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Imperative HOL is a lightweight framework for reasoning about imperative
data structures in Isabelle/HOL [2]. Its basic ideas are described in [1].
However their concrete realisation has changed since, due to both extensions
and refinements. Therefore this overview wants to present the framework “as
it is” by now. It focusses on the user-view, less on matters of construction.
For details study of the theory sources is encouraged.

1 A polymorphic heap inside a monad

Heaps (heap) can be populated by values of class heap; HOL’s default types
are already instantiated to class heap. Class heap is a subclass of countable;
see theory Countable for ways to instantiate types as countable.
The heap is wrapped up in a monad ′a Heap by means of the following
specification:

datatype ′a Heap = Heap.Heap (heap ⇒ ( ′a × heap) option)

Unwrapping of this monad type happens through

execute :: ′a Heap ⇒ heap ⇒ ( ′a × heap) option
execute (Heap.Heap f ) = f

This allows for equational reasoning about monadic expressions; the fact
collection execute-simps contains appropriate rewrites for all fundamental
operations.
Primitive fine-granular control over heaps is available through rule Heap-cases:

(
∧

x h ′. execute f h = Some (x, h ′) =⇒ P) =⇒ (execute f h = None
=⇒ P) =⇒ P

Monadic expression involve the usual combinators:
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return :: ′a ⇒ ′a Heap
(>>=) :: ′a Heap ⇒ ( ′a ⇒ ′b Heap) ⇒ ′b Heap
raise :: String.literal ⇒ ′a Heap

This is also associated with nice monad do-syntax. The string argument to
raise is just a codified comment.
Among a couple of generic combinators the following is helpful for estab-
lishing invariants:

assert :: ( ′a ⇒ bool) ⇒ ′a ⇒ ′a Heap
assert P x = (if P x then return x else raise STR ′′assert ′′)

2 Relational reasoning about Heap expressions

To establish correctness of imperative programs, predicate

effect :: ′a Heap ⇒ heap ⇒ heap ⇒ ′a ⇒ bool

provides a simple relational calculus. Primitive rules are effectI and effectE,
rules appropriate for reasoning about imperative operations are available in
the effect-intros and effect-elims fact collections.
Often non-failure of imperative computations does not depend on the heap
at all; reasoning then can be easier using predicate

success :: ′a Heap ⇒ heap ⇒ bool

Introduction rules for success are available in the success-intro fact collec-
tion.
execute, effect, success and (>>=) are related by rules execute-bind-success,
success-bind-executeI, success-bind-effectI, effect-bindI, effect-bindE and ex-
ecute-bind-eq-SomeI.

3 Monadic data structures

The operations for monadic data structures (arrays and references) come in
two flavours:

• Operations on the bare heap; their number is kept minimal to facilitate
proving.

• Operations on the heap wrapped up in a monad; these are designed
for executing.
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Provided proof rules are such that they reduce monad operations to opera-
tions on bare heaps.
Note that HOL equality coincides with reference equality and may be used
as primitive executable operation.

3.1 Arrays

Heap operations:

Array.alloc :: ′a list ⇒ heap ⇒ ′a array × heap
Array.present :: heap ⇒ ′a array ⇒ bool
Array.get :: heap ⇒ ′a array ⇒ ′a list
Array.set :: ′a array ⇒ ′a list ⇒ heap ⇒ heap
Array.length :: heap ⇒ ′a array ⇒ nat
Array.update :: ′a array ⇒ nat ⇒ ′a ⇒ heap ⇒ heap
(=!!=) :: ′a array ⇒ ′b array ⇒ bool

Monad operations:

Array.new :: nat ⇒ ′a ⇒ ′a array Heap
Array.of-list :: ′a list ⇒ ′a array Heap
Array.make :: nat ⇒ (nat ⇒ ′a) ⇒ ′a array Heap
Array.len :: ′a array ⇒ nat Heap
Array.nth :: ′a array ⇒ nat ⇒ ′a Heap
Array.upd :: nat ⇒ ′a ⇒ ′a array ⇒ ′a array Heap
Array.map-entry :: nat ⇒ ( ′a ⇒ ′a) ⇒ ′a array ⇒ ′a array Heap
Array.swap :: nat ⇒ ′a ⇒ ′a array ⇒ ′a Heap
Array.freeze :: ′a array ⇒ ′a list Heap

3.2 References

Heap operations:

Ref .alloc :: ′a ⇒ heap ⇒ ′a ref × heap
Ref .present :: heap ⇒ ′a ref ⇒ bool
Ref .get :: heap ⇒ ′a ref ⇒ ′a
Ref .set :: ′a ref ⇒ ′a ⇒ heap ⇒ heap
(=!=) :: ′a ref ⇒ ′b ref ⇒ bool

Monad operations:

ref :: ′a ⇒ ′a ref Heap
Ref .lookup :: ′a ref ⇒ ′a Heap
Ref .update :: ′a ref ⇒ ′a ⇒ unit Heap
Ref .change :: ( ′a ⇒ ′a) ⇒ ′a ref ⇒ ′a Heap
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4 Code generation

Imperative HOL sets up the code generator in a way that imperative op-
erations are mapped to suitable counterparts in the target language. For
Haskell, a suitable ST monad is used; for SML, Ocaml and Scala unit values
ensure that the evaluation order is the same as you would expect from the
original monadic expressions. These units may look cumbersome; the target
language variants SML-imp, Ocaml-imp and Scala-imp make some effort to
optimize some of them away.

5 Some hints for using the framework

Of course a framework itself does not by itself indicate how to make best use
of it. Here some hints drawn from prior experiences with Imperative HOL:

• Proofs on bare heaps should be strictly separated from those for monadic
expressions. The first capture the essence, while the latter just describe
a certain wrapping-up.

• A good methodology is to gradually improve an imperative program
from a functional one. In the extreme case this means that an orig-
inal functional program is decomposed into suitable operations with
exactly one corresponding imperative operation. Having shown suit-
able correspondence lemmas between those, the correctness prove of
the whole imperative program simply consists of composing those.

• Whether one should prefer equational reasoning (fact collection exe-
cute-simps or relational reasoning (fact collections effect-intros and ef-
fect-elims) depends on the problems to solve. For complex expressions
or expressions involving binders, the relation style is usually superior
but requires more proof text.

• Note that you can extend the fact collections of Imperative HOL your-
self whenever appropriate.
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