Lattices and Orders in Isabelle/HOL

Markus Wenzel
TU Miunchen

January 18, 2026

Abstract

We consider abstract structures of orders and lattices. Many funda-
mental concepts of lattice theory are developed, including dual struc-
tures, properties of bounds versus algebraic laws, lattice operations
versus set-theoretic ones etc. We also give example instantiations of
lattices and orders, such as direct products and function spaces. Well-
known properties are demonstrated, like the Knaster-Tarski Theorem
for complete lattices.

This formal theory development may serve as an example of apply-
ing Isabelle/HOL to the domain of mathematical reasoning about “ax-
iomatic” structures. Apart from the simply-typed classical set-theory
of HOL, we employ Isabelle’s system of axiomatic type classes for ex-
pressing structures and functors in a light-weight manner. Proofs are
expressed in the Isar language for readable formal proof, while aiming
at its “best-style” of representing formal reasoning.

Contents
1 Orders 3
1.1 Ordered structures 3
1.2 Duality 3
1.3 Transforming orders)
1.31 Duals 5
1.3.2 Binary products L. 6
1.3.3 General products 7
2 Bounds 8
2.1 Infimum and supremum 8
2.2 Duality 10
2.3 Uniqueness e 10
2.4 Related elementso 11
2.5 General versus binary bounds 0L 12
2.6 Connecting general bounds 13

CONTENTS

3 Lattices

3.1
3.2
3.3
3.4
3.5

3.6

4.1
4.2
4.3
4.4
4.5
4.6

Lattice operations
Duality
Algebraic properties
Order versus algebraic structure
Example instances Lo oo
3.5.1 Linearorders
3.5.2 Binary products 0oL
3.5.3 General products L.
Monotonicity and semi-morphisms

Complete lattices

Complete lattice operations
The Knaster-Tarski Theorem
Bottom and top elements
Duality
Complete lattices are lattices
Complete lattices and set-theory operations

14
14
16
17
19
20
20
21
23
24

THEORY “Orders” 3

1 Orders

theory Orders imports Main begin

1.1 Ordered structures

We define several classes of ordered structures over some type ‘a with relation
C :: ‘a = 'a = bool. For a quasi-order that relation is required to be reflexive
and transitive, for a partial order it also has to be anti-symmetric, while for
a linear order all elements are required to be related (in either direction).
class leq =

fixes leq :: 'a = 'a = bool (infixl <) 50)

class quasi-order = leq +
assumes leg-refl [intro?): z C x
assumes leg-trans [trans|: 1 Ty = yC 2 = z C 2

class partial-order = quasi-order +
assumes leg-antisym [trans]: c Cy = yC oz =z =y

class linear-order = partial-order +
assumes leg-linear: t Ty V yC

lemma linear-order-cases:

((z:az:linear-order) Cy =) = (yC o = () = C
by (insert leg-linear) blast

1.2 Duality

The dual of an ordered structure is an isomorphic copy of the underlying
type, with the C relation defined as the inverse of the original one.

datatype ’‘a dual = dual 'a

primrec undual :: 'a dual = 'a where
undual-dual: undual (dual) = x

instantiation dual :: (leg) leq
begin

definition
leqg-dual-def: ' C y' = undual y' C undual =’

instance ..
end

lemma undual-leg [iff?): (undual z' C undual y') = (y’' C z7)
by (simp add: leg-dual-def)

THEORY “Orders” 4

lemma dual-leq [iff9]: (dual z € dual y) = (y C z)
by (simp add: leg-dual-def)

Functions dual and undual are inverse to each other; this entails the following
fundamental properties.

lemma dual-undual [simp]: dual (undual z') = z’

by (cases x’) simp

lemma undual-dual-id [simpl: undual o dual = id
by (rule ext) simp

lemma dual-undual-id [simp]: dual o undual = id
by (rule ext) simp

Since dual (and wundual) are both injective and surjective, the basic logical
connectives (equality, quantification etc.) are transferred as follows.

lemma undual-equality [iff9): (undual ' = undual y') = (z' = y)
by (cases x', cases y') simp

lemma dual-equality [iff9): (dual z = dual y) = (z = y)
by simp

lemma dual-ball [iff?: (Vz € A. P (dual z)) = (V&' € dual * A. P z’)
proof
assume a: Vz € A. P (dual)
show Vz’ € dual * A. Pz’
proof
fix z’ assume z” 2’ € dual ‘ A
have undual z’ € A
proof —
from z’ have undual z' € undual © dual * A by simp
thus undual ' € A by (simp add: image-comp)

qed
with a have P (dual (undual z')) ..
also have ... = z/ by simp
finally show P z’.
qed
next

assume a: Vz' € dual ‘ A. Pz’

show Vz € A. P (dual x)

proof
fix z assume z € A
hence dual x € dual * A by simp
with a show P (dual z) ..

qed

qed

THEORY “Orders” 5

lemma range-dual [simp]: surj dual

proof —
have Az’ dual (undual x') = x’ by simp
thus surj dual by (rule surjl)

qed

lemma dual-all [iff?: (Vz. P (dual z)) = (Vz'. P z’)
proof —
have (Vz € UNIV. P (dual z)) = (V&' € dual * UNIV. P z’)
by (rule dual-ball)
thus ?thesis by simp
qed

lemma dual-ex: (3z. P (dual x)) = (32’. P ')
proof —
have (Vz. = P (dual x)) = (Vz'. = P z)
by (rule dual-all)
thus ?thesis by blast
qed

lemma dual-Collect: {dual z| z. P (dual z)} = {z'. P 2"}
proof —
have {dual z| z. P (dual z)} = {2’. 32" ' =" AN P z'’}
by (simp only: dual-ex [symmetric])
thus ?thesis by blast
qed

1.3 Transforming orders

1.3.1 Duals

The classes of quasi, partial, and linear orders are all closed under formation
of dual structures.

instance dual :: (quasi-order) quasi-order

proof
fix 'y’ 2’ :: 'a::quasi-order dual
have undual ' C undual z’ .. thus z' C z’ ..
assume y’ C 2’ hence undual 2’ C undual y’ ..
also assume z’ C y’ hence undual y’' C undual z’ ..
finally show z’' C 2’ ..

qed

instance dual :: (partial-order) partial-order

proof
fix ' y' :: 'a::partial-order dual
assume 3’ C 2z’ hence undual ' C undual y’ ..
also assume z’ C y’ hence undual y' C undual z’ ..
finally show z’ = y’ ..

