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Abstract

This is a collection of small examples to demonstrate Isabelle/HOL’s
(co)inductive definitions package. Large examples appear on many
other sessions, such as Lambda, IMP, and Auth.
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1 Common patterns of induction
theory Common-Patterns
imports Main
begin

The subsequent Isar proof schemes illustrate common proof patterns sup-
ported by the generic induct method.
To demonstrate variations on statement (goal) structure we refer to the
induction rule of Peano natural numbers: [[P 0 ;

∧
nat. P nat =⇒ P (Suc

nat)]] =⇒ P nat, which is the simplest case of datatype induction. We
shall also see more complex (mutual) datatype inductions involving several
rules. Working with inductive predicates is similar, but involves explicit
facts about membership, instead of implicit syntactic typing.

1.1 Variations on statement structure
1.1.1 Local facts and parameters

Augmenting a problem by additional facts and locally fixed variables is a
bread-and-butter method in many applications. This is where unwieldy
object-level ∀ and −→ used to occur in the past. The induct method works
with primary means of the proof language instead.
lemma

fixes n :: nat
and x :: ′a

assumes A n x
shows P n x using ‹A n x›

proof (induct n arbitrary: x)
case 0
note prem = ‹A 0 x›
show P 0 x 〈proof 〉

next
case (Suc n)
note hyp = ‹

∧
x. A n x =⇒ P n x›

and prem = ‹A (Suc n) x›
show P (Suc n) x 〈proof 〉

qed

1.1.2 Local definitions

Here the idea is to turn sub-expressions of the problem into a defined induc-
tion variable. This is often accompanied with fixing of auxiliary parameters
in the original expression, otherwise the induction step would refer invari-
ably to particular entities. This combination essentially expresses a partially
abstracted representation of inductive expressions.
lemma
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fixes a :: ′a ⇒ nat
assumes A (a x)
shows P (a x) using ‹A (a x)›

proof (induct n ≡ a x arbitrary: x)
case 0
note prem = ‹A (a x)›

and defn = ‹0 = a x›
show P (a x) 〈proof 〉

next
case (Suc n)
note hyp = ‹

∧
x. n = a x =⇒ A (a x) =⇒ P (a x)›

and prem = ‹A (a x)›
and defn = ‹Suc n = a x›

show P (a x) 〈proof 〉
qed

Observe how the local definition n = a x recurs in the inductive cases as 0
= a x and Suc n = a x, according to underlying induction rule.

1.1.3 Simple simultaneous goals

The most basic simultaneous induction operates on several goals one-by-one,
where each case refers to induction hypotheses that are duplicated according
to the number of conclusions.
lemma

fixes n :: nat
shows P n and Q n

proof (induct n)
case 0 case 1
show P 0 〈proof 〉

next
case 0 case 2
show Q 0 〈proof 〉

next
case (Suc n) case 1
note hyps = ‹P n› ‹Q n›
show P (Suc n) 〈proof 〉

next
case (Suc n) case 2
note hyps = ‹P n› ‹Q n›
show Q (Suc n) 〈proof 〉

qed

The split into subcases may be deferred as follows – this is particularly
relevant for goal statements with local premises.
lemma

fixes n :: nat
shows A n =⇒ P n
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and B n =⇒ Q n
proof (induct n)

case 0
{

case 1
note ‹A 0 ›
show P 0 〈proof 〉

next
case 2
note ‹B 0 ›
show Q 0 〈proof 〉

}
next

case (Suc n)
note ‹A n =⇒ P n›

and ‹B n =⇒ Q n›
{

case 1
note ‹A (Suc n)›
show P (Suc n) 〈proof 〉

next
case 2
note ‹B (Suc n)›
show Q (Suc n) 〈proof 〉

}
qed

1.1.4 Compound simultaneous goals

The following pattern illustrates the slightly more complex situation of si-
multaneous goals with individual local assumptions. In compound simulta-
neous statements like this, local assumptions need to be included into each
goal, using =⇒ of the Pure framework. In contrast, local parameters do
not require separate

∧
prefixes here, but may be moved into the common

context of the whole statement.
lemma

fixes n :: nat
and x :: ′a
and y :: ′b

shows A n x =⇒ P n x
and B n y =⇒ Q n y

proof (induct n arbitrary: x y)
case 0
{

case 1
note prem = ‹A 0 x›
show P 0 x 〈proof 〉

}
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{
case 2
note prem = ‹B 0 y›
show Q 0 y 〈proof 〉

}
next

case (Suc n)
note hyps = ‹

∧
x. A n x =⇒ P n x› ‹

∧
y. B n y =⇒ Q n y›

then have some-intermediate-result 〈proof 〉
{

case 1
note prem = ‹A (Suc n) x›
show P (Suc n) x 〈proof 〉

}
{

case 2
note prem = ‹B (Suc n) y›
show Q (Suc n) y 〈proof 〉

}
qed

Here induct provides again nested cases with numbered sub-cases, which
allows to share common parts of the body context. In typical applications,
there could be a long intermediate proof of general consequences of the
induction hypotheses, before finishing each conclusion separately.

1.2 Multiple rules

Multiple induction rules emerge from mutual definitions of datatypes, in-
ductive predicates, functions etc. The induct method accepts replicated
arguments (with and separator), corresponding to each projection of the
induction principle.
The goal statement essentially follows the same arrangement, although it
might be subdivided into simultaneous sub-problems as before!
datatype foo = Foo1 nat | Foo2 bar

and bar = Bar1 bool | Bar2 bazar
and bazar = Bazar foo

The pack of induction rules for this datatype is:

[[
∧

x. P1 (Foo1 x);
∧

x. P2 x =⇒ P1 (Foo2 x);
∧

x. P2 (Bar1 x);∧
x. P3 x =⇒ P2 (Bar2 x);

∧
x. P1 x =⇒ P3 (Bazar x)]]

=⇒ P1 foo
[[
∧

x. P1 (Foo1 x);
∧

x. P2 x =⇒ P1 (Foo2 x);
∧

x. P2 (Bar1 x);∧
x. P3 x =⇒ P2 (Bar2 x);

∧
x. P1 x =⇒ P3 (Bazar x)]]

=⇒ P2 bar
[[
∧

x. P1 (Foo1 x);
∧

x. P2 x =⇒ P1 (Foo2 x);
∧

x. P2 (Bar1 x);∧
x. P3 x =⇒ P2 (Bar2 x);

∧
x. P1 x =⇒ P3 (Bazar x)]]
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=⇒ P3 bazar

This corresponds to the following basic proof pattern:
lemma

fixes foo :: foo
and bar :: bar
and bazar :: bazar

shows P foo
and Q bar
and R bazar

proof (induct foo and bar and bazar)
case (Foo1 n)
show P (Foo1 n) 〈proof 〉

next
case (Foo2 bar)
note ‹Q bar›
show P (Foo2 bar) 〈proof 〉

next
case (Bar1 b)
show Q (Bar1 b) 〈proof 〉

next
case (Bar2 bazar)
note ‹R bazar›
show Q (Bar2 bazar) 〈proof 〉

next
case (Bazar foo)
note ‹P foo›
show R (Bazar foo) 〈proof 〉

qed

This can be combined with the previous techniques for compound state-
ments, e.g. like this.
lemma

fixes x :: ′a and y :: ′b and z :: ′c
and foo :: foo
and bar :: bar
and bazar :: bazar

shows
A x foo =⇒ P x foo

and
B1 y bar =⇒ Q1 y bar
B2 y bar =⇒ Q2 y bar

and
C1 z bazar =⇒ R1 z bazar
C2 z bazar =⇒ R2 z bazar
C3 z bazar =⇒ R3 z bazar

proof (induct foo and bar and bazar arbitrary: x and y and z)
oops

8



1.3 Inductive predicates

The most basic form of induction involving predicates (or sets) essentially
eliminates a given membership fact.
inductive Even :: nat ⇒ bool where

zero: Even 0
| double: Even (2 ∗ n) if Even n for n

lemma
assumes Even n
shows P n
using assms

proof induct
case zero
show P 0 〈proof 〉

next
case (double n)
note ‹Even n› and ‹P n›
show P (2 ∗ n) 〈proof 〉

qed

Alternatively, an initial rule statement may be proven as follows, performing
“in-situ” elimination with explicit rule specification.
lemma Even n =⇒ P n
proof (induct rule: Even.induct)

oops

Simultaneous goals do not introduce anything new.
lemma

assumes Even n
shows P1 n and P2 n
using assms

proof induct
case zero
{

case 1
show P1 0 〈proof 〉

next
case 2
show P2 0 〈proof 〉

}
next

case (double n)
note ‹Even n› and ‹P1 n› and ‹P2 n›
{

case 1
show P1 (2 ∗ n) 〈proof 〉

next
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case 2
show P2 (2 ∗ n) 〈proof 〉

}
qed

Working with mutual rules requires special care in composing the statement
as a two-level conjunction, using lists of propositions separated by and. For
example:
inductive Evn :: nat ⇒ bool and Odd :: nat ⇒ bool
where

zero: Evn 0
| succ-Evn: Odd (Suc n) if Evn n for n
| succ-Odd: Evn (Suc n) if Odd n for n

lemma
Evn n =⇒ P1 n
Evn n =⇒ P2 n
Evn n =⇒ P3 n

and
Odd n =⇒ Q1 n
Odd n =⇒ Q2 n

proof (induct rule: Evn-Odd.inducts)
case zero
{ case 1 show P1 0 〈proof 〉 }
{ case 2 show P2 0 〈proof 〉 }
{ case 3 show P3 0 〈proof 〉 }

next
case (succ-Evn n)
note ‹Evn n› and ‹P1 n› ‹P2 n› ‹P3 n›
{ case 1 show Q1 (Suc n) 〈proof 〉 }
{ case 2 show Q2 (Suc n) 〈proof 〉 }

next
case (succ-Odd n)
note ‹Odd n› and ‹Q1 n› ‹Q2 n›
{ case 1 show P1 (Suc n) 〈proof 〉 }
{ case 2 show P2 (Suc n) 〈proof 〉 }
{ case 3 show P3 (Suc n) 〈proof 〉 }

qed

Cases and hypotheses in each case can be named explicitly.
inductive star :: ( ′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool for r
where

refl: star r x x for x
| step: star r x z if r x y and star r y z for x y z

Underscores are replaced by the default name hyps:
lemmas star-induct = star .induct [case-names base step[r - IH ]]
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lemma star r x y =⇒ star r y z =⇒ star r x z
proof (induct rule: star-induct) print-cases

case base
then show ?case .

next
case (step a b c) print-facts
from step.prems have star r b z by (rule step.IH )
with step.r show ?case by (rule star .step)

qed

end

2 Nested datatypes
theory Nested-Datatype
imports Main
begin

2.1 Terms and substitution
datatype ( ′a, ′b) term =

Var ′a
| App ′b ( ′a, ′b) term list

primrec subst-term :: ( ′a ⇒ ( ′a, ′b) term) ⇒ ( ′a, ′b) term ⇒ ( ′a, ′b) term
and subst-term-list :: ( ′a ⇒ ( ′a, ′b) term) ⇒ ( ′a, ′b) term list ⇒ ( ′a, ′b) term

list
where

subst-term f (Var a) = f a
| subst-term f (App b ts) = App b (subst-term-list f ts)
| subst-term-list f [] = []
| subst-term-list f (t # ts) = subst-term f t # subst-term-list f ts

lemmas subst-simps = subst-term.simps subst-term-list.simps

A simple lemma about composition of substitutions.
lemma

subst-term (subst-term f1 ◦ f2 ) t =
subst-term f1 (subst-term f2 t)

and
subst-term-list (subst-term f1 ◦ f2 ) ts =

subst-term-list f1 (subst-term-list f2 ts)
by (induct t and ts rule: subst-term.induct subst-term-list.induct) simp-all

lemma subst-term (subst-term f1 ◦ f2 ) t = subst-term f1 (subst-term f2 t)
proof −

let ?P t = ?thesis
let ?Q = λts. subst-term-list (subst-term f1 ◦ f2 ) ts =
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subst-term-list f1 (subst-term-list f2 ts)
show ?thesis
proof (induct t rule: subst-term.induct)

show ?P (Var a) for a by simp
show ?P (App b ts) if ?Q ts for b ts

using that by (simp only: subst-simps)
show ?Q [] by simp
show ?Q (t # ts) if ?P t ?Q ts for t ts

using that by (simp only: subst-simps)
qed

qed

2.2 Alternative induction
lemma subst-term (subst-term f1 ◦ f2 ) t = subst-term f1 (subst-term f2 t)
proof (induct t rule: term.induct)

case (Var a)
show ?case by (simp add: o-def )

next
case (App b ts)
then show ?case by (induct ts) simp-all

qed

end

3 Defining an Initial Algebra by Quotienting a
Free Algebra

For Lawrence Paulson’s paper “Defining functions on equivalence classes”
ACM Transactions on Computational Logic 7:40 (2006), 658–675, illustrat-
ing bare-bones quotient constructions. Any comparison using lifting and
transfer should be done in a separate theory.
theory QuoDataType imports Main begin

