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1 The fibonacci function

theory Fib

imports Complex-Main
begin
1.1 Fibonacci numbers

fun fib :: nat = nat

where
fib0: fib 0 = 0
| fibl: fib (Suc 0) = 1

(S
| fib2: fib (Suc (Suc n)) = fib (Suc n) + fibn

1.2 Basic Properties

lemma fib-1 [simp]: fib 1 = 1
by (metis One-nat-def fib1)

lemma fib-2 [simp]: fib 2 = 1
using fib.simps(3) [of 0] by (simp add: numeral-2-eg-2)

lemma fib-plus-2: fib (n + 2) = fib (n + 1) + fibn
by (metis Suc-eq-plusi add-2-eq-Suc’ fib.simps(3))

lemma fib-add: fib (Suc (n + k)) = fib (Suc k) * fib (Suc n) + fib k * fib n
by (induct n rule: fib.induct) (auto simp add: field-simps)

lemma fib-neg-0-nat: n > 0 = fibn > 0
by (induct n rule: fib.induct) auto

lemma fib-Suc-mono: fib m < fib (Suc m)
by (induction m) auto

lemma fib-mono: m < n = fib m < fibn
by (simp add: fib-Suc-mono lift-Suc-mono-le)

1.3 More efficient code

The naive approach is very inefficient since the branching recursion leads to
many values of fib being computed multiple times. We can avoid this by
“remembering” the last two values in the sequence, yielding a tail-recursive
version. This is far from optimal (it takes roughly O(n - M(n)) time where
M (n) is the time required to multiply two n-bit integers), but much better

than the naive version, which is exponential.

fun gen-fib :: nat = nat = nat = nat
where
gen-fib a b 0 = a
| gen-fib a b (Suc 0) = b



| gen-fib a b (Suc (Suc n)) = gen-fib b (a + b) (Suc n)

lemma gen-fib-recurrence: gen-fib a b (Suc (Suc n)) = gen-fib a b n + gen-fib a b
(Suc n)
by (induct a b n rule: gen-fib.induct) simp-all

lemma gen-fib-fib: gen-fib (fib n) (fib (Suc n)) m = fib (n + m)
by (induct m rule: fib.induct) (simp-all del: gen-fib.simps(3) add: gen-fib-recurrence)

lemma fib-conv-gen-fib: fib n = gen-fib 0 1 n
using gen-fib-fiblof 0 n] by simp

declare fib-conv-gen-fib [code]
1.4 A Few Elementary Results

Concrete Mathematics, page 278: Cassini’s identity. The proof is much easier
using integers, not natural numbers!

lemma fib-Cassini-int: int (fib (Suc (Suc n)) * fib n) — int((fib (Suc n))?) = —
((=1)™n)

by (induct n rule: fib.induct) (auto simp add: field-simps power2-eq-square power-add)

lemma fib-Cassini-nat:
fib (Suc (Suc n)) = fib n =
(if even n then (fib (Suc n))? — 1 else (fib (Suc n))? + 1)
using fib-Cassini-int [of n] by (auto simp del: of-nat-mult of-nat-power)

1.5 Law 6.111 of Concrete Mathematics

lemma coprime-fib-Suc-nat: coprime (fib n) (fib (Suc n))
apply (induct n rule: fib.induct)
apply (simp-all add: coprime-iff-ged-eq-1 algebra-simps)
apply (simp add: add.assoc [symmetric])
done

lemma gcd-fib-add:
ged (fib m) (fib (n + m)) = ged (fib m) (fib n)
proof (cases m)
case ()
then show ?thesis
by simp
next
case (Suc q)
from coprime-fib-Suc-nat [of ¢
have coprime (fib (Suc q)) (fib q)
by (simp add: ac-simps)
have gcd (fib q) (fib (Suc q)) = Suc 0
using coprime-fib-Suc-nat [of q] by simp



then have *: ged (fib n * fib q) (fib n x fib (Suc q)) = fib n
by (simp add: gcd-mult-distrib-nat [symmetric])
moreover have ged (fib (Suc q)) (fib n * fib ¢ + fib (Suc n) * fib (Suc q)) =
ged (fib (Suc q)) (fib n = fib q)
using ged-add-mult [of fib (Suc q)] by (simp add: ac-simps)
moreover have gcd (fib (Suc q)) (fib n x fib (Suc q)) = fib (Suc q)
by simp
ultimately show ?thesis
using Suc <coprime (fib (Suc q)) (fib q)»
by (auto simp add: fib-add algebra-simps ged-mult-right-right-cancel)
qged

lemma ged-fib-diff: m < n = ged (fib m) (fib (n — m)) = ged (fib m) (fib n)
by (simp add: gcd-fib-add [symmetric, of - n—m)])

lemma gcd-fib-mod: 0 < m => ged (fib m) (fib (n mod m)) = ged (fib m) (fib n)
proof (induct n rule: less-induct)
case (less n)
show gcd (fib m) (fib (n mod m)) = ged (fib m) (fib n)
proof (cases m < n)
case True
then have m < n by auto
with <0 < m» have 0 < n by auto
with <0 < m) ¢m < n» have x: n — m < n by auto
have gcd (fib m) (fib (n mod m)) = ged (fib m) (fib ((n — m) mod m))
by (simp add: mod-if [of n]) (use «<m < n» in auto)

also have ... = ged (fib m) (fib (n — m))
by (simp add: less.hyps * <0 < m»)
also have ... = ged (fib m) (fib n)

by (simp add: ged-fib-diff «<m < n»)
finally show ged (fib m) (fib (n mod m)) = ged (fib m) (fib n) .
next
case False
then show ged (fib m) (fib (n mod m)) = ged (fib m) (fib n)
by (cases m = n) auto
qed
qed

lemma fib-ged: fib (gcd m n) = ged (fib m) (fib n) — Law 6.111
by (induct m n rule: ged-nat-induct) (simp-all add: ged-non-0-nat ged.commute
gcd-fib-mod)

theorem fib-mult-eq-sum-nat: fib (Suc n) x fib n = O_k € {.n}. fib k x fib k)
by (induct n rule: nat.induct) (auto simp add: field-simps)

1.6 Closed form

lemma fib-closed-form:
fixes ¢ 1 :: real



defines ¢ = (1 + sqrt 5) / 2
and ¢ = (1 — sqrt 5) / 2
shows of-nat (fib n) = (¢ “n—1 “n) [ sqrt s
proof (induct n rule: fib.induct)
fix n :: nat
assume [HI1: of-nat (fibn) = (o "n —1 " n) / sqrt s
assume [H2: of-nat (fib (Suc n)) = (¢ ~Sucn — ¢ ~ Sucn) / sqrt 5
have of-nat (fib (Suc (Suc n))) = of-nat (fib (Suc n)) + of-nat (fib n) by simp
alsohave ... = (¢ nx(p+ 1) =Y n*x(+ 1))/ sqth
by (simp add: IH1 IH2 field-simps)
also have ¢ + 1 = ¢? by (simp add: p-def field-simps power2-eq-square)
also have ¢ + 1 = 2 by (simp add: -def field-simps power2-eq-square)
also have o ™n * ©*> — ¢ ™0 * Y2 = ¢ ~ Suc (Suc n) — ¥ ~ Suc (Suc n)
by (simp add: power2-eq-square)
finally show of-nat (fib (Suc (Suc n))) = (¢ ~ Suc (Suc n) — ¢ ~ Suc (Suc n))
/ sqrt 5 .
qed (simp-all add: p-def 1p-def field-simps)

lemma fib-closed-form’:
fixes ¢ 1 :: real
defines ¢ = (1 + sqrt 5)
and ¢ = (1 — sqrt 5) /
assumes n > 0
shows fib n = round (¢ "~ n / sqrt 5)
proof (rule sym, rule round-unique’)
have |p " n / sqrt 5 — of-int (int (fib n))| = || “n [/ sqrt 5
by (simp add: fib-closed-form|[folded @-def 1)-def] field-simps power-abs)
also {
from assms have || ™n < |¢]| 71
by (intro power-decreasing) (simp-all add: algebra-simps real-le-lsqrt)
also have ... < sqrt 5 / 2 by (simp add: -def field-simps)
finally have || ™n / sqrt 5 < 1/2 by (simp add: field-simps)

/2
2

finally show | " n / sqrt 5 — of-int (int (fib n))| < 1/2 .
qed

lemma fib-asymptotics:

fixes ¢ :: real

defines ¢ = (1 + sqrt 5) / 2

shows (An. real (fibn) / (¢ " n /[ sqrt 5)) —— 1
proof —

define © :: real where ¢ = (1 — sqrt 5) / 2

have ¢ > 1 by (simp add: p-def)

then have x: ¢ # 0 by auto

have (An. (¢ / ¢) "n) —— 0

by (rule LIMSEQ-power-zero) (simp-all add: o-def 1-def field-simps add-pos-pos)

then have (An. 1 — (¢ / ¢) "n) —— 1 — 0

by (intro tendsto-diff tendsto-const)
with « have (An. (¢ "n—19% "n) /¢ "n) —— 1



by (simp add: field-simps)
then show ?thesis
by (simp add: fib-closed-form -def 1-def)
qed

1.7 Divide-and-Conquer recurrence

The following divide-and-conquer recurrence allows for a more efficient com-
putation of Fibonacci numbers; however, it requires memoisation of values
to be reasonably efficient, cutting the number of values to be computed to
logarithmically many instead of linearly many. The vast majority of the
computation time is then actually spent on the multiplication, since the
output number is exponential in the input number.

lemma fib-rec-odd:
fixes p ¥ :: real
defines p = (1 + sqrt 5) /
and ¢ = (1 — sqrt 5) / 2
shows fib (Suc (2 x n)) = fi
proof —
have of-nat (fib n™2 + fib (Sucn)™2) = ((¢ "n—1 "n)2+ (p*xp “n—1
« 9 " n)?)/5
by (simp add: fib-closed-form|[folded @-def -def] field-simps power2-eq-square)
also
let A= (2%n)+ 1 (2xn)—2+%(p*xY) n+o(2*xn+ 2+ (2*n
T 2) = 2x(p 5 ¥) 0+ 1)
have (p "n— "n)? 4+ (p*xp “n—1x1p “n)?=7?4
by (simp add: power2-eq-square algebra-simps power-mult power-mult-distrib)
also have p * ¢y = —1
by (simp add: p-def ¥-def field-simps)
then have 24 = o (2 x n 4+ 1) x (¢ + inverse ) + P (2 xn + 1) * (Y +
inverse 1)
by (auto simp: field-simps power2-eq-square)
also have 1 + sqrt 5 > 0
by (auto intro: add-pos-pos)
then have ¢ + inverse ¢ = sqrt 5
by (simp add: p-def field-simps)
also have 9 + inverse ¥ = —sqrt 5
by (simp add: -def field-simps)
alsohave (¢ " (2*xn+ 1) xsqrt 5 +¢ " (2*xn+1)x—sqrtd) /] 5=
(0 T (2*xn+1)—¢ " (2xn+ 1)) x(sqrt 5/ 5)
by (simp add: field-simps)
also have sqrt 5 / 5 = inverse (sqrt 5)
by (simp add: field-simps)
also have (p " (2*xn—+ 1) —v “(2*xn+ 1)) % ... = of-nat (fib (Suc (2 *
"))
by (simp add: fib-closed-form|[folded @-def 1-def] divide-inverse)
finally show ?thesis
by (simp only: of-nat-eq-iff)

2

bn"2 + fib (Suc n)"2



qed

lemma fib-rec-even: fib (2 xn) = (fib (n — 1) + fib (n + 1)) * fibn
proof (induct n)
case (
then show Zcase by simp
next
case (Suc n)
let ?rfib = Az. real (fib x)
have 2 * (Suc n) = Suc (Suc (2 * n)) by simp
also have real (fib...) = 2rfib n”2 + rfib (Suc n)"2 + (?rfib (n — 1) + 2rfib
(n+4+ 1)) x ?rfibn
by (simp add: fib-rec-odd Suc)
also have (?rfib (n — 1)+ ?rfib (n + 1)) % 2rfibn = (2 x 2rfib (n + 1) — ?rfib
n) x ?rfib n
by (cases n) simp-all
also have ?2rfib n™2 + ?rfib (Suc n) 2 + ... = (?rfib (Suc n) + 2 * ?rfib n) *
?rfib (Suc n)
by (simp add: algebra-simps power2-eq-square)

also have ... = real ((fib (Suc n — 1) + fib (Suc n + 1)) x fib (Suc n)) by
stmp

finally show ?case by (simp only: of-nat-eq-iff)
qed

lemma fib-rec-even’: fib (2 x n) = (2 = fib (n — 1) + fib n) = fib n
by (subst fib-rec-even, cases n) simp-all

lemma fib-rec:
fibn =
(if n = 0 then 0 else if n = 1 then 1
else if even n then let n’ = n div 2; fn = fibn"in (2 % fib (n' — 1) + fn) x fn
else let n' = n div 2in fib n" ~ 2 + fib (Suc n’) ~2)
by (auto elim: evenE oddE simp: fib-rec-odd fib-rec-even’ Let-def)

1.8 Fibonacci and Binomial Coefficients

lemma sum-drop-zero: (3 k = 0..Suc n. if 0<k then (f (k — 1)) else 0) = (D> j

=0.n. [j)
by (induct n) auto

lemma sum-choose-drop-zero:
>k = 0..Suc n. if k = 0 then 0 else (Suc n — k) choose (k — 1)) =
(3>>4 = 0..n. (n—j) choose j)
by (rule trans [OF sum.cong sum-drop-zero|) auto

lemma ne-diagonal-fib: (> k = 0..n. (n—k) choose k) = fib (Suc n)
proof (induct n rule: fib.induct)

case 1

show ?case by simp



next
case 2
show ?case by simp
next
case (3 n)
have (3" k = 0..Suc n. Suc (Suc n) — k choose k) =
>k = 0..Suc n. (Suc n — k choose k) + (if k = 0 then 0 else (Suc n — k
choose (k — 1))))
by (rule sum.cong) (simp-all add: choose-reduce-nat)
also have ... =
>k = 0..Suc n. Suc n — k choose k) +
5"k = 0..Suc n. if k=0 then 0 else (Suc n — k choose (k — 1)))
by (simp add: sum.distrib)
also have ... = (3_k = 0..Suc n. Suc n — k choose k) + (3>_j=0..n. n — j
choose j)
by (metis sum-choose-drop-zero)
finally show ?case using 3
by simp
qed

end

2 Congruence

theory Cong
imports HOL— Computational-Algebra. Primes
begin

2.1 Generic congruences

context unique-cuclidean-semiring
begin

definition cong :: 'a = ‘a = 'a = bool
(<(<indent=1 notation=<mizfix cong»[- = -] '(' mod -"))»)
where [b = ¢| (mod a) +— b mod a = ¢ mod a

abbreviation notcong :: 'a = 'a = 'a = bool
(<(<indent=1 notation=<mizfix notcong»[- # -] (' mod -"))»)
where [b # ¢] (mod a) = - cong b ¢ a

lemma cong-refl [simp]:
[b = b] (mod a)
by (simp add: cong-def)

lemma cong-sym:

[b = c] (mod a) => [c = b] (mod a)
by (simp add: cong-def)
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lemma cong-sym-eq:
[b = ¢] (mod a) «— [c = b] (mod a)
by (auto simp add: cong-def)

lemma cong-trans [trans]:
[b = ¢] (mod a) = [¢c = d] (mod a) = [b = d]| (mod a)
by (simp add: cong-def)

lemma cong-mult-self-right:
[b* a= 0] (mod a)
by (simp add: cong-def)

lemma cong-mult-self-left:
[a * b= 0] (mod a)
by (simp add: cong-def)

lemma cong-mod-left [simp]:
[b mod a = ¢] (mod a) +— [b = ¢] (mod a)
by (simp add: cong-def)

lemma cong-mod-right [simp]:
[b = ¢ mod a] (mod a) +— [b = ¢|] (mod a)
by (simp add: cong-def)

lemma cong-0 [simp, presburger]:
[b=c] (mod 0) «— b=c¢
by (simp add: cong-def)

lemma cong-1 [simp, presburger]:
[b=c] (mod 1)
by (simp add: cong-def)

lemma cong-dvd-iff:
a dvd b +— a dvd c if [b = ¢] (mod a)
using that by (auto simp: cong-def dvd-eq-mod-eq-0)

lemma cong-0-iff: [b = 0] (mod a) +— a dvd b
by (simp add: cong-def dvd-eq-mod-eq-0)

lemma cong-add:
[b=¢] (mod a) = [d = ¢] (mod a) = [b+ d = ¢+ ¢] (mod a)
by (auto simp add: cong-def intro: mod-add-cong)

lemma cong-mult:
[b=c] (mod a) => [d = €] (mod a) = [b x d = ¢ * e] (mod a)
by (auto simp add: cong-def intro: mod-mult-cong)

lemma cong-scalar-right:

[b=c] (mod a) = [b* d=cxd] (mod a)

11



by (simp add: cong-mult)

lemma cong-scalar-left:
[b=c] (mod a) = [d % b= d x c] (mod a)
by (simp add: cong-mult)

lemma cong-pow:

[b=¢] (mod a) = [b "n=c " n] (mod a)

by (simp add: cong-def power-mod [symmetric, of b n a] power-mod [symmetric,
of ¢ n a)

lemma cong-sum:
[sum f A = sum g A] (mod a) if \z. 2 € A = [f 2 = g =] (mod a)
using that by (induct A rule: infinite-finite-induct) (auto intro: cong-add)

lemma cong-prod:
[prod f A = prod g A] (mod a) if (Az. z € A = [fz = g z] (mod a))
using that by (induct A rule: infinite-finite-induct) (auto intro: cong-mult)

lemma mod-mult-cong-right:
[c mod (a * b) = d] (mod a) +— [c = d] (mod a)
by (simp add: cong-def mod-mod-cancel mod-add-left-eq)

lemma mod-mult-cong-left:
[c mod (b * a) = d] (mod a) +— [c = d] (mod a)
using mod-mult-cong-right [of ¢ a b d] by (simp add: ac-simps)

lemma cong-mod-leftl [simp):
[b = c] (mod a) = [b mod a = ¢| (mod a)
by (simp add: cong-def)

lemma cong-mod-rightI [simp]:
[b=c] (mod a) = [b = ¢ mod a] (mod a)
by (simp add: cong-def)

lemma cong-cmult-leftl: [a = b] (mod m) = [c * a = ¢ * b] (mod (¢ * m))
by (metis cong-def local.mult-mod-right)

lemma cong-cmult-rightl: [a = b] (mod m) = [a * ¢ = b * ¢| (mod (m * c))
using cong-cmult-leftI[of a b m c] by (simp add: mult.commute)

lemma cong-dvd-mono-modulus:
assumes [a = b] (mod m) m’' dvd m
shows [a = b] (mod m’)
using assms by (metis cong-def local.mod-mod-cancel)

lemma coprime-cong-transfer-left:

assumes coprime a b [a = a’] (mod b)
shows coprime a’ b

12



using assms by (metis cong-0 cong-def local.coprime-mod-left-iff)

lemma coprime-cong-transfer-right:
assumes coprime a b [b = b’] (mod a)
shows coprime a b’
using coprime-cong-transfer-left[of b a b'] assms
by (simp add: coprime-commute)

lemma coprime-cong-cong-left:
assumes [a = a’] (mod b)
shows coprime a b <— coprime a’ b
using assms cong-sym-eq coprime-cong-transfer-left by blast

lemma coprime-cong-cong-right:
assumes [b = b'] (mod a)
shows coprime a b <— coprime a b’
using coprime-cong-cong-left[OF assms] by (simp add: coprime-commute)

end

context unique-euclidean-ring
begin

lemma cong-diff:
[b=¢] (mod a) = [d = ¢] (mod a) = [b — d = ¢ — ¢] (mod a)
by (auto simp add: cong-def intro: mod-diff-cong)

lemma cong-diff-iff-cong-0:
[b — ¢ = 0] (mod a) «— [b = c] (mod a) (is P +— ?Q)
proof
assume ?P
then have [b — ¢ + ¢ = 0 + ¢] (mod a)
by (rule cong-add) simp
then show ?7(Q)
by simp
next
assume 7@
with cong-diff [of b ¢ a ¢ ¢] show ?P
by simp
qed

lemma cong-minus-minus-iff:
[— b= — ] (mod a) +— [b = c] (mod a)
using cong-diff-iff-cong-0 [of b ¢ a] cong-diff-iff-cong-0 [of — b — ¢ a]
by (simp add: cong-0-iff dvd-diff-commute)

lemma cong-modulus-minus-iff [iff)]:

[b = c] (mod — a) +— [b = c] (mod a)
using cong-diff-iff-cong-0 [of b ¢ a] cong-diff-iff-cong-0 [of b ¢ —ad]

13



by (simp add: cong-0-iff)

lemma cong-iff-dvd-diff:
[a = b] (mod m) «— m dvd (a — b)
by (simp add: cong-0-iff [symmetric] cong-diff-iff-cong-0)

lemma cong-iff-lin:
[a = b] (mod m) «— (k. b=1a+ m x k) (is 2P +— ?Q)
proof —
have ?P <— m dvd b — a
by (simp add: cong-iff-dvd-diff dvd-diff-commute)
also have ... +— ?Q
by (auto simp add: algebra-simps elim!: dvdE)
finally show ?thesis
by simp
qed

lemma cong-add-lcancel:
[a 4+ 2z =a+ y] (mod n) +— [z = y] (mod n)
by (simp add: cong-iff-lin algebra-simps)

lemma cong-add-rcancel:
[z 4+ a =y + a] (mod n) «— [z = y] (mod n)
by (simp add: cong-iff-lin algebra-simps)

lemma cong-add-Ilcancel-0:
[a + z = a] (mod n) +— [z = 0] (mod n)
using cong-add-lcancel [of a x 0 n] by simp

lemma cong-add-rcancel-0:
[x + a = a] (mod n) +— [z = 0] (mod n)
using cong-add-reancel [of x a 0 n] by simp

lemma cong-dvd-modulus:
[z = y] (mod n) if [z = y] (mod m) and n dvd m
using that by (auto intro: dvd-trans simp add: cong-iff-dvd-diff)

lemma cong-modulus-mult:
[z = y] (mod m) if [z = y] (mod m * n)
using that by (simp add: cong-iff-dvd-diff) (rule dvd-mult-left)

lemma cong-uminus: [z = y] (mod m) = [—x = —y] (mod m)
unfolding cong-minus-minus-iff .

end
lemma cong-abs [simp]:

[z = y] (mod |m|) «— [z = y] (mod m)
for z y :: 'a :: {unique-euclidean-ring, linordered-idom}
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by (simp add: cong-iff-dvd-diff)

lemma cong-square:
prime p = 0 < a = [a x a = 1] (mod p) = [a = 1] (mod p) V [a = — 1]
(mod p)
for a p :: 'a :: {normalization-semidom, linordered-idom, unique-euclidean-ring}
by (auto simp add: cong-iff-dvd-diff square-diff-one-factored dest: prime-dvd-multD)

lemma cong-mult-rcancel:

[a % k=0b=x k] (mod m)+— [a = 0b] (mod m)

if coprime k m for a k m :: 'a::{unique-euclidean-ring, ring-ged}

using that by (auto simp add: cong-iff-dvd-diff left-diff-distrib [symmetric] ac-simps
coprime-dvd-mult-right-iff )

lemma cong-mult-lcancel:
[k x a =k *x b (mod m) = [a = b] (mod m)
if coprime k m for a k m :: 'a::{unique-euclidean-ring, ring-gcd}
using that cong-mult-rcancel [of k m a b] by (simp add: ac-simps)

lemma coprime-cong-mult:
[a = b] (mod m) = [a = b] (mod n) = coprime m n = [a = b] (mod m * n)
for a b :: 'a :: {unique-euclidean-ring, semiring-gcd}
by (simp add: cong-iff-dvd-diff divides-mult)

lemma cong-gcd-eq:
ged a m = ged b m if [a = b] (mod m)
for a b :: 'a :: {unique-euclidean-semiring, euclidean-semiring-gcd}
proof (cases m = 0)
case True
with that show ?thesis
by simp
next
case Fulse
moreover have ged (a mod m) m = ged (b mod m) m
using that by (simp add: cong-def)
ultimately show “thesis
by simp
qged

lemma cong-imp-coprime:
[a = b] (mod m) = coprime a m = coprime b m
for a b :: 'a :: {unique-euclidean-semiring, euclidean-semiring-gcd}
by (auto simp add: coprime-iff-gcd-eq-1 dest: cong-ged-eq)

lemma cong-cong-prod-coprime:
[z = y] (mod (J[]i€A. m 1)) if
(VieA. [z = y] (mod m i))
(VieA. (VjeA. i # j — coprime (m i) (m j)))
for z y :: 'a :: {unique-euclidean-ring, semiring-gcd}
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using that by (induct A rule: infinite-finite-induct)
(auto intro!: coprime-cong-mult prod-coprime-right)

2.2 Congruences on nat and int

lemma cong-int-iff:
[int m = int q] (mod int n) +— [m = q] (mod n)
by (simp add: cong-def of-nat-mod [symmetric])

lemma cong-Suc-0 [simp, presburger]:
[m = n] (mod Suc 0)
using cong-1 [of m n] by simp

lemma cong-diff-nat:
[a — ¢=b— d] (mod m) if [a = b] (mod m) [¢c = d] (mod m)
and a>cb>dforabcdm: nat
proof —
have [c + (a — ¢) = d 4+ (b — d)] (mod m)
using that by simp
with <[¢ = d] (mod m)» have [¢ + (a — ¢) = ¢ + (b — d)] (mod m)
using mod-add-cong by (auto simp add: cong-def) fastforce
then show ?thesis
by (simp add: cong-def nat-mod-eq-iff)
qed

lemma cong-diff-iff-cong-0-nat:
[a — b= 0] (mod m) <— [a = b] (mod m) if a > b for a b :: nat
using that by (simp add: cong-0-iff) (simp add: cong-def mod-eq-dvd-iff-nat)

lemma cong-diff-iff-cong-0-nat’:
[nat |int a — int b| = 0] (mod m) <— [a = b] (mod m)
proof (cases b < a)
case True
then show ?thesis
by (simp add: nat-diff-distrid’ cong-diff-iff-cong-0-nat [of b a m])
next
case Fulse
then have ¢ < b
by simp
then show ?thesis
by (simp add: nat-diff-distrib’ cong-diff-iff-cong-0-nat [of a b m])
(auto simp add: cong-def)
qed

lemma cong-altdef-nat:
a>b=[a=1"b] (mod m)+— m dvd (a — b)
for a b :: nat
by (simp add: cong-0-iff [symmetric] cong-diff-iff-cong-0-nat)
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lemma cong-altdef-nat’:
[a = b] (mod m) +— m dvd nat |int a — int b
using cong-diff-iff-cong-0-nat’ [of a b m]
by (simp only: cong-0-iff [symmetric])

lemma cong-mult-rcancel-nat:
[ax k=0b=x k] (modm)<+— [a =101 (mod m)
if coprime k m for a k m :: nat
proof —
have [a * k = b % k] (mod m) +— m dvd nat |int (a x k) — int (b x k)]
by (simp add: cong-altdef-nat’)

also have ... «— m dvd nat |(int a — int b) * int k|
by (simp add: algebra-simps)

also have ... «— m dvd nat |int a — int b| * k
by (simp add: abs-mult nat-times-as-int)

also have ... «— m dvd nat |int a — int b|

by (rule coprime-dvd-mult-left-iff) (use <coprime k m» in <simp add: ac-simps»)
also have ... «+— [a = b] (mod m)
by (simp add: cong-altdef-nat’)
finally show ?thesis .
qed

lemma cong-mult-lcancel-nat:
[k x a =k * b (mod m) = [a = b] (mod m)
if coprime k m for a k m :: nat
using that by (simp add: cong-mult-rcancel-nat ac-simps)

lemma coprime-cong-mult-nat:
[a = b] (mod m) = [a = b] (mod n) = coprime m n = [a = b] (mod m * n)
for a b :: nat
by (simp add: cong-altdef-nat’ divides-mult)

lemma cong-less-imp-eqg-nat: 0 < a —=a<m=—0<b=b< m=— [a=
b] (mod m) = a =1

for a b :: nat

by (auto simp add: cong-def)

lemma cong-less-imp-eg-int: 0 < a = a<m=—= 0<b=b< m= [a =10
(mod m) = a =1

for a b :: int

by (auto simp add: cong-def)

lemma cong-less-unique-nat: 0 < m = (31b. 0 < bA b < m A [a =1b] (mod

m))

for a m :: nat
by (auto simp: cong-def) (metis mod-mod-trivial mod-less-divisor)

lemma cong-less-unique-int: 0 < m = (31b. 0 < b A b < m A [a = b] (mod m))
for a m :: int

17



by (auto simp add: cong-def) (metis mod-mod-trivial pos-mod-bound pos-mod-sign)

lemma cong-iff-lin-nat: [a = b] (mod m) +— (k1 k2. b+ kI x m = a + k2
m)

for a b :: nat

apply (auto simp add: cong-def nat-mod-eg-iff)

apply (metis mult.commute)

apply (metis mult.commute)

done

lemma cong-cong-mod-nat: [a = b] (mod m) <— [a mod m = b mod m] (mod m)
for a b :: nat
by simp

lemma cong-cong-mod-int: [a = b] (mod m) <— [a mod m = b mod m] (mod m)
for a b :: int
by simp

lemma cong-add-lcancel-nat: [a + z = a + y] (mod n) +— [z = y] (mod n)
for a z y :: nat
by (simp add: cong-iff-lin-nat)

lemma cong-add-rcancel-nat: [z + a = y + a] (mod n) «— [z = y] (mod n)
for a z y :: nat
by (simp add: cong-iff-lin-nat)

lemma cong-add-lcancel-0-nat: [a + z = a] (mod n) <— [z = 0] (mod n)
for a z :: nat
using cong-add-lcancel-nat [of a x 0 n] by simp

lemma cong-add-rcancel-0-nat: [x + a = a] (mod n) «— [z = 0] (mod n)
for a = :: nat
using cong-add-rcancel-nat [of z a 0 n] by simp

lemma cong-dvd-modulus-nat: [x = y] (mod m) = n dvd m = [z = y| (mod n)
for xz y :: nat
by (auto simp add: cong-altdef-nat’)

lemma cong-to-1-nat:

fixes a :: nat

assumes [a = 1] (mod n)

shows n dvd (a — 1)
proof (cases a = 0)

case True

then show ?thesis by force
next

case Fulse

with assms show ?thesis by (metis cong-altdef-nat lel less-one)
qed
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lemma cong-0-1-nat” [0 = Suc 0] (mod n) <— n = Suc 0
by (auto simp: cong-def)

lemma cong-0-1-nat: [0 = 1] (mod n) +— n = 1
for n :: nat
by (auto simp: cong-def)

lemma cong-0-1-int: [0 = 1] (modn) +—n=1Vn=—1
for n :: int
by (auto simp: cong-def zmult-eq-1-iff)

lemma cong-to-1"-nat: [a = 1] (mod n) «—a=0An=1V (3m. a=1+m
* M)
for a :: nat
by (metis add.right-neutral cong-0-1-nat cong-iff-lin-nat cong-to-1-nat
dvd-div-mult-self lel le-add-diff-inverse less-one mult-eq-if )

lemma cong-le-nat: y < z = [z = y| (mod n) +— (¢. 2 = ¢+ n + y)
for z y :: nat
by (auto simp add: cong-altdef-nat le-imp-diff-is-add)

lemma cong-solve-nat:
fixes a :: nat
shows Jz. [a *x 2 = ged a n] (mod n)
proof (cases a =0V n = 0)
case True
then show ?thesis
by (force simp add: cong-0-iff cong-sym)
next
case Fulse
then show ?thesis
using bezout-nat [of a n]
by auto (metis cong-add-rcancel-0-nat cong-mult-self-left)
qed

lemma cong-solve-int:
fixes a :: int
shows Jz. [a x £ = ged a n| (mod n)
by (metis bezout-int cong-iff-lin mult.commute)

lemma cong-solve-dvd-nat:
fixes a :: nat
assumes gcd a n dvd d
shows Jz. [a * x = d] (mod n)
proof —
from cong-solve-nat [of a] obtain z where [a * = gcd a n](mod n)
by auto
then have [(d div gcd a n) * (a * z) = (d div ged a n) * ged a n] (mod n)
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using cong-scalar-left by blast

also from assms have (d div gcd a n) * ged an = d
by (rule dvd-div-mult-self)

also have (d div ged a n) * (a * ) = a * (d div ged a n * x)
by auto

finally show ?thesis
by auto

qed

lemma cong-solve-dvd-int:
fixes a::int
assumes b: gcd a n dvd d
shows Jz. [a * x = d]| (mod n)
proof —
from cong-solve-int [of o] obtain z where [a * x = ged a n](mod n)
by auto
then have [(d div gcd a n) * (a * ) = (d div ged a n) * ged a n] (mod n)
using cong-scalar-left by blast
also from b have (d div ged a n) * ged a n = d
by (rule dvd-div-mult-self)
also have (d div ged a n) % (a * ) = a * (d div ged a n * x)
by auto
finally show ?thesis
by auto
qed

lemma cong-solve-coprime-nat:
Jz. [a x x = Suc 0] (mod n) if coprime a n
using that cong-solve-nat [of a n| by auto

lemma cong-solve-coprime-int:
dz. [a * © = 1] (mod n) if coprime a n for a n z :: int
using that cong-solve-int [of a n] by (auto simp add: zabs-def split: if-splits)

lemma coprime-iff-invertible-nat:
coprime a m «— (. [a x x = Suc 0] (mod m)) (is 7P +— ?Q)
proof
assume ?P then show 7@
by (auto dest!: cong-solve-coprime-nat)
next
assume 7@
then obtain b where [a x b = Suc 0] (mod m)
by blast
with coprime-mod-left-iff [of m a * b] show ?P
by (cases m = 0V m = 1)
(unfold cong-def, auto simp add: cong-def)
qed

lemma coprime-iff-invertible-int:
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coprime a m <— (3z. [a x z = 1] (mod m)) (is ?P +— ?Q) for m :: int
proof
assume ?P then show ?(Q)
by (auto dest: cong-solve-coprime-int)
next
assume ?()
then obtain b where [a * b = 1] (mod m)
by blast
with coprime-mod-left-iff [of m a = b] show ?P
by (cases m = 0V m = 1)
(unfold cong-def, auto simp add: zmult-eq-1-iff)
qed

lemma coprime-iff-invertible’-nat:
assumes m > 0
shows coprime a m <— (3z. 0 <z Az < m A [a* x = Suc 0] (mod m))
proof —
have Ab. [0 < m; [a * b = Suc 0] (mod m)] = 3b'<m. [a x b’ = Suc 0] (mod
m)
by (metis cong-def mod-less-divisor [OF assms] mod-mult-right-eq)
then show ?thesis
using assms coprime-iff-invertible-nat by auto
qed

lemma coprime-iff-invertible’-int:
fixes m :: int
assumes m > 0
shows coprime a m <— (3z. 0 <z Az < mA [axz=1] (mod m))
using assms by (simp add: coprime-iff-invertible-int)
(metis assms cong-mod-left mod-mult-right-eq pos-mod-bound pos-mod-sign)

lemma cong-cong-lem-nat: [z = y] (mod a) = [z = y] (mod b) = [z = y] (mod
lem a b)

for z y :: nat

by (meson cong-altdef-nat’ lcm-least)

lemma cong-cong-lem-int: [z = y] (mod a) = [z = y] (mod b) = [z = y] (mod
lem a b)

for z y :: int

by (auto simp add: cong-iff-dvd-diff lcm-least)

lemma cong-cong-prod-coprime-nat:
[z = y] (mod (J]i€A. m 7)) if
(VieA. [z = y] (mod m 7))
(VieA. (VjeA. i # j —> coprime (m i) (m 7)))
for z y :: nat
using that by (induct A rule: infinite-finite-induct)
(auto intro!: coprime-cong-mult-nat prod-coprime-right)
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lemma binary-chinese-remainder-nat:
fixes m1 m2 :: nat
assumes a: coprime ml m2
shows Jz. [z = ul] (mod m1) A [x = u2] (mod m2)
proof —
have 3b1 b2. [b1 = 1] (mod m1) A [b1 = 0] (mod m2) A [b2 = 0] (mod m1)
A [b2 = 1] (mod m2)
proof —
from cong-solve-coprime-nat [OF o] obtain z1 where 1: [m1 * z1 = 1] (mod
m2)
by auto
from « have b: coprime m2 m1
by (simp add: ac-simps)
from cong-solve-coprime-nat [OF b] obtain 22 where 2: [m2 % 2 = 1] (mod
ml)
by auto
have [m1 x 1 = 0] (mod m1)
by (simp add: cong-mult-self-left)
moreover have [m2 x 22 = 0] (mod m2)
by (simp add: cong-mult-self-left)
ultimately show ?Zthesis
using 1 2 by blast
qed
then obtain 01 02
where [b1 = 1] (mod m1) and [b] =
and [b2 = 0] (mod m1) and [b2 =
by blast
let 2z = ul % b1 + u2 * b2
have [%z = ul % 1 + u2 * 0] (mod m1)
using «[b1 = 1] (mod m1)) «[b2 = 0] (mod m1)> cong-add cong-scalar-left by
blast
then have [?z = ul] (mod m1) by simp
have [?2 = ul * 0 + u2 * 1] (mod m2)
using <[bl = 0] (mod m2)» <[b2 = 1] (mod m2)> cong-add cong-scalar-left by
blast
then have [?z = u2] (mod m2)
by simp
with «[?z = ul] (mod m1)» show ?Zthesis
by blast
qed

