Matrix

Steven Obua

January 18, 2026

theory Matrix
imports Main HOL— Library. Lattice-Algebras
begin

type-synonym ’a infmatriz = nat = nat = ‘a

definition nonzero-positions :: (nat = nat = 'a::zero) = (nat x nat) set where
nonzero-positions A = {pos. A (fst pos) (snd pos) ~= 0}

definition matriz = {(f::(nat = nat = 'a::zero)). finite (nonzero-positions f)}

typedef (overloaded) ‘a matriz = matriz :: (nat = nat = 'a::zero) set
unfolding matriz-def
proof
show (\j i. 0) € {(f::(nat = nat = 'a::zero)). finite (nonzero-positions f)}
by (simp add: nonzero-positions-def)
qed

declare Rep-matriz-inverse[simp)

lemma matriz-eql:
fixes A B :: 'a::zero matrix
assumes Am n. Rep-matric A m n = Rep-matriz B m n
shows A=B
using Rep-matriz-inject assms by blast

lemma finite-nonzero-positions : finite (nonzero-positions (Rep-matriz A))
by (induct A) (simp add: Abs-matriz-inverse matriz-def)

definition nrows :: (‘a::zero) matriz = nat where
nrows A == if nonzero-positions(Rep-matriz A) = {} then 0 else Suc(Maz ((image
fst) (nonzero-positions (Rep-matriz A))))

definition ncols :: (‘a::zero) matriz = nat where
neols A == if nonzero-positions(Rep-matriz A) = {} then 0 else Suc(Mazx ((image
snd) (nonzero-positions (Rep-matriz A))))

lemma nrows:
assumes hyp: nrows A < m
shows (Rep-matriz A m n) = 0
proof cases
assume nonzero-positions(Rep-matriz A) = {}
then show (Rep-matriz A m n) = 0 by (simp add: nonzero-positions-def)
next
assume a: nonzero-positions(Rep-matriz A) # {}
let 25 = fst{(nonzero-positions(Rep-matriz A))
have c: finite (2S) by (simp add: finite-nonzero-positions)
from hyp have d: Maz (95) < m by (simp add: a nrows-def)
have m ¢ 7S
proof —
have m € 75 = m < Maz(?S) by (simp add: Maz-ge [OF c])
moreover from d have ~(m < Max ¢S) by (simp)
ultimately show m ¢ 25 by (auto)
qed
thus Rep-matrix A m n = 0 by (simp add: nonzero-positions-def image-Collect)
qed

definition transpose-infmatriz :: 'a infmatriz = ’a infmatriz where
transpose-infmatriz A j i == A i j

definition transpose-matriz :: ('a::zero) matriz = ’a matriz where
transpose-matriz == Abs-matrix o transpose-infmatriz o Rep-matriz

declare transpose-infmatriz-def[simp]

lemma transpose-infmatriz-twice[simpl: transpose-infmatriz (transpose-infmatriz
A=A
by ((rule ext)+, simp)

lemma transpose-infmatriz: transpose-infmatriz (A\j i. P ji) = (\ji. P ij)
by force

lemma transpose-infmatriz-closed[simp]: Rep-matriz (Abs-matriz (transpose-infmatriz
(Rep-matriz z))) = transpose-infmatriz (Rep-matriz x)
proof —
let ?A = {pos. Rep-matriz x (snd pos) (fst pos) # 0}
let B = {pos. Rep-matriz z (fst pos) (snd pos) # 0}
let Zswap = Apos. (snd pos, fst pos)
have finite ?A
proof —
have swap-image: ?swap‘?A = ¢B
by (force simp add: image-def)
then have finite (Zswap‘?A)
by (metis (full-types) finite-nonzero-positions nonzero-positions-def)
moreover

have inj-on ?swap ?A by (simp add: inj-on-def)
ultimately show finite ?A
using finite-imageD by blast
qed
then show ?thesis
by (simp add: Abs-matriz-inverse matriz-def nonzero-positions-def)
qed

lemma infmatrizgforward: (z::'a infmatriz) =y =V ab.zab=yab
by auto

lemma transpose-infmatriz-inject: (transpose-infmatrix A = transpose-infmatriz
B) = (A= B)
by (metis transpose-infmatriz-twice)

lemma transpose-matriz-inject: (transpose-matrix A = transpose-matriz B) = (A
= B)

unfolding transpose-matriz-def o-def

by (metis Rep-matriz-inject transpose-infmatriz-closed transpose-infmatriz-inject)

lemma transpose-matriz[simp|: Rep-matriz(transpose-matriz A) j i = Rep-matriz
Aij
by (simp add: transpose-matriz-def)

lemma transpose-transpose-id[simp|: transpose-matriz (transpose-matriz A) = A
by (simp add: transpose-matriz-def)

lemma nrows-transpose[simpl: nrows (transpose-matriz A) = ncols A
by (simp add: nrows-def ncols-def nonzero-positions-def transpose-matriz-def im-
age-def)

lemma ncols-transpose[simp]: ncols (transpose-matriz A) = nrows A
by (metis nrows-transpose transpose-transpose-id)

lemma ncols: ncols A < n = Rep-matricr A m n = 0
by (metis nrows nrows-transpose transpose-matriz)

lemma ncols-le: (ncols A < n) +— (Vji.n < i — (Rep-matriz A ji) = 0) (is
- = 9st)
proof —
have Rep-matriz A ji = 0
if ncols A < nn <iforji
by (meson that le-trans ncols)
moreover have ncols A < n
if Viiin <i— Rep-matrizr Aji=20
unfolding ncols-def
proof (clarsimp split: if-split-asm)
assume §: nonzero-positions (Rep-matriz A) # {}
let ?P = nonzero-positions (Rep-matriz A)

let ?p = snd‘?P
have a:finite ?p by (simp add: finite-nonzero-positions)
let ?m = Mazx ?p
show Suc (Maz (snd ¢ nonzero-positions (Rep-matriz A))) < n
using § that obtains-MAX [OF finite-nonzero-positions]
by (metis (mono-tags, lifting) mem-Collect-eq nonzero-positions-def not-less-eg-eq)
qed
ultimately show ?thesis
by auto
qged

lemma less-ncols: (n < neols A) = (3ji. n < i A (Rep-matriz A ji) # 0)
by (meson linorder-not-le ncols-le)

lemma le-ncols: (n < ncols A) = (VY m. (V ji. m < i — (Rep-matriz A j i) =
0) — n<m)
by (meson le-trans ncols ncols-le)

lemma nrows-le: (nrows A < n) = (Vji. n < j— (Rep-matriz A j i) = 0) (is
?s)
by (metis ncols-le ncols-transpose transpose-matrix)

lemma less-nrows: (m < nrows A) = (3ji. m < j A (Rep-matrix A j i) # 0)
by (meson linorder-not-le nrows-le)

lemma le-nrows: (n < nrows A) = (V m. (¥ ji. m < j — (Rep-matriz A j i) =
0) — n<m)
by (meson order.trans nrows nrows-le)

lemma nrows-notzero: Rep-matrix A m n # 0 = m < nrows A
by (meson lel nrows)

lemma ncols-notzero: Rep-matriz A m n # 0 = n < ncols A
by (meson lel ncols)

lemma finite-natarrayl: finite {z. < (n:nat)}
by simp

lemma finite-natarray2: finite {(z, y). < (munat) A y < (n:nat)}
by simp

lemma RepAbs-matrix:
assumes dm. Vji m<j—xzji=10
and In. Vji. (n<i—xzji=0)
shows (Rep-matriz (Abs-matriz ©)) = ©
proof —
have finite {pos. x (fst pos) (snd pos) # 0}
proof —
from assms obtain m n where a: Vji. m <j— xzji=10

and b:Vji.n <i— zji= 0 by (blast)
let u = {(4,4). zij# 0}
let v = {(i,4). i <mAj<n}
have c¢: A(m:nat) a. “(m < a) = a < m by (arith)
with a b have d: 2u C v by blast
moreover have finite ?v by (simp add: finite-natarray2)
moreover have {pos. z (fst pos) (snd pos) # 0} = ?u by auto
ultimately show finite {pos. = (fst pos) (snd pos) # 0}
by (metis (lifting) finite-subset)
qged
then show ?thesis
by (simp add: Abs-matriz-inverse matriz-def nonzero-positions-def)
qed

definition apply-infmatriz :: (‘a = 'b) = 'a infmatriz = 'b infmatric where
apply-infmatriz f == MNA. (A\ji. f (A j 1))

definition apply-matriz :: (‘a = 'b) = ('a::zero) matriz = ('b::zero) matriz where
apply-matriz f == XNA. Abs-matriz (apply-infmatriz f (Rep-matriz A))

definition combine-infmatriz :: ('a = 'b = '¢) = 'a infmatric = 'b infmatriz =
'c infmatriz where
combine-infmatriz f == MNA B. (A\ji. f (A ji) (Bj1))

definition combine-matriz :: ('a = 'b = '¢) = (‘a::zero) matriz = ('b::zero)
matriz = ('c::zero) matriz where

combine-matriz f == AA B. Abs-matriz (combine-infmatriz f (Rep-matriz A)
(Rep-matriz B))

lemma expand-apply-infmatriz[simp]: apply-infmatriz f A ji = f (A j1)
by (simp add: apply-infmatriz-def)

lemma expand-combine-infmatriz[simpl: combine-infmatriz f A Bji = f (A j1)
(Bji)
by (simp add: combine-infmatriz-def)

definition commutative :: ('a = 'a = 'b) = bool where
commutative f ==Vzy. foy=fyx

definition associative :: (‘a = ‘a = 'a) = bool where
associative f ==Vzyz. f (fzy) z2=fz (fy2)

To reason about associativity and commutativity of operations on matrices,
let’s take a step back and look at the general situtation: Assume that we
have sets A and B with B C A and an abstraction u : A — B. This
abstraction has to fulfill u(b) = b for all b € B, but is arbitrary otherwise.
Each function f : A x A — A now induces a function f' : B x B — B by
f' =wo f. It is obvious that commutativity of f implies commutativity of

[fley = u(fry) = u(fyx) = flyz.

lemma combine-infmatriz-commute:
commutative f = commutative (combine-infmatriz f)
by (simp add: commutative-def combine-infmatriz-def)

lemma combine-matriz-commute:
commutative f = commutative (combine-matriz f)
by (simp add: combine-matriz-def commutative-def combine-infmatriz-def)

On the contrary, given an associative function f we cannot expect f’ to be
associative. A counterexample is given by A = Z, B = {—1,0,1}, as f we
take addition on Z, which is clearly associative. The abstraction is given by
u(a) =0 for a ¢ B. Then we have

FUN) =1 =u(f(u(f11)) = 1) = u(f(u2) - 1) = u(f0 - 1) = —1,

but on the other hand we have

FAUFL = 1) = u(f1L(u(f1 - 1)) = u(£10) = 1.

A way out of this problem is to assume that f(A x A) C A holds, and this
is what we are going to do:

lemma nonzero-positions-combine-infmatriz[simpl: f 0 0 = 0 = nonzero-positions
(combine-infmatriz f A B) C (nonzero-positions A) U (nonzero-positions B)

by (smt (verit) UnCI expand-combine-infmatriz mem-Collect-eq nonzero-positions-def
subsetl)

lemma finite-nonzero-positions-Rep[simp|: finite (nonzero-positions (Rep-matriz

4))

by (simp add: finite-nonzero-positions)

lemma combine-infmatriz-closed [simp):
f 00 =0 = Rep-matriz (Abs-matriz (combine-infmatriz f (Rep-matriz A)
(Rep-matriz B))) = combine-infmatriz f (Rep-matriz A) (Rep-matriz B)
apply (rule Abs-matriz-inverse)
apply (simp add: matriz-def)
by (meson finite-Un finite-nonzero-positions-Rep finite-subset nonzero-positions-combine-infmatriz)

We need the next two lemmas only later, but it is analog to the above one,
SO we prove them now:

lemma nonzero-positions-apply-infmatriz[simp]: f 0 = 0 = nonzero-positions
(apply-infmatriz f A) C nonzero-positions A
by (rule subsetl, simp add: nonzero-positions-def apply-infmatriz-def, auto)

lemma apply-infmatriz-closed [simp):
f 0 = 0 = Rep-matriz (Abs-matriz (apply-infmatriz f (Rep-matriz A))) =
apply-infmatric f (Rep-matriz A)
apply (rule Abs-matriz-inverse)
apply (simp add: matriz-def)

by (meson finite-nonzero-positions-Rep finite-subset nonzero-positions-apply-infmatriz)

lemma combine-infmatriz-assoc[simpl: f 0 0 = 0 => associative f => associative
(combine-infmatriz f)
by (simp add: associative-def combine-infmatriz-def)

lemma combine-matriz-assoc: f 0 0 = 0 = associative f = associative (combine-matric
)

by (smt (verit) associative-def combine-infmatriz-assoc combine-infmatriz-closed
combine-matriz-def)

lemma Rep-apply-matriz[simp): f 0 = 0 = Rep-matriz (apply-matriz f A) j i =
f (Rep-matriz A j 1)
by (simp add: apply-matriz-def)

lemma Rep-combine-matriz[simp]: f 0 0 = 0 = Rep-matriz (combine-matriz f
A B) ji=f (Rep-matriz A j i) (Rep-matriz B j 1)
by (simp add: combine-matriz-def)

lemma combine-nrows-maz: f 0 0 = 0 = nrows (combine-matriz f A B) < max
(nrows A) (nrows B)
by (simp add: nrows-le)

lemma combine-ncols-maz: f 0 0 = 0 = ncols (combine-matriz f A B) < max
(ncols A) (ncols B)
by (simp add: ncols-le)

lemma combine-nrows: f 0 0 = 0 = nrows A < ¢ = nrows B < ¢ =
nrows(combine-matriz f A B) < ¢
by (simp add: nrows-le)

lemma combine-ncols: f0 0 = 0 = ncols A < ¢ = ncols B < ¢ => ncols(combine-matrix
fAB)<gq
by (simp add: ncols-le)

definition zero-r-neutral :: (‘a = ’b::zero = 'a) = bool where
zero-r-neutral f ==Va. fa 0 = a

definition zero-l-neutral :: (‘a::zero = 'b = 'b) = bool where
zero-l-neutral f ==Va. fO0a = a

definition zero-closed :: ((‘a::zero) = ('b::zero) = (‘c:izero)) = bool where
zero-closed f == (Vz. fz 0 = 0) AN Vy. fOy = 0)

primrec foldseq :: ('a = 'a = 'a) = (nat = 'a) = nat = 'a
where

foldseq fs 0 =s0
| foldseq fs (Suc n) = f (s 0) (foldseq f (Ak. s(Suc k)) n)

primrec foldseq-transposed :: ('a = 'a = 'a) = (nat = 'a) = nat = 'a
where

foldseq-transposed f s 0 = s 0
| foldseg-transposed f s (Suc n) = f (foldseg-transposed f s n) (s (Suc n))

lemma foldseg-assoc:
assumes a:associative f
shows associative f = foldseq f = foldseq-transposed f
proof —
have N < n = foldseq f s N = foldseq-transposed f s N for N s n
proof (induct n arbitrary: N s)
case 0
then show ?case
by auto
next
case (Suc n)
show ?case
proof cases
assume N < n
then show ?thesis
by (simp add: Suc.hyps)
next
assume ~(N < n)
then have Nsuceq: N = Suc n
using Suc.prems by linarith
have neqz: n # 0 = Im. n = Suc m A Sucm < n
by arith
have assocf: "z yz. fo (fyz)=f (fzy) 2
by (metis a associative-def)
have f (f (s 0) (foldseg-transposed f (Ak. s (Suc k)) m)) (s (Suc (Suc m))) =
f (f (foldseg-transposed f s m) (s (Suc m))) (s (Suc (Suc m)))
if n = Suc m for m
proof —
have §: foldseg-transposed f (Ak. s (Suc k)) m = foldseq f (Ak. s (Suc k))
m (is ?T1 = ?T2)
by (simp add: Suc.hyps that)
have f (s 0) ?T2 = foldseq f s (Suc m) by simp

also have ... = foldseq-transposed f s (Suc m)
using Suc.hyps that by blast

also have ... = f (foldseq-transposed f s m) (s (Suc m))
by simp

finally show ?thesis
by (simp add: §)
qed
then show foldseq f s N = foldseg-transposed f s N
unfolding Nsuceq using assocf Suc.hyps neqz by force
qed
qged
then show ?thesis

by blast
qed

lemma foldseq-distr:

assumes assoc: associative f and comm: commutative f

shows foldseq f (Mk. f (u k) (vk)) n=f (foldseq f u n) (foldseq f v n)
proof —

from assoc have el zy z. f (fzy) z= fz (fy 2) by (simp add: associative-def)

from comm have b: ! z y. fzy = fy z by (simp add: commutative-def)

from assoc comm have c¢: ! x y z. fo (fyz) = fy (fz 2) by (simp add:
commutative-def associative-def)

have (Y u v. foldseq f (Mk. f (u k) (vk)) n = f (foldseq f u n) (foldseq f v n)) for
n

by (induct n) (simp-all add: assoc b ¢ foldseg-assoc)

then show foldseq f (Ak. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n) by
stmp
qed

theorem [associative f; associative g;Vabcd. g (fabd) (fed)=f(gac)(gb
d);Jzy. (fz) # (fy); oy (92) # (gy); fee=z9gz2 =1] = f=g | (Vy.
fyz=y) | (Vy. gyz=y)

oops

lemma foldseq-zero:
assumes fz: f00 =0 and sz:Vi.i<n—si=10
shows foldseq fsn =0
proof —
have Vs. (Vi. i <n — si = 0) — foldseq f sn = 0 for n
by (induct n) (simp-all add: f2)
then show ?thesis
by (simp add: sz)
qed

lemma foldseq-significant-positions:
assumes p: Vi. it < N — Si=T1
shows foldseq f S N = foldseq f T N
using assms
proof (induction N arbitrary: S T)
case ()
then show ?case by simp
next
case (Suc N)
then show ?case
unfolding foldseq.simps by (metis not-less-eq-eq le0)
qed

lemma foldseq-tail:
assumes M < N

shows foldseq f S N = foldseq f (Mk. (if k < M then (S k) else (foldseq f (\k.
S(k4+M)) (N-M)))) M
using assms
proof (induction N arbitrary: M S)
case (
then show ?case by auto
next
case (Suc N)
show ?Zcase
proof (cases M = Suc N)
case True
then show ?thesis
by (auto introl: arg-cong [of concl: f (S 0)] foldseq-significant-positions)
next
case False
then have M <N
using Suc.prems by force
show ?thesis
proof (cases M = 0)
case True
then show ?thesis
by auto
next
case Fualse
then obtain M’ where M’ M = Suc M' M' < N
by (metis Suc-leD <M < N> nat.nchotomy)
then show ?thesis
apply (simp add: Suc.IH [OF <M'<N)])
using add-Suc-right diff-Suc-Suc by presburger
qed
qed
qed

lemma foldseqg-zerotail:
assumes fz: f00 =0 and sz: Vi. n <i— si= 0 and nm: n < m
shows foldseq f s n = foldseq f s m
unfolding foldseq-tail|OF nm)]
by (metis (no-types, lifting) foldseq-zero fz le-add2 linorder-not-le sz)

lemma foldseg-zerotail2:
assumes Vz. fz 0 =z
andVin<i—si=20
and nm: n < m
shows foldseq f s n = foldseq f s m
proof —
have s i = (if i < n then s i else foldseq f (Ak. s (k 4+ n)) (m — n))
if i<n for i
proof (cases m=n)
case True

