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Abstract

These theories define NanoJava, a very small fragment of the programming language Java (with
essentially just classes) derived from the one given in [1]. For NanoJava, an operational semantics
is given as well as a Hoare logic, which is proved both sound and (relatively) complete. The Hoare
logic supports side-effecting expressions and implements a new approach for handling auxiliary
variables. A more complex Hoare logic covering a much larger subset of Java is described in [3].
See also the homepage of project Bali at https://isabelle.in.tum.de/Bali/ and the confer-
ence version of this document [2].
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1 Statements and expression emulations

theory Term imports Main begin

typedecl cname — class name
typedecl mname — method name
typedecl fname — field name
typedecl vname — variable name
axiomatization

This — This pointer

Par — method parameter

Res :: vname — method result

— Inequality axioms are not required for the meta theory.

datatype stmt

= Skip — empty statement
| Comp stmt stmt _;; o> [91,90 ] 90)
| Cond expr stmt stmt (<If °(_’) _ Else _> [ 3,91,91] 91)
| Loop vname stmt (<While ’(_’) > [ 3,91 ] 91)
| LAss vname expr (<_ == > [99, 95] 94) — local assignment
| FAss expr fname expr (<_.._:==> [95,99,95] 94) — field assignment
| Meth "cname X mname"  — virtual method
| Impl "cname X mname" — method implementation
and expr
= NewC cname (<new _> [ 99] 95) — object creation
| Cast cname expr — type cast
| LAcc vname — local access
| FAcc expr fname (<_.._> [95,99] 95) — field access
|

Call cname expr mname expr
(<{_F_.._°(_7)> [99,95,99,95] 95) — method call

end

2 Types, class Declarations, and whole programs

theory Decl imports Term begin

datatype ty
= NT — null type
| Class cname — class type

Field declaration

type_synonym fdecl
= "fname X ty"

record methd

= par :: ty
res :: ty
lcl ::"(vname X ty) list"
bdy :: stmt

Method declaration

type__synonym mdecl
= "mname X methd"

record '"class"



= super :: cname
flds ::"fdecl list"
methods ::"mdecl list"

Class declaration

type__synonym cdecl
= "cname X class"

type__synonym prog

= "cdecl list"
translations
(type) "fdecl" <~ (type) "fname X ty"
(type) "mdecl" < (type) "mname X ty X ty X stmt"
(type) "class" < (type) "cname X fdecl list X mdecl list"
(type) "cdecl" < (type) "cname X class"
(type) "prog " < (type) "cdecl list"
axiomatization
Prog :: prog — program as a global value
and
Object :: cname — name of root class
definition "class" :: "cname — class" where
"class = map_of Prog"
definition is_class :: "cname => bool" where
"is_class C = class C #* None"

lemma finite_is_class: "finite {C. is_class C}"

(proof )

end

3 Type relations

theory TypeRel
imports Decl
begin

Direct subclass relation

definition subclsl :: "(cname X cname) set"
where
"subclsl = {(C,D). C#0bject N (Jc. class C = Some ¢ A super c=D)}"

abbreviation
subclsl_syntax :: "[cname, cname] => bool" (<_ <C1 _> [71,71] 70)
where "C <C1 D == (C,D) € subclsl"

abbreviation
subcls_syntax :: "[cname, cname] => bool" (<_ <XC _> [71,71] 70)

where "C XC D = (C,D) € subclsi*"

3.1 Declarations and properties not used in the meta theory

Widening, viz. method invocation conversion

inductive



widen :: "ty => ty => bool" (<_ X _> [71,71] 70)
where

refl [intro!, simp]: "T <X T"
| subcls: "C<XC D — C(Class C < Class D"
| null [intro!]: "NT < R"

lemma subclsiD:
"C<C1D = C # Object N (dc. class C = Some ¢ A super c=D)"

(proof )

lemma subclsiI: "[class C = Some m; super m = D; C # Object] — C<C1D"

{proof)

lemma subclsl_def2:
"subclsl =
(SIGMA C: {C. is_class C} . {D. C#0Object A super (the (class C)) = D})"

