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Abstract

This is a collection of small examples to demonstrate Isabelle/HOL’s
(co)inductive definitions package. Large examples appear on many
other sessions, such as Lambda, IMP, and Auth.
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1 Common patterns of induction

theory Common-Patterns
imports Main
begin

The subsequent Isar proof schemes illustrate common proof patterns sup-
ported by the generic induct method.

To demonstrate variations on statement (goal) structure we refer to the
induction rule of Peano natural numbers: [P 0; Anat. P nat = P (Suc
nat)] = P nat, which is the simplest case of datatype induction. We
shall also see more complex (mutual) datatype inductions involving several
rules. Working with inductive predicates is similar, but involves explicit
facts about membership, instead of implicit syntactic typing.

1.1 Variations on statement structure

1.1.1 Local facts and parameters

Augmenting a problem by additional facts and locally fixed variables is a
bread-and-butter method in many applications. This is where unwieldy
object-level V and — used to occur in the past. The induct method works
with primary means of the proof language instead.

lemma
fixes n :: nat
and z :: ‘a

assumes A n z
shows P n z (proof)

1.1.2 Local definitions

Here the idea is to turn sub-expressions of the problem into a defined induc-
tion variable. This is often accompanied with fixing of auxiliary parameters
in the original expression, otherwise the induction step would refer invari-
ably to particular entities. This combination essentially expresses a partially
abstracted representation of inductive expressions.

lemma
fixes a :: ‘a = nat
assumes A (a z)
shows P (a z) (proof)

Observe how the local definition n = a z recurs in the inductive cases as 0
= g z and Suc n = a z, according to underlying induction rule.



1.1.3 Simple simultaneous goals

The most basic simultaneous induction operates on several goals one-by-one,
where each case refers to induction hypotheses that are duplicated according
to the number of conclusions.

lemma
fixes n :: nat
shows P n and Q n

(proof)

The split into subcases may be deferred as follows — this is particularly
relevant for goal statements with local premises.

lemma
fixes n :: nat
shows A n—=— Pn
and Bn = @ n

(proof)

1.1.4 Compound simultaneous goals

The following pattern illustrates the slightly more complex situation of si-
multaneous goals with individual local assumptions. In compound simulta-
neous statements like this, local assumptions need to be included into each
goal, using = of the Pure framework. In contrast, local parameters do
not require separate /\ prefixes here, but may be moved into the common
context of the whole statement.

lemma
fixes n :: nat
and z :: ‘a
and y :: b

shows Anz=— Pnzx
and Bny= Qny
(proof)

Here induct provides again nested cases with numbered sub-cases, which
allows to share common parts of the body context. In typical applications,
there could be a long intermediate proof of general consequences of the
induction hypotheses, before finishing each conclusion separately.

1.2 Multiple rules

Multiple induction rules emerge from mutual definitions of datatypes, in-
ductive predicates, functions etc. The induct method accepts replicated
arguments (with and separator), corresponding to each projection of the
induction principle.



The goal statement essentially follows the same arrangement, although it
might be subdivided into simultaneous sub-problems as before!

datatype foo = Fool nat | Foo2 bar
and bar = Barl bool | Bar2 bazar
and bazar = Bazar foo

The pack of induction rules for this datatype is:

[Az. P1 (Fool z); Nz. P2 x = P1 (Foo2 z); \z. P2 (Barl z);
Nz. P8 & = P2 (Bar2 z); A\z. P1 z = P3 (Bazar z)]

= P1 foo

[Az. P1 (Fool z); Az. P2 x = P1 (Foo2 z); \z. P2 (Barl x);
Nz. P83 © = P2 (Bar2 z); N\z. P1 © = P38 (Bazar z)]

= P2 bar

[Az. P! (Fool z); Nz. P2z = P1 (Foo2 z); \z. P2 (Barl z);
Nz. P8z = P2 (Bar2 z); A\z. P1 © = P3 (Bazar z)]

= P3 bazar

This corresponds to the following basic proof pattern:

lemma
fixes foo :: foo
and bar : bar
and bazar :: bazar
shows P foo
and Q bar
and R bazar

(proof)

This can be combined with the previous techniques for compound state-
ments, e.g. like this.

lemma

fixesz:: ‘aand y :: 'band z :: ‘c
and foo :: foo
and bar :: bar
and bazar :: bazar

shows
A z foo = P z foo

and
B1 y bar = Q1 y bar
B2 y bar = Q2 y bar

and
C1 z bazar = R1 z bazar
C2 z bazar — R2 z bazar
C8 z bazar — RS z bazar

(proof)



1.3 Inductive predicates

The most basic form of induction involving predicates (or sets) essentially
eliminates a given membership fact.

inductive FEven :: nat = bool where
zero: Fven 0
| double: Even (2 x n) if Even n for n

lemma
assumes Fven n
shows P n

{proof)

Alternatively, an initial rule statement may be proven as follows, performing
“in-situ” elimination with explicit rule specification.

lemma Even n — P n

(proof)

Simultaneous goals do not introduce anything new.

lemma
assumes Fven n
shows P1 n and P2 n

(proof)

Working with mutual rules requires special care in composing the statement
as a two-level conjunction, using lists of propositions separated by and. For
example:

inductive Eun :: nat = bool and Odd :: nat = bool
where
zero: Fun 0
| suce-Evn: Odd (Suc n) if Evn n for n
| suce-Odd: Evn (Suc n) if Odd n for n

lemma
Evnn—=— Pln
Evnn=— P2n
Fuvnn = P3n
and
Oddn = QIn
Oddn = @Q2n

(proof)

Cases and hypotheses in each case can be named explicitly.

inductive star :: (‘a = 'a = bool) = 'a = 'a = bool for r
where

refi: star r v = for x
| step: star r x z if r z y and star ry z for z y z



Underscores are replaced by the default name hyps:

lemmas star-induct = star.induct [case-names base step[r - IH]|]

lemma star rzy = starry z = star r x z

(proof)

end

2 Nested datatypes

theory Nested-Datatype
imports Main
begin

2.1 Terms and substitution

datatype (‘a, 'b) term =
Var 'a
| App 'b (“a, 'b) term list

/

primrec subst-term :: (‘a = (‘a, 'b) term) = ('a, 'b) term = ('a, 'b) term

and subst-term-list :: ('a = ('a, 'b) term) = (‘a, 'b) term list = ('a, 'b) term
list
where

subst-term f (Var a) = fa
| subst-term f (App b ts) = App b (subst-term-list f ts)
| subst-term-list f [| = ||
| subst-term-list f (t # ts) = subst-term ft # subst-term-list f ts

lemmas subst-simps = subst-term.simps subst-term-list.simps

A simple lemma about composition of substitutions.

lemma
subst-term (subst-term f1 o f2) t =
subst-term f1 (subst-term f2 t)
and
subst-term-list (subst-term f1 o f2) ts =
subst-term-list f1 (subst-term-list f2 ts)
(proof)

lemma subst-term (subst-term f1 o f2) t = subst-term f1 (subst-term f2 t)
(proof)

2.2 Alternative induction

lemma subst-term (subst-term f1 o f2) t = subst-term f1 (subst-term f2 t)
(proof)



end

3 Defining an Initial Algebra by Quotienting a
Free Algebra

For Lawrence Paulson’s paper “Defining functions on equivalence classes”
ACM Transactions on Computational Logic 7:40 (2006), 6568675, illustrat-
ing bare-bones quotient constructions. Any comparison using lifting and
transfer should be done in a separate theory.

theory QuoDataType imports Main begin

3.1 Defining the Free Algebra

Messages with encryption and decryption as free constructors.

datatype
freemsg = NONCE nat
| MPAIR freemsg freemsg
| CRYPT nat freemsg
| DECRYPT nat freemsg

The equivalence relation, which makes encryption and decryption inverses
provided the keys are the same.

