
Various results of number theory

January 18, 2026

Contents
1 The fibonacci function 3

1.1 Fibonacci numbers . 3
1.2 Basic Properties . 3
1.3 More efficient code . 3
1.4 A Few Elementary Results . 4
1.5 Law 6.111 of Concrete Mathematics 4
1.6 Closed form . 5
1.7 Divide-and-Conquer recurrence 5
1.8 Fibonacci and Binomial Coefficients 6

2 Congruence 6
2.1 Generic congruences . 6
2.2 Congruences on nat and int 11

3 Fundamental facts about Euler’s totient function 16

4 Residue rings 21
4.1 A locale for residue rings . 22
4.2 Prime residues . 24

5 Test cases: Euler’s theorem and Wilson’s theorem 25
5.1 Euler’s theorem . 25
5.2 Wilson’s theorem . 26
5.3 Upper bound for the number of n-th roots 26

6 The sieve of Eratosthenes 26
6.1 Preliminary: strict divisibility 27
6.2 Main corpus . 27
6.3 Application: smallest prime beyond a certain number 29

7 Fast modular exponentiation 30

1

8 Gauss’ Lemma 33
8.1 Basic properties of p . 34
8.2 Basic Properties of the Gauss Sets 34
8.3 Relationships Between Gauss Sets 36
8.4 Gauss’ Lemma . 37

9 Pocklington’s Theorem for Primes 42
9.1 Lemmas about previously defined terms 42
9.2 Some basic theorems about solving congruences 42
9.3 Lucas’s theorem . 43
9.4 Definition of the order of a number mod n 43
9.5 Another trivial primality characterization 46
9.6 Pocklington theorem . 46
9.7 Prime factorizations . 47

10 Prime powers 48

11 Primitive roots in residue rings and Carmichael’s function 53
11.1 Primitive roots in residue rings 53
11.2 Primitive roots modulo a prime 54
11.3 Primitive roots modulo powers of an odd prime 55
11.4 Carmichael’s function . 56
11.5 Existence of primitive roots for general moduli 59

12 Modular Inverses 60

13 Comprehensive number theory 62

2

Cong Eratosthenes

Euler_Criterion

Fib

Gauss

Mod_Exp Modular_Inverse

Number_Theory

Pocklington

Prime_Powers

Quadratic_Reciprocity

Residue_Primitive_Roots

Residues

Totient

[HOL-Algebra]

[HOL-Computational_Algebra]

[HOL-Library]

[HOL]

[Pure]

[Tools]

3

1 The fibonacci function
theory Fib

imports Complex-Main
begin

1.1 Fibonacci numbers
fun fib :: nat ⇒ nat

where
fib0 : fib 0 = 0
| fib1 : fib (Suc 0) = 1
| fib2 : fib (Suc (Suc n)) = fib (Suc n) + fib n

1.2 Basic Properties
lemma fib-1 [simp]: fib 1 = 1
〈proof 〉

lemma fib-2 [simp]: fib 2 = 1
〈proof 〉

lemma fib-plus-2 : fib (n + 2) = fib (n + 1) + fib n
〈proof 〉

lemma fib-add: fib (Suc (n + k)) = fib (Suc k) ∗ fib (Suc n) + fib k ∗ fib n
〈proof 〉

lemma fib-neq-0-nat: n > 0 =⇒ fib n > 0
〈proof 〉

lemma fib-Suc-mono: fib m ≤ fib (Suc m)
〈proof 〉

lemma fib-mono: m ≤ n =⇒ fib m ≤ fib n
〈proof 〉

1.3 More efficient code

The naive approach is very inefficient since the branching recursion leads to
many values of fib being computed multiple times. We can avoid this by
“remembering” the last two values in the sequence, yielding a tail-recursive
version. This is far from optimal (it takes roughly O(n ·M(n)) time where
M(n) is the time required to multiply two n-bit integers), but much better
than the naive version, which is exponential.
fun gen-fib :: nat ⇒ nat ⇒ nat ⇒ nat

where
gen-fib a b 0 = a
| gen-fib a b (Suc 0) = b

4

| gen-fib a b (Suc (Suc n)) = gen-fib b (a + b) (Suc n)

lemma gen-fib-recurrence: gen-fib a b (Suc (Suc n)) = gen-fib a b n + gen-fib a b
(Suc n)
〈proof 〉

lemma gen-fib-fib: gen-fib (fib n) (fib (Suc n)) m = fib (n + m)
〈proof 〉

lemma fib-conv-gen-fib: fib n = gen-fib 0 1 n
〈proof 〉

declare fib-conv-gen-fib [code]

1.4 A Few Elementary Results

Concrete Mathematics, page 278: Cassini’s identity. The proof is much easier
using integers, not natural numbers!
lemma fib-Cassini-int: int (fib (Suc (Suc n)) ∗ fib n) − int((fib (Suc n))2) = −
((−1)^n)
〈proof 〉

lemma fib-Cassini-nat:
fib (Suc (Suc n)) ∗ fib n =

(if even n then (fib (Suc n))2 − 1 else (fib (Suc n))2 + 1)
〈proof 〉

1.5 Law 6.111 of Concrete Mathematics
lemma coprime-fib-Suc-nat: coprime (fib n) (fib (Suc n))
〈proof 〉

lemma gcd-fib-add:
gcd (fib m) (fib (n + m)) = gcd (fib m) (fib n)
〈proof 〉

lemma gcd-fib-diff : m ≤ n =⇒ gcd (fib m) (fib (n − m)) = gcd (fib m) (fib n)
〈proof 〉

lemma gcd-fib-mod: 0 < m =⇒ gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)
〈proof 〉

lemma fib-gcd: fib (gcd m n) = gcd (fib m) (fib n) — Law 6.111
〈proof 〉

theorem fib-mult-eq-sum-nat: fib (Suc n) ∗ fib n = (
∑

k ∈ {..n}. fib k ∗ fib k)
〈proof 〉

5

1.6 Closed form
lemma fib-closed-form:

fixes ϕ ψ :: real
defines ϕ ≡ (1 + sqrt 5) / 2

and ψ ≡ (1 − sqrt 5) / 2
shows of-nat (fib n) = (ϕ ^ n − ψ ^ n) / sqrt 5
〈proof 〉

lemma fib-closed-form ′:
fixes ϕ ψ :: real
defines ϕ ≡ (1 + sqrt 5) / 2

and ψ ≡ (1 − sqrt 5) / 2
assumes n > 0
shows fib n = round (ϕ ^ n / sqrt 5)
〈proof 〉

lemma fib-asymptotics:
fixes ϕ :: real
defines ϕ ≡ (1 + sqrt 5) / 2
shows (λn. real (fib n) / (ϕ ^ n / sqrt 5)) −−−−→ 1
〈proof 〉

1.7 Divide-and-Conquer recurrence

The following divide-and-conquer recurrence allows for a more efficient com-
putation of Fibonacci numbers; however, it requires memoisation of values
to be reasonably efficient, cutting the number of values to be computed to
logarithmically many instead of linearly many. The vast majority of the
computation time is then actually spent on the multiplication, since the
output number is exponential in the input number.
lemma fib-rec-odd:

fixes ϕ ψ :: real
defines ϕ ≡ (1 + sqrt 5) / 2

and ψ ≡ (1 − sqrt 5) / 2
shows fib (Suc (2 ∗ n)) = fib n^2 + fib (Suc n)^2
〈proof 〉

lemma fib-rec-even: fib (2 ∗ n) = (fib (n − 1) + fib (n + 1)) ∗ fib n
〈proof 〉

lemma fib-rec-even ′: fib (2 ∗ n) = (2 ∗ fib (n − 1) + fib n) ∗ fib n
〈proof 〉

lemma fib-rec:
fib n =
(if n = 0 then 0 else if n = 1 then 1
else if even n then let n ′ = n div 2 ; fn = fib n ′ in (2 ∗ fib (n ′ − 1) + fn) ∗ fn
else let n ′ = n div 2 in fib n ′ ^ 2 + fib (Suc n ′) ^ 2)

6

〈proof 〉

1.8 Fibonacci and Binomial Coefficients
lemma sum-drop-zero: (

∑
k = 0 ..Suc n. if 0<k then (f (k − 1)) else 0) = (

∑
j

= 0 ..n. f j)
〈proof 〉

lemma sum-choose-drop-zero:
(
∑

k = 0 ..Suc n. if k = 0 then 0 else (Suc n − k) choose (k − 1)) =
(
∑

j = 0 ..n. (n−j) choose j)
〈proof 〉

lemma ne-diagonal-fib: (
∑

k = 0 ..n. (n−k) choose k) = fib (Suc n)
〈proof 〉

end

2 Congruence
theory Cong

imports HOL−Computational-Algebra.Primes
begin

2.1 Generic congruences
context unique-euclidean-semiring
begin

definition cong :: ′a ⇒ ′a ⇒ ′a ⇒ bool
(‹(‹indent=1 notation=‹mixfix cong››[- = -] ′(′ mod - ′))›)

where [b = c] (mod a) ←→ b mod a = c mod a

abbreviation notcong :: ′a ⇒ ′a ⇒ ′a ⇒ bool
(‹(‹indent=1 notation=‹mixfix notcong››[- 6= -] ′(′ mod - ′))›)

where [b 6= c] (mod a) ≡ ¬ cong b c a

lemma cong-refl [simp]:
[b = b] (mod a)
〈proof 〉

lemma cong-sym:
[b = c] (mod a) =⇒ [c = b] (mod a)
〈proof 〉

lemma cong-sym-eq:
[b = c] (mod a) ←→ [c = b] (mod a)
〈proof 〉

7

lemma cong-trans [trans]:
[b = c] (mod a) =⇒ [c = d] (mod a) =⇒ [b = d] (mod a)
〈proof 〉

lemma cong-mult-self-right:
[b ∗ a = 0] (mod a)
〈proof 〉

lemma cong-mult-self-left:
[a ∗ b = 0] (mod a)
〈proof 〉

lemma cong-mod-left [simp]:
[b mod a = c] (mod a) ←→ [b = c] (mod a)
〈proof 〉

lemma cong-mod-right [simp]:
[b = c mod a] (mod a) ←→ [b = c] (mod a)
〈proof 〉

lemma cong-0 [simp, presburger]:
[b = c] (mod 0) ←→ b = c
〈proof 〉

lemma cong-1 [simp, presburger]:
[b = c] (mod 1)
〈proof 〉

lemma cong-dvd-iff :
a dvd b ←→ a dvd c if [b = c] (mod a)
〈proof 〉

lemma cong-0-iff : [b = 0] (mod a) ←→ a dvd b
〈proof 〉

lemma cong-add:
[b = c] (mod a) =⇒ [d = e] (mod a) =⇒ [b + d = c + e] (mod a)
〈proof 〉

lemma cong-mult:
[b = c] (mod a) =⇒ [d = e] (mod a) =⇒ [b ∗ d = c ∗ e] (mod a)
〈proof 〉

lemma cong-scalar-right:
[b = c] (mod a) =⇒ [b ∗ d = c ∗ d] (mod a)
〈proof 〉

lemma cong-scalar-left:
[b = c] (mod a) =⇒ [d ∗ b = d ∗ c] (mod a)

8

〈proof 〉

lemma cong-pow:
[b = c] (mod a) =⇒ [b ^ n = c ^ n] (mod a)
〈proof 〉

lemma cong-sum:
[sum f A = sum g A] (mod a) if

∧
x. x ∈ A =⇒ [f x = g x] (mod a)

〈proof 〉

lemma cong-prod:
[prod f A = prod g A] (mod a) if (

∧
x. x ∈ A =⇒ [f x = g x] (mod a))

〈proof 〉

lemma mod-mult-cong-right:
[c mod (a ∗ b) = d] (mod a) ←→ [c = d] (mod a)
〈proof 〉

lemma mod-mult-cong-left:
[c mod (b ∗ a) = d] (mod a) ←→ [c = d] (mod a)
〈proof 〉

lemma cong-mod-leftI [simp]:
[b = c] (mod a) =⇒ [b mod a = c] (mod a)
〈proof 〉

lemma cong-mod-rightI [simp]:
[b = c] (mod a) =⇒ [b = c mod a] (mod a)
〈proof 〉

lemma cong-cmult-leftI : [a = b] (mod m) =⇒ [c ∗ a = c ∗ b] (mod (c ∗ m))
〈proof 〉

lemma cong-cmult-rightI : [a = b] (mod m) =⇒ [a ∗ c = b ∗ c] (mod (m ∗ c))
〈proof 〉

lemma cong-dvd-mono-modulus:
assumes [a = b] (mod m) m ′ dvd m
shows [a = b] (mod m ′)
〈proof 〉

lemma coprime-cong-transfer-left:
assumes coprime a b [a = a ′] (mod b)
shows coprime a ′ b
〈proof 〉

lemma coprime-cong-transfer-right:
assumes coprime a b [b = b ′] (mod a)
shows coprime a b ′

9

〈proof 〉

lemma coprime-cong-cong-left:
assumes [a = a ′] (mod b)
shows coprime a b ←→ coprime a ′ b
〈proof 〉

lemma coprime-cong-cong-right:
assumes [b = b ′] (mod a)
shows coprime a b ←→ coprime a b ′