0] (mod m2)
1] (mod m2)

lemma binary-chinese-remainder-int:

fixes m1 m2 :: int

assumes a: coprime mi1 m2

shows Jz. [z = ul] (mod m1) A [z = u2] (mod m2)
proof —

have 3b1 b2. [b1 = 1] (mod m1) A [bI = 0] (mod m2) A [b2 = 0] (mod m1)
A [b2 = 1] (mod m2)

proof —
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from cong-solve-coprime-int [OF a] obtain z1 where I1: [m1 * z1 = 1] (mod
m2)
by auto
from a have b: coprime m2 ml
by (simp add: ac-simps)
from cong-solve-coprime-int [OF b] obtain z2 where 2: [m2 x 2 = 1] (mod
ml)
by auto
have [m1 x 1 = 0] (mod m1)
by (simp add: cong-mult-self-left)
moreover have [m2 x 2 = 0] (mod m2)
by (simp add: cong-mult-self-left)
ultimately show #thesis
using 1 2 by blast
qed
then obtain b1 b2
where [b1 = 1] (mod m1) and [b
and [b2 = 0] (mod m1) and [b2
by blast
let %2 = ul % bl + u2 % b2
have [?2 = ul * I 4+ u2 % 0] (mod m1)
using <[bl = 1] (mod m1)» <[b2 = 0] (mod m1)> cong-add cong-scalar-left by
blast
then have [?z = ul] (mod m1) by simp
have [?2 = ul * 0 + u2 % 1] (mod m2)
using <¢[b1 = 0] (mod m2)» ([b2 = 1] (mod m2)> cong-add cong-scalar-left by
blast
then have [?z = u2] (mod m2) by simp
with <[?z = ul] (mod m1)> show ?thesis
by blast
qed

1 = 0] (mod m2)
— 1]

lemma cong-modulus-mult-nat: [z = y| (mod m x n) = [z = y] (mod m)
for z y :: nat
by (metis cong-def mod-mult-cong-right)

lemma cong-less-modulus-unique-nat: (v = y] (mod m) =z < m = y < m =
z =y

for z y :: nat

by (simp add: cong-def)

lemma binary-chinese-remainder-unique-nat:
fixes m1 m2 :: nat
assumes a: coprime mi1 m2
and nz: m1 # 0 m2 # 0
shows 3lz. 2 < m1 x m2 A [z = ul] (mod m1) A [z = u2] (mod m2)
proof —
obtain y where yI: [y = ul] (mod m1) and y2: [y = u2] (mod m2)
using binary-chinese-remainder-nat [OF a] by blast
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let ?z = y mod (m1 * m2)
from nz have less: 2z < ml1 x m2
by auto
have I: [z = ul] (mod m1)
using yI mod-mult-cong-right by blast
have 2: [z = u2] (mod m2)
using y2 mod-mult-cong-left by blast
have z = %z if 2 < mI * m2 [z = ul] (mod m1) [z = u2] (mod m2) for z
proof —
have [?x = z] (mod m1)
by (metis 1 cong-def that(2))
moreover have [?z = z] (mod m2)
by (metis 2 cong-def that(3))
ultimately have [?z = z| (mod m1 * m2)
using a by (auto intro: coprime-cong-mult-nat simp add: mod-mult-cong-left
mod-mult-cong-right)
with «z < m1 * m2) <%z < ml * m2> show z = %z
by (auto simp add: cong-def)
qed
with less 1 2 show ?thesis
by blast
qged

lemma chinese-remainder-nat:
fixes A :: 'a set
and m :: 'a = nat
and v :: ‘a = nat
assumes fin: finite A
and cop: Vi € A.Vje€ A i # j — coprime (m i) (m j)
shows Jz. Vi € A. [z = u i] (mod m i)
proof —
have 3b. (Vi€ A. [bi= 1] (mod m i) A [bi= 0] (mod ([j € A — {i}. mj)))
proof (rule finite-set-choice, rule fin, rule balll)
fix ¢
assume i € A
with cop have coprime ([[j € A — {i}. m j) (m 1)
by (intro prod-coprime-left) auto
then have Jz. [([[j € 4 — {i}. m j) *x £ = Suc 0] (mod m 1)
by (elim cong-solve-coprime-nat)
then obtain = where [([[j € 4 — {i}. m j) x 2 = 1] (mod m i)
by auto
moreover have [([[j € A — {i}. mj) xz = 0] (mod (J[j € A — {i}. mj))
by (simp add: cong-0-iff)
ultimately show Ja. [a = 1] (mod m i) A [a = 0] (mod prod m (A — {i}))
by blast
qed
then obtain b where b: A\i. i € A = [b i = 1] (mod m i) A [b i = 0] (mod
(I1j € A - {i}. mj))
by blast
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let 2z = > icA. (ui) * (b1)
show ?thesis
proof (rule exI, clarify)
fix ¢
assume a: { € A
show [%z = u i] (mod m i)
proof —
from fin a have 72 = (3 je{it. uj*xbj)+ O.je A —{i}. uj=*bj)
by (subst sum.union-disjoint [symmetric]) (auto intro: sum.cong)
then have [z =uwixbi+ (D j€ A — {i}. ujx*bj)] (modm 1)
by auto
alsohave [uixbi+ (O.je A—{i}. ujxbj) =
wixl+ (O.jeA—{i}. uj= 0)] (modm 1)
proof (intro cong-add cong-scalar-left cong-sum)
show [b i = 1] (mod m i)
using a b by blast
show [b x = 0] (mod m i) if z € A — {i} for z
proof —
have z € Az # i
using that by auto
then show ?thesis
using a b [OF <z € A)] cong-dvd-modulus-nat fin by blast
qged
qed
finally show ?thesis
by simp
qed
qed
qed

lemma coprime-cong-prod-nat: [x = y] (mod ([[i€A. m 7))
if Nij. i€ A;j€ A;i#j] = coprime (m i) (m j)
and A\i. i € A = [z = y|] (mod m i) for z y :: nat
using that
proof (induct A rule: infinite-finite-induct)
case (insert z A)
then show ?case
by simp (metis coprime-cong-mult-nat prod-coprime-right)
qged auto

lemma chinese-remainder-unique-nat:
fixes A :: ‘a set
and m :: 'a = nat
and u :: 'a = nat
assumes fin: finite A
and nz: VicA. mi # 0
and cop: Vi€A. VjeA. i # j — coprime (m 1) (m j)
shows Jlz. z < ([[i€A. m i) A (Vi€A. [z = u i] (mod m 1))
proof —
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from chinese-remainder-nat [OF fin cop]
obtain y where one: (Vi€A. [y = u 7] (mod m 7))
by blast
let %z = y mod ([[i€A. m i)
from fin nz have prodnz: ([[i€A. m i) # 0
by auto
then have less: %z < ([[i€A. m i)
by auto
have cong: Vi€A. [?z = u i] (mod m 7)
using fin one
by (auto simp add: cong-def dvd-prod-eql mod-mod-cancel)
have unique: Vz. z < ([[i€A. m i) A (Vi€A. [z = ui] (mod m i) — z = %z
proof clarify
fix 2z
assume zless: z < ([[i€A. m ©)
assume zcong: (Vi€A. [z = u i] (mod m 7))
have Vi€ A. [%z = z] (mod m i)
using cong zcong by (auto simp add: cong-def)
with fin cop have [?z = 2] (mod ([[i€A. m 7))
by (intro coprime-cong-prod-nat) auto
with zless less show z = %z
by (auto simp add: cong-def)
qed
from less cong unique show ?thesis
by blast
qged

lemma (in semiring-1-cancel) of-nat-eq-iff-cong-CHAR:
of-nat x = (of-nat y :: 'a) +— [z = y] (mod CHAR('a))
proof (induction z y rule: linorder-wlog)
case (le = y)
define z where z = y — z
have [simp]: y = z + 2
using le by (auto simp: z-def)
have (CHAR('a) dvd z) = [x = © + z] (mod CHAR('a))
by (metis <y = x + 2> cong-def le mod-eq-dvd-iff-nat z-def)
thus ?Zcase
by (simp add: of-nat-eq-0-iff-char-dvd)
qed (simp add: eq-commute cong-sym-eq)

lemma (in ring-1) of-int-eq-iff-cong-CHAR:
of-int x = (of-int y :: 'a) +— [z = y] (mod int CHAR('a))
proof —
have of-int © = (of-int y :: 'a) «— of-int (z — y) = (0 == 'a)
by auto
also have ... «— (int CHAR('a) dvd z — y)
by (rule of-int-eq-0-iff-char-dvd)
also have ... «+— [z = y] (mod int CHAR('a))
by (simp add: cong-iff-dvd-diff)
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finally show ?thesis .
qed

Thanks to Manuel Eberl

lemma prime-cong-4-nat-cases [consumes 1, case-names 2 cong-1 cong-3]:
assumes prime (p :: nat)
obtains p = 2 | [p = 1] (mod 4) | [p = 3] (mod 4)
proof —
have [p = 2] (mod 4) «— p =2
proof
assume [p = 2] (mod 4)
hence p mod 4 = 2
by (auto simp: cong-def)
hence even p
by (simp add: even-even-mod-4-iff)
with assms show p = 2
unfolding prime-nat-iff by force
ged auto
moreover have [p # 0] (mod 4)
proof
assume [p = 0] (mod 4)
hence 4 dvd p
by (auto simp: cong-0-iff)
with assms have p = 4
by (subst (asm) prime-nat-iff) auto
thus Fulse
using assms by simp
qed
ultimately consider [p = 3] (mod 4) | [p = 1] (mod 4) | p = 2
by (fastforce simp: cong-def)
thus ?thesis
using that by metis
qed

end

3 Fundamental facts about Euler’s totient func-
tion

theory Totient

imports
Complex-Main
HOL—- Computational-Algebra. Primes
Cong

begin

definition totatives :: nat = nat set where
totatives n = {k € {0<..n}. coprime k n}
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lemma in-totatives-iff: k € totatives n «+— k> 0 ANk < n A coprime k n
by (simp add: totatives-def)

lemma totatives-code [code]: totatives n = Set.filter (Ak. coprime k n) {0<..n}
by (simp add: totatives-def)

lemma finite-totatives [simp)|: finite (totatives n)
by (simp add: totatives-def)

lemma totatives-subset: totatives n C {0<..n}
by (auto simp: totatives-def)

lemma zero-not-in-totatives [simp]: 0 ¢ totatives n
by (auto simp: totatives-def)

lemma totatives-le: x € totatives n — z < n
by (auto simp: totatives-def)

lemma totatives-less:
assumes z € totatives n n > 1
shows z <n
proof —
from assms have = # n by (auto simp: totatives-def)
with totatives-le[OF assms(1)] show ?thesis by simp
qged

lemma totatives-0 [simp]: totatives 0 = {}
by (auto simp: totatives-def)

lemma totatives-1 [simp]: totatives 1 = {Suc 0}
by (auto simp: totatives-def)

lemma totatives-Suc-0 [simp]: totatives (Suc 0) = {Suc 0}
by (auto simp: totatives-def)

lemma one-in-totatives [simp]: n > 0 = Suc 0 € totatives n
by (auto simp: totatives-def)

lemma totatives-eq-empty-iff [simp]: totatives n = {} +— n =0
using one-in-totatives[of n] by (auto simp del: one-in-totatives)

lemma minus-one-in-totatives:
assumes n > 2
shows n — 1 € totatives n
using assms coprime-diff-one-left-nat [of n] by (simp add: in-totatives-iff)

lemma power-in-totatives:
assumes m > 1 coprime m g
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shows ¢ ~ i mod m € totatives m
proof —
have -m dvd g ~ i
proof
assume m dvd g " i
hence —coprime m (g " )
using <m > 1) by (subst coprime-absorb-left) auto
with <coprime m ¢> show Fualse by simp
qed
with assms show ?thesis
by (auto simp: totatives-def coprime-commute intro!: Nat.grOl)
qed

lemma totatives-prime-power-Suc:
assumes prime p
shows totatives (p ~ Suc n) = {0<..p"Suc n} — (Am. p x m) ‘{0<.p™n}
proof safe
fix m assume m: p x m € totatives (p ~ Suc n) and m: m € {0<..p " n}
thus Fualse using assms by (auto simp: totatives-def ged-mult-left)
next
fix k assume k: k € {0<..p"Suc n} k ¢ (Am. p* m) ‘{0<.p"n}
from k have —(p dvd k) by (auto elim!: dvdE)
hence coprime k (p ~ Suc n)
using prime-imp-coprime [OF assms, of k]
by (cases n > 0) (auto simp add: ac-simps)
with &k show k € totatives (p ~ Suc n) by (simp add: totatives-def)
qed (auto simp: totatives-def)

lemma totatives-prime: prime p = totatives p = {0<..<p}
using totatives-prime-power-Suc [of p 0] by auto

lemma bij-betw-totatives:
assumes mi1 > 1 m2 > 1 coprime m1 m2
shows  bij-betw (Az. (x mod m1, x mod m2)) (totatives (m1 * m2))
(totatives m1 X totatives m2)
unfolding bij-betw-def
proof
show inj-on (A\z. (z mod m1, x mod m2)) (totatives (m1 x m2))
proof (intro inj-onl, clarify)
fix  y assume zy: z € totatives (m1 x m2) y € totatives (m1 * m2)
x mod m1 = y mod m1 x mod m2 = y mod m2
have ex: 31z. z < m1 * m2 A [z = z] (mod m1) A [z = x] (mod m2)
by (rule binary-chinese-remainder-unique-nat) (insert assms, simp-all)
have z < m1 * m2 A [z = z] (mod m1) A [z = x| (mod m2)
y<mlxm2A[y=z (modml) A [y=z] (mod m2)
using zy assms by (simp-all add: totatives-less one-less-mult cong-def)
from this[ THEN thel-equality[OF ex]] show z = y by simp
qged
next
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show (Az. (z mod m1, x mod m2)) ¢ totatives (m1 x m2) = totatives m1 X
totatives m2
proof safe
fix x assume z € totatives (m1 x m2)
with assms show x mod m1 € totatives m1 x mod m2 € totatives m2
using coprime-common-divisor [of x m1 m1] coprime-common-divisor [of
m2 m2]
by (auto simp add: in-totatives-iff mod-greater-zero-iff-not-dvd)
next
fix a b assume ab: a € totatives m1 b € totatives m2
with assms have ab: a < m1 b < m2 by (auto simp: totatives-less)
with binary-chinese-remainder-unique-nat|OF assms(3), of a b] obtain z
where z: z < m1 * m2x mod m1 = a x mod m2 = b by (auto simp: cong-def)
from z ab assms(3) have z € totatives (ml1 * m2)
by (auto intro: ccontr simp add: in-totatives-iff)
with z show (a, b) € (Az. (z mod m1, x mod m2)) * totatives (m1*xm2) by
blast
qed
qed

lemma bij-betw-totatives-ged-eq:
fixes n d :: nat
assumes d dvd nn > 0
shows  bij-betw (Ak. k * d) (totatives (n div d)) {ke{0<..n}. ged k n = d}
unfolding bij-betw-def
proof
show inj-on (\k. k * d) (totatives (n div d))
by (auto simp: inj-on-def)
next
show (k. k % d) * totatives (n div d) = {ke{0<..n}. ged k n = d}
proof (intro equalityl subsetl, goal-cases)
case (1k)
then show ?case using assms
by (auto elim: dvdE simp add: in-totatives-iff ac-simps ged-mult-right)
next
case (2 k)
hence d dvd k by auto
then obtain [ where k: k = [ x d by (elim dvdE) auto
from 2 assms show Zcase
using ged-mult-right [of - d ]
by (auto intro: gcd-eq-1-imp-coprime elim!: dvdE simp add: k image-iff
in-totatives-iff ac-simps)
qed
qed

definition totient :: nat = nat where
totient n = card (totatives n)

primrec totient-naive :: nat = nat = nat = nat where
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totient-naive 0 acc n = acc
| totient-naive (Suc k) acc n =
(if coprime (Suc k) n then totient-naive k (acc + 1) n else totient-naive k acc
n)

lemma totient-naive:
totient-naive k acc n = card {z € {0<..k}. coprime z n} + acc
proof (induction k arbitrary: acc)
case (Suc k acc)
have totient-naive (Suc k) acc n =
(if coprime (Suc k) n then 1 else 0) + card {z € {0<..k}. coprime z n}
+ acc
using Suc by simp
also have (if coprime (Suc k) n then 1 else 0) =
card (if coprime (Suc k) n then {Suc k} else {}) by auto
also have ... + card {z € {0<..k}. coprime z n} =
card ((if coprime (Suc k) n then {Suc k} else {}) U {z € {0<..k}.
coprime x n})
by (intro card-Un-disjoint [symmetric]) auto
also have ((if coprime (Suc k) n then {Suc k} else {}) U {z € {0<..k}. coprime
zn}) =
{z € {0<..Suc k}. coprime z n} by (auto elim: le-SucE)
finally show ?Zcase .
qed simp-all

lemma totient-code-naive [codel: totient n = totient-naive n 0 n
by (subst totient-naive) (simp add: totient-def totatives-def)

lemma totient-le: totient n < n
proof —
have card (totatives n) < card {0<..n}
by (intro card-mono) (auto simp: totatives-def)
thus ?thesis by (simp add: totient-def)
qed

lemma totient-less:
assumes n > I
shows totient n < n
proof —
from assms have card (totatives n) < card {0<..<n}
using totatives-less|[of - n| totatives-subset[of n] by (intro card-mono) auto
with assms show ?thesis by (simp add: totient-def)
qged

lemma totient-0 [simp]: totient 0 = 0
by (simp add: totient-def)

lemma totient-Suc-0 [simp]: totient (Suc 0) = Suc 0
by (simp add: totient-def)
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lemma totient-1 [simp]: totient 1 = Suc 0
by simp

lemma totient-0-iff [simp]: totient n = 0 +— n =0
by (auto simp: totient-def)

lemma totient-gt-0-iff [simp]: totient n > 0 «— n > 0
by (auto intro: Nat.groI)

lemma totient-gt-1:
assumes n > 2
shows totient n > 1
proof —
have {1, n — 1} C totatives n
using assms coprime-diff-one-left-nat[of n] by (auto simp: totatives-def)
hence card {1, n — 1} < card (totatives n)
by (intro card-mono) auto
thus ?thesis using assms
by (simp add: totient-def)
qed

lemma card-gcd-eqg-totient:
n> 0= ddvd n = card {k€{0<..n}. ged k n = d} = totient (n div d)
unfolding totient-def by (rule sym, rule bij-betw-same-card| OF bij-betw-totatives-gcd-eq))

lemma totient-divisor-sum: (3 d | d dvd n. totient d) = n
proof (cases n = 0)
case Fulse
hence n > 0 by simp
define A where A = (\d. {k€{0<..n}. ged k n = d})
have *: card (A d) = totient (n div d) if d: d dvd n for d
using <n > 0» and d unfolding A-def by (rule card-ged-eq-totient)
have n = card {1..n} by simp
also have {1..n} = (|Jde{d. d dvd n}. A d) by safe (auto simp: A-def)

also have card ... = (> d | d dvd n. card (A d))
using n > 0> by (intro card-UN-disjoint) (auto simp: A-def)
also have ... = (3. d | d dvd n. totient (n div d)) by (intro sum.cong refl *)
auto
also have ... = (>_d | d dvd n. totient d) using «n > 0>

by (intro sum.reindez-bij-witness[of - (div) n (div) n]) (auto elim: dvdE)
finally show ?thesis ..
qed auto

lemma totient-mult-coprime:

assumes coprime m n

shows totient (m * n) = totient m * totient n
proof (casesm > 1 An > 1)

case True
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hence mn: m > 1 n > 1 by simp-all
have totient (m * n) = card (totatives (m * n)) by (simp add: totient-def)

also have ... = card (totatives m X totatives n)
using bij-betw-totatives [OF mn <coprime m ny] by (rule bij-betw-same-card)
also have ... = totient m x totient n by (simp add: totient-def)
finally show ?thesis .
next
case Fulse
with assms show ?thesis by (cases m; cases n) auto
qed

lemma totient-prime-power-Suc:
assumes prime p
shows totient (p ~Sucn)=p " nx(p—1)
proof —
from assms have totient (p ~ Suc n) = card ({0<..p ~ Sucn} — (x) p ‘{0<..p
~a})
unfolding totient-def by (subst totatives-prime-power-Suc) simp-all
also from assms have ... = p ~Sucn — card ((x) p ‘ {0<..p"n})
by (subst card-Diff-subset) (auto intro: prime-gt-0-nat)
also from assms have card ((x) p ‘{0<.p™n}) =p " n
by (subst card-image) (auto simp: inj-on-def)
also have p “Sucn —p "n=p nx*x(p— 1) by (simp add: algebra-simps)
finally show ?thesis .
qed

lemma totient-prime-power:
assumes prime p n > 0
shows totient (p "n)=p " (n—1)x(p—1)
using totient-prime-power-Suc[of p n — 1] assms by simp

lemma totient-imp-prime:
assumes totient p = p — 1 p > 0
shows prime p
proof (cases p = 1)
case True
with assms show ?thesis by auto
next
case Fulse
with assms have p: p > 1 by simp
have z € {0<..<p} if z € totatives p for =z
using that and p by (cases © = p) (auto simp: totatives-def)
with assms have *: totatives p = {0<..<p}
by (intro card-subset-eq) (auto simp: totient-def)
have xx: False if x # 1 x # p x dvd p for x
proof —
from that have nz: x # 0 by (auto intro!: Nat.gr0I)
from that and p have le: © < p by (intro dvd-imp-le) auto
from that and nz have —coprime = p
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by (auto elim: dvdFE)

hence z ¢ totatives p by (simp add: totatives-def)

also note x

finally show Fulse using that and le by auto
qed
hence (Vm. m dvd p — m = 1 V m = p) by blast
with p show ?Zthesis by (subst prime-nat-iff) (auto dest: xx)

qed

lemma totient-prime:
assumes prime p
shows totient p =p — 1
using totient-prime-power-Suclof p 0] assms by simp

lemma totient-2 [simp]: totient 2 = 1
and totient-3 [simp]: totient 8 = 2
and totient-5 [simp]: totient 5 = 4
and totient-7 [simp|: totient 7 = 6
by (subst totient-prime; simp)+

lemma totient-4 [simpl: totient 4 = 2

and totient-8 [simp]: totient 8 = 4

and totient-9 [simp]: totient 9 = 6

using totient-prime-power|of 2 2] totient-prime-power|of 2 3] totient-prime-power|of
3 2]

by simp-all

lemma totient-6 [simp]: totient 6 = 2
using totient-mult-coprime [of 2 3] coprime-add-one-right [of 2]
by simp

lemma totient-even:

assumes n > 2

shows even (totient n)
proof (cases Ip. prime p A p # 2 A p dvd n)

case True

then obtain p where p: prime p p # 2 p dvd n by auto

from <p # 2> have p =0V p =1V p > 2 by auto

with p(1) have odd p using prime-odd-nat[of p] by auto

define k£ where k£ = multiplicity p n

from p assms have k-pos: k > 0 unfolding k-def by (subst multiplicity-gt-zero-iff)
auto

have p ~ k dvd n unfolding k-def by (simp add: multiplicity-dvd)

then obtain m where m: n = p ~k * m by (elim dvdE)

with assms have m-pos: m > 0 by (auto intro!: Nat.gr0OI)

from k-def m-pos p have = p dvd m

by (subst (asm) m) (auto introl: Nat.gr0I simp: prime-elem-multiplicity-mult-distrib

prime-elem-multiplicity-eq-zero-iff )
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with «prime p» have coprime p m
by (rule prime-imp-coprime)
with <k > 0> have coprime (p ~ k) m
by simp
then show ?thesis using p k-pos <odd p»
by (auto simp add: m totient-mult-coprime totient-prime-power)
next
case Fulse
from assms have n = ([] p€prime-factors n. p ~ multiplicity p n)
by (intro Primes.prime-factorization-nat) auto
also from False have ... = ([[ p€prime-factors n. if p = 2 then 2 ~ multiplicity
2n else 1)
by (intro prod.cong refl) auto
also have ... = 2 7 multiplicity 2 n
by (subst prod.delta|OF finite-set-mset]) (auto simp: prime-factors-multiplicity)
finally have n: n = 2 ~ multiplicity 2 n .
have multiplicity 2 n = 0 V multiplicity 2 n = 1 V multiplicity 2 n > 1 by force
with n assms have multiplicity 2 n > 1 by auto
thus ?thesis by (subst n) (simp add: totient-prime-power)
qed

lemma totient-prod-coprime:
assumes pairwise coprime (f ¢ A) inj-on f A
shows totient (prod f A) = (][] a€A. totient (f a))
using assms
proof (induction A rule: infinite-finite-induct)
case (insert z A)
have x: coprime (prod f A) (f z)
proof (rule prod-coprime-left)
fix y
assume y € A
with «z ¢ A» have y # «
by auto
with <z ¢ A) <y € A <nj-on f (insert z A)> have fy # fz
using inj-onD [of f insert x A y 1]
by auto
with <y € A» show coprime (fy) (f z)
using pairwiseD [OF <pairwise coprime (f * insert x A))]

by auto
qed
from insert.hyps have prod f (insert x A) = prod f A % f z by simp
also have totient ... = totient (prod f A) x totient (f )

using insert.hyps insert.prems by (intro totient-mult-coprime *)
also have totient (prod f A) = ([[ a€A. totient (f a))
using insert.prems by (intro insert.IH) (auto dest: pairwise-subset)
also from insert.hyps have ... x totient (f x) = ([] a€insert x A. totient (f a))
by simp
finally show ?case .
qed simp-all
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lemma prime-power-eq-imp-eq:
fixes p q :: 'a :: factorial-semiring
assumes prime p prime ¢ m > 0
assumes p m =q n
shows p = ¢
proof (rule ccontr)
assume pq: p # ¢
from assms have m = multiplicity p (p ~ m)
by (subst multiplicity-prime-power) auto
alsonote <p “m=4q W
also from assms pq have multiplicity p (¢ ~n) = 0
by (subst multiplicity-distinct-prime-power) auto
finally show Fulse using «m > 0)> by simp
qed

lemma totient-formulal:
assumes n > 0
shows totient n = ([] p€prime-factors n. p ~ (multiplicity pn — 1) * (p — 1))
proof —
from assms have n = ([ p€prime-factors n. p ~ multiplicity p n)
by (rule prime-factorization-nat)
also have totient ... = ([[ z€prime-factors n. totient (x ~ multiplicity = n))
proof (rule totient-prod-coprime)
show pairwise coprime ((Ap. p ~ multiplicity p n) ¢ prime-factors n)
proof (rule pairwisel, clarify)
fix p ¢ assume *: p €# prime-factorization n q €# prime-factorization n
p ~ multiplicity p n £ q ~ multiplicity ¢ n
then have multiplicity p n > 0 multiplicity ¢ n > 0
by (simp-all add: prime-factors-multiplicity)
with x primes-coprime [of p q] show coprime (p ~ multiplicity p n) (¢ ~
multiplicity q n)
by auto
qed
next
show inj-on (A\p. p ~ multiplicity p n) (prime-factors n)
proof
fix p ¢ assume pq: p €# prime-factorization n q €# prime-factorization n
p ~ multiplicity p n = q ~ multiplicity ¢ n
from assms and pq have prime p prime q multiplicity p n > 0
by (simp-all add: prime-factors-multiplicity)
from prime-power-eq-imp-eq[OF this pq(3)] show p = ¢ .
qed
qed
also have ... = ([] peprime-factors n. p = (multiplicity p n — 1) x (p — 1))
by (intro prod.cong refl totient-prime-power) (auto simp: prime-factors-multiplicity)
finally show ?thesis .
qed
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lemma totient-dvd:
assumes m dvd n
shows totient m dvd totient n
proof (casesm = 0 V n = 0)
case Fulse
let ?M = Ap m :: nat. multiplicity p m — 1
have ([] peprime-factors m. p ~ M p m x (p — 1)) dvd
(I] peprime-factors n. p =~ ?M p n = (p — 1)) using assms False
by (intro prod-dvd-prod-subset2 mult-dvd-mono dvd-refl le-imp-power-dvd diff-le-mono
dvd-prime-factors dvd-imp-multiplicity-le) auto
with False show ?thesis by (simp add: totient-formulal)
qed (insert assms, auto)

lemma totient-dvd-mono:
assumes m dvd nn > 0
shows totient m < totient n
by (cases m = 0) (insert assms, auto intro: dvd-imp-le totient-dvd)

lemma prime-factors-power: n > 0 = prime-factors (x ~ n) = prime-factors
by (cases x = 0; cases n = 0)
(auto simp: prime-factors-multiplicity prime-elem-multiplicity-power-distrib
zero-power)

lemma totient-formula2:
real (totient n) = real n x ([[ p€prime-factors n. 1 — 1 / real p)
proof (cases n = 0)
case Fulse
have real (totient n) = (][ p€prime-factors n. real
(p = (multiplicity pn — 1) x (p — 1)))
using Fualse by (subst totient-formulal) simp-all
also have ... = ([ peprime-factors n. real (p ~ multiplicity p n) « (1 — 1 /
real p))
by (intro prod.cong refl) (auto simp add: field-simps prime-factors-multiplicity
prime-ge-Suc-0-nat of-nat-diff power-Suc [symmetric] simp del: power-Suc)
also have ... = real ([[ p€prime-factors n. p = multiplicity p n) *
(I1 peprime-factors n. 1 — 1 / real p) by (subst prod.distrib) auto
also have ([] peprime-factors n. p ~ multiplicity p n) = n
using Fualse by (intro Primes.prime-factorization-nat [symmetric]) auto
finally show ?thesis .
qged auto

lemma totient-ged: totient (a * b) * totient (ged a b) = totient a * totient b x gcd
ab
proof (cases a =0V b= 0)

case Fulse

let 2P = prime-factors :: nat = nat set

have real (totient a * totient b * gcd a b) = real (a x b * ged a b) *
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((J]p€?Pa. 1 — 1/ real p) x (][ p€?P b. 1 — 1 / real p))
by (simp add: totient-formula2)
also have 7P a = (?Pa — ?Pb) U (?Pan ?Pb) by auto
also have ([[p€.... 1 — 1 / real p) =
(Ilpe?Pa— 2Pb. 1 — 1 [/ real p) * ([[p€?Pan ?Pb. 1 — 1/
real p)
by (rule prod.union-disjoint) blast+
also have ... x ([[p€?Pb. 1 — 1 [/ realp) = ([[p€?Pa — ?Pb. 1 — 1 / real
p) *
(I[pe?Pb. 1 — 1/ real p) *x ([[p€?Pan ¢Pb. 1 — 1 / real p) (is
= 24 % 1)
by (simp only: mult-ac)
also have A = ([[p€?Pa — ?PbU ?Pb. 1 — 1 / real p)
by (rule prod.union-disjoint [symmetric]) blast+
also have ?Pa — ?PbU ?P b= ?P a U ?P b by blast
also have real (a * b * ged a b) % ([ p€.... 1 — 1 / real p) *
(JIp€?Pan 2P b. 1 — 1 / real p)) = real (totient (a x b) x totient
(ged a 1))
using False by (simp add: totient-formula2 prime-factors-product prime-factorization-gcd)
finally show ?thesis by (simp only: of-nat-eq-iff)
qed auto

lemma totient-mult: totient (a * b) = totient a * totient b * ged a b div totient
(ged a b)
by (subst totient-ged [symmetric]) simp

lemma of-nat-eq-1-iff: of-nat x = (1 :: 'a :: {semiring-1, semiring-char-0}) <—
=1

by (fact of-nat-eq-1-iff)

lemma odd-imp-coprime-nat:
assumes odd (n::nat)
shows coprime n 2
proof —
from assms obtain k where n: n = Suc (2 * k) by (auto elim!: oddE)
have coprime (Suc (2 * k)) (2 = k)
by (fact coprime-Suc-left-nat)
then show ?thesis using n
by simp
qed

lemma totient-double: totient (2 = n) = (if even n then 2 x totient n else totient
n)
by (simp add: totient-mult ac-simps odd-imp-coprime-nat)

lemma totient-power-Suc: totient (n ~ Suc m) = n = m * totient n

proof (induction m arbitrary: n)
case (Suc m n)
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have totient (n ~ Suc (Suc m)) = totient (n x n = Suc m) by simp
also have ... = n ~ Suc m * totient n
using Suc.IH by (subst totient-mult) simp
finally show ?case .
qed simp-all

lemma totient-power: m > 0 = totient (n "~ m) =n ~ (m — 1) * totient n
using totient-power-Suclof n m — 1] by (cases m) simp-all

lemma totient-ged-lem: totient (ged a b) * totient (lem a b) = totient a * totient b
proof (casesa =0V b= 0)
case Fulse
let 7P = prime-factors :: nat = nat set and ?f = Ap:nat. 1 — 1 / real p
have real (totient (gcd a b) * totient (lem a b)) = real (ged a b % lem a b) *
(prod ?f (P a N 2P b) x prod ?f (?P a U ?P b))
using False unfolding of-nat-mult
by (simp add: totient-formula2 prime-factorization-ged prime-factorization-lem)
also have gcd a b x lcm a b = a *x b by simp
also have ?Pa U ?Pb= (Pa— ?Pan ?Pb)U ?P b by blast
also have prod ?f ... = prod ?f (P a — ?Pa N 2P b) x prod ?f (P b)
by (rule prod.union-disjoint) blast+
also have prod ?f (?Pan ?Pb) % ... =
prod ?f (PanN ?PbU (?Pa— ?Pan ¢Pb)) * prod ?f (?P b)
by (subst prod.union-disjoint) auto
also have PanN ?PbU (?Pa — ?Pan ?Pb) = ?P a by blast
also have real (a * b) x (prod ?2f (?P a) x prod ?f (?P b)) = real (totient a *
totient b)
using False by (simp add: totient-formula2)
finally show ?thesis by (simp only: of-nat-eg-iff)
qed auto

end

4 Residue rings

theory Residues

imports
Cong
HOL— Algebra. Multiplicative- Group
Totient

begin

lemma (in ring-1) CHAR-dvd-CARD: CHAR('a) dvd card (UNIV :: 'a set)
proof (cases card (UNIV :: 'a set) = 0)
case Fulse
hence [intro]: CHAR('a) > 0
by (simp add: card-eq-0-iff finite-imp-CHAR-pos)
define G where G = ( carrier = (UNIV :: 'a set), monoid.mult = (+), one =