qed

THEORY “Orders” 6

instance dual :: (linear-order) linear-order
proof
fix 2’ y' :: 'a::linear-order dual
show z' C y'Vy' C z’
proof (rule linear-order-cases)
assume undual y' C undual z’
hence z' C y’ .. thus ?thesis ..
next
assume undual z' C undual 3’
hence y' C z’ .. thus ?thesis ..
qed
qed

1.3.2 Binary products

The classes of quasi and partial orders are closed under binary products.
Note that the direct product of linear orders need not be linear in general.

instantiation prod :: (leq, leq) leq
begin

definition
leg-prod-def: p C q = fst p C fst ¢ A snd p E snd q

instance ..
end

lemma leg-prodl [intro?):
fstpC fstq= sndpC sndq=—=pLCgq
by (unfold leg-prod-def) blast

lemma leq-prodE [elim?):
pCg= (fstpE fstq= sndpEC snd ¢q = C) = C
by (unfold leg-prod-def) blast

instance prod :: (quasi-order, quasi-order) quasi-order
proof
fix p ¢ r :: 'a::quasi-order x 'b::quasi-order
show p C p
proof
show fst p C fst p ..
show snd p C snd p ..
qed
assume pg: p = gand ¢r: ¢ C r
show p C r
proof
from pq have fst p C fst q ..
also from ¢gr have ... C fst r ..

THEORY “Orders” 7

finally show fst p C fst r .
from pg have snd p C snd q ..

also from ¢gr have ... C snd r ..
finally show snd p C snd r .
qed
qed

instance prod :: (partial-order, partial-order) partial-order
proof
fix p q :: 'a::partial-order x 'b::partial-order
assume pg: p = gand gp: ¢ C p
show p = ¢
proof
from pq have fst p C fst q ..
also from ¢gp have ... C fst p ..
finally show fst p = fst q .
from pg have snd p C snd q ..

also from ¢p have ... C snd p ..
finally show snd p = snd q .
qed
qed

1.3.3 General products

The classes of quasi and partial orders are closed under general products
(function spaces). Note that the direct product of linear orders need not be
linear in general.

instantiation fun :: (type, leq) leq
begin

definition
leg-fun-def: fC g=Va. fz C gz

instance ..
end

lemma leg-funl [intro?]: (Az. ft Cgz) = fC g
by (unfold leg-fun-def) blast

lemma leg-funD [dest?: fC g = fz C gx
by (unfold leg-fun-def) blast

instance fun :: (type, quasi-order) quasi-order
proof

fix fgh:: 'a= 'b:quasi-order

show f C f

proof

THEORY “Bounds” 8

fix x show fz C fz ..

qed

assume fg: f C gand gh: g C h

show f C h

proof
fix z from fg have fz C gz ..
also from gh have ... C h x ..
finally show fz C h x .

qed

qed

instance fun :: (type, partial-order) partial-order
proof
fix f g :: 'a = 'bupartial-order
assume fg: f C gand gf: g C f
show f =g
proof
fix x from fg have fz C g x ..
also from ¢gf have ... C fzx ..
finally show fz =gz .
qged
qed

end

2 Bounds

theory Bounds imports Orders begin

hide-const (open) inf sup

2.1 Infimum and supremum

Given a partial order, we define infimum (greatest lower bound) and supre-
mum (least upper bound) wrt. C for two and for any number of elements.

definition
is-inf :: 'a::partial-order = 'a = 'a = bool where
issinfzyinf =(nfCzAinf CyA Mz zCzAzEy— 2z LC inf))

definition
is-sup :: 'a::partial-order = 'a = 'a = bool where
issuprysup=(zCsup ANyCsup A Vz.z CzAyC z— supC 2))

definition
is-Inf :: 'a::partial-order set = 'a = bool where

is-Inf A inf = (Vz € A inf Ca) A V2. Vz € A. 2 C) — z C inf))

definition

THEORY “Bounds” 9

is-Sup :: 'a::partial-order set = 'a = bool where
is-Sup A sup = (Ve € A. 2 C sup) A (Vz. (Vo € A. ¢ C z) — sup C 2))

These definitions entail the following basic properties of boundary elements.

lemma is-infl [intro?): inf C z = inf C y =
(Nz. 2C 0= 2 C y = 2z C inf) = is-infz yinf
by (unfold is-inf-def) blast

lemma is-inf-greatest [elim?]:
issinfryinf—= z2C 2= 2zC y= 2z C inf
by (unfold is-inf-def) blast

lemma is-inf-lower [elim?]:
issinfryinf = (infCz = inf Cy— C) = C
by (unfold is-inf-def) blast

lemma is-supl [intro?]: © C sup = y C sup =
(AN2.2C 2= yLC z = sup C 2) = is-sup ¢ y sup
by (unfold is-sup-def) blast

lemma is-sup-least [elim?):
is-suprysup —= L 2= yLC 2= supC 2
by (unfold is-sup-def) blast

lemma is-sup-upper [elim?):
is-sup x y sup = (x E sup = y C sup = C) = C
by (unfold is-sup-def) blast

lemma is-Infl [intro?): (Nz. 2 € A = inf C 1) =
(Az. Vz e A. 2 C 2) = 2z C inf) = is-Inf A inf
by (unfold is-Inf-def) blast

lemma is-Inf-greatest [elim?):
is-Inf A inf = (N\v. 2 € A= 2C z) = 2z C inf
by (unfold is-Inf-def) blast

lemma is-Inf-lower [dest?):
is-InfAinf —=r€ A= infCx
by (unfold is-Inf-def) blast

lemma is-Supl [intro?]: (A\z. © € A = z C sup) =
(Nz. Yz € A. 2 C 2) = sup C z) = is-Sup A sup
by (unfold is-Sup-def) blast

lemma is-Sup-least [elim?):
is-Sup A sup = (A\z. 1€ A= 2 C 2) = sup C 2

THEORY “Bounds” 10

by (unfold is-Sup-def) blast

lemma is-Sup-upper [dest?):
is-Sup A sup = x € A = x C sup
by (unfold is-Sup-def) blast

2.2 Duality

Infimum and supremum are dual to each other.

