[sabelle/HOL-NSA — Non-Standard Analysis

January 18, 2026

Contents

1 Filters and Ultrafilters
1.1 Definitions and basic properties
1.1.1 Ultrafilters
1.2 Maximal filter = Ultrafilter
1.3 Ultrafilter Theorem
1.3.1 Free Ultrafilters

2 Construction of Star Types Using Ultrafilters
2.1 A Free Ultrafilter over the Naturals.
2.2 Definition of star type constructor
2.3 Transfer principle
2.4 Standard elements
2.5 Imternal functions L.
2.6 Internal predicates
2.7 Imternalsets
2.8 Syntacticclasses oo
2.9 Ordering and lattice classes
2.10 Ordered group classes
2.11 Ring and field classes
2.12 Power e e
2.13 Number classes
2.14 Finite class

3 Hypernatural numbers

3.1 Properties Transferred from Naturals
3.2 Properties of the set of embedded natural numbers
3.3 Infinite Hypernatural Numbers — HNatInfinite
331 ClosureRules
3.4 Existence of an infinite hypernatural number

3.4.1 Alternative characterization of the set of infinite hy-
pernaturals

3.4.2 Alternative Characterization of HNatInfinite using Free

Ultrafilter 28

3.5 Embedding of the Hypernaturals into other types 28
4 Construction of Hyperreals Using Ultrafilters 29
4.1 Real vector class instances L. 30
4.2 Injection from hyprealo 30
4.3 Properties of starrel Lo 31
4.4 hypreal-of-real: the Injection from real to hypreal 32
4.5 Propertiesof star-n. L oL 32
4.6 Existence of Infinite Hyperreal Number 33
4.7 FEmbedding the Naturals into the Hyperreals 33
4.8 Exponentials on the Hyperreals 33
4.9 Powers with Hypernatural Exponents 34

5 Infinite Numbers, Infinitesimals, Infinitely Close Relation 36

5.1 Nonstandard Extension of the Norm Function 37
5.2 Closure Laws for the Standard Reals 39
5.3 Set of Finite Elements is a Subring of the Extended Reals . . 40
5.4 Set of Infinitesimals is a Subring of the Hyperreals 41
5.5 The Infinitely Close Relation 45
5.6 Zero is the Only Infinitesimal that is also a Real 49
6 Standard Part Theorem 51
6.1 Uniqueness: Two Infinitely Close Reals are Equal 51
6.2 Existence of Unique Real Infinitely Close 52
6.2.1 Lifting of the Ub and Lub Properties. 52

6.3 Finite, Infinite and Infinitesimal 53
6.4 Theorems about Monads 56
6.5 Proof that z ~ y implies |z| ~ [y| 57
6.6 More HFinite and Infinitesimal Theorems 58
6.7 Theorems about Standard Part 59
6.8 Alternative Definitions using Free Ultrafilter 62
6.8.1 HFinite 62
6.8.2 Hinfinite 62
6.8.3 Infinitesimal 62

6.9 Proof that w is an infinite number 63
7 Nonstandard Complex Numbers 65
7.0.1 Real and Imaginary parts 65
7.0.2 Imaginary unit 65
7.0.3 Complex conjugate 65
7.04 Argand 66

7.0.5 Injection from hyperreals 66

706 e (T4 1Y) . . oo
7.1 Properties of Nonstandard Real and Imaginary Parts
7.2 Addition for Nonstandard Complex Numbers
7.3 More Minus Laws,
7.4 More Multiplication Laws
7.5 Subtraction and Division.
7.6 Embedding Properties for hcomplex-of-hypreal Map
7.7 HCompler theorems
7.8 Modulus (Absolute Value) of Nonstandard Complex Number
7.9 Conjugation
7.10 More Theorems about the Function hecmod
7.11 Exponentiation 0oL
7.12 The Function hsgn

7121 hargo
7.13 Polar Form for Nonstandard Complex Numbers
7.14 hcomplex-of-complex: the Injection from type complex to to

hcompler
7.15 Numerals and Arithmetic

Star-Transforms in Non-Standard Analysis

8.1 Preamble - Pulling J overV
8.2 Properties of the Star-transform Applied to Sets of Reals

8.3 Theorems about nonstandard extensions of functions

Star-transforms for the Hypernaturals
9.1 Nonstandard Extensions of Functions.
9.2 Nonstandard Characterization of Induction

10 Sequences and Convergence (Nonstandard)

10.1 Limits of Sequences L.
10.1.1 Equivalence of LIMSEQ and NSLIMSEQ
10.1.2 Derived theorems about NSLIMSEQ

10.2 Convergenceo

10.3 Bounded Monotonic Sequences
10.3.1 Upper Bounds and Lubs of Bounded Sequences
10.3.2 A Bounded and Monotonic Sequence Converges

10.4 Cauchy Sequences
10.4.1 Equivalence Between NS and Standard
10.4.2 Cauchy Sequences are Bounded
10.4.3 Cauchy Sequences are Convergent

10.5 Power Sequences

11 Finite Summation and Infinite Series for Hyperreals 93
11.1 Nonstandard Sums 94
11.2 Infinite sums: Standard and NS theorems 95

12 Limits and Continuity (Nonstandard) 96
12.1 Limits of Functions 96

12.1.1 Equivalence of filterlim and NSLIM 98
12.2 Continuity o 98
12.3 Uniform Continuity 99

13 Differentiation (Nonstandard) 100
13.1 Derivatives e e 100
13.2 Lemmas e 102

13.2.1 Equivalence of NS and Standard definitions 104
13.2.2 Differentiability predicate 104
13.3 (NS) Increment 105

14 Nonstandard Extensions of Transcendental Functions 105
14.1 Nonstandard Extension of Square Root Function 105
14.2 Proving sinx(1/n) x 1/(1/n)~1forn=00 111

15 Non-Standard Complex Analysis 113
15.1 Closure Laws for SComplex, the Standard Complex Numbers 113
15.2 The Finite Elements form a Subring 114
15.3 The Complex Infinitesimals form a Subring 114
15.4 The “Infinitely Close” Relation 115
15.5 Zero is the Only Infinitesimal Complex Number 115
15.6 Properties of hRe, hIm and HComplex 116
15.7 Theorems About Monads 118
15.8 Theorems About Standard Part 118

16 Star-transforms in NSA, Extending Sets of Complex Num-

bers and Complex Functions 120
16.1 Properties of the x-Transform Applied to Sets of Reals 120
16.2 Theorems about Nonstandard Extensions of Functions 120
16.3 Internal Functions - Some Redundancy With xf+x Now 120
17 Limits, Continuity and Differentiation for Complex Func-
tions 121
17.1 Limit of Complex to Complex Function 121
17.2 Continuity 122
17.3 Functions from Complex to Reals 122
17.4 Differentiation of Natural Number Powers 123
17.5 Derivative of Reciprocals (Function inverse) 123

17.6 Derivative of Quotient 124

17.7 Caratheodory Formulation of Derivative at a Point: Standard

18 Logarithms: Non-Standard Version

[ipurer]

[[Tools]

(o)
[starDer
[HyperNat
p

NSComplex

NatStar

HTranscendental

Hyperreal

Hypercomplex

Nonstandard_Analysis

THEORY “Free-Ultrafilter” 7

1 Filters and Ultrafilters

theory Free-Ultrafilter
imports HOL— Library. Infinite-Set
begin

1.1 Definitions and basic properties
1.1.1 Ultrafilters

locale ultrafilter =

fixes F' :: 'a filter

assumes proper: F # bot

assumes ultra: eventually P F V eventually (Az. - P z) F
begin

lemma eventually-imp-frequently: frequently P F = eventually P F
(proof)

lemma frequently-eq-eventually: frequently P F = eventually P F
(proof)

lemma eventually-disj-iff: eventually (Ax. Pz V Q z) F <— eventually P F V
eventually Q F
(proof)

lemma eventually-all-iff: eventually (A\z. Vy. Pz y) F = (VY. eventually (Az. P
(proof)

lemma eventually-imp-iff: eventually (\x. Pz — @ z) F <— (eventually P F
— eventually Q F)

{proof)

lemma cventually-iff-iff: eventually (A\x. P x +— Q z) F <— (eventually P F
«—— eventually Q F)

{proof)

lemma eventually-not-iff: eventually (Az. = P x) F +— — eventually P F
(proof)

end

1.2 Maximal filter = Ultrafilter

A filter F is an ultrafilter iff it is a maximal filter, i.e. whenever G is a filter
and F C G then F = G

Lemma that shows existence of an extension to what was assumed to be a
maximal filter. Will be used to derive contradiction in proof of property of

THEORY “Free-Ultrafilter” 8

ultrafilter.

lemma extend-filter: frequently P F' —> inf F' (principal {z. P x}) # bot
(proof)

lemma maz-filter-ultrafilter:
assumes F' # bot
assumes maz: NG. G # bot = G < F = F = (G
shows ultrafilter F

{(proof)

lemma le-filter-frequently: F < G <— (V P. frequently P F — frequently P G)
(proof)

lemma (in ultrafilter) maz-filter:
assumes G: G # bot
and sub: G < F
shows F = G

(proof)

1.3 Ultrafilter Theorem

lemma ex-maz-ultrafilter:
fixes F :: 'a filter
assumes F: F # bot
shows F ULF. ultrafilter U

(proof)

1.3.1 Free Ultrafilters

There exists a free ultrafilter on any infinite set.

locale freeultrafilter = ultrafilter +
assumes infinite: eventually P F = infinite {x. P z}
begin

lemma finite: finite {z. P 1} = — eventually P F
(proof)

lemma finite”: finite {x. = P 2} = eventually P F
(proof)

lemma le-cofinite: F < cofinite
(proof)

lemma singleton: — eventually (Az. z = a) F
{proof)

lemma singleton”: — eventually ((=) a) F
(proof)

THEORY “StarDet”

lemma ultrafilter: ultrafilter F {proof)
end

lemma freeultrafilter-Ex:
assumes [simp]: infinite (UNIV :: 'a set)
shows 3 U::'a filter. freeultrafilter U
(proof)

end

2 Construction of Star Types Using Ultrafilters

theory StarDef
imports Free-Ultrafilter
begin
2.1 A Free Ultrafilter over the Naturals

definition FreeUltrafilterNat :: nat filter (WU»)
where U = (SOME U. freeultrafilter U)

lemma freeultrafilter- FreeUltrafilterNat: freeultrafilter U
(proof)

interpretation FreeUltrafilterNat: freeultrafilter U
(proof)

2.2 Definition of star type constructor
definition starrel :: ((nat = 'a) x (nat = 'a)) set

where starrel = {(X, Y). eventually (An. X n = Y n) U}
definition star = (UNIV :: (nat = 'a) set) // starrel

typedef ‘a star = star :: (nat = 'a) set set
{proof)

definition star-n :: (nat = 'a) = 'a star
where star-n X = Abs-star (starrel < {X})

theorem star-cases [case-names star-n, cases type: star]:
obtains X where z = star-n X

{proof)

lemma all-star-eq: (V. P z) +— (VX. P (star-n X))
{proof)

THEORY “StarDef” 10

lemma ex-star-eq: (3z. P z) +— (3X. P (star-n X))
{proof)

Proving that starrel is an equivalence relation.
lemma starrel-iff [iff]: (X, Y) € starrel <— eventually (An. X n =Y n) U
(proof)

lemma equiv-starrel: equiv UNIV starrel

(proof)
lemmas equiv-starrel-iff = eq-equiv-class-iff |OF equiv-starrel UNIV-I UNIV-I]

lemma starrel-in-star: starrel{z} € star
{proof)

lemma star-n-eq-iff: star-n X = star-n Y <— eventually (An. X n =Y n)U
(proof)

2.3 Transfer principle

This introduction rule starts each transfer proof.

lemma transfer-start: P = eventually (An. Q) U = Trueprop P = Trueprop Q
(proof)

Standard principles that play a central role in the transfer tactic.

definition Ifun :: (‘a = 'b) star = 'a star = 'b star
(<(<notation=<infiz *»- %/ -)» [300, 301] 300)
where Ifun f =
Az. Abs-star (|J F€Rep-star f. |J X€Rep-star . starrel*{ n. Fn (X n)})

lemma Ifun-congruent2: congruent2 starrel starrel (A\F X. starrel*{An. F n (X

n)})
(proof)

lemma Ifun-star-n: star-n F % star-n X = star-n (An. F n (X n))
{proof)

lemma transfer-Ifun: f = star-n F —> z = star-n X = f x & = star-n (An. F
n (X n))
(proof)
definition star-of :: 'a = 'a star
where star-of z = star-n (An. x)
Initialize transfer tactic.
(ML)

Transfer introduction rules.

THEORY “StarDef” 11

lemma transfer-ex [transfer-intro]:
(AX. p (star-n X) = eventually (An. P n (X n)) U) =
Jx::’a star. p x = eventually (An. z. Pnx) U

{proof)

lemma transfer-all [transfer-intro]:
(AX. p (star-n X) = eventually (An. P n (X n)) U) =
V::'a star. p x = eventually (An. Vz. Pnxz) U

{proof)

lemma transfer-not [transfer-intro]: p = eventually P U = — p = eventually (An.
- Pn)U
(proof)

lemma transfer-conj [transfer-intro):

p = eventually P U = q = eventually Q U = p A\ q¢ = eventually (An. P n A
Qn)U

(proof)

lemma transfer-disj [transfer-intro):

p = eventually P U = q = eventually Q U = p V q = eventually (An. P n V
Qn) U

(proof)

lemma transfer-imp [transfer-introl:

p = eventually PU = q = eventually QU = p — q = eventually (An. P n
— Qn)U

(proof)

lemma transfer-iff [transfer-intro):

p = eventually P U = q = eventually Q U = p = q = eventually (An. P n =
Qn)U

(proof)

lemma transfer-if-bool [transfer-intro):
p = eventually P U = x = eventually X U = y = eventually Y U =
(if p then z else y) = eventually (An. if P n then X n else Y n) U

{proof)

lemma transfer-eq [transfer-introl:
z = star-n X = y = star-n Y = x = y = eventually (An. X n=Y n) U
(proof)

lemma transfer-if [transfer-intro]:
p = eventually (An. P n) U = z = star-n X = y = star-n ¥ =
(if p then z else y) = star-n (An. if P n then X n else Y n)
(proof)

lemma transfer-fun-eq [transfer-introl:

THEORY “StarDef” 12

(AX. [(star-n X) = g (star-n X) = eventually (An. Fn (X n) = Gn (X n))
U) =
f =g = eventually (An. Fn= Gn) U
{proof)

lemma transfer-star-n [transfer-intro): star-n X = star-n (An. X n)
(proof)

lemma transfer-bool [transfer-intro|: p = eventually (An. p) U
(proof)

2.4 Standard elements

definition Standard :: 'a star set
where Standard = range star-of

Transfer tactic should remove occurrences of star-of.
(ML)

lemma star-of-inject: star-of x = star-of y +— z =y
(proof)

lemma Standard-star-of [simp]: star-of © € Standard
(proof)

2.5 Internal functions

Transfer tactic should remove occurrences of Ifun.

(ML)

lemma Ifun-star-of [simp]: star-of f * star-of x = star-of (f z)
(proof)

lemma Standard-Ifun [simp]: [€ Standard = x € Standard = f x = € Standard
(proof)

Nonstandard extensions of functions.

definition starfun :: (‘a = 'b) = 'a star = 'b star
(<(<open-block notation=<prefix starfunyy+fx -)> [80] 80)
where starfun f = Ax. star-of f x

definition starfun2 :: (‘la = 'b = '¢) = 'a star = 'b star = 'c star
(<(<open-block notation=<prefix starfun2yy+f2x -)» [80] 80)
where starfun2 f = Az y. star-of f x x x y

declare starfun-def [transfer-unfold)
declare starfun2-def [transfer-unfold)

THEORY “StarDef” 13

lemma starfun-star-n: («f* f) (star-n X) = star-n (An. f (X n))
{proof)

lemma starfun2-star-n: (*f2x f) (star-n X) (star-n Y) = star-n (An. f (X n) (V
n))

{proof)

lemma starfun-star-of [simp): (*fx* f) (star-of x) = star-of (f z)
{proof)

lemma starfun2-star-of [simp]: (*f2x f) (star-of) = *f* fz
(proof)

lemma Standard-starfun [simp]: x € Standard = starfun f z € Standard

(proof)

lemma Standard-starfun?2 [simp]: z € Standard = y € Standard = starfun? f
z y € Standard

{proof)

lemma Standard-starfun-iff:

assumes inj: Az y. fr=fy=z=y

shows starfun f x € Standard «— z € Standard
(proof)

lemma Standard-starfun2-iff:
assumes inj: Aaba' b. fab=fa' b= a=a"ANb=1V’
shows starfun2 f x y € Standard <— x € Standard N\ y € Standard
(proof)

2.6 Internal predicates

definition unstar :: bool star = bool
where unstar b +— b = star-of True

lemma unstar-star-n: unstar (star-n P) «— eventually P U
{proof)

lemma unstar-star-of [simp|: unstar (star-of p) = p
(proof)

Transfer tactic should remove occurrences of unstar.

(ML)

lemma transfer-unstar [transfer-introl: p = star-n P = unstar p = eventually P

u
(proof)

definition starP :: (‘a = bool) = 'a star = bool

THEORY “StarDef” 14

(<(<open-block notation=<prefix starP»yxpx -)» [80] 80)
where #px P = (\z. unstar (star-of P x x))

definition starP2 :: (‘a = 'b = bool) = 'a star = 'b star = bool
(<(<open-block notation=<prefix starP2y»*p2x% -)» [80] 80)
where #p2x P = (Az y. unstar (star-of P * z % y))

declare starP-def [transfer-unjfold)
declare starP2-def [transfer-unfold]

lemma starP-star-n: (xpx P) (star-n X) = eventually (An. P (X n)) U
(proof)

lemma starP2-star-n: (*p2x P) (star-n X) (star-n Y) = (eventually (An. P (X
n) (Y n)) U)
{proof)

lemma starP-star-of [simp]: (xpx P) (star-of z) = Pz
{proof)

lemma starP2-star-of [simp]: (*p2% P) (star-of t) = *px P x
{proof)

2.7 Internal sets

definition Iset :: 'a set star = 'a star set
where Iset A = {z. (*p2x (€)) z A}

lemma Iset-star-n: (star-n X € Iset (star-n A)) = (eventually (An. X n € A n)
U
{proof)

Transfer tactic should remove occurrences of Iset.

(ML)

lemma transfer-mem [transfer-introl:
z = star-n X = a = Iset (star-n A) = = € a = eventually (An. X n € A n)
U

{proof)

lemma transfer-Collect [transfer-intro):
(AX. p (star-n X) = eventually (An. Pn (X n)) U) =
Collect p = Iset (star-n (An. Collect (P n)))
{proof)

lemma transfer-set-eq [transfer-intro):

a = Iset (star-n A) = b = Iset (star-n B) = a = b = eventually (An. A n =
Bn)U

(proof)

THEORY “StarDef” 15

lemma transfer-ball [transfer-intro]:
a = Iset (star-n A) = (AX. p (star-n X) = eventually (An. Pn (X n)) U) =
Vazca. p x = eventually (An. Vz€A n. Pnx) U
(proof)

lemma transfer-bex [transfer-introl:
a = Iset (star-n A) = (AX. p (star-n X) = eventually (An. Pn (X n)) U) =
Jz€a. p x = eventually (An. 3z€A n. Pnz)U
{proof)

lemma transfer-Iset [transfer-intro|: a = star-n A = Iset a = Iset (star-n (An.

A n))
(proof)

Nonstandard extensions of sets.

definition starset :: ‘a set = 'a star set
(<(<open-block notation=<prefix starsety»xsx -)» [80] 80)
where starset A = Iset (star-of A)

declare starset-def [transfer-unfold]

lemma starset-mem: star-of x € xsx A «+— x € A
(proof)

lemma starset-UNIV: xsx (UNIV::'a set) = (UNIV::'a star set)
{proof)

lemma starset-empty: *sx {} = {}
{proof)

lemma starset-insert: xs* (insert x A) = insert (star-of z) (xsx A)
{proof)

lemma starset-Un: xsx (A U B) = xsx A U xsx B

{proof)

lemma starset-Int: xsx (A N B) = xsx A N xsx B
{proof)

lemma starset-Compl: xsx —A = —(*xsx A)
{proof)

lemma starset-diff: xsx (A — B) = xsx A — xsx B
(proof)

lemma starset-image: xsx (f < A) = («fx f) (xsx A)
{proof)

THEORY “StarDet”

lemma starset-vimage: xsx (f —°A) = (#f* f) —“ (xsx A)
{proof)

lemma starset-subset: (#sx A C xsx B) «+— A C B
(proof)

lemma starset-eq: (*sx A = xsx B) +— A =B
{proof)

lemmas starset-simps [simp] =
starset-mem starset-UNIV
starset-empty starset-insert
starset-Un starset-Int
starset-Compl starset-diff
starset-image starset-vimage
starset-subset starset-eq

2.8 Syntactic classes

instantiation star :: (zero) zero

begin
definition star-zero-def: 0 = star-of 0
instance (proof)

end

instantiation star :: (one) one

begin
definition star-one-def: 1 = star-of 1
instance (proof)

end

instantiation star :: (plus) plus

begin
definition star-add-def: (+) = *f2* (+)
instance (proof)

end

instantiation star :: (times) times

begin
definition star-mult-def: ((x)) = *f2% ((x))
instance (proof)

end

instantiation star :: (uminus) uminus

begin
definition star-minus-def: uminus = *xf* uminus
instance (proof)

end

16

THEORY “StarDef” 17

instantiation star :: (minus) minus
begin
definition star-diff-def: (=) = *f2% (—)
instance (proof)
end

instantiation star :: (abs) abs

begin
definition star-abs-def: abs = xfx abs
instance (proof)

end

instantiation star :: (sgn) sgn

begin
definition star-sgn-def: sgn = xfx sgn
instance (proof)

end

instantiation star :: (divide) divide

begin
definition star-divide-def: divide = xf2x divide
instance (proof)

end

instantiation star :: (inverse) inverse

begin
definition star-inverse-def: inverse = xfx inverse
instance (proof)

end

instance star :: (Rings.dvd) Rings.dvd (proof)

instantiation star :: (modulo) modulo

begin
definition star-mod-def: (mod) = xf2x (mod)
instance (proof)

end

instantiation star :: (ord) ord

begin
definition star-le-def: (g) = xp2x (_)
definition star-less-def: (<) = xp2x* (<)
instance (proof)

end

lemmas star-class-defs [transfer-unfold] =
star-zero-def — star-one-def
star-add-def star-diff-def star-minus-def
star-mult-def star-divide-def —star-inverse-def

THEORY “StarDef” 18

star-le-def star-less-def star-abs-def star-sgn-def
star-mod-def

Class operations preserve standard elements.
lemma Standard-zero: 0 € Standard

{proof)

lemma Standard-one: 1 € Standard
(proof)

lemma Standard-add: x € Standard = y € Standard = = + y € Standard
(proof)

lemma Standard-diff: x € Standard — y € Standard — © — y € Standard
(proof)

lemma Standard-minus: © € Standard = — x € Standard
(proof)

lemma Standard-mult: © € Standard = y € Standard = z x y € Standard
(proof)

lemma Standard-divide: x € Standard = y € Standard = z / y € Standard
(proof)

lemma Standard-inverse: © € Standard = inverse x € Standard
(proof)

lemma Standard-abs: x € Standard = |z| € Standard
(proof)

lemma Standard-mod: ¢ € Standard —> y € Standard = x mod y € Standard
(proof)

lemmas Standard-simps [simp] =

Standard-zero Standard-one

Standard-add Standard-diff — Standard-minus
Standard-mult Standard-divide Standard-inverse
Standard-abs Standard-mod

star-of preserves class operations.

lemma star-of-add: star-of (x + y) = star-of x + star-of y

(proof)

lemma star-of-diff: star-of (x — y) = star-of x — star-of y
(proof)

lemma star-of-minus: star-of (—z) = — star-of ©

{proof)

THEORY “StarDet”

lemma star-of-mult: star-of (z * y) = star-of © * star-of y
(proof)

lemma star-of-divide: star-of (x /| y) = star-of x /| star-of y
(proof)

lemma star-of-inverse: star-of (inverse x) = inverse (star-of x)
{proof)

lemma star-of-mod: star-of (x mod y) = star-of x mod star-of y
(proof)

lemma star-of-abs: star-of |z| = |star-of x|
(proof)

star-of preserves numerals.

lemma star-of-zero: star-of 0 = 0

(proof)

lemma star-of-one: star-of 1 = 1
(proof)

star-of preserves orderings.
lemma star-of-less: (star-of © < star-of y) = (z < y)

(proof)

lemma star-of-le: (star-of © < star-of y) = (z < y)
(proof)

lemma star-of-eq: (star-of x = star-of y) = (x = y)

(proof)
As above, for 0.

lemmas star-of-0-less = star-of-less [of 0, simplified star-of-zero)
lemmas star-of-0-le = star-of-le [of 0, simplified star-of-zero
lemmas star-of-0-eq = star-of-eq [of 0, simplified star-of-zero]

lemmas star-of-less-0 = star-of-less [of - 0, simplified star-of-zero]
lemmas star-of-le-0 = star-of-le [of - 0, simplified star-of-zero]
lemmas star-of-eq-0 = star-of-eq [of - 0, simplified star-of-zero)

As above, for 1.

lemmas star-of-1-less = star-of-less [of 1, simplified star-of-one]
lemmas star-of-1-le = star-of-le [of 1, simplified star-of-one]
lemmas star-of-1-eq = star-of-eq [of 1, simplified star-of-one]

lemmas star-of-less-1 = star-of-less [of - 1, simplified star-of-one]

19

THEORY “StarDef” 20

lemmas star-of-le-1 = star-of-le [of - 1, simplified star-of-one]
lemmas star-of-eq-1 = star-of-eq [of - 1, simplified star-of-one]

lemmas star-of-simps [simp] =
star-of-add star-of-diff star-of-minus
star-of-mult star-of-divide star-of-inverse
star-of-mod star-of-abs
star-of-zero star-of-one
star-of-less star-of-le star-of-eq
star-of-0-less star-of-0-le star-of-0-eq
star-of-less-0 star-of-le-0 star-of-eq-0
star-of-1-less star-of-1-le star-of-1-eq
star-of-less-1 star-of-le-1 star-of-eq-1

2.9 Ordering and lattice classes

instance star :: (order) order

(proof)

instantiation star :: (semilattice-inf) semilattice-inf
begin
definition star-inf-def [transfer-unfold): inf = *f2x inf
instance (proof)
end

instantiation star :: (semilattice-sup) semilattice-sup
begin
definition star-sup-def [transfer-unfold]: sup = *f2% sup
instance (proof)
end

instance star :: (lattice) lattice {proof)

instance star :: (distrib-lattice) distrib-lattice
{proof)

lemma Standard-inf [simp]: x € Standard = y € Standard = infz y € Standard
(proof)

lemma Standard-sup [simp]: x € Standard = y € Standard = sup = y € Stan-
dard

{proof)

lemma star-of-inf [simp]: star-of (inf z y) = inf (star-of x) (star-of y)
(proof)

lemma star-of-sup [simp]: star-of (sup z y) = sup (star-of x) (star-of y)
(proof)