(0 ::'a) )
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define H where H = (of-nat ‘ {..<CHAR('a)} :: 'a set)
interpret group G
proof (rule groupl)
fix z assume z: z € carrier G
show Jyccarrier G. y gz = 1
by (intro bexl[of - —z]) (auto simp: G-def)
qed (auto simp: G-def add-ac)

interpret subgroup H G
proof
show 15, € H
using False unfolding G-def H-def by force
next
fixzy:'a
assume z € Hy € H
then obtain z’ y’ where [simp]: = of-nat ' y = of-nat y’
by (auto simp: H-def)
have z + y = of-nat ((z' + y’) mod CHAR('a))
by (auto simp flip: of-nat-add simp: of-nat-eq-iff-cong-CHAR)
moreover have (¢’ + y') mod CHAR('a) < CHAR('a)
using H-def <y € H» by fastforce
ultimately show z ® 7 y € H
by (auto simp: H-def G-def introl: imagel)
next
fix z:: 'a
assume z: z € H
then obtain z’ where [simp]: © = of-nat 2’ and z" ' < CHAR('a)
by (auto simp: H-def)
have CHAR('a) dvd ' + (CHAR('a) — z') mod CHAR('a)
using mod-eq-0-iff-dvd mod-if x’ by fastforce
hence z + of-nat ((CHAR('a) — z’) mod CHAR('a)) = 0
by (auto simp flip: of-nat-add simp: of-nat-eq-0-iff-char-dvd)
moreover from this have invg z = of-nat ((CHAR('a) — z') mod CHAR('a))
by (intro inv-equality) (auto simp: G-def add-ac)
moreover have of-nat ((CHAR('a) — z') mod CHAR('a)) € H
unfolding H-def using «CHAR('a) > 0» by (intro imagel) auto
ultimately show invg x € H by force
qed (auto simp: G-def H-def)

have card H dvd card (rcosetsy H) * card H

by simp
also have card (rcosetsy H) * card H = Coset.order G
proof (rule lagrange-finite)

show finite (carrier G)

using False card-ge-0-finite by (auto simp: G-def)

qed (fact is-subgroup)
finally have card H dvd card (UNIV :: 'a set)

by (simp add: Coset.order-def G-def)
also have card H = card {.<CHAR('a)}
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unfolding H-def by (intro card-image inj-onl) (auto simp: of-nat-eq-iff-cong-CHAR
cong-def)
finally show CHAR('a) dvd card (UNIV :: 'a set)
by simp
qed auto

definition QuadRes :: int = int = bool
where QuadRes p a = (3y. ([y"2 = a] (mod p)))

definition Legendre :: int = int = int
where Legendre a p =
(if ([a = 0] (mod p)) then 0
else if QuadRes p a then 1
else —1)

4.1 A locale for residue rings

definition residue-ring :: int = int ring
where
residue-ring m =
(carrier = {0..m — 1},
monoid.mult = Az y. (z x y) mod m,
one = 1,
zero = 0,
add = Az y. (x + y) mod m)

locale residues =
fixes m :: int and R (structure)
assumes m-gt-one: m > 1
defines R-m-def: R = residue-ring m
begin

lemma abelian-group: abelian-group R
proof —
have 3ye{0..m — 1}. (x + y) mod m = 0 if 0 < zz < m for z
proof (cases z = 0)
case True
with m-gt-one show ?thesis by simp
next
case Fulse
then have (z + (m — z)) mod m = 0
by simp
with m-gt-one that show ?thesis
by (metis False atLeastAtMost-iff diff-ge-0-iff-ge diff-left-mono int-one-le-iff-zero-less
less-le)
qged
with m-gt-one show ?thesis
by (fastforce simp add: R-m-def residue-ring-def mod-add-right-eq ac-simps
introl: abelian-groupl)
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qed

lemma comm-monoid: comm-monoid R
proof —
have Az y z. [x € carrier R; y € carrier R; z € carrier Rl = 2 Q@ y ® z ==z
® (y® 2)
Nz y. [z € carrier R; y € carrier R —= 1 Q y =y ® z
unfolding R-m-def residue-ring-def
by (simp-all add: algebra-simps mod-mult-right-eq)
then show ?thesis
unfolding R-m-def residue-ring-def
by unfold-locales (use m-gt-one in simp-all)
qed

interpretation comm-monoid R
using comm-monoid by blast

lemma cring: cring R
apply (intro cringl abelian-group comm-monoid)
unfolding R-m-def residue-ring-def
apply (auto simp add: comm-semiring-class.distrib mod-add-eq mod-mult-left-eq)
done

end

sublocale residues < cring
by (rule cring)

context residues
begin

These lemmas translate back and forth between internal and external con-
cepts.
lemma res-carrier-eq: carrier R = {0..m — 1}

by (auto simp: R-m-def residue-ring-def)

lemma res-add-eq: x & y = (z + y) mod m
by (auto simp: R-m-def residue-ring-def)

lemma res-mult-eq: x ® y = (z * y) mod m
by (auto simp: R-m-def residue-ring-def)

lemma res-zero-eq: 0 = 0
by (auto simp: R-m-def residue-ring-def)

lemma res-one-eq: 1 = 1
by (auto simp: R-m-def residue-ring-def units-of-def)

42



lemma res-units-eq: Units R = {z. 0 < x A & < m A coprime . m} (is - = ?rhs)
proof
show Units R C ?rhs
using zero-less-mult-iff invertible-coprime
by (fastforce simp: Units-def R-m-def residue-ring-def)
next
show ?rhs C Units R
unfolding Units-def R-m-def residue-ring-def
by (force simp add: cong-def coprime-iff-invertible’-int mult.commaute)
qed

lemma res-neg-eq: © x = (— =) mod m

proof —
have oz = (THEy. 0 <y Ay<mA(z+y) modm=0A (y+ z) mod m
= 0)
by (simp add: R-m-def a-inv-def m-inv-def residue-ring-def)
also have ... = (— z) mod m
proof —
have Ay. 0 <yAy<mA (z+y) modm=0A (y+ z) modm=0—
y = — x modm

by (metis minus-add-cancel mod-add-eq plus-int-code(1) zmod-trivial-iff)
then show ?thesis
by (intro the-equality) (use m-gt-one in (simp add: add.commute mod-add-right-eq»)
qed
finally show ?thesis .
qged

lemma finite [iff]: finite (carrier R)
by (simp add: res-carrier-eq)

lemma finite- Units [iff]: finite (Units R)
by (simp add: finite-ring-finite-units)

The function a — a mod m maps the integers to the residue classes. The fol-
lowing lemmas show that this mapping respects addition and multiplication
on the integers.

lemma mod-in-carrier [iff]: a mod m € carrier R
unfolding res-carrier-eq
using insert m-gt-one by auto

lemma add-cong: (z mod m) & (y mod m) = (z + y) mod m
by (auto simp: R-m-def residue-ring-def mod-simps)

lemma mult-cong: (z mod m) ® (y mod m) = (z % y) mod m
by (auto simp: R-m-def residue-ring-def mod-simps)

lemma zero-cong: 0 = 0
by (auto simp: R-m-def residue-ring-def)
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lemma one-cong: 1 = 1 mod m
using m-gt-one by (auto simp: R-m-def residue-ring-def)

lemma pow-cong: (z mod m) [} n = z"n mod m
using m-gt-one
proof (induct n)
case ()
then show ?case
by (simp add: one-cong)
next
case (Suc n)
then show ?case
by (simp add: mult-cong power-commutes)
qed

lemma neg-cong: © (x mod m) = (— z) mod m
by (metis mod-minus-eq res-neg-eq)

lemma (in residues) prod-cong: finite A = (Qi€A. (f i) mod m) = ([[i€A. f
i) mod m
by (induct set: finite) (auto simp: one-cong mult-cong)

lemma (in residues) sum-cong: finite A = (P i€A. (f i) mod m) = (3 icA. f
1) mod m
by (induct set: finite) (auto simp: zero-cong add-cong)

lemma mod-in-res-units [simpl:
assumes I < m and coprime a m
shows a mod m € Units R
proof (cases a mod m = 0)
case True
with assms show ?thesis
by (auto simp add: res-units-eq ged-red-int [symmetric))
next
case Fulse
from assms have 0 < m by simp
then have 0 < a mod m by (rule pos-mod-sign [of m a])
with Fulse have 0 < a mod m by simp
with assms show ?thesis
by (auto simp add: res-units-eq ged-red-int [symmetric] ac-simps)
qged

lemma res-eg-to-cong: (a mod m) = (b mod m) «— [a = b] (mod m)
by (auto simp: cong-def)

Simplifying with these will translate a ring equation in R to a congruence.

lemmas res-to-cong-simps =
add-cong mult-cong pow-cong one-cong
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prod-cong sum-cong neg-cong res-eq-to-cong

Other useful facts about the residue ring.

lemma one-eqg-neg-one: 1 =1 = m = 2
using one-cong res-neg-eq res-one-eq zmod-zminusl-eq-if by fastforce

end

4.2 Prime residues

locale residues-prime =
fixes p :: nat and R (structure)
assumes p-prime [intro]: prime p
defines R = residue-ring (int p)

sublocale residues-prime < residues p
proof
show 1 < int p
using prime-gt-1-nat by auto
qed

context residues-prime
begin

lemma p-coprime-left:
coprime p a <— — p dvd a
using p-prime by (auto intro: prime-imp-coprime dest: coprime-common-divisor)

lemma p-coprime-right:
coprime a p <— - p dvd a
using p-coprime-left [of a] by (simp add: ac-simps)

lemma p-coprime-left-int:
coprime (int p) a <— = int p dvd a
using p-prime by (auto intro: prime-imp-coprime dest: coprime-common-divisor)

lemma p-coprime-right-int:
coprime a (int p) «— - int p dvd a
using coprime-commute p-coprime-left-int by blast

lemma is-field: field R
proof —
have 0 < z = z < int p = coprime (int p) z for z
by (rule prime-imp-coprime) (auto simp add: zdvd-not-zless)
then show ?thesis
by (intro cring.field-intro2 cring)
(auto simp add: res-carrier-eq res-one-eq res-zero-eq res-units-eq ac-simps)
qed
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lemma res-prime-units-eq: Units R = {1..p — 1}
by (auto simp add: res-units-eq p-coprime-right-int zdvd-not-zless)

end

sublocale residues-prime < field
by (rule is-field)

5 Test cases: Euler’s theorem and Wilson’s theo-
rem

5.1 FEuler’s theorem

lemma (in residues) totatives-eq:
totatives (nat m) = nat * Units R
proof —
from m-gt-one have |m| > 1
by simp
then have totatives (nat |m|) = nat ¢ abs * Units R
by (auto simp add: totatives-def res-units-eq image-iff le-less)
(use m-gt-one zless-nat-eg-int-zless in force)
moreover have |m| = m abs ¢ Units R = Units R
using m-gt-one by (auto simp add: res-units-eq image-iff)
ultimately show ?thesis
by simp
qed

lemma (in residues) totient-eq:
totient (nat m) = card (Units R)
proof —
have *: inj-on nat (Units R)
by (rule inj-onl) (auto simp add: res-units-eq)
then show ?thesis
by (simp add: totient-def totatives-eq card-image)
qed

lemma (in residues-prime) prime-totient-eq: totient p = p — 1
using p-prime totient-prime by blast

lemma (in residues) euler-theorem:

assumes coprime a m

shows [a ~ totient (nat m) = 1] (mod m)
proof —

have a ~ totient (nat m) mod m = 1 mod m

by (metis assms finite-Units m-gt-one mod-in-res-units one-cong totient-eq

pow-cong units-power-order-eg-one)

then show ?thesis

using res-eg-to-cong by blast

qed
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lemma euler-theorem:
fixes a m :: nat
assumes coprime a m
shows [a ~ totient m = 1] (mod m)
proof (cases m =0V m = 1)
case True
then show ?thesis by auto
next
case Fulse
with assms show ?thesis
using residues.euler-theorem [of int m int a] cong-int-iff
by (auto simp add: residues-def ged-int-def) fastforce
qed

lemma fermat-theorem:
fixes p a :: nat
assumes prime p and — p dvd a
shows [a " (p — 1) = 1] (mod p)
proof —
from assms prime-imp-coprime [of p a] have coprime a p
by (auto simp add: ac-simps)
then have [a ~ totient p = 1] (mod p)
by (rule euler-theorem)
also have totient p = p — 1
by (rule totient-prime) (rule assms)
finally show ?thesis .
qed

5.2 Wilson’s theorem

lemma (in field) inv-pair-lemma: © € Units R = y € Units R =

{z, inv z} # {y, inv y} = {z, inv =} N {y, inv y} = {}
by auto

lemma (in residues-prime) wilson-theoremI :
assumes a: p > 2
shows [fact (p — 1) = (—1::int)] (mod p)
proof —
let ?Inverse-Pairs = {{xz, inv z}| z. € Units R — {1, © 1}}
have UR: Units R = {1, © 1} U | ?Inverse-Pairs
by auto
have 11: 1 #61
using a one-eq-neg-one by force
have (Qic Units R. i) = (Qic{l, © 1}. i) ® (Q i€l ?Inverse-Pairs. 1)
apply (subst UR)
apply (subst finprod-Un-disjoint)
using inv-one inv-eg-neg-one-eq apply (auto intro!: funcsetl)+
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done
also have (Ric{l,©01}.9) =061

by (simp add: 11)
also have (Q) i€(| ?Inverse-Pairs). i) = (Q) A€ ?Inverse-Pairs. (Q yeA. y))
by (rule finprod- Union-disjoint) (auto simp: pairwise-def disjnt-def dest!: inv-eq-imp-eq)
also have ... =1

apply (rule finprod-one-eql)

apply clarsimp

apply (subst finprod-insert)

apply auto

apply (metis inv-eg-self)

done
finally have (@) icUnits R. i) = © 1

by simp
also have (Q) i€ Units R. i) = () i€ Units R. i mod p)

by (rule finprod-cong’) (auto simp: res-units-eq)

also have ... = ([[ i€ Units R. ©) mod p
by (rule prod-cong) auto
also have ... = fact (p — 1) mod p

using assms
by (simp add: res-prime-units-eq int-prod zmod-int prod-int-eq fact-prod)
finally have fact (p — 1) modp =061
then show ?thesis
by (simp add: cong-def res-neg-eq res-one-eq zmod-int)
qed

lemma wilson-theorem:
assumes prime p

shows [fact (p — 1) = — 1] (mod p)
proof (cases p = 2)
case True

then show ?thesis
by (simp add: cong-def fact-prod)
next
case Fulse
then show ?thesis
using assms prime-ge-2-nat
by (metis residues-prime.wilson-theorem1 residues-prime.intro le-eq-less-or-eq)
qed

This result can be transferred to the multiplicative group of Z/pZ for p
prime.
lemma mod-nat-int-pow-eq:
fixes n :: nat and p a :: int
shows a > 0 = p > 0 = (nat a ~ n) mod (nat p) = nat ((a ~ n) mod p)
by (simp add: nat-mod-as-int)

theorem residue-prime-mult-group-has-gen:
fixes p :: nat
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assumes prime-p : prime p
showsJaec {1 ..p—1}. {1 ..p— 1} ={a"imodpli.iec UNIV}
proof —
have p > 2
using prime-gt-1-nat[OF prime-p] by simp
interpret R: residues-prime p residue-ring p
by (simp add: residues-prime-def prime-p)
have car: carrier (residue-ring (int p)) — {Oresidue-m'ng (int p)} ={1 . intp—
1}

by (auto simp add: R.zero-cong R.res-carrier-eq)

have z Hresidue—m’ng (intp) I =7 “ i mod (int p)
ifee{l. intp— 1} for z and i :: nat
using that R.pow-cong|of = i] by auto
moreover
obtain o where a: a € {1 .. intp — 1}
and a-gen: {1 .. int p — 1} = {a[ Jyegidue-ring (int p)z'|i::nat . i€ UNIV}
using field.finite-field-mult-group-has-gen| OF R.is-field)
by (auto simp add: car[symmetric] carrier-mult-of)
moreover
have nat ‘{1 ..intp — 1} ={1 ..p — 1} (is ?L = ?R)
proof
have n € R if n € ?L for n
using that <p>2> by force
then show ?L C ?R by blast
have n € ?L if n € ?R for n
using that «p>2> by (auto intro: rev-image-eql [of int n))
then show ?R C ?L by blast
qed
moreover
have nat ‘ {a™i mod (int p) | iznat. i € UNIV} = {nat a™ i mod p | i . i €
UNIV} (is 7L = 7R)
proof
have z € ?Rif z € ?L for z
proof —
from that obtain ¢ where i: x = nat (a™i mod (int p))
by blast
then have z = nat a ~ 7 mod p
using mod-nat-int-pow-eq[of a int p i| a <p>2> by auto
with ¢ show ?thesis by blast
qed
then show ?L C ?R by blast
have z € ?L if z € 7R for z
proof —
from that obtain ¢ where i: © = nat a7 mod p
by blast
with mod-nat-int-pow-eq[of a int p i| a «p>2) show ?thesis
by auto
qed
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then show ?R C ?L by blast
qed
ultimately have {I .. p — 1} = {nat a i mod p | i. i € UNIV}
by presburger
moreover from o have nat a € {1 .. p — 1} by force
ultimately show %thesis ..
qed

5.3 Upper bound for the number of n-th roots

lemma roots-mod-prime-bound:
fixes n ¢ p :: nat
assumes prime p n > 0
defines A = {ze{..<p}. [t " n = ] (mod p)}
shows card A < n
proof —
define R where R = residue-ring (int p)
from assms(1) interpret residues-prime p R
by unfold-locales (simp-all add: R-def)
interpret R: UP-domain R UP R by (unfold-locales)

let ?f = UnivPoly.monom (UP R) 1p n S(UP R) UnivPoly.monom (UP R) (int
(¢ mod p)) 0
have in-carrier: int (¢ mod p) € carrier R
using prime-gt-1-nat[OF assms(1)] by (simp add: R-def residue-ring-def)

have deg R ?f = n
using assms in-carrier by (simp add: R.deg-minus-eq)
hence f-not-zero: ?f # 07p g using assms by (auto simp add : R.deg-nzero-nzero)
have roots-bound: finite {a € carrier R. UnivPoly.eval R R id a ?f = Op} A
card {a € carrier R. UnivPoly.eval R R id a ?f = 0p} < deg R ?f
using finite in-carrier by (intro R.roots-bound[OF - f-not-zerol)
stmp
have subs: {z € carrier R. z [ Jg n = int (¢ mod p)} C
{a € carrier R. UnivPoly.eval R R id a ?f = Op}
using in-carrier by (auto simp: R.evalRR-simps)
then have card {z € carrier R. x [ ] n = int (¢ mod p)} <
card {a € carrier R. UnivPoly.eval R R id a ?f = OR}
using finite by (intro card-mono) auto
n

also have ... <
using <deg R ?f = n» roots-bound by linarith
also {

fix z assume z € carrier R
hence z [Jp n = (z " n) mod (int p)
by (subst pow-cong [symmetric]) (auto simp: R-def residue-ring-def)
}

hence {z € carrier R. z [|p n = int (¢ mod p)} = {x € carrier R. [x " n = int

c] (mod p)}
by (fastforce simp: cong-def zmod-int)

50



also have bij-betw int A {x € carrier R. [z ~n = int ] (mod p)}
by (rule bij-betwl|of int - - nat])
(use cong-int-iff in <force simp: R-def residue-ring-def A-def>)+
from bij-betw-same-card[OF this] have card {z € carrier R. [t " n = int c] (mod

p)} = card A ..

finally show ?thesis .
qed
end

6 The sieve of Eratosthenes

theory FEratosthenes
imports Main HOL— Computational-Algebra. Primes
begin

6.1 Preliminary: strict divisibility
context dvd

begin

abbreviation dvd-strict :: 'a = 'a = bool (infix] <dvd’-strict> 50)
where
b dvd-strict a = b dvd a A — a dvd b

end

6.2 Main corpus

The sieve is modelled as a list of booleans, where Fulse means marked out.

type-synonym marks = bool list

definition numbers-of-marks :: nat = marks = nat set
where
numbers-of-marks n bs = fst ‘ {z € set (enumerate n bs). snd x}

lemma numbers-of-marks-simps [simp, code]:
numbers-of-marks n [| = {}
numbers-of-marks n (True # bs) = insert n (numbers-of-marks (Suc n) bs)
numbers-of-marks n (False # bs) = numbers-of-marks (Suc n) bs
by (auto simp add: numbers-of-marks-def intro!: image-eql)

lemma numbers-of-marks-Suc:
numbers-of-marks (Suc n) bs = Suc ‘ numbers-of-marks n bs

by (auto simp add: numbers-of-marks-def enumerate-Suc-eq image-iff Bex-def)

lemma numbers-of-marks-replicate-False [simp]:
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numbers-of-marks n (replicate m False) = {}
by (auto simp add: numbers-of-marks-def enumerate-replicate-eq)

lemma numbers-of-marks-replicate- True [simp):
numbers-of-marks n (replicate m True) = {n..<n+m}
by (auto simp add: numbers-of-marks-def enumerate-replicate-eq image-def)

lemma in-numbers-of-marks-eq:
m € numbers-of-marks n bs +— m € {n..<n + length bs} A bs! (m — n)
by (simp add: numbers-of-marks-def in-set-enumerate-eq image-iff add.commute)

lemma sorted-list-of-set-numbers-of-marks:
sorted-list-of-set (numbers-of-marks n bs) = map fst (filter snd (enumerate n bs))
by (auto simp add: numbers-of-marks-def distinct-map
introl: sorted-filter distinct-filter inj-onl sorted-distinct-set-unique)

Marking out multiples in a sieve

definition mark-out :: nat = marks = marks
where
mark-out n bs = map (A(q, b). b A = Suc n dvd Suc (Suc q)) (enumerate n bs)

lemma mark-out-Nil [simp]: mark-out n [] = ||
by (simp add: mark-out-def)

lemma length-mark-out [simpl: length (mark-out n bs) = length bs
by (simp add: mark-out-def)

lemma numbers-of-marks-mark-out:
numbers-of-marks n (mark-out m bs) = {q € numbers-of-marks n bs. = Suc m
dvd Suc ¢ — n}
by (auto simp add: numbers-of-marks-def mark-out-def in-set-enumerate-eq im-
age-iff
nth-enumerate-eq less-eq-dvd-minus)

Auxiliary operation for efficient implementation

definition mark-out-auz :: nat = nat = marks = marks
where
mark-out-auzr n m bs =
map (A(g, b). b A (¢ < m + nV = Suc n dvd Suc (Suc q) + (n — m mod Suc
n))) (enumerate n bs)

lemma mark-out-code [code]: mark-out n bs = mark-out-auz n n bs
proof —
have auz: False
if A: Suc n dvd Suc (Suc a)
and B:a<n+n
and C: n<a
for a
proof (cases n = 0)
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case True
with A B C show ?thesis by simp

next
case Fualse
define m where m = Suc n
then have m > 0 by simp
from Fulse have n > 0 by simp
from A obtain ¢ where ¢: Suc (Suc a) = Suc n * ¢ by (rule dvdE)
have ¢ > 0
proof (rule ccontr)

assume - q¢ > 0
with ¢ show Fulse by simp

qed
with <n > 0> have Suc n * ¢ > 2 by (auto simp add: gr0-conv-Suc)
with ¢ have a: a = Suc n x ¢ — 2 by simp
with B have ¢ + n x ¢ < n + n + 2 by auto
then have m x ¢ < m * 2 by (simp add: m-def)
with «<m > 0) <¢ > 0> have ¢ = I by simp
with ¢ have a = n — 1 by simp
with <n > 0> C show Fualse by simp

qged

show ?thesis
by (auto simp add: mark-out-def mark-out-auz-def in-set-enumerate-eq intro:

aux)
qed

lemma mark-out-aux-simps [simp, code]:
mark-out-aux n m [| =[]
mark-out-auz n 0 (b # bs) = False # mark-out-auzx n n bs
mark-out-auz n (Suc m) (b # bs) = b # mark-out-auz n m bs
proof goal-cases
case I
show ?Zcase
by (simp add: mark-out-auz-def)
next
case 2
show ?Zcase
by (auto simp add: mark-out-code [symmetric] mark-out-aux-def mark-out-def
enumerate-Suc-eq in-set-enumerate-eq less-eq-dvd-minus)
next
case 3
{ define v where v = Suc m
define w where w = Suc n
fix ¢
assume m + n < ¢
then obtain r where ¢: ¢ = m + n + r by (auto simp add: le-iff-add)
{ fix u
from w-def have u mod w < w by simp
then have v + (w — u mod w) = w + (u — u mod w)
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by simp
then have v + (w — w mod w) = w + u div w * w
by (simp add: minus-mod-eq-div-mult)
}

then have w dvd v + w + r + (w — v mod w) +— wdvd m + w + r + (w
— m mod w)
by (simp add: add.assoc add.left-commute [of m] add.left-commute [of v]
dvd-add-left-iff dvd-add-right-iff)
moreover from ¢ have Suc ¢ = m + w + r by (simp add: w-def)
moreover from ¢ have Suc (Suc ¢) = v + w + r by (simp add: v-def w-def)
ultimately have w dvd Suc (Suc (¢ + (w — v mod w))) <— w dvd Suc (¢ +
(w — m mod w))
by (simp only: add-Suc [symmetric])
then have Suc n dvd Suc (Suc (Suc (¢ + n) — Suc m mod Suc n)) +—
Suc n dvd Suc (Suc (¢ + n — m mod Suc n))
by (simp add: v-def w-def Suc-diff-le trans-le-add2)
}
then show ?case
by (auto simp add: mark-out-auz-def
enumerate-Suc-eq in-set-enumerate-eq not-less)
qed

Main entry point to sieve

fun sieve :: nat = marks = marks
where
sieve n [| = |
| sieve n (False # bs) = False # sieve (Suc n) bs
| sieve n (True # bs) = True # sieve (Suc n) (mark-out n bs)

There are the following possible optimisations here:

e sieve can abort as soon as n is too big to let mark-out have any effect.

e Search for further primes can be given up as soon as the search position
exceeds the square root of the maximum candidate.

This is left as an constructive exercise to the reader.

lemma numbers-of-marks-sieve:
numbers-of-marks (Suc n) (sieve n bs) =
{q € numbers-of-marks (Suc n) bs. Vm € numbers-of-marks (Suc n) bs. = m
dvd-strict q}
proof (induct n bs rule: sieve.induct)
case 1
show ?case by simp
next
case 2
then show Zcase by simp
next
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case (3 n bs)
have auz: n € Suc ‘M <—n>0An—1¢€ M (is ?lhs «— %rhs) for M n
proof
show ?rhs if ?lhs using that by auto
show ?lhs if ?rhs
proof —
from that have n > 0 and n — 1 € M by auto
then have Suc (n — 1) € Suc * M by blast
with «n > 0) show n € Suc * M by simp
qed
qed
have auz!: False if Suc (Suc n) < m and m dvd Suc n for m :: nat
proof —
from <m dvd Suc n) obtain ¢ where Sucn = m % ¢ ..
with <Suc (Suc n) < m) have Suc (m * ¢) < m by simp
then have m x ¢ < m by arith
with <Suc n = m * ¢ show %thesis by simp
qed
have auz2: m dvd q
if 1:Vg>0.1<qg— Sucn<qg— q < Suc (n+ length bs) —
bs ! (¢ — Suc (Suc n)) — = Suc n dvd ¢ — q dvd m — m dvd q
and 2: - Suc n dvd m q dvd m
and 3: Suc n < q ¢ < Suc (n + length bs) bs! (¢ — Suc (Suc n))
for m q :: nat
proof —
from 1 have x: \¢. Sucn < ¢ = ¢ < Suc (n + length bs) =
bs ! (¢ — Suc (Suc n)) = = Suc n dvd ¢ = q dvd m = m dvd q
by auto
from 2 have — Suc n dvd q by auto
moreover note 3
moreover note <q dvd m»
ultimately show ?thesis by (auto intro: x)
qed
from & show ?case
apply (simp-all add: numbers-of-marks-mark-out numbers-of-marks-Suc Compr-image-eq
inj-image-eq-iff in-numbers-of-marks-eq Ball-def imp-conjL aux)
apply safe
apply (simp-all add: less-diff-conv2 le-diff-conv2 dvd-minus-self not-less)

apply (clarsimp dest!: auxl)
apply (simp add: Suc-le-eq less-Suc-eg-le)
apply (rule auz2)
apply (clarsimp dest!: auxl)+
done
qed

Relation of the sieve algorithm to actual primes

definition primes-upto :: nat = nat list
where
primes-upto n = sorted-list-of-set {m. m < n A prime m}
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lemma set-primes-upto: set (primes-upto n) = {m. m < n A prime m}
by (simp add: primes-upto-def)

lemma sorted-primes-upto [iff]: sorted (primes-upto n)
by (simp add: primes-upto-def)

lemma distinct-primes-upto [iff]: distinct (primes-upto n)
by (simp add: primes-upto-def)

lemma set-primes-upto-sieve:
set (primes-upto n) = numbers-of-marks 2 (sieve 1 (replicate (n — 1) True))
proof —
consider n =0V n=1|n> 1 by arith
then show ?thesis
proof cases
case I
then show ?thesis
by (auto simp add: numbers-of-marks-sieve numeral-2-eq-2 set-primes-upto
dest: prime-gt-Suc-0-nat)
next
case 2
{
fix m q
assume Suc (Suc 0) < ¢
and ¢ < Sucn
and m dvd q
then have m < Suc n by (auto dest: dvd-imp-le)
assume *: Y me{Suc (Suc 0)..<Suc n}. m dvd ¢ — q dvd m
and m dvd ¢g and m # 1
have m = ¢
proof (cases m = 0)
case True with «m dvd ¢> show ?thesis by simp
next
case Fualse with <m # 1) have Suc (Suc 0) < m by arith
with <m < Suc n> * «<m dvd ¢» have ¢ dvd m by simp
with «m dvd ¢» show ?thesis by (simp add: dvd-antisym)
qed
}
then have auz: Am gq. Suc (Suc 0) < ¢ =
qg < Sucn =
m dvd ¢ —
Vme{Suc (Suc 0)..<Suc n}. m dvd ¢ — q dvd m =
m dvd ¢ = m # ¢ = m = 1 by auto
from 2 show #%thesis
apply (auto simp add: numbers-of-marks-sieve numeral-2-eq-2 set-primes-upto
dest: prime-gt-Suc-0-nat)
apply (metis One-nat-def Suc-le-eq less-not-refl prime-nat-iff)
apply (metis One-nat-def Suc-le-eq aux prime-nat-iff)
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done
qed
qed

lemma primes-upto-sieve [code]:

primes-upto n = map fst (filter snd (enumerate 2 (sieve 1 (replicate (n — 1)
Truc)))

using primes-upto-def set-primes-upto set-primes-upto-sieve sorted-list-of-set-numbers-of-marks
by presburger

lemma prime-in-primes-upto: prime n <— n € set (primes-upto n)
by (simp add: set-primes-upto)

6.3 Application: smallest prime beyond a certain number

definition smallest-prime-beyond :: nat = nat
where
smallest-prime-beyond n = (LEAST p. prime p A p > n)

lemma prime-smallest-prime-beyond [iff]: prime (smallest-prime-beyond n) (is
¢P)
and smallest-prime-beyond-le [iff]: smallest-prime-beyond n > n (is ?Q)
proof —
let ?least = LEAST p. prime p A p > n
from primes-infinite obtain ¢ where prime g A ¢ > n
by (metis finite-nat-set-iff-bounded-le mem-Collect-eq nat-le-linear)
then have prime ?least N\ ?least > n
by (rule LeastI)
then show ?P and ?Q
by (simp-all add: smallest-prime-beyond-def)
qed

lemma smallest-prime-beyond-smallest: prime p = p > n = smallest-prime-beyond
n<p
by (simp only: smallest-prime-beyond-def) (auto intro: Least-le)

lemma smallest-prime-beyond-eq:

prime p = p > n = (A\g. prime ¢ = ¢ > n = q > p) = small-
est-prime-beyond n = p

by (simp only: smallest-prime-beyond-def) (auto intro: Least-equality)

definition smallest-prime-between :: nat = nat = nat option
where
smallest-prime-between m n =
(if (3p. prime p A m < p A p < n) then Some (smallest-prime-beyond m) else
None)

lemma smallest-prime-between-None:
smallest-prime-between m n = None «— (Vq. m < g A ¢ < n — — prime q)

o7



by (auto simp add: smallest-prime-between-def)

lemma smallest-prime-betwen-Some:

smallest-prime-between m n = Some p «— smallest-prime-beyond m = p A p <
n

by (auto simp add: smallest-prime-between-def dest: smallest-prime-beyond-smallest

[of - m])

lemma [code]: smallest-prime-between m n = List.find (Ap. p > m) (primes-upto
n)
proof —
have List.find (Ap. p > m) (primes-upto n) = Some (smallest-prime-beyond m)
if assms: m < p prime p p < n for p
proof —
define A where 4 = {p. p < n A prime p A m < p}
from assms have smallest-prime-beyond m < p
by (auto intro: smallest-prime-beyond-smallest)
from this <p < n» have x: smallest-prime-beyond m < n
by (rule order-trans)
from assms have ex: Ip<n. primep A m < p
by auto
then have finite A
by (auto simp add: A-def)
with x have Min A = smallest-prime-beyond m
by (auto simp add: A-def intro: Min-eql smallest-prime-beyond-smallest)
with ez sorted-primes-upto show ?thesis
by (auto simp add: set-primes-upto sorted-find-Min A-def)
qed
then show ?thesis
by (auto simp add: smallest-prime-between-def find-None-iff set-primes-upto
introl: sym [of - None])
qed

definition smallest-prime-beyond-aux :: nat = nat = nat
where
smallest-prime-beyond-aux k n = smallest-prime-beyond n

lemma [code]:
smallest-prime-beyond-aux k n =
(case smallest-prime-between n (k * n) of
Some p = p
| None = smallest-prime-beyond-auz (Suc k) n)
by (simp add: smallest-prime-beyond-auz-def smallest-prime-betwen-Some split:
option.split)

lemma [code]: smallest-prime-beyond n = smallest-prime-beyond-auz 2 n
by (simp add: smallest-prime-beyond-auz-def)

end
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7 Fast modular exponentiation

theory Mod-FExp
imports Cong HOL— Library. Power-By-Squaring
begin

context euclidean-semiring-cancel
begin

definition mod-ezp-auz :: 'a = 'a = 'a = nat = a
where mod-ezp-aux m = efficient-funpow (Ax y. x x y mod m)

lemma mod-exp-auz-code [code]:
mod-exp-aux m y T n =
(if n = 0 then y
else if n = 1 then (z * y) mod m
else if even n then mod-exp-aux m y ((z * ) mod m) (n div 2)
else mod-exp-auz m ((z * y) mod m) ((z x z) mod m) (n div 2))
unfolding mod-exp-auz-def by (rule efficient-funpow-code)

lemma mod-exp-auz-correct:
mod-exp-aux m y £ n mod m = (x " n *x y) mod m
proof —
have mod-exp-auz m y © n = efficient-funpow (Ax y. © *x y mod m) y z n
by (simp add: mod-exp-auz-def)
also have ... = ((A\y. ¢ x y mod m) ~ " n) y
by (rule efficient-funpow-correct) (simp add: mod-mult-left-eq mod-mult-right-eq
mult-ac)
also have ((A\y. z x y mod m) ~ " n) y mod m = (z ~n x y) mod m
proof (induction n)
case (Suc n)
hence z x (A\y. z x y mod m) " " n) ymod m =z xx " n *y modm
by (metis mod-mult-right-eq mult.assoc)
thus ?case by auto
qged auto
finally show ?thesis .
qed

definition mod-ezp :: 'a = nat = 'a = 'a
where mod-exp b e m = (b ~ €) mod m

lemma mod-ezp-code [code]: mod-exp b e m = mod-exp-auz m 1 b e mod m
by (simp add: mod-exp-def mod-exp-aux-correct)

end

lemmas [code-abbrev] = mod-exp-def[where ?'a = nat] mod-exp-def[where ?'a
= int]
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lemma cong-power-nat-code |code-unfold):
[b " e = (z :nat)] (mod m) +— mod-exp b e m = x mod m
by (simp add: mod-exp-def cong-def)

lemma cong-power-int-code [code-unfold):
[b " e = (x ::int)] (mod m) <— mod-exp b e m = x mod m
by (simp add: mod-exp-def cong-def)

