # 0}
(proof)

end

lemma embed-pmf-transfer:

rel-fun (eg-onp (A\f. (Vz. 0 < fz) A ([Tz. ennreal (f z) dcount-space UNIV)
= 1)) pmf-as-measure.cr-pmf (Af. density (count-space UNIV) (ennreal o f)) em-
bed-pmf

(proof)

lemma measure-pmf-eq-density: measure-pmf p = density (count-space UNIV)

(pmf p)
(proof)

lemma td-pmf-embed-pmf:

type-definition pmf embed-pmf {f::'a = real. Vz. 0 < fz) A ([Tz. ennreal (f
x) Ocount-space UNIV) = 1}

(proof)

end

+

lemma nn-integral-measure-pmf: ([z. f x Omeasure-pmf p) = [T x. ennreal

(pmf p z) * f x Ocount-space UNIV
(proof)

lemma integral-measure-pmf:

fixes f :: 'a = 'b::{banach, second-countable-topology}

assumes A: finite A

shows (Aa. a € set-pmf M = fa # 0 = a € A) = (LINT z|M. fz) =
(>-acA. pmf M a g f a)

(proof)

lemma expectation-return-pmf [simp]:
fixes f :: 'a = 'b::{banach, second-countable-topology}
shows measure-pmf.expectation (return-pmfz) f = fx

{proof)

lemma pmf-expectation-bind:
fixes p :: ‘a pmf and f :: 'a = b pmf
and h :: ‘b = ‘c::{banach, second-countable-topology}
assumes finite A \z. © € A = finite (set-pmf (f x)) set-pmfp C A
shows measure-pmf.expectation (p >= f) h =
(53" acA. pmf p a xr measure-pmf.expectation (f a) h)
(proof)

THEORY “Probability-Mass-Function” 106

lemma continuous-on-LINT-pmf: — This is dominated convergence!?
fixes f :: i = ’a::topological-space = 'b::{banach, second-countable-topology}
assumes f: \i. i € set-pmf M = continuous-on A (f i)
and bnd: N\ai. a € A = i € set-pmf M = norm (fia) < B
shows continuous-on A (Aa. LINT i{|M. fi a)

(proof)

lemma continuous-on-LBINT:
fixes f :: real = real
assumes f: \b. a < b = set-integrable lborel {a..b} f
shows continuous-on UNIV (Ab. LBINT z:{a..b}. f z)

(proof)

locale pmf-as-function
begin

setup-lifting td-pmf-embed-pmf

lemma set-pmf-transfer|transfer-rule]:
assumes bi-total A
shows rel-fun (per-pmf A) (rel-set A) (M. {z. fz # 0}) set-pmf
(proof)

end

context
begin

interpretation pmjf-as-function (proof)

lemma pmf-eql: (A\i. pmf M i = pmf Ni) = M = N
(proof)

lemma pmf-eq-iff: M = N «— (Vi. pmf M i = pmf N 1)
(proof)

lemma pmf-neq-exists-less:
assumes M # N
shows dz. pmf Mz < pmf Nz

(proof)

lemma bind-commute-pmf: bind-pmf A (Az. bind-pmf B (C z)) = bind-pmf B (\y.
bind-pmf A (Az. C z y))
(proof)

lemma pair-map-pmf1: pair-pmf (map-pmf f A) B = map-pmf (apfst f) (pair-pmf
A B)

(proof)

THEORY “Probability-Mass-Function” 107

lemma pair-map-pmf2: pair-pmf A (map-pmf f B) = map-pmf (apsnd f) (pair-pmf
A B)
(proof)

lemma map-pair: map-pmf (A(a, b). (fa, g b)) (pair-pmf A B) = pair-pmf (map-pmf
fA) (map-pmf g B)
(proof)

end

lemma pair-return-pmfl1: pair-pmf (return-pmf z) y = map-pmf (Pair x) y
(proof)

lemma pair-return-pmf2: pair-pmf x (return-pmf y) = map-pmf (Az. (z, y))

(proof)

lemma pair-pair-pmf: pair-pmf (pair-pmf v v) w = map-pmf (A(z, (y, 2)). ((z,
y), 2)) (pair-pmf u (pair-pmf v w))
(proof)

lemma pair-commute-pmf: pair-pmf z y = map-pmf (A=, y). (y, z)) (pair-pmf y
z)
(proof)

lemma set-pmf-subset-singleton: set-pmf p C {z} «— p = return-pmf

(proof)

lemma bind-eq-return-pmf:
bind-pmf p f = return-pmf x <— (Y yEset-pmf p. f y = return-pmf x)
(is ?lhs <— ?rhs)

(proof)

lemma pmf-False-conv-True: pmf p False = 1 — pmf p True
(proof)

lemma pmf-True-conv-False: pmf p True = 1 — pmf p False

(proof)

20.4 Conditional Probabilities

lemma measure-pmf-zero-iff: measure (measure-pmf p) s = 0 <— set-pmfp N s
={}
(proof)

context
fixes p :: ‘a pmf and s :: 'a set
assumes not-empty: set-pmf p N s # {}
begin

THEORY “Probability-Mass-Function” 108

interpretation pmf-as-measure {proof)

lemma emeasure-measure-pmf-not-zero: emeasure (measure-pmf p) s # 0

(proof)

lemma measure-measure-pmf-not-zero: measure (measure-pmf p) s # 0
(proof)

lift-definition cond-pmf :: 'a pmf is
uniform-measure (measure-pmf p) s

(proof)

lemma pmf-cond: pmf cond-pmf x = (if x € s then pmf p x / measure p s else 0)

(proof)

lemma set-cond-pmf[simp]: set-pmf cond-pmf = set-pmf p N s
(proof)

end

lemma measure-pmf-posl: © € set-pmf p = x € A = measure-pmf.prob p A >
0

{proof)

lemma cond-map-pmf:

assumes set-pmfp N f — s # {}

shows cond-pmf (map-pmf f p) s = map-pmf f (cond-pmfp (f —°s))
(proo)

lemma bind-cond-pmf-cancel:

assumes [simp]: A\z. © € set-pmf p = set-pmf ¢ N {y. R z y} # {}

assumes [simp]: A\y. y € set-pmf ¢ = set-pmf p N {z. R z y} # {}

assumes [simp]: Az y. © € set-pmf p = y € set-pmf ¢ = R x y = measure
q{y. R zy} = measure p {z. R z y}

shows bind-pmf p (\z. cond-pmf q {y. R z y}) = ¢

(proof)

20.5 Relator

inductive rel-pmf :: ('a = 'b = bool) = 'a pmf = b pmf = bool
for Rpgq
where
[Az y. (=, y) € set-pmf pg = R z y;
map-pmf fst pg = p; map-pmf snd pg = q |
= rel-pmf R p q

lemma rel-pmfI:
assumes R: rel-set R (set-pmf p) (set-pmf q)

THEORY “Probability-Mass-Function” 109

assumes eq: Az y. = € set-pmf p = y € set-pmf ¢ = Rz y =
measure p {z. R x y} = measure ¢ {y. R = y}
shows rel-pmf R p ¢

(proof)

lemma rel-pmf-imp-rel-set: rel-pmf R p ¢ = rel-set R (set-pmf p) (set-pmf q)
(proof)

lemma rel-pmfD-measure:
assumes rel-R: rel-pmf R p gand R: A\ab. Rab=— Ray+— Ruxbd
assumes z € set-pmf p y € set-pmf q
shows measure p {z. R x y} = measure ¢ {y. R = y}

(proof)

lemma rel-pmf-measureD:

assumes rel-pmf R p q

shows measure (measure-pmf p) A < measure (measure-pmf q) {y. 3z€A. R z
y} (is 2lhs < ?2rhs)
(proof)

lemma rel-pmf-iff-measure:
assumes symp R transp R
shows rel-pmf R p q «—
rel-set R (set-pmf p) (set-pmf q) A
(Vzeset-pmf p. YV yEset-pmf q. R x y —> measure p {z. R = y} = measure ¢
{y- Rz y})
(proof)

lemma quotient-rel-set-disjoint:

equivp R = C € UNIV [/ {(z,y). Rz y} = rel-set RA B = AN C = {}
+— BN C={}

(proof)

lemma quotientD: equiv X R = A€ X // R=—=2 € A= A =R “{z}
{proof)

lemma rel-pmf-iff-equivp:
assumes equivp R
shows rel-pmf R p g +— (VCeUNIV // {(z, y). R z y}. measure p C = measure
qC)
(is -+— (VCe-//?R. -))
{proof)

bnf pmf: 'a pmf map: map-pmf sets: set-pmf bd : card-suc natLeq rel: rel-pmf
(proof)

lemma map-pmf-idl: (\z. x € set-pmfp = fz = x) = map-pmffp=1>p
(proof)

THEORY “Probability-Mass-Function” 110

lemma rel-pmf-conj[simp]:
rel-pmf Az y. PN Qzy)zy<+— P Arel-pmf Qzy
rel-pmf Az y. Qzy AN P)zy<+— P A rel-pmf Qzy
(proof)

lemma rel-pmf-top[simp|: rel-pmf top = top
(proof)

lemma rel-pmf-return-pmf1: rel-pmf R (return-pmf) M +— (Va€M. R z a)
{(proof)

lemma rel-pmf-return-pmf2: rel-pmf R M (return-pmf x) «— (Va€M. R a x)
(proof)

lemma rel-return-pmf[simp): rel-pmf R (return-pmf z1) (return-pmf 22) = R x1
z2
(proof)

lemma rel-pmf-False[simp]: rel-pmf (Az y. False) x y = False
(proof)

lemma rel-pmf-rel-prod:

rel-pmf (rel-prod R S) (pair-pmf A A') (pair-pmf B B’) +— rel-pmf R A B A
rel-pmf S A’ B’
(proof)

lemma rel-pmf-refil:
assumes A\z. z € set-pmfp =— Pz z
shows rel-pmf P p p

{proof)

lemma rel-pmf-bij-betw:
assumes f: bij-betw [(set-pmf p) (set-pmf q)
and eq: Az. z € set-pmf p = pmfp z = pmfq (f z)
shows rel-pmf (Axy. fz =1y) pq

(proof)

context
begin

interpretation pmjf-as-measure (proof)
definition join-pmf M = bind-pmf M (A\z. z)

lemma bind-eg-join-pmf: bind-pmf M f = join-pmf (map-pmf f M)
(proof)

lemma join-eq-bind-pmf: join-pmf M = bind-pmf M id
(proof)

THEORY “Probability-Mass-Function” 111

lemma pmf-join: pmf (join-pmf N) i = ([M. pmf M i dmeasure-pmf N)
(proof)

lemma ennreal-pmf-join: ennreal (pmf (join-pmf N) i) = ([T M. pmf M i Omea-
sure-pmf N)
(proof)

lemma set-pmf-join-pmf|[simpl: set-pmf (join-pmf f) = (U p€Eset-pmf f. set-pmf
p)
(proof)

lemma join-return-pmf: join-pmf (return-pmf M) = M

{proof)

lemma map-join-pmf: map-pmf f (join-pmf AA) = join-pmf (map-pmf (map-pmf
f) AA)
(proof)

lemma join-map-return-pmf: join-pmf (map-pmf return-pmf A) = A
(proof)

end

lemma rel-pmf-joinl:

assumes rel-pmf (rel-pmf P) p q

shows rel-pmf P (join-pmf p) (join-pmf q)
(proof)

lemma rel-pmf-bindl:
assumes pq: rel-pmf R p q
and fg: Az y. Rz y = rel-pmf P (fz) (g y)
shows rel-pmf P (bind-pmf p f) (bind-pmf q g)
(proof)

Proof that rel-pmf preserves orders. Antisymmetry proof follows Thm. 1
in N. Saheb-Djahromi, Cpo’s of measures for nondeterminism, Theoretical
Computer Science 12(1):19-37, 1980, https://doi.org/10.1016,/0304-3975(80)
90003-1

lemma
assumes x: rel-pmf R p q
and refl: reflp R and trans: transp R
shows measure-Ici: measure p {y. R x y} < measure ¢ {y. R = y} (is ?thesis!)
and measure-Ioi: measure p {y. R x y A = R y z} < measure ¢ {y. Rz y N —
R y z} (is ?thesis2)
(proof)

lemma rel-pmf-inf:
fixes p q :: 'a pmf

https://doi.org/10.1016/0304-3975(80)90003-1
https://doi.org/10.1016/0304-3975(80)90003-1

THEORY “Probability-Mass-Function” 112

assumes I: rel-pmf R p q

assumes 2: rel-pmf R q p

and refl: reflp R and trans: transp R

shows rel-pmf (inf R R~171) p q
(proof)

lemma rel-pmf-antisym:
fixes p q :: 'a pmf
assumes 1: rel-pmf R p ¢
assumes 2: rel-pmf R q p
and refl: reflp R and trans: transp R and antisym: antisymp R
shows p = ¢
(proof)

lemma reflp-rel-pmf: reflp R = reflp (rel-pmf R)
(proof)

lemma antisymp-rel-pmf:
[reflp R; transp R; antisymp R |
= antisymp (rel-pmf R)
{proof)

lemma transp-rel-pmf:
assumes transp R
shows transp (rel-pmf R)

(proof)

20.6 Distributions

context
begin

interpretation pmjf-as-function (proof)

20.6.1 Bernoulli Distribution

lift-definition bernoulli-pmf :: real = bool pmf is
Ap b. ((Ap. if b then p else 1 — p) o min 1 o maz 0) p
(proof)

lemma pmjf-bernoulli-True[simp]: 0 < p = p < 1 = pmf (bernoulli-pmf p)
True = p
(proof)

lemma pmf-bernoulli-False[simp]: 0 < p = p < 1 = pmf (bernoulli-pmf p)
False =1 —p
(proof)

lemma set-pmf-bernoulli[simp]: 0 < p = p < 1 => set-pmf (bernoulli-pmf p)
= UNIV

THEORY “Probability-Mass-Function” 113

{proof)

lemma nn-integral-bernoulli-pmf|simpl:
assumes [simp]: 0 < pp <1 Az. 0 < fzx
shows ([Tz. fz dbernoulli-pmf p) = f True = p + f False x (I — p)
(proof)

lemma integral-bernoulli-pmf|simp]:
assumes [simp]: 0 < pp < 1
shows ([z. fz dbernoulli-pmf p) = f True x p + f False * (1 — p)
(proof)

lemma pmf-bernoulli-half [simp]: pmf (bernoulli-pmf (1 / 2))x =1/ 2
(proof)

lemma measure-pmf-bernoulli-half: measure-pmf (bernoulli-pmf (1 / 2)) = uni-
form-count-measure UNIV

{proof)

20.6.2 Geometric Distribution

context
fixes p :: real assumes plarith]: 0 < pp < 1
begin

lift-definition geometric-pmf :: nat pmf is An. (1 — p) n *x p
(proof)

lemma pmf-geometric[simp|: pmf geometric-pmfn = (1 — p) n * p
(proof)

end

lemma geometric-pmf-1 [simp]: geometric-pmf 1 = return-pmf 0
(proof)

lemma set-pmf-geometric: 0 < p = p < 1 = set-pmf (geometric-pmf p) =
UNIV

{proof)

lemma geometric-sums-times-n:

fixes c::'a::{banach,real-normed-field}

assumes norm c < 1

shows (An. ¢c™n * of-nat n) sums (¢ / (1 — ¢)?)
(proof)

lemma geometric-sums-times-norm:
fixes c::'a::{banach,real-normed-field}
assumes norm ¢ < I

THEORY “Probability-Mass-Function” 114

shows (An. norm (¢™n * of-nat n)) sums (norm ¢ / (1 — norm c)?)
(proof)

lemma integrable-real-geometric-pmf:
assumes p € {0<..1}
shows integrable (geometric-pmf p) real

(proof)

lemma expectation-geometric-pmf:
assumes p € {0<..1}
shows measure-pmf.expectation (geometric-pmf p) real = (1 — p) / p

(proof)

lemma geometric-bind-pmf-unfold:
assumes p € {0<..1}
shows geometric-pmf p =
do {b « bernoulli-pmf p;
if b then return-pmf 0 else map-pmf Suc (geometric-pmf p)}

(proof)
20.6.3 Uniform Multiset Distribution

context
fixes M :: ‘a multiset assumes M-not-empty: M # {#}
begin

lift-definition pmf-of-multiset :: 'a pmf is A\z. count M x / size M
(proof)

lemma pmf-of-multiset[simpl: pmf pmf-of-multiset x = count M x | size M
(proof)

lemma set-pmf-of-multiset[simp|: set-pmf pmf-of-multiset = set-mset M
(proof)

end

20.6.4 Uniform Distribution

context
fixes S :: ‘a set assumes S-not-empty: S # {} and S-finite: finite S
begin

lift-definition pmf-of-set :: ‘a pmf is Az. indicator S = / card S
(proof)

lemma pmf-of-set[simp]: pmf pmf-of-set x = indicator S x / card S

(proof)

lemma set-pmf-of-set[simpl: set-pmf pmf-of-set = S

THEORY “Probability-Mass-Function” 115

{proof)

lemma emeasure-pmf-of-set-space[simp|: emeasure pmf-of-set S = 1
(proof)

lemma nn-integral-pmf-of-set: nn-integral (measure-pmf pmf-of-set) f = sum f S
/ card S
(proof)

lemma integral-pmf-of-set: integral™ (measure-pmf pmf-of-set) f = sum f S / card
S
(proof)

lemma emeasure-pmf-of-set: emeasure (measure-pmf pmf-of-set) A = card (S N
A) / card S

(proof)

lemma measure-pmf-of-set: measure (measure-pmf pmf-of-set) A = card (S N A)
/ card S

{proof)

end

lemma pmf-expectation-bind-pmf-of-set:
fixes A :: ‘a set and f :: 'a = 'b pmf
and h :: ‘b = ‘c::{banach, second-countable-topology}
assumes A # {} finite A \z. ¢ € A = finite (set-pmf (f z))
shows measure-pmf .expectation (pmf-of-set A >= f) h =
(5" acA. measure-pmf.expectation (f a) h /g real (card A))

{proof)

lemma map-pmf-of-set:
assumes finite A A # {}
shows map-pmf [(pmf-of-set A) = pmf-of-multiset (image-mset f (mset-set
1))
(is 2lhs = ?rhs)
(proof)

lemma pmf-bind-pmf-of-set:
assumes A # {} finite A
shows pmf (bind-pmf (pmf-of-set A) f) = =
(- zacA. pmf (f xa) z) / real-of-nat (card A) (is ?lhs = 2rhs)
(proof)

lemma pmf-of-set-singleton: pmf-of-set {x} = return-pmf
(proof)

lemma map-pmf-of-set-inj:
assumes f: inj-on f A

THEORY “Probability-Mass-Function” 116

and [simp|: A # {} finite A
shows map-pmf f (pmf-of-set A) = pmf-of-set (f ¢ A) (is ?lhs = ?rhs)
(proof)

lemma map-pmf-of-set-bij-betw:

assumes bij-betw f A B A # {} finite A

shows map-pmf [(pmf-of-set A) = pmf-of-set B
(proof)

Choosing an element uniformly at random from the union of a disjoint family
of finite non-empty sets with the same size is the same as first choosing a
set from the family uniformly at random and then choosing an element from
the chosen set uniformly at random.

lemma pmf-of-set-UN:
assumes finite ({|J(f “A) A# {J N\e. s €e A = fa #{}
Nz. z € A = card (f) = n disjoint-family-on f A
shows pmf-of-set (J(f ‘ 4)) = do {x + pmf-of-set A; pmf-of-set (f z)}
(is ?lhs = ?rhs)

(proof)

lemma bernoulli-pmf-half-conv-pmf-of-set: bernoulli-pmf (1 / 2) = pmf-of-set UNIV
(proof)

20.6.5 Poisson Distribution

context
fixes rate :: real assumes rate-pos: 0 < rate
begin

lift-definition poisson-pmf :: nat pmf is Ak. rate ~ k / fact k * exp (—rate)
(proof)

lemma pmf-poisson|[simp|: pmf poisson-pmf k = rate "k | fact k * exp (—rate)
(proof)

lemma set-pmf-poisson[simp|: set-pmf poisson-pmf = UNIV
(proof)

end

20.6.6 Binomial Distribution

context
fixes n :: nat and p :: real assumes p-nonneg: 0 < p and p-le-1: p < 1
begin

lift-definition binomial-pmf :: nat pmf is Ak. (n choose k) x p"k = (1 — p) (n —
k)
(proof)

THEORY “Probability-Mass-Function” 117

lemma pmf-binomial[simp|: pmf binomial-pmf k = (n choose k) * p7k x (1 —
p) (n — k)
(proof)

lemma set-pmf-binomial-eq: set-pmf binomial-pmf = (if p = 0 then {0} else if p
= 1 then {n} else {.. n})
(proof)

end
end

lemma set-pmjf-binomial-0[simp): set-pmf (binomial-pmf n 0) = {0}

(proof)

lemma set-pmf-binomial-1[simp]: set-pmf (binomial-pmf n 1) = {n}
{proof)

lemma set-pmjf-binomial[simp]: 0 < p = p < 1 = set-pmf (binomial-pmf n p)
= {.n}

{proof)

lemma finite-set-pmf-binomial-pmf [intro]: p € {0..1} = finite (set-pmf (binomial-pmf
n p))
(proof)

lemma expectation-binomial-pmf’:
fixes f :: nat = ‘a :: {banach, second-countable-topology}
assumes p: p € {0..1}
shows measure-pmf.expectation (binomial-pmf n p) f =
(O k<n. (real (n choose k) x p "k x (1 — p) " (n —k)) %5 [k)
(proof)

lemma integrable-binomial-pmf [simp, intro]:
fixes f :: nat = ‘a :: {banach, second-countable-topology}
assumes p: p € {0..1}
shows integrable (binomial-pmf n p) f

(proof)
context includes lifting-syntax
begin
lemma bind-pmf-parametric [transfer-rule]:
(rel-pmf A ===> (A ===> rel-pmf B) ===> rel-pmf B) bind-pmf bind-pmf
(proof)
lemma return-pmf-parametric [transfer-rule]: (A ===> rel-pmf A) return-pmf

return-pmf

THEORY “Probability-Mass-Function” 118

(proof)

end

primrec replicate-pmf :: nat = ’'a pmf = 'a list pmf where
replicate-pmf 0 - = return-pmf [|
| replicate-pmf (Suc n) p = do {x < p; xs + replicate-pmf n p; return-pmf (z#xs)}

lemma replicate-pmf-1: replicate-pmf 1 p = map-pmf (A\z. [z]) p
(proof)

lemma set-replicate-pmyf:
set-pmf (replicate-pmf n p) = {xs€lists (set-pmf p). length xs = n}
(proof)

lemma replicate-pmf-distrib:
replicate-pmf (m + n) p =
do {zs + replicate-pmf m p; ys < replicate-pmf n p; return-pmf (zs Q ys)}
(proof)

lemma power-diff "

assumes b < qa

shows z " (a—b)=(ifx=0ANa="0bthen 1elsex " a / (x:'a:field) ~b)
(proof)

lemma binomial-pmf-Suc:
assumes p € {0..1}
shows binomial-pmf (Suc n) p =
do {b + bernoulli-pmf p;
k < binomial-pmf n p;
return-pmf ((if b then 1 else 0) + k)} (is - = %rhs)
(proof)

lemma binomial-pmf-0: p € {0..1} = binomial-pmf 0 p = return-pmf 0
(proof)

lemma binomial-pmf-altdef:

assumes p € {0..1}

shows binomial-pmf n p = map-pmf (length o filter id) (replicate-pmf n
(bernoulli-pmf p))

(proof)

20.7 Negative Binomial distribution

The negative binomial distribution counts the number of times a weighted
coin comes up tails before having come up heads n times. In other words:
how many failures do we see before seeing the n-th success?

THEORY “Probability-Mass-Function” 119

An alternative view is that the negative binomial distribution is the sum of
n ii.d. geometric variables (this is the definition that we use).

