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theory Matrix
imports Main HOL−Library.Lattice-Algebras
begin

type-synonym ′a infmatrix = nat ⇒ nat ⇒ ′a

definition nonzero-positions :: (nat ⇒ nat ⇒ ′a::zero) ⇒ (nat × nat) set where
nonzero-positions A = {pos. A (fst pos) (snd pos) ∼= 0}

definition matrix = {(f ::(nat ⇒ nat ⇒ ′a::zero)). finite (nonzero-positions f )}

typedef (overloaded) ′a matrix = matrix :: (nat ⇒ nat ⇒ ′a::zero) set
unfolding matrix-def

proof
show (λj i. 0 ) ∈ {(f ::(nat ⇒ nat ⇒ ′a::zero)). finite (nonzero-positions f )}

by (simp add: nonzero-positions-def )
qed

declare Rep-matrix-inverse[simp]

lemma matrix-eqI :
fixes A B :: ′a::zero matrix
assumes

∧
m n. Rep-matrix A m n = Rep-matrix B m n

shows A=B
using Rep-matrix-inject assms by blast

lemma finite-nonzero-positions : finite (nonzero-positions (Rep-matrix A))
by (induct A) (simp add: Abs-matrix-inverse matrix-def )

definition nrows :: ( ′a::zero) matrix ⇒ nat where
nrows A == if nonzero-positions(Rep-matrix A) = {} then 0 else Suc(Max ((image

fst) (nonzero-positions (Rep-matrix A))))

definition ncols :: ( ′a::zero) matrix ⇒ nat where
ncols A == if nonzero-positions(Rep-matrix A) = {} then 0 else Suc(Max ((image

snd) (nonzero-positions (Rep-matrix A))))
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lemma nrows:
assumes hyp: nrows A ≤ m
shows (Rep-matrix A m n) = 0

proof cases
assume nonzero-positions(Rep-matrix A) = {}
then show (Rep-matrix A m n) = 0 by (simp add: nonzero-positions-def )

next
assume a: nonzero-positions(Rep-matrix A) 6= {}
let ?S = fst‘(nonzero-positions(Rep-matrix A))
have c: finite (?S) by (simp add: finite-nonzero-positions)
from hyp have d: Max (?S) < m by (simp add: a nrows-def )
have m /∈ ?S

proof −
have m ∈ ?S =⇒ m ≤ Max(?S) by (simp add: Max-ge [OF c])
moreover from d have ∼(m ≤ Max ?S) by (simp)
ultimately show m /∈ ?S by (auto)

qed
thus Rep-matrix A m n = 0 by (simp add: nonzero-positions-def image-Collect)

qed

definition transpose-infmatrix :: ′a infmatrix ⇒ ′a infmatrix where
transpose-infmatrix A j i == A i j

definition transpose-matrix :: ( ′a::zero) matrix ⇒ ′a matrix where
transpose-matrix == Abs-matrix o transpose-infmatrix o Rep-matrix

declare transpose-infmatrix-def [simp]

lemma transpose-infmatrix-twice[simp]: transpose-infmatrix (transpose-infmatrix
A) = A
by ((rule ext)+, simp)

lemma transpose-infmatrix: transpose-infmatrix (λj i. P j i) = (λj i. P i j)
by force

lemma transpose-infmatrix-closed[simp]: Rep-matrix (Abs-matrix (transpose-infmatrix
(Rep-matrix x))) = transpose-infmatrix (Rep-matrix x)
proof −

let ?A = {pos. Rep-matrix x (snd pos) (fst pos) 6= 0}
let ?B = {pos. Rep-matrix x (fst pos) (snd pos) 6= 0}
let ?swap = λpos. (snd pos, fst pos)
have finite ?A
proof −

have swap-image: ?swap‘?A = ?B
by (force simp add: image-def )

then have finite (?swap‘?A)
by (metis (full-types) finite-nonzero-positions nonzero-positions-def )

moreover
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have inj-on ?swap ?A by (simp add: inj-on-def )
ultimately show finite ?A

using finite-imageD by blast
qed
then show ?thesis

by (simp add: Abs-matrix-inverse matrix-def nonzero-positions-def )
qed

lemma infmatrixforward: (x:: ′a infmatrix) = y =⇒ ∀ a b. x a b = y a b
by auto

lemma transpose-infmatrix-inject: (transpose-infmatrix A = transpose-infmatrix
B) = (A = B)

by (metis transpose-infmatrix-twice)

lemma transpose-matrix-inject: (transpose-matrix A = transpose-matrix B) = (A
= B)

unfolding transpose-matrix-def o-def
by (metis Rep-matrix-inject transpose-infmatrix-closed transpose-infmatrix-inject)

lemma transpose-matrix[simp]: Rep-matrix(transpose-matrix A) j i = Rep-matrix
A i j

by (simp add: transpose-matrix-def )

lemma transpose-transpose-id[simp]: transpose-matrix (transpose-matrix A) = A
by (simp add: transpose-matrix-def )

lemma nrows-transpose[simp]: nrows (transpose-matrix A) = ncols A
by (simp add: nrows-def ncols-def nonzero-positions-def transpose-matrix-def im-

age-def )

lemma ncols-transpose[simp]: ncols (transpose-matrix A) = nrows A
by (metis nrows-transpose transpose-transpose-id)

lemma ncols: ncols A ≤ n =⇒ Rep-matrix A m n = 0
by (metis nrows nrows-transpose transpose-matrix)

lemma ncols-le: (ncols A ≤ n) ←→ (∀ j i. n ≤ i −→ (Rep-matrix A j i) = 0 ) (is
- = ?st)
proof −

have Rep-matrix A j i = 0
if ncols A ≤ n n ≤ i for j i
by (meson that le-trans ncols)

moreover have ncols A ≤ n
if ∀ j i. n ≤ i −→ Rep-matrix A j i = 0
unfolding ncols-def

proof (clarsimp split: if-split-asm)
assume §: nonzero-positions (Rep-matrix A) 6= {}
let ?P = nonzero-positions (Rep-matrix A)
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let ?p = snd‘?P
have a:finite ?p by (simp add: finite-nonzero-positions)
let ?m = Max ?p
show Suc (Max (snd ‘ nonzero-positions (Rep-matrix A))) ≤ n

using § that obtains-MAX [OF finite-nonzero-positions]
by (metis (mono-tags, lifting) mem-Collect-eq nonzero-positions-def not-less-eq-eq)

qed
ultimately show ?thesis

by auto
qed

lemma less-ncols: (n < ncols A) = (∃ j i. n ≤ i ∧ (Rep-matrix A j i) 6= 0 )
by (meson linorder-not-le ncols-le)

lemma le-ncols: (n ≤ ncols A) = (∀ m. (∀ j i. m ≤ i −→ (Rep-matrix A j i) =
0 ) −→ n ≤ m)

by (meson le-trans ncols ncols-le)

lemma nrows-le: (nrows A ≤ n) = (∀ j i. n ≤ j −→ (Rep-matrix A j i) = 0 ) (is
?s)

by (metis ncols-le ncols-transpose transpose-matrix)

lemma less-nrows: (m < nrows A) = (∃ j i. m ≤ j ∧ (Rep-matrix A j i) 6= 0 )
by (meson linorder-not-le nrows-le)

lemma le-nrows: (n ≤ nrows A) = (∀ m. (∀ j i. m ≤ j −→ (Rep-matrix A j i) =
0 ) −→ n ≤ m)

by (meson order .trans nrows nrows-le)

lemma nrows-notzero: Rep-matrix A m n 6= 0 =⇒ m < nrows A
by (meson leI nrows)

lemma ncols-notzero: Rep-matrix A m n 6= 0 =⇒ n < ncols A
by (meson leI ncols)

lemma finite-natarray1 : finite {x. x < (n::nat)}
by simp

lemma finite-natarray2 : finite {(x, y). x < (m::nat) ∧ y < (n::nat)}
by simp

lemma RepAbs-matrix:
assumes ∃m. ∀ j i. m ≤ j −→ x j i = 0

and ∃n. ∀ j i. (n ≤ i −→ x j i = 0 )
shows (Rep-matrix (Abs-matrix x)) = x

proof −
have finite {pos. x (fst pos) (snd pos) 6= 0}
proof −

from assms obtain m n where a: ∀ j i. m ≤ j −→ x j i = 0
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and b: ∀ j i. n ≤ i −→ x j i = 0 by (blast)
let ?u = {(i, j). x i j 6= 0}
let ?v = {(i, j). i < m ∧ j < n}
have c:

∧
(m::nat) a. ∼(m ≤ a) =⇒ a < m by (arith)

with a b have d: ?u ⊆ ?v by blast
moreover have finite ?v by (simp add: finite-natarray2 )
moreover have {pos. x (fst pos) (snd pos) 6= 0} = ?u by auto
ultimately show finite {pos. x (fst pos) (snd pos) 6= 0}

by (metis (lifting) finite-subset)
qed
then show ?thesis

by (simp add: Abs-matrix-inverse matrix-def nonzero-positions-def )
qed

definition apply-infmatrix :: ( ′a ⇒ ′b) ⇒ ′a infmatrix ⇒ ′b infmatrix where
apply-infmatrix f == λA. (λj i. f (A j i))

definition apply-matrix :: ( ′a⇒ ′b)⇒ ( ′a::zero) matrix ⇒ ( ′b::zero) matrix where
apply-matrix f == λA. Abs-matrix (apply-infmatrix f (Rep-matrix A))

definition combine-infmatrix :: ( ′a ⇒ ′b ⇒ ′c) ⇒ ′a infmatrix ⇒ ′b infmatrix ⇒
′c infmatrix where

combine-infmatrix f == λA B. (λj i. f (A j i) (B j i))

definition combine-matrix :: ( ′a ⇒ ′b ⇒ ′c) ⇒ ( ′a::zero) matrix ⇒ ( ′b::zero)
matrix ⇒ ( ′c::zero) matrix where

combine-matrix f == λA B. Abs-matrix (combine-infmatrix f (Rep-matrix A)
(Rep-matrix B))

lemma expand-apply-infmatrix[simp]: apply-infmatrix f A j i = f (A j i)
by (simp add: apply-infmatrix-def )

lemma expand-combine-infmatrix[simp]: combine-infmatrix f A B j i = f (A j i)
(B j i)

by (simp add: combine-infmatrix-def )

definition commutative :: ( ′a ⇒ ′a ⇒ ′b) ⇒ bool where
commutative f == ∀ x y. f x y = f y x

definition associative :: ( ′a ⇒ ′a ⇒ ′a) ⇒ bool where
associative f == ∀ x y z. f (f x y) z = f x (f y z)

To reason about associativity and commutativity of operations on matrices,
let’s take a step back and look at the general situtation: Assume that we
have sets A and B with B ⊂ A and an abstraction u : A → B. This
abstraction has to fulfill u(b) = b for all b ∈ B, but is arbitrary otherwise.
Each function f : A × A → A now induces a function f ′ : B × B → B by
f ′ = u ◦ f . It is obvious that commutativity of f implies commutativity of
f ′: f ′xy = u(fxy) = u(fyx) = f ′yx.
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lemma combine-infmatrix-commute:
commutative f =⇒ commutative (combine-infmatrix f )

by (simp add: commutative-def combine-infmatrix-def )

lemma combine-matrix-commute:
commutative f =⇒ commutative (combine-matrix f )
by (simp add: combine-matrix-def commutative-def combine-infmatrix-def )

On the contrary, given an associative function f we cannot expect f ′ to be
associative. A counterexample is given by A = �, B = {−1, 0, 1}, as f we
take addition on �, which is clearly associative. The abstraction is given by
u(a) = 0 for a /∈ B. Then we have

f ′(f ′11)− 1 = u(f(u(f11))− 1) = u(f(u2)− 1) = u(f0− 1) = −1,

but on the other hand we have

f ′1(f ′1− 1) = u(f1(u(f1− 1))) = u(f10) = 1.

A way out of this problem is to assume that f(A× A) ⊂ A holds, and this
is what we are going to do:
lemma nonzero-positions-combine-infmatrix[simp]: f 0 0 = 0 =⇒ nonzero-positions
(combine-infmatrix f A B) ⊆ (nonzero-positions A) ∪ (nonzero-positions B)
by (smt (verit) UnCI expand-combine-infmatrix mem-Collect-eq nonzero-positions-def

subsetI )

lemma finite-nonzero-positions-Rep[simp]: finite (nonzero-positions (Rep-matrix
A))

by (simp add: finite-nonzero-positions)

lemma combine-infmatrix-closed [simp]:
f 0 0 = 0 =⇒ Rep-matrix (Abs-matrix (combine-infmatrix f (Rep-matrix A)

(Rep-matrix B))) = combine-infmatrix f (Rep-matrix A) (Rep-matrix B)
apply (rule Abs-matrix-inverse)
apply (simp add: matrix-def )
by (meson finite-Un finite-nonzero-positions-Rep finite-subset nonzero-positions-combine-infmatrix)

We need the next two lemmas only later, but it is analog to the above one,
so we prove them now:
lemma nonzero-positions-apply-infmatrix[simp]: f 0 = 0 =⇒ nonzero-positions
(apply-infmatrix f A) ⊆ nonzero-positions A
by (rule subsetI , simp add: nonzero-positions-def apply-infmatrix-def , auto)

lemma apply-infmatrix-closed [simp]:
f 0 = 0 =⇒ Rep-matrix (Abs-matrix (apply-infmatrix f (Rep-matrix A))) =

apply-infmatrix f (Rep-matrix A)
apply (rule Abs-matrix-inverse)
apply (simp add: matrix-def )
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by (meson finite-nonzero-positions-Rep finite-subset nonzero-positions-apply-infmatrix)

lemma combine-infmatrix-assoc[simp]: f 0 0 = 0 =⇒ associative f =⇒ associative
(combine-infmatrix f )

by (simp add: associative-def combine-infmatrix-def )

lemma combine-matrix-assoc: f 0 0 = 0 =⇒ associative f =⇒ associative (combine-matrix
f )

by (smt (verit) associative-def combine-infmatrix-assoc combine-infmatrix-closed
combine-matrix-def )

lemma Rep-apply-matrix[simp]: f 0 = 0 =⇒ Rep-matrix (apply-matrix f A) j i =
f (Rep-matrix A j i)

by (simp add: apply-matrix-def )

lemma Rep-combine-matrix[simp]: f 0 0 = 0 =⇒ Rep-matrix (combine-matrix f
A B) j i = f (Rep-matrix A j i) (Rep-matrix B j i)

by(simp add: combine-matrix-def )

lemma combine-nrows-max: f 0 0 = 0 =⇒ nrows (combine-matrix f A B) ≤ max
(nrows A) (nrows B)

by (simp add: nrows-le)

lemma combine-ncols-max: f 0 0 = 0 =⇒ ncols (combine-matrix f A B) ≤ max
(ncols A) (ncols B)

by (simp add: ncols-le)

lemma combine-nrows: f 0 0 = 0 =⇒ nrows A ≤ q =⇒ nrows B ≤ q =⇒
nrows(combine-matrix f A B) ≤ q

by (simp add: nrows-le)

lemma combine-ncols: f 0 0 = 0 =⇒ ncols A ≤ q =⇒ ncols B ≤ q =⇒ ncols(combine-matrix
f A B) ≤ q

by (simp add: ncols-le)

definition zero-r-neutral :: ( ′a ⇒ ′b::zero ⇒ ′a) ⇒ bool where
zero-r-neutral f == ∀ a. f a 0 = a

definition zero-l-neutral :: ( ′a::zero ⇒ ′b ⇒ ′b) ⇒ bool where
zero-l-neutral f == ∀ a. f 0 a = a

definition zero-closed :: (( ′a::zero) ⇒ ( ′b::zero) ⇒ ( ′c::zero)) ⇒ bool where
zero-closed f == (∀ x. f x 0 = 0 ) ∧ (∀ y. f 0 y = 0 )

primrec foldseq :: ( ′a ⇒ ′a ⇒ ′a) ⇒ (nat ⇒ ′a) ⇒ nat ⇒ ′a
where

foldseq f s 0 = s 0
| foldseq f s (Suc n) = f (s 0 ) (foldseq f (λk. s(Suc k)) n)
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primrec foldseq-transposed :: ( ′a ⇒ ′a ⇒ ′a) ⇒ (nat ⇒ ′a) ⇒ nat ⇒ ′a
where

foldseq-transposed f s 0 = s 0
| foldseq-transposed f s (Suc n) = f (foldseq-transposed f s n) (s (Suc n))

lemma foldseq-assoc:
assumes a:associative f
shows associative f =⇒ foldseq f = foldseq-transposed f

proof −
have N ≤ n =⇒ foldseq f s N = foldseq-transposed f s N for N s n
proof (induct n arbitrary: N s)

case 0
then show ?case

by auto
next

case (Suc n)
show ?case
proof cases

assume N ≤ n
then show ?thesis

by (simp add: Suc.hyps)
next

assume ∼(N ≤ n)
then have Nsuceq: N = Suc n

using Suc.prems by linarith
have neqz: n 6= 0 =⇒ ∃m. n = Suc m ∧ Suc m ≤ n

by arith
have assocf : !! x y z. f x (f y z) = f (f x y) z

by (metis a associative-def )
have f (f (s 0 ) (foldseq-transposed f (λk. s (Suc k)) m)) (s (Suc (Suc m))) =

f (f (foldseq-transposed f s m) (s (Suc m))) (s (Suc (Suc m)))
if n = Suc m for m

proof −
have §: foldseq-transposed f (λk. s (Suc k)) m = foldseq f (λk. s (Suc k))

m (is ?T1 = ?T2 )
by (simp add: Suc.hyps that)

have f (s 0 ) ?T2 = foldseq f s (Suc m) by simp
also have . . . = foldseq-transposed f s (Suc m)

using Suc.hyps that by blast
also have . . . = f (foldseq-transposed f s m) (s (Suc m))

by simp
finally show ?thesis

by (simp add: §)
qed
then show foldseq f s N = foldseq-transposed f s N

unfolding Nsuceq using assocf Suc.hyps neqz by force
qed

qed
then show ?thesis
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by blast
qed

lemma foldseq-distr :
assumes assoc: associative f and comm: commutative f
shows foldseq f (λk. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n)

proof −
from assoc have a:!! x y z. f (f x y) z = f x (f y z) by (simp add: associative-def )
from comm have b: !! x y. f x y = f y x by (simp add: commutative-def )
from assoc comm have c: !! x y z . f x (f y z) = f y (f x z) by (simp add:

commutative-def associative-def )
have (∀ u v. foldseq f (λk. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n)) for

n
by (induct n) (simp-all add: assoc b c foldseq-assoc)

then show foldseq f (λk. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n) by
simp
qed

