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theory Matrix
imports Main HOL−Library.Lattice-Algebras
begin

type-synonym ′a infmatrix = nat ⇒ nat ⇒ ′a

definition nonzero-positions :: (nat ⇒ nat ⇒ ′a::zero) ⇒ (nat × nat) set where
nonzero-positions A = {pos. A (fst pos) (snd pos) ∼= 0}

definition matrix = {(f ::(nat ⇒ nat ⇒ ′a::zero)). finite (nonzero-positions f )}

typedef (overloaded) ′a matrix = matrix :: (nat ⇒ nat ⇒ ′a::zero) set
〈proof 〉

declare Rep-matrix-inverse[simp]

lemma matrix-eqI :
fixes A B :: ′a::zero matrix
assumes

∧
m n. Rep-matrix A m n = Rep-matrix B m n

shows A=B
〈proof 〉

lemma finite-nonzero-positions : finite (nonzero-positions (Rep-matrix A))
〈proof 〉

definition nrows :: ( ′a::zero) matrix ⇒ nat where
nrows A == if nonzero-positions(Rep-matrix A) = {} then 0 else Suc(Max ((image

fst) (nonzero-positions (Rep-matrix A))))

definition ncols :: ( ′a::zero) matrix ⇒ nat where
ncols A == if nonzero-positions(Rep-matrix A) = {} then 0 else Suc(Max ((image

snd) (nonzero-positions (Rep-matrix A))))

lemma nrows:
assumes hyp: nrows A ≤ m
shows (Rep-matrix A m n) = 0
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〈proof 〉

definition transpose-infmatrix :: ′a infmatrix ⇒ ′a infmatrix where
transpose-infmatrix A j i == A i j

definition transpose-matrix :: ( ′a::zero) matrix ⇒ ′a matrix where
transpose-matrix == Abs-matrix o transpose-infmatrix o Rep-matrix

declare transpose-infmatrix-def [simp]

lemma transpose-infmatrix-twice[simp]: transpose-infmatrix (transpose-infmatrix
A) = A
〈proof 〉

lemma transpose-infmatrix: transpose-infmatrix (λj i. P j i) = (λj i. P i j)
〈proof 〉

lemma transpose-infmatrix-closed[simp]: Rep-matrix (Abs-matrix (transpose-infmatrix
(Rep-matrix x))) = transpose-infmatrix (Rep-matrix x)
〈proof 〉

lemma infmatrixforward: (x:: ′a infmatrix) = y =⇒ ∀ a b. x a b = y a b
〈proof 〉

lemma transpose-infmatrix-inject: (transpose-infmatrix A = transpose-infmatrix
B) = (A = B)
〈proof 〉

lemma transpose-matrix-inject: (transpose-matrix A = transpose-matrix B) = (A
= B)
〈proof 〉

lemma transpose-matrix[simp]: Rep-matrix(transpose-matrix A) j i = Rep-matrix
A i j
〈proof 〉

lemma transpose-transpose-id[simp]: transpose-matrix (transpose-matrix A) = A
〈proof 〉

lemma nrows-transpose[simp]: nrows (transpose-matrix A) = ncols A
〈proof 〉

lemma ncols-transpose[simp]: ncols (transpose-matrix A) = nrows A
〈proof 〉

lemma ncols: ncols A ≤ n =⇒ Rep-matrix A m n = 0
〈proof 〉

lemma ncols-le: (ncols A ≤ n) ←→ (∀ j i. n ≤ i −→ (Rep-matrix A j i) = 0 ) (is
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- = ?st)
〈proof 〉

lemma less-ncols: (n < ncols A) = (∃ j i. n ≤ i ∧ (Rep-matrix A j i) 6= 0 )
〈proof 〉

lemma le-ncols: (n ≤ ncols A) = (∀ m. (∀ j i. m ≤ i −→ (Rep-matrix A j i) =
0 ) −→ n ≤ m)
〈proof 〉

lemma nrows-le: (nrows A ≤ n) = (∀ j i. n ≤ j −→ (Rep-matrix A j i) = 0 ) (is
?s)
〈proof 〉

lemma less-nrows: (m < nrows A) = (∃ j i. m ≤ j ∧ (Rep-matrix A j i) 6= 0 )
〈proof 〉

lemma le-nrows: (n ≤ nrows A) = (∀ m. (∀ j i. m ≤ j −→ (Rep-matrix A j i) =
0 ) −→ n ≤ m)
〈proof 〉

lemma nrows-notzero: Rep-matrix A m n 6= 0 =⇒ m < nrows A
〈proof 〉

lemma ncols-notzero: Rep-matrix A m n 6= 0 =⇒ n < ncols A
〈proof 〉

lemma finite-natarray1 : finite {x. x < (n::nat)}
〈proof 〉

lemma finite-natarray2 : finite {(x, y). x < (m::nat) ∧ y < (n::nat)}
〈proof 〉

lemma RepAbs-matrix:
assumes ∃m. ∀ j i. m ≤ j −→ x j i = 0

and ∃n. ∀ j i. (n ≤ i −→ x j i = 0 )
shows (Rep-matrix (Abs-matrix x)) = x
〈proof 〉

definition apply-infmatrix :: ( ′a ⇒ ′b) ⇒ ′a infmatrix ⇒ ′b infmatrix where
apply-infmatrix f == λA. (λj i. f (A j i))

definition apply-matrix :: ( ′a⇒ ′b)⇒ ( ′a::zero) matrix ⇒ ( ′b::zero) matrix where
apply-matrix f == λA. Abs-matrix (apply-infmatrix f (Rep-matrix A))

definition combine-infmatrix :: ( ′a ⇒ ′b ⇒ ′c) ⇒ ′a infmatrix ⇒ ′b infmatrix ⇒
′c infmatrix where

combine-infmatrix f == λA B. (λj i. f (A j i) (B j i))
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definition combine-matrix :: ( ′a ⇒ ′b ⇒ ′c) ⇒ ( ′a::zero) matrix ⇒ ( ′b::zero)
matrix ⇒ ( ′c::zero) matrix where

combine-matrix f == λA B. Abs-matrix (combine-infmatrix f (Rep-matrix A)
(Rep-matrix B))

lemma expand-apply-infmatrix[simp]: apply-infmatrix f A j i = f (A j i)
〈proof 〉

lemma expand-combine-infmatrix[simp]: combine-infmatrix f A B j i = f (A j i)
(B j i)
〈proof 〉

definition commutative :: ( ′a ⇒ ′a ⇒ ′b) ⇒ bool where
commutative f == ∀ x y. f x y = f y x

definition associative :: ( ′a ⇒ ′a ⇒ ′a) ⇒ bool where
associative f == ∀ x y z. f (f x y) z = f x (f y z)

To reason about associativity and commutativity of operations on matrices,
let’s take a step back and look at the general situtation: Assume that we
have sets A and B with B ⊂ A and an abstraction u : A → B. This
abstraction has to fulfill u(b) = b for all b ∈ B, but is arbitrary otherwise.
Each function f : A × A → A now induces a function f ′ : B × B → B by
f ′ = u ◦ f . It is obvious that commutativity of f implies commutativity of
f ′: f ′xy = u(fxy) = u(fyx) = f ′yx.

lemma combine-infmatrix-commute:
commutative f =⇒ commutative (combine-infmatrix f )
〈proof 〉

lemma combine-matrix-commute:
commutative f =⇒ commutative (combine-matrix f )
〈proof 〉

On the contrary, given an associative function f we cannot expect f ′ to be
associative. A counterexample is given by A = �, B = {−1, 0, 1}, as f we
take addition on �, which is clearly associative. The abstraction is given by
u(a) = 0 for a /∈ B. Then we have

f ′(f ′11)− 1 = u(f(u(f11))− 1) = u(f(u2)− 1) = u(f0− 1) = −1,

but on the other hand we have

f ′1(f ′1− 1) = u(f1(u(f1− 1))) = u(f10) = 1.

A way out of this problem is to assume that f(A× A) ⊂ A holds, and this
is what we are going to do:
lemma nonzero-positions-combine-infmatrix[simp]: f 0 0 = 0 =⇒ nonzero-positions
(combine-infmatrix f A B) ⊆ (nonzero-positions A) ∪ (nonzero-positions B)
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〈proof 〉

lemma finite-nonzero-positions-Rep[simp]: finite (nonzero-positions (Rep-matrix
A))
〈proof 〉

lemma combine-infmatrix-closed [simp]:
f 0 0 = 0 =⇒ Rep-matrix (Abs-matrix (combine-infmatrix f (Rep-matrix A)

(Rep-matrix B))) = combine-infmatrix f (Rep-matrix A) (Rep-matrix B)
〈proof 〉

We need the next two lemmas only later, but it is analog to the above one,
so we prove them now:
lemma nonzero-positions-apply-infmatrix[simp]: f 0 = 0 =⇒ nonzero-positions
(apply-infmatrix f A) ⊆ nonzero-positions A
〈proof 〉

lemma apply-infmatrix-closed [simp]:
f 0 = 0 =⇒ Rep-matrix (Abs-matrix (apply-infmatrix f (Rep-matrix A))) =

apply-infmatrix f (Rep-matrix A)
〈proof 〉

lemma combine-infmatrix-assoc[simp]: f 0 0 = 0 =⇒ associative f =⇒ associative
(combine-infmatrix f )
〈proof 〉

lemma combine-matrix-assoc: f 0 0 = 0 =⇒ associative f =⇒ associative (combine-matrix
f )
〈proof 〉

lemma Rep-apply-matrix[simp]: f 0 = 0 =⇒ Rep-matrix (apply-matrix f A) j i =
f (Rep-matrix A j i)
〈proof 〉

lemma Rep-combine-matrix[simp]: f 0 0 = 0 =⇒ Rep-matrix (combine-matrix f
A B) j i = f (Rep-matrix A j i) (Rep-matrix B j i)
〈proof 〉

lemma combine-nrows-max: f 0 0 = 0 =⇒ nrows (combine-matrix f A B) ≤ max
(nrows A) (nrows B)
〈proof 〉

lemma combine-ncols-max: f 0 0 = 0 =⇒ ncols (combine-matrix f A B) ≤ max
(ncols A) (ncols B)
〈proof 〉

lemma combine-nrows: f 0 0 = 0 =⇒ nrows A ≤ q =⇒ nrows B ≤ q =⇒
nrows(combine-matrix f A B) ≤ q
〈proof 〉
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lemma combine-ncols: f 0 0 = 0 =⇒ ncols A ≤ q =⇒ ncols B ≤ q =⇒ ncols(combine-matrix
f A B) ≤ q
〈proof 〉

definition zero-r-neutral :: ( ′a ⇒ ′b::zero ⇒ ′a) ⇒ bool where
zero-r-neutral f == ∀ a. f a 0 = a

definition zero-l-neutral :: ( ′a::zero ⇒ ′b ⇒ ′b) ⇒ bool where
zero-l-neutral f == ∀ a. f 0 a = a

definition zero-closed :: (( ′a::zero) ⇒ ( ′b::zero) ⇒ ( ′c::zero)) ⇒ bool where
zero-closed f == (∀ x. f x 0 = 0 ) ∧ (∀ y. f 0 y = 0 )

primrec foldseq :: ( ′a ⇒ ′a ⇒ ′a) ⇒ (nat ⇒ ′a) ⇒ nat ⇒ ′a
where

foldseq f s 0 = s 0
| foldseq f s (Suc n) = f (s 0 ) (foldseq f (λk. s(Suc k)) n)

primrec foldseq-transposed :: ( ′a ⇒ ′a ⇒ ′a) ⇒ (nat ⇒ ′a) ⇒ nat ⇒ ′a
where

foldseq-transposed f s 0 = s 0
| foldseq-transposed f s (Suc n) = f (foldseq-transposed f s n) (s (Suc n))

lemma foldseq-assoc:
assumes a:associative f
shows associative f =⇒ foldseq f = foldseq-transposed f
〈proof 〉

lemma foldseq-distr :
assumes assoc: associative f and comm: commutative f
shows foldseq f (λk. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n)
〈proof 〉

theorem [[associative f ; associative g; ∀ a b c d. g (f a b) (f c d) = f (g a c) (g b
d); ∃ x y. (f x) 6= (f y); ∃ x y. (g x) 6= (g y); f x x = x; g x x = x]] =⇒ f=g | (∀ y.
f y x = y) | (∀ y. g y x = y)
〈proof 〉

lemma foldseq-zero:
assumes fz: f 0 0 = 0 and sz: ∀ i. i ≤ n −→ s i = 0
shows foldseq f s n = 0
〈proof 〉

lemma foldseq-significant-positions:
assumes p: ∀ i. i ≤ N −→ S i = T i
shows foldseq f S N = foldseq f T N
〈proof 〉
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lemma foldseq-tail:
assumes M ≤ N
shows foldseq f S N = foldseq f (λk. (if k < M then (S k) else (foldseq f (λk.