{proof)

lemma finite_subclsl: "finite subclsl"
(proof)
definition ws_prog :: "bool" where

"ws_prog = V (C,c)Eset Prog. C#0Object —

is_class (super c) A (super c,C)¢subclsl™"

lemma ws_progD: "[class C = Some c; C#0bject; ws_prog] —
is_class (super c) A (super c,C)¢subclsi™"

{proof)

lemma subclsl_irrefl_lemmal: "ws_prog = subclsl~ ! N subclsit = {}"

(proof )

lemma irrefl_tranclI’: "r~ ' N rt = {} = Vx. (x, x) ¢ r*"
(proof )
lemmas subclsl_irrefl_lemma2 = subclsl_irrefl_lemmal [THEN irrefl tranclI’]

lemma subclsl_irrefl: "[(x, y) € subclsl; ws_prog] = x # y"

(proof )

lemmas subclsl_acyclic = subclsl_irrefl_lemma2 [THEN acyclicI]

lemma wf_subclsl: "ws_prog = wf (subclsi~!)"

(proof)
definition class_rec ::"cname = (class = (’a x ’b) list) = (’a — ’b)"
where

"class_rec = wfrec (subclsi™') (A\rec C f.

case class C of None = undefined
| Some m = (if C = Object then Map.empty else rec (super m) f) ++ map_of (f m))"

lemma class_rec: "[class C = Some m; ws_prog| =
class_rec C £ = (if C = Object then Map.empty else class_rec (super m) f) ++
map_of (f m)"
(proof )
definition "method" :: "cname => (mname — methd)" where
"method C = class_rec C methods"



lemma method_rec: "[class C = Some m; ws_prog] —>
method C = (if C=0bject then Map.empty else method (super m)) ++ map_of (methods m)"

(proof )

definition field :: "cname => (fname — ty)" where
"field C = class_rec C flds"

lemma flds_rec: "[class C = Some m; ws_prog| —
field C = (if C=Object then Map.empty else field (super m)) ++ map_of (flds m)"

{proof)

end

4 Program State

theory State imports TypeRel begin

definition body :: "cname X mname => stmt" where
"body = A(C,m). bdy (the (method C m))"

Locations, i.e. abstract references to objects

typedecl loc

datatype val
= Null — null reference
| Addr loc — address, i.e. location of object

type__synonym fields
= "(fname — val)"

type__synonym

obj = "cname X fields"
translations
(type) "fields" < (type) "fname => val option"
(type) "obj" — (type) "cname x fields"
definition init_vars :: "(’a — ’b) => (’a — val)" where
"init_vars m == map_option (AT. Null) o m"
private:
type_synonym heap = "loc — obj"
type__synonym locals = "vname — val"
private:
record state
= heap :: heap
Jocals :: locals
translations

(type) "heap" < (type) "loc => obj option"
(type) "locals" <~ (type) "vname => val option"
(type) "state" < (type) "(|lheap :: heap, locals :: locals/)"

definition del_locs :: "state => state" where
"del_locs s = s (| locals := Map.empty [)"

definition init_locs :: "cname => mname => state => state" where



"init_locs Cm s = s (| locals := locals s ++
init_vars (map_of (lcl (the (method C m)))) [)"

The first parameter of set_locs is of type state rather than locals in order to keep locals private.

definition set_locs :: "state => state => state" where
"set_locs s s’ = s’ (| locals := locals s [)"

definition get_local :: "state => vname => val" (<_<_>> [99,0] 99) where
"get_local s x = the (locals s x)"

— local function:
definition get_obj :: "state => loc => obj" where
"get_obj s a = the (heap s a)"

definition obj_class :: "state => loc => cname" where
"obj_class s a = fst (get_obj s a)"

definition get_field :: "state => loc => fname => val" where
"get_field s a £ = the (snd (get_obj s a) f)"

