
Lattices and Orders in Isabelle/HOL

Markus Wenzel
TU München

January 18, 2026

Abstract

We consider abstract structures of orders and lattices. Many funda-
mental concepts of lattice theory are developed, including dual struc-
tures, properties of bounds versus algebraic laws, lattice operations
versus set-theoretic ones etc. We also give example instantiations of
lattices and orders, such as direct products and function spaces. Well-
known properties are demonstrated, like the Knaster-Tarski Theorem
for complete lattices.

This formal theory development may serve as an example of apply-
ing Isabelle/HOL to the domain of mathematical reasoning about “ax-
iomatic” structures. Apart from the simply-typed classical set-theory
of HOL, we employ Isabelle’s system of axiomatic type classes for ex-
pressing structures and functors in a light-weight manner. Proofs are
expressed in the Isar language for readable formal proof, while aiming
at its “best-style” of representing formal reasoning.

Contents
1 Orders 3

1.1 Ordered structures . 3
1.2 Duality . 3
1.3 Transforming orders . 5

1.3.1 Duals . 5
1.3.2 Binary products . 6
1.3.3 General products . 7

2 Bounds 8
2.1 Infimum and supremum . 8
2.2 Duality . 10
2.3 Uniqueness . 10
2.4 Related elements . 11
2.5 General versus binary bounds 12
2.6 Connecting general bounds 13

1

CONTENTS 2

3 Lattices 14
3.1 Lattice operations . 14
3.2 Duality . 16
3.3 Algebraic properties . 17
3.4 Order versus algebraic structure 19
3.5 Example instances . 20

3.5.1 Linear orders . 20
3.5.2 Binary products . 21
3.5.3 General products . 23

3.6 Monotonicity and semi-morphisms 24

4 Complete lattices 26
4.1 Complete lattice operations 26
4.2 The Knaster-Tarski Theorem 27
4.3 Bottom and top elements . 29
4.4 Duality . 30
4.5 Complete lattices are lattices 31
4.6 Complete lattices and set-theory operations 32

THEORY “Orders” 3

1 Orders
theory Orders imports Main begin

1.1 Ordered structures

We define several classes of ordered structures over some type ′a with relation
v :: ′a ⇒ ′a ⇒ bool. For a quasi-order that relation is required to be reflexive
and transitive, for a partial order it also has to be anti-symmetric, while for
a linear order all elements are required to be related (in either direction).
class leq =

fixes leq :: ′a ⇒ ′a ⇒ bool (infixl ‹v› 50)

class quasi-order = leq +
assumes leq-refl [intro?]: x v x
assumes leq-trans [trans]: x v y =⇒ y v z =⇒ x v z

class partial-order = quasi-order +
assumes leq-antisym [trans]: x v y =⇒ y v x =⇒ x = y

class linear-order = partial-order +
assumes leq-linear : x v y ∨ y v x

lemma linear-order-cases:
((x:: ′a::linear-order) v y =⇒ C) =⇒ (y v x =⇒ C) =⇒ C

by (insert leq-linear) blast

1.2 Duality

The dual of an ordered structure is an isomorphic copy of the underlying
type, with the v relation defined as the inverse of the original one.
datatype ′a dual = dual ′a

primrec undual :: ′a dual ⇒ ′a where
undual-dual: undual (dual x) = x

instantiation dual :: (leq) leq
begin

definition
leq-dual-def : x ′ v y ′ ≡ undual y ′ v undual x ′

instance ..

end

lemma undual-leq [iff?]: (undual x ′ v undual y ′) = (y ′ v x ′)
by (simp add: leq-dual-def)

THEORY “Orders” 4

lemma dual-leq [iff?]: (dual x v dual y) = (y v x)
by (simp add: leq-dual-def)

Functions dual and undual are inverse to each other; this entails the following
fundamental properties.
lemma dual-undual [simp]: dual (undual x ′) = x ′

by (cases x ′) simp

lemma undual-dual-id [simp]: undual o dual = id
by (rule ext) simp

lemma dual-undual-id [simp]: dual o undual = id
by (rule ext) simp

Since dual (and undual) are both injective and surjective, the basic logical
connectives (equality, quantification etc.) are transferred as follows.
lemma undual-equality [iff?]: (undual x ′ = undual y ′) = (x ′ = y ′)

by (cases x ′, cases y ′) simp

lemma dual-equality [iff?]: (dual x = dual y) = (x = y)
by simp

lemma dual-ball [iff?]: (∀ x ∈ A. P (dual x)) = (∀ x ′ ∈ dual ‘ A. P x ′)
proof

assume a: ∀ x ∈ A. P (dual x)
show ∀ x ′ ∈ dual ‘ A. P x ′

proof
fix x ′ assume x ′: x ′ ∈ dual ‘ A
have undual x ′ ∈ A
proof −

from x ′ have undual x ′ ∈ undual ‘ dual ‘ A by simp
thus undual x ′ ∈ A by (simp add: image-comp)

qed
with a have P (dual (undual x ′)) ..
also have . . . = x ′ by simp
finally show P x ′ .

qed
next

assume a: ∀ x ′ ∈ dual ‘ A. P x ′

show ∀ x ∈ A. P (dual x)
proof

fix x assume x ∈ A
hence dual x ∈ dual ‘ A by simp
with a show P (dual x) ..

qed
qed

THEORY “Orders” 5

lemma range-dual [simp]: surj dual
proof −

have
∧

x ′. dual (undual x ′) = x ′ by simp
thus surj dual by (rule surjI)

qed

lemma dual-all [iff?]: (∀ x. P (dual x)) = (∀ x ′. P x ′)
proof −

have (∀ x ∈ UNIV . P (dual x)) = (∀ x ′ ∈ dual ‘ UNIV . P x ′)
by (rule dual-ball)

thus ?thesis by simp
qed

lemma dual-ex: (∃ x. P (dual x)) = (∃ x ′. P x ′)
proof −

have (∀ x. ¬ P (dual x)) = (∀ x ′. ¬ P x ′)
by (rule dual-all)

thus ?thesis by blast
qed

lemma dual-Collect: {dual x | x. P (dual x)} = {x ′. P x ′}
proof −

have {dual x| x. P (dual x)} = {x ′. ∃ x ′′. x ′ = x ′′ ∧ P x ′′}
by (simp only: dual-ex [symmetric])

thus ?thesis by blast
qed

1.3 Transforming orders
1.3.1 Duals

The classes of quasi, partial, and linear orders are all closed under formation
of dual structures.
instance dual :: (quasi-order) quasi-order
proof

fix x ′ y ′ z ′ :: ′a::quasi-order dual
have undual x ′ v undual x ′ .. thus x ′ v x ′ ..
assume y ′ v z ′ hence undual z ′ v undual y ′ ..
also assume x ′ v y ′ hence undual y ′ v undual x ′ ..
finally show x ′ v z ′ ..