THEORY “StarDef” 21

instance star :: (linorder) linorder
{proof)

lemma star-max-def [transfer-unfold]: max = *f2% maz
(proof)

lemma star-min-def [transfer-unfold]: min = *f2x min
(proof)

lemma Standard-maz [simp]: © € Standard = y € Standard = maz z y €
Standard

{proof)

lemma Standard-min [simp]: © € Standard = y € Standard = min z y €
Standard

(proof)

lemma star-of-maz [simpl: star-of (mazx x y) = maz (star-of z) (star-of y)
{proof)

lemma star-of-min [simp: star-of (min x y) = min (star-of x) (star-of y)
(proof)

2.10 Ordered group classes

instance star :: (semigroup-add) semigroup-add
(proof)

instance star :: (ab-semigroup-add) ab-semigroup-add
(proof)

instance star :: (semigroup-mult) semigroup-mult
(proof)

instance star :: (ab-semigroup-mult) ab-semigroup-mult

{proof)

instance star :: (comm-monoid-add) comm-monoid-add
{proof)

instance star :: (monoid-mult) monoid-mult
(proof)

instance star :: (power) power (proof)

instance star :: (comm-monoid-mult) comm-monoid-mult
(proof)

instance star :: (cancel-semigroup-add) cancel-semigroup-add

THEORY “StarDef” 22

{proof)

instance star ::

{proof)

instance star :

instance star :

{proof)

instance star :

{proof)

instance star

(proof)

instance star
(proof)

instance star :

instance star

(proof)

instance star
(proof)

instance star :

instance star :

{proof)

instance star

{(proof)

(cancel-ab-semigroup-add) cancel-ab-semigroup-add

(cancel-comm-monoid-add) cancel-comm-monoid-add (proof)

(ab-group-add) ab-group-add

(ordered-ab-semigroup-add) ordered-ab-semigroup-add

:: (ordered-cancel-ab-semigroup-add) ordered-cancel-ab-semigroup-add

:: (ordered-ab-semigroup-add-imp-le) ordered-ab-semigroup-add-imp-le
(ordered-comm-monoid-add) ordered-comm-monoid-add (proof)

:: (ordered-ab-semigroup-monoid-add-imp-le) ordered-ab-semigroup-monoid-add-imp-le
:: (ordered-cancel-comm-monoid-add) ordered-cancel-comm-monoid-add

(ordered-ab-group-add) ordered-ab-group-add (proof)

(ordered-ab-group-add-abs) ordered-ab-group-add-abs

:: (linordered-cancel-ab-semigroup-add) linordered-cancel-ab-semigroup-add

2.11 Ring and field classes

instance star :

{proof)

instance star :

{proof)

instance star :

instance star :

{proof)

instance star :
instance star :

instance star :

(semiring) semiring

(semiring-0) semiring-0

(semiring-0-cancel) semiring-0-cancel {proof)
(comm-semiring) comm-semiring

(comm-semiring-0) comm-semiring-0 {proof)
(comme-semiring-0-cancel) comm-semiring-0-cancel {proof)

(zero-neg-one) zero-neg-one

THEORY “StarDef” 23

{proof)

instance star :: (semiring-1) semiring-1 (proof)
instance star :: (comm-semiring-1) comm-semiring-1 (proof)

declare dvd-def [transfer-refold]

instance star :: (comm-semiring-1-cancel) comm-semiring-1-cancel
(proof)

instance star :: (semiring-no-zero-divisors) semiring-no-zero-divisors
{proof)

instance star :: (semiring-1-no-zero-divisors) semiring-1-no-zero-divisors {proof)

instance star :: (semiring-no-zero-divisors-cancel) semiring-no-zero-divisors-cancel
{proof)

instance star :: (semiring-1-cancel) semiring-1-cancel {proof)
instance star :: (ring) ring (proof)

instance star :: (comm-ring) comm-ring (proof)

instance star :: (ring-1) ring-1 {proof)

instance star :: (comm-ring-1) comm-ring-1 (proof)
instance star :: (semidom) semidom (proof)

instance star :: (semidom-divide) semidom-divide
{proof)

instance star :: (ring-no-zero-divisors) ring-no-zero-divisors (proof)
instance star :: (ring-1-no-zero-divisors) ring-1-no-zero-divisors (proof)
instance star :: (idom) idom {proof)

instance star :: (idom-divide) idom-divide {proof)

instance star :: (divide-trivial) divide-trivial
{proof)

instance star :: (division-ring) division-ring
(proof)

instance star :: (field) field
{proof)

instance star :: (ordered-semiring) ordered-semiring
(proof)

instance star :: (ordered-cancel-semiring) ordered-cancel-semiring (proof)

instance star :: (linordered-semiring-strict) linordered-semiring-strict

{proof)

THEORY “StarDef” 24

instance star :

(proof)
instance star

instance star
(proof)

instance star :

instance star :

{proof)

instance star :

(proof)

instance star :
instance star :

instance star :

{proof)

instance star :

{proof)

instance star :

instance star :

(ordered-comm-semiring) ordered-comm-semiring

:: (ordered-cancel-comm-semiring) ordered-cancel-comm-semiring (proof)

i (linordered-comm-semiring-strict) linordered-comm-semiring-strict

(ordered-ring) ordered-ring {proof)

(ordered-ring-abs) ordered-ring-abs

(abs-if) abs-if

(linordered-ring-strict) linordered-ring-strict {proof)
(ordered-comm-ring) ordered-comm-ring {proof)
(linordered-semidom) linordered-semidom

(linordered-idom) linordered-idom

(linordered-field) linordered-field (proof)

(algebraic-semidom) algebraic-semidom (proof)

instantiation star :: (normalization-semidom) normalization-semidom

begin

definition unit-factor-star :: 'a star = ’a star
where [transfer-unfold): unit-factor-star = *fx* unit-factor

definition normalize-star :: 'a star = 'a star
where [transfer-unfold): normalize-star = *f* normalize

instance
(proof)

end

instance star :

{proof)

(semidom-modulo) semidom-modulo

THEORY “StarDef” 25

2.12 Power

lemma star-power-def [transfer-unfold): (7) = Az n. (xfx (Ax. z " n)) z

(proof)

lemma Standard-power [simp]: z € Standard = = ~ n € Standard
(proof)

lemma star-of-power [simpl: star-of (x ~ n) = star-of t " n
(proof)

2.13 Number classes

instance star :: (numeral) numeral {proof)

lemma star-numeral-def [transfer-unfold]: numeral k = star-of (numeral k)
{proof)

lemma Standard-numeral [simp]: numeral k € Standard

{proof)

lemma star-of-numeral [simp]: star-of (numeral k) = numeral k
{proof)

lemma star-of-nat-def [transfer-unfold]: of-nat n = star-of (of-nat n)
(proof)

lemmas star-of-compare-numeral [simp] =

star-of-less [of numeral k, simplified star-of-numeral]
star-of-le [of numeral k, simplified star-of-numeral)
star-of-eq [of numeral k, simplified star-of-numeral]
star-of-less [of - numeral k, simplified star-of-numeral]
star-of-le [of - numeral k, simplified star-of-numeral)
star-of-eq [of - numeral k, simplified star-of-numeral]
star-of-less [of — numeral k, simplified star-of-numeral]
star-of-le [of — numeral k, simplified star-of-numeral]
star-of-eq [of — numeral k, simplified star-of-numeral)

star-of-less [of - — numeral k, simplified star-of-numeral]
star-of-le [of - — numeral k, simplified star-of-numeral]
star-of-eq [of - — numeral k, simplified star-of-numeral] for k

lemma Standard-of-nat [simp]: of-nat n € Standard
(proof)

lemma star-of-of-nat [simp): star-of (of-nat n) = of-nat n
(proof)

lemma star-of-int-def [transfer-unfold]: of-int z = star-of (of-int z)
(proof)

THEORY “HyperNat”

lemma Standard-of-int [simp]: of-int z € Standard
(proof)

lemma star-of-of-int [simpl: star-of (of-int z) = of-int z
(proof)

instance star :: (semiring-char-0) semiring-char-0
(proof)

instance star :: (ring-char-0) ring-char-0 (proof)

2.14 Finite class

lemma starset-finite: finite A = xsx A = star-of ‘ A
(proof)

instance star :: (finite) finite

(proof)

end

3 Hypernatural numbers

theory HyperNat
imports StarDef
begin

type-synonym hypnat = nat star

abbreviation hypnat-of-nat :: nat = nat star
where hypnat-of-nat = star-of

definition hSuc :: hypnat = hypnat
where hSuc-def [transfer-unfold]: hSuc = xfx Suc

3.1 Properties Transferred from Naturals
lemma hSuc-not-zero [iff]: Am. hSuc m # 0
(proof)

lemma zero-not-hSuc [iff]: Am. 0 # hSuc m
{proof)

lemma hSuc-hSuc-eq [iff]: Am n. hSuc m = hSuc n «<— m =n
{proof)

lemma zero-less-hSuc [iff]: An. 0 < hSuc n
{proof)

26

THEORY “HyperNat” 27

lemma hypnat-minus-zero [simpl: N\z:hypnat. z — 2 = 0
(proof)

lemma hypnat-diff-0-eq-0 [simp]: An:hypnat. 0 — n = 0
(proof)

lemma hypnat-add-is-0 [iff]: Am n:hypnat. m + n=0+— m=0An=10
(proof)

lemma hypnat-diff-diff-left: Ni j k::hypnat. i —j — k=14 — (j+ k)
(proof)

lemma hypnat-diff-commute: \ij k:hypnat. i — j — k=41 —k — j
(proof)

lemma hypnat-diff-add-inverse [simp]: Am n:hypnat. n + m — n =m
(proof)

lemma hypnat-diff-add-inverse2 [simp]: Am n:hypnat. m + n — n=m
(proof)

lemma hypnat-diff-cancel [simp]: Nk m n:hypnat. (k+ m) — (k+n) =m —n
(proof)

lemma hypnat-diff-cancel2 [simp]: Nk m n:hypnat. (m + k) — (n + k) =m —n
(proof)

lemma hypnat-diff-add-0 [simp]: Am n:hypnat. n — (n + m) = 0
(proof)

lemma hypnat-diff-mult-distrib: Nk m n:hypnat. (m — n) x k= (m x k) — (n *
k)
{proof)

lemma hypnat-diff-mult-distrib2: Ak m n::hypnat. k « (m — n) = (k * m) — (k %
n)
(proof)

lemma hypnat-le-zero-cancel [iff]: An:hypnat. n < 0 «— n =0
(proof)

lemma hypnat-mult-is-0 [simp]: Am n::hypnat. m * n =0 +— m =0V n =20
{proof)

lemma hypnat-diff-is-0-eq [simp]: Am n::hypnat. m — n =0 +— m < n
(proof)

lemma hypnat-not-less0 [iff]: An:hypnat. = n < 0
{proof)

THEORY “HyperNat” 28

lemma hypnat-less-one [iff]: An:hypnat. n < 1 +— n =0
(proof)

lemma hypnat-add-diff-inverse: Am n::hypnat. - m < n = n+ (m —n) =m
(proof)

lemma hypnat-le-add-diff-inverse [simp]: \m n::hypnat. n < m = n + (m — n)
=m
(proof)

lemma hypnat-le-add-diff-inverse2 [simp|: A\m n:hypnat. n < m = (m — n) +
n=m
(proof)

declare hypnat-le-add-diff-inverse2 [OF order-less-imp-le]

lemma hypnat-le0 [iff]: An:hypnat. 0 < n
(proof)

lemma hypnat-le-add1 [simp]: Az n::hypnat. x < z 4+ n
{proof)

lemma hypnat-add-self-le [simp]: Az n:hypnat. z < n + x
(proof)

lemma hypnat-add-one-self-less [simp]: © < z + 1 for z :: hypnat
(proof)

lemma hypnat-neq0-conv [iff]: An:hypnat. n # 0 +— 0 < n
(proof)

lemma hypnat-gt-zero-iff: 0 < n <— 1 < n for n :: hypnat
{proof)

lemma hypnat-gt-zero-iff2: 0 < n +— (Im. n = m + 1) for n :: hypnat
(proof)

lemma hypnat-add-self-not-less: = x + y < z for z y :: hypnat
(proof)

lemma hypnat-diff-split: P (a — b) «— (a<b—PO)AN(Vd.a=b+d —
P d)

for a b :: hypnat

— elimination of — on hypnat

(proof)

THEORY “HyperNat” 29

3.2 Properties of the set of embedded natural numbers

lemma of-nat-eq-star-of [simp|: of-nat = star-of

(proof)

lemma Nats-eq-Standard: (Nats :: nat star set) = Standard
{proof)

lemma hypnat-of-nat-mem-Nats [simp]: hypnat-of-nat n € Nats
(proof)

lemma hypnat-of-nat-one [simp]: hypnat-of-nat (Suc 0) = 1
(proof)

lemma hypnat-of-nat-Suc [simp]: hypnat-of-nat (Suc n) = hypnat-of-nat n + 1
(proof)

lemma of-nat-eq-add:
fixes d::hypnat
shows of-nat m = of-nat n + d = d € range of-nat

(proof)

lemma Nats-diff [simp]: a € Nats = b € Nats = a — b € Nats for a b
hypnat

{proof)

3.3 Infinite Hypernatural Numbers — HNatInfinite

The set of infinite hypernatural numbers.

definition HNatInfinite :: hypnat set
where HNatInfinite = {n. n ¢ Nats}

lemma Nats-not-HNatInfinite-iff: © € Nats <— x ¢ HNatInfinite
(proof)

lemma HNatInfinite-not-Nats-iff: x € HNatInfinite «— x ¢ Nats
(proof)

lemma star-of-neq-HNatInfinite: N € HNatInfinite = star-of n # N
(proof)

lemma star-of-Suc-lessI: AN. star-of n < N = star-of (Suc n) # N = star-of
(Suc n) < N
(proof)

lemma star-of-less-HNatInfinite:
assumes N: N € HNatInfinite
shows star-of n < N

(proof)

THEORY “HyperNat” 30

lemma star-of-le-HNatInfinite: N € HNatInfinite =—> star-of n < N
(proof)

3.3.1 Closure Rules

lemma Nats-less-HNatInfinite: © € Nats =—> y € HNatInfinite — x < y
(proof)

lemma Nats-le-HNatInfinite: x € Nats = y € HNatInfinite — = < y

{proof)

lemma zero-less-HNatInfinite: x € HNatInfinite = 0 < z
(proof)

lemma one-less-HNatInfinite: x € HNatInfinite — 1 < x
(proof)

lemma one-le-HNatInfinite: x € HNatInfinite = 1 < z
(proof)

lemma zero-not-mem-HNatInfinite [simp]: 0 ¢ HNatInfinite
{proof)

lemma Nats-downward-closed: © € Nats = y < © = y € Nats for z y :: hypnat
(proof)

lemma HNatInfinite-upward-closed: x € HNatInfinite — = < y = y € HNat-
Infinite
(proof)

lemma HNatInfinite-add: © € HNatInfinite = x + y € HNatInfinite
(proof)

lemma HNatInfinite-diff: [z € HNatInfinite; y € Nats] = z — y € HNatInfinite
(proof)

lemma HNatInfinite-is-Suc: x € HNatInfinite = Jy. ¢ = y + 1 for z :: hypnat
{proof)

3.4 Existence of an infinite hypernatural number

w is in fact an infinite hypernatural number = [<1, 2, 3, ... >]
definition whn :: hypnat

where hypnat-omega-def: whn = star-n (An:nat. n)

lemma hypnat-of-nat-neg-whn: hypnat-of-nat n # whn
(proof)

THEORY “HyperNat” 31

lemma whn-neg-hypnat-of-nat: whn # hypnat-of-nat n
{proof)

lemma whn-not-Nats [simp]: whn ¢ Nats
(proof)

lemma HNatInfinite-whn [simp|: whn € HNatInfinite
(proof)

lemma lemma-unbounded-set [simp]: eventually (An:nat. m < n) U
(proof)

lemma hypnat-of-nat-eq: hypnat-of-nat m = star-n (An::nat. m)
(proof)

lemma SHNat-eq: Nats = {n. IN. n = hypnat-of-nat N}
(proof)

lemma Nats-less-whn: n € Nats — n < whn
(proof)

lemma Nats-le-whn: n € Nats =— n < whn
(proof)

lemma hypnat-of-nat-less-whn [simp]: hypnat-of-nat n < whn
(proof)

lemma hypnat-of-nat-le-whn [simp]: hypnat-of-nat n < whn
(proof)

lemma hypnat-zero-less-hypnat-omega [simp]: 0 < whn
{proof)

lemma hypnat-one-less-hypnat-omega [simp]: 1 < whn
(proof)

3.4.1 Alternative characterization of the set of infinite hypernat-
urals

HNatInfinite = {N.VneN. n < N}

unused, but possibly interesting

lemma HNatInfinite-FreeUltrafilter Nat-eventually:
assumes Ak:nat. eventually (An. fn # k) U
shows eventually (An. m < fn) U

(proof)

lemma HNatInfinite-iff: HNatInfinite = {N.Vn € Nats. n < N}
(proof)

THEORY “HyperNat” 32

3.4.2 Alternative Characterization of HNatInfinite using Free Ul-
trafilter

lemma HNatInfinite-FreeUltrafilterNat:
star-n X € HNatInfinite = ¥ u. eventually (An. v < X n) U

{proof)

lemma FreeUltrafilterNat-HNatInfinite:
YV u. eventually (An. u < X n) U = star-n X € HNatInfinite

{proof)

lemma HNatInfinite-FreeUltrafilterNat-iff:

(star-n X € HNatInfinite) = (¥ u. eventually (An. v < X n) U)

(proof)
3.5 Embedding of the Hypernaturals into other types
definition of-hypnat :: hypnat = 'a::semiring-1-cancel star

where of-hypnat-def [transfer-unfold]: of-hypnat = xfx of-nat

0

lemma of-hypnat-0 [simp]: of-hypnat 0
(proof)

lemma of-hypnat-1 [simpl: of-hypnat 1 = 1
(proof)

lemma of-hypnat-hSuc: Am. of-hypnat (hSuc m) = 1 + of-hypnat m
(proof)

lemma of-hypnat-add [simp]: A\m n. of-hypnat (m + n) = of-hypnat m + of-hypnat
n

(proof)

lemma of-hypnat-mult [simp]: Am n. of-hypnat (m * n) = of-hypnat m * of-hypnat
n
{proof)

lemma of-hypnat-less-iff [simp]:
Am n. of-hypnat m < (of-hypnat n::'a::linordered-semidom star) +— m < n
(proof)

lemma of-hypnat-0-less-iff [simp):
An. 0 < (of-hypnat n::’a::linordered-semidom star) +— 0 < n
(proof)

lemma of-hypnat-less-0-iff [simp]: Am. = (of-hypnat m::'a::linordered-semidom
star) < 0

(proof)

lemma of-hypnat-le-iff [simp]:

THEORY “HyperDet” 33

Am n. of-hypnat m < (of-hypnat n::'a::linordered-semidom star) +— m < n
(proof)

lemma of-hypnat-0-le-iff [simp]: An. 0 < (of-hypnat n::'a:linordered-semidom
star)
(proof)

lemma of-hypnat-le-0-iff [simp]: Am. (of-hypnat m::’a::linordered-semidom star)
<0—m=20
(proof)

lemma of-hypnat-eq-iff [simp]:
Am n. of-hypnat m = (of-hypnat n::'a::linordered-semidom star) +— m = n
(proof)

lemma of-hypnat-eq-0-iff [simp]: Am. (of-hypnat m::'a::linordered-semidom star)
=0+—m=20
(proof)

lemma HNatInfinite-of-hypnat-gt-zero:
N € HNatInfinite = (0::'a::linordered-semidom star) < of-hypnat N

{proof)

end

4 Construction of Hyperreals Using Ultrafilters

theory HyperDef
imports Complex-Main HyperNat
begin

type-synonym hypreal = real star

abbreviation hypreal-of-real :: real = real star
where hypreal-of-real = star-of

abbreviation hypreal-of-hypnat :: hypnat = hypreal
where hypreal-of-hypnat = of-hypnat

definition omega :: hypreal (<w»)
where w = star-n (An. real (Suc n))
— an infinite number = [<1, 2, 3, ...>]

definition epsilon :: hypreal (ce»)
where ¢ = star-n (An. inverse (real (Suc n)))
— an infinitesimal number = [<1, 1/2, 1/3, ...>]

THEORY “HyperDet” 34

4.1 Real vector class instances

instantiation star :: (scaleR) scaleR

begin
definition star-scaleR-def [transfer-unfold]: scaleR r = xfx (scaleR)
instance (proof)

end

lemma Standard-scaleR [simp]: © € Standard => scaleR r x € Standard
{proof)

lemma star-of-scaleR [simp]: star-of (scaleR r x) = scaleR r (star-of)
{proof)

instance star :: (real-vector) real-vector

(proof)

instance star :: (real-algebra) real-algebra
(proof)

instance star :: (real-algebra-1) real-algebra-1 {(proof)
instance star :: (real-div-algebra) real-div-algebra (proof)
instance star :: (field-char-0) field-char-0 {proof)
instance star :: (real-field) real-field (proof)

lemma star-of-real-def [transfer-unfold]: of-real r = star-of (of-real r)
(proof)

lemma Standard-of-real [simp]: of-real r € Standard
{proof)

lemma star-of-of-real [simp]: star-of (of-real r) = of-real r
(proof)

lemma of-real-eg-star-of [simp]: of-real = star-of
(proof)

lemma Reals-eg-Standard: (R :: hypreal set) = Standard
(proof)

4.2 Injection from hypreal
definition of-hypreal :: hypreal = 'a::real-algebra-1 star
where [transfer-unfold]: of-hypreal = *f* of-real

lemma Standard-of-hypreal [simpl: r € Standard = of-hypreal r € Standard

(proof)

THEORY “HyperDet” 35

lemma of-hypreal-0 [simp]: of-hypreal 0 = 0
(proof)
lemma of-hypreal-1 [simpl: of-hypreal 1 = 1

{proof)

lemma of-hypreal-add [simp]: Az y. of-hypreal (z + y) = of-hypreal x + of-hypreal
)
(proof)

lemma of-hypreal-minus [simpl: Az. of-hypreal (— z) = — of-hypreal
(proof)

lemma of-hypreal-diff [simp]: Az y. of-hypreal (z — y) = of-hypreal x — of-hypreal
Y
(proof)

lemma of-hypreal-mult [simp]: Nz y. of-hypreal (z x y) = of-hypreal z * of-hypreal
)
(proof)

lemma of-hypreal-inverse [simp):
Nz. of-hypreal (inverse x) =
inverse (of-hypreal x :: 'a::{real-div-algebra, division-ring} star)
(proof)

lemma of-hypreal-divide [simp):

Az y. of-hypreal (z / y) =
(of-hypreal x | of-hypreal y :: 'a::{real-field, field} star)

(proof)

lemma of-hypreal-eq-iff [simp]: Az y. (of-hypreal x = of-hypreal y) = (z = y)
{proof)

lemma of-hypreal-eq-0-iff [simp]: Nz. (of-hypreal z = 0) = (x = 0)
(proof)

4.3 Properties of starrel

lemma lemma-starrel-refl [simp]: © € starrel ““ {z}
{proof)

lemma starrel-in-hypreal [simp]: starrel‘{z}€star
{proof)

declare Abs-star-inject [simp] Abs-star-inverse [simp)
declare equiv-starrel [THEN eq-equiv-class-iff, simp)

THEORY “HyperDet” 36

4.4 hypreal-of-real: the Injection from real to hypreal
lemma inj-star-of: inj star-of

{proof)

lemma mem-Rep-star-iff: X € Rep-star x «— © = star-n X
(proof)

lemma Rep-star-star-n-iff [simp]: X € Rep-star (star-n Y) +— eventually (An.
Yn=Xn)U
{proof)

lemma Rep-star-star-n: X € Rep-star (star-n X)

{proof)

4.5 Properties of star-n

lemma star-n-add: star-n X + star-n Y = star-n (An. X n + Y n)
(proof)

lemma star-n-minus: — star-n X = star-n (An. —(X n))
{proof)

lemma star-n-diff: star-n X — star-n Y = star-n (An. X n — Y n)
(proof)

lemma star-n-mult: star-n X * star-n Y = star-n (An. X n x Y n)
{proof)

lemma star-n-inverse: inverse (star-n X) = star-n (An. inverse (X n))
(proof)

lemma star-n-le: star-n X < star-n Y = eventually (An. X n < Yn) U
(proof)

lemma star-n-less: star-n X < star-n Y = eventually (An. X n < Y n) U
{proof)

lemma star-n-zero-num: 0 = star-n (An. 0)
{proof)

lemma star-n-one-num: 1 = star-n (An. 1)
{proof)

lemma star-n-abs: |star-n X| = star-n (An. | X nl)
{proof)

lemma hypreal-omega-gt-zero [simp: 0 < w
(proof)

THEORY “HyperDet” 37

4.6 Existence of Infinite Hyperreal Number

Existence of infinite number not corresponding to any real number. Use
assumption that member I/ is not finite.

lemma hypreal-of-real-not-eq-omega: hypreal-of-real © # w

(proof)

Existence of infinitesimal number also not corresponding to any real number.
lemma hypreal-of-real-not-eq-epsilon: hypreal-of-real x # €

{(proof)

lemma epsilon-ge-zero [simpl: 0 < ¢
{proof)

lemma epsilon-not-zero: € # 0
(proof)

lemma epsilon-inverse-omega: € = inverse w
(proof)

lemma epsilon-gt-zero: 0 < €

{proof)

4.7 Embedding the Naturals into the Hyperreals
abbreviation hypreal-of-nat :: nat = hypreal

where hypreal-of-nat = of-nat
lemma SNat-eq: Nats = {n. AN. n = hypreal-of-nat N}

(proof)

Naturals embedded in hyperreals: is a hyperreal c.f. NS extension.
lemma hypreal-of-nat: hypreal-of-nat m = star-n (An. real m)

(proof)

(ML)

4.8 Exponentials on the Hyperreals
lemma hpowr-0 [simp]: r ~ 0 = (1::hypreal)

for r :: hypreal

(proof)

lemma hpowr-Suc [simp]: r ~ (Suc n) = r * (r " n)
for r :: hypreal
(proof)

lemma hrealpow: star-n X ~m = star-n (An. (X n:real) ~ m)
{proof)