Note that there are sometimes different conventions for this distributions
in the literature; for instance, sometimes the number of attempts is counted
instead of the number of failures. This only shifts the entire distribution by a
constant number and is thus not a big difference. I think that the convention
we use is the most natural one since the support of the distribution starts
at 0, whereas for the other convention it starts at n.

primrec neg-binomial-pmf :: nat = real = nat pmf where
neg-binomial-pmf 0 p = return-pmf 0
| neg-binomial-pmf (Suc n) p =
map-pmf (A(z,y). (z + y)) (pair-pmf (geometric-pmf p) (neg-binomial-pmf n
p))

lemma neg-binomial-pmf-Suc-0 [simp]: neg-binomial-pmf (Suc 0) p = geomet-
ric-pmf p
(proof)

lemmas neg-binomial-pmf-Suc [simp del] = neg-binomial-pmf.simps(2)

lemma neg-binomial-prob-1 [simpl: neg-binomial-pmf n 1 = return-pmf 0
(proof)

We can now show the aforementioned intuition about counting the failures
before the n-th success with the following recurrence:
lemma neg-binomial-pmf-unfold:
assumes p: p € {0<..1}
shows neg-binomial-pmf (Suc n) p =
do {b + bernoulli-pmf p;
if b then neg-binomial-pmf n p else map-pmf Suc (neg-binomial-pmf
(Suc n) p)}
(is - = %rhs)

{proof)

Next, we show an explicit formula for the probability mass function of the
negative binomial distribution:
lemma pmf-neg-binomial:

assumes p: p € {0<..1}

shows pmf (neg-binomial-pmf n p) k = real (k+ n — 1) choose k) x p ~n *
(1 —p) "k
(proof)

lemma gbinomial-0-left: 0 gchoose k = (if k = 0 then 1 else 0)
(proof)

The following alternative formula highlights why it is called ‘negative bino-
mial distribution’:

THEORY “Probability-Mass-Function” 120

lemma pmjf-neg-binomial:

assumes p: p € {0<..1}

shows pmf (neg-binomial-pmf n p) k = (—1) ~k * ((—real n) gchoose k) * p
“nx (1 —p) Tk
(proof)

The cumulative distribution function of the negative binomial distribution
can be expressed in terms of that of the ‘normal’ binomial distribution.

lemma prob-neg-binomial-pmf-atMost:
assumes p: p € {0<..1}
shows measure-pmf.prob (neg-binomial-pmf n p) {..k} =
measure-pmf.prob (binomial-pmf (n + k) (1 — p)) {..k}
(proof)

lemma prob-neg-binomial-pmf-less Than:
assumes p: p € {0<..1}
shows measure-pmf.prob (neg-binomial-pmf n p) {..<k} =
measure-pmf .prob (binomial-pmf (n + k — 1) (1 — p)) {..<k}
(proof)

The expected value of the negative binomial distribution is n(1 — p)/p:

lemma nn-integral-neg-binomial-pmf-real:

assumes p: p € {0<..1}

shows nn-integral (measure-pmf (neg-binomial-pmf n p)) of-nat = ennreal (n *
(1 =p)/p)
(proof)

lemma integrable-neg-binomial-pmf-real:
assumes p: p € {0<..1}
shows integrable (measure-pmf (neg-binomial-pmf n p)) real

{proof)

lemma expectation-neg-binomial-pmf:
assumes p: p € {0<..1}
shows measure-pmf.expectation (neg-binomial-pmf n p) real = n x (1 — p) / p

(proof)

20.8 PMFs from association lists

definition pmf-of-list :: (‘a X real) list = 'a pmf where
pmf-of-list xs = embed-pmf (Az. sum-list (map snd (filter (Az. fst z = z) xs)))

definition pmf-of-list-wf where
pmf-of-list-wf xs +— (Y z€set (map snd xs) . x > 0) A sum-list (map snd zs) =
1

lemma pmf-of-list-wfl:
(Az. z € set (map snd zs) = = > 0) = sum-list (map snd zs) = 1 =
pmf-of-list-wf xs

THEORY “Probability-Mass-Function” 121

{proof)

context
begin

private lemma pmf-of-list-aux:

assumes Az. z € set (map snd zs) = = > 0

assumes sum-list (map snd xs) = 1

shows ([T z. ennreal (sum-list (map snd [z+xs . fst z = z])) Ocount-space
UNIV) = 1
(proof)

lemma pmf-pmf-of-list:
assumes pmf-of-list-wf s
shows pmf (pmf-of-list xs) x = sum-list (map snd (filter (Az. fst z = x) xs))
(proof)

end

lemma set-pmf-of-list:

assumes pmf-of-list-wf s

shows set-pmf (pmf-of-list zs) C set (map fst xs)
(proof)

lemma finite-set-pmf-of-list:
assumes pmf-of-list-wf s
shows finite (set-pmf (pmf-of-list xs))
(proof)

lemma emeasure-Int-set-pmf:
emeasure (measure-pmf p) (A N set-pmf p) = emeasure (measure-pmf p) A
(proof)

lemma measure-Int-set-pmf:
measure (measure-pmf p) (A N set-pmf p) = measure (measure-pmf p) A
(proof)

lemma measure-prob-cong-0:
assumes \z. 2 € A — B= pmfpax =10
assumes \z. 2 € B— A= pmfpax =10
shows measure (measure-pmf p) A = measure (measure-pmf p) B

(proof)

lemma emeasure-pmf-of-list:

assumes pmf-of-list-wf s

shows emeasure (pmf-of-list xs) A = ennreal (sum-list (map snd (filter (Az. fst
z € A) x5)))

(proof)

THEORY “PMF-Impl” 122

lemma measure-pmf-of-list:

assumes pmf-of-list-wf s

shows measure (pmf-of-list xs) A = sum-list (map snd (filter (A\z. fst x € A)
xs))

(proof)

lemma sum-list-nonneg-eq-zero-iff:
fixes zs :: ‘a :: linordered-ab-group-add list
shows (Az. © € set s = = > 0) = sum-list xzs = 0 «— set zs C {0}

(proof)

lemma sum-list-filter-nonzero:
sum-list (filter (Az. z # 0) xs) = sum-list xs
(proof)

lemma set-pmf-of-list-eq:
assumes pmf-of-list-wf zs N\z. x € snd ‘ set xs = z > 0
shows set-pmf (pmf-of-list xs) = fst * set xs

(proof)

lemma pmf-of-list-remove-zeros:

assumes pmf-of-list-wf s

defines zs’' = filter (Az. snd z # 0) s

shows pmf-of-list-wf xs’ pmf-of-list s’ = pmf-of-list xs
(proof)

end

21 Code generation for PMFs

theory PMF-Impl
imports Probability-Mass-Function HOL— Library.A List-Mapping
begin

21.1 General code generation setup

definition pmf-of-mapping :: ('a, real) mapping = 'a pmf where
pmf-of-mapping m = embed-pmf (Mapping.lookup-default 0 m)

lemma nn-integral-lookup-default:
fixes m :: (‘a, real) mapping
assumes finite (Mapping.keys m) All-mapping m (A- z. z > 0)
shows nn-integral (count-space UNIV) (Ak. ennreal (Mapping.lookup-default 0
mk)) =
ennreal (> k€ Mapping.keys m. Mapping.lookup-default 0 m k)
(proof)

THEORY “PMF-Impl” 123

lemma pmf-of-mapping:
assumes finite (Mapping.keys m) All-mapping m (A- p. p > 0)
assumes (> x€Mapping.keys m. Mapping.lookup-default 0 m x) = 1
shows pmf (pmf-of-mapping m) x = Mapping.lookup-default 0 m x
(proof)

lemma pmf-of-set-pmf-of-mapping:
assumes A # {} set zs = A distinct xs
shows pmf-of-set A = pmf-of-mapping (Mapping.tabulate zs (A-. 1 / real (length
5)))
(is ?lhs = %rhs)
(proof)

lift-definition mapping-of-pmf :: ‘a pmf = (‘a, real) mapping is
Ap z. if pmf p x = 0 then None else Some (pmf p z) (proof)

lemma lookup-default-mapping-of-pmf:
Mapping.lookup-default 0 (mapping-of-pmf p) = pmf p x
(proof)

context
begin

interpretation pmf-as-function (proof)

lemma nn-integral-pmf-eq-1: ([z. ennreal (pmf p x) dcount-space UNIV) = 1

(proof)
end

lemma pmf-of-mapping-mapping-of-pmf [code abstype]:
pmf-of-mapping (mapping-of-pmf p) = p
(proof)

lemma mapping-of-pmfI:
assumes A\z. x € Mapping.keys m = Mapping.lookup m x = Some (pmf p x)
assumes Mapping.keys m = set-pmf p
shows mapping-of-pmfp = m
(proof)

lemma mapping-of-pmfI "
assumes Az. z € Mapping.keys m =—> Mapping.lookup-default 0 m x = pmf p z

assumes Mapping.keys m = set-pmf p
shows mapping-of-pmfp = m
(proof)

lemma return-pmf-code [code abstract):
mapping-of-pmf (return-pmf x) = Mapping.update x 1 Mapping.empty
(proof)

THEORY “PMF-Impl” 124

lemma pmf-of-set-code-auz:

assumes A # {} set zs = A distinct s

shows mapping-of-pmf (pmf-of-set A) = Mapping.tabulate xs (A-. 1 / real
(length xs))

(proof)

definition pmf-of-set-impl where
pmf-of-set-impl A = mapping-of-pmf (pmf-of-set A)

lemma pmf-of-set-impl-code-alt:
assumes A # {} finite A
shows pmf-of-set-impl A =
(let p =1 / real (card A)
in Finite-Set.fold (Az. Mapping.update x p) Mapping.empty A)
(proof)

lemma pmf-of-set-impl-code [codel:
pmf-of-set-impl (set xs) =
(if ws =[] then
Code.abort (STR ""pmf-of-set of empty set’’) (A-. mapping-of-pmf (pmf-of-set
(set zs)))
else let zs’ = remdups xs; p = 1 / real (length xs’) in
Mapping.tabulate xs’ (A-. p))
(proof)

lemma pmf-of-set-code [code abstract]:
mapping-of-pmf (pmf-of-set A) = pmf-of-set-impl A
(proof)

lemma pmf-of-multiset-pmf-of-mapping:

assumes A # {#} set zs = set-mset A distinct xs

shows mapping-of-pmf (pmf-of-multiset A) = Mapping.tabulate zs (Ax. count
Az /[real (size A))

(proof)

definition pmf-of-multiset-impl where
pmf-of-multiset-impl A = mapping-of-pmf (pmf-of-multiset A)

lemma pmf-of-multiset-impl-code-alt:
assumes A # {#}
shows pmf-of-multiset-impl A =
(let p =1 / real (size A)
in fold-mset (Az. Mapping.map-default z 0 ((+) p)) Mapping.empty A)
(proof)

lemma pmf-of-multiset-impl-code [code]:

THEORY “PMF-Impl” 125

pmf-of-multiset-impl (mset xs) =
(if zs =[] then
Code.abort (STR "'pmf-of-multiset of empty multiset”)
(A-. mapping-of-pmf (pmf-of-multiset (mset xs)))
else let zs’ = remdups xs; p = 1 / real (length xs) in
Mapping.tabulate xs’ (\z. real (count (mset xs) x) * p))
(proof)

lemma pmf-of-multiset-code [code abstract]:
mapping-of-pmf (pmf-of-multiset A) = pmf-of-multiset-impl A
(proof)

lemma bernoulli-pmf-code [code abstract):
mapping-of-pmf (bernoulli-pmf p) =
(if p < 0 then Mapping.update False 1 Mapping.empty
else if p > 1 then Mapping.update True 1 Mapping.empty
else Mapping.update False (1 — p) (Mapping.update True p Mapping.empty))

{proof)

lemma pmf-code [code]: pmf p © = Mapping.lookup-default 0 (mapping-of-pmf p)
x
(proof)

lemma set-pmf-code [code]: set-pmf p = Mapping.keys (mapping-of-pmf p)
(proof)

lemma keys-mapping-of-pmf [simp]: Mapping.keys (mapping-of-pmf p) = set-pmf
p
(proof)

definition fold-combine-plus where
fold-combine-plus = comm-monoid-set.F (Mapping.combine ((+) :: real = -))
Mapping.empty

context
begin

interpretation fold-combine-plus: combine-mapping-abel-semigroup (+) :: real =
(proof) lemma lookup-default-fold-combine-plus:
fixes A :: 'b set and f :: 'b = ('a, real) mapping
assumes finite A
shows Mapping.lookup-default 0 (fold-combine-plus f A) x =
(3" yeA. Mapping.lookup-default 0 (f y) z)
(proof) lemma keys-fold-combine-plus:

THEORY “PMF-Impl” 126

finite A = Mapping.keys (fold-combine-plus f A) = (|Jz€A. Mapping.keys (f
7))

(proof) lemma fold-combine-plus-code [code]:

fold-combine-plus g (set xs) = foldr (Axz. Mapping.combine (+) (g x)) (remdups
xs) Mapping.empty

(proof) lemma lookup-default-0-map-values:

assumes fz 0 = 0

shows Mapping.lookup-default 0 (Mapping.map-values f m) x = fz (Mapping.lookup-default
0 m x)

(proof) lemma mapping-of-bind-pmf:

assumes finite (set-pmf p)

shows mapping-of-pmf (bind-pmf p f) =

fold-combine-plus (A\x. Mapping.map-values (A-. (x) (pmf p x))
(mapping-of-pmf (f x))) (set-pmf p)
(proof)

lift-definition bind-pmf-auz :: 'a pmf = (‘a = 'b pmf) = 'a set = ('b, real)
mapping is
Ap = 'a pmf) (f = 'a = b pmf) (A:'a set) (x::'D).
if x € (JyegA. set-pmf (fy)) then
Some (measure-pmf.expectation p (Ay. indicator A y x pmf (f y) z))
else None {proof)

lemma keys-bind-pmf-auz [simp]:
Mapping.keys (bind-pmf-auz p f A) = (Jz€A. set-pmf (f z))
(proof)

lemma lookup-default-bind-pmf-auz:
Mapping.lookup-default 0 (bind-pmf-aux p f A) © =
(if r € (UyeA. set-pmf (fy)) then
measure-pmf .expectation p (Ay. indicator A y x pmf (f y)) else 0)

(proof)

lemma lookup-default-bind-pmf-auz’ [simp]:

Mapping.lookup-default 0 (bind-pmf-auz p [(set-pmf p)) x = pmf (bind-pmf p f)
x

(proof)

lemma bind-pmf-aux-correct:
mapping-of-pmf (bind-pmf p f) = bind-pmf-aux p f (set-pmf p)
(proof)

lemma bind-pmf-auz-code-aux:
assumes finite A
shows bind-pmf-auz p f A =
fold-combine-plus (Ax. Mapping.map-values (A-. (x) (pmf p x))
(mapping-of-pmf (f z))) A (is ?lhs = ?rhs)
{proof)

THEORY “PMF-Impl” 127

lemma bind-pmf-auz-code [codel:
bind-pmf-auz p f (set xs) =
fold-combine-plus (A\x. Mapping.map-values (A-. (x) (pmf p x))
(mapping-of-pmf (f x))) (set @s)
(proof)

lemmas bind-pmf-code [code abstract] = bind-pmf-auz-correct
end

hide-const (open) fold-combine-plus

lift-definition cond-pmf-impl :: 'a pmf = 'a set = (‘a, real) mapping option is
Ap A. if AN set-pmf p = {} then None else
Some (Az. if ¢ € A N set-pmf p then Some (pmf p x /| measure-pmf.prob p A)
else None) {proof)

lemma cond-pmf-impl-code-alt:
assumes finite A
shows cond-pmf-impl p A = (
let C = A N set-pmf p;
prob = (O_zeC. pmf p x)
in if prob = 0 then
None
else
Some (Mapping.map-values (\- y. y / prob)
(Mapping.filter (\k -. k € C) (mapping-of-pmf p))))
(proof)

lemma cond-pmf-impl-code [code]:
cond-pmf-impl p (set zs) = (
let C' = set xs N set-pmf p;
prob = (> z€C. pmf p z)
in if prob = 0 then
None
else
Some (Mapping.map-values (A- y. y / prob)
(Mapping.filter (\k -. k € C) (mapping-of-pmf p))))
(proof)

lemma cond-pmf-code [code abstract]:
mapping-of-pmf (cond-pmf p A) =
(case cond-pmf-impl p A of
None = Code.abort (STR "'cond-pmf with set of probability 0'')
(A-. mapping-of-pmf (cond-pmf p A))
| Some m = m)

(proof)

THEORY “PMF-Impl” 128

lemma binomial-pmf-code [code abstract]:
mapping-of-pmf (binomial-pmf n p) = (
ifp< 0V p>1then
Code.abort (STR "'binomial-pmf with invalid probability’")
(A-. mapping-of-pmf (binomial-pmf n p))

else if p = 0 then Mapping.update 0 1 Mapping.empty

else if p = 1 then Mapping.update n 1 Mapping.empty

else Mapping.tabulate [0..<Suc n] (Ak. real (n choose k) x p "k x (I — p)
(n — k)))

(proof)

o~

lemma pred-pmf-code [code]:
pred-pmf P p = (Vz€set-pmf p. P x)
(proof)

lemma mapping-of-pmf-pmf-of-list:
assumes Az. € snd ‘ set xs = x > 0 sum-list (map snd xzs) = 1
shows mapping-of-pmf (pmf-of-list zs) =
Mapping.tabulate (remdups (map fst xs))
(Az. sum-list (map snd (filter (\z. fst z = z) xs)))
(proof)

lemma mapping-of-pmf-pmf-of-list”:
assumes pmf-of-list-wf s
defines zs’' = filter (Az. snd z # 0) zs
shows mapping-of-pmf (pmf-of-list zs) =
Mapping.tabulate (remdups (map fst xs’))
(Ax. sum-list (map snd (filter (\z. fst z = x) xs'))) (is - = rhs)
(proof)

lemma pmf-of-list-wf-code [code]:
pmf-of-list-wf xs «— list-all (A\z. snd z > 0) xs A sum-list (map snd zs) = 1
(proof)

lemma pmf-of-list-code [code abstract]:
mapping-of-pmf (pmf-of-list xs) = (
if pmf-of-list-wf xs then
let s’ = filter (A\z. snd z # 0) xs
in Mapping.tabulate (remdups (map fst zs’))
(Az. sum-list (map snd (filter (Az. fst z = z) xzs")))
else
Code.abort (STR "Invalid list for pmf-of-list’’) (A-. mapping-of-pmf (pmf-of-list
1))
(proof)

lemma mapping-of-pmf-eq-iff [simp]:

THEORY “PMF-Impl” 129

mapping-of-pmf p = mapping-of-pmf q <— p = (q == 'a pmf)
(proof)

21.2 Code abbreviations for integrals and probabilities

Integrals and probabilities are defined for general measures, so we cannot
give any code equations directly. We can, however, specialise these constants
them to PMFs, give code equations for these specialised constants, and tell
the code generator to unfold the original constants to the specialised ones
whenever possible.

definition pmf-integral where
pmf-integral p f = lebesgue-integral (measure-pmf p) (f :: - = real)

definition pmf-set-integral where
pmf-set-integral p f A = lebesgue-integral (measure-pmf p) (Az. indicator A © * f
x :: real)

definition pmf-prob where
pmf-prob p A = measure-pmf.prob p A

lemma pmf-prob-compl: pmf-prob p (—A) = 1 — pmf-prob p A
(proof)

lemma pmf-integral-pmf-set-integral [code]:
pmf-integral p f = pmf-set-integral p f (set-pmf p)
(proof)

lemma pmf-prob-pmf-set-integral:
pmf-prob p A = pmf-set-integral p (A-. 1) A
(proof)

lemma pmf-set-integral-code-alt-finite:
finite A = pmf-set-integral p f A = (> z€A. pmf p z * f)
(proof)

lemma pmf-set-integral-code [code]:
pmf-set-integral p f (set xs) = (> x€set xs. pmfp x x fx)
(proof)

lemma pmf-prob-code-alt-finite:
finite A = pmf-prob p A = (> z€A. pmf p x)
(proof)

lemma pmf-prob-code [code]:
pmf-prob p (set xs) = (> xE€set xs. pmf p x)
pmf-prob p (List.coset xs) = 1 — (> xE€set zs. pmf p z)
(proof)

THEORY “PMF-Impl” 130

lemma pmf-prob-code-unfold [code-abbrev]: pmf-prob p = measure-pmf.prob p
(proof)

lemma pmf-integral-code-unfold [code-abbrev]: pmf-integral p = measure-pmf.expectation
P
(proof)

definition pmf-of-alist s = embed-pmf (Az. case map-of zs x of Some p = p |
None = 0)

lemma pmf-of-mapping-Mapping [code-post]:
pmf-of-mapping (Mapping xs) = pmf-of-alist zs
(proof)

instantiation pmf :: (equal) equal
begin

definition equal-pmf p ¢ = (mapping-of-pmf p = mapping-of-pmf (q :: 'a pmf))

instance (proof)
end

definition single :: 'a = 'a multiset where

single s = {#s#}

instantiation pmf :: (random) random
begin

context
includes state-combinator-syntar and term-syntax
begin

definition
pmfify :: ('bityperep multiset x (unit = Code-Evaluation.term)) =
b x (unit = Code-Evaluation.term) =
‘b pmf x (unit = Code-Fvaluation.term) where
[code-unfold]: pmfify A x =
Code-FEvaluation.valtermify pmf-of-multiset {-}
(Code-Evaluation.valtermify (+) {-} A {-}
(Code-Evaluation.valtermify single {-} z))

definition
Quickcheck-Random.random i =

THEORY “Fin-Map” 131

Quickcheck-Random.random i o— (AA.
Quickcheck-Random.random i o— (Az. Pair (pmfify A x)))

instance (proof)
end
end

instantiation pmf :: (full-exhaustive) full-exhaustive
begin

definition full-exhaustive-pmf :: (‘a pmf x (unit = term) = (bool x term list)
option) = natural = (bool x term list) option
where
full-exhaustive-pmf f i =
Quickcheck-Ezhaustive. full-exhaustive (AA.
Quickcheck- Exhaustive. full-exhaustive (Az. f (pmfify A x)) @) i

instance (proof)
end

end

22 Finite Maps

theory Fin-Map
imports HOL— Analysis. Finite- Product-Measure HOL— Library. Finite-Map
begin

The fmap type can be instantiated to polish-space, needed for the proof of
projective limit. extensional functions are used for the representation in
order to stay close to the developments of (finite) products Pip and their
sigma-algebra Piyy.

type-notation fmap (¢<(<notation=<infix fmap»»- = /-)» [22, 21] 21)
unbundle fmap.lifting

22.1 Domain and Application

lift-definition domain::('i =r 'a) = i set is dom (proof)

lemma finite-domain[simp, introl: finite (domain P)
{proof)

lift-definition proj :: (i =f 'a) = i = a
(«(cindent=1 notation=<mizfix proj»'(-")r)> [0] 1000) is

THEORY “Fin-Map” 132

M . if € dom f then the (f z) else undefined (proof)
declare [[coercion proj]]

lemma extensional-proj[simp, intro]: (P)r € extensional (domain P)
{proof)

lemma proj-undefined[simp, introl: i ¢ domain P = P i = undefined
(proof)

lemma finmap-eq-iff: P = @Q +— (domain P = domain Q N (Vi€domain P. P i
= Q1))
(proof)

22.2 Constructor of Finite Maps

lift-definition finmap-of::'i set = (i = 'a) = ('i = 'a) is
M fx if x € I A finite I then Some (f z) else None
(proof)

lemma proj-finmap-of [simp):
assumes finite inds
shows (finmap-of inds f)p = restrict f inds
(proof)

lemma domain-finmap-of [simp]:
assumes finite inds
shows domain (finmap-of inds f) = inds
(proof)

lemma finmap-of-eq-iff [simpl:
assumes finite i finite j
shows finmap-of i m = finmap-of jn <— i =j A (Vk€i. m k= n k)

(proof)

lemma finmap-of-inj-on-extensional-finite:
assumes finite K
assumes S C extensional K
shows inj-on (finmap-of K) S

(proof)

22.3 Product set of Finite Maps

This is Pi for Finite Maps, most of this is copied
definition Pi’ :: i set = ('i = 'a set) = (i = 'a) set where
Pi'TA={P.domainP=1IANNi.iel — (P)picAi)}

syntax
-Pi’ :: [pttrn, 'a set, 'b set] => ('a => 'b) set

THEORY “Fin-Map” 133

(<(<indent=3 notation=<binder II'HI1" -€-./ -)» 10)
syntax-consts
-Pi' == Pji’
translations

II' z€A. B == CONST Pi’ A (\z. B)

22.3.1 Basic Properties of Pi’
lemma Pi’-I[intro!]: domain f = A = (A\z. 1 € A= fx € Bz) = f € Pi’
A B

(proof)

lemma Pi’-I'[simp]: domain f = A = (A\z. 2 € A — fz € Bz) = f € Pi’
A B
(proof)

lemma Pi-mem: fe Pi' AB=—z€ A= fz € Bz
(proof)

lemma Pi’-iff: f € Pi’ I X +— domain f =1 N (Vi€l. fi € X i)
(proof)

lemma Pi'E [elim]:

fePlAB= (freBs= domainf=4—= Q) = (z¢ A = Q) =
Q

(proof)

lemma in-Pi’-cong:

domain f = domain g = (N w.we A= fw=gw)=fe€ Pi’ AB+—g
€ Pi"AB

(proof)

lemma Pi’-eg-empty[simp]:
assumes finite A shows (Pi’ A B) = {} «— (32€A. Bx
{proof)

)

lemma Pi’-mono: (N\z. x € A= Bz C Cz) = Pi’ ABC Pi’AC
{proof)

lemma Pi-Pi": finite A= (Pig A B) = proj ‘ Pi’ A B
(proof)

22.4 Topological Space of Finite Maps
instantiation fmap :: (type, topological-space) topological-space

begin

definition open-fmap :: (‘a = ’b) set = bool where
[code del]: open-fmap = generate-topology {Pi’ a bla b. Vi€a. open (b i)}

THEORY “Fin-Map” 134

lemma open-Pi'I: (\i. i € I = open (A 7)) = open (Pi’ I A)
{proof)

instance (proof)
end

lemma open-restricted-space:
shows open {m. P (domain m)}

{(proof)

lemma closed-restricted-space:
shows closed {m. P (domain m)}

{proof)

lemma tendsto-proj: ((Az.) —— a) F = ((A\z. (x)p i) —— (a)p i) F
(proof)

lemma continuous-proj:
shows continuous-on s (Az. (z)p i)

(proof)

instance fmap :: (type, first-countable-topology) first-countable-topology
(proof)

22.5 Metric Space of Finite Maps

instantiation fmap :: (type, metric-space) dist
begin

definition dist-fmap where
dist P Q = Maz (range (Ai. dist (P)p i) (Q)F 1)) + (if domain P = domain
Q then 0 else 1)

instance (proof)
end

instantiation fmap :: (type, metric-space) uniformity-dist
begin

definition [code del]:
(uniformity :: (("a, 'b) fmap x (a = 'b)) filter) =
(INF ec{0 <..}. principal {(z, y). dist zy < e})

instance
(proof)

end

declare uniformity-Abortjwhere ‘a=("a =g 'b::metric-space), code]

THEORY “Fin-Map” 135

instantiation fmap :: (type, metric-space) metric-space
begin

lemma finite-proj-image’: © ¢ domain P = finite ((P)p *S)

