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Simplices.thy )

0.1 Homology, I: Simplices

theory Simplices
imports
HOL— Analysis. Function_ Metric
HOL— Analysis. Abstract_ Fuclidean__ Space
HOL—- Algebra.Free__Abelian_ Groups
begin

0.1.1 Standard simplices, all of which are topological sub-
spaces of R ™n.

type__synonym ’a chain = ((nat = real) = 'a) = int

definition standard_simplex :: nat = (nat = real) set where
standard__simplex p =
{z. Vi.0<ziNzi<I)ANMi>p.zi=0)N (D i<p. zi) =1}

lemma topspace__standard__simplex:
topspace(subtopology (powertop_real UNIV') (standard__simplex p))
= standard__simplex p
by simp

lemma basis_in_ standard__simplex [simp]:
(M\j. if j = i then 1 else 0) € standard__simplex p +— i < p
by (auto simp: standard__simplex__def)

lemma nonempty_standard__simplez: standard _simplex p # {}
using basis _in_standard__simplex by blast

lemma standard__simplex_0: standard_simplex 0 = {(N\j. if j = 0 then 1 else 0)}
by (auto simp: standard__simplex__def)

lemma standard__simplex__mono:
assumes p < ¢
shows standard _simplex p C standard__simplex ¢
using assms
proof (clarsimp simp: standard__simplex__def)
fix z :: nat = real
assume Vi. 0 < ziAzi<1and Vi>p. zi= 0 and sum z {..p} = 1
then show sum z {..q} = 1
using sum.mono__neutral_left [of {..q} {..p} z] assms by auto
qed

lemma closedin__standard__simplex:
closedin (powertop__real UNIV) (standard__simplex p)
(is closedin ?X 25)
proof —
have eq: standard__simplex p =
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(N {z. x € topspace ?X Nz i€ {0..1}}) N
(N e {p<..}. {z € topspace ?X. zi € {0}}) N
{z € topspace ?X. (> i<p. z i) € {1}}
by (auto simp: standard__simplex__def topspace__product _topology)
show ?thesis
unfolding eq
by (rule closedin__Int closedin__ Inter continuous map__sum
continuous__map__product_projection closedin__continuous_map__preimage
| force | clarify)+
qed

lemma standard__simplex_01: standard__simplex p C UNIV —g {0..1}
using standard__simplex_def by auto

lemma compactin__standard__simplex:
compactin (powertop__real UNIV) (standard_simplez p)
proof (rule closed _compactin)
show compactin (powertop_real UNIV) (UNIV —g {0..1})
by (simp add: compactin_ PiE)
show standard_simplex p C UNIV —g {0..1}
by (simp add: standard__simplex_ 01)
show closedin (powertop_real UNIV') (standard__simplex p)
by (simp add: closedin__standard__simplex)
qed

lemma convex_standard__simplex:
[z € standard_simplex p; y € standard__simplez p;
0 < wu;u<I]
= (M. (I —u)*xzi+ u=x*yi) € standard _simplex p
by (simp add: standard__simplex__def sum.distrib convex__bound_le flip: sum__distrib_left)

lemma path_ connectedin__standard__simplex:
path__connectedin (powertop_real UNIV) (standard__simplex p)
proof —
define g where g = Az y:nat=real. Aui. (I — u) *xz i+ u*yi
have continuous map
(subtopology euclideanreal {0..1}) (powertop__real UNIV')
(92 y)
if © € standard__simplex p y € standard__simplex p for = y
unfolding g def continuous_map_ componentwise
by (force intro: continuous_intros)
moreover
have gz y € {0..1} — standard_simplexp gz y 0 =xgzyl =y
if © € standard_simplex p y € standard__simplex p for = y
using that by (auto simp: convexr_standard_simplex g_def)
ultimately
show ?thesis
unfolding path_connectedin__def path__connected space__def pathin__def
by (metis continuous_map__in__subtopology euclidean__product_topology top__greatest
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topspace__euclidean topspace__euclidean__subtopology)
qed

lemma connectedin__standard__simplex:
connectedin (powertop_real UNIV) (standard_simplez p)
by (simp add: path__connectedin__imp__connectedin path__connectedin__standard__simplex)

0.1.2 Face map

definition simplical_face :: nat = (nat = 'a) = nat = 'a::comm__monoid_add
where
stmplical_face k x = Ni. if i < k then x i else if i = k then 0 else x(i —1)

lemma simplical_face in_standard__simplex:
assumes 1 < p k < p x € standard__simplex (p — Suc 0)
shows (simplical_face k ©) € standard__simplex p
proof —
have z01: N\i. 0 <z i Az i< I and sumz: sum z {..p — Suc 0} = 1
using assms by (auto simp: standard_simplex__def simplical_face_def)
have gg: Ag. sum g {..p} = sum g {..<k} + sum g {k..p}
using <k < p» sum.union__disjoint [of {..<k} {k..p}]
by (force simp: @l _disj _un il _disj int)
have eq: (> i<p. if i < k then x i else if i = k then 0 else z (i —1))
=i<kozi)+ Oie{k.pt ifi =Fkthen 0elsex (i —1))
by (simp add: gg)
consider k < p — Suc 0 | k=1p
using <k < p» by linarith
then have (3 i<p. if i < k then z i else if i = k then 0 else x (i —1)) = 1
proof cases
case I
have [simp]: Suc (p — Suc 0) = p
using <! < p» by auto
have (> i=k.p. ifi =kthen Oelsex (i —1)) = (D i = k+1..p. if i = k then
0elsex (i —1))
by (rule sum.mono_neutral _right) auto

also have ... = (3 i=k+1..p. z (i —1))
by simp
also have ... = > i=k.p—1. z 1)

using sum.atLeastAtMost_reindex [of Suc k p—1 Ai. z (i — Suc 0)] 1 by
stmp
finally have eq2: (> i =k..p. ifi = kthen Oelsex (i —1)) = (> i=k..p—1.
with 7 show ?thesis
by (metis (no__types, lifting) One_nat_def eq finite__atLeastAtMost finite_lessThan
wl_disj_int(4) wl_disj _un(10) sum.union__disjoint sumz)
next
case 2
have [simp]: ({..p} N {z. z < p}) = {.p — Suc 0}
using assms by auto
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have (> i<p. if i < p then z i else if i = k then O else x (i —1)) = (> i<p. if
i < p then x i else 0)
by (rule sum.cong) (auto simp: 2)

also have ... = sum z {..p—1}
by (simp add: sum.If cases)
also have ... = 1

by (simp add: sumzx)
finally show ?thesis
using 2 by simp
qed
then show ?thesis
using assms by (auto simp: standard__simplex_def simplical _face def)
qed

0.1.3 Singular simplices, forcing canonicity outside the in-
tended domain

definition singular_simplez :: nat = 'a topology = ((nat = real) = ’a) = bool
where
singular_simplex p X f =

continuous_map(subtopology (powertop__real UNIV) (standard__simplez p)) X
f

A [ € exatensional (standard_simplez p)

abbreviation singular_simplex_set :: nat = 'a topology = ((nat = real) = 'a)
set where
singular_simplex_set p X = Collect (singular_simplex p X)

lemma singular_simplex__empty:
topspace X = {} = — singular_simplex p X f
by (simp add: singular_simplex__def continuous__map nonempty standard__simplex)

lemma singular__simplex__mono:
[singular_simplex p (subtopology X T) f; T C S| = singular_simplex p
(subtopology X S) f
by (auto simp: singular_simplex_def continuous _map__in__subtopology)

lemma singular__simplex__subtopology:
singular_simplex p (subtopology X S) f <—
singular_simplex p X f A f ¢ (standard__simplex p) C S
by (auto simp: singular_simplex_def continuous_map__in__subtopology)

Singular face

definition singular_face :: nat = nat = ((nat = real) = 'a) = (nat = real) =
!

a

where singular_face p k f = restrict (f o simplical_face k) (standard__simplex

(p — Suc 0))

lemma singular_simplex_singular_face:
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assumes f: singular_simplezp X fand 1 < pk <p
shows singular_simplex (p — Suc 0) X (singular_face p k f)
proof —
let ?PT = (powertop_real UNIV')
have 0: simplical_face k € standard__simplex (p — Suc 0) — standard__simplex
p
using assms simplical_face in_standard__simplex by auto
have 1: continuous_map (subtopology ?PT (standard_simplex (p — Suc 0)))
(subtopology ?PT (standard_simplex p))
(simplical_face k)
proof (clarsimp simp add: continuous _map__in__subtopology simplical _face in_standard_simplex
continuous__map__componentwise 0)
fix ¢
have continuous_map ¢PT euclideanreal (Az. if i < k then z i else if i = k
then 0 else z (i —1))
by (auto intro: continuous_map__product _projection)
then show continuous_map (subtopology ?PT (standard_simplex (p — Suc
0))) euclideanreal
(Az. simplical_face k x )
by (simp add: simplical_face def continuous_map__from__subtopology)
qed
have 2: continuous_map (subtopology ?PT (standard_simplex p)) X f
using assms(1) singular_simplez__def by blast
show ?thesis
by (simp add: singular_simplex_def singular_face__def continuous__map__compose
[OF 1 2])
qed

0.1.4 Singular chains

definition singular_chain :: [nat, 'a topology, 'a chain] = bool
where singular_chain p X ¢ = Poly_Mapping.keys ¢ C singular_simplex_set p
X

abbreviation singular_chain_set :: [nat, 'a topology] = ('a chain) set
where singular_chain_set p X = Collect (singular_chain p X)

lemma singular_chain__empty:
topspace X = {} = singular_chain p X ¢ +— ¢ = 0
by (auto simp: singular_chain__def singular_simplex__empty subset__eq poly _mapping _eql)

lemma singular_chain_mono:
[singular_chain p (subtopology X T) ¢; T C 5]
= singular__chain p (subtopology X S) ¢
unfolding singular_chain__def using singular_ _simplex _mono by blast

lemma singular_chain__subtopology:
singular_chain p (subtopology X S) ¢ +—
singular_chain p X ¢ A (Vf € Poly_Mapping.keys c.  * (standard__simplex
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p) € 5)
unfolding singular_chain__def
by (fastforce simp add: singular__simplez__subtopology subset _eq)

lemma singular_chain_0 [iff]: singular_chain p X 0
by (auto simp: singular_chain__def)

lemma singular_chain_ of:
singular_chain p X (frag_of ¢) «— singular_simplex p X ¢
by (auto simp: singular_chain__def)

lemma singular_chain__cmul:
singular_chain p X ¢ = singular_chain p X (frag_cmul a ¢)
by (auto simp: singular__chain__def)

lemma singular_chain__minus:
singular_chain p X (—c) <— singular_chain p X ¢
by (auto simp: singular__chain__def)

lemma singular_chain__add:
[singular__chain p X a; singular_chain p X b] => singular_chain p X (a+0)
unfolding singular_chain__def
using keys__add [of a b] by blast

lemma singular_chain__ diff:
[singular__chain p X a; singular_chain p X b] = singular_chain p X (a—0)
unfolding singular_chain__def
using keys_ diff [of a b] by blast

lemma singular_chain__sum:
(N\i. i € I = singular_chain p X (f i)) = singular_chain p X (> i€l. f i)
unfolding singular_chain__def
using keys_sum [of f I] by blast

lemma singular_chain__extend:
(Ac. ¢ € Poly Mapping.keys © = singular_chain p X (f ¢))
= singular_chain p X (frag_extend f z)
by (simp add: frag_extend def singular_chain__cmul singular_chain__sum)

0.1.5 Boundary homomorphism for singular chains

definition chain_boundary :: nat = ('a chain) = 'a chain
where chain__boundary p ¢ =
(if p = 0 then 0 else
frag_extend (Af. O k<p. frag_cmul ((—1) ~ k) (frag_of (singular_face
k) ©)

lemma singular_chain__boundary:
assumes singular_chain p X ¢



Simplices.thy 11

shows singular_chain (p — Suc 0) X (chain_boundary p c)
unfolding chain_boundary_def
proof (clarsimp intro: singular__chain__extend singular _chain__sum singular_chain__cmul)
show Ad k. [0 < p; d € Poly_Mapping.keys c; k < p]
= singular__chain (p — Suc 0) X (frag_of (singular_face p k d))
using assms by (auto simp: singular_chain__def intro: singular_simplex_singular_face)
qed

lemma singular_chain__boundary_alt:
singular_chain (Suc p) X ¢ = singular__chain p X (chain_boundary (Suc p)
¢)

using singular__chain__boundary by force

lemma chain_boundary_0 [simp]: chain_boundary p 0 = 0
by (simp add: chain__boundary__def)

lemma chain_boundary _cmul:
chain__boundary p (frag_cmul k ¢) = frag_cmul k (chain__boundary p c)
by (auto simp: chain__boundary_def frag_extend__cmul)

lemma chain_ boundary__minus:
chain__boundary p (— ¢) = — (chain_boundary p c)
by (metis chain__boundary__cmul frag_cmul_minus_one)

lemma chain__boundary_add:
chain_boundary p (a+b) = chain_boundary p a + chain_boundary p b
by (simp add: chain__boundary_def frag extend_add)

lemma chain_boundary_ diff:
chain_boundary p (a—b) = chain__boundary p a — chain__boundary p b
using chain__boundary_add [of p a —b]
by (simp add: chain_boundary_minus)

lemma chain_boundary_sum:
chain_boundary p (sum g I) = sum (chain_boundary p o g) I
by (induction I rule: infinite_ finite_induct) (simp__all add: chain__boundary__add)

lemma chain_boundary_sum’”:
finite I = chain__boundary p (sum’ g I) = sum’ (chain_boundary p o g) I
by (induction I rule: finite induct) (simp__all add: chain__boundary _add)

lemma chain_boundary_of:
chain__boundary p (frag_of f) =
(if p = 0 then 0
else (D" k<p. frag_cmul ((—1) " k) (frag_of (singular_face p k [))))
by (simp add: chain__boundary_ def)


Simplices.html

12

0.1.6 Factoring out chains in a subtopology for relative ho-
mology

definition mod_ subset
where mod_subset p X = {(a,b). singular_chain p X (a — b)}

lemma mod__subset__empty [simp]:
(a,b) € (mod_subset p (subtopology X {})) «— a =0
by (simp add: mod__subset_def singular__chain__empty)

lemma mod_subset_refl [simp]: (c,c) € mod_subset p X
by (auto simp: mod__subset__def)

lemma mod_subset _cmul:

assumes (a,b) € mod_subset p X

shows (frag_cmul k a, frag_cmul k b) € mod__subset p X

using assms

by (simp add: mod__subset__def) (metis (no__types, lifting) add_diff _cancel diff _add__cancel
frag _cmul__distrib2 singular _chain__cmul)

lemma mod_subset add:

[(cl,c2) € mod_subset p X; (d1,d2) € mod_subset p X] = (c1+d1, c2+d2)
€ mod__subset p X

by (simp add: mod__subset_def add_diff _add singular_chain__add)

0.1.7 Relative cycles Z,X(S5) where X is a topology and S a
subset

definition singular_relcycle :: nat = 'a topology = 'a set = ('a chain) = bool
where singular_relcycle =
Ap X S c. singular_chain p X ¢ A (chain_boundary p ¢, 0) € mod_subset
(p—1) (subtopology X S)

abbreviation singular_relcycle__set
where singular_relcycle_set p X S = Collect (singular_relcycle p X S)

lemma singular_relcycle_restrict [simp]:
singular_relcycle p X (topspace X N S) = singular_relcycle p X S
proof —
have eq: subtopology X (topspace X N S) = subtopology X S
by (metis subtopology__subtopology subtopology topspace)
show ?thesis
by (force simp: singular_relcycle_def eq)
qed

lemma singular_relcycle:
singular_relcycle =
Ap X S c. singular_chain p X ¢ A singular_chain (p—1) (subtopology X S)
(chain__boundary p c)
by (simp add: singular_relcycle_def mod__subset__def)
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lemma singular_relcycle 0 [simp]: singular_relcycle p X S 0
by (auto simp: singular_relcycle_def)

lemma singular_relcycle__cmul:
singular_relcycle p X S ¢ = singular_relcycle p X S (frag_cmul k ¢)
by (auto simp: singular_relcycle_def chain__boundary__cmul dest: singular__chain__cmul
mod__subset__cmul)

lemma singular_relcycle__minus:
singular_relcycle p X S (—c) +— singular_relcycle p X S ¢
by (simp add: chain_boundary_minus singular_chain_minus singular_relcycle)

lemma singular_relcycle_add:
[singular_relcycle p X S a; singular_relcycle p X S b]
= singular_relcycle p X S (a+D)
by (simp add: singular_relcycle_def chain__boundary__add mod__subset_def sin-
gular_chain__add)

lemma singular_relcycle__sum:
[Ai. i € I = singular_relcycle p X S (f i)]
= singular_relcycle p X S (sum f 1)
by (induction I rule: infinite_finite_induct) (auto simp: singular_relcycle__add)

lemma singular_relcycle_diff:
[singular_relcycle p X S a; singular_relcycle p X S b]
= singular_relcycle p X S (a—b)
by (metis singular_relcycle__add singular_relcycle_minus uminus__add__conv__diff)

lemma singular_cycle:

singular_relcycle p X {} ¢ <— singular_chain p X ¢ A chain__boundary p ¢ =
0

using mod__subset__empty by (auto simp: singular_relcycle__def)

lemma singular_cycle _mono:
[singular_relcycle p (subtopology X T) {} ¢; T C 9]
= singular_relcycle p (subtopology X S) {} ¢
by (auto simp: singular_cycle elim: singular_chain_mono)

0.1.8 Relative boundaries B,X.S, where X is a topology and
S a subset.

definition singular_relboundary :: nat = ’a topology = 'a set = ('a chain) =
bool
where
singular_relboundary p X S =
Ac. 3d. singular_chain (Suc p) X d A (chain_boundary (Suc p) d, c) €
(mod__subset p (subtopology X S))
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abbreviation singular relboundary_set :: nat = ’'a topology = 'a set = ('a
chain) set
where singular_relboundary_set p X S = Collect (singular_relboundary p X S)

lemma singular_relboundary__restrict [simp]:
singular_relboundary p X (topspace X N S) = singular_relboundary p X S
unfolding singular_relboundary__def
by (metis (no__types, opaque__lifting) subtopology__subtopology subtopology_topspace)

lemma singular_relboundary_alt:
singular_relboundary p X S ¢ +—
(3d e. singular_chain (Suc p) X d A singular_chain p (subtopology X S) e A
chain_boundary (Suc p) d = ¢ + e)
unfolding singular_relboundary_def mod__subset_def by fastforce

lemma singular_relboundary:
singular_relboundary p X S ¢ +—
(3d e. singular_chain (Suc p) X d A singular__chain p (subtopology X S) e A
(chain__boundary (Suc p) d) + e = ¢)
using singular__chain__minus
by (fastforce simp add: singular _relboundary__alt)

lemma singular__boundary:
singular_relboundary p X {} ¢ «—
(3 d. singular_chain (Suc p) X d A chain_boundary (Suc p) d = c)
by (meson mod__subset__empty singular _relboundary__def)

lemma singular_boundary_imp_ chain:
singular_relboundary p X {} ¢ = singular_chain p X ¢
by (auto simp: singular_relboundary singular_chain__boundary__alt singular__chain__empty)

lemma singular__boundary_mono:
[T C S; singular_relboundary p (subtopology X T) {} ]
= singular_relboundary p (subtopology X S) {} ¢
by (metis mod__subset _empty singular_chain_mono singular_relboundary__ def)

lemma singular_relboundary__imp_chain:
singular_relboundary p X S ¢ = singular_chain p X ¢
unfolding singular_relboundary singular__chain__subtopology
by (blast intro: singular _chain__add singular__chain__boundary__alt)

lemma singular_chain__imp_ relboundary:
singular_chain p (subtopology X S) ¢ = singular_relboundary p X S ¢
unfolding singular_relboundary_ def
using mod__subset__def singular_chain_minus by fastforce

lemma singular_relboundary 0 [simp]: singular_relboundary p X S 0
unfolding singular_relboundary_def
by (rule_tac =0 in exl) auto
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lemma singular_relboundary__cmul:
singular_relboundary p X S ¢ = singular_relboundary p X S (frag_cmul a c)
unfolding singular_relboundary _def
by (metis chain__boundary__cmul mod__subset_cmul singular_chain__cmul)

lemma singular_relboundary__minus:
singular_relboundary p X S (—c¢) «— singular_relboundary p X S ¢
using singular_relboundary _cmul
by (metis add.inverse_inverse frag_cmul_minus_one)

lemma singular_relboundary__add:
[singular_relboundary p X S a; singular_relboundary p X S b] = singu-
lar_relboundary p X S (a+Db)
unfolding singular _relboundary__def
by (metis chain__boundary__add mod__subset_add singular__chain__add)

lemma singular_relboundary_ diff:
[singular_relboundary p X S a; singular_relboundary p X S b] = singu-
lar_relboundary p X S (a—Db)
by (metis uminus__add__conv__diff singular_relboundary__minus singular_relboundary__add)

0.1.9 The (relative) homology relation

definition homologous_rel :: [nat,’a topology,’a set,’a chain,’a chain] = bool
where homologous_rel p X § = Aa b. singular_relboundary p X S (a—b)

abbreviation homologous rel set
where homologous_rel_set p X S a = Collect (homologous_rel p X S a)

lemma homologous__rel_restrict [simp]:
homologous_rel p X (topspace X N S) = homologous_rel p X S
unfolding homologous_rel_def by (metis singular_relboundary_ restrict)

lemma homologous__rel_refl [simp]: homologous _rel p X S ¢ ¢
unfolding homologous rel def by auto

lemma homologous_rel _sym:
homologous _rel p X S a b = homologous_rel p X S b a
unfolding homologous rel def
using singular__relboundary _minus by fastforce

lemma homologous_rel trans:
assumes homologous_rel p X S b ¢ homologous_rel p X S a b
shows homologous_rel p X S a ¢
using homologous__rel _def
proof —
have singular_relboundary p X S (b — ¢)
using assms unfolding homologous rel _def by blast


Simplices.html

16

moreover have singular_relboundary p X S (b — a)
using assms by (meson homologous _rel _def homologous__rel__sym)
ultimately have singular_relboundary p X S (¢ — a)
using singular__relboundary__diff by fastforce
then show ?thesis
by (meson homologous__rel__def homologous__rel__sym)
qed

lemma homologous_rel_eq:
homologous_rel p X S a = homologous_rel p X S b +—
homologous_relp X S a b
using homologous__rel _sym homologous_rel trans by fastforce

lemma homologous_rel set_eq:
homologous_rel_set p X S a = homologous_rel_set p X § b +—
homologous_relp X S a b
by (metis homologous_rel_eq mem__Collect__eq)

lemma homologous_rel_singular _chain:
homologous_rel p X S a b = (singular_chain p X a «— singular_chain p X b)
unfolding homologous rel def
using singular__chain__ diff singular_chain__add
by (fastforce dest: singular_relboundary_imp_ chain)

lemma homologous_rel _add:
[homologous_rel p X S a a'’; homologous_rel p X S b b]
= homologous_rel p X S (a+b) (a’+b")
unfolding homologous rel def
by (simp add: add__diff _add singular__relboundary__add)

lemma homologous__rel_diff:

assumes homologous_rel p X S a a’ homologous _rel p X S b b’

shows homologous_rel p X S (a — b) (a’ — b)
proof —

have singular_relboundary p X S ((a — a’) — (b — b))

using assms singular_relboundary diff unfolding homologous el def by

blast

then show ?thesis

by (simp add: homologous__rel__def algebra__simps)

qed

lemma homologous_rel sum:
assumes f: finite {i € I. fi # 0} and g: finite {i € I. g i # 0}
and h: A\i. i € I = homologous_rel p X S (f %) (g 1)
shows homologous_rel p X S (sum f 1) (sum g I)
proof (cases finite I)
case True
let 2L={iel.fi£0}u{iel.gi# 0}
have L: finite ?L 9L C I
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using f g by blast+
have sum f 1 = sum f ?L
by (rule comm__monoid_add_class.sum.mono__neutral_right [OF True]) auto
moreover have sum g I = sum g ?L
by (rule comm__monoid_add__class.sum.mono_neutral_right [OF True]) auto
moreover have x: homologous_rel p X S (f i) (g 4) if i € ?L for ¢
using h that by auto
have homologous_rel p X S (sum f ?L) (sum g ?L)
using L
proof induction
case (insert j J)
then show ?case
by (simp add: h homologous_rel _add)
qed auto
ultimately show ?thesis
by simp
ged auto

lemma chain__homotopic__imp__homologous_rel:
assumes
Nec. singular_chain p X ¢ = singular__chain (Suc p) X' (h ¢)
Ac. singular_chain (p —1) (subtopology X S) ¢ = singular_chain p (subtopology
X'T) (hc)
Ac. singular_chain p X ¢
= (chain_boundary (Suc p) (h ¢)) + (h'(chain_boundary p c)) = f ¢
—gec
singular_relcycle p X S ¢
shows homologous_rel p X' T (f ¢) (g ¢)
proof —
have singular_chain p (subtopology X' T) (chain_boundary (Suc p) (h ¢) — (f
¢c—gc)
using assms
by (metis (no__types, lifting) add__diff _cancel left’ minus__diff _eq singular__chain__minus
singular_relcycle)
then show ?thesis
using assms
by (metis homologous__rel _def singular_relboundary singular_relcycle)
qed

0.1.10 Show that all boundaries are cycles, the key "chain
complex" property.

lemma chain__boundary_boundary:

assumes singular_chain p X ¢

shows chain__boundary (p — Suc 0) (chain_boundary p ¢) = 0
proof (cases p —1 = 0)

case Fulse

then have 2 < p
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by auto
show ?thesis
using assms
unfolding singular _chain__def
proof (induction rule: frag induction)
case (one g)
then have ss: singular_simplex p X g
by simp
have eql: {..p} x {..p — Suc 0} N {(z, y). y < z} = (A(,7). (Suc 1, j)) “{(7.9).
i<jNj<p-—1}
using Fulse
by (auto simp: image__def) (metis One_nat_def diff _Suc__1 diff _le_mono
le_refl lessE less_imp_le nat)
have egr: {.p} x {..p — Suc 0} — {(z, y). y<az} ={(ij). i <jAnj<p—-1}
by auto
have eqf: singular_face (p — Suc 0) i (singular_face p (Suc j) g) =
singular_face (p — Suc 0) j (singular_face p i g) if i < jj < p — Suc
0 for ij
proof (rule ext)
fix t
show singular_face (p — Suc 0) i (singular_face p (Suc j) g) t =
singular_face (p — Suc 0) j (singular_face p i g) t
proof (cases t € standard_simplex (p —1 —1))
case True
have fi: simplical _face i t € standard_simplex (p — Suc 0)
using False True simplical face in__standard__simplex that by force
have fj: simplical_face j t € standard_simplex (p — Suc 0)
by (metis False One_nat_def True simplical _face_in__standard__simplex
less_one not__less that(2))
have eq: simplical _face (Suc j) (simplical face i t) = simplical_face @
(simplical_face j t)
using True that ss
unfolding standard__simplex__def simplical_face def by fastforce
show ?thesis by (simp add: singular_face_def fi fj eq)
qed (simp add: singular_face_def)
qed
show ?Zcase
proof (cases p = 1)
case Fulse
have eq0: frag_cmul (—=1) a = b= a+ b= 0 for a b
by (simp add: neg_eq iff add_eq 0)
have *: (3" z<p. > i<p — Suc 0.
frag_cmul ((—1) ~ (z + ) (frag_of (singular_face (p — Suc 0) i
(singular_face p x g))))
=0
apply (simp add: sum.cartesian__product sum.Int_Diff [of _ x _ _ {(z,y).
y < o)
apply (rule eq0)
unfolding frag__cmul__sum prod.case__distrib [of frag_cmul (—1)] frag_cmul_cmul



Simplices.thy 19

eql eqr
apply (force simp: inj _on__def sum.reindex add.commute eqf intro: sum.cong)
done
show ?thesis
using False by (simp add: chain_boundary_of chain_boundary_sum
chain__boundary_cmul frag _cmul_sum * flip: power_add)
qed (simp add: chain__boundary__def)
next
case (diff a b)
then show ?Zcase
by (simp add: chain_boundary_ diff)
qed auto
aed (simp add: chain__boundary__def)

lemma chain__boundary__boundary_alt:

singular_chain (Suc p) X ¢ = chain__boundary p (chain_boundary (Suc p) c)
=0

using chain__boundary__boundary by force

lemma singular_relboundary_imp_relcycle:
assumes singular_relboundary p X S ¢
shows singular_relcycle p X S ¢
proof —
obtain d e where d: singular_chain (Suc p) X d
and e: singular__chain p (subtopology X S) e
and c: ¢ = chain_boundary (Suc p) d + e
using assms by (auto simp: singular_relboundary singular_relcycle)
have 1: singular_chain (p — Suc 0) (subtopology X S) (chain_boundary p
(chain__boundary (Suc p) d))
using d chain__boundary__boundary__alt by fastforce
have 2: singular_chain (p — Suc 0) (subtopology X S) (chain__boundary p e)
using <singular_chain p (subtopology X S) e singular_chain_boundary by
auto
have singular_chain p X ¢
using assms singular__relboundary_imp__chain by auto
moreover have singular_chain (p — Suc 0) (subtopology X S) (chain__boundary
pc)
by (simp add: ¢ chain_boundary _add singular_chain__add 1 2)
ultimately show ?Zthesis
by (simp add: singular_relcycle)
qed

lemma homologous_rel singular_relcycle_1:

assumes homologous_rel p X S c1 ¢2 singular_relcycle p X S c1

shows singular_relcycle p X § c2

using assms

by (metis diff _add__cancel homologous__rel__def homologous__rel _sym singular_relboundary__imp_ relcycle
singular_relcycle__add)
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lemma homologous_rel_singular_relcycle:
assumes homologous_rel p X § c1 c2
shows singular_relcycle p X S c1 = singular_relcycle p X S ¢2
using assms homologous__rel__singular_relcycle 1
using homologous_rel__sym by blast

0.1.11 Operations induced by a continuous map g between
topological spaces

definition simplex_map :: nat = ('b = 'a) = ((nat = real) = 'b) = (nat =
real) = 'a
where simplez_map p g ¢ = restrict (g o ¢) (standard_simplex p)

lemma singular__simplex__simplex__map:
[singular_simplex p X f; continuous_map X X' g]
= singular_simplex p X' (simplex_map p g f)
unfolding singular_simplex_def simplex__map__def
by (auto simp: continuous__map__compose)

lemma simplex_map__eq:
[singular__simplex p X c¢;
Nz. © € topspace X = fx = g 1]
= simplex_map p f ¢ = simplex_map p g ¢
by (auto simp: singular_simplex__def simplex_map_ def continuous _map__def

Pi_iff)

lemma simplex_map_id_gen:
[singular_simplez p X ¢;
Nz. © € topspace X = fx = 1]
= simplex_map p fc = c
unfolding singular_simplex_def simplex_map__def continuous_map__def
using extensional _arb by fastforce

lemma simplex_map_id [simp]:
simplex_map p id = (Aec. restrict ¢ (standard_simplex p))
by (auto simp: simplex_map __def)

lemma simplex__map__compose:
simplex_map p (h o g) = simplex_map p h o simplex_map p g
unfolding simplex__map_def by force

lemma singular_face_ simplex__map:
[1 <p;k<p]
= singular_face p k (simplex_map p f ¢) = simplex_map (p — Suc 0) f
(¢ o simplical_face k)
unfolding simplex__map__ def singular_face def
by (force simp: simplical _face in_standard__simplex)
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lemma singular_face__restrict [simp]:
assumes p > 0 ¢ < p
shows singular_face p i (restrict f (standard__simplex p)) = singular_face p i f
by (metis assms One_nat_def Suc_lel simplex_map_id singular_face_def sin-
gular_face__simplex_map)

definition chain_map :: nat = ('b = ’a) = (((nat = real) = 'b) = int) = 'a
chain
where chain_map p g ¢ = frag_extend (frag_of o simplex_map p g) ¢

lemma singular_chain__chain_map:
[singular_chain p X ¢; continuous_map X X' g] = singular_chain p X’
(chain_map p g c)
unfolding chain_map_def
by (force simp add: singular_chain__def subset_iff
introl: singular__chain__extend singular_simplex__simplex_map)

lemma chain_map 0 [simp]: chain_map p g 0 = 0
by (auto simp: chain_map _def)

lemma chain_map__of [simp]: chain_map p g (frag_of f) = frag_of (simplez_map

pygf)
by (simp add: chain_map__def)

lemma chain_map__cmul [simp]:
chain_map p g (frag_cmul a ¢) = frag_cmul a (chain_map p g c)
by (simp add: frag_extend__cmul chain_map_ def)

lemma chain_map minus: chain_map p g (—c) = — (chain_map p g ¢)
by (simp add: frag _extend _minus chain_map_ def)

lemma chain_map add:
chain_map p g (a+b) = chain_map p g a + chain_map p g b
by (simp add: frag_extend add chain_map__ def)

lemma chain_map_diff:
chain_map p g (a—b) = chain_map p g a — chain_map p g b
by (simp add: frag_extend__diff chain_map__def)

lemma chain__map_sum:
finite I = chain_map p g (sum fI) = sum (chain_map p go f) I
by (simp add: frag _extend_sum chain_map_def)

lemma chain_map__eq:
[singular _chain p X ¢; N\z. z € topspace X = fz = g 1]
= chain_map p f ¢ = chain_map p g c
unfolding singular_chain__def
proof (induction rule: frag induction)
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case (one )

then show ?case

by (metis (no__types, lifting) chain_map_ of mem__Collect__eq simplex _map__eq)
qed (auto simp: chain_map__ diff)

lemma chain_map_id_ gen:
[singular_chain p X ¢; Nz. x € topspace X = fx = z]
= chain_map p fc=c
unfolding singular_chain__def
by (erule frag_induction) (auto simp: chain_map_ diff simplex_map_id_gen)

lemma chain__map_ident:
singular_chain p X ¢ = chain_map p id c = ¢
by (simp add: chain_map_id_gen)

lemma chain_map_id:
chain_map p id = frag_extend (frag_of o (\f. restrict f (standard_simplex p)))
by (auto simp: chain_map__def)

lemma chain__map compose:
chain_map p (h o g) = chain_map p h o chain_map p g
proof
show chain_map p (h o g) ¢ = (chain_map p h o chain_map p g) ¢ for ¢
using subset  UNIV
proof (induction ¢ rule: frag_induction)
case (one )
then show Zcase
by simp (metis (mono__tags, lifting) comp__eq dest_lhs restrict_apply sim-
plex_map__def)
next
case (diff a b)
then show Zcase
by (simp add: chain_map__diff)
qed auto
qed

lemma singular__simplex_chain_map_ id:

assumes singular_simpler p X f

shows chain_map p f (frag_of (restrict id (standard_simplex p))) = frag_of f
proof —

have (restrict (f o restrict id (standard__simplex p)) (standard__simplex p)) = f

by (rule ext) (metis assms comp__apply extensional arb id__apply restrict _apply
singular_simplez__def)

then show %thesis

by (simp add: simplez_map__def)
qed

lemma chain__boundary__chain_map:
assumes singular_chain p X ¢
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shows chain_boundary p (chain_map p g ¢) = chain_map (p — Suc 0) g
(chain__boundary p c)

using assms unfolding singular _chain__def
proof (induction c rule: frag_induction)
case (one )
then have singular_face p i (simplex_map p g ) = simplex_map (p — Suc 0)
g (singular_face p i x)
if0<ii<pp#0fori
using that
by (fastforce simp add: singular _face def simplex _map__def simplical _face_in_standard__simplex)
then show Zcase
by (auto simp: chain_boundary_of chain_map_ sum)
next
case (diff a b)
then show ?Zcase
by (simp add: chain__boundary_ diff chain_map__diff)
ged auto

lemma singular_relcycle chain_map:
assumes singular_relcycle p X S ¢ continuous_map X X' gge S — T
shows singular_relcycle p X' T (chain_map p g ¢)
proof —
have continuous_map (subtopology X S) (subtopology X' T) g
using assms

by (metis Pi_anti_mono continuous_map__from__subtopology continuous_map__in__subtopology

openin__imp__subset openin__topspace subsetD)
then show ?thesis
using chain__boundary__chain_map [of p X ¢ g
by (metis One_nat_def assms(1) assms(2) singular_chain__chain_map singu-
lar_releycle)
qed

lemma singular_relboundary__chain_map:
assumes singular_relboundary p X S ¢ continuous_map X X' gge S —- T
shows singular_relboundary p X' T (chain_map p g c)
proof —
obtain d e where d: singular__chain (Suc p) X d
and e: singular__chain p (subtopology X S) e and c¢: ¢ = chain__boundary (Suc
p)d+e
using assms by (auto simp: singular_relboundary)
have singular_chain (Suc p) X' (chain_map (Suc p) g d)
using assms(2) d singular__chain__chain_map by blast
moreover have singular__chain p (subtopology X' T) (chain_map p g €)
proof —
have AY. g € topspace (subtopology Y S) — T
using assms(3) by auto
then show ?thesis
by (metis assms(2) continuous_map__from__subtopology continuous_map__into__subtopology
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singular__chain__chain__map)
qed
moreover have chain_ boundary (Suc p) (chain_map (Suc p) g d) + chain_map
pge=
chain_map p g (chain_boundary (Suc p) d + e)
by (metis One_nat__def chain__boundary__chain_map chain_map__add d diff Suc_1)
ultimately show ¢thesis
unfolding singular_relboundary
using c by blast
qed

0.1.12 Homology of one-point spaces degenerates except for
p=0.

lemma singular _simplex_singleton:
assumes topspace X = {a}
shows singular_simplex p X f «— f = restrict (Az. a) (standard__simplex p) (is
2lhs = 2rhs)
proof
assume L: ?lhs
then show ?rhs
proof —
have continuous_map (subtopology (product_topology (An. euclideanreal) UNIV)
(standard_simplex p)) X f
using <singular_simplex p X f> singular_simplex__def by blast
then have Ac. ¢ ¢ standard_simplex p V fc = a
by (simp add: assms continuous _map__def Pi_iff)
then show ?thesis
by (metis (no__types) L extensional_restrict restrict__ext singular_simplex_def)
qed
next
assume ?rhs
with assms show ?lhs
by (auto simp: singular_simplex_def)
qged

lemma singular_chain__singleton:
assumes topspace X = {a}
shows singular_chain p X ¢ +—
(3b. ¢ = frag_cmul b (frag_of (restrict (\x. a) (standard_simplex p))))
(is ?lhs = ?rhs)
proof
let ?f = restrict (Az. a) (standard__simplex p)
assume L: ?lhs
with assms have Poly_Mapping.keys ¢ C {?f}
by (auto simp: singular_chain__def singular__simplex__singleton)
then consider Poly Mapping.keys ¢ = {} | Poly_Mapping.keys ¢ = {?f}
by blast
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then show ?rhs
proof cases
case 1
with L show ?Zthesis
by (metis frag_cmul_zero keys__eq _empty)
next
case 2
then have 3 b. frag_extend frag_of ¢ = frag_cmul b (frag_of (Ax€standard__simplex
p. a))
by (force simp: frag_extend_ def)
then show ?thesis
by (metis frag_expansion)
qed
next
assume ?rhs
with assms show ?lhs
by (auto simp: singular__chain__def singular__simplex__singleton)
qed

lemma chain_boundary of singleton:
assumes tX: topspace X = {a} and sc: singular_chain p X ¢
shows chain__boundary p ¢ =
(if p= 0V odd p then 0
else frag__extend (Af. frag_of (restrict (Ax. a) (standard_simplex (p —1))))
)
(is ?lhs = %rhs)
proof (cases p = 0)
case Fulse
have ?lhs = frag_extend (Nf. if odd p then 0 else frag_of (restrict (Az. a)
(standard_simplex (p —1)))) ¢
proof (simp only: chain_boundary_def False if False, rule frag extend eq)
fix f
assume f € Poly Mapping.keys c
with assms have singular__simplex p X f
by (auto simp: singular__chain__def)
then have x: \k. k < p = singular_face p k f = (Az€standard__simplex (p
—1). a)
using Fulse singular__simplex__singular_face
by (fastforce simp flip: singular_simplex__singleton [OF tX])
define ¢ where ¢ = frag_of (Ax€standard_simplex (p —1). a)
have (3" k<p. frag_cmul ((—1) k) (frag_of (singular_face p k f)))
= O k<p. frag_cmul ((—1) " k) ¢)
by (auto simp: c_def * intro: sum.cong)
also have ... = (if odd p then 0 else c)
by (induction p) (auto simp: c¢_def restrict_def)
finally show (> k<p. frag_cmul ((—1) " k) (frag_of (singular_face p k f)))
= (if odd p then 0 else frag_of (Az€standard_simplex (p —1). a))
unfolding c_def .
qed
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also have ... = ?rhs
by (auto simp: False frag extend eq 0)
finally show ?thesis .
qed (simp add: chain__boundary__def)

lemma singular_cycle_singleton:
assumes topspace X = {a}
shows singular_relcycle p X {} ¢ +— singular_chainp X ¢ A (p = 0 V odd p
Ve=0)
proof —
have ¢ = 0 if singular_chain p X ¢ and chain_boundary p ¢ = 0 and even p
and p # 0
using that assms singular__chain__singleton [of X a p c] chain__boundary_of _singleton
[OF assms]
by (auto simp: frag_extend_cmul)
moreover
have chain__boundary p ¢ = 0 if sc: singular_chain p X ¢ and odd p
by (simp add: chain__boundary_of singleton [OF assms sc| that)
moreover have chain_boundary 0 ¢ = 0 if singular_chain 0 X c and p = 0
by (simp add: chain__boundary__def)
ultimately show ¢thesis
using assms by (auto simp: singular__cycle)
qed

lemma singular_boundary__singleton:
assumes topspace X = {a}
shows singular_relboundary p X {} ¢ +— singular_chain p X ¢ A\ (odd p V ¢
~0)
proof (cases singular_chain p X c)
case True
have 3d. singular_chain (Suc p) X d A chain__boundary (Suc p) d = ¢
if singular_chain p X ¢ and odd p
proof —
obtain b where b: ¢ = frag_cmul b (frag_of (restrict (Az. a) (standard__simplex
p)))
by (metis True assms singular_chain__singleton)
let ?d = frag_cmul b (frag_of (Ax€standard__simplex (Suc p). a))
have scd: singular__chain (Suc p) X 2d
by (metis assms singular__chain__singleton)
moreover have chain_boundary (Suc p) ?d = ¢
by (simp add: assms scd chain_boundary_of _singleton [of X a Suc p] b
frag_extend__cmul <odd p»)
ultimately show ?Zthesis
by metis
qed
with True assms show ?thesis
by (auto simp: singular_boundary chain_boundary_of _singleton)
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next
case Fulse
with assms singular _boundary_imp_chain show ?thesis
by metis
qed

lemma singular _boundary_eq cycle_singleton:

assumes topspace X = {a} 1 < p

shows singular_relboundary p X {} ¢ +— singular_relcycle p X {} ¢ (is ?lhs
= ?rhs)
proof

show ?lhs = ?rhs

by (simp add: singular_relboundary_imp_relcycle)

show ?rhs = ?lhs

by (metis assms not_one_le_zero singular_boundary__singleton singular__cycle__singleton)
qged

lemma singular _boundary_set eq cycle singleton:
assumes topspace X = {a} 1 < p
shows singular_relboundary_set p X {} = singular_relcycle_set p X {}
using singular_boundary__eq cycle_singleton [OF assms]
by blast

0.1.13 Simplicial chains

Simplicial chains, effectively those resulting from linear maps. We still allow
the map to be singular, so the name is questionable. These are intended as
building-blocks for singular subdivision, rather than as a axis for 1 simplicial
homology.

definition oriented simplex
where oriented_simplex p | = (Az€standard__simplex p. Mi. (> j<p. ljix zj))

definition simplicial _simplex
where
simplicial _simplex p S f =
singular_simplex p (subtopology (powertop_real UNIV) S) f A
(3. f = oriented_simplex p 1)

lemma simplicial _simplex:

simplicial_simplex p S f <— [ ¢ (standard_simplex p) € S A (3. f = ori-
ented__simplex p 1)

(is ?lhs = ?rhs)
proof

assume R: ?rhs

have continuous_map (subtopology (powertop_real UNIV) (standard__simplex

p))

(powertop_real UNIV) (Axi. > j<p.lji* zj) forl: nat = 'a =
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real
unfolding continuous map__componentwise
by (force intro: continuous _intros continuous_map__from__subtopology contin-
uous_map__product__projection)
with R show ?lhs
unfolding simplicial simplex def singular__simplex__subtopology
by (auto simp add: singular_simplex_def oriented__simplex_def)
qed (simp add: simplicial_simplex__def singular__simplex__subtopology)

lemma simplicial_simplex__empty [simp]: — simplicial_simplex p {} f
by (simp add: nonempty_standard__simplex simplicial_simplex)

definition simplicial chain
where simplicial _chainp S ¢ = Poly _Mapping.keys ¢ C Collect (simplicial__simplex
pS)

lemma simplicial_chain_0 [simp]: simplicial _chain p S 0
by (simp add: simplicial _chain__def)

lemma simplicial _chain_of [simp]:
stmplicial_chain p S (frag_of ¢) «— simplicial _simplex p S ¢
by (simp add: simplicial_chain__def)

lemma simplicial_chain__cmul:
stmplicial_chain p S ¢ = simplicial_chain p S (frag_cmul a ¢)
by (auto simp: simplicial _chain__def)

lemma simplicial_chain__ diff:

[simplicial _chain p S c1; simplicial _chain p S c2] = simplicial_chain p S (c1
—c2)

unfolding simplicial chain_def by (meson UnE keys diff subset_iff)

lemma simplicial_chain__sum:
(ANi. i € I = simplicial_chain p S (f 7)) = simplicial_chain p S (sum fI)
unfolding simplicial_chain__def
using order_trans [OF keys_sum [of f I]]
by (simp add: UN_least)

lemma simplicial _simplex__oriented_simplex:
simplicial_simplex p S (oriented__simplex p 1)
— (A i. Y j<p. ljix*zj) ‘ standard_simplex p C S)
by (auto simp: simplicial _simplex oriented__simplex_def)

lemma simplicial _imp__singular__simplex:
simplicial _simplex p S f
= singular_simplex p (subtopology (powertop_real UNIV) S) f
by (simp add: simplicial _simplex_def)

lemma simplicial _imp__singular__chain:
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simplicial_chain p S ¢

= singular__chain p (subtopology (powertop real UNIV) S) ¢
unfolding simplicial chain__def singular _chain__def
by (auto intro: simplicial _imp__singular _simpler)

lemma oriented_simplex__eq:
oriented__simplex p | = oriented_simplex p I’ +— (Vi. i < p — 1i=1"1%)
(is ?lhs = ?rhs)
proof
assume L: ?lhs
show ?rhs
proof clarify
fix 7
assume ¢ < p
let 2fi = (A\j. if j = i then I else 0)
have (3> j<p. ljk =« ?fij) = O j<p. ' jk = 2fi j) for k
using L <i < p»
by (simp add: fun__eq iff oriented simplex_def split: if _split_asm)
with <: < p» show [ i =1"1
by (simp add: if distrib ext cong: if cong)
qed
qged (auto simp: oriented__simplex_ def)

lemma singular_face oriented__simplex:
assumes I < pk<p
shows singular_face p k (oriented simplex p 1) =
oriented__simplex (p —1) (Nj. if § < k then  j else | (Suc 7))
proof —
have (> j<p. lj i * simplical_face k x j)
= (O_7<p — Suc 0. (if j < k then 1 j else | (Suc 7)) i * z j)
if © € standard_simplex (p — Suc 0) for i z
proof —
show ?thesis
unfolding simplical face def
using sum.zero_middle [OF assms, where '‘a=real, symmetric]
by (simp add: if _distrib [of Az. _ * x] if _distrib [of Nf. fi * _] atLeast0AtMost
cong: if _cong)
qed
then show ?thesis
using simplical _face in_ standard _simplex assms
by (auto simp: singular_face def oriented simplex_def restrict_def)
qed

lemma simplicial__simplex_singular_face:
fixes [ :: (nat = real) = nat = real
assumes ss: simplicial_simplex p S fand p: 1 < pk<p
shows simplicial _simplex (p — Suc 0) S (singular_face p k f)
proof —
let X = subtopology (powertop_real UNIV) S
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obtain m where I: singular_simplex p ?X (oriented_simplex p m)
and feq: f = oriented_simplex p m
using assms by (force simp: simplicial _simplex_def)
moreover
have singular_face p k f = oriented__simplex (p — Suc 0) (Ni. if i < k then m i
else m (Suc 7))
using feq p singular_face oriented__simplex by auto
ultimately
show ?thesis
using p simplicial _simplex_def singular__simplex__singular_face by blast
qed

lemma simplicial_chain_boundary:
stmplicial_chain p S ¢ = simplicial_chain (p —1) S (chain__boundary p c)
unfolding simplicial chain__def
proof (induction rule: frag _induction)
case (one f)
then have simplicial _simplex p S f
by simp
have simplicial_chain (p — Suc 0) S (frag_of (singular_face p i f))
ifo<pi<pfori
using that one
by (force simp: simplicial_simplex__def singular__simplex_singular_face singu-
lar_face _oriented__simplex)
then have simplicial_chain (p — Suc 0) S (chain_boundary p (frag_of f))
unfolding chain__boundary_def frag extend_ of
by (auto intro: simplicial _chain__cmul simplicial _chain__sum)
then show ?Zcase
by (simp add: simplicial _chain__def [symmetric])
next
case (diff a b)
then show ?Zcase
by (metis chain__boundary__diff simplicial_chain__def simplicial__chain__diff)
qed auto

0.1.14 The cone construction on simplicial simplices.

consts simplex__cone :: [nat, nat = real, [nat = real, nat] = real, nat = real,
nat] = real
specification (simplez_cone)
stmplex__cone:
Ap v 1. simplex_cone p v (oriented _simplex p 1) =
oriented__simplex (Suc p) (Mi. if i = 0 then v else [(i —1))
proof —
have *: Az. Vzv. 3y. (Al oriented_simplex (Suc z)
(Mi. if i = O then av else l (i — 1))) =
y o oriented__simplex x
by (simp add: oriented__simplex__eq flip: choice_iff function_factors_left)
then show ?thesis
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unfolding o_def by (metis(no__types))
qed

lemma simplicial _simplex,__simplex_cone:
assumes f: simplicial__simplex p S f
and T: Azuw. [0 <wu<I;jzelS]=A. I —u*vitu*xzi)ecT
shows simplicial _simplex (Suc p) T (simplex_cone p v f)
proof —
obtain [ where I: Az. z € standard_simplex p = oriented_simplex p lz € S
and feq: f = oriented_simplex p |
using f by (auto simp: simplicial_simplex)
have oriented_simplex p l x € S if © € standard__simplex p for x
using f that by (auto simp: simplicial__simplez feq)
then have S: Az. [Ai. 0 <ziANzi<I;Ni.i>p=zi{=0; sumz {.p} =

