
NanoJava

David von Oheimb
Tobias Nipkow

January 18, 2026

Abstract

These theories define NanoJava, a very small fragment of the programming language Java (with
essentially just classes) derived from the one given in [1]. For NanoJava, an operational semantics
is given as well as a Hoare logic, which is proved both sound and (relatively) complete. The Hoare
logic supports side-effecting expressions and implements a new approach for handling auxiliary
variables. A more complex Hoare logic covering a much larger subset of Java is described in [3].
See also the homepage of project Bali at https://isabelle.in.tum.de/Bali/ and the confer-
ence version of this document [2].

Contents
1 Statements and expression emulations 3

2 Types, class Declarations, and whole programs 3

3 Type relations 4
3.1 Declarations and properties not used in the meta theory 4

4 Program State 6
4.1 Properties not used in the meta theory . 7

5 Operational Evaluation Semantics 9

6 Axiomatic Semantics 10
6.1 Hoare Logic Rules . 10
6.2 Fully polymorphic variants, required for Example only 12
6.3 Derived Rules . 12

7 Equivalence of Operational and Axiomatic Semantics 13
7.1 Validity . 13
7.2 Soundness . 14
7.3 (Relative) Completeness . 14

8 Example 15
8.1 Program representation . 16
8.2 “atleast” relation for interpretation of Nat “values” 16
8.3 Proof(s) using the Hoare logic . 17

1

https://isabelle.in.tum.de/Bali/

2

AxSem

Decl

Equivalence

Example

OpSem

State

Term

TypeRel

[HOL]

[Pure]

[Tools]

3

1 Statements and expression emulations
theory Term imports Main begin

typedecl cname — class name
typedecl mname — method name
typedecl fname — field name
typedecl vname — variable name

axiomatization
This — This pointer
Par — method parameter
Res :: vname — method result

— Inequality axioms are not required for the meta theory.

datatype stmt
= Skip — empty statement
| Comp stmt stmt (‹_;; _› [91,90] 90)
| Cond expr stmt stmt (‹If ’(_’) _ Else _› [3,91,91] 91)
| Loop vname stmt (‹While ’(_’) _› [3,91] 91)
| LAss vname expr (‹_ :== _› [99, 95] 94) — local assignment
| FAss expr fname expr (‹_.._:==_› [95,99,95] 94) — field assignment
| Meth "cname × mname" — virtual method
| Impl "cname × mname" — method implementation

and expr
= NewC cname (‹new _› [99] 95) — object creation
| Cast cname expr — type cast
| LAcc vname — local access
| FAcc expr fname (‹_.._› [95,99] 95) — field access
| Call cname expr mname expr

(‹{_}_.._’(_’)› [99,95,99,95] 95) — method call

end

2 Types, class Declarations, and whole programs
theory Decl imports Term begin

datatype ty
= NT — null type
| Class cname — class type

Field declaration
type_synonym fdecl

= "fname × ty"

record methd
= par :: ty

res :: ty
lcl ::"(vname × ty) list"
bdy :: stmt

Method declaration
type_synonym mdecl

= "mname × methd"

record "class"

4

= super :: cname
flds ::"fdecl list"
methods ::"mdecl list"

Class declaration
type_synonym cdecl

= "cname × class"

type_synonym prog
= "cdecl list"

translations
(type) "fdecl" ↽ (type) "fname × ty"
(type) "mdecl" ↽ (type) "mname × ty × ty × stmt"
(type) "class" ↽ (type) "cname × fdecl list × mdecl list"
(type) "cdecl" ↽ (type) "cname × class"
(type) "prog " ↽ (type) "cdecl list"

axiomatization
Prog :: prog — program as a global value

and
Object :: cname — name of root class

definition "class" :: "cname ⇀ class" where
"class ≡ map_of Prog"

definition is_class :: "cname => bool" where
"is_class C ≡ class C 6= None"

lemma finite_is_class: "finite {C. is_class C}"
〈proof 〉

end

3 Type relations
theory TypeRel
imports Decl
begin

Direct subclass relation
definition subcls1 :: "(cname × cname) set"
where

"subcls1 ≡ {(C,D). C 6=Object ∧ (∃ c. class C = Some c ∧ super c=D)}"

abbreviation
subcls1_syntax :: "[cname, cname] => bool" (‹_ ≺C1 _› [71,71] 70)
where "C ≺C1 D == (C,D) ∈ subcls1"

abbreviation
subcls_syntax :: "[cname, cname] => bool" (‹_ �C _› [71,71] 70)
where "C �C D ≡ (C,D) ∈ subcls1∗"

