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0.1 Homology, I: Simplices

theory Simplices
imports
HOL— Analysis. Function__Metric
HOL— Analysis. Abstract__Euclidean__Space
HOL— Algebra.Free__Abelian__ Groups

begin

0.1.1

0.1.2
0.1.3

0.1.4
0.1.5
0.1.6

0.1.7

0.1.8

0.1.9

0.1.10

0.1.11

0.1.12

Standard simplices, all of which are topological sub-
spaces of R n.

Face map

Singular simplices, forcing canonicity outside the in-
tended domain

Singular chains
Boundary homomorphism for singular chains

Factoring out chains in a subtopology for relative ho-
mology

Relative cycles Z,X(S) where X is a topology and S a
subset

Relative boundaries B,X.S, where X is a topology and
S a subset.

The (relative) homology relation

Show that all boundaries are cycles, the key "chain
complex" property.

Operations induced by a continuous map g between
topological spaces

Homology of one-point spaces degenerates except for
p=0.
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0.1.13 Simplicial chains

0.1.14 The cone construction on simplicial simplices.

0.1.15 Barycentric subdivision of a linear ("simplicial") sim-
plex’s image

0.1.16 Singular subdivision

0.1.17 Excision argument that we keep doing singular sub-
division

proposition sufficient iterated singular _subdivision__ezists:
assumes C: NU. U € C = openin X U
and X: topspace X C |JC
and p: singular_chain p X c
obtains n where Am f. [n < m; f € Poly_Mapping.keys ((singular_subdivision
pm) )]
= 3V e C. f € (standard_simplex p) — V

0.1.18 Homotopy invariance

theorem homotopic_imp__homologous rel_chain__maps:

assumes hom: homotopic_with (Ah. h € T — V) S U f g and c: singular_relcycle
pSTec

shows homologous_rel p U V (chain_map p f ¢) (chain_map p g c)
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end

0.2 Homology, II: Homology Groups

theory Homology Groups
imports Simplices HOL— Algebra. Exact_Sequence

begin

0.2.1 Homology Groups

0.2.2 Towards the Eilenberg-Steenrod axioms

proposition homology homotopy__axiom:
assumes homotopic_with (Ah. h € S = T) X Y fg
shows hom__induced p X S Y T f = hom_induced p X S Y T g

proposition homology excision__axiom:
assumes X closure_of U C X interior_of TT C S
shows
hom__induced p (subtopology X (S — U)) (T — U) (subtopology X S) T id
€ iso (relative_homology__group p (subtopology X (S — U)) (T — U))
(relative__homology__group p (subtopology X S) T)

0.2.3 Additivity axiom

proposition iso_ cycle_ group_ sum:
assumes disj: pairwise disjnt U and UU: |JU = topspace X
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and subs: AC T. [compactin X C; path__connectedin X C; T € U; = disjnt C
Tl= CCT
shows (Af. sum’ f U) € iso (sum__group U (AT. relcycle group p (subtopology
X T){})
(releycle_group p X {})

proposition homology_additivity _axiom__gen:
assumes disj: pairwise disjnt U and UU: |JU = topspace X
and subs: AC T. [compactin X C; path__connectedin X C; T € U; — disjnt C
Tl= CCT
shows (A\z. gfinprod (homology__group p X)
(AV. hom__induced p (subtopology X V) {} X {} id (z V)) U)
€ iso (sum__group U (AS. homology__group p (subtopology X S))) (homology__group
p X)
(is ?h € iso 25G ?HQ)

corollary homology additivity _axiom:
assumes disj: pairwise disjnt U and UU: |JU = topspace X
and ope: A\v. v € U = openin X v
shows (Az. gfinprod (homology_group p X)
(Av. hom__induced p (subtopology X v) {} X {} id (z v)) U)
€ iso (sum__group U (AS. homology__group p (subtopology X S))) (homology _group