THEORY “HyperDet” 38

lemma hrealpow-sum-square-expand:
(z +y) ~ Suc (Suc 0) =
z " Suc (Suc 0) + y ~ Suc (Suc 0) + (hypreal-of-nat (Suc (Suc 0))) * x x y
for z y :: hypreal
(proof)

lemma power-hypreal-of-real-numeral:
(numeral v :: hypreal) ~n = hypreal-of-real ((numeral v) ~ n)

(proof)
declare power-hypreal-of-real-numeral [of - numeral w, simp] for w

lemma power-hypreal-of-real-neg-numeral:
(— numeral v :: hypreal) ~ n = hypreal-of-real ((— numeral v) ~ n)

(proof)

declare power-hypreal-of-real-neg-numeral [of - numeral w, simp] for w

4.9 Powers with Hypernatural Exponents

Hypernatural powers of hyperreals.

definition pow :: ‘a:power star = nat star = 'a star (infixr (pow> 80)
where hyperpow-def [transfer-unfold]: R pow N = («f2x (7)) R N

lemma Standard-hyperpow [simp]: r € Standard = n € Standard = r pow n €
Standard

(proof)

lemma hyperpow: star-n X pow star-n Y = star-n (An. X n = Y n)
(proof)

lemma hyperpow-zero [simp]: An. (0::'a::{power,semiring-0} star) pow (n + (1::hypnat))
=0
{proof)

lemma hyperpow-not-zero: \r n. r # (0::'a::{field} star) = r pow n # 0
(proof)

lemma hyperpow-inverse: \r n. r # (0::'a:field star) = inverse (r pow n) =
(inverse 1) pow n

{proof)

lemma hyperpow-hrabs: Ar n. |r::'a::{linordered-idom} star| pow n = |r pow nl
{proof)

lemma hyperpow-add: A\r n m. (r::'a::monoid-mult star) pow (n + m) = (r pow

n) * (r pow m)

(proof)

lemma hyperpow-one [simpl: A\r. (r::'a::monoid-mult star) pow (1::hypnat) = r

THEORY “HyperDet” 39

{proof)

lemma hyperpow-two: \r. (r::’a::monoid-mult star) pow (2:hypnat) = r * r
(proof)

lemma hyperpow-gt-zero: Ar n. (0::'a::{linordered-semidom} star) < r = 0 <
r pow n
(proof)

lemma hyperpow-ge-zero: \r n. (0::'a::{linordered-semidom} star) < r = 0 <
T pow n
{proof)

lemma hyperpow-le: Nz y n. (0::'a:{linordered-semidom} star) < z = z < y
= zpown < Yy pown
{proof)

lemma hyperpow-eg-one [simpl: An. 1 pow n = (1::'a::monoid-mult star)
(proof)

lemma hrabs-hyperpow-minus [simpl: \(a::’a::linordered-idom star) n. |(—a) pow
n| = |a pow n|
{proof)

lemma hyperpow-mult: \r s n. (r * s::'a::comm-monoid-mult star) pow n = (r
pow n) * (s pow n)
{proof)

lemma hyperpow-two-le [simp]: Ar. (0::'a::{ monoid-mult,linordered-ring-strict} star)
< r pow 2

(proof)

lemma hyperpow-two-hrabs [simp]: |z::'a::linordered-idom star| pow 2 = z pow 2
(proof)

lemma hyperpow-two-gt-one: A\r::'a:linordered-semidom star. 1 < r = 1 <'r
pow 2

{proof)

lemma hyperpow-two-ge-one: A\r::'a:linordered-semidom star. 1 < r = 1 <'r
pow 2
(proof)

lemma two-hyperpow-ge-one [simp: (1::hypreal) < 2 pow n
(proof)

lemma hyperpow-minus-one2 [simp]: An. (— 1) pow (2 * n) = (1::hypreal)
{proof)

THEORY “NSA” 40

lemma hyperpow-less-le: A\rn N. (0:hypreal) < r = r <1 =n< N =r
pow N < r pow n
(proof)

lemma hyperpow-SHNat-le:
0 <r = r < (I:hypreal) = N € HNatInfinite = YV neNats. r pow N < r
pow n

{proof)

lemma hyperpow-realpow: (hypreal-of-real r) pow (hypnat-of-nat n) = hypreal-of-real
(r " n)

{proof)

lemma hyperpow-SReal [simp): (hypreal-of-real) pow (hypnat-of-nat n) € R
(proof)

lemma hyperpow-zero-HNatInfinite [simp]: N € HNatInfinite => (0::hypreal) pow
N=20
(proof)

lemma hyperpow-le-le: (0:hypreal) < r —=r <1 =n< N = rpow N <r
pow n
(proof)

lemma hyperpow-Suc-le-self2: (0:hypreal) < r = r < 1 = r pow (n + (1::hypnat))
<r

{proof)

lemma hyperpow-hypnat-of-nat: N\z. x pow hypnat-of-nat n =z " n
(proof)

lemma of-hypreal-hyperpow:
Az n. of-hypreal (z pow n) = (of-hypreal z::'a::{real-algebra-1} star) pow n
(proof)

end

5 Infinite Numbers, Infinitesimals, Infinitely Close
Relation

theory NSA
imports HyperDef HOL— Library. Lub-GIlb
begin

definition hnorm :: 'a::real-normed-vector star = real star
where [transfer-unfold]: hnorm = xfx norm

definition Infinitesimal :: ('a::real-normed-vector) star set

THEORY “NSA” 41

where Infinitesimal = {z. Vr € Reals. 0 < r — hnorm z < r}

definition HFinite :: ('a::real-normed-vector) star set
where HFinite = {z. 3r € Reals. hnorm © < r}

definition HInfinite :: ('a::real-normed-vector) star set
where Hinfinite = {x. Vr € Reals. r < hnorm z}

definition approz :: 'a::real-normed-vector star = 'a star = bool (infixl (=) 50)
where z ~ y <— = — y € Infinitesimal
— the “infinitely close” relation

definition st :: hypreal = hypreal
where st = (Ax. SOME r. x € HFinite N\v € RA 1~ z)
— the standard part of a hyperreal

definition monad :: 'a::real-normed-vector star = 'a star set
where monad z = {y. z =~ y}

definition galazy :: ‘a::real-normed-vector star = 'a star set
where galazy x = {y. (z + —y) € HFinite}

lemma SReal-def: R = {z. Ir. x = hypreal-of-real r}
(proof)

5.1 Nonstandard Extension of the Norm Function

definition scaleHR :: real star = 'a star = 'a::real-normed-vector star
where [transfer-unfold): scaleHR = starfun2 scaleR

lemma Standard-hnorm [simp]: ¢ € Standard = hnorm x € Standard
{proof)

lemma star-of-norm [simp]: star-of (norm x) = hnorm (star-of x)

(proof)

lemma hnorm-ge-zero [simpl: \x::'a::real-normed-vector star. 0 < hnorm x
{proof)

lemma hnorm-eg-zero [simpl: \xz::'a:real-normed-vector star. hnorm x = 0 +—
z =0
{proof)

lemma hnorm-triangle-ineq: A\x y::'a::real-normed-vector star. hnorm (z + y) <
hnorm x 4+ hnorm y

{proof)

lemma hnorm-triangle-ineq3: \z y::'a::real-normed-vector star. |hnorm z — hnorm
y| < hnorm (z — y)

THEORY “NSA” 42

{proof)

lemma hnorm-scaleR: N\z::'a::real-normed-vector star. hnorm (a *g) = |star-of
a| * hnorm x

(proof)

lemma hnorm-scaleHR: Na (z::'a::real-normed-vector star). hnorm (scaleHR a x)
= |a| * hnorm z

{proof)

lemma hnorm-mult-ineq: Az y::'a::real-normed-algebra star. hnorm (x x y) <
hnorm x * hnorm y

{proof)

lemma hnorm-mult: Az y::'a::real-normed-div-algebra star. hnorm (z * y) = hnorm
z % hnorm y

(proof)

lemma hnorm-hyperpow: \(x::'a::{real-normed-div-algebra} star) n. hnorm (x pow
n) = hnorm x pow n

(proof)

lemma hnorm-one [simp]: hnorm (1::'a::real-normed-div-algebra star) = 1
{proof)

lemma hnorm-zero [simp]: hnorm (0::'a::real-normed-vector star) = 0
{proof)

lemma zero-less-hnorm-iff [simp]: A\z::'a::real-normed-vector star. 0 < hnorm x
—ax#0

(proof)

lemma hnorm-minus-cancel [simp|: \z::'a::real-normed-vector star. hnorm (— x)
= hnorm z

{proof)

lemma hnorm-minus-commute: Aa b::'a::real-normed-vector star. hnorm (a — b)
= hnorm (b — a)
{proof)

lemma hnorm-triangle-ineq2: \a b::'a::real-normed-vector star. hnorm a — hnorm
b < hnorm (a — b)
(proof)

lemma hnorm-triangle-ineqs: \a b::'a:real-normed-vector star. hnorm (a — b) <
hnorm a + hnorm b

(proof)

lemma abs-hnorm-cancel [simp]: \a::'a::real-normed-vector star. |hnorm a| = hnorm

THEORY “NSA” 43

{proof)

lemma hnorm-of-hypreal [simp]: A\r. hnorm (of-hypreal r::'a::real-normed-algebra-1
star) = |r|
(proof)

lemma nonzero-hnorm-inverse:

Na::'a::real-normed-div-algebra star. a # 0 = hnorm (inverse a) = inverse
(hnorm a)

(proof)

lemma hnorm-inverse:
Na::'a::{real-normed-div-algebra, division-ring} star. hnorm (inverse a) = inverse
(hnorm a)

(proof)

lemma hnorm-divide: N\a b::'a::{real-normed-field, field} star. hnorm (a / b) =
hnorm a / hnorm b

{proof)

lemma hypreal-hnorm-def [simpl: A\r::hypreal. hnorm r = |r|
(proof)

lemma hnorm-add-less:

N (z: areal-normed-vector star) y r s. hnorm x < r = hnorm y < s = hnorm
(z4+y) <r+s

{proof)

lemma hnorm-mult-less:
N(z:'azreal-normed-algebra star) y r s. hnorm © < r = hnorm y < s =
hnorm (z % y) < 7 * s

{proof)

lemma hnorm-scaleHR-less: |z| < r => hnorm y < s = hnorm (scaleHR x y)
< rks

(proof)

5.2 Closure Laws for the Standard Reals

lemma Reals-add-cancel: t + y e R=—= y € R = 2z € R
(proof)

lemma SReal-hrabs: © € R = |z| € R
for z :: hypreal

{proof)

lemma SReal-hypreal-of-real [simp]: hypreal-of-real z € R
(proof)

THEORY “NSA” 44

lemma SReal-divide-numeral: 1 € R => r / (numeral w::hypreal) € R
{proof)

¢ is not in Reals because it is an infinitesimal
lemma SReal-epsilon-not-mem: € ¢ R

(proof)

lemma SReal-omega-not-mem: w ¢ R
{proof)

lemma SReal-UNIV-real: {x. hypreal-of-real x € R} = (UNIV::real set)
{proof)

lemma SReal-iff: x € R «— (y. = hypreal-of-real y)
(proof)

lemma hypreal-of-real-image: hypreal-of-real (UNIV::real set) = R
(proof)

lemma inv-hypreal-of-real-image: inv hypreal-of-real ‘R = UNIV
(proof)

lemma SReal-dense: t e R—=yc R =z <y=3dr e Reals. c<rANr<y
for z y :: hypreal
(proof)

5.3 Set of Finite Elements is a Subring of the Extended Reals

lemma HFinite-add: ¢ € HFinite = y € HFinite = z + y € HFinite

(proof)

lemma HFinite-mult: © € HFinite = y € HFinite = x * y € HF'inite
for z y :: 'a::real-normed-algebra star

{proof)

lemma HFinite-scaleHR: © € HFinite = y € HFinite = scaleHR x y € HF'inite
(proof)

lemma HFinite-minus-iff: — © € HF'inite +— x € HFinite
(proof)

lemma HFinite-star-of [simp]: star-of x € HFinite
(proof)

lemma SReal-subset-HF'inite: (R::hypreal set) C HFinite
{proof)

lemma HFiniteD: ¢ € HFinite =—> 3t € Reals. hnorm x < t

THEORY “NSA” 45

{proof)

lemma HFinite-hrabs-iff [iff]: |x| € HFinite <— x € HFinite
for z :: hypreal
(proof)

lemma HFinite-hnorm-iff [iff]: hnorm z € HFinite <— x € HFinite
for z :: hypreal

{proof)

lemma HFinite-numeral [simp]: numeral w € HFinite
{proof)

As always with numerals, 0 and I are special cases.

lemma HFinite-0 [simp]: 0 € HFinite
{proof)

lemma HFinite-1 [simp]: 1 € HFinite
(proof)

lemma hrealpow-HF'inite: x € HFinite = © ~ n € HFinite
for z :: ‘a::{real-normed-algebra,monoid-mult} star

(proof)

lemma HFinite-bounded:
fixes x y :: hypreal
assumes z € HFinite and y: y < z 0 < y shows y € HFinite

(proof)

5.4 Set of Infinitesimals is a Subring of the Hyperreals

lemma Infinitesimall: (Ar. r € R = 0 < r = hnorm z < r) = z € Infinites-
imal
{proof)

lemma InfinitesimalD: x € Infinitesimal = V' r € Reals. 0 < r — hnorm z < r
(proof)

lemma Infinitesimall2: (\r. 0 < r => hnorm x < star-of r) = z € Infinitesimal
{proof)

lemma InfinitesimalD2: © € Infinitesimal = 0 < r => hnorm x < star-of r
(proof)

lemma Infinitesimal-zero [iff]: 0 € Infinitesimal
(proof)

lemma Infinitesimal-add:
assumes z € Infinitesimal y € Infinitesimal

THEORY “NSA” 46

shows z + y € Infinitesimal
(proof)

lemma Infinitesimal-minus-iff [simp]: — x € Infinitesimal +— = € Infinitesimal
(proof)

lemma Infinitesimal-hnorm-iff: hnorm x € Infinitesimal <— x € Infinitesimal
(proof)

lemma Infinitesimal-hrabs-iff [iff]: |z| € Infinitesimal <+— x € Infinitesimal
for z :: hypreal
(proof)

lemma Infinitesimal-of-hypreal-iff [simp]:
(of-hypreal x::'a::real-normed-algebra-1 star) € Infinitesimal <— x € Infinitesimal
(proof)

lemma Infinitesimal-diff: © € Infinitesimal = y € Infinitesimal — x — y €
Infinitesimal
(proof)

lemma Infinitesimal-mult:
fixes = y :: ‘a::real-normed-algebra star
assumes x € Infinitesimal y € Infinitesimal
shows z x y € Infinitesimal

(proof)

lemma Infinitesimal-HFinite-mult:
fixes z y :: 'a::real-normed-algebra star
assumes z € Infinitesimal y € HFinite
shows z x y € Infinitesimal

(proof)

lemma Infinitesimal-HFinite-scaleHR:
assumes z € Infinitesimal y € HFinite
shows scaleHR x y € Infinitesimal

(proof)

lemma Infinitesimal-HFinite-mult2:
fixes z y :: 'a::real-normed-algebra star
assumes z € Infinitesimal y € HFinite
shows y * z € Infinitesimal

(proof)

lemma Infinitesimal-scaleR2:
assumes z € Infinitesimal shows a xg = € Infinitesimal

(proof)

lemma Compl-HFinite: — HFinite = HInfinite

THEORY “NSA”

{proof)

lemma HlInfinite-inverse-Infinitesimal:
x € Hinfinite = inverse € Infinitesimal
for z :: 'a::real-normed-div-algebra star

{proof)

lemma inverse-Infinitesimal-iff- HInfinite:
x # 0 = inverse ¢ € Infinitesimal <— x € HlInfinite
for z :: 'a::real-normed-div-algebra star

(proof)

lemma Hinfinitel: (Ar. r € R = r < hnorm z) = x € HInfinite
{proof)

lemma HlinfiniteD: x € HInfinite = r € R = r < hnorm z
{proof)

lemma HInfinite-mult:
fixes z y :: 'a::real-normed-div-algebra star
assumes z € Hinfinite y € HInfinite shows x x y € HlInfinite

(proof)

lemma hypreal-add-zero-less-le-mono: r < ¢ —= 0 < y=—=r <z +y
for r z y :: hypreal
(proof)

47

lemma HInfinite-add-ge-zero: © € HInfinite — 0 < y — 0 <z =z + y €

Hlinfinite

for z y :: hypreal

(proof)
lemma Hlinfinite-add-ge-zero2: x € HInfinite — 0 < y —= 0 <oz = y + z €
Hlinfinite

for z y :: hypreal

(proof)
lemma HInfinite-add-gt-zero: © € HInfinite — 0 < y — 0 <z = = + y €
Hinfinite

for z y :: hypreal

(proof)

lemma Hlinfinite-minus-iff: — v € HInfinite <— x € HInfinite
(proof)

lemma HInfinite-add-le-zero: © € HInfinite — y < 0 — 2 < 0 = x + y €

Hinfinite
for x y :: hypreal
{proof)

THEORY “NSA” 48

lemma HInfinite-add-lt-zero: x € HInfinite — y < 0 —= 2 < 0 = z + y €
Hlinfinite

for z y :: hypreal

(proof)

lemma not-Infinitesimal-not-zero: x ¢ Infinitesimal — x # 0
(proof)

lemma HFinite-diff-Infinitesimal-hrabs:
xz € HFinite — Infinitesimal = |x| € HFinite — Infinitesimal
for z :: hypreal
(proof)

lemma hnorm-le-Infinitesimal: e € Infinitesimal = hnorm x < e = = € In-
finitesimal

(proof)

lemma hnorm-less-Infinitesimal: e € Infinitesimal = hnorm z < e = z €
Infinitesimal

(proof)

lemma hrabs-le-Infinitesimal: e € Infinitesimal —> |z| < e = x € Infinitesimal
for z :: hypreal

{proof)

lemma hrabs-less-Infinitesimal: e € Infinitesimal = |z| < e => z € Infinitesimal
for z :: hypreal

{proof)

lemma Infinitesimal-interval:
e € Infinitesimal = ¢’ € Infinitesimal = ¢’ < x = 1 < e = z € Infinitesimal
for z :: hypreal

{proof)

lemma Infinitesimal-interval2:
e € Infinitesimal = e’ € Infinitesimal = ¢’ < 1 = x < e = x € Infinitesimal
for z :: hypreal

{proof)

lemma lemma-Infinitesimal-hyperpow: z € Infinitesimal = 0 < N = |z pow
N| < [z]

for z :: hypreal

(proof)

lemma Infinitesimal-hyperpow: z € Infinitesimal — 0 < N = x pow N €
Infinitesimal
for z :: hypreal

{proof)

THEORY “NSA” 49

lemma hrealpow-hyperpow-Infinitesimal-iff:
(z " n € Infinitesimal) <— = pow (hypnat-of-nat n) € Infinitesimal
(proof)

lemma Infinitesimal-hrealpow: x € Infinitesimal = 0 < n = =~ n € Infinites-
imal

for z :: hypreal

(proof)

lemma not-Infinitesimal-mult:
z ¢ Infinitesimal = y ¢ Infinitesimal = z * y ¢ Infinitesimal
for z y :: 'a::real-normed-div-algebra star

{proof)

lemma Infinitesimal-mult-disj: © * y € Infinitesimal = = € Infinitesimal V y €
Infinitesimal
for z y :: 'a::real-normed-div-algebra star

{proof)

lemma HFinite-Infinitesimal-not-zero: x € HFinite— Infinitesimal = x # 0
(proof)

lemma HFinite-Infinitesimal-diff-mult:
x € HFinite — Infinitesimal = y € HF'inite — Infinitesimal = = * y € HFinite

— Infinitesimal
for z y :: 'a::real-normed-div-algebra star
{proof)

lemma Infinitesimal-subset-HFinite: Infinitesimal C HFinite

(proof)

lemma Infinitesimal-star-of-mult: x € Infinitesimal = x * star-of r € Infinites-
imal

for z :: 'a::real-normed-algebra star

(proof)

lemma Infinitesimal-star-of-mult2: x € Infinitesimal = star-of r x © € Infinites-
imal

for z :: 'a::real-normed-algebra star

(proof)

5.5 The Infinitely Close Relation

lemma mem-infmal-iff: © € Infinitesimal <+— = ~ 0
(proof)

lemma approz-minus-iff: t =~ y +— x — y =~ 0
(proof)

THEORY “NSA” 50

lemma approz-minus-iff2: t = y +— —y + .~ 0
(proof)

lemma approz-refl [iff]: x = «
{proof)

lemma approz-sym: z ~ y = y~
(proof)

lemma approz-trans:
assumes z ~ y y ~ z shows z ~ 2

(proof)

lemma approz-trans2: r ~ 1 = s~ = r
(proof)

Q
w»

lemma approz-transd: xr ~r = r~s= r xS
(proof)

lemma approz-reorient: x ~ y +— y ~ x
(proof)

Reorientation simplification procedure: reorients (polymorphic) 0 = z, 1 =
z, nmn = z provided z isn’t 0, I or a numeral.

(ML)

lemma Infinitesimal-appror-minus: x — y € Infinitesimal +— = ~ y
(proof)

lemma approz-monad-iff: © ~ y +— monad r = monad y
(proof)

lemma Infinitesimal-approx: x € Infinitesimal = y € Infinitesimal — z ~ y
(proof)

lemma approz-add: a ~ b= c~d = a+c~b+d

(proof)

lemma approx-minus: a = b = — a~ — b
(proof)

lemma approz-minus2: — a~ — b= a = b

{proof)

lemma approz-minus-cancel [simp]: — a~ — b+— a= b
(proof)

lemma approz-add-minus: a ~ b= c~d=—=a+ —cxb+ —d

THEORY “NSA” 51

{proof)

lemma approz-diff: a =~ b —= cx~d = a — c~b—d
(proof)

lemma approz-multl: a =~ b = ¢ € HFinite = a * ¢ = b * ¢
for a b ¢ :: 'a::real-normed-algebra star

{proof)

lemma approz-mult2: a =~ b = ¢ € HFinite = c*x a~ c* b
for a b ¢ :: 'a::real-normed-algebra star

{proof)

lemma approx-mult-subst: u = vz =z~ y = v € HFinite = u~ vy
for v v z y :: 'a::real-normed-algebra star

(proof)

lemma approz-mult-subst2: u~z x v = 2z~ y = v € HFinite = u = y *x v
for v v z y :: 'a::real-normed-algebra star

{proof)

lemma approz-mult-subst-star-of: u ~ x * star-of v = * =~ y = u = y * star-of
v
for u z y :: 'a::real-normed-algebra star

{proof)

lemma approz-eg-imp: a = b = a = b
(proof)

lemma Infinitesimal-minus-approx: © € Infinitesimal — — z ~

(proof)

lemma bez-Infinitesimal-iff: (3y € Infinitesimal. x — 2 = y) +— Tz = 2
{proof)

lemma bex-Infinitesimal-iff2: (3y € Infinitesimal. © = z + y) +— x ~ z
(proof)

lemma Infinitesimal-add-approx: y € Infinitesimal — =+ y =2z = z ~ 2
(proof)

lemma Infinitesimal-add-approz-self: y € Infinitesimal = © ~ z + y
(proof)

lemma Infinitesimal-add-approz-self2: y € Infinitesimal = = ~ y + x
(proof)

lemma Infinitesimal-add-minus-approx-self: y € Infinitesimal — v~z + — y

{proof)

THEORY “NSA” 52

lemma Infinitesimal-add-cancel: y € Infinitesimal — x + y~ 2z = x =~ 2
(proof)

lemma Infinitesimal-add-right-cancel: y € Infinitesimal — z =~ 2 + y —= z = 2
(proof)

lemma approz-add-left-cancel: d + b~ d + ¢c = b= ¢
(proof)

lemma approz-add-right-cancel: b+ d~c+ d = b~ ¢
(proof)

lemma approz-add-monol: b~c = d+ b~ d+ c

(proof)

lemma approz-add-mono2: b~c = b+ a=c+ a
(proof)

lemma approz-add-left-iff [simpl: a + b~ a + c+— b= ¢
(proof)

lemma approx-add-right-iff [simpl: b+ a = c+ a+— b= ¢
(proof)

lemma approz-HFinite: x € HFinite = =z ~ y = y € HFinite
(proof)

lemma approz-star-of-HFinite: x = star-of D = x € HFinite
(proof)

lemma approz-mult-HFinite: a =~ b = ¢ = d = b € HFinite = d € HFinite
— axc~bxd
for a b c d :: 'a::real-normed-algebra star

{proof)

lemma scaleHR-left-diff-distrib: Na b z. scaleHR (a — b) © = scaleHR a © —
scaleHR b x
(proof)

lemma approz-scaleR1: a = star-of b = ¢ € HFinite =—> scaleHR a ¢ = b xp ¢
(proof)

lemma approz-scaleR2: a = b = ¢ xg a = ¢ *g b
(proof)

lemma approz-scaleR-HFinite: a ~ star-of b = ¢ ~ d = d € HFinite =
scaleHR a ¢ = b g d

{proof)

THEORY “NSA” 53

lemma approx-mult-star-of: a = star-of b = ¢ = star-of d = a * ¢ =~ star-of
b * star-of d
for a c :: 'a::real-normed-algebra star

(proof)

lemma approz-SReal-mult-cancel-zero:
fixes a xz :: hypreal
assumes ¢ € R a # 0 a *x z =~ 0 shows z ~

{(proof)

lemma approz-mult-SReall: a e R =z~ 0 = z*x a = 0
for a z :: hypreal
(proof)

lemma approz-mult-SReal2: a e R —= 2~ 0 = ax 2z~ 0
for a x :: hypreal
(proof)

lemma approz-mult-SReal-zero-cancel-iff [simp]: s ER = a # 0 = ax z = 0
— =0

for a x :: hypreal

(proof)

lemma approz-SReal-mult-cancel:
fixes a w z :: hypreal
assumes ¢ €E R a # 0ax w= a* zshows w= z

(proof)

lemma approz-SReal-mult-cancel-iff1 [simp]: a E R = a # 0 = a x w ~ a *
24— w2

for a w z :: hypreal

(proof)

lemma approz-le-bound:
fixes z :: hypreal
assumes z < f fx~ gg < zshows f ~ 2

(proof)

lemma approz-hnorm: x =~ y = hnorm x =~ hnorm y
for z y :: 'a::real-normed-vector star

(proof)

5.6 Zero is the Only Infinitesimal that is also a Real

lemma Infinitesimal-less-SReal: © € R = y € Infinitesimal — 0 < = y <
x

for z y :: hypreal

(proof)

THEORY “NSA” 54

lemma Infinitesimal-less-SReal2: y € Infinitesimal = V' r € Reals. 0 <1 — y
<r

for y :: hypreal

(proof)

lemma SReal-not-Infinitesimal: 0 < y = y € R ==> y ¢ Infinitesimal
for y :: hypreal
(proof)

lemma SReal-minus-not-Infinitesimal: y < 0 = y € R = y ¢ Infinitesimal
for y :: hypreal
(proof)

lemma SReal-Int-Infinitesimal-zero: R Int Infinitesimal = {0::hypreal}
(proof)

lemma SReal-Infinitesimal-zero: x € R = x € Infinitesimal — x = 0
for z :: hypreal

{proof)

lemma SReal-HFinite-diff-Infinitesimal: © € R = x # 0 = = € HFinite —
Infinitesimal
for z :: hypreal

{proof)

lemma hypreal-of-real- HFinite- diff-Infinitesimal:
hypreal-of-real © # 0 = hypreal-of-real © € HFinite — Infinitesimal
(proof)

lemma star-of-Infinitesimal-iff-0 [iff]: star-of x € Infinitesimal +— x = 0

(proof)

lemma star-of-HFinite-diff-Infinitesimal: x # 0 = star-of v € HFinite — In-
finitesimal
(proof)

lemma numeral-not-Infinitesimal [simp]:
numeral w # (0::hypreal) = (numeral w :: hypreal) ¢ Infinitesimal

{proof)

Again: 1 is a special case, but not 0 this time.

lemma one-not-Infinitesimal [simp]:
(1::'a::{real-normed-vector,zero-neg-one} star) ¢ Infinitesimal
{proof)

lemma approz-SReal-not-zero: y E R —= =y = y# 0 = z # 0
for z y :: hypreal
(proof)

THEORY “NSA” 95

lemma HFinite-diff-Infinitesimal-approx:
r = y = y € HFinite — Infinitesimal = x € HFinite — Infinitesimal
(proof)

The premise y # 0 is essential; otherwise / y = 0 and we lose the HFinite
premise.

lemma Infinitesimal-ratio:
y # 0 = y € Infinitesimal = x |/ y € HFinite = z € Infinitesimal
for z y :: 'a::{real-normed-div-algebra,field} star
(proof)

lemma Infinitesimal-SReal-divide: x € Infinitesimal — y € R = z / y € In-
finitesimal

for z y :: hypreal

(proof)

6 Standard Part Theorem

Every finite z € Rx is infinitely close to a unique real number (i.e. a member
of Reals).