1]
= (\i. Y j<p. lji*xzj) eS8
by (simp add: oriented_simplex__def standard__simplex__def)
have oriented simplex (Suc p) (Mi. if i = O thenvelsel (i —1))xz € T
if x € standard_simplex (Suc p) for z
proof (simp add: that oriented _simplex__def sum.atMost_Suc__shift del: sum.atMost _Suc)
have z01: N\i. 0 < ziAzi<1andz0: \i.i> Sucp = zi= 0 and zI:
sum z {..Suc p} = 1
using that by (auto simp: oriented_simplex__def standard__simplex__def)
obtain ¢ where a € S
using f by force
show (M. vixz 0+ (3 j<p.ljixxz (Sucj)))eT
proof (cases z 0 = 1)
case True
then have sum z {Suc 0..Suc p} = 0
using z1 by (simp add: atMost_atLeast0 sum.atLeast_Suc__atMost)
then have [simp]: = (Suc j) = 0 if j<p for j
unfolding sum.atLeast Suc__atMost_Suc__shift
using z01 that by (simp add: sum__nonneg_eq 0_iff)
then show ?thesis
using T [of 0 a] <a € S» by (auto simp: True)
next
case Fulse
then have (Mi. vix 2z 0 4+ O j<p. ljixz (Sucj)))=Ni. (1 — (1 —z
0))xvi+ (I —x0)x* (inverse (1 —x0) x (> j<p.ljixz (Suc}j))))
by (force simp: field _simps)
also have ... € T
proof (rule T)
have z 0 < 1
by (simp add: False less_le z01)
have zle: z (Suc i) < (1 — z 0) for ¢
proof (cases i < p)
case True
have sum z {0, Suc i} < sum z {..Suc p}
by (rule sum_mono2) (auto simp: True z01)
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then show ?thesis
using z1 z01 by (simp add: algebra__simps not_less)
qed (simp add: 20 z01)
have (Ai. (O 7<p. lji* (z (Suc j) % inverse (I — z 0)))) € S
proof (rule S)
have 2 0 + (3. j<p. z (Suc j)) = sum z {..Suc p}
by (metis sum.atMost_Suc__shift)
with 27 have (3" j<p. z (Sucj) =1 -z 0
by simp
with False show (3 j<p. z (Suc j) * inverse (1 — z 0)) = 1
by (metis add_diff _cancel_left’ diff diff eq2 diff zero right_inverse
sum__distrib__right)
qed (use z01 z0 xle <x 0 < 1> in <auto simp: field_split_simps»)
then show (\i. inverse (1 — x 0) * (O j<p.lji=* z (Sucj))) €S
by (simp add: field simps sum__divide_ distrib)
qed (use z01 in auto)
finally show ?thesis .
qed
qed
then show ?thesis
by (auto simp: simplicial _simplex feq simplex_cone)
qed

definition simplicial cone
where simplicial _cone p v = frag_extend (frag_of o simplez_cone p v)

lemma simplicial__chain__simplicial_cone:
assumes c: simplicial _chain p S ¢
and T Azu. [0 <uyyu< l;zelS)= (M. I —uw)*xvi+uxzi)e T
shows simplicial_chain (Suc p) T (simplicial _cone p v c)
using ¢ unfolding simplicial _chain__def simplicial _cone__def
proof (induction rule: frag induction)
case (one )
then show ?case
by (simp add: T simplicial _simplex__simplex__cone)
next
case (diff a b)
then show ?Zcase
by (metis frag_extend_diff simplicial _chain__def simplicial _chain__diff)
qed auto

lemma chain_boundary_simplicial _cone_of":
assumes [ = oriented_simplex p |
shows chain__boundary (Suc p) (simplicial_cone p v (frag_of f)) =
frag_of f
— (if p = 0 then frag_of (Au€standard _simplex p. v)
else simplicial_cone (p —1) v (chain_boundary p (frag_of f)))
proof (simp, intro impI conjI)
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assume p = (
have eq: (oriented__simplex 0 (Aj. if j = 0 then v else 1 §)) = (Au€standard__simplex
0. v)
by (force simp: oriented__simplex_def standard _simplex_def)
show chain_boundary (Suc 0) (simplicial_cone 0 v (frag_of f))
= frag_of f — frag_of (Au€standard_simplex 0. v)
by (simp add: assms simplicial _cone__def chain__boundary_of «<p = 0> sim-
plex__cone singular_face oriented_simplex eq cong: if _cong)
next
assume (0 < p
have 0: simplex_cone (p — Suc 0) v (singular_face p x (oriented_simplex p 1))
= oriented__simplex p
(M. if j < Sucz
then if j = 0 then v else l (j —1)
else if Suc j = 0 then v else | (Suc j —1)) if z < p for z
using <0 < p» that
by (auto simp: Suc_lel singular_face oriented_simplex simplex__cone ori-
ented__simplex__eq)
have 1: frag extend (frag_of o simplex_cone (p — Suc 0) v)
0ok = 0.p. frag_cmul ((—1) " k) (frag_of (singular_face p k
(oriented__simplex p 1))))
= — (O k = Suc 0..Suc p. frag_cmul ((—1) " k)
(frag_of (singular_face (Suc p) k (simplex__cone p v (oriented__simplex
p D)

unfolding sum.atLeast Suc_atMost_Suc_shift
by (auto simp: 0 simplex__cone singular_face_oriented__simplex frag__extend__sum
frag_extend _cmul simp flip: sum__negf)
moreover have 2: singular_face (Suc p) 0 (simplex__cone p v (oriented__simplex
p )
= oriented__simplex p |
by (simp add: simplex_cone singular_face_oriented _simplex)
show chain_boundary (Suc p) (simplicial _cone p v (frag_of f))
= frag_of f — simplicial_cone (p — Suc 0) v (chain_boundary p (frag_of
)
using p > 0
apply (simp add: assms simplicial_cone__def chain__boundary_of atMost__atLeast0
del: sum.atMost_Suc)
apply (subst sum.atLeast_Suc__atMost [of 0])
apply (simp_all add: 1 2 del: sum.atMost_Suc)
done
qed

lemma chain_boundary_simplicial__cone_ of:
assumes simplicial_simplex p S f
shows chain__boundary (Suc p) (simplicial_cone p v (frag_of f)) =
frag_of f
— (if p = 0 then frag_of (Au€standard_simplex p. v)
else simplicial_cone (p —1) v (chain_boundary p (frag_of f)))
using chain__boundary_simplicial_cone_of’ assms unfolding simplicial _simplex_ def
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by blast

lemma chain__boundary_simplicial__cone:

simplicial__chain p S ¢

= chain_boundary (Suc p) (simplicial _cone p v ¢) =

¢ — (if p = 0 then frag_extend (Nf. frag_of (Au€standard_simplex p. v)) ¢
else simplicial _cone (p —1) v (chain_boundary p c))

unfolding simplicial chain__def
proof (induction rule: frag induction)

case (one z)

then show ?Zcase

by (auto simp: chain__boundary__simplicial_cone__of)

qed (auto simp: chain__boundary_diff simplicial _cone_ def frag__extend_ diff)

lemma simplex_map_ oriented__simplex:
assumes I: simplicial_simplex p (standard_simplex q) (oriented__simplex p I)
and g: simplicial _simplex 7 S g and ¢ < r
shows simplex_map p g (oriented simplex p 1) = oriented_simplex p (g o 1)
proof —
obtain m where geq: g = oriented _simplex r m
using ¢ by (auto simp: simplicial _simplex_def)
have g (Ai. 32 j<p. lji* zj)i= (3j<p. g (1])ix*z])
if © € standard__simplez p for x i
proof —
have ssr: (Ai. > j<p. lji * xj) € standard _simplex r
using [ that standard__simplex_mono [OF <q < 1]
unfolding simplicial _simplex_oriented_simplex by auto
have Iss: | j € standard__simplex r if j<p for j
proof —
have ¢: (Ax . > j<p. lji* xj) ¢ standard_simplex p C standard_simplex q
using [ by (simp add: simplicial__simplex_oriented _simplex)
let 2z = (N\i. if i = j then 1 else 0)
have p: lj € (A\xi. Y j<p.ljix* xj) ‘ standard_simplex p
proof
show [ j = (Ai. Y j<p. ljix %xj)
using j<p> by (force simp: if _distrib cong: if _cong)
show ?z € standard__simplezx p
by (simp add: that)
qged
show ?thesis
using standard__simplex_mono [OF <q¢ < ] qp
by blast
qed
have g (Ai. Y. j<p. ljixzj)i= (O j<r.d>.n<p.mjix*x (Injx*zmn))
by (simp add: geq oriented__simplex__def sum__distrib_left ssr)

also have ... = (3 j<p. Y. n<r.mnix (ljn*x zj))
by (rule sum.swap)
also have ... = (> ji<p. g (1 j) i * z j)

by (simp add: geq oriented__simplex__def sum,__distrib_right mult.assoc lss)
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finally show ?thesis .
qed
then show ?thesis
by (force simp: oriented__simplex_def simplex__map__def o__def)
qed

lemma chain__map _simplicial _cone:
assumes ¢: simplicial_simplex r S g
and c: simplicial_chain p (standard__simplez q) ¢
and v: v € standard_simpler ¢ and ¢ < r
shows chain_map (Suc p) g (simplicial_cone p v ¢) = simplicial_cone p (g v)
(chain_map p g c)
proof —
have *: simplez_map (Suc p) g (simplex_cone p v f) = simplex_cone p (g v)
(simplex_map p g f)
if f € Poly Mapping.keys c for f
proof —
have simplicial_simplex p (standard__simplex q) f
using c¢ that by (auto simp: simplicial _chain__def)
then obtain m where feq: f = oriented_simplex p m
by (auto simp: simplicial _simplex)
have 0: simplicial_simplex p (standard_simplex q) (oriented__simplex p m)
using <simplicial_simplex p (standard__simplex q) f+ feq by blast
then have 1: simplicial _simplex (Suc p) (standard__simplex q)
(oriented_simplex (Suc p) (Ai. if i = 0 then v else m (i —1)))
using convex__standard__simplex v
by (simp flip: simplex__cone add: simplicial _simplex_simplex_ cone)
show ?thesis
using simplez_map_oriented_simplex [OF 1 g <q < 1]
simplex_map_oriented__simplex [of p g mr S g, OF 0 g <q < 1]
by (simp add: feq oriented _simplex__eq simplex__cone)
qed
show ?thesis
by (auto simp: chain_map_ def simplicial_cone_def frag_extend__compose x*
intro: frag_extend_eq)
qed

0.1.15 Barycentric subdivision of a linear ("simplicial") sim-
plex’s image

definition simplicial vertex
where simplicial _vertex i f = f(Aj. if j = i then 1 else 0)

lemma simplicial _vertex_oriented__simplex:
simplicial_vertex i (oriented_simplex p 1) = (if i < p then | i else undefined)
by (simp add: simplicial _vertex__def oriented__simplex__def if _distrib cong: if _cong)
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primrec simplicial _subdivision
where
simplicial__subdivision 0 = id
| simplicial_subdivision (Suc p) =
frag _extend
(M. simplicial _cone p
(Ai. (32 j<Suc p. simplicial_vertex j fi) / (p + 2))
(simplicial__subdivision p (chain__boundary (Suc p) (frag_of f))))

lemma simplicial_subdivision__0 [simp]:
simplicial__subdivision p 0 = 0
by (induction p) auto

lemma simplicial__subdivision__diff:

simplicial_subdivision p (c1—c2) = simplicial _subdivision p c1 — simplicial__subdivision
p c2

by (induction p) (auto simp: frag extend diff)

lemma simplicial _subdivision__of:
sitmplicial__subdivision p (frag_of f) =
(if p = 0 then frag_of f
else simplicial _cone (p —1)
(M. O 4<p. simplicial_vertex j f ©) / (Suc p))
(simplicial_subdivision (p —1) (chain_boundary p (frag_of f))))
by (induction p) (auto simp: add.commute)

lemma simplicial_chain__simplicial__subdivision:
simplicial _chain p S ¢
= simplicial_chain p S (simplicial _subdivision p c)
proof (induction p arbitrary: S c)
case (Suc p)
show ?case
using Suc.prems [unfolded simplicial_chain__def]
proof (induction ¢ rule: frag_induction)
case (one f)
then have f: simplicial_simplex (Suc p) S f
by auto
then have simplicial _chain p (f ¢ standard__simplex (Suc p))
(simplicial__subdivision p (chain__boundary (Suc p) (frag_of f)))
by (metis Suc.IH diff Suc__ 1 simplicial_chain__boundary simplicial _chain_of
stmplicial__simplex subsetl)
moreover
obtain [ where I: Az. z € standard_simplex (Suc p) = (M. (O j<Suc p. 1
jixzj))es
and feq: f = oriented simplex (Suc p) I
using f by (fastforce simp: simplicial _simplex oriented simplex_def simp
del: sum.atMost_Suc)
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have (Ai. (1 — u) * (O j<Suc p. simplicial_vertex j fi) / (real p + 2)) + u
xyi) €S
if 0 <ww<1andy: yef°standard_simplex (Suc p) for y u
proof —
obtain z where z: z € standard _simplex (Suc p) and yeq: y = ori-
ented__simplex (Suc p) | z
using y feq by blast
have (Ai. > j<Sucp. lji* ((if j < Suc p then (I — u) * inverse (p + 2)
+uxxzjelse0))) €S
proof (rule l)
have inverse (2 + real p) < 1 (2 + real p) * ((1 — u) * inverse (2 + real
p) +u=1
by (auto simp add: field split_simps)
then show (\j. if j < Suc p then (1 — u) x inverse (real (p + 2)) + u * x
j else 0) € standard__simplex (Suc p)
using z «0 < w u < 1»
by (simp add: sum.distrib standard_simplex_def linepath_le 1 flip:
sum,__distrib_left del: sum.atMost_Suc)
qed
moreover have (Ai. > j<Sucp. ljix ((1 — u) * inverse (2 + real p) + u
« 5 9)
= Ni. (1 —wu)*x (O2j<Sucp.1ji)/ (realp+ 2) + ux (D> j<Suc
p.ljixzj))
proof
fix ¢
have (> j<Suc p. 1ji* ((1 — u) * inverse (2 + real p) + u * x 7))
= (>"j<Sucp. (I —u)*xlji/ (realp+ 2) +u=1ljixzj) (is ?lhs
=_)
by (simp add: field simps cong: sum.cong)

also have ... = (1 — u) * (O j<Sucp.1ji) / (realp + 2) + u * (> j<Suc
p.ljixaj) (is_ = %rhs)
by (simp add: sum__distrib_left sum.distrib sum__divide__distrib mult.assoc
del: sum.atMost_ Suc)
finally show ?lhs = ?rhs .
qed
ultimately show #thesis
using feq x yeq
by (simp add: simplicial_vertex_oriented_simplex) (simp add: oriented__simplex_def)
ged
ultimately show ?case
by (simp add: simplicial _chain__simplicial _cone)
next
case (diff a b)
then show “case
by (metis simplicial _chain__diff simplicial__subdivision__diff)
qed auto
qed auto

lemma chain__boundary_simplicial__subdivision:
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simplicial _chain p S ¢
= chain__boundary p (simplicial__subdivision p ¢) = simplicial _subdivision (p
—1) (chain_boundary p c)
proof (induction p arbitrary: c)
case (Suc p)
show ?case
using Suc.prems [unfolded simplicial _chain__def)
proof (induction ¢ rule: frag_induction)
case (one f)
then have f: simplicial _simplex (Suc p) S f
by simp
then have simplicial_chain p S (simplicial _subdivision p (chain__boundary
(Suc p) (frag_of f)))
by (metis diff _Suc_1 simplicial _chain__boundary simplicial__chain_of sim-
plicial__chain__simplicial__subdivision)
moreover have simplicial _chain p S (chain_boundary (Suc p) (frag_of f))
using one simplicial__chain__boundary simplicial__chain_of by fastforce
moreover have simplicial _subdivision (p — Suc 0) (chain__boundary p (chain__boundary
(Suc p) (frag_of ))) = 0
by (metis f chain_boundary_boundary_alt simplicial simplex def simpli-
cial__subdivision__ 0 singular_chain__of)
ultimately show Zcase
using chain__boundary_simplicial _cone Suc
by (auto simp: chain__boundary_of frag extend diff simplicial _cone _def)
next
case (diff a b)
then show Zcase
by (simp add: simplicial_subdivision__diff chain__boundary_ diff frag__extend__diff)
qed auto
qed auto

A MESS AND USED ONLY ONCE

lemma simplicial__subdivision__shrinks:
[simplicial _chain p S c¢;
Nz y. [f € Poly_Mapping.keys ¢; © € standard_simplex p; y € stan-
dard_simplex p] = |fz k — fy k| < d;
f € Poly_Mapping.keys(simplicial _subdivision p c);
x € standard__simplex p; y € standard__simplex p]
= |fak —fykl < (p/ (Sucp)) =d
proof (induction p arbitrary: d c f z y)
case (Suc p)
define Sigp where Sigp = Af:: (nat = real) = nat = real. Mi. (3 j<Suc p.
simplicial_vertex j f i) / real (p + 2)
define CB where CB = \f::(nat = real) = nat = real. chain_boundary (Suc
p) (frag_of f)
have *: Poly_Mapping.keys
(simplicial_cone p (Sigp f)
(simplicial__subdivision p (CB f)))
C {f. Vaestandard _simplex (Suc p). V yEstandard__simplex (Suc p).
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lfzk —fykl < Sucp/ (real p+ 2) *x d} (is ?lhs C ?rhs)
if f: f € Poly Mapping.keys c for f
proof —
have ssf: simplicial _simplex (Suc p) S f
using Suc.prems(1) simplicial _chain__def that by auto
have 2: Az y. [z € standard_simplex (Suc p); y € standard_simplex (Suc p)]
— |fak—fykl <d
by (meson Suc.prems(2) f subsetD le_Suc__eq order_refl standard__simplez__mono)
have sub: Poly_Mapping.keys ((frag_of o simplex_cone p (Sigp f)) g) C %rhs
if g € Poly Mapping.keys (simplicial _subdivision p (CB f)) for g
proof —
have 1: simplicial _chain p S (CB f)
unfolding CB_def
using ssf simplicial _chain__boundary simplicial _chain_of by fastforce
have simplicial_chain (Suc p) (f ¢ standard__simplex(Suc p)) (frag_of f)
by (metis simplicial _chain__of simplicial_simplex ssf subset_refl)
then have sc_sub: Poly Mapping.keys (CB f)
C Collect (simplicial _simplex p (f © standard__simplex (Suc p)))
by (metis diff Suc_1 simplicial_chain_boundary simplicial_chain__def
CB__def)
have led: A\h z y. [h € Poly_Mapping.keys (CB f);
z € standard_simplex p; y € standard_simplex p] = |h z k
—hykl<d
using Suc.prems(2) f sc_sub
by (simp add: simplicial _simplex subset iff image__iff) metis
have A\f' z y. [f' € Poly_Mapping.keys (simplicial _subdivision p (CB f));
x € standard_simplex p; y € standard__simplex p]
= |f'zk —f'ykl < (p/ (Sucp)) *d
by (blast intro: led Suc.IH [of CB f, OF 1])
then have g: Az y. [z € standard_simplex p; y € standard_simplez p] =
lgzk —gykl < (p/ (Sucp)) *d
using that by blast
have d > 0
using Suc.prems(2)[OF f] «x € standard_simplex (Suc p)» by force
have 3: simplex_cone p (Sigp f) g € ?rhs
proof —
have simplicial_simplex p (f ¢ standard_simplex(Suc p)) g
by (metis (mono__tags, opaque_lifting) sc_sub mem__ Collect _eq simpli-
cial__chain__def simplicial__chain__simplicial__subdivision subsetD that)
then obtain m where m: g ‘ standard _simplex p C f * standard__simplex
(Suc p)
and geq: g = oriented__simplex p m
using ssf by (auto simp: simplicial _simplex)
have m_in_gim: m i € g ‘ standard_simplex p if ¢ < p for ¢
proof
show m i = g (Aj. if j = i then 1 else 0)
by (simp add: geq oriented__simplex__def that if _distrib cong: if _cong)
show (\j. if j = i then I else 0) € standard__simplex p
by (simp add: oriented__simplex__def that)
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qged
obtain | where I: f ¢ standard__simplex (Suc p) C S
and feq: f = oriented simplex (Suc p) |
using ssf by (auto simp: simplicial_simplex)
show ?thesis
proof (clarsimp simp add: geq simp del: sum.atMost_Suc)
fixzy
assume z: ¢ € standard_simplex (Suc p) and y: y € standard__simplex

(Suc p)
then have z”: (Vi. 0 <ziAxzi<I)ANNVi>Sucp. xzi=0)A (D i<Suc
p.xi)=1
and y: (Vi. 0 <yiNyi<1)ANNMi>Sucp. yi=0)A (> i<Sucp.
yi) =1

by (auto simp: standard__simplex__def)
have (> j<Suc p. (if j = 0 then Xi. (> j<Suc p.1ji) /(2 + real p) else
m (§ —1)) k* zj) —
(> j<Suc p. (if j = 0 then Xi. (3 j<Suc p.1ji) / (2 + real p) else
m (j —1)) k * y j)|
< (1 + real p) x d / (2 + real p)
proof —
have zero: |m (s — Suc 0) k — (3. j<Sucp. 1jk) /(2 + real p)| < (1
+ real p) x d / (2 + real p)
if 0 < sand s < Suc p for s
proof —
have m (s — Suc 0) € f  standard_simplex (Suc p)
using m m__in__gim that(2) by auto
then obtain z where eq: m (s — Suc 0) = (Ai. > j<Sucp. ljix z
j) and z: z € standard_simplex (Suc p)
using feq unfolding oriented simplex def by auto
show ?thesis
unfolding eq
proof (rule convex__sum__bound_le)
fix ¢
assume i: i € {..Suc p}
then have [simp]: card ({..Suc p} — {i}) = Suc p
by (simp add: card_Suc_Diff1)
have (3 j<Sucp. |lik /(p+2)—1jk/ (p+ 2)]) = (3 j<Suc p.
[Lik—1jkl/ (p+2))
by (rule sum.cong) (simp__all add: flip: diff _divide__distrib)
also have ... = (>_j e {..Sucp} — {i}. |lik =15kl [/ (p+ 2))
by (rule sum.mono__neutral_right) auto
also have ... < (I + realp) x d / (p + 2)
proof (rule sum__bounded__above__divide)
fix i’ :: nat
assume i i’ € {..Suc p} — {i}
have If: [ r € f ¢ standard__simplex(Suc p) if r < Suc p for r
proof
show [ r = f (N\j. if j = r then 1 else 0)
using that by (simp add: feq oriented_simplex__def if _distrib
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cong: if _cong)
show (\j. if j = r then 1 else 0) € standard__simplex (Suc p)
by (auto simp: oriented__simplex_def that)
qed
show |l ik — 1i" k| / real (p + 2) < (I + real p) x d / real (p +
2) / real (card ({..Suc p} — {i}))
using i " If [of {] If [of i] 2
by (auto simp: image__iff divide__simps)
qed auto
finally have (3. j<Sucp. |lik /(p+ 2) —1jk/ (p+ 2)|) < (1
+realp)xd/(p+ 2).
then have |} j<Sucp. lik /(p+2)—1jk/(p+2) <1+
real p) * d / (p + 2)
by (rule order_trans [OF sum__abs])
then show |l ik — (3 j<Sucp. ljk) /(2 + real p)| < (1 + real p)
x d /(2 + real p)
by (simp add: sum__subtractf sum__divide__distrib del: sum.atMost__Suc)
qed (use standard__simplex__def z in auto)
qed
have nonz: |m (s — Suc 0) k — m (r — Suc 0) k| < (I + realp) * d /
(2 + real p) (is ?lhs < %rhs)
ifr<sand 0 < rand r < Suc p and s < Suc p for r s
proof —
have ?lhs < (p / (Suc p)) * d
using m__in__gim [of r — Suc 0] m__in__gim [of s — Suc 0] that g by
fastforce
also have ... < 2rhs
by (simp add: field_simps <0 < d»)
finally show ?thesis .
qed
have jj: 7 < Suc p A j' < Suc p
— |(if j/ = 0 then \i. (3 j<Sucp.1ji)/ (2 + real p) else m (j'
—1) k-
(if j = 0 then Ai. (3. j<Sucp.lji)/ (2 + real p) else m (j —1))
K
< (I + real p) * d / (2 + real p) for j j’
using <0 < d»
by (rule_tac a=j and b = j’ in linorder_less_wlog; force simp: zero
nonz simp del: sum.atMost_Suc)
show ?thesis
apply (rule convex__sum__bound_le)
using z’ apply blast
using z’ apply blast
apply (subst abs minus _commute)
apply (rule convex__sum__bound_le)
using y’ apply blast
using y’ apply blast
using jj by blast
ged
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then show |simplex_cone p (Sigp f) (oriented _simplex p m) x k —
simplex__cone p (Sigp f) (oriented__simplex p m) y k|
< (1 + realp) x d / (real p + 2)
apply (simp add: feq Sigp_def simplicial _vertex_oriented simplex
simplex__cone del: sum.atMost_Suc)
apply (simp add: oriented__simplex_def algebra__simps x y del: sum.atMost__Suc)
done
qed
qged
show ?thesis
using Suc.IH [OF 1, where f=g] 2 8 by simp
qed
then show ?thesis
unfolding simplicial _chain__def simplicial _cone__def
by (simp add: order_trans [OF keys_frag extend] sub UN_subset_iff)
qed
obtain ff where ff € Poly Mapping.keys c
f € Poly_Mapping.keys
(simplicial _cone p
(Ai. (O 7<Suc p. simplicial_vertez j ff i) /
(real p + 2))
(simplicial _subdivision p (CB ff)))
using Suc.prems(3) subsetD [OF keys_frag_extend)]
by (force simp: CB__def simp del: sum.atMost_Suc)
then show ?case
using Suc * by (simp add: add.commute Sigp_ def subset_iff)
qed (auto simp: standard__simplex_0)

0.1.16 Singular subdivision

definition singular__subdivision
where singular__subdivision p =
frag _extend
(M. chain_map p f
(simplicial _subdivision p
(frag_of (restrict id (standard_simplez p)))))

lemma singular__subdivision__0 [simp]: singular__subdivision p 0 = 0
by (simp add: singular_subdivision__def)

lemma singular_subdivision__add:

singular_subdivision p (a + b) = singular__subdivision p a + singular_subdivision
pb

by (simp add: singular_subdivision__def frag_extend__add)

lemma singular__subdivision__ diff:

singular_subdivision p (a — b) = singular_subdivision p a — singular_subdivision
pb

by (simp add: singular_subdivision__def frag_extend__ diff)
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lemma simplicial__simplex_id [simpl:
simplicial_simplex p S (restrict id (standard__simplex p)) <— standard__simplex
pCS
(is ?lhs = %rhs)
proof
assume ?lhs
then show ?rhs
by (simp add: simplicial _simplex)
next
assume R: ?rhs
then have cm: continuous _map
(subtopology (powertop _real UNIV') (standard__simplez p))
(subtopology (powertop _real UNIV') S) id
using continuous _map_from__subtopology mono continuous _map _id by blast
moreover have 3. restrict id (standard_simplex p) = oriented_simplex p |
proof
show restrict id (standard _simplex p) = oriented_simplex p (Ai j. if i = j then
1 else 0)
by (force simp: oriented simplex_def standard__simplex__def if _distrib [of Au.
u * _] cong: if _cong)
qed
ultimately show ?lhs
by (simp add: simplicial _simplex_def singular_simplex__def)
qed

lemma singular_chain__singular__subdivision:
assumes singular_chain p X ¢
shows singular_chain p X (singular__subdivision p c)
unfolding singular subdivision__def
proof (rule singular _chain__extend)
fix ca
assume ca € Poly Mapping.keys c
with assms have singular__simplex p X ca
by (simp add: singular__chain__def subset_iff)
then show singular chain p X (chain_map p ca (simplicial_subdivision p
(frag_of (restrict id (standard_simplez p)))))
unfolding singular _simplex_def
by (metis order_refl simplicial_chain__of simplicial__chain__simplicial _subdivision
simplicial_imp__singular__chain simplicial_simplex__id singular _chain__chain_map)
qed

lemma naturality _singular__subdivision:

singular_chain p X ¢

= singular_subdivision p (chain_map p g ¢) = chain_map p g (singular__subdivision
pc)

unfolding singular _chain__def
proof (induction rule: frag induction)

case (one f)
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then have singular_simplex p X f
by auto
have [simplicial_chain p (standard_simplex p) d]
= chain_map p (simplex_map p g ) d = chain_map p g (chain_map p f d)
for d
unfolding simplicial chain__def
proof (induction rule: frag induction)
case (one )
then have simplez_map p (simplex_map p g f) x = simplex_map p g (simplex_map
pfa)
by (force simp: simplex_map__def restrict_compose_left simplicial__simplex)
then show ?case
by auto
qed (auto simp: chain_map__ diff)
then show ?case
using simplicial__chain__simplicial _subdivision [of p standard__simplez p frag_of
(restrict id (standard_simplex p))]
by (simp add: singular _subdivision__def)
next
case (diff a b)
then show ?case
by (simp add: chain_map__ diff singular_subdivision__diff)
qed auto

lemma simplicial_chain__chain_map:
assumes f: simplicial _simplex ¢ X f and c: simplicial_chain p (standard_simplex
q) c
shows simplicial _chain p X (chain_map p f ¢)
using ¢ unfolding simplicial _chain__def
proof (induction ¢ rule: frag_induction)
case (one g)
have 3 n. simplex_map p (oriented_simplex q 1)
(oriented__simplex p m) = oriented__simplex p n
if m: singular_simplex p
(subtopology (powertop__real UNIV') (standard__simplex q)) (oriented__simplex
p m)
for I m
proof —
have (Ai. > j<p. m j i x x j) € standard__simplez q
if © € standard_simplex p for x
using that m unfolding oriented simplex_def singular _simplex__def
by (auto simp: continuous_map__in_subtopology Pi_iff)
then show ?thesis
unfolding oriented_simplex_def simplex_map def
apply (rule_tac x=Aj k. (3> i<q. lik x m ji)in exl)
apply (force simp: sum__distrib_left sum__distrib_right mult.assoc intro:
sum.swap)
done
qed
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then show ?case
using f one
apply (simp add: simplicial _simplex__def)
using singular__simplex_def singular__simplex__simplex__map by blast
next
case (diff a b)
then show ?case
by (metis chain_map_diff simplicial _chain__def simplicial_chain__diff)
qed auto

lemma singular__subdivision__simplicial _simplez:
simplicial_chain p S ¢
= singular_subdivision p ¢ = simplicial _subdivision p c
proof (induction p arbitrary: S c)
case (
then show ?case
unfolding simplicial chain__def
proof (induction rule: frag_induction)
case (one )
then show ?case
using singular_simplex_chain_map_id simplicial imp_singular__simplex
by (fastforce simp: singular_subdivision__def simplicial__subdivision__def)
qed (auto simp: singular_subdivision__diff)
next
case (Suc p)
show ?case
using Suc.prems unfolding simplicial _chain__def
proof (induction rule: frag_induction)
case (one f)
then have ssf: simplicial _simplex (Suc p) S f
by (auto simp: simplicial _simplex)
then have 1: simplicial _chain p (standard_simplez (Suc p))
(simplicial _subdivision p
(chain__boundary (Suc p)
(frag_of (restrict id (standard_simplex (Suc p))))))
by (metis diff _Suc__1 order_refl simplicial _chain__boundary simplicial _chain__of
simplicial__chain__simplicial _subdivision simplicial__simplex_id)
have 2: (A\i. (3] j<Suc p. simplicial_vertex j (restrict id (standard_simplex
(Suc p))) @) / (real p + 2))
€ standard_simplex (Suc p)
by (simp add: simplicial _vertez__def standard__simplex__def del: sum.atMost_Suc)
have ss_ Sp: (Ai. (if i < Suc p then 1 else 0) / (real p + 2)) € standard__simplex
(Suc p)
by (simp add: standard__simplex__def field__split_simps)
obtain | where feq: f = oriented__simplex (Suc p) |
using one unfolding simplicial _simplex by blast
then have 3: f (\i. (> j<Suc p. simplicial_vertez j (restrict id (standard_simplex
(Suc p))) i) / (real p + 2))
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= (Ai. (O j<Suc p. simplicial_vertex j f i) / (real p + 2))
unfolding simplicial _vertex_def oriented_simplex_ def
by (simp add: ss_Sp if distrib [of Az. _ x z]| sum_ divide_distrib del:
sum.atMost__Suc cong: if _cong)
have scp: singular_chain (Suc p)
(subtopology (powertop__real UNIV') (standard_simplex (Suc p)))
(frag_of (restrict id (standard_simplex (Suc p))))
by (simp add: simplicial _imp__singular_chain)
have scps: simplicial_chain p (standard__simplex (Suc p))
(chain__boundary (Suc p) (frag_of (restrict id (standard_simplex
(Suc p)))))

by (metis diff _Suc__1 order_refl simplicial _chain__boundary simplicial__chain__of
simplicial__simplex_id)
have scpf: simplicial _chain p S
(chain_map p f
(chain__boundary (Suc p) (frag_of (restrict id (standard__simplex
(Suc p)))))
using scps simplicial _chain__chain_map ssf by blast
have /: chain_map p f
(simplicial _subdivision p
(chain__boundary (Suc p) (frag_of (restrict id (standard_simplex
(Suc p))))))
= simplicial__subdivision p (chain__boundary (Suc p) (frag_of f))
proof —
have singular_simplex (Suc p) (subtopology (powertop _real UNIV) S) f
using simplicial _simplex_def ssf by blast
then have chain_map (Suc p) [ (frag_of (restrict id (standard_simplex
(Suc p)))) = frag_of f
using singular__simplex__chain_map_id by blast
then show ?thesis
by (metis (no_types) Suc.IH chain_boundary chain_map diff Suc_Suc
diff _zero
naturality_singular_subdivision scp scpf scps simplicial__imp__singular_chain)
qed
show ?Zcase
apply (simp add: singular_subdivision__def del: sum.atMost_Suc)
apply (simp only: ssf 1 2 3 4 chain_map_ simplicial _cone [of Suc p S _ p
Suc p))
done
aed (auto simp: frag_extend_ diff singular _subdivision__diff)
qed

lemma naturality simplicial _subdivision:

[simplicial _chain p (standard__simplex q) c; simplicial_simplex q S ¢]

= simplicial__subdivision p (chain_map p g ¢) = chain_map p g (simplicial__subdivision
pc)

by (metis naturality_singular__subdivision simplicial _chain__chain_map simpli-
ctal_imp__singular_chain
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singular_subdivision__simplicial _simplex)

lemma chain__boundary _singular__subdivision:
singular_chain p X c
= chain__boundary p (singular_subdivision p ¢) =
singular_subdivision (p — Suc 0) (chain_boundary p c)
unfolding singular_chain__def
proof (induction rule: frag induction)
case (one f)
then have ssf: singular_simplex p X f
by (auto simp: singular_simplex_def)
then have scp: simplicial_chain p (standard__simplex p) (frag_of (restrict id
(standard__simplex p)))
by simp
have scp1: simplicial_chain (p — Suc 0) (standard__simplex p)
(chain__boundary p (frag_of (restrict id (standard_simplex p))))
using simplicial _chain__boundary by force
have sgp1: singular_chain (p — Suc 0)
(subtopology (powertop _real UNIV) (standard__simplez p))
(chain__boundary p (frag_of (restrict id (standard__simplex p))))
using scpl simplicial__imp_ singular__chain by blast
have scpp: singular_chain p (subtopology (powertop__real UNIV') (standard__simplex

p))
(frag_of (restrict id (standard__simplex p)))
using scp simplicial _imp__singular__chain by blast
then show ?case
unfolding singular_subdivision__def
using chain__boundary__chain_map [of p subtopology (powertop_real UNIV')
(standard_simplex p) __ f]
apply (simp add: simplicial _chain__simplicial _subdivision
simplicial_imp__singular__chain chain__boundary_simplicial _subdivision
[OF scp]
flip: singular_subdivision__simplicial_simplex [OF scpl] naturality__singular__subdivision
[OF sgp1])
by (metis (full _types) singular__subdivision__def chain__boundary_ chain_map
[OF scpp] singular_simplex__chain_map_id [OF ssf])
qged (auto simp: singular__subdivision__def frag__extend _diff chain__boundary__ diff)

lemma singular__subdivision__ zero:
singular_chain 0 X ¢ = singular_subdivision 0 ¢ = ¢
unfolding singular_chain__def
proof (induction rule: frag induction)
case (one f)
then have restrict (f o restrict id (standard__simplex 0)) (standard_simplex 0)
=f
by (simp add: extensional _restrict restrict_compose__right singular_simplex__def)
then show ?case
by (auto simp: singular_subdivision__def simplex_map__def)
qged (auto simp: singular_subdivision__def frag__extend__ diff)
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primrec subd where
subd 0 = (Az. 0)
| subd (Suc p) =
frag__extend
(Nf. simplicial_cone (Suc p) (Ai. (32 j<Suc p. simplicial_vertex j f i) / real
(Suc p + 1))
(simplicial__subdivision (Suc p) (frag_of f) — frag_of f —
subd p (chain_boundary (Suc p) (frag_of f))))

lemma subd_0 [simp]: subd p 0 = 0
by (induction p) auto

lemma subd_diff [simp]: subd p (¢ — ¢2) = subd p c1 — subd p c2
by (induction p) (auto simp: frag_extend_diff)

lemma subd__uminus [simp]: subd p (—c¢) = — subd p ¢
by (metis diff 0 subd__0 subd__diff)

lemma subd__power_uminus: subd p (frag_cmul ((—1) " k) ¢) = frag_cmul ((—1)
T k) (subd p c)
proof (induction k)

case (

then show Zcase by simp
next

case (Suc k)

then show ?Zcase

by (metis frag_cmul__cmul frag__cmul_minus _one power__Suc subd__uminus)

qed

lemma subd_power_sum: subd p (sum fI) = sum (subd p o f) I
proof (induction I rule: infinite_ finite__induct)
case (insert i I)
then show ?case
by (metis (no__types, lifting) comp__apply diff _minus_eq add subd__diff subd_uminus
sum.insert)
qed auto

lemma subd: simplicial_chain p (standard_simplez s) ¢
= (Vr g. simplicial _simplex s (standard__simplex r) g — chain_map (Suc
p) g (subd p ¢) = subd p (chain_map p g c))
A simplicial _chain (Suc p) (standard_simplezx s) (subd p c)
A (chain_boundary (Suc p) (subd p ¢)) + (subd (p — Suc 0) (chain__boundary
p ¢)) = (simplicial _subdivision p ¢) — ¢
proof (induction p arbitrary: c)
case (Suc p)
show ?case
using Suc.prems [unfolded simplicial _chain__def)
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proof (induction rule: frag_induction)
case (one f)
then obtain [ where I: (Az i. > j<Suc p. lji x xj) ‘ standard_simplex (Suc
p) C standard_simplex s
and feq: f = oriented_simplex (Suc p) 1
by (metis (mono__tags) mem__Collect__eq simplicial_simplex simplicial _simplex_oriented__simplex)
have scf: simplicial_chain (Suc p) (standard_simplex s) (frag_of f)
using one by simp
have Iss: [ i € standard_simplez s if i < Suc p for i
proof —
have (Ai’. > j<Suc p. lji' * (if j = i then I else 0)) € standard_simplex s
using subsetD [OF ] basis_in__standard__simplex that by blast
moreover have (Ai’. > j<Suc p. lji' x (if j = i then 1 else 0)) =11
using that by (simp add: if distrib [of Az. _ x z] del: sum.atMost_Suc
cong: if _cong)

ultimately show #thesis
by simp
ged
have x: (\i. i < n = [ { € standard_simplez s)

= (M. O_j<n. lji) / (Suc n)) € standard_simplezx s for n
proof (induction n)

case (Suc n)
let 2z = Ai. (1 — dnverse (n + 2)) * (O_j<n.lji) / (Suc n)) + inverse (n
+ 2) %1l (Sucn)i

have ?z € standard__simplez s

proof (rule convez_standard__simplez)
show (A\i. (D_j<n.lji) / real (Suc n)) € standard_simplex s

using Suc by simp

qed (auto simp: lss Suc inverse_le 1_iff)

moreover have 7z = (A\i. (3 j<Suc n. lji) / real (Suc (Suc n)))
by (force simp: divide__simps)

ultimately show ?case
by simp

qed auto

have xx: (\i. (O] j<Suc p. simplicial_vertex j f i) / (2 + real p)) € stan-
dard__simplex s

using * [of Suc p] lss by (simp add: simplicial_vertex_oriented__simplex feq)
show ?Zcase
proof (intro congl impI alll)

fix rg

assume g: simplicial_simplex s (standard__simplezx r) g

then obtain m where geq: g = oriented_simplex s m

using simplicial__simplex by blast
have 1: simplicial__chain (Suc p) (standard_simplex s) (simplicial_subdivision
(Suc p) (frag_of f))

by (metis mem__Collect__eq one.hyps simplicial__chain_ of simplicial__chain__simplicial__subdivision)

have 2: (> j<Suc p. > i<s. m i k * simplicial _vertex j f 7)
= (> j<Suc p. simplicial_vertez j
(simplex_map (Suc p) (oriented_simplex s m) f) k) for k
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proof (rule sum.cong [OF refl])
fix j
assume j: j € {..Suc p}
have eq: simplex_map (Suc p) (oriented_simplex s m) (oriented simplex
(Sue p) 1)
= oriented__simplex (Suc p) (oriented_simplex s m o [)
proof (rule simplex_map _oriented__simplex)
show simplicial _simplex (Suc p) (standard_simplex s) (oriented__simplex
(Sue p) 1)
using one by (simp add: feq flip: oriented simplex_def)
show simplicial _simplex s (standard__simplex 1) (oriented_simplex s m)
using g by (simp add: geq)
qed auto
show (> i<s. m i k x simplicial_vertez j f i)
= simplicial_vertex j (simplex_map (Suc p) (oriented _simplex s m) f) k
using one j
apply (simp add: feq eq simplicial_vertex_oriented_simplex simpli-
cial_simplex__oriented simplex image _subset iff)
apply (drule_tac z=(\i. if i = j then 1 else 0) in bspec)
apply (auto simp: oriented__simplex_def lss)
done
qed
have 4: chain_map (Suc p) g (subd p (chain_boundary (Suc p) (frag_of f)))
= subd p (chain_boundary (Suc p) (frag_of (simplez_map (Suc p) g
)

by (metis (no__types) One_nat_def scf Suc.IH chain__boundary_ chain_map
chain_map__of diff _Suc__ Suc diff _zero g simplicial _chain__boundary simplicial_imp__singular_chain)
show chain_map (Suc (Suc p)) g (subd (Suc p) (frag_of f)) = subd (Suc p)
(chain_map (Suc p) g (frag_of f))
unfolding subd.simps frag extend_ of
using g
apply (subst chain_map__simplicial _cone [of s standard_simplex r __ Suc p
s], assumption)
apply (metis 1 Suc.IH diff Suc_ 1 scf simplicial__chain__boundary simpli-
cial__chain__diff)
using *x apply auto[!]
apply (rule order_refl)
unfolding chain_map_of frag_extend_of
apply (rule arg_cong2 [where f = simplicial_cone (Suc p)])
apply (simp add: geq sum__distrib_left oriented simplex_def xx del:
sum.atMost_Suc flip: sum__divide__distrib)

using 2 apply (simp only: oriented_simplex_def sum.swap [where A =
{-s})
using naturality_simplicial_subdivision scf apply (fastforce simp add: 4
chain_map__diff)
done
next

have sc: simplicial_chain (Suc p) (standard__simplex s)
(simplicial__cone p
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(M. (30 j<Suc p. simplicial_vertezx j f i) / (Suc (Suc p)))
(simplicial _subdivision p
(chain__boundary (Suc p) (frag_of f))))
by (metis diff _Suc__1 nat.simps(3) simplicial _subdivision__of scf simpli-
cial__chain__simplicial__subdivision)
have ff: simplicial _chain (Suc p) (standard__simplex s) (subd p (chain__boundary
(Suc p) (frag_of f)))
by (metis (no_types) Suc.IH diff Suc_ 1 scf simplicial_chain__boundary)
show simplicial _chain (Suc (Suc p)) (standard_simplex s) (subd (Suc p)
(frag_of ))
using one
unfolding subd.simps frag_extend_of
apply (rule_tac S=standard__simplex s in simplicial _chain__simplicial _cone)
apply (meson ff scf simplicial_chain__diff simplicial _chain__simplicial _subdivision)
using *xx convex_standard__simplex by force
have simplicial _chain p (standard_simplex s) (chain_boundary (Suc p)
(frag_of f))
using scf simplicial__chain__boundary by fastforce
then have chain_boundary (Suc p) (simplicial _subdivision (Suc p) (frag_of
f) = frag_of f

=0

— subd p (chain_boundary (Suc p) (frag_of f)))

unfolding chain_boundary__ diff
using Suc.IH chain__boundary__boundary
by (metis One_nat_def add_ diff cancel left’ chain_boundary__simplicial__subdivision
diff Suc_ 1 scf
simplicial_imp__singular__chain subd_0)
moreover have simplicial _chain (Suc p) (standard_simplez s)
(simplicial _subdivision (Suc p) (frag_of ) — frag_of f —
subd p (chain_boundary (Suc p) (frag_of f)))
by (meson ff scf simplicial__chain__diff simplicial _chain__simplicial _subdivision)
ultimately show chain_boundary (Suc (Suc p)) (subd (Suc p) (frag_of f))
+ subd (Suc p — Suc 0) (chain_boundary (Suc p) (frag_of f))
= simplicial _subdivision (Suc p) (frag_of ) — frag_of f
unfolding subd.simps frag_extend of
apply (simp add: chain__boundary__simplicial _cone )
apply (simp add: simplicial _cone__def del: sum.atMost_Suc simplicial _subdivision.simps)
done
ged
next
case (diff a b)
then show ?case
apply safe
apply (metis chain_map_diff subd__ diff)
apply (metis simplicial _chain__diff subd__diff)
by (smt (verit, ccfu_threshold) add_diff _add chain__boundary diff diff _add__cancel
simplicial__subdivision__diff subd__ diff)
qed auto
qed simp
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lemma chain__homotopic_simplicial _subdivisionl:
[simplicial _chain p (standard__simplex q) c; simplicial__simplex q (standard__simplex
r) 9]
= chain_map (Suc p) g (subd p ¢) = subd p (chain_map p g c)
by (simp add: subd)

lemma chain__homotopic_simplicial__subdivision2:
simplicial_chain p (standard_simplex q) ¢
= simplicial_chain (Suc p) (standard_simplex q) (subd p c)
by (simp add: subd)

lemma chain__homotopic_simplicial _subdivision3:
simplicial__chain p (standard_simplex q) ¢
= chain_boundary (Suc p) (subd p c¢) = (simplicial_subdivision p ¢) — ¢ —
subd (p — Suc 0) (chain_boundary p c)
by (simp add: subd algebra__simps)

lemma chain__homotopic__simplicial__subdivision:
Th. (Vp. hp 0 =0) A
(Vpele2. hp(cl—c2)=hpcl —hpc2)A
(Vpgqrge.
simplicial__chain p (standard_simplex q) ¢
— simplicial__simplex q (standard__simplex 1) ¢
— chain_map (Suc p) g (hp ¢) = h p (chain_map p g ¢)) A
(Vp q c. simplicial _chain p (standard_simplex q) c
— simplicial _chain (Suc p) (standard_simplex q) (h p ¢)) A
(Vp q c. simplicial_chain p (standard__simplex q) ¢
— chain_boundary (Suc p) (hp ¢) + h (p — Suc 0) (chain__boundary
pc)
= (simplicial _subdivision p ¢) — ¢)
by (rule_tac x=subd in exl) (fastforce simp: subd)

lemma chain__homotopic__singular__subdivision:
obtains h where
Np.-hp0=20
Apclc2. hp(cl—c2)=hpcl —hpc2
A\p X c. singular_chain p X ¢ = singular_chain (Suc p) X (h p ¢)
Ap X c. singular_chain p X ¢
= chain__boundary (Suc p) (hp ¢) + h (p — Suc 0) (chain__boundary
p ¢) = singular_subdivision p ¢ — ¢
proof —
define k where k = Ap. frag_extend (\f:: (nat = real) = 'a. chain_map (Suc
p) f (subd p (frag_of (restrict id (standard_simplez p)))))
show ?thesis
proof
fix p X and ¢ :: 'a chain
assume c: singular_chain p X c
have singular__chain (Suc p) X (kp ¢) A
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chain__boundary (Suc p) (kp c) + k (p — Suc 0) (chain_boundary p
¢) = singular_subdivision p ¢ — ¢
using ¢ [unfolded singular _chain__def)
proof (induction rule: frag induction)
case (one f)
let ?X = subtopology (powertop_real UNIV) (standard__simplex p)
show ?Zcase
proof (simp add: k_def, intro conjl)
show singular_chain (Suc p) X (chain_map (Suc p) f (subd p (frag_of
(restrict id (standard_simplezx p)))))
proof (rule singular_chain__chain_map)
show singular_chain (Suc p) ?X (subd p (frag_of (restrict id (standard__simplex
p))))
by (simp add: chain__homotopic__simplicial__subdivision2 simplicial _imp__singular_chain)
show continuous _map ?X X f
using one.hyps singular_simplex__def by auto
qed
next
have scp: singular__chain (Suc p) ¢X (subd p (frag_of (restrict id (standard__simplex
p))))
by (simp add: chain__homotopic__simplicial__subdivision2 simplicial _imp__ singular__chain)
have feqf: frag_of (simplex_map p f (restrict id (standard_simplez p))) =
frag_of f
using one.hyps singular__simplex_chain_map__id by auto
have *: chain_map p f
(subd (p — Suc 0)
O k<p. frag_cmul ((=1) " k) (frag_of (singular_face p k id))))
= (> x<p. frag_cmul ((-1) " z)
(chain_map p (singular_face p z f)
(subd (p — Suc 0) (frag_of (restrict id (standard__simplex
(b — Suc 0)))))))
(is ?lhs = %rhs)
ifp>20
proof —
have eqc: subd (p — Suc 0) (frag_of (singular_face p i id))
= chain_map p (singular_face p i id)
(subd (p — Suc 0) (frag_of (restrict id (standard_simplex
(p = Suc 0)))))
if i < p for i
proof —
have 1: simplicial_chain (p — Suc 0) (standard_simplex (p — Suc 0))
(frag_of (restrict id (standard_simplex (p — Suc 0))))
by simp
have 2: simplicial_simplex (p — Suc 0) (standard__simplex p) (singular_face
p i id)
by (metis One_nat_def Suc_lel <0 < p» simplicial _simplex_id
sitmplicial__simplex__singular_face singular_face _restrict subsetl that)
have 3: simplex_map (p — Suc 0) (singular_face p i id) (restrict id
(standard_simplex (p — Suc 0)))
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= singular_face p i id
by (force simp: simplex_map__def singular_face def)
show ?thesis
using chain__homotopic__simplicial _subdivisionl [OF 1 2]
that <p > 0> by (simp add: 3)
qed
have zz: simplicial _chain p (standard_simplex(p — Suc 0))
(subd (p — Suc 0) (frag_of (restrict id (standard_simplex (p —
Suc 0)))))

by (metis Suc_pred chain__homotopic__simplicial__subdivision2 order _refl
simplicial__chain__of simplicial_simplex_id that)
have yy: A\k. k < p =
chain_map p f
(chain_map p (singular_face p k id) h) = chain_map p (singular_face
pkf)h
if simplicial _chain p (standard__simplez(p — Suc 0)) h for h
using that unfolding simplicial chain__def
proof (induction h rule: frag induction)
case (one )
then show ?case
using one
apply (simp add: chain_map_of singular_simplex_def simpli-
cial_simplex__def, auto)
apply (rule arg_cong [where f=frag of])
by (auto simp: image__subset__iff simplex_map__def simplicial _simplex
singular_face__def)

qged (auto simp: chain_map__ diff)
have ?lhs
= chain_map p f
" k<p. frag_cmul ((—1) " k)
(chain_map p (singular_face p k id)
(subd (p — Suc 0) (frag_of (restrict id (standard__simplex
(p — Suc 0)))))))
by (simp add: subd__power _sum subd__power _uminus eqc)
also have ... = ?rhs
by (simp add: chain_map_sum zz yy)
finally show ?thesis .
qged
have chain_map p f
(simplicial _subdivision p (frag_of (restrict id (standard_simplex
p)))
— subd (p — Suc 0) (chain_boundary p (frag_of (restrict id
(standard__simplex p)))))
= singular_subdivision p (frag_of f)
— frag_extend
(Af. chain_map (Suc (p — Suc 0)) f
(subd (p — Suc 0) (frag_of (restrict id (standard_simplex (p

