NanoJava

David von Oheimb
Tobias Nipkow

January 18, 2026

Abstract

These theories define NanoJava, a very small fragment of the programming language Java (with
essentially just classes) derived from the one given in [1]. For NanoJava, an operational semantics
is given as well as a Hoare logic, which is proved both sound and (relatively) complete. The Hoare
logic supports side-effecting expressions and implements a new approach for handling auxiliary
variables. A more complex Hoare logic covering a much larger subset of Java is described in [3].
See also the homepage of project Bali at https://isabelle.in.tum.de/Bali/ and the confer-
ence version of this document [2].

Contents
1 Statements and expression emulations
2 Types, class Declarations, and whole programs

3 Type relations
3.1 Declarations and properties not used in the meta theory

4 Program State
4.1 Properties not used in the meta theory o L.

5 Operational Evaluation Semantics

6 Axiomatic Semantics
6.1 Hoare Logic Rules o e
6.2 Fully polymorphic variants, required for Example only
6.3 Derived Rules e

7 Equivalence of Operational and Axiomatic Semantics
7.1 Validityo
7.2 Soundness e e e e e e e
7.3 (Relative) Completeness L e

8 Example
8.1 Program representation L oL
8.2 “atleast” relation for interpretation of Nat “values”
8.3 Proof(s) using the Hoare logic L

10
10
12
12

13
13
14
14

https://isabelle.in.tum.de/Bali/

[Purel |
[Tools] |
(o]
[Te

E

[be

Ii,

State

| AxSem | | OpSem |

Equivalence

Example

i

1 Statements and expression emulations

theory Term imports Main begin

typedecl cname — class name
typedecl mname — method name
typedecl fname — field name
typedecl vname — variable name
axiomatization

This — This pointer

Par — method parameter

Res :: vname — method result

— Inequality axioms are not required for the meta theory.

datatype stmt

= Skip — empty statement
| Comp stmt stmt _;; o> [91,90] 90)
| Cond expr stmt stmt (<If °(_’) _ Else _> [3,91,91] 91)
| Loop vname stmt (<While ’(_’) > [3,91] 91)
| LAss vname expr (<_ == > [99, 95] 94) — local assignment
| FAss expr fname expr (<_.._:==> [95,99,95] 94) — field assignment
| Meth "cname X mname" — virtual method
| Impl "cname X mname" — method implementation
and expr
= NewC cname (<new _> [99] 95) — object creation
| Cast cname expr — type cast
| LAcc vname — local access
| FAcc expr fname (<_.._> [95,99] 95) — field access
|

Call cname expr mname expr
(<{_F_.._°(_7)> [99,95,99,95] 95) — method call

end

2 Types, class Declarations, and whole programs

theory Decl imports Term begin

datatype ty
= NT — null type
| Class cname — class type

Field declaration

type_synonym fdecl
= "fname X ty"

record methd

= par :: ty
res :: ty
lcl ::"(vname X ty) list"
bdy :: stmt

Method declaration

type__synonym mdecl
= "mname X methd"

record '"class"

= super :: cname
flds ::"fdecl list"
methods ::"mdecl list"

Class declaration

type__synonym cdecl
= "cname X class"

type__synonym prog

= "cdecl list"
translations
(type) "fdecl" <~ (type) "fname X ty"
(type) "mdecl" < (type) "mname X ty X ty X stmt"
(type) "class" < (type) "cname X fdecl list X mdecl list"
(type) "cdecl" < (type) "cname X class"
(type) "prog " < (type) "cdecl list"
axiomatization
Prog :: prog — program as a global value
and
Object :: cname — name of root class
definition "class" :: "cname — class" where
"class = map_of Prog"
definition is_class :: "cname => bool" where
"is_class C = class C #* None"

lemma finite_is_class: "finite {C. is_class C}"

(proof)

end

3 Type relations

theory TypeRel
imports Decl
begin

Direct subclass relation

definition subclsl :: "(cname X cname) set"
where
"subclsl = {(C,D). C#0bject N (Jc. class C = Some ¢ A super c=D)}"

abbreviation
subclsl_syntax :: "[cname, cname] => bool" (<_ <C1 _> [71,71] 70)
where "C <C1 D == (C,D) € subclsl"

abbreviation
subcls_syntax :: "[cname, cname] => bool" (<_ <XC _> [71,71] 70)

where "C XC D = (C,D) € subclsi*"