qed

instance dual :: (partial-order) partial-order
proof

fix x ′ y ′ :: ′a::partial-order dual
assume y ′ v x ′ hence undual x ′ v undual y ′ ..
also assume x ′ v y ′ hence undual y ′ v undual x ′ ..
finally show x ′ = y ′ ..

qed

THEORY “Orders” 6

instance dual :: (linear-order) linear-order
proof

fix x ′ y ′ :: ′a::linear-order dual
show x ′ v y ′ ∨ y ′ v x ′

proof (rule linear-order-cases)
assume undual y ′ v undual x ′

hence x ′ v y ′ .. thus ?thesis ..
next

assume undual x ′ v undual y ′

hence y ′ v x ′ .. thus ?thesis ..
qed

qed

1.3.2 Binary products

The classes of quasi and partial orders are closed under binary products.
Note that the direct product of linear orders need not be linear in general.
instantiation prod :: (leq, leq) leq
begin

definition
leq-prod-def : p v q ≡ fst p v fst q ∧ snd p v snd q

instance ..

end

lemma leq-prodI [intro?]:
fst p v fst q =⇒ snd p v snd q =⇒ p v q

by (unfold leq-prod-def) blast

lemma leq-prodE [elim?]:
p v q =⇒ (fst p v fst q =⇒ snd p v snd q =⇒ C) =⇒ C

by (unfold leq-prod-def) blast

instance prod :: (quasi-order , quasi-order) quasi-order
proof

fix p q r :: ′a::quasi-order × ′b::quasi-order
show p v p
proof

show fst p v fst p ..
show snd p v snd p ..

qed
assume pq: p v q and qr : q v r
show p v r
proof

from pq have fst p v fst q ..
also from qr have . . . v fst r ..

THEORY “Orders” 7

finally show fst p v fst r .
from pq have snd p v snd q ..
also from qr have . . . v snd r ..
finally show snd p v snd r .

qed
qed

instance prod :: (partial-order , partial-order) partial-order
proof

fix p q :: ′a::partial-order × ′b::partial-order
assume pq: p v q and qp: q v p
show p = q
proof

from pq have fst p v fst q ..
also from qp have . . . v fst p ..
finally show fst p = fst q .
from pq have snd p v snd q ..
also from qp have . . . v snd p ..
finally show snd p = snd q .

qed
qed

1.3.3 General products

The classes of quasi and partial orders are closed under general products
(function spaces). Note that the direct product of linear orders need not be
linear in general.
instantiation fun :: (type, leq) leq
begin

definition
leq-fun-def : f v g ≡ ∀ x. f x v g x

instance ..

end

lemma leq-funI [intro?]: (
∧

x. f x v g x) =⇒ f v g
by (unfold leq-fun-def) blast

lemma leq-funD [dest?]: f v g =⇒ f x v g x
by (unfold leq-fun-def) blast

instance fun :: (type, quasi-order) quasi-order
proof

fix f g h :: ′a ⇒ ′b::quasi-order
show f v f
proof

THEORY “Bounds” 8

fix x show f x v f x ..
qed
assume fg: f v g and gh: g v h
show f v h
proof

fix x from fg have f x v g x ..
also from gh have . . . v h x ..
finally show f x v h x .

qed
qed

instance fun :: (type, partial-order) partial-order
proof

fix f g :: ′a ⇒ ′b::partial-order
assume fg: f v g and gf : g v f
show f = g
proof

fix x from fg have f x v g x ..
also from gf have . . . v f x ..
finally show f x = g x .

qed
qed

end

2 Bounds
theory Bounds imports Orders begin

hide-const (open) inf sup

2.1 Infimum and supremum

Given a partial order, we define infimum (greatest lower bound) and supre-
mum (least upper bound) wrt. v for two and for any number of elements.
definition

is-inf :: ′a::partial-order ⇒ ′a ⇒ ′a ⇒ bool where
is-inf x y inf = (inf v x ∧ inf v y ∧ (∀ z. z v x ∧ z v y −→ z v inf))

definition
is-sup :: ′a::partial-order ⇒ ′a ⇒ ′a ⇒ bool where
is-sup x y sup = (x v sup ∧ y v sup ∧ (∀ z. x v z ∧ y v z −→ sup v z))

definition
is-Inf :: ′a::partial-order set ⇒ ′a ⇒ bool where
is-Inf A inf = ((∀ x ∈ A. inf v x) ∧ (∀ z. (∀ x ∈ A. z v x) −→ z v inf))

definition

THEORY “Bounds” 9

is-Sup :: ′a::partial-order set ⇒ ′a ⇒ bool where
is-Sup A sup = ((∀ x ∈ A. x v sup) ∧ (∀ z. (∀ x ∈ A. x v z) −→ sup v z))

These definitions entail the following basic properties of boundary elements.
lemma is-infI [intro?]: inf v x =⇒ inf v y =⇒

(
∧

z. z v x =⇒ z v y =⇒ z v inf) =⇒ is-inf x y inf
by (unfold is-inf-def) blast

lemma is-inf-greatest [elim?]:
is-inf x y inf =⇒ z v x =⇒ z v y =⇒ z v inf

by (unfold is-inf-def) blast

lemma is-inf-lower [elim?]:
is-inf x y inf =⇒ (inf v x =⇒ inf v y =⇒ C) =⇒ C

by (unfold is-inf-def) blast

lemma is-supI [intro?]: x v sup =⇒ y v sup =⇒
(
∧

z. x v z =⇒ y v z =⇒ sup v z) =⇒ is-sup x y sup
by (unfold is-sup-def) blast

lemma is-sup-least [elim?]:
is-sup x y sup =⇒ x v z =⇒ y v z =⇒ sup v z

by (unfold is-sup-def) blast

lemma is-sup-upper [elim?]:
is-sup x y sup =⇒ (x v sup =⇒ y v sup =⇒ C) =⇒ C

by (unfold is-sup-def) blast

lemma is-InfI [intro?]: (
∧

x. x ∈ A =⇒ inf v x) =⇒
(
∧

z. (∀ x ∈ A. z v x) =⇒ z v inf) =⇒ is-Inf A inf
by (unfold is-Inf-def) blast

lemma is-Inf-greatest [elim?]:
is-Inf A inf =⇒ (

∧
x. x ∈ A =⇒ z v x) =⇒ z v inf

by (unfold is-Inf-def) blast

lemma is-Inf-lower [dest?]:
is-Inf A inf =⇒ x ∈ A =⇒ inf v x

by (unfold is-Inf-def) blast

lemma is-SupI [intro?]: (
∧

x. x ∈ A =⇒ x v sup) =⇒
(
∧

z. (∀ x ∈ A. x v z) =⇒ sup v z) =⇒ is-Sup A sup
by (unfold is-Sup-def) blast

lemma is-Sup-least [elim?]:
is-Sup A sup =⇒ (

∧
x. x ∈ A =⇒ x v z) =⇒ sup v z

THEORY “Bounds” 10

by (unfold is-Sup-def) blast

lemma is-Sup-upper [dest?]:
is-Sup A sup =⇒ x ∈ A =⇒ x v sup

by (unfold is-Sup-def) blast

2.2 Duality

Infimum and supremum are dual to each other.
theorem dual-inf [iff?]:

is-inf (dual x) (dual y) (dual sup) = is-sup x y sup
by (simp add: is-inf-def is-sup-def dual-all [symmetric] dual-leq)

theorem dual-sup [iff?]:
is-sup (dual x) (dual y) (dual inf) = is-inf x y inf

by (simp add: is-inf-def is-sup-def dual-all [symmetric] dual-leq)

theorem dual-Inf [iff?]:
is-Inf (dual ‘ A) (dual sup) = is-Sup A sup

by (simp add: is-Inf-def is-Sup-def dual-all [symmetric] dual-leq)

theorem dual-Sup [iff?]:
is-Sup (dual ‘ A) (dual inf) = is-Inf A inf

by (simp add: is-Inf-def is-Sup-def dual-all [symmetric] dual-leq)

2.3 Uniqueness

Infima and suprema on partial orders are unique; this is mainly due to anti-
symmetry of the underlying relation.
theorem is-inf-uniq: is-inf x y inf =⇒ is-inf x y inf ′ =⇒ inf = inf ′

proof −
assume inf : is-inf x y inf
assume inf ′: is-inf x y inf ′

show ?thesis
proof (rule leq-antisym)

from inf ′ show inf v inf ′

proof (rule is-inf-greatest)
from inf show inf v x ..
from inf show inf v y ..

qed
from inf show inf ′ v inf
proof (rule is-inf-greatest)

from inf ′ show inf ′ v x ..
from inf ′ show inf ′ v y ..

qed
qed

qed

THEORY “Bounds” 11

theorem is-sup-uniq: is-sup x y sup =⇒ is-sup x y sup ′ =⇒ sup = sup ′

proof −
assume sup: is-sup x y sup and sup ′: is-sup x y sup ′

have dual sup = dual sup ′

proof (rule is-inf-uniq)
from sup show is-inf (dual x) (dual y) (dual sup) ..
from sup ′ show is-inf (dual x) (dual y) (dual sup ′) ..

qed
then show sup = sup ′ ..

qed

theorem is-Inf-uniq: is-Inf A inf =⇒ is-Inf A inf ′ =⇒ inf = inf ′

proof −
assume inf : is-Inf A inf
assume inf ′: is-Inf A inf ′

show ?thesis
proof (rule leq-antisym)

from inf ′ show inf v inf ′

proof (rule is-Inf-greatest)
fix x assume x ∈ A
with inf show inf v x ..

qed
from inf show inf ′ v inf
proof (rule is-Inf-greatest)

fix x assume x ∈ A
with inf ′ show inf ′ v x ..

qed
qed

qed

theorem is-Sup-uniq: is-Sup A sup =⇒ is-Sup A sup ′ =⇒ sup = sup ′

proof −
assume sup: is-Sup A sup and sup ′: is-Sup A sup ′

have dual sup = dual sup ′

proof (rule is-Inf-uniq)
from sup show is-Inf (dual ‘ A) (dual sup) ..
from sup ′ show is-Inf (dual ‘ A) (dual sup ′) ..

qed
then show sup = sup ′ ..

qed

2.4 Related elements

The binary bound of related elements is either one of the argument.
theorem is-inf-related [elim?]: x v y =⇒ is-inf x y x
proof −

assume x v y
show ?thesis
proof

THEORY “Bounds” 12

show x v x ..
show x v y by fact
fix z assume z v x and z v y show z v x by fact

qed
qed

theorem is-sup-related [elim?]: x v y =⇒ is-sup x y y
proof −

assume x v y
show ?thesis
proof

show x v y by fact
show y v y ..
fix z assume x v z and y v z
show y v z by fact

qed
qed

2.5 General versus binary bounds

General bounds of two-element sets coincide with binary bounds.
theorem is-Inf-binary: is-Inf {x, y} inf = is-inf x y inf
proof −

let ?A = {x, y}
show ?thesis
proof

assume is-Inf : is-Inf ?A inf
show is-inf x y inf
proof

have x ∈ ?A by simp
with is-Inf show inf v x ..
have y ∈ ?A by simp
with is-Inf show inf v y ..
fix z assume zx: z v x and zy: z v y
from is-Inf show z v inf
proof (rule is-Inf-greatest)

fix a assume a ∈ ?A
then have a = x ∨ a = y by blast
then show z v a
proof

assume a = x
with zx show ?thesis by simp

next
assume a = y
with zy show ?thesis by simp

qed
qed

qed
next

THEORY “Bounds” 13

assume is-inf : is-inf x y inf
show is-Inf {x, y} inf
proof

fix a assume a ∈ ?A
then have a = x ∨ a = y by blast
then show inf v a
proof

assume a = x
also from is-inf have inf v x ..
finally show ?thesis .

next
assume a = y
also from is-inf have inf v y ..
finally show ?thesis .

qed
next

fix z assume z: ∀ a ∈ ?A. z v a
from is-inf show z v inf
proof (rule is-inf-greatest)

from z show z v x by blast
from z show z v y by blast

qed
qed

qed
qed

theorem is-Sup-binary: is-Sup {x, y} sup = is-sup x y sup
proof −

have is-Sup {x, y} sup = is-Inf (dual ‘ {x, y}) (dual sup)
by (simp only: dual-Inf)

also have dual ‘ {x, y} = {dual x, dual y}
by simp

also have is-Inf . . . (dual sup) = is-inf (dual x) (dual y) (dual sup)
by (rule is-Inf-binary)

also have . . . = is-sup x y sup
by (simp only: dual-inf)

finally show ?thesis .
qed

2.6 Connecting general bounds

Either kind of general bounds is sufficient to express the other. The least
upper bound (supremum) is the same as the the greatest lower bound of
the set of all upper bounds; the dual statements holds as well; the dual
statement holds as well.
theorem Inf-Sup: is-Inf {b. ∀ a ∈ A. a v b} sup =⇒ is-Sup A sup
proof −

let ?B = {b. ∀ a ∈ A. a v b}

THEORY “Lattice” 14

assume is-Inf : is-Inf ?B sup
show is-Sup A sup
proof

fix x assume x: x ∈ A
from is-Inf show x v sup
proof (rule is-Inf-greatest)

fix y assume y ∈ ?B
then have ∀ a ∈ A. a v y ..
from this x show x v y ..

qed
next

fix z assume ∀ x ∈ A. x v z
then have z ∈ ?B ..
with is-Inf show sup v z ..

