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Abstract

We consider abstract structures of orders and lattices. Many funda-
mental concepts of lattice theory are developed, including dual struc-
tures, properties of bounds versus algebraic laws, lattice operations
versus set-theoretic ones etc. We also give example instantiations of
lattices and orders, such as direct products and function spaces. Well-
known properties are demonstrated, like the Knaster-Tarski Theorem
for complete lattices.

This formal theory development may serve as an example of apply-
ing Isabelle/HOL to the domain of mathematical reasoning about “ax-
iomatic” structures. Apart from the simply-typed classical set-theory
of HOL, we employ Isabelle’s system of axiomatic type classes for ex-
pressing structures and functors in a light-weight manner. Proofs are
expressed in the Isar language for readable formal proof, while aiming
at its “best-style” of representing formal reasoning.
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1 Orders
theory Orders imports Main begin

1.1 Ordered structures

We define several classes of ordered structures over some type ′a with relation
v :: ′a ⇒ ′a ⇒ bool. For a quasi-order that relation is required to be reflexive
and transitive, for a partial order it also has to be anti-symmetric, while for
a linear order all elements are required to be related (in either direction).
class leq =

fixes leq :: ′a ⇒ ′a ⇒ bool (infixl ‹v› 50 )

class quasi-order = leq +
assumes leq-refl [intro?]: x v x
assumes leq-trans [trans]: x v y =⇒ y v z =⇒ x v z

class partial-order = quasi-order +
assumes leq-antisym [trans]: x v y =⇒ y v x =⇒ x = y

class linear-order = partial-order +
assumes leq-linear : x v y ∨ y v x

lemma linear-order-cases:
((x:: ′a::linear-order) v y =⇒ C ) =⇒ (y v x =⇒ C ) =⇒ C

〈proof 〉

1.2 Duality

The dual of an ordered structure is an isomorphic copy of the underlying
type, with the v relation defined as the inverse of the original one.
datatype ′a dual = dual ′a

primrec undual :: ′a dual ⇒ ′a where
undual-dual: undual (dual x) = x

instantiation dual :: (leq) leq
begin

definition
leq-dual-def : x ′ v y ′ ≡ undual y ′ v undual x ′

instance 〈proof 〉

end

lemma undual-leq [iff?]: (undual x ′ v undual y ′) = (y ′ v x ′)
〈proof 〉
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lemma dual-leq [iff?]: (dual x v dual y) = (y v x)
〈proof 〉

Functions dual and undual are inverse to each other; this entails the following
fundamental properties.
lemma dual-undual [simp]: dual (undual x ′) = x ′

〈proof 〉

lemma undual-dual-id [simp]: undual o dual = id
〈proof 〉

lemma dual-undual-id [simp]: dual o undual = id
〈proof 〉

Since dual (and undual) are both injective and surjective, the basic logical
connectives (equality, quantification etc.) are transferred as follows.
lemma undual-equality [iff?]: (undual x ′ = undual y ′) = (x ′ = y ′)
〈proof 〉

lemma dual-equality [iff?]: (dual x = dual y) = (x = y)
〈proof 〉

lemma dual-ball [iff?]: (∀ x ∈ A. P (dual x)) = (∀ x ′ ∈ dual ‘ A. P x ′)
〈proof 〉

lemma range-dual [simp]: surj dual
〈proof 〉

lemma dual-all [iff?]: (∀ x. P (dual x)) = (∀ x ′. P x ′)
〈proof 〉

lemma dual-ex: (∃ x. P (dual x)) = (∃ x ′. P x ′)
〈proof 〉

lemma dual-Collect: {dual x | x. P (dual x)} = {x ′. P x ′}
〈proof 〉

1.3 Transforming orders
1.3.1 Duals

The classes of quasi, partial, and linear orders are all closed under formation
of dual structures.
instance dual :: (quasi-order) quasi-order
〈proof 〉
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instance dual :: (partial-order) partial-order
〈proof 〉

instance dual :: (linear-order) linear-order
〈proof 〉

1.3.2 Binary products

The classes of quasi and partial orders are closed under binary products.
Note that the direct product of linear orders need not be linear in general.
instantiation prod :: (leq, leq) leq
begin