〈proof 〉

end

context unique-euclidean-ring
begin

lemma cong-diff :
[b = c] (mod a) =⇒ [d = e] (mod a) =⇒ [b − d = c − e] (mod a)
〈proof 〉

lemma cong-diff-iff-cong-0 :
[b − c = 0] (mod a) ←→ [b = c] (mod a) (is ?P ←→ ?Q)
〈proof 〉

lemma cong-minus-minus-iff :
[− b = − c] (mod a) ←→ [b = c] (mod a)
〈proof 〉

lemma cong-modulus-minus-iff [iff]:
[b = c] (mod − a) ←→ [b = c] (mod a)
〈proof 〉

lemma cong-iff-dvd-diff :
[a = b] (mod m) ←→ m dvd (a − b)
〈proof 〉

lemma cong-iff-lin:
[a = b] (mod m) ←→ (∃ k. b = a + m ∗ k) (is ?P ←→ ?Q)
〈proof 〉

lemma cong-add-lcancel:
[a + x = a + y] (mod n) ←→ [x = y] (mod n)
〈proof 〉

lemma cong-add-rcancel:
[x + a = y + a] (mod n) ←→ [x = y] (mod n)
〈proof 〉

10

lemma cong-add-lcancel-0 :
[a + x = a] (mod n) ←→ [x = 0] (mod n)
〈proof 〉

lemma cong-add-rcancel-0 :
[x + a = a] (mod n) ←→ [x = 0] (mod n)
〈proof 〉

lemma cong-dvd-modulus:
[x = y] (mod n) if [x = y] (mod m) and n dvd m
〈proof 〉

lemma cong-modulus-mult:
[x = y] (mod m) if [x = y] (mod m ∗ n)
〈proof 〉

lemma cong-uminus: [x = y] (mod m) =⇒ [−x = −y] (mod m)
〈proof 〉

end

lemma cong-abs [simp]:
[x = y] (mod |m|) ←→ [x = y] (mod m)
for x y :: ′a :: {unique-euclidean-ring, linordered-idom}
〈proof 〉

lemma cong-square:
prime p =⇒ 0 < a =⇒ [a ∗ a = 1] (mod p) =⇒ [a = 1] (mod p) ∨ [a = − 1]

(mod p)
for a p :: ′a :: {normalization-semidom, linordered-idom, unique-euclidean-ring}
〈proof 〉

lemma cong-mult-rcancel:
[a ∗ k = b ∗ k] (mod m) ←→ [a = b] (mod m)
if coprime k m for a k m :: ′a::{unique-euclidean-ring, ring-gcd}
〈proof 〉

lemma cong-mult-lcancel:
[k ∗ a = k ∗ b] (mod m) = [a = b] (mod m)
if coprime k m for a k m :: ′a::{unique-euclidean-ring, ring-gcd}
〈proof 〉

lemma coprime-cong-mult:
[a = b] (mod m) =⇒ [a = b] (mod n) =⇒ coprime m n =⇒ [a = b] (mod m ∗ n)
for a b :: ′a :: {unique-euclidean-ring, semiring-gcd}
〈proof 〉

lemma cong-gcd-eq:
gcd a m = gcd b m if [a = b] (mod m)

11

for a b :: ′a :: {unique-euclidean-semiring, euclidean-semiring-gcd}
〈proof 〉

lemma cong-imp-coprime:
[a = b] (mod m) =⇒ coprime a m =⇒ coprime b m
for a b :: ′a :: {unique-euclidean-semiring, euclidean-semiring-gcd}
〈proof 〉

lemma cong-cong-prod-coprime:
[x = y] (mod (

∏
i∈A. m i)) if

(∀ i∈A. [x = y] (mod m i))
(∀ i∈A. (∀ j∈A. i 6= j −→ coprime (m i) (m j)))

for x y :: ′a :: {unique-euclidean-ring, semiring-gcd}
〈proof 〉

2.2 Congruences on nat and int
lemma cong-int-iff :
[int m = int q] (mod int n) ←→ [m = q] (mod n)
〈proof 〉

lemma cong-Suc-0 [simp, presburger]:
[m = n] (mod Suc 0)
〈proof 〉

lemma cong-diff-nat:
[a − c = b − d] (mod m) if [a = b] (mod m) [c = d] (mod m)

and a ≥ c b ≥ d for a b c d m :: nat
〈proof 〉

lemma cong-diff-iff-cong-0-nat:
[a − b = 0] (mod m) ←→ [a = b] (mod m) if a ≥ b for a b :: nat
〈proof 〉

lemma cong-diff-iff-cong-0-nat ′:
[nat |int a − int b| = 0] (mod m) ←→ [a = b] (mod m)
〈proof 〉

lemma cong-altdef-nat:
a ≥ b =⇒ [a = b] (mod m) ←→ m dvd (a − b)
for a b :: nat
〈proof 〉

lemma cong-altdef-nat ′:
[a = b] (mod m) ←→ m dvd nat |int a − int b|
〈proof 〉

lemma cong-mult-rcancel-nat:
[a ∗ k = b ∗ k] (mod m) ←→ [a = b] (mod m)

12

if coprime k m for a k m :: nat
〈proof 〉

lemma cong-mult-lcancel-nat:
[k ∗ a = k ∗ b] (mod m) = [a = b] (mod m)
if coprime k m for a k m :: nat
〈proof 〉

lemma coprime-cong-mult-nat:
[a = b] (mod m) =⇒ [a = b] (mod n) =⇒ coprime m n =⇒ [a = b] (mod m ∗ n)
for a b :: nat
〈proof 〉

lemma cong-less-imp-eq-nat: 0 ≤ a =⇒ a < m =⇒ 0 ≤ b =⇒ b < m =⇒ [a =
b] (mod m) =⇒ a = b

for a b :: nat
〈proof 〉

lemma cong-less-imp-eq-int: 0 ≤ a =⇒ a < m =⇒ 0 ≤ b =⇒ b < m =⇒ [a = b]
(mod m) =⇒ a = b

for a b :: int
〈proof 〉

lemma cong-less-unique-nat: 0 < m =⇒ (∃ !b. 0 ≤ b ∧ b < m ∧ [a = b] (mod
m))

for a m :: nat
〈proof 〉

lemma cong-less-unique-int: 0 < m =⇒ (∃ !b. 0 ≤ b ∧ b < m ∧ [a = b] (mod m))
for a m :: int
〈proof 〉

lemma cong-iff-lin-nat: [a = b] (mod m) ←→ (∃ k1 k2 . b + k1 ∗ m = a + k2 ∗
m)

for a b :: nat
〈proof 〉

lemma cong-cong-mod-nat: [a = b] (mod m) ←→ [a mod m = b mod m] (mod m)
for a b :: nat
〈proof 〉

lemma cong-cong-mod-int: [a = b] (mod m) ←→ [a mod m = b mod m] (mod m)
for a b :: int
〈proof 〉

lemma cong-add-lcancel-nat: [a + x = a + y] (mod n) ←→ [x = y] (mod n)
for a x y :: nat
〈proof 〉

13

lemma cong-add-rcancel-nat: [x + a = y + a] (mod n) ←→ [x = y] (mod n)
for a x y :: nat
〈proof 〉

lemma cong-add-lcancel-0-nat: [a + x = a] (mod n) ←→ [x = 0] (mod n)
for a x :: nat
〈proof 〉

lemma cong-add-rcancel-0-nat: [x + a = a] (mod n) ←→ [x = 0] (mod n)
for a x :: nat
〈proof 〉

lemma cong-dvd-modulus-nat: [x = y] (mod m) =⇒ n dvd m =⇒ [x = y] (mod n)
for x y :: nat
〈proof 〉

lemma cong-to-1-nat:
fixes a :: nat
assumes [a = 1] (mod n)
shows n dvd (a − 1)
〈proof 〉

lemma cong-0-1-nat ′: [0 = Suc 0] (mod n) ←→ n = Suc 0
〈proof 〉

lemma cong-0-1-nat: [0 = 1] (mod n) ←→ n = 1
for n :: nat
〈proof 〉

lemma cong-0-1-int: [0 = 1] (mod n) ←→ n = 1 ∨ n = − 1
for n :: int
〈proof 〉

lemma cong-to-1 ′-nat: [a = 1] (mod n) ←→ a = 0 ∧ n = 1 ∨ (∃m. a = 1 + m
∗ n)

for a :: nat
〈proof 〉

lemma cong-le-nat: y ≤ x =⇒ [x = y] (mod n) ←→ (∃ q. x = q ∗ n + y)
for x y :: nat
〈proof 〉

lemma cong-solve-nat:
fixes a :: nat
shows ∃ x. [a ∗ x = gcd a n] (mod n)
〈proof 〉

lemma cong-solve-int:
fixes a :: int

14

shows ∃ x. [a ∗ x = gcd a n] (mod n)
〈proof 〉

lemma cong-solve-dvd-nat:
fixes a :: nat
assumes gcd a n dvd d
shows ∃ x. [a ∗ x = d] (mod n)
〈proof 〉

lemma cong-solve-dvd-int:
fixes a::int
assumes b: gcd a n dvd d
shows ∃ x. [a ∗ x = d] (mod n)
〈proof 〉

lemma cong-solve-coprime-nat:
∃ x. [a ∗ x = Suc 0] (mod n) if coprime a n
〈proof 〉

lemma cong-solve-coprime-int:
∃ x. [a ∗ x = 1] (mod n) if coprime a n for a n x :: int
〈proof 〉

lemma coprime-iff-invertible-nat:
coprime a m ←→ (∃ x. [a ∗ x = Suc 0] (mod m)) (is ?P ←→ ?Q)
〈proof 〉

lemma coprime-iff-invertible-int:
coprime a m ←→ (∃ x. [a ∗ x = 1] (mod m)) (is ?P ←→ ?Q) for m :: int
〈proof 〉

lemma coprime-iff-invertible ′-nat:
assumes m > 0
shows coprime a m ←→ (∃ x. 0 ≤ x ∧ x < m ∧ [a ∗ x = Suc 0] (mod m))
〈proof 〉

lemma coprime-iff-invertible ′-int:
fixes m :: int
assumes m > 0
shows coprime a m ←→ (∃ x. 0 ≤ x ∧ x < m ∧ [a ∗ x = 1] (mod m))
〈proof 〉

lemma cong-cong-lcm-nat: [x = y] (mod a) =⇒ [x = y] (mod b) =⇒ [x = y] (mod
lcm a b)

for x y :: nat
〈proof 〉

lemma cong-cong-lcm-int: [x = y] (mod a) =⇒ [x = y] (mod b) =⇒ [x = y] (mod
lcm a b)

15

for x y :: int
〈proof 〉

lemma cong-cong-prod-coprime-nat:
[x = y] (mod (

∏
i∈A. m i)) if

(∀ i∈A. [x = y] (mod m i))
(∀ i∈A. (∀ j∈A. i 6= j −→ coprime (m i) (m j)))

for x y :: nat
〈proof 〉

lemma binary-chinese-remainder-nat:
fixes m1 m2 :: nat
assumes a: coprime m1 m2
shows ∃ x. [x = u1] (mod m1) ∧ [x = u2] (mod m2)
〈proof 〉

lemma binary-chinese-remainder-int:
fixes m1 m2 :: int
assumes a: coprime m1 m2
shows ∃ x. [x = u1] (mod m1) ∧ [x = u2] (mod m2)
〈proof 〉

lemma cong-modulus-mult-nat: [x = y] (mod m ∗ n) =⇒ [x = y] (mod m)
for x y :: nat
〈proof 〉

lemma cong-less-modulus-unique-nat: [x = y] (mod m) =⇒ x < m =⇒ y < m =⇒
x = y

for x y :: nat
〈proof 〉

lemma binary-chinese-remainder-unique-nat:
fixes m1 m2 :: nat
assumes a: coprime m1 m2

and nz: m1 6= 0 m2 6= 0
shows ∃ !x. x < m1 ∗ m2 ∧ [x = u1] (mod m1) ∧ [x = u2] (mod m2)
〈proof 〉

lemma chinese-remainder-nat:
fixes A :: ′a set

and m :: ′a ⇒ nat
and u :: ′a ⇒ nat

assumes fin: finite A
and cop: ∀ i ∈ A. ∀ j ∈ A. i 6= j −→ coprime (m i) (m j)

shows ∃ x. ∀ i ∈ A. [x = u i] (mod m i)
〈proof 〉

lemma coprime-cong-prod-nat: [x = y] (mod (
∏

i∈A. m i))
if

∧
i j. [[i ∈ A; j ∈ A; i 6= j]] =⇒ coprime (m i) (m j)

16

and
∧

i. i ∈ A =⇒ [x = y] (mod m i) for x y :: nat
〈proof 〉

lemma chinese-remainder-unique-nat:
fixes A :: ′a set

and m :: ′a ⇒ nat
and u :: ′a ⇒ nat

assumes fin: finite A
and nz: ∀ i∈A. m i 6= 0
and cop: ∀ i∈A. ∀ j∈A. i 6= j −→ coprime (m i) (m j)

shows ∃ !x. x < (
∏

i∈A. m i) ∧ (∀ i∈A. [x = u i] (mod m i))
〈proof 〉

lemma (in semiring-1-cancel) of-nat-eq-iff-cong-CHAR:
of-nat x = (of-nat y :: ′a) ←→ [x = y] (mod CHAR(′a))
〈proof 〉

lemma (in ring-1) of-int-eq-iff-cong-CHAR:
of-int x = (of-int y :: ′a) ←→ [x = y] (mod int CHAR(′a))
〈proof 〉