3.1 Declarations and properties not used in the meta theory

Widening, viz. method invocation conversion
inductive

5

widen :: "ty => ty => bool" (‹_ � _› [71,71] 70)
where

refl [intro!, simp]: "T � T"
| subcls: "C�C D =⇒ Class C � Class D"
| null [intro!]: "NT � R"

lemma subcls1D:
"C≺C1D =⇒ C 6= Object ∧ (∃ c. class C = Some c ∧ super c=D)"

〈proof 〉

lemma subcls1I: " [[class C = Some m; super m = D; C 6= Object]] =⇒ C≺C1D"
〈proof 〉

lemma subcls1_def2:
"subcls1 =

(SIGMA C: {C. is_class C} . {D. C 6=Object ∧ super (the (class C)) = D})"
〈proof 〉

lemma finite_subcls1: "finite subcls1"
〈proof 〉

definition ws_prog :: "bool" where
"ws_prog ≡ ∀ (C,c)∈set Prog. C 6=Object −→

is_class (super c) ∧ (super c,C)/∈subcls1+"

lemma ws_progD: " [[class C = Some c; C 6=Object; ws_prog]] =⇒
is_class (super c) ∧ (super c,C)/∈subcls1+"

〈proof 〉

lemma subcls1_irrefl_lemma1: "ws_prog =⇒ subcls1−1 ∩ subcls1+ = {}"
〈proof 〉

lemma irrefl_tranclI’: "r−1 ∩ r+ = {} =⇒ ∀ x. (x, x) /∈ r+"
〈proof 〉

lemmas subcls1_irrefl_lemma2 = subcls1_irrefl_lemma1 [THEN irrefl_tranclI’]

lemma subcls1_irrefl: " [[(x, y) ∈ subcls1; ws_prog]] =⇒ x 6= y"
〈proof 〉

lemmas subcls1_acyclic = subcls1_irrefl_lemma2 [THEN acyclicI]

lemma wf_subcls1: "ws_prog =⇒ wf (subcls1−1)"
〈proof 〉

definition class_rec ::"cname ⇒ (class ⇒ (’a × ’b) list) ⇒ (’a ⇀ ’b)"
where

"class_rec ≡ wfrec (subcls1−1) (λrec C f.
case class C of None ⇒ undefined
| Some m ⇒ (if C = Object then Map.empty else rec (super m) f) ++ map_of (f m))"

lemma class_rec: " [[class C = Some m; ws_prog]] =⇒
class_rec C f = (if C = Object then Map.empty else class_rec (super m) f) ++

map_of (f m)"
〈proof 〉
definition "method" :: "cname => (mname ⇀ methd)" where

"method C ≡ class_rec C methods"

6

lemma method_rec: " [[class C = Some m; ws_prog]] =⇒
method C = (if C=Object then Map.empty else method (super m)) ++ map_of (methods m)"
〈proof 〉
definition field :: "cname => (fname ⇀ ty)" where

"field C ≡ class_rec C flds"

lemma flds_rec: " [[class C = Some m; ws_prog]] =⇒
field C = (if C=Object then Map.empty else field (super m)) ++ map_of (flds m)"
〈proof 〉

end

4 Program State
theory State imports TypeRel begin

definition body :: "cname × mname => stmt" where
"body ≡ λ(C,m). bdy (the (method C m))"

Locations, i.e. abstract references to objects
typedecl loc

datatype val
= Null — null reference
| Addr loc — address, i.e. location of object

type_synonym fields
= "(fname ⇀ val)"

type_synonym
obj = "cname × fields"

translations
(type) "fields" ↽ (type) "fname => val option"
(type) "obj" ↽ (type) "cname × fields"

definition init_vars :: "(’a ⇀ ’b) => (’a ⇀ val)" where
"init_vars m == map_option (λT. Null) o m"

private:
type_synonym heap = "loc ⇀ obj"
type_synonym locals = "vname ⇀ val"

private:
record state

= heap :: heap
locals :: locals

translations
(type) "heap" ↽ (type) "loc => obj option"
(type) "locals" ↽ (type) "vname => val option"
(type) "state" ↽ (type) "(|heap :: heap, locals :: locals|)"

definition del_locs :: "state => state" where
"del_locs s ≡ s (| locals := Map.empty |)"

definition init_locs :: "cname => mname => state => state" where

7

"init_locs C m s ≡ s (| locals := locals s ++
init_vars (map_of (lcl (the (method C m)))) |)"

The first parameter of set_locs is of type state rather than locals in order to keep locals private.
definition set_locs :: "state => state => state" where
"set_locs s s’ ≡ s’ (| locals := locals s |)"

definition get_local :: "state => vname => val" (‹_<_>› [99,0] 99) where
"get_local s x ≡ the (locals s x)"

— local function:
definition get_obj :: "state => loc => obj" where
"get_obj s a ≡ the (heap s a)"

definition obj_class :: "state => loc => cname" where
"obj_class s a ≡ fst (get_obj s a)"

definition get_field :: "state => loc => fname => val" where
"get_field s a f ≡ the (snd (get_obj s a) f)"