definition
leq-prod-def : p v q ≡ fst p v fst q ∧ snd p v snd q

instance 〈proof 〉

end

lemma leq-prodI [intro?]:
fst p v fst q =⇒ snd p v snd q =⇒ p v q

〈proof 〉

lemma leq-prodE [elim?]:
p v q =⇒ (fst p v fst q =⇒ snd p v snd q =⇒ C ) =⇒ C

〈proof 〉

instance prod :: (quasi-order , quasi-order) quasi-order
〈proof 〉

instance prod :: (partial-order , partial-order) partial-order
〈proof 〉

1.3.3 General products

The classes of quasi and partial orders are closed under general products
(function spaces). Note that the direct product of linear orders need not be
linear in general.
instantiation fun :: (type, leq) leq
begin

definition
leq-fun-def : f v g ≡ ∀ x. f x v g x

instance 〈proof 〉

end
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lemma leq-funI [intro?]: (
∧

x. f x v g x) =⇒ f v g
〈proof 〉

lemma leq-funD [dest?]: f v g =⇒ f x v g x
〈proof 〉

instance fun :: (type, quasi-order) quasi-order
〈proof 〉

instance fun :: (type, partial-order) partial-order
〈proof 〉

end

2 Bounds
theory Bounds imports Orders begin

hide-const (open) inf sup

2.1 Infimum and supremum

Given a partial order, we define infimum (greatest lower bound) and supre-
mum (least upper bound) wrt. v for two and for any number of elements.
definition

is-inf :: ′a::partial-order ⇒ ′a ⇒ ′a ⇒ bool where
is-inf x y inf = (inf v x ∧ inf v y ∧ (∀ z. z v x ∧ z v y −→ z v inf ))

definition
is-sup :: ′a::partial-order ⇒ ′a ⇒ ′a ⇒ bool where
is-sup x y sup = (x v sup ∧ y v sup ∧ (∀ z. x v z ∧ y v z −→ sup v z))

definition
is-Inf :: ′a::partial-order set ⇒ ′a ⇒ bool where
is-Inf A inf = ((∀ x ∈ A. inf v x) ∧ (∀ z. (∀ x ∈ A. z v x) −→ z v inf ))

definition
is-Sup :: ′a::partial-order set ⇒ ′a ⇒ bool where
is-Sup A sup = ((∀ x ∈ A. x v sup) ∧ (∀ z. (∀ x ∈ A. x v z) −→ sup v z))

These definitions entail the following basic properties of boundary elements.
lemma is-infI [intro?]: inf v x =⇒ inf v y =⇒

(
∧

z. z v x =⇒ z v y =⇒ z v inf ) =⇒ is-inf x y inf
〈proof 〉

lemma is-inf-greatest [elim?]:
is-inf x y inf =⇒ z v x =⇒ z v y =⇒ z v inf
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〈proof 〉

lemma is-inf-lower [elim?]:
is-inf x y inf =⇒ (inf v x =⇒ inf v y =⇒ C ) =⇒ C

〈proof 〉

lemma is-supI [intro?]: x v sup =⇒ y v sup =⇒
(
∧

z. x v z =⇒ y v z =⇒ sup v z) =⇒ is-sup x y sup
〈proof 〉

lemma is-sup-least [elim?]:
is-sup x y sup =⇒ x v z =⇒ y v z =⇒ sup v z

〈proof 〉

lemma is-sup-upper [elim?]:
is-sup x y sup =⇒ (x v sup =⇒ y v sup =⇒ C ) =⇒ C

〈proof 〉

lemma is-InfI [intro?]: (
∧

x. x ∈ A =⇒ inf v x) =⇒
(
∧

z. (∀ x ∈ A. z v x) =⇒ z v inf ) =⇒ is-Inf A inf
〈proof 〉

lemma is-Inf-greatest [elim?]:
is-Inf A inf =⇒ (

∧
x. x ∈ A =⇒ z v x) =⇒ z v inf

〈proof 〉

lemma is-Inf-lower [dest?]:
is-Inf A inf =⇒ x ∈ A =⇒ inf v x

〈proof 〉

lemma is-SupI [intro?]: (
∧

x. x ∈ A =⇒ x v sup) =⇒
(
∧

z. (∀ x ∈ A. x v z) =⇒ sup v z) =⇒ is-Sup A sup
〈proof 〉

lemma is-Sup-least [elim?]:
is-Sup A sup =⇒ (

∧
x. x ∈ A =⇒ x v z) =⇒ sup v z

〈proof 〉

lemma is-Sup-upper [dest?]:
is-Sup A sup =⇒ x ∈ A =⇒ x v sup

〈proof 〉

2.2 Duality

Infimum and supremum are dual to each other.
theorem dual-inf [iff?]:
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is-inf (dual x) (dual y) (dual sup) = is-sup x y sup
〈proof 〉