qed
qed

theorem Sup-Inf : is-Sup {b. ∀ a ∈ A. b v a} inf =⇒ is-Inf A inf
proof −

assume is-Sup {b. ∀ a ∈ A. b v a} inf
then have is-Inf (dual ‘ {b. ∀ a ∈ A. dual a v dual b}) (dual inf)

by (simp only: dual-Inf dual-leq)
also have dual ‘ {b. ∀ a ∈ A. dual a v dual b} = {b ′. ∀ a ′ ∈ dual ‘ A. a ′ v b ′}

by (auto iff : dual-ball dual-Collect simp add: image-Collect)
finally have is-Inf . . . (dual inf) .
then have is-Sup (dual ‘ A) (dual inf)

by (rule Inf-Sup)
then show ?thesis ..

qed

end

3 Lattices
theory Lattice imports Bounds begin

3.1 Lattice operations

A lattice is a partial order with infimum and supremum of any two elements
(thus any finite number of elements have bounds as well).
class lattice =

assumes ex-inf : ∃ inf . is-inf x y inf
assumes ex-sup: ∃ sup. is-sup x y sup

The u (meet) and t (join) operations select such infimum and supremum
elements.
definition

meet :: ′a::lattice ⇒ ′a ⇒ ′a (infixl ‹u› 70) where

THEORY “Lattice” 15

x u y = (THE inf . is-inf x y inf)
definition

join :: ′a::lattice ⇒ ′a ⇒ ′a (infixl ‹t› 65) where
x t y = (THE sup. is-sup x y sup)

Due to unique existence of bounds, the lattice operations may be exhibited
as follows.
lemma meet-equality [elim?]: is-inf x y inf =⇒ x u y = inf
proof (unfold meet-def)

assume is-inf x y inf
then show (THE inf . is-inf x y inf) = inf

by (rule the-equality) (rule is-inf-uniq [OF - ‹is-inf x y inf ›])
qed

lemma meetI [intro?]:
inf v x =⇒ inf v y =⇒ (

∧
z. z v x =⇒ z v y =⇒ z v inf) =⇒ x u y = inf

by (rule meet-equality, rule is-infI) blast+

lemma join-equality [elim?]: is-sup x y sup =⇒ x t y = sup
proof (unfold join-def)

assume is-sup x y sup
then show (THE sup. is-sup x y sup) = sup

by (rule the-equality) (rule is-sup-uniq [OF - ‹is-sup x y sup›])
qed

lemma joinI [intro?]: x v sup =⇒ y v sup =⇒
(
∧

z. x v z =⇒ y v z =⇒ sup v z) =⇒ x t y = sup
by (rule join-equality, rule is-supI) blast+

The u and t operations indeed determine bounds on a lattice structure.
lemma is-inf-meet [intro?]: is-inf x y (x u y)
proof (unfold meet-def)

from ex-inf obtain inf where is-inf x y inf ..
then show is-inf x y (THE inf . is-inf x y inf)

by (rule theI) (rule is-inf-uniq [OF - ‹is-inf x y inf ›])
qed

lemma meet-greatest [intro?]: z v x =⇒ z v y =⇒ z v x u y
by (rule is-inf-greatest) (rule is-inf-meet)

lemma meet-lower1 [intro?]: x u y v x
by (rule is-inf-lower) (rule is-inf-meet)

lemma meet-lower2 [intro?]: x u y v y
by (rule is-inf-lower) (rule is-inf-meet)

lemma is-sup-join [intro?]: is-sup x y (x t y)

THEORY “Lattice” 16

proof (unfold join-def)
from ex-sup obtain sup where is-sup x y sup ..
then show is-sup x y (THE sup. is-sup x y sup)

by (rule theI) (rule is-sup-uniq [OF - ‹is-sup x y sup›])
qed

lemma join-least [intro?]: x v z =⇒ y v z =⇒ x t y v z
by (rule is-sup-least) (rule is-sup-join)

lemma join-upper1 [intro?]: x v x t y
by (rule is-sup-upper) (rule is-sup-join)

lemma join-upper2 [intro?]: y v x t y
by (rule is-sup-upper) (rule is-sup-join)

3.2 Duality

The class of lattices is closed under formation of dual structures. This means
that for any theorem of lattice theory, the dualized statement holds as well;
this important fact simplifies many proofs of lattice theory.
instance dual :: (lattice) lattice
proof

fix x ′ y ′ :: ′a::lattice dual
show ∃ inf ′. is-inf x ′ y ′ inf ′

proof −
have ∃ sup. is-sup (undual x ′) (undual y ′) sup by (rule ex-sup)
then have ∃ sup. is-inf (dual (undual x ′)) (dual (undual y ′)) (dual sup)

by (simp only: dual-inf)
then show ?thesis by (simp add: dual-ex [symmetric])

qed
show ∃ sup ′. is-sup x ′ y ′ sup ′

proof −
have ∃ inf . is-inf (undual x ′) (undual y ′) inf by (rule ex-inf)
then have ∃ inf . is-sup (dual (undual x ′)) (dual (undual y ′)) (dual inf)

by (simp only: dual-sup)
then show ?thesis by (simp add: dual-ex [symmetric])

qed
qed

Apparently, the u and t operations are dual to each other.
theorem dual-meet [intro?]: dual (x u y) = dual x t dual y
proof −

from is-inf-meet have is-sup (dual x) (dual y) (dual (x u y)) ..
then have dual x t dual y = dual (x u y) ..
then show ?thesis ..

qed

theorem dual-join [intro?]: dual (x t y) = dual x u dual y

THEORY “Lattice” 17

proof −
from is-sup-join have is-inf (dual x) (dual y) (dual (x t y)) ..
then have dual x u dual y = dual (x t y) ..
then show ?thesis ..

qed

3.3 Algebraic properties

The u and t operations have the following characteristic algebraic proper-
ties: associative (A), commutative (C), and absorptive (AB).
theorem meet-assoc: (x u y) u z = x u (y u z)
proof

show x u (y u z) v x u y
proof

show x u (y u z) v x ..
show x u (y u z) v y
proof −

have x u (y u z) v y u z ..
also have . . . v y ..
finally show ?thesis .

qed
qed
show x u (y u z) v z
proof −

have x u (y u z) v y u z ..
also have . . . v z ..
finally show ?thesis .

qed
fix w assume w v x u y and w v z
show w v x u (y u z)
proof

show w v x
proof −

have w v x u y by fact
also have . . . v x ..
finally show ?thesis .

qed
show w v y u z
proof

show w v y
proof −

have w v x u y by fact
also have . . . v y ..
finally show ?thesis .