— local function:
definition hupd :: "loc => obj => state => state" (‹hupd’(_7→_’)› [10,10] 1000) where
"hupd a obj s ≡ s (| heap := ((heap s)(a 7→obj))|)"

definition lupd :: "vname => val => state => state" (‹lupd’(_7→_’)› [10,10] 1000) where
"lupd x v s ≡ s (| locals := ((locals s)(x 7→v))|)"

definition new_obj :: "loc => cname => state => state" where
"new_obj a C ≡ hupd(a 7→(C,init_vars (field C)))"

definition upd_obj :: "loc => fname => val => state => state" where
"upd_obj a f v s ≡ let (C,fs) = the (heap s a) in hupd(a 7→(C,fs(f 7→v))) s"

definition new_Addr :: "state => val" where
"new_Addr s == SOME v. (∃ a. v = Addr a ∧ (heap s) a = None) | v = Null"

4.1 Properties not used in the meta theory
lemma locals_upd_id [simp]: "s(|locals := locals s |) = s"
〈proof 〉

lemma lupd_get_local_same [simp]: "lupd(x 7→v) s<x> = v"
〈proof 〉

lemma lupd_get_local_other [simp]: "x 6= y =⇒ lupd(x 7→v) s<y> = s<y>"
〈proof 〉

lemma get_field_lupd [simp]:
"get_field (lupd(x 7→y) s) a f = get_field s a f"

〈proof 〉

lemma get_field_set_locs [simp]:
"get_field (set_locs l s) a f = get_field s a f"

〈proof 〉

lemma get_field_del_locs [simp]:
"get_field (del_locs s) a f = get_field s a f"

〈proof 〉

8

lemma new_obj_get_local [simp]: "new_obj a C s <x> = s<x>"
〈proof 〉

lemma heap_lupd [simp]: "heap (lupd(x 7→y) s) = heap s"
〈proof 〉

lemma heap_hupd_same [simp]: "heap (hupd(a 7→obj) s) a = Some obj"
〈proof 〉

lemma heap_hupd_other [simp]: "aa 6= a =⇒ heap (hupd(aa 7→obj) s) a = heap s a"
〈proof 〉

lemma hupd_hupd [simp]: "hupd(a 7→obj) (hupd(a 7→obj’) s) = hupd(a 7→obj) s"
〈proof 〉

lemma heap_del_locs [simp]: "heap (del_locs s) = heap s"
〈proof 〉

lemma heap_set_locs [simp]: "heap (set_locs l s) = heap s"
〈proof 〉

lemma hupd_lupd [simp]:
"hupd(a 7→obj) (lupd(x 7→y) s) = lupd(x 7→y) (hupd(a 7→obj) s)"

〈proof 〉

lemma hupd_del_locs [simp]:
"hupd(a 7→obj) (del_locs s) = del_locs (hupd(a 7→obj) s)"

〈proof 〉

lemma new_obj_lupd [simp]:
"new_obj a C (lupd(x 7→y) s) = lupd(x 7→y) (new_obj a C s)"

〈proof 〉

lemma new_obj_del_locs [simp]:
"new_obj a C (del_locs s) = del_locs (new_obj a C s)"

〈proof 〉

lemma upd_obj_lupd [simp]:
"upd_obj a f v (lupd(x 7→y) s) = lupd(x 7→y) (upd_obj a f v s)"

〈proof 〉

lemma upd_obj_del_locs [simp]:
"upd_obj a f v (del_locs s) = del_locs (upd_obj a f v s)"

〈proof 〉

lemma get_field_hupd_same [simp]:
"get_field (hupd(a 7→(C, fs)) s) a = the ◦ fs"

〈proof 〉

lemma get_field_hupd_other [simp]:
"aa 6= a =⇒ get_field (hupd(aa 7→obj) s) a = get_field s a"

〈proof 〉

lemma new_AddrD:
"new_Addr s = v =⇒ (∃ a. v = Addr a ∧ heap s a = None) | v = Null"
〈proof 〉

end

9

5 Operational Evaluation Semantics
theory OpSem imports State begin

inductive
exec :: "[state,stmt, nat,state] => bool" (‹_ -_-_→ _› [98,90, 65,98] 89)
and eval :: "[state,expr,val,nat,state] => bool" (‹_ -_�_-_→ _›[98,95,99,65,98] 89)

where
Skip: " s -Skip-n→ s"

| Comp: "[| s0 -c1-n→ s1; s1 -c2-n→ s2 |] ==>
s0 -c1;; c2-n→ s2"

| Cond: "[| s0 -e�v-n→ s1; s1 -(if v 6=Null then c1 else c2)-n→ s2 |] ==>
s0 -If(e) c1 Else c2-n→ s2"