(proof)
lemma finite-proj-image: finite (P)r ¢ S)
(proof)
lemma finite-proj-diag: finite (Mi. d (P)r i) (Q)F 7)) ¢ S)
(proof)

lemma dist-le-1-imp-domain-eq:
shows dist P Q < 1 = domain P = domain Q
(proof)

lemma dist-proj:
shows dist ((z)r @) (y)r ©) < distz y
(proof)

lemma dist-finmap-lessl:
assumes domain P = domain @
assumes 0 < e
assumes Ai. i € domain P = dist (P i) (Q i) < e
shows dist P () < e

(proof)

instance
(proof)

end

22.6 Complete Space of Finite Maps

lemma tendsto-finmap:
fixes funat = (i =r (‘a:metric-space))
assumes ind-f: An. domain (f n) = domain g
assumes proj-g: Ni. i € domain ¢ = (An. (fn) i) —— g i
shows f —— ¢
(proof)

instance fmap :: (type, complete-space) complete-space

{(proof)

22.7 Second Countable Space of Finite Maps

instantiation fmap :: (countable, second-countable-topology) second-countable-topology
begin

THEORY “Fin-Map” 136

definition basis-proj::'b set set
where basis-proj = (SOME B. countable B A topological-basis B)

lemma countable-basis-proj: countable basis-proj and basis-proj: topological-basis
basis-proj
(proof)

definition basis-finmap::(‘a = 'b) set set
where basis-finmap = {Pi’ I S|I S. finite I A (Vi € I. S i € basis-proj)}

lemma in-basis-finmapl:
assumes finite I assumes Ai. i € I = S i € basis-proj
shows Pi’ I S € basis-finmap

{proof)

lemma basis-finmap-eq:
assumes basis-proj # {}
shows basis-finmap = (Af. Pi’ (domain f) (\i. from-nat-into basis-proj ((f)r
) *
(UNIV::('a = nat) set) (is - = 2f “-)
(proof)

lemma basis-finmap-eq-empty: basis-proj = {} = basis-finmap = {Pi’ {} unde-
fined}
(proof)

lemma countable-basis-finmap: countable basis-finmap
(proof)

lemma finmap-topological-basis:
topological-basis basis-finmap

(proof)
lemma range-enum-basis-finmap-imp-open:

assumes x € basis-finmap
shows open x

(proof)
instance (proof)

end

22.8 Polish Space of Finite Maps

instance fmap :: (countable, polish-space) polish-space {proof)

22.9 Product Measurable Space of Finite Maps
definition PiF I M =

THEORY “Fin-Map” 137

sigma (JJ € I. (IT' jeJ. space (M 7)) {l'jeJ. X j) | X J. Je I AN X € (I
jed. sets (M 4))}

abbreviation
Pip IM=PiFIM

syntax
-PiF :: pttrn = 'i set = 'a measure = (i => 'a) measure
(<(<indent=3 notation=<binder lp»Ilp -€-./ -)» 10)
syntax-consts
-PiF == PiF
translations
Iy z€l. M == CONST PiF I (%z. M)

lemma PiF-gen-subset: {(Il' jeJ. X j) | X J. J € I AN X € (Il jeJ. sets (M j))}
c

Pow (U J € I. (I' jeJ. space (M j)))
(proof)

lemma space-PiF: space (PiF I M) = (JJ € I. (Il' jeJ. space (M j)))
{proof)

lemma sets-PiF":
sets (PiF I M) = sigma-sets (U J € I. (Il' jeJ. space (M j)))
{Il'jeJ. Xj) | XJ. JelInXe(ljed. sets (Mj))}
(proof)

lemma sets-PiF-singleton:
sets (PiF {I} M) = sigma-sets (11’ j€I. space (M j))
{(Il" jel. X j) |X. X € (Il jel. sets (M 5))}
(proof)

lemma in-sets-PiFI:
assumes X = (Pi’' JS) J €I N\i.ieJ = Si € sets (M i)
shows X € sets (PiF I M)
{proof)

lemma product-in-sets-PiF1I:
assumes J € [A\i. ieJ = S i € sets (M i)
shows (Pi’ J S) € sets (PiF I M)

{proof)

lemma singleton-space-subset-in-sets:
fixes J
assumes J € [
assumes finite J
shows space (PiF {J} M) € sets (PiF' I M)
(proof)

THEORY “Fin-Map” 138

lemma singleton-subspace-set-in-sets:
assumes A: A € sets (PiF {J} M)
assumes finite J
assumes J € |
shows A € sets (PiF I M)

{proof)

lemma finite-measurable-singletonl:
assumes finite [
assumes A\J. J € I = finite J
assumes MN: AJ. J € I = A € measurable (PiF {J} M) N
shows A € measurable (PiF I M) N

{proof)

lemma countable-finite-comprehension:
fixes [:: 'a::countable set = -
assumes A\s. P s = finite s
assumes \s. Ps = fs € sets M
shows |J{f s|s. P s} € sets M

(proof)

lemma space-subset-in-sets:

fixes J::'a::countable set set

assumes J C [

assumes A\j. j € J = finite j

shows space (PiF J M) € sets (PiF I M)
{proof)

lemma subspace-set-in-sets:
fixes J::'a::countable set set
assumes A: A € sets (PiF' J M)
assumes J C [
assumes A\j. j € J = finite j
shows A € sets (PiF I M)
(proof)

lemma countable-measurable-PiFI:
fixes I::'a::countable set set
assumes MN: A\J. J € [= finite J = A € measurable (PiF {J} M) N
shows A € measurable (PiF I M) N

{proof)

lemma measurable-PiF':
assumes f: A\z. z € space N = domain (fz) € I N (Vi€domain (f z). (fz) i
€ space (M 7))
assumes S: AJS. Jel = (N\i.ie€J= Sic sets(Mi)) =
f—=(Pi’" JS) N space N € sets N
shows f € measurable N (PiF I M)

{proof)

THEORY “Fin-Map” 139

lemma restrict-sets-measurable:
assumes A: A € sets (PiF I M) and J C [
shows A N {m. domain m € J} € sets (PiF' J M)

(proof)

lemma measurable-finmap-of:
assumes f: \i. (3z € space N. i € Jz) = (Az. fx i) € measurable N (M 1)
assumes J: Az. z € space N = Jz € I \z. © € space N = finite (J z)
assumes JN: AS. {z. Jo = S} N space N € sets N
shows (Az. finmap-of (J z) (f x)) € measurable N (PiF I M)

(proof)

lemma measurable- PiM-finmap-of:
assumes finite J
shows finmap-of J € measurable (Pipy J M) (PiF {J} M)

(proof)

lemma proj-measurable-singleton:

assumes A € sets (M 1)

shows (Az. (z)p ©) —° A N space (PiF {I} M) € sets (PiF {I} M)
(proof)

lemma measurable-proj-singleton:
assumes { € [
shows (Az. (z)p @) € measurable (PiF {I} M) (M i)
(proof)

lemma measurable-proj-countable:
fixes I::'a::countable set set
assumes y € space (M i)
shows (Az. if { € domain x then (z)p i else y) € measurable (PiF I M) (M 1)

(proof)

lemma measurable-restrict-proj:
assumes J € II finite J
shows finmap-of J € measurable (PiM J M) (PiF II M)

{proof)

lemma measurable-proj-PiM:
fixes J K ::’a::countable set and I::'a set set
assumes finite J J € [
assumes z € space (PiM J M)
shows proj € measurable (PiF {J} M) (PiM J M)

(proof)

lemma space-PiF-singleton-eq-product:
assumes finite |
shows space (PiF {I} M) = (II' i€l. space (M 7))

THEORY “Fin-Map” 140

{proof)

adapted from sets (Piys 71 ?M) = sigma-sets (Ilg i€ ?1. space (?M ©)) {{f
€ g i€?l. space (?M Q). fi€ A} |[i A. i € 21 N A € sets (?M i)}

lemma sets-PiF-single:
assumes finite I I # {}
shows sets (PiF {I} M) =
sigma-sets (I1" i€l. space (M 1))
{{fell’ iel. space (M i). fi€ A} |iA. i€ I N A€ sets (M)}
(is - = sigma-sets %) ?R)
(proof)

adapted from (\i. i € 21 = ?A i = ?B i) => Pip ?I ?A = Pig ?I B

lemma Pi’-cong:
assumes finite [
assumes N\i. i € I = fi=gi
shows Pi'If=Pi'Ig

(proof)

adapted from [finite ?I; Ninm. [i € ?I; n < m] = ?A ni C ?A m 1]
= (Un Pi 71 (?A n)) = (L i€?l. Up 74 n 1)

lemma Pi’-UN:
fixes A :: nat = i = 'a set
assumes finite [
assumes mono: Ainm. i€l = n<m=— AniC Ami
shows (Un. Pi'"I (An))=Pi'"I (Xi. Un. A ni)
(proof)

adapted from [Ai. i € 21 = I SC?E i. countable S N % i =] S; A\t
i€ %1 = ?E i C Pow (% i); N\j. j € ¢J = finite j; |J ¢J = ?I] =
sets (Pipy 21 (Ni. sigma (9 i) (?E 7)) = sets (sigma (Pig 21 2Q) {{f €
Pig 21 Q. Viej. fie Ai} |[Aj.je 2] NAe€ Pij?E})

lemma sigma-fprod-algebra-sigma-eq:
fixes £ :: i = 'a set set and S :: i = nat = 'a set
assumes [simp]: finite I I # {}
and S-union: N\i. i € I = (|Jj. Sij) = space (M i)
and S-in-E: N\i. i € I = range (Si) C E i
assumes F-closed: \i. i € I = E i C Pow (space (M 1))
and E-generates: Ni. i € I = sets (M @) = sigma-sets (space (M 7)) (E 7)
defines P=={ Pi'IF | F.Vicl. Fi€ Ei}
shows sets (PiF {I} M) = sigma-sets (space (PiF {I} M)) P
(proof)

lemma product-open-generates-sets-PiF-single:
assumes [# {}
assumes [simp|: finite I
shows sets (PiF {I} (A-. borel::'b::second-countable-topology measure)) =

THEORY “Fin-Map” 141

sigma-sets (space (PiF {I} (A-. borel))) {Pi’ I F |F. (Vi€l. F i € Collect
open)}
(proof)

lemma finmap-UNIV [simp]: (|J J€ Collect finite. I1" je J. UNIV) = UNIV (proof)

lemma borel-eq-PiF-borel:
shows (borel :: ('i::countable =F 'a::polish-space) measure) =
PiF (Collect finite) (A-. borel :: 'a measure)
{proof)

22.10 Isomorphism between Functions and Finite Maps

lemma measurable-finmap-compose:

shows (Am. compose J m f) € measurable (PiM (f *J) (A-. M)) (PiM J (A-.
M))

(proof)

lemma measurable-compose-inv:

assumes inj: \j.j € J = f' (fj) =7

shows (Am. compose (f *J) m f') € measurable (PiM J (A-. M)) (PiM (f © J)
(A-. M)

(proof)

locale function-to-finmap =
fixes J::'a set and [:: 'a = 'b::countable and [’
assumes [simp|: finite J
assumes inv: | € J = f'(fi) =1

begin

to measure finmaps

definition fm = (finmap-of (f *J)) o (Ag. compose (f *J) g [

lemma domain-fm[simp]: domain (fm z) = f*J
{proof)

lemma fm-restrict[simp]: fm (restrict y J) = fm y
(proof)

lemma fm-product:
assumes Ai. space (M i) = UNIV
shows fm —‘ Pi’ (f *J) S N space (Pipy J M) = Mg je J. S (fj))
(proof)

lemma fm-measurable:
assumes f ‘J € N
shows fm € measurable (Pipg J (A-. M)) (Pip N (A-. M))

(proof)

THEORY “Fin-Map” 142

lemma proj-fm:
assumes z € J
shows fm m (fz) = m«
(proof)

lemma inj-on-compose-f': inj-on (Ag. compose (f “J) g f') (extensional J)
(proof)

lemma inj-on-fm:
assumes Ai. space (M i) = UNIV
shows inj-on fm (space (Pipy J M))
(proof)

to measure functions

definition mf = (\g. compose J g f) o proj

lemma mf-fm:
assumes z € space (Piyy J (A-. M))
shows mf (fm z) = x

(proof)

lemma mf-measurable:
assumes space M = UNIV
shows mf € measurable (PiF {f ‘ J} (A\-. M)) (PiM J (A-. M))

{proof)

lemma fm-image-measurable:
assumes space M = UNIV
assumes X € sets (Piy J (M- M))
shows fm ‘ X € sets (PiF {f * J} (A-. M))
(proof)

lemma fm-image-measurable-finite:
assumes space M = UNIV
assumes X € sets (Piy J (A-. M::'c measure))
shows fm ‘ X € sets (PiF' (Collect finite) (A-. M::'c measure))

{proof)

measure on finmaps

definition mapmeasure M N = distr M (PiF (Collect finite) N) (fm)

lemma sets-mapmeasure[simpl: sets (mapmeasure M N) = sets (PiF (Collect fi-
nite) N)
(proof)

lemma space-mapmeasure[simp|: space (mapmeasure M N) = space (PiF (Collect
finite) N)
{proof)

THEORY “Projective-Limit” 143

lemma mapmeasure-PiF":

assumes sI: space M = space (Pipr J (A-. N))

assumes s2: sets M = sets (Pipr J (M- N))

assumes space N = UNIV

assumes X € sets (PiF (Collect finite) (A-. N))

shows emeasure (mapmeasure M (A-. N)) X = emeasure M ((fm —‘ X N exten-
sional J))

{proof)

lemma mapmeasure-PiM:
fixes N::'c measure
assumes sI: space M = space (Pipr J (A-. N))
assumes s2: sets M = (Pip J (A-. N))
assumes N: space N = UNIV
assumes X: X € sets M
shows emeasure M X = emeasure (mapmeasure M (A-. N)) (fm * X)

(proof)

end

end

23 Projective Limit

theory Projective-Limit
imports

Fin-Map

Infinite- Product-Measure

HOL- Library. Diagonal-Subsequence
begin

23.1 Sequences of Finite Maps in Compact Sets

locale finmap-segs-into-compact =

fixes K::nat = (nat = 'a::metric-space) set and f::nat = (nat = ‘a) and
M

assumes compact: A\n. compact (K n)

assumes f-in-K: An. K n # {}

assumes domain-K: An. k € K n = domain k = domain (f n)

assumes proj-in-K:

Ntnm. m>n=t¢& domain (fn) = (fm)pte (M. (k)pt) ‘Kn

begin

lemma proj-in-K": (3n.Vm > n. (fm)p t € Mk. (k)p t) ‘K n)
{proof)

lemma proj-in-KE:
obtains n where Am. m > n = (fm)p t € (A\k. (k)r t) ‘Kn
{proof)

THEORY “Projective-Limit” 144

lemma compact-projset:
shows compact ((Ak. (k)p i) ‘ K n)
{proof)

end

lemma compactE’:
fixes S :: ‘a :: metric-space set
assumes compact SVn>m. fn € S
obtains [r where | € S strict-mono (r:nat=nat) ((f o r) —— 1) sequentially

(proof)

sublocale finmap-segs-into-compact C subseqs An s. (31. (Ai. ((fos) i)p n) ——
)
(proof)

lemma (in finmap-segs-into-compact) diagonal-tendsto: 31. (Ai. (f (diagseq ©))F
n) — 1
(proof)

23.2 Daniell-Kolmogorov Theorem

Existence of Projective Limit

locale polish-projective = projective-family I P \-. borel::'a::polish-space measure
for I::i set and P
begin

lemma emeasure-lim-emb:
assumes X: J C I finite J X € sets (Ip; i€J. borel)
shows lim (embIJX)=PJX

(proof)

lemma measure-lim-emb:
J C I = finite] = X € sets (Ilp; i€J. borel) => measure lim (emb I J X)
= measure (P J) X

(proof)

end
hide-const () PiF
hide-const (open) Pig
hide-const (open) Pi’
hide-const (open) finmap-of

(open)

(open)

(open)

=

“U“UTJ

ope

hide-const (open) proj
hide-const (open) domain
hide-const (open) basis-finmap

sublocale polish-projective C P: prob-space lim

THEORY “Random-Permutations” 145

(proof)

locale polish-product-prob-space =
product-prob-space A-. borel::(’a::polish-space) measure I for I::'i set

sublocale polish-product-prob-space C P: polish-projective I AJ. PiM J (\-. borel::('a)
measure)
(proof)

lemma (in polish-product-prob-space) limP-eq-PiM: lim = PiM I (A-. borel)
(proof)

end

24 Random Permutations

theory Random-Permutations

imports
HOL— Combinatorics. Multiset- Permutations
Probability-Mass-Function

begin

Choosing a set permutation (i.e. a distinct list with the same elements as
the set) uniformly at random is the same as first choosing the first element
of the list and then choosing the rest of the list as a permutation of the
remaining set.

lemma random-permutation-of-set:
assumes finite A A # {}
shows pmf-of-set (permutations-of-set A) =
do {
z < pmf-of-set A;
xs < pmf-of-set (permutations-of-set (A — {z}));
return-pmf (z#xs)
} (is Zlhs = 2rhs)
(proof)

A generic fold function that takes a function, an initial state, and a set and
chooses a random order in which it then traverses the set in the same fashion
as a left fold over a list. We first give a recursive definition.

function fold-random-permutation :: (‘la = b = 'b) = 'b = 'a set = b pmf
where
fold-random-permutation f x {} = return-pmf =
| —finite A = fold-random-permutation f x A = return-pmf
| finite A —= A # {} =
fold-random-permutation fz A =
pmf-of-set A >= (Aa. fold-random-permutation f (f a) (A — {a}))

{proof)
termination (proof)

THEORY “Random-Permutations” 146

We can now show that the above recursive definition is equivalent to choosing
a random set permutation and folding over it (in any direction).

lemma fold-random-permutation-foldl:
assumes finite A
shows fold-random-permutation fx A =
map-pmf (foldl (A\z y. fy z) z) (pmf-of-set (permutations-of-set A))
(proof)

lemma fold-random-permutation-foldr:
assumes finite A
shows fold-random-permutation fx A =
map-pmf (Azs. foldr f xs x) (pmf-of-set (permutations-of-set A))
(proof)

lemma fold-random-permutation-fold:
assumes finite A
shows fold-random-permutation fx A =
map-pmf (Azs. fold f xs x) (pmf-of-set (permutations-of-set A))
(proof)

lemma fold-random-permutation-code [code]:
fold-random-permutation f x (set zs) =
map-pmf (foldl (A\z y. fy x)) (pmf-of-set (permutations-of-set (set xs)))
(proof)

We now introduce a slightly generalised version of the above fold operation
that does not simply return the result in the end, but applies a monadic bind
to it. This may seem somewhat arbitrary, but it is a common use case, e.g.
in the Social Decision Scheme of Random Serial Dictatorship, where voters
narrow down a set of possible winners in a random order and the winner is
chosen from the remaining set uniformly at random.

function fold-bind-random-permutation
2 (la="b="0) = ('b = 'c pmf) = 'b = 'a set = 'c pmf where
fold-bind-random-permutation f gz {} = g =
| ~finite A = fold-bind-random-permutation f gz A = g x
| finite A = A # {} =
fold-bind-random-permutation f g x A =
pmf-of-set A >= (Aa. fold-bind-random-permutation f g (f a) (A — {a}))

{proof)
termination (proof)

We now show that the recursive definition is equivalent to a random fold
followed by a monadic bind.

lemma fold-bind-random-permutation-altdef [code]:
fold-bind-random-permutation f g x A = fold-random-permutation fz A >= g

(proof)

We can now derive the following nice monadic representations of the com-

THEORY “SPMEF” 147

bined fold-and-bind:

lemma fold-bind-random-permutation-foldl:
assumes finite A
shows fold-bind-random-permutation fg x A =
do {xs < pmf-of-set (permutations-of-set A); g (foldl Az y. fy z) x xs)}
(proof)

lemma fold-bind-random-permutation-foldr:
assumes finite A
shows fold-bind-random-permutation f g v A =
do {zs < pmf-of-set (permutations-of-set A); g (foldr f xs x)}
(proof)

lemma fold-bind-random-permutation-fold:
assumes finite A
shows fold-bind-random-permutation f g x A =
do {zs + pmf-of-set (permutations-of-set A); g (fold f zs x)}
(proof)

The following useful lemma allows us to swap partitioning a set w.r.t. a
predicate and drawing a random permutation of that set.

lemma partition-random-permutations:
assumes finite A
shows map-pmf (partition P) (pmf-of-set (permutations-of-set A)) =
pair-pmf (pmf-of-set (permutations-of-set {x€A. P x}))
(pmf-of-set (permutations-of-set {x€A. =P z})) (is ?lhs = ?rhs)
(proof)

end

25 Discrete subprobability distribution

theory SPMF imports
Probability-Mass-Function
HOL— Library. Complete- Partial-Order2
HOL- Library. Rewrite

begin

25.1 Auxiliary material

lemma c¢SUP-singleton [simp]: (SUP z€{z}. fx :: - conditionally-complete-lattice)
=fz
{proof)

25.1.1 More about extended reals

lemma [simp]:
shows ennreal-maz-0: ennreal (maz 0 x) = ennreal ©

THEORY “SPMEF” 148

and ennreal-max-0" ennreal (maz z 0) = ennreal x
{proof)

lemma eZennreal-0 [simp]: e2ennreal 0 = 0
(proof)

lemma enn2real-bot [simp]: enn2real L = 0
{proof)

lemma continuous-at-ennreal[continuous-intros): continuous F f = continuous F
(Az. ennreal (f x))
{proof)

lemma ennreal-Sup:
assumes x: (SUP a€A. ennreal a) # T
and A # {}
shows ennreal (Sup A) = (SUP a€A. ennreal a)

(proof)

lemma ennreal-SUP:
[(SUP acA. ennreal (fa)) # T; A# {}] = ennreal (SUP a€A. fa) = (SUP
a€A. ennreal (f a))

{proof)

lemma ennreal-lt-0: x < 0 = ennreal © = 0
(proof)

25.1.2 More about ‘a option
lemma None-in-map-option-image [simpl: None € map-option f * A +— None €
A

(proof)

lemma Some-in-map-option-image [simp]: Some © € map-option f * A +— (T y.
z=fyAN Someyec A)
(proof)

lemma case-option-collapse: case-option © (A-. x) = (A-.)
{proof)

lemma case-option-id: case-option None Some = id
(proof)

inductive ord-option :: (‘a = 'b = bool) = 'a option = 'b option = bool
for ord :: 'a = 'b = bool

where
None: ord-option ord None x

| Some: ord x y = ord-option ord (Some x) (Some y)

THEORY “SPMEF” 149

inductive-simps ord-option-simps [simp]:
ord-option ord None x
ord-option ord x None
ord-option ord (Some x) (Some y)
ord-option ord (Some x) None

inductive-simps ord-option-eq-simps [simp]:
ord-option (=) None y
ord-option (=) (Some x) y

lemma ord-option-refil: (N\y. y € set-option © = ord y y) = ord-option ord x
T

{proof)

lemma reflp-ord-option: reflp ord = reflp (ord-option ord)
(proof)

lemma ord-option-trans:
[ord-option ord z y; ord-option ord y z;
Na b e [a € set-option x; b € set-option y; ¢ € set-option z; ord a b; ord b ¢
] = ordac]
= ord-option ord x z

{proof)

lemma transp-ord-option: transp ord = transp (ord-option ord)
(proof)

lemma antisymp-ord-option: antisymp ord = antisymp (ord-option ord)
(proof)

lemma ord-option-chainD:
Complete-Partial-Order.chain (ord-option ord) Y
= Complete-Partial-Order.chain ord {x. Some z € Y}

{proof)

definition lub-option :: ('a set = 'b) = 'a option set = b option
where lub-option lub Y = (if Y C {None} then None else Some (lub {x. Some
z € Y}))

lemma map-lub-option: map-option f (lub-option lub Y) = lub-option (f o lub) Y
(proof)

lemma [ub-option-upper:
assumes Complete-Partial-Order.chain (ord-option ord) Yz € Y
and lub-upper: \Y z. [Complete-Partial-Order.chain ord Y; z € Y | = ord
z (lub Y)
shows ord-option ord x (lub-option lub Y)
(proof)

THEORY “SPMEF” 150

lemma [ub-option-least:
assumes Y: Complete-Partial-Order.chain (ord-option ord) Y
and upper: N\z. © € Y = ord-option ord z y
assumes lub-least: \Y y. [Complete-Partial-Order.chain ord Y; Ax. z € ¥ =
ordzy] = ord (lub Y) y
shows ord-option ord (lub-option lub Y) y

{proof)

lemma lub-map-option: lub-option lub (map-option f °Y) = lub-option (lub o (¥)
ny
(proof)

lemma ord-option-mono: | ord-option A © y; N\ y. Az y = Bzy] =
ord-option B x y
(proof)

lemma ord-option-mono’ [mono):
(Azy. Azy — Bzxy) = ord-option A © y — ord-option B x y
(proof)

lemma ord-option-compp: ord-option (A OO B) = ord-option A OO ord-option B
(proof)

lemma ord-option-inf: inf (ord-option A) (ord-option B) = ord-option (inf A B)
(is ?lhs = ?rhs)
(proof)

lemma ord-option-map2: ord-option ord z (map-option f y) = ord-option (Az y.
ordz (fy)) =y
(proof)

lemma ord-option-mapl: ord-option ord (map-option f z) y = ord-option (Az y.
ord (fz) y) zy
(proof)

lemma option-ord-Somel-iff: option-ord (Some x) y +— y = Some x

(proof)

25.1.3 A relator for sets that treats sets like predicates
context includes lifting-syntax

begin

definition rel-pred :: (‘a = 'b = bool) = 'a set = b set = bool
where rel-pred R A B = (R ===> (=)) (Az. z € A) (A\y. y € B)

lemma rel-predl: (R ===> (=)) (Az. z € A) (\y. y € B) = rel-pred R A B
(proof)