— Suc 0))))))
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(chain__boundary p (frag_of f))
apply (simp add: singular_subdivision__def chain_map__ diff)
apply (clarsimp simp add: chain__boundary_ def)
apply (simp add: frag_extend_sum frag extend cmul *)
done
then show chain_boundary (Suc p) (chain_map (Suc p) f (subd p (frag_of
(restrict id (standard__simplex p)))))
+ frag__extend
(Af. chain_map (Suc (p — Suc 0)) f
(subd (p — Suc 0) (frag_of (restrict id (standard_simplex (p
— Suc 0))))))

(chain__boundary p (frag_of f))
= singular_subdivision p (frag_of f) — frag_of f
by (simp add: chain__boundary_chain_map [OF scp| chain__homotopic_simplicial _subdivision8
[where g=p]| chain_map_ diff feqf)
qed
next
case (diff a b)
then show ?case
apply (simp only: k_def singular__chain__diff chain__boundary _diff frag _extend__ diff
singular_subdivision__diff)
by (metis (no__types, lifting) add_diff _add diff _add__cancel)
qed (auto simp: k_def)
then show singular__chain (Suc p) X (k p ¢) chain_boundary (Suc p) (k p c)
+ k (p — Suc 0) (chain_boundary p ¢) = singular_subdivision p ¢ — ¢
by auto
qed (auto simp: k_def frag_extend _diff)
qed

lemma homologous_rel singular _subdivision:
assumes singular_relcycle p X T ¢
shows homologous_rel p X T (singular_subdivision p ¢) ¢
proof (cases p = 0)
case True
with assms show ?thesis
by (auto simp: singular_relcycle_def singular__subdivision__zero)
next
case Fulse
with assms show ?thesis
unfolding homologous_rel def singular__relboundary singular _relcycle
by (metis One_nat_def Suc_diff 1 chain_homotopic__singular _subdivision
gr_zerol)
qed
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0.1.17 Excision argument that we keep doing singular sub-
division
lemma singular_subdivision__power_0 [simp]: (singular__subdivision p " n) 0 =

0
by (induction n) auto

lemma singular _subdivision__power _diff:

(singular_subdivision p ~ n) (a — b) = (singular_subdivision p = n) a —
(singular_subdivision p ~ " n) b

by (induction n) (auto simp: singular_subdivision__diff)

lemma iterated_singular _subdivision:
singular_chain p X ¢
= (singular_subdivision p ~ " n) ¢ =
frag__extend
(M\f. chain_map p f
((simplicial _subdivision p ~ " n)
(frag_of (restrict id (standard _simplex p))))) ¢
proof (induction n arbitrary: c)
case (
then show ?case
unfolding singular_chain__def
proof (induction c rule: frag_induction)
case (one f)
then have restrict f (standard_simplex p) = f
by (simp add: extensional _restrict singular_simplex__def)
then show ?case
by (auto simp: simplex_map__def cong: restrict_cong)
qed (auto simp: frag_extend_ diff)
next
case (Suc n)
show ?case
using Suc.prems unfolding singular chain__def
proof (induction c rule: frag_induction)
case (one f)
then have singular_simpler p X f
by simp
have scp: simplicial _chain p (standard _simplex p)
((simplicial _subdivision p =" n) (frag_of (restrict id (standard__simplex
p))))

proof (induction n)
case (
then show Zcase
by (metis funpow_ 0 order_refl simplicial__chain_ of simplicial _simplex_id)
next
case (Suc n)
then show ?case
by (simp add: simplicial _chain__simplicial _subdivision)
qed



Simplices.thy 57

have scnp: simplicial _chain p (standard__simplex p)
((simplicial_subdivision p = n) (frag_of (AxE€standard_simplex p.
z)))

proof (induction n)
case (
then show ?Zcase
by (metis eq id_iff funpow 0 order refl simplicial_chain_of simpli-
cial__simplez_id)
next
case (Suc n)
then show ?Zcase
by (simp add: simplicial_chain__simplicial__subdivision)
qged
have sff: singular_chain p X (frag_of f)
by (simp add: <singular_simplex p X f» singular_chain_ of)
then show ?Zcase
using Suc.IH [OF sff] naturality__singular_subdivision [OF simplicial _imp__singular__chain
[OF scpl, of f] singular_subdivision__simplicial _simplex [OF scnp)
by (simp add: singular_chain__of id__def del: restrict__apply)
qed (auto simp: singular_subdivision_power _diff singular _subdivision__diff frag__extend__ diff)
qed

lemma chain__homotopic_iterated_singular__subdivision:
obtains i where
Ap. b p 0 = (0 :: 'a chain)
Apclc2 hp(cl—c2)=hpecl —hpc2
Ap X c. singular_chain p X ¢ = singular__chain (Suc p) X (h p ¢)
Ap X c. singular_chain p X ¢
= chain__boundary (Suc p) (hp c) + h (p — Suc 0) (chain__boundary
pc)
= (singular_subdivision p ~ " n) ¢ — ¢
proof (induction n arbitrary: thesis)
case (
show ?case
by (rule 0 [of (Ap z. 0)]) auto
next
case (Suc n)
then obtain k£ where k:
Ap- kp 0= (0 :: 'a chain)
Apclc2. kp(cl—c2)=kpcl —kpc2
Ap X c. singular_chain p X ¢ = singular_chain (Suc p) X (k p c)
Ap X c. singular_chain p X ¢
= chain_boundary (Suc p) (kp c¢) + k (p — Suc 0) (chain__boundary
pc)
= (singular_subdivision p ~ " n) ¢ — ¢
by metis
obtain h where h:
Ap- hp 0 = (0 :: 'a chain)
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Apclc2. hp(cl—c2)=hpcl —hpc2
Ap X c. singular_chain p X ¢ = singular_chain (Suc p) X (h p ¢)
A\p X c. singular_chain p X ¢
= chain__boundary (Suc p) (hp c) + h (p — Suc 0) (chain__boundary
p ¢) = singular_subdivision p ¢ — ¢
by (blast intro: chain__homotopic__singular_subdivision)
let ?h = (Ap c. singular_subdivision (Suc p) (kp c) + hp c)
show ?case
proof (rule Suc.prems)
fix p X and c :: 'a chain
assume singular_chain p X ¢
then show singular__chain (Suc p) X (?h p c)
by (simp add: h k singular_chain__add singular__chain__singular__subdivision)
next
fix p :: nat and X :: 'a topology and c :: 'a chain

assume sc: singular_chain p X ¢
have f5: chain_boundary (Suc p) (singular_subdivision (Suc p) (k p c))

singular__subdivision p (chain__boundary (Suc p) (k p c))
using chain_boundary__singular _subdivision k(3) sc by fastforce

have [simp]: singular _subdivision (Suc (p — Suc 0)) (k (p — Suc 0) (chain__boundary
pe)) =

singular_subdivision p (k (p — Suc 0) (chain_boundary p c))

proof (cases p)
case (
then show ?thesis
by (simp add: k chain_boundary_def)
qed auto
show chain__boundary (Suc p) (?h p ¢) + ?h (p — Suc 0) (chain_boundary p
¢) = (singular_subdivision p =~ Suc n) ¢ — ¢
using chain_boundary_singular _subdivision [of Suc p X]
apply (simp add: chain_boundary_add f5 h k algebra__simps)
by (smt (verit, del_insts) add.commute add.left _commute diff _add_cancel
h(4) k(4) sc singular_subdivision__add)
qed (auto simp: k h singular__subdivision__diff)

qed

lemma llemma:
assumes p: standard_simplex p C |JC
and C: ANU. U € C = openin (powertop_real UNIV) U

obtains d where 0 < d
AK. [K C standard_simplex p;
Neyi[i<pzeK yeK|=|zi—yi<d
= JU.UeCANKCU
proof —

have de U. 0 <enUelC ANz UA
Vy. Vi<p. lyi —zi]| < 2xe) A(Vi>p.yi=0) — y e U)

if z: x € standard__simplex p for z

proof—
obtain U where U: U € Cz e U
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using z p by blast
then obtain V where finV: finite {i. V i # UNIV} and openV: \i. open
(Vi)
and zV: x € Pig UNIV V and UV: Pig UNIVV C U
using C unfolding openin_ product_topology__alt by force
have zVi: x i € Vi for ¢
using PiE_mem [OF zV] by simp
have A\i. 3e>0.Va' |z —zi|<e— 2’ € Vi
by (rule openV [unfolded open_ real, rule_format, OF xVi])
then obtain d where d: A\i. di> 0 and dV: Aiz'. |2/ —zi| < di = z’
e Vi
by metis
define e where e = Inf (insert 1 (d ‘{i. Vi # UNIV})) / &
have ed3: e < di / 3 if Vi # UNIV for i
using that finV by (auto simp: e_def intro: cInf le_ finite)
show Je U. 0 <eANUeCAzeUAN
Vy. Vi<p. lyi —zi| < 2xe) AN(Vi>p.yi=0) — y € U)
proof (intro exI conjl olll impl)
show e > 0
using d finV by (simp add: e_def finite_less Inf iff)
fix y assume y: (Vi<p. |lyi — 2zt < 2% e) A (Vi>p. yi=0)
have y € Pig UNIV V
proof
show y i€ Vifor i
proof (cases p < 1)
case True
then show ?thesis
by (metis (mono__tags, lifting) y x mem__Collect__eq standard__simplex__def

zVi)
next
case Fualse show ?thesis
proof (cases Vi = UNIV)
case Fulse show ?Zthesis
proof (rule dV)
have |[yi —zi < 2 x e
using y <— p < ¥ by simp
also have ... < d 1
using ed3 [OF Fulse] <e > 0> by simp
finally show |yi — zi| < di.
qed
qged auto
qed
qed auto
with UV show y € U
by blast
qed (use U in auto)
qed

then obtain ¢ U where
eU: Nz. x € standard_simplex p —>
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0<exNUzxzeCANzelUz
and UI: Az y. [z € standard_simplex p; Ni. i <p=|yi—zi| < 2=xe
z Ni. i > p=yi=10]
= yeUzx
by metis
define F where F = A\z. Pig UNIV (Mi. if i < p then {zi — ex<..<xz i + e
z} else UNIV)
have VS € F ‘ standard_simplex p. openin (powertop_real UNIV) S
by (simp add: F_def openin_PiE__gen)
moreover have pF': standard_simplex p C |J(F * standard_simplex p)
by (force simp: F_def PiE__iff eU)
ultimately have 3 F. finite F A F C F ‘ standard__simplex p A standard__simplex
pCUF
using compactin_standard__simplex [of p)
unfolding compactin__def by force
then obtain S where finite S and ssp: S C standard__simplex p standard__simplex
pCUF )
unfolding ex_finite _subset_image by (auto simp: ex_finite subset image)
then have S # {}
by (auto simp: nonempty_standard__simplez)
show ?thesis
proof
show Inf (e *§) > 0
using <finite S» «S # {}> ssp eU by (auto simp: finite_less_Inf iff)
fix k :: (nat = real) set
assume k: k C standard__simplex p
and kle: Az yi. [i<pizekyek]l = |zi—yi <Inf(e‘S)
show 3U. U e CAECU
proof (cases k = {})
case True
then show ?thesis
using S # {}» eU equalsOI ssp(1) subset_eq p by auto
next
case Fulse
with k ssp obtain x ¢ where = € k x € standard__simplex p
and a: a € Sand Fa: z € F a
by blast
then have le_ea: \i. i < p= abs (zi—ai)<ea
by (simp add: F_def PiE_iff if distrib abs_diff less_iff cong: if cong)
show ?thesis
proof (intro exl conjI)
show Ua € C
using a eU ssp(1) by auto
show £ C U a
proof clarify
fix y assume y € k
with k have y: y € standard__simplez p
by blast
show y € Ua
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proof (rule UI)
show a € standard__simplex p
using a ssp(1) by auto
fix ¢ :: nat
assume i < p
then have [z i — yi| < ea
by (meson kle [OF <i < py] a <finite S» <z € k> <y € k» cInf_le_finite
finite__imagel imagel order_trans)
then show |y i —ai| < 2xea
using le_ea [OF «i < p] by linarith
next
fix 7 assume p < i
then show y i = 0
using standard__simplex_def y by auto
qed
qed
ged
ged
qed
qed

proposition sufficient_iterated_singular__subdivision__exists:
assumes C: A\U. U € C = openin X U
and X: topspace X C |JC
and p: singular_chain p X c
obtains n where Am f. [n < m; f € Poly_Mapping.keys ((singular_subdivision
pm) o)
= 3V € C. f € (standard_simplex p) — V
proof (cases ¢ = 0)
case Fulse
then show ?thesis
proof (cases topspace X = {})
case True
show ?thesis
using p that by (force simp: singular__chain_empty True)
next
case Fulse
show ?thesis
proof (cases C = {})
case True
then show ?thesis
using False X by blast
next
case Fulse
have de. 0 < e A
(VK. K C standard_simplez p — Vzyi.z € KANye K Ni<p
—lzi—yil <e)
— 3V.VelCAfeK—=YV))
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if f: f € Poly Mapping.keys c for f
proof —
have ssf: singular_simplex p X f
using [ p by (auto simp: singular__chain__def)
then have fp: \z. z € standard_simplex p = f x € topspace X
by (auto simp: singular_simplex_def image__subset_iff dest: continu-
ousimapiimageisubsetitopspace)
have 3 T. openin (powertop_real UNIV) T A
standard__simplex p N f —°V = T N standard__simplez p
if V:VelCforV
proof —
have singular_simplex p X f
using p f unfolding singular chain_def by blast
then have openin (subtopology (powertop__real UNIV) (standard__simplex
p))
{z € standard_simplex p. fz € V}
using C [OF <V € C] by (simp add: singular_simplex_def continu-
ous_map__def)
moreover have standard _simplex p N f —°V = {z € standard__simplex
p. fx eV}
by blast
ultimately show Zthesis
by (simp add: openin__subtopology)
qed
then obtain g where gope: AV. V € C = openin (powertop_real UNIV)
(9 V)
and geq: AV. V € C = standard_simplexp N f —*V =g V N
standard__simplex p
by metis
obtain d where 0 < d
and d: AK. [K C standard_simplez p; Az y i. [i < p;z € K; y € K]
— Jai—yil <d]
= 3JU.Ue€g‘CANKCU
proof (rule llemma [of p g ‘C])
show standard_simplex p C |J(g ‘C)
using geq X fp by (fastforce simp add:)
show openin (powertop_real UNIV) U if U € g ‘C for U :: (nat = real)
set
using gope that by blast
qed auto
show ?thesis
proof (rule exl, intro alll conjl impl)
fix K :: (nat = real) set
assume K: K C standard__simplex p
and Kd:Vzyi.z e KANye KANi<p—lzi—yil<d
then have 3U. U € g ‘CAK C U
using d [OF K| by auto
then show 3 V. Ve CAfe K->V
using K geq by fastforce
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qed (rule <d > 0»)
qed
then obtain i) where epos: Vf € Poly_Mapping.keys c. 0 < ¢ f
and e: \f K. [f € Poly_Mapping.keys ¢; K C standard__simplez p;
Neyiize KANye KANi<p=lzi—yil <¢f]
= 3JV.VelCANfeK—=V
by metis
obtain d where 0 < d
and d: A\f K. [f € Poly_Mapping.keys ¢; K C standard_simplex p;
Neyi[re K;ye K;i<p|l=|zi—yil <d]
= 3JV.VelCAfe K->V
proof
show Inf (¢ ¢ Poly_Mapping.keys ¢) > 0
by (simp add: finite_less_Inf iff <c # 0> epos)
fix f K
assume fK: f € Poly_Mapping.keys ¢ K C standard__simplez p
and le: Az yi. [z e K;ye Ky i <p] = |zi—yi < Inf (¥ °
Poly Mapping.keys c)
then have lef: Inf (v ¢ Poly Mapping.keys ¢) < i f
by (auto intro: cInf le_finite)
show 3 V. VeCAfe K-V
using le lef by (blast intro: dual_order.trans e [OF fK])
qed
let 2d = Am. (simplicial_subdivision p = m) (frag_of (restrict id (standard__simplex
p)))
obtain n where n: (p / (Suc p)) "n < d
using real _arch_pow_inv <0 < d> by fastforce
show ?thesis
proof
fix m h
assume n < m and h € Poly Mapping.keys ((singular__subdivision p ~
m) c)
then obtain f where f € Poly Mapping.keys ¢ h € Poly_Mapping.keys
(chain_map p f (¢d m))
using subsetD [OF keys_frag_extend) iterated_singular_subdivision [OF
p, of m| by force
then obtain g where ¢g: g € Poly_Mapping.keys (?d m) and heq: h =
restrict (f o g) (standard_simplez p)
using keys_frag__extend by (force simp: chain_map__def simplex_map__def)
have zz: simplicial _chain p (standard__simplex p) (¢d n) A
(Vf € Poly Mapping.keys(?d n). ¥V z € standard _simplex p. Vy €
standard__simplex p.
fzi—fyil<(p/ (Sucp)) "n)
for n i
proof (induction n)
case (
have simplicial _simplex p (standard__simplex p) (Aa€standard_simplex p.

by (metis eq_id_iff order_refl simplicial__simplex_id)
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moreover have (V z€standard_simplex p. ¥ y€standard_simplex p. |x i —
yil < 1)
unfolding standard__simplex__def
by (auto simp: abs_if dest!: spec [where z=i))
ultimately show Zcase
unfolding power_0 funpow 0 by simp
next
case (Suc n)
show ?case
unfolding power_Suc funpow.simps o__def
proof (intro conjl balll)
show simplicial _chain p (standard_simplex p) (simplicial_subdivision p
(?d n))
by (simp add: Suc simplicial__chain__simplicial__subdivision)
show |fz i — fy il < realp / real (Suc p) * (real p / real (Suc p)) "~ n
if f € Poly_Mapping.keys (simplicial _subdivision p (2d n))
and z € standard_simplex p and y € standard__simplex p for fz y
using Suc that by (blast intro: simplicial__subdivision__shrinks)
qed
qed
have g ‘ standard__simplex p C standard__simplex p
using g zz [of m] unfolding simplicial _chain__def simplicial_simplex by
auto
moreover
have |gz i — gy i| < dif i < px € standard _simplex p y € standard__simplex
pfor x y
proof —
have [gzi — gy i| < (p/ (Sucp)) ~m
using g zz [of m] that by blast
also have ... < (p / (Sucp)) ~n
by (auto intro: power _decreasing [OF «n < my])
finally show ?thesis using n by simp
qged
then have [z — yi| < d
if z € g ¢ (standard_simplex p) y € g ¢ (standard_simplex p) i < p for i

Ty

using that by blast
ultimately show 3 VeC. h € standard_simplez p — V
using «f € Poly_Mapping.keys ¢ d [of f g ¢ standard_simplex p]
using heq image__subset_iff funcset by fastforce
qed
qed
qed
qed force

lemma small _homologous_rel relcycle__exists:
assumes C: A\U. U € C = openin X U
and X: topspace X C |JC
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and p: singular_relcycle p X S ¢
obtains ¢’ where singular_relcycle p X S ¢’ homologous_rel p X S ¢ ¢’
NS [ € Poly _Mapping.keys ¢’ = 3V € C. f € (standard__simplex
p) =V
proof —
have singular_chain p X ¢
(chain__boundary p ¢, 0) € (mod_subset (p — Suc 0) (subtopology X S))
using p unfolding singular_relcycle def by auto
then obtain n where n: Am f. [n < m; f € Poly_Mapping.keys ((singular_subdivision
p m) c)]
= 3V e C. f € (standard_simplex p) — V
by (blast intro: sufficient_iterated__singular_subdivision__exists [OF C X])
let ?¢’ = (singular_subdivision p ~ " n) ¢
show ?thesis
proof
show homologous_rel p X S ¢ ?c’
proof (induction n)
case (
then show ?case by auto
next
case (Suc n)
then show ?Zcase
by simp (metis homologous_rel_eq p homologous__rel__singular_subdivision
homologous__rel__singular_relcycle)
qed
then show singular_relcycle p X S ?¢’
by (metis homologous__rel _singular_relcycle p)
next
fix f :: (nat = real) = 'a
assume [ € Poly Mapping.keys ¢’
then show 3 VeC. f € (standard_simplex p) — V
by (rule n [OF order_refl])
qed
qed

lemma ezcised chain exists:
fixes S :: ‘a set
assumes X closure_of U C X interior_of T T C S singular__chain p (subtopology
XS) ¢
obtains n d e where singular_chain p (subtopology X (S — U)) d
singular_chain p (subtopology X T) e
(singular_subdivision p ~ " n) c =d + e
proof —
have x: In d e. singular_chain p (subtopology X (S — U)) d A
singular__chain p (subtopology X T) e A
(singular_subdivision p " n) ¢ =d + e
if ¢: singular_chain p (subtopology X S) ¢
and X: X closure_of U C X interior_of T U C topspace X and S: T C S
S C topspace X
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forp XcSand T U :: 'a set
proof —
obtain n where n: Am f. [n < m; f € Poly_Mapping.keys ((singular_subdivision
p ~m)c)]
= 3V € {S N Xinterior_of T, S — X closure_of U}.
€ (standard_simplex p) — V
apply (rule sufficient_iterated__singular__subdivision__exists
[of {S N X interior_of T, S — X closure_of U}])
using X S ¢
by (auto simp: topspace__subtopology openin__subtopology_ Int2 openin__subtopology diff closed)
let ¢’ = An. (singular__subdivision p ~ " n) ¢
have singular_chain p (subtopology X S) (?¢’ m) for m
by (induction m) (auto simp: singular__chain__singular__subdivision c)
then have scp: singular__chain p (subtopology X S) (%¢’ n) .

have SS: Poly Mapping.keys (?¢’ n) C singular_simplex__set p (subtopology X
(§=10))
U singular_simplex_set p (subtopology X T)

proof (clarsimp)

fix f
assume f: f € Poly Mapping.keys ((singular__subdivision p ~ " n) c)
and non: = singular_simplex p (subtopology X T) f
show singular_simplex p (subtopology X (S — U)) f
using n [OF order_refl f] scp f non closure_of subset [OF <U C topspace
X>] interior_of subset [of X T
by (fastforce simp: image__subset iff singular _simplex__subtopology singu-
lar_chain__def)
qed
show ?thesis
unfolding singular _chain__def using frag split [OF SS] by metis
qed
have (subtopology X (topspace X N S)) = (subtopology X S)
by (metis subtopology__subtopology subtopology topspace)
with assms have c: singular_chain p (subtopology X (topspace X N S)) ¢

by simp

have Xsub: X closure_of (topspace X N U) C X interior_of (topspace X N T)

using assms closure_of restrict interior__of restrict by fastforce

obtain n d e where

d: singular_chain p (subtopology X (topspace X N S — topspace X N U)) d
and e: singular__chain p (subtopology X (topspace X N T)) e
and de: (singular_subdivision p = " n) ¢ =d + e
using *[OF ¢ Xsub, simplified] assms by force
show thesis
proof
show singular_chain p (subtopology X (S — U)) d
by (metis d Diff Int_distrib inf.cobounded?2 singular__chain_mono)
show singular_chain p (subtopology X T) e
by (metis e inf.cobounded? singular__chain_mono)
show (singular_subdivision p """ n) ¢ =d + e
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by (rule de)
qed
qed

lemma excised_relcycle__exists:
fixes S :: 'a set
assumes X: X closure_of U C X interior_of Tand T C S
and c: singular_relcycle p (subtopology X S) T ¢
obtains ¢’ where singular_relcycle p (subtopology X (S — U)) (T — U) ¢’
homologous__rel p (subtopology X S) T ¢ ¢’
proof —
have [simp]: (S —U)N(T - U)=T-USNT=T
using <7 C S» by auto
have scc: singular__chain p (subtopology X S) ¢
and scpl: singular_chain (p — Suc 0) (subtopology X T) (chain_boundary p
¢)
using ¢ by (auto simp: singular_relcycle _def mod__subset__def subtopology__subtopology)
obtain n d e where d: singular__chain p (subtopology X (S — U)) d
and e: singular_chain p (subtopology X T) e
and de: (singular_subdivision p = n) c=d + e
using excised__chain__exists [OF X «<T C S» scc] .
have scSUd: singular_chain (p — Suc 0) (subtopology X (S — U)) (chain__boundary
p d)
by (simp add: singular__chain__boundary d)
have scen: singular_chain p (subtopology X S) ((singular__subdivision p ~ " n) c)
for n
by (induction n) (auto simp: singular_chain__singular_subdivision scc)
have singular_chain (p — Suc 0) (subtopology X T') (chain__boundary p ((singular__subdivision
p~n) o)
proof (induction n)
case (Suc n)
then show ?case
by (simp add: singular__chain__singular__subdivision chain__boundary__singular _subdivision
[OF scen))
qged (auto simp: scpl)
then have singular_chain (p — Suc 0) (subtopology X T) (chain_boundary p
((singular_subdivision p ~ " n) ¢ — e))
by (simp add: chain__boundary__diff singular__chain__diff singular_chain__boundary
e
)
with de have scTd: singular _chain (p — Suc 0) (subtopology X T) (chain__boundary
p d)
by simp
show thesis
proof
have singular_chain (p — Suc 0) X (chain_boundary p d)
using scTd singular__chain__subtopology by blast
with scSUd scTd have singular__chain (p — Suc 0) (subtopology X (T — U))
(chain__boundary p d)
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by (fastforce simp add: singular _chain__subtopology)
then show singular_relcycle p (subtopology X (S — U)) (T — U) d
by (auto simp: singular_relcycle _def mod__subset__def subtopology__subtopology
)
have homologous__rel p (subtopology X S) T (¢—0) ((singular_subdivision p =
n) c— e
proof (rule homologous_rel_ diff)
show homologous__rel p (subtopology X S) T ¢ ((singular_subdivision p ~ " n)
)
proof (induction n)
case (Suc n)
then show ?case
apply simp
by (metis ¢ homologous_rel _eq homologous _rel_singular _relcycle 1
homologous__rel_singular__subdivision)
qed auto
show homologous_rel p (subtopology X S) T 0 e
unfolding homologous rel def using e
by (intro singular_relboundary_ diff singular__chain__imp__relboundary; simp
add: subtopology__subtopology)
qed
with de show homologous_rel p (subtopology X S) T ¢ d
by simp
qed
qed

0.1.18 Homotopy invariance

theorem homotopic_imp__homologous rel_chain__maps:
assumes hom: homotopic_with (Ah. h€ T — V) S U f g and c: singular_relcycle
pSTec
shows homologous_rel p U V (chain_map p f ¢) (chain_map p g )
proof —
note sum.atMost_Suc [simp del]
have contf: continuous _map S U f and contg: continuous_map S U g
using homotopic_with__imp__continuous_maps [OF hom] by metis+
obtain h where conth: continuous_map (prod__topology (top_of _set {0..1::real})
S) Uh
and h0: Az. h(0, z) = fx
and hi: Az. h(1,z) =gz
and AV: ANtz [0 < t;t< 1;2€ T] = h(t,x) € V
using hom by (fastforce simp: homotopic_with__def)
define vv where vvo = A\j i. if { = Suc j then 1 else (0::real)
define ww where ww = \j i. if i=0 V i = Suc j then 1 else (0::real)
define simp where simp = Aq i. oriented simplex (Suc q) (Nj. if j < i then vv
jelse ww(j —1))
define pr where pr = \q c¢. > i<q. frag_cmul ((—1) ~ 1)
(frag_of (simplez_map (Suc q) (Az. h(z 0, ¢(z o
Suc))) (simp g 1))
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have ss_ss: simplicial _simplex (Suc q) ({z. z 0 € {0..1} A (z o Suc) € stan-
dard_simplex q}) (simp q ©)
ifi < gforqi
proof —
have (3 j<Suc q. (if j < i then vv j 0 else ww (j —1) 0) x x j) € {0..1}
if © € standard__simplex (Suc q) for z
proof —
have (> j<Suc q. if j < i then 0 else z j) < sum x {..Suc ¢}
using that unfolding standard__simplex,__def
by (force intro!: sum_mono)
with < < ¢ that show ?thesis
by (simp add: vv_def ww__def standard__simplex__def if _distrib [of Au. u *
_| sum_nonneg cong: if cong)
qged
moreover
have (\k. > j<Suc q. (if j < i then vv j k else ww (j —1) k) * z j) o Suc €
standard__simplex q
if © € standard__simplex (Suc q) for z
proof —
have card: ({..q} N {k. Suc k =j}) = {j—1} if 0 < jj < Suc q for j
using that by auto
have eq: (3 j<Suc q. > k<gq. if j < i then if k = j then x j else 0 else if Suc
k = j then z j else 0)
(S j<Suc . J)
by (rule sum.cong [OF refl]) (use <i < ¢ in <simp add: sum.If cases card))
have (> j<Suc q. if j < i then if k = j then z j else 0 else if Suc k = j then
z j else 0)
< sum x {..Suc q} for k
using that unfolding standard_simplex_def
by (force intro!: sum_mono)
then show ?thesis
using i < ¢» that
by (simp add: vv_def ww_def standard__simplex__def if _distrib [of Au. u *
__] sum_nonneg
sum.swap [where A = atMost q| eq cong: if cong)
qged
ultimately show ?thesis
by (simp add: that simplicial__simplex_oriented__simplex simp__def image__subset_iff
if _distribR)
qed
obtain prism where prism: Ngq. prism ¢ 0 = 0
Nq c. singular_chain q S ¢ = singular_chain (Suc q) U (prism q c)
Aq c. singular_chain q (subtopology S T) ¢
= singular__chain (Suc q) (subtopology U V) (prism q c)
Aq c. singular_chain q S ¢
= chain__boundary (Suc q) (prism q ¢) =
chain_map q g ¢ — chain_map q f ¢ — prism (¢ —1)
(chain__boundary q c)
proof
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show (frag_extend o pr) ¢ 0 = 0 for ¢
by (simp add: pr_def)
next
show singular_chain (Suc q) U ((frag_extend o pr) q c)
if singular_chain q S ¢ for g ¢
using that [unfolded singular_chain__def)
proof (induction ¢ rule: frag_induction)
case (one m)
show ?Zcase
proof (simp add: pr_def, intro singular_chain__cmul singular_chain_sum)
fix ¢ :: nat
assume i € {..q}
define X where X = subtopology (powertop_real UNIV) {z. x 0 € {0..1}
A (z o Suc) € standard_simplex q}
show singular_chain (Suc q) U
(frag_of (simplex_map (Suc q) (Az. h (z 0, m (z o Suc))) (simp q
i)))
unfolding singular_chain__ of
proof (rule singular_simplex__simplez__map)
show singular _simplex (Suc q) X (simp q 7)
unfolding X_def using «i € {..¢}> simplicial _imp__singular_simplex
ss_ss by blast
have 0: continuous_map X (top_of_set {0..1}) (Az. z 0)
unfolding continuous _map__in_subtopology topspace__subtopology X_ def
by (auto intro: continuous__map__product__projection continuous_map__ from__subtopology)
have 1: continuous _map X S (m o (Azx j. z (Suc j)))
proof (rule continuous_map__compose)
have continuous_map (powertop_real UNIV') (powertop_real UNIV')
(Az j. x (Suc j))
by (auto intro: continuous_map__product _projection)
then show continuous_map X (subtopology (powertop_real UNIV)
(standard_simplex q)) (Az j. = (Suc j))
unfolding X_def o def
by (auto simp: continuous map_in__subtopology intro: continu-
ous_map__from__subtopology continuous _map__product_projection)
ged (use one in <simp add: singular_simplex__def>)
show continuous_map X U (Az. h (2 0, m (z o Suc)))
apply (rule continuous_map__compose [unfolded o__def, OF __ conth])
using 0 1 by (simp add: continuous_map__pairwise o__def)
qed
qed
next
case (diff a b)
then show ?Zcase
by (simp add: frag_extend_ diff singular__chain__ diff)
qed auto
next
show singular__chain (Suc q) (subtopology U V) ((frag_extend o pr) q c)
if singular_chain q (subtopology S T) ¢ for q ¢
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using that [unfolded singular_chain__def)
proof (induction ¢ rule: frag_induction)
case (one m)
show ?Zcase
proof (simp add: pr_def, intro singular_chain__cmul singular_chain__sum)
fix 7 :: nat
assume | € {..q}
define X where X = subtopology (powertop_real UNIV) {z. z 0 € {0..1}
A (z o Suc) € standard__simplex ¢}
show singular_chain (Suc q) (subtopology U V)
(frag_of (simplex_map (Suc q) (A\z. h (z 0, m (z o Suc))) (simp q
i)))
unfolding singular_chain_ of
proof (rule singular_simplex__simplez__map)
show singular_simplex (Suc q) X (simp q 7)
unfolding X_def using «i € {..¢}> simplicial _imp_ singular_simplex
ss_ss by blast
have 0: continuous_map X (top_of _set {0..1}) (Az. z 0)
unfolding continuous _map_in_subtopology topspace__subtopology X_ def
by (auto intro: continuous_map__product _projection continuous _map__ from__subtopology)
have 1: continuous _map X (subtopology S T) (m o (Az j. x (Suc j)))
proof (rule continuous_map__compose)
have continuous_map (powertop_real UNIV') (powertop_real UNIV)
(Az j. z (Suc j))
by (auto intro: continuous_map__product _projection)
then show continuous_map X (subtopology (powertop_real UNIV)
(standard__simplez q)) (Az j. x (Suc 7))
unfolding X_ def o def
by (auto simp: continuous_map__in_subtopology intro: continu-
ous_map__from__subtopology continuous _map_ product_projection)
show continuous__map (subtopology (powertop__real UNIV') (standard__simplex
q)) (subtopology S T) m
using one continuous_map__into_fulltopology by (auto simp: singu-
lar_simplex_def)
qged
have continuous_map X (subtopology U V) (h o (Az. (z 0, m (z o Suc))))
proof (rule continuous_map__compose)
show continuous_map X (prod_topology (top_of set {0..1:real})
(subtopology S T)) (Az. (2 0, m (z o Suc)))
using 0 I by (simp add: continuous_map__pairwise o__def)
have continuous _map (subtopology (prod_topology euclideanreal S)
({0..1}y x T)) Uh
by (metis conth continuous_map__from__subtopology subtopology Times
subtopology__topspace)
with AV show continuous_map (prod_topology (top_of _set {0..1::real})
(subtopology S T)) (subtopology U V) h
by (force simp: topspace__subtopology continuous _map__in__subtopology
subtopology__restrict subtopology__ Times)
ged
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then show continuous_map X (subtopology U V) (Az. h (2 0, m (z o
Suc)))
by (simp add: o__def)
qed
qed
next
case (diff a b)
then show ?case
by (metis comp__apply frag _extend diff singular _chain__diff)
qed auto
next
show chain__boundary (Suc q) ((frag_extend o pr) q c) =
chain_map q g ¢ — chain_map q f ¢ — (frag_extend o pr) (¢ —1)
(chain__boundary q c)
if singular_chain q S ¢ for ¢ ¢
using that [unfolded singular_chain__def)
proof (induction c rule: frag_induction)
case (one m)
have eq2: Sigma S T = (Ai. (i,9)) ‘{i € S. i€ Ti} U (Sigma S (Xi. T i —
{¢})) for S :: nat set and T
by force
have 1: (3 (i,j)e(Xi. (i, 7)) “{i. i < ¢ A i < Suc q}.
frag_cmul (((=1) 7 i) * (=1) ~J)
(frag_of
(singular_face (Suc q) j
(simplex_map (Suc q) (Az. h (z 0, m (z o Suc))) (simp ¢ 7)))))
+ (2 Ge(ri (i, 1) “{i- i < q}.
frag_cmul (- (1) i % (~1) "))
(frag_of
(singular_face (Suc q) (Suc j)
(simplex_map (Suc q) (Az. h (2 0, m (z o Suc))) (simp q

i)))))
= frag_of (simplex_map q g m) — frag_of (simplex_map q f m)
proof —
have restrict (Az. h (z 0, m (z o Suc))) o (simp q 0 o simplical_face 0))
(standard__simplez q)
= restrict (g o m) (standard__simplez q)
proof (rule restrict_ext)
fix z
assume z: r € standard__simplex q
have (> j<Suc q. if j = 0 then 0 else z (j — Suc 0)) = (3 j<q. z j)
by (simp add: sum.atMost_Suc__shift)
with z have simp q 0 (simplical_face 0 ) 0 = 1
apply (simp add: oriented__simplex_def simp__def simplical _face__in__standard__simplex)
apply (simp add: simplical _face defif _distrib ww_def standard__simplex__def
cong: if _cong)
done
moreover
have (An. if n < q then z n else 0) = x
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using standard__simplex__def © by auto
then have (An. simp q 0 (simplical_face 0 z) (Suc n)) = z
unfolding oriented_simplex__def simp_ def ww__def using z
apply (simp add: simplical _face in_standard_simplex)
apply (simp add: simplical _face def if _distrib)
apply (simp add: if _distribR if _distrib cong: if _cong)
done
ultimately show ((Az. h (z 0, m (z o Suc))) o (simp q 0 o simplical_face
0) z=(g0m)a
by (simp add: o_def h1)
qed
then have a: frag_of (singular_face (Suc q) 0 (simplex_map (Suc q) (Az.
h (20, m (20 Suc))) (simp ¢ 0)))
= frag_of (simplex_map q g m)
by (simp add: singular_face _simplex_map) (simp add: simplex _map__def)
have restrict ((Az. h (z 0, m (z o Suc))) o (simp q q o simplical_face (Suc
q))) (standard__simplez q)
= restrict (f o m) (standard__simplex q)
proof (rule restrict_ext)
fix z
assume z: x € standard__simplex q
then have simp q q (simplical_face (Suc q) ) 0 = 0
unfolding oriented_simplex_ def simp__def
by (simp add: simplical_face_in__standard_simplex sum.atMost_Suc)
(simp add: simplical _face_def vv_def)
moreover have (An. simp q q (simplical_face (Suc q) z) (Suc n)) = =
unfolding oriented_simplex_def simp__def vv_def using z
apply (simp add: simplical_face_in_standard_simplex)
apply (force simp: standard__simplex__def simplical_face def if _distribR
if _distrib [of Az. x x _| sum.atMost_Suc cong: if _cong)
done
ultimately show ((Az. h (2 0, m (z o Suc))) o (simp q q o simplical_face
(Suc ) = (f o m) =
by (simp add: o_def h0)
qed
then have b: frag of (singular_face (Suc ¢q) (Suc q)
(simplex_map (Suc q) (Az. h (2 0, m (z o Suc))) (simp q q)))
= frag_of (simplex_map q f m)
by (simp add: singular__face__simplex_map) (simp add: simplex_map__def)
have sfeq: simplex_map q (Az. b (2 0, m (z o Suc))) (simp q (Suc @) o
simplical_face (Suc 1))
= simplex_map q (Az. h (2 0, m (z o Suc))) (simp q i o simplical_face
(Suc 1))
if i < g for i
unfolding simplex_map def
proof (rule restrict_ext)
fix z
assume z € standard__simplex q
then have (simp g (Suc i) o simplical_face (Suc i) © = (simp q i o
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simplical_face (Suc 7)) x
unfolding oriented_simplex_def simp__def simplical face__def
by (force intro: sum.cong)
then show ((Az. h (2 0, m (z o Suc))) o (simp g (Suc i) o simplical_face
(Suc 7)) z
= ((Az. h (20, m (z o Suc))) o (simp q i o simplical_face (Suc i))) x
by simp
qed
have eqq: {i. i < ¢ AN i < Suc ¢} ={..q}
by force
have qeq: {..q} = insert 0 ((\i. Suc i) “{i. i < q}) {i. i < ¢} = insert q
{i. i < ¢}
using le_imp_less Suc less_Suc_eq 0 _disj by auto
show ?thesis
using a b
apply (simp add: sum.reindex inj_on__def eqq)
apply (simp add: qeq sum.insert_if sum.reindex sum_ negf singular_face simplex,__map
sfeq)
done
qed
have 2: (3 (i,7)e(SIGMA i:{..q}. {0..min (Suc q) i} — {i}).
frag_emul ((—1) "ix* (=1) ")
(frag_of
(singular_face (Suc q) j
(simplez_map (Suc q) (Az. h (z 0, m (z o Suc))) (simp ¢ 1)))))
+ O°(4,5)e(SIGMA i:{..q}. {i..q} — {3}).
frag_emul (— (—1) ~i % (1) =)
(frag_of
(singular_face (Suc q) (Suc j)
(simplex_map (Suc q) (Az. h (z 0, m (z o Suc))) (simp ¢ 7)))))
= — frag_exatend (pr (¢ — Suc 0)) (chain__boundary q (frag_of m))
proof (cases ¢=0)
case True
then show ?thesis
by (simp add: chain__boundary_ def flip: sum.Sigma)
next
case Fulse
have eq: {..q — Suc 0} x {..q} = Sigma {..q — Suc 0} (Ni. {0..min q i})
U Sigma {..q} (Ai. {i<..q})
by force
have I: (3 (i,j)e(SIGMA i{..q}. {0..min (Suc q) i} — {i}).
frag. cmul ((—1) (i + )
(frag._of
(singular__face (Suc q) j
(simplex_map (Suc q) (Az. h (z 0, m (z o Suc))) (simp ¢ 1)))))
= (O_(i,j)e(SIGMA i:{..q — Suc 0}. {0..min q i}).
frag_cmal (— ((~1) ~(j + 1))
(frag_of
(simplex_map q (A\z. h (z 0, singular_face ¢ j m (z o Suc)))
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(simp (¢ — Suc 0) 7))))
proof —
have seq: simplex_map q (A\z. h (2 0, singular_face q j m (z o Suc)))
(simp (¢ — Suc 0) (i — Suc 0))
= simplex_map q (Az. h (2 0, m (z o Suc))) (simp q i o simplical_face

7)
ifijii<qj#ij<iforij
unfolding simplex__map__ def
proof (rule restrict__ext)
fix z
assume x: x € standard__simplex q
have i > 0
using that by force
then have iq: i — Suc 0 < q¢ — Suc 0
using i < ¢» Fualse by simp
have q0_eq: {..Suc q} = insert 0 (Suc ‘{..q})
by (auto simp: image__def gr0_conv_Suc)
have a: simp (¢ — Suc 0) (i — Suc 0) x 0 = simp q i (simplical _face j
z) 0
using Fulse x ij
unfolding oriented__simplex_def simp__def vv_def ww__def
apply (simp add: simplical _face in__standard__simplex)
apply (force simp: simplical _face def q0_eq sum.reindex intro!:
sum.cong)

done
have : simplical_face j (simp (¢ — Suc 0) (¢ — Suc 0) z o Suc) = simp
q i (simplical_face j x) o Suc
proof
fix k
show simplical_face j (simp (¢ — Suc 0) (i — Suc 0) z o Suc) k
= (simp q i (simplical_face j x) o Suc) k
using Fualse © ij
unfolding oriented_ simplex_def simp_def o__def vv__def ww__def
apply (simp add: simplical_face in_standard__simplex if _distribR)
apply (simp add: simplical_face def if distrib [of Au. u x _] cong:

if _cong)
apply (intro impl congl)
apply (force simp: sum.atMost_Suc intro: sum.cong)
apply (force simp: q0__eq sum.reindex introl: sum.cong)
done
qed

have simp (¢ — Suc 0) (i — Suc 0) z o Suc € standard_simplex (q —
Suc 0)
using ss_ss [OF iq] <i < ¢ False <i > 0
by (simp add: image__subset__iff simplicial_simplex x)
then show ((Az. h (z 0, singular_face ¢ j m (z o Suc))) o simp (¢ —
Suc 0) (i — Suc 0)) z
= ((Az. h (20, m (z o Suc))) o (simp q i o simplical_face j)) x
by (simp add: singular_face_def o f3)
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qed
have [simp]: (—1:int) ~ (i + 7 — Suc 0) = — ((=1) ~ (i +j)) if i #j
for i j::nat
proof —
have ¢ +j > 0
using that by blast
then show ?thesis
by (metis (no_types, opaque_lifting) One_nat_def Suc_diff 1
add.inverse__inverse mult.left _neutral mult_minus_left power Suc)
qed
show ?thesis
apply (rule sum.eq_general_inverses [where h = A(a,b). (a—1,b) and
k = Xa,b). (Suc a,b)])
using False apply (auto simp: singular_face _simplex__map seq add.commute)
done
qed
have x: singular_face (Suc q) (Suc j) (simplex_map (Suc q) (A\z. h (2 0, m
(z o Suc))) (simp q 7))
= simplex_map q (A\z. h (2 0, singular_face ¢ j m (z o Suc))) (simp
(¢ — Suc 0) 7)
ifij:i<jj<qforij
proof —
have iq: i < g — Suc 0
using that by auto
have sf eqgh: singular_face (Suc q) (Suc j)
(Az. if ¢ € standard_simplex (Suc q)
then (Az. h (z 0, m (z o Suc))) o simp q i) z else
undefined)
= h (simp (¢ — Suc 0) iz 0,
singular_face q j m (Aza. simp (¢ — Suc 0) i x (Suc za)))
if z: x € standard__simplex q for z
proof —
let 2f = Ak. > j<q. if j < i then if k = j then z j else 0
else if Suc k = j then x j else 0
have fm: simplical _face (Suc j) x € standard_simplex (Suc q)
using ss_ss [OF iq] that
by (simp add: simplical_face in_standard__simplex)
have ss: ?f € standard_simplex (¢ — Suc 0)
unfolding standard__simplex__def
proof (intro Collect] congl impl alll)
fix k
show 0 < ?f k
using that by (simp add: sum_nonneg standard_simplez__def)
show ?fk < 1
using = sum__le_included [of {..q} {..q} = id]
by (simp add: standard__simplez__def)
assume k: ¢ — Suc 0 < k
show ?fk =0
by (rule sum.neutral) (use that x iq k standard_simplex__def in auto)
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next
have (> k<q — Suc 0. ?f k)
= (5 (k) € ({g — Suc 0} x {-q}) O {(ky). 4 < i then ks = ]
else Suc k = j}. z j)
apply (simp add: sum.Sigma)
by (rule sum.mono_neutral_cong) (auto simp: split: if _split_asm)
also have ... = sum z {..q}
apply (rule sum.eq general_inverses
[where h = A\(k,j). if j<i A k=j V j>i A Suc k = j then j else Suc

and k = Aj. if j < i then (j,j) else (j — Suc 0, j)])
using 7j by auto
also have ... = 1
using z by (simp add: standard__simplex_def)
finally show (> k<q — Suc 0. 2/ k) = 1
by (simp add: standard_simplex_def)
qged
let 29 = M\k. if k < i then 0
else if k < Suc j then x k
else if k = Suc j then 0 else x (k — Suc 0)
have eq: {..Suc ¢} = {..j} U {Suc j} U Suc{j<..¢} {..q} = {4} U
{i<..a}
using ij image_iff less_Suc_eq 0 disj less_Suc_eq le
by (force simp: image_iff )+
then have ()" k<Suc q. 29 k) = (O] ke{..j} U {Suc j} U Suc{j<..q}.
2g k)
by simp
also have ... = (3 ke{..j} U Suc{j<..q}. %9 k)
by (rule sum.mono__neutral_right) auto
also have ... = (Y ke{..j}. 29 k) + O keSuc{j<..q}. 29 k)
by (rule sum.union__disjoint) auto
also have ... = (3 ke{..j}. 29 k) + O ke{i<..q}. %9 (Suc k))
by (auto simp: sum.reindex)
also have ... = (3" ke{..j}. if k < i then 0 else z k)
+ Q- ke{j<..q}. if k < ithen 0 else x k)
by (intro sum.cong arg_cong2 [of concl: (+)]) (use i in auto)
also have ... = (3 k<gq. if k < i then 0 else z k)
unfolding eq by (subst sum.union__disjoint) auto
finally have (> k<Suc q. ?2g k) = (3 k<q. if k < i then 0 else z k) .
then have QQ: (> I<Suc q. if Il < i then 0 else simplical face (Suc j)
zl) = (O.j<q. if j < ithen 0 else z j)
by (simp add: simplical_face def cong: if _cong)
have WW: (Ak. > I<Suc q. if | < i
then if k = [ then simplical _face (Suc j) x 1 else 0
else if Suc k = | then simplical _face (Suc j) x 1
else 0)
= simplical_face j
(ANk. >"j<q.ifj < ithen if k = j then z j else 0
else if Suc k = j then x j else 0)
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proof —

have *: (> 1<q. if | < i then 0 else if Suc k = | then = (I — Suc 0)
else 0)