S(k+M )) (N−M )))) M
〈proof 〉

lemma foldseq-zerotail:
assumes fz: f 0 0 = 0 and sz: ∀ i. n ≤ i −→ s i = 0 and nm: n ≤ m
shows foldseq f s n = foldseq f s m
〈proof 〉

lemma foldseq-zerotail2 :
assumes ∀ x. f x 0 = x
and ∀ i. n < i −→ s i = 0
and nm: n ≤ m

shows foldseq f s n = foldseq f s m
〈proof 〉

lemma foldseq-zerostart:
assumes f00x: ∀ x. f 0 (f 0 x) = f 0 x and 0 : ∀ i. i ≤ n −→ s i = 0
shows foldseq f s (Suc n) = f 0 (s (Suc n))
〈proof 〉

lemma foldseq-zerostart2 :
assumes x: ∀ x. f 0 x = x and 0 : ∀ i. i < n −→ s i = 0
shows foldseq f s n = s n
〈proof 〉

lemma foldseq-almostzero:
assumes f0x: ∀ x. f 0 x = x and fx0 : ∀ x. f x 0 = x and s0 : ∀ i. i 6= j −→ s i

= 0
shows foldseq f s n = (if (j ≤ n) then (s j) else 0 )
〈proof 〉

lemma foldseq-distr-unary:
assumes

∧
a b. g (f a b) = f (g a) (g b)

shows g(foldseq f s n) = foldseq f (λx. g(s x)) n
〈proof 〉

definition mult-matrix-n :: nat ⇒ (( ′a::zero) ⇒ ( ′b::zero) ⇒ ( ′c::zero)) ⇒ ( ′c ⇒
′c ⇒ ′c) ⇒ ′a matrix ⇒ ′b matrix ⇒ ′c matrix where

mult-matrix-n n fmul fadd A B == Abs-matrix(λj i. foldseq fadd (λk. fmul
(Rep-matrix A j k) (Rep-matrix B k i)) n)

definition mult-matrix :: (( ′a::zero) ⇒ ( ′b::zero) ⇒ ( ′c::zero)) ⇒ ( ′c ⇒ ′c ⇒ ′c)
⇒ ′a matrix ⇒ ′b matrix ⇒ ′c matrix where

mult-matrix fmul fadd A B == mult-matrix-n (max (ncols A) (nrows B)) fmul
fadd A B
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lemma mult-matrix-n:
assumes ncols A ≤ n nrows B ≤ n fadd 0 0 = 0 fmul 0 0 = 0
shows mult-matrix fmul fadd A B = mult-matrix-n n fmul fadd A B
〈proof 〉

lemma mult-matrix-nm:
assumes ncols A ≤ n nrows B ≤ n ncols A ≤ m nrows B ≤ m fadd 0 0 = 0

fmul 0 0 = 0
shows mult-matrix-n n fmul fadd A B = mult-matrix-n m fmul fadd A B
〈proof 〉

definition r-distributive :: ( ′a ⇒ ′b ⇒ ′b) ⇒ ( ′b ⇒ ′b ⇒ ′b) ⇒ bool where
r-distributive fmul fadd == ∀ a u v. fmul a (fadd u v) = fadd (fmul a u) (fmul a

v)

definition l-distributive :: ( ′a ⇒ ′b ⇒ ′a) ⇒ ( ′a ⇒ ′a ⇒ ′a) ⇒ bool where
l-distributive fmul fadd == ∀ a u v. fmul (fadd u v) a = fadd (fmul u a) (fmul v

a)

definition distributive :: ( ′a ⇒ ′a ⇒ ′a) ⇒ ( ′a ⇒ ′a ⇒ ′a) ⇒ bool where
distributive fmul fadd == l-distributive fmul fadd ∧ r-distributive fmul fadd

lemma max1 : !! a x y. (a::nat) ≤ x =⇒ a ≤ max x y 〈proof 〉
lemma max2 : !! b x y. (b::nat) ≤ y =⇒ b ≤ max x y 〈proof 〉

lemma r-distributive-matrix:
assumes
r-distributive fmul fadd
associative fadd
commutative fadd
fadd 0 0 = 0
∀ a. fmul a 0 = 0
∀ a. fmul 0 a = 0

shows r-distributive (mult-matrix fmul fadd) (combine-matrix fadd)
〈proof 〉

lemma l-distributive-matrix:
assumes
l-distributive fmul fadd
associative fadd
commutative fadd
fadd 0 0 = 0
∀ a. fmul a 0 = 0
∀ a. fmul 0 a = 0

shows l-distributive (mult-matrix fmul fadd) (combine-matrix fadd)
〈proof 〉

instantiation matrix :: (zero) zero
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begin

definition zero-matrix-def : 0 = Abs-matrix (λj i. 0 )

instance 〈proof 〉

end

lemma Rep-zero-matrix-def [simp]: Rep-matrix 0 j i = 0
〈proof 〉

lemma zero-matrix-def-nrows[simp]: nrows 0 = 0
〈proof 〉

lemma zero-matrix-def-ncols[simp]: ncols 0 = 0
〈proof 〉

lemma combine-matrix-zero-l-neutral: zero-l-neutral f =⇒ zero-l-neutral (combine-matrix
f )
〈proof 〉

lemma combine-matrix-zero-r-neutral: zero-r-neutral f =⇒ zero-r-neutral (combine-matrix
f )
〈proof 〉

lemma mult-matrix-zero-closed: [[fadd 0 0 = 0 ; zero-closed fmul]] =⇒ zero-closed
(mult-matrix fmul fadd)
〈proof 〉

lemma mult-matrix-n-zero-right[simp]: [[fadd 0 0 = 0 ; ∀ a. fmul a 0 = 0 ]] =⇒
mult-matrix-n n fmul fadd A 0 = 0
〈proof 〉

lemma mult-matrix-n-zero-left[simp]: [[fadd 0 0 = 0 ; ∀ a. fmul 0 a = 0 ]] =⇒
mult-matrix-n n fmul fadd 0 A = 0
〈proof 〉

lemma mult-matrix-zero-left[simp]: [[fadd 0 0 = 0 ; ∀ a. fmul 0 a = 0 ]] =⇒ mult-matrix
fmul fadd 0 A = 0
〈proof 〉

lemma mult-matrix-zero-right[simp]: [[fadd 0 0 = 0 ; ∀ a. fmul a 0 = 0 ]] =⇒
mult-matrix fmul fadd A 0 = 0
〈proof 〉

lemma apply-matrix-zero[simp]: f 0 = 0 =⇒ apply-matrix f 0 = 0
〈proof 〉

lemma combine-matrix-zero: f 0 0 = 0 =⇒ combine-matrix f 0 0 = 0
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〈proof 〉

lemma transpose-matrix-zero[simp]: transpose-matrix 0 = 0
〈proof 〉

lemma apply-zero-matrix-def [simp]: apply-matrix (λx. 0 ) A = 0
〈proof 〉

definition singleton-matrix :: nat ⇒ nat ⇒ ( ′a::zero) ⇒ ′a matrix where
singleton-matrix j i a == Abs-matrix(λm n. if j = m ∧ i = n then a else 0 )

definition move-matrix :: ( ′a::zero) matrix ⇒ int ⇒ int ⇒ ′a matrix where
move-matrix A y x == Abs-matrix(λj i. if (((int j)−y) < 0 ) | (((int i)−x) < 0 )

then 0 else Rep-matrix A (nat ((int j)−y)) (nat ((int i)−x)))

definition take-rows :: ( ′a::zero) matrix ⇒ nat ⇒ ′a matrix where
take-rows A r == Abs-matrix(λj i. if (j < r) then (Rep-matrix A j i) else 0 )

definition take-columns :: ( ′a::zero) matrix ⇒ nat ⇒ ′a matrix where
take-columns A c == Abs-matrix(λj i. if (i < c) then (Rep-matrix A j i) else 0 )

definition column-of-matrix :: ( ′a::zero) matrix ⇒ nat ⇒ ′a matrix where
column-of-matrix A n == take-columns (move-matrix A 0 (− int n)) 1

definition row-of-matrix :: ( ′a::zero) matrix ⇒ nat ⇒ ′a matrix where
row-of-matrix A m == take-rows (move-matrix A (− int m) 0 ) 1

lemma Rep-singleton-matrix[simp]: Rep-matrix (singleton-matrix j i e) m n = (if
j = m ∧ i = n then e else 0 )
〈proof 〉

lemma apply-singleton-matrix[simp]: f 0 = 0 =⇒ apply-matrix f (singleton-matrix
j i x) = (singleton-matrix j i (f x))
〈proof 〉

lemma singleton-matrix-zero[simp]: singleton-matrix j i 0 = 0
〈proof 〉

lemma nrows-singleton[simp]: nrows(singleton-matrix j i e) = (if e = 0 then 0 else
Suc j)
〈proof 〉

lemma ncols-singleton[simp]: ncols(singleton-matrix j i e) = (if e = 0 then 0 else
Suc i)
〈proof 〉

lemma combine-singleton: f 0 0 = 0 =⇒ combine-matrix f (singleton-matrix j i
a) (singleton-matrix j i b) = singleton-matrix j i (f a b)
〈proof 〉
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lemma transpose-singleton[simp]: transpose-matrix (singleton-matrix j i a) = sin-
gleton-matrix i j a
〈proof 〉

lemma Rep-move-matrix[simp]:
Rep-matrix (move-matrix A y x) j i =
(if (((int j)−y) < 0 ) | (((int i)−x) < 0 ) then 0 else Rep-matrix A (nat((int

j)−y)) (nat((int i)−x)))
〈proof 〉

lemma move-matrix-0-0 [simp]: move-matrix A 0 0 = A
〈proof 〉

lemma move-matrix-ortho: move-matrix A j i = move-matrix (move-matrix A j
0 ) 0 i
〈proof 〉

lemma transpose-move-matrix[simp]:
transpose-matrix (move-matrix A x y) = move-matrix (transpose-matrix A) y x
〈proof 〉

lemma move-matrix-singleton[simp]: move-matrix (singleton-matrix u v x) j i =
(if (j + int u < 0 ) | (i + int v < 0 ) then 0 else (singleton-matrix (nat (j + int

u)) (nat (i + int v)) x))
〈proof 〉

lemma Rep-take-columns[simp]:
Rep-matrix (take-columns A c) j i = (if i < c then (Rep-matrix A j i) else 0 )
〈proof 〉

lemma Rep-take-rows[simp]:
Rep-matrix (take-rows A r) j i = (if j < r then (Rep-matrix A j i) else 0 )
〈proof 〉

lemma Rep-column-of-matrix[simp]:
Rep-matrix (column-of-matrix A c) j i = (if i = 0 then (Rep-matrix A j c) else