3.1 Declarations and properties not used in the meta theory

Widening, viz. method invocation conversion

inductive

widen :: "ty => ty => bool" (<_ X _> [71,71] 70)
where

refl [intro!, simp]: "T <X T"
| subcls: "C<XC D — C(Class C < Class D"
| null [intro!]: "NT < R"

lemma subclsiD:
"C<C1D = C # Object N (dc. class C = Some ¢ A super c=D)"

(proof)

lemma subclsiI: "[class C = Some m; super m = D; C # Object] — C<C1D"

{proof)

lemma subclsl_def2:
"subclsl =
(SIGMA C: {C. is_class C} . {D. C#0Object A super (the (class C)) = D})"

{proof)

lemma finite_subclsl: "finite subclsl"
(proof)
definition ws_prog :: "bool" where

"ws_prog = V (C,c)Eset Prog. C#0Object —

is_class (super c) A (super c,C)¢subclsl™"

lemma ws_progD: "[class C = Some c; C#0bject; ws_prog] —
is_class (super c) A (super c,C)¢subclsi™"

{proof)

lemma subclsl_irrefl_lemmal: "ws_prog = subclsl~ ! N subclsit = {}"

(proof)

lemma irrefl_tranclI’: "r~ ' N rt = {} = Vx. (x, x) ¢ r*"
(proof)
lemmas subclsl_irrefl_lemma2 = subclsl_irrefl_lemmal [THEN irrefl tranclI’]

lemma subclsl_irrefl: "[(x, y) € subclsl; ws_prog] = x # y"

(proof)

lemmas subclsl_acyclic = subclsl_irrefl_lemma2 [THEN acyclicI]

lemma wf_subclsl: "ws_prog = wf (subclsi~!)"

(proof)
definition class_rec ::"cname = (class = (’a x ’b) list) = (’a — ’b)"
where

"class_rec = wfrec (subclsi™') (A\rec C f.

case class C of None = undefined
| Some m = (if C = Object then Map.empty else rec (super m) f) ++ map_of (f m))"

lemma class_rec: "[class C = Some m; ws_prog| =
class_rec C £ = (if C = Object then Map.empty else class_rec (super m) f) ++
map_of (f m)"
(proof)
definition "method" :: "cname => (mname — methd)" where
"method C = class_rec C methods"

lemma method_rec: "[class C = Some m; ws_prog] —>
method C = (if C=0bject then Map.empty else method (super m)) ++ map_of (methods m)"

(proof)

definition field :: "cname => (fname — ty)" where
"field C = class_rec C flds"

lemma flds_rec: "[class C = Some m; ws_prog| —
field C = (if C=Object then Map.empty else field (super m)) ++ map_of (flds m)"

{proof)

end

4 Program State

theory State imports TypeRel begin

definition body :: "cname X mname => stmt" where
"body = A(C,m). bdy (the (method C m))"

Locations, i.e. abstract references to objects

typedecl loc

datatype val
= Null — null reference
| Addr loc — address, i.e. location of object

type__synonym fields
= "(fname — val)"

type__synonym

obj = "cname X fields"
translations
(type) "fields" < (type) "fname => val option"
(type) "obj" — (type) "cname x fields"
definition init_vars :: "(’a — ’b) => (’a — val)" where
"init_vars m == map_option (AT. Null) o m"
private:
type_synonym heap = "loc — obj"
type__synonym locals = "vname — val"
private:
record state
= heap :: heap
Jocals :: locals
translations

(type) "heap" < (type) "loc => obj option"
(type) "locals" <~ (type) "vname => val option"
(type) "state" < (type) "(|lheap :: heap, locals :: locals/)"

definition del_locs :: "state => state" where
"del_locs s = s (| locals := Map.empty [)"

definition init_locs :: "cname => mname => state => state" where

"init_locs Cm s = s (| locals := locals s ++
init_vars (map_of (lcl (the (method C m)))) [)"

The first parameter of set_locs is of type state rather than locals in order to keep locals private.

definition set_locs :: "state => state => state" where
"set_locs s s’ = s’ (| locals := locals s [)"

definition get_local :: "state => vname => val" (<_<_>> [99,0] 99) where
"get_local s x = the (locals s x)"

— local function:
definition get_obj :: "state => loc => obj" where
"get_obj s a = the (heap s a)"

definition obj_class :: "state => loc => cname" where
"obj_class s a = fst (get_obj s a)"

definition get_field :: "state => loc => fname => val" where
"get_field s a £ = the (snd (get_obj s a) f)"