| LoopF:" s0<x> = Null ==>
s0 -While(x) c-n→ s0"

| LoopT:"[| s0<x> 6= Null; s0 -c-n→ s1; s1 -While(x) c-n→ s2 |] ==>
s0 -While(x) c-n→ s2"

| LAcc: " s -LAcc x�s<x>-n→ s"

| LAss: " s -e�v-n→ s’ ==>
s -x:==e-n→ lupd(x 7→v) s’"

| FAcc: " s -e�Addr a-n→ s’ ==>
s -e..f�get_field s’ a f-n→ s’"

| FAss: "[| s0 -e1�Addr a-n→ s1; s1 -e2�v-n→ s2 |] ==>
s0 -e1..f:==e2-n→ upd_obj a f v s2"

| NewC: " new_Addr s = Addr a ==>
s -new C�Addr a-n→ new_obj a C s"

| Cast: "[| s -e�v-n→ s’;
case v of Null => True | Addr a => obj_class s’ a �C C |] ==>
s -Cast C e�v-n→ s’"

| Call: "[| s0 -e1�a-n→ s1; s1 -e2�p-n→ s2;
lupd(This 7→a)(lupd(Par 7→p)(del_locs s2)) -Meth (C,m)-n→ s3

|] ==> s0 -{C}e1..m(e2)�s3<Res>-n→ set_locs s2 s3"

| Meth: "[| s<This> = Addr a; D = obj_class s a; D�C C;
init_locs D m s -Impl (D,m)-n→ s’ |] ==>
s -Meth (C,m)-n→ s’"

| Impl: " s -body Cm- n→ s’ ==>
s -Impl Cm-Suc n→ s’"

inductive_cases exec_elim_cases’:
"s -Skip -n→ t"
"s -c1;; c2 -n→ t"
"s -If(e) c1 Else c2-n→ t"
"s -While(x) c -n→ t"
"s -x:==e -n→ t"
"s -e1..f:==e2 -n→ t"

inductive_cases Meth_elim_cases: "s -Meth Cm -n→ t"

10

inductive_cases Impl_elim_cases: "s -Impl Cm -n→ t"
lemmas exec_elim_cases = exec_elim_cases’ Meth_elim_cases Impl_elim_cases
inductive_cases eval_elim_cases:

"s -new C �v-n→ t"
"s -Cast C e �v-n→ t"
"s -LAcc x �v-n→ t"
"s -e..f �v-n→ t"
"s -{C}e1..m(e2) �v-n→ t"

lemma exec_eval_mono [rule_format]:
"(s -c -n→ t −→ (∀ m. n ≤ m −→ s -c -m→ t)) ∧
(s -e�v-n→ t −→ (∀ m. n ≤ m −→ s -e�v-m→ t))"

〈proof 〉
lemmas exec_mono = exec_eval_mono [THEN conjunct1, rule_format]
lemmas eval_mono = exec_eval_mono [THEN conjunct2, rule_format]

lemma exec_exec_max: " [[s1 -c1- n1 → t1 ; s2 -c2- n2→ t2]] =⇒
s1 -c1-max n1 n2→ t1 ∧ s2 -c2-max n1 n2→ t2"

〈proof 〉

lemma eval_exec_max: " [[s1 -c- n1 → t1 ; s2 -e�v- n2→ t2]] =⇒
s1 -c-max n1 n2→ t1 ∧ s2 -e�v-max n1 n2→ t2"

〈proof 〉

lemma eval_eval_max: " [[s1 -e1�v1- n1 → t1 ; s2 -e2�v2- n2→ t2]] =⇒
s1 -e1�v1-max n1 n2→ t1 ∧ s2 -e2�v2-max n1 n2→ t2"

〈proof 〉

lemma eval_eval_exec_max:
" [[s1 -e1�v1-n1→ t1; s2 -e2�v2-n2→ t2; s3 -c-n3→ t3]] =⇒

s1 -e1�v1-max (max n1 n2) n3→ t1 ∧
s2 -e2�v2-max (max n1 n2) n3→ t2 ∧
s3 -c -max (max n1 n2) n3→ t3"

〈proof 〉

lemma Impl_body_eq: "(λt. ∃ n. Z -Impl M-n→ t) = (λt. ∃ n. Z -body M-n→ t)"
〈proof 〉

end

6 Axiomatic Semantics
theory AxSem imports State begin

type_synonym assn = "state => bool"
type_synonym vassn = "val => assn"
type_synonym triple = "assn × stmt × assn"
type_synonym etriple = "assn × expr × vassn"
translations

(type) "assn" ↽ (type) "state => bool"
(type) "vassn" ↽ (type) "val => assn"
(type) "triple" ↽ (type) "assn × stmt × assn"
(type) "etriple" ↽ (type) "assn × expr × vassn"