p X)
0.2.4 Special properties of singular homology

proposition iso_integer_zeroth__homology group:
assumes X: path__connected_space X and f: singular _simplex 0 X f
shows pow (homology__group 0 X) (homologous_rel_set 0 X {} (frag_of f))
€ iso integer__group (homology_group 0 X) (is pow ?H ?q € iso __ ?H)

corollary isomorphic__integer _zeroth _homology group:
assumes X: path__connected space X topspace X # {}
shows homology__group 0 X = integer__group

corollary homology _coefficients:
topspace X = {a} = homology__group 0 X = integer _group

proposition zeroth__homology _group:
homology__group 0 X = free_Abelian__group (path__components of X)
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0.2.5 More basic properties of homology groups, deduced
from the E-S axioms

corollary mon__hom__induced__section__map:
assumes section_map X Y f
shows (hom__inducedp X {} Y {} f) € mon (homology__group p X) (homology__group

pY)

corollary epi_hom__induced_ retraction__map:
assumes retraction_map X Y f
shows (hom__induced p X {} Y {} f) € epi (homology__group p X) (homology__group

pY)

0.2.6 Generalize exact homology sequence to triples

proposition homology exactness triple 1:
assumes T C S
shows exact_seq ([relative__homology__group(p—1) (subtopology X S) T,
relative__homology_group p X S,
relative__homology__group p X T,
[hom__relboundary p X S T, hom__induced p X T X S id))
(is exact_seq ([?G1,7G2,?G3], [?h1,%h2]))

proposition homology__exactness_triple_2:
assumes 7' C S
shows ezact_seq ([relative__homology__group(p—1) X T,
relative__homology__group(p—1) (subtopology X S) T,
relative__homology__group p X S,
[hom__induced (p—1) (subtopology X S) T X T id, hom_ relboundary
p X S TJ)
(is exact_seq ([?G1,7G2,?G3], [?h1,?h2]))

proposition homology_exactness_triple_3:
assumes 7' C S
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shows ezact__seq ([relative__homology__group p X S,
relative__homology_group p X T,
relative__homology__group p (subtopology X S) T1,
[hom__induced p X T X S id, hom__induced p (subtopology X S) T
X T id])
(is exact_seq ([?G1,7G2,?G3], [?h1,%h2]))

end

0.3 Homology, III: Brouwer Degree

theory Brouwer Degree
imports Homology Groups HOL— Algebra. Multiplicative_ Group

begin

0.3.1 Reduced Homology

0.3.2 More homology properties of deformations, retracts,
contractible spaces

corollary isomorphic_relative__homology__groups relativization__contractible:
assumes contractible_space(subtopology X S) contractible_space(subtopology X
T) T C Stopspace X N T # {}
shows relative__homology_group p X T =2 relative__homology__group p X S

corollary isomorphic_relative__homology__groups inclusion__contractible:
assumes contractible _space X contractible__space(subtopology X S) T C S topspace

XnS#{}
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shows relative__homology__group p (subtopology X S) T = relative__homology__group
pXT

corollary isomorphic_relative__homology groups relboundary__contractible:
assumes contractible _space X contractible__space(subtopology X T') T C S topspace
X074
shows relative_homology _group p X S = relative_homology group (p — 1)
(subtopology X S) T

0.3.3 Homology groups of spheres

proposition iso_relative__homology group__upper _hemisphere:
(hom__induced p (subtopology (nsphere n) {x. x k > 0}) {z. x k = 0} (nsphere
n) {z. z k < 0} id)
€ iso (relative__homology__group p (subtopology (nsphere n) {z. x k > 0}) {z. =
k=0})
(relative__homology__group p (nsphere n) {z. z k < 0}) (is ?h € iso ?G ?H)

corollary iso_upper_hemisphere__reduced__homology group:
(hom__boundary (1 + p) (subtopology (nsphere (Suc n)) {z. x(Suc n) > 0}) {z.
z(Suc n) = 0})
€ iso (relative__homology__group (1 + p) (subtopology (nsphere (Suc n)) {z. z(Suc
n) > 0}) {z. z(Suc n) = 0})
(reduced__homology__group p (nsphere n))

corollary iso_ reduced _homology__group_ upper__hemisphere:
assumes k < n
shows hom__induced p (nsphere n) {} (nsphere n) {z. x k > 0} id
€ iso (reduced_homology_group p (nsphere n)) (relative_homology__group p
(nsphere n) {z. x k > 0})