10

then show ?thesis
using that by auto
next
case Fulse
then obtain k£ where m—n = Suc k
by (metis Suc-diff-Suc le-negq-implies-less nm)
then show %thesis
apply simp
by (simp add: assms(1,2) foldseq-zero nat-less-le that)
qged
then show ?thesis
unfolding foldseq-tail| OF nm]
by (auto intro: foldseq-significant-positions)
qed

lemma foldseg-zerostart:
assumes f00r:Vz. f0 (fO0z)=f0zand 0:Vi.i<n—si=10
shows foldseq f s (Suc n) = f 0 (s (Suc n))
using 0
proof (induction n arbitrary: s)
case (
then show ?case by auto
next
case (Suc n s)
then show ?case
apply (simp add: le-Suc-eq)
by (smt (verit, ccfo-threshold) Suc.prems Suc-le-mono f00x foldseg-significant-positions
le0)
qed

lemma foldseq-zerostart2:
assumes z: Vz. fO0x =zand 0:Vi.i<n—si=10
shows foldseq fsn=sn
proof —
show foldseq fsn =sn
proof (cases n)
case (
then show ?thesis
by auto
next
case (Suc n')
then show ?thesis
by (metis 0 foldseq-zerostart le-imp-less-Suc x)
qed
qed

lemma foldseq-almostzero:

assumes f0r: Vz. fOzx =z and fr0:Vz. fz 0 =z and s0: Vi. i #j — s
=90

11

shows foldseq f s n = (if (j < n) then (s j) else 0)
by (smt (verit, ccfo-SIG) fOz foldseq-zerostart?2 foldseq-zerotail2 fx0 le-refl nat-less-le
s0)

lemma foldseq-distr-unary:
assumes Aa b. g (fad) =f(ga) (gb)
shows g(foldseq f s n) = foldseq f (A\z. g(s z)) n
proof (induction n arbitrary: s)
case ()
then show ?Zcase
by auto
next
case (Suc n)
then show ?case
using assms by fastforce
qed

definition mult-matriz-n :: nat = ((‘a::zero) = (‘b::zero) = (‘ciizero)) = (‘¢ =
‘c = '¢) = 'a matriz = 'b matriz = 'c matriz where

mult-matriz-n n fmul fadd A B == Abs-matriz(\j i. foldseq fadd (\k. fmul
(Rep-matriz A j k) (Rep-matriz B k 7)) n)

definition mult-matriz :: (('a::zero) = ('b:izero) = (‘ciizero)) = (e = 'c = ')
= 'a matriz = 'b matriz = 'c matriz where

mult-matriz fmul fadd A B == mult-matriz-n (maz (ncols A) (nrows B)) fmul
fadd A B

lemma mult-matriz-n:
assumes ncols A < nnrows B < n fadd 00 = 0 fmul 0 0 = 0
shows mult-matriz fmul fadd A B = mult-matriz-n n fmul fadd A B
proof —
have foldseq fadd (\k. fmul (Rep-matriz A j k) (Rep-matriz B k 1))
(maz (ncols A) (nrows B)) =
foldseq fadd (\k. fmul (Rep-matriz A j k) (Rep-matriz B k ©)) n for i j
using assms by (simp add: foldseq-zerotail nrows-le ncols-le)
then show ?thesis
by (simp add: mult-matriz-def mult-matriz-n-def)
qged

lemma mult-matriz-nm:
assumes ncols A < n nrows B < n ncols A < m nrows B < m fadd 0 0 = 0
fmul 00 =0
shows mult-matriz-n n fmul fadd A B = mult-matriz-n m fmul fadd A B
proof —
from assms have mult-matriz-n n fmul fadd A B = mult-matriz fmul fadd A B
by (simp add: mult-matriz-n)
also from assms have ... = mult-matriz-n m fmul fadd A B
by (simp add: mult-matriz-n|THEN sym))
finally show mult-matriz-n n fmul fadd A B = mult-matriz-n m fmul fadd A B

12

by simp
qed

definition r-distributive :: (‘a = 'b = 'b) = ('b = 'b = 'b) = bool where
r-distributive fmul fadd ==V a uw v. fmul a (fadd v v) = fadd (fmul a u) (fmul a
v)

definition [-distributive :: (‘a = 'b = 'a) = ('a = 'a = 'a) = bool where
l-distributive fmul fadd ==V a u v. fmul (fadd u v) a = fadd (fmul u a) (fmul v
a)

definition distributive :: ('a = 'a = 'a) = ('a = 'a = 'a) = bool where
distributive fmul fadd == I-distributive fmul fadd N r-distributive fmul fadd

lemma mazi: !l a z y. (a:nat) < 2 = a < maz z y by (arith)
lemma maz2: !! b z y. (b::nat) < y = b < max z y by (arith)

lemma r-distributive-matriz:
assumes
r-distributive fmul fadd
associative fadd
commutative fadd
fadd 00 =0
Va. fmula 0 = 0
Va. fmul 0 a = 0
shows r-distributive (mult-matriz fmul fadd) (combine-matriz fadd)
proof —
from assms show ?thesis
apply (simp add: r-distributive-def mult-matriz-def, auto)
proof —
fix a::'a matriz
fix wu::'b matriz
fix v::'b matriz
let ?maz = maz (ncols a) (maz (nrows u) (nrows v))
from assms show mult-matriz-n (maz (ncols a) (nrows (combine-matriz fadd
uw v))) fmul fadd a (combine-matrixz fadd u v) =
combine-matriz fadd (mult-matriz-n (maz (ncols a) (nrows w)) fmul fadd a
u) (mult-matriz-n (maz (ncols a) (nrows v)) fmul fadd a v)
apply (subst mult-matriz-nm[of - - - ¢mx fadd fmul])
apply (simp add: mazl maz2 combine-nrows combine-ncols)+
apply (subst mult-matriz-nm[of - - v ?mz fadd fmul))
apply (simp add: mazl maz2 combine-nrows combine-ncols)+
apply (subst mult-matriz-nm[of - - u ?mx fadd fmul])
apply (simp add: mazl maz2 combine-nrows combine-ncols)+
apply (simp add: mult-matriz-n-def r-distributive-def foldseg-distr|of fadd))
apply (simp add: combine-matriz-def combine-infmatriz-def)
apply (intro ext arg-cong|of concl: Abs-matriz])
apply (simplesubst RepAbs-matrix)
apply (simp, auto)

P Ny

13

apply (rule exI[of - nrows a], simp add: nrows-le foldseq-zero)
apply (rule exI[of - ncols v], simp add: ncols-le foldseq-zero)
apply (subst RepAbs-matriz)
apply (simp, auto)
apply (rule exI[of - nrows al, simp add: nrows-le foldseq-zero)
apply (rule exI[of - ncols u], simp add: ncols-le foldseq-zero)
done
qed
qed

lemma I-distributive-matriz:
assumes
I-distributive fmul fadd
associative fadd
commutative fadd
fadd 00 =0
Va. fmul a 0 = 0
Va. fmul 0 a = 0
shows [-distributive (mult-matriz fmul fadd) (combine-matriz fadd)
proof —
from assms show ?thesis
apply (simp add: l-distributive-def mult-matriz-def, auto)
proof —
fix a::'b matriz
fix u::'a matriz
fix v::’a matriz
let ?mz = maz (nrows a) (mazx (ncols u) (ncols v))

from assms show mult-matriz-n (maz (ncols (combine-matriz fadd u v))

(nrows a)) fmul fadd (combine-matriz fadd u v) a =

combine-matriz fadd (mult-matriz-n (maz (ncols u) (nrows a)) fmul

fadd v a) (mult-matriz-n (max (ncols v) (nrows a)) fmul fadd v a)
apply (subst mult-matriz-nm[of v - - ?mzx fadd fmul])
apply (simp add: mazl maz2 combine-nrows combine-ncols)+
apply (subst mult-matriz-nm[of u - - ¢mz fadd fmul])
apply (simp add: mazl maz2 combine-nrows combine-ncols)+
apply (subst mult-matriz-nm[of - - - ?mx fadd fmul))
apply (simp add: mazl maz2 combine-nrows combine-ncols)+

apply (simp add: mult-matriz-n-def I-distributive-def foldseq-distr|of fadd))

(

(

(

(

(

(

apply (simp add: combine-matriz-def combine-infmatriz-def)
apply (intro ext arg-cong|of concl: Abs-matriz])

apply (simplesubst RepAbs-matriz)

apply (simp, auto)

apply (rule exI[of - nrows v], simp add: nrows-le foldseg-zero)
apply (rule exI[of - ncols al, simp add: ncols-le foldseg-zero)
apply (subst RepAbs-matriz)

apply (simp, auto)

apply (rule exI[of - nrows u], simp add: nrows-le foldseq-zero)
apply (rule exI[of - ncols a], simp add: ncols-le foldseg-zero)
done

14

qed
qed

instantiation matriz :: (zero) zero
begin

definition zero-matriz-def: 0 = Abs-matriz (A\j i. 0)
instance ..
end

lemma Rep-zero-matriz-def[simp|: Rep-matriz 0 j i = 0
by (simp add: RepAbs-matriz zero-matriz-def)

lemma zero-matriz-def-nrows[simpl: nrows 0 = 0
using nrows-le by force

lemma zero-matriz-def-ncols[simp|: ncols 0 = 0
using ncols-le by fastforce

lemma combine-matriz-zero-l-neutral: zero-l-neutral f = zero-l-neutral (combine-matriz

f)

by (simp add: zero-l-neutral-def combine-matriz-def combine-infmatriz-def)

lemma combine-matriz-zero-r-neutral: zero-r-neutral f = zero-r-neutral (combine-matriz

f)

by (simp add: zero-r-neutral-def combine-matriz-def combine-infmatriz-def)

lemma mult-matriz-zero-closed: [fadd 0 0 = 0; zero-closed fmul] = zero-closed
(mult-matriz fmul fadd)

apply (simp add: zero-closed-def mult-matriz-def mult-matriz-n-def)

by (simp add: foldseg-zero zero-matriz-def)

lemma mult-matriz-n-zero-right[simpl: [fadd 0 0 = 0; Ya. fmul a 0 = 0] =
mult-matriz-n n fmul fadd A 0 = 0
by (simp add: RepAbs-matriz foldseg-zero matriz-eql mult-matriz-n-def)

lemma mult-matriz-n-zero-left|simp]: [fadd 0 0 = 0; Ya. fmul 0 a = 0] =
mult-matriz-n n fmul fadd 0 A = 0
by (simp add: RepAbs-matriz foldseg-zero matriz-eql mult-matriz-n-def)

lemma mult-matriz-zero-left[simp]: [fadd 0 0 = 0; ¥ a. fmul 0 a = 0] = mult-matric
fmul fadd 0 A = 0
by (simp add: mult-matriz-def)

lemma mult-matriz-zero-right[simpl: [fadd 0 0 = 0; Ya. fmul a 0 = 0] =

mult-matriz fmul fadd A 0 = 0
by (simp add: mult-matriz-def)

15

lemma apply-matriz-zero[simp|: f 0 = 0 = apply-matriz f 0 = 0
by (simp add: matriz-eql)

lemma combine-matriz-zero: f 0 0 = 0 = combine-matrix f 0 0 = 0
by (simp add: matriz-eql)

lemma transpose-matriz-zero[simp|: transpose-matriz 0 = 0
by (simp add: matriz-eql)

lemma apply-zero-matriz-def [simp]: apply-matriz (Az. 0) A = 0
by (simp add: matriz-eql)

definition singleton-matriz :: nat = nat = ('a::zero) = ’a matriz where
singleton-matriz j i a == Abs-matriz(Am n. if j = m A i = n then a else 0)

definition move-matriz :: (‘a::zero) matriz = int = int = 'a matriz where
move-matriz A y x == Abs-matriz(Aj i. if (((int j)—y) < 0) | (((int 9)—z) < 0)
then 0 else Rep-matriz A (nat ((int j)—y)) (nat ((int i)—x)))

definition take-rows :: (‘a::zero) matriz = nat = 'a matriz where
take-rows A r == Abs-matriz(N\j i. if (j < r) then (Rep-matriz A j i) else 0)

definition take-columns :: ('a::zero) matriz = nat = 'a matriz where
take-columns A ¢ == Abs-matriz(Nj i. if (i < ¢) then (Rep-matriz A j 1) else 0)

definition column-of-matriz :: (‘a::zero) matriz = nat = 'a matrizx where
column-of-matrix A n == take-columns (move-matriz A 0 (— int n)) 1

definition row-of-matriz :: ('a::zero) matriz = nat = 'a matriz where
row-of-matrix A m == take-rows (move-matriz A (— int m) 0) 1

lemma Rep-singleton-matriz[simp|: Rep-matriz (singleton-matriz j i e) m n = (if
j=m A i=nthen e else 0)

unfolding singleton-matriz-def

by (smt (verit, del-insts) RepAbs-matriz Suc-n-not-le-n)

lemma apply-singleton-matriz[simpl: f 0 = 0 = apply-matriz f (singleton-matriz
jixz) = (singleton-matriz j i (f z))
by (simp add: matriz-eql)

lemma singleton-matriz-zero[simpl: singleton-matriz j i 0 = 0
by (simp add: singleton-matriz-def zero-matriz-def)

lemma nrows-singleton[simp|: nrows(singleton-matriz j i e) = (if e = 0 then 0 else
Suc §)
proof —
have e # 0 = Suc j < nrows (singleton-matriz j i e)
by (metis Rep-singleton-matriz not-less-eq-eq nrows)

16

then show ?thesis
by (simp add: le-antisym nrows-le)
qed

lemma ncols-singleton]simp: ncols(singleton-matriz j i e) = (if e = 0 then 0 else
Suc 1)
by (simp add: Suc-lel le-antisym ncols-le ncols-notzero)

lemma combine-singleton: f 0 0 = 0 = combine-matriz f (singleton-matriz j i
a) (singleton-matrixz j i b) = singleton-matriz j i (f a b)
apply (simp add: singleton-matriz-def combine-matriz-def combine-infmatriz-def)
apply (intro ext arg-conglof concl: Abs-matriz])
by (metis Rep-singleton-matriz singleton-matriz-def)

lemma transpose-singleton[simp|: transpose-matriz (singleton-matriz j i a) = sin-
gleton-matriz i j a
by (simp add: matriz-eql)

lemma Rep-move-matriz|[simp:

Rep-matriz (move-matriz A y x) ji =

Gif (((int j)—y) < 0) | (((éint ©)—z) < 0) then 0 else Rep-matriz A (nat((int
7)=y)) (nat((int i)—z)))

apply (simp add: move-matriz-def)
by (subst RepAbs-matriz,

rule exI[of - (nrows A)+(nat |y|)], auto, rule nrows, arith,

rule exI[of - (ncols A)+(nat |z|)], auto, rule ncols, arith)+

lemma move-matriz-0-0[simp]: move-matriz A 0 0 = A
by (simp add: move-matriz-def)

lemma move-matriz-ortho: move-matriz A j i = move-matriz (move-matriz A j
0) 01
by (simp add: matriz-eql)

lemma transpose-move-matriz|simpl:
transpose-matriz (move-matriz A x y) = move-matriz (transpose-matriz A) y
by (simp add: matriz-eql)

lemma move-matriz-singleton[simp|: move-matriz (singleton-matriz v v x) j i =
(if G+ intu<0)]| (i+ intv < 0) then 0 else (singleton-matriz (nat (j + int
u)) (nat (i 4+ int v)) x))
by (auto intro!: matriz-eql split: if-split-asm)
lemma Rep-take-columns|simp]:
Rep-matriz (take-columns A ¢) ji = (if i < ¢ then (Rep-matriz A j i) else 0)
unfolding take-columns-def

by (smt (verit, best) RepAbs-matriz leD nrows)

lemma Rep-take-rows[simp):

