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1 Filters and Ultrafilters

theory Free-Ultrafilter
imports HOL— Library. Infinite-Set
begin

1.1 Definitions and basic properties

1.1.1 Ultrafilters

locale ultrafilter =

fixes F' :: 'a filter

assumes proper: F # bot

assumes ultra: eventually P F V eventually (Az. - P z) F
begin

lemma eventually-imp-frequently: frequently P F = eventually P F
using ultralof P] by (simp add: frequently-def)

lemma frequently-eq-eventually: frequently P F = eventually P F
using eventually-imp-frequently eventually-frequently] OF proper] ..

lemma eventually-disj-iff: eventually (Ax. Pz V Q z) F <— eventually P F V
eventually Q F
unfolding frequently-eg-eventually[symmetric] frequently-disj-iff ..

lemma eventually-all-iff: eventually (A\z. Vy. Pz y) F = (VY. eventually (Az. P
v (Y 2)) F)
using frequently-all[of P F| by (simp add: frequently-eq-eventually)

lemma eventually-imp-iff: eventually (\x. Pz — @ z) F <— (eventually P F
— eventually Q F)
using frequently-imp-iff[of P Q F] by (simp add: frequently-eq-eventually)

lemma cventually-iff-iff: eventually (A\x. P x +— Q z) F <— (eventually P F
«—— eventually Q F)

unfolding iff-conv-conj-imp eventually-conj-iff eventually-imp-iff by simp

lemma eventually-not-iff: eventually (Az. = P x) F +— — eventually P F
unfolding not-eventually frequently-eq-eventually ..

end

1.2 Maximal filter = Ultrafilter

A filter F is an ultrafilter iff it is a maximal filter, i.e. whenever G is a filter
and F C G then F = G

Lemma that shows existence of an extension to what was assumed to be a
maximal filter. Will be used to derive contradiction in proof of property of
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ultrafilter.

lemma extend-filter: frequently P F' —> inf F' (principal {z. P x}) # bot
by (simp add: trivial-limit-def eventually-inf-principal not-eventually)

lemma maz-filter-ultrafilter:
assumes F' # bot
assumes maz: NG. G # bot = G < F = F = (G
shows ultrafilter F
proof
show eventually PF V (Vpz in F. -~ P z) for P
proof (rule disjCI)
assume - (Vpz in F. = P 1)
then have inf F (principal {z. P x}) # bot
by (simp add: not-eventually extend-filter)
then have F: F = inf F (principal {z. P z})
by (rule max) simp
show eventually P F
by (subst F) (simp add: eventually-inf-principal)
qed
qed fact

lemma le-filter-frequently: F < G <— (V P. frequently P F — frequently P G)
unfolding frequently-def le-filter-def
apply auto
apply (erule-tac t=Az. = P z in allF)
apply auto
done

lemma (in ultrafilter) maz-filter:
assumes G: G # bot
and sub: G < F
shows F = G
proof (rule antisym)
show F < G
using sub
by (auto simp: le-filter-frequentlylof F| frequently-eq-eventually le-filter-def|of
G|
intro!: eventually-frequently G proper)
qed fact

1.3 Ultrafilter Theorem

lemma ex-maz-ultrafilter:
fixes F' :: 'a filter
assumes F: F # bot
shows F U<F. ultrafilter U
proof —
let ?X ={G. G # bot N G < F}
let R ={(b,a). a£bot Na<bAb<F}
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have bot-notin-R: ¢ € Chains R = bot ¢ c for ¢
by (auto simp: Chains-def)

have [simp]: Field ?R = ?X
by (auto simp: Field-def bot-unique)

have I3meField ?R. ¥V acField ?R. (m, a) € R — a = m (is 3me?A. ?B m)
proof (rule Zorns-po-lemma)
show Partial-order ?R
by (auto simp: partial-order-on-def preorder-on-def
antisym-def refl-on-def trans-def Field-def bot-unique)
show JueField ?R. VacC. (a, u) € ?R if C: C € Chains ?R for C
proof (simp, intro exl conjl balll)
have Inf-C: Inf C # bot Inf C < F if C # {}
proof —
from C that have Inf C' = bot «— (Jz€C. z = bot)
unfolding trivial-limit-def by (intro eventually-Inf-base) (auto simp:
Chains-def)
with C show Inf C # bot
by (simp add: bot-notin-R)
from that obtain x where z € C by auto
with C show Inf C < F
by (auto intro!: Inf-lower2[of z] simp: Chains-def)
qed
then have [simp]: inf F (Inf C) = (if C = {} then F else Inf C)
using C by (auto simp add: inf-absorb2)
from C show inf F' (Inf C') # bot
by (simp add: F Inf-C)
from C show inf F' (Inf C) < F
by (simp add: Chains-def Inf-C F)
with C show inf F (Inf C) < zz < Fif z € C for x
using that by (auto intro: Inf-lower simp: Chains-def)
qed
qed
then obtain U where U: U € ?A ?B U ..
show ?thesis
proof
from U show U < F A ultrafilter U
by (auto introl: max-filter-ultrafilter)
qed
qged

1.3.1 Free Ultrafilters

There exists a free ultrafilter on any infinite set.

locale freeultrafilter = ultrafilter +
assumes infinite: eventually P F = infinite {z. P z}
begin



THEORY “StarDef” 10

lemma finite: finite {z. P 2} = — eventually P F
by (erule contrapos-pn) (erule infinite)

lemma finite”: finite {x. - P £} = eventually P F
by (drule finite) (simp add: not-eventually frequently-eq-eventually)

lemma le-cofinite: F < cofinite
by (intro filter-lel)
(auto simp add: eventually-cofinite not-eventually frequently-eq-eventually dest!:

finite)

lemma singleton: — eventually (Az. z = a) F
by (rule finite) simp

lemma singleton”: — eventually ((=) a) F
by (rule finite) simp

lemma ultrafilter: ultrafilter F ..
end

lemma freeultrafilter- Ex:
assumes [simp]: infinite (UNIV :: 'a set)
shows 3 U::’a filter. freeultrafilter U
proof —
from ez-max-ultrafilter[of cofinite :: a filter]
obtain U : 'a filter where U < cofinite ultrafilter U
by auto
interpret ultrafilter U by fact
have freeultrafilter U
proof
fix P
assume eventually P U
with proper have frequently P U
by (rule eventually-frequently)
then have frequently P cofinite
using «U < cofinite) by (simp add: le-filter-frequently)
then show infinite {z. P z}
by (simp add: frequently-cofinite)
qed
then show ?thesis ..
qed

end

2 Construction of Star Types Using Ultrafilters

theory StarDef
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imports Free-Ultrafilter
begin

2.1 A Free Ultrafilter over the Naturals

definition FreeUltrafilterNat :: nat filter (WU»)
where U = (SOME U. freeultrafilter U)

lemma freeultrafilter-FreeUltrafilterNat: freeultrafilter U
unfolding FreeUltrafilter Nat-def
by (simp add: freeultrafilter-Ex somel-ex)

interpretation FreeUltrafilterNat: freeultrafilter U
by (rule freeultrafilter-Free Ultrafilter Nat)

2.2 Definition of star type constructor

definition starrel :: ((nat = 'a) x (nat = 'a)) set
where starrel = {(X, Y). eventually (An. X n = Y n) U}

definition star = (UNIV :: (nat = 'a) set) // starrel

typedef ‘a star = star :: (nat = 'a) set set
by (auto simp: star-def intro: quotientl)

definition star-n :: (nat = ’a) = 'a star
where star-n X = Abs-star (starrel < {X?})

theorem star-cases [case-names star-n, cases type: star]:
obtains X where z = star-n X
by (cases x) (auto simp: star-n-def star-def elim: quotientE)

lemma all-star-eq: (Vz. P z) +— (VX. P (star-n X))
by (metis star-cases)

lemma ex-star-eq: (3z. P z) «— (3 X. P (star-n X))
by (metis star-cases)

Proving that starrel is an equivalence relation.

lemma starrel-iff [iff]: (X, Y) € starrel «— eventually (An. X n =Y n) U
by (simp add: starrel-def)

lemma equiv-starrel: equiv UNIV starrel
proof (rule equivl)

show starrel C UNIV x UNIV by simp

show refl starrel by (simp add: refl-on-def)

show sym starrel by (simp add: sym-def eq-commute)

show trans starrel by (intro transl) (auto elim: eventually-elim2)
qed

11
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lemmas equiv-starrel-iff = eg-equiv-class-iff [OF equiv-starrel UNIV-I UNIV-I]

lemma starrel-in-star: starrel{z} € star
by (simp add: star-def quotientl)

lemma star-n-eq-iff: star-n X = star-n Y <— eventually (An. X n =Y n) U
by (simp add: star-n-def Abs-star-inject starrel-in-star equiv-starrel-iff)

2.3 Transfer principle

This introduction rule starts each transfer proof.

lemma transfer-start: P = eventually (An. Q) U = Trueprop P = Trueprop Q
by (simp add: FreeUltrafilterNat.proper)

Standard principles that play a central role in the transfer tactic.

definition Ifun :: (Ya = 'b) star = 'a star = 'b star
(<(«notation=<infix *»>- %/ -)» [300, 301] 300)
where Ifun f =
Az. Abs-star (\J FeRep-star f. | X€Rep-star ©. starrel‘{An. F'n (X n)})

lemma Ifun-congruent2: congruent2 starrel starrel (A\F X. starrel*{An. F n (X

n)})

by (auto simp add: congruent2-def equiv-starrel-iff elim!: eventually-rev-mp)

lemma Ifun-star-n: star-n F x star-n X = star-n (An. F n (X n))
by (simp add: Ifun-def star-n-def Abs-star-inverse starrel-in-star
UN-equiv-class2 [OF equiv-starrel equiv-starrel Ifun-congruent2])

lemma transfer-Ifun: f = star-n F = z = star-n X = f x © = star-n (An. F
n (X n))
by (simp only: Ifun-star-n)

definition star-of :: ‘a = 'a star
where star-of z = star-n (An. x)

Initialize transfer tactic.

ML-file <transfer-principle. ML»

method-setup transfer =

CAttrib.thms >> (fn ths => fn ctet => SIMPLE-METHOD' ( Transfer-Principle.transfer-tac
ctzt ths))»

transfer principle

Transfer introduction rules.

lemma transfer-ex [transfer-intro]:
(AX. p (star-n X) = eventually (An. Pn (X n)) U) =
Ja:’a star. p x = eventually (An. Jz. Pnx) U
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by (simp only: ex-star-eq eventually-ex)

lemma transfer-all [transfer-intro):
(AX. p (star-n X) = eventually (An. Pn (X n)) U) =
Vx::'a star. p x = eventually (An. Vz. Pnz)U
by (simp only: all-star-eq FreeUltrafilterNat.eventually-all-iff)

lemma transfer-not [transfer-intro]: p = eventually P U = — p = eventually (An.
- Pn)U
by (simp only: FreeUltrafilter Nat.eventually-not-iff )

lemma transfer-conj [transfer-intro):

p = eventually P U —> q = eventually Q U = p A\ q¢ = eventually (An. P n A
Qn)U

by (simp only: eventually-conj-iff)

lemma transfer-disj [transfer-introl:

p = eventually P U —> q = eventually Q U = p V q = eventually (An. P n Vv
Qn)U

by (simp only: FreeUltrafilterNat.eventually-disj-iff)

lemma transfer-imp [transfer-intro):

p = eventually P U = q = eventually Q U = p — q = eventually (An. P n
— Qn)U

by (simp only: FreeUltrafilterNat.eventually-imp-iff)

lemma transfer-iff [transfer-intro]:

p = eventually P U = q = eventually Q U = p = q = eventually (An. P n =
Qn)U

by (simp only: FreeUltrafilterNat.eventually-iff-iff)

lemma transfer-if-bool [transfer-intro):
p = eventually PU — x = eventually X U = y = eventually Y U —
(if p then z else y) = eventually (An. if P n then X n else Y n) U
by (simp only: if-bool-eq-conj transfer-conj transfer-imp transfer-not)

lemma transfer-eq [transfer-introl:
x = star-n X = y = star-n Y = z = y = eventually (An. X n=Yn)U
by (simp only: star-n-eq-iff)

lemma transfer-if [transfer-intro):
p = eventually (An. P n) U = x = star-n X = y = star-n ¥ =
(if p then z else y) = star-n (An. if P n then X n else Y n)
by (rule eg-reflection) (auto simp: star-n-eq-iff transfer-not elim!: eventually-mono)

lemma transfer-fun-eq [transfer-intro):

(ANX. f (star-n X) = g (star-n X) = eventually (An. Fn (X n) = Gn (X n))
U) =

f =g = eventually (An. Fn= Gn) U
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by (simp only: fun-eq-iff transfer-all)

lemma transfer-star-n [transfer-introl: star-n X = star-n (An. X n)
by (rule reflexive)

lemma transfer-bool [transfer-introl: p = eventually (An. p) U
by (simp add: FreeUltrafilterNat.proper)

2.4 Standard elements

definition Standard :: 'a star set
where Standard = range star-of

Transfer tactic should remove occurrences of star-of.
setup < Transfer-Principle.add-const const-name <star-of»»

lemma star-of-inject: star-of x = star-of y +— z =y
by transfer (rule refl)

lemma Standard-star-of [simpl: star-of x € Standard
by (simp add: Standard-def)

2.5 Internal functions

Transfer tactic should remove occurrences of Ifun.
setup < Transfer-Principle.add-const const-name Ifun»

lemma Ifun-star-of [simp]: star-of f x star-of x = star-of (f x)
by transfer (rule refl)

lemma Standard-Ifun [simp]: f € Standard = z € Standard = f * © € Standard
by (auto simp add: Standard-def)

Nonstandard extensions of functions.

definition starfun :: (‘a = 'b) = 'a star = 'b star
(<(<open-block notation=<prefix starfunyy+fx -)» [80] 80)
where starfun f = A\z. star-of f * x

definition starfun2 :: (‘a = 'b = '¢) = 'a star = 'b star = 'c star
(<(copen-block notation=<prefix starfun2y»=f2x -)» [80] 80)
where starfun2 f = Az y. star-of f x x x y

declare starfun-def [transfer-unfold]
declare starfun2-def [transfer-unfold]

lemma starfun-star-n: ( «f* f) (star-n X) = star-n (An. f (X n))
by (simp only: starfun-def star-of-def Ifun-star-n)
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lemma starfun2-star-n: ( xf2x f) (star-n X) (star-n Y) = star-n (An. f (X n) (Y
n))

by (simp only: starfun2-def star-of-def Ifun-star-n)

lemma starfun-star-of [simp|: ( xfx f) (star-of ) = star-of (f )
by transfer (rule refl)

lemma starfun2-star-of [simp): ( *f2x f) (star-of ) = *f* fz
by transfer (rule refl)

lemma Standard-starfun [simp]: x € Standard = starfun f z € Standard
by (simp add: starfun-def)

lemma Standard-starfun? [simp]: x € Standard = y € Standard = starfun? f
x y € Standard
by (simp add: starfun2-def)

lemma Standard-starfun-iff:
assumes inj: Nz y. fr=fy=z=1y
shows starfun fz € Standard +— x € Standard
proof
assume z € Standard
then show starfun f x € Standard by simp
next
from inj have inj" Az y. starfun fx = starfun fy = z =y
by transfer
assume starfun fz € Standard
then obtain b where b: starfun f x = star-of b
unfolding Standard-def ..
then have Jz. starfun f x = star-of b ..
then have Ja. f a = b by transfer
then obtain a« where fa = b ..
then have starfun f (star-of a) = star-of b by transfer
with b have starfun fz = starfun f (star-of a) by simp
then have z = star-of a by (rule inj’)
then show z € Standard by (simp add: Standard-def)
qed

lemma Standard-starfun2-iff:
assumes inj: Aaba'b. fab=fa' b= a=a" ANb=1V
shows starfun?2 f x y € Standard «— x € Standard N y € Standard
proof
assume z € Standard A y € Standard
then show starfun?2 f x y € Standard by simp
next
have inj: Az y z w. starfun2 fzy = starfun2 fzw =z =2 ANy =w
using inj by transfer
assume starfun?2 f x y € Standard
then obtain ¢ where c: starfun?2 f x y = star-of ¢
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unfolding Standard-def ..

then have 3z y. starfun?2 f x y = star-of ¢ by auto

then have da b. fa b = ¢ by transfer

then obtain a b where f a b = ¢ by auto

then have starfun2 f (star-of a) (star-of b) = star-of ¢ by transfer

with ¢ have starfun2 f x y = starfun2 f (star-of a) (star-of b) by simp

then have = = star-of a A y = star-of b by (rule inj’)

then show = € Standard A y € Standard by (simp add: Standard-def)
qed

2.6 Internal predicates

definition unstar :: bool star = bool
where unstar b «— b = star-of True

lemma unstar-star-n: unstar (star-n P) <— eventually P U
by (simp add: unstar-def star-of-def star-n-eq-iff’)

lemma unstar-star-of [simp]: unstar (star-of p) = p
by (simp add: unstar-def star-of-inject)

Transfer tactic should remove occurrences of unstar.

setup «Transfer-Principle.add-const const-name <unstar)

lemma transfer-unstar [transfer-intro|: p = star-n P = unstar p = eventually P
U
by (simp only: unstar-star-n)

definition starP :: (‘a = bool) = 'a star = bool
(<(<open-block notation=<prefix starP»yxpx -)» [80] 80)
where xpx P = (Az. unstar (star-of P * x))

definition starP2 :: (‘a = 'b = bool) = 'a star = 'b star = bool
(«(copen-block notation=<prefix starP2y»»xp2x -)) [80] 80)
where *p2x P = (Az y. unstar (star-of P x x % y))

declare starP-def [transfer-unfold)
declare starP2-def [transfer-unfold]

lemma starP-star-n: ( xpx P) (star-n X) = eventually (An. P (X n)) U
by (simp only: starP-def star-of-def Ifun-star-n unstar-star-n)

lemma starP2-star-n: ( xp2% P) (star-n X) (star-n Y) = (eventually (An. P (X
n) (Y n)) U)
by (simp only: starP2-def star-of-def Ifun-star-n unstar-star-n)

lemma starP-star-of [simpl: ( xp*x P) (star-of ) = P x
by transfer (rule refl)
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lemma starP2-star-of [simp]: ( *p2x P) (star-of x) = xpx Pz
by transfer (rule refl)

2.7 Internal sets

definition Iset :: 'a set star = 'a star set
where Iset A = {z. ( *p2x (€)) z A}

lemma Iset-star-n: (star-n X € Iset (star-n A)) = (eventually (An. X n € A n)
u)
by (simp add: Iset-def starP2-star-n)

Transfer tactic should remove occurrences of Iset.

setup < Transfer-Principle.add-const const-name <Iset)»

lemma transfer-mem [transfer-introl:

z = star-n X = a = Iset (star-n A) = = € a = eventually (An. X n € A n)
u

by (simp only: Iset-star-n)

lemma transfer-Collect [transfer-intro):
(AX. p (star-n X) = eventually (An. P n (X n)) U) =
Collect p = Iset (star-n (An. Collect (P n)))
by (simp add: atomize-eq set-eq-iff all-star-eq Iset-star-n)

lemma transfer-set-eq [transfer-intro):

a = Iset (star-n A) = b = Iset (star-n B) = a = b = eventually (An. A n =
Bn)U

by (simp only: set-eq-iff transfer-all transfer-iff transfer-mem)

lemma transfer-ball [transfer-intro):
a = Iset (star-n A) = (AX. p (star-n X) = eventually (An. Pn (X n)) U) =
Vzc€a. p x = eventually (An. Vz€A n. Pnx) U
by (simp only: Ball-def transfer-all transfer-imp transfer-mem)

lemma transfer-bex [transfer-intro):
a = Iset (star-n A) = (AX. p (star-n X) = eventually (An. Pn (X n)) U) =
Jz€a. p z = eventually (An. 3z€A n. Pnax)U
by (simp only: Bez-def transfer-ex transfer-conj transfer-mem)

lemma transfer-Iset [transfer-intro|: a = star-n A = Iset a = Iset (star-n (An.
A n))
by simp

Nonstandard extensions of sets.

definition starset :: 'a set = 'a star set
(<(<open-block notation=<prefix starsetrsxsx -)» [80] 80)
where starset A = Iset (star-of A)
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declare starset-def [transfer-unfold]

lemma starset-mem: star-of x € xsx A «— z € A
by transfer (rule refl)

lemma starset-UNIV: xsx (UNIV::'a set) = (UNIV::'a star set)
by (transfer UNIV-def) (rule refl)

lemma starset-empty: xsx {} = {}
by (transfer empty-def) (rule refl)

lemma starset-insert: xsx (insert x A) = insert (star-of x) ( xsx A)

by (transfer insert-def Un-def) (rule refl)

lemma starset-Un: xsx (A U B) = xsx A U xsx B
by (transfer Un-def) (rule refl)

lemma starset-Int: xsx (A N B) = xsx A N xsx B
by (transfer Int-def) (rule refl)

lemma starset-Compl: xsx —A = —( *xsx A)
by (transfer Compl-eq) (rule refl)

lemma starset-diff: xsx (A — B) = xsx A — xsx B
by (transfer set-diff-eq) (rule refl)

lemma starset-image: xsx (f * A) = ( xfx f) *( xsx A)
by (transfer image-def) (rule refl)

lemma starset-vimage: xsx (f —A) = (*f* f) = ( xsx A)
by (transfer vimage-def) (rule refl)

lemma starset-subset: ( xsx A C xsx B) «— A C B
by (transfer subset-eq) (rule refl)

lemma starset-eq: ( xsx A = xsx B) +— A = B
by transfer (rule refl)

lemmas starset-simps [simp] =
starset-mem starset-UNITV
starset-empty  starset-insert
starset-Un starset-Int
starset-Compl  starset-diff
starset-image  starset-vimage
starset-subset starset-eq

2.8 Syntactic classes

instantiation star :: (zero) zero

18
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begin
definition star-zero-def: 0 = star-of 0
instance ..

end

instantiation star :: (one) one

begin
definition star-one-def: 1 = star-of 1
instance ..

end

instantiation star :: (plus) plus

begin
definition star-add-def: (+) = *f2* (+)
instance ..

end

instantiation star :: (times) times

begin
definition star-mult-def: ((x)) = *f2% ((x))
instance ..

end

instantiation star :: (uminus) uminus

begin
definition star-minus-def: uminus = *fx uminus
instance ..

end

instantiation star :: (minus) minus
begin
definition star-diff-def: (=) = %f2x (=)
instance ..
end

instantiation star :: (abs) abs

begin
definition star-abs-def: abs = xfx abs
instance ..

end

instantiation star :: (sgn) sgn

begin
definition star-sgn-def: sgn = xf* sgn
instance ..

end

instantiation star :: (divide) divide
begin
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definition star-divide-def: divide = xf2x divide
instance ..
end

instantiation star :: (inverse) inverse

begin
definition star-inverse-def: inverse = xfx* inverse
instance ..

end

instance star :: (Rings.dvd) Rings.dvd ..

instantiation star :: (modulo) modulo

begin
definition star-mod-def: (mod) = *f2x (mod)
instance ..

end

instantiation star :: (ord) ord

begin
definition star-le-def: (<) = xp2x* (<)
definition star-less-def: (<) = *p2x (<)
instance ..

end

lemmas star-class-defs [transfer-unfold] =
star-zero-def — star-one-def
star-add-def star-diff-def  star-minus-def
star-mult-def — star-divide-def star-inverse-def
star-le-def star-less-def  star-abs-def star-sgn-def
star-mod-def

Class operations preserve standard elements.

lemma Standard-zero: 0 € Standard
by (simp add: star-zero-def)

lemma Standard-one: 1 € Standard
by (simp add: star-one-def)

lemma Standard-add: x € Standard = y € Standard = = + y € Standard
by (simp add: star-add-def)

lemma Standard-diff: € Standard = y € Standard = = — y € Standard
by (simp add: star-diff-def)

lemma Standard-minus: v € Standard —> — = € Standard
by (simp add: star-minus-def)

lemma Standard-mult: x € Standard = y € Standard = x * y € Standard
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by (simp add: star-mult-def)

lemma Standard-divide: x € Standard = y € Standard = z |/ y € Standard
by (simp add: star-divide-def)

lemma Standard-inverse: x € Standard —> inverse x € Standard
by (simp add: star-inverse-def)

lemma Standard-abs: x € Standard = |z| € Standard
by (simp add: star-abs-def)

lemma Standard-mod: x € Standard —> y € Standard = = mod y € Standard
by (simp add: star-mod-def)

lemmas Standard-simps [simp] =

Standard-zero Standard-one

Standard-add  Standard-diff — Standard-minus
Standard-mult Standard-divide Standard-inverse
Standard-abs  Standard-mod

star-of preserves class operations.
lemma star-of-add: star-of (x + y) = star-of = + star-of y
by transfer (rule refl)

lemma star-of-diff: star-of (x — y) = star-of x — star-of y
by transfer (rule refl)

lemma star-of-minus: star-of (—z) = — star-of x
by transfer (rule refl)

lemma star-of-mult: star-of (z * y) = star-of © * star-of y
by transfer (rule refl)

lemma star-of-divide: star-of (x /| y) = star-of x /| star-of y
by transfer (rule refl)

lemma star-of-inverse: star-of (inverse x) = inverse (star-of x)
by transfer (rule refl)

lemma star-of-mod: star-of (x mod y) = star-of x mod star-of y
by transfer (rule refl)

lemma star-of-abs: star-of |z| = |star-of x|
by transfer (rule refl)
star-of preserves numerals.

lemma star-of-zero: star-of 0 = 0
by transfer (rule refl)



THEORY “StarDef” 22

lemma star-of-one: star-of 1 = 1
by transfer (rule refl)

star-of preserves orderings.

lemma star-of-less: (star-of x < star-of y) = (z < y)
by transfer (rule refl)

lemma star-of-le: (star-of © < star-of y) = (z < y)
by transfer (rule refl)

lemma star-of-eq: (star-of © = star-of y) = (z = y)
by transfer (rule refl)

As above, for 0.

lemmas star-of-0-less = star-of-less [of 0, simplified star-of-zero]
lemmas star-of-0-le = star-of-le  [of 0, simplified star-of-zero]
lemmas star-of-0-eq = star-of-eq [of 0, simplified star-of-zero]

lemmas star-of-less-0 = star-of-less [of - 0, simplified star-of-zero]
lemmas star-of-le-0 = star-of-le  [of - 0, simplified star-of-zero]
lemmas star-of-eq-0 = star-of-eq [of - 0, simplified star-of-zero)

As above, for 1.

lemmas star-of-1-less = star-of-less [of 1, simplified star-of-one]
lemmas star-of-1-le = star-of-le [of 1, simplified star-of-one]
lemmas star-of-1-eq = star-of-eq [of 1, simplified star-of-one]

lemmas star-of-less-1 = star-of-less [of - 1, simplified star-of-one]
lemmas star-of-le-1 = star-of-le [of - 1, simplified star-of-one]
lemmas star-of-eq-1 = star-of-eq [of - 1, simplified star-of-one]

lemmas star-of-simps [simp] =
star-of-add  star-of-diff  star-of-minus
star-of-mult  star-of-divide star-of-inverse
star-of-mod  star-of-abs
star-of-zero  star-of-one
star-of-less  star-of-le star-of-eq
star-of-0-less star-of-0-le  star-of-0-eq
star-of-less-0 star-of-le-0  star-of-eq-0
star-of-1-less star-of-1-le  star-of-1-eq
star-of-less-1 star-of-le-1  star-of-eq-1

2.9 Ordering and lattice classes

instance star :: (order) order
proof
show Az y:'a star. (z <y)=(c<yA-y <1z
by transfer (rule less-le-not-le)
show Az::'a star. x < z
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by transfer (rule order-refl)
show Az yzilastar. [r < y;y < z] = z < 2
by transfer (rule order-trans)
show Az yi:a star. [x < y;y<z] = 2=y
by transfer (rule order-antisym)
qed

instantiation star :: (semilattice-inf) semilattice-inf
begin
definition star-inf-def [transfer-unfold): inf = *f2x inf
instance by (standard; transfer) auto
end

instantiation star :: (semilattice-sup) semilattice-sup
begin
definition star-sup-def [transfer-unfold]: sup = *f2% sup
instance by (standard; transfer) auto
end

instance star :: (lattice) lattice ..

instance star :: (distrib-lattice) distrib-lattice
by (standard; transfer) (auto simp add: sup-inf-distrib1)

lemma Standard-inf [simp]: € Standard = y € Standard = inf z y € Standard
by (simp add: star-inf-def)

lemma Standard-sup [simp]: © € Standard = y € Standard = sup x y € Stan-
dard
by (simp add: star-sup-def)

lemma star-of-inf [simp): star-of (inf z y) = inf (star-of x) (star-of y)
by transfer (rule refl)

lemma star-of-sup [simp]: star-of (sup x y) = sup (star-of z) (star-of y)
by transfer (rule refl)

instance star :: (linorder) linorder
by (intro-classes, transfer, rule linorder-linear)

lemma star-max-def [transfer-unfold]: max = *f2% maz
unfolding maz-def
by (intro ext, transfer, simp)

lemma star-min-def [transfer-unfold]: min = *f2x min
unfolding min-def

by (intro ext, transfer, simp)

lemma Standard-max [simp]: x € Standard = y € Standard = max ¢ y €
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Standard
by (simp add: star-maz-def)
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lemma Standard-min [simp]: © € Standard = y € Standard = min z y €

Standard
by (simp add: star-min-def)

lemma star-of-mazx [simp]: star-of (maz = y) = max (star-of x) (star-of y)
by transfer (rule refl)

lemma star-of-min [simp: star-of (min x y) = min (star-of x) (star-of y)
by transfer (rule refl)

2.10 Ordered group classes

instance star :: (semigroup-add) semigroup-add
by (intro-classes, transfer, rule add.assoc)

instance star :: (ab-semigroup-add) ab-semigroup-add
by (intro-classes, transfer, rule add.commute)

instance star :: (semigroup-mult) semigroup-mult
by (intro-classes, transfer, rule mult.assoc)

instance star :: (ab-semigroup-mult) ab-semigroup-mult
by (intro-classes, transfer, rule mult.commute)

instance star :: (comm-monoid-add) comm-monoid-add
by (intro-classes, transfer, rule comm-monoid-add-class.add-0)

instance star :: (monoid-mult) monoid-mult
apply intro-classes
apply (transfer, rule mult-1-left)
apply (transfer, rule mult-1-right)
done

instance star :: (power) power ..

instance star :: (comm-monoid-mult) comm-monoid-mult
by (intro-classes, transfer, rule mult-1)

instance star :: (cancel-semigroup-add) cancel-semigroup-add
apply intro-classes
apply (transfer, erule add-left-imp-eq)
apply (transfer, erule add-right-imp-eq)
done

instance star :: (cancel-ab-semigroup-add) cancel-ab-semigroup-add
by intro-classes (transfer, simp add: diff-diff-eq)+
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instance star :: (cancel-comm-monoid-add) cancel-comm-monoid-add ..
instance star :: (ab-group-add) ab-group-add

apply intro-classes

apply (transfer, rule left-minus)

apply (transfer, rule diff-conv-add-uminus)

done

instance star :: (ordered-ab-semigroup-add) ordered-ab-semigroup-add
by (intro-classes, transfer, rule add-left-mono)

instance star :: (ordered-cancel-ab-semigroup-add) ordered-cancel-ab-semigroup-add
instance star :: (ordered-ab-semigroup-add-imp-le) ordered-ab-semigroup-add-imp-le
by (intro-classes, transfer, rule add-le-imp-le-left)

instance star :: (ordered-comm-monoid-add) ordered-comm-monoid-add ..
instance star :: (ordered-ab-semigroup-monoid-add-imp-le) ordered-ab-semigroup-monoid-add-imp-le

instance star :: (ordered-cancel-comm-monoid-add) ordered-cancel-comm-monoid-add
instance star :: (ordered-ab-group-add) ordered-ab-group-add ..

instance star :: (ordered-ab-group-add-abs) ordered-ab-group-add-abs
by intro-classes (transfer, simp add: abs-ge-self abs-lel abs-triangle-ineq)+

instance star :: (linordered-cancel-ab-semigroup-add) linordered-cancel-ab-semigroup-add

2.11 Ring and field classes

instance star :: (semiring) semiring
by (intro-classes; transfer) (fact distrib-right distrib-left)+

instance star :: (semiring-0) semiring-0
by (intro-classes; transfer) simp-all

instance star :: (semiring-0-cancel) semiring-0-cancel ..

instance star :: (comm-semiring) comm-semiring
by (intro-classes; transfer) (fact distrib-right)

instance star :: (comm-semiring-0) comm-semiring-0 ..
instance star :: (comm-semiring-0-cancel) comm-semiring-0-cancel ..

instance star :: (zero-neg-one) zero-neg-one
by (intro-classes; transfer) (fact zero-neg-one)
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instance star :: (semiring-1) semiring-1 ..
instance star :: (comm-semiring-1) comm-semiring-1 ..

declare dvd-def [transfer-refold]

instance star :: (comm-semiring-1-cancel) comm-semiring-1-cancel
by (intro-classes; transfer) (fact right-diff-distrib’)

instance star :: (semiring-no-zero-divisors) semiring-no-zero-divisors
by (intro-classes; transfer) (fact no-zero-divisors)

instance star :: (semiring-1-no-zero-divisors) semiring-1-no-zero-divisors ..

instance star :: (semiring-no-zero-divisors-cancel) semiring-no-zero-divisors-cancel
by (intro-classes; transfer) simp-all

instance star :: (semiring-1- cancel) semiring-1-cancel .
instance star :: (ring) ring .

instance star :: (comm-ring) comm-ring .

instance star :: (ring-1) ring-1 .

instance star :: (comm-ring-1) comm-ring-1 ..
instance star :: (semidom) semidom ..

instance star :: (semidom-divide) semidom-divide
by (intro-classes; transfer) simp-all

instance star :: (ring-no-zero-divisors) ring-no-zero-divisors ..
instance star :: (ring-1-no-zero-divisors) ring-1-no-zero-divisors .
instance star :: (idom) idom ..

instance star :: (idom-divide) idom-divide ..

instance star :: (divide-trivial) divide-trivial
by (intro-classes; transfer) simp-all

instance star :: (division-ring) division-ring
by (intro-classes; transfer) (simp-all add: divide-inverse)

instance star :: (field) field
by (intro-classes; transfer) (simp-all add: divide-inverse)

instance star :: (ordered-semiring) ordered-semiring
by (intro-classes; transfer) (fact mult-left-mono mult-right-mono)+

instance star :: (ordered-cancel-semiring) ordered-cancel-semiring ..

instance star :: (linordered-semiring-strict) linordered-semiring-strict
by (intro-classes; transfer) (fact mult-strict-left-mono mult-strict-right-mono)+
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instance star :: (ordered-comm-semiring) ordered-comm-semiring

by (intro-classes; transfer) (fact mult-left-mono)
instance star :: (ordered-cancel-comm-semiring) ordered-cancel-comm-semiring ..

instance star :: (linordered-comm-semiring-strict) linordered-comm-semiring-strict
by (intro-classes; transfer) (fact mult-strict-left-mono)

instance star :: (ordered-ring) ordered-ring ..

instance star :: (ordered-ring-abs) ordered-ring-abs
by (intro-classes; transfer) (fact abs-eqg-mult)

instance star :: (abs-if) abs-if
by (intro-classes; transfer) (fact abs-if)

instance star :: (linordered-ring-strict) linordered-ring-strict ..
instance star :: (ordered-comm-ring) ordered-comm-ring ..

instance star :: (linordered-semidom) linordered-semidom
by (intro-classes; transfer) (fact zero-less-one le-add-diff-inverse2)+

instance star :: (linordered-idom) linordered-idom
by (intro-classes; transfer) (fact sgn-if)

instance star :: (linordered-field) linordered-field ..
instance star :: (algebraic-semidom) algebraic-semidom ..

instantiation star :: (normalization-semidom) normalization-semidom
begin

definition unit-factor-star :: 'a star = 'a star
where [transfer-unfold|: unit-factor-star = *f* unit-factor

definition normalize-star :: 'a star = 'a star
where [transfer-unfold): normalize-star = *f* normalize

instance
by standard (transfer; simp add: is-unit-unit-factor unit-factor-mult)+

end

instance star :: (semidom-modulo) semidom-modulo
by standard (transfer; simp)

2.12 Power

lemma star-power-def [transfer-unfold): (7) = Az n. ( xfx (Az. z " n)) z
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proof (rule eg-reflection, rule ext, rule ext)
show z " n = ( xf* (Ax. £ " n)) z for n :: nat and z :: ‘a star
proof (induct n arbitrary: x)
case (
have Az::'a star. ( #fx (A\z. 1)) z = 1
by transfer simp
then show ?case by simp
next
case (Suc n)

have Az::'a star. z x ( xfx (Az:'a. z " n)) 2 = (xfx Azt/a. 2 x 2 " n))

by transfer simp
with Suc show ?case by simp
qed
qed

lemma Standard-power [simp]: z € Standard = = ~ n € Standard
by (simp add: star-power-def)

lemma star-of-power [simpl: star-of (z ~ n) = star-of t " n
by transfer (rule refl)

2.13 Number classes

instance star :: (numeral) numeral ..

lemma star-numeral-def [transfer-unfold]: numeral k = star-of (numeral k)
by (induct k) (simp-all only: numeral.simps star-of-one star-of-add)

lemma Standard-numeral [simp]: numeral k € Standard
by (simp add: star-numeral-def)

lemma star-of-numeral [simp]: star-of (numeral k) = numeral k
by transfer (rule refl)

lemma star-of-nat-def [transfer-unfold): of-nat n = star-of (of-nat n)
by (induct n) simp-all

lemmas star-of-compare-numeral [simp] =
star-of-less [of numeral k, simplified star-of-numeral)]
star-of-le  [of numeral k, simplified star-of-numeral)
star-of-eq  [of numeral k, simplified star-of-numeral]
star-of-less [of - numeral k, simplified star-of-numeral]
star-of-le  [of - numeral k, simplified star-of-numeral)
star-of-eq  |of - numeral k, simplified star-of-numeral]
star-of-less [of — numeral k, simplified star-of-numeral]
star-of-le  [of — numeral k, simplified star-of-numeral]
star-of-eq  [of — numeral k, simplified star-of-numeral)
star-of-less [of - — numeral k, simplified star-of-numeral)
star-of-le  [of - — numeral k, simplified star-of-numeral)]

28
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star-of-eq  [of - — numeral k, simplified star-of-numeral] for k

lemma Standard-of-nat [simp|: of-nat n € Standard
by (simp add: star-of-nat-def)

lemma star-of-of-nat [simp]: star-of (of-nat n) = of-nat n
by transfer (rule refl)

lemma star-of-int-def [transfer-unfold]: of-int z = star-of (of-int z)
by (rule int-diff-cases [of z]) simp

lemma Standard-of-int [simp]: of-int z € Standard
by (simp add: star-of-int-def)

lemma star-of-of-int [simpl: star-of (of-int z) = of-int z
by transfer (rule refl)

instance star :: (semiring-char-0) semiring-char-0
proof
have inj (star-of :: 'a = 'a star)
by (rule injI) simp
then have inj (star-of o of-nat :: nat = 'a star)
using inj-of-nat by (rule inj-compose)
then show inj (of-nat :: nat = 'a star)
by (simp add: comp-def)
qed

instance star :: (ring-char-0) ring-char-0 ..