— local function:

definition hupd :: "loc => obj => state => state"  (<hupd’(_+—_’)> [10,10] 1000) where
"hupd a obj s = s (| heap := ((heap s)(a—obj))/[)"

definition Iupd :: "vname => val => state => state" (<lupd’(_~—_’)> [10,10] 1000) where
"lupd x v.s = s (| locals := ((locals s)(x—v J)[)"

definition new_obj :: "loc => cname => state => state" where
"new_obj a C = hupd(a— (C,init_vars (field C)))"

definition upd_obj :: "loc => fname => val => state => state" where

"upd_obj a f v s = let (C,fs) = the (heap s a) in hupd(a— (C,fs(f—v))) s"

definition new_Addr :: "state => val" where
"new_Addr s == SOME v. (Ja. v = Addr a A (heap s) a = None) | v = Null"

4.1 Properties not used in the meta theory

lemma locals_upd_id [simp]: "s(locals := locals s|) = s"

{proof)

I
<

lemma lupd_get_local_same [simp]: "lupd(x+—>v) s<x>

{proof)

lemma lupd_get_local_other [simp]: "x # y == lupd(x—v) s<y> = s<y>"

(proof )

lemma get_field_lupd [simp]:
"get_field (lupd(x+—y) s) a f = get_field s a f"
{proof )

lemma get_field_set_locs [simp]:
"get_field (set_locs 1 s) a f = get_field s a f"

{proof)

lemma get_field_del_locs [simp]:
"get_field (del_locs s) a f = get_field s a f"

{proof)



lemma new_obj_get_local [simp]: "new_obj a C s <x> = s<x>"

{proof)

lemma heap_lupd [simp]: "heap (lupd(x+—y) s) = heap s"
(proof )

lemma heap_hupd_same [simp]: "heap (hupd(a+—+obj) s) a = Some obj"
{proof)

lemma heap_hupd_other [simp]: "aa # a = heap (hupd(aarrobj) s) a = heap s a"

{proof)

lemma hupd_hupd [simp]: "hupd(ar>obj) (hupd(a+—obj’) s) = hupd(ar>obj) s"
(proof)

lemma heap_del_locs [simp]: "heap (del_locs s) = heap s"

{proof)

lemma heap_set_locs [simp]: "heap (set_locs 1 s) = heap s"

(proof)

lemma hupd_lupd [simp]:
"hupd (a+—+obj) (lupd(x+—y) s) = lupd(x—y) (hupd(a—obj) s)"
{proof)

lemma hupd_del_locs [simp]:
"hupd (a+>obj) (del_locs s) = del_locs (hupd(a—obj) s)"
{proof )

lemma new_obj_lupd [simp]:
"new_obj a C (lupd(x—y) s) = lupd(x+—y) (new_obj a C s)"
{proof)

lemma new_obj_del_locs [simp]:
"new_obj a C (del_locs s) = del_locs (new_obj a C s)"

(proof)

lemma upd_obj_lupd [simp]:
"upd_obj a f v (lupd(x+—>y) s) = lupd(x—y) (upd_obj a f v s)"
{proof)

lemma upd_obj_del_locs [simp]:
"upd_obj a £ v (del_locs s) = del_locs (upd_obj a £ v s)"
{proof )

lemma get_field_hupd_same [simp]:
"get_field (hupd(a—(C, fs)) s) a = the o fs"
{proof)

lemma get_field_hupd_other [simp]:
"aa # a =—> get_field (hupd(aa+—obj) s) a = get_field s a"

(proof)

lemma new_AddrD:
"new_Addr s = v = (Ja. v = Addr a A heap s a = None) | v = Null"

{proof)

end



5 Operational Evaluation Semantics

theory OpSem imports State begin

inductive

exec :: "[state,stmt, nat,state] => bool" (<_ -_-_— _> [98,90, 65,98] 89)

and eval :: "[state,expr,val,nat,state] => bool" (<_ -_»_-_— _>[98,95,99,65,98] 89)
where

