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1 Filters and Ultrafilters
theory Free-Ultrafilter

imports HOL−Library.Infinite-Set
begin

1.1 Definitions and basic properties
1.1.1 Ultrafilters
locale ultrafilter =

fixes F :: ′a filter
assumes proper : F 6= bot
assumes ultra: eventually P F ∨ eventually (λx. ¬ P x) F

begin

lemma eventually-imp-frequently: frequently P F =⇒ eventually P F
〈proof 〉

lemma frequently-eq-eventually: frequently P F = eventually P F
〈proof 〉

lemma eventually-disj-iff : eventually (λx. P x ∨ Q x) F ←→ eventually P F ∨
eventually Q F
〈proof 〉

lemma eventually-all-iff : eventually (λx. ∀ y. P x y) F = (∀Y . eventually (λx. P
x (Y x)) F)
〈proof 〉

lemma eventually-imp-iff : eventually (λx. P x −→ Q x) F ←→ (eventually P F
−→ eventually Q F)
〈proof 〉

lemma eventually-iff-iff : eventually (λx. P x ←→ Q x) F ←→ (eventually P F
←→ eventually Q F)
〈proof 〉

lemma eventually-not-iff : eventually (λx. ¬ P x) F ←→ ¬ eventually P F
〈proof 〉

end

1.2 Maximal filter = Ultrafilter

A filter F is an ultrafilter iff it is a maximal filter, i.e. whenever G is a filter
and F ⊆ G then F = G

Lemma that shows existence of an extension to what was assumed to be a
maximal filter. Will be used to derive contradiction in proof of property of
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ultrafilter.
lemma extend-filter : frequently P F =⇒ inf F (principal {x. P x}) 6= bot
〈proof 〉

lemma max-filter-ultrafilter :
assumes F 6= bot
assumes max:

∧
G. G 6= bot =⇒ G ≤ F =⇒ F = G

shows ultrafilter F
〈proof 〉

lemma le-filter-frequently: F ≤ G ←→ (∀P. frequently P F −→ frequently P G)
〈proof 〉

lemma (in ultrafilter) max-filter :
assumes G: G 6= bot

and sub: G ≤ F
shows F = G
〈proof 〉

1.3 Ultrafilter Theorem
lemma ex-max-ultrafilter :

fixes F :: ′a filter
assumes F : F 6= bot
shows ∃U≤F . ultrafilter U
〈proof 〉

1.3.1 Free Ultrafilters

There exists a free ultrafilter on any infinite set.
locale freeultrafilter = ultrafilter +

assumes infinite: eventually P F =⇒ infinite {x. P x}
begin

lemma finite: finite {x. P x} =⇒ ¬ eventually P F
〈proof 〉

lemma finite ′: finite {x. ¬ P x} =⇒ eventually P F
〈proof 〉

lemma le-cofinite: F ≤ cofinite
〈proof 〉

lemma singleton: ¬ eventually (λx. x = a) F
〈proof 〉

lemma singleton ′: ¬ eventually ((=) a) F
〈proof 〉
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lemma ultrafilter : ultrafilter F 〈proof 〉

end

lemma freeultrafilter-Ex:
assumes [simp]: infinite (UNIV :: ′a set)
shows ∃U :: ′a filter . freeultrafilter U
〈proof 〉

end

2 Construction of Star Types Using Ultrafilters
theory StarDef

imports Free-Ultrafilter
begin

2.1 A Free Ultrafilter over the Naturals
definition FreeUltrafilterNat :: nat filter (‹U›)

where U = (SOME U . freeultrafilter U )

lemma freeultrafilter-FreeUltrafilterNat: freeultrafilter U
〈proof 〉

interpretation FreeUltrafilterNat: freeultrafilter U
〈proof 〉

2.2 Definition of star type constructor
definition starrel :: ((nat ⇒ ′a) × (nat ⇒ ′a)) set

where starrel = {(X , Y ). eventually (λn. X n = Y n) U}

definition star = (UNIV :: (nat ⇒ ′a) set) // starrel

typedef ′a star = star :: (nat ⇒ ′a) set set
〈proof 〉

definition star-n :: (nat ⇒ ′a) ⇒ ′a star
where star-n X = Abs-star (starrel ‘‘ {X})

theorem star-cases [case-names star-n, cases type: star ]:
obtains X where x = star-n X
〈proof 〉

lemma all-star-eq: (∀ x. P x) ←→ (∀X . P (star-n X))
〈proof 〉
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lemma ex-star-eq: (∃ x. P x) ←→ (∃X . P (star-n X))
〈proof 〉

Proving that starrel is an equivalence relation.
lemma starrel-iff [iff ]: (X , Y ) ∈ starrel ←→ eventually (λn. X n = Y n) U
〈proof 〉

lemma equiv-starrel: equiv UNIV starrel
〈proof 〉

lemmas equiv-starrel-iff = eq-equiv-class-iff [OF equiv-starrel UNIV-I UNIV-I ]

lemma starrel-in-star : starrel‘‘{x} ∈ star
〈proof 〉

lemma star-n-eq-iff : star-n X = star-n Y ←→ eventually (λn. X n = Y n) U
〈proof 〉

2.3 Transfer principle

This introduction rule starts each transfer proof.
lemma transfer-start: P ≡ eventually (λn. Q) U =⇒ Trueprop P ≡ Trueprop Q
〈proof 〉

Standard principles that play a central role in the transfer tactic.
definition Ifun :: ( ′a ⇒ ′b) star ⇒ ′a star ⇒ ′b star

(‹(‹notation=‹infix ?››- ?/ -)› [300 , 301 ] 300 )
where Ifun f ≡
λx. Abs-star (

⋃
F∈Rep-star f .

⋃
X∈Rep-star x. starrel‘‘{λn. F n (X n)})

lemma Ifun-congruent2 : congruent2 starrel starrel (λF X . starrel‘‘{λn. F n (X
n)})
〈proof 〉

lemma Ifun-star-n: star-n F ? star-n X = star-n (λn. F n (X n))
〈proof 〉

lemma transfer-Ifun: f ≡ star-n F =⇒ x ≡ star-n X =⇒ f ? x ≡ star-n (λn. F
n (X n))
〈proof 〉

definition star-of :: ′a ⇒ ′a star
where star-of x ≡ star-n (λn. x)

Initialize transfer tactic.
〈ML〉
Transfer introduction rules.
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lemma transfer-ex [transfer-intro]:
(
∧

X . p (star-n X) ≡ eventually (λn. P n (X n)) U) =⇒
∃ x:: ′a star . p x ≡ eventually (λn. ∃ x. P n x) U
〈proof 〉

lemma transfer-all [transfer-intro]:
(
∧

X . p (star-n X) ≡ eventually (λn. P n (X n)) U) =⇒
∀ x:: ′a star . p x ≡ eventually (λn. ∀ x. P n x) U
〈proof 〉

lemma transfer-not [transfer-intro]: p ≡ eventually P U =⇒ ¬ p ≡ eventually (λn.
¬ P n) U
〈proof 〉

lemma transfer-conj [transfer-intro]:
p ≡ eventually P U =⇒ q ≡ eventually Q U =⇒ p ∧ q ≡ eventually (λn. P n ∧

Q n) U
〈proof 〉

lemma transfer-disj [transfer-intro]:
p ≡ eventually P U =⇒ q ≡ eventually Q U =⇒ p ∨ q ≡ eventually (λn. P n ∨

Q n) U
〈proof 〉

lemma transfer-imp [transfer-intro]:
p ≡ eventually P U =⇒ q ≡ eventually Q U =⇒ p −→ q ≡ eventually (λn. P n
−→ Q n) U
〈proof 〉

lemma transfer-iff [transfer-intro]:
p ≡ eventually P U =⇒ q ≡ eventually Q U =⇒ p = q ≡ eventually (λn. P n =

Q n) U
〈proof 〉

lemma transfer-if-bool [transfer-intro]:
p ≡ eventually P U =⇒ x ≡ eventually X U =⇒ y ≡ eventually Y U =⇒
(if p then x else y) ≡ eventually (λn. if P n then X n else Y n) U
〈proof 〉

lemma transfer-eq [transfer-intro]:
x ≡ star-n X =⇒ y ≡ star-n Y =⇒ x = y ≡ eventually (λn. X n = Y n) U
〈proof 〉

lemma transfer-if [transfer-intro]:
p ≡ eventually (λn. P n) U =⇒ x ≡ star-n X =⇒ y ≡ star-n Y =⇒
(if p then x else y) ≡ star-n (λn. if P n then X n else Y n)
〈proof 〉

lemma transfer-fun-eq [transfer-intro]:
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(
∧

X . f (star-n X) = g (star-n X) ≡ eventually (λn. F n (X n) = G n (X n))
U) =⇒

f = g ≡ eventually (λn. F n = G n) U
〈proof 〉

lemma transfer-star-n [transfer-intro]: star-n X ≡ star-n (λn. X n)
〈proof 〉

lemma transfer-bool [transfer-intro]: p ≡ eventually (λn. p) U
〈proof 〉

2.4 Standard elements
definition Standard :: ′a star set

where Standard = range star-of

Transfer tactic should remove occurrences of star-of.
〈ML〉

lemma star-of-inject: star-of x = star-of y ←→ x = y
〈proof 〉

lemma Standard-star-of [simp]: star-of x ∈ Standard
〈proof 〉

2.5 Internal functions

Transfer tactic should remove occurrences of Ifun.
〈ML〉

lemma Ifun-star-of [simp]: star-of f ? star-of x = star-of (f x)
〈proof 〉

lemma Standard-Ifun [simp]: f ∈ Standard =⇒ x ∈ Standard =⇒ f ? x ∈ Standard
〈proof 〉

Nonstandard extensions of functions.
definition starfun :: ( ′a ⇒ ′b) ⇒ ′a star ⇒ ′b star

(‹(‹open-block notation=‹prefix starfun››∗f ∗ -)› [80 ] 80 )
where starfun f ≡ λx. star-of f ? x

definition starfun2 :: ( ′a ⇒ ′b ⇒ ′c) ⇒ ′a star ⇒ ′b star ⇒ ′c star
(‹(‹open-block notation=‹prefix starfun2 ››∗f2∗ -)› [80 ] 80 )

where starfun2 f ≡ λx y. star-of f ? x ? y

declare starfun-def [transfer-unfold]
declare starfun2-def [transfer-unfold]
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lemma starfun-star-n: ( ∗f ∗ f ) (star-n X) = star-n (λn. f (X n))
〈proof 〉

lemma starfun2-star-n: ( ∗f2∗ f ) (star-n X) (star-n Y ) = star-n (λn. f (X n) (Y
n))
〈proof 〉

lemma starfun-star-of [simp]: ( ∗f ∗ f ) (star-of x) = star-of (f x)
〈proof 〉

lemma starfun2-star-of [simp]: ( ∗f2∗ f ) (star-of x) = ∗f ∗ f x
〈proof 〉

lemma Standard-starfun [simp]: x ∈ Standard =⇒ starfun f x ∈ Standard
〈proof 〉

lemma Standard-starfun2 [simp]: x ∈ Standard =⇒ y ∈ Standard =⇒ starfun2 f
x y ∈ Standard
〈proof 〉

lemma Standard-starfun-iff :
assumes inj:

∧
x y. f x = f y =⇒ x = y

shows starfun f x ∈ Standard ←→ x ∈ Standard
〈proof 〉

lemma Standard-starfun2-iff :
assumes inj:

∧
a b a ′ b ′. f a b = f a ′ b ′ =⇒ a = a ′ ∧ b = b ′

shows starfun2 f x y ∈ Standard ←→ x ∈ Standard ∧ y ∈ Standard
〈proof 〉

2.6 Internal predicates
definition unstar :: bool star ⇒ bool

where unstar b ←→ b = star-of True

lemma unstar-star-n: unstar (star-n P) ←→ eventually P U
〈proof 〉

lemma unstar-star-of [simp]: unstar (star-of p) = p
〈proof 〉

Transfer tactic should remove occurrences of unstar.
〈ML〉

lemma transfer-unstar [transfer-intro]: p ≡ star-n P =⇒ unstar p ≡ eventually P
U
〈proof 〉

definition starP :: ( ′a ⇒ bool) ⇒ ′a star ⇒ bool
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(‹(‹open-block notation=‹prefix starP››∗p∗ -)› [80 ] 80 )
where ∗p∗ P = (λx. unstar (star-of P ? x))

definition starP2 :: ( ′a ⇒ ′b ⇒ bool) ⇒ ′a star ⇒ ′b star ⇒ bool
(‹(‹open-block notation=‹prefix starP2 ››∗p2∗ -)› [80 ] 80 )

where ∗p2∗ P = (λx y. unstar (star-of P ? x ? y))

declare starP-def [transfer-unfold]
declare starP2-def [transfer-unfold]

lemma starP-star-n: ( ∗p∗ P) (star-n X) = eventually (λn. P (X n)) U
〈proof 〉

lemma starP2-star-n: ( ∗p2∗ P) (star-n X) (star-n Y ) = (eventually (λn. P (X
n) (Y n)) U)
〈proof 〉

lemma starP-star-of [simp]: ( ∗p∗ P) (star-of x) = P x
〈proof 〉

lemma starP2-star-of [simp]: ( ∗p2∗ P) (star-of x) = ∗p∗ P x
〈proof 〉

2.7 Internal sets
definition Iset :: ′a set star ⇒ ′a star set

where Iset A = {x. ( ∗p2∗ (∈)) x A}

lemma Iset-star-n: (star-n X ∈ Iset (star-n A)) = (eventually (λn. X n ∈ A n)
U)
〈proof 〉

Transfer tactic should remove occurrences of Iset.
〈ML〉

lemma transfer-mem [transfer-intro]:
x ≡ star-n X =⇒ a ≡ Iset (star-n A) =⇒ x ∈ a ≡ eventually (λn. X n ∈ A n)
U
〈proof 〉

lemma transfer-Collect [transfer-intro]:
(
∧

X . p (star-n X) ≡ eventually (λn. P n (X n)) U) =⇒
Collect p ≡ Iset (star-n (λn. Collect (P n)))
〈proof 〉

lemma transfer-set-eq [transfer-intro]:
a ≡ Iset (star-n A) =⇒ b ≡ Iset (star-n B) =⇒ a = b ≡ eventually (λn. A n =

B n) U
〈proof 〉
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lemma transfer-ball [transfer-intro]:
a ≡ Iset (star-n A) =⇒ (

∧
X . p (star-n X) ≡ eventually (λn. P n (X n)) U) =⇒

∀ x∈a. p x ≡ eventually (λn. ∀ x∈A n. P n x) U
〈proof 〉

lemma transfer-bex [transfer-intro]:
a ≡ Iset (star-n A) =⇒ (

∧
X . p (star-n X) ≡ eventually (λn. P n (X n)) U) =⇒

∃ x∈a. p x ≡ eventually (λn. ∃ x∈A n. P n x) U
〈proof 〉

lemma transfer-Iset [transfer-intro]: a ≡ star-n A =⇒ Iset a ≡ Iset (star-n (λn.
A n))
〈proof 〉

Nonstandard extensions of sets.
definition starset :: ′a set ⇒ ′a star set

(‹(‹open-block notation=‹prefix starset››∗s∗ -)› [80 ] 80 )
where starset A = Iset (star-of A)

declare starset-def [transfer-unfold]

lemma starset-mem: star-of x ∈ ∗s∗ A ←→ x ∈ A
〈proof 〉

lemma starset-UNIV : ∗s∗ (UNIV :: ′a set) = (UNIV :: ′a star set)
〈proof 〉

lemma starset-empty: ∗s∗ {} = {}
〈proof 〉

lemma starset-insert: ∗s∗ (insert x A) = insert (star-of x) ( ∗s∗ A)
〈proof 〉

lemma starset-Un: ∗s∗ (A ∪ B) = ∗s∗ A ∪ ∗s∗ B
〈proof 〉

lemma starset-Int: ∗s∗ (A ∩ B) = ∗s∗ A ∩ ∗s∗ B
〈proof 〉

lemma starset-Compl: ∗s∗ −A = −( ∗s∗ A)
〈proof 〉

lemma starset-diff : ∗s∗ (A − B) = ∗s∗ A − ∗s∗ B
〈proof 〉

lemma starset-image: ∗s∗ (f ‘ A) = ( ∗f ∗ f ) ‘ ( ∗s∗ A)
〈proof 〉
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lemma starset-vimage: ∗s∗ (f −‘ A) = ( ∗f ∗ f ) −‘ ( ∗s∗ A)
〈proof 〉

lemma starset-subset: ( ∗s∗ A ⊆ ∗s∗ B) ←→ A ⊆ B
〈proof 〉

lemma starset-eq: ( ∗s∗ A = ∗s∗ B) ←→ A = B
〈proof 〉

lemmas starset-simps [simp] =
starset-mem starset-UNIV
starset-empty starset-insert
starset-Un starset-Int
starset-Compl starset-diff
starset-image starset-vimage
starset-subset starset-eq

2.8 Syntactic classes
instantiation star :: (zero) zero
begin

definition star-zero-def : 0 ≡ star-of 0
instance 〈proof 〉

end

instantiation star :: (one) one
begin

definition star-one-def : 1 ≡ star-of 1
instance 〈proof 〉

end

instantiation star :: (plus) plus
begin

definition star-add-def : (+) ≡ ∗f2∗ (+)
instance 〈proof 〉

end

instantiation star :: (times) times
begin

definition star-mult-def : ((∗)) ≡ ∗f2∗ ((∗))
instance 〈proof 〉

end

instantiation star :: (uminus) uminus
begin

definition star-minus-def : uminus ≡ ∗f ∗ uminus
instance 〈proof 〉

end
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instantiation star :: (minus) minus
begin

definition star-diff-def : (−) ≡ ∗f2∗ (−)
instance 〈proof 〉

end

instantiation star :: (abs) abs
begin

definition star-abs-def : abs ≡ ∗f ∗ abs
instance 〈proof 〉

end

instantiation star :: (sgn) sgn
begin

definition star-sgn-def : sgn ≡ ∗f ∗ sgn
instance 〈proof 〉

end

instantiation star :: (divide) divide
begin

definition star-divide-def : divide ≡ ∗f2∗ divide
instance 〈proof 〉

end

instantiation star :: (inverse) inverse
begin

definition star-inverse-def : inverse ≡ ∗f ∗ inverse
instance 〈proof 〉

end

instance star :: (Rings.dvd) Rings.dvd 〈proof 〉

instantiation star :: (modulo) modulo
begin

definition star-mod-def : (mod) ≡ ∗f2∗ (mod)
instance 〈proof 〉

end

instantiation star :: (ord) ord
begin

definition star-le-def : (≤) ≡ ∗p2∗ (≤)
definition star-less-def : (<) ≡ ∗p2∗ (<)
instance 〈proof 〉

end

lemmas star-class-defs [transfer-unfold] =
star-zero-def star-one-def
star-add-def star-diff-def star-minus-def
star-mult-def star-divide-def star-inverse-def
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star-le-def star-less-def star-abs-def star-sgn-def
star-mod-def

Class operations preserve standard elements.
lemma Standard-zero: 0 ∈ Standard
〈proof 〉

lemma Standard-one: 1 ∈ Standard
〈proof 〉

lemma Standard-add: x ∈ Standard =⇒ y ∈ Standard =⇒ x + y ∈ Standard
〈proof 〉

lemma Standard-diff : x ∈ Standard =⇒ y ∈ Standard =⇒ x − y ∈ Standard
〈proof 〉

lemma Standard-minus: x ∈ Standard =⇒ − x ∈ Standard
〈proof 〉

lemma Standard-mult: x ∈ Standard =⇒ y ∈ Standard =⇒ x ∗ y ∈ Standard
〈proof 〉

lemma Standard-divide: x ∈ Standard =⇒ y ∈ Standard =⇒ x / y ∈ Standard
〈proof 〉

lemma Standard-inverse: x ∈ Standard =⇒ inverse x ∈ Standard
〈proof 〉

lemma Standard-abs: x ∈ Standard =⇒ |x| ∈ Standard
〈proof 〉

lemma Standard-mod: x ∈ Standard =⇒ y ∈ Standard =⇒ x mod y ∈ Standard
〈proof 〉

lemmas Standard-simps [simp] =
Standard-zero Standard-one
Standard-add Standard-diff Standard-minus
Standard-mult Standard-divide Standard-inverse
Standard-abs Standard-mod

star-of preserves class operations.
lemma star-of-add: star-of (x + y) = star-of x + star-of y
〈proof 〉

lemma star-of-diff : star-of (x − y) = star-of x − star-of y
〈proof 〉

lemma star-of-minus: star-of (−x) = − star-of x
〈proof 〉
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lemma star-of-mult: star-of (x ∗ y) = star-of x ∗ star-of y
〈proof 〉

lemma star-of-divide: star-of (x / y) = star-of x / star-of y
〈proof 〉

lemma star-of-inverse: star-of (inverse x) = inverse (star-of x)
〈proof 〉

lemma star-of-mod: star-of (x mod y) = star-of x mod star-of y
〈proof 〉

lemma star-of-abs: star-of |x| = |star-of x|
〈proof 〉

star-of preserves numerals.
lemma star-of-zero: star-of 0 = 0
〈proof 〉

lemma star-of-one: star-of 1 = 1
〈proof 〉

star-of preserves orderings.
lemma star-of-less: (star-of x < star-of y) = (x < y)
〈proof 〉

lemma star-of-le: (star-of x ≤ star-of y) = (x ≤ y)
〈proof 〉

lemma star-of-eq: (star-of x = star-of y) = (x = y)
〈proof 〉

As above, for 0.
lemmas star-of-0-less = star-of-less [of 0 , simplified star-of-zero]
lemmas star-of-0-le = star-of-le [of 0 , simplified star-of-zero]
lemmas star-of-0-eq = star-of-eq [of 0 , simplified star-of-zero]

lemmas star-of-less-0 = star-of-less [of - 0 , simplified star-of-zero]
lemmas star-of-le-0 = star-of-le [of - 0 , simplified star-of-zero]
lemmas star-of-eq-0 = star-of-eq [of - 0 , simplified star-of-zero]

As above, for 1.
lemmas star-of-1-less = star-of-less [of 1 , simplified star-of-one]
lemmas star-of-1-le = star-of-le [of 1 , simplified star-of-one]
lemmas star-of-1-eq = star-of-eq [of 1 , simplified star-of-one]

lemmas star-of-less-1 = star-of-less [of - 1 , simplified star-of-one]
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lemmas star-of-le-1 = star-of-le [of - 1 , simplified star-of-one]
lemmas star-of-eq-1 = star-of-eq [of - 1 , simplified star-of-one]

lemmas star-of-simps [simp] =
star-of-add star-of-diff star-of-minus
star-of-mult star-of-divide star-of-inverse
star-of-mod star-of-abs
star-of-zero star-of-one
star-of-less star-of-le star-of-eq
star-of-0-less star-of-0-le star-of-0-eq
star-of-less-0 star-of-le-0 star-of-eq-0
star-of-1-less star-of-1-le star-of-1-eq
star-of-less-1 star-of-le-1 star-of-eq-1

2.9 Ordering and lattice classes
instance star :: (order) order
〈proof 〉

instantiation star :: (semilattice-inf ) semilattice-inf
begin

definition star-inf-def [transfer-unfold]: inf ≡ ∗f2∗ inf
instance 〈proof 〉

end

instantiation star :: (semilattice-sup) semilattice-sup
begin

definition star-sup-def [transfer-unfold]: sup ≡ ∗f2∗ sup
instance 〈proof 〉

end

instance star :: (lattice) lattice 〈proof 〉

instance star :: (distrib-lattice) distrib-lattice
〈proof 〉

lemma Standard-inf [simp]: x ∈ Standard =⇒ y ∈ Standard =⇒ inf x y ∈ Standard
〈proof 〉

lemma Standard-sup [simp]: x ∈ Standard =⇒ y ∈ Standard =⇒ sup x y ∈ Stan-
dard
〈proof 〉

lemma star-of-inf [simp]: star-of (inf x y) = inf (star-of x) (star-of y)
〈proof 〉

lemma star-of-sup [simp]: star-of (sup x y) = sup (star-of x) (star-of y)
〈proof 〉
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instance star :: (linorder) linorder
〈proof 〉

lemma star-max-def [transfer-unfold]: max = ∗f2∗ max
〈proof 〉

lemma star-min-def [transfer-unfold]: min = ∗f2∗ min
〈proof 〉

lemma Standard-max [simp]: x ∈ Standard =⇒ y ∈ Standard =⇒ max x y ∈
Standard
〈proof 〉

lemma Standard-min [simp]: x ∈ Standard =⇒ y ∈ Standard =⇒ min x y ∈
Standard
〈proof 〉

lemma star-of-max [simp]: star-of (max x y) = max (star-of x) (star-of y)
〈proof 〉

lemma star-of-min [simp]: star-of (min x y) = min (star-of x) (star-of y)
〈proof 〉

2.10 Ordered group classes
instance star :: (semigroup-add) semigroup-add
〈proof 〉

instance star :: (ab-semigroup-add) ab-semigroup-add
〈proof 〉

instance star :: (semigroup-mult) semigroup-mult
〈proof 〉

instance star :: (ab-semigroup-mult) ab-semigroup-mult
〈proof 〉

instance star :: (comm-monoid-add) comm-monoid-add
〈proof 〉

instance star :: (monoid-mult) monoid-mult
〈proof 〉

instance star :: (power) power 〈proof 〉

instance star :: (comm-monoid-mult) comm-monoid-mult
〈proof 〉

instance star :: (cancel-semigroup-add) cancel-semigroup-add
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〈proof 〉

instance star :: (cancel-ab-semigroup-add) cancel-ab-semigroup-add
〈proof 〉

instance star :: (cancel-comm-monoid-add) cancel-comm-monoid-add 〈proof 〉

instance star :: (ab-group-add) ab-group-add
〈proof 〉

instance star :: (ordered-ab-semigroup-add) ordered-ab-semigroup-add
〈proof 〉

instance star :: (ordered-cancel-ab-semigroup-add) ordered-cancel-ab-semigroup-add
〈proof 〉

instance star :: (ordered-ab-semigroup-add-imp-le) ordered-ab-semigroup-add-imp-le
〈proof 〉

instance star :: (ordered-comm-monoid-add) ordered-comm-monoid-add 〈proof 〉
instance star :: (ordered-ab-semigroup-monoid-add-imp-le) ordered-ab-semigroup-monoid-add-imp-le
〈proof 〉
instance star :: (ordered-cancel-comm-monoid-add) ordered-cancel-comm-monoid-add
〈proof 〉
instance star :: (ordered-ab-group-add) ordered-ab-group-add 〈proof 〉

instance star :: (ordered-ab-group-add-abs) ordered-ab-group-add-abs
〈proof 〉

instance star :: (linordered-cancel-ab-semigroup-add) linordered-cancel-ab-semigroup-add
〈proof 〉