theorem dual-inf [iff?):
is-inf (dual z) (dual y) (dual sup) = is-sup x y sup
by (simp add: is-inf-def is-sup-def dual-all [symmetric] dual-leq)

theorem dual-sup [iff7):
is-sup (dual z) (dual y) (dual inf) = is-inf z y inf
by (simp add: is-inf-def is-sup-def dual-all [symmetric] dual-leq)

theorem dual-Inf [iff?):
is-Inf (dual “ A) (dual sup) = is-Sup A sup
by (simp add: is-Inf-def is-Sup-def dual-all [symmetric] dual-leq)

theorem dual-Sup [iff?):
is-Sup (dual < A) (dual inf) = is-Inf A inf
by (simp add: is-Inf-def is-Sup-def dual-all [symmetric] dual-leq)

2.3 Uniqueness

Infima and suprema on partial orders are unique; this is mainly due to anti-
symmetry of the underlying relation.

theorem is-inf-uniq: is-inf © y inf = is-inf z y inf' = inf = inf’
proof —
assume nf: is-inf x y inf
assume inf": is-inf T y inf’
show ?thesis
proof (rule leg-antisym)
from inf’ show inf C inf’
proof (rule is-inf-greatest)
from inf show inf C z ..
from inf show inf C y ..
qed
from inf show inf’ C inf
proof (rule is-inf-greatest)
from inf’ show inf' C x ..
from inf’ show inf' C y ..
qed
qed
qed

THEORY “Bounds” 11

theorem is-sup-uniq: is-sup T y sup = is-sup z y sup’ =—> sup = sup’
proof —
assume sup: is-sup = y sup and sup’: is-sup x y sup’
have dual sup = dual sup’
proof (rule is-inf-uniq)
from sup show is-inf (dual z) (dual y) (dual sup) ..
from sup’ show is-inf (dual z) (dual y) (dual sup’) ..
qed
then show sup = sup’ ..
qed

theorem is-Inf-uniq: is-Inf A inf = is-Inf A inf’ = inf = inf’
proof —
assume inf: is-Inf A inf
assume inf": is-Inf A inf’
show ?thesis
proof (rule leg-antisym)
from inf’ show inf C inf’
proof (rule is-Inf-greatest)
fix z assume z € A
with inf show inf C z ..
qed
from inf show inf’ C inf
proof (rule is-Inf-greatest)
fix r assume z € A
with inf’ show inf' C z ..
qed
qed
qed

theorem is-Sup-uniq: is-Sup A sup = is-Sup A sup’ = sup = sup’
proof —
assume sup: is-Sup A sup and sup’: is-Sup A sup’
have dual sup = dual sup’
proof (rule is-Inf-uniq)
from sup show is-Inf (dual A) (dual sup) ..
from sup’ show is-Inf (dual * A) (dual sup’) ..
qed
then show sup = sup’ ..
qed

2.4 Related elements

The binary bound of related elements is either one of the argument.

theorem is-inf-related [elim?): x C y = is-infx y x
proof —

assume z C y

show ?thesis

proof

THEORY “Bounds”

show z C z ..
show z C y by fact
fix z assume z C z and z C y show z C z by fact
qed
qed

theorem is-sup-related [elim?): z C y = is-sup x y y
proof —
assume z C y
show ?thesis
proof
show z C y by fact
show y C y ..
fix z assume z C zand y C 2
show y C z by fact
qged
qed

2.5 General versus binary bounds

General bounds of two-element sets coincide with binary bounds.

theorem is-Inf-binary: is-Inf {z, y} inf = is-inf z y inf
proof —
let ?A = {z, y}
show ?thesis
proof
assume is-Inf: is-Inf ?A inf
show is-inf z y inf
proof
have z € ?A by simp
with is-Inf show inf C = ..
have y € ?A by simp
with is-Inf show inf C y ..
fix z assume 2z: z C z and zy: 2z C y
from is-Inf show z C inf
proof (rule is-Inf-greatest)
fix a assume a € 74
then have a = 2 V a = y by blast
then show 2z C a
proof
assume a =
with zx show %thesis by simp
next
assume a = y
with zy show ?thesis by simp
ged
qed
qed
next

12

THEORY “Bounds” 13

assume is-inf: is-inf T y inf
show is-Inf {z, y} inf
proof
fix ¢ assume a € 74
then have a = z V a = y by blast
then show inf C a
proof
assume a = z
also from is-inf have inf C z ..
finally show ?thesis .
next
assume a = y
also from is-inf have inf C y ..
finally show ?thesis .
qed
next
fix z assume 2: Va € 4. 2 C a
from is-inf show z C inf
proof (rule is-inf-greatest)
from z show z C z by blast
from z show z C y by blast
qed
qed
qed
qed

theorem is-Sup-binary: is-Sup {z, y} sup = is-sup z y sup
proof —
have is-Sup {z, y} sup = is-Inf (dual ‘ {z, y}) (dual sup)
by (simp only: dual-Inf)
also have dual ‘ {z, y} = {dual z, dual y}
by simp
also have is-Inf ... (dual sup) = is-inf (dual x) (dual y) (dual sup)
by (rule is-Inf-binary)
also have ... = is-sup x y sup
by (simp only: dual-inf)
finally show ?thesis .
qed

2.6 Connecting general bounds

Either kind of general bounds is sufficient to express the other. The least
upper bound (supremum) is the same as the the greatest lower bound of
the set of all upper bounds; the dual statements holds as well; the dual
statement holds as well.
theorem Inf-Sup: is-Inf {b. Va € A. a C b} sup = is-Sup A sup
proof —

let B ={b.Vae€ A. a C b}

THEORY “Lattice” 14

assume is-Inf: is-Inf ?B sup
show is-Sup A sup
proof
fix r assume z: x € A
from is-Inf show z C sup
proof (rule is-Inf-greatest)
fix y assume y € ?B
then have Va € A. a C y ..
from this z show z C y ..
qed
next
fix zassume Vz € A. z C 2
then have z € 7B ..
with is-Inf show sup C z ..
qed
qed

theorem Sup-Inf: is-Sup {b. Va € A. b C a} inf = is-Inf A inf
proof —
assume is-Sup {b. Va € A. b C a} inf
then have is-Inf (dual ‘{b. Va € A. dual a C dual b}) (dual inf)
by (simp only: dual-Inf dual-leq)
also have dual ‘ {b. Va € A. dual a C dual b} = {b’. Va' € dual ‘ A. o' C b’}
by (auto iff: dual-ball dual-Collect simp add: image-Collect)
finally have is-Inf ... (dual inf) .
then have is-Sup (dual © A) (dual inf)
by (rule Inf-Sup)
then show ?thesis ..
qed

end

3 Lattices

theory Lattice imports Bounds begin

3.1 Lattice operations

A lattice is a partial order with infimum and supremum of any two elements
(thus any finite number of elements have bounds as well).
class lattice =

assumes ex-inf: dinf. is-inf x y inf

assumes ex-sup: 3 sup. iS-Sup T Y Sup

The M (meet) and U (join) operations select such infimum and supremum
elements.