THEORY “SPMEF” 151

lemma rel-predD: [rel-pred RAB; Rxy] =z € A+—y€B
(proof)

lemma Collect-parametric: (A ===> (=)) ===> rel-pred A) Collect Collect
— Declare this rule as transfer-rule only locally because it blows up the search
space for transfer (in combination with Collect-transfer)

{proof)

end

25.1.4 Monotonicity rules

lemma monotone-gfp-eadd1: monotone (>) (=) (Az. + y :: enat)
{proof)

lemma monotone-gfp-eadd2: monotone (>) (>) (A\y. x + y :: enat)
(proof)

lemma mono2mono-gfp-eadd| THEN gfp.mono2mono2, cont-intro, simpl:
shows monotone-eadd: monotone (rel-prod (>) (>)) (=) (M=, y). z + y :: enat)

(proof) -

lemma eadd-gfp-partial-function-mono [partial-function-monol:
[monotone (fun-ord (>)) (>) f; monotone (fun-ord (>)) (>) ¢]
= monotone (fun-ord (>)) (=) (A\z. fz + g x :: enat)
(proof)

lemma mono2mono-ereal|[THEN Ifp.mono2monol:
shows monotone-ereal: monotone (<) (<) ereal

{proof)

lemma mono2mono-ennreal| THEN Ifp.mono2mono):
shows monotone-ennreal: monotone (<) (<) ennreal

{proof)

25.1.5 Bijections

lemma bi-unique-rel-set-bij-betw:
assumes unique: bi-unique R
and rel: rel-set R A B
shows 3f. bij-betw f A B A (Vz€A. R x (f z))

(proof)

lemma bij-betw-rel-setD: bij-betw f A B = rel-set (A\zy. y = fz) A B
(proof)

25.2 Subprobability mass function

type-synonym ’a spmf = 'a option pmf
translations (type) 'a spmf — (type) 'a option pmf

THEORY “SPMEF” 152

definition measure-spmf :: 'a spmf = 'a measure
where measure-spmf p = distr (restrict-space (measure-pmf p) (range Some))
(count-space UNIV') the

abbreviation spmf :: ‘a spmf = 'a = real
where spmf p = pmf p (Some z)

lemma space-measure-spmf: space (measure-spmf p) = UNIV
(proof)

lemma sets-measure-spmf [simp, measurable-cong|: sets (measure-spmf p) = sets

(count-space UNIV)
{proof)

lemma measure-spmf-not-bot [simp|: measure-spmf p # L

(proof)

lemma measurable-the-measure-pmf-Some [measurable, simp):
the € measurable (restrict-space (measure-pmf p) (range Some)) (count-space
UNIV)

{proof)

lemma measurable-spmf-measurel [simp|: measurable (measure-spmf M) N = UNIV
— space N

(proof)

lemma measurable-spmf-measure2[simp|: measurable N (measure-spmf M) = mea-

surable N (count-space UNIV')
{proof)

lemma subprob-space-measure-spmf [simp, introl]: subprob-space (measure-spmf p)

(proof)

interpretation measure-spmf: subprob-space measure-spmf p for p

{proof)

lemma finite-measure-spmf [simp): finite-measure (measure-spmf p)
(proof)

lemma spmjf-conv-measure-spmf: spmf p x = measure (measure-spmf p) {z}
(proof)

lemma emeasure-measure-spmf-conv-measure-pmf:
emeasure (measure-spmf p) A = emeasure (measure-pmf p) (Some ¢ A)

{proof)

lemma measure-measure-spmf-conv-measure-pmf:
measure (measure-spmf p) A = measure (measure-pmf p) (Some ¢ A)

THEORY “SPMEF” 153

{proof)

lemma emeasure-spmf-map-pmf-Some [simp):
emeasure (measure-spmf (map-pmf Some p)) A = emeasure (measure-pmf p) A
(proof)

lemma measure-spmf-map-pmf-Some [simp]:
measure (measure-spmf (map-pmf Some p)) A = measure (measure-pmf p) A
(proof)

+

lemma nn-integral-measure-spmf: ([+ x. f x Omeasure-spmf p) = [T z. ennreal

(spmf p x) x fx Ocount-space UNIV
(is ?lhs = %rhs)
(proof)

lemma integral-measure-spmf:
assumes integrable (measure-spmf p) f
shows (f x. f x Omeasure-spmf p) = f x. spmf p x x fx Ocount-space UNIV

(proof)

lemma emeasure-spmf-single: emeasure (measure-spmf p) {z} = spmfp x
(proof)

lemma measurable-measure-spmf|measurable]:
(Az. measure-spmf (M z)) € measurable (count-space UNIV) (subprob-algebra
(count-space UNIV'))

{proof)

lemma nn-integral-measure-spmf-conv-measure-pmf:

assumes [measurable]: f € borel-measurable (count-space UNIV)

shows nn-integral (measure-spmf p) f = nn-integral (restrict-space (measure-pmf
p) (range Some)) (f o the)

{proof)

lemma measure-spmf-in-space-subprob-algebra [simpl:
measure-spmf p € space (subprob-algebra (count-space UNIV))
(proof)

lemma nn-integral-spmf-neq-top: (f+ x. spmf p x Ocount-space UNIV) # T
(proof)

lemma SUP-spmf-neq-top”: (SUP peY. ennreal (spmfp x)) # T
(proof)

lemma SUP-spmf-neq-top: (SUP i. ennreal (spmf (Y i) z)) # T
{proof)

lemma SUP-emeasure-spmf-neq-top: (SUP p€Y. emeasure (measure-spmf p) A)

£T

THEORY “SPMEF” 154

{proof)

25.3 Support

definition set-spmf :: 'a spmf = ‘a set
where set-spmf p = set-pmf p >= set-option

lemma set-spmf-rep-eq: set-spmf p = {x. measure (measure-spmf p) {z} # 0}
(proof)

lemma in-set-spmf: x € set-spmf p +— Some x € set-pmf p
(proof)

lemma AE-measure-spmf-iff [simp]: (AE x in measure-spmf p. P x) «— (¥ z€set-spmf
p. P x)
(proof)

lemma spmf-eq-0-set-spmf: spmf p x = 0 <— z & set-spmf p
(proof)

lemma in-set-spmf-iff-spmf: x € set-spmf p «— spmfpxz # 0
(proof)

lemma set-spmf-return-pmf-None [simp]: set-spmf (return-pmf None) = {}
(proof)

lemma countable-set-spmf [simp]: countable (set-spmf p)
(proof)

lemma spmf-eql:
assumes Ai. spmfp i = spmf q i
shows p = ¢

(proof)

lemma integral-measure-spmf-restrict:

fixes f 1 'a = 'b:: {banach, second-countable-topology}

shows ([z. fz Omeasure-spmf M) = ([. f x Orestrict-space (measure-spmf
M) (set-spmf M))

(proof)

lemma nn-integral-measure-spmf’:

(J* . fx Omeasure-spmf p) = [T x. ennreal (spmf p z) * [x Ocount-space
(set-spmf p)

(proof)

25.4 Functorial structure

abbreviation map-spmf :: (‘a = 'b) = 'a spmf = 'b spmf
where map-spmf f = map-pmf (map-option f)

THEORY “SPMEF” 155

context begin
(ML)

lemma map-comp: map-spmf f (map-spmf g p) = map-spmf (f o g) p
{proof)

lemma map-id0: map-spmf id = id
(proof)

lemma map-id [simp]: map-spmfid p = p
(proof)

lemma map-ident [simp]: map-spmf (Az. z) p =p
(proof)

end

lemma set-map-spmf [simpl: set-spmf (map-spmf fp) = f ¢ set-spmf p
(proof)

lemma map-spmf-cong:
[p=q Nz z € set-spmf g = fz = gx] = map-spmf fp = map-spmf g q
(proof)

lemma map-spmyf-cong-simp:
[p=q¢ Nz z € set-spmf ¢ =simp=> fz =gz]
= map-spmf [p = map-spmf g q
(proof)

lemma map-spmf-idl: (\z. x € set-spmfp = fz =) = map-spmf fp =1p

(proof)

lemma emeasure-map-spmf:

emeasure (measure-spmf (map-spmf f p)) A = emeasure (measure-spmf p) (f —
4)

(proof)

¢

lemma measure-map-spmf: measure (measure-spmf (map-spmf f p)) A = measure
(measure-spmf p) (f —¢A)
(proof)

lemma measure-map-spmf-conv-distr:
measure-spmf (map-spmf f p) = distr (measure-spmf p) (count-space UNIV) f
(proof)

lemma spmf-map-pmf-Some [simp]: spmf (map-pmf Some p) i = pmfp i
(proof)

lemma spmf-map-ing: [inj-on f (set-spmf M); x € set-spmf M | = spmf (map-spmf

THEORY “SPMEF” 156

M) (fx) = spmf M x
{proof)

lemma spmf-map-inj” inj f = spmf (map-spmf f M) (f) = spmf M x
(proof)

lemma spmf-map-outside: x ¢ f * set-spmf M = spmf (map-spmf f M) x = 0
(proof)

lemma ennreal-spmf-map: ennreal (spmf (map-spmf fp) x) = emeasure (measure-spmf

p) (f = {z})

{proof)

lemma spmf-map: spmf (map-spmf f p) © = measure (measure-spmf p) (f —*{z})

(proof)

lemma ennreal-spmf-map-conv-nn-integral:

ennreal (spmf (map-spmf f p) x) = integral™ (measure-spmf p) (indicator (f —
{z}))

(proof)

¢

25.5 Monad operations
25.5.1 Return

abbreviation return-spmf :: ‘a = ‘a spmf
where return-spmf r = return-pmf (Some 1)

lemma pmf-return-spmf: pmf (return-spmf z) y = indicator {y} (Some z)
(proof)

lemma measure-spmf-return-spmf: measure-spmf (return-spmf x) = Giry-Monad.return
(count-space UNIV) x

(proof)

lemma measure-spmf-return-pmf-None [simp|: measure-spmf (return-pmf None)
= null-measure (count-space UNIV)

(proof)

lemma set-return-spmf [simp]: set-spmf (return-spmf z) = {z}
(proof)

25.5.2 Bind

definition bind-spmf :: 'a spmf = (‘a = 'b spmf) = 'b spmf
where bind-spmf ¢ f = bind-pmf x (Aa. case a of None = return-pmf None |
Some o’ = fa’)

adhoc-overloading Monad-Syntaz.bind = bind-spmf

THEORY “SPMEF” 157

lemma return-None-bind-spmf [simp|: return-pmf None >= (f = 'a = -) = re-
turn-pmf None
{proof)

lemma return-bind-spmf [simpl: return-spmf x >= f = f«
(proof)

lemma bind-return-spmf [simp|: x >= return-spmf = z
(proof)

lemma bind-spmf-assoc [simp]:
fixes x :: ‘a spmf and f :: '7a = 'b spmf and g :: 'b = ‘c spmf
shows (z >=f) >=g=2>= (A\y. fy >= ¢g)
(proof)

lemma pmf-bind-spmf-None: pmf (p >= f) None = pmf p None + [z. pmf (f
x) None Omeasure-spmf p

(is ?lhs = %rhs)
(proof)

lemma spmf-bind: spmf (p >= f) y = [z. spmf (f z) y Omeasure-spmf p
(proof)

lemma ennreal-spmf-bind: ennreal (spmf (p >=f) z) = [+ y. spmf (fy) Omea-
sure-spmf p
(proof)

lemma measure-spmf-bind-pmf: measure-spmf (p >= f) = measure-pmf p >=
measure-spmf o f
(is ?lhs = %rhs)

{(proof)

lemma measure-spmf-bind: measure-spmf (p >= f) = measure-spmf p >= mea-
sure-spmf o f

(is ?lhs = %rhs)
(proof)

lemma map-spmf-bind-spmf: map-spmf f (bind-spmf p g) = bind-spmf p (map-spmf
feyg)
(proof)

lemma bind-map-spmf: map-spmf fp >=g=p>=go f
(proof)

lemma spmf-bind-lel:
assumes Ay. y € set-spmfp = spmf (fy) z <r
and 0 < r
shows spmf (bind-spmfp f) z <r

(proof)

THEORY “SPMEF” 158

lemma map-spmf-conv-bind-spmf: map-spmf fp = (p >= (Az. return-spmf (f z)))
(proof)

lemma bind-spmf-cong:
[p=q Az z € set-spmf q = fz = gz] = bind-spmf p f = bind-spmf q g
(proof)

lemma bind-spmf-cong-simp:
[p=q¢ Nz z € set-spmf ¢ =simp=> fz =gz]
= bind-spmf p f = bind-spmf q g
(proof)

lemma set-bind-spmf: set-spmf (M >= f) = set-spmf M >= (set-spmf o f)
(proof)

lemma bind-spmf-const-return-None [simp]: bind-spmf p (A-. return-pmf None) =
return-pmf None
(proof)

lemma bind-commute-spmf:
bind-spmf p (Az. bind-spmf q (f x)) = bind-spmf q¢ (Ay. bind-spmf p (Az. f z y))
(is ?lhs = %rhs)

(proof)

25.6 Relator

abbreviation rel-spmf :: (‘a = 'b = bool) = 'a spmf = 'b spmf = bool
where rel-spmf R = rel-pmf (rel-option R)

lemma rel-spmf-mono:
[rel-spmf A fg; Ney. Azy = Bzy] = rel-spmf B fg
(proof)

lemma rel-spmf-mono-strong:

[rel-spmf A fg; Ney. [A zy; x € set-spmf f; y € set-spmfg] = Bzry] =
rel-spmf B f g

(proof)

lemma rel-spmf-refil: (A\z. © € set-spmf p = P x x) = rel-spmf P p p
(proof)

lemma rel-spmfl [intro?):
[Az y. (z, y) € set-spmf pg = P x y; map-spmf fst pqg = p; map-spmf snd pq

q]

= rel-spmf P p q
(proof)

lemma rel-spmfE [elim?, consumes 1, case-names rel-spmf]:

THEORY “SPMEF” 159

assumes rel-spmf P p q

obtains pq where
Az y. (z, y) € set-spmf pg = Pz y
p = map-spmf fst pq
q = map-spmf snd pq

(proof)

lemma rel-spmf-simps:

rel-spmf R p ¢ «— (3 pq. (V (z, y)Eset-spmf pq. R x y) A map-spmf fst pg = p A
map-spmf snd pq = q)

(proof)

lemma spmf-rel-map:
shows spmf-rel-map1: AR f z. rel-spmf R (map-spmf f) = rel-spmf (Ax. R (f

and spmf-rel-map2: AR z g y. rel-spmf R z (map-spmf g y) = rel-spmf Az y.

Rz (gy)zy
(proof)
lemma spmf-rel-conversep: rel-spmf R=1=1 = (rel-spmf R)~171
(proof)
lemma spmf-rel-eq: rel-spmf (=) = (=)
(proof)
context includes lifting-syntax
begin
lemma bind-spmf-parametric [transfer-rule]:
(rel-spmf A ===> (A ===> rel-spmf B) ===> rel-spmf B) bind-spmf bind-spmf
(proof)
lemma return-spmf-parametric: (A ===> rel-spmf A) return-spmf return-spmf
(proof)
lemma map-spmf-parametric: (A ===> B) ===> rel-spmf A ===> rel-spmf
B) map-spmf map-spmf
(proof)
lemma rel-spmf-parametric:
((A ===> B ===> (=)) ===> rel-spmf A ===> rel-spmf B ===> (=))
rel-spmf rel-spmf
(proof)

lemma set-spmf-parametric [transfer-rule]:
(rel-spmf A ===> rel-set A) set-spmf set-spmf
(proof)

lemma return-spmf-None-parametric:

THEORY “SPMEF” 160

(rel-spmf A) (return-pmf None) (return-pmf None)
{proof)

end

lemma rel-spmf-bindl:
[rel-spmf R p q; Nz y. Rxy = rel-spmf P (fz) (9 y)]
= rel-spmf P (p >= f) (¢ >= g)
(proof)

lemma rel-spmf-bind-refil:

(Az. x € set-spmf p = rel-spmf P (fz) (g x)) = rel-spmf P (p >= f) (p >=
9)

(proof)

lemma rel-pmf-return-pmfl: P x y = rel-pmf P (return-pmf z) (return-pmf y)
(proof)

context includes lifting-syntax
begin

We do not yet have a relator for ‘a measure, so we combine Sigma-Algebra.measure
and measure-pmf

lemma measure-pmf-parametric:

(rel-pmf A ===> rel-pred A ===> (=)) (Ap. measure (measure-pmf p)) (Aq.
measure (measure-pmf q))
(proof)
lemma measure-spmf-parametric:

(rel-spmf A ===> rel-pred A ===> (=)) (Ap. measure (measure-spmf p)) (Aq.
measure (measure-spmf q))
(proof)
end

25.7 From ’‘a pmf to '‘a spmf
definition spmf-of-pmf :: 'a pmf = 'a spmf
where spmf-of-pmf = map-pmf Some

lemma set-spmf-spmf-of-pmf [simpl: set-spmf (spmf-of-pmf p) = set-pmf p
(proof)

lemma spmjf-spmf-of-pmf [simp]: spmf (spmf-of-pmf p) x = pmf p x
(proof)

lemma pmf-spmf-of-pmf-None [simp]: pmf (spmf-of-pmf p) None = 0
(proof)

THEORY “SPMEF” 161

lemma emeasure-spmf-of-pmf [simp|: emeasure (measure-spmf (spmf-of-pmf p))
A = emeasure (measure-pmf p) A
(proof)

lemma measure-spmf-spmf-of-pmf [simp]: measure-spmf (spmf-of-pmf p) = mea-
sure-pmf p
(proof)

len)ama map-spmf-of-pmf [simp]: map-spmf f (spmf-of-pmf p) = spmf-of-pmf (map-pmf
Ip
(proof)

lemma rel-spmf-spmf-of-pmf [simp]: rel-spmf R (spmf-of-pmf p) (spmf-of-pmf q)
= rel-pmf R p q

(proof)

lemma spmf-of-pmf-return-pmf [simpl: spmf-of-pmf (return-pmf z) = return-spmf
T
{proof)

lemma bind-spmf-of-pmf [simp]: bind-spmf (spmf-of-pmf p) f = bind-pmf p f
(proof)

lemma set-spmf-bind-pmf: set-spmf (bind-pmfp f) = Set.bind (set-pmf p) (set-spmf

of)
(proof)

lemma spmf-of-pmf-bind: spmf-of-pmf (bind-pmfp f) = bind-pmf p (Az. spmf-of-pmf
(f z))
(proof)

lemma bind-pmf-return-spmf: p >= (A\z. return-spmf (fx)) = spmf-of-pmf (map-pmf
fp)
(proof)

25.8 Weight of a subprobability

abbreviation weight-spmf :: 'a spmf = real
where weight-spmf p = measure (measure-spmf p) (space (measure-spmf p))

lemma weight-spmf-def: weight-spmf p = measure (measure-spmf p) UNIV
(proof)

lemma weight-spmf-le-1: weight-spmf p < 1
(proof)

lemma weight-return-spmf [simp|: weight-spmf (return-spmf x) = 1
(proof)

THEORY “SPMEF” 162

lemma weight-return-pmf-None [simp|: weight-spmf (return-pmf None) = 0
(proof)

lemma weight-map-spmf [simp]: weight-spmf (map-spmf f p) = weight-spmf p
(proof)

lemma weight-spmf-of-pmf [simp|: weight-spmf (spmf-of-pmf p) = 1
(proof)

lemma weight-spmf-nonneg: weight-spmf p > 0
(proof)

lemma (in finite-measure) integrable-weight-spmf [simp]:
(Az. weight-spmf (f x)) € borel-measurable M = integrable M (Az. weight-spmf
(f)

(proof)

lemma weight-spmf-eq-nn-integral-spmf: weight-spmfp = f T 2. spmf p x Ocount-space
UNIV
(proof)

lemma weight-spmf-eq-nn-integral-support:
weight-spmf p = [. spmf p © dcount-space (set-spmf p)
(proof)

lemma pmf-None-eq-weight-spmf: pmf p None = 1 — weight-spmf p
(proof)

lemma weight-spmf-conv-pmf-None: weight-spmfp = 1 — pmf p None
(proof)

lemma weight-spmf-lt-0: — weight-spmf p < 0
(proof)

lemma spmf-le-weight: spmf p v < weight-spmf p
(proof)

lemma weight-spmf-eq-0: weight-spmf p = 0 <— p = return-pmf None
(proof)

lemma weight-bind-spmf: weight-spmf (x >= f) = lebesgue-integral (measure-spmf
z) (weight-spmf o f)
(proof)

lemma rel-spmf-weightD: rel-spmf A p ¢ = weight-spmf p = weight-spmf q
(proof)

lemma rel-spmf-bij-betw:
assumes f: bij-betw [(set-spmf p) (set-spmf q)

THEORY “SPMEF” 163

and eq: Az. x € set-spmf p = spmf p x = spmf q (f x)
shows rel-spmf (Ary. fz=1y) pq
(proof)

25.9 From density to spmfs

context fixes f :: ‘a = real begin

definition embed-spmf :: 'a spmf
where embed-spmf = embed-pmf (Az. case x of None = 1 — ennZreal (f+ T.
ennreal (f z) Ocount-space UNIV') | Some ¢’ = maz 0 (f z”))

context
assumes prob: ([z. ennreal (f) dcount-space UNIV) < 1
begin

lemma nn-integral-embed-spmf-eq-1:

([t z. ennreal (case x of None = 1 — ennZreal ([+ z. ennreal (f z) Ocount-space
UNIV) | Some z' = maz 0 (f ') Ocount-space UNIV) = 1

(is ?ths = -is ([T z. ?%f 2 O?M) = -)
(proof)

lemma pmf-embed-spmf-None: pmf embed-spmf None = 1 — ennZreal ([z. en-
nreal (f x) Ocount-space UNIV)
(proof)

lemma spmf-embed-spmf [simp]: spmf embed-spmf z = maz 0 (f x)
(proof)

end
end

lemma embed-spmf-K-0[simp]: embed-spmf (A-. 0) = return-pmf None
{proof)

25.10 Ordering on spmfs

rel-pmf does not preserve a ccpo structure. Counterexample by Saheb-
Djahromi: Take prefix order over bool llist and the set range (An :: nat.
uniform (llist-n n)) where llist-n is the set of all llists of length n and
uniform returns a uniform distribution over the given set. The set forms
a chain in ord-pmf Iprefiz, but it has not an upper bound. Any upper
bound may contain only infinite lists in its support because otherwise it is
not greater than the n+1-st element in the chain where n is the length of
the finite list. Moreover its support must contain all infinite lists, because
otherwise there is a finite list all of whose finite extensions are not in the
support - a contradiction to the upper bound property. Hence, the support

THEORY “SPMEF” 164

is uncountable, but pmf’s only have countable support.