3.1 Defining the Free Algebra

Messages with encryption and decryption as free constructors.
datatype

freemsg = NONCE nat
| MPAIR freemsg freemsg
| CRYPT nat freemsg
| DECRYPT nat freemsg

The equivalence relation, which makes encryption and decryption inverses
provided the keys are the same.
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The first two rules are the desired equations. The next four rules make
the equations applicable to subterms. The last two rules are symmetry and
transitivity.
inductive-set

msgrel :: (freemsg ∗ freemsg) set
and msg-rel :: [freemsg, freemsg] => bool (infixl ‹∼› 50 )
where

X ∼ Y == (X ,Y ) ∈ msgrel
| CD: CRYPT K (DECRYPT K X) ∼ X
| DC : DECRYPT K (CRYPT K X) ∼ X
| NONCE : NONCE N ∼ NONCE N
| MPAIR: [[X ∼ X ′; Y ∼ Y ′]] =⇒ MPAIR X Y ∼ MPAIR X ′ Y ′

| CRYPT : X ∼ X ′ =⇒ CRYPT K X ∼ CRYPT K X ′

| DECRYPT : X ∼ X ′ =⇒ DECRYPT K X ∼ DECRYPT K X ′

| SYM : X ∼ Y =⇒ Y ∼ X
| TRANS : [[X ∼ Y ; Y ∼ Z ]] =⇒ X ∼ Z

Proving that it is an equivalence relation
lemma msgrel-refl: X ∼ X

by (induct X) (blast intro: msgrel.intros)+

theorem equiv-msgrel: equiv UNIV msgrel
proof (rule equivI )

show msgrel ⊆ UNIV × UNIV by simp
show refl msgrel by (simp add: refl-on-def msgrel-refl)
show sym msgrel by (simp add: sym-def , blast intro: msgrel.SYM )
show trans msgrel by (simp add: trans-def , blast intro: msgrel.TRANS)

qed

3.2 Some Functions on the Free Algebra
3.2.1 The Set of Nonces

A function to return the set of nonces present in a message. It will be lifted
to the initial algebra, to serve as an example of that process.
primrec freenonces :: freemsg ⇒ nat set where

freenonces (NONCE N ) = {N}
| freenonces (MPAIR X Y ) = freenonces X ∪ freenonces Y
| freenonces (CRYPT K X) = freenonces X
| freenonces (DECRYPT K X) = freenonces X

This theorem lets us prove that the nonces function respects the equivalence
relation. It also helps us prove that Nonce (the abstract constructor) is
injective
theorem msgrel-imp-eq-freenonces: U ∼ V =⇒ freenonces U = freenonces V

by (induct set: msgrel) auto
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3.2.2 The Left Projection

A function to return the left part of the top pair in a message. It will be
lifted to the initial algebra, to serve as an example of that process.
primrec freeleft :: freemsg ⇒ freemsg where

freeleft (NONCE N ) = NONCE N
| freeleft (MPAIR X Y ) = X
| freeleft (CRYPT K X) = freeleft X
| freeleft (DECRYPT K X) = freeleft X

This theorem lets us prove that the left function respects the equivalence
relation. It also helps us prove that MPair (the abstract constructor) is
injective
theorem msgrel-imp-eqv-freeleft:

U ∼ V =⇒ freeleft U ∼ freeleft V
by (induct set: msgrel) (auto intro: msgrel.intros)

3.2.3 The Right Projection

A function to return the right part of the top pair in a message.
primrec freeright :: freemsg ⇒ freemsg where

freeright (NONCE N ) = NONCE N
| freeright (MPAIR X Y ) = Y
| freeright (CRYPT K X) = freeright X
| freeright (DECRYPT K X) = freeright X

This theorem lets us prove that the right function respects the equivalence
relation. It also helps us prove that MPair (the abstract constructor) is
injective
theorem msgrel-imp-eqv-freeright:

U ∼ V =⇒ freeright U ∼ freeright V
by (induct set: msgrel) (auto intro: msgrel.intros)

3.2.4 The Discriminator for Constructors

A function to distinguish nonces, mpairs and encryptions
primrec freediscrim :: freemsg ⇒ int where

freediscrim (NONCE N ) = 0
| freediscrim (MPAIR X Y ) = 1
| freediscrim (CRYPT K X) = freediscrim X + 2
| freediscrim (DECRYPT K X) = freediscrim X − 2

This theorem helps us prove Nonce N 6= MPair X Y
theorem msgrel-imp-eq-freediscrim:

U ∼ V =⇒ freediscrim U = freediscrim V
by (induct set: msgrel) auto
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3.3 The Initial Algebra: A Quotiented Message Type
definition Msg = UNIV //msgrel

typedef msg = Msg
morphisms Rep-Msg Abs-Msg
unfolding Msg-def by (auto simp add: quotient-def )

The abstract message constructors
definition

Nonce :: nat ⇒ msg where
Nonce N = Abs-Msg(msgrel‘‘{NONCE N})

definition
MPair :: [msg,msg] ⇒ msg where
MPair X Y =

Abs-Msg (
⋃

U ∈ Rep-Msg X .
⋃

V ∈ Rep-Msg Y . msgrel‘‘{MPAIR U V })

definition
Crypt :: [nat,msg] ⇒ msg where
Crypt K X =

Abs-Msg (
⋃

U ∈ Rep-Msg X . msgrel‘‘{CRYPT K U})

definition
Decrypt :: [nat,msg] ⇒ msg where
Decrypt K X =

Abs-Msg (
⋃

U ∈ Rep-Msg X . msgrel‘‘{DECRYPT K U})

Reduces equality of equivalence classes to the msgrel relation: (msgrel ‘‘ {x}
= msgrel ‘‘ {y}) = (x ∼ y)
lemmas equiv-msgrel-iff = eq-equiv-class-iff [OF equiv-msgrel UNIV-I UNIV-I ]

declare equiv-msgrel-iff [simp]

All equivalence classes belong to set of representatives
lemma [simp]: msgrel‘‘{U} ∈ Msg
by (auto simp add: Msg-def quotient-def intro: msgrel-refl)

lemma inj-on-Abs-Msg: inj-on Abs-Msg Msg
by (meson Abs-Msg-inject inj-onI )

Reduces equality on abstractions to equality on representatives
declare inj-on-Abs-Msg [THEN inj-on-eq-iff , simp]

declare Abs-Msg-inverse [simp]

3.3.1 Characteristic Equations for the Abstract Constructors
lemma MPair : MPair (Abs-Msg(msgrel‘‘{U})) (Abs-Msg(msgrel‘‘{V })) =
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Abs-Msg (msgrel‘‘{MPAIR U V })
proof −

have (λU V . msgrel ‘‘ {MPAIR U V }) respects2 msgrel
by (auto simp add: congruent2-def msgrel.MPAIR)

thus ?thesis
by (simp add: MPair-def UN-equiv-class2 [OF equiv-msgrel equiv-msgrel])

qed

lemma Crypt: Crypt K (Abs-Msg(msgrel‘‘{U})) = Abs-Msg (msgrel‘‘{CRYPT K
U})
proof −

have (λU . msgrel ‘‘ {CRYPT K U}) respects msgrel
by (auto simp add: congruent-def msgrel.CRYPT )

thus ?thesis
by (simp add: Crypt-def UN-equiv-class [OF equiv-msgrel])

qed

lemma Decrypt:
Decrypt K (Abs-Msg(msgrel‘‘{U})) = Abs-Msg (msgrel‘‘{DECRYPT K U})

proof −
have (λU . msgrel ‘‘ {DECRYPT K U}) respects msgrel

by (auto simp add: congruent-def msgrel.DECRYPT )
thus ?thesis

by (simp add: Decrypt-def UN-equiv-class [OF equiv-msgrel])
qed

Case analysis on the representation of a msg as an equivalence class.
lemma eq-Abs-Msg [case-names Abs-Msg, cases type: msg]:

(
∧

U . z = Abs-Msg (msgrel ‘‘ {U}) =⇒ P) =⇒ P
by (metis Abs-Msg-cases Msg-def quotientE)

Establishing these two equations is the point of the whole exercise
theorem CD-eq [simp]: Crypt K (Decrypt K X) = X
by (cases X , simp add: Crypt Decrypt CD)

theorem DC-eq [simp]: Decrypt K (Crypt K X) = X
by (cases X , simp add: Crypt Decrypt DC )

3.4 The Abstract Function to Return the Set of Nonces
definition

nonces :: msg ⇒ nat set where
nonces X = (

⋃
U ∈ Rep-Msg X . freenonces U )

lemma nonces-congruent: freenonces respects msgrel
by (auto simp add: congruent-def msgrel-imp-eq-freenonces)

Now prove the four equations for nonces
lemma nonces-Nonce [simp]: nonces (Nonce N ) = {N}
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by (simp add: nonces-def Nonce-def
UN-equiv-class [OF equiv-msgrel nonces-congruent])

lemma nonces-MPair [simp]: nonces (MPair X Y ) = nonces X ∪ nonces Y
proof −

have
∧

U V . [[X = Abs-Msg (msgrel ‘‘ {U}); Y = Abs-Msg (msgrel ‘‘ {V })]]
=⇒ nonces (MPair X Y ) = nonces X ∪ nonces Y

by (simp add: nonces-def MPair
UN-equiv-class [OF equiv-msgrel nonces-congruent])

then show ?thesis
by (meson eq-Abs-Msg)

qed

lemma nonces-Crypt [simp]: nonces (Crypt K X) = nonces X
proof −

have
∧

U . X = Abs-Msg (msgrel ‘‘ {U}) =⇒ nonces (Crypt K X) = nonces X
by (simp add: nonces-def Crypt UN-equiv-class [OF equiv-msgrel nonces-congruent])

then show ?thesis
by (meson eq-Abs-Msg)

qed

lemma nonces-Decrypt [simp]: nonces (Decrypt K X) = nonces X
proof −

have
∧

U . X = Abs-Msg (msgrel ‘‘ {U}) =⇒ nonces (Decrypt K X) = nonces X
by (simp add: nonces-def Decrypt UN-equiv-class [OF equiv-msgrel nonces-congruent])

then show ?thesis
by (meson eq-Abs-Msg)

qed

3.5 The Abstract Function to Return the Left Part
definition

left :: msg ⇒ msg
where left X = Abs-Msg (

⋃
U ∈ Rep-Msg X . msgrel‘‘{freeleft U})

lemma left-congruent: (λU . msgrel ‘‘ {freeleft U}) respects msgrel
by (auto simp add: congruent-def msgrel-imp-eqv-freeleft)

Now prove the four equations for left
lemma left-Nonce [simp]: left (Nonce N ) = Nonce N
by (simp add: left-def Nonce-def

UN-equiv-class [OF equiv-msgrel left-congruent])

lemma left-MPair [simp]: left (MPair X Y ) = X
by (cases X , cases Y ) (simp add: left-def MPair UN-equiv-class [OF equiv-msgrel

left-congruent])
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lemma left-Crypt [simp]: left (Crypt K X) = left X
by (cases X) (simp add: left-def Crypt UN-equiv-class [OF equiv-msgrel left-congruent])

lemma left-Decrypt [simp]: left (Decrypt K X) = left X
by (metis CD-eq left-Crypt)

3.6 The Abstract Function to Return the Right Part
definition

right :: msg ⇒ msg
where right X = Abs-Msg (

⋃
U ∈ Rep-Msg X . msgrel‘‘{freeright U})

lemma right-congruent: (λU . msgrel ‘‘ {freeright U}) respects msgrel
by (auto simp add: congruent-def msgrel-imp-eqv-freeright)

Now prove the four equations for right
lemma right-Nonce [simp]: right (Nonce N ) = Nonce N

by (simp add: right-def Nonce-def
UN-equiv-class [OF equiv-msgrel right-congruent])

lemma right-MPair [simp]: right (MPair X Y ) = Y
by (cases X , cases Y ) (simp add: right-def MPair UN-equiv-class [OF equiv-msgrel

right-congruent])

lemma right-Crypt [simp]: right (Crypt K X) = right X
by (cases X) (simp add: right-def Crypt UN-equiv-class [OF equiv-msgrel right-congruent])

lemma right-Decrypt [simp]: right (Decrypt K X) = right X
by (metis CD-eq right-Crypt)

3.7 Injectivity Properties of Some Constructors
lemma NONCE-imp-eq: NONCE m ∼ NONCE n =⇒ m = n

by (drule msgrel-imp-eq-freenonces, simp)