Skip: " s -Skip-n— s"

| Comp: "[| sO -c1-n— s1; s1 -c2-n— s2 |] ==
sO -cl1;; c2-n— s2"

| Cond: "[| sO -e>v-n— s1; s1 -(if v#Null then cl else c2)-n— s2 [] ==>
s0 -If(e) c1 Else c2-n— s2"

| LoopF:"  s0<x> = Null ==>
s0 -While(x) c-n— sO"

| LoopT:"[| sO<x> # Null; sO -c-n— s1; s1 -While(x) c-n— s2 [|] ==>
s0 -While(x) c-n— s2"

| LAcc: " s -LAcc x>s<x>-n— s"

| LAss: " s -e=v-n— s’ ==>
s -x:==e-n— lupd(x—v) s°"

| FAcc: " s -e>Addr a-n— s’ ==
s -e..f>get_field s’ a f-n— s’"

| FAss: "[| sO -el>Addr a-n— s1; s1 -e2>=v-n— s2 |] ==>
s0 -el..f:==e2-n— upd_obj a f v s2"

| NewC: " new Addr s = Addr a ==
s —new C>Addr a-n— new_obj a C s"

| Cast: "[| s -—e-v-n— s’;
case v of Null => True | Addr a => obj_class s’ a =XC C [] ==>
s -Cast C e~v-n— s’"

| Call: "[| sO -el>a-n— s1; sl -e2>p-n— s2;
lupd(This+—a) (lupd (Par+—p) (del_locs s2)) -Meth (C,m)-n— s3
|] ==> s0 -{C}el..m(e2)>s3<Res>-n— set_locs s2 s3"

| Meth: "[| s<This> = Addr a; D = obj_class s a; D=XC C;
init_locs D m s -Impl (D,m)-n— s’ |] ==>
s -Meth (C,m)-n— s’"

| Impl: " s -body Cm- n— s’ ==

s -Impl Cm-Suc n— s’"

inductive__cases exec_elim_cases’:

"s -Skip -n— t"
"s -c1;; c2 -n— t"
"s -If(e) c1 Else c2-n— t"
"s -While(x) c -n— t"
"s -x:==e -n— t"
"s -el..f:==e2 -n— t"

inductive__cases Meth_elim_cases: '"s -Meth Cm -n— t"



inductive__cases Impl_elim_cases: "s -Impl Cm -n— t"
lemmas exec_elim_cases = exec_elim_cases’ Meth_elim_cases Impl_elim_cases
inductive__cases eval_elim_cases:

"s -new C =v-n— t"
"s -Cast C e =v-n— t"
"s -LAcc x >v-n— t"
"s -e..f ~v-n— t"
"s -{C}el..m(e2) >v-n— t"

lemma exec_eval_mono [rule_format]:
"(s ¢ -n—t — (Vm.n <m — s -c -m— t)) A
(s —e=vn—>t — (Vm. n <m — s -e~v-m— t))"
(proof)
lemmas exec_mono = exec_eval_mono [THEN conjunctl, rule_format]
lemmas eval_mono = exec_eval_mono [THEN conjunct2, rule_format]

lemma exec_exec_max: "[s1 -c1- nl — t1 ; s2 -c2- n2— t2] =
sl -cl-max nl n2— t1 N s2 -c2-max nl n2— t2"
(proof)
lemma eval_exec_max: "[s1 -c- nl — tl1 ; s2 -e-v- n2— t2] =
sl -c-max nl n2— t1 N s2 -e>v-max nl n2— t2"
(proof)
lemma eval_eval_max: "[s1 -el>vi- nl — tl1 ; s2 -e2-v2- n2— t2] =
sl -el>vl-max nl n2— tl1 A s2 -e2>v2-max nl n2— t2"
(proof)

lemma eval_eval_exec_max:
"[s1 -el>vi-nl1— t1; s2 -e2>-v2-n2— t2; s3 -c-n3— t3] =
sl -el>vi-max (max nl n2) n3— t1 A
s2 -e2+-v2-max (max nl n2) n3— t2 A
s3 -c -max (max nl n2) n3— t3"

{proof)

lemma Impl_body_eq: "(At. In. Z -Impl M-n— t) = (At. Jn. Z -body M-n— t)"

{proof)

end

6 Axiomatic Semantics

theory AxSem imports State begin

type__synonym assn = "state => bool"
type__synonym vassn = "val => assn"
type__synonym triple = "assn X stmt X assn"
type_synonym etriple = "assn X expr X vassn"
translations