definition
meet :: 'a::lattice = 'a = ‘o (infix] <y 70) where

THEORY “Lattice” 15

x My = (THE inf. is-inf x y inf)

definition
join :: 'a::lattice = 'a = 'a (infixl <> 65) where
z Uy = (THE sup. is-sup x y sup)

Due to unique existence of bounds, the lattice operations may be exhibited
as follows.

lemma meet-equality [elim?): is-inf z y inf = = M y = inf
proof (unfold meet-def)
assume is-inf ¢ y inf
then show (THE inf. is-inf z y inf) = inf
by (rule the-equality) (rule is-inf-uniq [OF - <is-inf x y inf>])
qed

lemma meetl [intro?):
infCer=infCy=— (N2. 202 = 2Cy= 2C inf) = 2N y=inf
by (rule meet-equality, rule is-infl) blast+

lemma join-equality [elim?]: is-sup © y sup = z Ll y = sup
proof (unfold join-def)
assume is-Sup T Y sup
then show (THE sup. is-sup z y sup) = sup
by (rule the-equality) (rule is-sup-uniq [OF - <is-sup x y sup)])
qed

lemma joinl [intro?): x C sup = y C sup =
AN2.2C 2= yLCz= supC 2) =z U y=sup
by (rule join-equality, rule is-supl) blast+

The M and U operations indeed determine bounds on a lattice structure.

lemma is-inf-meet [intro?): is-inf z y (z M y)
proof (unfold meet-def)
from ez-inf obtain inf where is-inf z y inf ..
then show is-inf x y (THE inf. is-inf x y inf)
by (rule thel) (rule is-inf-uniq [OF - (s-inf z y inf>])
qed

lemma meet-greatest [intro?]: zC oz — z2Cy=—=2CzMy
by (rule is-inf-greatest) (rule is-inf-meet)

lemma meet-lower! [intro?): My C x
by (rule is-inf-lower) (rule is-inf-meet)

lemma meet-lower2 [intro?]: x My C y
by (rule is-inf-lower) (rule is-inf-meet)

lemma is-sup-join [intro?]: is-sup z y (z U y)

THEORY “Lattice” 16

proof (unfold join-def)
from ez-sup obtain sup where is-sup x y sup ..
then show is-sup x y (THE sup. is-sup = y sup)
by (rule thel) (rule is-sup-uniq [OF - <is-sup z y sup)])
qed

lemma join-least [intro?): 2 C 2 —= yC z =z Uy C 2
by (rule is-sup-least) (rule is-sup-join)

lemma join-upperl [intro?]: © C z U y
by (rule is-sup-upper) (rule is-sup-join)

lemma join-upper? [intro?]: y C z Uy
by (rule is-sup-upper) (rule is-sup-join)

3.2 Duality

The class of lattices is closed under formation of dual structures. This means
that for any theorem of lattice theory, the dualized statement holds as well;
this important fact simplifies many proofs of lattice theory.

instance dual :: (lattice) lattice
proof
fix z’ y’ :: 'a::lattice dual
show Jinf’. is-inf z' y’ inf’
proof —
have 3 sup. is-sup (undual ') (undual y') sup by (rule ex-sup)
then have 3 sup. is-inf (dual (undual z')) (dual (undual y')) (dual sup)
by (simp only: dual-inf)
then show %thesis by (simp add: dual-ex [symmetric])
qed
show Jsup’. is-sup =’ y' sup’
proof —
have Jinf. is-inf (undual ') (undual y') inf by (rule ex-inf)
then have Jinf. is-sup (dual (undual z')) (dual (undual y')) (dual inf)
by (simp only: dual-sup)
then show ?thesis by (simp add: dual-ex [symmetric])
qed
qed

Apparently, the M and LI operations are dual to each other.

theorem dual-meet [intro?): dual (z M y) = dual z U dual y
proof —
from is-inf-meet have is-sup (dual) (dual y) (dual (z M y)) ..
then have dual z U dual y = dual (z M y) ..
then show ?thesis ..
qed

theorem dual-join [intro?): dual (z U y) = dual z M dual y

THEORY “Lattice” 17

proof —
from is-sup-join have is-inf (dual z) (dual y) (dual (z U y)) ..
then have dual z M dual y = dual (z U y) ..
then show %thesis ..

qed

3.3 Algebraic properties

The M and LI operations have the following characteristic algebraic proper-
ties: associative (A), commutative (C), and absorptive (AB).

theorem meet-assoc: (zx M y) M z=2z M (y N 2)
proof
show z M (yMz)TaMNy
proof
show z M (y M 2)
show z M (y M 2)
proof —
have z M (yMz)Cynz..
also have ... C y ..
finally show ?thesis .

M1

T
Y

qed
qed
show 2z M (yMz) C 2
proof —
have z M (yM2)CyMz..
also have ... C z ..
finally show ?thesis .
qed

fix w assume w C z My and w C 2
show w C z M (y M 2)
proof
show w C z
proof —
have w C z M y by fact
also have ... C z ..
finally show ?thesis .
qed
show w C y M z
proof
show w C y
proof —
have w C z M y by fact
also have ... C y ..
finally show ?thesis .
qed
show w C z by fact
qed
qed
qed

THEORY “Lattice” 18

theorem join-assoc: (z U y) Uz =2z U (y U 2)
proof —
have dual ((z U y) U 2z) = (dual z M dual y) M dual z
by (simp only: dual-join)

also have ... = dual x 1M (dual y N dual 2)
by (rule meet-assoc)
also have ... = dual (z U (y U 2))

by (simp only: dual-join)
finally show ?thesis ..
qged

theorem meet-commute: x My =y Mx
proof

show yMa C z ..

show y Mz C y ..

fix z assume 2z C yand 2z C

then show 2 C y Mz ..

qed
theorem join-commute: x Uy =y Uz
proof —
have dual (z U y) = dual x 1M dual y ..
also have ... = dual y M dual
by (rule meet-commute)
also have ... = dual (y U z)

by (simp only: dual-join)
finally show ?thesis ..
qed

theorem meet-join-absorb: © M (z U y) = z
proof
show z C z ..
show z C z U y ..
fix zassume z C zand z C z L gy
show z C z by fact
qed

theorem join-meet-absorb: z U (z My) =z
proof —
have dual z M (dual z U dual y) = dual z
by (rule meet-join-absorb)
then have dual (z U (z M y)) = dual x
by (simp only: dual-meet dual-join)
then show ?thesis ..
qed

Some further algebraic properties hold as well. The property idempotent (I)
is a basic algebraic consequence of (AB).