The first two rules are the desired equations. The next four rules make
the equations applicable to subterms. The last two rules are symmetry and
transitivity.

inductive-set
msgrel :: (freemsg * freemsg) set
and msg-rel :: [freemsg, freemsg] => bool (infixl (~) 50)
where
X ~Y == (X,Y) € msgrel
| CD:  CRYPT K (DECRYPT K X) ~ X
| DC: DECRYPT K (CRYPTK X) ~ X
| NONCE: NONCE N ~ NONCE N
| MPAIR: [ X ~ X} Y ~ Y] = MPAIR X Y ~ MPAIR X' Y’
| CRYPT: X ~ X' = CRYPT K X ~ CRYPT K X'
| DECRYPT: X ~ X' = DECRYPT K X ~ DECRYPT K X'
| SYM: X~ Y = Y ~X
| TRANS: [X ~ YV Y ~Z] = X~ Z

Proving that it is an equivalence relation
lemma msgrel-refl: X ~ X

{proof)

theorem equiv-msgrel: equiv UNIV msgrel

(proof)



3.2 Some Functions on the Free Algebra
3.2.1 The Set of Nonces

A function to return the set of nonces present in a message. It will be lifted
to the initial algebra, to serve as an example of that process.

primrec freenonces :: freemsg = nat set where
freenonces (NONCE N) = {N}

| freenonces (MPAIR X Y) = freenonces X U freenonces Y

| freenonces (CRYPT K X) = freenonces X

| freenonces (DECRYPT K X) = freenonces X

This theorem lets us prove that the nonces function respects the equivalence

relation. It also helps us prove that Nonce (the abstract constructor) is

injective

theorem msgrel-imp-eq-freenonces: U ~ V = freenonces U = freenonces V
(proof)

3.2.2 The Left Projection

A function to return the left part of the top pair in a message. It will be
lifted to the initial algebra, to serve as an example of that process.

primrec freeleft :: freemsg = freemsg where
freeleft (NONCE N) = NONCE N

| freeleft (MPAIR X V) = X

| freeleft (CRYPT K X) = freeleft X

| freeleft (DECRYPT K X) = freeleft X

This theorem lets us prove that the left function respects the equivalence
relation. It also helps us prove that MPair (the abstract constructor) is
injective
theorem msgrel-imp-equ-freeleft:
U~V = freeleft U ~ freeleft V
(proof)

3.2.3 The Right Projection

A function to return the right part of the top pair in a message.

primrec freeright :: freemsg = freemsg where
freeright (NONCE N) = NONCE N

| freeright (MPAIR X Y) =Y

| freeright (CRYPT K X) = freeright X

| freeright (DECRYPT K X) = freeright X

This theorem lets us prove that the right function respects the equivalence
relation. It also helps us prove that MPair (the abstract constructor) is
injective
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theorem msgrel-imp-equ-freeright:
U~V = freeright U ~ freeright V
(proof)

3.2.4 The Discriminator for Constructors

A function to distinguish nonces, mpairs and encryptions

primrec freediscrim :: freemsg = int where
freediscrim (NONCE N) = 0

| freediscrim (MPAIR X Y) = 1

| freediscrim (CRYPT K X) = freediscrim X + 2

| freediscrim (DECRYPT K X) = freediscrim X — 2

This theorem helps us prove Nonce N # MPair X Y

theorem msgrel-imp-eq-freediscrim:
U~V = freediscrim U = freediscrim V
(proof)

3.3 The Initial Algebra: A Quotiented Message Type
definition Msg = UNIV //msgrel

typedef msg = Msg
morphisms Rep-Msg Abs-Msg
(proof)

The abstract message constructors

definition
Nonce :: nat = msg where
Nonce N = Abs-Msg(msgrel*“{ NONCE N})

definition
MPair :: [msg,msg] = msg where
MPair X Y =
Abs-Msg ({JU € Rep-Msg X.|JV € Rep-Msg Y. msgrel*{ MPAIR U V})

definition
Crypt :: [nat,msg] = msg where
Crypt K X =
Abs-Msg (\J U € Rep-Msg X. msgrel*{ CRYPT K U})

definition
Decrypt :: [nat,msg] = msg where
Decrypt K X =
Abs-Msg (\J U € Rep-Msg X. msgrel*“{ DECRYPT K U})

Reduces equality of equivalence classes to the msgrel relation: (msgrel “{z}
= msgrel “{y}) = (z ~ y)
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lemmas equiv-msgrel-iff = eq-equiv-class-iff [OF equiv-msgrel UNIV-I UNIV-I]
declare equiv-msgrel-iff [simp)

All equivalence classes belong to set of representatives
lemma [simp]: msgrel*{U} € Msg
(proof )

lemma inj-on-Abs-Msg: inj-on Abs-Msg Msg
(proof )
Reduces equality on abstractions to equality on representatives

declare inj-on-Abs-Msg [THEN inj-on-eq-iff, simp]

declare Abs-Msg-inverse [simp)

3.3.1 Characteristic Equations for the Abstract Constructors

lemma MPair: MPair (Abs-Msg(msgrel*{U})) (Abs-Msg(msgrel*{V})) =
Abs-Msg (msgrel*{ MPAIR U V})

(proof)

lemma Crypt: Crypt K (Abs-Msg(msgrel*{U})) = Abs-Msg (msgrel*{CRYPT K

U})
(proof)

lemma Decrypt:
Decrypt K (Abs-Msg(msgrel*{U})) = Abs-Msg (msgrel*{DECRYPT K U})

(proof)

Case analysis on the representation of a msg as an equivalence class.

lemma eq-Abs-Msg [case-names Abs-Msg, cases type: msg:
(AU. z = Abs-Msg (msgrel “{U}) = P) = P
(proof)
Establishing these two equations is the point of the whole exercise
theorem CD-eq [simp]: Crypt K (Decrypt K X) = X
(proof)

theorem DC-eq [simp]: Decrypt K (Crypt K X) = X
(proof )

3.4 The Abstract Function to Return the Set of Nonces

definition
nonces :: msg = nat set where
nonces X = (|JU € Rep-Msg X. freenonces U)

lemma nonces-congruent: freenonces respects msgrel

12



(proof)

Now prove the four equations for nonces
lemma nonces-Nonce [simp]: nonces (Nonce N) = {N}

(proof)

lemma nonces-MPair [simp]: nonces (MPair X Y) = nonces X U nonces Y

(proof)

lemma nonces-Crypt [simp]: nonces (Crypt K X) = nonces X
(proof)

lemma nonces-Decrypt [simp]: nonces (Decrypt K X) = nonces X
(proof)

3.5 The Abstract Function to Return the Left Part

definition
left :: msg = msg
where left X = Abs-Msg (U € Rep-Msg X. msgrel*{freeleft U})

lemma left-congruent: (AU. msgrel ““ {freeleft U}) respects msgrel
(proof)

Now prove the four equations for left
lemma left-Nonce [simp]: left (Nonce N) = Nonce N
(proof)

lemma left-MPair [simp]: left (MPair X V) = X
{proof)

lemma left-Crypt [simp]: left (Crypt K X) = left X
(proof)

lemma left-Decrypt [simp]: left (Decrypt K X) = left X
(proof)

3.6 The Abstract Function to Return the Right Part

definition
right :: msg = msg
where right X = Abs-Msg ((J U € Rep-Msg X. msgrel‘{ freeright U})

lemma right-congruent: (AU. msgrel ““ {freeright U}) respects msgrel
(proof )

Now prove the four equations for right

lemma right-Nonce [simp]: right (Nonce N) = Nonce N
{proof)
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lemma right-MPair [simp]: right (MPair X V) =Y
{proof)

lemma right-Crypt [simp]: right (Crypt K X) = right X
(proof )

lemma right-Decrypt [simpl: right (Decrypt K X) = right X
(proof)

3.7 Injectivity Properties of Some Constructors

lemma NONCE-imp-eq: NONCE m ~ NONCEn — m =n
(proof)

Can also be proved using the function nonces
lemma Nonce-Nonce-eq [iff]: (Nonce m = Nonce n) = (m = n)

{proof)

lemma MPAIR-imp-equ-left: MPAIR X Y ~ MPAIR X' V' = X ~ X'
{proof)

lemma MPair-imp-eq-left:
assumes eq: MPair X Y = MPair X' Y' shows X = X’
(proof)

lemma MPAIR-imp-equ-right: MPAIR X Y ~ MPAIR X' Y/ — Y ~ Y’
(proof)

lemma MPair-imp-eq-right: MPair X Y = MPair X' Y/ = Y =Y’
(proof )

theorem MPair-MPair-eq [iff]: (MPair X Y = MPair X' V') = (X=X'& Y=Y")

(proof)

lemma NONCE-nequ-MPAIR: NONCE m ~ MPAIR X Y = Fulse
(proof)

theorem Nonce-neq-MPair [iff]: Nonce N # MPair X Y
{proof)

Example suggested by a referee

theorem Crypt-Nonce-neq-Nonce: Crypt K (Nonce M) # Nonce N
{proof )

...and many similar results

theorem Crypt2-Nonce-neq-Nonce: Crypt K (Crypt K’ (Nonce M)) # Nonce N
(proof )

14



theorem Crypt-Crypt-eq [iff]: (Crypt K X = Crypt K X') = (X=X")
(proof)

theorem Decrypt-Decrypt-eq [iff]: (Decrypt K X = Decrypt K X') = (X=X")
(proof)

lemma msg-induct [case-names Nonce MPair Crypt Decrypt, cases type: msg):
assumes N: AN. P (Nonce N)
and M\: A XY.[PX; PY] = P (MPair XY)
and C: AK X. P X = P (Crypt K X)
and D: AK X. P X = P (Decrypt K X)
shows P msg

(proof)

3.8 The Abstract Discriminator
However, as Crypt-Nonce-neq-Nonce above illustrates, we don’t need this
function in order to prove discrimination theorems.

definition
discrim :: msg = int where
discrim X = the-elem (|J U € Rep-Msg X. {freediscrim U})

lemma discrim-congruent: (AU. {freediscrim U}) respects msgrel

{proof)

Now prove the four equations for discrim

lemma discrim-Nonce [simp]: discrim (Nonce N) = 0
{proof)

lemma discrim-MPair [simp]: discrim (MPair X V) = 1
(proof)

lemma discrim-Crypt [simp|: discrim (Crypt K X) = discrim X + 2
(proof )

lemma discrim-Decrypt [simpl: discrim (Decrypt K X) = discrim X — 2
(proof)

end

4 Quotienting a Free Algebra Involving Nested
Recursion

This is the development promised in Lawrence Paulson’s paper “Defining
functions on equivalence classes” ACM Transactions on Computational Logic
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7:40 (2006), 658675, illustrating bare-bones quotient constructions. Any
comparison using lifting and transfer should be done in a separate theory.

theory QuoNestedDataType imports Main begin

4.1 Defining the Free Algebra

Messages with encryption and decryption as free constructors.

datatype
freeEzp = VAR nat
| PLUS freeExp freeExp
| FNCALL nat freeEzp list

datatype-compat freeExp
The equivalence relation, which makes PLUS associative.