qed
show w v z by fact

qed
qed

qed

THEORY “Lattice” 18

theorem join-assoc: (x t y) t z = x t (y t z)
proof −

have dual ((x t y) t z) = (dual x u dual y) u dual z
by (simp only: dual-join)

also have . . . = dual x u (dual y u dual z)
by (rule meet-assoc)

also have . . . = dual (x t (y t z))
by (simp only: dual-join)

finally show ?thesis ..
qed

theorem meet-commute: x u y = y u x
proof

show y u x v x ..
show y u x v y ..
fix z assume z v y and z v x
then show z v y u x ..

qed

theorem join-commute: x t y = y t x
proof −

have dual (x t y) = dual x u dual y ..
also have . . . = dual y u dual x

by (rule meet-commute)
also have . . . = dual (y t x)

by (simp only: dual-join)
finally show ?thesis ..

qed

theorem meet-join-absorb: x u (x t y) = x
proof

show x v x ..
show x v x t y ..
fix z assume z v x and z v x t y
show z v x by fact

qed

theorem join-meet-absorb: x t (x u y) = x
proof −

have dual x u (dual x t dual y) = dual x
by (rule meet-join-absorb)

then have dual (x t (x u y)) = dual x
by (simp only: dual-meet dual-join)

then show ?thesis ..
qed

Some further algebraic properties hold as well. The property idempotent (I)
is a basic algebraic consequence of (AB).

THEORY “Lattice” 19

theorem meet-idem: x u x = x
proof −

have x u (x t (x u x)) = x by (rule meet-join-absorb)
also have x t (x u x) = x by (rule join-meet-absorb)
finally show ?thesis .

qed

theorem join-idem: x t x = x
proof −

have dual x u dual x = dual x
by (rule meet-idem)

then have dual (x t x) = dual x
by (simp only: dual-join)

then show ?thesis ..
qed

Meet and join are trivial for related elements.
theorem meet-related [elim?]: x v y =⇒ x u y = x
proof

assume x v y
show x v x ..
show x v y by fact
fix z assume z v x and z v y
show z v x by fact

qed

theorem join-related [elim?]: x v y =⇒ x t y = y
proof −

assume x v y then have dual y v dual x ..
then have dual y u dual x = dual y by (rule meet-related)
also have dual y u dual x = dual (y t x) by (simp only: dual-join)
also have y t x = x t y by (rule join-commute)
finally show ?thesis ..

qed

3.4 Order versus algebraic structure

The u and t operations are connected with the underlying v relation in a
canonical manner.
theorem meet-connection: (x v y) = (x u y = x)
proof

assume x v y
then have is-inf x y x ..
then show x u y = x ..

next
have x u y v y ..
also assume x u y = x
finally show x v y .

THEORY “Lattice” 20

qed

theorem join-connection: (x v y) = (x t y = y)
proof

assume x v y
then have is-sup x y y ..
then show x t y = y ..

next
have x v x t y ..
also assume x t y = y
finally show x v y .

qed

The most fundamental result of the meta-theory of lattices is as follows (we
do not prove it here).
Given a structure with binary operations u and t such that (A), (C), and
(AB) hold (cf. §3.3). This structure represents a lattice, if the relation x v y
is defined as x u y = x (alternatively as x t y = y). Furthermore, infimum
and supremum with respect to this ordering coincide with the original u and
t operations.

3.5 Example instances
3.5.1 Linear orders

Linear orders with minimum and maximum operations are a (degenerate)
example of lattice structures.
definition

minimum :: ′a::linear-order ⇒ ′a ⇒ ′a where
minimum x y = (if x v y then x else y)

definition
maximum :: ′a::linear-order ⇒ ′a ⇒ ′a where
maximum x y = (if x v y then y else x)

lemma is-inf-minimum: is-inf x y (minimum x y)
proof

let ?min = minimum x y
from leq-linear show ?min v x by (auto simp add: minimum-def)
from leq-linear show ?min v y by (auto simp add: minimum-def)
fix z assume z v x and z v y
with leq-linear show z v ?min by (auto simp add: minimum-def)

qed

lemma is-sup-maximum: is-sup x y (maximum x y)
proof

let ?max = maximum x y
from leq-linear show x v ?max by (auto simp add: maximum-def)

THEORY “Lattice” 21

from leq-linear show y v ?max by (auto simp add: maximum-def)
fix z assume x v z and y v z
with leq-linear show ?max v z by (auto simp add: maximum-def)

qed

instance linear-order ⊆ lattice
proof

fix x y :: ′a::linear-order
from is-inf-minimum show ∃ inf . is-inf x y inf ..
from is-sup-maximum show ∃ sup. is-sup x y sup ..

qed

The lattice operations on linear orders indeed coincide with minimum and
maximum.
theorem meet-mimimum: x u y = minimum x y

by (rule meet-equality) (rule is-inf-minimum)

theorem meet-maximum: x t y = maximum x y
by (rule join-equality) (rule is-sup-maximum)

3.5.2 Binary products

The class of lattices is closed under direct binary products (cf. §1.3.2).
lemma is-inf-prod: is-inf p q (fst p u fst q, snd p u snd q)
proof

show (fst p u fst q, snd p u snd q) v p
proof −

have fst p u fst q v fst p ..
moreover have snd p u snd q v snd p ..
ultimately show ?thesis by (simp add: leq-prod-def)

qed
show (fst p u fst q, snd p u snd q) v q
proof −

have fst p u fst q v fst q ..
moreover have snd p u snd q v snd q ..
ultimately show ?thesis by (simp add: leq-prod-def)

qed
fix r assume rp: r v p and rq: r v q
show r v (fst p u fst q, snd p u snd q)
proof −

have fst r v fst p u fst q
proof

from rp show fst r v fst p by (simp add: leq-prod-def)
from rq show fst r v fst q by (simp add: leq-prod-def)

qed
moreover have snd r v snd p u snd q
proof

from rp show snd r v snd p by (simp add: leq-prod-def)

THEORY “Lattice” 22

from rq show snd r v snd q by (simp add: leq-prod-def)
qed
ultimately show ?thesis by (simp add: leq-prod-def)

qed
qed

lemma is-sup-prod: is-sup p q (fst p t fst q, snd p t snd q)
proof

show p v (fst p t fst q, snd p t snd q)
proof −

have fst p v fst p t fst q ..
moreover have snd p v snd p t snd q ..
ultimately show ?thesis by (simp add: leq-prod-def)

qed
show q v (fst p t fst q, snd p t snd q)
proof −

have fst q v fst p t fst q ..
moreover have snd q v snd p t snd q ..
ultimately show ?thesis by (simp add: leq-prod-def)

qed
fix r assume pr : p v r and qr : q v r
show (fst p t fst q, snd p t snd q) v r
proof −

have fst p t fst q v fst r
proof

from pr show fst p v fst r by (simp add: leq-prod-def)
from qr show fst q v fst r by (simp add: leq-prod-def)

qed
moreover have snd p t snd q v snd r
proof

from pr show snd p v snd r by (simp add: leq-prod-def)
from qr show snd q v snd r by (simp add: leq-prod-def)

qed
ultimately show ?thesis by (simp add: leq-prod-def)

qed
qed

instance prod :: (lattice, lattice) lattice
proof

fix p q :: ′a::lattice × ′b::lattice
from is-inf-prod show ∃ inf . is-inf p q inf ..
from is-sup-prod show ∃ sup. is-sup p q sup ..