theorem dual-sup [iff?]:
is-sup (dual x) (dual y) (dual inf ) = is-inf x y inf

〈proof 〉

theorem dual-Inf [iff?]:
is-Inf (dual ‘ A) (dual sup) = is-Sup A sup

〈proof 〉

theorem dual-Sup [iff?]:
is-Sup (dual ‘ A) (dual inf ) = is-Inf A inf

〈proof 〉

2.3 Uniqueness

Infima and suprema on partial orders are unique; this is mainly due to anti-
symmetry of the underlying relation.
theorem is-inf-uniq: is-inf x y inf =⇒ is-inf x y inf ′ =⇒ inf = inf ′

〈proof 〉

theorem is-sup-uniq: is-sup x y sup =⇒ is-sup x y sup ′ =⇒ sup = sup ′

〈proof 〉

theorem is-Inf-uniq: is-Inf A inf =⇒ is-Inf A inf ′ =⇒ inf = inf ′

〈proof 〉

theorem is-Sup-uniq: is-Sup A sup =⇒ is-Sup A sup ′ =⇒ sup = sup ′

〈proof 〉

2.4 Related elements

The binary bound of related elements is either one of the argument.
theorem is-inf-related [elim?]: x v y =⇒ is-inf x y x
〈proof 〉

theorem is-sup-related [elim?]: x v y =⇒ is-sup x y y
〈proof 〉

2.5 General versus binary bounds

General bounds of two-element sets coincide with binary bounds.
theorem is-Inf-binary: is-Inf {x, y} inf = is-inf x y inf
〈proof 〉

theorem is-Sup-binary: is-Sup {x, y} sup = is-sup x y sup
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〈proof 〉

2.6 Connecting general bounds

Either kind of general bounds is sufficient to express the other. The least
upper bound (supremum) is the same as the the greatest lower bound of
the set of all upper bounds; the dual statements holds as well; the dual
statement holds as well.
theorem Inf-Sup: is-Inf {b. ∀ a ∈ A. a v b} sup =⇒ is-Sup A sup
〈proof 〉

theorem Sup-Inf : is-Sup {b. ∀ a ∈ A. b v a} inf =⇒ is-Inf A inf
〈proof 〉

end

3 Lattices
theory Lattice imports Bounds begin

3.1 Lattice operations

A lattice is a partial order with infimum and supremum of any two elements
(thus any finite number of elements have bounds as well).
class lattice =

assumes ex-inf : ∃ inf . is-inf x y inf
assumes ex-sup: ∃ sup. is-sup x y sup

The u (meet) and t (join) operations select such infimum and supremum
elements.
definition

meet :: ′a::lattice ⇒ ′a ⇒ ′a (infixl ‹u› 70 ) where
x u y = (THE inf . is-inf x y inf )

definition
join :: ′a::lattice ⇒ ′a ⇒ ′a (infixl ‹t› 65 ) where
x t y = (THE sup. is-sup x y sup)

Due to unique existence of bounds, the lattice operations may be exhibited
as follows.
lemma meet-equality [elim?]: is-inf x y inf =⇒ x u y = inf
〈proof 〉

lemma meetI [intro?]:
inf v x =⇒ inf v y =⇒ (

∧
z. z v x =⇒ z v y =⇒ z v inf ) =⇒ x u y = inf

〈proof 〉
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lemma join-equality [elim?]: is-sup x y sup =⇒ x t y = sup
〈proof 〉

lemma joinI [intro?]: x v sup =⇒ y v sup =⇒
(
∧

z. x v z =⇒ y v z =⇒ sup v z) =⇒ x t y = sup
〈proof 〉

The u and t operations indeed determine bounds on a lattice structure.
lemma is-inf-meet [intro?]: is-inf x y (x u y)
〈proof 〉

lemma meet-greatest [intro?]: z v x =⇒ z v y =⇒ z v x u y
〈proof 〉

lemma meet-lower1 [intro?]: x u y v x
〈proof 〉

lemma meet-lower2 [intro?]: x u y v y
〈proof 〉

lemma is-sup-join [intro?]: is-sup x y (x t y)
〈proof 〉

lemma join-least [intro?]: x v z =⇒ y v z =⇒ x t y v z
〈proof 〉

lemma join-upper1 [intro?]: x v x t y
〈proof 〉

lemma join-upper2 [intro?]: y v x t y
〈proof 〉

3.2 Duality

The class of lattices is closed under formation of dual structures. This means
that for any theorem of lattice theory, the dualized statement holds as well;
this important fact simplifies many proofs of lattice theory.
instance dual :: (lattice) lattice
〈proof 〉