The following rules allow the simplifier to evaluate mod-exp efficiently.

lemma eval-mod-exp-auz [simp):
mod-exp-aux m y r 0 =y
mod-exp-auz m y x (Suc 0) = (z * y) mod m
mod-exp-auz m y x (numeral (num.Bit0 n)) =
mod-exp-auz m y (z? mod m) (numeral n)
mod-exp-auz m y x (numeral (num.Bitl n)) =
mod-exp-auz m ((z * y) mod m) (> mod m) (numeral n)
proof —
define n’ where n’ = (numeral n :: nat)
have [simp]: n’' # 0 by (auto simp: n’-def)

show mod-exp-auz m y x 0 = y and mod-ezp-auz m y z (Suc 0) = (z * y) mod
m
by (simp-all add: mod-ezp-auz-def)

have numeral (num.Bit0 n) = (2 * n’)
by (subst numeral.numeral-Bit0) (simp del: arith-simps add: n'-def)
also have mod-exp-auz m y x ... = mod-exp-auz m y (z~2 mod m) n
by (subst mod-exp-auz-code) (simp-all add: power2-eg-square)
finally show mod-ezp-aux m y « (numeral (num.Bit0 n)) =
mod-exp-aux m y (x? mod m) (numeral n)
by (simp add: n'-def)

!

have numeral (num.Bitl n) = Suc (2 * n’)
by (subst numeral.numeral-Bitl) (simp del: arith-simps add: n'-def)
also have mod-exp-auz m y x ... = mod-exp-auz m ((z * y) mod m) ("2 mod
m) n’
by (subst mod-exp-auz-code) (simp-all add: power2-eq-square)
finally show mod-ezp-aux m y © (numeral (num.Bitl n)) =
mod-ezxp-auz m ((z * y) mod m) (2% mod m) (numeral n)
by (simp add: n'-def)
qed

lemma eval-mod-exp [simp]:
mod-exp b’ 0 m’ = 1 mod m’
mod-exp b’ 1 m’ = b’ mod m’
mod-exp b’ (Suc 0) m’ = b’ mod m’
mod-exp b’ e’ 0 = b " e’
mod-exp b’ e’ 1 = 0
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mod-exp b’ e’ (Suc 0) = 0
mod-exp 0 1 m’' = 0
mod-exp 0 (Suc 0) m’ = 0
mod-exp 0 (numeral ) m’ = 0
mod-exp 1 ¢’ m’ = 1 mod m’
mod-exp (Suc 0) ¢/ m’ = 1 mod m’
mod-exp (numeral b) (numeral e) (numeral m) =
mod-exp-auz (numeral m) 1 (numeral b) (numeral e) mod numeral m
by (simp-all add: mod-exp-def mod-exp-auz-correct)

end

theory Fuler-Criterion
imports Residues
begin

context
fixes p :: nat
fixes a :: int

assumes p-prime: prime p

assumes p-ge-2: 2 < p

assumes p-a-relprime: [a # 0](mod p)
begin

private lemma odd-p: odd p
using p-ge-2 p-prime prime-odd-nat by blast

private lemma p-minus-1-int:
int (p—1)=intp— 1
by (metis of-nat-1 of-nat-diff p-prime prime-ge-1-nat)

private lemma p-not-eg-Suc-0 [simp]:
p # Suc 0
using p-ge-2 by simp

private lemma one-mod-int-p-eq [simp]:
1 modint p =1
proof —
from p-ge-2 have int 1 mod int p = int 1
by simp
then show ?thesis
by simp
qed

private lemma FE-1:

assumes QuadRes (int p) a
shows [a ~ ((p — 1) div 2) = 1] (mod int p)
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proof —
from assms obtain b where b: [b ~ 2 = a] (mod int p)
unfolding QuadRes-def by blast
then have [a " ((p — 1) div 2) =b " (2 % ((p — 1) div 2))] (mod int p)
by (simp add: cong-pow cong-sym power-mult)
then have [a ~ ((p — 1) div 2) = b " (p — 1)] (mod int p)
using odd-p by force
moreover have [b ~(p — 1) = 1] (mod int p)
proof —
have [nat [b] " (p — 1) = 1] (mod p)
using p-prime proof (rule fermat-theorem)
from b p-a-relprime show — p dvd nat ||
by (auto simp add: cong-iff-dvd-diff power2-eq-square)
(metis cong-iff-dvd-diff cong-dvd-iff dvd-mult2)
qed
then have nat [b] = (p — 1) mod p = 1 mod p
by (simp add: cong-def)
then have int (nat |b] ~ (p — 1) mod p) = int (1 mod p)
by simp
moreover from odd-p have |b| ~ (p — Suc 0) = b ~ (p — Suc 0)
by (simp add: power-even-abs)
ultimately show Zthesis
by (auto simp add: cong-def zmod-int)
qed
ultimately show ?thesis
by (auto intro: cong-trans)
qed

private definition SI :: int set where S1 = {0 <.. intp — 1}

private definition P :: int = int = bool where
Pzy<«— [z xy=a] (modp) Ny€e SI

private definition f-1 :: int = int where
f-1z=(THE y. Pz y)

private definition f :: int = int set where

fx = {l’, f_l I}
private definition S2 :: int set set where S2 = f ‘ 51

private lemma P-lemma: assumes ¢ € S1

shows 3! y. Pz y
proof —

have — p dvd = using assms zdvd-not-zless S1-def by auto

hence co-zp: coprime x p using p-prime prime-imp-coprime-int[of p ]

by (simp add: ac-simps)

then obtain y’ where y": [z * y' = 1] (mod p) using cong-solve-coprime-int by

blast
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moreover define y where y = 3’ * a mod p
ultimately have [z x y = a] (mod p)
using mod-mult-right-eq [of  y' * a p]
cong-scalar-right [of x = y’ 1 int p a
by (auto simp add: cong-def ac-simps)
moreover have y € {0 .. int p — 1} unfolding y-def using p-ge-2 by auto
hence y € S1 using calculation cong-iff-dvd-diff p-a-relprime S1-def cong-dvd-iff
by fastforce
ultimately have P z y unfolding P-def by blast
moreover {
fix y1 y2
assume P z yl Pz y2
moreover hence [y = y2] (mod p) unfolding P-def
using co-zp cong-mult-leancel[of © p y1 y2] cong-sym cong-trans by blast
ultimately have y! = y2 unfolding P-def S1-def using cong-less-imp-eg-int
by auto
}
ultimately show ?thesis by blast
qed

private lemma f-1-lemma-1: assumes ¢ € S1
shows P z (f-1 x) using assms P-lemma thel'[of P z] f-1-def by presburger

private lemma f-1-lemma-2: assumes x € S1

shows f-1 (f-1z) ==z

using assms f-1-lemma-1[of z] f-1-def P-lemmalof f-1 x] P-def by (auto simp:
mult.commute)

private lemma f-lemma-1: assumes z € S1
shows fz = f (f-1 z) using f-def f-1-lemma-2[of x| assms by auto

private lemma [7: assumes — QuadRes p a x € S1

shows z # f-1 x

using f-1-lemma-1[of x| assms unfolding P-def QuadRes-def power2-eq-square
by fastforce

private lemma [2: assumes - QuadRes p a x € S1

shows [[] (fz) = a] (mod p)
using assms l1 f-1-lemma-1 P-def f-def by auto

private lemma [3: assumes z € 52
shows finite x using assms f-def S2-def by auto

private lemma [}: S1 =) S2 using f-1-lemma-1 P-def f-def S2-def by auto
private lemma [5: assumes z € S2y € S2z # y
shows z Ny = {}

proof —
obtain a b where ab: t = faa € S1y=fbbe SI using assms S2-def by
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auto
hence a # b a # f-1 b f-1 a # b using assms(3) f-lemma-1 by blast+
moreover hence f-1 a # f-1 b using f-1-lemma-2|of a] f-1-lemma-2[of b] ab by
force
ultimately show ?thesis using f-def ab by fastforce
qed

private lemma [6: prod Prod S2 = [[ S1
using prod. Union-disjoint[of S2 Ax. x| 13 14 15 unfolding comp-def by auto

private lemma [7: fact n =[] {0 <.. int n}
proof (induction n)
case (Suc n)
have int (Suc n) = int n + 1 by simp
hence insert (int (Suc n)) {0<..int n} = {0<..int (Suc n)} by auto
thus ?case using prod.insert[of {0<..int n} int (Suc n) A\z. z] Suc fact-Suc by
auto
qed simp

private lemma [8: fact (p — 1) =[] SI using I7[of p — 1] SI-def p-minus-1-int
by presburger

private lemma [9: [prod Prod S2 = —1] (mod p)
using 16 I8 wilson-theorem|of p| p-prime by presburger

private lemma [10: assumes card S = n A\z. € S = [g z = a] (mod p)
shows [prod g S = a ~ n] (mod p) using assms
proof (induction n arbitrary: S)
case (
thus ?case using card-0-eq[of S| prod.empty prod.infinite by fastforce
next
case (Suc n)
then obtain = where z: z € S by force
define S’ where S’ = S — {z}
hence [prod g S’ = a ~ n] (mod int p)
using = Suc(1)[of S'] Suc(2) Suc(3) by (simp add: card-ge-0-finite)
moreover have prod g S = g x * prod g S’
using = S'-def Suc(2) prod.remove[of S z g] by fastforce
ultimately show ?case using z Suc(3) cong-mult
by simp blast
qed

private lemma [11: assumes — QuadRes p a
shows card S2 = (p — 1) div 2
proof —
have sum card S2 = 2 % card S2
using sum.conglof S2 S2 card Az. 2] U1 f-def S2-def assms by fastforce
moreover have p — 1 = sum card S2
using U4 card-UN-disjoint[of S2 Az. x| 13 15 S1-def S2-def by auto
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ultimately show ?thesis by linarith
qed

private lemma [12: assumes — QuadRes p a
shows [prod Prod S2 = a ~ ((p — 1) div 2)] (mod p)
using assms [2 110 111 unfolding S2-def by blast

private lemma FE-2: assumes — QuadRes p a
shows [a ~ ((p — 1) div 2) = —1] (mod p) using 19 112 cong-trans cong-sym
assms by blast

lemma euler-criterion-aux: [(Legendre a p) = a ~ ((p — 1) div 2)] (mod p)
using p-a-relprime by (auto simp add: Legendre-def

introl: cong-sym [of - 1] cong-sym [of - — 1]
dest: E-1 E-2)
end

theorem culer-criterion: assumes prime p 2 < p
shows [(Legendre a p) = a ~ ((p — 1) div 2)] (mod p)
proof (cases [a = 0] (mod p))
case True
then have [a " ((p — 1) div 2) =0 " ((p — 1) div 2)] (mod p)
using cong-pow by blast
moreover have (0::int) ~((p — 1) div 2) = 0
using zero-power [of (p — 1) div 2] assms(2) by simp
ultimately have [a ~ ((p — 1) div 2) = 0] (mod p)
using True assms(1) prime-dvd-power-int-iff
by (simp add: cong-iff-dvd-diff)
then show ?thesis unfolding Legendre-def using True cong-sym
by auto
next
case Fulse
then show ?thesis
using euler-criterion-auzr assms by presburger
qed

hide-fact euler-criterion-auz

end

8 Gauss’ Lemma
theory Gauss
imports FEuler-Criterion

begin

lemma cong-prime-prod-zero-nat:
[a % b= 0] (mod p) = prime p => [a = 0] (mod p) V [b = 0] (mod p)
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for a :: nat
by (auto simp add: cong-altdef-nat prime-dvd-mult-iff)

lemma cong-prime-prod-zero-int:
[a % b= 0] (mod p) = prime p => [a = 0] (mod p) V [b = 0] (mod p)
for a :: int
by (simp add: cong-0-iff prime-dvd-mult-iff)

locale GAUSS =
fixes p :: nat
fixes a :: int
assumes p-prime: prime p
assumes p-ge-2: 2 < p
assumes p-a-relprime: [a # 0](mod p)
assumes a-nonzero: 0 < a
begin

definition A = {0:int <.. ((int p — 1) div 2)}
definition B = (Az. x x a) ‘ A

definition C = (Az. z mod p) ‘B

definition D = C N {.. (int p — 1) div 2}
definition £ = C N {(intp — 1) div 2 <.}
definition F' = (Az. (int p — z)) ‘E

8.1 Basic properties of p

lemma odd-p: odd p
by (metis p-prime p-ge-2 prime-odd-nat)

lemma p-minus-one-l: (intp — 1) div 2 < p
proof —
have (p — 1) div2 < (p — 1) div 1
by (metis div-by-1 div-le-dividend)
also have ... = p — I by simp
finally show ?thesis
using p-ge-2 by arith
qed

lemma p-eq2: int p = (2 x ((int p — 1) div 2)) + 1
using odd-p p-ge-2 nonzero-mult-div-cancel-left [of 2 p — 1] by simp

lemma p-odd-int: obtains z :: int where int p =2 x 2z + 10 < z
proof
let %z = (intp — 1) div 2
show int p = 2 x 22 + 1 by (rule p-eq2)
show 0 < 22
using p-ge-2 by linarith
qed
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8.2 Basic Properties of the Gauss Sets

lemma finite-A: finite A
by (auto simp add: A-def)

lemma finite-B: finite B
by (auto simp add: B-def finite-A)

lemma finite-C: finite C
by (auto simp add: C-def finite-B)

lemma finite-D: finite D
by (auto simp add: D-def finite-C')

lemma finite-E: finite E
by (auto simp add: E-def finite-C)

lemma finite-F': finite F
by (auto simp add: F-def finite-F)

lemma C-eq: C =D UFE
by (auto simp add: C-def D-def E-def)

lemma A-card-eq: card A = nat ((int p — 1) div 2)
by (auto simp add: A-def)

lemma inj-on-za-A: inj-on (Az. z x a) A
using a-nonzero by (simp add: A-def inj-on-def)

definition ResSet :: int = int set = bool
where ResSet m X +— (Vyl y2. y1 € X N y2 € X A [yl = y2] (mod m) —

yl = y2)

lemma ResSet-image:

0 <m=> ResSet m A= Vaxec A Vyec A ([fz=[fyl(mod m) — z=1y)
= ResSetm (f * A)

by (auto simp add: ResSet-def)

lemma A-res: ResSet p A
using p-ge-2 by (auto simp add: A-def ResSet-def introl: cong-less-imp-eq-int)

lemma B-res: ResSet p B
proof —
have x: x = y
if a: [z x a = y * a] (mod p)

and b: 0 < z

and c¢: ¢ < (intp — 1) div 2
and d: 0 < y

and e: y < (intp — 1) div 2
for z y
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proof —
from p-a-relprime have — p dvd a
by (simp add: cong-0-iff)
with p-prime prime-imp-coprime [of - nat |al]
have coprime a (int p)
by (simp-all add: ac-simps)
with a cong-mult-rcancel [of a int p z y] have [z = y] (mod p)
by simp
with cong-less-imp-eg-int [of z y p] p-minus-one-1
order-le-less-trans [of x (int p — 1) div 2 p]
order-le-less-trans [of y (int p — 1) div 2 p]
show ?thesis
by (metis b ¢ cong-less-imp-eg-int d e zero-less-imp-eq-int of-nat-0-le-iff)
qed
show ?thesis
using p-ge-2 p-a-relprime p-minus-one-I
by (metis x A-def A-res B-def GAUSS. ResSet-image GAUSS-axioms greater ThanAt-
Most-iff odd-p odd-pos of-nat-0-less-iff)
qed

lemma SR-B-inj: inj-on (Az. z mod p) B
proof —
have Fulse
if a: x x a mod p =y * a mod p
and b: 0 < z
and c¢: ¢ < (intp — 1) div 2
and d: 0 < y
and e: y < (intp — 1) div 2
and f: z #£ y
for z y
proof —
from a have a: [z x a = y x a](mod p)
using cong-def by blast
from p-a-relprime have —p dvd a
by (simp add: cong-0-iff)
with p-prime prime-imp-coprime [of - nat |al]
have coprime a (int p)
by (simp-all add: ac-simps)
with a’ cong-mult-rcancel [of a int p z y]
have [z = y] (mod p) by simp
with cong-less-imp-eg-int [of z y p] p-minus-one-I
order-le-less-trans [of x (int p — 1) div 2 p]
order-le-less-trans [of y (int p — 1) div 2 p]
have z = y
by (metis b ¢ cong-less-imp-eg-int d e zero-less-imp-eq-int of-nat-0-le-iff)
then show ?thesis
by (simp add: f)
qged
then show ?thesis
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by (auto simp add: B-def inj-on-def A-def) metis
qed

lemma nonzero-mod-p: 0 < x = z < int p = [z # 0](mod p)
for z :: int
by (simp add: cong-def)

lemma A-ncong-p: x € A = [z # 0](mod p)
by (rule nonzero-mod-p) (auto simp add: A-def)

lemma A-greater-zero: t € A = 0 < z
by (auto simp add: A-def)

lemma B-ncong-p: © € B = [z # 0](mod p)
by (auto simp: B-def p-prime p-a-relprime A-ncong-p dest: cong-prime-prod-zero-int)

lemma B-greater-zero: x € B = 0 < x
using a-nonzero by (auto simp add: B-def A-greater-zero)

lemma B-mod-greater-zero:
0 < zxzmodintpifx € B
proof —
from that have z mod int p # 0
using B-ncong-p cong-def cong-mult-self-left by blast
moreover from that have 0 < z
by (rule B-greater-zero)
then have 0 < z mod int p
by (auto simp add: mod-int-pos-iff intro: neg-le-trans)
ultimately show ?thesis
by simp
qed

lemma C-greater-zero: y € C = 0 < y
by (auto simp add: C-def B-mod-greater-zero)

lemma F-subset: F C {x. 0 <z Az < ((intp — 1) div 2)}
using p-ge-2 by (auto simp add: F-def E-def C-def intro: p-odd-int)

lemma D-subset: D C{z. 0 <z ANz <((p—1)div2)}
by (auto simp add: D-def C-greater-zero)

lemma F-eq: F = {x. 3y € A. (x =p — ((y *x a) mod p) A (int p — 1) div 2 <
(y * a) mod p)}
by (auto simp add: F-def E-def D-def C-def B-def A-def)

lemma D-eq: D = {z. 3y € A. (x = (y * a) mod p A (y * a) mod p < (int p —

1) div 2)}
by (auto simp add: D-def C-def B-def A-def)
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lemma all-A-relprime:

coprime zpif z € A
proof —

from A-ncong-p [OF that] have — int p dvd z

by (simp add: cong-0-iff)

with p-prime show %thesis

by (metis (no-types) coprime-commaute prime-imp-coprime prime-nat-int-transfer)
qed

lemma A-prod-relprime: coprime (prod id A) p
by (auto intro: prod-coprime-left all-A-relprime)

8.3 Relationships Between Gauss Sets

lemma StandardRes-inj-on-ResSet: ResSet m X = inj-on (Ab. b mod m) X
by (auto simp add: ResSet-def inj-on-def cong-def)

lemma B-card-eq-A: card B = card A
using finite-A by (simp add: finite-A B-def inj-on-za-A card-image)

lemma B-card-eq: card B = nat ((int p — 1) div 2)
by (simp add: B-card-eq-A A-card-eq)

lemma F-card-eq-E: card F = card E
using finite-E by (simp add: F-def card-image)

lemma C-card-eq-B: card C = card B
proof —
have inj-on (Ax.  mod p) B
by (metis SR-B-inj)
then show ?thesis
by (metis C-def card-image)
qed

lemma D-E-disj: DN E = {}
by (auto simp add: D-def E-def)

lemma C-card-eq-D-plus-E: card C = card D + card E
by (auto simp add: C-eq card-Un-disjoint D-E-disj finite-D finite-E)

lemma C-prod-eq-D-times-E: prod id E *x prod id D = prod id C
by (metis C-eq D-E-disj finite-D finite-E inf-commute prod.union-disjoint sup-commute)

lemma C-B-zcong-prod: [prod id C = prod id B] (mod p)
apply (auto simp add: C-def)
apply (insert finite-B SR-B-inj)
apply (drule prod.reindex [of Az. x mod int p B id])
apply auto
apply (rule cong-prod)
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apply (auto simp add: cong-def)
done

lemma F-Un-D-subset: (F U D) C A
by (intro Un-least subset-trans [OF F-subset] subset-trans [OF D-subset]) (auto
simp: A-def)

lemma F-D-disj: (F N D) = {}
proof (auto simp add: F-eq D-eq)
fix y z 2 int
assume p — (y * a) mod p = (z x a) mod p
then have [(y *x a) mod p + (z *x a) mod p = 0] (mod p)
by (metis add.commute diff-eq-eq dvd-refl cong-def dvd-eq-mod-eq-0 mod-0)
moreover have [y x a = (y * a) mod p] (mod p)
by (metis cong-def mod-mod-trivial)
ultimately have [a * (y + z) = 0] (mod p)
by (metis cong-def mod-add-left-eq mod-add-right-eq mult. commute ring-class.ring-distribs(1))
with p-prime a-nonzero p-a-relprime have a: [y + z = 0] (mod p)
by (auto dest!: cong-prime-prod-zero-int)
assume b: y € Aand c: z € A
then have 0 < y + 2
by (auto simp: A-def)
moreover from b ¢ p-eqg2 have y + z < p
by (auto simp: A-def)
ultimately show Fulse
by (metis a nonzero-mod-p)
qged

lemma F-Un-D-card: card (F U D) = nat (p — 1) div 2)
proof —
have card (F U D) = card E 4+ card D
by (auto simp add: finite-F finite-D F-D-disj card-Un-disjoint F-card-eq-E)
then have card (F U D) = card C
by (simp add: C-card-eq-D-plus-E)
then show card (F U D) = nat (p — 1) div 2)
by (simp add: C-card-eq-B B-card-eq)
qed

lemma F-Un-D-eq-A: F U D= A
using finite-A F-Un-D-subset A-card-eq F-Un-D-card by (auto simp add: card-seteq)

lemma prod-D-F-eq-prod-A: prod id D * prod id F = prod id A
by (metis F-D-disj F-Un-D-eq-A Int-commute Un-commute finite-D finite-F prod.union-disjoint)

lemma prod-F-zcong: [prod id F = ((—1) ~ (card E)) % prod id E] (mod p)
proof —
have FE: prod id F = prod ((—) p) E
using finite-E prod.reindex|OF inj-on-diff-left] by (auto simp add: F-def)
then have Yz € E. [(p—z) mod p = — z](mod p)
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by (metis cong-def minus-mod-selfl mod-mod-trivial)

then have [prod ((Az. z mod p) o ((—) p)) E = prod (uminus) E](mod p)
using finite-E p-ge-2 cong-prod [of E (Az. x mod p) o ((—) p) uminus p]
by auto

then have two: [prod id F = prod (uminus) E](mod p)
by (metis FE cong-cong-mod-int cong-refl cong-prod minus-mod-self1)
have prod uminus E = (—1) ~ card E x prod id E
using finite-E by (induct set: finite) auto
with two show ?thesis
by simp
qged

8.4 Gauss’ Lemma

lemma auz: prod id A x (— 1) “card E x a ~card A x (— 1) " card E = prod id
Axa " card A
by auto

theorem pre-gauss-lemma: [a ~ nat((int p — 1) div 2) = (—1) ~ (card E)] (mod
p)
proof —
have [prod id A = prod id F x prod id D](mod p)
by (auto simp: prod-D-F-eq-prod-A mult.commute cong del: prod.cong-simp)
then have [prod id A = ((—1) (card E) x prod id E) * prod id D] (mod p)
by (rule cong-trans) (metis cong-scalar-right prod-F-zcong)
then have [prod id A = ((—1) (card E) x prod id C)] (mod p)
using finite-D finite-E by (auto simp add: ac-simps C-prod-eq-D-times-E C-eq
D-E-disj prod.union-disjoint)
then have [prod id A = ((—1) (card E) x prod id B)] (mod p)
by (rule cong-trans) (metis C-B-zcong-prod cong-scalar-left)
then have [prod id A = ((—1) (card E) x prod id (Az. z x a) ¢ A))] (mod p)
by (simp add: B-def)
then have [prod id A = ((—1) (card E) % prod (Az. x x a) A)] (mod p)
by (simp add: inj-on-za-A prod.reindex)
moreover have prod (Az. z * a) A = prod (Az. a) A * prod id A
using finite-A by (induct set: finite) auto
ultimately have [prod id A = ((—1) (card E) * (prod (Az. a) A x prod id A))]
(mod p)
by simp
then have [prod id A = ((—1) (card E) x a (card A) * prod id A)](mod p)
by (rule cong-trans)
(simp add: cong-scalar-left cong-scalar-right finite-A ac-simps)
then have a: [prod id A x (—1) (card E) =
((=1)card E) * a{card A) * prod id A x (—1) (card E))](mod p)
by (rule cong-scalar-right)
then have [prod id A x (—1) (card E) = prod id A *
(=1)(card E) x a (card A) * (—1) (card E)](mod p)
by (rule cong-trans) (simp add: a ac-simps)
then have [prod id A x (—1) (card E) = prod id A * a {card A)](mod p)
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by (rule cong-trans) (simp add: aux cong del: prod.cong-simp)
with A-prod-relprime have [(— 1) ~card E = a ~ card A](mod p)
by (metis cong-mult-lcancel)
then show %thesis
by (simp add: A-card-eq cong-sym)
qed

theorem gauss-lemma: Legendre a p = (—1) ~ (card E)
proof —
from euler-criterion p-prime p-ge-2 have [Legendre a p = o (nat (((p) — 1) div
2))] (mod p)
by auto
moreover have int ((p — 1) div 2) = (intp — 1) div 2
using p-eq2 by linarith
then have [a ~ nat (int (p — 1) div 2)) = a ~nat ((int p — 1) div 2)] (mod
int p)
by force
ultimately have [Legendre a p = (—1) ~ (card E)] (mod p)
using pre-gauss-lemma cong-trans by blast
moreover from p-a-relprime have Legendre a p = 1 V Legendre a p = —1
by (auto simp add: Legendre-def)
moreover have (—1::int) ~ (card E) = 1 V (—1:int) ~ (card E) = —1
using neg-one-even-power neg-one-odd-power by blast
moreover have [1 # — 1] (mod int p)
using cong-iff-dvd-diff [where 'a=int] nonzero-mod-plof 2] p-odd-int
by fastforce
ultimately show %thesis
by (auto simp add: cong-sym)
qed

end

end

theory Quadratic-Reciprocity
imports Gauss
begin

The proof is based on Gauss’s fifth proof, which can be found at https:
//www.lehigh.edu/~shw2/q-recip/gauss5.pdf.

locale QR =

fixes p :: nat

fixes ¢ :: nat

assumes p-prime: prime p
assumes p-ge-2: 2 < p
assumes g-prime: prime q
assumes ¢-ge-2: 2 < q
assumes pg-neq: p £ q
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begin

lemma odd-p: odd p
using p-ge-2 p-prime prime-odd-nat by blast

lemma p-ge-0: 0 < int p
by (simp add: p-prime prime-gt-0-nat)

lemma p-eq2: int p = (2 x ((int p — 1) div 2)) + 1
using odd-p by simp

lemma odd-q: odd q
using ¢-ge-2 g-prime prime-odd-nat by blast

lemma ¢-ge-0: 0 < int ¢
by (simp add: q-prime prime-gt-0-nat)

lemma g-eq2: int ¢ = (2 x ((int ¢ — 1) div 2)) + 1
using odd-q by simp

lemma pg-eq2: int p * int ¢ = (2 * ((int p % int ¢ — 1) div 2)) + 1
using odd-p odd-q by simp

lemma pq-coprime: coprime p q
using pg-neq p-prime primes-coprime-nat g-prime by blast

lemma pg-coprime-int: coprime (int p) (int q)
by (simp add: ged-int-def pq-coprime)

lemma gp-ineq: int p x k < (int px int ¢ — 1) div 2 +— k < (int ¢ — 1) div 2
proof —
have 2 x intpx k< intpxintq— 1 +— 2xk<intq— 1
using p-ge-0 by auto
then show ?thesis by auto
qed

lemma QRgp: QR q p
using QR-def QR-axioms by simp

lemma pg-commute: int p x int ¢ = int q¢ * int p
by simp

lemma pg-ge-0: int p * int g > 0
using p-ge-0 g-ge-0 mult-pos-pos by blast

definition r = ((p — 1) div 2) * ((¢ — 1) div 2)

definition m = card (GAUSS.E p q)
definition n = card (GAUSS.E q p)
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abbreviation Res k = {0 .. k — 1} for k :: int

abbreviation Res-ge-0 k = {0 <.. k — 1} for k :: int
abbreviation Res-0 k = {0::int} for k :: int

abbreviation Res-lk = {0 <.. (k — 1) div 2} for k :: int
abbreviation Res-h k = {(k — 1) div 2 <.. k — 1} for k :: int

abbreviation Sets-pg r0 r1 r2 =
{(z:zint). z € 70 (int p * int ¢) A z mod p € r1 (int p) A z mod q € r2 (int q)}

definition A = Sets-pq Res-l Res-l Res-h
definition B = Sets-pq Res-l Res-h Res-1
definition C' = Sets-pq Res-h Res-h Res-l
definition D = Sets-pq Res-l Res-h Res-h
definition F = Sets-pq Res-l Res-0 Res-h
definition F' = Sets-pg Res-l Res-h Res-0

definition a = card A
definition b = card B
definition ¢ = card C
definition d = card D
definition e = card £
definition f = card F

lemma Gpq: GAUSS p q
using p-prime pq-neq p-ge-2 q-prime
by (auto simp: GAUSS-def cong-iff-dvd-diff dest: primes-dvd-imp-eq)

lemma Ggp: GAUSS ¢ p
by (simp add: QRqp QR.Gpq)

lemma QR-lemma-01: (Az. z mod q) ‘ E = GAUSS.E q p
proof
have x € F — z mod int ¢ € GAUSS.E q p if x € F for x
proof —
from that obtain k where k: x = int p x k
unfolding E-def by blast
from that E-def have x € Res-l (int p x int q)
by blast
then have k € GAUSS.A ¢
using Gqp GAUSS.A-def k qp-ineq by (simp add: zero-less-mult-iff)
then have z mod ¢ € GAUSS.E q p
using GAUSS.C-def|[of q p| Ggp k GAUSS.B-def|of q p] that GAUSS. E-def|of
q ]
by (force simp: E-def)
then show ?thesis by auto
qed
then show (A\z. z mod int q¢) ‘ E C GAUSS.E q p
by auto
show GAUSS.E qp C (Az. x mod q) ‘ E
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proof
fix z
assume z: © € GAUSS.F q p
then obtain ka where ka: ka € GAUSS.A q x = (ka * p) mod ¢
by (auto simp: Ggp GAUSS.B-def GAUSS.C-def GAUSS.E-def)
then have ka * p € Res-l (int p x int q)
using Ggp p-ge-0 gp-ineq by (simp add: GAUSS.A-def Groups.mult-ac(2))
then show z € (Az. x mod q) ‘ E
using ka z Gqp ¢-ge-0 by (force simp: E-def GAUSS.E-def)
qged
qed

lemma QR-lemma-02: e = n
proof —
have zr = yif z: € F and y: y € E and mod: x mod ¢ = y mod q for = y
proof —
obtain p-inv where p-inv: [int p x p-inv = 1] (mod int q)
using pq-coprime-int cong-solve-coprime-int by blast
from z y E-def obtain kx ky where k: © = int p x kx y = int p x ky
using dvd-def|of p z] by blast
with z y E-def have 0 < z int p * kx < (int p x int ¢ — 1) div 2
0 <yintp*ky < (intpx*intq— 1) div?2
using greaterThanAtMost-iff mem-Collect-eq by blast+
with £ have 0 < kx kx < q 0 < ky ky < ¢q
using gp-ineq by (simp-all add: zero-less-mult-iff)
moreover from mod k have (p-inv x (p x kz)) mod q¢ = (p-inv * (p * ky))
mod q
using mod-mult-cong by blast
then have (p * p-inv x kx) mod ¢ = (p * p-inv x ky) mod q
by (simp add: algebra-simps)
then have kx mod q¢ = ky mod q
using p-inv mod-mult-conglof p * p-inv q 1]
by (auto simp: cong-def)
then have [kx = ky| (mod q)
unfolding cong-def by blast
ultimately show #thesis
using cong-less-imp-eq-int k by blast
qed
then have inj-on (Az. x mod q) E
by (auto simp: inj-on-def)
then show ?thesis
using QR-lemma-01 card-image e-def n-def by fastforce
qed

lemma QR-lemma-03: f = m
proof —
have F = QR.E qp
unfolding F-def pg-commute using QRqp QR.E-def[of q p] by fastforce
then have f = QR.e ¢ p
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unfolding f-def using QRgp QR.e-def[of q p] by presburger
then show ?thesis
using QRqp QR.QR-lemma-02 m-def QRqp QR.n-def by presburger
qed

definition f-1 :: int = int x int
where f-1 z = ((z mod p), (z mod q))

definition P-1 : int X int = int = bool
where P-1 res z < x mod p = fst res A x mod q = snd res \ x € Res (int p *
int q)

definition ¢-1 :: int x int = int
where ¢-1 res = (THE z. P-1 res x)

lemma P-1-lemma:
fixes res :: int x int
assumes 0 < fst res fst res < p 0 < snd res snd res < q
shows 3lz. P-1 res x
proof —
obtain y kI k2 where yk: y = nat (fst res) + kI * p y = nat (snd res) + k2
q
using chinese-remainder|of p q| pq-coprime p-ge-0 g-ge-0 by fastforce
have (y mod (int p = int q)) mod int p = fst res
using assms by (simp add: mod-mod-cancel yk(1))
moreover have (y mod (int p x int q)) mod int ¢ = snd res
using assms by (simp add: mod-mod-cancel yk(2))
ultimately have P-1 res (int y mod (int p * int q))
using pg-ge-0 by (simp add: P-1-def)
moreover have a = b if P-1 res a P-1 res b for a b
proof —
from that have int p x int ¢ dvd a — b
using divides-mult[of int p a — b int q] pg-coprime-int mod-eq-dvd-iff [of a -
b
unfolding P-1-def by force
with that show ?thesis
using dvd-imp-le-int[of a — b] unfolding P-1-def by fastforce
qed
ultimately show ?thesis by auto
qed

lemma g-1-lemma:
fixes res :: int X int
assumes 0 < fst res fst res < p 0 < snd res snd res < q
shows P-1 res (g-1 res)
using assms P-1-lemma [of res] thel’ [of P-1 res] g-1-def
by auto

definition BuC = Sets-pq Res-ge-0 Res-h Res-1
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lemma finite-BuC' [simp]:
finite BuC
proof —
{
fix p q :: nat
have finite {z. 0 < z N z < int p * int ¢}
by simp
then have finite {z.
0<zA
T < intpxint g A\
(intp — 1) div 2
< z mod int p A
x mod int p < int p A
0 < x mod int ¢ A
x mod int ¢ < (int ¢ — 1) div 2}
by (auto intro: rev-finite-subset)
}
then show ?thesis
by (simp add: BuC-def)
qed