6.1 Uniqueness: Two Infinitely Close Reals are Equal

lemma star-of-approz-iff [simp]: star-of © &~ star-of y +— z =y
(proof)

lemma SReal-approz-iff: t E R —= y e R =z y+— =y
for z y :: hypreal
(proof)

lemma numeral-approz-iff [simp]:

(numeral v = (numeral w :: 'a::{numeral,real-normed-vector} star)) = (numeral
v = (numeral w :: 'a))

{proof)

And also for 0 ~ #nn and 1 ~ #nn, #nn = 0 and #nn ~ 1.

lemma [simpl:
(numeral w = (0::'a::{numeral,real-normed-vector} star)) = (numeral w = (0::'a))
((0::'a::{numeral,real-normed-vector} star) ~ numeral w) = (numeral w = (0::'a))
(numeral w = (1::'b::{numeral,one,real-normed-vector} star)) = (numeral w =
(1::'h))
((1::'b::{numeral,one,real-normed-vector} star) = numeral w) = (numeral w =
(1::'b))
(0
(1

Proo

(1::'¢c::{zero-neq-one,real-normed-vector} star))
(0::'c::{ zero-neg-one,real-normed-vector} star))

|

=2

THEORY “NSA” 56

lemma star-of-approx-numeral-iff [simp]: star-of k = numeral w <— k = numeral
w

{proof)

lemma star-of-approz-zero-iff [simp|: star-of k ~ 0 «+— k=0
(proof)

lemma star-of-approz-one-iff [simp]: star-of k = 1 +— k = 1
(proof)

lemma approz-unique-real: r e R—=seceR—=r~zc— s~z =—r1r=:s
for r s :: hypreal

{proof)

6.2 Existence of Unique Real Infinitely Close

6.2.1 Lifting of the Ub and Lub Properties

lemma hypreal-of-real-isUb-iff: isUb R (hypreal-of-real * Q) (hypreal-of-real V) =
isUb UNIV Q Y
for @ :: real set and Y :: real

{proof)

lemma hypreal-of-real-isLub-iff:

isLub R (hypreal-of-real * Q) (hypreal-of-real V) = isLub (UNIV :: real set) Q Y
(is ?lhs = ?rhs)

for @ :: real set and Y :: real
(proof)

lemma lemma-isUb-hypreal-of-real: isUbR P Y = 3 Yo. isUb R P (hypreal-of-real
Yo)
(proof)

lemma lemma-isLub-hypreal-of-real: isLub R P'Y = 3 Yo. isLub R P (hypreal-of-real
Yo)
(proof)

lemma SReal-complete:
fixes P :: hypreal set
assumes isUbR P YP CR P # {}
shows 3¢t. isLub R Pt

(proof)

Lemmas about lubs.

lemma lemma-st-part-lub:
fixes z :: hypreal
assumes z € HF'inite
shows 3t. isLub R {s. se RA s <z}t

(proof)

THEORY “NSA” o7

lemma hypreal-setle-less-trans: S x<= 2 = z < y = S *<=y
for z y :: hypreal
(proof)

lemma hypreal-gt-isUb: isUb R Sz —= < y=—yc R= isUPR Sy
for z y :: hypreal
(proof)

lemma lemma-SReal-ub: t € R = isUbR {s. se RAs< z} x
for z :: hypreal

{proof)

lemma lemma-SReal-lub:
fixes z :: hypreal
assumes z € R shows isLub R {s. s e RA s < z} =

(proof)

lemma lemma-st-part-major:

fixes © r t :: hypreal

assumes z: © € HFinite and m: r € R 0 < r and ¢: isLub R {s. s € R A s <
x} t

shows |z — t| < r
(proof)

lemma lemma-st-part-major2:

z € HFinite = isLubR {s. se RA s <z} t = Vr € Reals. 0 <1 —> |z —
t|<r

for x t :: hypreal

(proof)

Existence of real and Standard Part Theorem.

lemma lemma-st-part-Ez: x € HFinite =—> Ft€Reals. Vr € Reals. 0 < r — |z
—tl<r

for z :: hypreal

(proof)

lemma st-part-Fx: © € HFinite = Jt€Reals. z =~ t
for z :: hypreal
(proof)

There is a unique real infinitely close.

lemma st-part-Ex1: ¢ € HFinite = 3lt::hypreal. t € R A x = ¢
(proof)

6.3 Finite, Infinite and Infinitesimal

lemma HPFinite-Int-HInfinite-empty [simp]: HFinite Int Hlnfinite = {}
(proof)

THEORY “NSA” o8

lemma HFinite-not-HInfinite:
assumes z: ¢ € HFinite shows z ¢ HInfinite

{proof)

lemma not-HFinite-HInfinite: © ¢ HFinite = z € HlInfinite
{proof)

lemma Hlinfinite-HFinite-disj: © € HlInfinite V © € HFinite
(proof)

lemma Hinfinite-HFinite-iff: © € HInfinite +— x ¢ HF'inite
(proof)

lemma HFinite-HInfinite-iff: © € HFinite «— x ¢ HInfinite
(proof)

lemma HlInfinite-diff- HFinite-Infinitesimal-disj:
z ¢ Infinitesimal = z € Hlnfinite V x € HFinite — Infinitesimal
(proof)

lemma HFinite-inverse: x € HFinite = x ¢ Infinitesimal = inverse © € HFi-
nite

for z :: 'a::real-normed-div-algebra star

(proof)

lemma HFinite-inverse2: © € HFinite — Infinitesimal = inverse x € HFinite
for z :: 'a::real-normed-div-algebra star

{proof)

Stronger statement possible in fact.

lemma Infinitesimal-inverse-HF'inite: x ¢ Infinitesimal = inverse x € HFinite
for z :: 'a::real-normed-div-algebra star

(proof)

lemma HFinite-not-Infinitesimal-inverse:
x € HFinite — Infinitesimal = inverse x € HFinite — Infinitesimal
for z :: 'a::real-normed-div-algebra star

(proof)

lemma approz-inverse:

fixes z y :: 'a::real-normed-div-algebra star

assumes z ~ y and y: y € HFinite — Infinitesimal shows inverse x ~ inverse
Y
(proof)

lemmas star-of-approz-inverse = star-of-HFinite-diff-Infinitesimal [THEN [2] ap-
prox-inverse)

THEORY “NSA” 99

lemmas hypreal-of-real-approz-inverse = hypreal-of-real- HFinite-diff-Infinitesimal
[THEN [2] approz-inverse]

lemma inverse-add-Infinitesimal-approx:

x € HFinite — Infinitesimal = h € Infinitesimal = inverse (x + h) = inverse
x

for z h :: 'a::real-normed-div-algebra star

{proof)

lemma inverse-add-Infinitesimal-approx2:

z € HFinite — Infinitesimal => h € Infinitesimal = inverse (h + x) & inverse
x

for z h :: 'a::real-normed-div-algebra star

{proof)

lemma inverse-add-Infinitesimal-approx-Infinitesimal:

x € HFinite — Infinitesimal = h € Infinitesimal = inverse (x + h) — inverse
r=h

for z h :: 'a::real-normed-div-algebra star

(proof)

lemma Infinitesimal-square-iff: © € Infinitesimal <— x * x € Infinitesimal
for z :: 'a::real-normed-div-algebra star

(proof)
declare Infinitesimal-square-iff [symmetric, simp

lemma HFinite-square-iff [simp]: © x x € HFinite +— x € HF'inite
for z :: 'a::real-normed-div-algebra star
(proof)

lemma Hinfinite-square-iff [simp]: x x x € HInfinite +— x € Hlnfinite
for z :: 'a::real-normed-div-algebra star

{proof)

lemma approz-HFinite-mult-cancel: a € HFinite — Infinitesimal — a x w ~ a *
2= wrz

for a w z :: 'a::real-normed-div-algebra star

(proof)

lemma approz-HFinite-mult-cancel-iff1: a € HFinite — Infinitesimal = a *x w ~
a*z4— w2z
for a w z :: 'a::real-normed-div-algebra star

{proof)

lemma HInfinite- HF'inite-add-cancel: © + y € HInfinite = y € HFinite = z €
Hlinfinite
(proof)

lemma HlInfinite-HFinite-add: x € HInfinite =—> y € HFinite = = + y € HIn-

THEORY “NSA” 60

finite
(proof)

lemma HlInfinite-ge-HInfinite: x € HInfinite —= z < y = 0 < z = y € HIn-
finite

for x y :: hypreal

(proof)

lemma Infinitesimal-inverse-HInfinite: © € Infinitesimal = ¢ # 0 = inverse
€ Hlinfinite

for z :: 'a::real-normed-div-algebra star

(proof)

lemma HlInfinite- HFinite-not-Infinitesimal-mult:
x € HInfinite = y € HFinite — Infinitesimal = = * y € HInfinite
for z y :: 'a::real-normed-div-algebra star

(proof)

lemma Hlinfinite- HFinite-not-Infinitesimal-mult2:
x € HInfinite = y € HFinite — Infinitesimal = y x © € HInfinite
for z y :: 'a::real-normed-div-algebra star

{proof)

lemma Hlinfinite-gt-SReal: x € HInfinite — 0 <z —= y e R = y < z
for z y :: hypreal
(proof)

lemma Hlinfinite-gt-zero-gt-one: x € Hinfinite — 0 < x — 1 < z
for z :: hypreal

{proof)

lemma not-HInfinite-one [simp]: 1 ¢ Hinfinite
{proof)

lemma approz-hrabs-disj: |z| ~ z V |z| ~ —x
for z :: hypreal
(proof)

6.4 Theorems about Monads

lemma monad-hrabs- Un-subset: monad |z| < monad z U monad (—)
for z :: hypreal

{proof)

lemma Infinitesimal-monad-eq: e € Infinitesimal —> monad (x + €) = monad
(proof)

lemma mem-monad-iff: u € monad ¥ <— — u € monad (— z)
{proof)

THEORY “NSA” 61

lemma Infinitesimal-monad-zero-iff: x € Infinitesimal <— = € monad 0
(proof)

lemma monad-zero-minus-iff: © € monad 0 +— — x € monad 0
(proof)

lemma monad-zero-hrabs-iff: © € monad 0 <— |z| € monad 0
for z :: hypreal

(proof)

lemma mem-monad-self [simp]: © € monad x
{proof)

6.5 Proof that z ~ y implies |z| ~ |y|

lemma approz-subset-monad: © ~ y = {z, y} < monad x

(proof)

lemma approz-subset-monad2: x =~ y = {z, y} < monad y
{proof)

lemma mem-monad-approx: u € monad xr = x ~ u
(proof)

lemma approz-mem-monad: x ~ u = u € monad x
(proof)

lemma approz-mem-monad2: © ~ u — = € monad u
(proof)

lemma approx-mem-monad-zero: x = y = = € monad 0 = y € monad 0
(proof)

lemma Infinitesimal-approz-hrabs: x = y = x € Infinitesimal = |z| =~ |y|
for x y :: hypreal
{proof)

lemma less-Infinitesimal-less: 0 < x = = ¢ Infinitesimal = e € Infinitesimal
— e<
for z :: hypreal

{proof)

lemma Ball-mem-monad-gt-zero: 0 < x = x ¢ Infinitesimal = u € monad x
= 0<u
for u x :: hypreal

{proof)

lemma Ball-mem-monad-less-zero: © < 0 = x ¢ Infinitesimal = w € monad

THEORY “NSA” 62

T=u<U0
for u x :: hypreal
(proof)

lemma lemma-approz-gt-zero: 0 < © = x ¢ Infinitesimal —= .~y = 0 < y
for x y :: hypreal
{proof)

lemma lemma-approz-less-zero: ¥ < 0 = z ¢ Infinitesimal —= z~ y = y <
0

for x y :: hypreal

(proof)

lemma approz-hrabs: x ~ y = |z| = |y|
for z y :: hypreal
(proof)

lemma approx-hrabs-zero-cancel: |z| = 0 = z ~ 0
for z :: hypreal

{proof)

lemma approx-hrabs-add-Infinitesimal: e € Infinitesimal = |z| = |z + €|
for e x :: hypreal

{proof)

lemma approx-hrabs-add-minus-Infinitesimal: e € Infinitesimal ==> |z| = |z +
—6‘

for e x :: hypreal

(proof)

lemma hrabs-add-Infinitesimal-cancel:
e € Infinitesimal = €’ € Infinitesimal = |z + €| = |y + €| = |z| = |y|
for e e’ x y :: hypreal
(proof)

lemma hrabs-add-minus-Infinitesimal-cancel:
e € Infinitesimal = ¢’ € Infinitesimal = |z + —e| = |y + —¢'| = |z| = |y|
for e e’ x y :: hypreal
(proof)

6.6 More HFinite and Infinitesimal Theorems

Interesting slightly counterintuitive theorem: necessary for proving that an
open interval is an NS open set.

lemma Infinitesimal-add-hypreal-of-real-less:
assumes z < y and u: u € Infinitesimal
shows hypreal-of-real x + u < hypreal-of-real y

(proof)

THEORY “NSA” 63

lemma Infinitesimal-add-hrabs-hypreal-of-real-less:
z € Infinitesimal = |hypreal-of-real v| < hypreal-of-real y =
|hypreal-of-real r + x| < hypreal-of-real y
(proof)

lemma Infinitesimal-add-hrabs-hypreal-of-real-less2:
z € Infinitesimal = |hypreal-of-real v| < hypreal-of-real y =
|z + hypreal-of-real r| < hypreal-of-real y
(proof)

lemma hypreal-of-real-le-add-Infininitesimal-cancel:
assumes le: hypreal-of-real © + u < hypreal-of-real y + v
and u: u € Infinitesimal and v: v € Infinitesimal
shows hypreal-of-real x < hypreal-of-real y

(proof)

lemma hypreal-of-real-le-add-Infininitesimal-cancel2:
u € Infinitesimal = v € Infinitesimal =
hypreal-of-real x + u < hypreal-of-real y + v=—= 2 < y
(proof)

lemma hypreal-of-real-less-Infinitesimal-le-zero:
hypreal-of-real © < e = e € Infinitesimal = hypreal-of-real x < 0

{proof)

lemma Infinitesimal-add-not-zero: h € Infinitesimal = © # 0 = star-of x + h
0
(proof)

lemma monad-hrabs-less: y € monad © = 0 < hypreal-of-real e = |y — z| <
hypreal-of-real e

(proof)
lemma mem-monad-SReal-HFinite: * € monad (hypreal-of-real a) = © € HFi-

nite
(proof)

6.7 Theorems about Standard Part

lemma st-approx-self: x € HFinite = st x = x
(proof)

lemma st-SReal: x € HFinite — st x € R
(proof)

lemma st-HFinite: © € HFinite =—> st x € HFinite
(proof)

lemma st-unique: r e R=—=r~zx = stx=r

THEORY “NSA” 64

{proof)

lemma st-SReal-eq: t € R = stz =z
(proof)

lemma st-hypreal-of-real [simp): st (hypreal-of-real) = hypreal-of-real x
(proof)

lemma st-eq-approz: x € HFinite = y € HFinite = stz = sty =z~ y
(proof)

lemma approz-st-eq:
assumes z: ¢ € HFinite and y: y € HFinite and zy: z = y
shows st x = sty

(proof)

lemma st-eq-approz-iff: x € HFinite = y € HFinite = z ~ y +— stz = st y
{proof)

lemma st-Infinitesimal-add-SReal: * € R = e € Infinitesimal => st (z + €) =
T

{proof)

lemma st-Infinitesimal-add-SReal2: © € R = e € Infinitesimal = st (e +)
=z
(proof)

lemma HFinite-st-Infinitesimal-add: v € HFinite =—> Je € Infinitesimal. © =
st(z) + e
(proof)

lemma st-add: © € HFinite = y € HFinite = st (x + y) = stz + sty

{proof)

lemma st-numeral [simp]: st (numeral w) = numeral w

{proof)
lemma st-neg-numeral [simp]: st (— numeral w) = — numeral w
{proof)
lemma st-0 [simp]: st 0 = 0
(proof)
lemma st-1 [simpl: st 1 = 1
{proof)
lemma st-neg-1 [simpl: st (— 1) = — 1

(proof)

THEORY “NSA” 65

lemma st-minus: ¢ € HFinite = st (— z) = — st x
{proof)

lemma st-diff: [z € HFinite; y € HFinite] = st (x — y) = stx — sty
(proof)

lemma st-mult: [z € HFinite; y € HFinite] = st (z x y) = stz * st y
{proof)

lemma st-Infinitesimal: © € Infinitesimal —> st x = 0
(proof)

lemma st-not-Infinitesimal: st(z) # 0 = = ¢ Infinitesimal
(proof)

lemma st-inverse: © € HFinite = st © # 0 = st (inverse z) = inverse (st x)
(proof)

lemma st-divide [simp]: © € HFinite = y € HFinite = st y # 0 = st (z /
y)=stxz /sty
{proof)

lemma st-idempotent [simpl: © € HFinite => st (st ©) = st z
{proof)

lemma Infinitesimal-add-st-less:
x € HFinite = y € HFinite = u € Infinitesimal — st x < st y = stz +
u < sty

{proof)

lemma Infinitesimal-add-st-le-cancel:
z € HFinite = y € HFinite = u € Infinitesimal —>
ste<sty+u=— stz < sty
(proof)

lemma st-le: x € HFinite = y € HFinite = 2 < y = stz < st y
(proof)

lemma st-zero-le: 0 < r — z € HFinite — 0 < st x
(proof)

lemma st-zero-ge: x < 0 = = € HFinite = st x < 0
(proof)

lemma st-hrabs: © € HFinite = |st x| = st |z]
{proof)

THEORY “NSA” 66

6.8 Alternative Definitions using Free Ultrafilter

6.8.1 HFinite

lemma HFinite-FreeUltrafilterNat:
assumes star-n X € HFinite
shows Ju. eventually (An. norm (X n) < u) U

{(proof)

lemma FreeUltrafilter Nat- HFinite:
assumes eventually (An. norm (X n) < u) U
shows star-n X € HFinite

(proof)

lemma HF'inite-FreeUltrafilter Nat-iff :
star-n X € HFinite +— (Ju. eventually (An. norm (X n) < u) U)

{proof)

6.8.2 Hlinfinite

Exclude this type of sets from free ultrafilter for Infinite numbers!

lemma FreeUltrafilter Nat-const-Finite:
eventually (An. norm (X n) = u) U = star-n X € HFinite

{proof)

lemma HlInfinite- FreeUltrafilterNat:
assumes star-n X € Hinfinite shows Vg n in U. u < norm (X n)

(proof)

lemma FreeUltrafilter Nat- HInfinite:
assumes Au. eventually (An. u < norm (X n)) U
shows star-n X € HInfinite

(proof)

lemma HlInfinite-FreeUltrafilter Nat-iff:
star-n X € HInfinite «— (VY u. eventually (An. v < norm (X n)) U)

{proof)

6.8.3 Infinitesimal

lemma ball-SReal-eq: (¥ z::hypreal € Reals. P x) +— (Vax::real. P (star-of x))
{proof)

lemma Infinitesimal-Free Ultrafilter Nat-iff :

(star-n X € Infinitesimal) = (VY u>0. eventually (An. norm (X n) < u) U) (is
?lhs = ?rhs)
(proof)

Infinitesimals as smaller than 1 /n for all n::nat (> 0).

THEORY “NSA” 67

lemma lemma-Infinitesimal: (Vr. 0 < r — x < r) «— (Vn. z < inverse (real
(Suc n)))
{proof)

lemma lemma-Infinitesimal2:

(Vr € Reals. 0 < r — z < r) +— (Vn. z < inverse(hypreal-of-nat (Suc n)))
(is - = ?rhs)
(proof)

lemma Infinitesimal-hypreal-of-nat-iff:
Infinitesimal = {x. ¥ n. hnorm x < inverse (hypreal-of-nat (Suc n))}
{proof)

6.9 Proof that w is an infinite number

It will follow that € is an infinitesimal number.

lemma Suc-Un-eq: {n. n < Suc m} = {n. n < m} Un {n. n = m}
{proof)

Prove that any segment is finite and hence cannot belong to U.
lemma finite-real-of-nat-segment: finite {n::nat. real n < real (m::nat)}

(proof)

lemma finite-real-of-nat-less-real: finite {n::nat. real n < u}
(proof)

lemma finite-real-of-nat-le-real: finite {n::nat. real n < u}
(proof)

lemma finite-rabs-real-of-nat-le-real: finite {n::nat. |real n| < u}
{proof)

lemma rabs-real-of-nat-le-real-Free UltrafilterNat:
= eventually (An. |real n| < u) U

{proof)

lemma FreeUltrafilterNat-nat-gt-real: eventually (An. u < real n) U

(proof)

The complement of {n. |real n| < u} = {n. u < |real n|} is in U by property
of (free) ultrafilters.

w is a member of HInfinite.

theorem HInfinite-omega [simp]: w € HInfinite
(proof)

Epsilon is a member of Infinitesimal.

