
Various results of number theory

January 18, 2026

Contents
1 The fibonacci function 3

1.1 Fibonacci numbers . 3
1.2 Basic Properties . 3
1.3 More efficient code . 3
1.4 A Few Elementary Results . 4
1.5 Law 6.111 of Concrete Mathematics 4
1.6 Closed form . 5
1.7 Divide-and-Conquer recurrence 7
1.8 Fibonacci and Binomial Coefficients 8

2 Congruence 9
2.1 Generic congruences . 9
2.2 Congruences on nat and int 15

3 Fundamental facts about Euler’s totient function 26

4 Residue rings 38
4.1 A locale for residue rings . 40
4.2 Prime residues . 44

5 Test cases: Euler’s theorem and Wilson’s theorem 45
5.1 Euler’s theorem . 45
5.2 Wilson’s theorem . 46
5.3 Upper bound for the number of n-th roots 49

6 The sieve of Eratosthenes 50
6.1 Preliminary: strict divisibility 50
6.2 Main corpus . 50
6.3 Application: smallest prime beyond a certain number 56

7 Fast modular exponentiation 58

1

8 Gauss’ Lemma 64
8.1 Basic properties of p . 65
8.2 Basic Properties of the Gauss Sets 66
8.3 Relationships Between Gauss Sets 69
8.4 Gauss’ Lemma . 71

9 Pocklington’s Theorem for Primes 82
9.1 Lemmas about previously defined terms 83
9.2 Some basic theorems about solving congruences 83
9.3 Lucas’s theorem . 85
9.4 Definition of the order of a number mod n 88
9.5 Another trivial primality characterization 100
9.6 Pocklington theorem . 102
9.7 Prime factorizations . 106

10 Prime powers 109

11 Primitive roots in residue rings and Carmichael’s function 120
11.1 Primitive roots in residue rings 120
11.2 Primitive roots modulo a prime 121
11.3 Primitive roots modulo powers of an odd prime 124
11.4 Carmichael’s function . 130
11.5 Existence of primitive roots for general moduli 138

12 Modular Inverses 143

13 Comprehensive number theory 146

2

Cong Eratosthenes

Euler_Criterion

Fib

Gauss

Mod_Exp Modular_Inverse

Number_Theory

Pocklington

Prime_Powers

Quadratic_Reciprocity

Residue_Primitive_Roots

Residues

Totient

[HOL-Algebra]

[HOL-Computational_Algebra]

[HOL-Library]

[HOL]

[Pure]

[Tools]

3

1 The fibonacci function
theory Fib

imports Complex-Main
begin

1.1 Fibonacci numbers
fun fib :: nat ⇒ nat

where
fib0 : fib 0 = 0
| fib1 : fib (Suc 0) = 1
| fib2 : fib (Suc (Suc n)) = fib (Suc n) + fib n

1.2 Basic Properties
lemma fib-1 [simp]: fib 1 = 1

by (metis One-nat-def fib1)

lemma fib-2 [simp]: fib 2 = 1
using fib.simps(3) [of 0] by (simp add: numeral-2-eq-2)

lemma fib-plus-2 : fib (n + 2) = fib (n + 1) + fib n
by (metis Suc-eq-plus1 add-2-eq-Suc ′ fib.simps(3))

lemma fib-add: fib (Suc (n + k)) = fib (Suc k) ∗ fib (Suc n) + fib k ∗ fib n
by (induct n rule: fib.induct) (auto simp add: field-simps)

lemma fib-neq-0-nat: n > 0 =⇒ fib n > 0
by (induct n rule: fib.induct) auto

lemma fib-Suc-mono: fib m ≤ fib (Suc m)
by(induction m) auto

lemma fib-mono: m ≤ n =⇒ fib m ≤ fib n
by (simp add: fib-Suc-mono lift-Suc-mono-le)

1.3 More efficient code

The naive approach is very inefficient since the branching recursion leads to
many values of fib being computed multiple times. We can avoid this by
“remembering” the last two values in the sequence, yielding a tail-recursive
version. This is far from optimal (it takes roughly O(n ·M(n)) time where
M(n) is the time required to multiply two n-bit integers), but much better
than the naive version, which is exponential.
fun gen-fib :: nat ⇒ nat ⇒ nat ⇒ nat

where
gen-fib a b 0 = a
| gen-fib a b (Suc 0) = b

4

| gen-fib a b (Suc (Suc n)) = gen-fib b (a + b) (Suc n)

lemma gen-fib-recurrence: gen-fib a b (Suc (Suc n)) = gen-fib a b n + gen-fib a b
(Suc n)

by (induct a b n rule: gen-fib.induct) simp-all

lemma gen-fib-fib: gen-fib (fib n) (fib (Suc n)) m = fib (n + m)
by (induct m rule: fib.induct) (simp-all del: gen-fib.simps(3) add: gen-fib-recurrence)

lemma fib-conv-gen-fib: fib n = gen-fib 0 1 n
using gen-fib-fib[of 0 n] by simp

declare fib-conv-gen-fib [code]

1.4 A Few Elementary Results

Concrete Mathematics, page 278: Cassini’s identity. The proof is much easier
using integers, not natural numbers!
lemma fib-Cassini-int: int (fib (Suc (Suc n)) ∗ fib n) − int((fib (Suc n))2) = −
((−1)^n)
by (induct n rule: fib.induct) (auto simp add: field-simps power2-eq-square power-add)

lemma fib-Cassini-nat:
fib (Suc (Suc n)) ∗ fib n =

(if even n then (fib (Suc n))2 − 1 else (fib (Suc n))2 + 1)
using fib-Cassini-int [of n] by (auto simp del: of-nat-mult of-nat-power)

1.5 Law 6.111 of Concrete Mathematics
lemma coprime-fib-Suc-nat: coprime (fib n) (fib (Suc n))

apply (induct n rule: fib.induct)
apply (simp-all add: coprime-iff-gcd-eq-1 algebra-simps)

apply (simp add: add.assoc [symmetric])
done

lemma gcd-fib-add:
gcd (fib m) (fib (n + m)) = gcd (fib m) (fib n)

proof (cases m)
case 0
then show ?thesis

by simp
next

case (Suc q)
from coprime-fib-Suc-nat [of q]
have coprime (fib (Suc q)) (fib q)

by (simp add: ac-simps)
have gcd (fib q) (fib (Suc q)) = Suc 0

using coprime-fib-Suc-nat [of q] by simp

5

then have ∗: gcd (fib n ∗ fib q) (fib n ∗ fib (Suc q)) = fib n
by (simp add: gcd-mult-distrib-nat [symmetric])

moreover have gcd (fib (Suc q)) (fib n ∗ fib q + fib (Suc n) ∗ fib (Suc q)) =
gcd (fib (Suc q)) (fib n ∗ fib q)
using gcd-add-mult [of fib (Suc q)] by (simp add: ac-simps)

moreover have gcd (fib (Suc q)) (fib n ∗ fib (Suc q)) = fib (Suc q)
by simp

ultimately show ?thesis
using Suc ‹coprime (fib (Suc q)) (fib q)›
by (auto simp add: fib-add algebra-simps gcd-mult-right-right-cancel)

qed

lemma gcd-fib-diff : m ≤ n =⇒ gcd (fib m) (fib (n − m)) = gcd (fib m) (fib n)
by (simp add: gcd-fib-add [symmetric, of - n−m])

lemma gcd-fib-mod: 0 < m =⇒ gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)
proof (induct n rule: less-induct)

case (less n)
show gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)
proof (cases m < n)

case True
then have m ≤ n by auto
with ‹0 < m› have 0 < n by auto
with ‹0 < m› ‹m < n› have ∗: n − m < n by auto
have gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib ((n − m) mod m))

by (simp add: mod-if [of n]) (use ‹m < n› in auto)
also have . . . = gcd (fib m) (fib (n − m))

by (simp add: less.hyps ∗ ‹0 < m›)
also have . . . = gcd (fib m) (fib n)

by (simp add: gcd-fib-diff ‹m ≤ n›)
finally show gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n) .

next
case False
then show gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)

by (cases m = n) auto
qed

qed

lemma fib-gcd: fib (gcd m n) = gcd (fib m) (fib n) — Law 6.111
by (induct m n rule: gcd-nat-induct) (simp-all add: gcd-non-0-nat gcd.commute

gcd-fib-mod)

theorem fib-mult-eq-sum-nat: fib (Suc n) ∗ fib n = (
∑

k ∈ {..n}. fib k ∗ fib k)
by (induct n rule: nat.induct) (auto simp add: field-simps)

1.6 Closed form
lemma fib-closed-form:

fixes ϕ ψ :: real

6

defines ϕ ≡ (1 + sqrt 5) / 2
and ψ ≡ (1 − sqrt 5) / 2

shows of-nat (fib n) = (ϕ ^ n − ψ ^ n) / sqrt 5
proof (induct n rule: fib.induct)

fix n :: nat
assume IH1 : of-nat (fib n) = (ϕ ^ n − ψ ^ n) / sqrt 5
assume IH2 : of-nat (fib (Suc n)) = (ϕ ^ Suc n − ψ ^ Suc n) / sqrt 5
have of-nat (fib (Suc (Suc n))) = of-nat (fib (Suc n)) + of-nat (fib n) by simp
also have . . . = (ϕ^n ∗ (ϕ + 1) − ψ^n ∗ (ψ + 1)) / sqrt 5

by (simp add: IH1 IH2 field-simps)
also have ϕ + 1 = ϕ2 by (simp add: ϕ-def field-simps power2-eq-square)
also have ψ + 1 = ψ2 by (simp add: ψ-def field-simps power2-eq-square)
also have ϕ^n ∗ ϕ2 − ψ^n ∗ ψ2 = ϕ ^ Suc (Suc n) − ψ ^ Suc (Suc n)

by (simp add: power2-eq-square)
finally show of-nat (fib (Suc (Suc n))) = (ϕ ^ Suc (Suc n) − ψ ^ Suc (Suc n))

/ sqrt 5 .
qed (simp-all add: ϕ-def ψ-def field-simps)

lemma fib-closed-form ′:
fixes ϕ ψ :: real
defines ϕ ≡ (1 + sqrt 5) / 2

and ψ ≡ (1 − sqrt 5) / 2
assumes n > 0
shows fib n = round (ϕ ^ n / sqrt 5)

proof (rule sym, rule round-unique ′)
have |ϕ ^ n / sqrt 5 − of-int (int (fib n))| = |ψ| ^ n / sqrt 5

by (simp add: fib-closed-form[folded ϕ-def ψ-def] field-simps power-abs)
also {

from assms have |ψ|^n ≤ |ψ|^1
by (intro power-decreasing) (simp-all add: algebra-simps real-le-lsqrt)

also have . . . < sqrt 5 / 2 by (simp add: ψ-def field-simps)
finally have |ψ|^n / sqrt 5 < 1/2 by (simp add: field-simps)

}
finally show |ϕ ^ n / sqrt 5 − of-int (int (fib n))| < 1/2 .

qed

lemma fib-asymptotics:
fixes ϕ :: real
defines ϕ ≡ (1 + sqrt 5) / 2
shows (λn. real (fib n) / (ϕ ^ n / sqrt 5)) −−−−→ 1

proof −
define ψ :: real where ψ ≡ (1 − sqrt 5) / 2
have ϕ > 1 by (simp add: ϕ-def)
then have ∗: ϕ 6= 0 by auto
have (λn. (ψ / ϕ) ^ n) −−−−→ 0
by (rule LIMSEQ-power-zero) (simp-all add: ϕ-def ψ-def field-simps add-pos-pos)

then have (λn. 1 − (ψ / ϕ) ^ n) −−−−→ 1 − 0
by (intro tendsto-diff tendsto-const)

with ∗ have (λn. (ϕ ^ n − ψ ^ n) / ϕ ^ n) −−−−→ 1

7

by (simp add: field-simps)
then show ?thesis

by (simp add: fib-closed-form ϕ-def ψ-def)
qed

1.7 Divide-and-Conquer recurrence

The following divide-and-conquer recurrence allows for a more efficient com-
putation of Fibonacci numbers; however, it requires memoisation of values
to be reasonably efficient, cutting the number of values to be computed to
logarithmically many instead of linearly many. The vast majority of the
computation time is then actually spent on the multiplication, since the
output number is exponential in the input number.
lemma fib-rec-odd:

fixes ϕ ψ :: real
defines ϕ ≡ (1 + sqrt 5) / 2

and ψ ≡ (1 − sqrt 5) / 2
shows fib (Suc (2 ∗ n)) = fib n^2 + fib (Suc n)^2

proof −
have of-nat (fib n^2 + fib (Suc n)^2) = ((ϕ ^ n − ψ ^ n)2 + (ϕ ∗ ϕ ^ n − ψ
∗ ψ ^ n)2)/5

by (simp add: fib-closed-form[folded ϕ-def ψ-def] field-simps power2-eq-square)
also
let ?A = ϕ^(2 ∗ n) + ψ^(2 ∗ n) − 2∗(ϕ ∗ ψ)^n + ϕ^(2 ∗ n + 2) + ψ^(2 ∗ n

+ 2) − 2∗(ϕ ∗ ψ)^(n + 1)
have (ϕ ^ n − ψ ^ n)2 + (ϕ ∗ ϕ ^ n − ψ ∗ ψ ^ n)2 = ?A

by (simp add: power2-eq-square algebra-simps power-mult power-mult-distrib)
also have ϕ ∗ ψ = −1

by (simp add: ϕ-def ψ-def field-simps)
then have ?A = ϕ^(2 ∗ n + 1) ∗ (ϕ + inverse ϕ) + ψ^(2 ∗ n + 1) ∗ (ψ +

inverse ψ)
by (auto simp: field-simps power2-eq-square)

also have 1 + sqrt 5 > 0
by (auto intro: add-pos-pos)

then have ϕ + inverse ϕ = sqrt 5
by (simp add: ϕ-def field-simps)

also have ψ + inverse ψ = −sqrt 5
by (simp add: ψ-def field-simps)

also have (ϕ ^ (2 ∗ n + 1) ∗ sqrt 5 + ψ ^ (2 ∗ n + 1) ∗ − sqrt 5) / 5 =
(ϕ ^ (2 ∗ n + 1) − ψ ^ (2 ∗ n + 1)) ∗ (sqrt 5 / 5)
by (simp add: field-simps)

also have sqrt 5 / 5 = inverse (sqrt 5)
by (simp add: field-simps)

also have (ϕ ^ (2 ∗ n + 1) − ψ ^ (2 ∗ n + 1)) ∗ . . . = of-nat (fib (Suc (2 ∗
n)))

by (simp add: fib-closed-form[folded ϕ-def ψ-def] divide-inverse)
finally show ?thesis

by (simp only: of-nat-eq-iff)

8

qed

lemma fib-rec-even: fib (2 ∗ n) = (fib (n − 1) + fib (n + 1)) ∗ fib n
proof (induct n)

case 0
then show ?case by simp

next
case (Suc n)
let ?rfib = λx. real (fib x)
have 2 ∗ (Suc n) = Suc (Suc (2 ∗ n)) by simp
also have real (fib . . .) = ?rfib n^2 + ?rfib (Suc n)^2 + (?rfib (n − 1) + ?rfib

(n + 1)) ∗ ?rfib n
by (simp add: fib-rec-odd Suc)

also have (?rfib (n − 1) + ?rfib (n + 1)) ∗ ?rfib n = (2 ∗ ?rfib (n + 1) − ?rfib
n) ∗ ?rfib n

by (cases n) simp-all
also have ?rfib n^2 + ?rfib (Suc n)^2 + . . . = (?rfib (Suc n) + 2 ∗ ?rfib n) ∗

?rfib (Suc n)
by (simp add: algebra-simps power2-eq-square)

also have . . . = real ((fib (Suc n − 1) + fib (Suc n + 1)) ∗ fib (Suc n)) by
simp

finally show ?case by (simp only: of-nat-eq-iff)
qed

lemma fib-rec-even ′: fib (2 ∗ n) = (2 ∗ fib (n − 1) + fib n) ∗ fib n
by (subst fib-rec-even, cases n) simp-all

lemma fib-rec:
fib n =
(if n = 0 then 0 else if n = 1 then 1
else if even n then let n ′ = n div 2 ; fn = fib n ′ in (2 ∗ fib (n ′ − 1) + fn) ∗ fn
else let n ′ = n div 2 in fib n ′ ^ 2 + fib (Suc n ′) ^ 2)

by (auto elim: evenE oddE simp: fib-rec-odd fib-rec-even ′ Let-def)

1.8 Fibonacci and Binomial Coefficients
lemma sum-drop-zero: (

∑
k = 0 ..Suc n. if 0<k then (f (k − 1)) else 0) = (

∑
j

= 0 ..n. f j)
by (induct n) auto

lemma sum-choose-drop-zero:
(
∑

k = 0 ..Suc n. if k = 0 then 0 else (Suc n − k) choose (k − 1)) =
(
∑

j = 0 ..n. (n−j) choose j)
by (rule trans [OF sum.cong sum-drop-zero]) auto

lemma ne-diagonal-fib: (
∑

k = 0 ..n. (n−k) choose k) = fib (Suc n)
proof (induct n rule: fib.induct)

case 1
show ?case by simp

9

next
case 2
show ?case by simp

next
case (3 n)
have (

∑
k = 0 ..Suc n. Suc (Suc n) − k choose k) =

(
∑

k = 0 ..Suc n. (Suc n − k choose k) + (if k = 0 then 0 else (Suc n − k
choose (k − 1))))

by (rule sum.cong) (simp-all add: choose-reduce-nat)
also have . . . =
(
∑

k = 0 ..Suc n. Suc n − k choose k) +
(
∑

k = 0 ..Suc n. if k=0 then 0 else (Suc n − k choose (k − 1)))
by (simp add: sum.distrib)

also have . . . = (
∑

k = 0 ..Suc n. Suc n − k choose k) + (
∑

j = 0 ..n. n − j
choose j)

by (metis sum-choose-drop-zero)
finally show ?case using 3

by simp
qed

end

2 Congruence
theory Cong

imports HOL−Computational-Algebra.Primes
begin

2.1 Generic congruences
context unique-euclidean-semiring
begin

definition cong :: ′a ⇒ ′a ⇒ ′a ⇒ bool
(‹(‹indent=1 notation=‹mixfix cong››[- = -] ′(′ mod - ′))›)

where [b = c] (mod a) ←→ b mod a = c mod a

abbreviation notcong :: ′a ⇒ ′a ⇒ ′a ⇒ bool
(‹(‹indent=1 notation=‹mixfix notcong››[- 6= -] ′(′ mod - ′))›)

where [b 6= c] (mod a) ≡ ¬ cong b c a

lemma cong-refl [simp]:
[b = b] (mod a)
by (simp add: cong-def)

lemma cong-sym:
[b = c] (mod a) =⇒ [c = b] (mod a)
by (simp add: cong-def)

10

lemma cong-sym-eq:
[b = c] (mod a) ←→ [c = b] (mod a)
by (auto simp add: cong-def)

lemma cong-trans [trans]:
[b = c] (mod a) =⇒ [c = d] (mod a) =⇒ [b = d] (mod a)
by (simp add: cong-def)

lemma cong-mult-self-right:
[b ∗ a = 0] (mod a)
by (simp add: cong-def)

lemma cong-mult-self-left:
[a ∗ b = 0] (mod a)
by (simp add: cong-def)

lemma cong-mod-left [simp]:
[b mod a = c] (mod a) ←→ [b = c] (mod a)
by (simp add: cong-def)

lemma cong-mod-right [simp]:
[b = c mod a] (mod a) ←→ [b = c] (mod a)
by (simp add: cong-def)

lemma cong-0 [simp, presburger]:
[b = c] (mod 0) ←→ b = c
by (simp add: cong-def)

lemma cong-1 [simp, presburger]:
[b = c] (mod 1)
by (simp add: cong-def)

lemma cong-dvd-iff :
a dvd b ←→ a dvd c if [b = c] (mod a)
using that by (auto simp: cong-def dvd-eq-mod-eq-0)

lemma cong-0-iff : [b = 0] (mod a) ←→ a dvd b
by (simp add: cong-def dvd-eq-mod-eq-0)

lemma cong-add:
[b = c] (mod a) =⇒ [d = e] (mod a) =⇒ [b + d = c + e] (mod a)
by (auto simp add: cong-def intro: mod-add-cong)

lemma cong-mult:
[b = c] (mod a) =⇒ [d = e] (mod a) =⇒ [b ∗ d = c ∗ e] (mod a)
by (auto simp add: cong-def intro: mod-mult-cong)

lemma cong-scalar-right:
[b = c] (mod a) =⇒ [b ∗ d = c ∗ d] (mod a)

11

by (simp add: cong-mult)

lemma cong-scalar-left:
[b = c] (mod a) =⇒ [d ∗ b = d ∗ c] (mod a)
by (simp add: cong-mult)

lemma cong-pow:
[b = c] (mod a) =⇒ [b ^ n = c ^ n] (mod a)
by (simp add: cong-def power-mod [symmetric, of b n a] power-mod [symmetric,

of c n a])

lemma cong-sum:
[sum f A = sum g A] (mod a) if

∧
x. x ∈ A =⇒ [f x = g x] (mod a)

using that by (induct A rule: infinite-finite-induct) (auto intro: cong-add)

lemma cong-prod:
[prod f A = prod g A] (mod a) if (

∧
x. x ∈ A =⇒ [f x = g x] (mod a))

using that by (induct A rule: infinite-finite-induct) (auto intro: cong-mult)

lemma mod-mult-cong-right:
[c mod (a ∗ b) = d] (mod a) ←→ [c = d] (mod a)
by (simp add: cong-def mod-mod-cancel mod-add-left-eq)

lemma mod-mult-cong-left:
[c mod (b ∗ a) = d] (mod a) ←→ [c = d] (mod a)
using mod-mult-cong-right [of c a b d] by (simp add: ac-simps)

lemma cong-mod-leftI [simp]:
[b = c] (mod a) =⇒ [b mod a = c] (mod a)
by (simp add: cong-def)

lemma cong-mod-rightI [simp]:
[b = c] (mod a) =⇒ [b = c mod a] (mod a)
by (simp add: cong-def)

lemma cong-cmult-leftI : [a = b] (mod m) =⇒ [c ∗ a = c ∗ b] (mod (c ∗ m))
by (metis cong-def local.mult-mod-right)

lemma cong-cmult-rightI : [a = b] (mod m) =⇒ [a ∗ c = b ∗ c] (mod (m ∗ c))
using cong-cmult-leftI [of a b m c] by (simp add: mult.commute)

lemma cong-dvd-mono-modulus:
assumes [a = b] (mod m) m ′ dvd m
shows [a = b] (mod m ′)
using assms by (metis cong-def local.mod-mod-cancel)

lemma coprime-cong-transfer-left:
assumes coprime a b [a = a ′] (mod b)
shows coprime a ′ b

12

using assms by (metis cong-0 cong-def local.coprime-mod-left-iff)

lemma coprime-cong-transfer-right:
assumes coprime a b [b = b ′] (mod a)
shows coprime a b ′

using coprime-cong-transfer-left[of b a b ′] assms
by (simp add: coprime-commute)

lemma coprime-cong-cong-left:
assumes [a = a ′] (mod b)
shows coprime a b ←→ coprime a ′ b
using assms cong-sym-eq coprime-cong-transfer-left by blast

lemma coprime-cong-cong-right:
assumes [b = b ′] (mod a)
shows coprime a b ←→ coprime a b ′

using coprime-cong-cong-left[OF assms] by (simp add: coprime-commute)

end

context unique-euclidean-ring
begin

lemma cong-diff :
[b = c] (mod a) =⇒ [d = e] (mod a) =⇒ [b − d = c − e] (mod a)
by (auto simp add: cong-def intro: mod-diff-cong)

lemma cong-diff-iff-cong-0 :
[b − c = 0] (mod a) ←→ [b = c] (mod a) (is ?P ←→ ?Q)

proof
assume ?P
then have [b − c + c = 0 + c] (mod a)

by (rule cong-add) simp
then show ?Q

by simp
next

assume ?Q
with cong-diff [of b c a c c] show ?P

by simp
qed

lemma cong-minus-minus-iff :
[− b = − c] (mod a) ←→ [b = c] (mod a)
using cong-diff-iff-cong-0 [of b c a] cong-diff-iff-cong-0 [of − b − c a]
by (simp add: cong-0-iff dvd-diff-commute)

lemma cong-modulus-minus-iff [iff]:
[b = c] (mod − a) ←→ [b = c] (mod a)
using cong-diff-iff-cong-0 [of b c a] cong-diff-iff-cong-0 [of b c −a]

13

by (simp add: cong-0-iff)

lemma cong-iff-dvd-diff :
[a = b] (mod m) ←→ m dvd (a − b)
by (simp add: cong-0-iff [symmetric] cong-diff-iff-cong-0)

lemma cong-iff-lin:
[a = b] (mod m) ←→ (∃ k. b = a + m ∗ k) (is ?P ←→ ?Q)

proof −
have ?P ←→ m dvd b − a

by (simp add: cong-iff-dvd-diff dvd-diff-commute)
also have . . . ←→ ?Q

by (auto simp add: algebra-simps elim!: dvdE)
finally show ?thesis

by simp
qed

lemma cong-add-lcancel:
[a + x = a + y] (mod n) ←→ [x = y] (mod n)
by (simp add: cong-iff-lin algebra-simps)

lemma cong-add-rcancel:
[x + a = y + a] (mod n) ←→ [x = y] (mod n)
by (simp add: cong-iff-lin algebra-simps)

lemma cong-add-lcancel-0 :
[a + x = a] (mod n) ←→ [x = 0] (mod n)
using cong-add-lcancel [of a x 0 n] by simp

lemma cong-add-rcancel-0 :
[x + a = a] (mod n) ←→ [x = 0] (mod n)
using cong-add-rcancel [of x a 0 n] by simp

lemma cong-dvd-modulus:
[x = y] (mod n) if [x = y] (mod m) and n dvd m
using that by (auto intro: dvd-trans simp add: cong-iff-dvd-diff)

lemma cong-modulus-mult:
[x = y] (mod m) if [x = y] (mod m ∗ n)
using that by (simp add: cong-iff-dvd-diff) (rule dvd-mult-left)

lemma cong-uminus: [x = y] (mod m) =⇒ [−x = −y] (mod m)
unfolding cong-minus-minus-iff .

end

lemma cong-abs [simp]:
[x = y] (mod |m|) ←→ [x = y] (mod m)
for x y :: ′a :: {unique-euclidean-ring, linordered-idom}

14

by (simp add: cong-iff-dvd-diff)

lemma cong-square:
prime p =⇒ 0 < a =⇒ [a ∗ a = 1] (mod p) =⇒ [a = 1] (mod p) ∨ [a = − 1]

(mod p)
for a p :: ′a :: {normalization-semidom, linordered-idom, unique-euclidean-ring}
by (auto simp add: cong-iff-dvd-diff square-diff-one-factored dest: prime-dvd-multD)

lemma cong-mult-rcancel:
[a ∗ k = b ∗ k] (mod m) ←→ [a = b] (mod m)
if coprime k m for a k m :: ′a::{unique-euclidean-ring, ring-gcd}
using that by (auto simp add: cong-iff-dvd-diff left-diff-distrib [symmetric] ac-simps

coprime-dvd-mult-right-iff)

lemma cong-mult-lcancel:
[k ∗ a = k ∗ b] (mod m) = [a = b] (mod m)
if coprime k m for a k m :: ′a::{unique-euclidean-ring, ring-gcd}
using that cong-mult-rcancel [of k m a b] by (simp add: ac-simps)

lemma coprime-cong-mult:
[a = b] (mod m) =⇒ [a = b] (mod n) =⇒ coprime m n =⇒ [a = b] (mod m ∗ n)
for a b :: ′a :: {unique-euclidean-ring, semiring-gcd}
by (simp add: cong-iff-dvd-diff divides-mult)

lemma cong-gcd-eq:
gcd a m = gcd b m if [a = b] (mod m)
for a b :: ′a :: {unique-euclidean-semiring, euclidean-semiring-gcd}

proof (cases m = 0)
case True
with that show ?thesis

by simp
next

case False
moreover have gcd (a mod m) m = gcd (b mod m) m

using that by (simp add: cong-def)
ultimately show ?thesis

by simp
qed

lemma cong-imp-coprime:
[a = b] (mod m) =⇒ coprime a m =⇒ coprime b m
for a b :: ′a :: {unique-euclidean-semiring, euclidean-semiring-gcd}
by (auto simp add: coprime-iff-gcd-eq-1 dest: cong-gcd-eq)

lemma cong-cong-prod-coprime:
[x = y] (mod (

∏
i∈A. m i)) if

(∀ i∈A. [x = y] (mod m i))
(∀ i∈A. (∀ j∈A. i 6= j −→ coprime (m i) (m j)))

for x y :: ′a :: {unique-euclidean-ring, semiring-gcd}

15

using that by (induct A rule: infinite-finite-induct)
(auto intro!: coprime-cong-mult prod-coprime-right)

2.2 Congruences on nat and int
lemma cong-int-iff :
[int m = int q] (mod int n) ←→ [m = q] (mod n)
by (simp add: cong-def of-nat-mod [symmetric])

lemma cong-Suc-0 [simp, presburger]:
[m = n] (mod Suc 0)
using cong-1 [of m n] by simp

lemma cong-diff-nat:
[a − c = b − d] (mod m) if [a = b] (mod m) [c = d] (mod m)

and a ≥ c b ≥ d for a b c d m :: nat
proof −

have [c + (a − c) = d + (b − d)] (mod m)
using that by simp

with ‹[c = d] (mod m)› have [c + (a − c) = c + (b − d)] (mod m)
using mod-add-cong by (auto simp add: cong-def) fastforce

then show ?thesis
by (simp add: cong-def nat-mod-eq-iff)

qed

lemma cong-diff-iff-cong-0-nat:
[a − b = 0] (mod m) ←→ [a = b] (mod m) if a ≥ b for a b :: nat
using that by (simp add: cong-0-iff) (simp add: cong-def mod-eq-dvd-iff-nat)

lemma cong-diff-iff-cong-0-nat ′:
[nat |int a − int b| = 0] (mod m) ←→ [a = b] (mod m)

proof (cases b ≤ a)
case True
then show ?thesis

by (simp add: nat-diff-distrib ′ cong-diff-iff-cong-0-nat [of b a m])
next

case False
then have a ≤ b

by simp
then show ?thesis

by (simp add: nat-diff-distrib ′ cong-diff-iff-cong-0-nat [of a b m])
(auto simp add: cong-def)

qed

lemma cong-altdef-nat:
a ≥ b =⇒ [a = b] (mod m) ←→ m dvd (a − b)
for a b :: nat
by (simp add: cong-0-iff [symmetric] cong-diff-iff-cong-0-nat)

16

lemma cong-altdef-nat ′:
[a = b] (mod m) ←→ m dvd nat |int a − int b|
using cong-diff-iff-cong-0-nat ′ [of a b m]
by (simp only: cong-0-iff [symmetric])

lemma cong-mult-rcancel-nat:
[a ∗ k = b ∗ k] (mod m) ←→ [a = b] (mod m)
if coprime k m for a k m :: nat

proof −
have [a ∗ k = b ∗ k] (mod m) ←→ m dvd nat |int (a ∗ k) − int (b ∗ k)|

by (simp add: cong-altdef-nat ′)
also have . . . ←→ m dvd nat |(int a − int b) ∗ int k|

by (simp add: algebra-simps)
also have . . . ←→ m dvd nat |int a − int b| ∗ k

by (simp add: abs-mult nat-times-as-int)
also have . . . ←→ m dvd nat |int a − int b|
by (rule coprime-dvd-mult-left-iff) (use ‹coprime k m› in ‹simp add: ac-simps›)

also have . . . ←→ [a = b] (mod m)
by (simp add: cong-altdef-nat ′)

finally show ?thesis .
qed

lemma cong-mult-lcancel-nat:
[k ∗ a = k ∗ b] (mod m) = [a = b] (mod m)
if coprime k m for a k m :: nat
using that by (simp add: cong-mult-rcancel-nat ac-simps)

lemma coprime-cong-mult-nat:
[a = b] (mod m) =⇒ [a = b] (mod n) =⇒ coprime m n =⇒ [a = b] (mod m ∗ n)
for a b :: nat
by (simp add: cong-altdef-nat ′ divides-mult)

lemma cong-less-imp-eq-nat: 0 ≤ a =⇒ a < m =⇒ 0 ≤ b =⇒ b < m =⇒ [a =
b] (mod m) =⇒ a = b

for a b :: nat
by (auto simp add: cong-def)

lemma cong-less-imp-eq-int: 0 ≤ a =⇒ a < m =⇒ 0 ≤ b =⇒ b < m =⇒ [a = b]
(mod m) =⇒ a = b

for a b :: int
by (auto simp add: cong-def)

lemma cong-less-unique-nat: 0 < m =⇒ (∃ !b. 0 ≤ b ∧ b < m ∧ [a = b] (mod
m))

for a m :: nat
by (auto simp: cong-def) (metis mod-mod-trivial mod-less-divisor)

lemma cong-less-unique-int: 0 < m =⇒ (∃ !b. 0 ≤ b ∧ b < m ∧ [a = b] (mod m))
for a m :: int

17

by (auto simp add: cong-def) (metis mod-mod-trivial pos-mod-bound pos-mod-sign)

lemma cong-iff-lin-nat: [a = b] (mod m) ←→ (∃ k1 k2 . b + k1 ∗ m = a + k2 ∗
m)

for a b :: nat
apply (auto simp add: cong-def nat-mod-eq-iff)
apply (metis mult.commute)

apply (metis mult.commute)
done

lemma cong-cong-mod-nat: [a = b] (mod m) ←→ [a mod m = b mod m] (mod m)
for a b :: nat
by simp

lemma cong-cong-mod-int: [a = b] (mod m) ←→ [a mod m = b mod m] (mod m)
for a b :: int
by simp

lemma cong-add-lcancel-nat: [a + x = a + y] (mod n) ←→ [x = y] (mod n)
for a x y :: nat
by (simp add: cong-iff-lin-nat)

lemma cong-add-rcancel-nat: [x + a = y + a] (mod n) ←→ [x = y] (mod n)
for a x y :: nat
by (simp add: cong-iff-lin-nat)

lemma cong-add-lcancel-0-nat: [a + x = a] (mod n) ←→ [x = 0] (mod n)
for a x :: nat
using cong-add-lcancel-nat [of a x 0 n] by simp

lemma cong-add-rcancel-0-nat: [x + a = a] (mod n) ←→ [x = 0] (mod n)
for a x :: nat
using cong-add-rcancel-nat [of x a 0 n] by simp

lemma cong-dvd-modulus-nat: [x = y] (mod m) =⇒ n dvd m =⇒ [x = y] (mod n)
for x y :: nat
by (auto simp add: cong-altdef-nat ′)

lemma cong-to-1-nat:
fixes a :: nat
assumes [a = 1] (mod n)
shows n dvd (a − 1)

proof (cases a = 0)
case True
then show ?thesis by force

next
case False
with assms show ?thesis by (metis cong-altdef-nat leI less-one)

qed

18

lemma cong-0-1-nat ′: [0 = Suc 0] (mod n) ←→ n = Suc 0
by (auto simp: cong-def)

lemma cong-0-1-nat: [0 = 1] (mod n) ←→ n = 1
for n :: nat
by (auto simp: cong-def)

lemma cong-0-1-int: [0 = 1] (mod n) ←→ n = 1 ∨ n = − 1
for n :: int
by (auto simp: cong-def zmult-eq-1-iff)

lemma cong-to-1 ′-nat: [a = 1] (mod n) ←→ a = 0 ∧ n = 1 ∨ (∃m. a = 1 + m
∗ n)

for a :: nat
by (metis add.right-neutral cong-0-1-nat cong-iff-lin-nat cong-to-1-nat

dvd-div-mult-self leI le-add-diff-inverse less-one mult-eq-if)

lemma cong-le-nat: y ≤ x =⇒ [x = y] (mod n) ←→ (∃ q. x = q ∗ n + y)
for x y :: nat
by (auto simp add: cong-altdef-nat le-imp-diff-is-add)

lemma cong-solve-nat:
fixes a :: nat
shows ∃ x. [a ∗ x = gcd a n] (mod n)

proof (cases a = 0 ∨ n = 0)
case True
then show ?thesis

by (force simp add: cong-0-iff cong-sym)
next

case False
then show ?thesis

using bezout-nat [of a n]
by auto (metis cong-add-rcancel-0-nat cong-mult-self-left)

qed

lemma cong-solve-int:
fixes a :: int
shows ∃ x. [a ∗ x = gcd a n] (mod n)

by (metis bezout-int cong-iff-lin mult.commute)

lemma cong-solve-dvd-nat:
fixes a :: nat
assumes gcd a n dvd d
shows ∃ x. [a ∗ x = d] (mod n)

proof −
from cong-solve-nat [of a] obtain x where [a ∗ x = gcd a n](mod n)

by auto
then have [(d div gcd a n) ∗ (a ∗ x) = (d div gcd a n) ∗ gcd a n] (mod n)

19

using cong-scalar-left by blast
also from assms have (d div gcd a n) ∗ gcd a n = d

by (rule dvd-div-mult-self)
also have (d div gcd a n) ∗ (a ∗ x) = a ∗ (d div gcd a n ∗ x)

by auto
finally show ?thesis

by auto
qed

lemma cong-solve-dvd-int:
fixes a::int
assumes b: gcd a n dvd d
shows ∃ x. [a ∗ x = d] (mod n)

proof −
from cong-solve-int [of a] obtain x where [a ∗ x = gcd a n](mod n)

by auto
then have [(d div gcd a n) ∗ (a ∗ x) = (d div gcd a n) ∗ gcd a n] (mod n)

using cong-scalar-left by blast
also from b have (d div gcd a n) ∗ gcd a n = d

by (rule dvd-div-mult-self)
also have (d div gcd a n) ∗ (a ∗ x) = a ∗ (d div gcd a n ∗ x)

by auto
finally show ?thesis

by auto
qed

lemma cong-solve-coprime-nat:
∃ x. [a ∗ x = Suc 0] (mod n) if coprime a n
using that cong-solve-nat [of a n] by auto

lemma cong-solve-coprime-int:
∃ x. [a ∗ x = 1] (mod n) if coprime a n for a n x :: int
using that cong-solve-int [of a n] by (auto simp add: zabs-def split: if-splits)

lemma coprime-iff-invertible-nat:
coprime a m ←→ (∃ x. [a ∗ x = Suc 0] (mod m)) (is ?P ←→ ?Q)

proof
assume ?P then show ?Q

by (auto dest!: cong-solve-coprime-nat)
next

assume ?Q
then obtain b where [a ∗ b = Suc 0] (mod m)

by blast
with coprime-mod-left-iff [of m a ∗ b] show ?P

by (cases m = 0 ∨ m = 1)
(unfold cong-def , auto simp add: cong-def)

qed

lemma coprime-iff-invertible-int:

20

coprime a m ←→ (∃ x. [a ∗ x = 1] (mod m)) (is ?P ←→ ?Q) for m :: int
proof

assume ?P then show ?Q
by (auto dest: cong-solve-coprime-int)

next
assume ?Q
then obtain b where [a ∗ b = 1] (mod m)

by blast
with coprime-mod-left-iff [of m a ∗ b] show ?P

by (cases m = 0 ∨ m = 1)
(unfold cong-def , auto simp add: zmult-eq-1-iff)

qed

lemma coprime-iff-invertible ′-nat:
assumes m > 0
shows coprime a m ←→ (∃ x. 0 ≤ x ∧ x < m ∧ [a ∗ x = Suc 0] (mod m))

proof −
have

∧
b. [[0 < m; [a ∗ b = Suc 0] (mod m)]] =⇒ ∃ b ′<m. [a ∗ b ′ = Suc 0] (mod

m)
by (metis cong-def mod-less-divisor [OF assms] mod-mult-right-eq)

then show ?thesis
using assms coprime-iff-invertible-nat by auto

qed

lemma coprime-iff-invertible ′-int:
fixes m :: int
assumes m > 0
shows coprime a m ←→ (∃ x. 0 ≤ x ∧ x < m ∧ [a ∗ x = 1] (mod m))
using assms by (simp add: coprime-iff-invertible-int)
(metis assms cong-mod-left mod-mult-right-eq pos-mod-bound pos-mod-sign)

lemma cong-cong-lcm-nat: [x = y] (mod a) =⇒ [x = y] (mod b) =⇒ [x = y] (mod
lcm a b)

for x y :: nat
by (meson cong-altdef-nat ′ lcm-least)

lemma cong-cong-lcm-int: [x = y] (mod a) =⇒ [x = y] (mod b) =⇒ [x = y] (mod
lcm a b)

for x y :: int
by (auto simp add: cong-iff-dvd-diff lcm-least)

lemma cong-cong-prod-coprime-nat:
[x = y] (mod (

∏
i∈A. m i)) if

(∀ i∈A. [x = y] (mod m i))
(∀ i∈A. (∀ j∈A. i 6= j −→ coprime (m i) (m j)))

for x y :: nat
using that by (induct A rule: infinite-finite-induct)
(auto intro!: coprime-cong-mult-nat prod-coprime-right)

21

lemma binary-chinese-remainder-nat:
fixes m1 m2 :: nat
assumes a: coprime m1 m2
shows ∃ x. [x = u1] (mod m1) ∧ [x = u2] (mod m2)

proof −
have ∃ b1 b2 . [b1 = 1] (mod m1) ∧ [b1 = 0] (mod m2) ∧ [b2 = 0] (mod m1)
∧ [b2 = 1] (mod m2)

proof −
from cong-solve-coprime-nat [OF a] obtain x1 where 1 : [m1 ∗ x1 = 1] (mod

m2)
by auto

from a have b: coprime m2 m1
by (simp add: ac-simps)

from cong-solve-coprime-nat [OF b] obtain x2 where 2 : [m2 ∗ x2 = 1] (mod
m1)

by auto
have [m1 ∗ x1 = 0] (mod m1)

by (simp add: cong-mult-self-left)
moreover have [m2 ∗ x2 = 0] (mod m2)

by (simp add: cong-mult-self-left)
ultimately show ?thesis

using 1 2 by blast
qed
then obtain b1 b2

where [b1 = 1] (mod m1) and [b1 = 0] (mod m2)
and [b2 = 0] (mod m1) and [b2 = 1] (mod m2)

by blast
let ?x = u1 ∗ b1 + u2 ∗ b2
have [?x = u1 ∗ 1 + u2 ∗ 0] (mod m1)

using ‹[b1 = 1] (mod m1)› ‹[b2 = 0] (mod m1)› cong-add cong-scalar-left by
blast

then have [?x = u1] (mod m1) by simp
have [?x = u1 ∗ 0 + u2 ∗ 1] (mod m2)

using ‹[b1 = 0] (mod m2)› ‹[b2 = 1] (mod m2)› cong-add cong-scalar-left by
blast

then have [?x = u2] (mod m2)
by simp

with ‹[?x = u1] (mod m1)› show ?thesis
by blast

qed

lemma binary-chinese-remainder-int:
fixes m1 m2 :: int
assumes a: coprime m1 m2
shows ∃ x. [x = u1] (mod m1) ∧ [x = u2] (mod m2)

proof −
have ∃ b1 b2 . [b1 = 1] (mod m1) ∧ [b1 = 0] (mod m2) ∧ [b2 = 0] (mod m1)
∧ [b2 = 1] (mod m2)

proof −

22

from cong-solve-coprime-int [OF a] obtain x1 where 1 : [m1 ∗ x1 = 1] (mod
m2)

by auto
from a have b: coprime m2 m1

by (simp add: ac-simps)
from cong-solve-coprime-int [OF b] obtain x2 where 2 : [m2 ∗ x2 = 1] (mod

m1)
by auto

have [m1 ∗ x1 = 0] (mod m1)
by (simp add: cong-mult-self-left)

moreover have [m2 ∗ x2 = 0] (mod m2)
by (simp add: cong-mult-self-left)

ultimately show ?thesis
using 1 2 by blast

qed
then obtain b1 b2

where [b1 = 1] (mod m1) and [b1 = 0] (mod m2)
and [b2 = 0] (mod m1) and [b2 = 1] (mod m2)

by blast
let ?x = u1 ∗ b1 + u2 ∗ b2
have [?x = u1 ∗ 1 + u2 ∗ 0] (mod m1)

using ‹[b1 = 1] (mod m1)› ‹[b2 = 0] (mod m1)› cong-add cong-scalar-left by
blast

then have [?x = u1] (mod m1) by simp
have [?x = u1 ∗ 0 + u2 ∗ 1] (mod m2)

using ‹[b1 = 0] (mod m2)› ‹[b2 = 1] (mod m2)› cong-add cong-scalar-left by
blast

then have [?x = u2] (mod m2) by simp
with ‹[?x = u1] (mod m1)› show ?thesis

by blast
qed

lemma cong-modulus-mult-nat: [x = y] (mod m ∗ n) =⇒ [x = y] (mod m)
for x y :: nat
by (metis cong-def mod-mult-cong-right)

lemma cong-less-modulus-unique-nat: [x = y] (mod m) =⇒ x < m =⇒ y < m =⇒
x = y

for x y :: nat
by (simp add: cong-def)

lemma binary-chinese-remainder-unique-nat:
fixes m1 m2 :: nat
assumes a: coprime m1 m2

and nz: m1 6= 0 m2 6= 0
shows ∃ !x. x < m1 ∗ m2 ∧ [x = u1] (mod m1) ∧ [x = u2] (mod m2)

proof −
obtain y where y1 : [y = u1] (mod m1) and y2 : [y = u2] (mod m2)

using binary-chinese-remainder-nat [OF a] by blast

23

let ?x = y mod (m1 ∗ m2)
from nz have less: ?x < m1 ∗ m2

by auto
have 1 : [?x = u1] (mod m1)

using y1 mod-mult-cong-right by blast
have 2 : [?x = u2] (mod m2)

using y2 mod-mult-cong-left by blast
have z = ?x if z < m1 ∗ m2 [z = u1] (mod m1) [z = u2] (mod m2) for z
proof −

have [?x = z] (mod m1)
by (metis 1 cong-def that(2))

moreover have [?x = z] (mod m2)
by (metis 2 cong-def that(3))

ultimately have [?x = z] (mod m1 ∗ m2)
using a by (auto intro: coprime-cong-mult-nat simp add: mod-mult-cong-left

mod-mult-cong-right)
with ‹z < m1 ∗ m2 › ‹?x < m1 ∗ m2 › show z = ?x

by (auto simp add: cong-def)
qed
with less 1 2 show ?thesis

by blast
qed

lemma chinese-remainder-nat:
fixes A :: ′a set

and m :: ′a ⇒ nat
and u :: ′a ⇒ nat

assumes fin: finite A
and cop: ∀ i ∈ A. ∀ j ∈ A. i 6= j −→ coprime (m i) (m j)

shows ∃ x. ∀ i ∈ A. [x = u i] (mod m i)
proof −

have ∃ b. (∀ i ∈ A. [b i = 1] (mod m i) ∧ [b i = 0] (mod (
∏

j ∈ A − {i}. m j)))
proof (rule finite-set-choice, rule fin, rule ballI)

fix i
assume i ∈ A
with cop have coprime (

∏
j ∈ A − {i}. m j) (m i)

by (intro prod-coprime-left) auto
then have ∃ x. [(

∏
j ∈ A − {i}. m j) ∗ x = Suc 0] (mod m i)

by (elim cong-solve-coprime-nat)
then obtain x where [(

∏
j ∈ A − {i}. m j) ∗ x = 1] (mod m i)

by auto
moreover have [(

∏
j ∈ A − {i}. m j) ∗ x = 0] (mod (

∏
j ∈ A − {i}. m j))

by (simp add: cong-0-iff)
ultimately show ∃ a. [a = 1] (mod m i) ∧ [a = 0] (mod prod m (A − {i}))

by blast
qed
then obtain b where b:

∧
i. i ∈ A =⇒ [b i = 1] (mod m i) ∧ [b i = 0] (mod

(
∏

j ∈ A − {i}. m j))
by blast

24

let ?x =
∑

i∈A. (u i) ∗ (b i)
show ?thesis
proof (rule exI , clarify)

fix i
assume a: i ∈ A
show [?x = u i] (mod m i)
proof −

from fin a have ?x = (
∑

j ∈ {i}. u j ∗ b j) + (
∑

j ∈ A − {i}. u j ∗ b j)
by (subst sum.union-disjoint [symmetric]) (auto intro: sum.cong)

then have [?x = u i ∗ b i + (
∑

j ∈ A − {i}. u j ∗ b j)] (mod m i)
by auto

also have [u i ∗ b i + (
∑

j ∈ A − {i}. u j ∗ b j) =
u i ∗ 1 + (

∑
j ∈ A − {i}. u j ∗ 0)] (mod m i)

proof (intro cong-add cong-scalar-left cong-sum)
show [b i = 1] (mod m i)

using a b by blast
show [b x = 0] (mod m i) if x ∈ A − {i} for x
proof −

have x ∈ A x 6= i
using that by auto

then show ?thesis
using a b [OF ‹x ∈ A›] cong-dvd-modulus-nat fin by blast

qed
qed
finally show ?thesis

by simp
qed

qed
qed

lemma coprime-cong-prod-nat: [x = y] (mod (
∏

i∈A. m i))
if

∧
i j. [[i ∈ A; j ∈ A; i 6= j]] =⇒ coprime (m i) (m j)

and
∧

i. i ∈ A =⇒ [x = y] (mod m i) for x y :: nat
using that

proof (induct A rule: infinite-finite-induct)
case (insert x A)
then show ?case

by simp (metis coprime-cong-mult-nat prod-coprime-right)
qed auto

lemma chinese-remainder-unique-nat:
fixes A :: ′a set

and m :: ′a ⇒ nat
and u :: ′a ⇒ nat

assumes fin: finite A
and nz: ∀ i∈A. m i 6= 0
and cop: ∀ i∈A. ∀ j∈A. i 6= j −→ coprime (m i) (m j)

shows ∃ !x. x < (
∏

i∈A. m i) ∧ (∀ i∈A. [x = u i] (mod m i))
proof −

25

from chinese-remainder-nat [OF fin cop]
obtain y where one: (∀ i∈A. [y = u i] (mod m i))

by blast
let ?x = y mod (

∏
i∈A. m i)

from fin nz have prodnz: (
∏

i∈A. m i) 6= 0
by auto

then have less: ?x < (
∏

i∈A. m i)
by auto

have cong: ∀ i∈A. [?x = u i] (mod m i)
using fin one
by (auto simp add: cong-def dvd-prod-eqI mod-mod-cancel)

have unique: ∀ z. z < (
∏

i∈A. m i) ∧ (∀ i∈A. [z = u i] (mod m i)) −→ z = ?x
proof clarify

fix z
assume zless: z < (

∏
i∈A. m i)

assume zcong: (∀ i∈A. [z = u i] (mod m i))
have ∀ i∈A. [?x = z] (mod m i)

using cong zcong by (auto simp add: cong-def)
with fin cop have [?x = z] (mod (

∏
i∈A. m i))

by (intro coprime-cong-prod-nat) auto
with zless less show z = ?x

by (auto simp add: cong-def)
qed
from less cong unique show ?thesis

by blast
qed

lemma (in semiring-1-cancel) of-nat-eq-iff-cong-CHAR:
of-nat x = (of-nat y :: ′a) ←→ [x = y] (mod CHAR(′a))

proof (induction x y rule: linorder-wlog)
case (le x y)
define z where z = y − x
have [simp]: y = x + z

using le by (auto simp: z-def)
have (CHAR(′a) dvd z) = [x = x + z] (mod CHAR(′a))

by (metis ‹y = x + z› cong-def le mod-eq-dvd-iff-nat z-def)
thus ?case

by (simp add: of-nat-eq-0-iff-char-dvd)
qed (simp add: eq-commute cong-sym-eq)

lemma (in ring-1) of-int-eq-iff-cong-CHAR:
of-int x = (of-int y :: ′a) ←→ [x = y] (mod int CHAR(′a))

proof −
have of-int x = (of-int y :: ′a) ←→ of-int (x − y) = (0 :: ′a)

by auto
also have . . . ←→ (int CHAR(′a) dvd x − y)

by (rule of-int-eq-0-iff-char-dvd)
also have . . . ←→ [x = y] (mod int CHAR(′a))

by (simp add: cong-iff-dvd-diff)

26

finally show ?thesis .
qed

Thanks to Manuel Eberl
lemma prime-cong-4-nat-cases [consumes 1 , case-names 2 cong-1 cong-3]:

assumes prime (p :: nat)
obtains p = 2 | [p = 1] (mod 4) | [p = 3] (mod 4)

proof −
have [p = 2] (mod 4) ←→ p = 2
proof

assume [p = 2] (mod 4)
hence p mod 4 = 2

by (auto simp: cong-def)
hence even p

by (simp add: even-even-mod-4-iff)
with assms show p = 2

unfolding prime-nat-iff by force
qed auto
moreover have [p 6= 0] (mod 4)
proof

assume [p = 0] (mod 4)
hence 4 dvd p

by (auto simp: cong-0-iff)
with assms have p = 4

by (subst (asm) prime-nat-iff) auto
thus False

using assms by simp
qed
ultimately consider [p = 3] (mod 4) | [p = 1] (mod 4) | p = 2

by (fastforce simp: cong-def)
thus ?thesis

using that by metis
qed

end

3 Fundamental facts about Euler’s totient func-
tion

theory Totient
imports

Complex-Main
HOL−Computational-Algebra.Primes
Cong

begin

definition totatives :: nat ⇒ nat set where
totatives n = {k ∈ {0<..n}. coprime k n}

27

lemma in-totatives-iff : k ∈ totatives n ←→ k > 0 ∧ k ≤ n ∧ coprime k n
by (simp add: totatives-def)

lemma totatives-code [code]: totatives n = Set.filter (λk. coprime k n) {0<..n}
by (simp add: totatives-def)

lemma finite-totatives [simp]: finite (totatives n)
by (simp add: totatives-def)

lemma totatives-subset: totatives n ⊆ {0<..n}
by (auto simp: totatives-def)

lemma zero-not-in-totatives [simp]: 0 /∈ totatives n
by (auto simp: totatives-def)

lemma totatives-le: x ∈ totatives n =⇒ x ≤ n
by (auto simp: totatives-def)

lemma totatives-less:
assumes x ∈ totatives n n > 1
shows x < n

proof −
from assms have x 6= n by (auto simp: totatives-def)
with totatives-le[OF assms(1)] show ?thesis by simp

qed

lemma totatives-0 [simp]: totatives 0 = {}
by (auto simp: totatives-def)

lemma totatives-1 [simp]: totatives 1 = {Suc 0}
by (auto simp: totatives-def)

lemma totatives-Suc-0 [simp]: totatives (Suc 0) = {Suc 0}
by (auto simp: totatives-def)

lemma one-in-totatives [simp]: n > 0 =⇒ Suc 0 ∈ totatives n
by (auto simp: totatives-def)

lemma totatives-eq-empty-iff [simp]: totatives n = {} ←→ n = 0
using one-in-totatives[of n] by (auto simp del: one-in-totatives)

lemma minus-one-in-totatives:
assumes n ≥ 2
shows n − 1 ∈ totatives n
using assms coprime-diff-one-left-nat [of n] by (simp add: in-totatives-iff)

lemma power-in-totatives:
assumes m > 1 coprime m g

28

shows g ^ i mod m ∈ totatives m
proof −

have ¬m dvd g ^ i
proof

assume m dvd g ^ i
hence ¬coprime m (g ^ i)

using ‹m > 1 › by (subst coprime-absorb-left) auto
with ‹coprime m g› show False by simp

qed
with assms show ?thesis

by (auto simp: totatives-def coprime-commute intro!: Nat.gr0I)
qed

lemma totatives-prime-power-Suc:
assumes prime p
shows totatives (p ^ Suc n) = {0<..p^Suc n} − (λm. p ∗ m) ‘ {0<..p^n}

proof safe
fix m assume m: p ∗ m ∈ totatives (p ^ Suc n) and m: m ∈ {0<..p^n}
thus False using assms by (auto simp: totatives-def gcd-mult-left)

next
fix k assume k: k ∈ {0<..p^Suc n} k /∈ (λm. p ∗ m) ‘ {0<..p^n}
from k have ¬(p dvd k) by (auto elim!: dvdE)
hence coprime k (p ^ Suc n)

using prime-imp-coprime [OF assms, of k]
by (cases n > 0) (auto simp add: ac-simps)

with k show k ∈ totatives (p ^ Suc n) by (simp add: totatives-def)
qed (auto simp: totatives-def)

lemma totatives-prime: prime p =⇒ totatives p = {0<..<p}
using totatives-prime-power-Suc [of p 0] by auto

lemma bij-betw-totatives:
assumes m1 > 1 m2 > 1 coprime m1 m2
shows bij-betw (λx. (x mod m1 , x mod m2)) (totatives (m1 ∗ m2))

(totatives m1 × totatives m2)
unfolding bij-betw-def

proof
show inj-on (λx. (x mod m1 , x mod m2)) (totatives (m1 ∗ m2))
proof (intro inj-onI , clarify)

fix x y assume xy: x ∈ totatives (m1 ∗ m2) y ∈ totatives (m1 ∗ m2)
x mod m1 = y mod m1 x mod m2 = y mod m2

have ex: ∃ !z. z < m1 ∗ m2 ∧ [z = x] (mod m1) ∧ [z = x] (mod m2)
by (rule binary-chinese-remainder-unique-nat) (insert assms, simp-all)

have x < m1 ∗ m2 ∧ [x = x] (mod m1) ∧ [x = x] (mod m2)
y < m1 ∗ m2 ∧ [y = x] (mod m1) ∧ [y = x] (mod m2)

using xy assms by (simp-all add: totatives-less one-less-mult cong-def)
from this[THEN the1-equality[OF ex]] show x = y by simp

qed
next

29

show (λx. (x mod m1 , x mod m2)) ‘ totatives (m1 ∗ m2) = totatives m1 ×
totatives m2

proof safe
fix x assume x ∈ totatives (m1 ∗ m2)
with assms show x mod m1 ∈ totatives m1 x mod m2 ∈ totatives m2

using coprime-common-divisor [of x m1 m1] coprime-common-divisor [of x
m2 m2]

by (auto simp add: in-totatives-iff mod-greater-zero-iff-not-dvd)
next

fix a b assume ab: a ∈ totatives m1 b ∈ totatives m2
with assms have ab ′: a < m1 b < m2 by (auto simp: totatives-less)
with binary-chinese-remainder-unique-nat[OF assms(3), of a b] obtain x
where x: x < m1 ∗ m2 x mod m1 = a x mod m2 = b by (auto simp: cong-def)

from x ab assms(3) have x ∈ totatives (m1 ∗ m2)
by (auto intro: ccontr simp add: in-totatives-iff)

with x show (a, b) ∈ (λx. (x mod m1 , x mod m2)) ‘ totatives (m1∗m2) by
blast

qed
qed

lemma bij-betw-totatives-gcd-eq:
fixes n d :: nat
assumes d dvd n n > 0
shows bij-betw (λk. k ∗ d) (totatives (n div d)) {k∈{0<..n}. gcd k n = d}
unfolding bij-betw-def

proof
show inj-on (λk. k ∗ d) (totatives (n div d))

by (auto simp: inj-on-def)
next

show (λk. k ∗ d) ‘ totatives (n div d) = {k∈{0<..n}. gcd k n = d}
proof (intro equalityI subsetI , goal-cases)

case (1 k)
then show ?case using assms

by (auto elim: dvdE simp add: in-totatives-iff ac-simps gcd-mult-right)
next

case (2 k)
hence d dvd k by auto
then obtain l where k: k = l ∗ d by (elim dvdE) auto
from 2 assms show ?case

using gcd-mult-right [of - d l]
by (auto intro: gcd-eq-1-imp-coprime elim!: dvdE simp add: k image-iff

in-totatives-iff ac-simps)
qed

qed

definition totient :: nat ⇒ nat where
totient n = card (totatives n)

primrec totient-naive :: nat ⇒ nat ⇒ nat ⇒ nat where

30

totient-naive 0 acc n = acc
| totient-naive (Suc k) acc n =

(if coprime (Suc k) n then totient-naive k (acc + 1) n else totient-naive k acc
n)

lemma totient-naive:
totient-naive k acc n = card {x ∈ {0<..k}. coprime x n} + acc

proof (induction k arbitrary: acc)
case (Suc k acc)
have totient-naive (Suc k) acc n =

(if coprime (Suc k) n then 1 else 0) + card {x ∈ {0<..k}. coprime x n}
+ acc

using Suc by simp
also have (if coprime (Suc k) n then 1 else 0) =

card (if coprime (Suc k) n then {Suc k} else {}) by auto
also have . . . + card {x ∈ {0<..k}. coprime x n} =

card ((if coprime (Suc k) n then {Suc k} else {}) ∪ {x ∈ {0<..k}.
coprime x n})

by (intro card-Un-disjoint [symmetric]) auto
also have ((if coprime (Suc k) n then {Suc k} else {}) ∪ {x ∈ {0<..k}. coprime

x n}) =
{x ∈ {0<..Suc k}. coprime x n} by (auto elim: le-SucE)

finally show ?case .
qed simp-all

lemma totient-code-naive [code]: totient n = totient-naive n 0 n
by (subst totient-naive) (simp add: totient-def totatives-def)

lemma totient-le: totient n ≤ n
proof −

have card (totatives n) ≤ card {0<..n}
by (intro card-mono) (auto simp: totatives-def)

thus ?thesis by (simp add: totient-def)
qed

lemma totient-less:
assumes n > 1
shows totient n < n

proof −
from assms have card (totatives n) ≤ card {0<..<n}

using totatives-less[of - n] totatives-subset[of n] by (intro card-mono) auto
with assms show ?thesis by (simp add: totient-def)

qed

lemma totient-0 [simp]: totient 0 = 0
by (simp add: totient-def)

lemma totient-Suc-0 [simp]: totient (Suc 0) = Suc 0
by (simp add: totient-def)

31

lemma totient-1 [simp]: totient 1 = Suc 0
by simp

lemma totient-0-iff [simp]: totient n = 0 ←→ n = 0
by (auto simp: totient-def)

lemma totient-gt-0-iff [simp]: totient n > 0 ←→ n > 0
by (auto intro: Nat.gr0I)

lemma totient-gt-1 :
assumes n > 2
shows totient n > 1

proof −
have {1 , n − 1} ⊆ totatives n

using assms coprime-diff-one-left-nat[of n] by (auto simp: totatives-def)
hence card {1 , n − 1} ≤ card (totatives n)

by (intro card-mono) auto
thus ?thesis using assms

by (simp add: totient-def)
qed

lemma card-gcd-eq-totient:
n > 0 =⇒ d dvd n =⇒ card {k∈{0<..n}. gcd k n = d} = totient (n div d)
unfolding totient-def by (rule sym, rule bij-betw-same-card[OF bij-betw-totatives-gcd-eq])

lemma totient-divisor-sum: (
∑

d | d dvd n. totient d) = n
proof (cases n = 0)

case False
hence n > 0 by simp
define A where A = (λd. {k∈{0<..n}. gcd k n = d})
have ∗: card (A d) = totient (n div d) if d: d dvd n for d

using ‹n > 0 › and d unfolding A-def by (rule card-gcd-eq-totient)
have n = card {1 ..n} by simp
also have {1 ..n} = (

⋃
d∈{d. d dvd n}. A d) by safe (auto simp: A-def)

also have card . . . = (
∑

d | d dvd n. card (A d))
using ‹n > 0 › by (intro card-UN-disjoint) (auto simp: A-def)

also have . . . = (
∑

d | d dvd n. totient (n div d)) by (intro sum.cong refl ∗)
auto

also have . . . = (
∑

d | d dvd n. totient d) using ‹n > 0 ›
by (intro sum.reindex-bij-witness[of - (div) n (div) n]) (auto elim: dvdE)

finally show ?thesis ..
qed auto

lemma totient-mult-coprime:
assumes coprime m n
shows totient (m ∗ n) = totient m ∗ totient n

proof (cases m > 1 ∧ n > 1)
case True

32

hence mn: m > 1 n > 1 by simp-all
have totient (m ∗ n) = card (totatives (m ∗ n)) by (simp add: totient-def)
also have . . . = card (totatives m × totatives n)

using bij-betw-totatives [OF mn ‹coprime m n›] by (rule bij-betw-same-card)
also have . . . = totient m ∗ totient n by (simp add: totient-def)
finally show ?thesis .

next
case False
with assms show ?thesis by (cases m; cases n) auto

qed

lemma totient-prime-power-Suc:
assumes prime p
shows totient (p ^ Suc n) = p ^ n ∗ (p − 1)

proof −
from assms have totient (p ^ Suc n) = card ({0<..p ^ Suc n} − (∗) p ‘ {0<..p

^ n})
unfolding totient-def by (subst totatives-prime-power-Suc) simp-all

also from assms have . . . = p ^ Suc n − card ((∗) p ‘ {0<..p^n})
by (subst card-Diff-subset) (auto intro: prime-gt-0-nat)

also from assms have card ((∗) p ‘ {0<..p^n}) = p ^ n
by (subst card-image) (auto simp: inj-on-def)

also have p ^ Suc n − p ^ n = p ^ n ∗ (p − 1) by (simp add: algebra-simps)
finally show ?thesis .

qed

lemma totient-prime-power :
assumes prime p n > 0
shows totient (p ^ n) = p ^ (n − 1) ∗ (p − 1)
using totient-prime-power-Suc[of p n − 1] assms by simp

lemma totient-imp-prime:
assumes totient p = p − 1 p > 0
shows prime p

proof (cases p = 1)
case True
with assms show ?thesis by auto

next
case False
with assms have p: p > 1 by simp
have x ∈ {0<..<p} if x ∈ totatives p for x

using that and p by (cases x = p) (auto simp: totatives-def)
with assms have ∗: totatives p = {0<..<p}

by (intro card-subset-eq) (auto simp: totient-def)
have ∗∗: False if x 6= 1 x 6= p x dvd p for x
proof −

from that have nz: x 6= 0 by (auto intro!: Nat.gr0I)
from that and p have le: x ≤ p by (intro dvd-imp-le) auto
from that and nz have ¬coprime x p

33

by (auto elim: dvdE)
hence x /∈ totatives p by (simp add: totatives-def)
also note ∗
finally show False using that and le by auto

qed
hence (∀m. m dvd p −→ m = 1 ∨ m = p) by blast
with p show ?thesis by (subst prime-nat-iff) (auto dest: ∗∗)

qed

lemma totient-prime:
assumes prime p
shows totient p = p − 1
using totient-prime-power-Suc[of p 0] assms by simp

lemma totient-2 [simp]: totient 2 = 1
and totient-3 [simp]: totient 3 = 2
and totient-5 [simp]: totient 5 = 4
and totient-7 [simp]: totient 7 = 6
by (subst totient-prime; simp)+

lemma totient-4 [simp]: totient 4 = 2
and totient-8 [simp]: totient 8 = 4
and totient-9 [simp]: totient 9 = 6
using totient-prime-power [of 2 2] totient-prime-power [of 2 3] totient-prime-power [of

3 2]
by simp-all

lemma totient-6 [simp]: totient 6 = 2
using totient-mult-coprime [of 2 3] coprime-add-one-right [of 2]
by simp

lemma totient-even:
assumes n > 2
shows even (totient n)

proof (cases ∃ p. prime p ∧ p 6= 2 ∧ p dvd n)
case True
then obtain p where p: prime p p 6= 2 p dvd n by auto
from ‹p 6= 2 › have p = 0 ∨ p = 1 ∨ p > 2 by auto
with p(1) have odd p using prime-odd-nat[of p] by auto
define k where k = multiplicity p n
from p assms have k-pos: k > 0 unfolding k-def by (subst multiplicity-gt-zero-iff)

auto
have p ^ k dvd n unfolding k-def by (simp add: multiplicity-dvd)
then obtain m where m: n = p ^ k ∗ m by (elim dvdE)
with assms have m-pos: m > 0 by (auto intro!: Nat.gr0I)
from k-def m-pos p have ¬ p dvd m
by (subst (asm) m) (auto intro!: Nat.gr0I simp: prime-elem-multiplicity-mult-distrib

prime-elem-multiplicity-eq-zero-iff)

34

with ‹prime p› have coprime p m
by (rule prime-imp-coprime)

with ‹k > 0 › have coprime (p ^ k) m
by simp

then show ?thesis using p k-pos ‹odd p›
by (auto simp add: m totient-mult-coprime totient-prime-power)

next
case False
from assms have n = (

∏
p∈prime-factors n. p ^ multiplicity p n)

by (intro Primes.prime-factorization-nat) auto
also from False have . . . = (

∏
p∈prime-factors n. if p = 2 then 2 ^ multiplicity

2 n else 1)
by (intro prod.cong refl) auto

also have . . . = 2 ^ multiplicity 2 n
by (subst prod.delta[OF finite-set-mset]) (auto simp: prime-factors-multiplicity)

finally have n: n = 2 ^ multiplicity 2 n .
have multiplicity 2 n = 0 ∨ multiplicity 2 n = 1 ∨ multiplicity 2 n > 1 by force
with n assms have multiplicity 2 n > 1 by auto
thus ?thesis by (subst n) (simp add: totient-prime-power)

qed

lemma totient-prod-coprime:
assumes pairwise coprime (f ‘ A) inj-on f A
shows totient (prod f A) = (

∏
a∈A. totient (f a))

using assms
proof (induction A rule: infinite-finite-induct)

case (insert x A)
have ∗: coprime (prod f A) (f x)
proof (rule prod-coprime-left)

fix y
assume y ∈ A
with ‹x /∈ A› have y 6= x

by auto
with ‹x /∈ A› ‹y ∈ A› ‹inj-on f (insert x A)› have f y 6= f x

using inj-onD [of f insert x A y x]
by auto

with ‹y ∈ A› show coprime (f y) (f x)
using pairwiseD [OF ‹pairwise coprime (f ‘ insert x A)›]
by auto

qed
from insert.hyps have prod f (insert x A) = prod f A ∗ f x by simp
also have totient . . . = totient (prod f A) ∗ totient (f x)

using insert.hyps insert.prems by (intro totient-mult-coprime ∗)
also have totient (prod f A) = (

∏
a∈A. totient (f a))

using insert.prems by (intro insert.IH) (auto dest: pairwise-subset)
also from insert.hyps have . . . ∗ totient (f x) = (

∏
a∈insert x A. totient (f a))

by simp
finally show ?case .

qed simp-all

35

lemma prime-power-eq-imp-eq:
fixes p q :: ′a :: factorial-semiring
assumes prime p prime q m > 0
assumes p ^ m = q ^ n
shows p = q

proof (rule ccontr)
assume pq: p 6= q
from assms have m = multiplicity p (p ^ m)

by (subst multiplicity-prime-power) auto
also note ‹p ^ m = q ^ n›
also from assms pq have multiplicity p (q ^ n) = 0

by (subst multiplicity-distinct-prime-power) auto
finally show False using ‹m > 0 › by simp

qed

lemma totient-formula1 :
assumes n > 0
shows totient n = (

∏
p∈prime-factors n. p ^ (multiplicity p n − 1) ∗ (p − 1))

proof −
from assms have n = (

∏
p∈prime-factors n. p ^ multiplicity p n)

by (rule prime-factorization-nat)
also have totient . . . = (

∏
x∈prime-factors n. totient (x ^ multiplicity x n))

proof (rule totient-prod-coprime)
show pairwise coprime ((λp. p ^ multiplicity p n) ‘ prime-factors n)
proof (rule pairwiseI , clarify)

fix p q assume ∗: p ∈# prime-factorization n q ∈# prime-factorization n
p ^ multiplicity p n 6= q ^ multiplicity q n

then have multiplicity p n > 0 multiplicity q n > 0
by (simp-all add: prime-factors-multiplicity)
with ∗ primes-coprime [of p q] show coprime (p ^ multiplicity p n) (q ^

multiplicity q n)
by auto

qed
next

show inj-on (λp. p ^ multiplicity p n) (prime-factors n)
proof

fix p q assume pq: p ∈# prime-factorization n q ∈# prime-factorization n
p ^ multiplicity p n = q ^ multiplicity q n

from assms and pq have prime p prime q multiplicity p n > 0
by (simp-all add: prime-factors-multiplicity)

from prime-power-eq-imp-eq[OF this pq(3)] show p = q .
qed

qed
also have . . . = (

∏
p∈prime-factors n. p ^ (multiplicity p n − 1) ∗ (p − 1))

by (intro prod.cong refl totient-prime-power) (auto simp: prime-factors-multiplicity)
finally show ?thesis .

qed

36

lemma totient-dvd:
assumes m dvd n
shows totient m dvd totient n

proof (cases m = 0 ∨ n = 0)
case False
let ?M = λp m :: nat. multiplicity p m − 1
have (

∏
p∈prime-factors m. p ^ ?M p m ∗ (p − 1)) dvd

(
∏

p∈prime-factors n. p ^ ?M p n ∗ (p − 1)) using assms False
by (intro prod-dvd-prod-subset2 mult-dvd-mono dvd-refl le-imp-power-dvd diff-le-mono

dvd-prime-factors dvd-imp-multiplicity-le) auto
with False show ?thesis by (simp add: totient-formula1)

qed (insert assms, auto)

lemma totient-dvd-mono:
assumes m dvd n n > 0
shows totient m ≤ totient n
by (cases m = 0) (insert assms, auto intro: dvd-imp-le totient-dvd)

lemma prime-factors-power : n > 0 =⇒ prime-factors (x ^ n) = prime-factors x
by (cases x = 0 ; cases n = 0)

(auto simp: prime-factors-multiplicity prime-elem-multiplicity-power-distrib
zero-power)

lemma totient-formula2 :
real (totient n) = real n ∗ (

∏
p∈prime-factors n. 1 − 1 / real p)

proof (cases n = 0)
case False
have real (totient n) = (

∏
p∈prime-factors n. real

(p ^ (multiplicity p n − 1) ∗ (p − 1)))
using False by (subst totient-formula1) simp-all

also have . . . = (
∏

p∈prime-factors n. real (p ^ multiplicity p n) ∗ (1 − 1 /
real p))

by (intro prod.cong refl) (auto simp add: field-simps prime-factors-multiplicity
prime-ge-Suc-0-nat of-nat-diff power-Suc [symmetric] simp del: power-Suc)

also have . . . = real (
∏

p∈prime-factors n. p ^ multiplicity p n) ∗
(
∏

p∈prime-factors n. 1 − 1 / real p) by (subst prod.distrib) auto
also have (

∏
p∈prime-factors n. p ^ multiplicity p n) = n

using False by (intro Primes.prime-factorization-nat [symmetric]) auto
finally show ?thesis .

qed auto

lemma totient-gcd: totient (a ∗ b) ∗ totient (gcd a b) = totient a ∗ totient b ∗ gcd
a b
proof (cases a = 0 ∨ b = 0)

case False
let ?P = prime-factors :: nat ⇒ nat set
have real (totient a ∗ totient b ∗ gcd a b) = real (a ∗ b ∗ gcd a b) ∗

37

((
∏

p∈?P a. 1 − 1 / real p) ∗ (
∏

p∈?P b. 1 − 1 / real p))
by (simp add: totient-formula2)

also have ?P a = (?P a − ?P b) ∪ (?P a ∩ ?P b) by auto
also have (

∏
p∈. . . . 1 − 1 / real p) =

(
∏

p∈?P a − ?P b. 1 − 1 / real p) ∗ (
∏

p∈?P a ∩ ?P b. 1 − 1 /
real p)

by (rule prod.union-disjoint) blast+
also have . . . ∗ (

∏
p∈?P b. 1 − 1 / real p) = (

∏
p∈?P a − ?P b. 1 − 1 / real

p) ∗
(
∏

p∈?P b. 1 − 1 / real p) ∗ (
∏

p∈?P a ∩ ?P b. 1 − 1 / real p) (is
- = ?A ∗ -)

by (simp only: mult-ac)
also have ?A = (

∏
p∈?P a − ?P b ∪ ?P b. 1 − 1 / real p)

by (rule prod.union-disjoint [symmetric]) blast+
also have ?P a − ?P b ∪ ?P b = ?P a ∪ ?P b by blast
also have real (a ∗ b ∗ gcd a b) ∗ ((

∏
p∈. . . . 1 − 1 / real p) ∗

(
∏

p∈?P a ∩ ?P b. 1 − 1 / real p)) = real (totient (a ∗ b) ∗ totient
(gcd a b))

using False by (simp add: totient-formula2 prime-factors-product prime-factorization-gcd)
finally show ?thesis by (simp only: of-nat-eq-iff)

qed auto

lemma totient-mult: totient (a ∗ b) = totient a ∗ totient b ∗ gcd a b div totient
(gcd a b)

by (subst totient-gcd [symmetric]) simp

lemma of-nat-eq-1-iff : of-nat x = (1 :: ′a :: {semiring-1 , semiring-char-0}) ←→
x = 1

by (fact of-nat-eq-1-iff)

lemma odd-imp-coprime-nat:
assumes odd (n::nat)
shows coprime n 2

proof −
from assms obtain k where n: n = Suc (2 ∗ k) by (auto elim!: oddE)
have coprime (Suc (2 ∗ k)) (2 ∗ k)

by (fact coprime-Suc-left-nat)
then show ?thesis using n

by simp
qed

lemma totient-double: totient (2 ∗ n) = (if even n then 2 ∗ totient n else totient
n)

by (simp add: totient-mult ac-simps odd-imp-coprime-nat)

lemma totient-power-Suc: totient (n ^ Suc m) = n ^ m ∗ totient n
proof (induction m arbitrary: n)

case (Suc m n)

38

have totient (n ^ Suc (Suc m)) = totient (n ∗ n ^ Suc m) by simp
also have . . . = n ^ Suc m ∗ totient n

using Suc.IH by (subst totient-mult) simp
finally show ?case .