Can also be proved using the function nonces
lemma Nonce-Nonce-eq [iff ]: (Nonce m = Nonce n) = (m = n)

by (auto simp add: Nonce-def msgrel-refl dest: NONCE-imp-eq)

lemma MPAIR-imp-eqv-left: MPAIR X Y ∼ MPAIR X ′ Y ′ =⇒ X ∼ X ′

by (drule msgrel-imp-eqv-freeleft, simp)

lemma MPair-imp-eq-left:
assumes eq: MPair X Y = MPair X ′ Y ′ shows X = X ′

proof −
from eq
have left (MPair X Y ) = left (MPair X ′ Y ′) by simp
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thus ?thesis by simp
qed

lemma MPAIR-imp-eqv-right: MPAIR X Y ∼ MPAIR X ′ Y ′ =⇒ Y ∼ Y ′

by (drule msgrel-imp-eqv-freeright, simp)

lemma MPair-imp-eq-right: MPair X Y = MPair X ′ Y ′ =⇒ Y = Y ′

by (metis right-MPair)

theorem MPair-MPair-eq [iff ]: (MPair X Y = MPair X ′ Y ′) = (X=X ′& Y=Y ′)

by (blast dest: MPair-imp-eq-left MPair-imp-eq-right)

lemma NONCE-neqv-MPAIR: NONCE m ∼ MPAIR X Y =⇒ False
by (drule msgrel-imp-eq-freediscrim, simp)

theorem Nonce-neq-MPair [iff ]: Nonce N 6= MPair X Y
by (cases X , cases Y ) (use MPair NONCE-neqv-MPAIR Nonce-def in fastforce)

Example suggested by a referee
theorem Crypt-Nonce-neq-Nonce: Crypt K (Nonce M ) 6= Nonce N

by (auto simp add: Nonce-def Crypt dest: msgrel-imp-eq-freediscrim)

...and many similar results
theorem Crypt2-Nonce-neq-Nonce: Crypt K (Crypt K ′ (Nonce M )) 6= Nonce N

by (auto simp add: Nonce-def Crypt dest: msgrel-imp-eq-freediscrim)

theorem Crypt-Crypt-eq [iff ]: (Crypt K X = Crypt K X ′) = (X=X ′)
proof

assume Crypt K X = Crypt K X ′

hence Decrypt K (Crypt K X) = Decrypt K (Crypt K X ′) by simp
thus X = X ′ by simp

next
assume X = X ′

thus Crypt K X = Crypt K X ′ by simp
qed

theorem Decrypt-Decrypt-eq [iff ]: (Decrypt K X = Decrypt K X ′) = (X=X ′)
proof

assume Decrypt K X = Decrypt K X ′

hence Crypt K (Decrypt K X) = Crypt K (Decrypt K X ′) by simp
thus X = X ′ by simp

next
assume X = X ′

thus Decrypt K X = Decrypt K X ′ by simp
qed

lemma msg-induct [case-names Nonce MPair Crypt Decrypt, cases type: msg]:
assumes N :

∧
N . P (Nonce N )
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and M :
∧

X Y . [[P X ; P Y ]] =⇒ P (MPair X Y )
and C :

∧
K X . P X =⇒ P (Crypt K X)

and D:
∧

K X . P X =⇒ P (Decrypt K X)
shows P msg

proof (cases msg)
case (Abs-Msg U )
have P (Abs-Msg (msgrel ‘‘ {U}))
proof (induct U )

case (NONCE N )
with N show ?case by (simp add: Nonce-def )

next
case (MPAIR X Y )
with M [of Abs-Msg (msgrel ‘‘ {X}) Abs-Msg (msgrel ‘‘ {Y })]
show ?case by (simp add: MPair)

next
case (CRYPT K X)
with C [of Abs-Msg (msgrel ‘‘ {X})]
show ?case by (simp add: Crypt)

next
case (DECRYPT K X)
with D [of Abs-Msg (msgrel ‘‘ {X})]
show ?case by (simp add: Decrypt)

qed
with Abs-Msg show ?thesis by (simp only:)

qed

3.8 The Abstract Discriminator

However, as Crypt-Nonce-neq-Nonce above illustrates, we don’t need this
function in order to prove discrimination theorems.
definition

discrim :: msg ⇒ int where
discrim X = the-elem (

⋃
U ∈ Rep-Msg X . {freediscrim U})

lemma discrim-congruent: (λU . {freediscrim U}) respects msgrel
by (auto simp add: congruent-def msgrel-imp-eq-freediscrim)

Now prove the four equations for discrim
lemma discrim-Nonce [simp]: discrim (Nonce N ) = 0

by (simp add: discrim-def Nonce-def
UN-equiv-class [OF equiv-msgrel discrim-congruent])

lemma discrim-MPair [simp]: discrim (MPair X Y ) = 1
proof −

have
∧

U V . discrim (MPair (Abs-Msg (msgrel ‘‘ {U})) (Abs-Msg (msgrel ‘‘
{V }))) = 1

by (simp add: discrim-def MPair UN-equiv-class [OF equiv-msgrel discrim-congruent])
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then show ?thesis
by (metis eq-Abs-Msg)

qed

lemma discrim-Crypt [simp]: discrim (Crypt K X) = discrim X + 2
by (cases X) (use Crypt UN-equiv-class discrim-congruent discrim-def equiv-msgrel

in fastforce)

lemma discrim-Decrypt [simp]: discrim (Decrypt K X) = discrim X − 2
by (cases X) (use Decrypt UN-equiv-class discrim-congruent discrim-def equiv-msgrel

in fastforce)

end

4 Quotienting a Free Algebra Involving Nested
Recursion

This is the development promised in Lawrence Paulson’s paper “Defining
functions on equivalence classes” ACM Transactions on Computational Logic
7:40 (2006), 658–675, illustrating bare-bones quotient constructions. Any
comparison using lifting and transfer should be done in a separate theory.
theory QuoNestedDataType imports Main begin

4.1 Defining the Free Algebra

Messages with encryption and decryption as free constructors.
datatype

freeExp = VAR nat
| PLUS freeExp freeExp
| FNCALL nat freeExp list

datatype-compat freeExp

The equivalence relation, which makes PLUS associative.

The first rule is the desired equation. The next three rules make the equa-
tions applicable to subterms. The last two rules are symmetry and transi-
tivity.
inductive-set

exprel :: (freeExp ∗ freeExp) set
and exp-rel :: [freeExp, freeExp] => bool (infixl ‹∼› 50 )
where

X ∼ Y ≡ (X ,Y ) ∈ exprel
| ASSOC : PLUS X (PLUS Y Z ) ∼ PLUS (PLUS X Y ) Z
| VAR: VAR N ∼ VAR N
| PLUS : [[X ∼ X ′; Y ∼ Y ′]] =⇒ PLUS X Y ∼ PLUS X ′ Y ′
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| FNCALL: (Xs,Xs ′) ∈ listrel exprel =⇒ FNCALL F Xs ∼ FNCALL F Xs ′

| SYM : X ∼ Y =⇒ Y ∼ X
| TRANS : [[X ∼ Y ; Y ∼ Z ]] =⇒ X ∼ Z
monos listrel-mono

Proving that it is an equivalence relation
lemma exprel-refl: X ∼ X

and list-exprel-refl: (Xs,Xs) ∈ listrel(exprel)
by (induct X and Xs rule: compat-freeExp.induct compat-freeExp-list.induct)
(blast intro: exprel.intros listrel.intros)+

theorem equiv-exprel: equiv UNIV exprel
proof (rule equivI )

show exprel ⊆ UNIV × UNIV by simp
show refl exprel by (simp add: refl-on-def exprel-refl)
show sym exprel by (simp add: sym-def , blast intro: exprel.SYM )
show trans exprel by (simp add: trans-def , blast intro: exprel.TRANS)

qed

theorem equiv-list-exprel: equiv UNIV (listrel exprel)
using equiv-listrel [OF equiv-exprel] by simp

lemma FNCALL-Cons:
[[X ∼ X ′; (Xs,Xs ′) ∈ listrel(exprel)]] =⇒ FNCALL F (X#Xs) ∼ FNCALL F

(X ′#Xs ′)
by (blast intro: exprel.intros listrel.intros)

4.2 Some Functions on the Free Algebra
4.2.1 The Set of Variables

A function to return the set of variables present in a message. It will be
lifted to the initial algebra, to serve as an example of that process. Note
that the "free" refers to the free datatype rather than to the concept of a
free variable.
primrec freevars :: freeExp ⇒ nat set and freevars-list :: freeExp list ⇒ nat set

where
freevars (VAR N ) = {N}
| freevars (PLUS X Y ) = freevars X ∪ freevars Y
| freevars (FNCALL F Xs) = freevars-list Xs

| freevars-list [] = {}
| freevars-list (X # Xs) = freevars X ∪ freevars-list Xs

This theorem lets us prove that the vars function respects the equivalence
relation. It also helps us prove that Variable (the abstract constructor) is
injective
theorem exprel-imp-eq-freevars: U ∼ V =⇒ freevars U = freevars V
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proof (induct set: exprel)
case (FNCALL Xs Xs ′ F)
then show ?case

by (induct rule: listrel.induct) auto
qed (simp-all add: Un-assoc)

4.2.2 Functions for Freeness

A discriminator function to distinguish vars, sums and function calls
primrec freediscrim :: freeExp ⇒ int where

freediscrim (VAR N ) = 0
| freediscrim (PLUS X Y ) = 1
| freediscrim (FNCALL F Xs) = 2

theorem exprel-imp-eq-freediscrim:
U ∼ V =⇒ freediscrim U = freediscrim V

by (induct set: exprel) auto

This function, which returns the function name, is used to prove part of the
injectivity property for FnCall.
primrec freefun :: freeExp ⇒ nat where

freefun (VAR N ) = 0
| freefun (PLUS X Y ) = 0
| freefun (FNCALL F Xs) = F

theorem exprel-imp-eq-freefun:
U ∼ V =⇒ freefun U = freefun V

by (induct set: exprel) (simp-all add: listrel.intros)

This function, which returns the list of function arguments, is used to prove
part of the injectivity property for FnCall.
primrec freeargs :: freeExp ⇒ freeExp list where

freeargs (VAR N ) = []
| freeargs (PLUS X Y ) = []
| freeargs (FNCALL F Xs) = Xs

theorem exprel-imp-eqv-freeargs:
assumes U ∼ V
shows (freeargs U , freeargs V ) ∈ listrel exprel
using assms

proof induction
case (FNCALL Xs Xs ′ F)
then show ?case

by (simp add: listrel-iff-nth)
next

case (SYM X Y )
then show ?case
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by (meson equivE equiv-list-exprel symD)
next

case (TRANS X Y Z )
then show ?case

by (meson equivE equiv-list-exprel transD)
qed (use listrel.simps in auto)

4.3 The Initial Algebra: A Quotiented Message Type
definition Exp = UNIV //exprel

typedef exp = Exp
morphisms Rep-Exp Abs-Exp
unfolding Exp-def by (auto simp add: quotient-def )

The abstract message constructors
definition

Var :: nat ⇒ exp where
Var N = Abs-Exp(exprel‘‘{VAR N})

definition
Plus :: [exp,exp] ⇒ exp where
Plus X Y =

Abs-Exp (
⋃

U ∈ Rep-Exp X .
⋃

V ∈ Rep-Exp Y . exprel‘‘{PLUS U V })

definition
FnCall :: [nat, exp list] ⇒ exp where
FnCall F Xs =

Abs-Exp (
⋃

Us ∈ listset (map Rep-Exp Xs). exprel‘‘{FNCALL F Us})

Reduces equality of equivalence classes to the exprel relation: (exprel ‘‘ {x}
= exprel ‘‘ {y}) = (x ∼ y)
lemmas equiv-exprel-iff = eq-equiv-class-iff [OF equiv-exprel UNIV-I UNIV-I ]

declare equiv-exprel-iff [simp]

All equivalence classes belong to set of representatives
lemma exprel-in-Exp [simp]: exprel‘‘{U} ∈ Exp

by (simp add: Exp-def quotientI )

lemma inj-on-Abs-Exp: inj-on Abs-Exp Exp
by (meson Abs-Exp-inject inj-onI )

Reduces equality on abstractions to equality on representatives
declare inj-on-Abs-Exp [THEN inj-on-eq-iff , simp]

declare Abs-Exp-inverse [simp]

Case analysis on the representation of a exp as an equivalence class.
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lemma eq-Abs-Exp [case-names Abs-Exp, cases type: exp]:
(
∧

U . z = Abs-Exp (exprel‘‘{U}) =⇒ P) =⇒ P
by (metis Abs-Exp-cases Exp-def quotientE)

4.4 Every list of abstract expressions can be expressed in
terms of a list of concrete expressions

definition
Abs-ExpList :: freeExp list => exp list where
Abs-ExpList Xs ≡ map (λU . Abs-Exp(exprel‘‘{U})) Xs

lemma Abs-ExpList-Nil [simp]: Abs-ExpList [] = []
by (simp add: Abs-ExpList-def )

lemma Abs-ExpList-Cons [simp]:
Abs-ExpList (X#Xs) = Abs-Exp (exprel‘‘{X}) # Abs-ExpList Xs
by (simp add: Abs-ExpList-def )

lemma ExpList-rep: ∃Us. z = Abs-ExpList Us
by (smt (verit, del-insts) Abs-ExpList-def eq-Abs-Exp ex-map-conv)

4.4.1 Characteristic Equations for the Abstract Constructors
lemma Plus: Plus (Abs-Exp(exprel‘‘{U})) (Abs-Exp(exprel‘‘{V })) =