17

Rep-matriz (take-rows A r) j ¢ = (if j < r then (Rep-matriz A j i) else 0)
unfolding take-rows-def
by (smt (verit, best) RepAbs-matriz leD ncols)

lemma Rep-column-of-matriz[simp]:

Rep-matriz (column-of-matriz A ¢) j i = (if i = 0 then (Rep-matriz A j ¢) else
0)

by (simp add: column-of-matriz-def)

lemma Rep-row-of-matriz|simp]:
Rep-matriz (row-of-matriz A r) j i = (if j = 0 then (Rep-matriz A r i) else 0)
by (simp add: row-of-matriz-def)

lemma column-of-matriz: ncols A < n = column-of-matric A n = 0
by (simp add: matriz-eql ncols)

lemma row-of-matriz: nrows A < n = row-of-matric A n = 0
by (simp add: matriz-eql nrows)

lemma mult-matriz-singleton-right|simp]:

assumes Vz. fmulz 0 = 0 V. fmul 0z = 0Vz. fadd 0z = xVz. faddx 0 =z

shows (mult-matriz fmul fadd A (singleton-matriz j i €)) = apply-matriz (Ax.
fmul z €) (move-matriz (column-of-matriz A j) 0 (int 7))

using assms

unfolding mult-matriz-def

apply (subst mult-matriz-nm|of - - - maz (ncols A) (Suc 7)];

simp add: mult-matriz-n-def apply-matriz-def apply-infmatriz-def)
apply (intro ext arg-conglof concl: Abs-matriz))
by (simp add: maz-def assms foldseq-almostzero[of - j])

lemma mult-matriz-ext:
assumes
eprem:
Je. (Vab. a#b— fmulae# fmul b e)
and fprems:
Va. fmul 0 a = 0
Ya. fmul a 0 = 0
Va. fadd a 0 = a
Va. fadd 0 a = a
and contraprems: mult-matriz fmul fadd A = mult-matriz fmul fadd B
shows A = B
proof (rule ccontr)
assume A # B
then obtain J I where ne: (Rep-matriz A J I) # (Rep-matriz B J I)
by (meson matriz-eql)
from eprem obtain e where eprops:(Va b. a # b — fmul a e # fmul b e) by
blast
let 2S = singleton-matriz I 0 e
let comp = mult-matriz fmul fadd

18

have d: !z fg. f = g = fx = g x by blast

have e: (\z. fmul z €) 0 = 0 by (simp add: assms)

have Rep-matriz (apply-matriz (Az. fmul e) (column-of-matriz A I)) #

Rep-matriz (apply-matric (Ax. fmul © €) (column-of-matriz B I))

using fprems
by (metis Rep-apply-matriz Rep-column-of-matriz eprops ne)

then have ?comp A 25 # 2comp B ¢S
by (simp add: fprems eprops Rep-matriz-inject)

with contraprems show Fualse by simp

qed

definition foldmatriz :: (‘a = 'a = 'a) = ('a = 'a = ’a) = ('a infmatriz) =
nat = nat = 'a where
foldmatriz f g A m n == foldseq-transposed g (\j. foldseq f (A j) n) m

definition foldmatriz-transposed :: ('a = 'a = 'a) = ('a = 'a = 'a) = (‘a
infmatriz) = nat = nat = 'a where

foldmatriz-transposed f g A m n == foldseq g (\j. foldseq-transposed f (A j) n)
m

lemma foldmatriz-transpose:

assumes Va bcd. g(fad) (fecd)=f(gac)(gbd)

shows foldmatriz f g A m n = foldmatriz-transposed g f (transpose-infmatriz A)
nm
proof —

have forall: AP z. (Vz. P) = P z by auto

have tworows:V A. foldmatriz f g A 1 n = foldmatriz-transposed g f (transpose-infmatriz

A)n 1
proof (induct n)
case (
then show ?case
by (simp add: foldmatriz-def foldmatriz-transposed-def)
next
case (Suc n)
then show ?case
apply (clarsimp simp: foldmatriz-def foldmatriz-transposed-def assms)
apply (rule arg-cong [of concl: f-])
by meson
qed
have foldseg-transposed g (Aj. foldseq f (A j) n) m =
foldseq f (Aj. foldseg-transposed g (transpose-infmatriz A j) m) n
proof (induct m)
case (
then show ?case by auto
next
case (Suc m)
then show ?case
using tworows
apply (drule-tac x=Xj i. (if j = 0 then (foldseg-transposed g (Au. A u i) m)

19

else (A (Suc m) 7)) in spec)
by (simp add: Suc foldmatriz-def foldmatriz-transposed-def)
qed
then show foldmatriz f g A m n = foldmatriz-transposed g f (transpose-infmatriz
A)ynm
by (simp add: foldmatriz-def foldmatriz-transposed-def)
qed

lemma foldseq-foldseq:
assumes associative f associative gV a b c d. g(fab) (fed)=f (gac) (gbd)
shows

foldseq g (A\j. foldseq f (A j) n) m = foldseq f (\j. foldseq g ((transpose-infmatriz
4) j) m)

using foldmatriz-transpose[of g f A m n)

by (simp add: foldmatriz-def foldmatriz-transposed-def foldseg-assoc| THEN sym)|
assms)

lemma mult-n-nrows:
assumes Va. fmul 0 a = 0 Va. fmul a 0 = 0 fadd 0 0 = 0
shows nrows (mult-matriz-n n fmul fadd A B) < nrows A
unfolding nrows-le mult-matriz-n-def
apply (subst RepAbs-matriz)
apply (rule-tac z=nrows A in ezl)
apply (simp add: nrows assms foldseq-zero)
apply (rule-tac z=ncols B in exl)
apply (simp add: ncols assms foldseq-zero)
apply (simp add: nrows assms foldseq-zero)
done

lemma mult-n-ncols:
assumes Va. fmul 0 a = 0 Va. fmul a 0 = 0 fadd 0 0 = 0
shows ncols (mult-matriz-n n fmul fadd A B) < ncols B
unfolding ncols-le mult-matriz-n-def
apply (subst RepAbs-matriz)
apply (rule-tac z=nrows A in ezl)
apply (simp add: nrows assms foldseq-zero)
apply (rule-tac z=ncols B in exl)
apply (simp add: ncols assms foldseq-zero)
apply (simp add: ncols assms foldseg-zero)
done

lemma mult-nrows:

assumes
Va. fmul 0 a = 0
Va. fmul a 0 = 0
fadd 00 =0

shows nrows (mult-matriz fmul fadd A B) < nrows A
by (simp add: mult-matriz-def mult-n-nrows assms)

20

lemma mult-ncols:
assumes
Va. fmul 0a =0
Va. fmul a 0 = 0
fadd 00 = 0
shows ncols (mult-matriz fmul fadd A B) < ncols B
by (simp add: mult-matriz-def mult-n-ncols assms)

lemma nrows-move-matriz-le: nrows (move-matriz A j i) < nat((int (nrows A))
+7)
by (smt (verit) Rep-move-matriz int-nat-eq nrows nrows-le of-nat-le-iff)

lemma ncols-move-matriz-le: ncols (move-matriz A j i) < nat((int (ncols A)) +
i)

by (metis nrows-move-matriz-le nrows-transpose transpose-move-matrir)

lemma mult-matriz-assoc:
assumes
Ya. fmull 0a =0
Ya. fmull a 0 =
Ya. fmul2 0 a =
Ya. fmul2 a 0 =
fadd1 00 = 0
fadd2 00 = 0
Vabecd. fadd2 (faddl a b) (faddl ¢ d) = faddl (fadd2 a c) (fadd2 b d)
associative faddl
associative fadd2
Vabc fmul2 (fmull a b) ¢ = fmull o (fmul2 b c)
Vabec fmul2 (faddl a b) ¢ = faddl (fmul2 a c) (fmul2 b c)
Vabc fmull ¢ (fadd2 a b) = fadd2 (fmull ¢ a) (fmull ¢ b)
shows mult-matriz fmul2 fadd2 (mult-matric fmull fadd1 A B) C = mult-matriz
fmaull fadd1l A (mult-matriz fmul2 fadd2 B C)
proof —
have comb-left: ' A Bz y. A = B = (Rep-matriz (Abs-matriz A)) z y =
(Rep-matriz(Abs-matriz B)) © y by blast
have fmul2faddifold: ! x s n. fmul2 (foldseq faddl s n) x = foldseq faddl (\k.
fmul2 (s k) z) n
by (rule-tac g1 = Ay. fmul2 y © in ssubst [OF foldseq-distr-unary], insert assms,
stmp-all)
have fmullfadd2fold: ! x s n. fmull z (foldseq fadd2 s n) = foldseq fadd2 (k.
fmull z (s k)) n
using assms by (rule-tac g1 = Ay. fmull z y in ssubst [OF foldseq-distr-unary),
simp-all)
let ?N = maz (ncols A) (max (ncols B) (max (nrows B) (nrows C)))
show ?thesis
apply (intro matriz-eql)
apply (simp add: mult-matriz-def)
apply (simplesubst mult-matriz-nm[of - max (ncols (mult-matriz-n (maz (ncols
A) (nrows B)) fmull fadd1 A B)) (nrows C) - max (ncols B) (nrows C)])

S S D

21

apply (simp add: mazl maz2 mult-n-ncols mult-n-nrows assms)+
apply (simplesubst mult-matriz-nm|of - maz (ncols A) (nrows (mult-matriz-n
(maz (neols B) (nrows C)) fmul2 fadd2 B C)) - maz (ncols A) (nrows B)|)
apply (simp add: mazl max2 mult-n-ncols mult-n-nrows assms)+

apply (simplesubst mult-matriz-nm[of - - - ?N])

apply (simp add: mazl maz2 mult-n-ncols mult-n-nrows assms)+
apply (simplesubst mult-matriz-nm[of - - - ?N])

apply (simp add: mazl maz2 mult-n-ncols mult-n-nrows assms)+
apply (simplesubst mult-matriz-nm[of - - - ?N])

apply (simp add: mazl max2 mult-n-ncols mult-n-nrows assms)+
apply (simplesubst mult-matriz-nm[of - - - ?N])

apply (simp add: mazl maz2 mult-n-ncols mult-n-nrows assms)+
apply (simp add: mult-matriz-n-def)
apply (rule comb-left)
apply ((rule ext)+, simp)
apply (simplesubst RepAbs-matrix)
apply (rule exI[of - nrows B])
apply (simp add: nrows assms foldseq-zero)
apply (rule exI[of - ncols C))
apply (simp add: assms ncols foldseg-zero)
apply (subst RepAbs-matrix)
apply (rule exI[of - nrows A))
apply (simp add: nrows assms foldseq-zero)
apply (rule exI[of - ncols B)
apply (simp add: assms ncols foldseg-zero)
apply (simp add: fmul2faddifold fmullfadd2fold assms)
apply (subst foldseq-foldseq)
apply (simp add: assms)+
apply (simp add: transpose-infmatriz)
done
qed

lemma mult-matriz-assoc-simple:

assumes

Ya. fmul 0 a = 0

Va. fmul a 0 = 0

associative fadd

commutative fadd

associative fmul

distributive fmul fadd

shows mult-matriz fmul fadd (mult-matriz fmul fadd A B) C = mult-matriz fmul
fadd A (mult-matriz fmul fadd B C')

by (smt (verit) assms associative-def commutative-def distributive-def l-distributive-def
mult-matriz-assoc r-distributive-def)

lemma transpose-apply-matriz: f 0 = 0 = transpose-matriz (apply-matriz f A)

= apply-matriz f (transpose-matriz A)
by (simp add: matriz-eql)

22

lemma transpose-combine-matriz: f 0 0 = 0 = transpose-matriz (combine-matriz
f A B) = combine-matriz f (transpose-matriz A) (transpose-matriz B)
by (simp add: matriz-eql)

lemma Rep-mult-matriz:
assumes Va. fmul 0 a = 0 Va. fmul a 0 = 0 fadd 0 0 = 0
shows
Rep-matriz(mult-matriz fmul fadd A B) j
foldseq fadd (Mk. fmul (Rep-matriz A j k)
(nrows B))
using assms
apply (simp add: mult-matriz-def mult-matriz-n-def)
apply (subst RepAbs-matriz)
apply (rule exI[of - nrows A], simp add: nrows foldseg-zero)
apply (rule exI[of - ncols B], simp add: ncols foldseq-zero)
apply simp
done

)
(Rep-matriz B k 1)) (maz (ncols A)

lemma transpose-mult-matriz:
assumes
Va. fmul 0 a = 0
Va. fmul a 0 = 0

fadd 00 =0
Vay. fmul y . = fmul x y
shows

transpose-matriz (mult-matriz fmul fadd A B) = mult-matriz fmul fadd (transpose-matrix
B) (transpose-matriz A)

using assms

by (simp add: matriz-eql Rep-mult-matriz ac-simps)

lemma column-transpose-matriz: column-of-matrixz (transpose-matricz A) n = trans-
pose-matriz (row-of-matriz A n)

by (simp add: matriz-eql)
lemma take-columns-transpose-matrix: take-columns (transpose-matriz A) n =
transpose-matriz (take-rows A n)

by (simp add: matriz-eql)

instantiation matriz :: ({zero, ord}) ord
begin

definition
le-matriz-def: A < B «— (Vj i. Rep-matriz A j i < Rep-matriz B j i)

definition
less-def: A < (B::'a matriz) +— A< BAN-B< A

instance ..

23

end

instance matriz :: ({zero, order}) order
proof
fix z y z :: 'a matriz
assume r < yy < 2
show z < z
by (meson «x < y» «y < 2> le-matriz-def order-trans)
next
fix z y :: 'a matriz
assume r < yy < x
show z =y
by (meson «x < y» <y < v le-matriz-def matriz-eql order-antisym)
qed (auto simp: less-def le-matriz-def)

lemma le-apply-matrix:
assumes
F0=0
Vey. z<y—fz<fy
(a::('a::{ord, zero}) matriz) < b
shows apply-matriz f a < apply-matriz f b
using assms by (simp add: le-matriz-def)

lemma le-combine-matriz:
assumes
foo=0
Vabcd. a<bANc<d— fac<fbd
A<B
c<D
shows combine-matriz f A C < combine-matriz f B D
using assms by (simp add: le-matriz-def)

lemma le-left-combine-matrix:
assumes
foo=20
Vabc a<b—fca<fch
A<B
shows combine-matriz f C A < combine-matriz f C B
using assms by (simp add: le-matriz-def)

lemma le-right-combine-matriz:
assumes
foo=0
Vabc a<b—fac<fbc
A<B
shows combine-matriz f A C < combine-matriz f B C
using assms by (simp add: le-matriz-def)

lemma le-transpose-matriz: (A < B) = (transpose-matrix A < transpose-matriz

24

B)
by (simp add: le-matriz-def, auto)

lemma le-foldseq:
assumes
Vabcd.a<bANc<d— fac<fbd
Viii<n—si<ti
shows foldseq f s n < foldseq ft n
proof —
have Vs t. (Vi. i<=n — s i < t i) — foldseq f s n < foldseq ft n
by (induct n) (simp-all add: assms)
then show foldseq f s n < foldseq f t n using assms by simp
qed

lemma le-left-mult:

assumes

Vabcd a<bANc<d— faddac < fadd b d

Veab. 0<cNa<b—fmulca<fmulcbd

Ya. fmul 0 a = 0

Ya. fmul a 0 = 0

fadd 00 = 0

0<C

A<B

shows mult-matriz fmul fadd C A < mult-matriz fmul fadd C B

using assms

apply (auto simp: le-matriz-def Rep-mult-matriz)

apply (simplesubst foldseg-zerotail[of - - - maz (ncols C) (max (nrows A) (nrows
B))], simp-all add: nrows ncols maxl max2)+

apply (rule le-foldseq)

apply (auto)

done

lemma le-right-mult:

assumes

Vabcecd a<bANc<d— fadd a c < fadd b d

Veab. 0<cANa<b— fmulac< fmulbc

Va. fmul 0 a = 0

Ya. fmul a 0 = 0

fadd 00 =0

0<C

A<B

shows mult-matriz fmul fadd A C < mult-matriz fmul fadd B C

using assms

apply (auto simp: le-matriz-def Rep-mult-matriz)

apply (simplesubst foldseq-zerotail[of - - - maz (nrows C) (maz (ncols A) (ncols
B))], simp-all add: nrows ncols mazl maz2)+

apply (rule le-foldseq)

apply (auto)

done

25

lemma spec2: Vji. Pji = P ji by blast

lemma singleton-matriz-le[simp]: (singleton-matriz j i a < singleton-matriz j i b)
= (a < (b::-:order))
by (auto simp: le-matriz-def)

lemma singleton-le-zero[simpl: (singleton-matrizjixz < 0) = (z < (0::'a::{order,zero}))
by (metis singleton-matriz-le singleton-matriz-zero)

lemma singleton-ge-zero[simp]: (0 < singleton-matriz j i x) = ((0::'a::{ order,zero})
< z)
by (metis singleton-matriz-le singleton-matriz-zero)

lemma move-matriz-le-zero|simp):
fixes A:: 'a::{order,zero} matriz
assumes (0 < j0 < i
shows (move-matriz A ji < 0) = (A < 0)
proof —
have Rep-matriz A j' i’ < 0
if Vonm. —dintn < jA-int m < i — Rep-matriz A (nat (int n — j)) (nat
(int m —) <0
for j’ ¢’
using that[rule-format, of j' + nat j i’ + nat i] by (simp add: assms)
then show ?thesis
by (auto simp: le-matriz-def)
qged

lemma move-matriz-zero-le[simp]:
fixes A:: 'a::{order,zero} matriz
assumes 0 < j0 <1
shows (0 < move-matriz A j i) = (0 < A)
proof —
have 0 < Rep-matriz A j' i’
if Vom. mintn <jA-intm <i— 0 < Rep-matriz A (nat (int n — 7))
(nat (int m — 1))
for j' i’
using that[rule-format, of j' + nat j i’ + nat i) by (simp add: assms)
then show ?thesis
by (auto simp: le-matriz-def)
qed

lemma move-matriz-le-move-matriz-iff [simp]:
fixes A:: 'a::{order,zero} matriz
assumes (0 < j0 <1
shows (move-matriz A j i < move-matriz B j i) = (A < B)
proof —
have Rep-matriz A j' i’ < Rep-matriz B j' i’
if Vonm. —intn < j A - int m < i — Rep-matriz A (nat (int n — j)) (nat