— local function:

definition hupd :: "loc => obj => state => state" (<hupd’(_+—_’)> [10,10] 1000) where
"hupd a obj s = s (| heap := ((heap s)(a—obj))/[)"

definition Iupd :: "vname => val => state => state" (<lupd’(_~—_’)> [10,10] 1000) where
"lupd x v.s = s (| locals := ((locals s)(x—v J)[)"

definition new_obj :: "loc => cname => state => state" where
"new_obj a C = hupd(a— (C,init_vars (field C)))"

definition upd_obj :: "loc => fname => val => state => state" where

"upd_obj a f v s = let (C,fs) = the (heap s a) in hupd(a— (C,fs(f—v))) s"

definition new_Addr :: "state => val" where
"new_Addr s == SOME v. (Ja. v = Addr a A (heap s) a = None) | v = Null"

4.1 Properties not used in the meta theory

lemma locals_upd_id [simp]: "s(locals := locals s|) = s"

{proof)

I
<

lemma lupd_get_local_same [simp]: "lupd(x+—>v) s<x>

{proof)

lemma lupd_get_local_other [simp]: "x # y == lupd(x—v) s<y> = s<y>"

(proof)

lemma get_field_lupd [simp]:
"get_field (lupd(x+—y) s) a f = get_field s a f"
{proof)

lemma get_field_set_locs [simp]:
"get_field (set_locs 1 s) a f = get_field s a f"

{proof)

lemma get_field_del_locs [simp]:
"get_field (del_locs s) a f = get_field s a f"

{proof)

lemma new_obj_get_local [simp]: "new_obj a C s <x> = s<x>"

{proof)

lemma heap_lupd [simp]: "heap (lupd(x+—y) s) = heap s"
(proof)

lemma heap_hupd_same [simp]: "heap (hupd(a+—+obj) s) a = Some obj"
{proof)

lemma heap_hupd_other [simp]: "aa # a = heap (hupd(aarrobj) s) a = heap s a"

{proof)

lemma hupd_hupd [simp]: "hupd(ar>obj) (hupd(a+—obj’) s) = hupd(ar>obj) s"
(proof)

lemma heap_del_locs [simp]: "heap (del_locs s) = heap s"

{proof)

lemma heap_set_locs [simp]: "heap (set_locs 1 s) = heap s"

(proof)

lemma hupd_lupd [simp]:
"hupd (a+—+obj) (lupd(x+—y) s) = lupd(x—y) (hupd(a—obj) s)"
{proof)

lemma hupd_del_locs [simp]:
"hupd (a+>obj) (del_locs s) = del_locs (hupd(a—obj) s)"
{proof)

lemma new_obj_lupd [simp]:
"new_obj a C (lupd(x—y) s) = lupd(x+—y) (new_obj a C s)"
{proof)

lemma new_obj_del_locs [simp]:
"new_obj a C (del_locs s) = del_locs (new_obj a C s)"

(proof)

lemma upd_obj_lupd [simp]:
"upd_obj a f v (lupd(x+—>y) s) = lupd(x—y) (upd_obj a f v s)"
{proof)

lemma upd_obj_del_locs [simp]:
"upd_obj a £ v (del_locs s) = del_locs (upd_obj a £ v s)"
{proof)

lemma get_field_hupd_same [simp]:
"get_field (hupd(a—(C, fs)) s) a = the o fs"
{proof)

lemma get_field_hupd_other [simp]:
"aa # a =—> get_field (hupd(aa+—obj) s) a = get_field s a"

(proof)

lemma new_AddrD:
"new_Addr s = v = (Ja. v = Addr a A heap s a = None) | v = Null"

{proof)

end

5 Operational Evaluation Semantics

theory OpSem imports State begin

inductive

exec :: "[state,stmt, nat,state] => bool" (<_ -_-_— _> [98,90, 65,98] 89)

and eval :: "[state,expr,val,nat,state] => bool" (<_ -_»_-_— _>[98,95,99,65,98] 89)
where