lemma QR-lemma-04: card BuC = card (Res-h p X Res-l q)
using card-bij-eq|of f-1 BuC Res-h p x Res-l q g-1]
proof
show inj-on f-1 BuC
proof
fix x y
assume x: ¢ € BuCy € BuC f-1z=f1y
then have int p x int ¢ dvd z — y
using f-1-def pg-coprime-int divides-mult[of int p x — y int ¢|
mod-eq-dvd-iff [of = - Y]
by auto
with * show z = y
using dvd-imp-le-int[of © — y int p = int ¢] unfolding BuC-def by force
qed
show inj-on g-1 (Res-h p x Res-l q)
proof
fix x y
assume *: ¢ € Res-hp X Res-l qy € Res-hp X Res-lqg-1x=g-1y
then have 0 < fstz fstx < p 0 < sndzx sndz < ¢
0 < fstyfsty<p0O<sndysndy<q
using mem-Sigma-iff prod.collapse by fastforce+
with % show z = y
using g-1-lemmalof x| g-1-lemmalof y] P-1-def by fastforce
qed
show g¢-1 ‘ (Res-h p x Res-l q) C BuC
proof
fix y
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assume y € g-1 ‘ (Res-h p X Res-l q)
then obtain z where z: y = g-1 x © € Res-h p X Res-l q
by blast
then have P-1 z y
using g-1-lemma by fastforce
with z show y € BuC
unfolding P-1-def BuC-def mem-Collect-eq using SigmaFE prod.sel by fast-
force
qed
qged (auto simp: finite-subset f-1-def, simp-all add: BuC-def)

lemma QR-lemma-05: card (Res-h p X Res-l q) = r
proof —
have card (Res-l q) = (¢ — 1) div 2 card (Res-h p) = (p — 1) div 2
using p-eq2 by force+
then show ?thesis
unfolding r-def using card-cartesian-product|of Res-h p Res-l q] by presburger
qed

lemma QR-lemma-06: b+ ¢ =r
proof —

have BN C = {} finite B finite C B U C = BuC

unfolding B-def C-def BuC-def by fastforce+

then show ?thesis

unfolding b-def c-def using card.empty card- Un-Int QR-lemma-04 QR-lemma-05
by fastforce
qged

definition f-2:: int = int
where f-2 z = (int p x int ¢) — x

lemma f-2-lemma-1: f-2 (f-22) =z
by (simp add: f-2-def)

lemma f-2-lemma-2: [f-2 © = int p — z] (mod p)
by (simp add: f-2-def cong-iff-dvd-diff)

lemma f-2-lemma-3: f-2x € S=— 2z € f2°S
using f-2-lemma-1|of z] image-eql[of x f-2 f-2 x S| by presburger

lemma QR-lemma-07:
f-2 ¢ Res-1 (int p * int q) = Res-h (int p * int q)
f-2 ¢ Res-h (int p * int q) = Res-l (int p * int q)
proof —
have 1: f-2 ¢ Res-l (int p * int ¢) C Res-h (int p * int q)
by (force simp: f-2-def)
have 2: f-2 “ Res-h (int p * int q) C Res-l (int p * int q)
using pg-eq2 by (fastforce simp: f-2-def)
from 2 have 3: Res-h (int p * int q¢) C f-2 ‘ Res-l (int p x int q)
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using f-2-lemma-3 by blast

from 1 have 4: Res-l (int p x int q) C f-2 ¢ Res-h (int p x int q)
using f-2-lemma-3 by blast

from 1 3 show f-2 ‘ Res-l (int p * int q) = Res-h (int p * int q)
by blast

from 2 4 show f-2 ‘ Res-h (int p * int q¢) = Res-l (int p * int q)
by blast

qed

lemma QR-lemma-08:
f-2 x mod p € Res-l p <— z mod p € Res-h p
f-2 x mod p € Res-h p <— x mod p € Res-lp
using f-2-lemma-2|of x| cong-def|of [-2 x p — x p| minus-mod-self2[of x p]
zmod-zminus1-eq-if [of z p] p-eq?
by auto

lemma QR-lemma-09:
f-2 x mod q € Res-l ¢ <— x mod q € Res-h q
f-2x mod q € Res-h q +— x mod q € Res-l q
using QRgp QR.QR-lemma-08 f-2-def QR.f-2-def pg-commute by auto

lemma QR-lemma-10: a = ¢

unfolding a-def c-def

apply (rule card-bij-eqof -2 A C f-2])

unfolding A-def C-def

using QR-lemma-07 QR-lemma-08 QR-lemma-09 apply ((simp add: inj-on-def
f-2-def), blast)+

apply fastforce+

done

definition BuD = Sets-pq Res-l Res-h Res-ge-0
definition BuDuF = Sets-pq Res-l Res-h Res

definition f-3 :: int = int X int
where f-8 ¢ = (z mod p, z divp + 1)

definition ¢-3 :: int x int = int
where g-3z = fstz + (sndx — 1) % p

lemma QR-lemma-11: card BuDuF = card (Res-h p x Res-l q)
using card-bij-eq[of f-8 BuDuF Res-h p X Res-l q g-3]
proof
show f-3 ¢ BuDuF C Res-h p X Res-l q
proof
fix y
assume y € f-3 ¢ BuDuF
then obtain z where z: y = -3 x « € BuDuF
by blast
then have z < int p * (int ¢ — 1) div 2 + (int p — 1) div 2
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unfolding BuDuF-def using p-eq2 int-distrib(4) by auto
moreover from z have (intp — 1) div 2 < — 1 4+ z mod p
by (auto simp: BuDuF-def)
moreover have int p x (int ¢ — 1) div 2 = int p * ((int ¢ — 1) div 2)
by (subst div-multi-eq) (simp add: odd-q)
then have p x (int ¢ — 1) div2 =p* ((int ¢ + 1) div 2 — 1)
by fastforce
ultimately have z < p * ((int ¢ + 1) div2 — 1) — 1 + z mod p
by linarith
then have z divp < (int ¢ + 1) div 2 — 1
using mult.commutelof int p x div p] p-ge-0 div-mult-mod-eq[of = p]
and mult-less-cancel-left-pos[of p x div p (int ¢ + 1) div 2 — 1]
by linarith
moreover from z have 0 < z divp + 1
using pos-imp-zdiv-neg-iff [of p x] p-ge-0 by (auto simp: BuDuF-def)
ultimately show y € Res-h p X Res-l q
using z by (auto simp: BuDuF-def f-3-def)

qed
show inj-on ¢g-3 (Res-h p x Res-l q)
proof
have «: -8 (¢9-3 z) = x if © € Res-h p x Res-l q for z
proof —
from that have *: (fst © + (snd x — 1) * int p) mod int p = fst x
by force
from that have (fst x + (snd z — 1) * int p) divint p + 1 = snd z
by auto

with * show f-3 (¢-3z) ==z
by (simp add: f-3-def g-3-def)
qed
fix zy
assume z € Res-h p X Res-lqy € Res-hp X Res-lqg-3z=g-3y
from this *[of z] *[of y] show z = y
by presburger
qed
show ¢-3 ¢ (Res-h p x Res-l ¢) C BuDuF
proof
fix y
assume y € ¢-3 ‘ (Res-h p X Res-l q)
then obtain z where z: x € Res-h p X Res-lgand y: y = g-3 x
by blast
then have snd = < (int ¢ — 1) div 2
by force
moreover have int p x ((int ¢ — 1) div 2) = (int p x int ¢ — int p) div 2
using int-distrib(4) div-multl-eqlof int p int ¢ — 1 2] odd-q by fastforce
ultimately have (snd z) x int p < (int g * int p — int p) div 2
using mult-right-monolof snd x (int ¢ — 1) div 2 p] mult.commute|of (int q
— 1) div 2 p]
pg-commute
by presburger
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then have (sndx — 1) x int p < (int ¢ x int p — 1) div 2 — int p
using p-ge-0 int-distrib(3) by auto
moreover from z have fst ¢ < int p — 1 by force
ultimately have fst x + (sndx — 1) * int p < (int p * int ¢ — 1) div 2
using pg-commute by linarith
moreover from z have 0 < fst 2 0 < (sndx — 1) * p
by fastforce+
ultimately show y € BuDuF
unfolding BuDuF-def using ¢-ge-0 z g-3-def y by auto
qged
show finite BuDuF unfolding BuDuF-def by fastforce
qed (simp add: inj-on-inversel[of BuDuF g-3] f-3-def g-3-def QR-lemma-05)+

lemma QR-lemma-12: b+ d + m=r
proof —
have B N D = {} finite B finite D BU D = BuD
unfolding B-def D-def BuD-def by fastforce+
then have b + d = card BuD
unfolding b-def d-def using card-Un-Int by fastforce
moreover have BuD N F = {} finite BuD finite F'
unfolding BuD-def F-def by fastforce+
moreover have BuD U F = BuDuF
unfolding BuD-def F-def BuDuF-def
using ¢-ge-0 wl-disj-un-singleton(5)[of 0 int ¢ — 1] by auto
ultimately show ?thesis
using QR-lemma-03 QR-lemma-05 QR-lemma-11 card-Un-disjoint[of BuD F)|
unfolding b-def d-def f-def
by presburger
qed

lemma QR-lemma-18: a + d +n=r
proof —
have A = QR.B q p
unfolding A-def pg-commute using QRgp QR.B-def[of ¢ p] by blast
then have a = QR.b g p
using a-def QRqp QR.b-def[of q p] by presburger
moreover have D = QR.D g p
unfolding D-def pg-commute using QRqp QR.D-def[of q p] by blast
then have d = QR.d g p
using d-def QRgp QR.d-def[of q p] by presburger
moreover have n = QR.m ¢ p
using n-def QRgp QR.m-def[of q p] by presburger
moreover have r = QR.r q p
unfolding r-def using QRgp QR.r-def[of ¢ p] by auto
ultimately show ?thesis
using QRqp QR.QR-lemma-12 by presburger
qed

lemma QR-lemma-14: (—1:int) ~(m + n) = (—1) " r
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proof —
have m+n+ 2xd=r
using QR-lemma-06 QR-lemma-10 QR-lemma-12 QR-lemma-13 by auto
then show ?thesis
using power-add[of —1:int m + n 2 x d] by fastforce
qed

lemma Quadratic-Reciprocity:
Legendre p q x Legendre ¢ p = (—1::int) ~((p — 1) div 2 % ((¢ — 1) div 2))
using Gpq Gqp GAUSS.gauss-lemma power-add[of —1::int m n] QR-lemma-14
unfolding r-def m-def n-def by auto

end

theorem Quadratic-Reciprocity:

assumes prime p 2 < p prime ¢ 2 < qp #£ q

shows Legendre p q * Legendre ¢ p = (—1::int) ~((p — 1) div 2 * ((¢ — 1) div
2))

using QR.Quadratic-Reciprocity QR-def assms by blast

theorem Quadratic-Reciprocity-int:
assumes prime (nat p) 2 < p prime (nat q) 2 < qp # q
shows Legendre p q x Legendre ¢ p = (—1::int) ~ (nat ((p — 1) div 2 = ((¢ —
1) div 2)))
proof —
from assms have 0 < (p — 1) div 2 by simp
moreover have (nat p — 1) div 2 = nat ((p — 1) div 2) (nat ¢ — 1) div 2 =
nat ((¢ — 1) div 2)
by fastforce+
ultimately have (nat p — 1) div 2 * ((nat ¢ — 1) div 2) = nat ((p — 1) div 2
* ((¢ — 1) div 2))
using nat-mult-distrib by presburger
moreover have 2 < nat p 2 < nat ¢ nat p # nat q int (nat p) = p int (nat q)
=4q
using assms by linarith-+
ultimately show “thesis
using Quadratic-Reciprocity|of nat p nat q] assms by presburger
qed

end

9 Pocklington’s Theorem for Primes
theory Pocklington

imports Residues
begin
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9.1 Lemmas about previously defined terms

lemma prime-nat-iff'"": prime (p:nat) «—p A0 Ap# 1A KN¥m. 0<mAm
< p — coprime p m)
proof —
have § Am. [0 < p;Vm. 0 < m A m < p — coprime p m; m dvd p; m # p]|
= m = Suc 0
by (metis One-nat-def coprime-absorb-right dvd-1-iff-1 dvd-nat-bounds
nless-le)
show ?thesis
by (auto simp: nat-dvd-not-less prime-imp-coprime-nat prime-nat-iff elim!: §)
qed

lemma finite-number-segment: card { m. 0 < m Am <n} =mn — I
proof —

have { m. 0 <m A m < n} = {1..<n} by auto

then show ?thesis by simp
qed

9.2 Some basic theorems about solving congruences

lemma cong-solve:
fixes n :: nat
assumes an: coprime a n
shows Jz. [a * x = b] (mod n)
proof (cases a = 0)
case True
with an show %thesis
by (simp add: cong-def)
next
case Fulse
from bezout-add-strong-nat [OF this]
obtain d x y where dzy: d dvd a d dvd n a ¥ © = n x y + d by blast
then have di: d = 1
using assms coprime-common-divisor [of a n d] by simp
with dry(3) have a x z x b= (n*xy + 1) x b
by simp
then have a x (z x b)) = n* (y * b) + b
by (auto simp: algebra-simps)
then have a * (z % b) mod n = (n * (y x b) + b) mod n
by simp
then have a x (z x b) mod n = b mod n
by (simp add: mod-add-left-eq)
then have [a * (z x b) = b] (mod n)
by (simp only: cong-def)
then show ?thesis by blast
qged

lemma cong-solve-unique:
fixes n :: nat
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assumes an: coprime a n and nz: n # 0
shows Jlz. z < n A [a * x = b] (mod n)
proof —
from cong-solve| OF an] obtain z where z: [a *x x = b] (mod n)
by blast
let P = Az. z < n A [a x z = b] (mod n)
let %z = 2 mod n
from z have *: [a * 2 = b] (mod n)
by (simp add: cong-def mod-mult-right-eq|of a = n])
from mod-less-divisor| of n z] nz * have Px: P ?x by simp
have y = %z if Py: y < n [a * y = b] (mod n) for y
proof —
from Py(2) x have [a x y = a * ?z] (mod n)
by (simp add: cong-def)
then have [y = ?z] (mod n)
by (metis an cong-mult-lcancel-nat)
with mod-less|OF Py(1)] mod-less-divisor| of n x| nz
show ?thesis
by (simp add: cong-def)
qed
with Px show ¢thesis by blast
qged

lemma cong-solve-unique-nontrivial:
fixes p :: nat
assumes p: prime p
and pa: coprime p a
and z0: 0 < x
and zp: x < p
shows Jly. 0 <y Ay <pA[zxy=al (modp)
proof —
from pa have ap: coprime a p
by (simp add: ac-simps)
from z0 zp p have pz: coprime x p
by (auto simp add: prime-nat-iff " ac-simps)
obtain y where y: y < p [z x y = a] (mod p) Vz. 2 < p A [z * z = a] (mod p)
—z=y
by (metis cong-solve-unique neq0-conv p prime-gt-0-nat pz)
have y # 0
proof
assume y = 0
with y(2) have p dvd a
using cong-dvd-iff by auto
with not-prime-1 p pa show Fulse
by (auto simp add: gcd-nat.order-iff)
qed
with y show ?thesis
by blast
qed
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lemma cong-unique-inverse-prime:
fixes p :: nat
assumes prime p and 0 < zx and z < p
shows Jly. 0 <y Ay <pA[zxy= 1] (mod p)
by (rule cong-solve-unique-nontrivial) (use assms in simp-all)

lemma chinese-remainder-coprime-unique:
fixes a :: nat
assumes ab: coprime a b and az: a # 0 and bz: b # 0
and ma: coprime m a and nb: coprime n b
shows 3lz. coprime z (a * b)) Az < a * b A [x = m] (mod a) A [z = n] (mod b)
proof —
let P = Az. 2 < ax b A [z =m] (mod a) A [z = n] (mod b)
from binary-chinese-remainder-unique-nat|OF ab az bz]
obtain = where z: © < a *x b [x = m] (mod a) [x = n] (mod b) Vy. 2Py — y
==z
by blast
from ma nb x have coprime = a coprime z b
using cong-imp-coprime cong-sym by blast+
then have coprime x (axb)
by simp
with z show ?thesis
by blast
qed

9.3 Lucas’s theorem

lemma lucas-coprime-lemma:
fixes n :: nat
assumes m: m # 0 and am: [a"m = 1] (mod n)
shows coprime a n
proof —
consider n =1 | n=0|n> 1 by arith
then show ?thesis
proof cases
case I
then show ?thesis by simp
next
case 2
with am m show ?thesis
by simp
next
case 3
from m obtain m’ where m” m = Suc m’ by (cases m) blast+
have d = 1 if d: d dvd a d dvd n for d
proof —
from am mod-less|OF <n > 1>] have am!: a"m mod n = 1
by (simp add: cong-def)
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from dvd-mult2[OF d(1), of a”m’'] have dam: d dvd a"m
by (simp add: m’)
from dvd-mod-iff[OF d(2), of a"m| dam aml show ?Zthesis
by simp
qed
then show “thesis
by (auto intro: coprimel)
qed
qed

lemma lucas-weak:
fixes n :: nat
assumes n: n > 2
and an: [a " (n — 1) = 1] (mod n)
and nm:Vm. 0 <mAm<n—1— —[a m= 1] (modn)
shows prime n
proof (rule totient-imp-prime)
show totient n = n — 1
proof (rule ccontr)
have [a ~ totient n = 1] (mod n)
by (rule euler-theorem, rule lucas-coprime-lemma [of n — 1]) (use n an in
auto)
moreover assume totient n = n — 1
then have totient n > 0 totient n < n — 1
using <n > 2 and totient-less[of n] by simp-all
ultimately show Fulse
using nm by auto
qed
qed (use n in auto)

theorem lucas:
assumes n2: n > 2 and anl: [ (n — 1) = 1] (mod n)
and pn: Vp. primep A p dvdn — 1 — [a ((n — 1) div p) # 1] (mod n)
shows prime n

proof—
from n2 have n0l: n# 0n+# 1n—1%# 0
by arith+
from mod-less-divisor[of n 1] n01 have onen: 1 mod n = 1
by simp

from lucas-coprime-lemma|OF n01(8) anl] cong-imp-coprime anl
have an: coprime a n coprime (a ~(n — 1)) n
using <n > 2» by simp-all
have False if HO: Am. 0 <m Am <n—1AJa " m= 1] (modn) (is Im. ?P
m)
proof —
from HO[unfolded exists-least-iff [of ?P]] obtain m where
m:0<mm<n—1[a " m=1] (modn) Vk <m. 2Pk
by blast
have Fulse if nm1: (n — 1) mod m > 0
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proof —
from mod-less-divisor[OF m(1)] have th0:(n — 1) mod m < m by blast
let 7y = o~ ((n — 1) divm x m)
note mdeq = div-mult-mod-eqlof (n — 1) m)
have yn: coprime 2y n
using an(1) by (cases (n — Suc 0) div m * m = 0) auto
have %y mod n = (a”m) ((n — 1) div m) mod n
by (simp add: algebra-simps power-mult)

also have ... = (a"m mod n) ((n — 1) div m) mod n
using power-mod[of a"m n (n — 1) div m| by simp
also have ... = I using m(3)[unfolded cong-def onen] onen

by (metis power-one)
finally have *: 2y mod n = 1 .
have *x: [?y x a ~ ((n — 1) mod m) = ?yx 1] (mod n)
using anl [unfolded cong-def onen] onen
div-mult-mod-eq[of (n — 1) m, symmetric]
by (simp add:power-add[symmetric] cong-def * del: One-nat-def)
have [a ~ ((n — 1) mod m) = 1] (mod n)
by (metis cong-mult-rcancel-nat mult.commute xx yn)
with m(4)[rule-format, OF th0] nm1
less-trans| OF mod-less-divisor[OF m(1), of n — 1] m(2)] show %thesis
by blast
qed
then have (n — 1) mod m = 0 by auto
then have mn: m dvd n — 1 by presburger
then obtain r where r:n — 1 =m x r
unfolding dvd-def by blast
from n01 r m(2) have r01: r # 0 r # 1 by auto
obtain p where p: prime p p dvd r
by (metis prime-factor-nat r01(2))
then have th: prime p A p dvd n — 1
unfolding r by (auto intro: dvd-mult)
from r have (a ~ ((n — 1) div p)) mod n = (a (mxr div p)) mod n
by (simp add: power-mult)

also have ... = (a (mx(r div p))) mod n
using div-multi-eq[of m r p] p(2)[unfolded dvd-eq-mod-eq-0] by simp
also have ... = ((a"m) (r div p)) mod n
by (simp add: power-mult)
also have ... = ((a”m mod n) (r div p)) mod n
using power-mod ..
also from m(3) onen have ... = 1

by (simp add: cong-def)
finally have [(a ~ ((n — 1) div p))= 1] (mod n)
using onen by (simp add: cong-def)
with pn th show ?Zthesis by blast
qed
then have Vm. 0 < m Am<n—1— —[a m= 1] (mod n)
by blast
then show ?thesis by (rule lucas-weak[OF n2 anl])
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qed

9.4 Definition of the order of a number mod n

definition ord n a = (if coprime n a then Least (Ad. d > 0 A [a ~d = 1] (mod
n)) else 0)

This has the expected properties.

lemma coprime-ord:
fixes n::nat
assumes coprime n a
shows ord na > 0 A [a (ordn a) = 1] (mod n) A (Vm. 0 < m A m < ordn
a — [a” m # 1] (mod n))
proof—
let 2P =Xd. 0 < d AJfa " d= 1] (mod n)
from bigger-prime[of a] obtain p where p: prime p a < p
by blast
from assms have o: ord n a = Least ?P
by (simp add: ord-def)
have ex: 3m>0. ?P m
proof (cases n > 2)
case True
moreover from assms have coprime a n
by (simp add: ac-simps)
then have [a ~ totient n = 1] (mod n)
by (rule euler-theorem)
ultimately show Zthesis
by (auto intro: exl [where x = totient n))
next
case Fulse
then have n =0V n=1
by auto
with assms show ?thesis
by auto
qed
from exists-least-iff '[of ?P] ex assms show ?thesis
unfolding o[symmetric] by auto
qed

With the special value 0 for non-coprime case, it’s more convenient.

lemma ord-works: [a ~ (ord n a) = 1] (mod n) A (Ym. 0 < m A m < ord n a
— = [a”m = 1] (mod n))

for n :: nat

by (cases coprime n a) (use coprime-ord[of n a] in <auto simp add: ord-def
cong-def )

lemma ord: [a (ord n a) = 1] (mod n)

for n :: nat
using ord-works by blast
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lemma ord-minimal: 0 < m = m < ord n a = — [a"m = 1] (mod n)
for n :: nat
using ord-works by blast

lemma ord-eq-0: ord n a = 0 <— — coprime n a
for n :: nat
by (cases coprime n a) (simp add: coprime-ord, simp add: ord-def)

lemma divides-rexp: © dvd y = z dvd (y ~ Suc n)
for z y :: nat
by (simp add: dvd-mult2[of = y])

lemma ord-divides:[a ~ d = 1] (mod n) +— ord n a dvd d
(is ?lhs <— ?rhs)
for n :: nat
proof
assume ?rhs
then obtain £ where d = ord n a * k
unfolding dvd-def by blast
then have [a ~d = (a " (ord n a) mod n) k] (mod n)
by (simp add : cong-def power-mult power-mod)
also have [(a ~ (ord n a) mod n) "k = 1] (mod n)
using ord[of a n, unfolded cong-def]
by (simp add: cong-def power-mod)
finally show ?lhs .
next
assume ?lhs
show ?rhs
proof (cases coprime n a)
case prem: Fualse
then have o: ord n a = 0 by (simp add: ord-def)
show ?thesis
proof (cases d)
case (
with o prem show ?thesis by (simp add: cong-def)
next
case (Suc d’)
then have d0: d # 0 by simp
from prem obtain p where p: p dvd n p dvd a p # 1
by (auto elim: not-coprimeFE)
from <?lhs> obtain ¢l ¢2 where g12: a “d +n*ql =1 + n * ¢2
using prem d0 lucas-coprime-lemma
by (auto elim: not-coprimeE simp add: ac-simps)
then have ¢ “d + n x g — n x ¢2 = 1 by simp
with dvd-diff-nat [OF dvd-add [OF divides-rexp]] dvd-mult2 Suc p have p
dvd 1
by metis
with p(8) have False by simp
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then show ?thesis ..
qed
next
case H: True
let 20 =ordn a
let 2q = d div ord n a
let 9r = d mod ord n a
have eqo: [(a"%0) "?q = 1] (mod n)
using cong-pow ord-works by fastforce
from H have onz: %0 # 0 by (simp add: ord-eq-0)
then have opos: 20 > 0 by simp
from div-mult-mod-eq[of d ord n a] «?lhs»
have [a (%0x?q + ?r) = 1] (mod n)
by (simp add: cong-def mult.commute)
then have [(a"%0) "%¢ * (a"%r) = 1] (mod n)
by (simp add: cong-def power-mult[symmetric] power-add[symmetric])
then have th: [a"%r = 1] (mod n)
using eqo mod-mult-left-eq[of (a"%0) "%q a”?r n|
by (simp add: cong-def del: One-nat-def) (metis mod-mult-left-eq nat-mult-1)
show ?thesis
proof (cases ?r = 0)
case True
then show %thesis by (simp add: dvd-eq-mod-eq-0)
next
case Fulse
with mod-less-divisor|OF opos, of d] have r0o:?r >0 A ?r < %0 by simp
from conjunct2[OF ord-works[of a n], rule-format, OF r0o] th
show ?thesis by blast
qed
qed
qed

lemma order-divides-totient:

ord n a dvd totient n if coprime n a

using that euler-theorem [of a n)

by (simp add: ord-divides [symmetric] ac-simps)

lemma order-divides-expdiff:
fixes n::nat and a::nat assumes na: coprime n a
shows [a"d = a"¢] (mod n) +— [d = €] (mod (ord n a))
proof —
have th: [a"d = a"¢] (mod n) +— [d = €] (mod (ord n a))

if na: coprime n a and ed: (e::nat) < d

for n a d e :: nat
proof —

from na ed have dc. d = e 4+ ¢ by presburger

then obtain ¢ where c: d = e+ ¢ ..

from na have an: coprime a n

by (simp add: ac-simps)
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then have aen: coprime (a ~e) n
by (cases e > 0) simp-all
from an have acn: coprime (a ~¢) n
by (cases ¢ > 0) simp-all
from c have [a"d = a"¢] (mod n) +— [a"(e + ¢) = a"(e + 0)] (mod n)

by simp
also have ... «+— [a"ex a"¢c = a"e xa"0] (mod n) by (simp add: power-add)
also have ... +— [a "¢ = 1] (mod n)
using cong-mult-lcancel-nat [OF aen, of a"¢ a”0] by simp
also have ... +— ord n a dvd c
by (simp only: ord-divides)
also have ... «+— [e + ¢ = e + 0] (mod ord n a)

by (auto simp add: cong-altdef-nat)
finally show ?thesis
using c by simp
qged
consider ¢ < d | d < e by arith
then show ?thesis
proof cases
case I
with na show ?thesis by (rule th)
next
case 2
from th[OF na this] show ?thesis
by (metis cong-sym)
qged
qged

lemma ord-not-coprime [simp]: —coprime n a = ord n a = 0
by (simp add: ord-def)

lemma ord-1 [simp]: ord 1 n = 1
proof —
have (LEAST k. k > 0) = (1 :: nat)
by (rule Least-equality) auto
thus ?thesis by (simp add: ord-def)
qed

lemma ord-1-right [simp]: ord (n:nat) 1 = 1
using ord-divides[of 1 1 n] by simp

lemma ord-Suc-0-right [simp]: ord (n::nat) (Suc 0) = 1
using ord-divides[of 1 1 n] by simp

lemma ord-0-nat [simp]: ord 0 (n :: nat) = (if n = 1 then 1 else 0)
proof —
have (LEAST k. k > 0) = (1 :: nat)
by (rule Least-equality) auto
thus ?thesis by (auto simp: ord-def)
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qed

lemma ord-0-right-nat [simpl: ord (n :: nat) 0 = (if n = 1 then I else 0)
proof —
have (LEAST k. k > 0) = (1 :: nat)
by (rule Least-equality) auto
thus ?thesis by (auto simp: ord-def)
qed

lemma ord-divides”: [a ~ d = Suc 0] (mod n) = (ord n a dvd d)
using ord-divides[of a d n] by simp

lemma ord-Suc-0 [simp]: ord (Suc 0) n = 1
using ord-1[where 'a = nat] by (simp del: ord-1)

lemma ord-mod [simp]: ord n (k mod n) = ord n k
by (cases n = 0) (auto simp add: ord-def cong-def power-mod)

lemma ord-gt-0-iff [simp]: ord (n:nat) £ > 0 <— coprime n
using ord-eq-0[of n z] by auto

lemma ord-eq-Suc-0-iff: ord n (x::nat) = Suc 0 «— [z = 1] (mod n)
using ord-divides[of z 1 n] by (auto simp: ord-divides’)

lemma ord-cong:
assumes [kI = k2] (mod n)
shows ordn kI = ord n k2
proof —
have ord n (k1 mod n) = ord n (k2 mod n)
by (simp only: assms[unfolded cong-def])
thus %thesis by simp
qed

lemma ord-nat-code [code-unfold):
ordn a =
(if n = 0 then if a = 1 then 1 else 0 else
if coprime n a then Min (Set.filter (Mk. [a ~k = 1] (mod n)) {0<..n}) else
0)
proof (cases coprime n a A n > 0)
case True
define A where A = {ke{0<..n}. [a "k = 1] (mod n)}
define k where k = (LEAST k. k> 0 A [a "k = 1] (mod n))
have totient: totient n € A
using euler-theorem[of a n] True
by (auto simp: A-def coprime-commute introl: Nat.gr0I totient-le)
moreover have finite A by (auto simp: A-def)
ultimately have «: Min A € AandVy. ye€ A — Min A<y
by (auto intro: Min-in)

93



have k > 0 A [a "k = 1] (mod n)
unfolding k-def by (rule LeastI[of - totient n]) (use totient in <auto simp:
A-def»)
moreover have k < totient n
unfolding k-def by (intro Least-le) (use totient in <auto simp: A-def>)
ultimately have k € A using totient-le[of n] by (auto simp: A-def)
hence Min A < k by (intro Min-le) (auto simp: <finite A»)
moreover from x have k < Min A
unfolding k-def by (intro Least-le) (auto simp: A-def)
ultimately show %thesis using True
by (simp add: ord-def k-def A-def)
qed auto

theorem ord-modulus-mult-coprime:
fixes z :: nat
assumes coprime m n
shows ord (m x n) x = lem (ord m z) (ord n x)
proof (intro dvd-antisym)
have [z " lem (ord m z) (ord n x) = 1] (mod (m * n))
using assms by (intro coprime-cong-mult-nat assms) (auto simp: ord-divides’)
thus ord (m * n) z dvd lem (ord m z) (ord n x)
by (simp add: ord-divides’)
next
show lem (ord m z) (ord n z) dvd ord (m * n) x
proof (intro lem-least)
show ord m z dvd ord (m * n) z
using cong-modulus-mult-nat[of x ~ ord (m x n) x 1 m n] assms
by (simp add: ord-divides’)
show ord n x dvd ord (m * n) x
using cong-modulus-mult-nat[of © ~ ord (m % n) z 1 n m] assms
by (simp add: ord-divides’ mult.commute)
qed
qed

corollary ord-modulus-prod-coprime:
assumes finite A \ij. i € A= j€ A= i +# j = coprime (f i) (f7)
shows ord ([[i€A. fi:: nat) x = (LCM i€A. ord (f i) x)
using assms by (induction A rule: finite-induct)
(simp, simp, subst ord-modulus-mult-coprime, auto introl: prod-coprime-right)

lemma ord-power-aux:
fixes mx k a :: nat
defines [ = ord m a
shows ordm (a " k) x ged k1l =1
proof (rule dvd-antisym)
have [a " lem k1 = 1] (mod m)
unfolding ord-divides by (simp add: I-def)
also have lem k1 = k x (I div ged k1)
by (simp add: lem-nat-def div-mult-swap)