Abs-Exp (exprel‘‘{PLUS U V })
proof −

have (λU V . exprel‘‘{PLUS U V }) respects2 exprel
by (auto simp add: congruent2-def exprel.PLUS)

thus ?thesis
by (simp add: Plus-def UN-equiv-class2 [OF equiv-exprel equiv-exprel])

qed

It is not clear what to do with FnCall: it’s argument is an abstraction of an
exp list. Is it just Nil or Cons? What seems to work best is to regard an exp
list as a listrel exprel equivalence class

This theorem is easily proved but never used. There’s no obvious way even
to state the analogous result, FnCall-Cons.
lemma FnCall-Nil: FnCall F [] = Abs-Exp (exprel‘‘{FNCALL F []})

by (simp add: FnCall-def )

lemma FnCall-respects:
(λUs. exprel‘‘{FNCALL F Us}) respects (listrel exprel)

by (auto simp add: congruent-def exprel.FNCALL)

lemma FnCall-sing:
FnCall F [Abs-Exp(exprel‘‘{U})] = Abs-Exp (exprel‘‘{FNCALL F [U ]})

proof −
have (λU . exprel‘‘{FNCALL F [U ]}) respects exprel
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by (auto simp add: congruent-def FNCALL-Cons listrel.intros)
thus ?thesis

by (simp add: FnCall-def UN-equiv-class [OF equiv-exprel])
qed

lemma listset-Rep-Exp-Abs-Exp:
listset (map Rep-Exp (Abs-ExpList Us)) = listrel exprel‘‘{Us}

by (induct Us) (simp-all add: listrel-Cons Abs-ExpList-def )

lemma FnCall:
FnCall F (Abs-ExpList Us) = Abs-Exp (exprel‘‘{FNCALL F Us})

proof −
have (λUs. exprel‘‘{FNCALL F Us}) respects (listrel exprel)

by (auto simp add: congruent-def exprel.FNCALL)
thus ?thesis

by (simp add: FnCall-def UN-equiv-class [OF equiv-list-exprel]
listset-Rep-Exp-Abs-Exp)

qed

Establishing this equation is the point of the whole exercise
theorem Plus-assoc: Plus X (Plus Y Z ) = Plus (Plus X Y ) Z

by (cases X , cases Y , cases Z , simp add: Plus exprel.ASSOC )

4.5 The Abstract Function to Return the Set of Variables
definition

vars :: exp ⇒ nat set where vars X ≡ (
⋃

U ∈ Rep-Exp X . freevars U )

lemma vars-respects: freevars respects exprel
by (auto simp add: congruent-def exprel-imp-eq-freevars)

The extension of the function vars to lists
primrec vars-list :: exp list ⇒ nat set where

vars-list [] = {}
| vars-list(E#Es) = vars E ∪ vars-list Es

Now prove the three equations for vars
lemma vars-Variable [simp]: vars (Var N ) = {N}
by (simp add: vars-def Var-def

UN-equiv-class [OF equiv-exprel vars-respects])

lemma vars-Plus [simp]: vars (Plus X Y ) = vars X ∪ vars Y
proof −

have
∧

U V . [[X = Abs-Exp (exprel‘‘{U}); Y = Abs-Exp (exprel‘‘{V })]]
=⇒ vars (Plus X Y ) = vars X ∪ vars Y

by (simp add: vars-def Plus UN-equiv-class [OF equiv-exprel vars-respects])
then show ?thesis

by (meson eq-Abs-Exp)
qed
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lemma vars-FnCall [simp]: vars (FnCall F Xs) = vars-list Xs
proof −

have vars (Abs-Exp (exprel‘‘{FNCALL F Us})) = vars-list (Abs-ExpList Us) for
Us

by (induct Us) (auto simp: vars-def UN-equiv-class [OF equiv-exprel vars-respects])
then show ?thesis

by (metis ExpList-rep FnCall)
qed

lemma vars-FnCall-Nil: vars (FnCall F Nil) = {}
by simp

lemma vars-FnCall-Cons: vars (FnCall F (X#Xs)) = vars X ∪ vars-list Xs
by simp

4.6 Injectivity Properties of Some Constructors
lemma VAR-imp-eq: VAR m ∼ VAR n =⇒ m = n

by (drule exprel-imp-eq-freevars, simp)

Can also be proved using the function vars
lemma Var-Var-eq [iff ]: (Var m = Var n) = (m = n)

by (auto simp add: Var-def exprel-refl dest: VAR-imp-eq)

lemma VAR-neqv-PLUS : VAR m ∼ PLUS X Y =⇒ False
using exprel-imp-eq-freediscrim by force

theorem Var-neq-Plus [iff ]: Var N 6= Plus X Y
proof −

have
∧

U V . [[X = Abs-Exp (exprel‘‘{U}); Y = Abs-Exp (exprel‘‘{V })]] =⇒ Var
N 6= Plus X Y

using Plus VAR-neqv-PLUS Var-def by force
then show ?thesis

by (meson eq-Abs-Exp)
qed

theorem Var-neq-FnCall [iff ]: Var N 6= FnCall F Xs
proof −

have
∧

Us. Var N 6= FnCall F (Abs-ExpList Us)
using FnCall Var-def exprel-imp-eq-freediscrim by fastforce

then show ?thesis
by (metis ExpList-rep)

qed

4.7 Injectivity of FnCall
definition

fun :: exp ⇒ nat
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where fun X ≡ the-elem (
⋃

U ∈ Rep-Exp X . {freefun U})

lemma fun-respects: (λU . {freefun U}) respects exprel
by (auto simp add: congruent-def exprel-imp-eq-freefun)

lemma fun-FnCall [simp]: fun (FnCall F Xs) = F
proof −

have
∧

Us. fun (FnCall F (Abs-ExpList Us)) = F
using FnCall UN-equiv-class [OF equiv-exprel] fun-def fun-respects by fastforce

then show ?thesis
by (metis ExpList-rep)

qed

definition
args :: exp ⇒ exp list where
args X = the-elem (

⋃
U ∈ Rep-Exp X . {Abs-ExpList (freeargs U )})

This result can probably be generalized to arbitrary equivalence relations,
but with little benefit here.
lemma Abs-ExpList-eq:

(y, z) ∈ listrel exprel =⇒ Abs-ExpList (y) = Abs-ExpList (z)
by (induct set: listrel) simp-all

lemma args-respects: (λU . {Abs-ExpList (freeargs U )}) respects exprel
by (auto simp add: congruent-def Abs-ExpList-eq exprel-imp-eqv-freeargs)

lemma args-FnCall [simp]: args (FnCall F Xs) = Xs
proof −

have
∧

Us. Xs = Abs-ExpList Us =⇒ args (FnCall F Xs) = Xs
by (simp add: FnCall args-def UN-equiv-class [OF equiv-exprel args-respects])

then show ?thesis
by (metis ExpList-rep)

qed

lemma FnCall-FnCall-eq [iff ]: (FnCall F Xs = FnCall F ′ Xs ′) ←→ (F=F ′ ∧
Xs=Xs ′)

by (metis args-FnCall fun-FnCall)

4.8 The Abstract Discriminator

However, as FnCall-Var-neq-Var illustrates, we don’t need this function in
order to prove discrimination theorems.
definition

discrim :: exp ⇒ int where
discrim X = the-elem (

⋃
U ∈ Rep-Exp X . {freediscrim U})

lemma discrim-respects: (λU . {freediscrim U}) respects exprel
by (auto simp add: congruent-def exprel-imp-eq-freediscrim)
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Now prove the four equations for discrim
lemma discrim-Var [simp]: discrim (Var N ) = 0
by (simp add: discrim-def Var-def UN-equiv-class [OF equiv-exprel discrim-respects])

lemma discrim-Plus [simp]: discrim (Plus X Y ) = 1
proof −

have
∧

U V . [[X = Abs-Exp (exprel‘‘{U}); Y = Abs-Exp (exprel‘‘{V })]] =⇒
discrim (Plus X Y ) = 1

by (simp add: discrim-def Plus UN-equiv-class [OF equiv-exprel discrim-respects])

then show ?thesis
by (meson eq-Abs-Exp)

qed

lemma discrim-FnCall [simp]: discrim (FnCall F Xs) = 2
proof −

have discrim (FnCall F (Abs-ExpList Us)) = 2 for Us
by (simp add: discrim-def FnCall UN-equiv-class [OF equiv-exprel discrim-respects])

then show ?thesis
by (metis ExpList-rep)

qed

The structural induction rule for the abstract type
theorem exp-inducts:

assumes V :
∧

nat. P1 (Var nat)
and P:

∧
exp1 exp2 . [[P1 exp1 ; P1 exp2 ]] =⇒ P1 (Plus exp1 exp2 )

and F :
∧

nat list. P2 list =⇒ P1 (FnCall nat list)
and Nil: P2 []
and Cons:

∧
exp list. [[P1 exp; P2 list]] =⇒ P2 (exp # list)

shows P1 exp and P2 list
proof −

obtain U where exp: exp = (Abs-Exp (exprel‘‘{U})) by (cases exp)
obtain Us where list: list = Abs-ExpList Us by (metis ExpList-rep)
have P1 (Abs-Exp (exprel‘‘{U})) and P2 (Abs-ExpList Us)
proof (induct U and Us rule: compat-freeExp.induct compat-freeExp-list.induct)

case (VAR nat)
with V show ?case by (simp add: Var-def )

next
case (PLUS X Y )
with P [of Abs-Exp (exprel‘‘{X}) Abs-Exp (exprel‘‘{Y })]
show ?case by (simp add: Plus)

next
case (FNCALL nat list)
with F [of Abs-ExpList list]
show ?case by (simp add: FnCall)

next
case Nil-freeExp

29



with Nil show ?case by simp
next

case Cons-freeExp
with Cons show ?case by simp

qed
with exp and list show P1 exp and P2 list by (simp-all only:)

qed

end

5 Terms over a given alphabet
theory Term
imports Main
begin

datatype ( ′a, ′b) term =
Var ′a
| App ′b ( ′a, ′b) term list

Substitution function on terms
primrec subst-term :: ( ′a ⇒ ( ′a, ′b) term) ⇒ ( ′a, ′b) term ⇒ ( ′a, ′b) term

and subst-term-list :: ( ′a ⇒ ( ′a, ′b) term) ⇒ ( ′a, ′b) term list ⇒ ( ′a, ′b) term
list
where

subst-term f (Var a) = f a
| subst-term f (App b ts) = App b (subst-term-list f ts)
| subst-term-list f [] = []
| subst-term-list f (t # ts) = subst-term f t # subst-term-list f ts

A simple theorem about composition of substitutions
lemma subst-comp:

subst-term (subst-term f1 ◦ f2 ) t =
subst-term f1 (subst-term f2 t)

and subst-term-list (subst-term f1 ◦ f2 ) ts =
subst-term-list f1 (subst-term-list f2 ts)

by (induct t and ts rule: subst-term.induct subst-term-list.induct) simp-all

Alternative induction rule
lemma

assumes var :
∧

v. P (Var v)
and app:

∧
f ts. (∀ t ∈ set ts. P t) =⇒ P (App f ts)

shows term-induct2 : P t
and ∀ t ∈ set ts. P t

apply (induct t and ts rule: subst-term.induct subst-term-list.induct)
apply (rule var)

apply (rule app)
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apply assumption
apply simp-all

done

end

theory Sexp
imports HOL−Library.Old-Datatype
begin

type-synonym ′a item = ′a Old-Datatype.item
abbreviation Leaf == Old-Datatype.Leaf
abbreviation Numb == Old-Datatype.Numb

inductive-set
sexp :: ′a item set
where

LeafI : Leaf (a) ∈ sexp
| NumbI : Numb(i) ∈ sexp
| SconsI : [| M ∈ sexp; N ∈ sexp |] ==> Scons M N ∈ sexp

definition
sexp-case :: [ ′a=> ′b, nat=> ′b, [ ′a item, ′a item]=> ′b,

′a item] => ′b where
sexp-case c d e M = (THE z . (∃ x. M=Leaf (x) & z=c(x))

| (∃ k. M=Numb(k) & z=d(k))
| (∃N1 N2 . M = Scons N1 N2 & z=e N1 N2 ))

definition
pred-sexp :: ( ′a item ∗ ′a item)set where

pred-sexp = (
⋃

M ∈ sexp.
⋃

N ∈ sexp. {(M , Scons M N ), (N , Scons M N )})

definition
sexp-rec :: [ ′a item, ′a=> ′b, nat=> ′b,

[ ′a item, ′a item, ′b, ′b]=> ′b] => ′b where
sexp-rec M c d e = wfrec pred-sexp

(%g. sexp-case c d (%N1 N2 . e N1 N2 (g N1 ) (g N2 ))) M

lemma sexp-case-Leaf [simp]: sexp-case c d e (Leaf a) = c(a)
by (simp add: sexp-case-def , blast)

lemma sexp-case-Numb [simp]: sexp-case c d e (Numb k) = d(k)
by (simp add: sexp-case-def , blast)

lemma sexp-case-Scons [simp]: sexp-case c d e (Scons M N ) = e M N
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by (simp add: sexp-case-def )

lemma sexp-In0I : M ∈ sexp ==> In0 (M ) ∈ sexp
apply (simp add: In0-def )
apply (erule sexp.NumbI [THEN sexp.SconsI ])
done

lemma sexp-In1I : M ∈ sexp ==> In1 (M ) ∈ sexp
apply (simp add: In1-def )
apply (erule sexp.NumbI [THEN sexp.SconsI ])
done

declare sexp.intros [intro,simp]

lemma range-Leaf-subset-sexp: range(Leaf ) <= sexp
by blast

lemma Scons-D: Scons M N ∈ sexp ==> M ∈ sexp & N ∈ sexp
by (induct S == Scons M N set: sexp) auto

lemma pred-sexp-subset-Sigma: pred-sexp <= sexp × sexp
by (simp add: pred-sexp-def ) blast

lemmas trancl-pred-sexpD1 =
pred-sexp-subset-Sigma

[THEN trancl-subset-Sigma, THEN subsetD, THEN SigmaD1 ]
and trancl-pred-sexpD2 =

pred-sexp-subset-Sigma
[THEN trancl-subset-Sigma, THEN subsetD, THEN SigmaD2 ]

lemma pred-sexpI1 :
[| M ∈ sexp; N ∈ sexp |] ==> (M , Scons M N ) ∈ pred-sexp

by (simp add: pred-sexp-def , blast)

lemma pred-sexpI2 :
[| M ∈ sexp; N ∈ sexp |] ==> (N , Scons M N ) ∈ pred-sexp

by (simp add: pred-sexp-def , blast)

lemmas pred-sexp-t1 [simp] = pred-sexpI1 [THEN r-into-trancl]
and pred-sexp-t2 [simp] = pred-sexpI2 [THEN r-into-trancl]
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lemmas pred-sexp-trans1 [simp] = trans-trancl [THEN transD, OF - pred-sexp-t1 ]
and pred-sexp-trans2 [simp] = trans-trancl [THEN transD, OF - pred-sexp-t2 ]

declare cut-apply [simp]

lemma pred-sexpE :
[| p ∈ pred-sexp;

