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0.1 Homology, I: Simplices
theory Simplices

imports
HOL−Analysis.Function_Metric
HOL−Analysis.Abstract_Euclidean_Space
HOL−Algebra.Free_Abelian_Groups

begin

0.1.1 Standard simplices, all of which are topological sub-
spaces of R^n.

0.1.2 Face map

0.1.3 Singular simplices, forcing canonicity outside the in-
tended domain

0.1.4 Singular chains

0.1.5 Boundary homomorphism for singular chains

0.1.6 Factoring out chains in a subtopology for relative ho-
mology

0.1.7 Relative cycles ZpX(S) where X is a topology and S a
subset

0.1.8 Relative boundaries BpXS, where X is a topology and
S a subset.

0.1.9 The (relative) homology relation

0.1.10 Show that all boundaries are cycles, the key "chain
complex" property.

0.1.11 Operations induced by a continuous map g between
topological spaces

0.1.12 Homology of one-point spaces degenerates except for
p = 0.
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0.1.13 Simplicial chains

0.1.14 The cone construction on simplicial simplices.

0.1.15 Barycentric subdivision of a linear ("simplicial") sim-
plex’s image

0.1.16 Singular subdivision

0.1.17 Excision argument that we keep doing singular sub-
division

proposition sufficient_iterated_singular_subdivision_exists:
assumes C:

∧
U . U ∈ C =⇒ openin X U

and X : topspace X ⊆
⋃
C

and p: singular_chain p X c
obtains n where

∧
m f . [[n ≤ m; f ∈ Poly_Mapping.keys ((singular_subdivision

p ^^ m) c)]]
=⇒ ∃V ∈ C. f ∈ (standard_simplex p) → V

0.1.18 Homotopy invariance
theorem homotopic_imp_homologous_rel_chain_maps:
assumes hom: homotopic_with (λh. h ∈ T → V ) S U f g and c: singular_relcycle

p S T c
shows homologous_rel p U V (chain_map p f c) (chain_map p g c)
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end

0.2 Homology, II: Homology Groups
theory Homology_Groups

imports Simplices HOL−Algebra.Exact_Sequence

begin

0.2.1 Homology Groups

0.2.2 Towards the Eilenberg-Steenrod axioms

proposition homology_homotopy_axiom:
assumes homotopic_with (λh. h ∈ S → T ) X Y f g
shows hom_induced p X S Y T f = hom_induced p X S Y T g

proposition homology_excision_axiom:
assumes X closure_of U ⊆ X interior_of T T ⊆ S
shows
hom_induced p (subtopology X (S − U )) (T − U ) (subtopology X S) T id
∈ iso (relative_homology_group p (subtopology X (S − U )) (T − U ))

(relative_homology_group p (subtopology X S) T )

0.2.3 Additivity axiom

proposition iso_cycle_group_sum:
assumes disj: pairwise disjnt U and UU :

⋃
U = topspace X

Homology{_}{\kern 0pt}Groups.html
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and subs:
∧

C T . [[compactin X C ; path_connectedin X C ; T ∈ U ; ¬ disjnt C
T ]] =⇒ C ⊆ T

shows (λf . sum ′ f U) ∈ iso (sum_group U (λT . relcycle_group p (subtopology
X T ) {}))

(relcycle_group p X {})

proposition homology_additivity_axiom_gen:
assumes disj: pairwise disjnt U and UU :

⋃
U = topspace X

and subs:
∧

C T . [[compactin X C ; path_connectedin X C ; T ∈ U ; ¬ disjnt C
T ]] =⇒ C ⊆ T

shows (λx. gfinprod (homology_group p X)
(λV . hom_induced p (subtopology X V ) {} X {} id (x V )) U)

∈ iso (sum_group U (λS . homology_group p (subtopology X S))) (homology_group
p X)

(is ?h ∈ iso ?SG ?HG)

corollary homology_additivity_axiom:
assumes disj: pairwise disjnt U and UU :

⋃
U = topspace X

and ope:
∧

v. v ∈ U =⇒ openin X v
shows (λx. gfinprod (homology_group p X)

(λv. hom_induced p (subtopology X v) {} X {} id (x v)) U)
∈ iso (sum_group U (λS . homology_group p (subtopology X S))) (homology_group

p X)