Skip: " s -Skip-n— s"

| Comp: "[| sO -c1-n— s1; s1 -c2-n— s2 |] ==
sO -cl1;; c2-n— s2"

| Cond: "[| sO -e>v-n— s1; s1 -(if v#Null then cl else c2)-n— s2 [] ==>
s0 -If(e) c1 Else c2-n— s2"

| LoopF:" s0<x> = Null ==>
s0 -While(x) c-n— sO"

| LoopT:"[| sO<x> # Null; sO -c-n— s1; s1 -While(x) c-n— s2 [|] ==>
s0 -While(x) c-n— s2"

| LAcc: " s -LAcc x>s<x>-n— s"

| LAss: " s -e=v-n— s’ ==>
s -x:==e-n— lupd(x—v) s°"

| FAcc: " s -e>Addr a-n— s’ ==
s -e..f>get_field s’ a f-n— s’"

| FAss: "[| sO -el>Addr a-n— s1; s1 -e2>=v-n— s2 |] ==>
s0 -el..f:==e2-n— upd_obj a f v s2"

| NewC: " new Addr s = Addr a ==
s —new C>Addr a-n— new_obj a C s"

| Cast: "[| s -—e-v-n— s’;
case v of Null => True | Addr a => obj_class s’ a =XC C [] ==>
s -Cast C e~v-n— s’"

| Call: "[| sO -el>a-n— s1; sl -e2>p-n— s2;
lupd(This+—a) (lupd (Par+—p) (del_locs s2)) -Meth (C,m)-n— s3
|] ==> s0 -{C}el..m(e2)>s3<Res>-n— set_locs s2 s3"

| Meth: "[| s<This> = Addr a; D = obj_class s a; D=XC C;
init_locs D m s -Impl (D,m)-n— s’ |] ==>
s -Meth (C,m)-n— s’"

| Impl: " s -body Cm- n— s’ ==

s -Impl Cm-Suc n— s’"

inductive__cases exec_elim_cases’:

"s -Skip -n— t"
"s -c1;; c2 -n— t"
"s -If(e) c1 Else c2-n— t"
"s -While(x) c -n— t"
"s -x:==e -n— t"
"s -el..f:==e2 -n— t"

inductive__cases Meth_elim_cases: '"s -Meth Cm -n— t"

inductive__cases Impl_elim_cases: "s -Impl Cm -n— t"
lemmas exec_elim_cases = exec_elim_cases’ Meth_elim_cases Impl_elim_cases
inductive__cases eval_elim_cases:

"s -new C =v-n— t"
"s -Cast C e =v-n— t"
"s -LAcc x >v-n— t"
"s -e..f ~v-n— t"
"s -{C}el..m(e2) >v-n— t"

lemma exec_eval_mono [rule_format]:
"(s ¢ -n—t — (Vm.n <m — s -c -m— t)) A
(s —e=vn—>t — (Vm. n <m — s -e~v-m— t))"
(proof)
lemmas exec_mono = exec_eval_mono [THEN conjunctl, rule_format]
lemmas eval_mono = exec_eval_mono [THEN conjunct2, rule_format]

lemma exec_exec_max: "[s1 -c1- nl — t1 ; s2 -c2- n2— t2] =
sl -cl-max nl n2— t1 N s2 -c2-max nl n2— t2"
(proof)
lemma eval_exec_max: "[s1 -c- nl — tl1 ; s2 -e-v- n2— t2] =
sl -c-max nl n2— t1 N s2 -e>v-max nl n2— t2"
(proof)
lemma eval_eval_max: "[s1 -el>vi- nl — tl1 ; s2 -e2-v2- n2— t2] =
sl -el>vl-max nl n2— tl1 A s2 -e2>v2-max nl n2— t2"
(proof)

lemma eval_eval_exec_max:
"[s1 -el>vi-nl1— t1; s2 -e2>-v2-n2— t2; s3 -c-n3— t3] =
sl -el>vi-max (max nl n2) n3— t1 A
s2 -e2+-v2-max (max nl n2) n3— t2 A
s3 -c -max (max nl n2) n3— t3"

{proof)

lemma Impl_body_eq: "(At. In. Z -Impl M-n— t) = (At. Jn. Z -body M-n— t)"

{proof)

end

6 Axiomatic Semantics

theory AxSem imports State begin

type__synonym assn = "state => bool"
type__synonym vassn = "val => assn"
type__synonym triple = "assn X stmt X assn"
type_synonym etriple = "assn X expr X vassn"
translations

(type) "assn" «— (type) "state => bool"

(type) "vassn" <~ (type) "val => assn"