2.11 Ring and field classes
instance star :: (semiring) semiring
〈proof 〉

instance star :: (semiring-0 ) semiring-0
〈proof 〉

instance star :: (semiring-0-cancel) semiring-0-cancel 〈proof 〉

instance star :: (comm-semiring) comm-semiring
〈proof 〉

instance star :: (comm-semiring-0 ) comm-semiring-0 〈proof 〉
instance star :: (comm-semiring-0-cancel) comm-semiring-0-cancel 〈proof 〉

instance star :: (zero-neq-one) zero-neq-one
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〈proof 〉

instance star :: (semiring-1 ) semiring-1 〈proof 〉
instance star :: (comm-semiring-1 ) comm-semiring-1 〈proof 〉

declare dvd-def [transfer-refold]

instance star :: (comm-semiring-1-cancel) comm-semiring-1-cancel
〈proof 〉

instance star :: (semiring-no-zero-divisors) semiring-no-zero-divisors
〈proof 〉

instance star :: (semiring-1-no-zero-divisors) semiring-1-no-zero-divisors 〈proof 〉

instance star :: (semiring-no-zero-divisors-cancel) semiring-no-zero-divisors-cancel
〈proof 〉

instance star :: (semiring-1-cancel) semiring-1-cancel 〈proof 〉
instance star :: (ring) ring 〈proof 〉
instance star :: (comm-ring) comm-ring 〈proof 〉
instance star :: (ring-1 ) ring-1 〈proof 〉
instance star :: (comm-ring-1 ) comm-ring-1 〈proof 〉
instance star :: (semidom) semidom 〈proof 〉

instance star :: (semidom-divide) semidom-divide
〈proof 〉

instance star :: (ring-no-zero-divisors) ring-no-zero-divisors 〈proof 〉
instance star :: (ring-1-no-zero-divisors) ring-1-no-zero-divisors 〈proof 〉
instance star :: (idom) idom 〈proof 〉
instance star :: (idom-divide) idom-divide 〈proof 〉

instance star :: (divide-trivial) divide-trivial
〈proof 〉

instance star :: (division-ring) division-ring
〈proof 〉

instance star :: (field) field
〈proof 〉

instance star :: (ordered-semiring) ordered-semiring
〈proof 〉

instance star :: (ordered-cancel-semiring) ordered-cancel-semiring 〈proof 〉

instance star :: (linordered-semiring-strict) linordered-semiring-strict
〈proof 〉
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instance star :: (ordered-comm-semiring) ordered-comm-semiring
〈proof 〉

instance star :: (ordered-cancel-comm-semiring) ordered-cancel-comm-semiring 〈proof 〉

instance star :: (linordered-comm-semiring-strict) linordered-comm-semiring-strict
〈proof 〉

instance star :: (ordered-ring) ordered-ring 〈proof 〉

instance star :: (ordered-ring-abs) ordered-ring-abs
〈proof 〉

instance star :: (abs-if ) abs-if
〈proof 〉

instance star :: (linordered-ring-strict) linordered-ring-strict 〈proof 〉
instance star :: (ordered-comm-ring) ordered-comm-ring 〈proof 〉

instance star :: (linordered-semidom) linordered-semidom
〈proof 〉

instance star :: (linordered-idom) linordered-idom
〈proof 〉

instance star :: (linordered-field) linordered-field 〈proof 〉

instance star :: (algebraic-semidom) algebraic-semidom 〈proof 〉

instantiation star :: (normalization-semidom) normalization-semidom
begin

definition unit-factor-star :: ′a star ⇒ ′a star
where [transfer-unfold]: unit-factor-star = ∗f ∗ unit-factor

definition normalize-star :: ′a star ⇒ ′a star
where [transfer-unfold]: normalize-star = ∗f ∗ normalize

instance
〈proof 〉

end

instance star :: (semidom-modulo) semidom-modulo
〈proof 〉
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2.12 Power
lemma star-power-def [transfer-unfold]: (^) ≡ λx n. ( ∗f ∗ (λx. x ^ n)) x
〈proof 〉

lemma Standard-power [simp]: x ∈ Standard =⇒ x ^ n ∈ Standard
〈proof 〉

lemma star-of-power [simp]: star-of (x ^ n) = star-of x ^ n
〈proof 〉

2.13 Number classes
instance star :: (numeral) numeral 〈proof 〉

lemma star-numeral-def [transfer-unfold]: numeral k = star-of (numeral k)
〈proof 〉

lemma Standard-numeral [simp]: numeral k ∈ Standard
〈proof 〉

lemma star-of-numeral [simp]: star-of (numeral k) = numeral k
〈proof 〉

lemma star-of-nat-def [transfer-unfold]: of-nat n = star-of (of-nat n)
〈proof 〉

lemmas star-of-compare-numeral [simp] =
star-of-less [of numeral k, simplified star-of-numeral]
star-of-le [of numeral k, simplified star-of-numeral]
star-of-eq [of numeral k, simplified star-of-numeral]
star-of-less [of - numeral k, simplified star-of-numeral]
star-of-le [of - numeral k, simplified star-of-numeral]
star-of-eq [of - numeral k, simplified star-of-numeral]
star-of-less [of − numeral k, simplified star-of-numeral]
star-of-le [of − numeral k, simplified star-of-numeral]
star-of-eq [of − numeral k, simplified star-of-numeral]
star-of-less [of - − numeral k, simplified star-of-numeral]
star-of-le [of - − numeral k, simplified star-of-numeral]
star-of-eq [of - − numeral k, simplified star-of-numeral] for k

lemma Standard-of-nat [simp]: of-nat n ∈ Standard
〈proof 〉

lemma star-of-of-nat [simp]: star-of (of-nat n) = of-nat n
〈proof 〉

lemma star-of-int-def [transfer-unfold]: of-int z = star-of (of-int z)
〈proof 〉
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lemma Standard-of-int [simp]: of-int z ∈ Standard
〈proof 〉

lemma star-of-of-int [simp]: star-of (of-int z) = of-int z
〈proof 〉

instance star :: (semiring-char-0 ) semiring-char-0
〈proof 〉

instance star :: (ring-char-0 ) ring-char-0 〈proof 〉

2.14 Finite class
lemma starset-finite: finite A =⇒ ∗s∗ A = star-of ‘ A
〈proof 〉

instance star :: (finite) finite
〈proof 〉

end

3 Hypernatural numbers
theory HyperNat

imports StarDef
begin

type-synonym hypnat = nat star

abbreviation hypnat-of-nat :: nat ⇒ nat star
where hypnat-of-nat ≡ star-of

definition hSuc :: hypnat ⇒ hypnat
where hSuc-def [transfer-unfold]: hSuc = ∗f ∗ Suc

3.1 Properties Transferred from Naturals
lemma hSuc-not-zero [iff ]:

∧
m. hSuc m 6= 0

〈proof 〉

lemma zero-not-hSuc [iff ]:
∧

m. 0 6= hSuc m
〈proof 〉

lemma hSuc-hSuc-eq [iff ]:
∧

m n. hSuc m = hSuc n ←→ m = n
〈proof 〉

lemma zero-less-hSuc [iff ]:
∧

n. 0 < hSuc n
〈proof 〉
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lemma hypnat-minus-zero [simp]:
∧

z::hypnat. z − z = 0
〈proof 〉

lemma hypnat-diff-0-eq-0 [simp]:
∧

n::hypnat. 0 − n = 0
〈proof 〉

lemma hypnat-add-is-0 [iff ]:
∧

m n::hypnat. m + n = 0 ←→ m = 0 ∧ n = 0
〈proof 〉

lemma hypnat-diff-diff-left:
∧

i j k::hypnat. i − j − k = i − (j + k)
〈proof 〉

lemma hypnat-diff-commute:
∧

i j k::hypnat. i − j − k = i − k − j
〈proof 〉

lemma hypnat-diff-add-inverse [simp]:
∧

m n::hypnat. n + m − n = m
〈proof 〉

lemma hypnat-diff-add-inverse2 [simp]:
∧

m n::hypnat. m + n − n = m
〈proof 〉

lemma hypnat-diff-cancel [simp]:
∧

k m n::hypnat. (k + m) − (k + n) = m − n
〈proof 〉

lemma hypnat-diff-cancel2 [simp]:
∧

k m n::hypnat. (m + k) − (n + k) = m − n
〈proof 〉

lemma hypnat-diff-add-0 [simp]:
∧

m n::hypnat. n − (n + m) = 0
〈proof 〉

lemma hypnat-diff-mult-distrib:
∧

k m n::hypnat. (m − n) ∗ k = (m ∗ k) − (n ∗
k)
〈proof 〉

lemma hypnat-diff-mult-distrib2 :
∧

k m n::hypnat. k ∗ (m − n) = (k ∗ m) − (k ∗
n)
〈proof 〉

lemma hypnat-le-zero-cancel [iff ]:
∧

n::hypnat. n ≤ 0 ←→ n = 0
〈proof 〉

lemma hypnat-mult-is-0 [simp]:
∧

m n::hypnat. m ∗ n = 0 ←→ m = 0 ∨ n = 0
〈proof 〉

lemma hypnat-diff-is-0-eq [simp]:
∧

m n::hypnat. m − n = 0 ←→ m ≤ n
〈proof 〉

lemma hypnat-not-less0 [iff ]:
∧

n::hypnat. ¬ n < 0
〈proof 〉
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lemma hypnat-less-one [iff ]:
∧

n::hypnat. n < 1 ←→ n = 0
〈proof 〉

lemma hypnat-add-diff-inverse:
∧

m n::hypnat. ¬ m < n =⇒ n + (m − n) = m
〈proof 〉

lemma hypnat-le-add-diff-inverse [simp]:
∧

m n::hypnat. n ≤ m =⇒ n + (m − n)
= m
〈proof 〉

lemma hypnat-le-add-diff-inverse2 [simp]:
∧

m n::hypnat. n ≤ m =⇒ (m − n) +
n = m
〈proof 〉

declare hypnat-le-add-diff-inverse2 [OF order-less-imp-le]

lemma hypnat-le0 [iff ]:
∧

n::hypnat. 0 ≤ n
〈proof 〉

lemma hypnat-le-add1 [simp]:
∧

x n::hypnat. x ≤ x + n
〈proof 〉

lemma hypnat-add-self-le [simp]:
∧

x n::hypnat. x ≤ n + x
〈proof 〉

lemma hypnat-add-one-self-less [simp]: x < x + 1 for x :: hypnat
〈proof 〉

lemma hypnat-neq0-conv [iff ]:
∧

n::hypnat. n 6= 0 ←→ 0 < n
〈proof 〉

lemma hypnat-gt-zero-iff : 0 < n ←→ 1 ≤ n for n :: hypnat
〈proof 〉

lemma hypnat-gt-zero-iff2 : 0 < n ←→ (∃m. n = m + 1 ) for n :: hypnat
〈proof 〉

lemma hypnat-add-self-not-less: ¬ x + y < x for x y :: hypnat
〈proof 〉

lemma hypnat-diff-split: P (a − b) ←→ (a < b −→ P 0 ) ∧ (∀ d. a = b + d −→
P d)

for a b :: hypnat
— elimination of − on hypnat
〈proof 〉
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3.2 Properties of the set of embedded natural numbers
lemma of-nat-eq-star-of [simp]: of-nat = star-of
〈proof 〉

lemma Nats-eq-Standard: (Nats :: nat star set) = Standard
〈proof 〉

lemma hypnat-of-nat-mem-Nats [simp]: hypnat-of-nat n ∈ Nats
〈proof 〉

lemma hypnat-of-nat-one [simp]: hypnat-of-nat (Suc 0 ) = 1
〈proof 〉

lemma hypnat-of-nat-Suc [simp]: hypnat-of-nat (Suc n) = hypnat-of-nat n + 1
〈proof 〉

lemma of-nat-eq-add:
fixes d::hypnat
shows of-nat m = of-nat n + d =⇒ d ∈ range of-nat
〈proof 〉

lemma Nats-diff [simp]: a ∈ Nats =⇒ b ∈ Nats =⇒ a − b ∈ Nats for a b ::
hypnat
〈proof 〉

3.3 Infinite Hypernatural Numbers – HNatInfinite

The set of infinite hypernatural numbers.
definition HNatInfinite :: hypnat set

where HNatInfinite = {n. n /∈ Nats}

lemma Nats-not-HNatInfinite-iff : x ∈ Nats ←→ x /∈ HNatInfinite
〈proof 〉

lemma HNatInfinite-not-Nats-iff : x ∈ HNatInfinite ←→ x /∈ Nats
〈proof 〉

lemma star-of-neq-HNatInfinite: N ∈ HNatInfinite =⇒ star-of n 6= N
〈proof 〉

lemma star-of-Suc-lessI :
∧

N . star-of n < N =⇒ star-of (Suc n) 6= N =⇒ star-of
(Suc n) < N
〈proof 〉

lemma star-of-less-HNatInfinite:
assumes N : N ∈ HNatInfinite
shows star-of n < N
〈proof 〉
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lemma star-of-le-HNatInfinite: N ∈ HNatInfinite =⇒ star-of n ≤ N
〈proof 〉

3.3.1 Closure Rules
lemma Nats-less-HNatInfinite: x ∈ Nats =⇒ y ∈ HNatInfinite =⇒ x < y
〈proof 〉

lemma Nats-le-HNatInfinite: x ∈ Nats =⇒ y ∈ HNatInfinite =⇒ x ≤ y
〈proof 〉

lemma zero-less-HNatInfinite: x ∈ HNatInfinite =⇒ 0 < x
〈proof 〉

lemma one-less-HNatInfinite: x ∈ HNatInfinite =⇒ 1 < x
〈proof 〉

lemma one-le-HNatInfinite: x ∈ HNatInfinite =⇒ 1 ≤ x
〈proof 〉

lemma zero-not-mem-HNatInfinite [simp]: 0 /∈ HNatInfinite
〈proof 〉

lemma Nats-downward-closed: x ∈ Nats =⇒ y ≤ x =⇒ y ∈ Nats for x y :: hypnat
〈proof 〉

lemma HNatInfinite-upward-closed: x ∈ HNatInfinite =⇒ x ≤ y =⇒ y ∈ HNat-
Infinite
〈proof 〉

lemma HNatInfinite-add: x ∈ HNatInfinite =⇒ x + y ∈ HNatInfinite
〈proof 〉

lemma HNatInfinite-diff : [[x ∈ HNatInfinite; y ∈ Nats]] =⇒ x − y ∈ HNatInfinite
〈proof 〉

lemma HNatInfinite-is-Suc: x ∈ HNatInfinite =⇒ ∃ y. x = y + 1 for x :: hypnat
〈proof 〉

3.4 Existence of an infinite hypernatural number

ω is in fact an infinite hypernatural number = [<1 , 2 , 3 , . . . >]

definition whn :: hypnat
where hypnat-omega-def : whn = star-n (λn::nat. n)

lemma hypnat-of-nat-neq-whn: hypnat-of-nat n 6= whn
〈proof 〉
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lemma whn-neq-hypnat-of-nat: whn 6= hypnat-of-nat n
〈proof 〉

lemma whn-not-Nats [simp]: whn /∈ Nats
〈proof 〉

lemma HNatInfinite-whn [simp]: whn ∈ HNatInfinite
〈proof 〉

lemma lemma-unbounded-set [simp]: eventually (λn::nat. m < n) U
〈proof 〉

lemma hypnat-of-nat-eq: hypnat-of-nat m = star-n (λn::nat. m)
〈proof 〉

lemma SHNat-eq: Nats = {n. ∃N . n = hypnat-of-nat N}
〈proof 〉

lemma Nats-less-whn: n ∈ Nats =⇒ n < whn
〈proof 〉

lemma Nats-le-whn: n ∈ Nats =⇒ n ≤ whn
〈proof 〉

lemma hypnat-of-nat-less-whn [simp]: hypnat-of-nat n < whn
〈proof 〉

lemma hypnat-of-nat-le-whn [simp]: hypnat-of-nat n ≤ whn
〈proof 〉

lemma hypnat-zero-less-hypnat-omega [simp]: 0 < whn
〈proof 〉

lemma hypnat-one-less-hypnat-omega [simp]: 1 < whn
〈proof 〉

3.4.1 Alternative characterization of the set of infinite hypernat-
urals

HNatInfinite = {N . ∀n∈�. n < N}

unused, but possibly interesting
lemma HNatInfinite-FreeUltrafilterNat-eventually:

assumes
∧

k::nat. eventually (λn. f n 6= k) U
shows eventually (λn. m < f n) U
〈proof 〉

lemma HNatInfinite-iff : HNatInfinite = {N . ∀n ∈ Nats. n < N}
〈proof 〉
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3.4.2 Alternative Characterization of HNatInfinite using Free Ul-
trafilter

lemma HNatInfinite-FreeUltrafilterNat:
star-n X ∈ HNatInfinite =⇒ ∀ u. eventually (λn. u < X n) U
〈proof 〉

lemma FreeUltrafilterNat-HNatInfinite:
∀ u. eventually (λn. u < X n) U =⇒ star-n X ∈ HNatInfinite
〈proof 〉

lemma HNatInfinite-FreeUltrafilterNat-iff :
(star-n X ∈ HNatInfinite) = (∀ u. eventually (λn. u < X n) U)
〈proof 〉

3.5 Embedding of the Hypernaturals into other types
definition of-hypnat :: hypnat ⇒ ′a::semiring-1-cancel star

where of-hypnat-def [transfer-unfold]: of-hypnat = ∗f ∗ of-nat

lemma of-hypnat-0 [simp]: of-hypnat 0 = 0
〈proof 〉

lemma of-hypnat-1 [simp]: of-hypnat 1 = 1
〈proof 〉

lemma of-hypnat-hSuc:
∧

m. of-hypnat (hSuc m) = 1 + of-hypnat m
〈proof 〉

lemma of-hypnat-add [simp]:
∧

m n. of-hypnat (m + n) = of-hypnat m + of-hypnat
n
〈proof 〉

lemma of-hypnat-mult [simp]:
∧

m n. of-hypnat (m ∗ n) = of-hypnat m ∗ of-hypnat
n
〈proof 〉

lemma of-hypnat-less-iff [simp]:∧
m n. of-hypnat m < (of-hypnat n:: ′a::linordered-semidom star) ←→ m < n
〈proof 〉

lemma of-hypnat-0-less-iff [simp]:∧
n. 0 < (of-hypnat n:: ′a::linordered-semidom star) ←→ 0 < n
〈proof 〉

lemma of-hypnat-less-0-iff [simp]:
∧

m. ¬ (of-hypnat m:: ′a::linordered-semidom
star) < 0
〈proof 〉

lemma of-hypnat-le-iff [simp]:
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∧
m n. of-hypnat m ≤ (of-hypnat n:: ′a::linordered-semidom star) ←→ m ≤ n
〈proof 〉

lemma of-hypnat-0-le-iff [simp]:
∧

n. 0 ≤ (of-hypnat n:: ′a::linordered-semidom
star)
〈proof 〉

lemma of-hypnat-le-0-iff [simp]:
∧

m. (of-hypnat m:: ′a::linordered-semidom star)
≤ 0 ←→ m = 0
〈proof 〉

lemma of-hypnat-eq-iff [simp]:∧
m n. of-hypnat m = (of-hypnat n:: ′a::linordered-semidom star) ←→ m = n
〈proof 〉

lemma of-hypnat-eq-0-iff [simp]:
∧

m. (of-hypnat m:: ′a::linordered-semidom star)
= 0 ←→ m = 0
〈proof 〉

lemma HNatInfinite-of-hypnat-gt-zero:
N ∈ HNatInfinite =⇒ (0 :: ′a::linordered-semidom star) < of-hypnat N
〈proof 〉

end

4 Construction of Hyperreals Using Ultrafilters
theory HyperDef

imports Complex-Main HyperNat
begin

type-synonym hypreal = real star

abbreviation hypreal-of-real :: real ⇒ real star
where hypreal-of-real ≡ star-of

abbreviation hypreal-of-hypnat :: hypnat ⇒ hypreal
where hypreal-of-hypnat ≡ of-hypnat

definition omega :: hypreal (‹ω›)
where ω = star-n (λn. real (Suc n))

— an infinite number = [<1 , 2 , 3 , . . . >]

definition epsilon :: hypreal (‹ε›)
where ε = star-n (λn. inverse (real (Suc n)))

— an infinitesimal number = [<1 , 1/2 , 1/3 , . . . >]
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4.1 Real vector class instances
instantiation star :: (scaleR) scaleR
begin

definition star-scaleR-def [transfer-unfold]: scaleR r ≡ ∗f ∗ (scaleR r)
instance 〈proof 〉

end

lemma Standard-scaleR [simp]: x ∈ Standard =⇒ scaleR r x ∈ Standard
〈proof 〉

lemma star-of-scaleR [simp]: star-of (scaleR r x) = scaleR r (star-of x)
〈proof 〉

instance star :: (real-vector) real-vector
〈proof 〉

instance star :: (real-algebra) real-algebra
〈proof 〉

instance star :: (real-algebra-1 ) real-algebra-1 〈proof 〉

instance star :: (real-div-algebra) real-div-algebra 〈proof 〉

instance star :: (field-char-0 ) field-char-0 〈proof 〉

instance star :: (real-field) real-field 〈proof 〉

lemma star-of-real-def [transfer-unfold]: of-real r = star-of (of-real r)
〈proof 〉

lemma Standard-of-real [simp]: of-real r ∈ Standard
〈proof 〉

lemma star-of-of-real [simp]: star-of (of-real r) = of-real r
〈proof 〉

lemma of-real-eq-star-of [simp]: of-real = star-of
〈proof 〉

lemma Reals-eq-Standard: (� :: hypreal set) = Standard
〈proof 〉

4.2 Injection from hypreal
definition of-hypreal :: hypreal ⇒ ′a::real-algebra-1 star

where [transfer-unfold]: of-hypreal = ∗f ∗ of-real

lemma Standard-of-hypreal [simp]: r ∈ Standard =⇒ of-hypreal r ∈ Standard
〈proof 〉
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lemma of-hypreal-0 [simp]: of-hypreal 0 = 0
〈proof 〉

lemma of-hypreal-1 [simp]: of-hypreal 1 = 1
〈proof 〉

lemma of-hypreal-add [simp]:
∧

x y. of-hypreal (x + y) = of-hypreal x + of-hypreal
y
〈proof 〉

lemma of-hypreal-minus [simp]:
∧

x. of-hypreal (− x) = − of-hypreal x
〈proof 〉

lemma of-hypreal-diff [simp]:
∧

x y. of-hypreal (x − y) = of-hypreal x − of-hypreal
y
〈proof 〉

lemma of-hypreal-mult [simp]:
∧

x y. of-hypreal (x ∗ y) = of-hypreal x ∗ of-hypreal
y
〈proof 〉

lemma of-hypreal-inverse [simp]:∧
x. of-hypreal (inverse x) =
inverse (of-hypreal x :: ′a::{real-div-algebra, division-ring} star)
〈proof 〉

lemma of-hypreal-divide [simp]:∧
x y. of-hypreal (x / y) =
(of-hypreal x / of-hypreal y :: ′a::{real-field, field} star)
〈proof 〉

lemma of-hypreal-eq-iff [simp]:
∧

x y. (of-hypreal x = of-hypreal y) = (x = y)
〈proof 〉

lemma of-hypreal-eq-0-iff [simp]:
∧

x. (of-hypreal x = 0 ) = (x = 0 )
〈proof 〉

4.3 Properties of starrel
lemma lemma-starrel-refl [simp]: x ∈ starrel ‘‘ {x}
〈proof 〉

lemma starrel-in-hypreal [simp]: starrel‘‘{x}∈star
〈proof 〉

declare Abs-star-inject [simp] Abs-star-inverse [simp]
declare equiv-starrel [THEN eq-equiv-class-iff , simp]
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4.4 hypreal-of-real: the Injection from real to hypreal
lemma inj-star-of : inj star-of
〈proof 〉

lemma mem-Rep-star-iff : X ∈ Rep-star x ←→ x = star-n X
〈proof 〉

lemma Rep-star-star-n-iff [simp]: X ∈ Rep-star (star-n Y ) ←→ eventually (λn.
Y n = X n) U
〈proof 〉

lemma Rep-star-star-n: X ∈ Rep-star (star-n X)
〈proof 〉

4.5 Properties of star-n
lemma star-n-add: star-n X + star-n Y = star-n (λn. X n + Y n)
〈proof 〉

lemma star-n-minus: − star-n X = star-n (λn. −(X n))
〈proof 〉

lemma star-n-diff : star-n X − star-n Y = star-n (λn. X n − Y n)
〈proof 〉

lemma star-n-mult: star-n X ∗ star-n Y = star-n (λn. X n ∗ Y n)
〈proof 〉

lemma star-n-inverse: inverse (star-n X) = star-n (λn. inverse (X n))
〈proof 〉

lemma star-n-le: star-n X ≤ star-n Y = eventually (λn. X n ≤ Y n) U
〈proof 〉

lemma star-n-less: star-n X < star-n Y = eventually (λn. X n < Y n) U
〈proof 〉

lemma star-n-zero-num: 0 = star-n (λn. 0 )
〈proof 〉

lemma star-n-one-num: 1 = star-n (λn. 1 )
〈proof 〉

lemma star-n-abs: |star-n X | = star-n (λn. |X n|)
〈proof 〉

lemma hypreal-omega-gt-zero [simp]: 0 < ω
〈proof 〉
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4.6 Existence of Infinite Hyperreal Number

Existence of infinite number not corresponding to any real number. Use
assumption that member U is not finite.
lemma hypreal-of-real-not-eq-omega: hypreal-of-real x 6= ω
〈proof 〉

Existence of infinitesimal number also not corresponding to any real number.
lemma hypreal-of-real-not-eq-epsilon: hypreal-of-real x 6= ε
〈proof 〉

lemma epsilon-ge-zero [simp]: 0 ≤ ε
〈proof 〉

lemma epsilon-not-zero: ε 6= 0
〈proof 〉

lemma epsilon-inverse-omega: ε = inverse ω
〈proof 〉

lemma epsilon-gt-zero: 0 < ε
〈proof 〉

4.7 Embedding the Naturals into the Hyperreals
abbreviation hypreal-of-nat :: nat ⇒ hypreal

where hypreal-of-nat ≡ of-nat

lemma SNat-eq: Nats = {n. ∃N . n = hypreal-of-nat N}
〈proof 〉

Naturals embedded in hyperreals: is a hyperreal c.f. NS extension.
lemma hypreal-of-nat: hypreal-of-nat m = star-n (λn. real m)
〈proof 〉

〈ML〉

4.8 Exponentials on the Hyperreals
lemma hpowr-0 [simp]: r ^ 0 = (1 ::hypreal)

for r :: hypreal
〈proof 〉

lemma hpowr-Suc [simp]: r ^ (Suc n) = r ∗ (r ^ n)
for r :: hypreal
〈proof 〉

lemma hrealpow: star-n X ^ m = star-n (λn. (X n::real) ^ m)
〈proof 〉
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lemma hrealpow-sum-square-expand:
(x + y) ^ Suc (Suc 0 ) =

x ^ Suc (Suc 0 ) + y ^ Suc (Suc 0 ) + (hypreal-of-nat (Suc (Suc 0 ))) ∗ x ∗ y
for x y :: hypreal
〈proof 〉

lemma power-hypreal-of-real-numeral:
(numeral v :: hypreal) ^ n = hypreal-of-real ((numeral v) ^ n)
〈proof 〉

declare power-hypreal-of-real-numeral [of - numeral w, simp] for w

lemma power-hypreal-of-real-neg-numeral:
(− numeral v :: hypreal) ^ n = hypreal-of-real ((− numeral v) ^ n)
〈proof 〉

declare power-hypreal-of-real-neg-numeral [of - numeral w, simp] for w

4.9 Powers with Hypernatural Exponents

Hypernatural powers of hyperreals.
definition pow :: ′a::power star ⇒ nat star ⇒ ′a star (infixr ‹pow› 80 )

where hyperpow-def [transfer-unfold]: R pow N = ( ∗f2∗ (^)) R N

lemma Standard-hyperpow [simp]: r ∈ Standard =⇒ n ∈ Standard =⇒ r pow n ∈
Standard
〈proof 〉

lemma hyperpow: star-n X pow star-n Y = star-n (λn. X n ^ Y n)
〈proof 〉

lemma hyperpow-zero [simp]:
∧

n. (0 :: ′a::{power ,semiring-0} star) pow (n + (1 ::hypnat))
= 0
〈proof 〉

lemma hyperpow-not-zero:
∧

r n. r 6= (0 :: ′a::{field} star) =⇒ r pow n 6= 0
〈proof 〉

lemma hyperpow-inverse:
∧

r n. r 6= (0 :: ′a::field star) =⇒ inverse (r pow n) =
(inverse r) pow n
〈proof 〉

lemma hyperpow-hrabs:
∧

r n. |r :: ′a::{linordered-idom} star | pow n = |r pow n|
〈proof 〉

lemma hyperpow-add:
∧

r n m. (r :: ′a::monoid-mult star) pow (n + m) = (r pow
n) ∗ (r pow m)
〈proof 〉

lemma hyperpow-one [simp]:
∧

r . (r :: ′a::monoid-mult star) pow (1 ::hypnat) = r
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〈proof 〉

lemma hyperpow-two:
∧

r . (r :: ′a::monoid-mult star) pow (2 ::hypnat) = r ∗ r
〈proof 〉

lemma hyperpow-gt-zero:
∧

r n. (0 :: ′a::{linordered-semidom} star) < r =⇒ 0 <
r pow n
〈proof 〉

lemma hyperpow-ge-zero:
∧

r n. (0 :: ′a::{linordered-semidom} star) ≤ r =⇒ 0 ≤
r pow n
〈proof 〉

lemma hyperpow-le:
∧

x y n. (0 :: ′a::{linordered-semidom} star) < x =⇒ x ≤ y
=⇒ x pow n ≤ y pow n
〈proof 〉

lemma hyperpow-eq-one [simp]:
∧

n. 1 pow n = (1 :: ′a::monoid-mult star)
〈proof 〉

lemma hrabs-hyperpow-minus [simp]:
∧
(a:: ′a::linordered-idom star) n. |(−a) pow

n| = |a pow n|
〈proof 〉

lemma hyperpow-mult:
∧

r s n. (r ∗ s:: ′a::comm-monoid-mult star) pow n = (r
pow n) ∗ (s pow n)
〈proof 〉

lemma hyperpow-two-le [simp]:
∧

r . (0 :: ′a::{monoid-mult,linordered-ring-strict} star)
≤ r pow 2
〈proof 〉

lemma hyperpow-two-hrabs [simp]: |x:: ′a::linordered-idom star | pow 2 = x pow 2
〈proof 〉

lemma hyperpow-two-gt-one:
∧

r :: ′a::linordered-semidom star . 1 < r =⇒ 1 < r
pow 2
〈proof 〉

lemma hyperpow-two-ge-one:
∧

r :: ′a::linordered-semidom star . 1 ≤ r =⇒ 1 ≤ r
pow 2
〈proof 〉

lemma two-hyperpow-ge-one [simp]: (1 ::hypreal) ≤ 2 pow n
〈proof 〉

lemma hyperpow-minus-one2 [simp]:
∧

n. (− 1 ) pow (2 ∗ n) = (1 ::hypreal)
〈proof 〉
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lemma hyperpow-less-le:
∧

r n N . (0 ::hypreal) ≤ r =⇒ r ≤ 1 =⇒ n < N =⇒ r
pow N ≤ r pow n
〈proof 〉

lemma hyperpow-SHNat-le:
0 ≤ r =⇒ r ≤ (1 ::hypreal) =⇒ N ∈ HNatInfinite =⇒ ∀n∈Nats. r pow N ≤ r

pow n
〈proof 〉

lemma hyperpow-realpow: (hypreal-of-real r) pow (hypnat-of-nat n) = hypreal-of-real
(r ^ n)
〈proof 〉

lemma hyperpow-SReal [simp]: (hypreal-of-real r) pow (hypnat-of-nat n) ∈ �
〈proof 〉

lemma hyperpow-zero-HNatInfinite [simp]: N ∈ HNatInfinite =⇒ (0 ::hypreal) pow
N = 0
〈proof 〉

lemma hyperpow-le-le: (0 ::hypreal) ≤ r =⇒ r ≤ 1 =⇒ n ≤ N =⇒ r pow N ≤ r
pow n
〈proof 〉

lemma hyperpow-Suc-le-self2 : (0 ::hypreal) ≤ r =⇒ r < 1 =⇒ r pow (n + (1 ::hypnat))
≤ r
〈proof 〉

lemma hyperpow-hypnat-of-nat:
∧

x. x pow hypnat-of-nat n = x ^ n
〈proof 〉

lemma of-hypreal-hyperpow:∧
x n. of-hypreal (x pow n) = (of-hypreal x:: ′a::{real-algebra-1} star) pow n
〈proof 〉

end

5 Infinite Numbers, Infinitesimals, Infinitely Close
Relation

theory NSA
imports HyperDef HOL−Library.Lub-Glb

begin

definition hnorm :: ′a::real-normed-vector star ⇒ real star
where [transfer-unfold]: hnorm = ∗f ∗ norm

definition Infinitesimal :: ( ′a::real-normed-vector) star set
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where Infinitesimal = {x. ∀ r ∈ Reals. 0 < r −→ hnorm x < r}

definition HFinite :: ( ′a::real-normed-vector) star set
where HFinite = {x. ∃ r ∈ Reals. hnorm x < r}

definition HInfinite :: ( ′a::real-normed-vector) star set
where HInfinite = {x. ∀ r ∈ Reals. r < hnorm x}

definition approx :: ′a::real-normed-vector star ⇒ ′a star ⇒ bool (infixl ‹≈› 50 )
where x ≈ y ←→ x − y ∈ Infinitesimal