0.3.4 Brouwer degree of a Map
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corollary Brouwer _degree2 nonsurjective:
[continuous _map(nsphere p) (nsphere p) f; f ¢ topspace (nsphere p) # topspace

(nsphere p)]
= Brouwer_degree2 p f = 0

proposition Brouwer__degree2__reflection:

Brouwer _degree2 p (Az i. if i = 0 then —x i else x i) = —1 (is Brouwer_degree2
_r=-1)
end

0.4 Invariance of Domain

theory Invariance of Domain
imports Brouwer_Degree HOL— Analysis. Continuous__Extension HOL— Analysis. Homeomorphism

begin

0.4.1 Degree invariance mod 2 for map between pairs

theorem Borsuk_odd__mapping degree_ step:
assumes cmf: continuous_map (nsphere n) (nsphere n) f
and f: Au. u € topspace(nsphere n) = (f o Az i. —z %)) u= ((A\xi. —z ) o
f)u
and fim: f € (topspace(nsphere(n — Suc 0))) — topspace(nsphere(n — Suc 0))
shows even (Brouwer _degree2 n f — Brouwer _degree2 (n — Suc 0) f)

0.4.2 General Jordan-Brouwer separation theorem and in-
variance of dimension

proposition relative__homology group_Fuclidean__complement _step:
assumes closedin (Euclidean__space n) S
shows relative__homology__group p (Euclidean__space n) (topspace( Euclidean__space
n) — 5)
2 relative__homology__group (p + k) (Euclidean__space (n+k)) (topspace( EBuclidean _space
(n+E)) — S)

proposition isomorphic_relative _homology__groups_Fuclidean__complements:

assumes S: closedin (FEuclidean_space n) S and T: closedin (Euclidean__space
n) T

and hom: (subtopology (Fuclidean__space n) S) homeomorphic__space (subtopology
(Euclidean__space n) T)

shows relative _homology__group p (Euclidean__space n) (topspace( Euclidean__space

n) — 5)
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& relative__homology__group p (Fuclidean__space n) (topspace( Fuclidean__space
n) —T)

theorem invariance_of dimension_ Fuclidean__space:
Euclidean__space m homeomorphic__space Fuclidean__space n <— m = n

theorem invariance_of domain__ Euclidean__space:
assumes U: openin (FEuclidean__space n) U
and cmf: continuous_map (subtopology (Euclidean__space n) U) (Euclidean__space
") J
and inj_on f U
shows openin (Euclidean__space n) (f  U) (is openin ?E (f < U))

corollary invariance__of domain__ Fuclidean__space__embedding map:
assumes openin (Fuclidean_space n) U
and emf: continuous__map(subtopology (Euclidean__space n) U) (Euclidean__space
n) f
and inj_on fU
shows embedding _map(subtopology (Euclidean__space n) U) (FBuclidean _space
n) f

corollary invariance of domain_ Fuclidean__space__gen:
assumes n < m and U: openin (Euclidean__space m) U
and cmf: continuous__map(subtopology (Euclidean__space m) U) (Euclidean__space
n) J
and inj_on fU
shows openin (Euclidean__space n) (f < U)

corollary invariance of domain_ Fuclidean__space__embedding _map__gen:
assumes n < m and U: openin (FBuclidean_space m) U
and cmf: continuous__map(subtopology (Euclidean__space m) U) (Euclidean _space
n) f
and inj _on fU
shows embedding map(subtopology (Euclidean__space m) U) (Euclidean__space
n) f
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0.4.3 Relating two variants of Euclidean space, one within
product topology.