(type) "triple" < (type) "assn X stmt X assn"
(type) "etriple" < (type) "assn X expr X vassn"

6.1 Hoare Logic Rules

inductive
hoare :: "[triple set, triple set] => bool" (<_ [F/ _> [61, 61] 60)

and ehoare :: "[triple set, etriple] => bool" (<_ [F./ _> [61, 61] 60)
and hoarel :: "[triple set, assn,stmt,assn] => bool"

<_F/ D} O/ {_)r> [61, 3, 90, 3] 60)
and ehoarel :: "[triple set, assn,expr,vassn]=> bool"

(< Fe/ LUDF O/ {UOP> [61, 3, 90, 3] 60)

where

"A F {P}c{Q} = A |- {(P,c,@}"
["A e {P}e{Q} = A ke (P,e,@)"

| Skip:

| Comp:

| Cond:

| Loop:

| LAcc:

| LAss:

| FAcc:

| FAss:

| NewC:

| Cast:

| Call:

"A + {P} Skip {P}"
"[| A b {P} c1 {Q}; A+ {Q} c2 {R} |] ==> A + {P} c1;;c2 {R}"
"[l A . {P} e {Q};
Vv. 4 + {Q v} (if v # Null then cl else c2) {R} |] ==>
A+ {P} If(e) c1 Else c2 {R}"

"A F {As. P s A s<x> # Null} c {P} ==>
A+ {P} While(x) ¢ {As. P s A s<x> = Null}"

"A ., {As. P (s<x>) s} LAcc x {P}"

"A o {P} e {Av s. @ (lupd(x—v) s)} ==>
A+ {P} x:==e {Q}"

"A . {P} e {A\v s. Va. v=Addr a --> @ (get_field s a f) s} ==>
A . {P} e..f {Q}"

"[| A+, {P} el {\v s. Va. v=Addr a --> Q a s};
Va. A F. {Q a} e2 {Av s. R (upd_obj a £ v s)} [] ==>
A+ {P} el..f:==e2 {R}"

"A . {As. Va. new_Addr s = Addr a --> P (Addr a) (new_obj a C s)}
new C {P}"

"A ., {P} e {\v s. (case v of Null => True
| Addr a => obj_class s a <C C) -—> Q v s} ==>
A ., {P} Cast C e {Q}"

"[l A . {P} el {Q}; VYa. A k. {Q a} e2 {R a};

Vapls. AF {\s’. ds. Raps Als=s A

| Meth:

s’ = lupd(This+ra) (1upd (Par—p) (del_locs s))}
Meth (C,m) {\s. S (s<Res>) (set_locs 1ls s)} |] ==>
A ., {P} {C}el..m(e2) {S}"

"WD. A F {As’. s a. s<This> = Addr a AN D = obj_class s a A D <XC C A
P s A s’ = init_locs D m s}
Impl (D,m) {Q} ==>
A+ {P} Meth (C,m) {Q}"

— J Z instead of V Z in the conclusion and
Z restricted to type state due to limitations of the inductive package

| Impl:

"WZ::state. AU ((UZ. (\Cm. (P Z Cm, Impl Cm, Q Z Cm)) ‘Ms) |-
(ACm. (P Z Cm, body Cm, Q Z Cm)) ‘Ms ==>
A |F (ACm. (P Z Cm, Impl Cm, Q Z Cm)) ‘Ms"

— structural rules

11

| Asm:

" a € A==>4|F {a}"

| ConjI: " Vc € C. A |- {c} ==> A |[F C"

| ConjE: "[|A |- C; ¢ € C |] ==> A |k {c}"

— 7 restricted to type state due to limitations of the inductive package
| Conseq:"[| VZ::state. A - {P’ Z} c {Q’ Z};

Vst. WZ. PP Zs -——>Q>Zt) ——> (Ps-—>Q¢t)|] ==
A+ {P} c {Q }"

— 7 restricted to type state due to limitations of the inductive package
| eConseq:"[| VZ::state. A . {P’ Z} e {Q’ Z};

Vsvt. WVZ. PP Zs -—>Q Zvt)-—>({Ps-—->Qvt)|] ==
Ak, {P} e {Q }"

6.2 Fully polymorphic variants, required for Example only

axiomatization where
Conseq:"[| VYZ. A + {P’ Z} c {Q’ Z};