94



finally have ord m (a " k) dvd | div ged k 1

unfolding ord-divides [symmetric] by (simp add: power-mult [symmetric])
thus ord m (a ~ k) * ged k1 dvd |

by (cases | = 0) (auto simp: dvd-div-iff-mult)

have [(a " k) " ord m (a " k) = 1] (mod m)
by (rule ord)
also have (¢ " k) “ordm (a " k) =a " (k* ord m (a " k))
by (simp add: power-mult)
finally have ord m a dvd k * ord m (a " k)
by (simp add: ord-divides’)
hence [ dvd ged (k « ord m (a " k)) (I x ord m (a " k))
by (intro gcd-greatest dvd-triv-left) (auto simp: l-def ord-divides’)
also have ged (kx ord m (a " k)) (I % ordm (a " k)) = ord m (a " k) * ged k
by (subst ged-mult-distrib-nat) (auto simp: mult-ac)
finally show [ dvd ord m (a " k) x ged k1 .
qed

theorem ord-power: coprime m a = ord m (a ~ k :: nat) = ord m a div ged k
(ord m a)
using ord-power-auz[of m a k| by (metis div-mult-self-is-m ged-pos-nat ord-eg-0)

lemma inj-power-mod:
assumes coprime n (a :: nat)
shows inj-on (Ak. a =k mod n) {..<ord n a}
proof
fix kl assume x: k € {.<ordna} l € {.<ordna} a “kmodn=a "1l modn
have bk =lifk<ll<ordnala "k =a "1 (modn) for kl
proof —
have | = k + (I — k) using that by simp

alsohave a ~... =a "kxa (Il — k)
by (simp add: power-add)
also have [... =a " l*xa " (I = k)] (mod n)

using that by (intro cong-mult) auto
finally have [a "l *xa " (I — k) = a "1 1] (mod n)
by (simp add: cong-sym-eq)
with assms have [a ~ (I — k) = 1] (mod n)
by (subst (asm) cong-mult-lcancel-nat) (auto simp: coprime-commute)
hence ord n a dvd | — k
by (simp add: ord-divides')
from dvd-imp-le[OF this| and <l < ord n a> have | — k = 0
by (cases | — k = 0) auto
with <k < > show k = [ by simp
qed
from this[of k I] and this[of | k] and * show k = [
by (cases k | rule: linorder-cases) (auto simp: cong-def)
qed

lemma ord-eq-2-iff: ord n (x :: nat) = 2 <— [z # 1] (mod n) A [2% = 1] (mod
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n)
proof
assume 7: [z # 1] (mod n) A [2? = 1] (mod n)
hence coprime n x
by (metis coprime-commute lucas-coprime-lemma zero-neg-numeral)
with z have ord n z dvd 2 ord n x # 1 ord n x > 0
by (auto simp: ord-divides’ ord-eq-Suc-0-iff)
thus ord n x = 2 by (auto dest!: dvd-imp-le simp del: ord-gt-0-iff)
qed (use ord-divides|of - 2] ord-divides|of - 1] in auto)

lemma square-mod-8-eq-1-iff: [z* = 1] (mod 8) +— odd (x :: nat)
proof —
have [z% = 1] (mod 8) +— ((z mod 8)* mod 8 = 1)
by (simp add: power-mod cong-def)
also have ... +— zmod 8 € {1, 8, 5, 7}
proof
assume z: (z mod 8)% mod 8§ = 1
have z mod 8 € {..<8} by simp
also have {..<8} = {0, 1, 2, 8, 4, 5, 6, 7T:nat}
by (simp add: lessThan-nat-numeral less Than-Suc insert-commute)
finally have z-cases: x mod 8 € {0, 1, 2, 3, 4,5, 6, 7} .
from z have z mod 8 ¢ {0, 2, 4, 6}
using z by (auto intro: Nat.gr0I)
with z-cases show z mod 8 € {1, 8, 5, 7} by simp
qed auto
also have ... +— odd (z mod 8)
by (auto elim!: oddF)
also have ... «— odd z
by presburger
finally show ?thesis .
qed

lemma ord-twopow-auz:
assumes k > 3 and odd (z :: nat)
shows [z (2 " (k — 2)) = 1] (mod (2 " k))
using assms(1)
proof (induction k rule: dec-induct)
case base
from assms have [z2 = 1] (mod 8)
by (subst square-mod-8-eq-1-iff) auto
thus ?case by simp
next
case (step k)
define k' where k' = k — 2
have k: k = Suc (Suc k')
using <k > &) by (simp add: k’-def)
from <k > 3> have 2 x k > Suc k by presburger

from <odd x> have z > 0 by (intro Nat.gr0I) auto
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from step.IH have 2 "k dvd (z ~ (2 ~(k — 2)) — 1)
by (rule cong-to-1-nat)
then obtain ¢t where z = (2 " (k— 2)) — 1 =t* 2 "k
by auto
hencez ~(2 (k- 2)=t*2 " k+ 1
by (metis <0 < x> add.commute add-diff-inverse-nat less-one neq0-conv power-eq-0-iff)
hence (z (2 " (k—2))) "2=0=*x2"k+1) "2
by (rule arg-cong)
hence [(z (2 " (k—2))) "2=(t=*2"k+ 1) " 2] (mod (2~ Suc k))
by simp
also have (z ~(2 (k- 2))) " 2=2"(2" (k- 1))
by (simp-all add: power-even-eq[symmetric] power-mult k)
alsohave (t * 2 "k + 1) "2=t2%2"(2%k)+t*2 Suck+ 1
by (subst power2-eq-square)
(auto simp: algebra-simps k power2-eq-square|of t]
power-even-eq[symmetric] power-add [symmetric])
also have [... = 0 + 0 + 1] (mod 2 ~ Suc k)
using <2 x k > Suc k»
by (intro cong-add)
(auto simp: cong-0-iff intro: dvd-mult[OF le-imp-power-dvd] simp del: power-Suc)
finally show ?case by simp
qged

lemma ord-twopow-3-5:
assumes k > 3z mod 8§ € {8, 5 :: nat}
shows ord (2 "k)z=2"(k— 2)
using assms(1)
proof (induction k rule: less-induct)
have z mod 8 = 3 V  mod 8§ = 5 using assms by auto
hence odd x by presburger
case (less k)
from <k > 3 consider k = 3 | k=4 | k > 5 by force
thus ?case
proof cases
case I
thus ?thesis using assms
by (auto simp: ord-eq-2-iff cong-def simp flip: power-mod|of z])
next
case 2
from assms have x mod 8§ = 8 V z mod 8§ = 5 by auto
then have z”: z mod 16 = 3 V . mod 16 = 5 V z mod 16 = 11 V x mod 16
=13
using mod-double-nat [of 8] by auto
hence [z ~ 4 = 1] (mod 16) using assms
by (auto simp: cong-def simp flip: power-mod|of z])
hence ord 16 = dvd 2% by (simp add: ord-divides’)
then obtain [ where I: ord 16z = 2 " 11 < 2
by (subst (asm) divides-primepow-nat) auto
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have [z ~ 2 # 1] (mod 16)
using z’ by (auto simp: cong-def simp flip: power-mod|of z])
hence —ord 16 = dvd 2 by (simp add: ord-divides’)
with [ have [ = 2
using le-imp-power-dvd[of | 1 2] by (cases | < 1) auto
with [ show Zthesis by (simp add: <k = 4»)
next
case 3
define k' where k' =k — 2
have k" k' > 2 and [simp]: k = Suc (Suc k')
using 3 by (simp-all add: k'-def)
have IH: ord (2 "k )z =2 " (k' — 2) ord (2 " Suck)z=2"(k' - 1)
using less. IH[of k'] less.IH[of Suc k'] 3 by simp-all
from IH have cong: [z ~ (2 (k' — 2)) = 1] (mod (2 " k"))
by (simp-all add: ord-divides’)
have notcong: [x ~ (2 " (k' — 2)) # 1] (mod (2 ~ Suc k')
proof
assume [z~ (2 T (k' — 2)) = 1] (mod (2 ~ Suc k')
hence ord (2 ~ Suc k') x dvd 2 ~ (k' — 2)
by (simp add: ord-divides")
also have ord (2 ~Suc kY z =2 " (k' - 1)
using IH by simp
finally have £/ — 1 <k’ — 2
by (rule power-dvd-imp-le) auto
with <k’ > 2) show Fulse by simp
qged

have 2 "k'+ 1 <2 k' + (2 k' :: nat)
using one-less-power|of 2::nat k'] k' by (intro add-strict-left-mono) auto
with cong notcong have cong” = = (2 ~ (k' — 2)) mod 2 ~Suck’'=1+ 2 "k’
using mod-double-nat [of «<x ~ 2 T~ (k' — 2)» «2 T k)] k' by (auto simp:
cong-def)

hence z ~(2 " (k' = 2)) mod 2 "k=1+2"k'V
(27 (k'=2)mod 2 "k=1+ 2"k + 27 Suck’
using mod-double-nat [of <x =2 7 (k' — 2)» <2 ~ Suc k] by auto
hence eq: [x 2 (k' —1)=1+4+ 2" (k— 1)] (mod 2 " k)
proof
assume *x: z (2 ~ (k' — 2)) mod (2 )71+2 k'
have [z T(2 T (k' = 2)) =2 " (2 (k' = 2)) mod 2 " k] (mod 2 " k)
by simp
also have [z 7 (2 (k' — 2)) mod (2 "k) =1+ 2 " k'] (mod 2 " k)
by (subst *) auto
finally have [(z "2 " (k' — 2)) "2 =(1+ 2" k") " 2] (mod 2 " k)
by (rule cong-pow)
hence [z 2 " Suc (k' — 2)=(1 + 2 k') ~ 2] (mod 2 " k)
by (simp add: power-mult [symmetric] power-Suc2 [symmetric] del: power-Suc)
also have Suc (k' — 2) =k’ — 1
using k' by simp
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alsohave (1 + 2 "k unat)> =1+ 2 " (k—1)+ 2 (2 x k')
by (subst power2-eq-square) (simp add: algebra-simps flip: power-add)
also have (2 "k :: nat) dvd 2 ~ (2 % k')
using k' by (intro le-imp-power-dvd) auto
hence [I + 27 (k— 1)+ 2" (2*k")=1+2"(k— 1)+ (0 :: nat)] (mod
2 " k)
by (intro cong-add) (auto simp: cong-0-iff)
finally show [z ~2 " (k'— 1) =14+ 2 " (k — 1)] (mod 2 " k)
by simp
next
assume x: z (2 (k' — 2)) mod 2 "k=1+2"k'"+ 2" Suck’
have [z 7 (2 (k' — 2)) =z = (2 " (k' — 2)) mod 2 " k] (mod 2 " k)
by simp
also have [z 7 (2 (k' — 2)) mod (2 "k) =1+ 8 « 2 k'] (mod 2 " k)
by (subst %) auto
finally have [(z "2 " (k' — 2)) "2=(1+ 3% 2"k") " 2] (mod 2 " k)
by (rule cong-pow)
hence [z =2 " Suc (k' — 2) = (1 + 8% 2 " k') ~ 2] (mod 2 " k)
by (simp add: power-mult [symmetric] power-Suc2 [symmetric] del: power-Suc)
also have Suc (k' — 2) = k' — 1
using k' by simp
alsohave (1 + 3+ 2 " k'u=nat)?=1+2"(k—1)+2 " k+9%2 (2
* k')
by (subst power2-eq-square) (simp add: algebra-simps flip: power-add)
also have (2 "k :: nat) dvd 9 x 2 7 (2 x k)
using k' by (intro dvd-mult le-imp-power-dvd) auto
hence [I + 2 " (k—1)+2 " k+ 9«2 " 2xk)=1+2"(k—1)4+0
+ (0 :: nat)]
(mod 2 " k)
by (intro cong-add) (auto simp: cong-0-iff)
finally show [ 2 " (k' = 1)=1+ 2 " (k — 1)] (mod 2 " k)
by simp
qed

have notcong” [z =2 " (k — 3) # 1] (mod 2 " k)
proof
assume [z ~ 2 " (k — 3) = 1] (mod 2 k)
hence [z "2 " (k'—1)—z "2 (k'—1)=1+2"(k—1) — 1] (mod 2
)
by (intro cong-diff-nat eq) auto
hence [2 " (k — 1) = (0 :: nat)] (mod 2 " k)
by (simp add: cong-sym-eq)
hence 2 "k dvd 2 " (k — 1)
by (simp add: cong-0-iff)
hence k < k — 1
by (rule power-dvd-imp-le) auto
thus Fulse by simp
qed
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have [z 2 T (k — 2) = 1] (mod 2 " k)
using ord-twopow-auz|of k x] <odd x> <k > 3) by simp
hence ord (2 " k) z dvd 2 ~ (k — 2)
by (simp add: ord-divides')
then obtain [ where I: | <k — 2o0rd (2 "k)z=2"1
using divides-primepow-nat[of 2 ord (2 " k) x k — 2] by auto

from notcong’ have —ord (2 k) z dvd 2 ~(k — 3)
by (simp add: ord-divides')
with [ have | =k — 2
using le-imp-power-dvd[of | k — 8 2] by (cases | < k — 8) auto
with [ show ?thesis by simp
qed
qed

lemma ord-4-3 [simp]: ord 4 (3::nat) = 2
proof —
have [8 7 2 = (1 = nat)] (mod 4)
by (simp add: cong-def)
hence ord 4 (3::nat) dvd 2
by (subst (asm) ord-divides) auto
hence ord 4 (3::nat) < 2
by (intro dvd-imp-le) auto
moreover have ord 4 (3::nat) # 1
by (auto simp: ord-eq-Suc-0-iff cong-def)
moreover have ord 4 (3::nat) # 0
by (auto simp: ged-non-0-nat coprime-iff-ged-eq-1)
ultimately show ord 4 (3 :: nat) = 2
by linarith
qed

lemma elements-with-ord-1: n > 0 = {z€totatives n. ord n z = Suc 0} = {1}
by (auto simp: ord-eq-Suc-0-iff cong-def totatives-less)

lemma residue-prime-has-primroot:
fixes p :: nat
assumes prime p
shows Jactotatives p. ord p a = p — 1
proof —
from residue-prime-mult-group-has-gen[OF assms]
obtain a where a: a € {1.p—1} {1..p—1} ={a “imod p |i. i € UNIV} by
blast
from a have coprime p a
using a assms by (intro prime-imp-coprime) (auto dest: dvd-imp-le)
with a(1) have a € totatives p by (auto simp: totatives-def coprime-commute)

have p — 1 = card {1..p—1} by simp

also have {1..p—1} = {a " i mod p |i. i € UNIV} by fact
also have {a “imod p |i. i € UNIV} = (A\i. a ~imod p) ‘{..<ord p a}
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proof (intro equalityl subsetl)
fix x assume z € {a i mod p |i. i € UNIV}
then obtain ¢ where [simp]: £ = a ~ i mod p by auto

have [a "¢ = a ~ (i mod ord p a)] (mod p)
using <coprime p a> by (subst order-divides-expdiff) auto
hence 3j. a “imodp=a " jmodp Aj<ordpa
using <coprime p a» by (intro exI|of - i mod ord p a]) (auto simp: cong-def)
thus z € (Ai. a ~imod p) ‘{..<ord p a}
by auto
qed auto
also have card ... = ord p a
using inj-power-mod[OF <coprime p a)] by (subst card-image) auto
finally show ?thesis using <a € totatives p»
by auto
qed

9.5 Another trivial primality characterization

lemma prime-prime-factor: prime n +— n # 1 N (Vp. prime p A p dvd n — p
= n)
(is ?lhs «— ?rhs)
for n :: nat
proof (casesn =0V n=1)
case True
then show ?thesis
by (metis bigger-prime dvd-0-right not-prime-1 not-prime-0)
next
case Fulse
show ?thesis
proof
assume prime n
then show ?rhs
by (metis not-prime-1 prime-nat-iff)
next
assume ?rhs
with False show prime n
by (auto simp: prime-nat-iff) (metis One-nat-def prime-factor-nat prime-nat-iff’)
qed
qed

lemma prime-divisor-sqrt: prime n <— n # 1 A (Vd. d dvd n A d*> < n — d
=1)

for n :: nat
proof —

consider n =0 | n=1]|n=# 0n # 1 by blast

then show ?thesis

proof cases

case I
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then show ?thesis by simp
next
case 2
then show #?thesis by simp
next
case n: 3
then have np: n > 1 by arith
{
fix d
assume d: d dvd n d> < n
and H: Vm. mdvdn — m=1V m=mn
from H d have din: d = 1 V d = n by blast
then have d = 1
proof
assume dn: d = n
from n have n? > n x 1
by (simp add: power2-eq-square)
with dn d(2) show ?thesis by simp
qed

}

moreover
{
fix d assume d: d dvd n and H: Vd'. d'dvdn AN d? <n — d' =1
from d n have d # 0
by (metis dvd-0-left-iff)
then have dp: d > 0 by simp
from d[unfolded dvd-def] obtain e where e: n= dxe by blast
from n dp e have ep:e > 0 by simp
from dp ep have d2<nver<n
by (auto simp add: e power2-eq-square mult-le-cancel-left)
then have d =1V d=n
proof
assume d? < n
with Hlrule-format, of d] d have d = 1 by blast
then show ?thesis ..
next
assume h: ¢2 < n
from e have ¢ dvd n by (simp add: dvd-def mult.commute)
with Hlrule-format, of e] h have e = 1 by simp
with e have d = n by simp
then show ?thesis ..
qed
}
ultimately show ¢thesis
unfolding prime-nat-iff using np n(2) by blast
qed
qed

lemma prime-prime-factor-sqrt:
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prime (nznat) «— n# 0 An# 1 A (Ap. prime p A p dvd n A p?> < n)
(is ?lhs «— %rhs)
proof —
consider n=0|n=1|n#0n#1
by blast
then show ?thesis
proof cases
case I
then show ?thesis by (metis not-prime-0)
next
case 2
then show ?%thesis by (metis not-prime-1)
next
case n: 3
show ?thesis
proof
assume ?lhs
from this[unfolded prime-divisor-sqrt] n show ?rhs
by (metis prime-prime-factor)
next
assume ?rhs
{
fix d
assume d: ddvdn d> < nd# 1
then obtain p where p: prime p p dvd d
by (metis prime-factor-nat)
from d(1) n have dp: d > 0
by (metis dvd-0-left neq0-conv)
from mult-mono[OF dvd-imp-le]OF p(2) dp] dvd-imp-le]OF p(2) dp]] d(2)
have p? < n unfolding power2-eg-square by arith
with «?rhs) n p(1) dvd-trans[OF p(2) d(1)] have False
by blast
}
with n prime-divisor-sqrt show ?lhs by auto
qed
qed
qed

9.6 Pocklington theorem

lemma pocklington-lemma:
fixes p :: nat
assumes n: n > 2and ngr:n — 1 =q*r
and an: [a” (n — 1) = 1] (mod n)
and aq: Vp. prime p A p dvd ¢ — coprime (¢ ~ ((n — 1) divp) — 1) n
and pp: prime p and pn: p dvd n
shows [p = 1] (mod q)
proof —
have p01: p# 0p # 1
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using pp by (auto intro: prime-gt-0-nat)
obtain £t where k: a “(¢gxr) — I =nxk
by (metis an cong-to-1-nat dvd-def ngr)
from pnlunfolded dvd-def] obtain | where I: n = p x [
by blast
have a0: a # 0
proof
assume a = 0
with n have ¢~ (n — 1) = 0
by (simp add: power-0-left)
with n an mod-less[of 1 n] show Fualse
by (simp add: power-0-left cong-def)
qed
with n ngr have aqr0: a ~ (¢ r) # 0
by simp
then have (a« “(¢*xr) — 1)+ 1 =a " (g*7r)
by simp
with klhavea “(¢gxr)=pxlxk+ 1
by simp
then have a “(r*q) + p*x 0 =1+ px (I k)
by (simp add: ac-simps)
then have odg: ord p (a™r) dvd q
unfolding ord-divides[symmetric] power-mult[symmetric]
by (metis an cong-dvd-modulus-nat mult.commute nqgr pn)
from odg[unfolded dvd-def] obtain d where d: ¢ = ord p (a™r) * d
by blast
have d1: d = 1
proof (rule ccontr)
assume dI: d # 1
obtain P where P: prime P P dvd d
by (metis d1 prime-factor-nat)
from d dvd-mult[OF P(2), of ord p (a"r)] have Pq: P dvd g by simp
from aq P(1) Pq have caP:coprime (o~ ((n — 1) div P) — 1) n by blast
from Pq obtain s where s: ¢ = Pxs unfolding dvd-def by blast
from P(1) have P0: P # 0
by (metis not-prime-0)
from P(2) obtain ¢t where t: d = Pxt unfolding dvd-def by blast
from d st PO have s" ord p (a"r) x t = s
by (metis mult.commute mult-cancell mult.assoc)
have ord p (a™r) * t«r = 7 x ord p (a"r) * ¢
by (metis mult.assoc mult.commute)
then have exps: a (ord p (a7r) * txr) = ((a " 1) “ordp (a7r)) "t
by (simp only: power-mult)
then have [((a ~r) Tord p (a”r)) ~t= 1] (mod p)
by (metis cong-pow ord power-one)
then have pd0: p dvd a (ord p (a77) * txr) — 1
by (metis cong-to-1-nat exps)
from ngr s s’ have (n — 1) div P = ord p (a™r) * txr
using P0 by simp
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with caP have coprime (a ~(ordp (a "r)xtx7r) — 1) n
by simp
with p01 pn pd0 coprime-common-divisor [of - n p] show False
by auto
qed
with d have o: ord p (a”r) = ¢ by simp
from pp totient-prime [of p| have totient-eq: totient p = p — 1
by simp
{
fix d
assume d: d dvd p d dvd a d # 1
from pplunfolded prime-nat-iff] d have dp: d = p by blast
from n have n # 0 by simp
then have Fulse using d dp pn an
by auto (metis One-nat-def Suc-lessI
I <pANWVm- mdudp — m=1Vm=pha (¢g*xr)=7ps=*
I« k + 1> add-diff-cancel-left’ dvd-diff-nat dvd-power dvd-triv-left gcd-nat.trans
nat-dvd-not-less nqr zero-less-diff zero-less-one)
}
then have cpa: coprime p a
by (auto intro: coprimel)
then have arp: coprime (a " 1) p
by (cases r > 0) (simp-all add: ac-simps)
from euler-theorem [OF arp, simplified ord-divides] o totient-eq have q dvd (p
— 1)
by simp
then obtain d where d:p — 1 = ¢ % d
unfolding dvd-def by blast
have p # 0
by (metis p01(1))
with d have p + ¢ x 0 = 1 4+ q * d by simp
then show ?thesis
by (metis cong-iff-lin-nat mult.commute)
qed

theorem pocklington:
assumes n: n > 2 and ngr: n — 1 = ¢ * r and sqr: n < ¢>
and an: [a” (n — 1) = 1] (mod n)
and agq: Vp. prime p A p dvd ¢ — coprime (¢~ ((n — 1) divp) — 1) n
shows prime n
unfolding prime-prime-factor-sqrt|of n]
proof —
let 7ths =n# 0 An# 1A (Hp. primep A p dvd n A p*> < n)
from n have n0Il: n # 0 n # 1 by arith+
{
fix p
assume p: prime p p dvd n p?> < n
from p(3) sqr have p (Suc 1) < ¢ (Suc 1)
by (simp add: power2-eg-square)

105



then have pq: p < ¢
by (metis le0 power-le-imp-le-base)

from pocklington-lemma[OF n ngr an aq p(1,2)] have x: q dvd p — 1
by (metis cong-to-1-nat)

have p — 1 # 0
using prime-ge-2-nat [OF p(1)] by arith

with pg * have Fulse
by (simp add: nat-dvd-not-less)

}

with n0! show ?ths by blast
qed

Variant for application, to separate the exponentiation.

lemma pocklington-alt:
assumes n: n > 2 and ngr: n — 1 = ¢ * r and sqr: n < ¢?
and an: [a” (n — 1) = 1] (mod n)
and aq: Vp. prime p A p dvd ¢ — (3b. [a((n — 1) div p) = b] (mod n) A
coprime (b — 1) n)
shows prime n
proof —
{
fix p
assume p: prime p p dvd q
from ag[rule-format] p obtain b where b: [a ((n — 1) div p) = b] (mod n)
coprime (b — 1) n
by blast
have a0: a # 0
proof
assume a0: a = 0
from n an have [0 = 1] (mod n)
unfolding a0 power-0-left by auto
then show Fulse
using n by (simp add: cong-def dvd-eq-mod-eq-0[symmetric])
qed
then have al: a > 1 by arith
from one-le-power[OF al] have ath: 1 < a = ((n — 1) divp) .
have b0: b # 0
proof
assume b0: b = 0
from p(2) ngr have (n — 1) mod p = 0
by (metis mod-0 mod-mod-cancel mod-mult-self1-is-0)
with div-mult-mod-eq[of n — 1 p)
have (n — 1) div p x p= n — 1 by auto
then have eq: (¢ ((n — 1) divp)) p=a"(n — 1)
by (simp only: power-mult[symmetric])
have p — 1 # 0
using prime-ge-2-nat [OF p(1)] by arith
then have pS: Suc (p — 1) = p by arith
from b have d: n dvd o ((n — 1) div p)
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unfolding b0 by auto
from divides-rexp[OF d, of p — 1] pS eq cong-dvd-iff [OF an| n show False
by simp
qed
then have b1: b > 1 by arith
from cong-imp-coprime|OF Cong.cong-diff-nat| OF cong-sym [OF b(1)] cong-refl
lof 1] b1]
ath b1 b ngr
have coprime (a ~((n — 1) divp) — 1) n
by simp
}

then have V p. prime p A p dvd ¢ — coprime (a ~((n — 1) divp) — 1) n
by blast
then show ?thesis by (rule pocklington[OF n nqr sqr an))
qed

9.7 Prime factorizations

definition primefact ps n <— foldr (x) ps 1 = n A (Vp€ set ps. prime p)

lemma primefact:
fixes n :: nat
assumes n: n # 0
shows 3 ps. primefact ps n
proof —
obtain zs where zs: mset xs = prime-factorization n
using ez-mset [of prime-factorization n| by blast
from assms have n = prod-mset (prime-factorization n)
by (simp add: prod-mset-prime-factorization)
also have ... = prod-mset (mset xs) by (simp add: xs)
also have ... = foldr (x) zs 1 by (induct zs) simp-all
finally have foldr (x) zs 1 = n ..
moreover from zs have V pe#mset xs. prime p by auto
ultimately have primefact xs n by (auto simp: primefact-def)
then show ?thesis ..
qed

lemma primefact-contains:
fixes p :: nat
assumes pf: primefact ps n
and p: prime p
and pn: p dvd n
shows p € set ps
using pf p pn
proof (induct ps arbitrary: p n)
case Nil
then show ?case by (auto simp: primefact-def)
next
case (Cons q gs)
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from Cons.prems[unfolded primefact-def)
have ¢: prime q q * foldr (x) gs 1 = n ¥V p Eset gs. prime p
and p: prime p p dvd q * foldr (%) gs 1
by simp-all
consider p dvd q | p dvd foldr (%) gs 1
by (metis p prime-dvd-mult-eq-nat)
then show ?case
proof cases
case I
with p(1) ¢(1) have p = ¢
unfolding prime-nat-iff by auto
then show ?thesis by simp
next
case prem: 2
from ¢(3) have pgs: primefact gs (foldr (%) qs 1)
by (simp add: primefact-def)
from Cons.hyps[OF pgqs p(1) prem| show ?thesis by simp
qed
qed

lemma primefact-variant: primefact ps n «— foldr () ps 1 = n A list-all prime

ps
by (auto simp add: primefact-def list-all-iff)

Variant of Lucas theorem.

lemma [ucas-primefact:
assumes n: n > 2 and an: [ (n — 1) = 1] (mod n)
and psn: foldr (x) ps 1 =n — 1
and psp: list-all (Ap. prime p A = [a ((n — 1) div p) = 1] (mod n)) ps
shows prime n
proof —
{
fix p
assume p: prime p p dvdn — 1 [a " ((n — 1) div p) = 1] (mod n)
from psn psp have psnl: primefact ps (n — 1)
by (auto simp add: list-all-iff primefact-variant)
from p(3) primefact-contains|OF psnl p(1,2)] psp
have False by (induct ps) auto

with lucas|OF n an] show ?Zthesis by blast
qed

Variant of Pocklington theorem.

lemma pocklington-primefact:
assumes n: n > 2 and ¢rn: ¢gxr = n — 1 and ng2: n < ¢>
and arnb: (a”r) mod n = b and psq: foldr (x) ps 1 = ¢
and bgn: (b7q) mod n = 1
and psp: list-all (A\p. prime p A coprime ((b"(q div p)) mod n — 1) n) ps
shows prime n
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proof —
from bqn psp qrn
have bgn: a ~(n — 1) mod n = 1
and psp: list-all (Ap. prime p A coprime (a (r *(q div p)) mod n — 1) n) ps
unfolding arnb[symmetric] power-mod
by (simp-all add: power-mult[symmetric] algebra-simps)
from n have n0: n > 0 by arith
from div-mult-mod-eq[of a (n — 1) n]
mod-less-divisor[OF n0, of a (n — 1)]
have anl: [a ~(n — 1) = 1] (mod n)
by (metis bgn cong-def mod-mod-trivial)
have coprime (a =~ ((n — 1) div p) — 1) n if p: prime p p dvd q for p
proof —
from psp psq have pfpsq: primefact ps q
by (auto simp add: primefact-variant list-all-iff)
from psp primefact-contains|OF pfpsq p)
have p": coprime (a ~ (r * (¢ div p)) modn — 1) n
by (simp add: list-all-iff)
from p prime-nat-iff have p01: p # 0p # 1 p = Suc (p — 1)
by auto
from div-multi-eqlof r q p] p(2)
have eql: rx (¢ divp) = (n — 1) divp
unfolding grn[symmetric] dvd-eqg-mod-eq-0 by (simp add: mult.commute)
have ath: a < b= a# 0= 1 <aAN1<bforab: nat
by arith
{
assume a ~ ((n — 1) div p) mod n = 0
then obtain s where s: a ~((n — 1) divp) = n x s
by blast
then have eq0: (a ((n — 1) div p)) p = (nxs) p by simp
from grn[symmetric] have gni: q dvd n — 1
by (auto simp: dvd-def)
from dvd-trans|OF p(2) qni] have npp: (n — 1) divp*xp=mn — 1
by simp
with eq0 have ¢ “(n — 1) =(nxs) " p
by (simp add: power-mult[symmetric])
with bgn p01 have 1 = (n x s) (Suc (p — 1)) mod n
by simp
also have ... = 0 by (simp add: mult.assoc)
finally have Fualse by simp
}
then have x: a = ((n — 1) div p) mod n # 0 by auto
have [a ~ ((n — 1) divp) modn =a ~ ((n — 1) div p)] (mod n)
by (simp add: cong-def)
with ath[OF mod-less-eq-dividend ]
have [a " ((n — 1) divp) modn — 1 =a = ((n — 1) div p) — 1] (mod n)
by (simp add: cong-diff-nat)
then show ?thesis
by (metis cong-imp-coprime eql p’)
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qed
with pocklington[OF n grn]symmetric] ng2 anl] show ?thesis
by blast
qed

end

10 Prime powers

theory Prime-Powers
imports Complex-Main HOL— Computational-Algebra. Primes HOL— Library. FuncSet
begin
definition aprimedivisor :: 'a :: normalization-semidom = 'a where
aprimedivisor ¢ = (SOME p. prime p A p dvd q)
definition primepow :: 'a :: normalization-semidom = bool where
primepow n <— (Ip k. primep ANk > 0 An=p " k)
definition primepow-factors :: 'a :: normalization-semidom = 'a set where
primepow-factors n = {x. primepow x A x dvd n}

lemma primepow-gt-Suc-0: primepow n = n > Suc 0
using one-less-power|of p::nat for p] by (auto simp: primepow-def prime-nat-iff )

lemma
assumes prime p p dvd n
shows prime-aprimedivisor: prime (aprimedivisor n)
and aprimedivisor-dvd:  aprimedivisor n dvd n
proof —
from assms have 3 p. prime p A p dvd n by auto
from somel-ex|OF this] show prime (aprimedivisor n) aprimedivisor n dvd n
unfolding aprimedivisor-def by (simp-all add: conj-commute)
qed

lemma
assumes n # 0 —is-unit (n :: 'a :: factorial-semiring)
shows prime-aprimedivisor’: prime (aprimedivisor n)
and aprimedivisor-dvd’:  aprimedivisor n dvd n
proof —
from somel-ex|OF prime-divisor-exists| OF assmsl]
show prime (aprimedivisor n) aprimedivisor n dvd n
unfolding aprimedivisor-def by (simp-all add: conj-commute)
qed

lemma aprimedivisor-of-prime [simp):
assumes prime p
shows aprimedivisor p = p

proof —
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from assms have 3 q. prime g A q dvd p by auto
from somel-ex[OF this, folded aprimedivisor-def] assms show ?thesis
by (auto intro: primes-dvd-imp-eq)
qed

lemma aprimedivisor-pos-nat: (n::nat) > 1 = aprimedivisor n > 0
using aprimedivisor-dvd’[of n] by (auto elim: dvdE intro!: Nat.grOI)

lemma aprimedivisor-primepow-power:
assumes primepow n k > 0
shows aprimedivisor (n ~ k) = aprimedivisor n
proof —
from assms obtain p [ where [: primepl > 0n=p "
by (auto simp: primepow-def)
from [ assms have *: prime (aprimedivisor (n ~k)) aprimedivisor (n ~ k) dvd
n "k
by (intro prime-aprimedivisor[of p| aprimedivisor-dvd|of p] dvd-power;
simp add: power-mult [symmetric])+
from * | have aprimedivisor (n " k) dvd p ~ (I x k) by (simp add: power-mult)
with assms * | have aprimedivisor (n " k) dvd p
by (subst (asm) prime-dvd-power-iff) simp-all
with [ assms have aprimedivisor (n " k) = p
by (intro primes-dvd-imp-eq prime-aprimedivisor 1) (auto simp: power-mult
[symmetric])
moreover from | have aprimedivisor n dvd p ~ 1
by (auto intro: aprimedivisor-dvd simp: prime-gt-0-nat)
with assms [ have aprimedivisor n dvd p
by (subst (asm) prime-dvd-power-iff) (auto introl: prime-aprimedivisor simp:
prime-gt-0-nat)
with [ assms have aprimedivisor n = p
by (intro primes-dvd-imp-eq prime-aprimedivisor 1) auto
ultimately show %thesis by simp
qed

lemma aprimedivisor-prime-power:

assumes prime p k > 0

shows aprimedivisor (p ~ k) = p
proof —

from assms have x: prime (aprimedivisor (p ~ k)) aprimedivisor (p ~ k) dvd p
Tk

by (intro prime-aprimedivisor|of p| aprimedivisor-dvd|of p|; simp add: prime-nat-iff )+

from assms * have aprimedivisor (p ~ k) dvd p

by (subst (asm) prime-dvd-power-iff) simp-all

with assms * show aprimedivisor (p ~ k) = p by (intro primes-dvd-imp-eq)

qed

lemma prime-factorization-primepow:

assumes primepow n
shows prime-factorization n =
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replicate-mset (multiplicity (aprimedivisor n) n) (aprimedivisor n)
using assms
by (auto simp: primepow-def aprimedivisor-prime-power prime-factorization-prime-power)

lemma primepow-decompose:
fixes n :: ‘a :: factorial-semiring-multiplicative
assumes primepow n
shows aprimedivisor n ~ multiplicity (aprimedivisor n) n = n
proof —
from assms have n # 0 by (intro notl) (auto simp: primepow-def)
hence n = unit-factor n x prod-mset (prime-factorization n)
by (subst prod-mset-prime-factorization) simp-all
also from assms have unit-factor n = 1 by (auto simp: primepow-def unit-factor-power)
also have prime-factorization n =
replicate-mset (multiplicity (aprimedivisor n) n) (aprimedivisor n)
by (intro prime-factorization-primepow assms)

also have prod-mset ... = aprimedivisor n ~ multiplicity (aprimedivisor n) n
by simp

finally show ?thesis by simp
qed

lemma prime-power-not-one:

assumes prime p k > 0

shows p "k #£ 1
proof

assume p k= I

hence is-unit (p ~ k) by simp

thus Fualse using assms by (simp add: is-unit-power-iff)
qed

lemma zero-not-primepow [simp]: —primepow 0
by (auto simp: primepow-def)

lemma one-not-primepow [simp|: —primepow 1
by (auto simp: primepow-def prime-power-not-one)

lemma primepow-not-unit [simp]: primepow p = —is-unit p
by (auto simp: primepow-def is-unit-power-iff)

lemma not-primepow-Suc-0-nat [simpl: —~primepow (Suc 0)
using primepow-gt-Suc-0[of Suc 0] by auto

lemma primepow-gt-0-nat: primepow n => n > (0::nat)
using primepow-gt-Suc-0[of n] by simp

lemma unit-factor-primepow:
fixes p :: 'a :: factorial-semiring-multiplicative
shows primepow p = unit-factor p = 1
by (auto simp: primepow-def unit-factor-power)
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lemma aprimedivisor-primepow:
assumes prime p p dvd n primepow (n :: 'a :: factorial-semiring-multiplicative)
shows aprimedivisor (p x n) = p aprimedivisor n = p
proof —
from assms have [simp]: n # 0 by auto
define ¢ where ¢ = aprimedivisor n
with assms have ¢: prime g by (auto simp: g-def intro!: prime-aprimedivisor)
from <primepow n> have n: n = q¢ ~ multiplicity q n
by (simp add: primepow-decompose q-def)
have nz: multiplicity ¢ n # 0
proof
assume multiplicity g n = 0
with n have n’: n = unit-factor n by simp
have is-unit n by (subst n', rule unit-factor-is-unit) (insert assms, auto)
with assms show Fualse by auto
qed
with «prime p» <p dvd n> ¢ have p dvd q
by (subst (asm) n) (auto intro: prime-dvd-power)
with «prime p> ¢ have p = ¢ by (intro primes-dvd-imp-eq)
thus aprimedivisor n = p by (simp add: q-def)

define r where r = aprimedivisor (p x n)
with assms have r: r dvd (p * n) prime r unfolding r-def
by (intro aprimedivisor-dvd|of p] prime-aprimedivisor|of p|; simp)+
hence r dvd q¢ ~ Suc (multiplicity q n)
by (subst (asm) n) (auto simp: <p = ¢ dest: dvd-unit-imp-unit)
with r have r dvd q
by (auto intro: prime-dvd-power-nat simp: prime-dvd-mult-iff dest: prime-dvd-power)
with r ¢ have r = ¢ by (intro primes-dvd-imp-eq)
thus aprimedivisor (p * n) = p by (simp add: r-def <p = ¢»)
qed

lemma power-eq-prime-powerD:
fixes p :: 'a :: factorial-semiring
assumes primepn >0z n=p k
shows 3. normalize © = normalize (p ~ 7)
proof —
have normalize x = normalize (p ~ multiplicity p x)
proof (rule multiplicity-eq-imp-eq)
fix ¢ :: ‘a assume prime q
from assms have multiplicity q (x ~ n) = multiplicity ¢ (p ~ k) by simp
with «prime ¢» and assms have n x multiplicity ¢ x = k * multiplicity q p
by (subst (asm) (1 2) prime-elem-multiplicity-power-distrib) (auto simp:
power-0-left)
with assms and <prime ¢» show multiplicity q © = multiplicity ¢ (p ~ multi-
plicity p x)
by (cases p = q) (auto simp: multiplicity-distinct-prime-power prime-multiplicity-other)
qed (insert assms, auto simp: power-0-left)
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thus ?thesis by auto
qed

lemma primepow-power-iff:
fixes p :: 'a :: factorial-semiring-multiplicative
assumes unit-factor p = 1
shows primepow (p ~n) «— primepow p A n > 0
proof safe
assume primepow (p ~ n)
hence n: n # 0 by (auto intro!: Nat.grOI)
thus n > 0 by simp
from assms have [simp]: normalize p = p
using normalize-mult-unit-factor[of p] by (simp only: mult.right-neutral)
from «primepow (p " n)> obtain ¢ k where x: k > 0 prime ¢p “n=q "k
by (auto simp: primepow-def)
with power-eg-prime-powerD[of ¢ n p k] n
obtain i where eq: normalize p = normalize (¢ ~ i) by auto
with primepow-not-unit[OF <primepow (p ~ n))] have i # 0
by (intro notl) (simp add: normalize-1-iff is-unit-power-iff del: primepow-not-unit)
with «normalize p = normalize (¢ ~ i)» <prime ¢» show primepow p
by (auto simp: normalize-power primepow-def introl: exl|of - q] exI[of - i])
next
assume primepow p n > 0
then obtain ¢ k where *: k > 0 prime ¢ p = q ~ k by (auto simp: primepow-def)
with «n > 0» show primepow (p ~ n)
by (auto simp: primepow-def power-mult introl: exI[of - q] exI[of - k % n])
qed

lemma primepow-power-iff-nat:
p > 0 = primepow (p ~ n) +— primepow (p :: nat) A n > 0
by (rule primepow-power-iff) (simp-all add: unit-factor-nat-def)

lemma primepow-prime [simpl: prime n = primepow n
by (auto simp: primepow-def introl: exI|of - n] exl[of - 1::nat])

lemma primepow-prime-power [simp):
prime (p == 'a :: factorial-semiring-multiplicative) => primepow (p ~n) <— n
> 0
by (subst primepow-power-iff) auto

lemma aprimedivisor-vimage:

assumes prime (p :: 'a :: factorial-semiring-multiplicative)

shows aprimedivisor —*‘ {p} N primepow-factorsn ={p "k |k. k> 0 ANp "k
dvd n}
proof safe

fix ¢ assume ¢: ¢ € primepow-factors n

hence ¢ ¢ # 0 q¢ # 1 by (auto simp: primepow-def primepow-factors-def
prime-power-not-one)
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let ?n = multiplicity (aprimedivisor q) q
from ¢ ¢’ have ¢ = aprimedivisor ¢ ~ n A %n > 0 A aprimedivisor ¢ ~ ?n dvd
n
by (auto simp: primepow-decompose primepow-factors-def prime-multiplicity-gt-zero-iff
prime-aprimedivisor’ prime-imp-prime-elem aprimedivisor-dvd’)
thus 3k. ¢ = aprimedivisor ¢ ~k N 'k > 0 N\ aprimedivisor ¢ ~ k dvd n ..
next
fix k :: nat assume k: p "k dvdnk > 0
with assms show p ~k € aprimedivisor —* {p}
by (auto simp: aprimedivisor-prime-power)
with assms k show p ~ k € primepow-factors n
by (auto simp: primepow-factors-def primepow-def aprimedivisor-prime-power
intro: Suc-lel)
qed

lemma aprimedivisor-nat:
assumes n # (Suc 0::nat)
shows prime (aprimedivisor n) aprimedivisor n dvd n
proof —
from assms have 3 p. prime p A p dvd n by (intro prime-factor-nat) auto
from somel-ex|OF this, folded aprimedivisor-def]
show prime (aprimedivisor n) aprimedivisor n dvd n by blast+
qed

lemma aprimedivisor-gt-Suc-0:
assumes n # Suc 0
shows aprimedivisor n > Suc 0
proof —
from assms have prime (aprimedivisor n) by (rule aprimedivisor-nat)
thus aprimedivisor n > Suc 0 by (simp add: prime-nat-iff)
qed

lemma aprimedivisor-le-nat:
assumes n > Suc 0
shows aprimedivisor n < n
proof —
from assms have aprimedivisor n dvd n by (intro aprimedivisor-nat) simp-all
with assms show aprimedivisor n < n
by (intro dvd-imp-le) simp-all
qed

lemma bij-betw-primepows:

bij-betw (A(p,k). p ~ Suc k :: 'a :: factorial-semiring-multiplicative)