— the “infinitely close” relation

definition st :: hypreal ⇒ hypreal
where st = (λx. SOME r . x ∈ HFinite ∧ r ∈ � ∧ r ≈ x)

— the standard part of a hyperreal

definition monad :: ′a::real-normed-vector star ⇒ ′a star set
where monad x = {y. x ≈ y}

definition galaxy :: ′a::real-normed-vector star ⇒ ′a star set
where galaxy x = {y. (x + −y) ∈ HFinite}

lemma SReal-def : � ≡ {x. ∃ r . x = hypreal-of-real r}
〈proof 〉

5.1 Nonstandard Extension of the Norm Function
definition scaleHR :: real star ⇒ ′a star ⇒ ′a::real-normed-vector star

where [transfer-unfold]: scaleHR = starfun2 scaleR

lemma Standard-hnorm [simp]: x ∈ Standard =⇒ hnorm x ∈ Standard
〈proof 〉

lemma star-of-norm [simp]: star-of (norm x) = hnorm (star-of x)
〈proof 〉

lemma hnorm-ge-zero [simp]:
∧

x:: ′a::real-normed-vector star . 0 ≤ hnorm x
〈proof 〉

lemma hnorm-eq-zero [simp]:
∧

x:: ′a::real-normed-vector star . hnorm x = 0 ←→
x = 0
〈proof 〉

lemma hnorm-triangle-ineq:
∧

x y:: ′a::real-normed-vector star . hnorm (x + y) ≤
hnorm x + hnorm y
〈proof 〉

lemma hnorm-triangle-ineq3 :
∧

x y:: ′a::real-normed-vector star . |hnorm x − hnorm
y| ≤ hnorm (x − y)
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〈proof 〉

lemma hnorm-scaleR:
∧

x:: ′a::real-normed-vector star . hnorm (a ∗R x) = |star-of
a| ∗ hnorm x
〈proof 〉

lemma hnorm-scaleHR:
∧

a (x:: ′a::real-normed-vector star). hnorm (scaleHR a x)
= |a| ∗ hnorm x
〈proof 〉

lemma hnorm-mult-ineq:
∧

x y:: ′a::real-normed-algebra star . hnorm (x ∗ y) ≤
hnorm x ∗ hnorm y
〈proof 〉

lemma hnorm-mult:
∧

x y:: ′a::real-normed-div-algebra star . hnorm (x ∗ y) = hnorm
x ∗ hnorm y
〈proof 〉

lemma hnorm-hyperpow:
∧
(x:: ′a::{real-normed-div-algebra} star) n. hnorm (x pow

n) = hnorm x pow n
〈proof 〉

lemma hnorm-one [simp]: hnorm (1 :: ′a::real-normed-div-algebra star) = 1
〈proof 〉

lemma hnorm-zero [simp]: hnorm (0 :: ′a::real-normed-vector star) = 0
〈proof 〉

lemma zero-less-hnorm-iff [simp]:
∧

x:: ′a::real-normed-vector star . 0 < hnorm x
←→ x 6= 0
〈proof 〉

lemma hnorm-minus-cancel [simp]:
∧

x:: ′a::real-normed-vector star . hnorm (− x)
= hnorm x
〈proof 〉

lemma hnorm-minus-commute:
∧

a b:: ′a::real-normed-vector star . hnorm (a − b)
= hnorm (b − a)
〈proof 〉

lemma hnorm-triangle-ineq2 :
∧

a b:: ′a::real-normed-vector star . hnorm a − hnorm
b ≤ hnorm (a − b)
〈proof 〉

lemma hnorm-triangle-ineq4 :
∧

a b:: ′a::real-normed-vector star . hnorm (a − b) ≤
hnorm a + hnorm b
〈proof 〉

lemma abs-hnorm-cancel [simp]:
∧

a:: ′a::real-normed-vector star . |hnorm a| = hnorm
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a
〈proof 〉

lemma hnorm-of-hypreal [simp]:
∧

r . hnorm (of-hypreal r :: ′a::real-normed-algebra-1
star) = |r |
〈proof 〉

lemma nonzero-hnorm-inverse:∧
a:: ′a::real-normed-div-algebra star . a 6= 0 =⇒ hnorm (inverse a) = inverse

(hnorm a)
〈proof 〉

lemma hnorm-inverse:∧
a:: ′a::{real-normed-div-algebra, division-ring} star . hnorm (inverse a) = inverse

(hnorm a)
〈proof 〉

lemma hnorm-divide:
∧

a b:: ′a::{real-normed-field, field} star . hnorm (a / b) =
hnorm a / hnorm b
〈proof 〉

lemma hypreal-hnorm-def [simp]:
∧

r ::hypreal. hnorm r = |r |
〈proof 〉

lemma hnorm-add-less:∧
(x:: ′a::real-normed-vector star) y r s. hnorm x < r =⇒ hnorm y < s =⇒ hnorm

(x + y) < r + s
〈proof 〉

lemma hnorm-mult-less:∧
(x:: ′a::real-normed-algebra star) y r s. hnorm x < r =⇒ hnorm y < s =⇒

hnorm (x ∗ y) < r ∗ s
〈proof 〉

lemma hnorm-scaleHR-less: |x| < r =⇒ hnorm y < s =⇒ hnorm (scaleHR x y)
< r ∗ s
〈proof 〉

5.2 Closure Laws for the Standard Reals
lemma Reals-add-cancel: x + y ∈ � =⇒ y ∈ � =⇒ x ∈ �
〈proof 〉

lemma SReal-hrabs: x ∈ � =⇒ |x| ∈ �
for x :: hypreal
〈proof 〉

lemma SReal-hypreal-of-real [simp]: hypreal-of-real x ∈ �
〈proof 〉



THEORY “NSA” 44

lemma SReal-divide-numeral: r ∈ � =⇒ r / (numeral w::hypreal) ∈ �
〈proof 〉

ε is not in Reals because it is an infinitesimal
lemma SReal-epsilon-not-mem: ε /∈ �
〈proof 〉

lemma SReal-omega-not-mem: ω /∈ �
〈proof 〉

lemma SReal-UNIV-real: {x. hypreal-of-real x ∈ �} = (UNIV ::real set)
〈proof 〉

lemma SReal-iff : x ∈ � ←→ (∃ y. x = hypreal-of-real y)
〈proof 〉

lemma hypreal-of-real-image: hypreal-of-real ‘(UNIV ::real set) = �
〈proof 〉

lemma inv-hypreal-of-real-image: inv hypreal-of-real ‘ � = UNIV
〈proof 〉

lemma SReal-dense: x ∈ � =⇒ y ∈ � =⇒ x < y =⇒ ∃ r ∈ Reals. x < r ∧ r < y
for x y :: hypreal
〈proof 〉

5.3 Set of Finite Elements is a Subring of the Extended Reals
lemma HFinite-add: x ∈ HFinite =⇒ y ∈ HFinite =⇒ x + y ∈ HFinite
〈proof 〉

lemma HFinite-mult: x ∈ HFinite =⇒ y ∈ HFinite =⇒ x ∗ y ∈ HFinite
for x y :: ′a::real-normed-algebra star
〈proof 〉

lemma HFinite-scaleHR: x ∈ HFinite =⇒ y ∈ HFinite =⇒ scaleHR x y ∈ HFinite
〈proof 〉

lemma HFinite-minus-iff : − x ∈ HFinite ←→ x ∈ HFinite
〈proof 〉

lemma HFinite-star-of [simp]: star-of x ∈ HFinite
〈proof 〉

lemma SReal-subset-HFinite: (�::hypreal set) ⊆ HFinite
〈proof 〉

lemma HFiniteD: x ∈ HFinite =⇒ ∃ t ∈ Reals. hnorm x < t
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〈proof 〉

lemma HFinite-hrabs-iff [iff ]: |x| ∈ HFinite ←→ x ∈ HFinite
for x :: hypreal
〈proof 〉

lemma HFinite-hnorm-iff [iff ]: hnorm x ∈ HFinite ←→ x ∈ HFinite
for x :: hypreal
〈proof 〉

lemma HFinite-numeral [simp]: numeral w ∈ HFinite
〈proof 〉

As always with numerals, 0 and 1 are special cases.
lemma HFinite-0 [simp]: 0 ∈ HFinite
〈proof 〉

lemma HFinite-1 [simp]: 1 ∈ HFinite
〈proof 〉

lemma hrealpow-HFinite: x ∈ HFinite =⇒ x ^ n ∈ HFinite
for x :: ′a::{real-normed-algebra,monoid-mult} star
〈proof 〉

lemma HFinite-bounded:
fixes x y :: hypreal
assumes x ∈ HFinite and y: y ≤ x 0 ≤ y shows y ∈ HFinite
〈proof 〉

5.4 Set of Infinitesimals is a Subring of the Hyperreals
lemma InfinitesimalI : (

∧
r . r ∈ � =⇒ 0 < r =⇒ hnorm x < r) =⇒ x ∈ Infinites-

imal
〈proof 〉

lemma InfinitesimalD: x ∈ Infinitesimal =⇒ ∀ r ∈ Reals. 0 < r −→ hnorm x < r
〈proof 〉

lemma InfinitesimalI2 : (
∧

r . 0 < r =⇒ hnorm x < star-of r) =⇒ x ∈ Infinitesimal
〈proof 〉

lemma InfinitesimalD2 : x ∈ Infinitesimal =⇒ 0 < r =⇒ hnorm x < star-of r
〈proof 〉

lemma Infinitesimal-zero [iff ]: 0 ∈ Infinitesimal
〈proof 〉

lemma Infinitesimal-add:
assumes x ∈ Infinitesimal y ∈ Infinitesimal
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shows x + y ∈ Infinitesimal
〈proof 〉

lemma Infinitesimal-minus-iff [simp]: − x ∈ Infinitesimal ←→ x ∈ Infinitesimal
〈proof 〉

lemma Infinitesimal-hnorm-iff : hnorm x ∈ Infinitesimal ←→ x ∈ Infinitesimal
〈proof 〉

lemma Infinitesimal-hrabs-iff [iff ]: |x| ∈ Infinitesimal ←→ x ∈ Infinitesimal
for x :: hypreal
〈proof 〉

lemma Infinitesimal-of-hypreal-iff [simp]:
(of-hypreal x:: ′a::real-normed-algebra-1 star) ∈ Infinitesimal ←→ x ∈ Infinitesimal
〈proof 〉

lemma Infinitesimal-diff : x ∈ Infinitesimal =⇒ y ∈ Infinitesimal =⇒ x − y ∈
Infinitesimal
〈proof 〉

lemma Infinitesimal-mult:
fixes x y :: ′a::real-normed-algebra star
assumes x ∈ Infinitesimal y ∈ Infinitesimal
shows x ∗ y ∈ Infinitesimal
〈proof 〉

lemma Infinitesimal-HFinite-mult:
fixes x y :: ′a::real-normed-algebra star
assumes x ∈ Infinitesimal y ∈ HFinite
shows x ∗ y ∈ Infinitesimal
〈proof 〉

lemma Infinitesimal-HFinite-scaleHR:
assumes x ∈ Infinitesimal y ∈ HFinite
shows scaleHR x y ∈ Infinitesimal
〈proof 〉

lemma Infinitesimal-HFinite-mult2 :
fixes x y :: ′a::real-normed-algebra star
assumes x ∈ Infinitesimal y ∈ HFinite
shows y ∗ x ∈ Infinitesimal
〈proof 〉

lemma Infinitesimal-scaleR2 :
assumes x ∈ Infinitesimal shows a ∗R x ∈ Infinitesimal
〈proof 〉

lemma Compl-HFinite: − HFinite = HInfinite
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〈proof 〉

lemma HInfinite-inverse-Infinitesimal:
x ∈ HInfinite =⇒ inverse x ∈ Infinitesimal
for x :: ′a::real-normed-div-algebra star
〈proof 〉

lemma inverse-Infinitesimal-iff-HInfinite:
x 6= 0 =⇒ inverse x ∈ Infinitesimal ←→ x ∈ HInfinite
for x :: ′a::real-normed-div-algebra star
〈proof 〉

lemma HInfiniteI : (
∧

r . r ∈ � =⇒ r < hnorm x) =⇒ x ∈ HInfinite
〈proof 〉

lemma HInfiniteD: x ∈ HInfinite =⇒ r ∈ � =⇒ r < hnorm x
〈proof 〉

lemma HInfinite-mult:
fixes x y :: ′a::real-normed-div-algebra star
assumes x ∈ HInfinite y ∈ HInfinite shows x ∗ y ∈ HInfinite
〈proof 〉

lemma hypreal-add-zero-less-le-mono: r < x =⇒ 0 ≤ y =⇒ r < x + y
for r x y :: hypreal
〈proof 〉

lemma HInfinite-add-ge-zero: x ∈ HInfinite =⇒ 0 ≤ y =⇒ 0 ≤ x =⇒ x + y ∈
HInfinite

for x y :: hypreal
〈proof 〉

lemma HInfinite-add-ge-zero2 : x ∈ HInfinite =⇒ 0 ≤ y =⇒ 0 ≤ x =⇒ y + x ∈
HInfinite

for x y :: hypreal
〈proof 〉

lemma HInfinite-add-gt-zero: x ∈ HInfinite =⇒ 0 < y =⇒ 0 < x =⇒ x + y ∈
HInfinite

for x y :: hypreal
〈proof 〉

lemma HInfinite-minus-iff : − x ∈ HInfinite ←→ x ∈ HInfinite
〈proof 〉

lemma HInfinite-add-le-zero: x ∈ HInfinite =⇒ y ≤ 0 =⇒ x ≤ 0 =⇒ x + y ∈
HInfinite

for x y :: hypreal
〈proof 〉
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lemma HInfinite-add-lt-zero: x ∈ HInfinite =⇒ y < 0 =⇒ x < 0 =⇒ x + y ∈
HInfinite

for x y :: hypreal
〈proof 〉

lemma not-Infinitesimal-not-zero: x /∈ Infinitesimal =⇒ x 6= 0
〈proof 〉

lemma HFinite-diff-Infinitesimal-hrabs:
x ∈ HFinite − Infinitesimal =⇒ |x| ∈ HFinite − Infinitesimal
for x :: hypreal
〈proof 〉

lemma hnorm-le-Infinitesimal: e ∈ Infinitesimal =⇒ hnorm x ≤ e =⇒ x ∈ In-
finitesimal
〈proof 〉

lemma hnorm-less-Infinitesimal: e ∈ Infinitesimal =⇒ hnorm x < e =⇒ x ∈
Infinitesimal
〈proof 〉

lemma hrabs-le-Infinitesimal: e ∈ Infinitesimal =⇒ |x| ≤ e =⇒ x ∈ Infinitesimal
for x :: hypreal
〈proof 〉

lemma hrabs-less-Infinitesimal: e ∈ Infinitesimal =⇒ |x| < e =⇒ x ∈ Infinitesimal
for x :: hypreal
〈proof 〉

lemma Infinitesimal-interval:
e ∈ Infinitesimal =⇒ e ′ ∈ Infinitesimal =⇒ e ′< x =⇒ x < e =⇒ x ∈ Infinitesimal
for x :: hypreal
〈proof 〉

lemma Infinitesimal-interval2 :
e ∈ Infinitesimal =⇒ e ′ ∈ Infinitesimal =⇒ e ′≤ x =⇒ x ≤ e =⇒ x ∈ Infinitesimal
for x :: hypreal
〈proof 〉

lemma lemma-Infinitesimal-hyperpow: x ∈ Infinitesimal =⇒ 0 < N =⇒ |x pow
N | ≤ |x|

for x :: hypreal
〈proof 〉

lemma Infinitesimal-hyperpow: x ∈ Infinitesimal =⇒ 0 < N =⇒ x pow N ∈
Infinitesimal

for x :: hypreal
〈proof 〉
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lemma hrealpow-hyperpow-Infinitesimal-iff :
(x ^ n ∈ Infinitesimal) ←→ x pow (hypnat-of-nat n) ∈ Infinitesimal
〈proof 〉

lemma Infinitesimal-hrealpow: x ∈ Infinitesimal =⇒ 0 < n =⇒ x ^ n ∈ Infinites-
imal

for x :: hypreal
〈proof 〉

lemma not-Infinitesimal-mult:
x /∈ Infinitesimal =⇒ y /∈ Infinitesimal =⇒ x ∗ y /∈ Infinitesimal
for x y :: ′a::real-normed-div-algebra star
〈proof 〉

lemma Infinitesimal-mult-disj: x ∗ y ∈ Infinitesimal =⇒ x ∈ Infinitesimal ∨ y ∈
Infinitesimal

for x y :: ′a::real-normed-div-algebra star
〈proof 〉

lemma HFinite-Infinitesimal-not-zero: x ∈ HFinite−Infinitesimal =⇒ x 6= 0
〈proof 〉

lemma HFinite-Infinitesimal-diff-mult:
x ∈ HFinite − Infinitesimal =⇒ y ∈ HFinite − Infinitesimal =⇒ x ∗ y ∈ HFinite
− Infinitesimal

for x y :: ′a::real-normed-div-algebra star
〈proof 〉

lemma Infinitesimal-subset-HFinite: Infinitesimal ⊆ HFinite
〈proof 〉

lemma Infinitesimal-star-of-mult: x ∈ Infinitesimal =⇒ x ∗ star-of r ∈ Infinites-
imal

for x :: ′a::real-normed-algebra star
〈proof 〉

lemma Infinitesimal-star-of-mult2 : x ∈ Infinitesimal =⇒ star-of r ∗ x ∈ Infinites-
imal

for x :: ′a::real-normed-algebra star
〈proof 〉

5.5 The Infinitely Close Relation
lemma mem-infmal-iff : x ∈ Infinitesimal ←→ x ≈ 0
〈proof 〉

lemma approx-minus-iff : x ≈ y ←→ x − y ≈ 0
〈proof 〉
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lemma approx-minus-iff2 : x ≈ y ←→ − y + x ≈ 0
〈proof 〉

lemma approx-refl [iff ]: x ≈ x
〈proof 〉

lemma approx-sym: x ≈ y =⇒ y ≈ x
〈proof 〉

lemma approx-trans:
assumes x ≈ y y ≈ z shows x ≈ z
〈proof 〉

lemma approx-trans2 : r ≈ x =⇒ s ≈ x =⇒ r ≈ s
〈proof 〉

lemma approx-trans3 : x ≈ r =⇒ x ≈ s =⇒ r ≈ s
〈proof 〉

lemma approx-reorient: x ≈ y ←→ y ≈ x
〈proof 〉

Reorientation simplification procedure: reorients (polymorphic) 0 = x, 1 =
x, nnn = x provided x isn’t 0, 1 or a numeral.
〈ML〉

lemma Infinitesimal-approx-minus: x − y ∈ Infinitesimal ←→ x ≈ y
〈proof 〉

lemma approx-monad-iff : x ≈ y ←→ monad x = monad y
〈proof 〉

lemma Infinitesimal-approx: x ∈ Infinitesimal =⇒ y ∈ Infinitesimal =⇒ x ≈ y
〈proof 〉

lemma approx-add: a ≈ b =⇒ c ≈ d =⇒ a + c ≈ b + d
〈proof 〉

lemma approx-minus: a ≈ b =⇒ − a ≈ − b
〈proof 〉

lemma approx-minus2 : − a ≈ − b =⇒ a ≈ b
〈proof 〉

lemma approx-minus-cancel [simp]: − a ≈ − b ←→ a ≈ b
〈proof 〉

lemma approx-add-minus: a ≈ b =⇒ c ≈ d =⇒ a + − c ≈ b + − d
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〈proof 〉

lemma approx-diff : a ≈ b =⇒ c ≈ d =⇒ a − c ≈ b − d
〈proof 〉

lemma approx-mult1 : a ≈ b =⇒ c ∈ HFinite =⇒ a ∗ c ≈ b ∗ c
for a b c :: ′a::real-normed-algebra star
〈proof 〉

lemma approx-mult2 : a ≈ b =⇒ c ∈ HFinite =⇒ c ∗ a ≈ c ∗ b
for a b c :: ′a::real-normed-algebra star
〈proof 〉

lemma approx-mult-subst: u ≈ v ∗ x =⇒ x ≈ y =⇒ v ∈ HFinite =⇒ u ≈ v ∗ y
for u v x y :: ′a::real-normed-algebra star
〈proof 〉

lemma approx-mult-subst2 : u ≈ x ∗ v =⇒ x ≈ y =⇒ v ∈ HFinite =⇒ u ≈ y ∗ v
for u v x y :: ′a::real-normed-algebra star
〈proof 〉

lemma approx-mult-subst-star-of : u ≈ x ∗ star-of v =⇒ x ≈ y =⇒ u ≈ y ∗ star-of
v

for u x y :: ′a::real-normed-algebra star
〈proof 〉

lemma approx-eq-imp: a = b =⇒ a ≈ b
〈proof 〉

lemma Infinitesimal-minus-approx: x ∈ Infinitesimal =⇒ − x ≈ x
〈proof 〉

lemma bex-Infinitesimal-iff : (∃ y ∈ Infinitesimal. x − z = y) ←→ x ≈ z
〈proof 〉

lemma bex-Infinitesimal-iff2 : (∃ y ∈ Infinitesimal. x = z + y) ←→ x ≈ z
〈proof 〉

lemma Infinitesimal-add-approx: y ∈ Infinitesimal =⇒ x + y = z =⇒ x ≈ z
〈proof 〉

lemma Infinitesimal-add-approx-self : y ∈ Infinitesimal =⇒ x ≈ x + y
〈proof 〉

lemma Infinitesimal-add-approx-self2 : y ∈ Infinitesimal =⇒ x ≈ y + x
〈proof 〉

lemma Infinitesimal-add-minus-approx-self : y ∈ Infinitesimal =⇒ x ≈ x + − y
〈proof 〉
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lemma Infinitesimal-add-cancel: y ∈ Infinitesimal =⇒ x + y ≈ z =⇒ x ≈ z
〈proof 〉

lemma Infinitesimal-add-right-cancel: y ∈ Infinitesimal =⇒ x ≈ z + y =⇒ x ≈ z
〈proof 〉

lemma approx-add-left-cancel: d + b ≈ d + c =⇒ b ≈ c
〈proof 〉

lemma approx-add-right-cancel: b + d ≈ c + d =⇒ b ≈ c
〈proof 〉

lemma approx-add-mono1 : b ≈ c =⇒ d + b ≈ d + c
〈proof 〉

lemma approx-add-mono2 : b ≈ c =⇒ b + a ≈ c + a
〈proof 〉

lemma approx-add-left-iff [simp]: a + b ≈ a + c ←→ b ≈ c
〈proof 〉

lemma approx-add-right-iff [simp]: b + a ≈ c + a ←→ b ≈ c
〈proof 〉

lemma approx-HFinite: x ∈ HFinite =⇒ x ≈ y =⇒ y ∈ HFinite
〈proof 〉

lemma approx-star-of-HFinite: x ≈ star-of D =⇒ x ∈ HFinite
〈proof 〉

lemma approx-mult-HFinite: a ≈ b =⇒ c ≈ d =⇒ b ∈ HFinite =⇒ d ∈ HFinite
=⇒ a ∗ c ≈ b ∗ d

for a b c d :: ′a::real-normed-algebra star
〈proof 〉

lemma scaleHR-left-diff-distrib:
∧

a b x. scaleHR (a − b) x = scaleHR a x −
scaleHR b x
〈proof 〉

lemma approx-scaleR1 : a ≈ star-of b =⇒ c ∈ HFinite =⇒ scaleHR a c ≈ b ∗R c
〈proof 〉

lemma approx-scaleR2 : a ≈ b =⇒ c ∗R a ≈ c ∗R b
〈proof 〉

lemma approx-scaleR-HFinite: a ≈ star-of b =⇒ c ≈ d =⇒ d ∈ HFinite =⇒
scaleHR a c ≈ b ∗R d
〈proof 〉
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lemma approx-mult-star-of : a ≈ star-of b =⇒ c ≈ star-of d =⇒ a ∗ c ≈ star-of
b ∗ star-of d

for a c :: ′a::real-normed-algebra star
〈proof 〉

lemma approx-SReal-mult-cancel-zero:
fixes a x :: hypreal
assumes a ∈ � a 6= 0 a ∗ x ≈ 0 shows x ≈ 0
〈proof 〉

lemma approx-mult-SReal1 : a ∈ � =⇒ x ≈ 0 =⇒ x ∗ a ≈ 0
for a x :: hypreal
〈proof 〉

lemma approx-mult-SReal2 : a ∈ � =⇒ x ≈ 0 =⇒ a ∗ x ≈ 0
for a x :: hypreal
〈proof 〉

lemma approx-mult-SReal-zero-cancel-iff [simp]: a ∈ � =⇒ a 6= 0 =⇒ a ∗ x ≈ 0
←→ x ≈ 0

for a x :: hypreal
〈proof 〉

lemma approx-SReal-mult-cancel:
fixes a w z :: hypreal
assumes a ∈ � a 6= 0 a ∗ w ≈ a ∗ z shows w ≈ z
〈proof 〉

lemma approx-SReal-mult-cancel-iff1 [simp]: a ∈ � =⇒ a 6= 0 =⇒ a ∗ w ≈ a ∗
z ←→ w ≈ z

for a w z :: hypreal
〈proof 〉

lemma approx-le-bound:
fixes z :: hypreal
assumes z ≤ f f ≈ g g ≤ z shows f ≈ z
〈proof 〉

lemma approx-hnorm: x ≈ y =⇒ hnorm x ≈ hnorm y
for x y :: ′a::real-normed-vector star
〈proof 〉

5.6 Zero is the Only Infinitesimal that is also a Real
lemma Infinitesimal-less-SReal: x ∈ � =⇒ y ∈ Infinitesimal =⇒ 0 < x =⇒ y <
x

for x y :: hypreal
〈proof 〉
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lemma Infinitesimal-less-SReal2 : y ∈ Infinitesimal =⇒ ∀ r ∈ Reals. 0 < r −→ y
< r

for y :: hypreal
〈proof 〉

lemma SReal-not-Infinitesimal: 0 < y =⇒ y ∈ � ==> y /∈ Infinitesimal
for y :: hypreal
〈proof 〉

lemma SReal-minus-not-Infinitesimal: y < 0 =⇒ y ∈ � =⇒ y /∈ Infinitesimal
for y :: hypreal
〈proof 〉

lemma SReal-Int-Infinitesimal-zero: � Int Infinitesimal = {0 ::hypreal}
〈proof 〉

lemma SReal-Infinitesimal-zero: x ∈ � =⇒ x ∈ Infinitesimal =⇒ x = 0
for x :: hypreal
〈proof 〉

lemma SReal-HFinite-diff-Infinitesimal: x ∈ � =⇒ x 6= 0 =⇒ x ∈ HFinite −
Infinitesimal

for x :: hypreal
〈proof 〉

lemma hypreal-of-real-HFinite-diff-Infinitesimal:
hypreal-of-real x 6= 0 =⇒ hypreal-of-real x ∈ HFinite − Infinitesimal
〈proof 〉

lemma star-of-Infinitesimal-iff-0 [iff ]: star-of x ∈ Infinitesimal ←→ x = 0
〈proof 〉

lemma star-of-HFinite-diff-Infinitesimal: x 6= 0 =⇒ star-of x ∈ HFinite − In-
finitesimal
〈proof 〉

lemma numeral-not-Infinitesimal [simp]:
numeral w 6= (0 ::hypreal) =⇒ (numeral w :: hypreal) /∈ Infinitesimal
〈proof 〉

Again: 1 is a special case, but not 0 this time.
lemma one-not-Infinitesimal [simp]:
(1 :: ′a::{real-normed-vector ,zero-neq-one} star) /∈ Infinitesimal
〈proof 〉

lemma approx-SReal-not-zero: y ∈ � =⇒ x ≈ y =⇒ y 6= 0 =⇒ x 6= 0
for x y :: hypreal
〈proof 〉
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lemma HFinite-diff-Infinitesimal-approx:
x ≈ y =⇒ y ∈ HFinite − Infinitesimal =⇒ x ∈ HFinite − Infinitesimal
〈proof 〉

The premise y 6= 0 is essential; otherwise x / y = 0 and we lose the HFinite
premise.
lemma Infinitesimal-ratio:

y 6= 0 =⇒ y ∈ Infinitesimal =⇒ x / y ∈ HFinite =⇒ x ∈ Infinitesimal
for x y :: ′a::{real-normed-div-algebra,field} star
〈proof 〉

lemma Infinitesimal-SReal-divide: x ∈ Infinitesimal =⇒ y ∈ � =⇒ x / y ∈ In-
finitesimal

for x y :: hypreal
〈proof 〉

6 Standard Part Theorem

Every finite x ∈ R∗ is infinitely close to a unique real number (i.e. a member
of Reals).