qed simp-all

lemma totient-power : m > 0 =⇒ totient (n ^ m) = n ^ (m − 1) ∗ totient n
using totient-power-Suc[of n m − 1] by (cases m) simp-all

lemma totient-gcd-lcm: totient (gcd a b) ∗ totient (lcm a b) = totient a ∗ totient b
proof (cases a = 0 ∨ b = 0)

case False
let ?P = prime-factors :: nat ⇒ nat set and ?f = λp::nat. 1 − 1 / real p
have real (totient (gcd a b) ∗ totient (lcm a b)) = real (gcd a b ∗ lcm a b) ∗

(prod ?f (?P a ∩ ?P b) ∗ prod ?f (?P a ∪ ?P b))
using False unfolding of-nat-mult
by (simp add: totient-formula2 prime-factorization-gcd prime-factorization-lcm)

also have gcd a b ∗ lcm a b = a ∗ b by simp
also have ?P a ∪ ?P b = (?P a − ?P a ∩ ?P b) ∪ ?P b by blast
also have prod ?f . . . = prod ?f (?P a − ?P a ∩ ?P b) ∗ prod ?f (?P b)

by (rule prod.union-disjoint) blast+
also have prod ?f (?P a ∩ ?P b) ∗ . . . =

prod ?f (?P a ∩ ?P b ∪ (?P a − ?P a ∩ ?P b)) ∗ prod ?f (?P b)
by (subst prod.union-disjoint) auto

also have ?P a ∩ ?P b ∪ (?P a − ?P a ∩ ?P b) = ?P a by blast
also have real (a ∗ b) ∗ (prod ?f (?P a) ∗ prod ?f (?P b)) = real (totient a ∗

totient b)
using False by (simp add: totient-formula2)

finally show ?thesis by (simp only: of-nat-eq-iff)
qed auto

end

4 Residue rings
theory Residues
imports

Cong
HOL−Algebra.Multiplicative-Group
Totient

begin

lemma (in ring-1) CHAR-dvd-CARD: CHAR(′a) dvd card (UNIV :: ′a set)
proof (cases card (UNIV :: ′a set) = 0)

case False
hence [intro]: CHAR(′a) > 0

by (simp add: card-eq-0-iff finite-imp-CHAR-pos)
define G where G = (| carrier = (UNIV :: ′a set), monoid.mult = (+), one =

(0 :: ′a) |)

39

define H where H = (of-nat ‘ {..<CHAR(′a)} :: ′a set)
interpret group G
proof (rule groupI)

fix x assume x: x ∈ carrier G
show ∃ y∈carrier G. y ⊗G x = 1G

by (intro bexI [of - −x]) (auto simp: G-def)
qed (auto simp: G-def add-ac)

interpret subgroup H G
proof

show 1G ∈ H
using False unfolding G-def H-def by force

next
fix x y :: ′a
assume x ∈ H y ∈ H
then obtain x ′ y ′ where [simp]: x = of-nat x ′ y = of-nat y ′

by (auto simp: H-def)
have x + y = of-nat ((x ′ + y ′) mod CHAR(′a))

by (auto simp flip: of-nat-add simp: of-nat-eq-iff-cong-CHAR)
moreover have (x ′ + y ′) mod CHAR(′a) < CHAR(′a)

using H-def ‹y ∈ H › by fastforce
ultimately show x ⊗G y ∈ H

by (auto simp: H-def G-def intro!: imageI)
next

fix x :: ′a
assume x: x ∈ H
then obtain x ′ where [simp]: x = of-nat x ′ and x ′: x ′ < CHAR(′a)

by (auto simp: H-def)
have CHAR(′a) dvd x ′ + (CHAR(′a) − x ′) mod CHAR(′a)

using mod-eq-0-iff-dvd mod-if x ′ by fastforce
hence x + of-nat ((CHAR(′a) − x ′) mod CHAR(′a)) = 0

by (auto simp flip: of-nat-add simp: of-nat-eq-0-iff-char-dvd)
moreover from this have invG x = of-nat ((CHAR(′a) − x ′) mod CHAR(′a))

by (intro inv-equality) (auto simp: G-def add-ac)
moreover have of-nat ((CHAR(′a) − x ′) mod CHAR(′a)) ∈ H

unfolding H-def using ‹CHAR(′a) > 0 › by (intro imageI) auto
ultimately show invG x ∈ H by force

qed (auto simp: G-def H-def)

have card H dvd card (rcosetsG H) ∗ card H
by simp

also have card (rcosetsG H) ∗ card H = Coset.order G
proof (rule lagrange-finite)

show finite (carrier G)
using False card-ge-0-finite by (auto simp: G-def)

qed (fact is-subgroup)
finally have card H dvd card (UNIV :: ′a set)

by (simp add: Coset.order-def G-def)
also have card H = card {..<CHAR(′a)}

40

unfolding H-def by (intro card-image inj-onI) (auto simp: of-nat-eq-iff-cong-CHAR
cong-def)

finally show CHAR(′a) dvd card (UNIV :: ′a set)
by simp

qed auto

definition QuadRes :: int ⇒ int ⇒ bool
where QuadRes p a = (∃ y. ([y^2 = a] (mod p)))

definition Legendre :: int ⇒ int ⇒ int
where Legendre a p =
(if ([a = 0] (mod p)) then 0
else if QuadRes p a then 1
else −1)

4.1 A locale for residue rings
definition residue-ring :: int ⇒ int ring

where
residue-ring m =
(|carrier = {0 ..m − 1},
monoid.mult = λx y. (x ∗ y) mod m,
one = 1 ,
zero = 0 ,
add = λx y. (x + y) mod m|)

locale residues =
fixes m :: int and R (structure)
assumes m-gt-one: m > 1
defines R-m-def : R ≡ residue-ring m

begin

lemma abelian-group: abelian-group R
proof −

have ∃ y∈{0 ..m − 1}. (x + y) mod m = 0 if 0 ≤ x x < m for x
proof (cases x = 0)

case True
with m-gt-one show ?thesis by simp

next
case False
then have (x + (m − x)) mod m = 0

by simp
with m-gt-one that show ?thesis
by (metis False atLeastAtMost-iff diff-ge-0-iff-ge diff-left-mono int-one-le-iff-zero-less

less-le)
qed
with m-gt-one show ?thesis

by (fastforce simp add: R-m-def residue-ring-def mod-add-right-eq ac-simps
intro!: abelian-groupI)

41

qed

lemma comm-monoid: comm-monoid R
proof −

have
∧

x y z. [[x ∈ carrier R; y ∈ carrier R; z ∈ carrier R]] =⇒ x ⊗ y ⊗ z = x
⊗ (y ⊗ z)∧

x y. [[x ∈ carrier R; y ∈ carrier R]] =⇒ x ⊗ y = y ⊗ x
unfolding R-m-def residue-ring-def
by (simp-all add: algebra-simps mod-mult-right-eq)

then show ?thesis
unfolding R-m-def residue-ring-def
by unfold-locales (use m-gt-one in simp-all)

qed

interpretation comm-monoid R
using comm-monoid by blast

lemma cring: cring R
apply (intro cringI abelian-group comm-monoid)
unfolding R-m-def residue-ring-def
apply (auto simp add: comm-semiring-class.distrib mod-add-eq mod-mult-left-eq)
done

end

sublocale residues < cring
by (rule cring)

context residues
begin

These lemmas translate back and forth between internal and external con-
cepts.
lemma res-carrier-eq: carrier R = {0 ..m − 1}

by (auto simp: R-m-def residue-ring-def)

lemma res-add-eq: x ⊕ y = (x + y) mod m
by (auto simp: R-m-def residue-ring-def)

lemma res-mult-eq: x ⊗ y = (x ∗ y) mod m
by (auto simp: R-m-def residue-ring-def)

lemma res-zero-eq: 0 = 0
by (auto simp: R-m-def residue-ring-def)

lemma res-one-eq: 1 = 1
by (auto simp: R-m-def residue-ring-def units-of-def)

42

lemma res-units-eq: Units R = {x. 0 < x ∧ x < m ∧ coprime x m} (is - = ?rhs)
proof

show Units R ⊆ ?rhs
using zero-less-mult-iff invertible-coprime
by (fastforce simp: Units-def R-m-def residue-ring-def)

next
show ?rhs ⊆ Units R

unfolding Units-def R-m-def residue-ring-def
by (force simp add: cong-def coprime-iff-invertible ′-int mult.commute)

qed

lemma res-neg-eq: 	 x = (− x) mod m
proof −

have 	 x = (THE y. 0 ≤ y ∧ y < m ∧ (x + y) mod m = 0 ∧ (y + x) mod m
= 0)

by (simp add: R-m-def a-inv-def m-inv-def residue-ring-def)
also have . . . = (− x) mod m
proof −

have
∧

y. 0 ≤ y ∧ y < m ∧ (x + y) mod m = 0 ∧ (y + x) mod m = 0 =⇒
y = − x mod m

by (metis minus-add-cancel mod-add-eq plus-int-code(1) zmod-trivial-iff)
then show ?thesis
by (intro the-equality) (use m-gt-one in ‹simp add: add.commute mod-add-right-eq›)

qed
finally show ?thesis .

qed

lemma finite [iff]: finite (carrier R)
by (simp add: res-carrier-eq)

lemma finite-Units [iff]: finite (Units R)
by (simp add: finite-ring-finite-units)

The function a 7→ a mod m maps the integers to the residue classes. The fol-
lowing lemmas show that this mapping respects addition and multiplication
on the integers.
lemma mod-in-carrier [iff]: a mod m ∈ carrier R

unfolding res-carrier-eq
using insert m-gt-one by auto

lemma add-cong: (x mod m) ⊕ (y mod m) = (x + y) mod m
by (auto simp: R-m-def residue-ring-def mod-simps)

lemma mult-cong: (x mod m) ⊗ (y mod m) = (x ∗ y) mod m
by (auto simp: R-m-def residue-ring-def mod-simps)

lemma zero-cong: 0 = 0
by (auto simp: R-m-def residue-ring-def)

43

lemma one-cong: 1 = 1 mod m
using m-gt-one by (auto simp: R-m-def residue-ring-def)

lemma pow-cong: (x mod m) [^] n = x^n mod m
using m-gt-one

proof (induct n)
case 0
then show ?case

by (simp add: one-cong)
next

case (Suc n)
then show ?case

by (simp add: mult-cong power-commutes)
qed

lemma neg-cong: 	 (x mod m) = (− x) mod m
by (metis mod-minus-eq res-neg-eq)

lemma (in residues) prod-cong: finite A =⇒ (
⊗

i∈A. (f i) mod m) = (
∏

i∈A. f
i) mod m

by (induct set: finite) (auto simp: one-cong mult-cong)

lemma (in residues) sum-cong: finite A =⇒ (
⊕

i∈A. (f i) mod m) = (
∑

i∈A. f
i) mod m

by (induct set: finite) (auto simp: zero-cong add-cong)

lemma mod-in-res-units [simp]:
assumes 1 < m and coprime a m
shows a mod m ∈ Units R

proof (cases a mod m = 0)
case True
with assms show ?thesis

by (auto simp add: res-units-eq gcd-red-int [symmetric])
next

case False
from assms have 0 < m by simp
then have 0 ≤ a mod m by (rule pos-mod-sign [of m a])
with False have 0 < a mod m by simp
with assms show ?thesis

by (auto simp add: res-units-eq gcd-red-int [symmetric] ac-simps)
qed

lemma res-eq-to-cong: (a mod m) = (b mod m) ←→ [a = b] (mod m)
by (auto simp: cong-def)

Simplifying with these will translate a ring equation in R to a congruence.
lemmas res-to-cong-simps =

add-cong mult-cong pow-cong one-cong

44

prod-cong sum-cong neg-cong res-eq-to-cong

Other useful facts about the residue ring.
lemma one-eq-neg-one: 1 = 	 1 =⇒ m = 2

using one-cong res-neg-eq res-one-eq zmod-zminus1-eq-if by fastforce

end

4.2 Prime residues
locale residues-prime =

fixes p :: nat and R (structure)
assumes p-prime [intro]: prime p
defines R ≡ residue-ring (int p)

sublocale residues-prime < residues p
proof

show 1 < int p
using prime-gt-1-nat by auto

qed

context residues-prime
begin

lemma p-coprime-left:
coprime p a ←→ ¬ p dvd a
using p-prime by (auto intro: prime-imp-coprime dest: coprime-common-divisor)

lemma p-coprime-right:
coprime a p ←→ ¬ p dvd a
using p-coprime-left [of a] by (simp add: ac-simps)

lemma p-coprime-left-int:
coprime (int p) a ←→ ¬ int p dvd a
using p-prime by (auto intro: prime-imp-coprime dest: coprime-common-divisor)

lemma p-coprime-right-int:
coprime a (int p) ←→ ¬ int p dvd a
using coprime-commute p-coprime-left-int by blast

lemma is-field: field R
proof −

have 0 < x =⇒ x < int p =⇒ coprime (int p) x for x
by (rule prime-imp-coprime) (auto simp add: zdvd-not-zless)

then show ?thesis
by (intro cring.field-intro2 cring)
(auto simp add: res-carrier-eq res-one-eq res-zero-eq res-units-eq ac-simps)

qed

45

lemma res-prime-units-eq: Units R = {1 ..p − 1}
by (auto simp add: res-units-eq p-coprime-right-int zdvd-not-zless)

end

sublocale residues-prime < field
by (rule is-field)

5 Test cases: Euler’s theorem and Wilson’s theo-
rem

5.1 Euler’s theorem
lemma (in residues) totatives-eq:

totatives (nat m) = nat ‘ Units R
proof −

from m-gt-one have |m| > 1
by simp

then have totatives (nat |m|) = nat ‘ abs ‘ Units R
by (auto simp add: totatives-def res-units-eq image-iff le-less)
(use m-gt-one zless-nat-eq-int-zless in force)

moreover have |m| = m abs ‘ Units R = Units R
using m-gt-one by (auto simp add: res-units-eq image-iff)

ultimately show ?thesis
by simp

qed

lemma (in residues) totient-eq:
totient (nat m) = card (Units R)

proof −
have ∗: inj-on nat (Units R)

by (rule inj-onI) (auto simp add: res-units-eq)
then show ?thesis

by (simp add: totient-def totatives-eq card-image)
qed

lemma (in residues-prime) prime-totient-eq: totient p = p − 1
using p-prime totient-prime by blast

lemma (in residues) euler-theorem:
assumes coprime a m
shows [a ^ totient (nat m) = 1] (mod m)

proof −
have a ^ totient (nat m) mod m = 1 mod m

by (metis assms finite-Units m-gt-one mod-in-res-units one-cong totient-eq
pow-cong units-power-order-eq-one)

then show ?thesis
using res-eq-to-cong by blast

qed

46

lemma euler-theorem:
fixes a m :: nat
assumes coprime a m
shows [a ^ totient m = 1] (mod m)

proof (cases m = 0 ∨ m = 1)
case True
then show ?thesis by auto

next
case False
with assms show ?thesis

using residues.euler-theorem [of int m int a] cong-int-iff
by (auto simp add: residues-def gcd-int-def) fastforce

qed

lemma fermat-theorem:
fixes p a :: nat
assumes prime p and ¬ p dvd a
shows [a ^ (p − 1) = 1] (mod p)

proof −
from assms prime-imp-coprime [of p a] have coprime a p

by (auto simp add: ac-simps)
then have [a ^ totient p = 1] (mod p)

by (rule euler-theorem)
also have totient p = p − 1

by (rule totient-prime) (rule assms)
finally show ?thesis .

qed

5.2 Wilson’s theorem
lemma (in field) inv-pair-lemma: x ∈ Units R =⇒ y ∈ Units R =⇒
{x, inv x} 6= {y, inv y} =⇒ {x, inv x} ∩ {y, inv y} = {}

by auto

lemma (in residues-prime) wilson-theorem1 :
assumes a: p > 2
shows [fact (p − 1) = (−1 ::int)] (mod p)

proof −
let ?Inverse-Pairs = {{x, inv x}| x. x ∈ Units R − {1, 	 1}}
have UR: Units R = {1, 	 1} ∪

⋃
?Inverse-Pairs

by auto
have 11 : 1 6= 	 1

using a one-eq-neg-one by force
have (

⊗
i∈Units R. i) = (

⊗
i∈{1, 	 1}. i) ⊗ (

⊗
i∈

⋃
?Inverse-Pairs. i)

apply (subst UR)
apply (subst finprod-Un-disjoint)
using inv-one inv-eq-neg-one-eq apply (auto intro!: funcsetI)+

47

done
also have (

⊗
i∈{1, 	 1}. i) = 	 1

by (simp add: 11)
also have (

⊗
i∈(

⋃
?Inverse-Pairs). i) = (

⊗
A∈?Inverse-Pairs. (

⊗
y∈A. y))

by (rule finprod-Union-disjoint) (auto simp: pairwise-def disjnt-def dest!: inv-eq-imp-eq)
also have . . . = 1

apply (rule finprod-one-eqI)
apply clarsimp
apply (subst finprod-insert)

apply auto
apply (metis inv-eq-self)
done

finally have (
⊗

i∈Units R. i) = 	 1
by simp

also have (
⊗

i∈Units R. i) = (
⊗

i∈Units R. i mod p)
by (rule finprod-cong ′) (auto simp: res-units-eq)

also have . . . = (
∏

i∈Units R. i) mod p
by (rule prod-cong) auto

also have . . . = fact (p − 1) mod p
using assms
by (simp add: res-prime-units-eq int-prod zmod-int prod-int-eq fact-prod)

finally have fact (p − 1) mod p = 	 1 .
then show ?thesis

by (simp add: cong-def res-neg-eq res-one-eq zmod-int)
qed

lemma wilson-theorem:
assumes prime p
shows [fact (p − 1) = − 1] (mod p)

proof (cases p = 2)
case True
then show ?thesis

by (simp add: cong-def fact-prod)
next

case False
then show ?thesis

using assms prime-ge-2-nat
by (metis residues-prime.wilson-theorem1 residues-prime.intro le-eq-less-or-eq)

qed

This result can be transferred to the multiplicative group of �/p� for p
prime.
lemma mod-nat-int-pow-eq:

fixes n :: nat and p a :: int
shows a ≥ 0 =⇒ p ≥ 0 =⇒ (nat a ^ n) mod (nat p) = nat ((a ^ n) mod p)
by (simp add: nat-mod-as-int)

theorem residue-prime-mult-group-has-gen:
fixes p :: nat

48

assumes prime-p : prime p
shows ∃ a ∈ {1 .. p − 1}. {1 .. p − 1} = {a^i mod p|i . i ∈ UNIV }

proof −
have p ≥ 2

using prime-gt-1-nat[OF prime-p] by simp
interpret R: residues-prime p residue-ring p

by (simp add: residues-prime-def prime-p)
have car : carrier (residue-ring (int p)) − {0residue-ring (int p)} = {1 .. int p −

1}
by (auto simp add: R.zero-cong R.res-carrier-eq)

have x [^]residue-ring (int p) i = x ^ i mod (int p)
if x ∈ {1 .. int p − 1} for x and i :: nat
using that R.pow-cong[of x i] by auto

moreover
obtain a where a: a ∈ {1 .. int p − 1}

and a-gen: {1 .. int p − 1} = {a[^]residue-ring (int p)i|i::nat . i ∈ UNIV }
using field.finite-field-mult-group-has-gen[OF R.is-field]
by (auto simp add: car [symmetric] carrier-mult-of)

moreover
have nat ‘ {1 .. int p − 1} = {1 .. p − 1} (is ?L = ?R)
proof

have n ∈ ?R if n ∈ ?L for n
using that ‹p≥2 › by force

then show ?L ⊆ ?R by blast
have n ∈ ?L if n ∈ ?R for n

using that ‹p≥2 › by (auto intro: rev-image-eqI [of int n])
then show ?R ⊆ ?L by blast

qed
moreover
have nat ‘ {a^i mod (int p) | i::nat. i ∈ UNIV } = {nat a^i mod p | i . i ∈

UNIV } (is ?L = ?R)
proof

have x ∈ ?R if x ∈ ?L for x
proof −

from that obtain i where i: x = nat (a^i mod (int p))
by blast

then have x = nat a ^ i mod p
using mod-nat-int-pow-eq[of a int p i] a ‹p≥2 › by auto

with i show ?thesis by blast
qed
then show ?L ⊆ ?R by blast
have x ∈ ?L if x ∈ ?R for x
proof −

from that obtain i where i: x = nat a^i mod p
by blast

with mod-nat-int-pow-eq[of a int p i] a ‹p≥2 › show ?thesis
by auto

qed

49

then show ?R ⊆ ?L by blast
qed
ultimately have {1 .. p − 1} = {nat a^i mod p | i. i ∈ UNIV }

by presburger
moreover from a have nat a ∈ {1 .. p − 1} by force
ultimately show ?thesis ..

qed

5.3 Upper bound for the number of n-th roots
lemma roots-mod-prime-bound:

fixes n c p :: nat
assumes prime p n > 0
defines A ≡ {x∈{..<p}. [x ^ n = c] (mod p)}
shows card A ≤ n

proof −
define R where R = residue-ring (int p)
from assms(1) interpret residues-prime p R

by unfold-locales (simp-all add: R-def)
interpret R: UP-domain R UP R by (unfold-locales)

let ?f = UnivPoly.monom (UP R) 1R n 	(UP R) UnivPoly.monom (UP R) (int
(c mod p)) 0

have in-carrier : int (c mod p) ∈ carrier R
using prime-gt-1-nat[OF assms(1)] by (simp add: R-def residue-ring-def)

have deg R ?f = n
using assms in-carrier by (simp add: R.deg-minus-eq)

hence f-not-zero: ?f 6= 0UP R using assms by (auto simp add : R.deg-nzero-nzero)
have roots-bound: finite {a ∈ carrier R. UnivPoly.eval R R id a ?f = 0R} ∧

card {a ∈ carrier R. UnivPoly.eval R R id a ?f = 0R} ≤ deg R ?f
using finite in-carrier by (intro R.roots-bound[OF - f-not-zero])

simp
have subs: {x ∈ carrier R. x [^]R n = int (c mod p)} ⊆

{a ∈ carrier R. UnivPoly.eval R R id a ?f = 0R}
using in-carrier by (auto simp: R.evalRR-simps)

then have card {x ∈ carrier R. x [^]R n = int (c mod p)} ≤
card {a ∈ carrier R. UnivPoly.eval R R id a ?f = 0R}

using finite by (intro card-mono) auto
also have . . . ≤ n

using ‹deg R ?f = n› roots-bound by linarith
also {

fix x assume x ∈ carrier R
hence x [^]R n = (x ^ n) mod (int p)

by (subst pow-cong [symmetric]) (auto simp: R-def residue-ring-def)
}
hence {x ∈ carrier R. x [^]R n = int (c mod p)} = {x ∈ carrier R. [x ^ n = int

c] (mod p)}
by (fastforce simp: cong-def zmod-int)

50

also have bij-betw int A {x ∈ carrier R. [x ^ n = int c] (mod p)}
by (rule bij-betwI [of int - - nat])

(use cong-int-iff in ‹force simp: R-def residue-ring-def A-def ›)+
from bij-betw-same-card[OF this] have card {x ∈ carrier R. [x ^ n = int c] (mod

p)} = card A ..
finally show ?thesis .

qed

end

6 The sieve of Eratosthenes
theory Eratosthenes

imports Main HOL−Computational-Algebra.Primes
begin

6.1 Preliminary: strict divisibility
context dvd
begin

abbreviation dvd-strict :: ′a ⇒ ′a ⇒ bool (infixl ‹dvd ′-strict› 50)
where

b dvd-strict a ≡ b dvd a ∧ ¬ a dvd b

end

6.2 Main corpus

The sieve is modelled as a list of booleans, where False means marked out.
type-synonym marks = bool list

definition numbers-of-marks :: nat ⇒ marks ⇒ nat set
where

numbers-of-marks n bs = fst ‘ {x ∈ set (enumerate n bs). snd x}

lemma numbers-of-marks-simps [simp, code]:
numbers-of-marks n [] = {}
numbers-of-marks n (True # bs) = insert n (numbers-of-marks (Suc n) bs)
numbers-of-marks n (False # bs) = numbers-of-marks (Suc n) bs
by (auto simp add: numbers-of-marks-def intro!: image-eqI)

lemma numbers-of-marks-Suc:
numbers-of-marks (Suc n) bs = Suc ‘ numbers-of-marks n bs
by (auto simp add: numbers-of-marks-def enumerate-Suc-eq image-iff Bex-def)

lemma numbers-of-marks-replicate-False [simp]:

51

numbers-of-marks n (replicate m False) = {}
by (auto simp add: numbers-of-marks-def enumerate-replicate-eq)

lemma numbers-of-marks-replicate-True [simp]:
numbers-of-marks n (replicate m True) = {n..<n+m}
by (auto simp add: numbers-of-marks-def enumerate-replicate-eq image-def)

lemma in-numbers-of-marks-eq:
m ∈ numbers-of-marks n bs ←→ m ∈ {n..<n + length bs} ∧ bs ! (m − n)
by (simp add: numbers-of-marks-def in-set-enumerate-eq image-iff add.commute)

lemma sorted-list-of-set-numbers-of-marks:
sorted-list-of-set (numbers-of-marks n bs) = map fst (filter snd (enumerate n bs))
by (auto simp add: numbers-of-marks-def distinct-map

intro!: sorted-filter distinct-filter inj-onI sorted-distinct-set-unique)

Marking out multiples in a sieve
definition mark-out :: nat ⇒ marks ⇒ marks
where

mark-out n bs = map (λ(q, b). b ∧ ¬ Suc n dvd Suc (Suc q)) (enumerate n bs)

lemma mark-out-Nil [simp]: mark-out n [] = []
by (simp add: mark-out-def)

lemma length-mark-out [simp]: length (mark-out n bs) = length bs
by (simp add: mark-out-def)

lemma numbers-of-marks-mark-out:
numbers-of-marks n (mark-out m bs) = {q ∈ numbers-of-marks n bs. ¬ Suc m

dvd Suc q − n}
by (auto simp add: numbers-of-marks-def mark-out-def in-set-enumerate-eq im-

age-iff
nth-enumerate-eq less-eq-dvd-minus)

Auxiliary operation for efficient implementation
definition mark-out-aux :: nat ⇒ nat ⇒ marks ⇒ marks
where

mark-out-aux n m bs =
map (λ(q, b). b ∧ (q < m + n ∨ ¬ Suc n dvd Suc (Suc q) + (n − m mod Suc

n))) (enumerate n bs)

lemma mark-out-code [code]: mark-out n bs = mark-out-aux n n bs
proof −

have aux: False
if A: Suc n dvd Suc (Suc a)
and B: a < n + n
and C : n ≤ a
for a

proof (cases n = 0)

52

case True
with A B C show ?thesis by simp

next
case False
define m where m = Suc n
then have m > 0 by simp
from False have n > 0 by simp
from A obtain q where q: Suc (Suc a) = Suc n ∗ q by (rule dvdE)
have q > 0
proof (rule ccontr)

assume ¬ q > 0
with q show False by simp

qed
with ‹n > 0 › have Suc n ∗ q ≥ 2 by (auto simp add: gr0-conv-Suc)
with q have a: a = Suc n ∗ q − 2 by simp
with B have q + n ∗ q < n + n + 2 by auto
then have m ∗ q < m ∗ 2 by (simp add: m-def)
with ‹m > 0 › ‹q > 0 › have q = 1 by simp
with a have a = n − 1 by simp
with ‹n > 0 › C show False by simp

qed
show ?thesis

by (auto simp add: mark-out-def mark-out-aux-def in-set-enumerate-eq intro:
aux)
qed

lemma mark-out-aux-simps [simp, code]:
mark-out-aux n m [] = []
mark-out-aux n 0 (b # bs) = False # mark-out-aux n n bs
mark-out-aux n (Suc m) (b # bs) = b # mark-out-aux n m bs

proof goal-cases
case 1
show ?case

by (simp add: mark-out-aux-def)
next

case 2
show ?case

by (auto simp add: mark-out-code [symmetric] mark-out-aux-def mark-out-def
enumerate-Suc-eq in-set-enumerate-eq less-eq-dvd-minus)

next
case 3
{ define v where v = Suc m

define w where w = Suc n
fix q
assume m + n ≤ q
then obtain r where q: q = m + n + r by (auto simp add: le-iff-add)
{ fix u

from w-def have u mod w < w by simp
then have u + (w − u mod w) = w + (u − u mod w)

53

by simp
then have u + (w − u mod w) = w + u div w ∗ w

by (simp add: minus-mod-eq-div-mult)
}
then have w dvd v + w + r + (w − v mod w) ←→ w dvd m + w + r + (w

− m mod w)
by (simp add: add.assoc add.left-commute [of m] add.left-commute [of v]

dvd-add-left-iff dvd-add-right-iff)
moreover from q have Suc q = m + w + r by (simp add: w-def)
moreover from q have Suc (Suc q) = v + w + r by (simp add: v-def w-def)
ultimately have w dvd Suc (Suc (q + (w − v mod w))) ←→ w dvd Suc (q +

(w − m mod w))
by (simp only: add-Suc [symmetric])

then have Suc n dvd Suc (Suc (Suc (q + n) − Suc m mod Suc n)) ←→
Suc n dvd Suc (Suc (q + n − m mod Suc n))
by (simp add: v-def w-def Suc-diff-le trans-le-add2)

}
then show ?case

by (auto simp add: mark-out-aux-def
enumerate-Suc-eq in-set-enumerate-eq not-less)

qed

Main entry point to sieve
fun sieve :: nat ⇒ marks ⇒ marks
where

sieve n [] = []
| sieve n (False # bs) = False # sieve (Suc n) bs
| sieve n (True # bs) = True # sieve (Suc n) (mark-out n bs)

There are the following possible optimisations here:

• sieve can abort as soon as n is too big to let mark-out have any effect.

• Search for further primes can be given up as soon as the search position
exceeds the square root of the maximum candidate.

This is left as an constructive exercise to the reader.
lemma numbers-of-marks-sieve:

numbers-of-marks (Suc n) (sieve n bs) =
{q ∈ numbers-of-marks (Suc n) bs. ∀m ∈ numbers-of-marks (Suc n) bs. ¬ m

dvd-strict q}
proof (induct n bs rule: sieve.induct)

case 1
show ?case by simp

next
case 2
then show ?case by simp

next

54

case (3 n bs)
have aux: n ∈ Suc ‘ M ←→ n > 0 ∧ n − 1 ∈ M (is ?lhs ←→ ?rhs) for M n
proof

show ?rhs if ?lhs using that by auto
show ?lhs if ?rhs
proof −

from that have n > 0 and n − 1 ∈ M by auto
then have Suc (n − 1) ∈ Suc ‘ M by blast
with ‹n > 0 › show n ∈ Suc ‘ M by simp

qed
qed
have aux1 : False if Suc (Suc n) ≤ m and m dvd Suc n for m :: nat
proof −

from ‹m dvd Suc n› obtain q where Suc n = m ∗ q ..
with ‹Suc (Suc n) ≤ m› have Suc (m ∗ q) ≤ m by simp
then have m ∗ q < m by arith
with ‹Suc n = m ∗ q› show ?thesis by simp

qed
have aux2 : m dvd q

if 1 : ∀ q>0 . 1 < q −→ Suc n < q −→ q ≤ Suc (n + length bs) −→
bs ! (q − Suc (Suc n)) −→ ¬ Suc n dvd q −→ q dvd m −→ m dvd q

and 2 : ¬ Suc n dvd m q dvd m
and 3 : Suc n < q q ≤ Suc (n + length bs) bs ! (q − Suc (Suc n))
for m q :: nat

proof −
from 1 have ∗:

∧
q. Suc n < q =⇒ q ≤ Suc (n + length bs) =⇒

bs ! (q − Suc (Suc n)) =⇒ ¬ Suc n dvd q =⇒ q dvd m =⇒ m dvd q
by auto

from 2 have ¬ Suc n dvd q by auto
moreover note 3
moreover note ‹q dvd m›
ultimately show ?thesis by (auto intro: ∗)

qed
from 3 show ?case
apply (simp-all add: numbers-of-marks-mark-out numbers-of-marks-Suc Compr-image-eq

inj-image-eq-iff in-numbers-of-marks-eq Ball-def imp-conjL aux)
apply safe
apply (simp-all add: less-diff-conv2 le-diff-conv2 dvd-minus-self not-less)
apply (clarsimp dest!: aux1)
apply (simp add: Suc-le-eq less-Suc-eq-le)
apply (rule aux2)
apply (clarsimp dest!: aux1)+
done

qed

Relation of the sieve algorithm to actual primes
definition primes-upto :: nat ⇒ nat list
where

primes-upto n = sorted-list-of-set {m. m ≤ n ∧ prime m}

55

lemma set-primes-upto: set (primes-upto n) = {m. m ≤ n ∧ prime m}
by (simp add: primes-upto-def)

lemma sorted-primes-upto [iff]: sorted (primes-upto n)
by (simp add: primes-upto-def)

lemma distinct-primes-upto [iff]: distinct (primes-upto n)
by (simp add: primes-upto-def)

lemma set-primes-upto-sieve:
set (primes-upto n) = numbers-of-marks 2 (sieve 1 (replicate (n − 1) True))

proof −
consider n = 0 ∨ n = 1 | n > 1 by arith
then show ?thesis
proof cases

case 1
then show ?thesis

by (auto simp add: numbers-of-marks-sieve numeral-2-eq-2 set-primes-upto
dest: prime-gt-Suc-0-nat)

next
case 2
{

fix m q
assume Suc (Suc 0) ≤ q

and q < Suc n
and m dvd q

then have m < Suc n by (auto dest: dvd-imp-le)
assume ∗: ∀m∈{Suc (Suc 0)..<Suc n}. m dvd q −→ q dvd m

and m dvd q and m 6= 1
have m = q
proof (cases m = 0)

case True with ‹m dvd q› show ?thesis by simp
next

case False with ‹m 6= 1 › have Suc (Suc 0) ≤ m by arith
with ‹m < Suc n› ∗ ‹m dvd q› have q dvd m by simp
with ‹m dvd q› show ?thesis by (simp add: dvd-antisym)

qed
}
then have aux:

∧
m q. Suc (Suc 0) ≤ q =⇒

q < Suc n =⇒
m dvd q =⇒
∀m∈{Suc (Suc 0)..<Suc n}. m dvd q −→ q dvd m =⇒
m dvd q =⇒ m 6= q =⇒ m = 1 by auto

from 2 show ?thesis
apply (auto simp add: numbers-of-marks-sieve numeral-2-eq-2 set-primes-upto

dest: prime-gt-Suc-0-nat)
apply (metis One-nat-def Suc-le-eq less-not-refl prime-nat-iff)
apply (metis One-nat-def Suc-le-eq aux prime-nat-iff)

56

done
qed

qed

lemma primes-upto-sieve [code]:
primes-upto n = map fst (filter snd (enumerate 2 (sieve 1 (replicate (n − 1)

True))))
using primes-upto-def set-primes-upto set-primes-upto-sieve sorted-list-of-set-numbers-of-marks

by presburger

lemma prime-in-primes-upto: prime n ←→ n ∈ set (primes-upto n)
by (simp add: set-primes-upto)

6.3 Application: smallest prime beyond a certain number
definition smallest-prime-beyond :: nat ⇒ nat
where

smallest-prime-beyond n = (LEAST p. prime p ∧ p ≥ n)

lemma prime-smallest-prime-beyond [iff]: prime (smallest-prime-beyond n) (is
?P)

and smallest-prime-beyond-le [iff]: smallest-prime-beyond n ≥ n (is ?Q)
proof −

let ?least = LEAST p. prime p ∧ p ≥ n
from primes-infinite obtain q where prime q ∧ q ≥ n

by (metis finite-nat-set-iff-bounded-le mem-Collect-eq nat-le-linear)
then have prime ?least ∧ ?least ≥ n

by (rule LeastI)
then show ?P and ?Q

by (simp-all add: smallest-prime-beyond-def)
qed

lemma smallest-prime-beyond-smallest: prime p =⇒ p ≥ n =⇒ smallest-prime-beyond
n ≤ p

by (simp only: smallest-prime-beyond-def) (auto intro: Least-le)

lemma smallest-prime-beyond-eq:
prime p =⇒ p ≥ n =⇒ (

∧
q. prime q =⇒ q ≥ n =⇒ q ≥ p) =⇒ small-

est-prime-beyond n = p
by (simp only: smallest-prime-beyond-def) (auto intro: Least-equality)

definition smallest-prime-between :: nat ⇒ nat ⇒ nat option
where

smallest-prime-between m n =
(if (∃ p. prime p ∧ m ≤ p ∧ p ≤ n) then Some (smallest-prime-beyond m) else

None)

lemma smallest-prime-between-None:
smallest-prime-between m n = None ←→ (∀ q. m ≤ q ∧ q ≤ n −→ ¬ prime q)

57

by (auto simp add: smallest-prime-between-def)

lemma smallest-prime-betwen-Some:
smallest-prime-between m n = Some p ←→ smallest-prime-beyond m = p ∧ p ≤

n
by (auto simp add: smallest-prime-between-def dest: smallest-prime-beyond-smallest

[of - m])

lemma [code]: smallest-prime-between m n = List.find (λp. p ≥ m) (primes-upto
n)
proof −

have List.find (λp. p ≥ m) (primes-upto n) = Some (smallest-prime-beyond m)
if assms: m ≤ p prime p p ≤ n for p

proof −
define A where A = {p. p ≤ n ∧ prime p ∧ m ≤ p}
from assms have smallest-prime-beyond m ≤ p

by (auto intro: smallest-prime-beyond-smallest)
from this ‹p ≤ n› have ∗: smallest-prime-beyond m ≤ n

by (rule order-trans)
from assms have ex: ∃ p≤n. prime p ∧ m ≤ p

by auto
then have finite A

by (auto simp add: A-def)
with ∗ have Min A = smallest-prime-beyond m

by (auto simp add: A-def intro: Min-eqI smallest-prime-beyond-smallest)
with ex sorted-primes-upto show ?thesis

by (auto simp add: set-primes-upto sorted-find-Min A-def)
qed
then show ?thesis

by (auto simp add: smallest-prime-between-def find-None-iff set-primes-upto
intro!: sym [of - None])

qed

definition smallest-prime-beyond-aux :: nat ⇒ nat ⇒ nat
where

smallest-prime-beyond-aux k n = smallest-prime-beyond n

lemma [code]:
smallest-prime-beyond-aux k n =
(case smallest-prime-between n (k ∗ n) of