0.2.4 Special properties of singular homology

proposition iso_integer_zeroth_homology_group:
assumes X : path_connected_space X and f : singular_simplex 0 X f
shows pow (homology_group 0 X) (homologous_rel_set 0 X {} (frag_of f ))
∈ iso integer_group (homology_group 0 X) (is pow ?H ?q ∈ iso _ ?H )

corollary isomorphic_integer_zeroth_homology_group:
assumes X : path_connected_space X topspace X 6= {}
shows homology_group 0 X ∼= integer_group

corollary homology_coefficients:
topspace X = {a} =⇒ homology_group 0 X ∼= integer_group

proposition zeroth_homology_group:
homology_group 0 X ∼= free_Abelian_group (path_components_of X)
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0.2.5 More basic properties of homology groups, deduced
from the E-S axioms

corollary mon_hom_induced_section_map:
assumes section_map X Y f
shows (hom_induced p X {} Y {} f ) ∈ mon (homology_group p X) (homology_group

p Y )

corollary epi_hom_induced_retraction_map:
assumes retraction_map X Y f
shows (hom_induced p X {} Y {} f ) ∈ epi (homology_group p X) (homology_group

p Y )

0.2.6 Generalize exact homology sequence to triples

proposition homology_exactness_triple_1 :
assumes T ⊆ S
shows exact_seq ([relative_homology_group(p−1 ) (subtopology X S) T ,

relative_homology_group p X S ,
relative_homology_group p X T ],
[hom_relboundary p X S T , hom_induced p X T X S id])

(is exact_seq ([?G1 ,?G2 ,?G3 ], [?h1 ,?h2 ]))

proposition homology_exactness_triple_2 :
assumes T ⊆ S
shows exact_seq ([relative_homology_group(p−1 ) X T ,

relative_homology_group(p−1 ) (subtopology X S) T ,
relative_homology_group p X S ],

[hom_induced (p−1 ) (subtopology X S) T X T id, hom_relboundary
p X S T ])

(is exact_seq ([?G1 ,?G2 ,?G3 ], [?h1 ,?h2 ]))

proposition homology_exactness_triple_3 :
assumes T ⊆ S

Homology{_}{\kern 0pt}Groups.html
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shows exact_seq ([relative_homology_group p X S ,
relative_homology_group p X T ,
relative_homology_group p (subtopology X S) T ],
[hom_induced p X T X S id, hom_induced p (subtopology X S) T

X T id])
(is exact_seq ([?G1 ,?G2 ,?G3 ], [?h1 ,?h2 ]))

end

0.3 Homology, III: Brouwer Degree
theory Brouwer_Degree

imports Homology_Groups HOL−Algebra.Multiplicative_Group

begin

0.3.1 Reduced Homology

0.3.2 More homology properties of deformations, retracts,
contractible spaces

corollary isomorphic_relative_homology_groups_relativization_contractible:
assumes contractible_space(subtopology X S) contractible_space(subtopology X

T ) T ⊆ S topspace X ∩ T 6= {}
shows relative_homology_group p X T ∼= relative_homology_group p X S

corollary isomorphic_relative_homology_groups_inclusion_contractible:
assumes contractible_space X contractible_space(subtopology X S) T ⊆ S topspace

X ∩ S 6= {}
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shows relative_homology_group p (subtopology X S) T ∼= relative_homology_group
p X T

corollary isomorphic_relative_homology_groups_relboundary_contractible:
assumes contractible_space X contractible_space(subtopology X T ) T ⊆ S topspace

X ∩ T 6= {}
shows relative_homology_group p X S ∼= relative_homology_group (p − 1 )

(subtopology X S) T

0.3.3 Homology groups of spheres

proposition iso_relative_homology_group_upper_hemisphere:
(hom_induced p (subtopology (nsphere n) {x. x k ≥ 0}) {x. x k = 0} (nsphere

n) {x. x k ≤ 0} id)
∈ iso (relative_homology_group p (subtopology (nsphere n) {x. x k ≥ 0}) {x. x

k = 0})
(relative_homology_group p (nsphere n) {x. x k ≤ 0}) (is ?h ∈ iso ?G ?H )

corollary iso_upper_hemisphere_reduced_homology_group:
(hom_boundary (1 + p) (subtopology (nsphere (Suc n)) {x. x(Suc n) ≥ 0}) {x.

