
Isabelle/HOL-NSA — Non-Standard Analysis

January 18, 2026

Contents
1 Filters and Ultrafilters 3

1.1 Definitions and basic properties 3
1.1.1 Ultrafilters . 3

1.2 Maximal filter = Ultrafilter 3
1.3 Ultrafilter Theorem . 4

1.3.1 Free Ultrafilters . 5

2 Construction of Star Types Using Ultrafilters 6
2.1 A Free Ultrafilter over the Naturals 7
2.2 Definition of star type constructor 7
2.3 Transfer principle . 8
2.4 Standard elements . 10
2.5 Internal functions . 10
2.6 Internal predicates . 12
2.7 Internal sets . 13
2.8 Syntactic classes . 14
2.9 Ordering and lattice classes 18
2.10 Ordered group classes . 20
2.11 Ring and field classes . 21
2.12 Power . 23
2.13 Number classes . 24
2.14 Finite class . 25

3 Hypernatural numbers 25
3.1 Properties Transferred from Naturals 26
3.2 Properties of the set of embedded natural numbers 28
3.3 Infinite Hypernatural Numbers – HNatInfinite 29

3.3.1 Closure Rules . 30
3.4 Existence of an infinite hypernatural number 30

3.4.1 Alternative characterization of the set of infinite hy-
pernaturals . 31

1

2

3.4.2 Alternative Characterization of HNatInfinite using Free
Ultrafilter . 32

3.5 Embedding of the Hypernaturals into other types 32

4 Construction of Hyperreals Using Ultrafilters 33
4.1 Real vector class instances . 34
4.2 Injection from hypreal . 35
4.3 Properties of starrel . 36
4.4 hypreal-of-real: the Injection from real to hypreal 36
4.5 Properties of star-n . 36
4.6 Existence of Infinite Hyperreal Number 37
4.7 Embedding the Naturals into the Hyperreals 38
4.8 Exponentials on the Hyperreals 39
4.9 Powers with Hypernatural Exponents 39

5 Infinite Numbers, Infinitesimals, Infinitely Close Relation 42
5.1 Nonstandard Extension of the Norm Function 42
5.2 Closure Laws for the Standard Reals 45
5.3 Set of Finite Elements is a Subring of the Extended Reals . . 45
5.4 Set of Infinitesimals is a Subring of the Hyperreals 47
5.5 The Infinitely Close Relation 53
5.6 Zero is the Only Infinitesimal that is also a Real 58

6 Standard Part Theorem 60
6.1 Uniqueness: Two Infinitely Close Reals are Equal 60
6.2 Existence of Unique Real Infinitely Close 61

6.2.1 Lifting of the Ub and Lub Properties 61
6.3 Finite, Infinite and Infinitesimal 64
6.4 Theorems about Monads . 67
6.5 Proof that x ≈ y implies |x| ≈ |y| 67
6.6 More HFinite and Infinitesimal Theorems 69
6.7 Theorems about Standard Part 70
6.8 Alternative Definitions using Free Ultrafilter 72

6.8.1 HFinite . 72
6.8.2 HInfinite . 73
6.8.3 Infinitesimal . 74

6.9 Proof that ω is an infinite number 75

7 Nonstandard Complex Numbers 77
7.0.1 Real and Imaginary parts 78
7.0.2 Imaginary unit . 78
7.0.3 Complex conjugate . 78
7.0.4 Argand . 78
7.0.5 Injection from hyperreals 78

3

7.0.6 e ^ (x + iy) . 78
7.1 Properties of Nonstandard Real and Imaginary Parts 79
7.2 Addition for Nonstandard Complex Numbers 80
7.3 More Minus Laws . 80
7.4 More Multiplication Laws . 80
7.5 Subtraction and Division . 81
7.6 Embedding Properties for hcomplex-of-hypreal Map 81
7.7 HComplex theorems . 81
7.8 Modulus (Absolute Value) of Nonstandard Complex Number 82
7.9 Conjugation . 83
7.10 More Theorems about the Function hcmod 84
7.11 Exponentiation . 84
7.12 The Function hsgn . 85

7.12.1 harg . 86
7.13 Polar Form for Nonstandard Complex Numbers 86
7.14 hcomplex-of-complex: the Injection from type complex to to

hcomplex . 89
7.15 Numerals and Arithmetic . 89

8 Star-Transforms in Non-Standard Analysis 90
8.1 Preamble - Pulling ∃ over ∀ 90
8.2 Properties of the Star-transform Applied to Sets of Reals . . 90
8.3 Theorems about nonstandard extensions of functions 91

9 Star-transforms for the Hypernaturals 96
9.1 Nonstandard Extensions of Functions 97
9.2 Nonstandard Characterization of Induction 99

10 Sequences and Convergence (Nonstandard) 100
10.1 Limits of Sequences . 101

10.1.1 Equivalence of LIMSEQ and NSLIMSEQ 103
10.1.2 Derived theorems about NSLIMSEQ 104

10.2 Convergence . 105
10.3 Bounded Monotonic Sequences 105

10.3.1 Upper Bounds and Lubs of Bounded Sequences 107
10.3.2 A Bounded and Monotonic Sequence Converges 107

10.4 Cauchy Sequences . 107
10.4.1 Equivalence Between NS and Standard 108
10.4.2 Cauchy Sequences are Bounded 109
10.4.3 Cauchy Sequences are Convergent 109

10.5 Power Sequences . 110

4

11 Finite Summation and Infinite Series for Hyperreals 111
11.1 Nonstandard Sums . 112
11.2 Infinite sums: Standard and NS theorems 113

12 Limits and Continuity (Nonstandard) 114
12.1 Limits of Functions . 115

12.1.1 Equivalence of filterlim and NSLIM 117
12.2 Continuity . 118
12.3 Uniform Continuity . 119

13 Differentiation (Nonstandard) 121
13.1 Derivatives . 121
13.2 Lemmas . 124

13.2.1 Equivalence of NS and Standard definitions 126
13.2.2 Differentiability predicate 127

13.3 (NS) Increment . 127

14 Nonstandard Extensions of Transcendental Functions 128
14.1 Nonstandard Extension of Square Root Function 129
14.2 Proving sin ∗(1/n)× 1/(1/n) ≈ 1 for n =∞ 137

15 Non-Standard Complex Analysis 140
15.1 Closure Laws for SComplex, the Standard Complex Numbers 140
15.2 The Finite Elements form a Subring 141
15.3 The Complex Infinitesimals form a Subring 141
15.4 The “Infinitely Close” Relation 142
15.5 Zero is the Only Infinitesimal Complex Number 142
15.6 Properties of hRe, hIm and HComplex 143
15.7 Theorems About Monads . 145
15.8 Theorems About Standard Part 145

16 Star-transforms in NSA, Extending Sets of Complex Num-
bers and Complex Functions 148
16.1 Properties of the ∗-Transform Applied to Sets of Reals 148
16.2 Theorems about Nonstandard Extensions of Functions 148
16.3 Internal Functions - Some Redundancy With ∗f ∗ Now 148

17 Limits, Continuity and Differentiation for Complex Func-
tions 148
17.1 Limit of Complex to Complex Function 149
17.2 Continuity . 150
17.3 Functions from Complex to Reals 150
17.4 Differentiation of Natural Number Powers 151
17.5 Derivative of Reciprocals (Function inverse) 151
17.6 Derivative of Quotient . 151

5

17.7 Caratheodory Formulation of Derivative at a Point: Standard
Proof . 152

18 Logarithms: Non-Standard Version 152

6

CLim

CStar

Free_Ultrafilter

HDeriv

HLim

HLog

HSEQ

HSeries

HTranscendental

HyperDef

HyperNat

Hypercomplex

Hyperreal

NSA

NSCA

NSComplex

NatStar

Nonstandard_Analysis

Star

StarDef

[HOL-Library]

[HOL]

[Pure]

[Tools]

THEORY “Free-Ultrafilter” 7

1 Filters and Ultrafilters
theory Free-Ultrafilter

imports HOL−Library.Infinite-Set
begin

1.1 Definitions and basic properties
1.1.1 Ultrafilters
locale ultrafilter =

fixes F :: ′a filter
assumes proper : F 6= bot
assumes ultra: eventually P F ∨ eventually (λx. ¬ P x) F

begin

lemma eventually-imp-frequently: frequently P F =⇒ eventually P F
using ultra[of P] by (simp add: frequently-def)

lemma frequently-eq-eventually: frequently P F = eventually P F
using eventually-imp-frequently eventually-frequently[OF proper] ..

lemma eventually-disj-iff : eventually (λx. P x ∨ Q x) F ←→ eventually P F ∨
eventually Q F

unfolding frequently-eq-eventually[symmetric] frequently-disj-iff ..

lemma eventually-all-iff : eventually (λx. ∀ y. P x y) F = (∀Y . eventually (λx. P
x (Y x)) F)

using frequently-all[of P F] by (simp add: frequently-eq-eventually)

lemma eventually-imp-iff : eventually (λx. P x −→ Q x) F ←→ (eventually P F
−→ eventually Q F)

using frequently-imp-iff [of P Q F] by (simp add: frequently-eq-eventually)

lemma eventually-iff-iff : eventually (λx. P x ←→ Q x) F ←→ (eventually P F
←→ eventually Q F)

unfolding iff-conv-conj-imp eventually-conj-iff eventually-imp-iff by simp

lemma eventually-not-iff : eventually (λx. ¬ P x) F ←→ ¬ eventually P F
unfolding not-eventually frequently-eq-eventually ..

end

1.2 Maximal filter = Ultrafilter

A filter F is an ultrafilter iff it is a maximal filter, i.e. whenever G is a filter
and F ⊆ G then F = G

Lemma that shows existence of an extension to what was assumed to be a
maximal filter. Will be used to derive contradiction in proof of property of

THEORY “Free-Ultrafilter” 8

ultrafilter.
lemma extend-filter : frequently P F =⇒ inf F (principal {x. P x}) 6= bot

by (simp add: trivial-limit-def eventually-inf-principal not-eventually)

lemma max-filter-ultrafilter :
assumes F 6= bot
assumes max:

∧
G. G 6= bot =⇒ G ≤ F =⇒ F = G

shows ultrafilter F
proof

show eventually P F ∨ (∀ F x in F . ¬ P x) for P
proof (rule disjCI)

assume ¬ (∀ F x in F . ¬ P x)
then have inf F (principal {x. P x}) 6= bot

by (simp add: not-eventually extend-filter)
then have F : F = inf F (principal {x. P x})

by (rule max) simp
show eventually P F

by (subst F) (simp add: eventually-inf-principal)
qed

qed fact

lemma le-filter-frequently: F ≤ G ←→ (∀P. frequently P F −→ frequently P G)
unfolding frequently-def le-filter-def
apply auto
apply (erule-tac x=λx. ¬ P x in allE)
apply auto
done

lemma (in ultrafilter) max-filter :
assumes G: G 6= bot

and sub: G ≤ F
shows F = G

proof (rule antisym)
show F ≤ G

using sub
by (auto simp: le-filter-frequently[of F] frequently-eq-eventually le-filter-def [of

G]
intro!: eventually-frequently G proper)

qed fact

1.3 Ultrafilter Theorem
lemma ex-max-ultrafilter :

fixes F :: ′a filter
assumes F : F 6= bot
shows ∃U≤F . ultrafilter U

proof −
let ?X = {G. G 6= bot ∧ G ≤ F}
let ?R = {(b, a). a 6= bot ∧ a ≤ b ∧ b ≤ F}

THEORY “Free-Ultrafilter” 9

have bot-notin-R: c ∈ Chains ?R =⇒ bot /∈ c for c
by (auto simp: Chains-def)

have [simp]: Field ?R = ?X
by (auto simp: Field-def bot-unique)

have ∃m∈Field ?R. ∀ a∈Field ?R. (m, a) ∈ ?R −→ a = m (is ∃m∈?A. ?B m)
proof (rule Zorns-po-lemma)

show Partial-order ?R
by (auto simp: partial-order-on-def preorder-on-def

antisym-def refl-on-def trans-def Field-def bot-unique)
show ∃ u∈Field ?R. ∀ a∈C . (a, u) ∈ ?R if C : C ∈ Chains ?R for C
proof (simp, intro exI conjI ballI)

have Inf-C : Inf C 6= bot Inf C ≤ F if C 6= {}
proof −

from C that have Inf C = bot ←→ (∃ x∈C . x = bot)
unfolding trivial-limit-def by (intro eventually-Inf-base) (auto simp:

Chains-def)
with C show Inf C 6= bot

by (simp add: bot-notin-R)
from that obtain x where x ∈ C by auto
with C show Inf C ≤ F

by (auto intro!: Inf-lower2 [of x] simp: Chains-def)
qed
then have [simp]: inf F (Inf C) = (if C = {} then F else Inf C)

using C by (auto simp add: inf-absorb2)
from C show inf F (Inf C) 6= bot

by (simp add: F Inf-C)
from C show inf F (Inf C) ≤ F

by (simp add: Chains-def Inf-C F)
with C show inf F (Inf C) ≤ x x ≤ F if x ∈ C for x

using that by (auto intro: Inf-lower simp: Chains-def)
qed

qed
then obtain U where U : U ∈ ?A ?B U ..
show ?thesis
proof

from U show U ≤ F ∧ ultrafilter U
by (auto intro!: max-filter-ultrafilter)

qed
qed

1.3.1 Free Ultrafilters

There exists a free ultrafilter on any infinite set.
locale freeultrafilter = ultrafilter +

assumes infinite: eventually P F =⇒ infinite {x. P x}
begin

THEORY “StarDef” 10

lemma finite: finite {x. P x} =⇒ ¬ eventually P F
by (erule contrapos-pn) (erule infinite)

lemma finite ′: finite {x. ¬ P x} =⇒ eventually P F
by (drule finite) (simp add: not-eventually frequently-eq-eventually)

lemma le-cofinite: F ≤ cofinite
by (intro filter-leI)
(auto simp add: eventually-cofinite not-eventually frequently-eq-eventually dest!:

finite)

lemma singleton: ¬ eventually (λx. x = a) F
by (rule finite) simp

lemma singleton ′: ¬ eventually ((=) a) F
by (rule finite) simp

lemma ultrafilter : ultrafilter F ..

end

lemma freeultrafilter-Ex:
assumes [simp]: infinite (UNIV :: ′a set)
shows ∃U :: ′a filter . freeultrafilter U

proof −
from ex-max-ultrafilter [of cofinite :: ′a filter]
obtain U :: ′a filter where U ≤ cofinite ultrafilter U

by auto
interpret ultrafilter U by fact
have freeultrafilter U
proof

fix P
assume eventually P U
with proper have frequently P U

by (rule eventually-frequently)
then have frequently P cofinite

using ‹U ≤ cofinite› by (simp add: le-filter-frequently)
then show infinite {x. P x}

by (simp add: frequently-cofinite)
qed
then show ?thesis ..

qed

end

2 Construction of Star Types Using Ultrafilters
theory StarDef

THEORY “StarDef” 11

imports Free-Ultrafilter
begin

2.1 A Free Ultrafilter over the Naturals
definition FreeUltrafilterNat :: nat filter (‹U›)

where U = (SOME U . freeultrafilter U)

lemma freeultrafilter-FreeUltrafilterNat: freeultrafilter U
unfolding FreeUltrafilterNat-def
by (simp add: freeultrafilter-Ex someI-ex)

interpretation FreeUltrafilterNat: freeultrafilter U
by (rule freeultrafilter-FreeUltrafilterNat)

2.2 Definition of star type constructor
definition starrel :: ((nat ⇒ ′a) × (nat ⇒ ′a)) set

where starrel = {(X , Y). eventually (λn. X n = Y n) U}

definition star = (UNIV :: (nat ⇒ ′a) set) // starrel

typedef ′a star = star :: (nat ⇒ ′a) set set
by (auto simp: star-def intro: quotientI)

definition star-n :: (nat ⇒ ′a) ⇒ ′a star
where star-n X = Abs-star (starrel ‘‘ {X})

theorem star-cases [case-names star-n, cases type: star]:
obtains X where x = star-n X
by (cases x) (auto simp: star-n-def star-def elim: quotientE)

lemma all-star-eq: (∀ x. P x) ←→ (∀X . P (star-n X))
by (metis star-cases)

lemma ex-star-eq: (∃ x. P x) ←→ (∃X . P (star-n X))
by (metis star-cases)

Proving that starrel is an equivalence relation.
lemma starrel-iff [iff]: (X , Y) ∈ starrel ←→ eventually (λn. X n = Y n) U

by (simp add: starrel-def)

lemma equiv-starrel: equiv UNIV starrel
proof (rule equivI)

show starrel ⊆ UNIV × UNIV by simp
show refl starrel by (simp add: refl-on-def)
show sym starrel by (simp add: sym-def eq-commute)
show trans starrel by (intro transI) (auto elim: eventually-elim2)

qed

THEORY “StarDef” 12

lemmas equiv-starrel-iff = eq-equiv-class-iff [OF equiv-starrel UNIV-I UNIV-I]

lemma starrel-in-star : starrel‘‘{x} ∈ star
by (simp add: star-def quotientI)

lemma star-n-eq-iff : star-n X = star-n Y ←→ eventually (λn. X n = Y n) U
by (simp add: star-n-def Abs-star-inject starrel-in-star equiv-starrel-iff)

2.3 Transfer principle

This introduction rule starts each transfer proof.
lemma transfer-start: P ≡ eventually (λn. Q) U =⇒ Trueprop P ≡ Trueprop Q

by (simp add: FreeUltrafilterNat.proper)

Standard principles that play a central role in the transfer tactic.
definition Ifun :: (′a ⇒ ′b) star ⇒ ′a star ⇒ ′b star

(‹(‹notation=‹infix ?››- ?/ -)› [300 , 301] 300)
where Ifun f ≡
λx. Abs-star (

⋃
F∈Rep-star f .

⋃
X∈Rep-star x. starrel‘‘{λn. F n (X n)})

lemma Ifun-congruent2 : congruent2 starrel starrel (λF X . starrel‘‘{λn. F n (X
n)})

by (auto simp add: congruent2-def equiv-starrel-iff elim!: eventually-rev-mp)

lemma Ifun-star-n: star-n F ? star-n X = star-n (λn. F n (X n))
by (simp add: Ifun-def star-n-def Abs-star-inverse starrel-in-star

UN-equiv-class2 [OF equiv-starrel equiv-starrel Ifun-congruent2])

lemma transfer-Ifun: f ≡ star-n F =⇒ x ≡ star-n X =⇒ f ? x ≡ star-n (λn. F
n (X n))

by (simp only: Ifun-star-n)

definition star-of :: ′a ⇒ ′a star
where star-of x ≡ star-n (λn. x)

Initialize transfer tactic.
ML-file ‹transfer-principle.ML›

method-setup transfer =
‹Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD ′ (Transfer-Principle.transfer-tac

ctxt ths))›
transfer principle

Transfer introduction rules.
lemma transfer-ex [transfer-intro]:
(
∧

X . p (star-n X) ≡ eventually (λn. P n (X n)) U) =⇒
∃ x:: ′a star . p x ≡ eventually (λn. ∃ x. P n x) U

THEORY “StarDef” 13

by (simp only: ex-star-eq eventually-ex)

lemma transfer-all [transfer-intro]:
(
∧

X . p (star-n X) ≡ eventually (λn. P n (X n)) U) =⇒
∀ x:: ′a star . p x ≡ eventually (λn. ∀ x. P n x) U

by (simp only: all-star-eq FreeUltrafilterNat.eventually-all-iff)

lemma transfer-not [transfer-intro]: p ≡ eventually P U =⇒ ¬ p ≡ eventually (λn.
¬ P n) U

by (simp only: FreeUltrafilterNat.eventually-not-iff)

lemma transfer-conj [transfer-intro]:
p ≡ eventually P U =⇒ q ≡ eventually Q U =⇒ p ∧ q ≡ eventually (λn. P n ∧

Q n) U
by (simp only: eventually-conj-iff)

lemma transfer-disj [transfer-intro]:
p ≡ eventually P U =⇒ q ≡ eventually Q U =⇒ p ∨ q ≡ eventually (λn. P n ∨

Q n) U
by (simp only: FreeUltrafilterNat.eventually-disj-iff)

lemma transfer-imp [transfer-intro]:
p ≡ eventually P U =⇒ q ≡ eventually Q U =⇒ p −→ q ≡ eventually (λn. P n
−→ Q n) U

by (simp only: FreeUltrafilterNat.eventually-imp-iff)

lemma transfer-iff [transfer-intro]:
p ≡ eventually P U =⇒ q ≡ eventually Q U =⇒ p = q ≡ eventually (λn. P n =

Q n) U
by (simp only: FreeUltrafilterNat.eventually-iff-iff)

lemma transfer-if-bool [transfer-intro]:
p ≡ eventually P U =⇒ x ≡ eventually X U =⇒ y ≡ eventually Y U =⇒
(if p then x else y) ≡ eventually (λn. if P n then X n else Y n) U

by (simp only: if-bool-eq-conj transfer-conj transfer-imp transfer-not)

lemma transfer-eq [transfer-intro]:
x ≡ star-n X =⇒ y ≡ star-n Y =⇒ x = y ≡ eventually (λn. X n = Y n) U
by (simp only: star-n-eq-iff)

lemma transfer-if [transfer-intro]:
p ≡ eventually (λn. P n) U =⇒ x ≡ star-n X =⇒ y ≡ star-n Y =⇒
(if p then x else y) ≡ star-n (λn. if P n then X n else Y n)

by (rule eq-reflection) (auto simp: star-n-eq-iff transfer-not elim!: eventually-mono)

lemma transfer-fun-eq [transfer-intro]:
(
∧

X . f (star-n X) = g (star-n X) ≡ eventually (λn. F n (X n) = G n (X n))
U) =⇒

f = g ≡ eventually (λn. F n = G n) U

THEORY “StarDef” 14

by (simp only: fun-eq-iff transfer-all)

lemma transfer-star-n [transfer-intro]: star-n X ≡ star-n (λn. X n)
by (rule reflexive)

lemma transfer-bool [transfer-intro]: p ≡ eventually (λn. p) U
by (simp add: FreeUltrafilterNat.proper)

2.4 Standard elements
definition Standard :: ′a star set

where Standard = range star-of

Transfer tactic should remove occurrences of star-of.
setup ‹Transfer-Principle.add-const const-name ‹star-of ››

lemma star-of-inject: star-of x = star-of y ←→ x = y
by transfer (rule refl)

lemma Standard-star-of [simp]: star-of x ∈ Standard
by (simp add: Standard-def)

2.5 Internal functions

Transfer tactic should remove occurrences of Ifun.
setup ‹Transfer-Principle.add-const const-name ‹Ifun››

lemma Ifun-star-of [simp]: star-of f ? star-of x = star-of (f x)
by transfer (rule refl)

lemma Standard-Ifun [simp]: f ∈ Standard =⇒ x ∈ Standard =⇒ f ? x ∈ Standard
by (auto simp add: Standard-def)

Nonstandard extensions of functions.
definition starfun :: (′a ⇒ ′b) ⇒ ′a star ⇒ ′b star

(‹(‹open-block notation=‹prefix starfun››∗f ∗ -)› [80] 80)
where starfun f ≡ λx. star-of f ? x

definition starfun2 :: (′a ⇒ ′b ⇒ ′c) ⇒ ′a star ⇒ ′b star ⇒ ′c star
(‹(‹open-block notation=‹prefix starfun2 ››∗f2∗ -)› [80] 80)

where starfun2 f ≡ λx y. star-of f ? x ? y

declare starfun-def [transfer-unfold]
declare starfun2-def [transfer-unfold]

lemma starfun-star-n: (∗f ∗ f) (star-n X) = star-n (λn. f (X n))
by (simp only: starfun-def star-of-def Ifun-star-n)

THEORY “StarDef” 15

lemma starfun2-star-n: (∗f2∗ f) (star-n X) (star-n Y) = star-n (λn. f (X n) (Y
n))

by (simp only: starfun2-def star-of-def Ifun-star-n)

lemma starfun-star-of [simp]: (∗f ∗ f) (star-of x) = star-of (f x)
by transfer (rule refl)

lemma starfun2-star-of [simp]: (∗f2∗ f) (star-of x) = ∗f ∗ f x
by transfer (rule refl)

lemma Standard-starfun [simp]: x ∈ Standard =⇒ starfun f x ∈ Standard
by (simp add: starfun-def)

lemma Standard-starfun2 [simp]: x ∈ Standard =⇒ y ∈ Standard =⇒ starfun2 f
x y ∈ Standard

by (simp add: starfun2-def)

lemma Standard-starfun-iff :
assumes inj:

∧
x y. f x = f y =⇒ x = y

shows starfun f x ∈ Standard ←→ x ∈ Standard
proof

assume x ∈ Standard
then show starfun f x ∈ Standard by simp

next
from inj have inj ′:

∧
x y. starfun f x = starfun f y =⇒ x = y

by transfer
assume starfun f x ∈ Standard
then obtain b where b: starfun f x = star-of b

unfolding Standard-def ..
then have ∃ x. starfun f x = star-of b ..
then have ∃ a. f a = b by transfer
then obtain a where f a = b ..
then have starfun f (star-of a) = star-of b by transfer
with b have starfun f x = starfun f (star-of a) by simp
then have x = star-of a by (rule inj ′)
then show x ∈ Standard by (simp add: Standard-def)

qed

lemma Standard-starfun2-iff :
assumes inj:

∧
a b a ′ b ′. f a b = f a ′ b ′ =⇒ a = a ′ ∧ b = b ′

shows starfun2 f x y ∈ Standard ←→ x ∈ Standard ∧ y ∈ Standard
proof

assume x ∈ Standard ∧ y ∈ Standard
then show starfun2 f x y ∈ Standard by simp

next
have inj ′:

∧
x y z w. starfun2 f x y = starfun2 f z w =⇒ x = z ∧ y = w

using inj by transfer
assume starfun2 f x y ∈ Standard
then obtain c where c: starfun2 f x y = star-of c

THEORY “StarDef” 16

unfolding Standard-def ..
then have ∃ x y. starfun2 f x y = star-of c by auto
then have ∃ a b. f a b = c by transfer
then obtain a b where f a b = c by auto
then have starfun2 f (star-of a) (star-of b) = star-of c by transfer
with c have starfun2 f x y = starfun2 f (star-of a) (star-of b) by simp
then have x = star-of a ∧ y = star-of b by (rule inj ′)
then show x ∈ Standard ∧ y ∈ Standard by (simp add: Standard-def)

qed

2.6 Internal predicates
definition unstar :: bool star ⇒ bool

where unstar b ←→ b = star-of True

lemma unstar-star-n: unstar (star-n P) ←→ eventually P U
by (simp add: unstar-def star-of-def star-n-eq-iff)

lemma unstar-star-of [simp]: unstar (star-of p) = p
by (simp add: unstar-def star-of-inject)

Transfer tactic should remove occurrences of unstar.
setup ‹Transfer-Principle.add-const const-name ‹unstar››

lemma transfer-unstar [transfer-intro]: p ≡ star-n P =⇒ unstar p ≡ eventually P
U

by (simp only: unstar-star-n)

definition starP :: (′a ⇒ bool) ⇒ ′a star ⇒ bool
(‹(‹open-block notation=‹prefix starP››∗p∗ -)› [80] 80)

where ∗p∗ P = (λx. unstar (star-of P ? x))

definition starP2 :: (′a ⇒ ′b ⇒ bool) ⇒ ′a star ⇒ ′b star ⇒ bool
(‹(‹open-block notation=‹prefix starP2 ››∗p2∗ -)› [80] 80)

where ∗p2∗ P = (λx y. unstar (star-of P ? x ? y))

declare starP-def [transfer-unfold]
declare starP2-def [transfer-unfold]

lemma starP-star-n: (∗p∗ P) (star-n X) = eventually (λn. P (X n)) U
by (simp only: starP-def star-of-def Ifun-star-n unstar-star-n)

lemma starP2-star-n: (∗p2∗ P) (star-n X) (star-n Y) = (eventually (λn. P (X
n) (Y n)) U)

by (simp only: starP2-def star-of-def Ifun-star-n unstar-star-n)

lemma starP-star-of [simp]: (∗p∗ P) (star-of x) = P x
by transfer (rule refl)

THEORY “StarDef” 17

lemma starP2-star-of [simp]: (∗p2∗ P) (star-of x) = ∗p∗ P x
by transfer (rule refl)

2.7 Internal sets
definition Iset :: ′a set star ⇒ ′a star set

where Iset A = {x. (∗p2∗ (∈)) x A}

lemma Iset-star-n: (star-n X ∈ Iset (star-n A)) = (eventually (λn. X n ∈ A n)
U)

by (simp add: Iset-def starP2-star-n)

Transfer tactic should remove occurrences of Iset.
setup ‹Transfer-Principle.add-const const-name ‹Iset››

lemma transfer-mem [transfer-intro]:
x ≡ star-n X =⇒ a ≡ Iset (star-n A) =⇒ x ∈ a ≡ eventually (λn. X n ∈ A n)
U

by (simp only: Iset-star-n)

lemma transfer-Collect [transfer-intro]:
(
∧

X . p (star-n X) ≡ eventually (λn. P n (X n)) U) =⇒
Collect p ≡ Iset (star-n (λn. Collect (P n)))

by (simp add: atomize-eq set-eq-iff all-star-eq Iset-star-n)

lemma transfer-set-eq [transfer-intro]:
a ≡ Iset (star-n A) =⇒ b ≡ Iset (star-n B) =⇒ a = b ≡ eventually (λn. A n =

B n) U
by (simp only: set-eq-iff transfer-all transfer-iff transfer-mem)

lemma transfer-ball [transfer-intro]:
a ≡ Iset (star-n A) =⇒ (

∧
X . p (star-n X) ≡ eventually (λn. P n (X n)) U) =⇒

∀ x∈a. p x ≡ eventually (λn. ∀ x∈A n. P n x) U
by (simp only: Ball-def transfer-all transfer-imp transfer-mem)

lemma transfer-bex [transfer-intro]:
a ≡ Iset (star-n A) =⇒ (

∧
X . p (star-n X) ≡ eventually (λn. P n (X n)) U) =⇒

∃ x∈a. p x ≡ eventually (λn. ∃ x∈A n. P n x) U
by (simp only: Bex-def transfer-ex transfer-conj transfer-mem)

lemma transfer-Iset [transfer-intro]: a ≡ star-n A =⇒ Iset a ≡ Iset (star-n (λn.
A n))

by simp

Nonstandard extensions of sets.
definition starset :: ′a set ⇒ ′a star set

(‹(‹open-block notation=‹prefix starset››∗s∗ -)› [80] 80)
where starset A = Iset (star-of A)

THEORY “StarDef” 18

declare starset-def [transfer-unfold]

lemma starset-mem: star-of x ∈ ∗s∗ A ←→ x ∈ A
by transfer (rule refl)

lemma starset-UNIV : ∗s∗ (UNIV :: ′a set) = (UNIV :: ′a star set)
by (transfer UNIV-def) (rule refl)

lemma starset-empty: ∗s∗ {} = {}
by (transfer empty-def) (rule refl)

lemma starset-insert: ∗s∗ (insert x A) = insert (star-of x) (∗s∗ A)
by (transfer insert-def Un-def) (rule refl)

lemma starset-Un: ∗s∗ (A ∪ B) = ∗s∗ A ∪ ∗s∗ B
by (transfer Un-def) (rule refl)

lemma starset-Int: ∗s∗ (A ∩ B) = ∗s∗ A ∩ ∗s∗ B
by (transfer Int-def) (rule refl)

lemma starset-Compl: ∗s∗ −A = −(∗s∗ A)
by (transfer Compl-eq) (rule refl)

lemma starset-diff : ∗s∗ (A − B) = ∗s∗ A − ∗s∗ B
by (transfer set-diff-eq) (rule refl)

lemma starset-image: ∗s∗ (f ‘ A) = (∗f ∗ f) ‘ (∗s∗ A)
by (transfer image-def) (rule refl)

lemma starset-vimage: ∗s∗ (f −‘ A) = (∗f ∗ f) −‘ (∗s∗ A)
by (transfer vimage-def) (rule refl)

lemma starset-subset: (∗s∗ A ⊆ ∗s∗ B) ←→ A ⊆ B
by (transfer subset-eq) (rule refl)

lemma starset-eq: (∗s∗ A = ∗s∗ B) ←→ A = B
by transfer (rule refl)

lemmas starset-simps [simp] =
starset-mem starset-UNIV
starset-empty starset-insert
starset-Un starset-Int
starset-Compl starset-diff
starset-image starset-vimage
starset-subset starset-eq

2.8 Syntactic classes
instantiation star :: (zero) zero

THEORY “StarDef” 19

begin
definition star-zero-def : 0 ≡ star-of 0
instance ..

end

instantiation star :: (one) one
begin

definition star-one-def : 1 ≡ star-of 1
instance ..

end

instantiation star :: (plus) plus
begin

definition star-add-def : (+) ≡ ∗f2∗ (+)
instance ..

end

instantiation star :: (times) times
begin

definition star-mult-def : ((∗)) ≡ ∗f2∗ ((∗))
instance ..

end

instantiation star :: (uminus) uminus
begin

definition star-minus-def : uminus ≡ ∗f ∗ uminus
instance ..

end

instantiation star :: (minus) minus
begin

definition star-diff-def : (−) ≡ ∗f2∗ (−)
instance ..

end

instantiation star :: (abs) abs
begin

definition star-abs-def : abs ≡ ∗f ∗ abs
instance ..

end

instantiation star :: (sgn) sgn
begin

definition star-sgn-def : sgn ≡ ∗f ∗ sgn
instance ..

end

instantiation star :: (divide) divide
begin

THEORY “StarDef” 20

definition star-divide-def : divide ≡ ∗f2∗ divide
instance ..

end

instantiation star :: (inverse) inverse
begin

definition star-inverse-def : inverse ≡ ∗f ∗ inverse
instance ..

end

instance star :: (Rings.dvd) Rings.dvd ..

instantiation star :: (modulo) modulo
begin

definition star-mod-def : (mod) ≡ ∗f2∗ (mod)
instance ..

end

instantiation star :: (ord) ord
begin

definition star-le-def : (≤) ≡ ∗p2∗ (≤)
definition star-less-def : (<) ≡ ∗p2∗ (<)
instance ..

end

lemmas star-class-defs [transfer-unfold] =
star-zero-def star-one-def
star-add-def star-diff-def star-minus-def
star-mult-def star-divide-def star-inverse-def
star-le-def star-less-def star-abs-def star-sgn-def
star-mod-def

Class operations preserve standard elements.
lemma Standard-zero: 0 ∈ Standard

by (simp add: star-zero-def)

lemma Standard-one: 1 ∈ Standard
by (simp add: star-one-def)

lemma Standard-add: x ∈ Standard =⇒ y ∈ Standard =⇒ x + y ∈ Standard
by (simp add: star-add-def)

lemma Standard-diff : x ∈ Standard =⇒ y ∈ Standard =⇒ x − y ∈ Standard
by (simp add: star-diff-def)

lemma Standard-minus: x ∈ Standard =⇒ − x ∈ Standard
by (simp add: star-minus-def)

lemma Standard-mult: x ∈ Standard =⇒ y ∈ Standard =⇒ x ∗ y ∈ Standard

THEORY “StarDef” 21

by (simp add: star-mult-def)

lemma Standard-divide: x ∈ Standard =⇒ y ∈ Standard =⇒ x / y ∈ Standard
by (simp add: star-divide-def)

lemma Standard-inverse: x ∈ Standard =⇒ inverse x ∈ Standard
by (simp add: star-inverse-def)

lemma Standard-abs: x ∈ Standard =⇒ |x| ∈ Standard
by (simp add: star-abs-def)

lemma Standard-mod: x ∈ Standard =⇒ y ∈ Standard =⇒ x mod y ∈ Standard
by (simp add: star-mod-def)

lemmas Standard-simps [simp] =
Standard-zero Standard-one
Standard-add Standard-diff Standard-minus
Standard-mult Standard-divide Standard-inverse
Standard-abs Standard-mod

star-of preserves class operations.
lemma star-of-add: star-of (x + y) = star-of x + star-of y

by transfer (rule refl)

lemma star-of-diff : star-of (x − y) = star-of x − star-of y
by transfer (rule refl)

lemma star-of-minus: star-of (−x) = − star-of x
by transfer (rule refl)

lemma star-of-mult: star-of (x ∗ y) = star-of x ∗ star-of y
by transfer (rule refl)

lemma star-of-divide: star-of (x / y) = star-of x / star-of y
by transfer (rule refl)

lemma star-of-inverse: star-of (inverse x) = inverse (star-of x)
by transfer (rule refl)

lemma star-of-mod: star-of (x mod y) = star-of x mod star-of y
by transfer (rule refl)

lemma star-of-abs: star-of |x| = |star-of x|
by transfer (rule refl)

star-of preserves numerals.
lemma star-of-zero: star-of 0 = 0

by transfer (rule refl)

THEORY “StarDef” 22

lemma star-of-one: star-of 1 = 1
by transfer (rule refl)

star-of preserves orderings.
lemma star-of-less: (star-of x < star-of y) = (x < y)
by transfer (rule refl)

lemma star-of-le: (star-of x ≤ star-of y) = (x ≤ y)
by transfer (rule refl)

lemma star-of-eq: (star-of x = star-of y) = (x = y)
by transfer (rule refl)

As above, for 0.
lemmas star-of-0-less = star-of-less [of 0 , simplified star-of-zero]
lemmas star-of-0-le = star-of-le [of 0 , simplified star-of-zero]
lemmas star-of-0-eq = star-of-eq [of 0 , simplified star-of-zero]

lemmas star-of-less-0 = star-of-less [of - 0 , simplified star-of-zero]
lemmas star-of-le-0 = star-of-le [of - 0 , simplified star-of-zero]
lemmas star-of-eq-0 = star-of-eq [of - 0 , simplified star-of-zero]

As above, for 1.
lemmas star-of-1-less = star-of-less [of 1 , simplified star-of-one]
lemmas star-of-1-le = star-of-le [of 1 , simplified star-of-one]
lemmas star-of-1-eq = star-of-eq [of 1 , simplified star-of-one]

lemmas star-of-less-1 = star-of-less [of - 1 , simplified star-of-one]
lemmas star-of-le-1 = star-of-le [of - 1 , simplified star-of-one]
lemmas star-of-eq-1 = star-of-eq [of - 1 , simplified star-of-one]

lemmas star-of-simps [simp] =
star-of-add star-of-diff star-of-minus
star-of-mult star-of-divide star-of-inverse
star-of-mod star-of-abs
star-of-zero star-of-one
star-of-less star-of-le star-of-eq
star-of-0-less star-of-0-le star-of-0-eq
star-of-less-0 star-of-le-0 star-of-eq-0
star-of-1-less star-of-1-le star-of-1-eq
star-of-less-1 star-of-le-1 star-of-eq-1

2.9 Ordering and lattice classes
instance star :: (order) order
proof

show
∧

x y:: ′a star . (x < y) = (x ≤ y ∧ ¬ y ≤ x)
by transfer (rule less-le-not-le)

show
∧

x:: ′a star . x ≤ x

THEORY “StarDef” 23

by transfer (rule order-refl)
show

∧
x y z:: ′a star . [[x ≤ y; y ≤ z]] =⇒ x ≤ z

by transfer (rule order-trans)
show

∧
x y:: ′a star . [[x ≤ y; y ≤ x]] =⇒ x = y

by transfer (rule order-antisym)
qed

instantiation star :: (semilattice-inf) semilattice-inf
begin

definition star-inf-def [transfer-unfold]: inf ≡ ∗f2∗ inf
instance by (standard; transfer) auto

end

instantiation star :: (semilattice-sup) semilattice-sup
begin

definition star-sup-def [transfer-unfold]: sup ≡ ∗f2∗ sup
instance by (standard; transfer) auto

end

instance star :: (lattice) lattice ..

instance star :: (distrib-lattice) distrib-lattice
by (standard; transfer) (auto simp add: sup-inf-distrib1)

lemma Standard-inf [simp]: x ∈ Standard =⇒ y ∈ Standard =⇒ inf x y ∈ Standard
by (simp add: star-inf-def)

lemma Standard-sup [simp]: x ∈ Standard =⇒ y ∈ Standard =⇒ sup x y ∈ Stan-
dard

by (simp add: star-sup-def)

lemma star-of-inf [simp]: star-of (inf x y) = inf (star-of x) (star-of y)
by transfer (rule refl)

lemma star-of-sup [simp]: star-of (sup x y) = sup (star-of x) (star-of y)
by transfer (rule refl)

instance star :: (linorder) linorder
by (intro-classes, transfer , rule linorder-linear)

lemma star-max-def [transfer-unfold]: max = ∗f2∗ max
unfolding max-def
by (intro ext, transfer , simp)

lemma star-min-def [transfer-unfold]: min = ∗f2∗ min
unfolding min-def
by (intro ext, transfer , simp)

lemma Standard-max [simp]: x ∈ Standard =⇒ y ∈ Standard =⇒ max x y ∈

THEORY “StarDef” 24

Standard
by (simp add: star-max-def)

lemma Standard-min [simp]: x ∈ Standard =⇒ y ∈ Standard =⇒ min x y ∈
Standard

by (simp add: star-min-def)

lemma star-of-max [simp]: star-of (max x y) = max (star-of x) (star-of y)
by transfer (rule refl)

lemma star-of-min [simp]: star-of (min x y) = min (star-of x) (star-of y)
by transfer (rule refl)

2.10 Ordered group classes
instance star :: (semigroup-add) semigroup-add

by (intro-classes, transfer , rule add.assoc)

instance star :: (ab-semigroup-add) ab-semigroup-add
by (intro-classes, transfer , rule add.commute)

instance star :: (semigroup-mult) semigroup-mult
by (intro-classes, transfer , rule mult.assoc)

instance star :: (ab-semigroup-mult) ab-semigroup-mult
by (intro-classes, transfer , rule mult.commute)

instance star :: (comm-monoid-add) comm-monoid-add
by (intro-classes, transfer , rule comm-monoid-add-class.add-0)

instance star :: (monoid-mult) monoid-mult
apply intro-classes
apply (transfer , rule mult-1-left)

apply (transfer , rule mult-1-right)
done

instance star :: (power) power ..

instance star :: (comm-monoid-mult) comm-monoid-mult
by (intro-classes, transfer , rule mult-1)

instance star :: (cancel-semigroup-add) cancel-semigroup-add
apply intro-classes
apply (transfer , erule add-left-imp-eq)

apply (transfer , erule add-right-imp-eq)
done

instance star :: (cancel-ab-semigroup-add) cancel-ab-semigroup-add
by intro-classes (transfer , simp add: diff-diff-eq)+

THEORY “StarDef” 25

instance star :: (cancel-comm-monoid-add) cancel-comm-monoid-add ..

instance star :: (ab-group-add) ab-group-add
apply intro-classes
apply (transfer , rule left-minus)

apply (transfer , rule diff-conv-add-uminus)
done

instance star :: (ordered-ab-semigroup-add) ordered-ab-semigroup-add
by (intro-classes, transfer , rule add-left-mono)

instance star :: (ordered-cancel-ab-semigroup-add) ordered-cancel-ab-semigroup-add
..

instance star :: (ordered-ab-semigroup-add-imp-le) ordered-ab-semigroup-add-imp-le
by (intro-classes, transfer , rule add-le-imp-le-left)

instance star :: (ordered-comm-monoid-add) ordered-comm-monoid-add ..
instance star :: (ordered-ab-semigroup-monoid-add-imp-le) ordered-ab-semigroup-monoid-add-imp-le
..
instance star :: (ordered-cancel-comm-monoid-add) ordered-cancel-comm-monoid-add
..
instance star :: (ordered-ab-group-add) ordered-ab-group-add ..

instance star :: (ordered-ab-group-add-abs) ordered-ab-group-add-abs
by intro-classes (transfer , simp add: abs-ge-self abs-leI abs-triangle-ineq)+

instance star :: (linordered-cancel-ab-semigroup-add) linordered-cancel-ab-semigroup-add
..