Apparently, the u and t operations are dual to each other.
theorem dual-meet [intro?]: dual (x u y) = dual x t dual y
〈proof 〉

theorem dual-join [intro?]: dual (x t y) = dual x u dual y
〈proof 〉
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3.3 Algebraic properties

The u and t operations have the following characteristic algebraic proper-
ties: associative (A), commutative (C), and absorptive (AB).
theorem meet-assoc: (x u y) u z = x u (y u z)
〈proof 〉

theorem join-assoc: (x t y) t z = x t (y t z)
〈proof 〉

theorem meet-commute: x u y = y u x
〈proof 〉

theorem join-commute: x t y = y t x
〈proof 〉

theorem meet-join-absorb: x u (x t y) = x
〈proof 〉

theorem join-meet-absorb: x t (x u y) = x
〈proof 〉

Some further algebraic properties hold as well. The property idempotent (I)
is a basic algebraic consequence of (AB).
theorem meet-idem: x u x = x
〈proof 〉

theorem join-idem: x t x = x
〈proof 〉

Meet and join are trivial for related elements.
theorem meet-related [elim?]: x v y =⇒ x u y = x
〈proof 〉

theorem join-related [elim?]: x v y =⇒ x t y = y
〈proof 〉

3.4 Order versus algebraic structure

The u and t operations are connected with the underlying v relation in a
canonical manner.
theorem meet-connection: (x v y) = (x u y = x)
〈proof 〉

theorem join-connection: (x v y) = (x t y = y)
〈proof 〉
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The most fundamental result of the meta-theory of lattices is as follows (we
do not prove it here).
Given a structure with binary operations u and t such that (A), (C), and
(AB) hold (cf. §3.3). This structure represents a lattice, if the relation x v y
is defined as x u y = x (alternatively as x t y = y). Furthermore, infimum
and supremum with respect to this ordering coincide with the original u and
t operations.

3.5 Example instances
3.5.1 Linear orders

Linear orders with minimum and maximum operations are a (degenerate)
example of lattice structures.
definition

minimum :: ′a::linear-order ⇒ ′a ⇒ ′a where
minimum x y = (if x v y then x else y)

definition
maximum :: ′a::linear-order ⇒ ′a ⇒ ′a where
maximum x y = (if x v y then y else x)

lemma is-inf-minimum: is-inf x y (minimum x y)
〈proof 〉

lemma is-sup-maximum: is-sup x y (maximum x y)
〈proof 〉

instance linear-order ⊆ lattice
〈proof 〉

The lattice operations on linear orders indeed coincide with minimum and
maximum.
theorem meet-mimimum: x u y = minimum x y
〈proof 〉

theorem meet-maximum: x t y = maximum x y
〈proof 〉

3.5.2 Binary products

The class of lattices is closed under direct binary products (cf. §1.3.2).
lemma is-inf-prod: is-inf p q (fst p u fst q, snd p u snd q)
〈proof 〉

lemma is-sup-prod: is-sup p q (fst p t fst q, snd p t snd q)
〈proof 〉
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instance prod :: (lattice, lattice) lattice
〈proof 〉

The lattice operations on a binary product structure indeed coincide with
the products of the original ones.
theorem meet-prod: p u q = (fst p u fst q, snd p u snd q)
〈proof 〉

theorem join-prod: p t q = (fst p t fst q, snd p t snd q)
〈proof 〉

3.5.3 General products

The class of lattices is closed under general products (function spaces) as
well (cf. §1.3.3).
lemma is-inf-fun: is-inf f g (λx. f x u g x)
〈proof 〉

lemma is-sup-fun: is-sup f g (λx. f x t g x)
〈proof 〉

instance fun :: (type, lattice) lattice
〈proof 〉

The lattice operations on a general product structure (function space) indeed
emerge by point-wise lifting of the original ones.
theorem meet-fun: f u g = (λx. f x u g x)
〈proof 〉