x(Suc n) = 0})
∈ iso (relative_homology_group (1 + p) (subtopology (nsphere (Suc n)) {x. x(Suc

n) ≥ 0}) {x. x(Suc n) = 0})
(reduced_homology_group p (nsphere n))

corollary iso_reduced_homology_group_upper_hemisphere:
assumes k ≤ n
shows hom_induced p (nsphere n) {} (nsphere n) {x. x k ≥ 0} id
∈ iso (reduced_homology_group p (nsphere n)) (relative_homology_group p

(nsphere n) {x. x k ≥ 0})

0.3.4 Brouwer degree of a Map

Brouwer{_}{\kern 0pt}Degree.html
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corollary Brouwer_degree2_nonsurjective:
[[continuous_map(nsphere p) (nsphere p) f ; f ‘ topspace (nsphere p) 6= topspace

(nsphere p)]]
=⇒ Brouwer_degree2 p f = 0

proposition Brouwer_degree2_reflection:
Brouwer_degree2 p (λx i. if i = 0 then −x i else x i) = −1 (is Brouwer_degree2

_ ?r = −1 )

end

0.4 Invariance of Domain
theory Invariance_of_Domain
imports Brouwer_Degree HOL−Analysis.Continuous_Extension HOL−Analysis.Homeomorphism

begin

0.4.1 Degree invariance mod 2 for map between pairs
theorem Borsuk_odd_mapping_degree_step:

assumes cmf : continuous_map (nsphere n) (nsphere n) f
and f :

∧
u. u ∈ topspace(nsphere n) =⇒ (f ◦ (λx i. −x i)) u = ((λx i. −x i) ◦

f ) u
and fim: f ∈ (topspace(nsphere(n − Suc 0 ))) → topspace(nsphere(n − Suc 0 ))

shows even (Brouwer_degree2 n f − Brouwer_degree2 (n − Suc 0 ) f )

0.4.2 General Jordan-Brouwer separation theorem and in-
variance of dimension

proposition relative_homology_group_Euclidean_complement_step:
assumes closedin (Euclidean_space n) S
shows relative_homology_group p (Euclidean_space n) (topspace(Euclidean_space

n) − S)
∼= relative_homology_group (p + k) (Euclidean_space (n+k)) (topspace(Euclidean_space

(n+k)) − S)

proposition isomorphic_relative_homology_groups_Euclidean_complements:
assumes S : closedin (Euclidean_space n) S and T : closedin (Euclidean_space

n) T
and hom: (subtopology (Euclidean_space n) S) homeomorphic_space (subtopology

(Euclidean_space n) T )
shows relative_homology_group p (Euclidean_space n) (topspace(Euclidean_space

n) − S)
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∼= relative_homology_group p (Euclidean_space n) (topspace(Euclidean_space
n) − T )

theorem invariance_of_dimension_Euclidean_space:
Euclidean_space m homeomorphic_space Euclidean_space n ←→ m = n

theorem invariance_of_domain_Euclidean_space:
assumes U : openin (Euclidean_space n) U
and cmf : continuous_map (subtopology (Euclidean_space n) U ) (Euclidean_space

n) f
and inj_on f U

shows openin (Euclidean_space n) (f ‘ U ) (is openin ?E (f ‘ U ))

corollary invariance_of_domain_Euclidean_space_embedding_map:
assumes openin (Euclidean_space n) U
and cmf : continuous_map(subtopology (Euclidean_space n) U ) (Euclidean_space

n) f
and inj_on f U

shows embedding_map(subtopology (Euclidean_space n) U ) (Euclidean_space
n) f

corollary invariance_of_domain_Euclidean_space_gen:
assumes n ≤ m and U : openin (Euclidean_space m) U
and cmf : continuous_map(subtopology (Euclidean_space m) U ) (Euclidean_space

n) f
and inj_on f U

shows openin (Euclidean_space n) (f ‘ U )

corollary invariance_of_domain_Euclidean_space_embedding_map_gen:
assumes n ≤ m and U : openin (Euclidean_space m) U
and cmf : continuous_map(subtopology (Euclidean_space m) U ) (Euclidean_space

n) f
and inj_on f U

shows embedding_map(subtopology (Euclidean_space m) U ) (Euclidean_space
n) f

Invariance{_}{\kern 0pt}of{_}{\kern 0pt}Domain.html
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0.4.3 Relating two variants of Euclidean space, one within
product topology.