Thanks to Manuel Eberl
lemma prime-cong-4-nat-cases [consumes 1 , case-names 2 cong-1 cong-3]:

assumes prime (p :: nat)
obtains p = 2 | [p = 1] (mod 4) | [p = 3] (mod 4)
〈proof 〉

end

3 Fundamental facts about Euler’s totient func-
tion

theory Totient
imports

Complex-Main
HOL−Computational-Algebra.Primes
Cong

begin

definition totatives :: nat ⇒ nat set where
totatives n = {k ∈ {0<..n}. coprime k n}

lemma in-totatives-iff : k ∈ totatives n ←→ k > 0 ∧ k ≤ n ∧ coprime k n
〈proof 〉

lemma totatives-code [code]: totatives n = Set.filter (λk. coprime k n) {0<..n}
〈proof 〉

17

lemma finite-totatives [simp]: finite (totatives n)
〈proof 〉

lemma totatives-subset: totatives n ⊆ {0<..n}
〈proof 〉

lemma zero-not-in-totatives [simp]: 0 /∈ totatives n
〈proof 〉

lemma totatives-le: x ∈ totatives n =⇒ x ≤ n
〈proof 〉

lemma totatives-less:
assumes x ∈ totatives n n > 1
shows x < n
〈proof 〉

lemma totatives-0 [simp]: totatives 0 = {}
〈proof 〉

lemma totatives-1 [simp]: totatives 1 = {Suc 0}
〈proof 〉

lemma totatives-Suc-0 [simp]: totatives (Suc 0) = {Suc 0}
〈proof 〉

lemma one-in-totatives [simp]: n > 0 =⇒ Suc 0 ∈ totatives n
〈proof 〉

lemma totatives-eq-empty-iff [simp]: totatives n = {} ←→ n = 0
〈proof 〉

lemma minus-one-in-totatives:
assumes n ≥ 2
shows n − 1 ∈ totatives n
〈proof 〉

lemma power-in-totatives:
assumes m > 1 coprime m g
shows g ^ i mod m ∈ totatives m
〈proof 〉

lemma totatives-prime-power-Suc:
assumes prime p
shows totatives (p ^ Suc n) = {0<..p^Suc n} − (λm. p ∗ m) ‘ {0<..p^n}
〈proof 〉

lemma totatives-prime: prime p =⇒ totatives p = {0<..<p}
〈proof 〉

18

lemma bij-betw-totatives:
assumes m1 > 1 m2 > 1 coprime m1 m2
shows bij-betw (λx. (x mod m1 , x mod m2)) (totatives (m1 ∗ m2))

(totatives m1 × totatives m2)
〈proof 〉

lemma bij-betw-totatives-gcd-eq:
fixes n d :: nat
assumes d dvd n n > 0
shows bij-betw (λk. k ∗ d) (totatives (n div d)) {k∈{0<..n}. gcd k n = d}
〈proof 〉

definition totient :: nat ⇒ nat where
totient n = card (totatives n)

primrec totient-naive :: nat ⇒ nat ⇒ nat ⇒ nat where
totient-naive 0 acc n = acc
| totient-naive (Suc k) acc n =

(if coprime (Suc k) n then totient-naive k (acc + 1) n else totient-naive k acc
n)

lemma totient-naive:
totient-naive k acc n = card {x ∈ {0<..k}. coprime x n} + acc
〈proof 〉

lemma totient-code-naive [code]: totient n = totient-naive n 0 n
〈proof 〉

lemma totient-le: totient n ≤ n
〈proof 〉

lemma totient-less:
assumes n > 1
shows totient n < n
〈proof 〉

lemma totient-0 [simp]: totient 0 = 0
〈proof 〉

lemma totient-Suc-0 [simp]: totient (Suc 0) = Suc 0
〈proof 〉

lemma totient-1 [simp]: totient 1 = Suc 0
〈proof 〉

lemma totient-0-iff [simp]: totient n = 0 ←→ n = 0
〈proof 〉

19

lemma totient-gt-0-iff [simp]: totient n > 0 ←→ n > 0
〈proof 〉

lemma totient-gt-1 :
assumes n > 2
shows totient n > 1
〈proof 〉

lemma card-gcd-eq-totient:
n > 0 =⇒ d dvd n =⇒ card {k∈{0<..n}. gcd k n = d} = totient (n div d)
〈proof 〉

lemma totient-divisor-sum: (
∑

d | d dvd n. totient d) = n
〈proof 〉

lemma totient-mult-coprime:
assumes coprime m n
shows totient (m ∗ n) = totient m ∗ totient n
〈proof 〉

lemma totient-prime-power-Suc:
assumes prime p
shows totient (p ^ Suc n) = p ^ n ∗ (p − 1)
〈proof 〉

lemma totient-prime-power :
assumes prime p n > 0
shows totient (p ^ n) = p ^ (n − 1) ∗ (p − 1)
〈proof 〉

lemma totient-imp-prime:
assumes totient p = p − 1 p > 0
shows prime p
〈proof 〉

lemma totient-prime:
assumes prime p
shows totient p = p − 1
〈proof 〉

lemma totient-2 [simp]: totient 2 = 1
and totient-3 [simp]: totient 3 = 2
and totient-5 [simp]: totient 5 = 4
and totient-7 [simp]: totient 7 = 6
〈proof 〉

lemma totient-4 [simp]: totient 4 = 2
and totient-8 [simp]: totient 8 = 4
and totient-9 [simp]: totient 9 = 6

20

〈proof 〉

lemma totient-6 [simp]: totient 6 = 2
〈proof 〉

lemma totient-even:
assumes n > 2
shows even (totient n)
〈proof 〉

lemma totient-prod-coprime:
assumes pairwise coprime (f ‘ A) inj-on f A
shows totient (prod f A) = (

∏
a∈A. totient (f a))

〈proof 〉

lemma prime-power-eq-imp-eq:
fixes p q :: ′a :: factorial-semiring
assumes prime p prime q m > 0
assumes p ^ m = q ^ n
shows p = q
〈proof 〉

lemma totient-formula1 :
assumes n > 0
shows totient n = (

∏
p∈prime-factors n. p ^ (multiplicity p n − 1) ∗ (p − 1))

〈proof 〉

lemma totient-dvd:
assumes m dvd n
shows totient m dvd totient n
〈proof 〉

lemma totient-dvd-mono:
assumes m dvd n n > 0
shows totient m ≤ totient n
〈proof 〉

lemma prime-factors-power : n > 0 =⇒ prime-factors (x ^ n) = prime-factors x
〈proof 〉

lemma totient-formula2 :
real (totient n) = real n ∗ (

∏
p∈prime-factors n. 1 − 1 / real p)

〈proof 〉

lemma totient-gcd: totient (a ∗ b) ∗ totient (gcd a b) = totient a ∗ totient b ∗ gcd
a b
〈proof 〉

21

lemma totient-mult: totient (a ∗ b) = totient a ∗ totient b ∗ gcd a b div totient
(gcd a b)
〈proof 〉

lemma of-nat-eq-1-iff : of-nat x = (1 :: ′a :: {semiring-1 , semiring-char-0}) ←→
x = 1
〈proof 〉

lemma odd-imp-coprime-nat:
assumes odd (n::nat)
shows coprime n 2
〈proof 〉

lemma totient-double: totient (2 ∗ n) = (if even n then 2 ∗ totient n else totient
n)
〈proof 〉

lemma totient-power-Suc: totient (n ^ Suc m) = n ^ m ∗ totient n
〈proof 〉

lemma totient-power : m > 0 =⇒ totient (n ^ m) = n ^ (m − 1) ∗ totient n
〈proof 〉

lemma totient-gcd-lcm: totient (gcd a b) ∗ totient (lcm a b) = totient a ∗ totient b
〈proof 〉

end

4 Residue rings
theory Residues
imports

Cong
HOL−Algebra.Multiplicative-Group
Totient

begin

lemma (in ring-1) CHAR-dvd-CARD: CHAR(′a) dvd card (UNIV :: ′a set)
〈proof 〉

definition QuadRes :: int ⇒ int ⇒ bool
where QuadRes p a = (∃ y. ([y^2 = a] (mod p)))

definition Legendre :: int ⇒ int ⇒ int
where Legendre a p =
(if ([a = 0] (mod p)) then 0
else if QuadRes p a then 1

22

else −1)

4.1 A locale for residue rings
definition residue-ring :: int ⇒ int ring

where
residue-ring m =
(|carrier = {0 ..m − 1},
monoid.mult = λx y. (x ∗ y) mod m,
one = 1 ,
zero = 0 ,
add = λx y. (x + y) mod m|)

locale residues =
fixes m :: int and R (structure)
assumes m-gt-one: m > 1
defines R-m-def : R ≡ residue-ring m

begin

lemma abelian-group: abelian-group R
〈proof 〉

lemma comm-monoid: comm-monoid R
〈proof 〉

interpretation comm-monoid R
〈proof 〉

lemma cring: cring R
〈proof 〉

end

sublocale residues < cring
〈proof 〉

context residues
begin

These lemmas translate back and forth between internal and external con-
cepts.
lemma res-carrier-eq: carrier R = {0 ..m − 1}
〈proof 〉

lemma res-add-eq: x ⊕ y = (x + y) mod m
〈proof 〉

lemma res-mult-eq: x ⊗ y = (x ∗ y) mod m

23

〈proof 〉

lemma res-zero-eq: 0 = 0
〈proof 〉

lemma res-one-eq: 1 = 1
〈proof 〉

lemma res-units-eq: Units R = {x. 0 < x ∧ x < m ∧ coprime x m} (is - = ?rhs)
〈proof 〉

lemma res-neg-eq: 	 x = (− x) mod m
〈proof 〉

lemma finite [iff]: finite (carrier R)
〈proof 〉

lemma finite-Units [iff]: finite (Units R)
〈proof 〉

The function a 7→ a mod m maps the integers to the residue classes. The fol-
lowing lemmas show that this mapping respects addition and multiplication
on the integers.
lemma mod-in-carrier [iff]: a mod m ∈ carrier R
〈proof 〉

lemma add-cong: (x mod m) ⊕ (y mod m) = (x + y) mod m
〈proof 〉

lemma mult-cong: (x mod m) ⊗ (y mod m) = (x ∗ y) mod m
〈proof 〉

lemma zero-cong: 0 = 0
〈proof 〉

lemma one-cong: 1 = 1 mod m
〈proof 〉

lemma pow-cong: (x mod m) [^] n = x^n mod m
〈proof 〉

lemma neg-cong: 	 (x mod m) = (− x) mod m
〈proof 〉

lemma (in residues) prod-cong: finite A =⇒ (
⊗

i∈A. (f i) mod m) = (
∏

i∈A. f
i) mod m
〈proof 〉

24

lemma (in residues) sum-cong: finite A =⇒ (
⊕

i∈A. (f i) mod m) = (
∑

i∈A. f
i) mod m
〈proof 〉

lemma mod-in-res-units [simp]:
assumes 1 < m and coprime a m
shows a mod m ∈ Units R
〈proof 〉

lemma res-eq-to-cong: (a mod m) = (b mod m) ←→ [a = b] (mod m)
〈proof 〉

Simplifying with these will translate a ring equation in R to a congruence.
lemmas res-to-cong-simps =

add-cong mult-cong pow-cong one-cong
prod-cong sum-cong neg-cong res-eq-to-cong

Other useful facts about the residue ring.
lemma one-eq-neg-one: 1 = 	 1 =⇒ m = 2
〈proof 〉

end

4.2 Prime residues
locale residues-prime =

fixes p :: nat and R (structure)
assumes p-prime [intro]: prime p
defines R ≡ residue-ring (int p)

sublocale residues-prime < residues p
〈proof 〉

context residues-prime
begin

lemma p-coprime-left:
coprime p a ←→ ¬ p dvd a
〈proof 〉

lemma p-coprime-right:
coprime a p ←→ ¬ p dvd a
〈proof 〉

lemma p-coprime-left-int:
coprime (int p) a ←→ ¬ int p dvd a
〈proof 〉

lemma p-coprime-right-int:

25

coprime a (int p) ←→ ¬ int p dvd a
〈proof 〉

lemma is-field: field R
〈proof 〉

lemma res-prime-units-eq: Units R = {1 ..p − 1}
〈proof 〉

end

sublocale residues-prime < field
〈proof 〉

5 Test cases: Euler’s theorem and Wilson’s theo-
rem

5.1 Euler’s theorem
lemma (in residues) totatives-eq:

totatives (nat m) = nat ‘ Units R
〈proof 〉

lemma (in residues) totient-eq:
totient (nat m) = card (Units R)
〈proof 〉

lemma (in residues-prime) prime-totient-eq: totient p = p − 1
〈proof 〉

lemma (in residues) euler-theorem:
assumes coprime a m
shows [a ^ totient (nat m) = 1] (mod m)
〈proof 〉

lemma euler-theorem:
fixes a m :: nat
assumes coprime a m
shows [a ^ totient m = 1] (mod m)
〈proof 〉

lemma fermat-theorem:
fixes p a :: nat
assumes prime p and ¬ p dvd a
shows [a ^ (p − 1) = 1] (mod p)
〈proof 〉