Vst. VZ. PP Zs -—>Q’ Zt) -—> (Ps —>Q t) [] ==>
A= {P} c {Q }"

axiomatization where
eConseq:"[| VYZ. A . {P’> Z} e {Q’ Z};

Vsvt. VZ. PP Zs ->Q Zvt)-—>FPs-—>Qvt)|[]==
A . {P} e {Q }"

axiomatization where

Impl:

"WZ. AU (UZ. (A\Cm. (P Z Cm, Impl Cm, Q Z Cm)) ‘Ms) [+
(ACm. (P Z Cm, body Cm, Q Z Cm)) ‘Ms ==>
A |- (\Cm. (P Z Cm, Impl Cm, Q@ Z Cm)) ‘Ms"

6.3 Derived Rules

lemma

(proof)

lemma

{proof)

lemma

{proof)

lemma

{proof)

lemma

{proof)

lemma
n (A J
4’
(proof)

lemma

{proof)

lemma

Conseql: "[A + {P’} c {Q}; Vs. P s — P’ s] = A + {P} c {Q}"

Conseq2: "[A - {P} ¢ {Q’}; Vt. @ t — Q t] = A + {P} ¢ {Q}"

eConseql: "[A . {P’} e {Q}; Vs. P s — P’ s] = A . {P} e {Q}"

eConseq2: "[A k. {P} e {Q’}; Vv t. > vt — Qv t] = A+, {P} e {Q}"

Weaken: "[A |- C’; ¢ C C’] = 4 |- C"

Thin_lemma:
I C — (VA. A’
Fo {P} e {Q} — (VA. 4’

= C)) A

CA — A|F
CA— A . {P} e {@})"

cThin: "[A’ |- C; A2 C A] = A |- C"

eThin: "[A’ b, {P} e {Q}; A> C A] = A F. {P} e {Q}"

13

{proof)

lemma Union: "A |[F ((JZ. ¢2Z) = (VZ. A |[F C2)"
{proof)

lemma Impl1’:
"[VZ::state. AU (UZ. (A\Cm. (P Z Cm, Impl Cm, Q Z Cm)) ‘Ms) |+
(ACm. (P Z Cm, body Cm, Q Z Cm)) ‘Ms;
Cm € Ms] =
A + A{P Z Cm} Impl Cm {Q Z Cm}"
(proof)

lemmas Impll = AxSem.Impl [of _ _ _ "{Cm}", simplified] for Cm

end

7 Equivalence of Operational and Axiomatic Semantics

theory Equivalence imports OpSem AxSem begin

7.1 Validity

definition valid :: "[assn,stmt, assn] => bool" (< {(1.)}/ (L)/ {(1_)} [3,90,3] 60) where
"= {P} c{} =Vs t.Ps-->(GEn. s-¢c -n—>t)-—->Q t"

definition evalid :: "[assn,expr,vassn] => bool" (<. {(1_)}/ ()/ {(1_)} [3,90,3] 60) where
"=, {P} e {Q} =Vsvt. Ps-—> (dn. s -e-v-n—>t) —>Qvit"

definition nvalid :: "[nat, triple] => bool" (<_: _> [61,61] 60) where
"=n: t = let (P,c,Q) =t inVs t.s-c -n—> t -—->Ps-—>Q t"

definition envalid :: "[nat,etriple 1] => bool" (<_:. _> [61,61] 60) where
"E=n:. t = let (P,e,Q) =t in Vs v t. s -e-vn—> t -——>Ps-—>Qvt"

definition nvalids :: "[nat, triple set] => bool" (<[k=_: _> [61,61] 60) where
"lEen: T = VteT. En: t"

definition cnvalids :: "[triple set,triple set] => bool" (<_ |/ _> [61,61] 60) where
"A |l C =Vn. |En: A --> [En: C"

definition cenvalid :: "[triple set,etriple] => bool" (<_ [E./ _>[61,61] 60) where
"A |, t = Van. [En: A --> En:, t"

lemma nvalid_def2: "fEn: (P,c,) =Vs t. s -ccn—>t — Ps — Q t"

{proof)

lemma valid_def2: "k {P} ¢ {Q} = (Vn. FEn: (P,c,@)"
(proof)

lemma envalid_def2: "kEn:. (P,e,) =Vsvt. s -e-~vn—>t —Ps — Qvt"