The first rule is the desired equation. The next three rules make the equa-
tions applicable to subterms. The last two rules are symmetry and transi-
tivity.
inductive-set

exprel :: (freeExp x freeEzp) set

and exp-rel :: [freeExp, freeExp] => bool (infixl <~»> 50)

where

X ~Y = (X,Y) € exprel

| ASSOC: PLUS X (PLUS Y Z) ~ PLUS (PLUS X Y) Z

| VAR: VAR N ~ VAR N

| PLUS: [X ~ X3 Y ~ Y] = PLUSXY ~ PLUSX'Y'

| FNCALL: (Xs,Xs’) € listrel exprel = FNCALL F Xs ~ FNCALL F Xs'

| SYM: X~ Y = Y ~ X

| TRANS: [X ~ Y} Y ~ Z] = X ~ Z

monos listrel-mono

Proving that it is an equivalence relation
lemma exprel-refl: X ~ X
and list-exprel-refl: (Xs,Xs) € listrel(exprel)
(proof )

theorem equiv-exprel: equiv UNIV exprel

(proof)

theorem equiv-list-exprel: equiv UNIV (listrel exprel)
(proof )

lemma FNCALL-Cons:

[X ~ X' (Xs,Xs") € listrel(exprel)] = FNCALL F (X#Xs) ~ FNCALL F
(XHXs")

{proof)
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4.2 Some Functions on the Free Algebra
4.2.1 The Set of Variables

A function to return the set of variables present in a message. It will be
lifted to the initial algebra, to serve as an example of that process. Note
that the "free" refers to the free datatype rather than to the concept of a
free variable.

primrec freevars :: freeErp = nat set and freevars-list :: freeExp list = nat set
where
freevars (VAR N) = {N}

| freevars (PLUS X Y) = freevars X U freevars Y

| freevars (FNCALL F Xs) = freevars-list Xs

| freevars-list [| = {}
| freevars-list (X # Xs) = freevars X U freevars-list Xs

This theorem lets us prove that the vars function respects the equivalence
relation. It also helps us prove that Variable (the abstract constructor) is
injective

theorem exprel-imp-eq-freevars: U ~ V = freevars U = freevars V

(proof )

4.2.2 Functions for Freeness

A discriminator function to distinguish vars, sums and function calls

primrec freediscrim :: freeExp = int where
freediscrim (VAR N) = 0

| freediscrim (PLUS X Y) = 1

| freediscrim (FNCALL F Xs) = 2

theorem exprel-imp-eq-freediscrim:
U~V = freediscrim U = freediscrim V
(proof )

This function, which returns the function name, is used to prove part of the
injectivity property for FnCall.
primrec freefun :: freeExp = nat where
freefun (VAR N) = 0
| freefun (PLUS X Y) =0
| freefun (FNCALL F Xs) = F

theorem ezprel-imp-eq-freefun:
U~V = freefun U = freefun V
(proof)

This function, which returns the list of function arguments, is used to prove
part of the injectivity property for FnCall.
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primrec freeargs :: freeExp = freeEzp list where
freeargs (VAR N) = |]

| freeargs (PLUS X Y) = ||

| freeargs (FNCALL F Xs) = Xs

theorem ezprel-imp-equ-freeargs:
assumes U ~ V
shows (freeargs U, freeargs V) € listrel exprel

(proof)

4.3 The Initial Algebra: A Quotiented Message Type
definition Ezp = UNIV//exprel
typedef exp = Exp
morphisms Rep-Ezp Abs-Exp
(proof)
The abstract message constructors

definition
Var :: nat = exp where
Var N = Abs-Exp(exprel*{ VAR N})

definition
Plus :: [exp,exp] = exp where
Plus X Y =
Abs-Ezp ((JU € Rep-Exp X.\JV € Rep-Exp Y. exprel*{PLUS U V})

definition
FnCall :: [nat, exp list] = exp where
FnCall F Xs =
Abs-Exp (|J Us € listset (map Rep-Exp Xs). exprel*{FNCALL F Us})

Reduces equality of equivalence classes to the exprel relation: (exprel ““ {z}
= exprel “{y}) = (z ~ y)

lemmas equiv-exprel-iff = eq-equiv-class-iff [OF equiv-exprel UNIV-I UNIV-I]
declare equiv-exprel-iff [simp]

All equivalence classes belong to set of representatives

lemma exprel-in-Exp [simp]: exprel*{U} € Exp
(proof)

lemma inj-on-Abs-Exp: inj-on Abs-Exp Exp
(proof)

Reduces equality on abstractions to equality on representatives

declare inj-on-Abs-Exp [THEN inj-on-eq-iff, simp]

18



declare Abs-Ezp-inverse [simp)

Case analysis on the representation of a exp as an equivalence class.
lemma eg-Abs-Exp [case-names Abs-Exp, cases type: expl:
(ANU. z = Abs-Ezp (exprel’{U}) = P) = P
{proof )

4.4 Every list of abstract expressions can be expressed in
terms of a list of concrete expressions

definition
Abs-ExpList :: freeEzp list => exp list where
Abs-ExpList Xs = map (AU. Abs-Exp(exprel{U})) Xs

lemma Abs-ExpList-Nil [simp]: Abs-ExpList [| = |]
{proof)

lemma Abs-ExpList-Cons [simp]:
Abs-ExpList (X#Xs) = Abs-Exp (exprel*{X}) # Abs-ExpList Xs
{proof )

lemma EzxpList-rep: 3 Us. z = Abs-ExpList Us
(proof )

4.4.1 Characteristic Equations for the Abstract Constructors

lemma Plus: Plus (Abs-Exp(exprel*{U})) (Abs-Exp(exprel{V})) =
Abs-Exp (exprel*{PLUS U V})

(proof)

It is not clear what to do with FnCall: it’s argument is an abstraction of an
exp list. Is it just Nil or Cons? What seems to work best is to regard an exp
list as a listrel exprel equivalence class

This theorem is easily proved but never used. There’s no obvious way even
to state the analogous result, FnCall-Cons.
lemma FnCall-Nil: FnCall F || = Abs-Exp (exprel*{FNCALL F [|})

(proof)

lemma FnCall-respects:
(AUs. exprel{ FNCALL F Us}) respects (listrel exprel)

{proof)

lemma FnCall-sing:
FnCall F [Abs-Exp(exprel*{U})] = Abs-Exp (exprel{ FNCALL F [U]})
(proof )

lemma [listset-Rep-FExp-Abs-Exp:
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listset (map Rep-Exp (Abs-ExpList Us)) = listrel exprel*{ Us}
{proof)

lemma FnCall:
FnCall F (Abs-ExzpList Us) = Abs-Exp (exprel{ FNCALL F Us})
(proof )

Establishing this equation is the point of the whole exercise

theorem Plus-assoc: Plus X (Plus Y Z) = Plus (Plus X Y) Z
{proof)

4.5 The Abstract Function to Return the Set of Variables
definition

vars :: exp = nat set where vars X = (JU € Rep-Exp X. freevars U)

lemma vars-respects: freevars respects exprel

(proof)

The extension of the function vars to lists

primrec vars-list :: exp list = nat set where
vars-list [| = {}

| vars-list(E#Es) = vars E U vars-list Es

Now prove the three equations for vars

lemma vars-Variable [simp]: vars (Var N) = {N}

(proof)

lemma vars-Plus [simp]: vars (Plus X Y) = vars X U vars Y
(proof)

lemma vars-FnCall [simp]: vars (FnCall F Xs) = vars-list Xs

(proof)

lemma vars-FnCall-Nil: vars (FnCall F Nil) = {}
{proof)

lemma vars-FnCall-Cons: vars (FnCall F (X#Xs)) = vars X U vars-list Xs
(proof)