2.14 Finite class

lemma starset-finite: finite A = xsx A = star-of ‘ A
by (erule finite-induct) simp-all

instance star :: (finite) finite
proof intro-classes
show finite (UNIV::'a star set)
by (metis starset-UNIV finite finite-imagel starset-finite)
qed

end

3 Hypernatural numbers
theory HyperNat

imports StarDef
begin

type-synonym hypnat = nat star
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abbreviation hypnat-of-nat :: nat = nat star
where hypnat-of-nat = star-of

definition ASuc :: hypnat = hypnat
where hSuc-def [transfer-unfold]: hSuc = xfx Suc

3.1 Properties Transferred from Naturals

lemma hSuc-not-zero [iff]: Am. hSuc m # 0
by transfer (rule Suc-not-Zero)

lemma zero-not-hSuc [iff]: Am. 0 # hSuc m
by transfer (rule Zero-not-Suc)

lemma hSuc-hSuc-eq [iff]: Am n. hSuc m = hSuc n «<— m =n
by transfer (rule nat.inject)

lemma zero-less-hSuc [iff]: An. 0 < hSuc n
by transfer (rule zero-less-Suc)

lemma hypnat-minus-zero [simpl: N\z:hypnat. z — z = 0
by transfer (rule diff-self-eq-0)

lemma hypnat-diff-0-eq-0 [simp]: An:hypnat. 0 — n = 0
by transfer (rule diff-0-eg-0)

lemma hypnat-add-is-0 [iff]: Am n::hypnat. m + n=0+— m=0An=20
by transfer (rule add-is-0)

lemma hypnat-diff-diff-left: Nij k:hypnat. i — j — k=14 — (j + k)
by transfer (rule diff-diff-left)

lemma hypnat-diff-commute: N\i j ki:hypnat. i — j — k=14 —k — j
by transfer (rule diff-commute)

lemma hypnat-diff-add-inverse [simp]: Am n:hypnat. n + m — n = m
by transfer (rule diff-add-inverse)

lemma hypnat-diff-add-inverse2 [simp]: Am n:hypnat. m + n — n=m
by transfer (rule diff-add-inverse2)

lemma hypnat-diff-cancel [simp]: Nk m n:hypnat. (k + m) — (k+n) =m —n
by transfer (rule diff-cancel)

lemma hypnat-diff-cancel2 [simp]: Nk m n:hypnat. (m + k) — (n + k) =m —n
by transfer (rule diff-cancel2)

lemma hypnat-diff-add-0 [simp]: Am n::hypnat. n — (n + m) = 0
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by transfer (rule diff-add-0)

lemma hypnat-diff-mult-distrib: Nk m n::hypnat. (m — n) * k= (m * k) — (n *
k)
by transfer (rule diff-mult-distrib)

lemma hypnat-diff-mult-distrib2: Ak m n::hypnat. k x (m — n) = (k * m) — (k %
n)
by transfer (rule diff-mult-distrib2)

lemma hypnat-le-zero-cancel [iff]: An::hypnat. n < 0 «— n = 0
by transfer (rule le-0-eq)

lemma hypnat-mult-is-0 [simp]: Am n::hypnat. m * n =0 +— m =0V n =10
by transfer (rule mult-is-0)

lemma hypnat-diff-is-0-eq [simp]: Am n:hypnat. m — n =0 +— m < n
by transfer (rule diff-is-0-eq)

lemma hypnat-not-less0 [iff]: An:hypnat. = n < 0
by transfer (rule not-less0)

lemma hypnat-less-one [iff]: An:hypnat. n < 1 +— n =0
by transfer (rule less-one)

lemma hypnat-add-diff-inverse: Am n:hypnat. - m < n = n+ (m —n) =m
by transfer (rule add-diff-inverse)

lemma hypnat-le-add-diff-inverse [simp]: Am n:hypnat. n < m = n + (m — n)
=m
by transfer (rule le-add-diff-inverse)

lemma hypnat-le-add-diff-inverse2 [simpl: Am n:hypnat. n < m = (m — n) +
n=m

by transfer (rule le-add-diff-inverse2)
declare hypnat-le-add-diff-inverse2 [OF order-less-imp-le]

lemma hypnat-le0 [iff]: An:hypnat. 0 < n
by transfer (rule le0)

lemma hypnat-le-add! [simp]: Az n::hypnat. © < z + n
by transfer (rule le-addl)

lemma hypnat-add-self-le [simp]: Az n::hypnat. < n + z
by transfer (rule le-add?2)

lemma hypnat-add-one-self-less [simp]: © < z + 1 for z :: hypnat
by (fact less-add-one)
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lemma hypnat-neq0-conv [iff]: An:hypnat. n # 0 +— 0 < n
by transfer (rule neq0-conv)

lemma hypnat-gt-zero-iff: 0 < n +— 1 < n for n :: hypnat
by (auto simp add: linorder-not-less [symmetric])

lemma hypnat-gt-zero-iff2: 0 < n +— (Im. n = m + 1) for n :: hypnat
by (auto intro!: add-nonneg-pos exI[of - n — 1] simp: hypnat-gt-zero-iff)

lemma hypnat-add-self-not-less: = = + y < x for x y :: hypnat
by (simp add: linorder-not-le [symmetric] add.commute [of x])

lemma hypnat-diff-split: P (a — b) +— (a <b— PO)AN(NVd.a=b+d —
P d)
for a b :: hypnat
— elimination of — on hypnat
proof (cases a < b rule: case-split)
case True
then show ?thesis
by (auto simp add: hypnat-add-self-not-less order-less-imp-le hypnat-diff-is-0-eq
[THEN iffD2])
next
case Fulse
then show ?thesis
by (auto simp add: linorder-not-less dest: order-le-less-trans)
qged

3.2 Properties of the set of embedded natural numbers

lemma of-nat-eq-star-of [simp|: of-nat = star-of
proof
show of-nat n = star-of n for n
by transfer simp
qed

lemma Nats-eq-Standard: (Nats :: nat star set) = Standard
by (auto simp: Nats-def Standard-def)

lemma hypnat-of-nat-mem-Nats [simp]: hypnat-of-nat n € Nats
by (simp add: Nats-eq-Standard)

lemma hypnat-of-nat-one [simp]: hypnat-of-nat (Suc 0) = 1
by transfer simp

lemma hypnat-of-nat-Suc [simp]: hypnat-of-nat (Suc n) = hypnat-of-nat n + 1
by transfer simp

lemma of-nat-eq-add:
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fixes d::hypnat

shows of-nat m = of-nat n + d = d € range of-nat
proof (induct n arbitrary: d)

case (Suc n)

then show ?case

by (metis Nats-def Nats-eq-Standard Standard-simps(4) hypnat-diff-add-inverse

of-nat-in-Nats)
qed auto

lemma Nats-diff [simp]: a € Nats = b € Nats = o — b € Nats for a b ::
hypnat
by (simp add: Nats-eq-Standard)

3.3 Infinite Hypernatural Numbers — HNatInfinite

The set of infinite hypernatural numbers.

definition HNatlInfinite :: hypnat set
where HNatInfinite = {n. n ¢ Nats}

lemma Nats-not-HNatInfinite-iff: © € Nats «— x ¢ HNatInfinite
by (simp add: HNatInfinite-def)

lemma HNatInfinite-not-Nats-iff: © € HNatInfinite +— x ¢ Nats
by (simp add: HNatInfinite-def)

lemma star-of-neq-HNatInfinite: N € HNatInfinite = star-of n # N
by (auto simp add: HNatInfinite-def Nats-eq-Standard)

lemma star-of-Suc-lessI: AN. star-of n < N = star-of (Suc n) # N = star-of
(Sucn) < N
by transfer (rule Suc-lessI)

lemma star-of-less-HNatInfinite:
assumes N: N € HNatInfinite
shows star-of n < N
proof (induct n)
case (
from N have star-of 0 # N
by (rule star-of-neq-HNatInfinite)
then show ?case by simp
next
case (Suc n)
from N have star-of (Suc n) # N
by (rule star-of-neq-HNatInfinite)
with Suc show ?case
by (rule star-of-Suc-lessI)
qed

lemma star-of-le-HNatInfinite: N € HNatInfinite =—> star-of n < N
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by (rule star-of-less-HNatInfinite [THEN order-less-imp-le])

3.3.1 Closure Rules
lemma Nats-less-HNatInfinite: x € Nats = y € HNatInfinite — = < y
by (auto simp add: Nats-def star-of-less-HNatInfinite)

lemma Nats-le-HNatInfinite: © € Nats = y € HNatInfinite — z < y
by (rule Nats-less-HNatInfinite [THEN order-less-imp-le])

lemma zero-less-HNatInfinite: x € HNatInfinite = 0 < z
by (simp add: Nats-less-HNatInfinite)

lemma one-less-HNatInfinite: © € HNatInfinite — 1 < x
by (simp add: Nats-less-HNatInfinite)

lemma one-le-HNatInfinite: x € HNatInfinite — 1 < z
by (simp add: Nats-le-HNatInfinite)

lemma zero-not-mem-HNatInfinite [simp]: 0 ¢ HNatInfinite
by (simp add: HNatInfinite-def)

lemma Nats-downward-closed: © € Nats = y < © = y € Nats for z y :: hypnat
using HNatInfinite-not-Nats-iff Nats-le-HNatInfinite by fastforce

lemma HNatInfinite-upward-closed: x € HNatInfinite — =z < y = y € HNat-
Infinite
using HNatInfinite-not-Nats-iff Nats-downward-closed by blast

lemma HNatInfinite-add: x € HNatInfinite = x + y € HNatInfinite
using HNatInfinite-upward-closed hypnat-le-addl by blast

lemma HNatInfinite-diff: [x € HNatInfinite; y € Nats] = x — y € HNatInfinite
by (metis HNatInfinite-not-Nats-iff Nats-add Nats-le-HNatInfinite le-add-diff-inverse)

lemma HNatInfinite-is-Suc: x € HNatInfinite = Jy. v = y + 1 for z :: hypnat
using hypnat-gt-zero-iff2 zero-less-HNatInfinite by blast

3.4 Existence of an infinite hypernatural number

w is in fact an infinite hypernatural number = [<1, 2, 3, ... >]
definition whn :: hypnat

where hypnat-omega-def: whn = star-n (An:nat. n)

lemma hypnat-of-nat-neqg-whn: hypnat-of-nat n # whn
by (simp add: FreeUltrafilterNat.singleton’ hypnat-omega-def star-of-def star-n-eq-iff)

lemma whn-neq-hypnat-of-nat: whn # hypnat-of-nat n
by (simp add: FreeUltrafilterNat.singleton hypnat-omega-def star-of-def star-n-eq-iff)



THEORY “HyperNat” 35

lemma whn-not-Nats [simp]: whn ¢ Nats
by (simp add: Nats-def image-def whn-neq-hypnat-of-nat)

lemma HNatInfinite-whn [simp]: whn € HNatInfinite
by (simp add: HNatInfinite-def)

lemma lemma-unbounded-set [simp]: eventually (An:nat. m < n) U
by (rule filter-leD[OF FreeUltrafilterNat.le-cofinite])
(auto simp add: cofinite-eq-sequentially eventually-at-top-dense)

lemma hypnat-of-nat-eq: hypnat-of-nat m = star-n (An::nat. m)
by (simp add: star-of-def)

lemma SHNat-eq: Nats = {n. 3N. n = hypnat-of-nat N}
by (simp add: Nats-def image-def)

lemma Nats-less-whn: n € Nats =— n < whn
by (simp add: Nats-less-HNatInfinite)

lemma Nats-le-whn: n € Nats — n < whn
by (simp add: Nats-le-HNatInfinite)

lemma hypnat-of-nat-less-whn [simp]: hypnat-of-nat n < whn
by (simp add: Nats-less-whn)

lemma hypnat-of-nat-le-whn [simp]: hypnat-of-nat n < whn
by (simp add: Nats-le-whn)

lemma hypnat-zero-less-hypnat-omega [simp]: 0 < whn
by (simp add: Nats-less-whn)

lemma hypnat-one-less-hypnat-omega [simpl: 1 < whn
by (simp add: Nats-less-whn)

3.4.1 Alternative characterization of the set of infinite hypernat-
urals

HNatInfinite = {N. VneN. n < N}

unused, but possibly interesting

lemma HNatInfinite-Free Ultrafilter Nat-eventually:
assumes Ak:nat. eventually (An. fn # k) U
shows eventually (An. m < fn) U
proof (induct m)
case (
then show ?case
using assms eventually-mono by fastforce
next
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case (Suc m)
then show ?case
using assms [of Suc m] eventually-elim2 by fastforce
qed

lemma HNatInfinite-iff: HNatInfinite = {N.Vn € Nats. n < N}
using HNatInfinite-def Nats-less-HNatInfinite by auto

3.4.2 Alternative Characterization of HNatInfinite using Free Ul-
trafilter

lemma HNatInfinite-Free UltrafilterNat:
star-n X € HNatInfinite = ¥V u. eventually (An. v < X n) U
by (metis (full-types) starP2-star-of starP-star-n star-less-def star-of-less- HNatInfinite)

lemma FreeUltrafilterNat-HNatInfinite:

YV u. eventually (An. u < X n) U = star-n X € HNatInfinite

by (auto simp add: star-less-def starP2-star-n HNatInfinite-iff SHNat-eq hyp-
nat-of-nat-eq)

lemma HNatInfinite-FreeUltrafilterNat-iff:
(star-n X € HNatInfinite) = (¥ u. eventually (An. v < X n) U)
by (rule iffl [OF HNatInfinite-FreeUltrafilterNat FreeUltrafilter Nat-HNatInfinite])

3.5 Embedding of the Hypernaturals into other types
definition of-hypnat :: hypnat = 'a::semiring-1-cancel star

where of-hypnat-def [transfer-unfold]: of-hypnat = *f* of-nat

lemma of-hypnat-0 [simp]: of-hypnat 0 = 0
by transfer (rule of-nat-0)

lemma of-hypnat-1 [simpl: of-hypnat 1 = 1
by transfer (rule of-nat-1)

lemma of-hypnat-hSuc: Am. of-hypnat (hSuc m) = 1 + of-hypnat m
by transfer (rule of-nat-Suc)

lemma of-hypnat-add [simp]: Am n. of-hypnat (m + n) = of-hypnat m + of-hypnat
n
by transfer (rule of-nat-add)

lemma of-hypnat-mult [simp]: Am n. of-hypnat (m * n) = of-hypnat m * of-hypnat
n
by transfer (rule of-nat-mult)

lemma of-hypnat-less-iff [simp]:
Am n. of-hypnat m < (of-hypnat n::'a::linordered-semidom star) +— m < n
by transfer (rule of-nat-less-iff)
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lemma of-hypnat-0-less-iff [simp]:
An. 0 < (of-hypnat n::'a:linordered-semidom star) +— 0 < n
by transfer (rule of-nat-0-less-iff)

lemma of-hypnat-less-0-iff [simp]: Am. = (of-hypnat m::'a::linordered-semidom
star) < 0
by transfer (rule of-nat-less-0-iff)

lemma of-hypnat-le-iff [simp]:
Am n. of-hypnat m < (of-hypnat n::'a::linordered-semidom star) «— m < n
by transfer (rule of-nat-le-iff)

lemma of-hypnat-0-le-iff [simp]: An. 0 < (of-hypnat n::'a:linordered-semidom
star)
by transfer (rule of-nat-0-le-iff)

lemma of-hypnat-le-0-iff [simp]: Am. (of-hypnat m::'a::linordered-semidom star)
<0—m=20
by transfer (rule of-nat-le-0-iff)

lemma of-hypnat-eq-iff [simp):
Am n. of-hypnat m = (of-hypnat n::'a::linordered-semidom star) +— m = n
by transfer (rule of-nat-eg-iff)
lemma of-hypnat-eq-0-iff [simp]: Am. (of-hypnat m::'a::linordered-semidom star)
=0<4—m=120
by transfer (rule of-nat-eq-0-iff)
lemma HNatinfinite-of-hypnat-gt-zero:
N € HNatlnfinite = (0::'a::linordered-semidom star) < of-hypnat N

by (rule ccontr) (simp add: linorder-not-less)

end

4 Construction of Hyperreals Using Ultrafilters

theory HyperDef
imports Complez-Main HyperNat
begin

type-synonym hypreal = real star

abbreviation hypreal-of-real :: real = real star
where hypreal-of-real = star-of

abbreviation hypreal-of-hypnat :: hypnat = hypreal
where hypreal-of-hypnat = of-hypnat

definition omega :: hypreal (<w))
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where w = star-n (An. real (Suc n))
— an infinite number = [<1, 2, 3, ...>]

definition epsilon :: hypreal (<))
where ¢ = star-n (An. inverse (real (Suc n)))
— an infinitesimal number = [<1, 1/2, 1/3, ...>]

4.1 Real vector class instances

instantiation star :: (scaleR) scaleR

begin
definition star-scaleR-def [transfer-unfold]: scaleR r = xfx (scaleR )
instance ..

end

lemma Standard-scaleR [simp]: © € Standard = scaleR r x € Standard
by (simp add: star-scaleR-def)

lemma star-of-scaleR [simp]: star-of (scaleR r x) = scaleR r (star-of )
by transfer (rule refl)

instance star :: (real-vector) real-vector
proof
fix a b :: real
show Az y::'a star. scaleR a (x + y) = scaleR a x + scaleR a y
by transfer (rule scaleR-right-distrib)
show Az::'a star. scaleR (a + b) z = scaleR a x + scaleR b x
by transfer (rule scaleR-left-distrib)
show Az::’a star. scaleR a (scaleR b z) = scaleR (a * b)
by transfer (rule scaleR-scaleR)
show Az::'a star. scaleR 1z = x
by transfer (rule scaleR-one)
qed

instance star :: (real-algebra) real-algebra
proof
fix a :: real
show Az y::’a star. scaleR a © % y = scaleR a (z * y)
by transfer (rule mult-scaleR-left)
show Az y::'a star. x * scaleR a y = scaleR a (x * y)
by transfer (rule mult-scaleR-right)
qed

instance star :: (real-algebra-1) real-algebra-1 ..
instance star :: (real-div-algebra) real-div-algebra ..

instance star :: (field-char-0) field-char-0 ..
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instance star :: (real-field) real-field ..

lemma star-of-real-def [transfer-unfold]: of-real r = star-of (of-real r)
by (unfold of-real-def, transfer, rule refl)

lemma Standard-of-real [simp]: of-real r € Standard
by (simp add: star-of-real-def)

lemma star-of-of-real [simp]: star-of (of-real r) = of-real r
by transfer (rule refl)

lemma of-real-eg-star-of [simp]: of-real = star-of
proof
show of-real r = star-of r for r :: real
by transfer simp
qed

lemma Reals-eq-Standard: (R :: hypreal set) = Standard
by (simp add: Reals-def Standard-def)

4.2 Injection from hypreal
definition of-hypreal :: hypreal = 'a::real-algebra-1 star
where [transfer-unfold]: of-hypreal = xf* of-real

lemma Standard-of-hypreal [simpl: r € Standard = of-hypreal r € Standard
by (simp add: of-hypreal-def)

lemma of-hypreal-0 [simpl: of-hypreal 0 = 0
by transfer (rule of-real-0)
lemma of-hypreal-1 [simp]: of-hypreal 1 = 1

by transfer (rule of-real-1)

lemma of-hypreal-add [simp]: Az y. of-hypreal (z + y) = of-hypreal x + of-hypreal

Y
by transfer (rule of-real-add)

lemma of-hypreal-minus [simp]: Az. of-hypreal (— x) = — of-hypreal x
by transfer (rule of-real-minus)

lemma of-hypreal-diff [simp]: Az y. of-hypreal (x — y) = of-hypreal x — of-hypreal

)
by transfer (rule of-real-diff)

lemma of-hypreal-mult [simp]: Nz y. of-hypreal (z x y) = of-hypreal z % of-hypreal

Y
by transfer (rule of-real-mult)
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lemma of-hypreal-inverse [simp):
Nz. of-hypreal (inverse x) =
inverse (of-hypreal x :: 'a::{real-div-algebra, division-ring} star)
by transfer (rule of-real-inverse)

lemma of-hypreal-divide [simp]:

Az y. of-hypreal (z / y) =
(of-hypreal x | of-hypreal y :: 'a::{real-field, field} star)
by transfer (rule of-real-divide)

lemma of-hypreal-eq-iff [simp]: Az y. (of-hypreal x = of-hypreal y) = (x = y)
by transfer (rule of-real-eq-iff)

lemma of-hypreal-eq-0-iff [simp]: Nz. (of-hypreal z = 0) = (z = 0)
by transfer (rule of-real-eq-0-iff)

4.3 Properties of starrel

lemma lemma-starrel-refl [simp]: © € starrel ““ {z}

by (simp add: starrel-def)

lemma starrel-in-hypreal [simp]: starrel*{z}€star
by (simp add: star-def starrel-def quotient-def, blast)

declare Abs-star-inject [simp] Abs-star-inverse [simp]
declare equiv-starrel [THEN eq-equiv-class-iff, simp)

4.4  hypreal-of-real: the Injection from real to hypreal
lemma inj-star-of: inj star-of

by (rule inj-onl) simp

lemma mem-Rep-star-iff: X € Rep-star x «— © = star-n X
by (cases x) (simp add: star-n-def)

lemma Rep-star-star-n-iff [simp]: X € Rep-star (star-n Y) <— eventually (An.
Yn=Xn)U
by (simp add: star-n-def)

lemma Rep-star-star-n: X € Rep-star (star-n X)

by simp

4.5 Properties of star-n
lemma star-n-add: star-n X + star-n Y = star-n (An. X n + Y n)

by (simp only: star-add-def starfun2-star-n)

lemma star-n-minus: — star-n X = star-n (An. —(X n))
by (simp only: star-minus-def starfun-star-n)
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lemma star-n-diff: star-n X — star-n Y = star-n (An. X n — Y n)
by (simp only: star-diff-def starfun2-star-n)

lemma star-n-mult: star-n X * star-n Y = star-n (An. X n * Y n)
by (simp only: star-mult-def starfun2-star-n)

lemma star-n-inverse: inverse (star-n X) = star-n (An. inverse (X n))
by (simp only: star-inverse-def starfun-star-n)

lemma star-n-le: star-n X < star-n Y = eventually (An. X n < Y n)U
by (simp only: star-le-def starP2-star-n)

lemma star-n-less: star-n X < star-n Y = eventually (An. X n < Y n) U
by (simp only: star-less-def starP2-star-n)

lemma star-n-zero-num: 0 = star-n (An. 0)
by (simp only: star-zero-def star-of-def)

lemma star-n-one-num: 1 = star-n (An. 1)
by (simp only: star-one-def star-of-def)

lemma star-n-abs: |star-n X| = star-n (An. | X n|)
by (simp only: star-abs-def starfun-star-n)

lemma hypreal-omega-gt-zero [simp]: 0 < w
by (simp add: omega-def star-n-zero-num star-n-less)

4.6 Existence of Infinite Hyperreal Number

Existence of infinite number not corresponding to any real number. Use
assumption that member U is not finite.

lemma hypreal-of-real-not-eq-omega: hypreal-of-real © # w
proof —
have False if Vp ninU. = 1 + real n for z
proof —
have finite {n::nat. x = 1 + real n}
by (simp add: finite-nat-set-iff-bounded-le) (metis add.commute nat-le-linear
nat-le-real-less)
then show Fulse
using FreeUltrafilterNat.finite that by blast
qed
then show ?thesis
by (auto simp add: omega-def star-of-def star-n-eq-iff)
qed

Existence of infinitesimal number also not corresponding to any real number.

lemma hypreal-of-real-not-eq-epsilon: hypreal-of-real x # &
proof —
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have False if Vp n in U. © = inverse (1 + real n) for z
proof —
have finite {n::nat. z = inverse (1 + real n)}
by (simp add: finite-nat-set-iff-bounded-le) (metis add.commute inverse-inverse-eq
linear nat-le-real-less of-nat-Suc)
then show Fulse
using FreeUltrafilterNat.finite that by blast
qed
then show ?thesis
by (auto simp: epsilon-def star-of-def star-n-eq-iff)
qged

lemma epsilon-ge-zero [simp]: 0 < &
by (simp add: epsilon-def star-n-zero-num star-n-le)

lemma epsilon-not-zero: € # 0
using hypreal-of-real-not-eq-epsilon by force

lemma epsilon-inverse-omega: € = inverse w
by (simp add: epsilon-def omega-def star-n-inverse)

lemma epsilon-gt-zero: 0 < €
by (simp add: epsilon-inverse-omega)

4.7 Embedding the Naturals into the Hyperreals

abbreviation hypreal-of-nat :: nat = hypreal
where hypreal-of-nat = of-nat

lemma SNat-eq: Nats = {n. 3N. n = hypreal-of-nat N}
by (simp add: Nats-def image-def)

Naturals embedded in hyperreals: is a hyperreal c.f. NS extension.

lemma hypreal-of-nat: hypreal-of-nat m = star-n (An. real m)
by (simp add: star-of-def [symmetric])

declaration «
K (Lin-Arith.add-simps @Q{thms star-of-zero star-of-one
star-of-numeral star-of-add
star-of-minus star-of-diff star-of-mult}
#> Lin-Arith.add-inj-thms Q{thms star-of-le [THEN iffD2]
star-of-less [THEN iffD2] star-of-eq [THEN iffD2]}
#> Lin-Arith.add-inj-const (const-name (StarDef .star-ofy, typ <real = hyprealy))
)

simproc-setup fast-arith-hypreal ((m::hypreal) < n | (m::hypreal) < n | (m::hypreal)
= n) =
<K Lin-Arith.simprocs
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4.8 Exponentials on the Hyperreals

lemma hpowr-0 [simp]: r ~ 0 = (1::hypreal)
for r :: hypreal
by (rule power-0)

lemma hpowr-Suc [simp]: r ~ (Suc n) = r % (r " n)
for r :: hypreal
by (rule power-Suc)

lemma hrealpow: star-n X ~m = star-n (An. (X n:real) ~ m)
by (induct m) (auto simp: star-n-one-num star-n-mult)

lemma hrealpow-sum-square-expand:
(z + y) ~ Suc (Suc 0) =
z ~ Suc (Suc 0) + y ~ Suc (Suc 0) + (hypreal-of-nat (Suc (Suc 0))) x z x y
for z y :: hypreal
by (simp add: distrib-left distrib-right)

lemma power-hypreal-of-real-numeral:
(numeral v :: hypreal) ~n = hypreal-of-real ((numeral v) ~ n)
by simp
declare power-hypreal-of-real-numeral [of - numeral w, simp] for w

lemma power-hypreal-of-real-neg-numeral:
(— numeral v :: hypreal) ~ n = hypreal-of-real ((— numeral v) ~ n)
by simp

declare power-hypreal-of-real-neg-numeral [of - numeral w, simp] for w

4.9 Powers with Hypernatural Exponents

Hypernatural powers of hyperreals.

definition pow :: 'a::power star = nat star = 'a star (infixr (pow) 80)
where hyperpow-def [transfer-unfold]: R pow N = ( «f2x (7)) R N

lemma Standard-hyperpow [simp]: r € Standard = n € Standard = r pow n €
Standard
by (simp add: hyperpow-def)

lemma hyperpow: star-n X pow star-n 'Y = star-n (An. X n ~ Y n)
by (simp add: hyperpow-def starfun2-star-n)

lemma hyperpow-zero [simp]: An. (0::'a::{ power,semiring-0} star) pow (n + (1::hypnat))
=0
by transfer simp

lemma hyperpow-not-zero: \r n. r # (0::'a::{field} star) = r pow n # 0
by transfer (rule power-not-zero)
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lemma hyperpow-inverse: \r n. r # (0::'a:field star) = inverse (r pow n) =
(inverse 1) pow n
by transfer (rule power-inverse [symmetric))

lemma hyperpow-hrabs: Ar n. |r::'a::{linordered-idom} star| pow n = |r pow nl
by transfer (rule power-abs [symmetric])

lemma hyperpow-add: A\r n m. (r::'a::monoid-mult star) pow (n + m) = (r pow
n) * (r pow m)
by transfer (rule power-add)

lemma hyperpow-one [simpl: A\r. (r::'a::monoid-mult star) pow (1::hypnat) = r
by transfer (rule power-one-right)

lemma hyperpow-two: \r. (r::’a::monoid-mult star) pow (2:hypnat) = r * r
by transfer (rule power2-eq-square)

lemma hyperpow-gt-zero: \r n. (0::'a::{linordered-semidom} star) < r = 0 <
T pow n
by transfer (rule zero-less-power)

lemma hyperpow-ge-zero: Ar n. (0::'a::{linordered-semidom} star) < r = 0 <
r pow n
by transfer (rule zero-le-power)

lemma hyperpow-le: Nz y n. (0::'a::{linordered-semidom} star) < ¢ — = < y
= zpown < Y pown
by transfer (rule power-mono [OF - order-less-imp-le])

lemma hyperpow-eg-one [simpl: An. 1 pow n = (1::'a::monoid-mult star)
by transfer (rule power-one)

lemma hrabs-hyperpow-minus [simp]: \(a::'a::linordered-idom star) n. |(—a) pow
n| = |a pow n|
by transfer (rule abs-power-minus)

lemma hyperpow-mult: \r s n. (r * s::'a::comm-monoid-mult star) pow n = (r
pow n) * (s pow n)
by transfer (rule power-mult-distrib)

lemma hyperpow-two-le [simpl: Ar. (0::'a:{monoid-mult,linordered-ring-strict} star)
< r pow 2
by (auto simp add: hyperpow-two zero-le-mult-iff)

lemma hyperpow-two-hrabs [simp|: |x::'a::linordered-idom star| pow 2 = x pow 2
by (simp add: hyperpow-hrabs)

lemma hyperpow-two-gt-one: A\r::'a::linordered-semidom star. 1 < r = 1 < r
pow 2
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by transfer simp

lemma hyperpow-two-ge-one: A\r::'a:linordered-semidom star. 1 < r = 1 <'r
pow 2
by transfer (rule one-le-power)

lemma two-hyperpow-ge-one [simp]: (1::hypreal) < 2 pow n
by (metis hyperpow-eg-one hyperpow-le one-le-numeral zero-less-one)

lemma hyperpow-minus-one2 [simp]: An. (— 1) pow (2 * n) = (1::hypreal)
by transfer (rule power-minusl-even)

lemma hyperpow-less-le: Arn N. (0:hypreal) < r —=r <1 =n< N =r
pow N < r pow n
by transfer (rule power-decreasing [OF order-less-imp-le])

lemma hyperpow-SHNat-le:

0 <r = r < (I:hypreal) = N € HNatInfinite = ¥V n€Nats. r pow N < r
pow n

by (auto intro!: hyperpow-less-le simp: HNatInfinite-iff)

lemma hyperpow-realpow: (hypreal-of-real 1) pow (hypnat-of-nat n) = hypreal-of-real
(r ~n)

by transfer (rule refl)

lemma hyperpow-SReal [simp]: (hypreal-of-real r) pow (hypnat-of-nat n) € R
by (simp add: Reals-eq-Standard)

lemma hyperpow-zero-HNatInfinite [simp]: N € HNatInfinite = (0::hypreal) pow
N=20
by (drule HNatInfinite-is-Suc, auto)

lemma hyperpow-le-le: (0::hypreal) < r=r <1 =n< N = rpowN <r
pow n
by (metis hyperpow-less-le le-less)

lemma hyperpow-Suc-le-self2: (0:hypreal) < r = r < 1 = r pow (n + (1::hypnat))
<r
by (metis hyperpow-less-le hyperpow-one hypnat-add-self-le le-less)

lemma hyperpow-hypnat-of-nat: \z. x pow hypnat-of-nat n = x " n
by transfer (rule refl)

lemma of-hypreal-hyperpow:
Az n. of-hypreal (z pow n) = (of-hypreal z::'a::{real-algebra-1} star) pow n

by transfer (rule of-real-power)

end
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5 Infinite Numbers, Infinitesimals, Infinitely Close
Relation

theory NSA
imports HyperDef HOL— Library.Lub-Glb
begin

definition hnorm :: 'a::real-normed-vector star = real star
where [transfer-unfold]: hnorm = xf* norm

definition Infinitesimal :: ('a::real-normed-vector) star set
where Infinitesimal = {z. Vr € Reals. 0 < r — hnorm z < r}

definition HFinite :: ('a::real-normed-vector) star set
where HFinite = {z. 3r € Reals. hnorm ¢ < r}

definition HInfinite :: ('a::real-normed-vector) star set
where Hinfinite = {x. VY r € Reals. r < hnorm z}

definition approz :: 'a::real-normed-vector star = 'a star = bool (infixl <= 50)
where z ~ y «— z — y € Infinitesimal
— the “infinitely close” relation

definition st :: hypreal = hypreal
where st = (A\x. SOME r. x € HFinite N\v € RA 1~ 1)
— the standard part of a hyperreal

definition monad :: 'a::real-normed-vector star = ’a star set
where monad z = {y. z = y}

definition galazy :: 'a::real-normed-vector star = 'a star set
where galazy z = {y. (z + —y) € HFinite}

lemma SReal-def: R = {z. 3r. x = hypreal-of-real }
by (simp add: Reals-def image-def)

5.1 Nonstandard Extension of the Norm Function

definition scaleHR :: real star = 'a star = 'a::real-normed-vector star
where [transfer-unfold): scaleHR = starfun2 scaleR

lemma Standard-hnorm [simp]: ¢ € Standard = hnorm x € Standard
by (simp add: hnorm-def)

lemma star-of-norm [simp]: star-of (norm x) = hnorm (star-of x)
by transfer (rule refl)

lemma hnorm-ge-zero [simpl: \x::'a::real-normed-vector star. 0 < hnorm x
by transfer (rule norm-ge-zero)
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lemma hnorm-eg-zero [simp]: \xz::'a::real-normed-vector star. hnorm z = 0 <+—
z =10
by transfer (rule norm-eg-zero)

lemma hnorm-triangle-ineq: Az y::'a::real-normed-vector star. hnorm (x + y) <
hnorm x + hnorm y
by transfer (rule norm-triangle-ineq)

lemma hnorm-triangle-ineq3: Az y::'a::real-normed-vector star. |hnorm z — hnorm
y| < hnorm (z — y)
by transfer (rule norm-triangle-ineq3)

lemma hnorm-scaleR: N\z::'a::real-normed-vector star. hnorm (a *g ) = |star-of
a| * hnorm x
by transfer (rule norm-scaleR)

lemma hnorm-scaleHR: N\a (z::'a::real-normed-vector star). hnorm (scaleHR a z)
= |a| * hnorm x
by transfer (rule norm-scaleR)

lemma hnorm-mult-ineq: Az y::'a::real-normed-algebra star. hnorm (x x y) <
hnorm x * hnorm y
by transfer (rule norm-mult-ineq)

lemma hnorm-mult: Az y::'a::real-normed-div-algebra star. hnorm (z * y) = hnorm
z * hnorm y
by transfer (rule norm-mult)

lemma hnorm-hyperpow: A(x::'a::{real-normed-div-algebra} star) n. hnorm (z pow
n) = hnorm x pow n
by transfer (rule norm-power)

lemma hnorm-one [simp|: hnorm (1::'a::real-normed-div-algebra star) = 1
by transfer (rule norm-one)

lemma hnorm-zero [simp]: hnorm (0::'a::real-normed-vector star) = 0
by transfer (rule norm-zero)

lemma zero-less-hnorm-iff [simp]: A\z::'a::real-normed-vector star. 0 < hnorm x
+——x#£0
by transfer (rule zero-less-norm-iff)

lemma hnorm-minus-cancel [simp|: \z::'a::real-normed-vector star. hnorm (— x)
= hnorm z
by transfer (rule norm-minus-cancel)

lemma hnorm-minus-commute: Aa b::'a::real-normed-vector star. hnorm (a — b)
= hnorm (b — a)
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by transfer (rule norm-minus-commute)

lemma hnorm-triangle-ineq2: \a b::'a::real-normed-vector star. hnorm a — hnorm
b < hnorm (a — b)
by transfer (rule norm-triangle-ineq2)

lemma hnorm-triangle-ineq}: Na b::'a::real-normed-vector star. hnorm (a — b) <
hnorm a + hnorm b
by transfer (rule norm-triangle-ineq4)

lemma abs-hnorm-cancel [simp]: \a::'a::real-normed-vector star. |hnorm a| = hnorm
a
by transfer (rule abs-norm-cancel)

lemma hnorm-of-hypreal [simp]: A\r. hnorm (of-hypreal r::'a::real-normed-algebra-1
star) = |r|
by transfer (rule norm-of-real)

lemma nonzero-hnorm-inverse:

Na::'a::real-normed-div-algebra star. a # 0 => hnorm (inverse a) = inverse
(hnorm a)

by transfer (rule nonzero-norm-inverse)

lemma hnorm-inverse:

Na::'a::{real-normed-div-algebra, division-ring} star. hnorm (inverse a) = inverse
(hnorm a)

by transfer (rule norm-inverse)

lemma hnorm-divide: N\a b::'a::{real-normed-field, field} star. hnorm (a / b) =
hnorm a / hnorm b
by transfer (rule norm-divide)

lemma hypreal-hnorm-def [simpl: A\r::hypreal. hnorm r = |r|
by transfer (rule real-norm-def)

lemma hnorm-add-less:

N(z: a::real-normed-vector star) y r s. hnorm x© < r = hnorm y < s = hnorm
(z+y <r+s

by transfer (rule norm-add-less)

lemma hnorm-mult-less:

N(z:'a:real-normed-algebra star) y r s. hnorm © < r = hnorm y < s =
hnorm (z % y) < 7 * s

by transfer (rule norm-mult-less)

lemma hnorm-scaleHR-less: |z| < r => hnorm y < s = hnorm (scaleHR x y)
<rxs
by (simp only: hnorm-scaleHR) (simp add: mult-strict-mono’)
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5.2 Closure Laws for the Standard Reals

lemma Reals-add-cancel: © + ye R—=y € R = z € R
by (drule (1) Reals-diff) simp

lemma SReal-hrabs: © € R = |z| € R
for z :: hypreal
by (simp add: Reals-eq-Standard)

lemma SReal-hypreal-of-real [simp]: hypreal-of-real z € R
by (simp add: Reals-eq-Standard)

lemma SReal-divide-numeral: 1 € R = r / (numeral w::hypreal) € R
by simp

€ is not in Reals because it is an infinitesimal
lemma SReal-epsilon-not-mem: € ¢ R

by (auto simp: SReal-def hypreal-of-real-not-eq-epsilon [symmetric])

lemma SReal-omega-not-mem: w ¢ R
by (auto simp: SReal-def hypreal-of-real-not-eq-omega [symmetric])

lemma SReal-UNIV-real: {x. hypreal-of-real x € R} = (UNIV::real set)
by simp

lemma SReal-iff: © € R +— (3y. © = hypreal-of-real y)
by (simp add: SReal-def)

lemma hypreal-of-real-image: hypreal-of-real ( UNIV::real set) = R
by (simp add: Reals-eq-Standard Standard-def)

lemma inv-hypreal-of-real-image: inv hypreal-of-real ‘R = UNIV
by (simp add: Reals-eq-Standard Standard-def inj-star-of)

lemma SReal-dense: t e R =y e R=—=z<y=3dr € Reals. c<rANr<y
for z y :: hypreal
using dense by (fastforce simp add: SReal-def)

5.3 Set of Finite Elements is a Subring of the Extended Reals

lemma HFinite-add: © € HFinite = y € HFinite = = + y € HFinite
unfolding HF'inite-def by (blast intro!: Reals-add hnorm-add-less)

lemma HFinite-mult: x € HFinite —> y € HF'inite =—> = * y € HFinite
for z y :: 'a::real-normed-algebra star
unfolding HFinite-def by (blast introl: Reals-mult hnorm-mult-less)

lemma HFinite-scaleHR: x € HFinite = y € HFinite = scaleHR x y € HF'inite
by (auto simp: HF'inite-def introl: Reals-mult hnorm-scaleHR-less)
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lemma HF'inite-minus-iff: — ¢ € HFinite +— x € HFinite
by (simp add: HFinite-def)

lemma HFinite-star-of [simpl: star-of x € HFinite
by (simp add: HFinite-def) (metis SReal-hypreal-of-real gt-ex star-of-less star-of-norm)

lemma SReal-subset-HF'inite: (R::hypreal set) C HFinite
by (auto simp add: SReal-def)

lemma HFiniteD: x € HFinite =—> 3t € Reals. hnorm © < t
by (simp add: HFinite-def)

lemma HFinite-hrabs-iff [iff]: |z| € HFinite <— x € HFinite
for z :: hypreal
by (simp add: HFinite-def)

lemma HFinite-hnorm-iff [iff]: hnorm z € HFinite <— x € HFinite
for z :: hypreal
by (simp add: HFinite-def)

lemma HFinite-numeral [simp]: numeral w € HFinite
unfolding star-numeral-def by (rule HFinite-star-of)

As always with numerals, 0 and 1 are special cases.

lemma HFinite-0 [simp]: 0 € HFinite
unfolding star-zero-def by (rule HF'inite-star-of)

lemma HFinite-1 [simp]: 1 € HFinite
unfolding star-one-def by (rule HFinite-star-of)

lemma hrealpow-HF'inite: x € HFinite = x ~ n € HFinite
for z :: 'a::{real-normed-algebra,monoid-mult} star
by (induct n) (auto intro: HFinite-mult)

lemma HFinite-bounded:
fixes x y :: hypreal
assumes z € HFinite and y: y < = 0 < y shows y € HFinite
proof (cases z < 0)
case True
then have y = 0
using y by auto
then show ?thesis
by simp
next
case Fulse
then show ?thesis
using assms le-less-trans by (auto simp: HFinite-def)
qed
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5.4 Set of Infinitesimals is a Subring of the Hyperreals

lemma Infinitesimall: (Ar. r € R = 0 < r = hnorm z < r) = z € Infinites-
imal
by (simp add: Infinitesimal-def)

lemma InfinitesimalD: x € Infinitesimal => V1 € Reals. 0 < r — hnorm x < r
by (simp add: Infinitesimal-def)

lemma Infinitesimall2: (\r. 0 < r = hnorm x < star-of r) = z € Infinitesimal
by (auto simp add: Infinitesimal-def SReal-def)

lemma InfinitesimalD2: x € Infinitesimal = 0 < r = hnorm z < star-of r
by (auto simp add: Infinitesimal-def SReal-def)

lemma Infinitesimal-zero [iff]: 0 € Infinitesimal
by (simp add: Infinitesimal-def)

lemma Infinitesimal-add:
assumes z € Infinitesimal y € Infinitesimal
shows z + y € Infinitesimal
proof (rule Infinitesimall)
show hnorm (z + y) < r
if r € Rand 0 < r for r :: real star
proof —
have hnorm z < r/2 hnorm y < r/2
using InfinitesimalD SReal-divide-numeral assms half-gt-zero that by blast+
then show ?thesis
using hnorm-add-less by fastforce
qed
qed

lemma Infinitesimal-minus-iff [simp]: — z € Infinitesimal <— = € Infinitesimal
by (simp add: Infinitesimal-def)

lemma Infinitesimal-hnorm-iff: hnorm x € Infinitesimal «— x € Infinitesimal
by (simp add: Infinitesimal-def)

lemma Infinitesimal-hrabs-iff [iff]: |x| € Infinitesimal <— z € Infinitesimal
for z :: hypreal
by (simp add: abs-if)

lemma Infinitesimal-of-hypreal-iff [simp]:
(of-hypreal x::'a::real-normed-algebra-1 star) € Infinitesimal +— x € Infinitesimal
by (subst Infinitesimal-hnorm-iff [symmetric]) simp

lemma Infinitesimal-diff: © € Infinitesimal = y € Infinitesimal = © — y €
Infinitesimal
using Infinitesimal-add [of © — y] by simp
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lemma Infinitesimal-mult:
fixes z vy :: ‘a::real-normed-algebra star
assumes z € Infinitesimal y € Infinitesimal
shows z x y € Infinitesimal
proof (rule Infinitesimall)
show hnorm (z * y) < r
if r € Rand 0 < r for r :: real star
proof —
have hnorm x < 1 hnorm y < r
using assms that by (auto simp add: InfinitesimalD)
then show ?thesis
using hnorm-mult-less by fastforce
qed
qed

lemma Infinitesimal-HFinite-mult:
fixes x y :: 'a::real-normed-algebra star
assumes x € Infinitesimal y € HFinite
shows z x y € Infinitesimal
proof (rule Infinitesimall)
obtain ¢ where hnorm y < t t € Reals
using HFiniteD <y € HFiniter by blast
then have t > 0
using hnorm-ge-zero le-less-trans by blast
show hnorm (z * y) < r
if r ¢ R and 0 < r for r :: real star
proof —
have hnorm z < r/t
by (meson InfinitesimalD Reals-divide <hnorm y < t» <t € R> assms(1)
divide-pos-pos hnorm-ge-zero le-less-trans that)
then have hnorm (z x y) < (r / t) = ¢
using <hnorm y < t» hnorm-mult-less by blast
then show ?thesis
using <0 < t» by auto
qed
qed

lemma Infinitesimal-HF'inite-scaleHR:
assumes z € Infinitesimal y € HFinite
shows scaleHR z y € Infinitesimal
proof (rule Infinitesimall)
obtain ¢ where hnorm y < t t € Reals
using HFiniteD <y € HFinite» by blast
then have ¢ > 0
using hnorm-ge-zero le-less-trans by blast
show hnorm (scaleHR z y) < r
if r€e Rand 0 < r for r :: real star
proof —
have |z| x hnorm y < (r / t) x t
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by (metis InfinitesimalD Reals-divide <0 < t» <hnorm y < t» <t € R> assms(1)
divide-pos-pos hnorm-ge-zero hypreal-hnorm-def mult-strict-mono’ that)
then show ?thesis
by (simp add: <0 < t» hnorm-scaleHR less-imp-not-eq2)
qed
qed

lemma Infinitesimal-HFinite-mult2:
fixes z y :: 'a::real-normed-algebra star
assumes z € Infinitesimal y € HFinite
shows y * x € Infinitesimal
proof (rule Infinitesimall)
obtain ¢ where hnorm y < t ¢t € Reals
using HFiniteD <y € HFinite» by blast
then have ¢t > 0
using hnorm-ge-zero le-less-trans by blast
show hnorm (y x z) < r
if r € Rand 0 < r for r :: real star
proof —
have hnorm z < r/t
by (meson InfinitesimalD Reals-divide <hnorm y < t» <t € R> assms(1)
divide-pos-pos hnorm-ge-zero le-less-trans that)
then have hnorm (y x z) < t % (r / t)
using <hnorm y < t» hnorm-mult-less by blast
then show ?thesis
using 0 < t» by auto
qed
qed

lemma Infinitesimal-scaleR2:
assumes z € Infinitesimal shows a *g © € Infinitesimal
by (metis HFinite-star-of Infinitesimal-HFinite-mult2 Infinitesimal-hnorm-iff
assms hnorm-scaleR hypreal-hnorm-def star-of-norm,)

lemma Compl-HFinite: — HFinite = HlInfinite
proof —
have r < hnorm z if *: As. s € R = s < hnorm z and r € R
for z :: 'a star and r :: hypreal
using * [of r+1] <r € Ry by auto
then show ?thesis
by (auto simp add: HInfinite-def HFinite-def linorder-not-less)
qged

lemma HInfinite-inverse-Infinitesimal:
x € HInfinite = inverse x € Infinitesimal
for z :: 'a::real-normed-div-algebra star
by (simp add: HInfinite-def Infinitesimall hnorm-inverse inverse-less-imp-less)

lemma inverse-Infinitesimal-iff-HInfinite:
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x # 0 = inverse © € Infinitesimal <— x € HlInfinite

for z :: 'a::real-normed-div-algebra star

by (metis Compl-HFinite Compl-iff HInfinite-inverse-Infinitesimal InfinitesimalD
Infinitesimal- HFinite-mult Reals-1 hnorm-one left-inverse less-irrefl zero-less-one)

lemma Hinfinitel: (Ar. r € R = r < hnorm z) = x € HInfinite
by (simp add: HInfinite-def)

lemma HlinfiniteD: x € HInfinite = r € R = r < hnorm z
by (simp add: HInfinite-def)

lemma HInfinite-mult:
fixes z y :: 'a::real-normed-div-algebra star
assumes z € Hinfinite y € HInfinite shows z x y € HInfinite
proof (rule HInfinitel, simp only: hnorm-mult)
have z # 0
using Compl-HFinite HFinite-0 assms by blast
show r < hnorm x * hnorm y
if r € R for r :: real star

proof —
have r = r x 1
by simp
also have ... < hnorm z * hnorm y

by (meson HinfiniteD Reals-1 <z # 0> assms le-numeral-extra(1) mult-strict-mono
that zero-less-hnorm-iff)
finally show ?thesis .
qed
qed

lemma hypreal-add-zero-less-le-mono: r < ¢ —= 0 < y=r <z +y
for r z y :: hypreal
by simp

lemma HInfinite-add-ge-zero: © € HInfinite — 0 <y — 0 <z =z + y €
Hlinfinite

for z y :: hypreal

by (auto simp: abs-if add.commute HInfinite-def)

lemma Hlinfinite-add-ge-zero2: ¢ € HInfinite — 0 <y — 0 <z — y + x €
Hlinfinite

for z y :: hypreal

by (auto intro!: HInfinite-add-ge-zero simp add: add.commute)

lemma HInfinite-add-gt-zero: © € HInfinite — 0 < y — 0 <z =— = + y €
Hlinfinite

for z y :: hypreal

by (blast intro: HInfinite-add-ge-zero order-less-imp-le)

lemma Hlinfinite-minus-iff: — v € HInfinite <— x € HlInfinite
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by (simp add: HInfinite-def)

lemma HInfinite-add-le-zero: © € Hinfinite — y < 0 — 2 < 0 = x + y €
Hlinfinite

for z y :: hypreal

by (metis (no-types, lifting) HInfinite-add-ge-zero2 HInfinite-minus-iff add.inverse-distrib-swap
neg-0-le-iff-le)

lemma HInfinite-add-lt-zero: x € HInfinite — y < 0 —= 2 < 0 = x + y €
Hlinfinite

for x y :: hypreal

by (blast intro: HInfinite-add-le-zero order-less-imp-le)

lemma not-Infinitesimal-not-zero: x ¢ Infinitesimal = x # 0
by auto

lemma HFinite-diff-Infinitesimal-hrabs:
z € HFinite — Infinitesimal = |x| € HFinite — Infinitesimal
for z :: hypreal
by blast

lemma hnorm-le-Infinitesimal: e € Infinitesimal = hnorm x < e = = € In-
finitesimal
by (auto simp: Infinitesimal-def abs-less-iff’)

lemma hnorm-less-Infinitesimal: e € Infinitesimal = hnorm = < e = 1z €
Infinitesimal
by (erule hnorm-le-Infinitesimal, erule order-less-imp-le)

lemma hrabs-le-Infinitesimal: e € Infinitesimal = |z| < e = x € Infinitesimal
for z :: hypreal
by (erule hnorm-le-Infinitesimal) simp

lemma hrabs-less-Infinitesimal: e € Infinitesimal = |z| < e = = € Infinitesimal
for z :: hypreal
by (erule hnorm-less-Infinitesimal) simp

lemma Infinitesimal-interval:
e € Infinitesimal = e’ € Infinitesimal —> ¢’ < 1 = 1 < e = x € Infinitesimal
for z :: hypreal
by (auto simp add: Infinitesimal-def abs-less-iff)

lemma Infinitesimal-interval2:
e € Infinitesimal = e’ € Infinitesimal —> ¢’ < 1 = 1 < e = x € Infinitesimal
for z :: hypreal
by (auto intro: Infinitesimal-interval simp add: order-le-less)

lemma lemma-Infinitesimal-hyperpow: x € Infinitesimal = 0 < N = |z pow
N| < |z]
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for z :: hypreal

apply (clarsimp simp: Infinitesimal-def)

by (metis Reals-1 abs-ge-zero hyperpow-Suc-le-self2 hyperpow-hrabs hypnat-gt-zero-iff2
zero-less-one)

lemma Infinitesimal-hyperpow: x € Infinitesimal — 0 < N = z pow N €
Infinitesimal

for z :: hypreal

using hrabs-le-Infinitesimal lemma-Infinitesimal-hyperpow by blast

lemma hrealpow-hyperpow-Infinitesimal-iff:
(z "~ n € Infinitesimal) <— z pow (hypnat-of-nat n) € Infinitesimal
by (simp only: hyperpow-hypnat-of-nat)

lemma Infinitesimal-hrealpow: x € Infinitesimal — 0 < n —> x ~ n € Infinites-
imal

for z :: hypreal

by (simp add: hrealpow-hyperpow-Infinitesimal-iff Infinitesimal-hyperpow)

lemma not-Infinitesimal-mult:

z ¢ Infinitesimal = y ¢ Infinitesimal = x x y ¢ Infinitesimal

for z y :: 'a::real-normed-div-algebra star

by (metis (no-types, lifting) inverse-Infinitesimal-iff-HInfinite Compll Compl-HFinite
Infinitesimal- HFinite-mult divide-inverse eg-divide-imp inverse-inverse-eq mult-zero-right)

lemma Infinitesimal-mult-disj: © % y € Infinitesimal = = € Infinitesimal V y €
Infinitesimal

for z y :: 'a::real-normed-div-algebra star

using not-Infinitesimal-mult by blast

lemma HFinite-Infinitesimal-not-zero: x € HFinite— Infinitesimal = x # 0
by blast

lemma HFinite-Infinitesimal-diff-mult:

x € HFinite — Infinitesimal = y € HF'inite — Infinitesimal = = * y € HFinite
— Infinitesimal

for z y :: 'a::real-normed-div-algebra star

by (simp add: HFinite-mult not-Infinitesimal-mult)

lemma Infinitesimal-subset-HFinite: Infinitesimal C HFinite
using HFinite-def InfinitesimalD Reals-1 zero-less-one by blast

lemma Infinitesimal-star-of-mult: © € Infinitesimal = x * star-of r € Infinites-
imal

for z :: 'a::real-normed-algebra star

by (erule HFinite-star-of [THEN [2] Infinitesimal-HFinite-mult])

lemma Infinitesimal-star-of-mult2: x € Infinitesimal = star-of r x © € Infinites-
imal
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for z :: 'a::real-normed-algebra star

by (erule HFinite-star-of [THEN [2] Infinitesimal-HFinite-mult2])

5.5 The Infinitely Close Relation

lemma mem-infmal-iff: © € Infinitesimal <+— = ~ 0
by (simp add: Infinitesimal-def approz-def)

lemma approz-minus-iff: t ~ y+— z — y = 0
by (simp add: approx-def)

lemma approz-minus-iff2: t ~ y+— —y+ z ~ 0
by (simp add: approx-def add.commute)

lemma approx-refl [iff]: z ~ x
by (simp add: approz-def Infinitesimal-def)

lemma approz-sym: r =y —= y ==z
by (metis Infinitesimal-minus-iff approz-def minus-diff-eq)

lemma approz-trans:
assumes r ~ y y ~ z shows z ~ 2
proof —
have z — y € Infinitesimal z — y € Infinitesimal
using assms approz-def approx-sym by auto
then have z — z € Infinitesimal
using Infinitesimal-diff by force
then show ?thesis
by (simp add: approx-def)
qed

lemma approz-trans2: r 1 = s = T X §
by (blast intro: approz-sym approz-trans)

lemma approz-trans3: x =~ r = rx =~ s = r ~ s
by (blast intro: approx-sym approz-trans)

lemma approx-reorient: T ~ y +— y ~ x
by (blast intro: approz-sym,)

Reorientation simplification procedure: reorients (polymorphic) 0 = z, 1 =
z, nmn = z provided z isn’t 0, I or a numeral.

simproc-setup approz-reorient-simproc
O=z|1~y|numeralw=z|—1~y|— numeralw=~r)=
¢
let val rule = Q{thm approx-reorient} RS eqg-reflection
fun proc ct =
case Thm.term-of ct of
-$t$ u=> if can HOLogic.dest-number u then NONE
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else if can HOLogic.dest-number t then SOME rule else NONE
| - => NONE
in K (K proc) end
)

lemma Infinitesimal-approz-minus: x — y € Infinitesimal +— = ~ y
by (simp add: approz-minus-iff [symmetric] mem-infmal-iff)

lemma approz-monad-iff: © ~ y +— monad x = monad y
apply (simp add: monad-def set-eq-iff)
using approx-reorient approz-trans by blast

lemma Infinitesimal-approz: x € Infinitesimal = y € Infinitesimal = z ~ y
by (simp add: Infinitesimal-diff approz-def)

lemma approz-add: a = b = cx~d=a+c=b+ d
proof (unfold approz-def)
assume inf: a — b € Infinitesimal ¢ — d € Infinitesimal
have ¢ + ¢ — (b + d) = (a — b) + (¢ — d) by simp
also have ... € Infinitesimal
using inf by (rule Infinitesimal-add)
finally show a + ¢ — (b + d) € Infinitesimal .
qed

lemma approz-minus: a ~ b = — a~ — b
by (metis approz-def approx-sym minus-diff-eq minus-diff-minus)

lemma approz-minus2: — a~ — b= a = b
by (auto dest: approx-minus)

lemma approz-minus-cancel [simp]: — a ~ — b+— a=~ b
by (blast intro: approz-minus appror-minus2)

lemma approz-add-minus: a = b =—=c~d=—a+ —cx=b+ — d
by (blast intro!: approxz-add approx-minus)

lemma approz-diff: a~ b= c~d=—= a—cx~b—d
using approz-add [of a b — ¢ — d] by simp

lemma approx-multl: a =~ b = ¢ € HFinite = a x c = b *x ¢
for a b c :: 'a::real-normed-algebra star
by (simp add: approz-def Infinitesimal-HFinite-mult left-diff-distrib [symmetric))

lemma approz-mult2: a =~ b = ¢ € HFinite = c* a~ c* b
for a b c :: 'a::real-normed-algebra star
by (simp add: approz-def Infinitesimal-HFinite-mult2 right-diff-distrib [symmetric])

lemma approz-mult-subst: u ~ v * x = v~y = v € HFinite = u~ v x y
for v v z y :: 'a::real-normed-algebra star
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by (blast intro: approx-mult2 approz-trans)

lemma approx-mult-subst2: u~ z x v = z ~ y = v € HFinile = u~ y % v
for v v z y :: 'a::real-normed-algebra star
by (blast intro: approx-multl approz-trans)

lemma approz-mult-subst-star-of: u ~ x * star-of v = z = y = u = y * star-of
v

for u z y :: 'a::real-normed-algebra star

by (auto intro: approz-mult-subst2)

lemma approz-eg-imp: a = b = a = b
by (simp add: approx-def)

lemma Infinitesimal-minus-approz: © € Infinitesimal — — x = x
by (blast intro: Infinitesimal-minus-iff [THEN iffD2] mem-infmal-iff [THEN
iffD1] approx-trans2)

lemma bez-Infinitesimal-iff: (3y € Infinitesimal. x — 2 = y) «— Tz~ 2
by (simp add: approz-def)

lemma bex-Infinitesimal-iff2: (3y € Infinitesimal. x = z + y) +— z =~ 2
by (force simp add: bezx-Infinitesimal-iff [symmetric])

lemma Infinitesimal-add-approz: y € Infinitesimal —= = + y = 2 = z =~ 2
using approz-sym bez-Infinitesimal-iff2 by blast

lemma Infinitesimal-add-approz-self: y € Infinitesimal — z ~ z + y
by (simp add: Infinitesimal-add-approz)

lemma Infinitesimal-add-approz-self2: y € Infinitesimal — = ~ y +
by (auto dest: Infinitesimal-add-approz-self simp add: add.commute)

lemma Infinitesimal-add-minus-approz-self: y € Infinitesimal = =~z + — y
by (blast intro!: Infinitesimal-add-approz-self Infinitesimal-minus-iff [THEN iffD2])

lemma Infinitesimal-add-cancel: y € Infinitesimal — = + y~ z = =z ~ 2
using Infinitesimal-add-approz approz-trans by blast

lemma Infinitesimal-add-right-cancel: y € Infinitesimal — x ~ 2z + y —= x ~ 2
by (metis Infinitesimal-add-approz-self approz-monad-iff)

lemma approz-add-left-cancel: d + b~ d + ¢ = b~ ¢
by (metis add-diff-cancel-left bex-Infinitesimal-iff)

lemma approz-add-right-cancel: b + d ~ ¢+ d = b=~ ¢
by (simp add: approz-def)

lemma approz-add-monol: b~c=— d+ b~d+ ¢
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by (simp add: approz-add)

lemma approz-add-mono2: b~c = b+ a~xc+ a
by (simp add: add.commute approx-add-monol)

lemma approz-add-left-iff [simp]: a + b= a + ¢ +— b~ ¢
by (fast elim: approz-add-left-cancel approz-add-monol)

lemma approz-add-right-iff [simp]: b+ a=c+ a+— b~ ¢
by (simp add: add.commute)

lemma approz-HFinite: x € HFinite — © ~ y = y € HFinite
by (metis HFinite-add Infinitesimal-subset-HF'inite approx-sym subsetD bex-Infinitesimal-iff2)

lemma approz-star-of-HFinite: © ~ star-of D = = € HFinite
by (rule approx-sym [THEN (2] approz-HFinite], auto)

lemma approz-mult-HFinite: a =~ b = ¢ = d = b € HFinite = d € HFinite
= axcr~bxd

for a b c d :: 'a::real-normed-algebra star

by (meson approz-HFinite approx-mult2 approz-mult-subst2 approz-sym)

lemma scaleHR-left-diff-distrib: Na b z. scaleHR (a — b) © = scaleHR a © —
scaleHR b z
by transfer (rule scaleR-left-diff-distrib)

lemma approx-scaleR1: a =~ star-of b = ¢ € HFinite = scaleHR a ¢ = b xp ¢
unfolding approx-def
by (metis Infinitesimal-HFinite-scaleHR scale HR-def scale HR-left-diff-distrib star-scaleR-def
starfun2-star-of)

lemma approz-scaleR2: a =~ b = c *gp a ~ ¢ *g b
by (simp add: approz-def Infinitesimal-scaleR2 scale R-right-diff-distrib [symmetric])

lemma approz-scaleR-HFinite: a =~ star-of b = ¢ ~ d = d € HFinite =
scaleHR a ¢ = b xp d
by (meson approz-HF'inite approx-scaleR1 approz-scaleR2 approx-sym approz-trans)

lemma approz-mult-star-of: a ~ star-of b = ¢ ~ star-of d = a * ¢ = star-of
b * star-of d

for a c :: 'a::real-normed-algebra star

by (blast intro!: approx-mult-HFinite approx-star-of-HFinite HFinite-star-of)

lemma approz-SReal-mult-cancel-zero:
fixes a z :: hypreal
assumes ¢ € R a # 0 a *x z = (0 shows z ~ (
proof —
have inverse a € HF'inite
using Reals-inverse SReal-subset-HFinite assms(1) by blast
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then show ?thesis
using assms by (auto dest: appror-mult2 simp add: mult.assoc [symmetric])
qed

lemma approz-mult-SReall: a e R = 2~ 0 = v x a = 0
for a x :: hypreal
by (auto dest: SReal-subset-HFinite [THEN subsetD] approz-multl)

lemma approz-mult-SReal2: a e R —= 2~ 0 = ax x =~ 0
for a z :: hypreal
by (auto dest: SReal-subset-HFinite [THEN subsetD] approz-mult2)

lemma approz-mult-SReal-zero-cancel-iff [simp]: a E R = a # 0 = ax z =~ 0
— =0

for a x :: hypreal

by (blast intro: approx-SReal-mult-cancel-zero appror-mult-SReal?2)

lemma approz-SReal-mult-cancel:
fixes a w z :: hypreal
assumes ¢ € Ra # 0a*x w= ax* zshows w= z
proof —
have inverse a € HF'inite
using Reals-inverse SReal-subset-HFinite assms(1) by blast
then show ?thesis
using assms by (auto dest: approz-mult2 simp add: mult.assoc [symmetric])
qged

lemma approz-SReal-mult-cancel-iff1 [simp]: a € R = a # 0 = a * w = a *
2 WA 2

for a w z :: hypreal

by (meson SReal-subset-HF'inite approz-SReal-mult-cancel approx-mult2 subsetD)

lemma approz-le-bound:
fixes z :: hypreal
assumes 2z < f fx~ gg < zshows [ ~ z
proof —
obtain y where z < g + y and y € Infinitesimal f = g + y
using assms bez-Infinitesimal-iff2 by auto
then have z — g € Infinitesimal
using assms(3) hrabs-le-Infinitesimal by auto
then show ?thesis
by (metis approz-def approx-trans2 assms(2))
qed

lemma approz-hnorm: x =~ y = hnorm x =~ hnorm y
for z y :: 'a::real-normed-vector star

proof (unfold approz-def)
assume z — y € Infinitesimal
then have hnorm (z — y) € Infinitesimal
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by (simp only: Infinitesimal-hnorm-iff)

moreover have (0::real star) € Infinitesimal
by (rule Infinitesimal-zero)

moreover have 0 < |hnorm z — hnorm y|
by (rule abs-ge-zero)

moreover have |hnorm x — hnorm y| < hnorm (z — y)
by (rule hnorm-triangle-ineq3)

ultimately have |hnorm & — hnorm y| € Infinitesimal
by (rule Infinitesimal-interval2)

then show hnorm x — hnorm y € Infinitesimal
by (simp only: Infinitesimal-hrabs-iff)

qed

5.6 Zero is the Only Infinitesimal that is also a Real

lemma Infinitesimal-less-SReal: x € R = y € Infinitesimal — 0 < z = y <
x

for z y :: hypreal

using InfinitesimalD by fastforce

lemma Infinitesimal-less-SReal2: y € Infinitesimal =—> V' r € Reals. 0 <1 — y
<r

for y :: hypreal

by (blast intro: Infinitesimal-less-SReal)

lemma SReal-not-Infinitesimal: 0 < y = y € R ==> y ¢ Infinitesimal
for y :: hypreal
by (auto simp add: Infinitesimal-def abs-if)

lemma SReal-minus-not-Infinitesimal: y < 0 = y € R = y ¢ Infinitesimal
for y :: hypreal
using Infinitesimal-minus-iff Reals-minus SReal-not-Infinitesimal neg-0-less-iff-less
by blast

lemma SReal-Int-Infinitesimal-zero: R Int Infinitesimal = {0::hypreal}

proof —

have z = 0 if € R = € Infinitesimal for z :: real star

using that SReal-minus-not-Infinitesimal SReal-not-Infinitesimal not-less-iff-gr-or-eq
by blast

then show ?thesis

by auto

qed

lemma SReal-Infinitesimal-zero: x € R = z € Infinitesimal — x = 0
for z :: hypreal
using SReal-Int-Infinitesimal-zero by blast

lemma SReal-HFinite-diff-Infinitesimal: © € R = © # 0 = x € HFinite —
Infinitesimal
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for z :: hypreal
by (auto dest: SReal-Infinitesimal-zero SReal-subset-HFinite [THEN subsetD))

lemma hypreal-of-real- HFinite-diff-Infinitesimal:
hypreal-of-real x # 0 = hypreal-of-real * € HFinite — Infinitesimal
by (rule SReal-HFinite-diff-Infinitesimal) auto

lemma star-of-Infinitesimal-iff-0 [iff]: star-of x € Infinitesimal +— x = 0
proof
show z = 0 if star-of © € Infinitesimal
proof —
have hnorm (star-n (An. z)) € Standard
by (metis Reals-eq-Standard SReal-iff star-of-def star-of-norm)
then show ?thesis
by (metis InfinitesimalD2 less-irrefl star-of-norm that zero-less-norm-iff)
qged
qed auto

lemma star-of-HFinite-diff-Infinitesimal: x # 0 —> star-of v € HFinite — In-
finitesimal
by simp

lemma numeral-not-Infinitesimal [simpl:
numeral w # (0::hypreal) = (numeral w :: hypreal) ¢ Infinitesimal
by (fast dest: Reals-numeral [THEN SReal-Infinitesimal-zero])

Again: 1 is a special case, but not 0 this time.

lemma one-not-Infinitesimal [simp]:
(1::'a::{real-normed-vector,zero-neq-one} star) ¢ Infinitesimal
by (metis star-of-Infinitesimal-iff-0 star-one-def zero-neg-one)

lemma approz-SReal-not-zero: y E R —= = y— y# 0 = ¢ # 0
for z y :: hypreal
using SReal-Infinitesimal-zero approx-sym mem-infmal-iff by auto

lemma HFinite-diff-Infinitesimal-approx:
T~y = y € HFinite — Infinitesimal = x € HFinite — Infinitesimal
by (meson Diff-iff approx-HFinite approz-sym approz-transd mem-infmal-iff)

The premise y # 0 is essential; otherwise z / y = 0 and we lose the HFinite
premise.

lemma Infinitesimal-ratio:
y # 0 = y € Infinitesimal = z | y € HFinite = x € Infinitesimal
for z y :: 'a::{real-normed-div-algebra,field} star
using Infinitesimal-HFinite-mult by fastforce

lemma Infinitesimal-SReal-divide: x© € Infinitesimal — y € R = z / y € In-
finitesimal
for z y :: hypreal
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by (metis HFinite-star-of Infinitesimal-HFinite-mult Reals-inverse SReal-iff di-
vide-inverse)

6 Standard Part Theorem

Every finite z € Rx is infinitely close to a unique real number (i.e. a member
of Reals).

6.1 Uniqueness: Two Infinitely Close Reals are Equal

lemma star-of-approz-iff [simpl: star-of © &~ star-of y +— = =y
by (metis approx-def right-minus-eq star-of-Infinitesimal-iff-0 star-of-simps(2))

lemma SReal-approz-iff: t ER —= y e R =z = y+— =y
for z y :: hypreal
by (meson Reals-diff SReal-Infinitesimal-zero approx-def approz-refl right-minus-eq)

lemma numeral-approz-iff [simp]:

(numeral v = (numeral w :: 'a::{numeral,real-normed-vector} star)) = (numeral
v = (numeral w :: 'a))

by (metis star-of-approz-iff star-of-numeral)

And also for 0 ~ #nn and 1 =~ #nn, #nn = 0 and #nn ~ 1.

lemma [simp]:

(numeral w = (0::'a::{numeral,real-normed-vector} star)) = (numeral w = (0::'a))

((0::"a:{numeral,real-normed-vector} star) ~ numeral w) = (numeral w = (0::'a))

(numeral w = (1::'b::{numeral,one,real-normed-vector} star)) = (numeral w =
(1::'h))

((1::'b::{numeral,one,real-normed-vector} star) = numeral w) = (numeral w =
(1::'b))

= (0 = (1::'c::{zero-neg-one,real-normed-vector} star))

= (1 = (0::'c::{zero-neq-one,real-normed-vector} star))

unfolding star-numeral-def star-zero-def star-one-def star-of-approz-iff

by (auto intro: sym)

lemma star-of-approx-numeral-iff [simp]: star-of k = numeral w <— k = numeral
w
by (subst star-of-approz-iff [symmetric]) auto

lemma star-of-approz-zero-iff [simp|: star-of k ~ 0 +— k=0
by (simp-all add: star-of-approz-iff [symmetric])

lemma star-of-approz-one-iff [simp]: star-of k = 1 +— k = 1
by (simp-all add: star-of-approz-iff [symmetric])

lemma approz-unique-real: r e R =—=sceR—=r~xzcs— s~z =—r=:s
for r s :: hypreal
by (blast intro: SReal-approz-iff [THEN iffD1] approx-trans2)
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6.2 Existence of Unique Real Infinitely Close

6.2.1 Lifting of the Ub and Lub Properties

lemma hypreal-of-real-isUb-iff: isUb R (hypreal-of-real ¢ Q) (hypreal-of-real Y) =
isUb UNIV QY

for Q :: real set and Y :: real

by (simp add: isUb-def setle-def)

lemma hypreal-of-real-isLub-iff:

isLub R (hypreal-of-real * Q) (hypreal-of-real Y) = isLub (UNIV :: real set) Q Y
(is ?lhs = ?rhs)

for Q :: real set and Y :: real
proof

assume ?lhs

then show ?rhs

by (simp add: isLub-def leastP-def) (metis hypreal-of-real-is Ub-iff mem-Collect-eq
setge-def star-of-le)
next

assume ?rhs

then show ?lhs

apply (simp add: isLub-def leastP-def hypreal-of-real-isUb-iff setge-def)

by (metis SReal-iff hypreal-of-real-isUb-iff isUb-def star-of-le)

qed

lemma lemma-is Ub-hypreal-of-real: isUb R P Y = 3 Yo. isUb R P (hypreal-of-real
Yo)
by (auto simp add: SReal-iff isUb-def)

lemma lemma-isLub-hypreal-of-real: isLub R P' Y = 3 Yo. isLub R P (hypreal-of-real
Yo)
by (auto simp add: isLub-def leastP-def isUb-def SReal-iff)

lemma SReal-complete:
fixes P :: hypreal set
assumes isUbR P Y P CR P # {}
shows 3¢. isLub R P t
proof —
obtain () where P = hypreal-of-real * Q
by (metis <P C R» hypreal-of-real-image subset-imageE)
then show ?thesis
by (metis assms(1) <P # {}> equalsOI hypreal-of-real-isLub-iff hypreal-of-real-is Ub-iff
image-empty lemma-isUb-hypreal-of-real reals-complete)
qed

Lemmas about lubs.

lemma lemma-st-part-lub:
fixes z :: hypreal
assumes z € HF'inite
shows 3t. isLub R {s. se RA s <z}t
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proof —
obtain ¢t where t: ¢ € R hnorm z < ¢
using HF'initeD assms by blast
then have isUbDR {s. se R A s < z} ¢
by (simp add: abs-less-iff isUbI le-less-linear less-imp-not-less setlel)
moreover have 3y. y e RAy <z
using ¢ by (rule-tac z = —t in exl) (auto simp add: abs-less-iff)
ultimately show ?thesis
using SReal-complete by fastforce
qed

lemma hypreal-setle-less-trans: S s<= 2 = < y = S *<=y
for z y :: hypreal
by (meson le-less-trans less-imp-le setle-def)

lemma hypreal-gt-isUb: isUb R Sz —= < y=—yc R=— isUbPR Sy
for z y :: hypreal
using hypreal-setle-less-trans isUb-def by blast

lemma lemma-SReal-ub: t € R = isUbR {s. se RAs< z} x
for z :: hypreal
by (auto intro: isUbI setlel order-less-imp-le)

lemma lemma-SReal-lub:
fixes z :: hypreal
assumes z € R shows isLub R {s. s e R A s < z} x
proof —
have z < y if isUbR {s € R. s < z} y for y
proof —
have y € R
using isUbD2a that by blast
show ?thesis
proof (cases x y rule: linorder-cases)
case greater
then obtain r where y < rr <z
using dense by blast
then show ?thesis
using isUbD [OF that]
by simp (meson SReal-dense <y € Ry assms greater not-le)
qed auto
qed
with assms show ?thesis
by (simp add: isLubI2 isUbI setgel setlel)
qed

lemma lemma-st-part-major:

fixes © 7t :: hypreal

assumes z: € HFinite and m: r € R 0 < r and t: isLub R {s. s € R A s <
x}t
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shows |z — t| < r
proof —
have t € R
using i¢sLubDla t by blast
have lemma-st-part-gt-ub: t < r = r e R=isUbR {s. sc RAs<z}r
for r :: hypreal
by (auto dest: order-less-trans intro: order-less-imp-le introl: isUbI setlel)

have isUbR {s € R. s < z} ¢
by (simp add: t isLub-isUb)
then have - r + t < z
by (metis (mono-tags, lifting) Reals-add <t € R» add-le-same-cancel2 isUbD leD
mem-Collect-eq r)
then have z — ¢t < r
by simp
moreover have -z < t — r
using lemma-st-part-gt-ub isLub-le-isUb <t € Ry r t z by fastforce
then have — (z — t) < r
by linarith
moreover have False ifc —t=rV — (z —t) =r
proof —
have z € R
by (metis <t € Ry <r € R that Reals-add-cancel Reals-minus-iff add-uminus-conv-diff)
then have isLub R {s € R. s < z} z
by (rule lemma-SReal-lub)
then show Fulse
using 7 t that z isLub-unique by force
qed
ultimately show ?thesis
using abs-less-iff dual-order.order-iff-strict by blast
qed

lemma lemma-st-part-major2:

z € HFinite = isLubR {s. sc R A s <z}t = Vr € Reals. 0 <1 — |z —
tl<r

for z ¢ :: hypreal

by (blast dest!: lemma-st-part-major)