26

5.2 Wilson’s theorem
lemma (in field) inv-pair-lemma: x ∈ Units R =⇒ y ∈ Units R =⇒
{x, inv x} 6= {y, inv y} =⇒ {x, inv x} ∩ {y, inv y} = {}
〈proof 〉

lemma (in residues-prime) wilson-theorem1 :
assumes a: p > 2
shows [fact (p − 1) = (−1 ::int)] (mod p)
〈proof 〉

lemma wilson-theorem:
assumes prime p
shows [fact (p − 1) = − 1] (mod p)
〈proof 〉

This result can be transferred to the multiplicative group of �/p� for p
prime.
lemma mod-nat-int-pow-eq:

fixes n :: nat and p a :: int
shows a ≥ 0 =⇒ p ≥ 0 =⇒ (nat a ^ n) mod (nat p) = nat ((a ^ n) mod p)
〈proof 〉

theorem residue-prime-mult-group-has-gen:
fixes p :: nat
assumes prime-p : prime p
shows ∃ a ∈ {1 .. p − 1}. {1 .. p − 1} = {a^i mod p|i . i ∈ UNIV }
〈proof 〉

5.3 Upper bound for the number of n-th roots
lemma roots-mod-prime-bound:

fixes n c p :: nat
assumes prime p n > 0
defines A ≡ {x∈{..<p}. [x ^ n = c] (mod p)}
shows card A ≤ n
〈proof 〉

end

6 The sieve of Eratosthenes
theory Eratosthenes

imports Main HOL−Computational-Algebra.Primes
begin

27

6.1 Preliminary: strict divisibility
context dvd
begin

abbreviation dvd-strict :: ′a ⇒ ′a ⇒ bool (infixl ‹dvd ′-strict› 50)
where

b dvd-strict a ≡ b dvd a ∧ ¬ a dvd b

end

6.2 Main corpus

The sieve is modelled as a list of booleans, where False means marked out.
type-synonym marks = bool list

definition numbers-of-marks :: nat ⇒ marks ⇒ nat set
where

numbers-of-marks n bs = fst ‘ {x ∈ set (enumerate n bs). snd x}

lemma numbers-of-marks-simps [simp, code]:
numbers-of-marks n [] = {}
numbers-of-marks n (True # bs) = insert n (numbers-of-marks (Suc n) bs)
numbers-of-marks n (False # bs) = numbers-of-marks (Suc n) bs
〈proof 〉

lemma numbers-of-marks-Suc:
numbers-of-marks (Suc n) bs = Suc ‘ numbers-of-marks n bs
〈proof 〉

lemma numbers-of-marks-replicate-False [simp]:
numbers-of-marks n (replicate m False) = {}
〈proof 〉

lemma numbers-of-marks-replicate-True [simp]:
numbers-of-marks n (replicate m True) = {n..<n+m}
〈proof 〉

lemma in-numbers-of-marks-eq:
m ∈ numbers-of-marks n bs ←→ m ∈ {n..<n + length bs} ∧ bs ! (m − n)
〈proof 〉

lemma sorted-list-of-set-numbers-of-marks:
sorted-list-of-set (numbers-of-marks n bs) = map fst (filter snd (enumerate n bs))
〈proof 〉

Marking out multiples in a sieve
definition mark-out :: nat ⇒ marks ⇒ marks
where

28

mark-out n bs = map (λ(q, b). b ∧ ¬ Suc n dvd Suc (Suc q)) (enumerate n bs)

lemma mark-out-Nil [simp]: mark-out n [] = []
〈proof 〉

lemma length-mark-out [simp]: length (mark-out n bs) = length bs
〈proof 〉

lemma numbers-of-marks-mark-out:
numbers-of-marks n (mark-out m bs) = {q ∈ numbers-of-marks n bs. ¬ Suc m

dvd Suc q − n}
〈proof 〉

Auxiliary operation for efficient implementation
definition mark-out-aux :: nat ⇒ nat ⇒ marks ⇒ marks
where

mark-out-aux n m bs =
map (λ(q, b). b ∧ (q < m + n ∨ ¬ Suc n dvd Suc (Suc q) + (n − m mod Suc

n))) (enumerate n bs)

lemma mark-out-code [code]: mark-out n bs = mark-out-aux n n bs
〈proof 〉

lemma mark-out-aux-simps [simp, code]:
mark-out-aux n m [] = []
mark-out-aux n 0 (b # bs) = False # mark-out-aux n n bs
mark-out-aux n (Suc m) (b # bs) = b # mark-out-aux n m bs
〈proof 〉

Main entry point to sieve
fun sieve :: nat ⇒ marks ⇒ marks
where

sieve n [] = []
| sieve n (False # bs) = False # sieve (Suc n) bs
| sieve n (True # bs) = True # sieve (Suc n) (mark-out n bs)

There are the following possible optimisations here:

• sieve can abort as soon as n is too big to let mark-out have any effect.

• Search for further primes can be given up as soon as the search position
exceeds the square root of the maximum candidate.

This is left as an constructive exercise to the reader.
lemma numbers-of-marks-sieve:

numbers-of-marks (Suc n) (sieve n bs) =
{q ∈ numbers-of-marks (Suc n) bs. ∀m ∈ numbers-of-marks (Suc n) bs. ¬ m

dvd-strict q}

29

〈proof 〉

Relation of the sieve algorithm to actual primes
definition primes-upto :: nat ⇒ nat list
where

primes-upto n = sorted-list-of-set {m. m ≤ n ∧ prime m}

lemma set-primes-upto: set (primes-upto n) = {m. m ≤ n ∧ prime m}
〈proof 〉

lemma sorted-primes-upto [iff]: sorted (primes-upto n)
〈proof 〉

lemma distinct-primes-upto [iff]: distinct (primes-upto n)
〈proof 〉

lemma set-primes-upto-sieve:
set (primes-upto n) = numbers-of-marks 2 (sieve 1 (replicate (n − 1) True))
〈proof 〉

lemma primes-upto-sieve [code]:
primes-upto n = map fst (filter snd (enumerate 2 (sieve 1 (replicate (n − 1)

True))))
〈proof 〉

lemma prime-in-primes-upto: prime n ←→ n ∈ set (primes-upto n)
〈proof 〉

6.3 Application: smallest prime beyond a certain number
definition smallest-prime-beyond :: nat ⇒ nat
where

smallest-prime-beyond n = (LEAST p. prime p ∧ p ≥ n)

lemma prime-smallest-prime-beyond [iff]: prime (smallest-prime-beyond n) (is
?P)

and smallest-prime-beyond-le [iff]: smallest-prime-beyond n ≥ n (is ?Q)
〈proof 〉

lemma smallest-prime-beyond-smallest: prime p =⇒ p ≥ n =⇒ smallest-prime-beyond
n ≤ p
〈proof 〉

lemma smallest-prime-beyond-eq:
prime p =⇒ p ≥ n =⇒ (

∧
q. prime q =⇒ q ≥ n =⇒ q ≥ p) =⇒ small-

est-prime-beyond n = p
〈proof 〉

definition smallest-prime-between :: nat ⇒ nat ⇒ nat option

30

where
smallest-prime-between m n =
(if (∃ p. prime p ∧ m ≤ p ∧ p ≤ n) then Some (smallest-prime-beyond m) else

None)

lemma smallest-prime-between-None:
smallest-prime-between m n = None ←→ (∀ q. m ≤ q ∧ q ≤ n −→ ¬ prime q)
〈proof 〉

lemma smallest-prime-betwen-Some:
smallest-prime-between m n = Some p ←→ smallest-prime-beyond m = p ∧ p ≤

n
〈proof 〉

lemma [code]: smallest-prime-between m n = List.find (λp. p ≥ m) (primes-upto
n)
〈proof 〉

definition smallest-prime-beyond-aux :: nat ⇒ nat ⇒ nat
where

smallest-prime-beyond-aux k n = smallest-prime-beyond n

lemma [code]:
smallest-prime-beyond-aux k n =
(case smallest-prime-between n (k ∗ n) of

Some p ⇒ p
| None ⇒ smallest-prime-beyond-aux (Suc k) n)
〈proof 〉

lemma [code]: smallest-prime-beyond n = smallest-prime-beyond-aux 2 n
〈proof 〉

end

7 Fast modular exponentiation
theory Mod-Exp

imports Cong HOL−Library.Power-By-Squaring
begin

context euclidean-semiring-cancel
begin

definition mod-exp-aux :: ′a ⇒ ′a ⇒ ′a ⇒ nat ⇒ ′a
where mod-exp-aux m = efficient-funpow (λx y. x ∗ y mod m)

lemma mod-exp-aux-code [code]:
mod-exp-aux m y x n =

(if n = 0 then y

31

else if n = 1 then (x ∗ y) mod m
else if even n then mod-exp-aux m y ((x ∗ x) mod m) (n div 2)
else mod-exp-aux m ((x ∗ y) mod m) ((x ∗ x) mod m) (n div 2))

〈proof 〉

lemma mod-exp-aux-correct:
mod-exp-aux m y x n mod m = (x ^ n ∗ y) mod m
〈proof 〉

definition mod-exp :: ′a ⇒ nat ⇒ ′a ⇒ ′a
where mod-exp b e m = (b ^ e) mod m

lemma mod-exp-code [code]: mod-exp b e m = mod-exp-aux m 1 b e mod m
〈proof 〉

end

lemmas [code-abbrev] = mod-exp-def [where ? ′a = nat] mod-exp-def [where ? ′a
= int]

lemma cong-power-nat-code [code-unfold]:
[b ^ e = (x ::nat)] (mod m) ←→ mod-exp b e m = x mod m
〈proof 〉

lemma cong-power-int-code [code-unfold]:
[b ^ e = (x ::int)] (mod m) ←→ mod-exp b e m = x mod m
〈proof 〉

The following rules allow the simplifier to evaluate mod-exp efficiently.
lemma eval-mod-exp-aux [simp]:

mod-exp-aux m y x 0 = y
mod-exp-aux m y x (Suc 0) = (x ∗ y) mod m
mod-exp-aux m y x (numeral (num.Bit0 n)) =

mod-exp-aux m y (x2 mod m) (numeral n)
mod-exp-aux m y x (numeral (num.Bit1 n)) =

mod-exp-aux m ((x ∗ y) mod m) (x2 mod m) (numeral n)
〈proof 〉

lemma eval-mod-exp [simp]:
mod-exp b ′ 0 m ′ = 1 mod m ′

mod-exp b ′ 1 m ′ = b ′ mod m ′

mod-exp b ′ (Suc 0) m ′ = b ′ mod m ′

mod-exp b ′ e ′ 0 = b ′ ^ e ′

mod-exp b ′ e ′ 1 = 0
mod-exp b ′ e ′ (Suc 0) = 0
mod-exp 0 1 m ′ = 0
mod-exp 0 (Suc 0) m ′ = 0
mod-exp 0 (numeral e) m ′ = 0

32

mod-exp 1 e ′ m ′ = 1 mod m ′

mod-exp (Suc 0) e ′ m ′ = 1 mod m ′

mod-exp (numeral b) (numeral e) (numeral m) =
mod-exp-aux (numeral m) 1 (numeral b) (numeral e) mod numeral m

〈proof 〉

end

theory Euler-Criterion
imports Residues
begin

context
fixes p :: nat
fixes a :: int

assumes p-prime: prime p
assumes p-ge-2 : 2 < p
assumes p-a-relprime: [a 6= 0](mod p)

begin

private lemma odd-p: odd p
〈proof 〉 lemma p-minus-1-int:
int (p − 1) = int p − 1
〈proof 〉 lemma p-not-eq-Suc-0 [simp]:
p 6= Suc 0
〈proof 〉 lemma one-mod-int-p-eq [simp]:
1 mod int p = 1
〈proof 〉 lemma E-1 :

assumes QuadRes (int p) a
shows [a ^ ((p − 1) div 2) = 1] (mod int p)
〈proof 〉 definition S1 :: int set where S1 = {0 <.. int p − 1}

private definition P :: int ⇒ int ⇒ bool where
P x y ←→ [x ∗ y = a] (mod p) ∧ y ∈ S1

private definition f-1 :: int ⇒ int where
f-1 x = (THE y. P x y)

private definition f :: int ⇒ int set where
f x = {x, f-1 x}

private definition S2 :: int set set where S2 = f ‘ S1

private lemma P-lemma: assumes x ∈ S1
shows ∃ ! y. P x y
〈proof 〉 lemma f-1-lemma-1 : assumes x ∈ S1

shows P x (f-1 x) 〈proof 〉 lemma f-1-lemma-2 : assumes x ∈ S1

33

shows f-1 (f-1 x) = x
〈proof 〉 lemma f-lemma-1 : assumes x ∈ S1
shows f x = f (f-1 x) 〈proof 〉 lemma l1 : assumes ¬ QuadRes p a x ∈ S1
shows x 6= f-1 x
〈proof 〉 lemma l2 : assumes ¬ QuadRes p a x ∈ S1
shows [