2.11 Ring and field classes
instance star :: (semiring) semiring

by (intro-classes; transfer) (fact distrib-right distrib-left)+

instance star :: (semiring-0) semiring-0
by (intro-classes; transfer) simp-all

instance star :: (semiring-0-cancel) semiring-0-cancel ..

instance star :: (comm-semiring) comm-semiring
by (intro-classes; transfer) (fact distrib-right)

instance star :: (comm-semiring-0) comm-semiring-0 ..
instance star :: (comm-semiring-0-cancel) comm-semiring-0-cancel ..

instance star :: (zero-neq-one) zero-neq-one
by (intro-classes; transfer) (fact zero-neq-one)

THEORY “StarDef” 26

instance star :: (semiring-1) semiring-1 ..
instance star :: (comm-semiring-1) comm-semiring-1 ..

declare dvd-def [transfer-refold]

instance star :: (comm-semiring-1-cancel) comm-semiring-1-cancel
by (intro-classes; transfer) (fact right-diff-distrib ′)

instance star :: (semiring-no-zero-divisors) semiring-no-zero-divisors
by (intro-classes; transfer) (fact no-zero-divisors)

instance star :: (semiring-1-no-zero-divisors) semiring-1-no-zero-divisors ..

instance star :: (semiring-no-zero-divisors-cancel) semiring-no-zero-divisors-cancel
by (intro-classes; transfer) simp-all

instance star :: (semiring-1-cancel) semiring-1-cancel ..
instance star :: (ring) ring ..
instance star :: (comm-ring) comm-ring ..
instance star :: (ring-1) ring-1 ..
instance star :: (comm-ring-1) comm-ring-1 ..
instance star :: (semidom) semidom ..

instance star :: (semidom-divide) semidom-divide
by (intro-classes; transfer) simp-all

instance star :: (ring-no-zero-divisors) ring-no-zero-divisors ..
instance star :: (ring-1-no-zero-divisors) ring-1-no-zero-divisors ..
instance star :: (idom) idom ..
instance star :: (idom-divide) idom-divide ..

instance star :: (divide-trivial) divide-trivial
by (intro-classes; transfer) simp-all

instance star :: (division-ring) division-ring
by (intro-classes; transfer) (simp-all add: divide-inverse)

instance star :: (field) field
by (intro-classes; transfer) (simp-all add: divide-inverse)

instance star :: (ordered-semiring) ordered-semiring
by (intro-classes; transfer) (fact mult-left-mono mult-right-mono)+

instance star :: (ordered-cancel-semiring) ordered-cancel-semiring ..

instance star :: (linordered-semiring-strict) linordered-semiring-strict
by (intro-classes; transfer) (fact mult-strict-left-mono mult-strict-right-mono)+

THEORY “StarDef” 27

instance star :: (ordered-comm-semiring) ordered-comm-semiring
by (intro-classes; transfer) (fact mult-left-mono)

instance star :: (ordered-cancel-comm-semiring) ordered-cancel-comm-semiring ..

instance star :: (linordered-comm-semiring-strict) linordered-comm-semiring-strict
by (intro-classes; transfer) (fact mult-strict-left-mono)

instance star :: (ordered-ring) ordered-ring ..

instance star :: (ordered-ring-abs) ordered-ring-abs
by (intro-classes; transfer) (fact abs-eq-mult)

instance star :: (abs-if) abs-if
by (intro-classes; transfer) (fact abs-if)

instance star :: (linordered-ring-strict) linordered-ring-strict ..
instance star :: (ordered-comm-ring) ordered-comm-ring ..

instance star :: (linordered-semidom) linordered-semidom
by (intro-classes; transfer) (fact zero-less-one le-add-diff-inverse2)+

instance star :: (linordered-idom) linordered-idom
by (intro-classes; transfer) (fact sgn-if)

instance star :: (linordered-field) linordered-field ..

instance star :: (algebraic-semidom) algebraic-semidom ..

instantiation star :: (normalization-semidom) normalization-semidom
begin

definition unit-factor-star :: ′a star ⇒ ′a star
where [transfer-unfold]: unit-factor-star = ∗f ∗ unit-factor

definition normalize-star :: ′a star ⇒ ′a star
where [transfer-unfold]: normalize-star = ∗f ∗ normalize

instance
by standard (transfer ; simp add: is-unit-unit-factor unit-factor-mult)+

end

instance star :: (semidom-modulo) semidom-modulo
by standard (transfer ; simp)

2.12 Power
lemma star-power-def [transfer-unfold]: (^) ≡ λx n. (∗f ∗ (λx. x ^ n)) x

THEORY “StarDef” 28

proof (rule eq-reflection, rule ext, rule ext)
show x ^ n = (∗f ∗ (λx. x ^ n)) x for n :: nat and x :: ′a star
proof (induct n arbitrary: x)

case 0
have

∧
x:: ′a star . (∗f ∗ (λx. 1)) x = 1

by transfer simp
then show ?case by simp

next
case (Suc n)
have

∧
x:: ′a star . x ∗ (∗f ∗ (λx:: ′a. x ^ n)) x = (∗f ∗ (λx:: ′a. x ∗ x ^ n)) x

by transfer simp
with Suc show ?case by simp

qed
qed

lemma Standard-power [simp]: x ∈ Standard =⇒ x ^ n ∈ Standard
by (simp add: star-power-def)

lemma star-of-power [simp]: star-of (x ^ n) = star-of x ^ n
by transfer (rule refl)

2.13 Number classes
instance star :: (numeral) numeral ..

lemma star-numeral-def [transfer-unfold]: numeral k = star-of (numeral k)
by (induct k) (simp-all only: numeral.simps star-of-one star-of-add)

lemma Standard-numeral [simp]: numeral k ∈ Standard
by (simp add: star-numeral-def)

lemma star-of-numeral [simp]: star-of (numeral k) = numeral k
by transfer (rule refl)

lemma star-of-nat-def [transfer-unfold]: of-nat n = star-of (of-nat n)
by (induct n) simp-all

lemmas star-of-compare-numeral [simp] =
star-of-less [of numeral k, simplified star-of-numeral]
star-of-le [of numeral k, simplified star-of-numeral]
star-of-eq [of numeral k, simplified star-of-numeral]
star-of-less [of - numeral k, simplified star-of-numeral]
star-of-le [of - numeral k, simplified star-of-numeral]
star-of-eq [of - numeral k, simplified star-of-numeral]
star-of-less [of − numeral k, simplified star-of-numeral]
star-of-le [of − numeral k, simplified star-of-numeral]
star-of-eq [of − numeral k, simplified star-of-numeral]
star-of-less [of - − numeral k, simplified star-of-numeral]
star-of-le [of - − numeral k, simplified star-of-numeral]

THEORY “HyperNat” 29

star-of-eq [of - − numeral k, simplified star-of-numeral] for k

lemma Standard-of-nat [simp]: of-nat n ∈ Standard
by (simp add: star-of-nat-def)

lemma star-of-of-nat [simp]: star-of (of-nat n) = of-nat n
by transfer (rule refl)

lemma star-of-int-def [transfer-unfold]: of-int z = star-of (of-int z)
by (rule int-diff-cases [of z]) simp

lemma Standard-of-int [simp]: of-int z ∈ Standard
by (simp add: star-of-int-def)

lemma star-of-of-int [simp]: star-of (of-int z) = of-int z
by transfer (rule refl)

instance star :: (semiring-char-0) semiring-char-0
proof

have inj (star-of :: ′a ⇒ ′a star)
by (rule injI) simp

then have inj (star-of ◦ of-nat :: nat ⇒ ′a star)
using inj-of-nat by (rule inj-compose)

then show inj (of-nat :: nat ⇒ ′a star)
by (simp add: comp-def)

qed

instance star :: (ring-char-0) ring-char-0 ..

2.14 Finite class
lemma starset-finite: finite A =⇒ ∗s∗ A = star-of ‘ A

by (erule finite-induct) simp-all

instance star :: (finite) finite
proof intro-classes

show finite (UNIV :: ′a star set)
by (metis starset-UNIV finite finite-imageI starset-finite)

qed

end

3 Hypernatural numbers
theory HyperNat

imports StarDef
begin

type-synonym hypnat = nat star

THEORY “HyperNat” 30

abbreviation hypnat-of-nat :: nat ⇒ nat star
where hypnat-of-nat ≡ star-of

definition hSuc :: hypnat ⇒ hypnat
where hSuc-def [transfer-unfold]: hSuc = ∗f ∗ Suc

3.1 Properties Transferred from Naturals
lemma hSuc-not-zero [iff]:

∧
m. hSuc m 6= 0

by transfer (rule Suc-not-Zero)

lemma zero-not-hSuc [iff]:
∧

m. 0 6= hSuc m
by transfer (rule Zero-not-Suc)

lemma hSuc-hSuc-eq [iff]:
∧

m n. hSuc m = hSuc n ←→ m = n
by transfer (rule nat.inject)

lemma zero-less-hSuc [iff]:
∧

n. 0 < hSuc n
by transfer (rule zero-less-Suc)

lemma hypnat-minus-zero [simp]:
∧

z::hypnat. z − z = 0
by transfer (rule diff-self-eq-0)

lemma hypnat-diff-0-eq-0 [simp]:
∧

n::hypnat. 0 − n = 0
by transfer (rule diff-0-eq-0)

lemma hypnat-add-is-0 [iff]:
∧

m n::hypnat. m + n = 0 ←→ m = 0 ∧ n = 0
by transfer (rule add-is-0)

lemma hypnat-diff-diff-left:
∧

i j k::hypnat. i − j − k = i − (j + k)
by transfer (rule diff-diff-left)

lemma hypnat-diff-commute:
∧

i j k::hypnat. i − j − k = i − k − j
by transfer (rule diff-commute)

lemma hypnat-diff-add-inverse [simp]:
∧

m n::hypnat. n + m − n = m
by transfer (rule diff-add-inverse)

lemma hypnat-diff-add-inverse2 [simp]:
∧

m n::hypnat. m + n − n = m
by transfer (rule diff-add-inverse2)

lemma hypnat-diff-cancel [simp]:
∧

k m n::hypnat. (k + m) − (k + n) = m − n
by transfer (rule diff-cancel)

lemma hypnat-diff-cancel2 [simp]:
∧

k m n::hypnat. (m + k) − (n + k) = m − n
by transfer (rule diff-cancel2)

lemma hypnat-diff-add-0 [simp]:
∧

m n::hypnat. n − (n + m) = 0

THEORY “HyperNat” 31

by transfer (rule diff-add-0)

lemma hypnat-diff-mult-distrib:
∧

k m n::hypnat. (m − n) ∗ k = (m ∗ k) − (n ∗
k)

by transfer (rule diff-mult-distrib)

lemma hypnat-diff-mult-distrib2 :
∧

k m n::hypnat. k ∗ (m − n) = (k ∗ m) − (k ∗
n)

by transfer (rule diff-mult-distrib2)

lemma hypnat-le-zero-cancel [iff]:
∧

n::hypnat. n ≤ 0 ←→ n = 0
by transfer (rule le-0-eq)

lemma hypnat-mult-is-0 [simp]:
∧

m n::hypnat. m ∗ n = 0 ←→ m = 0 ∨ n = 0
by transfer (rule mult-is-0)

lemma hypnat-diff-is-0-eq [simp]:
∧

m n::hypnat. m − n = 0 ←→ m ≤ n
by transfer (rule diff-is-0-eq)

lemma hypnat-not-less0 [iff]:
∧

n::hypnat. ¬ n < 0
by transfer (rule not-less0)

lemma hypnat-less-one [iff]:
∧

n::hypnat. n < 1 ←→ n = 0
by transfer (rule less-one)

lemma hypnat-add-diff-inverse:
∧

m n::hypnat. ¬ m < n =⇒ n + (m − n) = m
by transfer (rule add-diff-inverse)

lemma hypnat-le-add-diff-inverse [simp]:
∧

m n::hypnat. n ≤ m =⇒ n + (m − n)
= m

by transfer (rule le-add-diff-inverse)

lemma hypnat-le-add-diff-inverse2 [simp]:
∧

m n::hypnat. n ≤ m =⇒ (m − n) +
n = m

by transfer (rule le-add-diff-inverse2)

declare hypnat-le-add-diff-inverse2 [OF order-less-imp-le]

lemma hypnat-le0 [iff]:
∧

n::hypnat. 0 ≤ n
by transfer (rule le0)

lemma hypnat-le-add1 [simp]:
∧

x n::hypnat. x ≤ x + n
by transfer (rule le-add1)

lemma hypnat-add-self-le [simp]:
∧

x n::hypnat. x ≤ n + x
by transfer (rule le-add2)

lemma hypnat-add-one-self-less [simp]: x < x + 1 for x :: hypnat
by (fact less-add-one)

THEORY “HyperNat” 32

lemma hypnat-neq0-conv [iff]:
∧

n::hypnat. n 6= 0 ←→ 0 < n
by transfer (rule neq0-conv)

lemma hypnat-gt-zero-iff : 0 < n ←→ 1 ≤ n for n :: hypnat
by (auto simp add: linorder-not-less [symmetric])

lemma hypnat-gt-zero-iff2 : 0 < n ←→ (∃m. n = m + 1) for n :: hypnat
by (auto intro!: add-nonneg-pos exI [of - n − 1] simp: hypnat-gt-zero-iff)

lemma hypnat-add-self-not-less: ¬ x + y < x for x y :: hypnat
by (simp add: linorder-not-le [symmetric] add.commute [of x])

lemma hypnat-diff-split: P (a − b) ←→ (a < b −→ P 0) ∧ (∀ d. a = b + d −→
P d)

for a b :: hypnat
— elimination of − on hypnat

proof (cases a < b rule: case-split)
case True
then show ?thesis

by (auto simp add: hypnat-add-self-not-less order-less-imp-le hypnat-diff-is-0-eq
[THEN iffD2])
next

case False
then show ?thesis

by (auto simp add: linorder-not-less dest: order-le-less-trans)
qed

3.2 Properties of the set of embedded natural numbers
lemma of-nat-eq-star-of [simp]: of-nat = star-of
proof

show of-nat n = star-of n for n
by transfer simp

qed

lemma Nats-eq-Standard: (Nats :: nat star set) = Standard
by (auto simp: Nats-def Standard-def)

lemma hypnat-of-nat-mem-Nats [simp]: hypnat-of-nat n ∈ Nats
by (simp add: Nats-eq-Standard)

lemma hypnat-of-nat-one [simp]: hypnat-of-nat (Suc 0) = 1
by transfer simp

lemma hypnat-of-nat-Suc [simp]: hypnat-of-nat (Suc n) = hypnat-of-nat n + 1
by transfer simp

lemma of-nat-eq-add:

THEORY “HyperNat” 33

fixes d::hypnat
shows of-nat m = of-nat n + d =⇒ d ∈ range of-nat

proof (induct n arbitrary: d)
case (Suc n)
then show ?case
by (metis Nats-def Nats-eq-Standard Standard-simps(4) hypnat-diff-add-inverse

of-nat-in-Nats)
qed auto

lemma Nats-diff [simp]: a ∈ Nats =⇒ b ∈ Nats =⇒ a − b ∈ Nats for a b ::
hypnat

by (simp add: Nats-eq-Standard)

3.3 Infinite Hypernatural Numbers – HNatInfinite

The set of infinite hypernatural numbers.
definition HNatInfinite :: hypnat set

where HNatInfinite = {n. n /∈ Nats}

lemma Nats-not-HNatInfinite-iff : x ∈ Nats ←→ x /∈ HNatInfinite
by (simp add: HNatInfinite-def)

lemma HNatInfinite-not-Nats-iff : x ∈ HNatInfinite ←→ x /∈ Nats
by (simp add: HNatInfinite-def)

lemma star-of-neq-HNatInfinite: N ∈ HNatInfinite =⇒ star-of n 6= N
by (auto simp add: HNatInfinite-def Nats-eq-Standard)

lemma star-of-Suc-lessI :
∧

N . star-of n < N =⇒ star-of (Suc n) 6= N =⇒ star-of
(Suc n) < N

by transfer (rule Suc-lessI)

lemma star-of-less-HNatInfinite:
assumes N : N ∈ HNatInfinite
shows star-of n < N

proof (induct n)
case 0
from N have star-of 0 6= N

by (rule star-of-neq-HNatInfinite)
then show ?case by simp

next
case (Suc n)
from N have star-of (Suc n) 6= N

by (rule star-of-neq-HNatInfinite)
with Suc show ?case

by (rule star-of-Suc-lessI)
qed

lemma star-of-le-HNatInfinite: N ∈ HNatInfinite =⇒ star-of n ≤ N

THEORY “HyperNat” 34

by (rule star-of-less-HNatInfinite [THEN order-less-imp-le])

3.3.1 Closure Rules
lemma Nats-less-HNatInfinite: x ∈ Nats =⇒ y ∈ HNatInfinite =⇒ x < y

by (auto simp add: Nats-def star-of-less-HNatInfinite)

lemma Nats-le-HNatInfinite: x ∈ Nats =⇒ y ∈ HNatInfinite =⇒ x ≤ y
by (rule Nats-less-HNatInfinite [THEN order-less-imp-le])

lemma zero-less-HNatInfinite: x ∈ HNatInfinite =⇒ 0 < x
by (simp add: Nats-less-HNatInfinite)

lemma one-less-HNatInfinite: x ∈ HNatInfinite =⇒ 1 < x
by (simp add: Nats-less-HNatInfinite)

lemma one-le-HNatInfinite: x ∈ HNatInfinite =⇒ 1 ≤ x
by (simp add: Nats-le-HNatInfinite)

lemma zero-not-mem-HNatInfinite [simp]: 0 /∈ HNatInfinite
by (simp add: HNatInfinite-def)

lemma Nats-downward-closed: x ∈ Nats =⇒ y ≤ x =⇒ y ∈ Nats for x y :: hypnat
using HNatInfinite-not-Nats-iff Nats-le-HNatInfinite by fastforce

lemma HNatInfinite-upward-closed: x ∈ HNatInfinite =⇒ x ≤ y =⇒ y ∈ HNat-
Infinite

using HNatInfinite-not-Nats-iff Nats-downward-closed by blast

lemma HNatInfinite-add: x ∈ HNatInfinite =⇒ x + y ∈ HNatInfinite
using HNatInfinite-upward-closed hypnat-le-add1 by blast

lemma HNatInfinite-diff : [[x ∈ HNatInfinite; y ∈ Nats]] =⇒ x − y ∈ HNatInfinite
by (metis HNatInfinite-not-Nats-iff Nats-add Nats-le-HNatInfinite le-add-diff-inverse)

lemma HNatInfinite-is-Suc: x ∈ HNatInfinite =⇒ ∃ y. x = y + 1 for x :: hypnat
using hypnat-gt-zero-iff2 zero-less-HNatInfinite by blast

3.4 Existence of an infinite hypernatural number

ω is in fact an infinite hypernatural number = [<1 , 2 , 3 , . . . >]
definition whn :: hypnat

where hypnat-omega-def : whn = star-n (λn::nat. n)

lemma hypnat-of-nat-neq-whn: hypnat-of-nat n 6= whn
by (simp add: FreeUltrafilterNat.singleton ′ hypnat-omega-def star-of-def star-n-eq-iff)

lemma whn-neq-hypnat-of-nat: whn 6= hypnat-of-nat n
by (simp add: FreeUltrafilterNat.singleton hypnat-omega-def star-of-def star-n-eq-iff)

THEORY “HyperNat” 35

lemma whn-not-Nats [simp]: whn /∈ Nats
by (simp add: Nats-def image-def whn-neq-hypnat-of-nat)

lemma HNatInfinite-whn [simp]: whn ∈ HNatInfinite
by (simp add: HNatInfinite-def)

lemma lemma-unbounded-set [simp]: eventually (λn::nat. m < n) U
by (rule filter-leD[OF FreeUltrafilterNat.le-cofinite])

(auto simp add: cofinite-eq-sequentially eventually-at-top-dense)

lemma hypnat-of-nat-eq: hypnat-of-nat m = star-n (λn::nat. m)
by (simp add: star-of-def)

lemma SHNat-eq: Nats = {n. ∃N . n = hypnat-of-nat N}
by (simp add: Nats-def image-def)

lemma Nats-less-whn: n ∈ Nats =⇒ n < whn
by (simp add: Nats-less-HNatInfinite)

lemma Nats-le-whn: n ∈ Nats =⇒ n ≤ whn
by (simp add: Nats-le-HNatInfinite)

lemma hypnat-of-nat-less-whn [simp]: hypnat-of-nat n < whn
by (simp add: Nats-less-whn)

lemma hypnat-of-nat-le-whn [simp]: hypnat-of-nat n ≤ whn
by (simp add: Nats-le-whn)

lemma hypnat-zero-less-hypnat-omega [simp]: 0 < whn
by (simp add: Nats-less-whn)

lemma hypnat-one-less-hypnat-omega [simp]: 1 < whn
by (simp add: Nats-less-whn)

3.4.1 Alternative characterization of the set of infinite hypernat-
urals

HNatInfinite = {N . ∀n∈�. n < N}

unused, but possibly interesting
lemma HNatInfinite-FreeUltrafilterNat-eventually:

assumes
∧

k::nat. eventually (λn. f n 6= k) U
shows eventually (λn. m < f n) U

proof (induct m)
case 0
then show ?case

using assms eventually-mono by fastforce
next

THEORY “HyperNat” 36

case (Suc m)
then show ?case

using assms [of Suc m] eventually-elim2 by fastforce
qed

lemma HNatInfinite-iff : HNatInfinite = {N . ∀n ∈ Nats. n < N}
using HNatInfinite-def Nats-less-HNatInfinite by auto

3.4.2 Alternative Characterization of HNatInfinite using Free Ul-
trafilter

lemma HNatInfinite-FreeUltrafilterNat:
star-n X ∈ HNatInfinite =⇒ ∀ u. eventually (λn. u < X n) U
by (metis (full-types) starP2-star-of starP-star-n star-less-def star-of-less-HNatInfinite)

lemma FreeUltrafilterNat-HNatInfinite:
∀ u. eventually (λn. u < X n) U =⇒ star-n X ∈ HNatInfinite
by (auto simp add: star-less-def starP2-star-n HNatInfinite-iff SHNat-eq hyp-

nat-of-nat-eq)

lemma HNatInfinite-FreeUltrafilterNat-iff :
(star-n X ∈ HNatInfinite) = (∀ u. eventually (λn. u < X n) U)
by (rule iffI [OF HNatInfinite-FreeUltrafilterNat FreeUltrafilterNat-HNatInfinite])

3.5 Embedding of the Hypernaturals into other types
definition of-hypnat :: hypnat ⇒ ′a::semiring-1-cancel star

where of-hypnat-def [transfer-unfold]: of-hypnat = ∗f ∗ of-nat

lemma of-hypnat-0 [simp]: of-hypnat 0 = 0
by transfer (rule of-nat-0)

lemma of-hypnat-1 [simp]: of-hypnat 1 = 1
by transfer (rule of-nat-1)

lemma of-hypnat-hSuc:
∧

m. of-hypnat (hSuc m) = 1 + of-hypnat m
by transfer (rule of-nat-Suc)

lemma of-hypnat-add [simp]:
∧

m n. of-hypnat (m + n) = of-hypnat m + of-hypnat
n

by transfer (rule of-nat-add)

lemma of-hypnat-mult [simp]:
∧

m n. of-hypnat (m ∗ n) = of-hypnat m ∗ of-hypnat
n

by transfer (rule of-nat-mult)

lemma of-hypnat-less-iff [simp]:∧
m n. of-hypnat m < (of-hypnat n:: ′a::linordered-semidom star) ←→ m < n

by transfer (rule of-nat-less-iff)

THEORY “HyperDef” 37

lemma of-hypnat-0-less-iff [simp]:∧
n. 0 < (of-hypnat n:: ′a::linordered-semidom star) ←→ 0 < n

by transfer (rule of-nat-0-less-iff)

lemma of-hypnat-less-0-iff [simp]:
∧

m. ¬ (of-hypnat m:: ′a::linordered-semidom
star) < 0

by transfer (rule of-nat-less-0-iff)

lemma of-hypnat-le-iff [simp]:∧
m n. of-hypnat m ≤ (of-hypnat n:: ′a::linordered-semidom star) ←→ m ≤ n

by transfer (rule of-nat-le-iff)

lemma of-hypnat-0-le-iff [simp]:
∧

n. 0 ≤ (of-hypnat n:: ′a::linordered-semidom
star)

by transfer (rule of-nat-0-le-iff)

lemma of-hypnat-le-0-iff [simp]:
∧

m. (of-hypnat m:: ′a::linordered-semidom star)
≤ 0 ←→ m = 0

by transfer (rule of-nat-le-0-iff)

lemma of-hypnat-eq-iff [simp]:∧
m n. of-hypnat m = (of-hypnat n:: ′a::linordered-semidom star) ←→ m = n

by transfer (rule of-nat-eq-iff)

lemma of-hypnat-eq-0-iff [simp]:
∧

m. (of-hypnat m:: ′a::linordered-semidom star)
= 0 ←→ m = 0

by transfer (rule of-nat-eq-0-iff)

lemma HNatInfinite-of-hypnat-gt-zero:
N ∈ HNatInfinite =⇒ (0 :: ′a::linordered-semidom star) < of-hypnat N
by (rule ccontr) (simp add: linorder-not-less)

end

4 Construction of Hyperreals Using Ultrafilters
theory HyperDef

imports Complex-Main HyperNat
begin

type-synonym hypreal = real star

abbreviation hypreal-of-real :: real ⇒ real star
where hypreal-of-real ≡ star-of

abbreviation hypreal-of-hypnat :: hypnat ⇒ hypreal
where hypreal-of-hypnat ≡ of-hypnat

definition omega :: hypreal (‹ω›)

THEORY “HyperDef” 38

where ω = star-n (λn. real (Suc n))
— an infinite number = [<1 , 2 , 3 , . . . >]

definition epsilon :: hypreal (‹ε›)
where ε = star-n (λn. inverse (real (Suc n)))

— an infinitesimal number = [<1 , 1/2 , 1/3 , . . . >]

4.1 Real vector class instances
instantiation star :: (scaleR) scaleR
begin

definition star-scaleR-def [transfer-unfold]: scaleR r ≡ ∗f ∗ (scaleR r)
instance ..

end

lemma Standard-scaleR [simp]: x ∈ Standard =⇒ scaleR r x ∈ Standard
by (simp add: star-scaleR-def)

lemma star-of-scaleR [simp]: star-of (scaleR r x) = scaleR r (star-of x)
by transfer (rule refl)

instance star :: (real-vector) real-vector
proof

fix a b :: real
show

∧
x y:: ′a star . scaleR a (x + y) = scaleR a x + scaleR a y

by transfer (rule scaleR-right-distrib)
show

∧
x:: ′a star . scaleR (a + b) x = scaleR a x + scaleR b x

by transfer (rule scaleR-left-distrib)
show

∧
x:: ′a star . scaleR a (scaleR b x) = scaleR (a ∗ b) x

by transfer (rule scaleR-scaleR)
show

∧
x:: ′a star . scaleR 1 x = x

by transfer (rule scaleR-one)
qed

instance star :: (real-algebra) real-algebra
proof

fix a :: real
show

∧
x y:: ′a star . scaleR a x ∗ y = scaleR a (x ∗ y)

by transfer (rule mult-scaleR-left)
show

∧
x y:: ′a star . x ∗ scaleR a y = scaleR a (x ∗ y)

by transfer (rule mult-scaleR-right)
qed

instance star :: (real-algebra-1) real-algebra-1 ..

instance star :: (real-div-algebra) real-div-algebra ..

instance star :: (field-char-0) field-char-0 ..

THEORY “HyperDef” 39

instance star :: (real-field) real-field ..

lemma star-of-real-def [transfer-unfold]: of-real r = star-of (of-real r)
by (unfold of-real-def , transfer , rule refl)

lemma Standard-of-real [simp]: of-real r ∈ Standard
by (simp add: star-of-real-def)

lemma star-of-of-real [simp]: star-of (of-real r) = of-real r
by transfer (rule refl)

lemma of-real-eq-star-of [simp]: of-real = star-of
proof

show of-real r = star-of r for r :: real
by transfer simp

qed

lemma Reals-eq-Standard: (� :: hypreal set) = Standard
by (simp add: Reals-def Standard-def)

4.2 Injection from hypreal
definition of-hypreal :: hypreal ⇒ ′a::real-algebra-1 star

where [transfer-unfold]: of-hypreal = ∗f ∗ of-real

lemma Standard-of-hypreal [simp]: r ∈ Standard =⇒ of-hypreal r ∈ Standard
by (simp add: of-hypreal-def)

lemma of-hypreal-0 [simp]: of-hypreal 0 = 0
by transfer (rule of-real-0)

lemma of-hypreal-1 [simp]: of-hypreal 1 = 1
by transfer (rule of-real-1)

lemma of-hypreal-add [simp]:
∧

x y. of-hypreal (x + y) = of-hypreal x + of-hypreal
y

by transfer (rule of-real-add)

lemma of-hypreal-minus [simp]:
∧

x. of-hypreal (− x) = − of-hypreal x
by transfer (rule of-real-minus)

lemma of-hypreal-diff [simp]:
∧

x y. of-hypreal (x − y) = of-hypreal x − of-hypreal
y

by transfer (rule of-real-diff)

lemma of-hypreal-mult [simp]:
∧

x y. of-hypreal (x ∗ y) = of-hypreal x ∗ of-hypreal
y

by transfer (rule of-real-mult)

THEORY “HyperDef” 40

lemma of-hypreal-inverse [simp]:∧
x. of-hypreal (inverse x) =
inverse (of-hypreal x :: ′a::{real-div-algebra, division-ring} star)

by transfer (rule of-real-inverse)

lemma of-hypreal-divide [simp]:∧
x y. of-hypreal (x / y) =
(of-hypreal x / of-hypreal y :: ′a::{real-field, field} star)

by transfer (rule of-real-divide)

lemma of-hypreal-eq-iff [simp]:
∧

x y. (of-hypreal x = of-hypreal y) = (x = y)
by transfer (rule of-real-eq-iff)

lemma of-hypreal-eq-0-iff [simp]:
∧

x. (of-hypreal x = 0) = (x = 0)
by transfer (rule of-real-eq-0-iff)

4.3 Properties of starrel
lemma lemma-starrel-refl [simp]: x ∈ starrel ‘‘ {x}

by (simp add: starrel-def)

lemma starrel-in-hypreal [simp]: starrel‘‘{x}∈star
by (simp add: star-def starrel-def quotient-def , blast)

declare Abs-star-inject [simp] Abs-star-inverse [simp]
declare equiv-starrel [THEN eq-equiv-class-iff , simp]

4.4 hypreal-of-real: the Injection from real to hypreal
lemma inj-star-of : inj star-of

by (rule inj-onI) simp

lemma mem-Rep-star-iff : X ∈ Rep-star x ←→ x = star-n X
by (cases x) (simp add: star-n-def)

lemma Rep-star-star-n-iff [simp]: X ∈ Rep-star (star-n Y) ←→ eventually (λn.
Y n = X n) U

by (simp add: star-n-def)

lemma Rep-star-star-n: X ∈ Rep-star (star-n X)
by simp

4.5 Properties of star-n
lemma star-n-add: star-n X + star-n Y = star-n (λn. X n + Y n)

by (simp only: star-add-def starfun2-star-n)

lemma star-n-minus: − star-n X = star-n (λn. −(X n))
by (simp only: star-minus-def starfun-star-n)

THEORY “HyperDef” 41

lemma star-n-diff : star-n X − star-n Y = star-n (λn. X n − Y n)
by (simp only: star-diff-def starfun2-star-n)

lemma star-n-mult: star-n X ∗ star-n Y = star-n (λn. X n ∗ Y n)
by (simp only: star-mult-def starfun2-star-n)

lemma star-n-inverse: inverse (star-n X) = star-n (λn. inverse (X n))
by (simp only: star-inverse-def starfun-star-n)

lemma star-n-le: star-n X ≤ star-n Y = eventually (λn. X n ≤ Y n) U
by (simp only: star-le-def starP2-star-n)

lemma star-n-less: star-n X < star-n Y = eventually (λn. X n < Y n) U
by (simp only: star-less-def starP2-star-n)

lemma star-n-zero-num: 0 = star-n (λn. 0)
by (simp only: star-zero-def star-of-def)

lemma star-n-one-num: 1 = star-n (λn. 1)
by (simp only: star-one-def star-of-def)

lemma star-n-abs: |star-n X | = star-n (λn. |X n|)
by (simp only: star-abs-def starfun-star-n)

lemma hypreal-omega-gt-zero [simp]: 0 < ω
by (simp add: omega-def star-n-zero-num star-n-less)

4.6 Existence of Infinite Hyperreal Number

Existence of infinite number not corresponding to any real number. Use
assumption that member U is not finite.
lemma hypreal-of-real-not-eq-omega: hypreal-of-real x 6= ω
proof −

have False if ∀ F n in U . x = 1 + real n for x
proof −

have finite {n::nat. x = 1 + real n}
by (simp add: finite-nat-set-iff-bounded-le) (metis add.commute nat-le-linear

nat-le-real-less)
then show False

using FreeUltrafilterNat.finite that by blast
qed
then show ?thesis

by (auto simp add: omega-def star-of-def star-n-eq-iff)
qed

Existence of infinitesimal number also not corresponding to any real number.
lemma hypreal-of-real-not-eq-epsilon: hypreal-of-real x 6= ε
proof −

THEORY “HyperDef” 42

have False if ∀ F n in U . x = inverse (1 + real n) for x
proof −

have finite {n::nat. x = inverse (1 + real n)}
by (simp add: finite-nat-set-iff-bounded-le) (metis add.commute inverse-inverse-eq

linear nat-le-real-less of-nat-Suc)
then show False

using FreeUltrafilterNat.finite that by blast
qed
then show ?thesis

by (auto simp: epsilon-def star-of-def star-n-eq-iff)
qed

lemma epsilon-ge-zero [simp]: 0 ≤ ε
by (simp add: epsilon-def star-n-zero-num star-n-le)

lemma epsilon-not-zero: ε 6= 0
using hypreal-of-real-not-eq-epsilon by force

lemma epsilon-inverse-omega: ε = inverse ω
by (simp add: epsilon-def omega-def star-n-inverse)

lemma epsilon-gt-zero: 0 < ε
by (simp add: epsilon-inverse-omega)

4.7 Embedding the Naturals into the Hyperreals
abbreviation hypreal-of-nat :: nat ⇒ hypreal

where hypreal-of-nat ≡ of-nat

lemma SNat-eq: Nats = {n. ∃N . n = hypreal-of-nat N}
by (simp add: Nats-def image-def)

Naturals embedded in hyperreals: is a hyperreal c.f. NS extension.
lemma hypreal-of-nat: hypreal-of-nat m = star-n (λn. real m)

by (simp add: star-of-def [symmetric])

declaration ‹
K (Lin-Arith.add-simps @{thms star-of-zero star-of-one

star-of-numeral star-of-add
star-of-minus star-of-diff star-of-mult}

#> Lin-Arith.add-inj-thms @{thms star-of-le [THEN iffD2]
star-of-less [THEN iffD2] star-of-eq [THEN iffD2]}

#> Lin-Arith.add-inj-const (const-name ‹StarDef .star-of ›, typ ‹real ⇒ hypreal›))
›

simproc-setup fast-arith-hypreal ((m::hypreal) < n | (m::hypreal) ≤ n | (m::hypreal)
= n) =

‹K Lin-Arith.simproc›

THEORY “HyperDef” 43

4.8 Exponentials on the Hyperreals
lemma hpowr-0 [simp]: r ^ 0 = (1 ::hypreal)

for r :: hypreal
by (rule power-0)

lemma hpowr-Suc [simp]: r ^ (Suc n) = r ∗ (r ^ n)
for r :: hypreal
by (rule power-Suc)

lemma hrealpow: star-n X ^ m = star-n (λn. (X n::real) ^ m)
by (induct m) (auto simp: star-n-one-num star-n-mult)

lemma hrealpow-sum-square-expand:
(x + y) ^ Suc (Suc 0) =

x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + (hypreal-of-nat (Suc (Suc 0))) ∗ x ∗ y
for x y :: hypreal
by (simp add: distrib-left distrib-right)

lemma power-hypreal-of-real-numeral:
(numeral v :: hypreal) ^ n = hypreal-of-real ((numeral v) ^ n)
by simp

declare power-hypreal-of-real-numeral [of - numeral w, simp] for w

lemma power-hypreal-of-real-neg-numeral:
(− numeral v :: hypreal) ^ n = hypreal-of-real ((− numeral v) ^ n)
by simp

declare power-hypreal-of-real-neg-numeral [of - numeral w, simp] for w

4.9 Powers with Hypernatural Exponents

Hypernatural powers of hyperreals.
definition pow :: ′a::power star ⇒ nat star ⇒ ′a star (infixr ‹pow› 80)

where hyperpow-def [transfer-unfold]: R pow N = (∗f2∗ (^)) R N

lemma Standard-hyperpow [simp]: r ∈ Standard =⇒ n ∈ Standard =⇒ r pow n ∈
Standard

by (simp add: hyperpow-def)

lemma hyperpow: star-n X pow star-n Y = star-n (λn. X n ^ Y n)
by (simp add: hyperpow-def starfun2-star-n)

lemma hyperpow-zero [simp]:
∧

n. (0 :: ′a::{power ,semiring-0} star) pow (n + (1 ::hypnat))
= 0

by transfer simp

lemma hyperpow-not-zero:
∧

r n. r 6= (0 :: ′a::{field} star) =⇒ r pow n 6= 0
by transfer (rule power-not-zero)

THEORY “HyperDef” 44

lemma hyperpow-inverse:
∧

r n. r 6= (0 :: ′a::field star) =⇒ inverse (r pow n) =
(inverse r) pow n

by transfer (rule power-inverse [symmetric])

lemma hyperpow-hrabs:
∧

r n. |r :: ′a::{linordered-idom} star | pow n = |r pow n|
by transfer (rule power-abs [symmetric])

lemma hyperpow-add:
∧

r n m. (r :: ′a::monoid-mult star) pow (n + m) = (r pow
n) ∗ (r pow m)

by transfer (rule power-add)

lemma hyperpow-one [simp]:
∧

r . (r :: ′a::monoid-mult star) pow (1 ::hypnat) = r
by transfer (rule power-one-right)

lemma hyperpow-two:
∧

r . (r :: ′a::monoid-mult star) pow (2 ::hypnat) = r ∗ r
by transfer (rule power2-eq-square)

lemma hyperpow-gt-zero:
∧

r n. (0 :: ′a::{linordered-semidom} star) < r =⇒ 0 <
r pow n

by transfer (rule zero-less-power)

lemma hyperpow-ge-zero:
∧

r n. (0 :: ′a::{linordered-semidom} star) ≤ r =⇒ 0 ≤
r pow n

by transfer (rule zero-le-power)

lemma hyperpow-le:
∧

x y n. (0 :: ′a::{linordered-semidom} star) < x =⇒ x ≤ y
=⇒ x pow n ≤ y pow n

by transfer (rule power-mono [OF - order-less-imp-le])

lemma hyperpow-eq-one [simp]:
∧

n. 1 pow n = (1 :: ′a::monoid-mult star)
by transfer (rule power-one)

lemma hrabs-hyperpow-minus [simp]:
∧
(a:: ′a::linordered-idom star) n. |(−a) pow

n| = |a pow n|
by transfer (rule abs-power-minus)

lemma hyperpow-mult:
∧

r s n. (r ∗ s:: ′a::comm-monoid-mult star) pow n = (r
pow n) ∗ (s pow n)

by transfer (rule power-mult-distrib)

lemma hyperpow-two-le [simp]:
∧

r . (0 :: ′a::{monoid-mult,linordered-ring-strict} star)
≤ r pow 2

by (auto simp add: hyperpow-two zero-le-mult-iff)

lemma hyperpow-two-hrabs [simp]: |x:: ′a::linordered-idom star | pow 2 = x pow 2
by (simp add: hyperpow-hrabs)

lemma hyperpow-two-gt-one:
∧

r :: ′a::linordered-semidom star . 1 < r =⇒ 1 < r
pow 2

THEORY “NSA” 45

by transfer simp

lemma hyperpow-two-ge-one:
∧

r :: ′a::linordered-semidom star . 1 ≤ r =⇒ 1 ≤ r
pow 2

by transfer (rule one-le-power)

lemma two-hyperpow-ge-one [simp]: (1 ::hypreal) ≤ 2 pow n
by (metis hyperpow-eq-one hyperpow-le one-le-numeral zero-less-one)

lemma hyperpow-minus-one2 [simp]:
∧

n. (− 1) pow (2 ∗ n) = (1 ::hypreal)
by transfer (rule power-minus1-even)

lemma hyperpow-less-le:
∧

r n N . (0 ::hypreal) ≤ r =⇒ r ≤ 1 =⇒ n < N =⇒ r
pow N ≤ r pow n

by transfer (rule power-decreasing [OF order-less-imp-le])

lemma hyperpow-SHNat-le:
0 ≤ r =⇒ r ≤ (1 ::hypreal) =⇒ N ∈ HNatInfinite =⇒ ∀n∈Nats. r pow N ≤ r

pow n
by (auto intro!: hyperpow-less-le simp: HNatInfinite-iff)

lemma hyperpow-realpow: (hypreal-of-real r) pow (hypnat-of-nat n) = hypreal-of-real
(r ^ n)

by transfer (rule refl)

lemma hyperpow-SReal [simp]: (hypreal-of-real r) pow (hypnat-of-nat n) ∈ �
by (simp add: Reals-eq-Standard)

lemma hyperpow-zero-HNatInfinite [simp]: N ∈ HNatInfinite =⇒ (0 ::hypreal) pow
N = 0

by (drule HNatInfinite-is-Suc, auto)

lemma hyperpow-le-le: (0 ::hypreal) ≤ r =⇒ r ≤ 1 =⇒ n ≤ N =⇒ r pow N ≤ r
pow n

by (metis hyperpow-less-le le-less)

lemma hyperpow-Suc-le-self2 : (0 ::hypreal) ≤ r =⇒ r < 1 =⇒ r pow (n + (1 ::hypnat))
≤ r

by (metis hyperpow-less-le hyperpow-one hypnat-add-self-le le-less)

lemma hyperpow-hypnat-of-nat:
∧

x. x pow hypnat-of-nat n = x ^ n
by transfer (rule refl)

lemma of-hypreal-hyperpow:∧
x n. of-hypreal (x pow n) = (of-hypreal x:: ′a::{real-algebra-1} star) pow n

by transfer (rule of-real-power)

end

THEORY “NSA” 46

5 Infinite Numbers, Infinitesimals, Infinitely Close
Relation

theory NSA
imports HyperDef HOL−Library.Lub-Glb

begin

definition hnorm :: ′a::real-normed-vector star ⇒ real star
where [transfer-unfold]: hnorm = ∗f ∗ norm

definition Infinitesimal :: (′a::real-normed-vector) star set
where Infinitesimal = {x. ∀ r ∈ Reals. 0 < r −→ hnorm x < r}

definition HFinite :: (′a::real-normed-vector) star set
where HFinite = {x. ∃ r ∈ Reals. hnorm x < r}

definition HInfinite :: (′a::real-normed-vector) star set
where HInfinite = {x. ∀ r ∈ Reals. r < hnorm x}

definition approx :: ′a::real-normed-vector star ⇒ ′a star ⇒ bool (infixl ‹≈› 50)
where x ≈ y ←→ x − y ∈ Infinitesimal

— the “infinitely close” relation

definition st :: hypreal ⇒ hypreal
where st = (λx. SOME r . x ∈ HFinite ∧ r ∈ � ∧ r ≈ x)

— the standard part of a hyperreal

definition monad :: ′a::real-normed-vector star ⇒ ′a star set
where monad x = {y. x ≈ y}

definition galaxy :: ′a::real-normed-vector star ⇒ ′a star set
where galaxy x = {y. (x + −y) ∈ HFinite}

lemma SReal-def : � ≡ {x. ∃ r . x = hypreal-of-real r}
by (simp add: Reals-def image-def)

5.1 Nonstandard Extension of the Norm Function
definition scaleHR :: real star ⇒ ′a star ⇒ ′a::real-normed-vector star

where [transfer-unfold]: scaleHR = starfun2 scaleR

lemma Standard-hnorm [simp]: x ∈ Standard =⇒ hnorm x ∈ Standard
by (simp add: hnorm-def)

lemma star-of-norm [simp]: star-of (norm x) = hnorm (star-of x)
by transfer (rule refl)

lemma hnorm-ge-zero [simp]:
∧

x:: ′a::real-normed-vector star . 0 ≤ hnorm x
by transfer (rule norm-ge-zero)