However, if all chains in the ccpo are finite, then it should preserve the ccpo
structure.

abbreviation ord-spmf :: (‘a = ‘a = bool) = 'a spmf = 'a spmf = bool
where ord-spmf ord = rel-pmf (ord-option ord)

locale ord-spmf-syntax begin
notation ord-spmf (infix «C1» 60)
end

lemma ord-spmf-map-spmfl: ord-spmf R (map-spmf f p) = ord-spmf (Az. R (f z))
p
(proof)

lemma ord-spmf-map-spmf2: ord-spmf R p (map-spmf f q) = ord-spmf (Az y. R

z (fy) paq
(proof)

lemma ord-spmf-map-spmf12: ord-spmf R (map-spmf f p) (map-spmf f q) = ord-spmf

(Azy. R (fz) (fy) pa
(proof)

lemmas ord-spmf-map-spmf = ord-spmf-map-spmf1 ord-spmf-map-spmf2 ord-spmf-map-spmf12

context fixes ord :: ‘a = 'a = bool (structure) begin
interpretation ord-spmf-syntaz (proof)

lemma ord-spmfI:

[Az y. (z, y) € set-spmf pg => ord z y; map-spmf fst pg = p; map-spmf snd pq
=q]

= pLyg

(proof)

lemma ord-spmf-None [simp]: return-pmf None C z
(proof)

lemma ord-spmf-refil: (Az. z € set-spmfp — ordx) = p C p
(proof)

lemma rel-spmf-inf:

assumes p C ¢

and ¢ C p

and refl: reflp ord

and trans: transp ord

shows rel-spmf (inf ord ord='=1) p q
(proof)

end

THEORY “SPMEF” 165

lemma ord-spmf-return-spmf2: ord-spmf R p (return-spmf y) «— (¥ zE€set-spmf
p. Rzy)
(proof)

lemma ord-spmf-mono: [ord-spmf A p ¢; Nz y. Az y = Bzxy] = ord-spmf
Bpq
(proof)

lemma ord-spmf-compp: ord-spmf (A OO B) = ord-spmf A OO ord-spmf B
(proof)

lemma ord-spmf-bindl:
assumes pq: ord-spmf R p q
and fg: Az y. Rz y = ord-spmf P (fz) (g y)
shows ord-spmf P (p >= f) (¢ >= g)
(proof)

lemma ord-spmf-bind-refil:

(Az. x € set-spmf p => ord-spmf R (f z) (g x)) => ord-spmf R (p >= f) (p >=
9)

(proof)

lemma ord-pmf-increasel:
assumes le: Az. spmfp z < spmfqzx
and refl: Nz. z € set-spmfp — Rz x
shows ord-spmf R p ¢

(proof)

lemma ord-spmf-eq-leD:
assumes ord-spmf (=) p ¢
shows spmfp z < spmf q z

(proof)

lemma ord-spmf-eqD-set-spmf: ord-spmf (=) p ¢ = set-spmf p C set-spmf ¢
(proof)

lemma ord-spmf-eqD-emeasure:
ord-spmf (=) p ¢ = emeasure (measure-spmf p) A < emeasure (measure-spmf

q) A
(proof)

lemma ord-spmf-eqD-measure-spmf: ord-spmf (=) p ¢ => measure-spmf p < mea-
sure-spmf q
(proof)

25.11 CCPO structure for the flat ccpo ord-option (=)

context fixes Y :: ‘a spmf set begin

THEORY “SPMEF” 166

definition lub-spmf :: ‘a spmf
where lub-spmf = embed-spmf (Az. enn2real (SUP p € Y. ennreal (spmf p z)))
— We go through ennreal to have a sensible definition even if Y is empty.

lemma lub-spmf-empty [simpl: SPMF.lub-spmf {} = return-pmf None
(proof)

context assumes chain: Complete-Partial-Order.chain (ord-spmf (=)) Y
begin

lemma chain-ord-spmf-eqD: Complete-Partial-Order.chain (<) ((Ap z. ennreal (spmf
px)) " Y)

(is Complete-Partial-Order.chain - (2f ¢ -))
(proof)

lemma ord-spmf-eq-pmf-None-eq:
assumes le: ord-spmf (=) p ¢
and None: pmf p None = pmf q None
shows p = ¢

(proof)

lemma ord-spmf-eqD-pmf-None:
assumes ord-spmf (=) z y
shows pmf x None > pmf y None
(proof)

Chains on ‘a spmf maintain countable support. Thanks to Johannes Holzl
for the proof idea.

lemma spmf-chain-countable: countable (|JpeY. set-spmf p)
(proof)

lemma lub-spmf-subprob: ([+ . (SUP p € Y. ennreal (spmf p x)) dcount-space
UNIV) < 1

(proof)

lemma spmf-lub-spmf:

assumes Y # {}

shows spmf lub-spmfz = (SUP p € Y. spmf p x)
(proof)

lemma ennreal-spmf-lub-spmf: Y # {} = ennreal (spmf lub-spmf) = (SUP
peY. ennreal (spmf p x))
(proof)

lemma [ub-spmf-upper:

assumes p: p € Y

shows ord-spmf (=) p lub-spmf
(proof)

THEORY “SPMEF” 167

lemma [ub-spmf-least:
assumes z: A\z. z € Y = ord-spmf (=) z 2z
shows ord-spmf (=) lub-spmf z

(proof)

lemma set-lub-spmf: set-spmf lub-spmf = (JpeY. set-spmf p) (is ?lhs = frhs)
(proof)

lemma emeasure-lub-spmf:
assumes Y: Y # {}

shows emeasure (measure-spmf lub-spmf) A = (SUP y€ Y. emeasure (measure-spmf

y) A)
(is ?lhs = %rhs)

(proof)

lemma measure-lub-spmf:

assumes Y: Y # {}

shows measure (measure-spmf lub-spmf) A = (SUP y€ Y. measure (measure-spmf
y) A) (is ?lhs = %rhs)
(proof)

lemma weight-lub-spmf:
assumes Y: Y # {}
shows weight-spmf lub-spmf = (SUP y€Y. weight-spmf y)
(proof)

lemma measure-spmf-lub-spmf:

assumes Y: Y # {}

shows measure-spmf lub-spmf = (SUP pe Y. measure-spmf p) (is ?lhs = ?rhs)
{proof)

end
end

lemma partial-function-definitions-spmf: partial-function-definitions (ord-spmf (=))
lub-spmf

(is partial-function-definitions ¢R -)
(proof)

lemma ccpo-spmf: class.ccpo lub-spmf (ord-spmf (=)) (mk-less (ord-spmf (=)))
{proof)

interpretation spmf: partial-function-definitions ord-spmf (=) lub-spmf
rewrites lub-spmf {} = return-pmf None

(proof)

(ML)

THEORY “SPMEF” 168

declare spmf.leg-refl[simp)
declare admissible-lel[OF ccpo-spmf, cont-intro]

abbreviation mono-spmf = monotone (fun-ord (ord-spmf (=))) (ord-spmf (=))

lemma lub-spmf-const [simp|: lub-spmf {p} = p
(proof)

lemma bind-spmf-mono’:
assumes fg: ord-spmf (=) f g
and hk: Az :: 'a. ord-spmf (=) (h z) (k z)
shows ord-spmf (=) (f >= h) (g >= k)
(proof)

lemma bind-spmf-mono [partial-function-monol:
assumes mf: mono-spmf B and mg: A\y. mono-spmf (\f. C y f)
shows mono-spmf (Af. bind-spmf (B f) (Ay. C y f))

(proof)

lemma monotone-bind-spmf1: monotone (ord-spmf (=)) (ord-spmf (=)) (Ay. bind-spmf
y9)
{proof)

lemma monotone-bind-spmf2:
assumes g: Az. monotone ord (ord-spmf (=)) (Ay. g y)
shows monotone ord (ord-spmf (=)) (\y. bind-spmf p (g y))
{proof)

lemma bind-lub-spmf:

assumes chain: Complete-Partial-Order.chain (ord-spmf (=)) YV

shows bind-spmf (lub-spmf Y) f = lub-spmf ((Ap. bind-spmfp f) ‘YY) (is ?lhs
= %rhs)
(proof)

lemma map-lub-spmf:
Complete-Partial-Order.chain (ord-spmf (=)) Y
= map-spmf f (lub-spmf Y) = lub-spmf (map-spmf f ‘' Y)
(proof)

lemma mcont-bind-spmf1: mcont lub-spmf (ord-spmf (=)) lub-spmf (ord-spmf
(=)) (Ay. bind-spmf y f)
(proof)

lemma bind-lub-spmf2:
assumes chain: Complete-Partial-Order.chain ord Y
and ¢: Ay. monotone ord (ord-spmf (=)) (g y)
shows bind-spmf x (Ay. lub-spmf (g y ° Y)) = lub-spmf ((Ap. bind-spmf x (Ay.
gyp) Y)

THEORY “SPMEF” 169

(is ?lhs = ?rhs)
(proof)

lemma mcont-bind-spmf [cont-intro):
assumes f: mcont luba orda lub-spmf (ord-spmf (=)) f
and g: Ay. mcont luba orda lub-spmf (ord-spmf (=)) (g y)
shows mcont luba orda lub-spmf (ord-spmf (=)) (Az. bind-spmf (f z) (Ay. g y

z))
(proof)

lemma bind-pmf-mono [partial-function-monol:

(Ay. mono-spmf (Af. Cy f)) = mono-spmf (A\f. bind-pmf p (\z. C z f))
(proof)

lemma map-spmf-mono [partial-function-monol: mono-spmf B = mono-spmf (Ag.
map-spmf f (B g))
(proof)

lemma mcont-map-spmf [cont-intro):
mecont luba orda lub-spmf (ord-spmf (=)) g
= mecont luba orda lub-spmf (ord-spmf (=)) (Az. map-spmf f (g x))

{proof)

lemma monotone-set-spmf: monotone (ord-spmf (=)) (C) set-spmf
{proof)

lemma cont-set-spmf: cont lub-spmf (ord-spmf (=)) Union (C) set-spmf
(proof)

lemma mcont2mcont-set-spmf[THEN mcont2mcont, cont-intro:
shows mcont-set-spmf: mcont lub-spmf (ord-spmf (=)) Union (C) set-spmf
(proof)

lemma monotone-spmf: monotone (ord-spmf (=)) (<) (Ap. spmf p x)
{proof)

lemma cont-spmf: cont lub-spmf (ord-spmf (=)) Sup (<) (Ap. spmf p)
(proof)

lemma mcont-spmf: mcont lub-spmf (ord-spmf (=)) Sup (<) (Ap. spmf p x)
(proof)

lemma cont-ennreal-spmf: cont lub-spmf (ord-spmf (=)) Sup (<) (Ap. ennreal
(spmf p x))
(proof)

lemma mcont2mcont-ennreal-spmf [THEN mcont2mcont, cont-intro):
shows mcont-ennreal-spmf: mcont lub-spmf (ord-spmf (=)) Sup (<) (Ap. ennreal

(spmf p x))

THEORY “SPMEF” 170

{proof)

lemma nn-integral-map-spmf [simpl: nn-integral (measure-spmf (map-spmf f p))
g = nn-integral (measure-spmf p) (g o f)
(proof)

25.11.1 Admissibility of rel-spmf

lemma rel-spmf-measureD:

assumes rel-spmf R p q

shows measure (measure-spmf p) A < measure (measure-spmf q) {y. 3z€A. R
z y} (is ?lhs < ?rhs)
(proof)

locale rel-spmf-characterisation =
assumes rel-pmf-measurel:
N(R :: 'a option = 'b option = bool) p q.
(AA. measure (measure-pmf p) A < measure (measure-pmf q) {y. 3z€A. R x
y})
= rel-pmf R p q
— This assumption is shown to hold in general in the AFP entry MFMC-Countable.
begin

context fixes R :: 'a = 'b = bool begin

lemma rel-spmf-measurel:

assumes eql: AA. measure (measure-spmf p) A < measure (measure-spmf q)
{y. Jz€A. R z y}

assumes eq2: weight-spmf q < weight-spmf p

shows rel-spmf R p q
{proof)

lemma admissible-rel-spmf:

cepo.admissible (prod-lub lub-spmf lub-spmf) (rel-prod (ord-spmf (=)) (ord-spmf
(=))) (case-prod (rel-spmf R))

(is ccpo.admissible ?lub ?ord ?P)

(proof)

lemma admissible-rel-spmf-mcont [cont-introl:
[mcont lub ord lub-spmf (ord-spmf (=)) f; mcont lub ord lub-spmf (ord-spmf

(=) g1l

= ccpo.admissible lub ord (\z. rel-spmf R (f z) (g x))
(proof)

context includes lifting-syntax
begin

lemma fizp-spmf-parametric’:
assumes f: Az. monotone (ord-spmf (=)) (ord-spmf (=)) F

THEORY “SPMEF” 171

and ¢: Az. monotone (ord-spmf (=)) (ord-spmf (=)) G
and param: (rel-spmf R ===> rel-spmf R) F G
shows (rel-spmf R) (ccpo.fixp lub-spmf (ord-spmf (=)) F) (ccpo.fixp lub-spmf
(ord-spmf (=)) G)
(proof)

lemma fixp-spmf-parametric:
assumes f: Az. mono-spmf (Af. F fz)
and g: Az. mono-spmf (Af. G fz)
and param: ((A ===> rel-spmf R) ===> A ===> rel-spmf R) F G
shows (A ===> rel-spmf R) (spmf.fizp-fun F) (spmf.fixp-fun G)
(proof)

end
end

end

25.12 Restrictions on spmfs

definition restrict-spmf :: 'a spmf = ‘a set = 'a spmf (infixl <]» 110)
where p 1 A = map-pmf (Az. © >= (M\y. if y € A then Some y else None)) p

lemma set-restrict-spmf [simpl: set-spmf (p 1 A) = set-spmf p N A
(proof)

lemma restrict-map-spmf: map-spmf fp 1 A = map-spmf f (p 1 (f = A))
(proof)

lemma restrict-restrict-spmf [simpl: p 1 A1 B=p1 (AN B)
(proof)

lemma restrict-spmf-empty [simp]: p 1 {} = return-pmf None
(proof)

lemma restrict-spmf-UNIV [simp]: p 1 UNIV = p
(proof)

lemma spmf-restrict-spmf-outside [simp]: ¢ A = spmf (p 1 A) z =0
(proof)

lemma emeasure-restrict-spmf [simp]: emeasure (measure-spmf (p 1 A)) X =
emeasure (measure-spmf p) (X N A)

(proof)

lemma measure-restrict-spmf [simp):
measure (measure-spmf (p 1 A)) X = measure (measure-spmf p) (X N A)

{proof)

THEORY “SPMEF” 172

lemma spmf-restrict-spmf: spmf (p 1 A) x = (if z € A then spmf p z else 0)
(proof)

lemma spmf-restrict-spmf-inside [simp]: © € A = spmf (p 1 A) © = spmfpx
(proof)

lemma pmf-restrict-spmf-None: pmf (p | A) None = pmf p None + measure
(measure-spmf p) (— A)
{(proof)

lemma restrict-spmf-trivial: (Az. x € set-spmfp =z € A) = pl1 A=0p
(proof)

lemma restrict-spmf-trivial”: set-spmfp C A= p|1 A=p

(proof)

lemma restrict-return-spmf: return-spmf x 1 A = (if x € A then return-spmf x
else return-pmf None)

{proof)

lemma restrict-return-spmf-inside [simp]: © € A = return-spmf © | A = re-
turn-spmf x
(proof)

lemma restrict-return-spmf-outside [simp]: * ¢ A = return-spmf x 1 A = re-
turn-pmf None
(proof)

lemma restrict-spmf-return-pmf-None [simp]: return-pmf None | A = return-pmf
None

(proof)

lemma restrict-bind-pmf: bind-pmfp g1 A =p >= (Az. gz 1 A)
(proof)

lemma restrict-bind-spmf: bind-spmfp g1 A =p >= (Az. gz | A)
(proof)

lemma bind-restrict-pmf: bind-pmf (p 1 A) g = p >= (Az. if ¢ € Some ‘ A then
g x else g None)
(proof)

lemma bind-restrict-spmf: bind-spmf (p 1 A) g = p >= (Az. if x € A then g x
else return-pmf None)
(proof)

lemma spmf-map-restrict: spmf (map-spmf fst (p 1 (snd —“{y}))) z = spmf p (z,
y)

THEORY “SPMEF” 173

{proof)

lemma measure-eql-restrict-spmf:
assumes rel-spmf R (restrict-spmf p A) (restrict-spmf q B)
shows measure (measure-spmf p) A = measure (measure-spmf q) B

(proof)

25.13 Subprobability distributions of sets

definition spmf-of-set :: ‘a set = ‘a spmf
where

spmf-of-set A = (if finite A N A # {} then spmf-of-pmf (pmf-of-set A) else
return-pmf None)

lemma spmf-of-set: spmf (spmf-of-set A) x = indicator A = / card A
(proof)

lemma pmf-spmf-of-set-None [simpl: pmf (spmf-of-set A) None = indicator {A.
infinite AV A= {}} A
{proof)

lemma set-spmf-of-set: set-spmf (spmf-of-set A) = (if finite A then A else {})
(proof)

lemma set-spmf-of-set-finite [simp]: finite A => set-spmf (spmf-of-set A) = A
(proof)

lemma spmf-of-set-singleton: spmf-of-set {x} = return-spmf
(proof)

lemma map-spmf-of-set-inj-on [simp]:
inj-on f A = map-spmf f (spmf-of-set A) = spmf-of-set (f < A)
(proof)

lemma spmf-of-pmf-pmf-of-set [simp):
[finite A; A # {} | = spmf-of-pmf (pmf-of-set A) = spmf-of-set A
(proof)

lemma weight-spmf-of-set:
weight-spmf (spmf-of-set A) = (if finite A N A # {} then 1 else 0)
(proof)

lemma weight-spmf-of-set-finite [simpl: [finite A; A # {} | = weight-spmf
(spmf-of-set A) = 1
(proof)

lemma weight-spmf-of-set-infinite [simp]: infinite A =—> weight-spmf (spmf-of-set
A) =0
(proof)

THEORY “SPMEF” 174

lemma measure-spmf-spmf-of-set:

measure-spmf (spmjf-of-set A) = (if finite A N A # {} then measure-pmf (pmf-of-set
A) else null-measure (count-space UNIV))

(proof)

lemma emeasure-spmf-of-set:
emeasure (measure-spmf (spmf-of-set §)) A = card (S N A) / card S

{proof)

lemma measure-spmf-of-set:
measure (measure-spmf (spmf-of-set S)) A = card (S N A) / card S

{proof)

lemma nn-integral-spmf-of-set: nn-integral (measure-spmf (spmf-of-set A)) f =
sum fA [/ card A
(proof)

lemma integral-spmf-of-set: integral’ (measure-spmf (spmf-of-set A)) f = sum f
A/ card A
(proof)

notepad begin — pmf-of-set is not fully parametric.

(proof)
end

lemma rel-pmf-of-set-bij:

assumes f: bij-betw f A B

and A: A # {} finite A

and B: B # {} finite B

and R: A\z. 1€ A= Rz (fz)

shows rel-pmf R (pmf-of-set A) (pmf-of-set B)
(proof)

lemma rel-spmf-of-set-bij:

assumes f: bij-betw f A B

and R: A\z. 2 € A= Rz (fz)

shows rel-spmf R (spmf-of-set A) (spmf-of-set B)
(proof)

context includes lifting-syntax
begin

lemma rel-spmf-of-set:

assumes bi-unique R

shows (rel-set R ===> rel-spmf R) spmf-of-set spmf-of-set
(proof)

end

THEORY “SPMEF” 175

lemma map-mem-spmf-of-set:

assumes finite B B # {}

shows map-spmf (Az. = € A) (spmf-of-set B) = spmf-of-pmf (bernoulli-pmf
(card (A N B) / card B))

(is ?lhs = %rhs)
(proof)

abbreviation coin-spmf :: bool spmf
where coin-spmf = spmf-of-set UNIV

lemma map-eq-const-coin-spmf: map-spmf ((=) ¢) coin-spmf = coin-spmf
(proof)

lemma bind-coin-spmf-eq-const: coin-spmf >= (Azx :: bool. return-spmf (b = z))
= coin-spmf
(proof)

lemma bind-coin-spmjf-eq-const”. coin-spmf >= (Az :: bool. return-spmf (z = b))
= coin-spmf
(proof)

25.14 Losslessness

definition lossless-spmf :: 'a spmf = bool
where lossless-spmf p <— weight-spmf p = 1

lemma lossless-iff-pmf-None: lossless-spmf p <— pmf p None = 0
(proof)

lemma lossless-return-spmf [iff]: lossless-spmf (return-spmf x)
(proof)

lemma lossless-return-pmf-None [iff]: = lossless-spmf (return-pmf None)
{proof)

lemma lossless-map-spmf [simp]: lossless-spmf (map-spmf f p) <— lossless-spmf
p
(proof)

lemma lossless-bind-spmf [simp):
lossless-spmf (p >= f) «— lossless-spmf p N (V¥ z€set-spmf p. lossless-spmf (f

z))
{proof)

lemma lossless-weight-spmfD: lossless-spmf p = weight-spmf p = 1
(proof)

lemma lossless-iff-set-pmf-None:

THEORY “SPMEF” 176

lossless-spmf p «— None ¢ set-pmf p
(proof)

lemma lossless-spmf-of-set [simp]: lossless-spmf (spmf-of-set A) +— finite A A A

{}

{proof)

lemma lossless-spmf-spmf-of-spmf [simp]: lossless-spmf (spmf-of-pmf p)
(proof)

lemma lossless-spmf-bind-pmf [simp]:
lossless-spmf (bind-pmf p f) +— (VY z€set-pmf p. lossless-spmf (f x))
(proof)

lemma lossless-spmf-conv-spmf-of-pmf: lossless-spmf p «— (I p’. p = spmf-of-pmf
p’)
(proof)

lemma spmf-False-conv-True: lossless-spmf p = spmf p False = 1 — spmfp True
(proof)

lemma spmf-True-conv-False: lossless-spmf p = spmfp True = 1 — spmf p Fualse
(proof)

lemma bind-eq-return-spmf:

bind-spmf p [= return-spmf x <— (Y y€Eset-spmf p. fy = return-spmf x) A
lossless-spmf p

(proof)

lemma rel-spmf-return-spmf2:
rel-spmf R p (return-spmf x) +— lossless-spmf p N (V a€set-spmf p. R a x)
(proof)

lemma rel-spmf-return-spmf1:
rel-spmf R (return-spmf z) p <— lossless-spmf p A (V a€set-spmf p. R x a)
(proof)

lemma rel-spmf-bindI1:
assumes f: A\z. z € set-spmf p = rel-spmf R (f z) ¢
and p: lossless-spmf p
shows rel-spmf R (bind-spmf p f) q

(proof)

lemma rel-spmf-bindI2:
[Az. = € set-spmf ¢ => rel-spmf R p (f z); lossless-spmf q |
= rel-spmf R p (bind-spmf q f)
(proof)

THEORY “SPMEF” 177

25.15 Scaling

definition scale-spmf :: real = 'a spmf = 'a spmf
where

scale-spmf r p = embed-spmf (Az. min (inverse (weight-spmf p)) (maz 0 r) *
spmf p)

lemma scale-spmf-le-1:
(J ' z. min (inverse (weight-spmf p)) (maz 0 r) * spmf p & dcount-space UNIV)
< 1 (is ?lhs < -)

(proof)

lemma spmf-scale-spmf: spmf (scale-spmfr p) x = max 0 (min (inverse (weight-spmf
p)) r) * spmf p x (is ?lhs = ?rhs)
{proof)

lemma real-inverse-le-1-iff: fixes z :: real
shows [0 <z;z<1]=1/2<1+—z=1Va=10
{proof)

lemma spmf-scale-spmf’: r < 1 = spmf (scale-spmf r p) x = max 0 r * spmf p
x
(proof)

lemma scale-spmf-neg: r < 0 = scale-spmf r p = return-pmf None
(proof)

lemma scale-spmf-return-None [simp): scale-spmf r (return-pmf None) = return-pmf
None
(proof)

lemma scale-spmf-conv-bind-bernoulli:

assumes r < [

shows scale-spmf r p = bind-pmf (bernoulli-pmf r) (\b. if b then p else return-pmf
None) (is ?lhs = ?rhs)
(proof)

lemma nn-integral-spmf: ([z. spmf p dcount-space A) = emeasure (measure-spmf
p) A
(proof)

lemma measure-spmf-scale-spmf: measure-spmf (scale-spmf r p) = scale-measure
(min (inverse (weight-spmf p)) r) (measure-spmf p)
(proof)

lemma measure-spmjf-scale-spmf .
assumes r < [
shows measure-spmf (scale-spmf r p) = scale-measure r (measure-spmf p)

(proof)

THEORY “SPMEF” 178

lemma scale-spmf-1 [simp]: scale-spmf 1 p = p
(proof)

lemma scale-spmf-0 [simpl: scale-spmf 0 p = return-pmf None
(proof)

lemma bind-scale-spmf:
assumes r: r < [
shows bind-spmf (scale-spmf r p) f = bind-spmf p (Az. scale-spmf r (f z))
(is ?lhs = %rhs)

(proof)

lemma scale-bind-spmf:
assumes r < [
shows scale-spmf r (bind-spmf p) = bind-spmf p (Az. scale-spmf r (f z))
(is ?lhs = %rhs)

(proof)

lemma bind-spmf-const: bind-spmf p (Az. q) = scale-spmf (weight-spmf p) q (is
?lhs = ?rhs)
(proof)

lemma map-scale-spmf: map-spmf f (scale-spmf r p) = scale-spmf r (map-spmf f
p) (is ?lhs = ?rhs)
(proof)

lemma set-scale-spmf: set-spmf (scale-spmf r p) = (if v > 0 then set-spmf p else

)
(proof)

lemma set-scale-spmf’ [simp]: 0 < r => set-spmf (scale-spmf r p) = set-spmf p
(proof)

lemma rel-spmf-scalel:

assumes r > (0 = rel-spmf A p q

shows rel-spmf A (scale-spmf r p) (scale-spmf r q)
(proof)

lemma weight-scale-spmf: weight-spmf (scale-spmf r p) = min 1 (maz 0 1 *
weight-spmf p)
(proof)

lemma weight-scale-spmf’ [simp]:
[0<rr<1] = weight-spmf (scale-spmf r p) = r * weight-spmf p
(proof)

lemma pmyf-scale-spmf-None:
pmf (scale-spmf k p) None = 1 — min 1 (mazx 0k x (I — pmf p None))
(proof)

THEORY “SPMEF” 179

lemma scale-scale-spmf:
scale-spmf r (scale-spmf r' p) = scale-spmf (r x maz 0 (min (inverse (weight-spmf

p) 1)) p

(is ?lhs = %rhs)
(proof)

lemma scale-scale-spmf’ [simp]:
assumes 0 < rr< 10<r'r' <1
shows scale-spmf r (scale-spmf r' p) = scale-spmf (r = ') p

(proof)

lemma scale-spmf-eq-same: scale-spmf r p = p +— weight-spmfp =0V r = 1
VvV r > 1 A weight-spmfp = 1
(is ?lhs <— ?rhs)

(proof)

lemma map-const-spmf-of-set:
[finite A; A # {} | = map-spmf (A-. ¢) (spmf-of-set A) = return-spmf c
(proof)

25.16 Conditional spmfs

lemma set-pmf-Int-Some: set-pmf p N Some * A = {} +— set-spmfp N A = {}
(proof)

lemma measure-spmf-zero-iff: measure (measure-spmf p) A = 0 <— set-spmf p
NA={}
(proof)

definition cond-spmf :: 'a spmf = 'a set = 'a spmf
where cond-spmf p A = (if set-spmf p N A = {} then return-pmf None else
cond-pmf p (Some ¢ A))

lemma set-cond-spmf [simp]: set-spmf (cond-spmf p A) = set-spmfp N A
(proof)

lemma cond-map-spmf [simpl: cond-spmf (map-spmf fp) A = map-spmf f (cond-spmf
p(f=*4))
(proof)

lemma spmf-cond-spmf [simp]:

spmf (cond-spmf p A) x = (if x € A then spmf p © |/ measure (measure-spmf p)
A else 0)

(proof)

lemma bind-eq-return-pmf-None:
bind-spmf p f = return-pmf None <— (¥ z€set-spmf p. f x = return-pmf None)
(proof)

THEORY “SPMEF” 180

lemma return-pmf-None-eq-bind:
return-pmf None = bind-spmf p f +— (VY z€set-spmf p. f & = return-pmf None)
(proof)