26

(int m — 7)) < Rep-matriz B (nat (int n — j)) (nat (int m — 1))
for ;' i’
using that[rule-format, of j' + nat j i’ + nat i] by (simp add: assms)
then show ?thesis
by (auto simp: le-matriz-def)
qed

instantiation matriz :: ({lattice, zero}) lattice
begin

definition inf = combine-matriz inf
definition sup = combine-matriz sup

instance
by standard (auto simp: le-infI le-matriz-def inf-matriz-def sup-matriz-def)

end

instantiation matriz :: ({plus, zero}) plus
begin

definition
plus-matriz-def: A + B = combine-matriz (+) A B

instance ..
end

instantiation matriz :: ({uminus, zero}) uminus
begin

definition
minus-matriz-def: — A = apply-matriz uminus A

instance ..
end

instantiation matriz :: ({minus, zero}) minus
begin

definition
diff-matriz-def: A — B = combine-matriz (—) A B

instance ..

end

27

instantiation matriz :: ({plus, times, zero}) times
begin

definition
times-matriz-def: A * B = mult-matriz ((x)) (+) A B

instance ..
end

instantiation matriz :: ({lattice, uminus, zero}) abs
begin

definition
abs-matriz-def: |A :: 'a matriz| = sup A (— A)

instance ..
end

instance matriz :: (monoid-add) monoid-add
proof
fix A B C :: 'a matriz
show A+ B+ C=A+ (B+ C)
by (simp add: add.assoc matriz-eql plus-matriz-def)
show 0 + A=A
by (simp add: matriz-eql plus-matriz-def)
show A + 0= A
by (simp add: matriz-eql plus-matriz-def)
qed

instance matriz :: (comm-monoid-add) comm-monoid-add
proof
fix A B :: 'a matriz
show A + B=B+ A
by (simp add: add.commute matriz-eql plus-matriz-def)
show 0 + A=A
by (simp add: plus-matriz-def matriz-eql)
qed

instance matriz :: (group-add) group-add
proof
fix A B :: 'a matriz
show — A+ A=0
by (simp add: plus-matriz-def minus-matriz-def matriz-eql)
show A + - B=A - B
by (simp add: plus-matriz-def diff-matriz-def minus-matriz-def matriz-eql)
qed

28

instance matriz :: (ab-group-add) ab-group-add
proof
fix A B :: 'a matriz
show — A4+ A=0
by (simp add: plus-matriz-def minus-matriz-def matriz-eql)
show A — B=A+ — B
by (simp add: plus-matriz-def diff-matriz-def minus-matriz-def matriz-eql)
qed

instance matriz :: (ordered-ab-group-add) ordered-ab-group-add
proof
fix A B C :: 'a matriz
assume A < B
then show C + A< C + B
by (simp add: le-matriz-def plus-matriz-def)
qed

instance matriz :: (lattice-ab-group-add) semilattice-inf-ab-group-add ..
instance matriz :: (lattice-ab-group-add) semilattice-sup-ab-group-add ..

instance matriz :: (semiring-0) semiring-0
proof
fix A B C :: 'a matriz
show A+« Bx C=Ax (Bx ()
unfolding times-matriz-def
by (smt (verit, best) add.assoc associative-def distrib-left distrib-right group-cancel.add2
mult.assoc mult-matriz-assoc mult-not-zero)
show (A+ B)« C=A%«C+ Bx C
unfolding times-matriz-def plus-matriz-def
using [l-distributive-matriz
by (metis (full-types) add.assoc add.commute associative-def commutative-def
distrib-right I-distributive-def mult-not-zero)
show A« (B+ C)=A+«B+ AxC
unfolding times-matriz-def plus-matriz-def
using r-distributive-matrix
by (metis (no-types, lifting) add.assoc add.commute associative-def commuta-
tive-def distrib-left mult-zero-left mult-zero-right r-distributive-def)
qed (auto simp: times-matriz-def)

instance matriz :: (ring) ring ..

instance matriz :: (ordered-ring) ordered-ring
proof
fix A B C :: 'a matriz
assume § A< B0 < C
from § show C x A < C x B
by (simp add: times-matriz-def add-mono le-left-mult mult-left-mono)
from § show A x C < B x C
by (simp add: times-matriz-def add-mono le-right-mult mult-right-mono)

29

qed

instance matriz :: (lattice-ring) lattice-ring
proof
fix A B C :: ('a :: lattice-ring) matric
show |A| = sup A (—4)
by (simp add: abs-matriz-def)
qed

instance matriz :: (lattice-ab-group-add-abs) lattice-ab-group-add-abs
proof

show Aa:: 'a matriz. |a] = sup a (— a)
by (simp add: abs-matriz-def)
qed

lemma Rep-matriz-add]simp]:

Rep-matriz ((a:('a::monoid-add)matriz)+b) ji = (Rep-matriz a j i) + (Rep-matrix
bji)

by (simp add: plus-matriz-def)

lemma Rep-matriz-mult: Rep-matriz ((a::('a::semiring-0) matriz) * b) j i =
foldseq (+) (Mk. (Rep-matriz a j k) * (Rep-matriz b k ©)) (maz (ncols a) (nrows

b))

by (simp add: times-matriz-def Rep-mult-matrix)

lemma apply-matriz-add: Vo y. f (z+y) = (fz) + (fy) = f0 = (0:'a)

= apply-matriz [((a::('a::monoid-add) matriz) + b) = (apply-matriz f a) +
(apply-matriz f b)

by (simp add: matriz-eql)

lemma singleton-matriz-add: singleton-matriz j i ((a::-::monoid-add)+b) = (singleton-matriz
jia)+ (singleton-matriz j i b)
by (simp add: matriz-eql)

lemma nrows-mult: nrows ((A:('a::semiring-0) matriz) * B) < nrows A
by (simp add: times-matriz-def mult-nrows)

lemma ncols-mult: ncols ((A::('a::semiring-0) matriz) = B) < ncols B
by (simp add: times-matriz-def mult-ncols)

definition

one-matrixz :: nat = (‘'a::{zero,one}) matriz where

one-matrix n = Abs-matriz (A\ji. if j = i A j < n then 1 else 0)
lemma Rep-one-matriz[simp|: Rep-matriz (one-matriz n) ji = (if (=i Nj<
n) then 1 else 0)

unfolding one-matriz-def

by (smt (verit, del-insts) RepAbs-matriz not-le)

30

lemma nrows-one-matrix[simp]: nrows ((one-matriz n) :: ('a::zero-neq-one) matriz)
=n(is or = -)
proof —
have ?r < n by (simp add: nrows-le)
moreover have n < ?r by (simp add:le-nrows, arith)
ultimately show ?r = n by simp
qed

lemma ncols-one-matriz[simp): ncols ((one-matriz n) :: ('a::zero-neg-one)matrix)
=n(is or =-)
proof —
have ?r < n by (simp add: ncols-le)
moreover have n < ?r by (simp add: le-ncols, arith)
ultimately show ¢r = n by simp
qed

lemma one-matriz-mult-right[simp]:
fixes A :: (‘a::semiring-1) matrix
shows ncols A < n = A x (one-matriz n) = A
apply (intro matriz-eql)
apply (simp add: times-matriz-def Rep-mult-matriz)
apply (subst foldseg-almostzero, auto simp: ncols)
done

lemma one-matriz-mult-left[simp]:
fixes A :: (‘a::semiring-1) matric
shows nrows A < n = (one-matriz n) x A = A
apply (intro matriz-eql)
apply (simp add: times-matriz-def Rep-mult-matriz)
apply (subst foldseg-almostzero, auto simp: nrows)
done

lemma transpose-matriz-mult:
fixes A :: (‘a::comm-ring) matrix
shows transpose-matriz (AxB) = (transpose-matriz B) = (transpose-matriz A)
by (simp add: times-matriz-def transpose-mult-matriz mult.commute)

lemma transpose-matriz-add:
fixes A :: ('a::monoid-add) matriz
shows transpose-matriz (A+B) = transpose-matriz A + transpose-matriz B
by (simp add: plus-matriz-def transpose-combine-matriz)

lemma transpose-matriz-diff:
fixes A :: (‘a::group-add) matriz
shows transpose-matriz (A—B) = transpose-matriz A — transpose-matriz B
by (simp add: diff-matriz-def transpose-combine-matriz)

lemma transpose-matriz-minus:
fixes A :: (‘a::group-add) matriz

31

shows transpose-matriz (—A) = — transpose-matriz (A::'a matriz)
by (simp add: minus-matriz-def transpose-apply-matriz)

definition right-inverse-matriz :: ('a::{ring-1}) matriz = 'a matriz = bool where
right-inverse-matriz A X == (A * X = one-matriz (maz (nrows A) (ncols X)))
A nrows X < ncols A

definition left-inverse-matriz :: ('a::{ring-1}) matriz = 'a matriz = bool where
left-inverse-matriz A X == (X % A = one-matriz (maz(nrows X) (ncols A))) A
ncols X < nrows A

definition inverse-matriz :: ('a::{ring-1}) matriz = 'a matriz = bool where
inverse-matric A X == (right-inverse-matriz A X) A (left-inverse-matriz A X)

lemma right-inverse-matriz-dim: right-inverse-matric A X = nrows A = ncols
X

using ncols-mult[of A X] nrows-mult[of A X]

by (simp add: right-inverse-matriz-def)

lemma left-inverse-matriz-dim: left-inverse-matric A Y = ncols A = nrows Y
using ncols-mult[of Y A] nrows-mult[of YV A]
by (simp add: left-inverse-matriz-def)

lemma left-right-inverse-matriz-unique:
assumes left-inverse-matriz A Y right-inverse-matriz A X
shows X = Y
proof —
have Y = Y x one-matriz (nrows A)
by (metis assms(1) left-inverse-matriz-def one-matriz-mult-right)
also have ... = YV % (4 x X)
by (metis assms(2) maz.idem right-inverse-matriz-def right-inverse-matriz-dim)

also have ... = (Y % A) x X by (simp add: mult.assoc)
also have ... = X
using assms left-inverse-matriz-def right-inverse-matriz-def
by (metis left-inverse-matriz-dim maz.idem one-matriz-mult-left)
ultimately show X = Y by (simp)
qged

lemma inverse-matriz-inject: [inverse-matric A X; inverse-matriv A Y | = X
=Y

by (auto simp: inverse-matriz-def left-right-inverse-matriz-unique)

lemma one-matriz-inverse: inverse-matriz (one-matriz n) (one-matriz n)
by (simp add: inverse-matriz-def left-inverse-matriz-def right-inverse-matriz-def)

lemma zero-imp-mult-zero: (a::'a::semiring-0) = 0 | b=0 = ax b= 0
by auto

32

lemma Rep-matriz-zero-imp-mult-zero:

Vj ik (Rep-matriv A j k = 0) | (Rep-matric Bk i) =0 = Ax B =
(0::(Ya::lattice-ring) matriz)

by (simp add: matriz-eql Rep-matriz-mult foldseq-zero zero-imp-mult-zero)

lemma add-nrows: nrows (A::(‘a::monoid-add) matriz) < u = nrows B < u =
nrows (A + B) < u
by (simp add: nrows-le)

lemma move-matriz-row-mult:
fixes A :: (‘a::semiring-0) matriz
shows move-matriz (A * B) j 0 = (move-matriz A j 0) * B
proof —
have Am. = int m < j = ncols (move-matriz A j 0) < maz (ncols A) (nrows
B)
by (smt (verit, best) mazxl nat-int ncols-move-matriz-le)
then show ?thesis
apply (intro matriz-eql)
apply (auto simp: Rep-matriz-mult foldseq-zero)
apply (rule-tac foldseq-zerotail|symmetric))
apply (auto simp: nrows zero-imp-mult-zero marz2)
done
qed

lemma move-matriz-col-mult:
fixes A :: (‘a::semiring-0) matric
shows move-matriz (A * B) 01 = A * (move-matrix B 0 1)
proof —
have An. = int n < i = nrows (move-matriz B 0 i) < maz (ncols A) (nrows
B)
by (smt (verit, del-insts) maz2 nat-int nrows-move-matriz-le)
then show ?thesis
apply (intro matriz-eql)
apply (auto simp: Rep-matriz-mult foldseq-zero)
apply (rule-tac foldseq-zerotail|symmetric))
apply (auto simp: ncols zero-imp-mult-zero mazx1)
done
qed

lemma move-matriz-add: ((move-matriz (A + B) ji):(('a::monoid-add) matriz))
= (move-matriz A j i) + (move-matriz B j 1)
by (simp add: matriz-eql)

lemma move-matriz-mult: move-matriz ((A::('a::semiring-0) matriz)*B) j i =
(move-matriz A j 0) * (move-matriz B 0 i)

by (simp add: move-matriz-ortho[of AxB] move-matriz-col-mult move-matriz-row-mult)
definition scalar-mult :: (‘a::ring) = 'a matriv = 'a matriz where

scalar-mult a m == apply-matriz ((x) a) m

33

lemma scalar-mult-zero[simp|: scalar-mult y 0 = 0
by (simp add: scalar-mult-def)

lemma scalar-mult-add: scalar-mult y (a+b) = (scalar-mult y a) + (scalar-mult y
b)
by (simp add: scalar-mult-def apply-matriz-add algebra-simps)

lemma Rep-scalar-mult[simp]: Rep-matriz (scalar-mult y a) ji = y * (Rep-matriz
aj i)
by (simp add: scalar-mult-def)

lemma scalar-mult-singleton|simp|: scalar-mult y (singleton-matriz j ¢ x) = sin-
gleton-matriz j i (y * x)
by (simp add: scalar-mult-def)

lemma Rep-minus[simp]: Rep-matriz (—(A:-::group-add)) z y = — (Rep-matriz
Azy)

by (simp add: minus-matriz-def)
lemma Rep-abs[simp|: Rep-matriz |A::-:lattice-ab-group-add| © y = |Rep-matriz
Azyl

by (simp add: abs-lattice sup-matriz-def)
end
theory SparseMatrixz

imports Matriz
begin

type-synonym ’‘a spvec = (nat x 'a) list
type-synonym ’a spmat = 'a spvec spvec

definition sparse-row-vector :: ('a::ab-group-add) spvec = 'a matriz

where sparse-row-vector arr = foldl (% m z. m + (singleton-matriz 0 (fst x)
(snd x))) 0 arr
definition sparse-row-matriz :: ('a::ab-group-add) spmat = 'a matriz

where sparse-row-matriz arr = foldl (% m r. m + (move-matriz (sparse-row-vector
(snd 1)) (int (fst r)) 0)) 0 arr

code-datatype sparse-row-vector sparse-row-matric

lemma sparse-row-vector-empty [simp|: sparse-row-vector [| = 0
by (simp add: sparse-row-vector-def)

lemma sparse-row-matriz-empty [simp]: sparse-row-matriz [| = 0
by (simp add: sparse-row-matriz-def)

34

lemma [code]:
<0 = sparse-row-vector [|»
by simp

lemma foldl-distrstart: Vazy. (f (9zy) a=gx (fya) = (foldlf (gxy)l=

gz (foldl fy 1))
by (induct | arbitrary: © y, auto)

lemma sparse-row-vector-cons|simpl:

sparse-row-vector (a # arr) = (singleton-matriz 0 (fst a) (snd a)) + (sparse-row-vector
arr)

by (induct arr) (auto simp: foldl-distrstart sparse-row-vector-def)

lemma sparse-row-vector-append|simp):
sparse-row-vector (a @ b) = (sparse-row-vector a) + (sparse-row-vector b)
by (induct a) auto

lemma nrows-spvec[simp|: nrows (sparse-row-vector z) < (Suc 0)
by (induct x) (auto simp: add-nrows)

lemma sparse-row-matriz-cons: sparse-row-matriz (aftarr) = ((move-matriz (sparse-row-vector
(snd a)) (int (fst a)) 0)) + sparse-row-matrix arr
by (induct arr) (auto simp: foldl-distrstart sparse-row-matriz-def)

lemma sparse-row-matriz-append: sparse-row-matriz (arr@brr) = (sparse-row-matriz
arr) + (sparse-row-matriz brr)

by (induct arr) (auto simp: sparse-row-matriz-cons)

fun sorted-spvec :: 'a spvec = bool

where
sorted-spvec || = True
| sorted-spvec-stepl: sorted-spvec [a] = True

| sorted-spvec-step: sorted-spvec ((m,x)#(n,y)#bs) = ((m < n) A (sorted-spvec
((n,9)#b5)))
primrec sorted-spmat :: 'a spmat = bool
where
sorted-spmat [| = True
| sorted-spmat (a#tas) = ((sorted-spvec (snd a)) A (sorted-spmat as))

declare sorted-spvec.simps [simp del]

lemma sorted-spvec-empty[simp|: sorted-spvec [| = True
by (simp add: sorted-spvec.simps)

lemma sorted-spvec-consl: sorted-spvec (a#as) = sorted-spvec as
using sorted-spvec.elims(2) sorted-spvec-empty by blast

