Matrix

Steven Obua

January 18, 2026

theory Matrix
imports Main HOL— Library. Lattice-Algebras
begin

type-synonym ’a infmatriz = nat = nat = ‘a

definition nonzero-positions :: (nat = nat = 'a::zero) = (nat x nat) set where
nonzero-positions A = {pos. A (fst pos) (snd pos) ~= 0}

definition matriz = {(f::(nat = nat = 'a::zero)). finite (nonzero-positions f)}

typedef (overloaded) ‘a matriz = matriz :: (nat = nat = 'a::zero) set
{proof)

declare Rep-matriz-inverse[simp)

lemma matriz-eql:
fixes A B :: 'a::zero matriz
assumes Am n. Rep-matrix A m n = Rep-matriz B m n
shows A=B

(proof)

lemma finite-nonzero-positions : finite (nonzero-positions (Rep-matriz A))
(proof)

definition nrows :: (‘a::zero) matriz = nat where
nrows A == if nonzero-positions(Rep-matriz A) = {} then 0 else Suc(Maz ((image
fst) (nonzero-positions (Rep-matriz A))))

definition ncols :: ('a::zero) matriz = nat where
neols A == if nonzero-positions(Rep-matriz A) = {} then 0 else Suc(Mazx ((image
snd) (nonzero-positions (Rep-matriz A))))

lemma nrows:
assumes hyp: nrows A < m
shows (Rep-matriz A m n) = 0

(proof)

definition transpose-infmatriz :: 'a infmatriz = 'a infmatriz where
transpose-infmatric A j i == A ij

definition transpose-matriz :: ('a::zero) matriz = 'a matriz where
transpose-matric == Abs-matrix o transpose-infmatriz o Rep-matriz

declare transpose-infmatriz-def|[simp)

lemma transpose-infmatriz-twice[simpl: transpose-infmatriz (transpose-infmatriz
A)=A
(proof)

lemma transpose-infmatriz: transpose-infmatriz (A\ji. P ji) = (A\ji. P ij)
(proof)

lemma transpose-infmatriz-closed[simp|: Rep-matriz (Abs-matriz (transpose-infmatriz
(Rep-matriz x))) = transpose-infmatriz (Rep-matriz)

(proof)

lemma infmatrizforward: (x::'a infmatriz) = y =V ab.zab=yab
(proof)

lemma transpose-infmatriz-inject: (transpose-infmatrix A = transpose-infmatriz
B) = (A = B)
(proof)

lemma transpose-matriz-inject: (transpose-matriz A = transpose-matriz B) = (A
(proof)

lemma transpose-matrixz|[simp): Rep-matriz(transpose-matriz A) j i = Rep-matriz
Aij
(proof)

lemma transpose-transpose-id[simp]: transpose-matriz (transpose-matriz A) = A
(proof)

lemma nrows-transpose[simpl: nrows (transpose-matriz A) = ncols A
(proof)

lemma ncols-transpose[simp]: ncols (transpose-matriz A) = nrows A

{proof)

lemma ncols: ncols A < n = Rep-matric A mn = 0

(proof)

lemma ncols-le: (ncols A < n) +— (Vji.n < i — (Rep-matriz A ji) = 0) (is

- = %st)
(proof)

lemma less-neols: (n < ncols A) = (3ji. n < i A (Rep-matriz A ji) # 0)
(proof)

lemma le-ncols: (n < ncols A) = (¥ m. (VY ji. m < i — (Rep-matriz A j i) =
0) — n < m)
{proof)

lemma nrows-le: (nrows A < n) = (Vji. n <j — (Rep-matriz A j i) = 0) (is
?s)
(proof)

lemma less-nrows: (m < nrows A) = (3ji. m < j A (Rep-matriz A j i) # 0)
(proof)

lemma le-nrows: (n < nrows A) = (V¥ m. (¥ ji. m < j — (Rep-matriz A j i) =
0) — n < m)
{proof)

lemma nrows-notzero: Rep-matric A m n # 0 = m < nrows A
(proof)

lemma ncols-notzero: Rep-matric A m n # 0 = n < ncols A
(proof)

lemma finite-natarray!: finite {z. x < (n:nat)}
{proof)

lemma finite-natarray2: finite {(z, y). © < (munat) A y < (n:nat)}
(proof)

lemma RepAbs-matriz:
assumes dm. Vji m<j—xji =10
and 3n. Vji. (n<i—zji=0)
shows (Rep-matriz (Abs-matriz ©)) = «
(proof)

definition apply-infmatriz :: (‘a = 'b) = 'a infmatriz = 'b infmatriz where
apply-infmatric f == XNA. (A\ji. f (A j 1))

definition apply-matriz :: ('a = 'b) = ('a::zero) matriz = ('b::zero) matriz where
apply-matriz f == XNA. Abs-matriz (apply-infmatriz f (Rep-matriz A))

definition combine-infmatriz :: ('a = 'b = '¢) = 'a infmatriz = 'b infmatriz =
'c infmatriz where
combine-infmatriz f == AA B. (Aji. f (A j1i) (Bji))

definition combine-matriz :: (‘a = 'b = '¢) = (‘at:zero) matriz = ('b::zero)
matriz = ('c::zero) matriz where

combine-matriz f == AA B. Abs-matriz (combine-infmatriz f (Rep-matriz A)
(Rep-matriz B))

lemma expand-apply-infmatriz[simpl: apply-infmatriz f A ji=f (A ji)
(proof)

lemma ezpand-combine-infmatriz[simp]: combine-infmatriz f A Bji = f (A ji)
(Bji)
(proof)

definition commutative :: ('a = 'a = 'b) = bool where
commutative f ==Vzy. foy=fyzx

definition associative :: (‘a = 'a = 'a) = bool where
associative f ==Vzyz. f (fzy) z=fz (fy2)

To reason about associativity and commutativity of operations on matrices,
let’s take a step back and look at the general situtation: Assume that we
have sets A and B with B C A and an abstraction v : A — B. This
abstraction has to fulfill u(b) = b for all b € B, but is arbitrary otherwise.
Each function f : A x A — A now induces a function f' : B x B — B by
f'=wo f. It is obvious that commutativity of f implies commutativity of
[fley = u(fry) = u(fyz) = flyx.

lemma combine-infmatriz-commute:

commutative f = commutative (combine-infmatriz f)

{(proof)

lemma combine-matriz-commute:
commutative f = commutative (combine-matriz f)

(proof)

On the contrary, given an associative function f we cannot expect f’ to be
associative. A counterexample is given by A = Z, B = {—1,0,1}, as f we
take addition on Z, which is clearly associative. The abstraction is given by
u(a) =0 for a ¢ B. Then we have

FUN) =1 =u(f(u(f11)) = 1) = u(f(u2) - 1) = u(f0 - 1) = -1,

but on the other hand we have

FLf1=1) = u(fL{u(f1 - 1)) = u(f10) = L.
A way out of this problem is to assume that f(A x A) C A holds, and this
is what we are going to do:

lemma nonzero-positions-combine-infmatriz[simp|: f 0 0 = 0 = nonzero-positions
(combine-infmatriz f A B) C (nonzero-positions A) U (nonzero-positions B)

{proof)

lemma finite-nonzero-positions-Rep[simp|: finite (nonzero-positions (Rep-matriz

A))

(proof)

lemma combine-infmatriz-closed [simp]:

f00 =0 = Rep-matriz (Abs-matriz (combine-infmatriz f (Rep-matriz A)
(Rep-matriz B))) = combine-infmatriz f (Rep-matriz A) (Rep-matriz B)

{proof)

We need the next two lemmas only later, but it is analog to the above one,
SO we prove them now:
lemma nonzero-positions-apply-infmatriz[simpl: f 0 = 0 = nonzero-positions

(apply-infmatriz f A) C nonzero-positions A

(proof)

lemma apply-infmatriz-closed [simp):

f 0 = 0 = Rep-matriz (Abs-matriz (apply-infmatriz f (Rep-matriz A))) =
apply-infmatriz f (Rep-matriz A)
(proof)

lemma combine-infmatriz-assoc[simp|: f 0 0 = 0 = associative f = associative
(combine-infmatriz f)
(proof)

lemma combine-matriz-assoc: f 0 0 = 0 = associative f = associative (combine-matriz

)
(proof)

lemma Rep-apply-matriz[simp): f 0 = 0 = Rep-matriz (apply-matriz f A) ji =
f (Rep-matriz A j 1)
(proof)

lemma Rep-combine-matriz[simp|: f 0 0 = 0 = Rep-matriz (combine-matriz f
A B) ji=f (Rep-matriz A j i) (Rep-matriz B j 7)
(proof)

lemma combine-nrows-mazx: f 0 0 = 0 = nrows (combine-matriz f A B) < max
(nrows A) (nrows B)

{proof)

lemma combine-ncols-maz: f 0 0 = 0 = ncols (combine-matriz f A B) < maz
(ncols A) (ncols B)

{proof)

lemma combine-nrows: f 0 0 = 0 = nrows A < ¢ = nrows B < ¢ =
nrows(combine-matriz f A B) < q

{proof)

lemma combine-ncols: f0 0 = 0 = ncols A < ¢ = ncols B < ¢ = ncols(combine-matrix
fAB)<gq
(proof)

definition zero-r-neutral :: ('a = 'b::zero = 'a) = bool where
zero-r-neutral f ==Va. fa 0 = a

definition zero-l-neutral :: (‘a::zero = 'b = 'b) = bool where
zero-lI-neutral f ==Va. f0a = a

definition zero-closed :: ((‘a::zero) = ('b::zero) = (‘c::zero)) = bool where
zero-closed f == (Vz. fz 0 = 0) AN (Vy. fOy = 0)

primrec foldseq :: ('a = 'a = 'a) = (nat = 'a) = nat = 'a
where

foldseq fs 0 =50
| foldseq f's (Suc n) = f (s 0) (foldseq f (Ak. s(Suc k)) n)

primrec foldseg-transposed :: (‘a = 'a = 'a) = (nat = 'a) = nat = 'a
where

foldseg-transposed fs 0 = s 0
| foldseg-transposed f s (Suc n) = f (foldseg-transposed f s n) (s (Suc n))

lemma foldseq-assoc:
assumes a:associative f
shows associative f = foldseq f = foldseq-transposed f