(type) "assn" «— (type) "state => bool"

(type) "vassn" <~ (type) "val => assn"

(type) "triple" < (type) "assn X stmt X assn"
(type) "etriple" < (type) "assn X expr X vassn"

6.1 Hoare Logic Rules

inductive
hoare :: "[triple set, triple set] => bool" (<_ [F/ _> [61, 61] 60)



and ehoare :: "[triple set, etriple] => bool" (<_ [F./ _> [61, 61] 60)
and hoarel :: "[triple set, assn,stmt,assn] => bool"

<_F/ D} O/ {_)r> [61, 3, 90, 3] 60)
and ehoarel :: "[triple set, assn,expr,vassn]=> bool"

(< Fe/ LUDF O/ {UOP> [61, 3, 90, 3] 60)

where

"A F {P}c{Q} = A |- {(P,c,@}"
[ "A e {P}e{Q} = A ke (P,e,@)"

| Skip:

| Comp:

| Cond:

| Loop:

| LAcc:

| LAss:

| FAcc:

| FAss:

| NewC:

| Cast:

| Call:

"A + {P} Skip {P}"
"[| A b {P} c1 {Q}; A+ {Q} c2 {R} |] ==> A + {P} c1;;c2 {R}"
"[l A . {P} e {Q};
Vv. 4 + {Q v} (if v # Null then cl else c2) {R} |] ==>
A+ {P} If(e) c1 Else c2 {R}"

"A F {As. P s A s<x> # Null} c {P} ==>
A+ {P} While(x) ¢ {As. P s A s<x> = Null}"

"A ., {As. P (s<x>) s} LAcc x {P}"

"A o {P} e {Av s. @ (lupd(x—v) s)} ==>
A+ {P} x:==e {Q}"

"A . {P} e {A\v s. Va. v=Addr a --> @ (get_field s a f) s} ==>
A . {P} e..f {Q}"

"[| A+, {P} el {\v s. Va. v=Addr a --> Q a s};
Va. A F. {Q a} e2 {Av s. R (upd_obj a £ v s)} [] ==>
A+ {P} el..f:==e2 {R}"

"A . {As. Va. new_Addr s = Addr a --> P (Addr a) (new_obj a C s)}
new C {P}"

"A ., {P} e {\v s. (case v of Null => True
| Addr a => obj_class s a <C C) -—> Q v s} ==>
A ., {P} Cast C e {Q}"

"[l A . {P} el {Q}; VYa. A k. {Q a} e2 {R a};

Vapls. AF {\s’. ds. Raps Als=s A

| Meth:

s’ = lupd(This+ra) (1upd (Par—p) (del_locs s))}
Meth (C,m) {\s. S (s<Res>) (set_locs 1ls s)} |] ==>
A ., {P} {C}el..m(e2) {S}"

"WD. A F {As’. s a. s<This> = Addr a AN D = obj_class s a A D <XC C A
P s A s’ = init_locs D m s}
Impl (D,m) {Q} ==>
A+ {P} Meth (C,m) {Q}"

— J Z instead of V Z in the conclusion and
Z restricted to type state due to limitations of the inductive package

| Impl:

"WZ::state. AU ((UZ. (\Cm. (P Z Cm, Impl Cm, Q Z Cm)) ‘Ms) |-
(ACm. (P Z Cm, body Cm, Q Z Cm)) ‘Ms ==>
A |F (ACm. (P Z Cm, Impl Cm, Q Z Cm)) ‘Ms"

— structural rules
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| Asm:

" a € A==>4|F {a}"

| ConjI: " Vc € C. A |- {c} ==> A |[F C"

| ConjE: "[|A |- C; ¢ € C |] ==> A |k {c}"

— 7 restricted to type state due to limitations of the inductive package
| Conseq:"[| VZ::state. A - {P’ Z} c {Q’ Z};

Vst. WZ. PP Zs -——>Q>Zt) ——> (Ps-—>Q¢t)|] ==
A+ {P} c {Q }"

— 7 restricted to type state due to limitations of the inductive package
| eConseq:"[| VZ::state. A . {P’ Z} e {Q’ Z};