35

lemma sorted-spvec-cons2: sorted-spvec (a#b#t) = sorted-spvec (a#t)
by (smt (verit, del-insts) sorted-spvec-step order.strict-trans list.inject sorted-spvec.elims(3)
surj-pair)

lemma sorted-spvec-cons3: sorted-spvec(a#b#t) = fst a < fst b
by (metis sorted-spvec-step prod.collapse)

lemma sorted-sparse-row-vector-zero:

assumes m < n

shows sorted-spvec ((n,a)#arr) = Rep-matriz (sparse-row-vector arr) j m =
0
proof (induct arr)

case Nil

then show “case by auto
next

case (Cons a arr)

with assms show ?case

by (auto dest: sorted-spvec-cons2 sorted-spvec-cons3)

qed

lemma sorted-sparse-row-matriz-zero[rule-format]:
assumes m < n
shows sorted-spvec ((n,a)#arr) = Rep-matriz (sparse-row-matriz arr) m j =
0
proof (induct arr)
case Nil
then show ?Zcase by auto
next
case (Cons a arr)
with assms show ?Zcase
unfolding sparse-row-matriz-cons
by (auto dest: sorted-spvec-cons2 sorted-spvec-cons3)
qed

primrec minus-spvec :: (‘a::ab-group-add) spvec = 'a spvec
where

minus-spvec [| = []
| minus-spvec (a#as) = (fst a, —(snd a))#(minus-spvec as)

primrec abs-spvec :: ('a::lattice-ab-group-add-abs) spvec = 'a spvec
where

abs-spvec [| = ||
| abs-spvec (a#as) = (fst a, |snd al)#(abs-spvec as)

lemma sparse-row-vector-minus:

sparse-row-vector (minus-spvec v) = — (sparse-row-vector v)
proof (induct v)

case Nil

then show “case

36

by auto
next
case (Cons a v)
then have singleton-matriz 0 (fst a) (— snd a) = — singleton-matriz 0 (fst a)
(snd a)
by (simp add: Rep-matriz-inject minus-matriz-def)
then show ?case
by (simp add: local. Cons)
qed

lemma sparse-row-vector-abs:
sorted-spvec (v :: 'a::lattice-ring spvec) = sparse-row-vector (abs-spvec v) =
|sparse-row-vector v
proof (induct v)
case Nil
then show ?case
by simp
next
case (Cons ab v)
then have v: sorted-spvec v
using sorted-spvec-consl by blast
show ?Zcase
proof (cases ab)
case (Pair a b)
then have 0: Rep-matriz (sparse-row-vector v) 0 a = 0
using Cons.prems sorted-sparse-row-vector-zero by blast
with v Cons show ?thesis
by (fastforce simp: Pair simp flip: Rep-matriz-inject)
qed
qed

lemma sorted-spvec-minus-spvec:

sorted-spvec v => sorted-spvec (minus-spvec v)

by (induct v rule: sorted-spvec.induct) (auto simp: sorted-spvec-stepl sorted-spvec-step)
lemma sorted-spvec-abs-spvec:

sorted-spvec v => sorted-spvec (abs-spvec v)

by (induct v rule: sorted-spvec.induct) (auto simp: sorted-spvec-stepl sorted-spvec-step)

definition smult-spvec y = map (% a. (fst a, y * snd a))

lemma smult-spvec-empty[simp]: smult-spvec y [| = []
by (simp add: smult-spvec-def)

lemma smult-spvec-cons: smult-spvec y (a#tarr) = (fst a, y x (snd a)) # (smult-spvec
y arr)

by (simp add: smult-spvec-def)

fun addmult-spvec :: ('a::ring) = 'a spvec = 'a spvec = 'a spvec

37

where
addmult-spvec y arr [| = arr
| addmult-spvec y [| brr = smult-spvec y brr
| addmult-spvec y ((i,a)#arr) ((4,0)#brr) = (
if i < j then ((¢,a)#(addmult-spvec y arr ((§,b)#brr)))
else (if (j < ©) then ((j, y * b)#(addmult-spvec y ((i,a)#arr) brr))
else ((i, a + yxb)#(addmult-spvec y arr brr))))

lemma addmult-spvec-emptyl [simp]: addmult-spvec y [] a = smult-spvec y a
by (induct a) auto

lemma addmult-spvec-empty2[simp|: addmult-spvec y a [| = a
by simp

lemma sparse-row-vector-map: (Vz y. f (z+y) = (fz) + (fy)) = (f::'a=("a::lattice-ring))
0=0—

sparse-row-vector (map (% z. (fst z, f (snd x))) a) = apply-matriz f (sparse-row-vector
a)

by (induct a) (simp-all add: apply-matriz-add)

lemma sparse-row-vector-smult: sparse-row-vector (smult-spvec y a) = scalar-mult
y (sparse-row-vector a)
by (induct a) (simp-all add: smult-spvec-cons scalar-mult-add)

lemma sparse-row-vector-addmult-spvec: sparse-row-vector (addmult-spvec (y::'a::lattice-ring)
ab) =
(sparse-row-vector a) + (scalar-mult y (sparse-row-vector b))
by (induct y a b rule: addmult-spvec.induct)
(simp-all add: scalar-mult-add smult-spvec-cons sparse-row-vector-smult single-
ton-matriz-add)

lemma sorted-smult-spvec: sorted-spvec a = sorted-spvec (smult-spvec y a)
by (induct a rule: sorted-spvec.induct) (auto simp: smult-spvec-def sorted-spvec-step!
sorted-spvec-step)

lemma sorted-spvec-addmult-spvec-helper: [sorted-spvec (addmult-spvec y ((a, b)
arr) brr); aa < a; sorted-spvec ((a, b) # arr);

sorted-spvec ((aa, ba) # brr)] = sorted-spvec ((aa, y * ba) # addmult-spvec y
((a, b) # arr) brr)

by (induct brr) (auto simp: sorted-spvec.simps)

lemma sorted-spvec-addmult-spvec-helper2:
[sorted-spvec (addmult-spvec y arr ((aa, ba) # brr)); a < aa; sorted-spvec ((a, b)
arr); sorted-spvec ((aa, ba) # brr)]
= sorted-spvec ((a, b) # addmult-spvec y arr ((aa, ba) # brr))
by (induct arr) (auto simp: smult-spvec-def sorted-spvec.simps)

lemma sorted-spvec-addmult-spvec-helper3[rule-format]:

38

sorted-spvec (addmult-spvec y arr brr) =

sorted-spvec ((aa, b) # arr) =

sorted-spvec ((aa, ba) # brr) =

sorted-spvec ((aa, b + y * ba) # (addmult-spvec y arr brr))

by (smt (verit, ccfv-threshold) sorted-spvec-step addmult-spvec.simps(1) list.distinct(1)
list.sel(3) sorted-spvec.elims(1) sorted-spvec-addmult-spvec-helper2)

lemma sorted-addmult-spvec: sorted-spvec a = sorted-spvec b = sorted-spvec
(addmult-spvec y a b)
proof (induct y a b rule: addmult-spvec.induct)
case (1 y arr)
then show ?case
by simp
next
case (2 y v va)
then show ?case
by (simp add: sorted-smult-spvec)
next
case (3 yiaarrjbbrr)
show ?case
proof (cases i j rule: linorder-cases)
case less
with & show %thesis
by (simp add: sorted-spvec-addmult-spvec-helper2 sorted-spvec-consl)
next
case equal
with & show %thesis
by (simp add: sorted-spvec-addmult-spvec-helper3 sorted-spvec-consl)
next
case greater
with 8 show ?thesis
by (simp add: sorted-spvec-addmult-spvec-helper sorted-spvec-consl)
qed
qed

fun mult-spvec-spmat :: (‘a::lattice-ring) spvec = 'a spvec = 'a spmat = 'a spvec
where
mult-spvec-spmat ¢ [| brr = ¢
| mult-spvec-spmat ¢ arr || = ¢
| mult-spvec-spmat ¢ ((i,a)#arr) ((4,0)#brr) = (
if (i < j) then mult-spvec-spmat ¢ arr ((4,b)#brr)
else if (j < @) then mult-spvec-spmat ¢ ((i,a)#arr) brr
else mult-spvec-spmat (addmult-spvec a ¢ b) arr brr)

lemma sparse-row-mult-spvec-spmat:

assumes sorted-spvec (a::('a::lattice-ring) spvec) sorted-spvec B

shows sparse-row-vector (mult-spvec-spmat ¢ a B) = (sparse-row-vector ¢) +
(sparse-row-vector a) * (sparse-row-matriz B)
proof —

39

have comp-1: ! a b. a < b = Suc 0 < nat ((int b)—(int a)) by arith
have not-iff: ' a b. a = b = (~ a) = (™ b) by simp
{

fix a

fix vz (nat x 'a) list

assume a: a < nrows(sparse-row-vector v)

have nrows(sparse-row-vector v) < 1 by simp

then have a = 0

using a dual-order.strict-trans1 by blast

}

note nrows-helper = this
show ?thesis
using assms
proof (induct ¢ a B rule: mult-spvec-spmat.induct)
case (1 ¢ brr)
then show ?case
by simp
next
case (2 ¢ v va)
then show ?case
by simp
next
case (3 ciaarrjb brr)
then have abrr: sorted-spvec arr sorted-spvec brr
using sorted-spvec-consl by blast+
have Am n. [a # 0; 0 < m]
= a * Rep-matriz (sparse-row-vector b) m n = 0
by (metis mult-zero-right neq0-conv nrows-helper nrows-notzero)
then have {: scalar-mult a (sparse-row-vector b) =

singleton-matriz 0 j a * move-matriz (sparse-row-vector b) (int j) 0

apply (intro matriz-eql)
apply (simp)
apply (subst Rep-matriz-mult)
apply (subst foldseg-almostzero, auto)
done

show ?Zcase

proof (cases i j rule: linorder-cases)
case less
with 3 abrr 1 show ?thesis

apply (simp add: algebra-simps sparse-row-matriz-cons Rep-matriz-zero-imp-mult-zero)
by (metis Rep-matriz-zero-imp-mult-zero Rep-singleton-matriz less-imp-le-nat

sorted-sparse-row-matriz-zero)
next
case equal
with & abrr t show ?thesis

apply (simp add: sparse-row-matriz-cons algebra-simps sparse-row-vector-addmult-spvec)

apply (subst Rep-matriz-zero-imp-mult-zero)
using sorted-sparse-row-matriz-zero apply fastforce
apply (subst Rep-matrix-zero-imp-mult-zero)

40

apply (metis Rep-move-matriz comp-1 nrows-le nrows-spvec sorted-sparse-row-vector-zero
verit-comp-simplify1(3))
apply simp
done
next
case greater
have Rep-matriz (sparse-row-vector arr) j' k= 0 V
Rep-matriz (move-matriz (sparse-row-vector b) (int §) 0) k
i'=0
if sorted-spvec ((i, a) # arr) for j' i' k
proof (cases k <)
case True
with greater that show ?thesis
by (meson order.trans nat-less-le sorted-sparse-row-vector-zero)
qged (use nrows-helper nrows-notzero in force)
then have sparse-row-vector arr x move-matriz (sparse-row-vector b) (int j)
0=20
using greater 3
by (simp add: Rep-matriz-zero-imp-mult-zero)
with greater 3 abrr show ?thesis
apply (simp add: algebra-simps sparse-row-matriz-cons)
by (metis Rep-matriz-zero-imp-mult-zero Rep-move-matrixz Rep-singleton-matrix
comp-1 nrows-le nrows-spvec)
qed
qed
qged

lemma sorted-mult-spvec-spmat:

sorted-spvec (c::('a::lattice-ring) spvec) = sorted-spmat B = sorted-spvec (mult-spvec-spmat
ca B)

by (induct ¢ a B rule: mult-spvec-spmat.induct) (simp-all add: sorted-addmult-spvec)

primrec mult-spmat :: (‘a::lattice-ring) spmat = 'a spmat = 'a spmat
where
mult-spmat || A = |]
| mult-spmat (a#as) A = (fst a, mult-spvec-spmat || (snd a) A)#(mult-spmat as
A)

lemma sparse-row-mult-spmat:

sorted-spmat A = sorted-spvec B —>

sparse-row-matriz (mult-spmat A B) = (sparse-row-matriz A) * (sparse-row-matriz
B)

by (induct A) (auto simp: sparse-row-matriz-cons sparse-row-mult-spvec-spmat
algebra-simps move-matriz-mult)

lemma sorted-spvec-mult-spmat:
fixes A :: (‘a::lattice-ring) spmat
shows sorted-spvec A => sorted-spvec (mult-spmat A B)
by (induct A rule: sorted-spvec.induct) (auto simp: sorted-spvec.simps)

41

lemma sorted-spmat-mult-spmat:
sorted-spmat (B::('a::lattice-ring) spmat) = sorted-spmat (mult-spmat A B)
by (induct A) (auto simp: sorted-mult-spvec-spmat)

fun add-spvec :: ('a::lattice-ab-group-add) spvec = 'a spvec = 'a spvec
where

add-spvec arr || = ar
| add-spvec [brr = brr
| add-spuec ((i,a)arr) ((j,b)#brr) = (
(i
)

<

if © < j then (i,a)#(add-spvec arr ((j,b)#brr))
else if (j < i) then (4,b) # add-spvec ((i,a)#arr) brr
else (i, a+b) # add-spvec arr brr)

lemma add-spvec-emptyl [simp]: add-spvec || a = a
by (cases a, auto)

lemma sparse-row-vector-add: sparse-row-vector (add-spvec a b) = (sparse-row-vector
a) + (sparse-row-vector b)

by (induct a b rule: add-spvec.induct) (simp-all add: singleton-matriz-add)

fun add-spmat :: ('a:lattice-ab-group-add) spmat = 'a spmat = 'a spmat
where

add-spmat [] bs = bs

| add-spmat as [| = as
| add-spmat ((i,a)#tas) (G,b)#bs) = (
if i < j then

(i,a) # add-spmat as ((j,b)#bs)
else if j < i then
(4,b) # add-spmat ((i,a)#as) bs
else
(i, add-spvec a b) # add-spmat as bs)

lemma add-spmat-Nil2[simp]: add-spmat as [| = as
by (cases as) auto

lemma sparse-row-add-spmat: sparse-row-matriz (add-spmat A B) = (sparse-row-matriz
A) + (sparse-row-matriz B)

by (induct A B rule: add-spmat.induct) (auto simp: sparse-row-matriz-cons sparse-row-vector-add
move-matriz-add)

lemma [code]:
<sparse-row-matriz A + sparse-row-matriz B = sparse-row-matriz (add-spmat A
B)»
<sparse-row-vector a + sparse-row-vector b = sparse-row-vector (add-spvec a b)»
by (simp-all add: sparse-row-add-spmat sparse-row-vector-add)

42

lemma sorted-add-spvec-helperl [rule-format]: add-spvec ((a,b)#arr) brr = (ab,
bb) # list — (ab = a | (brr # [| & ab = fst (hd brr)))
proof —
have (Vz ab a. © = (a,b)#arr — add-spvec x brr = (ab, bb) # list — (ab =
a | (ab = fst (hd brr))))
by (induct brr rule: add-spvec.induct) (auto split:if-splits)
then show ?thesis
by (case-tac brr, auto)
qged

lemma sorted-add-spmat-helper1 [rule-format]:

add-spmat ((a,b)#arr) brr = (ab, bb) # list = (ab = a | (brr # [] & ab = fst
(hd brr)))

by (smt (verit) add-spmat.elims fst-conv list.distinct(1) list.sel(1))

lemma sorted-add-spvec-helper: add-spvec arr brr = (ab, bb) # list = ((arr #
[| & ab = fst (hd arr)) | (brr # || & ab = fst (hd brr)))
by (induct arr brr rule: add-spvec.induct) (auto split:if-splits)

lemma sorted-add-spmat-helper: add-spmat arr brr = (ab, bb) # list = ((arr #
[| & ab = fst (hd arr)) | (brr # || & ab = fst (hd brr)))
by (induct arr brr rule: add-spmat.induct) (auto split:if-splits)

lemma add-spvec-commute: add-spvec a b = add-spvec b a
by (induct a b rule: add-spvec.induct) auto

lemma add-spmat-commute: add-spmat a b = add-spmat b a
by (induct a b rule: add-spmat.induct) (simp-all add: add-spvec-commute)

lemma sorted-add-spvec-helper2: add-spvec ((a,b)#arr) brr = (ab, bb) # list =
aa < a = sorted-spvec ((aa, ba) # brr) = aa < ab
by (smt (verit, best) add-spvec.elims fst-conv list.sel(1) sorted-spvec-consS3)

lemma sorted-add-spmat-helper2: add-spmat ((a,b)#arr) brr = (ab, bb) # list =
aa < a = sorted-spvec ((aa, ba) # brr) = aa < ab

by (metis (no-types, opaque-lifting) add-spmat.simps(1) list.sel(1) neq-Nil-conv
sorted-add-spmat-helper sorted-spvec-cons3)

lemma sorted-spvec-add-spvec: sorted-spvec a = sorted-spvec b = sorted-spvec
(add-spvec a b)
proof (induct a b rule: add-spvec.induct)
case (3 i a arrjb brr)
then have sorted-spvec arr sorted-spvec brr
using sorted-spvec-consl by blast+
with & show Zcase
apply simp
by (smt (verit, ccfv-SIG) add-spvec.simps(2) list.sel(3) sorted-add-spvec-helper
sorted-spvec.elims(1))