∏
(f x) = a] (mod p)

〈proof 〉 lemma l3 : assumes x ∈ S2
shows finite x 〈proof 〉 lemma l4 : S1 =

⋃
S2 〈proof 〉 lemma l5 : assumes x

∈ S2 y ∈ S2 x 6= y
shows x ∩ y = {}
〈proof 〉 lemma l6 : prod Prod S2 =

∏
S1

〈proof 〉 lemma l7 : fact n =
∏
{0 <.. int n}

〈proof 〉 lemma l8 : fact (p − 1) =
∏

S1 〈proof 〉 lemma l9 : [prod Prod S2 = −1]
(mod p)
〈proof 〉 lemma l10 : assumes card S = n

∧
x. x ∈ S =⇒ [g x = a] (mod p)

shows [prod g S = a ^ n] (mod p) 〈proof 〉 lemma l11 : assumes ¬ QuadRes p a
shows card S2 = (p − 1) div 2
〈proof 〉 lemma l12 : assumes ¬ QuadRes p a

shows [prod Prod S2 = a ^ ((p − 1) div 2)] (mod p)
〈proof 〉 lemma E-2 : assumes ¬ QuadRes p a
shows [a ^ ((p − 1) div 2) = −1] (mod p) 〈proof 〉

lemma euler-criterion-aux: [(Legendre a p) = a ^ ((p − 1) div 2)] (mod p)
〈proof 〉

end

theorem euler-criterion: assumes prime p 2 < p
shows [(Legendre a p) = a ^ ((p − 1) div 2)] (mod p)
〈proof 〉

hide-fact euler-criterion-aux

end

8 Gauss’ Lemma
theory Gauss

imports Euler-Criterion
begin

lemma cong-prime-prod-zero-nat:
[a ∗ b = 0] (mod p) =⇒ prime p =⇒ [a = 0] (mod p) ∨ [b = 0] (mod p)
for a :: nat
〈proof 〉

lemma cong-prime-prod-zero-int:
[a ∗ b = 0] (mod p) =⇒ prime p =⇒ [a = 0] (mod p) ∨ [b = 0] (mod p)
for a :: int

34

〈proof 〉

locale GAUSS =
fixes p :: nat
fixes a :: int
assumes p-prime: prime p
assumes p-ge-2 : 2 < p
assumes p-a-relprime: [a 6= 0](mod p)
assumes a-nonzero: 0 < a

begin

definition A = {0 ::int <.. ((int p − 1) div 2)}
definition B = (λx. x ∗ a) ‘ A
definition C = (λx. x mod p) ‘ B
definition D = C ∩ {.. (int p − 1) div 2}
definition E = C ∩ {(int p − 1) div 2 <..}
definition F = (λx. (int p − x)) ‘ E

8.1 Basic properties of p
lemma odd-p: odd p
〈proof 〉

lemma p-minus-one-l: (int p − 1) div 2 < p
〈proof 〉

lemma p-eq2 : int p = (2 ∗ ((int p − 1) div 2)) + 1
〈proof 〉

lemma p-odd-int: obtains z :: int where int p = 2 ∗ z + 1 0 < z
〈proof 〉

8.2 Basic Properties of the Gauss Sets
lemma finite-A: finite A
〈proof 〉

lemma finite-B: finite B
〈proof 〉

lemma finite-C : finite C
〈proof 〉

lemma finite-D: finite D
〈proof 〉

lemma finite-E : finite E
〈proof 〉

35

lemma finite-F : finite F
〈proof 〉

lemma C-eq: C = D ∪ E
〈proof 〉

lemma A-card-eq: card A = nat ((int p − 1) div 2)
〈proof 〉

lemma inj-on-xa-A: inj-on (λx. x ∗ a) A
〈proof 〉

definition ResSet :: int ⇒ int set ⇒ bool
where ResSet m X ←→ (∀ y1 y2 . y1 ∈ X ∧ y2 ∈ X ∧ [y1 = y2] (mod m) −→

y1 = y2)

lemma ResSet-image:
0 < m =⇒ ResSet m A =⇒ ∀ x ∈ A. ∀ y ∈ A. ([f x = f y](mod m) −→ x = y)

=⇒ ResSet m (f ‘ A)
〈proof 〉

lemma A-res: ResSet p A
〈proof 〉

lemma B-res: ResSet p B
〈proof 〉

lemma SR-B-inj: inj-on (λx. x mod p) B
〈proof 〉

lemma nonzero-mod-p: 0 < x =⇒ x < int p =⇒ [x 6= 0](mod p)
for x :: int
〈proof 〉

lemma A-ncong-p: x ∈ A =⇒ [x 6= 0](mod p)
〈proof 〉

lemma A-greater-zero: x ∈ A =⇒ 0 < x
〈proof 〉

lemma B-ncong-p: x ∈ B =⇒ [x 6= 0](mod p)
〈proof 〉

lemma B-greater-zero: x ∈ B =⇒ 0 < x
〈proof 〉

lemma B-mod-greater-zero:
0 < x mod int p if x ∈ B
〈proof 〉

36

lemma C-greater-zero: y ∈ C =⇒ 0 < y
〈proof 〉

lemma F-subset: F ⊆ {x. 0 < x ∧ x ≤ ((int p − 1) div 2)}
〈proof 〉

lemma D-subset: D ⊆ {x. 0 < x ∧ x ≤ ((p − 1) div 2)}
〈proof 〉

lemma F-eq: F = {x. ∃ y ∈ A. (x = p − ((y ∗ a) mod p) ∧ (int p − 1) div 2 <
(y ∗ a) mod p)}
〈proof 〉

lemma D-eq: D = {x. ∃ y ∈ A. (x = (y ∗ a) mod p ∧ (y ∗ a) mod p ≤ (int p −
1) div 2)}
〈proof 〉

lemma all-A-relprime:
coprime x p if x ∈ A
〈proof 〉

lemma A-prod-relprime: coprime (prod id A) p
〈proof 〉

8.3 Relationships Between Gauss Sets
lemma StandardRes-inj-on-ResSet: ResSet m X =⇒ inj-on (λb. b mod m) X
〈proof 〉

lemma B-card-eq-A: card B = card A
〈proof 〉

lemma B-card-eq: card B = nat ((int p − 1) div 2)
〈proof 〉

lemma F-card-eq-E : card F = card E
〈proof 〉

lemma C-card-eq-B: card C = card B
〈proof 〉

lemma D-E-disj: D ∩ E = {}
〈proof 〉

lemma C-card-eq-D-plus-E : card C = card D + card E
〈proof 〉

lemma C-prod-eq-D-times-E : prod id E ∗ prod id D = prod id C

37

〈proof 〉

lemma C-B-zcong-prod: [prod id C = prod id B] (mod p)
〈proof 〉

lemma F-Un-D-subset: (F ∪ D) ⊆ A
〈proof 〉

lemma F-D-disj: (F ∩ D) = {}
〈proof 〉

lemma F-Un-D-card: card (F ∪ D) = nat ((p − 1) div 2)
〈proof 〉

lemma F-Un-D-eq-A: F ∪ D = A
〈proof 〉

lemma prod-D-F-eq-prod-A: prod id D ∗ prod id F = prod id A
〈proof 〉

lemma prod-F-zcong: [prod id F = ((−1) ^ (card E)) ∗ prod id E] (mod p)
〈proof 〉

8.4 Gauss’ Lemma
lemma aux: prod id A ∗ (− 1) ^ card E ∗ a ^ card A ∗ (− 1) ^ card E = prod id
A ∗ a ^ card A
〈proof 〉

theorem pre-gauss-lemma: [a ^ nat((int p − 1) div 2) = (−1) ^ (card E)] (mod
p)
〈proof 〉

theorem gauss-lemma: Legendre a p = (−1) ^ (card E)
〈proof 〉

end

end

theory Quadratic-Reciprocity
imports Gauss
begin

The proof is based on Gauss’s fifth proof, which can be found at https:
//www.lehigh.edu/~shw2/q-recip/gauss5.pdf.
locale QR =

fixes p :: nat

38

https://www.lehigh.edu/~shw2/q-recip/gauss5.pdf
https://www.lehigh.edu/~shw2/q-recip/gauss5.pdf

fixes q :: nat
assumes p-prime: prime p
assumes p-ge-2 : 2 < p
assumes q-prime: prime q
assumes q-ge-2 : 2 < q
assumes pq-neq: p 6= q

begin

lemma odd-p: odd p
〈proof 〉

lemma p-ge-0 : 0 < int p
〈proof 〉

lemma p-eq2 : int p = (2 ∗ ((int p − 1) div 2)) + 1
〈proof 〉

lemma odd-q: odd q
〈proof 〉

lemma q-ge-0 : 0 < int q
〈proof 〉

lemma q-eq2 : int q = (2 ∗ ((int q − 1) div 2)) + 1
〈proof 〉

lemma pq-eq2 : int p ∗ int q = (2 ∗ ((int p ∗ int q − 1) div 2)) + 1
〈proof 〉

lemma pq-coprime: coprime p q
〈proof 〉

lemma pq-coprime-int: coprime (int p) (int q)
〈proof 〉

lemma qp-ineq: int p ∗ k ≤ (int p ∗ int q − 1) div 2 ←→ k ≤ (int q − 1) div 2
〈proof 〉

lemma QRqp: QR q p
〈proof 〉

lemma pq-commute: int p ∗ int q = int q ∗ int p
〈proof 〉

lemma pq-ge-0 : int p ∗ int q > 0
〈proof 〉

definition r = ((p − 1) div 2) ∗ ((q − 1) div 2)
definition m = card (GAUSS .E p q)

39

definition n = card (GAUSS .E q p)

abbreviation Res k ≡ {0 .. k − 1} for k :: int
abbreviation Res-ge-0 k ≡ {0 <.. k − 1} for k :: int
abbreviation Res-0 k ≡ {0 ::int} for k :: int
abbreviation Res-l k ≡ {0 <.. (k − 1) div 2} for k :: int
abbreviation Res-h k ≡ {(k − 1) div 2 <.. k − 1} for k :: int

abbreviation Sets-pq r0 r1 r2 ≡
{(x::int). x ∈ r0 (int p ∗ int q) ∧ x mod p ∈ r1 (int p) ∧ x mod q ∈ r2 (int q)}

definition A = Sets-pq Res-l Res-l Res-h
definition B = Sets-pq Res-l Res-h Res-l
definition C = Sets-pq Res-h Res-h Res-l
definition D = Sets-pq Res-l Res-h Res-h
definition E = Sets-pq Res-l Res-0 Res-h
definition F = Sets-pq Res-l Res-h Res-0

definition a = card A
definition b = card B
definition c = card C
definition d = card D
definition e = card E
definition f = card F

lemma Gpq: GAUSS p q
〈proof 〉

lemma Gqp: GAUSS q p
〈proof 〉

lemma QR-lemma-01 : (λx. x mod q) ‘ E = GAUSS .E q p
〈proof 〉

lemma QR-lemma-02 : e = n
〈proof 〉

lemma QR-lemma-03 : f = m
〈proof 〉

definition f-1 :: int ⇒ int × int
where f-1 x = ((x mod p), (x mod q))

definition P-1 :: int × int ⇒ int ⇒ bool
where P-1 res x ←→ x mod p = fst res ∧ x mod q = snd res ∧ x ∈ Res (int p ∗

int q)

definition g-1 :: int × int ⇒ int
where g-1 res = (THE x . P-1 res x)

40

lemma P-1-lemma:
fixes res :: int × int
assumes 0 ≤ fst res fst res < p 0 ≤ snd res snd res < q
shows ∃ !x. P-1 res x
〈proof 〉

lemma g-1-lemma:
fixes res :: int × int
assumes 0 ≤ fst res fst res < p 0 ≤ snd res snd res < q
shows P-1 res (g-1 res)
〈proof 〉

definition BuC = Sets-pq Res-ge-0 Res-h Res-l

lemma finite-BuC [simp]:
finite BuC
〈proof 〉

lemma QR-lemma-04 : card BuC = card (Res-h p × Res-l q)
〈proof 〉

lemma QR-lemma-05 : card (Res-h p × Res-l q) = r
〈proof 〉

lemma QR-lemma-06 : b + c = r
〈proof 〉

definition f-2 :: int ⇒ int
where f-2 x = (int p ∗ int q) − x

lemma f-2-lemma-1 : f-2 (f-2 x) = x
〈proof 〉

lemma f-2-lemma-2 : [f-2 x = int p − x] (mod p)
〈proof 〉

lemma f-2-lemma-3 : f-2 x ∈ S =⇒ x ∈ f-2 ‘ S
〈proof 〉

lemma QR-lemma-07 :
f-2 ‘ Res-l (int p ∗ int q) = Res-h (int p ∗ int q)
f-2 ‘ Res-h (int p ∗ int q) = Res-l (int p ∗ int q)
〈proof 〉

lemma QR-lemma-08 :
f-2 x mod p ∈ Res-l p ←→ x mod p ∈ Res-h p
f-2 x mod p ∈ Res-h p ←→ x mod p ∈ Res-l p
〈proof 〉