Vsvt. WVZ. PP Zs -—>Q Zvt)-—>({Ps-—->Qvt)|] ==
Ak, {P} e {Q }"

6.2 Fully polymorphic variants, required for Example only

axiomatization where
Conseq:"[| VYZ. A + {P’ Z} c {Q’ Z};

Vst. VZ. PP Zs -—>Q’ Zt) -—> (Ps —>Q t) [] ==>
A= {P} c {Q }"

axiomatization where
eConseq:"[| VYZ. A . {P’> Z} e {Q’ Z};

Vsvt. VZ. PP Zs ->Q Zvt)-—>FPs-—>Qvt)|[]==
A . {P} e {Q }"

axiomatization where

Impl:

"WZ. AU (UZ. (A\Cm. (P Z Cm, Impl Cm, Q Z Cm)) ‘Ms) [+
(ACm. (P Z Cm, body Cm, Q Z Cm)) ‘Ms ==>
A |- (\Cm. (P Z Cm, Impl Cm, Q@ Z Cm)) ‘Ms"

6.3 Derived Rules

lemma

(proof )

lemma

{proof)

lemma

{proof)

lemma

{proof)

lemma

{proof)

lemma
n (A J
4’
(proof)

lemma

{proof)

lemma

Conseql: "[A + {P’} c {Q}; Vs. P s — P’ s] = A + {P} c {Q}"

Conseq2: "[A - {P} ¢ {Q’}; Vt. @ t — Q t] = A + {P} ¢ {Q}"

eConseql: "[A . {P’} e {Q}; Vs. P s — P’ s] = A . {P} e {Q}"

eConseq2: "[A k. {P} e {Q’}; Vv t. > vt — Qv t] = A+, {P} e {Q}"

Weaken: "[A |- C’; ¢ C C’] = 4 |- C"

Thin_lemma:
I C — (VA. A’
Fo {P} e {Q} — (VA. 4’

= C )) A

CA — A|F
CA— A . {P} e {@})"

cThin: "[A’ |- C; A2 C A] = A |- C"

eThin: "[A’ b, {P} e {Q}; A> C A] = A F. {P} e {Q}"
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{proof)

lemma Union: "A |[F ((JZ. ¢2Z) = (VZ. A |[F C2)"
{proof)

lemma Impl1’:
"[VZ::state. AU (UZ. (A\Cm. (P Z Cm, Impl Cm, Q Z Cm)) ‘Ms) |+
(ACm. (P Z Cm, body Cm, Q Z Cm)) ‘Ms;
Cm € Ms] =
A + A{P Z Cm} Impl Cm {Q Z Cm}"
(proof)

lemmas Impll = AxSem.Impl [of _ _ _ "{Cm}", simplified] for Cm

end

7 Equivalence of Operational and Axiomatic Semantics

theory Equivalence imports OpSem AxSem begin

7.1 Validity

definition valid :: "[assn,stmt, assn] => bool" (< {(1.)}/ (L)/ {(1_)} [3,90,3] 60) where
"= {P} c{} =Vs t.Ps-->(GEn. s-¢c -n—>t)-—->Q t"

definition evalid :: "[assn,expr,vassn] => bool" (<. {(1_)}/ ()/ {(1_)} [3,90,3] 60) where
"=, {P} e {Q} =Vsvt. Ps-—> (dn. s -e-v-n—>t) —>Qvit"

definition nvalid :: "[nat, triple ] => bool" (<_: _> [61,61] 60) where
"=n: t = let (P,c,Q) =t inVs t.s-c -n—> t -—->Ps-—>Q t"

definition envalid :: "[nat,etriple 1] => bool" (<_:. _> [61,61] 60) where
"E=n:. t = let (P,e,Q) =t in Vs v t. s -e-vn—> t -——>Ps-—>Qvt"

definition nvalids :: "[nat, triple set] => bool" (<[k=_: _> [61,61] 60) where
"lEen: T = VteT. En: t"

definition cnvalids :: "[triple set,triple set] => bool" (<_ |/ _> [61,61] 60) where
"A |l C =Vn. |En: A --> [En: C"

definition cenvalid :: "[triple set,etriple ] => bool" (<_ [E./ _>[61,61] 60) where
"A |, t = Van. [En: A --> En:, t"

lemma nvalid_def2: "fEn: (P,c,) =Vs t. s -ccn—>t — Ps — Q t"