!!M N . [| p = (M , Scons M N ); M ∈ sexp; N ∈ sexp |] ==> R;
!!M N . [| p = (N , Scons M N ); M ∈ sexp; N ∈ sexp |] ==> R

|] ==> R
by (simp add: pred-sexp-def , blast)

lemma wf-pred-sexp: wf (pred-sexp)
apply (rule pred-sexp-subset-Sigma [THEN wfI ])
apply (erule sexp.induct)
apply (blast elim!: pred-sexpE)+
done

lemma sexp-rec-unfold-lemma:
(%M . sexp-rec M c d e) ==
wfrec pred-sexp (%g. sexp-case c d (%N1 N2 . e N1 N2 (g N1 ) (g N2 )))

by (simp add: sexp-rec-def )

lemmas sexp-rec-unfold = def-wfrec [OF sexp-rec-unfold-lemma wf-pred-sexp]

lemma sexp-rec-Leaf : sexp-rec (Leaf a) c d h = c(a)
apply (subst sexp-rec-unfold)
apply (rule sexp-case-Leaf )
done

lemma sexp-rec-Numb: sexp-rec (Numb k) c d h = d(k)
apply (subst sexp-rec-unfold)
apply (rule sexp-case-Numb)
done

lemma sexp-rec-Scons: [| M ∈ sexp; N ∈ sexp |] ==>
sexp-rec (Scons M N ) c d h = h M N (sexp-rec M c d h) (sexp-rec N c d h)

apply (rule sexp-rec-unfold [THEN trans])
apply (simp add: pred-sexpI1 pred-sexpI2 )
done
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end

6 Extended List Theory (old)
theory SList
imports Sexp
begin

definition
NIL :: ′a item where
NIL = In0 (Numb(0 ))

definition
CONS :: [ ′a item, ′a item] => ′a item where
CONS M N = In1 (Scons M N )

inductive-set
list :: ′a item set => ′a item set
for A :: ′a item set
where

NIL-I : NIL ∈ list A
| CONS-I : [| a ∈ A; M ∈ list A |] ==> CONS a M ∈ list A

definition List = list (range Leaf )

typedef ′a list = List :: ′a item set
morphisms Rep-List Abs-List
unfolding List-def by (blast intro: list.NIL-I )

abbreviation Case == Old-Datatype.Case
abbreviation Split == Old-Datatype.Split

definition
List-case :: [ ′b, [ ′a item, ′a item]=> ′b, ′a item] => ′b where
List-case c d = Case(%x. c)(Split(d))

definition
List-rec :: [ ′a item, ′b, [ ′a item, ′a item, ′b]=> ′b] => ′b where
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List-rec M c d = wfrec (pred-sexp+)
(%g. List-case c (%x y. d x y (g y))) M

no-translations
[x, xs] == x#[xs]
[x] == x#[]

unbundle no list-syntax

definition
Nil :: ′a list (‹[]›) where
Nil = Abs-List(NIL)

definition
Cons :: [ ′a, ′a list] => ′a list (infixr ‹#› 65 ) where
x#xs = Abs-List(CONS (Leaf x)(Rep-List xs))

definition

list-rec :: [ ′a list, ′b, [ ′a, ′a list, ′b]=> ′b] => ′b where
list-rec l c d =

List-rec(Rep-List l) c (%x y r . d(inv Leaf x)(Abs-List y) r)

definition
list-case :: [ ′b, [ ′a, ′a list]=> ′b, ′a list] => ′b where
list-case a f xs = list-rec xs a (%x xs r . f x xs)

translations
[x, xs] == x#[xs]
[x] == x#[]

case xs of [] => a | y#ys => b == CONST list-case(a, %y ys. b, xs)
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definition
Rep-map :: ( ′b => ′a item) => ( ′b list => ′a item) where
Rep-map f xs = list-rec xs NIL(%x l r . CONS(f x) r)

definition
Abs-map :: ( ′a item => ′b) => ′a item => ′b list where
Abs-map g M = List-rec M Nil (%N L r . g(N )#r)

definition
map :: ( ′a=> ′b) => ( ′a list => ′b list) where
map f xs = list-rec xs [] (%x l r . f (x)#r)

primrec take :: [ ′a list,nat] => ′a list where
take-0 : take xs 0 = []
| take-Suc: take xs (Suc n) = list-case [] (%x l. x # take l n) xs

lemma ListI : x ∈ list (range Leaf ) =⇒ x ∈ List
by (simp add: List-def )

lemma ListD: x ∈ List =⇒ x ∈ list (range Leaf )
by (simp add: List-def )

lemma list-unfold: list(A) = usum {Numb(0 )} (uprod A (list(A)))
by (fast intro!: list.intros [unfolded NIL-def CONS-def ]

elim: list.cases [unfolded NIL-def CONS-def ])

lemma list-mono: A<=B ==> list(A) <= list(B)
apply (rule subsetI )
apply (erule list.induct)
apply (auto intro!: list.intros)
done

lemma list-sexp: list(sexp) <= sexp
apply (rule subsetI )
apply (erule list.induct)
apply (unfold NIL-def CONS-def )
apply (auto intro: sexp.intros sexp-In0I sexp-In1I )
done

lemmas list-subset-sexp = subset-trans [OF list-mono list-sexp]
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lemma list-induct:
[| P(Nil);

!!x xs. P(xs) ==> P(x # xs) |] ==> P(l)
apply (unfold Nil-def Cons-def )
apply (rule Rep-List-inverse [THEN subst])

apply (rule Rep-List [unfolded List-def , THEN list.induct], simp)
apply (erule Abs-List-inverse [unfolded List-def , THEN subst], blast)
done

lemma inj-on-Abs-list: inj-on Abs-List (list(range Leaf ))
apply (rule inj-on-inverseI )
apply (erule Abs-List-inverse [unfolded List-def ])
done

lemma CONS-not-NIL [iff ]: CONS M N ∼= NIL
by (simp add: NIL-def CONS-def )

lemmas NIL-not-CONS [iff ] = CONS-not-NIL [THEN not-sym]
lemmas CONS-neq-NIL = CONS-not-NIL [THEN notE ]
lemmas NIL-neq-CONS = sym [THEN CONS-neq-NIL]

lemma Cons-not-Nil [iff ]: x # xs ∼= Nil
apply (unfold Nil-def Cons-def )
apply (rule CONS-not-NIL [THEN inj-on-Abs-list [THEN inj-on-contraD]])
apply (simp-all add: list.intros rangeI Rep-List [unfolded List-def ])
done

lemmas Nil-not-Cons = Cons-not-Nil [THEN not-sym]
declare Nil-not-Cons [iff ]
lemmas Cons-neq-Nil = Cons-not-Nil [THEN notE ]
lemmas Nil-neq-Cons = sym [THEN Cons-neq-Nil]

lemma CONS-CONS-eq [iff ]: (CONS K M )=(CONS L N ) = (K=L & M=N )
by (simp add: CONS-def )

declare Rep-List [THEN ListD, intro] ListI [intro]
declare list.intros [intro,simp]
declare Leaf-inject [dest!]
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lemma Cons-Cons-eq [iff ]: (x#xs=y#ys) = (x=y & xs=ys)
apply (simp add: Cons-def )
apply (subst Abs-List-inject)
apply (auto simp add: Rep-List-inject)
done

lemmas Cons-inject2 = Cons-Cons-eq [THEN iffD1 , THEN conjE ]

lemma CONS-D: CONS M N ∈ list(A) =⇒ M ∈ A & N ∈ list(A)
by (induct L == CONS M N rule: list.induct) auto

lemma sexp-CONS-D: CONS M N ∈ sexp =⇒ M ∈ sexp ∧ N ∈ sexp
apply (simp add: CONS-def In1-def )
apply (fast dest!: Scons-D)
done

lemma not-CONS-self : N ∈ list(A) =⇒ ∀M . N 6= CONS M N
apply (erule list.induct) apply simp-all done

lemma not-Cons-self2 : ∀ x. l 6= x#l
by (induct l rule: list-induct) simp-all

lemma neq-Nil-conv2 : (xs 6= []) = (∃ y ys. xs = y#ys)
by (induct xs rule: list-induct) auto

lemma List-case-NIL [simp]: List-case c h NIL = c
by (simp add: List-case-def NIL-def )

lemma List-case-CONS [simp]: List-case c h (CONS M N ) = h M N
by (simp add: List-case-def CONS-def )

lemma List-rec-unfold-lemma:
(λM . List-rec M c d) ≡
wfrec (pred-sexp+) (λg. List-case c (λx y. d x y (g y)))

by (simp add: List-rec-def )

lemmas List-rec-unfold =
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def-wfrec [OF List-rec-unfold-lemma wf-pred-sexp [THEN wf-trancl]]

lemma pred-sexp-CONS-I1 :
[| M ∈ sexp; N ∈ sexp |] ==> (M , CONS M N ) ∈ pred-sexp+

by (simp add: CONS-def In1-def )

lemma pred-sexp-CONS-I2 :
[| M ∈ sexp; N ∈ sexp |] ==> (N , CONS M N ) ∈ pred-sexp+

by (simp add: CONS-def In1-def )

lemma pred-sexp-CONS-D:
(CONS M1 M2 , N ) ∈ pred-sexp+ =⇒
(M1 ,N ) ∈ pred-sexp+ ∧ (M2 ,N ) ∈ pred-sexp+

apply (frule pred-sexp-subset-Sigma [THEN trancl-subset-Sigma, THEN subsetD])
apply (blast dest!: sexp-CONS-D intro: pred-sexp-CONS-I1 pred-sexp-CONS-I2

trans-trancl [THEN transD])
done

lemma List-rec-NIL [simp]: List-rec NIL c h = c
apply (rule List-rec-unfold [THEN trans])
apply (simp add: List-case-NIL)
done

lemma List-rec-CONS [simp]:
[| M ∈ sexp; N ∈ sexp |]
==> List-rec (CONS M N ) c h = h M N (List-rec N c h)

apply (rule List-rec-unfold [THEN trans])
apply (simp add: pred-sexp-CONS-I2 )
done

lemmas Rep-List-in-sexp =
subsetD [OF range-Leaf-subset-sexp [THEN list-subset-sexp]

Rep-List [THEN ListD]]

lemma list-rec-Nil [simp]: list-rec Nil c h = c
by (simp add: list-rec-def ListI [THEN Abs-List-inverse] Nil-def )

lemma list-rec-Cons [simp]: list-rec (a#l) c h = h a l (list-rec l c h)
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by (simp add: list-rec-def ListI [THEN Abs-List-inverse] Cons-def
Rep-List-inverse Rep-List [THEN ListD] inj-Leaf Rep-List-in-sexp)

lemma List-rec-type:
[| M ∈ list(A);