41

lemma QR-lemma-09 :
f-2 x mod q ∈ Res-l q ←→ x mod q ∈ Res-h q
f-2 x mod q ∈ Res-h q ←→ x mod q ∈ Res-l q
〈proof 〉

lemma QR-lemma-10 : a = c
〈proof 〉

definition BuD = Sets-pq Res-l Res-h Res-ge-0
definition BuDuF = Sets-pq Res-l Res-h Res

definition f-3 :: int ⇒ int × int
where f-3 x = (x mod p, x div p + 1)

definition g-3 :: int × int ⇒ int
where g-3 x = fst x + (snd x − 1) ∗ p

lemma QR-lemma-11 : card BuDuF = card (Res-h p × Res-l q)
〈proof 〉

lemma QR-lemma-12 : b + d + m = r
〈proof 〉

lemma QR-lemma-13 : a + d + n = r
〈proof 〉

lemma QR-lemma-14 : (−1 ::int) ^ (m + n) = (−1) ^ r
〈proof 〉

lemma Quadratic-Reciprocity:
Legendre p q ∗ Legendre q p = (−1 ::int) ^ ((p − 1) div 2 ∗ ((q − 1) div 2))
〈proof 〉

end

theorem Quadratic-Reciprocity:
assumes prime p 2 < p prime q 2 < q p 6= q
shows Legendre p q ∗ Legendre q p = (−1 ::int) ^ ((p − 1) div 2 ∗ ((q − 1) div

2))
〈proof 〉

theorem Quadratic-Reciprocity-int:
assumes prime (nat p) 2 < p prime (nat q) 2 < q p 6= q
shows Legendre p q ∗ Legendre q p = (−1 ::int) ^ (nat ((p − 1) div 2 ∗ ((q −

1) div 2)))
〈proof 〉

end

42

9 Pocklington’s Theorem for Primes
theory Pocklington
imports Residues
begin

9.1 Lemmas about previously defined terms
lemma prime-nat-iff ′′: prime (p::nat) ←→ p 6= 0 ∧ p 6= 1 ∧ (∀m. 0 < m ∧ m
< p −→ coprime p m)
〈proof 〉

lemma finite-number-segment: card { m. 0 < m ∧ m < n } = n − 1
〈proof 〉

9.2 Some basic theorems about solving congruences
lemma cong-solve:

fixes n :: nat
assumes an: coprime a n
shows ∃ x. [a ∗ x = b] (mod n)
〈proof 〉

lemma cong-solve-unique:
fixes n :: nat
assumes an: coprime a n and nz: n 6= 0
shows ∃ !x. x < n ∧ [a ∗ x = b] (mod n)
〈proof 〉

lemma cong-solve-unique-nontrivial:
fixes p :: nat
assumes p: prime p

and pa: coprime p a
and x0 : 0 < x
and xp: x < p

shows ∃ !y. 0 < y ∧ y < p ∧ [x ∗ y = a] (mod p)
〈proof 〉

lemma cong-unique-inverse-prime:
fixes p :: nat
assumes prime p and 0 < x and x < p
shows ∃ !y. 0 < y ∧ y < p ∧ [x ∗ y = 1] (mod p)
〈proof 〉

lemma chinese-remainder-coprime-unique:
fixes a :: nat
assumes ab: coprime a b and az: a 6= 0 and bz: b 6= 0

and ma: coprime m a and nb: coprime n b
shows ∃ !x. coprime x (a ∗ b) ∧ x < a ∗ b ∧ [x = m] (mod a) ∧ [x = n] (mod b)
〈proof 〉

43

9.3 Lucas’s theorem
lemma lucas-coprime-lemma:

fixes n :: nat
assumes m: m 6= 0 and am: [a^m = 1] (mod n)
shows coprime a n
〈proof 〉

lemma lucas-weak:
fixes n :: nat
assumes n: n ≥ 2

and an: [a ^ (n − 1) = 1] (mod n)
and nm: ∀m. 0 < m ∧ m < n − 1 −→ ¬ [a ^ m = 1] (mod n)

shows prime n
〈proof 〉

theorem lucas:
assumes n2 : n ≥ 2 and an1 : [a^(n − 1) = 1] (mod n)

and pn: ∀ p. prime p ∧ p dvd n − 1 −→ [a^((n − 1) div p) 6= 1] (mod n)
shows prime n
〈proof 〉

9.4 Definition of the order of a number mod n
definition ord n a = (if coprime n a then Least (λd. d > 0 ∧ [a ^d = 1] (mod
n)) else 0)

This has the expected properties.
lemma coprime-ord:

fixes n::nat
assumes coprime n a
shows ord n a > 0 ∧ [a ^(ord n a) = 1] (mod n) ∧ (∀m. 0 < m ∧ m < ord n

a −→ [a^ m 6= 1] (mod n))
〈proof 〉

With the special value 0 for non-coprime case, it’s more convenient.
lemma ord-works: [a ^ (ord n a) = 1] (mod n) ∧ (∀m. 0 < m ∧ m < ord n a
−→ ¬ [a^ m = 1] (mod n))

for n :: nat
〈proof 〉

lemma ord: [a^(ord n a) = 1] (mod n)
for n :: nat
〈proof 〉

lemma ord-minimal: 0 < m =⇒ m < ord n a =⇒ ¬ [a^m = 1] (mod n)
for n :: nat
〈proof 〉

lemma ord-eq-0 : ord n a = 0 ←→ ¬ coprime n a

44

for n :: nat
〈proof 〉

lemma divides-rexp: x dvd y =⇒ x dvd (y ^ Suc n)
for x y :: nat
〈proof 〉

lemma ord-divides:[a ^ d = 1] (mod n) ←→ ord n a dvd d
(is ?lhs ←→ ?rhs)
for n :: nat
〈proof 〉

lemma order-divides-totient:
ord n a dvd totient n if coprime n a
〈proof 〉

lemma order-divides-expdiff :
fixes n::nat and a::nat assumes na: coprime n a
shows [a^d = a^e] (mod n) ←→ [d = e] (mod (ord n a))
〈proof 〉

lemma ord-not-coprime [simp]: ¬coprime n a =⇒ ord n a = 0
〈proof 〉

lemma ord-1 [simp]: ord 1 n = 1
〈proof 〉

lemma ord-1-right [simp]: ord (n::nat) 1 = 1
〈proof 〉

lemma ord-Suc-0-right [simp]: ord (n::nat) (Suc 0) = 1
〈proof 〉

lemma ord-0-nat [simp]: ord 0 (n :: nat) = (if n = 1 then 1 else 0)
〈proof 〉

lemma ord-0-right-nat [simp]: ord (n :: nat) 0 = (if n = 1 then 1 else 0)
〈proof 〉

lemma ord-divides ′: [a ^ d = Suc 0] (mod n) = (ord n a dvd d)
〈proof 〉

lemma ord-Suc-0 [simp]: ord (Suc 0) n = 1
〈proof 〉

lemma ord-mod [simp]: ord n (k mod n) = ord n k
〈proof 〉

lemma ord-gt-0-iff [simp]: ord (n::nat) x > 0 ←→ coprime n x

45

〈proof 〉

lemma ord-eq-Suc-0-iff : ord n (x::nat) = Suc 0 ←→ [x = 1] (mod n)
〈proof 〉

lemma ord-cong:
assumes [k1 = k2] (mod n)
shows ord n k1 = ord n k2
〈proof 〉

lemma ord-nat-code [code-unfold]:
ord n a =

(if n = 0 then if a = 1 then 1 else 0 else
if coprime n a then Min (Set.filter (λk. [a ^ k = 1] (mod n)) {0<..n}) else

0)
〈proof 〉

theorem ord-modulus-mult-coprime:
fixes x :: nat
assumes coprime m n
shows ord (m ∗ n) x = lcm (ord m x) (ord n x)
〈proof 〉

corollary ord-modulus-prod-coprime:
assumes finite A

∧
i j. i ∈ A =⇒ j ∈ A =⇒ i 6= j =⇒ coprime (f i) (f j)

shows ord (
∏

i∈A. f i :: nat) x = (LCM i∈A. ord (f i) x)
〈proof 〉

lemma ord-power-aux:
fixes m x k a :: nat
defines l ≡ ord m a
shows ord m (a ^ k) ∗ gcd k l = l
〈proof 〉

theorem ord-power : coprime m a =⇒ ord m (a ^ k :: nat) = ord m a div gcd k
(ord m a)
〈proof 〉

lemma inj-power-mod:
assumes coprime n (a :: nat)
shows inj-on (λk. a ^ k mod n) {..<ord n a}
〈proof 〉

lemma ord-eq-2-iff : ord n (x :: nat) = 2 ←→ [x 6= 1] (mod n) ∧ [x2 = 1] (mod
n)
〈proof 〉

lemma square-mod-8-eq-1-iff : [x2 = 1] (mod 8) ←→ odd (x :: nat)
〈proof 〉

46

lemma ord-twopow-aux:
assumes k ≥ 3 and odd (x :: nat)
shows [x ^ (2 ^ (k − 2)) = 1] (mod (2 ^ k))
〈proof 〉

lemma ord-twopow-3-5 :
assumes k ≥ 3 x mod 8 ∈ {3 , 5 :: nat}
shows ord (2 ^ k) x = 2 ^ (k − 2)
〈proof 〉

lemma ord-4-3 [simp]: ord 4 (3 ::nat) = 2
〈proof 〉

lemma elements-with-ord-1 : n > 0 =⇒ {x∈totatives n. ord n x = Suc 0} = {1}
〈proof 〉

lemma residue-prime-has-primroot:
fixes p :: nat
assumes prime p
shows ∃ a∈totatives p. ord p a = p − 1
〈proof 〉

9.5 Another trivial primality characterization
lemma prime-prime-factor : prime n ←→ n 6= 1 ∧ (∀ p. prime p ∧ p dvd n −→ p
= n)
(is ?lhs ←→ ?rhs)
for n :: nat
〈proof 〉

lemma prime-divisor-sqrt: prime n ←→ n 6= 1 ∧ (∀ d. d dvd n ∧ d2 ≤ n −→ d
= 1)

for n :: nat
〈proof 〉

lemma prime-prime-factor-sqrt:
prime (n::nat) ←→ n 6= 0 ∧ n 6= 1 ∧ (@ p. prime p ∧ p dvd n ∧ p2 ≤ n)
(is ?lhs ←→?rhs)
〈proof 〉

9.6 Pocklington theorem
lemma pocklington-lemma:

fixes p :: nat
assumes n: n ≥ 2 and nqr : n − 1 = q ∗ r

and an: [a^ (n − 1) = 1] (mod n)
and aq: ∀ p. prime p ∧ p dvd q −→ coprime (a ^ ((n − 1) div p) − 1) n
and pp: prime p and pn: p dvd n

shows [p = 1] (mod q)

47

〈proof 〉

theorem pocklington:
assumes n: n ≥ 2 and nqr : n − 1 = q ∗ r and sqr : n ≤ q2

and an: [a^ (n − 1) = 1] (mod n)
and aq: ∀ p. prime p ∧ p dvd q −→ coprime (a^ ((n − 1) div p) − 1) n

shows prime n
〈proof 〉

Variant for application, to separate the exponentiation.
lemma pocklington-alt:

assumes n: n ≥ 2 and nqr : n − 1 = q ∗ r and sqr : n ≤ q2

and an: [a^ (n − 1) = 1] (mod n)
and aq: ∀ p. prime p ∧ p dvd q −→ (∃ b. [a^((n − 1) div p) = b] (mod n) ∧

coprime (b − 1) n)
shows prime n
〈proof 〉

9.7 Prime factorizations
definition primefact ps n ←→ foldr (∗) ps 1 = n ∧ (∀ p∈ set ps. prime p)

lemma primefact:
fixes n :: nat
assumes n: n 6= 0
shows ∃ ps. primefact ps n
〈proof 〉

lemma primefact-contains:
fixes p :: nat
assumes pf : primefact ps n

and p: prime p
and pn: p dvd n

shows p ∈ set ps
〈proof 〉

lemma primefact-variant: primefact ps n ←→ foldr (∗) ps 1 = n ∧ list-all prime
ps
〈proof 〉

Variant of Lucas theorem.
lemma lucas-primefact:

assumes n: n ≥ 2 and an: [a^(n − 1) = 1] (mod n)
and psn: foldr (∗) ps 1 = n − 1
and psp: list-all (λp. prime p ∧ ¬ [a^((n − 1) div p) = 1] (mod n)) ps

shows prime n
〈proof 〉

Variant of Pocklington theorem.