qed

The lattice operations on a binary product structure indeed coincide with
the products of the original ones.
theorem meet-prod: p u q = (fst p u fst q, snd p u snd q)

by (rule meet-equality) (rule is-inf-prod)

THEORY “Lattice” 23

theorem join-prod: p t q = (fst p t fst q, snd p t snd q)
by (rule join-equality) (rule is-sup-prod)

3.5.3 General products

The class of lattices is closed under general products (function spaces) as
well (cf. §1.3.3).
lemma is-inf-fun: is-inf f g (λx. f x u g x)
proof

show (λx. f x u g x) v f
proof

fix x show f x u g x v f x ..
qed
show (λx. f x u g x) v g
proof

fix x show f x u g x v g x ..
qed
fix h assume hf : h v f and hg: h v g
show h v (λx. f x u g x)
proof

fix x
show h x v f x u g x
proof

from hf show h x v f x ..
from hg show h x v g x ..

qed
qed

qed

lemma is-sup-fun: is-sup f g (λx. f x t g x)
proof

show f v (λx. f x t g x)
proof

fix x show f x v f x t g x ..
qed
show g v (λx. f x t g x)
proof

fix x show g x v f x t g x ..
qed
fix h assume fh: f v h and gh: g v h
show (λx. f x t g x) v h
proof

fix x
show f x t g x v h x
proof

from fh show f x v h x ..
from gh show g x v h x ..

qed
qed

THEORY “Lattice” 24

qed

instance fun :: (type, lattice) lattice
proof

fix f g :: ′a ⇒ ′b::lattice
show ∃ inf . is-inf f g inf by rule (rule is-inf-fun)
show ∃ sup. is-sup f g sup by rule (rule is-sup-fun)

qed

The lattice operations on a general product structure (function space) indeed
emerge by point-wise lifting of the original ones.
theorem meet-fun: f u g = (λx. f x u g x)

by (rule meet-equality) (rule is-inf-fun)

theorem join-fun: f t g = (λx. f x t g x)
by (rule join-equality) (rule is-sup-fun)

3.6 Monotonicity and semi-morphisms

The lattice operations are monotone in both argument positions. In fact,
monotonicity of the second position is trivial due to commutativity.
theorem meet-mono: x v z =⇒ y v w =⇒ x u y v z u w
proof −

{
fix a b c :: ′a::lattice
assume a v c have a u b v c u b
proof

have a u b v a ..
also have . . . v c by fact
finally show a u b v c .
show a u b v b ..

qed
} note this [elim?]
assume x v z then have x u y v z u y ..
also have . . . = y u z by (rule meet-commute)
also assume y v w then have y u z v w u z ..
also have . . . = z u w by (rule meet-commute)
finally show ?thesis .

qed

theorem join-mono: x v z =⇒ y v w =⇒ x t y v z t w
proof −

assume x v z then have dual z v dual x ..
moreover assume y v w then have dual w v dual y ..
ultimately have dual z u dual w v dual x u dual y

by (rule meet-mono)
then have dual (z t w) v dual (x t y)

by (simp only: dual-join)

THEORY “Lattice” 25

then show ?thesis ..
qed

A semi-morphisms is a function f that preserves the lattice operations in
the following manner: f (x u y) v f x u f y and f x t f y v f (x t y),
respectively. Any of these properties is equivalent with monotonicity.
theorem meet-semimorph:
(
∧

x y. f (x u y) v f x u f y) ≡ (
∧

x y. x v y =⇒ f x v f y)
proof

assume morph:
∧

x y. f (x u y) v f x u f y
fix x y :: ′a::lattice
assume x v y
then have x u y = x ..
then have x = x u y ..
also have f . . . v f x u f y by (rule morph)
also have . . . v f y ..
finally show f x v f y .

next
assume mono:

∧
x y. x v y =⇒ f x v f y

show
∧

x y. f (x u y) v f x u f y
proof −

fix x y
show f (x u y) v f x u f y
proof

have x u y v x .. then show f (x u y) v f x by (rule mono)
have x u y v y .. then show f (x u y) v f y by (rule mono)

qed
qed

qed

lemma join-semimorph:
(
∧

x y. f x t f y v f (x t y)) ≡ (
∧

x y. x v y =⇒ f x v f y)
proof

assume morph:
∧

x y. f x t f y v f (x t y)
fix x y :: ′a::lattice
assume x v y then have x t y = y ..
have f x v f x t f y ..
also have . . . v f (x t y) by (rule morph)
also from ‹x v y› have x t y = y ..
finally show f x v f y .

next
assume mono:

∧
x y. x v y =⇒ f x v f y

show
∧

x y. f x t f y v f (x t y)
proof −

fix x y
show f x t f y v f (x t y)
proof

have x v x t y .. then show f x v f (x t y) by (rule mono)
have y v x t y .. then show f y v f (x t y) by (rule mono)

THEORY “CompleteLattice” 26

qed
qed

qed

end

4 Complete lattices
theory CompleteLattice imports Lattice begin

4.1 Complete lattice operations

A complete lattice is a partial order with general (infinitary) infimum of any
set of elements. General supremum exists as well, as a consequence of the
connection of infinitary bounds (see §2.6).
class complete-lattice =

assumes ex-Inf : ∃ inf . is-Inf A inf

theorem ex-Sup: ∃ sup:: ′a::complete-lattice. is-Sup A sup
proof −

from ex-Inf obtain sup where is-Inf {b. ∀ a∈A. a v b} sup by blast
then have is-Sup A sup by (rule Inf-Sup)
then show ?thesis ..

qed

The general
d

(meet) and
⊔

(join) operations select such infimum and
supremum elements.
definition

Meet :: ′a::complete-lattice set ⇒ ′a (‹
d

-› [90] 90) whered
A = (THE inf . is-Inf A inf)

definition
Join :: ′a::complete-lattice set ⇒ ′a (‹

⊔
-› [90] 90) where⊔

A = (THE sup. is-Sup A sup)