THEORY “NSA” 47

lemma hnorm-eq-zero [simp]:
∧

x:: ′a::real-normed-vector star . hnorm x = 0 ←→
x = 0

by transfer (rule norm-eq-zero)

lemma hnorm-triangle-ineq:
∧

x y:: ′a::real-normed-vector star . hnorm (x + y) ≤
hnorm x + hnorm y

by transfer (rule norm-triangle-ineq)

lemma hnorm-triangle-ineq3 :
∧

x y:: ′a::real-normed-vector star . |hnorm x − hnorm
y| ≤ hnorm (x − y)

by transfer (rule norm-triangle-ineq3)

lemma hnorm-scaleR:
∧

x:: ′a::real-normed-vector star . hnorm (a ∗R x) = |star-of
a| ∗ hnorm x

by transfer (rule norm-scaleR)

lemma hnorm-scaleHR:
∧

a (x:: ′a::real-normed-vector star). hnorm (scaleHR a x)
= |a| ∗ hnorm x

by transfer (rule norm-scaleR)

lemma hnorm-mult-ineq:
∧

x y:: ′a::real-normed-algebra star . hnorm (x ∗ y) ≤
hnorm x ∗ hnorm y

by transfer (rule norm-mult-ineq)

lemma hnorm-mult:
∧

x y:: ′a::real-normed-div-algebra star . hnorm (x ∗ y) = hnorm
x ∗ hnorm y

by transfer (rule norm-mult)

lemma hnorm-hyperpow:
∧
(x:: ′a::{real-normed-div-algebra} star) n. hnorm (x pow

n) = hnorm x pow n
by transfer (rule norm-power)

lemma hnorm-one [simp]: hnorm (1 :: ′a::real-normed-div-algebra star) = 1
by transfer (rule norm-one)

lemma hnorm-zero [simp]: hnorm (0 :: ′a::real-normed-vector star) = 0
by transfer (rule norm-zero)

lemma zero-less-hnorm-iff [simp]:
∧

x:: ′a::real-normed-vector star . 0 < hnorm x
←→ x 6= 0

by transfer (rule zero-less-norm-iff)

lemma hnorm-minus-cancel [simp]:
∧

x:: ′a::real-normed-vector star . hnorm (− x)
= hnorm x

by transfer (rule norm-minus-cancel)

lemma hnorm-minus-commute:
∧

a b:: ′a::real-normed-vector star . hnorm (a − b)
= hnorm (b − a)

THEORY “NSA” 48

by transfer (rule norm-minus-commute)

lemma hnorm-triangle-ineq2 :
∧

a b:: ′a::real-normed-vector star . hnorm a − hnorm
b ≤ hnorm (a − b)

by transfer (rule norm-triangle-ineq2)

lemma hnorm-triangle-ineq4 :
∧

a b:: ′a::real-normed-vector star . hnorm (a − b) ≤
hnorm a + hnorm b

by transfer (rule norm-triangle-ineq4)

lemma abs-hnorm-cancel [simp]:
∧

a:: ′a::real-normed-vector star . |hnorm a| = hnorm
a

by transfer (rule abs-norm-cancel)

lemma hnorm-of-hypreal [simp]:
∧

r . hnorm (of-hypreal r :: ′a::real-normed-algebra-1
star) = |r |

by transfer (rule norm-of-real)

lemma nonzero-hnorm-inverse:∧
a:: ′a::real-normed-div-algebra star . a 6= 0 =⇒ hnorm (inverse a) = inverse

(hnorm a)
by transfer (rule nonzero-norm-inverse)

lemma hnorm-inverse:∧
a:: ′a::{real-normed-div-algebra, division-ring} star . hnorm (inverse a) = inverse

(hnorm a)
by transfer (rule norm-inverse)

lemma hnorm-divide:
∧

a b:: ′a::{real-normed-field, field} star . hnorm (a / b) =
hnorm a / hnorm b

by transfer (rule norm-divide)

lemma hypreal-hnorm-def [simp]:
∧

r ::hypreal. hnorm r = |r |
by transfer (rule real-norm-def)

lemma hnorm-add-less:∧
(x:: ′a::real-normed-vector star) y r s. hnorm x < r =⇒ hnorm y < s =⇒ hnorm

(x + y) < r + s
by transfer (rule norm-add-less)

lemma hnorm-mult-less:∧
(x:: ′a::real-normed-algebra star) y r s. hnorm x < r =⇒ hnorm y < s =⇒

hnorm (x ∗ y) < r ∗ s
by transfer (rule norm-mult-less)

lemma hnorm-scaleHR-less: |x| < r =⇒ hnorm y < s =⇒ hnorm (scaleHR x y)
< r ∗ s
by (simp only: hnorm-scaleHR) (simp add: mult-strict-mono ′)

THEORY “NSA” 49

5.2 Closure Laws for the Standard Reals
lemma Reals-add-cancel: x + y ∈ � =⇒ y ∈ � =⇒ x ∈ �

by (drule (1) Reals-diff) simp

lemma SReal-hrabs: x ∈ � =⇒ |x| ∈ �
for x :: hypreal
by (simp add: Reals-eq-Standard)

lemma SReal-hypreal-of-real [simp]: hypreal-of-real x ∈ �
by (simp add: Reals-eq-Standard)

lemma SReal-divide-numeral: r ∈ � =⇒ r / (numeral w::hypreal) ∈ �
by simp

ε is not in Reals because it is an infinitesimal
lemma SReal-epsilon-not-mem: ε /∈ �

by (auto simp: SReal-def hypreal-of-real-not-eq-epsilon [symmetric])

lemma SReal-omega-not-mem: ω /∈ �
by (auto simp: SReal-def hypreal-of-real-not-eq-omega [symmetric])

lemma SReal-UNIV-real: {x. hypreal-of-real x ∈ �} = (UNIV ::real set)
by simp

lemma SReal-iff : x ∈ � ←→ (∃ y. x = hypreal-of-real y)
by (simp add: SReal-def)

lemma hypreal-of-real-image: hypreal-of-real ‘(UNIV ::real set) = �
by (simp add: Reals-eq-Standard Standard-def)

lemma inv-hypreal-of-real-image: inv hypreal-of-real ‘ � = UNIV
by (simp add: Reals-eq-Standard Standard-def inj-star-of)

lemma SReal-dense: x ∈ � =⇒ y ∈ � =⇒ x < y =⇒ ∃ r ∈ Reals. x < r ∧ r < y
for x y :: hypreal
using dense by (fastforce simp add: SReal-def)

5.3 Set of Finite Elements is a Subring of the Extended Reals
lemma HFinite-add: x ∈ HFinite =⇒ y ∈ HFinite =⇒ x + y ∈ HFinite

unfolding HFinite-def by (blast intro!: Reals-add hnorm-add-less)

lemma HFinite-mult: x ∈ HFinite =⇒ y ∈ HFinite =⇒ x ∗ y ∈ HFinite
for x y :: ′a::real-normed-algebra star
unfolding HFinite-def by (blast intro!: Reals-mult hnorm-mult-less)

lemma HFinite-scaleHR: x ∈ HFinite =⇒ y ∈ HFinite =⇒ scaleHR x y ∈ HFinite
by (auto simp: HFinite-def intro!: Reals-mult hnorm-scaleHR-less)

THEORY “NSA” 50

lemma HFinite-minus-iff : − x ∈ HFinite ←→ x ∈ HFinite
by (simp add: HFinite-def)

lemma HFinite-star-of [simp]: star-of x ∈ HFinite
by (simp add: HFinite-def) (metis SReal-hypreal-of-real gt-ex star-of-less star-of-norm)

lemma SReal-subset-HFinite: (�::hypreal set) ⊆ HFinite
by (auto simp add: SReal-def)

lemma HFiniteD: x ∈ HFinite =⇒ ∃ t ∈ Reals. hnorm x < t
by (simp add: HFinite-def)

lemma HFinite-hrabs-iff [iff]: |x| ∈ HFinite ←→ x ∈ HFinite
for x :: hypreal
by (simp add: HFinite-def)

lemma HFinite-hnorm-iff [iff]: hnorm x ∈ HFinite ←→ x ∈ HFinite
for x :: hypreal
by (simp add: HFinite-def)

lemma HFinite-numeral [simp]: numeral w ∈ HFinite
unfolding star-numeral-def by (rule HFinite-star-of)

As always with numerals, 0 and 1 are special cases.
lemma HFinite-0 [simp]: 0 ∈ HFinite

unfolding star-zero-def by (rule HFinite-star-of)

lemma HFinite-1 [simp]: 1 ∈ HFinite
unfolding star-one-def by (rule HFinite-star-of)

lemma hrealpow-HFinite: x ∈ HFinite =⇒ x ^ n ∈ HFinite
for x :: ′a::{real-normed-algebra,monoid-mult} star
by (induct n) (auto intro: HFinite-mult)

lemma HFinite-bounded:
fixes x y :: hypreal
assumes x ∈ HFinite and y: y ≤ x 0 ≤ y shows y ∈ HFinite

proof (cases x ≤ 0)
case True
then have y = 0

using y by auto
then show ?thesis

by simp
next

case False
then show ?thesis

using assms le-less-trans by (auto simp: HFinite-def)
qed

THEORY “NSA” 51

5.4 Set of Infinitesimals is a Subring of the Hyperreals
lemma InfinitesimalI : (

∧
r . r ∈ � =⇒ 0 < r =⇒ hnorm x < r) =⇒ x ∈ Infinites-

imal
by (simp add: Infinitesimal-def)

lemma InfinitesimalD: x ∈ Infinitesimal =⇒ ∀ r ∈ Reals. 0 < r −→ hnorm x < r
by (simp add: Infinitesimal-def)

lemma InfinitesimalI2 : (
∧

r . 0 < r =⇒ hnorm x < star-of r) =⇒ x ∈ Infinitesimal
by (auto simp add: Infinitesimal-def SReal-def)

lemma InfinitesimalD2 : x ∈ Infinitesimal =⇒ 0 < r =⇒ hnorm x < star-of r
by (auto simp add: Infinitesimal-def SReal-def)

lemma Infinitesimal-zero [iff]: 0 ∈ Infinitesimal
by (simp add: Infinitesimal-def)

lemma Infinitesimal-add:
assumes x ∈ Infinitesimal y ∈ Infinitesimal
shows x + y ∈ Infinitesimal

proof (rule InfinitesimalI)
show hnorm (x + y) < r

if r ∈ � and 0 < r for r :: real star
proof −

have hnorm x < r/2 hnorm y < r/2
using InfinitesimalD SReal-divide-numeral assms half-gt-zero that by blast+

then show ?thesis
using hnorm-add-less by fastforce

qed
qed

lemma Infinitesimal-minus-iff [simp]: − x ∈ Infinitesimal ←→ x ∈ Infinitesimal
by (simp add: Infinitesimal-def)

lemma Infinitesimal-hnorm-iff : hnorm x ∈ Infinitesimal ←→ x ∈ Infinitesimal
by (simp add: Infinitesimal-def)

lemma Infinitesimal-hrabs-iff [iff]: |x| ∈ Infinitesimal ←→ x ∈ Infinitesimal
for x :: hypreal
by (simp add: abs-if)

lemma Infinitesimal-of-hypreal-iff [simp]:
(of-hypreal x:: ′a::real-normed-algebra-1 star) ∈ Infinitesimal ←→ x ∈ Infinitesimal
by (subst Infinitesimal-hnorm-iff [symmetric]) simp

lemma Infinitesimal-diff : x ∈ Infinitesimal =⇒ y ∈ Infinitesimal =⇒ x − y ∈
Infinitesimal

using Infinitesimal-add [of x − y] by simp

THEORY “NSA” 52

lemma Infinitesimal-mult:
fixes x y :: ′a::real-normed-algebra star
assumes x ∈ Infinitesimal y ∈ Infinitesimal
shows x ∗ y ∈ Infinitesimal
proof (rule InfinitesimalI)
show hnorm (x ∗ y) < r

if r ∈ � and 0 < r for r :: real star
proof −

have hnorm x < 1 hnorm y < r
using assms that by (auto simp add: InfinitesimalD)

then show ?thesis
using hnorm-mult-less by fastforce

qed
qed

lemma Infinitesimal-HFinite-mult:
fixes x y :: ′a::real-normed-algebra star
assumes x ∈ Infinitesimal y ∈ HFinite
shows x ∗ y ∈ Infinitesimal

proof (rule InfinitesimalI)
obtain t where hnorm y < t t ∈ Reals

using HFiniteD ‹y ∈ HFinite› by blast
then have t > 0

using hnorm-ge-zero le-less-trans by blast
show hnorm (x ∗ y) < r

if r ∈ � and 0 < r for r :: real star
proof −

have hnorm x < r/t
by (meson InfinitesimalD Reals-divide ‹hnorm y < t› ‹t ∈ �› assms(1)

divide-pos-pos hnorm-ge-zero le-less-trans that)
then have hnorm (x ∗ y) < (r / t) ∗ t

using ‹hnorm y < t› hnorm-mult-less by blast
then show ?thesis

using ‹0 < t› by auto
qed

qed

lemma Infinitesimal-HFinite-scaleHR:
assumes x ∈ Infinitesimal y ∈ HFinite
shows scaleHR x y ∈ Infinitesimal

proof (rule InfinitesimalI)
obtain t where hnorm y < t t ∈ Reals

using HFiniteD ‹y ∈ HFinite› by blast
then have t > 0

using hnorm-ge-zero le-less-trans by blast
show hnorm (scaleHR x y) < r

if r ∈ � and 0 < r for r :: real star
proof −

have |x| ∗ hnorm y < (r / t) ∗ t

THEORY “NSA” 53

by (metis InfinitesimalD Reals-divide ‹0 < t› ‹hnorm y < t› ‹t ∈ �› assms(1)
divide-pos-pos hnorm-ge-zero hypreal-hnorm-def mult-strict-mono ′ that)

then show ?thesis
by (simp add: ‹0 < t› hnorm-scaleHR less-imp-not-eq2)

qed
qed

lemma Infinitesimal-HFinite-mult2 :
fixes x y :: ′a::real-normed-algebra star
assumes x ∈ Infinitesimal y ∈ HFinite
shows y ∗ x ∈ Infinitesimal

proof (rule InfinitesimalI)
obtain t where hnorm y < t t ∈ Reals

using HFiniteD ‹y ∈ HFinite› by blast
then have t > 0

using hnorm-ge-zero le-less-trans by blast
show hnorm (y ∗ x) < r

if r ∈ � and 0 < r for r :: real star
proof −

have hnorm x < r/t
by (meson InfinitesimalD Reals-divide ‹hnorm y < t› ‹t ∈ �› assms(1)

divide-pos-pos hnorm-ge-zero le-less-trans that)
then have hnorm (y ∗ x) < t ∗ (r / t)

using ‹hnorm y < t› hnorm-mult-less by blast
then show ?thesis

using ‹0 < t› by auto
qed

qed

lemma Infinitesimal-scaleR2 :
assumes x ∈ Infinitesimal shows a ∗R x ∈ Infinitesimal

by (metis HFinite-star-of Infinitesimal-HFinite-mult2 Infinitesimal-hnorm-iff
assms hnorm-scaleR hypreal-hnorm-def star-of-norm)

lemma Compl-HFinite: − HFinite = HInfinite
proof −
have r < hnorm x if ∗:

∧
s. s ∈ � =⇒ s ≤ hnorm x and r ∈ �

for x :: ′a star and r :: hypreal
using ∗ [of r+1] ‹r ∈ �› by auto

then show ?thesis
by (auto simp add: HInfinite-def HFinite-def linorder-not-less)

qed

lemma HInfinite-inverse-Infinitesimal:
x ∈ HInfinite =⇒ inverse x ∈ Infinitesimal
for x :: ′a::real-normed-div-algebra star
by (simp add: HInfinite-def InfinitesimalI hnorm-inverse inverse-less-imp-less)

lemma inverse-Infinitesimal-iff-HInfinite:

THEORY “NSA” 54

x 6= 0 =⇒ inverse x ∈ Infinitesimal ←→ x ∈ HInfinite
for x :: ′a::real-normed-div-algebra star
by (metis Compl-HFinite Compl-iff HInfinite-inverse-Infinitesimal InfinitesimalD

Infinitesimal-HFinite-mult Reals-1 hnorm-one left-inverse less-irrefl zero-less-one)

lemma HInfiniteI : (
∧

r . r ∈ � =⇒ r < hnorm x) =⇒ x ∈ HInfinite
by (simp add: HInfinite-def)

lemma HInfiniteD: x ∈ HInfinite =⇒ r ∈ � =⇒ r < hnorm x
by (simp add: HInfinite-def)

lemma HInfinite-mult:
fixes x y :: ′a::real-normed-div-algebra star
assumes x ∈ HInfinite y ∈ HInfinite shows x ∗ y ∈ HInfinite

proof (rule HInfiniteI , simp only: hnorm-mult)
have x 6= 0

using Compl-HFinite HFinite-0 assms by blast
show r < hnorm x ∗ hnorm y

if r ∈ � for r :: real star
proof −

have r = r ∗ 1
by simp

also have . . . < hnorm x ∗ hnorm y
by (meson HInfiniteD Reals-1 ‹x 6= 0 › assms le-numeral-extra(1) mult-strict-mono

that zero-less-hnorm-iff)
finally show ?thesis .

qed
qed

lemma hypreal-add-zero-less-le-mono: r < x =⇒ 0 ≤ y =⇒ r < x + y
for r x y :: hypreal
by simp

lemma HInfinite-add-ge-zero: x ∈ HInfinite =⇒ 0 ≤ y =⇒ 0 ≤ x =⇒ x + y ∈
HInfinite

for x y :: hypreal
by (auto simp: abs-if add.commute HInfinite-def)

lemma HInfinite-add-ge-zero2 : x ∈ HInfinite =⇒ 0 ≤ y =⇒ 0 ≤ x =⇒ y + x ∈
HInfinite

for x y :: hypreal
by (auto intro!: HInfinite-add-ge-zero simp add: add.commute)

lemma HInfinite-add-gt-zero: x ∈ HInfinite =⇒ 0 < y =⇒ 0 < x =⇒ x + y ∈
HInfinite

for x y :: hypreal
by (blast intro: HInfinite-add-ge-zero order-less-imp-le)

lemma HInfinite-minus-iff : − x ∈ HInfinite ←→ x ∈ HInfinite

THEORY “NSA” 55

by (simp add: HInfinite-def)

lemma HInfinite-add-le-zero: x ∈ HInfinite =⇒ y ≤ 0 =⇒ x ≤ 0 =⇒ x + y ∈
HInfinite

for x y :: hypreal
by (metis (no-types, lifting) HInfinite-add-ge-zero2 HInfinite-minus-iff add.inverse-distrib-swap

neg-0-le-iff-le)

lemma HInfinite-add-lt-zero: x ∈ HInfinite =⇒ y < 0 =⇒ x < 0 =⇒ x + y ∈
HInfinite

for x y :: hypreal
by (blast intro: HInfinite-add-le-zero order-less-imp-le)

lemma not-Infinitesimal-not-zero: x /∈ Infinitesimal =⇒ x 6= 0
by auto

lemma HFinite-diff-Infinitesimal-hrabs:
x ∈ HFinite − Infinitesimal =⇒ |x| ∈ HFinite − Infinitesimal
for x :: hypreal
by blast

lemma hnorm-le-Infinitesimal: e ∈ Infinitesimal =⇒ hnorm x ≤ e =⇒ x ∈ In-
finitesimal

by (auto simp: Infinitesimal-def abs-less-iff)

lemma hnorm-less-Infinitesimal: e ∈ Infinitesimal =⇒ hnorm x < e =⇒ x ∈
Infinitesimal

by (erule hnorm-le-Infinitesimal, erule order-less-imp-le)

lemma hrabs-le-Infinitesimal: e ∈ Infinitesimal =⇒ |x| ≤ e =⇒ x ∈ Infinitesimal
for x :: hypreal
by (erule hnorm-le-Infinitesimal) simp

lemma hrabs-less-Infinitesimal: e ∈ Infinitesimal =⇒ |x| < e =⇒ x ∈ Infinitesimal
for x :: hypreal
by (erule hnorm-less-Infinitesimal) simp

lemma Infinitesimal-interval:
e ∈ Infinitesimal =⇒ e ′ ∈ Infinitesimal =⇒ e ′< x =⇒ x < e =⇒ x ∈ Infinitesimal
for x :: hypreal
by (auto simp add: Infinitesimal-def abs-less-iff)

lemma Infinitesimal-interval2 :
e ∈ Infinitesimal =⇒ e ′ ∈ Infinitesimal =⇒ e ′≤ x =⇒ x ≤ e =⇒ x ∈ Infinitesimal
for x :: hypreal
by (auto intro: Infinitesimal-interval simp add: order-le-less)

lemma lemma-Infinitesimal-hyperpow: x ∈ Infinitesimal =⇒ 0 < N =⇒ |x pow
N | ≤ |x|

THEORY “NSA” 56

for x :: hypreal
apply (clarsimp simp: Infinitesimal-def)
by (metis Reals-1 abs-ge-zero hyperpow-Suc-le-self2 hyperpow-hrabs hypnat-gt-zero-iff2

zero-less-one)

lemma Infinitesimal-hyperpow: x ∈ Infinitesimal =⇒ 0 < N =⇒ x pow N ∈
Infinitesimal

for x :: hypreal
using hrabs-le-Infinitesimal lemma-Infinitesimal-hyperpow by blast

lemma hrealpow-hyperpow-Infinitesimal-iff :
(x ^ n ∈ Infinitesimal) ←→ x pow (hypnat-of-nat n) ∈ Infinitesimal
by (simp only: hyperpow-hypnat-of-nat)

lemma Infinitesimal-hrealpow: x ∈ Infinitesimal =⇒ 0 < n =⇒ x ^ n ∈ Infinites-
imal

for x :: hypreal
by (simp add: hrealpow-hyperpow-Infinitesimal-iff Infinitesimal-hyperpow)

lemma not-Infinitesimal-mult:
x /∈ Infinitesimal =⇒ y /∈ Infinitesimal =⇒ x ∗ y /∈ Infinitesimal
for x y :: ′a::real-normed-div-algebra star
by (metis (no-types, lifting) inverse-Infinitesimal-iff-HInfinite ComplI Compl-HFinite

Infinitesimal-HFinite-mult divide-inverse eq-divide-imp inverse-inverse-eq mult-zero-right)

lemma Infinitesimal-mult-disj: x ∗ y ∈ Infinitesimal =⇒ x ∈ Infinitesimal ∨ y ∈
Infinitesimal

for x y :: ′a::real-normed-div-algebra star
using not-Infinitesimal-mult by blast

lemma HFinite-Infinitesimal-not-zero: x ∈ HFinite−Infinitesimal =⇒ x 6= 0
by blast

lemma HFinite-Infinitesimal-diff-mult:
x ∈ HFinite − Infinitesimal =⇒ y ∈ HFinite − Infinitesimal =⇒ x ∗ y ∈ HFinite
− Infinitesimal

for x y :: ′a::real-normed-div-algebra star
by (simp add: HFinite-mult not-Infinitesimal-mult)

lemma Infinitesimal-subset-HFinite: Infinitesimal ⊆ HFinite
using HFinite-def InfinitesimalD Reals-1 zero-less-one by blast

lemma Infinitesimal-star-of-mult: x ∈ Infinitesimal =⇒ x ∗ star-of r ∈ Infinites-
imal

for x :: ′a::real-normed-algebra star
by (erule HFinite-star-of [THEN [2] Infinitesimal-HFinite-mult])

lemma Infinitesimal-star-of-mult2 : x ∈ Infinitesimal =⇒ star-of r ∗ x ∈ Infinites-
imal

THEORY “NSA” 57

for x :: ′a::real-normed-algebra star
by (erule HFinite-star-of [THEN [2] Infinitesimal-HFinite-mult2])

5.5 The Infinitely Close Relation
lemma mem-infmal-iff : x ∈ Infinitesimal ←→ x ≈ 0

by (simp add: Infinitesimal-def approx-def)

lemma approx-minus-iff : x ≈ y ←→ x − y ≈ 0
by (simp add: approx-def)

lemma approx-minus-iff2 : x ≈ y ←→ − y + x ≈ 0
by (simp add: approx-def add.commute)

lemma approx-refl [iff]: x ≈ x
by (simp add: approx-def Infinitesimal-def)

lemma approx-sym: x ≈ y =⇒ y ≈ x
by (metis Infinitesimal-minus-iff approx-def minus-diff-eq)

lemma approx-trans:
assumes x ≈ y y ≈ z shows x ≈ z

proof −
have x − y ∈ Infinitesimal z − y ∈ Infinitesimal

using assms approx-def approx-sym by auto
then have x − z ∈ Infinitesimal

using Infinitesimal-diff by force
then show ?thesis

by (simp add: approx-def)
qed

lemma approx-trans2 : r ≈ x =⇒ s ≈ x =⇒ r ≈ s
by (blast intro: approx-sym approx-trans)

lemma approx-trans3 : x ≈ r =⇒ x ≈ s =⇒ r ≈ s
by (blast intro: approx-sym approx-trans)

lemma approx-reorient: x ≈ y ←→ y ≈ x
by (blast intro: approx-sym)

Reorientation simplification procedure: reorients (polymorphic) 0 = x, 1 =
x, nnn = x provided x isn’t 0, 1 or a numeral.
simproc-setup approx-reorient-simproc
(0 ≈ x | 1 ≈ y | numeral w ≈ z | − 1 ≈ y | − numeral w ≈ r) =

‹
let val rule = @{thm approx-reorient} RS eq-reflection

fun proc ct =
case Thm.term-of ct of

- $ t $ u => if can HOLogic.dest-number u then NONE

THEORY “NSA” 58

else if can HOLogic.dest-number t then SOME rule else NONE
| - => NONE

in K (K proc) end
›

lemma Infinitesimal-approx-minus: x − y ∈ Infinitesimal ←→ x ≈ y
by (simp add: approx-minus-iff [symmetric] mem-infmal-iff)

lemma approx-monad-iff : x ≈ y ←→ monad x = monad y
apply (simp add: monad-def set-eq-iff)
using approx-reorient approx-trans by blast

lemma Infinitesimal-approx: x ∈ Infinitesimal =⇒ y ∈ Infinitesimal =⇒ x ≈ y
by (simp add: Infinitesimal-diff approx-def)

lemma approx-add: a ≈ b =⇒ c ≈ d =⇒ a + c ≈ b + d
proof (unfold approx-def)

assume inf : a − b ∈ Infinitesimal c − d ∈ Infinitesimal
have a + c − (b + d) = (a − b) + (c − d) by simp
also have ... ∈ Infinitesimal

using inf by (rule Infinitesimal-add)
finally show a + c − (b + d) ∈ Infinitesimal .

qed

lemma approx-minus: a ≈ b =⇒ − a ≈ − b
by (metis approx-def approx-sym minus-diff-eq minus-diff-minus)

lemma approx-minus2 : − a ≈ − b =⇒ a ≈ b
by (auto dest: approx-minus)

lemma approx-minus-cancel [simp]: − a ≈ − b ←→ a ≈ b
by (blast intro: approx-minus approx-minus2)

lemma approx-add-minus: a ≈ b =⇒ c ≈ d =⇒ a + − c ≈ b + − d
by (blast intro!: approx-add approx-minus)

lemma approx-diff : a ≈ b =⇒ c ≈ d =⇒ a − c ≈ b − d
using approx-add [of a b − c − d] by simp

lemma approx-mult1 : a ≈ b =⇒ c ∈ HFinite =⇒ a ∗ c ≈ b ∗ c
for a b c :: ′a::real-normed-algebra star
by (simp add: approx-def Infinitesimal-HFinite-mult left-diff-distrib [symmetric])

lemma approx-mult2 : a ≈ b =⇒ c ∈ HFinite =⇒ c ∗ a ≈ c ∗ b
for a b c :: ′a::real-normed-algebra star
by (simp add: approx-def Infinitesimal-HFinite-mult2 right-diff-distrib [symmetric])

lemma approx-mult-subst: u ≈ v ∗ x =⇒ x ≈ y =⇒ v ∈ HFinite =⇒ u ≈ v ∗ y
for u v x y :: ′a::real-normed-algebra star

THEORY “NSA” 59

by (blast intro: approx-mult2 approx-trans)

lemma approx-mult-subst2 : u ≈ x ∗ v =⇒ x ≈ y =⇒ v ∈ HFinite =⇒ u ≈ y ∗ v
for u v x y :: ′a::real-normed-algebra star
by (blast intro: approx-mult1 approx-trans)

lemma approx-mult-subst-star-of : u ≈ x ∗ star-of v =⇒ x ≈ y =⇒ u ≈ y ∗ star-of
v

for u x y :: ′a::real-normed-algebra star
by (auto intro: approx-mult-subst2)

lemma approx-eq-imp: a = b =⇒ a ≈ b
by (simp add: approx-def)

lemma Infinitesimal-minus-approx: x ∈ Infinitesimal =⇒ − x ≈ x
by (blast intro: Infinitesimal-minus-iff [THEN iffD2] mem-infmal-iff [THEN

iffD1] approx-trans2)

lemma bex-Infinitesimal-iff : (∃ y ∈ Infinitesimal. x − z = y) ←→ x ≈ z
by (simp add: approx-def)

lemma bex-Infinitesimal-iff2 : (∃ y ∈ Infinitesimal. x = z + y) ←→ x ≈ z
by (force simp add: bex-Infinitesimal-iff [symmetric])

lemma Infinitesimal-add-approx: y ∈ Infinitesimal =⇒ x + y = z =⇒ x ≈ z
using approx-sym bex-Infinitesimal-iff2 by blast

lemma Infinitesimal-add-approx-self : y ∈ Infinitesimal =⇒ x ≈ x + y
by (simp add: Infinitesimal-add-approx)

lemma Infinitesimal-add-approx-self2 : y ∈ Infinitesimal =⇒ x ≈ y + x
by (auto dest: Infinitesimal-add-approx-self simp add: add.commute)

lemma Infinitesimal-add-minus-approx-self : y ∈ Infinitesimal =⇒ x ≈ x + − y
by (blast intro!: Infinitesimal-add-approx-self Infinitesimal-minus-iff [THEN iffD2])

lemma Infinitesimal-add-cancel: y ∈ Infinitesimal =⇒ x + y ≈ z =⇒ x ≈ z
using Infinitesimal-add-approx approx-trans by blast

lemma Infinitesimal-add-right-cancel: y ∈ Infinitesimal =⇒ x ≈ z + y =⇒ x ≈ z
by (metis Infinitesimal-add-approx-self approx-monad-iff)

lemma approx-add-left-cancel: d + b ≈ d + c =⇒ b ≈ c
by (metis add-diff-cancel-left bex-Infinitesimal-iff)

lemma approx-add-right-cancel: b + d ≈ c + d =⇒ b ≈ c
by (simp add: approx-def)

lemma approx-add-mono1 : b ≈ c =⇒ d + b ≈ d + c

THEORY “NSA” 60

by (simp add: approx-add)

lemma approx-add-mono2 : b ≈ c =⇒ b + a ≈ c + a
by (simp add: add.commute approx-add-mono1)

lemma approx-add-left-iff [simp]: a + b ≈ a + c ←→ b ≈ c
by (fast elim: approx-add-left-cancel approx-add-mono1)

lemma approx-add-right-iff [simp]: b + a ≈ c + a ←→ b ≈ c
by (simp add: add.commute)

lemma approx-HFinite: x ∈ HFinite =⇒ x ≈ y =⇒ y ∈ HFinite
by (metis HFinite-add Infinitesimal-subset-HFinite approx-sym subsetD bex-Infinitesimal-iff2)

lemma approx-star-of-HFinite: x ≈ star-of D =⇒ x ∈ HFinite
by (rule approx-sym [THEN [2] approx-HFinite], auto)

lemma approx-mult-HFinite: a ≈ b =⇒ c ≈ d =⇒ b ∈ HFinite =⇒ d ∈ HFinite
=⇒ a ∗ c ≈ b ∗ d

for a b c d :: ′a::real-normed-algebra star
by (meson approx-HFinite approx-mult2 approx-mult-subst2 approx-sym)

lemma scaleHR-left-diff-distrib:
∧

a b x. scaleHR (a − b) x = scaleHR a x −
scaleHR b x

by transfer (rule scaleR-left-diff-distrib)

lemma approx-scaleR1 : a ≈ star-of b =⇒ c ∈ HFinite =⇒ scaleHR a c ≈ b ∗R c
unfolding approx-def
by (metis Infinitesimal-HFinite-scaleHR scaleHR-def scaleHR-left-diff-distrib star-scaleR-def

starfun2-star-of)

lemma approx-scaleR2 : a ≈ b =⇒ c ∗R a ≈ c ∗R b
by (simp add: approx-def Infinitesimal-scaleR2 scaleR-right-diff-distrib [symmetric])

lemma approx-scaleR-HFinite: a ≈ star-of b =⇒ c ≈ d =⇒ d ∈ HFinite =⇒
scaleHR a c ≈ b ∗R d
by (meson approx-HFinite approx-scaleR1 approx-scaleR2 approx-sym approx-trans)

lemma approx-mult-star-of : a ≈ star-of b =⇒ c ≈ star-of d =⇒ a ∗ c ≈ star-of
b ∗ star-of d

for a c :: ′a::real-normed-algebra star
by (blast intro!: approx-mult-HFinite approx-star-of-HFinite HFinite-star-of)

lemma approx-SReal-mult-cancel-zero:
fixes a x :: hypreal
assumes a ∈ � a 6= 0 a ∗ x ≈ 0 shows x ≈ 0

proof −
have inverse a ∈ HFinite

using Reals-inverse SReal-subset-HFinite assms(1) by blast

THEORY “NSA” 61

then show ?thesis
using assms by (auto dest: approx-mult2 simp add: mult.assoc [symmetric])

qed

lemma approx-mult-SReal1 : a ∈ � =⇒ x ≈ 0 =⇒ x ∗ a ≈ 0
for a x :: hypreal
by (auto dest: SReal-subset-HFinite [THEN subsetD] approx-mult1)

lemma approx-mult-SReal2 : a ∈ � =⇒ x ≈ 0 =⇒ a ∗ x ≈ 0
for a x :: hypreal
by (auto dest: SReal-subset-HFinite [THEN subsetD] approx-mult2)

lemma approx-mult-SReal-zero-cancel-iff [simp]: a ∈ � =⇒ a 6= 0 =⇒ a ∗ x ≈ 0
←→ x ≈ 0

for a x :: hypreal
by (blast intro: approx-SReal-mult-cancel-zero approx-mult-SReal2)

lemma approx-SReal-mult-cancel:
fixes a w z :: hypreal
assumes a ∈ � a 6= 0 a ∗ w ≈ a ∗ z shows w ≈ z

proof −
have inverse a ∈ HFinite

using Reals-inverse SReal-subset-HFinite assms(1) by blast
then show ?thesis

using assms by (auto dest: approx-mult2 simp add: mult.assoc [symmetric])
qed

lemma approx-SReal-mult-cancel-iff1 [simp]: a ∈ � =⇒ a 6= 0 =⇒ a ∗ w ≈ a ∗
z ←→ w ≈ z

for a w z :: hypreal
by (meson SReal-subset-HFinite approx-SReal-mult-cancel approx-mult2 subsetD)

lemma approx-le-bound:
fixes z :: hypreal
assumes z ≤ f f ≈ g g ≤ z shows f ≈ z

proof −
obtain y where z ≤ g + y and y ∈ Infinitesimal f = g + y

using assms bex-Infinitesimal-iff2 by auto
then have z − g ∈ Infinitesimal

using assms(3) hrabs-le-Infinitesimal by auto
then show ?thesis

by (metis approx-def approx-trans2 assms(2))
qed

lemma approx-hnorm: x ≈ y =⇒ hnorm x ≈ hnorm y
for x y :: ′a::real-normed-vector star

proof (unfold approx-def)
assume x − y ∈ Infinitesimal
then have hnorm (x − y) ∈ Infinitesimal

THEORY “NSA” 62

by (simp only: Infinitesimal-hnorm-iff)
moreover have (0 ::real star) ∈ Infinitesimal

by (rule Infinitesimal-zero)
moreover have 0 ≤ |hnorm x − hnorm y|

by (rule abs-ge-zero)
moreover have |hnorm x − hnorm y| ≤ hnorm (x − y)

by (rule hnorm-triangle-ineq3)
ultimately have |hnorm x − hnorm y| ∈ Infinitesimal

by (rule Infinitesimal-interval2)
then show hnorm x − hnorm y ∈ Infinitesimal

by (simp only: Infinitesimal-hrabs-iff)
qed

5.6 Zero is the Only Infinitesimal that is also a Real
lemma Infinitesimal-less-SReal: x ∈ � =⇒ y ∈ Infinitesimal =⇒ 0 < x =⇒ y <
x

for x y :: hypreal
using InfinitesimalD by fastforce

lemma Infinitesimal-less-SReal2 : y ∈ Infinitesimal =⇒ ∀ r ∈ Reals. 0 < r −→ y
< r

for y :: hypreal
by (blast intro: Infinitesimal-less-SReal)

lemma SReal-not-Infinitesimal: 0 < y =⇒ y ∈ � ==> y /∈ Infinitesimal
for y :: hypreal
by (auto simp add: Infinitesimal-def abs-if)

lemma SReal-minus-not-Infinitesimal: y < 0 =⇒ y ∈ � =⇒ y /∈ Infinitesimal
for y :: hypreal
using Infinitesimal-minus-iff Reals-minus SReal-not-Infinitesimal neg-0-less-iff-less

by blast

lemma SReal-Int-Infinitesimal-zero: � Int Infinitesimal = {0 ::hypreal}
proof −
have x = 0 if x ∈ � x ∈ Infinitesimal for x :: real star
using that SReal-minus-not-Infinitesimal SReal-not-Infinitesimal not-less-iff-gr-or-eq

by blast
then show ?thesis

by auto
qed

lemma SReal-Infinitesimal-zero: x ∈ � =⇒ x ∈ Infinitesimal =⇒ x = 0
for x :: hypreal
using SReal-Int-Infinitesimal-zero by blast

lemma SReal-HFinite-diff-Infinitesimal: x ∈ � =⇒ x 6= 0 =⇒ x ∈ HFinite −
Infinitesimal

THEORY “NSA” 63

for x :: hypreal
by (auto dest: SReal-Infinitesimal-zero SReal-subset-HFinite [THEN subsetD])

lemma hypreal-of-real-HFinite-diff-Infinitesimal:
hypreal-of-real x 6= 0 =⇒ hypreal-of-real x ∈ HFinite − Infinitesimal
by (rule SReal-HFinite-diff-Infinitesimal) auto

lemma star-of-Infinitesimal-iff-0 [iff]: star-of x ∈ Infinitesimal ←→ x = 0
proof

show x = 0 if star-of x ∈ Infinitesimal
proof −

have hnorm (star-n (λn. x)) ∈ Standard
by (metis Reals-eq-Standard SReal-iff star-of-def star-of-norm)

then show ?thesis
by (metis InfinitesimalD2 less-irrefl star-of-norm that zero-less-norm-iff)

qed
qed auto

lemma star-of-HFinite-diff-Infinitesimal: x 6= 0 =⇒ star-of x ∈ HFinite − In-
finitesimal

by simp

lemma numeral-not-Infinitesimal [simp]:
numeral w 6= (0 ::hypreal) =⇒ (numeral w :: hypreal) /∈ Infinitesimal
by (fast dest: Reals-numeral [THEN SReal-Infinitesimal-zero])

Again: 1 is a special case, but not 0 this time.
lemma one-not-Infinitesimal [simp]:
(1 :: ′a::{real-normed-vector ,zero-neq-one} star) /∈ Infinitesimal
by (metis star-of-Infinitesimal-iff-0 star-one-def zero-neq-one)

lemma approx-SReal-not-zero: y ∈ � =⇒ x ≈ y =⇒ y 6= 0 =⇒ x 6= 0
for x y :: hypreal
using SReal-Infinitesimal-zero approx-sym mem-infmal-iff by auto

lemma HFinite-diff-Infinitesimal-approx:
x ≈ y =⇒ y ∈ HFinite − Infinitesimal =⇒ x ∈ HFinite − Infinitesimal
by (meson Diff-iff approx-HFinite approx-sym approx-trans3 mem-infmal-iff)

The premise y 6= 0 is essential; otherwise x / y = 0 and we lose the HFinite
premise.
lemma Infinitesimal-ratio:

y 6= 0 =⇒ y ∈ Infinitesimal =⇒ x / y ∈ HFinite =⇒ x ∈ Infinitesimal
for x y :: ′a::{real-normed-div-algebra,field} star
using Infinitesimal-HFinite-mult by fastforce

lemma Infinitesimal-SReal-divide: x ∈ Infinitesimal =⇒ y ∈ � =⇒ x / y ∈ In-
finitesimal

for x y :: hypreal

THEORY “NSA” 64

by (metis HFinite-star-of Infinitesimal-HFinite-mult Reals-inverse SReal-iff di-
vide-inverse)

6 Standard Part Theorem

Every finite x ∈ R∗ is infinitely close to a unique real number (i.e. a member
of Reals).

6.1 Uniqueness: Two Infinitely Close Reals are Equal
lemma star-of-approx-iff [simp]: star-of x ≈ star-of y ←→ x = y

by (metis approx-def right-minus-eq star-of-Infinitesimal-iff-0 star-of-simps(2))

lemma SReal-approx-iff : x ∈ � =⇒ y ∈ � =⇒ x ≈ y ←→ x = y
for x y :: hypreal
by (meson Reals-diff SReal-Infinitesimal-zero approx-def approx-refl right-minus-eq)

lemma numeral-approx-iff [simp]:
(numeral v ≈ (numeral w :: ′a::{numeral,real-normed-vector} star)) = (numeral

v = (numeral w :: ′a))
by (metis star-of-approx-iff star-of-numeral)

And also for 0 ≈ #nn and 1 ≈ #nn, #nn ≈ 0 and #nn ≈ 1.
lemma [simp]:
(numeral w ≈ (0 :: ′a::{numeral,real-normed-vector} star)) = (numeral w = (0 :: ′a))
((0 :: ′a::{numeral,real-normed-vector} star) ≈ numeral w) = (numeral w = (0 :: ′a))
(numeral w ≈ (1 :: ′b::{numeral,one,real-normed-vector} star)) = (numeral w =

(1 :: ′b))
((1 :: ′b::{numeral,one,real-normed-vector} star) ≈ numeral w) = (numeral w =

(1 :: ′b))
¬ (0 ≈ (1 :: ′c::{zero-neq-one,real-normed-vector} star))
¬ (1 ≈ (0 :: ′c::{zero-neq-one,real-normed-vector} star))
unfolding star-numeral-def star-zero-def star-one-def star-of-approx-iff
by (auto intro: sym)

lemma star-of-approx-numeral-iff [simp]: star-of k ≈ numeral w ←→ k = numeral
w

by (subst star-of-approx-iff [symmetric]) auto

lemma star-of-approx-zero-iff [simp]: star-of k ≈ 0 ←→ k = 0
by (simp-all add: star-of-approx-iff [symmetric])

lemma star-of-approx-one-iff [simp]: star-of k ≈ 1 ←→ k = 1
by (simp-all add: star-of-approx-iff [symmetric])

lemma approx-unique-real: r ∈ � =⇒ s ∈ � =⇒ r ≈ x =⇒ s ≈ x =⇒ r = s
for r s :: hypreal
by (blast intro: SReal-approx-iff [THEN iffD1] approx-trans2)

THEORY “NSA” 65

6.2 Existence of Unique Real Infinitely Close
6.2.1 Lifting of the Ub and Lub Properties
lemma hypreal-of-real-isUb-iff : isUb � (hypreal-of-real ‘ Q) (hypreal-of-real Y) =
isUb UNIV Q Y

for Q :: real set and Y :: real
by (simp add: isUb-def setle-def)

lemma hypreal-of-real-isLub-iff :
isLub � (hypreal-of-real ‘ Q) (hypreal-of-real Y) = isLub (UNIV :: real set) Q Y

(is ?lhs = ?rhs)
for Q :: real set and Y :: real

proof
assume ?lhs
then show ?rhs
by (simp add: isLub-def leastP-def) (metis hypreal-of-real-isUb-iff mem-Collect-eq

setge-def star-of-le)
next

assume ?rhs
then show ?lhs
apply (simp add: isLub-def leastP-def hypreal-of-real-isUb-iff setge-def)

by (metis SReal-iff hypreal-of-real-isUb-iff isUb-def star-of-le)
qed

lemma lemma-isUb-hypreal-of-real: isUb � P Y =⇒ ∃Yo. isUb � P (hypreal-of-real
Yo)

by (auto simp add: SReal-iff isUb-def)

lemma lemma-isLub-hypreal-of-real: isLub � P Y =⇒ ∃Yo. isLub � P (hypreal-of-real
Yo)

by (auto simp add: isLub-def leastP-def isUb-def SReal-iff)

lemma SReal-complete:
fixes P :: hypreal set
assumes isUb � P Y P ⊆ � P 6= {}

shows ∃ t. isLub � P t
proof −

obtain Q where P = hypreal-of-real ‘ Q
by (metis ‹P ⊆ �› hypreal-of-real-image subset-imageE)

then show ?thesis
by (metis assms(1) ‹P 6= {}› equals0I hypreal-of-real-isLub-iff hypreal-of-real-isUb-iff

image-empty lemma-isUb-hypreal-of-real reals-complete)
qed

Lemmas about lubs.
lemma lemma-st-part-lub:

fixes x :: hypreal
assumes x ∈ HFinite
shows ∃ t. isLub � {s. s ∈ � ∧ s < x} t

THEORY “NSA” 66

proof −
obtain t where t: t ∈ � hnorm x < t

using HFiniteD assms by blast
then have isUb � {s. s ∈ � ∧ s < x} t

by (simp add: abs-less-iff isUbI le-less-linear less-imp-not-less setleI)
moreover have ∃ y. y ∈ � ∧ y < x

using t by (rule-tac x = −t in exI) (auto simp add: abs-less-iff)
ultimately show ?thesis

using SReal-complete by fastforce
qed

lemma hypreal-setle-less-trans: S ∗<= x =⇒ x < y =⇒ S ∗<= y
for x y :: hypreal
by (meson le-less-trans less-imp-le setle-def)

lemma hypreal-gt-isUb: isUb R S x =⇒ x < y =⇒ y ∈ R =⇒ isUb R S y
for x y :: hypreal
using hypreal-setle-less-trans isUb-def by blast

lemma lemma-SReal-ub: x ∈ � =⇒ isUb � {s. s ∈ � ∧ s < x} x
for x :: hypreal
by (auto intro: isUbI setleI order-less-imp-le)

lemma lemma-SReal-lub:
fixes x :: hypreal
assumes x ∈ � shows isLub � {s. s ∈ � ∧ s < x} x

proof −
have x ≤ y if isUb � {s ∈ �. s < x} y for y
proof −

have y ∈ �
using isUbD2a that by blast

show ?thesis
proof (cases x y rule: linorder-cases)

case greater
then obtain r where y < r r < x

using dense by blast
then show ?thesis

using isUbD [OF that]
by simp (meson SReal-dense ‹y ∈ �› assms greater not-le)

qed auto
qed
with assms show ?thesis

by (simp add: isLubI2 isUbI setgeI setleI)
qed

lemma lemma-st-part-major :
fixes x r t :: hypreal
assumes x: x ∈ HFinite and r : r ∈ � 0 < r and t: isLub � {s. s ∈ � ∧ s <

x} t

THEORY “NSA” 67

shows |x − t| < r
proof −

have t ∈ �
using isLubD1a t by blast

have lemma-st-part-gt-ub: x < r =⇒ r ∈ � =⇒ isUb � {s. s ∈ � ∧ s < x} r
for r :: hypreal
by (auto dest: order-less-trans intro: order-less-imp-le intro!: isUbI setleI)

have isUb � {s ∈ �. s < x} t
by (simp add: t isLub-isUb)

then have ¬ r + t < x
by (metis (mono-tags, lifting) Reals-add ‹t ∈ �› add-le-same-cancel2 isUbD leD

mem-Collect-eq r)
then have x − t ≤ r

by simp
moreover have ¬ x < t − r

using lemma-st-part-gt-ub isLub-le-isUb ‹t ∈ �› r t x by fastforce
then have − (x − t) ≤ r

by linarith
moreover have False if x − t = r ∨ − (x − t) = r
proof −

have x ∈ �
by (metis ‹t ∈ �› ‹r ∈ �› that Reals-add-cancel Reals-minus-iff add-uminus-conv-diff)
then have isLub � {s ∈ �. s < x} x

by (rule lemma-SReal-lub)
then show False

using r t that x isLub-unique by force
qed
ultimately show ?thesis

using abs-less-iff dual-order .order-iff-strict by blast
qed

lemma lemma-st-part-major2 :
x ∈ HFinite =⇒ isLub � {s. s ∈ � ∧ s < x} t =⇒ ∀ r ∈ Reals. 0 < r −→ |x −

t| < r
for x t :: hypreal
by (blast dest!: lemma-st-part-major)

Existence of real and Standard Part Theorem.
lemma lemma-st-part-Ex: x ∈ HFinite =⇒ ∃ t∈Reals. ∀ r ∈ Reals. 0 < r −→ |x
− t| < r

for x :: hypreal
by (meson isLubD1a lemma-st-part-lub lemma-st-part-major2)

lemma st-part-Ex: x ∈ HFinite =⇒ ∃ t∈Reals. x ≈ t
for x :: hypreal
by (metis InfinitesimalI approx-def hypreal-hnorm-def lemma-st-part-Ex)

There is a unique real infinitely close.