THEORY “NSA” 68

lemma Infinitesimal-epsilon [simp]: € € Infinitesimal
{proof)

lemma HFinite-epsilon [simp]: € € HFinite
(proof)

lemma epsilon-approz-zero [simp]: € = 0
(proof)

Needed for proof that we define a hyperreal [<X(n)|] ~ hypreal-of-real a
given that Vn. | X n — a| < 1/n. Used in proof of NSLIM = LIM.

lemma real-of-nat-less-inverse-iff: 0 < v = u < inverse (real(Suc n)) <—
real(Suc n) < inverse u

{proof)

lemma finite-inverse-real-of-posnat-gt-real: 0 < u = finite {n. v < inverse (real
(Suc n))}
(proof)

lemma finite-inverse-real-of-posnat-ge-real:
assumes 0 < u
shows finite {n. u < inverse (real (Suc n))}

(proof)

lemma inverse-real-of-posnat-ge-real-Free Ultrafilter Nat:
0 < u = = eventually (An. u < inverse(real(Suc n))) U

(proof)

lemma FreeUltrafilter Nat-inverse-real-of-posnat:
0 < u = eventually (An. inverse(real(Suc n)) < u) U
(proof)

Example of an hypersequence (i.e. an extended standard sequence) whose
term with an hypernatural suffix is an infinitesimal i.e. the whn’'nth term
of the hypersequence is a member of Infinitesimal

lemma SEQ-Infinitesimal: (xf* (An::nat. inverse(real(Suc n)))) whn € Infinites-
imal
(proof)

Example where we get a hyperreal from a real sequence for which a par-
ticular property holds. The theorem is used in proofs about equivalence
of nonstandard and standard neighbourhoods. Also used for equivalence of
nonstandard ans standard definitions of pointwise limit.

|X(n) — z| < 1/n = [<X n>] — hypreal-of-real x| € Infinitesimal

lemma real-seq-to-hypreal-Infinitesimal:
Vn. norm (X n — z) < dnverse (real (Suc n)) = star-n X — star-of x €
Infinitesimal

THEORY “NSComplex” 69

{proof)

lemma real-seq-to-hypreal-approx:
Vn. norm (X n — z) < inverse (real (Suc n)) = star-n X ~ star-of x

(proof)

lemma real-seq-to-hypreal-approzr2:
Vn. norm (x — X n) < inverse(real(Suc n)) = star-n X ~ star-of x
{proof)

lemma real-seq-to-hypreal-Infinitesimal2:
Vn. norm(X n — Y n) < inverse(real(Suc n)) = star-n X — star-n Y €
Infinitesimal

{proof)

end

7 Nonstandard Complex Numbers

theory NSComplex
imports NSA
begin

type-synonym hcomplex = complex star

abbreviation hcomplez-of-complex :: complex = complex star
where hcomplez-of-complex = star-of

abbreviation hcmod :: complex star = real star
where hemod = hnorm

7.0.1 Real and Imaginary parts

definition hRe :: hcomplex = hypreal
where hRe = xfx Re

definition hlm :: hcomplex = hypreal
where him = xfx Im

7.0.2 Imaginary unit

definition i :: hcomplex
where iii = star-of i

7.0.3 Complex conjugate

definition hcnj :: hcompler = hcomplex
where hcenj = xfx cnj

THEORY “NSComplex” 70

7.0.4 Argand

definition hsgn :: hcomplex = hcomplex
where hsgn = xfx sgn

definition harg :: hcomplex = hypreal
where harg = xfx Arg

definition — abbreviation for cos a + i sin a
hcis :: hypreal = hcomplex
where hcis = xfx cis

7.0.5 Injection from hyperreals

abbreviation hcomplex-of-hypreal :: hypreal = hcomplex
where hcomplez-of-hypreal = of-hypreal

definition — abbreviation for r * (cos a + 7 sin a)
hreis :: hypreal = hypreal = hcomplex
where hrcis = xf2x rcis

7.0.6 e (z+ dy)

definition hEzp :: hcomplex = hcomplex
where hEzp = *fx exp

definition HComplex :: hypreal = hypreal = hcomplex
where HComplex = xf2x Complex

lemmas hcomplex-defs [transfer-unfold] =
hRe-def hIm-def iii-def henj-def hsgn-def harg-def hcis-def
hrcis-def hEzp-def HComplex-def

lemma Standard-hRe [simp]: x € Standard = hRe x € Standard
{proof)

lemma Standard-hIm [simp]: € Standard = hIm = € Standard
(proof)

lemma Standard-iii [simp]: @i € Standard
(proof)

lemma Standard-henj [simp|: © € Standard => henj © € Standard
(proof)

lemma Standard-hsgn [simp: © € Standard = hsgn x € Standard
{proof)

lemma Standard-harg [simp]: © € Standard = harg © € Standard
(proof)

THEORY “NSComplex” 71

lemma Standard-hcis [simp]: r € Standard = hcis r € Standard
{proof)

lemma Standard-hEzp [simp): © € Standard = hExp © € Standard
(proof)

lemma Standard-hrcis [simp]: r € Standard = s € Standard = hrcis r s €
Standard

(proof)

lemma Standard-HComplex [simp]: r € Standard => s € Standard = HComplex
r s € Standard

{proof)

lemma hcmod-def: hemod = *fx cmod

(proof)

7.1 Properties of Nonstandard Real and Imaginary Parts

lemma hcomplex-hRe-hIm-cancel-iff: Aw z. w = z +— hRe w = hRe z A\ hlm w
= him z

{proof)

lemma hcomplex-equality [intro?): Az w. hRe z = hRe w => hIm z = hIm w =
z=w

{proof)

lemma hcomplex-hRe-zero [simp]: hRe 0 = 0
(proof)

lemma hcomplex-hIm-zero [simpl: hIm 0 = 0
{proof)

lemma hcomplex-hRe-one [simp]: hRe 1 = 1

{proof)

lemma hcomplez-hIm-one [simp]: hIm 1 = 0

{proof)

7.2 Addition for Nonstandard Complex Numbers

lemma hRe-add: Nz y. hRe (z + y) = hRe x + hRe y
(proof)

lemma hlm-add: Az y. him (z + y) = hlm z + him y
{proof)

THEORY “NSComplex”

7.3 More Minus Laws

lemma hRe-minus: A\z. hRe (— z) = — hRe z
{proof)

lemma hlm-minus: \z. hIm (— z) = — hIm 2
(proof)

lemma hcomplez-add-minus-eq-minus: © + y =0 — = — y
for x y :: hcomplex
(proof)

lemma hcomplez-i-mult-eq [simp): @i * @i = — 1
(proof)

lemma hcomplez-i-mult-left [simp]: N\z. @@ * (il * 2) = — z
(proof)

lemma hcomplex-i-not-zero [simp): @i # 0
(proof)

7.4 More Multiplication Laws

lemma hcomplez-mult-minus-one: — 1 x z = — 2
for z :: hcomplex
(proof)
lemma hcomplex-mult-minus-one-right: z x — 1 = — 2
for z :: hcomplex
(proof)

lemma hcomplex-mult-left-cancel: ¢ # 0 = cxa=cxb+—>a=1»>
for a b ¢ :: hcomplex

(proof)

lemma hcomplex-mult-right-cancel: ¢ # 0 = ax c=b*c+— a=1»>
for a b ¢ :: hcomplex

(proof)
7.5 Subtraction and Division

lemma hcomplex-diff-eq-eq [simpl: t — y=z+— =24y
for xz y z :: hcomplex
(proof)

7.6 Embedding Properties for hcomplex-of-hypreal Map

lemma hRe-hcomplex-of-hypreal [simp]: \z. hRe (hcomplex-of-hypreal z) = z

{proof)

72

THEORY “NSComplex” 73

lemma hIm-hcomplez-of-hypreal [simp]: Az. hIm (hcomplex-of-hypreal z) = 0
{proof)

lemma hcomplex-of-epsilon-not-zero [simp): hcomplex-of-hypreal € # 0
(proof)

7.7 HComplex theorems

lemma hRe-HComplex [simp]: Az y. hRe (HComplex z y) = x
(proof)

lemma hIm-HComplex [simp]: Az y. hIm (HComplex x y) = y
(proof)

lemma hcomplex-surj [simp): \z. HComplex (hRe z) (hIm z) = z
{proof)

lemma hcomplex-induct [case-names rect):
(Az y. P (HComplezx x y)) = P z
{proof)

7.8 Modulus (Absolute Value) of Nonstandard Complex Num-
ber

lemma hcomplez-of-hypreal-abs:
hcomplex-of-hypreal |z| = hcomplez-of-hypreal (hemod (hcomplex-of-hypreal x))
(proof)

lemma HComplex-inject [simp]: Nz y z' y'. HComplex x y = HComplex z’ y' +—
z=z'Ny=y’
(proof)

lemma HComplez-add [simp]:

Nzl y1 2 y2. HComplex x1 y1 + HComplex 22 y2 = HComplex (z1 + 22) (y!
+ y2)

{proof)

lemma HComplex-minus [simp]: Az y. — HComplex z y = HComplex (— z) (—
v)
(proof)

lemma HComplex-diff [simp]:

Nzl y1 2 y2. HComplex x1 yl — HComplex 22 y2 = HComplex (z1 — x2) (yl
- y2)

(proof)

lemma HComplez-mult [simp]:
Nzl y1 22 y2. HComplex x1 y1 x HComplex z2 y2 = HComplex (x1xx2 — yl*y2)
(z1xy2 + ylxx2)

THEORY “NSComplex” 74

{proof)

HComplezx-inverse is proved below.

lemma hcomplez-of-hypreal-eq: \r. hcomplex-of-hypreal 1 = HComplex r 0
(proof)

lemma HComplez-add-hcomplex-of-hypreal [simp):
Nz y r. HComplex x y + hcomplez-of-hypreal r = HComplex (x + 1) y
(proof)

lemma hcomplex-of-hypreal-add-HComplex [simp):
Ar x y. hcomplez-of-hypreal v + HComplex x y = HComplex (r + z) y
(proof)

lemma HComplez-mult-hcomplez-of-hypreal:
Nz y r. HComplex x y * hcomplex-of-hypreal 1 = HComplex (x % r) (y * 1)

{proof)

lemma hcomplezx-of-hypreal-mult-HComplex:
Ar z y. hcomplex-of-hypreal r x HComplex x y = HComplex (r *) (r * y)

{proof)

lemma i-hcomplez-of-hypreal [simp]: \r. i * hcomplez-of-hypreal r = HComplex
0r
(proof)

lemma hcomplex-of-hypreal-i [simp]: \r. hcomplez-of-hypreal v x iii = HComplex
0r
(proof)

7.9 Conjugation
lemma hcomplezx-henj-cancel-iff [iff]: Nz y. henj z = henjy +— =y

{proof)

lemma hcomplex-heng-henj [simp]: N\z. henj (henj z) = 2

(proof)

lemma hcomplex-henj-hcomplex-of-hypreal [simp):
Nz. henj (hcomplezx-of-hypreal x) = hcomplex-of-hypreal x
(proof)

lemma hcomplex-hmod-heng [simp): \z. hemod (henj z) = hemod z
(proof)

lemma hcomplex-henj-minus: Nz. henj (— z) = — henj 2
(proof)

lemma hcomplex-henj-inverse: N\z. henj (inverse z) = inverse (henj z)

THEORY “NSComplex” 75

{proof)

lemma hcomplez-henj-add: \w z. henj (w + z) = henj w + henj z
(proof)

lemma hcomplex-henj-diff: Aw z. henj (w — z) = henj w — henj 2
(proof)

lemma hcomplex-henj-mult: Aw z. henj (w * z) = henj w * henj 2
(proof)

lemma hcomplez-henj-divide: Aw z. henj (w / z) = henj w / henj 2
{proof)

lemma hengj-one [simp]: henj 1 = 1
{proof)

lemma hcomplex-henj-zero [simp): henj 0 = 0
(proof)

lemma hcomplex-heng-zero-iff [iff]: Nz. henjz = 0 +— 2z =0
(proof)

lemma hcomplex-mult-henj: \z. z * henj z = hcomplex-of-hypreal ((hRe 2)? +
(hIm 2)?)
(proof)

7.10 More Theorems about the Function hcmod

lemma hcmod-hcomplex-of-hypreal-of-nat [simpl:
hemod (hecomplex-of-hypreal (hypreal-of-nat n)) = hypreal-of-nat n
(proof)

lemma hcmod-hcomplez-of-hypreal-of-hypnat [simpl:
hemod (heomplex-of-hypreal(hypreal-of-hypnat n)) = hypreal-of-hypnat n
(proof)

lemma hcemod-mult-heng: \z. hemod (z * henj 2) = (hemod 2)?
{proof)

lemma hcmod-triangle-ineq2 [simp]: Aa b. hemod (b + a) — hemod b < hemod a
{proof)

lemma hemod-diff-ineq [simp]: Aa b. hemod a — hemod b < hemod (a + b)
(proof)
7.11 Exponentiation

lemma hcomplezpow-0 [simpl: z ~ 0 = 1
for z :: hcomplex

THEORY “NSComplex” 76

{proof)

lemma hcomplezpow-Suc [simpl: z ~ (Suc n) = z * (z " n)
for z :: hcomplex
(proof)

lemma hcomplexpow-i-squared [simp]: % = —1
(proof)

lemma hcomplex-of-hypreal-pow: \xz. hcomplex-of-hypreal (z ~n) = hcomplez-of-hypreal
Tz n
(proof)

lemma hcomplez-henj-pow: Nz. henj (z ~n) = henj z " n

(proof)

lemma hcmod-hcomplexpow: Nz. hemod (x ~n) = hemod © ~n
{proof)

lemma hcpow-minus:
Az n. (= z 2 hcomplex) pow n = (if (*p*x even) n then (x pow n) else — (x pow

n))
{proof)

lemma hepow-mult: (r + s) pow n = (r pow n) * (s pow n)
for r s :: hcomplex
{proof)

lemma hepow-zero2 [simpl: An. 0 pow (hSuc n) = (0::'a::semiring-1 star)
{proof)

lemma hcpow-not-zero [simp,introl: Ar n. r # 0 = r pow n # (0::hcomplez)

{proof)

lemma hcpow-zero-zero: rpown =0 = r = 0
for r :: hcomplex

(proof)

7.12 The Function hsgn

lemma hsgn-zero [simp]: hsgn 0 = 0

(proof)
lemma hsgn-one [simp]: hsgn 1 = 1
(proof)
lemma hsgn-minus: N\z. hsgn (— z) = — hsgn 2

{proof)

THEORY “NSComplex” 7

lemma hsgn-eq: \z. hsgn z = z / hcomplex-of-hypreal (hemod z)
{proof)

lemma hcemod-i: Nz y. hemod (HComplex x y) = (*f* sqrt) (2% + y?)
(proof)

lemma hcomplez-eq-cancel-iff1 [simp]:
hecomplez-of-hypreal xa = HComplex x y «— za = x ANy =0
(proof)

lemma hcomplex-eq-cancel-iff2 [simp]:
HComplex © y = hcomplex-of-hypreal za <— x = za ANy = 0
(proof)

lemma HComplez-eq-0 [simp]: Nz y. HComplezxy = 0 +— 2 =0 Ay=10
(proof)

lemma HComplex-eq-1 [simp]: Nz y. HComplexx y =1 +—x =1 ANy=10
(proof)

lemma i-eq-HComplex-0-1: iti = HComplex 0 1
(proof)

lemma HComplez-eq-i [simp]: Az y. HComplex vy = iii +— =0 Ny =1
(proof)

lemma hRe-hsgn [simp]: Nz. hRe (hsgn z) = hRe z | hemod z
(proof)

lemma hIm-hsgn [simp]: Nz. hIm (hsgn z) = hIm z | hemod 2z
{proof)

lemma HComplez-inverse: \z y. inverse (HComplex x y) = HComplex (z / (z*
+91) (—y/ (@ +y%)
{proof)

lemma hRe-mult-i-eq[simp]: Ay. hRe (@i * hcomplex-of-hypreal y) = 0
(proof)

lemma hIm-mult-i-eq [simp]: Ay. hIm (i@ * hcomplez-of-hypreal y) = y
(proof)

lemma hemod-mult-i [simp]: Ny. hemod (i % hecomplex-of-hypreal y) = |y|
(proof)

lemma hemod-mult-i2 [simp]: Ny. hemod (hcomplez-of-hypreal y * i) = |y|
(proof)

THEORY “NSComplex” 78

7.12.1 harg

lemma cos-harg-i-mult-zero [simp]: Ny. y # 0 = (xf* cos) (harg (HComplez 0
y) =0
(proof)

7.13 Polar Form for Nonstandard Complex Numbers

lemma complez-split-polar2: ¥V n. 31 a. (z n) = complez-of-real v * Complex (cos
a) (sin a)
(proof)

lemma hcomplez-split-polar:
Nz. 37 a. z = hcomplez-of-hypreal v x (HComplex ((*f* cos) a) ((*f* sin) a))
(proof)

lemma hcis-eq:

Na. hcis a = hecomplez-of-hypreal ((xf* cos) a) + i x hcomplez-of-hypreal ((
xf* sin) a)

{proof)

lemma hreis-Ex: Nz. 3r a. z = hreis r a
{proof)

lemma hRe-hcomplex-polar [simp]:

A7 a. hRe (hcomplex-of-hypreal r x HComplex ((xfx cos) a) ((*f* sin) a)) = r
* (xf* cos) a

(proof)

lemma hRe-hrcis [simp]: \r a. hRe (hrcis r a) = r * (xf* cos) a
(proof)

lemma hIm-hcomplez-polar [simp]:
Ar a. hIm (hcomplex-of-hypreal r + HComplex ((xf* cos) a) ((xf* sin) a)) = r
* (xf* sin) a

(proof)

lemma hIm-hreis [simp): Ar a. hIm (hrcis v a) = 1 x (xf* sin) a
{proof)

lemma hcemod-unit-one [simpl: Aa. hemod (HComplex ((+fx cos) a) ((xf* sin)
a)) =1
(proof)

lemma hcmod-complex-polar [simpl:

A7 a. hemod (hcomplex-of-hypreal v HComplex ((xf* cos) a) ((xf* sin) a))
= |r|

(proof)

lemma hcmod-hreis [simp]: Ar a. hemod(hreis v a) = |r]

THEORY “NSComplex” 79

{proof)

(r1 % hreis a) * (r2 * hrcis b) = r1 * 12 % hrcis (a + b)

lemma hcis-hreis-eq: N\a. heis a = hreis 1 a

(proof)
declare hcis-hrcis-eq [symmetric, simp)

lemma hrcis-mult: Na b r1 r2. hrcis 1 a x hreis 12 b = hreis (r1 * r2) (a + b)
(proof)

lemma hcis-mult: Na b. heis a x heis b = heis (a + b)
{proof)

lemma hcis-zero [simp]: heis 0 = 1
{proof)

lemma hreis-zero-mod [simp): Na. hreis 0 a = 0
{proof)

lemma hrcis-zero-arg [simp|: A\r. hrcis v 0 = hcomplex-of-hypreal r
(proof)

lemma hcomplez-i-mult-minus [simp]: Nx. @ * (7 * 2) = — x
(proof)

lemma hcomplex-i-mult-minus2 [simp]: @i * iii * © = — x
{proof)

lemma hcis-hypreal-of-nat-Suc-mult:
Na. heis (hypreal-of-nat (Suc n) x a) = hcis a * hcis (hypreal-of-nat n x a)
{proof)

lemma NSDeMoivre: Na. (heis a) ~ n = hcis (hypreal-of-nat n * a)
{proof)

lemma hcis-hypreal-of-hypnat-Suc-mult:

Aa n. heis (hypreal-of-hypnat (n + 1) % a) = hcis a * hcis (hypreal-of-hypnat n
* a)

(proof)

lemma NSDeMoivre-ext: Na n. (heis a) pow n = heis (hypreal-of-hypnat n * a)
(proof)

lemma NSDeMoivre2: Na r. (hrcis ra) ~n = hreis (r ~ n) (hypreal-of-nat n x a)
{proof)

lemma DeMoivre2-ext: Na rn. (hrcis ra) pow n = hrcis (r pow n) (hypreal-of-hypnat
n* a)
(proof)

THEORY “NSComplex” 80

lemma hcis-inverse [simp]: Aa. inverse (hcis a) = heis (— a)
{proof)

lemma hreis-inverse: \a r. inverse (hrcis r a) = hrcis (inverse r) (— a)
(proof)

lemma hRe-hcis [simp]: Aa. hRe (hcis a) = (*f* cos) a
{proof)

lemma hIm-hcis [simp]: Na. hIm (heis a) = (xf* sin) a
(proof)

lemma cos-n-hRe-hcis-pow-n: (*f* cos) (hypreal-of-nat n * a) = hRe (hcis a ~n)

(proof)

lemma sin-n-hIm-hcis-pow-n: (xfx* sin) (hypreal-of-nat n x a) = him (hcis a ~n)
{proof)

lemma cos-n-hRe-hcis-hepow-n: (xf* cos) (hypreal-of-hypnat n * a) = hRe (hcis
a pow n)

{proof)

lemma sin-n-hIm-hcis-hepow-n: (xfx sin) (hypreal-of-hypnat n x a) = hIm (hcis
a pow n)
(proof)

lemma hEzp-add: Na b. hEzp (a + b) = hExp a * hExp b
(proof)

7.14 hcomplex-of-complex: the Injection from type compler to
to hcomplex

lemma hcomplex-of-complex-i: iti = hcomplex-of-complex i
(proof)

lemma hRe-hcomplex-of-complex: hRe (hcomplex-of-complex 2) = hypreal-of-real
(Re 2)
(proof)

lemma hlm-hcomplez-of-complex: him (hcomplex-of-complex z) = hypreal-of-real
(Im 2)
(proof)

lemma hcmod-hcomplez-of-complex: hemod (hcomplez-of-complex x) = hypreal-of-real
(cmod)

(proof)

THEORY “Star” 81

7.15 Numerals and Arithmetic

lemma hcomplex-of-hypreal-eq-hcomplex-of-complex:
hcomplez-of-hypreal (hypreal-of-real x) = hcomplex-of-complex (complex-of-real x)
(proof)

lemma hcomplez-hypreal-numeral:
hcomplex-of-complex (numeral w) = hcomplez-of-hypreal(numeral w)

{proof)

lemma hcomplex-hypreal-neg-numeral:
hcomplex-of-complex (— numeral w) = hcomplex-of-hypreal(— numeral w)

{proof)

lemma hcomplex-numeral-henj [simp]: henj (numeral v :: hcomplex) = numeral v
(proof)

lemma hcomplez-numeral-hcmod [simpl: hemod (numeral v :: hcomplex) = (numeral
v i hypreal)
{proof)

lemma hcomplex-neg-numeral-hecmod [simp]: hemod (— numeral v :: hcomplex) =
(numeral v :: hypreal)

{proof)

lemma hcomplex-numeral-hRe [simp]: hRe (numeral v :: hcomplex) = numeral v
(proof)

lemma hcomplex-numeral-hIm [simp|: hIm (numeral v :: hcomplex) = 0
{proof)

end

8 Star-Transforms in Non-Standard Analysis

theory Star
imports NSA
begin

definition — internal sets
starset-n :: (nat = 'a set) = 'a star set
(<(<open-block notation=<prefix starset-n»»xsnx -)» [80] 80)
where xsnx As = Iset (star-n As)

definition InternalSets :: 'a star set set
where InternalSets = {X. 3 As. X = xsnx As}

definition — nonstandard extension of function
is-starext :: ('a star = 'a star) = (‘a = 'a) = bool

THEORY “Star” 82

where is-starext F f +—
(Vzy. 3X € Rep-star . 3Y € Rep-star y. y = F x <— eventually (An. Y n

= [(Xn) U)

definition — internal functions
starfun-n :: (nat = 'a = 'b) = 'a star = 'b star
(<(<open-block notation=<prefix starfun-ny»*fnx -)» [80] 80)
where sfnx F' = Ifun (star-n F)

definition InternalFuns :: (‘a star => 'b star) set
where InternalFuns = {X. 3F. X = xfnx F}

8.1 Preamble - Pulling 3 over V
This proof does not need AC and was suggested by the referee for the JCM
Paper: let f = be least y such that @ x 3.

lemma no-choice: Vz. 3y. Q xy = 3f =t '/a = nat. Va. Q z (f z)
(proof)

8.2 Properties of the Star-transform Applied to Sets of Reals

lemma STAR-star-of-image-subset: star-of * A C xsx A
(proof)

lemma STAR-hypreal-of-real-Int: xsx X N R = hypreal-of-real * X
(proof)

lemma STAR-star-of-Int: xsx X N Standard = star-of * X
(proof)

lemma lemma-not-hyprealA: © ¢ hypreal-of-real ‘ A =V y € A. x # hypreal-of-real

Y
(proof)

lemma lemma-not-starA: x ¢ star-of ‘A = Vy € A. x # star-of y
(proof)

lemma STAR-real-seq-to-hypreal: Y n. (X n) ¢ M = star-n X ¢ xsx M
(proof)

lemma STAR-singleton: xsx {x} = {star-of =}
{proof)

lemma STAR-not-mem: ¢ ¢ F = star-of x ¢ xsx F
{proof)

lemma STAR-subset-closed: © € xsx A =—> A C B= 1 € xsx B
(proof)

THEORY “Star” 83

Nonstandard extension of a set (defined using a constant sequence) as a
special case of an internal set.

lemma starset-n-starset: Vn. Asn = A = xsnx As = *xsx A
(proof)

8.3 Theorems about nonstandard extensions of functions

Nonstandard extension of a function (defined using a constant sequence) as
a special case of an internal function.

lemma starfun-n-starfun: F = (An. f) = xfnx F = xfx f
(proof)

Prove that abs for hypreal is a nonstandard extension of abs for real w/o use
of congruence property (proved after this for general nonstandard extensions
of real valued functions).

Proof now Uses the ultrafilter tactic!

lemma hrabs-is-starext-rabs: is-starext abs abs
(proof)

Nonstandard extension of functions.

lemma starfun: (#f* f) (star-n X) = star-n (An. f (X n))
{proof)

lemma starfun-if-eq: Aw. w # star-of x = (*#fx (Az. if z = x then a else g z))
w=(*xf*xg) w
(proof)

Multiplication: (xf) z (*g) = *(f z g)

lemma starfun-mult: Nz. (*f* f) 2 (xfx g) z = (xfx QAz. fzxgx)) x

(proof)
declare starfun-mult [symmetric, simp)

Addition: (xf) + (xg) = *(f + 9)

lemma starfun-add: Nz. (xf* f) o + (xfx g) z = (xfx (A\z. fa + gz)) z

(proof)
declare starfun-add [symmetric, simp

Subtraction: (xf) + —(*g) = *(f + —g)

lemma starfun-minus: Az. — (xf* f) z = (xfx Az. — fz)) z

(proof)
declare starfun-minus [symmetric, simp]

lemma starfun-add-minus: Nz. (#fx f) z + —(*f* g) z = (*#f* (\z. fz + —¢
(proof)

THEORY “Star” 84

declare starfun-add-minus [symmetric, simp)

lemma starfun-diff: Nz. (xf*)z — (xfx g) 2 = (*fx A\z. fz —g2)) =
{proof)

declare starfun-diff [symmetric, simp]

Composition: (*f) o (*xg) = *(f o g)

1e<mmz}>starfun—02: Az (*fx) ((*fx g)) = xfx (Az. f (9 7))
proo

lemma starfun-o: (xfx f) o (xfx g) = (*fx (f o g))
(proof)

NS extension of constant function.

lemma starfun-const-fun [simp]: Nz. (xf* (Az. k)) & = star-of k
{proof)

The NS extension of the identity function.

lemma starfun-Id [simp]: Az. (#fx (A\z. z)) z =«
{proof)

The Star-function is a (nonstandard) extension of the function.

lemma is-starezt-starfun: is-starext (xfx f) f

{(proof)

Any nonstandard extension is in fact the Star-function.

lemma is-starfun-starext:
assumes is-starext F f
shows F' = xfx f
(proof)

lemma is-starext-starfun-iff: is-starext F f «+— F = xfx f
(proof)
Extended function has same solution as its standard version for real argu-
ments. i.e they are the same for all real arguments.
lemma starfun-eq: (xf* f) (star-of a) = star-of (f a)
(proof)

lemma starfun-approz: (xf* f) (star-of a) = star-of (f a)
(proof)

Useful for NS definition of derivatives.

lemma starfun-lambda-cancel: Nz'. («fx (Ah. f (x + h))) ' = (xf* f) (star-of
z + z)
(proof)

THEORY “Star” 85

lemma starfun-lambda-cancel2: (xfx (Ah. f (g (x + h)))) =’ = (xfx (f o g))
(star-of z + z)
{proof)

lemma starfun-mult-HFinite-approx:
(xfx f) z =l = (*f* g) x & m = | € HFinite = m € HF'inite =
(xfx Az. fzxga))zlxm
for [m :: 'a::real-normed-algebra star
(proof)

lemma starfun-add-approz: (*f* f) r =l = (xfx g) t & m = (*f* (%z. fx
+gz)az=l+m
(proof)

Examples: hrabs is nonstandard extension of rabs, inverse is nonstandard
extension of inverse.