Due to unique existence of bounds, the complete lattice operations may be
exhibited as follows.
lemma Meet-equality [elim?]: is-Inf A inf =⇒

d
A = inf

proof (unfold Meet-def)
assume is-Inf A inf
then show (THE inf . is-Inf A inf) = inf

by (rule the-equality) (rule is-Inf-uniq [OF - ‹is-Inf A inf ›])
qed

lemma MeetI [intro?]:
(
∧

a. a ∈ A =⇒ inf v a) =⇒
(
∧

b. ∀ a ∈ A. b v a =⇒ b v inf) =⇒d
A = inf

THEORY “CompleteLattice” 27

by (rule Meet-equality, rule is-InfI) blast+

lemma Join-equality [elim?]: is-Sup A sup =⇒
⊔

A = sup
proof (unfold Join-def)

assume is-Sup A sup
then show (THE sup. is-Sup A sup) = sup

by (rule the-equality) (rule is-Sup-uniq [OF - ‹is-Sup A sup›])
qed

lemma JoinI [intro?]:
(
∧

a. a ∈ A =⇒ a v sup) =⇒
(
∧

b. ∀ a ∈ A. a v b =⇒ sup v b) =⇒⊔
A = sup

by (rule Join-equality, rule is-SupI) blast+

The
d

and
⊔

operations indeed determine bounds on a complete lattice
structure.
lemma is-Inf-Meet [intro?]: is-Inf A (

d
A)

proof (unfold Meet-def)
from ex-Inf obtain inf where is-Inf A inf ..
then show is-Inf A (THE inf . is-Inf A inf)

by (rule theI) (rule is-Inf-uniq [OF - ‹is-Inf A inf ›])
qed

lemma Meet-greatest [intro?]: (
∧

a. a ∈ A =⇒ x v a) =⇒ x v
d

A
by (rule is-Inf-greatest, rule is-Inf-Meet) blast

lemma Meet-lower [intro?]: a ∈ A =⇒
d

A v a
by (rule is-Inf-lower) (rule is-Inf-Meet)

lemma is-Sup-Join [intro?]: is-Sup A (
⊔

A)
proof (unfold Join-def)

from ex-Sup obtain sup where is-Sup A sup ..
then show is-Sup A (THE sup. is-Sup A sup)

by (rule theI) (rule is-Sup-uniq [OF - ‹is-Sup A sup›])
qed

lemma Join-least [intro?]: (
∧

a. a ∈ A =⇒ a v x) =⇒
⊔

A v x
by (rule is-Sup-least, rule is-Sup-Join) blast

lemma Join-lower [intro?]: a ∈ A =⇒ a v
⊔

A
by (rule is-Sup-upper) (rule is-Sup-Join)

4.2 The Knaster-Tarski Theorem

The Knaster-Tarski Theorem (in its simplest formulation) states that any
monotone function on a complete lattice has a least fixed-point (see [2, pages
93–94] for example). This is a consequence of the basic boundary properties

THEORY “CompleteLattice” 28

of the complete lattice operations.
theorem Knaster-Tarski:

assumes mono:
∧

x y. x v y =⇒ f x v f y
obtains a :: ′a::complete-lattice where

f a = a and
∧

a ′. f a ′ = a ′ =⇒ a v a ′

proof
let ?H = {u. f u v u}
let ?a =

d
?H

show f ?a = ?a
proof −

have ge: f ?a v ?a
proof

fix x assume x: x ∈ ?H
then have ?a v x ..
then have f ?a v f x by (rule mono)
also from x have ... v x ..
finally show f ?a v x .

qed
also have ?a v f ?a
proof

from ge have f (f ?a) v f ?a by (rule mono)
then show f ?a ∈ ?H ..

qed
finally show ?thesis .

qed

fix a ′

assume f a ′ = a ′

then have f a ′ v a ′ by (simp only: leq-refl)
then have a ′ ∈ ?H ..
then show ?a v a ′ ..

qed

theorem Knaster-Tarski-dual:
assumes mono:

∧
x y. x v y =⇒ f x v f y

obtains a :: ′a::complete-lattice where
f a = a and

∧
a ′. f a ′ = a ′ =⇒ a ′ v a

proof
let ?H = {u. u v f u}
let ?a =

⊔
?H

show f ?a = ?a
proof −

have le: ?a v f ?a
proof

fix x assume x: x ∈ ?H
then have x v f x ..
also from x have x v ?a ..
then have f x v f ?a by (rule mono)
finally show x v f ?a .

THEORY “CompleteLattice” 29

qed
have f ?a v ?a
proof

from le have f ?a v f (f ?a) by (rule mono)
then show f ?a ∈ ?H ..

qed
from this and le show ?thesis by (rule leq-antisym)

qed

fix a ′

assume f a ′ = a ′

then have a ′ v f a ′ by (simp only: leq-refl)
then have a ′ ∈ ?H ..
then show a ′ v ?a ..

qed

4.3 Bottom and top elements

With general bounds available, complete lattices also have least and greatest
elements.
definition

bottom :: ′a::complete-lattice (‹⊥›) where
⊥ =

d
UNIV

definition
top :: ′a::complete-lattice (‹>›) where
> =

⊔
UNIV

lemma bottom-least [intro?]: ⊥ v x
proof (unfold bottom-def)

have x ∈ UNIV ..
then show

d
UNIV v x ..

qed

lemma bottomI [intro?]: (
∧

a. x v a) =⇒ ⊥ = x
proof (unfold bottom-def)

assume
∧

a. x v a
show

d
UNIV = x

proof
fix a show x v a by fact

next
fix b :: ′a::complete-lattice
assume b: ∀ a ∈ UNIV . b v a
have x ∈ UNIV ..
with b show b v x ..

qed
qed

lemma top-greatest [intro?]: x v >

THEORY “CompleteLattice” 30

proof (unfold top-def)
have x ∈ UNIV ..
then show x v

⊔
UNIV ..

qed

lemma topI [intro?]: (
∧

a. a v x) =⇒ > = x
proof (unfold top-def)

assume
∧

a. a v x
show

⊔
UNIV = x

proof
fix a show a v x by fact

next
fix b :: ′a::complete-lattice
assume b: ∀ a ∈ UNIV . a v b
have x ∈ UNIV ..
with b show x v b ..

qed
qed

4.4 Duality

The class of complete lattices is closed under formation of dual structures.
instance dual :: (complete-lattice) complete-lattice
proof

fix A ′ :: ′a::complete-lattice dual set
show ∃ inf ′. is-Inf A ′ inf ′

proof −
have ∃ sup. is-Sup (undual ‘ A ′) sup by (rule ex-Sup)
then have ∃ sup. is-Inf (dual ‘ undual ‘ A ′) (dual sup) by (simp only: dual-Inf)
then show ?thesis by (simp add: dual-ex [symmetric] image-comp)

qed
qed

Apparently, the
d

and
⊔

operations are dual to each other.
theorem dual-Meet [intro?]: dual (

d
A) =

⊔
(dual ‘ A)

proof −
from is-Inf-Meet have is-Sup (dual ‘ A) (dual (

d
A)) ..

then have
⊔
(dual ‘ A) = dual (

d
A) ..

then show ?thesis ..
qed

theorem dual-Join [intro?]: dual (
⊔

A) =
d

(dual ‘ A)
proof −

from is-Sup-Join have is-Inf (dual ‘ A) (dual (
⊔

A)) ..
then have

d
(dual ‘ A) = dual (

⊔
A) ..

then show ?thesis ..
qed

Likewise are ⊥ and > duals of each other.