THEORY “NSA” 68

lemma st-part-Ex1 : x ∈ HFinite =⇒ ∃ !t::hypreal. t ∈ � ∧ x ≈ t
by (meson SReal-approx-iff approx-trans2 st-part-Ex)

6.3 Finite, Infinite and Infinitesimal
lemma HFinite-Int-HInfinite-empty [simp]: HFinite Int HInfinite = {}

using Compl-HFinite by blast

lemma HFinite-not-HInfinite:
assumes x: x ∈ HFinite shows x /∈ HInfinite
using Compl-HFinite x by blast

lemma not-HFinite-HInfinite: x /∈ HFinite =⇒ x ∈ HInfinite
using Compl-HFinite by blast

lemma HInfinite-HFinite-disj: x ∈ HInfinite ∨ x ∈ HFinite
by (blast intro: not-HFinite-HInfinite)

lemma HInfinite-HFinite-iff : x ∈ HInfinite ←→ x /∈ HFinite
by (blast dest: HFinite-not-HInfinite not-HFinite-HInfinite)

lemma HFinite-HInfinite-iff : x ∈ HFinite ←→ x /∈ HInfinite
by (simp add: HInfinite-HFinite-iff)

lemma HInfinite-diff-HFinite-Infinitesimal-disj:
x /∈ Infinitesimal =⇒ x ∈ HInfinite ∨ x ∈ HFinite − Infinitesimal
by (fast intro: not-HFinite-HInfinite)

lemma HFinite-inverse: x ∈ HFinite =⇒ x /∈ Infinitesimal =⇒ inverse x ∈ HFi-
nite

for x :: ′a::real-normed-div-algebra star
using HInfinite-inverse-Infinitesimal not-HFinite-HInfinite by force

lemma HFinite-inverse2 : x ∈ HFinite − Infinitesimal =⇒ inverse x ∈ HFinite
for x :: ′a::real-normed-div-algebra star
by (blast intro: HFinite-inverse)

Stronger statement possible in fact.
lemma Infinitesimal-inverse-HFinite: x /∈ Infinitesimal =⇒ inverse x ∈ HFinite

for x :: ′a::real-normed-div-algebra star
using HFinite-HInfinite-iff HInfinite-inverse-Infinitesimal by fastforce

lemma HFinite-not-Infinitesimal-inverse:
x ∈ HFinite − Infinitesimal =⇒ inverse x ∈ HFinite − Infinitesimal
for x :: ′a::real-normed-div-algebra star
using HFinite-Infinitesimal-not-zero HFinite-inverse2 Infinitesimal-HFinite-mult2

by fastforce

lemma approx-inverse:

THEORY “NSA” 69

fixes x y :: ′a::real-normed-div-algebra star
assumes x ≈ y and y: y ∈ HFinite − Infinitesimal shows inverse x ≈ inverse

y
proof −

have x: x ∈ HFinite − Infinitesimal
using HFinite-diff-Infinitesimal-approx assms(1) y by blast

with y HFinite-inverse2 have inverse x ∈ HFinite inverse y ∈ HFinite
by blast+

then have inverse y ∗ x ≈ 1
by (metis Diff-iff approx-mult2 assms(1) left-inverse not-Infinitesimal-not-zero

y)
then show ?thesis

by (metis (no-types, lifting) DiffD2 HFinite-Infinitesimal-not-zero Infinitesi-
mal-mult-disj x approx-def approx-sym left-diff-distrib left-inverse)
qed

lemmas star-of-approx-inverse = star-of-HFinite-diff-Infinitesimal [THEN [2] ap-
prox-inverse]
lemmas hypreal-of-real-approx-inverse = hypreal-of-real-HFinite-diff-Infinitesimal
[THEN [2] approx-inverse]

lemma inverse-add-Infinitesimal-approx:
x ∈ HFinite − Infinitesimal =⇒ h ∈ Infinitesimal =⇒ inverse (x + h) ≈ inverse

x
for x h :: ′a::real-normed-div-algebra star
by (auto intro: approx-inverse approx-sym Infinitesimal-add-approx-self)

lemma inverse-add-Infinitesimal-approx2 :
x ∈ HFinite − Infinitesimal =⇒ h ∈ Infinitesimal =⇒ inverse (h + x) ≈ inverse

x
for x h :: ′a::real-normed-div-algebra star
by (metis add.commute inverse-add-Infinitesimal-approx)

lemma inverse-add-Infinitesimal-approx-Infinitesimal:
x ∈ HFinite − Infinitesimal =⇒ h ∈ Infinitesimal =⇒ inverse (x + h) − inverse

x ≈ h
for x h :: ′a::real-normed-div-algebra star
by (meson Infinitesimal-approx bex-Infinitesimal-iff inverse-add-Infinitesimal-approx)

lemma Infinitesimal-square-iff : x ∈ Infinitesimal ←→ x ∗ x ∈ Infinitesimal
for x :: ′a::real-normed-div-algebra star
using Infinitesimal-mult Infinitesimal-mult-disj by auto

declare Infinitesimal-square-iff [symmetric, simp]

lemma HFinite-square-iff [simp]: x ∗ x ∈ HFinite ←→ x ∈ HFinite
for x :: ′a::real-normed-div-algebra star
using HFinite-HInfinite-iff HFinite-mult HInfinite-mult by blast

THEORY “NSA” 70

lemma HInfinite-square-iff [simp]: x ∗ x ∈ HInfinite ←→ x ∈ HInfinite
for x :: ′a::real-normed-div-algebra star
by (auto simp add: HInfinite-HFinite-iff)

lemma approx-HFinite-mult-cancel: a ∈ HFinite − Infinitesimal =⇒ a ∗ w ≈ a ∗
z =⇒ w ≈ z

for a w z :: ′a::real-normed-div-algebra star
by (metis DiffD2 Infinitesimal-mult-disj bex-Infinitesimal-iff right-diff-distrib)

lemma approx-HFinite-mult-cancel-iff1 : a ∈ HFinite − Infinitesimal =⇒ a ∗ w ≈
a ∗ z ←→ w ≈ z

for a w z :: ′a::real-normed-div-algebra star
by (auto intro: approx-mult2 approx-HFinite-mult-cancel)

lemma HInfinite-HFinite-add-cancel: x + y ∈ HInfinite =⇒ y ∈ HFinite =⇒ x ∈
HInfinite

using HFinite-add HInfinite-HFinite-iff by blast

lemma HInfinite-HFinite-add: x ∈ HInfinite =⇒ y ∈ HFinite =⇒ x + y ∈ HIn-
finite
by (metis (no-types, opaque-lifting) HFinite-HInfinite-iff HFinite-add HFinite-minus-iff

add.commute add-minus-cancel)

lemma HInfinite-ge-HInfinite: x ∈ HInfinite =⇒ x ≤ y =⇒ 0 ≤ x =⇒ y ∈ HIn-
finite

for x y :: hypreal
by (auto intro: HFinite-bounded simp add: HInfinite-HFinite-iff)

lemma Infinitesimal-inverse-HInfinite: x ∈ Infinitesimal =⇒ x 6= 0 =⇒ inverse x
∈ HInfinite

for x :: ′a::real-normed-div-algebra star
by (metis Infinitesimal-HFinite-mult not-HFinite-HInfinite one-not-Infinitesimal

right-inverse)

lemma HInfinite-HFinite-not-Infinitesimal-mult:
x ∈ HInfinite =⇒ y ∈ HFinite − Infinitesimal =⇒ x ∗ y ∈ HInfinite
for x y :: ′a::real-normed-div-algebra star
by (metis (no-types, opaque-lifting) HFinite-HInfinite-iff HFinite-Infinitesimal-not-zero

HFinite-inverse2 HFinite-mult mult.assoc mult.right-neutral right-inverse)

lemma HInfinite-HFinite-not-Infinitesimal-mult2 :
x ∈ HInfinite =⇒ y ∈ HFinite − Infinitesimal =⇒ y ∗ x ∈ HInfinite
for x y :: ′a::real-normed-div-algebra star
by (metis Diff-iff HInfinite-HFinite-iff HInfinite-inverse-Infinitesimal Infinitesi-

mal-HFinite-mult2 divide-inverse mult-zero-right nonzero-eq-divide-eq)

lemma HInfinite-gt-SReal: x ∈ HInfinite =⇒ 0 < x =⇒ y ∈ � =⇒ y < x
for x y :: hypreal
by (auto dest!: bspec simp add: HInfinite-def abs-if order-less-imp-le)

THEORY “NSA” 71

lemma HInfinite-gt-zero-gt-one: x ∈ HInfinite =⇒ 0 < x =⇒ 1 < x
for x :: hypreal
by (auto intro: HInfinite-gt-SReal)

lemma not-HInfinite-one [simp]: 1 /∈ HInfinite
by (simp add: HInfinite-HFinite-iff)

lemma approx-hrabs-disj: |x| ≈ x ∨ |x| ≈ −x
for x :: hypreal
by (simp add: abs-if)

6.4 Theorems about Monads
lemma monad-hrabs-Un-subset: monad |x| ≤ monad x ∪ monad (− x)

for x :: hypreal
by (simp add: abs-if)

lemma Infinitesimal-monad-eq: e ∈ Infinitesimal =⇒ monad (x + e) = monad x
by (fast intro!: Infinitesimal-add-approx-self [THEN approx-sym] approx-monad-iff

[THEN iffD1])

lemma mem-monad-iff : u ∈ monad x ←→ − u ∈ monad (− x)
by (simp add: monad-def)

lemma Infinitesimal-monad-zero-iff : x ∈ Infinitesimal ←→ x ∈ monad 0
by (auto intro: approx-sym simp add: monad-def mem-infmal-iff)

lemma monad-zero-minus-iff : x ∈ monad 0 ←→ − x ∈ monad 0
by (simp add: Infinitesimal-monad-zero-iff [symmetric])

lemma monad-zero-hrabs-iff : x ∈ monad 0 ←→ |x| ∈ monad 0
for x :: hypreal
using Infinitesimal-monad-zero-iff by blast

lemma mem-monad-self [simp]: x ∈ monad x
by (simp add: monad-def)

6.5 Proof that x ≈ y implies |x| ≈ |y|
lemma approx-subset-monad: x ≈ y =⇒ {x, y} ≤ monad x

by (simp (no-asm)) (simp add: approx-monad-iff)

lemma approx-subset-monad2 : x ≈ y =⇒ {x, y} ≤ monad y
using approx-subset-monad approx-sym by auto

lemma mem-monad-approx: u ∈ monad x =⇒ x ≈ u
by (simp add: monad-def)

lemma approx-mem-monad: x ≈ u =⇒ u ∈ monad x

THEORY “NSA” 72

by (simp add: monad-def)

lemma approx-mem-monad2 : x ≈ u =⇒ x ∈ monad u
using approx-mem-monad approx-sym by blast

lemma approx-mem-monad-zero: x ≈ y =⇒ x ∈ monad 0 =⇒ y ∈ monad 0
using approx-trans monad-def by blast

lemma Infinitesimal-approx-hrabs: x ≈ y =⇒ x ∈ Infinitesimal =⇒ |x| ≈ |y|
for x y :: hypreal
using approx-hnorm by fastforce

lemma less-Infinitesimal-less: 0 < x =⇒ x /∈ Infinitesimal =⇒ e ∈ Infinitesimal
=⇒ e < x

for x :: hypreal
using Infinitesimal-interval less-linear by blast

lemma Ball-mem-monad-gt-zero: 0 < x =⇒ x /∈ Infinitesimal =⇒ u ∈ monad x
=⇒ 0 < u

for u x :: hypreal
by (metis bex-Infinitesimal-iff2 less-Infinitesimal-less less-add-same-cancel2 mem-monad-approx)

lemma Ball-mem-monad-less-zero: x < 0 =⇒ x /∈ Infinitesimal =⇒ u ∈ monad
x =⇒ u < 0

for u x :: hypreal
by (metis Ball-mem-monad-gt-zero approx-monad-iff less-asym linorder-neqE-linordered-idom

mem-infmal-iff mem-monad-approx mem-monad-self)

lemma lemma-approx-gt-zero: 0 < x =⇒ x /∈ Infinitesimal =⇒ x ≈ y =⇒ 0 < y
for x y :: hypreal
by (blast dest: Ball-mem-monad-gt-zero approx-subset-monad)

lemma lemma-approx-less-zero: x < 0 =⇒ x /∈ Infinitesimal =⇒ x ≈ y =⇒ y <
0

for x y :: hypreal
by (blast dest: Ball-mem-monad-less-zero approx-subset-monad)

lemma approx-hrabs: x ≈ y =⇒ |x| ≈ |y|
for x y :: hypreal
by (drule approx-hnorm) simp

lemma approx-hrabs-zero-cancel: |x| ≈ 0 =⇒ x ≈ 0
for x :: hypreal
using mem-infmal-iff by blast

lemma approx-hrabs-add-Infinitesimal: e ∈ Infinitesimal =⇒ |x| ≈ |x + e|
for e x :: hypreal
by (fast intro: approx-hrabs Infinitesimal-add-approx-self)

THEORY “NSA” 73

lemma approx-hrabs-add-minus-Infinitesimal: e ∈ Infinitesimal ==> |x| ≈ |x +
−e|

for e x :: hypreal
by (fast intro: approx-hrabs Infinitesimal-add-minus-approx-self)

lemma hrabs-add-Infinitesimal-cancel:
e ∈ Infinitesimal =⇒ e ′ ∈ Infinitesimal =⇒ |x + e| = |y + e ′| =⇒ |x| ≈ |y|
for e e ′ x y :: hypreal
by (metis approx-hrabs-add-Infinitesimal approx-trans2)

lemma hrabs-add-minus-Infinitesimal-cancel:
e ∈ Infinitesimal =⇒ e ′ ∈ Infinitesimal =⇒ |x + −e| = |y + −e ′| =⇒ |x| ≈ |y|
for e e ′ x y :: hypreal
by (meson Infinitesimal-minus-iff hrabs-add-Infinitesimal-cancel)

6.6 More HFinite and Infinitesimal Theorems

Interesting slightly counterintuitive theorem: necessary for proving that an
open interval is an NS open set.
lemma Infinitesimal-add-hypreal-of-real-less:

assumes x < y and u: u ∈ Infinitesimal
shows hypreal-of-real x + u < hypreal-of-real y

proof −
have |u| < hypreal-of-real y − hypreal-of-real x

using InfinitesimalD ‹x < y› u by fastforce
then show ?thesis

by (simp add: abs-less-iff)
qed

lemma Infinitesimal-add-hrabs-hypreal-of-real-less:
x ∈ Infinitesimal =⇒ |hypreal-of-real r | < hypreal-of-real y =⇒
|hypreal-of-real r + x| < hypreal-of-real y

by (metis Infinitesimal-add-hypreal-of-real-less approx-hrabs-add-Infinitesimal ap-
prox-sym bex-Infinitesimal-iff2 star-of-abs star-of-less)

lemma Infinitesimal-add-hrabs-hypreal-of-real-less2 :
x ∈ Infinitesimal =⇒ |hypreal-of-real r | < hypreal-of-real y =⇒
|x + hypreal-of-real r | < hypreal-of-real y

using Infinitesimal-add-hrabs-hypreal-of-real-less by fastforce

lemma hypreal-of-real-le-add-Infininitesimal-cancel:
assumes le: hypreal-of-real x + u ≤ hypreal-of-real y + v

and u: u ∈ Infinitesimal and v: v ∈ Infinitesimal
shows hypreal-of-real x ≤ hypreal-of-real y

proof (rule ccontr)
assume ¬ hypreal-of-real x ≤ hypreal-of-real y
then have hypreal-of-real y + (v − u) < hypreal-of-real x

by (simp add: Infinitesimal-add-hypreal-of-real-less Infinitesimal-diff u v)
then show False

THEORY “NSA” 74

by (simp add: add-diff-eq add-le-imp-le-diff le leD)
qed

lemma hypreal-of-real-le-add-Infininitesimal-cancel2 :
u ∈ Infinitesimal =⇒ v ∈ Infinitesimal =⇒

hypreal-of-real x + u ≤ hypreal-of-real y + v =⇒ x ≤ y
by (blast intro: star-of-le [THEN iffD1] intro!: hypreal-of-real-le-add-Infininitesimal-cancel)

lemma hypreal-of-real-less-Infinitesimal-le-zero:
hypreal-of-real x < e =⇒ e ∈ Infinitesimal =⇒ hypreal-of-real x ≤ 0
by (metis Infinitesimal-interval eq-iff le-less-linear star-of-Infinitesimal-iff-0 star-of-eq-0)

lemma Infinitesimal-add-not-zero: h ∈ Infinitesimal =⇒ x 6= 0 =⇒ star-of x + h
6= 0

by (metis Infinitesimal-add-approx-self star-of-approx-zero-iff)

lemma monad-hrabs-less: y ∈ monad x =⇒ 0 < hypreal-of-real e =⇒ |y − x| <
hypreal-of-real e
by (simp add: Infinitesimal-approx-minus approx-sym less-Infinitesimal-less mem-monad-approx)

lemma mem-monad-SReal-HFinite: x ∈ monad (hypreal-of-real a) =⇒ x ∈ HFi-
nite

using HFinite-star-of approx-HFinite mem-monad-approx by blast

6.7 Theorems about Standard Part
lemma st-approx-self : x ∈ HFinite =⇒ st x ≈ x

by (metis (no-types, lifting) approx-refl approx-trans3 someI-ex st-def st-part-Ex
st-part-Ex1)

lemma st-SReal: x ∈ HFinite =⇒ st x ∈ �
by (metis (mono-tags, lifting) approx-sym someI-ex st-def st-part-Ex)

lemma st-HFinite: x ∈ HFinite =⇒ st x ∈ HFinite
by (erule st-SReal [THEN SReal-subset-HFinite [THEN subsetD]])

lemma st-unique: r ∈ � =⇒ r ≈ x =⇒ st x = r
by (meson SReal-subset-HFinite approx-HFinite approx-unique-real st-SReal st-approx-self

subsetD)

lemma st-SReal-eq: x ∈ � =⇒ st x = x
by (metis approx-refl st-unique)

lemma st-hypreal-of-real [simp]: st (hypreal-of-real x) = hypreal-of-real x
by (rule SReal-hypreal-of-real [THEN st-SReal-eq])

lemma st-eq-approx: x ∈ HFinite =⇒ y ∈ HFinite =⇒ st x = st y =⇒ x ≈ y
by (auto dest!: st-approx-self elim!: approx-trans3)

THEORY “NSA” 75

lemma approx-st-eq:
assumes x: x ∈ HFinite and y: y ∈ HFinite and xy: x ≈ y
shows st x = st y

proof −
have st x ≈ x st y ≈ y st x ∈ � st y ∈ �

by (simp-all add: st-approx-self st-SReal x y)
with xy show ?thesis

by (fast elim: approx-trans approx-trans2 SReal-approx-iff [THEN iffD1])
qed

lemma st-eq-approx-iff : x ∈ HFinite =⇒ y ∈ HFinite =⇒ x ≈ y ←→ st x = st y
by (blast intro: approx-st-eq st-eq-approx)

lemma st-Infinitesimal-add-SReal: x ∈ � =⇒ e ∈ Infinitesimal =⇒ st (x + e) =
x

by (simp add: Infinitesimal-add-approx-self st-unique)

lemma st-Infinitesimal-add-SReal2 : x ∈ � =⇒ e ∈ Infinitesimal =⇒ st (e + x)
= x

by (metis add.commute st-Infinitesimal-add-SReal)

lemma HFinite-st-Infinitesimal-add: x ∈ HFinite =⇒ ∃ e ∈ Infinitesimal. x =
st(x) + e

by (blast dest!: st-approx-self [THEN approx-sym] bex-Infinitesimal-iff2 [THEN
iffD2])

lemma st-add: x ∈ HFinite =⇒ y ∈ HFinite =⇒ st (x + y) = st x + st y
by (simp add: st-unique st-SReal st-approx-self approx-add)

lemma st-numeral [simp]: st (numeral w) = numeral w
by (rule Reals-numeral [THEN st-SReal-eq])

lemma st-neg-numeral [simp]: st (− numeral w) = − numeral w
using st-unique by auto

lemma st-0 [simp]: st 0 = 0
by (simp add: st-SReal-eq)

lemma st-1 [simp]: st 1 = 1
by (simp add: st-SReal-eq)

lemma st-neg-1 [simp]: st (− 1) = − 1
by (simp add: st-SReal-eq)

lemma st-minus: x ∈ HFinite =⇒ st (− x) = − st x
by (simp add: st-unique st-SReal st-approx-self approx-minus)

lemma st-diff : [[x ∈ HFinite; y ∈ HFinite]] =⇒ st (x − y) = st x − st y
by (simp add: st-unique st-SReal st-approx-self approx-diff)

THEORY “NSA” 76

lemma st-mult: [[x ∈ HFinite; y ∈ HFinite]] =⇒ st (x ∗ y) = st x ∗ st y
by (simp add: st-unique st-SReal st-approx-self approx-mult-HFinite)

lemma st-Infinitesimal: x ∈ Infinitesimal =⇒ st x = 0
by (simp add: st-unique mem-infmal-iff)

lemma st-not-Infinitesimal: st(x) 6= 0 =⇒ x /∈ Infinitesimal
by (fast intro: st-Infinitesimal)

lemma st-inverse: x ∈ HFinite =⇒ st x 6= 0 =⇒ st (inverse x) = inverse (st x)
by (simp add: approx-inverse st-SReal st-approx-self st-not-Infinitesimal st-unique)

lemma st-divide [simp]: x ∈ HFinite =⇒ y ∈ HFinite =⇒ st y 6= 0 =⇒ st (x /
y) = st x / st y
by (simp add: divide-inverse st-mult st-not-Infinitesimal HFinite-inverse st-inverse)

lemma st-idempotent [simp]: x ∈ HFinite =⇒ st (st x) = st x
by (blast intro: st-HFinite st-approx-self approx-st-eq)

lemma Infinitesimal-add-st-less:
x ∈ HFinite =⇒ y ∈ HFinite =⇒ u ∈ Infinitesimal =⇒ st x < st y =⇒ st x +

u < st y
by (metis Infinitesimal-add-hypreal-of-real-less SReal-iff st-SReal star-of-less)

lemma Infinitesimal-add-st-le-cancel:
x ∈ HFinite =⇒ y ∈ HFinite =⇒ u ∈ Infinitesimal =⇒

st x ≤ st y + u =⇒ st x ≤ st y
by (meson Infinitesimal-add-st-less leD le-less-linear)

lemma st-le: x ∈ HFinite =⇒ y ∈ HFinite =⇒ x ≤ y =⇒ st x ≤ st y
by (metis approx-le-bound approx-sym linear st-SReal st-approx-self st-part-Ex1)

lemma st-zero-le: 0 ≤ x =⇒ x ∈ HFinite =⇒ 0 ≤ st x
by (metis HFinite-0 st-0 st-le)

lemma st-zero-ge: x ≤ 0 =⇒ x ∈ HFinite =⇒ st x ≤ 0
by (metis HFinite-0 st-0 st-le)

lemma st-hrabs: x ∈ HFinite =⇒ |st x| = st |x|
by (simp add: order-class.order .antisym st-zero-ge linorder-not-le st-zero-le abs-if

st-minus linorder-not-less)

6.8 Alternative Definitions using Free Ultrafilter
6.8.1 HFinite
lemma HFinite-FreeUltrafilterNat:

assumes star-n X ∈ HFinite
shows ∃ u. eventually (λn. norm (X n) < u) U

THEORY “NSA” 77

proof −
obtain r where hnorm (star-n X) < hypreal-of-real r

using HFiniteD SReal-iff assms by fastforce
then have ∀ F n in U . norm (X n) < r

by (simp add: hnorm-def star-n-less star-of-def starfun-star-n)
then show ?thesis ..

qed

lemma FreeUltrafilterNat-HFinite:
assumes eventually (λn. norm (X n) < u) U
shows star-n X ∈ HFinite

proof −
have hnorm (star-n X) < hypreal-of-real u

by (simp add: assms hnorm-def star-n-less star-of-def starfun-star-n)
then show ?thesis

by (meson HInfiniteD SReal-hypreal-of-real less-asym not-HFinite-HInfinite)
qed

lemma HFinite-FreeUltrafilterNat-iff :
star-n X ∈ HFinite ←→ (∃ u. eventually (λn. norm (X n) < u) U)
using FreeUltrafilterNat-HFinite HFinite-FreeUltrafilterNat by blast

6.8.2 HInfinite

Exclude this type of sets from free ultrafilter for Infinite numbers!
lemma FreeUltrafilterNat-const-Finite:

eventually (λn. norm (X n) = u) U =⇒ star-n X ∈ HFinite
by (simp add: FreeUltrafilterNat-HFinite [where u = u+1] eventually-mono)

lemma HInfinite-FreeUltrafilterNat:
assumes star-n X ∈ HInfinite shows ∀ F n in U . u < norm (X n)

proof −
have ¬ (∀ F n in U . norm (X n) < u + 1)

using FreeUltrafilterNat-HFinite HFinite-HInfinite-iff assms by auto
then show ?thesis

by (auto simp flip: FreeUltrafilterNat.eventually-not-iff elim: eventually-mono)
qed

lemma FreeUltrafilterNat-HInfinite:
assumes

∧
u. eventually (λn. u < norm (X n)) U

shows star-n X ∈ HInfinite
proof −

{ fix u
assume ∀ F n in U . norm (X n) < u ∀ F n in U . u < norm (X n)
then have ∀ F x in U . False

by eventually-elim auto
then have False

by (simp add: eventually-False FreeUltrafilterNat.proper) }
then show ?thesis

THEORY “NSA” 78

using HFinite-FreeUltrafilterNat HInfinite-HFinite-iff assms by blast
qed

lemma HInfinite-FreeUltrafilterNat-iff :
star-n X ∈ HInfinite ←→ (∀ u. eventually (λn. u < norm (X n)) U)
using HInfinite-FreeUltrafilterNat FreeUltrafilterNat-HInfinite by blast

6.8.3 Infinitesimal
lemma ball-SReal-eq: (∀ x::hypreal ∈ Reals. P x) ←→ (∀ x::real. P (star-of x))

by (auto simp: SReal-def)

lemma Infinitesimal-FreeUltrafilterNat-iff :
(star-n X ∈ Infinitesimal) = (∀ u>0 . eventually (λn. norm (X n) < u) U) (is

?lhs = ?rhs)
proof −

have ?lhs ←→ (∀ r>0 . hnorm (star-n X) < hypreal-of-real r)
by (simp add: Infinitesimal-def ball-SReal-eq)

also have ... ←→ ?rhs
by (simp add: hnorm-def starfun-star-n star-of-def star-less-def starP2-star-n)

finally show ?thesis .
qed

Infinitesimals as smaller than 1/n for all n::nat (> 0).
lemma lemma-Infinitesimal: (∀ r . 0 < r −→ x < r) ←→ (∀n. x < inverse (real
(Suc n)))
by (meson inverse-positive-iff-positive less-trans of-nat-0-less-iff reals-Archimedean

zero-less-Suc)

lemma lemma-Infinitesimal2 :
(∀ r ∈ Reals. 0 < r −→ x < r) ←→ (∀n. x < inverse(hypreal-of-nat (Suc n)))

(is - = ?rhs)
proof (intro iffI strip)

assume R: ?rhs
fix r ::hypreal
assume r ∈ � 0 < r
then obtain n y where inverse (real (Suc n)) < y and r : r = hypreal-of-real y

by (metis SReal-iff reals-Archimedean star-of-0-less)
then have inverse (1 + hypreal-of-nat n) < hypreal-of-real y

by (metis of-nat-Suc star-of-inverse star-of-less star-of-nat-def)
then show x < r

by (metis R r le-less-trans less-imp-le of-nat-Suc)
qed (meson Reals-inverse Reals-of-nat of-nat-0-less-iff positive-imp-inverse-positive
zero-less-Suc)

lemma Infinitesimal-hypreal-of-nat-iff :
Infinitesimal = {x. ∀n. hnorm x < inverse (hypreal-of-nat (Suc n))}

THEORY “NSA” 79

using Infinitesimal-def lemma-Infinitesimal2 by auto

6.9 Proof that ω is an infinite number

It will follow that ε is an infinitesimal number.
lemma Suc-Un-eq: {n. n < Suc m} = {n. n < m} Un {n. n = m}

by (auto simp add: less-Suc-eq)

Prove that any segment is finite and hence cannot belong to U .
lemma finite-real-of-nat-segment: finite {n::nat. real n < real (m::nat)}

by auto

lemma finite-real-of-nat-less-real: finite {n::nat. real n < u}
proof −

obtain m where u < real m
using reals-Archimedean2 by blast

then have {n. real n < u} ⊆ {..<m}
by force

then show ?thesis
using finite-nat-iff-bounded by force

qed

lemma finite-real-of-nat-le-real: finite {n::nat. real n ≤ u}
by (metis infinite-nat-iff-unbounded leD le-nat-floor mem-Collect-eq)

lemma finite-rabs-real-of-nat-le-real: finite {n::nat. |real n| ≤ u}
by (simp add: finite-real-of-nat-le-real)

lemma rabs-real-of-nat-le-real-FreeUltrafilterNat:
¬ eventually (λn. |real n| ≤ u) U
by (blast intro!: FreeUltrafilterNat.finite finite-rabs-real-of-nat-le-real)

lemma FreeUltrafilterNat-nat-gt-real: eventually (λn. u < real n) U
proof −

have {n::nat. ¬ u < real n} = {n. real n ≤ u}
by auto

then show ?thesis
by (auto simp add: FreeUltrafilterNat.finite ′ finite-real-of-nat-le-real)

qed

The complement of {n. |real n| ≤ u} = {n. u < |real n|} is in U by property
of (free) ultrafilters.

ω is a member of HInfinite.
theorem HInfinite-omega [simp]: ω ∈ HInfinite
proof −

have ∀ F n in U . u < norm (1 + real n) for u
using FreeUltrafilterNat-nat-gt-real [of u−1] eventually-mono by fastforce

THEORY “NSA” 80

then show ?thesis
by (simp add: omega-def FreeUltrafilterNat-HInfinite)

qed

Epsilon is a member of Infinitesimal.
lemma Infinitesimal-epsilon [simp]: ε ∈ Infinitesimal

by (auto intro!: HInfinite-inverse-Infinitesimal HInfinite-omega
simp add: epsilon-inverse-omega)

lemma HFinite-epsilon [simp]: ε ∈ HFinite
by (auto intro: Infinitesimal-subset-HFinite [THEN subsetD])

lemma epsilon-approx-zero [simp]: ε ≈ 0
by (simp add: mem-infmal-iff [symmetric])

Needed for proof that we define a hyperreal [<X(n)] ≈ hypreal-of-real a
given that ∀n. |X n − a| < 1/n. Used in proof of NSLIM ⇒ LIM.
lemma real-of-nat-less-inverse-iff : 0 < u =⇒ u < inverse (real(Suc n)) ←→
real(Suc n) < inverse u

using less-imp-inverse-less by force

lemma finite-inverse-real-of-posnat-gt-real: 0 < u =⇒ finite {n. u < inverse (real
(Suc n))}
proof (simp only: real-of-nat-less-inverse-iff)

have {n. 1 + real n < inverse u} = {n. real n < inverse u − 1}
by fastforce

then show finite {n. real (Suc n) < inverse u}
using finite-real-of-nat-less-real [of inverse u − 1]
by auto

qed

lemma finite-inverse-real-of-posnat-ge-real:
assumes 0 < u
shows finite {n. u ≤ inverse (real (Suc n))}

proof −
have ∀na. u ≤ inverse (1 + real na) −→ na ≤ ceiling (inverse u)

by (smt (verit, best) assms ceiling-less-cancel ceiling-of-nat inverse-inverse-eq
inverse-le-iff-le)

then show ?thesis
apply (auto simp add: finite-nat-set-iff-bounded-le)

by (meson assms inverse-positive-iff-positive le-nat-iff less-imp-le zero-less-ceiling)
qed

lemma inverse-real-of-posnat-ge-real-FreeUltrafilterNat:
0 < u =⇒ ¬ eventually (λn. u ≤ inverse(real(Suc n))) U
by (blast intro!: FreeUltrafilterNat.finite finite-inverse-real-of-posnat-ge-real)

lemma FreeUltrafilterNat-inverse-real-of-posnat:
0 < u =⇒ eventually (λn. inverse(real(Suc n)) < u) U

THEORY “NSComplex” 81

by (drule inverse-real-of-posnat-ge-real-FreeUltrafilterNat)
(simp add: FreeUltrafilterNat.eventually-not-iff not-le[symmetric])

Example of an hypersequence (i.e. an extended standard sequence) whose
term with an hypernatural suffix is an infinitesimal i.e. the whn’nth term
of the hypersequence is a member of Infinitesimal
lemma SEQ-Infinitesimal: (∗f ∗ (λn::nat. inverse(real(Suc n)))) whn ∈ Infinites-
imal
by (simp add: hypnat-omega-def starfun-star-n star-n-inverse Infinitesimal-FreeUltrafilterNat-iff

FreeUltrafilterNat-inverse-real-of-posnat del: of-nat-Suc)

Example where we get a hyperreal from a real sequence for which a par-
ticular property holds. The theorem is used in proofs about equivalence
of nonstandard and standard neighbourhoods. Also used for equivalence of
nonstandard ans standard definitions of pointwise limit.

|X(n) − x| < 1/n =⇒ [<X n>] − hypreal-of-real x| ∈ Infinitesimal
lemma real-seq-to-hypreal-Infinitesimal:
∀n. norm (X n − x) < inverse (real (Suc n)) =⇒ star-n X − star-of x ∈

Infinitesimal
unfolding star-n-diff star-of-def Infinitesimal-FreeUltrafilterNat-iff star-n-inverse
by (auto dest!: FreeUltrafilterNat-inverse-real-of-posnat

intro: order-less-trans elim!: eventually-mono)

lemma real-seq-to-hypreal-approx:
∀n. norm (X n − x) < inverse (real (Suc n)) =⇒ star-n X ≈ star-of x
by (metis bex-Infinitesimal-iff real-seq-to-hypreal-Infinitesimal)

lemma real-seq-to-hypreal-approx2 :
∀n. norm (x − X n) < inverse(real(Suc n)) =⇒ star-n X ≈ star-of x
by (metis norm-minus-commute real-seq-to-hypreal-approx)

lemma real-seq-to-hypreal-Infinitesimal2 :
∀n. norm(X n − Y n) < inverse(real(Suc n)) =⇒ star-n X − star-n Y ∈

Infinitesimal
unfolding Infinitesimal-FreeUltrafilterNat-iff star-n-diff
by (auto dest!: FreeUltrafilterNat-inverse-real-of-posnat

intro: order-less-trans elim!: eventually-mono)

end

7 Nonstandard Complex Numbers
theory NSComplex

imports NSA
begin

type-synonym hcomplex = complex star

THEORY “NSComplex” 82

abbreviation hcomplex-of-complex :: complex ⇒ complex star
where hcomplex-of-complex ≡ star-of

abbreviation hcmod :: complex star ⇒ real star
where hcmod ≡ hnorm

7.0.1 Real and Imaginary parts
definition hRe :: hcomplex ⇒ hypreal

where hRe = ∗f ∗ Re

definition hIm :: hcomplex ⇒ hypreal
where hIm = ∗f ∗ Im

7.0.2 Imaginary unit
definition iii :: hcomplex

where iii = star-of i

7.0.3 Complex conjugate
definition hcnj :: hcomplex ⇒ hcomplex

where hcnj = ∗f ∗ cnj

7.0.4 Argand
definition hsgn :: hcomplex ⇒ hcomplex

where hsgn = ∗f ∗ sgn

definition harg :: hcomplex ⇒ hypreal
where harg = ∗f ∗ Arg

definition — abbreviation for cos a + i sin a
hcis :: hypreal ⇒ hcomplex
where hcis = ∗f ∗ cis

7.0.5 Injection from hyperreals
abbreviation hcomplex-of-hypreal :: hypreal ⇒ hcomplex

where hcomplex-of-hypreal ≡ of-hypreal

definition — abbreviation for r ∗ (cos a + i sin a)
hrcis :: hypreal ⇒ hypreal ⇒ hcomplex
where hrcis = ∗f2∗ rcis

7.0.6 e ^ (x + iy)
definition hExp :: hcomplex ⇒ hcomplex

where hExp = ∗f ∗ exp

THEORY “NSComplex” 83

definition HComplex :: hypreal ⇒ hypreal ⇒ hcomplex
where HComplex = ∗f2∗ Complex

lemmas hcomplex-defs [transfer-unfold] =
hRe-def hIm-def iii-def hcnj-def hsgn-def harg-def hcis-def
hrcis-def hExp-def HComplex-def

lemma Standard-hRe [simp]: x ∈ Standard =⇒ hRe x ∈ Standard
by (simp add: hcomplex-defs)

lemma Standard-hIm [simp]: x ∈ Standard =⇒ hIm x ∈ Standard
by (simp add: hcomplex-defs)

lemma Standard-iii [simp]: iii ∈ Standard
by (simp add: hcomplex-defs)

lemma Standard-hcnj [simp]: x ∈ Standard =⇒ hcnj x ∈ Standard
by (simp add: hcomplex-defs)

lemma Standard-hsgn [simp]: x ∈ Standard =⇒ hsgn x ∈ Standard
by (simp add: hcomplex-defs)

lemma Standard-harg [simp]: x ∈ Standard =⇒ harg x ∈ Standard
by (simp add: hcomplex-defs)

lemma Standard-hcis [simp]: r ∈ Standard =⇒ hcis r ∈ Standard
by (simp add: hcomplex-defs)

lemma Standard-hExp [simp]: x ∈ Standard =⇒ hExp x ∈ Standard
by (simp add: hcomplex-defs)

lemma Standard-hrcis [simp]: r ∈ Standard =⇒ s ∈ Standard =⇒ hrcis r s ∈
Standard

by (simp add: hcomplex-defs)

lemma Standard-HComplex [simp]: r ∈ Standard =⇒ s ∈ Standard =⇒ HComplex
r s ∈ Standard

by (simp add: hcomplex-defs)

lemma hcmod-def : hcmod = ∗f ∗ cmod
by (rule hnorm-def)

7.1 Properties of Nonstandard Real and Imaginary Parts
lemma hcomplex-hRe-hIm-cancel-iff :

∧
w z. w = z ←→ hRe w = hRe z ∧ hIm w

= hIm z
by transfer (rule complex-eq-iff)

THEORY “NSComplex” 84

lemma hcomplex-equality [intro?]:
∧

z w. hRe z = hRe w =⇒ hIm z = hIm w =⇒
z = w

by transfer (rule complex-eqI)

lemma hcomplex-hRe-zero [simp]: hRe 0 = 0
by transfer simp

lemma hcomplex-hIm-zero [simp]: hIm 0 = 0
by transfer simp

lemma hcomplex-hRe-one [simp]: hRe 1 = 1
by transfer simp

lemma hcomplex-hIm-one [simp]: hIm 1 = 0
by transfer simp

7.2 Addition for Nonstandard Complex Numbers
lemma hRe-add:

∧
x y. hRe (x + y) = hRe x + hRe y

by transfer simp

lemma hIm-add:
∧

x y. hIm (x + y) = hIm x + hIm y
by transfer simp

7.3 More Minus Laws
lemma hRe-minus:

∧
z. hRe (− z) = − hRe z

by transfer (rule uminus-complex.sel)

lemma hIm-minus:
∧

z. hIm (− z) = − hIm z
by transfer (rule uminus-complex.sel)

lemma hcomplex-add-minus-eq-minus: x + y = 0 =⇒ x = − y
for x y :: hcomplex
apply (drule minus-unique)
apply (simp add: minus-equation-iff [of x y])
done

lemma hcomplex-i-mult-eq [simp]: iii ∗ iii = − 1
by transfer (rule i-squared)

lemma hcomplex-i-mult-left [simp]:
∧

z. iii ∗ (iii ∗ z) = − z
by transfer (rule complex-i-mult-minus)

lemma hcomplex-i-not-zero [simp]: iii 6= 0
by transfer (rule complex-i-not-zero)

7.4 More Multiplication Laws
lemma hcomplex-mult-minus-one: − 1 ∗ z = − z

THEORY “NSComplex” 85

for z :: hcomplex
by simp

lemma hcomplex-mult-minus-one-right: z ∗ − 1 = − z
for z :: hcomplex
by simp

lemma hcomplex-mult-left-cancel: c 6= 0 =⇒ c ∗ a = c ∗ b ←→ a = b
for a b c :: hcomplex
by simp

lemma hcomplex-mult-right-cancel: c 6= 0 =⇒ a ∗ c = b ∗ c ←→ a = b
for a b c :: hcomplex
by simp

7.5 Subtraction and Division
lemma hcomplex-diff-eq-eq [simp]: x − y = z ←→ x = z + y

for x y z :: hcomplex
by (rule diff-eq-eq)