theorem [[associative f ; associative g; ∀ a b c d. g (f a b) (f c d) = f (g a c) (g b
d); ∃ x y. (f x) 6= (f y); ∃ x y. (g x) 6= (g y); f x x = x; g x x = x]] =⇒ f=g | (∀ y.
f y x = y) | (∀ y. g y x = y)
oops

lemma foldseq-zero:
assumes fz: f 0 0 = 0 and sz: ∀ i. i ≤ n −→ s i = 0
shows foldseq f s n = 0

proof −
have ∀ s. (∀ i. i ≤ n −→ s i = 0 ) −→ foldseq f s n = 0 for n

by (induct n) (simp-all add: fz)
then show ?thesis

by (simp add: sz)
qed

lemma foldseq-significant-positions:
assumes p: ∀ i. i ≤ N −→ S i = T i
shows foldseq f S N = foldseq f T N
using assms

proof (induction N arbitrary: S T )
case 0
then show ?case by simp

next
case (Suc N )
then show ?case

unfolding foldseq.simps by (metis not-less-eq-eq le0 )
qed

lemma foldseq-tail:
assumes M ≤ N
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shows foldseq f S N = foldseq f (λk. (if k < M then (S k) else (foldseq f (λk.
S(k+M )) (N−M )))) M

using assms
proof (induction N arbitrary: M S)

case 0
then show ?case by auto

next
case (Suc N )
show ?case
proof (cases M = Suc N )

case True
then show ?thesis

by (auto intro!: arg-cong [of concl: f (S 0 )] foldseq-significant-positions)
next

case False
then have M≤N

using Suc.prems by force
show ?thesis
proof (cases M = 0 )

case True
then show ?thesis

by auto
next

case False
then obtain M ′ where M ′: M = Suc M ′ M ′ ≤ N

by (metis Suc-leD ‹M ≤ N › nat.nchotomy)
then show ?thesis

apply (simp add: Suc.IH [OF ‹M ′≤N ›])
using add-Suc-right diff-Suc-Suc by presburger

qed
qed

qed

lemma foldseq-zerotail:
assumes fz: f 0 0 = 0 and sz: ∀ i. n ≤ i −→ s i = 0 and nm: n ≤ m
shows foldseq f s n = foldseq f s m
unfolding foldseq-tail[OF nm]
by (metis (no-types, lifting) foldseq-zero fz le-add2 linorder-not-le sz)

lemma foldseq-zerotail2 :
assumes ∀ x. f x 0 = x
and ∀ i. n < i −→ s i = 0
and nm: n ≤ m

shows foldseq f s n = foldseq f s m
proof −

have s i = (if i < n then s i else foldseq f (λk. s (k + n)) (m − n))
if i≤n for i

proof (cases m=n)
case True
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then show ?thesis
using that by auto

next
case False
then obtain k where m−n = Suc k

by (metis Suc-diff-Suc le-neq-implies-less nm)
then show ?thesis

apply simp
by (simp add: assms(1 ,2 ) foldseq-zero nat-less-le that)

qed
then show ?thesis

unfolding foldseq-tail[OF nm]
by (auto intro: foldseq-significant-positions)

qed

lemma foldseq-zerostart:
assumes f00x: ∀ x. f 0 (f 0 x) = f 0 x and 0 : ∀ i. i ≤ n −→ s i = 0
shows foldseq f s (Suc n) = f 0 (s (Suc n))
using 0

proof (induction n arbitrary: s)
case 0
then show ?case by auto

next
case (Suc n s)
then show ?case

apply (simp add: le-Suc-eq)
by (smt (verit, ccfv-threshold) Suc.prems Suc-le-mono f00x foldseq-significant-positions

le0 )
qed

lemma foldseq-zerostart2 :
assumes x: ∀ x. f 0 x = x and 0 : ∀ i. i < n −→ s i = 0
shows foldseq f s n = s n

proof −
show foldseq f s n = s n
proof (cases n)

case 0
then show ?thesis

by auto
next

case (Suc n ′)
then show ?thesis

by (metis 0 foldseq-zerostart le-imp-less-Suc x)
qed

qed

lemma foldseq-almostzero:
assumes f0x: ∀ x. f 0 x = x and fx0 : ∀ x. f x 0 = x and s0 : ∀ i. i 6= j −→ s i

= 0
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shows foldseq f s n = (if (j ≤ n) then (s j) else 0 )
by (smt (verit, ccfv-SIG) f0x foldseq-zerostart2 foldseq-zerotail2 fx0 le-refl nat-less-le

s0 )

lemma foldseq-distr-unary:
assumes

∧
a b. g (f a b) = f (g a) (g b)

shows g(foldseq f s n) = foldseq f (λx. g(s x)) n
proof (induction n arbitrary: s)

case 0
then show ?case

by auto
next

case (Suc n)
then show ?case

using assms by fastforce
qed

definition mult-matrix-n :: nat ⇒ (( ′a::zero) ⇒ ( ′b::zero) ⇒ ( ′c::zero)) ⇒ ( ′c ⇒
′c ⇒ ′c) ⇒ ′a matrix ⇒ ′b matrix ⇒ ′c matrix where

mult-matrix-n n fmul fadd A B == Abs-matrix(λj i. foldseq fadd (λk. fmul
(Rep-matrix A j k) (Rep-matrix B k i)) n)

definition mult-matrix :: (( ′a::zero) ⇒ ( ′b::zero) ⇒ ( ′c::zero)) ⇒ ( ′c ⇒ ′c ⇒ ′c)
⇒ ′a matrix ⇒ ′b matrix ⇒ ′c matrix where

mult-matrix fmul fadd A B == mult-matrix-n (max (ncols A) (nrows B)) fmul
fadd A B

lemma mult-matrix-n:
assumes ncols A ≤ n nrows B ≤ n fadd 0 0 = 0 fmul 0 0 = 0
shows mult-matrix fmul fadd A B = mult-matrix-n n fmul fadd A B

proof −
have foldseq fadd (λk. fmul (Rep-matrix A j k) (Rep-matrix B k i))

(max (ncols A) (nrows B)) =
foldseq fadd (λk. fmul (Rep-matrix A j k) (Rep-matrix B k i)) n for i j

using assms by (simp add: foldseq-zerotail nrows-le ncols-le)
then show ?thesis

by (simp add: mult-matrix-def mult-matrix-n-def )
qed

lemma mult-matrix-nm:
assumes ncols A ≤ n nrows B ≤ n ncols A ≤ m nrows B ≤ m fadd 0 0 = 0

fmul 0 0 = 0
shows mult-matrix-n n fmul fadd A B = mult-matrix-n m fmul fadd A B

proof −
from assms have mult-matrix-n n fmul fadd A B = mult-matrix fmul fadd A B

by (simp add: mult-matrix-n)
also from assms have . . . = mult-matrix-n m fmul fadd A B

by (simp add: mult-matrix-n[THEN sym])
finally show mult-matrix-n n fmul fadd A B = mult-matrix-n m fmul fadd A B
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by simp
qed

definition r-distributive :: ( ′a ⇒ ′b ⇒ ′b) ⇒ ( ′b ⇒ ′b ⇒ ′b) ⇒ bool where
r-distributive fmul fadd == ∀ a u v. fmul a (fadd u v) = fadd (fmul a u) (fmul a

v)

definition l-distributive :: ( ′a ⇒ ′b ⇒ ′a) ⇒ ( ′a ⇒ ′a ⇒ ′a) ⇒ bool where
l-distributive fmul fadd == ∀ a u v. fmul (fadd u v) a = fadd (fmul u a) (fmul v

a)

definition distributive :: ( ′a ⇒ ′a ⇒ ′a) ⇒ ( ′a ⇒ ′a ⇒ ′a) ⇒ bool where
distributive fmul fadd == l-distributive fmul fadd ∧ r-distributive fmul fadd

lemma max1 : !! a x y. (a::nat) ≤ x =⇒ a ≤ max x y by (arith)
lemma max2 : !! b x y. (b::nat) ≤ y =⇒ b ≤ max x y by (arith)

lemma r-distributive-matrix:
assumes
r-distributive fmul fadd
associative fadd
commutative fadd
fadd 0 0 = 0
∀ a. fmul a 0 = 0
∀ a. fmul 0 a = 0

shows r-distributive (mult-matrix fmul fadd) (combine-matrix fadd)
proof −

from assms show ?thesis
apply (simp add: r-distributive-def mult-matrix-def , auto)
proof −

fix a:: ′a matrix
fix u:: ′b matrix
fix v:: ′b matrix
let ?mx = max (ncols a) (max (nrows u) (nrows v))
from assms show mult-matrix-n (max (ncols a) (nrows (combine-matrix fadd

u v))) fmul fadd a (combine-matrix fadd u v) =
combine-matrix fadd (mult-matrix-n (max (ncols a) (nrows u)) fmul fadd a

u) (mult-matrix-n (max (ncols a) (nrows v)) fmul fadd a v)
apply (subst mult-matrix-nm[of - - - ?mx fadd fmul])
apply (simp add: max1 max2 combine-nrows combine-ncols)+
apply (subst mult-matrix-nm[of - - v ?mx fadd fmul])
apply (simp add: max1 max2 combine-nrows combine-ncols)+
apply (subst mult-matrix-nm[of - - u ?mx fadd fmul])
apply (simp add: max1 max2 combine-nrows combine-ncols)+
apply (simp add: mult-matrix-n-def r-distributive-def foldseq-distr [of fadd])
apply (simp add: combine-matrix-def combine-infmatrix-def )
apply (intro ext arg-cong[of concl: Abs-matrix])
apply (simplesubst RepAbs-matrix)
apply (simp, auto)

13



apply (rule exI [of - nrows a], simp add: nrows-le foldseq-zero)
apply (rule exI [of - ncols v], simp add: ncols-le foldseq-zero)
apply (subst RepAbs-matrix)
apply (simp, auto)
apply (rule exI [of - nrows a], simp add: nrows-le foldseq-zero)
apply (rule exI [of - ncols u], simp add: ncols-le foldseq-zero)
done

qed
qed

lemma l-distributive-matrix:
assumes
l-distributive fmul fadd
associative fadd
commutative fadd
fadd 0 0 = 0
∀ a. fmul a 0 = 0
∀ a. fmul 0 a = 0

shows l-distributive (mult-matrix fmul fadd) (combine-matrix fadd)
proof −

from assms show ?thesis
apply (simp add: l-distributive-def mult-matrix-def , auto)
proof −

fix a:: ′b matrix
fix u:: ′a matrix
fix v:: ′a matrix
let ?mx = max (nrows a) (max (ncols u) (ncols v))

from assms show mult-matrix-n (max (ncols (combine-matrix fadd u v))
(nrows a)) fmul fadd (combine-matrix fadd u v) a =

combine-matrix fadd (mult-matrix-n (max (ncols u) (nrows a)) fmul
fadd u a) (mult-matrix-n (max (ncols v) (nrows a)) fmul fadd v a)

apply (subst mult-matrix-nm[of v - - ?mx fadd fmul])
apply (simp add: max1 max2 combine-nrows combine-ncols)+
apply (subst mult-matrix-nm[of u - - ?mx fadd fmul])
apply (simp add: max1 max2 combine-nrows combine-ncols)+
apply (subst mult-matrix-nm[of - - - ?mx fadd fmul])
apply (simp add: max1 max2 combine-nrows combine-ncols)+
apply (simp add: mult-matrix-n-def l-distributive-def foldseq-distr [of fadd])
apply (simp add: combine-matrix-def combine-infmatrix-def )
apply (intro ext arg-cong[of concl: Abs-matrix])
apply (simplesubst RepAbs-matrix)
apply (simp, auto)
apply (rule exI [of - nrows v], simp add: nrows-le foldseq-zero)
apply (rule exI [of - ncols a], simp add: ncols-le foldseq-zero)
apply (subst RepAbs-matrix)
apply (simp, auto)
apply (rule exI [of - nrows u], simp add: nrows-le foldseq-zero)
apply (rule exI [of - ncols a], simp add: ncols-le foldseq-zero)
done
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qed
qed

instantiation matrix :: (zero) zero
begin

definition zero-matrix-def : 0 = Abs-matrix (λj i. 0 )

instance ..

end

lemma Rep-zero-matrix-def [simp]: Rep-matrix 0 j i = 0
by (simp add: RepAbs-matrix zero-matrix-def )

lemma zero-matrix-def-nrows[simp]: nrows 0 = 0
using nrows-le by force

lemma zero-matrix-def-ncols[simp]: ncols 0 = 0
using ncols-le by fastforce

lemma combine-matrix-zero-l-neutral: zero-l-neutral f =⇒ zero-l-neutral (combine-matrix
f )

by (simp add: zero-l-neutral-def combine-matrix-def combine-infmatrix-def )

lemma combine-matrix-zero-r-neutral: zero-r-neutral f =⇒ zero-r-neutral (combine-matrix
f )

by (simp add: zero-r-neutral-def combine-matrix-def combine-infmatrix-def )

lemma mult-matrix-zero-closed: [[fadd 0 0 = 0 ; zero-closed fmul]] =⇒ zero-closed
(mult-matrix fmul fadd)

apply (simp add: zero-closed-def mult-matrix-def mult-matrix-n-def )
by (simp add: foldseq-zero zero-matrix-def )

lemma mult-matrix-n-zero-right[simp]: [[fadd 0 0 = 0 ; ∀ a. fmul a 0 = 0 ]] =⇒
mult-matrix-n n fmul fadd A 0 = 0

by (simp add: RepAbs-matrix foldseq-zero matrix-eqI mult-matrix-n-def )

lemma mult-matrix-n-zero-left[simp]: [[fadd 0 0 = 0 ; ∀ a. fmul 0 a = 0 ]] =⇒
mult-matrix-n n fmul fadd 0 A = 0

by (simp add: RepAbs-matrix foldseq-zero matrix-eqI mult-matrix-n-def )

lemma mult-matrix-zero-left[simp]: [[fadd 0 0 = 0 ; ∀ a. fmul 0 a = 0 ]] =⇒ mult-matrix
fmul fadd 0 A = 0

by (simp add: mult-matrix-def )

lemma mult-matrix-zero-right[simp]: [[fadd 0 0 = 0 ; ∀ a. fmul a 0 = 0 ]] =⇒
mult-matrix fmul fadd A 0 = 0

by (simp add: mult-matrix-def )
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lemma apply-matrix-zero[simp]: f 0 = 0 =⇒ apply-matrix f 0 = 0
by (simp add: matrix-eqI )

lemma combine-matrix-zero: f 0 0 = 0 =⇒ combine-matrix f 0 0 = 0
by (simp add: matrix-eqI )

lemma transpose-matrix-zero[simp]: transpose-matrix 0 = 0
by (simp add: matrix-eqI )

lemma apply-zero-matrix-def [simp]: apply-matrix (λx. 0 ) A = 0
by (simp add: matrix-eqI )

definition singleton-matrix :: nat ⇒ nat ⇒ ( ′a::zero) ⇒ ′a matrix where
singleton-matrix j i a == Abs-matrix(λm n. if j = m ∧ i = n then a else 0 )

definition move-matrix :: ( ′a::zero) matrix ⇒ int ⇒ int ⇒ ′a matrix where
move-matrix A y x == Abs-matrix(λj i. if (((int j)−y) < 0 ) | (((int i)−x) < 0 )

then 0 else Rep-matrix A (nat ((int j)−y)) (nat ((int i)−x)))

definition take-rows :: ( ′a::zero) matrix ⇒ nat ⇒ ′a matrix where
take-rows A r == Abs-matrix(λj i. if (j < r) then (Rep-matrix A j i) else 0 )

definition take-columns :: ( ′a::zero) matrix ⇒ nat ⇒ ′a matrix where
take-columns A c == Abs-matrix(λj i. if (i < c) then (Rep-matrix A j i) else 0 )

definition column-of-matrix :: ( ′a::zero) matrix ⇒ nat ⇒ ′a matrix where
column-of-matrix A n == take-columns (move-matrix A 0 (− int n)) 1

definition row-of-matrix :: ( ′a::zero) matrix ⇒ nat ⇒ ′a matrix where
row-of-matrix A m == take-rows (move-matrix A (− int m) 0 ) 1

lemma Rep-singleton-matrix[simp]: Rep-matrix (singleton-matrix j i e) m n = (if
j = m ∧ i = n then e else 0 )

unfolding singleton-matrix-def
by (smt (verit, del-insts) RepAbs-matrix Suc-n-not-le-n)

lemma apply-singleton-matrix[simp]: f 0 = 0 =⇒ apply-matrix f (singleton-matrix
j i x) = (singleton-matrix j i (f x))

by (simp add: matrix-eqI )

lemma singleton-matrix-zero[simp]: singleton-matrix j i 0 = 0
by (simp add: singleton-matrix-def zero-matrix-def )

lemma nrows-singleton[simp]: nrows(singleton-matrix j i e) = (if e = 0 then 0 else
Suc j)
proof −

have e 6= 0 =⇒ Suc j ≤ nrows (singleton-matrix j i e)
by (metis Rep-singleton-matrix not-less-eq-eq nrows)
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then show ?thesis
by (simp add: le-antisym nrows-le)

qed

lemma ncols-singleton[simp]: ncols(singleton-matrix j i e) = (if e = 0 then 0 else
Suc i)

by (simp add: Suc-leI le-antisym ncols-le ncols-notzero)

lemma combine-singleton: f 0 0 = 0 =⇒ combine-matrix f (singleton-matrix j i
a) (singleton-matrix j i b) = singleton-matrix j i (f a b)
apply (simp add: singleton-matrix-def combine-matrix-def combine-infmatrix-def )
apply (intro ext arg-cong[of concl: Abs-matrix])
by (metis Rep-singleton-matrix singleton-matrix-def )

lemma transpose-singleton[simp]: transpose-matrix (singleton-matrix j i a) = sin-
gleton-matrix i j a

by (simp add: matrix-eqI )

lemma Rep-move-matrix[simp]:
Rep-matrix (move-matrix A y x) j i =
(if (((int j)−y) < 0 ) | (((int i)−x) < 0 ) then 0 else Rep-matrix A (nat((int

j)−y)) (nat((int i)−x)))
apply (simp add: move-matrix-def )

by (subst RepAbs-matrix,
rule exI [of - (nrows A)+(nat |y|)], auto, rule nrows, arith,
rule exI [of - (ncols A)+(nat |x|)], auto, rule ncols, arith)+

lemma move-matrix-0-0 [simp]: move-matrix A 0 0 = A
by (simp add: move-matrix-def )

lemma move-matrix-ortho: move-matrix A j i = move-matrix (move-matrix A j
0 ) 0 i

by (simp add: matrix-eqI )

lemma transpose-move-matrix[simp]:
transpose-matrix (move-matrix A x y) = move-matrix (transpose-matrix A) y x
by (simp add: matrix-eqI )

lemma move-matrix-singleton[simp]: move-matrix (singleton-matrix u v x) j i =
(if (j + int u < 0 ) | (i + int v < 0 ) then 0 else (singleton-matrix (nat (j + int

u)) (nat (i + int v)) x))
by (auto intro!: matrix-eqI split: if-split-asm)

lemma Rep-take-columns[simp]:
Rep-matrix (take-columns A c) j i = (if i < c then (Rep-matrix A j i) else 0 )
unfolding take-columns-def
by (smt (verit, best) RepAbs-matrix leD nrows)

lemma Rep-take-rows[simp]:
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Rep-matrix (take-rows A r) j i = (if j < r then (Rep-matrix A j i) else 0 )
unfolding take-rows-def
by (smt (verit, best) RepAbs-matrix leD ncols)

lemma Rep-column-of-matrix[simp]:
Rep-matrix (column-of-matrix A c) j i = (if i = 0 then (Rep-matrix A j c) else