Can be proved easily using theorem starfun and properties of ultrafilter as
for inverse below we use the theorem we proved above instead.

lemma starfun-rabs-hrabs: xf* abs = abs
(proof)

lemma starfun-inverse-inverse [simp]: (*f* inverse) x = inverse x
{proof)

lemma starfun-inverse: \z. inverse ((xf* f)) = (xf* (Az. inverse (f z))) =

(proof)
declare starfun-inverse [symmetric, simp]

lemma starfun-divide: Nx. (xf* f) x / (xfx g) z = (xf* (\z. fa / gz)) z

{proof)
declare starfun-divide [symmetric, simp)

lemma starfun-inverse2: Nz. inverse ((*fx f)) = (#f* (Az. inverse (f z))) =
{proof)

General lemma/theorem needed for proofs in elementary topology of the
reals.

lemma starfun-mem-starset: N\z. (*f* f) x € xsx A => 1 € xsx {x. fz € A}
{proof)

Alternative definition for hrabs with rabs function applied entrywise to

equivalence class representative. This is easily proved using starfun and
ns extension thm.

lemma hypreal-hrabs: |star-n X| = star-n (An. |X n|)

(proof)

Nonstandard extension of set through nonstandard extension of rabs func-
tion i.e. hrabs. A more general result should be where we replace rabs by

THEORY “NatStar” 86

some arbitrary function f and hrabs by its NS extenson. See second NS set
extension below.

lemma STAR-rabs-add-minus: xsx {z. |t + — y| < r} = {z. |z + —star-of y| <
star-of T}
{proof)

lemma STAR-starfun-rabs-add-minus:
wxsx {z. [fo+ — y| <r}={z |(xf* f) x + —star-of y| < star-of r}
(proof)

Another characterization of Infinitesimal and one of ~ relation. In this
theory since hypreal-hrabs proved here. Maybe move both theorems??

lemma Infinitesimal-Free UltrafilterNat-iff2:

star-n X € Infinitesimal <— (¥ m. eventually (An. norm (X n) < inverse (real
(Suc m))) U)

(proof)

lemma HNatInfinite-inverse-Infinitesimal [simp]:
assumes n € HNatInfinite
shows inverse (hypreal-of-hypnat n) € Infinitesimal
(proof)

lemma approx-FreeUltrafilter Nat-iff :
star-n X = star-n Y <— (Vr>0. eventually (An. norm (X n — Y n) < r) U)
(is ?lhs = %rhs)

(proof)

lemma approx-FreeUltrafilterNat-iff2:

star-n X = star-n Y «— (Vm. eventually (An. norm (X n — Y n) < inverse
(real (Suc m))) U)

(is ?lhs = %rhs)
(proof)

lemma inj-starfun: inj starfun

(proof)

end

9 Star-transforms for the Hypernaturals

theory NatStar
imports Star
begin

lemma star-n-eq-starfun-whn: star-n X = (xfx X) whn
(proof)

lemma starset-n-Un: xsnx (An. (A n) U (B n)) = xsnx A U *xsnx B

THEORY “NatStar” 87

(proof)

lemma InternalSets-Un: X € InternalSets = Y € InternalSets — X U Y €
InternalSets

(proof)

lemma starset-n-Int: xsnx (An. A n N B n) = xsnx A N xsnx B
(proof)

lemma InternalSets-Int: X € InternalSets =— Y € InternalSets — X N Y €
InternalSets

{proof)

lemma starset-n-Compl: xsnx (An. — A n)) = — (*xsnx A)
(proof)

lemma InternalSets-Compl: X € InternalSets =—> — X € InternalSets
(proof)

lemma starset-n-diff: xsnx (An. (A n) — (B n)) = xsnx A — xsnx B

(proof)

lemma InternalSets-diff: X € InternalSets =—> Y € InternalSets — X — Y €
InternalSets

{proof)

lemma NatStar-SHNat-subset: Nats < xsx (UNIV:: nat set)
{proof)

lemma NatStar-hypreal-of-real-Int: xsx X Int Nats = hypnat-of-nat * X
(proof)

lemma starset-starset-n-eq: xsx X = xsnx (An. X)
{proof)

lemma InternalSets-starset-n [simpl: (*sx X) € InternalSets
(proof)

lemma InternalSets-UNIV-diff: X € InternalSets =—> UNIV — X € InternalSets
(proof)

9.1 Nonstandard Extensions of Functions

Example of transfer of a property from reals to hyperreals — used for limit
comparison of sequences.

lemma starfun-le-mono: Vn. N <n — fn<gn—
Vn. hypnat-of-nat N < n — («xfx f) n < (xfx g) n
(proof)

THEORY “NatStar” 88

And another:

lemma starfun-less-mono:
Vn. N<n— fn<gn= Vn. hypnat-of-nat N < n — (xf* f) n < (*fx
g) n
(proof)
Nonstandard extension when we increment the argument by one.
lemma starfun-shift-one: AN. (xf*x (An. f (Sucn))) N = (xf* f) (N + (1::hypnat))
(proof)
Nonstandard extension with absolute value.
lemma starfun-abs: AN. (xfx (An. |fn])) N = |(xf* f) N|
(proof)
The hyperpow function as a nonstandard extension of realpow.
lemma starfun-pow: AN. (xfx (An. r " n)) N = hypreal-of-real r pow N
(proof)

lemma starfun-pow2: AN. (xfx (An. Xn ~m)) N = (xfx X) N pow hypnat-of-nat
m
(proof)

lemma starfun-pows: AR. (xfx (Ar. v "~ n)) R = R pow hypnat-of-nat n
(proof)
The hypreal-of-hypnat function as a nonstandard extension of real.
lemma starfunNat-real-of-nat: (xfx real) = hypreal-of-hypnat
(proof)

lemma starfun-inverse-real-of-nat-eq:
N € HNatInfinite = (xfx (Az::nat. inverse (real x))) N = inverse (hypreal-of-hypnat
N)
{proof)
Internal functions — some redundancy with *f* now.
lemma starfun-n: (xfnx f) (star-n X) = star-n (An. fn (X n))
(proof)
Multiplication: (*fn) z (*gn) = *(fn x gn)
lemma starfun-n-mult: (xfnx f) z % (*xfnx g) 2= (*fax (Niz. fiz*x gix)) 2
{proof)
Addition: (xfn) + (*gn) = *(fn + gn)
lemma starfun-n-add: (xfnx f) z + (xfnx g) 2z = (*fnx Niz. fiz + giz)) 2z
{proof)

Subtraction: (xfn) — (xgn) = x(fn + — gn)

THEORY “NatStar” 89

lemma starfun-n-add-minus: (xfnx f) z + —(xfnx g) 2 = (xfnx ANz fiz +
—giz)z
{proof)

Composition: (xfn) o (*gn) = *(fn o gn)

lemma starfun-n-const-fun [simp): (xfnx (\i z. k)) z = star-of k
{proof)

lemma starfun-n-minus: — (xfnx f) z = (*fnx Niz. — (fi) z2)) =
{proof)

lemma starfun-n-eq [simp): (*fnx f) (star-of n) = star-n (Ai. fin)
{proof)

lemma starfun-eq-iff: ((«fx f) = (xfx g)) +— f =g
(proof)

lemma starfunNat-inverse-real-of-nat-Infinitesimal [simp]:
N € HNatInfinite = (*fx (A\z. inverse (real z))) N € Infinitesimal
(proof)

9.2 Nonstandard Characterization of Induction

lemma hypnat-induct-obj:

{\n. ((*xpx P) (0:hypnat) A (Vn. (xpx P) n — (*px P) (n + 1))) — (*px
P)n

(proof)

lemma hypnat-induct:

g\n. (*px P) (0::hypnat) = (An. (*px P) n = (*px P) (n + 1)) = (*px
P)n

(proof)

lemma starP2-eq-iff: (xp2x (=)) = (=)
{proof)

lemma starP2-eq-iff2: (#p2x Az y. 2 =9y) XY +— X =Y
(proof)

lemma nonempty-set-star-has-least-lemma:
IneS.VmeS. n < mif S # {} for S :: nat set
(proof)

lemma nonempty-set-star-has-least:
NS:nat set star. Iset S # {} = In € Iset S.¥Ym € Iset S. n < m
(proof)

lemma nonempty-InternalNatSet-has-least: S € InternalSets = S # {} = In
eS.VmeS. n<<m

THEORY “HSEQ” 90

for S :: hypnat set
{proof)

Goldblatt, page 129 Thm 11.3.2.

lemma internal-induct-lemma:
AX::nat set star.
(0:hypnat) € Iset X = Vn.n € Iset X — n + 1 € Iset X = Iset X =
(UNIV:: hypnat set)
(proof)

lemma internal-induct:

X € InternalSets = (0::hypnat) € X =Vn.ne X —n+ 1€ X = X =
(UNIV:: hypnat set)

(proof)

end

10 Sequences and Convergence (Nonstandard)

theory HSEQ
imports Complex-Main NatStar
abbrevs ———> = — g
begin

definition NSLIMSEQ :: (nat = 'a::real-normed-vector) = 'a = bool
(«(«notation=<mizfix NSLIMSEQ»(-)] ——ns () [60, 60] 60) where
— Nonstandard definition of convergence of sequence
X ——ns L «— (VN € HNatInfinite. (xfx X) N = star-of L)

definition nslim :: (nat = 'a::real-normed-vector) = 'a
where nslim X = (THE L. X ——nNg L)
— Nonstandard definition of limit using choice operator

definition NSconvergent :: (nat = 'a::real-normed-vector) = bool
where NSconvergent X «— (3L. X ——pngs L)
— Nonstandard definition of convergence

definition NSBseq :: (nat = 'a::real-normed-vector) = bool
where NSBseq X +— (VN € HNatInfinite. (xfx X) N € HFinite)
— Nonstandard definition for bounded sequence

definition NSCauchy :: (nat = 'a::real-normed-vector) = bool

where NSCauchy X +— (VM € HNatinfinite. VN € HNatInfinite. (xfx X) M
~ (xfx X) N)

— Nonstandard definition

THEORY “HSEQ” 91

10.1 Limits of Sequences

lemma NSLIMSEQ-I: (AN. N € HNatInfinite = starfun X N = star-of L) =
X ——ns L
(proof)

lemma NSLIMSEQ-D: X —— s L = N € HNatInfinite = starfun X N =
star-of L
(proof)

lemma NSLIMSEQ-const: (An. k) ——ng k
(proof)

lemma NSLIMSEQ-add: X ——pnys a = Y ——nys b= (An. Xn+ Y
n) ——nNs a+ b
(proof)

lemma NSLIMSEQ-add-const: f ———ns a = (An. fn+ b)) ——nsa+ b
(proof)

lemma NSLIMSEQ-mult: X ——nys a=—= Y ——ns b= (An. X nx Y
n) —nNs ax*x b

for a b :: 'a::real-normed-algebra

(proof)

lemma NSLIMSEQ-minus: X ——nys a = (An. — X n) ——ns — a
(proof)

lemma NSLIMSEQ-minus-cancel: (An. — X n) ——ns —a => X —— s a
{proof)

lemma NSLIMSEQ-diff: X ——nys a =Y ——nys b= (An. X n — Y
’I“L) —>NS & — b
(proof)

lemma NSLIMSEQ-diff-const: f ——ns a = (An. fn —b) ——ys a—b
(proof)

lemma NSLIMSEQ-inverse: X ——ng a = a # 0 = (An. inverse (X n))
—> NS thverse a

for a :: 'a::real-normed-div-algebra

(proof)

lemma NSLIMSEQ-mult-inverse: X ——ng a = Y ——Ng b= b # 0
= (M. Xn/Yn) ——pNnsa/b
for a b :: 'a::real-normed-field

(proof)

lemma starfun-hnorm: Az. hnorm ((xfx f) x) = (#f* (Az. norm (fz))) z
{proof)

THEORY “HSEQ” 92

lemma NSLIMSEQ-norm: X ——ng a = (An. norm (X n)) —— ns norm
a

{proof)

Uniqueness of limit.

lemma NSLIMSEQ-unique: X ——ng a=—> X ——nys b= a =10
(proof)

lemma NSLIMSEQ-pow [rule-format]: (X ——ns a) — ((An. (X n) ~ m)
—NS G Am)

for a :: 'a::{real-normed-algebra,power}

{proof)

We can now try and derive a few properties of sequences, starting with the
limit comparison property for sequences.
lemma NSLIMSEQ-le: f ——ns | =— g ——ns m = IN.Vn > N. fn
<gn=>1<m

for [m :: real

(proof)

lemma NSLIMSEQ-le-const: X —— s r—=Vn.a< Xn—a<r
for a r :: real

(proof)

lemma NSLIMSEQ-le-const2: X ——nysr=Vn. Xn<a=r<a
for a r :: real

{proof)

Shift a convergent series by 1: By the equivalence between Cauchiness and
convergence and because the successor of an infinite hypernatural is also
infinite.

lemma NSLIMSEQ-Suc-iff: (An. f (Suc n)) ——ns 1) «— (f ——ns 1)
(proof)

10.1.1 Equivalence of LIMSEQ and NSLIMSEQ

lemma LIMSEQ-NSLIMSEQ:
assumes X: X —— L
shows X ——ng L

(proof)

lemma NSLIMSEQ-LIMSEQ:
assumes X: X ——pyg L
shows X —— L

(proof)

theorem LIMSEQ-NSLIMSEQ-iff: f —— L +— f ——Nng L
(proof)

THEORY “HSEQ” 93

10.1.2 Derived theorems about NSLIMSEQ

We prove the NS version from the standard one, since the NS proof seems
more complicated than the standard one above!

lemma NSLIMSEQ-norm-zero: (An. norm (X n)) ——ns 0 +— X —— N5
0

{proof)

lemma NSLIMSEQ-rabs-zero: (An. |fn|]) ——ns 0 «— f ——— N (0::7real)
{proof)

Generalization to other limits.

lemma NSLIMSEQ-imp-rabs: f ——ns | = (An. |f n|]) ——ns |
for [:: real
(proof)

lemma NSLIMSEQ-inverse-zero: ¥ y::real. AN. V' n > N. y < fn = (An. inverse
(fn)) ——ns 0

{proof)

lemma NSLIMSEQ-inverse-real-of-nat: (An. inverse (real (Suc n))) ——ns 0
{proof)

lemma NSLIMSEQ-inverse-real-of-nat-add: (An. r + inverse (real (Sucn))) ——ns
r

{proof)

lemma NSLIMSEQ-inverse-real-of-nat-add-minus: (An. r + — inverse (real (Suc
n))) — NS T
{proof)

lemma NSLIMSEQ-inverse-real-of-nat-add-minus-mult:
(An. r % (1 + — inverse (real (Suc n)))) ——Ns T
(proof)

10.2 Convergence
lemma nsliml: X —— s L = nslim X = L
(proof)

lemma lim-nslim-iff: lim X = nslim X
(proof)

lemma NSconvergentD: NSconvergent X =—> 3L. X ——ng L
(proof)

lemma NSconvergentl: X ——— g L = NSconvergent X
(proof)

THEORY “HSEQ” 94

lemma convergent-NSconvergent-iff: convergent X = NSconvergent X
{proof)

lemma NSconvergent-NSLIMSEQ-iff: NSconvergent X «— X ——— g nslim X
(proof)

10.3 Bounded Monotonic Sequences

lemma NSBseqD: NSBseq X = N € HNatInfinite = (#f* X) N € HFinite
(proof)

lemma Standard-subset-HFinite: Standard C HFinite
(proof)

lemma NSBseqD2: NSBseq X = (+f* X) N € HFinite
(proof)

lemma NSBseql: ¥V N € HNatInfinite. (xfx X) N € HFinite = NSBseq X
(proof)

The standard definition implies the nonstandard definition.
lemma Bseq-NSBseq: Bseq X = NSBseq X

(proof)
The nonstandard definition implies the standard definition.
lemma SReal-less-omega: 1 € R = r < w

{proof)

lemma NSBseq-Bseq: NSBseq X =—> Bseq X
(proof)

Equivalence of nonstandard and standard definitions for a bounded se-
quence.

lemma Bseq-NSBseq-iff: Bseq X = NSBseq X
(proof)

A convergent sequence is bounded: Boundedness as a necessary condition
for convergence. The nonstandard version has no existential, as usual.

lemma NSconvergent-NSBseq: NSconvergent X =—> NSBseq X
(proof)

Standard Version: easily now proved using equivalence of NS and standard
definitions.

lemma convergent-Bseq: convergent X =—> Bseq X
for X :: nat = 'b::real-normed-vector

(proof)

THEORY “HSEQ” 95

10.3.1 Upper Bounds and Lubs of Bounded Sequences

lemma NSBseg-isUb: NSBseq X = 3 U::real. isUb UNIV {z. I3n. X n =z} U
(proof)

lemma NSBseg-isLub: NSBseq X = 3 U::real. isLub UNIV {z. 3n. Xn =2z} U
{proof)

10.3.2 A Bounded and Monotonic Sequence Converges

The best of both worlds: Easier to prove this result as a standard theorem
and then use equivalence to "transfer" it into the equivalent nonstandard
form if needed!

lemma Bmonoseq-NSLIMSEQ: ¥ i k in sequentially. Xk =Xm —= X —— N5
Xm

{proof)

lemma NSBseq-mono-NSconvergent: NSBseq X = Vm. ¥Yn > m. X m < X n
= NSconvergent X
for X :: nat = real

{proof)

10.4 Cauchy Sequences

lemma NSCauchyl:
(AM N. M € HNatInfinite = N € HNatInfinite = starfun X M = starfun X
N) = NSCauchy X

{proof)

lemma NSCauchyD:
NSCauchy X = M € HNatInfinite = N € HNatInfinite —> starfun X M =
starfun X N

{proof)

10.4.1 Equivalence Between NS and Standard

lemma Cauchy-NSCauchy:
assumes X: Cauchy X
shows NSCauchy X

(proof)

lemma NSCauchy-Cauchy:
assumes X: NSCauchy X
shows Cauchy X

(proof)

theorem NSCauchy-Cauchy-iff: NSCauchy X = Cauchy X
(proof)

THEORY “HSEQ” 96

10.4.2 Cauchy Sequences are Bounded

A Cauchy sequence is bounded — nonstandard version.

lemma NSCauchy-NSBseq: NSCauchy X = NSBseq X
(proof)

10.4.3 Cauchy Sequences are Convergent

Equivalence of Cauchy criterion and convergence: We will prove this using
our NS formulation which provides a much easier proof than using the stan-
dard definition. We do not need to use properties of subsequences such as
boundedness, monotonicity etc... Compare with Harrison’s corresponding
proof in HOL which is much longer and more complicated. Of course, we do
not have problems which he encountered with guessing the right instantia-
tions for his ’espsilon-delta’ proof(s) in this case since the NS formulations
do not involve existential quantifiers.

lemma NSconvergent-NSCauchy: NSconvergent X = NSCauchy X
(proof)

lemma real-NSCauchy-NSconvergent:
fixes X :: nat = real
assumes NSCauchy X shows NSconvergent X

(proof)

lemma NSCauchy-NSconvergent: NSCauchy X = NSconvergent X
for X :: nat = ‘a::banach

(proof)

lemma NSCauchy-NSconvergent-iff: NSCauchy X = NSconvergent X
for X :: nat = 'a::banach

{proof)

10.5 Power Sequences

The sequence z" tends to 0 if 0 < z and = < 1. Proof will use (NS) Cauchy
equivalence for convergence and also fact that bounded and monotonic se-
quence converges.

We now use NS criterion to bring proof of theorem through.

lemma NSLIMSEQ-realpow-zero:
fixes z :: real
assumes 0 < zz < I shows (An. £ " n) ——ngs 0

(proof)

lemma NSLIMSEQ-abs-realpow-zero: |c| < 1 = (An. |¢|] ~n) ——ns 0
for c :: real

{proof)

THEORY “HSeries” 97

lemma NSLIMSEQ-abs-realpow-zero2: |¢| < 1 = (An. ¢ " n) ——ns 0
for c :: real

{proof)

end

11 Finite Summation and Infinite Series for Hy-
perreals

theory HSeries
imports HSEQ
begin

definition sumhr :: hypnat x hypnat X (nat = real) = hypreal
where sumhr = (A(M,N.f). starfun2 (Am n. sum f {m..<n}) M N)

definition NSsums :: (nat = real) = real = bool (infixr «(NSsums> 80)
where f NSsums s = (An. sum f {.<n}) ——nsg s

definition NSsummable :: (nat = real) = bool
where NSsummable f «— (Is. f NSsums s)

definition NSsuminf :: (nat = real) = real
where NSsuminf f = (THE s. f NSsums s)

lemma sumhr-app: sumhr (M, N, f) = («f2x (Am n. sum f {m..<n})) M N
{proof)
Base case in definition of sumr.

lemma sumhr-zero [simpl: Am. sumhr (m, 0, f) = 0
{proof)

Recursive case in definition of sumr.

lemma sumhr-if:

Am n. sumhr (m, n + 1, f) = (if n + 1 < m then 0 else sumhr (m, n, f) + (
xfx f) n)

{proof)

lemma sumhr-Suc-zero [simpl: An. sumhr (n + 1, n, f) = 0
(proof)

lemma sumhr-eq-bounds [simp]: An. sumhr (n, n, f) = 0
{proof)

lemma sumhr-Suc [simp]: Am. sumhr (m, m + 1, f) = (xfx f) m
{proof)

THEORY “HSeries” 98

lemma sumhr-add-lbound-zero [simp]: Ak m. sumhr (m + k, k, f) = 0
{proof)

lemma sumhr-add: Am n. sumhr (m, n, f) + sumhr (m, n, g) = sumhr (m, n,
Ni. fi+ g i)
{proof)

lemma sumhr-mult: Am n. hypreal-of-real v x sumhr (m, n, f) = sumhr (m, n,
An. T * fn)
(proof)

lemma sumhr-split-add: A\n p. n < p = sumhr (0, n, f) + sumhr (n, p, f) =
sumhr (0, p, f)
(proof)

lemma sumhr-split-diff: n < p = sumhr (0, p, f) — sumhr (0, n,) = sumhr

(n, p, f)
(proof)

lemma sumhr-hrabs: Am n. |sumhr (m, n, f)| < sumhr (m, n, Ai. |f i)
{proof)

Other general version also needed.

lemma sumhr-fun-hypnat-eq:
VMr.m<rAr<n—fr=gr) —
sumhr (hypnat-of-nat m, hypnat-of-nat n, f) =
sumhr (hypnat-of-nat m, hypnat-of-nat n, g)
(proof)

lemma sumhr-const: \n. sumhr (0, n, Ai. r) = hypreal-of-hypnat n * hypreal-of-real
r

{proof)

lemma sumhr-less-bounds-zero [simp]: Am n. n < m = sumhr (m, n, f) = 0
{proof)

lemma sumhr-minus: Am n. sumhr (m, n, AXi. — fi) = — sumhr (m, n, f)
(proof)

lemma sumhr-shift-bounds:
Am n. sumhr (m + hypnat-of-nat k, n + hypnat-of-nat k, f) =
sumhr (m, n, M. f (i + k))
(proof)

11.1 Nonstandard Sums

Infinite sums are obtained by summing to some infinite hypernatural (such
as whn).

THEORY “HSeries” 99

lemma sumhr-hypreal-of-hypnat-omega: sumhr (0, whn, Ai. 1) = hypreal-of-hypnat
whn
(proof)

lemma whn-eq-wml: hypreal-of-hypnat whn = w — 1
(proof)

lemma sumhr-hypreal-omega-minus-one: sumhr(0, whn, A\i. 1) = w — 1
(proof)

o~

lemma sumhr-minus-one-realpow-zero [simp): AN. sumhr (0, N + N, Ai. (—1)
(i+1)=0
(proof)

lemma sumhr-interval-const:
Vn.m < Sucn— fn=r)Am< ne=—=
sumhr (hypnat-of-nat m, hypnat-of-nat na, f) = hypreal-of-nat (na — m) x
hypreal-of-real r
(proof)

lemma starfunNat-sumr: AN. (xfx (An. sum f {0..<n})) N = sumhr (0, N, f)
{proof)

lemma sumhr-hrabs-approzx [simpl: sumhr (0, M, f) = sumhr (0, N, f) = |sumhr
(M, N, f)| ~ 0
(proof)

11.2 Infinite sums: Standard and NS theorems

lemma sums-NSsums-iff: f sums | <— f NSsums [
(proof)

lemma summable-NSsummable-iff: summable f <— NSsummable f

(proof)

lemma suminf-NSsuminf-iff: suminf f = NSsuminf f
{proof)

lemma NSsums-NSsummable: f NSsums | = NSsummable f
(proof)

lemma NSsummable-NSsums: NSsummable f = f NSsums (NSsuminf f)
(proof)

lemma NSsums-unique: f NSsums s => s = NSsuminf f
(proof)

lemma NSseries-zero: ¥ m. n < Suc m — fm = 0 = f NSsums (sum f {..<n})
{proof)

THEORY “HLim” 100

lemma NSsummable-NSCauchy:

NSsummable f «— (VM € HNatInfinite. YV N € HNatInfinite. |sumhr (M, N,
Hl = 0) (is ?L=?R)
(proof)

Terms of a convergent series tend to zero.

lemma NSsummable-NSLIMSEQ-zero: NSsummable f = f ———ng 0
(proof)

Nonstandard comparison test.

lemma NSsummable-comparison-test: IN. ¥V n. N < n — |fn| < g n = NSsummable
g = NSsummable f

(proof)

lemma NSsummable-rabs-comparison-test:
AN.Vn. N <n— |fn| < gn= NSsummable g = NSsummable (Ak. |f k|)
(proof)

end

12 Limits and Continuity (Nonstandard)

theory HLim

imports Star

abbrevs ———> = —[]—ns
begin

Nonstandard Definitions.

definition NSLIM :: (‘a::real-normed-vector = 'b::real-normed-vector) = 'a = 'b
= bool
(«(«notation=<mizfit NSLIM»(-)/ —(-)/—=ns (-)) [60, 0, 60] 60)
where f —a—ngs L +— (V. z # star-of a N x = star-of a — (xf* f) z =
star-of L)

definition isNSCont :: (‘a::real-normed-vector = 'b::real-normed-vector) = 'a =
bool
where — NS definition dispenses with limit notions
isNSCont fa «+— (Vy. y = star-of a — (xfx f) y =~ star-of (f a))

definition isNSUCont :: ('a::real-normed-vector = 'b::real-normed-vector) = bool
where isNSUCont f +— (Vzy. z =y — (xfx f) z = (*fx f) v)

12.1 Limits of Functions

lemma NSLIM-I: (Az. # star-of a = z = star-of a = starfun f x ~ star-of
L) — f —a—nNs L
(proof)

THEORY “HLim” 101

lemma NSLIM-D: f —a—ngs L = x # star-of a = = ~ star-of a = starfun
fx =~ star-of L
(proof)

Proving properties of limits using nonstandard definition. The properties
hold for standard limits as well!

lemma NSLIM-mult: f —z—ns | = g —2—ns m = (Az. fz * g) —2— N5
(I % m)

for [m :: 'a::real-normed-algebra

(proof)

lemma starfun-scaleR [simpl: starfun (Az. f x *xgp g) = (Az. scaleHR (starfun f
z) (starfun g z))
(proof)

lemma NSLIM-scaleR: f —z—ns = g —x—Nns m = (A\z. fx *g gT) —T—Ns
(l *R m)
(proof)

lemma NSLIM-add: f —x—ys | = g —2—=nys m = (Az. fz + g2) —2— N5
(I + m)
(proof)

lemma NSLIM-const [simp]: (Az. k) —x—ngs k
{proof)

lemma NSLIM-minus: f —a—nys L = (Az. — fz) —a—ng —L
{proof)

lemma NSLIM-diff: f —a—ys |l = g —2—=nys m = (Az. fz — g2) —2—N5
(I —m)
(proof)

lemma NSLIM-add-minus: f —z—ns | = g —z2—ns m = (Az. fz + — g 1)
—z—ns (I + —m)
(proof)

lemma NSLIM-inverse: f —a—ns L = L # 0 = (Az. inverse (fz)) —a—ns
(inverse L)
for L :: 'a::real-normed-div-algebra

(proof)

lemma NSLIM-zero:

assumes f: f —a—ng |

shows (A\z. f(z) — 1) —a—ns 0
(proof)

lemma NSLIM-zero-cancel:

THEORY “HLim” 102

assumes (Az. fz —) —z—ng 0
shows f —z—ng [
(proof)

lemma NSLIM-const-eq:
fixes a :: 'a::real-normed-algebra-1
assumes (Az. k) —a—ng |
shows k = [

(proof)

lemma NSLIM-unique: f —a—ns | = f —a—»ns M = =M
for a :: 'a::real-normed-algebra-1

{proof)

lemma NSLIM-mult-zero: f —z—pys 0 = g —z—=ns 0 = (Az. fz % g x)
—r—Nns 0

for f g :: 'a::real-normed-vector = 'b::real-normed-algebra

{proof)

lemma NSLIM-self: (A\z.) —a—nNs a
(proof)

12.1.1 Equivalence of filterlim and NSLIM

lemma LIM-NSLIM:
assumes f: f —a— L
shows f —a—ns L

(proof)

lemma NSLIM-LIM:
assumes f: f —a—ng L
shows f —a— L

(proof)

theorem LIM-NSLIM-iff: f —oz— L +— f —x—Ns L
(proof)

12.2 Continuity

lemma isNSContD: isNSCont f a => y = star-of a = (xf* f) y =~ star-of (f a)
(proof)

lemma isNSCont-NSLIM: isNSCont f a = [—a—ns (f a)
(proof)

lemma NSLIM-isNSCont: f —a—ns (f a) = isNSCont f a
(proof)

NS continuity can be defined using NS Limit in similar fashion to standard
definition of continuity.