0 )
〈proof 〉

lemma Rep-row-of-matrix[simp]:
Rep-matrix (row-of-matrix A r) j i = (if j = 0 then (Rep-matrix A r i) else 0 )
〈proof 〉

lemma column-of-matrix: ncols A ≤ n =⇒ column-of-matrix A n = 0
〈proof 〉

lemma row-of-matrix: nrows A ≤ n =⇒ row-of-matrix A n = 0
〈proof 〉
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lemma mult-matrix-singleton-right[simp]:
assumes ∀ x. fmul x 0 = 0 ∀ x. fmul 0 x = 0 ∀ x. fadd 0 x = x ∀ x. fadd x 0 = x
shows (mult-matrix fmul fadd A (singleton-matrix j i e)) = apply-matrix (λx.

fmul x e) (move-matrix (column-of-matrix A j) 0 (int i))
〈proof 〉

lemma mult-matrix-ext:
assumes
eprem:
∃ e. (∀ a b. a 6= b −→ fmul a e 6= fmul b e)
and fprems:
∀ a. fmul 0 a = 0
∀ a. fmul a 0 = 0
∀ a. fadd a 0 = a
∀ a. fadd 0 a = a
and contraprems: mult-matrix fmul fadd A = mult-matrix fmul fadd B
shows A = B
〈proof 〉

definition foldmatrix :: ( ′a ⇒ ′a ⇒ ′a) ⇒ ( ′a ⇒ ′a ⇒ ′a) ⇒ ( ′a infmatrix) ⇒
nat ⇒ nat ⇒ ′a where

foldmatrix f g A m n == foldseq-transposed g (λj. foldseq f (A j) n) m

definition foldmatrix-transposed :: ( ′a ⇒ ′a ⇒ ′a) ⇒ ( ′a ⇒ ′a ⇒ ′a) ⇒ ( ′a
infmatrix) ⇒ nat ⇒ nat ⇒ ′a where

foldmatrix-transposed f g A m n == foldseq g (λj. foldseq-transposed f (A j) n)
m

lemma foldmatrix-transpose:
assumes ∀ a b c d. g(f a b) (f c d) = f (g a c) (g b d)
shows foldmatrix f g A m n = foldmatrix-transposed g f (transpose-infmatrix A)

n m
〈proof 〉

lemma foldseq-foldseq:
assumes associative f associative g ∀ a b c d. g(f a b) (f c d) = f (g a c) (g b d)
shows

foldseq g (λj. foldseq f (A j) n) m = foldseq f (λj. foldseq g ((transpose-infmatrix
A) j) m) n
〈proof 〉

lemma mult-n-nrows:
assumes ∀ a. fmul 0 a = 0 ∀ a. fmul a 0 = 0 fadd 0 0 = 0
shows nrows (mult-matrix-n n fmul fadd A B) ≤ nrows A
〈proof 〉

lemma mult-n-ncols:
assumes ∀ a. fmul 0 a = 0 ∀ a. fmul a 0 = 0 fadd 0 0 = 0

12



shows ncols (mult-matrix-n n fmul fadd A B) ≤ ncols B
〈proof 〉

lemma mult-nrows:
assumes
∀ a. fmul 0 a = 0
∀ a. fmul a 0 = 0
fadd 0 0 = 0

shows nrows (mult-matrix fmul fadd A B) ≤ nrows A
〈proof 〉

lemma mult-ncols:
assumes
∀ a. fmul 0 a = 0
∀ a. fmul a 0 = 0
fadd 0 0 = 0

shows ncols (mult-matrix fmul fadd A B) ≤ ncols B
〈proof 〉

lemma nrows-move-matrix-le: nrows (move-matrix A j i) ≤ nat((int (nrows A))
+ j)
〈proof 〉

lemma ncols-move-matrix-le: ncols (move-matrix A j i) ≤ nat((int (ncols A)) +
i)
〈proof 〉

lemma mult-matrix-assoc:
assumes
∀ a. fmul1 0 a = 0
∀ a. fmul1 a 0 = 0
∀ a. fmul2 0 a = 0
∀ a. fmul2 a 0 = 0
fadd1 0 0 = 0
fadd2 0 0 = 0
∀ a b c d. fadd2 (fadd1 a b) (fadd1 c d) = fadd1 (fadd2 a c) (fadd2 b d)
associative fadd1
associative fadd2
∀ a b c. fmul2 (fmul1 a b) c = fmul1 a (fmul2 b c)
∀ a b c. fmul2 (fadd1 a b) c = fadd1 (fmul2 a c) (fmul2 b c)
∀ a b c. fmul1 c (fadd2 a b) = fadd2 (fmul1 c a) (fmul1 c b)
shows mult-matrix fmul2 fadd2 (mult-matrix fmul1 fadd1 A B) C = mult-matrix

fmul1 fadd1 A (mult-matrix fmul2 fadd2 B C )
〈proof 〉

lemma mult-matrix-assoc-simple:
assumes
∀ a. fmul 0 a = 0
∀ a. fmul a 0 = 0
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associative fadd
commutative fadd
associative fmul
distributive fmul fadd
shows mult-matrix fmul fadd (mult-matrix fmul fadd A B) C = mult-matrix fmul

fadd A (mult-matrix fmul fadd B C )
〈proof 〉

lemma transpose-apply-matrix: f 0 = 0 =⇒ transpose-matrix (apply-matrix f A)
= apply-matrix f (transpose-matrix A)
〈proof 〉

lemma transpose-combine-matrix: f 0 0 = 0 =⇒ transpose-matrix (combine-matrix
f A B) = combine-matrix f (transpose-matrix A) (transpose-matrix B)
〈proof 〉

lemma Rep-mult-matrix:
assumes ∀ a. fmul 0 a = 0 ∀ a. fmul a 0 = 0 fadd 0 0 = 0
shows

Rep-matrix(mult-matrix fmul fadd A B) j i =
foldseq fadd (λk. fmul (Rep-matrix A j k) (Rep-matrix B k i)) (max (ncols A)

(nrows B))
〈proof 〉

lemma transpose-mult-matrix:
assumes
∀ a. fmul 0 a = 0
∀ a. fmul a 0 = 0
fadd 0 0 = 0
∀ x y. fmul y x = fmul x y
shows
transpose-matrix (mult-matrix fmul fadd A B) = mult-matrix fmul fadd (transpose-matrix

B) (transpose-matrix A)
〈proof 〉

lemma column-transpose-matrix: column-of-matrix (transpose-matrix A) n = trans-
pose-matrix (row-of-matrix A n)
〈proof 〉

lemma take-columns-transpose-matrix: take-columns (transpose-matrix A) n =
transpose-matrix (take-rows A n)
〈proof 〉

instantiation matrix :: ({zero, ord}) ord
begin

definition
le-matrix-def : A ≤ B ←→ (∀ j i. Rep-matrix A j i ≤ Rep-matrix B j i)
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definition
less-def : A < (B:: ′a matrix) ←→ A ≤ B ∧ ¬ B ≤ A

instance 〈proof 〉

end

instance matrix :: ({zero, order}) order
〈proof 〉

lemma le-apply-matrix:
assumes
f 0 = 0
∀ x y. x ≤ y −→ f x ≤ f y
(a::( ′a::{ord, zero}) matrix) ≤ b
shows apply-matrix f a ≤ apply-matrix f b
〈proof 〉

lemma le-combine-matrix:
assumes
f 0 0 = 0
∀ a b c d. a ≤ b ∧ c ≤ d −→ f a c ≤ f b d
A ≤ B
C ≤ D
shows combine-matrix f A C ≤ combine-matrix f B D
〈proof 〉

lemma le-left-combine-matrix:
assumes
f 0 0 = 0
∀ a b c. a ≤ b −→ f c a ≤ f c b
A ≤ B
shows combine-matrix f C A ≤ combine-matrix f C B
〈proof 〉

lemma le-right-combine-matrix:
assumes
f 0 0 = 0
∀ a b c. a ≤ b −→ f a c ≤ f b c
A ≤ B
shows combine-matrix f A C ≤ combine-matrix f B C
〈proof 〉

lemma le-transpose-matrix: (A ≤ B) = (transpose-matrix A ≤ transpose-matrix
B)
〈proof 〉

lemma le-foldseq:
assumes
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∀ a b c d . a ≤ b ∧ c ≤ d −→ f a c ≤ f b d
∀ i. i ≤ n −→ s i ≤ t i
shows foldseq f s n ≤ foldseq f t n
〈proof 〉

lemma le-left-mult:
assumes
∀ a b c d. a ≤ b ∧ c ≤ d −→ fadd a c ≤ fadd b d
∀ c a b. 0 ≤ c ∧ a ≤ b −→ fmul c a ≤ fmul c b
∀ a. fmul 0 a = 0
∀ a. fmul a 0 = 0
fadd 0 0 = 0
0 ≤ C
A ≤ B
shows mult-matrix fmul fadd C A ≤ mult-matrix fmul fadd C B
〈proof 〉

lemma le-right-mult:
assumes
∀ a b c d. a ≤ b ∧ c ≤ d −→ fadd a c ≤ fadd b d
∀ c a b. 0 ≤ c ∧ a ≤ b −→ fmul a c ≤ fmul b c
∀ a. fmul 0 a = 0
∀ a. fmul a 0 = 0
fadd 0 0 = 0
0 ≤ C
A ≤ B
shows mult-matrix fmul fadd A C ≤ mult-matrix fmul fadd B C
〈proof 〉

lemma spec2 : ∀ j i. P j i =⇒ P j i 〈proof 〉

lemma singleton-matrix-le[simp]: (singleton-matrix j i a ≤ singleton-matrix j i b)
= (a ≤ (b::-::order))
〈proof 〉

lemma singleton-le-zero[simp]: (singleton-matrix j i x ≤ 0 ) = (x ≤ (0 :: ′a::{order ,zero}))
〈proof 〉

lemma singleton-ge-zero[simp]: (0 ≤ singleton-matrix j i x) = ((0 :: ′a::{order ,zero})
≤ x)
〈proof 〉

lemma move-matrix-le-zero[simp]:
fixes A:: ′a::{order ,zero} matrix
assumes 0 ≤ j 0 ≤ i
shows (move-matrix A j i ≤ 0 ) = (A ≤ 0 )
〈proof 〉

lemma move-matrix-zero-le[simp]:
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fixes A:: ′a::{order ,zero} matrix
assumes 0 ≤ j 0 ≤ i
shows (0 ≤ move-matrix A j i) = (0 ≤ A)
〈proof 〉

lemma move-matrix-le-move-matrix-iff [simp]:
fixes A:: ′a::{order ,zero} matrix
assumes 0 ≤ j 0 ≤ i
shows (move-matrix A j i ≤ move-matrix B j i) = (A ≤ B)
〈proof 〉