Some p ⇒ p
| None ⇒ smallest-prime-beyond-aux (Suc k) n)

by (simp add: smallest-prime-beyond-aux-def smallest-prime-betwen-Some split:
option.split)

lemma [code]: smallest-prime-beyond n = smallest-prime-beyond-aux 2 n
by (simp add: smallest-prime-beyond-aux-def)

end

58

7 Fast modular exponentiation
theory Mod-Exp

imports Cong HOL−Library.Power-By-Squaring
begin

context euclidean-semiring-cancel
begin

definition mod-exp-aux :: ′a ⇒ ′a ⇒ ′a ⇒ nat ⇒ ′a
where mod-exp-aux m = efficient-funpow (λx y. x ∗ y mod m)

lemma mod-exp-aux-code [code]:
mod-exp-aux m y x n =

(if n = 0 then y
else if n = 1 then (x ∗ y) mod m
else if even n then mod-exp-aux m y ((x ∗ x) mod m) (n div 2)
else mod-exp-aux m ((x ∗ y) mod m) ((x ∗ x) mod m) (n div 2))

unfolding mod-exp-aux-def by (rule efficient-funpow-code)

lemma mod-exp-aux-correct:
mod-exp-aux m y x n mod m = (x ^ n ∗ y) mod m

proof −
have mod-exp-aux m y x n = efficient-funpow (λx y. x ∗ y mod m) y x n

by (simp add: mod-exp-aux-def)
also have . . . = ((λy. x ∗ y mod m) ^^ n) y
by (rule efficient-funpow-correct) (simp add: mod-mult-left-eq mod-mult-right-eq

mult-ac)
also have ((λy. x ∗ y mod m) ^^ n) y mod m = (x ^ n ∗ y) mod m
proof (induction n)

case (Suc n)
hence x ∗ ((λy. x ∗ y mod m) ^^ n) y mod m = x ∗ x ^ n ∗ y mod m

by (metis mod-mult-right-eq mult.assoc)
thus ?case by auto

qed auto
finally show ?thesis .

qed

definition mod-exp :: ′a ⇒ nat ⇒ ′a ⇒ ′a
where mod-exp b e m = (b ^ e) mod m

lemma mod-exp-code [code]: mod-exp b e m = mod-exp-aux m 1 b e mod m
by (simp add: mod-exp-def mod-exp-aux-correct)

end

lemmas [code-abbrev] = mod-exp-def [where ? ′a = nat] mod-exp-def [where ? ′a
= int]

59

lemma cong-power-nat-code [code-unfold]:
[b ^ e = (x ::nat)] (mod m) ←→ mod-exp b e m = x mod m
by (simp add: mod-exp-def cong-def)

lemma cong-power-int-code [code-unfold]:
[b ^ e = (x ::int)] (mod m) ←→ mod-exp b e m = x mod m
by (simp add: mod-exp-def cong-def)

The following rules allow the simplifier to evaluate mod-exp efficiently.
lemma eval-mod-exp-aux [simp]:

mod-exp-aux m y x 0 = y
mod-exp-aux m y x (Suc 0) = (x ∗ y) mod m
mod-exp-aux m y x (numeral (num.Bit0 n)) =

mod-exp-aux m y (x2 mod m) (numeral n)
mod-exp-aux m y x (numeral (num.Bit1 n)) =

mod-exp-aux m ((x ∗ y) mod m) (x2 mod m) (numeral n)
proof −

define n ′ where n ′ = (numeral n :: nat)
have [simp]: n ′ 6= 0 by (auto simp: n ′-def)

show mod-exp-aux m y x 0 = y and mod-exp-aux m y x (Suc 0) = (x ∗ y) mod
m

by (simp-all add: mod-exp-aux-def)

have numeral (num.Bit0 n) = (2 ∗ n ′)
by (subst numeral.numeral-Bit0) (simp del: arith-simps add: n ′-def)

also have mod-exp-aux m y x . . . = mod-exp-aux m y (x^2 mod m) n ′

by (subst mod-exp-aux-code) (simp-all add: power2-eq-square)
finally show mod-exp-aux m y x (numeral (num.Bit0 n)) =

mod-exp-aux m y (x2 mod m) (numeral n)
by (simp add: n ′-def)

have numeral (num.Bit1 n) = Suc (2 ∗ n ′)
by (subst numeral.numeral-Bit1) (simp del: arith-simps add: n ′-def)

also have mod-exp-aux m y x . . . = mod-exp-aux m ((x ∗ y) mod m) (x^2 mod
m) n ′

by (subst mod-exp-aux-code) (simp-all add: power2-eq-square)
finally show mod-exp-aux m y x (numeral (num.Bit1 n)) =

mod-exp-aux m ((x ∗ y) mod m) (x2 mod m) (numeral n)
by (simp add: n ′-def)

qed

lemma eval-mod-exp [simp]:
mod-exp b ′ 0 m ′ = 1 mod m ′

mod-exp b ′ 1 m ′ = b ′ mod m ′

mod-exp b ′ (Suc 0) m ′ = b ′ mod m ′

mod-exp b ′ e ′ 0 = b ′ ^ e ′

mod-exp b ′ e ′ 1 = 0

60

mod-exp b ′ e ′ (Suc 0) = 0
mod-exp 0 1 m ′ = 0
mod-exp 0 (Suc 0) m ′ = 0
mod-exp 0 (numeral e) m ′ = 0
mod-exp 1 e ′ m ′ = 1 mod m ′

mod-exp (Suc 0) e ′ m ′ = 1 mod m ′

mod-exp (numeral b) (numeral e) (numeral m) =
mod-exp-aux (numeral m) 1 (numeral b) (numeral e) mod numeral m

by (simp-all add: mod-exp-def mod-exp-aux-correct)

end

theory Euler-Criterion
imports Residues
begin

context
fixes p :: nat
fixes a :: int

assumes p-prime: prime p
assumes p-ge-2 : 2 < p
assumes p-a-relprime: [a 6= 0](mod p)

begin

private lemma odd-p: odd p
using p-ge-2 p-prime prime-odd-nat by blast

private lemma p-minus-1-int:
int (p − 1) = int p − 1
by (metis of-nat-1 of-nat-diff p-prime prime-ge-1-nat)

private lemma p-not-eq-Suc-0 [simp]:
p 6= Suc 0
using p-ge-2 by simp

private lemma one-mod-int-p-eq [simp]:
1 mod int p = 1

proof −
from p-ge-2 have int 1 mod int p = int 1

by simp
then show ?thesis

by simp
qed

private lemma E-1 :
assumes QuadRes (int p) a
shows [a ^ ((p − 1) div 2) = 1] (mod int p)

61

proof −
from assms obtain b where b: [b ^ 2 = a] (mod int p)

unfolding QuadRes-def by blast
then have [a ^ ((p − 1) div 2) = b ^ (2 ∗ ((p − 1) div 2))] (mod int p)

by (simp add: cong-pow cong-sym power-mult)
then have [a ^ ((p − 1) div 2) = b ^ (p − 1)] (mod int p)

using odd-p by force
moreover have [b ^ (p − 1) = 1] (mod int p)
proof −

have [nat |b| ^ (p − 1) = 1] (mod p)
using p-prime proof (rule fermat-theorem)

from b p-a-relprime show ¬ p dvd nat |b|
by (auto simp add: cong-iff-dvd-diff power2-eq-square)
(metis cong-iff-dvd-diff cong-dvd-iff dvd-mult2)

qed
then have nat |b| ^ (p − 1) mod p = 1 mod p

by (simp add: cong-def)
then have int (nat |b| ^ (p − 1) mod p) = int (1 mod p)

by simp
moreover from odd-p have |b| ^ (p − Suc 0) = b ^ (p − Suc 0)

by (simp add: power-even-abs)
ultimately show ?thesis

by (auto simp add: cong-def zmod-int)
qed
ultimately show ?thesis

by (auto intro: cong-trans)
qed

private definition S1 :: int set where S1 = {0 <.. int p − 1}

private definition P :: int ⇒ int ⇒ bool where
P x y ←→ [x ∗ y = a] (mod p) ∧ y ∈ S1

private definition f-1 :: int ⇒ int where
f-1 x = (THE y. P x y)

private definition f :: int ⇒ int set where
f x = {x, f-1 x}

private definition S2 :: int set set where S2 = f ‘ S1

private lemma P-lemma: assumes x ∈ S1
shows ∃ ! y. P x y

proof −
have ¬ p dvd x using assms zdvd-not-zless S1-def by auto
hence co-xp: coprime x p using p-prime prime-imp-coprime-int[of p x]

by (simp add: ac-simps)
then obtain y ′ where y ′: [x ∗ y ′ = 1] (mod p) using cong-solve-coprime-int by

blast

62

moreover define y where y = y ′ ∗ a mod p
ultimately have [x ∗ y = a] (mod p)

using mod-mult-right-eq [of x y ′ ∗ a p]
cong-scalar-right [of x ∗ y ′ 1 int p a]
by (auto simp add: cong-def ac-simps)

moreover have y ∈ {0 .. int p − 1} unfolding y-def using p-ge-2 by auto
hence y ∈ S1 using calculation cong-iff-dvd-diff p-a-relprime S1-def cong-dvd-iff

by fastforce
ultimately have P x y unfolding P-def by blast
moreover {

fix y1 y2
assume P x y1 P x y2
moreover hence [y1 = y2] (mod p) unfolding P-def

using co-xp cong-mult-lcancel[of x p y1 y2] cong-sym cong-trans by blast
ultimately have y1 = y2 unfolding P-def S1-def using cong-less-imp-eq-int

by auto
}
ultimately show ?thesis by blast

qed

private lemma f-1-lemma-1 : assumes x ∈ S1
shows P x (f-1 x) using assms P-lemma theI ′[of P x] f-1-def by presburger

private lemma f-1-lemma-2 : assumes x ∈ S1
shows f-1 (f-1 x) = x
using assms f-1-lemma-1 [of x] f-1-def P-lemma[of f-1 x] P-def by (auto simp:

mult.commute)

private lemma f-lemma-1 : assumes x ∈ S1
shows f x = f (f-1 x) using f-def f-1-lemma-2 [of x] assms by auto

private lemma l1 : assumes ¬ QuadRes p a x ∈ S1
shows x 6= f-1 x
using f-1-lemma-1 [of x] assms unfolding P-def QuadRes-def power2-eq-square

by fastforce

private lemma l2 : assumes ¬ QuadRes p a x ∈ S1
shows [

∏
(f x) = a] (mod p)

using assms l1 f-1-lemma-1 P-def f-def by auto

private lemma l3 : assumes x ∈ S2
shows finite x using assms f-def S2-def by auto

private lemma l4 : S1 =
⋃

S2 using f-1-lemma-1 P-def f-def S2-def by auto

private lemma l5 : assumes x ∈ S2 y ∈ S2 x 6= y
shows x ∩ y = {}

proof −
obtain a b where ab: x = f a a ∈ S1 y = f b b ∈ S1 using assms S2-def by

63

auto
hence a 6= b a 6= f-1 b f-1 a 6= b using assms(3) f-lemma-1 by blast+
moreover hence f-1 a 6= f-1 b using f-1-lemma-2 [of a] f-1-lemma-2 [of b] ab by

force
ultimately show ?thesis using f-def ab by fastforce

qed

private lemma l6 : prod Prod S2 =
∏

S1
using prod.Union-disjoint[of S2 λx. x] l3 l4 l5 unfolding comp-def by auto

private lemma l7 : fact n =
∏
{0 <.. int n}

proof (induction n)
case (Suc n)

have int (Suc n) = int n + 1 by simp
hence insert (int (Suc n)) {0<..int n} = {0<..int (Suc n)} by auto
thus ?case using prod.insert[of {0<..int n} int (Suc n) λx. x] Suc fact-Suc by

auto
qed simp

private lemma l8 : fact (p − 1) =
∏

S1 using l7 [of p − 1] S1-def p-minus-1-int
by presburger

private lemma l9 : [prod Prod S2 = −1] (mod p)
using l6 l8 wilson-theorem[of p] p-prime by presburger

private lemma l10 : assumes card S = n
∧

x. x ∈ S =⇒ [g x = a] (mod p)
shows [prod g S = a ^ n] (mod p) using assms

proof (induction n arbitrary: S)
case 0

thus ?case using card-0-eq[of S] prod.empty prod.infinite by fastforce
next
case (Suc n)

then obtain x where x: x ∈ S by force
define S ′ where S ′ = S − {x}
hence [prod g S ′ = a ^ n] (mod int p)

using x Suc(1)[of S ′] Suc(2) Suc(3) by (simp add: card-ge-0-finite)
moreover have prod g S = g x ∗ prod g S ′

using x S ′-def Suc(2) prod.remove[of S x g] by fastforce
ultimately show ?case using x Suc(3) cong-mult

by simp blast
qed

private lemma l11 : assumes ¬ QuadRes p a
shows card S2 = (p − 1) div 2

proof −
have sum card S2 = 2 ∗ card S2

using sum.cong[of S2 S2 card λx. 2] l1 f-def S2-def assms by fastforce
moreover have p − 1 = sum card S2

using l4 card-UN-disjoint[of S2 λx. x] l3 l5 S1-def S2-def by auto

64

ultimately show ?thesis by linarith
qed

private lemma l12 : assumes ¬ QuadRes p a
shows [prod Prod S2 = a ^ ((p − 1) div 2)] (mod p)
using assms l2 l10 l11 unfolding S2-def by blast

private lemma E-2 : assumes ¬ QuadRes p a
shows [a ^ ((p − 1) div 2) = −1] (mod p) using l9 l12 cong-trans cong-sym

assms by blast

lemma euler-criterion-aux: [(Legendre a p) = a ^ ((p − 1) div 2)] (mod p)
using p-a-relprime by (auto simp add: Legendre-def

intro!: cong-sym [of - 1] cong-sym [of - − 1]
dest: E-1 E-2)

end

theorem euler-criterion: assumes prime p 2 < p
shows [(Legendre a p) = a ^ ((p − 1) div 2)] (mod p)

proof (cases [a = 0] (mod p))
case True
then have [a ^ ((p − 1) div 2) = 0 ^ ((p − 1) div 2)] (mod p)

using cong-pow by blast
moreover have (0 ::int) ^ ((p − 1) div 2) = 0

using zero-power [of (p − 1) div 2] assms(2) by simp
ultimately have [a ^ ((p − 1) div 2) = 0] (mod p)

using True assms(1) prime-dvd-power-int-iff
by (simp add: cong-iff-dvd-diff)

then show ?thesis unfolding Legendre-def using True cong-sym
by auto

next
case False
then show ?thesis

using euler-criterion-aux assms by presburger
qed

hide-fact euler-criterion-aux

end

8 Gauss’ Lemma
theory Gauss

imports Euler-Criterion
begin

lemma cong-prime-prod-zero-nat:
[a ∗ b = 0] (mod p) =⇒ prime p =⇒ [a = 0] (mod p) ∨ [b = 0] (mod p)

65

for a :: nat
by (auto simp add: cong-altdef-nat prime-dvd-mult-iff)

lemma cong-prime-prod-zero-int:
[a ∗ b = 0] (mod p) =⇒ prime p =⇒ [a = 0] (mod p) ∨ [b = 0] (mod p)
for a :: int
by (simp add: cong-0-iff prime-dvd-mult-iff)

locale GAUSS =
fixes p :: nat
fixes a :: int
assumes p-prime: prime p
assumes p-ge-2 : 2 < p
assumes p-a-relprime: [a 6= 0](mod p)
assumes a-nonzero: 0 < a

begin

definition A = {0 ::int <.. ((int p − 1) div 2)}
definition B = (λx. x ∗ a) ‘ A
definition C = (λx. x mod p) ‘ B
definition D = C ∩ {.. (int p − 1) div 2}
definition E = C ∩ {(int p − 1) div 2 <..}
definition F = (λx. (int p − x)) ‘ E

8.1 Basic properties of p
lemma odd-p: odd p

by (metis p-prime p-ge-2 prime-odd-nat)

lemma p-minus-one-l: (int p − 1) div 2 < p
proof −

have (p − 1) div 2 ≤ (p − 1) div 1
by (metis div-by-1 div-le-dividend)

also have . . . = p − 1 by simp
finally show ?thesis

using p-ge-2 by arith
qed

lemma p-eq2 : int p = (2 ∗ ((int p − 1) div 2)) + 1
using odd-p p-ge-2 nonzero-mult-div-cancel-left [of 2 p − 1] by simp

lemma p-odd-int: obtains z :: int where int p = 2 ∗ z + 1 0 < z
proof

let ?z = (int p − 1) div 2
show int p = 2 ∗ ?z + 1 by (rule p-eq2)
show 0 < ?z

using p-ge-2 by linarith
qed

66

8.2 Basic Properties of the Gauss Sets
lemma finite-A: finite A

by (auto simp add: A-def)

lemma finite-B: finite B
by (auto simp add: B-def finite-A)

lemma finite-C : finite C
by (auto simp add: C-def finite-B)

lemma finite-D: finite D
by (auto simp add: D-def finite-C)

lemma finite-E : finite E
by (auto simp add: E-def finite-C)

lemma finite-F : finite F
by (auto simp add: F-def finite-E)

lemma C-eq: C = D ∪ E
by (auto simp add: C-def D-def E-def)

lemma A-card-eq: card A = nat ((int p − 1) div 2)
by (auto simp add: A-def)

lemma inj-on-xa-A: inj-on (λx. x ∗ a) A
using a-nonzero by (simp add: A-def inj-on-def)

definition ResSet :: int ⇒ int set ⇒ bool
where ResSet m X ←→ (∀ y1 y2 . y1 ∈ X ∧ y2 ∈ X ∧ [y1 = y2] (mod m) −→

y1 = y2)

lemma ResSet-image:
0 < m =⇒ ResSet m A =⇒ ∀ x ∈ A. ∀ y ∈ A. ([f x = f y](mod m) −→ x = y)

=⇒ ResSet m (f ‘ A)
by (auto simp add: ResSet-def)

lemma A-res: ResSet p A
using p-ge-2 by (auto simp add: A-def ResSet-def intro!: cong-less-imp-eq-int)

lemma B-res: ResSet p B
proof −

have ∗: x = y
if a: [x ∗ a = y ∗ a] (mod p)
and b: 0 < x
and c: x ≤ (int p − 1) div 2
and d: 0 < y
and e: y ≤ (int p − 1) div 2
for x y

67

proof −
from p-a-relprime have ¬ p dvd a

by (simp add: cong-0-iff)
with p-prime prime-imp-coprime [of - nat |a|]
have coprime a (int p)

by (simp-all add: ac-simps)
with a cong-mult-rcancel [of a int p x y] have [x = y] (mod p)

by simp
with cong-less-imp-eq-int [of x y p] p-minus-one-l

order-le-less-trans [of x (int p − 1) div 2 p]
order-le-less-trans [of y (int p − 1) div 2 p]

show ?thesis
by (metis b c cong-less-imp-eq-int d e zero-less-imp-eq-int of-nat-0-le-iff)

qed
show ?thesis

using p-ge-2 p-a-relprime p-minus-one-l
by (metis ∗ A-def A-res B-def GAUSS .ResSet-image GAUSS-axioms greaterThanAt-

Most-iff odd-p odd-pos of-nat-0-less-iff)
qed

lemma SR-B-inj: inj-on (λx. x mod p) B
proof −

have False
if a: x ∗ a mod p = y ∗ a mod p
and b: 0 < x
and c: x ≤ (int p − 1) div 2
and d: 0 < y
and e: y ≤ (int p − 1) div 2
and f : x 6= y
for x y

proof −
from a have a ′: [x ∗ a = y ∗ a](mod p)

using cong-def by blast
from p-a-relprime have ¬p dvd a

by (simp add: cong-0-iff)
with p-prime prime-imp-coprime [of - nat |a|]
have coprime a (int p)

by (simp-all add: ac-simps)
with a ′ cong-mult-rcancel [of a int p x y]
have [x = y] (mod p) by simp
with cong-less-imp-eq-int [of x y p] p-minus-one-l

order-le-less-trans [of x (int p − 1) div 2 p]
order-le-less-trans [of y (int p − 1) div 2 p]

have x = y
by (metis b c cong-less-imp-eq-int d e zero-less-imp-eq-int of-nat-0-le-iff)

then show ?thesis
by (simp add: f)

qed
then show ?thesis

68

by (auto simp add: B-def inj-on-def A-def) metis
qed

lemma nonzero-mod-p: 0 < x =⇒ x < int p =⇒ [x 6= 0](mod p)
for x :: int
by (simp add: cong-def)

lemma A-ncong-p: x ∈ A =⇒ [x 6= 0](mod p)
by (rule nonzero-mod-p) (auto simp add: A-def)

lemma A-greater-zero: x ∈ A =⇒ 0 < x
by (auto simp add: A-def)

lemma B-ncong-p: x ∈ B =⇒ [x 6= 0](mod p)
by (auto simp: B-def p-prime p-a-relprime A-ncong-p dest: cong-prime-prod-zero-int)

lemma B-greater-zero: x ∈ B =⇒ 0 < x
using a-nonzero by (auto simp add: B-def A-greater-zero)

lemma B-mod-greater-zero:
0 < x mod int p if x ∈ B

proof −
from that have x mod int p 6= 0

using B-ncong-p cong-def cong-mult-self-left by blast
moreover from that have 0 < x

by (rule B-greater-zero)
then have 0 ≤ x mod int p

by (auto simp add: mod-int-pos-iff intro: neq-le-trans)
ultimately show ?thesis

by simp
qed

lemma C-greater-zero: y ∈ C =⇒ 0 < y
by (auto simp add: C-def B-mod-greater-zero)

lemma F-subset: F ⊆ {x. 0 < x ∧ x ≤ ((int p − 1) div 2)}
using p-ge-2 by (auto simp add: F-def E-def C-def intro: p-odd-int)

lemma D-subset: D ⊆ {x. 0 < x ∧ x ≤ ((p − 1) div 2)}
by (auto simp add: D-def C-greater-zero)

lemma F-eq: F = {x. ∃ y ∈ A. (x = p − ((y ∗ a) mod p) ∧ (int p − 1) div 2 <
(y ∗ a) mod p)}

by (auto simp add: F-def E-def D-def C-def B-def A-def)

lemma D-eq: D = {x. ∃ y ∈ A. (x = (y ∗ a) mod p ∧ (y ∗ a) mod p ≤ (int p −
1) div 2)}

by (auto simp add: D-def C-def B-def A-def)

69

lemma all-A-relprime:
coprime x p if x ∈ A

proof −
from A-ncong-p [OF that] have ¬ int p dvd x

by (simp add: cong-0-iff)
with p-prime show ?thesis
by (metis (no-types) coprime-commute prime-imp-coprime prime-nat-int-transfer)

qed

lemma A-prod-relprime: coprime (prod id A) p
by (auto intro: prod-coprime-left all-A-relprime)

8.3 Relationships Between Gauss Sets
lemma StandardRes-inj-on-ResSet: ResSet m X =⇒ inj-on (λb. b mod m) X

by (auto simp add: ResSet-def inj-on-def cong-def)

lemma B-card-eq-A: card B = card A
using finite-A by (simp add: finite-A B-def inj-on-xa-A card-image)

lemma B-card-eq: card B = nat ((int p − 1) div 2)
by (simp add: B-card-eq-A A-card-eq)

lemma F-card-eq-E : card F = card E
using finite-E by (simp add: F-def card-image)

lemma C-card-eq-B: card C = card B
proof −

have inj-on (λx. x mod p) B
by (metis SR-B-inj)

then show ?thesis
by (metis C-def card-image)

qed

lemma D-E-disj: D ∩ E = {}
by (auto simp add: D-def E-def)

lemma C-card-eq-D-plus-E : card C = card D + card E
by (auto simp add: C-eq card-Un-disjoint D-E-disj finite-D finite-E)

lemma C-prod-eq-D-times-E : prod id E ∗ prod id D = prod id C
by (metis C-eq D-E-disj finite-D finite-E inf-commute prod.union-disjoint sup-commute)

lemma C-B-zcong-prod: [prod id C = prod id B] (mod p)
apply (auto simp add: C-def)
apply (insert finite-B SR-B-inj)
apply (drule prod.reindex [of λx. x mod int p B id])
apply auto
apply (rule cong-prod)

70

apply (auto simp add: cong-def)
done

lemma F-Un-D-subset: (F ∪ D) ⊆ A
by (intro Un-least subset-trans [OF F-subset] subset-trans [OF D-subset]) (auto

simp: A-def)

lemma F-D-disj: (F ∩ D) = {}
proof (auto simp add: F-eq D-eq)

fix y z :: int
assume p − (y ∗ a) mod p = (z ∗ a) mod p
then have [(y ∗ a) mod p + (z ∗ a) mod p = 0] (mod p)

by (metis add.commute diff-eq-eq dvd-refl cong-def dvd-eq-mod-eq-0 mod-0)
moreover have [y ∗ a = (y ∗ a) mod p] (mod p)

by (metis cong-def mod-mod-trivial)
ultimately have [a ∗ (y + z) = 0] (mod p)
by (metis cong-def mod-add-left-eq mod-add-right-eq mult.commute ring-class.ring-distribs(1))

with p-prime a-nonzero p-a-relprime have a: [y + z = 0] (mod p)
by (auto dest!: cong-prime-prod-zero-int)

assume b: y ∈ A and c: z ∈ A
then have 0 < y + z

by (auto simp: A-def)
moreover from b c p-eq2 have y + z < p

by (auto simp: A-def)
ultimately show False

by (metis a nonzero-mod-p)
qed

lemma F-Un-D-card: card (F ∪ D) = nat ((p − 1) div 2)
proof −

have card (F ∪ D) = card E + card D
by (auto simp add: finite-F finite-D F-D-disj card-Un-disjoint F-card-eq-E)

then have card (F ∪ D) = card C
by (simp add: C-card-eq-D-plus-E)

then show card (F ∪ D) = nat ((p − 1) div 2)
by (simp add: C-card-eq-B B-card-eq)

qed

lemma F-Un-D-eq-A: F ∪ D = A
using finite-A F-Un-D-subset A-card-eq F-Un-D-card by (auto simp add: card-seteq)

lemma prod-D-F-eq-prod-A: prod id D ∗ prod id F = prod id A
by (metis F-D-disj F-Un-D-eq-A Int-commute Un-commute finite-D finite-F prod.union-disjoint)

lemma prod-F-zcong: [prod id F = ((−1) ^ (card E)) ∗ prod id E] (mod p)
proof −

have FE : prod id F = prod ((−) p) E
using finite-E prod.reindex[OF inj-on-diff-left] by (auto simp add: F-def)

then have ∀ x ∈ E . [(p−x) mod p = − x](mod p)

71

by (metis cong-def minus-mod-self1 mod-mod-trivial)
then have [prod ((λx. x mod p) ◦ ((−) p)) E = prod (uminus) E](mod p)

using finite-E p-ge-2 cong-prod [of E (λx. x mod p) ◦ ((−) p) uminus p]
by auto

then have two: [prod id F = prod (uminus) E](mod p)
by (metis FE cong-cong-mod-int cong-refl cong-prod minus-mod-self1)

have prod uminus E = (−1) ^ card E ∗ prod id E
using finite-E by (induct set: finite) auto

with two show ?thesis
by simp

qed

8.4 Gauss’ Lemma
lemma aux: prod id A ∗ (− 1) ^ card E ∗ a ^ card A ∗ (− 1) ^ card E = prod id
A ∗ a ^ card A

by auto

theorem pre-gauss-lemma: [a ^ nat((int p − 1) div 2) = (−1) ^ (card E)] (mod
p)
proof −

have [prod id A = prod id F ∗ prod id D](mod p)
by (auto simp: prod-D-F-eq-prod-A mult.commute cong del: prod.cong-simp)

then have [prod id A = ((−1)^(card E) ∗ prod id E) ∗ prod id D] (mod p)
by (rule cong-trans) (metis cong-scalar-right prod-F-zcong)

then have [prod id A = ((−1)^(card E) ∗ prod id C)] (mod p)
using finite-D finite-E by (auto simp add: ac-simps C-prod-eq-D-times-E C-eq

D-E-disj prod.union-disjoint)
then have [prod id A = ((−1)^(card E) ∗ prod id B)] (mod p)

by (rule cong-trans) (metis C-B-zcong-prod cong-scalar-left)
then have [prod id A = ((−1)^(card E) ∗ prod id ((λx. x ∗ a) ‘ A))] (mod p)

by (simp add: B-def)
then have [prod id A = ((−1)^(card E) ∗ prod (λx. x ∗ a) A)] (mod p)

by (simp add: inj-on-xa-A prod.reindex)
moreover have prod (λx. x ∗ a) A = prod (λx. a) A ∗ prod id A

using finite-A by (induct set: finite) auto
ultimately have [prod id A = ((−1)^(card E) ∗ (prod (λx. a) A ∗ prod id A))]

(mod p)
by simp

then have [prod id A = ((−1)^(card E) ∗ a^(card A) ∗ prod id A)](mod p)
by (rule cong-trans)
(simp add: cong-scalar-left cong-scalar-right finite-A ac-simps)

then have a: [prod id A ∗ (−1)^(card E) =
((−1)^(card E) ∗ a^(card A) ∗ prod id A ∗ (−1)^(card E))](mod p)

by (rule cong-scalar-right)
then have [prod id A ∗ (−1)^(card E) = prod id A ∗

(−1)^(card E) ∗ a^(card A) ∗ (−1)^(card E)](mod p)
by (rule cong-trans) (simp add: a ac-simps)

then have [prod id A ∗ (−1)^(card E) = prod id A ∗ a^(card A)](mod p)

72

by (rule cong-trans) (simp add: aux cong del: prod.cong-simp)
with A-prod-relprime have [(− 1) ^ card E = a ^ card A](mod p)

by (metis cong-mult-lcancel)
then show ?thesis

by (simp add: A-card-eq cong-sym)
qed

theorem gauss-lemma: Legendre a p = (−1) ^ (card E)
proof −

from euler-criterion p-prime p-ge-2 have [Legendre a p = a^(nat (((p) − 1) div
2))] (mod p)

by auto
moreover have int ((p − 1) div 2) = (int p − 1) div 2

using p-eq2 by linarith
then have [a ^ nat (int ((p − 1) div 2)) = a ^ nat ((int p − 1) div 2)] (mod

int p)
by force

ultimately have [Legendre a p = (−1) ^ (card E)] (mod p)
using pre-gauss-lemma cong-trans by blast

moreover from p-a-relprime have Legendre a p = 1 ∨ Legendre a p = −1
by (auto simp add: Legendre-def)

moreover have (−1 ::int) ^ (card E) = 1 ∨ (−1 ::int) ^ (card E) = −1
using neg-one-even-power neg-one-odd-power by blast

moreover have [1 6= − 1] (mod int p)
using cong-iff-dvd-diff [where ′a=int] nonzero-mod-p[of 2] p-odd-int
by fastforce

ultimately show ?thesis
by (auto simp add: cong-sym)

qed

end

end

theory Quadratic-Reciprocity
imports Gauss
begin

The proof is based on Gauss’s fifth proof, which can be found at https:
//www.lehigh.edu/~shw2/q-recip/gauss5.pdf.
locale QR =

fixes p :: nat
fixes q :: nat
assumes p-prime: prime p
assumes p-ge-2 : 2 < p
assumes q-prime: prime q
assumes q-ge-2 : 2 < q
assumes pq-neq: p 6= q

73

https://www.lehigh.edu/~shw2/q-recip/gauss5.pdf
https://www.lehigh.edu/~shw2/q-recip/gauss5.pdf

begin

lemma odd-p: odd p
using p-ge-2 p-prime prime-odd-nat by blast

lemma p-ge-0 : 0 < int p
by (simp add: p-prime prime-gt-0-nat)

lemma p-eq2 : int p = (2 ∗ ((int p − 1) div 2)) + 1
using odd-p by simp

lemma odd-q: odd q
using q-ge-2 q-prime prime-odd-nat by blast

lemma q-ge-0 : 0 < int q
by (simp add: q-prime prime-gt-0-nat)

lemma q-eq2 : int q = (2 ∗ ((int q − 1) div 2)) + 1
using odd-q by simp

lemma pq-eq2 : int p ∗ int q = (2 ∗ ((int p ∗ int q − 1) div 2)) + 1
using odd-p odd-q by simp

lemma pq-coprime: coprime p q
using pq-neq p-prime primes-coprime-nat q-prime by blast

lemma pq-coprime-int: coprime (int p) (int q)
by (simp add: gcd-int-def pq-coprime)

lemma qp-ineq: int p ∗ k ≤ (int p ∗ int q − 1) div 2 ←→ k ≤ (int q − 1) div 2
proof −

have 2 ∗ int p ∗ k ≤ int p ∗ int q − 1 ←→ 2 ∗ k ≤ int q − 1
using p-ge-0 by auto

then show ?thesis by auto
qed

lemma QRqp: QR q p
using QR-def QR-axioms by simp

lemma pq-commute: int p ∗ int q = int q ∗ int p
by simp

lemma pq-ge-0 : int p ∗ int q > 0
using p-ge-0 q-ge-0 mult-pos-pos by blast

definition r = ((p − 1) div 2) ∗ ((q − 1) div 2)
definition m = card (GAUSS .E p q)
definition n = card (GAUSS .E q p)

74

abbreviation Res k ≡ {0 .. k − 1} for k :: int
abbreviation Res-ge-0 k ≡ {0 <.. k − 1} for k :: int
abbreviation Res-0 k ≡ {0 ::int} for k :: int
abbreviation Res-l k ≡ {0 <.. (k − 1) div 2} for k :: int
abbreviation Res-h k ≡ {(k − 1) div 2 <.. k − 1} for k :: int

abbreviation Sets-pq r0 r1 r2 ≡
{(x::int). x ∈ r0 (int p ∗ int q) ∧ x mod p ∈ r1 (int p) ∧ x mod q ∈ r2 (int q)}

definition A = Sets-pq Res-l Res-l Res-h
definition B = Sets-pq Res-l Res-h Res-l
definition C = Sets-pq Res-h Res-h Res-l
definition D = Sets-pq Res-l Res-h Res-h
definition E = Sets-pq Res-l Res-0 Res-h
definition F = Sets-pq Res-l Res-h Res-0

definition a = card A
definition b = card B
definition c = card C
definition d = card D
definition e = card E
definition f = card F

lemma Gpq: GAUSS p q
using p-prime pq-neq p-ge-2 q-prime
by (auto simp: GAUSS-def cong-iff-dvd-diff dest: primes-dvd-imp-eq)

lemma Gqp: GAUSS q p
by (simp add: QRqp QR.Gpq)

lemma QR-lemma-01 : (λx. x mod q) ‘ E = GAUSS .E q p
proof

have x ∈ E −→ x mod int q ∈ GAUSS .E q p if x ∈ E for x
proof −

from that obtain k where k: x = int p ∗ k
unfolding E-def by blast

from that E-def have x ∈ Res-l (int p ∗ int q)
by blast

then have k ∈ GAUSS .A q
using Gqp GAUSS .A-def k qp-ineq by (simp add: zero-less-mult-iff)

then have x mod q ∈ GAUSS .E q p
using GAUSS .C-def [of q p] Gqp k GAUSS .B-def [of q p] that GAUSS .E-def [of

q p]
by (force simp: E-def)

then show ?thesis by auto
qed
then show (λx. x mod int q) ‘ E ⊆ GAUSS .E q p

by auto
show GAUSS .E q p ⊆ (λx. x mod q) ‘ E

75

proof
fix x
assume x: x ∈ GAUSS .E q p
then obtain ka where ka: ka ∈ GAUSS .A q x = (ka ∗ p) mod q

by (auto simp: Gqp GAUSS .B-def GAUSS .C-def GAUSS .E-def)
then have ka ∗ p ∈ Res-l (int p ∗ int q)

using Gqp p-ge-0 qp-ineq by (simp add: GAUSS .A-def Groups.mult-ac(2))
then show x ∈ (λx. x mod q) ‘ E

using ka x Gqp q-ge-0 by (force simp: E-def GAUSS .E-def)
qed

qed

lemma QR-lemma-02 : e = n
proof −

have x = y if x: x ∈ E and y: y ∈ E and mod: x mod q = y mod q for x y
proof −

obtain p-inv where p-inv: [int p ∗ p-inv = 1] (mod int q)
using pq-coprime-int cong-solve-coprime-int by blast

from x y E-def obtain kx ky where k: x = int p ∗ kx y = int p ∗ ky
using dvd-def [of p x] by blast

with x y E-def have 0 < x int p ∗ kx ≤ (int p ∗ int q − 1) div 2
0 < y int p ∗ ky ≤ (int p ∗ int q − 1) div 2

using greaterThanAtMost-iff mem-Collect-eq by blast+
with k have 0 ≤ kx kx < q 0 ≤ ky ky < q

using qp-ineq by (simp-all add: zero-less-mult-iff)
moreover from mod k have (p-inv ∗ (p ∗ kx)) mod q = (p-inv ∗ (p ∗ ky))

mod q
using mod-mult-cong by blast

then have (p ∗ p-inv ∗ kx) mod q = (p ∗ p-inv ∗ ky) mod q
by (simp add: algebra-simps)

then have kx mod q = ky mod q
using p-inv mod-mult-cong[of p ∗ p-inv q 1]
by (auto simp: cong-def)

then have [kx = ky] (mod q)
unfolding cong-def by blast

ultimately show ?thesis
using cong-less-imp-eq-int k by blast

qed
then have inj-on (λx. x mod q) E

by (auto simp: inj-on-def)
then show ?thesis

using QR-lemma-01 card-image e-def n-def by fastforce
qed

lemma QR-lemma-03 : f = m
proof −

have F = QR.E q p
unfolding F-def pq-commute using QRqp QR.E-def [of q p] by fastforce

then have f = QR.e q p

76

unfolding f-def using QRqp QR.e-def [of q p] by presburger
then show ?thesis

using QRqp QR.QR-lemma-02 m-def QRqp QR.n-def by presburger
qed

definition f-1 :: int ⇒ int × int
where f-1 x = ((x mod p), (x mod q))

definition P-1 :: int × int ⇒ int ⇒ bool
where P-1 res x ←→ x mod p = fst res ∧ x mod q = snd res ∧ x ∈ Res (int p ∗

int q)

definition g-1 :: int × int ⇒ int
where g-1 res = (THE x . P-1 res x)

lemma P-1-lemma:
fixes res :: int × int
assumes 0 ≤ fst res fst res < p 0 ≤ snd res snd res < q
shows ∃ !x. P-1 res x

proof −
obtain y k1 k2 where yk: y = nat (fst res) + k1 ∗ p y = nat (snd res) + k2 ∗

q
using chinese-remainder [of p q] pq-coprime p-ge-0 q-ge-0 by fastforce

have (y mod (int p ∗ int q)) mod int p = fst res
using assms by (simp add: mod-mod-cancel yk(1))

moreover have (y mod (int p ∗ int q)) mod int q = snd res
using assms by (simp add: mod-mod-cancel yk(2))

ultimately have P-1 res (int y mod (int p ∗ int q))
using pq-ge-0 by (simp add: P-1-def)

moreover have a = b if P-1 res a P-1 res b for a b
proof −

from that have int p ∗ int q dvd a − b
using divides-mult[of int p a − b int q] pq-coprime-int mod-eq-dvd-iff [of a -

b]
unfolding P-1-def by force

with that show ?thesis
using dvd-imp-le-int[of a − b] unfolding P-1-def by fastforce

qed
ultimately show ?thesis by auto

qed

lemma g-1-lemma:
fixes res :: int × int
assumes 0 ≤ fst res fst res < p 0 ≤ snd res snd res < q
shows P-1 res (g-1 res)
using assms P-1-lemma [of res] theI ′ [of P-1 res] g-1-def
by auto

definition BuC = Sets-pq Res-ge-0 Res-h Res-l

77

lemma finite-BuC [simp]:
finite BuC

proof −
{

fix p q :: nat
have finite {x. 0 < x ∧ x < int p ∗ int q}

by simp
then have finite {x.