7.6 Embedding Properties for hcomplex-of-hypreal Map
lemma hRe-hcomplex-of-hypreal [simp]:

∧
z. hRe (hcomplex-of-hypreal z) = z

by transfer (rule Re-complex-of-real)

lemma hIm-hcomplex-of-hypreal [simp]:
∧

z. hIm (hcomplex-of-hypreal z) = 0
by transfer (rule Im-complex-of-real)

lemma hcomplex-of-epsilon-not-zero [simp]: hcomplex-of-hypreal ε 6= 0
by (simp add: epsilon-not-zero)

7.7 HComplex theorems
lemma hRe-HComplex [simp]:

∧
x y. hRe (HComplex x y) = x

by transfer simp

lemma hIm-HComplex [simp]:
∧

x y. hIm (HComplex x y) = y
by transfer simp

lemma hcomplex-surj [simp]:
∧

z. HComplex (hRe z) (hIm z) = z
by transfer (rule complex-surj)

lemma hcomplex-induct [case-names rect]:
(
∧

x y. P (HComplex x y)) =⇒ P z
by (rule hcomplex-surj [THEN subst]) blast

THEORY “NSComplex” 86

7.8 Modulus (Absolute Value) of Nonstandard Complex Num-
ber

lemma hcomplex-of-hypreal-abs:
hcomplex-of-hypreal |x| = hcomplex-of-hypreal (hcmod (hcomplex-of-hypreal x))
by simp

lemma HComplex-inject [simp]:
∧

x y x ′ y ′. HComplex x y = HComplex x ′ y ′←→
x = x ′ ∧ y = y ′

by transfer (rule complex.inject)

lemma HComplex-add [simp]:∧
x1 y1 x2 y2 . HComplex x1 y1 + HComplex x2 y2 = HComplex (x1 + x2) (y1

+ y2)
by transfer (rule complex-add)

lemma HComplex-minus [simp]:
∧

x y. − HComplex x y = HComplex (− x) (−
y)

by transfer (rule complex-minus)

lemma HComplex-diff [simp]:∧
x1 y1 x2 y2 . HComplex x1 y1 − HComplex x2 y2 = HComplex (x1 − x2) (y1

− y2)
by transfer (rule complex-diff)

lemma HComplex-mult [simp]:∧
x1 y1 x2 y2 . HComplex x1 y1 ∗ HComplex x2 y2 = HComplex (x1∗x2 − y1∗y2)

(x1∗y2 + y1∗x2)
by transfer (rule complex-mult)

HComplex-inverse is proved below.
lemma hcomplex-of-hypreal-eq:

∧
r . hcomplex-of-hypreal r = HComplex r 0

by transfer (rule complex-of-real-def)

lemma HComplex-add-hcomplex-of-hypreal [simp]:∧
x y r . HComplex x y + hcomplex-of-hypreal r = HComplex (x + r) y

by transfer (rule Complex-add-complex-of-real)

lemma hcomplex-of-hypreal-add-HComplex [simp]:∧
r x y. hcomplex-of-hypreal r + HComplex x y = HComplex (r + x) y

by transfer (rule complex-of-real-add-Complex)

lemma HComplex-mult-hcomplex-of-hypreal:∧
x y r . HComplex x y ∗ hcomplex-of-hypreal r = HComplex (x ∗ r) (y ∗ r)

by transfer (rule Complex-mult-complex-of-real)

lemma hcomplex-of-hypreal-mult-HComplex:∧
r x y. hcomplex-of-hypreal r ∗ HComplex x y = HComplex (r ∗ x) (r ∗ y)

by transfer (rule complex-of-real-mult-Complex)

THEORY “NSComplex” 87

lemma i-hcomplex-of-hypreal [simp]:
∧

r . iii ∗ hcomplex-of-hypreal r = HComplex
0 r

by transfer (rule i-complex-of-real)

lemma hcomplex-of-hypreal-i [simp]:
∧

r . hcomplex-of-hypreal r ∗ iii = HComplex
0 r

by transfer (rule complex-of-real-i)

7.9 Conjugation
lemma hcomplex-hcnj-cancel-iff [iff]:

∧
x y. hcnj x = hcnj y ←→ x = y

by transfer (rule complex-cnj-cancel-iff)

lemma hcomplex-hcnj-hcnj [simp]:
∧

z. hcnj (hcnj z) = z
by transfer (rule complex-cnj-cnj)

lemma hcomplex-hcnj-hcomplex-of-hypreal [simp]:∧
x. hcnj (hcomplex-of-hypreal x) = hcomplex-of-hypreal x

by transfer (rule complex-cnj-complex-of-real)

lemma hcomplex-hmod-hcnj [simp]:
∧

z. hcmod (hcnj z) = hcmod z
by transfer (rule complex-mod-cnj)

lemma hcomplex-hcnj-minus:
∧

z. hcnj (− z) = − hcnj z
by transfer (rule complex-cnj-minus)

lemma hcomplex-hcnj-inverse:
∧

z. hcnj (inverse z) = inverse (hcnj z)
by transfer (rule complex-cnj-inverse)

lemma hcomplex-hcnj-add:
∧

w z . hcnj (w + z) = hcnj w + hcnj z
by transfer (rule complex-cnj-add)

lemma hcomplex-hcnj-diff :
∧

w z . hcnj (w − z) = hcnj w − hcnj z
by transfer (rule complex-cnj-diff)

lemma hcomplex-hcnj-mult:
∧

w z. hcnj (w ∗ z) = hcnj w ∗ hcnj z
by transfer (rule complex-cnj-mult)

lemma hcomplex-hcnj-divide:
∧

w z . hcnj (w / z) = hcnj w / hcnj z
by transfer (rule complex-cnj-divide)

lemma hcnj-one [simp]: hcnj 1 = 1
by transfer (rule complex-cnj-one)

lemma hcomplex-hcnj-zero [simp]: hcnj 0 = 0
by transfer (rule complex-cnj-zero)

lemma hcomplex-hcnj-zero-iff [iff]:
∧

z. hcnj z = 0 ←→ z = 0
by transfer (rule complex-cnj-zero-iff)

THEORY “NSComplex” 88

lemma hcomplex-mult-hcnj:
∧

z. z ∗ hcnj z = hcomplex-of-hypreal ((hRe z)2 +
(hIm z)2)

by transfer (rule complex-mult-cnj)

7.10 More Theorems about the Function hcmod
lemma hcmod-hcomplex-of-hypreal-of-nat [simp]:

hcmod (hcomplex-of-hypreal (hypreal-of-nat n)) = hypreal-of-nat n
by simp

lemma hcmod-hcomplex-of-hypreal-of-hypnat [simp]:
hcmod (hcomplex-of-hypreal(hypreal-of-hypnat n)) = hypreal-of-hypnat n
by simp

lemma hcmod-mult-hcnj:
∧

z. hcmod (z ∗ hcnj z) = (hcmod z)2
by transfer (rule complex-mod-mult-cnj)

lemma hcmod-triangle-ineq2 [simp]:
∧

a b. hcmod (b + a) − hcmod b ≤ hcmod a
by transfer (rule complex-mod-triangle-ineq2)

lemma hcmod-diff-ineq [simp]:
∧

a b. hcmod a − hcmod b ≤ hcmod (a + b)
by transfer (rule norm-diff-ineq)

7.11 Exponentiation
lemma hcomplexpow-0 [simp]: z ^ 0 = 1

for z :: hcomplex
by (rule power-0)

lemma hcomplexpow-Suc [simp]: z ^ (Suc n) = z ∗ (z ^ n)
for z :: hcomplex
by (rule power-Suc)

lemma hcomplexpow-i-squared [simp]: iii2 = −1
by transfer (rule power2-i)

lemma hcomplex-of-hypreal-pow:
∧

x. hcomplex-of-hypreal (x ^ n) = hcomplex-of-hypreal
x ^ n

by transfer (rule of-real-power)

lemma hcomplex-hcnj-pow:
∧

z. hcnj (z ^ n) = hcnj z ^ n
by transfer (rule complex-cnj-power)

lemma hcmod-hcomplexpow:
∧

x. hcmod (x ^ n) = hcmod x ^ n
by transfer (rule norm-power)

lemma hcpow-minus:∧
x n. (− x :: hcomplex) pow n = (if (∗p∗ even) n then (x pow n) else − (x pow

n))

THEORY “NSComplex” 89

by transfer simp

lemma hcpow-mult: (r ∗ s) pow n = (r pow n) ∗ (s pow n)
for r s :: hcomplex
by (fact hyperpow-mult)

lemma hcpow-zero2 [simp]:
∧

n. 0 pow (hSuc n) = (0 :: ′a::semiring-1 star)
by transfer (rule power-0-Suc)

lemma hcpow-not-zero [simp,intro]:
∧

r n. r 6= 0 =⇒ r pow n 6= (0 ::hcomplex)
by (fact hyperpow-not-zero)

lemma hcpow-zero-zero: r pow n = 0 =⇒ r = 0
for r :: hcomplex
by (blast intro: ccontr dest: hcpow-not-zero)

7.12 The Function hsgn
lemma hsgn-zero [simp]: hsgn 0 = 0

by transfer (rule sgn-zero)

lemma hsgn-one [simp]: hsgn 1 = 1
by transfer (rule sgn-one)

lemma hsgn-minus:
∧

z. hsgn (− z) = − hsgn z
by transfer (rule sgn-minus)

lemma hsgn-eq:
∧

z. hsgn z = z / hcomplex-of-hypreal (hcmod z)
by transfer (rule sgn-eq)

lemma hcmod-i:
∧

x y. hcmod (HComplex x y) = (∗f ∗ sqrt) (x2 + y2)
by transfer (rule complex-norm)

lemma hcomplex-eq-cancel-iff1 [simp]:
hcomplex-of-hypreal xa = HComplex x y ←→ xa = x ∧ y = 0
by (simp add: hcomplex-of-hypreal-eq)

lemma hcomplex-eq-cancel-iff2 [simp]:
HComplex x y = hcomplex-of-hypreal xa ←→ x = xa ∧ y = 0
by (simp add: hcomplex-of-hypreal-eq)

lemma HComplex-eq-0 [simp]:
∧

x y. HComplex x y = 0 ←→ x = 0 ∧ y = 0
by transfer (rule Complex-eq-0)

lemma HComplex-eq-1 [simp]:
∧

x y. HComplex x y = 1 ←→ x = 1 ∧ y = 0
by transfer (rule Complex-eq-1)

lemma i-eq-HComplex-0-1 : iii = HComplex 0 1
by transfer (simp add: complex-eq-iff)

THEORY “NSComplex” 90

lemma HComplex-eq-i [simp]:
∧

x y. HComplex x y = iii ←→ x = 0 ∧ y = 1
by transfer (rule Complex-eq-i)

lemma hRe-hsgn [simp]:
∧

z. hRe (hsgn z) = hRe z / hcmod z
by transfer (rule Re-sgn)

lemma hIm-hsgn [simp]:
∧

z. hIm (hsgn z) = hIm z / hcmod z
by transfer (rule Im-sgn)

lemma HComplex-inverse:
∧

x y. inverse (HComplex x y) = HComplex (x / (x2

+ y2)) (− y / (x2 + y2))
by transfer (rule complex-inverse)

lemma hRe-mult-i-eq[simp]:
∧

y. hRe (iii ∗ hcomplex-of-hypreal y) = 0
by transfer simp

lemma hIm-mult-i-eq [simp]:
∧

y. hIm (iii ∗ hcomplex-of-hypreal y) = y
by transfer simp

lemma hcmod-mult-i [simp]:
∧

y. hcmod (iii ∗ hcomplex-of-hypreal y) = |y|
by transfer (simp add: norm-complex-def)

lemma hcmod-mult-i2 [simp]:
∧

y. hcmod (hcomplex-of-hypreal y ∗ iii) = |y|
by transfer (simp add: norm-complex-def)

7.12.1 harg
lemma cos-harg-i-mult-zero [simp]:

∧
y. y 6= 0 =⇒ (∗f ∗ cos) (harg (HComplex 0

y)) = 0
by transfer (simp add: Complex-eq)

7.13 Polar Form for Nonstandard Complex Numbers
lemma complex-split-polar2 : ∀n. ∃ r a. (z n) = complex-of-real r ∗ Complex (cos
a) (sin a)

unfolding Complex-eq by (auto intro: complex-split-polar)

lemma hcomplex-split-polar :∧
z. ∃ r a. z = hcomplex-of-hypreal r ∗ (HComplex ((∗f ∗ cos) a) ((∗f ∗ sin) a))

by transfer (simp add: Complex-eq complex-split-polar)

lemma hcis-eq:∧
a. hcis a = hcomplex-of-hypreal ((∗f ∗ cos) a) + iii ∗ hcomplex-of-hypreal ((

∗f ∗ sin) a)
by transfer (simp add: complex-eq-iff)

lemma hrcis-Ex:
∧

z. ∃ r a. z = hrcis r a
by transfer (rule rcis-Ex)

THEORY “NSComplex” 91

lemma hRe-hcomplex-polar [simp]:∧
r a. hRe (hcomplex-of-hypreal r ∗ HComplex ((∗f ∗ cos) a) ((∗f ∗ sin) a)) = r

∗ (∗f ∗ cos) a
by transfer simp

lemma hRe-hrcis [simp]:
∧

r a. hRe (hrcis r a) = r ∗ (∗f ∗ cos) a
by transfer (rule Re-rcis)

lemma hIm-hcomplex-polar [simp]:∧
r a. hIm (hcomplex-of-hypreal r ∗ HComplex ((∗f ∗ cos) a) ((∗f ∗ sin) a)) = r

∗ (∗f ∗ sin) a
by transfer simp

lemma hIm-hrcis [simp]:
∧

r a. hIm (hrcis r a) = r ∗ (∗f ∗ sin) a
by transfer (rule Im-rcis)

lemma hcmod-unit-one [simp]:
∧

a. hcmod (HComplex ((∗f ∗ cos) a) ((∗f ∗ sin)
a)) = 1

by transfer (simp add: cmod-unit-one)

lemma hcmod-complex-polar [simp]:∧
r a. hcmod (hcomplex-of-hypreal r ∗ HComplex ((∗f ∗ cos) a) ((∗f ∗ sin) a))

= |r |
by transfer (simp add: Complex-eq cmod-complex-polar)

lemma hcmod-hrcis [simp]:
∧

r a. hcmod(hrcis r a) = |r |
by transfer (rule complex-mod-rcis)

(r1 ∗ hrcis a) ∗ (r2 ∗ hrcis b) = r1 ∗ r2 ∗ hrcis (a + b)
lemma hcis-hrcis-eq:

∧
a. hcis a = hrcis 1 a

by transfer (rule cis-rcis-eq)
declare hcis-hrcis-eq [symmetric, simp]

lemma hrcis-mult:
∧

a b r1 r2 . hrcis r1 a ∗ hrcis r2 b = hrcis (r1 ∗ r2) (a + b)
by transfer (rule rcis-mult)

lemma hcis-mult:
∧

a b. hcis a ∗ hcis b = hcis (a + b)
by transfer (rule cis-mult)

lemma hcis-zero [simp]: hcis 0 = 1
by transfer (rule cis-zero)

lemma hrcis-zero-mod [simp]:
∧

a. hrcis 0 a = 0
by transfer (rule rcis-zero-mod)

lemma hrcis-zero-arg [simp]:
∧

r . hrcis r 0 = hcomplex-of-hypreal r
by transfer (rule rcis-zero-arg)

lemma hcomplex-i-mult-minus [simp]:
∧

x. iii ∗ (iii ∗ x) = − x

THEORY “NSComplex” 92

by transfer (rule complex-i-mult-minus)

lemma hcomplex-i-mult-minus2 [simp]: iii ∗ iii ∗ x = − x
by simp

lemma hcis-hypreal-of-nat-Suc-mult:∧
a. hcis (hypreal-of-nat (Suc n) ∗ a) = hcis a ∗ hcis (hypreal-of-nat n ∗ a)

by transfer (simp add: distrib-right cis-mult)

lemma NSDeMoivre:
∧

a. (hcis a) ^ n = hcis (hypreal-of-nat n ∗ a)
by transfer (rule DeMoivre)

lemma hcis-hypreal-of-hypnat-Suc-mult:∧
a n. hcis (hypreal-of-hypnat (n + 1) ∗ a) = hcis a ∗ hcis (hypreal-of-hypnat n

∗ a)
by transfer (simp add: distrib-right cis-mult)

lemma NSDeMoivre-ext:
∧

a n. (hcis a) pow n = hcis (hypreal-of-hypnat n ∗ a)
by transfer (rule DeMoivre)

lemma NSDeMoivre2 :
∧

a r . (hrcis r a) ^ n = hrcis (r ^ n) (hypreal-of-nat n ∗ a)
by transfer (rule DeMoivre2)

lemma DeMoivre2-ext:
∧

a r n. (hrcis r a) pow n = hrcis (r pow n) (hypreal-of-hypnat
n ∗ a)

by transfer (rule DeMoivre2)

lemma hcis-inverse [simp]:
∧

a. inverse (hcis a) = hcis (− a)
by transfer (rule cis-inverse)

lemma hrcis-inverse:
∧

a r . inverse (hrcis r a) = hrcis (inverse r) (− a)
by transfer (simp add: rcis-inverse inverse-eq-divide [symmetric])

lemma hRe-hcis [simp]:
∧

a. hRe (hcis a) = (∗f ∗ cos) a
by transfer simp

lemma hIm-hcis [simp]:
∧

a. hIm (hcis a) = (∗f ∗ sin) a
by transfer simp

lemma cos-n-hRe-hcis-pow-n: (∗f ∗ cos) (hypreal-of-nat n ∗ a) = hRe (hcis a ^ n)
by (simp add: NSDeMoivre)

lemma sin-n-hIm-hcis-pow-n: (∗f ∗ sin) (hypreal-of-nat n ∗ a) = hIm (hcis a ^ n)
by (simp add: NSDeMoivre)

lemma cos-n-hRe-hcis-hcpow-n: (∗f ∗ cos) (hypreal-of-hypnat n ∗ a) = hRe (hcis
a pow n)

by (simp add: NSDeMoivre-ext)

THEORY “NSComplex” 93

lemma sin-n-hIm-hcis-hcpow-n: (∗f ∗ sin) (hypreal-of-hypnat n ∗ a) = hIm (hcis
a pow n)

by (simp add: NSDeMoivre-ext)

lemma hExp-add:
∧

a b. hExp (a + b) = hExp a ∗ hExp b
by transfer (rule exp-add)

7.14 hcomplex-of-complex: the Injection from type complex to
to hcomplex

lemma hcomplex-of-complex-i: iii = hcomplex-of-complex i
by (rule iii-def)

lemma hRe-hcomplex-of-complex: hRe (hcomplex-of-complex z) = hypreal-of-real
(Re z)

by transfer (rule refl)

lemma hIm-hcomplex-of-complex: hIm (hcomplex-of-complex z) = hypreal-of-real
(Im z)

by transfer (rule refl)

lemma hcmod-hcomplex-of-complex: hcmod (hcomplex-of-complex x) = hypreal-of-real
(cmod x)

by transfer (rule refl)

7.15 Numerals and Arithmetic
lemma hcomplex-of-hypreal-eq-hcomplex-of-complex:

hcomplex-of-hypreal (hypreal-of-real x) = hcomplex-of-complex (complex-of-real x)
by transfer (rule refl)

lemma hcomplex-hypreal-numeral:
hcomplex-of-complex (numeral w) = hcomplex-of-hypreal(numeral w)
by transfer (rule of-real-numeral [symmetric])

lemma hcomplex-hypreal-neg-numeral:
hcomplex-of-complex (− numeral w) = hcomplex-of-hypreal(− numeral w)
by transfer (rule of-real-neg-numeral [symmetric])

lemma hcomplex-numeral-hcnj [simp]: hcnj (numeral v :: hcomplex) = numeral v
by transfer (rule complex-cnj-numeral)

lemma hcomplex-numeral-hcmod [simp]: hcmod (numeral v :: hcomplex) = (numeral
v :: hypreal)

by transfer (rule norm-numeral)

lemma hcomplex-neg-numeral-hcmod [simp]: hcmod (− numeral v :: hcomplex) =
(numeral v :: hypreal)

by transfer (rule norm-neg-numeral)

THEORY “Star” 94

lemma hcomplex-numeral-hRe [simp]: hRe (numeral v :: hcomplex) = numeral v
by transfer (rule complex-Re-numeral)

lemma hcomplex-numeral-hIm [simp]: hIm (numeral v :: hcomplex) = 0
by transfer (rule complex-Im-numeral)

end

8 Star-Transforms in Non-Standard Analysis
theory Star

imports NSA
begin

definition — internal sets
starset-n :: (nat ⇒ ′a set) ⇒ ′a star set
(‹(‹open-block notation=‹prefix starset-n››∗sn∗ -)› [80] 80)

where ∗sn∗ As = Iset (star-n As)

definition InternalSets :: ′a star set set
where InternalSets = {X . ∃As. X = ∗sn∗ As}

definition — nonstandard extension of function
is-starext :: (′a star ⇒ ′a star) ⇒ (′a ⇒ ′a) ⇒ bool
where is-starext F f ←→
(∀ x y. ∃X ∈ Rep-star x. ∃Y ∈ Rep-star y. y = F x ←→ eventually (λn. Y n

= f (X n)) U)

definition — internal functions
starfun-n :: (nat ⇒ ′a ⇒ ′b) ⇒ ′a star ⇒ ′b star
(‹(‹open-block notation=‹prefix starfun-n››∗fn∗ -)› [80] 80)

where ∗fn∗ F = Ifun (star-n F)

definition InternalFuns :: (′a star => ′b star) set
where InternalFuns = {X . ∃F . X = ∗fn∗ F}

8.1 Preamble - Pulling ∃ over ∀

This proof does not need AC and was suggested by the referee for the JCM
Paper: let f x be least y such that Q x y.
lemma no-choice: ∀ x. ∃ y. Q x y =⇒ ∃ f :: ′a ⇒ nat. ∀ x. Q x (f x)

by (rule exI [where x = λx. LEAST y. Q x y]) (blast intro: LeastI)

8.2 Properties of the Star-transform Applied to Sets of Reals
lemma STAR-star-of-image-subset: star-of ‘ A ⊆ ∗s∗ A

by auto

THEORY “Star” 95

lemma STAR-hypreal-of-real-Int: ∗s∗ X ∩ � = hypreal-of-real ‘ X
by (auto simp add: SReal-def)

lemma STAR-star-of-Int: ∗s∗ X ∩ Standard = star-of ‘ X
by (auto simp add: Standard-def)

lemma lemma-not-hyprealA: x /∈ hypreal-of-real ‘ A =⇒ ∀ y ∈ A. x 6= hypreal-of-real
y

by auto

lemma lemma-not-starA: x /∈ star-of ‘ A =⇒ ∀ y ∈ A. x 6= star-of y
by auto

lemma STAR-real-seq-to-hypreal: ∀n. (X n) /∈ M =⇒ star-n X /∈ ∗s∗ M
by (simp add: starset-def star-of-def Iset-star-n FreeUltrafilterNat.proper)

lemma STAR-singleton: ∗s∗ {x} = {star-of x}
by simp

lemma STAR-not-mem: x /∈ F =⇒ star-of x /∈ ∗s∗ F
by transfer

lemma STAR-subset-closed: x ∈ ∗s∗ A =⇒ A ⊆ B =⇒ x ∈ ∗s∗ B
by (erule rev-subsetD) simp

Nonstandard extension of a set (defined using a constant sequence) as a
special case of an internal set.
lemma starset-n-starset: ∀n. As n = A =⇒ ∗sn∗ As = ∗s∗ A
by (drule fun-eq-iff [THEN iffD2]) (simp add: starset-n-def starset-def star-of-def)

8.3 Theorems about nonstandard extensions of functions

Nonstandard extension of a function (defined using a constant sequence) as
a special case of an internal function.
lemma starfun-n-starfun: F = (λn. f) =⇒ ∗fn∗ F = ∗f ∗ f

by (simp add: starfun-n-def starfun-def star-of-def)

Prove that abs for hypreal is a nonstandard extension of abs for real w/o use
of congruence property (proved after this for general nonstandard extensions
of real valued functions).
Proof now Uses the ultrafilter tactic!
lemma hrabs-is-starext-rabs: is-starext abs abs

proof −
have ∃ f∈Rep-star (star-n h). ∃ g∈Rep-star (star-n k). (star-n k = |star-n h|) =

(∀ F n in U . (g n:: ′a) = |f n|)
for x y :: ′a star and h k

THEORY “Star” 96

by (metis (full-types) Rep-star-star-n star-n-abs star-n-eq-iff)
then show ?thesis

unfolding is-starext-def by (metis star-cases)
qed

Nonstandard extension of functions.
lemma starfun: (∗f ∗ f) (star-n X) = star-n (λn. f (X n))

by (rule starfun-star-n)

lemma starfun-if-eq:
∧

w. w 6= star-of x =⇒ (∗f ∗ (λz. if z = x then a else g z))
w = (∗f ∗ g) w

by transfer simp

Multiplication: (∗f) x (∗g) = ∗(f x g)
lemma starfun-mult:

∧
x. (∗f ∗ f) x ∗ (∗f ∗ g) x = (∗f ∗ (λx. f x ∗ g x)) x

by transfer (rule refl)
declare starfun-mult [symmetric, simp]

Addition: (∗f) + (∗g) = ∗(f + g)
lemma starfun-add:

∧
x. (∗f ∗ f) x + (∗f ∗ g) x = (∗f ∗ (λx. f x + g x)) x

by transfer (rule refl)
declare starfun-add [symmetric, simp]

Subtraction: (∗f) + −(∗g) = ∗(f + −g)
lemma starfun-minus:

∧
x. − (∗f ∗ f) x = (∗f ∗ (λx. − f x)) x

by transfer (rule refl)
declare starfun-minus [symmetric, simp]

lemma starfun-add-minus:
∧

x. (∗f ∗ f) x + −(∗f ∗ g) x = (∗f ∗ (λx. f x + −g
x)) x

by transfer (rule refl)
declare starfun-add-minus [symmetric, simp]

lemma starfun-diff :
∧

x. (∗f ∗ f) x − (∗f ∗ g) x = (∗f ∗ (λx. f x − g x)) x
by transfer (rule refl)

declare starfun-diff [symmetric, simp]

Composition: (∗f) ◦ (∗g) = ∗(f ◦ g)
lemma starfun-o2 : (λx. (∗f ∗ f) ((∗f ∗ g) x)) = ∗f ∗ (λx. f (g x))

by transfer (rule refl)

lemma starfun-o: (∗f ∗ f) ◦ (∗f ∗ g) = (∗f ∗ (f ◦ g))
by (transfer o-def) (rule refl)

NS extension of constant function.
lemma starfun-const-fun [simp]:

∧
x. (∗f ∗ (λx. k)) x = star-of k

by transfer (rule refl)

THEORY “Star” 97

The NS extension of the identity function.
lemma starfun-Id [simp]:

∧
x. (∗f ∗ (λx. x)) x = x

by transfer (rule refl)

The Star-function is a (nonstandard) extension of the function.
lemma is-starext-starfun: is-starext (∗f ∗ f) f
proof −

have ∃X∈Rep-star x. ∃Y∈Rep-star y. (y = (∗f ∗ f) x) = (∀ F n in U . Y n = f
(X n))

for x y
by (metis (mono-tags) Rep-star-star-n star-cases star-n-eq-iff starfun-star-n)

then show ?thesis
by (auto simp: is-starext-def)

qed

Any nonstandard extension is in fact the Star-function.
lemma is-starfun-starext:

assumes is-starext F f
shows F = ∗f ∗ f
proof −
have F x = (∗f ∗ f) x

if ∀ x y. ∃X∈Rep-star x. ∃Y∈Rep-star y. (y = F x) = (∀ F n in U . Y n = f
(X n)) for x

by (metis that mem-Rep-star-iff star-n-eq-iff starfun-star-n)
with assms show ?thesis

by (force simp add: is-starext-def)
qed

lemma is-starext-starfun-iff : is-starext F f ←→ F = ∗f ∗ f
by (blast intro: is-starfun-starext is-starext-starfun)

Extended function has same solution as its standard version for real argu-
ments. i.e they are the same for all real arguments.
lemma starfun-eq: (∗f ∗ f) (star-of a) = star-of (f a)

by (rule starfun-star-of)

lemma starfun-approx: (∗f ∗ f) (star-of a) ≈ star-of (f a)
by simp

Useful for NS definition of derivatives.
lemma starfun-lambda-cancel:

∧
x ′. (∗f ∗ (λh. f (x + h))) x ′ = (∗f ∗ f) (star-of

x + x ′)
by transfer (rule refl)

lemma starfun-lambda-cancel2 : (∗f ∗ (λh. f (g (x + h)))) x ′ = (∗f ∗ (f ◦ g))
(star-of x + x ′)

unfolding o-def by (rule starfun-lambda-cancel)

THEORY “Star” 98

lemma starfun-mult-HFinite-approx:
(∗f ∗ f) x ≈ l =⇒ (∗f ∗ g) x ≈ m =⇒ l ∈ HFinite =⇒ m ∈ HFinite =⇒
(∗f ∗ (λx. f x ∗ g x)) x ≈ l ∗ m

for l m :: ′a::real-normed-algebra star
using approx-mult-HFinite by auto

lemma starfun-add-approx: (∗f ∗ f) x ≈ l =⇒ (∗f ∗ g) x ≈ m =⇒ (∗f ∗ (%x. f x
+ g x)) x ≈ l + m

by (auto intro: approx-add)

Examples: hrabs is nonstandard extension of rabs, inverse is nonstandard
extension of inverse.

Can be proved easily using theorem starfun and properties of ultrafilter as
for inverse below we use the theorem we proved above instead.
lemma starfun-rabs-hrabs: ∗f ∗ abs = abs

by (simp only: star-abs-def)

lemma starfun-inverse-inverse [simp]: (∗f ∗ inverse) x = inverse x
by (simp only: star-inverse-def)

lemma starfun-inverse:
∧

x. inverse ((∗f ∗ f) x) = (∗f ∗ (λx. inverse (f x))) x
by transfer (rule refl)

declare starfun-inverse [symmetric, simp]

lemma starfun-divide:
∧

x. (∗f ∗ f) x / (∗f ∗ g) x = (∗f ∗ (λx. f x / g x)) x
by transfer (rule refl)

declare starfun-divide [symmetric, simp]

lemma starfun-inverse2 :
∧

x. inverse ((∗f ∗ f) x) = (∗f ∗ (λx. inverse (f x))) x
by transfer (rule refl)

General lemma/theorem needed for proofs in elementary topology of the
reals.
lemma starfun-mem-starset:

∧
x. (∗f ∗ f) x ∈ ∗s∗ A =⇒ x ∈ ∗s∗ {x. f x ∈ A}

by transfer simp

Alternative definition for hrabs with rabs function applied entrywise to
equivalence class representative. This is easily proved using starfun and
ns extension thm.
lemma hypreal-hrabs: |star-n X | = star-n (λn. |X n|)

by (simp only: starfun-rabs-hrabs [symmetric] starfun)

Nonstandard extension of set through nonstandard extension of rabs func-
tion i.e. hrabs. A more general result should be where we replace rabs by
some arbitrary function f and hrabs by its NS extenson. See second NS set
extension below.

THEORY “Star” 99

lemma STAR-rabs-add-minus: ∗s∗ {x. |x + − y| < r} = {x. |x + −star-of y| <
star-of r}

by transfer (rule refl)

lemma STAR-starfun-rabs-add-minus:
∗s∗ {x. |f x + − y| < r} = {x. |(∗f ∗ f) x + −star-of y| < star-of r}
by transfer (rule refl)

Another characterization of Infinitesimal and one of ≈ relation. In this
theory since hypreal-hrabs proved here. Maybe move both theorems??
lemma Infinitesimal-FreeUltrafilterNat-iff2 :

star-n X ∈ Infinitesimal ←→ (∀m. eventually (λn. norm (X n) < inverse (real
(Suc m))) U)

by (simp add: Infinitesimal-hypreal-of-nat-iff star-of-def hnorm-def
star-of-nat-def starfun-star-n star-n-inverse star-n-less)

lemma HNatInfinite-inverse-Infinitesimal [simp]:
assumes n ∈ HNatInfinite
shows inverse (hypreal-of-hypnat n) ∈ Infinitesimal

proof (cases n)
case (star-n X)
then have ∗:

∧
k. ∀ F n in U . k < X n

using HNatInfinite-FreeUltrafilterNat assms by blast
have ∀ F n in U . inverse (real (X n)) < inverse (1 + real m) for m

using ∗ [of Suc m] by (auto elim!: eventually-mono)
then show ?thesis

using star-n by (auto simp: of-hypnat-def starfun-star-n star-n-inverse In-
finitesimal-FreeUltrafilterNat-iff2)
qed

lemma approx-FreeUltrafilterNat-iff :
star-n X ≈ star-n Y ←→ (∀ r>0 . eventually (λn. norm (X n − Y n) < r) U)
(is ?lhs = ?rhs)

proof −
have ?lhs = (star-n X − star-n Y ≈ 0)

using approx-minus-iff by blast
also have ... = ?rhs
by (metis (full-types) Infinitesimal-FreeUltrafilterNat-iff mem-infmal-iff star-n-diff)

finally show ?thesis .
qed

lemma approx-FreeUltrafilterNat-iff2 :
star-n X ≈ star-n Y ←→ (∀m. eventually (λn. norm (X n − Y n) < inverse

(real (Suc m))) U)
(is ?lhs = ?rhs)

proof −
have ?lhs = (star-n X − star-n Y ≈ 0)

using approx-minus-iff by blast
also have ... = ?rhs

THEORY “NatStar” 100

by (metis (full-types) Infinitesimal-FreeUltrafilterNat-iff2 mem-infmal-iff star-n-diff)
finally show ?thesis .

qed

lemma inj-starfun: inj starfun
proof (rule inj-onI)

show ϕ = ψ if eq: ∗f ∗ ϕ = ∗f ∗ ψ for ϕ ψ :: ′a ⇒ ′b
proof (rule ext, rule ccontr)

show False
if ϕ x 6= ψ x for x
by (metis eq that star-of-inject starfun-eq)

qed
qed

end

9 Star-transforms for the Hypernaturals
theory NatStar

imports Star
begin

lemma star-n-eq-starfun-whn: star-n X = (∗f ∗ X) whn
by (simp add: hypnat-omega-def starfun-def star-of-def Ifun-star-n)

lemma starset-n-Un: ∗sn∗ (λn. (A n) ∪ (B n)) = ∗sn∗ A ∪ ∗sn∗ B
proof −

have
∧

N . Iset ((∗f ∗ (λn. {x. x ∈ A n ∨ x ∈ B n})) N) =
{x. x ∈ Iset ((∗f ∗ A) N) ∨ x ∈ Iset ((∗f ∗ B) N)}
by transfer simp

then show ?thesis
by (simp add: starset-n-def star-n-eq-starfun-whn Un-def)

qed

lemma InternalSets-Un: X ∈ InternalSets =⇒ Y ∈ InternalSets =⇒ X ∪ Y ∈
InternalSets

by (auto simp add: InternalSets-def starset-n-Un [symmetric])

lemma starset-n-Int: ∗sn∗ (λn. A n ∩ B n) = ∗sn∗ A ∩ ∗sn∗ B
proof −

have
∧

N . Iset ((∗f ∗ (λn. {x. x ∈ A n ∧ x ∈ B n})) N) =
{x. x ∈ Iset ((∗f ∗ A) N) ∧ x ∈ Iset ((∗f ∗ B) N)}
by transfer simp

then show ?thesis
by (simp add: starset-n-def star-n-eq-starfun-whn Int-def)

qed

lemma InternalSets-Int: X ∈ InternalSets =⇒ Y ∈ InternalSets =⇒ X ∩ Y ∈
InternalSets

THEORY “NatStar” 101

by (auto simp add: InternalSets-def starset-n-Int [symmetric])

lemma starset-n-Compl: ∗sn∗ ((λn. − A n)) = − (∗sn∗ A)
proof −

have
∧

N . Iset ((∗f ∗ (λn. {x. x /∈ A n})) N) =
{x. x /∈ Iset ((∗f ∗ A) N)}
by transfer simp

then show ?thesis
by (simp add: starset-n-def star-n-eq-starfun-whn Compl-eq)

qed

lemma InternalSets-Compl: X ∈ InternalSets =⇒ − X ∈ InternalSets
by (auto simp add: InternalSets-def starset-n-Compl [symmetric])

lemma starset-n-diff : ∗sn∗ (λn. (A n) − (B n)) = ∗sn∗ A − ∗sn∗ B
proof −

have
∧

N . Iset ((∗f ∗ (λn. {x. x ∈ A n ∧ x /∈ B n})) N) =
{x. x ∈ Iset ((∗f ∗ A) N) ∧ x /∈ Iset ((∗f ∗ B) N)}
by transfer simp

then show ?thesis
by (simp add: starset-n-def star-n-eq-starfun-whn set-diff-eq)

qed

lemma InternalSets-diff : X ∈ InternalSets =⇒ Y ∈ InternalSets =⇒ X − Y ∈
InternalSets

by (auto simp add: InternalSets-def starset-n-diff [symmetric])

lemma NatStar-SHNat-subset: Nats ≤ ∗s∗ (UNIV :: nat set)
by simp

lemma NatStar-hypreal-of-real-Int: ∗s∗ X Int Nats = hypnat-of-nat ‘ X
by (auto simp add: SHNat-eq)

lemma starset-starset-n-eq: ∗s∗ X = ∗sn∗ (λn. X)
by (simp add: starset-n-starset)

lemma InternalSets-starset-n [simp]: (∗s∗ X) ∈ InternalSets
by (auto simp add: InternalSets-def starset-starset-n-eq)

lemma InternalSets-UNIV-diff : X ∈ InternalSets =⇒ UNIV − X ∈ InternalSets
by (simp add: InternalSets-Compl diff-eq)

9.1 Nonstandard Extensions of Functions

Example of transfer of a property from reals to hyperreals — used for limit
comparison of sequences.
lemma starfun-le-mono: ∀n. N ≤ n −→ f n ≤ g n =⇒
∀n. hypnat-of-nat N ≤ n −→ (∗f ∗ f) n ≤ (∗f ∗ g) n
by transfer

THEORY “NatStar” 102

And another:
lemma starfun-less-mono:
∀n. N ≤ n −→ f n < g n =⇒ ∀n. hypnat-of-nat N ≤ n −→ (∗f ∗ f) n < (∗f ∗

g) n
by transfer

Nonstandard extension when we increment the argument by one.
lemma starfun-shift-one:

∧
N . (∗f ∗ (λn. f (Suc n))) N = (∗f ∗ f) (N + (1 ::hypnat))

by transfer simp

Nonstandard extension with absolute value.
lemma starfun-abs:

∧
N . (∗f ∗ (λn. |f n|)) N = |(∗f ∗ f) N |

by transfer (rule refl)

The hyperpow function as a nonstandard extension of realpow.
lemma starfun-pow:

∧
N . (∗f ∗ (λn. r ^ n)) N = hypreal-of-real r pow N

by transfer (rule refl)

lemma starfun-pow2 :
∧

N . (∗f ∗ (λn. X n ^ m)) N = (∗f ∗ X) N pow hypnat-of-nat
m

by transfer (rule refl)

lemma starfun-pow3 :
∧

R. (∗f ∗ (λr . r ^ n)) R = R pow hypnat-of-nat n
by transfer (rule refl)

The hypreal-of-hypnat function as a nonstandard extension of real.
lemma starfunNat-real-of-nat: (∗f ∗ real) = hypreal-of-hypnat

by transfer (simp add: fun-eq-iff)

lemma starfun-inverse-real-of-nat-eq:
N ∈ HNatInfinite =⇒ (∗f ∗ (λx::nat. inverse (real x))) N = inverse (hypreal-of-hypnat

N)
by (metis of-hypnat-def starfun-inverse2)

Internal functions – some redundancy with ∗f ∗ now.
lemma starfun-n: (∗fn∗ f) (star-n X) = star-n (λn. f n (X n))

by (simp add: starfun-n-def Ifun-star-n)

Multiplication: (∗fn) x (∗gn) = ∗(fn x gn)
lemma starfun-n-mult: (∗fn∗ f) z ∗ (∗fn∗ g) z = (∗fn∗ (λi x. f i x ∗ g i x)) z

by (cases z) (simp add: starfun-n star-n-mult)

Addition: (∗fn) + (∗gn) = ∗(fn + gn)
lemma starfun-n-add: (∗fn∗ f) z + (∗fn∗ g) z = (∗fn∗ (λi x. f i x + g i x)) z

by (cases z) (simp add: starfun-n star-n-add)

Subtraction: (∗fn) − (∗gn) = ∗(fn + − gn)

THEORY “NatStar” 103

lemma starfun-n-add-minus: (∗fn∗ f) z + −(∗fn∗ g) z = (∗fn∗ (λi x. f i x +
−g i x)) z

by (cases z) (simp add: starfun-n star-n-minus star-n-add)

Composition: (∗fn) ◦ (∗gn) = ∗(fn ◦ gn)
lemma starfun-n-const-fun [simp]: (∗fn∗ (λi x. k)) z = star-of k

by (cases z) (simp add: starfun-n star-of-def)

lemma starfun-n-minus: − (∗fn∗ f) x = (∗fn∗ (λi x. − (f i) x)) x
by (cases x) (simp add: starfun-n star-n-minus)

lemma starfun-n-eq [simp]: (∗fn∗ f) (star-of n) = star-n (λi. f i n)
by (simp add: starfun-n star-of-def)

lemma starfun-eq-iff : ((∗f ∗ f) = (∗f ∗ g)) ←→ f = g
by transfer (rule refl)

lemma starfunNat-inverse-real-of-nat-Infinitesimal [simp]:
N ∈ HNatInfinite =⇒ (∗f ∗ (λx. inverse (real x))) N ∈ Infinitesimal
using starfun-inverse-real-of-nat-eq by auto

9.2 Nonstandard Characterization of Induction
lemma hypnat-induct-obj:∧

n. ((∗p∗ P) (0 ::hypnat) ∧ (∀n. (∗p∗ P) n −→ (∗p∗ P) (n + 1))) −→ (∗p∗
P) n

by transfer (induct-tac n, auto)

lemma hypnat-induct:∧
n. (∗p∗ P) (0 ::hypnat) =⇒ (

∧
n. (∗p∗ P) n =⇒ (∗p∗ P) (n + 1)) =⇒ (∗p∗

P) n
by transfer (induct-tac n, auto)

lemma starP2-eq-iff : (∗p2∗ (=)) = (=)
by transfer (rule refl)

lemma starP2-eq-iff2 : (∗p2∗ (λx y. x = y)) X Y ←→ X = Y
by (simp add: starP2-eq-iff)

lemma nonempty-set-star-has-least-lemma:
∃n∈S . ∀m∈S . n ≤ m if S 6= {} for S :: nat set

proof
show ∀m∈S . (LEAST n. n ∈ S) ≤ m

by (simp add: Least-le)
show (LEAST n. n ∈ S) ∈ S

by (meson that LeastI-ex equals0I)
qed

lemma nonempty-set-star-has-least:

THEORY “HSEQ” 104

∧
S ::nat set star . Iset S 6= {} =⇒ ∃n ∈ Iset S . ∀m ∈ Iset S . n ≤ m

using nonempty-set-star-has-least-lemma by (transfer empty-def)

lemma nonempty-InternalNatSet-has-least: S ∈ InternalSets =⇒ S 6= {} =⇒ ∃n
∈ S . ∀m ∈ S . n ≤ m

for S :: hypnat set
by (force simp add: InternalSets-def starset-n-def dest!: nonempty-set-star-has-least)

Goldblatt, page 129 Thm 11.3.2.
lemma internal-induct-lemma:∧

X ::nat set star .
(0 ::hypnat) ∈ Iset X =⇒ ∀n. n ∈ Iset X −→ n + 1 ∈ Iset X =⇒ Iset X =

(UNIV :: hypnat set)
apply (transfer UNIV-def)
apply (rule equalityI [OF subset-UNIV subsetI])
apply (induct-tac x, auto)
done

lemma internal-induct:
X ∈ InternalSets =⇒ (0 ::hypnat) ∈ X =⇒ ∀n. n ∈ X −→ n + 1 ∈ X =⇒ X =

(UNIV :: hypnat set)
apply (clarsimp simp add: InternalSets-def starset-n-def)
apply (erule (1) internal-induct-lemma)
done

end

10 Sequences and Convergence (Nonstandard)
theory HSEQ

imports Complex-Main NatStar
abbrevs −−−> = −−−−→NS

begin

definition NSLIMSEQ :: (nat ⇒ ′a::real-normed-vector) ⇒ ′a ⇒ bool
(‹(‹notation=‹mixfix NSLIMSEQ››(-)/ −−−−→NS (-))› [60 , 60] 60) where
— Nonstandard definition of convergence of sequence