6.1 Hoare Logic Rules
inductive
hoare :: "[triple set, triple set] => bool" (‹_ |`/ _› [61, 61] 60)

11

and ehoare :: "[triple set, etriple] => bool" (‹_ |`e/ _› [61, 61] 60)
and hoare1 :: "[triple set, assn,stmt,assn] => bool"

(‹_ `/ ({(1_)}/ (_)/ {(1_)})› [61, 3, 90, 3] 60)
and ehoare1 :: "[triple set, assn,expr,vassn]=> bool"

(‹_ `e/ ({(1_)}/ (_)/ {(1_)})› [61, 3, 90, 3] 60)
where

"A ` {P}c{Q} ≡ A |` {(P,c,Q)}"
| "A `e {P}e{Q} ≡ A |`e (P,e,Q)"

| Skip: "A ` {P} Skip {P}"

| Comp: "[| A ` {P} c1 {Q}; A ` {Q} c2 {R} |] ==> A ` {P} c1;;c2 {R}"

| Cond: "[| A `e {P} e {Q};
∀ v. A ` {Q v} (if v 6= Null then c1 else c2) {R} |] ==>
A ` {P} If(e) c1 Else c2 {R}"

| Loop: "A ` {λs. P s ∧ s<x> 6= Null} c {P} ==>
A ` {P} While(x) c {λs. P s ∧ s<x> = Null}"

| LAcc: "A `e {λs. P (s<x>) s} LAcc x {P}"

| LAss: "A `e {P} e {λv s. Q (lupd(x 7→v) s)} ==>
A ` {P} x:==e {Q}"

| FAcc: "A `e {P} e {λv s. ∀ a. v=Addr a --> Q (get_field s a f) s} ==>
A `e {P} e..f {Q}"

| FAss: "[| A `e {P} e1 {λv s. ∀ a. v=Addr a --> Q a s};
∀ a. A `e {Q a} e2 {λv s. R (upd_obj a f v s)} |] ==>

A ` {P} e1..f:==e2 {R}"

| NewC: "A `e {λs. ∀ a. new_Addr s = Addr a --> P (Addr a) (new_obj a C s)}
new C {P}"

| Cast: "A `e {P} e {λv s. (case v of Null => True
| Addr a => obj_class s a �C C) --> Q v s} ==>

A `e {P} Cast C e {Q}"

| Call: "[| A `e {P} e1 {Q}; ∀ a. A `e {Q a} e2 {R a};
∀ a p ls. A ` {λs’. ∃ s. R a p s ∧ ls = s ∧

s’ = lupd(This 7→a)(lupd(Par 7→p)(del_locs s))}
Meth (C,m) {λs. S (s<Res>) (set_locs ls s)} |] ==>

A `e {P} {C}e1..m(e2) {S}"

| Meth: "∀ D. A ` {λs’. ∃ s a. s<This> = Addr a ∧ D = obj_class s a ∧ D �C C ∧
P s ∧ s’ = init_locs D m s}

Impl (D,m) {Q} ==>
A ` {P} Meth (C,m) {Q}"

—
⋃

Z instead of ∀ Z in the conclusion and
Z restricted to type state due to limitations of the inductive package
| Impl: "∀ Z::state. A∪ (

⋃
Z. (λCm. (P Z Cm, Impl Cm, Q Z Cm))‘Ms) |`
(λCm. (P Z Cm, body Cm, Q Z Cm))‘Ms ==>

A |` (λCm. (P Z Cm, Impl Cm, Q Z Cm))‘Ms"

— structural rules

12

| Asm: " a ∈ A ==> A |` {a}"

| ConjI: " ∀ c ∈ C. A |` {c} ==> A |` C"

| ConjE: "[|A |` C; c ∈ C |] ==> A |` {c}"

— Z restricted to type state due to limitations of the inductive package
| Conseq:"[| ∀ Z::state. A ` {P’ Z} c {Q’ Z};

∀ s t. (∀ Z. P’ Z s --> Q’ Z t) --> (P s --> Q t) |] ==>
A ` {P} c {Q }"

— Z restricted to type state due to limitations of the inductive package
| eConseq:"[| ∀ Z::state. A `e {P’ Z} e {Q’ Z};

∀ s v t. (∀ Z. P’ Z s --> Q’ Z v t) --> (P s --> Q v t) |] ==>
A `e {P} e {Q }"

6.2 Fully polymorphic variants, required for Example only
axiomatization where

Conseq:"[| ∀ Z. A ` {P’ Z} c {Q’ Z};
∀ s t. (∀ Z. P’ Z s --> Q’ Z t) --> (P s --> Q t) |] ==>

A ` {P} c {Q }"

axiomatization where
eConseq:"[| ∀ Z. A `e {P’ Z} e {Q’ Z};