instantiation matrix :: ({lattice, zero}) lattice
begin

definition inf = combine-matrix inf

definition sup = combine-matrix sup

instance
〈proof 〉

end

instantiation matrix :: ({plus, zero}) plus
begin

definition
plus-matrix-def : A + B = combine-matrix (+) A B

instance 〈proof 〉

end

instantiation matrix :: ({uminus, zero}) uminus
begin

definition
minus-matrix-def : − A = apply-matrix uminus A

instance 〈proof 〉

end

instantiation matrix :: ({minus, zero}) minus
begin

definition
diff-matrix-def : A − B = combine-matrix (−) A B
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instance 〈proof 〉

end

instantiation matrix :: ({plus, times, zero}) times
begin

definition
times-matrix-def : A ∗ B = mult-matrix ((∗)) (+) A B

instance 〈proof 〉

end

instantiation matrix :: ({lattice, uminus, zero}) abs
begin

definition
abs-matrix-def : |A :: ′a matrix| = sup A (− A)

instance 〈proof 〉

end

instance matrix :: (monoid-add) monoid-add
〈proof 〉

instance matrix :: (comm-monoid-add) comm-monoid-add
〈proof 〉

instance matrix :: (group-add) group-add
〈proof 〉

instance matrix :: (ab-group-add) ab-group-add
〈proof 〉

instance matrix :: (ordered-ab-group-add) ordered-ab-group-add
〈proof 〉

instance matrix :: (lattice-ab-group-add) semilattice-inf-ab-group-add 〈proof 〉
instance matrix :: (lattice-ab-group-add) semilattice-sup-ab-group-add 〈proof 〉

instance matrix :: (semiring-0 ) semiring-0
〈proof 〉

instance matrix :: (ring) ring 〈proof 〉

instance matrix :: (ordered-ring) ordered-ring
〈proof 〉
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instance matrix :: (lattice-ring) lattice-ring
〈proof 〉

instance matrix :: (lattice-ab-group-add-abs) lattice-ab-group-add-abs
〈proof 〉

lemma Rep-matrix-add[simp]:
Rep-matrix ((a::( ′a::monoid-add)matrix)+b) j i = (Rep-matrix a j i) + (Rep-matrix

b j i)
〈proof 〉

lemma Rep-matrix-mult: Rep-matrix ((a::( ′a::semiring-0 ) matrix) ∗ b) j i =
foldseq (+) (λk. (Rep-matrix a j k) ∗ (Rep-matrix b k i)) (max (ncols a) (nrows

b))
〈proof 〉

lemma apply-matrix-add: ∀ x y. f (x+y) = (f x) + (f y) =⇒ f 0 = (0 :: ′a)
=⇒ apply-matrix f ((a::( ′a::monoid-add) matrix) + b) = (apply-matrix f a) +

(apply-matrix f b)
〈proof 〉

lemma singleton-matrix-add: singleton-matrix j i ((a::-::monoid-add)+b) = (singleton-matrix
j i a) + (singleton-matrix j i b)
〈proof 〉

lemma nrows-mult: nrows ((A::( ′a::semiring-0 ) matrix) ∗ B) ≤ nrows A
〈proof 〉

lemma ncols-mult: ncols ((A::( ′a::semiring-0 ) matrix) ∗ B) ≤ ncols B
〈proof 〉

definition
one-matrix :: nat ⇒ ( ′a::{zero,one}) matrix where
one-matrix n = Abs-matrix (λj i. if j = i ∧ j < n then 1 else 0 )

lemma Rep-one-matrix[simp]: Rep-matrix (one-matrix n) j i = (if (j = i ∧ j <
n) then 1 else 0 )
〈proof 〉

lemma nrows-one-matrix[simp]: nrows ((one-matrix n) :: ( ′a::zero-neq-one)matrix)
= n (is ?r = -)
〈proof 〉

lemma ncols-one-matrix[simp]: ncols ((one-matrix n) :: ( ′a::zero-neq-one)matrix)
= n (is ?r = -)
〈proof 〉

lemma one-matrix-mult-right[simp]:
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fixes A :: ( ′a::semiring-1 ) matrix
shows ncols A ≤ n =⇒ A ∗ (one-matrix n) = A
〈proof 〉

lemma one-matrix-mult-left[simp]:
fixes A :: ( ′a::semiring-1 ) matrix
shows nrows A ≤ n =⇒ (one-matrix n) ∗ A = A
〈proof 〉

lemma transpose-matrix-mult:
fixes A :: ( ′a::comm-ring) matrix
shows transpose-matrix (A∗B) = (transpose-matrix B) ∗ (transpose-matrix A)
〈proof 〉

lemma transpose-matrix-add:
fixes A :: ( ′a::monoid-add) matrix
shows transpose-matrix (A+B) = transpose-matrix A + transpose-matrix B
〈proof 〉

lemma transpose-matrix-diff :
fixes A :: ( ′a::group-add) matrix
shows transpose-matrix (A−B) = transpose-matrix A − transpose-matrix B
〈proof 〉

lemma transpose-matrix-minus:
fixes A :: ( ′a::group-add) matrix
shows transpose-matrix (−A) = − transpose-matrix (A:: ′a matrix)
〈proof 〉

definition right-inverse-matrix :: ( ′a::{ring-1}) matrix ⇒ ′a matrix ⇒ bool where
right-inverse-matrix A X == (A ∗ X = one-matrix (max (nrows A) (ncols X)))
∧ nrows X ≤ ncols A

definition left-inverse-matrix :: ( ′a::{ring-1}) matrix ⇒ ′a matrix ⇒ bool where
left-inverse-matrix A X == (X ∗ A = one-matrix (max(nrows X) (ncols A))) ∧

ncols X ≤ nrows A

definition inverse-matrix :: ( ′a::{ring-1}) matrix ⇒ ′a matrix ⇒ bool where
inverse-matrix A X == (right-inverse-matrix A X) ∧ (left-inverse-matrix A X)

lemma right-inverse-matrix-dim: right-inverse-matrix A X =⇒ nrows A = ncols
X
〈proof 〉

lemma left-inverse-matrix-dim: left-inverse-matrix A Y =⇒ ncols A = nrows Y
〈proof 〉

lemma left-right-inverse-matrix-unique:
assumes left-inverse-matrix A Y right-inverse-matrix A X
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shows X = Y
〈proof 〉

lemma inverse-matrix-inject: [[ inverse-matrix A X ; inverse-matrix A Y ]] =⇒ X
= Y
〈proof 〉

lemma one-matrix-inverse: inverse-matrix (one-matrix n) (one-matrix n)
〈proof 〉

lemma zero-imp-mult-zero: (a:: ′a::semiring-0 ) = 0 | b = 0 =⇒ a ∗ b = 0
〈proof 〉

lemma Rep-matrix-zero-imp-mult-zero:
∀ j i k. (Rep-matrix A j k = 0 ) | (Rep-matrix B k i) = 0 =⇒ A ∗ B =

(0 ::( ′a::lattice-ring) matrix)
〈proof 〉

lemma add-nrows: nrows (A::( ′a::monoid-add) matrix) ≤ u =⇒ nrows B ≤ u =⇒
nrows (A + B) ≤ u
〈proof 〉

lemma move-matrix-row-mult:
fixes A :: ( ′a::semiring-0 ) matrix
shows move-matrix (A ∗ B) j 0 = (move-matrix A j 0 ) ∗ B
〈proof 〉

lemma move-matrix-col-mult:
fixes A :: ( ′a::semiring-0 ) matrix
shows move-matrix (A ∗ B) 0 i = A ∗ (move-matrix B 0 i)
〈proof 〉

lemma move-matrix-add: ((move-matrix (A + B) j i)::(( ′a::monoid-add) matrix))
= (move-matrix A j i) + (move-matrix B j i)
〈proof 〉

lemma move-matrix-mult: move-matrix ((A::( ′a::semiring-0 ) matrix)∗B) j i =
(move-matrix A j 0 ) ∗ (move-matrix B 0 i)
〈proof 〉

definition scalar-mult :: ( ′a::ring) ⇒ ′a matrix ⇒ ′a matrix where
scalar-mult a m == apply-matrix ((∗) a) m

lemma scalar-mult-zero[simp]: scalar-mult y 0 = 0
〈proof 〉

lemma scalar-mult-add: scalar-mult y (a+b) = (scalar-mult y a) + (scalar-mult y
b)
〈proof 〉
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lemma Rep-scalar-mult[simp]: Rep-matrix (scalar-mult y a) j i = y ∗ (Rep-matrix
a j i)
〈proof 〉

lemma scalar-mult-singleton[simp]: scalar-mult y (singleton-matrix j i x) = sin-
gleton-matrix j i (y ∗ x)
〈proof 〉

lemma Rep-minus[simp]: Rep-matrix (−(A::-::group-add)) x y = − (Rep-matrix
A x y)
〈proof 〉

lemma Rep-abs[simp]: Rep-matrix |A::-::lattice-ab-group-add| x y = |Rep-matrix
A x y|
〈proof 〉

end

theory SparseMatrix
imports Matrix

begin

type-synonym ′a spvec = (nat ∗ ′a) list
type-synonym ′a spmat = ′a spvec spvec

definition sparse-row-vector :: ( ′a::ab-group-add) spvec ⇒ ′a matrix
where sparse-row-vector arr = foldl (% m x. m + (singleton-matrix 0 (fst x)

(snd x))) 0 arr

definition sparse-row-matrix :: ( ′a::ab-group-add) spmat ⇒ ′a matrix
where sparse-row-matrix arr = foldl (% m r . m + (move-matrix (sparse-row-vector

(snd r)) (int (fst r)) 0 )) 0 arr

code-datatype sparse-row-vector sparse-row-matrix

lemma sparse-row-vector-empty [simp]: sparse-row-vector [] = 0
〈proof 〉

lemma sparse-row-matrix-empty [simp]: sparse-row-matrix [] = 0
〈proof 〉

lemma [code]:
‹0 = sparse-row-vector []›
〈proof 〉

lemma foldl-distrstart: ∀ a x y. (f (g x y) a = g x (f y a)) =⇒ (foldl f (g x y) l =
g x (foldl f y l))
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〈proof 〉

lemma sparse-row-vector-cons[simp]:
sparse-row-vector (a # arr) = (singleton-matrix 0 (fst a) (snd a)) + (sparse-row-vector

arr)
〈proof 〉

lemma sparse-row-vector-append[simp]:
sparse-row-vector (a @ b) = (sparse-row-vector a) + (sparse-row-vector b)
〈proof 〉

lemma nrows-spvec[simp]: nrows (sparse-row-vector x) ≤ (Suc 0 )
〈proof 〉

lemma sparse-row-matrix-cons: sparse-row-matrix (a#arr) = ((move-matrix (sparse-row-vector
(snd a)) (int (fst a)) 0 )) + sparse-row-matrix arr
〈proof 〉

lemma sparse-row-matrix-append: sparse-row-matrix (arr@brr) = (sparse-row-matrix
arr) + (sparse-row-matrix brr)
〈proof 〉

fun sorted-spvec :: ′a spvec ⇒ bool
where

sorted-spvec [] = True
| sorted-spvec-step1 : sorted-spvec [a] = True
| sorted-spvec-step: sorted-spvec ((m,x)#(n,y)#bs) = ((m < n) ∧ (sorted-spvec
((n,y)#bs)))

primrec sorted-spmat :: ′a spmat ⇒ bool
where

sorted-spmat [] = True
| sorted-spmat (a#as) = ((sorted-spvec (snd a)) ∧ (sorted-spmat as))

declare sorted-spvec.simps [simp del]

lemma sorted-spvec-empty[simp]: sorted-spvec [] = True
〈proof 〉

lemma sorted-spvec-cons1 : sorted-spvec (a#as) =⇒ sorted-spvec as
〈proof 〉

lemma sorted-spvec-cons2 : sorted-spvec (a#b#t) =⇒ sorted-spvec (a#t)
〈proof 〉

lemma sorted-spvec-cons3 : sorted-spvec(a#b#t) =⇒ fst a < fst b
〈proof 〉

lemma sorted-sparse-row-vector-zero:

23



assumes m ≤ n
shows sorted-spvec ((n,a)#arr) =⇒ Rep-matrix (sparse-row-vector arr) j m =

0
〈proof 〉

lemma sorted-sparse-row-matrix-zero[rule-format]:
assumes m ≤ n
shows sorted-spvec ((n,a)#arr) =⇒ Rep-matrix (sparse-row-matrix arr) m j =

0
〈proof 〉

primrec minus-spvec :: ( ′a::ab-group-add) spvec ⇒ ′a spvec
where

minus-spvec [] = []
| minus-spvec (a#as) = (fst a, −(snd a))#(minus-spvec as)

primrec abs-spvec :: ( ′a::lattice-ab-group-add-abs) spvec ⇒ ′a spvec
where

abs-spvec [] = []
| abs-spvec (a#as) = (fst a, |snd a|)#(abs-spvec as)

lemma sparse-row-vector-minus:
sparse-row-vector (minus-spvec v) = − (sparse-row-vector v)
〈proof 〉

lemma sparse-row-vector-abs:
sorted-spvec (v :: ′a::lattice-ring spvec) =⇒ sparse-row-vector (abs-spvec v) =
|sparse-row-vector v|
〈proof 〉

lemma sorted-spvec-minus-spvec:
sorted-spvec v =⇒ sorted-spvec (minus-spvec v)
〈proof 〉

lemma sorted-spvec-abs-spvec:
sorted-spvec v =⇒ sorted-spvec (abs-spvec v)
〈proof 〉

definition smult-spvec y = map (% a. (fst a, y ∗ snd a))

lemma smult-spvec-empty[simp]: smult-spvec y [] = []
〈proof 〉

lemma smult-spvec-cons: smult-spvec y (a#arr) = (fst a, y ∗ (snd a)) # (smult-spvec
y arr)
〈proof 〉

fun addmult-spvec :: ( ′a::ring) ⇒ ′a spvec ⇒ ′a spvec ⇒ ′a spvec
where
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addmult-spvec y arr [] = arr
| addmult-spvec y [] brr = smult-spvec y brr
| addmult-spvec y ((i,a)#arr) ((j,b)#brr) = (

if i < j then ((i,a)#(addmult-spvec y arr ((j,b)#brr)))
else (if (j < i) then ((j, y ∗ b)#(addmult-spvec y ((i,a)#arr) brr))
else ((i, a + y∗b)#(addmult-spvec y arr brr))))

lemma addmult-spvec-empty1 [simp]: addmult-spvec y [] a = smult-spvec y a
〈proof 〉

lemma addmult-spvec-empty2 [simp]: addmult-spvec y a [] = a
〈proof 〉

lemma sparse-row-vector-map: (∀ x y. f (x+y) = (f x) + (f y)) =⇒ (f :: ′a⇒( ′a::lattice-ring))
0 = 0 =⇒
sparse-row-vector (map (% x. (fst x, f (snd x))) a) = apply-matrix f (sparse-row-vector

a)
〈proof 〉

lemma sparse-row-vector-smult: sparse-row-vector (smult-spvec y a) = scalar-mult
y (sparse-row-vector a)
〈proof 〉

lemma sparse-row-vector-addmult-spvec: sparse-row-vector (addmult-spvec (y:: ′a::lattice-ring)
a b) =
(sparse-row-vector a) + (scalar-mult y (sparse-row-vector b))
〈proof 〉

lemma sorted-smult-spvec: sorted-spvec a =⇒ sorted-spvec (smult-spvec y a)
〈proof 〉

lemma sorted-spvec-addmult-spvec-helper : [[sorted-spvec (addmult-spvec y ((a, b)
# arr) brr); aa < a; sorted-spvec ((a, b) # arr);

sorted-spvec ((aa, ba) # brr)]] =⇒ sorted-spvec ((aa, y ∗ ba) # addmult-spvec y
((a, b) # arr) brr)
〈proof 〉

lemma sorted-spvec-addmult-spvec-helper2 :
[[sorted-spvec (addmult-spvec y arr ((aa, ba) # brr)); a < aa; sorted-spvec ((a, b)
# arr); sorted-spvec ((aa, ba) # brr)]]

=⇒ sorted-spvec ((a, b) # addmult-spvec y arr ((aa, ba) # brr))
〈proof 〉

lemma sorted-spvec-addmult-spvec-helper3 [rule-format]:
sorted-spvec (addmult-spvec y arr brr) =⇒
sorted-spvec ((aa, b) # arr) =⇒

sorted-spvec ((aa, ba) # brr) =⇒
sorted-spvec ((aa, b + y ∗ ba) # (addmult-spvec y arr brr))
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〈proof 〉

lemma sorted-addmult-spvec: sorted-spvec a =⇒ sorted-spvec b =⇒ sorted-spvec
(addmult-spvec y a b)
〈proof 〉

fun mult-spvec-spmat :: ( ′a::lattice-ring) spvec ⇒ ′a spvec ⇒ ′a spmat ⇒ ′a spvec
where

mult-spvec-spmat c [] brr = c
| mult-spvec-spmat c arr [] = c
| mult-spvec-spmat c ((i,a)#arr) ((j,b)#brr) = (

if (i < j) then mult-spvec-spmat c arr ((j,b)#brr)
else if (j < i) then mult-spvec-spmat c ((i,a)#arr) brr
else mult-spvec-spmat (addmult-spvec a c b) arr brr)

lemma sparse-row-mult-spvec-spmat:
assumes sorted-spvec (a::( ′a::lattice-ring) spvec) sorted-spvec B
shows sparse-row-vector (mult-spvec-spmat c a B) = (sparse-row-vector c) +

(sparse-row-vector a) ∗ (sparse-row-matrix B)
〈proof 〉

lemma sorted-mult-spvec-spmat:
sorted-spvec (c::( ′a::lattice-ring) spvec) =⇒ sorted-spmat B =⇒ sorted-spvec (mult-spvec-spmat

c a B)
〈proof 〉

primrec mult-spmat :: ( ′a::lattice-ring) spmat ⇒ ′a spmat ⇒ ′a spmat
where

mult-spmat [] A = []
| mult-spmat (a#as) A = (fst a, mult-spvec-spmat [] (snd a) A)#(mult-spmat as
A)

lemma sparse-row-mult-spmat:
sorted-spmat A =⇒ sorted-spvec B =⇒
sparse-row-matrix (mult-spmat A B) = (sparse-row-matrix A) ∗ (sparse-row-matrix

B)
〈proof 〉

lemma sorted-spvec-mult-spmat:
fixes A :: ( ′a::lattice-ring) spmat
shows sorted-spvec A =⇒ sorted-spvec (mult-spmat A B)
〈proof 〉

lemma sorted-spmat-mult-spmat:
sorted-spmat (B::( ′a::lattice-ring) spmat) =⇒ sorted-spmat (mult-spmat A B)
〈proof 〉

fun add-spvec :: ( ′a::lattice-ab-group-add) spvec ⇒ ′a spvec ⇒ ′a spvec
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where

add-spvec arr [] = arr
| add-spvec [] brr = brr
| add-spvec ((i,a)#arr) ((j,b)#brr) = (

if i < j then (i,a)#(add-spvec arr ((j,b)#brr))
else if (j < i) then (j,b) # add-spvec ((i,a)#arr) brr
else (i, a+b) # add-spvec arr brr)

lemma add-spvec-empty1 [simp]: add-spvec [] a = a
〈proof 〉

lemma sparse-row-vector-add: sparse-row-vector (add-spvec a b) = (sparse-row-vector
a) + (sparse-row-vector b)
〈proof 〉

fun add-spmat :: ( ′a::lattice-ab-group-add) spmat ⇒ ′a spmat ⇒ ′a spmat
where

add-spmat [] bs = bs
| add-spmat as [] = as
| add-spmat ((i,a)#as) ((j,b)#bs) = (

if i < j then
(i,a) # add-spmat as ((j,b)#bs)

else if j < i then
(j,b) # add-spmat ((i,a)#as) bs

else
(i, add-spvec a b) # add-spmat as bs)

lemma add-spmat-Nil2 [simp]: add-spmat as [] = as
〈proof 〉

lemma sparse-row-add-spmat: sparse-row-matrix (add-spmat A B) = (sparse-row-matrix
A) + (sparse-row-matrix B)
〈proof 〉

lemma [code]:
‹sparse-row-matrix A + sparse-row-matrix B = sparse-row-matrix (add-spmat A

B)›
‹sparse-row-vector a + sparse-row-vector b = sparse-row-vector (add-spvec a b)›
〈proof 〉

lemma sorted-add-spvec-helper1 [rule-format]: add-spvec ((a,b)#arr) brr = (ab,
bb) # list −→ (ab = a | (brr 6= [] & ab = fst (hd brr)))
〈proof 〉

lemma sorted-add-spmat-helper1 [rule-format]:
add-spmat ((a,b)#arr) brr = (ab, bb) # list =⇒ (ab = a | (brr 6= [] & ab = fst

(hd brr)))

27



〈proof 〉

lemma sorted-add-spvec-helper : add-spvec arr brr = (ab, bb) # list =⇒ ((arr 6=
[] & ab = fst (hd arr)) | (brr 6= [] & ab = fst (hd brr)))
〈proof 〉

lemma sorted-add-spmat-helper : add-spmat arr brr = (ab, bb) # list =⇒ ((arr 6=
[] & ab = fst (hd arr)) | (brr 6= [] & ab = fst (hd brr)))
〈proof 〉

lemma add-spvec-commute: add-spvec a b = add-spvec b a
〈proof 〉

lemma add-spmat-commute: add-spmat a b = add-spmat b a
〈proof 〉

lemma sorted-add-spvec-helper2 : add-spvec ((a,b)#arr) brr = (ab, bb) # list =⇒
aa < a =⇒ sorted-spvec ((aa, ba) # brr) =⇒ aa < ab
〈proof 〉

lemma sorted-add-spmat-helper2 : add-spmat ((a,b)#arr) brr = (ab, bb) # list =⇒
aa < a =⇒ sorted-spvec ((aa, ba) # brr) =⇒ aa < ab
〈proof 〉

lemma sorted-spvec-add-spvec: sorted-spvec a =⇒ sorted-spvec b =⇒ sorted-spvec
(add-spvec a b)
〈proof 〉

lemma sorted-spvec-add-spmat:
sorted-spvec A =⇒ sorted-spvec B =⇒ sorted-spvec (add-spmat A B)
〈proof 〉

lemma sorted-spmat-add-spmat[rule-format]: sorted-spmat A =⇒ sorted-spmat B
=⇒ sorted-spmat (add-spmat A B)
〈proof 〉

fun le-spvec :: ( ′a::lattice-ab-group-add) spvec ⇒ ′a spvec ⇒ bool
where

le-spvec [] [] = True
| le-spvec ((-,a)#as) [] = (a ≤ 0 & le-spvec as [])
| le-spvec [] ((-,b)#bs) = (0 ≤ b & le-spvec [] bs)
| le-spvec ((i,a)#as) ((j,b)#bs) = (

if (i < j) then a ≤ 0 & le-spvec as ((j,b)#bs)
else if (j < i) then 0 ≤ b & le-spvec ((i,a)#as) bs
else a ≤ b & le-spvec as bs)

fun le-spmat :: ( ′a::lattice-ab-group-add) spmat ⇒ ′a spmat ⇒ bool
where
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le-spmat [] [] = True
| le-spmat ((i,a)#as) [] = (le-spvec a [] & le-spmat as [])
| le-spmat [] ((j,b)#bs) = (le-spvec [] b & le-spmat [] bs)
| le-spmat ((i,a)#as) ((j,b)#bs) = (

if i < j then (le-spvec a [] & le-spmat as ((j,b)#bs))
else if j < i then (le-spvec [] b & le-spmat ((i,a)#as) bs)
else (le-spvec a b & le-spmat as bs))

definition disj-matrices :: ( ′a::zero) matrix ⇒ ′a matrix ⇒ bool where
disj-matrices A B ←→
(∀ j i. (Rep-matrix A j i 6= 0 ) −→ (Rep-matrix B j i = 0 )) & (∀ j i. (Rep-matrix