X −−−−→NS L ←→ (∀N ∈ HNatInfinite. (∗f ∗ X) N ≈ star-of L)

definition nslim :: (nat ⇒ ′a::real-normed-vector) ⇒ ′a
where nslim X = (THE L. X −−−−→NS L)
— Nonstandard definition of limit using choice operator

definition NSconvergent :: (nat ⇒ ′a::real-normed-vector) ⇒ bool
where NSconvergent X ←→ (∃L. X −−−−→NS L)
— Nonstandard definition of convergence

definition NSBseq :: (nat ⇒ ′a::real-normed-vector) ⇒ bool

THEORY “HSEQ” 105

where NSBseq X ←→ (∀N ∈ HNatInfinite. (∗f ∗ X) N ∈ HFinite)
— Nonstandard definition for bounded sequence

definition NSCauchy :: (nat ⇒ ′a::real-normed-vector) ⇒ bool
where NSCauchy X ←→ (∀M ∈ HNatInfinite. ∀N ∈ HNatInfinite. (∗f ∗ X) M
≈ (∗f ∗ X) N)

— Nonstandard definition

10.1 Limits of Sequences
lemma NSLIMSEQ-I : (

∧
N . N ∈ HNatInfinite =⇒ starfun X N ≈ star-of L) =⇒

X −−−−→NS L
by (simp add: NSLIMSEQ-def)

lemma NSLIMSEQ-D: X −−−−→NS L =⇒ N ∈ HNatInfinite =⇒ starfun X N ≈
star-of L

by (simp add: NSLIMSEQ-def)

lemma NSLIMSEQ-const: (λn. k) −−−−→NS k
by (simp add: NSLIMSEQ-def)

lemma NSLIMSEQ-add: X −−−−→NS a =⇒ Y −−−−→NS b =⇒ (λn. X n + Y
n) −−−−→NS a + b

by (auto intro: approx-add simp add: NSLIMSEQ-def)

lemma NSLIMSEQ-add-const: f −−−−→NS a =⇒ (λn. f n + b) −−−−→NS a + b
by (simp only: NSLIMSEQ-add NSLIMSEQ-const)

lemma NSLIMSEQ-mult: X −−−−→NS a =⇒ Y −−−−→NS b =⇒ (λn. X n ∗ Y
n) −−−−→NS a ∗ b

for a b :: ′a::real-normed-algebra
by (auto intro!: approx-mult-HFinite simp add: NSLIMSEQ-def)

lemma NSLIMSEQ-minus: X −−−−→NS a =⇒ (λn. − X n) −−−−→NS − a
by (auto simp add: NSLIMSEQ-def)

lemma NSLIMSEQ-minus-cancel: (λn. − X n) −−−−→NS −a =⇒ X −−−−→NS a
by (drule NSLIMSEQ-minus) simp

lemma NSLIMSEQ-diff : X −−−−→NS a =⇒ Y −−−−→NS b =⇒ (λn. X n − Y
n) −−−−→NS a − b

using NSLIMSEQ-add [of X a − Y − b] by (simp add: NSLIMSEQ-minus
fun-Compl-def)

lemma NSLIMSEQ-diff-const: f −−−−→NS a =⇒ (λn. f n − b) −−−−→NS a − b
by (simp add: NSLIMSEQ-diff NSLIMSEQ-const)

lemma NSLIMSEQ-inverse: X −−−−→NS a =⇒ a 6= 0 =⇒ (λn. inverse (X n))

THEORY “HSEQ” 106

−−−−→NS inverse a
for a :: ′a::real-normed-div-algebra
by (simp add: NSLIMSEQ-def star-of-approx-inverse)

lemma NSLIMSEQ-mult-inverse: X −−−−→NS a =⇒ Y −−−−→NS b =⇒ b 6= 0
=⇒ (λn. X n / Y n) −−−−→NS a / b

for a b :: ′a::real-normed-field
by (simp add: NSLIMSEQ-mult NSLIMSEQ-inverse divide-inverse)

lemma starfun-hnorm:
∧

x. hnorm ((∗f ∗ f) x) = (∗f ∗ (λx. norm (f x))) x
by transfer simp

lemma NSLIMSEQ-norm: X −−−−→NS a =⇒ (λn. norm (X n)) −−−−→NS norm
a

by (simp add: NSLIMSEQ-def starfun-hnorm [symmetric] approx-hnorm)

Uniqueness of limit.
lemma NSLIMSEQ-unique: X −−−−→NS a =⇒ X −−−−→NS b =⇒ a = b

unfolding NSLIMSEQ-def
using HNatInfinite-whn approx-trans3 star-of-approx-iff by blast

lemma NSLIMSEQ-pow [rule-format]: (X −−−−→NS a) −→ ((λn. (X n) ^ m)
−−−−→NS a ^ m)

for a :: ′a::{real-normed-algebra,power}
by (induct m) (auto intro: NSLIMSEQ-mult NSLIMSEQ-const)

We can now try and derive a few properties of sequences, starting with the
limit comparison property for sequences.
lemma NSLIMSEQ-le: f −−−−→NS l =⇒ g −−−−→NS m =⇒ ∃N . ∀n ≥ N . f n
≤ g n =⇒ l ≤ m

for l m :: real
unfolding NSLIMSEQ-def
by (metis HNatInfinite-whn bex-Infinitesimal-iff2 hypnat-of-nat-le-whn hypreal-of-real-le-add-Infininitesimal-cancel2

starfun-le-mono)

lemma NSLIMSEQ-le-const: X −−−−→NS r =⇒ ∀n. a ≤ X n =⇒ a ≤ r
for a r :: real
by (erule NSLIMSEQ-le [OF NSLIMSEQ-const]) auto

lemma NSLIMSEQ-le-const2 : X −−−−→NS r =⇒ ∀n. X n ≤ a =⇒ r ≤ a
for a r :: real
by (erule NSLIMSEQ-le [OF - NSLIMSEQ-const]) auto

Shift a convergent series by 1: By the equivalence between Cauchiness and
convergence and because the successor of an infinite hypernatural is also
infinite.
lemma NSLIMSEQ-Suc-iff : ((λn. f (Suc n)) −−−−→NS l) ←→ (f −−−−→NS l)
proof

THEORY “HSEQ” 107

assume ∗: f −−−−→NS l
show (λn. f (Suc n)) −−−−→NS l
proof (rule NSLIMSEQ-I)

fix N
assume N ∈ HNatInfinite
then have (∗f ∗ f) (N + 1) ≈ star-of l

by (simp add: HNatInfinite-add NSLIMSEQ-D ∗)
then show (∗f ∗ (λn. f (Suc n))) N ≈ star-of l

by (simp add: starfun-shift-one)
qed

next
assume ∗: (λn. f (Suc n)) −−−−→NS l
show f −−−−→NS l
proof (rule NSLIMSEQ-I)

fix N
assume N ∈ HNatInfinite
then have (∗f ∗ (λn. f (Suc n))) (N − 1) ≈ star-of l

using ∗ by (simp add: HNatInfinite-diff NSLIMSEQ-D)
then show (∗f ∗ f) N ≈ star-of l

by (simp add: ‹N ∈ HNatInfinite› one-le-HNatInfinite starfun-shift-one)
qed

qed

10.1.1 Equivalence of LIMSEQ and NSLIMSEQ
lemma LIMSEQ-NSLIMSEQ:

assumes X : X −−−−→ L
shows X −−−−→NS L

proof (rule NSLIMSEQ-I)
fix N
assume N : N ∈ HNatInfinite
have starfun X N − star-of L ∈ Infinitesimal
proof (rule InfinitesimalI2)

fix r :: real
assume r : 0 < r
from LIMSEQ-D [OF X r] obtain no where ∀n≥no. norm (X n − L) < r ..
then have ∀n≥star-of no. hnorm (starfun X n − star-of L) < star-of r

by transfer
then show hnorm (starfun X N − star-of L) < star-of r

using N by (simp add: star-of-le-HNatInfinite)
qed
then show starfun X N ≈ star-of L

by (simp only: approx-def)
qed

lemma NSLIMSEQ-LIMSEQ:
assumes X : X −−−−→NS L
shows X −−−−→ L

proof (rule LIMSEQ-I)

THEORY “HSEQ” 108

fix r :: real
assume r : 0 < r
have ∃no. ∀n≥no. hnorm (starfun X n − star-of L) < star-of r
proof (intro exI allI impI)

fix n
assume whn ≤ n
with HNatInfinite-whn have n ∈ HNatInfinite

by (rule HNatInfinite-upward-closed)
with X have starfun X n ≈ star-of L

by (rule NSLIMSEQ-D)
then have starfun X n − star-of L ∈ Infinitesimal

by (simp only: approx-def)
then show hnorm (starfun X n − star-of L) < star-of r

using r by (rule InfinitesimalD2)
qed
then show ∃no. ∀n≥no. norm (X n − L) < r

by transfer
qed

theorem LIMSEQ-NSLIMSEQ-iff : f −−−−→ L ←→ f −−−−→NS L
by (blast intro: LIMSEQ-NSLIMSEQ NSLIMSEQ-LIMSEQ)

10.1.2 Derived theorems about NSLIMSEQ

We prove the NS version from the standard one, since the NS proof seems
more complicated than the standard one above!
lemma NSLIMSEQ-norm-zero: (λn. norm (X n)) −−−−→NS 0 ←→ X −−−−→NS

0
by (simp add: LIMSEQ-NSLIMSEQ-iff [symmetric] tendsto-norm-zero-iff)

lemma NSLIMSEQ-rabs-zero: (λn. |f n|) −−−−→NS 0 ←→ f −−−−→NS (0 ::real)
by (simp add: LIMSEQ-NSLIMSEQ-iff [symmetric] tendsto-rabs-zero-iff)

Generalization to other limits.
lemma NSLIMSEQ-imp-rabs: f −−−−→NS l =⇒ (λn. |f n|) −−−−→NS |l|

for l :: real
by (simp add: NSLIMSEQ-def) (auto intro: approx-hrabs simp add: starfun-abs)

lemma NSLIMSEQ-inverse-zero: ∀ y::real. ∃N . ∀n ≥ N . y < f n =⇒ (λn. inverse
(f n)) −−−−→NS 0

by (simp add: LIMSEQ-NSLIMSEQ-iff [symmetric] LIMSEQ-inverse-zero)

lemma NSLIMSEQ-inverse-real-of-nat: (λn. inverse (real (Suc n))) −−−−→NS 0
by (simp add: LIMSEQ-NSLIMSEQ-iff [symmetric] LIMSEQ-inverse-real-of-nat

del: of-nat-Suc)

lemma NSLIMSEQ-inverse-real-of-nat-add: (λn. r + inverse (real (Suc n))) −−−−→NS

r

THEORY “HSEQ” 109

by (simp add: LIMSEQ-NSLIMSEQ-iff [symmetric] LIMSEQ-inverse-real-of-nat-add
del: of-nat-Suc)

lemma NSLIMSEQ-inverse-real-of-nat-add-minus: (λn. r + − inverse (real (Suc
n))) −−−−→NS r
using LIMSEQ-inverse-real-of-nat-add-minus by (simp add: LIMSEQ-NSLIMSEQ-iff

[symmetric])

lemma NSLIMSEQ-inverse-real-of-nat-add-minus-mult:
(λn. r ∗ (1 + − inverse (real (Suc n)))) −−−−→NS r
using LIMSEQ-inverse-real-of-nat-add-minus-mult
by (simp add: LIMSEQ-NSLIMSEQ-iff [symmetric])

10.2 Convergence
lemma nslimI : X −−−−→NS L =⇒ nslim X = L

by (simp add: nslim-def) (blast intro: NSLIMSEQ-unique)

lemma lim-nslim-iff : lim X = nslim X
by (simp add: lim-def nslim-def LIMSEQ-NSLIMSEQ-iff)

lemma NSconvergentD: NSconvergent X =⇒ ∃L. X −−−−→NS L
by (simp add: NSconvergent-def)

lemma NSconvergentI : X −−−−→NS L =⇒ NSconvergent X
by (auto simp add: NSconvergent-def)

lemma convergent-NSconvergent-iff : convergent X = NSconvergent X
by (simp add: convergent-def NSconvergent-def LIMSEQ-NSLIMSEQ-iff)

lemma NSconvergent-NSLIMSEQ-iff : NSconvergent X ←→ X −−−−→NS nslim X
by (auto intro: theI NSLIMSEQ-unique simp add: NSconvergent-def nslim-def)

10.3 Bounded Monotonic Sequences
lemma NSBseqD: NSBseq X =⇒ N ∈ HNatInfinite =⇒ (∗f ∗ X) N ∈ HFinite

by (simp add: NSBseq-def)

lemma Standard-subset-HFinite: Standard ⊆ HFinite
by (auto simp: Standard-def)

lemma NSBseqD2 : NSBseq X =⇒ (∗f ∗ X) N ∈ HFinite
using HNatInfinite-def NSBseq-def Nats-eq-Standard Standard-starfun Standard-subset-HFinite

by blast

lemma NSBseqI : ∀N ∈ HNatInfinite. (∗f ∗ X) N ∈ HFinite =⇒ NSBseq X
by (simp add: NSBseq-def)

The standard definition implies the nonstandard definition.
lemma Bseq-NSBseq: Bseq X =⇒ NSBseq X

THEORY “HSEQ” 110

unfolding NSBseq-def
proof safe

assume X : Bseq X
fix N
assume N : N ∈ HNatInfinite
from BseqD [OF X] obtain K where ∀n. norm (X n) ≤ K

by fast
then have ∀N . hnorm (starfun X N) ≤ star-of K

by transfer
then have hnorm (starfun X N) ≤ star-of K

by simp
also have star-of K < star-of (K + 1)

by simp
finally have ∃ x∈Reals. hnorm (starfun X N) < x

by (rule bexI) simp
then show starfun X N ∈ HFinite

by (simp add: HFinite-def)
qed

The nonstandard definition implies the standard definition.
lemma SReal-less-omega: r ∈ � =⇒ r < ω

using HInfinite-omega
by (simp add: HInfinite-def) (simp add: order-less-imp-le)

lemma NSBseq-Bseq: NSBseq X =⇒ Bseq X
proof (rule ccontr)

let ?n = λK . LEAST n. K < norm (X n)
assume NSBseq X
then have finite: (∗f ∗ X) ((∗f ∗ ?n) ω) ∈ HFinite

by (rule NSBseqD2)
assume ¬ Bseq X
then have ∀K>0 . ∃n. K < norm (X n)

by (simp add: Bseq-def linorder-not-le)
then have ∀K>0 . K < norm (X (?n K))

by (auto intro: LeastI-ex)
then have ∀K>0 . K < hnorm ((∗f ∗ X) ((∗f ∗ ?n) K))

by transfer
then have ω < hnorm ((∗f ∗ X) ((∗f ∗ ?n) ω))

by simp
then have ∀ r∈�. r < hnorm ((∗f ∗ X) ((∗f ∗ ?n) ω))

by (simp add: order-less-trans [OF SReal-less-omega])
then have (∗f ∗ X) ((∗f ∗ ?n) ω) ∈ HInfinite

by (simp add: HInfinite-def)
with finite show False

by (simp add: HFinite-HInfinite-iff)
qed

Equivalence of nonstandard and standard definitions for a bounded se-
quence.

THEORY “HSEQ” 111

lemma Bseq-NSBseq-iff : Bseq X = NSBseq X
by (blast intro!: NSBseq-Bseq Bseq-NSBseq)

A convergent sequence is bounded: Boundedness as a necessary condition
for convergence. The nonstandard version has no existential, as usual.
lemma NSconvergent-NSBseq: NSconvergent X =⇒ NSBseq X

by (simp add: NSconvergent-def NSBseq-def NSLIMSEQ-def)
(blast intro: HFinite-star-of approx-sym approx-HFinite)

Standard Version: easily now proved using equivalence of NS and standard
definitions.
lemma convergent-Bseq: convergent X =⇒ Bseq X

for X :: nat ⇒ ′b::real-normed-vector
by (simp add: NSconvergent-NSBseq convergent-NSconvergent-iff Bseq-NSBseq-iff)

10.3.1 Upper Bounds and Lubs of Bounded Sequences
lemma NSBseq-isUb: NSBseq X =⇒ ∃U ::real. isUb UNIV {x. ∃n. X n = x} U

by (simp add: Bseq-NSBseq-iff [symmetric] Bseq-isUb)

lemma NSBseq-isLub: NSBseq X =⇒ ∃U ::real. isLub UNIV {x. ∃n. X n = x} U
by (simp add: Bseq-NSBseq-iff [symmetric] Bseq-isLub)

10.3.2 A Bounded and Monotonic Sequence Converges

The best of both worlds: Easier to prove this result as a standard theorem
and then use equivalence to "transfer" it into the equivalent nonstandard
form if needed!
lemma Bmonoseq-NSLIMSEQ: ∀ F k in sequentially. X k = X m =⇒ X −−−−→NS

X m
unfolding LIMSEQ-NSLIMSEQ-iff [symmetric]
by (simp add: eventually-mono eventually-nhds-x-imp-x filterlim-iff)

lemma NSBseq-mono-NSconvergent: NSBseq X =⇒ ∀m. ∀n ≥ m. X m ≤ X n
=⇒ NSconvergent X

for X :: nat ⇒ real
by (auto intro: Bseq-mono-convergent

simp: convergent-NSconvergent-iff [symmetric] Bseq-NSBseq-iff [symmetric])

10.4 Cauchy Sequences
lemma NSCauchyI :
(
∧

M N . M ∈ HNatInfinite =⇒ N ∈ HNatInfinite =⇒ starfun X M ≈ starfun X
N) =⇒ NSCauchy X

by (simp add: NSCauchy-def)

lemma NSCauchyD:

THEORY “HSEQ” 112

NSCauchy X =⇒ M ∈ HNatInfinite =⇒ N ∈ HNatInfinite =⇒ starfun X M ≈
starfun X N

by (simp add: NSCauchy-def)

10.4.1 Equivalence Between NS and Standard
lemma Cauchy-NSCauchy:

assumes X : Cauchy X
shows NSCauchy X

proof (rule NSCauchyI)
fix M
assume M : M ∈ HNatInfinite
fix N
assume N : N ∈ HNatInfinite
have starfun X M − starfun X N ∈ Infinitesimal
proof (rule InfinitesimalI2)

fix r :: real
assume r : 0 < r
from CauchyD [OF X r] obtain k where ∀m≥k. ∀n≥k. norm (X m − X n)

< r ..
then have ∀m≥star-of k. ∀n≥star-of k. hnorm (starfun X m − starfun X n)

< star-of r
by transfer

then show hnorm (starfun X M − starfun X N) < star-of r
using M N by (simp add: star-of-le-HNatInfinite)

qed
then show starfun X M ≈ starfun X N

by (simp only: approx-def)
qed

lemma NSCauchy-Cauchy:
assumes X : NSCauchy X
shows Cauchy X

proof (rule CauchyI)
fix r :: real
assume r : 0 < r
have ∃ k. ∀m≥k. ∀n≥k. hnorm (starfun X m − starfun X n) < star-of r
proof (intro exI allI impI)

fix M
assume whn ≤ M
with HNatInfinite-whn have M : M ∈ HNatInfinite

by (rule HNatInfinite-upward-closed)
fix N
assume whn ≤ N
with HNatInfinite-whn have N : N ∈ HNatInfinite

by (rule HNatInfinite-upward-closed)
from X M N have starfun X M ≈ starfun X N

by (rule NSCauchyD)
then have starfun X M − starfun X N ∈ Infinitesimal

THEORY “HSEQ” 113

by (simp only: approx-def)
then show hnorm (starfun X M − starfun X N) < star-of r

using r by (rule InfinitesimalD2)
qed
then show ∃ k. ∀m≥k. ∀n≥k. norm (X m − X n) < r

by transfer
qed

theorem NSCauchy-Cauchy-iff : NSCauchy X = Cauchy X
by (blast intro!: NSCauchy-Cauchy Cauchy-NSCauchy)

10.4.2 Cauchy Sequences are Bounded

A Cauchy sequence is bounded – nonstandard version.
lemma NSCauchy-NSBseq: NSCauchy X =⇒ NSBseq X

by (simp add: Cauchy-Bseq Bseq-NSBseq-iff [symmetric] NSCauchy-Cauchy-iff)

10.4.3 Cauchy Sequences are Convergent

Equivalence of Cauchy criterion and convergence: We will prove this using
our NS formulation which provides a much easier proof than using the stan-
dard definition. We do not need to use properties of subsequences such as
boundedness, monotonicity etc... Compare with Harrison’s corresponding
proof in HOL which is much longer and more complicated. Of course, we do
not have problems which he encountered with guessing the right instantia-
tions for his ’espsilon-delta’ proof(s) in this case since the NS formulations
do not involve existential quantifiers.
lemma NSconvergent-NSCauchy: NSconvergent X =⇒ NSCauchy X

by (simp add: NSconvergent-def NSLIMSEQ-def NSCauchy-def) (auto intro: ap-
prox-trans2)

lemma real-NSCauchy-NSconvergent:
fixes X :: nat ⇒ real
assumes NSCauchy X shows NSconvergent X
unfolding NSconvergent-def NSLIMSEQ-def

proof −
have (∗f ∗ X) whn ∈ HFinite

by (simp add: NSBseqD2 NSCauchy-NSBseq assms)
moreover have ∀N∈HNatInfinite. (∗f ∗ X) whn ≈ (∗f ∗ X) N

using HNatInfinite-whn NSCauchy-def assms by blast
ultimately show ∃L. ∀N∈HNatInfinite. (∗f ∗ X) N ≈ hypreal-of-real L

by (force dest!: st-part-Ex simp add: SReal-iff intro: approx-trans3)
qed

lemma NSCauchy-NSconvergent: NSCauchy X =⇒ NSconvergent X
for X :: nat ⇒ ′a::banach
using Cauchy-convergent NSCauchy-Cauchy convergent-NSconvergent-iff by auto

THEORY “HSeries” 114

lemma NSCauchy-NSconvergent-iff : NSCauchy X = NSconvergent X
for X :: nat ⇒ ′a::banach
by (fast intro: NSCauchy-NSconvergent NSconvergent-NSCauchy)

10.5 Power Sequences

The sequence xn tends to 0 if 0 ≤ x and x < 1. Proof will use (NS) Cauchy
equivalence for convergence and also fact that bounded and monotonic se-
quence converges.

We now use NS criterion to bring proof of theorem through.
lemma NSLIMSEQ-realpow-zero:

fixes x :: real
assumes 0 ≤ x x < 1 shows (λn. x ^ n) −−−−→NS 0

proof −
have (∗f ∗ (^) x) N ≈ 0

if N : N ∈ HNatInfinite and x: NSconvergent ((^) x) for N
proof −

have hypreal-of-real x pow N ≈ hypreal-of-real x pow (N + 1)
by (metis HNatInfinite-add N NSCauchy-NSconvergent-iff NSCauchy-def star-

fun-pow x)
moreover obtain L where L: hypreal-of-real x pow N ≈ hypreal-of-real L

using NSconvergentD [OF x] N by (auto simp add: NSLIMSEQ-def star-
fun-pow)

ultimately have hypreal-of-real x pow N ≈ hypreal-of-real L ∗ hypreal-of-real
x

by (simp add: approx-mult-subst-star-of hyperpow-add)
then have hypreal-of-real L ≈ hypreal-of-real L ∗ hypreal-of-real x

using L approx-trans3 by blast
then show ?thesis
by (metis L ‹x < 1 › hyperpow-def less-irrefl mult.right-neutral mult-left-cancel

star-of-approx-iff star-of-mult star-of-simps(9) starfun2-star-of)
qed
with assms show ?thesis
by (force dest!: convergent-realpow simp add: NSLIMSEQ-def convergent-NSconvergent-iff)

qed

lemma NSLIMSEQ-abs-realpow-zero: |c| < 1 =⇒ (λn. |c| ^ n) −−−−→NS 0
for c :: real
by (simp add: LIMSEQ-abs-realpow-zero LIMSEQ-NSLIMSEQ-iff [symmetric])

lemma NSLIMSEQ-abs-realpow-zero2 : |c| < 1 =⇒ (λn. c ^ n) −−−−→NS 0
for c :: real
by (simp add: LIMSEQ-abs-realpow-zero2 LIMSEQ-NSLIMSEQ-iff [symmetric])

end

THEORY “HSeries” 115

11 Finite Summation and Infinite Series for Hy-
perreals

theory HSeries
imports HSEQ

begin

definition sumhr :: hypnat × hypnat × (nat ⇒ real) ⇒ hypreal
where sumhr = (λ(M ,N ,f). starfun2 (λm n. sum f {m..<n}) M N)

definition NSsums :: (nat ⇒ real) ⇒ real ⇒ bool (infixr ‹NSsums› 80)
where f NSsums s = (λn. sum f {..<n}) −−−−→NS s

definition NSsummable :: (nat ⇒ real) ⇒ bool
where NSsummable f ←→ (∃ s. f NSsums s)

definition NSsuminf :: (nat ⇒ real) ⇒ real
where NSsuminf f = (THE s. f NSsums s)

lemma sumhr-app: sumhr (M , N , f) = (∗f2∗ (λm n. sum f {m..<n})) M N
by (simp add: sumhr-def)

Base case in definition of sumr.
lemma sumhr-zero [simp]:

∧
m. sumhr (m, 0 , f) = 0

unfolding sumhr-app by transfer simp

Recursive case in definition of sumr.
lemma sumhr-if :∧

m n. sumhr (m, n + 1 , f) = (if n + 1 ≤ m then 0 else sumhr (m, n, f) + (
∗f ∗ f) n)

unfolding sumhr-app by transfer simp

lemma sumhr-Suc-zero [simp]:
∧

n. sumhr (n + 1 , n, f) = 0
unfolding sumhr-app by transfer simp

lemma sumhr-eq-bounds [simp]:
∧

n. sumhr (n, n, f) = 0
unfolding sumhr-app by transfer simp

lemma sumhr-Suc [simp]:
∧

m. sumhr (m, m + 1 , f) = (∗f ∗ f) m
unfolding sumhr-app by transfer simp

lemma sumhr-add-lbound-zero [simp]:
∧

k m. sumhr (m + k, k, f) = 0
unfolding sumhr-app by transfer simp

lemma sumhr-add:
∧

m n. sumhr (m, n, f) + sumhr (m, n, g) = sumhr (m, n,
λi. f i + g i)

unfolding sumhr-app by transfer (rule sum.distrib [symmetric])

THEORY “HSeries” 116

lemma sumhr-mult:
∧

m n. hypreal-of-real r ∗ sumhr (m, n, f) = sumhr (m, n,
λn. r ∗ f n)

unfolding sumhr-app by transfer (rule sum-distrib-left)

lemma sumhr-split-add:
∧

n p. n < p =⇒ sumhr (0 , n, f) + sumhr (n, p, f) =
sumhr (0 , p, f)

unfolding sumhr-app by transfer (simp add: sum.atLeastLessThan-concat)

lemma sumhr-split-diff : n < p =⇒ sumhr (0 , p, f) − sumhr (0 , n, f) = sumhr
(n, p, f)

by (drule sumhr-split-add [symmetric, where f = f]) simp

lemma sumhr-hrabs:
∧

m n. |sumhr (m, n, f)| ≤ sumhr (m, n, λi. |f i|)
unfolding sumhr-app by transfer (rule sum-abs)

Other general version also needed.
lemma sumhr-fun-hypnat-eq:
(∀ r . m ≤ r ∧ r < n −→ f r = g r) −→

sumhr (hypnat-of-nat m, hypnat-of-nat n, f) =
sumhr (hypnat-of-nat m, hypnat-of-nat n, g)

unfolding sumhr-app by transfer simp

lemma sumhr-const:
∧

n. sumhr (0 , n, λi. r) = hypreal-of-hypnat n ∗ hypreal-of-real
r

unfolding sumhr-app by transfer simp

lemma sumhr-less-bounds-zero [simp]:
∧

m n. n < m =⇒ sumhr (m, n, f) = 0
unfolding sumhr-app by transfer simp

lemma sumhr-minus:
∧

m n. sumhr (m, n, λi. − f i) = − sumhr (m, n, f)
unfolding sumhr-app by transfer (rule sum-negf)

lemma sumhr-shift-bounds:∧
m n. sumhr (m + hypnat-of-nat k, n + hypnat-of-nat k, f) =
sumhr (m, n, λi. f (i + k))

unfolding sumhr-app by transfer (rule sum.shift-bounds-nat-ivl)

11.1 Nonstandard Sums

Infinite sums are obtained by summing to some infinite hypernatural (such
as whn).
lemma sumhr-hypreal-of-hypnat-omega: sumhr (0 , whn, λi. 1) = hypreal-of-hypnat
whn

by (simp add: sumhr-const)

lemma whn-eq-ωm1 : hypreal-of-hypnat whn = ω − 1
unfolding star-class-defs omega-def hypnat-omega-def of-hypnat-def star-of-def
by (simp add: starfun-star-n starfun2-star-n)

THEORY “HSeries” 117

lemma sumhr-hypreal-omega-minus-one: sumhr(0 , whn, λi. 1) = ω − 1
by (simp add: sumhr-const whn-eq-ωm1)

lemma sumhr-minus-one-realpow-zero [simp]:
∧

N . sumhr (0 , N + N , λi. (−1) ^
(i + 1)) = 0

unfolding sumhr-app
by transfer (induct-tac N , auto)

lemma sumhr-interval-const:
(∀n. m ≤ Suc n −→ f n = r) ∧ m ≤ na =⇒

sumhr (hypnat-of-nat m, hypnat-of-nat na, f) = hypreal-of-nat (na − m) ∗
hypreal-of-real r

unfolding sumhr-app by transfer simp

lemma starfunNat-sumr :
∧

N . (∗f ∗ (λn. sum f {0 ..<n})) N = sumhr (0 , N , f)
unfolding sumhr-app by transfer (rule refl)

lemma sumhr-hrabs-approx [simp]: sumhr (0 , M , f) ≈ sumhr (0 , N , f) =⇒ |sumhr
(M , N , f)| ≈ 0

using linorder-less-linear [where x = M and y = N]
by (metis (no-types, lifting) abs-zero approx-hrabs approx-minus-iff approx-refl

approx-sym sumhr-eq-bounds sumhr-less-bounds-zero sumhr-split-diff)

11.2 Infinite sums: Standard and NS theorems
lemma sums-NSsums-iff : f sums l ←→ f NSsums l

by (simp add: sums-def NSsums-def LIMSEQ-NSLIMSEQ-iff)

lemma summable-NSsummable-iff : summable f ←→ NSsummable f
by (simp add: summable-def NSsummable-def sums-NSsums-iff)

lemma suminf-NSsuminf-iff : suminf f = NSsuminf f
by (simp add: suminf-def NSsuminf-def sums-NSsums-iff)

lemma NSsums-NSsummable: f NSsums l =⇒ NSsummable f
unfolding NSsums-def NSsummable-def by blast

lemma NSsummable-NSsums: NSsummable f =⇒ f NSsums (NSsuminf f)
unfolding NSsummable-def NSsuminf-def NSsums-def
by (blast intro: theI NSLIMSEQ-unique)

lemma NSsums-unique: f NSsums s =⇒ s = NSsuminf f
by (simp add: suminf-NSsuminf-iff [symmetric] sums-NSsums-iff sums-unique)

lemma NSseries-zero: ∀m. n ≤ Suc m −→ f m = 0 =⇒ f NSsums (sum f {..<n})
by (auto simp add: sums-NSsums-iff [symmetric] not-le[symmetric] intro!: sums-finite)

lemma NSsummable-NSCauchy:

THEORY “HLim” 118

NSsummable f ←→ (∀M ∈ HNatInfinite. ∀N ∈ HNatInfinite. |sumhr (M , N ,
f)| ≈ 0) (is ?L=?R)
proof −

have ?L = (∀M∈HNatInfinite. ∀N∈HNatInfinite. sumhr (0 , M , f) ≈ sumhr (0 ,
N , f))

by (auto simp add: summable-iff-convergent convergent-NSconvergent-iff NSCauchy-def
starfunNat-sumr

simp flip: NSCauchy-NSconvergent-iff summable-NSsummable-iff atLeast0LessThan)
also have ... ←→ ?R

by (metis approx-hrabs-zero-cancel approx-minus-iff approx-refl approx-sym
linorder-less-linear sumhr-hrabs-approx sumhr-split-diff)

finally show ?thesis .
qed

Terms of a convergent series tend to zero.
lemma NSsummable-NSLIMSEQ-zero: NSsummable f =⇒ f −−−−→NS 0
by (metis HNatInfinite-add NSLIMSEQ-def NSsummable-NSCauchy approx-hrabs-zero-cancel

star-of-zero sumhr-Suc)

Nonstandard comparison test.
lemma NSsummable-comparison-test: ∃N . ∀n. N ≤ n −→ |f n| ≤ g n =⇒ NSsummable
g =⇒ NSsummable f

by (metis real-norm-def summable-NSsummable-iff summable-comparison-test)

lemma NSsummable-rabs-comparison-test:
∃N . ∀n. N ≤ n −→ |f n| ≤ g n =⇒ NSsummable g =⇒ NSsummable (λk. |f k|)
by (rule NSsummable-comparison-test) auto

end

12 Limits and Continuity (Nonstandard)
theory HLim

imports Star
abbrevs −−−> = −

e
→NS

begin

Nonstandard Definitions.
definition NSLIM :: (′a::real-normed-vector ⇒ ′b::real-normed-vector) ⇒ ′a ⇒ ′b
⇒ bool

(‹(‹notation=‹mixfix NSLIM ››(-)/ −(-)/→NS (-))› [60 , 0 , 60] 60)
where f −a→NS L ←→ (∀ x. x 6= star-of a ∧ x ≈ star-of a −→ (∗f ∗ f) x ≈

star-of L)

definition isNSCont :: (′a::real-normed-vector ⇒ ′b::real-normed-vector) ⇒ ′a ⇒
bool

where — NS definition dispenses with limit notions
isNSCont f a ←→ (∀ y. y ≈ star-of a −→ (∗f ∗ f) y ≈ star-of (f a))

THEORY “HLim” 119

definition isNSUCont :: (′a::real-normed-vector ⇒ ′b::real-normed-vector) ⇒ bool
where isNSUCont f ←→ (∀ x y. x ≈ y −→ (∗f ∗ f) x ≈ (∗f ∗ f) y)

12.1 Limits of Functions
lemma NSLIM-I : (

∧
x. x 6= star-of a =⇒ x ≈ star-of a =⇒ starfun f x ≈ star-of

L) =⇒ f −a→NS L
by (simp add: NSLIM-def)

lemma NSLIM-D: f −a→NS L =⇒ x 6= star-of a =⇒ x ≈ star-of a =⇒ starfun
f x ≈ star-of L

by (simp add: NSLIM-def)

Proving properties of limits using nonstandard definition. The properties
hold for standard limits as well!
lemma NSLIM-mult: f −x→NS l =⇒ g −x→NS m =⇒ (λx. f x ∗ g x) −x→NS

(l ∗ m)
for l m :: ′a::real-normed-algebra
by (auto simp add: NSLIM-def intro!: approx-mult-HFinite)

lemma starfun-scaleR [simp]: starfun (λx. f x ∗R g x) = (λx. scaleHR (starfun f
x) (starfun g x))

by transfer (rule refl)

lemma NSLIM-scaleR: f −x→NS l =⇒ g −x→NS m =⇒ (λx. f x ∗R g x) −x→NS

(l ∗R m)
by (auto simp add: NSLIM-def intro!: approx-scaleR-HFinite)

lemma NSLIM-add: f −x→NS l =⇒ g −x→NS m =⇒ (λx. f x + g x) −x→NS

(l + m)
by (auto simp add: NSLIM-def intro!: approx-add)

lemma NSLIM-const [simp]: (λx. k) −x→NS k
by (simp add: NSLIM-def)

lemma NSLIM-minus: f −a→NS L =⇒ (λx. − f x) −a→NS −L
by (simp add: NSLIM-def)

lemma NSLIM-diff : f −x→NS l =⇒ g −x→NS m =⇒ (λx. f x − g x) −x→NS

(l − m)
by (simp only: NSLIM-add NSLIM-minus diff-conv-add-uminus)

lemma NSLIM-add-minus: f −x→NS l =⇒ g −x→NS m =⇒ (λx. f x + − g x)
−x→NS (l + −m)

by (simp only: NSLIM-add NSLIM-minus)

lemma NSLIM-inverse: f −a→NS L =⇒ L 6= 0 =⇒ (λx. inverse (f x)) −a→NS

(inverse L)

THEORY “HLim” 120

for L :: ′a::real-normed-div-algebra
unfolding NSLIM-def by (metis (no-types) star-of-approx-inverse star-of-simps(6)

starfun-inverse)

lemma NSLIM-zero:
assumes f : f −a→NS l
shows (λx. f (x) − l) −a→NS 0

proof −
have (λx. f x − l) −a→NS l − l

by (rule NSLIM-diff [OF f NSLIM-const])
then show ?thesis by simp

qed

lemma NSLIM-zero-cancel:
assumes (λx. f x − l) −x→NS 0
shows f −x→NS l

proof −
have (λx. f x − l + l) −x→NS 0 + l

by (fast intro: assms NSLIM-const NSLIM-add)
then show ?thesis

by simp
qed

lemma NSLIM-const-eq:
fixes a :: ′a::real-normed-algebra-1
assumes (λx. k) −a→NS l
shows k = l

proof −
have ¬ (λx. k) −a→NS l if k 6= l
proof −

have star-of a + of-hypreal ε ≈ star-of a
by (simp add: approx-def)

then show ?thesis
using epsilon-not-zero that by (force simp add: NSLIM-def)

qed
with assms show ?thesis by metis

qed

lemma NSLIM-unique: f −a→NS l =⇒ f −a→NS M =⇒ l = M
for a :: ′a::real-normed-algebra-1
by (drule (1) NSLIM-diff) (auto dest!: NSLIM-const-eq)

lemma NSLIM-mult-zero: f −x→NS 0 =⇒ g −x→NS 0 =⇒ (λx. f x ∗ g x)
−x→NS 0

for f g :: ′a::real-normed-vector ⇒ ′b::real-normed-algebra
by (drule NSLIM-mult) auto

lemma NSLIM-self : (λx. x) −a→NS a
by (simp add: NSLIM-def)

THEORY “HLim” 121

12.1.1 Equivalence of filterlim and NSLIM
lemma LIM-NSLIM :

assumes f : f −a→ L
shows f −a→NS L

proof (rule NSLIM-I)
fix x
assume neq: x 6= star-of a
assume approx: x ≈ star-of a
have starfun f x − star-of L ∈ Infinitesimal
proof (rule InfinitesimalI2)

fix r :: real
assume r : 0 < r
from LIM-D [OF f r] obtain s

where s: 0 < s and less-r :
∧

x. x 6= a =⇒ norm (x − a) < s =⇒ norm (f x
− L) < r

by fast
from less-r have less-r ′:∧

x. x 6= star-of a =⇒ hnorm (x − star-of a) < star-of s =⇒
hnorm (starfun f x − star-of L) < star-of r

by transfer
from approx have x − star-of a ∈ Infinitesimal

by (simp only: approx-def)
then have hnorm (x − star-of a) < star-of s

using s by (rule InfinitesimalD2)
with neq show hnorm (starfun f x − star-of L) < star-of r

by (rule less-r ′)
qed
then show starfun f x ≈ star-of L

by (unfold approx-def)
qed

lemma NSLIM-LIM :
assumes f : f −a→NS L
shows f −a→ L

proof (rule LIM-I)
fix r :: real
assume r : 0 < r
have ∃ s>0 . ∀ x. x 6= star-of a ∧ hnorm (x − star-of a) < s −→

hnorm (starfun f x − star-of L) < star-of r
proof (rule exI , safe)

show 0 < ε
by (rule epsilon-gt-zero)

next
fix x
assume neq: x 6= star-of a
assume hnorm (x − star-of a) < ε
with Infinitesimal-epsilon have x − star-of a ∈ Infinitesimal

by (rule hnorm-less-Infinitesimal)
then have x ≈ star-of a

THEORY “HLim” 122

by (unfold approx-def)
with f neq have starfun f x ≈ star-of L

by (rule NSLIM-D)
then have starfun f x − star-of L ∈ Infinitesimal

by (unfold approx-def)
then show hnorm (starfun f x − star-of L) < star-of r

using r by (rule InfinitesimalD2)
qed
then show ∃ s>0 . ∀ x. x 6= a ∧ norm (x − a) < s −→ norm (f x − L) < r

by transfer
qed

theorem LIM-NSLIM-iff : f −x→ L ←→ f −x→NS L
by (blast intro: LIM-NSLIM NSLIM-LIM)

12.2 Continuity
lemma isNSContD: isNSCont f a =⇒ y ≈ star-of a =⇒ (∗f ∗ f) y ≈ star-of (f a)

by (simp add: isNSCont-def)

lemma isNSCont-NSLIM : isNSCont f a =⇒ f −a→NS (f a)
by (simp add: isNSCont-def NSLIM-def)

lemma NSLIM-isNSCont: f −a→NS (f a) =⇒ isNSCont f a
by (force simp add: isNSCont-def NSLIM-def)

NS continuity can be defined using NS Limit in similar fashion to standard
definition of continuity.
lemma isNSCont-NSLIM-iff : isNSCont f a ←→ f −a→NS (f a)

by (blast intro: isNSCont-NSLIM NSLIM-isNSCont)

Hence, NS continuity can be given in terms of standard limit.
lemma isNSCont-LIM-iff : (isNSCont f a) = (f −a→ (f a))

by (simp add: LIM-NSLIM-iff isNSCont-NSLIM-iff)

Moreover, it’s trivial now that NS continuity is equivalent to standard con-
tinuity.
lemma isNSCont-isCont-iff : isNSCont f a ←→ isCont f a

by (simp add: isCont-def) (rule isNSCont-LIM-iff)

Standard continuity =⇒ NS continuity.
lemma isCont-isNSCont: isCont f a =⇒ isNSCont f a

by (erule isNSCont-isCont-iff [THEN iffD2])

NS continuity =⇒ Standard continuity.
lemma isNSCont-isCont: isNSCont f a =⇒ isCont f a

by (erule isNSCont-isCont-iff [THEN iffD1])

THEORY “HLim” 123

Alternative definition of continuity.