25.17 Product spmf

definition pair-spmf :: ‘a spmf = ‘b spmf = ('a x 'b) spmf
where pair-spmf p q = bind-pmf (pair-pmf p q) (Azy. case xy of (Some z, Some
y) = return-spmf (z, y) | - = return-pmf None)

lemma map-fst-pair-spmf [simp]: map-spmf fst (pair-spmf p q) = scale-spmf (weight-spmf
Q) p
(proof)

lemma map-snd-pair-spmf [simp]|: map-spmf snd (pair-spmf p q) = scale-spmf
(weight-spmf p) q
(proof)

lemma set-pair-spmf [simp]: set-spmf (pair-spmf p q) = set-spmf p X set-spmf q
(proof)

lemma spmf-pair [simp]: spmf (pair-spmf p q) (z, y) = spmf p x x spmf q y (is
?lhs = ?rhs)

(proof)

lemma pair-map-spmf2: pair-spmf p (map-spmf f q¢) = map-spmf (apsnd f) (pair-spmf
P q)
(proof)

lemma pair-map-spmf1: pair-spmf (map-spmf f p) ¢ = map-spmf (apfst) (pair-spmf
pq)
(proof)

lemma pair-map-spmf: pair-spmf (map-spmf [p) (map-spmf g q) = map-spmf
(map‘pﬁ)dfg) (pair—spmfp Q)
(proof)

lemma pair-spmf-alt-def: pair-spmf p g = bind-spmf p (Az. bind-spmf q¢ (\y. re-
turn-spmf (z, y)))
(proof)

lemma weight-pair-spmf [simp|: weight-spmf (pair-spmf p q) = weight-spmf p *
weight-spmf q
(proof)

lemma pair-scale-spmf1:
r < 1 = pair-spmf (scale-spmf r p) q = scale-spmf r (pair-spmf p q)
(proof)

THEORY “SPMEF” 181

lemma pair-scale-spmf2:
r < 1 = pair-spmf p (scale-spmf r q) = scale-spmf r (pair-spmf p q)
(proof)

lemma pair-spmf-return-Nonel [simpl: pair-spmf (return-pmf None) p = return-pmf
None
(proof)

lemma pair-spmf-return-None2 [simp]: pair-spmf p (return-pmf None) = return-pmf
None
(proof)

lemma pair-spmf-return-spmf1: pair-spmf (return-spmf x) q = map-spmf (Pair
z) q
(proof)

lemma pair-spmf-return-spmf2: pair-spmf p (return-spmf y) = map-spmf (Az. (z,
) p
(proof)

lemma pair-spmf-return-spmf [simp|: pair-spmf (return-spmf x) (return-spmf y)
= return-spmf (z, y)
(proof)

lemma rel-pair-spmf-prod:
rel-spmf (rel-prod A B) (pair-spmf p q) (pair-spmf p’ q’) «—
rel-spmf A (scale-spmf (weight-spmf q) p) (scale-spmf (weight-spmf q") p’) A
rel-spmf B (scale-spmf (weight-spmf p) q) (scale-spmf (weight-spmf p’) q’)
(is ?lhs «— ?rhs is - «+— ?A N ?Bis - +— rel-spmf - ?p ?p’ A rel-spmf - ?q
2q”)
(proof)

lemma pair-pair-spmf:

pair-spmf (pair-spmf p q) v = map-spmf (Mz, (y, 2)). ((z, y), 2)) (pair-spmf p
(pair-spmf q 1))

(proof)

lemma pair-commute-spmf:
pair-spmf p ¢ = map-spmf (A(y, z). (z, y)) (pair-spmf q p)
(proof)

25.18 Assertions

definition assert-spmf :: bool = unit spmf
where assert-spmf b = (if b then return-spmf () else return-pmf None)

lemma assert-spmf-simps [simp):
assert-spmf True = return-spmf ()

THEORY “SPMEF” 182

assert-spmf False = return-pmf None
{proof)

lemma in-set-assert-spmf [simp]: © € set-spmf (assert-spmf p) <— p
(proof)

lemma set-spmf-assert-spmf-eq-empty [simp|: set-spmf (assert-spmf b) = {} +—
- b
(proof)

lemma lossless-assert-spmf [iff]: lossless-spmf (assert-spmf b) «— b
(proof)

25.19 Try

definition try-spmf :: ‘a spmf = 'a spmf = 'a spmf

(<(<open-block notation=«mizfiz try-spmf»» TRY - ELSE -)» [0,60] 59)
where TRY p ELSE q = bind-pmf p (Az. case x of None = q | Some y = re-
turn-spmf y)

lemma try-spmf-lossless [simpl:
assumes lossless-spmf p
shows TRY p ELSE q = p

(proof)

lemma try-spmf-return-spmf1: TRY return-spmf x ELSE q = return-spmf x
(proof)

lemma try-spmf-return-None [simp]: TRY return-pmf None ELSE q = q
(proof)

lemma try-spmf-return-pmf-None2 [simp|: TRY p ELSE return-pmf None = p
(proof)

lemma map-try-spmf: map-spmf f (try-spmf p q) = try-spmf (map-spmf f p)
(map-spmf f q)
(proof)

lemma try-spmf-bind-pmf: TRY (bind-pmf p f) ELSE q = bind-pmf p (Az. TRY
(fz) ELSE q)
(proof)

lemma try-spmf-bind-spmf-lossless:

lossless-spmf p = TRY (bind-spmf p f) ELSE q = bind-spmf p (Az. TRY (f z)
ELSE q)

(proof)

lemma try-spmf-bind-out:
lossless-spmf p = bind-spmf p (Az. TRY (f) ELSE q) = TRY (bind-spmf p

THEORY “SPMEF” 183

f) ELSE q
(proof)

lemma lossless-try-spmf [simp):
lossless-spmf (TRY p ELSE q) <— lossless-spmf p V lossless-spmf q
(proof)

context includes lifting-syntax
begin

lemma try-spmf-parametric [transfer-rule]:
(rel-spmf A ===> rel-spmf A ===> rel-spmf A) try-spmf try-spmf
(proof)

end

lemma try-spmf-cong:
[p=p’s — lossless-spmf p' = q = q' | = TRY p ELSE q = TRY p' ELSE ¢’
(proof)

lemma rel-spmf-try-spmf:
[rel-spmf R p p’; = lossless-spmf p’ = rel-spmf R q q']
= rel-spmf R (TRY p ELSE q) (TRY p' ELSE q¢’)
(proof)

lemma spmf-try-spmf:
spmf (TRY p ELSE q) x = spmf p x + pmf p None x spmf q =
(proof)

lemma try-scale-spmf-same [simp]: lossless-spmf p = TRY scale-spmf k p ELSE
p=0p
(proof)

lemma pmf-try-spmf-None [simp]: pmf (TRY p ELSE q) None = pmf p None x
pmf q None (is ?lhs = ?rhs)
(proof)

lemma try-bind-spmf-lossless2:

lossless-spmf ¢ = TRY (bind-spmf p f) ELSE ¢ = TRY (p >= (Az. TRY (f
z) ELSE q)) ELSE q
(proof)

lemma try-bind-spmf-lossless2”:
fixes f :: 'a = 'b spmf shows
[NO-MATCH (Az :: a. try-spmf (g z :: 'b spmf) (h z)) f; lossless-spmf q |
= TRY (bind-spmf p f) ELSE ¢ = TRY (p >= (Az :: ‘a. TRY (fz) ELSE q))
ELSE q
{proof)

THEORY “Product-PMF” 184

lemma try-bind-assert-spmf:
TRY (assert-spmf b >= f) ELSE q = (if b then TRY (f ()) ELSE q else q)
(proof)

25.20 Miscellaneous

lemma assumes rel-spmf (Az y. badl x = bad2 y A (— bad2 y — Az +— B

y)) p q (is rel-spmf ?A - -)

shows fundamental-lemma-bad: measure (measure-spmf p) {z. badl x} = measure
(measure-spmf q) {y. bad2 y} (is ?bad)

and fundamental-lemma: |measure (measure-spmf p) {x. A } — measure (measure-spmf

9) {y- By}| <
measure (measure-spmf p) {z. badl z} (is Zfundamental)

(proof)

end

26 Indexed products of PMFs

theory Product-PMF
imports Probability-Mass-Function Independent-Family
begin

Conflicting notation from HOL— Analysis. Infinite-Sum

no-notation Infinite-Sum.abs-summable-on (infixr <abs’-summable’-on> 46)

26.1 Preliminaries

lemma pmf-expectation-eq-infsetsum: measure-pmf.expectation p f = infsetsum
(Az. pmf p z = fz) UNIV
(proof)

lemma measure-pmyf-prob-product:

assumes countable A countable B

shows measure-pmf.prob (pair-pmf M N) (A x B) = measure-pmf.prob M A x
measure-pmf.prob N B

(proof)

26.2 Definition

In analogy to Pijs, we define an indexed product of PMFs. In the literature,
this is typically called taking a vector of independent random variables. Note
that the components do not have to be identically distributed.

The operation takes an explicit index set A and a function f that maps
each element from A to a PMF and defines the product measure &), 4 f(%)
, which is represented as a (‘a = 'b) pmf.

THEORY “Product-PMF” 185

Note that unlike Pijs, this only works for finite index sets. It could be
extended to countable sets and beyond, but the construction becomes some-
what more involved.
definition Pi-pmf :: ‘a set = 'b = (‘a = 'b pmf) = (‘a = 'b) pmf where
Pi-pmf A dfit p =
embed-pmf (M. if Vz. 2 ¢ A — fz = dfit) then [[z€A. pmf (p z) (f z)
else 0)

A technical subtlety that needs to be addressed is this: Intuitively, the func-
tions in the support of a product distribution have domain A. However, since
HOL is a total logic, these functions must still return some value for inputs
outside A. The product measure Pijy; simply lets these functions return un-
defined in these cases. We chose a different solution here, which is to supply
a default value dfit that is returned in these cases.

As one possible application, one could model the result of n different inde-
pendent coin tosses as Pi-pmf {0..<n} False (\-. bernoulli-pmf (1 / 2)).
This returns a function of type nat = bool that maps every natural number
below n to the result of the corresponding coin toss, and every other natural
number to False.
lemma pmf-Pi:

assumes A: finite A

shows pmf (Pi-pmf A dfit p) f =

(if Vaz.z ¢ A — fa=dflt) then [[z€A. pmf (p z) (f z) else 0)
(proof)

lemma Pi-pmf-cong:
assumes A = A’ dflt = dfit' N\o. 2 € A = fz=f"x
shows Pi-pmf A dfit f = Pi-pmf A’ dfit’ f’

(proof)

lemma pmf-Pi":
assumes finite A A\z. © ¢ A = fx = dfit
shows pmf (Pi-pmf A dfit p) f = ([[z€A. pmf (p) (f))
{proof)

lemma pmf-Pi-outside:
assumes finite A z. x ¢ AN fx # dfit
shows pmf (Pi-pmf A dfitp) f = 0
(proof)

lemma pmf-Pi-empty [simp]: Pi-pmf {} dfit p = return-pmf (A-. dfit)
(proof)

lemma set-Pi-pmf-subset: finite A = set-pmf (Pi-pmf A dfit p) C {f. Vz. z ¢
A — fz = dfit}
(proof)

THEORY “Product-PMF” 186

26.3 Dependent product sets with a default

The following describes a dependent product of sets where the functions are
required to return the default value dfit outside their domain, in analogy to
Pig, which uses undefined.
definition PiE-dfit

where PiE-dflt A dfit B={f.Va. (€ A— fzeBax)AN(t ¢ A — fz=
dfit)}

lemma restrict-PiE-dflt: (Ah. restrict h A) ¢ PiE-dfit A dfit B = PiE A B
(proof)

lemma dfit-image-PiE: (Ah z. if © € A then h z else dfit) * PiE A B = PiE-dfit
A dfit B

(is 2f X = ?Y)
(proof)

lemma finite-PiE-dflt [introl:
assumes finite A \z. z € A = finite (B x)
shows finite (PiE-dfit A d B)

(proof)

lemma card-PiE-dfit:
assumes finite A A\z. © € A = finite (B)
shows card (PiE-dfit A d B) = ([]z€A. card (B x))

(proof)

lemma PiE-dfit-empty-iff [simp]: PiE-dfit A dfit B = {} +— (3z€A. Bz ={})
(proof)

lemma set-Pi-pmf-subset’:
assumes finite A
shows set-pmf (Pi-pmf A dfit p) C PiE-dfit A dfit (set-pmf o p)
(proof)

lemma set-Pi-pmf:

assumes finite A

shows set-pmf (Pi-pmf A dfit p) = PiE-dfit A dfit (set-pmf o p)
(proof)

The probability of an independent combination of events is precisely the
product of the probabilities of each individual event.
lemma measure-Pi-pmf- PiE-dfit:
assumes [simp]: finite A
shows measure-pmf.prob (Pi-pmf A dfit p) (PiE-dfit A dfit B) =
(IT z€A. measure-pmf.prob (p z) (B x))
(proof)

lemma measure-Pi-pmf-Pi:

THEORY “Product-PMF” 187

fixes t::nat
assumes [simp]: finite A
shows measure-pmf.prob (Pi-pmf A dflt p) (Pi A B) =
(ITz€A. measure-pmf.prob (p z) (B x)) (is ?lhs = ?rhs)
(proof)

26.4 Common PMF operations on products

Pi-pmf distributes over the ‘bind’ operation in the Giry monad:

lemma Pi-pmf-bind:
assumes finite A
shows Pi-pmf A d (\z. bind-pmf (p z) (q z)) =
do {f + Pi-pmf A d’ p; Pi-pmf A d (M\z. gz (fz))} (is ?lhs = ?rhs)
(proof)

lemma Pi-pmf-return-pmf [simp):

assumes finite A

shows Pi-pmf A dfit (A\z. return-pmf (f z)) = return-pmf (Az. if © € A then f
x else dfit)

(proof)
Analogously any componentwise mapping can be pulled outside the product:

lemma Pi-pmf-map:

assumes [simp|: finite A and f dfit = dfit’

shows Pi-pmf A dfit’ (Az. map-pmf f (g z)) = map-pmf (Ah. f o h) (Pi-pmf A
dfit g)
(proof)

We can exchange the default value in a product of PMFs like this:

lemma Pi-pmf-default-swap:
assumes finite A
shows map-pmf (\f z. if x € A then [x else dfit’) (Pi-pmf A dflt p) =
Pi-pmf A dftt’ p (is ?lhs = ?rhs)
(proof)

The following rule allows reindexing the product:

lemma Pi-pmf-bij-betw:
assumes finite A bij-betw h A B \v. 2 ¢ A= hz ¢ B
shows Pi-pmf A dfit (\-. f) = map-pmf (Ag. g o h) (Pi-pmf B dflt (A-. f))
(is ?lhs = ?rhs)
(proof)

A product of uniform random choices is again a uniform distribution.

lemma Pi-pmf-of-set:

assumes finite A A\z. © € A = finite (Bz) A\z. 2 € A= Bz # {}

shows Pi-pmf A d (Az. pmf-of-set (B z)) = pmf-of-set (PiE-dfit A d B) (is
?lhs = ?rhs)
(proof)

THEORY “Product-PMF” 188

26.5 Merging and splitting PMF products

The following lemma shows that we can add a single PMF to a product:

lemma Pi-pmf-insert:

assumes finite A z ¢ A

shows Pi-pmf (insert x A) dfit p = map-pmf (A(y.f). f(x:=y)) (pair-pmf (p
Zf) (Pi;pmf A dfit p))

proof

lemma Pi-pmf-insert”:
assumes finite A = ¢ A
shows Pi-pmf (insert x A) dfit p =
do {y «+ p xz; f < Pi-pmf A dflt p; return-pmf (f(z := y))}
(proof)

lemma Pi-pmf-singleton:
Pi-pmf {z} dfit p = map-pmf (Aa b. if b = x then a else dfit) (p z)
(proof)

Projecting a product of PMFs onto a component yields the expected result:

lemma Pi-pmf-component:

assumes finite A

shows map-pmf (\f. fz) (Pi-pmf A dfit p) = (if ¢ € A then p z else return-pmf
dfit)
{proof)

We can take merge two PMF products on disjoint sets like this:

lemma Pi-pmf-union:
assumes finite A finite BAN B = {}
shows Pi-pmf (AU B) dfit p =
map-pmf (A(f,9) z. if ¢ € A then f z else g x)
(pair-pmf (Pi-pmf A dfit p) (Pi-pmf B dfit p)) (is - = map-pmf (?h A)
(79 A))
(proof)

We can also project a product to a subset of the indices by mapping all the
other indices to the default value:

lemma Pi-pmf-subset:

assumes finite A A’ C A

shows Pi-pmf A’ dfit p = map-pmf (A\f z. if z € A’ then f z else dfit) (Pi-pmf
A dfit p)
(proof)

lemma Pi-pmf-subset’:
fixes f :: 'a = 'b pmf
assumes finite A BC A N\z. x € A — B = fz = return-pmf dfit
shows Pi-pmf A dfit f = Pi-pmf B dfit f

(proof)

THEORY “Product-PMF” 189

lemma Pi-pmf-if-set:
assumes finite A
shows Pi-pmf A dfit (\x. if b x then f x else return-pmf dfit) =
Pi-pmf {z€A. bz} dfit f
(proof)

lemma Pi-pmf-if-set”:
assumes finite A
shows Pi-pmf A dfit (\z. if b z then return-pmf dfit else f z) =
Pi-pmf {z€A. =b z} dfit f
(proof)

Lastly, we can delete a single component from a product:

lemma Pi-pmf-remove:

assumes finite A

shows Pi-pmf (A — {z}) dfit p = map-pmf (\f. f(x := dfit)) (Pi-pmf A dflt
p)
(proof)

26.6 Additional properties

lemma nn-integral-prod-Pi-pmf:

assumes finite A

shows nn-integral (Pi-pmf A dfit p) (Ay. [[z€A. fz (y z)) = (J[[z€A.
nn-integral (p x) (f))

(proof)

lemma integrable-prod-Pi-pmyf:
fixes f :: 'a = 'b = ’c :: {real-normed-field, second-countable-topology, banach}
assumes finite A and A\z. z € A = integrable (measure-pmf (p x)) (f z)
shows integrable (measure-pmf (Pi-pmf A dfit p)) (Ah. [[z€A. fz (hz))
(proof)

lemma expectation-prod-Pi-pmf:
fixes f i1 - = - = real
assumes finite A
assumes A\z. © € A = integrable (measure-pmf (p z)) (f x)
assumes Az y. t € A = y € set-pmf (pz) = fzy >0
shows measure-pmf.expectation (Pi-pmf A dfit p) (\y. [[z€A. fz (yz)) =
(IT z€A. measure-pmf.expectation (p) (Av. f z v))
(proof)

lemma indep-vars-Pi-pmf:
assumes fin: finite I
shows prob-space.indep-vars (measure-pmf (Pi-pmf I dfit p))
(A-. count-space UNIV) (Ax f. fz) I
(proof)

THEORY “Hoeftding” 190

lemma
fixes h :: ‘a :: comm-monoid-add = 'b::{banach, second-countable-topology}
assumes fin: finite I
assumes integrable: N\i. i € I = integrable (measure-pmf (D 7)) h
shows integrable-sum-Pi-pmf: integrable (Pi-pmf I dfit D) (Ag. > i€l. h (g 7))
and expectation-sum-Pi-pmf:
measure-pmf .expectation (Pi-pmf I dflt D) (Ag. >_i€l. h (g 1)) =
(> iel. measure-pmf.expectation (D i) h)
(proof)

26.7 Applications

Choosing a subset of a set uniformly at random is equivalent to tossing a
fair coin independently for each element and collecting all the elements that
came up heads.

lemma pmf-of-set-Pow-conv-bernoulli:

assumes finite (A :: ‘a set)

shows map-pmf (\b. {z€A. b z}) (Pi-pmf A P (\-. bernoulli-pmf (1/2))) =
pmf-of-set (Pow A)
(proof)

A binomial distribution can be seen as the number of successes in n inde-
pendent coin tosses.
lemma binomial-pmf-altdef’:

fixes A :: 'a set

assumes finite A and card A = n and p: p € {0..1}

shows binomial-pmfn p =

map-pmf (Af. card {z€A. fz}) (Pi-pmf A dfit (A-. bernoulli-pmf p)) (is

?lhs = 2rhs)
(proof)

end

27 Hoeftding’s Lemma and Hoeffding’s Inequality

theory Hoeffding
imports Product-PMF Independent-Family
begin

Hoeffding’s inequality shows that a sum of bounded independent random
variables is concentrated around its mean, with an exponential decay of the
tail probabilities.

27.1 Hoeffding’s Lemma

lemma convez-on-exp:
fixes [:: real

THEORY “Hoeffding” 191

assumes [> 0
shows convez-on UNIV (Ax. exp(lxz))

{proof)

lemma mult-const-minus-self-real-le:
fixes z :: real
shows 7 % (¢ — 1) < c? / 4
(proof)

lemma Hoeffdings-lemma-aux:
fixes h p :: real
assumes h > (0 and p > 0
defines L = (Ah. —h xp +In (I + p * (exp h — 1)))
shows Lh<h?/8
(proof)

locale interval-bounded-random-variable = prob-space +
fixes f :: '/a = real and a b :: real
assumes random-variable [measurable]: random-variable borel f
assumes AE-in-interval: AE x in M. fz € {a..b}

begin

lemma integrable [intro]: integrable M f
(proof)

We first show Hoeffding’s lemma for distributions whose expectation is O.
The general case will easily follow from this later.
lemma Hoeffdings-lemma-nn-integral-0:

assumes [> 0 and EO0: expectation f = 0

shows nn-integral M (\x. exp (I * fx)) < ennreal (exp (I * (b — a)?® / 8))
(proof)

context
begin

interpretation shift: interval-bounded-random-variable M Ax. fx — pa — p b —

,u
rewrites b — y — (a —pu) = b — a

{proof)

lemma expectation-shift: expectation (\x. fx — expectation f) = 0
(proof)

lemmas Hoeffdings-lemma-nn-integral = shift. Hoeffdings-lemma-nn-integral-0[OF
- expectation-shift)

end

THEORY “Hoeffding” 192

end

27.2 Hoeffding’s Inequality

Consider n independent real random variables X7, ..., X,, that each almost
surely lie in a compact interval [a;, b;]. Hoeffding’s inequality states that the
distribution of the sum of the X; is tightly concentrated around the sum of
the expected values: the probability of it being above or below the sum of
the expected values by more than some ¢ decreases exponentially with e.

locale indep-interval-bounded-random-variables = prob-space +

fixes I :: 'b set and X :: 'b = 'a = real

fixes a b :: 'b = real

assumes fin: finite I

assumes indep: indep-vars (A-. borel) X I

assumes AE-in-interval: Ni. i € = AExin M. Xiz € {ai.bi}
begin

lemma random-variable [measurable]:
assumes i: 7 € [
shows random-variable borel (X i)

{proof)

lemma bounded-random-variable [introl:
assumes i: 7 € [
shows interval-bounded-random-variable M (X i) (a %) (b 7)

{proof)

end

locale Hoeffding-ineq = indep-interval-bounded-random-variables +
fixes p :: real
defines p = (3 i€l. expectation (X 7))

begin

theorem Hoeffding-ineq-ge:
assumes € > 0
assumes (>.i€l. (bi — ai)?) > 0
shows prob {z€space M. (> i€l. Xiz) > pu+¢e} < exp (=2 x &2 / (> iel.
(bi—ai)?)
proof (cases e = 0)
case [simp]: True
have prob {z€space M. (> iel. Xiz) > pu+ e} < 1
by simp
thus ?thesis by simp
next
case Fulse
with ¢ > 0)» have e: ¢ > 0

THEORY “Hoeftding” 193

by auto

define d where d = (>_i€l. (bi — a4)?)
define [:: real where [= 4 x¢ / d
have d: d > 0
using assms by (simp add: d-def)
have I: [> 0
using ¢ d by (simp add: [-def)
define 1’ where ' = (\i. expectation (X 1))

have {zespace M. (3 icl. Xix) > p + e} = {z€space M. (> icl. X izx) —
p= e}
by (simp add: algebra-simps)
hence ennreal (prob {x€space M. (3 i€l. X iz) > p + }) = emeasure M ...
by (simp add: emeasure-eq-measure)
also have ... < ennreal (exp (—Ixe)) * ([Taespace M. exp (I = (> iel. X i
%) — u) OM)
by (intro Chernoff-ineg-nn-integral-ge 1) auto
also have (A\z. (3 iel. Xiz) — pu) = Az O iel. Xix — p' 7))
by (simp add: p-def sum-subtractf p'-def)
also have ([Tzespace M. exp (I x ((3oi€l. X iz — p' i) OM) =
(J *ta. (T]iel. ennreal (exp (I % (X iz — p'7)))) OM)
by (intro nn-integral-cong)
(simp-all add: sum-distrib-left ring-distribs exp-diff exp-sum fin prod-ennreal)

also have ... = ([[i€l. [Tz. ennreal (exp (I % (X iz — p'i))) OM)
by (intro indep-vars-nn-integral fin indep-vars-compose2[OF indep]) auto
also have ennreal (exp (—1* ¢€)) * ... <

ennreal (exp (—1 * €)) * ([[i€l. ennreal (exp (I* x (bi — ai)? / 8)))
proof (intro mult-left-mono prod-mono-ennreal)
fix 7 assume i: ¢ € [
from i interpret interval-bounded-random-variable M X i a i b i ..
show ([*z. ennreal (exp (I x (X iz — p’ 7)) OM) < ennreal (exp (I* * (b i
—a i)/ 8))
unfolding p’'-def by (rule Hoeffdings-lemma-nn-integral) fact+
qged auto
also have ... = ennreal (exp (—Ixe) x ([[4€l. exp (I * (bi — a i)® / 8)))
by (simp add: prod-ennreal prod-nonneqg flip: ennreal-mult)
also have exp (—lxe) * ([[i€l. exp (P x (bi—ad)?/8)=exp (dx1®/ 8 —
lx*¢)
by (simp add: exp-diff exp-minus sum-divide-distrib sum-distrib-left
sum-distrib-right exp-sum fin divide-simps mult-ac d-def)
alsohave d x > /| 8§ —lxe=—-2x¢e>/d
using d by (simp add: I-def field-simps power2-eq-square)
finally show ?thesis
by (subst (asm) ennreal-le-iff) (simp-all add: d-def)
qed

corollary Hoeffding-ineq-le:
assumes ¢: € > (

THEORY “Hoeffding” 194

assumes (>_i€l. (bi — ai)?) > 0

shows prob {ze€space M. (3 icl. Xiz) <p —¢e} < exp (-2 xe2) (5 iel.
(bi— ai)?)
(proof)

corollary Hoeffding-ineg-abs-ge:

assumes <: € > ()

assumes (>.i€l. (bi — a)?) > 0

shows prob {z€space M. |(d>Ji€l. X ix) — pu| > e} < 2 x exp (—2 % &2/
(>Tiel. (bi — ai)?))
(proof)

end

27.3 Hoeffding’s inequality for i.i.d. bounded random vari-
ables

If we have n even identically-distributed random variables, the statement of
Hoeffding’s lemma simplifies a bit more: it shows that the probability that

the average of the X; is more than € above the expected value is no greater
72ny2
than e ®-?,