theorem join-fun: f t g = (λx. f x t g x)
〈proof 〉

3.6 Monotonicity and semi-morphisms

The lattice operations are monotone in both argument positions. In fact,
monotonicity of the second position is trivial due to commutativity.
theorem meet-mono: x v z =⇒ y v w =⇒ x u y v z u w
〈proof 〉

theorem join-mono: x v z =⇒ y v w =⇒ x t y v z t w
〈proof 〉

A semi-morphisms is a function f that preserves the lattice operations in
the following manner: f (x u y) v f x u f y and f x t f y v f (x t y),
respectively. Any of these properties is equivalent with monotonicity.
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theorem meet-semimorph:
(
∧

x y. f (x u y) v f x u f y) ≡ (
∧

x y. x v y =⇒ f x v f y)
〈proof 〉

lemma join-semimorph:
(
∧

x y. f x t f y v f (x t y)) ≡ (
∧

x y. x v y =⇒ f x v f y)
〈proof 〉

end

4 Complete lattices
theory CompleteLattice imports Lattice begin

4.1 Complete lattice operations

A complete lattice is a partial order with general (infinitary) infimum of any
set of elements. General supremum exists as well, as a consequence of the
connection of infinitary bounds (see §2.6).
class complete-lattice =

assumes ex-Inf : ∃ inf . is-Inf A inf

theorem ex-Sup: ∃ sup:: ′a::complete-lattice. is-Sup A sup
〈proof 〉

The general
d

(meet) and
⊔

(join) operations select such infimum and
supremum elements.
definition

Meet :: ′a::complete-lattice set ⇒ ′a (‹
d

-› [90 ] 90 ) whered
A = (THE inf . is-Inf A inf )

definition
Join :: ′a::complete-lattice set ⇒ ′a (‹

⊔
-› [90 ] 90 ) where⊔

A = (THE sup. is-Sup A sup)

Due to unique existence of bounds, the complete lattice operations may be
exhibited as follows.
lemma Meet-equality [elim?]: is-Inf A inf =⇒

d
A = inf

〈proof 〉

lemma MeetI [intro?]:
(
∧

a. a ∈ A =⇒ inf v a) =⇒
(
∧

b. ∀ a ∈ A. b v a =⇒ b v inf ) =⇒d
A = inf

〈proof 〉

lemma Join-equality [elim?]: is-Sup A sup =⇒
⊔

A = sup
〈proof 〉



THEORY “CompleteLattice” 15

lemma JoinI [intro?]:
(
∧

a. a ∈ A =⇒ a v sup) =⇒
(
∧

b. ∀ a ∈ A. a v b =⇒ sup v b) =⇒⊔
A = sup

〈proof 〉

The
d

and
⊔

operations indeed determine bounds on a complete lattice
structure.
lemma is-Inf-Meet [intro?]: is-Inf A (

d
A)

〈proof 〉

lemma Meet-greatest [intro?]: (
∧

a. a ∈ A =⇒ x v a) =⇒ x v
d

A
〈proof 〉

lemma Meet-lower [intro?]: a ∈ A =⇒
d

A v a
〈proof 〉

lemma is-Sup-Join [intro?]: is-Sup A (
⊔

A)
〈proof 〉

lemma Join-least [intro?]: (
∧

a. a ∈ A =⇒ a v x) =⇒
⊔

A v x
〈proof 〉

lemma Join-lower [intro?]: a ∈ A =⇒ a v
⊔

A
〈proof 〉

4.2 The Knaster-Tarski Theorem

The Knaster-Tarski Theorem (in its simplest formulation) states that any
monotone function on a complete lattice has a least fixed-point (see [2, pages
93–94] for example). This is a consequence of the basic boundary properties
of the complete lattice operations.
theorem Knaster-Tarski:

assumes mono:
∧

x y. x v y =⇒ f x v f y
obtains a :: ′a::complete-lattice where

f a = a and
∧

a ′. f a ′ = a ′ =⇒ a v a ′

〈proof 〉

theorem Knaster-Tarski-dual:
assumes mono:

∧
x y. x v y =⇒ f x v f y

obtains a :: ′a::complete-lattice where
f a = a and

∧
a ′. f a ′ = a ′ =⇒ a ′ v a

〈proof 〉
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4.3 Bottom and top elements