(proof)

lemma foldseq-distr:

assumes assoc: associative f and comm: commutative f

shows foldseq f (M\k. f (u k) (vk)) n=f (foldseq f u n) (foldseq f v n)
(proof)

theorem [associative f; associative g;Va bcd. g (fabd) (fed)=f(gac)(gb
d);3zy. (fz) # (fy); 32y (92) # (gy)s fre =z g2z =3] = f=g| (Vy.
fyz=y) | (Vy. gyz=y)

(proof)

lemma foldseq-zero:
assumes fz: f00 =0 and sz:Vi.i<n—si=10
shows foldseq fsn =0

(proof)

lemma foldseq-significant-positions:
assumes p: Vi. it < N — Si=T1
shows foldseq f S N = foldseq f T N
(proof)

lemma foldseq-tail:

assumes M < N

shows foldseq f S N = foldseq f (Ak. (if k < M then (S k) else (foldseq f (k.
S(k+M)) (N=M)))) M

(proof)

lemma foldseq-zerotail:
assumes fz: f00 =0 and sz: Vi. n <i— si=0and nm: n < m
shows foldseq f s n = foldseq f s m
(proof)

lemma foldseg-zerotail2:
assumes Vz. fz 0 =z
andVin<i—si=20
and nm: n < m

shows foldseq f s n = foldseq fs m

(proof)

lemma foldseq-zerostart:
assumes f00r:Vz. f0 (fOz)=f0zand 0:Vi.i<n—si=10
shows foldseq f s (Suc n) = f 0 (s (Suc n))
(proof)

lemma foldseq-zerostart2:
assumes z: Vz. fO0x=zand 0:Vi.i<n—si=10
shows foldseq fsn=sn

(proof)

lemma foldseq-almostzero:

assumes f0r: Vz. fO0zxz =z and fx0: V. fz 0 =z and s0: Vi. 1 # j — s 1
=0

shows foldseq f s n = (if (j < n) then (s j) else 0)

(proof)

lemma foldseq-distr-unary:

assumes Aa b. g (fad) =1 (ga) (gb)

shows g(foldseq f s n) = foldseq f (A\z. g(s z)) n
(proof)

'c =

definition mult-matriz-n :: nat = ((‘a::zero) = ('b::zero) = (‘ciizero)) = (
‘c = '¢) = 'a matriz = 'b matriz = ‘¢ matriz where
mult-matriz-n n fmul fadd A B == Abs-matriz(Nj i. foldseq fadd (Mk. fmul

(Rep-matriz A j k) (Rep-matriz B k 7)) n)

definition mult-matriz :: ((‘a::zero) = ('bizero) = (‘cizero)) = (e = 'c = '¢)
= 'a matriz = 'b matriz = ’'c matriz where

mult-matriz fmul fadd A B == mult-matriz-n (maz (ncols A) (nrows B)) fmul
fadd A B

lemma mult-matriz-n:
assumes ncols A < nnrows B < n fadd 00 = 0 fmul 0 0 = 0
shows mult-matriz fmul fadd A B = mult-matriz-n n fmul fadd A B

(proof)

lemma mult-matriz-nm:

assumes ncols A < n nrows B < n ncols A < m nrows B < m fadd 0 0 = 0
fmul 00 =0

shows mult-matriz-n n fmul fadd A B = mult-matriz-n m fmul fadd A B

(proof)

definition r-distributive :: (‘la = 'b = 'b) = ('b = 'b = 'b) = bool where
r-distributive fmul fadd ==V a u v. fmul a (fadd u v) = fadd (fmul a u) (fmul a
v)

definition I-distributive :: ('a = 'b = 'a) = (‘a = 'a = 'a) = bool where
-distributive fmul fadd ==V a u v. fmul (fadd u v) a = fadd (fmul v a) (fmul v
a)

definition distributive :: (‘a = 'a = 'a) = ('a = 'a = ’'a) = bool where
distributive fmul fadd == I-distributive fmul fadd A r-distributive fmul fadd

lemma mazi: ! a z y. (a::nat) < v = a < maz z y (proof)
lemma maz2: ! b z y. (b:nat) < y = b < maz z y (proof)

lemma r-distributive-matriz:
assumes
r-distributive fmul fadd
associative fadd
commutative fadd
fadd 00 =0
Va. fmula 0 = 0
Va. fmul 0 a = 0
shows r-distributive (mult-matriz fmul fadd) (combine-matriz fadd)

(proof)

lemma [-distributive-matriz:
assumes
I-distributive fmul fadd
associative fadd
commutative fadd
fadd 00 =0
Va. fmul a 0 = 0
Ya. fmul 0 a = 0
shows [-distributive (mult-matriz fmul fadd) (combine-matriz fadd)

{(proof)

instantiation matriz :: (zero) zero

begin

definition zero-matriz-def: 0 = Abs-matriz (A\j i. 0)
instance (proof)

end

lemma Rep-zero-matriz-def[simp: Rep-matriz 05 i = 0
(proof)

lemma zero-matriz-def-nrows[simpl: nrows 0 = 0
{proof)

lemma zero-matriz-def-ncols[simp]: ncols 0 = 0
{proof)

lemma combine-matriz-zero-l-neutral: zero-lI-neutral f = zero-l-neutral (combine-matriz

f)
(proof)

lemma combine-matriz-zero-r-neutral: zero-r-neutral f => zero-r-neutral (combine-matriz

f)
(proof)

lemma mult-matriz-zero-closed: [fadd 0 0 = 0; zero-closed fmul] = zero-closed
(mult-matriz fmul fadd)

{proof)

lemma mult-matriz-n-zero-right[simpl: [fadd 0 0 = 0; Ya. fmul a 0 = 0] =
mult-matriz-n n fmul fadd A 0 = 0
{proof)

lemma mult-matriz-n-zero-left[simpl: [fadd 0 0 = 0; Va. fmul 0 a = 0] =
mult-matriz-n n fmul fadd 0 A = 0
{proof)

lemma mult-matriz-zero-left[simp]: [fadd 0 0 = 0; ¥ a. fmul 0 a = 0] = mult-matric
fmud fadd 0 A = 0
{proof)

lemma mult-matriz-zero-right[simpl: [fadd 0 0 = 0; Ya. fmul a 0 = 0] =
mult-matriz fmul fadd A 0 = 0
(proof)

lemma apply-matriz-zero[simp|: f 0 = 0 = apply-matriz f 0 = 0

(proof)

lemma combine-matriz-zero: f 0 0 = 0 => combine-matriz f 0 0 = 0

{proof)

lemma transpose-matriz-zero[simp|: transpose-matriz 0 = 0
(proof)

lemma apply-zero-matriz-def[simpl: apply-matriz (Az. 0) A = 0
(proof)

definition singleton-matriz :: nat = nat = ('a::zero) = 'a matriz where
singleton-matriz j i a == Abs-matriz(Am n. if j = m A i = n then a else 0)

definition move-matriz :: (‘a::zero) matriz = int = int = 'a matriz where
move-matriz A y x == Abs-matriz(Aj i. if (((int j)—y) < 0) | (((int 9)—z) < 0)
then 0 else Rep-matriz A (nat ((int j)—y)) (nat ((int i)—2x)))

definition take-rows :: (‘a::zero) matriz = nat = 'a matrix where
take-rows A r == Abs-matriz(Nj i. if (j < r) then (Rep-matriz A j i) else 0)

definition take-columns :: ('a::zero) matriz = nat = 'a matriz where
take-columns A ¢ == Abs-matriz(Nj i. if (i < ¢) then (Rep-matriz A j i) else 0)

definition column-of-matriz :: (‘a::zero) matriz = nat = 'a matriz where
column-of-matrix A n == take-columns (move-matriz A 0 (— int n)) 1

definition row-of-matriz :: ('a::zero) matriz = nat = 'a matriz where
row-of-matrix A m == take-rows (move-matriz A (— int m) 0) 1

lemma Rep-singleton-matriz[simp|: Rep-matriz (singleton-matriz j i e¢) m n = (if
j=m A i=nthen e else 0)
(proof)

lemma apply-singleton-matriz[simpl: f 0 = 0 = apply-matriz f (singleton-matriz
jixz) = (singleton-matriz j i (f z))
(proof)

lemma singleton-matriz-zero[simpl: singleton-matriz j i 0 = 0
(proof)

lemma nrows-singleton[simp|: nrows(singleton-matriz j i e) = (if e = 0 then 0 else
Suc 7)
(proof)

lemma ncols-singleton]simp|: ncols(singleton-matriz j i e) = (if e = 0 then 0 else
Suc 1)
(proof)

lemma combine-singleton: f 0 0 = 0 => combine-matriz [(singleton-matriz j i

a) (singleton-matriz j i b) = singleton-matriz j i (f a b)

{proof)

10

lemma transpose-singleton|simp|: transpose-matriz (singleton-matriz j i a) = sin-
gleton-matrix i j a
(proof)

lemma Rep-move-matriz[simp):

Rep-matriz (move-matriz A y x) ji =

(if (((int j)—y) < 0) | (((4nt i)—z) < 0) then 0 else Rep-matriz A (nat((int
7)=y)) (nat((int i)—r)))

(proof)

lemma move-matriz-0-0[simp]: move-matriz A 0 0 = A
{proof)

lemma move-matriz-ortho: move-matriz A j i = move-matriz (move-matriz A j
0) 01
{proof)

lemma transpose-move-matriz|simpl:
transpose-matriz (move-matriz A x y) = move-matriz (transpose-matriz A) y

(proof)

lemma move-matriz-singleton[simp|: move-matriz (singleton-matriz v v) j i =
(if G+ intu<0)]| (i + intv < 0) then 0 else (singleton-matriz (nat (j + int
w)) (nat (i 4+ int v)) x))
(proof)

lemma Rep-take-columns|simp]:
Rep-matriz (take-columns A ¢) ji = (if i < ¢ then (Rep-matriz A j i) else 0)
{proof)

lemma Rep-take-rows[simp]:

Rep-matriz (take-rows A r) j i = (if j < r then (Rep-matriz A j i) else 0)
{proof)

lemma Rep-column-of-matriz|simp):

Rep-matriz (column-of-matriz A ¢) j i = (if i = 0 then (Rep-matriz A j c) else
0)

(proof)

lemma Rep-row-of-matriz|simp]:
Rep-matriz (row-of-matriz A r) ji = (if j = 0 then (Rep-matriz A r i) else 0)
(proof)

lemma column-of-matriz: ncols A < n => column-of-matric A n = 0
(proof)

lemma row-of-matriz: nrows A < n = row-of-matric A n = 0

{proof)

11

lemma mult-matriz-singleton-right[simpl:
assumes Vz. fmulz 0 = O0Vz. fmul 0z = 0 Vz. fadd 0z = zVz. faddz 0 = x
shows (mult-matriz fmul fadd A (singleton-matriz j i e)) = apply-matriz (Ax.
fmul z e) (move-matriz (column-of-matriz A j) 0 (int 7))
(proof)

lemma mult-matriz-ext:
assumes
eprem:
Je. Vab. a#b— fmul ae# fmul b e)
and fprems:
Ya. fmul 0 a =
Va. fmul a 0 =
YVa. fadd a 0 =
Ya. fadd 0 a = a
and contraprems: mult-matriz fmul fadd A = mult-matriz fmul fadd B
shows A = B

(proof)

0
0

definition foldmatriz :: (‘a = 'a = 'a) = (‘a = 'a = ’a) = ('a infmatriz) =
nat = nat = 'a where

foldmatriz f g A m n == foldseq-transposed g (\j. foldseq f (A j) n) m
definition foldmatriz-transposed :: ('a = 'a = 'a) = (la = 'a = 'a) = (a
infmatriz) = nat = nat = 'a where

foldmatriz-transposed f g A m n == foldseq g (\j. foldseq-transposed f (A j) n)
m

lemma foldmatriz-transpose:

assumes Vabed. g(fabd) (fed)=f(gac)(gbd)

shows foldmatriz f g A m n = foldmatriz-transposed g f (transpose-infmatriz A)
nm

(proof)

lemma foldseq-foldseq:
assumes associative f associative gV a b c d. g(fa b) (fed)=f (gac) (gbd)
shows

foldseq g (Aj. foldseq f (A j) n) m = foldseq f (\j. foldseq g ((transpose-infmatriz
4) j) m) n

(proof)

lemma mult-n-nrows:
assumes Va. fmul 0 a = 0 Va. fmul a 0 = 0 fadd 0 0 = 0
shows nrows (mult-matriz-n n fmul fadd A B) < nrows A

{proof)

lemma mult-n-ncols:
assumes Ya. fmul 0 a = 0 Va. fmul a 0 = 0 fadd 0 0 = 0

12

shows ncols (mult-matriz-n n fmul fadd A B) < ncols B
{proof)

lemma mult-nrows:
assumes

Va. fmul 0a =0

Va. fmula 0 = 0

fadd 00 =0
shows nrows (mult-matriz fmul fadd A B) < nrows A
{proof)

lemma mult-ncols:
assumes
Va. fmul 0a =0
Va. fmula 0 = 0

fadd 00 = 0
shows ncols (mult-matriz fmul fadd A B) < ncols B
{proof)

lemma nrows-move-matriz-le: nrows (move-matriz A j i) < nat((int (nrows A))
+7)
{proof)

lemma ncols-move-matriz-le: ncols (move-matriz A j i) < nat((int (ncols A)) +
i)

(proof)

lemma mult-matriz-assoc:

assumes

Ya. fmull 0a =0

Va. fmull a 0 = 0

Va. fmul2 0 a =0

Ya. fmul2 a0 =0

fadd1 00 = 0

fadd2 00 = 0

Vabecd. fadd2 (faddl a b) (faddl ¢ d) = faddl (fadd2 a c) (fadd2 b d)

associative faddl

associative fadd2

Vabc fmul2 (fmull a b) ¢ = fmull a (fmul2 b c)

Vabec fmul2 (faddl a b) ¢ = faddl (fmul2 a ¢) (fmul2 b c)

Vab e fmull ¢ (fadd2 a b) = fadd2 (fmull ¢ a) (fmull ¢ b)

shows mult-matriz fmul2 fadd2 (mult-matric fmull fadd1 A B) C = mult-matriz
fmaull fadd1l A (mult-matriz fmul2 fadd2 B C)

(proof)

lemma mult-matriz-assoc-simple:
assumes
Va. fmul 0 a = 0
Va. fmula 0 = 0

13

associative fadd

commutative fadd

associative fmul

distributive fmul fadd

shows mult-matriz fmul fadd (mult-matriz fmul fadd A B) C = mult-matriz fmul
fadd A (mult-matriz fmul fadd B C)

(proof)

lemma transpose-apply-matriz: f 0 = 0 = transpose-matriz (apply-matriz f A)
= apply-matriz f (transpose-matriz A)
(proof)

lemma transpose-combine-matriz: f 0 0 = 0 = transpose-matriz (combine-matriz
f A B) = combine-matriz f (transpose-matriz A) (transpose-matriz B)

(proof)

lemma Rep-mult-matriz:
assumes Va. fmul 0 a = 0 Va. fmul a 0 = 0 fadd 0 0 = 0
shows
Rep-matriz(mult-matriz fmul fadd A B) j
foldseq fadd (Mk. fmul (Rep-matriz A j k)
(nrows B))
(proof)

)
(Rep-matriz B k 1)) (maz (ncols A)

lemma transpose-mult-matriz:
assumes
Va. fmul 0 a = 0
Va. fmul a 0 = 0

fadd 00 = 0
Vry fmulyx = fmul zy
shows

transpose-matriz (mult-matriz fmul fadd A B) = mult-matriz fmul fadd (transpose-matriz
B) (transpose-matriz A)

{proof)

lemma column-transpose-matriz: column-of-matrixz (transpose-matriz A) n = trans-
pose-matriz (row-of-matriz A n)
(proof)

lemma take-columns-transpose-matrix: take-columns (transpose-matriz A) n =
transpose-matriz (take-rows A n)

(proof)

instantiation matriz :: ({zero, ord}) ord
begin

definition
le-matriz-def: A < B «— (Vj i. Rep-matriz A j i < Rep-matriz B j 1)

14

definition
less-def: A < (B:'a matriz) «— A< BAN-B<A

instance (proof)
end

instance matriz :: ({zero, order}) order
(proof)

lemma le-apply-matrix:
assumes
fo=20
Vey. z<y—fz<fy
(a::('a::{ord, zero}) matriz) < b
shows apply-matriz f a < apply-matriz f b
(proof)

lemma le-combine-matriz:
assumes
foo=0
Vabcd. a<bANc<d— fac<fbd
A<B
c<D
shows combine-matriz f A C < combine-matriz f B D
(proof)

lemma le-left-combine-matriz:
assumes
f00=20
Vabc a<b—fca<fch
A<B
shows combine-matriz f C A < combine-matriz f C B
(proof)

lemma le-right-combine-matriz:
assumes
foo=0
Vabc a<b—fac<fbc
A<B
shows combine-matriz f A C < combine-matrix f B C

(proof)
lemma le-transpose-matriz: (A < B) = (transpose-matriz A < transpose-matriz
B)

(proof)

lemma le-foldseq:
assumes

15

Vabcd.a<bANc<d— fac<fbd
Vi.i<n—si<ti

shows foldseq f s n < foldseq ft n

(proof)

lemma le-left-mult:
assumes
Vabcecd a<bANc<d— fadd a c < fadd b d
Veab, 0<cANa<b— fmulca< fmulcbd
Va. fmul 0 a = 0
Va. fmul a 0 = 0
fadd 00 = 0
0<C
A<B
shows mult-matriz fmul fadd C' A < mult-matriz fmul fadd C' B
(proof)

lemma le-right-mult:
assumes
Vabcd a<bANc<d— fadd a c < fadd b d
Veab. 0 <cANa<b— fmulac< fmulbc
Va. fmul 0 a = 0
Va. fmul a 0 = 0
fadd 00 =0
0<C
A<B
shows mult-matriz fmul fadd A C < mult-matriz fmul fadd B C
(proof)

lemma spec2: Vji. Pji = P ji (proof)

lemma singleton-matriz-le[simp]: (singleton-matriz j i a < singleton-matriz j © b)
= (a < (b::-::order))
(proof)

lemma singleton-le-zero[simp]: (singleton-matrizj iz < 0) = (z < (0::'a::{ order,zero}))

(proof)

lemma singleton-ge-zero[simp]: (0 < singleton-matriz j i x) = ((0::'a::{ order,zero})
<)

{proof)

lemma move-matriz-le-zero|simp]:
fixes A:: 'a::{order,zero} matriz
assumes (0 < j0 <1
shows (move-matriz A ji < 0) = (A < 0)

{(proof)

lemma move-matriz-zero-le[simp]:

16

fixes A:: 'a::{order,zero} matriz
assumes (0 < j0 <1
shows (0 < move-matriz A ji) = (0 < A)
(proof)
lemma move-matriz-le-move-matriz-iff [simp]:
fixes A:: 'a::{order,zero} matriz
assumes (0 < j0 <1
shows (move-matriz A j i < move-matriz B j i) = (A < B)