Existence of real and Standard Part Theorem.

lemma lemma-st-part-Ez: x € HFinite —> Jt€Reals. V1 € Reals. 0 < r — |z
-t <r

for z :: hypreal

by (meson isLubD1a lemma-st-part-lub lemma-st-part-major2)

lemma st-part-Fz: © € HFinite = Jt€Reals. x ~ t
for z :: hypreal
by (metis Infinitesimall approx-def hypreal-hnorm-def lemma-st-part-Ex)

There is a unique real infinitely close.
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lemma st-part-Exl: ¢ € HFinite = 3lt::hypreal. t € R A x = ¢
by (meson SReal-approz-iff approz-trans? st-part-Ex)

6.3 Finite, Infinite and Infinitesimal

lemma HPFinite-Int-HInfinite-empty [simp]: HFinite Int HInfinite = {}
using Compl-HFinite by blast

lemma HFinite-not-HInfinite:
assumes z: ¢ € HFinite shows z ¢ HInfinite
using Compl-HFinite x by blast

lemma not-HFinite-HInfinite: © ¢ HFinite = z € HlInfinite
using Compl-HFinite by blast

lemma Hlinfinite-HFinite-disj: © € HlInfinite V © € HFinite
by (blast intro: not-HF'inite- HInfinite)

lemma Hlinfinite-HFinite-iff: © € Hlnfinite +— = ¢ HFinite
by (blast dest: HFinite-not-HInfinite not-HF'inite- HInfinite)

lemma HF'inite-HInfinite-iff: © € HFinite <— z« ¢ HInfinite
by (simp add: HInfinite-HFinite-iff)

lemma Hlinfinite-diff- HFinite-Infinitesimal-disj:
z ¢ Infinitesimal = = € HInfinite V x € HFinite — Infinitesimal
by (fast intro: not-HFinite- HInfinite)

lemma HFinite-inverse: x € HFinite => x ¢ Infinitesimal = inverse © € HFi-
nite

for z :: 'a::real-normed-div-algebra star

using HInfinite-inverse-Infinitesimal not-HFinite-HInfinite by force

lemma HFinite-inverse2: ¢ € HFinite — Infinitesimal = inverse x € HF'inite
for z :: 'a::real-normed-div-algebra star
by (blast intro: HFinite-inverse)

Stronger statement possible in fact.

lemma Infinitesimal-inverse-HF'inite: © ¢ Infinitesimal = inverse x € HFinite
for z :: 'a::real-normed-div-algebra star
using HFinite-HInfinite-iff HInfinite-inverse-Infinitesimal by fastforce

lemma HFinite-not-Infinitesimal-inverse:

x € HFinite — Infinitesimal = inverse © € HFinite — Infinitesimal

for z :: 'a::real-normed-div-algebra star

using HFinite-Infinitesimal-not-zero HFinite-inverse2 Infinitesimal-HFinite-mult2
by fastforce

lemma approz-inverse:
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fixes z y :: 'a::real-normed-div-algebra star
assumes = =~ y and y: y € HFinite — Infinitesimal shows inverse x = inverse
)
proof —
have z: © € HFinite — Infinitesimal
using HFinite-diff-Infinitesimal-approx assms(1) y by blast
with y HF'inite-inverse2 have inverse x € HF'inite inverse y € HFinite
by blast+
then have inverse y x x ~ 1
by (metis Diff-iff approx-mult2 assms(1) left-inverse not-Infinitesimal-not-zero
y)
then show ?thesis
by (metis (no-types, lifting) DiffD2 HFinite-Infinitesimal-not-zero Infinitesi-
mal-mult-disj x approz-def approz-sym left-diff-distrib left-inverse)
qed

lemmas star-of-approz-inverse = star-of-HFinite-diff-Infinitesimal [THEN [2] ap-
prox-inverse)

lemmas hypreal-of-real-approz-inverse = hypreal-of-real- HFinite-diff-Infinitesimal
[THEN [2] approz-inverse]

lemma inverse-add-Infinitesimal-approx:

z € HFinite — Infinitesimal = h € Infinitesimal = inverse (x + h) = inverse
x

for z h :: 'a::real-normed-div-algebra star

by (auto intro: approz-inverse approx-sym Infinitesimal-add-approz-self)

lemma inverse-add-Infinitesimal-approz2:

z € HFinite — Infinitesimal = h € Infinitesimal = inverse (h + x) = inverse
x

for z h :: 'a::real-normed-div-algebra star

by (metis add.commute inverse-add-Infinitesimal-approzx)

lemma inverse-add-Infinitesimal-approx-Infinitesimal:

x € HFinite — Infinitesimal = h € Infinitesimal = inverse (x + h) — inverse
= h

for z h :: 'a::real-normed-div-algebra star

by (meson Infinitesimal-approx bex-Infinitesimal-iff inverse-add-Infinitesimal-approx)

lemma Infinitesimal-square-iff: x € Infinitesimal <— z % x € Infinitesimal
for z :: 'a::real-normed-div-algebra star
using Infinitesimal-mult Infinitesimal-mult-disj by auto

declare Infinitesimal-square-iff [symmetric, simp)

lemma HFinite-square-iff [simp]: z x x € HFinite +— x € HFinite
for z :: 'a::real-normed-div-algebra star
using HFinite-HInfinite-iff HFinite-mult HInfinite-mult by blast
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lemma Hlinfinite-square-iff [simp]:  * x € HInfinite +— x € HlInfinite
for z :: 'a::real-normed-div-algebra star
by (auto simp add: HInfinite-HF'inite-iff')

lemma approz-HFinite-mult-cancel: a € HFinite — Infinitesimal = a * w ~ a *
2= W~z

for a w z :: 'a::real-normed-div-algebra star

by (metis DiffD2 Infinitesimal-mult-disj bex-Infinitesimal-iff right-diff-distrib)

lemma approz- HFinite-mult-cancel-iff1: a € HFinite — Infinitesimal = a * w =~
a*z4— w2z

for a w z :: 'a::real-normed-div-algebra star

by (auto intro: approz-mult2 approz-HFinite-mult-cancel)

lemma HInfinite-HFinite-add-cancel: © + y € HInfinite = y € HFinite = z €
Hinfinite
using HF'inite-add HInfinite-HFinite-iff by blast

lemma Hlinfinite-HFinite-add: x € HInfinite — y € HFinite — = + y € HIn-
finite

by (metis (no-types, opaque-lifting) HFinite-HInfinite-iff HFinite-add HFinite-minus-iff
add.commute add-minus-cancel)

lemma Hlinfinite-ge-HInfinite: © € Hinfinite — ¢ < y — 0 < © = y € HIn-
finite

for z y :: hypreal

by (auto intro: HFinite-bounded simp add: HInfinite- HFinite-iff)

lemma Infinitesimal-inverse-HInfinite: © € Infinitesimal = ¢ # 0 = inverse x
€ HInfinite

for z :: 'a::real-normed-div-algebra star

by (metis Infinitesimal-HFinite-mult not-HFinite-HInfinite one-not-Infinitesimal
right-inverse)

lemma HlInfinite- HFinite-not-Infinitesimal-mult:

x € HInfinite = y € HFinite — Infinitesimal = z * y € HInfinite

for z y :: 'a::real-normed-div-algebra star

by (metis (no-types, opaque-lifting) HFinite-HInfinite-iff HFinite-Infinitesimal-not-zero
HFinite-inverse2 HFinite-mult mult.assoc mult.right-neutral right-inverse)

lemma HlInfinite- HFinite-not-Infinitesimal-mult2:

x € HInfinite = y € HFinite — Infinitesimal = y x © € HInfinite

for z y :: 'a::real-normed-div-algebra star

by (metis Diff-iff HInfinite-HFinite-iff HInfinite-inverse-Infinitesimal Infinitesi-
mal-HFinite-mult2 divide-inverse mult-zero-right nonzero-eq-divide-eq)

lemma HInfinite-gt-SReal: © € HInfinite — 0 <z —= y e R =y < z
for x y :: hypreal
by (auto dest!: bspec simp add: HInfinite-def abs-if order-less-imp-le)



THEORY “NSA” 71

lemma Hlinfinite-gt-zero-gt-one: © € Hinfinite — 0 <z = 1 <
for z :: hypreal
by (auto intro: HInfinite-gt-SReal)

lemma not-HInfinite-one [simp]: 1 ¢ HInfinite
by (simp add: HInfinite-HFinite-iff)

lemma approz-hrabs-disj: |z| =~ z V |z| = —=x
for z :: hypreal
by (simp add: abs-if)

6.4 Theorems about Monads

lemma monad-hrabs- Un-subset: monad |z| < monad z U monad (— x)
for z :: hypreal
by (simp add: abs-if)

lemma Infinitesimal-monad-eq: e € Infinitesimal = monad (x + €) = monad
by (fast intro!: Infinitesimal-add-approx-self [THEN approz-sym] approx-monad-iff
[THEN 4ffD1))

lemma mem-monad-iff: u € monad x <— — u € monad (— z)
by (simp add: monad-def)

lemma Infinitesimal-monad-zero-iff: x € Infinitesimal <— = € monad 0
by (auto intro: approz-sym simp add: monad-def mem-infmal-iff)

lemma monad-zero-minus-iff: © € monad 0 <— — x € monad 0
by (simp add: Infinitesimal-monad-zero-iff [symmetric])

lemma monad-zero-hrabs-iff: * € monad 0 <— |z| € monad 0
for z :: hypreal
using Infinitesimal-monad-zero-iff by blast

lemma mem-monad-self [simp]: © € monad x
by (simp add: monad-def)

6.5 Proof that z ~ y implies |z| ~ |y|

lemma approz-subset-monad: ¢ ~ y = {z, y} < monad
by (simp (no-asm)) (simp add: approz-monad-iff)

lemma approz-subset-monad?2: z = y = {z, y} < monad y
using approx-subset-monad approx-sym by auto

lemma mem-monad-approx: u € monad t = z ~ u
by (simp add: monad-def)

lemma approx-mem-monad: * =~ u = u € monad z
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by (simp add: monad-def)

lemma approx-mem-monad2: x = u = x € monad u
using approx-mem-monad approx-sym by blast

lemma approz-mem-monad-zero: x ~ y = x € monad 0 = y € monad 0
using approz-trans monad-def by blast

lemma Infinitesimal-approz-hrabs: x = y = x € Infinitesimal = |z| = |y|
for z y :: hypreal
using approz-hnorm by fastforce

lemma less-Infinitesimal-less: 0 < x = = ¢ Infinitesimal = e € Infinitesimal
— e<

for z :: hypreal

using Infinitesimal-interval less-linear by blast

lemma Ball-mem-monad-gt-zero: 0 < © = z ¢ Infinitesimal = u € monad x
= 0 <u

for u x :: hypreal

by (metis bex-Infinitesimal-iff2 less-Infinitesimal-less less-add-same-cancel2 mem-monad-approx)

lemma Ball-mem-monad-less-zero: © < 0 = x ¢ Infinitesimal = w € monad
= u <0

for u x :: hypreal

by (metis Ball-mem-monad-gt-zero approz-monad-iff less-asym linorder-neqE-linordered-idom
mem-infmal-iff mem-monad-approxr mem-monad-self)

lemma lemma-approz-gt-zero: 0 < x = x ¢ Infinitesimal —= z~y — 0 < y
for z y :: hypreal
by (blast dest: Ball-mem-monad-gt-zero approx-subset-monad)

lemma lemma-approz-less-zero: x < 0 = x ¢ Infinitesimal — z ~ y = y <
0

for z y :: hypreal

by (blast dest: Ball-mem-monad-less-zero approz-subset-monad)

lemma approx-hrabs: z =~ y = |z| = |y|
for z y :: hypreal
by (drule approz-hnorm) simp

lemma approz-hrabs-zero-cancel: |z| = 0 = = ~ 0
for z :: hypreal
using mem-infmal-iff by blast

lemma approz-hrabs-add-Infinitesimal: e € Infinitesimal = |z| = |z + €|
for e z :: hypreal
by (fast intro: approx-hrabs Infinitesimal-add-approx-self)



THEORY “NSA” 73

lemma approz-hrabs-add-minus-Infinitesimal: e € Infinitesimal ==> |z| =~ |z +
—el

for e x :: hypreal

by (fast intro: approz-hrabs Infinitesimal-add-minus-approz-self)

lemma hrabs-add-Infinitesimal-cancel:
e € Infinitesimal = €’ € Infinitesimal = |z + ¢| = |y + €| = |z| =~ |y|
for e e’ z y :: hypreal
by (metis approz-hrabs-add-Infinitesimal approx-trans2)

lemma hrabs-add-minus-Infinitesimal-cancel:
e € Infinitesimal = e’ € Infinitesimal = |x + —¢| = |y + —€| = |z| =~ |y|
for e e’ z y :: hypreal
by (meson Infinitesimal-minus-iff hrabs-add-Infinitesimal-cancel)

6.6 More HF'inite and Infinitesimal Theorems

Interesting slightly counterintuitive theorem: necessary for proving that an
open interval is an NS open set.

lemma Infinitesimal-add-hypreal-of-real-less:
assumes z < y and u: u € Infinitesimal
shows hypreal-of-real © + v < hypreal-of-real y
proof —
have |u| < hypreal-of-real y — hypreal-of-real x
using InfinitesimalD <z < y» u by fastforce
then show ?thesis
by (simp add: abs-less-iff)
qed

lemma Infinitesimal-add-hrabs-hypreal-of-real-less:
z € Infinitesimal = |hypreal-of-real v| < hypreal-of-real y =
|hypreal-of-real r + x| < hypreal-of-real y
by (metis Infinitesimal-add-hypreal-of-real-less approz-hrabs-add-Infinitesimal ap-
prox-sym bex-Infinitesimal-iff2 star-of-abs star-of-less)

lemma Infinitesimal-add-hrabs-hypreal-of-real-less2:
z € Infinitesimal = |hypreal-of-real v| < hypreal-of-real y =
|z 4+ hypreal-of-real r| < hypreal-of-real y
using Infinitesimal-add-hrabs-hypreal-of-real-less by fastforce

lemma hypreal-of-real-le-add-Infininitesimal-cancel:
assumes le: hypreal-of-real © + u < hypreal-of-real y + v
and u: u € Infinitesimal and v: v € Infinitesimal
shows hypreal-of-real x < hypreal-of-real y
proof (rule ccontr)
assume — hypreal-of-real © < hypreal-of-real y
then have hypreal-of-real y + (v — uw) < hypreal-of-real x
by (simp add: Infinitesimal-add-hypreal-of-real-less Infinitesimal-diff u v)
then show Fulse
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by (simp add: add-diff-eq add-le-imp-le-diff le leD)
qed

lemma hypreal-of-real-le-add-Infininitesimal-cancel2:
u € Infinitesimal = v € Infinitesimal =
hypreal-of-real + + u < hypreal-of-real y + v = x < y
by (blast intro: star-of-le [THEN iffD1] intro!: hypreal-of-real-le-add-Infininitesimal-cancel)

lemma hypreal-of-real-less-Infinitesimal-le-zero:
hypreal-of-real © < e => e € Infinitesimal => hypreal-of-real v < 0
by (metis Infinitesimal-interval eq-iff le-less-linear star-of-Infinitesimal-iff-0 star-of-eq-0)

lemma Infinitesimal-add-not-zero: h € Infinitesimal = = # 0 = star-of x + h

# 0
by (metis Infinitesimal-add-approz-self star-of-approz-zero-iff)

lemma monad-hrabs-less: y € monad x = 0 < hypreal-of-real e = |y — z| <
hypreal-of-real e
by (simp add: Infinitesimal-approxz-minus approz-sym less-Infinitesimal-less mem-monad-approx)

lemma mem-monad-SReal-HFinite: © € monad (hypreal-of-real o) = x € HF'i-
nite
using HF'inite-star-of approx-HFinite mem-monad-approx by blast

6.7 Theorems about Standard Part

lemma st-approz-self: x € HFinite = stz ~ x
by (metis (no-types, lifting) approz-refl approz-trans3 somel-ex st-def st-part-Ex
st-part-Exl)

lemma st-SReal: © € HFinite =—> st z € R
by (metis (mono-tags, lifting) approz-sym somel-ex st-def st-part-Erx)

lemma st-HFinite: v € HFinite = st © € HF'inite
by (erule st-SReal [THEN SReal-subset-HFinite [THEN subsetD]])

lemma st-unique: r € R=—=r~zx = stx=r
by (meson SReal-subset-HFinite approz-HFinite approx-unique-real st-SReal st-approz-self
subsetD)

lemma st-SReal-eq: t € R = stx =z
by (metis approx-refl st-unique)

lemma st-hypreal-of-real [simp]: st (hypreal-of-real ) = hypreal-of-real
by (rule SReal-hypreal-of-real [THEN st-SReal-eq])

lemma st-eg-approz: x € HFinite — y € HFinite = stx = sty = x = y
by (auto dest!: st-approx-self elim!: approz-trans3)
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lemma approz-st-eq:
assumes z: ¢ € HFinite and y: y € HFinite and zy: z = y
shows st x = sty
proof —
have stz ~ zxsty~ystzx € R sty € R
by (simp-all add: st-approz-self st-SReal x y)
with zy show ?thesis
by (fast elim: approz-trans approz-trans2 SReal-approz-iff [THEN iffD1])
qed

lemma st-eq-approz-iff: x € HFinite = y € HFinite = z =~ y +— stz = st y
by (blast intro: approx-st-eq st-eq-approx)

lemma st-Infinitesimal-add-SReal: © € R = e € Infinitesimal = st (v + €) =
z
by (simp add: Infinitesimal-add-approz-self st-unique)

lemma st-Infinitesimal-add-SReal2: © € R = e € Infinitesimal = st (e + )
=z
by (metis add.commute st-Infinitesimal-add-SReal)

lemma HFinite-st-Infinitesimal-add: v € HFinite = Je € Infinitesimal. v =
st(z) + e
by (blast dest!: st-approz-self [THEN approz-sym] bex-Infinitesimal-iff2 [THEN

lemma st-add: © € HFinite = y € HFinite = st (x + y) = stz + sty
by (simp add: st-unique st-SReal st-approz-self approz-add)

lemma st-numeral [simp]: st (numeral w) = numeral w
by (rule Reals-numeral [THEN st-SReal-eq])

lemma st-neg-numeral [simpl: st (— numeral w) = — numeral w
using st-unique by auto

lemma st-0 [simp]: st 0 = 0
by (simp add: st-SReal-eq)

lemma st-1 [simpl: st 1 = 1
by (simp add: st-SReal-eq)

lemma st-neg-1 [simp]: st (— 1) = — 1
by (simp add: st-SReal-eq)

lemma st-minus: ¢ € HFinite = st (— z) = — st x
by (simp add: st-unique st-SReal st-approz-self approz-minus)

lemma st-diff: [x € HFinite; y € HFinite] = st (x — y) = stx — sty
by (simp add: st-unique st-SReal st-approz-self approz-diff)
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lemma st-mult: [z € HF'inite; y € HFinite] = st (x x y) = stz * st y
by (simp add: st-unique st-SReal st-approz-self approz-mult- HFinite)

lemma st-Infinitesimal: © € Infinitesimal —> st x = 0
by (simp add: st-unique mem-infmal-iff)

lemma st-not-Infinitesimal: st(z) # 0 = = ¢ Infinitesimal
by (fast intro: st-Infinitesimal)

lemma st-inverse: © € HFinite = st © # 0 = st (inverse z) = inverse (st x)
by (simp add: approz-inverse st-SReal st-approx-self st-not-Infinitesimal st-unique)

lemma st-divide [simp]: z € HFinite = y € HFinite = st y # 0 = st (z /

y) =stxz [ sty
by (simp add: divide-inverse st-mult st-not-Infinitesimal HFinite-inverse st-inverse)

lemma st-idempotent [simp|: © € HFinite => st (st z) = st «
by (blast intro: st-HFinite st-approz-self approz-st-eq)

lemma Infinitesimal-add-st-less:

x € HFinite = y € HFinite =—> u € Infinitesimal — st x < st y = stz +
u < sty

by (metis Infinitesimal-add-hypreal-of-real-less SReal-iff st-SReal star-of-less)

lemma Infinitesimal-add-st-le-cancel:
z € HFinite = y € HFinite = u € Infinitesimal —>
stx < sty+u=— stz < sty
by (meson Infinitesimal-add-st-less leD le-less-linear)

lemma st-le: x € HFinite = y € HFinile = z < y = stz < st y
by (metis approz-le-bound approx-sym linear st-SReal st-approx-self st-part-Exl)

lemma st-zero-le: 0 < r — z € HFinite — 0 < st x
by (metis HFinite-0 st-0 st-le)

lemma st-zero-ge: x < 0 = z € HFinite = st x < 0
by (metis HFinite-0 st-0 st-le)

lemma st-hrabs: © € HFinite = |st x| = st |z]
by (simp add: order-class.order.antisym st-zero-ge linorder-not-le st-zero-le abs-if
st-minus linorder-not-less)

6.8 Alternative Definitions using Free Ultrafilter

6.8.1 HFinite

lemma HFinite-FreeUltrafilterNat:
assumes star-n X € HFinite
shows Ju. eventually (An. norm (X n) < u) U



THEORY “NSA” 7

proof —
obtain r where hnorm (star-n X) < hypreal-of-real v
using HFiniteD SReal-iff assms by fastforce
then have Vr nin U. norm (X n) <r
by (simp add: hnorm-def star-n-less star-of-def starfun-star-n)
then show ?thesis ..
qed

lemma FreeUltrafilter Nat- HFinite:
assumes eventually (An. norm (X n) < u) U
shows star-n X € HFinite
proof —
have hnorm (star-n X) < hypreal-of-real u
by (simp add: assms hnorm-def star-n-less star-of-def starfun-star-n)
then show ?thesis
by (meson HInfiniteD SReal-hypreal-of-real less-asym not-HFinite- HInfinite)
qed

lemma HF'inite-FreeUltrafilter Nat-iff :
star-n X € HFinite +— (Ju. eventually (An. norm (X n) < u) U)
using FreeUltrafilterNat-HFinite HFinite-FreeUltrafilterNat by blast

6.8.2 Hinfinite

Exclude this type of sets from free ultrafilter for Infinite numbers!

lemma FreeUltrafilter Nat-const-Finite:
eventually (An. norm (X n) = v) U = star-n X € HF'inite
by (simp add: FreeUltrafilterNat-HFinite [where u = u+1] eventually-mono)

lemma Hlinfinite-FreeUltrafilterNat:

assumes star-n X € Hinfinite shows Vg n in U. u < norm (X n)
proof —
have = (Vp ninU. norm (X n) < u + 1)

using FreeUltrafilterNat-HFinite HFinite-HInfinite-iff assms by auto

then show ?thesis

by (auto simp flip: FreeUltrafilterNat.eventually-not-iff elim: eventually-mono)

qed

lemma FreeUltrafilter Nat- HInfinite:
assumes Au. eventually (An. u < norm (X n)) U
shows star-n X € Hlinfinite
proof —
{ fix u
assume V gn in U. norm (X n) < uVeninU. u < norm (X n)
then have V g z in U. False
by eventually-elim auto
then have Fulse
by (simp add: eventually-False FreeUltrafilterNat.proper) }
then show ?%thesis
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using HFinite-FreeUltrafilterNat HInfinite- HFinite-iff assms by blast
qed

lemma HlInfinite-FreeUltrafilter Nat-iff:
star-n X € HInfinite <— (VY u. eventually (An. v < norm (X n)) U)
using HInfinite-Free UltrafilterNat FreeUltrafilterNat-HInfinite by blast

6.8.3 Infinitesimal

lemma ball-SReal-eq: (¥ z::hypreal € Reals. P x) +— (Vx::real. P (star-of x))
by (auto simp: SReal-def)

lemma Infinitesimal-Free Ultrafilter Nat-iff :
(star-n X € Infinitesimal) = (VY u>0. eventually (An. norm (X n) < u) U) (is
?lhs = ?rhs)
proof —
have ?lhs «+— (Y r>0. hnorm (star-n X) < hypreal-of-real r)
by (simp add: Infinitesimal-def ball-SReal-eq)
also have ... «+— ?rhs
by (simp add: hnorm-def starfun-star-n star-of-def star-less-def starP2-star-n)
finally show ?thesis .
qed

Infinitesimals as smaller than 1 /n for all n::nat (> 0).

lemma lemma-Infinitesimal: (Vr. 0 < r — z < r) «— (Vn. z < inverse (real
(Suc n)))

by (meson inverse-positive-iff-positive less-trans of-nat-0-less-iff reals- Archimedean
zero-less-Suc)

lemma lemma-Infinitesimal2:
(Vr € Reals. 0 < v — z < r) «— (Vn. z < inverse(hypreal-of-nat (Suc n)))
(is - = ?rhs)
proof (intro iffI strip)
assume R: ?rhs
fix r::hypreal
assume r € R 0 < r
then obtain n y where inverse (real (Suc n)) < y and r: r = hypreal-of-real y
by (metis SReal-iff reals-Archimedean star-of-0-less)
then have inverse (1 + hypreal-of-nat n) < hypreal-of-real y
by (metis of-nat-Suc star-of-inverse star-of-less star-of-nat-def)
then show z < r
by (metis R r le-less-trans less-imp-le of-nat-Suc)
qed (meson Reals-inverse Reals-of-nat of-nat-0-less-iff positive-imp-inverse-positive
zero-less-Suc)

lemma Infinitesimal-hypreal-of-nat-iff:
Infinitesimal = {x. ¥ n. hnorm x < inverse (hypreal-of-nat (Suc n))}
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using Infinitesimal-def lemma-Infinitesimal2 by auto

6.9 Proof that w is an infinite number

It will follow that € is an infinitesimal number.

lemma Suc-Un-eq: {n. n < Suc m} = {n. n < m} Un {n. n = m}
by (auto simp add: less-Suc-eq)

Prove that any segment is finite and hence cannot belong to U.

lemma finite-real-of-nat-segment: finite {n::nat. real n < real (m::nat)}
by auto

lemma finite-real-of-nat-less-real: finite {n::nat. real n < u}
proof —
obtain m where u < real m
using reals-Archimedean?2 by blast
then have {n. real n < u} C {..<m}
by force
then show ?thesis
using finite-nat-iff-bounded by force
qed

lemma finite-real-of-nat-le-real: finite {n::nat. real n < u}
by (metis infinite-nat-iff-unbounded leD le-nat-floor mem-Collect-eq)

lemma finite-rabs-real-of-nat-le-real: finite {n::nat. |real n| < u}
by (simp add: finite-real-of-nat-le-real)

lemma rabs-real-of-nat-le-real-Free UltrafilterNat:
= eventually (An. |real n| < u) U
by (blast intro!: FreeUltrafilterNat.finite finite-rabs-real-of-nat-le-real)

lemma FreeUltrafilterNat-nat-gt-real: eventually (An. u < real n) U
proof —
have {n:nat. = u < real n} = {n. real n < u}
by auto
then show ?thesis
by (auto simp add: FreeUltrafilterNat.finite’ finite-real-of-nat-le-real)
qed

The complement of {n. |real n| < u} = {n. u < |real n|} is in U by property
of (free) ultrafilters.

w is a member of HInfinite.

theorem HInfinite-omega [simp]: w € HInfinite
proof —
have Vg ninU. u < norm (1 + real n) for u
using FreeUltrafilterNat-nat-gt-real [of u—1] eventually-mono by fastforce
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then show ?thesis
by (simp add: omega-def FreeUltrafilter Nat-HInfinite)
qed

Epsilon is a member of Infinitesimal.

lemma Infinitesimal-epsilon [simp]: € € Infinitesimal
by (auto intro!: HInfinite-inverse-Infinitesimal HInfinite-omega
stmp add: epsilon-inverse-omega)

lemma HF'inite-epsilon [simp]: € € HFinite
by (auto intro: Infinitesimal-subset-HFinite [THEN subsetD])

lemma epsilon-approz-zero [simp): € = 0
by (simp add: mem-infmal-iff [symmetric])

Needed for proof that we define a hyperreal [<X(n)] ~ hypreal-of-real a
given that Vn. | X n — a| < 1/n. Used in proof of NSLIM = LIM.

lemma real-of-nat-less-inverse-iff: 0 < v = u < inverse (real(Suc n)) +—
real(Suc n) < inverse u
using less-imp-inverse-less by force

lemma finite-inverse-real-of-posnat-gt-real: 0 < uw = finite {n. v < inverse (real
(Suc n))}
proof (simp only: real-of-nat-less-inverse-iff)
have {n. 1 + real n < inverse u} = {n. real n < inverse v — 1}
by fastforce
then show finite {n. real (Suc n) < inverse u}
using finite-real-of-nat-less-real [of inverse u — 1]
by auto
qged

lemma finite-inverse-real-of-posnat-ge-real:
assumes 0 < u
shows finite {n. u < inverse (real (Suc n))}
proof —
have Vna. u < inverse (1 + real na) — na < ceiling (inverse u)
by (smt (verit, best) assms ceiling-less-cancel ceiling-of-nat inverse-inverse-eq
inverse-le-iff-le)
then show ?thesis
apply (auto simp add: finite-nat-set-iff-bounded-le)
by (meson assms inverse-positive-iff-positive le-nat-iff less-imp-le zero-less-ceiling)
qed

lemma inverse-real-of-posnat-ge-real-Free Ultrafilter Nat:
0 < u = = eventually (An. u < inverse(real(Suc n))) U
by (blast intro!: FreeUltrafilterNat.finite finite-inverse-real-of-posnat-ge-real)

lemma FreeUltrafilter Nat-inverse-real-of-posnat:
0 < u = eventually (An. inverse(real(Suc n)) < u) U
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by (drule inverse-real-of-posnat-ge-real-Free UltrafilterNat)
(simp add: FreeUltrafilterNat.eventually-not-iff not-le[symmetric])

Example of an hypersequence (i.e. an extended standard sequence) whose
term with an hypernatural suffix is an infinitesimal i.e. the whn’nth term
of the hypersequence is a member of Infinitesimal

lemma SEQ-Infinitesimal: ( xf* (An::nat. inverse(real(Suc n)))) whn € Infinites-
imal
by (simp add: hypnat-omega-def starfun-star-n star-n-inverse Infinitesimal-Free Ultrafilter Nat-iff
FreeUltrafilter Nat-inverse-real-of-posnat del: of-nat-Suc)

Example where we get a hyperreal from a real sequence for which a par-
ticular property holds. The theorem is used in proofs about equivalence
of nonstandard and standard neighbourhoods. Also used for equivalence of
nonstandard ans standard definitions of pointwise limit.

|X(n) — z| < 1/n = [<X n>] — hypreal-of-real x| € Infinitesimal

lemma real-seq-to-hypreal-Infinitesimal:
Vn. norm (X n — z) < dnverse (real (Suc n)) = star-n X — star-of x €
Infinitesimal
unfolding star-n-diff star-of-def Infinitesimal-Free Ultrafilter Nat-iff star-n-inverse
by (auto dest!: FreeUltrafilter Nat-inverse-real-of-posnat
intro: order-less-trans elim!: eventually-mono)

lemma real-seq-to-hypreal-approx:
Vn. norm (X n — z) < inverse (real (Suc n)) = star-n X =~ star-of x
by (metis bex-Infinitesimal-iff real-seq-to-hypreal-Infinitesimal)

lemma real-seq-to-hypreal-approzr2:
Vn. norm (z — X n) < inverse(real(Suc n)) = star-n X ~ star-of x
by (metis norm-minus-commute real-seq-to-hypreal-approx)

lemma real-seq-to-hypreal-Infinitesimal2:
Vn. norm(X n — Y n) < inverse(real(Suc n)) = star-n X — starn Y €
Infinitesimal
unfolding Infinitesimal-FreeUltrafilter Nat-iff star-n-diff
by (auto dest!: FreeUltrafilter Nat-inverse-real-of-posnat
intro: order-less-trans elim!: eventually-mono)

end

7 Nonstandard Complex Numbers
theory NSComplex

imports NSA
begin

type-synonym hcomplex = complex star
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abbreviation hcomplex-of-complex :: complex = complex star
where hcomplex-of-complex = star-of

abbreviation hcmod :: complex star = real star
where hcmod = hnorm

7.0.1 Real and Imaginary parts

definition hRe :: hcomplex = hypreal
where hRe = xfx Re

definition him :: hcomplex = hypreal
where him = xfx Im

7.0.2 Imaginary unit

definition i :: hcomplex
where i = star-of i

7.0.3 Complex conjugate

definition hcnj :: hcomplex = hcomplex
where hcnj = *xfx cnj

7.0.4 Argand

definition hsgn :: hcomplex = hcomplex

where hsgn = xfx sgn

definition harg :: hcomplexr = hypreal
where harg = xfx Arg

definition — abbreviation for cos a + i sin a
hcis :: hypreal = hcomplex
where hcis = xfx cis

7.0.5 Injection from hyperreals

abbreviation hcomplex-of-hypreal :: hypreal = hcomplex
where hcomplez-of-hypreal = of-hypreal

definition — abbreviation for r * (cos a + 7 sin a)
hreis :: hypreal = hypreal = hcomplex
where hrcis = xf2x rcis

7.0.6 e (z+ dy)

definition hEzp :: hcomplex = hcomplex
where hEzp = *fx exp
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definition HComplex :: hypreal = hypreal = hcomplex
where HComplex = xf2x Complex

lemmas hcomplez-defs [transfer-unfold] =
hRe-def hIm-def iii-def henj-def hsgn-def harg-def hcis-def
hrcis-def hEzp-def HComplex-def

lemma Standard-hRe [simp]: x € Standard = hRe x € Standard
by (simp add: hcomplex-defs)

lemma Standard-hIm [simp]: x € Standard = hIm = € Standard
by (simp add: hcomplez-defs)

lemma Standard-iii [simp]: 4 € Standard
by (simp add: hcomplex-defs)

lemma Standard-henj [simp|: ¢ € Standard = henj © € Standard
by (simp add: hcomplez-defs)

lemma Standard-hsgn [simp: © € Standard = hsgn x € Standard
by (simp add: hcomplez-defs)

lemma Standard-harg [simp]: © € Standard = harg z € Standard
by (simp add: hcomplez-defs)

lemma Standard-hcis [simp]: r € Standard = hcis r € Standard
by (simp add: hcomplez-defs)

lemma Standard-hEzp [simp): z € Standard = hExp © € Standard
by (simp add: hcomplex-defs)

lemma Standard-hrcis [simp]: v € Standard = s € Standard = hrcis r s €
Standard
by (simp add: hcomplez-defs)

lemma Standard-HComplex [simp]: r € Standard = s € Standard = HComplex
rs € Standard
by (simp add: hcomplez-defs)

lemma hcmod-def: hemod = *fx cmod
by (rule hnorm-def)

7.1 Properties of Nonstandard Real and Imaginary Parts

lemma hcomplex-hRe-hIm-cancel-iff: Aw z. w = z +— hRe w = hRe z A\ hlm w
= him z
by transfer (rule complex-eq-iff)
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lemma hcomplex-equality [intro?): Az w. hRe z = hRe w => hIm z = hIm w =
z=w
by transfer (rule complex-eql)

lemma hcomplex-hRe-zero [simp]: hRe 0 = 0
by transfer simp

lemma hcomplez-hIm-zero [simp]: hIm 0 = 0
by transfer simp

lemma hcomplex-hRe-one [simp]: hRe 1 = 1
by transfer simp

lemma hcomplez-hIm-one [simp]: hIm 1 = 0
by transfer simp

7.2 Addition for Nonstandard Complex Numbers
lemma hRe-add: \z y. hRe (x + y) = hRe x + hRe y
by transfer simp

lemma hIm-add: Az y. hIim (x + y) = hIm = + him y
by transfer simp

7.3 More Minus Laws

lemma hRe-minus: \z. hRe (— z) = — hRe z
by transfer (rule uminus-complez.sel)

lemma Alm-minus: Nz. him (— z) = — him 2
by transfer (rule uminus-complez.sel)

lemma hcompler-add-minus-eq-minus: ¢ + y =0 —= = — y
for z y :: hcomplex
apply (drule minus-unique)
apply (simp add: minus-equation-iff [of x y))
done

lemma hcomplez-i-mult-eq [simp): iii * @i = — 1
by transfer (rule i-squared)

lemma hcomplex-i-mult-left [simp): Nz. iii = (iii * 2) = — 2
by transfer (rule complex-i-mult-minus)

lemma hcomplex-i-not-zero [simp): @i # 0
by transfer (rule complez-i-not-zero)

7.4 More Multiplication Laws

lemma hcomplex-mult-minus-one: — 1 x z = — 2
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for z :: hcomplex
by simp

lemma hcomplez-mult-minus-one-right: z ¥ — 1 = — 2
for z :: hcomplex
by simp

lemma hcomplex-mult-left-cancel: ¢ # 0 = cxa=cxb+—>a=1»>
for a b ¢ :: hcomplex
by simp

lemma hcomplex-mult-right-cancel: ¢ # 0 = ax c=bx c+—>a=1»>
for a b ¢ :: hcomplex
by simp

7.5 Subtraction and Division

lemma hcomplex-diff-eq-eq [simpl: © — y = z+— =24y
for xz y z :: hcomplex
by (rule diff-eq-eq)

7.6 Embedding Properties for hcomplex-of-hypreal Map
lemma hRe-hcomplex-of-hypreal [simp]: \z. hRe (hcomplex-of-hypreal z) = z

by transfer (rule Re-complex-of-real)

lemma hIm-hcomplex-of-hypreal [simp): Az. hIm (hcomplex-of-hypreal z) = 0
by transfer (rule Im-complez-of-real)

lemma hcomplez-of-epsilon-not-zero [simp|: hcomplez-of-hypreal € # 0
by (simp add: epsilon-not-zero)

7.7 HComplex theorems
lemma hRe-HComplez [simp]: Nz y. hRe (HComplezx x y) = x

by transfer simp

lemma hIm-HComplex [simp]: Az y. hIm (HComplex x y) = y
by transfer simp

lemma hcomplex-surj [simp): \z. HComplex (hRe z) (hIm z) = 2z
by transfer (rule complex-suryj)

lemma hcomplez-induct [case-names rect):
(Az y. P (HComplezx z y)) = P z
by (rule hcomplez-surj [THEN subst]) blast