4.6 Injectivity Properties of Some Constructors

lemma VAR-imp-eq: VAR m ~ VARn = m =n
(proof)

Can also be proved using the function vars

lemma Var-Var-eq [iff]: (Var m = Var n) = (m = n)
{proof)
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lemma VAR-nequ-PLUS: VAR m ~ PLUS X Y = False

{proof)
theorem Var-neq-Plus [iff]: Var N # Plus X Y
(proof)
theorem Var-neg-FnCall [iff]: Var N # FnCall F Xs
(proof)

4.7 Injectivity of FnCall

definition
fun :: exp = nat
where fun X = the-elem (|J U € Rep-Ezp X. {freefun U})

lemma fun-respects: (AU. {freefun U}) respects exprel
(proof )

lemma fun-FnCall [simp]: fun (FnCall F Xs) = F
(proof)

definition
args :: exp = exp list where
args X = the-elem (|J U € Rep-Fxp X. {Abs-ExpList (freeargs U)})

This result can probably be generalized to arbitrary equivalence relations,
but with little benefit here.
lemma Abs-ExpList-eq:
(y, 2) € listrel exprel = Abs-ExpList (y) = Abs-ExpList (z2)
(proof)

lemma args-respects: (AU. {Abs-ExpList (freeargs U)}) respects exprel
(proof )

lemma args-FnCall [simp]: args (FnCall F Xs) = Xs
(proof)

lemma FnCall-FnCall-eq [iff]: (FnCall F Xs = FnCall F' Xs') «— (F=F' A
Xs=Xs')
{proof)

4.8 The Abstract Discriminator
However, as FnCall-Var-neq- Var illustrates, we don’t need this function in
order to prove discrimination theorems.

definition
discrim :: exp = int where
discrim X = the-elem (|JU € Rep-Exp X. {freediscrim U})
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lemma discrim-respects: (AU. {freediscrim U}) respects exprel
(proof)

Now prove the four equations for discrim

lemma discrim-Var [simp]: discrim (Var N) =
{proof)

lemma discrim-Plus [simp]: discrim (Plus X Y) = 1
(proof)

lemma discrim-FnCall [simp): discrim (FnCall F Xs) = 2
(proof)

The structural induction rule for the abstract type

theorem ezp-inducts:
assumes V:  Anat. P1 (Var nat)
and P:  Aexpl exp2. [P1 expl; PI exp2] = P1 (Plus expl exp2)
and F:  Anat list. P2 list = P1 (FnCall nat list)
and Nil: P2 ||
and Cons: Nexp list. [P1 exp; P2 list] = P2 (exp # list)
shows P71 exp and P2 list

(proof)

end

5 Terms over a given alphabet

theory Term
imports Main
begin

datatype (‘a, 'b) term =
Var 'a
| App 'b (Ya, 'b) term list

Substitution function on terms

primrec subst-term :: (‘a = ('a, 'b) term) = ('a, ) term = ('a, 'b) term
and subst-term-list :: (‘a = (‘a, 'b) term) = (‘a, 'b) term list = ('a, 'b) term
list
where
subst-term f (Var a) = fa
| subst-term f (App b ts) = App b (subst-term-list f ts)
| subst-term-list f [| = ||
| subst-term-list f (t # ts) = subst-term ft # subst-term-list f ts

A simple theorem about composition of substitutions
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lemma subst-comp:
subst-term (subst-term f1 o f2) t =
subst-term f1 (subst-term f2 t)
and subst-term-list (subst-term f1 o f2) ts =
subst-term-list f1 (subst-term-list f2 ts

{proof)

Alternative induction rule

lemma
assumes var: \v. P (Var v)
and app: \fts. (Vt € setts. Pt) = P (App f ts)
shows term-induct2: Pt
and Vt € set ts. Pt

{proof)

end

theory Sexp
imports HOL— Library.Old-Datatype
begin

type-synonym ’a item = 'a Old-Datatype.item
abbreviation Leaf == Old-Datatype. Leaf
abbreviation Numb == Old-Datatype. Numb

inductive-set
sexp i 'a item set
where
LeafI: Leaf(a) € sexp
| Numbl: Numb(i) € sexp
| Sconsl: [| M € sexp; N € sexp || ==> Scons M N € sexp

definition
sexp-case :: ['a=>'b, nat=>'b, ['a item, 'a item]=>"b,
‘a item] => 'b where
sexp-case ¢ d e M = (THE z. (3z. M=Leaf(z) & z=c(x))
| 3k M=Numb(k) & z=d(k))
| (N1 N2. M = Scons NI N2 & z=e NI N2))

definition
pred-sexp :: ('a item * 'a item)set where
pred-sexp = (UM € sexp. UN € sexp. {(M, Scons M N), (N, Scons M N)})

definition
sexp-rec :: ['a item, 'a=>'b, nat=>"b,
['a item, 'a item, 'b, 'b]=>'b] => b where
sexp-rec M ¢ d e = wfrec pred-sexp
(%g. sexp-case ¢ d (%N1 N2. e NI N2 (g N1) (¢ N2))) M
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lemma sexp-case-Leaf [simp]: sexp-case ¢ d e (Leaf a) = c(a)

(proof)

lemma sexp-case-Numb [simp]: sexp-case ¢ d e (Numb k) = d(k)
(proof)

lemma sexp-case-Scons [simp]: sexp-case ¢ d e (Scons M N) = e M N

(proof)

lemma sexp-In0I: M € sexp ==> In0(M) € sexp
(proof)

lemma sexp-In1l: M € sexp ==> Inl(M) € sexp

(proof)

declare sexp.intros [intro,simp)

lemma range-Leaf-subset-sexp: range(Leaf) <= sexp

(proof)

lemma Scons-D: Scons M N € sexp ==> M € sexp & N € sexp
(proof )

lemma pred-sexp-subset-Sigma: pred-sexp <= sexp X serp
(proof)

lemmas trancl-pred-sexpD1 =
pred-sexp-subset-Sigma
[THEN trancl-subset-Sigma, THEN subsetD, THEN SigmaD1]
and trancl-pred-sexpD2 =
pred-sexp-subset-Sigma
[THEN trancl-subset-Sigma, THEN subsetD, THEN SigmaD2]

lemma pred-sexpll:

[| M € sexp; N € sexp || ==> (M, Scons M N) € pred-sexp
(proof)

lemma pred-sexpl2:
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[| M € sexp; N € sexp || ==> (N, Scons M N) € pred-sexp
(proof)

lemmas pred-sexp-t1 [simp] = pred-sexpll [THEN r-into-trancl]
and  pred-sexp-t2 [simp| = pred-sexpI2 [THEN r-into-trancl]

lemmas pred-sexp-transi [simp] = trans-trancl [THEN transD, OF - pred-sexp-t1]
and  pred-sexp-trans2 [simp| = trans-trancl [THEN transD, OF - pred-sexp-t2]

declare cut-apply [simp]

lemma pred-sexpFE:
[| p € pred-sexp;
WM N. [ p= (M, Scons M N); M € sexp; N € sexp |] ==> R;
"M N.|[| p= (N, Scons M N); M € sexp; N € sexp || ==> R
| ==>R
(proof)

lemma wf-pred-sexp: wf (pred-sexp)

(proof)

lemma sezp-rec-unfold-lemma:

(%M. sexp-rec M ¢ d e) ==

wfrec pred-sexp (%og. sexp-case ¢ d (% N1 N2. e N1 N2 (g N1) (g N2)))
(proof)

lemmas sexp-rec-unfold = def-wfrec [OF sexp-rec-unfold-lemma wf-pred-sexp

lemma sexp-rec-Leaf: sexp-rec (Leaf a) ¢ d h = c¢(a)