THEORY “Lattice” 19

theorem meet-idem: z Mz = x

proof —
have z M (z U (z N z)) = z by (rule meet-join-absorb)
also have z U (z M z) = z by (rule join-meet-absord)
finally show ?thesis .

qed

theorem join-idem: x U x = x
proof —
have dual x M dual z = dual z
by (rule meet-idem)
then have dual (z U z) = dual x
by (simp only: dual-join)
then show ?thesis ..
qed

Meet and join are trivial for related elements.

theorem meet-related [elim?: z Ty =z Ny =1z
proof

assume z C y

show =z C z ..

show z C y by fact

fix z assume z C z and z C y

show z C z by fact
qed

theorem join-related [elim?: t Cy =z U y=1y
proof —
assume z C y then have dual y C dual = ..
then have dual y M dual © = dual y by (rule meet-related)
also have dual y M dual z = dual (y U z) by (simp only: dual-join)
also have y U z = z U y by (rule join-commute)
finally show ?thesis ..
qed

3.4 Order versus algebraic structure

The M and LI operations are connected with the underlying C relation in a
canonical manner.

theorem meet-connection: (z C y) = (z Ny = x)
proof

assume z L y

then have is-infz y x ..

then show z My =z ..
next

havez My C y ..

also assume z My =

finally show z C y .

THEORY “Lattice” 20

qed

theorem join-connection: (z C y) = (z U y = y)
proof
assume z L y
then have is-sup z y y ..
then show z Ly = y ..
next
havez C 2z Uy ..
also assume z Ll y = y
finally show z C y .
qed

The most fundamental result of the meta-theory of lattices is as follows (we
do not prove it here).

Given a structure with binary operations M and LI such that (A), (C), and
(AB) hold (cf. §3.3). This structure represents a lattice, if the relation z C y
is defined as z M y = z (alternatively as U y = y). Furthermore, infimum
and supremum with respect to this ordering coincide with the original M and
U operations.

3.5 Example instances

3.5.1 Linear orders

Linear orders with minimum and maximum operations are a (degenerate)
example of lattice structures.

definition
minimum :: 'a:linear-order = 'a = 'a where
minimum z y = (if ¢ C y then z else y)
definition
maximum :: 'a:linear-order = 'a = 'a where
mazimum z y = (if z C y then y else x)

lemma is-inf-minimum: is-inf x y (minimum x y)
proof
let ?min = minimum x y
from leg-linear show ?min C z by (auto simp add: minimum-def)
from leg-linear show ?min C y by (auto simp add: minimum-def)
fix z assume z C z and z C y
with leg-linear show z T ?min by (auto simp add: minimum-def)
qed

lemma is-sup-mazimum: is-sup z y (mazimum x y)
proof
let ?max = mazimum x y
from leg-linear show z C ?mazx by (auto simp add: mazximum-def)

THEORY “Lattice” 21

from leg-linear show y C ?maz by (auto simp add: mazimum-def)

fix z assume z C z and y C 2

with leg-linear show ?maz C z by (auto simp add: mazimum-def)
qed

instance linear-order C lattice
proof
fix z y :: 'a:linear-order
from is-inf-minimum show Finf. is-inf z y inf ..
from is-sup-mazimum show 3 sup. is-sup T y sup ..
qed

The lattice operations on linear orders indeed coincide with minimum and
mazrimum.

theorem meet-mimimum: x M y = minimum x y
by (rule meet-equality) (rule is-inf-minimum,)

theorem meet-mazrimum: x LI y = mazximum x y
by (rule join-equality) (rule is-sup-mazimum)

3.5.2 Binary products

The class of lattices is closed under direct binary products (cf. §1.3.2).

lemma is-inf-prod: is-inf p q (fst p M fst q, snd p N snd q)
proof
show (fst p M fst q, snd p M snd q) C p
proof —
have fst p M fst ¢ C fst p ..
moreover have snd p M snd ¢ E snd p ..
ultimately show ?thesis by (simp add: leg-prod-def)
qed
show (fst p M fst ¢, snd p M snd q) C ¢
proof —
have fst p M fst ¢ C fst q ..
moreover have snd p M snd ¢ E snd q ..
ultimately show ?thesis by (simp add: leg-prod-def)
qed
fix r assume rp: r C pand rq: 7 C ¢
show r C (fst p M fst q, snd p M snd q)
proof —
have fst r C fst p M fst ¢
proof
from rp show fst r C fst p by (simp add: leg-prod-def)
from rq show fst r C fst ¢ by (simp add: leg-prod-def)
qed
moreover have snd r C snd p [snd g
proof
from rp show snd r C snd p by (simp add: leg-prod-def)

THEORY “Lattice” 22

from rq show snd r C snd q by (simp add: leg-prod-def)
qed
ultimately show ?thesis by (simp add: leg-prod-def)
qed
qed

lemma is-sup-prod: is-sup p q (fst p U fst q, snd p U snd q)
proof
show p C (fst p U fst g, snd p U snd q)
proof —
have fst p C fst p U fst q ..
moreover have snd p C snd p U snd q ..
ultimately show ?thesis by (simp add: leg-prod-def)
qed
show ¢ C (fst p U fst q, snd p U snd q)
proof —
have fst ¢ C fst p Ll fst q ..
moreover have snd q C snd p U snd q ..
ultimately show ?thesis by (simp add: leg-prod-def)
qed
fix r assume pr: p C rand gr: ¢q C r
show (fst p U fst ¢, snd p U snd q) C r
proof —
have fst p Ul fst ¢ C fst r
proof
from pr show fst p C fst r by (simp add: leg-prod-def)
from ¢r show fst q C fst r by (simp add: leg-prod-def)
qed
moreover have snd p U snd ¢ C snd r
proof
from pr show snd p C snd r by (simp add: leg-prod-def)
from ¢r show snd q C snd r by (simp add: leg-prod-def)
qed
ultimately show ?thesis by (simp add: leg-prod-def)
qed
qed

instance prod :: (lattice, lattice) lattice
proof
fix p q :: 'a::lattice x 'b::lattice
from is-inf-prod show Iinf. is-inf p q inf ..
from is-sup-prod show 3 sup. is-sup p q sup ..
qed