THEORY “CompleteLattice” 31

theorem dual-bottom [intro?]: dual ⊥ = >
proof −

have > = dual ⊥
proof

fix a ′ have ⊥ v undual a ′ ..
then have dual (undual a ′) v dual ⊥ ..
then show a ′ v dual ⊥ by simp

qed
then show ?thesis ..

qed

theorem dual-top [intro?]: dual > = ⊥
proof −

have ⊥ = dual >
proof

fix a ′ have undual a ′ v > ..
then have dual > v dual (undual a ′) ..
then show dual > v a ′ by simp

qed
then show ?thesis ..

qed

4.5 Complete lattices are lattices

Complete lattices (with general bounds available) are indeed plain lattices
as well. This holds due to the connection of general versus binary bounds
that has been formally established in §2.5.
lemma is-inf-binary: is-inf x y (

d
{x, y})

proof −
have is-Inf {x, y} (

d
{x, y}) ..

then show ?thesis by (simp only: is-Inf-binary)
qed

lemma is-sup-binary: is-sup x y (
⊔

{x, y})
proof −

have is-Sup {x, y} (
⊔
{x, y}) ..

then show ?thesis by (simp only: is-Sup-binary)
qed

instance complete-lattice ⊆ lattice
proof

fix x y :: ′a::complete-lattice
from is-inf-binary show ∃ inf . is-inf x y inf ..
from is-sup-binary show ∃ sup. is-sup x y sup ..

qed

theorem meet-binary: x u y =
d
{x, y}

by (rule meet-equality) (rule is-inf-binary)

THEORY “CompleteLattice” 32

theorem join-binary: x t y =
⊔

{x, y}
by (rule join-equality) (rule is-sup-binary)

4.6 Complete lattices and set-theory operations

The complete lattice operations are (anti) monotone wrt. set inclusion.
theorem Meet-subset-antimono: A ⊆ B =⇒

d
B v

d
A

proof (rule Meet-greatest)
fix a assume a ∈ A
also assume A ⊆ B
finally have a ∈ B .
then show

d
B v a ..

qed

theorem Join-subset-mono: A ⊆ B =⇒
⊔

A v
⊔

B
proof −

assume A ⊆ B
then have dual ‘ A ⊆ dual ‘ B by blast
then have

d
(dual ‘ B) v

d
(dual ‘ A) by (rule Meet-subset-antimono)

then have dual (
⊔

B) v dual (
⊔

A) by (simp only: dual-Join)
then show ?thesis by (simp only: dual-leq)

qed

Bounds over unions of sets may be obtained separately.
theorem Meet-Un:

d
(A ∪ B) =

d
A u

d
B

proof
fix a assume a ∈ A ∪ B
then show

d
A u

d
B v a

proof
assume a: a ∈ A
have

d
A u

d
B v

d
A ..

also from a have . . . v a ..
finally show ?thesis .

next
assume a: a ∈ B
have

d
A u

d
B v

d
B ..

also from a have . . . v a ..
finally show ?thesis .

qed
next

fix b assume b: ∀ a ∈ A ∪ B. b v a
show b v

d
A u

d
B

proof
show b v

d
A

proof
fix a assume a ∈ A
then have a ∈ A ∪ B ..

THEORY “CompleteLattice” 33

with b show b v a ..
qed
show b v

d
B

proof
fix a assume a ∈ B
then have a ∈ A ∪ B ..
with b show b v a ..

qed
qed

qed

theorem Join-Un:
⊔

(A ∪ B) =
⊔

A t
⊔

B
proof −

have dual (
⊔
(A ∪ B)) =

d
(dual ‘ A ∪ dual ‘ B)

by (simp only: dual-Join image-Un)
also have . . . =

d
(dual ‘ A) u

d
(dual ‘ B)

by (rule Meet-Un)
also have . . . = dual (

⊔
A t

⊔
B)

by (simp only: dual-join dual-Join)
finally show ?thesis ..

qed

Bounds over singleton sets are trivial.
theorem Meet-singleton:

d
{x} = x

proof
fix a assume a ∈ {x}
then have a = x by simp
then show x v a by (simp only: leq-refl)

next
fix b assume ∀ a ∈ {x}. b v a
then show b v x by simp

qed

theorem Join-singleton:
⊔
{x} = x

proof −
have dual (

⊔
{x}) =

d
{dual x} by (simp add: dual-Join)

also have . . . = dual x by (rule Meet-singleton)
finally show ?thesis ..

qed

Bounds over the empty and universal set correspond to each other.
theorem Meet-empty:

d
{} =

⊔
UNIV

proof
fix a :: ′a::complete-lattice
assume a ∈ {}
then have False by simp
then show

⊔
UNIV v a ..

next
fix b :: ′a::complete-lattice

REFERENCES 34

have b ∈ UNIV ..
then show b v

⊔
UNIV ..

qed

theorem Join-empty:
⊔
{} =

d
UNIV

proof −
have dual (

⊔
{}) =

d
{} by (simp add: dual-Join)

also have . . . =
⊔

UNIV by (rule Meet-empty)
also have . . . = dual (

d
UNIV) by (simp add: dual-Meet)

finally show ?thesis ..
qed

end

References
[1] G. Bauer and M. Wenzel. Computer-assisted mathematics at work —

the Hahn-Banach theorem in Isabelle/Isar. In T. Coquand, P. Dybjer,
B. Nordström, and J. Smith, editors, Types for Proofs and Programs:
TYPES’99, LNCS, 2000.

[2] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[3] M. Wenzel. Isar — a generic interpretative approach to readable formal
proof documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Thery, editors, Theorem Proving in Higher Order Logics: TPHOLs
’99, volume 1690 of LNCS, 1999.

[4] M. Wenzel. The Isabelle/Isar Reference Manual, 2000. https://isabelle.
in.tum.de/doc/isar-ref.pdf.

[5] M. Wenzel. Using Axiomatic Type Classes in Isabelle, 2000. https:
//isabelle.in.tum.de/doc/axclass.pdf.

https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/doc/axclass.pdf
https://isabelle.in.tum.de/doc/axclass.pdf

	Orders
	Ordered structures
	Duality
	Transforming orders
	Duals
	Binary products
	General products

	Bounds
	Infimum and supremum
	Duality
	Uniqueness
	Related elements
	General versus binary bounds
	Connecting general bounds

	Lattices
	Lattice operations
	Duality
	Algebraic properties
	Order versus algebraic structure
	Example instances
	Linear orders
	Binary products
	General products

	Monotonicity and semi-morphisms

	Complete lattices
	Complete lattice operations
	The Knaster-Tarski Theorem
	Bottom and top elements
	Duality
	Complete lattices are lattices
	Complete lattices and set-theory operations