(proof )
lemma sexp-rec-Numb: sexp-rec (Numb k) ¢ d h = d(k)
(proof)
lemma sexp-rec-Scons: [| M € sexp; N € sexp || ==>

sexp-rec (Scons M N) ¢ d h = h M N (sexp-rec M ¢ d h) (sexp-rec N ¢ d h)
(proof)

end
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6 Extended List Theory (old)

theory SList
imports Sexp
begin

definition
NIL :: 'a item where
NIL = In0(Numb(0))

definition
CONS :: ['a item, 'a item] => 'a item where
CONS M N = In1(Scons M N)

inductive-set
list :: 'a item set => 'a item set
for A :: 'a item set

where
NIL-I: NIL € list A
| CONS-I: [| a € A; M € list A|] ==> CONS a M € list A

definition List = list (range Leaf)

typedef ‘a list = List :: 'a item set
morphisms Rep-List Abs-List
(proof )

abbreviation Case == Old-Datatype.Case
abbreviation Split == Old-Datatype.Split

definition
List-case :: ['b, ['a item, 'a item|=>'b, 'a item] => 'b where
List-case ¢ d = Case(%x. c¢)(Split(d))

definition
List-rec :: ['a item, b, ['a item, 'a item, 'b|=>'b] => 'b where
List-rec M ¢ d = wfrec (pred-sexp™)
(%g. List-case ¢ (%oxy. dxy (gy))) M
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no-translations
[z, zs] == z#]xs]
[z] == z#]]

unbundle no list-syntax

definition
Nil = 'a list («[]>) where
Nil = Abs-List(NIL)

definition
Cons = a, 'a list]) => 'a list (infixr <#)> 65) where
xftxs = Abs-List(CONS (Leaf z)(Rep-List xs))

definition

list-rec :: ['a list, 'b, ['a, 'a list, 'b|]=>'b] => 'b where
list-rec l ¢ d =
List-rec(Rep-List 1) ¢ (%ox y r. d(inv Leaf ©)(Abs-List y) r)

definition
list-case :: ['b, ['a, 'a list|=>"'b, 'a list] => 'b where
list-case a f xs = list-rec xs a (%ox xs r. f x xs)

translations
[z, xs] == z#[xs]
[¢] == z#]

case zs of [| => a | y#ys => b == CONST list-case(a, %y ys. b, xs)
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definition
Rep-map :: (b => 'a item) => (b list => 'a item) where
Rep-map f xs = list-rec xs NIL(%z | r. CONS(f z) r)

definition
Abs-map  :: ('a item => 'b) => 'a item => 'b list where
Abs-map g M = List-rec M Nil (%N L r. g(N)#r)

definition
map 2 ("la=>'b) => (a list => 'b list) where
map f xs = list-rec xs [| (%ox 1 r. f(z)#r)
primrec take :: ['a list,nat] => 'a list where
take-0: take xs 0 = |
| take-Suc: take xs (Suc n) = list-case [| (%oz l. © # take I n) s

lemma Listl: z € list (range Leaf) => x € List

(proof)

lemma ListD: x € List = x € list (range Leaf)
(proof)

lemma list-unfold: list(A) = usum {Numb(0)} (uprod A (list(A)))
(proof)

lemma list-mono: A<=B ==> list(A) <= list(B)

(proof)

lemma list-sexp: list(sexp) <= sexp

(proof)

lemmas list-subset-sexp = subset-trans [OF list-mono list-sexp]

lemma list-induct:
[| P(Nil);
Nz zs. P(xs) ==> P(x # xs) || ==> P(l)
(proof)

lemma inj-on-Abs-list: inj-on Abs-List (list(range Leaf))
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(proof)

lemma CONS-not-NIL [iff]: CONS M N ~= NIL
(proof)

lemmas NIL-not-CONS [iff| = CONS-not-NIL [THEN not-sym)|
lemmas CONS-neq-NIL = CONS-not-NIL [THEN notE]
lemmas NIL-neq-CONS = sym [THEN CONS-neq-NIL]

lemma Cons-not-Nil [iff]: © # xs ~= Nil
(proof)

lemmas Nil-not-Cons = Cons-not-Nil [THEN not-sym)|
declare Nil-not-Cons [iff]

lemmas Cons-neq-Nil = Cons-not-Nil [THEN notE)
lemmas Nil-neg-Cons = sym [THEN Cons-neq-Nil]

lemma CONS-CONS-eq [iff]: (CONS K M)=(CONS L N) = (K=L & M=N)
(proof)

declare Rep-List [THEN ListD, intro] Listl [intro]
declare list.intros [intro,simp)
declare Leaf-inject [dest!]

lemma Cons-Cons-eq [iff]: (z#zs=y#ys) = (z=y & zs=ys)
{proof )

lemmas Cons-inject2 = Cons-Cons-eq [THEN iffD1, THEN conjE]

lemma CONS-D: CONS M N € list(A) = M € A & N € list(A)
{proof)

lemma sexp-CONS-D: CONS M N € sexp — M € sexp N N € sexp
(proof)

lemma not-CONS-self: N € list(A) = VM. N # CONS M N
(proof)

lemma not-Cons-self2: Vx. | # z#l
(proof)
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lemma neg-Nil-conv2: (xs # []) = (y ys. zs = y#ys)
(proof)

lemma List-case-NIL [simp]: List-case ¢ h NIL = ¢
(proof)

lemma List-case-CONS [simp]: List-case ¢ h (CONS M N) = h M N
(proof)

lemma List-rec-unfold-lemma;:

(AM. List-rec M ¢ d) =

wfrec (pred-sexp™) (Ag. List-case ¢ Az y. d zy (g y)))
(proof)

lemmas List-rec-unfold =
def-wfrec [OF List-rec-unfold-lemma wf-pred-sexp [THEN wf-trancl))

lemma pred-sexp-CONS-11:
[| M € sexp; N € sexp || ==> (M, CONS M N) € pred-sexp™
(proof)

lemma pred-sexp-CONS-12:
[| M € sexp; N € sexp || ==> (N, CONS M N) € pred-sexp™
(proof)
lemma pred-sexp-CONS-D:
(CONS M1 M2, N) € pred-sexp™ =
(M1,N) € pred-sexpt A (M2,N) € pred-sexp™
(proof)

lemma List-rec-NIL [simp]: List-rec NIL ¢ h = ¢
(proof)

lemma List-rec-CONS [simp]:

30



[| M € sexp; N € sexp |]
==> List-rec (CONS M N) ch =h M N (List-rec N c h)
(proof )

lemmas Rep-List-in-sexp =
subsetD [OF range-Leaf-subset-sexp |[THEN list-subset-sexp]
Rep-List [THEN ListD))

lemma list-rec-Nil [simp): list-rec Nil ¢ h = ¢
(proof)

lemma list-rec-Cons [simp]: list-rec (a#l) ¢ h = h a I (list-rec | ¢ h)
(proof)

lemma List-rec-type:
[| M € list(A);
A<=sezp;
¢ € O(NIL);
Neyr.[|ze d; yelist(d); re Cy) || ==>hzyre C(CONS zy)
|| ==> List-rec M ¢ h € C(M :: 'a item)
(proof )

lemma Rep-map-Nil [simp]: Rep-map f Nil = NIL
(proof)

lemma Rep-map-Cons [simp]:
Rep-map f(z#xs) = CONS(f z)(Rep-map [ xs)
(proof)

lemma Rep-map-type: (A\z. f(z) € A) = Rep-map f xs € list(A)
{proof )

lemma Abs-map-NIL [simp]: Abs-map g NIL = Nil
(proof)

lemma Abs-map-CONS [simp]:

[| M € sexp; N € sexp || ==> Abs-map g (CONS M N) = g(M) # Abs-map
g N
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(proof)

lemma def-list-rec-NilCons:

[| Azs. f(zs) = list-rec xs ¢ h ||

==> f[] = ¢ A f(az#azs) = h z xs (f zs)
(proof)

lemma Abs-map-inverse:
[| M € list(A); A<=sexp; Nz.z € A==> f(g9(2)) = z |]
==> Rep-map [ (Abs-map g M) = M

(proof)

Better to have a single theorem with a conjunctive conclusion.

declare def-list-rec-NilCons [OF list-case-def, simp)

lemma expand-list-case:
P(list-case a fxs) = ((zs=[] — P a ) AN (Vy ys. zs=y#ys — P(fy ys)))
(proof)

declare def-list-rec-NilCons [OF map-def, simp]

lemma Abs-Rep-map:

(/\fE f(l')e Seiljp) ==>
Abs-map g (Rep-map fas) = map (M. g(f(1)) s
(proof)

lemma map-ident [simpl: map(%z. ©)(zs) = xs

(proof)

lemma map-compose: map(f o g)(zs) = map [ (map g zs)
(proof)

lemma take-Sucl [simp]: take [| (Suc z) = ||
(proof)
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lemma take-Suc2 [simp]: take(a#xs)(Suc x) = a#take xs
(proof)

lemma take-Nil [simp]: take [| n = []

(proof)

lemma take-take-eq [simp]: ¥V n. take (take zs n) n = take xs n
(proof)

end

7 Arithmetic and boolean expressions

theory ABexp
imports Main
begin

datatype ‘a acxp =
IF 'a bexp 'a aexp 'a aexp
| Sum ‘a aexp 'a aexp
| Diff 'a aexp 'a aexp
| Var 'a
| Num nat
and ’a bexp =
Less 'a aexp 'a aexp
| And 'a bexp 'a bexp
| Neg 'a bexp

Evaluation of arithmetic and boolean expressions

primrec evala :: (‘a = nat) = 'a aezp = nat

and evalb :: ('a = nat) = 'a bexp = bool
where

evala env (IF b al a2) = (if evalb env b then evala env al else evala env a2)
| evala env (Sum al a2) = evala env al + evala env a2
| evala env (Diff al a2) = evala env al — evala env a2
| evala env (Var v) = env v
| evala env (Num n) = n

| evalb env (Less al a2) = (evala env al < evala env a2)
| evalb env (And b1 b2) = (evalb env b1 A evalb env b2)
| evalb env (Neg b) = (— evalb env b)