= (O I<q. if I < ithen if k — Suc 0 = [ then x [ else 0 else if k =
[ then x 1 else 0)
(is 2lhs = ?rhs)
ifk#qk>jfork
proof (cases k < q)
case True
have ?lhs = sum (Al. z (I — Suc 0)) {Suc k} ?rhs = sum z {k}

by (rule sum.mono_neutral_cong_right; use True ¢ that in auto)+
then show %thesis

by simp
next
case Fulse
have ?lhs = 0 ?rhs = 0
by (rule sum.neutral; use False 4 in auto)+
then show ?thesis
by simp
qed
have z¢: © ¢ = (3. j<q. if j < i then if ¢ — Suc 0 = j then x j else 0
else if ¢ = j then z j else 0) if q#j
using ij that
by (force simp flip: wl_disj_un(2) intro: sum.neutral)
show ?thesis
using ¢j unfolding simplical face_def
by (intro ext) (auto simp: * sum.atMost_Suc xq cong: if _cong)
qged
show ?thesis
using False that iq
unfolding oriented__simplex_def simp__def vv__def ww__def
apply (simp add: if _distribR simplical _face def if _distrib [of Au. u *
_] o_def cong: if _cong)
apply (simp add: singular_face_def fm ss QQ WW)
done
qed
show ?thesis
unfolding simplex__map _def restrict_def
apply (simp add: simplicial__simplex image__subset iff o__def sf eqh
fun_eq_iff)
apply (simp add: singular_face_def)
done
qed
have sgeq: (SIGMA i:{..q}. {i..q} — {i}) = (SIGMA i:{..q}. {i<..q})
by force
have II: (3 (¢,7)e(SIGMA i:{..q}. {i..q} — {i}).
Jrag_emal (— (1) ~ (i + 7))
(frag_of
(singular__face (Suc q) (Suc j)
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(simplex_map (Suc q) (Az. h (2 0, m (z o Suc))) (simp q
i))))) =
- (4,)e(SIGMA i{..q}. {i<..q}).
frag_cmul (= ((=1) ~(j + 7))
(frag_of
(simplex_map q (A\z. h (z 0, singular_face ¢ j m (z o Suc)))
(simp (q — Suc 0) i))))
by (force simp: * sgeq add.commute intro: sum.cong)
show ?thesis
using Fualse
apply (simp add: chain_boundary_def frag _extend sum frag _extend cmul
frag_cmul_sum pr_def flip: sum__negf power _add)
apply (subst sum.swap [where A = {..q}])
apply (simp add: sum.cartesian_product eq sum.union__disjoint dis-
joint__iff not_equal I IT)
done
ged
have x: Ja+b = w; c+d = —2] = (a + ¢) + (b+d) = w—zfor a bwc d z
/e = int
by (auto simp: algebra__simps)
have eq: {..q} x {..Suc ¢} =
Sigma {..q} (\i. {0..min (Suc q) i})
U Sigma {..q} (Mi. {Suc i..Suc q})
by force
show ?Zcase
apply (subst pr__def)
apply (simp add: chain__boundary_sum chain__boundary__cmul)
apply (subst chain__boundary_def)
apply simp
apply (simp add: frag__cmul _sum sum.cartesian__product eq sum.union__disjoint
disjoint__iff not_equal
sum.atLeast _Suc__atMost__Suc__shift del: sum.cl_ivl_Suc min.absorb2
min.absorb/
flip: comm__monoid__add_class.sum.Sigma)
apply (simp add: sum.Sigma eq2 [of _ Ai. {__i..__ i}]
del: min.absorb2 min.absorb4)
apply (simp add: sum.union__disjoint disjoint_iff not_equal x [OF 1 2])
done
next
case (diff a b)
then show ?case
by (simp add: chain__boundary_diff frag extend diff chain_map__ diff)
qed auto

qed
have x: singular_chain p (subtopology U V') (prism (p — Suc 0) (chain__boundary
pc))
if singular_chain p S ¢ singular_chain (p — Suc 0) (subtopology S T') (chain__boundary
pc)

proof (cases p)
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case 0 then show ?thesis by (simp add: chain_boundary__def prism)
next
case (Suc p’)
with prism that show ?thesis by auto
qed
then show ?thesis
using ¢
unfolding singular_relcycle_def homologous rel def singular_relboundary__def
mod__subset__def
apply (rule_tac x=— prism p c in exl)
by (simp add: chain__boundary_minus prism(2) prism(4) singular_chain_minus)
qed

end

0.2 Homology, I1I: Homology Groups

theory Homology Groups
imports Simplices HOL— Algebra. Exact__Sequence

begin

0.2.1 Homology Groups

Now actually connect to group theory and set up homology groups. Note
that we define homomogy groups for all integers p, since this seems to avoid
some special-case reasoning, though they are trivial for p < 0.

definition chain_ group :: nat = 'a topology = 'a chain monoid
where chain__group p X = free_ Abelian__group (singular_simplex_set p X)

lemma carrier__chain__group [simpl: carrier(chain__group p X) = singular__chain__set
p X
by (auto simp: chain__group_ def singular _chain__def free_ Abelian__group__def)

lemma one__chain__group [simp]: one(chain_group p X) = 0
by (auto simp: chain__group_ def free_ Abelian__group_ def)

lemma mult_chain__group [simp|: monoid.mult(chain_group p X) = (+)
by (auto simp: chain__group_def free_ Abelian__group__def)

lemma m__inv__chain__group [simp|: Poly_Mapping.keys a C singular_simplex__set

p X = MV chain group p X @ =
unfolding chain__group def by simp

—a

lemma group chain__group [simp|: Group.group (chain__group p X)
by (simp add: chain__group_ def)

lemma abelian__chain__group: comm__group(chain__group p X)



Homology Groups.thy 81

by (simp add: free_Abelian__group__def group.group__comm__groupl [OF group__chain__group])

lemma subgroup singular _relcycle:
subgroup (singular_relcycle_set p X S) (chain__group p X)
proof
show & ® chain group p X ¥ € singular_relcycle_set p X §
if z € singular_relcycle_set p X S and y € singular_relcycle_set p X S for x
Y
using that by (simp add: singular_relcycle _add)
next
show v pain group p X © € singular_releycle_set p X S
if © € singular_relcycle_set p X S for x
using that
by clarsimp (metis m__inv_chain__group singular _chain__def singular__relcycle
singular_relcycle_minus)
qged (auto simp: singular_relcycle)

definition relcycle group :: nat = 'a topology = 'a set = ('a chain) monoid
where relcycle_group p X S =
subgroup__generated (chain__group p X) (Collect(singular_relcycle p X S))

lemma carrier_relcycle_group [simp]:
carrier (relcycle _group p X S) = singular_relcycle_set p X S
proof —
have carrier (chain__group p X) N singular_relcycle_set p X S = singular_relcycle__set
pXS
using subgroup.subset subgroup _singular_relcycle by blast
moreover have generate (chain__group p X) (singular_relcycle _set p X S) C
singular_relcycle _set p X S
by (simp add: group.generate__subgroup__incl group _chain__group subgroup _singular_relcycle)
ultimately show ?Zthesis
by (auto simp: relcycle_group__def subgroup__generated__def generate.incl)
qed

lemma one_relcycle _group [simp]: one(relcycle_group p X S) = 0
by (simp add: relcycle_group__def)

lemma mult_relcycle__group [simp]: (®relcycleigr0up » X g) = (+)
by (simp add: relcycle__group__def)

lemma abelian_ relcycle group [simp]:

comm.__group(relcycle__group p X S)

unfolding relcycle group def

by (intro group.abelian__subgroup__generated group_ chain__group) (auto simp:
abelian__chain__group singular__relcycle)

lemma group relcycle_group [simp]: group(relcycle__group p X S)
by (simp add: comm,__group.azioms(2))
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lemma relcycle__group__restrict [simp]:
relcycle__group p X (topspace X N S) = releycle_group p X S
by (metis relcycle__group__def singular_relcycle restrict)

definition relative__homology_group :: int = 'a topology = 'a set = ('a chain)
set monoid
where
relative__homology_group p X S =
if p < 0 then singleton__group undefined else
(releycle__group (nat p) X S) Mod (singular_relboundary__set (nat p) X S)

abbreviation homology group
where homology group p X = relative_homology__group p X {}

lemma relative__homology__group__restrict [simp]:
relative__homology__group p X (topspace X N S) = relative__homology group p
XS
by (simp add: relative _homology_group _def)

lemma nontrivial _relative__homology _group:
fixes p::nat
shows relative__homology__group p X S
= relcycle__group p X § Mod singular_relboundary_set p X S
by (simp add: relative _homology__group__def)

lemma singular_relboundary_ss:
singular_relboundary p X S © = Poly_Mapping.keys x C singular_simplex_set
p X
using singular__chain__def singular_relboundary_imp__chain by blast

lemma trivial_relative__homology__group [simp):
p < 0 = trivial__group(relative__homology_group p X S)
by (simp add: relative _homology__group _def)

lemma subgroup _singular _relboundary:
subgroup (singular_relboundary_set p X S) (chain__group p X)
unfolding chain_ group_ def
proof unfold_locales
show singular_relboundary set p X S
C carrier (free_Abelian__group (singular_simplexz_set p X))
using singular__chain__def singular_relboundary_imp__chain by fastforce
next
fix z
assume z € singular_relboundary_set p X S
then show invfree_Abelian_group (singular_simplex_set p X) ¥
€ singular_relboundary_set p X S
by (simp add: singular_relboundary__ss singular_relboundary_minus)
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qged (auto simp: free_ Abelian__group def singular_relboundary__add)

lemma subgroup singular__relboundary_relcycle:

subgroup (singular_relboundary_set p X S) (relcycle_group p X S)

unfolding relcycle group def

by (simp add: Collect_mono group.subgroup__of _subgroup__generated singular_relboundary_imp__relcycle
subgroup__singular_relboundary)

lemma normal__subgroup _singular_relboundary_relcycle:
(singular_relboundary_set p X S) < (relcycle_group p X S)
by (simp add: comm__group.normal__iff _subgroup subgroup__singular_relboundary_ relcycle)

lemma group_ relative _homology__group [simp]:
group (relative__homology group p X S)
by (simp add: relative_homology__group _def normal.factorgroup_is_group
normal__subgroup__singular_relboundary_ relcycle)

lemma right_coset__singular__relboundary:
r_coset (releycle__group p X S) (singular_relboundary _set p X S)
= (Aa. {b. homologous_rel p X S a b})
using singular_relboundary_minus
by (force simp: r__coset__def homologous__rel__def relcycle__group__def subgroup__generated__def)

lemma carrier_relative__homology__group:
carrier(relative__homology__group (int p) X S)
= (homologous_rel_set p X S) ‘ singular_relcycle_set p X S
by (auto simp: set__eq_iff image__iff relative_homology__group__def FactGroup__def
RCOSETS_def right_coset__singular_relboundary)

lemma carrier_relative _homology group 0:
carrier(relative_homology__group 0 X S)

= (homologous_rel_set 0 X S) ¢ singular_relcycle_set 0 X S
using carrier_relative_homology__group [of 0 X S] by simp

lemma one_relative__homology__group [simp]:
one(relative__homology _group (int p) X S) = singular_relboundary_set p X S
by (simp add: relative_homology__group__def FactGroup _def)

lemma mult_relative__homology__group:

(®relativefhomologyfgmup (int p) X S) = (AR S. (UreR. UseS. {r + s}))

unfolding relcycle group def subgroup__generated_ def chain__group__def free Abelian__group__def
set_mult__def relative__homology_group__def FactGroup def

by force

lemma inv_relative__homology__group:
assumes R € carrier (relative_homology group (int p) X S)
shows m__inv(relative _homology group (int p) X S) R = uminus ‘ R

proof (rule group.inv_equality [OF group__relative _homology group _ assms])
obtain ¢ where ¢: R = homologous_rel_set p X S ¢ singular_relcycle p X S ¢
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using assms by (auto simp: carrier_relative__homology__group)
have singular_relboundary p X S (b — a)

ifaec Rand b€ Rfor ad

using c that

by clarify (metis homologous__rel__def homologous_rel eq)
moreover
have z € (JzeR. JyeR. {y — z})

if singular_relboundary p X S z for z

using c

by simp (metis diff _eq eq homologous_rel def homologous_rel refl homolo-

gous__rel_sym that)

ultimately
have (|Jz€R. |Jza€R. {za — z}) = singular_relboundary_set p X S
by auto
then show uminus * R ®relative_homology_group (intp) X S R =
1

relative__homology__group (int p) X S
by (auto simp: carrier_relative__homology _group mult__relative__homology _group)
have singular_relcycle p X S (—c¢)
using ¢ by (simp add: singular_relcycle _minus)
moreover have homologous_rel p X S ¢ x = homologous_rel p X S (—¢) (—
z) for z
by (metis homologous__rel__def homologous _rel__sym minus__diff _eq minus__diff _minus)
moreover have homologous_rel p X S (—¢) v = = € uminus ‘ homolo-
gous_rel_set p X S ¢ for z
by (clarsimp simp: image_iff) (metis add.inverse_inverse diff 0 homolo-
gous__rel__diff homologous_rel_refl)
ultimately show uminus ‘ R € carrier (relative _homology__group (int p) X )
using ¢ by (auto simp: carrier_relative__homology _group)
qed

lemma homologous_rel _eq relboundary:
homologous_rel p X S ¢ = singular_relboundary p X S
«— singular_relboundary p X S ¢ (is ?lhs = ?rhs)
proof
assume ?lhs
then show %rhs
unfolding homologous rel def
by (metis diff _zero singular_relboundary_0)
next
assume R: ?rhs
show ?lhs
unfolding homologous rel def
using singular__relboundary_diff R by fastforce
qed

lemma homologous_rel _set__eq relboundary:
homologous_rel_set p X S ¢ = singular_relboundary_set p X S +— singu-
lar_relboundary p X S ¢
by (auto simp flip: homologous_rel _eq relboundary)
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Lift the boundary and induced maps to homology groups. We totalize both
quite aggressively to the appropriate group identity in all "undefined" situ-
ations, which makes several of the properties cleaner and simpler.

lemma homomorphism__chain__boundary:
chain__boundary p € hom (relcycle_group p X S) (releycle_group(p — Suc 0)
(subtopology X S) {})
(is ?h € hom ?G ?H)
proof (rule homlI)
show Az. z € carrier G = ?h x € carrier ?H
by (auto simp: singular_relcycle__def mod__subset__def chain__boundary__boundary)
qed (simp add: relcycle__group__def subgroup _generated__def chain__boundary__add)

lemma hom__ boundaryl:
3d.Vp X 8.
dp X S € hom (relative_homology group (int p) X S)
(homology__group (int (p — Suc 0)) (subtopology X S))
A (Vc. singular_relcycle p X S ¢
— d p X S (homologous_rel_set p X S ¢)
= homologous_rel_set (p — Suc 0) (subtopology X S) {} (chain_boundary
pc))
(is3d.¥p XS. 20 (dp X S) p X S)
proof ((subst choice_iff [symmetric])+, clarify)
fix p X and S :: ‘a set
define ¢ where ¥ = r_coset (relcycle_group(p — Suc 0) (subtopology X S) {})
(singular_relboundary_set (p — Suc 0) (subtopology X S) {}) o
chain__boundary p
define H where H = relative_homology__group (int (p — Suc 0)) (subtopology
X 9) {}
define J where J = relcycle _group (p — Suc 0) (subtopology X S) {}

have ¥: 9 € hom (relcycle_group p X S) H
unfolding v def
proof (rule hom__compose)
show chain__boundary p € hom (relcycle_group p X S) J
by (simp add: J_def homomorphism__chain__boundary)

show (#>relcycleigmup (p — Suc 0) (subtopology X S) {})
(singular_relboundary_set (p — Suc 0) (subtopology X S) {}) € hom J H
by (simp add: H_def J _def nontrivial _relative__homology__group
normal.r_coset_hom__Mod normal__subgroup__singular_relboundary__relcycle)
qed
have *: singular_relboundary (p — Suc 0) (subtopology X S) {} (chain__boundary
pc)
if singular_relboundary p X S ¢ for ¢
proof (cases p=0)
case True
then show ?thesis
by (metis chain__boundary_def singular_relboundary_0)
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next
case Fulse
with that have 3 d. singular_chain p (subtopology X S) d A chain__boundary
p d = chain__boundary p ¢
by (metis add.left_neutral chain_boundary__add chain__boundary_boundary__alt
singular_relboundary)
with that False show ?thesis
by (auto simp: singular_boundary)
qed
have ¢_eq: 9z =10 y
if z: x € singular_relcycle_set p X S and y: y € singular_relcycle_set p X S
and eq: singular_relboundary_set p X S #>peicycle group p X S @
= singular_relboundary_set p X S #>relcycle_group P XSY for z y
proof —
have singular_relboundary p X S (z—y)
by (metis eq homologous__rel__def homologous__rel_eq mem__Collect__eq right__coset__singular_relboun
with x have (singular_relboundary (p — Suc 0) (subtopology X S) {}) (chain__boundary
p (z—y))
by blast
then show ?thesis
unfolding ¥ def comp__def
by (metis chain__boundary__diff homologous _rel_def homologous_rel _eq right__coset__singular_relbour
qed
obtain d
where d € hom ((relcycle _group p X S) Mod (singular_relboundary_set p X
S)) H
and d: Au. u € singular_relcycle_set p X S = d (homologous_rel_set p X
Su)=19 u
by (metis FactGroup__universal [OF 9 normal_subgroup__singular_relboundary__relcycle
9 _eq| right_coset_singular_relboundary carrier_relcycle__group)
then have d € hom (relative _homology_group p X S) H
by (simp add: nontrivial _relative__homology__group)
then show dJd. 20 dp X S
by (force simp: H_def right _coset_singular_relboundary d ¥__def)
qed

lemma hom_ boundary2:
3d. (Vp X S.
(d p X S) € hom (relative__homology__group p X S)
(homology__group (p—1) (subtopology X S)))
A (Vp X S c. singular_releycle p X S ¢ A Suc 0 < p
— d p X S (homologous_rel_set p X S ¢)
= homologous_rel_set (p — Suc 0) (subtopology X S) {} (chain__boundary
pc))
(is 3d. 2@ d)
proof —
have *: 3f. ®(Ap. if p < 0 then A\q r t. undefined else f(nat p)) = 3f. @ f for
d
by blast
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show ?thesis
apply (rule x [OF ex_forward [OF hom__boundaryl]])
apply (simp add: not_le relative__homology__group_ def nat__diff _distrib’ int__eq iff
nat__diff _distrib flip: nat_1)
by (simp add: hom__def singleton__group__def)
qed

lemma hom__boundary3:
3d. (Vp X S c. ¢ ¢ carrier(relative_homology _group p X S)
— dp X S ¢ = one(homology__group (p—1) (subtopology X S))) A
(Vp X S.
dp X S € hom (relative_homology__group p X S)
(homology__group (p—1) (subtopology X S))) A
(Vp X S e
singular_relcycle p X Sc N1 <p
— d p X S (homologous_rel_set p X S ¢)
= homologous_rel_set (p — Suc 0) (subtopology X S) {} (chain__boundary
pe))A
VpXS.dpXS=dpX (topspace X N S))) A
(Vp X Sec dpXScée carrier(homology _group (p—1) (subtopology X S)))
AN
(Vp.p <0 — dp=(\grt. undefined))
(isJz. Pax A ?2Q z N R z)
proof —
have \z. ?Qz = 7Rz
by (erule all_forward) (force simp: relative__homology _group_def)
moreover have 3z. Pz A 7Q x
proof —
obtain d:: [int, ‘a topology, 'a set, ('a chain) set] = ('a chain) set
where 1: Ap X S. dp X S € hom (relative_homology__group p X S)
(homology__group (p—1) (subtopology X S))
and 2: An X S c. singular_relcycle n X S ¢ A Suc 0 < n
= dn X S (homologous_rel_set n X S ¢)
= homologous_rel_set (n — Suc 0) (subtopology X S) {}
(chain__boundary n c)
using hom__boundary2 by blast
have 4: ¢ € carrier (relative_homology_group p X §) =
d p X (topspace X N S) ¢ € carrier (relative_homology group (p—1)
(subtopology X S) {})
for p X Sc
using hom__carrier [OF 1 [of p X topspace X N S]]
by (simp add: image__subset__iff subtopology restrict)
show ?thesis
apply (rule_tac z=Xp X S c.
if ¢ € carrier(relative_homology__group p X S)
then d p X (topspace X N S) ¢
else one(homology__group (p—1) (subtopology X S)) in exl)
apply (simp add: Int_left_absorb subtopology_restrict carrier__relative__homology__group
group.is_monoid group.restrict_hom__iff 4 cong: if _cong)
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by (metis 1 2 homologous rel restrict relative _homology_group restrict
singular_releycle__def subtopology_ restrict)
qed
ultimately show ¢thesis
by auto
qed

consts hom__boundary :: [int,’a topology,’a set,’a chain set]| = 'a chain set
specification (hom__boundary)
hom__boundary:
(Vp X S c. ¢ & carrier(relative_homology__group p X S)
— hom__boundary p X S ¢ = one(homology__group (p—1) (subtopology
X (S:'a set)))) A
(Vp X S.
hom__boundary p X S € hom (relative_homology_group p X S)
(homology__group (p—1) (subtopology X (S::'a set)))) A
(Vp X Sec.
singular_relcycle p X Sc N1 <p
— hom__boundary p X S (homologous_rel_set p X S ¢)
= homologous_rel_set (p — Suc 0) (subtopology X (S::'a set)) {}
(chain_boundary p c)) A
(Vp X S. hom_boundary p X S = hom__boundary p X (topspace X N (S::'a
set)))) A
(Vp X S ¢. hom_boundary p X S ¢ € carrier(homology_group (p—1)
(subtopology X (S::'a set)))) A
(Vp. p < 0 — hom_boundary p = (Aq r. At::’a chain set. undefined))
by (fact hom__boundary3)

lemma hom__boundary default:

¢ & carrier(relative_homology__group p X S)

= hom__boundary p X S ¢ = one(homology__group (p—1) (subtopology X S))

and hom__boundary__hom: hom__boundary p X S € hom (relative__homology__ group
p X S) (homology group (p—1) (subtopology X §))

and hom__boundary_restrict [simp]: hom__boundary p X (topspace X N S) =
hom__boundary p X S

and hom__boundary__carrier: hom__boundary p X S ¢ € carrier(homology__group
(p—1) (subtopology X S))

and hom__boundary_trivial: p < 0 = hom__boundary p = (Aq r t. undefined)

by (metis hom__boundary)+

lemma hom_ boundary_chain__boundary:
[singular_relcycle p X S ¢; 1 < p]
= hom__boundary (int p) X S (homologous_rel_set p X S ¢) =
homologous_rel_set (p — Suc 0) (subtopology X S) {} (chain_boundary p
c
)

by (metis hom__boundary)+

lemma hom.__chain__map:
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[continuous_map X Y f; f € S — T]
= (chain_map p f) € hom (relcycle__group p X S) (relcycle_group p Y T)
by (simp add: chain_map_add hom__def singular_relcycle__chain_map)

lemma hom_inducedl:
Jdhom__relmap.
VMpXSYTY/.
continuous_map X Y f N f € (topspace X N S) = T
— (hom_relmap p X S Y T f) € hom (relative_homology__group (int p) X
5)
(relative__homology__group (int p) Y T)) A
VMpXSYTfec
continuous_map X Y f N\ f € (topspace X N S) — T A
singular_relcycle p X S ¢
— hom_relmap p X S Y T f (homologous_rel_set p X S ¢) =
homologous_rel_set p Y T (chain_map p f c))
proof —
have 3y. (y € hom (relative__homology__group (int p) X S) (relative__homology__group
(intp) Y T)) A
(V c. singular_releycle p X S ¢ —
y (homologous_rel_set p X S ¢) = homologous_rel_set p Y T
(chain_map p f c))
if contf: continuous _map X Y f and fim: f € (topspace X N S) —» T
forp XSYTand f: 'a="b
proof —
let 2f = (#>relcycle_group p v T) (singular_relboundary_set p Y T) o chain_map
pf
let ?F = Az. singular_relboundary_set p X S #>pejeycle group p X S ©
have chain_map p f € hom (releycle_group p X S) (releycle_group p Y T)
by (metis contf fim hom__chain_map relcycle__group_ restrict)
then have 1: ?f € hom (relcycle _group p X S) (relative_homology group (int
p) Y'T)
by (simp add: hom__compose normal.r__coset_hom__Mod normal__subgroup__singular_relboundary__relcycle
relative__homology__group__def)
have 2: singular_relboundary_set p X S < relcycle _group p X S
using normal__subgroup__singular_relboundary_relcycle by blast
have 3: 9%fx = fy
if singular_relcycle p X S x singular_relcycle p X Sy ?Fx = ?F y for z y
proof —
have homologous_relp X Sz y
by (metis (no__types) homologous__rel_set__eq right_coset_singular_relboundary
that(3))
then have singular_relboundary p Y T (chain_map p f (x — y))
using singular_relboundary__chain_map [OF __ contf fim] by (simp add:
homologous__rel_def)
then have singular_relboundary p Y T (chain_map p f x — chain_map p f

y)
by (simp add: chain_map__diff)


Homology{_}{\kern 0pt}Groups.html

90

with that
show ?thesis
by (metis comp__apply homologous__rel__def homologous _rel _set__eq right _coset_singular_relbound
qed
obtain g where g € hom (relcycle__group p X S Mod singular_relboundary__set
p X S)
(relative__homology__group (int p) Y T)
Nz. z € singular_relcycle_set p X S = g (?Fz) = ?fx
using FactGroup_universal [OF 1 2 8, unfolded carrier _relcycle_group| by
blast
then show ?thesis
by (force simp: right__coset__singular_relboundary nontrivial_relative__homology__group)
qed
then show ?thesis
apply (simp flip: all_conj _distrib)
apply ((subst choice_iff [symmetric])+)
apply metis
done
qed

lemma hom _induced?:
dhom__relmap.
VpXSYTYS.
continuous_map X Y f A
f € (topspace X N S) —» T
— (hom_relmap p X S Y T f) € hom (relative__homology_group p X S)
(relative__homology_group p Y T)) A
VpXSYTfec.
continuous_map X Y f A
f € (topspace X N'S) — T A
singular_relcycle p X S ¢
— hom_relmap p X S Y T f (homologous_rel_set p X S ¢) =
homologous_rel_set p Y T (chain_map p f c)) A
(Vp.p <0 — hom_relmap p = (AX S Y T f c. undefined))
(is 3d. 720 d)
proof —
have x: 3f. ®(Ap. if p < 0 then AX S Y T f c. undefined else f(nat p)) = 3 f.
® f for ®
by blast
show ?thesis
apply (rule x [OF ex_forward [OF hom,__induced?]))
apply (simp add: not_le relative__homology__group__def nat__diff _distrib’ int__eq iff
nat_diff _distrib flip: nat_1)
done
qed

lemma hom__induced3:
dhom__relmap.
(VpXSYTfe.
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~(continuous_map X Y f A f € (topspace X N S) — T A
¢ € carrier(relative_homology__group p X S))
— hom_relmap p X S Y T f ¢ = one(relative_homology _group p Y T)) A
VMpXSYTY/.
hom_relmap p X S Y T f € hom (relative_homology_group p X S)
(relative_homology_group p Y T)) A
VpXSYTfe
continuous_map X Y f A f € (topspace X N S) — T A singular_relcycle p
XSc
— hom_relmap p X S Y T f (homologous_rel_set p X S ¢) =
homologous_rel_set p Y T (chain_map p f ¢)) A
VpXSYT.
hom_relmap p X S Y T =
hom__relmap p X (topspace X N S) Y (topspace Y N T))) A
VMpXSYfTec
hom_relmap p X S Y T f ¢ € carrier(relative_homology_group p Y T)) A
(Vp.p < 0 — hom_relmap p = (AX S Y T f c. undefined))
(isJz. Px A ?Qz N R x)
proof —
have \z. ?Qz = 7Rz
by (erule all_forward) (fastforce simp: relative__homology group_ def)
moreover have 3z. 2P x A ?Q «
proof —
obtain hom__relmap:: [int,’a topology,’a set,’b topology,’d set,’a = 'b,('a chain)
set] = ('b chain) set
where 1: Ap X S Y T f. [continuous_map X Y f; f € (topspace X N §) —
T] =
hom_relmap p X S Y T f
€ hom (relative_homology__group p X S) (relative__homology__group
pYT)
and 2: Ap XS Y Tfe.
[continuous_map X Y f; f € (topspace X N S) — T; singular_relcycle
p XS]
.
hom__relmap (int p) X S Y T f (homologous_rel_set p X S ¢) =
homologous_rel_set p Y T (chain_map p f ¢)
and 3: (Vp. p < 0 — hom_relmap p = (AX S Y T f c. undefined))
using hom__induced2 [where ?'a="a and ?'b="0]
by (fastforce simp: Pi_iff)
have 4: [continuous_map X Y f; f € (topspace X N S) — T; ¢ € carrier
(relative__homology__group p X S)] =
hom__relmap p X (topspace X N'S) Y (topspace Y N T) fc
€ carrier (relative_homology_group p Y T)
forp XSYfTec
using hom__carrier [OF 1 [of X Y f topspace X N S topspace Y N T p]]
continuous_map__image_subset_topspace by fastforce
have inhom: (Ac. if continuous_map X Y f A f € (topspace X N S) — T A
¢ € carrier (relative_homology_group p X S)
then hom__relmap p X (topspace X N S) Y (topspace Y N T) fc
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else Lrelative._homology group p Y T)
€ hom (relative__homology__group p X S) (relative_homology_group p Y T)
(is ?h € hom ?GX ?GY)
forp XSYTf
proof (rule homlI)
show Az. z € carrier ?GX = ?h ¢ € carrier ?GY
by (auto simp: 4 group.is_monoid)
show %h (z @oqx ¥) = ?hz Qoqy?h y if © € carrier ?GX y € carrier ?GX
for z y
proof (cases p < 0)
case True
with that show ?thesis
by (simp add: relative__homology__group__def singleton__group__def 3)
next
case Fulse
show ?thesis
proof (cases continuous_map X Y f)
case True
then have f € (topspace X N S) — topspace Y
using continuous _map_image_subset_topspace by blast
then show ?thesis
using True False that
using 1 [of X Y f topspace X N S topspace Y N T p]
by (simp add: 4 Pi_iff continuous_map__funspace hom__mult not_less
group.is_monoid monoid.m__closed Int_left absorb)
qed (simp add: group.is_monoid)
qed
qed
have hrel: [continuous_map X Y f; f € (topspace X N S) — T singular_relcycle
p XS]
= hom__relmap (int p) X (topspace X N S) Y (topspace Y N T)
I (homologous_rel_set p X S ¢) = homologous_rel_set p Y T (chain_map
pfe)
forp XSYTfc
using 2 [of X Y f topspace X N S topspace Y N T p (]
continuous_map__image__subset topspace by fastforce
show ?thesis
apply (rule_tac z=Xp X S Y T fc.
if continuous_map X Y f A f € (topspace X N'S) = T A
¢ € carrier(relative__homology__group p X S)
then hom__relmap p X (topspace X N S) Y (topspace Y N T) fc
else one(relative_homology group p Y T) in exl)
apply (simp add: Int_left _absorb subtopology _restrict carrier _relative__homology__group
group.is_monoid group.restrict_hom__iff 4 inhom hrel split: if _splits)
apply (intro ext strip)
apply (auto simp: continuous_map__def)
done
qed
ultimately show ?thesis
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by auto
qed

consts hom__induced:: [int,’a topology,’a set,’b topology,’b set,’a = 'b,(‘a chain)
set] = ('b chain) set
specification (hom__induced)
hom__induced:
(VpXSYTfe.
~(continuous_map X Y f A
f € (topspace X N S) = T A
¢ € carrier(relative__homology__group p X S))
— hom__induced p X (S::'a set) Y (T::'b set) fc =
one(relative_homology_group p Y T)) A
VpXSYTF.
(hom__induced p X (S::'a set) Y (T::'b set) f) € hom (relative_homology_group
p X S)
(relative__homology_group p Y T)) A
VpXSYTfe
continuous_map X Y f A
f € (topspace X N'S) — T A
singular_relcycle p X S ¢
— hom__induced p X (S::'a set) Y (T::'b set) f (homologous_rel_set p X
Sc) =
homologous_rel_set p Y T (chain_map p f ¢)) A
VpXSYT.
hom__induced p X (S::'a set) Y (T::'b set) =
hom__induced p X (topspace X N S) Y (topspace Y N T))) A
VpXSYfTe
hom__induced p X (S::'a set) Y (T::'b set) fc €
carrier(relative__homology_group p Y T)) A
(Vp.p < 0 — hom_induced p = (AX S Y T. \f::'a="b. Ac. undefined))
by (fact hom__induced3)

lemma hom__induced__default:
~(continuous_map X Y f A f € (topspace X N S) — T A ¢ € carrier(relative_homology__group
p X 5))
= hom_induced p X S'Y T f ¢ = one(relative_homology_group p Y T)
and hom__induced__hom:
hom__induced p X S Y T f € hom (relative_homology__group p X S) (relative__homology__group
pYT)
and hom__induced__restrict [simp]:
hom__induced p X (topspace X N S) Y (topspace Y N T) = hom__induced p X
SYyT
and hom__induced__carrier:
hom__induced p X S'Y T f ¢ € carrier(relative_homology _group p Y T)
and hom__induced__trivial: p < 0 = hom__induced p = (AX S Y T f c. undefined)
by (metis hom__induced)+
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lemma hom__induced__chain_map_gen:
[continuous_map X Y f; f € (topspace X N S) — T; singular_releycle p X S ]
= hom_induced p X S Y T f (homologous rel_set p X S ¢) = homolo-
gous_rel_set p Y T (chain_map p f ¢)
by (metis hom__induced)

lemma hom__induced__chain__map:
[continuous_map X Y f; f € S — T; singular_relcycle p X S ]
= hom_induced p X S Y T f (homologous_rel_set p X S ¢)
= homologous_rel_set p Y T (chain_map p f ¢)
by (simp add: Pi_iff hom__induced__chain_map__gen)

lemma hom__induced__eq:
assumes A\z. z € topspace X = fz =gz
shows hom_induced p X S Y T f = hom__induced p X S Y T g
proof —
consider p < 0 | n where p = int n
by (metis int_nat_eq not_less)
then show f%thesis
proof cases
case [
then show ?thesis
by (simp add: hom__induced__trivial)
next
case 2
have hom_induced n X S Y T f C = hom_induced n X S Y T g C for C
proof —
have continuous_map X Y f A f € (topspace X N S) — T A C € carrier
(relative__homology__group n X S)
+— continuous_map X Y g A g € (topspace X N S) — T AN C € carrier
(relative__homology__group n X S)
(is 7P = ?2Q)
using assms Pi_iff continuous_map__eq [of X Y]
by (smt (verit, ccfu_SIG) Int_iff)
then consider — 2P A = 2Q) | 2P N 2Q)
by blast
then show ?thesis
proof cases
case 1
then show ?thesis
by (simp add: hom__induced _default)
next
case 2
have homologous_rel_set n Y T (chain_map n f ¢) = homologous__rel _set
n'Y T (chain_map n g c)
if continuous_map X Y f f € (topspace X N S) — T
continuous_map X Y g g € (topspace X N S) = T
C' = homologous_rel_set n X S ¢ singular_relcycle n X S ¢
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for ¢
proof —
have chain_map n f ¢ = chain_map n g c
using assms chain_map__eq singular_relcycle that by metis
then show ?thesis
by simp
qed
with 2 show ?Zthesis
by (force simp: relative__homology _group _def carrier_FactGroup
right__coset_singular_relboundary hom__induced__chain_map__gen)
qed
qged
with 2 show ?thesis
by auto
qed
qed

0.2.2 Towards the Eilenberg-Steenrod axioms

First prove we get functors into abelian groups with the boundary map
being a natural transformation between them, and prove Eilenberg-Steenrod
axioms (we also prove additivity a bit later on if one counts that).

lemma abelian_ relative__homology__group [simpl:
comm,__group(relative__homology__group p X S)
by (simp add: comm__group.abelian_ FactGroup relative_homology _group _def
subgroup__singular_relboundary__relcycle)

lemma abelian__homology _group: comm__group(homology__group p X)
by simp

lemma hom__induced_id__gen:
assumes contf: continuous_map X X f and feq: Az. x € topspace X = fz =
x
and c: ¢ € carrier (relative_homology_group p X S)
shows hom_induced p X S X Sfc=c
proof —
consider p < 0 | n where p = int n
by (metis int_nat_eq not_less)
then show ?Zthesis
proof cases
case 1
with ¢ show ?thesis
by (simp add: hom__induced_trivial relative__homology__group _def)
next
case 2
have c¢m: chain_map n f d = d if singular_relcycle n X S d for d
using that assms by (auto simp: chain_map_id_gen singular_relcycle)
have f  (topspace X N §) C S
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using feq by auto
with 2 ¢ show ?thesis
by (auto simp: nontrivial _relative__homology _group carrier _FactGroup
cm right__coset__singular_relboundary hom__induced__chain_map__gen
assms)
qed
qed

lemma hom_induced id:

¢ € carrier (relative_homology _group p X S) = hom__induced p X S X S id ¢
=c

by (rule hom__induced_id__gen) auto

lemma hom__induced__compose:
assumes continuous_map X Y ff € S — T continuous_map Y Zgge T — U
shows hom_induced p X S Z U (g o f) = hom_induced p Y T Z U g o
hom_induced p X S Y T f
proof —
consider (neg) p < 0 | (int) n where p = int n
by (metis int_nat__eq not_less)
then show “thesis
proof cases
case int
have gf: continuous_map X Z (g o f)
using assms continuous_map__compose by fastforce
have gfim: (9o f) € S > U
unfolding o def using assms by blast
have sr: Aa. singular_relcycle n X S a = singular_relcycle n Y T (chain_map
nfa)
by (simp add: assms singular_relcycle _chain_map)
show ?thesis
proof
fix ¢
show hom_induced p X S Z U (g o f) ¢ = (hom_induced p Y T Z U g o
hom__induced p X S Y T f) ¢
proof (cases ¢ € carrier(relative_homology group p X S))
case True
with gfim show ?thesis
unfolding int
by (auto simp: carrier_relative__homology group gf gfim assms
sr chain_map__compose hom__induced__chain__map)
next
case Fulse
then show ?thesis
by (simp add: hom__induced _default hom__one [OF hom__induced _hom)])
qed
qed
ged (force simp: hom__induced__trivial)
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qged

lemma hom __induced_ compose’:
assumes continuous_map X Y ff € S — T continuous_ map Y Zgge T — U
shows hom_induced p Y T Z U g (hom_inducedp X S Y T fz) = hom__induced
pXSZU (gof)x
using hom__induced__compose [OF assms| by simp

lemma naturality _hom__induced:
assumes continuous_map X Y ffe S — T
shows hom_boundary q Y T o hom_induced ¢ X S Y T f
= hom_induced (¢ — 1) (subtopology X S) {} (subtopology Y T) {} f o
hom__boundary ¢ X S
proof (cases ¢ < 0)
case Fulse
then obtain p where pi: p > Suc 0 and ¢: ¢ = int p
using zero_le_imp__eq int by force
show ?thesis
proof
fix ¢
show (hom__boundary q Y T o hom_induced ¢ X S Y T f) ¢ =
(hom__induced (¢ — 1) (subtopology X S) {} (subtopology Y T) {} f o
hom__boundary ¢ X S) ¢
proof (cases ¢ € carrier(relative_homology__group p X S))
case True
then obtain a where ceq: ¢ = homologous _rel_set p X S a and a: singu-
lar_relcycle p X S a
by (force simp: carrier_relative__homology__group)
then have sr: singular_releycle p Y T (chain_map p f a)
using assms singular__relcycle chain__map by fastforce
then have sb: singular_relcycle (p — Suc 0) (subtopology X S) {} (chain__boundary
p a)
by (metis One_nat_def a chain_boundary boundary singular _chain_0
singular_relcycle)
have pl_eq: int p — 1 = int (p — Suc 0)
using p! by auto
have cbm: (chain_boundary p (chain_map p f a))
= (chain_map (p — Suc 0) f (chain_boundary p a))
using a chain__boundary__chain_map singular__relcycle by metis
have contf: continuous_map (subtopology X S) (subtopology Y T) f
using assms
by (auto simp: continuous_map__in__subtopology continuous _map__from__subtopology)
show ?thesis
unfolding ¢ using assms pl a
by (simp add: cbm ceq contf hom__boundary__chain__boundary hom__induced__chain_map
pl_eq sb sr
del: of nat__diff)
next
case Fulse
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with assms show ?thesis
unfolding ¢ o_def using assms
apply (simp add: hom__induced__default hom__boundary__default)
by (metis group_ relative _homology_group hom__boundary hom__induced
hom__one one__relative__homology__group)
qed
qed

qed (force simp: hom__induced__trivial hom__boundary_ trivial)

lemma homology exactness axiom__ 1:
exact__seq ([homology__group (p—1) (subtopology X S), relative__homology _group
p X S, homology_group p X],
[hom__boundary p X S,hom__induced p X {} X S id])
proof —
consider (neg) p < 0 | (int) n where p = int n
by (metis int_nat_eq not_less)
then have (hom_induced p X {} X S id) * carrier (homology_group p X)
= kernel (relative_homology group p X S) (homology group (p—1)
(subtopology X S))
(hom__boundary p X S)
proof cases
case neg
then show ?thesis
unfolding kernel def singleton__group def relative__homology _group_def
by (auto simp: hom__induced__trivial hom__boundary_trivial)
next
case int
have hom__induced (int m) X {} X S id  carrier (relative__homology__group
(int m) X {})
= carrier (relative__homology__group (int m) X S) N
{c. hom_boundary (intm) X Sc=1
for m
proof (cases m)
case (
have hom_induced 0 X {} X S id ¢ carrier (relative_homology_group 0 X

relative__homology__group (int m — 1) (subtopology X S) {}}

{H

= carrier (relative_homology_group 0 X S) (is ?lhs = ?rhs)
proof
show ?lhs C ?rhs
using hom__induced_hom [of 0 X {} X S id]
by (simp add: hom__induced _hom hom__carrier)
show 9rhs C ?2lhs
apply (clarsimp simp add: image_iff carrier_relative__homology__group [of
0, simplified] singular_relcycle)
apply (force simp: chain_map_id_gen chain_boundary def singu-
lar_relcycle
hom__induced__chain_map [of concl: 0, simplified])
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done
qed
with 0 show #thesis
by (simp add: hom__boundary__trivial relative _homology__group_ def [of —1]
singleton__group__def)
next
case (Suc n)
have (hom__induced (int (Suc n)) X {} X Sid o
homologous_rel_set (Suc n) X {}) ¢ singular_relcycle_set (Suc n) X {}
= homologous_rel_set (Sucn) X S
(singular_relcycle_set (Suc n) X S N
{c. hom_boundary (int (Suc n)) X S (homologous_rel_set (Suc n) X S

= singular_relboundary_set n (subtopology X S) {}})
(is ?lhs = ?rhs)
proof —
have 1: (A\z. 2 € A= z€B+—z2zc ()= f (ANB)=f (AN C)
for fABC
by blast
have 2: [A\z. € A= 3Jy.ye BAfz=fy; \e. 2 € B= Jy. y€ A
Afx=fyl
— f‘A=f‘BforfAB
by blast
have ?lhs = homologous_rel_set (Suc n) X S * singular_releycle_set (Suc
") X {)
using hom__induced__chain_map chain_map_ident [of _ X| singu-
lar_relcycle
by (smt (verit, best) comp__apply continuous_map__id empty_iff funcset]
image__cong mem,__Collect__eq)
also have ... = homologous_rel_set (Sucn) X S *
(singular_relcycle_set (Suc n) X S N
{c. singular_relboundary n (subtopology X S) {} (chain__boundary
(Suc n) o)})
proof (rule 2)
fix c
assume c € singular_relcycle_set (Suc n) X {}
then show Jy. y € singular_relcycle_set (Suc n) X SN
{c. singular_relboundary n (subtopology X S) {} (chain__boundary
(Suc n) )} A
homologous__rel_set (Suc n) X S ¢ = homologous__rel_set (Suc n)
XSy
using singular__cycle singular_relcycle
by (metis Int_Collect mem__Collect__eq singular__chain_0
singular_relboundary_0)
next
fix c
assume c: ¢ € singular_relcycle_set (Suc n) X SN
{c. singular_relboundary n (subtopology X S) {} (chain__boundary
(Suc n) ¢)}
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then obtain d where d: singular_chain (Suc n) (subtopology X S) d
chain__boundary (Suc n) d = chain__boundary (Suc n) ¢
by (auto simp: singular__boundary)
with ¢ have ¢ — d € singular_relcycle_set (Suc n) X {}
by (auto simp: singular_cycle chain__boundary__diff singular__chain__subtopology
singular_releycle singular__chain__diff)
moreover have homologous_rel_set (Suc n) X S ¢ = homologous__rel _set
(Sucn) XS (¢ — d)
proof (simp add: homologous rel set_eq)
show homologous_rel (Suc n) X S ¢ (¢ — d)
using d by (simp add: homologous__rel_def singular__chain__imp__relboundary)
qed
ultimately show Jy. y € singular_relcycle_set (Suc n) X {} A
homologous_rel_set (Suc n) X S ¢ = homologous_rel_set (Suc n)
XSy
by blast
qged
also have ... = ?rhs
by (rule 1) (simp add: hom__boundary__chain__boundary homologous _rel_set_eq _relboundary
del: of nat_Suc)
finally show ?lhs = ?rhs .
qed
with Suc show ?Zthesis
unfolding carrier_relative__homology__group image__comp id__def by auto
qed
then show ?thesis
by (auto simp: kernel def int)
qed
then show ?thesis
using hom__boundary__hom hom__induced__hom
by (force simp: group hom__def group _hom__azioms_ def)
qed

lemma homology exactness axiom_ 2:
exact__seq ([homology_group (p—1) X, homology group (p—1) (subtopology X
S), relative__homology__group p X S|,
[hom__induced (p—1) (subtopology X S) {} X {} id, hom__boundary p
X 8))
proof —
consider (neg) p < 0 | (int) n where p = int (Suc n)
by (metis linear not0_implies_Suc of nat_0 zero_le _imp_eq int)
then have kernel (relative__homology_group (p—1) (subtopology X S) {})
(relative__homology__group (p—1) X {})
(hom__induced (p—1) (subtopology X S) {} X {} id)
= hom__boundary p X S * carrier (relative_homology group p X S)
proof cases
case neg
obtain = where z € carrier (relative_homology_group p X S)
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using group_relative__homology__group group.is_monoid by blast
with neg show ?thesis
unfolding kernel def singleton__group__def relative__homology group _def
by (force simp: hom__induced trivial hom__boundary__trivial)
next
case int
have hom__boundary (int (Suc n)) X S ¢ carrier (relative__homology__group (int
(Suc n)) X S)
= carrier (relative_homology _group n (subtopology X S) {}) N
{c. hom__induced n (subtopology X S) {} X {} id ¢ =
1relative_h0mology_group n X {}}
(is ?lhs = ?rhs)
proof —
have I: (\z.z€e A= 2 € B+—ze(0)=f(ANB)=f(ANC)
for fABC
by blast
have 2: (A\z. 1€ A=z €B+—zecf—C)=f(ANB)=f‘An
Cfor fABC
by blast
have ?lhs = homologous_rel_set n (subtopology X S) {}
‘ (chain__boundary (Suc n) ‘ singular_relcycle _set (Suc n) X S)
unfolding carrier relative__homology group image comp

by (rule image__cong [OF refl]) (simp add: o__def hom__boundary_ chain__boundary

del: of _nat_Suc)
also have ... = homologous_rel_set n (subtopology X S) {} *
(singular_relcycle_set n (subtopology X S) {} N singu-
lar_relboundary_set n X {})

by (force simp: singular_relcycle singular _boundary chain__boundary_boundary__alt)

also have ... = ?rhs
unfolding carrier_relative__homology group vimage_def
by (intro 2) (auto simp: hom_induced_chain_map chain_map__ident ho-
mologous__rel_set__eq _relboundary singular_relcycle)
finally show ?thesis .
qed
then show ?thesis
by (auto simp: kernel _def int)
qed
then show ?thesis
using hom__boundary__hom hom__induced__hom
by (force simp: group__hom__def group__hom__axioms_def)
qed

lemma homology exactness axiom__3:
exact_seq ([relative_homology group p X S, homology_group p X, homol-
ogy__group p (subtopology X S)],
[hom__induced p X {} X S id, hom_induced p (subtopology X S) {} X
{} d])

proof (cases p < 0)
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case True
then show ?thesis
unfolding relative__homology group__def
by (simp add: group__hom.kernel to_trivial group group__hom__azioms_def
group__hom__def hom__induced__trivial)
next
case Fulse
then obtain n where peq: p = int n
by (metis int_ops(1) linorder_neqE_linordered_idom pos_int_cases)
have hom__induced n (subtopology X S) {} X {} id ¢
(homologous__rel_set n (subtopology X S) {}
singular_relcycle__set n (subtopology X S) {})
= {c¢ € homologous_rel_set n X {} * singular_relcycle_set n X {}.
hom__induced n X {} X S id ¢ = singular_relboundary_set n X S}
(is ?lhs = ?rhs)

proof —

have 2: [Az.2 € A= Fy.ye BAfz=fy; N\e. 2 € B= Jy.y € AN
fz=1Fy]