85
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7.8 Modulus (Absolute Value) of Nonstandard Complex Num-
ber

lemma hcomplez-of-hypreal-abs:
hcomplex-of-hypreal |z| = hcomplez-of-hypreal (hemod (hcomplez-of-hypreal x))
by simp

lemma HComplex-inject [simp]: Nz y 2’ y'. HComplex x y = HComplex x’ y' +—
r=z'Ny=1y'
by transfer (rule complex.inject)

lemma HComplez-add [simp]:

Nzl y1 22 y2. HComplex x1 y1 + HComplex z2 y2 = HComplex (z1 + z2) (yl
+ y2)

by transfer (rule complez-add)

lemma HComplex-minus [simp]: Az y. — HComplex z y = HComplex (— z) (—

Y)
by transfer (rule complez-minus)

lemma HComplez-diff [simp]:

Nzl y1 2 y2. HComplex x1 yl — HComplex 22 y2 = HComplex (x1 — x2) (y!
- y2)

by transfer (rule complex-diff)

lemma HComplex-mult [simp):

Nzl y1 22 y2. HComplex x1 y1 x HComplexr x2 y2 = HComplex (x1xx2 — yl*y2)
(z1xy2 + ylxx2)

by transfer (rule complex-mult)

HComplex-inverse is proved below.

lemma hcomplex-of-hypreal-eq: \r. hcomplex-of-hypreal 1 = HComplez r 0
by transfer (rule complex-of-real-def)

lemma HComplez-add-hcomplex-of-hypreal [simp):
Nz y r. HComplex © y + hcomplez-of-hypreal r = HComplex (z + r) y
by transfer (rule Complex-add-complex-of-real)

lemma hcomplex-of-hypreal-add-HComplex [simp):
Ar x y. hcomplez-of-hypreal r + HComplex x y = HComplex (r + z) y
by transfer (rule complex-of-real-add-Complex)

lemma HComplez-mult-hcomplex-of-hypreal:
Nz y r. HComplezx x y * hcomplex-of-hypreal r = HComplex (x % r) (y * 1)
by transfer (rule Complez-mult-complex-of-real)

lemma hcomplezx-of-hypreal-mult-HComplex:
A1 z y. hcomplex-of-hypreal r x HComplex x y = HComplex (r * z) (r * y)
by transfer (rule complex-of-real-mult-Complex)
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lemma i-hcomplex-of-hypreal [simpl: A\r. @i x hcomplez-of-hypreal r = HComplex
0r
by transfer (rule i-complez-of-real)

lemma hcomplex-of-hypreal-i [simp]: A\r. hcomplex-of-hypreal v x iii = HComplex
0r
by transfer (rule complex-of-real-i)

7.9 Conjugation
lemma hcomplez-henj-cancel-iff [iff]: Nz y. henjz = henjy +— z =y

by transfer (rule complez-cnj-cancel-iff)

lemma hcomplex-heng-henj [simp]: Nz. henj (henj z) = 2z
by transfer (rule complex-cnj-cnj)

lemma hcomplex-henj-heomplex-of-hypreal [simp):
Nz. henj (hcomplex-of-hypreal x) = hecomplex-of-hypreal
by transfer (rule complex-cnj-complex-of-real)

lemma hcomplez-hmod-henj [simp]: N\z. hemod (henj z) = hemod 2z
by transfer (rule complez-mod-cnj)

lemma hcomplex-henj-minus: Nz. henj (— z) = — henj z
by transfer (rule complex-cnj-minus)

lemma hcomplez-henj-inverse: N\z. henj (inverse z) = inverse (henj z)
by transfer (rule complez-cnj-inverse)

lemma hcomplez-henj-add: Aw z. henj (w + 2) = henj w + henj 2
by transfer (rule complex-cnj-add)

lemma hcomplex-henj-diff: Aw z. henj (w — z) = henj w — henj z
by transfer (rule complex-cnj-diff)

lemma hcomplex-heng-mult: Aw z. henj (w * 2) = heng w * henj z
by transfer (rule complez-cnj-mult)

lemma hcomplex-henj-divide: Aw z. henj (w / 2) = henj w [/ henj 2
by transfer (rule complex-cnj-divide)

lemma hcnj-one [simp): henj 1 = 1
by transfer (rule complezx-cnj-one)

lemma hcomplex-heng-zero [simp): henj 0 = 0
by transfer (rule complex-cnj-zero)

lemma hcomplex-heng-zero-iff [iff]: Nz. henj z = 0 «— 2z =0
by transfer (rule complezx-cnj-zero-iff)
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lemma hcomplex-mult-henj: \z. z * henj z = hcomplex-of-hypreal ((hRe 2)? +
(hIm 2)?)
by transfer (rule complez-mult-cnj)

7.10 More Theorems about the Function hcmod

lemma hcmod-hcomplex-of-hypreal-of-nat [simpl:
hemod (hecomplex-of-hypreal (hypreal-of-nat n)) = hypreal-of-nat n
by simp

lemma hemod-hcomplex-of-hypreal-of-hypnat [simpl:
hemod (heomplex-of-hypreal(hypreal-of-hypnat n)) = hypreal-of-hypnat n
by simp

lemma hemod-mult-henj: \z. hemod (z * henj z) = (hemod 2)?
by transfer (rule complez-mod-mult-cny)

lemma hcmod-triangle-ineq2 [simp]: Aa b. hemod (b + a) — hemod b < hemod a
by transfer (rule complez-mod-triangle-ineq2)

lemma hemod-diff-ineq [simp]: Aa b. hemod a — hemod b < hemod (a + b)
by transfer (rule norm-diff-ineq)

7.11 Exponentiation

lemma hcomplexpow-0 [simpl: z ~ 0 = 1
for z :: hcomplex
by (rule power-0)

lemma hcomplexpow-Suc [simp]: z ~ (Suc n) = z % (z " n)
for z :: hcomplex
by (rule power-Suc)

lemma hcomplexpow-i-squared [simp]: % = —1
by transfer (rule power2-i)

lemma hcomplez-of-hypreal-pow: A\x. hcomplex-of-hypreal (x ~n) = hcomplex-of-hypreal
x 7 n
by transfer (rule of-real-power)

lemma hcomplex-henj-pow: Nz. henj (z " n) = henj z " n
by transfer (rule complex-cnj-power)

lemma hcmod-hcomplezpow: \z. hemod (z ~n) = hemod x " n
by transfer (rule norm-power)

lemma hcpow-minus:
Az n. (— z 2 heomplex) pow n = (if ( xp* even) n then (x pow n) else — (z pow

n))
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by transfer simp

lemma hcpow-mult: (r * s) pow n = (r pow n) * (s pow n)
for r s :: hcomplex
by (fact hyperpow-mult)

lemma hepow-zero2 [simp]: An. 0 pow (hSuc n) = (0::'a::semiring-1 star)
by transfer (rule power-0-Suc)

lemma hcepow-not-zero [simp,introl: Ar n. r # 0 = r pow n # (0::hcomplezx)
by (fact hyperpow-not-zero)

lemma hcpow-zero-zero: rpown = 0 = r = 0
for r :: hcomplex
by (blast intro: ccontr dest: hcpow-not-zero)

7.12 The Function hsgn

lemma hsgn-zero [simp]: hsgn 0 = 0
by transfer (rule sgn-zero)

lemma hsgn-one [simp|: hsgn 1 = 1
by transfer (rule sgn-one)

lemma hsgn-minus: N\z. hsgn (— z) = — hsgn 2
by transfer (rule sgn-minus)

lemma hsgn-eq: N\z. hsgn z = z / hcomplex-of-hypreal (hemod z)
by transfer (rule sgn-eq)

lemma hcemod-i: Nz y. hemod (HComplex x y) = ( *fx sqrt) (% + y?)
by transfer (rule complez-norm)

lemma hcomplex-eq-cancel-iff1 [simp]:
hcomplez-of-hypreal xa = HComplex z y <— xza =z ANy = 0
by (simp add: hcomplez-of-hypreal-eq)

lemma hcomplez-eq-cancel-iff2 [simpl:
HComplex © y = hcomplex-of-hypreal za +— x = za Ny = 0
by (simp add: hcomplez-of-hypreal-eq)

lemma HComplex-eq-0 [simp]: Nz y. HComplexx y = 0 +—x =0 ANy =0
by transfer (rule Complez-eq-0)

lemma HComplez-eq-1 [simp]: ANz y. HComplexxy =1 «—x =1 Ay=10
by transfer (rule Complex-eq-1)

lemma i-eq-HComplex-0-1: it = HComplex 0 1
by transfer (simp add: complez-eq-iff)
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lemma HComplex-eq-i [simp]: Nz y. HComplex xy = iii +— z =0 ANy =1
by transfer (rule Complex-eq-i)

lemma hRe-hsgn [simp]: N\z. hRe (hsgn z) = hRe z | hemod 2z
by transfer (rule Re-sgn)

lemma hIm-hsgn [simp]: \z. hIm (hsgn z) = hIm z | hemod 2z
by transfer (rule Im-sgn)

lemma HComplez-inverse: \z y. inverse (HComplex x y) = HComplex (z / (z*

+9?) (—y/ (@ +y?)
by transfer (rule complez-inverse)

lemma hRe-mult-i-eq[simp]: Ay. hRe (@i x hcomplex-of-hypreal y) = 0
by transfer simp

lemma hlm-mult-i-eq [simpl: Ny. hIm (i * hcomplex-of-hypreal y) = y
by transfer simp

lemma hemod-mult-i [simp]: N\y. hemod (i * hecomplex-of-hypreal y) = |y|
by transfer (simp add: norm-complez-def)

lemma hcemod-mult-i2 [simp]: \y. hemod (hcomplez-of-hypreal y * i) = |y|
by transfer (simp add: norm-complez-def)

7.12.1 haryg

lemma cos-harg-i-mult-zero [simp]: Ny. y # 0 = ( xf* cos) (harg (HComplez 0

y) =10
by transfer (simp add: Complez-eq)

7.13 Polar Form for Nonstandard Complex Numbers

lemma complez-split-polar2: ¥V n. A1 a. (z n) = complez-of-real v * Complex (cos
a) (sin a)
unfolding Complez-eq by (auto intro: complex-split-polar)

lemma hcomplez-split-polar:
Nz. 37 a. z = hcomplez-of-hypreal v x (HComplex (( xf* cos) a) (( *f* sin) a))
by transfer (simp add: Complez-eq complex-split-polar)

lemma hcis-eq:

Na. heis a = hcomplez-of-hypreal (( *fx cos) a) + iii * hcomplex-of-hypreal ((
xf* sin) a)

by transfer (simp add: complez-eq-iff)

lemma hrcis-Exz: Nz. 37 a. 2 = hreis r a
by transfer (rule rcis-Ex)
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lemma hRe-hcomplex-polar [simp]:

Ar a. hRe (hcomplex-of-hypreal r x HComplex (( xfx cos) a) (( *f* sin) a)) = r
* (xf* cos) a

by transfer simp

lemma hRe-hrcis [simpl: A\r a. hRe (hrcis r a) = r % ( xf* cos) a
by transfer (rule Re-rcis)

lemma hIm-hcomplez-polar [simp]:

Ar a. hIm (hcomplex-of-hypreal v * HComplex (( xf* cos) a) (( xf* sin) a)) = r
* (xf* sin) a

by transfer simp

lemma hIm-hreis [simp): Ar a. hIm (hrcis v a) = r x ( xf* sin) a
by transfer (rule Im-rcis)

lemma hcemod-unit-one [simpl: Aa. hemod (HComplex (( +fx cos) a) (( xf* sin)
a)) = 1
by transfer (simp add: cmod-unit-one)

lemma hcmod-complex-polar [simpl:

Ar a. hemod (hcomplez-of-hypreal v x HComplex (( *f* cos) a) (( *f* sin) a))
= |r|

by transfer (simp add: Complez-eq cmod-complex-polar)

lemma hcmod-hreis [simp]: \r a. hemod(hreis v a) = |r]
by transfer (rule complex-mod-rcis)

(r1 * hreis a) x (r2 = hrcis b) = r1 % r2 % hrcis (a + b)

lemma hcis-hreis-eq: N\a. heis a = hreis 1 a
by transfer (rule cis-rcis-eq)
declare hcis-hrcis-eq [symmetric, simp)

lemma hreis-mult: Na b rl r2. hrcis r1 a = hreis v2 b = hrcis (r1 % r2) (a + b)
by transfer (rule rcis-mult)

lemma hcis-mult: \a b. heis a * heis b = heis (a + b)
by transfer (rule cis-mult)

lemma hcis-zero [simp]: heis 0 = 1
by transfer (rule cis-zero)

lemma hrcis-zero-mod [simpl: Aa. hreis 0 a = 0
by transfer (rule rcis-zero-mod)

lemma hreis-zero-arg [simpl: A\r. hreis v 0 = hcomplex-of-hypreal v
by transfer (rule rcis-zero-arg)

lemma hcomplez-i-mult-minus [simp]: Nz. @ * (i * 2) = — x
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by transfer (rule complex-i-mult-minus)

lemma hcomplez-i-mult-minus?2 [simp|: @ * iii x © = — «
by simp

lemma hcis-hypreal-of-nat-Suc-mult:
Na. hcis (hypreal-of-nat (Suc n) x a) = hcis a x hcis (hypreal-of-nat n x a)
by transfer (simp add: distrib-right cis-mult)

lemma NSDeMoivre: Na. (heis a) ~ n = hcis (hypreal-of-nat n * a)
by transfer (rule DeMoivre)

lemma hcis-hypreal-of-hypnat-Suc-mult:

Aa n. heis (hypreal-of-hypnat (n + 1) % a) = hcis a % heis (hypreal-of-hypnat n
* @)

by transfer (simp add: distrib-right cis-mult)

lemma NSDeMoivre-ext: Na n. (heis a) pow n = heis (hypreal-of-hypnat n * a)
by transfer (rule DeMoivre)

lemma NSDeMoivre2: Na r. (hrcis ra) ~n = hreis (r ~n) (hypreal-of-nat n x a)
by transfer (rule DeMoivre2)

lemma DeMoivre2-ext: Na rn. (hrcis ra) pow n = hrcis (r pow n) (hypreal-of-hypnat
n* a)
by transfer (rule DeMoivre2)

lemma hcis-inverse [simp]: Aa. inverse (hcis a) = heis (— a)
by transfer (rule cis-inverse)

lemma hreis-inverse: N\a r. inverse (hrcis v a) = hrcis (inverse r) (— a)
by transfer (simp add: rcis-inverse inverse-eq-divide [symmetric])

lemma hRe-hcis [simp]: Na. hRe (heis a) = ( *f* cos) a
by transfer simp

lemma hIm-hcis [simp]: Aa. hIm (heis a) = ( xfx* sin) a
by transfer simp

lemma cos-n-hRe-hcis-pow-n: ( xf* cos) (hypreal-of-nat n * a) = hRe (hcis a ~n)
by (simp add: NSDeMoivre)

lemma sin-n-hIm-hcis-pow-n: ( xf* sin) (hypreal-of-nat n x a) = him (hcis a ~n)
by (simp add: NSDeMoivre)

lemma cos-n-hRe-hcis-hepow-n: ( xfx cos) (hypreal-of-hypnat n % a) = hRe (hcis
a pow n)
by (simp add: NSDeMoivre-ext)
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lemma sin-n-hIm-hcis-hepow-n: ( xfx sin) (hypreal-of-hypnat n x a) = hIm (hcis
a pow n)
by (simp add: NSDeMoivre-ext)

lemma hEzp-add: Na b. hExp (a + b) = hExp a * hExp b
by transfer (rule exp-add)

7.14  hcomplez-of-complex: the Injection from type compler to
to hcomplex

lemma hcomplex-of-complez-i: iti = hcomplex-of-complex i

by (rule iii-def)

lemma hRe-hcomplex-of-complex: hRe (hcomplez-of-complex z) = hypreal-of-real
(Re 2)
by transfer (rule refl)

lemma hlm-hcomplez-of-complex: hIm (hcomplex-of-complex z) = hypreal-of-real
(Im 2)
by transfer (rule refl)

lemma hcmod-hcomplez-of-complex: hemod (hcomplez-of-complex x) = hypreal-of-real
(cmod x)
by transfer (rule refl)

7.15 Numerals and Arithmetic

lemma hcomplez-of-hypreal-eq-hcomplex-of-complex:
hecomplex-of-hypreal (hypreal-of-real ) = hcomplex-of-complex (complex-of-real x)
by transfer (rule refl)

lemma hcomplez-hypreal-numeral:
hcomplex-of-complex (numeral w) = hcomplex-of-hypreal(numeral w)
by transfer (rule of-real-numeral [symmetric])

lemma hcomplez-hypreal-neg-numeral:
hcomplex-of-complex (— numeral w) = hcomplez-of-hypreal(— numeral w)
by transfer (rule of-real-neg-numeral [symmetric])

lemma hcomplex-numeral-henj [simp]: henj (numeral v :: hcomplex) = numeral v
by transfer (rule complex-cnj-numeral)

lemma hcomplex-numeral-hemod [simp): hemod (numeral v :: heomplex) = (numeral
v it hypreal)
by transfer (rule norm-numeral)

lemma hcomplez-neg-numeral-hemod [simp]: hemod (— numeral v :: hcomplex) =
(numeral v :: hypreal)
by transfer (rule norm-neg-numeral)
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lemma hcomplex-numeral-hRe [simp]: hRe (numeral v :: hcomplex) = numeral v
by transfer (rule complez-Re-numeral)

lemma hcomplex-numeral-hIm [simp]: hIm (numeral v :: hcomplex) = 0
by transfer (rule complex-Im-numeral)

end

8 Star-Transforms in Non-Standard Analysis

theory Star
imports NSA
begin

definition — internal sets
starset-n :: (nat = 'a set) = 'a star set
(<(copen-block notation=<prefix starset-ny»xsnx -)» [80] 80)
where xsnx As = Iset (star-n As)

definition InternalSets :: 'a star set set
where InternalSets = {X. 3 As. X = xsnx As}

definition — nonstandard extension of function
is-starext :: ('a star = 'a star) = ('a = 'a) = bool
where is-starext F f +—
(Vzy. 3X € Rep-star . 3Y € Rep-star y. y = F x <— eventually (An. Y n

= f(Xn)U)

definition — internal functions
starfun-n :: (nat = 'a = 'b) = 'a star = 'b star
(<(<open-block notation=<prefix starfun-ny»*fnx -)» [80] 80)
where «fnx F = Ifun (star-n F)

definition InternalFuns :: ('a star => 'b star) set
where InternalFuns = {X. 3F. X = xfnx F}

8.1 Preamble - Pulling 4 over V

This proof does not need AC and was suggested by the referee for the JCM
Paper: let f z be least y such that @ x .

lemma no-choice: Vz. 3y. Qxy = 3f :: 'a = nat. Va. Qz (fz)
by (rule ezl [where z = Az. LEAST y. Q = y]) (blast intro: Leastl)

8.2 Properties of the Star-transform Applied to Sets of Reals

lemma STAR-star-of-image-subset: star-of ‘A C xsx A
by auto
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lemma STAR-hypreal-of-real-Int: xsx X N R = hypreal-of-real * X
by (auto simp add: SReal-def)

lemma STAR-star-of-Int: xsx X N Standard = star-of * X
by (auto simp add: Standard-def)

lemma lemma-not-hyprealA: x ¢ hypreal-of-real ‘A =V y € A. x # hypreal-of-real

)
by auto

lemma lemma-not-starA: x ¢ star-of ‘A = Vy € A. x # star-of y
by auto

lemma STAR-real-seq-to-hypreal: VY n. (X n) ¢ M = star-n X ¢ xsx M
by (simp add: starset-def star-of-def Iset-star-n FreeUltrafilterNat.proper)

lemma STAR-singleton: xsx {zx} = {star-of z}
by simp

lemma STAR-not-mem: x ¢ F = star-of x ¢ *sx F
by transfer

lemma STAR-subset-closed: © € *sx A =—> A C B = 1 € xsx B
by (erule rev-subsetD) simp

Nonstandard extension of a set (defined using a constant sequence) as a
special case of an internal set.

lemma starset-n-starset: Vn. Asn = A = xsnx As = *xsx A
by (drule fun-eq-iff [THEN iffD2)]) (simp add: starset-n-def starset-def star-of-def)

8.3 Theorems about nonstandard extensions of functions

Nonstandard extension of a function (defined using a constant sequence) as
a special case of an internal function.

lemma starfun-n-starfun: F = (An. f) = xfnx F = xfx f
by (simp add: starfun-n-def starfun-def star-of-def)

Prove that abs for hypreal is a nonstandard extension of abs for real w/o use
of congruence property (proved after this for general nonstandard extensions
of real valued functions).

Proof now Uses the ultrafilter tactic!

lemma hrabs-is-starext-rabs: is-starext abs abs
proof —
have 3 feRep-star (star-n h). 3 g€ Rep-star (star-n k). (star-n k = |star-n h|) =
Vrpninl. (gn:'a) =|fn)
for x y :: 'a star and h k
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by (metis (full-types) Rep-star-star-n star-n-abs star-n-eq-iff)
then show ?thesis
unfolding is-starezt-def by (metis star-cases)
qed

Nonstandard extension of functions.

lemma starfun: ( xf* f) (star-n X) = star-n (An. f (X n))
by (rule starfun-star-n)

lemma starfun-if-eq: Aw. w # star-of v = ( xf* (A\z. if z = z then a else g 2))
w=(*fxg) w

by transfer simp
Multiplication: ( xf) z ( *g) = *(f z g)

lemma starfun-mult: Nz. ( *f* f) z % (*xfx g) z = (xfx Az. fz*xgx)) *
by transfer (rule refl)
declare starfun-mult [symmetric, simp)

Addition: ( xf) + ( *xg) = *(f + 9)

lemma starfun-add: Nz. ( xf* f) 2 + ( xfx g) z = ( xf* (\z. fz + gz)) z
by transfer (rule refl)
declare starfun-add [symmetric, simp]

Subtraction: ( xf) + —( *g) = *(f + —g)

lemma starfun-minus: Az. — ( xf* f) z = ( xfx (A\z. — fz)) z
by transfer (rule refl)
declare starfun-minus [symmetric, simp]

lemma starfun-add-minus: Nz. ( #f* f) x + —( xfx g) x = ( =fx Az. fz + —g¢

by transfer (rule refl)
declare starfun-add-minus [symmetric, simp)

lemma starfun-diff: Nz. ( xf* f) x — (xfx g) 2 = (*fx (\z. fz — g2)) =
by transfer (rule refl)
declare starfun-diff [symmetric, simp)

Composition: ( xf) o ( xg) = *(f o g)
lemma starfun-02: (Az. ( xf* f) (( *f* g) z)) = *f*x (\z. [ (g z))
by transfer (rule refl)

lemma starfun-o: ( *f+ f) o ( +f g) = ( *f* (f o 9))
by (transfer o-def) (rule refl)

NS extension of constant function.

lemma starfun-const-fun [simp]: Az. ( #f* (Az. k)) = = star-of k
by transfer (rule refl)
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The NS extension of the identity function.

lemma starfun-Id [simp]: Az. ( #fx (Az. z)) = =«
by transfer (rule refl)

97

The Star-function is a (nonstandard) extension of the function.

lemma is-starext-starfun: is-starext ( xfx f) f
proof —

have 3 X€Rep-star x. 3Y€E€Rep-star y. (y = (xfx f) ) = VpninU. Yn=f

(X n))
for z y

by (metis (mono-tags) Rep-star-star-n star-cases star-n-eq-iff starfun-star-n)

then show ?thesis
by (auto simp: is-starext-def)
qed

Any nonstandard extension is in fact the Star-function.

lemma is-starfun-starext:
assumes is-starext F f
shows F = xfx f
proof —
have F z = (xfx f)
if Vo y. 3Xe€Rep-star x. 3YERep-star y. (y = F z) =
(X n)) for z

VMpninU. Yn=Ff

by (metis that mem-Rep-star-iff star-n-eq-iff starfun-star-n)

with assms show ?thesis
by (force simp add: is-starext-def)
qed

lemma is-starext-starfun-iff: is-starext F f «+— F = xfx f
by (blast intro: is-starfun-starext is-starext-starfun)

Extended function has same solution as its standard version for real argu-

ments. i.e they are the same for all real arguments.

lemma starfun-eq: ( xf* f) (star-of a) = star-of (f a)
by (rule starfun-star-of)

lemma starfun-approx: ( xf* f) (star-of a) ~ star-of (f a)
by simp

Useful for NS definition of derivatives.

lemma starfun-lambda-cancel: Nz'. ( *f* (Ah. f (z + h))) =’ =

x + z)
by transfer (rule refl)

lemma starfun-lambda-cancel2: ( xfx (Ah. f (g (z + h)))) =’

(star-of x + ')
unfolding o-def by (rule starfun-lambda-cancel)

( *fx f) (star-of

= (#fx (f o 9))
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lemma starfun-mult-HFinite-approx:
(xfx flz~=1= (xf*x g) v % m = | € HFinite = m € HFinite =
(xfx Az. foxga)zmlxm
for [ m :: 'a::real-normed-algebra star
using approx-mult-HFinite by auto

lemma starfun-add-approz: ( #f* f) z = |l = (xfx g) =& m = ( *f* (%z. fx
+gz)az=l+m
by (auto intro: approz-add)

Examples: hrabs is nonstandard extension of rabs, inverse is nonstandard
extension of inverse.

Can be proved easily using theorem starfun and properties of ultrafilter as
for inverse below we use the theorem we proved above instead.

lemma starfun-rabs-hrabs: xf* abs = abs
by (simp only: star-abs-def)

lemma starfun-inverse-inverse [simp]: ( *f* inverse) x = inverse x
by (simp only: star-inverse-def)

lemma starfun-inverse: \z. inverse (( *f* f) ) = ( xf* (Az. inverse (f z))) =
by transfer (rule refl)
declare starfun-inverse [symmetric, simp]

lemma starfun-divide: Nx. (xf* f) x / ( xfx g) z = (xf* (\z. fa / gz)) z
by transfer (rule refl)
declare starfun-divide [symmetric, simp

lemma starfun-inverse2: \z. inverse (( *fx f) ) = ( *f* (Az. inverse (f z))) =
by transfer (rule refl)

General lemma/theorem needed for proofs in elementary topology of the
reals.

lemma starfun-mem-starset: N\z. ( *f* f) x € xsx A => 1 € xsx {x. fz € A}
by transfer simp

Alternative definition for hrabs with rabs function applied entrywise to
equivalence class representative. This is easily proved using starfun and
ns extension thm.

lemma hypreal-hrabs: |star-n X| = star-n (An. |X n|)
by (simp only: starfun-rabs-hrabs [symmetric] starfun)

Nonstandard extension of set through nonstandard extension of rabs func-
tion i.e. hrabs. A more general result should be where we replace rabs by
some arbitrary function f and hrabs by its NS extenson. See second NS set
extension below.
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lemma STAR-rabs-add-minus: xsx {z. |z + — y| < r} = {z. |z + —star-of y| <
star-of T}
by transfer (rule refl)

lemma STAR-starfun-rabs-add-minus:
xsx {z. [fz + — y| < r}={z |( *f* f) z + —star-of y| < star-of v}
by transfer (rule refl)

Another characterization of Infinitesimal and one of = relation. In this
theory since hypreal-hrabs proved here. Maybe move both theorems??

lemma Infinitesimal-FreeUltrafilter Nat-iff2:
star-n X € Infinitesimal «— (¥ m. eventually (An. norm (X n) < inverse (real
(Suc m))) U)
by (simp add: Infinitesimal-hypreal-of-nat-iff star-of-def hnorm-def
star-of-nat-def starfun-star-n star-n-inverse star-n-less)

lemma HNatInfinite-inverse-Infinitesimal [simp]:
assumes n € HNatInfinite
shows inverse (hypreal-of-hypnat n) € Infinitesimal
proof (cases n)
case (star-n X)
then have «: Ak.Vpninl. k< Xn
using HNatlInfinite-FreeUltrafilterNat assms by blast
have Vi n in U. inverse (real (X n)) < inverse (1 + real m) for m
using * [of Suc m] by (auto elim!: eventually-mono)
then show ?thesis
using star-n by (auto simp: of-hypnat-def starfun-star-n star-n-inverse In-
finitesimal-FreeUltrafilter Nat-iff2)
qged

lemma approx-FreeUltrafilter Nat-iff :
star-n X = star-n Y <— (Vr>0. eventually (An. norm (X n — Y n) < r) U)
(is ?lhs = %rhs)
proof —
have ?lhs = (star-n X — star-n Y =~ 0)
using approz-minus-iff by blast
also have ... = ?rhs
by (metis (full-types) Infinitesimal-Free Ultrafilter Nat-iff mem-infmal-iff star-n-diff)
finally show ?thesis .
qed

lemma approx-FreeUltrafilterNat-iff2:

star-n X = star-n Y «— (Vm. eventually (An. norm (X n — Y n) < inverse
(real (Suc m))) U)

(is ?lhs = %rhs)
proof —

have ?lhs = (star-n X — star-n Y =~ 0)

using approz-minus-iff by blast
also have ... = ?rhs
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by (metis (full-types) Infinitesimal-Free Ultrafilter Nat-iff2 mem-infmal-iff star-n-diff)
finally show ?thesis .
qed

lemma inj-starfun: inj starfun
proof (rule inj-onlI)
show ¢ = ¢ if eq: xfx ¢ = xfx ) for p ¢ :: 'a = 'b
proof (rule ext, rule ccontr)
show Fulse
if px# Y xfor x
by (metis eq that star-of-inject starfun-eq)
qed
qed

end

9 Star-transforms for the Hypernaturals

theory NatStar
imports Star
begin

lemma star-n-eq-starfun-whn: star-n X = ( xfx X) whn
by (simp add: hypnat-omega-def starfun-def star-of-def Ifun-star-n)

lemma starset-n-Un: xsnx (An. (A n) U (B n)) = xsnx A U xsnx B
proof —
have AN. Iset ((xf+* (An. {z. 2 € AnV z € Bn})) N)
{z. x € Iset ((xf* A) N) V z € Iset ((xfx B) N)}
by transfer simp
then show ?thesis
by (simp add: starset-n-def star-n-eq-starfun-whn Un-def)
qed

lemma InternalSets-Un: X € InternalSets =—> Y € InternalSets — X U Y €
InternalSets
by (auto simp add: InternalSets-def starset-n-Un [symmetric])

lemma starset-n-Int: xsnx (An. A n N B n) = xsnx A N xsn*x B
proof —
have AN. Iset ((xf* (An. {z. 2 € An ANz € Bn})) N)=
{z. © € Iset ((xfx A) N) A z € Iset ((xf* B) N)}
by transfer simp
then show ?thesis
by (simp add: starset-n-def star-n-eq-starfun-whn Int-def)
qed

lemma InternalSets-Int: X € InternalSets —> Y € InternalSets — X N Y €
InternalSets
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by (auto simp add: InternalSets-def starset-n-Int [symmetric])

lemma starset-n-Compl: xsnx (An. — A n)) = — ( *xsnx A)
proof —
have AN. Iset ((xf* (An. {z. z ¢ A n})) N) =
{z. z ¢ Iset ((xf+ A) N)}
by transfer simp
then show ?thesis
by (simp add: starset-n-def star-n-eq-starfun-whn Compl-eq)
qed

lemma InternalSets-Compl: X € InternalSets =—> — X € InternalSets
by (auto simp add: InternalSets-def starset-n-Compl [symmetric])

lemma starset-n-diff: xsnx (An. (A n) — (B n)) = xsnx A — xsnx B
proof —
have AN. Iset ((xf* (An. {z. 2 € An Az ¢ Bn})) N)=
{z. z € Iset ((xf* A) N) A x & Iset ((xfx B) N)}
by transfer simp
then show ?thesis
by (simp add: starset-n-def star-n-eq-starfun-whn set-diff-eq)
qged

lemma InternalSets-diff: X € InternalSets = Y € InternalSets — X — Y €
InternalSets
by (auto simp add: InternalSets-def starset-n-diff [symmetric))

lemma NatStar-SHNat-subset: Nats < xsx (UNIV:: nat set)
by simp

lemma NatStar-hypreal-of-real-Int: xsx X Int Nats = hypnat-of-nat * X
by (auto simp add: SHNat-eq)

lemma starset-starset-n-eq: xsx X = xsnx (An. X)
by (simp add: starset-n-starset)

lemma InternalSets-starset-n [simpl: ( *sx X) € InternalSets
by (auto simp add: InternalSets-def starset-starset-n-eq)

lemma InternalSets-UNIV-diff: X € InternalSets = UNIV — X € InternalSets
by (simp add: InternalSets-Compl diff-eq)

9.1 Nonstandard Extensions of Functions

Example of transfer of a property from reals to hyperreals — used for limit
comparison of sequences.
lemma starfun-le-mono: Vn. N <n — fn < gn—

Vn. hypnat-of-nat N < n — ( «xfx f) n < (*fx g) n

by transfer
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And another:

lemma starfun-less-mono:
Vn. N<n— fn<gn= Vn. hypnat-of-nat N < n — ( xf* f) n < ( *fx

g)n
by transfer

Nonstandard extension when we increment the argument by one.

lemma starfun-shift-one: AN. ( xf*x (An. f (Sucn))) N = (xf* f) (N + (1::hypnat))
by transfer simp

Nonstandard extension with absolute value.

lemma starfun-abs: AN. ( xfx (An. |fn])) N = |( xf* f) N|
by transfer (rule refl)

The hyperpow function as a nonstandard extension of realpow.

lemma starfun-pow: AN. ( xfx (An. r " n)) N = hypreal-of-real r pow N
by transfer (rule refl)

lemma starfun-pow2: AN. (xfx (An. Xn ~m)) N = ( xfx X) N pow hypnat-of-nat
m
by transfer (rule refl)

lemma starfun-pows: AR. ( xfx (Ar. v "~ n)) R = R pow hypnat-of-nat n
by transfer (rule refl)
The hypreal-of-hypnat function as a nonstandard extension of real.
lemma starfunNat-real-of-nat: ( xfx real) = hypreal-of-hypnat
by transfer (simp add: fun-eg-iff)

lemma starfun-inverse-real-of-nat-eq:
N € HNatInfinite = ( xfx (Az::nat. inverse (real x))) N = inverse (hypreal-of-hypnat
N)
by (metis of-hypnat-def starfun-inverse2)
Internal functions — some redundancy with *f* now.
lemma starfun-n: ( xfnx f) (star-n X) = star-n (An. fn (X n))
by (simp add: starfun-n-def Ifun-star-n)
Multiplication: ( *fn) z ( *gn) = *(fn x gn)
lemma starfun-n-mult: ( xfnx f) z % (*xfnx g) 2= (*fax (Niz. fiz*x gix)) 2
by (cases z) (simp add: starfun-n star-n-mult)
Addition: ( xfn) + ( *gn) = *(fn + gn)
lemma starfun-n-add: ( xfnx f) z + ( xfnx g) 2z = (*fnx Niz. fiz + giz)) 2z

by (cases z) (simp add: starfun-n star-n-add)

Subtraction: ( xfn) — ( xgn) = x(fn + — gn)
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lemma starfun-n-add-minus: ( xfnx f) z + —( xfnx g) 2 = ( xfnx ANz fiz +
—giz)z
by (cases z) (simp add: starfun-n star-n-minus star-n-add)

Composition: ( xfn) o ( *gn) = *(fn o gn)

lemma starfun-n-const-fun [simp): ( xfnx (\i z. k)) z = star-of k
by (cases z) (simp add: starfun-n star-of-def)

lemma starfun-n-minus: — ( xfnx f) z = (*fnx Niz. — (fi) z2)) =
by (cases x) (simp add: starfun-n star-n-minus)

lemma starfun-n-eq [simp): ( *fnx f) (star-of n) = star-n (Ai. fin)
by (simp add: starfun-n star-of-def)

lemma starfun-eq-iff: (( «fx f) = (xfx g)) +— f =g
by transfer (rule refl)

lemma starfunNat-inverse-real-of-nat-Infinitesimal [simp]:
N € HNatInfinite = ( *fx (A\z. inverse (real z))) N € Infinitesimal
using starfun-inverse-real-of-nat-eq by auto

9.2 Nonstandard Characterization of Induction

lemma hypnat-induct-obj:

An. (( xpx P) (0::hypnat) A (Vn. (*px P) n — (xpx P) (n + 1))) — ( *px
P)n

by transfer (induct-tac n, auto)

lemma hypnat-induct:

An. ( xpx P) (0::hypnat) = (An. (xpx P) n = (*px P) (n + 1)) = ( *px
P)n

by transfer (induct-tac n, auto)

lemma starP2-eq-iff: ( xp2x (=)) = (=)
by transfer (rule refl)

lemma starP2-eq-iff2: (#p2x Az y. 2 =9y) XY +— X =Y
by (simp add: starP2-eq-iff)

lemma nonempty-set-star-has-least-lemma:
IneS.VmeS. n < mif S # {} for S :: nat set
proof
show VmeS. (LEASTn.ne€ S) <m
by (simp add: Least-le)
show (LEAST n.ne S) e S
by (meson that Leastl-ex equalsOl)
qed

lemma nonempty-set-star-has-least:
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NS:nat set star. Iset S # {} = In € Iset S.¥Ym € Iset S. n < m
using nonempty-set-star-has-least-lemma by (transfer empty-def)

lemma nonempty-InternalNatSet-has-least: S € InternalSets = S # {} = In
ceS.VmeS n<<m

for S :: hypnat set

by (force simp add: InternalSets-def starset-n-def dest!: nonempty-set-star-has-least)

Goldblatt, page 129 Thm 11.3.2.

lemma internal-induct-lemma:

AX::nat set star.