(Collect prime x UNIV) (Collect primepow)
proof (rule bij-betwl [where ?g = (An. (aprimedivisor n, multiplicity (aprimedivisor
n) n— 1)
goal-cases)
case I
show (A(p, k). p ~ Suc k :: 'a) € Collect prime x UNIV — Collect primepow
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by (auto intro!: primepow-prime-power simp del: power-Suc )
next
case 2
show ?case
by (auto simp: primepow-def prime-aprimedivisor)
next
case (3 n)
thus ?case
by (auto simp: aprimedivisor-prime-power simp del: power-Suc)
next
case (4 n)
hence *: 0 < multiplicity (aprimedivisor n) n
by (subst prime-multiplicity-gt-zero-iff)
(auto introl: prime-imp-prime-elem aprimedivisor-dvd simp: primepow-def
prime-aprimedivisor)
have aprimedivisor n * aprimedivisor n — (multiplicity (aprimedivisor n) n —
Suc 0) =
aprimedivisor n ~ Suc (multiplicity (aprimedivisor n) n — Suc 0) by simp
also from * have Suc (multiplicity (aprimedivisor n) n — Suc 0) =
multiplicity (aprimedivisor n) n
by (subst Suc-diff-Suc) (auto simp: prime-multiplicity-gt-zero-iff)
also have aprimedivisorn ~... = n
using 4 by (subst primepow-decompose) auto
finally show ?case by auto
qed

lemma primepow-multD:
assumes primepow (a * b :: nat)
shows a =1V primepow a b =1 V primepow b
proof —
from assms obtain p k where k: k > 0a*x b=p "k primep
unfolding primepow-def by auto
then obtain { j where a = p “ib=p " j
using prime-power-mult-nat[of p a b] by blast
with «prime p» show a = 1 V primepow a b = 1 V primepow b by auto
qed

lemma primepow-mult-aprimedivisorl:
assumes primepow (n :: 'a :: factorial-semiring-multiplicative)
shows primepow (aprimedivisor n % n)
by (subst (2) primepow-decompose|OF assms, symmetric], subst power-Suc [symmetric],
subst primepow-prime-power)
(insert assms, auto introl: prime-aprimedivisor’ dest: primepow-gt-Suc-0)

lemma primepow-factors-altdef:
fixes z :: ‘a :: factorial-semiring-multiplicative
assumes z % 0
shows primepow-factors z = {p ~ k |p k. p € prime-factors x N k € {0<..
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multiplicity p x}}
proof (intro equalityl subsetl)
fix ¢ assume g € primepow-factors x
then obtain p k where pk: primep k> 0qg=p "k qdvd x
unfolding primepow-factors-def primepow-def by blast
moreover have k < multiplicity p x using pk assms by (intro multiplicity-gel)
auto
ultimately show ¢ € {p "k |p k. p € prime-factors z N\ k € {0<.. multiplicity
p z}}
by (auto simp: prime-factors-multiplicity intro!: exI[of - p] exI|of - k])
qed (auto simp: primepow-factors-def prime-factors-multiplicity multiplicity-dvd’)

lemma finite-primepow-factors:
assumes z # (0 :: 'a :: factorial-semiring-multiplicative)
shows finite (primepow-factors x)
proof —
have finite (SIGMA p:prime-factors z. {0<..multiplicity p x})
by (intro finite-Sigmal) simp-all
hence finite (A(p,k). p ~ k) ‘...) (is finite ?A) by (rule finite-imagel)
also have ?A = primepow-factors x
using assms by (subst primepow-factors-altdef) fast+
finally show ?thesis .
qed

lemma aprimedivisor-primepow-factors-conv-prime-factorization:
assumes [simp]: n # (0 :: 'a :: factorial-semiring-multiplicative)
shows image-mset aprimedivisor (mset-set (primepow-factors n)) = prime-factorization
n
(is ?lhs = %rhs)
proof (intro multiset-eql)
fixp:'a
show count ?lhs p = count ?rhs p
proof (cases prime p)
case Fulse
have p ¢# image-mset aprimedivisor (mset-set (primepow-factors n))
proof
assume p €# image-mset aprimedivisor (mset-set (primepow-factors n))
then obtain ¢ where p = aprimedivisor q q € primepow-factors n
by (auto simp: finite-primepow-factors)
with False prime-aprimedivisor’[of q] have ¢ = 0 V is-unit ¢ by auto
with <q € primepow-factors ny show False by (auto simp: primepow-factors-def
primepow-def)
qed
hence count ?lhs p = 0 by (simp only: Multiset.not-in-iff)
with Fualse show ?thesis by (simp add: count-prime-factorization)
next
case True
hence p: p # 0 —is-unit p by auto
have count ?lhs p = card (aprimedivisor —‘ {p} N primepow-factors n)
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by (simp add: count-image-mset finite-primepow-factors)
also have aprimedivisor —‘ {p} N primepow-factors n = {p"k |k. k > 0 A p
k dvd n}
using True by (rule aprimedivisor-vimage)
also from True have ... = (A\k. p " k) ‘ {0<..multiplicity p n}
by (subst power-dvd-iff-le-multiplicity) auto
also from p True have card ... = multiplicity p n
by (subst card-image) (auto introl: inj-onl dest: prime-power-inj)
also from True have ... = count (prime-factorization n) p
by (simp add: count-prime-factorization)
finally show ?%thesis .
qed
qed

o~

lemma prime-elem-aprimedivisor-nat: d > Suc 0 = prime-elem (aprimedivisor
d)

using prime-aprimedivisor'[of d] by simp

lemma aprimedivisor-gt-0-nat [simp]: d > Suc 0 = aprimedivisor d > 0
using prime-aprimedivisor'[of d] by (simp add: prime-gt-0-nat)

lemma aprimedivisor-gt-Suc-0-nat [simp]: d > Suc 0 = aprimedivisor d > Suc
0
using prime-aprimedivisor'[of d] by (simp add: prime-gt-Suc-0-nat)

lemma aprimedivisor-not-Suc-0-nat [simp]: d > Suc 0 = aprimedivisor d # Suc
0
using aprimedivisor-gt-Suc-0[of d] by (intro notl) auto

lemma multiplicity-aprimedivisor-gt-0-nat [simp):
d > Suc 0 = multiplicity (aprimedivisor d) d > 0
by (subst multiplicity-gt-zero-iff ) (auto intro: aprimedivisor-dvd’)

lemma primepowl:
prime p =k > 0 = p ~ k = n = primepow n A aprimedivisor n = p
unfolding primepow-def by (auto simp: aprimedivisor-prime-power)

lemma not-primepowl:

assumes prime p prime ¢ p # q p dvd n g dvd n

shows —primepow n

using assms by (auto simp: primepow-def dest!: prime-dvd-power|rotated] dest:
primes-dvd-imp-eq)

lemma sum-prime-factorization-conv-sum-primepow-factors:
fixes n :: ‘a :: factorial-semiring-multiplicative
assumes n # 0
shows (3 geprimepow-factors n. f (aprimedivisor q)) = (> pE#prime-factorization

n. fp)

proof —
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from assms have prime-factorization n = image-mset aprimedivisor (mset-set
(primepow-factors n))
by (rule aprimedivisor-primepow-factors-conv-prime-factorization [symmetric])
also have (> pe#.... fp) = (3 qeprimepow-factors n. f (aprimedivisor q))
by (simp add: image-mset.compositionality sum-unfold-sum-mset o-def)
finally show ?thesis ..
qed

lemma multiplicity-aprimedivisor-Suc-0-iff :
assumes primepow (n :: 'a :: factorial-semiring-multiplicative)
shows multiplicity (aprimedivisor n) n = Suc 0 <— prime n
by (subst (3) primepow-decompose [OF assms, symmetric])
(insert assms, auto simp add: prime-power-iff intro!: prime-aprimedivisor’)

definition mangoldt :: nat = 'a :: real-algebra-1 where
mangoldt n = (if primepow n then of-real (In (real (aprimedivisor n))) else 0)

lemma mangoldt-0 [simp]: mangoldt 0 = 0
by (simp add: mangoldt-def)

lemma mangoldt-Suc-0 [simp]: mangoldt (Suc 0) = 0
by (simp add: mangoldi-def)

lemma of-real-mangoldt [simp]: of-real (mangoldt n) = mangoldt n
by (simp add: mangoldt-def)

lemma mangoldt-sum:
assumes n # 0
shows (> d | d dvd n. mangoldt d :: 'a :: real-algebra-1) = of-real (In (real n))
proof —
have (3" d | d dvd n. mangoldt d :: 'a) = of-real (3 d | d dvd n. mangoldt d) by
stmp
also have (}_d | d dvd n. mangoldt d) = (3 d € primepow-factors n. In (real
(aprimedivisor d)))
using assms by (intro sum.mono-neutral-cong-right) (auto simp: primepow-factors-def
mangoldt-def)
also have ... = In (real ([[ d € primepow-factors n. aprimedivisor d))
using assms finite-primepow-factors|of n
by (subst In-prod [symmetric])
(auto simp: primepow-factors-def introl: aprimedivisor-pos-nat
intro: Nat.grOI primepow-gt-Suc-0)
also have primepow-factors n =
(Mp,k). p " k) < (SIGMA p:prime-factors n. {0<..multiplicity p n})
(is - = - ‘ ?A) by (subst primepow-factors-altdef[OF assms]) fast+
also have prod aprimedivisor ... = ([] (p,k)€?A. aprimedivisor (p " k))
by (subst prod.reindex)
(auto simp: inj-on-def prime-power-inj'' prime-factors-multiplicity
prod.Sigma [symmetric] case-prod-unfold)
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also have ... = ([[(p,k)€?A. p)
by (intro prod.cong refl) (auto simp: aprimedivisor-prime-power prime-factors-multiplicity)

also have ... = (J[[ z€prime-factors n. [[ ke{0<..multiplicity = n}. z)
by (rule prod.Sigma [symmetric]) auto
also have ... = ([Jz€prime-factors n. x = multiplicity x n)
by (intro prod.cong refl) (simp add: prod-constant)
also have ... = n using assms by (intro prime-factorization-nat [symmetric])
stmp
finally show ?thesis .
qged

lemma mangoldt-primepow:
prime p = mangoldt (p ~ k) = (if k > 0 then of-real (In (real p)) else 0)
by (simp add: mangoldt-def aprimedivisor-prime-power)

lemma mangoldt-primepow’ [simp]: prime p = k > 0 = mangoldt (p ~ k) =
of-real (In (real p))
by (subst mangoldt-primepow) auto

lemma mangoldt-prime [simp]: prime p => mangoldt p = of-real (In (real p))
using mangoldt-primepow(of p 1] by simp

lemma mangoldt-nonneg: 0 < (mangoldt d :: real)
using aprimedivisor-gt-Suc-0-nat|of d|
by (auto simp: mangoldt-def of-nat-le-iff [of 1 z for z, unfolded of-nat-1] Suc-le-eq
introl: In-ge-zero dest: primepow-gt-Suc-0)

lemma norm-mangoldt [simp]:

norm (mangoldt n :: 'a :: real-normed-algebra-1) = mangoldt n
proof (cases primepow n)

case True

hence prime (aprimedivisor n)

by (intro prime-aprimedivisor’)
(auto simp: primepow-def prime-gt-0-nat)

hence aprimedivisor n > 1 by (simp add: prime-gt-Suc-0-nat)

with True show ?thesis by (auto simp: mangoldt-def abs-if)
qged (auto simp: mangoldt-def)

lemma Re-mangoldt [simp]: Re (mangoldt n) = mangoldt n
and Im-mangoldt [simp]: Im (mangoldt n) = 0
by (simp-all add: mangoldt-def)

lemma abs-mangoldt [simp]: abs (mangoldt n :: real) = mangoldt n
using norm-mangoldt|of n, where ?’a = real, unfolded real-norm-def] .

lemma mangoldt-le:
assumes n > (
shows mangoldt n < In n
proof (cases primepow n)
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case True
from True have prime (aprimedivisor n)

by (intro prime-aprimedivisor’)

(auto simp: primepow-def prime-gt-0-nat)

hence gi-1: aprimedivisor n > 1 by (simp add: prime-gt-Suc-0-nat)
from True have mangoldt n = In (aprimedivisor n)

by (simp add: mangoldt-def)
also have ... < In n using True gt-1

by (subst In-le-cancel-iff) (auto intro!: Nat.grOI dvd-imp-le aprimedivisor-dvd’)
finally show ?thesis .

qed (insert assms, auto simp: mangoldt-def)

end

11 Primitive roots in residue rings and Carmichael’s
function

theory Residue-Primitive-Roots
imports Pocklington
begin

This theory develops the notions of primitive roots (generators) in residue
rings. It also provides a definition and all the basic properties of Carmichael’s
function A(n), which is strongly related to this. The proofs mostly follow
Apostol’s presentation

11.1 Primitive roots in residue rings

A primitive root of a residue ring modulo n is an element ¢ that generates
the ring, i.e. such that for each x coprime to n there exists an ¢ such that
z = ¢'. A simpler definition is that ¢ must have the same order as the
cardinality of the multiplicative group, which is ¢(n).

Note that for convenience, this definition does not demand g < n.

inductive residue-primroot :: nat = nat = bool where
n > 0 = coprime n ¢ => ord n g = totient n =—> residue-primroot n g

lemma residue-primroot-def [code]:
residue-primroot n x <— n > 0 A coprime n x A ord n x = totient n
by (simp add: residue-primroot.simps)

lemma not-residue-primroot-0 [simpl: ~ residue-primroot 0 x
by (auto simp: residue-primroot-def)

lemma residue-primroot-mod [simp]: residue-primroot n (x mod n) = residue-primroot

n
by (cases n = 0) (simp-all add: residue-primroot-def)
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lemma residue-primroot-cong:
assumes [z = z'] (mod n)
shows residue-primroot n x = residue-primroot n z’
proof —
have residue-primroot n © = residue-primroot n (x mod n)
by simp
also have = mod n = 2’ mod n
using assms by (simp add: cong-def)
also have residue-primroot n (x’' mod n) = residue-primroot n x’
by simp
finally show ?thesis .
qed

lemma not-residue-primroot-0-right [simp]: residue-primroot n 0 <— n = 1
by (auto simp: residue-primroot-def)

lemma residue-primroot-1-iff : residue-primroot n (Suc 0) +— n € {1, 2}
proof
assume x: residue-primroot n (Suc 0)
with totient-gt-1[of n] have n < 2 by (cases n < 2) (auto simp: residue-primroot-def)
hence n € {0, 1, 2} by auto
thus n € {1, 2} using * by (auto simp: residue-primroot-def)
qed (auto simp: residue-primroot-def)

11.2 Primitive roots modulo a prime

For prime p, we now analyse the number of elements in the ring 7Z/pZ whose
order is precisely d for each d.

context

fixes n :: nat and 3

assumes n: n > 1

defines ¢ = (Ad. card {z€totatives n. ord n x = d})
begin

lemma elements-with-ord-restrict-totatives:
d > 0 = {ze{..<n}. ord n x = d} = {xEtotatives n. ord n x = d}
using n by (auto simp: totatives-def coprime-commute intro!: Nat.gr0I le-neg-trans)

lemma prime-elements-with-ord:
assumes ¢ d # 0 and prime n
and a: a € totatives n ord na = d a # 1
shows inj-on (Ak. a ~k mod n) {..<d}
and {ze{.<n}. [z Td=1] (mod n)} = (Mk. a "k mod n) ‘{.<d}
and bij-betw (Ak. a ~k mod n) (totatives d) {ze{..<n}. ord n z = d}
proof —
show inj: inj-on (Ak. a ~k mod n) {..<d}
using inj-power-mod[of n a] a by (auto simp: totatives-def coprime-commute)
from a have d > 0 by (auto simp: totatives-def coprime-commute)
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moreover have d # 1 using a n
by (auto simp: ord-eq-Suc-0-iff totatives-less cong-def)
ultimately have d: d > 1 by simp

have x: (Ak. a "~k mod n) ‘{..<d} = {ze{..<n}. [t T d = 1] (mod n)}
proof (rule card-seteq)
have card {ze{..<n}. [x “d = 1] (mod n)} < d
using assms a by (intro roots-mod-prime-bound) (auto simp: totatives-def
coprime-commute)
also have ... = card ((Ak. a "k mod n) ‘{..<d})
using inj by (subst card-image) auto
finally show card {z € {..<n}. [x " d = 1] (mod n)} < ... .
next
show (M\k. @ "k modn) ‘{.<d} C{z € {.<n}. [x "d= 1] (modn)}
proof safe
fix k assume k£ < d
have [(a ~d) "k =1 "k] (mod n)
by (intro cong-pow) (use a in <auto simp: ord-divides’y)
thus [(a ~k mod n) ~d = 1] (mod n)
by (simp add: power-mult [symmetric] cong-def power-mod mult.commute)
qged (use «prime ny in <auto dest: prime-gt-1-nat»)
qed auto
thus {z€{..<n}. [z ~d = 1] (mod n)} = (A\k. @ "k mod n) ‘{..<d} ..

show bij-betw (Ak. a ~ k mod n) (totatives d) {z€{..<n}. ord n x = d}
unfolding bij-betw-def
proof (intro conjl inj-on-subset|OF inj] equalityl subsetl)
fix b assume b € (Ak. a ~ k mod n) ¢ totatives d
then obtain k where b = a ~ k mod n k € totatives d by auto
thus b € {b € {.<n}. ord n b = d}
using n a by (simp add: ord-power totatives-def coprime-commute)
next
fix b assume b € {z € {.<n}. ord n z = d}
hence b: ord n b = d b < n by auto
with d have coprime n b using ord-eq-0[of n b] by auto
from b have b € {z€{..<n}. [z ~d = 1] (mod n)}
by (auto simp: ord-divides’)
with x obtain k& where k: k < db=a "k modn
by blast
with 8(2) n a d have d div ged k d = ord n b
using <coprime n by by (auto simp: ord-power)
also have ord n b = d by (simp add: b)
finally have coprime k d
unfolding coprime-iff-gcd-eq-1 using d a by (subst (asm) div-eg-dividend-iff)
auto
with k b d have k € totatives d by (auto simp: totatives-def introl: Nat.grOI)
with k£ show b € (Ak. a ~ k mod n) ‘ totatives d by blast
qed (use d n in <auto simp: totatives-lessy)
qed
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lemma prime-card-elements-with-ord:
assumes ¢ d # 0 and prime n
shows 1 d = totient d
proof (cases d = 1)
case True
have ¢ 1 = 1
using elements-with-ord-1[of n] n by (simp add: 1-def)
thus ?thesis using True by simp
next
case Fulse
from assms obtain a where a: a € totatives n ord n a = d
by (auto simp: ¥-def)
from a have d > 0 by (auto introl: Nat.gr0I simp: ord-eq-0 totatives-def co-
prime-commute)
from @ and Fulse have a # 1 by auto
from bij-betw-same-card[OF prime-elements-with-ord(3)[OF assms a this]] show
1 d = totient d
using elements-with-ord-restrict-totatives|of d| False a <d > 0»
by (simp add: 1-def totient-def)
qed

lemma prime-sum-card-elements-with-ord-eq-totient:
(3> d | d dvd totient n. 1 d) = totient n
proof —
have totient n = card (totatives n)
by (simp add: totient-def)
also have totatives n = (|Jde{d. d dvd totient n}. {xEtotatives n. ord n =
a})
by (force simp: order-divides-totient totatives-def coprime-commute)
also have card ... = (> d | d dvd totient n. ¢ d)
unfolding ¢ -def using n by (subst card-UN-disjoint) (auto intro!: finite-divisors-nat)
finally show ?thesis ..
qed

We can now show that the number of elements of order d is p(d) if d | p—1
and 0 otherwise.

theorem prime-card-elements-with-ord-eq-totient:
assumes prime n
shows ¢ d = (if d dvd n — 1 then totient d else 0)
proof (cases d dvd totient n)
case Fulse
thus ?thesis using order-divides-totient[of n] assms
by (auto simp: 1-def totient-prime totatives-def coprime-commute[of n|)
next
case True
have ¢ d = totient d
proof (rule ccontr)
assume neq: 1 d # totient d
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have le: ¢ d < totient d if d dvd totient n for d
using prime-card-elements-with-ord|of d| assms by (cases ¥ d = 0) auto
from neq and le[of d] and True have less: ¥ d < totient d by auto

have totient n = (>_ d | d dvd totient n. ¢ d)
using prime-sum-card-elements-with-ord-eq-totient ..
also have ... < (> d | d dvd totient n. totient d)
by (rule sum-strict-mono-ex1)
(use n le less assms True in <auto introl: finite-divisors-nat»)
also have ... = totient n
using totient-divisor-sum .
finally show Fulse by simp
qed
with True show ?thesis using assms by (simp add: totient-prime)
qed

As a corollary, we get that the number of primitive roots modulo a prime p
is ¢(p — 1). Since this number is positive, we also get that there is at least
one primitive root modulo p.

lemma
assumes prime n
shows  prime-card-primitive-roots: card {x€totatives n. ord nx =n — 1} =
totient (n — 1)
card {ze{..<n}. ord nz =n — 1} = totient (n — 1)
and prime-primitive-root-exists: 3 x. residue-primroot n x
proof —
show x: card {z€totatives n. ord n x = n — 1} = totient (n — 1)
using prime-card-elements-with-ord-eg-totient[of n — 1] assms
by (auto simp: totient-prime -def)
thus card {z€{..<n}. ord nx = n — 1} = totient (n — 1)
using assms n elements-with-ord-restrict-totatives[of n — 1] by simp

note *
also have totient (n — 1) > 0 using n by auto
finally show 3 z. residue-primroot n © using assms prime-gt-1-nat|of n|
by (subst (asm) card-gt-0-iff)
(auto simp: residue-primroot-def totient-prime totatives-def coprime-commute)
qed

end

11.3 Primitive roots modulo powers of an odd prime

Any primitive root ¢ modulo an odd prime p is also a primitive root modulo
pF for all k > 0 if [gP~! # 1] (mod p?). To show this, we first need the
following lemma.

lemma residue-primroot-power-prime-power-neq-1:
assumes k > 2
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assumes p: prime p odd p and residue-primroot p g and [g ~(p — 1) # 1] (mod
)
shows [g " totient (p " (k — 1)) # 1] (mod (p " k))
using assms(1)
proof (induction k rule: dec-induct)
case base
thus ?case using assms by (simp add: totient-prime)
next
case (step k)
from p have p > 2
using prime-gt-1-nat[of p] by (cases p = 2) auto
from assms have g: ¢ > 0 by (auto intro!: Nat.gr0I)
have [g ~ totient (p ~(k — 1)) = 1] (mod p ~ (k — 1))
using assms by (intro euler-theorem)
(auto simp: residue-primroot-def totatives-def coprime-commute)
from cong-to-1-nat[OF this]
obtain ¢ where x: g " totient (p “(k— 1)) — 1 =p “(k — 1) x t by auto
have t: g " totient (p “(k—1))=p (k—1)xt+ 1
using g by (subst * [symmetric]) auto

have —p dvd t
proof
assume p dvd t
then obtain ¢ where [simp]: ¢ = p x ¢ by auto
from ¢t have g " totient (p " (k — 1)) =p " k*xq+ 1
using <k > 2» by (cases k) auto
hence [g ~totient (p ~(k— 1)) =p "k xq+ 1] (mod p " k)
by simp
alsohave [p "kxqg+ 1 =0%q+ 1] (modp " k)
by (intro cong-add cong-mult) (auto simp: cong-0-iff)
finally have [g ~ totient (p ~ (k — 1)) = 1] (mod p " k)
by simp
with step.IH show Fualse by contradiction
qed

from ¢ have (g ~totient (p ~(k— 1)) "p=(p " (k—=1)xt+ 1) "p
by (rule arg-cong)
also have (g ~totient (p ~(k — 1))) “p =g ~ (p * totient (p ~ (k — 1)))
by (simp add: power-mult [symmetric] mult.commute)
also have p x totient (p ~ (k — 1)) = totient (p " k)
using p <k > 2» by (simp add: totient-prime-power Suc-diff-Suc flip: power-Suc)
alsohave (p “(k—1)xt+ 1) "p=O_i<p. (p choose i) xt " i*p ~(i=x
(k- 1))
by (subst binomial) (simp-all add: mult-ac power-mult-distrib power-mult [symmetric])
finally have [g ~ totient (p " k) = (O i<p. (p choose i) x t ~ixp ~ (i * (k —
)
(mod (p ~ Suc k)) (is [- = ?rhs] (mod -)) by simp

also have [?rhs = (3" i<p. if i < 1 then (p choose i) xt “ixp ~ (i x (k — 1))
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else 0)]
(mod (p ~ Suc k)) (is [sum ?f - = sum ?g -] (mod -))
proof (intro cong-sum)
fix i assume i: { € {..p}
consider { < I | i= 2| i > 2 by force
thus [?f ¢ = ?g 4] (mod (p ~ Suc k))
proof cases
assume i: ¢ > 2
have Suc k < 8 x (k — 1)
using <k > 2» by (simp add: algebra-simps)
also have & x (k — 1) <ix (k— 1)
using i by (intro mult-right-mono) auto
finally have p ~ Suc k dvd ?f i
by (intro dvd-mult le-imp-power-dvd)
thus [?f i = 29 i] (mod (p ~ Suc k))
by (simp add: cong-0-iff)
next
assume [simp]: i = 2
have ?fi=px* (p— 1) div 2 x> xp " (2 x (k — 1))
using choose-two|of p| by simp
alsohave px (p — 1) div2=(p—1)div2x*p
using <odd p» by (auto elim!: oddFE)
alsohave ... x 2 xp “ (2% (k—1)=(p—1)div2 >+ (pxp (2 *
(k- 1))
by (simp add: algebra-simps)
alsohave pxp " (2x(k—1)=p " (2xk—1)
using <k > 2> by (cases k) auto
also have p ~Suc kdvd (p — 1) div 2 x t> x p " (2 x k — 1)
using <k > 2» by (intro dvd-mult le-imp-power-dvd) auto
finally show [?f i = ?g i] (mod (p ~ Suc k))
by (simp add: cong-0-iff)
qed auto
qed
also have (> i<p. ?gi) = (O_i<1. 9f 1)
using p prime-gt-1-nat[of p] by (intro sum.mono-neutral-cong-right) auto
alsohave ... =1 +txp "k
using choose-twolof p] <k > 2» by (cases k) simp-all
finally have eq: [¢g ~totient (p " k) =1+t *p " k] (mod p ~ Suc k) .

have [g ~ totient (p " k) # 1] (mod p ~ Suc k)
proof
assume [g ~ totient (p " k) = 1] (mod p ~ Suc k)
hence [g ~totient (p " k) — g " totient (p " k) =1+ txp "k — 1] (mod p
~ Suc k)
by (intro cong-diff-nat eq) auto
hence [t * p ~k = 0] (mod p ~ Suc k)
by (simp add: cong-sym-eq)
hence pxp “kdvdt*p "k
by (simp add: cong-0-iff)
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hence p dvd t using p > 2> by simp
with <—p dvd t» show False by contradiction
qed
thus “case by simp
qed

We can now show that primitive roots modulo p with the above condition
are indeed also primitive roots modulo p*.

proposition residue-primroot-prime-lift-iff:
assumes p: prime p odd p and residue-primroot p g
shows (Vk>0. residue-primroot (p " k) g) < [g ~(p — 1) # 1] (mod p?)
proof —
from assms have g: coprime p gordp g =p — 1
by (auto simp: residue-primroot-def totient-prime)
show ?thesis
proof
assume Y k>0. residue-primroot (p ~ k) g
hence residue-primroot (p?) g by auto
hence ord (p?) g = totient (p?)
by (simp-all add: residue-primroot-def)
thus [g = (p — 1) # 1] (mod p?)
using g assms prime-gt-1-nat[of p]
by (auto simp: ord-divides’ totient-prime-power)
next
assume g": [g " (p — 1) # 1] (mod p?)

have residue-primroot (p " k) g if k > 0 for k
proof (cases k = 1)
case Fulse
with that have k: k > 1 by simp
from ¢ have coprime: coprime (p " k) g
by (auto simp: totatives-def coprime-commute)

define t where t = ord (p " k) g
have [¢ ~t = 1] (mod (p " k))
by (simp add: t-def ord-divides’)
alsohave p "k=pxp "~ (k- 1)
using k by (cases k) auto
finally have [¢g "¢ = 1] (mod p)
by (rule cong-modulus-mult-nat)
hence totient p dvd t
using g p by (simp add: ord-divides’ totient-prime)
then obtain ¢ where t: t = totient p x q by auto

have t dvd totient (p ~ k)
using coprime by (simp add: t-def order-divides-totient)
with ¢ p k have ¢ dvd p ~ (k — 1) using prime-gt-1-nat[of p]
by (auto simp: totient-prime totient-prime-power)
then obtain b where b: b <k — 1g=p " b
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using divides-primepow-nat[of p ¢ k — 1] p by auto

have b=k — 1
proof (rule ccontr)
assume b # k — 1
with b have b < k — 1 by simp
have t =p "bx* (p — 1)
using b p by (simp add: t totient-prime)
also have ... duvdp (k- 2)x(p— 1)
using b < k — 1> by (intro mult-dvd-mono le-imp-power-dvd) auto
also have ... = totient (p ~ (k — 1))
using k p by (simp add: totient-prime-power numeral-2-eq-2)
finally have [¢g ~ totient (p ~(k — 1)) = 1] (mod (p " k))
by (simp add: ord-divides' t-def)
with residue-primroot-power-prime-power-neq-1[of k p g] p k assms g’ show
Fulse
by auto
qed
hence t = totient (p ~ k)
using p k by (simp add: t b totient-prime totient-prime-power)
thus residue-primroot (p " k) g
using g one-less-power|of p k] prime-gt-1-nat[of p] p k
by (simp add: residue-primroot-def t-def)
qged (use assms in auto)
thus V£>0. residue-primroot (p ~ k) g by blast
qged
qged

If p is an odd prime, there is always a primitive root ¢ modulo p, and if ¢
does not fulfil the above assumption required for it to be liftable to p*, we
can use g + p, which is also a primitive root modulo p and does fulfil the
assumption.