A<=sexp;
c ∈ C (NIL);∧

x y r . [| x ∈ A; y ∈ list(A); r ∈ C (y) |] ==> h x y r ∈ C (CONS x y)
|] ==> List-rec M c h ∈ C (M :: ′a item)

apply (erule list.induct, simp)
apply (insert list-subset-sexp)
apply (subst List-rec-CONS , blast+)
done

lemma Rep-map-Nil [simp]: Rep-map f Nil = NIL
by (simp add: Rep-map-def )

lemma Rep-map-Cons [simp]:
Rep-map f (x#xs) = CONS(f x)(Rep-map f xs)

by (simp add: Rep-map-def )

lemma Rep-map-type: (
∧

x. f (x) ∈ A) =⇒ Rep-map f xs ∈ list(A)
apply (simp add: Rep-map-def )
apply (rule list-induct, auto)
done

lemma Abs-map-NIL [simp]: Abs-map g NIL = Nil
by (simp add: Abs-map-def )

lemma Abs-map-CONS [simp]:
[| M ∈ sexp; N ∈ sexp |] ==> Abs-map g (CONS M N ) = g(M ) # Abs-map

g N
by (simp add: Abs-map-def )

lemma def-list-rec-NilCons:
[|
∧

xs. f (xs) = list-rec xs c h |]
==> f [] = c ∧ f (x#xs) = h x xs (f xs)

by simp

lemma Abs-map-inverse:
[| M ∈ list(A); A<=sexp;

∧
z. z ∈ A ==> f (g(z)) = z |]

==> Rep-map f (Abs-map g M ) = M
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apply (erule list.induct, simp-all)
apply (insert list-subset-sexp)
apply (subst Abs-map-CONS , blast)
apply blast
apply simp
done

Better to have a single theorem with a conjunctive conclusion.
declare def-list-rec-NilCons [OF list-case-def , simp]

lemma expand-list-case:
P(list-case a f xs) = ((xs=[] −→ P a ) ∧ (∀ y ys. xs=y#ys −→ P(f y ys)))

by (induct xs rule: list-induct) simp-all

declare def-list-rec-NilCons [OF map-def , simp]

lemma Abs-Rep-map:
(
∧

x. f (x)∈ sexp) ==>
Abs-map g (Rep-map f xs) = map (λt. g(f (t))) xs

apply (induct xs rule: list-induct)
apply (simp-all add: Rep-map-type list-sexp [THEN subsetD])
done

lemma map-ident [simp]: map(%x. x)(xs) = xs
by (induct xs rule: list-induct) simp-all

lemma map-compose: map(f o g)(xs) = map f (map g xs)
apply (simp add: o-def )
apply (induct xs rule: list-induct)
apply simp-all
done

lemma take-Suc1 [simp]: take [] (Suc x) = []
by simp

lemma take-Suc2 [simp]: take(a#xs)(Suc x) = a#take xs x
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by simp

lemma take-Nil [simp]: take [] n = []
by (induct n) simp-all

lemma take-take-eq [simp]: ∀n. take (take xs n) n = take xs n
apply (induct xs rule: list-induct)
apply simp-all
apply (rule allI )
apply (induct-tac n)
apply auto
done

end

7 Arithmetic and boolean expressions
theory ABexp
imports Main
begin

datatype ′a aexp =
IF ′a bexp ′a aexp ′a aexp
| Sum ′a aexp ′a aexp
| Diff ′a aexp ′a aexp
| Var ′a
| Num nat

and ′a bexp =
Less ′a aexp ′a aexp
| And ′a bexp ′a bexp
| Neg ′a bexp

Evaluation of arithmetic and boolean expressions
primrec evala :: ( ′a ⇒ nat) ⇒ ′a aexp ⇒ nat

and evalb :: ( ′a ⇒ nat) ⇒ ′a bexp ⇒ bool
where

evala env (IF b a1 a2 ) = (if evalb env b then evala env a1 else evala env a2 )
| evala env (Sum a1 a2 ) = evala env a1 + evala env a2
| evala env (Diff a1 a2 ) = evala env a1 − evala env a2
| evala env (Var v) = env v
| evala env (Num n) = n

| evalb env (Less a1 a2 ) = (evala env a1 < evala env a2 )
| evalb env (And b1 b2 ) = (evalb env b1 ∧ evalb env b2 )
| evalb env (Neg b) = (¬ evalb env b)

Substitution on arithmetic and boolean expressions
primrec substa :: ( ′a ⇒ ′b aexp) ⇒ ′a aexp ⇒ ′b aexp
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and substb :: ( ′a ⇒ ′b aexp) ⇒ ′a bexp ⇒ ′b bexp
where

substa f (IF b a1 a2 ) = IF (substb f b) (substa f a1 ) (substa f a2 )
| substa f (Sum a1 a2 ) = Sum (substa f a1 ) (substa f a2 )
| substa f (Diff a1 a2 ) = Diff (substa f a1 ) (substa f a2 )
| substa f (Var v) = f v
| substa f (Num n) = Num n

| substb f (Less a1 a2 ) = Less (substa f a1 ) (substa f a2 )
| substb f (And b1 b2 ) = And (substb f b1 ) (substb f b2 )
| substb f (Neg b) = Neg (substb f b)

lemma subst1-aexp:
evala env (substa (Var (v := a ′)) a) = evala (env (v := evala env a ′)) a

and subst1-bexp:
evalb env (substb (Var (v := a ′)) b) = evalb (env (v := evala env a ′)) b

— one variable
by (induct a and b) simp-all

lemma subst-all-aexp:
evala env (substa s a) = evala (λx. evala env (s x)) a

and subst-all-bexp:
evalb env (substb s b) = evalb (λx. evala env (s x)) b
by (induct a and b) auto

end

8 Infinitely branching trees
theory Infinitely-Branching-Tree
imports Main
begin

datatype ′a tree =
Atom ′a
| Branch nat ⇒ ′a tree

primrec map-tree :: ( ′a ⇒ ′b) ⇒ ′a tree ⇒ ′b tree
where

map-tree f (Atom a) = Atom (f a)
| map-tree f (Branch ts) = Branch (λx. map-tree f (ts x))

lemma tree-map-compose: map-tree g (map-tree f t) = map-tree (g ◦ f ) t
by (induct t) simp-all

primrec exists-tree :: ( ′a ⇒ bool) ⇒ ′a tree ⇒ bool
where

exists-tree P (Atom a) = P a
| exists-tree P (Branch ts) = (∃ x. exists-tree P (ts x))
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lemma exists-map:
(
∧

x. P x =⇒ Q (f x)) =⇒
exists-tree P ts =⇒ exists-tree Q (map-tree f ts)

by (induct ts) auto

8.1 The Brouwer ordinals, as in ZF/Induct/Brouwer.thy.
datatype brouwer = Zero | Succ brouwer | Lim nat ⇒ brouwer

Addition of ordinals
primrec add :: brouwer ⇒ brouwer ⇒ brouwer

where
add i Zero = i
| add i (Succ j) = Succ (add i j)
| add i (Lim f ) = Lim (λn. add i (f n))

lemma add-assoc: add (add i j) k = add i (add j k)
by (induct k) auto

Multiplication of ordinals
primrec mult :: brouwer ⇒ brouwer ⇒ brouwer

where
mult i Zero = Zero
| mult i (Succ j) = add (mult i j) i
| mult i (Lim f ) = Lim (λn. mult i (f n))

lemma add-mult-distrib: mult i (add j k) = add (mult i j) (mult i k)
by (induct k) (auto simp add: add-assoc)

lemma mult-assoc: mult (mult i j) k = mult i (mult j k)
by (induct k) (auto simp add: add-mult-distrib)

We could probably instantiate some axiomatic type classes and use the stan-
dard infix operators.

8.2 A WF Ordering for The Brouwer ordinals (Michael Comp-
ton)

To use the function package we need an ordering on the Brouwer ordinals.
Start with a predecessor relation and form its transitive closure.
definition brouwer-pred :: (brouwer × brouwer) set

where brouwer-pred = (
⋃

i. {(m, n). n = Succ m ∨ (∃ f . n = Lim f ∧ m = f
i)})

definition brouwer-order :: (brouwer × brouwer) set
where brouwer-order = brouwer-pred+
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lemma wf-brouwer-pred: wf brouwer-pred
unfolding wf-def brouwer-pred-def
apply clarify
apply (induct-tac x)

apply blast+
done

lemma wf-brouwer-order [simp]: wf brouwer-order
unfolding brouwer-order-def
by (rule wf-trancl[OF wf-brouwer-pred])

lemma [simp]: (j, Succ j) ∈ brouwer-order
by (auto simp add: brouwer-order-def brouwer-pred-def )

lemma [simp]: (f n, Lim f ) ∈ brouwer-order
by (auto simp add: brouwer-order-def brouwer-pred-def )

Example of a general function
function add2 :: brouwer ⇒ brouwer ⇒ brouwer

where
add2 i Zero = i
| add2 i (Succ j) = Succ (add2 i j)
| add2 i (Lim f ) = Lim (λn. add2 i (f n))
by pat-completeness auto

termination
by (relation inv-image brouwer-order snd) auto

lemma add2-assoc: add2 (add2 i j) k = add2 i (add2 j k)
by (induct k) auto

end

9 Ordinals
theory Ordinals
imports Main
begin

Some basic definitions of ordinal numbers. Draws an Agda development (in
Martin-Löf type theory) by Peter Hancock (see http://www.dcs.ed.ac.uk/
home/pgh/chat.html).
datatype ordinal =

Zero
| Succ ordinal
| Limit nat ⇒ ordinal

primrec pred :: ordinal ⇒ nat ⇒ ordinal option
where
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pred Zero n = None
| pred (Succ a) n = Some a
| pred (Limit f ) n = Some (f n)

abbreviation (input) iter :: ( ′a ⇒ ′a) ⇒ nat ⇒ ( ′a ⇒ ′a)
where iter f n ≡ f ^^ n

definition OpLim :: (nat ⇒ (ordinal ⇒ ordinal)) ⇒ (ordinal ⇒ ordinal)
where OpLim F a = Limit (λn. F n a)

definition OpItw :: (ordinal ⇒ ordinal) ⇒ (ordinal ⇒ ordinal) (‹
⊔

›)
where

⊔
f = OpLim (iter f )

primrec cantor :: ordinal ⇒ ordinal ⇒ ordinal
where

cantor a Zero = Succ a
| cantor a (Succ b) =

⊔
(λx. cantor x b) a

| cantor a (Limit f ) = Limit (λn. cantor a (f n))

primrec Nabla :: (ordinal ⇒ ordinal) ⇒ (ordinal ⇒ ordinal) (‹∇›)
where
∇f Zero = f Zero
| ∇f (Succ a) = f (Succ (∇f a))
| ∇f (Limit h) = Limit (λn. ∇f (h n))

definition deriv :: (ordinal ⇒ ordinal) ⇒ (ordinal ⇒ ordinal)
where deriv f = ∇(

⊔
f )

primrec veblen :: ordinal ⇒ ordinal ⇒ ordinal
where

veblen Zero = ∇(OpLim (iter (cantor Zero)))
| veblen (Succ a) = ∇(OpLim (iter (veblen a)))
| veblen (Limit f ) = ∇(OpLim (λn. veblen (f n)))

definition veb a = veblen a Zero
definition ε0 = veb Zero
definition Γ0 = Limit (λn. iter veb n Zero)

end

10 Sigma algebras
theory Sigma-Algebra
imports Main
begin

This is just a tiny example demonstrating the use of inductive definitions in
classical mathematics. We define the least σ-algebra over a given set of sets.
inductive-set σ-algebra :: ′a set set ⇒ ′a set set for A :: ′a set set
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where
basic: a ∈ σ-algebra A if a ∈ A for a
| UNIV : UNIV ∈ σ-algebra A
| complement: − a ∈ σ-algebra A if a ∈ σ-algebra A for a
| Union: (

⋃
i. a i) ∈ σ-algebra A if

∧
i::nat. a i ∈ σ-algebra A for a

The following basic facts are consequences of the closure properties of any
σ-algebra, merely using the introduction rules, but no induction nor cases.
theorem sigma-algebra-empty: {} ∈ σ-algebra A
proof −

have UNIV ∈ σ-algebra A by (rule σ-algebra.UNIV )
then have −UNIV ∈ σ-algebra A by (rule σ-algebra.complement)
also have −UNIV = {} by simp
finally show ?thesis .

qed

theorem sigma-algebra-Inter :
(
∧

i::nat. a i ∈ σ-algebra A) =⇒ (
⋂

i. a i) ∈ σ-algebra A
proof −

assume
∧

i::nat. a i ∈ σ-algebra A
then have

∧
i::nat. −(a i) ∈ σ-algebra A by (rule σ-algebra.complement)

then have (
⋃

i. −(a i)) ∈ σ-algebra A by (rule σ-algebra.Union)
then have −(

⋃
i. −(a i)) ∈ σ-algebra A by (rule σ-algebra.complement)

also have −(
⋃

i. −(a i)) = (
⋂

i. a i) by simp
finally show ?thesis .

qed

end

11 Combinatory Logic example: the Church-Rosser
Theorem

theory Comb
imports Main
begin

Combinator terms do not have free variables. Example taken from [1].