43

qed auto

lemma sorted-spvec-add-spmat:
sorted-spvec A = sorted-spvec B = sorted-spvec (add-spmat A B)
proof (induct A B rule: add-spmat.induct)
case (1 bs)
then show ?case by auto
next
case (2 v va)
then show ?case by auto
next
case (3 iaasjb bs)
then have sorted-spvec as sorted-spvec bs
using sorted-spvec-consl by blast+
with & show Zcase
apply simp
by (smt (verit) Pair-inject add-spmat.elims list.discI list.inject sorted-spvec.elims(1))
qed

lemma sorted-spmat-add-spmat|[rule-format]: sorted-spmat A = sorted-spmat B
= sorted-spmat (add-spmat A B)
by (induct A B rule: add-spmat.induct) (simp-all add: sorted-spvec-add-spvec)

fun le-spvec :: (‘a::lattice-ab-group-add) spvec = 'a spvec = bool
where

le-spvec || [| = True
| le-spvec ((-,a)#as) [| = (a < 0 & le-spvec as [])
| le-spvec || ((-,0)#bs) = (0 < b & le-spvec || bs)
| le-spuec ((i,a)#as) (G,b)4bs) = (
if (i <j) then a < 0 & le-spvec as ((j,b)#bs)
else if (j < i) then 0 < b & le-spvec ((i,a)#as) bs
else a < b & le-spvec as bs)

<
<

fun le-spmat :: ('a::lattice-ab-group-add) spmat = 'a spmat = bool
where

le-spmat [| [| = True
| le-spmat ((i,a)#as) [| = (le-spvec a [| & le-spmat as [])
| le-spmat [] ((j,b)#bs) = (le-spvec || b & le-spmat || bs)
| le-spmat ((i,a)#as) ((,b)4bs) = (
if i < j then (le-spvec a [| & le-spmat as ((,b)#bs))
else if j < i then (le-spvec [| b & le-spmat ((i,a)#as) bs)
else (le-spvec a b & le-spmat as bs))

definition disj-matrices :: (‘a::zero) matriz = 'a matriz = bool where
disj-matrices A B +—
(Vji. (Rep-matriz A ji # 0) — (Rep-matriz Bji = 0)) & (Vj i. (Rep-matriz
Bji# 0) — (Rep-matriz A ji = 0))

44

lemma disj-matrices-contrl: disj-matrices A B = Rep-matriz A j i # 0 =
Rep-matriz B ji =0
by (simp add: disj-matrices-def)

lemma disj-matrices-contr2: disj-matrices A B = Rep-matriz B j i # 0 =
Rep-matriz A j i = 0
by (simp add: disj-matrices-def)

lemma disj-matrices-add:
fixes A :: (‘a:lattice-ab-group-add) matriz
shows disj-matrices A B = disj-matrices C D = disj-matrices A D
= disj-matriccs BC = (A+ B< C+ D)= (A< CAB<D)
apply (intro iffI conjI)
unfolding le-matriz-def disj-matrices-def
apply (metis Rep-matriz-add group-cancel.rule0 order-refl)
apply (metis (no-types, lifting) Rep-matriz-add add-cancel-right-left dual-order.refl)
by (meson add-mono le-matriz-def)

lemma disj-matrices-zerol [simp): disj-matrices 0 B
by (simp add: disj-matrices-def)

lemma disj-matrices-zero2|[simp|: disj-matrices A 0
by (simp add: disj-matrices-def)

lemma disj-matrices-commute: disj-matrices A B = disj-matrices B A
by (auto simp: disj-matrices-def)

lemma disj-matrices-add-le-zero: disj-matrices A B —
(A+ B <0)= (A< 0 & (B::('a:lattice-ab-group-add) matriz) < 0)
by (rule disj-matrices-add[of A B 0 0, simplified])

lemma disj-matrices-add-zero-le: disj-matrices A B —
(0 <A+ B)=(0< A& 0 < (B:('a:lattice-ab-group-add) matriz))
by (rule disj-matrices-add[of 0 0 A B, simplified])

lemma disj-matrices-add-z-le: disj-matrices A B = disj-matrices B C =
(A< B+ C)= (A< C& 0 < (B:('a:lattice-ab-group-add) matriz))
by (auto simp: disj-matrices-add[of 0 A B C, simplified])

lemma disj-matrices-add-le-z: disj-matrices A B => disj-matrices B C =
(B+ A< C)= (A< C& (B:('a:lattice-ab-group-add) matriz) < 0)
by (auto simp: disj-matrices-add[of B A 0 C,simplified] disj-matrices-commute)

lemma disj-sparse-row-singleton: i < j = sorted-spvec((j,y)#v) = disj-matrices
(sparse-row-vector v) (singleton-matriz 0 i)

apply (simp add: disj-matrices-def)

using sorted-sparse-row-vector-zero by blast

45

lemma disj-matrices-z-add: disj-matrices A B = disj-matrices A C = disj-matrices
(A::(Ya::lattice-ab-group-add) matriz) (B+C)
by (smt (verit, ccfv-SIG) Rep-matriz-add add-0 disj-matrices-def)

lemma disj-matrices-add-z: disj-matrices A B = disj-matrices A C = disj-matrices
(B+C) (A:('a::lattice-ab-group-add) matriz)
by (simp add: disj-matrices-z-add disj-matrices-commute)

lemma disj-singleton-matrices[simp|: disj-matrices (singleton-matriz j i x) (singleton-matriz

vvy)=(GFuliFvlz=0]y=0)
by (auto simp: disj-matrices-def)

lemma disj-move-sparse-vec-mat:
assumes j < a and sorted-spvec ((a, ¢) # as)
shows disj-matrices (sparse-row-matriz as) (move-matriz (sparse-row-vector b)
(int j) 1)
proof —
have Rep-matriz (sparse-row-vector b) (n—j) (nat (int m — 7)) = 0
if = n<j and nz: Rep-matriz (sparse-row-matriz as) n m # 0
for n m
proof —
have n # j
using assms sorted-sparse-row-matriz-zero nz by blast
with that have j < n by auto
then show ?thesis
by (metis One-nat-def Suc-diff-Suc nrows nrows-spvec plus-1-eq-Suc trans-le-add1)
qed
then show ?thesis
by (auto simp: disj-matrices-def nat-minus-as-int)
qed

lemma disj-move-sparse-row-vector-twice:

Jj # u = disj-matrices (move-matriz (sparse-row-vector a) j ©) (move-matriz
(sparse-row-vector b) u v)

unfolding disj-matrices-def

by (smt (verit, ccfv-SIG) One-nat-def Rep-move-matriz of-nat-1 le-nat-iff nrows
nrows-spvec of-nat-le-iff)

lemma le-spvec-iff-sparse-row-le:

sorted-spvec a = sorted-spvec b = (le-spvec a b) <— (sparse-row-vector a <
sparse-row-vector b)
proof (induct a b rule: le-spvec.induct)

case 1

then show ?case

by auto

next

case (2 uu a as)

then have sorted-spvec as

46

by (metis sorted-spvec-consl)
with 2 show Zcase
apply (simp add: add.commute)
by (metis disj-matrices-add-le-zero disj-sparse-row-singleton le-refl singleton-le-zero)
next
case (3 uv b bs)
then have sorted-spvec bs
by (metis sorted-spvec-consl)
with & show Zcase
apply (simp add: add.commute)
by (metis disj-matrices-add-zero-le disj-sparse-row-singleton le-refl singleton-ge-zero)
next
case (4 iaasjb bs)
then obtain §: sorted-spvec as sorted-spvec bs
by (metis sorted-spvec-consi)
show ?Zcase
proof (cases i j rule: linorder-cases)
case less
with 4 § show Zthesis
apply (simp add:)
by (metis disj-matrices-add-le-z disj-matrices-add-z disj-matrices-commaute
disj-singleton-matrices disj-sparse-row-singleton less-imp-le-nat singleton-le-zero not-le)
next
case equal
with 4 § show ?thesis
apply (simp add:)
by (metis disj-matrices-add disj-matrices-commute disj-sparse-row-singleton
order-refl singleton-matriz-le)
next
case greater
with 4 § show ?Zthesis
apply (simp add:)
by (metis disj-matrices-add-x disj-matrices-add-z-le disj-matrices-commaute
disj-singleton-matrices disj-sparse-row-singleton le-refl order-less-le singleton-ge-zero)
qed
qed

lemma le-spvec-empty2-sparse-row:
sorted-spvec b = le-spvec b [| = (sparse-row-vector b < 0)
by (simp add: le-spvec-iff-sparse-row-le)

lemma le-spvec-emptyl-sparse-row:
(sorted-spvec b) = (le-spvec [| b = (0 < sparse-row-vector b))
by (simp add: le-spvec-iff-sparse-row-le)

lemma le-spmat-iff-sparse-row-le:
[sorted-spvec A; sorted-spmat A; sorted-spvec B; sorted-spmat B] =
le-spmat A B = (sparse-row-matriz A < sparse-row-matriz B)
proof (induct A B rule: le-spmat.induct)

47

case (4 i a asjb bs)
then obtain §: sorted-spvec as sorted-spvec bs
by (metis sorted-spvec-consl)
show ?Zcase
proof (cases i j rule: linorder-cases)
case less
with 4/ § show Zthesis
apply (simp add: sparse-row-matriz-cons le-spvec-empty2-sparse-row)
by (metis disj-matrices-add-le-z disj-matrices-add-z disj-matrices-commaute
disj-move-sparse-row-vector-twice disj-move-sparse-vec-mat int-eq-iff less-not-refl move-matriz-le-zero
order-le-less)
next
case equal
with 4 § show Zthesis
by (simp add: sparse-row-matriz-cons le-spvec-iff-sparse-row-le disj-matrices-commute
disj-move-sparse-vec-mat| OF order-refl] disj-matrices-add)
next
case greater
with 4 § show Zthesis
apply (simp add: sparse-row-matriz-cons le-spvec-emptyl-sparse-row)
by (metis disj-matrices-add-x disj-matrices-add-z-le disj-matrices-commaute
disj-move-sparse-row-vector-twice disj-move-sparse-vec-mat move-matriz-zero-le nat-int
nat-less-le of-nat-0-le-iff order-refl)
qed
qed (auto simp add: sparse-row-matriz-cons disj-matrices-add-le-zero disj-matrices-add-zero-le
disj-move-sparse-vec-mat| OF order-refi)
disj-matrices-commute sorted-spvec-consl le-spuec-empty2-sparse-row le-spvec-emptyl-sparse-row)

primrec abs-spmat :: (‘a::lattice-ring) spmat = ‘a spmat
where

abs-spmat [| = []
| abs-spmat (a#as) = (fst a, abs-spvec (snd a))#(abs-spmat as)

primrec minus-spmat :: ('a::lattice-ring) spmat = 'a spmat
where
minus-spmat || = ||
| minus-spmat (aftas) = (fst a, minus-spvec (snd a))#(minus-spmat as)

lemma sparse-row-matriz-minus:

sparse-row-matriz (minus-spmat A) = — (sparse-row-matriz A)
proof (induct A)

case Nil

then show ?case by auto
next

case (Cons a A)

then show ?Zcase

by (simp add: sparse-row-vector-minus sparse-row-matriz-cons matriz-eql)

qed

48

lemma Rep-sparse-row-vector-zero:
assumes z #
shows Rep-matriz (sparse-row-vector v) z y = 0
by (metis Suc-lel assms le0 le-eq-less-or-eq nrows-le nrows-spvec)

lemma sparse-row-matrixz-abs:
sorted-spvec A = sorted-spmat A = sparse-row-matriz (abs-spmat A) = |sparse-row-matriz
Al
proof (induct A)
case Nil
then show ?case by auto
next
case (Cons ab A)
then have A: sorted-spvec A
using sorted-spvec-consl by blast
show ?Zcase
proof (cases ab)
case (Pair a b)
show ?thesis
unfolding Pair
proof (intro matriz-eql)
fix mn
show Rep-matriz (sparse-row-matriz (abs-spmat ((a,b) # A))) m n
= Rep-matriz |sparse-row-matriz ((a,b) # A)| m n
using Cons Pair A
apply (simp add: sparse-row-vector-abs sparse-row-matriz-cons)
apply (cases m=a)
using sorted-sparse-row-matriz-zero apply fastforce
by (simp add: Rep-sparse-row-vector-zero)
qed
qed
qed

lemma sorted-spvec-minus-spmat: sorted-spvec A = sorted-spvec (minus-spmat
A)

by (induct A rule: sorted-spvec.induct) (auto simp: sorted-spvec.simps)

lemma sorted-spvec-abs-spmat: sorted-spvec A = sorted-spvec (abs-spmat A)
by (induct A rule: sorted-spvec.induct) (auto simp: sorted-spvec.simps)

lemma sorted-spmat-minus-spmat: sorted-spmat A = sorted-spmat (minus-spmat
A)
by (induct A) (simp-all add: sorted-spvec-minus-spvec)

lemma sorted-spmat-abs-spmat: sorted-spmat A = sorted-spmat (abs-spmat A)
by (induct A) (simp-all add: sorted-spvec-abs-spvec)

definition diff-spmat :: (‘a::lattice-ring) spmat = 'a spmat = 'a spmat

49

where diff-spmat A B = add-spmat A (minus-spmat B)

lemma sorted-spmat-diff-spmat: sorted-spmat A = sorted-spmat B = sorted-spmat
(diff-spmat A B)
by (simp add: diff-spmat-def sorted-spmat-minus-spmat sorted-spmat-add-spmat)

lemma sorted-spvec-diff-spmat: sorted-spvec A = sorted-spvec B => sorted-spvec
(diff-spmat A B)
by (simp add: diff-spmat-def sorted-spvec-minus-spmat sorted-spvec-add-spmat)

lemma sparse-row-diff-spmat: sparse-row-matriz (diff-spmat A B) = (sparse-row-matriz
A) — (sparse-row-matriz B)
by (simp add: diff-spmat-def sparse-row-add-spmat sparse-row-matriz-minus)

definition sorted-sparse-matriz :: 'a spmat = bool
where sorted-sparse-matriz A <— sorted-spvec A & sorted-spmat A

lemma sorted-sparse-matriz-imp-spvec: sorted-sparse-matric A = sorted-spvec A
by (simp add: sorted-sparse-matriz-def)

lemma sorted-sparse-matriz-imp-spmat: sorted-sparse-matric A —> sorted-spmat

A
by (simp add: sorted-sparse-matriz-def)

lemmas sorted-sp-simps =
sorted-spvec.simps
sorted-spmat.simps
sorted-sparse-matriz-def

lemma booll:
lemma bool2:

(= True) = False by blast

(= False) = True by blast

lemma bool3: ((P::bool) A True) = P by blast
lemma bools: (True A (P::bool)) = P by blast
lemma bool5: ((P::bool) A Fulse) = False by blast
lemma bool6: (False A (P::bool)) = False by blast
lemma bool7: ((P::bool) V True) = True by blast
lemma bool8: (True V (P::bool)) = True by blast
lemma bool9: ((P::bool) V False) = P by blast
lemma bool10: (False VV (P::bool)) = P by blast

lemmas boolarith = booll bool2 bool3 bools bool5 bool6 bool7 bool8 bool9 booll0

lemma if-case-eq: (if b then z else y) = (case b of True => x| False => y) by
stmp

primrec ppri-spvec :: ('a::{lattice-ab-group-add}) spvec = 'a spvec
where

pprt-spvec [| = []
| pprt-spvec (atas) = (fst a, pprt (snd a)) # (pprt-spvec as)