{(proof)

instantiation matriz :: ({lattice, zero}) lattice
begin

definition inf = combine-matriz inf
definition sup = combine-matriz sup

instance
(proof)

end

instantiation matriz :: ({plus, zero}) plus
begin

definition
plus-matriz-def: A + B = combine-matriz (+) A B

instance (proof)
end

instantiation matriz :: ({uminus, zero}) uminus
begin

definition
minus-matriz-def: — A = apply-matriz uminus A

instance (proof)
end

instantiation matriz :: ({minus, zero}) minus
begin

definition
diff-matriz-def: A — B = combine-matriz (—) A B

17

instance (proof)
end

instantiation matriz :: ({plus, times, zero}) times
begin

definition
times-matriz-def: A * B = mult-matriz ((x)) (+) A B

instance (proof)
end

instantiation matriz :: ({lattice, uminus, zero}) abs
begin

definition
abs-matriz-def: |A :: 'a matriz| = sup A (— A)

instance (proof)
end

instance matriz :: (monoid-add) monoid-add

(proof)

instance matriz :: (comm-monoid-add) comm-monoid-add
(proof)

instance matriz :: (group-add) group-add

(proof)

instance matriz :: (ab-group-add) ab-group-add
(proof)

instance matriz :: (ordered-ab-group-add) ordered-ab-group-add

(proof)

instance matriz :: (lattice-ab-group-add) semilattice-inf-ab-group-add (proof)
instance matriz :: (lattice-ab-group-add) semilattice-sup-ab-group-add (proof)

instance matriz :: (semiring-0) semiring-0

(proof)
instance matriz :: (ring) ring (proof)
instance matriz :: (ordered-ring) ordered-ring

(proof)

18

instance matriz :: (lattice-ring) lattice-ring
(proof)

instance matriz :: (lattice-ab-group-add-abs) lattice-ab-group-add-abs

(proof)

lemma Rep-matriz-add[simp:

Rep-matriz ((a:('a::monoid-add) matriz)+b) ji = (Rep-matriz a j i) + (Rep-matrix
bji)

(proof)

lemma Rep-matriz-mult: Rep-matriz ((a::('a::semiring-0) matriz) * b) j i =
foldseq (+) (Mk. (Rep-matriz a j k) * (Rep-matriz b k 1)) (maz (ncols a) (nrows
b))

(proof)

lemma apply-matriz-add: Vz y. f (z+y) = (fz) + (fy) = f0 = (0::a)

= apply-matriz [((a::("a::monoid-add) matriz) + b) = (apply-matriz f a) +
(apply-matriz f b)

(proof)

lemma singleton-matriz-add: singleton-matriz j i ((a::-::monoid-add)+b) = (singleton-matric
jia) + (singleton-matriz j i b)
{proof)

lemma nrows-mult: nrows ((A::('a::semiring-0) matriz) * B) < nrows A
(proof)

lemma ncols-mult: ncols ((A::('a::semiring-0) matriz) * B) < ncols B

(proof)

definition
one-matriz :: nat = (‘a::{zero,one}) matriz where
one-matriz n = Abs-matriz (A\ji. if j = i A j < n then 1 else 0)

lemma Rep-one-matriz[simp|: Rep-matriz (one-matriz n) ji = (if (j =i ANj<
n) then 1 else 0)
{proof)

lemma nrows-one-matriz[simpl: nrows ((one-matriz n) :: (‘a::zero-neq-one)matriz)
=n(is r =)

(proof)

lemma ncols-one-matriz[simp): ncols ((one-matriz n) :: ('a::zero-neg-one)matriz)
=n(is or = -)

{(proof)

lemma one-matriz-mult-right[simp:

19

fixes A :: (‘a::semiring-1) matriz
shows ncols A < n = A % (one-matriz n) = A
{proof)

lemma one-matriz-mult-left[simp]:
fixes A :: (‘a::semiring-1) matriz
shows nrows A < n = (one-matriz n) * A = A
{proof)

lemma transpose-matriz-mult:
fixes A :: (‘a::comm-ring) matriz
shows transpose-matriz (AxB) = (transpose-matriz B) x (transpose-matriz A)
{proof)

lemma transpose-matriz-add:
fixes A :: (‘a::monoid-add) matric
shows transpose-matriz (A+B) = transpose-matriz A + transpose-matriz B
(proof)

lemma transpose-matriz-diff:
fixes A :: (‘a::group-add) matriz
shows transpose-matriz (A—B) = transpose-matriz A — transpose-matriz B
{proof)

lemma transpose-matriz-minus:
fixes A :: (‘a::group-add) matriz
shows transpose-matriz (—A) = — transpose-matriz (A::’a matriz)
(proof)

definition right-inverse-matriz :: ('a::{ring-1}) matriz = 'a matriz = bool where
right-inverse-matrizc A X == (A * X = one-matriz (maz (nrows A) (ncols X)))
A nrows X < ncols A

definition left-inverse-matriz :: ('a::{ring-1}) matriz = 'a matriz = bool where
left-inverse-matrix A X == (X % A = one-matriz (maz(nrows X) (ncols A))) A
ncols X < nrows A

definition inverse-matriz :: (‘a::{ring-1}) matrix = 'a matriz = bool where
inverse-matric A X == (right-inverse-matriz A X) A (left-inverse-matriz A X)

lemma right-inverse-matriz-dim: right-inverse-matric A X = nrows A = ncols
X

{proof)

lemma left-inverse-matriz-dim: left-inverse-matric A Y = ncols A = nrows Y
(proof)

lemma left-right-inverse-matriz-unique:
assumes left-inverse-matriz A Y right-inverse-matriz A X

20

shows X = Y
(proof)

lemma inverse-matriz-inject: [inverse-matriz A X; inverse-matriv A Y | = X
=Y
{proof)

lemma one-matriz-inverse: inverse-matriz (one-matriz n) (one-matriz n)
{proof)

lemma zero-imp-mult-zero: (a::'a::semiring-0) = 0 | b=0 = ax b= 0
(proof)

lemma Rep-matriz-zero-imp-mult-zero:

Vj i k. (Rep-matrix A j k = 0) | (Rep-matric Bki) =0 — A x B =
(0::("a::lattice-ring) matrix)

(proof)

lemma add-nrows: nrows (A::('a::monoid-add) matriz) < u = nrows B < u =
nrows (A + B) < u
{proof)

lemma move-matriz-row-mult:
fixes A :: (‘a::semiring-0) matriz
shows move-matriz (A * B) j 0 = (move-matriz A j 0) * B

(proof)

lemma move-matriz-col-mult:
fixes A :: (‘a::semiring-0) matriz
shows move-matriz (A x B) 01 = A x (move-matriz B 0 1)

{(proof)

lemma move-matriz-add: ((move-matriz (A + B) j i)::(("a::monoid-add) matriz))
= (move-matriz A j i) + (move-matriz B j 7)
{proof)

lemma move-matriz-mult: move-matriz ((A::('a::semiring-0) matriz)*B) j i =
(move-matriz A j 0) * (move-matrix B 0 17)
(proof)

definition scalar-mult :: (‘a::ring) = 'a matriz = 'a matriz where
scalar-mult a m == apply-matriz ((x) a) m

lemma scalar-mult-zero[simp]: scalar-mult y 0 = 0
{proof)

lemma scalar-mult-add: scalar-mult y (a+d) = (scalar-mult y a) + (scalar-mult y

b)
(proof)

21

lemma Rep-scalar-mult[simp]: Rep-matriz (scalar-mult y a) j i = y * (Rep-matriz
aji)

(proof)
lemma scalar-mult-singleton[simp|: scalar-mult y (singleton-matriz j ¢ x) = sin-

gleton-matrix j i (y * z)
(proof)

lemma Rep-minus[simp]: Rep-matriz (—(A::-::group-add)) z y = — (Rep-matriz
Azy)
{proof)

lemma Rep-abs[simp|: Rep-matriz |A::-:lattice-ab-group-add| z y = |Rep-matriz
Az y
(proof)

end

theory SparseMatrixz
imports Matriz
begin

type-synonym ‘a spvec = (nat * ’a) list
type-synonym 'a spmat = 'a spvec spvec

definition sparse-row-vector :: ('a::ab-group-add) spvec = 'a matriz
where sparse-row-vector arr = foldl (% m z. m + (singleton-matriz 0 (fst x)
(snd x))) 0 arr

definition sparse-row-matriz :: (‘a::ab-group-add) spmat = 'a matriz
where sparse-row-matriz arr = foldl (% m r. m + (move-matrixz (sparse-row-vector

(snd r)) (int (fst r)) 0)) 0 arr

code-datatype sparse-row-vector sparse-row-matrix

lemma sparse-row-vector-empty [simpl: sparse-row-vector [| = 0
(proof)

lemma sparse-row-matriz-empty [simp]: sparse-row-matriz [| = 0
(proof)

lemma [code]:
<0 = sparse-row-vector []»

{proof)

lemma foldl-distrstart: Vazy. (f (9zy) a=gz (fya)) = (foldlf (gzy) !l =
gz (foldl fyl))

22

{proof)

lemma sparse-row-vector-cons|simpl:

sparse-row-vector (a # arr) = (singleton-matriz 0 (fst a) (snd a)) + (sparse-row-vector
arr)

(proof)

lemma sparse-row-vector-append[simp):
sparse-row-vector (a @ b) = (sparse-row-vector a) + (sparse-row-vector b)

(proof)

lemma nrows-spvec[simp|: nrows (sparse-row-vector x) < (Suc 0)
{proof)

lemma sparse-row-matriz-cons: sparse-row-matriz (a#arr) = ((move-matriz (sparse-row-vector
(snd a)) (int (fst a)) 0)) + sparse-row-matriz arr

(proof)

lemma sparse-row-matriz-append: sparse-row-matriz (arr@Qbrr) = (sparse-row-matriz
arr) + (sparse-row-matriz brr)

(proof)

fun sorted-spvec :: 'a spvec = bool

where
sorted-spvec || = True
| sorted-spvec-stepl: sorted-spvec [a] = True

| sorted-spvec-step: sorted-spvec ((m,z)#(n,y)#bs) = ((m < n) A (sorted-spvec
((n,y)#bs)))

primrec sorted-spmat :: 'a spmat = bool
where
sorted-spmat [| = True
| sorted-spmat (a#tas) = ((sorted-spvec (snd a)) A (sorted-spmat as))

declare sorted-spuvec.simps [simp del]

lemma sorted-spvec-empty[simpl: sorted-spvec [| = True
{proof)

lemma sorted-spvec-consl: sorted-spvec (a#as) = sorted-spvec as
(proof)

lemma sorted-spvec-cons2: sorted-spvec (a#b#t) = sorted-spvec (a#t)

{proof)

lemma sorted-spvec-cons3: sorted-spvec(a#b#t) = fst a < fst b

(proof)

lemma sorted-sparse-row-vector-zero:

23

assumes m < n
shows sorted-spvec ((n,a)#arr) = Rep-matriz (sparse-row-vector arr) j m =
0

(proof)

lemma sorted-sparse-row-matriz-zero[rule-format]:

assumes m < n

shows sorted-spvec ((n,a)#arr) = Rep-matriz (sparse-row-matriz arr) m j =
0

{(proof)

primrec minus-spvec :: ('a::ab-group-add) spvec = 'a spvec
where

minus-spvec [| = []
| minus-spvec (a#tas) = (fst a, —(snd a))#(minus-spvec as)

primrec abs-spvec :: ('a::lattice-ab-group-add-abs) spvec = 'a spvec
where

abs-spvec [| = ||
| abs-spvec (a#as) = (fst a, |snd al)#(abs-spvec as)

lemma sparse-row-vector-minus:
sparse-row-vector (minus-spvec v) = — (sparse-row-vector v)

(proof)

lemma sparse-row-vector-abs:

sorted-spvec (v :: 'a::lattice-ring spvec) = sparse-row-vector (abs-spvec v) =
|sparse-row-vector v
(proof)

lemma sorted-spvec-minus-spvec:
sorted-spvec v => sorted-spvec (minus-spvec v)

{proof)

lemma sorted-spvec-abs-spvec:
sorted-spvec v => sorted-spvec (abs-spvec v)

(proof)

definition smult-spvec y = map (% a. (fst a, y * snd a))

lemma smult-spvec-empty[simpl: smult-spvec y [| = []
(proof)

lemma smult-spvec-cons: smult-spvec y (a#tarr) = (fst a, y x (snd a)) # (smult-spvec
y arr)
(proof)

fun addmult-spvec :: ('a::ring) = 'a spvec = 'a spvec = 'a spvec
where

24

addmult-spvec y arr [| = arr
| addmult-spvec y [| brr = smult-spvec y brr
| addmult-spvec y ((i,a)#arr) ((4,0)#brr) = (
if i < j then ((i,a)#(addmult-spvec y arr ((§,b)#brr)))
else (if (j < i) then ((§, y * b)#(addmult-spvec y ((i,a)#arr) brr))
else ((i, a + yxb)#(addmult-spvec y arr brr))))

lemma addmult-spvec-emptyl [simpl: addmult-spvec y [| a = smult-spvec y a
(proof)

lemma addmult-spvec-empty2[simpl: addmult-spvec y a [| = a
(proof)

lemma sparse-row-vector-map: YV x y. f (z+y) = (fz) + (fy)) = (f::'a=("a::lattice-ring))
0=0—

sparse-row-vector (map (% z. (fst z, f (snd x))) a) = apply-matriz f (sparse-row-vector
a)

{proof)

lemma sparse-row-vector-smult: sparse-row-vector (smult-spvec y a) = scalar-mult
y (sparse-row-vector a)

{proof)

lemma sparse-row-vector-addmult-spvec: sparse-row-vector (addmult-spvec (y::'a::lattice-ring)
ab) =
(sparse-row-vector a) + (scalar-mult y (sparse-row-vector b))

{proof)

lemma sorted-smult-spvec: sorted-spvec a = sorted-spvec (smult-spvec y a)

(proof)

lemma sorted-spvec-addmult-spvec-helper: [sorted-spvec (addmult-spvec y ((a, b)
arr) brr); aa < a; sorted-spvec ((a, b) # arr);

sorted-spvec ((aa, ba) # brr)] = sorted-spvec ((aa, y * ba) # addmult-spvec y
((a, b) # arr) brr)

(proof)

lemma sorted-spvec-addmult-spvec-helper?2:
[sorted-spvec (addmult-spvec y arr ((aa, ba) # brr)); a < aa; sorted-spvec ((a, b)
arr); sorted-spvec ((aa, ba) # brr)]

= sorted-spvec ((a, b) # addmult-spvec y arr ((aa, ba) # brr))

{proof)

lemma sorted-spvec-addmult-spvec-helper3[rule-format]:
sorted-spvec (addmult-spvec y arr brr) =
sorted-spvec ((aa, b) # arr) =
sorted-spvec ((aa, ba) # brr) =
sorted-spvec ((aa, b + y * ba) # (addmult-spvec y arr brr))

25

{proof)

lemma sorted-addmult-spvec: sorted-spvec a = sorted-spvec b = sorted-spvec
(addmult-spvec y a b)

(proof)

fun mult-spvec-spmat :: ('a::lattice-ring) spvec = 'a spvec = 'a spmat = 'a spvec
where
mult-spvec-spmat ¢ || brr = ¢
| mult-spvec-spmat ¢ arr [] = ¢
| mult-spvec-spmat ¢ ((i,a)#arr) ((4,0)#brr) = (
if (i < j) then mult-spvec-spmat ¢ arr ((j,b)#brr)
else if (j < i) then mult-spvec-spmat c ((¢,a)F#arr) brr
else mult-spvec-spmat (addmult-spvec a ¢ b) arr brr)

lemma sparse-row-mult-spvec-spmat:

assumes sorted-spvec (a::('a::lattice-ring) spvec) sorted-spvec B

shows sparse-row-vector (mult-spvec-spmat ¢ a B) = (sparse-row-vector c) +
(sparse-row-vector a) * (sparse-row-matriz B)

(proof)

lemma sorted-mult-spvec-spmat:

sorted-spvec (c::('a::lattice-ring) spvec) = sorted-spmat B = sorted-spvec (mult-spvec-spmat
ca B)

(proof)

primrec mult-spmat :: (‘a::lattice-ring) spmat = 'a spmat = 'a spmat
where
mult-spmat [| A =]
| mult-spmat (a#as) A = (fst a, mult-spvec-spmat || (snd a) A)#(mult-spmat as
A)

lemma sparse-row-mult-spmat:

sorted-spmat A = sorted-spvec B —>

sparse-row-matriz (mult-spmat A B) = (sparse-row-matriz A) * (sparse-row-matriz
B)

(proof)

lemma sorted-spvec-mult-spmat:

fixes A :: (‘a::lattice-ring) spmat

shows sorted-spvec A = sorted-spvec (mult-spmat A B)
{proof)

lemma sorted-spmat-mult-spmat:
sorted-spmat (B::('a::lattice-ring) spmat) = sorted-spmat (mult-spmat A B)
{proof)

fun add-spvec :: ('a::lattice-ab-group-add) spvec = 'a spvec = 'a spvec

26

where

add-spvec arr [| = arr
| add-spvec [brr = brr
| add-spvec ((i,a)#arr) ((4,b)#brr) = (
if i < j then (i,a)#(add-spvec arr ((4,b)#brr))
else if (j < i) then (4,b) # add-spvec ((i,a)#arr) brr
else (i, a+b) # add-spvec arr brr)

lemma add-spvec-emptyl [simp]: add-spvec || a = a

(proof)

lemma sparse-row-vector-add: sparse-row-vector (add-spvec a b) = (sparse-row-vector
a) + (sparse-row-vector b)

(proof)

fun add-spmat :: ('a::lattice-ab-group-add) spmat = 'a spmat = 'a spmat
where

add-spmat [] bs = bs

| add-spmat as [] = as
| add-spmat ((i,a)#as) ((j,b)#bs) = (
if i < j then

(i,a) # add-spmat as ((j,b)F#bs)
else if j < i then

(4,b) # add-spmat ((i,a)#as) bs
else
(i, add-spvec a b) # add-spmat as bs)

lemma add-spmat-Nil2[simp|: add-spmat as [| = as

{(proof)

lemma sparse-row-add-spmat: sparse-row-matriz (add-spmat A B) = (sparse-row-matriz
A) + (sparse-row-matriz B)
(proof)

lemma [code]:
<sparse-row-matriz A + sparse-row-matrix B = sparse-row-matriz (add-spmat A
B)»
<sparse-row-vector a + sparse-row-vector b = sparse-row-vector (add-spvec a b)»
(proof)

lemma sorted-add-spvec-helperl [rule-format]: add-spvec ((a,b)#arr) brr = (ab,
bb) # list — (ab = a | (brr # || & ab = fst (hd brr)))
(proof)

lemma sorted-add-spmat-helperl [rule-format]:

add-spmat ((a,b)#arr) brr = (ab, bb) # list = (ab = a | (brr # [] & ab = fst
(hd brr)))

27

{proof)

lemma sorted-add-spvec-helper: add-spvec arr brr = (ab, bb) # list = ((arr #
[| & ab = fst (hd arr)) | (brr #]| & ab = fst (hd brr)))

(proof)

lemma sorted-add-spmat-helper: add-spmat arr brr = (ab, bb) # list = ((arr #
| & ab = fst (hd arr)) | (brr # [| & ab = fst (hd brr)))

{proof)

lemma add-spvec-commute: add-spvec a b = add-spvec b a

(proof)

lemma add-spmat-commute: add-spmat a b = add-spmat b a

(proof)

lemma sorted-add-spvec-helper2: add-spvec ((a,b)#arr) brr = (ab, bb) # list =
aa < a = sorted-spvec ((aa, ba) # brr) = aa < ab
(proof)

lemma sorted-add-spmat-helper2: add-spmat ((a,b)#arr) brr = (ab, bb) # list =
aa < a = sorted-spvec ((aa, ba) # brr) = aa < ab
(proof)

lemma sorted-spvec-add-spvec: sorted-spvec a = sorted-spvec b = sorted-spvec
(add-spvec a b)
(proof)

lemma sorted-spvec-add-spmat:
sorted-spvec A = sorted-spvec B = sorted-spvec (add-spmat A B)

{(proof)

lemma sorted-spmat-add-spmat|[rule-format]: sorted-spmat A = sorted-spmat B
= sorted-spmat (add-spmat A B)