11.1 Definitions

Datatype definition of combinators S and K.
datatype comb = K

| S
| Ap comb comb (infixl ‹·› 90 )

Inductive definition of contractions, →1 and (multi-step) reductions, →.
inductive contract1 :: [comb,comb] ⇒ bool (infixl ‹→1› 50 )
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where
K : K ·x·y →1 x
| S : S ·x·y·z →1 (x·z)·(y·z)
| Ap1 : x →1 y =⇒ x·z →1 y·z
| Ap2 : x →1 y =⇒ z·x →1 z·y

abbreviation
contract :: [comb,comb] ⇒ bool (infixl ‹→› 50 ) where
contract ≡ contract1 ∗∗

Inductive definition of parallel contractions, V1 and (multi-step) parallel
reductions, V.
inductive parcontract1 :: [comb,comb] ⇒ bool (infixl ‹V1› 50 )

where
refl: x V1 x
| K : K ·x·y V1 x
| S : S ·x·y·z V1 (x·z)·(y·z)
| Ap: [[x V1 y; z V1 w]] =⇒ x·z V1 y·w

abbreviation
parcontract :: [comb,comb] ⇒ bool (infixl ‹V› 50 ) where
parcontract ≡ parcontract1 ∗∗

Misc definitions.
definition

I :: comb where
I ≡ S ·K ·K

definition
diamond :: ([comb,comb] ⇒ bool) ⇒ bool where

— confluence; Lambda/Commutation treats this more abstractly
diamond r ≡ ∀ x y. r x y −→

(∀ y ′. r x y ′ −→
(∃ z. r y z ∧ r y ′ z))

11.2 Reflexive/Transitive closure preserves Church-Rosser
property

Remark: So does the Transitive closure, with a similar proof

Strip lemma. The induction hypothesis covers all but the last diamond of
the strip.
lemma strip-lemma [rule-format]:

assumes diamond r and r : r∗∗ x y r x y ′

shows ∃ z. r∗∗ y ′ z ∧ r y z
using r

proof (induction rule: rtranclp-induct)
case base
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then show ?case
by blast

next
case (step y z)
then show ?case

using ‹diamond r› unfolding diamond-def
by (metis rtranclp.rtrancl-into-rtrancl)

qed

proposition diamond-rtrancl:
assumes diamond r
shows diamond(r∗∗)
unfolding diamond-def

proof (intro strip)
fix x y y ′

assume r∗∗ x y r∗∗ x y ′

then show ∃ z. r∗∗ y z ∧ r∗∗ y ′ z
proof (induction rule: rtranclp-induct)

case base
then show ?case

by blast
next

case (step y z)
then show ?case

by (meson assms strip-lemma rtranclp.rtrancl-into-rtrancl)
qed

qed

11.3 Non-contraction results

Derive a case for each combinator constructor.
inductive-cases

K-contractE [elim!]: K →1 r
and S-contractE [elim!]: S →1 r
and Ap-contractE [elim!]: p·q →1 r

declare contract1 .K [intro!] contract1 .S [intro!]
declare contract1 .Ap1 [intro] contract1 .Ap2 [intro]

lemma I-contract-E [iff ]: ¬ I →1 z
unfolding I-def by blast

lemma K1-contractD [elim!]: K ·x →1 z =⇒ (∃ x ′. z = K ·x ′ ∧ x →1 x ′)
by blast

lemma Ap-reduce1 [intro]: x → y =⇒ x·z → y·z
by (induction rule: rtranclp-induct; blast intro: rtranclp-trans)

lemma Ap-reduce2 [intro]: x → y =⇒ z·x → z·y
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by (induction rule: rtranclp-induct; blast intro: rtranclp-trans)

Counterexample to the diamond property for x →1 y
lemma not-diamond-contract: ¬ diamond(contract1 )

unfolding diamond-def by (metis S-contractE contract1 .K )

11.4 Results about Parallel Contraction

Derive a case for each combinator constructor.
inductive-cases

K-parcontractE [elim!]: K V1 r
and S-parcontractE [elim!]: S V1 r
and Ap-parcontractE [elim!]: p·q V1 r

declare parcontract1 .intros [intro]

11.5 Basic properties of parallel contraction

The rules below are not essential but make proofs much faster
lemma K1-parcontractD [dest!]: K ·x V1 z =⇒ (∃ x ′. z = K ·x ′ ∧ x V1 x ′)

by blast

lemma S1-parcontractD [dest!]: S ·x V1 z =⇒ (∃ x ′. z = S ·x ′ ∧ x V1 x ′)
by blast

lemma S2-parcontractD [dest!]: S ·x·y V1 z =⇒ (∃ x ′ y ′. z = S ·x ′·y ′ ∧ x V1 x ′ ∧
y V1 y ′)

by blast

Church-Rosser property for parallel contraction
proposition diamond-parcontract: diamond parcontract1
proof −

have (∃ z. w V1 z ∧ y ′ V1 z) if y V1 w y V1 y ′ for w y y ′

using that by (induction arbitrary: y ′ rule: parcontract1 .induct) fast+
then show ?thesis

by (auto simp: diamond-def )
qed

11.6 Equivalence of p → q and p V q.
lemma contract-imp-parcontract: x →1 y =⇒ x V1 y

by (induction rule: contract1 .induct; blast)

Reductions: simply throw together reflexivity, transitivity and the one-step
reductions
proposition reduce-I : I ·x → x

unfolding I-def

50



by (meson contract1 .K contract1 .S r-into-rtranclp rtranclp.rtrancl-into-rtrancl)

lemma parcontract-imp-reduce: x V1 y =⇒ x → y
proof (induction rule: parcontract1 .induct)

case (Ap x y z w)
then show ?case

by (meson Ap-reduce1 Ap-reduce2 rtranclp-trans)
qed auto

lemma reduce-eq-parreduce: x → y ←→ x V y
by (metis contract-imp-parcontract parcontract-imp-reduce predicate2I rtranclp-subset)

theorem diamond-reduce: diamond(contract)
using diamond-parcontract diamond-rtrancl reduce-eq-parreduce by presburger

end

12 Meta-theory of propositional logic
theory PropLog imports Main begin

Datatype definition of propositional logic formulae and inductive definition
of the propositional tautologies.
Inductive definition of propositional logic. Soundness and completeness
w.r.t. truth-tables.
Prove: If H |= p then G |= p where G ∈ Fin(H )

12.1 The datatype of propositions
datatype ′a pl =

false
| var ′a (‹#-› [1000 ])
| imp ′a pl ′a pl (infixr ‹⇀› 90 )

12.2 The proof system
inductive thms :: [ ′a pl set, ′a pl] ⇒ bool (infixl ‹`› 50 )

for H :: ′a pl set
where

H : p ∈ H =⇒ H ` p
| K : H ` p⇀q⇀p
| S : H ` (p⇀q⇀r) ⇀ (p⇀q) ⇀ p⇀r
| DN : H ` ((p⇀false) ⇀ false) ⇀ p
| MP: [[H ` p⇀q; H ` p]] =⇒ H ` q
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12.3 The semantics
12.3.1 Semantics of propositional logic.
primrec eval :: [ ′a set, ′a pl] => bool (‹-[[-]]› [100 ,0 ] 100 )

where
tt[[false]] = False
| tt[[#v]] = (v ∈ tt)
| eval-imp: tt[[p⇀q]] = (tt[[p]] −→ tt[[q]])

A finite set of hypotheses from t and the Vars in p.
primrec hyps :: [ ′a pl, ′a set] => ′a pl set

where
hyps false tt = {}
| hyps (#v) tt = {if v ∈ tt then #v else #v⇀false}
| hyps (p⇀q) tt = hyps p tt Un hyps q tt

12.3.2 Logical consequence

For every valuation, if all elements of H are true then so is p.
definition sat :: [ ′a pl set, ′a pl] => bool (infixl ‹|=› 50 )

where H |= p = (∀ tt. (∀ q∈H . tt[[q]]) −→ tt[[p]])

12.4 Proof theory of propositional logic
lemma thms-mono:

assumes G ⊆ H shows thms(G) ≤ thms(H )
proof −

have G ` p =⇒ H ` p for p
by (induction rule: thms.induct) (use assms in ‹auto intro: thms.intros›)

then show ?thesis
by blast

qed

lemma thms-I : H ` p⇀p
— Called I for Identity Combinator, not for Introduction.
by (best intro: thms.K thms.S thms.MP)

12.4.1 Weakening, left and right
lemma weaken-left: [[G ⊆ H ; G`p]] =⇒ H`p

— Order of premises is convenient with THEN
by (meson predicate1D thms-mono)

lemma weaken-left-insert: G ` p =⇒ insert a G ` p
by (meson subset-insertI weaken-left)

lemma weaken-left-Un1 : G ` p =⇒ G ∪ B ` p
by (rule weaken-left) (rule Un-upper1 )
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lemma weaken-left-Un2 : G ` p =⇒ A ∪ G ` p
by (metis Un-commute weaken-left-Un1 )

lemma weaken-right: H ` q =⇒ H ` p⇀q
using K MP by blast

12.4.2 The deduction theorem
theorem deduction: insert p H ` q =⇒ H ` p⇀q
proof (induct set: thms)

case (H p)
then show ?case

using thms.H thms-I weaken-right by fastforce
qed (metis thms.simps)+

12.4.3 The cut rule
lemma cut: insert p H ` q =⇒ H ` p =⇒ H ` q

using MP deduction by blast

lemma thms-falseE : H ` false =⇒ H ` q
by (metis thms.simps)

lemma thms-notE : H ` p ⇀ false =⇒ H ` p =⇒ H ` q
using MP thms-falseE by blast

12.4.4 Soundness of the rules wrt truth-table semantics
theorem soundness: H ` p =⇒ H |= p

by (induct set: thms) (auto simp: sat-def )

12.5 Completeness
12.5.1 Towards the completeness proof
lemma false-imp: H ` p⇀false =⇒ H ` p⇀q

by (metis thms.simps)

lemma imp-false:
[[H ` p; H ` q⇀false]] =⇒ H ` (p⇀q)⇀false
by (meson MP S weaken-right)

lemma hyps-thms-if : hyps p tt ` (if tt[[p]] then p else p⇀false)
— Typical example of strengthening the induction statement.

proof (induction p)
case (imp p1 p2 )
then show ?case
by (metis (full-types) eval-imp false-imp hyps.simps(3 ) imp-false weaken-left-Un1

weaken-left-Un2 weaken-right)
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qed (simp-all add: thms-I thms.H )

lemma sat-thms-p: {} |= p =⇒ hyps p tt ` p
— Key lemma for completeness; yields a set of assumptions satisfying p
by (metis (full-types) empty-iff hyps-thms-if sat-def )

For proving certain theorems in our new propositional logic.
declare deduction [intro!]
declare thms.H [THEN thms.MP, intro]

The excluded middle in the form of an elimination rule.
lemma thms-excluded-middle: H ` (p⇀q) ⇀ ((p⇀false)⇀q) ⇀ q
proof −

have insert ((p ⇀ false) ⇀ q) (insert (p ⇀ q) H ) ` (q ⇀ false) ⇀ false
by (best intro: H )

then show ?thesis
by (metis deduction thms.simps)

qed

lemma thms-excluded-middle-rule:
[[insert p H ` q; insert (p⇀false) H ` q]] =⇒ H ` q
— Hard to prove directly because it requires cuts
by (rule thms-excluded-middle [THEN thms.MP, THEN thms.MP], auto)

12.6 Completeness – lemmas for reducing the set of assump-
tions

For the case hyps p t − insert #v Y ` p we also have hyps p t − {#v} ⊆
hyps p (t − {v}).
lemma hyps-Diff : hyps p (t−{v}) ⊆ insert (#v⇀false) ((hyps p t)−{#v})

by (induct p) auto

For the case hyps p t − insert (#v ⇀ Fls) Y ` p we also have hyps p t −
{#v ⇀ Fls} ⊆ hyps p (insert v t).
lemma hyps-insert: hyps p (insert v t) ⊆ insert (#v) (hyps p t−{#v⇀false})

by (induct p) auto

Two lemmas for use with weaken-left
lemma insert-Diff-same: B−C ⊆ insert a (B−insert a C )

by fast

lemma insert-Diff-subset2 : insert a (B−{c}) − D ⊆ insert a (B−insert c D)
by fast

The set hyps p t is finite, and elements have the form #v or #v ⇀ Fls.
lemma hyps-finite: finite(hyps p t)

by (induct p) auto
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lemma hyps-subset: hyps p t ⊆ (UN v. {#v, #v⇀false})
by (induct p) auto

lemma Diff-weaken-left: A ⊆ C =⇒ A − B ` p =⇒ C − B ` p
by (rule Diff-mono [OF - subset-refl, THEN weaken-left])