THEORY “HLim” 103

lemma isNSCont-NSLIM-iff: isNSCont f a «— f —a—ns (f a)
(proof)
Hence, NS continuity can be given in terms of standard limit.
lemma isNSCont-LIM-iff: (isNSCont f a) = (f —a— (f a))
(proof)
Moreover, it’s trivial now that NS continuity is equivalent to standard con-
tinuity.
lemma isNSCont-isCont-iff: isNSCont f a «— isCont f a
(proof)
Standard continuity = NS continuity.
lemma isCont-isNSCont: isCont f a = isNSCont f a
(proof)
NS continuity = Standard continuity.
lemma isNSCont-isCont: isNSCont f a = isCont f a
(proof)

Alternative definition of continuity.

Prove equivalence between NS limits — seems easier than using standard
definition.

lemma NSLIM-at0-iff: f —a—ns L +— (Ah. f (a + h)) —0—ns L
(proof)

lemma isNSCont-minus: isNSCont f a = isNSCont (Az. — fz) a
{proof)

lemma isNSCont-inverse: isNSCont f v = fx # 0 = isNSCont (Az. inverse

(f2)) @

for f :: 'a::real-normed-vector = 'b::real-normed-div-algebra
(proof)

lemma isNSCont-const [simp]: isNSCont (Az. k) a
(proof)

lemma isNSCont-abs [simp]: isNSCont abs a
for a :: real

{proof)

12.3 Uniform Continuity

lemma isNSUContD: isNSUCont f — z =y = (xfx f) x = (xfx f) y
{proof)

lemma isUCont-isNSUCont:

THEORY “HDeriv” 104

fixes f :: 'a::real-normed-vector = 'b::real-normed-vector
assumes f: isUCont f
shows isNSUCont f

{proof)

lemma isNSUCont-isUCont:
fixes [:: 'a::real-normed-vector = 'b::real-normed-vector
assumes f: isNSUCont f
shows isUCont f

(proof)

end

13 Differentiation (Nonstandard)

theory HDeriv
imports HLim
begin

Nonstandard Definitions.

definition nsderiv :: ['a::real-normed-field = 'a, 'a, 'a] = bool
(«(«notation=<mizfit NSDERIV > NSDERIV (-)/ (-)/ :> (-))» [1000, 1000, 60]
60)
where NSDERIV fz :> D <—
(VY h € Infinitesimal — {0}. ((xf* f)(star-of x + h) — star-of (fz)) / h =
star-of D)

definition NSdifferentiable :: ['a::real-normed-field = 'a, 'a] = bool
(infix] «NSdifferentiabler 60)
where f NSdifferentiable x «+— (3 D. NSDERIV fz :> D)

definition increment :: (real = real) = real = hypreal = hypreal
where increment fxz h =
(SOME inc. f NSdifferentiable x N inc = (xfx f) (hypreal-of-real x + h) —
hypreal-of-real (f x))

13.1 Derivatives
lemma DERIV-NS-iff: (DERIV fx:> D) +— (Ah. (f (x+ h) — fz) / h) —0—=nNs
D

(proof)

lemma NS-DERIV-D: DERIV fz :> D = (Ah. (f (z + h) — fz) / h) —0—ns
D

(proof)

lemma Infinitesimal-of-hypreal:
z € Infinitesimal = ((*f* of-real) z::'a::real-normed-div-algebra star) € In-
finitesimal

THEORY “HDeriv” 105

{proof)

lemma of-hypreal-eq-0-iff: Nz. ((*f* of-real) z = (0::'a::real-algebra-1 star)) =
(z =0)
(proof)

lemma NSDeriv-unique:
assumes NSDERIV fxz :> D NSDERIV fz :> E
shows NSDERIV fz :> D = NSDERIV fz:> F — D =F

{(proof)
First NSDERIV in terms of NSLIM.

First equivalence.

lemma NSDERIV-NSLIM-iff: (NSDERIV fx :> D) «— (Mh. (f (z + h) — fz)
/ h) —0—>NS D
(proof)

Second equivalence.

lemma NSDERIV-NSLIM-iff2: (NSDERIV fx :> D) <— (Az. (fz — fz) / (z —
z)) —z—ns D
{proof)

While we'’re at it!

lemma NSDERIV-iff2:
(NSDERIV fz :> D) +—
(Vw. w # star-of x AN w = star-of x — (xfx (Az. (fz — fz) /(2 —) w=
star-of D)
{proof)

lemma NSDERIVDS:
[NSDERIV fx :> D; u = hypreal-of-real] =
(*fx (Az. fz — fz)) u= hypreal-of-real D x (u — hypreal-of-real x)
(proof)

lemma NSDERIVD/:
[NSDERIV fx :> D; h € Infinitesimal]
= (xfx f)(hypreal-of-real x + h) — hypreal-of-real (f z) =~ hypreal-of-real D x
h
(proof)

Differentiability implies continuity nice and simple "algebraic" proof.

lemma NSDERIV-isNSCont:
assumes NSDERIV fz :> D shows isNSCont f x

(proof)

Differentiation rules for combinations of functions follow from clear, straight-
forward, algebraic manipulations.

THEORY “HDeriv” 106

Constant function.

lemma NSDERIV-const [simp]: NSDERIV (Az. k) z :> 0
{proof)

Sum of functions- proved easily.

lemma NSDERIV-add:
assumes NSDERIV fz :> Da NSDERIV g z :> Db
shows NSDERIV (Az. fz + gz) z :> Da + Db

(proof)

Product of functions - Proof is simple.

lemma NSDERIV-mult:

assumes NSDERIV g x :> Db NSDERIV fx :> Da

shows NSDERIV (Az. fz x gz) :> (Da x gz) + (Db * f x)
(proof)

Multiplying by a constant.
lemma NSDERIV-cmult: NSDERIV fx :> D = NSDERIV (Az. ¢ % fz) z >
cx D

{proof)

Negation of function.

lemma NSDERIV-minus: NSDERIV fz :> D = NSDERIV (A\z. — fz) z :> —
D

(proof)

Subtraction.

lemma NSDERIV-add-minus:

NSDERIV fz :> Da = NSDERIV g z :> Db = NSDERIV (Az. fz + — ¢
z) x> Da + — Db

(proof)

lemma NSDERIV-diff:

NSDERIV fx :> Da = NSDERIV g z :> Db = NSDERIV (A\z. fz — g x)
z :> Da — Db

(proof)

Similarly to the above, the chain rule admits an entirely straightforward
derivation. Compare this with Harrison’s HOL proof of the chain rule,
which proved to be trickier and required an alternative characterisation of
differentiability- the so-called Carathedory derivative. Our main problem is
manipulation of terms.

13.2 Lemmas

lemma NSDERIV-zero:

THEORY “HDeriv” 107

[NSDERIV g x :> D; (xfx g) (star-of x + y) = star-of (g x); y € Infinitesimal;
y # 0]

= D=20
(proof)

Can be proved differently using NSLIM-isCont-iff.

lemma NSDERIV-approz:
NSDERIV fz :> D = h € Infinitesimal = h # 0 =
(*fx f) (star-of x + h) — star-of (fz) ~ 0
(proof)

From one version of differentiability
fr—fa———"-"—-—-"—-——-—-———— ~Dbz — a

lemma NSDERIVD1I:
[NSDERIV f (g z) :> Da;
(+fx g) (star-of = + y) # star-of (g z);
(xfx g) (star-of z + y) ~ star-of (g)]
= ((=f* f) ((=/ g) (star-of z + y)) —
star-of (f (9 2))) / ((+f+ g) (star-of & + y) — star-of (g z)) ~
star-of Da

{proof)

From other version of differentiability
fz+h)-fz ————————————————— ~ Db h

lemma NSDERIVDZ2: [| NSDERIV g z :> Db; y € Infinitesimal; y # 0 |]

—=> ((#f+ g) (star-of(z) + v) — star-of(g) / y
~ star-of (Db)

(proof)

This proof uses both definitions of differentiability.

lemma NSDERIV-chain:
NSDERIV f (g) :> Da = NSDERIV g z :> Db = NSDERIV (f o g) = :>
Da * Db

(proof)

Differentiation of natural number powers.

lemma NSDERIV-Id [simp]: NSDERIV (Az. x) z :> 1
{proof)

lemma NSDERIV-cmult-1d [simp]: NSDERIV ((x) ¢) z :> ¢
{proof)

lemma NSDERIV-inverse:
fixes = :: 'a::real-normed-field
assumes z # (0 — can’t get rid of # 0 because it isn’t continuous at zero
shows NSDERIV (Ax. inverse z) x :> — (inverse x ~ Suc (Suc 0))

{(proof)

THEORY “HDeriv” 108

13.2.1 Equivalence of NS and Standard definitions

lemma divideR-eq-divide: © /Jp y =2 | y
(proof)

Now equivalence between NSDERIV and DERIV.

lemma NSDERIV-DERIV-iff: NSDERIV fx :> D <— DERIV fx :> D
{proof)

NS version.

lemma NSDERIV-pow: NSDERIV (Az. z " n) z :> real n % (z ~ (n — Suc 0))
{proof)

Derivative of inverse.

lemma NSDERIV-inverse-fun:
NSDERIV fa > d — fo # 0 —
NSDERIV (Az. inverse (f z)) @ :> (— (d * inverse (f x ~ Suc (Suc 0))))
for z :: 'a::{real-normed-field}
(proof)

Derivative of quotient.

lemma NSDERIV-quotient:
fixes z :: 'a::real-normed-field
shows NSDERIV fz :> d = NSDERIV gz :> e = gz # (0 =
NSDERIV (M\y. fy/ gy)z:> (d*x gz — (ex fx))/ (gz " Suc (Suc 0))
(proof)

lemma CARAT-NSDERIV:

NSDERIV fz:> 1= 3g. V2. fz— fa=gzx* (2 —x)) N isNSCont gz N g
=1

(proof)

lemma hypreal-eg-minus-iff3: t =y + z+—z+ — 2=y
for z y z :: hypreal
(proof)

lemma CARAT-DERIVD:
assumes all: Vz. fz — fz =gz * (2 — x)
and nsc: isNSCont g z
shows NSDERIV fz :> g«

(proof)

13.2.2 Differentiability predicate
lemma NSdifferentiableD: f NSdifferentiable t => 3 D. NSDERIV fz :> D
(proof)

lemma NSdifferentiablel: NSDERIV fx :> D = f NSdifferentiable x
(proof)

THEORY “HTranscendental” 109

13.3 (NS) Increment

lemma incrementl:
f NSdifferentiable 1 —>
increment f x h = (xf* f) (hypreal-of-real x + h) — hypreal-of-real (f)
(proof)

lemma incrementl?2:
NSDERIV fz :> D —>
increment f x h = (xf* f) (hypreal-of-real x + h) — hypreal-of-real (f x)
(proof)

The Increment theorem — Keisler p. 65.

lemma increment-thm:
assumes NSDERIV fz :> D h € Infinitesimal h # 0
shows Je € Infinitesimal. increment f x h = hypreal-of-real D x h + e * h

(proof)

lemma increment-approz-zero: NSDERIV fz :> D —= h~ 0 = h # (0 =
increment fx h =~ 0

{proof)

end

14 Nonstandard Extensions of Transcendental Func-
tions

theory HTranscendental
imports Complex-Main HSeries HDeriv
begin

definition
exphr :: real = hypreal where
— define exponential function using standard part
exphr © = st(sumhr (0, whn, An. inverse (fact n) * (z ~n)))

definition
sinhr :: real = hypreal where
sinhr x = st(sumhr (0, whn, An. sin-coeff n x x ~ n))

definition
coshr :: real = hypreal where
coshr ¢ = st(sumhr (0, whn, An. cos-coeff n x x ~ n))

14.1 Nonstandard Extension of Square Root Function

lemma STAR-sqrt-zero [simp]: (xf* sqrt) 0 = 0
(proof)

THEORY “HTranscendental” 110

lemma STAR-sqrt-one [simp]: (xf* sqrt) 1 = 1
{proof)

lemma hypreal-sqri-pow2-iff: ((«f* sqrt)(z) ~ 2 = z) = (0 < x)
(proof)

lemma hypreal-sqri-gt-zero-pow2: N\z. 0 < © = (xfx sqrt) (z) "2 ==z
(proof)

lemma hypreal-sqri-pow2-gt-zero: 0 < x = 0 < (*fx sqrt) (z) ~ 2
(proof)

lemma hypreal-sqri-not-zero: 0 < v = (*fx sqrt) (z) # 0
(proof)

lemma hypreal-inverse-sqrt-pow?2:
0 < x = inverse ((xfx sqrt)(z)) ~ 2 = inverse x

{proof)

lemma hypreal-sqrt-mult-distrib:
Az y. [0 <z 0 <y] =
(xf* sqrt)(zxy) = (xf* sqrt)(z) = (*f* sqrt)(y)
{proof)

lemma hypreal-sqrt-mult-distrib2:
[0<m; 0<y] = («f* sqrt)(z*xy) = (#f* sqrt)(z) = (xf* sqrt)(y)
{proof)

lemma hypreal-sqri-approz-zero [simpl:
assumes (0 < z
shows ((xf* sqrt) z ~ 0) +— (z = 0)

(proof)

lemma hypreal-sqrt-approz-zero2 [simp):
0 < 2= ((+f* sqrt)(z) ~ 0) = (z ~ 0)
(proof)

lemma hypreal-sqri-gt-zero: Axz. 0 < © = 0 < (*f* sqrt)(z)
(proof)

lemma hypreal-sqrt-ge-zero: 0 < © = 0 < (*xfx* sqrt)(z)
(proof)

lemma hypreal-sqrt-lessl:
Az u. [0 < u; v < u?] = (*f* sqrt) o < u
(proof)

lemma hypreal-sqrt-hrabs [simp]: N\z. (*f* sqrt)(2z?) = |z
(proof)

THEORY “HTranscendental” 111

lemma hypreal-sqri-hrabs2 [simp]: Nz. (xf* sqrt)(zxz) = |z]
{proof)

lemma hypreal-sqrt-hyperpow-hrabs [simp]:
Az. (xfx sqrt)(z pow (hypnat-of-nat 2)) = |z|
(proof)

lemma star-sqri-HF'inite: [x € HFinite; 0 < z] = (xfx sqrt) © € HFinite
{proof)

lemma st-hypreal-sqrt:
assumes ¢ € HFinite 0 < z
shows st((xfx sqrt)) = (*f* sqrt)(st z)
{proof)

lemma hypreal-sqrt-sum-squares-gel [simpl: Nz y. z < (xf* sqrt)(z? + 3?)
{proof)

lemma HFinite-hypreal-sqrt-imp-HFinite:
[0 < z; (xf* sqrt) © € HFinite] = = € HFinite
(proof)

lemma HFinite-hypreal-sqrt-iff [simp):
0 <z = ((*#f* sqrt) x € HFinite) = (x € HF'inite)
(proof)

lemma Infinitesimal-hypreal-sqrt:
[0 < z; z € Infinitesimal] => (*f* sqrt) x € Infinitesimal
(proof)

lemma Infinitesimal-hypreal-sqrt-imp-Infinitesimal:
[0 < z; (xf* sqrt) x € Infinitesimal] = x € Infinitesimal
(proof)

lemma Infinitesimal-hypreal-sqri-iff [simp):
0 <z = ((*fx sqrt) x € Infinitesimal) = (x € Infinitesimal)

(proof)

lemma HlInfinite-hypreal-sqrt:
[0 < z; x € Hinfinite] = (*fx sqrt) x € HInfinite
(proof)

lemma HInfinite-hypreal-sqrt-imp-HInfinite:
[0 < z; (xf* sqrt) z € Hinfinite] = x € HlInfinite
(proof)

lemma Hlinfinite-hypreal-sqrt-iff [simp]:
0 <z = ((*f* sqrt) x € HInfinite) = (z € HInfinite)

THEORY “HTranscendental” 112

(proof)

lemma HFinite-exp [simp):
sumhr (0, whn, An. inverse (fact n) x © ~ n) € HFinite
(proof)

lemma exphr-zero [simpl: exphr 0 = 1
(proof)

lemma coshr-zero [simp]: coshr 0 = 1
(proof)

lemma STAR-exp-zero-approz-one [simp|: (xfx exp) (0::hypreal) ~ 1
(proof)

lemma STAR-exp-Infinitesimal:
assumes z € Infinitesimal shows (xf* exp) (z::hypreal) =~ 1

(proof)

lemma STAR-exp-epsilon [simp]: (xf* exp) e = 1
(proof)

lemma STAR-exp-add:

NA(z::'a:: {banach,real-normed-field} star) y. (#f* exp)(x + y) = (*f* exp) = *
(f* exp) y

(proof)

lemma exphr-hypreal-of-real-exp-eq: exphr x = hypreal-of-real (exp x)
(proof)

lemma starfun-exp-ge-add-one-self [simp]: Nz:hypreal. 0 < x = (1 + z) < (
xf*x exp) x
{proof)

exp maps infinities to infinities

lemma starfun-exp-HInfinite:
fixes x :: hypreal
assumes z € Hinfinite 0 < z
shows (xfx exp) © € Hinfinite

(proof)

lemma starfun-exp-minus:
Az::'a:: {banach,real-normed-field} star. (#f* exp) (—xz) = inverse((*fx exp) x)
{proof)

exp maps infinitesimals to infinitesimals

lemma starfun-exp-Infinitesimal:
fixes z :: hypreal
assumes z € Hinfinite x < 0

THEORY “HTranscendental” 113

shows (xfx exp) z € Infinitesimal

(proof)

lemma starfun-exp-gt-one [simpl: Ax::hypreal. 0 < x = 1 < (*f* exp) x
(proof)

abbreviation real-in :: real = real where
real-In = In

lemma starfun-In-ezxp [simp]: Nz. (*f* real-In) ((*f* exp) z) = =
(proof)

lemma starfun-exp-In-iff [simp]: Az. ((*f* exp)((*f* real-ln) z) = z) = (0 < z)
{proof)

lemma starfun-exp-in-eq: \u z. (*fx exp) u = z = (*f* real-ln) T = u
(proof)

lemma starfun-ln-less-self [simp]: Nz. 0 < ¥ = (*f* real-In) z < x
{proof)

lemma starfun-In-ge-zero [simp]: Nz. 1 < z = 0 < (xfx real-in) z
(proof)

lemma starfun-In-gt-zero [simp]: Az .1 < © = 0 < (*fx real-in) z
(proof)

lemma starfun-In-not-eg-zero [simp|: Nz. [0 < z; x # 1] = (*f* real-In) z # 0
{proof)

lemma starfun-in-HFinite: [z € HF'inite; 1 < 2] = (#f* real-In) x € HFinite
{proof)

lemma starfun-In-inverse: A\z. 0 < x = (*f* real-In) (inverse z) = —(*f* In)
T
(proof)
lemma starfun-abs-exp-cancel: Nz. |(*f* exp) (z::hypreal)| = (*f* exp) x
{proof)

lemma starfun-exp-less-mono: Nz y:hypreal. © < y = (xf* exp) z < (*fx exp)
Y
(proof)

lemma starfun-exp-HFinite:
fixes z :: hypreal
assumes z € HF'inite
shows (xfx exp) © € HFinite

(proof)

THEORY “HTranscendental” 114

lemma starfun-exp-add-HFinite-Infinitesimal-approx:

fixes z :: hypreal

shows [z € Infinitesimal; z € HFinite] = (xf* exp) (z + z:hypreal) = (xfx*
exp) z

(proof)

lemma starfun-In-HInfinite:
[x € HInfinite; 0 < z] = (*f* real-In) x € HInfinite
(proof)

lemma starfun-exp-HInfinite-Infinitesimal-disj:

fixes x :: hypreal

shows z € Hinfinite = (xf* exp) © € Hinfinite V (xf* exp) (z:hypreal) €
Infinitesimal

(proof)

lemma starfun-in-HFinite-not-Infinitesimal:
[z € HFinite — Infinitesimal; 0 < z] = (*f* real-In) © € HFinite
(proof)

lemma starfun-in-Infinitesimal-HInfinite:
assumes z € Infinitesimal 0 < z
shows (xfx real-ln) v € HInfinite

(proof)

lemma starfun-In-less-zero: Az. [0 < z; © < 1] = (*f* real-ln) x < 0
{proof)

lemma starfun-in-Infinitesimal-less-zero:
[z € Infinitesimal; 0 < z] = (*f* real-in) z < 0

{proof)

lemma starfun-in-HInfinite-gt-zero:
[x € HInfinite; 0 < z] = 0 < (*f+* real-In) x
(proof)

lemma HFinite-sin [simp]: sumhr (0, whn, An. sin-coeff n * & ~ n) € HFinite
(proof)

lemma STAR-sin-zero [simp]: (*fx sin) 0 = 0
{proof)

lemma STAR-sin-Infinitesimal [simp):
fixes z :: ‘a::{real-normed-field,banach} star
assumes z € Infinitesimal
shows (xfx sin) z = z

THEORY “HTranscendental”

(proof)

115

lemma HFinite-cos [simp]: sumhr (0, whn, An. cos-coeff n x © ~n) € HFinite

(proof)

lemma STAR-cos-zero [simp]: (xf* cos) 0 = 1
{proof)

lemma STAR-cos-Infinitesimal [simp]:
fixes z :: ‘a::{real-normed-field,banach} star
assumes z € Infinitesimal
shows (*fx cos) T =~ 1

(proof)

lemma STAR-tan-zero [simp]: (xf* tan) 0 = 0
{proof)

lemma STAR-tan-Infinitesimal [simp):
assumes z € Infinitesimal
shows (*fx tan) © ~ z

(proof)

lemma STAR-sin-cos-Infinitesimal-mult:
fixes z :: ‘a::{real-normed-field,banach} star
shows = € Infinitesimal = (xf* sin) z x (xf* cos) z = z
(proof)

lemma HFinite-pi: hypreal-of-real pi € HFinite
(proof)

lemma STAR-sin-Infinitesimal-divide:
fixes z :: ‘a::{real-normed-field,banach} star
shows [z € Infinitesimal; © # 0] = (*f* sin) z/x ~ 1
{proof)

14.2 Proving sin*(1/n) x 1/(1/n) ~ 1 for n = co

lemma lemma-sin-pi:
n € HNatInfinite

= (xfx sin) (inverse (hypreal-of-hypnat n))/(inverse (hypreal-of-hypnat n))

~ 1

{proof)

lemma STAR-sin-inverse-HNatInfinite:
n € HNatInfinite

= (xf* sin) (inverse (hypreal-of-hypnat n)) * hypreal-of-hypnat n ~ 1

{proof)

THEORY “HTranscendental” 116

lemma Infinitesimal-pi-divide-HNatInfinite:
N € HNatInfinite
= hypreal-of-real pi/(hypreal-of-hypnat N) € Infinitesimal
(proof)

lemma pi-divide-HNatInfinite-not-zero [simp):
N € HNatInfinite = hypreal-of-real pi/(hypreal-of-hypnat N) # 0
(proof)

lemma STAR-sin-pi-divide- HNatInfinite-approz-pi:
assumes n € HNatInfinite
shows (xfx sin) (hypreal-of-real pi | hypreal-of-hypnat n) * hypreal-of-hypnat n

~
~

hypreal-of-real pi
{proof)

lemma STAR-sin-pi-divide- HNatInfinite-approz-pi2:
n € HNatInfinite
= hypreal-of-hypnat n x (xf* sin) (hypreal-of-real pi/(hypreal-of-hypnat n))
~ hypreal-of-real pi
(proof)

lemma starfunNat-pi-divide-n-Infinitesimal:
N € HNatInfinite = (*f* (Az. pi / real)) N € Infinitesimal
(proof)

lemma STAR-sin-pi-divide-n-approx:

assumes N € HNatInfinite

shows (xfx sin) ((xf* (Az. pi / real z)) N) = hypreal-of-real pi/(hypreal-of-hypnat
N)
{proof)

lemma NSLIMSEQ-sin-pi: (An. real n x sin (pi / real n)) ——ngs pi
(proof)

lemma NSLIMSEQ-cos-one: (An. cos (pi [real n))——nsg 1
(proof)

lemma NSLIMSEQ-sin-cos-pi:
(An. real n * sin (pi / real n) * cos (pi / real n)) ——nNs pi

(proof)
A familiar approximation to cos x when z is small

lemma STAR-cos-Infinitesimal-approz:
fixes z :: ‘a::{real-normed-field,banach} star
shows = € Infinitesimal = (xf* cos) v = 1 — x

{proof)

2

lemma STAR-cos-Infinitesimal-approz2:

THEORY “NSCA” 117

fixes z :: hypreal

assumes z € Infinitesimal

shows (xfx cos) v ~ 1 — (22)/2
(proof)

end

15 Non-Standard Complex Analysis

theory NSCA
imports NSComplex HTranscendental
begin

abbreviation

SComplex :: hcomplex set where
SComplex = Standard

definition — standard part map
stc i hcomplex => hcomplex where
stc x = (SOME r. x € HFinite A r€SComplex N r =~)

15.1 Closure Laws for SComplex, the Standard Complex
Numbers

lemma SComplez-minus-iff [simp]: (—x € SComplex) = (z € SComplex)
(proof)

lemma SComplez-add-cancel:
[x + y € SComplex; y € SComplex] = z € SComplex

(proof)

lemma SReal-hcmod-hcomplez-of-complex [simp]:
hemod (hecomplez-of-complex r) € R

{proof)

lemma SReal-hcmod-numeral: hemod (numeral w ::hcomplex) € R
{proof)

lemma SReal-hcmod-SComplex: x € SComplex =—> hcmod © € R
(proof)

lemma SComplez-divide-numeral:
r € SComplex = r/(numeral w::hcomplex) € SComplex

{proof)

lemma SComplex-UNIV-complex:
{z. hcomplex-of-complex © € SComplex} = (UNIV::complex set)