B j i 6= 0 ) −→ (Rep-matrix A j i = 0 ))

lemma disj-matrices-contr1 : disj-matrices A B =⇒ Rep-matrix A j i 6= 0 =⇒
Rep-matrix B j i = 0
〈proof 〉

lemma disj-matrices-contr2 : disj-matrices A B =⇒ Rep-matrix B j i 6= 0 =⇒
Rep-matrix A j i = 0
〈proof 〉

lemma disj-matrices-add:
fixes A :: ( ′a::lattice-ab-group-add) matrix
shows disj-matrices A B =⇒ disj-matrices C D =⇒ disj-matrices A D

=⇒ disj-matrices B C =⇒ (A + B ≤ C + D) = (A ≤ C ∧ B ≤ D)
〈proof 〉

lemma disj-matrices-zero1 [simp]: disj-matrices 0 B
〈proof 〉

lemma disj-matrices-zero2 [simp]: disj-matrices A 0
〈proof 〉

lemma disj-matrices-commute: disj-matrices A B = disj-matrices B A
〈proof 〉

lemma disj-matrices-add-le-zero: disj-matrices A B =⇒
(A + B ≤ 0 ) = (A ≤ 0 & (B::( ′a::lattice-ab-group-add) matrix) ≤ 0 )
〈proof 〉

lemma disj-matrices-add-zero-le: disj-matrices A B =⇒
(0 ≤ A + B) = (0 ≤ A & 0 ≤ (B::( ′a::lattice-ab-group-add) matrix))
〈proof 〉

lemma disj-matrices-add-x-le: disj-matrices A B =⇒ disj-matrices B C =⇒
(A ≤ B + C ) = (A ≤ C & 0 ≤ (B::( ′a::lattice-ab-group-add) matrix))
〈proof 〉
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lemma disj-matrices-add-le-x: disj-matrices A B =⇒ disj-matrices B C =⇒
(B + A ≤ C ) = (A ≤ C & (B::( ′a::lattice-ab-group-add) matrix) ≤ 0 )
〈proof 〉

lemma disj-sparse-row-singleton: i ≤ j =⇒ sorted-spvec((j,y)#v) =⇒ disj-matrices
(sparse-row-vector v) (singleton-matrix 0 i x)
〈proof 〉

lemma disj-matrices-x-add: disj-matrices A B =⇒ disj-matrices A C =⇒ disj-matrices
(A::( ′a::lattice-ab-group-add) matrix) (B+C )
〈proof 〉

lemma disj-matrices-add-x: disj-matrices A B =⇒ disj-matrices A C =⇒ disj-matrices
(B+C ) (A::( ′a::lattice-ab-group-add) matrix)
〈proof 〉

lemma disj-singleton-matrices[simp]: disj-matrices (singleton-matrix j i x) (singleton-matrix
u v y) = (j 6= u | i 6= v | x = 0 | y = 0 )
〈proof 〉

lemma disj-move-sparse-vec-mat:
assumes j ≤ a and sorted-spvec ((a, c) # as)
shows disj-matrices (sparse-row-matrix as) (move-matrix (sparse-row-vector b)

(int j) i)
〈proof 〉

lemma disj-move-sparse-row-vector-twice:
j 6= u =⇒ disj-matrices (move-matrix (sparse-row-vector a) j i) (move-matrix

(sparse-row-vector b) u v)
〈proof 〉

lemma le-spvec-iff-sparse-row-le:
sorted-spvec a =⇒ sorted-spvec b =⇒ (le-spvec a b) ←→ (sparse-row-vector a ≤

sparse-row-vector b)
〈proof 〉

lemma le-spvec-empty2-sparse-row:
sorted-spvec b =⇒ le-spvec b [] = (sparse-row-vector b ≤ 0 )
〈proof 〉

lemma le-spvec-empty1-sparse-row:
(sorted-spvec b) =⇒ (le-spvec [] b = (0 ≤ sparse-row-vector b))
〈proof 〉

lemma le-spmat-iff-sparse-row-le:
[[sorted-spvec A; sorted-spmat A; sorted-spvec B; sorted-spmat B]] =⇒
le-spmat A B = (sparse-row-matrix A ≤ sparse-row-matrix B)
〈proof 〉
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primrec abs-spmat :: ( ′a::lattice-ring) spmat ⇒ ′a spmat
where

abs-spmat [] = []
| abs-spmat (a#as) = (fst a, abs-spvec (snd a))#(abs-spmat as)

primrec minus-spmat :: ( ′a::lattice-ring) spmat ⇒ ′a spmat
where

minus-spmat [] = []
| minus-spmat (a#as) = (fst a, minus-spvec (snd a))#(minus-spmat as)

lemma sparse-row-matrix-minus:
sparse-row-matrix (minus-spmat A) = − (sparse-row-matrix A)
〈proof 〉

lemma Rep-sparse-row-vector-zero:
assumes x 6= 0

shows Rep-matrix (sparse-row-vector v) x y = 0
〈proof 〉

lemma sparse-row-matrix-abs:
sorted-spvec A =⇒ sorted-spmat A =⇒ sparse-row-matrix (abs-spmat A) = |sparse-row-matrix

A|
〈proof 〉

lemma sorted-spvec-minus-spmat: sorted-spvec A =⇒ sorted-spvec (minus-spmat
A)
〈proof 〉

lemma sorted-spvec-abs-spmat: sorted-spvec A =⇒ sorted-spvec (abs-spmat A)
〈proof 〉

lemma sorted-spmat-minus-spmat: sorted-spmat A =⇒ sorted-spmat (minus-spmat
A)
〈proof 〉

lemma sorted-spmat-abs-spmat: sorted-spmat A =⇒ sorted-spmat (abs-spmat A)
〈proof 〉

definition diff-spmat :: ( ′a::lattice-ring) spmat ⇒ ′a spmat ⇒ ′a spmat
where diff-spmat A B = add-spmat A (minus-spmat B)

lemma sorted-spmat-diff-spmat: sorted-spmat A =⇒ sorted-spmat B =⇒ sorted-spmat
(diff-spmat A B)
〈proof 〉

lemma sorted-spvec-diff-spmat: sorted-spvec A =⇒ sorted-spvec B =⇒ sorted-spvec
(diff-spmat A B)
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〈proof 〉

lemma sparse-row-diff-spmat: sparse-row-matrix (diff-spmat A B ) = (sparse-row-matrix
A) − (sparse-row-matrix B)
〈proof 〉

definition sorted-sparse-matrix :: ′a spmat ⇒ bool
where sorted-sparse-matrix A ←→ sorted-spvec A & sorted-spmat A

lemma sorted-sparse-matrix-imp-spvec: sorted-sparse-matrix A =⇒ sorted-spvec A
〈proof 〉

lemma sorted-sparse-matrix-imp-spmat: sorted-sparse-matrix A =⇒ sorted-spmat
A
〈proof 〉

lemmas sorted-sp-simps =
sorted-spvec.simps
sorted-spmat.simps
sorted-sparse-matrix-def

lemma bool1 : (¬ True) = False 〈proof 〉
lemma bool2 : (¬ False) = True 〈proof 〉
lemma bool3 : ((P::bool) ∧ True) = P 〈proof 〉
lemma bool4 : (True ∧ (P::bool)) = P 〈proof 〉
lemma bool5 : ((P::bool) ∧ False) = False 〈proof 〉
lemma bool6 : (False ∧ (P::bool)) = False 〈proof 〉
lemma bool7 : ((P::bool) ∨ True) = True 〈proof 〉
lemma bool8 : (True ∨ (P::bool)) = True 〈proof 〉
lemma bool9 : ((P::bool) ∨ False) = P 〈proof 〉
lemma bool10 : (False ∨ (P::bool)) = P 〈proof 〉
lemmas boolarith = bool1 bool2 bool3 bool4 bool5 bool6 bool7 bool8 bool9 bool10

lemma if-case-eq: (if b then x else y) = (case b of True => x | False => y) 〈proof 〉

primrec pprt-spvec :: ( ′a::{lattice-ab-group-add}) spvec ⇒ ′a spvec
where

pprt-spvec [] = []
| pprt-spvec (a#as) = (fst a, pprt (snd a)) # (pprt-spvec as)

primrec nprt-spvec :: ( ′a::{lattice-ab-group-add}) spvec ⇒ ′a spvec
where

nprt-spvec [] = []
| nprt-spvec (a#as) = (fst a, nprt (snd a)) # (nprt-spvec as)

primrec pprt-spmat :: ( ′a::{lattice-ab-group-add}) spmat ⇒ ′a spmat
where

pprt-spmat [] = []
| pprt-spmat (a#as) = (fst a, pprt-spvec (snd a))#(pprt-spmat as)
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primrec nprt-spmat :: ( ′a::{lattice-ab-group-add}) spmat ⇒ ′a spmat
where

nprt-spmat [] = []
| nprt-spmat (a#as) = (fst a, nprt-spvec (snd a))#(nprt-spmat as)

lemma pprt-add: disj-matrices A (B::(-::lattice-ring) matrix) =⇒ pprt (A+B) =
pprt A + pprt B
〈proof 〉

lemma nprt-add: disj-matrices A (B::(-::lattice-ring) matrix) =⇒ nprt (A+B) =
nprt A + nprt B
〈proof 〉

lemma pprt-singleton[simp]:
fixes x:: -::lattice-ring
shows pprt (singleton-matrix j i x) = singleton-matrix j i (pprt x)
〈proof 〉

lemma nprt-singleton[simp]:
fixes x:: -::lattice-ring
shows nprt (singleton-matrix j i x) = singleton-matrix j i (nprt x)
〈proof 〉

lemma sparse-row-vector-pprt:
fixes v:: -::lattice-ring spvec
shows sorted-spvec v =⇒ sparse-row-vector (pprt-spvec v) = pprt (sparse-row-vector

v)
〈proof 〉

lemma sparse-row-vector-nprt:
fixes v:: -::lattice-ring spvec
shows sorted-spvec v =⇒ sparse-row-vector (nprt-spvec v) = nprt (sparse-row-vector

v)
〈proof 〉

lemma pprt-move-matrix: pprt (move-matrix (A::( ′a::lattice-ring) matrix) j i) =
move-matrix (pprt A) j i
〈proof 〉

lemma nprt-move-matrix: nprt (move-matrix (A::( ′a::lattice-ring) matrix) j i) =
move-matrix (nprt A) j i
〈proof 〉

lemma sparse-row-matrix-pprt:
fixes m:: ′a::lattice-ring spmat
shows sorted-spvec m =⇒ sorted-spmat m =⇒ sparse-row-matrix (pprt-spmat
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m) = pprt (sparse-row-matrix m)
〈proof 〉

lemma sparse-row-matrix-nprt:
fixes m:: ′a::lattice-ring spmat
shows sorted-spvec m =⇒ sorted-spmat m =⇒ sorted-spmat m =⇒ sparse-row-matrix