Prove equivalence between NS limits – seems easier than using standard
definition.
lemma NSLIM-at0-iff : f −a→NS L ←→ (λh. f (a + h)) −0→NS L
proof

assume f −a→NS L
then show (λh. f (a + h)) −0→NS L
by (simp add: NSLIM-def) (metis (no-types) add-cancel-left-right approx-add-left-iff

starfun-lambda-cancel)
next

assume ∗: (λh. f (a + h)) −0→NS L
show f −a→NS L
proof (clarsimp simp: NSLIM-def)

fix x
assume x 6= star-of a x ≈ star-of a
then have (∗f ∗ (λh. f (a + h))) (− star-of a + x) ≈ star-of L

by (metis (no-types, lifting) ∗ NSLIM-D add.right-neutral add-minus-cancel
approx-minus-iff2 star-zero-def)

then show (∗f ∗ f) x ≈ star-of L
by (simp add: starfun-lambda-cancel)

qed
qed

lemma isNSCont-minus: isNSCont f a =⇒ isNSCont (λx. − f x) a
by (simp add: isNSCont-def)

lemma isNSCont-inverse: isNSCont f x =⇒ f x 6= 0 =⇒ isNSCont (λx. inverse
(f x)) x

for f :: ′a::real-normed-vector ⇒ ′b::real-normed-div-algebra
using NSLIM-inverse NSLIM-isNSCont isNSCont-NSLIM by blast

lemma isNSCont-const [simp]: isNSCont (λx. k) a
by (simp add: isNSCont-def)

lemma isNSCont-abs [simp]: isNSCont abs a
for a :: real
by (auto simp: isNSCont-def intro: approx-hrabs simp: starfun-rabs-hrabs)

12.3 Uniform Continuity
lemma isNSUContD: isNSUCont f =⇒ x ≈ y =⇒ (∗f ∗ f) x ≈ (∗f ∗ f) y

by (simp add: isNSUCont-def)

lemma isUCont-isNSUCont:
fixes f :: ′a::real-normed-vector ⇒ ′b::real-normed-vector
assumes f : isUCont f
shows isNSUCont f
unfolding isNSUCont-def

THEORY “HLim” 124

proof safe
fix x y :: ′a star
assume approx: x ≈ y
have starfun f x − starfun f y ∈ Infinitesimal
proof (rule InfinitesimalI2)

fix r :: real
assume r : 0 < r
with f obtain s where s: 0 < s

and less-r :
∧

x y. norm (x − y) < s =⇒ norm (f x − f y) < r
by (auto simp add: isUCont-def dist-norm)

from less-r have less-r ′:∧
x y. hnorm (x − y) < star-of s =⇒ hnorm (starfun f x − starfun f y) <

star-of r
by transfer

from approx have x − y ∈ Infinitesimal
by (unfold approx-def)

then have hnorm (x − y) < star-of s
using s by (rule InfinitesimalD2)

then show hnorm (starfun f x − starfun f y) < star-of r
by (rule less-r ′)

qed
then show starfun f x ≈ starfun f y

by (unfold approx-def)
qed

lemma isNSUCont-isUCont:
fixes f :: ′a::real-normed-vector ⇒ ′b::real-normed-vector
assumes f : isNSUCont f
shows isUCont f
unfolding isUCont-def dist-norm

proof safe
fix r :: real
assume r : 0 < r
have ∃ s>0 . ∀ x y. hnorm (x − y) < s −→ hnorm (starfun f x − starfun f y) <

star-of r
proof (rule exI , safe)

show 0 < ε
by (rule epsilon-gt-zero)

next
fix x y :: ′a star
assume hnorm (x − y) < ε
with Infinitesimal-epsilon have x − y ∈ Infinitesimal

by (rule hnorm-less-Infinitesimal)
then have x ≈ y

by (unfold approx-def)
with f have starfun f x ≈ starfun f y

by (simp add: isNSUCont-def)
then have starfun f x − starfun f y ∈ Infinitesimal

by (unfold approx-def)

THEORY “HDeriv” 125

then show hnorm (starfun f x − starfun f y) < star-of r
using r by (rule InfinitesimalD2)

qed
then show ∃ s>0 . ∀ x y. norm (x − y) < s −→ norm (f x − f y) < r

by transfer
qed

end

13 Differentiation (Nonstandard)
theory HDeriv

imports HLim
begin

Nonstandard Definitions.
definition nsderiv :: [′a::real-normed-field ⇒ ′a, ′a, ′a] ⇒ bool

(‹(‹notation=‹mixfix NSDERIV ››NSDERIV (-)/ (-)/ :> (-))› [1000 , 1000 , 60]
60)

where NSDERIV f x :> D ←→
(∀ h ∈ Infinitesimal − {0}. ((∗f ∗ f)(star-of x + h) − star-of (f x)) / h ≈

star-of D)

definition NSdifferentiable :: [′a::real-normed-field ⇒ ′a, ′a] ⇒ bool
(infixl ‹NSdifferentiable› 60)

where f NSdifferentiable x ←→ (∃D. NSDERIV f x :> D)

definition increment :: (real ⇒ real) ⇒ real ⇒ hypreal ⇒ hypreal
where increment f x h =

(SOME inc. f NSdifferentiable x ∧ inc = (∗f ∗ f) (hypreal-of-real x + h) −
hypreal-of-real (f x))

13.1 Derivatives
lemma DERIV-NS-iff : (DERIV f x :> D)←→ (λh. (f (x + h) − f x) / h) −0→NS

D
by (simp add: DERIV-def LIM-NSLIM-iff)

lemma NS-DERIV-D: DERIV f x :> D =⇒ (λh. (f (x + h) − f x) / h) −0→NS

D
by (simp add: DERIV-def LIM-NSLIM-iff)

lemma Infinitesimal-of-hypreal:
x ∈ Infinitesimal =⇒ ((∗f ∗ of-real) x:: ′a::real-normed-div-algebra star) ∈ In-

finitesimal
by (metis Infinitesimal-of-hypreal-iff of-hypreal-def)

lemma of-hypreal-eq-0-iff :
∧

x. ((∗f ∗ of-real) x = (0 :: ′a::real-algebra-1 star)) =
(x = 0)

THEORY “HDeriv” 126

by transfer (rule of-real-eq-0-iff)

lemma NSDeriv-unique:
assumes NSDERIV f x :> D NSDERIV f x :> E
shows NSDERIV f x :> D =⇒ NSDERIV f x :> E =⇒ D = E

proof −
have ∃ s. (s:: ′a star) ∈ Infinitesimal − {0}

by (metis Diff-iff HDeriv.of-hypreal-eq-0-iff Infinitesimal-epsilon Infinitesi-
mal-of-hypreal epsilon-not-zero singletonD)

with assms show ?thesis
by (meson approx-trans3 nsderiv-def star-of-approx-iff)

qed

First NSDERIV in terms of NSLIM.

First equivalence.
lemma NSDERIV-NSLIM-iff : (NSDERIV f x :> D) ←→ (λh. (f (x + h) − f x)
/ h) −0→NS D
by (auto simp add: nsderiv-def NSLIM-def starfun-lambda-cancel mem-infmal-iff)

Second equivalence.
lemma NSDERIV-NSLIM-iff2 : (NSDERIV f x :> D) ←→ (λz. (f z − f x) / (z −
x)) −x→NS D
by (simp add: NSDERIV-NSLIM-iff DERIV-LIM-iff LIM-NSLIM-iff [symmetric])

While we’re at it!
lemma NSDERIV-iff2 :
(NSDERIV f x :> D) ←→
(∀w. w 6= star-of x ∧ w ≈ star-of x −→ (∗f ∗ (λz. (f z − f x) / (z − x))) w ≈

star-of D)
by (simp add: NSDERIV-NSLIM-iff2 NSLIM-def)

lemma NSDERIVD5 :
[[NSDERIV f x :> D; u ≈ hypreal-of-real x]] =⇒

(∗f ∗ (λz. f z − f x)) u ≈ hypreal-of-real D ∗ (u − hypreal-of-real x)
unfolding NSDERIV-iff2
apply (case-tac u = hypreal-of-real x, auto)
by (metis (mono-tags, lifting) HFinite-star-of Infinitesimal-ratio approx-def ap-

prox-minus-iff approx-mult-subst approx-star-of-HFinite approx-sym mult-zero-right
right-minus-eq)

lemma NSDERIVD4 :
[[NSDERIV f x :> D; h ∈ Infinitesimal]]
=⇒ (∗f ∗ f)(hypreal-of-real x + h) − hypreal-of-real (f x) ≈ hypreal-of-real D ∗

h
apply (clarsimp simp add: nsderiv-def)
apply (case-tac h = 0 , simp)
by (meson DiffI Infinitesimal-approx Infinitesimal-ratio Infinitesimal-star-of-mult2

approx-star-of-HFinite singletonD)

THEORY “HDeriv” 127

Differentiability implies continuity nice and simple "algebraic" proof.
lemma NSDERIV-isNSCont:

assumes NSDERIV f x :> D shows isNSCont f x
unfolding isNSCont-NSLIM-iff NSLIM-def

proof clarify
fix x ′

assume x ′ 6= star-of x x ′ ≈ star-of x
then have m0 : x ′ − star-of x ∈ Infinitesimal − {0}

using bex-Infinitesimal-iff by auto
then have ((∗f ∗ f) x ′ − star-of (f x)) / (x ′ − star-of x) ≈ star-of D

by (metis ‹x ′ ≈ star-of x› add-diff-cancel-left ′ assms bex-Infinitesimal-iff2 ns-
deriv-def)

then have ((∗f ∗ f) x ′ − star-of (f x)) / (x ′ − star-of x) ∈ HFinite
by (metis approx-star-of-HFinite)

then show (∗f ∗ f) x ′ ≈ star-of (f x)
by (metis (no-types) Diff-iff Infinitesimal-ratio m0 bex-Infinitesimal-iff in-

sert-iff)
qed

Differentiation rules for combinations of functions follow from clear, straight-
forward, algebraic manipulations.

Constant function.
lemma NSDERIV-const [simp]: NSDERIV (λx. k) x :> 0

by (simp add: NSDERIV-NSLIM-iff)

Sum of functions- proved easily.
lemma NSDERIV-add:

assumes NSDERIV f x :> Da NSDERIV g x :> Db
shows NSDERIV (λx. f x + g x) x :> Da + Db

proof −
have ((λx. f x + g x) has-field-derivative Da + Db) (at x)

using assms DERIV-NS-iff NSDERIV-NSLIM-iff field-differentiable-add by
blast

then show ?thesis
by (simp add: DERIV-NS-iff NSDERIV-NSLIM-iff)

qed

Product of functions - Proof is simple.
lemma NSDERIV-mult:

assumes NSDERIV g x :> Db NSDERIV f x :> Da
shows NSDERIV (λx. f x ∗ g x) x :> (Da ∗ g x) + (Db ∗ f x)

proof −
have (f has-field-derivative Da) (at x) (g has-field-derivative Db) (at x)

using assms by (simp-all add: DERIV-NS-iff NSDERIV-NSLIM-iff)
then have ((λa. f a ∗ g a) has-field-derivative Da ∗ g x + Db ∗ f x) (at x)

using DERIV-mult by blast
then show ?thesis

THEORY “HDeriv” 128

by (simp add: DERIV-NS-iff NSDERIV-NSLIM-iff)
qed

Multiplying by a constant.
lemma NSDERIV-cmult: NSDERIV f x :> D =⇒ NSDERIV (λx. c ∗ f x) x :>
c ∗ D

unfolding times-divide-eq-right [symmetric] NSDERIV-NSLIM-iff
minus-mult-right right-diff-distrib [symmetric]

by (erule NSLIM-const [THEN NSLIM-mult])

Negation of function.
lemma NSDERIV-minus: NSDERIV f x :> D =⇒ NSDERIV (λx. − f x) x :> −
D
proof (simp add: NSDERIV-NSLIM-iff)

assume (λh. (f (x + h) − f x) / h) −0→NS D
then have deriv: (λh. − ((f (x+h) − f x) / h)) −0→NS − D

by (rule NSLIM-minus)
have ∀ h. − ((f (x + h) − f x) / h) = (− f (x + h) + f x) / h

by (simp add: minus-divide-left)
with deriv have (λh. (− f (x + h) + f x) / h) −0→NS − D

by simp
then show (λh. (f (x + h) − f x) / h) −0→NS D =⇒ (λh. (f x − f (x + h))

/ h) −0→NS − D
by simp

qed

Subtraction.
lemma NSDERIV-add-minus:

NSDERIV f x :> Da =⇒ NSDERIV g x :> Db =⇒ NSDERIV (λx. f x + − g
x) x :> Da + − Db

by (blast dest: NSDERIV-add NSDERIV-minus)

lemma NSDERIV-diff :
NSDERIV f x :> Da =⇒ NSDERIV g x :> Db =⇒ NSDERIV (λx. f x − g x)

x :> Da − Db
using NSDERIV-add-minus [of f x Da g Db] by simp

Similarly to the above, the chain rule admits an entirely straightforward
derivation. Compare this with Harrison’s HOL proof of the chain rule,
which proved to be trickier and required an alternative characterisation of
differentiability- the so-called Carathedory derivative. Our main problem is
manipulation of terms.

13.2 Lemmas
lemma NSDERIV-zero:
[[NSDERIV g x :> D; (∗f ∗ g) (star-of x + y) = star-of (g x); y ∈ Infinitesimal;

y 6= 0]]

THEORY “HDeriv” 129

=⇒ D = 0
by (force simp add: nsderiv-def)

Can be proved differently using NSLIM-isCont-iff.
lemma NSDERIV-approx:

NSDERIV f x :> D =⇒ h ∈ Infinitesimal =⇒ h 6= 0 =⇒
(∗f ∗ f) (star-of x + h) − star-of (f x) ≈ 0

by (meson DiffI Infinitesimal-ratio approx-star-of-HFinite mem-infmal-iff ns-
deriv-def singletonD)

From one version of differentiability
f x − f a −−−−−−−−−−−−−− ≈ Db x − a
lemma NSDERIVD1 :

[[NSDERIV f (g x) :> Da;
(∗f ∗ g) (star-of x + y) 6= star-of (g x);
(∗f ∗ g) (star-of x + y) ≈ star-of (g x)]]
=⇒ ((∗f ∗ f) ((∗f ∗ g) (star-of x + y)) −

star-of (f (g x))) / ((∗f ∗ g) (star-of x + y) − star-of (g x)) ≈
star-of Da

by (auto simp add: NSDERIV-NSLIM-iff2 NSLIM-def)

From other version of differentiability
f (x + h) − f x −−−−−−−−−−−−−−−−−− ≈ Db h
lemma NSDERIVD2 : [| NSDERIV g x :> Db; y ∈ Infinitesimal; y 6= 0 |]

==> ((∗f ∗ g) (star-of (x) + y) − star-of (g x)) / y
≈ star-of (Db)

by (auto simp add: NSDERIV-NSLIM-iff NSLIM-def mem-infmal-iff starfun-lambda-cancel)

This proof uses both definitions of differentiability.
lemma NSDERIV-chain:

NSDERIV f (g x) :> Da =⇒ NSDERIV g x :> Db =⇒ NSDERIV (f ◦ g) x :>
Da ∗ Db

using DERIV-NS-iff DERIV-chain NSDERIV-NSLIM-iff by blast

Differentiation of natural number powers.
lemma NSDERIV-Id [simp]: NSDERIV (λx. x) x :> 1

by (simp add: NSDERIV-NSLIM-iff NSLIM-def del: divide-self-if)

lemma NSDERIV-cmult-Id [simp]: NSDERIV ((∗) c) x :> c
using NSDERIV-Id [THEN NSDERIV-cmult] by simp

lemma NSDERIV-inverse:
fixes x :: ′a::real-normed-field
assumes x 6= 0 — can’t get rid of x 6= 0 because it isn’t continuous at zero
shows NSDERIV (λx. inverse x) x :> − (inverse x ^ Suc (Suc 0))

proof −
{

THEORY “HDeriv” 130

fix h :: ′a star
assume h-Inf : h ∈ Infinitesimal
from this assms have not-0 : star-of x + h 6= 0

by (rule Infinitesimal-add-not-zero)
assume h 6= 0
from h-Inf have h ∗ star-of x ∈ Infinitesimal

by (rule Infinitesimal-HFinite-mult) simp
with assms have inverse (− (h ∗ star-of x) + − (star-of x ∗ star-of x)) ≈

inverse (− (star-of x ∗ star-of x))
proof −

have − (h ∗ star-of x) + − (star-of x ∗ star-of x) ≈ − (star-of x ∗ star-of x)
using ‹h ∗ star-of x ∈ Infinitesimal› assms bex-Infinitesimal-iff by fastforce

then show ?thesis
by (metis assms mult-eq-0-iff neg-equal-0-iff-equal star-of-approx-inverse

star-of-minus star-of-mult)
qed
moreover from not-0 ‹h 6= 0 › assms
have inverse (− (h ∗ star-of x) + − (star-of x ∗ star-of x))

= (inverse (star-of x + h) − inverse (star-of x)) / h
by (simp add: division-ring-inverse-diff inverse-mult-distrib [symmetric]

inverse-minus-eq [symmetric] algebra-simps)
ultimately have (inverse (star-of x + h) − inverse (star-of x)) / h ≈
− (inverse (star-of x) ∗ inverse (star-of x))
using assms by simp

}
then show ?thesis by (simp add: nsderiv-def)

qed

13.2.1 Equivalence of NS and Standard definitions
lemma divideR-eq-divide: x /R y = x / y

by (simp add: divide-inverse mult.commute)

Now equivalence between NSDERIV and DERIV.
lemma NSDERIV-DERIV-iff : NSDERIV f x :> D ←→ DERIV f x :> D

by (simp add: DERIV-def NSDERIV-NSLIM-iff LIM-NSLIM-iff)

NS version.
lemma NSDERIV-pow: NSDERIV (λx. x ^ n) x :> real n ∗ (x ^ (n − Suc 0))

by (simp add: NSDERIV-DERIV-iff DERIV-pow)

Derivative of inverse.
lemma NSDERIV-inverse-fun:

NSDERIV f x :> d =⇒ f x 6= 0 =⇒
NSDERIV (λx. inverse (f x)) x :> (− (d ∗ inverse (f x ^ Suc (Suc 0))))

for x :: ′a::{real-normed-field}
by (simp add: NSDERIV-DERIV-iff DERIV-inverse-fun del: power-Suc)

Derivative of quotient.

THEORY “HDeriv” 131

lemma NSDERIV-quotient:
fixes x :: ′a::real-normed-field
shows NSDERIV f x :> d =⇒ NSDERIV g x :> e =⇒ g x 6= 0 =⇒

NSDERIV (λy. f y / g y) x :> (d ∗ g x − (e ∗ f x)) / (g x ^ Suc (Suc 0))
by (simp add: NSDERIV-DERIV-iff DERIV-quotient del: power-Suc)

lemma CARAT-NSDERIV :
NSDERIV f x :> l =⇒ ∃ g. (∀ z. f z − f x = g z ∗ (z − x)) ∧ isNSCont g x ∧ g

x = l
by (simp add: CARAT-DERIV NSDERIV-DERIV-iff isNSCont-isCont-iff)

lemma hypreal-eq-minus-iff3 : x = y + z ←→ x + − z = y
for x y z :: hypreal
by auto

lemma CARAT-DERIVD:
assumes all: ∀ z. f z − f x = g z ∗ (z − x)

and nsc: isNSCont g x
shows NSDERIV f x :> g x

proof −
from nsc have ∀w. w 6= star-of x ∧ w ≈ star-of x −→

(∗f ∗ g) w ∗ (w − star-of x) / (w − star-of x) ≈ star-of (g x)
by (simp add: isNSCont-def)

with all show ?thesis
by (simp add: NSDERIV-iff2 starfun-if-eq cong: if-cong)

qed

13.2.2 Differentiability predicate
lemma NSdifferentiableD: f NSdifferentiable x =⇒ ∃D. NSDERIV f x :> D

by (simp add: NSdifferentiable-def)

lemma NSdifferentiableI : NSDERIV f x :> D =⇒ f NSdifferentiable x
by (force simp add: NSdifferentiable-def)

13.3 (NS) Increment
lemma incrementI :

f NSdifferentiable x =⇒
increment f x h = (∗f ∗ f) (hypreal-of-real x + h) − hypreal-of-real (f x)

by (simp add: increment-def)

lemma incrementI2 :
NSDERIV f x :> D =⇒

increment f x h = (∗f ∗ f) (hypreal-of-real x + h) − hypreal-of-real (f x)
by (erule NSdifferentiableI [THEN incrementI])

The Increment theorem – Keisler p. 65.
lemma increment-thm:

THEORY “HTranscendental” 132

assumes NSDERIV f x :> D h ∈ Infinitesimal h 6= 0
shows ∃ e ∈ Infinitesimal. increment f x h = hypreal-of-real D ∗ h + e ∗ h

proof −
have inc: increment f x h = (∗f ∗ f) (hypreal-of-real x + h) − hypreal-of-real (f

x)
using assms(1) incrementI2 by auto

have ((∗f ∗ f) (hypreal-of-real x + h) − hypreal-of-real (f x)) / h ≈ hypreal-of-real
D

by (simp add: NSDERIVD2 assms)
then obtain y where y ∈ Infinitesimal
((∗f ∗ f) (hypreal-of-real x + h) − hypreal-of-real (f x)) / h = hypreal-of-real D

+ y
by (metis bex-Infinitesimal-iff2)

then have increment f x h / h = hypreal-of-real D + y
by (metis inc)

then show ?thesis
by (metis (no-types) ‹y ∈ Infinitesimal› ‹h 6= 0 › distrib-right mult.commute

nonzero-mult-div-cancel-left times-divide-eq-right)
qed

lemma increment-approx-zero: NSDERIV f x :> D =⇒ h ≈ 0 =⇒ h 6= 0 =⇒
increment f x h ≈ 0

by (simp add: NSDERIV-approx incrementI2 mem-infmal-iff)

end

14 Nonstandard Extensions of Transcendental Func-
tions

theory HTranscendental
imports Complex-Main HSeries HDeriv
begin

definition
exphr :: real ⇒ hypreal where

— define exponential function using standard part
exphr x ≡ st(sumhr (0 , whn, λn. inverse (fact n) ∗ (x ^ n)))

definition
sinhr :: real ⇒ hypreal where
sinhr x ≡ st(sumhr (0 , whn, λn. sin-coeff n ∗ x ^ n))

definition
coshr :: real ⇒ hypreal where
coshr x ≡ st(sumhr (0 , whn, λn. cos-coeff n ∗ x ^ n))

THEORY “HTranscendental” 133

14.1 Nonstandard Extension of Square Root Function
lemma STAR-sqrt-zero [simp]: (∗f ∗ sqrt) 0 = 0

by (simp add: starfun star-n-zero-num)

lemma STAR-sqrt-one [simp]: (∗f ∗ sqrt) 1 = 1
by (simp add: starfun star-n-one-num)

lemma hypreal-sqrt-pow2-iff : ((∗f ∗ sqrt)(x) ^ 2 = x) = (0 ≤ x)
proof (cases x)

case (star-n X)
then show ?thesis

by (simp add: star-n-le star-n-zero-num starfun hrealpow star-n-eq-iff del:
hpowr-Suc power-Suc)
qed

lemma hypreal-sqrt-gt-zero-pow2 :
∧

x. 0 < x =⇒ (∗f ∗ sqrt) (x) ^ 2 = x
by transfer simp

lemma hypreal-sqrt-pow2-gt-zero: 0 < x =⇒ 0 < (∗f ∗ sqrt) (x) ^ 2
by (frule hypreal-sqrt-gt-zero-pow2 , auto)

lemma hypreal-sqrt-not-zero: 0 < x =⇒ (∗f ∗ sqrt) (x) 6= 0
using hypreal-sqrt-gt-zero-pow2 by fastforce

lemma hypreal-inverse-sqrt-pow2 :
0 < x =⇒ inverse ((∗f ∗ sqrt)(x)) ^ 2 = inverse x

by (simp add: hypreal-sqrt-gt-zero-pow2 power-inverse)

lemma hypreal-sqrt-mult-distrib:∧
x y. [[0 < x; 0 <y]] =⇒
(∗f ∗ sqrt)(x∗y) = (∗f ∗ sqrt)(x) ∗ (∗f ∗ sqrt)(y)

by transfer (auto intro: real-sqrt-mult)

lemma hypreal-sqrt-mult-distrib2 :
[[0≤x; 0≤y]] =⇒ (∗f ∗ sqrt)(x∗y) = (∗f ∗ sqrt)(x) ∗ (∗f ∗ sqrt)(y)

by (auto intro: hypreal-sqrt-mult-distrib simp add: order-le-less)

lemma hypreal-sqrt-approx-zero [simp]:
assumes 0 < x
shows ((∗f ∗ sqrt) x ≈ 0) ←→ (x ≈ 0)

proof −
have (∗f ∗ sqrt) x ∈ Infinitesimal ←→ ((∗f ∗ sqrt) x)2 ∈ Infinitesimal

by (metis Infinitesimal-hrealpow pos2 power2-eq-square Infinitesimal-square-iff)
also have ... ←→ x ∈ Infinitesimal

by (simp add: assms hypreal-sqrt-gt-zero-pow2)
finally show ?thesis

using mem-infmal-iff by blast
qed

THEORY “HTranscendental” 134

lemma hypreal-sqrt-approx-zero2 [simp]:
0 ≤ x =⇒ ((∗f ∗ sqrt)(x) ≈ 0) = (x ≈ 0)
by (auto simp add: order-le-less)

lemma hypreal-sqrt-gt-zero:
∧

x. 0 < x =⇒ 0 < (∗f ∗ sqrt)(x)
by transfer (simp add: real-sqrt-gt-zero)

lemma hypreal-sqrt-ge-zero: 0 ≤ x =⇒ 0 ≤ (∗f ∗ sqrt)(x)
by (auto intro: hypreal-sqrt-gt-zero simp add: order-le-less)

lemma hypreal-sqrt-lessI :∧
x u. [[0 < u; x < u2]] =⇒ (∗f ∗ sqrt) x < u

proof transfer
show

∧
x u. [[0 < u; x < u2]] =⇒ sqrt x < u

by (metis less-le real-sqrt-less-iff real-sqrt-pow2 real-sqrt-power)
qed

lemma hypreal-sqrt-hrabs [simp]:
∧

x. (∗f ∗ sqrt)(x2) = |x|
by transfer simp

lemma hypreal-sqrt-hrabs2 [simp]:
∧

x. (∗f ∗ sqrt)(x∗x) = |x|
by transfer simp

lemma hypreal-sqrt-hyperpow-hrabs [simp]:∧
x. (∗f ∗ sqrt)(x pow (hypnat-of-nat 2)) = |x|

by transfer simp

lemma star-sqrt-HFinite: [[x ∈ HFinite; 0 ≤ x]] =⇒ (∗f ∗ sqrt) x ∈ HFinite
by (metis HFinite-square-iff hypreal-sqrt-pow2-iff power2-eq-square)

lemma st-hypreal-sqrt:
assumes x ∈ HFinite 0 ≤ x
shows st((∗f ∗ sqrt) x) = (∗f ∗ sqrt)(st x)

proof (rule power-inject-base)
show st ((∗f ∗ sqrt) x) ^ Suc 1 = (∗f ∗ sqrt) (st x) ^ Suc 1

using assms hypreal-sqrt-pow2-iff [of x]
by (metis HFinite-square-iff hypreal-sqrt-hrabs2 power2-eq-square st-hrabs st-mult)

show 0 ≤ st ((∗f ∗ sqrt) x)
by (simp add: assms hypreal-sqrt-ge-zero st-zero-le star-sqrt-HFinite)

show 0 ≤ (∗f ∗ sqrt) (st x)
by (simp add: assms hypreal-sqrt-ge-zero st-zero-le)

qed

lemma hypreal-sqrt-sum-squares-ge1 [simp]:
∧

x y. x ≤ (∗f ∗ sqrt)(x2 + y2)
by transfer (rule real-sqrt-sum-squares-ge1)

lemma HFinite-hypreal-sqrt-imp-HFinite:
[[0 ≤ x; (∗f ∗ sqrt) x ∈ HFinite]] =⇒ x ∈ HFinite
by (metis HFinite-mult hypreal-sqrt-pow2-iff power2-eq-square)

THEORY “HTranscendental” 135

lemma HFinite-hypreal-sqrt-iff [simp]:
0 ≤ x =⇒ ((∗f ∗ sqrt) x ∈ HFinite) = (x ∈ HFinite)
by (blast intro: star-sqrt-HFinite HFinite-hypreal-sqrt-imp-HFinite)

lemma Infinitesimal-hypreal-sqrt:
[[0 ≤ x; x ∈ Infinitesimal]] =⇒ (∗f ∗ sqrt) x ∈ Infinitesimal

by (simp add: mem-infmal-iff)

lemma Infinitesimal-hypreal-sqrt-imp-Infinitesimal:
[[0 ≤ x; (∗f ∗ sqrt) x ∈ Infinitesimal]] =⇒ x ∈ Infinitesimal

using hypreal-sqrt-approx-zero2 mem-infmal-iff by blast

lemma Infinitesimal-hypreal-sqrt-iff [simp]:
0 ≤ x =⇒ ((∗f ∗ sqrt) x ∈ Infinitesimal) = (x ∈ Infinitesimal)

by (blast intro: Infinitesimal-hypreal-sqrt-imp-Infinitesimal Infinitesimal-hypreal-sqrt)

lemma HInfinite-hypreal-sqrt:
[[0 ≤ x; x ∈ HInfinite]] =⇒ (∗f ∗ sqrt) x ∈ HInfinite

by (simp add: HInfinite-HFinite-iff)

lemma HInfinite-hypreal-sqrt-imp-HInfinite:
[[0 ≤ x; (∗f ∗ sqrt) x ∈ HInfinite]] =⇒ x ∈ HInfinite

using HFinite-hypreal-sqrt-iff HInfinite-HFinite-iff by blast

lemma HInfinite-hypreal-sqrt-iff [simp]:
0 ≤ x =⇒ ((∗f ∗ sqrt) x ∈ HInfinite) = (x ∈ HInfinite)

by (blast intro: HInfinite-hypreal-sqrt HInfinite-hypreal-sqrt-imp-HInfinite)

lemma HFinite-exp [simp]:
sumhr (0 , whn, λn. inverse (fact n) ∗ x ^ n) ∈ HFinite
unfolding sumhr-app star-zero-def starfun2-star-of atLeast0LessThan
by (metis NSBseqD2 NSconvergent-NSBseq convergent-NSconvergent-iff summable-iff-convergent

summable-exp)

lemma exphr-zero [simp]: exphr 0 = 1
proof −

have ∀ x>1 . 1 = sumhr (0 , 1 , λn. inverse (fact n) ∗ 0 ^ n) + sumhr (1 , x, λn.
inverse (fact n) ∗ 0 ^ n)

unfolding sumhr-app by transfer (simp add: power-0-left)
then have sumhr (0 , 1 , λn. inverse (fact n) ∗ 0 ^ n) + sumhr (1 , whn, λn.

inverse (fact n) ∗ 0 ^ n) ≈ 1
by auto

then show ?thesis
unfolding exphr-def
using sumhr-split-add [OF hypnat-one-less-hypnat-omega] st-unique by auto

qed

lemma coshr-zero [simp]: coshr 0 = 1

THEORY “HTranscendental” 136

proof −
have ∀ x>1 . 1 = sumhr (0 , 1 , λn. cos-coeff n ∗ 0 ^ n) + sumhr (1 , x, λn.

cos-coeff n ∗ 0 ^ n)
unfolding sumhr-app by transfer (simp add: power-0-left)

then have sumhr (0 , 1 , λn. cos-coeff n ∗ 0 ^ n) + sumhr (1 , whn, λn. cos-coeff
n ∗ 0 ^ n) ≈ 1

by auto
then show ?thesis

unfolding coshr-def
using sumhr-split-add [OF hypnat-one-less-hypnat-omega] st-unique by auto

qed

lemma STAR-exp-zero-approx-one [simp]: (∗f ∗ exp) (0 ::hypreal) ≈ 1
proof −
have (∗f ∗ exp) (0 ::real star) = 1

by transfer simp
then show ?thesis

by auto
qed

lemma STAR-exp-Infinitesimal:
assumes x ∈ Infinitesimal shows (∗f ∗ exp) (x::hypreal) ≈ 1

proof (cases x = 0)
case False
have NSDERIV exp 0 :> 1

by (metis DERIV-exp NSDERIV-DERIV-iff exp-zero)
then have ((∗f ∗ exp) x − 1) / x ≈ 1

using nsderiv-def False NSDERIVD2 assms by fastforce
then have (∗f ∗ exp) x − 1 ≈ x

using NSDERIVD4 ‹NSDERIV exp 0 :> 1 › assms by fastforce
then show ?thesis
by (meson Infinitesimal-approx approx-minus-iff approx-trans2 assms not-Infinitesimal-not-zero)

qed auto

lemma STAR-exp-epsilon [simp]: (∗f ∗ exp) ε ≈ 1
by (auto intro: STAR-exp-Infinitesimal)

lemma STAR-exp-add:∧
(x:: ′a:: {banach,real-normed-field} star) y. (∗f ∗ exp)(x + y) = (∗f ∗ exp) x ∗

(∗f ∗ exp) y
by transfer (rule exp-add)

lemma exphr-hypreal-of-real-exp-eq: exphr x = hypreal-of-real (exp x)
proof −

have (λn. inverse (fact n) ∗ x ^ n) sums exp x
using exp-converges [of x] by simp

then have (λn.
∑

n<n. inverse (fact n) ∗ x ^ n) −−−−→NS exp x
using NSsums-def sums-NSsums-iff by blast

then have hypreal-of-real (exp x) ≈ sumhr (0 , whn, λn. inverse (fact n) ∗ x ^

THEORY “HTranscendental” 137

n)
unfolding starfunNat-sumr [symmetric] atLeast0LessThan
using HNatInfinite-whn NSLIMSEQ-def approx-sym by blast

then show ?thesis
unfolding exphr-def using st-eq-approx-iff by auto

qed

lemma starfun-exp-ge-add-one-self [simp]:
∧

x::hypreal. 0 ≤ x =⇒ (1 + x) ≤ (
∗f ∗ exp) x

by transfer (rule exp-ge-add-one-self-aux)

exp maps infinities to infinities
lemma starfun-exp-HInfinite:

fixes x :: hypreal
assumes x ∈ HInfinite 0 ≤ x
shows (∗f ∗ exp) x ∈ HInfinite

proof −
have x ≤ 1 + x

by simp
also have . . . ≤ (∗f ∗ exp) x

by (simp add: ‹0 ≤ x›)
finally show ?thesis

using HInfinite-ge-HInfinite assms by blast
qed

lemma starfun-exp-minus:∧
x:: ′a:: {banach,real-normed-field} star . (∗f ∗ exp) (−x) = inverse((∗f ∗ exp) x)

by transfer (rule exp-minus)

exp maps infinitesimals to infinitesimals
lemma starfun-exp-Infinitesimal:

fixes x :: hypreal
assumes x ∈ HInfinite x ≤ 0
shows (∗f ∗ exp) x ∈ Infinitesimal

proof −
obtain y where x = −y y ≥ 0

by (metis abs-of-nonpos assms(2) eq-abs-iff ′)
then have (∗f ∗ exp) y ∈ HInfinite

using HInfinite-minus-iff assms(1) starfun-exp-HInfinite by blast
then show ?thesis

by (simp add: HInfinite-inverse-Infinitesimal ‹x = − y› starfun-exp-minus)
qed

lemma starfun-exp-gt-one [simp]:
∧

x::hypreal. 0 < x =⇒ 1 < (∗f ∗ exp) x
by transfer (rule exp-gt-one)

abbreviation real-ln :: real ⇒ real where
real-ln ≡ ln

THEORY “HTranscendental” 138

lemma starfun-ln-exp [simp]:
∧

x. (∗f ∗ real-ln) ((∗f ∗ exp) x) = x
by transfer (rule ln-exp)

lemma starfun-exp-ln-iff [simp]:
∧

x. ((∗f ∗ exp)((∗f ∗ real-ln) x) = x) = (0 < x)
by transfer (rule exp-ln-iff)

lemma starfun-exp-ln-eq:
∧

u x. (∗f ∗ exp) u = x =⇒ (∗f ∗ real-ln) x = u
by transfer (rule ln-unique)

lemma starfun-ln-less-self [simp]:
∧

x. 0 < x =⇒ (∗f ∗ real-ln) x < x
by transfer (rule ln-less-self)

lemma starfun-ln-ge-zero [simp]:
∧

x. 1 ≤ x =⇒ 0 ≤ (∗f ∗ real-ln) x
by transfer (rule ln-ge-zero)

lemma starfun-ln-gt-zero [simp]:
∧

x .1 < x =⇒ 0 < (∗f ∗ real-ln) x
by transfer (rule ln-gt-zero)

lemma starfun-ln-not-eq-zero [simp]:
∧

x. [[0 < x; x 6= 1]] =⇒ (∗f ∗ real-ln) x 6= 0
by transfer simp

lemma starfun-ln-HFinite: [[x ∈ HFinite; 1 ≤ x]] =⇒ (∗f ∗ real-ln) x ∈ HFinite
by (metis HFinite-HInfinite-iff less-le-trans starfun-exp-HInfinite starfun-exp-ln-iff

starfun-ln-ge-zero zero-less-one)

lemma starfun-ln-inverse:
∧

x. 0 < x =⇒ (∗f ∗ real-ln) (inverse x) = −(∗f ∗ ln)
x

by transfer (rule ln-inverse)

lemma starfun-abs-exp-cancel:
∧

x. |(∗f ∗ exp) (x::hypreal)| = (∗f ∗ exp) x
by transfer (rule abs-exp-cancel)

lemma starfun-exp-less-mono:
∧

x y::hypreal. x < y =⇒ (∗f ∗ exp) x < (∗f ∗ exp)
y

by transfer (rule exp-less-mono)

lemma starfun-exp-HFinite:
fixes x :: hypreal
assumes x ∈ HFinite
shows (∗f ∗ exp) x ∈ HFinite

proof −
obtain u where u ∈ � |x| < u

using HFiniteD assms by force
with assms have |(∗f ∗ exp) x| < (∗f ∗ exp) u

using starfun-abs-exp-cancel starfun-exp-less-mono by auto
with ‹u ∈ �› show ?thesis

by (force simp: HFinite-def Reals-eq-Standard)
qed

THEORY “HTranscendental” 139

lemma starfun-exp-add-HFinite-Infinitesimal-approx:
fixes x :: hypreal
shows [[x ∈ Infinitesimal; z ∈ HFinite]] =⇒ (∗f ∗ exp) (z + x::hypreal) ≈ (∗f ∗

exp) z
using STAR-exp-Infinitesimal approx-mult2 starfun-exp-HFinite by (fastforce

simp add: STAR-exp-add)

lemma starfun-ln-HInfinite:
[[x ∈ HInfinite; 0 < x]] =⇒ (∗f ∗ real-ln) x ∈ HInfinite
by (metis HInfinite-HFinite-iff starfun-exp-HFinite starfun-exp-ln-iff)

lemma starfun-exp-HInfinite-Infinitesimal-disj:
fixes x :: hypreal
shows x ∈ HInfinite =⇒ (∗f ∗ exp) x ∈ HInfinite ∨ (∗f ∗ exp) (x::hypreal) ∈

Infinitesimal
by (meson linear starfun-exp-HInfinite starfun-exp-Infinitesimal)

lemma starfun-ln-HFinite-not-Infinitesimal:
[[x ∈ HFinite − Infinitesimal; 0 < x]] =⇒ (∗f ∗ real-ln) x ∈ HFinite

by (metis DiffD1 DiffD2 HInfinite-HFinite-iff starfun-exp-HInfinite-Infinitesimal-disj
starfun-exp-ln-iff)

lemma starfun-ln-Infinitesimal-HInfinite:
assumes x ∈ Infinitesimal 0 < x
shows (∗f ∗ real-ln) x ∈ HInfinite

proof −
have inverse x ∈ HInfinite

using Infinitesimal-inverse-HInfinite assms by blast
then show ?thesis

using HInfinite-minus-iff assms(2) starfun-ln-HInfinite starfun-ln-inverse by
fastforce
qed

lemma starfun-ln-less-zero:
∧

x. [[0 < x; x < 1]] =⇒ (∗f ∗ real-ln) x < 0
by transfer (rule ln-less-zero)

lemma starfun-ln-Infinitesimal-less-zero:
[[x ∈ Infinitesimal; 0 < x]] =⇒ (∗f ∗ real-ln) x < 0
by (auto intro!: starfun-ln-less-zero simp add: Infinitesimal-def)

lemma starfun-ln-HInfinite-gt-zero:
[[x ∈ HInfinite; 0 < x]] =⇒ 0 < (∗f ∗ real-ln) x
by (auto intro!: starfun-ln-gt-zero simp add: HInfinite-def)

lemma HFinite-sin [simp]: sumhr (0 , whn, λn. sin-coeff n ∗ x ^ n) ∈ HFinite
proof −

have summable (λi. sin-coeff i ∗ x ^ i)

THEORY “HTranscendental” 140

using summable-norm-sin [of x] by (simp add: summable-rabs-cancel)
then have (∗f ∗ (λn.