48

lemma pocklington-primefact:
assumes n: n ≥ 2 and qrn: q∗r = n − 1 and nq2 : n ≤ q2

and arnb: (a^r) mod n = b and psq: foldr (∗) ps 1 = q
and bqn: (b^q) mod n = 1
and psp: list-all (λp. prime p ∧ coprime ((b^(q div p)) mod n − 1) n) ps

shows prime n
〈proof 〉

end

10 Prime powers
theory Prime-Powers
imports Complex-Main HOL−Computational-Algebra.Primes HOL−Library.FuncSet

begin

definition aprimedivisor :: ′a :: normalization-semidom ⇒ ′a where
aprimedivisor q = (SOME p. prime p ∧ p dvd q)

definition primepow :: ′a :: normalization-semidom ⇒ bool where
primepow n ←→ (∃ p k. prime p ∧ k > 0 ∧ n = p ^ k)

definition primepow-factors :: ′a :: normalization-semidom ⇒ ′a set where
primepow-factors n = {x. primepow x ∧ x dvd n}

lemma primepow-gt-Suc-0 : primepow n =⇒ n > Suc 0
〈proof 〉

lemma
assumes prime p p dvd n
shows prime-aprimedivisor : prime (aprimedivisor n)

and aprimedivisor-dvd: aprimedivisor n dvd n
〈proof 〉

lemma
assumes n 6= 0 ¬is-unit (n :: ′a :: factorial-semiring)
shows prime-aprimedivisor ′: prime (aprimedivisor n)

and aprimedivisor-dvd ′: aprimedivisor n dvd n
〈proof 〉

lemma aprimedivisor-of-prime [simp]:
assumes prime p
shows aprimedivisor p = p
〈proof 〉

lemma aprimedivisor-pos-nat: (n::nat) > 1 =⇒ aprimedivisor n > 0
〈proof 〉

lemma aprimedivisor-primepow-power :

49

assumes primepow n k > 0
shows aprimedivisor (n ^ k) = aprimedivisor n
〈proof 〉

lemma aprimedivisor-prime-power :
assumes prime p k > 0
shows aprimedivisor (p ^ k) = p
〈proof 〉

lemma prime-factorization-primepow:
assumes primepow n
shows prime-factorization n =

replicate-mset (multiplicity (aprimedivisor n) n) (aprimedivisor n)
〈proof 〉

lemma primepow-decompose:
fixes n :: ′a :: factorial-semiring-multiplicative
assumes primepow n
shows aprimedivisor n ^ multiplicity (aprimedivisor n) n = n
〈proof 〉

lemma prime-power-not-one:
assumes prime p k > 0
shows p ^ k 6= 1
〈proof 〉

lemma zero-not-primepow [simp]: ¬primepow 0
〈proof 〉

lemma one-not-primepow [simp]: ¬primepow 1
〈proof 〉

lemma primepow-not-unit [simp]: primepow p =⇒ ¬is-unit p
〈proof 〉

lemma not-primepow-Suc-0-nat [simp]: ¬primepow (Suc 0)
〈proof 〉

lemma primepow-gt-0-nat: primepow n =⇒ n > (0 ::nat)
〈proof 〉

lemma unit-factor-primepow:
fixes p :: ′a :: factorial-semiring-multiplicative
shows primepow p =⇒ unit-factor p = 1
〈proof 〉

lemma aprimedivisor-primepow:
assumes prime p p dvd n primepow (n :: ′a :: factorial-semiring-multiplicative)
shows aprimedivisor (p ∗ n) = p aprimedivisor n = p

50

〈proof 〉

lemma power-eq-prime-powerD:
fixes p :: ′a :: factorial-semiring
assumes prime p n > 0 x ^ n = p ^ k
shows ∃ i. normalize x = normalize (p ^ i)
〈proof 〉

lemma primepow-power-iff :
fixes p :: ′a :: factorial-semiring-multiplicative
assumes unit-factor p = 1
shows primepow (p ^ n) ←→ primepow p ∧ n > 0
〈proof 〉

lemma primepow-power-iff-nat:
p > 0 =⇒ primepow (p ^ n) ←→ primepow (p :: nat) ∧ n > 0
〈proof 〉

lemma primepow-prime [simp]: prime n =⇒ primepow n
〈proof 〉

lemma primepow-prime-power [simp]:
prime (p :: ′a :: factorial-semiring-multiplicative) =⇒ primepow (p ^ n) ←→ n

> 0
〈proof 〉

lemma aprimedivisor-vimage:
assumes prime (p :: ′a :: factorial-semiring-multiplicative)
shows aprimedivisor −‘ {p} ∩ primepow-factors n = {p ^ k |k. k > 0 ∧ p ^ k

dvd n}
〈proof 〉

lemma aprimedivisor-nat:
assumes n 6= (Suc 0 ::nat)
shows prime (aprimedivisor n) aprimedivisor n dvd n
〈proof 〉

lemma aprimedivisor-gt-Suc-0 :
assumes n 6= Suc 0
shows aprimedivisor n > Suc 0
〈proof 〉

lemma aprimedivisor-le-nat:
assumes n > Suc 0
shows aprimedivisor n ≤ n
〈proof 〉

lemma bij-betw-primepows:

51

bij-betw (λ(p,k). p ^ Suc k :: ′a :: factorial-semiring-multiplicative)
(Collect prime × UNIV) (Collect primepow)

〈proof 〉

lemma primepow-multD:
assumes primepow (a ∗ b :: nat)
shows a = 1 ∨ primepow a b = 1 ∨ primepow b
〈proof 〉

lemma primepow-mult-aprimedivisorI :
assumes primepow (n :: ′a :: factorial-semiring-multiplicative)
shows primepow (aprimedivisor n ∗ n)
〈proof 〉

lemma primepow-factors-altdef :
fixes x :: ′a :: factorial-semiring-multiplicative
assumes x 6= 0
shows primepow-factors x = {p ^ k |p k. p ∈ prime-factors x ∧ k ∈ {0<..

multiplicity p x}}
〈proof 〉

lemma finite-primepow-factors:
assumes x 6= (0 :: ′a :: factorial-semiring-multiplicative)
shows finite (primepow-factors x)
〈proof 〉

lemma aprimedivisor-primepow-factors-conv-prime-factorization:
assumes [simp]: n 6= (0 :: ′a :: factorial-semiring-multiplicative)
shows image-mset aprimedivisor (mset-set (primepow-factors n)) = prime-factorization

n
(is ?lhs = ?rhs)

〈proof 〉

lemma prime-elem-aprimedivisor-nat: d > Suc 0 =⇒ prime-elem (aprimedivisor
d)
〈proof 〉

lemma aprimedivisor-gt-0-nat [simp]: d > Suc 0 =⇒ aprimedivisor d > 0
〈proof 〉

lemma aprimedivisor-gt-Suc-0-nat [simp]: d > Suc 0 =⇒ aprimedivisor d > Suc
0
〈proof 〉

lemma aprimedivisor-not-Suc-0-nat [simp]: d > Suc 0 =⇒ aprimedivisor d 6= Suc
0
〈proof 〉

52

lemma multiplicity-aprimedivisor-gt-0-nat [simp]:
d > Suc 0 =⇒ multiplicity (aprimedivisor d) d > 0
〈proof 〉

lemma primepowI :
prime p =⇒ k > 0 =⇒ p ^ k = n =⇒ primepow n ∧ aprimedivisor n = p
〈proof 〉

lemma not-primepowI :
assumes prime p prime q p 6= q p dvd n q dvd n
shows ¬primepow n
〈proof 〉

lemma sum-prime-factorization-conv-sum-primepow-factors:
fixes n :: ′a :: factorial-semiring-multiplicative
assumes n 6= 0
shows (

∑
q∈primepow-factors n. f (aprimedivisor q)) = (

∑
p∈#prime-factorization

n. f p)
〈proof 〉

lemma multiplicity-aprimedivisor-Suc-0-iff :
assumes primepow (n :: ′a :: factorial-semiring-multiplicative)
shows multiplicity (aprimedivisor n) n = Suc 0 ←→ prime n
〈proof 〉

definition mangoldt :: nat ⇒ ′a :: real-algebra-1 where
mangoldt n = (if primepow n then of-real (ln (real (aprimedivisor n))) else 0)

lemma mangoldt-0 [simp]: mangoldt 0 = 0
〈proof 〉

lemma mangoldt-Suc-0 [simp]: mangoldt (Suc 0) = 0
〈proof 〉

lemma of-real-mangoldt [simp]: of-real (mangoldt n) = mangoldt n
〈proof 〉

lemma mangoldt-sum:
assumes n 6= 0
shows (

∑
d | d dvd n. mangoldt d :: ′a :: real-algebra-1) = of-real (ln (real n))

〈proof 〉

lemma mangoldt-primepow:
prime p =⇒ mangoldt (p ^ k) = (if k > 0 then of-real (ln (real p)) else 0)
〈proof 〉

lemma mangoldt-primepow ′ [simp]: prime p =⇒ k > 0 =⇒ mangoldt (p ^ k) =
of-real (ln (real p))

53

〈proof 〉

lemma mangoldt-prime [simp]: prime p =⇒ mangoldt p = of-real (ln (real p))
〈proof 〉

lemma mangoldt-nonneg: 0 ≤ (mangoldt d :: real)
〈proof 〉

lemma norm-mangoldt [simp]:
norm (mangoldt n :: ′a :: real-normed-algebra-1) = mangoldt n
〈proof 〉

lemma Re-mangoldt [simp]: Re (mangoldt n) = mangoldt n
and Im-mangoldt [simp]: Im (mangoldt n) = 0
〈proof 〉

lemma abs-mangoldt [simp]: abs (mangoldt n :: real) = mangoldt n
〈proof 〉

lemma mangoldt-le:
assumes n > 0
shows mangoldt n ≤ ln n
〈proof 〉

end

11 Primitive roots in residue rings and Carmichael’s
function

theory Residue-Primitive-Roots
imports Pocklington

begin

This theory develops the notions of primitive roots (generators) in residue
rings. It also provides a definition and all the basic properties of Carmichael’s
function λ(n), which is strongly related to this. The proofs mostly follow
Apostol’s presentation

11.1 Primitive roots in residue rings

A primitive root of a residue ring modulo n is an element g that generates
the ring, i. e. such that for each x coprime to n there exists an i such that
x = gi. A simpler definition is that g must have the same order as the
cardinality of the multiplicative group, which is ϕ(n).
Note that for convenience, this definition does not demand g < n.
inductive residue-primroot :: nat ⇒ nat ⇒ bool where

54

n > 0 =⇒ coprime n g =⇒ ord n g = totient n =⇒ residue-primroot n g

lemma residue-primroot-def [code]:
residue-primroot n x ←→ n > 0 ∧ coprime n x ∧ ord n x = totient n
〈proof 〉

lemma not-residue-primroot-0 [simp]: ∼residue-primroot 0 x
〈proof 〉

lemma residue-primroot-mod [simp]: residue-primroot n (x mod n) = residue-primroot
n x
〈proof 〉

lemma residue-primroot-cong:
assumes [x = x ′] (mod n)
shows residue-primroot n x = residue-primroot n x ′

〈proof 〉

lemma not-residue-primroot-0-right [simp]: residue-primroot n 0 ←→ n = 1
〈proof 〉

lemma residue-primroot-1-iff : residue-primroot n (Suc 0) ←→ n ∈ {1 , 2}
〈proof 〉

11.2 Primitive roots modulo a prime

For prime p, we now analyse the number of elements in the ring Z/pZ whose
order is precisely d for each d.
context

fixes n :: nat and ψ
assumes n: n > 1
defines ψ ≡ (λd. card {x∈totatives n. ord n x = d})

begin

lemma elements-with-ord-restrict-totatives:
d > 0 =⇒ {x∈{..<n}. ord n x = d} = {x∈totatives n. ord n x = d}
〈proof 〉

lemma prime-elements-with-ord:
assumes ψ d 6= 0 and prime n

and a: a ∈ totatives n ord n a = d a 6= 1
shows inj-on (λk. a ^ k mod n) {..<d}

and {x∈{..<n}. [x ^ d = 1] (mod n)} = (λk. a ^ k mod n) ‘ {..<d}
and bij-betw (λk. a ^ k mod n) (totatives d) {x∈{..<n}. ord n x = d}

〈proof 〉

lemma prime-card-elements-with-ord:
assumes ψ d 6= 0 and prime n
shows ψ d = totient d

55

〈proof 〉

lemma prime-sum-card-elements-with-ord-eq-totient:
(
∑

d | d dvd totient n. ψ d) = totient n
〈proof 〉

We can now show that the number of elements of order d is ϕ(d) if d | p− 1
and 0 otherwise.
theorem prime-card-elements-with-ord-eq-totient:

assumes prime n
shows ψ d = (if d dvd n − 1 then totient d else 0)
〈proof 〉

As a corollary, we get that the number of primitive roots modulo a prime p
is ϕ(p− 1). Since this number is positive, we also get that there is at least
one primitive root modulo p.
lemma

assumes prime n
shows prime-card-primitive-roots: card {x∈totatives n. ord n x = n − 1} =

totient (n − 1)
card {x∈{..<n}. ord n x = n − 1} = totient (n − 1)

and prime-primitive-root-exists: ∃ x. residue-primroot n x
〈proof 〉

end

11.3 Primitive roots modulo powers of an odd prime

Any primitive root g modulo an odd prime p is also a primitive root modulo
pk for all k > 0 if [gp−1 6= 1] (mod p2). To show this, we first need the
following lemma.
lemma residue-primroot-power-prime-power-neq-1 :

assumes k ≥ 2
assumes p: prime p odd p and residue-primroot p g and [g ^ (p − 1) 6= 1] (mod

p2)
shows [g ^ totient (p ^ (k − 1)) 6= 1] (mod (p ^ k))
〈proof 〉

We can now show that primitive roots modulo p with the above condition
are indeed also primitive roots modulo pk.
proposition residue-primroot-prime-lift-iff :

assumes p: prime p odd p and residue-primroot p g
shows (∀ k>0 . residue-primroot (p ^ k) g) ←→ [g ^ (p − 1) 6= 1] (mod p2)
〈proof 〉