With general bounds available, complete lattices also have least and greatest
elements.
definition

bottom :: ′a::complete-lattice (‹⊥›) where
⊥ =

d
UNIV

definition
top :: ′a::complete-lattice (‹>›) where
> =

⊔
UNIV

lemma bottom-least [intro?]: ⊥ v x
〈proof 〉

lemma bottomI [intro?]: (
∧

a. x v a) =⇒ ⊥ = x
〈proof 〉

lemma top-greatest [intro?]: x v >
〈proof 〉

lemma topI [intro?]: (
∧

a. a v x) =⇒ > = x
〈proof 〉

4.4 Duality

The class of complete lattices is closed under formation of dual structures.
instance dual :: (complete-lattice) complete-lattice
〈proof 〉

Apparently, the
d

and
⊔

operations are dual to each other.
theorem dual-Meet [intro?]: dual (

d
A) =

⊔
(dual ‘ A)

〈proof 〉

theorem dual-Join [intro?]: dual (
⊔

A) =
d

(dual ‘ A)
〈proof 〉

Likewise are ⊥ and > duals of each other.
theorem dual-bottom [intro?]: dual ⊥ = >
〈proof 〉

theorem dual-top [intro?]: dual > = ⊥
〈proof 〉

4.5 Complete lattices are lattices

Complete lattices (with general bounds available) are indeed plain lattices
as well. This holds due to the connection of general versus binary bounds
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that has been formally established in §2.5.
lemma is-inf-binary: is-inf x y (

d
{x, y})

〈proof 〉

lemma is-sup-binary: is-sup x y (
⊔

{x, y})
〈proof 〉

instance complete-lattice ⊆ lattice
〈proof 〉

theorem meet-binary: x u y =
d
{x, y}

〈proof 〉

theorem join-binary: x t y =
⊔

{x, y}
〈proof 〉

4.6 Complete lattices and set-theory operations

The complete lattice operations are (anti) monotone wrt. set inclusion.
theorem Meet-subset-antimono: A ⊆ B =⇒

d
B v

d
A

〈proof 〉

theorem Join-subset-mono: A ⊆ B =⇒
⊔

A v
⊔

B
〈proof 〉

Bounds over unions of sets may be obtained separately.
theorem Meet-Un:

d
(A ∪ B) =

d
A u

d
B

〈proof 〉

theorem Join-Un:
⊔

(A ∪ B) =
⊔

A t
⊔

B
〈proof 〉

Bounds over singleton sets are trivial.
theorem Meet-singleton:

d
{x} = x

〈proof 〉

theorem Join-singleton:
⊔
{x} = x

〈proof 〉

Bounds over the empty and universal set correspond to each other.
theorem Meet-empty:

d
{} =

⊔
UNIV

〈proof 〉

theorem Join-empty:
⊔
{} =

d
UNIV

〈proof 〉

end



REFERENCES 18

References
[1] G. Bauer and M. Wenzel. Computer-assisted mathematics at work —

the Hahn-Banach theorem in Isabelle/Isar. In T. Coquand, P. Dybjer,
B. Nordström, and J. Smith, editors, Types for Proofs and Programs:
TYPES’99, LNCS, 2000.

[2] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[3] M. Wenzel. Isar — a generic interpretative approach to readable formal
proof documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Thery, editors, Theorem Proving in Higher Order Logics: TPHOLs
’99, volume 1690 of LNCS, 1999.

[4] M. Wenzel. The Isabelle/Isar Reference Manual, 2000. https://isabelle.
in.tum.de/doc/isar-ref.pdf.

[5] M. Wenzel. Using Axiomatic Type Classes in Isabelle, 2000. https:
//isabelle.in.tum.de/doc/axclass.pdf.

https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/doc/axclass.pdf
https://isabelle.in.tum.de/doc/axclass.pdf

	Orders
	Ordered structures
	Duality
	Transforming orders
	Duals
	Binary products 
	General products 


	Bounds
	Infimum and supremum
	Duality
	Uniqueness
	Related elements
	General versus binary bounds 
	Connecting general bounds 

	Lattices
	Lattice operations
	Duality
	Algebraic properties 
	Order versus algebraic structure
	Example instances
	Linear orders
	Binary products
	General products

	Monotonicity and semi-morphisms

	Complete lattices
	Complete lattice operations
	The Knaster-Tarski Theorem
	Bottom and top elements
	Duality
	Complete lattices are lattices
	Complete lattices and set-theory operations