50

primrec nprt-spvec :: (‘a::{lattice-ab-group-add}) spvec = 'a spvec
where

nprit-spuvec [| = []
| nprt-spvec (a#tas) = (fst a, nprt (snd a)) # (nprt-spvec as)

primrec pprt-spmat :: ('a::{lattice-ab-group-add}) spmat = 'a spmat
where

pprt-spmat [] = ||
| pprt-spmat (a#tas) = (fst a, pprt-spvec (snd a))#(pprt-spmat as)

primrec nprt-spmat :: ('a::{lattice-ab-group-add}) spmat = 'a spmat
where

nprt-spmat || = []
| nprt-spmat (a#as) = (fst a, nprt-spvec (snd a))#(nprt-spmat as)

lemma pprt-add: disj-matrices A (B::(-::lattice-ring) matriz) = pprt (A+B) =
pprt A + pprt B

apply (simp add: pprt-def sup-matriz-def)

apply (intro matriz-eql)

by (smt (verit, del-insts) Rep-combine-matriz Rep-zero-matriz-def add.commute
comm-monotd-add-class.add-0 disj-matrices-def plus-matriz-def sup.idem)

lemma nprt-add: disj-matrices A (B::(-::lattice-ring) matriz) = nprt (A+B) =
nprt A + nprt B

unfolding npri-def inf-matriz-def

apply (intro matriz-eql)

by (smt (verit, ccfv-threshold) Rep-combine-matriz Rep-matriz-add add.commaute
add-cancel-right-right add-eg-inf-sup disj-matrices-contr? sup.idem)

lemma pprt-singleton[simp):
fixes z:: -::lattice-ring
shows pprt (singleton-matriz j i x) = singleton-matriz j i (pprt x)
unfolding pprt-def sup-matriz-def
by (simp add: matriz-eql)

lemma nprt-singleton|simp]:
fixes z:: -::lattice-ring
shows nprt (singleton-matriz j i ©) = singleton-matriz j i (nprt x)
by (metis add-left-imp-eq pprt-singleton prts singleton-matriz-add)

lemma sparse-row-vector-pprt:

fixes v:: -::lattice-ring spvec

shows sorted-spvec v => sparse-row-vector (pprt-spvec v) = pprt (sparse-row-vector
v)
proof (induct v rule: sorted-spvec.induct)

case (8 mz ny bs)

then show ?case

apply simp

o1

apply (subst pprt-add)

apply (metis disj-matrices-commute disj-sparse-row-singleton order.refl fst-conv
prod.sel(2) sparse-row-vector-cons)

by (metis pprt-singleton sorted-spvec-consl)
qed auto

lemma sparse-row-vector-nprt:
fixes v:: -::lattice-ring spvec
shows sorted-spvec v = sparse-row-vector (nprt-spvec v) = nprt (sparse-row-vector
v)
proof (induct v rule: sorted-spvec.induct)
case (3 mz ny bs)
then show ?case
apply simp
apply (subst nprt-add)
apply (metis disj-matrices-commute disj-sparse-row-singleton dual-order.refl
fst-conv prod.sel(2) sparse-row-vector-cons)
using sorted-spvec-consl by force
qed auto

lemma ppri-move-matriz: pprt (move-matrixz (A::('a::lattice-ring) matriz) j i) =
move-matriz (pprt A) j i
by (simp add: pprt-def sup-matriz-def matriz-eql)

lemma nprt-move-matriz: nprt (move-matriz (A::('a::lattice-ring) matriz) j i) =
move-matriz (nprt A) j i
by (simp add: nprt-def inf-matriz-def matriz-eql)

lemma sparse-row-matrix-pprt:
fixes m:: 'a::lattice-ring spmat
shows sorted-spvec m = sorted-spmat m = sparse-row-matriz (pprt-spmat
m) = pprt (sparse-row-matriz m)
proof (induct m rule: sorted-spvec.induct)
case (2 a)
then show ?case
by (simp add: pprt-move-matrix sparse-row-matriz-cons sparse-row-vector-pprt)
next
case (3 mz ny bs)
then show ?Zcase
apply (simp add: sparse-row-matriz-cons sparse-row-vector-pprt)
apply (subst pprt-add)
apply (subst disj-matrices-commute)
apply (metis disj-move-sparse-vec-mat eq-imp-le fst-conv prod.sel(2) sparse-row-matriz-cons)
apply (simp add: sorted-spvec.simps pprt-move-matriz)
done
qed auto

lemma sparse-row-matriz-nprt:

52

fixes m:: 'a::lattice-ring spmat
shows sorted-spvec m = sorted-spmat m = sorted-spmat m = sparse-row-matriz
(nprt-spmat m) = nprt (sparse-row-matriz m)
proof (induct m rule: sorted-spvec.induct)
case (2 a)
then show ?case
by (simp add: nprt-move-matriz sparse-row-matriz-cons sparse-row-vector-nprt)
next
case (8 mz n y bs)
then show ?Zcase
apply (simp add: sparse-row-matriz-cons sparse-row-vector-nprt)
apply (subst nprt-add)
apply (subst disj-matrices-commute)
apply (metis disj-move-sparse-vec-mat fst-conv nle-le prod.sel(2) sparse-row-matriz-cons)
apply (simp add: sorted-spvec.simps nprt-move-matrix)
done
qed auto

lemma sorted-pprt-spvec: sorted-spvec v => sorted-spvec (pprt-spvec v)
proof (induct v rule: sorted-spvec.induct)
case I
then show ?case by auto
next
case (2 a)
then show ?case
by (simp add: sorted-spvec-stepl)
next
case (3 mz ny bs)
then show ?case
by (simp add: sorted-spvec-step)
qed

lemma sorted-nprt-spvec: sorted-spvec v = sorted-spvec (nprt-spvec v)
by (induct v rule: sorted-spvec.induct) (simp-all add: sorted-spvec.simps split:list.split-asm)

lemma sorted-spvec-ppri-spmat: sorted-spvec m = sorted-spvec (pprt-spmat m)
by (induct m rule: sorted-spvec.induct) (simp-all add: sorted-spvec.simps split:list.split-asm)

lemma sorted-spvec-nprt-spmat: sorted-spvec m = sorted-spvec (nprt-spmat m)
by (induct m rule: sorted-spvec.induct) (simp-all add: sorted-spvec.simps split:list.split-asm)

lemma sorted-spmat-pprt-spmat: sorted-spmat m = sorted-spmat (pprt-spmat
m)
by (induct m) (simp-all add: sorted-pprt-spvec)

lemma sorted-spmat-nprt-spmat: sorted-spmat m = sorted-spmat (nprt-spmat

m)
by (induct m) (simp-all add: sorted-nprt-spvec)

93

definition mult-est-spmat :: ('a::lattice-ring) spmat = 'a spmat = 'a spmat = 'a
spmat = 'a spmat where

mult-est-spmat r1 r2 s1 s2 =

add-spmat (mult-spmat (pprt-spmat s2) (ppri-spmat r2)) (add-spmat (mult-spmat
(pprt-spmat s1) (nprt-spmat r2))

(add-spmat (mult-spmat (nprt-spmat s2) (pprt-spmat r1)) (mult-spmat (nprt-spmat
s1) (nprt-spmat r1))))

lemmas sparse-row-matriz-op-simps =
sorted-sparse-matriz-imp-spmat sorted-sparse-matriz-imp-spvec
sparse-row-add-spmat sorted-spvec-add-spmat sorted-spmat-add-spmat
sparse-row-diff-spmat sorted-spvec-diff-spmat sorted-spmat-diff-spmat
sparse-row-matriz-minus sorted-spvec-minus-spmat sorted-spmat-minus-spmat
sparse-row-mult-spmat sorted-spvec-mult-spmat sorted-spmat-mult-spmat
sparse-row-matriz-abs sorted-spvec-abs-spmat sorted-spmat-abs-spmat
le-spmat-iff-sparse-row-le
sparse-row-matriz-pprt sorted-spvec-pprt-spmat sorted-spmat-ppri-spmat
sparse-row-matriz-nprt sorted-spvec-nprt-spmat sorted-spmat-npri-spmat

lemmas sparse-row-matriz-arith-simps =
mult-spmat.simps mult-spvec-spmat.simps
addmult-spvec.simps
smult-spvec-empty smult-spvec-cons
add-spmat.simps add-spvec.simps
minus-spmat.simps minus-spvec. simps
abs-spmat.simps abs-spvec.simps
diff-spmat-def
le-spmat.simps le-spvec.simps
pprt-spmat.simps pprt-spvec.simps
nprt-spmat.simps nprt-spvec.simps
mult-est-spmat-def

end

theory LP
imports Main HOL— Library. Lattice-Algebras
begin

lemma le-add-right-mono:

assumes
a <= b + (c:'a:ordered-ab-group-add)
c<=d

shows a <=0+ d
apply (rule-tac order-trans[where y = b+c])
apply (simp-all add: assms)

54

done

lemma linprog-dual-estimate:
assumes
A x x < (b::'a:lattice-ring)
0<y
|A — A <4-A
b < b
lc — ¢/] < d-¢
lz| < r
shows
cxxz<yxbd +(yxd-A+|yx A" — |+ d-¢) xr
proof —
from assms have 1: y x b <= y * b’ by (simp add: mult-left--mono)
from assms have 2: y * (4 *) <= y * b by (simp add: mult-left-mono)
have 8: y*x (A*xxz)=cxz+ (y*x (A — A+ (yx A’ — ¢) + (c’=¢)) * = by
(simp add: algebra-simps)
from 7/ 23 have J: cxz+ (yx (A — AN+ (yx A" — ¢) + (¢'—¢)) x z <=
y * b’ by simp
have 5: cxz <=y*x b + |(yx (A — A) + (yx A" — ') + (¢'—¢)) * g
by (simp only: 4 estimate-by-abs)
have 6: |(y x (A — A) + (yx A" — ¢) + (¢'=¢)) x 2] <= |y x (A — A) + (y
* A" —¢') + (c'=c)| * |z]
by (simp add: abs-le-mult)
have 7: (Jy x (A — A) + (y * A" — ¢') + (¢'=0)|) * |z| <= (ly * (A-4") +
(yxA'=c)| + [¢" = c]) * ||
by (rule abs-triangle-ineq [THEN mult-right-monol) simp
have 8: (Jy * (A—A") + (yeA'—c)| + |¢’ — ¢]) * |s] <= (jy * (A—A")] +
ysA'—c'| + ¢’ — cf) * o
by (simp add: abs-triangle-ineq mult-right-mono)
have 9: (|y x (A=A")| + |yxA'=c'| + [c¢'=c|) * |z] <= (Jy| * [A=A"| + [yxA"=¢]
+ |¢'—c|) * |z
by (simp add: abs-le-mult mult-right-mono)
have 10: ¢'—c = —(c—c¢’) by (simp add: algebra-simps)
have 11: |¢'—¢| = |e—¢/|
by (subst 10, subst abs-minus-cancel, simp)
have 12: ([y] | A—A/| + [yxA'—c| + |e'—cl) * || <= (Jy| * | A—A" + |ysA"c]
+ §-¢) * |z]
by (simp add: 11 assms mult-right-mono)
have 13: (Jy| x |[A=A'| + |yxA'—=c'| + §-¢) * |z| <= (|y| * 6-4 + |yxA'—¢'| +
§-c) * ||
by (simp add: assms mult-right-mono mult-left-mono)
have r: (Jy| * §-A + |yxA'—c'| + §-¢) = |z| <= (Jy| * 6-A + |yxA'—c'| + d-¢) *
r
apply (rule mult-left-mono)
apply (simp add: assms)
apply (rule-tac add-monolof 0::'a - 0, simplified))+
apply (rule mult-left-monolof 0 6-A, simplified])
apply (simp-all)

95

apply (rule order-trans[where y=|A—A'|], simp-all add: assms)
apply (rule order-trans[where y=|c—c'|], simp-all add: assms)
done
from 6 78 9 12 13 r have 1: |(y * (A — A) + (y* A" — ¢) + (¢'—¢)) * =
<= (Jy| * 6-A + |yxA'—c'| + d-¢) * r
by (simp)
show ?thesis
apply (rule le-add-right-monolof - - |(y * (A — A') + (y x A" — ¢') + (¢'—¢))
o)
apply (simp-all only: 5 14[simplified abs-of-nonneg|of y, simplified assms]])
done
qed

lemma le-ge-imp-abs-diff-1:

assumes

Al <= (A:'a:lattice-ring)

A<= A2

shows |A—A1| <= A2—Al
proof —

have 0 <= A — Al

proof —

from assms add-right-mono [of A1 A — A1) show ?thesis by simp
qed
then have |[A—A1| = A—A1 by (rule abs-of-nonneg)
with assms show |A—A1| <= (A2—A1) by simp
qged

lemma mult-le-prts:
assumes
al <= (a:'a:lattice-ring)
a <= a2
bl <=1b
b <= b2
shows
ax b <= pprt a2 *x pprt b2 + pprt al * nprt b2 + nprt a2 x pprt b1 + nprt al
* nprt b1
proof —
have a * b = (pprt a + nprt a) = (pprt b + nprt b)
apply (subst pris[symmetric|)+
apply simp
done
then have a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt
a x nprt b
by (simp add: algebra-simps)
moreover have pprt a x pprt b <= pprt a2 *x pprt b2
by (simp-all add: assms mult-mono)
moreover have pprt a * nprt b <= pprt al * nprt b2
proof —
have pprt a x nprt b <= pprt a * nprt b2

o6

by (simp add: mult-left-mono assms)
moreover have pprt a x nprt b2 <= pprt al * nprt b2
by (simp add: mult-right-mono-neg assms)
ultimately show ?thesis
by simp
qed
moreover have nprt a * pprt b <= nprt a2 x pprt bl
proof —
have nprt a * pprt b <= nprt a2 * pprt b
by (simp add: mult-right-mono assms)
moreover have nprt a2 x pprt b <= nprt a2 * pprt bl
by (simp add: mult-left-mono-neg assms)
ultimately show #thesis
by simp
qed
moreover have nprt a * nprt b <= nprt al * nprt bl
proof —
have nprt a * nprt b <= nprt a * nprt bl
by (simp add: mult-left-mono-neg assms)
moreover have nprt a x nprt b1 <= nprt al * nprt bl
by (simp add: mult-right-mono-neg assms)
ultimately show Zthesis
by simp
qed
ultimately show ?thesis
by — (rule add-mono | simp)+
qged

lemma mult-le-dual-prts:

assumes

A x z < (b:'a:lattice-ring)

0<y

A1 < A

A< A2

cl <c¢

c < c2

rl <z

z < r?

shows

cxx <yxb+ (let s1 =cl —yx*x A2; 52 = c2 — y = Al in pprt s2 * pprt r2
+ pprt s1 x nprt 2 + nprt s2 x pprt v1 + nprt s1 * nprt r1)

(is - <= -+ ?0)
proof —

from assms have y x (A x z) <= y x b by (simp add: mult-left-mono)

moreover have y *x (A *xz) = c*x x + (y x A — ¢) x by (simp add: alge-
bra-simps)

ultimately have ¢ x z + (y * A — ¢) x x <= y % b by simp

then have c x x <=y * b — (y * A — ¢) * z by (simp add: le-diff-eq)

then have cz: c x £ <=y x b+ (¢ — y x A) *x z by (simp add: algebra-simps)

o7

have s2: ¢ — yx A <=2 — y x Al
by (simp add: assms add-mono mult-left-mono algebra-simps)
have s1: cl —yx A2 <=c—yx*x A
by (simp add: assms add-mono mult-left-mono algebra-simps)
have prts: (c — y * A) x z <= 2C
apply (simp add: Let-def)
apply (rule mult-le-prts)
apply (simp-all add: assms s1 s2)
done
then have y * b+ (¢ —y*x A) xz <=y x b+ ?C
by simp
with cz show ?thesis
by (simp only:)
qed

end

1 Floating Point Representation of the Reals

theory ComputeFloat
imports Complex-Main HOL— Library. Lattice-Algebras
begin

ML-file <~ /src/ Tools/ float. ML»

definition int-of-real :: real = int
where int-of-real © = (SOME y. real-of-int y = x)

definition real-is-int :: real = bool
where real-is-int © = (3 (u::int). x = real-of-int u)

lemma real-is-int-def2: real-is-int © = (z = real-of-int (int-of-real x))
by (auto simp add: real-is-int-def int-of-real-def)

lemma real-is-int-real[simp]: real-is-int (real-of-int (z::int))
by (auto simp add: real-is-int-def int-of-real-def)

lemma int-of-real-real[simp|: int-of-real (real-of-int z) = x
by (simp add: int-of-real-def)

lemma real-int-of-real[simp|: real-is-int & = real-of-int (int-of-real x) = x
by (auto simp add: int-of-real-def real-is-int-def)

lemma real-is-int-add-int-of-real: real-is-int a = real-is-int b = (int-of-real

(a+b)) = (int-of-real a) + (int-of-real b)
by (auto simp add: int-of-real-def real-is-int-def)

o8

lemma real-is-int-add[simp]: real-is-int a = real-is-int b = real-is-int (a+D>)
apply (subst real-is-int-def2)

apply (simp add: real-is-int-add-int-of-real real-int-of-real)

done

lemma int-of-real-sub: real-is-int a = real-is-int b = (int-of-real (a—0b)) =
(int-of-real a) — (int-of-real b)
by (auto simp add: int-of-real-def real-is-int-def)

lemma real-is-int-sub[simp]: real-is-int a = real-is-int b = real-is-int (a—b)
apply (subst real-is-int-def2)

apply (simp add: int-of-real-sub real-int-of-real)

done

lemma real-is-int-rep: real-is-int ¥ = 31(a::int). real-of-int a = x
by (auto simp add: real-is-int-def)

lemma int-of-real-mult:
assumes real-is-int a real-is-int b
shows (int-of-real (axb)) = (int-of-real a) * (int-of-real b)
using assms
by (auto simp add: real-is-int-def of-int-mult[symmetric]
simp del: of-int-mult)

lemma real-is-int-mult[simp]: real-is-int a = real-is-int b = real-is-int (axb)
apply (subst real-is-int-def2)

apply (simp add: int-of-real-mult)

done

lemma real-is-int-0[simp|: real-is-int (0::real)
by (simp add: real-is-int-def int-of-real-def)

lemma real-is-int-1[simp]: real-is-int (1::real)

proof —
have real-is-int (1::real) = real-is-int(real-of-int (1::int)) by auto
also have ... = True by (simp only: real-is-int-real)
ultimately show ?thesis by auto

qged

lemma real-is-int-n1: real-is-int (—1::real)

proof —
have real-is-int (—1::real) = real-is-int(real-of-int (—1::int)) by auto
also have ... = True by (simp only: real-is-int-real)
ultimately show ?thesis by auto

qed

lemma real-is-int-numeral]simp|: real-is-int (numeral x)
by (auto simp: real-is-int-def introl: exI[of - numeral z])