0 )
by (simp add: column-of-matrix-def )

lemma Rep-row-of-matrix[simp]:
Rep-matrix (row-of-matrix A r) j i = (if j = 0 then (Rep-matrix A r i) else 0 )
by (simp add: row-of-matrix-def )

lemma column-of-matrix: ncols A ≤ n =⇒ column-of-matrix A n = 0
by (simp add: matrix-eqI ncols)

lemma row-of-matrix: nrows A ≤ n =⇒ row-of-matrix A n = 0
by (simp add: matrix-eqI nrows)

lemma mult-matrix-singleton-right[simp]:
assumes ∀ x. fmul x 0 = 0 ∀ x. fmul 0 x = 0 ∀ x. fadd 0 x = x ∀ x. fadd x 0 = x
shows (mult-matrix fmul fadd A (singleton-matrix j i e)) = apply-matrix (λx.

fmul x e) (move-matrix (column-of-matrix A j) 0 (int i))
using assms
unfolding mult-matrix-def
apply (subst mult-matrix-nm[of - - - max (ncols A) (Suc j)];

simp add: mult-matrix-n-def apply-matrix-def apply-infmatrix-def )
apply (intro ext arg-cong[of concl: Abs-matrix])
by (simp add: max-def assms foldseq-almostzero[of - j])

lemma mult-matrix-ext:
assumes
eprem:
∃ e. (∀ a b. a 6= b −→ fmul a e 6= fmul b e)
and fprems:
∀ a. fmul 0 a = 0
∀ a. fmul a 0 = 0
∀ a. fadd a 0 = a
∀ a. fadd 0 a = a
and contraprems: mult-matrix fmul fadd A = mult-matrix fmul fadd B
shows A = B

proof(rule ccontr)
assume A 6= B
then obtain J I where ne: (Rep-matrix A J I ) 6= (Rep-matrix B J I )

by (meson matrix-eqI )
from eprem obtain e where eprops:(∀ a b. a 6= b −→ fmul a e 6= fmul b e) by

blast
let ?S = singleton-matrix I 0 e
let ?comp = mult-matrix fmul fadd
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have d: !!x f g. f = g =⇒ f x = g x by blast
have e: (λx. fmul x e) 0 = 0 by (simp add: assms)
have Rep-matrix (apply-matrix (λx. fmul x e) (column-of-matrix A I )) 6=

Rep-matrix (apply-matrix (λx. fmul x e) (column-of-matrix B I ))
using fprems
by (metis Rep-apply-matrix Rep-column-of-matrix eprops ne)

then have ?comp A ?S 6= ?comp B ?S
by (simp add: fprems eprops Rep-matrix-inject)

with contraprems show False by simp
qed

definition foldmatrix :: ( ′a ⇒ ′a ⇒ ′a) ⇒ ( ′a ⇒ ′a ⇒ ′a) ⇒ ( ′a infmatrix) ⇒
nat ⇒ nat ⇒ ′a where

foldmatrix f g A m n == foldseq-transposed g (λj. foldseq f (A j) n) m

definition foldmatrix-transposed :: ( ′a ⇒ ′a ⇒ ′a) ⇒ ( ′a ⇒ ′a ⇒ ′a) ⇒ ( ′a
infmatrix) ⇒ nat ⇒ nat ⇒ ′a where

foldmatrix-transposed f g A m n == foldseq g (λj. foldseq-transposed f (A j) n)
m

lemma foldmatrix-transpose:
assumes ∀ a b c d. g(f a b) (f c d) = f (g a c) (g b d)
shows foldmatrix f g A m n = foldmatrix-transposed g f (transpose-infmatrix A)

n m
proof −

have forall:
∧

P x. (∀ x. P x) =⇒ P x by auto
have tworows:∀A. foldmatrix f g A 1 n = foldmatrix-transposed g f (transpose-infmatrix

A) n 1
proof (induct n)

case 0
then show ?case

by (simp add: foldmatrix-def foldmatrix-transposed-def )
next

case (Suc n)
then show ?case

apply (clarsimp simp: foldmatrix-def foldmatrix-transposed-def assms)
apply (rule arg-cong [of concl: f -])
by meson

qed
have foldseq-transposed g (λj. foldseq f (A j) n) m =

foldseq f (λj. foldseq-transposed g (transpose-infmatrix A j) m) n
proof (induct m)

case 0
then show ?case by auto

next
case (Suc m)
then show ?case

using tworows
apply (drule-tac x=λj i. (if j = 0 then (foldseq-transposed g (λu. A u i) m)
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else (A (Suc m) i)) in spec)
by (simp add: Suc foldmatrix-def foldmatrix-transposed-def )

qed
then show foldmatrix f g A m n = foldmatrix-transposed g f (transpose-infmatrix

A) n m
by (simp add: foldmatrix-def foldmatrix-transposed-def )

qed

lemma foldseq-foldseq:
assumes associative f associative g ∀ a b c d. g(f a b) (f c d) = f (g a c) (g b d)
shows

foldseq g (λj. foldseq f (A j) n) m = foldseq f (λj. foldseq g ((transpose-infmatrix
A) j) m) n

using foldmatrix-transpose[of g f A m n]
by (simp add: foldmatrix-def foldmatrix-transposed-def foldseq-assoc[THEN sym]

assms)

lemma mult-n-nrows:
assumes ∀ a. fmul 0 a = 0 ∀ a. fmul a 0 = 0 fadd 0 0 = 0
shows nrows (mult-matrix-n n fmul fadd A B) ≤ nrows A
unfolding nrows-le mult-matrix-n-def
apply (subst RepAbs-matrix)

apply (rule-tac x=nrows A in exI )
apply (simp add: nrows assms foldseq-zero)

apply (rule-tac x=ncols B in exI )
apply (simp add: ncols assms foldseq-zero)

apply (simp add: nrows assms foldseq-zero)
done

lemma mult-n-ncols:
assumes ∀ a. fmul 0 a = 0 ∀ a. fmul a 0 = 0 fadd 0 0 = 0
shows ncols (mult-matrix-n n fmul fadd A B) ≤ ncols B
unfolding ncols-le mult-matrix-n-def
apply (subst RepAbs-matrix)

apply (rule-tac x=nrows A in exI )
apply (simp add: nrows assms foldseq-zero)

apply (rule-tac x=ncols B in exI )
apply (simp add: ncols assms foldseq-zero)

apply (simp add: ncols assms foldseq-zero)
done

lemma mult-nrows:
assumes
∀ a. fmul 0 a = 0
∀ a. fmul a 0 = 0
fadd 0 0 = 0

shows nrows (mult-matrix fmul fadd A B) ≤ nrows A
by (simp add: mult-matrix-def mult-n-nrows assms)
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lemma mult-ncols:
assumes
∀ a. fmul 0 a = 0
∀ a. fmul a 0 = 0
fadd 0 0 = 0

shows ncols (mult-matrix fmul fadd A B) ≤ ncols B
by (simp add: mult-matrix-def mult-n-ncols assms)

lemma nrows-move-matrix-le: nrows (move-matrix A j i) ≤ nat((int (nrows A))
+ j)

by (smt (verit) Rep-move-matrix int-nat-eq nrows nrows-le of-nat-le-iff )

lemma ncols-move-matrix-le: ncols (move-matrix A j i) ≤ nat((int (ncols A)) +
i)

by (metis nrows-move-matrix-le nrows-transpose transpose-move-matrix)

lemma mult-matrix-assoc:
assumes
∀ a. fmul1 0 a = 0
∀ a. fmul1 a 0 = 0
∀ a. fmul2 0 a = 0
∀ a. fmul2 a 0 = 0
fadd1 0 0 = 0
fadd2 0 0 = 0
∀ a b c d. fadd2 (fadd1 a b) (fadd1 c d) = fadd1 (fadd2 a c) (fadd2 b d)
associative fadd1
associative fadd2
∀ a b c. fmul2 (fmul1 a b) c = fmul1 a (fmul2 b c)
∀ a b c. fmul2 (fadd1 a b) c = fadd1 (fmul2 a c) (fmul2 b c)
∀ a b c. fmul1 c (fadd2 a b) = fadd2 (fmul1 c a) (fmul1 c b)
shows mult-matrix fmul2 fadd2 (mult-matrix fmul1 fadd1 A B) C = mult-matrix

fmul1 fadd1 A (mult-matrix fmul2 fadd2 B C )
proof −

have comb-left: !! A B x y. A = B =⇒ (Rep-matrix (Abs-matrix A)) x y =
(Rep-matrix(Abs-matrix B)) x y by blast

have fmul2fadd1fold: !! x s n. fmul2 (foldseq fadd1 s n) x = foldseq fadd1 (λk.
fmul2 (s k) x) n

by (rule-tac g1 = λy. fmul2 y x in ssubst [OF foldseq-distr-unary], insert assms,
simp-all)

have fmul1fadd2fold: !! x s n. fmul1 x (foldseq fadd2 s n) = foldseq fadd2 (λk.
fmul1 x (s k)) n

using assms by (rule-tac g1 = λy. fmul1 x y in ssubst [OF foldseq-distr-unary],
simp-all)

let ?N = max (ncols A) (max (ncols B) (max (nrows B) (nrows C )))
show ?thesis

apply (intro matrix-eqI )
apply (simp add: mult-matrix-def )
apply (simplesubst mult-matrix-nm[of - max (ncols (mult-matrix-n (max (ncols

A) (nrows B)) fmul1 fadd1 A B)) (nrows C ) - max (ncols B) (nrows C )])
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apply (simp add: max1 max2 mult-n-ncols mult-n-nrows assms)+
apply (simplesubst mult-matrix-nm[of - max (ncols A) (nrows (mult-matrix-n

(max (ncols B) (nrows C )) fmul2 fadd2 B C )) - max (ncols A) (nrows B)])
apply (simp add: max1 max2 mult-n-ncols mult-n-nrows assms)+

apply (simplesubst mult-matrix-nm[of - - - ?N ])
apply (simp add: max1 max2 mult-n-ncols mult-n-nrows assms)+

apply (simplesubst mult-matrix-nm[of - - - ?N ])
apply (simp add: max1 max2 mult-n-ncols mult-n-nrows assms)+

apply (simplesubst mult-matrix-nm[of - - - ?N ])
apply (simp add: max1 max2 mult-n-ncols mult-n-nrows assms)+

apply (simplesubst mult-matrix-nm[of - - - ?N ])
apply (simp add: max1 max2 mult-n-ncols mult-n-nrows assms)+

apply (simp add: mult-matrix-n-def )
apply (rule comb-left)
apply ((rule ext)+, simp)
apply (simplesubst RepAbs-matrix)

apply (rule exI [of - nrows B])
apply (simp add: nrows assms foldseq-zero)

apply (rule exI [of - ncols C ])
apply (simp add: assms ncols foldseq-zero)

apply (subst RepAbs-matrix)
apply (rule exI [of - nrows A])
apply (simp add: nrows assms foldseq-zero)

apply (rule exI [of - ncols B])
apply (simp add: assms ncols foldseq-zero)

apply (simp add: fmul2fadd1fold fmul1fadd2fold assms)
apply (subst foldseq-foldseq)

apply (simp add: assms)+
apply (simp add: transpose-infmatrix)
done

qed

lemma mult-matrix-assoc-simple:
assumes
∀ a. fmul 0 a = 0
∀ a. fmul a 0 = 0
associative fadd
commutative fadd
associative fmul
distributive fmul fadd
shows mult-matrix fmul fadd (mult-matrix fmul fadd A B) C = mult-matrix fmul

fadd A (mult-matrix fmul fadd B C )
by (smt (verit) assms associative-def commutative-def distributive-def l-distributive-def

mult-matrix-assoc r-distributive-def )

lemma transpose-apply-matrix: f 0 = 0 =⇒ transpose-matrix (apply-matrix f A)
= apply-matrix f (transpose-matrix A)

by (simp add: matrix-eqI )
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lemma transpose-combine-matrix: f 0 0 = 0 =⇒ transpose-matrix (combine-matrix
f A B) = combine-matrix f (transpose-matrix A) (transpose-matrix B)

by (simp add: matrix-eqI )

lemma Rep-mult-matrix:
assumes ∀ a. fmul 0 a = 0 ∀ a. fmul a 0 = 0 fadd 0 0 = 0
shows

Rep-matrix(mult-matrix fmul fadd A B) j i =
foldseq fadd (λk. fmul (Rep-matrix A j k) (Rep-matrix B k i)) (max (ncols A)

(nrows B))
using assms
apply (simp add: mult-matrix-def mult-matrix-n-def )
apply (subst RepAbs-matrix)

apply (rule exI [of - nrows A], simp add: nrows foldseq-zero)
apply (rule exI [of - ncols B], simp add: ncols foldseq-zero)

apply simp
done

lemma transpose-mult-matrix:
assumes
∀ a. fmul 0 a = 0
∀ a. fmul a 0 = 0
fadd 0 0 = 0
∀ x y. fmul y x = fmul x y
shows
transpose-matrix (mult-matrix fmul fadd A B) = mult-matrix fmul fadd (transpose-matrix

B) (transpose-matrix A)
using assms
by (simp add: matrix-eqI Rep-mult-matrix ac-simps)

lemma column-transpose-matrix: column-of-matrix (transpose-matrix A) n = trans-
pose-matrix (row-of-matrix A n)

by (simp add: matrix-eqI )

lemma take-columns-transpose-matrix: take-columns (transpose-matrix A) n =
transpose-matrix (take-rows A n)

by (simp add: matrix-eqI )

instantiation matrix :: ({zero, ord}) ord
begin

definition
le-matrix-def : A ≤ B ←→ (∀ j i. Rep-matrix A j i ≤ Rep-matrix B j i)

definition
less-def : A < (B:: ′a matrix) ←→ A ≤ B ∧ ¬ B ≤ A

instance ..
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end

instance matrix :: ({zero, order}) order
proof

fix x y z :: ′a matrix
assume x ≤ y y ≤ z
show x ≤ z

by (meson ‹x ≤ y› ‹y ≤ z› le-matrix-def order-trans)
next

fix x y :: ′a matrix
assume x ≤ y y ≤ x
show x = y

by (meson ‹x ≤ y› ‹y ≤ x› le-matrix-def matrix-eqI order-antisym)
qed (auto simp: less-def le-matrix-def )

lemma le-apply-matrix:
assumes
f 0 = 0
∀ x y. x ≤ y −→ f x ≤ f y
(a::( ′a::{ord, zero}) matrix) ≤ b
shows apply-matrix f a ≤ apply-matrix f b
using assms by (simp add: le-matrix-def )

lemma le-combine-matrix:
assumes
f 0 0 = 0
∀ a b c d. a ≤ b ∧ c ≤ d −→ f a c ≤ f b d
A ≤ B
C ≤ D
shows combine-matrix f A C ≤ combine-matrix f B D
using assms by (simp add: le-matrix-def )

lemma le-left-combine-matrix:
assumes
f 0 0 = 0
∀ a b c. a ≤ b −→ f c a ≤ f c b
A ≤ B
shows combine-matrix f C A ≤ combine-matrix f C B
using assms by (simp add: le-matrix-def )

lemma le-right-combine-matrix:
assumes
f 0 0 = 0
∀ a b c. a ≤ b −→ f a c ≤ f b c
A ≤ B
shows combine-matrix f A C ≤ combine-matrix f B C
using assms by (simp add: le-matrix-def )

lemma le-transpose-matrix: (A ≤ B) = (transpose-matrix A ≤ transpose-matrix
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B)
by (simp add: le-matrix-def , auto)

lemma le-foldseq:
assumes
∀ a b c d . a ≤ b ∧ c ≤ d −→ f a c ≤ f b d
∀ i. i ≤ n −→ s i ≤ t i
shows foldseq f s n ≤ foldseq f t n

proof −
have ∀ s t. (∀ i. i<=n −→ s i ≤ t i) −→ foldseq f s n ≤ foldseq f t n

by (induct n) (simp-all add: assms)
then show foldseq f s n ≤ foldseq f t n using assms by simp

qed

lemma le-left-mult:
assumes
∀ a b c d. a ≤ b ∧ c ≤ d −→ fadd a c ≤ fadd b d
∀ c a b. 0 ≤ c ∧ a ≤ b −→ fmul c a ≤ fmul c b
∀ a. fmul 0 a = 0
∀ a. fmul a 0 = 0
fadd 0 0 = 0
0 ≤ C
A ≤ B
shows mult-matrix fmul fadd C A ≤ mult-matrix fmul fadd C B
using assms
apply (auto simp: le-matrix-def Rep-mult-matrix)
apply (simplesubst foldseq-zerotail[of - - - max (ncols C ) (max (nrows A) (nrows

B))], simp-all add: nrows ncols max1 max2 )+
apply (rule le-foldseq)
apply (auto)
done

lemma le-right-mult:
assumes
∀ a b c d. a ≤ b ∧ c ≤ d −→ fadd a c ≤ fadd b d
∀ c a b. 0 ≤ c ∧ a ≤ b −→ fmul a c ≤ fmul b c
∀ a. fmul 0 a = 0
∀ a. fmul a 0 = 0
fadd 0 0 = 0
0 ≤ C
A ≤ B
shows mult-matrix fmul fadd A C ≤ mult-matrix fmul fadd B C
using assms
apply (auto simp: le-matrix-def Rep-mult-matrix)
apply (simplesubst foldseq-zerotail[of - - - max (nrows C ) (max (ncols A) (ncols