Substitution on arithmetic and boolean expressions

primrec substa :: (‘a = 'b aexp) = 'a aexp = 'b aexp
and substb :: (Ya = 'b aexp) = 'a bexp = 'b bexp
where
substa f (IF b al a2) = IF (substb fb) (substa f al) (substa f a2)
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| substa f (Sum al a2) = Sum (substa f al) (substa f a2)
| substa f (Diff al a2) = Diff (substa f al) (substa f a2)

| substa f (Var v) = fu
| substa f (Num n) = Num n

| substh f (Less al a2) = Less (substa f al) (substa f a2)
| substb f (And b1 b2) = And (substb f b1) (substb f b2)
| substb f (Neg b) = Neg (substb f b)

lemma subst1-aexp:
evala env (substa (Var (v := a’)) a) = evala (env (v := evala env a’)) a
and subst1-bexp:
evalb env (substb (Var (v := a’)) b) = evalb (env (v := evala env a’)) b
— one variable

(proof)

lemma subst-all-aexp:

evala env (substa s a) = evala (A\z. evala env (s z)) a
and subst-all-bexp:

evalb env (substh s b) = evalb (Az. evala env (s z)) b

(proof)

end

8 Infinitely branching trees

theory Infinitely-Branching-Tree
imports Main
begin

datatype ‘a tree =
Atom 'a
| Branch nat = 'a tree

primrec map-tree :: ('a = 'b) = 'a tree = 'b tree
where
map-tree f (Atom a) = Atom (f a)
| map-tree f (Branch ts) = Branch (Az. map-tree f (ts x))

lemma tree-map-compose: map-tree g (map-tree f t) = map-tree (g o f) t
{proof)

primrec ezxists-tree :: (‘a = bool) = 'a tree = bool
where
exists-tree P (Atom a) = P a
| exists-tree P (Branch ts) = (Jx. exists-tree P (ts z))

lemma exists-map:
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exists-tree P ts = exists-tree Q) (map-tree f ts)
(proof )

8.1 The Brouwer ordinals, as in ZF /Induct/Brouwer.thy.

datatype brouwer = Zero | Succ brouwer | Lim nat = brouwer

Addition of ordinals

primrec add :: brouwer = brouwer = brouwer
where
add i Zero = i
| add i (Succ j) = Succ (add i 7)
| add i (Lim f) = Lim (An. add i (f n))

lemma add-assoc: add (add i j) k = add i (add j k)
(proof)

Multiplication of ordinals

primrec mult :: brouvwer = brouwer = brouwer
where
mult i Zero = Zero
| mult i (Succ j) = add (mult i 7) i
| mult © (Lim f) = Lim (An. mult i (f n))

lemma add-mult-distrib: mult i (add j k) = add (mult i §) (mult i k)
{proof)

lemma mult-assoc: mult (mult i j) k = mult i (mult § k)
{proof)

We could probably instantiate some axiomatic type classes and use the stan-
dard infix operators.

8.2 A WF Ordering for The Brouwer ordinals (Michael Comp-
ton)

To use the function package we need an ordering on the Brouwer ordinals.
Start with a predecessor relation and form its transitive closure.

definition brouwer-pred :: (brouwer x brouwer) set
where brouwer-pred = (|Ji. {(m, n). n = Succm V (3f. n=Limf A m=f

0})

definition brouwer-order :: (brouwer x brouwer) set
where brouwer-order = brouwer-pred™

lemma wf-brouwer-pred: wf brouwer-pred
(proof)

35



lemma wf-brouwer-order|simp|: wf brouvwer-order
{proof)

lemma [simp]: (j, Succ j) € brouwer-order
(proof)

lemma [simp]: (f n, Lim f) € brouwer-order
{proof)

Example of a general function

function add2 :: brouwer = brouwer = brouwer
where
add2 i Zero = i
| add2 i (Succ j) = Succ (add2 i j)
| add2 i (Lim f) = Lim (An. add2 i (f n))
(proof)
termination

(proof)

lemma add2-assoc: add2 (add2 i j) k = add2 i (add2 j k)
{proof)

end

9 Ordinals

theory Ordinals
imports Main
begin

Some basic definitions of ordinal numbers. Draws an Agda development (in
Martin-Lof type theory) by Peter Hancock (see http://www.dcs.ed.ac.uk/
home/pgh/chat.html).

datatype ordinal =
Zero
| Suce ordinal
| Limit nat = ordinal

primrec pred :: ordinal = nat = ordinal option
where
pred Zero n = None
| pred (Succ a) n = Some a
| pred (Limit f) n = Some (f n)

abbreviation (input) iter :: (‘a = 'a) = nat = ('a = 'a)
where iter fn=f""n

definition OpLim :: (nat = (ordinal = ordinal)) = (ordinal = ordinal)
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where OpLim F a = Limit (An. F n a)

definition Opltw :: (ordinal = ordinal) = (ordinal = ordinal) (< ]»)
where | |f = OpLim (iter f)

primrec cantor :: ordinal = ordinal = ordinal
where
cantor a Zero = Succ a
| cantor a (Succ b) = | | (Az. cantor z b) a
| cantor a (Limit f) = Limit (An. cantor a (f n))

primrec Nabla :: (ordinal = ordinal) = (ordinal = ordinal) (V)
where
Vf Zero = f Zero
| VI (Succ a) = f (Suce (Vf a))
| Vf (Limit h) = Limit (An. Vf (h n))

definition deriv :: (ordinal = ordinal) = (ordinal = ordinal)
where deriv f = V(| ]f)

primrec veblen :: ordinal = ordinal = ordinal
where
veblen Zero = V(OpLim (iter (cantor Zero)))
| veblen (Succ a) = V(OpLim (iter (veblen a)))
| veblen (Limit f) = V(OpLim (An. veblen (f n)))

definition veb a = veblen a Zero
definition g = veb Zero
definition 'y = Limit (An. iter veb n Zero)

end

10 Sigma algebras

theory Sigma-Algebra
imports Main
begin

This is just a tiny example demonstrating the use of inductive definitions in
classical mathematics. We define the least o-algebra over a given set of sets.

inductive-set o-algebra :: 'a set set = 'a set set for A :: 'a set set
where
basic: a € o-algebra A if ¢ € A for a
| UNIV: UNIV € o-algebra A
| complement: — a € o-algebra A if a € o-algebra A for a
| Union: (Ji. a i) € o-algebra A if Ni:nat. a i € o-algebra A for a

The following basic facts are consequences of the closure properties of any
o-algebra, merely using the introduction rules, but no induction nor cases.
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theorem sigma-algebra-empty: {} € o-algebra A
(proof)

theorem sigma-algebra-Inter:
(Niznat. a i € o-algebra A) = ((i. a i) € o-algebra A

(proof)

end

11 Combinatory Logic example: the Church-Rosser
Theorem

theory Comb
imports Main
begin

Combinator terms do not have free variables. Example taken from [1].

11.1 Definitions

Datatype definition of combinators S and K.

datatype comb = K
| S
| Ap comb comb (infixl <> 90)

Inductive definition of contractions, —! and (multi-step) reductions, —.

inductive contractl :: [comb,comb] = bool (infixl «—1) 50)
where
K: Kgy =tz
| S: Sexeyez =1 (222)-(y-2)
| Apl: z =1y = 22 =1 y2
| Ap2: z =1y = ze2 =1 20y

abbreviation
contract :: [comb,comb] = bool (infixl <—» 50) where
contract = contractl™**

Inductive definition of parallel contractions, =! and (multi-step) parallel
reductions, =.

inductive parcontract! :: [comb,comb] = bool (infixl <=1 50)
where

refl: z =z
| K: Kzy='z
| S: Sezey-z 2t (242)-(y-2)
| Ap: [z =2ty 221 w] = 12 2! yow

abbreviation
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parcontract :: [comb,comb] = bool (infixl «=» 50) where
parcontract = parcontractl**

Misc definitions.

definition
I :: comb where
I =SKK

definition
diamond  :: ([comb,comb] = bool) = bool where
— confluence; Lambda/Commutation treats this more abstractly
diamond r =Vzy. rry —
Ny . rzy —
Fz.ryzAry z)

11.2 Reflexive/Transitive closure preserves Church-Rosser
property

Remark: So does the Transitive closure, with a similar proof

Strip lemma. The induction hypothesis covers all but the last diamond of
the strip.

lemma strip-lemma [rule-format]:
assumes diamond r and : r** Ty rzy’
shows 3z. m™* y' 2z A ryz

(proof )

proposition diamond-rtrancl:
assumes diamond 1
shows diamond(r**)

(proof)

11.3 Non-contraction results

Derive a case for each combinator constructor.