6.1 Uniqueness: Two Infinitely Close Reals are Equal
lemma star-of-approx-iff [simp]: star-of x ≈ star-of y ←→ x = y
〈proof 〉

lemma SReal-approx-iff : x ∈ � =⇒ y ∈ � =⇒ x ≈ y ←→ x = y
for x y :: hypreal
〈proof 〉

lemma numeral-approx-iff [simp]:
(numeral v ≈ (numeral w :: ′a::{numeral,real-normed-vector} star)) = (numeral

v = (numeral w :: ′a))
〈proof 〉

And also for 0 ≈ #nn and 1 ≈ #nn, #nn ≈ 0 and #nn ≈ 1.
lemma [simp]:
(numeral w ≈ (0 :: ′a::{numeral,real-normed-vector} star)) = (numeral w = (0 :: ′a))
((0 :: ′a::{numeral,real-normed-vector} star) ≈ numeral w) = (numeral w = (0 :: ′a))
(numeral w ≈ (1 :: ′b::{numeral,one,real-normed-vector} star)) = (numeral w =

(1 :: ′b))
((1 :: ′b::{numeral,one,real-normed-vector} star) ≈ numeral w) = (numeral w =

(1 :: ′b))
¬ (0 ≈ (1 :: ′c::{zero-neq-one,real-normed-vector} star))
¬ (1 ≈ (0 :: ′c::{zero-neq-one,real-normed-vector} star))
〈proof 〉
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lemma star-of-approx-numeral-iff [simp]: star-of k ≈ numeral w ←→ k = numeral
w
〈proof 〉

lemma star-of-approx-zero-iff [simp]: star-of k ≈ 0 ←→ k = 0
〈proof 〉

lemma star-of-approx-one-iff [simp]: star-of k ≈ 1 ←→ k = 1
〈proof 〉

lemma approx-unique-real: r ∈ � =⇒ s ∈ � =⇒ r ≈ x =⇒ s ≈ x =⇒ r = s
for r s :: hypreal
〈proof 〉

6.2 Existence of Unique Real Infinitely Close
6.2.1 Lifting of the Ub and Lub Properties
lemma hypreal-of-real-isUb-iff : isUb � (hypreal-of-real ‘ Q) (hypreal-of-real Y ) =
isUb UNIV Q Y

for Q :: real set and Y :: real
〈proof 〉

lemma hypreal-of-real-isLub-iff :
isLub � (hypreal-of-real ‘ Q) (hypreal-of-real Y ) = isLub (UNIV :: real set) Q Y

(is ?lhs = ?rhs)
for Q :: real set and Y :: real
〈proof 〉

lemma lemma-isUb-hypreal-of-real: isUb � P Y =⇒ ∃Yo. isUb � P (hypreal-of-real
Yo)
〈proof 〉

lemma lemma-isLub-hypreal-of-real: isLub � P Y =⇒ ∃Yo. isLub � P (hypreal-of-real
Yo)
〈proof 〉

lemma SReal-complete:
fixes P :: hypreal set
assumes isUb � P Y P ⊆ � P 6= {}

shows ∃ t. isLub � P t
〈proof 〉

Lemmas about lubs.
lemma lemma-st-part-lub:

fixes x :: hypreal
assumes x ∈ HFinite
shows ∃ t. isLub � {s. s ∈ � ∧ s < x} t
〈proof 〉
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lemma hypreal-setle-less-trans: S ∗<= x =⇒ x < y =⇒ S ∗<= y
for x y :: hypreal
〈proof 〉

lemma hypreal-gt-isUb: isUb R S x =⇒ x < y =⇒ y ∈ R =⇒ isUb R S y
for x y :: hypreal
〈proof 〉

lemma lemma-SReal-ub: x ∈ � =⇒ isUb � {s. s ∈ � ∧ s < x} x
for x :: hypreal
〈proof 〉

lemma lemma-SReal-lub:
fixes x :: hypreal
assumes x ∈ � shows isLub � {s. s ∈ � ∧ s < x} x
〈proof 〉

lemma lemma-st-part-major :
fixes x r t :: hypreal
assumes x: x ∈ HFinite and r : r ∈ � 0 < r and t: isLub � {s. s ∈ � ∧ s <

x} t
shows |x − t| < r
〈proof 〉

lemma lemma-st-part-major2 :
x ∈ HFinite =⇒ isLub � {s. s ∈ � ∧ s < x} t =⇒ ∀ r ∈ Reals. 0 < r −→ |x −

t| < r
for x t :: hypreal
〈proof 〉

Existence of real and Standard Part Theorem.
lemma lemma-st-part-Ex: x ∈ HFinite =⇒ ∃ t∈Reals. ∀ r ∈ Reals. 0 < r −→ |x
− t| < r

for x :: hypreal
〈proof 〉

lemma st-part-Ex: x ∈ HFinite =⇒ ∃ t∈Reals. x ≈ t
for x :: hypreal
〈proof 〉

There is a unique real infinitely close.
lemma st-part-Ex1 : x ∈ HFinite =⇒ ∃ !t::hypreal. t ∈ � ∧ x ≈ t
〈proof 〉

6.3 Finite, Infinite and Infinitesimal
lemma HFinite-Int-HInfinite-empty [simp]: HFinite Int HInfinite = {}
〈proof 〉
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lemma HFinite-not-HInfinite:
assumes x: x ∈ HFinite shows x /∈ HInfinite
〈proof 〉

lemma not-HFinite-HInfinite: x /∈ HFinite =⇒ x ∈ HInfinite
〈proof 〉

lemma HInfinite-HFinite-disj: x ∈ HInfinite ∨ x ∈ HFinite
〈proof 〉

lemma HInfinite-HFinite-iff : x ∈ HInfinite ←→ x /∈ HFinite
〈proof 〉

lemma HFinite-HInfinite-iff : x ∈ HFinite ←→ x /∈ HInfinite
〈proof 〉

lemma HInfinite-diff-HFinite-Infinitesimal-disj:
x /∈ Infinitesimal =⇒ x ∈ HInfinite ∨ x ∈ HFinite − Infinitesimal
〈proof 〉

lemma HFinite-inverse: x ∈ HFinite =⇒ x /∈ Infinitesimal =⇒ inverse x ∈ HFi-
nite

for x :: ′a::real-normed-div-algebra star
〈proof 〉

lemma HFinite-inverse2 : x ∈ HFinite − Infinitesimal =⇒ inverse x ∈ HFinite
for x :: ′a::real-normed-div-algebra star
〈proof 〉

Stronger statement possible in fact.
lemma Infinitesimal-inverse-HFinite: x /∈ Infinitesimal =⇒ inverse x ∈ HFinite

for x :: ′a::real-normed-div-algebra star
〈proof 〉

lemma HFinite-not-Infinitesimal-inverse:
x ∈ HFinite − Infinitesimal =⇒ inverse x ∈ HFinite − Infinitesimal
for x :: ′a::real-normed-div-algebra star
〈proof 〉

lemma approx-inverse:
fixes x y :: ′a::real-normed-div-algebra star
assumes x ≈ y and y: y ∈ HFinite − Infinitesimal shows inverse x ≈ inverse

y
〈proof 〉

lemmas star-of-approx-inverse = star-of-HFinite-diff-Infinitesimal [THEN [2 ] ap-
prox-inverse]
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lemmas hypreal-of-real-approx-inverse = hypreal-of-real-HFinite-diff-Infinitesimal
[THEN [2 ] approx-inverse]

lemma inverse-add-Infinitesimal-approx:
x ∈ HFinite − Infinitesimal =⇒ h ∈ Infinitesimal =⇒ inverse (x + h) ≈ inverse

x
for x h :: ′a::real-normed-div-algebra star
〈proof 〉

lemma inverse-add-Infinitesimal-approx2 :
x ∈ HFinite − Infinitesimal =⇒ h ∈ Infinitesimal =⇒ inverse (h + x) ≈ inverse

x
for x h :: ′a::real-normed-div-algebra star
〈proof 〉

lemma inverse-add-Infinitesimal-approx-Infinitesimal:
x ∈ HFinite − Infinitesimal =⇒ h ∈ Infinitesimal =⇒ inverse (x + h) − inverse

x ≈ h
for x h :: ′a::real-normed-div-algebra star
〈proof 〉

lemma Infinitesimal-square-iff : x ∈ Infinitesimal ←→ x ∗ x ∈ Infinitesimal
for x :: ′a::real-normed-div-algebra star
〈proof 〉

declare Infinitesimal-square-iff [symmetric, simp]

lemma HFinite-square-iff [simp]: x ∗ x ∈ HFinite ←→ x ∈ HFinite
for x :: ′a::real-normed-div-algebra star
〈proof 〉

lemma HInfinite-square-iff [simp]: x ∗ x ∈ HInfinite ←→ x ∈ HInfinite
for x :: ′a::real-normed-div-algebra star
〈proof 〉

lemma approx-HFinite-mult-cancel: a ∈ HFinite − Infinitesimal =⇒ a ∗ w ≈ a ∗
z =⇒ w ≈ z

for a w z :: ′a::real-normed-div-algebra star
〈proof 〉

lemma approx-HFinite-mult-cancel-iff1 : a ∈ HFinite − Infinitesimal =⇒ a ∗ w ≈
a ∗ z ←→ w ≈ z

for a w z :: ′a::real-normed-div-algebra star
〈proof 〉

lemma HInfinite-HFinite-add-cancel: x + y ∈ HInfinite =⇒ y ∈ HFinite =⇒ x ∈
HInfinite
〈proof 〉

lemma HInfinite-HFinite-add: x ∈ HInfinite =⇒ y ∈ HFinite =⇒ x + y ∈ HIn-
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finite
〈proof 〉

lemma HInfinite-ge-HInfinite: x ∈ HInfinite =⇒ x ≤ y =⇒ 0 ≤ x =⇒ y ∈ HIn-
finite

for x y :: hypreal
〈proof 〉

lemma Infinitesimal-inverse-HInfinite: x ∈ Infinitesimal =⇒ x 6= 0 =⇒ inverse x
∈ HInfinite

for x :: ′a::real-normed-div-algebra star
〈proof 〉

lemma HInfinite-HFinite-not-Infinitesimal-mult:
x ∈ HInfinite =⇒ y ∈ HFinite − Infinitesimal =⇒ x ∗ y ∈ HInfinite
for x y :: ′a::real-normed-div-algebra star
〈proof 〉

lemma HInfinite-HFinite-not-Infinitesimal-mult2 :
x ∈ HInfinite =⇒ y ∈ HFinite − Infinitesimal =⇒ y ∗ x ∈ HInfinite
for x y :: ′a::real-normed-div-algebra star
〈proof 〉

lemma HInfinite-gt-SReal: x ∈ HInfinite =⇒ 0 < x =⇒ y ∈ � =⇒ y < x
for x y :: hypreal
〈proof 〉

lemma HInfinite-gt-zero-gt-one: x ∈ HInfinite =⇒ 0 < x =⇒ 1 < x
for x :: hypreal
〈proof 〉

lemma not-HInfinite-one [simp]: 1 /∈ HInfinite
〈proof 〉

lemma approx-hrabs-disj: |x| ≈ x ∨ |x| ≈ −x
for x :: hypreal
〈proof 〉

6.4 Theorems about Monads
lemma monad-hrabs-Un-subset: monad |x| ≤ monad x ∪ monad (− x)

for x :: hypreal
〈proof 〉

lemma Infinitesimal-monad-eq: e ∈ Infinitesimal =⇒ monad (x + e) = monad x
〈proof 〉

lemma mem-monad-iff : u ∈ monad x ←→ − u ∈ monad (− x)
〈proof 〉
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lemma Infinitesimal-monad-zero-iff : x ∈ Infinitesimal ←→ x ∈ monad 0
〈proof 〉

lemma monad-zero-minus-iff : x ∈ monad 0 ←→ − x ∈ monad 0
〈proof 〉

lemma monad-zero-hrabs-iff : x ∈ monad 0 ←→ |x| ∈ monad 0
for x :: hypreal
〈proof 〉

lemma mem-monad-self [simp]: x ∈ monad x
〈proof 〉

6.5 Proof that x ≈ y implies |x| ≈ |y|
lemma approx-subset-monad: x ≈ y =⇒ {x, y} ≤ monad x
〈proof 〉

lemma approx-subset-monad2 : x ≈ y =⇒ {x, y} ≤ monad y
〈proof 〉

lemma mem-monad-approx: u ∈ monad x =⇒ x ≈ u
〈proof 〉

lemma approx-mem-monad: x ≈ u =⇒ u ∈ monad x
〈proof 〉

lemma approx-mem-monad2 : x ≈ u =⇒ x ∈ monad u
〈proof 〉

lemma approx-mem-monad-zero: x ≈ y =⇒ x ∈ monad 0 =⇒ y ∈ monad 0
〈proof 〉

lemma Infinitesimal-approx-hrabs: x ≈ y =⇒ x ∈ Infinitesimal =⇒ |x| ≈ |y|
for x y :: hypreal
〈proof 〉

lemma less-Infinitesimal-less: 0 < x =⇒ x /∈ Infinitesimal =⇒ e ∈ Infinitesimal
=⇒ e < x

for x :: hypreal
〈proof 〉

lemma Ball-mem-monad-gt-zero: 0 < x =⇒ x /∈ Infinitesimal =⇒ u ∈ monad x
=⇒ 0 < u

for u x :: hypreal
〈proof 〉

lemma Ball-mem-monad-less-zero: x < 0 =⇒ x /∈ Infinitesimal =⇒ u ∈ monad
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x =⇒ u < 0
for u x :: hypreal
〈proof 〉

lemma lemma-approx-gt-zero: 0 < x =⇒ x /∈ Infinitesimal =⇒ x ≈ y =⇒ 0 < y
for x y :: hypreal
〈proof 〉

lemma lemma-approx-less-zero: x < 0 =⇒ x /∈ Infinitesimal =⇒ x ≈ y =⇒ y <
0

for x y :: hypreal
〈proof 〉

lemma approx-hrabs: x ≈ y =⇒ |x| ≈ |y|
for x y :: hypreal
〈proof 〉

lemma approx-hrabs-zero-cancel: |x| ≈ 0 =⇒ x ≈ 0
for x :: hypreal
〈proof 〉

lemma approx-hrabs-add-Infinitesimal: e ∈ Infinitesimal =⇒ |x| ≈ |x + e|
for e x :: hypreal
〈proof 〉

lemma approx-hrabs-add-minus-Infinitesimal: e ∈ Infinitesimal ==> |x| ≈ |x +
−e|

for e x :: hypreal
〈proof 〉

lemma hrabs-add-Infinitesimal-cancel:
e ∈ Infinitesimal =⇒ e ′ ∈ Infinitesimal =⇒ |x + e| = |y + e ′| =⇒ |x| ≈ |y|
for e e ′ x y :: hypreal
〈proof 〉

lemma hrabs-add-minus-Infinitesimal-cancel:
e ∈ Infinitesimal =⇒ e ′ ∈ Infinitesimal =⇒ |x + −e| = |y + −e ′| =⇒ |x| ≈ |y|
for e e ′ x y :: hypreal
〈proof 〉

6.6 More HFinite and Infinitesimal Theorems

Interesting slightly counterintuitive theorem: necessary for proving that an
open interval is an NS open set.
lemma Infinitesimal-add-hypreal-of-real-less:

assumes x < y and u: u ∈ Infinitesimal
shows hypreal-of-real x + u < hypreal-of-real y
〈proof 〉
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lemma Infinitesimal-add-hrabs-hypreal-of-real-less:
x ∈ Infinitesimal =⇒ |hypreal-of-real r | < hypreal-of-real y =⇒
|hypreal-of-real r + x| < hypreal-of-real y
〈proof 〉

lemma Infinitesimal-add-hrabs-hypreal-of-real-less2 :
x ∈ Infinitesimal =⇒ |hypreal-of-real r | < hypreal-of-real y =⇒
|x + hypreal-of-real r | < hypreal-of-real y
〈proof 〉

lemma hypreal-of-real-le-add-Infininitesimal-cancel:
assumes le: hypreal-of-real x + u ≤ hypreal-of-real y + v

and u: u ∈ Infinitesimal and v: v ∈ Infinitesimal
shows hypreal-of-real x ≤ hypreal-of-real y
〈proof 〉

lemma hypreal-of-real-le-add-Infininitesimal-cancel2 :
u ∈ Infinitesimal =⇒ v ∈ Infinitesimal =⇒

hypreal-of-real x + u ≤ hypreal-of-real y + v =⇒ x ≤ y
〈proof 〉

lemma hypreal-of-real-less-Infinitesimal-le-zero:
hypreal-of-real x < e =⇒ e ∈ Infinitesimal =⇒ hypreal-of-real x ≤ 0
〈proof 〉

lemma Infinitesimal-add-not-zero: h ∈ Infinitesimal =⇒ x 6= 0 =⇒ star-of x + h
6= 0
〈proof 〉

lemma monad-hrabs-less: y ∈ monad x =⇒ 0 < hypreal-of-real e =⇒ |y − x| <
hypreal-of-real e
〈proof 〉

lemma mem-monad-SReal-HFinite: x ∈ monad (hypreal-of-real a) =⇒ x ∈ HFi-
nite
〈proof 〉

6.7 Theorems about Standard Part
lemma st-approx-self : x ∈ HFinite =⇒ st x ≈ x
〈proof 〉

lemma st-SReal: x ∈ HFinite =⇒ st x ∈ �
〈proof 〉

lemma st-HFinite: x ∈ HFinite =⇒ st x ∈ HFinite
〈proof 〉

lemma st-unique: r ∈ � =⇒ r ≈ x =⇒ st x = r
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〈proof 〉

lemma st-SReal-eq: x ∈ � =⇒ st x = x
〈proof 〉

lemma st-hypreal-of-real [simp]: st (hypreal-of-real x) = hypreal-of-real x
〈proof 〉

lemma st-eq-approx: x ∈ HFinite =⇒ y ∈ HFinite =⇒ st x = st y =⇒ x ≈ y
〈proof 〉

lemma approx-st-eq:
assumes x: x ∈ HFinite and y: y ∈ HFinite and xy: x ≈ y
shows st x = st y
〈proof 〉

lemma st-eq-approx-iff : x ∈ HFinite =⇒ y ∈ HFinite =⇒ x ≈ y ←→ st x = st y
〈proof 〉

lemma st-Infinitesimal-add-SReal: x ∈ � =⇒ e ∈ Infinitesimal =⇒ st (x + e) =
x
〈proof 〉

lemma st-Infinitesimal-add-SReal2 : x ∈ � =⇒ e ∈ Infinitesimal =⇒ st (e + x)
= x
〈proof 〉

lemma HFinite-st-Infinitesimal-add: x ∈ HFinite =⇒ ∃ e ∈ Infinitesimal. x =
st(x) + e
〈proof 〉

lemma st-add: x ∈ HFinite =⇒ y ∈ HFinite =⇒ st (x + y) = st x + st y
〈proof 〉

lemma st-numeral [simp]: st (numeral w) = numeral w
〈proof 〉

lemma st-neg-numeral [simp]: st (− numeral w) = − numeral w
〈proof 〉

lemma st-0 [simp]: st 0 = 0
〈proof 〉

lemma st-1 [simp]: st 1 = 1
〈proof 〉

lemma st-neg-1 [simp]: st (− 1 ) = − 1
〈proof 〉
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lemma st-minus: x ∈ HFinite =⇒ st (− x) = − st x
〈proof 〉

lemma st-diff : [[x ∈ HFinite; y ∈ HFinite]] =⇒ st (x − y) = st x − st y
〈proof 〉

lemma st-mult: [[x ∈ HFinite; y ∈ HFinite]] =⇒ st (x ∗ y) = st x ∗ st y
〈proof 〉

lemma st-Infinitesimal: x ∈ Infinitesimal =⇒ st x = 0
〈proof 〉

lemma st-not-Infinitesimal: st(x) 6= 0 =⇒ x /∈ Infinitesimal
〈proof 〉

lemma st-inverse: x ∈ HFinite =⇒ st x 6= 0 =⇒ st (inverse x) = inverse (st x)
〈proof 〉

lemma st-divide [simp]: x ∈ HFinite =⇒ y ∈ HFinite =⇒ st y 6= 0 =⇒ st (x /
y) = st x / st y
〈proof 〉

lemma st-idempotent [simp]: x ∈ HFinite =⇒ st (st x) = st x
〈proof 〉

lemma Infinitesimal-add-st-less:
x ∈ HFinite =⇒ y ∈ HFinite =⇒ u ∈ Infinitesimal =⇒ st x < st y =⇒ st x +

u < st y
〈proof 〉

lemma Infinitesimal-add-st-le-cancel:
x ∈ HFinite =⇒ y ∈ HFinite =⇒ u ∈ Infinitesimal =⇒

st x ≤ st y + u =⇒ st x ≤ st y
〈proof 〉

lemma st-le: x ∈ HFinite =⇒ y ∈ HFinite =⇒ x ≤ y =⇒ st x ≤ st y
〈proof 〉

lemma st-zero-le: 0 ≤ x =⇒ x ∈ HFinite =⇒ 0 ≤ st x
〈proof 〉

lemma st-zero-ge: x ≤ 0 =⇒ x ∈ HFinite =⇒ st x ≤ 0
〈proof 〉

lemma st-hrabs: x ∈ HFinite =⇒ |st x| = st |x|
〈proof 〉
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6.8 Alternative Definitions using Free Ultrafilter
6.8.1 HFinite
lemma HFinite-FreeUltrafilterNat:

assumes star-n X ∈ HFinite
shows ∃ u. eventually (λn. norm (X n) < u) U
〈proof 〉

lemma FreeUltrafilterNat-HFinite:
assumes eventually (λn. norm (X n) < u) U
shows star-n X ∈ HFinite
〈proof 〉

lemma HFinite-FreeUltrafilterNat-iff :
star-n X ∈ HFinite ←→ (∃ u. eventually (λn. norm (X n) < u) U)
〈proof 〉

6.8.2 HInfinite

Exclude this type of sets from free ultrafilter for Infinite numbers!
lemma FreeUltrafilterNat-const-Finite:

eventually (λn. norm (X n) = u) U =⇒ star-n X ∈ HFinite
〈proof 〉

lemma HInfinite-FreeUltrafilterNat:
assumes star-n X ∈ HInfinite shows ∀ F n in U . u < norm (X n)
〈proof 〉

lemma FreeUltrafilterNat-HInfinite:
assumes

∧
u. eventually (λn. u < norm (X n)) U

shows star-n X ∈ HInfinite
〈proof 〉

lemma HInfinite-FreeUltrafilterNat-iff :
star-n X ∈ HInfinite ←→ (∀ u. eventually (λn. u < norm (X n)) U)
〈proof 〉

6.8.3 Infinitesimal
lemma ball-SReal-eq: (∀ x::hypreal ∈ Reals. P x) ←→ (∀ x::real. P (star-of x))
〈proof 〉

lemma Infinitesimal-FreeUltrafilterNat-iff :
(star-n X ∈ Infinitesimal) = (∀ u>0 . eventually (λn. norm (X n) < u) U) (is

?lhs = ?rhs)
〈proof 〉

Infinitesimals as smaller than 1/n for all n::nat (> 0 ).
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lemma lemma-Infinitesimal: (∀ r . 0 < r −→ x < r) ←→ (∀n. x < inverse (real
(Suc n)))
〈proof 〉

lemma lemma-Infinitesimal2 :
(∀ r ∈ Reals. 0 < r −→ x < r) ←→ (∀n. x < inverse(hypreal-of-nat (Suc n)))

(is - = ?rhs)
〈proof 〉

lemma Infinitesimal-hypreal-of-nat-iff :
Infinitesimal = {x. ∀n. hnorm x < inverse (hypreal-of-nat (Suc n))}
〈proof 〉

6.9 Proof that ω is an infinite number

It will follow that ε is an infinitesimal number.
lemma Suc-Un-eq: {n. n < Suc m} = {n. n < m} Un {n. n = m}
〈proof 〉

Prove that any segment is finite and hence cannot belong to U .
lemma finite-real-of-nat-segment: finite {n::nat. real n < real (m::nat)}
〈proof 〉

lemma finite-real-of-nat-less-real: finite {n::nat. real n < u}
〈proof 〉

lemma finite-real-of-nat-le-real: finite {n::nat. real n ≤ u}
〈proof 〉

lemma finite-rabs-real-of-nat-le-real: finite {n::nat. |real n| ≤ u}
〈proof 〉

lemma rabs-real-of-nat-le-real-FreeUltrafilterNat:
¬ eventually (λn. |real n| ≤ u) U
〈proof 〉

lemma FreeUltrafilterNat-nat-gt-real: eventually (λn. u < real n) U
〈proof 〉

The complement of {n. |real n| ≤ u} = {n. u < |real n|} is in U by property
of (free) ultrafilters.

ω is a member of HInfinite.
theorem HInfinite-omega [simp]: ω ∈ HInfinite
〈proof 〉

Epsilon is a member of Infinitesimal.
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lemma Infinitesimal-epsilon [simp]: ε ∈ Infinitesimal
〈proof 〉

lemma HFinite-epsilon [simp]: ε ∈ HFinite
〈proof 〉

lemma epsilon-approx-zero [simp]: ε ≈ 0
〈proof 〉

Needed for proof that we define a hyperreal [<X(n)] ≈ hypreal-of-real a
given that ∀n. |X n − a| < 1/n. Used in proof of NSLIM ⇒ LIM.
lemma real-of-nat-less-inverse-iff : 0 < u =⇒ u < inverse (real(Suc n)) ←→
real(Suc n) < inverse u
〈proof 〉

lemma finite-inverse-real-of-posnat-gt-real: 0 < u =⇒ finite {n. u < inverse (real
(Suc n))}
〈proof 〉

lemma finite-inverse-real-of-posnat-ge-real:
assumes 0 < u
shows finite {n. u ≤ inverse (real (Suc n))}
〈proof 〉

lemma inverse-real-of-posnat-ge-real-FreeUltrafilterNat:
0 < u =⇒ ¬ eventually (λn. u ≤ inverse(real(Suc n))) U
〈proof 〉

lemma FreeUltrafilterNat-inverse-real-of-posnat:
0 < u =⇒ eventually (λn. inverse(real(Suc n)) < u) U
〈proof 〉

Example of an hypersequence (i.e. an extended standard sequence) whose
term with an hypernatural suffix is an infinitesimal i.e. the whn’nth term
of the hypersequence is a member of Infinitesimal
lemma SEQ-Infinitesimal: ( ∗f ∗ (λn::nat. inverse(real(Suc n)))) whn ∈ Infinites-
imal
〈proof 〉

Example where we get a hyperreal from a real sequence for which a par-
ticular property holds. The theorem is used in proofs about equivalence
of nonstandard and standard neighbourhoods. Also used for equivalence of
nonstandard ans standard definitions of pointwise limit.

|X(n) − x| < 1/n =⇒ [<X n>] − hypreal-of-real x| ∈ Infinitesimal
lemma real-seq-to-hypreal-Infinitesimal:
∀n. norm (X n − x) < inverse (real (Suc n)) =⇒ star-n X − star-of x ∈

Infinitesimal
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〈proof 〉

lemma real-seq-to-hypreal-approx:
∀n. norm (X n − x) < inverse (real (Suc n)) =⇒ star-n X ≈ star-of x
〈proof 〉

lemma real-seq-to-hypreal-approx2 :
∀n. norm (x − X n) < inverse(real(Suc n)) =⇒ star-n X ≈ star-of x
〈proof 〉

lemma real-seq-to-hypreal-Infinitesimal2 :
∀n. norm(X n − Y n) < inverse(real(Suc n)) =⇒ star-n X − star-n Y ∈

Infinitesimal
〈proof 〉

end

7 Nonstandard Complex Numbers
theory NSComplex

imports NSA
begin

type-synonym hcomplex = complex star

abbreviation hcomplex-of-complex :: complex ⇒ complex star
where hcomplex-of-complex ≡ star-of

abbreviation hcmod :: complex star ⇒ real star
where hcmod ≡ hnorm

7.0.1 Real and Imaginary parts
definition hRe :: hcomplex ⇒ hypreal

where hRe = ∗f ∗ Re

definition hIm :: hcomplex ⇒ hypreal
where hIm = ∗f ∗ Im

7.0.2 Imaginary unit
definition iii :: hcomplex

where iii = star-of i

7.0.3 Complex conjugate
definition hcnj :: hcomplex ⇒ hcomplex

where hcnj = ∗f ∗ cnj
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7.0.4 Argand
definition hsgn :: hcomplex ⇒ hcomplex

where hsgn = ∗f ∗ sgn

definition harg :: hcomplex ⇒ hypreal
where harg = ∗f ∗ Arg

definition — abbreviation for cos a + i sin a
hcis :: hypreal ⇒ hcomplex
where hcis = ∗f ∗ cis

7.0.5 Injection from hyperreals
abbreviation hcomplex-of-hypreal :: hypreal ⇒ hcomplex

where hcomplex-of-hypreal ≡ of-hypreal

definition — abbreviation for r ∗ (cos a + i sin a)
hrcis :: hypreal ⇒ hypreal ⇒ hcomplex
where hrcis = ∗f2∗ rcis

7.0.6 e ^ (x + iy)
definition hExp :: hcomplex ⇒ hcomplex

where hExp = ∗f ∗ exp

definition HComplex :: hypreal ⇒ hypreal ⇒ hcomplex
where HComplex = ∗f2∗ Complex

lemmas hcomplex-defs [transfer-unfold] =
hRe-def hIm-def iii-def hcnj-def hsgn-def harg-def hcis-def
hrcis-def hExp-def HComplex-def

lemma Standard-hRe [simp]: x ∈ Standard =⇒ hRe x ∈ Standard
〈proof 〉

lemma Standard-hIm [simp]: x ∈ Standard =⇒ hIm x ∈ Standard
〈proof 〉

lemma Standard-iii [simp]: iii ∈ Standard
〈proof 〉

lemma Standard-hcnj [simp]: x ∈ Standard =⇒ hcnj x ∈ Standard
〈proof 〉

lemma Standard-hsgn [simp]: x ∈ Standard =⇒ hsgn x ∈ Standard
〈proof 〉

lemma Standard-harg [simp]: x ∈ Standard =⇒ harg x ∈ Standard
〈proof 〉
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lemma Standard-hcis [simp]: r ∈ Standard =⇒ hcis r ∈ Standard
〈proof 〉

lemma Standard-hExp [simp]: x ∈ Standard =⇒ hExp x ∈ Standard
〈proof 〉

lemma Standard-hrcis [simp]: r ∈ Standard =⇒ s ∈ Standard =⇒ hrcis r s ∈
Standard
〈proof 〉

lemma Standard-HComplex [simp]: r ∈ Standard =⇒ s ∈ Standard =⇒ HComplex
r s ∈ Standard
〈proof 〉

lemma hcmod-def : hcmod = ∗f ∗ cmod
〈proof 〉

7.1 Properties of Nonstandard Real and Imaginary Parts
lemma hcomplex-hRe-hIm-cancel-iff :

∧
w z. w = z ←→ hRe w = hRe z ∧ hIm w

= hIm z
〈proof 〉

lemma hcomplex-equality [intro?]:
∧

z w. hRe z = hRe w =⇒ hIm z = hIm w =⇒
z = w
〈proof 〉

lemma hcomplex-hRe-zero [simp]: hRe 0 = 0
〈proof 〉

lemma hcomplex-hIm-zero [simp]: hIm 0 = 0
〈proof 〉

lemma hcomplex-hRe-one [simp]: hRe 1 = 1
〈proof 〉

lemma hcomplex-hIm-one [simp]: hIm 1 = 0
〈proof 〉

7.2 Addition for Nonstandard Complex Numbers
lemma hRe-add:

∧
x y. hRe (x + y) = hRe x + hRe y

〈proof 〉

lemma hIm-add:
∧

x y. hIm (x + y) = hIm x + hIm y
〈proof 〉
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7.3 More Minus Laws
lemma hRe-minus:

∧
z. hRe (− z) = − hRe z

〈proof 〉

lemma hIm-minus:
∧

z. hIm (− z) = − hIm z
〈proof 〉

lemma hcomplex-add-minus-eq-minus: x + y = 0 =⇒ x = − y
for x y :: hcomplex
〈proof 〉

lemma hcomplex-i-mult-eq [simp]: iii ∗ iii = − 1
〈proof 〉

lemma hcomplex-i-mult-left [simp]:
∧

z. iii ∗ (iii ∗ z) = − z
〈proof 〉

lemma hcomplex-i-not-zero [simp]: iii 6= 0
〈proof 〉

7.4 More Multiplication Laws
lemma hcomplex-mult-minus-one: − 1 ∗ z = − z

for z :: hcomplex
〈proof 〉

lemma hcomplex-mult-minus-one-right: z ∗ − 1 = − z
for z :: hcomplex
〈proof 〉

lemma hcomplex-mult-left-cancel: c 6= 0 =⇒ c ∗ a = c ∗ b ←→ a = b
for a b c :: hcomplex
〈proof 〉

lemma hcomplex-mult-right-cancel: c 6= 0 =⇒ a ∗ c = b ∗ c ←→ a = b
for a b c :: hcomplex
〈proof 〉

7.5 Subtraction and Division
lemma hcomplex-diff-eq-eq [simp]: x − y = z ←→ x = z + y

for x y z :: hcomplex
〈proof 〉

7.6 Embedding Properties for hcomplex-of-hypreal Map
lemma hRe-hcomplex-of-hypreal [simp]:

∧
z. hRe (hcomplex-of-hypreal z) = z

〈proof 〉
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lemma hIm-hcomplex-of-hypreal [simp]:
∧

z. hIm (hcomplex-of-hypreal z) = 0
〈proof 〉

lemma hcomplex-of-epsilon-not-zero [simp]: hcomplex-of-hypreal ε 6= 0
〈proof 〉

7.7 HComplex theorems
lemma hRe-HComplex [simp]:

∧
x y. hRe (HComplex x y) = x

〈proof 〉

lemma hIm-HComplex [simp]:
∧

x y. hIm (HComplex x y) = y
〈proof 〉

lemma hcomplex-surj [simp]:
∧

z. HComplex (hRe z) (hIm z) = z
〈proof 〉

lemma hcomplex-induct [case-names rect]:
(
∧

x y. P (HComplex x y)) =⇒ P z
〈proof 〉

7.8 Modulus (Absolute Value) of Nonstandard Complex Num-
ber

lemma hcomplex-of-hypreal-abs:
hcomplex-of-hypreal |x| = hcomplex-of-hypreal (hcmod (hcomplex-of-hypreal x))
〈proof 〉

lemma HComplex-inject [simp]:
∧

x y x ′ y ′. HComplex x y = HComplex x ′ y ′←→
x = x ′ ∧ y = y ′

〈proof 〉

lemma HComplex-add [simp]:∧
x1 y1 x2 y2 . HComplex x1 y1 + HComplex x2 y2 = HComplex (x1 + x2 ) (y1

+ y2 )
〈proof 〉

lemma HComplex-minus [simp]:
∧

x y. − HComplex x y = HComplex (− x) (−
y)
〈proof 〉

lemma HComplex-diff [simp]:∧
x1 y1 x2 y2 . HComplex x1 y1 − HComplex x2 y2 = HComplex (x1 − x2 ) (y1

− y2 )
〈proof 〉

lemma HComplex-mult [simp]:∧
x1 y1 x2 y2 . HComplex x1 y1 ∗ HComplex x2 y2 = HComplex (x1∗x2 − y1∗y2 )

(x1∗y2 + y1∗x2 )
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〈proof 〉

HComplex-inverse is proved below.
lemma hcomplex-of-hypreal-eq:

∧
r . hcomplex-of-hypreal r = HComplex r 0

〈proof 〉

lemma HComplex-add-hcomplex-of-hypreal [simp]:∧
x y r . HComplex x y + hcomplex-of-hypreal r = HComplex (x + r) y
〈proof 〉

lemma hcomplex-of-hypreal-add-HComplex [simp]:∧
r x y. hcomplex-of-hypreal r + HComplex x y = HComplex (r + x) y
〈proof 〉

lemma HComplex-mult-hcomplex-of-hypreal:∧
x y r . HComplex x y ∗ hcomplex-of-hypreal r = HComplex (x ∗ r) (y ∗ r)
〈proof 〉

lemma hcomplex-of-hypreal-mult-HComplex:∧
r x y. hcomplex-of-hypreal r ∗ HComplex x y = HComplex (r ∗ x) (r ∗ y)
〈proof 〉

lemma i-hcomplex-of-hypreal [simp]:
∧

r . iii ∗ hcomplex-of-hypreal r = HComplex
0 r
〈proof 〉

lemma hcomplex-of-hypreal-i [simp]:
∧

r . hcomplex-of-hypreal r ∗ iii = HComplex
0 r
〈proof 〉

7.9 Conjugation
lemma hcomplex-hcnj-cancel-iff [iff ]:

∧
x y. hcnj x = hcnj y ←→ x = y

〈proof 〉

lemma hcomplex-hcnj-hcnj [simp]:
∧

z. hcnj (hcnj z) = z
〈proof 〉

lemma hcomplex-hcnj-hcomplex-of-hypreal [simp]:∧
x. hcnj (hcomplex-of-hypreal x) = hcomplex-of-hypreal x
〈proof 〉

lemma hcomplex-hmod-hcnj [simp]:
∧

z. hcmod (hcnj z) = hcmod z
〈proof 〉

lemma hcomplex-hcnj-minus:
∧

z. hcnj (− z) = − hcnj z
〈proof 〉

lemma hcomplex-hcnj-inverse:
∧

z. hcnj (inverse z) = inverse (hcnj z)
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〈proof 〉

lemma hcomplex-hcnj-add:
∧

w z . hcnj (w + z) = hcnj w + hcnj z
〈proof 〉

lemma hcomplex-hcnj-diff :
∧

w z . hcnj (w − z) = hcnj w − hcnj z
〈proof 〉

lemma hcomplex-hcnj-mult:
∧

w z. hcnj (w ∗ z) = hcnj w ∗ hcnj z
〈proof 〉

lemma hcomplex-hcnj-divide:
∧

w z . hcnj (w / z) = hcnj w / hcnj z
〈proof 〉

lemma hcnj-one [simp]: hcnj 1 = 1
〈proof 〉

lemma hcomplex-hcnj-zero [simp]: hcnj 0 = 0
〈proof 〉

lemma hcomplex-hcnj-zero-iff [iff ]:
∧

z. hcnj z = 0 ←→ z = 0
〈proof 〉

lemma hcomplex-mult-hcnj:
∧

z. z ∗ hcnj z = hcomplex-of-hypreal ((hRe z)2 +
(hIm z)2)
〈proof 〉

7.10 More Theorems about the Function hcmod
lemma hcmod-hcomplex-of-hypreal-of-nat [simp]:

hcmod (hcomplex-of-hypreal (hypreal-of-nat n)) = hypreal-of-nat n
〈proof 〉

lemma hcmod-hcomplex-of-hypreal-of-hypnat [simp]:
hcmod (hcomplex-of-hypreal(hypreal-of-hypnat n)) = hypreal-of-hypnat n
〈proof 〉

lemma hcmod-mult-hcnj:
∧

z. hcmod (z ∗ hcnj z) = (hcmod z)2
〈proof 〉

lemma hcmod-triangle-ineq2 [simp]:
∧

a b. hcmod (b + a) − hcmod b ≤ hcmod a
〈proof 〉

lemma hcmod-diff-ineq [simp]:
∧

a b. hcmod a − hcmod b ≤ hcmod (a + b)
〈proof 〉

7.11 Exponentiation
lemma hcomplexpow-0 [simp]: z ^ 0 = 1

for z :: hcomplex
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〈proof 〉

lemma hcomplexpow-Suc [simp]: z ^ (Suc n) = z ∗ (z ^ n)
for z :: hcomplex
〈proof 〉

lemma hcomplexpow-i-squared [simp]: iii2 = −1
〈proof 〉

lemma hcomplex-of-hypreal-pow:
∧

x. hcomplex-of-hypreal (x ^ n) = hcomplex-of-hypreal
x ^ n
〈proof 〉

lemma hcomplex-hcnj-pow:
∧

z. hcnj (z ^ n) = hcnj z ^ n
〈proof 〉

lemma hcmod-hcomplexpow:
∧

x. hcmod (x ^ n) = hcmod x ^ n
〈proof 〉

lemma hcpow-minus:∧
x n. (− x :: hcomplex) pow n = (if ( ∗p∗ even) n then (x pow n) else − (x pow

n))
〈proof 〉

lemma hcpow-mult: (r ∗ s) pow n = (r pow n) ∗ (s pow n)
for r s :: hcomplex
〈proof 〉

lemma hcpow-zero2 [simp]:
∧

n. 0 pow (hSuc n) = (0 :: ′a::semiring-1 star)
〈proof 〉

lemma hcpow-not-zero [simp,intro]:
∧

r n. r 6= 0 =⇒ r pow n 6= (0 ::hcomplex)
〈proof 〉

lemma hcpow-zero-zero: r pow n = 0 =⇒ r = 0
for r :: hcomplex
〈proof 〉

7.12 The Function hsgn
lemma hsgn-zero [simp]: hsgn 0 = 0
〈proof 〉

lemma hsgn-one [simp]: hsgn 1 = 1
〈proof 〉

lemma hsgn-minus:
∧

z. hsgn (− z) = − hsgn z
〈proof 〉
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lemma hsgn-eq:
∧

z. hsgn z = z / hcomplex-of-hypreal (hcmod z)
〈proof 〉

lemma hcmod-i:
∧

x y. hcmod (HComplex x y) = ( ∗f ∗ sqrt) (x2 + y2)
〈proof 〉

lemma hcomplex-eq-cancel-iff1 [simp]:
hcomplex-of-hypreal xa = HComplex x y ←→ xa = x ∧ y = 0
〈proof 〉

lemma hcomplex-eq-cancel-iff2 [simp]:
HComplex x y = hcomplex-of-hypreal xa ←→ x = xa ∧ y = 0
〈proof 〉

lemma HComplex-eq-0 [simp]:
∧

x y. HComplex x y = 0 ←→ x = 0 ∧ y = 0
〈proof 〉

lemma HComplex-eq-1 [simp]:
∧

x y. HComplex x y = 1 ←→ x = 1 ∧ y = 0
〈proof 〉

lemma i-eq-HComplex-0-1 : iii = HComplex 0 1
〈proof 〉

lemma HComplex-eq-i [simp]:
∧

x y. HComplex x y = iii ←→ x = 0 ∧ y = 1
〈proof 〉

lemma hRe-hsgn [simp]:
∧

z. hRe (hsgn z) = hRe z / hcmod z
〈proof 〉

lemma hIm-hsgn [simp]:
∧

z. hIm (hsgn z) = hIm z / hcmod z
〈proof 〉

lemma HComplex-inverse:
∧

x y. inverse (HComplex x y) = HComplex (x / (x2

+ y2)) (− y / (x2 + y2))
〈proof 〉

lemma hRe-mult-i-eq[simp]:
∧

y. hRe (iii ∗ hcomplex-of-hypreal y) = 0
〈proof 〉

lemma hIm-mult-i-eq [simp]:
∧

y. hIm (iii ∗ hcomplex-of-hypreal y) = y
〈proof 〉

lemma hcmod-mult-i [simp]:
∧

y. hcmod (iii ∗ hcomplex-of-hypreal y) = |y|
〈proof 〉

lemma hcmod-mult-i2 [simp]:
∧

y. hcmod (hcomplex-of-hypreal y ∗ iii) = |y|
〈proof 〉
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7.12.1 harg
lemma cos-harg-i-mult-zero [simp]:

∧
y. y 6= 0 =⇒ ( ∗f ∗ cos) (harg (HComplex 0

y)) = 0
〈proof 〉

7.13 Polar Form for Nonstandard Complex Numbers
lemma complex-split-polar2 : ∀n. ∃ r a. (z n) = complex-of-real r ∗ Complex (cos
a) (sin a)
〈proof 〉

lemma hcomplex-split-polar :∧
z. ∃ r a. z = hcomplex-of-hypreal r ∗ (HComplex (( ∗f ∗ cos) a) (( ∗f ∗ sin) a))
〈proof 〉

lemma hcis-eq:∧
a. hcis a = hcomplex-of-hypreal (( ∗f ∗ cos) a) + iii ∗ hcomplex-of-hypreal ((

∗f ∗ sin) a)
〈proof 〉

lemma hrcis-Ex:
∧

z. ∃ r a. z = hrcis r a
〈proof 〉

lemma hRe-hcomplex-polar [simp]:∧
r a. hRe (hcomplex-of-hypreal r ∗ HComplex (( ∗f ∗ cos) a) (( ∗f ∗ sin) a)) = r

∗ ( ∗f ∗ cos) a
〈proof 〉

lemma hRe-hrcis [simp]:
∧

r a. hRe (hrcis r a) = r ∗ ( ∗f ∗ cos) a
〈proof 〉

lemma hIm-hcomplex-polar [simp]:∧
r a. hIm (hcomplex-of-hypreal r ∗ HComplex (( ∗f ∗ cos) a) (( ∗f ∗ sin) a)) = r

∗ ( ∗f ∗ sin) a
〈proof 〉

lemma hIm-hrcis [simp]:
∧

r a. hIm (hrcis r a) = r ∗ ( ∗f ∗ sin) a
〈proof 〉

lemma hcmod-unit-one [simp]:
∧

a. hcmod (HComplex (( ∗f ∗ cos) a) (( ∗f ∗ sin)
a)) = 1
〈proof 〉

lemma hcmod-complex-polar [simp]:∧
r a. hcmod (hcomplex-of-hypreal r ∗ HComplex (( ∗f ∗ cos) a) (( ∗f ∗ sin) a))

= |r |
〈proof 〉

lemma hcmod-hrcis [simp]:
∧

r a. hcmod(hrcis r a) = |r |
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〈proof 〉

(r1 ∗ hrcis a) ∗ (r2 ∗ hrcis b) = r1 ∗ r2 ∗ hrcis (a + b)
lemma hcis-hrcis-eq:

∧
a. hcis a = hrcis 1 a

〈proof 〉
declare hcis-hrcis-eq [symmetric, simp]

lemma hrcis-mult:
∧

a b r1 r2 . hrcis r1 a ∗ hrcis r2 b = hrcis (r1 ∗ r2 ) (a + b)
〈proof 〉

lemma hcis-mult:
∧

a b. hcis a ∗ hcis b = hcis (a + b)
〈proof 〉

lemma hcis-zero [simp]: hcis 0 = 1
〈proof 〉

lemma hrcis-zero-mod [simp]:
∧

a. hrcis 0 a = 0
〈proof 〉

lemma hrcis-zero-arg [simp]:
∧

r . hrcis r 0 = hcomplex-of-hypreal r
〈proof 〉

lemma hcomplex-i-mult-minus [simp]:
∧

x. iii ∗ (iii ∗ x) = − x
〈proof 〉

lemma hcomplex-i-mult-minus2 [simp]: iii ∗ iii ∗ x = − x
〈proof 〉

lemma hcis-hypreal-of-nat-Suc-mult:∧
a. hcis (hypreal-of-nat (Suc n) ∗ a) = hcis a ∗ hcis (hypreal-of-nat n ∗ a)
〈proof 〉

lemma NSDeMoivre:
∧

a. (hcis a) ^ n = hcis (hypreal-of-nat n ∗ a)
〈proof 〉

lemma hcis-hypreal-of-hypnat-Suc-mult:∧
a n. hcis (hypreal-of-hypnat (n + 1 ) ∗ a) = hcis a ∗ hcis (hypreal-of-hypnat n

∗ a)
〈proof 〉

lemma NSDeMoivre-ext:
∧

a n. (hcis a) pow n = hcis (hypreal-of-hypnat n ∗ a)
〈proof 〉

lemma NSDeMoivre2 :
∧

a r . (hrcis r a) ^ n = hrcis (r ^ n) (hypreal-of-nat n ∗ a)
〈proof 〉

lemma DeMoivre2-ext:
∧

a r n. (hrcis r a) pow n = hrcis (r pow n) (hypreal-of-hypnat
n ∗ a)
〈proof 〉
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lemma hcis-inverse [simp]:
∧

a. inverse (hcis a) = hcis (− a)
〈proof 〉

lemma hrcis-inverse:
∧

a r . inverse (hrcis r a) = hrcis (inverse r) (− a)
〈proof 〉

lemma hRe-hcis [simp]:
∧

a. hRe (hcis a) = ( ∗f ∗ cos) a
〈proof 〉

lemma hIm-hcis [simp]:
∧

a. hIm (hcis a) = ( ∗f ∗ sin) a
〈proof 〉

lemma cos-n-hRe-hcis-pow-n: ( ∗f ∗ cos) (hypreal-of-nat n ∗ a) = hRe (hcis a ^ n)
〈proof 〉

lemma sin-n-hIm-hcis-pow-n: ( ∗f ∗ sin) (hypreal-of-nat n ∗ a) = hIm (hcis a ^ n)
〈proof 〉

lemma cos-n-hRe-hcis-hcpow-n: ( ∗f ∗ cos) (hypreal-of-hypnat n ∗ a) = hRe (hcis
a pow n)
〈proof 〉

lemma sin-n-hIm-hcis-hcpow-n: ( ∗f ∗ sin) (hypreal-of-hypnat n ∗ a) = hIm (hcis
a pow n)
〈proof 〉

lemma hExp-add:
∧

a b. hExp (a + b) = hExp a ∗ hExp b
〈proof 〉

7.14 hcomplex-of-complex: the Injection from type complex to
to hcomplex

lemma hcomplex-of-complex-i: iii = hcomplex-of-complex i
〈proof 〉

lemma hRe-hcomplex-of-complex: hRe (hcomplex-of-complex z) = hypreal-of-real
(Re z)
〈proof 〉

lemma hIm-hcomplex-of-complex: hIm (hcomplex-of-complex z) = hypreal-of-real
(Im z)
〈proof 〉

lemma hcmod-hcomplex-of-complex: hcmod (hcomplex-of-complex x) = hypreal-of-real
(cmod x)
〈proof 〉
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7.15 Numerals and Arithmetic
lemma hcomplex-of-hypreal-eq-hcomplex-of-complex:

hcomplex-of-hypreal (hypreal-of-real x) = hcomplex-of-complex (complex-of-real x)
〈proof 〉

lemma hcomplex-hypreal-numeral:
hcomplex-of-complex (numeral w) = hcomplex-of-hypreal(numeral w)
〈proof 〉

lemma hcomplex-hypreal-neg-numeral:
hcomplex-of-complex (− numeral w) = hcomplex-of-hypreal(− numeral w)
〈proof 〉

lemma hcomplex-numeral-hcnj [simp]: hcnj (numeral v :: hcomplex) = numeral v
〈proof 〉

lemma hcomplex-numeral-hcmod [simp]: hcmod (numeral v :: hcomplex) = (numeral
v :: hypreal)
〈proof 〉

lemma hcomplex-neg-numeral-hcmod [simp]: hcmod (− numeral v :: hcomplex) =
(numeral v :: hypreal)
〈proof 〉

lemma hcomplex-numeral-hRe [simp]: hRe (numeral v :: hcomplex) = numeral v
〈proof 〉

lemma hcomplex-numeral-hIm [simp]: hIm (numeral v :: hcomplex) = 0
〈proof 〉

end

8 Star-Transforms in Non-Standard Analysis
theory Star

imports NSA
begin

definition — internal sets
starset-n :: (nat ⇒ ′a set) ⇒ ′a star set
(‹(‹open-block notation=‹prefix starset-n››∗sn∗ -)› [80 ] 80 )

where ∗sn∗ As = Iset (star-n As)

definition InternalSets :: ′a star set set
where InternalSets = {X . ∃As. X = ∗sn∗ As}

definition — nonstandard extension of function
is-starext :: ( ′a star ⇒ ′a star) ⇒ ( ′a ⇒ ′a) ⇒ bool
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where is-starext F f ←→
(∀ x y. ∃X ∈ Rep-star x. ∃Y ∈ Rep-star y. y = F x ←→ eventually (λn. Y n

= f (X n)) U)

definition — internal functions
starfun-n :: (nat ⇒ ′a ⇒ ′b) ⇒ ′a star ⇒ ′b star
(‹(‹open-block notation=‹prefix starfun-n››∗fn∗ -)› [80 ] 80 )

where ∗fn∗ F = Ifun (star-n F)

definition InternalFuns :: ( ′a star => ′b star) set
where InternalFuns = {X . ∃F . X = ∗fn∗ F}

8.1 Preamble - Pulling ∃ over ∀

This proof does not need AC and was suggested by the referee for the JCM
Paper: let f x be least y such that Q x y.
lemma no-choice: ∀ x. ∃ y. Q x y =⇒ ∃ f :: ′a ⇒ nat. ∀ x. Q x (f x)
〈proof 〉

8.2 Properties of the Star-transform Applied to Sets of Reals
lemma STAR-star-of-image-subset: star-of ‘ A ⊆ ∗s∗ A
〈proof 〉

lemma STAR-hypreal-of-real-Int: ∗s∗ X ∩ � = hypreal-of-real ‘ X
〈proof 〉

lemma STAR-star-of-Int: ∗s∗ X ∩ Standard = star-of ‘ X
〈proof 〉

lemma lemma-not-hyprealA: x /∈ hypreal-of-real ‘ A =⇒ ∀ y ∈ A. x 6= hypreal-of-real
y
〈proof 〉

lemma lemma-not-starA: x /∈ star-of ‘ A =⇒ ∀ y ∈ A. x 6= star-of y
〈proof 〉

lemma STAR-real-seq-to-hypreal: ∀n. (X n) /∈ M =⇒ star-n X /∈ ∗s∗ M
〈proof 〉

lemma STAR-singleton: ∗s∗ {x} = {star-of x}
〈proof 〉

lemma STAR-not-mem: x /∈ F =⇒ star-of x /∈ ∗s∗ F
〈proof 〉

lemma STAR-subset-closed: x ∈ ∗s∗ A =⇒ A ⊆ B =⇒ x ∈ ∗s∗ B
〈proof 〉
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Nonstandard extension of a set (defined using a constant sequence) as a
special case of an internal set.
lemma starset-n-starset: ∀n. As n = A =⇒ ∗sn∗ As = ∗s∗ A
〈proof 〉

8.3 Theorems about nonstandard extensions of functions

Nonstandard extension of a function (defined using a constant sequence) as
a special case of an internal function.
lemma starfun-n-starfun: F = (λn. f ) =⇒ ∗fn∗ F = ∗f ∗ f
〈proof 〉

Prove that abs for hypreal is a nonstandard extension of abs for real w/o use
of congruence property (proved after this for general nonstandard extensions
of real valued functions).
Proof now Uses the ultrafilter tactic!
lemma hrabs-is-starext-rabs: is-starext abs abs
〈proof 〉

Nonstandard extension of functions.
lemma starfun: ( ∗f ∗ f ) (star-n X) = star-n (λn. f (X n))
〈proof 〉

lemma starfun-if-eq:
∧

w. w 6= star-of x =⇒ ( ∗f ∗ (λz. if z = x then a else g z))
w = ( ∗f ∗ g) w
〈proof 〉

Multiplication: ( ∗f ) x ( ∗g) = ∗(f x g)
lemma starfun-mult:

∧
x. ( ∗f ∗ f ) x ∗ ( ∗f ∗ g) x = ( ∗f ∗ (λx. f x ∗ g x)) x

〈proof 〉
declare starfun-mult [symmetric, simp]

Addition: ( ∗f ) + ( ∗g) = ∗(f + g)
lemma starfun-add:

∧
x. ( ∗f ∗ f ) x + ( ∗f ∗ g) x = ( ∗f ∗ (λx. f x + g x)) x

〈proof 〉
declare starfun-add [symmetric, simp]

Subtraction: ( ∗f ) + −( ∗g) = ∗(f + −g)
lemma starfun-minus:

∧
x. − ( ∗f ∗ f ) x = ( ∗f ∗ (λx. − f x)) x

〈proof 〉
declare starfun-minus [symmetric, simp]

lemma starfun-add-minus:
∧

x. ( ∗f ∗ f ) x + −( ∗f ∗ g) x = ( ∗f ∗ (λx. f x + −g
x)) x
〈proof 〉
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declare starfun-add-minus [symmetric, simp]

lemma starfun-diff :
∧

x. ( ∗f ∗ f ) x − ( ∗f ∗ g) x = ( ∗f ∗ (λx. f x − g x)) x
〈proof 〉

declare starfun-diff [symmetric, simp]

Composition: ( ∗f ) ◦ ( ∗g) = ∗(f ◦ g)
lemma starfun-o2 : (λx. ( ∗f ∗ f ) (( ∗f ∗ g) x)) = ∗f ∗ (λx. f (g x))
〈proof 〉

lemma starfun-o: ( ∗f ∗ f ) ◦ ( ∗f ∗ g) = ( ∗f ∗ (f ◦ g))
〈proof 〉

NS extension of constant function.
lemma starfun-const-fun [simp]:

∧
x. ( ∗f ∗ (λx. k)) x = star-of k

〈proof 〉

The NS extension of the identity function.
lemma starfun-Id [simp]:

∧
x. ( ∗f ∗ (λx. x)) x = x

〈proof 〉

The Star-function is a (nonstandard) extension of the function.
lemma is-starext-starfun: is-starext ( ∗f ∗ f ) f
〈proof 〉

Any nonstandard extension is in fact the Star-function.
lemma is-starfun-starext:

assumes is-starext F f
shows F = ∗f ∗ f
〈proof 〉

lemma is-starext-starfun-iff : is-starext F f ←→ F = ∗f ∗ f
〈proof 〉

Extended function has same solution as its standard version for real argu-
ments. i.e they are the same for all real arguments.
lemma starfun-eq: ( ∗f ∗ f ) (star-of a) = star-of (f a)
〈proof 〉

lemma starfun-approx: ( ∗f ∗ f ) (star-of a) ≈ star-of (f a)
〈proof 〉

Useful for NS definition of derivatives.
lemma starfun-lambda-cancel:

∧
x ′. ( ∗f ∗ (λh. f (x + h))) x ′ = ( ∗f ∗ f ) (star-of

x + x ′)
〈proof 〉



THEORY “Star” 85

lemma starfun-lambda-cancel2 : ( ∗f ∗ (λh. f (g (x + h)))) x ′ = ( ∗f ∗ (f ◦ g))
(star-of x + x ′)
〈proof 〉

lemma starfun-mult-HFinite-approx:
( ∗f ∗ f ) x ≈ l =⇒ ( ∗f ∗ g) x ≈ m =⇒ l ∈ HFinite =⇒ m ∈ HFinite =⇒
( ∗f ∗ (λx. f x ∗ g x)) x ≈ l ∗ m

for l m :: ′a::real-normed-algebra star
〈proof 〉

lemma starfun-add-approx: ( ∗f ∗ f ) x ≈ l =⇒ ( ∗f ∗ g) x ≈ m =⇒ ( ∗f ∗ (%x. f x
+ g x)) x ≈ l + m
〈proof 〉

Examples: hrabs is nonstandard extension of rabs, inverse is nonstandard
extension of inverse.