{proof)

lemma evalid_def2: "|=. {P} e {Q} = (Vn. [n:. (P,e,Q))"
(proof)

lemma cenvalid_def2:
"Al=e (P,e,Q) = (Vn. |Fn: A — (Vs vt. s -e-vn—>t — Ps — Qvit)"

{proof)

7.2 Soundness

declare exec_elim_cases [elim!] eval_elim_cases [elim!]

lemma Impl_nvalid_0: "[E0: (P,Impl M,Q)"
(proof)

lemma Impl_nvalid_Suc: "[n: (P,body M,§) — E=Suc n: (P,Impl M,Q)"
(proof)

lemma nvalid_SucD: "At. =Suc n:t = [=n:t"

{proof)

lemma nvalids_SucD: "Ball A (nvalid (Suc n)) = Ball A (nvalid n)"

(proof)

lemma Loop_sound_lemma [rule_format (no_asm)]:
"Vs t. s ~ccn— t — P s A s<x> # Null — Pt =
(s -c0-n0—+ t — P s — ¢c0 = While (x) ¢ — n0 =n — Pt A t<x> = Null)"

{proof)

lemma Impl_sound_lemma:
"[Vz n. Ball (A U B) (avalid n) — Ball (f z ‘ Ms) (avalid n);
Cm€Ms; Ball A (nvalid na); Ball B (nvalid na)] = nvalid na (f z Cm)"

{proof)

lemma all_conjunct2: "V1. P’ 1 NP1 = V1. P 1"
{proof)

lemma all3_conjunct2:
"Yapl. (PPapl ANPapl —Vapl. Papl"
(proof)

lemma cnvalidl_eq:
"A |E {(P,c,} =Vn. [EFn: A — (Vs t. s -ccn—>t — Ps — Qt)"

{proof)

lemma hoare_sound_main:"At. (A |FC — A |JECO N (4 ket — A [)"
(proof)

theorem hoare_sound: "{} + {P} ¢ {Q} = E {P} c {Q}"
(proof)

theorem ehoare_sound: "{} . {P} e {} = . {P} e {Q}"
(proof)

7.3 (Relative) Completeness

definition MGT :: "stmt => state => triple" where
"MGT ¢ Z = (As. Z=s, ¢, A\ t. dn. Z -c- n— t)"

definition MGT. :: "expr => state => etriple" where
"MGT, e Z = (A\s. Z =38, e, Av t. dn. Z -e~v-n— t)"

lemma MGF_implies_complete:
"WZ. {} I+ { MGT ¢ Z} = & {P} ¢ {Q} = {} + {P} c {Q}"
{proof)

14

lemma eMGF_implies_complete:
"WZ. {} IFe MGT. e Z = . {P} e {Q} = {} . {P} e {Q}"
(proof)

declare exec_eval.intros[intro!]

lemma MGF_Loop: "VZ. A F {(=) Z} ¢ {At. dn. Z -c-n— t} =
A+ {(=) Z} While (x) ¢ {\t. dn. Z -While (x) c-n— t}"

{proof)

lemma MGF_lemma: "VM Z. A |- {MGT (Impl M) Z} —>
(VZ. A |F {MGT ¢ Z}) A (VZ. A |F. MGT, e Z)"
(proof)

lemma MGF_Impl: "{} |- {MGT (Impl M) Z}"
(proof)

theorem hoare_relative_complete: " {P} c¢ {Q} = {} - {P} c {Q}"
(proof)

theorem ehoare_relative_complete: "|=. {P} e {Q} = {} . {P} e {Q}"
(proof)

lemma cFalse: "A + {\s. False} c {Q}"

{proof)

lemma eFalse: "A b, {As. False} e {Q}"
(proof)

end

8 Example

theory Example
imports Equivalence
begin

class Nat {
Nat pred;

Nat suc()
{ Nat n = new Nat(); n.pred = this; return n; }

Nat eq(Nat n)
{ if (this.pred !'= null) if (n.pred !'= null) return this.pred.eq(n.pred);
else return n.pred; // false
else if (n.pred != null) return this.pred; // false
else return this.suc(); // true

Nat add(Nat n)
{ if (this.pred != null) return this.pred.add(n.suc()); else return n; }

public static void main(String[] args) // test x+1=1+x

{
Nat one = new Nat().suc();
Nat x = new Nat().suc().suc(Q) .suc(Q .sucQ);
Nat ok = x.suc().eq(x.add(one));
System.out.println(ok != null);