(0::hypnat) € Iset X = Vn. n € Iset X — n + 1 € Iset X = Iset X =

(UNIV:: hypnat set)

apply (transfer UNIV-def)

apply (rule equalityl [OF subset-UNIV subsetl])

apply (induct-tac z, auto)

done

lemma internal-induct:

X € InternalSets = (0::hypnat) € X =Vn.ne X —mn+1ec X = X =
(UNIV:: hypnat set)

apply (clarsimp simp add: InternalSets-def starset-n-def)

apply (erule (1) internal-induct-lemma)

done

end

10 Sequences and Convergence (Nonstandard)

theory HSEQ
imports Complez-Main NatStar
abbrevs ———> = —— g
begin

definition NSLIMSEQ :: (nat = 'a::real-normed-vector) = 'a = bool
(<(«notation=<mizfir NSLIMSEQ»)(-)/ ——ns (-))» [60, 60] 60) where
— Nonstandard definition of convergence of sequence
X ——ns L <— (VN € HNatInfinite. ( xfx X) N = star-of L)

definition nslim :: (nat = ’a::real-normed-vector) = 'a
where nslim X = (THE L. X ——ngs L)
— Nonstandard definition of limit using choice operator

definition NSconvergent :: (nat = ’a::real-normed-vector) = bool
where NSconvergent X «— (L. X —— g L)
— Nonstandard definition of convergence

definition NSBseq :: (nat = 'a::real-normed-vector) = bool
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where NSBseq X «— (Y N € HNatInfinite. ( #f+ X) N € HFinite)
— Nonstandard definition for bounded sequence

definition NSCauchy :: (nat = 'a::real-normed-vector) = bool

where NSCauchy X +— (VM € HNatinfinite. VN € HNatInfinite. ( xfx X) M
~ (xfx X) N)

— Nonstandard definition

10.1 Limits of Sequences

lemma NSLIMSEQ-I: (AN. N € HNatInfinite = starfun X N = star-of L) =
X ——ns L
by (simp add: NSLIMSEQ-def)

lemma NSLIMSEQ-D: X —— s L = N € HNatInfinite — starfun X N =~
star-of L
by (simp add: NSLIMSEQ-def)

lemma NSLIMSEQ-const: (An. k) ——ns k
by (simp add: NSLIMSEQ-def)

lemma NSLIMSEQ-add: X ——nys a =Y ——ys b= (An. Xn+ Y
n) ——nNs a+ b
by (auto intro: approz-add simp add: NSLIMSEQ-def)

lemma NSLIMSEQ-add-const: f ———ns a = (An. fn+ b)) ——nsa+ b
by (simp only: NSLIMSEQ-add NSLIMSEQ-const)

lemma NSLIMSEQ-mult: X ——nys a=—=Y ——ns b= (An. X nx Y
’I“L) —>NS aQ % b

for a b :: 'a::real-normed-algebra

by (auto introl: approz-mult-HFinite simp add: NSLIMSEQ-def)

lemma NSLIMSEQ-minus: X ——nys a = (An. — X n) ——ns — a
by (auto simp add: NSLIMSEQ-def)

lemma NSLIMSEQ-minus-cancel: (An. — X n) ——ng —a = X —— s @
by (drule NSLIMSEQ-minus) simp

lemma NSLIMSEQ-diff: X ——nys a =Y ——nys b= (An. X n - Y
n) —>NS & — b

using NSLIMSEQ-add [of X a — Y — b] by (simp add: NSLIMSEQ-minus
fun-Compl-def)

lemma NSLIMSEQ-diff-const: f ———ns a = (An. fn —b) ——nsa— b
by (simp add: NSLIMSEQ-diff NSLIMSEQ-const)

lemma NSLIMSEQ-inverse: X ——ng a = a # 0 = (An. inverse (X n))
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— NS thverse a
for a :: 'a::real-normed-div-algebra
by (simp add: NSLIMSEQ-def star-of-approz-inverse)

lemma NSLIMSEQ-mult-inverse: X ——nyg a = Y ——ng b= b # 0
= (M. Xn/Yn ——nsa/b

for a b :: 'a::real-normed-field

by (simp add: NSLIMSEQ-mult NSLIMSEQ-inverse divide-inverse)

lemma starfun-hnorm: Az. hnorm (( xf* f) z) = ( «f* (Az. norm (f z))) =
by transfer simp

lemma NSLIMSEQ-norm: X ——ng a = (An. norm (X n)) ——ns norm
a
by (simp add: NSLIMSEQ-def starfun-hnorm [symmetric] approz-hnorm)

Uniqueness of limit.

lemma NSLIMSEQ-unique: X ——ns 6 — X ——ngs b=—= a =10
unfolding NSLIMSEQ-def
using HNatInfinite-whn approx-trans3 star-of-approx-iff by blast

lemma NSLIMSEQ-pow [rule-format]: (X ——ns a) — ((An. (X n) ~ m)
——Ns a m)

for a :: 'a::{real-normed-algebra,power}

by (induct m) (auto intro: NSLIMSEQ-mult NSLIMSEQ-const)

We can now try and derive a few properties of sequences, starting with the
limit comparison property for sequences.

lemma NSLIMSEQ-le: f ——ns | = g ——nys m = AN.Vn > N. fn
<gn=1<m

for [ m :: real

unfolding NSLIMSEQ-def

by (metis HNatInfinite-whn bex-Infinitesimal-iff2 hypnat-of-nat-le-whn hypreal-of-real-le-add-Infininitesimal-c
starfun-le-mono)

lemma NSLIMSEQ-le-const: X —— s r=Vn.a< Xn=a<r

for a r :: real
by (erule NSLIMSEQ-le [OF NSLIMSEQ-const]) auto

lemma NSLIMSEQ-le-const2: X ——nysr=—=Vn. Xn<a=—r<a
for a r :: real

by (erule NSLIMSEQ-le [OF - NSLIMSEQ-const]) auto

Shift a convergent series by 1: By the equivalence between Cauchiness and
convergence and because the successor of an infinite hypernatural is also
infinite.

lemma NSLIMSEQ-Suc-iff: (An. f (Suc n)) ——ns ) ¢— (f ——ns 1)
proof



THEORY “HSEQ” 107

assume *: f —ng [
show (An. f(Suc n)) ——ns |
proof (rule NSLIMSEQ-I)
fix N
assume N € HNatInfinite
then have (xfx f) (N + 1) = star-of |
by (simp add: HNatInfinite-add NSLIMSEQ-D x)
then show (xfx (An. f (Suc n))) N =~ star-of |
by (simp add: starfun-shift-one)
qged
next
assume *: (An. f(Suc n)) ——ng |
show f —— N
proof (rule NSLIMSEQ-I)
fix N
assume N € HNatInfinite
then have (xfx (An. f (Suc n))) (N — 1) = star-of |
using * by (simp add: HNatInfinite-diff NSLIMSEQ-D)
then show (xfx f) N =~ star-of |
by (simp add: <N € HNatlInfiniter one-le-HNatInfinite starfun-shift-one)
qged
qed

10.1.1 Equivalence of LIMSEQ and NSLIMSEQ

lemma LIMSEQ-NSLIMSEQ:
assumes X: X —— L
shows X —— g L
proof (rule NSLIMSEQ-I)
fix N
assume N: N € HNatInfinite
have starfun X N — star-of L € Infinitesimal
proof (rule Infinitesimall2)
fix r :: real
assume 7: 0 < 7
from LIMSEQ-D [OF X r] obtain no where VY n>no. norm (Xn — L) < r ..
then have V n>star-of no. hnorm (starfun X n — star-of L) < star-of r
by transfer
then show hnorm (starfun X N — star-of L) < star-of v
using N by (simp add: star-of-le-HNatInfinite)
qed
then show starfun X N ~ star-of L
by (simp only: approz-def)
qed

lemma NSLIMSEQ-LIMSEQ:
assumes X: X —— g L
shows X —— L

proof (rule LIMSEQ-I)
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fix r :: real
assume r: 0 < r
have Jno. Vn>no. hnorm (starfun X n — star-of L) < star-of r
proof (intro exI alll impl)
fix n
assume whn < n
with HNatInfinite-whn have n € HNatInfinite
by (rule HNatInfinite-upward-closed)
with X have starfun X n =~ star-of L
by (rule NSLIMSEQ-D)
then have starfun X n — star-of L € Infinitesimal
by (simp only: approz-def)
then show hnorm (starfun X n — star-of L) < star-of r
using r by (rule InfinitesimalD2)
qed
then show Jno. Vn>no. norm (Xn — L) <r
by transfer
qed

theorem LIMSEQ-NSLIMSEQ-iff: f —— L +— f ——Nns L
by (blast intro: LIMSEQ-NSLIMSEQ NSLIMSEQ-LIMSEQ)

10.1.2 Derived theorems about NSLIMSEQ

We prove the NS version from the standard one, since the NS proof seems
more complicated than the standard one above!

lemma NSLIMSEQ-norm-zero: (An. norm (X n)) ——ng 0 ¢— X —— N5
0
by (simp add: LIMSEQ-NSLIMSEQ-iff [symmetric] tendsto-norm-zero-iff)

lemma NSLIMSEQ-rabs-zero: (An. |fn|]) ——ns 0 «— f ——— s (0::real)
by (simp add: LIMSEQ-NSLIMSEQ-iff [symmetric] tendsto-rabs-zero-iff)

Generalization to other limits.

lemma NSLIMSEQ-imp-rabs: f ——ns | = (An. |f n|]) ——ns ||
for [ :: real
by (simp add: NSLIMSEQ-def) (auto intro: approx-hrabs simp add: starfun-abs)

lemma NSLIMSEQ-inverse-zero: ¥V y::real. AN. ¥ n > N. y < fn = (An. inverse
(fn)) ——ns 0
by (simp add: LIMSEQ-NSLIMSEQ-iff [symmetric] LIMSEQ-inverse-zero)

lemma NSLIMSEQ-inverse-real-of-nat: (An. inverse (real (Suc n))) ——ng 0
by (simp add: LIMSEQ-NSLIMSEQ-iff [symmetric] LIMSEQ-inverse-real-of-nat
del: of-nat-Suc)

lemma NSLIMSEQ-inverse-real-of-nat-add: (An. r + inverse (real (Suc n))) ——nNs
r



THEORY “HSEQ” 109

by (simp add: LIMSEQ-NSLIMSEQ-iff [symmetric] LIMSEQ-inverse-real-of-nat-add
del: of-nat-Suc)

lemma NSLIMSEQ-inverse-real-of-nat-add-minus: (An. r + — inverse (real (Suc
n))) ——nNs T

using LIMSFEQ-inverse-real-of-nat-add-minus by (simp add: LIMSEQ-NSLIMSEQ-iff
[symmetric])

lemma NSLIMSEQ-inverse-real-of-nat-add-minus-mult:
(An. r % (1 + — inverse (real (Suc n)))) ——nNs T
using LIMSEQ-inverse-real-of-nat-add-minus-mult
by (simp add: LIMSEQ-NSLIMSEQ-iff [symmetric])

10.2 Convergence

lemma nsliml: X ——xng L = nslim X = L
by (simp add: nslim-def) (blast intro: NSLIMSEQ-unique)

lemma lim-nslim-iff: lim X = nslim X
by (simp add: lim-def nslim-def LIMSEQ-NSLIMSEQ-iff)

lemma NSconvergentD: NSconvergent X =—> 3 L. X ——ng L
by (simp add: NSconvergent-def)

lemma NSconvergentl: X ——— g L = NSconvergent X
by (auto simp add: NSconvergent-def)

lemma convergent-NSconvergent-iff: convergent X = NSconvergent X

by (simp add: convergent-def NSconvergent-def LIMSEQ-NSLIMSEQ-iff)

lemma NSconvergent-NSLIMSEQ-iff: NSconvergent X «+— X ——— g nslim X
by (auto intro: thel NSLIMSEQ-unique simp add: NSconvergent-def nslim-def)

10.3 Bounded Monotonic Sequences

lemma NSBseqD: NSBseq X = N € HNatInfinite = ( xfx X) N € HFinite
by (simp add: NSBseq-def)

lemma Standard-subset-HFinite: Standard C HFinite
by (auto simp: Standard-def)

lemma NSBseqD2: NSBseq X = ( xfx X) N € HFinite
using HNatInfinite-def NSBseq-def Nats-eq-Standard Standard-starfun Standard-subset-HFinite
by blast

lemma NSBseql: ¥V N € HNatInfinite. ( #f* X) N € HFinite = NSBseq X
by (simp add: NSBseq-def)

The standard definition implies the nonstandard definition.
lemma Bseq-NSBseq: Bseq X =—> NSBseq X
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unfolding NSBseg-def
proof safe
assume X: Bseq X
fix N
assume N: N € HNatInfinite
from BseqD [OF X] obtain K where ¥V n. norm (X n) < K
by fast
then have VY N. hnorm (starfun X N) < star-of K
by transfer
then have hnorm (starfun X N) < star-of K
by simp
also have star-of K < star-of (K + 1)
by simp
finally have 3 z€Reals. hnorm (starfun X N) < z
by (rule bexl) simp
then show starfun X N € HF'inite
by (simp add: HFinite-def)
qed

The nonstandard definition implies the standard definition.

lemma SReal-less-omega: 1 € R = r < w
using HInfinite-omega
by (simp add: HInfinite-def) (simp add: order-less-imp-le)

lemma NSBseq-Bseq: NSBseq X =—> Bseq X
proof (rule ccontr)
let on = AK. LEAST n. K < norm (X n)
assume NSBseq X
then have finite: ( *f* X) (( *f* ?n) w) € HFinite
by (rule NSBseqD2)
assume — Bseq X
then have VK>0. 3n. K < norm (X n)
by (simp add: Bseq-def linorder-not-le)
then have VK>0. K < norm (X (?n K))
by (auto intro: Leastl-er)
then have VK>0. K < hnorm (( *f* X) (( xf* ?n) K))
by transfer
then have w < hnorm (( *#f* X) (( xf* ?n) w))
by simp
then have VreR. r < hnorm (( xfx X) (( *f* %n) w))
by (simp add: order-less-trans [OF SReal-less-omegal))
then have ( xf*x X) (( *f* ?n) w) € HInfinite
by (simp add: HInfinite-def)
with finite show Fulse
by (simp add: HFinite-HInfinite-iff)
qed

110

Equivalence of nonstandard and standard definitions for a bounded se-

quence.



THEORY “HSEQ” 111

lemma Bseq-NSBseq-iff: Bseq X = NSBseq X
by (blast intro!: NSBseq-Bseq Bseq-NSBseq)

A convergent sequence is bounded: Boundedness as a necessary condition
for convergence. The nonstandard version has no existential, as usual.

lemma NSconvergent-NSBseq: NSconvergent X =—> NSBseq X
by (simp add: NSconvergent-def NSBseq-def NSLIMSEQ-def)
(blast intro: HFinite-star-of approx-sym approx-HFinite)

Standard Version: easily now proved using equivalence of NS and standard
definitions.

lemma convergent-Bseq: convergent X —> Bseq X
for X :: nat = 'b::real-normed-vector
by (simp add: NSconvergent-NSBseq convergent-NSconvergent-iff Bseq-NSBseq-iff)

10.3.1 Upper Bounds and Lubs of Bounded Sequences

lemma NSBseq-isUb: NSBseq X = 3 U::real. isUb UNIV {z. In. X n=2z} U
by (simp add: Bseq-NSBseq-iff [symmetric] Bseq-isUb)

lemma NSBseg-isLub: NSBseq X =—> 3 U::real. isLub UNIV {z. In. Xn=z} U
by (simp add: Bseq-NSBseq-iff [symmetric] Bseq-isLub)

10.3.2 A Bounded and Monotonic Sequence Converges

The best of both worlds: Easier to prove this result as a standard theorem
and then use equivalence to "transfer" it into the equivalent nonstandard
form if needed!

lemma Bmonoseq-NSLIMSEQ: ¥ i k in sequentially. Xk=Xm = X —— g
Xm

unfolding LIMSEQ-NSLIMSEQ-iff [symmetric]

by (simp add: eventually-mono eventually-nhds-z-imp-z filterlim-iff’)

lemma NSBseqg-mono-NSconvergent: NSBseq X = Vm. ¥Yn > m. X m < X n
= NSconvergent X
for X :: nat = real
by (auto intro: Bseg-mono-convergent
simp: convergent-NSconvergent-iff [symmetric] Bseq-NSBseq-iff [symmetric])

10.4 Cauchy Sequences

lemma NSCauchyl:

(AM N. M € HNatInfinite = N € HNatInfinite = starfun X M = starfun X
N) = NSCauchy X

by (simp add: NSCauchy-def)

lemma NSCauchyD:
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NSCauchy X = M € HNatInfinite = N € HNatInfinite = starfun X M =~

starfun X N
by (simp add: NSCauchy-def)

10.4.1 Equivalence Between NS and Standard

lemma Cauchy-NSCauchy:
assumes X: Cauchy X
shows NSCauchy X
proof (rule NSCauchyl)
fix M
assume M: M € HNatInfinite
fix N
assume N: N € HNatInfinite
have starfun X M — starfun X N € Infinitesimal
proof (rule Infinitesimall2)
fix r :: real
assume 7: 0 < 7

from CauchyD [OF X r] obtain k where Vm>k. Vn>k. norm (X m — X n)

<7r..

then have YV m>star-of k. V n>star-of k. hnorm (starfun X m — starfun X n)

< star-of r
by transfer

then show hnorm (starfun X M — starfun X N) < star-of r

using M N by (simp add: star-of-le-HNatInfinite)
qed
then show starfun X M ~ starfun X N
by (simp only: approz-def)
qed

lemma NSCauchy-Cauchy:
assumes X: NSCauchy X
shows Cauchy X

proof (rule Cauchyl)
fix r :: real
assume r: 0 < r

have k. Vm>k. Vn>k. hnorm (starfun X m — starfun X n) < star-of r

proof (intro exI alll impl)

fix M

assume whn < M

with HNatInfinite-whn have M: M € HNatInfinite
by (rule HNatInfinite-upward-closed)

fix N

assume whn < N

with HNatInfinite-whn have N: N € HNatInfinite
by (rule HNatInfinite-upward-closed)

from X M N have starfun X M =~ starfun X N
by (rule NSCauchyD)

then have starfun X M — starfun X N € Infinitesimal
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by (simp only: approz-def)
then show hnorm (starfun X M — starfun X N) < star-of r
using r by (rule InfinitesimalD2)
qed
then show k. Vm>k. Vn>k. norm (X m — X n) <r
by transfer
qed

theorem NSCauchy-Cauchy-iff: NSCauchy X = Cauchy X
by (blast intro!: NSCauchy-Cauchy Cauchy-NSCauchy)

10.4.2 Cauchy Sequences are Bounded

A Cauchy sequence is bounded — nonstandard version.

lemma NSCauchy-NSBseq: NSCauchy X =—> NSBseq X
by (simp add: Cauchy-Bseq Bseq-NSBseq-iff [symmetric] NSCauchy-Cauchy-iff)

10.4.3 Cauchy Sequences are Convergent

Equivalence of Cauchy criterion and convergence: We will prove this using
our NS formulation which provides a much easier proof than using the stan-
dard definition. We do not need to use properties of subsequences such as
boundedness, monotonicity etc... Compare with Harrison’s corresponding
proof in HOL which is much longer and more complicated. Of course, we do
not have problems which he encountered with guessing the right instantia-
tions for his ’espsilon-delta’ proof(s) in this case since the NS formulations
do not involve existential quantifiers.

lemma NSconvergent-NSCauchy: NSconvergent X = NSCauchy X
by (simp add: NSconvergent-def NSLIMSEQ-def NSCauchy-def) (auto intro: ap-
proz-trans2)

lemma real-NSCauchy-NSconvergent:
fixes X :: nat = real
assumes NSCauchy X shows NSconvergent X
unfolding NSconvergent-def NSLIMSEQ-def
proof —
have ( *f* X) whn € HF'inite
by (simp add: NSBseqD2 NSCauchy-NSBseq assms)
moreover have V Ne HNatInfinite. ( xfx X) whn =~ ( +fx X) N
using HNatInfinite-whn NSCauchy-def assms by blast
ultimately show 3 L. V Ne HNatInfinite. ( xf* X) N = hypreal-of-real L
by (force dest!: st-part-Ex simp add: SReal-iff intro: approz-transd)
qged

lemma NSCauchy-NSconvergent: NSCauchy X = NSconvergent X
for X :: nat = ‘a::banach
using Cauchy-convergent NSCauchy-Cauchy convergent-NSconvergent-iff by auto
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lemma NSCauchy-NSconvergent-iff: NSCauchy X = NSconvergent X
for X :: nat = ‘a::banach
by (fast intro: NSCauchy-NSconvergent NSconvergent-NSCauchy)

10.5 Power Sequences

The sequence z" tends to 0 if 0 < z and = < 1. Proof will use (NS) Cauchy
equivalence for convergence and also fact that bounded and monotonic se-
quence converges.

We now use NS criterion to bring proof of theorem through.

lemma NSLIMSEQ-realpow-zero:
fixes z :: real
assumes 0 < zx < I shows (An. z " n) ——ng 0
proof —
have ( *f* (7) ) N = 0
if N: N € HNatInfinite and z: NSconvergent ((7) z) for N
proof —
have hypreal-of-real x pow N =~ hypreal-of-real z pow (N + 1)
by (metis HNatInfinite-add N NSCauchy-NSconvergent-iff NSCauchy-def star-
fun-pow x)
moreover obtain L where L: hypreal-of-real x pow N =~ hypreal-of-real L
using NSconvergentD [OF z] N by (auto simp add: NSLIMSEQ-def star-
fun-pow)
ultimately have hypreal-of-real x pow N =~ hypreal-of-real L * hypreal-of-real
x
by (simp add: approz-mult-subst-star-of hyperpow-add)
then have hypreal-of-real L =~ hypreal-of-real L % hypreal-of-real x
using L approz-trans3 by blast
then show ?thesis
by (metis L <x < 1) hyperpow-def less-irrefl mult.right-neutral mult-left-cancel
star-of-approz-iff star-of-mult star-of-simps(9) starfun2-star-of)
qed
with assms show ?thesis
by (force dest!: convergent-realpow simp add: NSLIMSEQ-def convergent-NSconvergent-iff)
qed

lemma NSLIMSEQ-abs-realpow-zero: |¢| < 1 = (An. |¢|] “n) ——ng 0
for c :: real
by (simp add: LIMSEQ-abs-realpow-zero LIMSEQ-NSLIMSEQ-iff [symmetric])

lemma NSLIMSEQ-abs-realpow-zero2: |c¢| < 1 = (An. ¢ " n) ——ns 0
for c :: real

by (simp add: LIMSEQ-abs-realpow-zero2 LIMSEQ-NSLIMSEQ-iff [symmetric])

end
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11 Finite Summation and Infinite Series for Hy-
perreals

theory HSeries
imports HSEQ
begin

definition sumhr :: hypnat X hypnat x (nat = real) = hypreal
where sumhr = (A(M,N.f). starfun2 (Am n. sum f {m..<n}) M N)

definition NSsums :: (nat = real) = real = bool (infixr (NSsums> 80)
where f NSsums s = (An. sum f {.<n}) ——ns s

definition NSsummable :: (nat = real) = bool
where NSsummable f <— (3s. f NSsums s)

definition NSsuminf :: (nat = real) = real
where NSsuminf f = (THE s. f NSsums s)

lemma sumhr-app: sumhr (M, N, f) = ( «f2% (Am n. sum f {m..<n})) M N
by (simp add: sumhr-def)

Base case in definition of sumr.

lemma sumhr-zero [simpl: Am. sumhr (m, 0, f) = 0
unfolding sumhr-app by transfer simp

Recursive case in definition of sumr.

lemma sumhr-if:
Am n. sumhr (m, n + 1, f) = (if n + 1 < m then 0 else sumhr (m, n, f) + (
«fx [f) n)

unfolding sumhr-app by transfer simp

lemma sumhr-Suc-zero [simpl: An. sumhr (n + 1, n, f) = 0
unfolding sumhr-app by transfer simp

lemma sumhr-eq-bounds [simpl: An. sumhr (n, n, f) = 0
unfolding sumhr-app by transfer simp

lemma sumhr-Suc [simp]: Am. sumhr (m, m + 1, f) = ( xfx f) m
unfolding sumhr-app by transfer simp

lemma sumhr-add-lbound-zero [simpl: Nk m. sumhr (m + k, k, f) = 0
unfolding sumhr-app by transfer simp

lemma sumhr-add: Am n. sumhr (m, n, f) + sumhr (m, n, g) = sumhr (m, n,
A fi+ gi)
unfolding sumhr-app by transfer (rule sum.distrib [symmetric])
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lemma sumhr-mult: Am n. hypreal-of-real v x sumhr (m, n, f) = sumhr (m, n,
An. T fn)
unfolding sumhr-app by transfer (rule sum-distrib-left)

lemma sumhr-split-add: An p. n < p = sumhr (0, n, f) + sumhr (n, p, f) =
sumhr (0, p, f)
unfolding sumhr-app by transfer (simp add: sum.atLeastLessThan-concat)

lemma sumhr-split-diff: n < p = sumhr (0, p, f) — sumhr (0, n, ) = sumhr

(n, p. f)
by (drule sumhr-split-add [symmetric, where f = f]) simp

lemma sumhr-hrabs: Am n. |sumhr (m, n, )| < sumhr (m, n, Ai. |fi])
unfolding sumhr-app by transfer (rule sum-abs)

Other general version also needed.

lemma sumhr-fun-hypnat-eq:
VMr.m<rAr<n—fr=gr) —
sumhr (hypnat-of-nat m, hypnat-of-nat n, f) =
sumhr (hypnat-of-nat m, hypnat-of-nat n, g)
unfolding sumhr-app by transfer simp

lemma sumhr-const: A\n. sumhr (0, n, A\i. r) = hypreal-of-hypnat n x hypreal-of-real
r
unfolding sumhr-app by transfer simp

lemma sumhr-less-bounds-zero [simp]: Am n. n < m = sumhr (m, n, f) = 0
unfolding sumhr-app by transfer simp

lemma sumhr-minus: Am n. sumhr (m, n, AXi. — fi) = — sumhr (m, n, f)
unfolding sumhr-app by transfer (rule sum-negf)

lemma sumhr-shift-bounds:
Am n. sumhr (m + hypnat-of-nat k, n + hypnat-of-nat k, f) =
sumhr (m, n, Mi. f (i + k))
unfolding sumhr-app by transfer (rule sum.shift-bounds-nat-ivl)

11.1 Nonstandard Sums

Infinite sums are obtained by summing to some infinite hypernatural (such
as whn).

lemma sumhr-hypreal-of-hypnat-omega: sumhr (0, whn, Ai. 1) = hypreal-of-hypnat
whn
by (simp add: sumhr-const)

lemma whn-eq-wml: hypreal-of-hypnat whn = w — 1
unfolding star-class-defs omega-def hypnat-omega-def of-hypnat-def star-of-def
by (simp add: starfun-star-n starfun2-star-n)
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lemma sumhr-hypreal-omega-minus-one: sumhr(0, whn, A\i. 1) = w — 1

by (simp add: sumhr-const whn-eq-wml)
lemma sumhr-minus-one-realpow-zero [simpl: AN. sumhr (0, N + N, Ai. (—1) ~
(i+1)=0

unfolding sumhr-app

by transfer (induct-tac N, auto)

lemma sumhr-interval-const:
(Vn.m < Sucn— fn=r) Am< ne=
sumhr (hypnat-of-nat m, hypnat-of-nat na, f) = hypreal-of-nat (na — m) x
hypreal-of-real T
unfolding sumhr-app by transfer simp

lemma starfunNat-sumr: AN. ( #f+ (An. sum f {0..<n})) N = sumhr (0, N, f)
unfolding sumhr-app by transfer (rule refl)

lemma sumhr-hrabs-approzx [simpl: sumhr (0, M, f) = sumhr (0, N, f) = |sumhr
(M, N, )| ~ 0

using linorder-less-linear [where z = M and y = N|

by (metis (no-types, lifting) abs-zero approz-hrabs approx-minus-iff approz-refl
approx-sym sumhr-eqg-bounds sumhr-less-bounds-zero sumhr-split-diff)

11.2 Infinite sums: Standard and NS theorems

lemma sums-NSsums-iff: f sums | <— f NSsums 1
by (simp add: sums-def NSsums-def LIMSEQ-NSLIMSEQ-iff)

lemma summable-NSsummable-iff: summable f <— NSsummable f
by (simp add: summable-def NSsummable-def sums-NSsums-iff)

lemma suminf-NSsuminf-iff: suminf f = NSsuminf f
by (simp add: suminf-def NSsuminf-def sums-NSsums-iff)

lemma NSsums-NSsummable: f NSsums | => NSsummable f
unfolding NSsums-def NSsummable-def by blast

lemma NSsummable-NSsums: NSsummable f = f NSsums (NSsuminf f)
unfolding NSsummable-def NSsuminf-def NSsums-def
by (blast intro: thel NSLIMSEQ-unique)

lemma NSsums-unique: f NSsums s => s = NSsuminf f
by (simp add: suminf-NSsuminf-iff [symmetric] sums-NSsums-iff sums-unique)

lemma NSseries-zero: ¥ m. n < Suc m — fm = 0 = f NSsums (sum f {..<n})
by (auto simp add: sums-NSsums-iff [symmetric] not-le[symmetric] introl: sums-finite)

lemma NSsummable-NSCauchy:
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NSsummable f <— (VM € HNatlnfinite. VN € HNatInfinite. |sumhr (M, N,
Pl = 0) (is ?L=?R)
proof —
have ?L = (V M€ HNatInfinite. Y N€ HNatInfinite. sumhr (0, M, f) ~ sumhr (0,
N, f))
by (auto simp add: summable-iff-convergent convergent-NSconvergent-iff NSCauchy-def
starfunNat-sumr
stmp flip: NSCauchy-NSconvergent-iff summable-NSsummable-iff atLeastOLessThan)
also have ... «+— ?R
by (metis approz-hrabs-zero-cancel approx-minus-iff approz-refl approx-sym
linorder-less-linear sumhr-hrabs-approx sumhr-split-diff)
finally show ?thesis .
qed

Terms of a convergent series tend to zero.

lemma NSsummable-NSLIMSEQ-zero: NSsummable f — f ———ng 0
by (metis HNatInfinite-add NSLIMSEQ-def NSsummable-NSCauchy approx-hrabs-zero-cancel
star-of-zero sumhr-Suc)

Nonstandard comparison test.

lemma NSsummable-comparison-test: AN. ¥V n. N < n — |fn| < g n = NSsummable
g = NSsummable f
by (metis real-norm-def summable-NSsummable-iff summable-comparison-test)

lemma NSsummable-rabs-comparison-test:
AN.Vn. N <n— |fn| < gn= NSsummable g = NSsummable (Ak. |f k|)
by (rule NSsummable-comparison-test) auto

end

12 Limits and Continuity (Nonstandard)

theory HLim

imports Star

abbrevs ———> = —[]—=nNs
begin

Nonstandard Definitions.

definition NSLIM :: (‘a::real-normed-vector = 'b::real-normed-vector) = 'a = b
= bool
(«(¢notation=<mixfic NSLIM» (-)/ —(-)/—=ns (-))» [60, 0, 60] 60)
where f —a—ys L +— (V. z # star-of a N x = star-of a — ( *f* f) z =
star-of L)

definition isNSCont :: ('a::real-normed-vector = 'b::real-normed-vector) = 'a =
bool
where — NS definition dispenses with limit notions
isNSCont f a «+— (Vy. y =~ star-of a — ( «fx f) y = star-of (f a))
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definition isNSUCont :: ('a::real-normed-vector = 'b::real-normed-vector) = bool
where isNSUCont f «— (Vo y. z =y — (*f* f) o~ ( xfx f) y)

12.1 Limits of Functions

lemma NSLIM-I: (Az. z # star-of a = z = star-of a = starfun f x ~ star-of
L) — f —a—nNs L
by (simp add: NSLIM-def)

lemma NSLIM-D: f —a—ngs L = x # star-of a = = ~ star-of a = starfun
fx =~ star-of L
by (simp add: NSLIM-def)

Proving properties of limits using nonstandard definition. The properties
hold for standard limits as well!

lemma NSLIM-mult: f —z—ns | = g —2—ns m = (Az. fz * g ) —2—Nsg
(I % m)

for [ m :: 'a::real-normed-algebra

by (auto simp add: NSLIM-def intro!: approz-mult-HFinite)

lemma starfun-scaleR [simp]: starfun (Az. f z xr g ©) = (A\z. scaleHR (starfun f

z) (starfun g x))
by transfer (rule refl)

lemma NSLIM-scaleR: f —z—ns = g —x—Nns m = (Az. fx *p gT) —T—Ng
(I xg m)
by (auto simp add: NSLIM-def introl: approz-scaleR-HF'inite)

lemma NSLIM-add: f —z—ns |l = g —a—nys m = (A\z. fz + gz) — 1N
(I + m)
by (auto simp add: NSLIM-def intro!: approz-add)

lemma NSLIM-const [simp]: (Az. k) —x—ngs k
by (simp add: NSLIM-def)

lemma NSLIM-minus: f —a—nys L = (Az. — fz) —a—ng —L
by (simp add: NSLIM-def)

lemma NSLIM-diff: f —x—nys ]l = g —2—=nys m = (Az. fz — g2) —2—N5
(I = m)
by (simp only: NSLIM-add NSLIM-minus diff-conv-add-uminus)

lemma NSLIM-add-minus: f —z—ns | = g —z2—ns m = (A\z. fz + — g 1)
—z—=ns (I + —m)
by (simp only: NSLIM-add NSLIM-minus)

lemma NSLIM-inverse: f —a—ns L = L # 0 = (Az. inverse (fz)) —a—ns
(inverse L)
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for L :: 'a::real-normed-div-algebra
unfolding NSLIM-def by (metis (no-types) star-of-approz-inverse star-of-simps(6)
starfun-inverse)

lemma NSLIM-zero:
assumes f: f —a—ng [
shows (Az. f(z) — 1) —a—ns 0
proof —
have (A\z. fz — 1) —a—Nns | — 1
by (rule NSLIM-diff [OF f NSLIM-const))
then show ?thesis by simp
qed

lemma NSLIM-zero-cancel:
assumes (Az. fo — ) —z—ng 0
shows f —x—ng [
proof —
have (A\z. fo — [+ 1) —z—ns 0 + 1
by (fast intro: assms NSLIM-const NSLIM-add)
then show ?thesis
by simp
qged

lemma NSLIM-const-eq:
fixes a :: 'a::real-normed-algebra-1
assumes (Az. k) —a—ng |
shows k = [
proof —
have — (A\z. k) —a—ng Lif k # 1
proof —
have star-of a + of-hypreal € ~ star-of a
by (simp add: approz-def)
then show ?thesis
using epsilon-not-zero that by (force simp add: NSLIM-def)
qed
with assms show ?thesis by metis
qed

lemma NSLIM-unique: f —a—ns | = f —a—>nys M —= [ =M
for a :: 'a::real-normed-algebra-1
by (drule (1) NSLIM-diff) (auto dest!: NSLIM-const-eq)

lemma NSLIM-mult-zero: [ —x—ns 0 = g —z—ns 0 = (Az. fz * g 1)
—x—ns 0

for f g :: 'a::real-normed-vector = 'b::real-normed-algebra

by (drule NSLIM-mult) auto

lemma NSLIM-self: (A\z. ) —a—nNs a
by (simp add: NSLIM-def)
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12.1.1 Equivalence of filterlim and NSLIM

lemma LIM-NSLIM:
assumes f: f —a— L
shows f —a—ng L
proof (rule NSLIM-I)
fix z
assume neq: r # star-of a
assume approz: & /= star-of a
have starfun f x — star-of L € Infinitesimal
proof (rule Infinitesimall2)
fix r :: real
assume 7: 0 < 7
from LIM-D [OF f r] obtain s
where s: 0 < s and less-r: \z. © # a = norm (z — a) < s = norm (fz
-L)<r
by fast
from less-r have less-r":
Nz. x # star-of a = hnorm (x — star-of a) < star-of s =
hnorm (starfun f x — star-of L) < star-of r
by transfer
from approx have x — star-of a € Infinitesimal
by (simp only: approz-def)
then have hnorm (z — star-of a) < star-of s
using s by (rule InfinitesimalD2)
with neq show hnorm (starfun f z — star-of L) < star-of r
by (rule less-r")
qed
then show starfun f x = star-of L
by (unfold approz-def)
qed

lemma NSLIM-LIM:
assumes f: f —a—ng L
shows f —a— L
proof (rule LIM-I)
fix r :: real
assume r: 0 < r
have 3s>0. Vz. © # star-of a A hnorm (x — star-of a) < s —
hnorm (starfun f x — star-of L) < star-of r
proof (rule exl, safe)
show 0 < ¢
by (rule epsilon-gt-zero)
next
fix z
assume neq: © # star-of a
assume hnorm (z — star-of a) < &
with Infinitesimal-epsilon have © — star-of a € Infinitesimal
by (rule hnorm-less-Infinitesimal)
then have z =~ star-of a
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by (unfold approz-def)
with f neq have starfun f z = star-of L
by (rule NSLIM-D)
then have starfun fz — star-of L € Infinitesimal
by (unfold approz-def)
then show hnorm (starfun fx — star-of L) < star-of r
using r by (rule InfinitesimalD2)
qed
then show 3s>0. V. z # a A norm (z — a) < s — norm (fz — L) < r
by transfer
qged

theorem LIM-NSLIM-iff: f —x— L +— f —z—pNgs L
by (blast intro: LIM-NSLIM NSLIM-LIM)

12.2 Continuity

lemma isNSContD: isNSCont f a = y =~ star-of a = ( *fx f) y ~ star-of (f a)
by (simp add: isNSCont-def)

lemma isNSCont-NSLIM: isNSCont f a = [ —a—ns (f a)
by (simp add: isNSCont-def NSLIM-def)

lemma NSLIM-isNSCont: f —a—ns (f a) = isNSCont f a
by (force simp add: isNSCont-def NSLIM-def)

NS continuity can be defined using NS Limit in similar fashion to standard
definition of continuity.

lemma isNSCont-NSLIM-iff: isNSCont f a +— f —a—ns (f a)
by (blast intro: isNSCont-NSLIM NSLIM-isNSCont)
Hence, NS continuity can be given in terms of standard limit.
lemma isNSCont-LIM-iff: (isNSCont f a) = (f —a— (f a))
by (simp add: LIM-NSLIM-iff isNSCont-NSLIM-iff)
Moreover, it’s trivial now that NS continuity is equivalent to standard con-
tinuity.
lemma isNSCont-isCont-iff: isNSCont f a «— isCont f a
by (simp add: isCont-def) (rule isNSCont-LIM-iff)
Standard continuity = NS continuity.
lemma isCont-isNSCont: isCont f a = isNSCont f a
by (erule isNSCont-isCont-iff |[THEN 4ffD2])
NS continuity = Standard continuity.

lemma isNSCont-isCont: isNSCont f a = isCont f a
by (erule isNSCont-isCont-iff [THEN iffD1])
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Alternative definition of continuity.