This essentially gives us a more concrete version of the weak law of large
numbers: the law states that the probability vanishes for n — oo for any ¢
> (. Unlike Hoeffding’s inequality, it does not assume the variables to have
bounded support, but it does not provide concrete bounds.

locale iid-interval-bounded-random-variables = prob-space +
fixes I :: 'b set and X :: 'b = ‘a = real and Y :: 'a = real
fixes a b :: real
assumes fin: finite I
assumes indep: indep-vars (A-. borel) X I
assumes distr-X: ¢ € I = distr M borel (X i) = distr M borel Y
assumes rv-Y [measurable]: random-variable borel Y
assumes AFE-in-interval: AE zin M. Y z € {a..b}
begin

lemma random-variable [measurable]:
assumes i: | € [
shows random-variable borel (X i)

{proof)

sublocale X: indep-interval-bounded-random-variables M I X A-. a A-. b
(proof)

lemma expectation-X [simp:
assumes i: 7 € [
shows expectation (X i) = expectation Y

(proof)

THEORY “Hoeffding”

end

locale Hoeffding-ineq-iid = iid-interval-bounded-random-variables +

fixes p :: real
defines = expectation Y

begin

sublocale X: Hoeffding-ineq M I X A-. a A-. b real (card I) x p
(proof)

corollary
assumes ¢: € > (
assumes a < b I # {}
defines n = card I

shows

and

and

(proof)

lemma

Hoeffding-ineq-ge:

prob {z€space M. (> icl. Xix) > n* pu+ e} <
exp (—2 x 2 / (n* (b — a)?)) (is ?le)

Hoeffding-ineq-le:

prob {z€space M. (> i€l. Xixz) <n*pu—e} <
exp (=2 % €2 / (nx (b — a)?)) (is ?ge)

Hoeffding-ineq-abs-ge:

prob {z€space M. |(> i€l. Xix) — n x| > e} <
2% exp (=2 %%/ (nx(b— a)?) (is Pabs-ge)

assumes ¢: € > ()
assumes a < b I # {}
defines n = card I

shows

and

and

(proof)

end

27.4 Hoeffding’s Inequality for the Binomial distribution

Hoeffding-ineq-ge':

prob {z€space M. (> i€l. Xizx) /n>pu+ e} <
exp (=2 x nx g2 / (b — a)?) (is ?ge)

Hoeffding-ineg-le":

prob {z€space M. (> i€l. Xiz) /n<pu—e} <
exp (=2 x n x 2/ (b — a)?) (is ?le)

Hoeffding-ineq-abs-ge':

prob {z€space M. | i€l. Xixz) /n — u| > e} <
2% erp (=2 % nxe?/(b— a)?) (is abs-ge)

195

We can now apply Hoeffding’s inequality to the Binomial distribution, which
can be seen as the sum of n i.i.d. coin flips (the support of each of which is
contained in [0, 1]).

THEORY “Hoeftding” 196

locale binomial-distribution =
fixes n :: nat and p :: real
assumes p: p € {0..1}
begin

context

fixes coins :: (nat = bool) pmf and p

assumes n: n > 0

defines coins = Pi-pmf {..<n} False (A-. bernoulli-pmf p)
begin

lemma coins-component:
assumes i: 1 < n
shows distr (measure-pmf coins) borel (\f. if f i then 1 else 0) =
distr (measure-pmf (bernoulli-pmf p)) borel (Ab. if b then 1 else 0)

(proof)

lemma prob-binomial-pmf-conv-coins:
measure-pmf .prob (binomial-pmf n p) {z. P (real)} =
measure-pmf .prob coins {x. P (3 i<n. if x i then I else 0)}
(proof)

interpretation Hoeffding-ineq-iid
coins {..<n} \i f.if fithen 1 else 0 Af. if f O then 1 else 0 0 1 p
(proof)

corollary
fixes ¢ :: real
assumes €: € > (
shows prob-ge: measure-pmf.prob (binomial-pmf n p) {z. x > nx p + e} < exp
(=2 x €2/ n)
and prob-le: measure-pmf.prob (binomial-pmf n p) {z. x < nxp — e} < exp
(=2 x€? [/ n)
and prob-abs-ge:
measure-pmf.prob (binomial-pmfn p) {z. |t — nxp| > e} < 2 x exp (—2
x g2 [n)

(proof)

corollary
fixes ¢ :: real
assumes ¢: € > (
shows prob-ge’: measure-pmf.prob (binomial-pmfn p) {x. 2 / n > p + e} < exp
(—2 % n * &2)
and prob-le’: measure-pmf.prob (binomial-pmf n p) {z. x / n < p — e} < exp
(=2 x n x &2)
and prob-abs-ge:
measure-pmf.prob (binomial-pmfn p) {z. |z / n — p| > e} < 2 x exp (—2
*n * 2)

(proof)

THEORY “Stream-Space” 197

end

end

27.5 Tail bounds for the negative binomial distribution

Since the tail probabilities of a negative Binomial distribution are equal
to the tail probabilities of some Binomial distribution, we can obtain tail
bounds for the negative Binomial distribution through the Hoeffding tail
bounds for the Binomial distribution.

context
fixes p q :: real
assumes p: p € {0<..<1}
defines g =1 — p

begin

lemma prob-neg-binomial-pmf-ge-bound:
fixes n :: nat and k :: real
defines = realn % q / p
assumes k: kK > 0
shows measure-pmf.prob (neg-binomial-pmf n p) {z. real z > p + k}
<ewp (= 2xp 8%k [/ (n+pxk)
(proof)

lemma prob-neg-binomial-pmf-le-bound:

fixes n :: nat and k :: real

defines p =realn x q / p

assumes k: k> 0

shows measure-pmf.prob (neg-binomial-pmf n p) {z. real x < p — k}

<ep (=2%p "3 xk¥/(n—p=xk)

(proof)
Due to the function exp(—I/x) being concave for = > é, the above two
bounds can be combined into the following one for moderate values of k.
(cf. https://math.stackexchange.com/questions/1565559)

lemma prob-neg-binomial-pmf-abs-ge-bound:
fixes n :: nat and k :: real
defines = realn % q / p
assumes k > 0 and n-ge: n > px k* (p?> x k + 1)
shows measure-pmf.prob (neg-binomial-pmf n p) {z. |real z — u| > k} <
2xexp (—2xp " 8xk "2 /n)
(proof)

end

end

https://math.stackexchange.com/questions/1565559

THEORY “Stream-Space” 198

theory Stream-Space
imports

Infinite- Product-Measure

HOL— Library.Stream

HOL— Library. Linear-Temporal- Logic-on-Streams
begin

lemma stream-eq-Stream-iff: s = © #4# t +— (shd s = z A stl s = 1)
(proof)

lemma Stream-snth: (z ## s) ! n = (case n of 0 = x| Sucn = s !l n)
{proof)

definition to-stream :: (nat = 'a) = 'a stream where
to-stream X = smap X nats

lemma to-stream-nat-case: to-stream (case-nat x X) = x ## to-stream X
{proof)

lemma to-stream-in-streams: to-stream X € streams S <— (Vn. X n € §)
(proof)

definition stream-space :: 'a measure = ’a stream measure where

stream-space M =

distr (I1py € UNIV. M) (vimage-algebra (streams (space M)) snth (s i€ UNIV.
M)) to-stream

lemma space-stream-space: space (stream-space M) = streams (space M)
(proof)

lemma streams-stream-space[intro): streams (space M) € sets (stream-space M)

{proof)

lemma stream-space-Stream:

x #4# w € space (stream-space M) «— x € space M N w € space (stream-space
M)

(proof)

lemma stream-space-eq-distr: stream-space M = distr (I1y; i€ UNIV. M) (stream-space
M) to-stream

(proof)

lemma sets-stream-space-cong[measurable-congl:
sets M = sets N = sets (stream-space M) = sets (stream-space N)

{proof)

lemma measurable-snth-PiM: (Aw n. w ! n) € measurable (stream-space M) (Ipy
i€UNIV. M)

THEORY “Stream-Space” 199

{proof)

lemma measurable-snth|measurable]: (Aw. w ! n) € measurable (stream-space M)
M

(proof)

lemma measurable-shd[measurable]: shd € measurable (stream-space M) M
{proof)

lemma measurable-stream-space2:
assumes f-snth: An. (Az. fz !! n) € measurable N M
shows f € measurable N (stream-space M)

{proof)

lemma measurable-stream-coinduct[consumes 1, case-names shd stl, coinduct set:
measurable]:

assumes F f

assumes h: \f. F f = (\z. shd (f z)) € measurable N M

assumes t: \f. F f = F (Az. stl (fz))

shows f € measurable N (stream-space M)

(proof)

lemma measurable-sdrop[measurable]: sdrop n € measurable (stream-space M) (stream-space
M)
{proof)

lemma measurable-stl[measurable]: (Aw. stl w) € measurable (stream-space M)
(stream-space M)

{proof)

lemma measurable-to-stream|[measurable]: to-stream € measurable (I1; i€ UNIV.
M) (stream-space M)

{proof)

lemma measurable-Stream|[measurable (raw)]:
assumes f[measurable]: f € measurable N M
assumes g[measurable]: g € measurable N (stream-space M)
shows (Az. fz ## g x) € measurable N (stream-space M)

{proof)

lemma measurable-smap[measurable:
assumes X|[measurable]: X € measurable N M
shows smap X € measurable (stream-space N) (stream-space M)

{proof)

lemma measurable-stake[measurable]:
stake i € measurable (stream-space (count-space UNIV)) (count-space (UNIV ::
'a::countable list set))

{proof)

THEORY “Stream-Space” 200

lemma measurable-shift[measurable]:
assumes f: f € measurable N (stream-space M)
assumes [measurable]: g € measurable N (stream-space M)
shows (Az. stake n (f £) Q— g z) € measurable N (stream-space M)

{proof)

lemma measurable-case-stream-replace[measurable (raw)]:
(Az. fz (shd (g z)) (stl (g z))) € measurable M N => (Az. case-stream (f z) (g
z)) € measurable M N

(proof)

lemma measurable-ev-at|measurable]:
assumes [measurable]: Measurable.pred (stream-space M) P
shows Measurable.pred (stream-space M) (ev-at P n)

(proof)

lemma measurable-alw[measurablel:

Measurable.pred (stream-space M) P => Measurable.pred (stream-space M) (alw
P)

{proof)

lemma measurable-ev[measurable]:

Measurable.pred (stream-space M) P => Measurable.pred (stream-space M) (ev
P)

(proof)

lemma measurable-until:

assumes [measurable]: Measurable.pred (stream-space M) ¢ Measurable.pred (stream-space
M) 4

shows Measurable.pred (stream-space M) (¢ until 1)

{proof)

lemma measurable-holds [measurable]: Measurable.pred M P = Measurable.pred
(stream-space M) (holds P)

{proof)

lemma measurable-hld[measurable]: assumes [measurable]: t € sets M shows
Measurable.pred (stream-space M) (HLD t)

{proof)

lemma measurable-nat|measurable (raw)]:

Measurable.pred (stream-space M) P => Measurable.pred (stream-space M) (nat
P)

{proof)
lemma measurable-suntil[measurable]:

assumes [measurable]: Measurable.pred (stream-space M) @ Measurable.pred
(stream-space M) P

THEORY “Stream-Space” 201

shows Measurable.pred (stream-space M) (Q suntil P)
{proof)

lemma measurable-szip:

(Mw1, w2). szip wl w2) € measurable (stream-space M Q) nr stream-space N)
(stream-space (M @ p N))
{proof)

lemma (in prob-space) prob-space-stream-space: prob-space (stream-space M)

{(proof)

lemma (in prob-space) nn-integral-stream-space:

assumes [measurable]: f € borel-measurable (stream-space M)

shows ([TX. f X dstream-space M) = ([Tz. ([TX. [(z ## X) dstream-space
M) OM)
(proof)

lemma (in prob-space) emeasure-stream-space:

assumes X |[measurable]: X € sets (stream-space M)

shows emeasure (stream-space M) X = ([Tt. emeasure (stream-space M) {z€space
(stream-space M). t ## v € X } OM)
(proof)

lemma (in prob-space) prob-stream-space:

assumes P[measurable]: {x€space (stream-space M). P z} € sets (stream-space
M)

shows P(z in stream-space M. P) = ([Tt. P(z in stream-space M. P (t ##
z)) OM)
(proof)

lemma (in prob-space) AE-stream-space:

assumes [measurable]: Measurable.pred (stream-space M) P

shows (AFE X in stream-space M. P X) = (AE z in M. AE X in stream-space
M. P (2 4 X))
(proof)

lemma (in prob-space) AE-stream-all:
assumes [measurable]: Measurable.pred M P and P: AE zin M. P z
shows AE z in stream-space M. stream-all P x

(proof)

lemma streams-sets:
assumes X[measurable]: X € sets M shows streams X € sets (stream-space M)

(proof)

lemma sets-stream-space-in-sets:
assumes space: space N = streams (space M)
assumes sets: A\i. (Az. z !l {) € measurable N M
shows sets (stream-space M) C sets N

THEORY “Stream-Space” 202

{proof)

lemma sets-stream-space-eq: sets (stream-space M) =
sets (SUP i€ UNIV. vimage-algebra (streams (space M)) (As. s 1! i) M)

(proof)

lemma sets-restrict-stream-space:

assumes S[measurable]: S € sets M

shows sets (restrict-space (stream-space M) (streams S)) = sets (stream-space
(restrict-space M S))

(proof)

primrec sstart :: ‘a set = 'a list = 'a stream set where
sstart S [| = streams S
| [simp del]: sstart S (z # xs) = (##) z * sstart S xs

lemma in-sstart[simp]: s € sstart S (x # xs) <— shd s = x A stl s € sstart S xs
{proof)

lemma sstart-in-streams: xs € lists S = sstart S xzs C streams S
(proof)

lemma sstart-eq: © € streams S = = € sstart S xs = (Vi<length zs. z !l i = xs
14)
(proof)

lemma sstart-sets: sstart S xs € sets (stream-space (count-space UNIV))

(proof)

lemma sigma-sets-singletons:
assumes countable S
shows sigma-sets S ((As. {s})‘S) = Pow S

(proof)

lemma sets-count-space-eq-sigma:
countable S = sets (count-space S) = sets (sigma S ((As. {s})*9))

(proof)

lemma sets-stream-space-sstart:
assumes S[simp|: countable S
shows sets (stream-space (count-space S)) = sets (sigma (streams S) (sstart

Siists S U {{}}))
(proof)

lemma Int-stable-sstart: Int-stable (sstart S‘lists S U {{}})
(proof)

lemma stream-space-eq-sstart:
assumes S[simp]: countable S

THEORY “Tree-Space” 203

assumes P: prob-space M prob-space N

assumes ae: AE zin M. © € streams S AE z in N. © € streams S

assumes sets-M: sets M = sets (stream-space (count-space UNIV))

assumes sets-N: sets N = sets (stream-space (count-space UNIV))

assumes *: A\zs. zs # [| = xs € lists S = emeasure M (sstart S xs) =
emeasure N (sstart S xs)

shows M = N

(proof)

lemma sets-sstart[measurable]: sstart Q2 xs € sets (stream-space (count-space UNIV'))

(proof)

primrec scylinder :: 'a set = 'a set list = 'a stream set
where
scylinder S [| = streams S
| scylinder S (A # As) = {w€streams S. shd w € A A stl w € scylinder S As}

lemma scylinder-streams: scylinder S xs C streams S
(proof)

lemma sets-scylinder: (Vz€set xs. x € sets §) = scylinder (space S) xs € sets
(stream-space S)
{proof)

lemma stream-space-eq-scylinder:

assumes P: prob-space M prob-space N

assumes Int-stable G and S: sets S = sets (sigma (space S) G)

and C: countable C C C G |J C = space S and G: G C Pow (space S)

assumes sets-M: sets M = sets (stream-space S)

assumes sets-N: sets N = sets (stream-space S)

assumes *: \zs. zs # [| = zs € lists G = emeasure M (scylinder (space S)
xs) = emeasure N (scylinder (space S) xs)

shows M = N

(proof)

lemma stream-space-coinduct:
fixes R :: 'a stream measure = 'a stream measure = bool
assumes R A B
assumes R: ANA B. R A B = 3 Kespace (prob-algebra M).
JA’eM —py prob-algebra (stream-space M). 3 B'e M — 5 prob-algebra (stream-space
M).
(AEyin K. R (A’y) (B'y) VA" y=B"y) A
A=do{y+ K;w<+ A y; return (stream-space M) (y ## w) }
B =do{y<+ K;w<+ B'y; return (stream-space M) (y ## w) }
shows A = B
(proof)

A

end

THEORY “Tree-Space” 204

theory Tree-Space
imports HOL— Analysis. Analysis HOL— Library. Tree
begin

lemma countable-ifp:
assumes step: \Y. countable Y = countable (F'Y)
and cont: Order-Continuity.sup-continuous F
shows countable (Ifp F)

{(proof)

lemma countable-lfp-apply:
assumes step: AY z. (Az. countable (Y z)) = countable (F'Y)
and cont: Order-Continuity.sup-continuous F
shows countable (Iifp F x)

(proof)

inductive-set trees :: 'a set = ’a tree set for S :: 'a set where
[introl]: Leaf € trees S
|l € trees S = r € trees S = v € S = Nodelvr € trees S

lemma Node-in-trees-iff [simp]: Node l v r € trees S <— (I € trees S A v € S A
r € trees S)

{proof)

lemma trees-sub-lfp: trees S C Ifp (A\T. T U {Leaf} U (JleT. (JveS. (UreT.
{Node I v r}))))

(proof)

lemma countable-trees: countable A = countable (trees A)
(proof)

lemma trees-UNIV[simp]: trees UNIV = UNIV

(proof)

instance tree :: (countable) countable

(proof)

lemma map-in-treesintrol: (Az. x € set-tree t = fx € S) = map-tree f t €
trees S

{proof)

primrec trees-cyl :: 'a set tree = 'a tree set where

trees-cyl Leaf = {Leaf}
| trees-cyl (Node 1 v r) = (|Jl'€trees-cyl I. (Jv'ev. (U r'etrees-cyl r. {Node I’ v’
1))

definition tree-sigma :: 'a measure = 'a tree measure
where

THEORY “Tree-Space” 205

tree-sigma M = sigma (trees (space M)) (trees-cyl * trees (sets M))

lemma Node-in-trees-cyl: Node I’ v’ v’ € trees-cyl t +—
(3lvr.t=Nodelvr ANl € trees-cyl | A 1’ € trees-cyl r A v’ € v)
(proof)

lemma trees-cyl-sub-trees:
assumes t € trees A A C Pow B shows trees-cyl t C trees B

{proof)

lemma trees-cyl-sets-in-space: trees-cyl ‘ trees (sets M) C Pow (trees (space M))
(proof)

lemma space-tree-sigma: space (tree-sigma M) = trees (space M)

(proof)

lemma sets-tree-sigma-eq: sets (tree-sigma M) = sigma-sets (trees (space M))
(trees-cyl trees (sets M))
{proof)

lemma Leaf-in-space-tree-sigma [measurable, simp, intro]: Leaf € space (tree-sigma
M)
(proof)

lemma Leaf-in-tree-sigma [measurable, simp, intro): { Leaf} € sets (tree-sigma M)
(proof)

lemma trees-cyl-map-treel: t € trees-cyl (map-tree (Az. A) t) if *: t € trees A
{proof)

lemma trees-cyl-map-in-sets:

(A\z. © € set-tree t => fx € sets M) = trees-cyl (map-tree ft) € sets (tree-sigma
M)

(proof)

lemma Node-in-tree-sigma:
assumes L: X € sets (M @ nr (tree-sigma M Q) py tree-sigma M))
shows {Node lvr|lvr. (v, 1, r) € X} € sets (tree-sigma M)

(proof)

lemma measurable-left[measurable]: left € tree-sigma M — s tree-sigma M

(proof)

lemma measurable-right|measurable]: right € tree-sigma M —) tree-sigma M
(proof)

lemma measurable-value”: value € restrict-space (tree-sigma M) (—{Leaf}) —m
M

(proof)

THEORY “Conditional-Expectation” 206

lemma measurable-value[measurable (raw):
assumes f € X —)y tree-sigma M
and Az. z € space X = [z # Leaf
shows (Aw. value (f w)) € X -y M

(proof)

lemma measurable-Node [measurable]:

(A(l,z,r). Node lz 1) € tree-sigma M @ p M Q) ar tree-sigma M — py tree-sigma
M
(proof)

lemma measurable-Node' [measurable (raw)]:

assumes [measurable]: | € B —)y tree-sigma A

assumes [measurable]: © € B —p A

assumes [measurable]: r € B —) tree-sigma A

shows (Ay. Node (I y) (zy) (ry)) € B = tree-sigma A
(proof)

lemma measurable-rec-tree[measurable (raw)):

assumes t: t € B —) tree-sigma M

assumes l: l € B - A

assumes n: (A(z, [, v, r, al, ar). nzlvralar) €

(B Q ar tree-sigma M @ v M Q) s tree-sigma M @ v A Qs A) —ar A (is

N € ?M — A)

shows (Az. rec-tree (I z) (nz) (tx)) € B —pm A
(proof)

lemma measurable-case-tree [measurable (raw)]:
assumes t € B — s tree-sigma M
assumes | € B =) A
assumes (A(z, [, v,). nxlvr)
€ B Q@ tree-sigma M @ p M Q) n tree-sigma M —pp A
shows (Az. case-tree (I z) (nz) (tz)) € B = (4 i 'a measure)

(proof)

hide-const (open) left
hide-const (open) right

end

28 Conditional Expectation

theory Conditional-Ezxpectation
imports Probability-Measure
begin

THEORY “Conditional-Expectation” 207

28.1 Restricting a measure to a sub-sigma-algebra

definition subalgebra::’a measure = 'a measure = bool where
subalgebra M F = ((space F = space M) N (sets F C sets M))

lemma sub-measure-space:
assumes i: subalgebra M F
shows measure-space (space M) (sets F') (emeasure M)

(proof)

definition restr-to-subalg::'a measure = 'a measure = 'a measure where
restr-to-subalg M F = measure-of (space M) (sets F) (emeasure M)

lemma space-restr-to-subalg:
space (restr-to-subalg M F) = space M
(proof)

lemma sets-restr-to-subalg [measurable-cong]:
assumes subalgebra M F
shows sets (restr-to-subalg M F) = sets F

(proof)

lemma emeasure-restr-to-subalg:
assumes subalgebra M F
A € sets F
shows emeasure (restr-to-subalg M F) A = emeasure M A

(proof)

lemma null-sets-restr-to-subalg:
assumes subalgebra M F
shows null-sets (restr-to-subalg M F) = null-sets M N sets F

(proof)

lemma A E-restr-to-subalg:
assumes subalgebra M F
AE z in (restr-to-subalg M F). P x
shows AE zin M. P x

(proof)

lemma AFE-restr-to-subalg2:
assumes subalgebra M F
AE zin M. P x and [measurable]: P € measurable F (count-space UNIV')
shows AFE z in (restr-to-subalg M F). P x

(proof)

lemma prob-space-restr-to-subalg:
assumes subalgebra M F
prob-space M
shows prob-space (restr-to-subalg M F')
(proof)

THEORY “Conditional-Expectation” 208

lemma finite-measure-restr-to-subalg:
assumes subalgebra M F
finite-measure M
shows finite-measure (restr-to-subalg M F)

(proof)

lemma measurable-in-subalg:
assumes subalgebra M F
f € measurable F N
shows f € measurable (restr-to-subalg M F) N

(proof)

lemma measurable-in-subalg':
assumes subalgebra M F
f € measurable (restr-to-subalg M F) N
shows f € measurable F N

(proof)

lemma measurable-from-subalg:
assumes subalgebra M F
f € measurable F N
shows f € measurable M N

(proof)

The following is the direct transposition of nn_integral_subalgebra (from
Nonnegative_Lebesgue_Integration) in the current notations, with the
removal of the useless assumption f > 0.

lemma nn-integral-subalgebra2:
assumes subalgebra M F and [measurable]: f € borel-measurable F
shows ([* z. fz O(restr-to-subalg M F)) = ([" z. fz OM)
(proof)

The following is the direct transposition of integral_subalgebra (from
Bochner_Integration) in the current notations.

lemma integral-subalgebra2:
fixes f :: 'a = 'b::{banach, second-countable-topology}
assumes subalgebra M F and
[measurable]: f € borel-measurable F
shows ([z. fz O(restr-to-subalg M F)) = ([z. fz OM)

(proof)

lemma integrable-from-subalg:
fixes f :: 'a = 'b::{banach, second-countable-topology}
assumes subalgebra M F
integrable (restr-to-subalg M F) f
shows integrable M f

(proof)

THEORY “Conditional-Expectation” 209

lemma integrable-in-subalg:
fixes f :: 'a = 'b::{banach, second-countable-topology}
assumes [measurable]: subalgebra M F
f € borel-measurable F
integrable M f
shows integrable (restr-to-subalg M F) f

(proof)

28.2 Nonnegative conditional expectation

The conditional expectation of a function f, on a measure space M, with re-
spect to a sub sigma algebra F', should be a function g which is F-measurable
whose integral on any F-set coincides with the integral of f. Such a func-
tion is uniquely defined almost everywhere. The most direct construction is
to use the measure fdM, restrict it to the sigma-algebra F', and apply the
Radon-Nikodym theorem to write it as gdM|p for some F-measurable func-
tion ¢g. Another classical construction for L? functions is done by orthogonal
projection on F-measurable functions, and then extending by density to L!.
The Radon-Nikodym point of view avoids the L? machinery, and works for
all positive functions.