Can be proved easily using theorem starfun and properties of ultrafilter as
for inverse below we use the theorem we proved above instead.
lemma starfun-rabs-hrabs: ∗f ∗ abs = abs
〈proof 〉

lemma starfun-inverse-inverse [simp]: ( ∗f ∗ inverse) x = inverse x
〈proof 〉

lemma starfun-inverse:
∧

x. inverse (( ∗f ∗ f ) x) = ( ∗f ∗ (λx. inverse (f x))) x
〈proof 〉

declare starfun-inverse [symmetric, simp]

lemma starfun-divide:
∧

x. ( ∗f ∗ f ) x / ( ∗f ∗ g) x = ( ∗f ∗ (λx. f x / g x)) x
〈proof 〉

declare starfun-divide [symmetric, simp]

lemma starfun-inverse2 :
∧

x. inverse (( ∗f ∗ f ) x) = ( ∗f ∗ (λx. inverse (f x))) x
〈proof 〉

General lemma/theorem needed for proofs in elementary topology of the
reals.
lemma starfun-mem-starset:

∧
x. ( ∗f ∗ f ) x ∈ ∗s∗ A =⇒ x ∈ ∗s∗ {x. f x ∈ A}

〈proof 〉

Alternative definition for hrabs with rabs function applied entrywise to
equivalence class representative. This is easily proved using starfun and
ns extension thm.
lemma hypreal-hrabs: |star-n X | = star-n (λn. |X n|)
〈proof 〉

Nonstandard extension of set through nonstandard extension of rabs func-
tion i.e. hrabs. A more general result should be where we replace rabs by
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some arbitrary function f and hrabs by its NS extenson. See second NS set
extension below.
lemma STAR-rabs-add-minus: ∗s∗ {x. |x + − y| < r} = {x. |x + −star-of y| <
star-of r}
〈proof 〉

lemma STAR-starfun-rabs-add-minus:
∗s∗ {x. |f x + − y| < r} = {x. |( ∗f ∗ f ) x + −star-of y| < star-of r}
〈proof 〉

Another characterization of Infinitesimal and one of ≈ relation. In this
theory since hypreal-hrabs proved here. Maybe move both theorems??
lemma Infinitesimal-FreeUltrafilterNat-iff2 :

star-n X ∈ Infinitesimal ←→ (∀m. eventually (λn. norm (X n) < inverse (real
(Suc m))) U)
〈proof 〉

lemma HNatInfinite-inverse-Infinitesimal [simp]:
assumes n ∈ HNatInfinite
shows inverse (hypreal-of-hypnat n) ∈ Infinitesimal
〈proof 〉

lemma approx-FreeUltrafilterNat-iff :
star-n X ≈ star-n Y ←→ (∀ r>0 . eventually (λn. norm (X n − Y n) < r) U)
(is ?lhs = ?rhs)
〈proof 〉

lemma approx-FreeUltrafilterNat-iff2 :
star-n X ≈ star-n Y ←→ (∀m. eventually (λn. norm (X n − Y n) < inverse

(real (Suc m))) U)
(is ?lhs = ?rhs)
〈proof 〉

lemma inj-starfun: inj starfun
〈proof 〉

end

9 Star-transforms for the Hypernaturals
theory NatStar

imports Star
begin

lemma star-n-eq-starfun-whn: star-n X = ( ∗f ∗ X) whn
〈proof 〉

lemma starset-n-Un: ∗sn∗ (λn. (A n) ∪ (B n)) = ∗sn∗ A ∪ ∗sn∗ B
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〈proof 〉

lemma InternalSets-Un: X ∈ InternalSets =⇒ Y ∈ InternalSets =⇒ X ∪ Y ∈
InternalSets
〈proof 〉

lemma starset-n-Int: ∗sn∗ (λn. A n ∩ B n) = ∗sn∗ A ∩ ∗sn∗ B
〈proof 〉

lemma InternalSets-Int: X ∈ InternalSets =⇒ Y ∈ InternalSets =⇒ X ∩ Y ∈
InternalSets
〈proof 〉

lemma starset-n-Compl: ∗sn∗ ((λn. − A n)) = − ( ∗sn∗ A)
〈proof 〉

lemma InternalSets-Compl: X ∈ InternalSets =⇒ − X ∈ InternalSets
〈proof 〉

lemma starset-n-diff : ∗sn∗ (λn. (A n) − (B n)) = ∗sn∗ A − ∗sn∗ B
〈proof 〉

lemma InternalSets-diff : X ∈ InternalSets =⇒ Y ∈ InternalSets =⇒ X − Y ∈
InternalSets
〈proof 〉

lemma NatStar-SHNat-subset: Nats ≤ ∗s∗ (UNIV :: nat set)
〈proof 〉

lemma NatStar-hypreal-of-real-Int: ∗s∗ X Int Nats = hypnat-of-nat ‘ X
〈proof 〉

lemma starset-starset-n-eq: ∗s∗ X = ∗sn∗ (λn. X)
〈proof 〉

lemma InternalSets-starset-n [simp]: ( ∗s∗ X) ∈ InternalSets
〈proof 〉

lemma InternalSets-UNIV-diff : X ∈ InternalSets =⇒ UNIV − X ∈ InternalSets
〈proof 〉

9.1 Nonstandard Extensions of Functions

Example of transfer of a property from reals to hyperreals — used for limit
comparison of sequences.
lemma starfun-le-mono: ∀n. N ≤ n −→ f n ≤ g n =⇒
∀n. hypnat-of-nat N ≤ n −→ ( ∗f ∗ f ) n ≤ ( ∗f ∗ g) n
〈proof 〉
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And another:
lemma starfun-less-mono:
∀n. N ≤ n −→ f n < g n =⇒ ∀n. hypnat-of-nat N ≤ n −→ ( ∗f ∗ f ) n < ( ∗f ∗

g) n
〈proof 〉

Nonstandard extension when we increment the argument by one.
lemma starfun-shift-one:

∧
N . ( ∗f ∗ (λn. f (Suc n))) N = ( ∗f ∗ f ) (N + (1 ::hypnat))

〈proof 〉

Nonstandard extension with absolute value.
lemma starfun-abs:

∧
N . ( ∗f ∗ (λn. |f n|)) N = |( ∗f ∗ f ) N |

〈proof 〉

The hyperpow function as a nonstandard extension of realpow.
lemma starfun-pow:

∧
N . ( ∗f ∗ (λn. r ^ n)) N = hypreal-of-real r pow N

〈proof 〉

lemma starfun-pow2 :
∧

N . ( ∗f ∗ (λn. X n ^ m)) N = ( ∗f ∗ X) N pow hypnat-of-nat
m
〈proof 〉

lemma starfun-pow3 :
∧

R. ( ∗f ∗ (λr . r ^ n)) R = R pow hypnat-of-nat n
〈proof 〉

The hypreal-of-hypnat function as a nonstandard extension of real.
lemma starfunNat-real-of-nat: ( ∗f ∗ real) = hypreal-of-hypnat
〈proof 〉

lemma starfun-inverse-real-of-nat-eq:
N ∈ HNatInfinite =⇒ ( ∗f ∗ (λx::nat. inverse (real x))) N = inverse (hypreal-of-hypnat

N )
〈proof 〉

Internal functions – some redundancy with ∗f ∗ now.
lemma starfun-n: ( ∗fn∗ f ) (star-n X) = star-n (λn. f n (X n))
〈proof 〉

Multiplication: ( ∗fn) x ( ∗gn) = ∗(fn x gn)
lemma starfun-n-mult: ( ∗fn∗ f ) z ∗ ( ∗fn∗ g) z = ( ∗fn∗ (λi x. f i x ∗ g i x)) z
〈proof 〉

Addition: ( ∗fn) + ( ∗gn) = ∗(fn + gn)
lemma starfun-n-add: ( ∗fn∗ f ) z + ( ∗fn∗ g) z = ( ∗fn∗ (λi x. f i x + g i x)) z
〈proof 〉

Subtraction: ( ∗fn) − ( ∗gn) = ∗(fn + − gn)
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lemma starfun-n-add-minus: ( ∗fn∗ f ) z + −( ∗fn∗ g) z = ( ∗fn∗ (λi x. f i x +
−g i x)) z
〈proof 〉

Composition: ( ∗fn) ◦ ( ∗gn) = ∗(fn ◦ gn)
lemma starfun-n-const-fun [simp]: ( ∗fn∗ (λi x. k)) z = star-of k
〈proof 〉

lemma starfun-n-minus: − ( ∗fn∗ f ) x = ( ∗fn∗ (λi x. − (f i) x)) x
〈proof 〉

lemma starfun-n-eq [simp]: ( ∗fn∗ f ) (star-of n) = star-n (λi. f i n)
〈proof 〉

lemma starfun-eq-iff : (( ∗f ∗ f ) = ( ∗f ∗ g)) ←→ f = g
〈proof 〉

lemma starfunNat-inverse-real-of-nat-Infinitesimal [simp]:
N ∈ HNatInfinite =⇒ ( ∗f ∗ (λx. inverse (real x))) N ∈ Infinitesimal
〈proof 〉

9.2 Nonstandard Characterization of Induction
lemma hypnat-induct-obj:∧

n. (( ∗p∗ P) (0 ::hypnat) ∧ (∀n. ( ∗p∗ P) n −→ ( ∗p∗ P) (n + 1 ))) −→ ( ∗p∗
P) n
〈proof 〉

lemma hypnat-induct:∧
n. ( ∗p∗ P) (0 ::hypnat) =⇒ (

∧
n. ( ∗p∗ P) n =⇒ ( ∗p∗ P) (n + 1 )) =⇒ ( ∗p∗

P) n
〈proof 〉

lemma starP2-eq-iff : ( ∗p2∗ (=)) = (=)
〈proof 〉

lemma starP2-eq-iff2 : ( ∗p2∗ (λx y. x = y)) X Y ←→ X = Y
〈proof 〉

lemma nonempty-set-star-has-least-lemma:
∃n∈S . ∀m∈S . n ≤ m if S 6= {} for S :: nat set
〈proof 〉

lemma nonempty-set-star-has-least:∧
S ::nat set star . Iset S 6= {} =⇒ ∃n ∈ Iset S . ∀m ∈ Iset S . n ≤ m
〈proof 〉

lemma nonempty-InternalNatSet-has-least: S ∈ InternalSets =⇒ S 6= {} =⇒ ∃n
∈ S . ∀m ∈ S . n ≤ m
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for S :: hypnat set
〈proof 〉

Goldblatt, page 129 Thm 11.3.2.
lemma internal-induct-lemma:∧

X ::nat set star .
(0 ::hypnat) ∈ Iset X =⇒ ∀n. n ∈ Iset X −→ n + 1 ∈ Iset X =⇒ Iset X =

(UNIV :: hypnat set)
〈proof 〉

lemma internal-induct:
X ∈ InternalSets =⇒ (0 ::hypnat) ∈ X =⇒ ∀n. n ∈ X −→ n + 1 ∈ X =⇒ X =

(UNIV :: hypnat set)
〈proof 〉

end

10 Sequences and Convergence (Nonstandard)
theory HSEQ

imports Complex-Main NatStar
abbrevs −−−> = −−−−→NS

begin

definition NSLIMSEQ :: (nat ⇒ ′a::real-normed-vector) ⇒ ′a ⇒ bool
(‹(‹notation=‹mixfix NSLIMSEQ››(-)/ −−−−→NS (-))› [60 , 60 ] 60 ) where
— Nonstandard definition of convergence of sequence

X −−−−→NS L ←→ (∀N ∈ HNatInfinite. ( ∗f ∗ X) N ≈ star-of L)

definition nslim :: (nat ⇒ ′a::real-normed-vector) ⇒ ′a
where nslim X = (THE L. X −−−−→NS L)
— Nonstandard definition of limit using choice operator

definition NSconvergent :: (nat ⇒ ′a::real-normed-vector) ⇒ bool
where NSconvergent X ←→ (∃L. X −−−−→NS L)
— Nonstandard definition of convergence

definition NSBseq :: (nat ⇒ ′a::real-normed-vector) ⇒ bool
where NSBseq X ←→ (∀N ∈ HNatInfinite. ( ∗f ∗ X) N ∈ HFinite)
— Nonstandard definition for bounded sequence

definition NSCauchy :: (nat ⇒ ′a::real-normed-vector) ⇒ bool
where NSCauchy X ←→ (∀M ∈ HNatInfinite. ∀N ∈ HNatInfinite. ( ∗f ∗ X) M
≈ ( ∗f ∗ X) N )

— Nonstandard definition
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10.1 Limits of Sequences
lemma NSLIMSEQ-I : (

∧
N . N ∈ HNatInfinite =⇒ starfun X N ≈ star-of L) =⇒

X −−−−→NS L
〈proof 〉

lemma NSLIMSEQ-D: X −−−−→NS L =⇒ N ∈ HNatInfinite =⇒ starfun X N ≈
star-of L
〈proof 〉

lemma NSLIMSEQ-const: (λn. k) −−−−→NS k
〈proof 〉

lemma NSLIMSEQ-add: X −−−−→NS a =⇒ Y −−−−→NS b =⇒ (λn. X n + Y
n) −−−−→NS a + b
〈proof 〉

lemma NSLIMSEQ-add-const: f −−−−→NS a =⇒ (λn. f n + b) −−−−→NS a + b
〈proof 〉

lemma NSLIMSEQ-mult: X −−−−→NS a =⇒ Y −−−−→NS b =⇒ (λn. X n ∗ Y
n) −−−−→NS a ∗ b

for a b :: ′a::real-normed-algebra
〈proof 〉

lemma NSLIMSEQ-minus: X −−−−→NS a =⇒ (λn. − X n) −−−−→NS − a
〈proof 〉

lemma NSLIMSEQ-minus-cancel: (λn. − X n) −−−−→NS −a =⇒ X −−−−→NS a
〈proof 〉

lemma NSLIMSEQ-diff : X −−−−→NS a =⇒ Y −−−−→NS b =⇒ (λn. X n − Y
n) −−−−→NS a − b
〈proof 〉

lemma NSLIMSEQ-diff-const: f −−−−→NS a =⇒ (λn. f n − b) −−−−→NS a − b
〈proof 〉

lemma NSLIMSEQ-inverse: X −−−−→NS a =⇒ a 6= 0 =⇒ (λn. inverse (X n))
−−−−→NS inverse a

for a :: ′a::real-normed-div-algebra
〈proof 〉

lemma NSLIMSEQ-mult-inverse: X −−−−→NS a =⇒ Y −−−−→NS b =⇒ b 6= 0
=⇒ (λn. X n / Y n) −−−−→NS a / b

for a b :: ′a::real-normed-field
〈proof 〉

lemma starfun-hnorm:
∧

x. hnorm (( ∗f ∗ f ) x) = ( ∗f ∗ (λx. norm (f x))) x
〈proof 〉
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lemma NSLIMSEQ-norm: X −−−−→NS a =⇒ (λn. norm (X n)) −−−−→NS norm
a
〈proof 〉

Uniqueness of limit.
lemma NSLIMSEQ-unique: X −−−−→NS a =⇒ X −−−−→NS b =⇒ a = b
〈proof 〉

lemma NSLIMSEQ-pow [rule-format]: (X −−−−→NS a) −→ ((λn. (X n) ^ m)
−−−−→NS a ^ m)

for a :: ′a::{real-normed-algebra,power}
〈proof 〉

We can now try and derive a few properties of sequences, starting with the
limit comparison property for sequences.
lemma NSLIMSEQ-le: f −−−−→NS l =⇒ g −−−−→NS m =⇒ ∃N . ∀n ≥ N . f n
≤ g n =⇒ l ≤ m

for l m :: real
〈proof 〉

lemma NSLIMSEQ-le-const: X −−−−→NS r =⇒ ∀n. a ≤ X n =⇒ a ≤ r
for a r :: real
〈proof 〉

lemma NSLIMSEQ-le-const2 : X −−−−→NS r =⇒ ∀n. X n ≤ a =⇒ r ≤ a
for a r :: real
〈proof 〉

Shift a convergent series by 1: By the equivalence between Cauchiness and
convergence and because the successor of an infinite hypernatural is also
infinite.
lemma NSLIMSEQ-Suc-iff : ((λn. f (Suc n)) −−−−→NS l) ←→ (f −−−−→NS l)
〈proof 〉

10.1.1 Equivalence of LIMSEQ and NSLIMSEQ
lemma LIMSEQ-NSLIMSEQ:

assumes X : X −−−−→ L
shows X −−−−→NS L
〈proof 〉

lemma NSLIMSEQ-LIMSEQ:
assumes X : X −−−−→NS L
shows X −−−−→ L
〈proof 〉

theorem LIMSEQ-NSLIMSEQ-iff : f −−−−→ L ←→ f −−−−→NS L
〈proof 〉
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10.1.2 Derived theorems about NSLIMSEQ

We prove the NS version from the standard one, since the NS proof seems
more complicated than the standard one above!
lemma NSLIMSEQ-norm-zero: (λn. norm (X n)) −−−−→NS 0 ←→ X −−−−→NS

0
〈proof 〉

lemma NSLIMSEQ-rabs-zero: (λn. |f n|) −−−−→NS 0 ←→ f −−−−→NS (0 ::real)
〈proof 〉

Generalization to other limits.
lemma NSLIMSEQ-imp-rabs: f −−−−→NS l =⇒ (λn. |f n|) −−−−→NS |l|

for l :: real
〈proof 〉

lemma NSLIMSEQ-inverse-zero: ∀ y::real. ∃N . ∀n ≥ N . y < f n =⇒ (λn. inverse
(f n)) −−−−→NS 0
〈proof 〉

lemma NSLIMSEQ-inverse-real-of-nat: (λn. inverse (real (Suc n))) −−−−→NS 0
〈proof 〉

lemma NSLIMSEQ-inverse-real-of-nat-add: (λn. r + inverse (real (Suc n))) −−−−→NS

r
〈proof 〉

lemma NSLIMSEQ-inverse-real-of-nat-add-minus: (λn. r + − inverse (real (Suc
n))) −−−−→NS r
〈proof 〉

lemma NSLIMSEQ-inverse-real-of-nat-add-minus-mult:
(λn. r ∗ (1 + − inverse (real (Suc n)))) −−−−→NS r
〈proof 〉

10.2 Convergence
lemma nslimI : X −−−−→NS L =⇒ nslim X = L
〈proof 〉

lemma lim-nslim-iff : lim X = nslim X
〈proof 〉

lemma NSconvergentD: NSconvergent X =⇒ ∃L. X −−−−→NS L
〈proof 〉

lemma NSconvergentI : X −−−−→NS L =⇒ NSconvergent X
〈proof 〉
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lemma convergent-NSconvergent-iff : convergent X = NSconvergent X
〈proof 〉

lemma NSconvergent-NSLIMSEQ-iff : NSconvergent X ←→ X −−−−→NS nslim X
〈proof 〉

10.3 Bounded Monotonic Sequences
lemma NSBseqD: NSBseq X =⇒ N ∈ HNatInfinite =⇒ ( ∗f ∗ X) N ∈ HFinite
〈proof 〉

lemma Standard-subset-HFinite: Standard ⊆ HFinite
〈proof 〉

lemma NSBseqD2 : NSBseq X =⇒ ( ∗f ∗ X) N ∈ HFinite
〈proof 〉

lemma NSBseqI : ∀N ∈ HNatInfinite. ( ∗f ∗ X) N ∈ HFinite =⇒ NSBseq X
〈proof 〉

The standard definition implies the nonstandard definition.
lemma Bseq-NSBseq: Bseq X =⇒ NSBseq X
〈proof 〉

The nonstandard definition implies the standard definition.
lemma SReal-less-omega: r ∈ � =⇒ r < ω
〈proof 〉

lemma NSBseq-Bseq: NSBseq X =⇒ Bseq X
〈proof 〉

Equivalence of nonstandard and standard definitions for a bounded se-
quence.
lemma Bseq-NSBseq-iff : Bseq X = NSBseq X
〈proof 〉

A convergent sequence is bounded: Boundedness as a necessary condition
for convergence. The nonstandard version has no existential, as usual.
lemma NSconvergent-NSBseq: NSconvergent X =⇒ NSBseq X
〈proof 〉

Standard Version: easily now proved using equivalence of NS and standard
definitions.
lemma convergent-Bseq: convergent X =⇒ Bseq X

for X :: nat ⇒ ′b::real-normed-vector
〈proof 〉
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10.3.1 Upper Bounds and Lubs of Bounded Sequences
lemma NSBseq-isUb: NSBseq X =⇒ ∃U ::real. isUb UNIV {x. ∃n. X n = x} U
〈proof 〉

lemma NSBseq-isLub: NSBseq X =⇒ ∃U ::real. isLub UNIV {x. ∃n. X n = x} U
〈proof 〉

10.3.2 A Bounded and Monotonic Sequence Converges

The best of both worlds: Easier to prove this result as a standard theorem
and then use equivalence to "transfer" it into the equivalent nonstandard
form if needed!
lemma Bmonoseq-NSLIMSEQ: ∀ F k in sequentially. X k = X m =⇒ X −−−−→NS

X m
〈proof 〉

lemma NSBseq-mono-NSconvergent: NSBseq X =⇒ ∀m. ∀n ≥ m. X m ≤ X n
=⇒ NSconvergent X

for X :: nat ⇒ real
〈proof 〉

10.4 Cauchy Sequences
lemma NSCauchyI :
(
∧

M N . M ∈ HNatInfinite =⇒ N ∈ HNatInfinite =⇒ starfun X M ≈ starfun X
N ) =⇒ NSCauchy X
〈proof 〉

lemma NSCauchyD:
NSCauchy X =⇒ M ∈ HNatInfinite =⇒ N ∈ HNatInfinite =⇒ starfun X M ≈

starfun X N
〈proof 〉

10.4.1 Equivalence Between NS and Standard
lemma Cauchy-NSCauchy:

assumes X : Cauchy X
shows NSCauchy X
〈proof 〉

lemma NSCauchy-Cauchy:
assumes X : NSCauchy X
shows Cauchy X
〈proof 〉

theorem NSCauchy-Cauchy-iff : NSCauchy X = Cauchy X
〈proof 〉
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10.4.2 Cauchy Sequences are Bounded

A Cauchy sequence is bounded – nonstandard version.
lemma NSCauchy-NSBseq: NSCauchy X =⇒ NSBseq X
〈proof 〉

10.4.3 Cauchy Sequences are Convergent

Equivalence of Cauchy criterion and convergence: We will prove this using
our NS formulation which provides a much easier proof than using the stan-
dard definition. We do not need to use properties of subsequences such as
boundedness, monotonicity etc... Compare with Harrison’s corresponding
proof in HOL which is much longer and more complicated. Of course, we do
not have problems which he encountered with guessing the right instantia-
tions for his ’espsilon-delta’ proof(s) in this case since the NS formulations
do not involve existential quantifiers.
lemma NSconvergent-NSCauchy: NSconvergent X =⇒ NSCauchy X
〈proof 〉

lemma real-NSCauchy-NSconvergent:
fixes X :: nat ⇒ real
assumes NSCauchy X shows NSconvergent X
〈proof 〉

lemma NSCauchy-NSconvergent: NSCauchy X =⇒ NSconvergent X
for X :: nat ⇒ ′a::banach
〈proof 〉

lemma NSCauchy-NSconvergent-iff : NSCauchy X = NSconvergent X
for X :: nat ⇒ ′a::banach
〈proof 〉

10.5 Power Sequences

The sequence xn tends to 0 if 0 ≤ x and x < 1. Proof will use (NS) Cauchy
equivalence for convergence and also fact that bounded and monotonic se-
quence converges.

We now use NS criterion to bring proof of theorem through.
lemma NSLIMSEQ-realpow-zero:

fixes x :: real
assumes 0 ≤ x x < 1 shows (λn. x ^ n) −−−−→NS 0
〈proof 〉

lemma NSLIMSEQ-abs-realpow-zero: |c| < 1 =⇒ (λn. |c| ^ n) −−−−→NS 0
for c :: real
〈proof 〉
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lemma NSLIMSEQ-abs-realpow-zero2 : |c| < 1 =⇒ (λn. c ^ n) −−−−→NS 0
for c :: real
〈proof 〉

end

11 Finite Summation and Infinite Series for Hy-
perreals

theory HSeries
imports HSEQ

begin

definition sumhr :: hypnat × hypnat × (nat ⇒ real) ⇒ hypreal
where sumhr = (λ(M ,N ,f ). starfun2 (λm n. sum f {m..<n}) M N )

definition NSsums :: (nat ⇒ real) ⇒ real ⇒ bool (infixr ‹NSsums› 80 )
where f NSsums s = (λn. sum f {..<n}) −−−−→NS s

definition NSsummable :: (nat ⇒ real) ⇒ bool
where NSsummable f ←→ (∃ s. f NSsums s)

definition NSsuminf :: (nat ⇒ real) ⇒ real
where NSsuminf f = (THE s. f NSsums s)

lemma sumhr-app: sumhr (M , N , f ) = ( ∗f2∗ (λm n. sum f {m..<n})) M N
〈proof 〉

Base case in definition of sumr.
lemma sumhr-zero [simp]:

∧
m. sumhr (m, 0 , f ) = 0

〈proof 〉

Recursive case in definition of sumr.
lemma sumhr-if :∧

m n. sumhr (m, n + 1 , f ) = (if n + 1 ≤ m then 0 else sumhr (m, n, f ) + (
∗f ∗ f ) n)
〈proof 〉

lemma sumhr-Suc-zero [simp]:
∧

n. sumhr (n + 1 , n, f ) = 0
〈proof 〉

lemma sumhr-eq-bounds [simp]:
∧

n. sumhr (n, n, f ) = 0
〈proof 〉

lemma sumhr-Suc [simp]:
∧

m. sumhr (m, m + 1 , f ) = ( ∗f ∗ f ) m
〈proof 〉
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lemma sumhr-add-lbound-zero [simp]:
∧

k m. sumhr (m + k, k, f ) = 0
〈proof 〉

lemma sumhr-add:
∧

m n. sumhr (m, n, f ) + sumhr (m, n, g) = sumhr (m, n,
λi. f i + g i)
〈proof 〉

lemma sumhr-mult:
∧

m n. hypreal-of-real r ∗ sumhr (m, n, f ) = sumhr (m, n,
λn. r ∗ f n)
〈proof 〉

lemma sumhr-split-add:
∧

n p. n < p =⇒ sumhr (0 , n, f ) + sumhr (n, p, f ) =
sumhr (0 , p, f )
〈proof 〉

lemma sumhr-split-diff : n < p =⇒ sumhr (0 , p, f ) − sumhr (0 , n, f ) = sumhr
(n, p, f )
〈proof 〉

lemma sumhr-hrabs:
∧

m n. |sumhr (m, n, f )| ≤ sumhr (m, n, λi. |f i|)
〈proof 〉

Other general version also needed.
lemma sumhr-fun-hypnat-eq:
(∀ r . m ≤ r ∧ r < n −→ f r = g r) −→

sumhr (hypnat-of-nat m, hypnat-of-nat n, f ) =
sumhr (hypnat-of-nat m, hypnat-of-nat n, g)
〈proof 〉

lemma sumhr-const:
∧

n. sumhr (0 , n, λi. r) = hypreal-of-hypnat n ∗ hypreal-of-real
r
〈proof 〉

lemma sumhr-less-bounds-zero [simp]:
∧

m n. n < m =⇒ sumhr (m, n, f ) = 0
〈proof 〉

lemma sumhr-minus:
∧

m n. sumhr (m, n, λi. − f i) = − sumhr (m, n, f )
〈proof 〉

lemma sumhr-shift-bounds:∧
m n. sumhr (m + hypnat-of-nat k, n + hypnat-of-nat k, f ) =
sumhr (m, n, λi. f (i + k))
〈proof 〉

11.1 Nonstandard Sums

Infinite sums are obtained by summing to some infinite hypernatural (such
as whn).
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lemma sumhr-hypreal-of-hypnat-omega: sumhr (0 , whn, λi. 1 ) = hypreal-of-hypnat
whn
〈proof 〉

lemma whn-eq-ωm1 : hypreal-of-hypnat whn = ω − 1
〈proof 〉

lemma sumhr-hypreal-omega-minus-one: sumhr(0 , whn, λi. 1 ) = ω − 1
〈proof 〉

lemma sumhr-minus-one-realpow-zero [simp]:
∧

N . sumhr (0 , N + N , λi. (−1 ) ^
(i + 1 )) = 0
〈proof 〉

lemma sumhr-interval-const:
(∀n. m ≤ Suc n −→ f n = r) ∧ m ≤ na =⇒

sumhr (hypnat-of-nat m, hypnat-of-nat na, f ) = hypreal-of-nat (na − m) ∗
hypreal-of-real r
〈proof 〉

lemma starfunNat-sumr :
∧

N . ( ∗f ∗ (λn. sum f {0 ..<n})) N = sumhr (0 , N , f )
〈proof 〉

lemma sumhr-hrabs-approx [simp]: sumhr (0 , M , f ) ≈ sumhr (0 , N , f ) =⇒ |sumhr
(M , N , f )| ≈ 0
〈proof 〉

11.2 Infinite sums: Standard and NS theorems
lemma sums-NSsums-iff : f sums l ←→ f NSsums l
〈proof 〉

lemma summable-NSsummable-iff : summable f ←→ NSsummable f
〈proof 〉

lemma suminf-NSsuminf-iff : suminf f = NSsuminf f
〈proof 〉

lemma NSsums-NSsummable: f NSsums l =⇒ NSsummable f
〈proof 〉

lemma NSsummable-NSsums: NSsummable f =⇒ f NSsums (NSsuminf f )
〈proof 〉

lemma NSsums-unique: f NSsums s =⇒ s = NSsuminf f
〈proof 〉

lemma NSseries-zero: ∀m. n ≤ Suc m −→ f m = 0 =⇒ f NSsums (sum f {..<n})
〈proof 〉
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lemma NSsummable-NSCauchy:
NSsummable f ←→ (∀M ∈ HNatInfinite. ∀N ∈ HNatInfinite. |sumhr (M , N ,

f )| ≈ 0 ) (is ?L=?R)
〈proof 〉

Terms of a convergent series tend to zero.
lemma NSsummable-NSLIMSEQ-zero: NSsummable f =⇒ f −−−−→NS 0
〈proof 〉

Nonstandard comparison test.
lemma NSsummable-comparison-test: ∃N . ∀n. N ≤ n −→ |f n| ≤ g n =⇒ NSsummable
g =⇒ NSsummable f
〈proof 〉

lemma NSsummable-rabs-comparison-test:
∃N . ∀n. N ≤ n −→ |f n| ≤ g n =⇒ NSsummable g =⇒ NSsummable (λk. |f k|)
〈proof 〉

end

12 Limits and Continuity (Nonstandard)
theory HLim

imports Star
abbrevs −−−> = −

e
→NS

begin

Nonstandard Definitions.
definition NSLIM :: ( ′a::real-normed-vector ⇒ ′b::real-normed-vector) ⇒ ′a ⇒ ′b
⇒ bool

(‹(‹notation=‹mixfix NSLIM ››(-)/ −(-)/→NS (-))› [60 , 0 , 60 ] 60 )
where f −a→NS L ←→ (∀ x. x 6= star-of a ∧ x ≈ star-of a −→ ( ∗f ∗ f ) x ≈

star-of L)

definition isNSCont :: ( ′a::real-normed-vector ⇒ ′b::real-normed-vector) ⇒ ′a ⇒
bool

where — NS definition dispenses with limit notions
isNSCont f a ←→ (∀ y. y ≈ star-of a −→ ( ∗f ∗ f ) y ≈ star-of (f a))

definition isNSUCont :: ( ′a::real-normed-vector ⇒ ′b::real-normed-vector) ⇒ bool
where isNSUCont f ←→ (∀ x y. x ≈ y −→ ( ∗f ∗ f ) x ≈ ( ∗f ∗ f ) y)

12.1 Limits of Functions
lemma NSLIM-I : (

∧
x. x 6= star-of a =⇒ x ≈ star-of a =⇒ starfun f x ≈ star-of

L) =⇒ f −a→NS L
〈proof 〉
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lemma NSLIM-D: f −a→NS L =⇒ x 6= star-of a =⇒ x ≈ star-of a =⇒ starfun
f x ≈ star-of L
〈proof 〉

Proving properties of limits using nonstandard definition. The properties
hold for standard limits as well!
lemma NSLIM-mult: f −x→NS l =⇒ g −x→NS m =⇒ (λx. f x ∗ g x) −x→NS

(l ∗ m)
for l m :: ′a::real-normed-algebra
〈proof 〉

lemma starfun-scaleR [simp]: starfun (λx. f x ∗R g x) = (λx. scaleHR (starfun f
x) (starfun g x))
〈proof 〉

lemma NSLIM-scaleR: f −x→NS l =⇒ g −x→NS m =⇒ (λx. f x ∗R g x) −x→NS

(l ∗R m)
〈proof 〉

lemma NSLIM-add: f −x→NS l =⇒ g −x→NS m =⇒ (λx. f x + g x) −x→NS

(l + m)
〈proof 〉

lemma NSLIM-const [simp]: (λx. k) −x→NS k
〈proof 〉

lemma NSLIM-minus: f −a→NS L =⇒ (λx. − f x) −a→NS −L
〈proof 〉

lemma NSLIM-diff : f −x→NS l =⇒ g −x→NS m =⇒ (λx. f x − g x) −x→NS

(l − m)
〈proof 〉

lemma NSLIM-add-minus: f −x→NS l =⇒ g −x→NS m =⇒ (λx. f x + − g x)
−x→NS (l + −m)
〈proof 〉

lemma NSLIM-inverse: f −a→NS L =⇒ L 6= 0 =⇒ (λx. inverse (f x)) −a→NS

(inverse L)
for L :: ′a::real-normed-div-algebra
〈proof 〉

lemma NSLIM-zero:
assumes f : f −a→NS l
shows (λx. f (x) − l) −a→NS 0
〈proof 〉

lemma NSLIM-zero-cancel:
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assumes (λx. f x − l) −x→NS 0
shows f −x→NS l
〈proof 〉

lemma NSLIM-const-eq:
fixes a :: ′a::real-normed-algebra-1
assumes (λx. k) −a→NS l
shows k = l
〈proof 〉

lemma NSLIM-unique: f −a→NS l =⇒ f −a→NS M =⇒ l = M
for a :: ′a::real-normed-algebra-1
〈proof 〉

lemma NSLIM-mult-zero: f −x→NS 0 =⇒ g −x→NS 0 =⇒ (λx. f x ∗ g x)
−x→NS 0

for f g :: ′a::real-normed-vector ⇒ ′b::real-normed-algebra
〈proof 〉

lemma NSLIM-self : (λx. x) −a→NS a
〈proof 〉

12.1.1 Equivalence of filterlim and NSLIM
lemma LIM-NSLIM :

assumes f : f −a→ L
shows f −a→NS L
〈proof 〉

lemma NSLIM-LIM :
assumes f : f −a→NS L
shows f −a→ L
〈proof 〉

theorem LIM-NSLIM-iff : f −x→ L ←→ f −x→NS L
〈proof 〉

12.2 Continuity
lemma isNSContD: isNSCont f a =⇒ y ≈ star-of a =⇒ ( ∗f ∗ f ) y ≈ star-of (f a)
〈proof 〉

lemma isNSCont-NSLIM : isNSCont f a =⇒ f −a→NS (f a)
〈proof 〉

lemma NSLIM-isNSCont: f −a→NS (f a) =⇒ isNSCont f a
〈proof 〉

NS continuity can be defined using NS Limit in similar fashion to standard
definition of continuity.
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lemma isNSCont-NSLIM-iff : isNSCont f a ←→ f −a→NS (f a)
〈proof 〉

Hence, NS continuity can be given in terms of standard limit.
lemma isNSCont-LIM-iff : (isNSCont f a) = (f −a→ (f a))
〈proof 〉

Moreover, it’s trivial now that NS continuity is equivalent to standard con-
tinuity.
lemma isNSCont-isCont-iff : isNSCont f a ←→ isCont f a
〈proof 〉

Standard continuity =⇒ NS continuity.
lemma isCont-isNSCont: isCont f a =⇒ isNSCont f a
〈proof 〉

NS continuity =⇒ Standard continuity.
lemma isNSCont-isCont: isNSCont f a =⇒ isCont f a
〈proof 〉

Alternative definition of continuity.