= f‘A=f‘Bfor fAB

by blast

have Af. singular_chain n (subtopology X S) f A
singular_chain (n — Suc 0) trivial_topology (chain_boundary n f) =
hom__induced (int n) (subtopology X S) {} X {} id (homologous_rel_set n
(subtopology X S) {} f) =
homologous_rel_set n X {} f
by (auto simp: chain_map__ident hom__induced__chain_map singular_relcycle)
then have ?lhs = homologous_rel_set n X {} ¢ (singular_relcycle_set n
(subtopology X S) {})
by (simp add: singular_relcycle image__comp)
also have ... = homologous_rel_set n X {} * (singular_relcycle_set n X {}
N singular_relboundary_set n X S)
proof (rule 2)
fix ¢
assume c € singular_relcycle__set n (subtopology X S) {}
then show Jy. y € singular_relcycle_set n X {} N singular_relboundary__set
nXSA
homologous_rel_set n X {} ¢ = homologous_rel_set n X {} y
using singular__chain__imp_ relboundary singular_relboundary_imp_chain
by (fastforce simp: singular_cycle)
next
fix ¢
assume c € singular_releycle_set n X {} N singular_relboundary_set n X S
then obtain d e where c: singular_relcycle n X {} ¢ singular_relboundary
nXSc
and d: singular_chain n (subtopology X S) d
and e: singular_chain (Suc n) X e chain__boundary (Suc n) e = ¢ + d
using singular_relboundary_alt by blast
then have chain_boundary n (¢ + d) = 0
using chain__boundary boundary_alt by fastforce
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then have chain_boundary n ¢ + chain_boundary n d = 0
by (metis chain__boundary__add)
with ¢ have singular_relcycle n (subtopology X S) {} (— d)
by (metis (no__types) d eq add_iff singular_cycle singular_relcycle__minus)
moreover have homologous_rel n X {} ¢ (— d)
using c
by (metis diff _minus_eq add e homologous__rel_def singular__boundary)
ultimately
show Jy. y € singular_relcycle set n (subtopology X S) {} A
homologous_rel_set n X {} ¢ = homologous_rel_set n X {} y
by (force simp: homologous_rel _set__eq)
qged
also have ... = homologous_rel_set n X {} ¢
(singular_relcycle_set n X {} N homologous_rel_set n X {} —‘{z.
hom__induced n X {} X S id x = singular_relboundary_set n X S})
by (rule 2) (auto simp: hom__induced__chain_map homologous__rel_set_eq relboundary
chain_map__ident [of _ X] singular__cycle cong: conj _cong)

also have ... = ?rhs
by blast
finally show ?thesis .
qed

then have kernel (relative_homology_group p X {}) (relative__homology__group
p X S) (hom_induced p X {} X S id)
= hom__induced p (subtopology X S) {} X {} id * carrier (relative__homology__group
p (subtopology X S) {})
by (simp add: kernel_def carrier _relative__homology group peq)
then show ?thesis
by (simp add: not_less group _hom__def group__hom__azioms__def hom__induced _hom)
qed

lemma homology_dimension__axiom:
assumes X: topspace X = {a} and p # 0
shows trivial__group(homology _group p X)
proof (cases p < 0)
case True
then show ?thesis
by simp
next
case Fulse
then obtain n where peq: p = int nn > 0
by (metis assms(2) neq0__conv nonneg_int_cases not_less of nat_0)
have homologous_rel_set n X {} *singular_relcycle_set n X {} = {singular_relcycle_set
n X {}}
(is ?lhs = ?rhs)
proof
show ?2lhs C ?rhs
using peq assms
by (auto simp: image__subset_iff homologous_rel_set__eq relboundary simp


Homology{_}{\kern 0pt}Groups.html

104

flip: singular_boundary__set_eq cycle_singleton)
have singular_relboundary n X {} 0
by simp
with peq assms
show ?rhs C ?lhs
by (auto simp: image_iff simp flip: homologous_rel _eq relboundary singu-
lar_boundary__set_eq cycle_singleton)
qed
with peq assms show ?thesis
unfolding trivial _group__def
by (simp add: carrier_relative__homology__group singular_boundary_set_eq cycle_singleton
oF X])
qed

proposition homology homotopy__axiom:
assumes homotopic_with (Ah. h€ S — T) X Y fg
shows hom_induced p X S Y T f = hom_induced p X S Y T g
proof (cases p < 0)
case True
then show ?thesis
by (simp add: hom__induced__trivial)
next
case Fulse
then obtain n where peq: p = int n
by (metis int_nat_eq not_le)
have cont: continuous_map X Y f continuous_map X Y g
using assms homotopic__with__imp_ continuous _maps by blast+
have im: f € (topspace X N S) — T g € (topspace X N §) — T
using homotopic__with__imp_property assms by blast+
show ?thesis
proof
fix ¢ show hom_induced p X S Y T fc = hom_induced p X SY T gc
proof (cases ¢ € carrier(relative_homology__group p X S))
case True
then obtain a where a: ¢ = homologous_rel_set n X S a singular_relcycle
nXSa
unfolding carrier_relative__homology group peq by auto
with assms homotopic__imp__homologous_rel chain__maps show ?thesis
by (force simp add: peq hom__induced__chain_map__gen cont im homolo-
gous__rel__set__eq)
qged (simp add: hom__induced_ default)
qed
qed

proposition homology excision__axiom:
assumes X closure_of U C X interior_of TT C S
shows
hom__induced p (subtopology X (S — U)) (T — U) (subtopology X S) T id
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€ iso (relative__homology__group p (subtopology X (S — U)) (T — U))
(relative__homology__group p (subtopology X S) T)
proof (cases p < 0)
case True
then show ?thesis
unfolding iso__def bij_betw__def relative_homology__group__def by (simp add:
hom,__induced__trivial)
next
case Fulse
then obtain n where peq: p = int n
by (metis int_nat_eq not_le)
have cont: continuous_map (subtopology X (S — U)) (subtopology X S) id
by (meson Diff subset continuous_map__from__subtopology mono continu-
ous_map__id)
have TU: topspace X N (S —U)N(T - U)C T
by auto
show ?Zthesis
proof (simp add: iso_def peq carrier_relative_homology group bij betw def
hom__induced__hom, intro conjl)
show inj _on (hom_induced n (subtopology X (S — U)) (T — U) (subtopology
X 8) T id)
(homologous__rel_set n (subtopology X (S — U)) (T — U) *
singular_releycle__set n (subtopology X (S — U)) (T — U))
unfolding inj on_def
proof (clarsimp simp add: homologous_rel_set _eq)
fix cd
assume c: singular_releycle n (subtopology X (S — U)) (T — U) ¢
and d: singular_relcycle n (subtopology X (S — U)) (T — U) d
and hh: hom__induced n (subtopology X (S — U)) (T — U) (subtopology X
S) T id
(homologous_rel_set n (subtopology X (S — U)) (T — U) ¢)
= hom__induced n (subtopology X (S — U)) (T — U) (subtopology X
S) T id
(homologous__rel_set n (subtopology X (S — U)) (T — U) d)
then obtain scc: singular_chain n (subtopology X (S — U)) ¢
and scd: singular_chain n (subtopology X (S — U)) d
using singular_relcycle by metis
have singular_relboundary n (subtopology X (S — U)) (T — U) ¢
if srb: singular_relboundary n (subtopology X S) T ¢
and src: singular_relcycle n (subtopology X (S — U)) (T — U) ¢ for ¢
proof —
have [simp]: (S — U)N(T - U)=T-USNT=T
using <7 C S» by blast+
have c: singular__chain n (subtopology X (S — U)) ¢
singular__chain (n — Suc 0) (subtopology X (T — U)) (chain__boundary
nc
)
using that by (auto simp: singular_relcycle def mod__subset__def subtopol-

ogy__subtopology)
obtain d e where d: singular_chain (Suc n) (subtopology X S) d
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and e: singular__chain n (subtopology X T) e
and dce: chain_boundary (Suc n) d = c + e
using srb by (auto simp: singular_relboundary__alt subtopology__subtopology)
obtain m f g where f: singular_chain (Suc n) (subtopology X (S — U)) f
and ¢: singular_chain (Suc n) (subtopology X T) g
and dfg: (singular_subdivision (Sucn) ~ " m) d=f + g
using ezxcised__chain__exists [OF assms d] .
obtain i where
hO: Ap. hp 0 = (0 :: 'a chain)
and hdiff: Ap ¢l ¢2. hp (¢c1—c2) =hpecl —hpc2
and hSuc: Ap X c. singular_chain p X ¢ = singular__chain (Suc p) X (h
pc)
and hchain: A\p X c. singular_chain p X ¢
= chain_boundary (Suc p) (hp ¢) + h (p — Suc 0)
(chain__boundary p c)
= (singular_subdivision p ~ " m) ¢ — ¢
using chain__homotopic_iterated_singular _subdivision by blast
have hadd: Ap ¢l ¢2. hp (¢l +c2)=hpcl +hpc2
by (metis add__diff _cancel diff _add__cancel hdiff)
define cI where c1 = f — hnc
define c2 where c2 = chain_boundary (Suc n) (h n e) — (chain_boundary
(Sucn) g—e)
show ?thesis
unfolding singular_relboundary__alt
proof (intro exl conjI)
show c1: singular_chain (Suc n) (subtopology X (S — U)) cl
by (simp add: <singular__chain n (subtopology X (S — U)) ¢ cl_def f
hSuc singular__chain__ diff)
have chain_boundary (Suc n) (chain_boundary (Suc (Suc n)) (h (Suc n)
d) + hn (cte))
= chain_boundary (Suc n) (f + g — d)
using hchain [OF d] by (simp add: dce dfg)
then have chain_boundary (Suc n) (hn (¢ + e))
= chain_boundary (Suc n) f + chain__boundary (Suc n) g — (¢ + €)
using chain__boundary_boundary_alt [of Suc n subtopology X S|
by (simp add: chain__boundary_add chain_boundary_diff d hSuc dce)
then have chain_boundary (Suc n) (h n ¢) + chain_boundary (Suc n)
(hne)
= chain__boundary (Suc n) f + chain__boundary (Suc n) g — (¢ + e)
by (simp add: chain__boundary__add hadd)
then have x: chain_boundary (Suc n) (f — hn ¢) = ¢ + (chain_boundary
(Suc n) (hne) — (chain_boundary (Suc n) g — e))
by (simp add: algebra__simps chain__boundary__ diff)
then show chain_boundary (Suc n) ¢l = ¢ + ¢2
unfolding cI_def c2_def
by (simp add: algebra__simps chain__boundary__diff)
obtain singular_chain n (subtopology X (S — U)) ¢2 singular_chain n
(subtopology X T) c2
using singular__chain_ diff ¢ c1 x*
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unfolding c1_def c2_ def
by (metis add__diff _cancel_left’ e g hSuc singular__chain__boundary__alt)
then show singular _chain n (subtopology (subtopology X (S — U)) (T
—U)) c2
by (fastforce simp add: singular_chain__subtopology)
qed
qed
then have singular_relboundary n (subtopology X S) T (¢ — d) =
singular_relboundary n (subtopology X (S — U)) (T — U) (¢ — d)
using ¢ d singular_relcycle_diff by metis
with hh show homologous_rel n (subtopology X (S — U)) (T — U) ¢ d
apply (simp add: hom__induced__chain_map cont ¢ d chain_map__ident [OF
scc] chain_map__ident [OF scd))
using homologous_rel _set__eq homologous_rel def by metis
qed
next
have h: homologous__rel_set n (subtopology X S) T a
€ (Az. homologous_rel_set n (subtopology X S) T (chain_map n id z)) ¢
singular_relcycle__set n (subtopology X (S — U)) (T — U)
if a: singular_relcycle n (subtopology X S) T a for a
proof —
obtain ¢’ where ¢’ singular_relcycle n (subtopology X (S — U)) (T — U)

homologous__rel n (subtopology X S) T a ¢’
using a by (blast intro: excised_relcycle exists [OF assms])
then have scc”: singular_chain n (subtopology X S) ¢’
using homologous__rel_singular__chain that
by (force simp: singular_relcycle)
then show ?thesis
using scc’ chain_map__ident [of _ subtopology X S| ¢’ homologous_rel _set_eq
by fastforce
qed
have (Az. homologous_rel_set n (subtopology X S) T (chain_map n id z)) *
singular_relcycle _set n (subtopology X (S — U)) (T — U) =
homologous_rel_set n (subtopology X S) T ¢
singular_relcycle_set n (subtopology X S) T
by (force simp: cont h singular_relcycle__chain__map)
then
show hom__induced n (subtopology X (S — U)) (T — U) (subtopology X S) T
id ¢
homologous_rel_set n (subtopology X (S — U)) (T — U) ¢
singular_relcycle__set n (subtopology X (S — U)) (T — U)
= homologous_rel_set n (subtopology X S) T * singular_relcycle_set n
(subtopology X S) T
by (simp add: image__comp o__def hom__induced__chain_map_gen cont TU
cong: image__cong__simp)
qed
qed
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0.2.3 Additivity axiom

Not in the original Eilenberg-Steenrod list but usually included nowadays,
following Milnor’s "On Axiomatic Homology Theory".

lemma iso_ chain__group sum:
assumes disj: pairwise disjint U and UU: |JU = topspace X
and subs: AC T. [compactin X C; path__connectedin X C; T € U; ~ disjnt C
Tf=CcCT
shows (Af. sum’ f U) € iso (sum_group U (AS. chain__group p (subtopology X
S))) (chain__group p X)
proof —
have pw: pairwise (\i j. disjnt (singular_simplex_set p (subtopology X 7))
(singular_simplex_set p (subtopology X 7))) U
proof
fix ST
assume SeU T ceU S#T
then show disjnt (singular _simplex_set p (subtopology X S))
(singular_simplex_set p (subtopology X T))
using nonempty_ standard__simplex [of p| disj
by (fastforce simp: pairwise_def disjnt_def singular simplex_subtopology
image__subset_iff)
qed
have 3 S€ld. singular_simplex p (subtopology X S) f
if f: singular_simplex p X f for f
proof —
obtain = where z: z € topspace X © € f ¢ standard__simplex p
using fnonempty_standard__simplex [of p] continuous _map__image__subset__topspace
unfolding singular simplex def by fastforce
then obtain S where S e U/ z € S
using UU by auto
have f ¢ standard__simplex p C S
proof (rule subs)
have cont: continuous_map (subtopology (powertop__real UNIV)
(standard__simplex p)) X f
using f singular_simplex_def by auto
show compactin X (f ¢ standard__simplez p)
by (simp add: compactin__subtopology compactin__standard__simplex im-
age__compactin [OF __ cont])
show path__connectedin X (f ¢ standard__simplex p)
by (simp add: path__connectedin__subtopology path__connectedin__standard _simplex
path__connectedin__continuous_map__image [OF cont))
have standard_simplez p # {}
by (simp add: nonempty _standard__simplex)
then
show — disjnt (f ¢ standard__simplex p) S
using = <z € S» by (auto simp: disjnt_def)
qed (auto simp: <S € U>»)
then show ?thesis
by (meson «S € Uy singular_simplex__subtopology that)
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qed
then have (| i€U. singular_simplex__set p (subtopology X 7)) = singular_simplex__set
p X
by (auto simp: singular_simplex__subtopology)
then show ?thesis
using iso_free_Abelian__group__sum [OF pw)] by (simp add: chain__group_ def)
qed

lemma relcycle _group_0__eq chain__group: relcycle _group 0 X {} = chain__group
0X
proof (rule monoid.equality)

show carrier (relcycle_group 0 X {}) = carrier (chain_group 0 X)

by (simp add: Collect_mono chain__boundary_def singular__cycle subset__antisym,)
qed (simp__all add: relcycle _group_ def chain__group__def)

proposition iso_cycle group_sum:
assumes disj: pairwise disjnt U and UU: |JU = topspace X
and subs: NC T. [compactin X C; path__connectedin X C; T € U; — disjnt C
T)= CCT
shows (\f. sum’ f U) € iso (sum__group U (AT. relcycle_group p (subtopology
X T){})
(releycle__group p X {})
proof (cases p = 0)
case True
then show ?thesis
by (simp add: relcycle_group 0_eq chain__group iso_chain__group_sum [OF
assms))
next
case Fulse
let 9SG = (sum__group U (AT. chain__group p (subtopology X T)))
let ?PI = (Il TeU. singular_relcycle_set p (subtopology X T) {})
have (\f. sum’ f U) € Group.iso (subgroup__generated ?SG (carrier 2SG N 2PI))
(subgroup__generated (chain__group p X) (singular_relcycle_set
P X (1)

proof (rule group__hom.iso__between__subgroups)
have iso: (Af. sum’ f U) € Group.iso 2SG (chain__group p X)
by (auto simp: assms iso__chain__group__sum)
then show group__hom ?2SG (chain_group p X) (Af. sum’ f U)
by (auto simp: iso__imp_homomorphism group__hom,__def group__hom__axioms__def)
have B: sum’ f U € singular_relcycle _set p X {} +— [ € (carrier 2SG N
2PI)
if f € (carrier ?SG) for f
proof —
have f: AS. S € U — singular__chain p (subtopology X S) (f S)
| € extensional U finite {i € U. fi # 0}
using that by (auto simp: carrier _sum_ group PiE_def Pi_def)
then have rfin: finite {S € U. restrict (chain_boundary p o f) U S # 0}
by (auto elim: rev_finite_subset)
have chain_boundary p (O x|z €U N fa# 0. fzx)) =10
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+—— (VS € U. chain_boundary p (f S) = 0) (is ?cb = 0 +— 2rhs)
proof
assume ?chb = 0
moreover have ?cb = sum’ (AS. chain_boundary p (f S)) U
unfolding sum.G __def using rfin f
by (force simp: chain__boundary_sum intro: sum.mono_neutral_right cong:
conj__cong)
ultimately have eq0: sum’ (AS. chain_boundary p (f S)) U = 0
by simp
have (\f. sum’ f U) € hom (sum__group U (AS. chain__group (p — Suc 0)
(subtopology X S)))
(chain__group (p — Suc 0) X)
and inj: inj_on (Af. sum’ f U) (carrier (sum__group U (AS. chain__group
(p — Suc 0) (subtopology X S))))
using iso__chain__group__sum [OF assms, of p—1] by (auto simp: iso__def
bij_betw__def)
then have eq: [f € (Il i€U. singular_chain_set (p — Suc 0) (subtopology
X i));
finite {SeU. fS#0}; sum’" fU=0;,ScU] = fS=20forfS
apply (simp add: group__hom__def group__hom__axioms__def group__hom.inj _on__one__iff
[of _ chain__group (p—1) X])
apply (auto simp: carrier_sum__group fun__eq iff that)
done
show ?rhs
proof clarify
fix S assume S € U
then show chain_boundary p (fS) = 0
using eq [of restrict (chain_boundary p o f) U S] rfin f eq0
by (simp add: singular__chain__boundary cong: conj _cong)
qed
next
assume ?rhs
then show %cb = 0
by (force simp: chain__boundary__sum intro: sum.mono_neutral_right)
qed
moreover
have (AS. S € U — singular__chain p (subtopology X S) (f 5))
= singular_chainp X O x|z €U Nfz # 0. fx)
by (metis (no__types, lifting) mem__Collect__eq singular__chain__subtopology
singular_chain__sum)
ultimately show ?thesis
using [ by (auto simp: carrier _sum__group sum.G_def singular_cycle
PiE_iff)
qed
have singular_relcycle_set p X {} C carrier (chain__group p X)
using subgroup.subset subgroup _singular _relcycle by blast
then show (Af. sum’ f U) * (carrier ?SG N ?PI) = singular_relcycle_set p X
{}

using iso B unfolding Group.iso_def
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by (smt (verit, del_insts) Int_iff bij betw_def image__iff mem_ Collect eq
subset__antisym subset_iff)
qged (auto simp: assms iso__chain__group _sum)
then show ?thesis
by (simp add: relcycle__group__def sum__group__subgroup__generated subgroup__singular_relcycle)
qed

proposition homology additivity axiom__gen:
assumes disj: pairwise disjnt U and UU: |JU = topspace X
and subs: \NC T. [compactin X C; path__connectedin X C; T € U; — disjnt C
Tl= CCT
shows (\z. gfinprod (homology group p X)
(AV. hom__induced p (subtopology X V) {} X {} id (z V) U)
€ iso (sum__group U (AS. homology__group p (subtopology X S))) (homology _group
p X)
(is ?h € iso ?SG ?HQ)
proof (cases p < 0)
case True
then have [simp]: gfinprod (singleton__group undefined) (Av. undefined) U =
undefined
by (metis Pi_I carrier_singleton__group comm,__group__def comm,__monoid.gfinprod__closed
singletonD singleton__abelian__group)
show ?thesis
using True
apply (simp add: iso__def relative__homology__group__def hom__induced_ trivial
carrier_sum,__group)
apply (auto simp: singleton__group__def bij betw__def inj_on_ def fun__eq iff)
done
next
case Fulse
then obtain n where peq: p = int n
by (metis int_ops(1) linorder_neqE__linordered__idom pos_int__cases)
interpret comm__group homology__group p X
by (rule abelian__homology__group)
show ?thesis
proof (simp add: iso__def bij betw _def, intro conjI)
show ?h € hom 9SG ?HG
by (rule hom__group__sum) (simp__all add: hom__induced__hom)
then interpret group hom ?SG ?HG ?h
by (simp add: group hom__def group _hom__azioms_ def)
have carrSG: carrier ?25G
= (Az. ASelU. homologous _rel_set n (subtopology X S) {} (z 9))
“(carrier (sum__group U (AS. releycle_group n (subtopology X S) {}))) (is
2lhs = ?rhs)
proof
show ?2lhs C ?rhs
proof (clarsimp simp: carrier _sum__group carrier__relative_homology group

peq)
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fix z
assume z: z € (Ilg SeU. homologous_rel_set n (subtopology X S) {} *
singular_relcycle__set n (subtopology X S) {})
and fin: finite {S € U. z S # singular_relboundary__set n (subtopology X S)
{1}
then obtain ¢ where c: YV Seld. singular_relcycle n (subtopology X S) {}
(¢ 9)
A z S = homologous_rel_set n (subtopology X S) {} (¢ S)
by (simp add: PiE_def Pi_def image_def) metis
let ?f = ASelU. if singular_relboundary n (subtopology X S) {} (¢ S) then
0else ¢ S
have z = (ASe€ld. homologous rel set n (subtopology X S) {} (?fS))
by (smt (verit) PiE_restrict ¢ homologous_rel_eq relboundary re-

strict_apply restrict__ext singular_relboundary 0 z)
moreover have ?f € (Ilg i€U. singular_relcycle_set n (subtopology X 1)
{H

by (simp add: ¢ fun_eq iff PiE_arb [OF z])
moreover have finite {i € U. ?fi # 0}
using z ¢ by (intro finite__subset [OF _ fin]) auto
ultimately
show z € (Az. AS€U. homologous rel_set n (subtopology X S) {} (z S)) *
{z € NIy i€l. singular_relcycle_set n (subtopology X ©) {}. finite {i €
U. xi# 0}}
by blast
qed
show 2rhs C ?lhs
by (force simp: peq carrier_sum__group carrier_relative__homology__group
homologous_rel_set_eq relboundary
elim: rev_finite__subset)
qed
have gf: gfinprod (homology_group p X)
(AV. hom__induced n (subtopology X V) {} X {} id
((ASeU. homologous__rel_set n (subtopology X S) {} (2 5)) V))

= homologous_rel_set n X {} (sum’ zU) (is ?lhs = ?rhs)
if z: z € carrier (sum__group U (AS. relcycle_group n (subtopology X S) {}))
for 2
proof —
have hom_pi: (AS. homologous_rel_set n X {} (z S)) € U — carrier
(homology__group p X)
using z
by (intro Pi_I) (force simp: peq carrier _sum__group carrier__relative__homology _group
singular__chain__subtopology singular_cycle)
have fin: finite {S € U. 2 S # 0}
using that by (force simp: carrier__sum__group)
have ?lhs = gfinprod (homology group p X) (AS. homologous rel set n X
{y 9 u
proof (rule gfinprod_cong [OF refl Pi_I])
fix ¢
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show i € U =simp=> hom_induced (int n) (subtopology X 7) {} X {} id
((AS€U. homologous__rel__set n (subtopology X S) {} (2 5)) 4)
= homologous_rel_set n X {} (z 1)
using that
by (auto simp: peq simp__implies_def carrier _sum__group PiE_def Pi_def
chain_map__ident singular_cycle hom__induced__chain__map)
qed (simp add: hom_induced__carrier peq)
also have ... = gfinprod (homology_group p X)
(AS. homologous_rel_setn X {} (28)) {SeU. 25 # 0}
proof —
have homologous_rel_set n X {} 0 = singular_relboundary_set n X {}
by (metis homologous_rel__eq _relboundary singular_relboundary_0)
with hom_ pi peq show ?Zthesis
by (intro gfinprod_mono_neutral _cong_right) auto
qed
also have ... = ?rhs
proof —
have gfinprod (homology _group p X) (AS. homologous_rel_set n X {} (z
S)) F
= homologous_rel_set n X {} (sum z F)
if finite F F C{SelU.z85 # 0} for F
using that
proof (induction F)
case empty
have 140009y group p X = homologous_rel_set n X {} 0
by (metis homologous_rel _eq relboundary one__relative__homology _group
peq singular_relboundary_0)
then show ?case
by simp
next
case (insert S F)
with z have pi: (AS. homologous_rel_set n X {} (2 S)) € F — carrier
(homology__group p X)
homologous_rel_set n X {} (2 S) € carrier (homology__group p X)
by (force simp: peq carrier _sum__group carrier_relative__homology__group
singular_chain__subtopology singular__cycle)+
have hom: homologous_rel_set n X {} (2 S) € carrier (homology_group
p X)
using insert z
by (force simp: peq carrier__sum__group carrier__relative__homology__group
singular_chain__subtopology singular_cycle)
show ?Zcase
using insert z
proof (simp add: pi)
have Az. homologous reln X {} (2 S + sum z F)
= Ju v. homologous_reln X {} (z5) u A homologous_rel n X {} (sum
zF)vAhz=u+v
by (metis (no__types, lifting) diff _add_cancel diff diff eq2 homolo-
gous__rel_def homologous__rel_refl)
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with insert z
show homologous_rel_set n X {} (2 S) ®@pomology group p X homolo-
gous_rel_set n X {} (sum z F)
= homologous_rel_set n X {} (z S + sum z F)
using insert z by (auto simp: peq homologous__rel _add mult_relative _homology__group)
qed
qed
with fin show %thesis
by (simp add: sum.G_def)
qged
finally show ?thesis .
qed
show inj_on ?h (carrier 2SG)
proof (clarsimp simp add: inj_on__one_iff)
fix z
assume z: z € carrier (sum__group U (AS. homology__group p (subtopology X

S5)))
and 1: gfinprod (homology_group p X) (AV. hom_induced p (subtopology
XV Xx{3idEv))u

= 1h0mology_group p X
have feq: (AS€U. homologous_rel_set n (subtopology X S) {} (2 5))

= (ASeu. lhomology_group p (subtopology X S))
if 2: 2 € carrier (sum__group U (AS. relcycle _group n (subtopology X S) {}))
and eq: homologous_rel_set n X {} (sum’ 2z U) = 1pomology group p X
for 2
proof —
have z € (Ilg SeU. singular_relcycle_set n (subtopology X S) {}) finite {S
eEU. 25 # 0}
using z by (auto simp: carrier _sum__group)
have singular_relboundary n X {} (sum’ z U)
using eq singular_chain_imp__relboundary by (auto simp: relative__homology _group_ def
peq)
then obtain d where scd: singular_chain (Suc n) X d and cbd: chain__boundary
(Sucn) d=sum’ zU
by (auto simp: singular_boundary)
have *: 3d. singular_chain (Suc n) (subtopology X S) d A chain_boundary
(Sucn)d=2z8
if S eU for S
proof —
have inj": inj_on (Af. sum’ f U) {z € llg SEU. singular_chain__set (Suc
n) (subtopology X S). finite {S e U. z S # 0}}
using iso__chain__group__sum [OF assms, of Suc n]
by (simp add: iso__iff _mon__epi mon__def carrier_sum__group)
obtain w where w: w € (Ilg SE€U. singular_chain__set (Suc n) (subtopology
X 8))
and finw: finite {S € U. w S # 0}
and deq: d = sum’ w U
using iso__chain__group_sum [OF assms, of Suc n] scd
by (auto simp: iso_iff _mon__epi epi_def carrier_sum__group set__eq_iff)
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with ¢S € U» have scwS: singular__chain (Suc n) (subtopology X S) (w S)
by blast
have inj_on (Af. sum’ f U) {z € Iy SEU. singular_chain_set n
(subtopology X S). finite {S € U. © S # 0}}
using iso__chain__group__sum [OF assms, of n]
by (simp add: iso_iff _mon__epi mon__def carrier_sum__group)
then have (AS€lU. chain_boundary (Suc n) (w S)) = 2z
proof (rule inj _onD)
have sum’ (AS€U. chain_boundary (Suc n) (w S)) U = sum’ (chain__boundary
(Sucn)ow){SelU. wS # 0}
by (auto simp: o__def intro: sum.mono_neutral _right’)
also have ... = chain_boundary (Suc n) d
by (auto simp: sum.G_def deq chain_boundary sum finw intro:
finite__subset [OF __ finw] sum.mono__neutral _left)
finally show sum’ (AS€U. chain_boundary (Suc n) (w S)) U = sum’ z
u
by (simp add: cbd)
show (ASeU. chain_boundary (Suc n) (w S)) € {z € g SelU.
singular__chain__set n (subtopology X S). finite {S € U. = S # 0}}
using w by (auto simp: PiE_iff singular_chain_boundary_alt cong:
rev__conj__cong intro: finite__subset [OF __ finw])
show z € {z € Iy S€U. singular_chain__set n (subtopology X S). finite
{SelU.zS #0}}

using z by (simp__all add: carrier _sum__group PiE__iff singular_cycle)

qged
with «S € U» scwS show ?thesis
by force
qed

show ?thesis
using that
by (force intro!: restrict _ext simp add: singular_boundary relative__homology _group _def
homologous__rel_set_eq relboundary peq)
ged
show z = (AS€U. 1homology7group p (subtopology X S))
using z 1 carrSG gf
by (auto simp: peq feq)
qed
show ?h ¢ carrier 2SG = carrier HG
proof safe
fix A
assume A € carrier (homology _group p X)
then obtain y where y: singular_relcycle n X {} y and zeq: A = homolo-
gous_rel_setn X {} y
by (auto simp: peq carrier_relative__homology__group)
then obtain z where = € carrier (sum_group U (AT. relcycle_group n
(subtopology X T) {}))
y = sum’ zU
using iso__cycle__group__sum [OF assms, of n| that by (force simp: iso__iff mon__epi

epi_def)
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then show A € (Az. gfinprod (homology_group p X) (AV. hom_induced p
(subtopology X V) {} X {} id (z V)) U) *
carrier (sum__group U (AS. homology group p (subtopology X S)))
apply (simp add: carrSG image__comp o__def xeq)
apply (simp add: hom__induced__carrier peq flip: gf cong: gfinprod__cong)
done
qed auto
qed
qed

corollary homology_additivity__axiom:
assumes disj: pairwise disjint U and UU: |JU = topspace X
and ope: Av. v € U = openin X v
shows (\z. gfinprod (homology group p X)
(Av. hom__induced p (subtopology X v) {} X {} id (z v)) U)
€ iso (sum__group U (AS. homology__group p (subtopology X S))) (homology__group
p X)
proof (rule homology _additivity _axiom__gen [OF disj UU])
fix CT
assume
compactin X C' and
path__connectedin X C' and
T €U and
- disjnt C' T
then have x: AB. [openin X T; TN BN C={}; C C TU B; openin X B]
= BN C={}
by (meson connectedin disjnt__def disjnt__sym path__connectedin__imp__connectedin)
have C C Union U
by (simp add: UU <compactin X C» compactin__subset_topspace)
moreover have | J (U — {T}) N C = {}
proof (rule x)
show TNl U - {T}H nC={}
using «T € U» disj disjointD by fastforce
show CC TUulJ U —-{T})
using «C C |J U» by fastforce
qed (auto simp: «<T € U> ope)
ultimately show C C T
by blast
qed

0.2.4 Special properties of singular homology

In particular: the zeroth homology group is isomorphic to the free abelian
group generated by the path components. So, the "coefficient group" is the
integers.
lemma iso_integer_zeroth__homology__group__auz:

assumes X: path_connected_space X and f: singular_simpler 0 X f and [
singular_simplex 0 X f'
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shows homologous_rel 0 X {} (frag_of f) (frag_of f')
proof —
let 2p = Aj. if j = 0 then 1 else 0
have f ?p € topspace X ' ?p € topspace X
using assms by (auto simp: singular__simplez_def continuous_map__def)
then obtain g where g: pathin X ¢
and g0: g 0 = f %
and gl: g1 =f' %
using assms by (force simp: path__connected_space__def)
then have contg: continuous _map (subtopology euclideanreal {0..1}) X g
by (simp add: pathin__def)
have singular__chain (Suc 0) X (frag_of (restrict (g o (Az.  0)) (standard__simplex
1)
proof —
have continuous _map (subtopology (powertop_real UNIV) (standard_simplex
(Suc 0)))
euclideanreal (Az. z 0)
by (metis (mono__tags) UNIV__I continuous_map__from__subtopology contin-
uous_map__product__projection)
then have continuous_map (subtopology (powertop__real UNIV') (standard _simplex
(Suc 0)))
(top_of _set {0..1}) (A\z. z 0)
unfolding continuous map_in__subtopology g
by (auto simp: continuous_map__in_subtopology standard__simplex__def g)
moreover have continuous _map (top_of set {0..1}) X g
using contg by blast
ultimately show ?thesis
by (force simp: singular_chain_of chain_boundary_of singular _simplex_def
continuous_map__compose)
qed
moreover
have chain__boundary (Suc 0) (frag_of (restrict (g o (Ax. z 0)) (standard__simplex
1)) =
frag_of f — frag_of [’
proof —
have singular_face (Suc 0) 0 (g o (Az. 2 0)) = f
singular_face (Suc 0) (Suc 0) (g o (Mz. 2 0)) = f'
using assms
by (auto simp: singular_face_def singular _simplex_def extensional _def sim-
plical_face_def standard__simplez_0 g0 g1)
then show ?thesis
by (simp add: singular_chain_of chain__boundary_ of)
qed
ultimately
show ?thesis
by (auto simp: homologous_rel_def singular_boundary)
qed
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proposition iso__integer_zeroth__homology _group:
assumes X: path_ connected_space X and f: singular_simplex 0 X f
shows pow (homology__group 0 X) (homologous_rel_set 0 X {} (frag_of f))
€ iso integer__group (homology_group 0 X) (is pow ?H %q € iso __ ?H)
proof —
have srf: singular_relcycle 0 X {} (frag_of f)
by (simp add: chain__boundary_def f singular_chain__of singular_cycle)
then have qcarr: ?q € carrier ?H
by (simp add: carrier_relative_homology _group 0)
have I: homologous_rel_set 0 X {} a € range (An. homologous_rel_set 0 X {}
(frag_cmul n (frag_of f)))
if singular_relcycle 0 X {} a for a
proof —
have singular_chain 0 X d —
homologous_rel_set 0 X {} d € range (An. homologous_rel_set 0 X {}
(frag_cmul n (frag_of f))) for d
unfolding singular chain__def
proof (induction d rule: frag induction)
case zero
then show ?case
by (metis frag_cmul_zero rangel)
next
case (one )
then have 3i. homologous_rel_set 0 X {} (frag_cmul i (frag_of f))
= homologous_rel_set 0 X {} (frag_of x)
by (metis (no_types) iso_integer_zeroth__homology_group__aux [OF X] f
frag_cmul_one homologous__rel_eq mem__Collect__eq)
with one show ?Zcase
by auto
next
case (diff a b)
then obtain ¢ d where
homologous_rel 0 X {} (a — b) (frag_cmul ¢ (frag_of f) — frag_cmul d
(frag_of f))
using homologous _rel _diff by (fastforce simp add: homologous_rel_set_eq)
then show ?case
by (rule_tac z=c—d in image_eql) (auto simp: homologous_rel_set eq
frag_cmul__diff _distrib)
qed
with that show ?thesis
unfolding singular_relcycle def by blast

qed

have 2: n =0

if homologous_rel_set 0 X {} (frag_cmul n (frag_of f)) = L elative_homology_group 0 X {}
for n

proof —

have singular_chain (Suc 0) X d
= frag_extend (A\z. frag_of f) (chain_boundary (Suc 0) d) = 0 for d
unfolding singular chain__ def
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proof (induction d rule: frag_induction)
case (one )
then show ?case
by (simp add: frag_extend_ diff chain_boundary_of)
next
case (diff a b)
then show ?case
by (simp add: chain__boundary_ diff frag extend diff)
qged auto
with that show ?thesis
by (force simp: singular_boundary relative__homology__group__def homolo-
gous__rel__set__eq relboundary frag _extend _cmul)
qed
interpret GH : group__hom integer__group ?H ([T 2p) %q
by (simp add: group _hom__def group__hom__azioms__def qcarr group.hom__integer _group _pow)
have eq: pow ?H ?q = (An. homologous_rel_set 0 X {} (frag_cmul n (frag_of
)
proof
fix n
have frag of f
€ carrier (subgroup__generated
(free__Abelian__group (singular_simplex_set 0 X)) (singular_relcycle__set
0X (1)
by (metis carrier_relcycle__group chain__group__def mem__Collect_eq relcy-
cle__group_def srf)
then have ff: frag of f mrelcycle_group ox{(}n= frag_cmul n (frag_of f)
by (simp add: releycle__group__def chain__group _def group.int_pow__subgroup__generated
)
show pow ?H ?q n = homologous_rel_set 0 X {} (frag_cmul n (frag_of f))
apply (rule subst [OF right_coset_singular_relboundary))
by (simp add: [f normal.FactGroup__int_pow normal__subgroup__singular__relboundary__relcycle
relative__homology__group__def srf)
qed
show ?thesis
apply (subst GH .iso__iff)
apply (simp add: eq)
apply (auto simp: carrier _relative_homology group_0 1 2)
done
qed

corollary isomorphic_integer_zeroth__homology__group:
assumes X: path__connected_space X topspace X # {}
shows homology__group 0 X = integer__group
proof —
obtain ¢ where a: a € topspace X
using assms by blast
have singular_simplex 0 X (restrict (Az. a) (standard__simplex 0))
by (simp add: singular_simplex_def a)
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then show %thesis

using X group.iso__sym group__integer__group is_isol iso__integer _zeroth__homology group
by blast
qed

corollary homology__coefficients:

topspace X = {a} = homology__group 0 X = integer _group

using isomorphic__integer_zeroth__homology group path__connectedin__topspace
by fastforce

proposition zeroth__homology__group:
homology _group 0 X = free_Abelian__group (path__components of X)
proof —
obtain h where h: h € iso (sum__group (path__components_of X) (AS. homol-
ogy__group 0 (subtopology X S)))
(homology__group 0 X)
proof (rule that [OF homology__additivity__axiom__gen])
show disjoint (path__components of X)
by (simp add: pairwise__disjoint_path__components of)
show | (path__components_of X) = topspace X
by (rule Union__path__components_of)
next
fix CT
assume path_connectedin X C T € path__components_of X — disjnt C' T
then show C C T
by (metis path__components _of mazimal disjnt_sym)+
qed
have homology group 0 X = sum__group (path__components_of X) (AS. homol-
ogy__group 0 (subtopology X S))
by (rule group.iso__sym) (use h is_iso_def in auto)
also have ... 2 sum_ group (path_components_of X) (\i. integer__group)
proof (rule iso__sum__groupl)
show homology__group 0 (subtopology X i) = integer _group if i € path__components _of
X for ¢
by (metis that isomorphic__integer _zeroth__homology _group nonempty_path__components of
path__connectedin__def path__connectedin__path__components _of topspace__subtopology__subset)
qed auto
also have ... 2 free_Abelian__group (path__components_of X)
using path__connectedin__path__components__of nonempty_path__components_of
by (simp add: isomorphic__sum__integer _group path__connectedin__def)
finally show #thesis .
qed

lemma isomorphic__homology imp__path__components:
assumes homology_group 0 X = homology_group 0'Y
shows path__components _of X = path__components_of Y
proof —
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have free Abelian_group (path__components of X) = homology group 0 X
by (rule group.iso__sym) (auto simp: zeroth__homology__group)
also have ... = homology_group 0'Y
by (rule assms)
also have ... = free Abelian_group (path__components_of V)
by (rule zeroth__homology__group)
finally have free Abelian__group (path__components _of X) = free_ Abelian__group
(path__components_of Y) .
then show ?thesis
by (simp add: isomorphic__free_ Abelian__groups)
qed

lemma isomorphic__homology imp_path__connectedness:
assumes homology_group 0 X = homology_group 0'Y
shows path__connected__space X <— path__connected__space Y
proof —
obtain h where h: bij betw h (path__components_of X) (path__components of
v)
using assms isomorphic_homology imp__path__components eqpoll_def by blast
have I: path__components_of X C {a} = path__components_of Y C {h a} for
a
using h unfolding bij betw def by blast
have 2: path_components_of Y C {a}
= path__components_of X C {inv_into (path__components_of X) h a}
for a
using h [THEN bij_betw_inv_into] unfolding bij betw def by blast
show ?thesis
unfolding path_connected space_iff components subset singleton
by (blast intro: dest: 1 2)
qed

0.2.5 More basic properties of homology groups, deduced
from the E-S axioms

lemma trivial_homology _group:
p < 0 = trivial__group(homology__group p X)
by simp

lemma hom__induced__empty hom:

(hom__induced p X {} X' {} f) € hom (homology__group p X) (homology__group
p X)

by (simp add: hom__induced _hom)

lemma hom__induced__compose__empty:
[continuous_map X Y f; continuous_map Y Z g]
= hom__induced p X {} Z {} (g o f) = hom_induced p Y {} Z {} g o
hom_induced p X {} Y {} f
by (simp add: hom__induced _compose)
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lemma homology homotopy__empty:
homotopic_with (Ah. True) X Y f g = hom_induced p X {} Y {} f =
hom__induced p X {} Y {} ¢
by (simp add: homology__homotopy__azxiom)

lemma homotopy equivalence__relative__homology _group_isomorphisms:
assumes contf: continuous_map X Y f and fim: f€ S — T
and contg: continuous_map Y X gand gim: g € T — S
and gf: homotopic_with (Ah. h € S — §) X X (go f) id
and fg: homotopic_with M\k. k € T - T) Y'Y (f o g) id
shows group__isomorphisms (relative__homology__group p X S) (relative__homology__group
pYT)
(hom_induced p X S Y T f) (hom_induced p Y T X S g)
unfolding group isomorphisms__def
proof (intro conjl balll)
fix z
assume z: z € carrier (relative__homology group p X S)
then show hom_induced p Y T X S g (hom_induced p X S Y T fz) =z
using homology _homotopy axiom [OF gf, of p]
by (simp add: contf contg fim gim hom__induced__compose’ hom__induced_id)
next
fix y
assume y € carrier (relative_homology_group p Y T)
then show hom_induced p X S Y T f (hom_inducedp Y T X Sgy) =y
using homology__homotopy__aziom [OF fg, of p)
by (simp add: contf contg fim gim hom__induced__compose’ hom__induced_id)
qed (auto simp: hom__induced hom)

lemma homotopy equivalence__relative__homology__group _isomorphism:
assumes continuous_map X Y f and fim: f€ § - T
and continuous_map Y X gand gim: g€ T — S
and homotopic_with (Ah. h€ S — §) X X (go f) id
and homotopic_with (Ak. k€ T — T) Y'Y (f o g) id
shows (hom_induced p X S Y T f) € iso (relative_homology group p X S)
(relative__homology_group p Y T)
using homotopy__equivalence__relative__homology__group__isomorphisms [OF assms]
group__isomorphisms__imp__iso
by metis

lemma homotopy equivalence__homology group__isomorphism:
assumes continuous_map X Y f
and continuous_map Y X g
and homotopic_with (Ah. True) X X (g o f) id
and homotopic_with (A\k. True) Y'Y (f o g) id
shows (hom__induced p X {} Y {} f) € iso (homology__group p X) (homology__group
pY)
using assms by (intro homotopy__equivalence__relative__homology__group__isomorphism)



Homology Groups.thy 123

auto

lemma homotopy equivalent__space__imp__isomorphic__relative__homology _groups:
assumes continuous_map X Y fand fim: f € S — T
and continuous_map Y X gand gim: g€ T — §
and homotopic_with (Ah. h € S = S) X X (g o f) id
and homotopic_with (Ak. k€ T — T) Y'Y (f o g) id
shows relative__homology__group p X S = relative__homology_group p Y T
using homotopy__equivalence__relative _homology_group isomorphism [OF assms]
unfolding is_iso_def by blast

lemma homotopy_equivalent__space__imp__isomorphic__homology__groups:
X homotopy__equivalent__space Y = homology__group p X = homology__group
pY
unfolding homotopy equivalent space _def
by (auto intro: homotopy__equivalent _space__imp__isomorphic_relative__homology _groups)

lemma homeomorphic__space imp__isomorphic__homology _groups:
X homeomorphic__space Y = homology__group p X = homology_group p Y
by (simp add: homeomorphic__imp _homotopy _equivalent _space homotopy _equivalent space__imp__isomorphic__he

lemma trivial relative__homology group_ gen:
assumes continuous_map X (subtopology X S) f
homotopic_with (Ah. True) (subtopology X S) (subtopology X S) fid
homotopic_with (Mk. True) X X fid
shows trivial__group(relative__homology group p X S)
proof (rule exact_seq imp_ triviality)
show ezxact_seq ([homology_group (p—1) X,
homology__group (p—1) (subtopology X S),
relative__homology group p X S, homology_group p X, homol-
ogy__group p (subtopology X S)],
[hom__induced (p—1) (subtopology X S) {} X {} id,
hom__boundary p X S,
hom__induced p X {} X S id,
hom__induced p (subtopology X S) {} X {} id])
using homology exactness axiom__1 homology exactness axiom__2 homol-
0gy__exactness _axiom__3
by (metis exact_seq cons_iff)
next
show hom__induced p (subtopology X S) {} X {} id
€ iso (homology__group p (subtopology X S)) (homology__group p X)
hom__induced (p—1) (subtopology X S) {} X {} id
€ iso (homology__group (p—1) (subtopology X S)) (homology_group (p—1)
X)
using assms
by (auto intro: homotopy__equivalence__relative__homology _group__isomorphism)
qed
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lemma trivial_relative__homology group topspace:
trivial__group(relative__homology group p X (topspace X))
by (rule trivial_relative__homology__group__gen [where f=id]) auto

lemma trivial relative__homology group__empty:

topspace X = {} = trivial_group(relative__homology_group p X S)

by (metis Int_absorb2 empty subsetl relative__homology group_ restrict triv-
ial__relative__homology__group _topspace)

lemma trivial _homology__group__empty:
topspace X = {} = trivial_group(homology__group p X)
by (simp add: trivial_relative__homology _group__empty)

lemma homeomorphic_maps_relative__homology group isomorphisms:
assumes homeomorphic_maps X Y fgand im: fe€ S > Tge T — S
shows group _isomorphisms (relative__homology__group p X S) (relative__homology__group
pYT)
(hom__induced p X S Y T f) (hom_induced p Y T X S g)
proof —
have fg: continuous _map X Y f continuous_map Y X g
(Vzetopspace X. g (fz) = x) (Vy€topspace Y. f (g y) = v)
using assms by (simp__all add: homeomorphic_maps__def)
have group isomorphisms
(relative__homology__group p X (topspace X N S))
(relative__homology__group p Y (topspace Y N T))
(hom__induced p X (topspace X N S) Y (topspace Y N T) f)
(hom__induced p Y (topspace Y N T) X (topspace X N S) g)
proof (rule homotopy__equivalence__relative _homology group isomorphisms)
show homotopic_with (Ah. h € (topspace X N S) — topspace X N S) X X (g
of)id
using fg im by (auto intro: homotopic_with__equal continuous _map__compose)
next
show homotopic_with (Ak. k € (topspace Y N T) — topspace Y N T) Y'Y (f
o g) id
using fg im by (auto intro: homotopic_with__equal continuous _map__compose)
qged (use im fg in <auto simp: continuous_map__def>)
then show ?thesis
by simp
qed

lemma homeomorphic_map_ relative__homology_iso:

assumes f: homeomorphic_map X Y f and S: § C topspace X f S =T

shows (hom_induced p X S Y T f) € iso (relative_homology_group p X S)
(relative__homology__group p Y T)
proof —

obtain g where g: homeomorphic_maps X Y f g

using homeomorphic_map_maps f by metis

then have group__isomorphisms (relative__homology__group p X S) (relative_homology__group

pYT)
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(hom_induced p X S Y T f) (hom_inducedp Y T X S g)
using S g by (auto simp: homeomorphic_maps__def introl: homeomorphic_maps__relative__homology _group__ison
then show ?thesis
by (rule group_isomorphisms_imp__iso)
qed

lemma inj on_hom_induced_section__map:
assumes section_map X Y f
shows inj_on (hom_induced p X {} Y {} f) (carrier (homology_group p X))
proof —
obtain g where cont: continuous_map X Y f continuous_map Y X g
and gf: Az. x € topspace X = ¢ (fz) =z
using assms by (auto simp: section__map__def retraction__maps_def)
show ?thesis
proof (rule inj on__inversel)
fix z
assume z: z € carrier (homology__group p X)
have continuous_map X X (Az. g (f z))
by (metis (no__types, lifting) continuous_map__eq continuous_map_id gf
id_apply)
with z show hom_induced p Y {} X {} g (hom_induced p X {} Y {} fz) =

x
using hom__induced__compose__empty [OF cont, symmetric]
by (metis comp__apply cont continuous_map__compose gf hom__induced_id__gen)
qed
qed

corollary mon__hom__induced__section__map:

assumes section_map X Y f

shows (hom__induced p X {} Y {} f) € mon (homology__group p X) (homology__group
pY)

by (simp add: hom__induced__empty_hom inj_on__hom_induced _section__map
[OF assms] mon__def)

lemma surj hom__induced_ retraction__map:
assumes retraction_map X Y f
shows carrier (homology_group p Y) = (hom_induced p X {} Y {} f) * carrier
(homology__group p X)
(is ?lhs = ?rhs)
proof —
obtain g where cont: continuous_map Y X g continuous _map X Y f
and fg: \z. z € topspace Y = [ (gz) =z
using assms by (auto simp: retraction_map_ def retraction__maps__def)
have © = hom_induced p X {} Y {} f (hom_induced p Y {} X {} g x)
if z: © € carrier (homology group p Y) for z
proof —
have continuous_map Y'Y (Az. f (g z))
by (metis (no_types, lifting) continuous_map_eq continuous_map__id fg
id_apply)
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with z show ?thesis
using hom__induced__compose__empty [OF cont, symmetric]
by (metis comp__def cont continuous _map__compose fg hom__induced_id__gen)
qed
moreover
have (hom__induced p Y {} X {} g ) € carrier (homology__group p X)
if z € carrier (homology group p Y) for z
by (metis hom__induced)
ultimately have ?lhs C ?rhs
by auto
moreover have ?rhs C ?lhs
using hom__induced_hom [of p X {} Y {} f]
by (simp add: hom__def flip: image__subset iff funcset)
ultimately show ¢thesis
by auto
qed

corollary epi_hom__induced_ retraction__map:

assumes retraction._map X Y f

shows (hom__induced p X {} Y {} f) € epi (homology__group p X) (homology__group
pY)

using assms epi_iff subset hom__induced _empty__hom surj hom__induced__retraction_map
by fastforce

lemma homeomorphic_map__homology_ iso:

assumes homeomorphic_map X Y f

shows (hom__induced p X {} Y {} f) € iso (homology__group p X) (homology__group
pY)

using assms by (simp add: homeomorphic_map_ relative _homology__iso)