B))], simp-all add: nrows ncols max1 max2 )+
apply (rule le-foldseq)
apply (auto)
done
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lemma spec2 : ∀ j i. P j i =⇒ P j i by blast

lemma singleton-matrix-le[simp]: (singleton-matrix j i a ≤ singleton-matrix j i b)
= (a ≤ (b::-::order))

by (auto simp: le-matrix-def )

lemma singleton-le-zero[simp]: (singleton-matrix j i x ≤ 0 ) = (x ≤ (0 :: ′a::{order ,zero}))
by (metis singleton-matrix-le singleton-matrix-zero)

lemma singleton-ge-zero[simp]: (0 ≤ singleton-matrix j i x) = ((0 :: ′a::{order ,zero})
≤ x)

by (metis singleton-matrix-le singleton-matrix-zero)

lemma move-matrix-le-zero[simp]:
fixes A:: ′a::{order ,zero} matrix
assumes 0 ≤ j 0 ≤ i
shows (move-matrix A j i ≤ 0 ) = (A ≤ 0 )

proof −
have Rep-matrix A j ′ i ′ ≤ 0

if ∀n m. ¬ int n < j ∧ ¬ int m < i −→ Rep-matrix A (nat (int n − j)) (nat
(int m − i)) ≤ 0

for j ′ i ′
using that[rule-format, of j ′ + nat j i ′ + nat i] by (simp add: assms)

then show ?thesis
by (auto simp: le-matrix-def )

qed

lemma move-matrix-zero-le[simp]:
fixes A:: ′a::{order ,zero} matrix
assumes 0 ≤ j 0 ≤ i
shows (0 ≤ move-matrix A j i) = (0 ≤ A)

proof −
have 0 ≤ Rep-matrix A j ′ i ′

if ∀n m. ¬ int n < j ∧ ¬ int m < i −→ 0 ≤ Rep-matrix A (nat (int n − j))
(nat (int m − i))

for j ′ i ′
using that[rule-format, of j ′ + nat j i ′ + nat i] by (simp add: assms)

then show ?thesis
by (auto simp: le-matrix-def )

qed

lemma move-matrix-le-move-matrix-iff [simp]:
fixes A:: ′a::{order ,zero} matrix
assumes 0 ≤ j 0 ≤ i
shows (move-matrix A j i ≤ move-matrix B j i) = (A ≤ B)

proof −
have Rep-matrix A j ′ i ′ ≤ Rep-matrix B j ′ i ′

if ∀n m. ¬ int n < j ∧ ¬ int m < i −→ Rep-matrix A (nat (int n − j)) (nat
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(int m − i)) ≤ Rep-matrix B (nat (int n − j)) (nat (int m − i))
for j ′ i ′
using that[rule-format, of j ′ + nat j i ′ + nat i] by (simp add: assms)

then show ?thesis
by (auto simp: le-matrix-def )

qed

instantiation matrix :: ({lattice, zero}) lattice
begin

definition inf = combine-matrix inf

definition sup = combine-matrix sup

instance
by standard (auto simp: le-infI le-matrix-def inf-matrix-def sup-matrix-def )

end

instantiation matrix :: ({plus, zero}) plus
begin

definition
plus-matrix-def : A + B = combine-matrix (+) A B

instance ..

end

instantiation matrix :: ({uminus, zero}) uminus
begin

definition
minus-matrix-def : − A = apply-matrix uminus A

instance ..

end

instantiation matrix :: ({minus, zero}) minus
begin

definition
diff-matrix-def : A − B = combine-matrix (−) A B

instance ..

end
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instantiation matrix :: ({plus, times, zero}) times
begin

definition
times-matrix-def : A ∗ B = mult-matrix ((∗)) (+) A B

instance ..

end

instantiation matrix :: ({lattice, uminus, zero}) abs
begin

definition
abs-matrix-def : |A :: ′a matrix| = sup A (− A)

instance ..

end

instance matrix :: (monoid-add) monoid-add
proof

fix A B C :: ′a matrix
show A + B + C = A + (B + C )

by (simp add: add.assoc matrix-eqI plus-matrix-def )
show 0 + A = A

by (simp add: matrix-eqI plus-matrix-def )
show A + 0 = A

by (simp add: matrix-eqI plus-matrix-def )
qed

instance matrix :: (comm-monoid-add) comm-monoid-add
proof

fix A B :: ′a matrix
show A + B = B + A

by (simp add: add.commute matrix-eqI plus-matrix-def )
show 0 + A = A

by (simp add: plus-matrix-def matrix-eqI )
qed

instance matrix :: (group-add) group-add
proof

fix A B :: ′a matrix
show − A + A = 0

by (simp add: plus-matrix-def minus-matrix-def matrix-eqI )
show A + − B = A − B

by (simp add: plus-matrix-def diff-matrix-def minus-matrix-def matrix-eqI )
qed
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instance matrix :: (ab-group-add) ab-group-add
proof

fix A B :: ′a matrix
show − A + A = 0

by (simp add: plus-matrix-def minus-matrix-def matrix-eqI )
show A − B = A + − B

by (simp add: plus-matrix-def diff-matrix-def minus-matrix-def matrix-eqI )
qed

instance matrix :: (ordered-ab-group-add) ordered-ab-group-add
proof

fix A B C :: ′a matrix
assume A ≤ B
then show C + A ≤ C + B

by (simp add: le-matrix-def plus-matrix-def )
qed

instance matrix :: (lattice-ab-group-add) semilattice-inf-ab-group-add ..
instance matrix :: (lattice-ab-group-add) semilattice-sup-ab-group-add ..

instance matrix :: (semiring-0 ) semiring-0
proof

fix A B C :: ′a matrix
show A ∗ B ∗ C = A ∗ (B ∗ C )

unfolding times-matrix-def
by (smt (verit, best) add.assoc associative-def distrib-left distrib-right group-cancel.add2

mult.assoc mult-matrix-assoc mult-not-zero)
show (A + B) ∗ C = A ∗ C + B ∗ C

unfolding times-matrix-def plus-matrix-def
using l-distributive-matrix
by (metis (full-types) add.assoc add.commute associative-def commutative-def

distrib-right l-distributive-def mult-not-zero)
show A ∗ (B + C ) = A ∗ B + A ∗ C

unfolding times-matrix-def plus-matrix-def
using r-distributive-matrix
by (metis (no-types, lifting) add.assoc add.commute associative-def commuta-

tive-def distrib-left mult-zero-left mult-zero-right r-distributive-def )
qed (auto simp: times-matrix-def )

instance matrix :: (ring) ring ..

instance matrix :: (ordered-ring) ordered-ring
proof

fix A B C :: ′a matrix
assume §: A ≤ B 0 ≤ C
from § show C ∗ A ≤ C ∗ B

by (simp add: times-matrix-def add-mono le-left-mult mult-left-mono)
from § show A ∗ C ≤ B ∗ C

by (simp add: times-matrix-def add-mono le-right-mult mult-right-mono)
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qed

instance matrix :: (lattice-ring) lattice-ring
proof

fix A B C :: ( ′a :: lattice-ring) matrix
show |A| = sup A (−A)

by (simp add: abs-matrix-def )
qed

instance matrix :: (lattice-ab-group-add-abs) lattice-ab-group-add-abs
proof

show
∧

a:: ′a matrix. |a| = sup a (− a)
by (simp add: abs-matrix-def )

qed

lemma Rep-matrix-add[simp]:
Rep-matrix ((a::( ′a::monoid-add)matrix)+b) j i = (Rep-matrix a j i) + (Rep-matrix

b j i)
by (simp add: plus-matrix-def )

lemma Rep-matrix-mult: Rep-matrix ((a::( ′a::semiring-0 ) matrix) ∗ b) j i =
foldseq (+) (λk. (Rep-matrix a j k) ∗ (Rep-matrix b k i)) (max (ncols a) (nrows

b))
by (simp add: times-matrix-def Rep-mult-matrix)

lemma apply-matrix-add: ∀ x y. f (x+y) = (f x) + (f y) =⇒ f 0 = (0 :: ′a)
=⇒ apply-matrix f ((a::( ′a::monoid-add) matrix) + b) = (apply-matrix f a) +

(apply-matrix f b)
by (simp add: matrix-eqI )

lemma singleton-matrix-add: singleton-matrix j i ((a::-::monoid-add)+b) = (singleton-matrix
j i a) + (singleton-matrix j i b)

by (simp add: matrix-eqI )

lemma nrows-mult: nrows ((A::( ′a::semiring-0 ) matrix) ∗ B) ≤ nrows A
by (simp add: times-matrix-def mult-nrows)

lemma ncols-mult: ncols ((A::( ′a::semiring-0 ) matrix) ∗ B) ≤ ncols B
by (simp add: times-matrix-def mult-ncols)

definition
one-matrix :: nat ⇒ ( ′a::{zero,one}) matrix where
one-matrix n = Abs-matrix (λj i. if j = i ∧ j < n then 1 else 0 )

lemma Rep-one-matrix[simp]: Rep-matrix (one-matrix n) j i = (if (j = i ∧ j <
n) then 1 else 0 )

unfolding one-matrix-def
by (smt (verit, del-insts) RepAbs-matrix not-le)
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lemma nrows-one-matrix[simp]: nrows ((one-matrix n) :: ( ′a::zero-neq-one)matrix)
= n (is ?r = -)
proof −

have ?r ≤ n by (simp add: nrows-le)
moreover have n ≤ ?r by (simp add:le-nrows, arith)
ultimately show ?r = n by simp

qed

lemma ncols-one-matrix[simp]: ncols ((one-matrix n) :: ( ′a::zero-neq-one)matrix)
= n (is ?r = -)
proof −

have ?r ≤ n by (simp add: ncols-le)
moreover have n ≤ ?r by (simp add: le-ncols, arith)
ultimately show ?r = n by simp

qed

lemma one-matrix-mult-right[simp]:
fixes A :: ( ′a::semiring-1 ) matrix
shows ncols A ≤ n =⇒ A ∗ (one-matrix n) = A
apply (intro matrix-eqI )
apply (simp add: times-matrix-def Rep-mult-matrix)
apply (subst foldseq-almostzero, auto simp: ncols)
done

lemma one-matrix-mult-left[simp]:
fixes A :: ( ′a::semiring-1 ) matrix
shows nrows A ≤ n =⇒ (one-matrix n) ∗ A = A
apply (intro matrix-eqI )
apply (simp add: times-matrix-def Rep-mult-matrix)
apply (subst foldseq-almostzero, auto simp: nrows)
done

lemma transpose-matrix-mult:
fixes A :: ( ′a::comm-ring) matrix
shows transpose-matrix (A∗B) = (transpose-matrix B) ∗ (transpose-matrix A)
by (simp add: times-matrix-def transpose-mult-matrix mult.commute)

lemma transpose-matrix-add:
fixes A :: ( ′a::monoid-add) matrix
shows transpose-matrix (A+B) = transpose-matrix A + transpose-matrix B
by (simp add: plus-matrix-def transpose-combine-matrix)

lemma transpose-matrix-diff :
fixes A :: ( ′a::group-add) matrix
shows transpose-matrix (A−B) = transpose-matrix A − transpose-matrix B
by (simp add: diff-matrix-def transpose-combine-matrix)

lemma transpose-matrix-minus:
fixes A :: ( ′a::group-add) matrix
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shows transpose-matrix (−A) = − transpose-matrix (A:: ′a matrix)
by (simp add: minus-matrix-def transpose-apply-matrix)

definition right-inverse-matrix :: ( ′a::{ring-1}) matrix ⇒ ′a matrix ⇒ bool where
right-inverse-matrix A X == (A ∗ X = one-matrix (max (nrows A) (ncols X)))
∧ nrows X ≤ ncols A

definition left-inverse-matrix :: ( ′a::{ring-1}) matrix ⇒ ′a matrix ⇒ bool where
left-inverse-matrix A X == (X ∗ A = one-matrix (max(nrows X) (ncols A))) ∧

ncols X ≤ nrows A

definition inverse-matrix :: ( ′a::{ring-1}) matrix ⇒ ′a matrix ⇒ bool where
inverse-matrix A X == (right-inverse-matrix A X) ∧ (left-inverse-matrix A X)

lemma right-inverse-matrix-dim: right-inverse-matrix A X =⇒ nrows A = ncols
X

using ncols-mult[of A X ] nrows-mult[of A X ]
by (simp add: right-inverse-matrix-def )

lemma left-inverse-matrix-dim: left-inverse-matrix A Y =⇒ ncols A = nrows Y
using ncols-mult[of Y A] nrows-mult[of Y A]
by (simp add: left-inverse-matrix-def )

lemma left-right-inverse-matrix-unique:
assumes left-inverse-matrix A Y right-inverse-matrix A X
shows X = Y

proof −
have Y = Y ∗ one-matrix (nrows A)

by (metis assms(1 ) left-inverse-matrix-def one-matrix-mult-right)
also have . . . = Y ∗ (A ∗ X)
by (metis assms(2 ) max.idem right-inverse-matrix-def right-inverse-matrix-dim)

also have . . . = (Y ∗ A) ∗ X by (simp add: mult.assoc)
also have . . . = X

using assms left-inverse-matrix-def right-inverse-matrix-def
by (metis left-inverse-matrix-dim max.idem one-matrix-mult-left)

ultimately show X = Y by (simp)
qed

lemma inverse-matrix-inject: [[ inverse-matrix A X ; inverse-matrix A Y ]] =⇒ X
= Y

by (auto simp: inverse-matrix-def left-right-inverse-matrix-unique)

lemma one-matrix-inverse: inverse-matrix (one-matrix n) (one-matrix n)
by (simp add: inverse-matrix-def left-inverse-matrix-def right-inverse-matrix-def )

lemma zero-imp-mult-zero: (a:: ′a::semiring-0 ) = 0 | b = 0 =⇒ a ∗ b = 0
by auto
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lemma Rep-matrix-zero-imp-mult-zero:
∀ j i k. (Rep-matrix A j k = 0 ) | (Rep-matrix B k i) = 0 =⇒ A ∗ B =

(0 ::( ′a::lattice-ring) matrix)
by (simp add: matrix-eqI Rep-matrix-mult foldseq-zero zero-imp-mult-zero)

lemma add-nrows: nrows (A::( ′a::monoid-add) matrix) ≤ u =⇒ nrows B ≤ u =⇒
nrows (A + B) ≤ u

by (simp add: nrows-le)

lemma move-matrix-row-mult:
fixes A :: ( ′a::semiring-0 ) matrix
shows move-matrix (A ∗ B) j 0 = (move-matrix A j 0 ) ∗ B

proof −
have

∧
m. ¬ int m < j =⇒ ncols (move-matrix A j 0 ) ≤ max (ncols A) (nrows

B)
by (smt (verit, best) max1 nat-int ncols-move-matrix-le)

then show ?thesis
apply (intro matrix-eqI )
apply (auto simp: Rep-matrix-mult foldseq-zero)
apply (rule-tac foldseq-zerotail[symmetric])

apply (auto simp: nrows zero-imp-mult-zero max2 )
done

qed

lemma move-matrix-col-mult:
fixes A :: ( ′a::semiring-0 ) matrix
shows move-matrix (A ∗ B) 0 i = A ∗ (move-matrix B 0 i)

proof −
have

∧
n. ¬ int n < i =⇒ nrows (move-matrix B 0 i) ≤ max (ncols A) (nrows

B)
by (smt (verit, del-insts) max2 nat-int nrows-move-matrix-le)

then show ?thesis
apply (intro matrix-eqI )
apply (auto simp: Rep-matrix-mult foldseq-zero)
apply (rule-tac foldseq-zerotail[symmetric])

apply (auto simp: ncols zero-imp-mult-zero max1 )
done

qed

lemma move-matrix-add: ((move-matrix (A + B) j i)::(( ′a::monoid-add) matrix))
= (move-matrix A j i) + (move-matrix B j i)

by (simp add: matrix-eqI )

lemma move-matrix-mult: move-matrix ((A::( ′a::semiring-0 ) matrix)∗B) j i =
(move-matrix A j 0 ) ∗ (move-matrix B 0 i)
by (simp add: move-matrix-ortho[of A∗B] move-matrix-col-mult move-matrix-row-mult)

definition scalar-mult :: ( ′a::ring) ⇒ ′a matrix ⇒ ′a matrix where
scalar-mult a m == apply-matrix ((∗) a) m
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lemma scalar-mult-zero[simp]: scalar-mult y 0 = 0
by (simp add: scalar-mult-def )

lemma scalar-mult-add: scalar-mult y (a+b) = (scalar-mult y a) + (scalar-mult y
b)

by (simp add: scalar-mult-def apply-matrix-add algebra-simps)

lemma Rep-scalar-mult[simp]: Rep-matrix (scalar-mult y a) j i = y ∗ (Rep-matrix
a j i)

by (simp add: scalar-mult-def )

lemma scalar-mult-singleton[simp]: scalar-mult y (singleton-matrix j i x) = sin-
gleton-matrix j i (y ∗ x)

by (simp add: scalar-mult-def )

lemma Rep-minus[simp]: Rep-matrix (−(A::-::group-add)) x y = − (Rep-matrix
A x y)

by (simp add: minus-matrix-def )

lemma Rep-abs[simp]: Rep-matrix |A::-::lattice-ab-group-add| x y = |Rep-matrix
A x y|

by (simp add: abs-lattice sup-matrix-def )

end

theory SparseMatrix
imports Matrix

begin

type-synonym ′a spvec = (nat ∗ ′a) list
type-synonym ′a spmat = ′a spvec spvec

definition sparse-row-vector :: ( ′a::ab-group-add) spvec ⇒ ′a matrix
where sparse-row-vector arr = foldl (% m x. m + (singleton-matrix 0 (fst x)

(snd x))) 0 arr

definition sparse-row-matrix :: ( ′a::ab-group-add) spmat ⇒ ′a matrix
where sparse-row-matrix arr = foldl (% m r . m + (move-matrix (sparse-row-vector