Prove equivalence between NS limits – seems easier than using standard
definition.
lemma NSLIM-at0-iff : f −a→NS L ←→ (λh. f (a + h)) −0→NS L
〈proof 〉

lemma isNSCont-minus: isNSCont f a =⇒ isNSCont (λx. − f x) a
〈proof 〉

lemma isNSCont-inverse: isNSCont f x =⇒ f x 6= 0 =⇒ isNSCont (λx. inverse
(f x)) x

for f :: ′a::real-normed-vector ⇒ ′b::real-normed-div-algebra
〈proof 〉

lemma isNSCont-const [simp]: isNSCont (λx. k) a
〈proof 〉

lemma isNSCont-abs [simp]: isNSCont abs a
for a :: real
〈proof 〉

12.3 Uniform Continuity
lemma isNSUContD: isNSUCont f =⇒ x ≈ y =⇒ ( ∗f ∗ f ) x ≈ ( ∗f ∗ f ) y
〈proof 〉

lemma isUCont-isNSUCont:
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fixes f :: ′a::real-normed-vector ⇒ ′b::real-normed-vector
assumes f : isUCont f
shows isNSUCont f
〈proof 〉

lemma isNSUCont-isUCont:
fixes f :: ′a::real-normed-vector ⇒ ′b::real-normed-vector
assumes f : isNSUCont f
shows isUCont f
〈proof 〉

end

13 Differentiation (Nonstandard)
theory HDeriv

imports HLim
begin

Nonstandard Definitions.
definition nsderiv :: [ ′a::real-normed-field ⇒ ′a, ′a, ′a] ⇒ bool

(‹(‹notation=‹mixfix NSDERIV ››NSDERIV (-)/ (-)/ :> (-))› [1000 , 1000 , 60 ]
60 )

where NSDERIV f x :> D ←→
(∀ h ∈ Infinitesimal − {0}. (( ∗f ∗ f )(star-of x + h) − star-of (f x)) / h ≈

star-of D)

definition NSdifferentiable :: [ ′a::real-normed-field ⇒ ′a, ′a] ⇒ bool
(infixl ‹NSdifferentiable› 60 )

where f NSdifferentiable x ←→ (∃D. NSDERIV f x :> D)

definition increment :: (real ⇒ real) ⇒ real ⇒ hypreal ⇒ hypreal
where increment f x h =

(SOME inc. f NSdifferentiable x ∧ inc = ( ∗f ∗ f ) (hypreal-of-real x + h) −
hypreal-of-real (f x))

13.1 Derivatives
lemma DERIV-NS-iff : (DERIV f x :> D)←→ (λh. (f (x + h) − f x) / h) −0→NS

D
〈proof 〉

lemma NS-DERIV-D: DERIV f x :> D =⇒ (λh. (f (x + h) − f x) / h) −0→NS

D
〈proof 〉

lemma Infinitesimal-of-hypreal:
x ∈ Infinitesimal =⇒ (( ∗f ∗ of-real) x:: ′a::real-normed-div-algebra star) ∈ In-

finitesimal
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〈proof 〉

lemma of-hypreal-eq-0-iff :
∧

x. (( ∗f ∗ of-real) x = (0 :: ′a::real-algebra-1 star)) =
(x = 0 )
〈proof 〉

lemma NSDeriv-unique:
assumes NSDERIV f x :> D NSDERIV f x :> E
shows NSDERIV f x :> D =⇒ NSDERIV f x :> E =⇒ D = E
〈proof 〉

First NSDERIV in terms of NSLIM.

First equivalence.
lemma NSDERIV-NSLIM-iff : (NSDERIV f x :> D) ←→ (λh. (f (x + h) − f x)
/ h) −0→NS D
〈proof 〉

Second equivalence.
lemma NSDERIV-NSLIM-iff2 : (NSDERIV f x :> D) ←→ (λz. (f z − f x) / (z −
x)) −x→NS D
〈proof 〉

While we’re at it!
lemma NSDERIV-iff2 :
(NSDERIV f x :> D) ←→
(∀w. w 6= star-of x ∧ w ≈ star-of x −→ ( ∗f ∗ (λz. (f z − f x) / (z − x))) w ≈

star-of D)
〈proof 〉

lemma NSDERIVD5 :
[[NSDERIV f x :> D; u ≈ hypreal-of-real x]] =⇒

( ∗f ∗ (λz. f z − f x)) u ≈ hypreal-of-real D ∗ (u − hypreal-of-real x)
〈proof 〉

lemma NSDERIVD4 :
[[NSDERIV f x :> D; h ∈ Infinitesimal]]
=⇒ ( ∗f ∗ f )(hypreal-of-real x + h) − hypreal-of-real (f x) ≈ hypreal-of-real D ∗

h
〈proof 〉

Differentiability implies continuity nice and simple "algebraic" proof.
lemma NSDERIV-isNSCont:

assumes NSDERIV f x :> D shows isNSCont f x
〈proof 〉

Differentiation rules for combinations of functions follow from clear, straight-
forward, algebraic manipulations.
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Constant function.
lemma NSDERIV-const [simp]: NSDERIV (λx. k) x :> 0
〈proof 〉

Sum of functions- proved easily.
lemma NSDERIV-add:

assumes NSDERIV f x :> Da NSDERIV g x :> Db
shows NSDERIV (λx. f x + g x) x :> Da + Db
〈proof 〉

Product of functions - Proof is simple.
lemma NSDERIV-mult:

assumes NSDERIV g x :> Db NSDERIV f x :> Da
shows NSDERIV (λx. f x ∗ g x) x :> (Da ∗ g x) + (Db ∗ f x)
〈proof 〉

Multiplying by a constant.
lemma NSDERIV-cmult: NSDERIV f x :> D =⇒ NSDERIV (λx. c ∗ f x) x :>
c ∗ D
〈proof 〉

Negation of function.
lemma NSDERIV-minus: NSDERIV f x :> D =⇒ NSDERIV (λx. − f x) x :> −
D
〈proof 〉

Subtraction.
lemma NSDERIV-add-minus:

NSDERIV f x :> Da =⇒ NSDERIV g x :> Db =⇒ NSDERIV (λx. f x + − g
x) x :> Da + − Db
〈proof 〉

lemma NSDERIV-diff :
NSDERIV f x :> Da =⇒ NSDERIV g x :> Db =⇒ NSDERIV (λx. f x − g x)

x :> Da − Db
〈proof 〉

Similarly to the above, the chain rule admits an entirely straightforward
derivation. Compare this with Harrison’s HOL proof of the chain rule,
which proved to be trickier and required an alternative characterisation of
differentiability- the so-called Carathedory derivative. Our main problem is
manipulation of terms.

13.2 Lemmas
lemma NSDERIV-zero:
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[[NSDERIV g x :> D; ( ∗f ∗ g) (star-of x + y) = star-of (g x); y ∈ Infinitesimal;
y 6= 0 ]]

=⇒ D = 0
〈proof 〉

Can be proved differently using NSLIM-isCont-iff.
lemma NSDERIV-approx:

NSDERIV f x :> D =⇒ h ∈ Infinitesimal =⇒ h 6= 0 =⇒
( ∗f ∗ f ) (star-of x + h) − star-of (f x) ≈ 0
〈proof 〉

From one version of differentiability
f x − f a −−−−−−−−−−−−−− ≈ Db x − a
lemma NSDERIVD1 :

[[NSDERIV f (g x) :> Da;
( ∗f ∗ g) (star-of x + y) 6= star-of (g x);
( ∗f ∗ g) (star-of x + y) ≈ star-of (g x)]]
=⇒ (( ∗f ∗ f ) (( ∗f ∗ g) (star-of x + y)) −

star-of (f (g x))) / (( ∗f ∗ g) (star-of x + y) − star-of (g x)) ≈
star-of Da

〈proof 〉

From other version of differentiability
f (x + h) − f x −−−−−−−−−−−−−−−−−− ≈ Db h
lemma NSDERIVD2 : [| NSDERIV g x :> Db; y ∈ Infinitesimal; y 6= 0 |]

==> (( ∗f ∗ g) (star-of (x) + y) − star-of (g x)) / y
≈ star-of (Db)

〈proof 〉

This proof uses both definitions of differentiability.
lemma NSDERIV-chain:

NSDERIV f (g x) :> Da =⇒ NSDERIV g x :> Db =⇒ NSDERIV (f ◦ g) x :>
Da ∗ Db
〈proof 〉

Differentiation of natural number powers.
lemma NSDERIV-Id [simp]: NSDERIV (λx. x) x :> 1
〈proof 〉

lemma NSDERIV-cmult-Id [simp]: NSDERIV ((∗) c) x :> c
〈proof 〉

lemma NSDERIV-inverse:
fixes x :: ′a::real-normed-field
assumes x 6= 0 — can’t get rid of x 6= 0 because it isn’t continuous at zero
shows NSDERIV (λx. inverse x) x :> − (inverse x ^ Suc (Suc 0 ))
〈proof 〉
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13.2.1 Equivalence of NS and Standard definitions
lemma divideR-eq-divide: x /R y = x / y
〈proof 〉

Now equivalence between NSDERIV and DERIV.
lemma NSDERIV-DERIV-iff : NSDERIV f x :> D ←→ DERIV f x :> D
〈proof 〉

NS version.
lemma NSDERIV-pow: NSDERIV (λx. x ^ n) x :> real n ∗ (x ^ (n − Suc 0 ))
〈proof 〉

Derivative of inverse.
lemma NSDERIV-inverse-fun:

NSDERIV f x :> d =⇒ f x 6= 0 =⇒
NSDERIV (λx. inverse (f x)) x :> (− (d ∗ inverse (f x ^ Suc (Suc 0 ))))

for x :: ′a::{real-normed-field}
〈proof 〉

Derivative of quotient.
lemma NSDERIV-quotient:

fixes x :: ′a::real-normed-field
shows NSDERIV f x :> d =⇒ NSDERIV g x :> e =⇒ g x 6= 0 =⇒

NSDERIV (λy. f y / g y) x :> (d ∗ g x − (e ∗ f x)) / (g x ^ Suc (Suc 0 ))
〈proof 〉

lemma CARAT-NSDERIV :
NSDERIV f x :> l =⇒ ∃ g. (∀ z. f z − f x = g z ∗ (z − x)) ∧ isNSCont g x ∧ g

x = l
〈proof 〉

lemma hypreal-eq-minus-iff3 : x = y + z ←→ x + − z = y
for x y z :: hypreal
〈proof 〉

lemma CARAT-DERIVD:
assumes all: ∀ z. f z − f x = g z ∗ (z − x)

and nsc: isNSCont g x
shows NSDERIV f x :> g x
〈proof 〉

13.2.2 Differentiability predicate
lemma NSdifferentiableD: f NSdifferentiable x =⇒ ∃D. NSDERIV f x :> D
〈proof 〉

lemma NSdifferentiableI : NSDERIV f x :> D =⇒ f NSdifferentiable x
〈proof 〉
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13.3 (NS) Increment
lemma incrementI :

f NSdifferentiable x =⇒
increment f x h = ( ∗f ∗ f ) (hypreal-of-real x + h) − hypreal-of-real (f x)
〈proof 〉

lemma incrementI2 :
NSDERIV f x :> D =⇒

increment f x h = ( ∗f ∗ f ) (hypreal-of-real x + h) − hypreal-of-real (f x)
〈proof 〉

The Increment theorem – Keisler p. 65.
lemma increment-thm:

assumes NSDERIV f x :> D h ∈ Infinitesimal h 6= 0
shows ∃ e ∈ Infinitesimal. increment f x h = hypreal-of-real D ∗ h + e ∗ h
〈proof 〉

lemma increment-approx-zero: NSDERIV f x :> D =⇒ h ≈ 0 =⇒ h 6= 0 =⇒
increment f x h ≈ 0
〈proof 〉

end

14 Nonstandard Extensions of Transcendental Func-
tions

theory HTranscendental
imports Complex-Main HSeries HDeriv
begin

definition
exphr :: real ⇒ hypreal where

— define exponential function using standard part
exphr x ≡ st(sumhr (0 , whn, λn. inverse (fact n) ∗ (x ^ n)))

definition
sinhr :: real ⇒ hypreal where
sinhr x ≡ st(sumhr (0 , whn, λn. sin-coeff n ∗ x ^ n))

definition
coshr :: real ⇒ hypreal where
coshr x ≡ st(sumhr (0 , whn, λn. cos-coeff n ∗ x ^ n))

14.1 Nonstandard Extension of Square Root Function
lemma STAR-sqrt-zero [simp]: ( ∗f ∗ sqrt) 0 = 0
〈proof 〉
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lemma STAR-sqrt-one [simp]: ( ∗f ∗ sqrt) 1 = 1
〈proof 〉

lemma hypreal-sqrt-pow2-iff : (( ∗f ∗ sqrt)(x) ^ 2 = x) = (0 ≤ x)
〈proof 〉

lemma hypreal-sqrt-gt-zero-pow2 :
∧

x. 0 < x =⇒ ( ∗f ∗ sqrt) (x) ^ 2 = x
〈proof 〉

lemma hypreal-sqrt-pow2-gt-zero: 0 < x =⇒ 0 < ( ∗f ∗ sqrt) (x) ^ 2
〈proof 〉

lemma hypreal-sqrt-not-zero: 0 < x =⇒ ( ∗f ∗ sqrt) (x) 6= 0
〈proof 〉

lemma hypreal-inverse-sqrt-pow2 :
0 < x =⇒ inverse (( ∗f ∗ sqrt)(x)) ^ 2 = inverse x

〈proof 〉

lemma hypreal-sqrt-mult-distrib:∧
x y. [[0 < x; 0 <y]] =⇒
( ∗f ∗ sqrt)(x∗y) = ( ∗f ∗ sqrt)(x) ∗ ( ∗f ∗ sqrt)(y)

〈proof 〉

lemma hypreal-sqrt-mult-distrib2 :
[[0≤x; 0≤y]] =⇒ ( ∗f ∗ sqrt)(x∗y) = ( ∗f ∗ sqrt)(x) ∗ ( ∗f ∗ sqrt)(y)

〈proof 〉

lemma hypreal-sqrt-approx-zero [simp]:
assumes 0 < x
shows (( ∗f ∗ sqrt) x ≈ 0 ) ←→ (x ≈ 0 )
〈proof 〉

lemma hypreal-sqrt-approx-zero2 [simp]:
0 ≤ x =⇒ (( ∗f ∗ sqrt)(x) ≈ 0 ) = (x ≈ 0 )
〈proof 〉

lemma hypreal-sqrt-gt-zero:
∧

x. 0 < x =⇒ 0 < ( ∗f ∗ sqrt)(x)
〈proof 〉

lemma hypreal-sqrt-ge-zero: 0 ≤ x =⇒ 0 ≤ ( ∗f ∗ sqrt)(x)
〈proof 〉

lemma hypreal-sqrt-lessI :∧
x u. [[0 < u; x < u2]] =⇒ ( ∗f ∗ sqrt) x < u

〈proof 〉

lemma hypreal-sqrt-hrabs [simp]:
∧

x. ( ∗f ∗ sqrt)(x2) = |x|
〈proof 〉
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lemma hypreal-sqrt-hrabs2 [simp]:
∧

x. ( ∗f ∗ sqrt)(x∗x) = |x|
〈proof 〉

lemma hypreal-sqrt-hyperpow-hrabs [simp]:∧
x. ( ∗f ∗ sqrt)(x pow (hypnat-of-nat 2 )) = |x|
〈proof 〉

lemma star-sqrt-HFinite: [[x ∈ HFinite; 0 ≤ x]] =⇒ ( ∗f ∗ sqrt) x ∈ HFinite
〈proof 〉

lemma st-hypreal-sqrt:
assumes x ∈ HFinite 0 ≤ x
shows st(( ∗f ∗ sqrt) x) = ( ∗f ∗ sqrt)(st x)
〈proof 〉

lemma hypreal-sqrt-sum-squares-ge1 [simp]:
∧

x y. x ≤ ( ∗f ∗ sqrt)(x2 + y2)
〈proof 〉

lemma HFinite-hypreal-sqrt-imp-HFinite:
[[0 ≤ x; ( ∗f ∗ sqrt) x ∈ HFinite]] =⇒ x ∈ HFinite
〈proof 〉

lemma HFinite-hypreal-sqrt-iff [simp]:
0 ≤ x =⇒ (( ∗f ∗ sqrt) x ∈ HFinite) = (x ∈ HFinite)
〈proof 〉

lemma Infinitesimal-hypreal-sqrt:
[[0 ≤ x; x ∈ Infinitesimal]] =⇒ ( ∗f ∗ sqrt) x ∈ Infinitesimal

〈proof 〉

lemma Infinitesimal-hypreal-sqrt-imp-Infinitesimal:
[[0 ≤ x; ( ∗f ∗ sqrt) x ∈ Infinitesimal]] =⇒ x ∈ Infinitesimal

〈proof 〉

lemma Infinitesimal-hypreal-sqrt-iff [simp]:
0 ≤ x =⇒ (( ∗f ∗ sqrt) x ∈ Infinitesimal) = (x ∈ Infinitesimal)

〈proof 〉

lemma HInfinite-hypreal-sqrt:
[[0 ≤ x; x ∈ HInfinite]] =⇒ ( ∗f ∗ sqrt) x ∈ HInfinite

〈proof 〉

lemma HInfinite-hypreal-sqrt-imp-HInfinite:
[[0 ≤ x; ( ∗f ∗ sqrt) x ∈ HInfinite]] =⇒ x ∈ HInfinite

〈proof 〉

lemma HInfinite-hypreal-sqrt-iff [simp]:
0 ≤ x =⇒ (( ∗f ∗ sqrt) x ∈ HInfinite) = (x ∈ HInfinite)
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〈proof 〉

lemma HFinite-exp [simp]:
sumhr (0 , whn, λn. inverse (fact n) ∗ x ^ n) ∈ HFinite
〈proof 〉

lemma exphr-zero [simp]: exphr 0 = 1
〈proof 〉

lemma coshr-zero [simp]: coshr 0 = 1
〈proof 〉

lemma STAR-exp-zero-approx-one [simp]: ( ∗f ∗ exp) (0 ::hypreal) ≈ 1
〈proof 〉

lemma STAR-exp-Infinitesimal:
assumes x ∈ Infinitesimal shows ( ∗f ∗ exp) (x::hypreal) ≈ 1
〈proof 〉

lemma STAR-exp-epsilon [simp]: ( ∗f ∗ exp) ε ≈ 1
〈proof 〉

lemma STAR-exp-add:∧
(x:: ′a:: {banach,real-normed-field} star) y. ( ∗f ∗ exp)(x + y) = ( ∗f ∗ exp) x ∗

( ∗f ∗ exp) y
〈proof 〉

lemma exphr-hypreal-of-real-exp-eq: exphr x = hypreal-of-real (exp x)
〈proof 〉

lemma starfun-exp-ge-add-one-self [simp]:
∧

x::hypreal. 0 ≤ x =⇒ (1 + x) ≤ (
∗f ∗ exp) x
〈proof 〉

exp maps infinities to infinities
lemma starfun-exp-HInfinite:

fixes x :: hypreal
assumes x ∈ HInfinite 0 ≤ x
shows ( ∗f ∗ exp) x ∈ HInfinite
〈proof 〉

lemma starfun-exp-minus:∧
x:: ′a:: {banach,real-normed-field} star . ( ∗f ∗ exp) (−x) = inverse(( ∗f ∗ exp) x)
〈proof 〉

exp maps infinitesimals to infinitesimals
lemma starfun-exp-Infinitesimal:

fixes x :: hypreal
assumes x ∈ HInfinite x ≤ 0
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shows ( ∗f ∗ exp) x ∈ Infinitesimal
〈proof 〉

lemma starfun-exp-gt-one [simp]:
∧

x::hypreal. 0 < x =⇒ 1 < ( ∗f ∗ exp) x
〈proof 〉

abbreviation real-ln :: real ⇒ real where
real-ln ≡ ln

lemma starfun-ln-exp [simp]:
∧

x. ( ∗f ∗ real-ln) (( ∗f ∗ exp) x) = x
〈proof 〉

lemma starfun-exp-ln-iff [simp]:
∧

x. (( ∗f ∗ exp)(( ∗f ∗ real-ln) x) = x) = (0 < x)
〈proof 〉

lemma starfun-exp-ln-eq:
∧

u x. ( ∗f ∗ exp) u = x =⇒ ( ∗f ∗ real-ln) x = u
〈proof 〉

lemma starfun-ln-less-self [simp]:
∧

x. 0 < x =⇒ ( ∗f ∗ real-ln) x < x
〈proof 〉

lemma starfun-ln-ge-zero [simp]:
∧

x. 1 ≤ x =⇒ 0 ≤ ( ∗f ∗ real-ln) x
〈proof 〉

lemma starfun-ln-gt-zero [simp]:
∧

x .1 < x =⇒ 0 < ( ∗f ∗ real-ln) x
〈proof 〉

lemma starfun-ln-not-eq-zero [simp]:
∧

x. [[0 < x; x 6= 1 ]] =⇒ ( ∗f ∗ real-ln) x 6= 0
〈proof 〉

lemma starfun-ln-HFinite: [[x ∈ HFinite; 1 ≤ x]] =⇒ ( ∗f ∗ real-ln) x ∈ HFinite
〈proof 〉

lemma starfun-ln-inverse:
∧

x. 0 < x =⇒ ( ∗f ∗ real-ln) (inverse x) = −( ∗f ∗ ln)
x
〈proof 〉

lemma starfun-abs-exp-cancel:
∧

x. |( ∗f ∗ exp) (x::hypreal)| = ( ∗f ∗ exp) x
〈proof 〉

lemma starfun-exp-less-mono:
∧

x y::hypreal. x < y =⇒ ( ∗f ∗ exp) x < ( ∗f ∗ exp)
y
〈proof 〉

lemma starfun-exp-HFinite:
fixes x :: hypreal
assumes x ∈ HFinite
shows ( ∗f ∗ exp) x ∈ HFinite
〈proof 〉
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lemma starfun-exp-add-HFinite-Infinitesimal-approx:
fixes x :: hypreal
shows [[x ∈ Infinitesimal; z ∈ HFinite]] =⇒ ( ∗f ∗ exp) (z + x::hypreal) ≈ ( ∗f ∗

exp) z
〈proof 〉

lemma starfun-ln-HInfinite:
[[x ∈ HInfinite; 0 < x]] =⇒ ( ∗f ∗ real-ln) x ∈ HInfinite
〈proof 〉

lemma starfun-exp-HInfinite-Infinitesimal-disj:
fixes x :: hypreal
shows x ∈ HInfinite =⇒ ( ∗f ∗ exp) x ∈ HInfinite ∨ ( ∗f ∗ exp) (x::hypreal) ∈

Infinitesimal
〈proof 〉

lemma starfun-ln-HFinite-not-Infinitesimal:
[[x ∈ HFinite − Infinitesimal; 0 < x]] =⇒ ( ∗f ∗ real-ln) x ∈ HFinite

〈proof 〉

lemma starfun-ln-Infinitesimal-HInfinite:
assumes x ∈ Infinitesimal 0 < x
shows ( ∗f ∗ real-ln) x ∈ HInfinite
〈proof 〉

lemma starfun-ln-less-zero:
∧

x. [[0 < x; x < 1 ]] =⇒ ( ∗f ∗ real-ln) x < 0
〈proof 〉

lemma starfun-ln-Infinitesimal-less-zero:
[[x ∈ Infinitesimal; 0 < x]] =⇒ ( ∗f ∗ real-ln) x < 0
〈proof 〉

lemma starfun-ln-HInfinite-gt-zero:
[[x ∈ HInfinite; 0 < x]] =⇒ 0 < ( ∗f ∗ real-ln) x
〈proof 〉

lemma HFinite-sin [simp]: sumhr (0 , whn, λn. sin-coeff n ∗ x ^ n) ∈ HFinite
〈proof 〉

lemma STAR-sin-zero [simp]: ( ∗f ∗ sin) 0 = 0
〈proof 〉

lemma STAR-sin-Infinitesimal [simp]:
fixes x :: ′a::{real-normed-field,banach} star
assumes x ∈ Infinitesimal
shows ( ∗f ∗ sin) x ≈ x
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〈proof 〉

lemma HFinite-cos [simp]: sumhr (0 , whn, λn. cos-coeff n ∗ x ^ n) ∈ HFinite
〈proof 〉

lemma STAR-cos-zero [simp]: ( ∗f ∗ cos) 0 = 1
〈proof 〉

lemma STAR-cos-Infinitesimal [simp]:
fixes x :: ′a::{real-normed-field,banach} star
assumes x ∈ Infinitesimal
shows ( ∗f ∗ cos) x ≈ 1
〈proof 〉

lemma STAR-tan-zero [simp]: ( ∗f ∗ tan) 0 = 0
〈proof 〉

lemma STAR-tan-Infinitesimal [simp]:
assumes x ∈ Infinitesimal
shows ( ∗f ∗ tan) x ≈ x
〈proof 〉

lemma STAR-sin-cos-Infinitesimal-mult:
fixes x :: ′a::{real-normed-field,banach} star
shows x ∈ Infinitesimal =⇒ ( ∗f ∗ sin) x ∗ ( ∗f ∗ cos) x ≈ x
〈proof 〉

lemma HFinite-pi: hypreal-of-real pi ∈ HFinite
〈proof 〉

lemma STAR-sin-Infinitesimal-divide:
fixes x :: ′a::{real-normed-field,banach} star
shows [[x ∈ Infinitesimal; x 6= 0 ]] =⇒ ( ∗f ∗ sin) x/x ≈ 1
〈proof 〉