(nprt-spmat m) = nprt (sparse-row-matrix m)
〈proof 〉

lemma sorted-pprt-spvec: sorted-spvec v =⇒ sorted-spvec (pprt-spvec v)
〈proof 〉

lemma sorted-nprt-spvec: sorted-spvec v =⇒ sorted-spvec (nprt-spvec v)
〈proof 〉

lemma sorted-spvec-pprt-spmat: sorted-spvec m =⇒ sorted-spvec (pprt-spmat m)
〈proof 〉

lemma sorted-spvec-nprt-spmat: sorted-spvec m =⇒ sorted-spvec (nprt-spmat m)
〈proof 〉

lemma sorted-spmat-pprt-spmat: sorted-spmat m =⇒ sorted-spmat (pprt-spmat
m)
〈proof 〉

lemma sorted-spmat-nprt-spmat: sorted-spmat m =⇒ sorted-spmat (nprt-spmat
m)
〈proof 〉

definition mult-est-spmat :: ( ′a::lattice-ring) spmat ⇒ ′a spmat ⇒ ′a spmat ⇒ ′a
spmat ⇒ ′a spmat where

mult-est-spmat r1 r2 s1 s2 =
add-spmat (mult-spmat (pprt-spmat s2 ) (pprt-spmat r2 )) (add-spmat (mult-spmat

(pprt-spmat s1 ) (nprt-spmat r2 ))
(add-spmat (mult-spmat (nprt-spmat s2 ) (pprt-spmat r1 )) (mult-spmat (nprt-spmat

s1 ) (nprt-spmat r1 ))))

lemmas sparse-row-matrix-op-simps =
sorted-sparse-matrix-imp-spmat sorted-sparse-matrix-imp-spvec
sparse-row-add-spmat sorted-spvec-add-spmat sorted-spmat-add-spmat
sparse-row-diff-spmat sorted-spvec-diff-spmat sorted-spmat-diff-spmat
sparse-row-matrix-minus sorted-spvec-minus-spmat sorted-spmat-minus-spmat
sparse-row-mult-spmat sorted-spvec-mult-spmat sorted-spmat-mult-spmat
sparse-row-matrix-abs sorted-spvec-abs-spmat sorted-spmat-abs-spmat
le-spmat-iff-sparse-row-le
sparse-row-matrix-pprt sorted-spvec-pprt-spmat sorted-spmat-pprt-spmat
sparse-row-matrix-nprt sorted-spvec-nprt-spmat sorted-spmat-nprt-spmat

lemmas sparse-row-matrix-arith-simps =
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mult-spmat.simps mult-spvec-spmat.simps
addmult-spvec.simps
smult-spvec-empty smult-spvec-cons
add-spmat.simps add-spvec.simps
minus-spmat.simps minus-spvec.simps
abs-spmat.simps abs-spvec.simps
diff-spmat-def
le-spmat.simps le-spvec.simps
pprt-spmat.simps pprt-spvec.simps
nprt-spmat.simps nprt-spvec.simps
mult-est-spmat-def

end

theory LP
imports Main HOL−Library.Lattice-Algebras
begin

lemma le-add-right-mono:
assumes
a <= b + (c:: ′a::ordered-ab-group-add)
c <= d
shows a <= b + d
〈proof 〉

lemma linprog-dual-estimate:
assumes
A ∗ x ≤ (b:: ′a::lattice-ring)
0 ≤ y
|A − A ′| ≤ δ-A
b ≤ b ′

|c − c ′| ≤ δ-c
|x| ≤ r
shows
c ∗ x ≤ y ∗ b ′ + (y ∗ δ-A + |y ∗ A ′ − c ′| + δ-c) ∗ r
〈proof 〉

lemma le-ge-imp-abs-diff-1 :
assumes
A1 <= (A:: ′a::lattice-ring)
A <= A2
shows |A−A1 | <= A2−A1
〈proof 〉

lemma mult-le-prts:
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assumes
a1 <= (a:: ′a::lattice-ring)
a <= a2
b1 <= b
b <= b2
shows
a ∗ b <= pprt a2 ∗ pprt b2 + pprt a1 ∗ nprt b2 + nprt a2 ∗ pprt b1 + nprt a1
∗ nprt b1
〈proof 〉

lemma mult-le-dual-prts:
assumes
A ∗ x ≤ (b:: ′a::lattice-ring)
0 ≤ y
A1 ≤ A
A ≤ A2
c1 ≤ c
c ≤ c2
r1 ≤ x
x ≤ r2
shows
c ∗ x ≤ y ∗ b + (let s1 = c1 − y ∗ A2 ; s2 = c2 − y ∗ A1 in pprt s2 ∗ pprt r2

+ pprt s1 ∗ nprt r2 + nprt s2 ∗ pprt r1 + nprt s1 ∗ nprt r1 )
(is - <= - + ?C )
〈proof 〉

end

1 Floating Point Representation of the Reals
theory ComputeFloat
imports Complex-Main HOL−Library.Lattice-Algebras
begin

〈ML〉

definition int-of-real :: real ⇒ int
where int-of-real x = (SOME y. real-of-int y = x)

definition real-is-int :: real ⇒ bool
where real-is-int x = (∃ (u::int). x = real-of-int u)

lemma real-is-int-def2 : real-is-int x = (x = real-of-int (int-of-real x))
〈proof 〉

lemma real-is-int-real[simp]: real-is-int (real-of-int (x::int))
〈proof 〉
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lemma int-of-real-real[simp]: int-of-real (real-of-int x) = x
〈proof 〉

lemma real-int-of-real[simp]: real-is-int x =⇒ real-of-int (int-of-real x) = x
〈proof 〉

lemma real-is-int-add-int-of-real: real-is-int a =⇒ real-is-int b =⇒ (int-of-real
(a+b)) = (int-of-real a) + (int-of-real b)
〈proof 〉

lemma real-is-int-add[simp]: real-is-int a =⇒ real-is-int b =⇒ real-is-int (a+b)
〈proof 〉

lemma int-of-real-sub: real-is-int a =⇒ real-is-int b =⇒ (int-of-real (a−b)) =
(int-of-real a) − (int-of-real b)
〈proof 〉

lemma real-is-int-sub[simp]: real-is-int a =⇒ real-is-int b =⇒ real-is-int (a−b)
〈proof 〉

lemma real-is-int-rep: real-is-int x =⇒ ∃ !(a::int). real-of-int a = x
〈proof 〉

lemma int-of-real-mult:
assumes real-is-int a real-is-int b
shows (int-of-real (a∗b)) = (int-of-real a) ∗ (int-of-real b)
〈proof 〉

lemma real-is-int-mult[simp]: real-is-int a =⇒ real-is-int b =⇒ real-is-int (a∗b)
〈proof 〉

lemma real-is-int-0 [simp]: real-is-int (0 ::real)
〈proof 〉

lemma real-is-int-1 [simp]: real-is-int (1 ::real)
〈proof 〉

lemma real-is-int-n1 : real-is-int (−1 ::real)
〈proof 〉

lemma real-is-int-numeral[simp]: real-is-int (numeral x)
〈proof 〉

lemma real-is-int-neg-numeral[simp]: real-is-int (− numeral x)
〈proof 〉

lemma int-of-real-0 [simp]: int-of-real (0 ::real) = (0 ::int)
〈proof 〉
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lemma int-of-real-1 [simp]: int-of-real (1 ::real) = (1 ::int)
〈proof 〉

lemma int-of-real-numeral[simp]: int-of-real (numeral b) = numeral b
〈proof 〉

lemma int-of-real-neg-numeral[simp]: int-of-real (− numeral b) = − numeral b
〈proof 〉

lemma int-div-zdiv: int (a div b) = (int a) div (int b)
〈proof 〉

lemma int-mod-zmod: int (a mod b) = (int a) mod (int b)
〈proof 〉

lemma abs-div-2-less: a 6= 0 =⇒ a 6= −1 =⇒ |(a::int) div 2 | < |a|
〈proof 〉

lemma norm-0-1 : (1 ::-::numeral) = Numeral1
〈proof 〉

lemma add-left-zero: 0 + a = (a:: ′a::comm-monoid-add)
〈proof 〉

lemma add-right-zero: a + 0 = (a:: ′a::comm-monoid-add)
〈proof 〉

lemma mult-left-one: 1 ∗ a = (a:: ′a::semiring-1 )
〈proof 〉

lemma mult-right-one: a ∗ 1 = (a:: ′a::semiring-1 )
〈proof 〉

lemma int-pow-0 : (a::int)^0 = 1
〈proof 〉

lemma int-pow-1 : (a::int)^(Numeral1 ) = a
〈proof 〉

lemma one-eq-Numeral1-nring: (1 :: ′a::numeral) = Numeral1
〈proof 〉

lemma one-eq-Numeral1-nat: (1 ::nat) = Numeral1
〈proof 〉

lemma zpower-Pls: (z::int)^0 = Numeral1
〈proof 〉
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lemma fst-cong: a=a ′ =⇒ fst (a,b) = fst (a ′,b)
〈proof 〉

lemma snd-cong: b=b ′ =⇒ snd (a,b) = snd (a,b ′)
〈proof 〉

lemma lift-bool: x =⇒ x=True
〈proof 〉

lemma nlift-bool: ∼x =⇒ x=False
〈proof 〉

lemma not-false-eq-true: (∼ False) = True 〈proof 〉

lemma not-true-eq-false: (∼ True) = False 〈proof 〉

lemmas powerarith = nat-numeral power-numeral-even
power-numeral-odd zpower-Pls

definition float :: (int × int) ⇒ real where
float = (λ(a, b). real-of-int a ∗ 2 powr real-of-int b)

lemma float-add-l0 : float (0 , e) + x = x
〈proof 〉

lemma float-add-r0 : x + float (0 , e) = x
〈proof 〉

lemma float-add:
float (a1 , e1 ) + float (a2 , e2 ) =
(if e1<=e2 then float (a1+a2∗2^(nat(e2−e1 )), e1 ) else float (a1∗2^(nat (e1−e2 ))+a2 ,

e2 ))
〈proof 〉

lemma float-mult-l0 : float (0 , e) ∗ x = float (0 , 0 )
〈proof 〉

lemma float-mult-r0 : x ∗ float (0 , e) = float (0 , 0 )
〈proof 〉

lemma float-mult:
float (a1 , e1 ) ∗ float (a2 , e2 ) = (float (a1 ∗ a2 , e1 + e2 ))
〈proof 〉

lemma float-minus:
− (float (a,b)) = float (−a, b)
〈proof 〉

lemma zero-le-float:
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(0 <= float (a,b)) = (0 <= a)
〈proof 〉

lemma float-le-zero:
(float (a,b) <= 0 ) = (a <= 0 )
〈proof 〉

lemma float-abs:
|float (a,b)| = (if 0 <= a then (float (a,b)) else (float (−a,b)))
〈proof 〉

lemma float-zero:
float (0 , b) = 0
〈proof 〉

lemma float-pprt:
pprt (float (a, b)) = (if 0 <= a then (float (a,b)) else (float (0 , b)))
〈proof 〉