(snd r)) (int (fst r)) 0 )) 0 arr

code-datatype sparse-row-vector sparse-row-matrix

lemma sparse-row-vector-empty [simp]: sparse-row-vector [] = 0
by (simp add: sparse-row-vector-def )

lemma sparse-row-matrix-empty [simp]: sparse-row-matrix [] = 0
by (simp add: sparse-row-matrix-def )
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lemma [code]:
‹0 = sparse-row-vector []›
by simp

lemma foldl-distrstart: ∀ a x y. (f (g x y) a = g x (f y a)) =⇒ (foldl f (g x y) l =
g x (foldl f y l))

by (induct l arbitrary: x y, auto)

lemma sparse-row-vector-cons[simp]:
sparse-row-vector (a # arr) = (singleton-matrix 0 (fst a) (snd a)) + (sparse-row-vector

arr)
by (induct arr) (auto simp: foldl-distrstart sparse-row-vector-def )

lemma sparse-row-vector-append[simp]:
sparse-row-vector (a @ b) = (sparse-row-vector a) + (sparse-row-vector b)
by (induct a) auto

lemma nrows-spvec[simp]: nrows (sparse-row-vector x) ≤ (Suc 0 )
by (induct x) (auto simp: add-nrows)

lemma sparse-row-matrix-cons: sparse-row-matrix (a#arr) = ((move-matrix (sparse-row-vector
(snd a)) (int (fst a)) 0 )) + sparse-row-matrix arr

by (induct arr) (auto simp: foldl-distrstart sparse-row-matrix-def )

lemma sparse-row-matrix-append: sparse-row-matrix (arr@brr) = (sparse-row-matrix
arr) + (sparse-row-matrix brr)

by (induct arr) (auto simp: sparse-row-matrix-cons)

fun sorted-spvec :: ′a spvec ⇒ bool
where

sorted-spvec [] = True
| sorted-spvec-step1 : sorted-spvec [a] = True
| sorted-spvec-step: sorted-spvec ((m,x)#(n,y)#bs) = ((m < n) ∧ (sorted-spvec
((n,y)#bs)))

primrec sorted-spmat :: ′a spmat ⇒ bool
where

sorted-spmat [] = True
| sorted-spmat (a#as) = ((sorted-spvec (snd a)) ∧ (sorted-spmat as))

declare sorted-spvec.simps [simp del]

lemma sorted-spvec-empty[simp]: sorted-spvec [] = True
by (simp add: sorted-spvec.simps)

lemma sorted-spvec-cons1 : sorted-spvec (a#as) =⇒ sorted-spvec as
using sorted-spvec.elims(2 ) sorted-spvec-empty by blast
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lemma sorted-spvec-cons2 : sorted-spvec (a#b#t) =⇒ sorted-spvec (a#t)
by (smt (verit, del-insts) sorted-spvec-step order .strict-trans list.inject sorted-spvec.elims(3 )

surj-pair)

lemma sorted-spvec-cons3 : sorted-spvec(a#b#t) =⇒ fst a < fst b
by (metis sorted-spvec-step prod.collapse)

lemma sorted-sparse-row-vector-zero:
assumes m ≤ n
shows sorted-spvec ((n,a)#arr) =⇒ Rep-matrix (sparse-row-vector arr) j m =

0
proof (induct arr)

case Nil
then show ?case by auto

next
case (Cons a arr)
with assms show ?case

by (auto dest: sorted-spvec-cons2 sorted-spvec-cons3 )
qed

lemma sorted-sparse-row-matrix-zero[rule-format]:
assumes m ≤ n
shows sorted-spvec ((n,a)#arr) =⇒ Rep-matrix (sparse-row-matrix arr) m j =

0
proof (induct arr)

case Nil
then show ?case by auto

next
case (Cons a arr)
with assms show ?case

unfolding sparse-row-matrix-cons
by (auto dest: sorted-spvec-cons2 sorted-spvec-cons3 )

qed

primrec minus-spvec :: ( ′a::ab-group-add) spvec ⇒ ′a spvec
where

minus-spvec [] = []
| minus-spvec (a#as) = (fst a, −(snd a))#(minus-spvec as)

primrec abs-spvec :: ( ′a::lattice-ab-group-add-abs) spvec ⇒ ′a spvec
where

abs-spvec [] = []
| abs-spvec (a#as) = (fst a, |snd a|)#(abs-spvec as)

lemma sparse-row-vector-minus:
sparse-row-vector (minus-spvec v) = − (sparse-row-vector v)

proof (induct v)
case Nil
then show ?case
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by auto
next

case (Cons a v)
then have singleton-matrix 0 (fst a) (− snd a) = − singleton-matrix 0 (fst a)

(snd a)
by (simp add: Rep-matrix-inject minus-matrix-def )

then show ?case
by (simp add: local.Cons)

qed

lemma sparse-row-vector-abs:
sorted-spvec (v :: ′a::lattice-ring spvec) =⇒ sparse-row-vector (abs-spvec v) =
|sparse-row-vector v|
proof (induct v)

case Nil
then show ?case

by simp
next

case (Cons ab v)
then have v: sorted-spvec v

using sorted-spvec-cons1 by blast
show ?case
proof (cases ab)

case (Pair a b)
then have 0 : Rep-matrix (sparse-row-vector v) 0 a = 0

using Cons.prems sorted-sparse-row-vector-zero by blast
with v Cons show ?thesis

by (fastforce simp: Pair simp flip: Rep-matrix-inject)
qed

qed

lemma sorted-spvec-minus-spvec:
sorted-spvec v =⇒ sorted-spvec (minus-spvec v)
by (induct v rule: sorted-spvec.induct) (auto simp: sorted-spvec-step1 sorted-spvec-step)

lemma sorted-spvec-abs-spvec:
sorted-spvec v =⇒ sorted-spvec (abs-spvec v)
by (induct v rule: sorted-spvec.induct) (auto simp: sorted-spvec-step1 sorted-spvec-step)

definition smult-spvec y = map (% a. (fst a, y ∗ snd a))

lemma smult-spvec-empty[simp]: smult-spvec y [] = []
by (simp add: smult-spvec-def )

lemma smult-spvec-cons: smult-spvec y (a#arr) = (fst a, y ∗ (snd a)) # (smult-spvec
y arr)

by (simp add: smult-spvec-def )

fun addmult-spvec :: ( ′a::ring) ⇒ ′a spvec ⇒ ′a spvec ⇒ ′a spvec
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where
addmult-spvec y arr [] = arr
| addmult-spvec y [] brr = smult-spvec y brr
| addmult-spvec y ((i,a)#arr) ((j,b)#brr) = (

if i < j then ((i,a)#(addmult-spvec y arr ((j,b)#brr)))
else (if (j < i) then ((j, y ∗ b)#(addmult-spvec y ((i,a)#arr) brr))
else ((i, a + y∗b)#(addmult-spvec y arr brr))))

lemma addmult-spvec-empty1 [simp]: addmult-spvec y [] a = smult-spvec y a
by (induct a) auto

lemma addmult-spvec-empty2 [simp]: addmult-spvec y a [] = a
by simp

lemma sparse-row-vector-map: (∀ x y. f (x+y) = (f x) + (f y)) =⇒ (f :: ′a⇒( ′a::lattice-ring))
0 = 0 =⇒
sparse-row-vector (map (% x. (fst x, f (snd x))) a) = apply-matrix f (sparse-row-vector

a)
by (induct a) (simp-all add: apply-matrix-add)

lemma sparse-row-vector-smult: sparse-row-vector (smult-spvec y a) = scalar-mult
y (sparse-row-vector a)

by (induct a) (simp-all add: smult-spvec-cons scalar-mult-add)

lemma sparse-row-vector-addmult-spvec: sparse-row-vector (addmult-spvec (y:: ′a::lattice-ring)
a b) =
(sparse-row-vector a) + (scalar-mult y (sparse-row-vector b))
by (induct y a b rule: addmult-spvec.induct)
(simp-all add: scalar-mult-add smult-spvec-cons sparse-row-vector-smult single-

ton-matrix-add)

lemma sorted-smult-spvec: sorted-spvec a =⇒ sorted-spvec (smult-spvec y a)
by (induct a rule: sorted-spvec.induct) (auto simp: smult-spvec-def sorted-spvec-step1

sorted-spvec-step)

lemma sorted-spvec-addmult-spvec-helper : [[sorted-spvec (addmult-spvec y ((a, b)
# arr) brr); aa < a; sorted-spvec ((a, b) # arr);

sorted-spvec ((aa, ba) # brr)]] =⇒ sorted-spvec ((aa, y ∗ ba) # addmult-spvec y
((a, b) # arr) brr)

by (induct brr) (auto simp: sorted-spvec.simps)

lemma sorted-spvec-addmult-spvec-helper2 :
[[sorted-spvec (addmult-spvec y arr ((aa, ba) # brr)); a < aa; sorted-spvec ((a, b)
# arr); sorted-spvec ((aa, ba) # brr)]]

=⇒ sorted-spvec ((a, b) # addmult-spvec y arr ((aa, ba) # brr))
by (induct arr) (auto simp: smult-spvec-def sorted-spvec.simps)

lemma sorted-spvec-addmult-spvec-helper3 [rule-format]:
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sorted-spvec (addmult-spvec y arr brr) =⇒
sorted-spvec ((aa, b) # arr) =⇒

sorted-spvec ((aa, ba) # brr) =⇒
sorted-spvec ((aa, b + y ∗ ba) # (addmult-spvec y arr brr))

by (smt (verit, ccfv-threshold) sorted-spvec-step addmult-spvec.simps(1 ) list.distinct(1 )
list.sel(3 ) sorted-spvec.elims(1 ) sorted-spvec-addmult-spvec-helper2 )

lemma sorted-addmult-spvec: sorted-spvec a =⇒ sorted-spvec b =⇒ sorted-spvec
(addmult-spvec y a b)
proof (induct y a b rule: addmult-spvec.induct)

case (1 y arr)
then show ?case

by simp
next

case (2 y v va)
then show ?case

by (simp add: sorted-smult-spvec)
next

case (3 y i a arr j b brr)
show ?case
proof (cases i j rule: linorder-cases)

case less
with 3 show ?thesis

by (simp add: sorted-spvec-addmult-spvec-helper2 sorted-spvec-cons1 )
next

case equal
with 3 show ?thesis

by (simp add: sorted-spvec-addmult-spvec-helper3 sorted-spvec-cons1 )
next

case greater
with 3 show ?thesis

by (simp add: sorted-spvec-addmult-spvec-helper sorted-spvec-cons1 )
qed

qed

fun mult-spvec-spmat :: ( ′a::lattice-ring) spvec ⇒ ′a spvec ⇒ ′a spmat ⇒ ′a spvec
where

mult-spvec-spmat c [] brr = c
| mult-spvec-spmat c arr [] = c
| mult-spvec-spmat c ((i,a)#arr) ((j,b)#brr) = (

if (i < j) then mult-spvec-spmat c arr ((j,b)#brr)
else if (j < i) then mult-spvec-spmat c ((i,a)#arr) brr
else mult-spvec-spmat (addmult-spvec a c b) arr brr)

lemma sparse-row-mult-spvec-spmat:
assumes sorted-spvec (a::( ′a::lattice-ring) spvec) sorted-spvec B
shows sparse-row-vector (mult-spvec-spmat c a B) = (sparse-row-vector c) +

(sparse-row-vector a) ∗ (sparse-row-matrix B)
proof −
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have comp-1 : !! a b. a < b =⇒ Suc 0 ≤ nat ((int b)−(int a)) by arith
have not-iff : !! a b. a = b =⇒ (∼ a) = (∼ b) by simp
{

fix a
fix v :: (nat × ′a) list
assume a: a < nrows(sparse-row-vector v)
have nrows(sparse-row-vector v) ≤ 1 by simp
then have a = 0

using a dual-order .strict-trans1 by blast
}
note nrows-helper = this
show ?thesis

using assms
proof (induct c a B rule: mult-spvec-spmat.induct)

case (1 c brr)
then show ?case

by simp
next

case (2 c v va)
then show ?case

by simp
next

case (3 c i a arr j b brr)
then have abrr : sorted-spvec arr sorted-spvec brr

using sorted-spvec-cons1 by blast+
have

∧
m n. [[a 6= 0 ; 0 < m]]

=⇒ a ∗ Rep-matrix (sparse-row-vector b) m n = 0
by (metis mult-zero-right neq0-conv nrows-helper nrows-notzero)

then have †: scalar-mult a (sparse-row-vector b) =
singleton-matrix 0 j a ∗ move-matrix (sparse-row-vector b) (int j) 0

apply (intro matrix-eqI )
apply (simp)
apply (subst Rep-matrix-mult)
apply (subst foldseq-almostzero, auto)
done

show ?case
proof (cases i j rule: linorder-cases)

case less
with 3 abrr † show ?thesis
apply (simp add: algebra-simps sparse-row-matrix-cons Rep-matrix-zero-imp-mult-zero)
by (metis Rep-matrix-zero-imp-mult-zero Rep-singleton-matrix less-imp-le-nat

sorted-sparse-row-matrix-zero)
next

case equal
with 3 abrr † show ?thesis
apply (simp add: sparse-row-matrix-cons algebra-simps sparse-row-vector-addmult-spvec)

apply (subst Rep-matrix-zero-imp-mult-zero)
using sorted-sparse-row-matrix-zero apply fastforce
apply (subst Rep-matrix-zero-imp-mult-zero)
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apply (metis Rep-move-matrix comp-1 nrows-le nrows-spvec sorted-sparse-row-vector-zero
verit-comp-simplify1 (3 ))

apply simp
done

next
case greater
have Rep-matrix (sparse-row-vector arr) j ′ k = 0 ∨

Rep-matrix (move-matrix (sparse-row-vector b) (int j) 0 ) k
i ′ = 0

if sorted-spvec ((i, a) # arr) for j ′ i ′ k
proof (cases k ≤ j)

case True
with greater that show ?thesis

by (meson order .trans nat-less-le sorted-sparse-row-vector-zero)
qed (use nrows-helper nrows-notzero in force)
then have sparse-row-vector arr ∗ move-matrix (sparse-row-vector b) (int j)

0 = 0
using greater 3
by (simp add: Rep-matrix-zero-imp-mult-zero)

with greater 3 abrr show ?thesis
apply (simp add: algebra-simps sparse-row-matrix-cons)

by (metis Rep-matrix-zero-imp-mult-zero Rep-move-matrix Rep-singleton-matrix
comp-1 nrows-le nrows-spvec)

qed
qed

qed

lemma sorted-mult-spvec-spmat:
sorted-spvec (c::( ′a::lattice-ring) spvec) =⇒ sorted-spmat B =⇒ sorted-spvec (mult-spvec-spmat

c a B)
by (induct c a B rule: mult-spvec-spmat.induct) (simp-all add: sorted-addmult-spvec)

primrec mult-spmat :: ( ′a::lattice-ring) spmat ⇒ ′a spmat ⇒ ′a spmat
where

mult-spmat [] A = []
| mult-spmat (a#as) A = (fst a, mult-spvec-spmat [] (snd a) A)#(mult-spmat as
A)

lemma sparse-row-mult-spmat:
sorted-spmat A =⇒ sorted-spvec B =⇒
sparse-row-matrix (mult-spmat A B) = (sparse-row-matrix A) ∗ (sparse-row-matrix

B)
by (induct A) (auto simp: sparse-row-matrix-cons sparse-row-mult-spvec-spmat

algebra-simps move-matrix-mult)

lemma sorted-spvec-mult-spmat:
fixes A :: ( ′a::lattice-ring) spmat
shows sorted-spvec A =⇒ sorted-spvec (mult-spmat A B)

by (induct A rule: sorted-spvec.induct) (auto simp: sorted-spvec.simps)
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lemma sorted-spmat-mult-spmat:
sorted-spmat (B::( ′a::lattice-ring) spmat) =⇒ sorted-spmat (mult-spmat A B)
by (induct A) (auto simp: sorted-mult-spvec-spmat)

fun add-spvec :: ( ′a::lattice-ab-group-add) spvec ⇒ ′a spvec ⇒ ′a spvec
where

add-spvec arr [] = arr
| add-spvec [] brr = brr
| add-spvec ((i,a)#arr) ((j,b)#brr) = (

if i < j then (i,a)#(add-spvec arr ((j,b)#brr))
else if (j < i) then (j,b) # add-spvec ((i,a)#arr) brr
else (i, a+b) # add-spvec arr brr)

lemma add-spvec-empty1 [simp]: add-spvec [] a = a
by (cases a, auto)

lemma sparse-row-vector-add: sparse-row-vector (add-spvec a b) = (sparse-row-vector
a) + (sparse-row-vector b)

by (induct a b rule: add-spvec.induct) (simp-all add: singleton-matrix-add)

fun add-spmat :: ( ′a::lattice-ab-group-add) spmat ⇒ ′a spmat ⇒ ′a spmat
where

add-spmat [] bs = bs
| add-spmat as [] = as
| add-spmat ((i,a)#as) ((j,b)#bs) = (

if i < j then
(i,a) # add-spmat as ((j,b)#bs)

else if j < i then
(j,b) # add-spmat ((i,a)#as) bs

else
(i, add-spvec a b) # add-spmat as bs)

lemma add-spmat-Nil2 [simp]: add-spmat as [] = as
by(cases as) auto

lemma sparse-row-add-spmat: sparse-row-matrix (add-spmat A B) = (sparse-row-matrix
A) + (sparse-row-matrix B)
by (induct A B rule: add-spmat.induct) (auto simp: sparse-row-matrix-cons sparse-row-vector-add

move-matrix-add)

lemma [code]:
‹sparse-row-matrix A + sparse-row-matrix B = sparse-row-matrix (add-spmat A

B)›
‹sparse-row-vector a + sparse-row-vector b = sparse-row-vector (add-spvec a b)›
by (simp-all add: sparse-row-add-spmat sparse-row-vector-add)
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lemma sorted-add-spvec-helper1 [rule-format]: add-spvec ((a,b)#arr) brr = (ab,
bb) # list −→ (ab = a | (brr 6= [] & ab = fst (hd brr)))
proof −

have (∀ x ab a. x = (a,b)#arr −→ add-spvec x brr = (ab, bb) # list −→ (ab =
a | (ab = fst (hd brr))))

by (induct brr rule: add-spvec.induct) (auto split:if-splits)
then show ?thesis

by (case-tac brr , auto)
qed

lemma sorted-add-spmat-helper1 [rule-format]:
add-spmat ((a,b)#arr) brr = (ab, bb) # list =⇒ (ab = a | (brr 6= [] & ab = fst