The lattice operations on a binary product structure indeed coincide with
the products of the original ones.

theorem meet-prod: p M g = (fst p M fst g, snd p M snd q)
by (rule meet-equality) (rule is-inf-prod)

THEORY “Lattice” 23

theorem join-prod: p U q = (fst p U fst ¢, snd p U snd q)
by (rule join-equality) (rule is-sup-prod)

3.5.3 General products

The class of lattices is closed under general products (function spaces) as
well (cf. §1.3.3).

lemma is-inf-fun: is-inf f g (A\z. fx T g x)
proof
show (Az. fzMgaxz)C f
proof
fix xshow fz Mgz C fz ..
qged
show (Az. fzMgz)C g
proof
fix z show fz Mgz C gx..
qed
fix h assume hf: h T fand hg: h C g
show h C (Az. fz M gx)
proof
fix z
show hz C fz Mgz
proof
from hf show hz C fx ..
from hg show hz C g x ..
qed
qed
qed

lemma is-sup-fun: is-sup f g (Az. fz U g x)
proof
show f C (Az. fz U g z)
proof
fix x show fz C fz Uguz ..
qed
show ¢ C (\z. fz U g x)
proof
fix z show gz C fz Ugux..
qed
fix h assume fh: f C hand gh: g C h
show (Az. fa U gz) Ch
proof
fix z
show fz Ugz C hz
proof
from fh show fz C hz ..
from gh show gz C h x ..
qed
qed

THEORY “Lattice” 24

qed

instance fun :: (type, lattice) lattice
proof
fix fg:: 'a = 'b:lattice
show Finf. is-inf f g inf by rule (rule is-inf-fun)
show T sup. is-sup f g sup by rule (rule is-sup-fun)
qed

The lattice operations on a general product structure (function space) indeed
emerge by point-wise lifting of the original ones.

theorem meet-fun: f Mg = (Az. fz M gx)
by (rule meet-equality) (rule is-inf-fun)

theorem join-fun: f U g = (Az. fz U g x)
by (rule join-equality) (rule is-sup-fun)

3.6 Monotonicity and semi-morphisms

The lattice operations are monotone in both argument positions. In fact,
monotonicity of the second position is trivial due to commutativity.

theorem meet-mono: tC z = yCw=—zcMNyC zMNw
proof —
{
fix a b c :: 'a:lattice
assume a C chaveaMbLC cMb
proof
have a T b C ¢ ..
also have ... C ¢ by fact
finally show a M b C c .
show a M bC b ..
qed
} note this [elim?]
assume z C z then have z My C 2z M y ..
also have ... = y M z by (rule meet-commute)
also assume y C w then have y M 2z C w M z ..
also have ... = z M w by (rule meet-commute)
finally show ?thesis .
qed

theorem join-mono: zC 2 —=yCw=—2zUyC zUw
proof —
assume z C z then have dual z C dual x ..
moreover assume y C w then have dual w C dual y ..
ultimately have dual z M dual w C dual z M dual y
by (rule meet-mono)
then have dual (z U w) C dual (z U y)
by (simp only: dual-join)

THEORY “Lattice” 25

then show ?thesis ..
qed

A semi-morphisms is a function f that preserves the lattice operations in
the following manner: f (z M y) C fz N fyand fz U fy C f (z U y),
respectively. Any of these properties is equivalent with monotonicity.

theorem meet-semimorph:
Azy. feny Tfanfy=(Avy.2Cy= fzCfy)
proof
assume morph: Az y. f (xNy) CfzNfy
fix z y :: 'a::lattice
assume z C y
then have z Ny = z ..
then have x =z My ..
also have f ... C fz M fy by (rule morph)
also have ... C fy ..
finally show fz C fy.
next
assume mono: Az y. 2 Cy= fz C fy
show Azy. f(zMNy) CfaNfy
proof —
fix zy
show f (zMy) CfzNfy
proof
have z M y C z .. then show f (z M y) C fz by (rule mono)
have z M y C y .. then show f (z M y) C fy by (rule mono)
qed
qed
qed

lemma join-semimorph:
ANy faufyEf(zUy)=(Avy.2Ey=fzEfy)
proof
assume morph: Az y. fr U fyCf (zUy)
fix z y :: 'a::lattice
assume z C y then have z Ly = y ..
have fz C fz U fy ..
also have ... C f (z U y) by (rule morph)
also from «<x C i have z Uy =y ..
finally show fz C fy .
next
assume mono: Az y. 2 Cy = fz C fy
show Azy. fz U fyC f (zUy)

proof —
fix z y
show fz U fyC f (zUy)
proof
have z C z U y .. then show fz C f (z U y) by (rule mono)
have y C z U y .. then show fy C f (z U y) by (rule mono)

THEORY “CompleteLattice” 26

qed
qed
qed

end

4 Complete lattices

theory CompleteLattice imports Lattice begin

4.1 Complete lattice operations

A complete lattice is a partial order with general (infinitary) infimum of any
set of elements. General supremum exists as well, as a consequence of the
connection of infinitary bounds (see §2.6).

class complete-lattice =
assumes ez-Inf: Jinf. is-Inf A inf

theorem exz-Sup: 3 sup::'a::complete-lattice. is-Sup A sup

proof —
from ez-Inf obtain sup where is-Inf {b. Va€A. a C b} sup by blast
then have is-Sup A sup by (rule Inf-Sup)
then show ?thesis ..

qed

The general [] (meet) and || (join) operations select such infimum and
supremum elements.

definition
Meet :: 'a::complete-lattice set = 'a (|- [90] 90) where
[1A = (THE inf. is-Inf A inf)

definition
Join :: 'a::complete-lattice set = 'a (<[] -» [90] 90) where
| A = (THE sup. is-Sup A sup)

Due to unique existence of bounds, the complete lattice operations may be
exhibited as follows.