0 < x ∧
x < int p ∗ int q ∧
(int p − 1) div 2
< x mod int p ∧
x mod int p < int p ∧
0 < x mod int q ∧
x mod int q ≤ (int q − 1) div 2}
by (auto intro: rev-finite-subset)

}
then show ?thesis

by (simp add: BuC-def)
qed

lemma QR-lemma-04 : card BuC = card (Res-h p × Res-l q)
using card-bij-eq[of f-1 BuC Res-h p × Res-l q g-1]

proof
show inj-on f-1 BuC
proof

fix x y
assume ∗: x ∈ BuC y ∈ BuC f-1 x = f-1 y
then have int p ∗ int q dvd x − y

using f-1-def pq-coprime-int divides-mult[of int p x − y int q]
mod-eq-dvd-iff [of x - y]

by auto
with ∗ show x = y

using dvd-imp-le-int[of x − y int p ∗ int q] unfolding BuC-def by force
qed
show inj-on g-1 (Res-h p × Res-l q)
proof

fix x y
assume ∗: x ∈ Res-h p × Res-l q y ∈ Res-h p × Res-l q g-1 x = g-1 y
then have 0 ≤ fst x fst x < p 0 ≤ snd x snd x < q

0 ≤ fst y fst y < p 0 ≤ snd y snd y < q
using mem-Sigma-iff prod.collapse by fastforce+

with ∗ show x = y
using g-1-lemma[of x] g-1-lemma[of y] P-1-def by fastforce

qed
show g-1 ‘ (Res-h p × Res-l q) ⊆ BuC
proof

fix y

78

assume y ∈ g-1 ‘ (Res-h p × Res-l q)
then obtain x where x: y = g-1 x x ∈ Res-h p × Res-l q

by blast
then have P-1 x y

using g-1-lemma by fastforce
with x show y ∈ BuC

unfolding P-1-def BuC-def mem-Collect-eq using SigmaE prod.sel by fast-
force

qed
qed (auto simp: finite-subset f-1-def , simp-all add: BuC-def)

lemma QR-lemma-05 : card (Res-h p × Res-l q) = r
proof −

have card (Res-l q) = (q − 1) div 2 card (Res-h p) = (p − 1) div 2
using p-eq2 by force+

then show ?thesis
unfolding r-def using card-cartesian-product[of Res-h p Res-l q] by presburger

qed

lemma QR-lemma-06 : b + c = r
proof −

have B ∩ C = {} finite B finite C B ∪ C = BuC
unfolding B-def C-def BuC-def by fastforce+

then show ?thesis
unfolding b-def c-def using card.empty card-Un-Int QR-lemma-04 QR-lemma-05

by fastforce
qed

definition f-2 :: int ⇒ int
where f-2 x = (int p ∗ int q) − x

lemma f-2-lemma-1 : f-2 (f-2 x) = x
by (simp add: f-2-def)

lemma f-2-lemma-2 : [f-2 x = int p − x] (mod p)
by (simp add: f-2-def cong-iff-dvd-diff)

lemma f-2-lemma-3 : f-2 x ∈ S =⇒ x ∈ f-2 ‘ S
using f-2-lemma-1 [of x] image-eqI [of x f-2 f-2 x S] by presburger

lemma QR-lemma-07 :
f-2 ‘ Res-l (int p ∗ int q) = Res-h (int p ∗ int q)
f-2 ‘ Res-h (int p ∗ int q) = Res-l (int p ∗ int q)

proof −
have 1 : f-2 ‘ Res-l (int p ∗ int q) ⊆ Res-h (int p ∗ int q)

by (force simp: f-2-def)
have 2 : f-2 ‘ Res-h (int p ∗ int q) ⊆ Res-l (int p ∗ int q)

using pq-eq2 by (fastforce simp: f-2-def)
from 2 have 3 : Res-h (int p ∗ int q) ⊆ f-2 ‘ Res-l (int p ∗ int q)

79

using f-2-lemma-3 by blast
from 1 have 4 : Res-l (int p ∗ int q) ⊆ f-2 ‘ Res-h (int p ∗ int q)

using f-2-lemma-3 by blast
from 1 3 show f-2 ‘ Res-l (int p ∗ int q) = Res-h (int p ∗ int q)

by blast
from 2 4 show f-2 ‘ Res-h (int p ∗ int q) = Res-l (int p ∗ int q)

by blast
qed

lemma QR-lemma-08 :
f-2 x mod p ∈ Res-l p ←→ x mod p ∈ Res-h p
f-2 x mod p ∈ Res-h p ←→ x mod p ∈ Res-l p

using f-2-lemma-2 [of x] cong-def [of f-2 x p − x p] minus-mod-self2 [of x p]
zmod-zminus1-eq-if [of x p] p-eq2

by auto

lemma QR-lemma-09 :
f-2 x mod q ∈ Res-l q ←→ x mod q ∈ Res-h q
f-2 x mod q ∈ Res-h q ←→ x mod q ∈ Res-l q

using QRqp QR.QR-lemma-08 f-2-def QR.f-2-def pq-commute by auto

lemma QR-lemma-10 : a = c
unfolding a-def c-def
apply (rule card-bij-eq[of f-2 A C f-2])
unfolding A-def C-def
using QR-lemma-07 QR-lemma-08 QR-lemma-09 apply ((simp add: inj-on-def

f-2-def), blast)+
apply fastforce+
done

definition BuD = Sets-pq Res-l Res-h Res-ge-0
definition BuDuF = Sets-pq Res-l Res-h Res

definition f-3 :: int ⇒ int × int
where f-3 x = (x mod p, x div p + 1)

definition g-3 :: int × int ⇒ int
where g-3 x = fst x + (snd x − 1) ∗ p

lemma QR-lemma-11 : card BuDuF = card (Res-h p × Res-l q)
using card-bij-eq[of f-3 BuDuF Res-h p × Res-l q g-3]

proof
show f-3 ‘ BuDuF ⊆ Res-h p × Res-l q
proof

fix y
assume y ∈ f-3 ‘ BuDuF
then obtain x where x: y = f-3 x x ∈ BuDuF

by blast
then have x ≤ int p ∗ (int q − 1) div 2 + (int p − 1) div 2

80

unfolding BuDuF-def using p-eq2 int-distrib(4) by auto
moreover from x have (int p − 1) div 2 ≤ − 1 + x mod p

by (auto simp: BuDuF-def)
moreover have int p ∗ (int q − 1) div 2 = int p ∗ ((int q − 1) div 2)

by (subst div-mult1-eq) (simp add: odd-q)
then have p ∗ (int q − 1) div 2 = p ∗ ((int q + 1) div 2 − 1)

by fastforce
ultimately have x ≤ p ∗ ((int q + 1) div 2 − 1) − 1 + x mod p

by linarith
then have x div p < (int q + 1) div 2 − 1

using mult.commute[of int p x div p] p-ge-0 div-mult-mod-eq[of x p]
and mult-less-cancel-left-pos[of p x div p (int q + 1) div 2 − 1]

by linarith
moreover from x have 0 < x div p + 1

using pos-imp-zdiv-neg-iff [of p x] p-ge-0 by (auto simp: BuDuF-def)
ultimately show y ∈ Res-h p × Res-l q

using x by (auto simp: BuDuF-def f-3-def)
qed
show inj-on g-3 (Res-h p × Res-l q)
proof

have ∗: f-3 (g-3 x) = x if x ∈ Res-h p × Res-l q for x
proof −

from that have ∗: (fst x + (snd x − 1) ∗ int p) mod int p = fst x
by force

from that have (fst x + (snd x − 1) ∗ int p) div int p + 1 = snd x
by auto

with ∗ show f-3 (g-3 x) = x
by (simp add: f-3-def g-3-def)

qed
fix x y
assume x ∈ Res-h p × Res-l q y ∈ Res-h p × Res-l q g-3 x = g-3 y
from this ∗[of x] ∗[of y] show x = y

by presburger
qed
show g-3 ‘ (Res-h p × Res-l q) ⊆ BuDuF
proof

fix y
assume y ∈ g-3 ‘ (Res-h p × Res-l q)
then obtain x where x: x ∈ Res-h p × Res-l q and y: y = g-3 x

by blast
then have snd x ≤ (int q − 1) div 2

by force
moreover have int p ∗ ((int q − 1) div 2) = (int p ∗ int q − int p) div 2

using int-distrib(4) div-mult1-eq[of int p int q − 1 2] odd-q by fastforce
ultimately have (snd x) ∗ int p ≤ (int q ∗ int p − int p) div 2

using mult-right-mono[of snd x (int q − 1) div 2 p] mult.commute[of (int q
− 1) div 2 p]

pq-commute
by presburger

81

then have (snd x − 1) ∗ int p ≤ (int q ∗ int p − 1) div 2 − int p
using p-ge-0 int-distrib(3) by auto

moreover from x have fst x ≤ int p − 1 by force
ultimately have fst x + (snd x − 1) ∗ int p ≤ (int p ∗ int q − 1) div 2

using pq-commute by linarith
moreover from x have 0 < fst x 0 ≤ (snd x − 1) ∗ p

by fastforce+
ultimately show y ∈ BuDuF

unfolding BuDuF-def using q-ge-0 x g-3-def y by auto
qed
show finite BuDuF unfolding BuDuF-def by fastforce

qed (simp add: inj-on-inverseI [of BuDuF g-3] f-3-def g-3-def QR-lemma-05)+

lemma QR-lemma-12 : b + d + m = r
proof −

have B ∩ D = {} finite B finite D B ∪ D = BuD
unfolding B-def D-def BuD-def by fastforce+

then have b + d = card BuD
unfolding b-def d-def using card-Un-Int by fastforce

moreover have BuD ∩ F = {} finite BuD finite F
unfolding BuD-def F-def by fastforce+

moreover have BuD ∪ F = BuDuF
unfolding BuD-def F-def BuDuF-def
using q-ge-0 ivl-disj-un-singleton(5)[of 0 int q − 1] by auto

ultimately show ?thesis
using QR-lemma-03 QR-lemma-05 QR-lemma-11 card-Un-disjoint[of BuD F]
unfolding b-def d-def f-def
by presburger

qed

lemma QR-lemma-13 : a + d + n = r
proof −

have A = QR.B q p
unfolding A-def pq-commute using QRqp QR.B-def [of q p] by blast

then have a = QR.b q p
using a-def QRqp QR.b-def [of q p] by presburger

moreover have D = QR.D q p
unfolding D-def pq-commute using QRqp QR.D-def [of q p] by blast

then have d = QR.d q p
using d-def QRqp QR.d-def [of q p] by presburger

moreover have n = QR.m q p
using n-def QRqp QR.m-def [of q p] by presburger

moreover have r = QR.r q p
unfolding r-def using QRqp QR.r-def [of q p] by auto

ultimately show ?thesis
using QRqp QR.QR-lemma-12 by presburger

qed

lemma QR-lemma-14 : (−1 ::int) ^ (m + n) = (−1) ^ r

82

proof −
have m + n + 2 ∗ d = r

using QR-lemma-06 QR-lemma-10 QR-lemma-12 QR-lemma-13 by auto
then show ?thesis

using power-add[of −1 ::int m + n 2 ∗ d] by fastforce
qed

lemma Quadratic-Reciprocity:
Legendre p q ∗ Legendre q p = (−1 ::int) ^ ((p − 1) div 2 ∗ ((q − 1) div 2))
using Gpq Gqp GAUSS .gauss-lemma power-add[of −1 ::int m n] QR-lemma-14
unfolding r-def m-def n-def by auto

end

theorem Quadratic-Reciprocity:
assumes prime p 2 < p prime q 2 < q p 6= q
shows Legendre p q ∗ Legendre q p = (−1 ::int) ^ ((p − 1) div 2 ∗ ((q − 1) div

2))
using QR.Quadratic-Reciprocity QR-def assms by blast

theorem Quadratic-Reciprocity-int:
assumes prime (nat p) 2 < p prime (nat q) 2 < q p 6= q
shows Legendre p q ∗ Legendre q p = (−1 ::int) ^ (nat ((p − 1) div 2 ∗ ((q −

1) div 2)))
proof −

from assms have 0 ≤ (p − 1) div 2 by simp
moreover have (nat p − 1) div 2 = nat ((p − 1) div 2) (nat q − 1) div 2 =

nat ((q − 1) div 2)
by fastforce+

ultimately have (nat p − 1) div 2 ∗ ((nat q − 1) div 2) = nat ((p − 1) div 2
∗ ((q − 1) div 2))

using nat-mult-distrib by presburger
moreover have 2 < nat p 2 < nat q nat p 6= nat q int (nat p) = p int (nat q)

= q
using assms by linarith+

ultimately show ?thesis
using Quadratic-Reciprocity[of nat p nat q] assms by presburger

qed

end

9 Pocklington’s Theorem for Primes
theory Pocklington
imports Residues
begin

83

9.1 Lemmas about previously defined terms
lemma prime-nat-iff ′′: prime (p::nat) ←→ p 6= 0 ∧ p 6= 1 ∧ (∀m. 0 < m ∧ m
< p −→ coprime p m)
proof −
have §:

∧
m. [[0 < p; ∀m. 0 < m ∧ m < p −→ coprime p m; m dvd p; m 6= p]]

=⇒ m = Suc 0
by (metis One-nat-def coprime-absorb-right dvd-1-iff-1 dvd-nat-bounds

nless-le)
show ?thesis

by (auto simp: nat-dvd-not-less prime-imp-coprime-nat prime-nat-iff elim!: §)
qed

lemma finite-number-segment: card { m. 0 < m ∧ m < n } = n − 1
proof −

have { m. 0 < m ∧ m < n } = {1 ..<n} by auto
then show ?thesis by simp

qed

9.2 Some basic theorems about solving congruences
lemma cong-solve:

fixes n :: nat
assumes an: coprime a n
shows ∃ x. [a ∗ x = b] (mod n)

proof (cases a = 0)
case True
with an show ?thesis

by (simp add: cong-def)
next

case False
from bezout-add-strong-nat [OF this]
obtain d x y where dxy: d dvd a d dvd n a ∗ x = n ∗ y + d by blast
then have d1 : d = 1

using assms coprime-common-divisor [of a n d] by simp
with dxy(3) have a ∗ x ∗ b = (n ∗ y + 1) ∗ b

by simp
then have a ∗ (x ∗ b) = n ∗ (y ∗ b) + b

by (auto simp: algebra-simps)
then have a ∗ (x ∗ b) mod n = (n ∗ (y ∗ b) + b) mod n

by simp
then have a ∗ (x ∗ b) mod n = b mod n

by (simp add: mod-add-left-eq)
then have [a ∗ (x ∗ b) = b] (mod n)

by (simp only: cong-def)
then show ?thesis by blast

qed

lemma cong-solve-unique:
fixes n :: nat

84

assumes an: coprime a n and nz: n 6= 0
shows ∃ !x. x < n ∧ [a ∗ x = b] (mod n)

proof −
from cong-solve[OF an] obtain x where x: [a ∗ x = b] (mod n)

by blast
let ?P = λx. x < n ∧ [a ∗ x = b] (mod n)
let ?x = x mod n
from x have ∗: [a ∗ ?x = b] (mod n)

by (simp add: cong-def mod-mult-right-eq[of a x n])
from mod-less-divisor [of n x] nz ∗ have Px: ?P ?x by simp
have y = ?x if Py: y < n [a ∗ y = b] (mod n) for y
proof −

from Py(2) ∗ have [a ∗ y = a ∗ ?x] (mod n)
by (simp add: cong-def)

then have [y = ?x] (mod n)
by (metis an cong-mult-lcancel-nat)

with mod-less[OF Py(1)] mod-less-divisor [of n x] nz
show ?thesis

by (simp add: cong-def)
qed
with Px show ?thesis by blast

qed

lemma cong-solve-unique-nontrivial:
fixes p :: nat
assumes p: prime p

and pa: coprime p a
and x0 : 0 < x
and xp: x < p

shows ∃ !y. 0 < y ∧ y < p ∧ [x ∗ y = a] (mod p)
proof −

from pa have ap: coprime a p
by (simp add: ac-simps)

from x0 xp p have px: coprime x p
by (auto simp add: prime-nat-iff ′′ ac-simps)

obtain y where y: y < p [x ∗ y = a] (mod p) ∀ z. z < p ∧ [x ∗ z = a] (mod p)
−→ z = y

by (metis cong-solve-unique neq0-conv p prime-gt-0-nat px)
have y 6= 0
proof

assume y = 0
with y(2) have p dvd a

using cong-dvd-iff by auto
with not-prime-1 p pa show False

by (auto simp add: gcd-nat.order-iff)
qed
with y show ?thesis

by blast
qed

85

lemma cong-unique-inverse-prime:
fixes p :: nat
assumes prime p and 0 < x and x < p
shows ∃ !y. 0 < y ∧ y < p ∧ [x ∗ y = 1] (mod p)
by (rule cong-solve-unique-nontrivial) (use assms in simp-all)

lemma chinese-remainder-coprime-unique:
fixes a :: nat
assumes ab: coprime a b and az: a 6= 0 and bz: b 6= 0

and ma: coprime m a and nb: coprime n b
shows ∃ !x. coprime x (a ∗ b) ∧ x < a ∗ b ∧ [x = m] (mod a) ∧ [x = n] (mod b)

proof −
let ?P = λx. x < a ∗ b ∧ [x = m] (mod a) ∧ [x = n] (mod b)
from binary-chinese-remainder-unique-nat[OF ab az bz]
obtain x where x: x < a ∗ b [x = m] (mod a) [x = n] (mod b) ∀ y. ?P y −→ y

= x
by blast

from ma nb x have coprime x a coprime x b
using cong-imp-coprime cong-sym by blast+

then have coprime x (a∗b)
by simp

with x show ?thesis
by blast

qed

9.3 Lucas’s theorem
lemma lucas-coprime-lemma:

fixes n :: nat
assumes m: m 6= 0 and am: [a^m = 1] (mod n)
shows coprime a n

proof −
consider n = 1 | n = 0 | n > 1 by arith
then show ?thesis
proof cases

case 1
then show ?thesis by simp

next
case 2
with am m show ?thesis

by simp
next

case 3
from m obtain m ′ where m ′: m = Suc m ′ by (cases m) blast+
have d = 1 if d: d dvd a d dvd n for d
proof −

from am mod-less[OF ‹n > 1 ›] have am1 : a^m mod n = 1
by (simp add: cong-def)

86

from dvd-mult2 [OF d(1), of a^m ′] have dam: d dvd a^m
by (simp add: m ′)

from dvd-mod-iff [OF d(2), of a^m] dam am1 show ?thesis
by simp

qed
then show ?thesis

by (auto intro: coprimeI)
qed

qed

lemma lucas-weak:
fixes n :: nat
assumes n: n ≥ 2

and an: [a ^ (n − 1) = 1] (mod n)
and nm: ∀m. 0 < m ∧ m < n − 1 −→ ¬ [a ^ m = 1] (mod n)

shows prime n
proof (rule totient-imp-prime)

show totient n = n − 1
proof (rule ccontr)

have [a ^ totient n = 1] (mod n)
by (rule euler-theorem, rule lucas-coprime-lemma [of n − 1]) (use n an in

auto)
moreover assume totient n 6= n − 1
then have totient n > 0 totient n < n − 1

using ‹n ≥ 2 › and totient-less[of n] by simp-all
ultimately show False

using nm by auto
qed

qed (use n in auto)

theorem lucas:
assumes n2 : n ≥ 2 and an1 : [a^(n − 1) = 1] (mod n)

and pn: ∀ p. prime p ∧ p dvd n − 1 −→ [a^((n − 1) div p) 6= 1] (mod n)
shows prime n

proof−
from n2 have n01 : n 6= 0 n 6= 1 n − 1 6= 0

by arith+
from mod-less-divisor [of n 1] n01 have onen: 1 mod n = 1

by simp
from lucas-coprime-lemma[OF n01 (3) an1] cong-imp-coprime an1
have an: coprime a n coprime (a ^ (n − 1)) n

using ‹n ≥ 2 › by simp-all
have False if H0 : ∃m. 0 < m ∧ m < n − 1 ∧ [a ^ m = 1] (mod n) (is ∃m. ?P

m)
proof −

from H0 [unfolded exists-least-iff [of ?P]] obtain m where
m: 0 < m m < n − 1 [a ^ m = 1] (mod n) ∀ k <m. ¬?P k
by blast

have False if nm1 : (n − 1) mod m > 0

87

proof −
from mod-less-divisor [OF m(1)] have th0 :(n − 1) mod m < m by blast
let ?y = a^ ((n − 1) div m ∗ m)
note mdeq = div-mult-mod-eq[of (n − 1) m]
have yn: coprime ?y n

using an(1) by (cases (n − Suc 0) div m ∗ m = 0) auto
have ?y mod n = (a^m)^((n − 1) div m) mod n

by (simp add: algebra-simps power-mult)
also have . . . = (a^m mod n)^((n − 1) div m) mod n

using power-mod[of a^m n (n − 1) div m] by simp
also have . . . = 1 using m(3)[unfolded cong-def onen] onen

by (metis power-one)
finally have ∗: ?y mod n = 1 .
have ∗∗: [?y ∗ a ^ ((n − 1) mod m) = ?y∗ 1] (mod n)

using an1 [unfolded cong-def onen] onen
div-mult-mod-eq[of (n − 1) m, symmetric]

by (simp add:power-add[symmetric] cong-def ∗ del: One-nat-def)
have [a ^ ((n − 1) mod m) = 1] (mod n)

by (metis cong-mult-rcancel-nat mult.commute ∗∗ yn)
with m(4)[rule-format, OF th0] nm1

less-trans[OF mod-less-divisor [OF m(1), of n − 1] m(2)] show ?thesis
by blast

qed
then have (n − 1) mod m = 0 by auto
then have mn: m dvd n − 1 by presburger
then obtain r where r : n − 1 = m ∗ r

unfolding dvd-def by blast
from n01 r m(2) have r01 : r 6= 0 r 6= 1 by auto
obtain p where p: prime p p dvd r

by (metis prime-factor-nat r01 (2))
then have th: prime p ∧ p dvd n − 1

unfolding r by (auto intro: dvd-mult)
from r have (a ^ ((n − 1) div p)) mod n = (a^(m∗r div p)) mod n

by (simp add: power-mult)
also have . . . = (a^(m∗(r div p))) mod n

using div-mult1-eq[of m r p] p(2)[unfolded dvd-eq-mod-eq-0] by simp
also have . . . = ((a^m)^(r div p)) mod n

by (simp add: power-mult)
also have . . . = ((a^m mod n)^(r div p)) mod n

using power-mod ..
also from m(3) onen have . . . = 1

by (simp add: cong-def)
finally have [(a ^ ((n − 1) div p))= 1] (mod n)

using onen by (simp add: cong-def)
with pn th show ?thesis by blast

qed
then have ∀m. 0 < m ∧ m < n − 1 −→ ¬ [a ^ m = 1] (mod n)

by blast
then show ?thesis by (rule lucas-weak[OF n2 an1])

88

qed

9.4 Definition of the order of a number mod n
definition ord n a = (if coprime n a then Least (λd. d > 0 ∧ [a ^d = 1] (mod
n)) else 0)

This has the expected properties.
lemma coprime-ord:

fixes n::nat
assumes coprime n a
shows ord n a > 0 ∧ [a ^(ord n a) = 1] (mod n) ∧ (∀m. 0 < m ∧ m < ord n

a −→ [a^ m 6= 1] (mod n))
proof−

let ?P = λd. 0 < d ∧ [a ^ d = 1] (mod n)
from bigger-prime[of a] obtain p where p: prime p a < p

by blast
from assms have o: ord n a = Least ?P

by (simp add: ord-def)
have ex: ∃m>0 . ?P m
proof (cases n ≥ 2)

case True
moreover from assms have coprime a n

by (simp add: ac-simps)
then have [a ^ totient n = 1] (mod n)

by (rule euler-theorem)
ultimately show ?thesis

by (auto intro: exI [where x = totient n])
next

case False
then have n = 0 ∨ n = 1

by auto
with assms show ?thesis

by auto
qed
from exists-least-iff ′[of ?P] ex assms show ?thesis

unfolding o[symmetric] by auto
qed

With the special value 0 for non-coprime case, it’s more convenient.
lemma ord-works: [a ^ (ord n a) = 1] (mod n) ∧ (∀m. 0 < m ∧ m < ord n a
−→ ¬ [a^ m = 1] (mod n))

for n :: nat
by (cases coprime n a) (use coprime-ord[of n a] in ‹auto simp add: ord-def

cong-def ›)

lemma ord: [a^(ord n a) = 1] (mod n)
for n :: nat
using ord-works by blast

89

lemma ord-minimal: 0 < m =⇒ m < ord n a =⇒ ¬ [a^m = 1] (mod n)
for n :: nat
using ord-works by blast

lemma ord-eq-0 : ord n a = 0 ←→ ¬ coprime n a
for n :: nat
by (cases coprime n a) (simp add: coprime-ord, simp add: ord-def)

lemma divides-rexp: x dvd y =⇒ x dvd (y ^ Suc n)
for x y :: nat
by (simp add: dvd-mult2 [of x y])

lemma ord-divides:[a ^ d = 1] (mod n) ←→ ord n a dvd d
(is ?lhs ←→ ?rhs)
for n :: nat

proof
assume ?rhs
then obtain k where d = ord n a ∗ k

unfolding dvd-def by blast
then have [a ^ d = (a ^ (ord n a) mod n)^k] (mod n)

by (simp add : cong-def power-mult power-mod)
also have [(a ^ (ord n a) mod n)^k = 1] (mod n)

using ord[of a n, unfolded cong-def]
by (simp add: cong-def power-mod)

finally show ?lhs .
next

assume ?lhs
show ?rhs
proof (cases coprime n a)

case prem: False
then have o: ord n a = 0 by (simp add: ord-def)
show ?thesis
proof (cases d)

case 0
with o prem show ?thesis by (simp add: cong-def)

next
case (Suc d ′)
then have d0 : d 6= 0 by simp
from prem obtain p where p: p dvd n p dvd a p 6= 1

by (auto elim: not-coprimeE)
from ‹?lhs› obtain q1 q2 where q12 : a ^ d + n ∗ q1 = 1 + n ∗ q2

using prem d0 lucas-coprime-lemma
by (auto elim: not-coprimeE simp add: ac-simps)

then have a ^ d + n ∗ q1 − n ∗ q2 = 1 by simp
with dvd-diff-nat [OF dvd-add [OF divides-rexp]] dvd-mult2 Suc p have p

dvd 1
by metis

with p(3) have False by simp

90

then show ?thesis ..
qed

next
case H : True
let ?o = ord n a
let ?q = d div ord n a
let ?r = d mod ord n a
have eqo: [(a^?o)^?q = 1] (mod n)

using cong-pow ord-works by fastforce
from H have onz: ?o 6= 0 by (simp add: ord-eq-0)
then have opos: ?o > 0 by simp
from div-mult-mod-eq[of d ord n a] ‹?lhs›
have [a^(?o∗?q + ?r) = 1] (mod n)

by (simp add: cong-def mult.commute)
then have [(a^?o)^?q ∗ (a^?r) = 1] (mod n)

by (simp add: cong-def power-mult[symmetric] power-add[symmetric])
then have th: [a^?r = 1] (mod n)

using eqo mod-mult-left-eq[of (a^?o)^?q a^?r n]
by (simp add: cong-def del: One-nat-def) (metis mod-mult-left-eq nat-mult-1)

show ?thesis
proof (cases ?r = 0)

case True
then show ?thesis by (simp add: dvd-eq-mod-eq-0)

next
case False
with mod-less-divisor [OF opos, of d] have r0o:?r >0 ∧ ?r < ?o by simp
from conjunct2 [OF ord-works[of a n], rule-format, OF r0o] th
show ?thesis by blast

qed
qed

qed

lemma order-divides-totient:
ord n a dvd totient n if coprime n a
using that euler-theorem [of a n]
by (simp add: ord-divides [symmetric] ac-simps)

lemma order-divides-expdiff :
fixes n::nat and a::nat assumes na: coprime n a
shows [a^d = a^e] (mod n) ←→ [d = e] (mod (ord n a))

proof −
have th: [a^d = a^e] (mod n) ←→ [d = e] (mod (ord n a))

if na: coprime n a and ed: (e::nat) ≤ d
for n a d e :: nat

proof −
from na ed have ∃ c. d = e + c by presburger
then obtain c where c: d = e + c ..
from na have an: coprime a n

by (simp add: ac-simps)

91

then have aen: coprime (a ^ e) n
by (cases e > 0) simp-all

from an have acn: coprime (a ^ c) n
by (cases c > 0) simp-all

from c have [a^d = a^e] (mod n) ←→ [a^(e + c) = a^(e + 0)] (mod n)
by simp

also have . . . ←→ [a^e∗ a^c = a^e ∗a^0] (mod n) by (simp add: power-add)
also have . . . ←→ [a ^ c = 1] (mod n)

using cong-mult-lcancel-nat [OF aen, of a^c a^0] by simp
also have . . . ←→ ord n a dvd c

by (simp only: ord-divides)
also have . . . ←→ [e + c = e + 0] (mod ord n a)

by (auto simp add: cong-altdef-nat)
finally show ?thesis

using c by simp
qed
consider e ≤ d | d ≤ e by arith
then show ?thesis
proof cases

case 1
with na show ?thesis by (rule th)

next
case 2
from th[OF na this] show ?thesis

by (metis cong-sym)
qed

qed

lemma ord-not-coprime [simp]: ¬coprime n a =⇒ ord n a = 0
by (simp add: ord-def)

lemma ord-1 [simp]: ord 1 n = 1
proof −

have (LEAST k. k > 0) = (1 :: nat)
by (rule Least-equality) auto

thus ?thesis by (simp add: ord-def)
qed

lemma ord-1-right [simp]: ord (n::nat) 1 = 1
using ord-divides[of 1 1 n] by simp

lemma ord-Suc-0-right [simp]: ord (n::nat) (Suc 0) = 1
using ord-divides[of 1 1 n] by simp

lemma ord-0-nat [simp]: ord 0 (n :: nat) = (if n = 1 then 1 else 0)
proof −

have (LEAST k. k > 0) = (1 :: nat)
by (rule Least-equality) auto

thus ?thesis by (auto simp: ord-def)

92

qed

lemma ord-0-right-nat [simp]: ord (n :: nat) 0 = (if n = 1 then 1 else 0)
proof −

have (LEAST k. k > 0) = (1 :: nat)
by (rule Least-equality) auto

thus ?thesis by (auto simp: ord-def)
qed

lemma ord-divides ′: [a ^ d = Suc 0] (mod n) = (ord n a dvd d)
using ord-divides[of a d n] by simp

lemma ord-Suc-0 [simp]: ord (Suc 0) n = 1
using ord-1 [where ′a = nat] by (simp del: ord-1)

lemma ord-mod [simp]: ord n (k mod n) = ord n k
by (cases n = 0) (auto simp add: ord-def cong-def power-mod)

lemma ord-gt-0-iff [simp]: ord (n::nat) x > 0 ←→ coprime n x
using ord-eq-0 [of n x] by auto

lemma ord-eq-Suc-0-iff : ord n (x::nat) = Suc 0 ←→ [x = 1] (mod n)
using ord-divides[of x 1 n] by (auto simp: ord-divides ′)

lemma ord-cong:
assumes [k1 = k2] (mod n)
shows ord n k1 = ord n k2

proof −
have ord n (k1 mod n) = ord n (k2 mod n)

by (simp only: assms[unfolded cong-def])
thus ?thesis by simp

qed

lemma ord-nat-code [code-unfold]:
ord n a =

(if n = 0 then if a = 1 then 1 else 0 else
if coprime n a then Min (Set.filter (λk. [a ^ k = 1] (mod n)) {0<..n}) else

0)
proof (cases coprime n a ∧ n > 0)

case True
define A where A = {k∈{0<..n}. [a ^ k = 1] (mod n)}
define k where k = (LEAST k. k > 0 ∧ [a ^ k = 1] (mod n))
have totient: totient n ∈ A

using euler-theorem[of a n] True
by (auto simp: A-def coprime-commute intro!: Nat.gr0I totient-le)

moreover have finite A by (auto simp: A-def)
ultimately have ∗: Min A ∈ A and ∀ y. y ∈ A −→ Min A ≤ y

by (auto intro: Min-in)

93

have k > 0 ∧ [a ^ k = 1] (mod n)
unfolding k-def by (rule LeastI [of - totient n]) (use totient in ‹auto simp:

A-def ›)
moreover have k ≤ totient n

unfolding k-def by (intro Least-le) (use totient in ‹auto simp: A-def ›)
ultimately have k ∈ A using totient-le[of n] by (auto simp: A-def)
hence Min A ≤ k by (intro Min-le) (auto simp: ‹finite A›)
moreover from ∗ have k ≤ Min A

unfolding k-def by (intro Least-le) (auto simp: A-def)
ultimately show ?thesis using True

by (simp add: ord-def k-def A-def)
qed auto

theorem ord-modulus-mult-coprime:
fixes x :: nat
assumes coprime m n
shows ord (m ∗ n) x = lcm (ord m x) (ord n x)

proof (intro dvd-antisym)
have [x ^ lcm (ord m x) (ord n x) = 1] (mod (m ∗ n))

using assms by (intro coprime-cong-mult-nat assms) (auto simp: ord-divides ′)
thus ord (m ∗ n) x dvd lcm (ord m x) (ord n x)

by (simp add: ord-divides ′)
next

show lcm (ord m x) (ord n x) dvd ord (m ∗ n) x
proof (intro lcm-least)

show ord m x dvd ord (m ∗ n) x
using cong-modulus-mult-nat[of x ^ ord (m ∗ n) x 1 m n] assms
by (simp add: ord-divides ′)

show ord n x dvd ord (m ∗ n) x
using cong-modulus-mult-nat[of x ^ ord (m ∗ n) x 1 n m] assms
by (simp add: ord-divides ′ mult.commute)

qed
qed

corollary ord-modulus-prod-coprime:
assumes finite A

∧
i j. i ∈ A =⇒ j ∈ A =⇒ i 6= j =⇒ coprime (f i) (f j)

shows ord (
∏

i∈A. f i :: nat) x = (LCM i∈A. ord (f i) x)
using assms by (induction A rule: finite-induct)

(simp, simp, subst ord-modulus-mult-coprime, auto intro!: prod-coprime-right)

lemma ord-power-aux:
fixes m x k a :: nat
defines l ≡ ord m a
shows ord m (a ^ k) ∗ gcd k l = l

proof (rule dvd-antisym)
have [a ^ lcm k l = 1] (mod m)

unfolding ord-divides by (simp add: l-def)
also have lcm k l = k ∗ (l div gcd k l)

by (simp add: lcm-nat-def div-mult-swap)

94

finally have ord m (a ^ k) dvd l div gcd k l
unfolding ord-divides [symmetric] by (simp add: power-mult [symmetric])

thus ord m (a ^ k) ∗ gcd k l dvd l
by (cases l = 0) (auto simp: dvd-div-iff-mult)

have [(a ^ k) ^ ord m (a ^ k) = 1] (mod m)
by (rule ord)

also have (a ^ k) ^ ord m (a ^ k) = a ^ (k ∗ ord m (a ^ k))
by (simp add: power-mult)

finally have ord m a dvd k ∗ ord m (a ^ k)
by (simp add: ord-divides ′)

hence l dvd gcd (k ∗ ord m (a ^ k)) (l ∗ ord m (a ^ k))
by (intro gcd-greatest dvd-triv-left) (auto simp: l-def ord-divides ′)

also have gcd (k ∗ ord m (a ^ k)) (l ∗ ord m (a ^ k)) = ord m (a ^ k) ∗ gcd k l
by (subst gcd-mult-distrib-nat) (auto simp: mult-ac)

finally show l dvd ord m (a ^ k) ∗ gcd k l .
qed

theorem ord-power : coprime m a =⇒ ord m (a ^ k :: nat) = ord m a div gcd k
(ord m a)

using ord-power-aux[of m a k] by (metis div-mult-self-is-m gcd-pos-nat ord-eq-0)

lemma inj-power-mod:
assumes coprime n (a :: nat)
shows inj-on (λk. a ^ k mod n) {..<ord n a}

proof
fix k l assume ∗: k ∈ {..<ord n a} l ∈ {..<ord n a} a ^ k mod n = a ^ l mod n
have k = l if k < l l < ord n a [a ^ k = a ^ l] (mod n) for k l
proof −

have l = k + (l − k) using that by simp
also have a ^ . . . = a ^ k ∗ a ^ (l − k)

by (simp add: power-add)
also have [. . . = a ^ l ∗ a ^ (l − k)] (mod n)

using that by (intro cong-mult) auto
finally have [a ^ l ∗ a ^ (l − k) = a ^ l ∗ 1] (mod n)

by (simp add: cong-sym-eq)
with assms have [a ^ (l − k) = 1] (mod n)

by (subst (asm) cong-mult-lcancel-nat) (auto simp: coprime-commute)
hence ord n a dvd l − k

by (simp add: ord-divides ′)
from dvd-imp-le[OF this] and ‹l < ord n a› have l − k = 0

by (cases l − k = 0) auto
with ‹k < l› show k = l by simp

qed
from this[of k l] and this[of l k] and ∗ show k = l

by (cases k l rule: linorder-cases) (auto simp: cong-def)
qed

lemma ord-eq-2-iff : ord n (x :: nat) = 2 ←→ [x 6= 1] (mod n) ∧ [x2 = 1] (mod

95

n)
proof

assume x: [x 6= 1] (mod n) ∧ [x2 = 1] (mod n)
hence coprime n x

by (metis coprime-commute lucas-coprime-lemma zero-neq-numeral)
with x have ord n x dvd 2 ord n x 6= 1 ord n x > 0

by (auto simp: ord-divides ′ ord-eq-Suc-0-iff)
thus ord n x = 2 by (auto dest!: dvd-imp-le simp del: ord-gt-0-iff)

qed (use ord-divides[of - 2] ord-divides[of - 1] in auto)

lemma square-mod-8-eq-1-iff : [x2 = 1] (mod 8) ←→ odd (x :: nat)
proof −

have [x2 = 1] (mod 8) ←→ ((x mod 8)2 mod 8 = 1)
by (simp add: power-mod cong-def)

also have . . . ←→ x mod 8 ∈ {1 , 3 , 5 , 7}
proof

assume x: (x mod 8)2 mod 8 = 1
have x mod 8 ∈ {..<8} by simp
also have {..<8} = {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ::nat}

by (simp add: lessThan-nat-numeral lessThan-Suc insert-commute)
finally have x-cases: x mod 8 ∈ {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7} .
from x have x mod 8 /∈ {0 , 2 , 4 , 6}

using x by (auto intro: Nat.gr0I)
with x-cases show x mod 8 ∈ {1 , 3 , 5 , 7} by simp

qed auto
also have . . . ←→ odd (x mod 8)

by (auto elim!: oddE)
also have . . . ←→ odd x

by presburger
finally show ?thesis .