inductive-cases
K-contractE [elim!]: K —1 r
and S-contractE [elim!]: S —1 r
and Ap-contractE [elim!]: p-q¢ = r

declare contractl. K [introl] contractl.S [intro!]
declare contract!.Apl [intro] contractl.Ap2 [intro]

lemma I-contract-E [iff]: = I = z
{proof)

lemma K1-contractD [elim!]: K-z —! 2 = (32’ 2 = K-2' A z =1 1)
{proof)
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lemma Ap-reducel [intro]: © — y = z-z — y-2
(proof )

lemma Ap-reduce2 [intro]: x — y = z-x — z-y

{proof)

Counterexample to the diamond property for z —! y

lemma not-diamond-contract: — diamond(contract1)
{proof)

11.4 Results about Parallel Contraction

Derive a case for each combinator constructor.

inductive-cases
K-parcontractE [elim!]: K = r
and S-parcontractE [elim!]: S = r
and Ap-parcontractE [elim!]: p-q =t r

declare parcontract! .intros [intro)

11.5 Basic properties of parallel contraction

The rules below are not essential but make proofs much faster
lemma K1-parcontractD [dest!]: K-z =' 2 = (32’. 2 = K-z’ A z = 1)
(proof)

lemma Si-parcontractD [dest!]: S-x 2! z = (Fz". 2 = Sz’ Az = 1)
{proof)

lemma S2-parcontractD [dest!]: S-z-y 21 2z = Fa'y" 2= S-a’y' Aax =L 2/ A
y='y)

(proof )
Church-Rosser property for parallel contraction

proposition diamond-parcontract: diamond parcontractl

(proof)

11.6 Equivalence of p — ¢ and p = q¢.

lemma contract-imp-parcontract: x —' y = z =1 Y
{proof)

Reductions: simply throw together reflexivity, transitivity and the one-step
reductions

proposition reduce-I: I-x — «
(proof)
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lemma parcontract-imp-reduce: © =' y = z — y
(proof)

lemma reduce-eq-parreduce: t — y +— ==y

{proof)

theorem diamond-reduce: diamond(contract)
{proof)

end

12 Meta-theory of propositional logic
theory PropLog imports Main begin

Datatype definition of propositional logic formulae and inductive definition
of the propositional tautologies.

Inductive definition of propositional logic. Soundness and completeness
w.r.t. truth-tables.

Prove: If H |= p then G = p where G € Fin(H)

12.1 The datatype of propositions

datatype ‘a pl =
false
| var 'a (<#-» [1000])
| imp ‘a pl 'a pl (infixr <—» 90)

12.2 The proof system

inductive thms :: ['a pl set, 'a pl] = bool (infixl <> 50)
for H :: 'a pl set
where
HpeH=H*Fp
| K: HE p—q—p
| S: HF (p—g—r) = (p—q) = p—r
| DN: H + ((p—false) — false) — p
| MP: [H+ p—q; HF p] = HF g

12.3 The semantics

12.3.1 Semantics of propositional logic.

primrec eval :: ['a set, 'a pl] => bool («-[[-]]» [100,0] 100)
where
tt[[false]] = False
| tt[[#0]] = (v € #)
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| eval-imp: tt[[p—q]] = (tt[[p]] — tt[[q]])

A finite set of hypotheses from ¢ and the Vars in p.

primrec hyps :: ['a pl, 'a set] => a pl set
where

hyps false tt = {}
| hyps (#v) tt = {if v € tt then #v else #v—false}
| hyps (p—q) tt = hyps p tt Un hyps q tt

12.3.2 Logical consequence

For every valuation, if all elements of H are true then so is p.
definition sat :: ['a pl set, ‘a pl] => bool (infixl (= 50)

where H = p = (Vit. (VgeH. tt][q]]) — tt[[p]])
12.4 Proof theory of propositional logic

lemma thms-mono:
assumes G C H shows thms(G) < thms(H)

(proof)

lemma thms-1I: H - p—p
— Called I for Identity Combinator, not for Introduction.
(proof)

12.4.1 Weakening, left and right

lemma weaken-left: [G C H; Grp] = Hbtp
— Order of premises is convenient with THEN
(proof )

lemma weaken-left-insert: G+ p = insert a G+ p
(proof)

lemma weaken-left-Unl: G+ p = G U BF p
(proof)

lemma weaken-left-Un2: G+ p=—= AU GFp
(proof)

lemma weaken-right: H - ¢ = H F p—q
(proof )

12.4.2 The deduction theorem

theorem deduction: insert p HF- ¢ — H F p—gq
(proof)
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12.4.3 The cut rule
lemma cut: insert p H- ¢q=— HFp=— HF ¢
(proof )

lemma thms-falseE: H + false = H + ¢
{proof )

lemma thms-notE: HF p — false = HFp=— HF ¢q
(proof )

12.4.4 Soundness of the rules wrt truth-table semantics

theorem soundness: H-p = H |=p
(proof )

12.5 Completeness

12.5.1 Towards the completeness proof

lemma false-imp: H F p—false = H + p—q
(proof)

lemma imp-false:
[HF p; HbE g—false] = H b (p—q)—false
(proof)

lemma hyps-thms-if: hyps p tt & (if tt[[p]] then p else p—false)

— Typical example of strengthening the induction statement.
(proof)

lemma sat-thms-p: {} Ep = hypsp tt - p
— Key lemma for completeness; yields a set of assumptions satisfying p

{proof)

For proving certain theorems in our new propositional logic.

declare deduction [introl]
declare thms.H [THEN thms.MP, intro]

The excluded middle in the form of an elimination rule.

lemma thms-ezcluded-middle: H - (p—q) — ((p—false)—q) — ¢
(proof )

lemma thms-excluded-middle-rule:
[insert p H & q; insert (p—false) HF q) = H ¢
— Hard to prove directly because it requires cuts

(proof )
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12.6 Completeness — lemmas for reducing the set of assump-
tions

For the case hyps p t — insert #v Y F p we also have hyps p t — {#v} C
hyps p (t — {v}).

lemma hyps-Diff: hyps p (t—{v}) C insert (#v—false) ((hyps p t)—{#v})
{proof)

For the case hyps p t — insert (#v — Fls) Y F p we also have hyps p t —

{#v — Fls} C hyps p (insert v t).

lemma hyps-insert: hyps p (insert v t) C insert (#v) (hyps p t—{#Hv—false})
(proof )

Two lemmas for use with weaken-left

lemma insert-Diff-same: B—C C insert a (B—insert a C)

{proof)

lemma insert-Diff-subset2: insert a (B—{c}) — D C insert a (B—insert ¢ D)
(proof)

The set hyps p t is finite, and elements have the form #v or #v — Fls.
lemma hyps-finite: finite(hyps p t)
(proof )

lemma hyps-subset: hyps p t C (UN v. {#v, #v—false})
(proof )

lemma Diff-weaken-left: AC C = A—-— Brp=— C - Bk p
(proof)

12.6.1 Completeness theorem
Induction on the finite set of assumptions hyps p t0. We may repeatedly
subtract assumptions until none are left!

lemma completeness-0:

assumes {} = p
shows {} F p

(proof)

A semantic analogue of the Deduction Theorem

lemma sat-imp: insert p H = ¢ = H = p—q
(proof )

theorem completeness: finite H=— HEp=— HlF p
(proof)

theorem syntaz-iff-semantics: finite H = (H F p) = (H = p)
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{proof)

end

13 Mutual Induction via Iteratived Inductive Def-
initions
theory Com imports Main begin

typedecl loc
type-synonym state = loc => nat

datatype
exp = N nat
| X loc
| Op nat => nat => nat exp exp
| valOf com exp («VALOF - RESULTIS -» 60)
and
com = SKIP
| Assign loc exp (infix] =) 60)
| Semi com com («-5;- 60, 60] 60)
| Cond exp com com (<IF - THEN - ELSE -» 60)
| While exp com («WHILE - DO -» 60)

13.1 Commands

Execution of commands

abbreviation (input)
generic-rel (<-/ —|[-]—=> - [50,0,50] 50) where
esig —|[eval]—> ns == (esig,ns) € eval

Command execution. Natural numbers represent Booleans: 0=True, 1=False

inductive-set
exec :: ((expxstate) x (natxstate)) set => ((comsxstate)xstate)set
and ezxec-rel :: com x state => ((expxstate) x (natxstate)) set => state => bool