∀ s v t. (∀ Z. P’ Z s --> Q’ Z v t) --> (P s --> Q v t) |] ==>
A `e {P} e {Q }"

axiomatization where
Impl: "∀ Z. A∪ (

⋃
Z. (λCm. (P Z Cm, Impl Cm, Q Z Cm))‘Ms) |`

(λCm. (P Z Cm, body Cm, Q Z Cm))‘Ms ==>
A |` (λCm. (P Z Cm, Impl Cm, Q Z Cm))‘Ms"

6.3 Derived Rules
lemma Conseq1: " [[A ` {P’} c {Q}; ∀ s. P s −→ P’ s]] =⇒ A ` {P} c {Q}"
〈proof 〉

lemma Conseq2: " [[A ` {P} c {Q’}; ∀ t. Q’ t −→ Q t]] =⇒ A ` {P} c {Q}"
〈proof 〉

lemma eConseq1: " [[A `e {P’} e {Q}; ∀ s. P s −→ P’ s]] =⇒ A `e {P} e {Q}"
〈proof 〉

lemma eConseq2: " [[A `e {P} e {Q’}; ∀ v t. Q’ v t −→ Q v t]] =⇒ A `e {P} e {Q}"
〈proof 〉

lemma Weaken: " [[A |` C’; C ⊆ C’]] =⇒ A |` C"
〈proof 〉

lemma Thin_lemma:
"(A’ |` C −→ (∀ A. A’ ⊆ A −→ A |` C)) ∧
(A’ `e {P} e {Q} −→ (∀ A. A’ ⊆ A −→ A `e {P} e {Q}))"

〈proof 〉

lemma cThin: " [[A’ |` C; A’ ⊆ A]] =⇒ A |` C"
〈proof 〉

lemma eThin: " [[A’ `e {P} e {Q}; A’ ⊆ A]] =⇒ A `e {P} e {Q}"

13

〈proof 〉

lemma Union: "A |` (
⋃

Z. C Z) = (∀ Z. A |` C Z)"
〈proof 〉

lemma Impl1’:
" [[∀ Z::state. A∪ (

⋃
Z. (λCm. (P Z Cm, Impl Cm, Q Z Cm))‘Ms) |`

(λCm. (P Z Cm, body Cm, Q Z Cm))‘Ms;
Cm ∈ Ms]] =⇒

A ` {P Z Cm} Impl Cm {Q Z Cm}"
〈proof 〉

lemmas Impl1 = AxSem.Impl [of _ _ _ "{Cm}", simplified] for Cm

end

7 Equivalence of Operational and Axiomatic Semantics
theory Equivalence imports OpSem AxSem begin

7.1 Validity
definition valid :: "[assn,stmt, assn] => bool" (‹|= {(1_)}/ (_)/ {(1_)}› [3,90,3] 60) where
" |= {P} c {Q} ≡ ∀ s t. P s --> (∃ n. s -c -n→ t) --> Q t"

definition evalid :: "[assn,expr,vassn] => bool" (‹|=e {(1_)}/ (_)/ {(1_)}› [3,90,3] 60) where
" |=e {P} e {Q} ≡ ∀ s v t. P s --> (∃ n. s -e�v-n→ t) --> Q v t"

definition nvalid :: "[nat, triple] => bool" (‹|=_: _› [61,61] 60) where
" |=n: t ≡ let (P,c,Q) = t in ∀ s t. s -c -n→ t --> P s --> Q t"

definition envalid :: "[nat,etriple] => bool" (‹|=_:e _› [61,61] 60) where
" |=n:e t ≡ let (P,e,Q) = t in ∀ s v t. s -e�v-n→ t --> P s --> Q v t"

definition nvalids :: "[nat, triple set] => bool" (‹||=_: _› [61,61] 60) where
"||=n: T ≡ ∀ t∈T. |=n: t"

definition cnvalids :: "[triple set,triple set] => bool" (‹_ ||=/ _› [61,61] 60) where
"A ||= C ≡ ∀ n. ||=n: A --> ||=n: C"

definition cenvalid :: "[triple set,etriple] => bool" (‹_ ||=e/ _›[61,61] 60) where
"A ||=e t ≡ ∀ n. ||=n: A --> |=n:e t"

lemma nvalid_def2: " |=n: (P,c,Q) ≡ ∀ s t. s -c-n→ t −→ P s −→ Q t"
〈proof 〉

lemma valid_def2: " |= {P} c {Q} = (∀ n. |=n: (P,c,Q))"
〈proof 〉

lemma envalid_def2: " |=n:e (P,e,Q) ≡ ∀ s v t. s -e�v-n→ t −→ P s −→ Q v t"
〈proof 〉

lemma evalid_def2: " |=e {P} e {Q} = (∀ n. |=n:e (P,e,Q))"
〈proof 〉

lemma cenvalid_def2:
"A||=e (P,e,Q) = (∀ n. ||=n: A −→ (∀ s v t. s -e�v-n→ t −→ P s −→ Q v t))"