Prove equivalence between NS limits — seems easier than using standard
definition.

lemma NSLIM-at0-iff: f —a—ns L +— (Ah. f (a + h)) —0—ns L
proof
assume f —a—yg L
then show (M. f (a + h)) —0—ns L
by (simp add: NSLIM-def) (metis (no-types) add-cancel-left-right approz-add-left-iff
starfun-lambda-cancel)
next
assume *: (Ah. f (a + h)) —0—ns L
show f —a—Ng L
proof (clarsimp simp: NSLIM-def)
fix z
assume z # star-of a © ~ star-of a
then have (xfx (Ah. f (a + h))) (— star-of a + z) = star-of L
by (metis (no-types, lifting) * NSLIM-D add.right-neutral add-minus-cancel
approx-minus-iff2 star-zero-def)
then show (xfx f) z &~ star-of L
by (simp add: starfun-lambda-cancel)
qed
qed

lemma isNSCont-minus: isNSCont f a => isNSCont (Az. — fz) a
by (simp add: isNSCont-def)

lemma isNSCont-inverse: isNSCont f x = fx # 0 = isNSCont (A\z. inverse
(f2)) @

for f :: 'a::real-normed-vector = 'b::real-normed-div-algebra

using NSLIM-inverse NSLIM-isNSCont isNSCont-NSLIM by blast

lemma isNSCont-const [simp]: isNSCont (Az. k) a
by (simp add: isNSCont-def)

lemma isNSCont-abs [simp]: isNSCont abs a
for a :: real
by (auto simp: isNSCont-def intro: approx-hrabs simp: starfun-rabs-hrabs)

12.3 Uniform Continuity

lemma isNSUContD: isNSUCont f =z~ y = ( xf* f) s = ( xfx f) y
by (simp add: isNSUCont-def)

lemma isUCont-isNSUCont:
fixes [ :: 'a::real-normed-vector = 'b::real-normed-vector
assumes f: isUCont f
shows isNSUCont f
unfolding isNSUCont-def
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proof safe
fix zy :: 'a star
assume appror: T ~ y
have starfun fz — starfun fy € Infinitesimal
proof (rule Infinitesimall2)
fix r :: real
assume r: 0 < 7
with f obtain s where s: 0 < s
and less-r: Az y. norm (z — y) < s = norm (fz — fy) <r
by (auto simp add: isUCont-def dist-norm)
from less-r have less-r".
Nz y. hnorm (z — y) < star-of s = hnorm (starfun fz — starfun fy) <
star-of r
by transfer
from approz have x — y € Infinitesimal
by (unfold approz-def)
then have hnorm (z — y) < star-of s
using s by (rule InfinitesimalD2)
then show hnorm (starfun fx — starfun fy) < star-of r
by (rule less-r’)
qged
then show starfun fx =~ starfun fy
by (unfold approz-def)
qed

lemma isNSUCont-isUCont:
fixes [ :: 'a::real-normed-vector = 'b::real-normed-vector
assumes f: isNSUCont f
shows isUCont f
unfolding isUCont-def dist-norm
proof safe
fix r :: real
assume r: 0 < r
have 3s>0. Vz y. hnorm (z — y) < s — hnorm (starfun f x — starfun fy) <
star-of r
proof (rule exl, safe)
show 0 < ¢
by (rule epsilon-gt-zero)
next
fix zy :: 'a star
assume hnorm (z — y) < &
with Infinitesimal-epsilon have © — y € Infinitesimal
by (rule hnorm-less-Infinitesimal)
then have z =~ y
by (unfold approz-def)
with f have starfun fz ~ starfun fy
by (simp add: isNSUCont-def)
then have starfun fx — starfun fy € Infinitesimal
by (unfold approz-def)
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then show hnorm (starfun fx — starfun fy) < star-of r
using r by (rule InfinitesimalD2)
qed
then show 3s>0.Vz y. norm (z — y) < s — norm (fz — fy) <r
by transfer
qed

end

13 Differentiation (Nonstandard)

theory HDeriv
imports HLim
begin

Nonstandard Definitions.

definition nsderiv :: ['a::real-normed-field = 'a, 'a, 'a] = bool
(«(«notation=<mizfit NSDERIV»> NSDERIV (-)/ (-)/ :> (-))» [1000, 1000, 60]
60)

where NSDERIV fz :> D «—
(Vh € Infinitesimal — {0}. (( xf* f)(star-of x + h) — star-of (fz)) / h =~
star-of D)

definition NSdifferentiable :: ['a::real-normed-field = 'a, 'a] = bool
(infix] «NSdifferentiabler 60)
where [ NSdifferentiable x <— (3 D. NSDERIV fz :> D)

definition increment :: (real = real) = real = hypreal = hypreal
where increment fx h =
(SOME inc. f NSdifferentiable © A inc = ( xfx f) (hypreal-of-real z + h) —
hypreal-of-real (f x))

13.1 Derivatives

lemma DERIV-NS-iff: (DERIV fx :> D) +— (Ah. (f (x +h) — fz) / h) —0—nNs
D
by (simp add: DERIV-def LIM-NSLIM-iff)

lemma NS-DERIV-D: DERIV fx:> D = (Ah. (f (z+ h) — fz) / h) —0—=nNs
D
by (simp add: DERIV-def LIM-NSLIM-iff)

lemma Infinitesimal-of-hypreal:

z € Infinitesimal = (( *f* of-real) z::'a::real-normed-div-algebra star) € In-
finitesimal

by (metis Infinitesimal-of-hypreal-iff of-hypreal-def)

lemma of-hypreal-eq-0-iff: N\z. (( *f* of-real) z = (0::'a::real-algebra-1 star)) =
(z=10)
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by transfer (rule of-real-eq-0-iff)

lemma NSDeriv-unique:

assumes NSDERIV fz :> D NSDERIV fz :> E

shows NSDERIV fz :> D = NSDERIV fz:> F = D =F
proof —

have 3s. (s::'a star) € Infinitesimal — {0}

by (metis Diff-iff HDeriv.of-hypreal-eq-0-iff Infinitesimal-epsilon Infinitesi-

mal-of-hypreal epsilon-not-zero singletonD)

with assms show ?thesis

by (meson approz-trans3 nsderiv-def star-of-approz-iff)

qed

First NSDERIV in terms of NSLIM.

First equivalence.

lemma NSDERIV-NSLIM-iff: (NSDERIV fx :> D) +— (Ah. (f (z + h) — fz)
/ h) 70*)1\/5 D
by (auto simp add: nsderiv-def NSLIM-def starfun-lambda-cancel mem-infmal-iff)

Second equivalence.

lemma NSDERIV-NSLIM-iff2: (NSDERIV fz :> D) +— (A\z. (fz — fz) / (z —
.’17)) —IT—>NS D
by (simp add: NSDERIV-NSLIM-iff DERIV-LIM-iff LIM-NSLIM-iff [symmetric])

While we're at it!

lemma NSDERIV-iff2:
(NSDERIV fz :> D) +—s
(Vw. w # star-of A w = star-of v — (xfx (Az. (fz — fza) / (z — 2)) w=
star-of D)
by (simp add: NSDERIV-NSLIM-iff2 NSLIM-def)

lemma NSDERIVDS:

[NSDERIV fx :> D; u = hypreal-of-real 2] =

(xfx (M\z. fz — fz)) u= hypreal-of-real D x (u — hypreal-of-real )

unfolding NSDERIV-iff2

apply (case-tac u = hypreal-of-real x, auto)

by (metis (mono-tags, lifting) HF'inite-star-of Infinitesimal-ratio approz-def ap-
proz-minus-iff approz-mult-subst approz-star-of-HFinite approz-sym mult-zero-right
right-minus-eq)

lemma NSDERIVD/:

[NSDERIV fz :> D; h € Infinitesimal]

= ( *fx f)(hypreal-of-real © + h) — hypreal-of-real (f z) = hypreal-of-real D x

h

apply (clarsimp simp add: nsderiv-def)

apply (case-tac h = 0, simp)

by (meson DiffI Infinitesimal-approx Infinitesimal-ratio Infinitesimal-star-of-mult2
approx-star-of-HFinite singletonD)
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Differentiability implies continuity nice and simple "algebraic" proof.

lemma NSDERIV-isNSCont:
assumes NSDERIV fx :> D shows isNSCont f x
unfolding isNSCont-NSLIM-iff NSLIM-def
proof clarify
fix z’
assume z’ # star-of v ' =~ star-of x
then have m0: ' — star-of x € Infinitesimal — {0}
using bex-Infinitesimal-iff by auto
then have (( xfx f) o’ — star-of (fz)) / (¢’ — star-of z) =~ star-of D
by (metis <z’ = star-of x> add-diff-cancel-left’ assms bex-Infinitesimal-iff2 ns-
deriv-def)
then have (( xfx f) ' — star-of (fz)) / (z' — star-of z) € HFinite
by (metis approz-star-of-HFinite)
then show ( xfx f) 2’ ~ star-of (f z)
by (metis (no-types) Diff-iff Infinitesimal-ratio m0 bex-Infinitesimal-iff in-
sert-iff)
qed

Differentiation rules for combinations of functions follow from clear, straight-
forward, algebraic manipulations.

Constant function.

lemma NSDERIV-const [simp]: NSDERIV (Az. k) = :> 0
by (simp add: NSDERIV-NSLIM-iff)

Sum of functions- proved easily.

lemma NSDERIV-add:
assumes NSDERIV fz :> Da NSDERIV g x :> Db
shows NSDERIV (Az. fz + gz) z :> Da + Db
proof —
have ((Az. fz + g ) has-field-derivative Da + Db) (at x)
using assms DERIV-NS-iff NSDERIV-NSLIM-iff field-differentiable-add by
blast
then show ?thesis
by (simp add: DERIV-NS-iff NSDERIV-NSLIM-iff)
qed

Product of functions - Proof is simple.

lemma NSDERIV-mult:
assumes NSDERIV g x :> Db NSDERIV fz :> Da
shows NSDERIV (Az. fx x gz) z:> (Da x gzx) + (Db x fz)
proof —
have (f has-field-derivative Da) (at x) (g has-field-derivative Db) (at z)
using assms by (simp-all add: DERIV-NS-iff NSDERIV-NSLIM-iff)
then have ((Aa. f a * g a) has-field-derivative Da x g z + Db * fx) (at z)
using DERIV-mult by blast
then show ?thesis
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by (simp add: DERIV-NS-iff NSDERIV-NSLIM-iff)
qed

Multiplying by a constant.

lemma NSDERIV-cmult: NSDERIV fx :> D = NSDERIV (Az. ¢ x fz) z :>
cx D
unfolding times-divide-eq-right [symmetric] NSDERIV-NSLIM-iff
minus-mult-right right-diff-distrib [symmetric]
by (erule NSLIM-const [THEN NSLIM-mult))

Negation of function.

lemma NSDERIV-minus: NSDERIV fx :> D => NSDERIV (Az. — fz) > —
D
proof (simp add: NSDERIV-NSLIM-iff)
assume (M. (f (x + h) — fz) / h) —0—Nns D
then have deriv: (Ah. — ((f(z+h) — fz) / h)) —0—Nns — D
by (rule NSLIM-minus)
haveVh. — ((f (z + h) — f2) /h)=(—f(x+h)+ fz)/ h
by (simp add: minus-divide-left)
with deriv have (Ah. (— f (z + h) + fx) / h) —=0—ns — D
by simp
then show (Mh. (f (z + h) — fz) / h) —0—Nns D = (Mh. (fz — f (z + h))
/ h) —0—ns — D
by simp
qed

Subtraction.

lemma NSDERIV-add-minus:

NSDERIV fz :> Da = NSDERIV g x :> Db = NSDERIV (Az. fz + — ¢
z) ¢ > Da + — Db

by (blast dest: NSDERIV-add NSDERIV-minus)

lemma NSDERIV-diff:

NSDERIV fx :> Da => NSDERIV g z :> Db = NSDERIV (Az. fz — g x)
z:> Da — Db

using NSDERIV-add-minus [of f © Da g Db] by simp

Similarly to the above, the chain rule admits an entirely straightforward
derivation. Compare this with Harrison’s HOL proof of the chain rule,
which proved to be trickier and required an alternative characterisation of
differentiability- the so-called Carathedory derivative. Our main problem is
manipulation of terms.

13.2 Lemmas
lemma NSDERIV-zero:

[NSDERIV g x :> D; ( xfx g) (star-of x + y) = star-of (g x); y € Infinitesimal;
y # 0]



THEORY “HDeriv” 129

= D=0
by (force simp add: nsderiv-def)

Can be proved differently using NSLIM-isCont-iff.

lemma NSDERIV-approx:
NSDERIV fz :> D = h € Infinitesimal = h # 0 =
( xfx f) (star-of x + h) — star-of (fz) ~ 0
by (meson Diffl Infinitesimal-ratio approz-star-of-HFinite mem-infmal-iff ns-
deriv-def singletonD)

From one version of differentiability

lemma NSDERIVD1:

[NSDERIV f (g z) :> Da;

(+f+ g) (star-of & + y) # star-of (g 2);

(«f* g) (star-of z + y) = star-of (g )]

= (( *f* f) (( xf* g) (star-of x + y)) —
StaT-;fD(f (9 2) / ((#f* g) (star-of x + y) — star-of (g z)) =~
star-of Da

by (auto simp add: NSDERIV-NSLIM-iff2 NSLIM-def)

From other version of differentiability
fe+b)-fz ———"———r— — —————— ~ Db h

lemma NSDERIVDZ2: [| NSDERIV g x :> Db; y € Infinitesimal; y # 0 |]
—=> ((#f% g) (star-of (x) + y) — star-of(g 2)) / y
~ star-of (Db)
by (auto simp add: NSDERIV-NSLIM-iff NSLIM-def mem-infmal-iff starfun-lambda-cancel)

This proof uses both definitions of differentiability.

lemma NSDERIV-chain:

NSDERIV f (g x) :> Da = NSDERIV g z :> Db = NSDERIV (f o g) = :>
Da * Db

using DERIV-NS-iff DERIV-chain NSDERIV-NSLIM-iff by blast

Differentiation of natural number powers.

lemma NSDERIV-Id [simp]: NSDERIV (A\z. x) x :> 1
by (simp add: NSDERIV-NSLIM-iff NSLIM-def del: divide-self-if)

lemma NSDERIV-cmult-Id [simp]: NSDERIV ((x) ¢) © :> ¢
using NSDERIV-Id [THEN NSDERIV-cmult] by simp

lemma NSDERIV-inverse:
fixes x :: 'a::real-normed-field
assumes z # () — can’t get rid of x # 0 because it isn’t continuous at zero
shows NSDERIV (Az. inverse z) x :> — (inverse x ~ Suc (Suc 0))

proof —

{
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fix h :: 'a star
assume h-Inf: h € Infinitesimal
from this assms have not-0: star-of © + h # 0
by (rule Infinitesimal-add-not-zero)
assume h # 0
from h-Inf have h x star-of x € Infinitesimal
by (rule Infinitesimal-HFinite-mult) simp
with assms have inverse (— (h * star-of z) + — (star-of % star-of x)) =~
inverse (— (star-of x x star-of x))
proof —
have — (h x star-of x) + — (star-of x x star-of x) = — (star-of x * star-of x)
using <h * star-of z € Infinitesimaly assms bez-Infinitesimal-iff by fastforce
then show ?thesis
by (metis assms mult-eq-0-iff neg-equal-0-iff-equal star-of-approz-inverse
star-of-minus star-of-mult)
qed
moreover from not-0 <h # 0> assms
have inverse (— (h x star-of ) + — (star-of x x star-of z))
= (inverse (star-of x + h) — inverse (star-of x)) / h
by (simp add: division-ring-inverse-diff inverse-mult-distrib [symmetric]
inverse-minus-eq [symmetric] algebra-simps)
ultimately have (inverse (star-of x + h) — inverse (star-of z)) / h ~
— (inverse (star-of x) x inverse (star-of x))
using assms by simp
}
then show ?thesis by (simp add: nsderiv-def)
qged

13.2.1 Equivalence of NS and Standard definitions

lemma divideR-eq-divide: x [r y =z / y
by (simp add: divide-inverse mult.commute)

Now equivalence between NSDERIV and DERIV.

lemma NSDERIV-DERIV-iff: NSDERIV fz :> D +<— DERIV fx :> D
by (simp add: DERIV-def NSDERIV-NSLIM-iff LIM-NSLIM-iff)

NS version.

lemma NSDERIV-pow: NSDERIV (Az. z ~n) z :> real n x (z = (n — Suc 0))
by (simp add: NSDERIV-DERIV-iff DERIV-pow)

Derivative of inverse.

lemma NSDERIV-inverse-fun:
NSDERIV fzx:>d = fz # 0 =
NSDERIV (Az. inverse (f z)) x :> (— (d * inverse (f x ~ Suc (Suc 0))))
for z :: ‘a::{real-normed-field}
by (simp add: NSDERIV-DERIV-iff DERIV-inverse-fun del: power-Suc)

Derivative of quotient.
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lemma NSDERIV-quotient:
fixes = :: 'a::real-normed-field
shows NSDERIV fz :> d = NSDERIV gz :> e = gz # (0 =
NSDERIV (My. fy/gy) x> (d*xgx — (exfx))/ (9z~ Suc (Suc 0))
by (simp add: NSDERIV-DERIV-iff DERIV-quotient del: power-Suc)

lemma CARAT-NSDERIV:

NSDERIV fz > 1= 3g. V2. fz—fzx =gz (2 —x)) NisNSCont gz A g
x=1

by (simp add: CARAT-DERIV NSDERIV-DERIV-iff isNSCont-isCont-iff)

lemma hypreal-eg-minus-iff3: c =y + 2z +—zc+ — 2=y
for x y z :: hypreal
by auto

lemma CARAT-DERIVD:
assumes all: Vz. fz — fz =gz * (2 — 2)
and nsc: isNSCont g z
shows NSDERIV fz :> gz
proof —
from nsc have Vw. w # star-of © A w ~ star-of vt —
(xfx g) w* (w — star-of ) / (w — star-of z) = star-of (g x)
by (simp add: isNSCont-def)
with all show ?thesis
by (simp add: NSDERIV-iff2 starfun-if-eq cong: if-cong)
qged

13.2.2 Differentiability predicate

lemma NSdifferentiableD: f NSdifferentiable t = 3 D. NSDERIV fz :> D
by (simp add: NSdifferentiable-def)

lemma NSdifferentiablel: NSDERIV fx :> D = f NSdifferentiable z
by (force simp add: NSdifferentiable-def)

13.3 (NS) Increment

lemma incrementl:

f NSdifferentiable 1 —>
increment f x h = ( xfx f) (hypreal-of-real x + h) — hypreal-of-real (f x)
by (simp add: increment-def)

lemma incrementl?2:
NSDERIV fa :> D —>
increment f x h = ( xf* f) (hypreal-of-real x + h) — hypreal-of-real (f z)
by (erule NSdifferentiable] [THEN incrementl])

The Increment theorem — Keisler p. 65.

lemma increment-thm:
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assumes NSDERIV fx :> D h € Infinitesimal h # 0

shows Je € Infinitesimal. increment f x h = hypreal-of-real D x h + e x h
proof —

have inc: increment fx h = ( xfx f) (hypreal-of-real x + h) — hypreal-of-real (f

z)
using assms(1) incrementI2 by auto
have (( xfx f) (hypreal-of-real x + h) — hypreal-of-real (f z)) / h = hypreal-of-real
D
by (simp add: NSDERIVD2 assms)
then obtain y where y € Infinitesimal
(( xfx f) (hypreal-of-real x + h) — hypreal-of-real (f )) / h = hypreal-of-real D
+y
by (metis bex-Infinitesimal-iff2)
then have increment f x h / h = hypreal-of-real D + y
by (metis inc)
then show ?thesis
by (metis (no-types) <y € Infinitesimaly <h # 0» distrib-right mult.commaute
nonzero-mult-div-cancel-left times-divide-eq-right)
qed

lemma increment-approz-zero: NSDERIV fz :> D —= h~ 0 = h # (0 =

increment fx h = 0
by (simp add: NSDERIV-approx incrementI2 mem-infmal-iff)

end

14 Nonstandard Extensions of Transcendental Func-
tions

theory HTranscendental
imports Complex-Main HSeries HDeriv
begin

definition
exphr :: real = hypreal where
— define exponential function using standard part
exphr x = st(sumhr (0, whn, An. inverse (fact n) * (z ~n)))

definition
sinhr :: real = hypreal where
sinhr x = st(sumhr (0, whn, An. sin-coeff n x x ~ n))

definition
coshr :: real = hypreal where
coshr © = st(sumhr (0, whn, An. cos-coeff n x x ~ n))
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14.1 Nonstandard Extension of Square Root Function

lemma STAR-sqrt-zero [simpl: ( xf* sqrt) 0 = 0
by (simp add: starfun star-n-zero-num)

lemma STAR-sqrt-one [simp]: ( xf* sqrt) 1 = 1
by (simp add: starfun star-n-one-num)

lemma hypreal-sqri-pow2-iff: (( «f* sqrt)(z) ~ 2 = z) = (0 < x)
proof (cases x)
case (star-n X)
then show ?thesis
by (simp add: star-n-le star-n-zero-num starfun hrealpow star-n-eq-iff del:
hpowr-Suc power-Suc)
qed

lemma hypreal-sqri-gt-zero-pow2: N\z. 0 < x = ( xfx sqrt) (z) "2 ==z
by transfer simp

lemma hypreal-sqri-pow2-gt-zero: 0 < x = 0 < ( *fx sqrt) (z) ~ 2
by (frule hypreal-sqrt-gt-zero-pow2, auto)

lemma hypreal-sqri-not-zero: 0 < © = ( *fx sqrt) (z) # 0
using hypreal-sqrt-gt-zero-pow2 by fastforce

lemma hypreal-inverse-sqrt-pow?2:
0 < x = inverse (( xfx sqrt)(z)) ~ 2 = inverse x
by (simp add: hypreal-sqrt-gt-zero-pow?2 power-inverse)

lemma hypreal-sqrt-mult-distrib:
Az y. [0 <z 0 <y] =
(afs sqrt)(awy) = ( #f+ sqrt)(@) * (f sqrt)(y)
by transfer (auto intro: real-sqrt-mult)

lemma hypreal-sqrt-mult-distrib2:
[0<z; 0<y] = («f* sqrt)(zxy) = ( xfx sqrt)(z) = ( =fx sqrt)(y)
by (auto intro: hypreal-sqrt-mult-distrib simp add: order-le-less)

lemma hypreal-sqri-approz-zero [simpl:
assumes (0 <
shows (( xf* sqrt) z =~ 0) +— (z = 0)
proof —
have ( *f* sqrt) z € Infinitesimal <— ((xf* sqrt) )% € Infinitesimal
by (metis Infinitesimal-hrealpow pos2 power2-eq-square Infinitesimal-square-iff)
also have ... «+— z € Infinitesimal
by (simp add: assms hypreal-sqrt-gt-zero-pow?2)
finally show ?thesis
using mem-infmal-iff by blast
qed
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lemma hypreal-sqri-approz-zero2 [simp):
0 < 2= ((+f+ sqrt)(z) ~ 0) = (z ~ 0)
by (auto simp add: order-le-less)

lemma hypreal-sqri-gt-zero: Az. 0 < © = 0 < ( xfx* sqrt)(z)
by transfer (simp add: real-sqrt-gt-zero)

lemma hypreal-sqri-ge-zero: 0 < © = 0 < ( xfx sqrt)(z)
by (auto intro: hypreal-sqrt-gt-zero simp add: order-le-less)

lemma hypreal-sqrt-lessl:

Nz u. [0 < u; x < w?] = (*f* sqrt) z < u
proof transfer

show Az u. [0 < u; 2 < v?] = sqrtz < u

by (metis less-le real-sqrt-less-iff real-sqrt-pow?2 real-sqrt-power)
qed

lemma hypreal-sqrt-hrabs [simp]: N\z. ( *xf* sqrt)(z?) = |z
by transfer simp

lemma hypreal-sqrt-hrabs2 [simp]: Nz. ( *f* sqrt)(z*z) = ||
by transfer simp

lemma hypreal-sqrt-hyperpow-hrabs [simp]:

Nz. ( #fx sqrt)(z pow (hypnat-of-nat 2)) = |z
by transfer simp

lemma star-sqrt-HFinite: [z € HF'inite; 0 < z] = ( *f* sqrt) * € HFinite
by (metis HFinite-square-iff hypreal-sqri-pow2-iff power2-eq-square)

lemma st-hypreal-sqrt:
assumes x € HFinite 0 < x
shows st(( *fx sqrt) ©) = ( xfx sqrt)(st x)
proof (rule power-inject-base)
show st ((xf* sqrt) ) ~ Suc 1 = (xfx sqrt) (st x) ~ Suc 1
using assms hypreal-sqrt-pow2-iff |of ]
by (metis HFinite-square-iff hypreal-sqrt-hrabs2 power2-eq-square st-hrabs st-mult)
show 0 < st ((xf* sqrt) z)
by (simp add: assms hypreal-sqrt-ge-zero st-zero-le star-sqrt-HF'inite)
show 0 < (xfx sqrt) (st )
by (simp add: assms hypreal-sqrt-ge-zero st-zero-le)
qged

lemma hypreal-sqrt-sum-squares-gel [simpl: Nz y. z < ( xf* sqrt)(z? + 3?)
by transfer (rule real-sqrt-sum-squares-gel)

lemma HFinite-hypreal-sqrt-imp-HFinite:
[0 < z; ( xf* sqrt) © € HFinite] = = € HFinite
by (metis HFinite-mult hypreal-sqri-pow2-iff power2-eq-square)
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lemma HF'inite-hypreal-sqrt-iff [simp]:
0 <z = (( xf* sqrt) x € HFinite) = (z € HFinite)
by (blast intro: star-sqrt-HFinite HFinite-hypreal-sqrt-imp-HFinite)

lemma Infinitesimal-hypreal-sqrt:
[0 < x; x € Infinitesimal] = ( *f* sqrt) x € Infinitesimal
by (simp add: mem-infmal-iff)

lemma Infinitesimal-hypreal-sqrt-imp-Infinitesimal:
[0 < z; ( xf* sqrt) x € Infinitesimal] = x € Infinitesimal
using hypreal-sqrt-approz-zero2 mem-infmal-iff by blast

lemma Infinitesimal-hypreal-sqri-iff [simp):
0 <z = (( *fx sqrt) x € Infinitesimal) = (x € Infinitesimal)
by (blast intro: Infinitesimal-hypreal-sqrt-imp-Infinitesimal Infinitesimal-hypreal-sqrt)

lemma HInfinite-hypreal-sqrt:
[0 < z; x € HInfinite] = ( *fx sqrt) x € HInfinite
by (simp add: HInfinite-HFinite-iff)

lemma HlInfinite-hypreal-sqrt-imp-HInfinite:
[0 < x; ( xf* sqrt) x € HInfinite] = x € HInfinite
using HF'inite-hypreal-sqrt-iff HInfinite-HFinite-iff by blast

lemma Hlinfinite-hypreal-sqrt-iff [simp]:
0 < x = (( xf* sqrt) x € HInfinite) = (z € Hlnfinite)
by (blast intro: HInfinite-hypreal-sqrt HInfinite-hypreal-sqrt-imp-HInfinite)

lemma HFinite-exp [simp):

sumhr (0, whn, An. inverse (fact n) x © ~ n) € HFinite

unfolding sumhr-app star-zero-def starfun2-star-of atLeastOLessThan

by (metis NSBseqD2 NSconvergent-NSBseq convergent-NSconvergent-iff summable-iff-convergent
summable-exp)

lemma exphr-zero [simp]: exphr 0 = 1
proof —
have Va>1. 1 = sumhr (0, 1, An. inverse (fact n) * 0 " n) + sumhr (1, z, An.
inverse (fact n) x 0 " n)
unfolding sumhr-app by transfer (simp add: power-0-left)
then have sumhr (0, 1, An. inverse (fact n) * 0 ~ n) + sumhr (1, whn, An.
inverse (fact n) x 0 " n) ~ 1
by auto
then show ?thesis
unfolding exphr-def
using sumhr-split-add [OF hypnat-one-less-hypnat-omega) st-unique by auto
qed

lemma coshr-zero [simp]: coshr 0 = 1
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proof —
have Va>1. 1 = sumhr (0, 1, An. cos-coeff n x 0 ~ n) + sumhr (1, z, An.
cos-coeff n x 0 " n)
unfolding sumhr-app by transfer (simp add: power-0-left)
then have sumhr (0, 1, An. cos-coeff n x 0 " n) + sumhr (1, whn, An. cos-coeff
nx0 " n)~x1
by auto
then show ?thesis
unfolding coshr-def
using sumhr-split-add [OF hypnat-one-less-hypnat-omega) st-unique by auto
qged

lemma STAR-exp-zero-approz-one [simp|: ( xfx exp) (0::hypreal) ~ 1
proof —
have (xfx exp) (0:real star) = 1
by transfer simp
then show ?thesis
by auto
qed

lemma STAR-exp-Infinitesimal:
assumes z € Infinitesimal shows ( xfx exp) (z::hypreal) ~ 1
proof (cases © = 0)
case Fulse
have NSDERIV exp 0 :> 1
by (metis DERIV-exp NSDERIV-DERIV-iff exp-zero)
then have ((xf* exp) z — 1) / z ~ 1
using nsderiv-def False NSDERIVDZ2 assms by fastforce
then have (xfx exp) ¢ — 1 ~ ¢
using NSDERIVD4 «NSDERIV exp 0 :> 1) assms by fastforce
then show ?thesis
by (meson Infinitesimal-approx appror-minus-iff approz-trans2 assms not-Infinitesimal-not-zero)
qed auto

lemma STAR-exp-epsilon [simp]: ( xf* exp) e = 1
by (auto intro: STAR-exp-Infinitesimal)

lemma STAR-exp-add:

NA(z::'a:: {banach,real-normed-field} star) y. ( xfx exp)(z + y) = ( *#f* exp) = *
(xf* exp) y

by transfer (rule exp-add)

lemma exphr-hypreal-of-real-exp-eq: exphr x = hypreal-of-real (exp x)
proof —
have (An. inverse (fact n) x x ~ n) sums exp
using ezp-converges [of x] by simp
then have (An. Y n<n. inverse (fact n) x x ~n) ——nNg exp x
using NSsums-def sums-NSsums-iff by blast
then have hypreal-of-real (exp ) =~ sumhr (0, whn, An. inverse (fact n) * z

-~



THEORY “HTranscendental” 137

n
)
unfolding starfunNat-sumr [symmetric] atLeastOLessThan
using HNatInfinite-whn NSLIMSEQ-def approx-sym by blast
then show ?thesis
unfolding exphr-def using st-eq-approz-iff by auto
qed

lemma starfun-exp-ge-add-one-self [simp]: Nz:hypreal. 0 < x = (1 + z) < (

xf* exp) x
by transfer (rule exp-ge-add-one-self-aux)

exp maps infinities to infinities

lemma starfun-exp-HlInfinite:
fixes z :: hypreal
assumes z € Hinfinite 0 < z
shows ( xfx exp) z € HInfinite

proof —
have 2 < 1 + z
by simp
also have ... < (xf* exp) z

by (simp add: <0 < x»)
finally show ?thesis
using HInfinite-ge- HInfinite assms by blast
qged

lemma starfun-exp-minus:
Az::'a:: {banach,real-normed-field} star. ( #f* exp) (—xz) = inverse(( *fx exp) x)
by transfer (rule exp-minus)

exp maps infinitesimals to infinitesimals

lemma starfun-exp-Infinitesimal:
fixes z :: hypreal
assumes z € Hinfinite x < 0
shows ( xfx exp) x € Infinitesimal
proof —
obtain y where zt = —yy > 0
by (metis abs-of-nonpos assms(2) eq-abs-iff ")
then have ( xfx exp) y € HInfinite
using Hlinfinite-minus-iff assms(1) starfun-exp-HInfinite by blast
then show ?thesis
by (simp add: HInfinite-inverse-Infinitesimal <x = — y» starfun-exp-minus)
qed

lemma starfun-exp-gt-one [simpl: Az:hypreal. 0 < © = 1 < ( *f* exp) z
by transfer (rule exp-gt-one)

abbreviation real-In :: real = real where
real-ln = In
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lemma starfun-ln-exp [simpl: Nzx. ( «fx real-In) (( xfx exp) z) = x
by transfer (rule In-exp)

lemma starfun-ezp-in-iff [simp]: Az. (( *f* exp)(( *f* real-ln) z) = z) = (0 < z)
by transfer (rule exp-in-iff)

lemma starfun-exp-ln-eq: Au x. ( xf* exp) u = x = ( *f* real-ln) z = u
by transfer (rule In-unique)

lemma starfun-in-less-self [simp]: Az. 0 < z = ( xf* real-ln) © < z
by transfer (rule In-less-self)

lemma starfun-in-ge-zero [simp]: N\z. 1 < z = 0 < ( xf* real-In) x
by transfer (rule In-ge-zero)

lemma starfun-in-gt-zero [simpl: Az .1 < ¥ = 0 < ( *f* real-In)
by transfer (rule In-gt-zero)

lemma starfun-in-not-eg-zero [simp|: Az. [0 < z; & # 1] = ( *f* real-ln) x # 0
by transfer simp

lemma starfun-in-HFinite: [z € HFinite; 1 < z] = ( #fx real-In) x € HFinite
by (metis HFinite- HInfinite-iff less-le-trans starfun-exp-HInfinite starfun-exp-in-iff
starfun-In-ge-zero zero-less-one)

lemma starfun-in-inverse: Az. 0 < ¥ = ( *f* real-In) (inverse ) = —( xfx* In)
T
by transfer (rule In-inverse)

lemma starfun-abs-exp-cancel: Nz. |( #f* exp) (z::hypreal)| = ( *f* exp) x
by transfer (rule abs-exp-cancel)

lemma starfun-exp-less-mono: Nz y:hypreal. © < y = ( xf* exp) © < ( *f* exp)
Y
by transfer (rule exp-less-mono)

lemma starfun-exp-HFinite:
fixes z :: hypreal
assumes z € HFinite
shows ( xfx exp) x € HFinite
proof —
obtain u where v € R |z| < u
using HFiniteD assms by force
with assms have |(xfx exp) z| < (xf* exp) u
using starfun-abs-exp-cancel starfun-exp-less-mono by auto
with (v € R) show ?thesis
by (force simp: HFinite-def Reals-eq-Standard)
qed



THEORY “HTranscendental” 139

lemma starfun-exp-add-HFinite-Infinitesimal-approx:

fixes x :: hypreal

shows [z € Infinitesimal; z € HFinite] = ( xf* exp) (z + z:hypreal) = ( xfx*
exp) z

using STAR-exp-Infinitesimal approx-mult2 starfun-exp-HFinite by (fastforce
stimp add: STAR-exp-add)

lemma starfun-In-HInfinite:
[x € HInfinite; 0 < z] = ( *f* real-In) x € HInfinite
by (metis HInfinite-HFinite-iff starfun-exp-HFinite starfun-exp-in-iff)

lemma starfun-exp-HInfinite-Infinitesimal-disj:

fixes x :: hypreal

shows z € Hinfinite = ( xf* exp) © € Hinfinite V ( xf* exp) (z:hypreal) €
Infinitesimal

by (meson linear starfun-exp-HInfinite starfun-exp-Infinitesimal)

lemma starfun-in-HFinite-not-Infinitesimal:
[z € HFinite — Infinitesimal; 0 < z] = ( *f* real-In) © € HFinite
by (metis DiffD1 Diff D2 HInfinite- HFinite-iff starfun-exp-HInfinite-Infinitesimal-disj
starfun-exp-In-iff)

lemma starfun-in-Infinitesimal-HInfinite:
assumes z € Infinitesimal 0 < z
shows ( xfx real-In) © € HInfinite
proof —
have inverse x € HInfinite
using Infinitesimal-inverse-HInfinite assms by blast
then show ?thesis
using HInfinite-minus-iff assms(2) starfun-In-HInfinite starfun-In-inverse by
fastforce
qed

lemma starfun-In-less-zero: Az. [0 < z; © < 1] = ( *f* real-In) x < 0
by transfer (rule In-less-zero)

lemma starfun-in-Infinitesimal-less-zero:
[x € Infinitesimal; 0 < z] = ( *f* real-ln) z < 0
by (auto introl: starfun-In-less-zero simp add: Infinitesimal-def)

lemma starfun-in-HInfinite-gt-zero:
[x € HInfinite; 0 < z] = 0 < ( *f* real-ln) x
by (auto intro!: starfun-ln-gt-zero simp add: HInfinite-def)

lemma HFinite-sin [simp]: sumhr (0, whn, An. sin-coeff n * © ~ n) € HFinite
proof —
have summable (\i. sin-coeff { * © ~ 1)
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using summable-norm-sin [of z] by (simp add: summable-rabs-cancel)

then have (xfx (An. > n<n. sin-coeff n * x ~n)) whn € HFinite
unfolding summable-sums-iff sums-NSsums-iff NSsums-def NSLIMSEQ-def
using HFinite-star-of HNatInfinite-whn approx-HFinite approz-sym by blast

then show ?%thesis
unfolding sumhr-app
by (simp only: star-zero-def starfun2-star-of atLeastOLessThan)

qed

lemma STAR-sin-zero [simp]: ( *fx sin) 0 = 0
by transfer (rule sin-zero)

lemma STAR-sin-Infinitesimal [simp]:
fixes z :: ‘a::{real-normed-field,banach} star
assumes z € Infinitesimal
shows ( xfx sin) z ~ x
proof (cases z = 0)
case Fulse
have NSDERIV sin 0 :> 1
by (metis DERIV-sin NSDERIV-DERIV-iff cos-zero)
then have (xfx sin) z / z ~ 1
using False NSDERIVDZ2 assms by fastforce
with assms show ?thesis
unfolding star-one-def
by (metis False Infinitesimal-approz Infinitesimal-ratio approz-star-of-HFinite)
qged auto

lemma HFinite-cos [simp]: sumhr (0, whn, An. cos-coeff n * © ~ n) € HFinite
proof —
have summable (Ai. cos-coeff i x x 1)
using summable-norm-cos [of ] by (simp add: summable-rabs-cancel)
then have (xfx (An. > n<n. cos-coeff n * x ~n)) whn € HFinite
unfolding summable-sums-iff sums-NSsums-iff NSsums-def NSLIMSEQ-def
using HFinite-star-of HNatInfinite-whn approx-HFinite approz-sym by blast
then show ?thesis
unfolding sumhr-app
by (simp only: star-zero-def starfun2-star-of atLeastOLessThan)
qged

lemma STAR-cos-zero [simp]: ( xf* cos) 0 = 1
by transfer (rule cos-zero)

lemma STAR-cos-Infinitesimal [simp]:
fixes z :: ‘a::{real-normed-field,banach} star
assumes z € Infinitesimal
shows ( #fx cos) z ~ 1
proof (cases z = 0)
case Fulse
have NSDERIV cos 0 :> 0
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by (metis DERIV-cos NSDERIV-DERIV-iff add.inverse-neutral sin-zero)
then have (xfx cos) © — 1 ~ 0
using NSDERIV-approx assms by fastforce
with assms show ?thesis
using approz-minus-iff by blast
qed auto

lemma STAR-tan-zero [simp]: ( xf* tan) 0 = 0
by transfer (rule tan-zero)

lemma STAR-tan-Infinitesimal [simp]:
assumes z € Infinitesimal
shows ( #fx tan) z =~ x
proof (cases © = 0)
case Fulse
have NSDERIV tan 0 :> 1
using DERIV-tan [of 0] by (simp add: NSDERIV-DERIV-iff)
then have (xfx tan) = / z =~ 1
using False NSDERIVDZ2 assms by fastforce
with assms show ?thesis
unfolding star-one-def
by (metis False Infinitesimal-approx Infinitesimal-ratio approz-star-of-HFinite)
qged auto

lemma STAR-sin-cos-Infinitesimal-mult:
fixes z :: ‘a::{real-normed-field,banach} star
shows = € Infinitesimal = ( xf* sin) z x ( xf* cos) © = x
using approx-mult-HFinite [of ( xfx sin) x - ( xfx cos) z 1]
by (simp add: Infinitesimal-subset-HFinite [THEN subsetD))

lemma HFinite-pi: hypreal-of-real pi € HFinite
by simp

lemma STAR-sin-Infinitesimal-divide:
fixes z :: ‘a::{real-normed-field,banach} star
shows [z € Infinitesimal; © # 0] = ( *f* sin) z/x = 1
using DERIV-sin [of 0::'a]
by (simp add: NSDERIV-DERIV-iff [symmetric] nsderiv-def)