{proof)

THEORY “NSCA” 118

lemma SComplez-iff: (x € SComplex) = (3y. x = hcomplex-of-complex y)
(proof)

lemma hcomplez-of-complez-image:
range hcomplex-of-complex = SComplex
(proof)

lemma inv-hcomplex-of-complez-image: inv hcomplex-of-complex ‘SCompler = UNIV

{(proof)

lemma SComplez-hcomplex-of-complex-image:
[Fz. x € P; P < SComplex] = 3 Q. P = hcomplex-of-complez * Q
(proof)

lemma SComplez-SReal-dense:
[x € SComplex; y € SComplex; hemod © < hemod y
] = 3r € Reals. hemod < r A r < hemod y

{proof)

15.2 The Finite Elements form a Subring

lemma HFinite-hcmod-hcomplez-of-complex [simp]:
hemod (heomplex-of-complex r) € HF'inite
(proof)

lemma HFinite-hcmod-iff [simp]: hemod x € HFinite «+— x € HFinite
{proof)

lemma HFinite-bounded-hcmod:
[z € HFinite; y < hemod x; 0 < y] = y € HF'inite
(proof)

15.3 The Complex Infinitesimals form a Subring

lemma Infinitesimal-hcmod-iff:
(z € Infinitesimal) = (hemod z € Infinitesimal)

{proof)

lemma Hlinfinite-hemod-iff: (z € HInfinite) = (hemod z € Hlnfinite)
(proof)

lemma HFinite-diff-Infinitesimal-hcmod:
x € HFinite — Infinitesimal = hcmod x € HFinite — Infinitesimal

{proof)

lemma hcmod-less-Infinitesimal:
[e € Infinitesimal; hemod x < hemod €] = x € Infinitesimal

{proof)

THEORY “NSCA” 119

lemma hcmod-le-Infinitesimal:
[e € Infinitesimal; hemod x < hemod €] = x € Infinitesimal
{proof)

15.4 The “Infinitely Close” Relation

lemma approz-SComplex-mult-cancel-zero:
[a € SComplex; a # 0; axx = 0] = z ~ 0
(proof)

lemma approz-mult-SComplexl: [a € SComplex; © ~ 0] = x*xa ~ 0
(proof)

lemma approz-mult-SComplex2: [a € SComplex; x = 0] = axz =~ 0
(proof)

lemma approz-mult-SComplex-zero-cancel-iff [simp]:
[a € SComplex; a # 0] = (axz ~ 0) = (z = 0)
(proof)

lemma approz-SComplex-mult-cancel:
[a € SComplex; a # 0; axw ~ a*xz] = w = 2z
(proof)

lemma approx-SComplex-mult-cancel-iff1 [simpl:
[a € SComplez; a # 0] = (axw =~ axz) = (w = 2)
(proof)

lemma approz-hcmod-approx-zero: (x = y) = (hemod (y — z) =~ 0)
{proof)

lemma approx-approz-zero-iff: (x ~ 0) = (hemod x =~ 0)

(proof)

lemma approz-minus-zero-cancel-iff [simp|: (—z ~ 0) = (z =~ 0)
(proof)

lemma Infinitesimal-hcmod-add-diff:
u ~ 0 = hemod(z + u) — hemod x € Infinitesimal

{proof)

lemma approx-hecmod-add-hemod: v = 0 => hemod(x + u) ~ hemod x
(proof)

15.5 Zero is the Only Infinitesimal Complex Number

lemma Infinitesimal-less-SComplex:
[x € SComplex; y € Infinitesimal; 0 < hemod z] = hemod y < hemod x

THEORY “NSCA” 120

{proof)

lemma SComplez-Int-Infinitesimal-zero: SComplex Int Infinitesimal = {0}
(proof)

lemma SComplez-Infinitesimal-zero:
[z € SComplez; z € Infinitesimal] = = = 0
(proof)

lemma SComplez-HFinite-diff-Infinitesimal:
[x € SComplex; v # 0] = x € HFinite — Infinitesimal
{proof)

lemma numeral-not-Infinitesimal [simp):
numeral w # (0::hcompler) = (numeral w::hcomplex) ¢ Infinitesimal

(proof)

lemma approz-SComplex-not-zero:
ly € SCompler; v ~ y; y# 0] = = # 0
(proof)

lemma SComplez-approz-iff:
[x € SComplex; y € SComplez] = (z = y) = (z = y)
(proof)

lemma approz-unique-complex:

[r € SComplex; s € SComplex; r = z; s = 2] = r = s
(proof)

15.6 Properties of hRe, him and HComplex

lemma abs-hRe-le-hcmod: Nz. |hRe x| < hemod x
{proof)

lemma abs-hIm-le-hemod: Ax. |hIm z| < hemod x

{proof)

lemma Infinitesimal-hRe: © € Infinitesimal =—> hRe x € Infinitesimal
(proof)

lemma Infinitesimal-hIm: x € Infinitesimal = him x € Infinitesimal
(proof)

lemma Infinitesimal-HComplez:
assumes z: ¢ € Infinitesimal and y: y € Infinitesimal
shows HComplex x y € Infinitesimal

(proof)

lemma hcomplex-Infinitesimal-iff:

THEORY “NSCA” 121

(z € Infinitesimal) <— (hRe x € Infinitesimal A hIm x € Infinitesimal)
{proof)

lemma hRe-diff [simp]: Az y. hRe (x — y) = hRe © — hRe y
(proof)

lemma hIm-diff [simp]: Az y. hIm (x — y) = hIm z — hlm y
{proof)

lemma approz-hRe: v ~ y = hRe x ~ hRe y
(proof)

lemma approz-hIm: x = y = hlm z =~ hlm y
(proof)

lemma approz-HComplex:
[a = b; ¢ = d] = HComplezx a ¢ = HComplex b d
(proof)

lemma hcomplezx-approz-iff:
(z = y) = (hRe z ~ hRe y A hIm x ~ him y)
(proof)

lemma HFinite-hRe: x € HFinite —> hRe x € HFinite
(proof)

lemma HFinite-hIm: x € HFinite = hIm = € HFinite
(proof)

lemma HF'inite-HComplex:
assumes x € HFinite y € HFinite
shows HComplex x y € HFinite

(proof)

lemma hcomplex- HFinite-iff:
(z € HFinite) = (hRe x € HFinite A\ him z € HF'inite)

(proof)

lemma hcomplex-HInfinite-iff:
(x € HInfinite) = (hRe © € Hinfinite V hIm x € Hlinfinite)
{proof)

lemma hcomplex-of-hypreal-approx-iff [simp):
(hcomplex-of-hypreal © == hcomplex-of-hypreal z) = (z =~ z)
(proof)

lemma stc-part-FEx:
assumes r € HF'inite

THEORY “NSCA” 122

shows 3t € SComplezx. x ~ t
(proof)

lemma stc-part-Fxl: © € HFinite = 3t. t € SComplex N x =~ t
{proof)

15.7 Theorems About Monads

lemma monad-zero-hemod-iff: (x € monad 0) = (hemod x € monad 0)
{proof)

15.8 Theorems About Standard Part

lemma stc-approx-self: x € HFinite = stc x = x
(proof)

lemma stc-SComplex: x € HFinite = stc © € SComplex
(proof)

lemma stc-HFinite: x € HFinite = stc © € HFinite
(proof)

lemma stc-unique: [y € SComplezr; y ~ z]] = stcz = y
(proof)

lemma stc-SComplex-eq [simpl: x € SComplexr = stc © = x
(proof)

lemma stc-eq-approz:
[x € HFinite; y € HF'inite; stc x = stc y] = z ~ y
(proof)

lemma approz-stc-eq:
[x € HFinite; y € HFinite; x ~ y] = stc x = stc y
(proof)

lemma stc-eq-approz-iff:
[z € HFinite; y € HFinite] = (z =~ y) = (stc z = stc y)
{proof)

lemma stc-Infinitesimal-add-SComplex:
[x € SComplez; e € Infinitesimal] = stc(z + €) = z
{proof)

lemma stc-Infinitesimal-add-SComplex2:
[x € SComplex; e € Infinitesimal] => stc(e + z) = =
(proof)

lemma HFinite-stc-Infinitesimal-add:
z € HFinite = J e € Infinitesimal. © = ste(x) + e

THEORY “NSCA” 123

{proof)

lemma stc-add:
[x € HFinite; y € HFinite] = stc (z + y) = ste(z) + ste(y)
(proof)

lemma stc-zero: stc 0 = 0

{proof)

lemma stc-one: stc 1 = 1
(proof)

lemma stc-minus: y € HFinite = stc(—y) = —ste(y)
{proof)

lemma stc-diff:
[x € HFinite; y € HFinite] = stc (z—y) = ste(x) — ste(y)
{proof)

lemma stc-mult:
[x € HF'inite; y € HFinite]
= stc (z * y) = ste(z) * ste(y)
(proof)

lemma stc-Infinitesimal: x € Infinitesimal —> stc z = 0
(proof)

lemma ste-not-Infinitesimal: stc(z) # 0 = = ¢ Infinitesimal
{proof)

lemma stc-inverse:
[x € HFinite; stc x # 0] = stc(inverse) = inverse (stc x)

{proof)

lemma stc-divide [simp]:
[x € HFinite; y € HF'inite; stc y # 0]
= ste(z/y) = (stc x) / (ste y)
(proof)

lemma stc-idempotent [simp]: & € HFinite = stc(ste(z)) = ste(z)
{proof)

lemma HFinite- HFinite-hcomplex-of-hypreal:
z € HFinite => hcomplex-of-hypreal z € HFinite
(proof)

lemma SComplez-SReal-hcomplex-of-hypreal:
z € R = hcomplex-of-hypreal x € SComplex

{proof)

THEORY “CStar” 124

lemma stc-hcomplex-of-hypreal:
z € HFinite = stc(hcomplex-of-hypreal z) = hcomplez-of-hypreal (st z)
(proof)

lemma hmod-stc-eq:
assumes x € HF'inite
shows hcmod(stc x) = st(hemod)

(proof)

lemma Infinitesimal-heng-iff [simp]:
(henj z € Infinitesimal) «+— (2 € Infinitesimal)
(proof)

end

16 Star-transforms in NSA, Extending Sets of Com-
plex Numbers and Complex Functions

theory CStar
imports NSCA
begin

16.1 Properties of the x-Transform Applied to Sets of Reals

lemma STARC-hcomplex-of-complex-Int: xsx X N SComplex = hcomplex-of-complex
‘X
(proof)

lemma lemma-not-hcomplezA: © ¢ hcomplex-of-complex * A = Vy € A. z #
hcomplez-of-complex y
(proof)
16.2 Theorems about Nonstandard Extensions of Functions
lemma starfunC-hepow: NZ. (#fx (Az. z " n)) Z = Z pow hypnat-of-nat n
(proof)

lemma starfunCR-cmod: xf* cmod = hcmod
(proof)

16.3 Internal Functions - Some Redundancy With xfx Now

lemma starfun-Re: (#fx (Az. Re (f z))) = (Az. hRe ((*f* f) z))
(proof)

lemma starfun-Im: (xf* (Az. Im (f z))) = (Az. hIm ((xf* f)))
{proof)

THEORY “CLim” 125

lemma starfunC-eq-Re-Im-iff:

(*fx f) z =2 (*fx (A\z. Re (fz))) v = hRe z A (xf* (Az. Im (fx))) z =
him z

(proof)

lemma starfunC-approz-Re-Im-iff:

(#fx f) z =2+ (*f* (Az. Re (fz))) x = hRe z A (xfx (Az. Im (fz))) = =
hIm z

(proof)

end

17 Limits, Continuity and Differentiation for Com-
plex Functions

theory CLim
imports CStar
begin

declare epsilon-not-zero [simp]

lemma lemma-complez-mult-inverse-squared [simp|: T # 0 = z * (inverse)% =
mnverse T
for z :: complex

{proof)

Changing the quantified variable. Install earlier?

lemma all-shift: (¥ z::’a::comm-ring-1. P z) «— (Vz. P (z — a))
{proof)

17.1 Limit of Complex to Complex Function

lemma NSLIM-Re: f —a—NS L — (Ax Re (fm)) —a—NS§ Re L
(proof)

lemma NSLIM-Im: f —a—ns L = (Az. Im (fz)) —a—ns Im L
{proof)

lemma LIM-Re: f —a— L = (Az. Re (fz)) —a— Re L
for f :: 'a::real-normed-vector = complex

{proof)

lemma LIM-Im: f —a— L = (Az. Im (fz)) —a— Im L
for f :: 'a::real-normed-vector = complex

(proof)

THEORY “CLim” 126

lemma LIM-cnj: f —a— L = (A\z. enj (fz)) —a— cnj L
for f :: 'a::real-normed-vector = complex
(proof)

lemma LIM-cnj-iff: ((Az. enj (fz)) —a— enj L) +— f —a— L
for f :: 'a::real-normed-vector = complex
{proof)

lemma starfun-norm: (xfx (Az. norm (f z))) = (Az. hnorm ((*fx f) x))
{proof)

lemma star-of-Re [simp]: star-of (Re x) = hRe (star-of x)
{proof)

lemma star-of-Im [simp): star-of (Im x) = hIm (star-of x)

(proof)
Another equivalence result.

lemma NSCLIM-NSCRLIM-iff: f —z—ng L +— (Ay. cmod (fy — L)) —z—nNs
0

{proof)

Much, much easier standard proof.

lemma CLIM-CRLIM-iff: f —z— L +— (Ay. ecmod (fy — L)) —a— 0
for f :: 'a::real-normed-vector = complex

(proof)

So this is nicer nonstandard proof.

lemma NSCLIM-NSCRLIM-iff2: f —x—ns L +— (Ay. cmod (fy — L)) —z—nNs
0

{proof)

lemma NSLIM-NSCRLIM-Re-Im-iff:
f —a—ns L +— (Az. Re (fz)) —a—ns Re L A (Az. Im (fz)) —a—ns Im L
(proof)

lemma LIM-CRLIM-Re-Im-iff: f —a— L +— (A\z. Re (f z)) —a— Re L A (Az.
Im (fz)) —a— Im L
for f :: 'a::real-normed-vector = complex

{proof)

17.2 Continuity

lemma NSLIM-isContc-iff: f —a—ns fa +— (Ah. f (a + b)) —0—=ns fa
{proof)

17.3 Functions from Complex to Reals
lemma isNSContCR-cmod [simp]: isNSCont cmod a

THEORY “CLim” 127

{proof)

lemma isContCR-cmod [simp]: isCont cmod a
{proof)

lemma isCont-Re: isCont f a = isCont (Az. Re (fx)) a
for f :: 'a::real-normed-vector = complex

{proof)

lemma isCont-Im: isCont f a = isCont (Az. Im (f z)) a
for f :: 'a::real-normed-vector = complex

{proof)

17.4 Differentiation of Natural Number Powers

lemma CDERIV-pow [simp]: DERIV (Az. x ~ n) z :> complex-of-real (real n) *
(x " (n — Suc 0))
{proof)

Nonstandard version.

lemma NSCDERIV-pow: NSDERIV (Azx. z ~ n) x :> complez-of-real (real n) *
(z 7 (n = 1))
{proof)

Can’t relax the premise x # 0: it isn’t continuous at zero.

lemma NSCDERIV-inverse: x # 0 => NSDERIV (Az. inverse x) x :> — (inverse
z)?

for z :: complex

(proof)

lemma CDERIV-inverse: x # 0 = DERIV (A\xz. inverse z) z :> — (inverse z)?
for z :: complex

{proof)

17.5 Derivative of Reciprocals (Function inverse)

lemma CDERIV-inverse-fun:

DERIV fx :> d = fx # 0 = DERIV (Az. inverse (f x)) z :> — (d * inverse
((f2)?))

for x :: complex

(proof)

lemma NSCDERIV-inverse-fun:
NSDERIV fx :> d = fx # 0 = NSDERIV (Az. inverse (fz)) x :> — (d *

inverse ((f z)?))

for z :: complex

(proof)

THEORY “HLog” 128

17.6 Derivative of Quotient

lemma CDERIV-quotient:
DERIV fz:>d = DERIV gz :> e = g(z) # 0 =

DERIV (A\y. [y [gy) v :> (d+ ga — (e % [2)) / (g 2)?
for z :: complex

{proof)

lemma NSCDERIV-quotient:
NSDERIV fz :> d = NSDERIV gz :> ¢ = g x # (0::complez) =
NSDERIV (M\y. fy/gy)z:> (d*gz — (ex fz)) / (gx)?
(proof)

17.7 Caratheodory Formulation of Derivative at a Point: Stan-
dard Proof

lemma CARAT-CDERIVD:
(Vz.fz—fz=gzx(z—x)) NisNSCont gz AN g =1 = NSDERIV fz :> 1
(proof)

end

18 Logarithms: Non-Standard Version

theory HLog
imports HTranscendental
begin

definition powhr :: hypreal = hypreal = hypreal (infixr <powhr) 80)
where [transfer-unfold): x powhr a = starfun? (powr) x a

definition hlog :: hypreal = hypreal = hypreal
where [transfer-unfold]: hlog a x = starfun? log a x

lemma powhr: (star-n X) powhr (star-n Y) = star-n (An. (X n) powr (Y n))
{proof)

lemma powhr-one-eq-one [simp]: Na. 1 powhr a = 1
(proof)

lemma powhr-mult: Aazy. 0 <z = 0 < y = (z * y) powhr a = (z powhr a)
* (y powhr a)
(proof)

lemma powhr-gt-zero [simp]: Aa z. 0 < x powhr a +— z # 0

(proof)

lemma powhr-not-zero [simpl: Na x. x powhr a # 0 «— z # 0
(proof)

THEORY “HLog” 129

lemma powhr-divide: Nazy. 0 < 2 — 0 < y = (z / y) powhr a = (z powhr
a) / (y powhr a)
(proof)

lemma powhr-add: Na b z. x powhr (a + b) = (x powhr a) * (x powhr b)
(proof)

lemma powhr-powhr: Aa b z. (z powhr a) powhr b = z powhr (a * b)
{proof)

lemma powhr-powhr-swap: Na b z. (x powhr a) powhr b = (z powhr b) powhr a
(proof)

lemma powhr-minus: Aa z. powhr (— a) = inverse (z powhr a)
{proof)

lemma powhr-minus-divide: © powhr (— a) = 1 / (z powhr a)
{proof)

lemma powhr-less-mono: Na bz. a < b = 1 < x = z powhr a < x powhr b
(proof)

lemma powhr-less-cancel: Na b x. x powhr a < x powhr b —= 1 <z = a < b
(proof)

lemma powhr-less-cancel-iff [simp]: 1 < © = x powhr a < x powhr b «— a < b
(proof)

lemma powhr-le-cancel-iff [simpl: 1 < © = x powhr a < z powhr b +— a < b

(proof)

lemma hlog: hlog (star-n X) (star-n Y) = star-n (An. log (X n) (Y n))
{proof)

lemma hlog-starfun-ln: Nz. (xf* In) x = hlog ((*f* exp) 1) x
(proof)

lemma powhr-hlog-cancel [simp]: Naz. 0 < a = a # 1 = 0 < = a powhr
(hlog a x) = x
(proof)

lemma hlog-powhr-cancel [simp]: Na y. 0 < a = a # 1 = hlog a (a powhr y)
=Y
(proof)

lemma hlog-mult:
Na z y. hlog a (x x y) = (if 40 N y7#0 then hlog a © + hlog a y else 0)
(proof)

THEORY “HLog” 130

lemma hlog-as-starfun: Na z. 0 < a = a # 1 = hlog a © = (xfx In) z / (
xfx In) a
{proof)

lemma hlog-eq-div-starfun-ln-mult-hlog:
Nbz. 0<a=a#1=0<b=b#]—=0<1—=
hlog a © = ((xfx In) b/ (xfx In) a) * hlog b =
(proof)

lemma powhr-as-starfun: Na z. powhr a = (if © = 0 then 0 else (xfx exp) (a *
(xf* real-ln) z))
(proof)

lemma HInfinite-powhr:
x € HiInfinite = 0 < x = a € HFinite — Infinitesimal — 0 < a = x powhr
a € Hinfinite

{proof)

lemma hlog-hrabs- HInfinite-Infinitesimal:

x € HFinite — Infinitesimal = a € Hlnfinite = 0 < a = hlog a |z| €
Infinitesimal

(proof)

lemma hlog-HInfinite-as-starfun: a € Hinfinite = 0 < a = hlog a © = (xfx*
In) z / (*f*In) a
(proof)

lemma hlog-one [simp]: Aa. hlog a 1 = 0
{proof)

lemma hlog-eq-one [simp]: Na. 0 < a = a # 1 = hloga a = 1

{proof)

lemma hlog-inverse: N\a z. hlog a (inverse) = — hlog a z

{proof)
lemma hlog-divide: hlog a (z | y) = (if x£0 N y#0 then hlog a x — hlog a y else
0)

{proof)

lemma hlog-less-cancel-iff [simp]:
Nazy 1 <a=0<z=0<y= hlogaz<hlogay+— z<y
(proof)

lemma hlog-le-cancel-iff [simp]: 1 < a = 0 <z = 0 < y = hlog a © < hlog
ay+<— <y
(proof)

THEORY “Hyperreal”

end

theory Hyperreal
imports HLog
begin

end

theory Hypercomplex
imports CLim Hyperreal
begin

end

theory Nonstandard-Analysis
imports Hypercomplex
begin

end

131

	Filters and Ultrafilters
	Definitions and basic properties
	Ultrafilters

	Maximal filter = Ultrafilter
	Ultrafilter Theorem
	Free Ultrafilters

	Construction of Star Types Using Ultrafilters
	A Free Ultrafilter over the Naturals
	Definition of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 star type constructor
	Transfer principle
	Standard elements
	Internal functions
	Internal predicates
	Internal sets
	Syntactic classes
	Ordering and lattice classes
	Ordered group classes
	Ring and field classes
	Power
	Number classes
	Finite class

	Hypernatural numbers
	Properties Transferred from Naturals
	Properties of the set of embedded natural numbers
	Infinite Hypernatural Numbers – 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HNatInfinite
	Closure Rules

	Existence of an infinite hypernatural number
	Alternative characterization of the set of infinite hypernaturals
	Alternative Characterization of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HNatInfinite using Free Ultrafilter

	Embedding of the Hypernaturals into other types

	Construction of Hyperreals Using Ultrafilters
	Real vector class instances
	Injection from 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hypreal
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 starrel
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hypreal-of-real: the Injection from 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 real to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hypreal
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 star-n
	Existence of Infinite Hyperreal Number
	Embedding the Naturals into the Hyperreals
	Exponentials on the Hyperreals
	Powers with Hypernatural Exponents

	Infinite Numbers, Infinitesimals, Infinitely Close Relation
	Nonstandard Extension of the Norm Function
	Closure Laws for the Standard Reals
	Set of Finite Elements is a Subring of the Extended Reals
	Set of Infinitesimals is a Subring of the Hyperreals
	The Infinitely Close Relation
	Zero is the Only Infinitesimal that is also a Real

	Standard Part Theorem
	Uniqueness: Two Infinitely Close Reals are Equal
	Existence of Unique Real Infinitely Close
	Lifting of the Ub and Lub Properties

	Finite, Infinite and Infinitesimal
	Theorems about Monads
	Proof that 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 x y implies 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 x y
	More 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HFinite and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Infinitesimal Theorems
	Theorems about Standard Part
	Alternative Definitions using Free Ultrafilter
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HFinite
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HInfinite
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Infinitesimal

	Proof that 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 is an infinite number

	Nonstandard Complex Numbers
	Real and Imaginary parts
	Imaginary unit
	Complex conjugate
	Argand
	Injection from hyperreals
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 e (x + iy)

	Properties of Nonstandard Real and Imaginary Parts
	Addition for Nonstandard Complex Numbers
	More Minus Laws
	More Multiplication Laws
	Subtraction and Division
	Embedding Properties for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hcomplex-of-hypreal Map
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HComplex theorems
	Modulus (Absolute Value) of Nonstandard Complex Number
	Conjugation
	More Theorems about the Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hcmod
	Exponentiation
	The Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hsgn
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 harg

	Polar Form for Nonstandard Complex Numbers
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hcomplex-of-complex: the Injection from type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 complex to to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hcomplex
	Numerals and Arithmetic

	Star-Transforms in Non-Standard Analysis
	Preamble - Pulling 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 over 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Properties of the Star-transform Applied to Sets of Reals
	Theorems about nonstandard extensions of functions

	Star-transforms for the Hypernaturals
	Nonstandard Extensions of Functions
	Nonstandard Characterization of Induction

	Sequences and Convergence (Nonstandard)
	Limits of Sequences
	Equivalence of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 LIMSEQ and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 NSLIMSEQ
	Derived theorems about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 NSLIMSEQ

	Convergence
	Bounded Monotonic Sequences
	Upper Bounds and Lubs of Bounded Sequences
	A Bounded and Monotonic Sequence Converges

	Cauchy Sequences
	Equivalence Between NS and Standard
	Cauchy Sequences are Bounded
	Cauchy Sequences are Convergent

	Power Sequences

	Finite Summation and Infinite Series for Hyperreals
	Nonstandard Sums
	Infinite sums: Standard and NS theorems

	Limits and Continuity (Nonstandard)
	Limits of Functions
	Equivalence of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 filterlim and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 NSLIM

	Continuity
	Uniform Continuity

	Differentiation (Nonstandard)
	Derivatives
	Lemmas
	Equivalence of NS and Standard definitions
	Differentiability predicate

	(NS) Increment

	Nonstandard Extensions of Transcendental Functions
	Nonstandard Extension of Square Root Function
	Proving * (1/n) 1/(1/n) 1 for n =

	Non-Standard Complex Analysis
	Closure Laws for SComplex, the Standard Complex Numbers
	The Finite Elements form a Subring
	The Complex Infinitesimals form a Subring
	The ``Infinitely Close'' Relation
	Zero is the Only Infinitesimal Complex Number
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hRe, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hIm and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HComplex
	Theorems About Monads
	Theorems About Standard Part

	Star-transforms in NSA, Extending Sets of Complex Numbers and Complex Functions
	Properties of the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 *-Transform Applied to Sets of Reals
	Theorems about Nonstandard Extensions of Functions
	Internal Functions - Some Redundancy With 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 *f* Now

	Limits, Continuity and Differentiation for Complex Functions
	Limit of Complex to Complex Function
	Continuity
	Functions from Complex to Reals
	Differentiation of Natural Number Powers
	Derivative of Reciprocals (Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 inverse)
	Derivative of Quotient
	Caratheodory Formulation of Derivative at a Point: Standard Proof

	Logarithms: Non-Standard Version