lemma Meet-equality [elim?): is-Inf A inf = []A = inf
proof (unfold Meet-def)
assume is-Inf A inf
then show (THE inf. is-Inf A inf) = inf
by (rule the-equality) (rule is-Inf-uniq [OF - <is-Inf A inf>])
qed

lemma Meetl [intro?):
(Na. a € A = inf C a) =
(ANb.Va€e A.bE a = b L inf) =

[14 = inf

THEORY “CompleteLattice” 27

by (rule Meet-equality, rule is-InfI) blast+

lemma Join-equality [elim?): is-Sup A sup = | | A = sup
proof (unfold Join-def)
assume is-Sup A sup
then show (THE sup. is-Sup A sup) = sup
by (rule the-equality) (rule is-Sup-uniq [OF - <is-Sup A sup>])
qed

lemma JoinI [intro?):
(Na. a € A = a C sup) =
(Ab.Va€e A, aC b= sup C b) =
| |A = sup
by (rule Join-equality, rule is-Supl) blast+

The [] and || operations indeed determine bounds on a complete lattice
structure.

lemma is-Inf-Meet [intro?): is-Inf A ([A)
proof (unfold Meet-def)
from ex-Inf obtain inf where is-Inf A inf ..
then show is-Inf A (THE inf. is-Inf A inf)
by (rule thel) (rule is-Inf-uniq [OF - <is-Inf A inf>])
qed

lemma Meet-greatest [intro?]: (Na. a € A=z Ca) = zC[]A
by (rule is-Inf-greatest, rule is-Inf-Meet) blast

lemma Meet-lower [intro?): a € A= []ALC a
by (rule is-Inf-lower) (rule is-Inf-Meet)

lemma is-Sup-Join [intro?): is-Sup A (|] A)
proof (unfold Join-def)
from ex-Sup obtain sup where is-Sup A sup ..
then show is-Sup A (THE sup. is-Sup A sup)
by (rule thel) (rule is-Sup-uniq [OF - <is-Sup A sups))
qed

lemma Join-least [intro?: (Na. a € A= aCz) = ||ACz
by (rule is-Sup-least, rule is-Sup-Join) blast

lemma Join-lower [intro?]: a € A = a C | |4
by (rule is-Sup-upper) (rule is-Sup-Join)

4.2 The Knaster-Tarski Theorem

The Knaster-Tarski Theorem (in its simplest formulation) states that any
monotone function on a complete lattice has a least fixed-point (see [2, pages
93-94] for example). This is a consequence of the basic boundary properties

THEORY “CompleteLattice” 28

of the complete lattice operations.

theorem Knaster-Tarski:
assumes mono: Nz y. t Cy = fz C fy
obtains a :: ‘a::complete-lattice where
fa=aand Aa’. fa'=a' = a C o’

proof
let YH = {u. fu C u}
let %a =[] ?H
show f %0 = %a
proof —
have ge: f ?a C %a
proof

fix z assume z: © € ?H
then have %0 C z ..
then have f %a C fx by (rule mono)
also from z have ... C z ..
finally show f %a C z .

qed

also have %a C f %a

proof
from ge have f (f %a) C f %a by (rule mono)
then show f %a € ?H ..

qed

finally show ?thesis .

qed

fix a’
assume fa’ = o’
then have f o’ C a’ by (simp only: leg-refl)
then have o’ € ?H ..
then show 20 C a’..
qed

theorem Knaster-Tarski-dual:
assumes mono: Nz y. t Ty = fz C fy
obtains a :: ‘a::complete-lattice where
fa=aand Aa’. fa’=a'"= a'C a

proof
let YH = {u. v C fu}
let %a = | | ?H
show f %0 = %a
proof —
have le: 70 C f %a
proof

fix z assume z: © € ?H

then have z C fz ..

also from z have z C ?q ..

then have fz C f %a by (rule mono)
finally show z C f %a .

THEORY “CompleteLattice”

qed

have f ?a C %a

proof
from le have f ?a C f (f ?a) by (rule mono)
then show f %a € ?H ..

qed

from this and le show ?thesis by (rule leg-antisym)

qed

fix a’
assume fa’' = a’
then have a’ C f o’ by (simp only: leg-refl)
then have a’ € ?H ..
then show o' C %a ..
qed

4.3 Bottom and top elements

29

With general bounds available, complete lattices also have least and greatest

elements.

definition

bottom :: 'a::complete-lattice (<L) where
L =[]UNIV

definition
top :: 'a::complete-lattice (<T») where
T =|JUNIV

lemma bottom-least [intro?): L C z
proof (unfold bottom-def)

have z ¢ UNIV ..

then show [|UNIV C z ..
qed

lemma bottomI [intro?]: (Na. 2 Ca) = L ==z
proof (unfold bottom-def)
assume Aa. z C a
show [|UNIV =z
proof
fix a show z C a by fact
next
fix b :: ‘a::complete-lattice
assume b: Va € UNIV.bC a
have z € UNIV ..
with b show b C z ..
qged
qed

lemma top-greatest [intro?): x T T

THEORY “CompleteLattice” 30

proof (unfold top-def)

have z € UNIV ..

then show z C | | UNIV ..
qed

lemma topl [intro?): (Na. aC z) = T ==z
proof (unfold top-def)
assume Aa. a C z
show | |UNIV =z
proof
fix a show a C z by fact
next
fix b :: 'a::complete-lattice
assume b: Va € UNIV. a C b
have z € UNIV ..
with b show z C b ..
qed
qed

4.4 Duality

The class of complete lattices is closed under formation of dual structures.

instance dual :: (complete-lattice) complete-lattice

proof
fix A’ :: a::complete-lattice dual set
show Jinf’. is-Inf A’ inf’
proof —

have 3 sup. is-Sup (undual * A’) sup by (rule ex-Sup)
then have 3 sup. is-Inf (dual ‘ undual “ A’) (dual sup) by (simp only: dual-Inf)
then show ?thesis by (simp add: dual-ex [symmetric] image-comp)
qed
qed

Apparently, the [] and | | operations are dual to each other.

theorem dual-Meet [intro?): dual ([1A) = || (dual ¢ A)
proof —
from is-Inf-Meet have is-Sup (dual © A) (dual ([14)) ..
then have | |(dual ‘ A) = dual ([]4) ..
then show %thesis ..
qed

theorem dual-Join [intro?): dual (| |A) =[] (dual © A)
proof —
from is-Sup-Join have is-Inf (dual * A) (dual (| |A)) ..
then have [| (dual * A) = dual (| |A) ..
then show ?thesis ..
qed

Likewise are L and T duals of each other.