qed

lemma ord-twopow-aux:
assumes k ≥ 3 and odd (x :: nat)
shows [x ^ (2 ^ (k − 2)) = 1] (mod (2 ^ k))
using assms(1)

proof (induction k rule: dec-induct)
case base
from assms have [x2 = 1] (mod 8)

by (subst square-mod-8-eq-1-iff) auto
thus ?case by simp

next
case (step k)
define k ′ where k ′ = k − 2
have k: k = Suc (Suc k ′)

using ‹k ≥ 3 › by (simp add: k ′-def)
from ‹k ≥ 3 › have 2 ∗ k ≥ Suc k by presburger

from ‹odd x› have x > 0 by (intro Nat.gr0I) auto

96

from step.IH have 2 ^ k dvd (x ^ (2 ^ (k − 2)) − 1)
by (rule cong-to-1-nat)

then obtain t where x ^ (2 ^ (k − 2)) − 1 = t ∗ 2 ^ k
by auto

hence x ^ (2 ^ (k − 2)) = t ∗ 2 ^ k + 1
by (metis ‹0 < x› add.commute add-diff-inverse-nat less-one neq0-conv power-eq-0-iff)

hence (x ^ (2 ^ (k − 2))) ^ 2 = (t ∗ 2 ^ k + 1) ^ 2
by (rule arg-cong)

hence [(x ^ (2 ^ (k − 2))) ^ 2 = (t ∗ 2 ^ k + 1) ^ 2] (mod (2 ^ Suc k))
by simp

also have (x ^ (2 ^ (k − 2))) ^ 2 = x ^ (2 ^ (k − 1))
by (simp-all add: power-even-eq[symmetric] power-mult k)

also have (t ∗ 2 ^ k + 1) ^ 2 = t2 ∗ 2 ^ (2 ∗ k) + t ∗ 2 ^ Suc k + 1
by (subst power2-eq-square)

(auto simp: algebra-simps k power2-eq-square[of t]
power-even-eq[symmetric] power-add [symmetric])

also have [. . . = 0 + 0 + 1] (mod 2 ^ Suc k)
using ‹2 ∗ k ≥ Suc k›
by (intro cong-add)
(auto simp: cong-0-iff intro: dvd-mult[OF le-imp-power-dvd] simp del: power-Suc)

finally show ?case by simp
qed

lemma ord-twopow-3-5 :
assumes k ≥ 3 x mod 8 ∈ {3 , 5 :: nat}
shows ord (2 ^ k) x = 2 ^ (k − 2)
using assms(1)

proof (induction k rule: less-induct)
have x mod 8 = 3 ∨ x mod 8 = 5 using assms by auto
hence odd x by presburger
case (less k)
from ‹k ≥ 3 › consider k = 3 | k = 4 | k ≥ 5 by force
thus ?case
proof cases

case 1
thus ?thesis using assms

by (auto simp: ord-eq-2-iff cong-def simp flip: power-mod[of x])
next

case 2
from assms have x mod 8 = 3 ∨ x mod 8 = 5 by auto
then have x ′: x mod 16 = 3 ∨ x mod 16 = 5 ∨ x mod 16 = 11 ∨ x mod 16

= 13
using mod-double-nat [of x 8] by auto

hence [x ^ 4 = 1] (mod 16) using assms
by (auto simp: cong-def simp flip: power-mod[of x])

hence ord 16 x dvd 2 2 by (simp add: ord-divides ′)
then obtain l where l: ord 16 x = 2 ^ l l ≤ 2

by (subst (asm) divides-primepow-nat) auto

97

have [x ^ 2 6= 1] (mod 16)
using x ′ by (auto simp: cong-def simp flip: power-mod[of x])

hence ¬ord 16 x dvd 2 by (simp add: ord-divides ′)
with l have l = 2

using le-imp-power-dvd[of l 1 2] by (cases l ≤ 1) auto
with l show ?thesis by (simp add: ‹k = 4 ›)

next
case 3
define k ′ where k ′ = k − 2
have k ′: k ′ ≥ 2 and [simp]: k = Suc (Suc k ′)

using 3 by (simp-all add: k ′-def)
have IH : ord (2 ^ k ′) x = 2 ^ (k ′ − 2) ord (2 ^ Suc k ′) x = 2 ^ (k ′ − 1)

using less.IH [of k ′] less.IH [of Suc k ′] 3 by simp-all
from IH have cong: [x ^ (2 ^ (k ′ − 2)) = 1] (mod (2 ^ k ′))

by (simp-all add: ord-divides ′)
have notcong: [x ^ (2 ^ (k ′ − 2)) 6= 1] (mod (2 ^ Suc k ′))
proof

assume [x ^ (2 ^ (k ′ − 2)) = 1] (mod (2 ^ Suc k ′))
hence ord (2 ^ Suc k ′) x dvd 2 ^ (k ′ − 2)

by (simp add: ord-divides ′)
also have ord (2 ^ Suc k ′) x = 2 ^ (k ′ − 1)

using IH by simp
finally have k ′ − 1 ≤ k ′ − 2

by (rule power-dvd-imp-le) auto
with ‹k ′ ≥ 2 › show False by simp

qed

have 2 ^ k ′ + 1 < 2 ^ k ′ + (2 ^ k ′ :: nat)
using one-less-power [of 2 ::nat k ′] k ′ by (intro add-strict-left-mono) auto

with cong notcong have cong ′: x ^ (2 ^ (k ′ − 2)) mod 2 ^ Suc k ′ = 1 + 2 ^ k ′

using mod-double-nat [of ‹x ^ 2 ^ (k ′ − 2)› ‹2 ^ k ′›] k ′ by (auto simp:
cong-def)

hence x ^ (2 ^ (k ′ − 2)) mod 2 ^ k = 1 + 2 ^ k ′ ∨
x ^ (2 ^ (k ′ − 2)) mod 2 ^ k = 1 + 2 ^ k ′ + 2 ^ Suc k ′

using mod-double-nat [of ‹x ^ 2 ^ (k ′ − 2)› ‹2 ^ Suc k ′›] by auto
hence eq: [x ^ 2 ^ (k ′ − 1) = 1 + 2 ^ (k − 1)] (mod 2 ^ k)
proof

assume ∗: x ^ (2 ^ (k ′ − 2)) mod (2 ^ k) = 1 + 2 ^ k ′

have [x ^ (2 ^ (k ′ − 2)) = x ^ (2 ^ (k ′ − 2)) mod 2 ^ k] (mod 2 ^ k)
by simp

also have [x ^ (2 ^ (k ′ − 2)) mod (2 ^ k) = 1 + 2 ^ k ′] (mod 2 ^ k)
by (subst ∗) auto

finally have [(x ^ 2 ^ (k ′ − 2)) ^ 2 = (1 + 2 ^ k ′) ^ 2] (mod 2 ^ k)
by (rule cong-pow)

hence [x ^ 2 ^ Suc (k ′ − 2) = (1 + 2 ^ k ′) ^ 2] (mod 2 ^ k)
by (simp add: power-mult [symmetric] power-Suc2 [symmetric] del: power-Suc)
also have Suc (k ′ − 2) = k ′ − 1

using k ′ by simp

98

also have (1 + 2 ^ k ′ :: nat)2 = 1 + 2 ^ (k − 1) + 2 ^ (2 ∗ k ′)
by (subst power2-eq-square) (simp add: algebra-simps flip: power-add)

also have (2 ^ k :: nat) dvd 2 ^ (2 ∗ k ′)
using k ′ by (intro le-imp-power-dvd) auto

hence [1 + 2 ^ (k − 1) + 2 ^ (2 ∗ k ′) = 1 + 2 ^ (k − 1) + (0 :: nat)] (mod
2 ^ k)

by (intro cong-add) (auto simp: cong-0-iff)
finally show [x ^ 2 ^ (k ′ − 1) = 1 + 2 ^ (k − 1)] (mod 2 ^ k)

by simp
next

assume ∗: x ^ (2 ^ (k ′ − 2)) mod 2 ^ k = 1 + 2 ^ k ′ + 2 ^ Suc k ′

have [x ^ (2 ^ (k ′ − 2)) = x ^ (2 ^ (k ′ − 2)) mod 2 ^ k] (mod 2 ^ k)
by simp

also have [x ^ (2 ^ (k ′ − 2)) mod (2 ^ k) = 1 + 3 ∗ 2 ^ k ′] (mod 2 ^ k)
by (subst ∗) auto

finally have [(x ^ 2 ^ (k ′ − 2)) ^ 2 = (1 + 3 ∗ 2 ^ k ′) ^ 2] (mod 2 ^ k)
by (rule cong-pow)

hence [x ^ 2 ^ Suc (k ′ − 2) = (1 + 3 ∗ 2 ^ k ′) ^ 2] (mod 2 ^ k)
by (simp add: power-mult [symmetric] power-Suc2 [symmetric] del: power-Suc)
also have Suc (k ′ − 2) = k ′ − 1

using k ′ by simp
also have (1 + 3 ∗ 2 ^ k ′ :: nat)2 = 1 + 2 ^ (k − 1) + 2 ^ k + 9 ∗ 2 ^ (2

∗ k ′)
by (subst power2-eq-square) (simp add: algebra-simps flip: power-add)

also have (2 ^ k :: nat) dvd 9 ∗ 2 ^ (2 ∗ k ′)
using k ′ by (intro dvd-mult le-imp-power-dvd) auto

hence [1 + 2 ^ (k − 1) + 2 ^ k + 9 ∗ 2 ^ (2 ∗ k ′) = 1 + 2 ^ (k − 1) + 0
+ (0 :: nat)]

(mod 2 ^ k)
by (intro cong-add) (auto simp: cong-0-iff)

finally show [x ^ 2 ^ (k ′ − 1) = 1 + 2 ^ (k − 1)] (mod 2 ^ k)
by simp

qed

have notcong ′: [x ^ 2 ^ (k − 3) 6= 1] (mod 2 ^ k)
proof

assume [x ^ 2 ^ (k − 3) = 1] (mod 2 ^ k)
hence [x ^ 2 ^ (k ′ − 1) − x ^ 2 ^ (k ′ − 1) = 1 + 2 ^ (k − 1) − 1] (mod 2

^ k)
by (intro cong-diff-nat eq) auto

hence [2 ^ (k − 1) = (0 :: nat)] (mod 2 ^ k)
by (simp add: cong-sym-eq)

hence 2 ^ k dvd 2 ^ (k − 1)
by (simp add: cong-0-iff)

hence k ≤ k − 1
by (rule power-dvd-imp-le) auto

thus False by simp
qed

99

have [x ^ 2 ^ (k − 2) = 1] (mod 2 ^ k)
using ord-twopow-aux[of k x] ‹odd x› ‹k ≥ 3 › by simp

hence ord (2 ^ k) x dvd 2 ^ (k − 2)
by (simp add: ord-divides ′)

then obtain l where l: l ≤ k − 2 ord (2 ^ k) x = 2 ^ l
using divides-primepow-nat[of 2 ord (2 ^ k) x k − 2] by auto

from notcong ′ have ¬ord (2 ^ k) x dvd 2 ^ (k − 3)
by (simp add: ord-divides ′)

with l have l = k − 2
using le-imp-power-dvd[of l k − 3 2] by (cases l ≤ k − 3) auto

with l show ?thesis by simp
qed

qed

lemma ord-4-3 [simp]: ord 4 (3 ::nat) = 2
proof −

have [3 ^ 2 = (1 :: nat)] (mod 4)
by (simp add: cong-def)

hence ord 4 (3 ::nat) dvd 2
by (subst (asm) ord-divides) auto

hence ord 4 (3 ::nat) ≤ 2
by (intro dvd-imp-le) auto

moreover have ord 4 (3 ::nat) 6= 1
by (auto simp: ord-eq-Suc-0-iff cong-def)

moreover have ord 4 (3 ::nat) 6= 0
by (auto simp: gcd-non-0-nat coprime-iff-gcd-eq-1)

ultimately show ord 4 (3 :: nat) = 2
by linarith

qed

lemma elements-with-ord-1 : n > 0 =⇒ {x∈totatives n. ord n x = Suc 0} = {1}
by (auto simp: ord-eq-Suc-0-iff cong-def totatives-less)

lemma residue-prime-has-primroot:
fixes p :: nat
assumes prime p
shows ∃ a∈totatives p. ord p a = p − 1

proof −
from residue-prime-mult-group-has-gen[OF assms]

obtain a where a: a ∈ {1 ..p−1} {1 ..p−1} = {a ^ i mod p |i. i ∈ UNIV } by
blast

from a have coprime p a
using a assms by (intro prime-imp-coprime) (auto dest: dvd-imp-le)

with a(1) have a ∈ totatives p by (auto simp: totatives-def coprime-commute)

have p − 1 = card {1 ..p−1} by simp
also have {1 ..p−1} = {a ^ i mod p |i. i ∈ UNIV } by fact
also have {a ^ i mod p |i. i ∈ UNIV } = (λi. a ^ i mod p) ‘ {..<ord p a}

100

proof (intro equalityI subsetI)
fix x assume x ∈ {a ^ i mod p |i. i ∈ UNIV }
then obtain i where [simp]: x = a ^ i mod p by auto

have [a ^ i = a ^ (i mod ord p a)] (mod p)
using ‹coprime p a› by (subst order-divides-expdiff) auto

hence ∃ j. a ^ i mod p = a ^ j mod p ∧ j < ord p a
using ‹coprime p a› by (intro exI [of - i mod ord p a]) (auto simp: cong-def)

thus x ∈ (λi. a ^ i mod p) ‘ {..<ord p a}
by auto

qed auto
also have card . . . = ord p a

using inj-power-mod[OF ‹coprime p a›] by (subst card-image) auto
finally show ?thesis using ‹a ∈ totatives p›

by auto
qed

9.5 Another trivial primality characterization
lemma prime-prime-factor : prime n ←→ n 6= 1 ∧ (∀ p. prime p ∧ p dvd n −→ p
= n)
(is ?lhs ←→ ?rhs)
for n :: nat

proof (cases n = 0 ∨ n = 1)
case True
then show ?thesis

by (metis bigger-prime dvd-0-right not-prime-1 not-prime-0)
next

case False
show ?thesis
proof

assume prime n
then show ?rhs

by (metis not-prime-1 prime-nat-iff)
next

assume ?rhs
with False show prime n
by (auto simp: prime-nat-iff) (metis One-nat-def prime-factor-nat prime-nat-iff)

qed
qed

lemma prime-divisor-sqrt: prime n ←→ n 6= 1 ∧ (∀ d. d dvd n ∧ d2 ≤ n −→ d
= 1)

for n :: nat
proof −

consider n = 0 | n = 1 | n 6= 0 n 6= 1 by blast
then show ?thesis
proof cases

case 1

101

then show ?thesis by simp
next

case 2
then show ?thesis by simp

next
case n: 3
then have np: n > 1 by arith
{

fix d
assume d: d dvd n d2 ≤ n

and H : ∀m. m dvd n −→ m = 1 ∨ m = n
from H d have d1n: d = 1 ∨ d = n by blast
then have d = 1
proof

assume dn: d = n
from n have n2 > n ∗ 1

by (simp add: power2-eq-square)
with dn d(2) show ?thesis by simp

qed
}
moreover
{

fix d assume d: d dvd n and H : ∀ d ′. d ′ dvd n ∧ d ′2 ≤ n −→ d ′ = 1
from d n have d 6= 0

by (metis dvd-0-left-iff)
then have dp: d > 0 by simp
from d[unfolded dvd-def] obtain e where e: n= d∗e by blast
from n dp e have ep:e > 0 by simp
from dp ep have d2 ≤ n ∨ e2 ≤ n

by (auto simp add: e power2-eq-square mult-le-cancel-left)
then have d = 1 ∨ d = n
proof

assume d2 ≤ n
with H [rule-format, of d] d have d = 1 by blast
then show ?thesis ..

next
assume h: e2 ≤ n
from e have e dvd n by (simp add: dvd-def mult.commute)
with H [rule-format, of e] h have e = 1 by simp
with e have d = n by simp
then show ?thesis ..

qed
}
ultimately show ?thesis

unfolding prime-nat-iff using np n(2) by blast
qed

qed

lemma prime-prime-factor-sqrt:

102

prime (n::nat) ←→ n 6= 0 ∧ n 6= 1 ∧ (@ p. prime p ∧ p dvd n ∧ p2 ≤ n)
(is ?lhs ←→?rhs)

proof −
consider n = 0 | n = 1 | n 6= 0 n 6= 1

by blast
then show ?thesis
proof cases

case 1
then show ?thesis by (metis not-prime-0)

next
case 2
then show ?thesis by (metis not-prime-1)

next
case n: 3
show ?thesis
proof

assume ?lhs
from this[unfolded prime-divisor-sqrt] n show ?rhs

by (metis prime-prime-factor)
next

assume ?rhs
{

fix d
assume d: d dvd n d2 ≤ n d 6= 1
then obtain p where p: prime p p dvd d

by (metis prime-factor-nat)
from d(1) n have dp: d > 0

by (metis dvd-0-left neq0-conv)
from mult-mono[OF dvd-imp-le[OF p(2) dp] dvd-imp-le[OF p(2) dp]] d(2)
have p2 ≤ n unfolding power2-eq-square by arith
with ‹?rhs› n p(1) dvd-trans[OF p(2) d(1)] have False

by blast
}
with n prime-divisor-sqrt show ?lhs by auto

qed
qed

qed

9.6 Pocklington theorem
lemma pocklington-lemma:

fixes p :: nat
assumes n: n ≥ 2 and nqr : n − 1 = q ∗ r

and an: [a^ (n − 1) = 1] (mod n)
and aq: ∀ p. prime p ∧ p dvd q −→ coprime (a ^ ((n − 1) div p) − 1) n
and pp: prime p and pn: p dvd n

shows [p = 1] (mod q)
proof −

have p01 : p 6= 0 p 6= 1

103

using pp by (auto intro: prime-gt-0-nat)
obtain k where k: a ^ (q ∗ r) − 1 = n ∗ k

by (metis an cong-to-1-nat dvd-def nqr)
from pn[unfolded dvd-def] obtain l where l: n = p ∗ l

by blast
have a0 : a 6= 0
proof

assume a = 0
with n have a^ (n − 1) = 0

by (simp add: power-0-left)
with n an mod-less[of 1 n] show False

by (simp add: power-0-left cong-def)
qed
with n nqr have aqr0 : a ^ (q ∗ r) 6= 0

by simp
then have (a ^ (q ∗ r) − 1) + 1 = a ^ (q ∗ r)

by simp
with k l have a ^ (q ∗ r) = p ∗ l ∗ k + 1

by simp
then have a ^ (r ∗ q) + p ∗ 0 = 1 + p ∗ (l ∗ k)

by (simp add: ac-simps)
then have odq: ord p (a^r) dvd q

unfolding ord-divides[symmetric] power-mult[symmetric]
by (metis an cong-dvd-modulus-nat mult.commute nqr pn)

from odq[unfolded dvd-def] obtain d where d: q = ord p (a^r) ∗ d
by blast

have d1 : d = 1
proof (rule ccontr)

assume d1 : d 6= 1
obtain P where P: prime P P dvd d

by (metis d1 prime-factor-nat)
from d dvd-mult[OF P(2), of ord p (a^r)] have Pq: P dvd q by simp
from aq P(1) Pq have caP:coprime (a^ ((n − 1) div P) − 1) n by blast
from Pq obtain s where s: q = P∗s unfolding dvd-def by blast
from P(1) have P0 : P 6= 0

by (metis not-prime-0)
from P(2) obtain t where t: d = P∗t unfolding dvd-def by blast
from d s t P0 have s ′: ord p (a^r) ∗ t = s

by (metis mult.commute mult-cancel1 mult.assoc)
have ord p (a^r) ∗ t∗r = r ∗ ord p (a^r) ∗ t

by (metis mult.assoc mult.commute)
then have exps: a^(ord p (a^r) ∗ t∗r) = ((a ^ r) ^ ord p (a^r)) ^ t

by (simp only: power-mult)
then have [((a ^ r) ^ ord p (a^r)) ^ t= 1] (mod p)

by (metis cong-pow ord power-one)
then have pd0 : p dvd a^(ord p (a^r) ∗ t∗r) − 1

by (metis cong-to-1-nat exps)
from nqr s s ′ have (n − 1) div P = ord p (a^r) ∗ t∗r

using P0 by simp

104

with caP have coprime (a ^ (ord p (a ^ r) ∗ t ∗ r) − 1) n
by simp

with p01 pn pd0 coprime-common-divisor [of - n p] show False
by auto

qed
with d have o: ord p (a^r) = q by simp
from pp totient-prime [of p] have totient-eq: totient p = p − 1

by simp
{

fix d
assume d: d dvd p d dvd a d 6= 1
from pp[unfolded prime-nat-iff] d have dp: d = p by blast
from n have n 6= 0 by simp
then have False using d dp pn an

by auto (metis One-nat-def Suc-lessI
‹1 < p ∧ (∀m. m dvd p −→ m = 1 ∨ m = p)› ‹a ^ (q ∗ r) = p ∗

l ∗ k + 1 › add-diff-cancel-left ′ dvd-diff-nat dvd-power dvd-triv-left gcd-nat.trans
nat-dvd-not-less nqr zero-less-diff zero-less-one)

}
then have cpa: coprime p a

by (auto intro: coprimeI)
then have arp: coprime (a ^ r) p

by (cases r > 0) (simp-all add: ac-simps)
from euler-theorem [OF arp, simplified ord-divides] o totient-eq have q dvd (p
− 1)

by simp
then obtain d where d:p − 1 = q ∗ d

unfolding dvd-def by blast
have p 6= 0

by (metis p01 (1))
with d have p + q ∗ 0 = 1 + q ∗ d by simp
then show ?thesis

by (metis cong-iff-lin-nat mult.commute)
qed

theorem pocklington:
assumes n: n ≥ 2 and nqr : n − 1 = q ∗ r and sqr : n ≤ q2

and an: [a^ (n − 1) = 1] (mod n)
and aq: ∀ p. prime p ∧ p dvd q −→ coprime (a^ ((n − 1) div p) − 1) n

shows prime n
unfolding prime-prime-factor-sqrt[of n]

proof −
let ?ths = n 6= 0 ∧ n 6= 1 ∧ (@ p. prime p ∧ p dvd n ∧ p2 ≤ n)
from n have n01 : n 6= 0 n 6= 1 by arith+
{

fix p
assume p: prime p p dvd n p2 ≤ n
from p(3) sqr have p^(Suc 1) ≤ q^(Suc 1)

by (simp add: power2-eq-square)

105

then have pq: p ≤ q
by (metis le0 power-le-imp-le-base)

from pocklington-lemma[OF n nqr an aq p(1 ,2)] have ∗: q dvd p − 1
by (metis cong-to-1-nat)

have p − 1 6= 0
using prime-ge-2-nat [OF p(1)] by arith

with pq ∗ have False
by (simp add: nat-dvd-not-less)

}
with n01 show ?ths by blast

qed

Variant for application, to separate the exponentiation.
lemma pocklington-alt:

assumes n: n ≥ 2 and nqr : n − 1 = q ∗ r and sqr : n ≤ q2

and an: [a^ (n − 1) = 1] (mod n)
and aq: ∀ p. prime p ∧ p dvd q −→ (∃ b. [a^((n − 1) div p) = b] (mod n) ∧

coprime (b − 1) n)
shows prime n

proof −
{

fix p
assume p: prime p p dvd q
from aq[rule-format] p obtain b where b: [a^((n − 1) div p) = b] (mod n)

coprime (b − 1) n
by blast

have a0 : a 6= 0
proof

assume a0 : a = 0
from n an have [0 = 1] (mod n)

unfolding a0 power-0-left by auto
then show False

using n by (simp add: cong-def dvd-eq-mod-eq-0 [symmetric])
qed
then have a1 : a ≥ 1 by arith
from one-le-power [OF a1] have ath: 1 ≤ a ^ ((n − 1) div p) .
have b0 : b 6= 0
proof

assume b0 : b = 0
from p(2) nqr have (n − 1) mod p = 0

by (metis mod-0 mod-mod-cancel mod-mult-self1-is-0)
with div-mult-mod-eq[of n − 1 p]
have (n − 1) div p ∗ p= n − 1 by auto
then have eq: (a^((n − 1) div p))^p = a^(n − 1)

by (simp only: power-mult[symmetric])
have p − 1 6= 0

using prime-ge-2-nat [OF p(1)] by arith
then have pS : Suc (p − 1) = p by arith
from b have d: n dvd a^((n − 1) div p)

106

unfolding b0 by auto
from divides-rexp[OF d, of p − 1] pS eq cong-dvd-iff [OF an] n show False

by simp
qed
then have b1 : b ≥ 1 by arith

from cong-imp-coprime[OF Cong.cong-diff-nat[OF cong-sym [OF b(1)] cong-refl
[of 1] b1]]

ath b1 b nqr
have coprime (a ^ ((n − 1) div p) − 1) n

by simp
}
then have ∀ p. prime p ∧ p dvd q −→ coprime (a ^ ((n − 1) div p) − 1) n

by blast
then show ?thesis by (rule pocklington[OF n nqr sqr an])

qed

9.7 Prime factorizations
definition primefact ps n ←→ foldr (∗) ps 1 = n ∧ (∀ p∈ set ps. prime p)

lemma primefact:
fixes n :: nat
assumes n: n 6= 0
shows ∃ ps. primefact ps n

proof −
obtain xs where xs: mset xs = prime-factorization n

using ex-mset [of prime-factorization n] by blast
from assms have n = prod-mset (prime-factorization n)

by (simp add: prod-mset-prime-factorization)
also have . . . = prod-mset (mset xs) by (simp add: xs)
also have . . . = foldr (∗) xs 1 by (induct xs) simp-all
finally have foldr (∗) xs 1 = n ..
moreover from xs have ∀ p∈#mset xs. prime p by auto
ultimately have primefact xs n by (auto simp: primefact-def)
then show ?thesis ..

qed

lemma primefact-contains:
fixes p :: nat
assumes pf : primefact ps n

and p: prime p
and pn: p dvd n

shows p ∈ set ps
using pf p pn

proof (induct ps arbitrary: p n)
case Nil
then show ?case by (auto simp: primefact-def)

next
case (Cons q qs)

107

from Cons.prems[unfolded primefact-def]
have q: prime q q ∗ foldr (∗) qs 1 = n ∀ p ∈set qs. prime p

and p: prime p p dvd q ∗ foldr (∗) qs 1
by simp-all

consider p dvd q | p dvd foldr (∗) qs 1
by (metis p prime-dvd-mult-eq-nat)

then show ?case
proof cases

case 1
with p(1) q(1) have p = q

unfolding prime-nat-iff by auto
then show ?thesis by simp

next
case prem: 2
from q(3) have pqs: primefact qs (foldr (∗) qs 1)

by (simp add: primefact-def)
from Cons.hyps[OF pqs p(1) prem] show ?thesis by simp

qed
qed

lemma primefact-variant: primefact ps n ←→ foldr (∗) ps 1 = n ∧ list-all prime
ps

by (auto simp add: primefact-def list-all-iff)

Variant of Lucas theorem.
lemma lucas-primefact:

assumes n: n ≥ 2 and an: [a^(n − 1) = 1] (mod n)
and psn: foldr (∗) ps 1 = n − 1
and psp: list-all (λp. prime p ∧ ¬ [a^((n − 1) div p) = 1] (mod n)) ps

shows prime n
proof −

{
fix p
assume p: prime p p dvd n − 1 [a ^ ((n − 1) div p) = 1] (mod n)
from psn psp have psn1 : primefact ps (n − 1)

by (auto simp add: list-all-iff primefact-variant)
from p(3) primefact-contains[OF psn1 p(1 ,2)] psp
have False by (induct ps) auto

}
with lucas[OF n an] show ?thesis by blast

qed

Variant of Pocklington theorem.
lemma pocklington-primefact:

assumes n: n ≥ 2 and qrn: q∗r = n − 1 and nq2 : n ≤ q2

and arnb: (a^r) mod n = b and psq: foldr (∗) ps 1 = q
and bqn: (b^q) mod n = 1
and psp: list-all (λp. prime p ∧ coprime ((b^(q div p)) mod n − 1) n) ps

shows prime n

108

proof −
from bqn psp qrn
have bqn: a ^ (n − 1) mod n = 1

and psp: list-all (λp. prime p ∧ coprime (a^(r ∗(q div p)) mod n − 1) n) ps
unfolding arnb[symmetric] power-mod
by (simp-all add: power-mult[symmetric] algebra-simps)

from n have n0 : n > 0 by arith
from div-mult-mod-eq[of a^(n − 1) n]

mod-less-divisor [OF n0 , of a^(n − 1)]
have an1 : [a ^ (n − 1) = 1] (mod n)

by (metis bqn cong-def mod-mod-trivial)
have coprime (a ^ ((n − 1) div p) − 1) n if p: prime p p dvd q for p
proof −

from psp psq have pfpsq: primefact ps q
by (auto simp add: primefact-variant list-all-iff)

from psp primefact-contains[OF pfpsq p]
have p ′: coprime (a ^ (r ∗ (q div p)) mod n − 1) n

by (simp add: list-all-iff)
from p prime-nat-iff have p01 : p 6= 0 p 6= 1 p = Suc (p − 1)

by auto
from div-mult1-eq[of r q p] p(2)
have eq1 : r∗ (q div p) = (n − 1) div p

unfolding qrn[symmetric] dvd-eq-mod-eq-0 by (simp add: mult.commute)
have ath: a ≤ b =⇒ a 6= 0 =⇒ 1 ≤ a ∧ 1 ≤ b for a b :: nat

by arith
{

assume a ^ ((n − 1) div p) mod n = 0
then obtain s where s: a ^ ((n − 1) div p) = n ∗ s

by blast
then have eq0 : (a^((n − 1) div p))^p = (n∗s)^p by simp
from qrn[symmetric] have qn1 : q dvd n − 1

by (auto simp: dvd-def)
from dvd-trans[OF p(2) qn1] have npp: (n − 1) div p ∗ p = n − 1

by simp
with eq0 have a ^ (n − 1) = (n ∗ s) ^ p

by (simp add: power-mult[symmetric])
with bqn p01 have 1 = (n ∗ s)^(Suc (p − 1)) mod n

by simp
also have . . . = 0 by (simp add: mult.assoc)
finally have False by simp

}
then have ∗: a ^ ((n − 1) div p) mod n 6= 0 by auto
have [a ^ ((n − 1) div p) mod n = a ^ ((n − 1) div p)] (mod n)

by (simp add: cong-def)
with ath[OF mod-less-eq-dividend ∗]
have [a ^ ((n − 1) div p) mod n − 1 = a ^ ((n − 1) div p) − 1] (mod n)

by (simp add: cong-diff-nat)
then show ?thesis

by (metis cong-imp-coprime eq1 p ′)

109

qed
with pocklington[OF n qrn[symmetric] nq2 an1] show ?thesis

by blast
qed

end

10 Prime powers
theory Prime-Powers
imports Complex-Main HOL−Computational-Algebra.Primes HOL−Library.FuncSet

begin

definition aprimedivisor :: ′a :: normalization-semidom ⇒ ′a where
aprimedivisor q = (SOME p. prime p ∧ p dvd q)

definition primepow :: ′a :: normalization-semidom ⇒ bool where
primepow n ←→ (∃ p k. prime p ∧ k > 0 ∧ n = p ^ k)

definition primepow-factors :: ′a :: normalization-semidom ⇒ ′a set where
primepow-factors n = {x. primepow x ∧ x dvd n}

lemma primepow-gt-Suc-0 : primepow n =⇒ n > Suc 0
using one-less-power [of p::nat for p] by (auto simp: primepow-def prime-nat-iff)

lemma
assumes prime p p dvd n
shows prime-aprimedivisor : prime (aprimedivisor n)

and aprimedivisor-dvd: aprimedivisor n dvd n
proof −

from assms have ∃ p. prime p ∧ p dvd n by auto
from someI-ex[OF this] show prime (aprimedivisor n) aprimedivisor n dvd n

unfolding aprimedivisor-def by (simp-all add: conj-commute)
qed

lemma
assumes n 6= 0 ¬is-unit (n :: ′a :: factorial-semiring)
shows prime-aprimedivisor ′: prime (aprimedivisor n)

and aprimedivisor-dvd ′: aprimedivisor n dvd n
proof −

from someI-ex[OF prime-divisor-exists[OF assms]]
show prime (aprimedivisor n) aprimedivisor n dvd n

unfolding aprimedivisor-def by (simp-all add: conj-commute)
qed

lemma aprimedivisor-of-prime [simp]:
assumes prime p
shows aprimedivisor p = p

proof −

110

from assms have ∃ q. prime q ∧ q dvd p by auto
from someI-ex[OF this, folded aprimedivisor-def] assms show ?thesis

by (auto intro: primes-dvd-imp-eq)
qed

lemma aprimedivisor-pos-nat: (n::nat) > 1 =⇒ aprimedivisor n > 0
using aprimedivisor-dvd ′[of n] by (auto elim: dvdE intro!: Nat.gr0I)

lemma aprimedivisor-primepow-power :
assumes primepow n k > 0
shows aprimedivisor (n ^ k) = aprimedivisor n

proof −
from assms obtain p l where l: prime p l > 0 n = p ^ l

by (auto simp: primepow-def)
from l assms have ∗: prime (aprimedivisor (n ^ k)) aprimedivisor (n ^ k) dvd

n ^ k
by (intro prime-aprimedivisor [of p] aprimedivisor-dvd[of p] dvd-power ;

simp add: power-mult [symmetric])+
from ∗ l have aprimedivisor (n ^ k) dvd p ^ (l ∗ k) by (simp add: power-mult)
with assms ∗ l have aprimedivisor (n ^ k) dvd p

by (subst (asm) prime-dvd-power-iff) simp-all
with l assms have aprimedivisor (n ^ k) = p

by (intro primes-dvd-imp-eq prime-aprimedivisor l) (auto simp: power-mult
[symmetric])

moreover from l have aprimedivisor n dvd p ^ l
by (auto intro: aprimedivisor-dvd simp: prime-gt-0-nat)

with assms l have aprimedivisor n dvd p
by (subst (asm) prime-dvd-power-iff) (auto intro!: prime-aprimedivisor simp:

prime-gt-0-nat)
with l assms have aprimedivisor n = p

by (intro primes-dvd-imp-eq prime-aprimedivisor l) auto
ultimately show ?thesis by simp

qed

lemma aprimedivisor-prime-power :
assumes prime p k > 0
shows aprimedivisor (p ^ k) = p

proof −
from assms have ∗: prime (aprimedivisor (p ^ k)) aprimedivisor (p ^ k) dvd p

^ k
by (intro prime-aprimedivisor [of p] aprimedivisor-dvd[of p]; simp add: prime-nat-iff)+

from assms ∗ have aprimedivisor (p ^ k) dvd p
by (subst (asm) prime-dvd-power-iff) simp-all

with assms ∗ show aprimedivisor (p ^ k) = p by (intro primes-dvd-imp-eq)
qed

lemma prime-factorization-primepow:
assumes primepow n
shows prime-factorization n =

111

replicate-mset (multiplicity (aprimedivisor n) n) (aprimedivisor n)
using assms
by (auto simp: primepow-def aprimedivisor-prime-power prime-factorization-prime-power)

lemma primepow-decompose:
fixes n :: ′a :: factorial-semiring-multiplicative
assumes primepow n
shows aprimedivisor n ^ multiplicity (aprimedivisor n) n = n

proof −
from assms have n 6= 0 by (intro notI) (auto simp: primepow-def)
hence n = unit-factor n ∗ prod-mset (prime-factorization n)

by (subst prod-mset-prime-factorization) simp-all
also from assms have unit-factor n = 1 by (auto simp: primepow-def unit-factor-power)
also have prime-factorization n =

replicate-mset (multiplicity (aprimedivisor n) n) (aprimedivisor n)
by (intro prime-factorization-primepow assms)

also have prod-mset . . . = aprimedivisor n ^ multiplicity (aprimedivisor n) n
by simp

finally show ?thesis by simp
qed

lemma prime-power-not-one:
assumes prime p k > 0
shows p ^ k 6= 1

proof
assume p ^ k = 1
hence is-unit (p ^ k) by simp
thus False using assms by (simp add: is-unit-power-iff)

qed

lemma zero-not-primepow [simp]: ¬primepow 0
by (auto simp: primepow-def)

lemma one-not-primepow [simp]: ¬primepow 1
by (auto simp: primepow-def prime-power-not-one)

lemma primepow-not-unit [simp]: primepow p =⇒ ¬is-unit p
by (auto simp: primepow-def is-unit-power-iff)

lemma not-primepow-Suc-0-nat [simp]: ¬primepow (Suc 0)
using primepow-gt-Suc-0 [of Suc 0] by auto

lemma primepow-gt-0-nat: primepow n =⇒ n > (0 ::nat)
using primepow-gt-Suc-0 [of n] by simp

lemma unit-factor-primepow:
fixes p :: ′a :: factorial-semiring-multiplicative
shows primepow p =⇒ unit-factor p = 1
by (auto simp: primepow-def unit-factor-power)

112

lemma aprimedivisor-primepow:
assumes prime p p dvd n primepow (n :: ′a :: factorial-semiring-multiplicative)
shows aprimedivisor (p ∗ n) = p aprimedivisor n = p

proof −
from assms have [simp]: n 6= 0 by auto
define q where q = aprimedivisor n
with assms have q: prime q by (auto simp: q-def intro!: prime-aprimedivisor)
from ‹primepow n› have n: n = q ^ multiplicity q n

by (simp add: primepow-decompose q-def)
have nz: multiplicity q n 6= 0
proof

assume multiplicity q n = 0
with n have n ′: n = unit-factor n by simp
have is-unit n by (subst n ′, rule unit-factor-is-unit) (insert assms, auto)
with assms show False by auto

qed
with ‹prime p› ‹p dvd n› q have p dvd q

by (subst (asm) n) (auto intro: prime-dvd-power)
with ‹prime p› q have p = q by (intro primes-dvd-imp-eq)
thus aprimedivisor n = p by (simp add: q-def)

define r where r = aprimedivisor (p ∗ n)
with assms have r : r dvd (p ∗ n) prime r unfolding r-def

by (intro aprimedivisor-dvd[of p] prime-aprimedivisor [of p]; simp)+
hence r dvd q ^ Suc (multiplicity q n)

by (subst (asm) n) (auto simp: ‹p = q› dest: dvd-unit-imp-unit)
with r have r dvd q
by (auto intro: prime-dvd-power-nat simp: prime-dvd-mult-iff dest: prime-dvd-power)

with r q have r = q by (intro primes-dvd-imp-eq)
thus aprimedivisor (p ∗ n) = p by (simp add: r-def ‹p = q›)

qed

lemma power-eq-prime-powerD:
fixes p :: ′a :: factorial-semiring
assumes prime p n > 0 x ^ n = p ^ k
shows ∃ i. normalize x = normalize (p ^ i)

proof −
have normalize x = normalize (p ^ multiplicity p x)
proof (rule multiplicity-eq-imp-eq)

fix q :: ′a assume prime q
from assms have multiplicity q (x ^ n) = multiplicity q (p ^ k) by simp
with ‹prime q› and assms have n ∗ multiplicity q x = k ∗ multiplicity q p

by (subst (asm) (1 2) prime-elem-multiplicity-power-distrib) (auto simp:
power-0-left)

with assms and ‹prime q› show multiplicity q x = multiplicity q (p ^ multi-
plicity p x)

by (cases p = q) (auto simp: multiplicity-distinct-prime-power prime-multiplicity-other)
qed (insert assms, auto simp: power-0-left)