∑
n<n. sin-coeff n ∗ x ^ n)) whn ∈ HFinite

unfolding summable-sums-iff sums-NSsums-iff NSsums-def NSLIMSEQ-def
using HFinite-star-of HNatInfinite-whn approx-HFinite approx-sym by blast

then show ?thesis
unfolding sumhr-app
by (simp only: star-zero-def starfun2-star-of atLeast0LessThan)

qed

lemma STAR-sin-zero [simp]: (∗f ∗ sin) 0 = 0
by transfer (rule sin-zero)

lemma STAR-sin-Infinitesimal [simp]:
fixes x :: ′a::{real-normed-field,banach} star
assumes x ∈ Infinitesimal
shows (∗f ∗ sin) x ≈ x

proof (cases x = 0)
case False
have NSDERIV sin 0 :> 1

by (metis DERIV-sin NSDERIV-DERIV-iff cos-zero)
then have (∗f ∗ sin) x / x ≈ 1

using False NSDERIVD2 assms by fastforce
with assms show ?thesis

unfolding star-one-def
by (metis False Infinitesimal-approx Infinitesimal-ratio approx-star-of-HFinite)

qed auto

lemma HFinite-cos [simp]: sumhr (0 , whn, λn. cos-coeff n ∗ x ^ n) ∈ HFinite
proof −

have summable (λi. cos-coeff i ∗ x ^ i)
using summable-norm-cos [of x] by (simp add: summable-rabs-cancel)

then have (∗f ∗ (λn.
∑

n<n. cos-coeff n ∗ x ^ n)) whn ∈ HFinite
unfolding summable-sums-iff sums-NSsums-iff NSsums-def NSLIMSEQ-def
using HFinite-star-of HNatInfinite-whn approx-HFinite approx-sym by blast

then show ?thesis
unfolding sumhr-app
by (simp only: star-zero-def starfun2-star-of atLeast0LessThan)

qed

lemma STAR-cos-zero [simp]: (∗f ∗ cos) 0 = 1
by transfer (rule cos-zero)

lemma STAR-cos-Infinitesimal [simp]:
fixes x :: ′a::{real-normed-field,banach} star
assumes x ∈ Infinitesimal
shows (∗f ∗ cos) x ≈ 1

proof (cases x = 0)
case False
have NSDERIV cos 0 :> 0

THEORY “HTranscendental” 141

by (metis DERIV-cos NSDERIV-DERIV-iff add.inverse-neutral sin-zero)
then have (∗f ∗ cos) x − 1 ≈ 0

using NSDERIV-approx assms by fastforce
with assms show ?thesis

using approx-minus-iff by blast
qed auto

lemma STAR-tan-zero [simp]: (∗f ∗ tan) 0 = 0
by transfer (rule tan-zero)

lemma STAR-tan-Infinitesimal [simp]:
assumes x ∈ Infinitesimal
shows (∗f ∗ tan) x ≈ x

proof (cases x = 0)
case False
have NSDERIV tan 0 :> 1

using DERIV-tan [of 0] by (simp add: NSDERIV-DERIV-iff)
then have (∗f ∗ tan) x / x ≈ 1

using False NSDERIVD2 assms by fastforce
with assms show ?thesis

unfolding star-one-def
by (metis False Infinitesimal-approx Infinitesimal-ratio approx-star-of-HFinite)

qed auto

lemma STAR-sin-cos-Infinitesimal-mult:
fixes x :: ′a::{real-normed-field,banach} star
shows x ∈ Infinitesimal =⇒ (∗f ∗ sin) x ∗ (∗f ∗ cos) x ≈ x
using approx-mult-HFinite [of (∗f ∗ sin) x - (∗f ∗ cos) x 1]
by (simp add: Infinitesimal-subset-HFinite [THEN subsetD])

lemma HFinite-pi: hypreal-of-real pi ∈ HFinite
by simp

lemma STAR-sin-Infinitesimal-divide:
fixes x :: ′a::{real-normed-field,banach} star
shows [[x ∈ Infinitesimal; x 6= 0]] =⇒ (∗f ∗ sin) x/x ≈ 1
using DERIV-sin [of 0 :: ′a]
by (simp add: NSDERIV-DERIV-iff [symmetric] nsderiv-def)

14.2 Proving sin ∗(1/n)× 1/(1/n) ≈ 1 for n =∞
lemma lemma-sin-pi:

n ∈ HNatInfinite
=⇒ (∗f ∗ sin) (inverse (hypreal-of-hypnat n))/(inverse (hypreal-of-hypnat n))

≈ 1
by (simp add: STAR-sin-Infinitesimal-divide zero-less-HNatInfinite)

lemma STAR-sin-inverse-HNatInfinite:

THEORY “HTranscendental” 142

n ∈ HNatInfinite
=⇒ (∗f ∗ sin) (inverse (hypreal-of-hypnat n)) ∗ hypreal-of-hypnat n ≈ 1

by (metis field-class.field-divide-inverse inverse-inverse-eq lemma-sin-pi)

lemma Infinitesimal-pi-divide-HNatInfinite:
N ∈ HNatInfinite
=⇒ hypreal-of-real pi/(hypreal-of-hypnat N) ∈ Infinitesimal

by (simp add: Infinitesimal-HFinite-mult2 field-class.field-divide-inverse)

lemma pi-divide-HNatInfinite-not-zero [simp]:
N ∈ HNatInfinite =⇒ hypreal-of-real pi/(hypreal-of-hypnat N) 6= 0
by (simp add: zero-less-HNatInfinite)

lemma STAR-sin-pi-divide-HNatInfinite-approx-pi:
assumes n ∈ HNatInfinite
shows (∗f ∗ sin) (hypreal-of-real pi / hypreal-of-hypnat n) ∗ hypreal-of-hypnat n
≈

hypreal-of-real pi
proof −

have (∗f ∗ sin) (hypreal-of-real pi / hypreal-of-hypnat n) / (hypreal-of-real pi /
hypreal-of-hypnat n) ≈ 1

using Infinitesimal-pi-divide-HNatInfinite STAR-sin-Infinitesimal-divide assms
pi-divide-HNatInfinite-not-zero by blast
then have hypreal-of-hypnat n ∗ star-of sin ? (hypreal-of-real pi / hypreal-of-hypnat

n) / hypreal-of-real pi ≈ 1
by (simp add: mult.commute starfun-def)

then show ?thesis
apply (simp add: starfun-def field-simps)

by (metis (no-types, lifting) approx-mult-subst-star-of approx-refl mult-cancel-right1
nonzero-eq-divide-eq pi-neq-zero star-of-eq-0)
qed

lemma STAR-sin-pi-divide-HNatInfinite-approx-pi2 :
n ∈ HNatInfinite
=⇒ hypreal-of-hypnat n ∗ (∗f ∗ sin) (hypreal-of-real pi/(hypreal-of-hypnat n))

≈ hypreal-of-real pi
by (metis STAR-sin-pi-divide-HNatInfinite-approx-pi mult.commute)

lemma starfunNat-pi-divide-n-Infinitesimal:
N ∈ HNatInfinite =⇒ (∗f ∗ (λx. pi / real x)) N ∈ Infinitesimal

by (simp add: Infinitesimal-HFinite-mult2 divide-inverse starfunNat-real-of-nat)

lemma STAR-sin-pi-divide-n-approx:
assumes N ∈ HNatInfinite
shows (∗f ∗ sin) ((∗f ∗ (λx. pi / real x)) N) ≈ hypreal-of-real pi/(hypreal-of-hypnat

N)
proof −

have ∃ s. (∗f ∗ sin) ((∗f ∗ (λn. pi / real n)) N) ≈ s ∧ hypreal-of-real pi /
hypreal-of-hypnat N ≈ s

THEORY “HTranscendental” 143

by (metis (lifting) Infinitesimal-approx Infinitesimal-pi-divide-HNatInfinite STAR-sin-Infinitesimal
assms starfunNat-pi-divide-n-Infinitesimal)

then show ?thesis
by (meson approx-trans2)

qed

lemma NSLIMSEQ-sin-pi: (λn. real n ∗ sin (pi / real n)) −−−−→NS pi
proof −
have ∗: hypreal-of-hypnat N ∗ (∗f ∗ sin) ((∗f ∗ (λx. pi / real x)) N) ≈ hypreal-of-real

pi
if N ∈ HNatInfinite
for N :: nat star
using that

by simp (metis STAR-sin-pi-divide-HNatInfinite-approx-pi2 starfunNat-real-of-nat)
show ?thesis

by (simp add: NSLIMSEQ-def starfunNat-real-of-nat) (metis ∗ starfun-o2)
qed

lemma NSLIMSEQ-cos-one: (λn. cos (pi / real n))−−−−→NS 1
proof −

have (∗f ∗ cos) ((∗f ∗ (λx. pi / real x)) N) ≈ 1
if N ∈ HNatInfinite for N
using that STAR-cos-Infinitesimal starfunNat-pi-divide-n-Infinitesimal by blast

then show ?thesis
by (simp add: NSLIMSEQ-def) (metis STAR-cos-Infinitesimal starfunNat-pi-divide-n-Infinitesimal

starfun-o2)
qed

lemma NSLIMSEQ-sin-cos-pi:
(λn. real n ∗ sin (pi / real n) ∗ cos (pi / real n)) −−−−→NS pi
using NSLIMSEQ-cos-one NSLIMSEQ-mult NSLIMSEQ-sin-pi by force

A familiar approximation to cos x when x is small
lemma STAR-cos-Infinitesimal-approx:

fixes x :: ′a::{real-normed-field,banach} star
shows x ∈ Infinitesimal =⇒ (∗f ∗ cos) x ≈ 1 − x2

by (metis Infinitesimal-square-iff STAR-cos-Infinitesimal approx-diff approx-sym
diff-zero mem-infmal-iff power2-eq-square)

lemma STAR-cos-Infinitesimal-approx2 :
fixes x :: hypreal
assumes x ∈ Infinitesimal
shows (∗f ∗ cos) x ≈ 1 − (x2)/2

proof −
have 1 ≈ 1 − x2 / 2

using assms
by (auto intro: Infinitesimal-SReal-divide simp add: Infinitesimal-approx-minus

[symmetric] numeral-2-eq-2)
then show ?thesis

THEORY “NSCA” 144

using STAR-cos-Infinitesimal approx-trans assms by blast
qed

end

15 Non-Standard Complex Analysis
theory NSCA
imports NSComplex HTranscendental
begin

abbreviation

SComplex :: hcomplex set where
SComplex ≡ Standard

definition — standard part map
stc :: hcomplex => hcomplex where
stc x = (SOME r . x ∈ HFinite ∧ r∈SComplex ∧ r ≈ x)

15.1 Closure Laws for SComplex, the Standard Complex
Numbers

lemma SComplex-minus-iff [simp]: (−x ∈ SComplex) = (x ∈ SComplex)
using Standard-minus by fastforce

lemma SComplex-add-cancel:
[[x + y ∈ SComplex; y ∈ SComplex]] =⇒ x ∈ SComplex
using Standard-diff by fastforce

lemma SReal-hcmod-hcomplex-of-complex [simp]:
hcmod (hcomplex-of-complex r) ∈ �
by (simp add: Reals-eq-Standard)

lemma SReal-hcmod-numeral: hcmod (numeral w ::hcomplex) ∈ �
by simp

lemma SReal-hcmod-SComplex: x ∈ SComplex =⇒ hcmod x ∈ �
by (simp add: Reals-eq-Standard)

lemma SComplex-divide-numeral:
r ∈ SComplex =⇒ r/(numeral w::hcomplex) ∈ SComplex
by simp

lemma SComplex-UNIV-complex:
{x. hcomplex-of-complex x ∈ SComplex} = (UNIV ::complex set)
by simp

lemma SComplex-iff : (x ∈ SComplex) = (∃ y. x = hcomplex-of-complex y)

THEORY “NSCA” 145

by (simp add: Standard-def image-def)

lemma hcomplex-of-complex-image:
range hcomplex-of-complex = SComplex
by (simp add: Standard-def)

lemma inv-hcomplex-of-complex-image: inv hcomplex-of-complex ‘SComplex = UNIV
by (auto simp add: Standard-def image-def) (metis inj-star-of inv-f-f)

lemma SComplex-hcomplex-of-complex-image:
[[∃ x. x ∈ P; P ≤ SComplex]] =⇒ ∃Q. P = hcomplex-of-complex ‘ Q

by (metis Standard-def subset-imageE)

lemma SComplex-SReal-dense:
[[x ∈ SComplex; y ∈ SComplex; hcmod x < hcmod y
]] =⇒ ∃ r ∈ Reals. hcmod x< r ∧ r < hcmod y

by (simp add: SReal-dense SReal-hcmod-SComplex)

15.2 The Finite Elements form a Subring
lemma HFinite-hcmod-hcomplex-of-complex [simp]:

hcmod (hcomplex-of-complex r) ∈ HFinite
by (auto intro!: SReal-subset-HFinite [THEN subsetD])

lemma HFinite-hcmod-iff [simp]: hcmod x ∈ HFinite ←→ x ∈ HFinite
by (simp add: HFinite-def)

lemma HFinite-bounded-hcmod:
[[x ∈ HFinite; y ≤ hcmod x; 0 ≤ y]] =⇒ y ∈ HFinite
using HFinite-bounded HFinite-hcmod-iff by blast

15.3 The Complex Infinitesimals form a Subring
lemma Infinitesimal-hcmod-iff :
(z ∈ Infinitesimal) = (hcmod z ∈ Infinitesimal)
by (simp add: Infinitesimal-def)

lemma HInfinite-hcmod-iff : (z ∈ HInfinite) = (hcmod z ∈ HInfinite)
by (simp add: HInfinite-def)

lemma HFinite-diff-Infinitesimal-hcmod:
x ∈ HFinite − Infinitesimal =⇒ hcmod x ∈ HFinite − Infinitesimal
by (simp add: Infinitesimal-hcmod-iff)

lemma hcmod-less-Infinitesimal:
[[e ∈ Infinitesimal; hcmod x < hcmod e]] =⇒ x ∈ Infinitesimal
by (auto elim: hrabs-less-Infinitesimal simp add: Infinitesimal-hcmod-iff)

lemma hcmod-le-Infinitesimal:
[[e ∈ Infinitesimal; hcmod x ≤ hcmod e]] =⇒ x ∈ Infinitesimal

THEORY “NSCA” 146

by (auto elim: hrabs-le-Infinitesimal simp add: Infinitesimal-hcmod-iff)

15.4 The “Infinitely Close” Relation
lemma approx-SComplex-mult-cancel-zero:
[[a ∈ SComplex; a 6= 0 ; a∗x ≈ 0]] =⇒ x ≈ 0
by (metis Infinitesimal-mult-disj SComplex-iff mem-infmal-iff star-of-Infinitesimal-iff-0

star-zero-def)

lemma approx-mult-SComplex1 : [[a ∈ SComplex; x ≈ 0]] =⇒ x∗a ≈ 0
using SComplex-iff approx-mult-subst-star-of by fastforce

lemma approx-mult-SComplex2 : [[a ∈ SComplex; x ≈ 0]] =⇒ a∗x ≈ 0
by (metis approx-mult-SComplex1 mult.commute)

lemma approx-mult-SComplex-zero-cancel-iff [simp]:
[[a ∈ SComplex; a 6= 0]] =⇒ (a∗x ≈ 0) = (x ≈ 0)
using approx-SComplex-mult-cancel-zero approx-mult-SComplex2 by blast

lemma approx-SComplex-mult-cancel:
[[a ∈ SComplex; a 6= 0 ; a∗w ≈ a∗z]] =⇒ w ≈ z

by (metis approx-SComplex-mult-cancel-zero approx-minus-iff right-diff-distrib)

lemma approx-SComplex-mult-cancel-iff1 [simp]:
[[a ∈ SComplex; a 6= 0]] =⇒ (a∗w ≈ a∗z) = (w ≈ z)

by (metis HFinite-star-of SComplex-iff approx-SComplex-mult-cancel approx-mult2)

lemma approx-hcmod-approx-zero: (x ≈ y) = (hcmod (y − x) ≈ 0)
by (simp add: Infinitesimal-hcmod-iff approx-def hnorm-minus-commute)

lemma approx-approx-zero-iff : (x ≈ 0) = (hcmod x ≈ 0)
by (simp add: approx-hcmod-approx-zero)

lemma approx-minus-zero-cancel-iff [simp]: (−x ≈ 0) = (x ≈ 0)
by (simp add: approx-def)

lemma Infinitesimal-hcmod-add-diff :
u ≈ 0 =⇒ hcmod(x + u) − hcmod x ∈ Infinitesimal

by (metis add.commute add.left-neutral approx-add-right-iff approx-def approx-hnorm)

lemma approx-hcmod-add-hcmod: u ≈ 0 =⇒ hcmod(x + u) ≈ hcmod x
using Infinitesimal-hcmod-add-diff approx-def by blast

15.5 Zero is the Only Infinitesimal Complex Number
lemma Infinitesimal-less-SComplex:
[[x ∈ SComplex; y ∈ Infinitesimal; 0 < hcmod x]] =⇒ hcmod y < hcmod x

THEORY “NSCA” 147

by (auto intro: Infinitesimal-less-SReal SReal-hcmod-SComplex simp add: In-
finitesimal-hcmod-iff)

lemma SComplex-Int-Infinitesimal-zero: SComplex Int Infinitesimal = {0}
by (auto simp add: Standard-def Infinitesimal-hcmod-iff)

lemma SComplex-Infinitesimal-zero:
[[x ∈ SComplex; x ∈ Infinitesimal]] =⇒ x = 0
using SComplex-iff by auto

lemma SComplex-HFinite-diff-Infinitesimal:
[[x ∈ SComplex; x 6= 0]] =⇒ x ∈ HFinite − Infinitesimal
using SComplex-iff by auto

lemma numeral-not-Infinitesimal [simp]:
numeral w 6= (0 ::hcomplex) =⇒ (numeral w::hcomplex) /∈ Infinitesimal
by (fast dest: Standard-numeral [THEN SComplex-Infinitesimal-zero])

lemma approx-SComplex-not-zero:
[[y ∈ SComplex; x ≈ y; y 6= 0]] =⇒ x 6= 0
by (auto dest: SComplex-Infinitesimal-zero approx-sym [THEN mem-infmal-iff

[THEN iffD2]])

lemma SComplex-approx-iff :
[[x ∈ SComplex; y ∈ SComplex]] =⇒ (x ≈ y) = (x = y)
by (auto simp add: Standard-def)

lemma approx-unique-complex:
[[r ∈ SComplex; s ∈ SComplex; r ≈ x; s ≈ x]] =⇒ r = s
by (blast intro: SComplex-approx-iff [THEN iffD1] approx-trans2)

15.6 Properties of hRe, hIm and HComplex
lemma abs-hRe-le-hcmod:

∧
x. |hRe x| ≤ hcmod x

by transfer (rule abs-Re-le-cmod)

lemma abs-hIm-le-hcmod:
∧

x. |hIm x| ≤ hcmod x
by transfer (rule abs-Im-le-cmod)

lemma Infinitesimal-hRe: x ∈ Infinitesimal =⇒ hRe x ∈ Infinitesimal
using Infinitesimal-hcmod-iff abs-hRe-le-hcmod hrabs-le-Infinitesimal by blast

lemma Infinitesimal-hIm: x ∈ Infinitesimal =⇒ hIm x ∈ Infinitesimal
using Infinitesimal-hcmod-iff abs-hIm-le-hcmod hrabs-le-Infinitesimal by blast

lemma Infinitesimal-HComplex:
assumes x: x ∈ Infinitesimal and y: y ∈ Infinitesimal
shows HComplex x y ∈ Infinitesimal

proof −

THEORY “NSCA” 148

have hcmod (HComplex 0 y) ∈ Infinitesimal
by (simp add: hcmod-i y)

moreover have hcmod (hcomplex-of-hypreal x) ∈ Infinitesimal
using Infinitesimal-hcmod-iff Infinitesimal-of-hypreal-iff x by blast

ultimately have hcmod (HComplex x y) ∈ Infinitesimal
by (metis Infinitesimal-add Infinitesimal-hcmod-iff add.right-neutral hcom-

plex-of-hypreal-add-HComplex)
then show ?thesis

by (simp add: Infinitesimal-hnorm-iff)
qed

lemma hcomplex-Infinitesimal-iff :
(x ∈ Infinitesimal) ←→ (hRe x ∈ Infinitesimal ∧ hIm x ∈ Infinitesimal)
using Infinitesimal-HComplex Infinitesimal-hIm Infinitesimal-hRe by fastforce

lemma hRe-diff [simp]:
∧

x y. hRe (x − y) = hRe x − hRe y
by transfer simp

lemma hIm-diff [simp]:
∧

x y. hIm (x − y) = hIm x − hIm y
by transfer simp

lemma approx-hRe: x ≈ y =⇒ hRe x ≈ hRe y
unfolding approx-def by (drule Infinitesimal-hRe) simp

lemma approx-hIm: x ≈ y =⇒ hIm x ≈ hIm y
unfolding approx-def by (drule Infinitesimal-hIm) simp

lemma approx-HComplex:
[[a ≈ b; c ≈ d]] =⇒ HComplex a c ≈ HComplex b d
unfolding approx-def by (simp add: Infinitesimal-HComplex)

lemma hcomplex-approx-iff :
(x ≈ y) = (hRe x ≈ hRe y ∧ hIm x ≈ hIm y)
unfolding approx-def by (simp add: hcomplex-Infinitesimal-iff)

lemma HFinite-hRe: x ∈ HFinite =⇒ hRe x ∈ HFinite
using HFinite-bounded-hcmod abs-ge-zero abs-hRe-le-hcmod by blast

lemma HFinite-hIm: x ∈ HFinite =⇒ hIm x ∈ HFinite
using HFinite-bounded-hcmod abs-ge-zero abs-hIm-le-hcmod by blast

lemma HFinite-HComplex:
assumes x ∈ HFinite y ∈ HFinite
shows HComplex x y ∈ HFinite

proof −
have HComplex x 0 ∈ HFinite HComplex 0 y ∈ HFinite

using HFinite-hcmod-iff assms hcmod-i by fastforce+
then have HComplex x 0 + HComplex 0 y ∈ HFinite

using HFinite-add by blast

THEORY “NSCA” 149

then show ?thesis
by simp

qed

lemma hcomplex-HFinite-iff :
(x ∈ HFinite) = (hRe x ∈ HFinite ∧ hIm x ∈ HFinite)
using HFinite-HComplex HFinite-hIm HFinite-hRe by fastforce

lemma hcomplex-HInfinite-iff :
(x ∈ HInfinite) = (hRe x ∈ HInfinite ∨ hIm x ∈ HInfinite)
by (simp add: HInfinite-HFinite-iff hcomplex-HFinite-iff)

lemma hcomplex-of-hypreal-approx-iff [simp]:
(hcomplex-of-hypreal x ≈ hcomplex-of-hypreal z) = (x ≈ z)
by (simp add: hcomplex-approx-iff)

lemma stc-part-Ex:
assumes x ∈ HFinite
shows ∃ t ∈ SComplex. x ≈ t

proof −
let ?t = HComplex (st (hRe x)) (st (hIm x))
have ?t ∈ SComplex

using HFinite-hIm HFinite-hRe Reals-eq-Standard assms st-SReal by auto
moreover have x ≈ ?t

by (simp add: HFinite-hIm HFinite-hRe assms hcomplex-approx-iff st-HFinite
st-eq-approx)

ultimately show ?thesis ..
qed

lemma stc-part-Ex1 : x ∈ HFinite =⇒ ∃ !t. t ∈ SComplex ∧ x ≈ t
using approx-sym approx-unique-complex stc-part-Ex by blast

15.7 Theorems About Monads
lemma monad-zero-hcmod-iff : (x ∈ monad 0) = (hcmod x ∈ monad 0)

by (simp add: Infinitesimal-monad-zero-iff [symmetric] Infinitesimal-hcmod-iff)

15.8 Theorems About Standard Part
lemma stc-approx-self : x ∈ HFinite =⇒ stc x ≈ x

unfolding stc-def
by (metis (no-types, lifting) approx-reorient someI-ex stc-part-Ex1)

lemma stc-SComplex: x ∈ HFinite =⇒ stc x ∈ SComplex
unfolding stc-def
by (metis (no-types, lifting) SComplex-iff approx-sym someI-ex stc-part-Ex)

lemma stc-HFinite: x ∈ HFinite =⇒ stc x ∈ HFinite
by (erule stc-SComplex [THEN Standard-subset-HFinite [THEN subsetD]])

THEORY “NSCA” 150

lemma stc-unique: [[y ∈ SComplex; y ≈ x]] =⇒ stc x = y
by (metis SComplex-approx-iff SComplex-iff approx-monad-iff approx-star-of-HFinite

stc-SComplex stc-approx-self)

lemma stc-SComplex-eq [simp]: x ∈ SComplex =⇒ stc x = x
by (simp add: stc-unique)

lemma stc-eq-approx:
[[x ∈ HFinite; y ∈ HFinite; stc x = stc y]] =⇒ x ≈ y
by (auto dest!: stc-approx-self elim!: approx-trans3)

lemma approx-stc-eq:
[[x ∈ HFinite; y ∈ HFinite; x ≈ y]] =⇒ stc x = stc y

by (metis approx-sym approx-trans3 stc-part-Ex1 stc-unique)

lemma stc-eq-approx-iff :
[[x ∈ HFinite; y ∈ HFinite]] =⇒ (x ≈ y) = (stc x = stc y)
by (blast intro: approx-stc-eq stc-eq-approx)

lemma stc-Infinitesimal-add-SComplex:
[[x ∈ SComplex; e ∈ Infinitesimal]] =⇒ stc(x + e) = x
using Infinitesimal-add-approx-self stc-unique by blast

lemma stc-Infinitesimal-add-SComplex2 :
[[x ∈ SComplex; e ∈ Infinitesimal]] =⇒ stc(e + x) = x
using Infinitesimal-add-approx-self2 stc-unique by blast

lemma HFinite-stc-Infinitesimal-add:
x ∈ HFinite =⇒ ∃ e ∈ Infinitesimal. x = stc(x) + e
by (blast dest!: stc-approx-self [THEN approx-sym] bex-Infinitesimal-iff2 [THEN

iffD2])

lemma stc-add:
[[x ∈ HFinite; y ∈ HFinite]] =⇒ stc (x + y) = stc(x) + stc(y)
by (simp add: stc-unique stc-SComplex stc-approx-self approx-add)

lemma stc-zero: stc 0 = 0
by simp

lemma stc-one: stc 1 = 1
by simp

lemma stc-minus: y ∈ HFinite =⇒ stc(−y) = −stc(y)
by (simp add: stc-unique stc-SComplex stc-approx-self approx-minus)

lemma stc-diff :
[[x ∈ HFinite; y ∈ HFinite]] =⇒ stc (x−y) = stc(x) − stc(y)
by (simp add: stc-unique stc-SComplex stc-approx-self approx-diff)

THEORY “CStar” 151

lemma stc-mult:
[[x ∈ HFinite; y ∈ HFinite]]

=⇒ stc (x ∗ y) = stc(x) ∗ stc(y)
by (simp add: stc-unique stc-SComplex stc-approx-self approx-mult-HFinite)

lemma stc-Infinitesimal: x ∈ Infinitesimal =⇒ stc x = 0
by (simp add: stc-unique mem-infmal-iff)

lemma stc-not-Infinitesimal: stc(x) 6= 0 =⇒ x /∈ Infinitesimal
by (fast intro: stc-Infinitesimal)

lemma stc-inverse:
[[x ∈ HFinite; stc x 6= 0]] =⇒ stc(inverse x) = inverse (stc x)
by (simp add: stc-unique stc-SComplex stc-approx-self approx-inverse stc-not-Infinitesimal)

lemma stc-divide [simp]:
[[x ∈ HFinite; y ∈ HFinite; stc y 6= 0]]

=⇒ stc(x/y) = (stc x) / (stc y)
by (simp add: divide-inverse stc-mult stc-not-Infinitesimal HFinite-inverse stc-inverse)

lemma stc-idempotent [simp]: x ∈ HFinite =⇒ stc(stc(x)) = stc(x)
by (blast intro: stc-HFinite stc-approx-self approx-stc-eq)

lemma HFinite-HFinite-hcomplex-of-hypreal:
z ∈ HFinite =⇒ hcomplex-of-hypreal z ∈ HFinite
by (simp add: hcomplex-HFinite-iff)

lemma SComplex-SReal-hcomplex-of-hypreal:
x ∈ � =⇒ hcomplex-of-hypreal x ∈ SComplex

by (simp add: Reals-eq-Standard)

lemma stc-hcomplex-of-hypreal:
z ∈ HFinite =⇒ stc(hcomplex-of-hypreal z) = hcomplex-of-hypreal (st z)
by (simp add: SComplex-SReal-hcomplex-of-hypreal st-SReal st-approx-self stc-unique)

lemma hmod-stc-eq:
assumes x ∈ HFinite
shows hcmod(stc x) = st(hcmod x)
by (metis SReal-hcmod-SComplex approx-HFinite approx-hnorm assms st-unique

stc-SComplex-eq stc-eq-approx-iff stc-part-Ex)

lemma Infinitesimal-hcnj-iff [simp]:
(hcnj z ∈ Infinitesimal) ←→ (z ∈ Infinitesimal)
by (simp add: Infinitesimal-hcmod-iff)

end

THEORY “CLim” 152

16 Star-transforms in NSA, Extending Sets of Com-
plex Numbers and Complex Functions

theory CStar
imports NSCA

begin

16.1 Properties of the ∗-Transform Applied to Sets of Reals
lemma STARC-hcomplex-of-complex-Int: ∗s∗ X ∩ SComplex = hcomplex-of-complex
‘ X

by (auto simp: Standard-def)

lemma lemma-not-hcomplexA: x /∈ hcomplex-of-complex ‘ A =⇒ ∀ y ∈ A. x 6=
hcomplex-of-complex y

by auto

16.2 Theorems about Nonstandard Extensions of Functions
lemma starfunC-hcpow:

∧
Z . (∗f ∗ (λz. z ^ n)) Z = Z pow hypnat-of-nat n

by transfer (rule refl)

lemma starfunCR-cmod: ∗f ∗ cmod = hcmod
by transfer (rule refl)

16.3 Internal Functions - Some Redundancy With ∗f ∗ Now
lemma starfun-Re: (∗f ∗ (λx. Re (f x))) = (λx. hRe ((∗f ∗ f) x))

by transfer (rule refl)

lemma starfun-Im: (∗f ∗ (λx. Im (f x))) = (λx. hIm ((∗f ∗ f) x))
by transfer (rule refl)

lemma starfunC-eq-Re-Im-iff :
(∗f ∗ f) x = z ←→ (∗f ∗ (λx. Re (f x))) x = hRe z ∧ (∗f ∗ (λx. Im (f x))) x =

hIm z
by (simp add: hcomplex-hRe-hIm-cancel-iff starfun-Re starfun-Im)

lemma starfunC-approx-Re-Im-iff :
(∗f ∗ f) x ≈ z ←→ (∗f ∗ (λx. Re (f x))) x ≈ hRe z ∧ (∗f ∗ (λx. Im (f x))) x ≈

hIm z
by (simp add: hcomplex-approx-iff starfun-Re starfun-Im)

end

17 Limits, Continuity and Differentiation for Com-
plex Functions

theory CLim

THEORY “CLim” 153

imports CStar
begin

declare epsilon-not-zero [simp]

lemma lemma-complex-mult-inverse-squared [simp]: x 6= 0 =⇒ x ∗ (inverse x)2 =
inverse x

for x :: complex
by (simp add: numeral-2-eq-2)

Changing the quantified variable. Install earlier?
lemma all-shift: (∀ x:: ′a::comm-ring-1 . P x) ←→ (∀ x. P (x − a))

by (metis add-diff-cancel)

17.1 Limit of Complex to Complex Function
lemma NSLIM-Re: f −a→NS L =⇒ (λx. Re (f x)) −a→NS Re L

by (simp add: NSLIM-def starfunC-approx-Re-Im-iff hRe-hcomplex-of-complex)

lemma NSLIM-Im: f −a→NS L =⇒ (λx. Im (f x)) −a→NS Im L
by (simp add: NSLIM-def starfunC-approx-Re-Im-iff hIm-hcomplex-of-complex)

lemma LIM-Re: f −a→ L =⇒ (λx. Re (f x)) −a→ Re L
for f :: ′a::real-normed-vector ⇒ complex
by (simp add: LIM-NSLIM-iff NSLIM-Re)

lemma LIM-Im: f −a→ L =⇒ (λx. Im (f x)) −a→ Im L
for f :: ′a::real-normed-vector ⇒ complex
by (simp add: LIM-NSLIM-iff NSLIM-Im)

lemma LIM-cnj: f −a→ L =⇒ (λx. cnj (f x)) −a→ cnj L
for f :: ′a::real-normed-vector ⇒ complex
by (simp add: LIM-eq complex-cnj-diff [symmetric] del: complex-cnj-diff)

lemma LIM-cnj-iff : ((λx. cnj (f x)) −a→ cnj L) ←→ f −a→ L
for f :: ′a::real-normed-vector ⇒ complex
by (simp add: LIM-eq complex-cnj-diff [symmetric] del: complex-cnj-diff)

lemma starfun-norm: (∗f ∗ (λx. norm (f x))) = (λx. hnorm ((∗f ∗ f) x))
by transfer (rule refl)

lemma star-of-Re [simp]: star-of (Re x) = hRe (star-of x)
by transfer (rule refl)

lemma star-of-Im [simp]: star-of (Im x) = hIm (star-of x)
by transfer (rule refl)

Another equivalence result.

THEORY “CLim” 154

lemma NSCLIM-NSCRLIM-iff : f −x→NS L ←→ (λy. cmod (f y − L)) −x→NS

0
by (simp add: NSLIM-def starfun-norm

approx-approx-zero-iff [symmetric] approx-minus-iff [symmetric])

Much, much easier standard proof.
lemma CLIM-CRLIM-iff : f −x→ L ←→ (λy. cmod (f y − L)) −x→ 0

for f :: ′a::real-normed-vector ⇒ complex
by (simp add: LIM-eq)

So this is nicer nonstandard proof.
lemma NSCLIM-NSCRLIM-iff2 : f −x→NS L ←→ (λy. cmod (f y − L)) −x→NS

0
by (simp add: LIM-NSLIM-iff [symmetric] CLIM-CRLIM-iff)

lemma NSLIM-NSCRLIM-Re-Im-iff :
f −a→NS L ←→ (λx. Re (f x)) −a→NS Re L ∧ (λx. Im (f x)) −a→NS Im L
apply (auto intro: NSLIM-Re NSLIM-Im)
apply (auto simp add: NSLIM-def starfun-Re starfun-Im)
apply (auto dest!: spec)
apply (simp add: hcomplex-approx-iff)
done

lemma LIM-CRLIM-Re-Im-iff : f −a→ L ←→ (λx. Re (f x)) −a→ Re L ∧ (λx.
Im (f x)) −a→ Im L

for f :: ′a::real-normed-vector ⇒ complex
by (simp add: LIM-NSLIM-iff NSLIM-NSCRLIM-Re-Im-iff)

17.2 Continuity
lemma NSLIM-isContc-iff : f −a→NS f a ←→ (λh. f (a + h)) −0→NS f a

by (rule NSLIM-at0-iff)

17.3 Functions from Complex to Reals
lemma isNSContCR-cmod [simp]: isNSCont cmod a

by (auto intro: approx-hnorm
simp: starfunCR-cmod hcmod-hcomplex-of-complex [symmetric] isNSCont-def)

lemma isContCR-cmod [simp]: isCont cmod a
by (simp add: isNSCont-isCont-iff [symmetric])

lemma isCont-Re: isCont f a =⇒ isCont (λx. Re (f x)) a
for f :: ′a::real-normed-vector ⇒ complex
by (simp add: isCont-def LIM-Re)

lemma isCont-Im: isCont f a =⇒ isCont (λx. Im (f x)) a
for f :: ′a::real-normed-vector ⇒ complex
by (simp add: isCont-def LIM-Im)

THEORY “CLim” 155

17.4 Differentiation of Natural Number Powers
lemma CDERIV-pow [simp]: DERIV (λx. x ^ n) x :> complex-of-real (real n) ∗
(x ^ (n − Suc 0))

apply (induct n)
apply (drule-tac [2] DERIV-ident [THEN DERIV-mult])
apply (auto simp add: distrib-right of-nat-Suc)

apply (case-tac n)
apply (auto simp add: ac-simps)

done

Nonstandard version.
lemma NSCDERIV-pow: NSDERIV (λx. x ^ n) x :> complex-of-real (real n) ∗
(x ^ (n − 1))

by (metis CDERIV-pow NSDERIV-DERIV-iff One-nat-def)

Can’t relax the premise x 6= 0 : it isn’t continuous at zero.
lemma NSCDERIV-inverse: x 6= 0 =⇒ NSDERIV (λx. inverse x) x :> − (inverse
x)2

for x :: complex
unfolding numeral-2-eq-2 by (rule NSDERIV-inverse)

lemma CDERIV-inverse: x 6= 0 =⇒ DERIV (λx. inverse x) x :> − (inverse x)2
for x :: complex
unfolding numeral-2-eq-2 by (rule DERIV-inverse)

17.5 Derivative of Reciprocals (Function inverse)
lemma CDERIV-inverse-fun:

DERIV f x :> d =⇒ f x 6= 0 =⇒ DERIV (λx. inverse (f x)) x :> − (d ∗ inverse
((f x)2))

for x :: complex
unfolding numeral-2-eq-2 by (rule DERIV-inverse-fun)

lemma NSCDERIV-inverse-fun:
NSDERIV f x :> d =⇒ f x 6= 0 =⇒ NSDERIV (λx. inverse (f x)) x :> − (d ∗

inverse ((f x)2))
for x :: complex
unfolding numeral-2-eq-2 by (rule NSDERIV-inverse-fun)

17.6 Derivative of Quotient
lemma CDERIV-quotient:

DERIV f x :> d =⇒ DERIV g x :> e =⇒ g(x) 6= 0 =⇒
DERIV (λy. f y / g y) x :> (d ∗ g x − (e ∗ f x)) / (g x)2

for x :: complex
unfolding numeral-2-eq-2 by (rule DERIV-quotient)

lemma NSCDERIV-quotient:
NSDERIV f x :> d =⇒ NSDERIV g x :> e =⇒ g x 6= (0 ::complex) =⇒

THEORY “HLog” 156

NSDERIV (λy. f y / g y) x :> (d ∗ g x − (e ∗ f x)) / (g x)2
unfolding numeral-2-eq-2 by (rule NSDERIV-quotient)

17.7 Caratheodory Formulation of Derivative at a Point: Stan-
dard Proof

lemma CARAT-CDERIVD:
(∀ z. f z − f x = g z ∗ (z − x)) ∧ isNSCont g x ∧ g x = l =⇒ NSDERIV f x :> l
by clarify (rule CARAT-DERIVD)

end

18 Logarithms: Non-Standard Version
theory HLog

imports HTranscendental
begin

definition powhr :: hypreal ⇒ hypreal ⇒ hypreal (infixr ‹powhr› 80)
where [transfer-unfold]: x powhr a = starfun2 (powr) x a

definition hlog :: hypreal ⇒ hypreal ⇒ hypreal
where [transfer-unfold]: hlog a x = starfun2 log a x

lemma powhr : (star-n X) powhr (star-n Y) = star-n (λn. (X n) powr (Y n))
by (simp add: powhr-def starfun2-star-n)

lemma powhr-one-eq-one [simp]:
∧

a. 1 powhr a = 1
by transfer simp

lemma powhr-mult:
∧

a x y. 0 < x =⇒ 0 < y =⇒ (x ∗ y) powhr a = (x powhr a)
∗ (y powhr a)

by transfer (simp add: powr-mult)

lemma powhr-gt-zero [simp]:
∧

a x. 0 < x powhr a ←→ x 6= 0
by transfer simp

lemma powhr-not-zero [simp]:
∧

a x. x powhr a 6= 0 ←→ x 6= 0
by transfer simp

lemma powhr-divide:
∧

a x y. 0 ≤ x =⇒ 0 ≤ y =⇒ (x / y) powhr a = (x powhr
a) / (y powhr a)

by transfer (rule powr-divide)

lemma powhr-add:
∧

a b x. x powhr (a + b) = (x powhr a) ∗ (x powhr b)
by transfer (rule powr-add)

lemma powhr-powhr :
∧

a b x. (x powhr a) powhr b = x powhr (a ∗ b)
by transfer (rule powr-powr)

THEORY “HLog” 157

lemma powhr-powhr-swap:
∧

a b x. (x powhr a) powhr b = (x powhr b) powhr a
by transfer (rule powr-powr-swap)

lemma powhr-minus:
∧

a x. x powhr (− a) = inverse (x powhr a)
by transfer (rule powr-minus)

lemma powhr-minus-divide: x powhr (− a) = 1 / (x powhr a)
by (simp add: divide-inverse powhr-minus)

lemma powhr-less-mono:
∧

a b x. a < b =⇒ 1 < x =⇒ x powhr a < x powhr b
by transfer simp

lemma powhr-less-cancel:
∧

a b x. x powhr a < x powhr b =⇒ 1 < x =⇒ a < b
by transfer simp

lemma powhr-less-cancel-iff [simp]: 1 < x =⇒ x powhr a < x powhr b ←→ a < b
by (blast intro: powhr-less-cancel powhr-less-mono)

lemma powhr-le-cancel-iff [simp]: 1 < x =⇒ x powhr a ≤ x powhr b ←→ a ≤ b
by (simp add: linorder-not-less [symmetric])

lemma hlog: hlog (star-n X) (star-n Y) = star-n (λn. log (X n) (Y n))
by (simp add: hlog-def starfun2-star-n)

lemma hlog-starfun-ln:
∧

x. (∗f ∗ ln) x = hlog ((∗f ∗ exp) 1) x
by transfer (rule log-ln)

lemma powhr-hlog-cancel [simp]:
∧

a x. 0 < a =⇒ a 6= 1 =⇒ 0 < x =⇒ a powhr
(hlog a x) = x

by transfer simp

lemma hlog-powhr-cancel [simp]:
∧

a y. 0 < a =⇒ a 6= 1 =⇒ hlog a (a powhr y)
= y

by transfer simp

lemma hlog-mult:∧
a x y. hlog a (x ∗ y) = (if x 6=0 ∧ y 6=0 then hlog a x + hlog a y else 0)

by transfer (rule log-mult)

lemma hlog-as-starfun:
∧

a x. 0 < a =⇒ a 6= 1 =⇒ hlog a x = (∗f ∗ ln) x / (
∗f ∗ ln) a

by transfer (simp add: log-def)

lemma hlog-eq-div-starfun-ln-mult-hlog:∧
a b x. 0 < a =⇒ a 6= 1 =⇒ 0 < b =⇒ b 6= 1 =⇒ 0 < x =⇒
hlog a x = ((∗f ∗ ln) b / (∗f ∗ ln) a) ∗ hlog b x

by transfer (rule log-eq-div-ln-mult-log)

THEORY “Hyperreal” 158

lemma powhr-as-starfun:
∧

a x. x powhr a = (if x = 0 then 0 else (∗f ∗ exp) (a ∗
(∗f ∗ real-ln) x))

by transfer (simp add: powr-def)

lemma HInfinite-powhr :
x ∈ HInfinite =⇒ 0 < x =⇒ a ∈ HFinite − Infinitesimal =⇒ 0 < a =⇒ x powhr

a ∈ HInfinite
by (auto intro!: starfun-ln-ge-zero starfun-ln-HInfinite

HInfinite-HFinite-not-Infinitesimal-mult2 starfun-exp-HInfinite
simp add: order-less-imp-le HInfinite-gt-zero-gt-one powhr-as-starfun zero-le-mult-iff)

lemma hlog-hrabs-HInfinite-Infinitesimal:
x ∈ HFinite − Infinitesimal =⇒ a ∈ HInfinite =⇒ 0 < a =⇒ hlog a |x| ∈

Infinitesimal
apply (frule HInfinite-gt-zero-gt-one)
apply (auto intro!: starfun-ln-HFinite-not-Infinitesimal

HInfinite-inverse-Infinitesimal Infinitesimal-HFinite-mult2
simp add: starfun-ln-HInfinite not-Infinitesimal-not-zero
hlog-as-starfun divide-inverse)

done

lemma hlog-HInfinite-as-starfun: a ∈ HInfinite =⇒ 0 < a =⇒ hlog a x = (∗f ∗
ln) x / (∗f ∗ ln) a

by (rule hlog-as-starfun) auto

lemma hlog-one [simp]:
∧

a. hlog a 1 = 0
by transfer simp

lemma hlog-eq-one [simp]:
∧

a. 0 < a =⇒ a 6= 1 =⇒ hlog a a = 1
by transfer (rule log-eq-one)

lemma hlog-inverse:
∧

a x. hlog a (inverse x) = − hlog a x
by transfer (simp add: log-inverse)

lemma hlog-divide: hlog a (x / y) = (if x 6=0 ∧ y 6=0 then hlog a x − hlog a y else
0)

by (simp add: hlog-mult hlog-inverse divide-inverse)

lemma hlog-less-cancel-iff [simp]:∧
a x y. 1 < a =⇒ 0 < x =⇒ 0 < y =⇒ hlog a x < hlog a y ←→ x < y

by transfer simp

lemma hlog-le-cancel-iff [simp]: 1 < a =⇒ 0 < x =⇒ 0 < y =⇒ hlog a x ≤ hlog
a y ←→ x ≤ y

by (simp add: linorder-not-less [symmetric])

end

THEORY “Hypercomplex” 159

theory Hyperreal
imports HLog
begin

end
theory Hypercomplex
imports CLim Hyperreal
begin

end

theory Nonstandard-Analysis
imports Hypercomplex
begin

end

	Filters and Ultrafilters
	Definitions and basic properties
	Ultrafilters

	Maximal filter = Ultrafilter
	Ultrafilter Theorem
	Free Ultrafilters

	Construction of Star Types Using Ultrafilters
	A Free Ultrafilter over the Naturals
	Definition of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 star type constructor
	Transfer principle
	Standard elements
	Internal functions
	Internal predicates
	Internal sets
	Syntactic classes
	Ordering and lattice classes
	Ordered group classes
	Ring and field classes
	Power
	Number classes
	Finite class

	Hypernatural numbers
	Properties Transferred from Naturals
	Properties of the set of embedded natural numbers
	Infinite Hypernatural Numbers – 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HNatInfinite
	Closure Rules

	Existence of an infinite hypernatural number
	Alternative characterization of the set of infinite hypernaturals
	Alternative Characterization of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HNatInfinite using Free Ultrafilter

	Embedding of the Hypernaturals into other types

	Construction of Hyperreals Using Ultrafilters
	Real vector class instances
	Injection from 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hypreal
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 starrel
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hypreal-of-real: the Injection from 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 real to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hypreal
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 star-n
	Existence of Infinite Hyperreal Number
	Embedding the Naturals into the Hyperreals
	Exponentials on the Hyperreals
	Powers with Hypernatural Exponents

	Infinite Numbers, Infinitesimals, Infinitely Close Relation
	Nonstandard Extension of the Norm Function
	Closure Laws for the Standard Reals
	Set of Finite Elements is a Subring of the Extended Reals
	Set of Infinitesimals is a Subring of the Hyperreals
	The Infinitely Close Relation
	Zero is the Only Infinitesimal that is also a Real

	Standard Part Theorem
	Uniqueness: Two Infinitely Close Reals are Equal
	Existence of Unique Real Infinitely Close
	Lifting of the Ub and Lub Properties

	Finite, Infinite and Infinitesimal
	Theorems about Monads
	Proof that 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 x y implies 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 x y
	More 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HFinite and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Infinitesimal Theorems
	Theorems about Standard Part
	Alternative Definitions using Free Ultrafilter
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HFinite
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HInfinite
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Infinitesimal

	Proof that 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 is an infinite number

	Nonstandard Complex Numbers
	Real and Imaginary parts
	Imaginary unit
	Complex conjugate
	Argand
	Injection from hyperreals
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 e (x + iy)

	Properties of Nonstandard Real and Imaginary Parts
	Addition for Nonstandard Complex Numbers
	More Minus Laws
	More Multiplication Laws
	Subtraction and Division
	Embedding Properties for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hcomplex-of-hypreal Map
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HComplex theorems
	Modulus (Absolute Value) of Nonstandard Complex Number
	Conjugation
	More Theorems about the Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hcmod
	Exponentiation
	The Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hsgn
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 harg

	Polar Form for Nonstandard Complex Numbers
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hcomplex-of-complex: the Injection from type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 complex to to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hcomplex
	Numerals and Arithmetic

	Star-Transforms in Non-Standard Analysis
	Preamble - Pulling 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 over 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Properties of the Star-transform Applied to Sets of Reals
	Theorems about nonstandard extensions of functions

	Star-transforms for the Hypernaturals
	Nonstandard Extensions of Functions
	Nonstandard Characterization of Induction

	Sequences and Convergence (Nonstandard)
	Limits of Sequences
	Equivalence of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 LIMSEQ and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 NSLIMSEQ
	Derived theorems about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 NSLIMSEQ

	Convergence
	Bounded Monotonic Sequences
	Upper Bounds and Lubs of Bounded Sequences
	A Bounded and Monotonic Sequence Converges

	Cauchy Sequences
	Equivalence Between NS and Standard
	Cauchy Sequences are Bounded
	Cauchy Sequences are Convergent

	Power Sequences

	Finite Summation and Infinite Series for Hyperreals
	Nonstandard Sums
	Infinite sums: Standard and NS theorems

	Limits and Continuity (Nonstandard)
	Limits of Functions
	Equivalence of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 filterlim and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 NSLIM

	Continuity
	Uniform Continuity

	Differentiation (Nonstandard)
	Derivatives
	Lemmas
	Equivalence of NS and Standard definitions
	Differentiability predicate

	(NS) Increment

	Nonstandard Extensions of Transcendental Functions
	Nonstandard Extension of Square Root Function
	Proving * (1/n) 1/(1/n) 1 for n =

	Non-Standard Complex Analysis
	Closure Laws for SComplex, the Standard Complex Numbers
	The Finite Elements form a Subring
	The Complex Infinitesimals form a Subring
	The ``Infinitely Close'' Relation
	Zero is the Only Infinitesimal Complex Number
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hRe, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hIm and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HComplex
	Theorems About Monads
	Theorems About Standard Part

	Star-transforms in NSA, Extending Sets of Complex Numbers and Complex Functions
	Properties of the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 *-Transform Applied to Sets of Reals
	Theorems about Nonstandard Extensions of Functions
	Internal Functions - Some Redundancy With 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 *f* Now

	Limits, Continuity and Differentiation for Complex Functions
	Limit of Complex to Complex Function
	Continuity
	Functions from Complex to Reals
	Differentiation of Natural Number Powers
	Derivative of Reciprocals (Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 inverse)
	Derivative of Quotient
	Caratheodory Formulation of Derivative at a Point: Standard Proof

	Logarithms: Non-Standard Version