THEORY “CompleteLattice” 31

theorem dual-bottom [intro?): dual L =T
proof —
have T = dual L
proof
fix ¢’ have 1 C undual a’ ..
then have dual (undual o’) C dual L ..
then show a’ C dual L by simp
qed
then show ?thesis ..
qed

theorem dual-top [intro?): dual T = L
proof —
have L = dual T
proof
fix a’ have undual ' T T ..
then have dual T C dual (undual a’) ..
then show dual T C a’ by simp
qed
then show “thesis ..
qed

4.5 Complete lattices are lattices

Complete lattices (with general bounds available) are indeed plain lattices
as well. This holds due to the connection of general versus binary bounds
that has been formally established in §2.5.

lemma is-inf-binary: is-inf x y ([1{=z, y})
proof —

have is-Inf {z, y} ([1{z, y}) ..

then show ?thesis by (simp only: is-Inf-binary)
qed

lemma is-sup-binary: is-sup z y (| |{z, y})
proof —

have is-Sup {z, v} (| |{z, y}) ..

then show ?thesis by (simp only: is-Sup-binary)
qed

instance complete-lattice C lattice
proof
fix z y :: 'a::complete-lattice
from is-inf-binary show Finf. is-inf z y inf ..
from is-sup-binary show I sup. is-sup x y sup ..
qed

theorem meet-binary: x My = [1{z, y}
by (rule meet-equality) (rule is-inf-binary)

THEORY “CompleteLattice” 32

theorem join-binary: z Uy = | |{z, y}
by (rule join-equality) (rule is-sup-binary)

4.6 Complete lattices and set-theory operations

The complete lattice operations are (anti) monotone wrt. set inclusion.

theorem Meet-subset-antimono: A C B=[|BLC[]A
proof (rule Meet-greatest)

fix a assume a € A

also assume A C B

finally have a € B .

then show [|BC a ..
qged

theorem Join-subset-mono: A C B = | |ALC | |B
proof —
assume A C B
then have dual ‘ A C dual * B by blast
then have [|(dual ¢ B) C [](dual © A) by (rule Meet-subset-antimono)
then have dual (| | B) C dual (| | A) by (simp only: dual-Join)
then show %thesis by (simp only: dual-leq)
qed

Bounds over unions of sets may be obtained separately.

theorem Meet-Un: [|[(AU B) =[]AN[]B
proof
fix a assume a € AU B
then show [|AMN[]BC a
proof
assume a: a € A
have [[AN[]BCT]4 ..
also from a have ... C a ..
finally show ?thesis .
next
assume a: a € B
have [[AN[]BCT]B ..
also from a have ... C a ..
finally show ?%thesis .
qed
next
fix bassume b: Vaec AU B.bC ¢
show b C[|AN[]B
proof
show b C []4A
proof
fix a assume a € A
then have a € AU B ..

THEORY “CompleteLattice” 33

with b show b C ¢ ..

qed

show b C [|B

proof
fix ¢ assume a € B
then have a € AU B ..
with b show b C a ..

qed

qed
qed

theorem Join-Un: | [(AU B) = JAU||B
proof —
have dual (| |(A U B)) =[](dual * AU dual ‘ B)
by (simp only: dual-Join image-Un)

also have ... = [|(dual * A) M [](dual ‘ B)
by (rule Meet-Un)
also have ... = dual (| |A U | |B)

by (simp only: dual-join dual-Join)
finally show ?thesis ..
qed

Bounds over singleton sets are trivial.

theorem Meet-singleton: [|{z} = z
proof

fix a assume a € {2}

then have a = x by simp

then show z C a by (simp only: leg-refl)
next

fix b assume Va € {z}. bC a

then show b C z by simp

qed

theorem Join-singleton: | |[{z} = z

proof —
have dual (| |{z}) = []{dual z} by (simp add: dual-Join)
also have ... = dual z by (rule Meet-singleton)
finally show ?thesis ..

qed

Bounds over the empty and universal set correspond to each other.

theorem Meet-empty: [1{} = || UNIV
proof

fix a :: 'a::complete-lattice

assume a € {}

then have Fulse by simp

then show | |[UNIV C a ..
next

fix b :: 'a::complete-lattice

REFERENCES 34

have b € UNIV ..
then show b C | | UNIV ..
qed

theorem Join-empty: | |{} = [| UNIV
proof —
have dual (| |{}) = [1{} by (simp add: dual-Join)
also have ... = | | UNIV by (rule Meet-empty)
also have ... = dual ([|UNIV) by (simp add: dual-Meet)
finally show ?thesis ..
qged

end

References

[1] G. Bauer and M. Wenzel. Computer-assisted mathematics at work —
the Hahn-Banach theorem in Isabelle/Isar. In T. Coquand, P. Dybjer,
B. Nordstréom, and J. Smith, editors, Types for Proofs and Programs:
TYPES’99, LNCS, 2000.

[2] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[3] M. Wenzel. Isar — a generic interpretative approach to readable formal
proof documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Thery, editors, Theorem Proving in Higher Order Logics: TPHOLs
’99, volume 1690 of LNCS, 1999.

[4] M. Wenzel. The Isabelle/Isar Reference Manual, 2000. https://isabelle.
in.tum.de/doc/isar-ref.pdf.

[5] M. Wenzel. Using Aziomatic Type Classes in Isabelle, 2000. https:
//isabelle.in.tum.de/doc/axclass.pdf.

https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/doc/axclass.pdf
https://isabelle.in.tum.de/doc/axclass.pdf

	Orders
	Ordered structures
	Duality
	Transforming orders
	Duals
	Binary products
	General products

	Bounds
	Infimum and supremum
	Duality
	Uniqueness
	Related elements
	General versus binary bounds
	Connecting general bounds

	Lattices
	Lattice operations
	Duality
	Algebraic properties
	Order versus algebraic structure
	Example instances
	Linear orders
	Binary products
	General products

	Monotonicity and semi-morphisms

	Complete lattices
	Complete lattice operations
	The Knaster-Tarski Theorem
	Bottom and top elements
	Duality
	Complete lattices are lattices
	Complete lattices and set-theory operations