{proof)

fun le-spvec :: (‘a::lattice-ab-group-add) spvec = 'a spvec = bool
where

le-spvec || [| = True
| le-spvec ((-,a)#as) [| = (a < 0 & le-spvec as [])
| le-spvec || ((,)#bs) = (0 < b & le-spuvec [] bs)

| le-spuec ((i,a)#as) ((j,b)#bs) = (
if (1 <j) then a < 0 & le-spvec as ((4,b)#bs)
else if (j < @) then 0 < b & le-spvec ((i,a)#as) bs
else a < b & le-spvec as bs)

fun le-spmat :: ('a::lattice-ab-group-add) spmat = 'a spmat = bool
where

28

le-spmat [] [| = True
| le-spmat ((i,a)#as) [| = (le-spvec a [] & le-spmat as [])
| le-spmat [] ((4,b)#bs) = (le-spvec || b & le-spmat [] bs)
| le-spmat ((i,a)#as) ((j,0)#bs) = (
if © < j then (le-spvec a [] & le-spmat as ((4,b)#bs))
else if j < i then (le-spvec [| b & le-spmat ((i,a)#as) bs)
else (le-spvec a b & le-spmat as bs))

definition disj-matrices :: ('a::zero) matrix = 'a matriz = bool where
disj-matrices A B <+—
(Vji. (Rep-matriz A ji # 0) — (Rep-matriz Bji= 0)) & (Vji. (Rep-matriz
Bji# 0) — (Rep-matriz A ji = 0))

lemma disj-matrices-contrl: disj-matrices A B => Rep-matric A j i # 0 =
Rep-matriz Bji= 0
(proof)

lemma disj-matrices-contr2: disj-matrices A B = Rep-matriz B j i # (0 =
Rep-matriz A ji =0
(proof)

lemma disj-matrices-add:
fixes A :: (‘a::lattice-ab-group-add) matrix
shows disj-matrices A B = disj-matrices C D = disj-matrices A D
= disj-matrices BC = (A+ B< C+ D)=(A< CAB<D)
(proof)

lemma disj-matrices-zerol [simp): disj-matrices 0 B

(proof)

lemma disj-matrices-zero2[simp|: disj-matrices A 0
{proof)

lemma disj-matrices-commute: disj-matrices A B = disj-matrices B A
(proof)

lemma disj-matrices-add-le-zero: disj-matrices A B =
(A+ B <0)= (A< 0 & (B:('a:lattice-ab-group-add) matriz) < 0)
(proof)

lemma disj-matrices-add-zero-le: disj-matrices A B —
(0 <A+ B)=(0< A& 0 < (B:('a:lattice-ab-group-add) matriz))
(proof)

lemma disj-matrices-add-z-le: disj-matrices A B => disj-matrices B C =
(A< B+ C)= (A< C& 0 < (B:('a:lattice-ab-group-add) matriz))
(proof)

29

lemma disj-matrices-add-le-z: disj-matrices A B = disj-matrices B C —>
(B+ A< ()= (A< C& (B:(a:lattice-ab-group-add) matriz) < 0)
(proof)

lemma disj-sparse-row-singleton: i < j = sorted-spvec((j,y)#v) => disj-matrices
(sparse-row-vector v) (singleton-matriz 0 i)
(proof)

lemma disj-matrices-xz-add: disj-matrices A B = disj-matrices A C = disj-matrices
(A::('a::lattice-ab-group-add) matriz) (B+C)
(proof)

lemma disj-matrices-add-z: disj-matrices A B = disj-matrices A C = disj-matrices
(B+C) (A:('a::lattice-ab-group-add) matriz)
(proof)

lemma disj-singleton-matrices[simp]: disj-matrices (singleton-matriz j i x) (singleton-matriz
wvy)=(GFuliFvlz=0]y=0)
(proof)

lemma disj-move-sparse-vec-mat:

assumes j < a and sorted-spvec ((a, ¢) # as)

shows disj-matrices (sparse-row-matriz as) (move-matriz (sparse-row-vector b)
(int j) i)
(proof)

lemma disj-move-sparse-row-vector-twice:
Jj # u = disj-matrices (move-matriz (sparse-row-vector a) j ©) (move-matriz
(sparse-row-vector b) u v)

(proof)

lemma le-spvec-iff-sparse-row-le:
sorted-spvec a = sorted-spvec b = (le-spvec a b) «— (sparse-row-vector a <
sparse-row-vector b)

(proof)

lemma le-spvec-empty2-sparse-row:
sorted-spvec b = le-spvec b [| = (sparse-row-vector b < 0)
(proof)

lemma le-spvec-emptyl-sparse-row:
(sorted-spvec b) = (le-spvec [| b = (0 < sparse-row-vector b))

{proof)

lemma le-spmat-iff-sparse-row-le:
[sorted-spvec A; sorted-spmat A; sorted-spvec B; sorted-spmat B] =
le-spmat A B = (sparse-row-matriz A < sparse-row-matriz B)

(proof)

30

primrec abs-spmat :: (‘a::lattice-ring) spmat = ’‘a spmat
where

abs-spmat [| = []
| abs-spmat (a#as) = (fst a, abs-spvec (snd a))#(abs-spmat as)

primrec minus-spmat :: ('a::lattice-ring) spmat = 'a spmat
where
minus-spmat || = ||
| minus-spmat (a#tas) = (fst a, minus-spvec (snd a))#(minus-spmat as)

lemma sparse-row-matrix-minus:
sparse-row-matriz (minus-spmat A) = — (sparse-row-matriz A)

(proof)

lemma Rep-sparse-row-vector-zero:
assumes z #
shows Rep-matriz (sparse-row-vector v) z y = 0

{proof)

lemma sparse-row-matriz-abs:
sorted-spvec A = sorted-spmat A = sparse-row-matriz (abs-spmat A) = |sparse-row-matriz

A
(proof)

lemma sorted-spvec-minus-spmat: sorted-spvec A = sorted-spvec (minus-spmat
A)
(proof)

lemma sorted-spvec-abs-spmat: sorted-spvec A = sorted-spvec (abs-spmat A)

(proof)

lemma sorted-spmat-minus-spmat: sorted-spmat A = sorted-spmat (minus-spmat
4)
(proof)

lemma sorted-spmat-abs-spmat: sorted-spmat A = sorted-spmat (abs-spmat A)
(proof)

definition diff-spmat :: (‘a::lattice-ring) spmat = ‘a spmat = 'a spmat
where diff-spmat A B = add-spmat A (minus-spmat B)

lemma sorted-spmat-diff-spmat: sorted-spmat A = sorted-spmat B = sorted-spmat
(diff-spmat A B)
(proof)

lemma sorted-spvec-diff-spmat: sorted-spvec A = sorted-spvec B —> sorted-spvec
(diff-spmat A B)

31

{proof)

lemma sparse-row-diff-spmat: sparse-row-matriz (diff-spmat A B ') = (sparse-row-matriz
A) — (sparse-row-matriz B)
(proof)

definition sorted-sparse-matriz :: 'a spmat = bool
where sorted-sparse-matriz A «— sorted-spvec A & sorted-spmat A

lemma sorted-sparse-matriz-imp-spvec: sorted-sparse-matric A —> sorted-spvec A
(proof)

lemma sorted-sparse-matriz-imp-spmat: sorted-sparse-matric A = sorted-spmat

A
(proof)

lemmas sorted-sp-simps =
sorted-spvec.simps
sorted-spmat.simps
sorted-sparse-matriz-def

lemma booll:
lemma bool2:

(= True) = False (proof)

(— False) = True (proof)

lemma bool3: ((P::bool) A True) = P (proof)
lemma bools: (True A (P::bool)) = P {proof)
lemma bool5: ((P::bool) A False) = False {proof)
lemma bool6: (False N\ (P::bool)) = False {proof)

lemma bool7: ((P::bool) V True) = True (proof)

lemma bool8: (True V (P::bool)) = True (proof)

lemma bool9: ((P::bool) V False) = P (proof)

lemma bool10: (False V (P::bool)) = P (proof)

lemmas boolarith = booll bool2 bool3 boolj bool5 bool6 bool7 bool8 bool9 boolll

lemma if-case-eq: (if b then x else y) = (case b of True => x| False => y) (proof)

primrec pprt-spvec :: ('a::{lattice-ab-group-add}) spvec = 'a spvec
where

pprt-spvec [| = []
| pprt-spvec (a#tas) = (fst a, pprt (snd a)) # (pprt-spvec as)

primrec npri-spvec :: (‘a::{lattice-ab-group-add}) spvec = 'a spvec
where

nprt-spvec [| = []
| nprt-spvec (aftas) = (fst a, nprt (snd a)) # (nprt-spvec as)

primrec pprt-spmat :: (‘a::{lattice-ab-group-add}) spmat = 'a spmat
where

pprt-spmat || =]
| pprt-spmat (a#as) = (fst a, pprt-spvec (snd a))#(pprt-spmat as)

32

primrec npri-spmat :: ('a::{lattice-ab-group-add}) spmat = 'a spmat
where

nprt-spmat [| =]
| nprt-spmat (a#as) = (fst a, nprt-spvec (snd a))#(nprt-spmat as)

lemma pprt-add: disj-matrices A (B::(-::lattice-ring) matriz) = pprt (A+B) =
pprt A + pprt B
{proof)

lemma nprt-add: disj-matrices A (B::(-::lattice-ring) matriz) = nprt (A+B) =
nprt A + nprt B
{proof)

lemma pprt-singleton[simp):
fixes z:: -::lattice-ring
shows pprt (singleton-matriz j i x) = singleton-matriz j i (pprt x)
(proof)

lemma nprt-singleton|simp]:
fixes z:: -::lattice-ring
shows nprt (singleton-matriz j i ©) = singleton-matriz j i (nprt x)
(proof)

lemma sparse-row-vector-pprt:

fixes v:: -::lattice-ring spvec

shows sorted-spvec v => sparse-row-vector (pprt-spvec v) = pprt (sparse-row-vector
v)
(proof)

lemma sparse-row-vector-nprt:

fixes v:: -::lattice-ring spvec

shows sorted-spvec v = sparse-row-vector (nprt-spvec v) = nprt (sparse-row-vector
v)
(proof)

lemma ppri-move-matriz: pprt (move-matriz (A::('a::lattice-ring) matriz) j i) =
move-matriz (pprt A) j i
{proof)

lemma nprt-move-matriz: nprt (move-matriz (A::('a:lattice-ring) matrix) j i) =
move-matriz (nprt A) j i
{proof)

lemma sparse-row-matriz-pprt:

fixes m:: 'a::lattice-ring spmat
shows sorted-spvec m = sorted-spmat m = sparse-row-matriz (pprt-spmat