(hd brr)))
by (smt (verit) add-spmat.elims fst-conv list.distinct(1 ) list.sel(1 ))

lemma sorted-add-spvec-helper : add-spvec arr brr = (ab, bb) # list =⇒ ((arr 6=
[] & ab = fst (hd arr)) | (brr 6= [] & ab = fst (hd brr)))

by (induct arr brr rule: add-spvec.induct) (auto split:if-splits)

lemma sorted-add-spmat-helper : add-spmat arr brr = (ab, bb) # list =⇒ ((arr 6=
[] & ab = fst (hd arr)) | (brr 6= [] & ab = fst (hd brr)))

by (induct arr brr rule: add-spmat.induct) (auto split:if-splits)

lemma add-spvec-commute: add-spvec a b = add-spvec b a
by (induct a b rule: add-spvec.induct) auto

lemma add-spmat-commute: add-spmat a b = add-spmat b a
by (induct a b rule: add-spmat.induct) (simp-all add: add-spvec-commute)

lemma sorted-add-spvec-helper2 : add-spvec ((a,b)#arr) brr = (ab, bb) # list =⇒
aa < a =⇒ sorted-spvec ((aa, ba) # brr) =⇒ aa < ab

by (smt (verit, best) add-spvec.elims fst-conv list.sel(1 ) sorted-spvec-cons3 )

lemma sorted-add-spmat-helper2 : add-spmat ((a,b)#arr) brr = (ab, bb) # list =⇒
aa < a =⇒ sorted-spvec ((aa, ba) # brr) =⇒ aa < ab

by (metis (no-types, opaque-lifting) add-spmat.simps(1 ) list.sel(1 ) neq-Nil-conv
sorted-add-spmat-helper sorted-spvec-cons3 )

lemma sorted-spvec-add-spvec: sorted-spvec a =⇒ sorted-spvec b =⇒ sorted-spvec
(add-spvec a b)
proof (induct a b rule: add-spvec.induct)

case (3 i a arr j b brr)
then have sorted-spvec arr sorted-spvec brr

using sorted-spvec-cons1 by blast+
with 3 show ?case

apply simp
by (smt (verit, ccfv-SIG) add-spvec.simps(2 ) list.sel(3 ) sorted-add-spvec-helper

sorted-spvec.elims(1 ))
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qed auto

lemma sorted-spvec-add-spmat:
sorted-spvec A =⇒ sorted-spvec B =⇒ sorted-spvec (add-spmat A B)

proof (induct A B rule: add-spmat.induct)
case (1 bs)
then show ?case by auto

next
case (2 v va)
then show ?case by auto

next
case (3 i a as j b bs)
then have sorted-spvec as sorted-spvec bs

using sorted-spvec-cons1 by blast+
with 3 show ?case

apply simp
by (smt (verit) Pair-inject add-spmat.elims list.discI list.inject sorted-spvec.elims(1 ))

qed

lemma sorted-spmat-add-spmat[rule-format]: sorted-spmat A =⇒ sorted-spmat B
=⇒ sorted-spmat (add-spmat A B)

by (induct A B rule: add-spmat.induct) (simp-all add: sorted-spvec-add-spvec)

fun le-spvec :: ( ′a::lattice-ab-group-add) spvec ⇒ ′a spvec ⇒ bool
where

le-spvec [] [] = True
| le-spvec ((-,a)#as) [] = (a ≤ 0 & le-spvec as [])
| le-spvec [] ((-,b)#bs) = (0 ≤ b & le-spvec [] bs)
| le-spvec ((i,a)#as) ((j,b)#bs) = (

if (i < j) then a ≤ 0 & le-spvec as ((j,b)#bs)
else if (j < i) then 0 ≤ b & le-spvec ((i,a)#as) bs
else a ≤ b & le-spvec as bs)

fun le-spmat :: ( ′a::lattice-ab-group-add) spmat ⇒ ′a spmat ⇒ bool
where

le-spmat [] [] = True
| le-spmat ((i,a)#as) [] = (le-spvec a [] & le-spmat as [])
| le-spmat [] ((j,b)#bs) = (le-spvec [] b & le-spmat [] bs)
| le-spmat ((i,a)#as) ((j,b)#bs) = (

if i < j then (le-spvec a [] & le-spmat as ((j,b)#bs))
else if j < i then (le-spvec [] b & le-spmat ((i,a)#as) bs)
else (le-spvec a b & le-spmat as bs))

definition disj-matrices :: ( ′a::zero) matrix ⇒ ′a matrix ⇒ bool where
disj-matrices A B ←→
(∀ j i. (Rep-matrix A j i 6= 0 ) −→ (Rep-matrix B j i = 0 )) & (∀ j i. (Rep-matrix

B j i 6= 0 ) −→ (Rep-matrix A j i = 0 ))
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lemma disj-matrices-contr1 : disj-matrices A B =⇒ Rep-matrix A j i 6= 0 =⇒
Rep-matrix B j i = 0

by (simp add: disj-matrices-def )

lemma disj-matrices-contr2 : disj-matrices A B =⇒ Rep-matrix B j i 6= 0 =⇒
Rep-matrix A j i = 0

by (simp add: disj-matrices-def )

lemma disj-matrices-add:
fixes A :: ( ′a::lattice-ab-group-add) matrix
shows disj-matrices A B =⇒ disj-matrices C D =⇒ disj-matrices A D

=⇒ disj-matrices B C =⇒ (A + B ≤ C + D) = (A ≤ C ∧ B ≤ D)
apply (intro iffI conjI )
unfolding le-matrix-def disj-matrices-def
apply (metis Rep-matrix-add group-cancel.rule0 order-refl)
apply (metis (no-types, lifting) Rep-matrix-add add-cancel-right-left dual-order .refl)
by (meson add-mono le-matrix-def )

lemma disj-matrices-zero1 [simp]: disj-matrices 0 B
by (simp add: disj-matrices-def )

lemma disj-matrices-zero2 [simp]: disj-matrices A 0
by (simp add: disj-matrices-def )

lemma disj-matrices-commute: disj-matrices A B = disj-matrices B A
by (auto simp: disj-matrices-def )

lemma disj-matrices-add-le-zero: disj-matrices A B =⇒
(A + B ≤ 0 ) = (A ≤ 0 & (B::( ′a::lattice-ab-group-add) matrix) ≤ 0 )
by (rule disj-matrices-add[of A B 0 0 , simplified])

lemma disj-matrices-add-zero-le: disj-matrices A B =⇒
(0 ≤ A + B) = (0 ≤ A & 0 ≤ (B::( ′a::lattice-ab-group-add) matrix))
by (rule disj-matrices-add[of 0 0 A B, simplified])

lemma disj-matrices-add-x-le: disj-matrices A B =⇒ disj-matrices B C =⇒
(A ≤ B + C ) = (A ≤ C & 0 ≤ (B::( ′a::lattice-ab-group-add) matrix))
by (auto simp: disj-matrices-add[of 0 A B C , simplified])

lemma disj-matrices-add-le-x: disj-matrices A B =⇒ disj-matrices B C =⇒
(B + A ≤ C ) = (A ≤ C & (B::( ′a::lattice-ab-group-add) matrix) ≤ 0 )
by (auto simp: disj-matrices-add[of B A 0 C ,simplified] disj-matrices-commute)

lemma disj-sparse-row-singleton: i ≤ j =⇒ sorted-spvec((j,y)#v) =⇒ disj-matrices
(sparse-row-vector v) (singleton-matrix 0 i x)

apply (simp add: disj-matrices-def )
using sorted-sparse-row-vector-zero by blast
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lemma disj-matrices-x-add: disj-matrices A B =⇒ disj-matrices A C =⇒ disj-matrices
(A::( ′a::lattice-ab-group-add) matrix) (B+C )

by (smt (verit, ccfv-SIG) Rep-matrix-add add-0 disj-matrices-def )

lemma disj-matrices-add-x: disj-matrices A B =⇒ disj-matrices A C =⇒ disj-matrices
(B+C ) (A::( ′a::lattice-ab-group-add) matrix)

by (simp add: disj-matrices-x-add disj-matrices-commute)

lemma disj-singleton-matrices[simp]: disj-matrices (singleton-matrix j i x) (singleton-matrix
u v y) = (j 6= u | i 6= v | x = 0 | y = 0 )

by (auto simp: disj-matrices-def )

lemma disj-move-sparse-vec-mat:
assumes j ≤ a and sorted-spvec ((a, c) # as)
shows disj-matrices (sparse-row-matrix as) (move-matrix (sparse-row-vector b)

(int j) i)
proof −

have Rep-matrix (sparse-row-vector b) (n−j) (nat (int m − i)) = 0
if ¬ n<j and nz: Rep-matrix (sparse-row-matrix as) n m 6= 0
for n m

proof −
have n 6= j

using assms sorted-sparse-row-matrix-zero nz by blast
with that have j < n by auto
then show ?thesis
by (metis One-nat-def Suc-diff-Suc nrows nrows-spvec plus-1-eq-Suc trans-le-add1 )

qed
then show ?thesis

by (auto simp: disj-matrices-def nat-minus-as-int)
qed

lemma disj-move-sparse-row-vector-twice:
j 6= u =⇒ disj-matrices (move-matrix (sparse-row-vector a) j i) (move-matrix

(sparse-row-vector b) u v)
unfolding disj-matrices-def
by (smt (verit, ccfv-SIG) One-nat-def Rep-move-matrix of-nat-1 le-nat-iff nrows

nrows-spvec of-nat-le-iff )

lemma le-spvec-iff-sparse-row-le:
sorted-spvec a =⇒ sorted-spvec b =⇒ (le-spvec a b) ←→ (sparse-row-vector a ≤

sparse-row-vector b)
proof (induct a b rule: le-spvec.induct)

case 1
then show ?case

by auto
next

case (2 uu a as)
then have sorted-spvec as

46



by (metis sorted-spvec-cons1 )
with 2 show ?case

apply (simp add: add.commute)
by (metis disj-matrices-add-le-zero disj-sparse-row-singleton le-refl singleton-le-zero)

next
case (3 uv b bs)
then have sorted-spvec bs

by (metis sorted-spvec-cons1 )
with 3 show ?case

apply (simp add: add.commute)
by (metis disj-matrices-add-zero-le disj-sparse-row-singleton le-refl singleton-ge-zero)

next
case (4 i a as j b bs)
then obtain §: sorted-spvec as sorted-spvec bs

by (metis sorted-spvec-cons1 )
show ?case
proof (cases i j rule: linorder-cases)

case less
with 4 § show ?thesis

apply (simp add: )
by (metis disj-matrices-add-le-x disj-matrices-add-x disj-matrices-commute

disj-singleton-matrices disj-sparse-row-singleton less-imp-le-nat singleton-le-zero not-le)
next

case equal
with 4 § show ?thesis

apply (simp add: )
by (metis disj-matrices-add disj-matrices-commute disj-sparse-row-singleton

order-refl singleton-matrix-le)
next

case greater
with 4 § show ?thesis

apply (simp add: )
by (metis disj-matrices-add-x disj-matrices-add-x-le disj-matrices-commute

disj-singleton-matrices disj-sparse-row-singleton le-refl order-less-le singleton-ge-zero)
qed

qed

lemma le-spvec-empty2-sparse-row:
sorted-spvec b =⇒ le-spvec b [] = (sparse-row-vector b ≤ 0 )
by (simp add: le-spvec-iff-sparse-row-le)

lemma le-spvec-empty1-sparse-row:
(sorted-spvec b) =⇒ (le-spvec [] b = (0 ≤ sparse-row-vector b))
by (simp add: le-spvec-iff-sparse-row-le)

lemma le-spmat-iff-sparse-row-le:
[[sorted-spvec A; sorted-spmat A; sorted-spvec B; sorted-spmat B]] =⇒
le-spmat A B = (sparse-row-matrix A ≤ sparse-row-matrix B)

proof (induct A B rule: le-spmat.induct)
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case (4 i a as j b bs)
then obtain §: sorted-spvec as sorted-spvec bs

by (metis sorted-spvec-cons1 )
show ?case
proof (cases i j rule: linorder-cases)

case less
with 4 § show ?thesis

apply (simp add: sparse-row-matrix-cons le-spvec-empty2-sparse-row)
by (metis disj-matrices-add-le-x disj-matrices-add-x disj-matrices-commute

disj-move-sparse-row-vector-twice disj-move-sparse-vec-mat int-eq-iff less-not-refl move-matrix-le-zero
order-le-less)

next
case equal
with 4 § show ?thesis
by (simp add: sparse-row-matrix-cons le-spvec-iff-sparse-row-le disj-matrices-commute

disj-move-sparse-vec-mat[OF order-refl] disj-matrices-add)
next

case greater
with 4 § show ?thesis

apply (simp add: sparse-row-matrix-cons le-spvec-empty1-sparse-row)
by (metis disj-matrices-add-x disj-matrices-add-x-le disj-matrices-commute

disj-move-sparse-row-vector-twice disj-move-sparse-vec-mat move-matrix-zero-le nat-int
nat-less-le of-nat-0-le-iff order-refl)

qed
qed (auto simp add: sparse-row-matrix-cons disj-matrices-add-le-zero disj-matrices-add-zero-le
disj-move-sparse-vec-mat[OF order-refl]

disj-matrices-commute sorted-spvec-cons1 le-spvec-empty2-sparse-row le-spvec-empty1-sparse-row)

primrec abs-spmat :: ( ′a::lattice-ring) spmat ⇒ ′a spmat
where

abs-spmat [] = []
| abs-spmat (a#as) = (fst a, abs-spvec (snd a))#(abs-spmat as)

primrec minus-spmat :: ( ′a::lattice-ring) spmat ⇒ ′a spmat
where

minus-spmat [] = []
| minus-spmat (a#as) = (fst a, minus-spvec (snd a))#(minus-spmat as)

lemma sparse-row-matrix-minus:
sparse-row-matrix (minus-spmat A) = − (sparse-row-matrix A)

proof (induct A)
case Nil
then show ?case by auto

next
case (Cons a A)
then show ?case

by (simp add: sparse-row-vector-minus sparse-row-matrix-cons matrix-eqI )
qed
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lemma Rep-sparse-row-vector-zero:
assumes x 6= 0

shows Rep-matrix (sparse-row-vector v) x y = 0
by (metis Suc-leI assms le0 le-eq-less-or-eq nrows-le nrows-spvec)

lemma sparse-row-matrix-abs:
sorted-spvec A =⇒ sorted-spmat A =⇒ sparse-row-matrix (abs-spmat A) = |sparse-row-matrix

A|
proof (induct A)

case Nil
then show ?case by auto

next
case (Cons ab A)
then have A: sorted-spvec A

using sorted-spvec-cons1 by blast
show ?case
proof (cases ab)

case (Pair a b)
show ?thesis

unfolding Pair
proof (intro matrix-eqI )

fix m n
show Rep-matrix (sparse-row-matrix (abs-spmat ((a,b) # A))) m n

= Rep-matrix |sparse-row-matrix ((a,b) # A)| m n
using Cons Pair A
apply (simp add: sparse-row-vector-abs sparse-row-matrix-cons)
apply (cases m=a)
using sorted-sparse-row-matrix-zero apply fastforce
by (simp add: Rep-sparse-row-vector-zero)

qed
qed

qed

lemma sorted-spvec-minus-spmat: sorted-spvec A =⇒ sorted-spvec (minus-spmat
A)
by (induct A rule: sorted-spvec.induct) (auto simp: sorted-spvec.simps)

lemma sorted-spvec-abs-spmat: sorted-spvec A =⇒ sorted-spvec (abs-spmat A)
by (induct A rule: sorted-spvec.induct) (auto simp: sorted-spvec.simps)

lemma sorted-spmat-minus-spmat: sorted-spmat A =⇒ sorted-spmat (minus-spmat
A)

by (induct A) (simp-all add: sorted-spvec-minus-spvec)

lemma sorted-spmat-abs-spmat: sorted-spmat A =⇒ sorted-spmat (abs-spmat A)
by (induct A) (simp-all add: sorted-spvec-abs-spvec)

definition diff-spmat :: ( ′a::lattice-ring) spmat ⇒ ′a spmat ⇒ ′a spmat
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where diff-spmat A B = add-spmat A (minus-spmat B)

lemma sorted-spmat-diff-spmat: sorted-spmat A =⇒ sorted-spmat B =⇒ sorted-spmat
(diff-spmat A B)

by (simp add: diff-spmat-def sorted-spmat-minus-spmat sorted-spmat-add-spmat)

lemma sorted-spvec-diff-spmat: sorted-spvec A =⇒ sorted-spvec B =⇒ sorted-spvec
(diff-spmat A B)

by (simp add: diff-spmat-def sorted-spvec-minus-spmat sorted-spvec-add-spmat)

lemma sparse-row-diff-spmat: sparse-row-matrix (diff-spmat A B ) = (sparse-row-matrix
A) − (sparse-row-matrix B)

by (simp add: diff-spmat-def sparse-row-add-spmat sparse-row-matrix-minus)

definition sorted-sparse-matrix :: ′a spmat ⇒ bool
where sorted-sparse-matrix A ←→ sorted-spvec A & sorted-spmat A

lemma sorted-sparse-matrix-imp-spvec: sorted-sparse-matrix A =⇒ sorted-spvec A
by (simp add: sorted-sparse-matrix-def )

lemma sorted-sparse-matrix-imp-spmat: sorted-sparse-matrix A =⇒ sorted-spmat
A

by (simp add: sorted-sparse-matrix-def )

lemmas sorted-sp-simps =
sorted-spvec.simps
sorted-spmat.simps
sorted-sparse-matrix-def

lemma bool1 : (¬ True) = False by blast
lemma bool2 : (¬ False) = True by blast
lemma bool3 : ((P::bool) ∧ True) = P by blast
lemma bool4 : (True ∧ (P::bool)) = P by blast
lemma bool5 : ((P::bool) ∧ False) = False by blast
lemma bool6 : (False ∧ (P::bool)) = False by blast
lemma bool7 : ((P::bool) ∨ True) = True by blast
lemma bool8 : (True ∨ (P::bool)) = True by blast
lemma bool9 : ((P::bool) ∨ False) = P by blast
lemma bool10 : (False ∨ (P::bool)) = P by blast
lemmas boolarith = bool1 bool2 bool3 bool4 bool5 bool6 bool7 bool8 bool9 bool10

lemma if-case-eq: (if b then x else y) = (case b of True => x | False => y) by
simp

primrec pprt-spvec :: ( ′a::{lattice-ab-group-add}) spvec ⇒ ′a spvec
where

pprt-spvec [] = []
| pprt-spvec (a#as) = (fst a, pprt (snd a)) # (pprt-spvec as)
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primrec nprt-spvec :: ( ′a::{lattice-ab-group-add}) spvec ⇒ ′a spvec
where

nprt-spvec [] = []
| nprt-spvec (a#as) = (fst a, nprt (snd a)) # (nprt-spvec as)

primrec pprt-spmat :: ( ′a::{lattice-ab-group-add}) spmat ⇒ ′a spmat
where

pprt-spmat [] = []
| pprt-spmat (a#as) = (fst a, pprt-spvec (snd a))#(pprt-spmat as)

primrec nprt-spmat :: ( ′a::{lattice-ab-group-add}) spmat ⇒ ′a spmat
where

nprt-spmat [] = []
| nprt-spmat (a#as) = (fst a, nprt-spvec (snd a))#(nprt-spmat as)

lemma pprt-add: disj-matrices A (B::(-::lattice-ring) matrix) =⇒ pprt (A+B) =
pprt A + pprt B

apply (simp add: pprt-def sup-matrix-def )
apply (intro matrix-eqI )
by (smt (verit, del-insts) Rep-combine-matrix Rep-zero-matrix-def add.commute

comm-monoid-add-class.add-0 disj-matrices-def plus-matrix-def sup.idem)

lemma nprt-add: disj-matrices A (B::(-::lattice-ring) matrix) =⇒ nprt (A+B) =
nprt A + nprt B

unfolding nprt-def inf-matrix-def
apply (intro matrix-eqI )
by (smt (verit, ccfv-threshold) Rep-combine-matrix Rep-matrix-add add.commute

add-cancel-right-right add-eq-inf-sup disj-matrices-contr2 sup.idem)

lemma pprt-singleton[simp]:
fixes x:: -::lattice-ring
shows pprt (singleton-matrix j i x) = singleton-matrix j i (pprt x)
unfolding pprt-def sup-matrix-def
by (simp add: matrix-eqI )

lemma nprt-singleton[simp]:
fixes x:: -::lattice-ring
shows nprt (singleton-matrix j i x) = singleton-matrix j i (nprt x)
by (metis add-left-imp-eq pprt-singleton prts singleton-matrix-add)

lemma sparse-row-vector-pprt:
fixes v:: -::lattice-ring spvec
shows sorted-spvec v =⇒ sparse-row-vector (pprt-spvec v) = pprt (sparse-row-vector

v)
proof (induct v rule: sorted-spvec.induct)

case (3 m x n y bs)
then show ?case

apply simp
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apply (subst pprt-add)
apply (metis disj-matrices-commute disj-sparse-row-singleton order .refl fst-conv

prod.sel(2 ) sparse-row-vector-cons)
by (metis pprt-singleton sorted-spvec-cons1 )

qed auto

lemma sparse-row-vector-nprt:
fixes v:: -::lattice-ring spvec
shows sorted-spvec v =⇒ sparse-row-vector (nprt-spvec v) = nprt (sparse-row-vector

v)
proof (induct v rule: sorted-spvec.induct)

case (3 m x n y bs)
then show ?case

apply simp
apply (subst nprt-add)
apply (metis disj-matrices-commute disj-sparse-row-singleton dual-order .refl

fst-conv prod.sel(2 ) sparse-row-vector-cons)
using sorted-spvec-cons1 by force

qed auto

lemma pprt-move-matrix: pprt (move-matrix (A::( ′a::lattice-ring) matrix) j i) =
move-matrix (pprt A) j i

by (simp add: pprt-def sup-matrix-def matrix-eqI )

lemma nprt-move-matrix: nprt (move-matrix (A::( ′a::lattice-ring) matrix) j i) =
move-matrix (nprt A) j i

by (simp add: nprt-def inf-matrix-def matrix-eqI )

lemma sparse-row-matrix-pprt:
fixes m:: ′a::lattice-ring spmat
shows sorted-spvec m =⇒ sorted-spmat m =⇒ sparse-row-matrix (pprt-spmat

m) = pprt (sparse-row-matrix m)
proof (induct m rule: sorted-spvec.induct)

case (2 a)
then show ?case
by (simp add: pprt-move-matrix sparse-row-matrix-cons sparse-row-vector-pprt)

next
case (3 m x n y bs)
then show ?case

apply (simp add: sparse-row-matrix-cons sparse-row-vector-pprt)
apply (subst pprt-add)
apply (subst disj-matrices-commute)

apply (metis disj-move-sparse-vec-mat eq-imp-le fst-conv prod.sel(2 ) sparse-row-matrix-cons)
apply (simp add: sorted-spvec.simps pprt-move-matrix)
done

qed auto

lemma sparse-row-matrix-nprt:
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fixes m:: ′a::lattice-ring spmat
shows sorted-spvec m =⇒ sorted-spmat m =⇒ sorted-spmat m =⇒ sparse-row-matrix