proposition homeomorphic_maps_Fuclidean__space__euclidean__gen_ OLD:
fixes B :: 'n::euclidean_ space set
assumes finite B independent B and orth: pairwise orthogonal B and n: card B
=n
obtains f g where homeomorphic_maps (Euclidean__space n) (top_of _set (span

B))fg

proposition homeomorphic_maps_Fuclidean__space__euclidean__gen:
fixes B :: 'n::euclidean_space set
assumes independent B and orth: pairwise orthogonal B and n: card B = n
and 1: Au. u € B= norm u = 1
obtains f g where homeomorphic_maps (Euclidean__space n) (top__of set (span
B)) fg
and Az. z € topspace (Euclidean_space n) = (norm (f z))? = (3 i<n. (z

i)?)

corollary homeomorphic_maps Fuclidean__space__euclidean:
obtains f :: (nat = real) = 'n::euclidean_space and g
where homeomorphic_maps (Euclidean__space (DIM('n))) euclidean f g

0.4.4 Invariance of dimension and domain

corollary invariance_of domain__subspaces:
fixes [ :: ‘a::euclidean__space = 'b::euclidean_ space
assumes ope: openin (top_of _set U) S
and subspace U subspace V and VU: dim V < dim U
and contf: continuous_on S f and fim: f € S — V
and injf: inj_on f S
shows openin (top_of set V) (f ©S)

corollary invariance of dimension__subspaces:
fixes f :: 'a::euclidean__space = 'b::euclidean_ space
assumes ope: openin (top_of set U) S
and subspace U subspace V
and contf: continuous_on S f and fim: f ‘S C V
and injf: inj_on f S and S # {}
shows dim U < dim V

corollary invariance of domain__affine_sets:
fixes [ :: ‘a::euclidean_space = 'b::euclidean_ space
assumes ope: openin (top_of _set U) S
and aff: affine U affine V aff _dim V < aff _dim U
and contf: continuous_on S f and fim: f ‘S C V
and injf: inj_on f S
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shows openin (top_of _set V) (f ©5)

corollary invariance__of dimension__affine sets:
fixes [ :: 'a:euclidean_space = 'b::euclidean__space
assumes ope: openin (top_of set U) S
and aff: affine U affine V
and contf: continuous_on S f and fim: f ‘S C V
and injf: inj_on fS and S # {}
shows aff dim U < aff dim V

corollary invariance of dimension:
fixes [ :: 'a::euclidean_space = 'b::euclidean__space
assumes contf: continuous_on S f and open S
and injf: inj_on fS and S # {}
shows DIM('a) < DIM('b)

corollary continuous_injective _image__subspace__dim,__le:
fixes [ :: 'a::euclidean__space = 'b::euclidean__space
assumes subspace S subspace T
and contf: continuous_on S f and fim: f ¢S C T
and injf: inj_on f S
shows dim S < dim T

corollary invariance of domain__homeomorphic:
fixes [ :: 'a:euclidean__space = 'b::euclidean__space
assumes open S continuous_on S f DIM('b) < DIM('a) inj_on f S
shows S homeomorphic (f * S)

proposition homeomorphic__interiors:
fixes S :: 'a:euclidean__space set and T :: 'b::euclidean_ space set
assumes S homeomorphic T interior S = {} +— interior T = {}
shows (interior S) homeomorphic (interior T)

proposition uniformly_continuous _homeomorphism__ UNIV_trivial:

fixes [ :: 'a:euclidean__space = 'a

assumes contf: uniformly_continuous _on S f and hom: homeomorphism S
UNIV f g

shows S = UNIV

proposition invariance_of domain__sphere__affine set_gen:
fixes [ :: 'a:euclidean_space = 'b::euclidean__space
assumes contf: continuous_on S f and injf: inj_on fS and fim: f S C T
and U: bounded U convex U
and affine T and aoff TU: off dim T < aff dim U
and ope: openin (top_of _set (rel_frontier U)) S
shows openin (top_of _set T) (f © S)

end
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theory Homology
imports Invariance_of Domain
begin

end
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