lemma float-nprt:
nprt (float (a, b)) = (if 0 <= a then (float (0 ,b)) else (float (a, b)))
〈proof 〉

definition lbound :: real ⇒ real
where lbound x = min 0 x

definition ubound :: real ⇒ real
where ubound x = max 0 x

lemma lbound: lbound x ≤ x
〈proof 〉

lemma ubound: x ≤ ubound x
〈proof 〉

lemma pprt-lbound: pprt (lbound x) = float (0 , 0 )
〈proof 〉

lemma nprt-ubound: nprt (ubound x) = float (0 , 0 )
〈proof 〉

lemmas floatarith[simplified norm-0-1 ] = float-add float-add-l0 float-add-r0 float-mult
float-mult-l0 float-mult-r0

float-minus float-abs zero-le-float float-pprt float-nprt pprt-lbound nprt-ubound

lemmas arith = arith-simps rel-simps diff-nat-numeral nat-0
nat-neg-numeral powerarith floatarith not-false-eq-true not-true-eq-false
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〈ML〉

end

theory Compute-Oracle imports HOL.HOL
begin

〈ML〉

end
theory ComputeHOL
imports Complex-Main Compute-Oracle/Compute-Oracle
begin

lemma Trueprop-eq-eq: Trueprop X == (X == True) 〈proof 〉
lemma meta-eq-trivial: x == y =⇒ x == y 〈proof 〉
lemma meta-eq-imp-eq: x == y =⇒ x = y 〈proof 〉
lemma eq-trivial: x = y =⇒ x = y 〈proof 〉
lemma bool-to-true: x :: bool =⇒ x == True 〈proof 〉
lemma transmeta-1 : x = y =⇒ y == z =⇒ x = z 〈proof 〉
lemma transmeta-2 : x == y =⇒ y = z =⇒ x = z 〈proof 〉
lemma transmeta-3 : x == y =⇒ y == z =⇒ x = z 〈proof 〉

lemma If-True: If True = (λ x y. x) 〈proof 〉
lemma If-False: If False = (λ x y. y) 〈proof 〉

lemmas compute-if = If-True If-False

lemma bool1 : (¬ True) = False 〈proof 〉
lemma bool2 : (¬ False) = True 〈proof 〉
lemma bool3 : (P ∧ True) = P 〈proof 〉
lemma bool4 : (True ∧ P) = P 〈proof 〉
lemma bool5 : (P ∧ False) = False 〈proof 〉
lemma bool6 : (False ∧ P) = False 〈proof 〉
lemma bool7 : (P ∨ True) = True 〈proof 〉
lemma bool8 : (True ∨ P) = True 〈proof 〉
lemma bool9 : (P ∨ False) = P 〈proof 〉
lemma bool10 : (False ∨ P) = P 〈proof 〉
lemma bool11 : (True −→ P) = P 〈proof 〉
lemma bool12 : (P −→ True) = True 〈proof 〉
lemma bool13 : (True −→ P) = P 〈proof 〉
lemma bool14 : (P −→ False) = (¬ P) 〈proof 〉
lemma bool15 : (False −→ P) = True 〈proof 〉
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lemma bool16 : (False = False) = True 〈proof 〉
lemma bool17 : (True = True) = True 〈proof 〉
lemma bool18 : (False = True) = False 〈proof 〉
lemma bool19 : (True = False) = False 〈proof 〉

lemmas compute-bool = bool1 bool2 bool3 bool4 bool5 bool6 bool7 bool8 bool9 bool10
bool11 bool12 bool13 bool14 bool15 bool16 bool17 bool18 bool19

lemma compute-fst: fst (x,y) = x 〈proof 〉
lemma compute-snd: snd (x,y) = y 〈proof 〉
lemma compute-pair-eq: ((a, b) = (c, d)) = (a = c ∧ b = d) 〈proof 〉

lemma case-prod-simp: case-prod f (x,y) = f x y 〈proof 〉

lemmas compute-pair = compute-fst compute-snd compute-pair-eq case-prod-simp

lemma compute-the: the (Some x) = x 〈proof 〉
lemma compute-None-Some-eq: (None = Some x) = False 〈proof 〉
lemma compute-Some-None-eq: (Some x = None) = False 〈proof 〉
lemma compute-None-None-eq: (None = None) = True 〈proof 〉
lemma compute-Some-Some-eq: (Some x = Some y) = (x = y) 〈proof 〉

definition case-option-compute :: ′b option ⇒ ′a ⇒ ( ′b ⇒ ′a) ⇒ ′a
where case-option-compute opt a f = case-option a f opt

lemma case-option-compute: case-option = (λ a f opt. case-option-compute opt a
f )
〈proof 〉

lemma case-option-compute-None: case-option-compute None = (λ a f . a)
〈proof 〉

lemma case-option-compute-Some: case-option-compute (Some x) = (λ a f . f x)
〈proof 〉

lemmas compute-case-option = case-option-compute case-option-compute-None case-option-compute-Some

lemmas compute-option = compute-the compute-None-Some-eq compute-Some-None-eq
compute-None-None-eq compute-Some-Some-eq compute-case-option

lemma length-cons:length (x#xs) = 1 + (length xs)
〈proof 〉
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lemma length-nil: length [] = 0
〈proof 〉

lemmas compute-list-length = length-nil length-cons

definition case-list-compute :: ′b list ⇒ ′a ⇒ ( ′b ⇒ ′b list ⇒ ′a) ⇒ ′a
where case-list-compute l a f = case-list a f l

lemma case-list-compute: case-list = (λ (a:: ′a) f (l:: ′b list). case-list-compute l a
f )
〈proof 〉

lemma case-list-compute-empty: case-list-compute ([]:: ′b list) = (λ (a:: ′a) f . a)
〈proof 〉

lemma case-list-compute-cons: case-list-compute (u#v) = (λ (a:: ′a) f . (f (u:: ′b)
v))
〈proof 〉

lemmas compute-case-list = case-list-compute case-list-compute-empty case-list-compute-cons

lemma compute-list-nth: ((x#xs) ! n) = (if n = 0 then x else (xs ! (n − 1 )))
〈proof 〉

lemmas compute-list = compute-case-list compute-list-length compute-list-nth

lemmas compute-let = Let-def

lemmas compute-hol = compute-if compute-bool compute-pair compute-option com-
pute-list compute-let

〈ML〉

end
theory ComputeNumeral
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imports ComputeHOL ComputeFloat
begin

lemmas biteq = eq-num-simps

lemmas bitless = less-num-simps

lemmas bitle = le-num-simps

lemmas bitadd = add-num-simps

lemmas bitmul = mult-num-simps

lemmas bitarith = arith-simps

lemmas natnorm = one-eq-Numeral1-nat

fun natfac :: nat ⇒ nat
where natfac n = (if n = 0 then 1 else n ∗ (natfac (n − 1 )))

lemmas compute-natarith =
arith-simps rel-simps
diff-nat-numeral nat-numeral nat-0 nat-neg-numeral
numeral-One [symmetric]
numeral-1-eq-Suc-0 [symmetric]
Suc-numeral natfac.simps

lemmas number-norm = numeral-One[symmetric]

lemmas compute-numberarith =
arith-simps rel-simps number-norm

lemmas compute-num-conversions =
of-nat-numeral of-nat-0
nat-numeral nat-0 nat-neg-numeral
of-int-numeral of-int-neg-numeral of-int-0

lemmas zpowerarith = power-numeral-even power-numeral-odd zpower-Pls int-pow-1

lemmas compute-div-mod = div-0 mod-0 div-by-0 mod-by-0 div-by-1 mod-by-1
one-div-numeral one-mod-numeral minus-one-div-numeral minus-one-mod-numeral
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one-div-minus-numeral one-mod-minus-numeral
numeral-div-numeral numeral-mod-numeral minus-numeral-div-numeral minus-numeral-mod-numeral
numeral-div-minus-numeral numeral-mod-minus-numeral
div-minus-minus mod-minus-minus Parity.adjust-div-eq of-bool-eq one-neq-zero
numeral-neq-zero neg-equal-0-iff-equal arith-simps arith-special divmod-trivial
divmod-steps divmod-cancel divmod-step-def fst-conv snd-conv numeral-One
case-prod-beta rel-simps Parity.adjust-mod-def div-minus1-right mod-minus1-right
minus-minus numeral-times-numeral mult-zero-right mult-1-right

lemma even-0-int: even (0 ::int) = True
〈proof 〉

lemma even-One-int: even (numeral Num.One :: int) = False
〈proof 〉

lemma even-Bit0-int: even (numeral (Num.Bit0 x) :: int) = True
〈proof 〉

lemma even-Bit1-int: even (numeral (Num.Bit1 x) :: int) = False
〈proof 〉

lemmas compute-even = even-0-int even-One-int even-Bit0-int even-Bit1-int

lemmas compute-numeral = compute-if compute-let compute-pair compute-bool
compute-natarith compute-numberarith max-def min-def

compute-num-conversions zpowerarith compute-div-mod compute-even

end

theory Cplex
imports SparseMatrix LP ComputeFloat ComputeNumeral
begin

〈ML〉

lemma spm-mult-le-dual-prts:
assumes
sorted-sparse-matrix A1
sorted-sparse-matrix A2
sorted-sparse-matrix c1
sorted-sparse-matrix c2
sorted-sparse-matrix y
sorted-sparse-matrix r1
sorted-sparse-matrix r2
sorted-spvec b

45



le-spmat [] y
sparse-row-matrix A1 ≤ A
A ≤ sparse-row-matrix A2
sparse-row-matrix c1 ≤ c
c ≤ sparse-row-matrix c2
sparse-row-matrix r1 ≤ x
x ≤ sparse-row-matrix r2
A ∗ x ≤ sparse-row-matrix (b::( ′a::lattice-ring) spmat)
shows
c ∗ x ≤ sparse-row-matrix (add-spmat (mult-spmat y b)
(let s1 = diff-spmat c1 (mult-spmat y A2 ); s2 = diff-spmat c2 (mult-spmat y

A1 ) in
add-spmat (mult-spmat (pprt-spmat s2 ) (pprt-spmat r2 )) (add-spmat (mult-spmat

(pprt-spmat s1 ) (nprt-spmat r2 ))
(add-spmat (mult-spmat (nprt-spmat s2 ) (pprt-spmat r1 )) (mult-spmat (nprt-spmat

s1 ) (nprt-spmat r1 ))))))
〈proof 〉

lemma spm-mult-le-dual-prts-no-let:
assumes
sorted-sparse-matrix A1
sorted-sparse-matrix A2
sorted-sparse-matrix c1
sorted-sparse-matrix c2
sorted-sparse-matrix y
sorted-sparse-matrix r1
sorted-sparse-matrix r2
sorted-spvec b
le-spmat [] y
sparse-row-matrix A1 ≤ A
A ≤ sparse-row-matrix A2
sparse-row-matrix c1 ≤ c
c ≤ sparse-row-matrix c2
sparse-row-matrix r1 ≤ x
x ≤ sparse-row-matrix r2
A ∗ x ≤ sparse-row-matrix (b::( ′a::lattice-ring) spmat)
shows
c ∗ x ≤ sparse-row-matrix (add-spmat (mult-spmat y b)
(mult-est-spmat r1 r2 (diff-spmat c1 (mult-spmat y A2 )) (diff-spmat c2 (mult-spmat

y A1 ))))
〈proof 〉

〈ML〉

end
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