(nprt-spmat m) = nprt (sparse-row-matrix m)
proof (induct m rule: sorted-spvec.induct)

case (2 a)
then show ?case
by (simp add: nprt-move-matrix sparse-row-matrix-cons sparse-row-vector-nprt)

next
case (3 m x n y bs)
then show ?case

apply (simp add: sparse-row-matrix-cons sparse-row-vector-nprt)
apply (subst nprt-add)
apply (subst disj-matrices-commute)

apply (metis disj-move-sparse-vec-mat fst-conv nle-le prod.sel(2 ) sparse-row-matrix-cons)
apply (simp add: sorted-spvec.simps nprt-move-matrix)
done

qed auto

lemma sorted-pprt-spvec: sorted-spvec v =⇒ sorted-spvec (pprt-spvec v)
proof (induct v rule: sorted-spvec.induct)

case 1
then show ?case by auto

next
case (2 a)
then show ?case

by (simp add: sorted-spvec-step1 )
next

case (3 m x n y bs)
then show ?case

by (simp add: sorted-spvec-step)
qed

lemma sorted-nprt-spvec: sorted-spvec v =⇒ sorted-spvec (nprt-spvec v)
by (induct v rule: sorted-spvec.induct) (simp-all add: sorted-spvec.simps split:list.split-asm)

lemma sorted-spvec-pprt-spmat: sorted-spvec m =⇒ sorted-spvec (pprt-spmat m)
by (induct m rule: sorted-spvec.induct) (simp-all add: sorted-spvec.simps split:list.split-asm)

lemma sorted-spvec-nprt-spmat: sorted-spvec m =⇒ sorted-spvec (nprt-spmat m)
by (induct m rule: sorted-spvec.induct) (simp-all add: sorted-spvec.simps split:list.split-asm)

lemma sorted-spmat-pprt-spmat: sorted-spmat m =⇒ sorted-spmat (pprt-spmat
m)

by (induct m) (simp-all add: sorted-pprt-spvec)

lemma sorted-spmat-nprt-spmat: sorted-spmat m =⇒ sorted-spmat (nprt-spmat
m)

by (induct m) (simp-all add: sorted-nprt-spvec)
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definition mult-est-spmat :: ( ′a::lattice-ring) spmat ⇒ ′a spmat ⇒ ′a spmat ⇒ ′a
spmat ⇒ ′a spmat where

mult-est-spmat r1 r2 s1 s2 =
add-spmat (mult-spmat (pprt-spmat s2 ) (pprt-spmat r2 )) (add-spmat (mult-spmat

(pprt-spmat s1 ) (nprt-spmat r2 ))
(add-spmat (mult-spmat (nprt-spmat s2 ) (pprt-spmat r1 )) (mult-spmat (nprt-spmat

s1 ) (nprt-spmat r1 ))))

lemmas sparse-row-matrix-op-simps =
sorted-sparse-matrix-imp-spmat sorted-sparse-matrix-imp-spvec
sparse-row-add-spmat sorted-spvec-add-spmat sorted-spmat-add-spmat
sparse-row-diff-spmat sorted-spvec-diff-spmat sorted-spmat-diff-spmat
sparse-row-matrix-minus sorted-spvec-minus-spmat sorted-spmat-minus-spmat
sparse-row-mult-spmat sorted-spvec-mult-spmat sorted-spmat-mult-spmat
sparse-row-matrix-abs sorted-spvec-abs-spmat sorted-spmat-abs-spmat
le-spmat-iff-sparse-row-le
sparse-row-matrix-pprt sorted-spvec-pprt-spmat sorted-spmat-pprt-spmat
sparse-row-matrix-nprt sorted-spvec-nprt-spmat sorted-spmat-nprt-spmat

lemmas sparse-row-matrix-arith-simps =
mult-spmat.simps mult-spvec-spmat.simps
addmult-spvec.simps
smult-spvec-empty smult-spvec-cons
add-spmat.simps add-spvec.simps
minus-spmat.simps minus-spvec.simps
abs-spmat.simps abs-spvec.simps
diff-spmat-def
le-spmat.simps le-spvec.simps
pprt-spmat.simps pprt-spvec.simps
nprt-spmat.simps nprt-spvec.simps
mult-est-spmat-def

end

theory LP
imports Main HOL−Library.Lattice-Algebras
begin

lemma le-add-right-mono:
assumes
a <= b + (c:: ′a::ordered-ab-group-add)
c <= d
shows a <= b + d
apply (rule-tac order-trans[where y = b+c])
apply (simp-all add: assms)
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done

lemma linprog-dual-estimate:
assumes
A ∗ x ≤ (b:: ′a::lattice-ring)
0 ≤ y
|A − A ′| ≤ δ-A
b ≤ b ′

|c − c ′| ≤ δ-c
|x| ≤ r
shows
c ∗ x ≤ y ∗ b ′ + (y ∗ δ-A + |y ∗ A ′ − c ′| + δ-c) ∗ r

proof −
from assms have 1 : y ∗ b <= y ∗ b ′ by (simp add: mult-left-mono)
from assms have 2 : y ∗ (A ∗ x) <= y ∗ b by (simp add: mult-left-mono)
have 3 : y ∗ (A ∗ x) = c ∗ x + (y ∗ (A − A ′) + (y ∗ A ′ − c ′) + (c ′−c)) ∗ x by

(simp add: algebra-simps)
from 1 2 3 have 4 : c ∗ x + (y ∗ (A − A ′) + (y ∗ A ′ − c ′) + (c ′−c)) ∗ x <=

y ∗ b ′ by simp
have 5 : c ∗ x <= y ∗ b ′ + |(y ∗ (A − A ′) + (y ∗ A ′ − c ′) + (c ′−c)) ∗ x|

by (simp only: 4 estimate-by-abs)
have 6 : |(y ∗ (A − A ′) + (y ∗ A ′ − c ′) + (c ′−c)) ∗ x| <= |y ∗ (A − A ′) + (y
∗ A ′ − c ′) + (c ′−c)| ∗ |x|

by (simp add: abs-le-mult)
have 7 : (|y ∗ (A − A ′) + (y ∗ A ′ − c ′) + (c ′−c)|) ∗ |x| <= (|y ∗ (A−A ′) +

(y∗A ′−c ′)| + |c ′ − c|) ∗ |x|
by(rule abs-triangle-ineq [THEN mult-right-mono]) simp

have 8 : (|y ∗ (A−A ′) + (y∗A ′−c ′)| + |c ′ − c|) ∗ |x| <= (|y ∗ (A−A ′)| +
|y∗A ′−c ′| + |c ′ − c|) ∗ |x|

by (simp add: abs-triangle-ineq mult-right-mono)
have 9 : (|y ∗ (A−A ′)| + |y∗A ′−c ′| + |c ′−c|) ∗ |x| <= (|y| ∗ |A−A ′| + |y∗A ′−c ′|

+ |c ′−c|) ∗ |x|
by (simp add: abs-le-mult mult-right-mono)

have 10 : c ′−c = −(c−c ′) by (simp add: algebra-simps)
have 11 : |c ′−c| = |c−c ′|

by (subst 10 , subst abs-minus-cancel, simp)
have 12 : (|y| ∗ |A−A ′| + |y∗A ′−c ′| + |c ′−c|) ∗ |x| <= (|y| ∗ |A−A ′| + |y∗A ′−c ′|

+ δ-c) ∗ |x|
by (simp add: 11 assms mult-right-mono)

have 13 : (|y| ∗ |A−A ′| + |y∗A ′−c ′| + δ-c) ∗ |x| <= (|y| ∗ δ-A + |y∗A ′−c ′| +
δ-c) ∗ |x|

by (simp add: assms mult-right-mono mult-left-mono)
have r : (|y| ∗ δ-A + |y∗A ′−c ′| + δ-c) ∗ |x| <= (|y| ∗ δ-A + |y∗A ′−c ′| + δ-c) ∗

r
apply (rule mult-left-mono)
apply (simp add: assms)
apply (rule-tac add-mono[of 0 :: ′a - 0 , simplified])+
apply (rule mult-left-mono[of 0 δ-A, simplified])
apply (simp-all)
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apply (rule order-trans[where y=|A−A ′|], simp-all add: assms)
apply (rule order-trans[where y=|c−c ′|], simp-all add: assms)
done

from 6 7 8 9 12 13 r have 14 : |(y ∗ (A − A ′) + (y ∗ A ′ − c ′) + (c ′−c)) ∗ x|
<= (|y| ∗ δ-A + |y∗A ′−c ′| + δ-c) ∗ r

by (simp)
show ?thesis

apply (rule le-add-right-mono[of - - |(y ∗ (A − A ′) + (y ∗ A ′ − c ′) + (c ′−c))
∗ x|])

apply (simp-all only: 5 14 [simplified abs-of-nonneg[of y, simplified assms]])
done

qed

lemma le-ge-imp-abs-diff-1 :
assumes
A1 <= (A:: ′a::lattice-ring)
A <= A2
shows |A−A1 | <= A2−A1

proof −
have 0 <= A − A1
proof −

from assms add-right-mono [of A1 A − A1 ] show ?thesis by simp
qed
then have |A−A1 | = A−A1 by (rule abs-of-nonneg)
with assms show |A−A1 | <= (A2−A1 ) by simp

qed

lemma mult-le-prts:
assumes
a1 <= (a:: ′a::lattice-ring)
a <= a2
b1 <= b
b <= b2
shows
a ∗ b <= pprt a2 ∗ pprt b2 + pprt a1 ∗ nprt b2 + nprt a2 ∗ pprt b1 + nprt a1
∗ nprt b1
proof −

have a ∗ b = (pprt a + nprt a) ∗ (pprt b + nprt b)
apply (subst prts[symmetric])+
apply simp
done

then have a ∗ b = pprt a ∗ pprt b + pprt a ∗ nprt b + nprt a ∗ pprt b + nprt
a ∗ nprt b

by (simp add: algebra-simps)
moreover have pprt a ∗ pprt b <= pprt a2 ∗ pprt b2

by (simp-all add: assms mult-mono)
moreover have pprt a ∗ nprt b <= pprt a1 ∗ nprt b2
proof −

have pprt a ∗ nprt b <= pprt a ∗ nprt b2
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by (simp add: mult-left-mono assms)
moreover have pprt a ∗ nprt b2 <= pprt a1 ∗ nprt b2

by (simp add: mult-right-mono-neg assms)
ultimately show ?thesis

by simp
qed
moreover have nprt a ∗ pprt b <= nprt a2 ∗ pprt b1
proof −

have nprt a ∗ pprt b <= nprt a2 ∗ pprt b
by (simp add: mult-right-mono assms)

moreover have nprt a2 ∗ pprt b <= nprt a2 ∗ pprt b1
by (simp add: mult-left-mono-neg assms)

ultimately show ?thesis
by simp

qed
moreover have nprt a ∗ nprt b <= nprt a1 ∗ nprt b1
proof −

have nprt a ∗ nprt b <= nprt a ∗ nprt b1
by (simp add: mult-left-mono-neg assms)

moreover have nprt a ∗ nprt b1 <= nprt a1 ∗ nprt b1
by (simp add: mult-right-mono-neg assms)

ultimately show ?thesis
by simp

qed
ultimately show ?thesis

by − (rule add-mono | simp)+
qed

lemma mult-le-dual-prts:
assumes
A ∗ x ≤ (b:: ′a::lattice-ring)
0 ≤ y
A1 ≤ A
A ≤ A2
c1 ≤ c
c ≤ c2
r1 ≤ x
x ≤ r2
shows
c ∗ x ≤ y ∗ b + (let s1 = c1 − y ∗ A2 ; s2 = c2 − y ∗ A1 in pprt s2 ∗ pprt r2

+ pprt s1 ∗ nprt r2 + nprt s2 ∗ pprt r1 + nprt s1 ∗ nprt r1 )
(is - <= - + ?C )

proof −
from assms have y ∗ (A ∗ x) <= y ∗ b by (simp add: mult-left-mono)
moreover have y ∗ (A ∗ x) = c ∗ x + (y ∗ A − c) ∗ x by (simp add: alge-

bra-simps)
ultimately have c ∗ x + (y ∗ A − c) ∗ x <= y ∗ b by simp
then have c ∗ x <= y ∗ b − (y ∗ A − c) ∗ x by (simp add: le-diff-eq)
then have cx: c ∗ x <= y ∗ b + (c − y ∗ A) ∗ x by (simp add: algebra-simps)
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have s2 : c − y ∗ A <= c2 − y ∗ A1
by (simp add: assms add-mono mult-left-mono algebra-simps)

have s1 : c1 − y ∗ A2 <= c − y ∗ A
by (simp add: assms add-mono mult-left-mono algebra-simps)

have prts: (c − y ∗ A) ∗ x <= ?C
apply (simp add: Let-def )
apply (rule mult-le-prts)
apply (simp-all add: assms s1 s2 )
done

then have y ∗ b + (c − y ∗ A) ∗ x <= y ∗ b + ?C
by simp

with cx show ?thesis
by(simp only:)

qed

end

1 Floating Point Representation of the Reals
theory ComputeFloat
imports Complex-Main HOL−Library.Lattice-Algebras
begin

ML-file ‹∼∼/src/Tools/float.ML›

definition int-of-real :: real ⇒ int
where int-of-real x = (SOME y. real-of-int y = x)

definition real-is-int :: real ⇒ bool
where real-is-int x = (∃ (u::int). x = real-of-int u)

lemma real-is-int-def2 : real-is-int x = (x = real-of-int (int-of-real x))
by (auto simp add: real-is-int-def int-of-real-def )

lemma real-is-int-real[simp]: real-is-int (real-of-int (x::int))
by (auto simp add: real-is-int-def int-of-real-def )

lemma int-of-real-real[simp]: int-of-real (real-of-int x) = x
by (simp add: int-of-real-def )

lemma real-int-of-real[simp]: real-is-int x =⇒ real-of-int (int-of-real x) = x
by (auto simp add: int-of-real-def real-is-int-def )

lemma real-is-int-add-int-of-real: real-is-int a =⇒ real-is-int b =⇒ (int-of-real
(a+b)) = (int-of-real a) + (int-of-real b)
by (auto simp add: int-of-real-def real-is-int-def )