14.2 Proving sin ∗(1/n)× 1/(1/n) ≈ 1 for n =∞
lemma lemma-sin-pi:

n ∈ HNatInfinite
=⇒ ( ∗f ∗ sin) (inverse (hypreal-of-hypnat n))/(inverse (hypreal-of-hypnat n))

≈ 1
〈proof 〉

lemma STAR-sin-inverse-HNatInfinite:
n ∈ HNatInfinite
=⇒ ( ∗f ∗ sin) (inverse (hypreal-of-hypnat n)) ∗ hypreal-of-hypnat n ≈ 1

〈proof 〉
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lemma Infinitesimal-pi-divide-HNatInfinite:
N ∈ HNatInfinite
=⇒ hypreal-of-real pi/(hypreal-of-hypnat N ) ∈ Infinitesimal

〈proof 〉

lemma pi-divide-HNatInfinite-not-zero [simp]:
N ∈ HNatInfinite =⇒ hypreal-of-real pi/(hypreal-of-hypnat N ) 6= 0
〈proof 〉

lemma STAR-sin-pi-divide-HNatInfinite-approx-pi:
assumes n ∈ HNatInfinite
shows (∗f ∗ sin) (hypreal-of-real pi / hypreal-of-hypnat n) ∗ hypreal-of-hypnat n
≈

hypreal-of-real pi
〈proof 〉

lemma STAR-sin-pi-divide-HNatInfinite-approx-pi2 :
n ∈ HNatInfinite
=⇒ hypreal-of-hypnat n ∗ ( ∗f ∗ sin) (hypreal-of-real pi/(hypreal-of-hypnat n))

≈ hypreal-of-real pi
〈proof 〉

lemma starfunNat-pi-divide-n-Infinitesimal:
N ∈ HNatInfinite =⇒ ( ∗f ∗ (λx. pi / real x)) N ∈ Infinitesimal

〈proof 〉

lemma STAR-sin-pi-divide-n-approx:
assumes N ∈ HNatInfinite
shows ( ∗f ∗ sin) (( ∗f ∗ (λx. pi / real x)) N ) ≈ hypreal-of-real pi/(hypreal-of-hypnat

N )
〈proof 〉

lemma NSLIMSEQ-sin-pi: (λn. real n ∗ sin (pi / real n)) −−−−→NS pi
〈proof 〉

lemma NSLIMSEQ-cos-one: (λn. cos (pi / real n))−−−−→NS 1
〈proof 〉

lemma NSLIMSEQ-sin-cos-pi:
(λn. real n ∗ sin (pi / real n) ∗ cos (pi / real n)) −−−−→NS pi
〈proof 〉

A familiar approximation to cos x when x is small
lemma STAR-cos-Infinitesimal-approx:

fixes x :: ′a::{real-normed-field,banach} star
shows x ∈ Infinitesimal =⇒ ( ∗f ∗ cos) x ≈ 1 − x2

〈proof 〉

lemma STAR-cos-Infinitesimal-approx2 :
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fixes x :: hypreal
assumes x ∈ Infinitesimal
shows ( ∗f ∗ cos) x ≈ 1 − (x2)/2
〈proof 〉

end

15 Non-Standard Complex Analysis
theory NSCA
imports NSComplex HTranscendental
begin

abbreviation

SComplex :: hcomplex set where
SComplex ≡ Standard

definition — standard part map
stc :: hcomplex => hcomplex where
stc x = (SOME r . x ∈ HFinite ∧ r∈SComplex ∧ r ≈ x)

15.1 Closure Laws for SComplex, the Standard Complex
Numbers

lemma SComplex-minus-iff [simp]: (−x ∈ SComplex) = (x ∈ SComplex)
〈proof 〉

lemma SComplex-add-cancel:
[[x + y ∈ SComplex; y ∈ SComplex]] =⇒ x ∈ SComplex
〈proof 〉

lemma SReal-hcmod-hcomplex-of-complex [simp]:
hcmod (hcomplex-of-complex r) ∈ �
〈proof 〉

lemma SReal-hcmod-numeral: hcmod (numeral w ::hcomplex) ∈ �
〈proof 〉

lemma SReal-hcmod-SComplex: x ∈ SComplex =⇒ hcmod x ∈ �
〈proof 〉

lemma SComplex-divide-numeral:
r ∈ SComplex =⇒ r/(numeral w::hcomplex) ∈ SComplex
〈proof 〉

lemma SComplex-UNIV-complex:
{x. hcomplex-of-complex x ∈ SComplex} = (UNIV ::complex set)
〈proof 〉
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lemma SComplex-iff : (x ∈ SComplex) = (∃ y. x = hcomplex-of-complex y)
〈proof 〉

lemma hcomplex-of-complex-image:
range hcomplex-of-complex = SComplex
〈proof 〉

lemma inv-hcomplex-of-complex-image: inv hcomplex-of-complex ‘SComplex = UNIV
〈proof 〉

lemma SComplex-hcomplex-of-complex-image:
[[∃ x. x ∈ P; P ≤ SComplex]] =⇒ ∃Q. P = hcomplex-of-complex ‘ Q

〈proof 〉

lemma SComplex-SReal-dense:
[[x ∈ SComplex; y ∈ SComplex; hcmod x < hcmod y
]] =⇒ ∃ r ∈ Reals. hcmod x< r ∧ r < hcmod y

〈proof 〉

15.2 The Finite Elements form a Subring
lemma HFinite-hcmod-hcomplex-of-complex [simp]:

hcmod (hcomplex-of-complex r) ∈ HFinite
〈proof 〉

lemma HFinite-hcmod-iff [simp]: hcmod x ∈ HFinite ←→ x ∈ HFinite
〈proof 〉

lemma HFinite-bounded-hcmod:
[[x ∈ HFinite; y ≤ hcmod x; 0 ≤ y]] =⇒ y ∈ HFinite
〈proof 〉

15.3 The Complex Infinitesimals form a Subring
lemma Infinitesimal-hcmod-iff :
(z ∈ Infinitesimal) = (hcmod z ∈ Infinitesimal)
〈proof 〉

lemma HInfinite-hcmod-iff : (z ∈ HInfinite) = (hcmod z ∈ HInfinite)
〈proof 〉

lemma HFinite-diff-Infinitesimal-hcmod:
x ∈ HFinite − Infinitesimal =⇒ hcmod x ∈ HFinite − Infinitesimal
〈proof 〉

lemma hcmod-less-Infinitesimal:
[[e ∈ Infinitesimal; hcmod x < hcmod e]] =⇒ x ∈ Infinitesimal
〈proof 〉
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lemma hcmod-le-Infinitesimal:
[[e ∈ Infinitesimal; hcmod x ≤ hcmod e]] =⇒ x ∈ Infinitesimal
〈proof 〉

15.4 The “Infinitely Close” Relation
lemma approx-SComplex-mult-cancel-zero:
[[a ∈ SComplex; a 6= 0 ; a∗x ≈ 0 ]] =⇒ x ≈ 0
〈proof 〉

lemma approx-mult-SComplex1 : [[a ∈ SComplex; x ≈ 0 ]] =⇒ x∗a ≈ 0
〈proof 〉

lemma approx-mult-SComplex2 : [[a ∈ SComplex; x ≈ 0 ]] =⇒ a∗x ≈ 0
〈proof 〉

lemma approx-mult-SComplex-zero-cancel-iff [simp]:
[[a ∈ SComplex; a 6= 0 ]] =⇒ (a∗x ≈ 0 ) = (x ≈ 0 )
〈proof 〉

lemma approx-SComplex-mult-cancel:
[[a ∈ SComplex; a 6= 0 ; a∗w ≈ a∗z]] =⇒ w ≈ z

〈proof 〉

lemma approx-SComplex-mult-cancel-iff1 [simp]:
[[a ∈ SComplex; a 6= 0 ]] =⇒ (a∗w ≈ a∗z) = (w ≈ z)

〈proof 〉

lemma approx-hcmod-approx-zero: (x ≈ y) = (hcmod (y − x) ≈ 0 )
〈proof 〉

lemma approx-approx-zero-iff : (x ≈ 0 ) = (hcmod x ≈ 0 )
〈proof 〉

lemma approx-minus-zero-cancel-iff [simp]: (−x ≈ 0 ) = (x ≈ 0 )
〈proof 〉

lemma Infinitesimal-hcmod-add-diff :
u ≈ 0 =⇒ hcmod(x + u) − hcmod x ∈ Infinitesimal

〈proof 〉

lemma approx-hcmod-add-hcmod: u ≈ 0 =⇒ hcmod(x + u) ≈ hcmod x
〈proof 〉

15.5 Zero is the Only Infinitesimal Complex Number
lemma Infinitesimal-less-SComplex:
[[x ∈ SComplex; y ∈ Infinitesimal; 0 < hcmod x]] =⇒ hcmod y < hcmod x



THEORY “NSCA” 120

〈proof 〉

lemma SComplex-Int-Infinitesimal-zero: SComplex Int Infinitesimal = {0}
〈proof 〉

lemma SComplex-Infinitesimal-zero:
[[x ∈ SComplex; x ∈ Infinitesimal]] =⇒ x = 0
〈proof 〉

lemma SComplex-HFinite-diff-Infinitesimal:
[[x ∈ SComplex; x 6= 0 ]] =⇒ x ∈ HFinite − Infinitesimal
〈proof 〉

lemma numeral-not-Infinitesimal [simp]:
numeral w 6= (0 ::hcomplex) =⇒ (numeral w::hcomplex) /∈ Infinitesimal
〈proof 〉

lemma approx-SComplex-not-zero:
[[y ∈ SComplex; x ≈ y; y 6= 0 ]] =⇒ x 6= 0
〈proof 〉

lemma SComplex-approx-iff :
[[x ∈ SComplex; y ∈ SComplex]] =⇒ (x ≈ y) = (x = y)
〈proof 〉

lemma approx-unique-complex:
[[r ∈ SComplex; s ∈ SComplex; r ≈ x; s ≈ x]] =⇒ r = s
〈proof 〉

15.6 Properties of hRe, hIm and HComplex
lemma abs-hRe-le-hcmod:

∧
x. |hRe x| ≤ hcmod x

〈proof 〉

lemma abs-hIm-le-hcmod:
∧

x. |hIm x| ≤ hcmod x
〈proof 〉

lemma Infinitesimal-hRe: x ∈ Infinitesimal =⇒ hRe x ∈ Infinitesimal
〈proof 〉

lemma Infinitesimal-hIm: x ∈ Infinitesimal =⇒ hIm x ∈ Infinitesimal
〈proof 〉

lemma Infinitesimal-HComplex:
assumes x: x ∈ Infinitesimal and y: y ∈ Infinitesimal
shows HComplex x y ∈ Infinitesimal
〈proof 〉

lemma hcomplex-Infinitesimal-iff :
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(x ∈ Infinitesimal) ←→ (hRe x ∈ Infinitesimal ∧ hIm x ∈ Infinitesimal)
〈proof 〉

lemma hRe-diff [simp]:
∧

x y. hRe (x − y) = hRe x − hRe y
〈proof 〉

lemma hIm-diff [simp]:
∧

x y. hIm (x − y) = hIm x − hIm y
〈proof 〉

lemma approx-hRe: x ≈ y =⇒ hRe x ≈ hRe y
〈proof 〉

lemma approx-hIm: x ≈ y =⇒ hIm x ≈ hIm y
〈proof 〉

lemma approx-HComplex:
[[a ≈ b; c ≈ d]] =⇒ HComplex a c ≈ HComplex b d
〈proof 〉

lemma hcomplex-approx-iff :
(x ≈ y) = (hRe x ≈ hRe y ∧ hIm x ≈ hIm y)
〈proof 〉

lemma HFinite-hRe: x ∈ HFinite =⇒ hRe x ∈ HFinite
〈proof 〉

lemma HFinite-hIm: x ∈ HFinite =⇒ hIm x ∈ HFinite
〈proof 〉

lemma HFinite-HComplex:
assumes x ∈ HFinite y ∈ HFinite
shows HComplex x y ∈ HFinite
〈proof 〉

lemma hcomplex-HFinite-iff :
(x ∈ HFinite) = (hRe x ∈ HFinite ∧ hIm x ∈ HFinite)
〈proof 〉

lemma hcomplex-HInfinite-iff :
(x ∈ HInfinite) = (hRe x ∈ HInfinite ∨ hIm x ∈ HInfinite)
〈proof 〉

lemma hcomplex-of-hypreal-approx-iff [simp]:
(hcomplex-of-hypreal x ≈ hcomplex-of-hypreal z) = (x ≈ z)
〈proof 〉

lemma stc-part-Ex:
assumes x ∈ HFinite
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shows ∃ t ∈ SComplex. x ≈ t
〈proof 〉

lemma stc-part-Ex1 : x ∈ HFinite =⇒ ∃ !t. t ∈ SComplex ∧ x ≈ t
〈proof 〉

15.7 Theorems About Monads
lemma monad-zero-hcmod-iff : (x ∈ monad 0 ) = (hcmod x ∈ monad 0 )
〈proof 〉

15.8 Theorems About Standard Part
lemma stc-approx-self : x ∈ HFinite =⇒ stc x ≈ x
〈proof 〉

lemma stc-SComplex: x ∈ HFinite =⇒ stc x ∈ SComplex
〈proof 〉

lemma stc-HFinite: x ∈ HFinite =⇒ stc x ∈ HFinite
〈proof 〉

lemma stc-unique: [[y ∈ SComplex; y ≈ x]] =⇒ stc x = y
〈proof 〉

lemma stc-SComplex-eq [simp]: x ∈ SComplex =⇒ stc x = x
〈proof 〉

lemma stc-eq-approx:
[[x ∈ HFinite; y ∈ HFinite; stc x = stc y]] =⇒ x ≈ y
〈proof 〉

lemma approx-stc-eq:
[[x ∈ HFinite; y ∈ HFinite; x ≈ y]] =⇒ stc x = stc y

〈proof 〉

lemma stc-eq-approx-iff :
[[x ∈ HFinite; y ∈ HFinite]] =⇒ (x ≈ y) = (stc x = stc y)
〈proof 〉

lemma stc-Infinitesimal-add-SComplex:
[[x ∈ SComplex; e ∈ Infinitesimal]] =⇒ stc(x + e) = x
〈proof 〉

lemma stc-Infinitesimal-add-SComplex2 :
[[x ∈ SComplex; e ∈ Infinitesimal]] =⇒ stc(e + x) = x
〈proof 〉

lemma HFinite-stc-Infinitesimal-add:
x ∈ HFinite =⇒ ∃ e ∈ Infinitesimal. x = stc(x) + e
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〈proof 〉

lemma stc-add:
[[x ∈ HFinite; y ∈ HFinite]] =⇒ stc (x + y) = stc(x) + stc(y)
〈proof 〉

lemma stc-zero: stc 0 = 0
〈proof 〉

lemma stc-one: stc 1 = 1
〈proof 〉

lemma stc-minus: y ∈ HFinite =⇒ stc(−y) = −stc(y)
〈proof 〉

lemma stc-diff :
[[x ∈ HFinite; y ∈ HFinite]] =⇒ stc (x−y) = stc(x) − stc(y)
〈proof 〉

lemma stc-mult:
[[x ∈ HFinite; y ∈ HFinite]]

=⇒ stc (x ∗ y) = stc(x) ∗ stc(y)
〈proof 〉

lemma stc-Infinitesimal: x ∈ Infinitesimal =⇒ stc x = 0
〈proof 〉

lemma stc-not-Infinitesimal: stc(x) 6= 0 =⇒ x /∈ Infinitesimal
〈proof 〉

lemma stc-inverse:
[[x ∈ HFinite; stc x 6= 0 ]] =⇒ stc(inverse x) = inverse (stc x)
〈proof 〉

lemma stc-divide [simp]:
[[x ∈ HFinite; y ∈ HFinite; stc y 6= 0 ]]

=⇒ stc(x/y) = (stc x) / (stc y)
〈proof 〉

lemma stc-idempotent [simp]: x ∈ HFinite =⇒ stc(stc(x)) = stc(x)
〈proof 〉

lemma HFinite-HFinite-hcomplex-of-hypreal:
z ∈ HFinite =⇒ hcomplex-of-hypreal z ∈ HFinite
〈proof 〉

lemma SComplex-SReal-hcomplex-of-hypreal:
x ∈ � =⇒ hcomplex-of-hypreal x ∈ SComplex

〈proof 〉
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lemma stc-hcomplex-of-hypreal:
z ∈ HFinite =⇒ stc(hcomplex-of-hypreal z) = hcomplex-of-hypreal (st z)
〈proof 〉

lemma hmod-stc-eq:
assumes x ∈ HFinite
shows hcmod(stc x) = st(hcmod x)
〈proof 〉

lemma Infinitesimal-hcnj-iff [simp]:
(hcnj z ∈ Infinitesimal) ←→ (z ∈ Infinitesimal)
〈proof 〉

end

16 Star-transforms in NSA, Extending Sets of Com-
plex Numbers and Complex Functions

theory CStar
imports NSCA

begin

16.1 Properties of the ∗-Transform Applied to Sets of Reals
lemma STARC-hcomplex-of-complex-Int: ∗s∗ X ∩ SComplex = hcomplex-of-complex
‘ X
〈proof 〉

lemma lemma-not-hcomplexA: x /∈ hcomplex-of-complex ‘ A =⇒ ∀ y ∈ A. x 6=
hcomplex-of-complex y
〈proof 〉

16.2 Theorems about Nonstandard Extensions of Functions
lemma starfunC-hcpow:

∧
Z . ( ∗f ∗ (λz. z ^ n)) Z = Z pow hypnat-of-nat n

〈proof 〉

lemma starfunCR-cmod: ∗f ∗ cmod = hcmod
〈proof 〉

16.3 Internal Functions - Some Redundancy With ∗f ∗ Now
lemma starfun-Re: ( ∗f ∗ (λx. Re (f x))) = (λx. hRe (( ∗f ∗ f ) x))
〈proof 〉

lemma starfun-Im: ( ∗f ∗ (λx. Im (f x))) = (λx. hIm (( ∗f ∗ f ) x))
〈proof 〉
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lemma starfunC-eq-Re-Im-iff :
( ∗f ∗ f ) x = z ←→ ( ∗f ∗ (λx. Re (f x))) x = hRe z ∧ ( ∗f ∗ (λx. Im (f x))) x =

hIm z
〈proof 〉

lemma starfunC-approx-Re-Im-iff :
( ∗f ∗ f ) x ≈ z ←→ ( ∗f ∗ (λx. Re (f x))) x ≈ hRe z ∧ ( ∗f ∗ (λx. Im (f x))) x ≈

hIm z
〈proof 〉

end

17 Limits, Continuity and Differentiation for Com-
plex Functions

theory CLim
imports CStar

begin

declare epsilon-not-zero [simp]

lemma lemma-complex-mult-inverse-squared [simp]: x 6= 0 =⇒ x ∗ (inverse x)2 =
inverse x

for x :: complex
〈proof 〉

Changing the quantified variable. Install earlier?
lemma all-shift: (∀ x:: ′a::comm-ring-1 . P x) ←→ (∀ x. P (x − a))
〈proof 〉

17.1 Limit of Complex to Complex Function
lemma NSLIM-Re: f −a→NS L =⇒ (λx. Re (f x)) −a→NS Re L
〈proof 〉

lemma NSLIM-Im: f −a→NS L =⇒ (λx. Im (f x)) −a→NS Im L
〈proof 〉

lemma LIM-Re: f −a→ L =⇒ (λx. Re (f x)) −a→ Re L
for f :: ′a::real-normed-vector ⇒ complex
〈proof 〉

lemma LIM-Im: f −a→ L =⇒ (λx. Im (f x)) −a→ Im L
for f :: ′a::real-normed-vector ⇒ complex
〈proof 〉
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lemma LIM-cnj: f −a→ L =⇒ (λx. cnj (f x)) −a→ cnj L
for f :: ′a::real-normed-vector ⇒ complex
〈proof 〉

lemma LIM-cnj-iff : ((λx. cnj (f x)) −a→ cnj L) ←→ f −a→ L
for f :: ′a::real-normed-vector ⇒ complex
〈proof 〉

lemma starfun-norm: ( ∗f ∗ (λx. norm (f x))) = (λx. hnorm (( ∗f ∗ f ) x))
〈proof 〉

lemma star-of-Re [simp]: star-of (Re x) = hRe (star-of x)
〈proof 〉

lemma star-of-Im [simp]: star-of (Im x) = hIm (star-of x)
〈proof 〉

Another equivalence result.
lemma NSCLIM-NSCRLIM-iff : f −x→NS L ←→ (λy. cmod (f y − L)) −x→NS

0
〈proof 〉

Much, much easier standard proof.
lemma CLIM-CRLIM-iff : f −x→ L ←→ (λy. cmod (f y − L)) −x→ 0

for f :: ′a::real-normed-vector ⇒ complex
〈proof 〉

So this is nicer nonstandard proof.
lemma NSCLIM-NSCRLIM-iff2 : f −x→NS L ←→ (λy. cmod (f y − L)) −x→NS

0
〈proof 〉

lemma NSLIM-NSCRLIM-Re-Im-iff :
f −a→NS L ←→ (λx. Re (f x)) −a→NS Re L ∧ (λx. Im (f x)) −a→NS Im L
〈proof 〉

lemma LIM-CRLIM-Re-Im-iff : f −a→ L ←→ (λx. Re (f x)) −a→ Re L ∧ (λx.
Im (f x)) −a→ Im L

for f :: ′a::real-normed-vector ⇒ complex
〈proof 〉

17.2 Continuity
lemma NSLIM-isContc-iff : f −a→NS f a ←→ (λh. f (a + h)) −0→NS f a
〈proof 〉

17.3 Functions from Complex to Reals
lemma isNSContCR-cmod [simp]: isNSCont cmod a
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〈proof 〉

lemma isContCR-cmod [simp]: isCont cmod a
〈proof 〉

lemma isCont-Re: isCont f a =⇒ isCont (λx. Re (f x)) a
for f :: ′a::real-normed-vector ⇒ complex
〈proof 〉

lemma isCont-Im: isCont f a =⇒ isCont (λx. Im (f x)) a
for f :: ′a::real-normed-vector ⇒ complex
〈proof 〉

17.4 Differentiation of Natural Number Powers
lemma CDERIV-pow [simp]: DERIV (λx. x ^ n) x :> complex-of-real (real n) ∗
(x ^ (n − Suc 0 ))
〈proof 〉

Nonstandard version.
lemma NSCDERIV-pow: NSDERIV (λx. x ^ n) x :> complex-of-real (real n) ∗
(x ^ (n − 1 ))
〈proof 〉

Can’t relax the premise x 6= 0 : it isn’t continuous at zero.
lemma NSCDERIV-inverse: x 6= 0 =⇒ NSDERIV (λx. inverse x) x :> − (inverse
x)2

for x :: complex
〈proof 〉

lemma CDERIV-inverse: x 6= 0 =⇒ DERIV (λx. inverse x) x :> − (inverse x)2
for x :: complex
〈proof 〉

17.5 Derivative of Reciprocals (Function inverse)
lemma CDERIV-inverse-fun:

DERIV f x :> d =⇒ f x 6= 0 =⇒ DERIV (λx. inverse (f x)) x :> − (d ∗ inverse
((f x)2))

for x :: complex
〈proof 〉

lemma NSCDERIV-inverse-fun:
NSDERIV f x :> d =⇒ f x 6= 0 =⇒ NSDERIV (λx. inverse (f x)) x :> − (d ∗

inverse ((f x)2))
for x :: complex
〈proof 〉
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17.6 Derivative of Quotient
lemma CDERIV-quotient:

DERIV f x :> d =⇒ DERIV g x :> e =⇒ g(x) 6= 0 =⇒
DERIV (λy. f y / g y) x :> (d ∗ g x − (e ∗ f x)) / (g x)2

for x :: complex
〈proof 〉

lemma NSCDERIV-quotient:
NSDERIV f x :> d =⇒ NSDERIV g x :> e =⇒ g x 6= (0 ::complex) =⇒

NSDERIV (λy. f y / g y) x :> (d ∗ g x − (e ∗ f x)) / (g x)2
〈proof 〉

17.7 Caratheodory Formulation of Derivative at a Point: Stan-
dard Proof

lemma CARAT-CDERIVD:
(∀ z. f z − f x = g z ∗ (z − x)) ∧ isNSCont g x ∧ g x = l =⇒ NSDERIV f x :> l
〈proof 〉

end

18 Logarithms: Non-Standard Version
theory HLog

imports HTranscendental
begin

definition powhr :: hypreal ⇒ hypreal ⇒ hypreal (infixr ‹powhr› 80 )
where [transfer-unfold]: x powhr a = starfun2 (powr) x a

definition hlog :: hypreal ⇒ hypreal ⇒ hypreal
where [transfer-unfold]: hlog a x = starfun2 log a x

lemma powhr : (star-n X) powhr (star-n Y ) = star-n (λn. (X n) powr (Y n))
〈proof 〉

lemma powhr-one-eq-one [simp]:
∧

a. 1 powhr a = 1
〈proof 〉

lemma powhr-mult:
∧

a x y. 0 < x =⇒ 0 < y =⇒ (x ∗ y) powhr a = (x powhr a)
∗ (y powhr a)
〈proof 〉

lemma powhr-gt-zero [simp]:
∧

a x. 0 < x powhr a ←→ x 6= 0
〈proof 〉

lemma powhr-not-zero [simp]:
∧

a x. x powhr a 6= 0 ←→ x 6= 0
〈proof 〉
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lemma powhr-divide:
∧

a x y. 0 ≤ x =⇒ 0 ≤ y =⇒ (x / y) powhr a = (x powhr
a) / (y powhr a)
〈proof 〉

lemma powhr-add:
∧

a b x. x powhr (a + b) = (x powhr a) ∗ (x powhr b)
〈proof 〉

lemma powhr-powhr :
∧

a b x. (x powhr a) powhr b = x powhr (a ∗ b)
〈proof 〉

lemma powhr-powhr-swap:
∧

a b x. (x powhr a) powhr b = (x powhr b) powhr a
〈proof 〉

lemma powhr-minus:
∧

a x. x powhr (− a) = inverse (x powhr a)
〈proof 〉

lemma powhr-minus-divide: x powhr (− a) = 1 / (x powhr a)
〈proof 〉

lemma powhr-less-mono:
∧

a b x. a < b =⇒ 1 < x =⇒ x powhr a < x powhr b
〈proof 〉

lemma powhr-less-cancel:
∧

a b x. x powhr a < x powhr b =⇒ 1 < x =⇒ a < b
〈proof 〉

lemma powhr-less-cancel-iff [simp]: 1 < x =⇒ x powhr a < x powhr b ←→ a < b
〈proof 〉

lemma powhr-le-cancel-iff [simp]: 1 < x =⇒ x powhr a ≤ x powhr b ←→ a ≤ b
〈proof 〉

lemma hlog: hlog (star-n X) (star-n Y ) = star-n (λn. log (X n) (Y n))
〈proof 〉

lemma hlog-starfun-ln:
∧

x. ( ∗f ∗ ln) x = hlog (( ∗f ∗ exp) 1 ) x
〈proof 〉

lemma powhr-hlog-cancel [simp]:
∧

a x. 0 < a =⇒ a 6= 1 =⇒ 0 < x =⇒ a powhr
(hlog a x) = x
〈proof 〉

lemma hlog-powhr-cancel [simp]:
∧

a y. 0 < a =⇒ a 6= 1 =⇒ hlog a (a powhr y)
= y
〈proof 〉

lemma hlog-mult:∧
a x y. hlog a (x ∗ y) = (if x 6=0 ∧ y 6=0 then hlog a x + hlog a y else 0 )
〈proof 〉
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lemma hlog-as-starfun:
∧

a x. 0 < a =⇒ a 6= 1 =⇒ hlog a x = ( ∗f ∗ ln) x / (
∗f ∗ ln) a
〈proof 〉

lemma hlog-eq-div-starfun-ln-mult-hlog:∧
a b x. 0 < a =⇒ a 6= 1 =⇒ 0 < b =⇒ b 6= 1 =⇒ 0 < x =⇒
hlog a x = (( ∗f ∗ ln) b / ( ∗f ∗ ln) a) ∗ hlog b x
〈proof 〉

lemma powhr-as-starfun:
∧

a x. x powhr a = (if x = 0 then 0 else ( ∗f ∗ exp) (a ∗
( ∗f ∗ real-ln) x))
〈proof 〉

lemma HInfinite-powhr :
x ∈ HInfinite =⇒ 0 < x =⇒ a ∈ HFinite − Infinitesimal =⇒ 0 < a =⇒ x powhr

a ∈ HInfinite
〈proof 〉

lemma hlog-hrabs-HInfinite-Infinitesimal:
x ∈ HFinite − Infinitesimal =⇒ a ∈ HInfinite =⇒ 0 < a =⇒ hlog a |x| ∈

Infinitesimal
〈proof 〉

lemma hlog-HInfinite-as-starfun: a ∈ HInfinite =⇒ 0 < a =⇒ hlog a x = ( ∗f ∗
ln) x / ( ∗f ∗ ln) a
〈proof 〉

lemma hlog-one [simp]:
∧

a. hlog a 1 = 0
〈proof 〉

lemma hlog-eq-one [simp]:
∧

a. 0 < a =⇒ a 6= 1 =⇒ hlog a a = 1
〈proof 〉

lemma hlog-inverse:
∧

a x. hlog a (inverse x) = − hlog a x
〈proof 〉

lemma hlog-divide: hlog a (x / y) = (if x 6=0 ∧ y 6=0 then hlog a x − hlog a y else
0 )
〈proof 〉

lemma hlog-less-cancel-iff [simp]:∧
a x y. 1 < a =⇒ 0 < x =⇒ 0 < y =⇒ hlog a x < hlog a y ←→ x < y
〈proof 〉

lemma hlog-le-cancel-iff [simp]: 1 < a =⇒ 0 < x =⇒ 0 < y =⇒ hlog a x ≤ hlog
a y ←→ x ≤ y
〈proof 〉
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end

theory Hyperreal
imports HLog
begin

end
theory Hypercomplex
imports CLim Hyperreal
begin

end

theory Nonstandard-Analysis
imports Hypercomplex
begin

end
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