14

〈proof 〉

7.2 Soundness
declare exec_elim_cases [elim!] eval_elim_cases [elim!]

lemma Impl_nvalid_0: " |=0: (P,Impl M,Q)"
〈proof 〉

lemma Impl_nvalid_Suc: " |=n: (P,body M,Q) =⇒ |=Suc n: (P,Impl M,Q)"
〈proof 〉

lemma nvalid_SucD: "
∧

t. |=Suc n:t =⇒ |=n:t"
〈proof 〉

lemma nvalids_SucD: "Ball A (nvalid (Suc n)) =⇒ Ball A (nvalid n)"
〈proof 〉

lemma Loop_sound_lemma [rule_format (no_asm)]:
"∀ s t. s -c-n→ t −→ P s ∧ s<x> 6= Null −→ P t =⇒

(s -c0-n0→ t −→ P s −→ c0 = While (x) c −→ n0 = n −→ P t ∧ t<x> = Null)"
〈proof 〉

lemma Impl_sound_lemma:
" [[∀ z n. Ball (A ∪ B) (nvalid n) −→ Ball (f z ‘ Ms) (nvalid n);

Cm∈Ms; Ball A (nvalid na); Ball B (nvalid na)]] =⇒ nvalid na (f z Cm)"
〈proof 〉

lemma all_conjunct2: "∀ l. P’ l ∧ P l =⇒ ∀ l. P l"
〈proof 〉

lemma all3_conjunct2:
"∀ a p l. (P’ a p l ∧ P a p l) =⇒ ∀ a p l. P a p l"

〈proof 〉

lemma cnvalid1_eq:
"A ||= {(P,c,Q)} ≡ ∀ n. ||=n: A −→ (∀ s t. s -c-n→ t −→ P s −→ Q t)"

〈proof 〉

lemma hoare_sound_main:"
∧

t. (A |` C −→ A ||= C) ∧ (A |`e t −→ A ||=e t)"
〈proof 〉

theorem hoare_sound: "{} ` {P} c {Q} =⇒ |= {P} c {Q}"
〈proof 〉

theorem ehoare_sound: "{} `e {P} e {Q} =⇒ |=e {P} e {Q}"
〈proof 〉

7.3 (Relative) Completeness
definition MGT :: "stmt => state => triple" where

"MGT c Z ≡ (λs. Z = s, c, λ t. ∃ n. Z -c- n→ t)"

definition MGT e :: "expr => state => etriple" where
"MGT e e Z ≡ (λs. Z = s, e, λv t. ∃ n. Z -e�v-n→ t)"

lemma MGF_implies_complete:
"∀ Z. {} |` { MGT c Z} =⇒ |= {P} c {Q} =⇒ {} ` {P} c {Q}"

〈proof 〉

15

lemma eMGF_implies_complete:
"∀ Z. {} |`e MGT e e Z =⇒ |=e {P} e {Q} =⇒ {} `e {P} e {Q}"

〈proof 〉

declare exec_eval.intros[intro!]

lemma MGF_Loop: "∀ Z. A ` {(=) Z} c {λt. ∃ n. Z -c-n→ t} =⇒
A ` {(=) Z} While (x) c {λt. ∃ n. Z -While (x) c-n→ t}"

〈proof 〉

lemma MGF_lemma: "∀ M Z. A |` {MGT (Impl M) Z} =⇒
(∀ Z. A |` {MGT c Z}) ∧ (∀ Z. A |`e MGT e e Z)"

〈proof 〉

lemma MGF_Impl: "{} |` {MGT (Impl M) Z}"
〈proof 〉

theorem hoare_relative_complete: " |= {P} c {Q} =⇒ {} ` {P} c {Q}"
〈proof 〉

theorem ehoare_relative_complete: " |=e {P} e {Q} =⇒ {} `e {P} e {Q}"
〈proof 〉

lemma cFalse: "A ` {λs. False} c {Q}"
〈proof 〉

lemma eFalse: "A `e {λs. False} e {Q}"
〈proof 〉

end

8 Example
theory Example
imports Equivalence
begin

class Nat {

Nat pred;

Nat suc()
{ Nat n = new Nat(); n.pred = this; return n; }

Nat eq(Nat n)
{ if (this.pred != null) if (n.pred != null) return this.pred.eq(n.pred);

else return n.pred; // false
else if (n.pred != null) return this.pred; // false

else return this.suc(); // true
}

Nat add(Nat n)
{ if (this.pred != null) return this.pred.add(n.suc()); else return n; }

public static void main(String[] args) // test x+1=1+x

16

{
Nat one = new Nat().suc();
Nat x = new Nat().suc().suc().suc().suc();
Nat ok = x.suc().eq(x.add(one));
System.out.println(ok != null);