}

axiomatization where
This_neq_Par [simp]: "This # Par" and
Res_neq_This [simp]: "Res # This"

8.1 Program representation

axiomatization
N :: cname (<Nat>)
and pred :: fname
and suc add :: mname
and any :: vname
abbreviation
dummy :: expr (<<>>)
where "<> == LAcc any"
abbreviation
one :: expr
where "one == {Nat}new Nat..suc(<>)"

16

The following properties could be derived from a more complete program model, which we leave out

for laziness.

axiomatization where Nat_no_subclasses [simp]: "D =<C Nat = (D=Nat)"

axiomatization where method_Nat_add [simp]: "method Nat add = Some
(par=Class Nat, res=Class Nat, lcl=[],
bdy= If((LAcc This..pred))
(Res :== {Nat}(LAcc This..pred)..add({Nat}LAcc Par..suc(<>)))
Else Res :== LAcc Par |)"

axiomatization where method_Nat_suc [simp]: "method Nat suc = Some
(par=NT, res=Class Nat, lcl=[],
bdy= Res :== new Nat;; LAcc Res..pred :== LAcc This D"

axiomatization where field_Nat [simp]: "field Nat = Map.empty(pred—Class Nat)"

lemma init_locs_Nat_add [simp]: "init_locs Nat add s = s"

(proof)

lemma init_locs_Nat_suc [simp]: "init_locs Nat suc s = s

{proof)

lemma upd_obj_new_obj_Nat [simp]:
"upd_obj a pred v (new_obj a Nat s) = hupd(a— (Nat, Map.empty(pred—v))) s"
(proof)

8.2 “atleast” relation for interpretation of Nat “values”

primrec Nat_atleast :: "state = val = nat = bool" (<_:_ > _> [51, 51, 51] 50)
"s:x>0 = (x#Null)"

where

| "s:x>Suc n = (Ja. x=Addr a A heap s a # None A s:get_field s a pred>n)"

lemma Nat_atleast_lupd [rule_format, simp]:
"Ys v::val. lupd(x—y) s:v > n = (s:v > n)"

{proof)

lemma Nat_atleast_set_locs [rule_format, simp]:
"Ys v::val. set_locs 1 s:v > n = (s:v > n)"

(proof)

lemma Nat_atleast_del_locs [rule_format, simp]:
"Ws v::val. del_locs s:v > n = (s:v > n)"

{proof)

lemma Nat_atleast_NullD [rule_format]: "s:Null > n — False"

{proof)

lemma Nat_atleast_pred_NullD [rule_format]:
"Null = get_field s a pred = s:Addr a > n — n = 0"

(proof)

lemma Nat_atleast_mono [rule_format]:
"Va. s:get_field s a pred > n — heap s a # None — s:Addr a > n"

{proof)

lemma Nat_atleast_newC [rule_format]:
"heap s aa = None = Vv::val. s:v > n — hupd(aarrobj) s:v > n"

{proof)

8.3 Proof(s) using the Hoare logic

theorem add_homomorph_1b:

"{} F {\s. s:s<This> > X A s:s<Par> > Y} Meth(Nat,add) {)\s. s:s<Res> > X+Y}"

(proof)

end

17

18

References

[1] T. Nipkow, D. v. Oheimb, and C. Pusch. pJava: Embedding a programming language in a the-
orem prover. In F. L. Bauer and R. Steinbriiggen, editors, Foundations of Secure Computation,
volume 175 of NATO Science Series F: Computer and Systems Sciences, pages 117-144. 10S
Press, 2000.

[2] D. v. Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables, side effects and
virtual methods revisited, 2002. Submitted for publication.

[3] D. von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency: Practice and Experience,
598:77-77+43, 2001. https://isabelle.in.tum.de/Bali/papers/CPEO1.html, to appear.

https://isabelle.in.tum.de/Bali/papers/CPE01.html

	Statements and expression emulations
	Types, class Declarations, and whole programs
	Type relations
	Declarations and properties not used in the meta theory

	Program State
	Properties not used in the meta theory

	Operational Evaluation Semantics
	Axiomatic Semantics
	Hoare Logic Rules
	Fully polymorphic variants, required for Example only
	Derived Rules

	Equivalence of Operational and Axiomatic Semantics
	Validity
	Soundness
	(Relative) Completeness

	Example
	Program representation
	``atleast'' relation for interpretation of Nat ``values''
	Proof(s) using the Hoare logic