{proof)

lemma valid_def2: "k {P} ¢ {Q} = (Vn. FEn: (P,c,@)"
(proof)

lemma envalid_def2: "kEn:. (P,e,) =Vsvt. s -e-~vn—>t —Ps — Qvt"

{proof)

lemma evalid_def2: "|=. {P} e {Q} = (Vn. [n:. (P,e,Q))"
(proof )

lemma cenvalid_def2:
"Al=e (P,e,Q) = (Vn. |Fn: A — (Vs vt. s -e-vn—>t — Ps — Qvit)"



{proof)

7.2 Soundness

declare exec_elim_cases [elim!] eval_elim_cases [elim!]

lemma Impl_nvalid_0: "[E0: (P,Impl M,Q)"
(proof)

lemma Impl_nvalid_Suc: "[n: (P,body M,§) — E=Suc n: (P,Impl M,Q)"
(proof)

lemma nvalid_SucD: "At. =Suc n:t = [=n:t"

{proof)

lemma nvalids_SucD: "Ball A (nvalid (Suc n)) = Ball A (nvalid n)"

(proof )

lemma Loop_sound_lemma [rule_format (no_asm)]:
"Vs t. s ~ccn— t — P s A s<x> # Null — Pt =
(s -c0-n0—+ t — P s — ¢c0 = While (x) ¢ — n0 =n — Pt A t<x> = Null)"

{proof)

lemma Impl_sound_lemma:
"[Vz n. Ball (A U B) (avalid n) — Ball (f z ‘ Ms) (avalid n);
Cm€Ms; Ball A (nvalid na); Ball B (nvalid na)] = nvalid na (f z Cm)"

{proof)

lemma all_conjunct2: "V1. P’ 1 NP1 = V1. P 1"
{proof)

lemma all3_conjunct2:
"Yapl. (PPapl ANPapl —Vapl. Papl"
(proof )

lemma cnvalidl_eq:
"A |E {(P,c,} =Vn. [EFn: A — (Vs t. s -ccn—>t — Ps — Qt)"

{proof)

lemma hoare_sound_main:"At. (A |FC — A |JECO N (4 ket — A [ )"
(proof)

theorem hoare_sound: "{} + {P} ¢ {Q} = E {P} c {Q}"
(proof)

theorem ehoare_sound: "{} . {P} e {} = . {P} e {Q}"
(proof )

7.3 (Relative) Completeness

definition MGT :: "stmt => state => triple" where
"MGT ¢ Z = (As. Z=s, ¢, A\ t. dn. Z -c- n— t)"

definition MGT. :: "expr => state => etriple" where
"MGT, e Z = (A\s. Z =38, e, Av t. dn. Z -e~v-n— t)"

lemma MGF_implies_complete:
"WZ. {} I+ { MGT ¢ Z} = & {P} ¢ {Q} = {} + {P} c {Q}"
{proof)

14



lemma eMGF_implies_complete:
"WZ. {} IFe MGT. e Z = . {P} e {Q} = {} . {P} e {Q}"
(proof )

declare exec_eval.intros[intro!]

lemma MGF_Loop: "VZ. A F {(=) Z} ¢ {At. dn. Z -c-n— t} =
A+ {(=) Z} While (x) ¢ {\t. dn. Z -While (x) c-n— t}"

{proof)

lemma MGF_lemma: "VM Z. A |- {MGT (Impl M) Z} —>
(VZ. A |F {MGT ¢ Z}) A (VZ. A |F. MGT, e Z)"
(proof)

lemma MGF_Impl: "{} |- {MGT (Impl M) Z}"
(proof)

theorem hoare_relative_complete: " {P} c¢ {Q} = {} - {P} c {Q}"
(proof )

theorem ehoare_relative_complete: "|=. {P} e {Q} = {} . {P} e {Q}"
(proof)

lemma cFalse: "A + {\s. False} c {Q}"