113

thus ?thesis by auto
qed

lemma primepow-power-iff :
fixes p :: ′a :: factorial-semiring-multiplicative
assumes unit-factor p = 1
shows primepow (p ^ n) ←→ primepow p ∧ n > 0

proof safe
assume primepow (p ^ n)
hence n: n 6= 0 by (auto intro!: Nat.gr0I)
thus n > 0 by simp
from assms have [simp]: normalize p = p

using normalize-mult-unit-factor [of p] by (simp only: mult.right-neutral)
from ‹primepow (p ^ n)› obtain q k where ∗: k > 0 prime q p ^ n = q ^ k

by (auto simp: primepow-def)
with power-eq-prime-powerD[of q n p k] n

obtain i where eq: normalize p = normalize (q ^ i) by auto
with primepow-not-unit[OF ‹primepow (p ^ n)›] have i 6= 0
by (intro notI) (simp add: normalize-1-iff is-unit-power-iff del: primepow-not-unit)

with ‹normalize p = normalize (q ^ i)› ‹prime q› show primepow p
by (auto simp: normalize-power primepow-def intro!: exI [of - q] exI [of - i])

next
assume primepow p n > 0
then obtain q k where ∗: k > 0 prime q p = q ^ k by (auto simp: primepow-def)
with ‹n > 0 › show primepow (p ^ n)

by (auto simp: primepow-def power-mult intro!: exI [of - q] exI [of - k ∗ n])
qed

lemma primepow-power-iff-nat:
p > 0 =⇒ primepow (p ^ n) ←→ primepow (p :: nat) ∧ n > 0
by (rule primepow-power-iff) (simp-all add: unit-factor-nat-def)

lemma primepow-prime [simp]: prime n =⇒ primepow n
by (auto simp: primepow-def intro!: exI [of - n] exI [of - 1 ::nat])

lemma primepow-prime-power [simp]:
prime (p :: ′a :: factorial-semiring-multiplicative) =⇒ primepow (p ^ n) ←→ n

> 0
by (subst primepow-power-iff) auto

lemma aprimedivisor-vimage:
assumes prime (p :: ′a :: factorial-semiring-multiplicative)
shows aprimedivisor −‘ {p} ∩ primepow-factors n = {p ^ k |k. k > 0 ∧ p ^ k

dvd n}
proof safe

fix q assume q: q ∈ primepow-factors n
hence q ′: q 6= 0 q 6= 1 by (auto simp: primepow-def primepow-factors-def

prime-power-not-one)

114

let ?n = multiplicity (aprimedivisor q) q
from q q ′ have q = aprimedivisor q ^ ?n ∧ ?n > 0 ∧ aprimedivisor q ^ ?n dvd

n
by (auto simp: primepow-decompose primepow-factors-def prime-multiplicity-gt-zero-iff

prime-aprimedivisor ′ prime-imp-prime-elem aprimedivisor-dvd ′)
thus ∃ k. q = aprimedivisor q ^ k ∧ k > 0 ∧ aprimedivisor q ^ k dvd n ..

next
fix k :: nat assume k: p ^ k dvd n k > 0
with assms show p ^ k ∈ aprimedivisor −‘ {p}

by (auto simp: aprimedivisor-prime-power)
with assms k show p ^ k ∈ primepow-factors n

by (auto simp: primepow-factors-def primepow-def aprimedivisor-prime-power
intro: Suc-leI)
qed

lemma aprimedivisor-nat:
assumes n 6= (Suc 0 ::nat)
shows prime (aprimedivisor n) aprimedivisor n dvd n

proof −
from assms have ∃ p. prime p ∧ p dvd n by (intro prime-factor-nat) auto
from someI-ex[OF this, folded aprimedivisor-def]

show prime (aprimedivisor n) aprimedivisor n dvd n by blast+
qed

lemma aprimedivisor-gt-Suc-0 :
assumes n 6= Suc 0
shows aprimedivisor n > Suc 0

proof −
from assms have prime (aprimedivisor n) by (rule aprimedivisor-nat)
thus aprimedivisor n > Suc 0 by (simp add: prime-nat-iff)

qed

lemma aprimedivisor-le-nat:
assumes n > Suc 0
shows aprimedivisor n ≤ n

proof −
from assms have aprimedivisor n dvd n by (intro aprimedivisor-nat) simp-all
with assms show aprimedivisor n ≤ n

by (intro dvd-imp-le) simp-all
qed

lemma bij-betw-primepows:
bij-betw (λ(p,k). p ^ Suc k :: ′a :: factorial-semiring-multiplicative)

(Collect prime × UNIV) (Collect primepow)
proof (rule bij-betwI [where ?g = (λn. (aprimedivisor n, multiplicity (aprimedivisor
n) n − 1))],

goal-cases)
case 1
show (λ(p, k). p ^ Suc k :: ′a) ∈ Collect prime × UNIV → Collect primepow

115

by (auto intro!: primepow-prime-power simp del: power-Suc)
next

case 2
show ?case

by (auto simp: primepow-def prime-aprimedivisor)
next

case (3 n)
thus ?case

by (auto simp: aprimedivisor-prime-power simp del: power-Suc)
next

case (4 n)
hence ∗: 0 < multiplicity (aprimedivisor n) n

by (subst prime-multiplicity-gt-zero-iff)
(auto intro!: prime-imp-prime-elem aprimedivisor-dvd simp: primepow-def

prime-aprimedivisor)
have aprimedivisor n ∗ aprimedivisor n ^ (multiplicity (aprimedivisor n) n −

Suc 0) =
aprimedivisor n ^ Suc (multiplicity (aprimedivisor n) n − Suc 0) by simp

also from ∗ have Suc (multiplicity (aprimedivisor n) n − Suc 0) =
multiplicity (aprimedivisor n) n

by (subst Suc-diff-Suc) (auto simp: prime-multiplicity-gt-zero-iff)
also have aprimedivisor n ^ . . . = n

using 4 by (subst primepow-decompose) auto
finally show ?case by auto

qed

lemma primepow-multD:
assumes primepow (a ∗ b :: nat)
shows a = 1 ∨ primepow a b = 1 ∨ primepow b

proof −
from assms obtain p k where k: k > 0 a ∗ b = p ^ k prime p

unfolding primepow-def by auto
then obtain i j where a = p ^ i b = p ^ j

using prime-power-mult-nat[of p a b] by blast
with ‹prime p› show a = 1 ∨ primepow a b = 1 ∨ primepow b by auto

qed

lemma primepow-mult-aprimedivisorI :
assumes primepow (n :: ′a :: factorial-semiring-multiplicative)
shows primepow (aprimedivisor n ∗ n)
by (subst (2) primepow-decompose[OF assms, symmetric], subst power-Suc [symmetric],

subst primepow-prime-power)
(insert assms, auto intro!: prime-aprimedivisor ′ dest: primepow-gt-Suc-0)

lemma primepow-factors-altdef :
fixes x :: ′a :: factorial-semiring-multiplicative
assumes x 6= 0
shows primepow-factors x = {p ^ k |p k. p ∈ prime-factors x ∧ k ∈ {0<..

116

multiplicity p x}}
proof (intro equalityI subsetI)

fix q assume q ∈ primepow-factors x
then obtain p k where pk: prime p k > 0 q = p ^ k q dvd x

unfolding primepow-factors-def primepow-def by blast
moreover have k ≤ multiplicity p x using pk assms by (intro multiplicity-geI)

auto
ultimately show q ∈ {p ^ k |p k. p ∈ prime-factors x ∧ k ∈ {0<.. multiplicity

p x}}
by (auto simp: prime-factors-multiplicity intro!: exI [of - p] exI [of - k])

qed (auto simp: primepow-factors-def prime-factors-multiplicity multiplicity-dvd ′)

lemma finite-primepow-factors:
assumes x 6= (0 :: ′a :: factorial-semiring-multiplicative)
shows finite (primepow-factors x)

proof −
have finite (SIGMA p:prime-factors x. {0<..multiplicity p x})

by (intro finite-SigmaI) simp-all
hence finite ((λ(p,k). p ^ k) ‘ . . .) (is finite ?A) by (rule finite-imageI)
also have ?A = primepow-factors x

using assms by (subst primepow-factors-altdef) fast+
finally show ?thesis .

qed

lemma aprimedivisor-primepow-factors-conv-prime-factorization:
assumes [simp]: n 6= (0 :: ′a :: factorial-semiring-multiplicative)
shows image-mset aprimedivisor (mset-set (primepow-factors n)) = prime-factorization

n
(is ?lhs = ?rhs)

proof (intro multiset-eqI)
fix p :: ′a
show count ?lhs p = count ?rhs p
proof (cases prime p)

case False
have p /∈# image-mset aprimedivisor (mset-set (primepow-factors n))
proof

assume p ∈# image-mset aprimedivisor (mset-set (primepow-factors n))
then obtain q where p = aprimedivisor q q ∈ primepow-factors n

by (auto simp: finite-primepow-factors)
with False prime-aprimedivisor ′[of q] have q = 0 ∨ is-unit q by auto

with ‹q ∈ primepow-factors n› show False by (auto simp: primepow-factors-def
primepow-def)

qed
hence count ?lhs p = 0 by (simp only: Multiset.not-in-iff)
with False show ?thesis by (simp add: count-prime-factorization)

next
case True
hence p: p 6= 0 ¬is-unit p by auto
have count ?lhs p = card (aprimedivisor −‘ {p} ∩ primepow-factors n)

117

by (simp add: count-image-mset finite-primepow-factors)
also have aprimedivisor −‘ {p} ∩ primepow-factors n = {p^k |k. k > 0 ∧ p ^

k dvd n}
using True by (rule aprimedivisor-vimage)

also from True have . . . = (λk. p ^ k) ‘ {0<..multiplicity p n}
by (subst power-dvd-iff-le-multiplicity) auto

also from p True have card . . . = multiplicity p n
by (subst card-image) (auto intro!: inj-onI dest: prime-power-inj)

also from True have . . . = count (prime-factorization n) p
by (simp add: count-prime-factorization)

finally show ?thesis .
qed

qed

lemma prime-elem-aprimedivisor-nat: d > Suc 0 =⇒ prime-elem (aprimedivisor
d)

using prime-aprimedivisor ′[of d] by simp

lemma aprimedivisor-gt-0-nat [simp]: d > Suc 0 =⇒ aprimedivisor d > 0
using prime-aprimedivisor ′[of d] by (simp add: prime-gt-0-nat)

lemma aprimedivisor-gt-Suc-0-nat [simp]: d > Suc 0 =⇒ aprimedivisor d > Suc
0

using prime-aprimedivisor ′[of d] by (simp add: prime-gt-Suc-0-nat)

lemma aprimedivisor-not-Suc-0-nat [simp]: d > Suc 0 =⇒ aprimedivisor d 6= Suc
0

using aprimedivisor-gt-Suc-0 [of d] by (intro notI) auto

lemma multiplicity-aprimedivisor-gt-0-nat [simp]:
d > Suc 0 =⇒ multiplicity (aprimedivisor d) d > 0
by (subst multiplicity-gt-zero-iff) (auto intro: aprimedivisor-dvd ′)

lemma primepowI :
prime p =⇒ k > 0 =⇒ p ^ k = n =⇒ primepow n ∧ aprimedivisor n = p
unfolding primepow-def by (auto simp: aprimedivisor-prime-power)

lemma not-primepowI :
assumes prime p prime q p 6= q p dvd n q dvd n
shows ¬primepow n
using assms by (auto simp: primepow-def dest!: prime-dvd-power [rotated] dest:

primes-dvd-imp-eq)

lemma sum-prime-factorization-conv-sum-primepow-factors:
fixes n :: ′a :: factorial-semiring-multiplicative
assumes n 6= 0
shows (

∑
q∈primepow-factors n. f (aprimedivisor q)) = (

∑
p∈#prime-factorization

n. f p)
proof −

118

from assms have prime-factorization n = image-mset aprimedivisor (mset-set
(primepow-factors n))

by (rule aprimedivisor-primepow-factors-conv-prime-factorization [symmetric])
also have (

∑
p∈#. . . . f p) = (

∑
q∈primepow-factors n. f (aprimedivisor q))

by (simp add: image-mset.compositionality sum-unfold-sum-mset o-def)
finally show ?thesis ..

qed

lemma multiplicity-aprimedivisor-Suc-0-iff :
assumes primepow (n :: ′a :: factorial-semiring-multiplicative)
shows multiplicity (aprimedivisor n) n = Suc 0 ←→ prime n
by (subst (3) primepow-decompose [OF assms, symmetric])

(insert assms, auto simp add: prime-power-iff intro!: prime-aprimedivisor ′)

definition mangoldt :: nat ⇒ ′a :: real-algebra-1 where
mangoldt n = (if primepow n then of-real (ln (real (aprimedivisor n))) else 0)

lemma mangoldt-0 [simp]: mangoldt 0 = 0
by (simp add: mangoldt-def)

lemma mangoldt-Suc-0 [simp]: mangoldt (Suc 0) = 0
by (simp add: mangoldt-def)

lemma of-real-mangoldt [simp]: of-real (mangoldt n) = mangoldt n
by (simp add: mangoldt-def)

lemma mangoldt-sum:
assumes n 6= 0
shows (

∑
d | d dvd n. mangoldt d :: ′a :: real-algebra-1) = of-real (ln (real n))

proof −
have (

∑
d | d dvd n. mangoldt d :: ′a) = of-real (

∑
d | d dvd n. mangoldt d) by

simp
also have (

∑
d | d dvd n. mangoldt d) = (

∑
d ∈ primepow-factors n. ln (real

(aprimedivisor d)))
using assms by (intro sum.mono-neutral-cong-right) (auto simp: primepow-factors-def

mangoldt-def)
also have . . . = ln (real (

∏
d ∈ primepow-factors n. aprimedivisor d))

using assms finite-primepow-factors[of n]
by (subst ln-prod [symmetric])

(auto simp: primepow-factors-def intro!: aprimedivisor-pos-nat
intro: Nat.gr0I primepow-gt-Suc-0)

also have primepow-factors n =
(λ(p,k). p ^ k) ‘ (SIGMA p:prime-factors n. {0<..multiplicity p n})

(is - = - ‘ ?A) by (subst primepow-factors-altdef [OF assms]) fast+
also have prod aprimedivisor . . . = (

∏
(p,k)∈?A. aprimedivisor (p ^ k))

by (subst prod.reindex)
(auto simp: inj-on-def prime-power-inj ′′ prime-factors-multiplicity

prod.Sigma [symmetric] case-prod-unfold)

119

also have . . . = (
∏

(p,k)∈?A. p)
by (intro prod.cong refl) (auto simp: aprimedivisor-prime-power prime-factors-multiplicity)

also have . . . = (
∏

x∈prime-factors n.
∏

k∈{0<..multiplicity x n}. x)
by (rule prod.Sigma [symmetric]) auto

also have . . . = (
∏

x∈prime-factors n. x ^ multiplicity x n)
by (intro prod.cong refl) (simp add: prod-constant)

also have . . . = n using assms by (intro prime-factorization-nat [symmetric])
simp

finally show ?thesis .
qed

lemma mangoldt-primepow:
prime p =⇒ mangoldt (p ^ k) = (if k > 0 then of-real (ln (real p)) else 0)

by (simp add: mangoldt-def aprimedivisor-prime-power)

lemma mangoldt-primepow ′ [simp]: prime p =⇒ k > 0 =⇒ mangoldt (p ^ k) =
of-real (ln (real p))

by (subst mangoldt-primepow) auto

lemma mangoldt-prime [simp]: prime p =⇒ mangoldt p = of-real (ln (real p))
using mangoldt-primepow[of p 1] by simp

lemma mangoldt-nonneg: 0 ≤ (mangoldt d :: real)
using aprimedivisor-gt-Suc-0-nat[of d]
by (auto simp: mangoldt-def of-nat-le-iff [of 1 x for x, unfolded of-nat-1] Suc-le-eq

intro!: ln-ge-zero dest: primepow-gt-Suc-0)

lemma norm-mangoldt [simp]:
norm (mangoldt n :: ′a :: real-normed-algebra-1) = mangoldt n

proof (cases primepow n)
case True
hence prime (aprimedivisor n)

by (intro prime-aprimedivisor ′)
(auto simp: primepow-def prime-gt-0-nat)

hence aprimedivisor n > 1 by (simp add: prime-gt-Suc-0-nat)
with True show ?thesis by (auto simp: mangoldt-def abs-if)

qed (auto simp: mangoldt-def)

lemma Re-mangoldt [simp]: Re (mangoldt n) = mangoldt n
and Im-mangoldt [simp]: Im (mangoldt n) = 0
by (simp-all add: mangoldt-def)

lemma abs-mangoldt [simp]: abs (mangoldt n :: real) = mangoldt n
using norm-mangoldt[of n, where ? ′a = real, unfolded real-norm-def] .

lemma mangoldt-le:
assumes n > 0
shows mangoldt n ≤ ln n

proof (cases primepow n)

120

case True
from True have prime (aprimedivisor n)

by (intro prime-aprimedivisor ′)
(auto simp: primepow-def prime-gt-0-nat)

hence gt-1 : aprimedivisor n > 1 by (simp add: prime-gt-Suc-0-nat)
from True have mangoldt n = ln (aprimedivisor n)

by (simp add: mangoldt-def)
also have . . . ≤ ln n using True gt-1

by (subst ln-le-cancel-iff) (auto intro!: Nat.gr0I dvd-imp-le aprimedivisor-dvd ′)
finally show ?thesis .

qed (insert assms, auto simp: mangoldt-def)

end

11 Primitive roots in residue rings and Carmichael’s
function

theory Residue-Primitive-Roots
imports Pocklington

begin

This theory develops the notions of primitive roots (generators) in residue
rings. It also provides a definition and all the basic properties of Carmichael’s
function λ(n), which is strongly related to this. The proofs mostly follow
Apostol’s presentation

11.1 Primitive roots in residue rings

A primitive root of a residue ring modulo n is an element g that generates
the ring, i. e. such that for each x coprime to n there exists an i such that
x = gi. A simpler definition is that g must have the same order as the
cardinality of the multiplicative group, which is ϕ(n).
Note that for convenience, this definition does not demand g < n.
inductive residue-primroot :: nat ⇒ nat ⇒ bool where

n > 0 =⇒ coprime n g =⇒ ord n g = totient n =⇒ residue-primroot n g

lemma residue-primroot-def [code]:
residue-primroot n x ←→ n > 0 ∧ coprime n x ∧ ord n x = totient n
by (simp add: residue-primroot.simps)

lemma not-residue-primroot-0 [simp]: ∼residue-primroot 0 x
by (auto simp: residue-primroot-def)

lemma residue-primroot-mod [simp]: residue-primroot n (x mod n) = residue-primroot
n x

by (cases n = 0) (simp-all add: residue-primroot-def)

121

lemma residue-primroot-cong:
assumes [x = x ′] (mod n)
shows residue-primroot n x = residue-primroot n x ′

proof −
have residue-primroot n x = residue-primroot n (x mod n)

by simp
also have x mod n = x ′ mod n

using assms by (simp add: cong-def)
also have residue-primroot n (x ′ mod n) = residue-primroot n x ′

by simp
finally show ?thesis .

qed

lemma not-residue-primroot-0-right [simp]: residue-primroot n 0 ←→ n = 1
by (auto simp: residue-primroot-def)

lemma residue-primroot-1-iff : residue-primroot n (Suc 0) ←→ n ∈ {1 , 2}
proof

assume ∗: residue-primroot n (Suc 0)
with totient-gt-1 [of n] have n ≤ 2 by (cases n ≤ 2) (auto simp: residue-primroot-def)
hence n ∈ {0 , 1 , 2} by auto
thus n ∈ {1 , 2} using ∗ by (auto simp: residue-primroot-def)

qed (auto simp: residue-primroot-def)

11.2 Primitive roots modulo a prime

For prime p, we now analyse the number of elements in the ring Z/pZ whose
order is precisely d for each d.
context

fixes n :: nat and ψ
assumes n: n > 1
defines ψ ≡ (λd. card {x∈totatives n. ord n x = d})

begin

lemma elements-with-ord-restrict-totatives:
d > 0 =⇒ {x∈{..<n}. ord n x = d} = {x∈totatives n. ord n x = d}
using n by (auto simp: totatives-def coprime-commute intro!: Nat.gr0I le-neq-trans)

lemma prime-elements-with-ord:
assumes ψ d 6= 0 and prime n

and a: a ∈ totatives n ord n a = d a 6= 1
shows inj-on (λk. a ^ k mod n) {..<d}

and {x∈{..<n}. [x ^ d = 1] (mod n)} = (λk. a ^ k mod n) ‘ {..<d}
and bij-betw (λk. a ^ k mod n) (totatives d) {x∈{..<n}. ord n x = d}

proof −
show inj: inj-on (λk. a ^ k mod n) {..<d}

using inj-power-mod[of n a] a by (auto simp: totatives-def coprime-commute)
from a have d > 0 by (auto simp: totatives-def coprime-commute)

122

moreover have d 6= 1 using a n
by (auto simp: ord-eq-Suc-0-iff totatives-less cong-def)

ultimately have d: d > 1 by simp

have ∗: (λk. a ^ k mod n) ‘ {..<d} = {x∈{..<n}. [x ^ d = 1] (mod n)}
proof (rule card-seteq)

have card {x∈{..<n}. [x ^ d = 1] (mod n)} ≤ d
using assms a by (intro roots-mod-prime-bound) (auto simp: totatives-def

coprime-commute)
also have . . . = card ((λk. a ^ k mod n) ‘ {..<d})

using inj by (subst card-image) auto
finally show card {x ∈ {..<n}. [x ^ d = 1] (mod n)} ≤

next
show (λk. a ^ k mod n) ‘ {..<d} ⊆ {x ∈ {..<n}. [x ^ d = 1] (mod n)}
proof safe

fix k assume k < d
have [(a ^ d) ^ k = 1 ^ k] (mod n)

by (intro cong-pow) (use a in ‹auto simp: ord-divides ′›)
thus [(a ^ k mod n) ^ d = 1] (mod n)

by (simp add: power-mult [symmetric] cong-def power-mod mult.commute)
qed (use ‹prime n› in ‹auto dest: prime-gt-1-nat›)

qed auto
thus {x∈{..<n}. [x ^ d = 1] (mod n)} = (λk. a ^ k mod n) ‘ {..<d} ..

show bij-betw (λk. a ^ k mod n) (totatives d) {x∈{..<n}. ord n x = d}
unfolding bij-betw-def

proof (intro conjI inj-on-subset[OF inj] equalityI subsetI)
fix b assume b ∈ (λk. a ^ k mod n) ‘ totatives d
then obtain k where b = a ^ k mod n k ∈ totatives d by auto
thus b ∈ {b ∈ {..<n}. ord n b = d}

using n a by (simp add: ord-power totatives-def coprime-commute)
next

fix b assume b ∈ {x ∈ {..<n}. ord n x = d}
hence b: ord n b = d b < n by auto
with d have coprime n b using ord-eq-0 [of n b] by auto
from b have b ∈ {x∈{..<n}. [x ^ d = 1] (mod n)}

by (auto simp: ord-divides ′)
with ∗ obtain k where k: k < d b = a ^ k mod n

by blast
with b(2) n a d have d div gcd k d = ord n b

using ‹coprime n b› by (auto simp: ord-power)
also have ord n b = d by (simp add: b)
finally have coprime k d
unfolding coprime-iff-gcd-eq-1 using d a by (subst (asm) div-eq-dividend-iff)

auto
with k b d have k ∈ totatives d by (auto simp: totatives-def intro!: Nat.gr0I)
with k show b ∈ (λk. a ^ k mod n) ‘ totatives d by blast

qed (use d n in ‹auto simp: totatives-less›)
qed

123

lemma prime-card-elements-with-ord:
assumes ψ d 6= 0 and prime n
shows ψ d = totient d

proof (cases d = 1)
case True
have ψ 1 = 1

using elements-with-ord-1 [of n] n by (simp add: ψ-def)
thus ?thesis using True by simp

next
case False
from assms obtain a where a: a ∈ totatives n ord n a = d

by (auto simp: ψ-def)
from a have d > 0 by (auto intro!: Nat.gr0I simp: ord-eq-0 totatives-def co-

prime-commute)
from a and False have a 6= 1 by auto
from bij-betw-same-card[OF prime-elements-with-ord(3)[OF assms a this]] show
ψ d = totient d

using elements-with-ord-restrict-totatives[of d] False a ‹d > 0 ›
by (simp add: ψ-def totient-def)

qed

lemma prime-sum-card-elements-with-ord-eq-totient:
(
∑

d | d dvd totient n. ψ d) = totient n
proof −

have totient n = card (totatives n)
by (simp add: totient-def)

also have totatives n = (
⋃

d∈{d. d dvd totient n}. {x∈totatives n. ord n x =
d})

by (force simp: order-divides-totient totatives-def coprime-commute)
also have card . . . = (

∑
d | d dvd totient n. ψ d)

unfolding ψ-def using n by (subst card-UN-disjoint) (auto intro!: finite-divisors-nat)
finally show ?thesis ..

qed

We can now show that the number of elements of order d is ϕ(d) if d | p− 1
and 0 otherwise.
theorem prime-card-elements-with-ord-eq-totient:

assumes prime n
shows ψ d = (if d dvd n − 1 then totient d else 0)

proof (cases d dvd totient n)
case False
thus ?thesis using order-divides-totient[of n] assms

by (auto simp: ψ-def totient-prime totatives-def coprime-commute[of n])
next

case True
have ψ d = totient d
proof (rule ccontr)

assume neq: ψ d 6= totient d

124

have le: ψ d ≤ totient d if d dvd totient n for d
using prime-card-elements-with-ord[of d] assms by (cases ψ d = 0) auto

from neq and le[of d] and True have less: ψ d < totient d by auto

have totient n = (
∑

d | d dvd totient n. ψ d)
using prime-sum-card-elements-with-ord-eq-totient ..

also have . . . < (
∑

d | d dvd totient n. totient d)
by (rule sum-strict-mono-ex1)

(use n le less assms True in ‹auto intro!: finite-divisors-nat›)
also have . . . = totient n

using totient-divisor-sum .
finally show False by simp

qed
with True show ?thesis using assms by (simp add: totient-prime)

qed

As a corollary, we get that the number of primitive roots modulo a prime p
is ϕ(p− 1). Since this number is positive, we also get that there is at least
one primitive root modulo p.
lemma

assumes prime n
shows prime-card-primitive-roots: card {x∈totatives n. ord n x = n − 1} =

totient (n − 1)
card {x∈{..<n}. ord n x = n − 1} = totient (n − 1)

and prime-primitive-root-exists: ∃ x. residue-primroot n x
proof −

show ∗: card {x∈totatives n. ord n x = n − 1} = totient (n − 1)
using prime-card-elements-with-ord-eq-totient[of n − 1] assms
by (auto simp: totient-prime ψ-def)

thus card {x∈{..<n}. ord n x = n − 1} = totient (n − 1)
using assms n elements-with-ord-restrict-totatives[of n − 1] by simp

note ∗
also have totient (n − 1) > 0 using n by auto
finally show ∃ x. residue-primroot n x using assms prime-gt-1-nat[of n]

by (subst (asm) card-gt-0-iff)
(auto simp: residue-primroot-def totient-prime totatives-def coprime-commute)

qed

end

11.3 Primitive roots modulo powers of an odd prime

Any primitive root g modulo an odd prime p is also a primitive root modulo
pk for all k > 0 if [gp−1 6= 1] (mod p2). To show this, we first need the
following lemma.
lemma residue-primroot-power-prime-power-neq-1 :

assumes k ≥ 2

125

assumes p: prime p odd p and residue-primroot p g and [g ^ (p − 1) 6= 1] (mod
p2)

shows [g ^ totient (p ^ (k − 1)) 6= 1] (mod (p ^ k))
using assms(1)

proof (induction k rule: dec-induct)
case base
thus ?case using assms by (simp add: totient-prime)

next
case (step k)
from p have p > 2

using prime-gt-1-nat[of p] by (cases p = 2) auto
from assms have g: g > 0 by (auto intro!: Nat.gr0I)
have [g ^ totient (p ^ (k − 1)) = 1] (mod p ^ (k − 1))

using assms by (intro euler-theorem)
(auto simp: residue-primroot-def totatives-def coprime-commute)

from cong-to-1-nat[OF this]
obtain t where ∗: g ^ totient (p ^ (k − 1)) − 1 = p ^ (k − 1) ∗ t by auto

have t: g ^ totient (p ^ (k − 1)) = p ^ (k − 1) ∗ t + 1
using g by (subst ∗ [symmetric]) auto

have ¬p dvd t
proof

assume p dvd t
then obtain q where [simp]: t = p ∗ q by auto
from t have g ^ totient (p ^ (k − 1)) = p ^ k ∗ q + 1

using ‹k ≥ 2 › by (cases k) auto
hence [g ^ totient (p ^ (k − 1)) = p ^ k ∗ q + 1] (mod p ^ k)

by simp
also have [p ^ k ∗ q + 1 = 0 ∗ q + 1] (mod p ^ k)

by (intro cong-add cong-mult) (auto simp: cong-0-iff)
finally have [g ^ totient (p ^ (k − 1)) = 1] (mod p ^ k)

by simp
with step.IH show False by contradiction

qed

from t have (g ^ totient (p ^ (k − 1))) ^ p = (p ^ (k − 1) ∗ t + 1) ^ p
by (rule arg-cong)

also have (g ^ totient (p ^ (k − 1))) ^ p = g ^ (p ∗ totient (p ^ (k − 1)))
by (simp add: power-mult [symmetric] mult.commute)

also have p ∗ totient (p ^ (k − 1)) = totient (p ^ k)
using p ‹k ≥ 2 › by (simp add: totient-prime-power Suc-diff-Suc flip: power-Suc)

also have (p ^ (k − 1) ∗ t + 1) ^ p = (
∑

i≤p. (p choose i) ∗ t ^ i ∗ p ^ (i ∗
(k − 1)))

by (subst binomial) (simp-all add: mult-ac power-mult-distrib power-mult [symmetric])
finally have [g ^ totient (p ^ k) = (

∑
i≤p. (p choose i) ∗ t ^ i ∗ p ^ (i ∗ (k −

1)))]
(mod (p ^ Suc k)) (is [- = ?rhs] (mod -)) by simp

also have [?rhs = (
∑

i≤p. if i ≤ 1 then (p choose i) ∗ t ^ i ∗ p ^ (i ∗ (k − 1))

126

else 0)]
(mod (p ^ Suc k)) (is [sum ?f - = sum ?g -] (mod -))

proof (intro cong-sum)
fix i assume i: i ∈ {..p}
consider i ≤ 1 | i = 2 | i > 2 by force
thus [?f i = ?g i] (mod (p ^ Suc k))
proof cases

assume i: i > 2
have Suc k ≤ 3 ∗ (k − 1)

using ‹k ≥ 2 › by (simp add: algebra-simps)
also have 3 ∗ (k − 1) ≤ i ∗ (k − 1)

using i by (intro mult-right-mono) auto
finally have p ^ Suc k dvd ?f i

by (intro dvd-mult le-imp-power-dvd)
thus [?f i = ?g i] (mod (p ^ Suc k))

by (simp add: cong-0-iff)
next

assume [simp]: i = 2
have ?f i = p ∗ (p − 1) div 2 ∗ t2 ∗ p ^ (2 ∗ (k − 1))

using choose-two[of p] by simp
also have p ∗ (p − 1) div 2 = (p − 1) div 2 ∗ p

using ‹odd p› by (auto elim!: oddE)
also have . . . ∗ t2 ∗ p ^ (2 ∗ (k − 1)) = (p − 1) div 2 ∗ t2 ∗ (p ∗ p ^ (2 ∗

(k − 1)))
by (simp add: algebra-simps)

also have p ∗ p ^ (2 ∗ (k − 1)) = p ^ (2 ∗ k − 1)
using ‹k ≥ 2 › by (cases k) auto

also have p ^ Suc k dvd (p − 1) div 2 ∗ t2 ∗ p ^ (2 ∗ k − 1)
using ‹k ≥ 2 › by (intro dvd-mult le-imp-power-dvd) auto

finally show [?f i = ?g i] (mod (p ^ Suc k))
by (simp add: cong-0-iff)

qed auto
qed
also have (

∑
i≤p. ?g i) = (

∑
i≤1 . ?f i)

using p prime-gt-1-nat[of p] by (intro sum.mono-neutral-cong-right) auto
also have . . . = 1 + t ∗ p ^ k

using choose-two[of p] ‹k ≥ 2 › by (cases k) simp-all
finally have eq: [g ^ totient (p ^ k) = 1 + t ∗ p ^ k] (mod p ^ Suc k) .

have [g ^ totient (p ^ k) 6= 1] (mod p ^ Suc k)
proof

assume [g ^ totient (p ^ k) = 1] (mod p ^ Suc k)
hence [g ^ totient (p ^ k) − g ^ totient (p ^ k) = 1 + t ∗ p ^ k − 1] (mod p

^ Suc k)
by (intro cong-diff-nat eq) auto

hence [t ∗ p ^ k = 0] (mod p ^ Suc k)
by (simp add: cong-sym-eq)

hence p ∗ p ^ k dvd t ∗ p ^ k
by (simp add: cong-0-iff)

127

hence p dvd t using ‹p > 2 › by simp
with ‹¬p dvd t› show False by contradiction

qed
thus ?case by simp

qed

We can now show that primitive roots modulo p with the above condition
are indeed also primitive roots modulo pk.
proposition residue-primroot-prime-lift-iff :

assumes p: prime p odd p and residue-primroot p g
shows (∀ k>0 . residue-primroot (p ^ k) g) ←→ [g ^ (p − 1) 6= 1] (mod p2)

proof −
from assms have g: coprime p g ord p g = p − 1

by (auto simp: residue-primroot-def totient-prime)
show ?thesis
proof

assume ∀ k>0 . residue-primroot (p ^ k) g
hence residue-primroot (p2) g by auto
hence ord (p2) g = totient (p2)

by (simp-all add: residue-primroot-def)
thus [g ^ (p − 1) 6= 1] (mod p2)

using g assms prime-gt-1-nat[of p]
by (auto simp: ord-divides ′ totient-prime-power)

next
assume g ′: [g ^ (p − 1) 6= 1] (mod p2)

have residue-primroot (p ^ k) g if k > 0 for k
proof (cases k = 1)

case False
with that have k: k > 1 by simp
from g have coprime: coprime (p ^ k) g

by (auto simp: totatives-def coprime-commute)

define t where t = ord (p ^ k) g
have [g ^ t = 1] (mod (p ^ k))

by (simp add: t-def ord-divides ′)
also have p ^ k = p ∗ p ^ (k − 1)

using k by (cases k) auto
finally have [g ^ t = 1] (mod p)

by (rule cong-modulus-mult-nat)
hence totient p dvd t

using g p by (simp add: ord-divides ′ totient-prime)
then obtain q where t: t = totient p ∗ q by auto

have t dvd totient (p ^ k)
using coprime by (simp add: t-def order-divides-totient)

with t p k have q dvd p ^ (k − 1) using prime-gt-1-nat[of p]
by (auto simp: totient-prime totient-prime-power)

then obtain b where b: b ≤ k − 1 q = p ^ b

128

using divides-primepow-nat[of p q k − 1] p by auto

have b = k − 1
proof (rule ccontr)

assume b 6= k − 1
with b have b < k − 1 by simp
have t = p ^ b ∗ (p − 1)

using b p by (simp add: t totient-prime)
also have . . . dvd p ^ (k − 2) ∗ (p − 1)

using ‹b < k − 1 › by (intro mult-dvd-mono le-imp-power-dvd) auto
also have . . . = totient (p ^ (k − 1))

using k p by (simp add: totient-prime-power numeral-2-eq-2)
finally have [g ^ totient (p ^ (k − 1)) = 1] (mod (p ^ k))

by (simp add: ord-divides ′ t-def)
with residue-primroot-power-prime-power-neq-1 [of k p g] p k assms g ′ show

False
by auto

qed
hence t = totient (p ^ k)

using p k by (simp add: t b totient-prime totient-prime-power)
thus residue-primroot (p ^ k) g

using g one-less-power [of p k] prime-gt-1-nat[of p] p k
by (simp add: residue-primroot-def t-def)

qed (use assms in auto)
thus ∀ k>0 . residue-primroot (p ^ k) g by blast

qed
qed

If p is an odd prime, there is always a primitive root g modulo p, and if g
does not fulfil the above assumption required for it to be liftable to pk, we
can use g + p, which is also a primitive root modulo p and does fulfil the
assumption.
This shows that any modulus that is a power of an odd prime has a primitive
root.
theorem residue-primroot-odd-prime-power-exists:

assumes p: prime p odd p
obtains g where ∀ k>0 . residue-primroot (p ^ k) g

proof −
obtain g where g: residue-primroot p g

using prime-primitive-root-exists[of p] assms prime-gt-1-nat[of p] by auto

have ∃ g. residue-primroot p g ∧ [g ^ (p − 1) 6= 1] (mod p2)
proof (cases [g ^ (p − 1) = 1] (mod p2))

case True
define g ′ where g ′ = p + g
note g
also have residue-primroot p g ←→ residue-primroot p g ′

unfolding g ′-def by (rule residue-primroot-cong) (auto simp: cong-def)

129

finally have g ′: residue-primroot p g ′ .

have [g ′ ^ (p − 1) = (
∑

k≤p−1 . ((p−1) choose k) ∗ g ^ (p − Suc k) ∗ p ^
k)] (mod p2)

(is [- = ?rhs] (mod -)) by (simp add: g ′-def binomial mult-ac)
also have [?rhs = (

∑
k≤p−1 . if k ≤ 1 then ((p−1) choose k) ∗

g ^ (p − Suc k) ∗ p ^ k else 0)] (mod p2)
(is [sum ?f - = sum ?g -] (mod -))

proof (intro cong-sum)
fix k assume k ∈ {..p−1}
show [?f k = ?g k] (mod p2)
proof (cases k ≤ 1)

case False
have p2 dvd ?f k

using False by (intro dvd-mult le-imp-power-dvd) auto
thus ?thesis using False by (simp add: cong-0-iff)

qed auto
qed
also have sum ?g {..p−1} = sum ?f {0 , 1}

using prime-gt-1-nat[of p] p by (intro sum.mono-neutral-cong-right) auto
also have . . . = g ^ (p − 1) + p ∗ (p − 1) ∗ g ^ (p − 2)

using p by (simp add: numeral-2-eq-2)
also have [g ^ (p − 1) + p ∗ (p − 1) ∗ g ^ (p − 2) = 1 + p ∗ (p − 1) ∗ g ^

(p − 2)] (mod p2)
by (intro cong-add True) auto

finally have [g ′ ^ (p − 1) = 1 + p ∗ (p − 1) ∗ g ^ (p − 2)] (mod p2) .

moreover have [1 + p ∗ (p − 1) ∗ g ^ (p − 2) 6= 1] (mod p2)
proof

assume [1 + p ∗ (p − 1) ∗ g ^ (p − 2) = 1] (mod p2)
hence [1 + p ∗ (p − 1) ∗ g ^ (p − 2) − 1 = 1 − 1] (mod p2)

by (intro cong-diff-nat) auto
hence p ∗ p dvd p ∗ ((p − 1) ∗ g ^ (p − 2))

by (auto simp: cong-0-iff power2-eq-square)
hence p dvd (p − 1) ∗ g ^ (p − 2)

using p by simp
hence p dvd g ^ (p − 2)

using p dvd-imp-le[of p p − Suc 0] prime-gt-1-nat[of p]
by (auto simp: prime-dvd-mult-iff)

also have . . . dvd g ^ (p − 1)
by (intro le-imp-power-dvd) auto

finally have [g ^ (p − 1) = 0] (mod p)
by (simp add: cong-0-iff)

hence [0 = g ^ (p − 1)] (mod p)
by (simp add: cong-sym-eq)

also from ‹residue-primroot p g› have [g ^ (p − 1) = 1] (mod p)
using p by (auto simp: residue-primroot-def ord-divides ′ totient-prime)

finally have [0 = 1] (mod p) .