33

m) = pprt (sparse-row-matriz m)
{(proof)

lemma sparse-row-matriz-nprt:

fixes m:: 'a::lattice-ring spmat

shows sorted-spvec m = sorted-spmat m —> sorted-spmat m = sparse-row-matrizc
(nprt-spmat m) = nprt (sparse-row-matriz m)
(proof)

lemma sorted-pprt-spvec: sorted-spvec v => sorted-spvec (pprt-spvec v)

(proof)

lemma sorted-nprt-spvec: sorted-spvec v = sorted-spvec (nprt-spvec v)
(proof)

lemma sorted-spvec-pprt-spmat: sorted-spvec m = sorted-spvec (pprt-spmat m)
(proof)

lemma sorted-spvec-nprt-spmat: sorted-spvec m = sorted-spvec (nprt-spmat m)

(proof)

lemma sorted-spmat-pprt-spmat: sorted-spmat m = sorted-spmat (pprt-spmat
m)
(proof)

lemma sorted-spmat-nprt-spmat: sorted-spmat m —> sorted-spmat (nprt-spmat
m)
(proof)

definition mult-est-spmat :: ('a::lattice-ring) spmat = ’a spmat = ’a spmat = 'a
spmat = 'a spmat where

mult-est-spmat r1 r2 s1 s2 =

add-spmat (mult-spmat (ppri-spmat s2) (ppri-spmat r2)) (add-spmat (mult-spmat
(pprt-spmat s1) (nprt-spmat r2))

(add-spmat (mult-spmat (nprt-spmat s2) (pprt-spmat r1)) (mult-spmat (nprt-spmat
s1) (nprt-spmat r1))))

lemmas sparse-row-matriz-op-simps =
sorted-sparse-matriz-imp-spmat sorted-sparse-matriz-imp-spvec
sparse-row-add-spmat sorted-spvec-add-spmat sorted-spmat-add-spmat
sparse-row-diff-spmat sorted-spvec-diff-spmat sorted-spmat-diff-spmat
sparse-row-matriz-minus sorted-spvec-minus-spmat sorted-spmat-minus-spmat
sparse-row-mult-spmat sorted-spvec-mult-spmat sorted-spmat-mult-spmat
sparse-row-matriz-abs sorted-spvec-abs-spmat sorted-spmat-abs-spmat
le-spmat-iff-sparse-row-le
sparse-row-matrix-pprt sorted-spvec-pprt-spmat sorted-spmat-pprt-spmat
sparse-row-matriz-nprt sorted-spvec-nprt-spmat sorted-spmat-nprt-spmat

lemmas sparse-row-matriz-arith-simps =

34

mult-spmat.simps mult-spvec-spmat.simps
addmult-spvec.simps
smult-spvec-empty smult-spvec-cons
add-spmat.simps add-spvec.simps
minus-spmat.simps minus-spvec.simps
abs-spmat.simps abs-spvec.simps
diff-spmat-def

le-spmat.simps le-spvec.simps
pprt-spmat.simps ppri-spvec.simps
nprt-spmat.simps nprt-spvec.stmps
mult-est-spmat-def

end

theory LP
imports Main HOL— Library. Lattice-Algebras
begin

lemma le-add-right-mono:
assumes
a <= b + (c::'a::ordered-ab-group-add)
c<=d
shows a <=b+d
(proof)

lemma linprog-dual-estimate:
assumes
A x z < (b::'a:lattice-ring)
0<y
|A — A] <45-A
b<b'
lc — ¢/] < d-¢
lz| < r
shows
cxz<yxd +(yxd-A+|yx A" — |+ d-¢) xr
(proof)

lemma le-ge-imp-abs-diff-1:

assumes
Al <= (A:'a:lattice-ring)
A<= A2
shows |[A—A1| <= A2—-A1
(proof)

lemma mult-le-prts:

35

assumes

al <= (a:'a:lattice-ring)

a <= a2

bl <=0

b <= b2

shows

a *x b <= pprt a2 * pprt b2 + pprt al = nprt b2 + nprt a2 x pprt b1 + nprt al
*x nprt bl

(proof)

lemma mult-le-dual-prts:
assumes
A x z < (b::'a:lattice-ring)
0<y
Al < A
A< A2
cl <c
c < c2
rl <z
< r2
shows
cxx <yxb+ (let s1 =cl —yx*x A2; s2 = c2 — y x Al in pprt s2 * pprt r2
+ pprt s1 x nprt 2 + nprt s2 x pprt r1 + nprt s1 x nprt r1)
(is - <= -+ 20)
(proof)

end

1 Floating Point Representation of the Reals

theory ComputeFloat
imports Complex-Main HOL— Library. Lattice-Algebras
begin

(ML)

definition int-of-real :: real = int
where int-of-real © = (SOME y. real-of-int y = x)

definition real-is-int :: real = bool
where real-is-int © = (3 (u::int). x = real-of-int u)

lemma real-is-int-def2: real-is-int © = (z = real-of-int (int-of-real x))
{proof)

lemma real-is-int-real[simp]: real-is-int (real-of-int (x::int))

(proof)

36

lemma int-of-real-real[simp]: int-of-real (real-of-int z) = x

(proof)

lemma real-int-of-real[simp]: real-is-int & = real-of-int (int-of-real x) = x

(proof)

lemma real-is-int-add-int-of-real: real-is-int a = real-is-int b = (int-of-real
(a+b)) = (int-of-real a) + (int-of-real b)
{(proof)

lemma real-is-int-add[simp): real-is-int a = real-is-int b = real-is-int (a+D>)
(proof)

lemma int-of-real-sub: real-is-int o = real-is-int b = (int-of-real (a—b)) =
(int-of-real a) — (int-of-real b)
(proof)

lemma real-is-int-sub[simp|: real-is-int a = real-is-int b = real-is-int (a—0b)
(proof)

lemma real-is-int-rep: real-is-int x => I!(a::int). real-of-int a =
(proof)

lemma int-of-real-mult:
assumes real-is-int a real-is-int b
shows (int-of-real (axb)) = (int-of-real a) * (int-of-real b)
(proof)

lemma real-is-int-mult[simp]: real-is-int a = real-is-int b = real-is-int (axb)

{(proof)

lemma real-is-int-0[simp]: real-is-int (0::real)
(proof)

lemma real-is-int-1[simpl: real-is-int (1::real)

(proof)

lemma real-is-int-n1: real-is-int (—1::real)
(proof)

lemma real-is-int-numeral]simp|: real-is-int (numeral x)
{proof)

lemma real-is-int-neg-numeral[simp|: real-is-int (— numeral x)
{proof)

lemma int-of-real-0[simpl: int-of-real (0::real) = (0::int)

(proof)

37

lemma int-of-real-1[simp]: int-of-real (1::real) = (1::int)
(proof)

lemma int-of-real-numeral[simp]: int-of-real (numeral b) = numeral b
{proof)

lemma int-of-real-neg-numeral[simp): int-of-real (— numeral b) = — numeral b
{proof)

lemma int-div-zdiv: int (a div b) = (int a) div (int b)

(proof)

lemma int-mod-zmod: int (a mod b) = (int a) mod (int b)

(proof)

lemma abs-div-2-less: a # 0 = a # —1 = |(a::int) div 2| < |a|
(proof)

lemma norm-0-1: (1:-:numeral) = Numerall
(proof)

lemma add-left-zero: 0 + a = (a::'a::comm-monoid-add)
{proof)

lemma add-right-zero: a + 0 = (a::’a::comm-monoid-add)
{proof)

lemma mult-left-one: 1 * a = (a::'a::semiring-1)
{proof)

lemma mult-right-one: a x 1 = (a::'a::semiring-1)

{proof)

lemma int-pow-0: (a::int) 0 = 1
{proof)

lemma int-pow-1: (a::int) (Numerall) = a
(proof)

lemma one-eq-Numerall-nring: (1::'a::numeral) = Numerall
(proof)

lemma one-eg-Numerall-nat: (1::nat) = Numerall
{proof)

lemma zpower-Pls: (z::int) "0 = Numerall
{proof)

38

lemma fst-cong: a=a’ = fst (a,b) = fst (a’,b)
(proof)

lemma snd-cong: b=b" = snd (a,b) = snd (a,b’)
(proof)

lemma lift-bool: © = z="True
(proof)

lemma nlift-bool: ~r = x="Fulse
(proof)

lemma not-false-eg-true: (~ False) = True (proof)
lemma not-true-eq-false: (~ True) = False (proof)

lemmas powerarith = nat-numeral power-numeral-even
power-numeral-odd zpower-Pls

definition float :: (int x int) = real where
float = (A(a, b). real-of-int a * 2 powr real-of-int b)

lemma float-add-10: float (0, e) + =z = z
(proof)

lemma float-add-r0: x + float (0, €) = z
(proof)

lemma float-add:
float (al, el) + float (a2, e2) =
(if e1 <=e2 then float (al+a2x2 (nat(e2—el)), el) else float (al*2 (nat (el —e2))+a2,

e2))
(proof)

lemma float-mult-10: float (0, e) * x = float (0, 0)
{proof)

lemma float-mult-r0: x * float (0, e) = float (0, 0)
(proof)

lemma float-mult:
float (al, el) x float (a2, e2) = (float (al * a2, el + e2))
(proof)
lemma float-minus:
— (float (a,b)) = float (—a, b)
(proof)

lemma zero-le-float:

39

(0 <= float (a,b)) = (0 <= a)
{proof)

lemma float-le-zero:
(float (a,b) <= 0) = (a <= 0)
(proof)

lemma float-abs:
|float (a,b)] = (if 0 <= a then (float (a,b)) else (float (—a,b)))
(proof)

lemma float-zero:
float (0, b) = 0
(proof)

lemma float-pprt:
pprt (float (a, b)) = (if 0 <= a then (float (a,b)) else (float (0, b)))
{proof)

lemma float-nprt:
nprt (float (a, b)) = (if 0 <= a then (float (0,b)) else (float (a, b)))
(proof)

definition lbound :: real = real
where lbound x = min 0 x

definition ubound :: real = real
where ubound x = max 0 =

lemma lbound: lbound x < x

(proof)

lemma ubound: z < ubound x
(proof)

lemma pprt-lbound: pprt (lbound x) = float (0, 0)
(proof)

lemma nprt-ubound: nprt (ubound x) = float (0, 0)
(proof)

lemmas floatarith[simplified norm-0-1] = float-add float-add-10 float-add-r0 float-mult

float-mult-10 float-mult-r0
float-minus float-abs zero-le-float float-pprt float-nprt ppri-lbound npri-ubound

lemmas arith = arith-simps rel-simps diff-nat-numeral nat-0
nat-neg-numeral powerarith floatarith not-false-eq-true not-true-eq-false

40

theory Compute-Oracle imports HOL.HOL
begin

(ML)

end

theory ComputeHOL

imports Complez-Main Compute-Oracle/ Compute-Oracle
begin

lemma Trueprop-eg-eq: Trueprop X == (X == True) (proof)

lemma meta-eg-trivial: © == y = z == y (proof)
lemma meta-eg-imp-eq: £ == y = x = y (proof)

lemma eg-trivial: © = y = = = y (proof)

lemma bool-to-true: z :: bool = x == True (proof)
lemma transmeta-1: x = y = y == z = x = z (proof)
lemma transmeta-2: x == y = y = z = x = z {proof)
lemma transmeta-3: x == y = y == z = x = z (proof)

lemma If-True: If True = (A z y. z) (proof)
lemma If-False: If False = (A z y. y) (proof)

lemmas compute-if = If-True If-False

lemma booll:
lemma bool2:

(= True) = False (proof)

(= False) = True (proof)
lemma bool3: (P A True) = P (proof)
lemma bools: (True A P) = P {proof)
lemma bool5: (P A False) = False (proof)
lemma bool6: (False A P) = False (proof)
lemma bool7: (P V True) = True {proof)
lemma bool8: (True V P) = True {proof)
lemma bool9: (P V False) = P {proof)
lemma bool10: (False V P) = P (proof)
lemma booll1: (True — P) = P {(proof)
lemma bool12: (P — True) = True (proof)
lemma bool13: (True — P) = P (proof)
lemma bool14: (P — False) = (= P) (proof)
lemma bool15: (False — P) = True (proof)

41

lemma bool16: (False = False) = True (proof)
lemma bool17: (True = True) = True (proof)
lemma bool18: (False = True) = False (proof)
lemma bool19: (True = False) = False (proof)

lemmas compute-bool = booll bool2 bool3 bool4 bool5 bool6 bool7 bool8 bool9 booll0
bool11 bool12 booll3 booll4 boolls booll6 booll7 booll8 booll9

lemma compute-fst: fst (x,y) = x {proof)
lemma compute-snd: snd (z,y) = y (proof)
lemma compute-pair-eq: ((a, b) = (¢, d)) = (a = ¢ A b = d) (proof)

lemma case-prod-simp: case-prod f (z,y) = fx y {proof)

lemmas compute-pair = compute-fst compute-snd compute-pair-eq case-prod-simp

lemma compute-the: the (Some z) = x {proof)

lemma compute-None-Some-eq: (None = Some z) = False (proof)
lemma compute-Some-None-eq: (Some © = None) = False (proof)
lemma compute-None-None-eq: (None = None) = True (proof)
lemma compute-Some-Some-eq: (Some © = Some y) = (z = y) (proof)

definition case-option-compute :: 'b option = 'a = ('b = 'a) = 'a
where case-option-compute opt a f = case-option a f opt

lemma case-option-compute: case-option = (X a f opt. case-option-compute opt a
)
(proof)

lemma case-option-compute-None: case-option-compute None = (A a f. a)

{proof)

lemma case-option-compute-Some: case-option-compute (Some) = (A a f. f z)
(proof)

lemmas compute-case-option = case-option-compute case-option-compute-None case-option-compute-Some

lemmas compute-option = compute-the compute-None-Some-eq compute-Some-None-eq
compute-None-None-eq compute-Some-Some-eq compute-case-option

lemma length-cons:length (z#xs) = 1 + (length zs)
(proof)

42

lemma length-nil: length [] = 0
{proof)

lemmas compute-list-length = length-nil length-cons

definition case-list-compute :: 'b list = 'a = ('b = 'b list = 'a) = 'a

where case-list-compute | a f = case-list a f 1

lemma case-list-compute: case-list = (A (a::’a) f (I::'b list). case-list-compute | a

)
{proof)

lemma case-list-compute-empty: case-list-compute ([]::'b list) = (X (a::'a) f. a)
(proof)

lemma case-list-compute-cons: case-list-compute (u#v) = (A (a::’a) f. (f (u::'d)

v))

(proof)

lemmas compute-case-list = case-list-compute case-list-compute-empty case-list-compute-cons

lemma compute-list-nth: ((z#xs) ! n) = (if n = 0 then z else (zs ! (n — 1)))
{proof)

lemmas compute-list = compute-case-list compute-list-length compute-list-nth

lemmas compute-let = Let-def

lemmas compute-hol = compute-if compute-bool compute-pair compute-option com-
pute-list compute-let

(ML)
end

theory ComputeNumeral

43

imports ComputeHOL ComputeFloat
begin

lemmas biteq = eg-num-simps

lemmas bitless = less-num-simps

lemmas bitle = le-num-simps

lemmas bitadd = add-num-simps

lemmas bitmul = mult-num-simps

lemmas bitarith = arith-simps

lemmas natnorm = one-eq-Numerall-nat

fun natfac :: nat = nat
where natfac n = (if n = 0 then 1 else n x (natfac (n — 1)))

lemmas compute-natarith =
arith-simps rel-simps
diff-nat-numeral nat-numeral nat-0 nat-neg-numeral
numeral-One [symmetric]
numeral-1-eq-Suc-0 [symmetric]
Suc-numeral natfac.simps

lemmas number-norm = numeral-One[symmetric]

lemmas compute-numberarith =
arith-simps rel-simps number-norm

lemmas compute-num-conversions =
of-nat-numeral of-nat-0
nat-numeral nat-0 nat-neg-numeral

of-int-numeral of-int-neg-numeral of-int-0

lemmas zpowerarith = power-numeral-even power-numeral-odd zpower-Pls int-pow-1

lemmas compute-div-mod = div-0 mod-0 div-by-0 mod-by-0 div-by-1 mod-by-1
one-div-numeral one-mod-numeral minus-one-div-numeral minus-one-mod-numeral

44

one-div-minus-numeral one-mod-minus-numeral

numeral-div-numeral numeral-mod-numeral minus-numeral-div-numeral minus-numeral-mod-numeral
numeral-div-minus-numeral numeral-mod-minus-numeral

div-minus-minus mod-minus-minus Parity.adjust-div-eq of-bool-eq one-neq-zero

numeral-neq-zero neg-equal-0-iff-equal arith-simps arith-special divmod-trivial

divmod-steps divmod-cancel divmod-step-def fst-conv snd-conv numeral-One

case-prod-beta rel-simps Parity.adjust-mod-def div-minus1-right mod-minusI-right

minus-minus numeral-times-numeral mult-zero-right mult-1-right

lemma even-0-int: even (0::int) = True
{proof)

lemma even-One-int: even (numeral Num.One :: int) = False
{proof)

lemma even-Bit0-int: even (numeral (Num.Bit0 x) :: int) = True
{proof)

lemma even-Bitl-int: even (numeral (Num.Bitl x) :: int) = False
(proof)

lemmas compute-even = even-0-int even-One-int even-Bit0-int even-Bitl-int

lemmas compute-numeral = compute-if compute-let compute-pair compute-bool
compute-natarith compute-numberarith max-def min-def
compute-num-conversions zpowerarith compute-div-mod compute-even

end

theory Chplex
imports SparseMatriz LP ComputeFloat ComputeNumeral
begin

(ML)

lemma spm-mult-le-dual-prts:
assumes
sorted-sparse-matriz Al
sorted-sparse-matriz A2
sorted-sparse-matriz ¢l
sorted-sparse-matriz c2
sorted-sparse-matriz y
sorted-sparse-matriz ri1
sorted-sparse-matriz r2
sorted-spvec b

45

le-spmat [] y

sparse-row-matrix A1 < A

A < sparse-row-matriz A2

sparse-row-matrix c1 < ¢

¢ < sparse-row-matriz c2

sparse-row-matriz r1 < x

x < sparse-row-matriz r2

A x z < sparse-row-matriz (b::('a::lattice-ring) spmat)

shows

¢ x ¢ < sparse-row-matriz (add-spmat (mult-spmat y b)

(let s1 = diff-spmat c1 (mult-spmat y A2); s2 = diff-spmat c2 (mult-spmat y
Al) in

add-spmat (mult-spmat (ppri-spmat s2) (ppri-spmat r2)) (add-spmat (mult-spmat
(pprt-spmat s1) (nprt-spmat r2))

(add-spmat (mult-spmat (nprt-spmat s2) (pprt-spmat r1)) (mult-spmat (nprt-spmat
s1) (nprt-spmat r1))))))

(proof)

lemma spm-mult-le-dual-prts-no-let:
assumes
sorted-sparse-matriz Al
sorted-sparse-matriz A2
sorted-sparse-matriz c1
sorted-sparse-matriz c2
sorted-sparse-matric y
sorted-sparse-matriz r1
sorted-sparse-matriz r2
sorted-spvec b
le-spmat [] y
sparse-row-matrix A1 < A
A < sparse-row-matrixz A2
sparse-row-matriz c1 < ¢
¢ < sparse-row-matriz c2
sparse-row-matriz rl < x
z < sparse-row-matric r2
A x © < sparse-row-matriz (b::('a::lattice-ring) spmat)
shows
¢ * z < sparse-row-matriz (add-spmat (mult-spmat y b)
(mult-est-spmat r1 r2 (diff-spmat c1 (mult-spmat y A2)) (diff-spmat c2 (mult-spmat
y A1))))
(proof)

(ML)

end

46

	Floating Point Representation of the Reals