This shows that any modulus that is a power of an odd prime has a primitive
root.

theorem residue-primroot-odd-prime-power-exists:
assumes p: prime p odd p
obtains g where V k>0. residue-primroot (p ~ k) g
proof —
obtain g where g: residue-primroot p g
using prime-primitive-root-exists[of p| assms prime-gt-1-nat[of p] by auto

have 3 g. residue-primroot p g A [g ~(p — 1) # 1] (mod p?)
proof (cases [g ~(p — 1) = 1] (mod p?))
case True
define g’ where ¢’ = p + ¢
note g
also have residue-primroot p g «— residue-primroot p g’
unfolding ¢’-def by (rule residue-primroot-cong) (auto simp: cong-def)
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finally have ¢": residue-primroot p g’ .

have [¢' " (p — 1) = O_k<p—1. ((p—1) choose k) * ¢ ~(p — Suc k) x p ~
k)] (mod p?)
(is [- = ?rhs] (mod -)) by (simp add: g'-def binomial mult-ac)
also have [?rhs = (3 k<p—1.if k < 1 then ((p—1) choose k) x
g " (p— Suck) x p "k else 0)] (mod p?)
(is [sum ?f - = sum %g -] (mod -))
proof (intro cong-sum)
fix k assume k € {.p—1}
show [?f k = ?g k] (mod p?)
proof (cases k < 1)
case Fulse
have p? dvd ?f k
using Fualse by (intro dvd-mult le-imp-power-dvd) auto
thus ?thesis using False by (simp add: cong-0-iff)
qed auto
qed
also have sum %g {.p—1} = sum ?2f {0, 1}
using prime-gt-1-nat[of p] p by (intro sum.mono-neutral-cong-right) auto
alsohave ... =g "(p—1)+px(p—1)xg " (p— 2)
using p by (simp add: numeral-2-eq-2)
alsohave [ " (p—1)+px(p—1)xg (p—2)=1+px(p—1)*xg~
(p — 2)] (mod p?)
by (intro cong-add True) auto
finally have [¢/ “(p— 1) =1 +px(p— 1) xg ~(p — 2)] (mod p?) .

moreover have [1 +p* (p — 1) * g ~(p — 2) # 1] (mod p?)
proof
assume [ +px*(p—1)*g " (p — 2) = 1] (mod p?)
hence [ + px (p—1)xg (p—2)— 1 =1 — 1] (mod p?)
by (intro cong-diff-nat) auto
hence pxpdudpx* (p— 1) *g " (p — 2))
by (auto simp: cong-0-iff power2-eq-square)
hence p dvd (p — 1) x g " (p — 2)
using p by simp
hence p dvd g ~ (p — 2)
using p dvd-imp-le[of p p — Suc 0] prime-gt-1-nat[of p]
by (auto simp: prime-dvd-mult-iff)
also have ... dvdg ~(p — 1)
by (intro le-imp-power-dvd) auto
finally have [g ~ (p — 1) = 0] (mod p)
by (simp add: cong-0-iff)
hence [0 = g " (p — 1)] (mod p)
by (simp add: cong-sym-eq)

also from «residue-primroot p g» have [g ~ (p — 1) = 1] (mod p)

using p by (auto simp: residue-primroot-def ord-divides’ totient-prime)
finally have [0 = 1] (mod p) .
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thus False using prime-gt-1-nat[of p] p by (simp add: cong-def)
qed

ultimately have [¢' " (p — 1) # 1] (mod p?)
by (simp add: cong-def)
thus 3 g. residue-primroot p g A [g ~(p — 1) # 1] (mod p?)
using ¢’ by blast
qed (use g in auto)
thus ?thesis
using residue-primroot-prime-lift-iff |[OF assms] that by blast
qged

11.4 Carmichael’s function

Carmichael’s function A\(n) gives the LCM of the orders of all elements in
the residue ring modulo n — or, equivalently, the maximum order, as we will
show later. Algebraically speaking, it is the exponent of the multiplicative
group (Z/nZ)*.

It is not to be confused with Liouville’s function, which is also denoted by
A(n).

definition Carmichael where
Carmichael n = (LCM a € totatives n. ord n a)

lemma Carmichael-0 [simp]: Carmichael 0 = 1
by (simp add: Carmichael-def)

lemma Carmichael-1 [simp]: Carmichael 1 = 1
by (simp add: Carmichael-def)

lemma Carmichael-Suc-0 [simp]: Carmichael (Suc 0) = 1
by (simp add: Carmichael-def)

lemma ord-dvd-Carmichael:
assumes n > [ coprime n k
shows ord n k dvd Carmichael n
proof —
have k mod n € totatives n
using assms by (auto simp: totatives-def coprime-commute introl: Nat.gr0I)
hence ord n (k mod n) dvd Carmichael n
by (simp add: Carmichael-def del: ord-mod)
thus %thesis by simp
qed

lemma Carmichael-divides:
assumes Carmichael n dvd k coprime n a
shows [a "k = 1] (mod n)

proof (casesn < 2V a=1)
case Fulse
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hence ord n a dvd Carmichael n
using Fulse assms by (intro ord-dvd-Carmichael) auto
also have ... dvd k by fact
finally have ord n a dvd k .
thus ?thesis using ord-divides by auto
next
case True
then consider a = 1 | n= 0| n = 1 by force
thus ?thesis using assms by cases auto
qed

lemma Carmichael-dvd-totient: Carmichael n dvd totient n
unfolding Carmichael-def
proof (intro Lem-least, safe)
fix a assume a € totatives n
hence [a ~ totient n = 1] (mod n)
by (intro euler-theorem) (auto simp: totatives-def)
thus ord n a dvd totient n
using ord-divides by blast
qed

lemma Carmichael-dvd-mono-coprime:
assumes coprime mnm > 1n > 1
shows  Carmichael m dvd Carmichael (m * n)
unfolding Carmichael-def[of m)

proof (intro Lem-least, safe)
fix r assume z: x € totatives m
from assms have totatives n # {} by simp
then obtain y where y: y € totatives n by blast

from binary-chinese-remainder-nat|OF assms(1), of x y]

obtain z where z: [z = 2] (mod m) [z = y] (mod n) by blast

have z': coprime z n coprime z m

by (rule cong-imp-coprime; use x y z in <force simp: totatives-def cong-sym-eq>)+

from z have ord m x = ord m z
by (intro ord-cong) (auto simp: cong-sym-eq)
also have ord m z dvd ord (m * n) z
using assms by (auto simp: ord-modulus-mult-coprime)
also from z’ assms have ... dvd Carmichael (m * n)
by (intro ord-dvd-Carmichael) (auto simp: coprime-commute introl:one-less-mult)
finally show ord m = dvd Carmichael (m x n) .
qed

A distributes over the product of coprime numbers similarly to ¢, but with
LCM instead of multiplication:

lemma Carmichael-mult-coprime:
assumes coprime m n
shows Carmichael (m x n) = lem (Carmichael m) (Carmichael n)
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proof (casesm < 1V n<1)
case True
hence m=0Vvn=0V m=1Vn=1 by force
thus “thesis using assms by auto
next
case Fulse
show ?thesis
proof (rule dvd-antisym,)
show Carmichael (m * n) dvd lem (Carmichael m) (Carmichael n)
unfolding Carmichael-def[of m * n]
proof (intro Lem-least, safe)
fix x assume z: z € totatives (m * n)
have ord (m * n) © = lem (ord m z) (ord n x)
using assms z by (subst ord-modulus-mult-coprime) (auto simp: co-
prime-commute totatives-def)
also have ... dvd lem (Carmichael m) (Carmichael n)
using Fualse z
by (intro lem-mono ord-dvd-Carmichael) (auto simp: totatives-def co-
prime-commute)
finally show ord (m = n) x dvd ... .
qed
next
show lcm (Carmichael m) (Carmichael n) dvd Carmichael (m * n)
using Carmichael-dvd-mono-coprime[of m n]
Carmichael-dvd-mono-coprimelof n m] assms False
by (auto introl: lem-least simp: coprime-commute mult.commute)
qed
qed

lemma Carmichael-pos [simp, intro|: Carmichael n > 0

by (auto simp: Carmichael-def ord-eq-0 totatives-def coprime-commute introl:
Nat.grol)

lemma Carmichael-nonzero [simp|: Carmichael n # 0
by simp

lemma power-Carmichael-eq-1:
assumes n > 1 coprime n x
shows [z = Carmichael n = 1] (mod n)
using ord-dvd-Carmichael[of n z] assms
by (auto simp: ord-divides’)

lemma Carmichael-2 [simp]: Carmichael 2 = 1
using Carmichael-dvd-totient[of 2] by simp

lemma Carmichael-4 [simp]: Carmichael 4 = 2
proof —
have Carmichael 4 dvd 2
using Carmichael-dvd-totient[of 4] by simp
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hence Carmichael 4 < 2 by (rule dvd-imp-le) auto
moreover have Carmichael 4 # 1
using power-Carmichael-eq-1[of 4::nat 3]
unfolding coprime-iff-gcd-eq-1 by (auto simp: ged-non-0-nat cong-def)
ultimately show ?thesis
using Carmichael-pos[of 4] by linarith
qed

lemma residue-primroot-Carmichael:
assumes residue-primroot n g
shows Carmichael n = totient n
proof (cases n = 1)
case Fulse
show ?thesis
proof (intro dvd-antisym Carmichael-dvd-totient)
have ord n g dvd Carmichael n
using assms False by (intro ord-dvd-Carmichael) (auto simp: residue-primroot-def)
thus totient n dvd Carmichael n
using assms by (auto simp: residue-primroot-def)
qed
qed auto

lemma Carmichael-odd-prime-power:
assumes prime p odd p k > 0
shows Carmichael (p "k)=p “(k— 1) (p— 1)
proof —
from assms obtain g where residue-primroot (p ~ k) ¢
using residue-primroot-odd-prime-power-exists|of p] assms by metis
hence Carmichael (p ~ k) = totient (p ~ k)
by (intro residue-primroot-Carmichaellof p ~ k g]) auto
with assms show ?thesis by (simp add: totient-prime-power)
qed

lemma Carmichael-prime:
assumes prime p
shows Carmichael p =p — 1
proof (cases even p)
case True
with assms have p = 2
using primes-dvd-imp-eq two-is-prime-nat by blast
thus ?thesis by simp
next
case Fulse
with Carmichael-odd-prime-power|of p 1] assms show ?thesis by simp
qed

lemma Carmichael-twopow-ge-8:

assumes k > 3
shows Carmichael (2 k) =2 " (k — 2)
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proof (intro dvd-antisym)
have 2 ~(k — 2) = ord (2 " k) (3 :: nat)
using ord-twopow-3-5[of k 3] assms by simp
also have ... dvd Carmichael (2 " k)
using assms one-less-power|of 2::nat k] by (intro ord-dvd-Carmichael) auto
finally show 2 ~(k — 2) dvd ... .
next
show Carmichael (2 " k) dvd 2 ~ (k — 2)
unfolding Carmichael-def
proof (intro Lem-least, safe)
fix © assume z € totatives (2 " k)
hence odd = by (auto simp: totatives-def)
hence [z 2 7 (k — 2) = 1] (mod 2 " k)
using assms ord-twopow-auz|of k z] by auto
thus ord (2 " k) z dvd 2 ™ (k — 2)
by (simp add: ord-divides’)
qed
qed

lemma Carmichael-twopow:

Carmichael (2 k) = (if k < 2then 2 " (k — 1) else 2 ~ (k — 2))
proof —

have k =0V k=1VEk=2VEk2>3 by linarith

thus ?thesis by (auto simp: Carmichael-twopow-ge-8)
qed

lemma Carmichael-prime-power:
assumes prime p k > 0
shows Carmichael (p ~ k) =
(ifp=2ANk>2then2 " (k—2)elsep " (k—1)*(p— 1))
proof (cases p = 2)
case True
thus ?thesis by (simp add: Carmichael-twopow)
next
case Fulse
with assms have odd p p > 2
using prime-odd-nat|of p] prime-gt-1-nat[of p] by auto
thus ?thesis
using assms Carmichael-odd-prime-power|of p k] by simp
qed

lemma Carmichael-prod-coprime:
assumes finite A Nij. i € A = j€ A= i # j = coprime (f i) (f])
shows Carmichael ([[i€A. fi) = (LCM i€ A. Carmichael (f ©))
using assms by (induction A rule: finite-induct)
(simp, simp, subst Carmichael-mult-coprime[ OF prod-coprime-right],
auto)

Since A distributes over coprime factors and we know the value of \(p*) for
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prime p, we can now give a closed formula for A(n) in terms of the prime
factorisation of n:

theorem Carmichael-closed-formula:
Carmichael n =
(LCM peprime-factors n. let k = multiplicity p n
in ifp=2Nk>2then2 " (k— 2)elsep ~(k—1) %
(p— 1))

(is - = Lem ?A)
proof (cases n = 0)
case Fulse
hence n = ([] peprime-factors n. p ~ multiplicity p n)
using prime-factorization-nat by blast
also have Carmichael ... =
(LCM peprime-factors n. Carmichael (p ~ multiplicity p n))
by (subst Carmichael-prod-coprime) (auto simp: in-prime-factors-iff primes-coprime)
also have (Ap. Carmichael (p ~ multiplicity p n)) ¢ prime-factors n = %A
by (intro image-cong)
(auto simp: Let-def Carmichael-prime-power prime-factors-multiplicity)
finally show ?thesis .
qed auto

corollary even-Carmichael:
assumes n > 2
shows even (Carmichael n)
proof (cases k. n = 2 " k)
case True
then obtain k£ where [simp]: n = 2 Tk by auto
from assms have k # 0 k # 1 by (auto intro!: Nat.gr0I)
hence k£ > 2 by auto
thus ?thesis by (auto simp: Carmichael-twopow)
next
case Fulse
from assms have n # 0 by auto
from Fulse have 3 pEprime-factors n. p # 2
using assms Ez-other-prime-factor|[of n 2] by auto
from divide-out-primepow-ex[OF «n # 0> this]
obtain p k n’
where p:
p#F2
prime p
p dvd n
= pdvdn’
0 <k
n=p kxn'.
from p have coprime: coprime (p ~ k) n’
using p prime-imp-coprime by auto
have odd p
using p primes-dvd-imp-eq[of 2 p] by auto
have even (Carmichael (p ~k))
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using p <odd p» by (auto simp: Carmichael-prime-power)
with p coprime show ?thesis
by (auto simp: Carmichael-mult-coprime intro!: dvd-leml1)
qed

lemma eval-Carmichael:
assumes prime-factorization n = A
shows Carmichael n = (LCM p € set-mset A.
letk=count Apinifp=2ANk>2then2 (k- 2)elsep " (k —
s (p— 1)
unfolding assms [symmetric] Carmichael-closed-formula
by (intro arg-cong[where f = Lem] image-cong) (auto simp: Let-def count-prime-factorization)

Any residue ring always contains a A-root, i.e. an element whose order is
A(n).

theorem Carmichael-root-exists:
assumes n > (0::nat)
obtains g where g € totatives n and ord n g = Carmichael n
proof (cases n = 1)
case True
thus ?thesis by (intro that[of 1]) (auto simp: totatives-def)
next
case Fulse
have primepow: 3 g. coprime (p " k) g A ord (p ~ k) g = Carmichael (p k)
if pk: prime p k > 0 for p k
proof (cases p = 2)
case [simp]: True
from <k > 0» consider k =1 | k= 2| k > 3 by force
thus ?thesis
proof cases
assume k = I
thus ?thesis by (intro exI[of - 1]) auto
next
assume [simp]: k = 2
have coprime 4 (3::nat)
by (auto simp: coprime-iff-gcd-eq-1 ged-non-0-nat)
thus ?thesis by (intro exI[of - 3]) auto
next
assume k: k > 3
have coprime (2 "k :: nat) 3 by auto
thus ?thesis using k
by (intro exl[of - 8]) (auto simp: ord-twopow-3-5 Carmichael-twopow)
qed
next
case Fulse
hence odd p using <prime p»
using primes-dvd-imp-eq two-is-prime-nat by blast
then obtain g where residue-primroot (p ~ k) g
using residue-primroot-odd-prime-power-ezists[of p] pk by metis
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thus ?thesis using Fulse pk
by (intro exI|of - g])
(auto simp: Carmichael-prime-power residue-primroot-def totient-prime-power)
qed

define P where P = prime-factors n
define k£ where & = (Ap. multiplicity p n)
have VpeP. 3g. coprime (p "k p) g A ord (p "k p) g = Carmichael (p ~ k p)
using primepow by (auto simp: P-def k-def prime-factors-multiplicity)
hence 3g. VpeP. coprime (p "k p) (g p) A ord (p "k p) (9 p) = Carmichael
(p "kp)
by (subst (asm) bchoice-iff)
then obtain g where ¢g: Ap. p € P = coprime (p "k p) (9 p)
Ap. p € P=> ord (p "k p) (9 p) = Carmichael (p "~k p) by
metis
have Jz. VieP. [zt = g i] (mod i "k 7)
by (intro chinese-remainder-nat)
(auto simp: P-def k-def in-prime-factors-iff primes-coprime)
then obtain z where 2: Ap. p € P = [z = g p| (mod p ~ k p) by metis

have n = ([[peP. p "k p)
using assms unfolding P-def k-def by (rule prime-factorization-nat)
also have ord ... z = (LCM peP. ord (p "k p) z)
by (intro ord-modulus-prod-coprime) (auto simp: P-def in-prime-factors-iff
primes-coprime)
also have (Ap. ord (p "kp)x) ‘P = (Ap. ord (p " kp) (gp)) ‘P
by (intro image-cong ord-cong x) auto

also have ... = (Ap. Carmichael (p "k p)) ‘P
by (intro image-cong g) auto
also have Lem ... = Carmichael ([[peP. p ~k p)

by (intro Carmichael-prod-coprime [symmetric])
(auto simp: P-def in-prime-factors-iff primes-coprime)

also have ([[peP.p "kp) =n
using assms unfolding P-def k-def by (rule prime-factorization-nat [symmetric])
finally have ord n x = Carmichael n .
moreover from this have coprime n z

by (cases coprime n x) (auto split: if-splits)
ultimately show ?thesis using assms False

by (intro that[of  mod n])

(auto simp: totatives-def coprime-commute coprime-absorb-left intro!: Nat.gr0I)

qed

This also means that the Carmichael number is not only the LCM of the
orders of the elements of the residue ring, but indeed the maximum of the
orders.

lemma Carmichael-altdef:

Carmichael n = (if n = 0 then 1 else Max (ord n * totatives n))
proof (cases n = 0)

case Fulse
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have Carmichael n = Maz (ord n * totatives n)
proof (intro antisym Maz.boundedl Maz.coboundedl)
fix k assume k: k € ord n ‘ totatives n
thus & < Carmichael n
proof (cases n = 1)
case Fulse
with «<n # 0) have n > 1 by linarith
thus ?thesis using k «<n # 0>
by (intro dvd-imp-le)
(auto intro!: ord-dvd-Carmichael simp: totatives-def coprime-commute)
qed auto
next
obtain g where g € totatives n and ord n g = Carmichael n
using Carmichael-root-ezists[of n] <n # 0» by auto
thus Carmichael n € ord n  totatives n by force
qed (use «<n # 0» in auto)
thus ?thesis using Fulse by simp
qed auto

11.5 Existence of primitive roots for general moduli

We now related Carmichael’s function to the existence of primitive roots
and, in the end, use this to show precisely which moduli have primitive
roots and which do not.

The first criterion for the existence of a primitive root is this: A primitive
root modulo n exists iff A\(n) = ¢(n).

lemma Carmichael-eg-totient-imp-primroot:
assumes n > 0 and Carmichael n = totient n
shows dg. residue-primroot n g
proof —
from «n > () obtain g where g € totatives n and ord n ¢ = Carmichael n
using Carmichael-root-exists[of n] by metis
with assms show ?thesis by (auto simp: residue-primroot-def totatives-def co-
prime-commute)
qed

theorem residue-primroot-iff-Carmichael:
(3 g. residue-primroot n g) <— Carmichael n = totient n A n > 0
proof safe
fix g assume g¢: residue-primroot n g
thus n > 0 by (auto simp: residue-primroot-def)
have coprime n g by (rule ccontr) (use g in <auto simp: residue-primroot-def»)

show Carmichael n = totient n
proof (casesn = 1)
case Fulse
with <n > 0> have n > 1 by auto
with <coprime n ¢» have ord n g dvd Carmichael n
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by (intro ord-dvd-Carmichael) auto
thus ?thesis using g by (intro dvd-antisym Carmichael-dvd-totient)
(auto simp: residue-primroot-def)
qed auto
qed (use Carmichael-eg-totient-imp-primroot[of n] in auto)

Any primitive root modulo mn for coprime m, n is also a primitive root
modulo m and n. The converse does not hold in general.

lemma residue-primroot-modulus-mult-coprimeD:

assumes coprime m n and residue-primroot (m x n) g

shows residue-primroot m g residue-primroot n g
proof —

have x: m > 0 n > 0 coprime m g coprime n g

lem (ord m g) (ord n g) = totient m * totient n
using assms
by (auto simp: residue-primroot-def ord-modulus-mult-coprime totient-mult-coprime)

define a b where a = totient m div ord m g and b = totient n div ord n g
have ab: totient m = ord m g * a totient n = ord n g * b
using * by (auto simp: a-def b-def order-divides-totient)

have a = 1 b = 1 coprime (ord m g) (ord n g)
unfolding coprime-iff-gcd-eq-1 using * by (auto simp: ab lem-nat-def dvd-div-eq-mult
ord-eq-0)
with ab and * show residue-primroot m g residue-primroot n g
by (auto simp: residue-primroot-def)
qed

If a primitive root modulo mn exists for coprime m, n, then A(m) and A\(n)
must also be coprime. This is helpful in establishing that there are no
primitive roots modulo mn by showing e.g. that A(m) and A(n) are both
even.

lemma residue-primroot-modulus-mult-coprime-imp-Carmichael-coprime:
assumes coprime m n and residue-primroot (m * n) g
shows coprime (Carmichael m) (Carmichael n)
proof —
from residue-primroot-modulus-mult-coprimeD]OF assms]
have *: residue-primroot m g residue-primroot n g by auto
hence [simp]: Carmichael m = totient m Carmichael n = totient n
by (simp-all add: residue-primroot-Carmichael)
from x have mn: m > 0 n > 0 by (auto simp: residue-primroot-def)

from assms have Carmichael (m x n) = totient (m *x n) A n > 0
using residue-primroot-iff-Carmichael[of m % n] by auto
with assms have lem (totient m) (totient n) = totient m * totient n
by (simp add: Carmichael-mult-coprime totient-mult-coprime)
thus ?thesis unfolding coprime-iff-gcd-eq-1 using mn
by (simp add: lem-nat-def dvd-div-eq-mult)
qed

140



The following moduli are precisely those that have primitive roots.

definition cyclic-moduli :: nat set where
cyclic-moduli = {1, 2, 4} U {p "k |pk. prime p AN oddp Nk > 0} U
{2xp " klpk primep A oddp ANk > 0}

theorem residue-primroot-iff-in-cyclic-moduli:
(3 g. residue-primroot m g) <— m € cyclic-moduli
proof —
have (3 g. residue-primroot m g) if m € cyclic-moduli
using that unfolding cyclic-moduli-def
by (intro Carmichael-eq-totient-imp-primroot)
(auto dest: prime-gt-0-nat simp: Carmichael-prime-power totient-prime-power
Carmichael-mult-coprime totient-mult-coprime)

moreover have —(3g. residue-primroot m g) if m ¢ cyclic-moduli
proof (cases m = 0)
case Fulse
with that have [simp]: m > 0 m # 1 by (auto simp: cyclic-moduli-def)
show ?thesis
proof (cases 3k. m = 2 " k)
case True
then obtain k where [simp]: m = 2 ~ k by auto
with that have k # 0 ANk # 1 A k # 2 by (auto simp: cyclic-moduli-def)
hence k£ > 3 by auto
thus ?thesis by (subst residue-primroot-iff-Carmichael)
(auto simp: Carmichael-twopow totient-prime-power)
next
case Fulse
hence 3 peprime-factors m. p # 2
using Fz-other-prime-factor[of m 2] by auto
from divide-out-primepow-ex[OF «<m # 0) this)
obtain p k m’ where p: p # 2 prime p p dvd m —p dvd m’ 0 < km=p "k
* m’
by metis
have odd p
using p primes-dvd-imp-eqlof 2 p] by auto
from p have coprime: coprime (p ~ k) m’
using p prime-imp-coprime by auto
have m € cyclic-moduli if m’ = 1
using that p <odd p» by (auto simp: cyclic-moduli-def)
moreover have m € cyclic-moduli if m’ = 2
proof —
have m = 2 x p ~ k using p that by (simp add: mult.commute)
thus m € cyclic-moduli using p <odd p»
unfolding cyclic-moduli-def by blast
qed
moreover have m’ # 0 using p by (intro notl) auto
ultimately have m’ £ 0 Am’ # 1 A m’ # 2 using that by auto
hence m’ > 2 by linarith
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show ?thesis
proof
assume 3 g. residue-primroot m g
with coprime p have coprime’: coprime (p — 1) (Carmichael m’)
using residue-primroot-modulus-mult-coprime-imp-Carmichael-coprime| OF
coprime]
by (auto simp: Carmichael-prime-power)
moreover have even (p — 1) even (Carmichael m’)
using «m’ > 2» <odd p» by (auto intro!: even-Carmichael)
ultimately show Fualse by force
qed
qed
qed auto

ultimately show ?thesis by metis
qed

lemma residue-primroot-is-generator:
assumes m > 1 and residue-primroot m g
shows  bij-betw (Ai. g ~ i mod m) {..<totient m} (totatives m)
unfolding bij-betw-def
proof
from assms have [simp]: ord m g = totient m
by (simp add: residue-primroot-def)
from assms have coprime m g by (simp add: residue-primroot-def)
hence inj-on (Ai. g ~ i mod m) {..<ord m g}
by (intro inj-power-mod)
thus inj: inj-on (Ai. g ~ i mod m) {..<totient m}
by simp

show (Ai. g ~ i mod m) ‘{..<totient m} = totatives m
proof (rule card-subset-eq)
show card ((Ai. g ~ i mod m) ‘{..<totient m}) = card (totatives m)
using inj by (subst card-image) (auto simp: totient-def)
show (Ai. ¢ " i mod m) ‘ {..<totient m} C totatives m
using (m > 1y <coprime m g» power-in-totatives[of m g] by blast
qed auto
qed

Given one primitive root g, all the primitive roots are powers g* for 1 < i <
o(n) with ged(i, p(n)) = 1.

theorem residue-primroot-bij-betw-primroots:
assumes m > 1 and residue-primroot m g
shows  bij-betw (Ni. g ~ i mod m) (totatives (totient m))
{g€E€totatives m. residue-primroot m g}
proof (cases m = 2)
case [simp]: True
have [simp]: totatives 2 = {1}
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by (auto simp: totatives-def elim!: oddFE)
from assms have odd g
by (auto simp: residue-primroot-def)
hence pow-eq: (\i. ¢ ~ i mod m) = (A-. 1)
by (auto simp: fun-eq-iff mod-2-eq-odd)
have {g € totatives m. residue-primroot m g} = {1}
by (auto simp: residue-primroot-def)
thus ?thesis using pow-eq by (auto simp: bij-betw-def)
next
case Fulse
thus ?thesis unfolding bij-betw-def
proof safe
from assms False have m > 2 by auto
from assms «<m > 2» have totient m > 1 by (intro totient-gt-1) auto
from assms have [simp]: ord m g = totient m
by (simp add: residue-primroot-def)
from assms have coprime m g by (simp add: residue-primroot-def)
hence inj-on (Ai. ¢ ~ i mod m) {..<ord m g}
by (intro inj-power-mod)
thus inj-on (Ai. g ~ i mod m) (totatives (totient m))
by (rule inj-on-subset)
(use assms <totient m > 1 in <auto simp: totatives-less residue-primroot-def>)

{

fix ¢ assume i: i € totatives (totient m)
from <coprime m ¢» and <m > 2> show g ~ i mod m € totatives m
by (intro power-in-totatives) auto
show residue-primroot m (g ~ i mod m)
using ¢ <m > 2) <coprime m ¢
by (auto simp: residue-primroot-def coprime-commute ord-power totatives-def)
}
{
fix z assume z: x € totatives m residue-primroot m x
then obtain ¢ where i: ¢ < totient m x = (g ~ ¢ mod m)
using assms residue-primroot-is-generator|[of m g] by (auto simp: bij-betw-def)
from ¢z ¢m > 2» have i > 0 by (intro Nat.gr0I) (auto simp: residue-primroot-1-iff)
have totient m div gcd i (totient m) = totient m
using x i (coprime m ¢> by (auto simp add: residue-primroot-def ord-power)
hence coprime i (totient m)
unfolding coprime-iff-gcd-eq-1 using assms by (subst (asm) dvd-div-eqg-mult)
auto
with ¢ <i > 0> have i € totatives (totient m) by (auto simp: totatives-def)
thus = € (Ai. ¢ i mod m) ‘ totatives (totient m) using i by auto
}
qed
qed

It follows from the above statement that any residue ring modulo n that has
primitive roots has exactly ¢(¢(n)) of them.
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corollary card-residue-primroots:
assumes 1 g. residue-primroot m g
shows card {g€totatives m. residue-primroot m g} = totient (totient m)
proof (cases m = 1)
case [simp]: True
have {g € totatives m. residue-primroot m g} = {1}
by (auto simp: residue-primroot-def)
thus ?thesis by simp
next
case Fulse
from assms obtain g where g: residue-primroot m g by auto
hence m # 0 by (intro notl) auto
with «<m # 1) have m > 1 by linarith
from this g have bij-betw (Ai. g ~ i mod m) (totatives (totient m))
{gE€totatives m. residue-primroot m g}
by (rule residue-primroot-bij-betw-primroots)
hence card (totatives (totient m)) = card {g€totatives m. residue-primroot m g}
by (rule bij-betw-same-card)
thus ?thesis by (simp add: totient-def)
qed

corollary card-residue-primroots’:
card {g€totatives m. residue-primroot m g} =
(if m € cyclic-moduli then totient (totient m) else 0)
by (simp add: residue-primroot-iff-in-cyclic-moduli [symmetric] card-residue-primroots)

As an example, we evaluate A\(122200) using the prime factorisation.

lemma Carmichael 122200 = 1380
proof —
have prime-factorization (273 x 572 x 13 x 7)) ={#2, 2, 2, 5, 5, 13, 47::nat#}
by (intro prime-factorization-eql) auto
from eval-Carmichael|OF this] show Carmichael 122200 = 1380
by (simp add: lem-nat-def ged-non-0-nat)
qed

end

12 Modular Inverses

theory Modular-Inverse
imports Cong HOL— Library. FuncSet
begin

The following returns the unique number m such that mn = 1 (mod p) if
there is one, i.e. if n and p are coprime, and otherwise 0 by convention.

definition modular-inverse where

144



modular-inverse p n = (if coprime p n then fst (bezout-coefficients n p) mod p

else 0)

lemma cong-modular-inversel :
assumes coprime n p
shows [n * modular-inverse p n = 1] (mod p)
proof —
have [fst (bezout-coefficients n p) * n + snd (bezout-coefficients n p) * p =
modular-inverse p n x n + 0] (mod p)
unfolding modular-inverse-def using assms
by (intro cong-add cong-mult) (auto simp: Cong.cong-def coprime-commute)
also have fst (bezout-coefficients n p) * n + snd (bezout-coefficients n p) x p =
gednp
by (simp add: bezout-coefficients-fst-snd)
also have ... = 1
using assms by simp
finally show ?thesis
by (simp add: cong-sym mult-ac)
qed

lemma cong-modular-inverse2:
assumes coprime n p
shows [modular-inverse p n x n = 1] (mod p)
using cong-modular-inversel [OF assms] by (simp add: mult.commute)

lemma coprime-modular-inverse [simp, intro|:
fixes n :: ‘a :: {euclidean-ring-gcd, unique-euclidean-semiring}
assumes coprime n p
shows coprime (modular-inverse p n) p
using cong-modular-inversel [OF assms| assms
by (meson cong-imp-coprime cong-sym coprime-1-left coprime-mult-left-iff)

lemma modular-inverse-int-nonneg: p > 0 = modular-inverse p (n :: int) > 0
by (simp add: modular-inverse-def)

lemma modular-inverse-int-less: p > 0 = modular-inverse p (n :: int) < p
by (simp add: modular-inverse-def)

lemma modular-inverse-int-eql:
fixes x y :: int
assumes y € {0..<m} [z *x y = 1] (mod m)
shows modular-inverse m ¢ = y
proof —
from assms have coprime x m
using cong-gcd-eq by force
have [modular-inverse m z * 1 = modular-inverse m x x (z * y)] (mod m)
by (rule cong-sym, intro cong-mult assms cong-refl)
also have modular-inverse m z * (x * y) = (modular-inverse m x x x) x y
by (simp add: mult-ac)
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also have [... = 1 x y] (mod m)
using <coprime x my by (intro cong-mult cong-refl cong-modular-inverse2)
finally have [modular-inverse m = = y| (mod m)
by simp
thus modular-inverse m x = y
using assms by (simp add: Cong.cong-def modular-inverse-def)
qed

lemma modular-inverse-1 [simpl:
assumes m > (1 :: int)
shows modular-inverse m 1 = 1
by (rule modular-inverse-int-eqI) (use assms in auto)

lemma modular-inverse-int-mult:
fixes z y :: int
assumes coprime x m coprime y m m > 0
shows modular-inverse m (z * y) = (modular-inverse m y * modular-inverse m
x) mod m
proof (rule modular-inverse-int-eql)
show modular-inverse m y * modular-inverse m x mod m € {0..<m}
using assms by auto
next
have [z x y % (modular-inverse m y x modular-inverse m x mod m) =
z * y * (modular-inverse m y * modular-inverse m z)| (mod m)
by (intro cong-mult cong-refl) auto
also have z x y * (modular-inverse m y * modular-inverse m ) =
(z * modular-inverse m ) * (y * modular-inverse m y)
by (simp add: mult-ac)
also have [... = 1 x 1] (mod m)
by (intro cong-mult cong-modular-inversel assms)
finally show [z % y % (modular-inverse m y x modular-inverse m x mod m) =
1] (mod m)
by simp
qed

lemma bij-betw-int-remainders-mult:

fixes a n :: int

assumes a: coprime a n

shows  bij-betw (Am. a x m mod n) {1..<n} {1..<n}
proof —

define o’ where o’ = modular-inverse n a

have x: a’ * (a * m mod n) mod n = m A a * m mod n € {I..<n}
if a: [a x o’ = 1] (mod n) and m: m € {1..<n} for m a a’ :: int
proof
have [a’ * (a * m mod n) = a’ * (a * m)] (mod n)
by (intro cong-mult cong-refl) (auto simp: Cong.cong-def)
also have a’ x (a * m) = (a * a’) * m
by (simp add: mult-ac)
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also have [(a * a’) x m = 1 x m] (mod n)
unfolding a’-def by (intro cong-mult cong-refl) (use a in auto)
finally show a’ * (a * m mod n) mod n = m
using m by (simp add: Cong.cong-def)
next
have coprime a n
using a coprime-iff-invertible-int by auto
hence —n dvd (a * m)
using m by (simp add: coprime-commute coprime-dvd-mult-right-iff zdvd-not-zless)
hence a x m mod n > 0
using m order-le-less by fastforce
thus a * m mod n € {1..<n}
using m by auto
qed

have [a * a’ = 1] (mod n) [a’ *x a = 1] (mod n)
unfolding a’-def by (rule cong-modular-inversel cong-modular-inverse2; fact)+
from thisTHEN x| show ?thesis
by (intro bij-betwl[of - - - Am. a’ *x m mod n]) auto
qed

lemma mult-modular-inverse-of-not-coprime [simpl: —coprime a m = modular-inverse
ma= 0
by (simp add: coprime-commute modular-inverse-def)

lemma mult-modular-inverse-eq-0-iff :
fixes a :: ‘a :: {unique-euclidean-semiring, euclidean-ring-ged}
shows —is-unit m = modular-inverse m a = 0 <— —coprime a m
by (metis coprime-modular-inverse mult-modular-inverse-of-not-coprime coprime-0-left-iff)

lemma mult-modular-inverse-int-pos: m > 1 = coprime a m =—> modular-inverse
m a > (0 :: int)
by (simp add: modular-inverse-int-nonneg mult-modular-inverse-eq-0-iff order.strict-iff-order)

lemma abs-mult-modular-inverse-int-less: m # 0 = |modular-inverse m a :: int|
< [m|

by (auto simp: modular-inverse-def intro!: abs-mod-less)

lemma modular-inverse-int-less” m # 0 = (modular-inverse m a :: int) < |m|
using abs-mult-modular-inverse-int-less[of m a] by linarith

end

13 Comprehensive number theory

theory Number-Theory
imports
Fib

Residues
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FEratosthenes
Mod-FExp
Quadratic- Reciprocity
Pocklington
Prime-Powers
Residue-Primitive- Roots
Modular-Inverse

begin

end
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