130

thus False using prime-gt-1-nat[of p] p by (simp add: cong-def)
qed

ultimately have [g ′ ^ (p − 1) 6= 1] (mod p2)
by (simp add: cong-def)

thus ∃ g. residue-primroot p g ∧ [g ^ (p − 1) 6= 1] (mod p2)
using g ′ by blast

qed (use g in auto)
thus ?thesis

using residue-primroot-prime-lift-iff [OF assms] that by blast
qed

11.4 Carmichael’s function

Carmichael’s function λ(n) gives the LCM of the orders of all elements in
the residue ring modulo n – or, equivalently, the maximum order, as we will
show later. Algebraically speaking, it is the exponent of the multiplicative
group (Z/nZ)∗.
It is not to be confused with Liouville’s function, which is also denoted by
λ(n).
definition Carmichael where

Carmichael n = (LCM a ∈ totatives n. ord n a)

lemma Carmichael-0 [simp]: Carmichael 0 = 1
by (simp add: Carmichael-def)

lemma Carmichael-1 [simp]: Carmichael 1 = 1
by (simp add: Carmichael-def)

lemma Carmichael-Suc-0 [simp]: Carmichael (Suc 0) = 1
by (simp add: Carmichael-def)

lemma ord-dvd-Carmichael:
assumes n > 1 coprime n k
shows ord n k dvd Carmichael n

proof −
have k mod n ∈ totatives n

using assms by (auto simp: totatives-def coprime-commute intro!: Nat.gr0I)
hence ord n (k mod n) dvd Carmichael n

by (simp add: Carmichael-def del: ord-mod)
thus ?thesis by simp

qed

lemma Carmichael-divides:
assumes Carmichael n dvd k coprime n a
shows [a ^ k = 1] (mod n)

proof (cases n < 2 ∨ a = 1)
case False

131

hence ord n a dvd Carmichael n
using False assms by (intro ord-dvd-Carmichael) auto

also have . . . dvd k by fact
finally have ord n a dvd k .
thus ?thesis using ord-divides by auto

next
case True
then consider a = 1 | n = 0 | n = 1 by force
thus ?thesis using assms by cases auto

qed

lemma Carmichael-dvd-totient: Carmichael n dvd totient n
unfolding Carmichael-def

proof (intro Lcm-least, safe)
fix a assume a ∈ totatives n
hence [a ^ totient n = 1] (mod n)

by (intro euler-theorem) (auto simp: totatives-def)
thus ord n a dvd totient n

using ord-divides by blast
qed

lemma Carmichael-dvd-mono-coprime:
assumes coprime m n m > 1 n > 1
shows Carmichael m dvd Carmichael (m ∗ n)
unfolding Carmichael-def [of m]

proof (intro Lcm-least, safe)
fix x assume x: x ∈ totatives m
from assms have totatives n 6= {} by simp
then obtain y where y: y ∈ totatives n by blast

from binary-chinese-remainder-nat[OF assms(1), of x y]
obtain z where z: [z = x] (mod m) [z = y] (mod n) by blast
have z ′: coprime z n coprime z m
by (rule cong-imp-coprime; use x y z in ‹force simp: totatives-def cong-sym-eq›)+

from z have ord m x = ord m z
by (intro ord-cong) (auto simp: cong-sym-eq)

also have ord m z dvd ord (m ∗ n) z
using assms by (auto simp: ord-modulus-mult-coprime)

also from z ′ assms have . . . dvd Carmichael (m ∗ n)
by (intro ord-dvd-Carmichael) (auto simp: coprime-commute intro!:one-less-mult)

finally show ord m x dvd Carmichael (m ∗ n) .
qed

λ distributes over the product of coprime numbers similarly to ϕ, but with
LCM instead of multiplication:
lemma Carmichael-mult-coprime:

assumes coprime m n
shows Carmichael (m ∗ n) = lcm (Carmichael m) (Carmichael n)

132

proof (cases m ≤ 1 ∨ n ≤ 1)
case True
hence m = 0 ∨ n = 0 ∨ m = 1 ∨ n = 1 by force
thus ?thesis using assms by auto

next
case False
show ?thesis
proof (rule dvd-antisym)

show Carmichael (m ∗ n) dvd lcm (Carmichael m) (Carmichael n)
unfolding Carmichael-def [of m ∗ n]

proof (intro Lcm-least, safe)
fix x assume x: x ∈ totatives (m ∗ n)
have ord (m ∗ n) x = lcm (ord m x) (ord n x)

using assms x by (subst ord-modulus-mult-coprime) (auto simp: co-
prime-commute totatives-def)

also have . . . dvd lcm (Carmichael m) (Carmichael n)
using False x

by (intro lcm-mono ord-dvd-Carmichael) (auto simp: totatives-def co-
prime-commute)

finally show ord (m ∗ n) x dvd
qed

next
show lcm (Carmichael m) (Carmichael n) dvd Carmichael (m ∗ n)

using Carmichael-dvd-mono-coprime[of m n]
Carmichael-dvd-mono-coprime[of n m] assms False

by (auto intro!: lcm-least simp: coprime-commute mult.commute)
qed

qed

lemma Carmichael-pos [simp, intro]: Carmichael n > 0
by (auto simp: Carmichael-def ord-eq-0 totatives-def coprime-commute intro!:

Nat.gr0I)

lemma Carmichael-nonzero [simp]: Carmichael n 6= 0
by simp

lemma power-Carmichael-eq-1 :
assumes n > 1 coprime n x
shows [x ^ Carmichael n = 1] (mod n)
using ord-dvd-Carmichael[of n x] assms
by (auto simp: ord-divides ′)

lemma Carmichael-2 [simp]: Carmichael 2 = 1
using Carmichael-dvd-totient[of 2] by simp

lemma Carmichael-4 [simp]: Carmichael 4 = 2
proof −

have Carmichael 4 dvd 2
using Carmichael-dvd-totient[of 4] by simp

133

hence Carmichael 4 ≤ 2 by (rule dvd-imp-le) auto
moreover have Carmichael 4 6= 1

using power-Carmichael-eq-1 [of 4 ::nat 3]
unfolding coprime-iff-gcd-eq-1 by (auto simp: gcd-non-0-nat cong-def)

ultimately show ?thesis
using Carmichael-pos[of 4] by linarith

qed

lemma residue-primroot-Carmichael:
assumes residue-primroot n g
shows Carmichael n = totient n

proof (cases n = 1)
case False
show ?thesis
proof (intro dvd-antisym Carmichael-dvd-totient)

have ord n g dvd Carmichael n
using assms False by (intro ord-dvd-Carmichael) (auto simp: residue-primroot-def)
thus totient n dvd Carmichael n

using assms by (auto simp: residue-primroot-def)
qed

qed auto

lemma Carmichael-odd-prime-power :
assumes prime p odd p k > 0
shows Carmichael (p ^ k) = p ^ (k − 1) ∗ (p − 1)

proof −
from assms obtain g where residue-primroot (p ^ k) g

using residue-primroot-odd-prime-power-exists[of p] assms by metis
hence Carmichael (p ^ k) = totient (p ^ k)

by (intro residue-primroot-Carmichael[of p ^ k g]) auto
with assms show ?thesis by (simp add: totient-prime-power)

qed

lemma Carmichael-prime:
assumes prime p
shows Carmichael p = p − 1

proof (cases even p)
case True
with assms have p = 2

using primes-dvd-imp-eq two-is-prime-nat by blast
thus ?thesis by simp

next
case False
with Carmichael-odd-prime-power [of p 1] assms show ?thesis by simp

qed

lemma Carmichael-twopow-ge-8 :
assumes k ≥ 3
shows Carmichael (2 ^ k) = 2 ^ (k − 2)

134

proof (intro dvd-antisym)
have 2 ^ (k − 2) = ord (2 ^ k) (3 :: nat)

using ord-twopow-3-5 [of k 3] assms by simp
also have . . . dvd Carmichael (2 ^ k)

using assms one-less-power [of 2 ::nat k] by (intro ord-dvd-Carmichael) auto
finally show 2 ^ (k − 2) dvd

next
show Carmichael (2 ^ k) dvd 2 ^ (k − 2)

unfolding Carmichael-def
proof (intro Lcm-least, safe)

fix x assume x ∈ totatives (2 ^ k)
hence odd x by (auto simp: totatives-def)
hence [x ^ 2 ^ (k − 2) = 1] (mod 2 ^ k)

using assms ord-twopow-aux[of k x] by auto
thus ord (2 ^ k) x dvd 2 ^ (k − 2)

by (simp add: ord-divides ′)
qed

qed

lemma Carmichael-twopow:
Carmichael (2 ^ k) = (if k ≤ 2 then 2 ^ (k − 1) else 2 ^ (k − 2))

proof −
have k = 0 ∨ k = 1 ∨ k = 2 ∨ k ≥ 3 by linarith
thus ?thesis by (auto simp: Carmichael-twopow-ge-8)

qed

lemma Carmichael-prime-power :
assumes prime p k > 0
shows Carmichael (p ^ k) =

(if p = 2 ∧ k > 2 then 2 ^ (k − 2) else p ^ (k − 1) ∗ (p − 1))
proof (cases p = 2)

case True
thus ?thesis by (simp add: Carmichael-twopow)

next
case False
with assms have odd p p > 2

using prime-odd-nat[of p] prime-gt-1-nat[of p] by auto
thus ?thesis

using assms Carmichael-odd-prime-power [of p k] by simp
qed

lemma Carmichael-prod-coprime:
assumes finite A

∧
i j. i ∈ A =⇒ j ∈ A =⇒ i 6= j =⇒ coprime (f i) (f j)

shows Carmichael (
∏

i∈A. f i) = (LCM i∈A. Carmichael (f i))
using assms by (induction A rule: finite-induct)

(simp, simp, subst Carmichael-mult-coprime[OF prod-coprime-right],
auto)

Since λ distributes over coprime factors and we know the value of λ(pk) for

135

prime p, we can now give a closed formula for λ(n) in terms of the prime
factorisation of n:
theorem Carmichael-closed-formula:

Carmichael n =
(LCM p∈prime-factors n. let k = multiplicity p n

in if p = 2 ∧ k > 2 then 2 ^ (k − 2) else p ^ (k − 1) ∗
(p − 1))
(is - = Lcm ?A)

proof (cases n = 0)
case False
hence n = (

∏
p∈prime-factors n. p ^ multiplicity p n)

using prime-factorization-nat by blast
also have Carmichael . . . =

(LCM p∈prime-factors n. Carmichael (p ^ multiplicity p n))
by (subst Carmichael-prod-coprime) (auto simp: in-prime-factors-iff primes-coprime)

also have (λp. Carmichael (p ^ multiplicity p n)) ‘ prime-factors n = ?A
by (intro image-cong)

(auto simp: Let-def Carmichael-prime-power prime-factors-multiplicity)
finally show ?thesis .

qed auto

corollary even-Carmichael:
assumes n > 2
shows even (Carmichael n)

proof (cases ∃ k. n = 2 ^ k)
case True
then obtain k where [simp]: n = 2 ^ k by auto
from assms have k 6= 0 k 6= 1 by (auto intro!: Nat.gr0I)
hence k ≥ 2 by auto
thus ?thesis by (auto simp: Carmichael-twopow)

next
case False
from assms have n 6= 0 by auto
from False have ∃ p∈prime-factors n. p 6= 2

using assms Ex-other-prime-factor [of n 2] by auto
from divide-out-primepow-ex[OF ‹n 6= 0 › this]
obtain p k n ′

where p:
p 6= 2
prime p
p dvd n
¬ p dvd n ′

0 < k
n = p ^ k ∗ n ′ .

from p have coprime: coprime (p ^ k) n ′

using p prime-imp-coprime by auto
have odd p

using p primes-dvd-imp-eq[of 2 p] by auto
have even (Carmichael (p ^ k))

136

using p ‹odd p› by (auto simp: Carmichael-prime-power)
with p coprime show ?thesis

by (auto simp: Carmichael-mult-coprime intro!: dvd-lcmI1)
qed

lemma eval-Carmichael:
assumes prime-factorization n = A
shows Carmichael n = (LCM p ∈ set-mset A.

let k = count A p in if p = 2 ∧ k > 2 then 2 ^ (k − 2) else p ^ (k −
1) ∗ (p − 1))

unfolding assms [symmetric] Carmichael-closed-formula
by (intro arg-cong[where f = Lcm] image-cong) (auto simp: Let-def count-prime-factorization)

Any residue ring always contains a λ-root, i. e. an element whose order is
λ(n).
theorem Carmichael-root-exists:

assumes n > (0 ::nat)
obtains g where g ∈ totatives n and ord n g = Carmichael n

proof (cases n = 1)
case True
thus ?thesis by (intro that[of 1]) (auto simp: totatives-def)

next
case False
have primepow: ∃ g. coprime (p ^ k) g ∧ ord (p ^ k) g = Carmichael (p ^ k)

if pk: prime p k > 0 for p k
proof (cases p = 2)

case [simp]: True
from ‹k > 0 › consider k = 1 | k = 2 | k ≥ 3 by force
thus ?thesis
proof cases

assume k = 1
thus ?thesis by (intro exI [of - 1]) auto

next
assume [simp]: k = 2
have coprime 4 (3 ::nat)

by (auto simp: coprime-iff-gcd-eq-1 gcd-non-0-nat)
thus ?thesis by (intro exI [of - 3]) auto

next
assume k: k ≥ 3
have coprime (2 ^ k :: nat) 3 by auto
thus ?thesis using k

by (intro exI [of - 3]) (auto simp: ord-twopow-3-5 Carmichael-twopow)
qed

next
case False
hence odd p using ‹prime p›

using primes-dvd-imp-eq two-is-prime-nat by blast
then obtain g where residue-primroot (p ^ k) g

using residue-primroot-odd-prime-power-exists[of p] pk by metis

137

thus ?thesis using False pk
by (intro exI [of - g])
(auto simp: Carmichael-prime-power residue-primroot-def totient-prime-power)

qed

define P where P = prime-factors n
define k where k = (λp. multiplicity p n)
have ∀ p∈P. ∃ g. coprime (p ^ k p) g ∧ ord (p ^ k p) g = Carmichael (p ^ k p)

using primepow by (auto simp: P-def k-def prime-factors-multiplicity)
hence ∃ g. ∀ p∈P. coprime (p ^ k p) (g p) ∧ ord (p ^ k p) (g p) = Carmichael

(p ^ k p)
by (subst (asm) bchoice-iff)

then obtain g where g:
∧

p. p ∈ P =⇒ coprime (p ^ k p) (g p)∧
p. p ∈ P =⇒ ord (p ^ k p) (g p) = Carmichael (p ^ k p) by

metis
have ∃ x. ∀ i∈P. [x = g i] (mod i ^ k i)

by (intro chinese-remainder-nat)
(auto simp: P-def k-def in-prime-factors-iff primes-coprime)

then obtain x where x:
∧

p. p ∈ P =⇒ [x = g p] (mod p ^ k p) by metis

have n = (
∏

p∈P. p ^ k p)
using assms unfolding P-def k-def by (rule prime-factorization-nat)

also have ord . . . x = (LCM p∈P. ord (p ^ k p) x)
by (intro ord-modulus-prod-coprime) (auto simp: P-def in-prime-factors-iff

primes-coprime)
also have (λp. ord (p ^ k p) x) ‘ P = (λp. ord (p ^ k p) (g p)) ‘ P

by (intro image-cong ord-cong x) auto
also have . . . = (λp. Carmichael (p ^ k p)) ‘ P

by (intro image-cong g) auto
also have Lcm . . . = Carmichael (

∏
p∈P. p ^ k p)

by (intro Carmichael-prod-coprime [symmetric])
(auto simp: P-def in-prime-factors-iff primes-coprime)

also have (
∏

p∈P. p ^ k p) = n
using assms unfolding P-def k-def by (rule prime-factorization-nat [symmetric])

finally have ord n x = Carmichael n .
moreover from this have coprime n x

by (cases coprime n x) (auto split: if-splits)
ultimately show ?thesis using assms False

by (intro that[of x mod n])
(auto simp: totatives-def coprime-commute coprime-absorb-left intro!: Nat.gr0I)

qed

This also means that the Carmichael number is not only the LCM of the
orders of the elements of the residue ring, but indeed the maximum of the
orders.
lemma Carmichael-altdef :

Carmichael n = (if n = 0 then 1 else Max (ord n ‘ totatives n))
proof (cases n = 0)

case False

138

have Carmichael n = Max (ord n ‘ totatives n)
proof (intro antisym Max.boundedI Max.coboundedI)

fix k assume k: k ∈ ord n ‘ totatives n
thus k ≤ Carmichael n
proof (cases n = 1)

case False
with ‹n 6= 0 › have n > 1 by linarith
thus ?thesis using k ‹n 6= 0 ›

by (intro dvd-imp-le)
(auto intro!: ord-dvd-Carmichael simp: totatives-def coprime-commute)

qed auto
next

obtain g where g ∈ totatives n and ord n g = Carmichael n
using Carmichael-root-exists[of n] ‹n 6= 0 › by auto

thus Carmichael n ∈ ord n ‘ totatives n by force
qed (use ‹n 6= 0 › in auto)
thus ?thesis using False by simp

qed auto

11.5 Existence of primitive roots for general moduli

We now related Carmichael’s function to the existence of primitive roots
and, in the end, use this to show precisely which moduli have primitive
roots and which do not.
The first criterion for the existence of a primitive root is this: A primitive
root modulo n exists iff λ(n) = ϕ(n).
lemma Carmichael-eq-totient-imp-primroot:

assumes n > 0 and Carmichael n = totient n
shows ∃ g. residue-primroot n g

proof −
from ‹n > 0 › obtain g where g ∈ totatives n and ord n g = Carmichael n

using Carmichael-root-exists[of n] by metis
with assms show ?thesis by (auto simp: residue-primroot-def totatives-def co-

prime-commute)
qed

theorem residue-primroot-iff-Carmichael:
(∃ g. residue-primroot n g) ←→ Carmichael n = totient n ∧ n > 0

proof safe
fix g assume g: residue-primroot n g
thus n > 0 by (auto simp: residue-primroot-def)
have coprime n g by (rule ccontr) (use g in ‹auto simp: residue-primroot-def ›)

show Carmichael n = totient n
proof (cases n = 1)

case False
with ‹n > 0 › have n > 1 by auto
with ‹coprime n g› have ord n g dvd Carmichael n

139

by (intro ord-dvd-Carmichael) auto
thus ?thesis using g by (intro dvd-antisym Carmichael-dvd-totient)

(auto simp: residue-primroot-def)
qed auto

qed (use Carmichael-eq-totient-imp-primroot[of n] in auto)

Any primitive root modulo mn for coprime m, n is also a primitive root
modulo m and n. The converse does not hold in general.
lemma residue-primroot-modulus-mult-coprimeD:

assumes coprime m n and residue-primroot (m ∗ n) g
shows residue-primroot m g residue-primroot n g

proof −
have ∗: m > 0 n > 0 coprime m g coprime n g

lcm (ord m g) (ord n g) = totient m ∗ totient n
using assms

by (auto simp: residue-primroot-def ord-modulus-mult-coprime totient-mult-coprime)

define a b where a = totient m div ord m g and b = totient n div ord n g
have ab: totient m = ord m g ∗ a totient n = ord n g ∗ b

using ∗ by (auto simp: a-def b-def order-divides-totient)

have a = 1 b = 1 coprime (ord m g) (ord n g)
unfolding coprime-iff-gcd-eq-1 using ∗ by (auto simp: ab lcm-nat-def dvd-div-eq-mult

ord-eq-0)
with ab and ∗ show residue-primroot m g residue-primroot n g

by (auto simp: residue-primroot-def)
qed

If a primitive root modulo mn exists for coprime m,n, then λ(m) and λ(n)
must also be coprime. This is helpful in establishing that there are no
primitive roots modulo mn by showing e. g. that λ(m) and λ(n) are both
even.
lemma residue-primroot-modulus-mult-coprime-imp-Carmichael-coprime:

assumes coprime m n and residue-primroot (m ∗ n) g
shows coprime (Carmichael m) (Carmichael n)

proof −
from residue-primroot-modulus-mult-coprimeD[OF assms]

have ∗: residue-primroot m g residue-primroot n g by auto
hence [simp]: Carmichael m = totient m Carmichael n = totient n

by (simp-all add: residue-primroot-Carmichael)
from ∗ have mn: m > 0 n > 0 by (auto simp: residue-primroot-def)

from assms have Carmichael (m ∗ n) = totient (m ∗ n) ∧ n > 0
using residue-primroot-iff-Carmichael[of m ∗ n] by auto

with assms have lcm (totient m) (totient n) = totient m ∗ totient n
by (simp add: Carmichael-mult-coprime totient-mult-coprime)

thus ?thesis unfolding coprime-iff-gcd-eq-1 using mn
by (simp add: lcm-nat-def dvd-div-eq-mult)

qed

140

The following moduli are precisely those that have primitive roots.
definition cyclic-moduli :: nat set where

cyclic-moduli = {1 , 2 , 4} ∪ {p ^ k |p k. prime p ∧ odd p ∧ k > 0} ∪
{2 ∗ p ^ k |p k. prime p ∧ odd p ∧ k > 0}

theorem residue-primroot-iff-in-cyclic-moduli:
(∃ g. residue-primroot m g) ←→ m ∈ cyclic-moduli

proof −
have (∃ g. residue-primroot m g) if m ∈ cyclic-moduli
using that unfolding cyclic-moduli-def
by (intro Carmichael-eq-totient-imp-primroot)

(auto dest: prime-gt-0-nat simp: Carmichael-prime-power totient-prime-power
Carmichael-mult-coprime totient-mult-coprime)

moreover have ¬(∃ g. residue-primroot m g) if m /∈ cyclic-moduli
proof (cases m = 0)

case False
with that have [simp]: m > 0 m 6= 1 by (auto simp: cyclic-moduli-def)
show ?thesis
proof (cases ∃ k. m = 2 ^ k)

case True
then obtain k where [simp]: m = 2 ^ k by auto
with that have k 6= 0 ∧ k 6= 1 ∧ k 6= 2 by (auto simp: cyclic-moduli-def)
hence k ≥ 3 by auto
thus ?thesis by (subst residue-primroot-iff-Carmichael)

(auto simp: Carmichael-twopow totient-prime-power)
next

case False
hence ∃ p∈prime-factors m. p 6= 2

using Ex-other-prime-factor [of m 2] by auto
from divide-out-primepow-ex[OF ‹m 6= 0 › this]
obtain p k m ′ where p: p 6= 2 prime p p dvd m ¬p dvd m ′ 0 < k m = p ^ k

∗ m ′

by metis
have odd p

using p primes-dvd-imp-eq[of 2 p] by auto
from p have coprime: coprime (p ^ k) m ′

using p prime-imp-coprime by auto
have m ∈ cyclic-moduli if m ′ = 1

using that p ‹odd p› by (auto simp: cyclic-moduli-def)
moreover have m ∈ cyclic-moduli if m ′ = 2
proof −

have m = 2 ∗ p ^ k using p that by (simp add: mult.commute)
thus m ∈ cyclic-moduli using p ‹odd p›

unfolding cyclic-moduli-def by blast
qed
moreover have m ′ 6= 0 using p by (intro notI) auto
ultimately have m ′ 6= 0 ∧m ′ 6= 1 ∧ m ′ 6= 2 using that by auto
hence m ′ > 2 by linarith

141

show ?thesis
proof

assume ∃ g. residue-primroot m g
with coprime p have coprime ′: coprime (p − 1) (Carmichael m ′)
using residue-primroot-modulus-mult-coprime-imp-Carmichael-coprime[OF

coprime]
by (auto simp: Carmichael-prime-power)

moreover have even (p − 1) even (Carmichael m ′)
using ‹m ′ > 2 › ‹odd p› by (auto intro!: even-Carmichael)

ultimately show False by force
qed

qed
qed auto

ultimately show ?thesis by metis
qed

lemma residue-primroot-is-generator :
assumes m > 1 and residue-primroot m g
shows bij-betw (λi. g ^ i mod m) {..<totient m} (totatives m)
unfolding bij-betw-def

proof
from assms have [simp]: ord m g = totient m

by (simp add: residue-primroot-def)
from assms have coprime m g by (simp add: residue-primroot-def)
hence inj-on (λi. g ^ i mod m) {..<ord m g}

by (intro inj-power-mod)
thus inj: inj-on (λi. g ^ i mod m) {..<totient m}

by simp

show (λi. g ^ i mod m) ‘ {..<totient m} = totatives m
proof (rule card-subset-eq)

show card ((λi. g ^ i mod m) ‘ {..<totient m}) = card (totatives m)
using inj by (subst card-image) (auto simp: totient-def)

show (λi. g ^ i mod m) ‘ {..<totient m} ⊆ totatives m
using ‹m > 1 › ‹coprime m g› power-in-totatives[of m g] by blast

qed auto
qed

Given one primitive root g, all the primitive roots are powers gi for 1 ≤ i ≤
ϕ(n) with gcd(i, ϕ(n)) = 1.
theorem residue-primroot-bij-betw-primroots:

assumes m > 1 and residue-primroot m g
shows bij-betw (λi. g ^ i mod m) (totatives (totient m))

{g∈totatives m. residue-primroot m g}
proof (cases m = 2)

case [simp]: True
have [simp]: totatives 2 = {1}

142

by (auto simp: totatives-def elim!: oddE)
from assms have odd g

by (auto simp: residue-primroot-def)
hence pow-eq: (λi. g ^ i mod m) = (λ-. 1)

by (auto simp: fun-eq-iff mod-2-eq-odd)
have {g ∈ totatives m. residue-primroot m g} = {1}

by (auto simp: residue-primroot-def)
thus ?thesis using pow-eq by (auto simp: bij-betw-def)

next
case False
thus ?thesis unfolding bij-betw-def
proof safe

from assms False have m > 2 by auto
from assms ‹m > 2 › have totient m > 1 by (intro totient-gt-1) auto
from assms have [simp]: ord m g = totient m

by (simp add: residue-primroot-def)
from assms have coprime m g by (simp add: residue-primroot-def)
hence inj-on (λi. g ^ i mod m) {..<ord m g}

by (intro inj-power-mod)
thus inj-on (λi. g ^ i mod m) (totatives (totient m))

by (rule inj-on-subset)
(use assms ‹totient m > 1 › in ‹auto simp: totatives-less residue-primroot-def ›)

{
fix i assume i: i ∈ totatives (totient m)
from ‹coprime m g› and ‹m > 2 › show g ^ i mod m ∈ totatives m

by (intro power-in-totatives) auto
show residue-primroot m (g ^ i mod m)

using i ‹m > 2 › ‹coprime m g›
by (auto simp: residue-primroot-def coprime-commute ord-power totatives-def)

}
{

fix x assume x: x ∈ totatives m residue-primroot m x
then obtain i where i: i < totient m x = (g ^ i mod m)
using assms residue-primroot-is-generator [of m g] by (auto simp: bij-betw-def)

from i x ‹m > 2 › have i > 0 by (intro Nat.gr0I) (auto simp: residue-primroot-1-iff)
have totient m div gcd i (totient m) = totient m
using x i ‹coprime m g› by (auto simp add: residue-primroot-def ord-power)

hence coprime i (totient m)
unfolding coprime-iff-gcd-eq-1 using assms by (subst (asm) dvd-div-eq-mult)

auto
with i ‹i > 0 › have i ∈ totatives (totient m) by (auto simp: totatives-def)
thus x ∈ (λi. g ^ i mod m) ‘ totatives (totient m) using i by auto

}
qed

qed

It follows from the above statement that any residue ring modulo n that has
primitive roots has exactly ϕ(ϕ(n)) of them.

143

corollary card-residue-primroots:
assumes ∃ g. residue-primroot m g
shows card {g∈totatives m. residue-primroot m g} = totient (totient m)

proof (cases m = 1)
case [simp]: True
have {g ∈ totatives m. residue-primroot m g} = {1}

by (auto simp: residue-primroot-def)
thus ?thesis by simp

next
case False
from assms obtain g where g: residue-primroot m g by auto
hence m 6= 0 by (intro notI) auto
with ‹m 6= 1 › have m > 1 by linarith
from this g have bij-betw (λi. g ^ i mod m) (totatives (totient m))

{g∈totatives m. residue-primroot m g}
by (rule residue-primroot-bij-betw-primroots)

hence card (totatives (totient m)) = card {g∈totatives m. residue-primroot m g}
by (rule bij-betw-same-card)

thus ?thesis by (simp add: totient-def)
qed

corollary card-residue-primroots ′:
card {g∈totatives m. residue-primroot m g} =

(if m ∈ cyclic-moduli then totient (totient m) else 0)
by (simp add: residue-primroot-iff-in-cyclic-moduli [symmetric] card-residue-primroots)

As an example, we evaluate λ(122200) using the prime factorisation.
lemma Carmichael 122200 = 1380
proof −
have prime-factorization (2^3 ∗ 5^2 ∗ 13 ∗ 47) = {#2 , 2 , 2 , 5 , 5 , 13 , 47 ::nat#}

by (intro prime-factorization-eqI) auto
from eval-Carmichael[OF this] show Carmichael 122200 = 1380

by (simp add: lcm-nat-def gcd-non-0-nat)
qed

end

12 Modular Inverses
theory Modular-Inverse

imports Cong HOL−Library.FuncSet
begin

The following returns the unique number m such that mn ≡ 1 (mod p) if
there is one, i.e. if n and p are coprime, and otherwise 0 by convention.
definition modular-inverse where

144

modular-inverse p n = (if coprime p n then fst (bezout-coefficients n p) mod p
else 0)

lemma cong-modular-inverse1 :
assumes coprime n p
shows [n ∗ modular-inverse p n = 1] (mod p)

proof −
have [fst (bezout-coefficients n p) ∗ n + snd (bezout-coefficients n p) ∗ p =

modular-inverse p n ∗ n + 0] (mod p)
unfolding modular-inverse-def using assms
by (intro cong-add cong-mult) (auto simp: Cong.cong-def coprime-commute)

also have fst (bezout-coefficients n p) ∗ n + snd (bezout-coefficients n p) ∗ p =
gcd n p

by (simp add: bezout-coefficients-fst-snd)
also have . . . = 1

using assms by simp
finally show ?thesis

by (simp add: cong-sym mult-ac)
qed

lemma cong-modular-inverse2 :
assumes coprime n p
shows [modular-inverse p n ∗ n = 1] (mod p)
using cong-modular-inverse1 [OF assms] by (simp add: mult.commute)

lemma coprime-modular-inverse [simp, intro]:
fixes n :: ′a :: {euclidean-ring-gcd,unique-euclidean-semiring}
assumes coprime n p
shows coprime (modular-inverse p n) p
using cong-modular-inverse1 [OF assms] assms
by (meson cong-imp-coprime cong-sym coprime-1-left coprime-mult-left-iff)

lemma modular-inverse-int-nonneg: p > 0 =⇒ modular-inverse p (n :: int) ≥ 0
by (simp add: modular-inverse-def)

lemma modular-inverse-int-less: p > 0 =⇒ modular-inverse p (n :: int) < p
by (simp add: modular-inverse-def)

lemma modular-inverse-int-eqI :
fixes x y :: int
assumes y ∈ {0 ..<m} [x ∗ y = 1] (mod m)
shows modular-inverse m x = y

proof −
from assms have coprime x m

using cong-gcd-eq by force
have [modular-inverse m x ∗ 1 = modular-inverse m x ∗ (x ∗ y)] (mod m)

by (rule cong-sym, intro cong-mult assms cong-refl)
also have modular-inverse m x ∗ (x ∗ y) = (modular-inverse m x ∗ x) ∗ y

by (simp add: mult-ac)

145

also have [. . . = 1 ∗ y] (mod m)
using ‹coprime x m› by (intro cong-mult cong-refl cong-modular-inverse2)

finally have [modular-inverse m x = y] (mod m)
by simp

thus modular-inverse m x = y
using assms by (simp add: Cong.cong-def modular-inverse-def)

qed

lemma modular-inverse-1 [simp]:
assumes m > (1 :: int)
shows modular-inverse m 1 = 1
by (rule modular-inverse-int-eqI) (use assms in auto)

lemma modular-inverse-int-mult:
fixes x y :: int
assumes coprime x m coprime y m m > 0
shows modular-inverse m (x ∗ y) = (modular-inverse m y ∗ modular-inverse m

x) mod m
proof (rule modular-inverse-int-eqI)

show modular-inverse m y ∗ modular-inverse m x mod m ∈ {0 ..<m}
using assms by auto

next
have [x ∗ y ∗ (modular-inverse m y ∗ modular-inverse m x mod m) =

x ∗ y ∗ (modular-inverse m y ∗ modular-inverse m x)] (mod m)
by (intro cong-mult cong-refl) auto

also have x ∗ y ∗ (modular-inverse m y ∗ modular-inverse m x) =
(x ∗ modular-inverse m x) ∗ (y ∗ modular-inverse m y)

by (simp add: mult-ac)
also have [. . . = 1 ∗ 1] (mod m)

by (intro cong-mult cong-modular-inverse1 assms)
finally show [x ∗ y ∗ (modular-inverse m y ∗ modular-inverse m x mod m) =

1] (mod m)
by simp

qed

lemma bij-betw-int-remainders-mult:
fixes a n :: int
assumes a: coprime a n
shows bij-betw (λm. a ∗ m mod n) {1 ..<n} {1 ..<n}

proof −
define a ′ where a ′ = modular-inverse n a

have ∗: a ′ ∗ (a ∗ m mod n) mod n = m ∧ a ∗ m mod n ∈ {1 ..<n}
if a: [a ∗ a ′ = 1] (mod n) and m: m ∈ {1 ..<n} for m a a ′ :: int

proof
have [a ′ ∗ (a ∗ m mod n) = a ′ ∗ (a ∗ m)] (mod n)

by (intro cong-mult cong-refl) (auto simp: Cong.cong-def)
also have a ′ ∗ (a ∗ m) = (a ∗ a ′) ∗ m

by (simp add: mult-ac)

146

also have [(a ∗ a ′) ∗ m = 1 ∗ m] (mod n)
unfolding a ′-def by (intro cong-mult cong-refl) (use a in auto)

finally show a ′ ∗ (a ∗ m mod n) mod n = m
using m by (simp add: Cong.cong-def)

next
have coprime a n

using a coprime-iff-invertible-int by auto
hence ¬n dvd (a ∗ m)
using m by (simp add: coprime-commute coprime-dvd-mult-right-iff zdvd-not-zless)
hence a ∗ m mod n > 0

using m order-le-less by fastforce
thus a ∗ m mod n ∈ {1 ..<n}

using m by auto
qed

have [a ∗ a ′ = 1] (mod n) [a ′ ∗ a = 1] (mod n)
unfolding a ′-def by (rule cong-modular-inverse1 cong-modular-inverse2 ; fact)+

from this[THEN ∗] show ?thesis
by (intro bij-betwI [of - - - λm. a ′ ∗ m mod n]) auto

qed

lemma mult-modular-inverse-of-not-coprime [simp]: ¬coprime a m =⇒ modular-inverse
m a = 0

by (simp add: coprime-commute modular-inverse-def)

lemma mult-modular-inverse-eq-0-iff :
fixes a :: ′a :: {unique-euclidean-semiring, euclidean-ring-gcd}
shows ¬is-unit m =⇒ modular-inverse m a = 0 ←→ ¬coprime a m
by (metis coprime-modular-inverse mult-modular-inverse-of-not-coprime coprime-0-left-iff)

lemma mult-modular-inverse-int-pos: m > 1 =⇒ coprime a m =⇒ modular-inverse
m a > (0 :: int)
by (simp add: modular-inverse-int-nonneg mult-modular-inverse-eq-0-iff order .strict-iff-order)

lemma abs-mult-modular-inverse-int-less: m 6= 0 =⇒ |modular-inverse m a :: int|
< |m|

by (auto simp: modular-inverse-def intro!: abs-mod-less)

lemma modular-inverse-int-less ′: m 6= 0 =⇒ (modular-inverse m a :: int) < |m|
using abs-mult-modular-inverse-int-less[of m a] by linarith

end

13 Comprehensive number theory
theory Number-Theory
imports

Fib
Residues

147

Eratosthenes
Mod-Exp
Quadratic-Reciprocity
Pocklington
Prime-Powers
Residue-Primitive-Roots
Modular-Inverse

begin

end

148

	The fibonacci function
	Fibonacci numbers
	Basic Properties
	More efficient code
	A Few Elementary Results
	Law 6.111 of Concrete Mathematics
	Closed form
	Divide-and-Conquer recurrence
	Fibonacci and Binomial Coefficients

	Congruence
	Generic congruences
	Congruences on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 int

	Fundamental facts about Euler's totient function
	Residue rings
	A locale for residue rings
	Prime residues

	Test cases: Euler's theorem and Wilson's theorem
	Euler's theorem
	Wilson's theorem
	Upper bound for the number of n-th roots

	The sieve of Eratosthenes
	Preliminary: strict divisibility
	Main corpus
	Application: smallest prime beyond a certain number

	Fast modular exponentiation
	Gauss' Lemma
	Basic properties of p
	Basic Properties of the Gauss Sets
	Relationships Between Gauss Sets
	Gauss' Lemma

	Pocklington's Theorem for Primes
	Lemmas about previously defined terms
	Some basic theorems about solving congruences
	Lucas's theorem
	Definition of the order of a number mod 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 n
	Another trivial primality characterization
	Pocklington theorem
	Prime factorizations

	Prime powers
	Primitive roots in residue rings and Carmichael's function
	Primitive roots in residue rings
	Primitive roots modulo a prime
	Primitive roots modulo powers of an odd prime
	Carmichael's function
	Existence of primitive roots for general moduli

	Modular Inverses
	Comprehensive number theory