lemma inj on_hom_induced_inclusion:
assumes S = {} V S retract_of _space X
shows inj _on (hom__induced p (subtopology X S) {} X {} id) (carrier (homology__group
p (subtopology X S)))
using assms
proof
assume S = {}
then have trivial _group(homology_group p (subtopology X S))
by (auto simp: topspace__subtopology intro: trivial _homology group _empty)
then show ?thesis
by (auto simp: inj_on__def trivial _group__def)
next
assume S retract_of space X
then show ?thesis
by (simp add: retract_of space__section__map inj_on__hom__induced__section__map)
qed
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lemma trivial_homomorphism__hom__boundary__inclusion:
assumes S = {} V S retract_of space X
shows trivial_homomorphism
(relative__homology__group p X S) (homology__group (p—1) (subtopology
X 9))
(hom__boundary p X S)
using exact_seq _mon__eq triviality inj _on__hom__induced__inclusion [OF assms]
by (metis exact_seq _cons__iff homology exactness axiom__1 homology exactness axiom__2)

lemma epi__hom__induced__relativization:

assumes S = {} V S retract_of _space X

shows (hom__induced p X {} X S id) ¢ carrier (homology group p X) = carrier
(relative__homology__group p X S)

using exact_seq epi_eq triviality trivial _homomorphism__hom__boundary _inclusion

by (metis assms ezact _seq cons_iff homology__exactness__axiom__1 homology _exactness_axiom_ 2)

lemmas short _eract sequence__hom__induced__inclusion = homology__exractness axiom 3

lemma group isomorphisms__homology__group prod_ retract:
assumes S = {} V S retract_of space X
obtains H K where
subgroup H (homology__group p X)
subgroup IC (homology__group p X)
Az, y). = D homology_group p X y)
€ iso (DirProd (subgroup__generated (homology _group p X) H) (subgroup__generated
(homology__group p X) K))
(homology__group p X)
(hom__induced p (subtopology X S) {} X {} id)
€ iso (homology__group p (subtopology X S)) (subgroup__generated (homology _group
p X) H)
(hom__induced p X {} X S id)
€ iso (subgroup__generated (homology__group p X) K) (relative__homology__group
pXS)
using assms
proof
assume S = {}
show thesis
proof (rule splitting_lemma__left [OF homology__exactness__axiom_3 [of p]])
let ?f = Az. one(homology__group p (subtopology X {}))
show ¢f € hom (homology__group p X) (homology__group p (subtopology X {}))
by (simp add: trivial_hom)
have tg: trivial_group (homology__group p (subtopology X {}))
by (auto simp: topspace__subtopology trivial _homology group _empty)
then have [simp|: carrier (homology_group p (subtopology X {})) = {one
(homology__group p (subtopology X {}))}
by (auto simp: trivial__group_ def)
then show ?f (hom_induced p (subtopology X {}) {} X {} idz) =z
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if « € carrier (homology__group p (subtopology X {})) for z
using that by auto
show inj_on (hom__induced p (subtopology X {}) {} X {} id)
(carrier (homology__group p (subtopology X {})))
by (meson inj_on__hom__induced__inclusion)
show hom__induced p X {} X {} id ¢ carrier (homology_group p X) = carrier
(homology__group p X)
by (metis epi_hom__induced _relativization)
next
fix H K
assume *: H < homology_group p X K < homology group p X
HNKC {1homology7group P X}
hom__induced p (subtopology X {}) {} X {} id
€ Group.iso (homology_group p (subtopology X {})) (subgroup generated
(homology__group p X) H)
hom__induced p X {} X {} id
€ Group.iso (subgroup__generated (homology__group p X) K) (relative__homology__group
» X {})
H <#>homology _group p X K = carrier (homology_group p X)
show thesis
proof (rule that)
show (A(z, y). = Dhomology_group p X y)
€ iso (subgroup__generated (homology__group p X) H XX subgroup__generated
(homology__group p X) K)
(homology__group p X)
using * by (simp add: group_disjoint__sum.iso__group_ mul normal_def
group__disjoint_sum__def)
qged (use «S = {}» * in <auto simp: normal_def»)
qed
next
assume S retract_of space X
then obtain r where S C topspace X and r: continuous_map X (subtopology
XS)r
and re¢: Ve € S.rx ==z
by (auto simp: retract_of space__def)
show thesis
proof (rule splitting lemma__left [OF homology _exactness _axiom 3 [of p]])
let ?f = hom_induced p X {} (subtopology X S) {} r
show ?f € hom (homology_group p X) (homology__group p (subtopology X S))
by (simp add: hom__induced_empty_hom)
show eqz: ?f (hom__induced p (subtopology X S) {} X {} idz) =z
if © € carrier (homology__group p (subtopology X S)) for z
proof —
have hom__induced p (subtopology X S) {} (subtopology X S) {} rz ==z
by (metis <S C topspace X» continuous_map__from__subtopology hom__induced_id__gen
inf.absorb__iff2 r req that topspace__subtopology)
then show ?thesis
by (simp add: r hom__induced__compose [unfolded o__def fun__eq iff, rule_format,
symmetric])
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qged
then show inj_on (hom__induced p (subtopology X S) {} X {} id)
(carrier (homology__group p (subtopology X S)))

unfolding inj on_def by metis

show hom__induced p X {} X S id * carrier (homology_group p X) = carrier
(relative__homology__group p X S)
by (simp add: «S retract_of space X»> epi_hom__induced_relativization)
next

fix H K
assume *: ‘H < homology_group p X K < homology__group p X

HNKC {1homology7group P X}
H <#>homology _group p X K = carrier (homology__group p X)
hom__induced p (subtopology X S) {} X {} id
€ Group.iso (homology_group p (subtopology X S)) (subgroup__generated
(homology__group p X) H)
hom__induced p X {} X S id
€ Group.iso (subgroup__generated (homology__group p X) K) (relative__homology _group
p X S)
show thesis
proof (rule that)
show (A(z, y). = ®homology_group p X y)
€ iso (subgroup__generated (homology__group p X) H x x subgroup _generated
(homology__group p X) K)
(homology__group p X)
using *
by (simp add: group _disjoint__sum.iso__group_ mul normal__def group__disjoint__sum__def)
qed (use x in <auto simp: normal_def»)
qed
qed

lemma isomorphic__group _homology__group_prod__retract:
assumes S = {} V S retract_of space X
shows homology _group p X = homology__group p (subtopology X S) xx rela-
tive__homology_group p X S
(is ?lhs = ?rhs)
proof —
obtain H K where
subgroup H (homology__group p X)
subgroup K (homology__group p X)
and 1: (A(z, y). = Qhomology _group p X 0
€ iso (DirProd (subgroup__generated (homology _group p X) H) (subgroup__generated
(homology__group p X) K))
(homology__group p X)
(hom__induced p (subtopology X S) {} X {} id)
€ iso (homology__group p (subtopology X S)) (subgroup__generated (homology__group
p X) H)
(hom__induced p X {} X S id)
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€ iso (subgroup__generated (homology__group p X) K) (relative__homology__group
pXS)
using group__isomorphisms_homology__group_ prod_retract [OF assms| by blast
have ?lhs = subgroup__generated (homology group p X) H x x subgroup__generated
(homology__group p X) K
by (meson DirProd__group 1 abelian__homology__group comm__group__def group.abelian__subgroup__gene
group.iso__sym is_isol)
also have ... & ?rhs
by (meson 1(2) 1(8) abelian__homology__group comm__group__def group.DirProd__iso__trans
group.abelian__subgroup _generated group.iso__sym is_isol)
finally show ?thesis .
qed

lemma homology additivity explicit:
assumes openin X S openin X T disjnt S T and SUT: S U T = topspace X
shows (A(a,b).(hom__induced p (subtopology X S) {} X {} id a)
®homology7group p X
(hom__induced p (subtopology X T) {} X {} id b))
€ iso (DirProd (homology_group p (subtopology X S)) (homology group p
(subtopology X T)))
(homology__group p X)
proof —
have closedin X S closedin X T
using assms Un__commute disjnt_sym
by (metis Diff _cancel Diff _triv Un__Diff disjnt_def openin__closedin__eq sup__bot.right_neutral)+
with <openin X S» <openin X T» have SS: X closure_of S C X interior_of S
and TT: X closure_of T C X interior_of T
by (simp__all add: closure_of _closedin interior_of _openin)
have [simp]: SUT - T=SSUT-S=T
using «disjnt S T
by (auto simp: Diff _triv Un_ Diff disjnt__def)
let ?f = hom_induced p X {} X T id
let g = hom_induced p X {} X S id
let ?h = hom__induced p (subtopology X S) {} X T id
let % = hom__induced p (subtopology X S) {} X {} id
let 25 = hom_induced p (subtopology X T) {} X {} id
let 2k = hom_induced p (subtopology X T) {} X S id
let ?A = homology__group p (subtopology X S)
let ?B = homology__group p (subtopology X T)
let ?2C = relative_homology_group p X T
let 2D = relative__homology__group p X S
let ?G = homology_group p X
have h: ?h € iso ?A ?C and k: %k € iso ?B ?D
using homology__excision__axiom [OF TT, of S U T p]
using homology__excision__axiom [OF SS, of S U T p]
by auto (simp__all add: SUT)
have 1: Az. (hom_induced p X {} X T id o hom_induced p (subtopology X S)

{} X {}id) «
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= hom__induced p (subtopology X S) {} X T id
by (simp flip: hom__induced__compose)
have 2: Az. (hom_induced p X {} X S id o hom__induced p (subtopology X T)
(X {}id)s
= hom__induced p (subtopology X T) {} X Sid
by (simp flip: hom__induced__compose)
show ?thesis
using ezxact_sequence__sum,__lemma
[OF abelian__homology_group h k homology _exactness _axiom__8 homol-
ogyiexactnessiaxiomié’] 12
by auto
qed

0.2.6 Generalize exact homology sequence to triples

definition hom_ relboundary :: [int,’a topology,’a set,’a set,’a chain set] = 'a
chain set
where
hom__relboundary p X S T =
hom__induced (p—1) (subtopology X S) {} (subtopology X S) T id o
hom__boundary p X S

lemma group homomorphism__hom__relboundary:
hom__relboundary p X S T
€ hom (relative__homology__group p X S) (relative__homology__group (p—1) (subtopology
X8 T
unfolding hom_ relboundary_def
proof (rule hom__compose)
show hom__boundary p X S € hom (relative_homology group p X S) (homology__group(p—1)
(subtopology X S))
by (simp add: hom__boundary__hom)
show hom__induced (p—1) (subtopology X S) {} (subtopology X S) T id
€ hom (homology_group(p—1) (subtopology X S)) (relative__homology _group
(p—1) (subtopology X S) T
by (simp add: hom__induced_hom)
qed

lemma hom__relboundary:

hom__relboundary p X S T ¢ € carrier (relative__homology__group (p—1) (subtopology
X8 T

by (simp add: hom__relboundary_def hom__induced__carrier)

lemma hom__relboundary__empty: hom__relboundary p X S {} = hom__boundary p
XS
by (simp add: ext hom__boundary__carrier hom__induced_id hom__relboundary_ def)

lemma naturality _hom__induced__relboundary:
assumes continuous_map X Yffe S—->Ufe T -V
shows hom__relboundary p Y U V o
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hom__induced p X S Y (U) f =
hom__induced (p—1) (subtopology X S) T (subtopology Y U) V f o
hom__relboundary p X S T
proof —
have [simp]: continuous_map (subtopology X S) (subtopology Y U) f
using assms continuous__map__from__subtopology continuous_map__in_ subtopology
topspace__subtopology
by (fastforce simp: Pi_iff)
have hom__induced (p—1) (subtopology Y U) {} (subtopology Y U) V id o
hom,__induced (p—1) (subtopology X S) {} (subtopology Y U) {} f
= hom__induced (p—1) (subtopology X S) T (subtopology Y U) V f o
hom__induced (p—1) (subtopology X S) {} (subtopology X S) T id
using assms by (simp flip: hom__induced__compose)
with assms show ?thesis
unfolding hom__relboundary_def
by (metis (no__types, lifting) ext fun.map__comp naturality _hom__induced)
ged

proposition homology exactness triple 1:
assumes T C §
shows ezact__seq ([relative__homology__group(p—1) (subtopology X S) T,
relative__homology_group p X S,
relative__homology__group p X T,
[hom__relboundary p X S T, hom__induced p X T X S id)])
(is exact_seq ([?G1,7G2,2G3], [?h1,%h2]))
proof —
have iTS: id € T — S and [simp]: SN T =T
using assms by auto
have ?h2 B € kernel ?G2 ?G1 ?h1 for B
proof —
have hom_boundary p X T B € carrier (relative_homology group (p—1)
(subtopology X T) {})
by (metis (no__types) hom__boundary)
then have x: hom_induced (p—1) (subtopology X S) {} (subtopology X S) T
id
(hom__induced (p—1) (subtopology X T) {} (subtopology X S) {} id
(hom__boundary p X T B))
= 1leogy
using homology__exactness__axiom_3 [of p—1 subtopology X S T
by (auto simp: subtopology__subtopology kernel _def)
show ?thesis
using naturality _hom__induced [OF continuous _map_id iTS)
by (smt (verit, best) x comp__apply hom__induced__carrier hom__relboundary__ def
kernel__def mem__Collect__eq)
qed
moreover have B € ?h2 ¢ carrier ?G3 if B € kernel G2 ?G1 ?h1 for B
proof —
have Bcarr: B € carrier G2
and Beq: ?h1 B = 150y
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using that by (auto simp: kernel _def)
have 3 A’ € carrier (homology__group (p—1) (subtopology X T)). hom__induced
(p—1) (subtopology X T) {} (subtopology X S) {} id A’ = A
if A € carrier (homology group (p—1) (subtopology X S))
hom__induced (p—1) (subtopology X S) {} (subtopology X S) T id A =
logq for A
using homology__exactness_axiom_3 [of p—1 subtopology X S T| that
by (simp add: kernel def subtopology subtopology image_iff set_eq iff)
meson
then obtain C where Ccarr: C € carrier (homology__group (p—1) (subtopology
X 7))
and Ceq: hom__induced (p—1) (subtopology X T) {} (subtopology X S) {} id
C = hom__boundary p X S B
using Beq by (simp add: hom__relboundary_def) (metis hom__boundary__carrier)
let %hi XT = hom_induced (p—1) (subtopology X T) {} X {} id
have ?hi XT
= hom__induced (p—1) (subtopology X S) {} X {} id
o (hom__induced (p—1) (subtopology X T) {} (subtopology X S) {} id)
by (metis assms comp__id continuous_map__id__subt hom__induced__compose__empty
inf.absorb__iff2 subtopology_subtopology)
then have %hi XT C
= hom__induced (p—1) (subtopology X S) {} X {} id (hom_boundary p X
S B)
by (simp add: Ceq)

also have eq: ... = lhomologyigroup (p—1) X

using homology__exactness__axiom_2 [of p X S| Bearr by (auto simp: ker-
nel__def)
finally have ?hi XT C = 1homology_group (p—1) X *
then obtain D where Dcarr: D € carrier ?G8 and Deq: hom__boundary p X
TD=C
using homology__exactness_axiom_2 [of p X T] Cearr
by (auto simp: kernel__def image__iff set_eq iff) meson
interpret hb: group__hom ?G2 homology__group (p—1) (subtopology X S)
hom__boundary p X S
using hom__boundary__hom group__hom__axioms_def group _hom__def by fast-
force
let YA =D Qoo NV 2G9 ?h2 D
have 3 A’ € carrier (homology_group p X). hom_induced p X {} X S id A’ =
A
if A € carrier ?G2
hom__boundary p X S A = one (homology__group (p—1) (subtopology X S))
for A
using that homology__exactness__axiom__1 [of p X 5]
by (simp add: kernel_def subtopology__subtopology image_iff set_eq iff)
meson
moreover
have ?A € carrier G2
by (simp add: Bcearr abelian_relative_homology__group comm__groupE(1)
hom__induced__carrier)
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moreover have hom_ boundary p X S (?h2 D) = hom__boundary p X S B
by (metis (mono__tags, lifting) Ceq Deq comp__eq dest continuous_map__id
iTS naturality _hom__induced)
then have hom__boundary p X S ?A = one (homology__group (p—1) (subtopology
X 5))
by (simp add: hom__induced_carrier Bearr)
ultimately obtain W where Wcarr: W € carrier (homology__group p X)
and Weq: hom_induced p X {} X Sid W = 74
by blast
let /W = D ®¢qg hom_induced p X {} X T id W
show ?thesis
proof
interpret comm__group ?G2
by (rule abelian_relative__homology _group)
have hom_induced p X T X S id (hom_induced p X {} X T id W) =
hom_induced p X {} X S id W
using assms (TS by (simp add: hom__induced__compose’)
then have B = (?h2 o hom_induced p X {} X T id) W ®9q9 ?h2 D
by (simp add: Bearr Weq hb.G.m__assoc hom__induced__carrier)
then show B = ?h2 ?W
by (metis hom__mult [OF hom__induced__hom| Dcarr comp__apply hom__induced__carrier
m__comm)
show ?W € carrier ¢G3
by (simp add: Dcarr comm__groupE(1) hom__induced__carrier)
qed
qed
ultimately show ?thesis
by (auto simp: group__hom__def group__hom__azioms_def hom__induced_hom
group__homomorphism__hom__relboundary)
qed

proposition homology exactness triple 2:
assumes T C S
shows exact_seq ([relative__homology group(p—1) X T,
relative__homology__group(p—1) (subtopology X S) T,
relative__homology__group p X 5],
[hom__induced (p—1) (subtopology X S) T X T id, hom_ relboundary
p X ST
(is exact_seq ([?G1,7G2,2G3], [?h1,%h2]))
proof —
let YH2 = homology_group (p—1) (subtopology X S)
have iTS: id € T — S and [simp]: SN T =T
using assms by auto
have ?h2 C € kernel G2 ?G1 ?hi for C
proof —
have ?h1 (?h2 C)
= (hom__induced (p—1) X {} X T id o hom_induced (p—1) (subtopology X
S) {} X {} id o hom_boundary p X S) C
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unfolding hom__relboundary_def
by (metis Pi_empty comp__eq _dest_lhs continuous_map__id continuous_map__id__subt
funcset] hom__induced__compose’ id__apply)
also have ... = 194y
proof —
have x: hom__boundary p X S C € carrier ?H2
by (simp add: hom__boundary__carrier)
moreover have hom__boundary p X S C € hom__boundary p X S * carrier
?7G3
using homology__exactness_axiom_2 [of p X S| *
apply (simp add: kernel_def set_eq_iff)
by (metis group__relative__homology__group hom__boundary__default hom__one
image__eql)
ultimately
have 1: hom_induced (p—1) (subtopology X S) {} X {} id (hom_boundary
pXSC)

= 1h0mology7group (p—1) X
using homology__exactness _axiom_2 [of p X S| by (simp add: kernel_def)
blast
show ?thesis
by (simp add: 1 hom_one [OF hom__induced_hom))
qed
finally have ?h1 (?h2 C) = 1oqy .
then show ?thesis
by (simp add: kernel_def hom__relboundary__def hom__induced__carrier)
qed
moreover have x € ?h2 ‘ carrier ?G3 if x € kernel G2 ?G1 ?h1 for z
proof —
let ?homX = hom_induced (p—1) (subtopology X S) {} X {} id
let ?homXS = hom_induced (p—1) (subtopology X S) {} (subtopology X S) T
id
have = € carrier (relative_homology_group (p—1) (subtopology X S) T)
using that by (simp add: kernel def)
moreover
have hom_boundary (p—1) X T o hom_induced (p—1) (subtopology X S) T
X T id = hom_boundary (p—1) (subtopology X S) T
by (metis funcsetl <S N T = T» continuous_map_id__subt hom__relboundary__def
hom__relboundary__empty id__apply naturality _hom__induced subtopol-

ogy__subtopology)

then have hom__boundary (p—1) (subtopology X S) T x = 1h0m0logy_g7’0up (p — 2) (subtopology (subtopology X S)

using naturality _hom__induced [of subtopology X S X id T T p—1] that
hom__one [OF hom__boundary__hom group__relative__homology__group group_ relative _homology__group,
of p—1 X T
by (smt (verit) assms comp__apply inf.absorb__iff2 kernel__def mem__Collect__eq
subtopology__subtopology)
ultimately
obtain y where ycarr: y € carrier H2
and yeq: ?homXS y ==z
using homology__exactness__axiom__1 [of p—1 subtopology X S T


Homology{_}{\kern 0pt}Groups.html

136

by (simp add: kernel _def image__def set_eq iff) meson
have ?homX y € carrier (homology__group (p—1) X)
by (simp add: hom__induced__carrier)
moreover
have (hom__induced (p—1) X {} X Tid o ZhomX) y=1
using that
apply (simp add: kernel_def flip: hom__induced__compose)
using hom__induced__compose [of subtopology X S subtopology X S id {} T X
id T p—1] yeq
by auto
then have hom__induced (p—1) X {} X Tid (?homX y) = L elative_homology_group (p—1) X T

relative__homology__group (p—1) X T

by simp
ultimately obtain z where zcarr: z € carrier (homology_group (p—1)
(subtopology X T))
and zeq: hom__induced (p—1) (subtopology X T) {} X {} id z = ?homX
)
using homology__exactness__axiom_3 [of p—1 X T
by (auto simp: kernel _def dest!: equalityD1 [of Collect _])
have x: At. [t € carrier 2H2;
hom,__induced (p—1) (subtopology X S) {} X {} idt = Lhomology _group (p—1) x
=t € hom_boundary p X S * carrier ?G3
using homology__exactness__axiom_2 [of p X S|
by (auto simp: kernel _def dest!: equalityD1 [of Collect _])
interpret comm__group ?H2
by (rule abelian_relative__homology__group)
interpret gh: group__hom ?H2 homology_group (p—1) X hom__induced (p—1)
(subtopology X S) {} X {} id
by (meson group__hom__azioms__def group__hom__def group__relative__homology _group
hom__induced)
let ?yz = y ® 279 iV o9 hom__induced (p—1) (subtopology X T) {} (subtopology
X S){}idz
have yzcarr: ?yz € carrier 2H2
by (simp add: hom__induced__carrier ycarr)
have hom__induced (p—1) (subtopology X S) {} X {} idy =
hom__induced (p—1) (subtopology X S) {} X {} id
(hom__induced (p—1) (subtopology X T) {} (subtopology X S) {} id )
by (metis assms continuous_map_id_subt hom__induced compose__empty
inf.absorb_iff2 o__apply o_id subtopology__subtopology zeq)
then have yzeq: hom__induced (p—1) (subtopology X S) {} X {} id %yz =
lhomologyigroup (p—1) X
by (simp add: hom__induced__carrier ycarr gh.inv_solve_right’)
obtain w where wcarr: w € carrier G838 and weq: hom__boundary p X S w =
Yz
using * [OF yzcarr yzeq| by blast
interpret gh2: group hom ?H2 ?G2 ?homXS
by (simp add: group__hom__azioms_def group__hom__def hom__induced_hom)
have ?homXS (hom__induced (p—1) (subtopology X T) {} (subtopology X S)
{}id 2)

= 1relative_hom0logy_group (p—1) (subtopology X S) T
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using homology__exactness__axiom_3 [of p—1 subtopology X S T| zcarr
by (auto simp: kernel__def subtopology__subtopology)
then show ?thesis
apply (rule_tac z=w in image_eql)
apply (simp__all add: hom__relboundary_ def weq wecarr)
by (metis gh2.hom__inv gh2.hom_mult gh2.inv__one gh2.r_one group.inv__closed
group__1_invl hom__induced__carrier |_inv_ex ycarr yeq)
qed
ultimately show ?thesis
by (auto simp: group__hom__azioms__def group _hom__def group__homomorphism__hom__relboundary
hom__induced__hom)
qed

proposition homology exactness_triple_3:
assumes T C S
shows ezact_seq ([relative__homology__group p X S,
relative__homology_group p X T,
relative__homology__group p (subtopology X S) T,
[hom__induced p X T X S id, hom__induced p (subtopology X S) T
X T id))
(is exact_seq ([?G1,7G2,2G3], [?h1,7h2]))
proof —
have iTS: id € T — S and [simp]: SN T =T
using assms by auto
have 1: ?h2 z € kernel ?G2 ¢G1 ?h1 for z
proof —
have ?h1 (?h2 1)
= (hom_induced p (subtopology X S) S X S id o
hom__induced p (subtopology X S) T (subtopology X S) S id) x
by (simp add: hom__induced__compose’ iTS)
also have ... =1
proof —
have trivial_group (relative__homology__group p (subtopology X S) S)
using trivial_relative__homology__group__topspace [of p subtopology X S|
by (metis inf _right_idem relative__homology__group_ restrict topspace__subtopology)
then have 1: hom__induced p (subtopology X S) T (subtopology X S) S id x

= 1relative_homol0gy_group p (subtopology X S) S
using hom__induced__carrier by (fastforce simp add: trivial_group def)
show ?thesis
by (simp add: 1 hom_one [OF hom__induced_hom))
qed
finally have ?h1 (?h2z) =1
then show ?thesis
by (simp add: hom__induced_carrier kernel _def)
qed
moreover have x € %h2 ‘ carrier ?G3 if x: x € kernel ?G2 ?G1 ?hl1 for x
proof —
have xzcarr: © € carrier G2
using that by (auto simp: kernel_def)

relative__homology_group p X S

relative__homology_group p X S *
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interpret G2: comm__group ?G2
by (rule abelian__relative__homology__group)
let ?b = hom_boundary p X T z
have bcarr: 2b € carrier(homology__group(p—1) (subtopology X T'))
by (simp add: hom__boundary__carrier)
have hom__boundary p X S (hom_induced p X T X S id x)
= hom__induced (p—1) (subtopology X T) {} (subtopology X S) {} id
(hom__boundary p X T z)
using naturality _hom__induced [of X X id T S p] ¢TS
by (simp add: assms o__def) meson
with bearr have hom_boundary p X T x € hom__boundary p (subtopology X
S) T ¢ carrier ?G3
using homology _exactness__axiom_2 [of p subtopology X S T| z
apply (simp add: kernel_def set__eq iff subtopology__subtopology)
by (metis group_ relative _homology__group hom__boundary_hom hom__one
set__eq iff)
then obtain u where ucarr: u € carrier ?G3
and ueq: hom__boundary p X T z = hom__boundary p (subtopology X S)
Tu
by (auto simp: kernel__def set__eq iff subtopology__subtopology hom__boundary__carrier)
define y where y = 7 ®9og9 ivoge 7h2 u
have ycarr: y € carrier G2
using z by (simp add: y_def kernel__def hom__induced__carrier)
interpret hb: group hom ?G2 homology group (p—1) (subtopology X T)
hom__boundary p X T
by (simp add: group__hom__azioms_def group _hom__def hom__boundary__hom)

have yyy: hom_boundary p X Ty = 1h0m0logy_group (p—1) (subtopology X T)

apply (simp add: y_ def bearr zcarr hom__induced__carrier hom__boundary__carrier
hb.inv__solve__right”)
using naturality__hom__induced [of concl: p X T subtopology X S T id)
by (metis <S N T = Ty comp__eq _dest_lhs continuous_map__id_subt
hom,__relboundary__def hom__relboundary__empty id__apply image_ id
image__subset_iff funcset subsetl subtopology subtopology ueq)
then have y € hom_induced p X {} X T id * carrier (homology_group p X)
using homology__exactness_axiom__1 [of p X T] z ycarr by (auto simp:
kernel__def)
then obtain z where zcarr: z € carrier (homology group p X)
and zeq: hom__induced p X {} X Tid z =y
by auto
interpret ghl: group hom ?G2 ?G1 ?hl
by (meson group__hom__azioms__def group__hom__def group__relative__homology__group
hom__induced)

have hom_induced p X {} X S id z = (hom_induced p X T X S id o
hom__induced p X {} X T id) =z
using (TS by (simp add: assms flip: hom__induced__compose)
also have ... = 1relativeihomologyigroup pXS
using z 1 by (simp add: kernel_def zeq y_ def)

finally have hom_induced p X {} X Sid z = Lpi4tive homology group p X S +
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then have z € hom_ induced p (subtopology X S) {} X {} id *
carrier (homology__group p (subtopology X S))
using homology__exactness _axiom_3 [of p X S] zcarr by (auto simp: ker-
nel__def)
then obtain w where wcarr: w € carrier (homology__group p (subtopology X
5))
and wegq: hom__induced p (subtopology X S) {} X {} idw =z
by blast
let ?u = hom_induced p (subtopology X S) {} (subtopology X S) T id w ®@2q3
u
show ?thesis
proof
have x: . = 2 ®oq9 u
if 2 =2 ®oqg iNvege u 2z € carrier 2G2 u € carrier G2 for z u
using that by (simp add: group.inv_solve_right xcarr)
have eq: ?h2 o hom_induced p (subtopology X S) {} (subtopology X S) T id
= hom__induced p X {} X T id o hom__induced p (subtopology X S) {}
X {}id
by (simp flip: hom__induced__compose)
show z = hom__induced p (subtopology X S) T X T id ?u
using hom_ mult [OF hom__induced__hom] hom__induced__carrier *
by (smt (verit, best) comp__eq dest eq ucarr weq y_ def zeq)
show ?2u € carrier (relative__homology__group p (subtopology X S) T)
by (simp add: abelian__relative _homology__group comm__groupE(1) hom__induced__carrier
ucarr)
qed
qed
ultimately show ?thesis
by (auto simp: group__hom__axioms__def group__hom__def hom__induced _hom)
qed

end

0.3 Homology, III: Brouwer Degree

theory Brouwer _Degree
imports Homology Groups HOL— Algebra. Multiplicative Group

begin

0.3.1 Reduced Homology

definition reduced__homology group :: int = 'a topology = 'a chain set monoid
where reduced__homology _group p X =
subgroup__generated (homology__group p X)
(kernel (homology__group p X) (homology__group p (discrete_topology

{Oh)
(hom__induced p X {} (discrete_topology {()}) {} (Az. ())))
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lemma one_reduced__homology _group: Lreduced_homology_group p X = Lhomology_group p X
by (simp add: reduced__homology__group__def)

lemma group reduced homology group [simp]: group (reduced__homology group

p X)
by (simp add: reduced__homology _group__def group.group__subgroup _generated)

lemma carrier__reduced__homology__group:
carrier (reduced__homology group p X) =
kernel (homology group p X) (homology__group p (discrete_topology {()}))
(hom__induced p X {} (discrete_topology {()}) {} (Az. ()))
(is _ = kernel ?G ?H ?h)
proof —
interpret subgroup kernel ?G ?H ?h ?G
by (simp add: hom__induced _empty hom group__hom__azioms_def group _hom__def
group__hom.subgroup__kernel)
show ?thesis
unfolding reduced__homology group def
using carrier__subgroup__generated__subgroup by blast
qed

lemma carrier__reduced__homology group_ subset:
carrier (reduced _homology__group p X) C carrier (homology__group p X)
by (simp add: group.carrier__subgroup _generated__subset reduced__homology _group__def)

lemma un_ reduced__homology _group:
assumes p # 0
shows reduced__homology__group p X = homology_group p X
proof —
have (kernel (homology__group p X) (homology__group p (discrete__topology {()}))
(hom__induced p X {} (discrete_topology {()}) {} (Az. ())))
= carrier (homology_group p X)
proof (rule group_hom.kernel _to_ trivial _group)
show group__hom (homology__group p X) (homology__group p (discrete__topology
{0})
(hom__induced p X {} (discrete_topology {()}) {} (Az. ()))
by (auto simp: hom__induced _empty hom group__hom__def group _hom__azioms__def)
show trivial _group (homology__group p (discrete_topology {()}))
by (simp add: homology__dimension__axiom [OF __ assms])
qed
then show ?thesis
by (simp add: reduced _homology__group _def group.subgroup__generated _group__carrier)
qed

lemma trivial _reduced _homology group:
p < 0 = trivial__group(reduced__homology_group p X)
by (simp add: trivial_homology__group un__reduced__homology__group)

lemma hom_induced reduced hom:
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(hom_induced p X {} Y {} f) € hom (reduced homology group p X) (reduced_homology _group
pY)
proof (cases continuous_map X Y f)
case True
have eq: continuous_map X Y f
= hom__induced p X {} (discrete_topology {()}) {} (Az. ())
= (hom__induced p Y {} (discrete__topology {()}) {} (Az. ()) o hom__induced
P XY {31
by (simp flip: hom__induced__compose__empty)
interpret subgroup kernel (homology group p X)
(homology__group p (discrete_topology {()}))
(hom__induced p X {} (discrete__topology {()}) {} (Az. ()))
homology__group p X
by (meson group__hom.subgroup__kernel group__hom__axioms__def group__hom__def
group__relative__homology__group hom__induced)
have sb: hom__induced p X {} Y {} f ¢ carrier (homology_group p X) C carrier
(homology__group p Y')
using hom__induced__carrier by blast
show ?thesis
using True
unfolding reduced__homology group _def
apply (simp add: hom__into__subgroup__eq group__hom.subgroup__kernel hom__induced__empty_hom
group.hom__from__subgroup _generated group _hom__def group__hom__axioms__def)
unfolding kernel def using eq sb by auto
next
case Fulse
then have hom_induced p X {} Y {} f = (Ac. one(reduced__homology _group p
v)
by (force simp: hom__induced _default reduced _homology__group _def)
then show ?thesis
by (simp add: trivial_hom,)
qed

lemma hom_ induced reduced:
¢ € carrier(reduced__homology__group p X)
= hom__induced p X {} Y {} f ¢ € carrier(reduced_homology_group p Y)
by (meson hom__in__carrier hom_induced__reduced__hom)

lemma hom__boundary_reduced__hom:
hom__boundary p X S
€ hom (relative__homology _group p X S) (reduced__homology _group (p—1) (subtopology
X 9))
proof —
have x: continuous_map X (discrete__topology {()}) (Az. ()) (A\z. ()) € S = {()}
by auto
interpret group hom relative _homology group p (discrete__topology {()}) {()}
)})

homology__group (p—1) (discrete__topology {(
hom__boundary p (discrete_topology {()}) {0}
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apply (clarsimp simp: group__hom__def group _hom__azioms__def)
by (metis UNIV_unit hom__boundary__hom subtopology_UNIV)
have hom_boundary p X S *
carrier (relative_homology group p X S)
C kernel (homology_group (p — 1) (subtopology X S))

(homology__group (p — 1) (discrete__topology {()}))
(hom__induced (p — 1) (subtopology X S) {}
(discrete_topology {(}) {} (Az. )
proof (clarsimp simp add: kernel__def hom__boundary__carrier)
fix ¢
assume c: ¢ € carrier (relative_homology _group p X S)
have triv: trivial_group (relative__homology__group p (discrete_topology {()})
{0})
by (metis topspace__discrete_topology trivial _relative _homology__group__topspace)
have hom__boundary p (discrete_topology {()}) {0}
(hom__induced p X S (discrete_topology {()}) {0} (Az. () ¢)

= 1h0mology7gmup (p — 1) (discrete__topology {()})
by (metis hom__induced _carrier local.hom__one singletonD triv trivial_group _def)

then show hom__induced (p — 1) (subtopology X S) {} (discrete_topology {()})
{} (Az. () (hom_boundary p X S ¢) =

1h0m0logy7group (p — 1) (discrete__topology {()})
using naturality _hom__induced [OF x, of p, symmetric] by (simp add: o__def
fun__eq_iff)
qed
then show ?thesis
by (simp add: reduced _homology__group _def hom__boundary__hom hom__into__subgroup)
qed

lemma homotopy equivalence_reduced__homology group isomorphisms:
assumes contf: continuous _map X Y f and contg: continuous _map Y X g
and gf: homotopic_with (Ah. True) X X (g o f) id
and fg: homotopic_with (A\k. True) Y'Y (f o g) id
shows group__isomorphisms (reduced__homology _group p X) (reduced__homology__group
pY)

{} 9)

proof (simp add: hom__induced__reduced__hom group__isomorphisms__def, intro conjl
balll)
fix a
assume a € carrier (reduced__homology group p X)
then have (hom_induced p Y {} X {} g o hom_inducedp X {} Y {} f) a=a
apply (simp add: contf contg flip: hom__induced__compose)
using carrier_reduced__homology group__subset gf hom__induced_id homol-
ogy__homotopy__empty by fastforce
then show hom__induced p Y {} X {} g (hom_induced p X {} Y {} fa) = a
by simp
next
fix b

(hom__induced p X {} Y {} f) (hom__induced p Y {} X
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assume b € carrier (reduced__homology_group p Y)
then have (hom__induced p X {} Y {} f o hom_inducedp Y {} X {} g) b=0
apply (simp add: contf contg flip: hom__induced__compose)
using carrier__reduced__homology group subset fg hom__induced id homol-
ogy__homotopy__empty by fastforce
then show hom_induced p X {} Y {} f (hom_induced p Y {} X {} gb) = b
by (simp add: carrier _reduced__homology _group)
qed

lemma homotopy_equivalence__reduced__homology _group isomorphism:
assumes continuous_map X Y f continuous_map Y X g
and homotopic_with (Ah. True) X X (g o f) id homotopic_with (k. True)
YY (fog)id
shows (hom__induced p X {} Y {} f)
€ iso (reduced _homology_group p X) (reduced _homology_group p Y)
proof (rule group__isomorphisms_imp__iso)
show group__isomorphisms (reduced__homology__group p X) (reduced__homology__group
pY)
(hom__induced p X {} Y {} f) (hom_induced p Y {} X {} g)
by (simp add: assms homotopy__equivalence__reduced__homology__group_ isomorphisms)
qed

lemma homotopy_equivalent__space__imp__isomorphic_reduced__homology _groups:
X homotopy__equivalent_space Y
= reduced__homology__group p X = reduced__homology group p Y
unfolding homotopy equivalent _space _def
using homotopy__equivalence_reduced__homology__group isomorphism is_isol by
blast

lemma homeomorphic__space__imp__isomorphic__reduced__homology groups:
X homeomorphic__space Y = reduced__homology__group p X = reduced__homology__group
pY
by (simp add: homeomorphic__imp__homotopy__equivalent__space homotopy__equivalent__space__imp__isomorphic_re

lemma trivial _reduced _homology_group _empty:
topspace X = {} = trivial__group(reduced__homology_group p X)
by (metis carrier _reduced__homology group__subset group.trivial _group__alt group__reduced _homology__group
trivial _group__def trivial _homology__group__empty)

lemma homology__dimension__reduced:
assumes topspace X = {a}
shows trivial__group (reduced _homology_group p X)
proof —
have iso: (hom_induced p X {} (discrete_topology {()}) {} (Az. ()))
€ iso (homology__group p X) (homology__group p (discrete__topology {()}))
apply (rule homeomorphic_map_ homology_iso)
apply (force simp: homeomorphic_map_maps homeomorphic_maps__def assms)
done
show ?thesis
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unfolding reduced__homology group def
by (rule group.trivial _group_ subgroup generated) (use iso in <auto simp:
iso__kernel _image»)
qed

lemma trivial__reduced__homology__group__contractible _space:
contractible__space X = trivial _group (reduced__homology_group p X)

apply (simp add: contractible_eq _homotopy _equivalent _singleton__subtopology)

apply (auto simp: trivial_reduced _homology__group _empty)

using isomorphic__group__triviality

by (metis (full_types) group__reduced__homology__group homology__dimension__reduced
homotopy__equivalent _space__imp__isomorphic_reduced__homology__groups path__connectedin__def
path__connectedin__singleton topspace__subtopology__subset)

lemma image_reduced__homology _group:
assumes topspace X N S # {}
shows hom__induced p X {} X S id * carrier (reduced_homology group p X)
= hom__induced p X {} X S id * carrier (homology_group p X)
(is ?h ¢ carrier G = ?h * carrier 7H)
proof —
obtain a where a: a € topspace X and a € S
using assms by blast
have [simp]: AN {z € A. Pz} ={zx € A. Pz} for A P
by blast
interpret comm__group homology group p X
by (rule abelian__relative__homology__group)
have *: 3z’. ?hy = ?h z' A
xz' € carrier ?H N
hom__induced p X {} (discrete_topology {()}) {} (Az. () =’

= lhomology_group p (discrete__topology {()})
if y € carrier ?H for y

proof —
let ?f = hom__induced p (discrete_topology {()}) {
let g = hom__induced p X {} (discrete_topology {
have bcarr: ?f (%9 y) € carrier H
by (simp add: hom__induced__carrier)
interpret ghi:
group__hom relative_homology group p X S relative_homology group p
(discrete_topology {()}) {()}
hom__induced p X S (discrete__topology {()}) {0} (Az. ()
by (meson group__hom__axioms_def group__hom__def hom__induced_hom
group__relative__homology__group)
interpret gh2:
group__hom relative__homology__group p (discrete_topology {()}) {()} rela-
tive__homology_group p X S
hom__induced p (discrete_topology {()}) {0} X S (Az. a)
by (meson group__hom__axioms def group__hom_ def hom__induced_hom

— =
S
—~
—
—
>
8
~—
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group__relative__homology _group)
interpret gh3:
group__hom homology__group p X relative_homology_group p X S ?h
by (meson group__hom__axioms_def group__hom__def hom__induced hom
group__relative__homology__group)
interpret ghj:
group__hom homology__group p X homology__group p (discrete__topology {()})
?g
by (meson group__hom__axioms def group__hom__def hom__induced hom
group__relative__homology__group)
interpret ghs:
group__hom homology__group p (discrete__topology {()}) homology__group p X
of
by (meson group__hom__axioms_def group__hom__def hom__induced hom
group__relative__homology__group)
interpret gh6:
group__hom homology__group p (discrete__topology {()}) relative__homology__group
p (discrete_topology {()}) {0}
hom__induced p (discrete__topology {()}) {} (discrete_topology {()})
{0} id

by (meson group__hom__azioms_def group__hom_def hom__induced hom
group__relative__homology__group)
show ?thesis
proof (intro exI congl)
have (?h o 2f o %9) y
= (hom__induced p (discrete_topology {()}) {O} X S (Az. a) o
hom__induced p (discrete__topology {()}) {} (discrete_topology {()}) {(}
id o %9) y
by (simp add: a <a € S flip: hom__induced__compose)

also have ... = lrelative_homology_gmup pXS

using trivial_relative _homology_group topspace [of p discrete_topology
{03
apply simp
by (metis (full_types) empty_iff ghl.H.one_closed ghl.H.trivial_group
gh2.hom__one hom__induced__carrier insert_iff)
finally have %h (?f (g y)) =1
by simp
then show ?h y = %h (y Qep tnveg 2f (%9 y))
by (simp add: that hom__induced__carrier)
show (y ®opr inveg ?f (%9 y)) € carrier (homology group p X)
by (simp add: hom__induced _carrier that)
have *: (g o hom_induced p X {} X {} (A\z. a)) y = hom__induced p X {}
(discrete._topology {0}) {} (Aa. () y
by (simp add: a <a € S» flip: hom__induced__compose)
have ?g (y ®op inveg (2 o %g) y)
= 1homologyfgroup p (discrete__topology {()})
by (simp add: a <a € S» that hom__induced__carrier flip: hom__induced__compose
* [unfolded o__def])
then show %9 (y Qop invey ?2f (%9 y))

relative__homology_group p X S
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= 1homologyigmup p (discrete__topology {()})
by simp
qed
qed
show ?thesis
apply (auto simp: reduced__homology group_ def carrier__subgroup _generated
kernel _def image__iff)
apply (metis (no__types, lifting) generate_in__carrier mem__Collect__eq subsetl)
apply (force simp: dest: * intro: generate.incl)
done
qed

lemma homology exactness reduced_1:
assumes topspace X N S # {}
shows exact_seq([reduced__homology group(p — 1) (subtopology X S),
relative__homology _group p X S,
reduced__homology__group p X|,
[hom__boundary p X S, hom__induced p X {} X S id)])
(is exact_seq ([?G1,7G2,?G3], [?h1,%h2]))
proof —
have x: ?h2 ¢ carrier (homology group p X)
= kernel G2 (homology_group (p — 1) (subtopology X S)) ?hl
using homology__exactness _axiom_1 [of p X S| by simp
have gh: group__hom ?G38 ?G2 ?h2
by (simp add: reduced__homology__group _def group__hom__def group__hom__azioms_def
group.group__subgroup__generated group.hom__from__subgroup _generated hom__induced _hom)
show ?thesis
apply (simp add: hom__boundary_reduced__hom gh * image__reduced__homology__group
[OF assms))
apply (simp add: kernel_def one_reduced__homology__group)
done
qed

lemma homology exactness reduced_ 2:
exact_seq([reduced__homology group(p — 1) X,
reduced__homology__group(p — 1) (subtopology X S),
relative__homology__group p X 5],
[hom__induced (p — 1) (subtopology X S) {} X {} id, hom__boundary
p X 5])
(is exact_seq ([?G1,7G2,2G3], [?h1,%h2]))
using homology_exactness _axiom_2 [of p X S|
apply (simp add: group__hom__azioms__def group__hom__def hom__boundary_reduced__hom
hom__induced__reduced__hom)
apply (simp add: reduced__homology__group__def group__hom.subgroup__kernel group__hom__axioms__def
group__hom,__def hom__induced__hom,)
using hom__boundary_reduced _hom [of p X 5]
apply (auto simp: image__def set_eq iff)
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by (metis carrier_reduced__homology__group hom__in__carrier set_eq iff)

lemma homology exactness reduced_3:
exact__seq([relative__homology__group p X S,
reduced__homology__group p X,
reduced__homology__group p (subtopology X S)],
[hom__induced p X {} X S id, hom_induced p (subtopology X S) {} X
{} i)
(is exact_seq ([?G1,7G2,?G3], [?h1,?h2]))
proof —
have kernel ?G2 ?G1 ?h1 =
?h2 ¢ carrier ?G3
proof —
obtain U where U:
(hom__induced p (subtopology X S) {} X {} id) * carrier 2G8 C U
(hom__induced p (subtopology X S) {} X {} id) * carrier ?G3
C (hom__induced p (subtopology X S) {} X {} id)  carrier (homology__group
p (subtopology X S))
U N kernel (homology_group p X) ¢?G1 (hom_induced p X {} X S id)
= kernel ?G2 ?G1 (hom_induced p X {} X S id)
U N (hom_induced p (subtopology X S) {} X {} id) ¢ carrier (homology__group
p (subtopology X 9))
C (hom_induced p (subtopology X S) {} X {} id) * carrier ?G3
proof
show ?h2 ‘ carrier ?G3 C carrier ?G2
by (simp add: hom__induced_reduced image__subset_iff)
show ?h2 ¢ carrier YG3 C ?h2 * carrier (homology_group p (subtopology X

S))
by (meson carrier_reduced _homology_group _subset image__mono)
have subgroup (kernel (homology__group p X) (homology _group p (discrete__topology
{Oh)
(hom__induced p X {} (discrete_topology {()}) {} (Az. ())))
(homology__group p X)
by (simp add: group.normal_invE(1) group__hom.normal_kernel group__hom__axioms__def
group__hom__def hom__induced__empty_hom)
then show carrier ?G2 N kernel (homology group p X) ¢?G1 ?h1 = kernel
?2G2 ?G1 ?hi
unfolding carrier_reduced__homology _group
by (auto simp: reduced _homology__group _def)
show carrier G2 N 2h2 ¢ carrier (homology group p (subtopology X S))
C ?h2 ‘ carrier ?G3
by (force simp: carrier_reduced__homology__group kernel _def hom__induced__compose’)
qed
with homology__exactness_aziom__3 [of p X S| show ?thesis
by (fastforce simp add:)
qed
then show ?thesis
apply (simp add: group__hom__axioms__def group__hom__def hom__boundary_reduced__hom
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hom__induced__reduced__hom)

apply (simp add: group.hom__from__subgroup__generated hom__induced__hom
reduced__homology__group__def)

done
qed

0.3.2 More homology properties of deformations, retracts,
contractible spaces

lemma iso_relative__homology__of _contractible:
[contractible__space X; topspace X N S # {}]
= hom__boundary p X S
€ iso (relative_homology group p X S) (reduced_homology_group(p — 1)
(subtopology X S))
using very_short__exact_sequence
[of reduced__homology group (p — 1) X
reduced__homology__group (p — 1) (subtopology X S)
relative__homology group p X S
reduced__homology__group p X
hom__induced (p — 1) (subtopology X S) {} X {} id
hom__boundary p X S
hom__induced p X {} X S id]
by (meson exact_seq cons_iff homology__exactness_reduced_ 1 homology__exactness_reduced 2
trivial _reduced__homology__group__contractible__space)

lemma isomorphic__group relative__homology_of contractible:
[contractible__space X; topspace X N S # {}]
= relative_homology_group p X S =
reduced__homology__group(p — 1) (subtopology X S)
by (meson iso__relative__homology_of _contractible is_isol)

lemma isomorphic__group reduced__homology_of contractible:
[contractible_space X; topspace X N S # {}]
= reduced__homology__group p (subtopology X S) = relative__homology__group(p
+1)XS
by (metis add.commute add__diff _cancel left’ group.iso__sym group relative__homology group
isomorphic__group__relative__homology__of _contractible)

lemma iso_reduced__homology by _contractible:
[contractible__space(subtopology X S); topspace X N S # {}]
= (hom_induced p X {} X S id) € iso (reduced homology group p X)
(relative__homology__group p X S)
using very_short_exact_sequence
[of reduced__homology group (p — 1) (subtopology X S)
relative__homology_group p X S
reduced__homology__group p X
reduced__homology__group p (subtopology X S)
hom__boundary p X S
hom__induced p X {} X S id
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hom__induced p (subtopology X S) {} X {} id]
by (meson exact_seq cons_iff homology__exactness__reduced_ 1 homology__exactness _reduced 8
trivial_reduced__homology__group__contractible__space)

lemma isomorphic_reduced__homology by _contractible:
[contractible__space(subtopology X S); topspace X N S # {}]
= reduced__homology__group p X = relative__homology__group p X S
using is_isol iso__reduced__homology by _contractible by blast

lemma isomorphic_relative__homology by _contractible:
[contractible__space(subtopology X S); topspace X N S # {}]
= relative__homology_group p X S = reduced _homology__group p X
using group.iso__sym group__reduced__homology__group isomorphic_reduced _homology_ by _contractible
by blast

lemma isomorphic_reduced__homology by singleton:
a € topspace X = reduced__homology group p X = relative__homology_group
p X ({a})

by (simp add: contractible__space__subtopology _singleton isomorphic__reduced__homology by contractible)

lemma isomorphic_relative__homology by singleton:

a € topspace X = relative__homology__group p X ({a}) = reduced__homology__group
p X

by (simp add: group.iso__sym isomorphic__reduced__homology by singleton)

lemma reduced__homology group_ pair:
assumes t1_space X and a: a € topspace X and b: b € topspace X and a # b
shows reduced__homology__group p (subtopology X {a,b}) = homology_group p
(subtopology X {a})
(is %lhs = 2rhs)
proof —
have ?lhs & relative__homology__group p (subtopology X {a,b}) {b}
by (simp add: b isomorphic__reduced__homology__by__singleton topspace__subtopology)
also have ... & ?rhs
proof —
have sub: subtopology X {a, b} closure_of {b} C subtopology X {a, b} inte-
rior_of {b}
by (simp add: assms t1__space__subtopology closure_of _singleton subtopol-
ogy__eq_discrete__topology_finite discrete__topology _closure__of)
show ?thesis
using homology__excision__aziom [OF sub, of {a,b} p]
by (simp add: assms(4) group.iso__sym is_isol subtopology_subtopology)
qed
finally show ?thesis .
qed

lemma deformation__retraction_relative__homology _group _isomorphisms:
[retraction_maps X Yrs;r € U — V; s € V — U; homotopic_with (Ah. h *
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UCU) XX (sor)id]