12.6.1 Completeness theorem

Induction on the finite set of assumptions hyps p t0. We may repeatedly
subtract assumptions until none are left!
lemma completeness-0 :

assumes {} |= p
shows {} ` p

proof −
{ fix t t0

have hyps p t − hyps p t0 ` p
using hyps-finite hyps-subset

proof (induction arbitrary: t rule: finite-subset-induct)
case empty
then show ?case

by (simp add: assms sat-thms-p)
next

case (insert q H )
then consider v where q = #v | v where q = #v ⇀ false

by blast
then show ?case
proof cases

case 1
then show ?thesis

by (metis (no-types, lifting) insert.IH thms-excluded-middle-rule in-
sert-Diff-same

insert-Diff-subset2 weaken-left Diff-weaken-left hyps-Diff )
next

case 2
then show ?thesis

by (metis (no-types, lifting) insert.IH thms-excluded-middle-rule in-
sert-Diff-same

insert-Diff-subset2 weaken-left Diff-weaken-left hyps-insert)
qed

qed
}
then show ?thesis

by (metis Diff-cancel)
qed

A semantic analogue of the Deduction Theorem
lemma sat-imp: insert p H |= q =⇒ H |= p⇀q
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by (auto simp: sat-def )

theorem completeness: finite H =⇒ H |= p =⇒ H ` p
proof (induction arbitrary: p rule: finite-induct)

case empty
then show ?case

by (simp add: completeness-0 )
next

case insert
then show ?case

by (meson H MP insertI1 sat-imp weaken-left-insert)
qed

theorem syntax-iff-semantics: finite H =⇒ (H ` p) = (H |= p)
by (blast intro: soundness completeness)

end

13 Mutual Induction via Iteratived Inductive Def-
initions

theory Com imports Main begin

typedecl loc
type-synonym state = loc => nat

datatype
exp = N nat
| X loc
| Op nat => nat => nat exp exp
| valOf com exp (‹VALOF - RESULTIS -› 60 )

and
com = SKIP
| Assign loc exp (infixl ‹:=› 60 )
| Semi com com (‹-;;-› [60 , 60 ] 60 )
| Cond exp com com (‹IF - THEN - ELSE -› 60 )
| While exp com (‹WHILE - DO -› 60 )

13.1 Commands

Execution of commands
abbreviation (input)

generic-rel (‹-/ −|[-]−> -› [50 ,0 ,50 ] 50 ) where
esig −|[eval]−> ns == (esig,ns) ∈ eval

Command execution. Natural numbers represent Booleans: 0=True, 1=False
inductive-set
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exec :: ((exp∗state) ∗ (nat∗state)) set => ((com∗state)∗state)set
and exec-rel :: com ∗ state => ((exp∗state) ∗ (nat∗state)) set => state => bool
(‹-/ −[-]−> -› [50 ,0 ,50 ] 50 )

for eval :: ((exp∗state) ∗ (nat∗state)) set
where

csig −[eval]−> s == (csig,s) ∈ exec eval

| Skip: (SKIP,s) −[eval]−> s

| Assign: (e,s) −|[eval]−> (v,s ′) ==> (x := e, s) −[eval]−> s ′(x:=v)

| Semi: [| (c0 ,s) −[eval]−> s2 ; (c1 ,s2 ) −[eval]−> s1 |]
==> (c0 ;; c1 , s) −[eval]−> s1

| IfTrue: [| (e,s) −|[eval]−> (0 ,s ′); (c0 ,s ′) −[eval]−> s1 |]
==> (IF e THEN c0 ELSE c1 , s) −[eval]−> s1

| IfFalse: [| (e,s) −|[eval]−> (Suc 0 , s ′); (c1 ,s ′) −[eval]−> s1 |]
==> (IF e THEN c0 ELSE c1 , s) −[eval]−> s1

| WhileFalse: (e,s) −|[eval]−> (Suc 0 , s1 )
==> (WHILE e DO c, s) −[eval]−> s1

| WhileTrue: [| (e,s) −|[eval]−> (0 ,s1 );
(c,s1 ) −[eval]−> s2 ; (WHILE e DO c, s2 ) −[eval]−> s3 |]

==> (WHILE e DO c, s) −[eval]−> s3

declare exec.intros [intro]

inductive-cases
[elim!]: (SKIP,s) −[eval]−> t

and [elim!]: (x:=a,s) −[eval]−> t
and [elim!]: (c1 ;;c2 , s) −[eval]−> t
and [elim!]: (IF e THEN c1 ELSE c2 , s) −[eval]−> t
and exec-WHILE-case: (WHILE b DO c,s) −[eval]−> t

Justifies using "exec" in the inductive definition of "eval"
lemma exec-mono: A<=B ==> exec(A) <= exec(B)
apply (rule subsetI )
apply (simp add: split-paired-all)
apply (erule exec.induct)
apply blast+
done

lemma [pred-set-conv]:
((λx x ′ y y ′. ((x, x ′), (y, y ′)) ∈ R) <= (λx x ′ y y ′. ((x, x ′), (y, y ′)) ∈ S)) = (R

<= S)
unfolding subset-eq
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by (auto simp add: le-fun-def )

lemma [pred-set-conv]:
((λx x ′ y. ((x, x ′), y) ∈ R) <= (λx x ′ y. ((x, x ′), y) ∈ S)) = (R <= S)
unfolding subset-eq
by (auto simp add: le-fun-def )

Command execution is functional (deterministic) provided evaluation is
theorem single-valued-exec: single-valued ev ==> single-valued(exec ev)
apply (simp add: single-valued-def )
apply (intro allI )
apply (rule impI )
apply (erule exec.induct)
apply (blast elim: exec-WHILE-case)+
done

13.2 Expressions

Evaluation of arithmetic expressions
inductive-set

eval :: ((exp∗state) ∗ (nat∗state)) set
and eval-rel :: [exp∗state,nat∗state] => bool (infixl ‹−|−>› 50 )
where

esig −|−> ns == (esig, ns) ∈ eval

| N [intro!]: (N (n),s) −|−> (n,s)

| X [intro!]: (X(x),s) −|−> (s(x),s)

| Op [intro]: [| (e0 ,s) −|−> (n0 ,s0 ); (e1 ,s0 ) −|−> (n1 ,s1 ) |]
==> (Op f e0 e1 , s) −|−> (f n0 n1 , s1 )

| valOf [intro]: [| (c,s) −[eval]−> s0 ; (e,s0 ) −|−> (n,s1 ) |]
==> (VALOF c RESULTIS e, s) −|−> (n, s1 )

monos exec-mono

inductive-cases
[elim!]: (N (n),sigma) −|−> (n ′,s ′)

and [elim!]: (X(x),sigma) −|−> (n,s ′)
and [elim!]: (Op f a1 a2 ,sigma) −|−> (n,s ′)
and [elim!]: (VALOF c RESULTIS e, s) −|−> (n, s1 )

lemma var-assign-eval [intro!]: (X x , s(x:=n)) −|−> (n, s(x:=n))
by (rule fun-upd-same [THEN subst]) fast

Make the induction rule look nicer – though eta-contract makes the new
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version look worse than it is...
lemma split-lemma: {((e,s),(n,s ′)). P e s n s ′} = Collect (case-prod (%v. case-prod
(case-prod P v)))

by auto

New induction rule. Note the form of the VALOF induction hypothesis
lemma eval-induct
[case-names N X Op valOf , consumes 1 , induct set: eval]:
[| (e,s) −|−> (n,s ′);

!!n s. P (N n) s n s;
!!s x. P (X x) s (s x) s;
!!e0 e1 f n0 n1 s s0 s1 .

[| (e0 ,s) −|−> (n0 ,s0 ); P e0 s n0 s0 ;
(e1 ,s0 ) −|−> (n1 ,s1 ); P e1 s0 n1 s1

|] ==> P (Op f e0 e1 ) s (f n0 n1 ) s1 ;
!!c e n s s0 s1 .

[| (c,s) −[eval Int {((e,s),(n,s ′)). P e s n s ′}]−> s0 ;
(c,s) −[eval]−> s0 ;
(e,s0 ) −|−> (n,s1 ); P e s0 n s1 |]

==> P (VALOF c RESULTIS e) s n s1
|] ==> P e s n s ′

apply (induct set: eval)
apply blast
apply blast
apply blast
apply (frule Int-lower1 [THEN exec-mono, THEN subsetD])
apply (auto simp add: split-lemma)
done

Lemma for Function-eval. The major premise is that (c,s) executes to s1
using eval restricted to its functional part. Note that the execution (c,s)
−[eval]−> s2 can use unrestricted eval! The reason is that the execution
(c,s) −[eval Int {...}]−> s1 assures us that execution is functional on the
argument (c,s).
lemma com-Unique:
(c,s) −[eval Int {((e,s),(n,t)). ∀nt ′. (e,s) −|−> nt ′ −−> (n,t)=nt ′}]−> s1
==> ∀ s2 . (c,s) −[eval]−> s2 −−> s2=s1

apply (induct set: exec)
apply simp-all
apply blast

apply force
apply blast

apply blast
apply blast

apply (blast elim: exec-WHILE-case)
apply (erule-tac V = (c,s2 ) −[ev]−> s3 for c ev in thin-rl)
apply clarify
apply (erule exec-WHILE-case, blast+)
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done

Expression evaluation is functional, or deterministic
theorem single-valued-eval: single-valued eval
apply (unfold single-valued-def )
apply (intro allI , rule impI )
apply (simp (no-asm-simp) only: split-tupled-all)
apply (erule eval-induct)
apply (drule-tac [4 ] com-Unique)
apply (simp-all (no-asm-use))
apply blast+
done

lemma eval-N-E [dest!]: (N n, s) −|−> (v, s ′) ==> (v = n & s ′ = s)
by (induct e == N n s v s ′ set: eval) simp-all

This theorem says that "WHILE TRUE DO c" cannot terminate
lemma while-true-E :

(c ′, s) −[eval]−> t ==> c ′ = WHILE (N 0 ) DO c ==> False
by (induct set: exec) auto

13.3 Equivalence of IF e THEN c;;(WHILE e DO c) ELSE
SKIP and WHILE e DO c

lemma while-if1 :
(c ′,s) −[eval]−> t
==> c ′ = WHILE e DO c ==>

(IF e THEN c;;c ′ ELSE SKIP, s) −[eval]−> t
by (induct set: exec) auto

lemma while-if2 :
(c ′,s) −[eval]−> t
==> c ′ = IF e THEN c;;(WHILE e DO c) ELSE SKIP ==>

(WHILE e DO c, s) −[eval]−> t
by (induct set: exec) auto

theorem while-if :
((IF e THEN c;;(WHILE e DO c) ELSE SKIP, s) −[eval]−> t) =
((WHILE e DO c, s) −[eval]−> t)

by (blast intro: while-if1 while-if2 )

13.4 Equivalence of (IF e THEN c1 ELSE c2);;c and IF e
THEN (c1;;c) ELSE (c2;;c)

lemma if-semi1 :
(c ′,s) −[eval]−> t
==> c ′ = (IF e THEN c1 ELSE c2 );;c ==>

(IF e THEN (c1 ;;c) ELSE (c2 ;;c), s) −[eval]−> t
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by (induct set: exec) auto

lemma if-semi2 :
(c ′,s) −[eval]−> t
==> c ′ = IF e THEN (c1 ;;c) ELSE (c2 ;;c) ==>

((IF e THEN c1 ELSE c2 );;c, s) −[eval]−> t
by (induct set: exec) auto

theorem if-semi: (((IF e THEN c1 ELSE c2 );;c, s) −[eval]−> t) =
((IF e THEN (c1 ;;c) ELSE (c2 ;;c), s) −[eval]−> t)

by (blast intro: if-semi1 if-semi2 )

13.5 Equivalence of VALOF c1 RESULTIS (VALOF c2 RE-
SULTIS e) and VALOF c1;;c2 RESULTIS e

lemma valof-valof1 :
(e ′,s) −|−> (v,s ′)
==> e ′ = VALOF c1 RESULTIS (VALOF c2 RESULTIS e) ==>

(VALOF c1 ;;c2 RESULTIS e, s) −|−> (v,s ′)
by (induct set: eval) auto

lemma valof-valof2 :
(e ′,s) −|−> (v,s ′)
==> e ′ = VALOF c1 ;;c2 RESULTIS e ==>

(VALOF c1 RESULTIS (VALOF c2 RESULTIS e), s) −|−> (v,s ′)
by (induct set: eval) auto

theorem valof-valof :
((VALOF c1 RESULTIS (VALOF c2 RESULTIS e), s) −|−> (v,s ′)) =
((VALOF c1 ;;c2 RESULTIS e, s) −|−> (v,s ′))

by (blast intro: valof-valof1 valof-valof2 )

13.6 Equivalence of VALOF SKIP RESULTIS e and e
lemma valof-skip1 :

(e ′,s) −|−> (v,s ′)
==> e ′ = VALOF SKIP RESULTIS e ==>

(e, s) −|−> (v,s ′)
by (induct set: eval) auto

lemma valof-skip2 :
(e,s) −|−> (v,s ′) ==> (VALOF SKIP RESULTIS e, s) −|−> (v,s ′)

by blast

theorem valof-skip:
((VALOF SKIP RESULTIS e, s) −|−> (v,s ′)) = ((e, s) −|−> (v,s ′))

by (blast intro: valof-skip1 valof-skip2 )
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13.7 Equivalence of VALOF x:=e RESULTIS x and e
lemma valof-assign1 :

(e ′,s) −|−> (v,s ′′)
==> e ′ = VALOF x:=e RESULTIS X x ==>

(∃ s ′. (e, s) −|−> (v,s ′) & (s ′′ = s ′(x:=v)))
by (induct set: eval) (simp-all del: fun-upd-apply, clarify, auto)

lemma valof-assign2 :
(e,s) −|−> (v,s ′) ==> (VALOF x:=e RESULTIS X x , s) −|−> (v,s ′(x:=v))

by blast

end
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