{proof)

lemma eFalse: "A b, {As. False} e {Q}"
(proof)

end

8 Example

theory Example
imports Equivalence
begin

class Nat {
Nat pred;

Nat suc()
{ Nat n = new Nat(); n.pred = this; return n; }

Nat eq(Nat n)
{ if (this.pred !'= null) if (n.pred !'= null) return this.pred.eq(n.pred);
else return n.pred; // false
else if (n.pred != null) return this.pred; // false
else return this.suc(); // true

Nat add(Nat n)
{ if (this.pred != null) return this.pred.add(n.suc()); else return n; }

public static void main(String[] args) // test x+1=1+x



{
Nat one = new Nat().suc();
Nat x = new Nat().suc().suc(Q) .suc(Q .sucQ);
Nat ok = x.suc().eq(x.add(one));
System.out.println(ok != null);

}

axiomatization where
This_neq_Par [simp]: "This # Par" and
Res_neq_This [simp]: "Res # This"

8.1 Program representation

axiomatization
N :: cname (<Nat>)
and pred :: fname
and suc add :: mname
and any :: vname
abbreviation
dummy :: expr (<<>>)
where "<> == LAcc any"
abbreviation
one :: expr
where "one == {Nat}new Nat..suc(<>)"

16

The following properties could be derived from a more complete program model, which we leave out

for laziness.

axiomatization where Nat_no_subclasses [simp]: "D =<C Nat = (D=Nat)"

axiomatization where method_Nat_add [simp]: "method Nat add = Some
( par=Class Nat, res=Class Nat, lcl=[],
bdy= If((LAcc This..pred))
(Res :== {Nat}(LAcc This..pred)..add({Nat}LAcc Par..suc(<>)))
Else Res :== LAcc Par |)"

axiomatization where method_Nat_suc [simp]: "method Nat suc = Some
( par=NT, res=Class Nat, lcl=[],
bdy= Res :== new Nat;; LAcc Res..pred :== LAcc This D"

axiomatization where field_Nat [simp]: "field Nat = Map.empty(pred—Class Nat)"

lemma init_locs_Nat_add [simp]: "init_locs Nat add s = s"

(proof)

lemma init_locs_Nat_suc [simp]: "init_locs Nat suc s = s

{proof)

lemma upd_obj_new_obj_Nat [simp]:
"upd_obj a pred v (new_obj a Nat s) = hupd(a— (Nat, Map.empty(pred—v))) s"
(proof )

8.2 “atleast” relation for interpretation of Nat “values”

primrec Nat_atleast :: "state = val = nat = bool" (<_:_ > _> [51, 51, 51] 50)
"s:x>0 = (x#Null)"

where



| "s:x>Suc n = (Ja. x=Addr a A heap s a # None A s:get_field s a pred>n)"

lemma Nat_atleast_lupd [rule_format, simp]:
"Ys v::val. lupd(x—y) s:v > n = (s:v > n)"

{proof)

lemma Nat_atleast_set_locs [rule_format, simp]:
"Ys v::val. set_locs 1 s:v > n = (s:v > n)"

(proof )

lemma Nat_atleast_del_locs [rule_format, simp]:
"Ws v::val. del_locs s:v > n = (s:v > n)"

{proof)

lemma Nat_atleast_NullD [rule_format]: "s:Null > n — False"

{proof)

lemma Nat_atleast_pred_NullD [rule_format]:
"Null = get_field s a pred = s:Addr a > n — n = 0"

(proof)

lemma Nat_atleast_mono [rule_format]:
"Va. s:get_field s a pred > n — heap s a # None — s:Addr a > n"

{proof)

lemma Nat_atleast_newC [rule_format]:
"heap s aa = None = Vv::val. s:v > n — hupd(aarrobj) s:v > n"

{proof)

8.3 Proof(s) using the Hoare logic

theorem add_homomorph_1b:

"{} F {\s. s:s<This> > X A s:s<Par> > Y} Meth(Nat,add) {)\s. s:s<Res> > X+Y}"

(proof )

end
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