= group__isomorphisms (relative__homology group p X U) (relative__homology__group
pYV)

(hom__induced p X U'Y V r) (hom_induced p Y V X U s)
apply (simp add: retraction_maps__def)
apply (rule homotopy__equivalence__relative__homology__group__isomorphisms)
apply (auto simp: image__subset_iff _funcset Pi_iff continuous _map__compose

homotopic_with__equal)

done

lemma deformation__retract_relative__homology _group__isomorphisms:
[retraction_maps X Y rid; V C U; r € U — V; homotopic_with (Ah. h * U
CU) X Xrid
= group__isomorphisms (relative__homology group p X U) (relative__homology_group
pYV)
(hom__induced p X U'Y V r) (hom_induced p Y V X U id)
by (simp add: deformation_retraction_ relative__homology__group__isomorphisms
in_mono)

lemma deformation__retract_relative__homology__group__isomorphism:
[retraction_maps X Y rid; V C U; r € U — V; homotopic_with (Ah. h ¢ U
C U)X Xrid
= (hom_induced p X U'Y V r) € iso (relative_homology_group p X U)
(relative__homology_group p Y V)
by (metis deformation__retract_relative__homology__group__isomorphisms group__isomorphisms_imp__is

lemma deformation__retract relative__homology group_isomorphism,__id:
[retraction_maps X Y rid; V C U; r € U — V; homotopic_with (Ah. h * U
CU) X Xrid
= (hom_induced p Y V X U id) € iso (relative_homology_group p Y V)
(relative__homology__group p X U)
by (metis deformation__retract_relative__homology group_isomorphisms group__isomorphisms_imp__is
group__isomorphisms__sym,)

lemma deformation__retraction_imp _isomorphic__relative__homology _groups:
[retraction_maps X Y rs;r € U — V; s *V C U; homotopic_with (Ah. h ¢ U
CU) XX (sor)id]
= relative__homology__group p X U = relative_homology group p Y V
by (blast intro: is_isol group__isomorphisms__imp__iso deformation_ retraction__relative__homology grot

lemma deformation__retraction_imp__isomorphic__homology _groups:
[retraction_maps X Y r s; homotopic_with (Ah. True) X X (s o r) id]
= homology_group p X = homology group p Y
by (simp add: deformation_ retraction__imp__homotopy__equivalent__space homo-
topy__equivalent _space__imp__isomorphic__homology _groups)

lemma deformation__retract _imp__isomorphic__relative__homology _groups:
[retraction_maps X X' rid; V C U; r € U — V; homotopic_with (Ah. h ¢ U
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CU)XXrid
= relative__homology__group p X U = relative__homology_group p X' V
by (simp add: deformation__retraction__imp__isomorphic_relative__homology _groups)

lemma deformation__retract _imp__isomorphic__homology _groups:
[retraction_maps X X' r id; homotopic_with (Ah. True) X X r id]
= homology__group p X = homology_group p X'
by (simp add: deformation_ retraction__imp__isomorphic__homology__ groups)

lemma epi_hom__induced__inclusion:
assumes homotopic_with (Az. True) X X id f and f € topspace X — S
shows (hom__induced p (subtopology X S) {} X {} id)
€ epi (homology__group p (subtopology X S)) (homology group p X)
proof (rule epi_right _invertible)
show hom__induced p (subtopology X S) {} X {} id
€ hom (homology__group p (subtopology X S)) (homology__group p X)
by (simp add: hom__induced__empty hom)
show hom,__induced p X {} (subtopology X S) {} f
€ carrier (homology_group p X) — carrier (homology group p (subtopology
X 5))
by (simp add: hom__induced_carrier)
fix z
assume z: = € carrier (homology group p X)
show hom__induced p (subtopology X S) {} X {} id (hom_induced p X {}
(subtopology X S) {} fz) =z
proof (subst hom__induced__compose’)
show continuous_map X (subtopology X S) f
by (meson assms continuous_map__into__subtopology
homotopic_with__imp__continuous__maps)
show hom_induced p X {} X {} (ido f) z ==z
by (metis assms(1) hom_induced_id homology homotopy__empty id_comp
z)
qged (use assms in auto)
qed

lemma trivial_homomorphism__hom__induced__relativization:
assumes homotopic_with (Az. True) X X id f and f € topspace X — S
shows trivial _homomorphism (homology group p X) (relative__homology _group
p X S)
(hom__induced p X {} X S id)
proof —
have (hom__induced p (subtopology X S) {} X {} id)
€ epi (homology__group p (subtopology X S)) (homology_group p X)
by (metis assms epi_hom__induced_ inclusion)
then show ?thesis
using homology__ezactness_axiom__3 [of p X S] homology__exactness__axiom__1
lof p XS]
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by (simp add: epi_def group.trivial _homomorphism__image group__hom.trivial_hom__iff)
qed

lemma mon__hom__boundary_inclusion:
assumes homotopic_with (Az. True) X X id f and f € topspace X — S
shows (hom__boundary p X S) € mon
(relative__homology__group p X S) (homology__group (p — 1) (subtopology
X 9))
proof —
have (hom__induced p (subtopology X S) {} X {} id)
€ epi (homology__group p (subtopology X S)) (homology__group p X)
by (metis assms epi_hom__induced_ inclusion)
then show ?thesis
using homology__exactness__aziom__8 [of p X S] homology__exactness axiom_ 1
[of p X 8]
apply (simp add: mon__def epi__def hom__boundary__hom)
by (metis (no__types, opaque__lifting) group__hom.trivial _hom__iff group _hom.trivial _ker imp_ inj
group__hom__axioms__def group__hom__def group__relative _homology__group hom__boundary__hom)
qed

lemma short _exact sequence _hom__induced_ relativization:

assumes homotopic_with (Az. True) X X id f and f € topspace X — S

shows short_exact_sequence (homology__group (p—1) X) (homology__group (p—1)
(subtopology X S)) (relative_homology group p X S)

(hom__induced (p—1) (subtopology X S) {} X {} id) (hom__boundary

p X 5)

unfolding short _exact sequence__iff

by (intro conjI homology__exactness_axiom__2 epi_hom__induced__inclusion [OF
assms| mon__hom__boundary__inclusion [OF assms))

lemma group_isomorphisms__homology_group_ prod_ deformation:
fixes p::int
assumes homotopic_with (Az. True) X X id f and f € topspace X — S
obtains H K where
subgroup H (homology__group p (subtopology X S))
subgroup K (homology__group p (subtopology X S))
()\(x, y)' z ®homology7gmup p (subtopology X S) y)
€ Group.iso (subgroup__generated (homology__group p (subtopology X S))
H xx
subgroup__generated (homology__group p (subtopology X S)) K)
(homology__group p (subtopology X S))
hom__boundary (p + 1) X S
€ Group.iso (relative_homology group (p + 1) X S)
(subgroup__generated (homology__group p (subtopology X S)) H)
hom__induced p (subtopology X S) {} X {} id
€ Group.iso
(subgroup__generated (homology_group p (subtopology X S)) K)
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(homology__group p X)
proof —
let ?rhs = relative_homology _group (p + 1) X S
let ?pXS = homology group p (subtopology X S)
let ?pX = homology group p X
let ?hb = hom_boundary (p + 1) X S
let ?hi = hom__induced p (subtopology X S) {} X {} id
have z: short_exact_sequence (?pX) ?pXS ?rhs ?hi ?hb
using short_exact _sequence _hom__induced relativization [OF assms, of p +
1] by simp
have contf: continuous_map X (subtopology X S) f
by (metis assms continuous_map__into__subtopology homotopic__with__imp__continuous_maps)
obtain H K where HK: H < ?pXS subgroup K ?pXS H N K C {one ?pXS}
set_mult ?pXS H K = carrier ?pXS
and iso: ?hb € iso ?rhs (subgroup__generated pXS H) ?hi € iso (subgroup__generated
pXS K) ?pX
proof (rule splitting_lemma_right [OF x, where ¢’ = hom__induced p X {}
(subtopology X S) {} f])
show hom__induced p X {} (subtopology X S) {} f € hom (homology__group p
X) (homology__group p (subtopology X S))
using hom__induced__empty _hom by blast
next
fix z
assume z € carrier (homology group p X)
then show hom_induced p (subtopology X S) {} X {} id (hom_induced p X
{} (subtopology X S) {} fz2) =z
using assms(1) contf hom_induced_id homology homotopy_empty
by (fastforce simp add: hom__induced__compose’)
qed blast
show ?thesis
proof
show subgroup H ?pXS
using HK (1) normal_imp__subgroup by blast
then show (A(z, y). z ®2,x9 y)
€ Group.iso (subgroup__generated (?pXS) H x x subgroup _generated (?pXS)
K) (?pXS)
by (meson HK abelian__relative__homology _group group_ disjoint _sum.iso__group_mul
group__disjoint_sum__def group_relative__homology__group)
show subgroup K ?pXS
by (rule HK)
show hom_boundary (p + 1) X S € Group.iso ?rhs (subgroup _generated
(9pXS) H)
using iso int_ops(4) by presburger
show hom__induced p (subtopology X S) {} X {} id € Group.iso (subgroup__generated
(?pXS) K) (#pX)
by (simp add: iso(2))
qed
qed
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lemma iso__homology group prod__deformation:
assumes homotopic_with (Az. True) X X id f and f € topspace X — S
shows homology__group p (subtopology X S)
& DirProd (homology_group p X) (relative__homology group(p + 1) X S)
(is G = DirProd ?H ?R)
proof —
obtain H K where HK:
Az, y). = ®2q y)
€ Group.iso (subgroup__generated (?G) H xx subgroup_generated (?G) K)
(76)
hom__boundary (p + 1) X S € Group.iso (?R) (subgroup__generated (?G) H)
hom__induced p (subtopology X S) {} X {} id € Group.iso (subgroup__generated
(G) K) (?H)
by (blast intro: group__isomorphisms__homology__group _prod_ deformation [OF
assms))
have ?G = DirProd (subgroup_generated (¢G) H) (subgroup_generated (?QG)
K)
by (meson DirProd__group HK (1) group.group__subgroup__generated group.iso__sym
group__relative__homology__group is_isol)
also have ... = DirProd ?R ?H
by (meson HK group.DirProd__iso__trans group.group__subgroup__generated group.iso__sym
group__relative__homology__group is_isol)
also have ... = DirProd ?H ?R
by (simp add: DirProd_commute__iso)
finally show “thesis .
qed

lemma iso__homology contractible space subtopologyl :
assumes contractible_space X S C topspace X S # {}
shows homology__group 0 (subtopology X S) = DirProd integer__group (relative__homology__group(1)
X S)
proof —
obtain f where homotopic_with (Ax. True) X X id f and f € topspace X — S
using assms contractible _space__alt by fastforce
then have homology group 0 (subtopology X S) = homology group 0 X XX
relative__homology group 1 X S
using iso__homology__group__prod__deformation [of X __ S 0] by auto
also have ... = integer_group XX relative__homology group 1 X S
using assms contractible _imp__path__connected__space group.DirProd__iso__trans
group__relative__homology _group iso__refl isomorphic_integer zeroth__homology__group
by blast
finally show ?thesis .
qed

lemma iso__homology__contractible__space__subtopology?2:
[contractible__space X; S C topspace X; p # 0; S # {}]

~

= homology__group p (subtopology X S) = relative__homology_group (p + 1)



Brouwer__Degree.thy 155

XS
by (metis (no__types, opaque__lifting) add.commaute isomorphic__group _reduced__homology _of _contractible
topspace__subtopology topspace__subtopology__subset un__reduced _homology _group)

lemma trivial relative__homology group__contractible__spaces:
[contractible__space X; contractible_space(subtopology X S); topspace X N S #

{1
= trivial__group(relative__homology_group p X S)
using group reduced__homology__group group_ relative__homology__group isomor-
phic__group_ triviality isomorphic__relative__homology by contractible trivial _reduced__homology__group__contractibl
by blast

lemma trivial _relative_homology__group__alt:
assumes contf: continuous_map X (subtopology X S) f and hom: homotopic_with
Mk, kS CS) XX fid
shows trivial _group (relative__homology_group p X S)
proof (rule trivial_relative_homology__group__gen [OF contf])
show homotopic_with (Ah. True) (subtopology X S) (subtopology X S) f id
using hom unfolding homotopic_with__def
apply (rule ex_forward)
apply (auto simp: prod__topology _subtopology continuous_map__in__subtopology
continuous_map__from__subtopology image__subset_iff topspace__subtopology)
done
show homotopic_with (Ak. True) X X fid
using assms by (force simp: homotopic_with__def)
qed

lemma iso__hom__induced_relativization__contractible:
assumes contractible_space(subtopology X S) contractible_space(subtopology X
T) T C Stopspace X N T # {}
shows (hom__induced p X T X S id) € iso (relative_homology group p X T)
(relative__homology__group p X S)
proof (rule very_short_exact_sequence)
show ezxact_seq
([relative__homology _group(p — 1) (subtopology X S) T, relative_homology _group
p X S, relative_homology__group p X T, relative_homology group p (subtopology
X 9) T,
[hom__relboundary p X S T, hom_induced p X T X S id, hom__induced p
(subtopology X S) T X T id)])
using homology__exactness_triple_1 [OF <T C S»] homology__exactness_triple 3
[OF «<T C ]
by fastforce
show trivial_group (relative__homology__group p (subtopology X S) T') trivial_group
(relative__homology__group(p — 1) (subtopology X S) T)
using assms
by (force simp: inf.absorb_iff2 subtopology subtopology topspace subtopology
introl: trivial _relative__homology__group__contractible__spaces)+
qed
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corollary isomorphic_relative__homology__groups relativization__contractible:
assumes contractible_space(subtopology X S) contractible_space(subtopology X
T) T C Stopspace X N T # {}
shows relative__homology_group p X T =2 relative__homology__group p X S
by (rule is_isol) (rule iso__hom__induced__relativization__contractible [OF assms))

lemma iso _hom__induced_inclusion_contractible:
assumes contractible _space X contractible__space(subtopology X S) T C S topspace
Xns#{}
shows (hom__induced p (subtopology X S) T X T id)
€ iso (relative__homology__group p (subtopology X S) T') (relative__homology__group
pXT)
proof (rule very_short_exact_sequence)
show exact_seq
([relative__homology__group p X S, relative__homology_group p X T,
relative__homology__group p (subtopology X S) T, relative_homology__group
(p+1) X 8],
[hom__induced p X T X S id, hom__induced p (subtopology X S) T X T id,
hom__relboundary (p+1) X S T])
using homology__exactness_triple_2 [OF <T C S»] homology__exactness_triple 3
[OF <T C $]
by (metis add__diff _cancel_left’ diff _add__cancel exact_seq cons__iff)
show trivial _group (relative_homology group (p+1) X S) trivial _group (relative__homology _group
pXS)
using assms
by (auto simp: subtopology__subtopology topspace__subtopology introl: trivial_relative__homology__group_
qed

corollary isomorphic__relative__homology _groups _inclusion__contractible:

assumes contractible _space X contractible__space(subtopology X S) T C S topspace
xns#{}

shows relative__homology__group p (subtopology X S) T =2 relative__homology__group
pXT

by (rule is_isol) (rule iso_hom__induced_inclusion__contractible [OF assms))

lemma iso__hom__relboundary__contractible:
assumes contractible__space X contractible__space(subtopology X T) T C S topspace
XNT#{)
shows hom__relboundary p X S T
€ iso (relative_homology group p X S) (relative__homology__group (p — 1)
(subtopology X S) T)
proof (rule very_ short_exact_sequence)
show ezxact_seq
([relative__homology__group (p — 1) X T, relative_homology__group (p — 1)
(subtopology X S) T, relative _homology_group p X S, relative__homology__group p
X 1),
[hom__induced (p — 1) (subtopology X S) T X T id, hom_ relboundary p X
S T, hom_induced p X T X S id))
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using homology__exactness_triple_1 [OF <T C S»] homology__exactness__triple 2
[OF <T C ] by simp
show trivial _group (relative_homology group p X T) trivial _group (relative__homology _group
(p—1)XT)
using assms
by (auto simp: subtopology__subtopology topspace__subtopology intro!: trivial _relative__homology__group__contractib
qed

corollary isomorphic_relative__homology _groups _relboundary__contractible:
assumes contractible _space X contractible__space(subtopology X T') T C S topspace
XnT#{}
shows relative__homology__group p X S = relative__homology__group (p — 1)
(subtopology X S) T
by (rule is_isol) (rule iso__hom__relboundary_ contractible [OF assms])

lemma isomorphic_relative__contractible__space__imp__homology__groups:
assumes contractible__space X contractible _space Y S C topspace X T C topspace

Y
and ST: S={} «— T ={}
and iso: A\p. relative_homology group p X S = relative__homology_group p Y
T
shows homology__group p (subtopology X S) = homology__group p (subtopology Y
T)
proof (cases T = {})
case True

have homology__group p (subtopology X {}) = homology__group p (subtopology Y
{})
by (simp add: homeomorphic__empty space__eq homeomorphic_space_imp _isomorphic__homology_groups)
then show ?thesis
using ST True by blast
next
case Fulse
show ?thesis
proof (cases p = 0)
case True
have homology__group p (subtopology X S) = integer _group X X relative__homology _group
1XS8
using assms True <T # {}
by (simp add: iso__homology__contractible_space__subtopologyl)
also have ... = integer_group xXx relative_homology group 1 Y T
by (simp add: assms group.DirProd_iso__trans iso_refl)
also have ... = homology group p (subtopology Y T)
by (simp add: True <T # {}» assms group.iso__sym iso__homology__contractible_space__subtopologyl )
finally show ?thesis .
next
case Fulse
have homology group p (subtopology X S) = relative_homology group (p+1)
XS
using assms False «T # {}»
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by (simp add: iso__homology_contractible space _subtopology2)
also have ... 2 relative _homology_group (p+1) Y T
by (simp add: assms)
also have ... = homology_group p (subtopology Y T)
by (simp add: False <T # {}> assms group.iso__sym iso__homology__contractible_space__subtopology?2)
finally show ?thesis .
qed
qed

0.3.3 Homology groups of spheres

lemma iso_reduced__homology group_lower _hemisphere:
assumes k < n
shows hom__induced p (nsphere n) {} (nsphere n) {z. z k < 0} id
€ iso (reduced__homology group p (nsphere n)) (relative_homology group p
(nsphere n) {z. z k < 0})
proof (rule iso_reduced homology_by_ contractible)
show contractible_space (subtopology (nsphere n) {z. z k < 0})
by (simp add: assms contractible__space_lower__hemisphere)
have (\i. if i = k then —1 else 0) € topspace (nsphere n) N {z. z k < 0}
using assms by (simp add: nsphere if _distrib [of Ax. x ~ 2] cong: if _cong)
then show topspace (nsphere n) N {z. x k < 0} # {}
by blast
qed

lemma topspace_nsphere 1:
assumes z € topspace (nsphere n) shows (z k) < 1
proof (cases k < n)
case True
have (3> i € {.n} — {k}. (z9)?) = O i<n. (z1)?) — (z k)2
using <k < n» by (simp add: sum__diff)
then show ?thesis
using assms
apply (simp add: nsphere)
by (metis diff _ge_0_iff _ge sum_nonneg zero_le__power2)
next
case Fulse
then show ?thesis
using assms by (simp add: nsphere)
qed

lemma topspace_nsphere_1_eq 0:
fixes z :: nat = real
assumes z: z € topspace (nsphere n) and zk: (z k)> = 1 and i # k
shows z 7 = 0
proof (cases i < n)
case True
have k < n
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using =
by (simp add: nsphere) (metis not_less xk zero__neq _one zero__power?2)
have (>.i € {.n} — {k}. (z1)?) = (O i<n. (2 1)?) — (z k)?
using <k < n» by (simp add: sum__diff)
also have ... = 0
using assms by (simp add: nsphere)
finally have Vie{..n} — {k}. (z4)? = 0
by (simp add: sum__nonneg_eq 0 _iff)
then show ?thesis
using True i # ky by auto
next
case Fulse
with z show ?thesis
by (simp add: nsphere)
qed

proposition iso_ relative__homology group upper _hemisphere:
(hom__induced p (subtopology (nsphere n) {z. x k > 0}) {z. v k = 0} (nsphere
n) {z. z k < 0} id)
€ iso (relative__homology__group p (subtopology (nsphere n) {z. x k > 0}) {z. =
k=0})
(relative__homology__group p (nsphere n) {z. x k < 0}) (is ?h € iso ?G ?H)
proof —
have topspace (nsphere n) N {z. z k < — 1 / 2} C {z € topspace (nsphere n).
zke{y.y<—1/2}}
by force
moreover have closedin (nsphere n) {z € topspace (nsphere n). z k € {y. y <
— /2
apply (rule closedin__continuous__map__preimage [OF continuous_map__nsphere__projection])
using closed Collect _le [of id Az::real. —1/2] apply simp
done
ultimately have nsphere n closure_of {x. © k < —1/2} C {x € topspace
(nsphere n). x k € {y. y < —1/2}}
by (metis (no__types, lifting) closure_of eq closure__of mono closure _of _restrict)
also have ... C {z € topspace (nsphere n). z k € {y. y < 0}}
by force
also have ... C nsphere n interior_of {z. z k < 0}
proof (rule interior_of _mazimal)
show {z € topspace (nsphere n). z k € {y. y < 0}} C {z. z k < 0}
by force
show openin (nsphere n) {x € topspace (nsphere n). z k € {y. y < 0}}
apply (rule openin__continuous_map__preimage [OF continuous_map__nsphere__projection))
using open__ Collect_less [of id Az::real. 0] apply simp
done
qed
finally have nn: nsphere n closure_of {z. x k < —1/2} C nsphere n interior_of
{z. 2k <0} .
have [simp]: {z:nat=real. 2k < 0} — {z. 2k < — (1/2)} ={z. —-1/2 <z k
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ANxk <0}
UNIV — {z:nat=real. z k < a} = {z. a < z k} for a
by auto
let ?T01 = top_of set {0..1::real}
let ?X12 = subtopology (nsphere n) {z. —1/2 < z k}
have 1: hom__induced p ?X12 {z. —1/2 <z k AN x k < 0} (nsphere n) {z. x k
< 0} id
€ iso (relative_homology_group p ¢?X12 {z. —1/2 <z k ANz k < 0})
7H
using homology__excision__axziom [OF nn subset_UNIV, of p] by simp
define h where h = \(T,x). let y = maz (x k) (=T) in
(Ni. if i = k then y else sqrt(1 —y ~2) [ sqrt(1 — x k
have h: W(T,z) =z if 0 < TT <1 (3 i<n. (z4)?) =1 and 0: Vi>n. zi =
0—-T<zkfor Tz
using that by (force simp: nsphere h__def Let__def max__def intro!: topspace_nsphere_1_eq 0)
have continuous_map (prod_topology ¢T01 ?X12) euclideanreal (Az. h x i) for
i
proof —
show ?thesis
proof (rule continuous_map__eq)
show continuous_map (prod__topology ?T01 ?X12)
euclideanreal (AT, x). if 0 < x k then x i else h (T, x) 7)
unfolding case prod_unfold
proof (rule continuous_map__cases_le)
show continuous_map (prod_topology ?T01 ?X12) euclideanreal (Ax. snd x
k)
apply (subst continuous_map__of snd [unfolded o__def])
by (simp add: continuous_map__from__subtopology continuous_map_nsphere__projection)
next
show continuous__map (subtopology (prod__topology ¢T01 ?X12) {p € topspace
(prod__topology ?T01 2X12). 0 < snd p k})
euclideanreal (Azx. snd x 7)
apply (rule continuous_map__from__subtopology)
apply (subst continuous_map__of snd [unfolded o _def])
by (simp add: continuous_map__from__subtopology continuous_map__nsphere _projection)
next
note fst = continuous_map__into_fulltopology [OF continuous_map__subtopology_fst]
have snd: continuous_map (subtopology (prod__topology ?T01 (subtopology
(nsphere n) T)) S) euclideanreal (A\zx. snd x k) for kS T
apply (simp add: nsphere)
apply (rule continuous_map__from__subtopology)
apply (subst continuous_map__of snd [unfolded o__def])
using continuous__map__from__subtopology continuous_map__nsphere__projection
nsphere by fastforce
show continuous__map (subtopology (prod__topology ¢T01 ?X12) {p € topspace
(prod__topology ¢T01 2X12). sndp k < 0})
euclideanreal (Az. h (fst z, snd z) )
apply (simp add: h__def case_prod_unfold Let_def)
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apply (intro conjl impl fst snd continuous_intros)
apply (auto simp: nsphere power2 _eq 1 __iff)
done
qed (auto simp: nsphere h)
qed (auto simp: nsphere h)
qed
moreover
have h ¢ ({0..1} x (topspace (nsphere n) N {z. — (1/2) < z k}))
Clz. Xi<n. (z)?) =1 A (Vi>n. zi=10)}
proof —
have (3" i<n. (h (T,z) i)?) = 1
if 2: « € topspace (nsphere n) and zk: — (1/2) <zkand T: 0 < T T < 1
for T x
proof (cases —T < z k)
case True
then show ?thesis
using that by (auto simp: nsphere h)
next
case Fulse
with z <0 < T)» have k£ < n
apply (simp add: nsphere)
by (metis neg_le_0_iff le not_le)
have 1 — (z k)2 > 0
using topspace nsphere_1 x by auto
with False T <k < n»
have (3" i<n. (h (T,z) i)?) = T? + (1 — T?) x (> ie{.n} — {k}. (z0)% /
(1 = (zk)?))
unfolding h_def Let_ def max_ def
by (simp add: not_le square le 1 power mult distrib power _divide
if _distrib [of A\x. x T 2]
sum.delta__remove sum__distrib__left)
also have ... = 1
using z False xk <0 < T
by (simp add: nsphere sum__diff not_le <k < n> power2_eq 1 _iff flip:
sum,__divide__distrib)
finally show ?thesis .
qed
moreover
have h (T,x) i = 0
if © € topspace (nspheren) — (1/2) < zkandn<i0 < TT < 1
for Tz 1
proof (cases —T < z k)
case Fulse
then show “thesis
using that by (auto simp: nsphere h__def Let _def not_le max_def)
qed (use that in <auto simp: nsphere hy)
ultimately show ?thesis
by auto
qed
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ultimately
have c¢cmh: continuous _map (prod_topology ?T01 ¢X12) (nsphere n) h
proof (subst (2) nsphere)
qed (fastforce simp add: continuous_map__in__subtopology continuous_map__componentwise_ UNIV)
have hom__induced p (subtopology (nsphere n) {z. 0 < x k})
(topspace (subtopology (nsphere n) {z. 0 < xz k}) N{z. z k= 0}) ?X12
(topspace ?X12 N{z. — 1/2 <z kANzk<0})id
€ iso (relative__homology__group p (subtopology (nsphere n) {z. 0 < z k})
(topspace (subtopology (nsphere n) {z. 0 < z k}) N{z. z k =

0}))
(relative__homology__group p ?X12 (topspace ?X12 N{z. — 1/2 <z
kEAzk<0}))
proof (rule deformation__retract_relative__homology _group__isomorphism,__id)
show retraction_maps ?X12 (subtopology (nsphere n) {z. 0 < z k}) (h o (Az.
(0,2))) id
unfolding retraction__maps_def
proof (intro congl balll)
show continuous_map ?X12 (subtopology (nsphere n) {z. 0 < z k}) (h o Pair
0)
apply (simp add: continuous_map_in_subtopology)
apply (intro conjl continuous_map__compose [OF __ ecmh] continuous__intros)
apply (auto simp: h_def Let_ def)
done
show continuous_map (subtopology (nsphere n) {z. 0 < z k}) ?X12 id
by (simp add: continuous_map__in__subtopology)
qged (simp add: nsphere h)
next
have h0: Aza. [za € topspace (nsphere n); — (1/2) < xza k; za k < 0] = h
(0, za) k=0
by (simp add: h_def Let_def)
show (h o (Az. (0,z))) € (topspace ?X12 N{zx. — 1 /2 <zkANzk<0})
— topspace (subtopology (nsphere n) {z. 0 < z k}) N {z. k= 0}
apply (auto simp: h0)
apply (rule subsetD [OF continuous_map__image__subset_topspace [OF cmh]])
apply (force simp: nsphere)
done
have hin: A\t z. [z € topspace (nsphere n); — (1/2) <z k; 0 < t;t < 1] =
h (t,z) € topspace (nsphere n)
apply (rule subsetD [OF continuous_map__image__subset_topspace [OF cmh]])
apply (force simp: nsphere)
done
have hi: Az. [z € topspace (nsphere n); — (1/2) <z k] = h (1,z) =1z
by (simp add: h nsphere)
have continuous_map (prod_topology ?T01 ?X12) (nsphere n) h
using cmh by force
then show homotopic_with
(Ah. b ‘ (topspace ?X12 N {x. — 1/ 2<zkANzk<0}) C topspace
¢X12nf{x. —1/2<zxkANzk<0})
?2X12 2X12 (h o (\a. (0.2))) id
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apply (subst homotopic_with, force)
apply (rule_tac z=h in exI)
apply (auto simp: hin h1 continuous_map__in__subtopology)
apply (auto simp: h_def Let_def maz_def)
done
qed auto
then have 2: hom__induced p (subtopology (nsphere n) {z. 0 < z k}) {z. x k =
0}
?X12{x. —1/2<zkANzk<0}id
€ Group.iso
(relative__homology__group p (subtopology (nsphere n) {z. 0 < z k})
{z. 2 k = 0})
(relative__homology_group p ¢X12 {z. — 1/2 <z k ANz k < 0})
by (metis hom__induced _restrict relative__homology__group _restrict topspace__subtopology)
show ?thesis
using iso_set_trans [OF 2 1]
by (simp add: subset_iff continuous _map__in__subtopology flip: hom__induced__compose)
qed

corollary iso_upper__hemisphere__reduced__homology _group:
(hom__boundary (1 + p) (subtopology (nsphere (Suc n)) {z. x(Suc n) > 0}) {z.
z(Suc n) = 0})
€ iso (relative_homology__group (1 + p) (subtopology (nsphere (Suc n)) {z. z(Suc
n) > 0}) {z. z(Suc n) = 0})
(reduced__homology__group p (nsphere n))
proof —
have {z. 0 < z (Suc n)} N {z. z (Suc n) = 0} = {z.  (Suc n) = (0::real)}
by auto
then have n: nsphere n = subtopology (subtopology (nsphere (Suc n)) {z. x(Suc
n) > 0}) {z. (Suc n) = 0}
by (simp add: subtopology_nsphere__equator subtopology _subtopology)
have ne: (\i. if i = n then 1 else 0) € topspace (subtopology (nsphere (Suc n))
{z. 0 < z (Suc n)}) N {z. x (Suc n) = 0}
by (simp add: nsphere if _distrib [of A\x. © ~ 2] cong: if _cong)
show ?thesis
unfolding n
using iso__relative__homology_of _contractible [where p = 1 + p, simplified]
by (metis contractible__space__upper_hemisphere dual_order.refl empty__iff ne)
qed

corollary iso_reduced__homology__group_ upper__hemisphere:

assumes k < n

shows hom__induced p (nsphere n) {} (nsphere n) {z. x k > 0} id

€ iso (reduced__homology group p (nsphere n)) (relative _homology_group p

(nsphere n) {z. x k > 0})
proof (rule iso__reduced _homology_by__ contractible [OF contractible _space__upper__hemisphere
[OF assms]])

have (\i. if i = k then 1 else 0) € topspace (nsphere n) N {z. 0 < z k}
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using assms by (simp add: nsphere if _distrib [of Ax. x ~ 2] cong: if _cong)
then show topspace (nsphere n) N {z. 0 < z k} # {}
by blast
qed

lemma iso_relative__homology__group__lower _hemisphere:
hom__induced p (subtopology (nsphere n) {z. x k < 0}) {z. x k = 0} (nsphere n)
{z. 2k >0} id
€ iso (relative__homology__group p (subtopology (nsphere n) {z. x k < 0}) {z. =
k=0})
(relative__homology__group p (nsphere n) {z. © k > 0}) (is %k € iso ?G ?H)
proof —
define r where r = Az i. if { = k then —z i else (z i::real)
then have [simp]: r o r = id
by force
have cmr: continuous_map (subtopology (nsphere n) S) (nsphere n) r for S
using continuous_map_nsphere__reflection [of n k]
by (simp add: continuous_map__from__subtopology r_def)
let ?f = hom_induced p (subtopology (nsphere n) {z. x k < 0}) {z. z k= 0}
(subtopology (nsphere n) {z. x k > 0}) {z. z k= 0} r
let g = hom__induced p (subtopology (nsphere n) {z. x k > 0}) {x. 2 k = 0}
(nsphere n) {z. x k < 0} id
let ?h = hom__induced p (nsphere n) {z. x k < 0} (nsphere n) {z. x k > 0} r
obtain f h where
f: f € iso ?G (relative__homology__group p (subtopology (nsphere n) {z. z k
> 0}) {z. 2 k= 0})
and h: h € iso (relative_homology__group p (nsphere n) {z. z k < 0}) ?H
and eq: ho ?go f = %k
proof
have hmr: homeomorphic_map (nsphere n) (nsphere n) r
unfolding homeomorphic_map__maps
by (metis <r o r = id> cmr homeomorphic_maps_involution pointfree_idE
subtopology__topspace)
then have hmrs: homeomorphic_map (subtopology (nsphere n) {z. z k < 0})
(subtopology (nsphere n) {z. k> 0}) r
by (simp add: homeomorphic_map__subtopologies _alt r_def)
have rimeq: r * (topspace (subtopology (nsphere n) {z. z k < 0}) N {z. z k =
0})
= topspace (subtopology (nsphere n) {z. 0 < z k}) N {z. x k = 0}
using continuous _map__eq topcontinuous _at continuous _map_nsphere__reflection
topcontinuous__at__atin
by (fastforce simp: r_def Pi_iff)
show ?f € iso ?G (relative__homology__group p (subtopology (nsphere n) {z. ©
k> 0}) {z. 2k = 0})
using homeomorphic_map__relative_homology_iso [OF hmrs Int_lowerl
rimeq]
by (metis hom__induced_restrict relative__homology__group _restrict)
have rimeq: r ¢ (topspace (nsphere n) N {z. x k < 0}) = topspace (nsphere n)
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N{z. 0 <zk}
by (metis hmrs homeomorphic_imp__surjective_map topspace__subtopology)
show ?h € Group.iso (relative_homology group p (nsphere n) {z. z k < 0})
7H
using homeomorphic_map__relative__homology__iso [OF hmr Int_lowerl rimeq]
by simp
have [simp]: Az. 2 k=0 = rz k=0
by (auto simp: _def)
have ?h o ?g o ?f
= hom__induced p (subtopology (nsphere n) {z. 0 < xz k}) {z. x k = 0}
(nsphere n) {z. 0 < z k} ro
hom__induced p (subtopology (nsphere n) {z. z k < 0}) {z. z k = 0}
(subtopology (nsphere n) {z. 0 < x k}) {z. 2k =0} r
apply (subst hom__induced _compose [symmetric])
using continuous_map_nsphere_reflection apply (force simp: r_def)+
done
also have ... = %
apply (subst hom__induced__compose [symmetric])
apply (simp__all add: image__subset_iff cmr)
using hmrs homeomorphic__imp__continuous_map apply blast
done
finally show ?h o %9 0 2f = %k .
qed
with iso_ relative__homology__group__upper _hemisphere [of p n k]
have h o hom__induced p (subtopology (nsphere n) {f. 0 < fk}) {f. fk = 0}
(nsphere n) {f. fk < 0} id o f
€ Group.iso ?G (relative_homology_group p (nsphere n) {f. 0 < fk})
using f h iso__set_trans by blast
then show ?thesis
by (simp add: eq)
qed

lemma iso_lower__hemisphere_reduced__homology__group:
hom__boundary (1 + p) (subtopology (nsphere (Suc n)) {z. z(Suc n) < 0}) {=.
z(Suc n) = 0}
€ iso (relative_homology_group (1 + p) (subtopology (nsphere (Suc n)) {z. (Suc
n) < 0})
{z. z(Suc n) = 0})
(reduced__homology__group p (nsphere n))
proof —
have {z. (3 i<n. (zi)?) =1 A (Vi>n. zi=0)} =
{z. OZi<n. (2 )?) + (z (Suc n))> =1 A (Vi>Sucn. zi=0)} N {z. z
(Sucn) < 0} N
{z.  (Suc n) = (0::real)})
by (force simp: dest: Suc_lessI)
then have n: nsphere n = subtopology (subtopology (nsphere (Suc n)) {z. x(Suc
n) < 0}) {z. (Suc n) = 0}
by (simp add: nsphere subtopology__subtopology)
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have ne: (\i. if i = n then 1 else 0) € topspace (subtopology (nsphere (Suc n))
{z. z (Sucn) < 0}) N {z. x (Suc n) = 0}
by (simp add: nsphere if _distrib [of Az. z ~ 2] cong: if _cong)
show ?thesis
unfolding n
apply (rule iso_relative_homology_of _contractible [where p = 1 + p, sim-
plified))
using contractible_space_lower _hemisphere ne apply blast+
done
qed

lemma isomorphism__sym:
[f € iso GI G2; N\z. © € carrier G1 = r'(fz) = f(r x);
Nz. z € carrier G1 = r x € carrier G1; group G1; group G2]
= 3f € iso G2 G1.Vx € carrier G2. r(fz) = f(r' z)
apply (clarsimp simp add: group.iso__iff group_isomorphisms Bex_ def)
by (metis (full_types) group__isomorphisms__def group__isomorphisms__sym hom__in__carrier)

lemma isomorphism__trans:
[3f € iso GI G2.Vz € carrier G1. r2(f z) = f(rl x); 3f € iso G2 G8. Vz €
carrier G2. r8(f x) = f(r2 )]
= 3f € iso G1 G3. Yz € carrier G1. r3(f z) = f(rl z)
apply clarify
by (smt (verit, ccfu_threshold) Group.iso_iff hom_in__carrier iso_set_trans
o__apply)

lemma reduced__homology group_nsphere__step:
3f € iso(reduced _homology__group p (nsphere n))
(reduced__homology__group (1 + p) (nsphere (Suc n))).
V¢ € carrier(reduced__homology__group p (nsphere n)).
hom__induced (1 + p) (nsphere(Suc n)) {} (nsphere(Suc n)) {}
(Az 4. if i = 0 then —z i else x 1) (f ¢)

= f (hom_induced p (nsphere n) {} (nsphere n) {} (Az i. if i = 0 then

—zielsexi) c

)
proof —
define r where r = Az::nat=real. Mi. if i = 0 then —z i else x i
have c¢mr: continuous_map (nsphere n) (nsphere n) r for n
unfolding r_def by (rule continuous_map_ nsphere_reflection)
have rsub: r € {z. 0 < z (Suc n)} = {z. 0 < z (Suc n)}
r € {x. xz (Sucn) <0} = {z. z (Suc n) < 0}
r € {z. z (Sucn) =0} — {z. z (Suc n) = 0}
by (force simp: r_def)+
let ?sub = subtopology (nsphere (Suc n)) {z. x (Suc n) > 0}
let ?G2 = relative_homology_group (1 + p) ?sub {z. x (Suc n) = 0}
let ?r2 = hom__induced (1 + p) ?sub {z. x (Suc n) = 0} %sub {z.  (Suc n) =
0} r
let 25 = Ap n. hom__induced p (nsphere n) {} (nsphere n) {} r
show ?thesis
unfolding r_def [symmetric]
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proof (rule isomorphism__trans)
let ?f = hom__boundary (1 + p) ?sub {z. x (Suc n) = 0}
show 3 feGroup.iso (reduced__homology group p (nsphere n)) ?G2.
Y ce€carrier (reduced__homology group p (nsphere n)). 2r2 (fc¢)=f (% p
nc)
proof (rule isomorphism__sym)
show ?2f € Group.iso ?G2 (reduced__homology _group p (nsphere n))
using iso_upper__hemisphere__reduced__homology__group
by (metis add.commute)
next
fix c
assume c € carrier G2
have cmrs: continuous _map ?sub ?sub r
by (metis (no__types, lifting) IntE Pi_iff cmr continuous_map__from__subtopology
continuous_map__into__subtopology rsub(1) topspace_subtopology)
have hom__induced p (nsphere n) {} (nsphere n) {} r o hom__boundary (1 +
p) ?sub {z. x (Suc n) = 0}
= hom__boundary (1 + p) ?sub {z. x (Suc n) = 0} o
hom__induced (1 + p) ?sub {z. z (Suc n) = 0} ?sub {z. © (Suc n) = 0}
r
using naturality_hom__induced [OF cmrs rsub(8), symmetric, of 1+p,
simplified)
by (simp add: Pi_iff subtopology__subtopology subtopology nsphere__equator
flip: Collect _conj _eq cong: rev_conj _cong)
then show %j p n (?f ¢) = ?f (hom_induced (1 + p) ?sub {z. x (Suc n) =
0} ?sub {z. z (Sucn) =0} rc)
by (metis comp__def)
next
fix c
assume c € carrier G2
show hom_induced (1 + p) ?sub {z. z (Suc n) = 0} ?sub {z.  (Suc n) =
0} r ¢ € carrier G2
using hom__induced_carrier by blast
qed auto
next
let 7H2 = relative_homology_group (1 + p) (nsphere (Suc n)) {z. z (Suc n)
< 0}
let ?s2 = hom__induced (1 + p) (nsphere (Suc n)) {z. x (Suc n) < 0} (nsphere
(Suc n)) {z. z (Sucn) <0} r
show 3 feGroup.iso ?G2 (reduced_homology group (1 + p) (nsphere (Suc
n))). ¥V c€carrier ¢G2. 2j (1 + p) (Suc n) (f ¢)
=f (22 ¢)
proof (rule isomorphism__trans)
show 3 feGroup.iso G2 7H2.
Y cecarrier ?G2.
252 (f ¢) = f (hom_induced (1 + p) ?sub {z. z (Suc n) = 0} Zsub
{z. z (Suc n) = 0} r¢)
proof (intro balll bexI)
fix c
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assume c € carrier (relative__homology_group (1 + p) ?sub {z. = (Suc n)
= 0})
show 252 (hom_induced (1 + p) ?sub {z. z (Suc n) = 0} (nsphere (Suc
n)) {z. z (Suc n) < 0} id c)
= hom__induced (1 + p) ?sub {z. x (Suc n) = 0} (nsphere (Suc n)) {=.
z (Sucn) < 0} id (9r2 ¢)
apply (simp add: rsub hom__induced__compose’ Collect_mono__iff cmr)
apply (subst hom__induced _compose’)
apply (simp_all add: continuous_map__in_subtopology continu-
ous_map__from__subtopology [OF cmr] rsub)
apply (auto simp: r_def)
done
qed (simp add: iso_relative__homology group _upper _hemisphere)
next
let ?h = hom_induced (1 + p) (nsphere(Suc n)) {} (nsphere (Suc n)) {z.
z(Suc n) < 0} id
show 3fe€Group.iso ?H2 (reduced_homology_group (1 + p) (nsphere (Suc

n)))-
Y c€carrier 2H2. 25 (1 + p) (Sucn) (fe) = f (952 ¢)
proof (rule isomorphism__sym)
show ?h € Group.iso (reduced homology_group (1 + p) (nsphere (Suc n)))
(relative__homology__group (1 + p) (nsphere (Suc n)) {z.  (Suc n) <
0})
using iso_reduced__homology group lower _hemisphere by blast
next
fix ¢
assume c € carrier (reduced__homology_group (1 + p) (nsphere (Suc n)))
show 252 (?h ¢) = ?h (%5 (1 + p) (Suc n) c)
by (simp add: hom__induced _compose’ cmr rsub)
next
fix ¢
assume c € carrier (reduced_homology group (1 + p) (nsphere (Suc n)))
then show hom__induced (1 + p) (nsphere (Suc n)) {} (nsphere (Suc n))
{}re
€ carrier (reduced_homology_group (1 + p) (nsphere (Suc n)))
by (simp add: hom__induced reduced)
qed auto
qed
qed
qed

lemma reduced__homology group_nsphere__aux:
if p = int n then reduced__homology__group n (nsphere n) = integer__group
else trivial _group(reduced__homology__group p (nsphere n))
proof (induction n arbitrary: p)
case (
let %a = Xi:nat. if i = 0 then 1 else (0::real)
let ?b = Aiznat. if i = 0 then —1 else (0::real)
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have st: subtopology (powertop_real UNIV') {%a, ?b} = nsphere 0
proof —
have {?a, ?b} = {z. (z 0)> =1 AN (Vi>0.zi=0)}
using power2__eq_iff by fastforce
then show ?thesis
by (simp add: nsphere)
qed
have t1_space (powertop_real UNIV)
using t1_space euclidean t1__space_product_topology by blast
then have *: reduced_homology group p (subtopology (powertop_real UNIV)
{%a, 7b}) =
homology__group p (subtopology (powertop__real UNIV) {%a})
by (intro reduced__homology _group_pair) (auto simp: fun__eq iff)
have reduced__homology__group 0 (nsphere 0) = integer _group if p=0
proof —
have reduced__homology__group 0 (nsphere 0) = homology_group 0 (top__of _set

{%a}) if p=0
by (metis * euclidean__product_topology st that)
also have ... = integer group

by (simp add: homology__coefficients)
finally show ?thesis
using that by blast
qed
moreover have trivial__group (reduced__homology_group p (nsphere 0)) if p#£0
using * that homology _dimension__axiom [of subtopology (powertop _real UNIV')
{?a} ?a p|
using isomorphic__group__triviality st by force
ultimately show ?Zcase
by auto
next
case (Suc n)
have eq: reduced _homology_group (int n) (nsphere n) = integer_group if p—1
=n
by (simp add: Suc.IH)
have neq: trivial_group (reduced _homology__group (p—1) (nsphere n)) if p—1 #
n
by (simp add: Suc.IH that)
have iso: reduced__homology__group p (nsphere (Suc n)) = reduced__homology__group
(p—1) (nsphere n)
using reduced__homology__group _nsphere__step [of p—1 n] group.iso__sym [OF
__is_isol] group_reduced__homology group
by fastforce
then show ?case
using eq iso__trans iso isomorphic__group_triviality neq
by (metis (no__types, opaque__lifting) add.commute add_left _cancel diff _add__cancel
group__reduced__homology__group of nat_Suc)
qed
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lemma reduced__homology _group nsphere:
reduced__homology__group n (nsphere n) = integer__group
p # n = trivial _group(reduced _homology_group p (nsphere n))

using reduced__homology__group nsphere__aux by auto

lemma cyclic__reduced__homology_group nsphere:
cyclic__group(reduced__homology__group p (nsphere n))
by (metis reduced__homology__group__nsphere trivial _imp__cyclic_group cyclic_integer__group
group__integer__group group__reduced__homology__group isomorphic__group__cyclicity)

lemma trivial _reduced__homology group_nsphere:
trivial_group(reduced__homology__group p (nsphere n)) +— (p # n)
using group__integer _group isomorphic__group_triviality nontrivial integer _group
reduced__homology__group_ nsphere(1) reduced _homology group nsphere(2) triv-
ial_group__def by blast

lemma non__contractible_space_nsphere: = (contractible__space(nsphere n))
proof (clarsimp simp add: contractible _eq homotopy equivalent _singleton__subtopology)
fix a :: nat = real
assume a: a € topspace (nsphere n)
and he: nsphere n homotopy__equivalent__space subtopology (nsphere n) {a}
have trivial_group (reduced_homology_group (int n) (subtopology (nsphere n)
{a}))
by (simp add: a homology__dimension__reduced [where a=a))
then show Fulse
using isomorphic__group__triviality [OF homotopy__equivalent__space__imp__isomorphic__reduced__homc
[OF he, of n]]
by (simp add: trivial_reduced_homology__group_ nsphere)
qed

0.3.4 Brouwer degree of a Map

definition Brouwer degree2 :: nat = ((nat = real) = nat = real) = int
where
Brouwer_degree2 p f =
Qd::int. Vx € carrier(reduced__homology__group p (nsphere p)).
hom__induced p (nsphere p) {} (nsphere p) {} fz = pow (reduced__homology__group
p (nsphere p)) = d

lemma Brouwer__degree2 eq:
(Nz. = € topspace(nsphere p) — fx = g ©) = Brouwer_degree2 p f =
Brouwer_degree2 p g
unfolding Brouwer degree2 def Ball def
apply (intro Eps_cong all_cong)
by (metis (mono__tags, lifting) hom__induced__eq)

lemma Brouwer_degree2:
assumes x € carrier(reduced__homology__group p (nsphere p))
shows hom__induced p (nsphere p) {} (nsphere p) {} fz
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= pow (reduced_homology_group p (nsphere p)) x (Brouwer_degree2 p f)
(is ?h z = pow ?G x _)
proof (cases continuous__map(nsphere p) (nsphere p) f)
case True
interpret group ?G
by simp
interpret group _hom ?G ?G %h
using hom__induced_ reduced__hom group__hom__axioms_def group hom__ def
is__group by blast
obtain a where a: a € carrier ?G
and aeq: subgroup__generated ?G {a} = ?G
using cyclic__reduced__homology__group__nsphere [of p p] by (auto simp: cyclic__group__def)
then have carra: carrier (subgroup generated ?G {a}) = range (An::int. pow
?G an)
using carrier__subgroup__generated_ by singleton by blast
moreover have ?h a € carrier (subgroup generated ?G {a})
by (simp add: a aeq hom__induced__reduced)
ultimately obtain d::int where d: ?h a = pow ?G a d
by auto
have *: hom_induced (int p) (nsphere p) {} (nsphere p) {} fz =2 [Tog d
if x: z € carrier ?G for x
proof —
obtain n::int where zeq: © = pow ?G a n
using carra x aeq by auto
show ?thesis
by (simp add: zeq a d hom__int_pow int_pow_pow mult.commute)
qed
show ?thesis
unfolding Brouwer degree2 def
apply (rule somel2 [where a=d))
using assms * apply blast+
done
next
case Fulse
show ?thesis
unfolding Brouwer degree2 def
by (rule somel2 [where a=0]) (simp_all add: hom_induced default False
one__reduced__homology__group assms)
qed

lemma Brouwer _degree2_iff:
assumes f: continuous_map (nsphere p) (nsphere p) f
and z: z € carrier(reduced__homology _group p (nsphere p)
shows (hom__induced (int p) (nsphere p) {} (nsphere p) {} fx =
x [A]reduced_homology_group (int p) (nsphere p) d)
+— (z=1