(- =[-]—> - [50,0,50] 50)
for eval :: ((expxstate) * (natxstate)) set
where

csig —[eval]—> s == (csig,s) € exec eval

| Skip:  (SKIP,s) —[eval]—> s
| Assign: (e,s) —|[eval]—> (v,8) ==> (2 = ¢, 5) —[eval]—> s'(z:=v)

| Semi:  [| (c0,s) —[eval]—> s2; (c1,s2) —|eval]—> s1 |]
==> (¢0 3; c1, s) —[eval]—> s
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| IfTrue: [| (e,s) —|[eval]l—> (0,s"); (c0,s") —[eval]—> s1 |]
==> (IF ¢ THEN c0 ELSF c1, s) —[eval]—> sl

| IfFalse: || (e,s) —|[eval]—> (Suc 0, s'); (cl,s’) —[eval]—> s1 |]
==> (IF e THEN c0 ELSE c1, s) —[eval]—> sl

| WhileFalse: (e,s) —|[eval]—> (Suc 0, s1)
==> (WHILE ¢ DO ¢, s) —[eval]—> s1

| WhileTrue: || (e,s) —|[eval]—> (0,s1);
(e,s1) —[eval]—> s2; (WHILE e DO c¢, s2) —[eval]—> s3 |]
==> (WHILE e DO c, s) —[eval]—> s3

declare ezxec.intros [intro]

inductive-cases
[elim!]: (SKIP,s) —[eval]—> t
and [elim!]: (z:=a,s) —[eval]—> ¢
and [elim!]: (cI;;¢2, ) —[eval]—> ¢
and [elim!]: (IF e THEN c1 ELSE c2, s) —[eval]—> ¢
and exec- WHILE-case: (WHILE b DO c¢,s) —[eval]—> t

Justifies using "exec" in the inductive definition of "eval"

lemma ezec-mono: A<=B ==> exec(4) <= exec(B)
(proof)

lemma [pred-set-conv:

(Azz"yy' (2, 2), (3, ¥) € R) <= Az " yy' ((z, '), (y, ¥) € 9)) = (R
<= 9)
{proof )

lemma [pred-set-conv:
(Azz'y. ((z, '), y) € R) <= Az z’y. ((z, ), y) € §)) = (R <= 5)
{proof)

Command execution is functional (deterministic) provided evaluation is

theorem single-valued-exec: single-valued ev ==> single-valued(exec ev)
(proof)

13.2 Expressions

Evaluation of arithmetic expressions

inductive-set
eval :: ((expxstate) x (natxstate)) set
and eval-rel :: [expxstate,natxstate] => bool (infixl «<—|—>» 50)
where
esig —|—> ns == (esig, ns) € eval
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| N [introl]: (N(n),s) —|—> (n,s)
| X [introl]: (X(z),s) —|—> (s(x),s)

| Op [intro]: [| (e0,s) —|—> (n0,s0); (el,s0) —|—> (nl,s1) |]
==> (Op felel,s) —|—> (fn0nl, sl)

| valOf [intro]: || (¢,s) —[eval]—> s0; (e,s0) —|—> (n,s1) |]
==> (VALOF ¢ RESULTIS e, s) —|—> (n, s1)

monos erec-mono

inductive-cases
[elim!]: (N(n),sigma) —|—> (n',s")
and [elim!]: (X(z),sigma) —|—> (n,s’)
and [elim!]: (Op f al a2,sigma) —|—> (n,s’)
and [elim!]: (VALOF ¢ RESULTIS e, s) —|—> (n, s1)

lemma var-assign-eval [introl]: (X z, s(z:=n)) —|—> (n, s(z:=n))
(proof)

Make the induction rule look nicer — though eta-contract makes the new
version look worse than it is...

lemma split-lemma: {((e,s),(n,s")). P e sn s’} = Collect (case-prod (%ov. case-prod
(case-prod P v)))

(proof)
New induction rule. Note the form of the VALOF induction hypothesis

lemma eval-induct
[case-names N X Op valOf, consumes 1, induct set: eval):
[l (e,8) =[=> (n,5);
ns. P (Nn)sns;
Nsz. P (X z)s (sz) s
NeO el fnOnl s sOsl.
[| (e0,8) —|—> (n0,s0); P e0 s n0 s0;
(e1,80) —|—> (nl,s1); P el s0 nl sl
] ==> P (Op feOel)s (fn0nl) si;
NeenssOst.
[| (¢,8) —[eval Int {((e,s),(n,s")). P esn s'}]—> s0;
(¢,8) —[eval]—> s0;
(e,80) —|—> (n,s1); P e sOn sl ||
==> P (VALOF ¢ RESULTIS e) s n s1
| ==>Pesns’
(proof)

Lemma for Function-eval. The major premise is that (c¢,s) executes to sf
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using eval restricted to its functional part. Note that the execution (c,s)

—[eval]—> s2 can use unrestricted eval! The reason is that the execution

(¢,s) —leval Int {...}]—> s1 assures us that execution is functional on the

argument (c,s).

lemma com-Unique:

(¢,8) —[eval Int {((e,s),(n,t)). Vnt'. (e,s) —|—> nt’ ——> (n,t)=nt'}]—> s
==> Vs2. (¢,s) —[eval]—> s2 ——> s2=s1

(proof)

Expression evaluation is functional, or deterministic

theorem single-valued-eval: single-valued eval

(proof)

lemma eval-N-E [dest!]: (N n, s) —|—> (v, s') ==> (v=n & s’ =)
{proof)

This theorem says that "WHILE TRUE DO c¢" cannot terminate

lemma while-true-E:
(¢ 8) —[eval]l—> t ==> ¢’ = WHILE (N 0) DO ¢ ==> Faulse
(proof )

13.3 Equivalence of IF e THEN c;;(WHILE e DO c) ELSE
SKIP and WHILE e DO c

lemma while-if1:
(¢';s) —levall—> t
==> ¢’ = WHILE ¢ DO ¢ ==>
(IF e THEN c;;c¢’ ELSE SKIP, s) —[eval]—> t
(proof )

lemma while-if2:
(¢',s) —[eval]—> ¢
==> ¢’ = IF e THEN c¢;;( WHILE e DO ¢) ELSE SKIP ==>
(WHILE e DO ¢, s) —[eval]—> t

(proof)

theorem while-if:
((IF e THEN c;;(WHILE e DO ¢) ELSE SKIP, s) —[eval]—> t) =
((WHILE e DO ¢, s) —[eval]—> t)

(proof)
13.4 Equivalence of (IF e THEN c1 ELSE c2);;c and IF e
THEN (c1;;c) ELSE (c2;5¢)

lemma if-semil:
(¢',s) —|eval]—> ¢
==> ¢’ = (IF e THEN c1 ELSE ¢2);;c ==>
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(IF e THEN (cl;;¢) ELSE (c2;5¢), s) —[eval]—> t
{proof)

lemma if-semi2:
(c',s) —[eval]—> ¢
==> ¢’ = IF ¢ THEN (cl1;;¢) ELSE (c2;;¢) ==>
((IF e THEN c1 ELSE ¢2);;¢, s) —[eval]—> t
{proof )

theorem if-semi: (((IF e THEN c1 ELSE c¢2);;¢, s) —[eval]—> t) =
((IF e THEN (cl;;¢) ELSE (c2;55¢), s) —[eval]—> t)
{proof )

13.5 Equivalence of VALOF c1 RESULTIS (VALOF c2 RE-
SULTIS e) and VALOF c1;;c2 RESULTIS e

lemma wvalof-valof1 :
(e'8) =|=> (v,s")
==> e’ = VALOF c1 RESULTIS (VALOF ¢2 RESULTIS e) ==>
(VALOF c1;;¢2 RESULTIS e, s) —|—> (v,s')
(proof )

lemma valof-valof2:
(e;s) —|—> (v,s")
==> e’ = VALOF c1;;c2 RESULTIS ¢ ==>
(VALOF ¢1 RESULTIS (VALOF ¢2 RESULTIS e), s) —|—> (v,s")
(proof )

theorem valof-valof:
((VALOF c1 RESULTIS (VALOF ¢2 RESULTIS e), s) —|—> (v,s)) =
((VALOF c1;;¢2 RESULTIS e, s) —|—> (v,s"))
(proof)

13.6 Equivalence of VALOF SKIP RESULTIS e and e

lemma wvalof-skip1:
(6/7‘9) _|_> ('Uvsl)
==> ¢’ = VALOF SKIP RESULTIS ¢ ==>
(e, s) —=|=> (v,s)
(proof)

lemma valof-skip2:
(e,s) —|—> (v,s") ==> (VALOF SKIP RESULTIS e, s) —|—> (v,s")
(proof)

theorem valof-skip:
((VALOF SKIP RESULTIS e, s) —|—> (v,s")) = ((e, s) —|—> (v,s"))
{proof)
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13.7 Equivalence of VALOF x:=e RESULTIS x and e
lemma valof-assignl:
(es) =[=> (v,8")
==> ¢’ = VALOF x:=e¢ RESULTIS X © ==>
(s’ (e, s) —=|—> (v,8") & (s"" = s'(x:=0)))
{proof )
lemma valof-assign2:
(e,8) —|—> (v,8") ==> (VALOF z:=e RESULTIS X z, s) —|—> (v,8'(x:=v))
(proof )

end
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