14.2 Proving sin*(1/n) x 1/(1/n) ~ 1 for n = 0o

lemma lemma-sin-pi:
n € HNatlInfinite
= ( *fx sin) (inverse (hypreal-of-hypnat n))/(inverse (hypreal-of-hypnat n))
~ 1

by (simp add: STAR-sin-Infinitesimal-divide zero-less-HNatInfinite)

lemma STAR-sin-inverse-HNatInfinite:
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n € HNatInfinite
= ( xf* sin) (inverse (hypreal-of-hypnat n)) * hypreal-of-hypnat n ~ 1
by (metis field-class.field-divide-inverse inverse-inverse-eq lemma-sin-pi)

lemma Infinitesimal-pi-divide- HNatInfinite:
N € HNatlnfinite
= hypreal-of-real pi/(hypreal-of-hypnat N) € Infinitesimal
by (simp add: Infinitesimal-HF'inite-mult2 field-class.field-divide-inverse)

lemma pi-divide- HNatInfinite-not-zero [simp):
N € HNatlnfinite = hypreal-of-real pi/(hypreal-of-hypnat N) # 0
by (simp add: zero-less-HNatInfinite)

lemma STAR-sin-pi-divide- HNatInfinite-approz-pi:
assumes n € HNatInfinite
shows (xfx sin) (hypreal-of-real pi | hypreal-of-hypnat n) * hypreal-of-hypnat n
hypreal-of-real pi
proof —
have (xfx sin) (hypreal-of-real pi | hypreal-of-hypnat n) / (hypreal-of-real pi /
hypreal-of-hypnat n) ~ 1
using Infinitesimal-pi-divide- HNatInfinite STAR-sin-Infinitesimal-divide assms
pi-divide- HNatInfinite-not-zero by blast
then have hypreal-of-hypnat n * star-of sin x (hypreal-of-real pi / hypreal-of-hypnat
n) / hypreal-of-real pi ~ 1
by (simp add: mult.commute starfun-def)
then show ?thesis
apply (simp add: starfun-def field-simps)
by (metis (no-types, lifting) approx-mult-subst-star-of approz-refl mult-cancel-right1
nonzero-eq-divide-eq pi-neg-zero star-of-eq-0)
qed

lemma STAR-sin-pi-divide- HNatInfinite-approz-pi2:
n € HNatInfinite
= hypreal-of-hypnat n = ( xf* sin) (hypreal-of-real pi/(hypreal-of-hypnat n))
~ hypreal-of-real pi
by (metis STAR-sin-pi-divide- HNatInfinite-approz-pi mult.commute)

lemma starfunNat-pi-divide-n-Infinitesimal:
N € HNatInfinite = ( *f* (Az. pi / real )) N € Infinitesimal
by (simp add: Infinitesimal-HF'inite-mult2 divide-inverse starfunNat-real-of-nat)

lemma STAR-sin-pi-divide-n-approx:
assumes N € HNatInfinite
shows ( xfx sin) (( xf* (Az. pi / real x)) N) = hypreal-of-real pi/(hypreal-of-hypnat
N)
proof —
have Js. (xfx sin) ((xf* (An. pi / real n)) N) ~ s A hypreal-of-real pi /
hypreal-of-hypnat N ~ s
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by (metis (lifting) Infinitesimal-approx Infinitesimal-pi-divide- HNatInfinite STAR-sin-Infinitesimal
assms starfunNat-pi-divide-n-Infinitesimal)
then show ?thesis
by (meson approz-trans2)
qed

lemma NSLIMSEQ-sin-pi: (An. real n x sin (pi / real n)) ——ng pi
proof —
have x: hypreal-of-hypnat N = (xfx sin) ((xf* (Ax. pi / real ©)) N) ~ hypreal-of-real
pi
if N € HNatInfinite
for N :: nat star
using that
by simp (metis STAR-sin-pi-divide- HNatInfinite-approx-pi2 starfunNat-real-of-nat)
show ?thesis
by (simp add: NSLIMSEQ-def starfunNat-real-of-nat) (metis * starfun-o02)
qed

lemma NSLIMSEQ-cos-one: (An. cos (pi / real n))——ns 1
proof —
have (xfx cos) ((xfx (\x. pi / real x)) N) =~ 1
if N € HNatInfinite for N
using that STAR-cos-Infinitesimal starfunNat-pi-divide-n-Infinitesimal by blast
then show ?thesis
by (simp add: NSLIMSEQ-def) (metis STAR-cos-Infinitesimal starfunNat-pi-divide-n-Infinitesimal
starfun-02)
qged

lemma NSLIMSEQ-sin-cos-pi:
(An. real n * sin (pi / real n) * cos (pi / real n)) ——nsg pi
using NSLIMSEQ-cos-one NSLIMSEQ-mult NSLIMSEQ-sin-pi by force

A familiar approximation to cos  when z is small

lemma STAR-cos-Infinitesimal-approz:
fixes z :: ‘a::{real-normed-field,banach} star
shows z € Infinitesimal = ( xf*x cos) x = 1 — x
by (metis Infinitesimal-square-iff STAR-cos-Infinitesimal approz-diff approz-sym
diff-zero mem-infmal-iff power2-eq-square)

2

lemma STAR-cos-Infinitesimal-approz2:
fixes x :: hypreal
assumes z € Infinitesimal
shows ( xfx cos) v ~ 1 — (22)/2
proof —
have 1 ~ 1 — 2%/ 2
using assms
by (auto intro: Infinitesimal-SReal-divide simp add: Infinitesimal-approz-minus
[symmetric] numeral-2-eq-2)
then show ?thesis
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using STAR-cos-Infinitesimal approx-trans assms by blast
qed

end

15 Non-Standard Complex Analysis

theory NSCA
imports NSComplex HTranscendental
begin

abbreviation

SComplex :: hcompler set where
SComplexr = Standard

definition — standard part map
stc :: hcompler => hcomplex where
stc x = (SOME r. x € HFinite N reSComplex N r = )

15.1 Closure Laws for SComplex, the Standard Complex
Numbers

lemma SComplex-minus-iff [simp]: (—z € SComplex) = (z € SComplex)
using Standard-minus by fastforce

lemma SComplez-add-cancel:
[z + y € SComplex; y € SComplex] = z € SComplex
using Standard-diff by fastforce

lemma SReal-hemod-hecomplex-of-complex [simp]:
hemod (hecomplex-of-complex r) € R
by (simp add: Reals-eq-Standard)

lemma SReal-hemod-numeral: hemod (numeral w ::hcomplez) € R
by simp

lemma SReal-hcmod-SComplex: x € SCompler =—> hcmod © € R
by (simp add: Reals-eq-Standard)

lemma SComplez-divide-numeral:
r € SComplex => r/(numeral w::hcomplex) € SComplex
by simp

lemma SComplex-UNIV-complez:
{z. hcomplex-of-complex © € SComplex} = (UNIV::complex set)
by simp

lemma SComplez-iff: (x € SComplex) = (3y. x = hcomplex-of-complex y)
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by (simp add: Standard-def image-def)

lemma hcomplez-of-complez-image:
range hcomplex-of-complex = SComplex
by (simp add: Standard-def)

lemma inv-hcomplex-of-complez-image: inv hcomplex-of-complex ‘SCompler = UNIV
by (auto simp add: Standard-def image-def) (metis inj-star-of inv-f-f)

lemma SComplez-hcomplex-of-complex-image:
[Fz. x € P; P < SComplex] = 3 Q. P = hcomplezx-of-complex * Q
by (metis Standard-def subset-imageE)

lemma SComplez-SReal-dense:
[x € SComplex; y € SComplex; hemod x < hemod y
] = 3r € Reals. hemod z< v A v < hemod y
by (simp add: SReal-dense SReal-hcmod-SComplerx)

15.2 The Finite Elements form a Subring

lemma HFinite-hcmod-hcomplez-of-complex [simp]:
hemod (hcomplex-of-complex r) € HFinite
by (auto intro!: SReal-subset-HFinite [THEN subsetD])

lemma HFinite-hcmod-iff [simp]: hemod © € HFinite <— x € HFinite
by (simp add: HFinite-def)

lemma HFinite-bounded-hcmod:
[x € HFinite; y < hemod z; 0 < y] = y € HFinite
using HF'inite-bounded HFinite-hcmod-iff by blast

15.3 The Complex Infinitesimals form a Subring

lemma Infinitesimal-hcmod-iff:
(z € Infinitesimal) = (hemod z € Infinitesimal)
by (simp add: Infinitesimal-def)

lemma Hlinfinite-hcmod-iff: (z € HInfinite) = (hcmod z € HInfinite)
by (simp add: HInfinite-def)

lemma HFinite-diff-Infinitesimal-hcmod:
x € HFinite — Infinitesimal => hcmod x € HFinite — Infinitesimal
by (simp add: Infinitesimal-hemod-iff)

lemma hcmod-less-Infinitesimal:
e € Infinitesimal; hemod x < hemod €] = x € Infinitesimal
by (auto elim: hrabs-less-Infinitesimal simp add: Infinitesimal-hemod-iff)

lemma hcmod-le-Infinitesimal:
[e € Infinitesimal; hemod x < hemod €] = x € Infinitesimal
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by (auto elim: hrabs-le-Infinitesimal simp add: Infinitesimal-hemod-iff)

15.4 The “Infinitely Close” Relation

lemma approz-SComplex-mult-cancel-zero:

[a € SComplex; a # 0; axz ~ 0] = z = 0

by (metis Infinitesimal-mult-disj SComplex-iff mem-infmal-iff star-of-Infinitesimal-iff-0
star-zero-def)

lemma approz-mult-SComplex!: [a € SComplex; x = 0] = z*xa =~ 0
using SComplez-iff appror-mult-subst-star-of by fastforce

lemma approz-mult-SComplex2: [a € SComplexr; © ~ 0] = axx ~ 0
by (metis approx-mult-SComplexl mult.commute)

lemma approxz-mult-SComplex-zero-cancel-iff [simp]:
[a € SComplez; a # 0] = (axz =~ 0) = (z = 0)
using approz-SComplex-mult-cancel-zero approx-mult-SComplex2 by blast

lemma approz-SComplex-mult-cancel:
[a € SComplex; a # 0; axw =~ a*xz] = w =~ 2
by (metis approz-SComplex-mult-cancel-zero approx-minus-iff right-diff-distrib)

lemma approz-SComplex-mult-cancel-iff1 [simp):
[a € SComplez; a # 0] = (axw = axz) = (w ~ z)
by (metis HFinite-star-of SComplez-iff approz-SComplex-mult-cancel approz-mult2)

lemma approx-hecmod-approz-zero: (z = y) = (hemod (y — z) = 0)
by (simp add: Infinitesimal-hemod-iff approx-def hnorm-minus-commute)

lemma approz-approz-zero-iff: (x =~ 0) = (hemod z =~ 0)
by (simp add: approx-hemod-approz-zero)

lemma approz-minus-zero-cancel-iff [simp]: (—z ~ 0) = (z = 0)
by (simp add: approx-def)

lemma Infinitesimal-hcmod-add-diff
u ~ 0 = hemod(xz + u) — hemod x € Infinitesimal
by (metis add.commute add.left-neutral approx-add-right-iff approz-def approx-hnorm,)

lemma approz-hcmod-add-hemod: u =~ 0 = hemod(z + u) = hemod
using Infinitesimal-hcmod-add-diff approz-def by blast
15.5 Zero is the Only Infinitesimal Complex Number

lemma Infinitesimal-less-SComplex:
[x € SComplex; y € Infinitesimal; 0 < hemod z] = hemod y < hemod
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by (auto intro: Infinitesimal-less-SReal SReal-hemod-SComplex simp add: In-
finitesimal-hcmod-iff)

lemma SComplex-Int-Infinitesimal-zero: SComplex Int Infinitesimal = {0}
by (auto simp add: Standard-def Infinitesimal-hcmod-iff)

lemma SComplez-Infinitesimal-zero:
[x € SComplex; x € Infinitesimal] = x = 0
using SComplex-iff by auto

lemma SComplez-HFinite-diff-Infinitesimal:
[x € SComplex; x # 0] = = € HF'inite — Infinitesimal
using SComplez-iff by auto

lemma numeral-not-Infinitesimal [simp):
numeral w # (0::hcomplex) => (numeral w::hcomplex) ¢ Infinitesimal
by (fast dest: Standard-numeral [THEN SComplez-Infinitesimal-zero))

lemma approz-SComplex-not-zero:

[y € SComplex; © = y; y# 0] = z # 0

by (auto dest: SComplex-Infinitesimal-zero approx-sym [THEN mem-infmal-iff
[THEN iffD2]))

lemma SComplex-approx-iff:
[x € SComplex; y € SComplex] = (z ~ y) = (z = y)
by (auto simp add: Standard-def)

lemma approz-unique-complex:
[r € SComplex; s € SComplex; r ~ z; s = 2] = r = s
by (blast intro: SComplez-approz-iff [THEN iffD1] approz-trans2)

15.6 Properties of hRe, hIm and HComplex

lemma abs-hRe-le-hemod: Nz. |hRe x| < hemod
by transfer (rule abs-Re-le-cmod)

lemma abs-hIm-le-hcmod: Az. |hIm z| < hemod
by transfer (rule abs-Im-le-cmod)

lemma Infinitesimal-hRe: x € Infinitesimal = hRe x € Infinitesimal
using Infinitesimal-hcmod-iff abs-hRe-le-hcmod hrabs-le-Infinitesimal by blast

lemma Infinitesimal-him: © € Infinitesimal —> hIm x € Infinitesimal
using Infinitesimal-hcmod-iff abs-hIm-le-hcmod hrabs-le-Infinitesimal by blast

lemma Infinitesimal-HComplez:
assumes z: € Infinitesimal and y: y € Infinitesimal
shows HComplezx x y € Infinitesimal

proof —
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have hemod (HComplex 0 y) € Infinitesimal
by (simp add: hcmod-i y)
moreover have hcmod (hcomplez-of-hypreal x) € Infinitesimal
using Infinitesimal-hcmod-iff Infinitesimal-of-hypreal-iff x by blast
ultimately have hemod (HComplex © y) € Infinitesimal
by (metis Infinitesimal-add Infinitesimal-hemod-iff add.right-neutral hcom-
plex-of-hypreal-add-HCompler)
then show ?thesis
by (simp add: Infinitesimal-hnorm-iff)
qed

lemma hcomplez-Infinitesimal-iff:
(z € Infinitesimal) <— (hRe x € Infinitesimal A hIm z € Infinitesimal)
using Infinitesimal-HComplex Infinitesimal-hIm Infinitesimal-hRe by fastforce

lemma hRe-diff [simp]: Az y. hRe (x — y) = hRe © — hRe y
by transfer simp

lemma hIm-diff [simp]: Az y. hIm (z — y) = hIm z — him y
by transfer simp

lemma approz-hRe: v ~ y = hRe x ~ hRe y
unfolding approz-def by (drule Infinitesimal-hRe) simp

lemma approz-him: x = y = hlm z =~ him y
unfolding approz-def by (drule Infinitesimal-hIm) simp

lemma approx-HComplex:
[a =~ b; ¢ = d] = HComplex a ¢ ~ HComplez b d
unfolding approz-def by (simp add: Infinitesimal-HComplex)

lemma hcomplezx-approz-iff:
(z = y) = (hRe © =~ hRe y A hIm x ~ him y)
unfolding approz-def by (simp add: hcomplex-Infinitesimal-iff)

lemma HFinite-hRe: x € HFinite =—> hRe x € HFinite
using HFinite-bounded-hcmod abs-ge-zero abs-hRe-le-hcmod by blast

lemma HFinite-hIm: v € HFinite = hlm x € HFinite
using HF'inite-bounded-hcmod abs-ge-zero abs-hIm-le-hcmod by blast

lemma HFinite-HComplex:
assumes r € HFinite y € HFinite
shows HComplex x y € HFinite
proof —
have HComplex © 0 € HFinite HComplezx 0 y € HFinite
using HFinite-hcmod-iff assms hcmod-i by fastforce+
then have HComplexr © 0 + HComplex 0 y € HFinite
using HFinite-add by blast
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then show ?thesis
by simp
qed

lemma hcomplex- HFinite-iff:
(z € HFinite) = (hRe x € HFinite A him z € HF'inite)
using HF'inite-HComplex HFinite-hIm HFinite-hRe by fastforce

lemma hcomplex-HInfinite-iff:
(z € HInfinite) = (hRe © € Hinfinite V hIm = € Hlinfinite)
by (simp add: HInfinite-HFinite-iff hcomplex-HFinite-iff)

lemma hcomplez-of-hypreal-approz-iff [simp]:
(hcomplez-of-hypreal © ~ hcomplex-of-hypreal z) = (z =~ z)
by (simp add: hcomplez-approz-iff)

lemma stc-part-FEux:
assumes r € HFinite
shows 3t € SComplex. © ~ t
proof —
let t = HComplex (st (hRe z)) (st (hIm z))
have ?t € SComplex
using HFinite-hIm HFinite-hRe Reals-eq-Standard assms st-SReal by auto
moreover have x ~ 2t
by (simp add: HFinite-hIm HFinite-hRe assms hcomplex-approx-iff st-HFinite
st-eq-approx)
ultimately show ¢thesis ..
qed

lemma stc-part-FExl: © € HFinite = 3t. t € SComplex N z ~
using approx-sym approzr-unique-complex stc-part-Fx by blast

15.7 Theorems About Monads
lemma monad-zero-hemod-iff: (x € monad 0) = (hemod x € monad 0)

by (simp add: Infinitesimal-monad-zero-iff [symmetric] Infinitesimal-hcmod-iff)
15.8 Theorems About Standard Part

lemma stc-approx-self: x € HFinite = stc x = x
unfolding stc-def
by (metis (no-types, lifting) approz-reorient somel-ex stc-part-Exl)

lemma stc-SComplex: x € HFinite = stc © € SComplex
unfolding stc-def
by (metis (no-types, lifting) SComplex-iff approz-sym somel-ex stc-part-Ex)

lemma stc-HF'inite: + € HF'inite = stc x € HFinite
by (erule stc-SComplex [THEN Standard-subset-HFinite [THEN subsetD]])
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lemma stc-unique: [y € SCompler; y ~ z] = stcz = y
by (metis SComplex-approz-iff SComplez-iff approz-monad-iff approz-star-of-HFinite
ste-SComplex: ste-approz-self)

lemma stc-SComplex-eq [simpl: x € SCompler = stc © = x
by (simp add: stc-unique)

lemma stc-eq-approx:
[x € HFinite; y € HF'inite; stc x = stc y] = z ~ y
by (auto dest!: stc-approz-self elim!: approz-transd)

lemma approz-stc-eq:
[x € HFinite; y € HFinite; x ~ y] = stc x = stc y
by (metis approz-sym approz-trans3 stc-part-Exl stc-unique)

lemma stc-eq-approz-iff:
[z € HFinite; y € HF'inite] = (z = y) = (stc z = stc y)
by (blast intro: approz-stc-eq stc-eq-approx)

lemma stc-Infinitesimal-add-SComplex:
[x € SComplex; e € Infinitesimal] = stc(z + €) = z
using Infinitesimal-add-approz-self stc-unique by blast

lemma stc-Infinitesimal-add-SComplex2:
[x € SComplex; e € Infinitesimal] => stc(e + z) = =
using Infinitesimal-add-approz-self2 stc-unique by blast

lemma HFinite-stc-Infinitesimal-add:

z € HFinite = J e € Infinitesimal. © = ste(x) + e

by (blast dest!: stc-approz-self [THEN approz-sym] bex-Infinitesimal-iff2 [THEN
iffD2))

lemma stc-add:
[z € HFinite; y € HFinite] = stc (¢z + y) = ste(z) + ste(y)
by (simp add: stc-unique stc-SComplex stc-approx-self approx-add)

lemma stc-zero: stc 0 = 0
by simp

lemma stc-one: stc 1 = 1
by simp

lemma ste-minus: y € HFinite = stc(—y) = —ste(y)
by (simp add: stc-unique stc-SComplex stc-approz-self approz-minus)

lemma stc-diff:
[x € HFinite; y € HFinite] = stc (z—y) = ste(x) — ste(y)
by (simp add: stc-unique stc-SComplex stc-approz-self approz-diff)
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lemma stc-mult:
[x € HFinite; y € HFinite]
= stc (z * y) = ste(x) * ste(y)
by (simp add: stc-unique stc-SComplex stc-approx-self approx-mult- HFinite)

lemma stc-Infinitesimal: x € Infinitesimal = stc x = 0
by (simp add: stc-unique mem-infmal-iff)

lemma ste-not-Infinitesimal: stc(z) # 0 = = ¢ Infinitesimal
by (fast intro: ste-Infinitesimal)

lemma stc-inverse:
[x € HFinite; stc z # 0] = stc(inverse z) = inverse (stc )
by (simp add: stc-unique stc-SComplex stc-approz-self approz-inverse stc-not-Infinitesimal)

lemma stc-divide [simp]:
[z € HFinite; y € HF'inite; stc y # 0]
= ste(z/y) = (ste z) / (ste y)
by (simp add: divide-inverse stc-mult stc-not-Infinitesimal HFinite-inverse stc-inverse)

lemma stc-idempotent [simp|: x € HFinite = stc(ste(x)) = ste(x)
by (blast intro: stc-HF'inite stc-approz-self approz-stc-eq)

lemma HFinite- HFinite-hcomplex-of-hypreal:
z € HFinite => hcomplex-of-hypreal z € HFinite
by (simp add: hcomplex-HFinite-iff)

lemma SComplex-SReal-hcomplez-of-hypreal:
z € R = hcomplex-of-hypreal © € SComplex
by (simp add: Reals-eq-Standard)

lemma stc-hcomplez-of-hypreal:
z € HFinite = stc(hcomplex-of-hypreal z) = hcomplez-of-hypreal (st z)
by (simp add: SComplex-SReal-hcomplex-of-hypreal st-SReal st-approz-self stc-unique)

lemma hmod-stc-eq:

assumes z € HF'inite

shows hcmod(ste x) = st(hemod )

by (metis SReal-hemod-SComplex approz-HFinite approz-hnorm assms st-unique
ste-SComplez-eq ste-eq-approz-iff ste-part-Ex)

lemma Infinitesimal-heng-iff [simp]:
(henj z € Infinitesimal) «— (2 € Infinitesimal)
by (simp add: Infinitesimal-hemod-iff)

end
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16 Star-transforms in NSA, Extending Sets of Com-
plex Numbers and Complex Functions

theory CStar
imports NSCA
begin

16.1 Properties of the x-Transform Applied to Sets of Reals

lemma STARC-hcomplex-of-complex-Int: xsx+ X N SComplex = hcomplex-of-complex
‘X
by (auto simp: Standard-def)

lemma lemma-not-hcomplezA: © ¢ hcomplex-of-complex * A = Vy € A. z #
hcomplez-of-complex y

by auto
16.2 Theorems about Nonstandard Extensions of Functions
lemma starfunC-hcpow: NZ. ( xfx (Az. 2 " n)) Z = Z pow hypnat-of-nat n

by transfer (rule refl)

lemma starfunCR-cmod: xf* cmod = hemod
by transfer (rule refl)

16.3 Internal Functions - Some Redundancy With xfx Now
lemma starfun-Re: ( #f* (Az. Re (f z))) = (Az. hRe (( xfx f) x))
by transfer (rule refl)

lemma starfun-Im: ( %f* (Az. Im (f z))) = (Az. hIm (( xf* f) x))
by transfer (rule refl)

lemma starfunC-eq-Re-Im-iff:

(xfx f) z =2 (*fx (A\z. Re (fz))) v = hRe z A ( xf* (Az. Im (fx))) z =
him z

by (simp add: hcomplez-hRe-hIm-cancel-iff starfun-Re starfun-Im)

lemma starfunC-approz-Re-Im-iff:

(#fx f) z = 2+ (*f* (Az. Re (fz))) x = hRe z A ( xfx (A\z. Im (f2))) z =
him z

by (simp add: hcomplez-approz-iff starfun-Re starfun-Im)

end

17 Limits, Continuity and Differentiation for Com-
plex Functions

theory CLim
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imports CStar
begin

declare epsilon-not-zero [simp]

lemma lemma-complez-mult-inverse-squared [simp|: T # 0 = z * (inverse )% =
inverse T

for z :: complex

by (simp add: numeral-2-eq-2)

Changing the quantified variable. Install earlier?

lemma all-shift: (¥ z::’a::comm-ring-1. P ) +— (Vz. P (z — a))
by (metis add-diff-cancel)

17.1 Limit of Complex to Complex Function

lemma NSLIM-Re: f —a—ns L = (Az. Re (fx)) —a—ns Re L
by (simp add: NSLIM-def starfunC-approx-Re-Im-iff hRe-hcomplex-of-compler)

lemma NSLIM-Im: f —a—ng L = (Az. Im (fz)) —a—ns Im L
by (simp add: NSLIM-def starfunC-approz-Re-Im-iff hIm-hcomplex-of-complex)

lemma LIM-Re: f —a— L = (Az. Re (fz)) —a— Re L
for f :: 'a::real-normed-vector = complex
by (simp add: LIM-NSLIM-iff NSLIM-Re)

lemma LIM-Im: f —a— L = (Az. Im (fz)) —a— Im L
for f :: 'a::real-normed-vector = complex
by (simp add: LIM-NSLIM-iff NSLIM-Im)

lemma LIM-cnj: f —a— L = (A\z. enj (fx)) —a— cnj L
for f :: 'a::real-normed-vector = complex
by (simp add: LIM-eq complez-cnj-diff [symmetric] del: complex-cnj-diff)

lemma LIM-cnj-iff: (Az. enj (fz)) —a— enj L) «— f —a— L
for f :: 'a::real-normed-vector = complex
by (simp add: LIM-eq complex-cnj-diff [symmetric] del: complex-cnj-diff)

lemma starfun-norm: ( xfx (Az. norm (f z))) = (Az. hnorm (( *fx f) x))
by transfer (rule refl)

lemma star-of-Re [simp]: star-of (Re x) = hRe (star-of x)
by transfer (rule refl)

lemma star-of-Im [simp): star-of (Im z) = hIm (star-of x)
by transfer (rule refl)

Another equivalence result.
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lemma NSCLIM-NSCRLIM-iff: f —x—ng L <— (Ay. ecmod (fy — L)) —z—nNs
0
by (simp add: NSLIM-def starfun-norm
approz-approz-zero-iff [symmetric] approx-minus-iff [symmetric))

Much, much easier standard proof.

lemma CLIM-CRLIM-iff: f —z— L +— (Ay. ecmod (fy — L)) —z— 0
for f :: 'a::real-normed-vector = complex
by (simp add: LIM-eq)

So this is nicer nonstandard proof.

lemma NSCLIM-NSCRLIM-iff2: f —x—ns L +— (Ay. cmod (fy — L)) —z—ns
0
by (simp add: LIM-NSLIM-iff [symmetric] CLIM-CRLIM-iff)

lemma NSLIM-NSCRLIM-Re-Im-iff:
[ —a—ns L <— (Az. Re (fz)) —a—ns Re L A (Az. Im (fz)) —a—ns Im L
apply (auto intro: NSLIM-Re NSLIM-Im)
apply (auto simp add: NSLIM-def starfun-Re starfun-Im)
apply (auto dest!: spec)
apply (simp add: hcomplez-approz-iff)
done

lemma LIM-CRLIM-Re-Im-iff: f —a— L +— (A\z. Re (f z)) —a— Re L A (Az.
Im (fz)) —a— Im L

for f :: 'a::real-normed-vector = complex

by (simp add: LIM-NSLIM-iff NSLIM-NSCRLIM-Re-Im-iff)

17.2 Continuity

lemma NSLIM-isContc-iff: f —a—ns fa «— (M. f (a + b)) —0—=ns fa
by (rule NSLIM-at0-iff)

17.3 Functions from Complex to Reals

lemma isNSContCR-cmod [simp]: isNSCont cmod a
by (auto intro: approz-hnorm
simp: starfunCR-cmod hemod-hcomplex-of-complex [symmetric] isNSCont-def)

lemma isContCR-cmod [simp]: isCont cmod a
by (simp add: isNSCont-isCont-iff [symmetric])

lemma isCont-Re: isCont f a = isCont (Az. Re (fx)) a
for f :: 'a::real-normed-vector = complex

by (simp add: isCont-def LIM-Re)

lemma isCont-Im: isCont f a = isCont (Az. Im (f z)) a
for f :: 'a::real-normed-vector = complex
by (simp add: isCont-def LIM-Im)
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17.4 Differentiation of Natural Number Powers

lemma CDERIV-pow [simp]: DERIV (Az. x ~n) x :> complez-of-real (real n) *
(z ~ (n — Suc 0))

apply (induct n)

apply (drule-tac [2] DERIV-ident [THEN DERIV-mult))

apply (auto simp add: distrib-right of-nat-Suc)

apply (case-tac n)

apply (auto simp add: ac-simps)

done

Nonstandard version.

lemma NSCDERIV-pow: NSDERIV (Ax. © ~ n) x :> complex-of-real (real n) *

(z " (n—1))
by (metis CDERIV-pow NSDERIV-DERIV-iff One-nat-def)

Can’t relax the premise x # 0: it isn’t continuous at zero.

lemma NSCDERIV-inverse: & # 0 => NSDERIV (\z. inverse x) x :> — (inverse
7)?

for z :: complex

unfolding numeral-2-eq-2 by (rule NSDERIV-inverse)

lemma CDERIV-inverse: x # 0 = DERIV (Az. inverse x) x :> — (inverse x)>
for z :: complex
unfolding numeral-2-eq-2 by (rule DERIV-inverse)

17.5 Derivative of Reciprocals (Function inverse)

lemma CDERIV-inverse-fun:

DERIV fz:> d = fz # 0 = DERIV (Az. inverse (fz)) z :> — (d * inverse
((f2)%))

for z :: complex

unfolding numeral-2-eq-2 by (rule DERIV-inverse-fun)

lemma NSCDERIV-inverse-fun:

NSDERIV fz :> d = fz # 0 = NSDERIV (A\z. inverse (fz)) z :> — (d *
inverse ((f z)?))

for z :: complex

unfolding numeral-2-eq-2 by (rule NSDERIV-inverse-fun)

17.6 Derivative of Quotient

lemma CDERIV-quotient:
DERIV fz :> d = DERIV gz :> ¢ = g(z) # 0 =
DERIV (\y. fy/gy) x> (d* gz — (ex fx)) / (g2)°
for z :: complex
unfolding numeral-2-eq-2 by (rule DERIV-quotient)

lemma NSCDERIV-quotient:
NSDERIV fz :> d = NSDERIV gz :> e = g x # (0::complez) =
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NSDERIV My. fy/ gy)z:>(d*xgz — (ex fz))/ (g2)?
unfolding numeral-2-eq-2 by (rule NSDERIV-quotient)

17.7 Caratheodory Formulation of Derivative at a Point: Stan-
dard Proof

lemma CARAT-CDERIVD:
(Vz.fz—fz=gzx(2—12)) ANisNSCont gx AN gz =1 = NSDERIV fz :> 1
by clarify (rule CARAT-DERIVD)

end

18 Logarithms: Non-Standard Version

theory HLog
imports HTranscendental
begin

definition powhr :: hypreal = hypreal = hypreal (infixr <powhr) 80)
where [transfer-unfold): x powhr a = starfun2 (powr) x a

definition hlog :: hypreal = hypreal = hypreal
where [transfer-unfold): hlog a x = starfun2 log a z

lemma powhr: (star-n X) powhr (star-n Y) = star-n (An. (X n) powr (Y n))
by (simp add: powhr-def starfun2-star-n)

lemma powhr-one-eq-one [simp|: Na. 1 powhr a = 1
by transfer simp

lemma powhr-mult: Aazy. 0 <z = 0 < y = (z * y) powhr a = (z powhr a)
* (y powhr a)
by transfer (simp add: powr-mult)

lemma powhr-gt-zero [simp]: Aa z. 0 < x powhr a +— x # 0
by transfer simp

lemma powhr-not-zero [simp]: \a x. T powhr a # 0 <— z # 0
by transfer simp

lemma powhr-divide: Na zy. 0 <z = 0 < y = (x / y) powhr a = (z powhr

a) / (y powhr a)
by transfer (rule powr-divide)

lemma powhr-add: Na b z. x powhr (a + b) = (x powhr a) * (z powhr b)
by transfer (rule powr-add)

lemma powhr-powhr: Na b z. (x powhr a) powhr b = x powhr (a * b)
by transfer (rule powr-powr)
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lemma powhr-powhr-swap: Na b z. (x powhr a) powhr b = (z powhr b) powhr a
by transfer (rule powr-powr-swap)

lemma powhr-minus: A\a z.  powhr (— a) = inverse (z powhr a)
by transfer (rule powr-minus)

lemma powhr-minus-divide: © powhr (— a) = 1 / (z powhr a)
by (simp add: divide-inverse powhr-minus)

lemma powhr-less-mono: Na bz. a < b= 1 < x = z powhr a < x powhr b
by transfer simp

lemma powhr-less-cancel: Na b x. z powhr a < z powhr b = 1 <z = a < b
by transfer simp

lemma powhr-less-cancel-iff [simp]: 1 < © = x powhr a < z powhr b +— a < b
by (blast intro: powhr-less-cancel powhr-less-mono)

lemma powhr-le-cancel-iff [simpl: 1 < © = x powhr a < z powhr b +— a < b
by (simp add: linorder-not-less [symmetric])

lemma hlog: hlog (star-n X) (star-n Y) = star-n (An. log (X n) (Y n))
by (simp add: hlog-def starfun2-star-n)

lemma hlog-starfun-ln: Nz. ( xf* In) x = hlog (( *f* exp) 1) x
by transfer (rule log-in)

lemma powhr-hlog-cancel [simp]: Naz. 0 < a = a # 1 = 0 < = a powhr
(hlog a z) = x
by transfer simp

lemma hlog-powhr-cancel [simp]: Na y. 0 < a = a # 1 = hlog a (a powhr y)
=Y
by transfer simp

lemma hlog-mult:
Na z y. hlog a (z x y) = (if x£0 N y#0 then hlog a = + hlog a y else 0)
by transfer (rule log-mult)

lemma hlog-as-starfun: Aa z. 0 < o = a # 1 = hlog a z = ( *f* In) z / (
xfx In) a
by transfer (simp add: log-def)

lemma hlog-eq-div-starfun-In-mult-hlog:
Nabr.0<a=a#1=0<b=0b#1 = 0<z1=
hlog a x = (( *f* In) b / ( *#fx In) a) * hlog b =
by transfer (rule log-eq-div-In-mult-log)
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lemma powhr-as-starfun: N\a z. x powhr a = (if x = 0 then 0 else ( xf* exp) (a *
( xf* real-ln) z))
by transfer (simp add: powr-def)

lemma HInfinite-powhr:
x € Hinfinite = 0 < x = a € HF'inite — Infinitesimal — 0 < a => x powhr
a € HInfinite
by (auto introl: starfun-ln-ge-zero starfun-in-HInfinite
Hinfinite- HFinite-not-Infinitesimal-mult2 starfun-exp-HInfinite
simp add: order-less-imp-le HInfinite-gt-zero-gt-one powhr-as-starfun zero-le-mult-iff)

lemma hlog-hrabs-HInfinite-Infinitesimal:
xz € HFinite — Infinitesimal = a € Hlnfinite — 0 < a = hlog a |z| €
Infinitesimal
apply (frule HInfinite-gt-zero-gt-one)
apply (auto intro!: starfun-In-HFinite-not-Infinitesimal
Hinfinite-inverse-Infinitesimal Infinitesimal-HF'inite-mult2
simp add: starfun-In-HInfinite not-Infinitesimal-not-zero
hlog-as-starfun divide-inverse)
done

lemma hlog-HInfinite-as-starfun: a € HInfinite = 0 < a = hlog a © = ( xfx
In) z / (xf*In) a
by (rule hlog-as-starfun) auto

lemma hlog-one [simpl: Aa. hloga 1 = 0
by transfer simp

lemma hlog-eq-one [simp]: Na. 0 < a = a # 1 = hloga a = 1
by transfer (rule log-eq-one)

lemma hlog-inverse: N\a z. hlog a (inverse x) = — hlog a x
by transfer (simp add: log-inverse)

lemma hlog-divide: hlog a (z / y) = (if #£0 A y#£0 then hlog a x — hlog a y else
0)
by (simp add: hlog-mult hlog-inverse divide-inverse)

lemma hlog-less-cancel-iff [simp]:
Noezy 1 <a=0<z=0<y= hlogaz <hlogay+— z<y
by transfer simp

lemma hlog-le-cancel-iff [simp]: 1 < a = 0 <z = 0 < y = hlog a = < hlog
ay+—x <y

by (simp add: linorder-not-less [symmetric])

end
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theory Hyperreal
imports HLog
begin

end

theory Hypercomplex
imports CLim Hyperreal
begin

end

theory Nonstandard-Analysis
imports Hypercomplex
begin

end
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