If p is an odd prime, there is always a primitive root g modulo p, and if g
does not fulfil the above assumption required for it to be liftable to pk, we

56

can use g + p, which is also a primitive root modulo p and does fulfil the
assumption.
This shows that any modulus that is a power of an odd prime has a primitive
root.
theorem residue-primroot-odd-prime-power-exists:

assumes p: prime p odd p
obtains g where ∀ k>0 . residue-primroot (p ^ k) g
〈proof 〉

11.4 Carmichael’s function

Carmichael’s function λ(n) gives the LCM of the orders of all elements in
the residue ring modulo n – or, equivalently, the maximum order, as we will
show later. Algebraically speaking, it is the exponent of the multiplicative
group (Z/nZ)∗.
It is not to be confused with Liouville’s function, which is also denoted by
λ(n).
definition Carmichael where

Carmichael n = (LCM a ∈ totatives n. ord n a)

lemma Carmichael-0 [simp]: Carmichael 0 = 1
〈proof 〉

lemma Carmichael-1 [simp]: Carmichael 1 = 1
〈proof 〉

lemma Carmichael-Suc-0 [simp]: Carmichael (Suc 0) = 1
〈proof 〉

lemma ord-dvd-Carmichael:
assumes n > 1 coprime n k
shows ord n k dvd Carmichael n
〈proof 〉

lemma Carmichael-divides:
assumes Carmichael n dvd k coprime n a
shows [a ^ k = 1] (mod n)
〈proof 〉

lemma Carmichael-dvd-totient: Carmichael n dvd totient n
〈proof 〉

lemma Carmichael-dvd-mono-coprime:
assumes coprime m n m > 1 n > 1
shows Carmichael m dvd Carmichael (m ∗ n)
〈proof 〉

57

λ distributes over the product of coprime numbers similarly to ϕ, but with
LCM instead of multiplication:
lemma Carmichael-mult-coprime:

assumes coprime m n
shows Carmichael (m ∗ n) = lcm (Carmichael m) (Carmichael n)
〈proof 〉

lemma Carmichael-pos [simp, intro]: Carmichael n > 0
〈proof 〉

lemma Carmichael-nonzero [simp]: Carmichael n 6= 0
〈proof 〉

lemma power-Carmichael-eq-1 :
assumes n > 1 coprime n x
shows [x ^ Carmichael n = 1] (mod n)
〈proof 〉

lemma Carmichael-2 [simp]: Carmichael 2 = 1
〈proof 〉

lemma Carmichael-4 [simp]: Carmichael 4 = 2
〈proof 〉

lemma residue-primroot-Carmichael:
assumes residue-primroot n g
shows Carmichael n = totient n
〈proof 〉

lemma Carmichael-odd-prime-power :
assumes prime p odd p k > 0
shows Carmichael (p ^ k) = p ^ (k − 1) ∗ (p − 1)
〈proof 〉

lemma Carmichael-prime:
assumes prime p
shows Carmichael p = p − 1
〈proof 〉

lemma Carmichael-twopow-ge-8 :
assumes k ≥ 3
shows Carmichael (2 ^ k) = 2 ^ (k − 2)
〈proof 〉

lemma Carmichael-twopow:
Carmichael (2 ^ k) = (if k ≤ 2 then 2 ^ (k − 1) else 2 ^ (k − 2))
〈proof 〉

lemma Carmichael-prime-power :

58

assumes prime p k > 0
shows Carmichael (p ^ k) =

(if p = 2 ∧ k > 2 then 2 ^ (k − 2) else p ^ (k − 1) ∗ (p − 1))
〈proof 〉

lemma Carmichael-prod-coprime:
assumes finite A

∧
i j. i ∈ A =⇒ j ∈ A =⇒ i 6= j =⇒ coprime (f i) (f j)

shows Carmichael (
∏

i∈A. f i) = (LCM i∈A. Carmichael (f i))
〈proof 〉

Since λ distributes over coprime factors and we know the value of λ(pk) for
prime p, we can now give a closed formula for λ(n) in terms of the prime
factorisation of n:
theorem Carmichael-closed-formula:

Carmichael n =
(LCM p∈prime-factors n. let k = multiplicity p n

in if p = 2 ∧ k > 2 then 2 ^ (k − 2) else p ^ (k − 1) ∗
(p − 1))
(is - = Lcm ?A)
〈proof 〉

corollary even-Carmichael:
assumes n > 2
shows even (Carmichael n)
〈proof 〉

lemma eval-Carmichael:
assumes prime-factorization n = A
shows Carmichael n = (LCM p ∈ set-mset A.

let k = count A p in if p = 2 ∧ k > 2 then 2 ^ (k − 2) else p ^ (k −
1) ∗ (p − 1))
〈proof 〉

Any residue ring always contains a λ-root, i. e. an element whose order is
λ(n).
theorem Carmichael-root-exists:

assumes n > (0 ::nat)
obtains g where g ∈ totatives n and ord n g = Carmichael n
〈proof 〉

This also means that the Carmichael number is not only the LCM of the
orders of the elements of the residue ring, but indeed the maximum of the
orders.
lemma Carmichael-altdef :

Carmichael n = (if n = 0 then 1 else Max (ord n ‘ totatives n))
〈proof 〉

59

11.5 Existence of primitive roots for general moduli

We now related Carmichael’s function to the existence of primitive roots
and, in the end, use this to show precisely which moduli have primitive
roots and which do not.
The first criterion for the existence of a primitive root is this: A primitive
root modulo n exists iff λ(n) = ϕ(n).
lemma Carmichael-eq-totient-imp-primroot:

assumes n > 0 and Carmichael n = totient n
shows ∃ g. residue-primroot n g
〈proof 〉

theorem residue-primroot-iff-Carmichael:
(∃ g. residue-primroot n g) ←→ Carmichael n = totient n ∧ n > 0
〈proof 〉

Any primitive root modulo mn for coprime m, n is also a primitive root
modulo m and n. The converse does not hold in general.
lemma residue-primroot-modulus-mult-coprimeD:

assumes coprime m n and residue-primroot (m ∗ n) g
shows residue-primroot m g residue-primroot n g
〈proof 〉

If a primitive root modulo mn exists for coprime m,n, then λ(m) and λ(n)
must also be coprime. This is helpful in establishing that there are no
primitive roots modulo mn by showing e. g. that λ(m) and λ(n) are both
even.
lemma residue-primroot-modulus-mult-coprime-imp-Carmichael-coprime:

assumes coprime m n and residue-primroot (m ∗ n) g
shows coprime (Carmichael m) (Carmichael n)
〈proof 〉

The following moduli are precisely those that have primitive roots.
definition cyclic-moduli :: nat set where

cyclic-moduli = {1 , 2 , 4} ∪ {p ^ k |p k. prime p ∧ odd p ∧ k > 0} ∪
{2 ∗ p ^ k |p k. prime p ∧ odd p ∧ k > 0}

theorem residue-primroot-iff-in-cyclic-moduli:
(∃ g. residue-primroot m g) ←→ m ∈ cyclic-moduli
〈proof 〉

lemma residue-primroot-is-generator :
assumes m > 1 and residue-primroot m g
shows bij-betw (λi. g ^ i mod m) {..<totient m} (totatives m)
〈proof 〉

Given one primitive root g, all the primitive roots are powers gi for 1 ≤ i ≤
ϕ(n) with gcd(i, ϕ(n)) = 1.

60

theorem residue-primroot-bij-betw-primroots:
assumes m > 1 and residue-primroot m g
shows bij-betw (λi. g ^ i mod m) (totatives (totient m))

{g∈totatives m. residue-primroot m g}
〈proof 〉

It follows from the above statement that any residue ring modulo n that has
primitive roots has exactly ϕ(ϕ(n)) of them.
corollary card-residue-primroots:

assumes ∃ g. residue-primroot m g
shows card {g∈totatives m. residue-primroot m g} = totient (totient m)
〈proof 〉

corollary card-residue-primroots ′:
card {g∈totatives m. residue-primroot m g} =

(if m ∈ cyclic-moduli then totient (totient m) else 0)
〈proof 〉

As an example, we evaluate λ(122200) using the prime factorisation.
lemma Carmichael 122200 = 1380
〈proof 〉

end

12 Modular Inverses
theory Modular-Inverse

imports Cong HOL−Library.FuncSet
begin

The following returns the unique number m such that mn ≡ 1 (mod p) if
there is one, i.e. if n and p are coprime, and otherwise 0 by convention.
definition modular-inverse where

modular-inverse p n = (if coprime p n then fst (bezout-coefficients n p) mod p
else 0)

lemma cong-modular-inverse1 :
assumes coprime n p
shows [n ∗ modular-inverse p n = 1] (mod p)
〈proof 〉

lemma cong-modular-inverse2 :
assumes coprime n p
shows [modular-inverse p n ∗ n = 1] (mod p)
〈proof 〉

61

lemma coprime-modular-inverse [simp, intro]:
fixes n :: ′a :: {euclidean-ring-gcd,unique-euclidean-semiring}
assumes coprime n p
shows coprime (modular-inverse p n) p
〈proof 〉

lemma modular-inverse-int-nonneg: p > 0 =⇒ modular-inverse p (n :: int) ≥ 0
〈proof 〉

lemma modular-inverse-int-less: p > 0 =⇒ modular-inverse p (n :: int) < p
〈proof 〉

lemma modular-inverse-int-eqI :
fixes x y :: int
assumes y ∈ {0 ..<m} [x ∗ y = 1] (mod m)
shows modular-inverse m x = y
〈proof 〉

lemma modular-inverse-1 [simp]:
assumes m > (1 :: int)
shows modular-inverse m 1 = 1
〈proof 〉

lemma modular-inverse-int-mult:
fixes x y :: int
assumes coprime x m coprime y m m > 0
shows modular-inverse m (x ∗ y) = (modular-inverse m y ∗ modular-inverse m

x) mod m
〈proof 〉

lemma bij-betw-int-remainders-mult:
fixes a n :: int
assumes a: coprime a n
shows bij-betw (λm. a ∗ m mod n) {1 ..<n} {1 ..<n}
〈proof 〉

lemma mult-modular-inverse-of-not-coprime [simp]: ¬coprime a m =⇒ modular-inverse
m a = 0
〈proof 〉

lemma mult-modular-inverse-eq-0-iff :
fixes a :: ′a :: {unique-euclidean-semiring, euclidean-ring-gcd}
shows ¬is-unit m =⇒ modular-inverse m a = 0 ←→ ¬coprime a m
〈proof 〉

lemma mult-modular-inverse-int-pos: m > 1 =⇒ coprime a m =⇒ modular-inverse
m a > (0 :: int)
〈proof 〉

62

lemma abs-mult-modular-inverse-int-less: m 6= 0 =⇒ |modular-inverse m a :: int|
< |m|
〈proof 〉

lemma modular-inverse-int-less ′: m 6= 0 =⇒ (modular-inverse m a :: int) < |m|
〈proof 〉

end

13 Comprehensive number theory
theory Number-Theory
imports

Fib
Residues
Eratosthenes
Mod-Exp
Quadratic-Reciprocity
Pocklington
Prime-Powers
Residue-Primitive-Roots
Modular-Inverse

begin

end

63

	The fibonacci function
	Fibonacci numbers
	Basic Properties
	More efficient code
	A Few Elementary Results
	Law 6.111 of Concrete Mathematics
	Closed form
	Divide-and-Conquer recurrence
	Fibonacci and Binomial Coefficients

	Congruence
	Generic congruences
	Congruences on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 int

	Fundamental facts about Euler's totient function
	Residue rings
	A locale for residue rings
	Prime residues

	Test cases: Euler's theorem and Wilson's theorem
	Euler's theorem
	Wilson's theorem
	Upper bound for the number of n-th roots

	The sieve of Eratosthenes
	Preliminary: strict divisibility
	Main corpus
	Application: smallest prime beyond a certain number

	Fast modular exponentiation
	Gauss' Lemma
	Basic properties of p
	Basic Properties of the Gauss Sets
	Relationships Between Gauss Sets
	Gauss' Lemma

	Pocklington's Theorem for Primes
	Lemmas about previously defined terms
	Some basic theorems about solving congruences
	Lucas's theorem
	Definition of the order of a number mod 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 n
	Another trivial primality characterization
	Pocklington theorem
	Prime factorizations

	Prime powers
	Primitive roots in residue rings and Carmichael's function
	Primitive roots in residue rings
	Primitive roots modulo a prime
	Primitive roots modulo powers of an odd prime
	Carmichael's function
	Existence of primitive roots for general moduli

	Modular Inverses
	Comprehensive number theory