}
}

axiomatization where
This_neq_Par [simp]: "This 6= Par" and
Res_neq_This [simp]: "Res 6= This"

8.1 Program representation
axiomatization

N :: cname (‹Nat›)
and pred :: fname
and suc add :: mname
and any :: vname

abbreviation
dummy :: expr (‹<>›)
where "<> == LAcc any"

abbreviation
one :: expr
where "one == {Nat}new Nat..suc(<>)"

The following properties could be derived from a more complete program model, which we leave out
for laziness.
axiomatization where Nat_no_subclasses [simp]: "D �C Nat = (D=Nat)"

axiomatization where method_Nat_add [simp]: "method Nat add = Some
(| par=Class Nat, res=Class Nat, lcl=[],
bdy= If((LAcc This..pred))

(Res :== {Nat}(LAcc This..pred)..add({Nat}LAcc Par..suc(<>)))
Else Res :== LAcc Par |)"

axiomatization where method_Nat_suc [simp]: "method Nat suc = Some
(| par=NT, res=Class Nat, lcl=[],
bdy= Res :== new Nat;; LAcc Res..pred :== LAcc This |)"

axiomatization where field_Nat [simp]: "field Nat = Map.empty(pred 7→Class Nat)"

lemma init_locs_Nat_add [simp]: "init_locs Nat add s = s"
〈proof 〉

lemma init_locs_Nat_suc [simp]: "init_locs Nat suc s = s"
〈proof 〉

lemma upd_obj_new_obj_Nat [simp]:
"upd_obj a pred v (new_obj a Nat s) = hupd(a 7→(Nat, Map.empty(pred 7→v))) s"

〈proof 〉

8.2 “atleast” relation for interpretation of Nat “values”
primrec Nat_atleast :: "state ⇒ val ⇒ nat ⇒ bool" (‹_:_ ≥ _› [51, 51, 51] 50) where

"s:x≥0 = (x 6=Null)"

17

| "s:x≥Suc n = (∃ a. x=Addr a ∧ heap s a 6= None ∧ s:get_field s a pred≥n)"

lemma Nat_atleast_lupd [rule_format, simp]:
"∀ s v::val. lupd(x 7→y) s:v ≥ n = (s:v ≥ n)"

〈proof 〉

lemma Nat_atleast_set_locs [rule_format, simp]:
"∀ s v::val. set_locs l s:v ≥ n = (s:v ≥ n)"

〈proof 〉

lemma Nat_atleast_del_locs [rule_format, simp]:
"∀ s v::val. del_locs s:v ≥ n = (s:v ≥ n)"

〈proof 〉

lemma Nat_atleast_NullD [rule_format]: "s:Null ≥ n −→ False"
〈proof 〉

lemma Nat_atleast_pred_NullD [rule_format]:
"Null = get_field s a pred =⇒ s:Addr a ≥ n −→ n = 0"
〈proof 〉

lemma Nat_atleast_mono [rule_format]:
"∀ a. s:get_field s a pred ≥ n −→ heap s a 6= None −→ s:Addr a ≥ n"
〈proof 〉

lemma Nat_atleast_newC [rule_format]:
"heap s aa = None =⇒ ∀ v::val. s:v ≥ n −→ hupd(aa 7→obj) s:v ≥ n"

〈proof 〉

8.3 Proof(s) using the Hoare logic
theorem add_homomorph_lb:

"{} ` {λs. s:s<This> ≥ X ∧ s:s<Par> ≥ Y} Meth(Nat,add) {λs. s:s<Res> ≥ X+Y}"
〈proof 〉

end

18

References

[1] T. Nipkow, D. v. Oheimb, and C. Pusch. µJava: Embedding a programming language in a the-
orem prover. In F. L. Bauer and R. Steinbrüggen, editors, Foundations of Secure Computation,
volume 175 of NATO Science Series F: Computer and Systems Sciences, pages 117–144. IOS
Press, 2000.

[2] D. v. Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables, side effects and
virtual methods revisited, 2002. Submitted for publication.

[3] D. von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency: Practice and Experience,
598:??–??+43, 2001. https://isabelle.in.tum.de/Bali/papers/CPE01.html, to appear.

https://isabelle.in.tum.de/Bali/papers/CPE01.html

	Statements and expression emulations
	Types, class Declarations, and whole programs
	Type relations
	Declarations and properties not used in the meta theory

	Program State
	Properties not used in the meta theory

	Operational Evaluation Semantics
	Axiomatic Semantics
	Hoare Logic Rules
	Fully polymorphic variants, required for Example only
	Derived Rules

	Equivalence of Operational and Axiomatic Semantics
	Validity
	Soundness
	(Relative) Completeness

	Example
	Program representation
	``atleast'' relation for interpretation of Nat ``values''
	Proof(s) using the Hoare logic