58



lemma real-is-int-add[simp]: real-is-int a =⇒ real-is-int b =⇒ real-is-int (a+b)
apply (subst real-is-int-def2 )
apply (simp add: real-is-int-add-int-of-real real-int-of-real)
done

lemma int-of-real-sub: real-is-int a =⇒ real-is-int b =⇒ (int-of-real (a−b)) =
(int-of-real a) − (int-of-real b)
by (auto simp add: int-of-real-def real-is-int-def )

lemma real-is-int-sub[simp]: real-is-int a =⇒ real-is-int b =⇒ real-is-int (a−b)
apply (subst real-is-int-def2 )
apply (simp add: int-of-real-sub real-int-of-real)
done

lemma real-is-int-rep: real-is-int x =⇒ ∃ !(a::int). real-of-int a = x
by (auto simp add: real-is-int-def )

lemma int-of-real-mult:
assumes real-is-int a real-is-int b
shows (int-of-real (a∗b)) = (int-of-real a) ∗ (int-of-real b)
using assms
by (auto simp add: real-is-int-def of-int-mult[symmetric]

simp del: of-int-mult)

lemma real-is-int-mult[simp]: real-is-int a =⇒ real-is-int b =⇒ real-is-int (a∗b)
apply (subst real-is-int-def2 )
apply (simp add: int-of-real-mult)
done

lemma real-is-int-0 [simp]: real-is-int (0 ::real)
by (simp add: real-is-int-def int-of-real-def )

lemma real-is-int-1 [simp]: real-is-int (1 ::real)
proof −

have real-is-int (1 ::real) = real-is-int(real-of-int (1 ::int)) by auto
also have . . . = True by (simp only: real-is-int-real)
ultimately show ?thesis by auto

qed

lemma real-is-int-n1 : real-is-int (−1 ::real)
proof −

have real-is-int (−1 ::real) = real-is-int(real-of-int (−1 ::int)) by auto
also have . . . = True by (simp only: real-is-int-real)
ultimately show ?thesis by auto

qed

lemma real-is-int-numeral[simp]: real-is-int (numeral x)
by (auto simp: real-is-int-def intro!: exI [of - numeral x])
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lemma real-is-int-neg-numeral[simp]: real-is-int (− numeral x)
by (auto simp: real-is-int-def intro!: exI [of - − numeral x])

lemma int-of-real-0 [simp]: int-of-real (0 ::real) = (0 ::int)
by (simp add: int-of-real-def )

lemma int-of-real-1 [simp]: int-of-real (1 ::real) = (1 ::int)
proof −

have 1 : (1 ::real) = real-of-int (1 ::int) by auto
show ?thesis by (simp only: 1 int-of-real-real)

qed

lemma int-of-real-numeral[simp]: int-of-real (numeral b) = numeral b
unfolding int-of-real-def by simp

lemma int-of-real-neg-numeral[simp]: int-of-real (− numeral b) = − numeral b
unfolding int-of-real-def
by (metis int-of-real-def int-of-real-real of-int-minus of-int-of-nat-eq of-nat-numeral)

lemma int-div-zdiv: int (a div b) = (int a) div (int b)
by (rule zdiv-int)

lemma int-mod-zmod: int (a mod b) = (int a) mod (int b)
by (rule zmod-int)

lemma abs-div-2-less: a 6= 0 =⇒ a 6= −1 =⇒ |(a::int) div 2 | < |a|
by arith

lemma norm-0-1 : (1 ::-::numeral) = Numeral1
by auto

lemma add-left-zero: 0 + a = (a:: ′a::comm-monoid-add)
by simp

lemma add-right-zero: a + 0 = (a:: ′a::comm-monoid-add)
by simp

lemma mult-left-one: 1 ∗ a = (a:: ′a::semiring-1 )
by simp

lemma mult-right-one: a ∗ 1 = (a:: ′a::semiring-1 )
by simp

lemma int-pow-0 : (a::int)^0 = 1
by simp

lemma int-pow-1 : (a::int)^(Numeral1 ) = a
by simp
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lemma one-eq-Numeral1-nring: (1 :: ′a::numeral) = Numeral1
by simp

lemma one-eq-Numeral1-nat: (1 ::nat) = Numeral1
by simp

lemma zpower-Pls: (z::int)^0 = Numeral1
by simp

lemma fst-cong: a=a ′ =⇒ fst (a,b) = fst (a ′,b)
by simp

lemma snd-cong: b=b ′ =⇒ snd (a,b) = snd (a,b ′)
by simp

lemma lift-bool: x =⇒ x=True
by simp

lemma nlift-bool: ∼x =⇒ x=False
by simp

lemma not-false-eq-true: (∼ False) = True by simp

lemma not-true-eq-false: (∼ True) = False by simp

lemmas powerarith = nat-numeral power-numeral-even
power-numeral-odd zpower-Pls

definition float :: (int × int) ⇒ real where
float = (λ(a, b). real-of-int a ∗ 2 powr real-of-int b)

lemma float-add-l0 : float (0 , e) + x = x
by (simp add: float-def )

lemma float-add-r0 : x + float (0 , e) = x
by (simp add: float-def )

lemma float-add:
float (a1 , e1 ) + float (a2 , e2 ) =
(if e1<=e2 then float (a1+a2∗2^(nat(e2−e1 )), e1 ) else float (a1∗2^(nat (e1−e2 ))+a2 ,

e2 ))
by (simp add: float-def algebra-simps powr-realpow[symmetric] powr-diff )

lemma float-mult-l0 : float (0 , e) ∗ x = float (0 , 0 )
by (simp add: float-def )

lemma float-mult-r0 : x ∗ float (0 , e) = float (0 , 0 )
by (simp add: float-def )
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lemma float-mult:
float (a1 , e1 ) ∗ float (a2 , e2 ) = (float (a1 ∗ a2 , e1 + e2 ))
by (simp add: float-def powr-add)

lemma float-minus:
− (float (a,b)) = float (−a, b)
by (simp add: float-def )

lemma zero-le-float:
(0 <= float (a,b)) = (0 <= a)
by (simp add: float-def zero-le-mult-iff )

lemma float-le-zero:
(float (a,b) <= 0 ) = (a <= 0 )
by (simp add: float-def mult-le-0-iff )

lemma float-abs:
|float (a,b)| = (if 0 <= a then (float (a,b)) else (float (−a,b)))
by (simp add: float-def abs-if mult-less-0-iff not-less)

lemma float-zero:
float (0 , b) = 0
by (simp add: float-def )

lemma float-pprt:
pprt (float (a, b)) = (if 0 <= a then (float (a,b)) else (float (0 , b)))
by (auto simp add: zero-le-float float-le-zero float-zero)

lemma float-nprt:
nprt (float (a, b)) = (if 0 <= a then (float (0 ,b)) else (float (a, b)))
by (auto simp add: zero-le-float float-le-zero float-zero)

definition lbound :: real ⇒ real
where lbound x = min 0 x

definition ubound :: real ⇒ real
where ubound x = max 0 x

lemma lbound: lbound x ≤ x
by (simp add: lbound-def )

lemma ubound: x ≤ ubound x
by (simp add: ubound-def )

lemma pprt-lbound: pprt (lbound x) = float (0 , 0 )
by (auto simp: float-def lbound-def )

lemma nprt-ubound: nprt (ubound x) = float (0 , 0 )
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by (auto simp: float-def ubound-def )

lemmas floatarith[simplified norm-0-1 ] = float-add float-add-l0 float-add-r0 float-mult
float-mult-l0 float-mult-r0

float-minus float-abs zero-le-float float-pprt float-nprt pprt-lbound nprt-ubound

lemmas arith = arith-simps rel-simps diff-nat-numeral nat-0
nat-neg-numeral powerarith floatarith not-false-eq-true not-true-eq-false

ML-file ‹float-arith.ML›

end

theory Compute-Oracle imports HOL.HOL
begin

ML-file ‹am.ML›
ML-file ‹am-compiler .ML›
ML-file ‹am-interpreter .ML›
ML-file ‹am-ghc.ML›
ML-file ‹am-sml.ML›
ML-file ‹report.ML›
ML-file ‹compute.ML›
ML-file ‹linker .ML›

end
theory ComputeHOL
imports Complex-Main Compute-Oracle/Compute-Oracle
begin

lemma Trueprop-eq-eq: Trueprop X == (X == True) by (simp add: atomize-eq)
lemma meta-eq-trivial: x == y =⇒ x == y by simp
lemma meta-eq-imp-eq: x == y =⇒ x = y by auto
lemma eq-trivial: x = y =⇒ x = y by auto
lemma bool-to-true: x :: bool =⇒ x == True by simp
lemma transmeta-1 : x = y =⇒ y == z =⇒ x = z by simp
lemma transmeta-2 : x == y =⇒ y = z =⇒ x = z by simp
lemma transmeta-3 : x == y =⇒ y == z =⇒ x = z by simp

lemma If-True: If True = (λ x y. x) by ((rule ext)+,auto)
lemma If-False: If False = (λ x y. y) by ((rule ext)+, auto)

lemmas compute-if = If-True If-False

63



lemma bool1 : (¬ True) = False by blast
lemma bool2 : (¬ False) = True by blast
lemma bool3 : (P ∧ True) = P by blast
lemma bool4 : (True ∧ P) = P by blast
lemma bool5 : (P ∧ False) = False by blast
lemma bool6 : (False ∧ P) = False by blast
lemma bool7 : (P ∨ True) = True by blast
lemma bool8 : (True ∨ P) = True by blast
lemma bool9 : (P ∨ False) = P by blast
lemma bool10 : (False ∨ P) = P by blast
lemma bool11 : (True −→ P) = P by blast
lemma bool12 : (P −→ True) = True by blast
lemma bool13 : (True −→ P) = P by blast
lemma bool14 : (P −→ False) = (¬ P) by blast
lemma bool15 : (False −→ P) = True by blast
lemma bool16 : (False = False) = True by blast
lemma bool17 : (True = True) = True by blast
lemma bool18 : (False = True) = False by blast
lemma bool19 : (True = False) = False by blast

lemmas compute-bool = bool1 bool2 bool3 bool4 bool5 bool6 bool7 bool8 bool9 bool10
bool11 bool12 bool13 bool14 bool15 bool16 bool17 bool18 bool19

lemma compute-fst: fst (x,y) = x by simp
lemma compute-snd: snd (x,y) = y by simp
lemma compute-pair-eq: ((a, b) = (c, d)) = (a = c ∧ b = d) by auto

lemma case-prod-simp: case-prod f (x,y) = f x y by simp

lemmas compute-pair = compute-fst compute-snd compute-pair-eq case-prod-simp

lemma compute-the: the (Some x) = x by simp
lemma compute-None-Some-eq: (None = Some x) = False by auto
lemma compute-Some-None-eq: (Some x = None) = False by auto
lemma compute-None-None-eq: (None = None) = True by auto
lemma compute-Some-Some-eq: (Some x = Some y) = (x = y) by auto

definition case-option-compute :: ′b option ⇒ ′a ⇒ ( ′b ⇒ ′a) ⇒ ′a
where case-option-compute opt a f = case-option a f opt

lemma case-option-compute: case-option = (λ a f opt. case-option-compute opt a
f )
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by (simp add: case-option-compute-def )

lemma case-option-compute-None: case-option-compute None = (λ a f . a)
apply (rule ext)+
apply (simp add: case-option-compute-def )
done

lemma case-option-compute-Some: case-option-compute (Some x) = (λ a f . f x)
apply (rule ext)+
apply (simp add: case-option-compute-def )
done

lemmas compute-case-option = case-option-compute case-option-compute-None case-option-compute-Some

lemmas compute-option = compute-the compute-None-Some-eq compute-Some-None-eq
compute-None-None-eq compute-Some-Some-eq compute-case-option

lemma length-cons:length (x#xs) = 1 + (length xs)
by simp

lemma length-nil: length [] = 0
by simp

lemmas compute-list-length = length-nil length-cons

definition case-list-compute :: ′b list ⇒ ′a ⇒ ( ′b ⇒ ′b list ⇒ ′a) ⇒ ′a
where case-list-compute l a f = case-list a f l

lemma case-list-compute: case-list = (λ (a:: ′a) f (l:: ′b list). case-list-compute l a
f )

apply (rule ext)+
apply (simp add: case-list-compute-def )
done

lemma case-list-compute-empty: case-list-compute ([]:: ′b list) = (λ (a:: ′a) f . a)
apply (rule ext)+
apply (simp add: case-list-compute-def )
done

lemma case-list-compute-cons: case-list-compute (u#v) = (λ (a:: ′a) f . (f (u:: ′b)
v))

apply (rule ext)+
apply (simp add: case-list-compute-def )
done
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lemmas compute-case-list = case-list-compute case-list-compute-empty case-list-compute-cons

lemma compute-list-nth: ((x#xs) ! n) = (if n = 0 then x else (xs ! (n − 1 )))
by (cases n, auto)

lemmas compute-list = compute-case-list compute-list-length compute-list-nth

lemmas compute-let = Let-def

lemmas compute-hol = compute-if compute-bool compute-pair compute-option com-
pute-list compute-let

ML ‹
signature ComputeHOL =
sig

val prep-thms : thm list −> thm list
val to-meta-eq : thm −> thm
val to-hol-eq : thm −> thm
val symmetric : thm −> thm
val trans : thm −> thm −> thm

end

structure ComputeHOL : ComputeHOL =
struct

local
fun lhs-of eq = fst (Thm.dest-equals (Thm.cprop-of eq));
in
fun rewrite-conv [] ct = raise CTERM (rewrite-conv, [ct])
| rewrite-conv (eq :: eqs) ct =

Thm.instantiate (Thm.match (lhs-of eq, ct)) eq
handle Pattern.MATCH => rewrite-conv eqs ct;

end

val convert-conditions = Conv.fconv-rule (Conv.prems-conv ∼1 (Conv.try-conv (rewrite-conv
[@{thm Trueprop-eq-eq}])))

val eq-th = @{thm HOL.eq-reflection}
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val meta-eq-trivial = @{thm ComputeHOL.meta-eq-trivial}
val bool-to-true = @{thm ComputeHOL.bool-to-true}

fun to-meta-eq th = eq-th OF [th] handle THM - => meta-eq-trivial OF [th] handle
THM - => bool-to-true OF [th]

fun to-hol-eq th = @{thm meta-eq-imp-eq} OF [th] handle THM - => @{thm
eq-trivial} OF [th]

fun prep-thms ths = map (convert-conditions o to-meta-eq) ths

fun symmetric th = @{thm HOL.sym} OF [th] handle THM - => @{thm Pure.symmetric}
OF [th]

local
val trans-HOL = @{thm HOL.trans}
val trans-HOL-1 = @{thm ComputeHOL.transmeta-1}
val trans-HOL-2 = @{thm ComputeHOL.transmeta-2}
val trans-HOL-3 = @{thm ComputeHOL.transmeta-3}
fun tr [] th1 th2 = trans-HOL OF [th1 , th2 ]
| tr (t::ts) th1 th2 = (t OF [th1 , th2 ] handle THM - => tr ts th1 th2 )

in
fun trans th1 th2 = tr [trans-HOL, trans-HOL-1 , trans-HOL-2 , trans-HOL-3 ]

th1 th2
end

end
›

end
theory ComputeNumeral
imports ComputeHOL ComputeFloat
begin

lemmas biteq = eq-num-simps

lemmas bitless = less-num-simps

lemmas bitle = le-num-simps

lemmas bitadd = add-num-simps

lemmas bitmul = mult-num-simps
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lemmas bitarith = arith-simps

lemmas natnorm = one-eq-Numeral1-nat

fun natfac :: nat ⇒ nat
where natfac n = (if n = 0 then 1 else n ∗ (natfac (n − 1 )))

lemmas compute-natarith =
arith-simps rel-simps
diff-nat-numeral nat-numeral nat-0 nat-neg-numeral
numeral-One [symmetric]
numeral-1-eq-Suc-0 [symmetric]
Suc-numeral natfac.simps

lemmas number-norm = numeral-One[symmetric]

lemmas compute-numberarith =
arith-simps rel-simps number-norm

lemmas compute-num-conversions =
of-nat-numeral of-nat-0
nat-numeral nat-0 nat-neg-numeral
of-int-numeral of-int-neg-numeral of-int-0

lemmas zpowerarith = power-numeral-even power-numeral-odd zpower-Pls int-pow-1

lemmas compute-div-mod = div-0 mod-0 div-by-0 mod-by-0 div-by-1 mod-by-1
one-div-numeral one-mod-numeral minus-one-div-numeral minus-one-mod-numeral
one-div-minus-numeral one-mod-minus-numeral
numeral-div-numeral numeral-mod-numeral minus-numeral-div-numeral minus-numeral-mod-numeral
numeral-div-minus-numeral numeral-mod-minus-numeral
div-minus-minus mod-minus-minus Parity.adjust-div-eq of-bool-eq one-neq-zero
numeral-neq-zero neg-equal-0-iff-equal arith-simps arith-special divmod-trivial
divmod-steps divmod-cancel divmod-step-def fst-conv snd-conv numeral-One
case-prod-beta rel-simps Parity.adjust-mod-def div-minus1-right mod-minus1-right
minus-minus numeral-times-numeral mult-zero-right mult-1-right

lemma even-0-int: even (0 ::int) = True
by simp

lemma even-One-int: even (numeral Num.One :: int) = False
by simp
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lemma even-Bit0-int: even (numeral (Num.Bit0 x) :: int) = True
by (simp only: even-numeral)

lemma even-Bit1-int: even (numeral (Num.Bit1 x) :: int) = False
by (simp only: odd-numeral)

lemmas compute-even = even-0-int even-One-int even-Bit0-int even-Bit1-int

lemmas compute-numeral = compute-if compute-let compute-pair compute-bool
compute-natarith compute-numberarith max-def min-def

compute-num-conversions zpowerarith compute-div-mod compute-even

end

theory Cplex
imports SparseMatrix LP ComputeFloat ComputeNumeral
begin

ML-file ‹Cplex-tools.ML›
ML-file ‹CplexMatrixConverter .ML›
ML-file ‹FloatSparseMatrixBuilder .ML›
ML-file ‹fspmlp.ML›

lemma spm-mult-le-dual-prts:
assumes
sorted-sparse-matrix A1
sorted-sparse-matrix A2
sorted-sparse-matrix c1
sorted-sparse-matrix c2
sorted-sparse-matrix y
sorted-sparse-matrix r1
sorted-sparse-matrix r2
sorted-spvec b
le-spmat [] y
sparse-row-matrix A1 ≤ A
A ≤ sparse-row-matrix A2
sparse-row-matrix c1 ≤ c
c ≤ sparse-row-matrix c2
sparse-row-matrix r1 ≤ x
x ≤ sparse-row-matrix r2
A ∗ x ≤ sparse-row-matrix (b::( ′a::lattice-ring) spmat)
shows
c ∗ x ≤ sparse-row-matrix (add-spmat (mult-spmat y b)
(let s1 = diff-spmat c1 (mult-spmat y A2 ); s2 = diff-spmat c2 (mult-spmat y

A1 ) in
add-spmat (mult-spmat (pprt-spmat s2 ) (pprt-spmat r2 )) (add-spmat (mult-spmat

(pprt-spmat s1 ) (nprt-spmat r2 ))
(add-spmat (mult-spmat (nprt-spmat s2 ) (pprt-spmat r1 )) (mult-spmat (nprt-spmat
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s1 ) (nprt-spmat r1 ))))))
apply (simp add: Let-def )
apply (insert assms)
apply (simp add: sparse-row-matrix-op-simps algebra-simps)
apply (rule mult-le-dual-prts[where A=A, simplified Let-def algebra-simps])
apply (auto)
done

lemma spm-mult-le-dual-prts-no-let:
assumes
sorted-sparse-matrix A1
sorted-sparse-matrix A2
sorted-sparse-matrix c1
sorted-sparse-matrix c2
sorted-sparse-matrix y
sorted-sparse-matrix r1
sorted-sparse-matrix r2
sorted-spvec b
le-spmat [] y
sparse-row-matrix A1 ≤ A
A ≤ sparse-row-matrix A2
sparse-row-matrix c1 ≤ c
c ≤ sparse-row-matrix c2
sparse-row-matrix r1 ≤ x
x ≤ sparse-row-matrix r2
A ∗ x ≤ sparse-row-matrix (b::( ′a::lattice-ring) spmat)
shows
c ∗ x ≤ sparse-row-matrix (add-spmat (mult-spmat y b)
(mult-est-spmat r1 r2 (diff-spmat c1 (mult-spmat y A2 )) (diff-spmat c2 (mult-spmat

y A1 ))))
by (simp add: assms mult-est-spmat-def spm-mult-le-dual-prts[where A=A, sim-

plified Let-def ])

ML-file ‹matrixlp.ML›

end
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