99

lemma real-is-int-neg-numeral[simp)|: real-is-int (— numeral x)
by (auto simp: real-is-int-def introl: exl|of - — numeral z])

lemma int-of-real-0[simpl: int-of-real (0::real) = (0::int)
by (simp add: int-of-real-def)

lemma int-of-real-1[simp]: int-of-real (1::real) = (1::int)
proof —

have 1: (1::real) = real-of-int (1::int) by auto

show ?thesis by (simp only: 1 int-of-real-real)
qged

lemma int-of-real-numeral[simp]: int-of-real (numeral b) = numeral b
unfolding int-of-real-def by simp

lemma int-of-real-neg-numeral[simp): int-of-real (— numeral b) = — numeral b

unfolding int-of-real-def
by (metis int-of-real-def int-of-real-real of-int-minus of-int-of-nat-eq of-nat-numeral)

lemma int-div-zdiv: int (a div b) = (int a) div (int b)
by (rule zdiv-int)

lemma int-mod-zmod: int (a mod b) = (int a) mod (int b)
by (rule zmod-int)

lemma abs-div-2-less: a # 0 = a # —1 = |(a::int) div 2| < |a|
by arith

lemma norm-0-1: (1:-:numeral) = Numerall
by auto

lemma add-left-zero: 0 + a = (a::'a::comm-monoid-add)
by simp

lemma add-right-zero: a + 0 = (a::’a::comm-monoid-add)
by simp

lemma mult-left-one: 1 x a = (a::’a::semiring-1)
by simp

lemma mult-right-one: a * 1 = (a::'a::semiring-1)
by simp

lemma int-pow-0: (a::int) 0 = 1
by simp

lemma int-pow-1: (a::int) (Numerall) = a
by simp

60

lemma one-eq-Numerall-nring: (1::'a::numeral) = Numerall
by simp

lemma one-eg-Numerall-nat: (1::nat) = Numerall
by simp

lemma zpower-Pls: (z::int) "0 = Numerall
by simp

lemma fst-cong: a=a’ = fst (a,b) = fst (a’,)
by simp

lemma snd-cong: b=b" = snd (a,b) = snd (a,b")
by simp

lemma lift-bool: © = x="True
by simp

lemma nlift-bool: ~x = xz="Fulse
by simp

lemma not-false-eg-true: (~ False) = True by simp
lemma not-true-eq-false: (~ True) = False by simp

lemmas powerarith = nat-numeral power-numeral-even
power-numeral-odd zpower-Pls

definition float :: (int x int) = real where
float = (A(a, b). real-of-int a * 2 powr real-of-int b)

lemma float-add-10: float (0,) + z = =
by (simp add: float-def)

lemma float-add-r0: x + float (0, €) = z
by (simp add: float-def)

lemma float-add:

float (al, el) + float (a2, e2) =

(if el <=e2 then float (al4a2x2 (nat(e2—el)), el) else float (al*2 (nat (el —e2))+a2,
e2))

by (simp add: float-def algebra-simps powr-realpow[symmetric] powr-diff)

lemma float-mult-10: float (0, e) * x = float (0, 0)
by (simp add: float-def)

lemma float-mult-r0: x * float (0, ¢) = float (0, 0)
by (simp add: float-def)

61

lemma float-mult:
float (al, el) * float (a2, e2) = (float (al * a2, el + e2))
by (simp add: float-def powr-add)

lemma float-minus:

— (float (a,b)) = float (—a, b)
by (simp add: float-def)

lemma zero-le-float:
(0 <= float (a,b)) = (0 <= a)
by (simp add: float-def zero-le-mult-iff)

lemma float-le-zero:
(float (a,b) <= 0) = (a <= 0)
by (simp add: float-def mult-le-0-iff)

lemma float-abs:
|float (a,b)] = (if 0 <= a then (float (a,b)) else (float (—a,b)))
by (simp add: float-def abs-if mult-less-0-iff not-less)

lemma float-zero:
float (0, b) = 0
by (simp add: float-def)

lemma float-pprt:
pprt (float (a, b)) = (if 0 <= a then (float (a,b)) else (float (0, b)))
by (auto simp add: zero-le-float float-le-zero float-zero)

lemma float-nprt:
nprt (float (a, b)) = (if 0 <= a then (float (0,b)) else (float (a, b)))

by (auto simp add: zero-le-float float-le-zero float-zero)

definition lbound :: real = real
where lbound x = min 0 x

definition ubound :: real = real
where ubound x = max 0 x

lemma lbound: lbound x < x
by (simp add: lbound-def)

lemma ubound: z < ubound x
by (simp add: ubound-def)

lemma pprt-lbound: pprt (lbound x) = float (0, 0)
by (auto simp: float-def lbound-def)

lemma nprt-ubound: nprt (ubound z) = float (0, 0)

62

by (auto simp: float-def ubound-def)

lemmas floatarith[simplified norm-0-1] = float-add float-add-10 float-add-r0 float-mult
float-mult-10 float-mult-r0
float-minus float-abs zero-le-float float-pprt float-nprt ppri-lbound nprt-ubound

lemmas arith = arith-simps rel-simps diff-nat-numeral nat-0
nat-neg-numeral powerarith floatarith not-false-eq-true not-true-eq-false

ML-file «float-arith.ML»

end

theory Compute-Oracle imports HOL.HOL
begin

ML-file <am.ML»

ML-file <am-compiler. ML»
ML-file <am-interpreter. ML)
ML-file <am-ghc.ML»
ML-file <am-sml. ML)
ML-file <report. ML)
ML-file <compute. ML>»
ML-file <linker.ML>

end
theory ComputeHOL
imports Complez-Main Compute-Oracle/ Compute-Oracle

begin

lemma Trueprop-eq-eq: Trueprop X == (X == True) by (simp add: atomize-eq)
lemma meta-eqg-trivial: * == y = z == y by simp

lemma meta-eq-imp-eq: * == y = = = y by auto

lemma eg-trivial: x = y = = = y by auto

lemma bool-to-true: x :: bool = = == True by simp

lemma transmeta-1: ¢ =y = y == z => = = z by simp

lemma transmeta-2: ¢ == y =— y = z = = = z by simp

lemma transmeta-3: ¢ == y = y == z = x = z by simp

lemma If-True: If True = (A z y. z) by ((rule ext)+,auto)
lemma If-False: If False = (A z y. y) by ((rule ext)+, auto)

lemmas compute-if = If-True If-False

63

lemma bool1:
lemma bool2:
lemma bool3:
lemma bool4:
lemma bool5:
lemma bool6:
lemma bool7:
lemma bool8:
lemma bool9:

lemma bool10:

(= True) = False by blast
(- False) = True by blast
(P A True) = P by blast

(True A P) = P by blast

(P A False
(
(
(
(

) = False by blast
False N P) = Fulse by blast
PV True) = True by blast
True V P) = True by blast

P Vv Fulse) = P by blast
False V P) = P by blast

lemma booll1:
lemma bool12:
lemma booll3:
lemma bool14:
lemma bool15:
lemma bool16:
lemma bool17:
lemma bool18:
lemma bool19:

(

(True — P) = P by blast
(P — True) = True by blast
(True — P) = P by blast

(P —> Fualse) = (- P) by blast
(False — P) = True by blast
(False = False) = True by blast
(True = True) = True by blast
(False = True) = False by blast
(True = False) = False by blast

lemmas compute-bool = booll bool2 bool3 bool4 bool5 bool6 bool7 bool8 bool9 booll0
bool11 bool12 booll3 booll4 boolls booll6 booll7 booll8 booll9

lemma compute-fst: fst (z,y) = = by simp
lemma compute-snd: snd (z,y) = y by simp
lemma compute-pair-eq: ((a, b) = (¢, d)) = (e = ¢ A b = d) by auto
lemma case-prod-simp: case-prod f (x,y) = fz y by simp

lemmas compute-pair = compute-fst compute-snd compute-pair-eq case-prod-simp

lemma compute-the: the (Some z) = z by simp

lemma compute-None-Some-eq: (None = Some x) = Fualse by auto
lemma compute-Some-None-eq: (Some x = None) = False by auto
lemma compute-None-None-eq: (None = None) = True by auto
lemma compute-Some-Some-eq: (Some x = Some y) = (z = y) by auto

definition case-option-compute :: 'b option = ‘a = ('b = 'a) = 'a
where case-option-compute opt a f = case-option a f opt

lemma case-option-compute: case-option = (X a f opt. case-option-compute opt a

)

64

by (simp add: case-option-compute-def)

lemma case-option-compute-None: case-option-compute None = (A a f. a)
apply (rule ext)+
apply (simp add: case-option-compute-def)
done

lemma case-option-compute-Some: case-option-compute (Some) = (A a f. f z)
apply (rule ext)+
apply (simp add: case-option-compute-def)
done

lemmas compute-case-option = case-option-compute case-option-compute-None case-option-compute-Some

lemmas compute-option = compute-the compute-None-Some-eq compute-Some-None-eq
compute-None-None-eq compute-Some-Some-eq compute-case-option

lemma length-cons:length (z#xs) = 1 + (length xs)
by simp

lemma length-nil: length [] = 0
by simp

lemmas compute-list-length = length-nil length-cons

definition case-list-compute :: 'b list = 'a = ('b = 'b list = 'a) = 'a

where case-list-compute | a f = case-list a f1

lemma case-list-compute: case-list = (A (a::’a) f (1::'b list). case-list-compute | a
)

apply (rule ext)+

apply (simp add: case-list-compute-def)

done

lemma case-list-compute-empty: case-list-compute ([]::'b list) = (A (a::'a) f. a)
apply (rule ext)+
apply (simp add: case-list-compute-def)
done

lemma case-list-compute-cons: case-list-compute (u#v) = (A (a:’a) f. (f (u::'d)

v))
apply (rule ext)+
apply (simp add: case-list-compute-def)
done

65

lemmas compute-case-list = case-list-compute case-list-compute-empty case-list-compute-cons

lemma compute-list-nth: ((z#xzs) ! n) = (if n = 0 then z else (zs! (n — 1)))
by (cases n, auto)

lemmas compute-list = compute-case-list compute-list-length compute-list-nth

lemmas compute-let = Let-def

lemmas compute-hol = compute-if compute-bool compute-pair compute-option com-
pute-list compute-let

ML «
signature Compute HOL =
stg
val prep-thms : thm list —> thm list
val to-meta-eq : thm —> thm
val to-hol-eq : thm —> thm
val symmetric : thm —> thm
val trans : thm —> thm —> thm
end

structure ComputeHOL : ComputeHOL =
struct

local
fun lhs-of eq = fst (Thm.dest-equals (Thm.cprop-of eq));
mn
fun rewrite-conv [| ¢t = raise CTERM (rewrite-conv, [ct])
| rewrite-conv (eq :: eqs) ct =
Thm.instantiate (Thm.match (lhs-of eq, ct)) eq
handle Pattern. MATCH => rewrite-conv eqs ct;
end

val convert-conditions = Conv.fconv-rule (Conv.prems-conv ~ 1 (Conv.try-conv (rewrite-conv
[@{thm Trueprop-eq-eq}])))

val eqg-th = @Q{thm HOL.eg-reflection}

66

val meta-eq-trivial = Q{thm ComputeHOL.meta-eq-trivial}
val bool-to-true = @Q{thm ComputeHOL.bool-to-true}

fun to-meta-eq th = eq-th OF [th] handle THM - => meta-eq-trivial OF [th] handle
THM - => bool-to-true OF [th]

fun to-hol-eq th = Q{thm meta-eq-imp-eq} OF [th] handle THM - => Q{thm
eq-trivial} OF [th]

fun prep-thms ths = map (convert-conditions o to-meta-eq) ths

fun symmetric th = Q{thm HOL.sym} OF [th] handle THM - => @{thm Pure.symmetric}
OF [th]

local

val trans-HOL = @Q{thm HOL.trans}

val trans-HOL-1 = Q{thm Compute HOL.transmeta-1}

val trans-HOL-2 = @Q{thm Compute HOL.transmeta-2}

val trans-HOL-3 = @{thm ComputeHOL.transmeta-3}

fun tr || th1 th2 = trans-HOL OF [thl, th2]

| tr (t::ts) thl th2 = (t OF [th1, th2] handle THM - => tr ts thl th2)
in
fun trans th1 th2 = tr [trans-HOL, trans-HOL-1, trans-HOL-2, trans-HOL-3]

thi th2
end

end
)

end

theory ComputeNumeral

imports ComputeHOL ComputeFloat
begin

lemmas biteq = eg-num-simps

lemmas bitless = less-num-simps

lemmas bitle = le-num-simps

lemmas bitadd = add-num-simps

lemmas bitmul = mult-num-simps

67

lemmas bitarith = arith-simps

lemmas natnorm = one-eq-Numerall-nat

fun natfac :: nat = nat
where natfac n = (if n = 0 then 1 else n x (natfac (n — 1)))

lemmas compute-natarith =
arith-simps rel-simps
diff-nat-numeral nat-numeral nat-0 nat-neg-numeral
numeral-One [symmetric]
numeral-1-eq-Suc-0 [symmetric]
Suc-numeral natfac.simps

lemmas number-norm = numeral-One[symmetric]

lemmas compute-numberarith =
arith-simps rel-simps number-norm

lemmas compute-num-conversions =
of-nat-numeral of-nat-0
nat-numeral nat-0 nat-neg-numeral
of-int-numeral of-int-neg-numeral of-int-0

lemmas zpowerarith = power-numeral-even power-numeral-odd zpower-Pls int-pow-1

lemmas compute-div-mod = div-0 mod-0 div-by-0 mod-by-0 div-by-1 mod-by-1
one-div-numeral one-mod-numeral minus-one-div-numeral minus-one-mod-numeral
one-div-minus-numeral one-mod-minus-numeral
numeral-div-numeral numeral-mod-numeral minus-numeral-div-numeral minus-numeral-mod-numeral
numeral-div-minus-numeral numeral-mod-minus-numeral
div-minus-minus mod-minus-minus Parity.adjust-div-eq of-bool-eq one-neq-zero
numeral-neq-zero neg-equal-0-iff-equal arith-simps arith-special divmod-trivial
divmod-steps divmod-cancel divmod-step-def fst-conv snd-conv numeral-One
case-prod-beta rel-simps Parity.adjust-mod-def div-minus1-right mod-minusI-right
minus-minus numeral-times-numeral mult-zero-right mult-1-right

lemma even-0-int: even (0::int) = True
by simp

lemma even-One-int: even (numeral Num.One :: int) = False
by simp

68

lemma even-Bit0-int: even (numeral (Num.Bit0 x) :: int) = True
by (simp only: even-numeral)

lemma even-Bitl-int: even (numeral (Num.Bitl z) :: int) = False
by (simp only: odd-numeral)

lemmas compute-even = even-0-int even-One-int even-Bit0-int even-Bitl-int

lemmas compute-numeral = compute-if compute-let compute-pair compute-bool
compute-natarith compute-numberarith maz-def min-def
compute-num-conversions zpowerarith compute-div-mod compute-even

end

theory Chplex
imports SparseMatriz LP ComputeFloat ComputeNumeral
begin

ML-file < Cplex-tools. ML»

ML-file < CplezMatrizConverter. ML
ML-file < FloatSparseMatrizBuilder. ML
ML-file <fspmlip.ML>

lemma spm-mult-le-dual-prts:

assumes

sorted-sparse-matriz Al

sorted-sparse-matriz A2

sorted-sparse-matriz c1

sorted-sparse-matriz c2

sorted-sparse-matriz y

sorted-sparse-matriz 1

sorted-sparse-matric 2

sorted-spvec b

le-spmat [] y

sparse-row-matrix A1 < A

A < sparse-row-matriz A2

sparse-row-matriz c1 < ¢

¢ < sparse-row-matriz c2

sparse-row-matriz rl < x

z < sparse-row-matriz r2

A x © < sparse-row-matriz (b::('a::lattice-ring) spmat)

shows

¢ * z < sparse-row-matriz (add-spmat (mult-spmat y b)

(let s1 = diff-spmat c1 (mult-spmat y A2); s2 = diff-spmat c2 (mult-spmat y
Al) in

add-spmat (mult-spmat (pprt-spmat s2) (pprt-spmat r2)) (add-spmat (mult-spmat
(pprt-spmat s1) (nprt-spmat r2))

(add-spmat (mult-spmat (nprt-spmat s2) (pprt-spmat r1)) (mult-spmat (nprt-spmat

69

s1) (nprt-spmat r1))))))
apply (simp add: Let-def)
apply (insert assms)
apply (simp add: sparse-row-matriz-op-simps algebra-simps)
apply (rule mult-le-dual-prtsjwhere A=A, simplified Let-def algebra-simps])
apply (auto)
done

lemma spm-mult-le-dual-prts-no-let:

assumes

sorted-sparse-matriz Al

sorted-sparse-matriz A2

sorted-sparse-matriz c1

sorted-sparse-matriz c2

sorted-sparse-matriz y

sorted-sparse-matriz 1

sorted-sparse-matric 2

sorted-spvec b

le-spmat [] y

sparse-row-matrix A1 < A

A < sparse-row-matriz A2

sparse-row-matrix c1 < ¢

¢ < sparse-row-matriz c2

sparse-row-matriz rl < x

z < sparse-row-matric r2

A x © < sparse-row-matriz (b::('a::lattice-ring) spmat)

shows

¢ * z < sparse-row-matriz (add-spmat (mult-spmat y b)

(mult-est-spmat r1 r2 (diff-spmat c1 (mult-spmat y A2)) (diff-spmat c2 (mult-spmat
y A1))))

by (simp add: assms mult-est-spmat-def spm-mult-le-dual-prtsjwhere A=A, sim-
plified Let-def])

ML-file <matrizlp. ML»

end

70

	Floating Point Representation of the Reals