In this paragraph, we develop the definition and basic properties for non-
negative functions, as the basics of the general case. As in the definition of
integrals, the nonnegative case is done with ennreal-valued functions, with-
out any integrability assumption.

definition nn-cond-exp :: 'a measure = 'a measure = ('a = ennreal) = ('a =
ennreal)
where
nn-cond-exp M F f =
(if f € borel-measurable M A subalgebra M F
then RN-deriv (restr-to-subalg M F) (restr-to-subalg (density M f) F)
else (A-. 0))

lemma

shows borel-measurable-nn-cond-exp [measurable]: nn-cond-exp M F f € borel-measurable
F

and borel-measurable-nn-cond-exp2 [measurable]: nn-cond-exp M F f € borel-measurable
M

(proof)

The good setting for conditional expectations is the situation where the
subalgebra F' gives rise to a sigma-finite measure space. To see what goes
wrong if it is not sigma-finite, think of R with the trivial sigma-algebra
{0,R}. In this case, conditional expectations have to be constant functions,
so they have integral 0 or co. This means that a positive integrable function
can have no meaningful conditional expectation.

locale sigma-finite-subalgebra =

THEORY “Conditional-Expectation” 210

fixes M F::'a measure
assumes subalg: subalgebra M F
and sigma-fin-subalg: sigma-finite-measure (restr-to-subalg M F')

lemma sigma-finite-subalgebra-is-sigma-finite:
assumes sigma-finite-subalgebra M F
shows sigma-finite-measure M

(proof)

sublocale sigma-finite-subalgebra C sigma-finite-measure

(proof)

Conditional expectations are very often used in probability spaces. This is
a special case of the previous one, as we prove now.

locale finite-measure-subalgebra = finite-measure +
fixes F::'a measure
assumes subalg: subalgebra M F

lemma finite-measure-subalgebra-is-sigma-finite:
assumes finite-measure-subalgebra M F
shows sigma-finite-subalgebra M F

(proof)

sublocale finite-measure-subalgebra C sigma-finite-subalgebra
(proof)

context sigma-finite-subalgebra
begin

The next lemma is arguably the most fundamental property of conditional
expectation: when computing an expectation against an F-measurable func-
tion, it is equivalent to work with a function or with its F-conditional ex-
pectation.

This property (even for bounded test functions) characterizes conditional
expectations, as the second lemma below shows. From this point on, we
will only work with it, and forget completely about the definition using
Radon-Nikodym derivatives.
lemma nn-cond-exp-intg:

assumes [measurable]: f € borel-measurable F g € borel-measurable M

shows ([T z. fz % nn-cond-exp M F gz OM) = ([T z. fz x gz OM)
(proof)

lemma nn-cond-exp-charact:
assumes N\A. A€ sets F = ([T z € A fz OM)= ([T z € A gz OM) and
[measurable]: f € borel-measurable M g € borel-measurable F
shows AE z in M. g x = nn-cond-exp M F f x

(proof)

THEORY “Conditional-Expectation” 211

lemma nn-cond-exp-F-meas:
assumes f € borel-measurable F
shows AE xz in M. fz = nn-cond-exp M F fz

(proof)

lemma nn-cond-exp-prod:

assumes [measurable]: f € borel-measurable F' g € borel-measurable M

shows AE zin M. f x * nn-cond-exp M F g x = nn-cond-exp M F (Az. fz % g
z) T

{(proof)

lemma nn-cond-exp-sum:

assumes [measurable]: f € borel-measurable M g € borel-measurable M

shows AFE x in M. nn-cond-exp M F f x 4+ nn-cond-exp M F g x = nn-cond-exp
MF (Mx. fr+gzx)x
(proof)

lemma nn-cond-exp-cong:
assumes AExzin M. fr =gz
and [measurable]: f € borel-measurable M g € borel-measurable M
shows AE x in M. nn-cond-exp M F fx = nn-cond-exp M F g x

(proof)

lemma nn-cond-exp-mono:
assumes AEzin M. fr<gzx
and [measurable]: f € borel-measurable M g € borel-measurable M
shows AE x in M. nn-cond-exp M F fx < nn-cond-exp M F g x

(proof)

lemma nested-subalg-is-sigma-finite:
assumes subalgebra M G subalgebra G F
shows sigma-finite-subalgebra M G

(proof)

lemma nn-cond-exp-nested-subalg:
assumes subalgebra M G subalgebra G F
and [measurable]: f € borel-measurable M
shows AFE z in M. nn-cond-exp M F fx = nn-cond-exp M F (nn-cond-exp M G

f) e
(proof)

end

28.3 Real conditional expectation

Once conditional expectations of positive functions are defined, the defi-
nition for real-valued functions follows readily, by taking the difference of
positive and negative parts. One could also define a conditional expecta-
tion of vector-space valued functions, as in Bochner_Integral, but since

THEORY “Conditional-Expectation” 212

the real-valued case is the most important, and quicker to formalize, I con-
centrate on it. (It is also essential for the case of the most general Pettis
integral.)
definition real-cond-exp :: 'a measure = 'a measure = ('a = real) = ('a = real)
where
real-cond-exp M F f =

(Az. enn2real(nn-cond-exp M F (Az. ennreal (f z))) — ennZreal(nn-cond-exp

M F (Az. ennreal (—f x)) z))

lemma

shows borel-measurable-cond-exp [measurable: real-cond-exp M F f € borel-measurable
F

and borel-measurable-cond-exp2 [measurable]: real-cond-exp M F f € borel-measurable
M

(proof)

context sigma-finite-subalgebra
begin

lemma real-cond-exp-abs:
assumes [measurable]: f € borel-measurable M
shows AE z in M. abs(real-cond-exp M F f x) < nn-cond-exp M F (Az. ennreal

(abs(f z))) =
(proof)

The next lemma shows that the conditional expectation is an F-measurable
function whose average against an F-measurable function f coincides with
the average of the original function against f. It is obtained as a consequence
of the same property for the positive conditional expectation, taking the
difference of the positive and the negative part. The proof is given first
assuming f > 0 for simplicity, and then extended to the general case in
the subsequent lemma. The idea of the proof is essentially trivial, but the
implementation is slightly tedious as one should check all the integrability
properties of the different parts, and go back and forth between positive
integral and signed integrals, and between real-valued functions and ennreal-
valued functions.

Once this lemma is available, we will use it to characterize the conditional
expectation, and never come back to the original technical definition, as we
did in the case of the nonnegative conditional expectation.

lemma real-cond-exp-intg-fpos:
assumes integrable M (A\z. fz * g z) and f-pos[simp]: N\z. f x > 0 and
[measurable]: f € borel-measurable F g € borel-measurable M
shows integrable M (Axz. f © * real-cond-exp M F g x)
(| z. fz « real-cond-exp M F gz OM) = ([z. fz x gz OM)
(proof)

lemma real-cond-exp-intg:

THEORY “Conditional-Expectation” 213

assumes integrable M (Az. fz * ¢g z) and
[measurable]: f € borel-measurable F g € borel-measurable M
shows integrable M (Az. f x x real-cond-exp M F g z)
(| z. fz real-cond-exp M F gz OM) = ([z. fz x gz OM)
(proof)

lemma real-cond-exp-intA:
assumes [measurable]: integrable M f A € sets F
shows ([z € A. fz OM) = ([z € A. real-cond-exp M F fz OM)

{(proof)

lemma real-cond-exp-int [introl:

assumes integrable M f

shows integrable M (real-cond-exp M F f) ([z. real-cond-exp M F fx OM) =
([z. fz OM)
(proof)

lemma real-cond-exp-charact:
assumes NA. A€ sets F = ([2 € A. fz OM) = ([z € A. gz OM)
and [measurable]: integrable M f integrable M g
g € borel-measurable F
shows AE x in M. real-cond-exp M F fx = gz

(proof)

lemma real-cond-exp-F-meas [intro, simp]:
assumes integrable M f
f € borel-measurable F
shows AE z in M. real-cond-exp M F fz = fzx

(proof)

lemma real-cond-exp-mult:

assumes [measurable]:f € borel-measurable F g € borel-measurable M integrable
M (Mz. fz x g x)

shows AE z in M. real-cond-exp M F (Az. fz % g) x = fx * real-cond-exp M
Fgzx
(proof)

lemma real-cond-exp-add [intro:

assumes [measurable]: integrable M f integrable M g

shows AFE z in M. real-cond-exp M F (\z. fz + g z) © = real-cond-exp M F f z
+ real-cond-exp M F g x
(proof)

lemma real-cond-exp-cong:

assumes ae: AE zin M. fz = g x and [measurable]: f € borel-measurable M g
€ borel-measurable M

shows AFE z in M. real-cond-exp M F f x = real-cond-exp M F g x

(proof)

THEORY “Conditional-Expectation” 214

lemma real-cond-exp-cmult [intro, simp):

fixes c::real

assumes integrable M f

shows AFE z in M. real-cond-exp M F (Az. ¢ x fx) & = ¢ * real-cond-exp M F f
x

(proof)

lemma real-cond-exp-cdiv [intro, simp]:

fixes c::real

assumes integrable M f

shows AFE z in M. real-cond-exp M F (Ax. fz / ¢) x = real-cond-exp M F fz /
c

(proof)

lemma real-cond-exp-diff [intro, simp):

assumes [measurable]: integrable M f integrable M g

shows AFE z in M. real-cond-exp M F (\z. fx — g x) © = real-cond-exp M F f z
— real-cond-exp M F g x
(proof)

lemma real-cond-exp-pos [intro):
assumes AF xin M. fz > 0 and [measurable]: f € borel-measurable M
shows AFE x in M. real-cond-exp M F fz > 0

(proof)

lemma real-cond-exp-mono:
assumes AE z in M. fz < g x and [measurable]: integrable M f integrable M g
shows AE z in M. real-cond-exp M F f z < real-cond-exp M F g x

(proof)

lemma (in —) measurable-P-restriction [measurable (raw)]:
assumes [measurable]: Measurable.pred M P A € sets M
shows {z € A. Pz} € sets M

(proof)

lemma real-cond-exp-gr-c:
assumes [measurable]: integrable M f
and AE: AExin M. fz > ¢
shows AFE x in M. real-cond-exp M F fz > ¢

(proof)

lemma real-cond-exp-less-c:
assumes [measurable]: integrable M f
and AEzin M. fz <c
shows AFE x in M. real-cond-exp M F fz < ¢

(proof)

lemma real-cond-exp-ge-c:
assumes [measurable]: integrable M f

THEORY “Conditional-Expectation” 215

and AEzin M. fz > ¢
shows AE z in M. real-cond-exp M F fz > ¢

(proof)

lemma real-cond-exp-le-c:
assumes [measurable]: integrable M f
and AEzin M. fz<c
shows AE z in M. real-cond-exp M F fz < ¢

(proof)

lemma real-cond-exp-mono-strict:
assumes AF xzin M. fz < g z and [measurable]: integrable M f integrable M g
shows AFE x in M. real-cond-exp M F f x < real-cond-exp M F g x

(proof)

lemma real-cond-exp-nested-subalg [intro, simp]:
assumes subalgebra M G subalgebra G F
and [measurable]: integrable M f
shows AE z in M. real-cond-exp M F (real-cond-exp M G f) x = real-cond-exp
MFfzx
(proof)

lemma real-cond-exp-sum [intro, simpl:

fixes f::'b = 'a = real

assumes [measurable]: \i. integrable M (f i)

shows AE zin M. real-cond-exp M F (Az. Y i€l. fiz) x = (. i€l. real-cond-exp
MF (fi))
(proof)

Jensen’s inequality, describing the behavior of the integral under a convex
function, admits a version for the conditional expectation, as follows.

theorem real-cond-exp-jensens-inequality:
fixes ¢ :: real = real
assumes X: integrable M X AEzin M. Xz eI
assumes I: [={a<.< b} VI={a<.} VI={.<b}VvI=UNIV
assumes ¢: integrable M (Az. q (X x)) convez-on I q q € borel-measurable borel
shows AFE z in M. real-cond-exp M F X x € 1
AFE x in M. q (real-cond-exp M F X z) < real-cond-exp M F (A\z. q (X z)) =

(proof)

Jensen’s inequality does not imply that ¢(E(X|F)) is integrable, as it only
proves an upper bound for it. Indeed, this is not true in general, as the
following counterexample shows:

on [1,00) with Lebesgue measure, let F' be the sigma-algebra generated by
the intervals [n,n + 1) for integer n. Let ¢(z) = —y/x for > 0. Define X
which is equal to 1/n over [n,n+ 1/n) and 27" on [n+ 1/n,n + 1). Then
X is integrable as 3. 1/n? < oo, and ¢(X) is integrable as 3. 1/n3%/? < oo.
On the other hand, F(X|F) is essentially equal to 1/n? on [n,n + 1) (we

THEORY “Essential-Supremum” 216

neglect the term 27", we only put it there because X should take its values
in I = (0,00)). Hence, ¢(E(X|F)) is equal to —1/n on [n,n+ 1), hence it is
not integrable.

However, this counterexample is essentially the only situation where this
function is not integrable, as shown by the next lemma.

lemma integrable-convez-cond-exp:
fixes ¢ :: real = real
assumes X: integrable M X AExzin M. Xz eI
assumes I: [={a<.< b} VI={a<.} VI={.<b}VvI=UNIV
assumes ¢: integrable M (Az. q (X x)) convez-on I q q € borel-measurable borel
assumes H: emeasure M (space M) = 0o = 0 € |
shows integrable M (Az. q (real-cond-exp M F X 1))

(proof)

end

end

theory Fssential-Supremum
imports HOL— Analysis. Analysis
begin

lemma ae-filter-eq-bot-iff: ae-filier M = bot «— emeasure M (space M) = 0
(proof)

29 The essential supremum

In this paragraph, we define the essential supremum and give its basic prop-
erties. The essential supremum of a function is its maximum value if one is
allowed to throw away a set of measure 0. It is convenient to define it to be
infinity for non-measurable functions, as it allows for neater statements in
general. This is a prerequisiste to define the space L.

definition esssup::’a measure = ('a = 'b::{second-countable-topology, dense-linorder,
linorder-topology, complete-linorder}) = 'b
where esssup M f = (if f € borel-measurable M then Limsup (ae-filter M) f else

top)

lemma esssup-non-measurable: f ¢ M —p; borel = esssup M f = top
(proof)

lemma esssup-eq-AE:
assumes f: f € M — s borel shows esssup M f = Inf {z. AExin M. fz < z}
(proof)

lemma esssup-eq: f € M —pr borel = esssup M f = Inf {z. emeasure M {z €

THEORY “Stopping-Time” 217

space M. fz > 2z} = 0}
{proof)

lemma esssup-zero-measure:
emeasure M {x € space M. fx > esssup M f} = 0

(proof)

lemma esssup-AFE: AE x in M. fz < esssup M f
(proof)

lemma esssup-pos-measure:

f € borel-measurable M — 2z < esssup M f = emeasure M {z € space M. f
>z} >0

{proof)

lemma esssup-I [intro|: f € borel-measurable M = AE z in M. fz < ¢ =
esssup M f < ¢
{proof)

lemma esssup-AE-mono: f € borel-measurable M —> AExin M. fz < gz =
esssup M f < esssup M g

{proof)

lemma esssup-mono: f € borel-measurable M — (Az. fz < g z) = esssup M
f < esssup M g
(proof)

lemma esssup-AFE-cong:

f € borel-measurable M —> g € borel-measurable M — AEzin M. fz =gz
= esssup M f = esssup M g

(proof)

lemma esssup-const: emeasure M (space M) # 0 = esssup M (Az. ¢) = ¢
{proof)

lemma esssup-cmult: assumes ¢ > (0::real) shows esssup M (Azx. ¢ = f x::ereal)
= c * esssup M f

(proof)

lemma esssup-add:
esssup M (Az. fx + g z:ereal) < esssup M f + esssup M g

(proof)

lemma esssup-zero-space:
emeasure M (space M) = 0 = f € borel-measurable M —> esssup M f = (—
oo::ereal)

(proof)

end

THEORY “Stopping-Time” 218

30 Stopping times

theory Stopping-Time
imports HOL— Analysis. Analysis
begin

30.1 Stopping Time

This is also called strong stopping time. Then stopping time is T with
alternative is T'z < t measurable.
definition stopping-time :: ("t::linorder = 'a measure) = (‘a = 't) = bool
where

stopping-time F' T = (Vt. Measurable.pred (F t) (Az. T z < t))

lemma stopping-time-cong: (\t ©. © € space (F t) = T z = S) = stop-
ping-time F' T = stopping-time F S
(proof)

lemma stopping-timeD: stopping-time F' T —> Measurable.pred (F t) (Az. T x <
t)

{proof)

lemma stopping-timeD2: stopping-time F T —> Measurable.pred (F't) (Az. t <
T x)
(proof)

lemma stopping-timel[intro?): (A\t. Measurable.pred (F t) (Az. T z < t)) =
stopping-time F' T
{proof)

lemma measurable-stopping-time:
fixes T :: 'a = 't::{linorder-topology, second-countable-topology}
assumes T stopping-time F' T
and M: At. sets (F't) C sets M At. space (F't) = space M
shows T € M — s borel

(proof)

lemma stopping-time-const: stopping-time F (A\z. c)
(proof)

lemma stopping-time-min:

stopping-time F T = stopping-time F S = stopping-time F (Az. min (T x)
(S z))

(proof)

lemma stopping-time-mazx:

stopping-time F' T — stopping-time F' S = stopping-time F (Az. maz (T z)
(S z))

(proof)

THEORY “Stopping-Time” 219

31 Filtration

locale filtration =

fixes Q :: ‘a set and F :: "t::{linorder-topology, second-countable-topology} = 'a
measure

assumes space-F: \i. space (F i) = Q

assumes sets-F-mono: N\ij. i < j = sets (F i) < sets (F j)
begin

31.1 o-algebra of a Stopping Time

definition pre-sigma :: (‘a = 't) = 'a measure
where
pre-sigma T = sigma Q {A. Vit. {weA. T w < t} € sets (F)}

lemma space-pre-sigma: space (pre-sigma T) =
(proof)

lemma measure-pre-sigmalsimp|: emeasure (pre-sigma T) = (A-. 0)
{proof)

lemma sigma-algebra-pre-sigma:
assumes 71': stopping-time F' T
shows sigma-algebra Q {A. V. {weA. T w < t} € sets (F t)}

(proof)

lemma sets-pre-sigma: stopping-time F T = sets (pre-sigma T) = {A. Vt. {weA.
Tw< t} € sets (Ft)}
{proof)

lemma sets-pre-sigmal: stopping-time F T — (A\t. {w€A. T w < t} € sets (F
t)) = A € sets (pre-sigma T)
{proof)

lemma pred-pre-sigmal:

assumes 71': stopping-time F' T

shows (At. Measurable.pred (F t) (Aw. P w A T w < t)) = Measurable.pred
(pre-sigma T) P

(proof)

lemma sets-pre-sigmaD: stopping-time F T —> A € sets (pre-sigma T) = {weA.
T w <t} € sets (Ft)
(proof)

lemma stopping-time-le-const: stopping-time F T —> s < t => Measurable.pred
(Ft) (Aw. Tw<5s)
(proof)

lemma measurable-stopping-time-pre-sigma:
assumes 71 stopping-time F' T shows T € pre-sigma T — s borel

THEORY “Probability” 220

(proof)

lemma mono-pre-sigma:
assumes 71 stopping-time F' T and S: stopping-time F S
and le: A\w.w €= Tw<Sw
shows sets (pre-sigma T) C sets (pre-sigma S)

{proof)

lemma stopping-time-less-const:
assumes T stopping-time F T shows Measurable.pred (F t) (Aw. T w < t)

(proof)

lemma stopping-time-eq-const: stopping-time F T —> Measurable.pred (F t) (Aw.
Tw=1t)
(proof)

lemma stopping-time-less:
assumes T stopping-time F T and S: stopping-time F' S
shows Measurable.pred (pre-sigma T) (Aw. T w < S w)

(proof)

end

lemma stopping-time-SUP-enat:
fixes T :: nat = ('a = enat)
shows (A\i. stopping-time F (T i)) = stopping-time F (SUP i. T)
(proof)

lemma less-eSuc-iff: a < eSuc b «— (a < b A a #)
{proof)

lemma stopping-time-Inf-enat:
fixes F' :: enat = 'a measure
assumes F': filtration Q F
assumes P: \i. Measurable.pred (F i) (P 1)
shows stopping-time F (Aw. Inf {i. P i w})

(proof)

lemma stopping-time-Inf-nat:

fixes F :: nat = 'a measure

assumes F': filtration Q F

assumes P: A\i. Measurable.pred (F i) (P i) and wf: Niw. w € Q = 3In. Pn
w

shows stopping-time F (Aw. Inf {i. P i w})

{proof)

end

THEORY “Probability” 221

theory Probability

imports
Central-Limit- Theorem
Discrete-Topology
PMF-Impl
Projective- Limit
Random-Permutations
SPMF
Product-PMF
Hoeffding
Stream-Space
Tree-Space
Conditional-Expectation
Essential-Supremum
Stopping-Time

begin

end

	Probability measure
	Introduce binder for probability
	Distributions

	Distribution Functions
	Properties of cdf's
	Uniqueness

	Weak Convergence of Functions and Distributions
	Weak Convergence of Functions
	Weak Convergence of Distributions
	Skorohod's theorem
	The Giry monad
	Sub-probability spaces
	Properties of ``return''
	Join
	Giry monad on probability spaces

	Projective Family
	Infinite Product Measure
	Sequence space

	Independent families of events, event sets, and random variables
	Convolution Measure
	Information theory
	Information theory
	Kullback-Leibler divergence
	Finite Entropy
	Mutual Information
	Entropy
	Conditional Mutual Information
	Conditional Entropy
	Equalities

	Properties of Various Distributions
	Erlang
	Exponential distribution
	Uniform distribution
	Normal distribution

	Characteristic Functions
	Application of the FTC: integrating eix
	The Characteristic Function of a Real Measure.
	Independence
	Approximations to eix
	Calculation of the Characteristic Function of the Standard Distribution

	Helly's selection theorem
	Integral of sinc
	Various preparatory integrals

	The sinc function, and the sine integral (Si)
	The final theorems: boundedness and scalability

	The Levy inversion theorem, and the Levy continuity theorem.
	The Levy inversion theorem
	The Levy continuity theorem

	The Central Limit Theorem
	Probability mass function
	PMF as measure
	Monad Interpretation
	PMFs as function
	Conditional Probabilities
	Relator
	Distributions
	Bernoulli Distribution
	Geometric Distribution
	Uniform Multiset Distribution
	Uniform Distribution
	Poisson Distribution
	Binomial Distribution

	Negative Binomial distribution
	PMFs from association lists

	Code generation for PMFs
	General code generation setup
	Code abbreviations for integrals and probabilities

	Finite Maps
	Domain and Application
	Constructor of Finite Maps
	Product set of Finite Maps
	Basic Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Pi2mu'-2mu

	Topological Space of Finite Maps
	Metric Space of Finite Maps
	Complete Space of Finite Maps
	Second Countable Space of Finite Maps
	Polish Space of Finite Maps
	Product Measurable Space of Finite Maps
	Isomorphism between Functions and Finite Maps

	Projective Limit
	Sequences of Finite Maps in Compact Sets
	Daniell-Kolmogorov Theorem

	Random Permutations
	Discrete subprobability distribution
	Auxiliary material
	More about extended reals
	More about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua option
	A relator for sets that treats sets like predicates
	Monotonicity rules
	Bijections

	Subprobability mass function
	Support
	Functorial structure
	Monad operations
	Return
	Bind

	Relator
	From 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua pmf to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua spmf
	Weight of a subprobability
	From density to spmfs
	Ordering on spmfs
	CCPO structure for the flat ccpo 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ord-option (=)
	Admissibility of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 rel-spmf

	Restrictions on spmfs
	Subprobability distributions of sets
	Losslessness
	Scaling
	Conditional spmfs
	Product spmf
	Assertions
	Try
	Miscellaneous

	Indexed products of PMFs
	Preliminaries
	Definition
	Dependent product sets with a default
	Common PMF operations on products
	Merging and splitting PMF products
	Additional properties
	Applications

	Hoeffding's Lemma and Hoeffding's Inequality
	Hoeffding's Lemma
	Hoeffding's Inequality
	Hoeffding's inequality for i.i.d. bounded random variables
	Hoeffding's Inequality for the Binomial distribution
	Tail bounds for the negative binomial distribution

	Conditional Expectation
	Restricting a measure to a sub-sigma-algebra
	Nonnegative conditional expectation
	Real conditional expectation

	The essential supremum
	Stopping times
	Stopping Time

	Filtration
	-algebra of a Stopping Time