proposition homeomorphic_maps_Euclidean_space_euclidean_gen_OLD:
fixes B :: ′n::euclidean_space set
assumes finite B independent B and orth: pairwise orthogonal B and n: card B

= n
obtains f g where homeomorphic_maps (Euclidean_space n) (top_of_set (span

B)) f g

proposition homeomorphic_maps_Euclidean_space_euclidean_gen:
fixes B :: ′n::euclidean_space set
assumes independent B and orth: pairwise orthogonal B and n: card B = n

and 1 :
∧

u. u ∈ B =⇒ norm u = 1
obtains f g where homeomorphic_maps (Euclidean_space n) (top_of_set (span

B)) f g
and

∧
x. x ∈ topspace (Euclidean_space n) =⇒ (norm (f x))2 = (

∑
i<n. (x

i)2)

corollary homeomorphic_maps_Euclidean_space_euclidean:
obtains f :: (nat ⇒ real) ⇒ ′n::euclidean_space and g
where homeomorphic_maps (Euclidean_space (DIM ( ′n))) euclidean f g

0.4.4 Invariance of dimension and domain

corollary invariance_of_domain_subspaces:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes ope: openin (top_of_set U ) S

and subspace U subspace V and VU : dim V ≤ dim U
and contf : continuous_on S f and fim: f ∈ S → V
and injf : inj_on f S

shows openin (top_of_set V ) (f ‘ S)

corollary invariance_of_dimension_subspaces:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes ope: openin (top_of_set U ) S

and subspace U subspace V
and contf : continuous_on S f and fim: f ‘ S ⊆ V
and injf : inj_on f S and S 6= {}

shows dim U ≤ dim V

corollary invariance_of_domain_affine_sets:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes ope: openin (top_of_set U ) S

and aff : affine U affine V aff_dim V ≤ aff_dim U
and contf : continuous_on S f and fim: f ‘ S ⊆ V
and injf : inj_on f S
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shows openin (top_of_set V ) (f ‘ S)

corollary invariance_of_dimension_affine_sets:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes ope: openin (top_of_set U ) S

and aff : affine U affine V
and contf : continuous_on S f and fim: f ‘ S ⊆ V
and injf : inj_on f S and S 6= {}

shows aff_dim U ≤ aff_dim V

corollary invariance_of_dimension:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes contf : continuous_on S f and open S

and injf : inj_on f S and S 6= {}
shows DIM ( ′a) ≤ DIM ( ′b)

corollary continuous_injective_image_subspace_dim_le:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes subspace S subspace T

and contf : continuous_on S f and fim: f ‘ S ⊆ T
and injf : inj_on f S

shows dim S ≤ dim T

corollary invariance_of_domain_homeomorphic:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes open S continuous_on S f DIM ( ′b) ≤ DIM ( ′a) inj_on f S
shows S homeomorphic (f ‘ S)

proposition homeomorphic_interiors:
fixes S :: ′a::euclidean_space set and T :: ′b::euclidean_space set
assumes S homeomorphic T interior S = {} ←→ interior T = {}

shows (interior S) homeomorphic (interior T )

proposition uniformly_continuous_homeomorphism_UNIV_trivial:
fixes f :: ′a::euclidean_space ⇒ ′a
assumes contf : uniformly_continuous_on S f and hom: homeomorphism S

UNIV f g
shows S = UNIV

proposition invariance_of_domain_sphere_affine_set_gen:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes contf : continuous_on S f and injf : inj_on f S and fim: f ‘ S ⊆ T

and U : bounded U convex U
and affine T and affTU : aff_dim T < aff_dim U
and ope: openin (top_of_set (rel_frontier U )) S

shows openin (top_of_set T ) (f ‘ S)

end
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theory Homology
imports Invariance_of_Domain

begin

end
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