:d)

reduced__homology__group (int p) (nsphere p) V' Brouwer__degree2 p f
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(is (Phz=uz[Teqd) +— _)
proof —
interpret group ?G
by simp
obtain a where a: a € carrier ?G
and aeq: subgroup__generated ?G {a} = ?G
using cyclic__reduced__homology__group__nsphere [of p p] by (auto simp: cyclic__group__def)
then obtain ¢::int where i: 2 = (a [T og 7)
using carrier__subgroup _generated_ by singleton x by fastforce
then have a [Toq i € carrier 7G
using z by blast
have [simp]: ord a = 0
by (simp add: a aeq iso_finite [OF reduced__homology__group_nsphere(1)] flip:
infinite__cyclic__subgroup__order)
show ?thesis
by (auto simp: Brouwer_degree2 int_pow__eq id x i a inl_pow_pow int_pow __eq)
ged

lemma Brouwer _degree2__unique:
assumes f: continuous_map (nsphere p) (nsphere p) f
and hi: Az. © € carrier(reduced__homology__group p (nsphere p))
= hom__induced p (nsphere p) {} (nsphere p) {} fz = pow
(reduced__homology__group p (nsphere p)) z d
(is Az. z € carrier /G = %hz = _)
shows Brouwer _degree2 p f = d
proof —
obtain a where a: a € carrier ?G
and aeq: subgroup_generated ?G {a} = ?G
using cyclic_reduced__homology__group_ nsphere [of p p] by (auto simp: cyclic__group__def)
show ?thesis
using hi [OF a] unfolding Brouwer__degree2 a
by (metis Brouwer_degree2_iff a aeq f group.trivial _group__subgroup__generated
group__reduced__homology__group subsetl trivial _reduced__homology__group_ nsphere)
qed

lemma Brouwer _degree2 unique__generator:
assumes f: continuous_map (nsphere p) (nsphere p) f
and eq: subgroup__generated (reduced__homology__group p (nsphere p)) {a}
= reduced__homology__group p (nsphere p)
and hi: hom__induced p (nsphere p) {} (nsphere p) {} f a = pow (reduced _homology__group
p (nsphere p)) a d
(is ?h a = pow ?G a _)
shows Brouwer degree2 p f = d
proof (cases a € carrier ?G)
case True
then show #thesis
by (metis Brouwer_degree2_iff hi eq f group.trivial _group__subgroup__generated
group__reduced__homology__group
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subset__singleton__iff trivial _reduced__homology_group_ nsphere)

next

case Fulse

then show ?thesis

using trivial _reduced__homology__group_nsphere [of p p]
by (metis group.trivial _group_subgroup__generated__eq disjoint_insert(1) eq

group__reduced__homology__group inf bot_right subset_singleton_ iff)
qed

lemma Brouwer _degree2 homotopic:
assumes homotopic_with (Az. True) (nsphere p) (nsphere p) f g
shows Brouwer _degree2 p f = Brouwer__degree2 p g
proof —
have continuous_map (nsphere p) (nsphere p) f
using homotopic_with__imp__continuous_maps [OF assms| by auto
show ?thesis
using Brouwer__degree2__def assms homology homotopy_empty by fastforce
qed

lemma Brouwer _degree2 id [simp|: Brouwer degree2 p id = 1
proof (rule Brouwer _degree2 _unique)
fix z
assume z: z € carrier (reduced__homology__group (int p) (nsphere p))
then have z € carrier (homology group (int p) (nsphere p))
using carrier__reduced__homology group subset by blast
then show hom_induced (int p) (nsphere p) {} (nsphere p) {} id z =
z [jreduced_homology_gmup (int p) (nsphere p) (1::int)
by (simp add: hom__induced_id group.int_pow_ 1 x)
qed auto

lemma Brouwer __degree2_compose:
assumes f: continuous_map (nsphere p) (nsphere p) f and g: continuous _map

(nsphere p) (nsphere p) g
shows Brouwer__degree2 p (g o f) = Brouwer__degree2 p g * Brouwer _degree2 p

f
proof (rule Brouwer_degree2__unique)
show continuous_map (nsphere p) (nsphere p) (g o f)
by (meson continuous _map__compose f g)
next
fix x
assume z: z € carrier (reduced_homology__group (int p) (
have hom__induced (int p) (nsphere p) {} (nsphere p) {} (
hom__induced (int p) (nsphere p) {} (nsphere p) {
hom__induced (int p) (nsphere p) {} (nsphere p) {
by (blast intro: hom__induced__compose [OF f__ g])
with @ show hom__induced (int p) (nsphere p) {} (nsphere p) {} (go f) x =
Brouwer_degree2 p g *

nsphere p))

go )
}g
}f

z 7] reduced__homology__group (int p) (nsphere p) (
Brouwer_degree2 p f)
by (simp add: mult.commute hom__induced_reduced flip: Brouwer_degree2
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group.int__pow__pow)
qed

lemma Brouwer__degree2__homotopy__equivalence:

assumes f: continuous_map (nsphere p) (nsphere p) f and g¢: continuous _map
(nsphere p) (nsphere p) g

and hom: homotopic_with (Az. True) (nsphere p) (nsphere p) (f o g) id

obtains |Brouwer _degree2 p f| = 1 |Brouwer_degree2 p g| = 1 Brouwer_degree2
p g = Brouwer _degree2 p f

using Brouwer_degree2 _homotopic [OF hom|] Brouwer_degree2__compose f g
zmult_eq 1 iff by auto

lemma Brouwer _degree2__homeomorphic__maps:

assumes homeomorphic_maps (nsphere p) (nsphere p) f g

obtains |Brouwer _degree2 p f| = 1 |Brouwer_degree2 p g| = 1 Brouwer_degree2
p g = Brouwer _degree2 p f

using assms

by (auto simp: homeomorphic_maps__def homotopic_with__equal continuous__map__compose
intro: Brouwer__degree2 homotopy _equivalence)

lemma Brouwer _degree2 retraction_map:
assumes retraction_map (nsphere p) (nsphere p) f
shows |Brouwer_degree2 p f| = 1
proof —
obtain g where g: retraction_maps (nsphere p) (nsphere p) f g
using assms by (auto simp: retraction_map_ def)
show ?thesis
proof (rule Brouwer__degree2 homotopy__equivalence)
show homotopic_with (Az. True) (nsphere p) (nsphere p) (f o g) id
using g apply (auto simp: retraction__maps_def)
by (simp add: homotopic_with__equal continuous _map__compose)
show continuous_map (nsphere p) (nsphere p) f continuous_map (nsphere p)
(nsphere p) g
using g retraction__maps_def by blast+
qed
qed

lemma Brouwer _degree2_section__map:
assumes section__map (nsphere p) (nsphere p) f
shows |Brouwer__degree2 p f| = 1
proof —
obtain g where g: retraction_maps (nsphere p) (nsphere p) g f
using assms by (auto simp: section__map_ def)
show ?thesis
proof (rule Brouwer _degree2 homotopy__equivalence)
show homotopic_with (Az. True) (nsphere p) (nsphere p) (g o f) id
using ¢ apply (auto simp: retraction_maps__def)
by (simp add: homotopic_ with__equal continuous map__compose)
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show continuous_map (nsphere p) (nsphere p) g continuous_map (nsphere p)
(nsphere p) f
using g retraction__maps_def by blast+
qed
qed

lemma Brouwer _degree2__homeomorphic__map:
homeomorphic_map (nsphere p) (nsphere p) f = |Brouwer_degree2 p f| = 1
using Brouwer__degree2__retraction__map section__and__retraction__eq homeomorphic_map
by blast

lemma Brouwer _degree2_nullhomotopic:
assumes homotopic_with (Az. True) (nsphere p) (nsphere p) f (A\z. a)
shows Brouwer__degree2 p f = 0
proof —
have contf: continuous_map (nsphere p) (nsphere p) f
and contc: continuous_map (nsphere p) (nsphere p) (Az. a)
using homotopic_with__imp_ continuous_maps [OF assms|] by metis+
have Brouwer degree2 p f = Brouwer _degree2 p (Ax. a)
using Brouwer__degree2_homotopic [OF assms] .
moreover
let ?G = reduced__homology_group (int p) (nsphere p)
interpret group ?G
by simp
have Brouwer _degree2 p (Az. a) = 0
proof (rule Brouwer_degree2_unique [OF contc])
fix c
assume c: ¢ € carrier ?G
have continuous_map (nsphere p) (subtopology (nsphere p) {a}) (\f. a)
using contc continuous_map__in__subtopology by blast
then have he: hom__induced p (nsphere p) {} (nsphere p) {} (Az. a)
= hom__induced p (subtopology (nsphere p) {a}) {} (nsphere p) {} id

hom__induced p (nsphere p) {} (subtopology (nsphere p) {a}) {}
(Az. a)
by (metis continuous_map__id__subt fun.map_id hom__induced__compose__empty)
have 1: hom_induced p (nsphere p) {} (subtopology (nsphere p) {a}) {} (\z.
a) ¢ =
lreducedihomologyigroup (int p) (subtopology (nsphere p) {a})
using ¢ trivial_reduced__homology__group__contractible__space [of subtopology
(nsphere p) {a} p]
by (simp add: hom__induced _reduced contractible _space__subtopology__singleton
trivial__group__subset group.trivial _group_ subset subset_iff)
show hom__induced (int p) (nsphere p) {} (nsphere p) {} (A\z. a) ¢ =
¢ [Teq (0::int)
apply (simp add: he 1)
using hom__induced__reduced__hom group__hom.hom__one group__hom__axioms__def
group__hom__def group _reduced__homology__group by blast
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qed
ultimately show Zthesis
by metis
qed

lemma Brouwer _degree2 const: Brouwer _degree2 p (Az. a) = 0
proof (cases continuous_map(nsphere p) (nsphere p) (Az. a))
case True
then show ?thesis
by (auto intro: Brouwer_degree2_nullhomotopic [where a=a))
next
case Fulse
let ?G = reduced__homology_group (int p) (nsphere p)
let ?H = homology__group (int p) (nsphere p)
interpret group ?G
by simp
have eql: 1o = 19
by (simp add: one_reduced__homology__group)
have x: Vz€carrier ?G. hom_induced (int p) (nsphere p) {} (nsphere p) {} (Az.
a) = log
by (metis False hom__induced__default one_relative__homology__group)
obtain ¢ where c: ¢ € carrier ?G and ceq: subgroup__generated ?G {c} = ?G
using cyclic_reduced__homology__group_nsphere [of p p] by (force simp: cyclic__group _def)
have [simp]: ord ¢ = 0
by (simp add: ¢ ceq iso_finite [OF reduced__homology__group _nsphere(1)] flip:
infinite__cyclic__subgroup__order)
show ?thesis
unfolding Brouwer _degree2 def
proof (rule some__equality)
fix d :: int
assume VY z€carrier ?G. hom_induced (int p) (nsphere p) {} (nsphere p) {}
(Az.a) z =1 [Joq d
then have ¢ []og d = 1og
using * ¢ by blast
then have int (ord ¢) dvd d
using c eql int_pow _eq id by auto
then show d = 0
by (simp add: * del: one__relative__homology__group)
qed (use x eql in force)
qed

corollary Brouwer _degree2 nonsurjective:
[continuous_map(nsphere p) (nsphere p) f; f ¢ topspace (nsphere p) # topspace
(nsphere p)]
= Brouwer__degree2 p f = 0
by (meson Brouwer__degree2_nullhomotopic nullhomotopic_nonsurjective__sphere__map)
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proposition Brouwer degree2 reflection:
Brouwer_degree2 p (Az i. if i = 0 then —z i else z i) = —1 (is Brouwer__degree2
_r=-1)
proof (induction p)
case (
let G = homology_group 0 (nsphere 0)
let ?D = homology__group 0 (discrete_topology {()})
interpret group ?G
by simp
define r where r = Az::nat=-real. \i. if i = 0 then —z i else x i
then have [simp]: r o r = id
by force
have cmr: continuous_map (nsphere 0) (nsphere 0) r
by (simp add: r_def continuous_map_nsphere__reflection)
have x: hom_induced 0 (nsphere 0) {} (nsphere 0) {} r ¢ = invog ¢
if ¢ € carrier(reduced__homology__group 0 (nsphere 0)) for ¢
proof —
have c: ¢ € carrier ?G
and ceq: hom_induced 0 (nsphere 0) {} (discrete_topology {()}) {} (Az. ()
c=1gp
using that by (auto simp: carrier_reduced__homology_group kernel def)
define pp::nat=-real where pp = Ai. if i = 0 then 1 else 0
define nn::nat=real where nn = X\i. if i = 0 then —1 else 0
have topn0: topspace(nsphere 0) = {pp,nn}
by (auto simp: nsphere pp_def nn_def fun_eq iff power2 eq 1 _iff split:
if _split_asm)
have t1__space (nsphere 0)
unfolding nsphere
apply (rule t1_space subtopology)
by (metis (full types) open_ fun_def t1_space t1__space def)
then have din0: discrete_topology {pp,nn} = nsphere 0
using finite_t1_space__imp__discrete_topology [OF topn0] by auto
have pp # nn
by (auto simp: pp_def nn__def fun__eq iff)
have [simpl]: r pp = nn r nn = pp
by (auto simp: r_def pp__def nn__def fun_eq iff)
have iso: (A(a,b). hom__induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere
0){} id a

{} id b)

® o hom_induced 0 (subtopology (nsphere 0) {nn}) {} (nsphere 0)

€ iso (homology__group 0 (subtopology (nsphere 0) {pp}) X x homol-
ogy__group 0 (subtopology (nsphere 0) {nn}))
?G (is ?f € iso (?P xx ¢N) ?Q)

apply (rule homology _additivity _explicit)

using din0 «pp # nn> by (auto simp: discrete_topology unique)
then have fim: ¢f ¢ carrier(?P xx ?N) = carrier ?G

by (simp add: iso_def bij betw _def)
obtain d d’ where d: d € carrier P and d": d' € carrier N and eqc: ?f(d,d’)
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=c
using ¢ by (force simp flip: fim)
let ?h = Azz. hom__induced 0 (subtopology (nsphere 0) {zx}) {} (discrete_topology
(Oh ¢ O ()
have continuous_map (subtopology (nsphere 0) {nn}) (nsphere 0) r
using cmr continuous__map__from__subtopology by blast
then have retraction__map (subtopology (nsphere 0) {pp}) (subtopology (nsphere
0) {nn}) r
apply (simp add: retraction__map__def retraction__maps__def continuous _map__in__subtopology)
using <r nn = ppy <r pp = nn> cmr continuous _map_ from__subtopology
by blast
then have carrier YN = (hom__induced 0 (subtopology (nsphere 0) {pp}) {}
(subtopology (nsphere 0) {nn}) {} r) ¢ carrier ?P
by (rule surj_hom__induced_retraction_map)
then obtain e where e: e € carrier ?P and eqd’: hom__induced 0 (subtopology
(nsphere 0) {pp}) {} (subtopology (nsphere 0) {nn}) {} re=d’
using d’ by auto
have section__map (subtopology (nsphere 0) {pp}) (discrete__topology {()}) (Az.

()
by (force simp: section_map__def retraction_maps__def topn0)
then have ?h pp € mon ?P ¢D
by (rule mon__hom__induced__section_map)
then have one: © = one ?P
if ¢h pp x = 1op = € carrier ?P for «
using that by (simp add: mon__iff hom__one)
interpret hpd: group__hom ?P ?D ?h pp
using hom__induced__empty _hom by (simp add: hom__induced _empty_hom
group__hom,__azioms__def group__hom__def)
interpret hgd: group _hom ?G ?D hom__induced 0 (nsphere 0) {} (discrete__topology
() &+ Oz ()
using hom__induced__empty_hom by (simp add: hom__induced__empty_hom
group__hom__azioms__def group__hom__def)
interpret hpg: group__hom ?P ?G hom_induced 0 (subtopology (nsphere 0)
{pp}) {} (nsphere 0) {} r
using hom__induced__empty_hom by (simp add: hom__induced__empty_hom
group__hom__azioms__def group__hom__def)
interpret hgg: group__hom ?G ?G hom_induced 0 (nsphere 0) {} (nsphere 0)
{3
using hom__induced__empty__hom by (simp add: hom__induced__empty__hom
group__hom__azioms__def group__hom__def)
have ?h pp d =
(hom__induced 0 (nsphere 0) {} (discrete_topology {()}) {} (Az. ()
o hom__induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere 0) {} id) d
by (simp flip: hom__induced__compose__empty)
moreover
have %h pp = ?h nn o hom_induced 0 (subtopology (nsphere 0) {pp}) {}
(subtopology (nsphere 0) {nn}) {} r
by (simp add: cmr continuous_map__from__subtopology continuous_map__in__subtopology
image__subset__iff flip: hom__induced__compose__empty)
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then have “h pp e =
(hom__induced 0 (nsphere 0) {} (discrete_topology {()}) {} (Az. ())
o hom__induced 0 (subtopology (nsphere 0) {nn}) {} (nsphere 0) {}
id) d’
by (simp flip: hom__induced__compose__empty eqd’)
ultimately have ?h pp (d @ 2p €) = hom__induced 0 (nsphere 0) {} (discrete_topology
0N {F (. 0) (7(d,d7)
by (simp add: d e hom__induced__carrier)
then have 7 pp (d ®9p €) = 19p
using ceq eqc by simp
then have inv_p: invep d = ¢
by (metis (no__types, lifting) Group.group__def d e group.inv__equality group.r_inv
group__relative__homology__group one monoid.m__closed)
have c¢cmr_pn: continuous_map (subtopology (nsphere 0) {pp}) (subtopology
(nsphere 0) {nn}) r
by (simp add: cmr continuous_map__from__subtopology continuous_map__in__subtopology
image__subset__iff)
then have hom__induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere 0) {}
(id or) =
hom__induced 0 (subtopology (nsphere 0) {nn}) {} (nsphere 0) {} id o
hom,__induced 0 (subtopology (nsphere 0) {pp}) {} (subtopology (nsphere
0) {nn}) {} r
using hom__induced_compose__empty continuous_map__id_subt by blast
then have invog hom_induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere

O {}rd=

id d’
apply (simp add: flip: inv_p eqd’)
using d hpg.hom__inv by auto
then have c: ¢ = (hom__induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere

0) {} id d)
®oq inveg (hom_induced 0 (subtopology (nsphere 0) {pp}) {}
(nsphere 0) {} r d)
by (simp flip: eqc)
have hom__induced 0 (nsphere 0) {} (nsphere 0) {} r o
hom__induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere 0) {} id =
hom__induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere 0) {} r
by (metis cmr comp__id continuous_map__id__subt hom__induced__compose__empty)
moreover
have hom__induced 0 (nsphere 0) {} (nsphere 0) {} r o
hom__induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere 0) {} r =
hom__induced 0 (subtopology (nsphere 0) {pp}) {} (nsphere 0) {} id
by (metis <r o r = id> emr continuous_map__from__subtopology hom__induced__compose__empty)
ultimately show ?thesis
by (metis inv_p ¢ comp__def d e hgg.hom__inv hgg.hom__mult hom__induced__carrier
hpd.G.inv_inv hpg.hom__inv inv_mult__group)
qed
show ?case
unfolding r_def [symmetric]

hom__induced 0 (subtopology (nsphere 0) {nn}) {} (nsphere 0) {}
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using Brouwer_degree2_unique [OF cmr]
by (auto simp: * group.int_pow__neg group.int_pow__1 reduced__homology__group__ def
introl: Brouwer_degree2_unique [OF cmr])
next
case (Suc p)
let G = reduced__homology__group (int p) (nsphere p)
let ?G1 = reduced_homology_group (1 + int p) (nsphere (Suc p))
obtain f g where fg: group__isomorphisms ?G ?G1 f g
and x: VY c€carrier ?G.
hom,__induced (1 + int p) (nsphere (Suc p)) {} (nsphere (Suc p)) {} or (f
c) =
f (hom_induced p (nsphere p) {} (nsphere p) {} ?r c)
using reduced _homology__group_ nsphere__step
by (meson group.iso_iff _group _isomorphisms group_reduced__homology__group)
then have eq: carrier ?G1 = f ¢ carrier ?G
by (fastforce simp add: iso_iff dest: group_isomorphisms_imp__iso)
interpret group hom ?G ?G1 f
by (meson fg group _hom__azioms_def group _hom__def group__isomorphisms__def
group__reduced__homology__group)
have homf: f € hom ?G ?G1
using fg group_isomorphisms__def by blast
have hom__induced (1 + int p) (nsphere (Suc p)) {} (nsphere (Suc p)) {} ?r (f
y) =fy[Negy (—1:zint)
if y € carrier ?G for y
by (simp add: that x Brouwer_degree2 Suc hom__int_pow)
then show ?case
by (fastforce simp: eq intro: Brouwer _degree2_unique [OF continuous_map__nsphere__reflection))
qed

end

0.4 Invariance of Domain

theory Invariance of Domain
imports Brouwer__Degree HOL— Analysis. Continuous__FExtension HOL— Analysis. Homeomorphism

begin

0.4.1 Degree invariance mod 2 for map between pairs

theorem Borsuk_odd__mapping degree_ step:
assumes cmf: continuous_map (nsphere n) (nsphere n) f
and f: Au. u € topspace(nsphere n) = (f o Az i. —z i) u = ((Azi. —x i) o
/) u
and fim: f € (topspace(nsphere(n — Suc 0))) — topspace(nsphere(n — Suc 0))
shows even (Brouwer_degree2 n f — Brouwer_degree2 (n — Suc 0) f)
proof (casesn = 0)
case Fulse
define neg where neg = \x::nat=-real. \i. —x i
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define upper where upper = An. {z::nat=-real. zn > 0}
define lower where lower = An. {z:nat=real. zn < 0}
define equator where equator = An. {z::nat=real. zn = 0}
define usphere where usphere = An. subtopology (nsphere n) (upper n)
define Isphere where Isphere = An. subtopology (nsphere n) (lower n)
have [simp]: neg © ¢ = —x i for x ¢
by (force simp: neg_def)
have equator_upper: equator n C upper n
by (force simp: equator _def upper _def)
then have [simp]: id € equator n — upper n
by force
have upper_usphere: subtopology (nsphere n) (upper n) = usphere n
by (simp add: usphere__def)
let ?rhgn = relative_homology__group n (nsphere n)
let ?hi_ee = hom__induced n (nsphere n) (equator n) (nsphere n) (equator n)
interpret GE: comm__group ?rhgn (equator n)
by simp
interpret HB: group__hom ?rhgn (equator n)
homology__group (int n — 1) (subtopology (nsphere n) (equator
")
hom__boundary n (nsphere n) (equator n)
by (simp add: group__hom__axioms__def group__hom__def hom__boundary__hom)
interpret HIU: group__hom ?rhgn (equator n)
2rhgn (upper n)
hom__induced n (nsphere n) (equator n) (nsphere n) (upper
n) id
by (simp add: group__hom__axioms_def group _hom__def hom__induced__hom)
have subt_eq: subtopology (nsphere n) {z. x n = 0} = nsphere (n — Suc 0)
by (metis False Suc_pred le_zero__eq not_le subtopology_nsphere__equator)
then have equ: subtopology (nsphere n) (equator n) = nsphere(n — Suc 0)
subtopology (Isphere n) (equator n) = nsphere(n — Suc 0)
subtopology (usphere n) (equator n) = nsphere(n — Suc 0)
using Fulse by (auto simp: Isphere_def usphere_def equator_def lower _def
upper__def
subtopology__subtopology simp flip: Collect__conj _eq cong: rev_conj cong)
have cmr: continuous_map (nsphere(n — Suc 0)) (nsphere(n — Suc 0)) f
by (metis cmf continuous _map__from__subtopology continuous_map__in__subtopology
equ(1)
fim subtopology__restrict topspace__subtopology)
have fz n = 0 if x € topspace (nsphere n) x n = 0 for x
proof —
have z € topspace (nsphere (n — Suc 0))
by (simp add: that topspace_nsphere_minusl)
moreover have topspace (nsphere n) N {f. fn = 0} = topspace (nsphere (n
— Suc 0))
by (metis subt__eq topspace__subtopology)
ultimately show ?thesis
using fim by auto
qed
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then have fimeq: f € (topspace (nsphere n) N equator n) — topspace (nsphere
n) N equator n
using fim cmf by (auto simp: equator__def continuous _map__def image__subset__iff)
have A\k. continuous _map (powertop_real UNIV') euclideanreal (A\x. — z k)
by (metis UNIV_I continuous _map_ product__projection continuous_map_ minus)
then have c¢m_neg: continuous_map (nsphere m) (nsphere m) neg for m
by (force simp: nsphere continuous_map__in__subtopology meg_def continu-
ous_map__componentwise_ UNIV intro: continuous_map__from__subtopology)
then have ¢cm_neg lu: continuous_map (Isphere n) (usphere n) neg
by (auto simp: Isphere__def usphere__def lower _def upper__def continuous _map__from__subtopology
continuous_map__in__subtopology)
have neg_in_top_iff: neg © € topspace(nsphere m) «— x € topspace(nsphere
m) for m x
by (simp add: nsphere__def neg_def topspace Euclidean__space)
obtain z where zcarr: z € carrier (reduced homology_group (int n — 1)
(nsphere (n — Suc 0)))
and zeq: subgroup__generated (reduced_homology group (int n — 1) (nsphere
(n — Suc 0))) {2}
= reduced__homology__group (int n — 1) (nsphere (n — Suc 0))
using cyclic_reduced__homology group_nsphere [of int n — 1 n — Suc 0] by
(auto simp: cyclic_group__def)
have hom__boundary n (subtopology (nsphere n) {z. z n < 0}) {z. z n = 0}
€ Group.iso (relative_homology _group n
(subtopology (nsphere n) {z. xn < 0}) {z. x n = 0})
(reduced__homology__group (int n — 1) (nsphere (n — Suc 0)))
using iso__lower__hemisphere__reduced__homology__group [of int n — 1 n — Suc
0] False by simp
then obtain gp where g: group_isomorphisms
(relative__homology__group n (subtopology (nsphere n) {z. z n
< 0}) {z. zn=0})
(reduced__homology__group (int n — 1) (nsphere (n — Suc 0)))
(hom__boundary n (subtopology (nsphere n) {z. x n < 0}) {z.
zn=0})
gp
by (auto simp: group.iso__iff group__isomorphisms)
then interpret gp: group hom reduced__homology group (int n — 1) (nsphere
(n — Suc 0))
relative__homology__group n (subtopology (nsphere n) {z. x n < 0}) {z. x n =
0} gp
by (simp add: group _hom__azioms__def group _hom__def group__isomorphisms__def)
obtain zp where zpcarr: zp € carrier(relative_homology group n (lsphere n)
(equator n))
and zp_ z: hom__boundary n (lsphere n) (equator n) zp = z
and zp__sg: subgroup__generated (relative_homology__group n (Isphere n) (equator
n)) {zp}
= relative__homology__group n (Isphere n) (equator n)
proof
show gp z € carrier (relative__homology__group n (lsphere n) (equator n))
hom__boundary n (Isphere n) (equator n) (gp z) = z
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using g zcarr by (auto simp: lsphere__def equator_def lower__def group__isomorphisms__def)
have giso: gp € Group.iso (reduced__homology group (int n — 1) (nsphere (n
— Suc 0)))
(relative__homology__group n (subtopology (nsphere n) {z. z n <
0}) {z. zn=0})
by (metis (mono__tags, lifting) g group__isomorphisms__imp__iso group__isomorphisms__sym,)
show subgroup _generated (relative__homology__group n (lsphere n) (equator n))
{gp 2} =
relative__homology__group n (lsphere n) (equator n)
apply (rule monoid.equality)
using giso gp.subgroup__generated_by_image [of {z}] zcarr
by (auto simp: lsphere__def equator_def lower_def zeq gp.iso__iff)
qed
have hb_iso: hom_boundary n (subtopology (nsphere n) {z. x n > 0}) {z. z n
= 0}
€ iso (relative_homology group n (subtopology (nsphere n) {z. z n >
0}) {z. xn=0})
(reduced__homology__group (int n — 1) (nsphere (n — Suc 0)))
using iso_ upper__hemisphere__reduced__homology group [of int n — 1 n — Suc
0] False by simp
then obtain gn where g: group isomorphisms
(relative__homology__group n (subtopology (nsphere n) {z. x n
> 0}) {z. zn = 0})
(reduced__homology__group (int n — 1) (nsphere (n — Suc 0)))
(hom__boundary n (subtopology (nsphere n) {z. x n > 0}) {z.
zn=20})
gn
by (auto simp: group.iso__iff _group__isomorphisms)
then interpret gn: group__hom reduced _homology_group (int n — 1) (nsphere
(n — Suc 0))
relative__homology__group n (subtopology (nsphere n) {z. xn > 0}) {z. zn =
0} gn
by (simp add: group hom__azioms_def group _hom,__def group__isomorphisms__def)
obtain zn where zncarr: zn € carrier(relative_homology__group n (usphere n)
(equator n))
and zn_z: hom__boundary n (usphere n) (equator n) zn = z
and zn__sg: subgroup__generated (relative__homology _group n (usphere n) (equator

n)) {zn}

proof
show gn z € carrier (relative__homology__group n (usphere n) (equator n))
hom__boundary n (usphere n) (equator n) (gn z) = z
using g zcarr by (auto simp: usphere__def equator_def upper__def group__isomorphisms__def)
have giso: gn € Group.iso (reduced_homology_group (int n — 1) (nsphere (n
— Suc 0)))

= relative__homology__group n (usphere n) (equator n)

(relative__homology__group n (subtopology (nsphere n) {z. z n >

0}) {z. xn = 0})
by (metis (mono__tags, lifting) g group__isomorphisms__imp__iso group__isomorphisms__sym,)
show subgroup__generated (relative__homology__group n (usphere n) (equator n))
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{gn 2} =
relative__homology__group n (usphere n) (equator n)
apply (rule monoid.equality)
using giso gn.subgroup__generated_by_image [of {z}] zcarr
by (auto simp: usphere__def equator _def upper__def zeq gn.iso__iff)
qed
let ?hi_lu = hom__induced n (lsphere n) (equator n) (nsphere n) (upper n) id
interpret gh_lu: group__hom relative _homology__group n (lsphere n) (equator n)
frhgn (upper n) Zhi_lu
by (simp add: group__hom__azioms__def group__hom__def hom__induced hom)
interpret gh__eef: group__hom ?rhgn (equator n) ?rhgn (equator n) ?hi_ee f
by (simp add: group__hom__axioms__def group__hom__def hom__induced__hom)
define wp where wp = ?hi_lu zp
then have wpcarr: wp € carrier(?rhgn (upper n))
by (simp add: hom__induced__carrier)
have hom__induced n (nsphere n) {} (nsphere n) {z. xn > 0} id
€ iso (reduced_homology group n (nsphere n))
(?rhgn {z. zn > 0})
using iso_reduced _homology__group _upper _hemisphere [of n n n] by auto
then have carrier(?rhgn {z. x n > 0})
C (hom_induced n (nsphere n) {} (nsphere n) {z. x n > 0} id)
¢ carrier(reduced__homology__group n (nsphere n))
by (simp add: iso_iff)
then obtain vp where vpcarr: vp € carrier(reduced__homology _group n (nsphere
")
and equwp: hom__induced n (nsphere n) {} (nsphere n) (upper n) id vp = wp
using wpcarr by (auto simp: upper_def)
define wn where wn = hom__induced n (usphere n) (equator n) (nsphere n)
(lower n) id zn
then have wncarr: wn € carrier(?rhgn (lower n))
by (simp add: hom__induced__carrier)
have hom__induced n (nsphere n) {} (nsphere n) {z. xn < 0} id
€ iso (reduced_homology group n (nsphere n))
(?rhgn {z. z n < 0})
using iso_reduced _homology__group lower _hemisphere [of n n n] by auto
then have carrier(?rhgn {z. x n < 0})
C (hom_induced n (nsphere n) {} (nsphere n) {z. x n < 0} id)
¢ carrier(reduced__homology__group n (nsphere n))
by (simp add: iso_iff)
then obtain vn where vpcarr: vn € carrier(reduced__homology__group n (nsphere
n)
and equwp: hom__induced n (nsphere n) {} (nsphere n) (lower n) id vn = wn
using wncarr by (auto simp: lower_def)
define up where up = hom_induced n (lsphere n) (equator n) (nsphere n)
(equator n) id zp
then have upcarr: up € carrier(?rhgn (equator n))
by (simp add: hom__induced__carrier)
define un where un = hom__induced n (usphere n) (equator n) (nsphere n)
(equator n) id zn
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then have uncarr: un € carrier(?rhgn (equator n))
by (simp add: hom__induced__carrier)
have x: (\(z, y).
hom__induced n (Isphere n) (equator n) (nsphere n) (equator n) id x
®?rhgn (equator n)
hom__induced n (usphere n) (equator n) (nsphere n) (equator n) id y)
€ Group.iso
(relative__homology__group n (lsphere n) (equator n) x X
relative__homology__group n (usphere n) (equator n))
(2rhgn (equator n))
proof (rule conjunctl [OF exact_sequence__sum__lemma [OF abelian__relative__homology__groupl])
show hom__induced n (Isphere n) (equator n) (nsphere n) (upper n) id
€ Group.iso (relative_homology _group n (Isphere n) (equator n))
(?rhgn (upper n))
unfolding Isphere_ def usphere__def equator _def lower__def upper__def
using iso_ relative__homology group lower _hemisphere by blast
show hom__induced n (usphere n) (equator n) (nsphere n) (lower n) id
€ Group.iso (relative_homology _group n (usphere n) (equator n))
(2rhgn (lower n))
unfolding Isphere_def usphere__def equator _def lower _def upper_def
using iso_ relative__homology group upper _hemisphere by blast
show ezxact_seq
([?rhgn (lower n),
?rhgn (equator n),
relative__homology__group n (Isphere n) (equator n)],
[hom__induced n (nsphere n) (equator n) (nsphere n) (lower n) id,
hom__induced n (lsphere n) (equator n) (nsphere n) (equator n) id])
unfolding Isphere_def usphere__def equator _def lower _def upper _def
by (rule homology _exactness_triple_3) force
show exact_seq
([#rhgn (upper n),
?rhgn (equator n),
relative__homology__group n (usphere n) (equator n)],
[hom__induced n (nsphere n) (equator n) (nsphere n) (upper n) id,
hom__induced n (usphere n) (equator n) (nsphere n) (equator n) id))
unfolding Isphere_def usphere__def equator _def lower _def upper_def
by (rule homology _exactness triple 3) force
next
fix
assume z € carrier (relative_homology_group n (Isphere n) (equator n))
show hom__induced n (nsphere n) (equator n) (nsphere n) (upper n) id
(hom__induced n (lsphere n) (equator n) (nsphere n) (equator n) id z) =
hom__induced n (lsphere n) (equator n) (nsphere n) (upper n) id
by (simp add: hom__induced__compose’ subset_iff lsphere_def usphere def
equator_def lower _def upper__def)
next
fix z
assume z € carrier (relative_homology__group n (usphere n) (equator n))
show hom__induced n (nsphere n) (equator n) (nsphere n) (lower n) id
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(hom__induced n (usphere n) (equator n) (nsphere n) (equator n) id x) =
hom__induced n (usphere n) (equator n) (nsphere n) (lower n) id =
by (simp add: hom__induced compose’ subset_iff Isphere_def usphere__def
equator_def lower _def upper__def)
qed
then have sb: carrier (?rhgn (equator n))
C (A=, y).

hom__induced n (lsphere n) (equator n) (nsphere n) (equator n) id x

D 2rhgn (equator n)
hom__induced n (usphere n) (equator n) (nsphere n) (equator n) id y)
“ carrier (relative__homology_group n (lsphere n) (equator n) x X
relative__homology__group n (usphere n) (equator n))
by (simp add: iso_iff)
obtain a b::int
where up__ab: ?hi_ee f up
= up [7] ?rhgn (equator n) a 2rhgn, (equator n) UM (] ?rhgn (equator n) b
proof —
have hiupcarr: ?hi_ee f up € carrier(?rhgn (equator n))
by (simp add: hom__induced__carrier)
obtain v v where u: u € carrier (relative _homology_group n (lsphere n)
(equator m))
and v: v € carrier (relative_homology__group n (usphere n) (equator n))
and eq: ?hi_ee fup =
hom__induced n (Isphere n) (equator n) (nsphere n) (equator n) id u
D erhgn (equator m)
hom,__induced n (usphere n) (equator n) (nsphere n) (equator n) id v
using subsetD [OF sb hiupcarr] by auto
have u € carrier (subgroup__generated (relative _homology_group n (Isphere n)
(equator n)) {zp})
by (simp__all add: u zp__sg)
then obtain a::int where a: u = 2p |
a

A]relativeihomologyigmup n (Isphere n) (equator n)

by (metis group.carrier__subgroup__generated by singleton group_ relative__homology__group
rangeE zpcarr)
have ae: hom__induced n (Isphere n) (equator n) (nsphere n) (equator n) id
(pow (relative_homology__group n (Isphere n) (equator n)) zp a)
= pow (?rhgn (equator n)) (hom_induced n (Isphere n) (equator n) (nsphere
n) (equator n) id zp) a
by (meson group__hom.hom__int__pow group__hom__azioms__def group__hom__def
group__relative__homology__group hom__induced zpcarr)
have v € carrier (subgroup__generated (relative__homology__group n (usphere n)
(equator n)) {zn})
by (simp__all add: v zn__sg)
then obtain b::int where b: v = zn |
b

A]relative_homology_group n (usphere n) (equator n)

by (metis group.carrier__subgroup__generated__by_singleton group__relative__homology__group
rangeE zncarr)
have be: hom__induced n (usphere n) (equator n) (nsphere n) (equator n) id

(zn [A]relativefhomologyfgroup n (usphere n) (equator n) b)
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= hom__induced n (usphere n) (equator n) (nsphere n) (equator n) id

£n [A]relatz'veihomologyigroup n (nsphere n) (equator n) b
by (meson group__hom.hom__int_pow group__hom__azioms__def group__hom__def
group__relative__homology__group hom__induced zncarr)
show thesis
proof
show ?hi_ee f up
= up [] 2rhgn (equator n) @ @ 2rhgn (equator n) UN [] ?rhgn (equator n) b
using a ae b be eq local.up _def un__def by auto
qed
qed
have (hom__boundary n (nsphere n) (equator n)
o hom__induced n (Isphere n) (equator n) (nsphere n) (equator n) id) zp = z
using zp_z equ apply (simp add: Isphere__def naturality _hom__induced)
by (metis hom__boundary__carrier hom__induced_id)
then have up_ z: hom__boundary n (nsphere n) (equator n) up = z
by (simp add: up__def)
have (hom__boundary n (nsphere n) (equator n)
o hom__induced n (usphere n) (equator n) (nsphere n) (equator n) id) zn = z
using zn_ z equ apply (simp add: usphere__def naturality _hom__induced)
by (metis hom__boundary__carrier hom__induced_id)
then have un_z: hom_boundary n (nsphere n) (equator n) un = z
by (simp add: un__def)
have Bd_ab: Brouwer_degree2 (n — Suc 0) f = a + b
proof (rule Brouwer _degree2 unique__generator; use False int__ops in simp__all)
show continuous_map (nsphere (n — Suc 0)) (nsphere (n — Suc 0)) f
using cmr by auto
show subgroup__generated (reduced__homology__group (int n — 1) (nsphere (n
— Suc 0))) {z} =
reduced__homology__group (int n — 1) (nsphere (n — Suc 0))
using zeq by blast
have (hom__induced (int n — 1) (nsphere (n — Suc 0)) {} (nsphere (n — Suc
0)) {} f
o hom__boundary n (nsphere n) (equator n)) up
= (hom__boundary n (nsphere n) (equator n) o
?hi_ee ) up
using naturality__hom__induced [OF emf fimeq, of n, symmetric]
by (simp add: subtopology_restrict equ fun__eq iff)
also have ... = hom__boundary n (nsphere n) (equator n)

(up [A]relativefhomologyfgmup n (nsphere n) (equator n)

a ®relative_homology_group n (nsphere n) (equator n)

un [A]relativeihomologyigmup n (nsphere n) (equator n) b)
by (simp add: o__def up__ab)
also have ... = z |
(a +b)
using zcarr
apply (simp add: HB.hom,__int__pow reduced__homology__group__def group.int_pow__subgroup__generated
UPCATT UNCATT)

jreducedfhomologyfgmup (int n — 1) (nsphere (n — Suc 0))
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by (metis equ(1) group.int_pow_mult group_ relative_homology__group hom__boundary__carrier
un_z up_z)
finally show hom_induced (int n — 1) (nsphere (n — Suc 0)) {} (nsphere (n
— Suc 0){} fz=

z [A]reduced_homology_group (int n — 1) (nsphere (n — Suc 0)) (a+b)

by (simp add: up_ z)
qed

define v where u = up ® 2rhgn ( un

equator m) nv ?rhgn (equator n)
have ucarr: u € carrier (?rhgn (equator n))

by (simp add: u__def uncarr upcarr)
then have u [7] 2rhgn ( Brouwer_degree2 n f = u 7] Zrhgn (

(a = b)

equator n) equator m)

+— (GE.ord u) dvd a — b — Brouwer_degree2 n f

by (simp add: GE.int_pow__eq)
moreover
have GE.ord u = 0
proof (clarsimp simp add: GE.ord_eq 0 ucarr)

fix d :: nat

assume 0 < d

and u [7] orhgn (equator n) @ = singular_relboundary_set n (nsphere n)

(equator n)
then have hom__induced n (nsphere n) (equator n) (nsphere n) (upper n) id u
d

=1 ?rhgn (upper n)
by (metis HIU .hom__one HIU.hom__nat_pow one_relative__homology__group
uearr)
moreover
have 2hi Ilu
= hom__induced n (nsphere n) (equator n) (nsphere n) (upper n) id o
hom__induced n (lsphere n) (equator n) (nsphere n) (equator n) id
by (simp add: Isphere__def image__subset_iff equator_upper flip: hom__induced__compose)
then have p: wp = hom__induced n (nsphere n) (equator n) (nsphere n) (upper
n) id up
by (simp add: local.up__def wp__def)
have n: hom_induced n (nsphere n) (equator n) (nsphere n) (upper n) id un =

[/j ?rhgn (upper n)

1 ?rhgn (upper n)
using homology_exactness_triple_3 [OF equator _upper, of n nsphere n]
using un__def zncarr by (auto simp: upper__usphere kernel__def)
have hom__induced n (nsphere n) (equator n) (nsphere n) (upper n) id v = wp
unfolding u_ def
using p n HIU.inv_one HIU.r_one uncarr upcarr by auto
ultimately have (wp [7] ?rhgn (upper n) d) = Lorhgn (upper n)
by simp
moreover have infinite (carrier (subgroup_ generated (#rhgn (upper n)) {wp}))
proof —
have ?rhgn (upper n) = reduced _homology__group n (nsphere n)
unfolding upper_def
using iso__reduced__homology__group__upper_hemisphere [of n n n]
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by (blast intro: group.iso__sym group_reduced__homology__group is_isol)
also have ... = integer__group

by (simp add: reduced__homology _group nsphere)
finally have iso: ?rhgn (upper n) =

integer__group .
have carrier (subgroup__generated (?rhgn (upper n)) {wp}) = carrier (?rhgn
(upper n))

using gh__lu.subgroup__generated_by__image [of {zp}] zpcarr HIU .carrier_subgroup__generated__subset
gh__lu.iso__iff iso__relative__homology__group_ lower _hemisphere zp__sg

by (auto simp: lower_def lsphere__def upper__def equator _def wp__def)
then show ?thesis

using infinite_ UNIV__int iso_ finite [OF iso] by simp
qged

ultimately show Fulse
using HIU .finite cyclic_subgroup <0 < d» wpcarr by blast
qed

ultimately have iff: u [7] orhgn (equator n) Brouwwer_degree2n f = u [ 2rhgn (equator n)
(a—b)

+— Brouwer_degree2 nf =a — b
by auto

have v [7] 2rhgn (equator n) Brouwer _degree2 n f = ?hi_ee fu
proof —

have ne: topspace (nsphere n) N equator n # {}

using Fulse equator__def in__topspace_nsphere by fastforce

have eql: hom__boundary n (nsphere n) (equator n) u
=1

reduced__homology__group (int n — 1) (subtopology (nsphere n) (equator n))
using one_reduced__homology__group u__def un_ z uncarr up_ z upcarr by force
then have whom: u € hom_induced n (nsphere n) {} (nsphere n) (equator n)
id ¢

carrier (reduced_homology__group (int n) (nsphere n))
using homology__exactness_reduced_1 [OF ne, of n] eql ucarr by (auto simp:
kernel _def)

then obtain v where vcarr: v € carrier (reduced_homology_group (int n)
(nsphere n))

and ueq: u = hom__induced n (nsphere n) {} (nsphere n) (equator
n) id v
by blast

interpret GH_hi: group__hom homology group n (nsphere n)
?rhgn (equator n)

hom__induced n (nsphere n) {} (nsphere n) (equator n) id
by (simp add: group__hom__azioms__def group__hom__def hom__induced__hom)
have poweq: pow (homology__group n (nsphere n)) z i = pow (reduced__homology__group
n (nsphere n)) © ¢
for z and i::int
by (simp add: False un__reduced__homology__group)

have vcarr’: v € carrier (homology__group n (nsphere n))

using carrier__reduced__homology group_subset vcarr by blast
have v [0, (equator n) Brouwwer_degree2 n f

= hom__induced n (nsphere n) {} (nsphere n) (equator n) f v
using vcarr vearr’


Invariance{_}{\kern 0pt}of{_}{\kern 0pt}Domain.html

190

by (simp add: ueq poweq hom__induced__compose’ cmf flip: GH__hi.hom__int_pow
Brouwer_degree2)
also have ... = hom_induced n (nsphere n) (topspace(nsphere n) N equator
n) (nsphere n) (equator n) f
(hom__induced n (nsphere n) {} (nsphere n) (topspace(nsphere n)
N equator n) id v)
using fimeq by (simp add: hom__induced__compose’ cmf Pi_iff)
also have ... = %hi_ee fu
by (metis hom__induced inf.left _idem ueq)
finally show ?thesis .
qed
moreover
interpret gh_een: group__hom ?rhgn (equator n) ?rhgn (equator n) ?hi__ee neg
by (simp add: group__hom__azioms__def group__hom__def hom__induced hom)

have hi_up_eq un: ?hi_ee neg up = un [ 2rhgn (equator n) Brouwer _degree?2

(n — Suc 0) neg

proof —

have ?hi_ee neg (hom__induced n (Isphere n) (equator n) (nsphere n) (equator

n) id zp)
= hom__induced n (Isphere n) (equator n) (nsphere n) (equator n) (neg o

id) 2p

by (intro hom__induced__compose’) (auto simp: Isphere__def equator _def cm__neg)

also have ... = hom_induced n (usphere n) (equator n) (nsphere n) (equator
n) id

(hom__induced n (Isphere n) (equator n) (usphere n) (equator n) neg zp)
by (subst hom__induced__compose’ [OF cm__neqg_lu]) (auto simp: usphere_def
equator_def)
also have hom__induced n (Isphere n) (equator n) (usphere n) (equator n) neg
zp
=zn [A]relative_homology_group n (usphere n) (equator n) Brouwer_degree2
(n — Suc 0) neg
proof —
let ?hb = hom__boundary n (usphere n) (equator n)
have eq: subtopology (nsphere n) {x. x n > 0} = usphere n A {z. zn = 0}
= equator n
by (auto simp: usphere__def upper__def equator__def)
with hb_iso have inj: inj_on (2hb) (carrier (relative_homology group n
(usphere n) (equator n)))
by (simp add: iso_iff)
interpret hb_hom: group_hom relative _homology_group n (usphere n)
(equator n)
reduced__homology__group (int n — 1) (nsphere (n —
Suc 0))
Zhb
using hb__iso iso__iff eq group__hom__axioms__def group__hom__def by fastforce
show ?thesis
proof (rule inj_onD [OF inj))
have *: hom__induced (int n — 1) (nsphere (n — Suc 0)) {} (nsphere (n —
Suc 0)) {} neg z
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=z [jhomologyigmup (int n — 1) (nsphere (n — Suc 0)) Brouwer_degree2
(n — Suc 0) neg
using Brouwer_degree2 [of z n — Suc 0 neg| False zcarr
by (simp add: int_ops group.int_pow__subgroup__generated reduced__homology__group__def)
have ?hb o
hom__induced n (lsphere n) (equator n) (usphere n) (equator n) neg
= hom_induced (int n — 1) (nsphere (n — Suc 0)) {} (nsphere (n —
Suc 0)) {} neg o
hom__boundary n (lsphere n) (equator n)
apply (subst naturality_hom__induced [OF cm_neg_lu))
apply (force simp: equator _def neg_def)
by (simp add: equ)
then have ?hb
(hom__induced n (lsphere n) (equator n) (usphere n) (equator n)
neg zp)

= (2 [A]homologyigroup (int n — 1) (nsphere (n — Suc 0)) Brouwer_degree2

(n — Suc 0) neg)
by (metis x comp__apply zp_z)

also have ... = ?hb (zn [A]relativeihomologyigmup n (usphere n) (equator n)

Brouwer_degree2 (n — Suc 0) neg)
by (metis group.int_pow__subgroup__generated group__relative__homology _group
hb_hom.hom__int_pow reduced__homology__group__ def zcarr zn__z zncarr)
finally show ?hb (hom_induced n (lsphere n) (equator n) (usphere n)
(equator n) neg zp) =
#hb (zn [] relative__homology__group n (usphere n) (equator n)
Brouwer _degree2 (n — Suc 0) neg) by simp
qed (auto simp: hom__induced__carrier group.int_pow_closed zncarr)
qed
finally show ?thesis
by (metis (no__types, lifting) group__hom.hom__int_pow group__hom__axioms__def
group__hom,__def group__relative__homology__group hom__induced local.up _def un__def
zZncarr)
qed
have continuous_map (nsphere (n — Suc 0)) (nsphere (n — Suc 0)) neg
using c¢m_ neg by blast
then have homeomorphic_map (nsphere (n — Suc 0)) (nsphere (n — Suc 0))
neg
apply (auto simp: homeomorphic_map_maps homeomorphic_maps__ def)
apply (rule_tac z=neg in exl, auto)
done
then have Brouwer degree2 21: Brouwer _degree2 (n — Suc 0) neg ~ 2 = 1
using Brouwer__degree2 homeomorphic_map power2_eq 1 _iff by force
have hi_un_eq up: ?hi_ee neg un = up [ 2rhgn ( Brouwer__degree2
(n — Suc 0) neg (is 2f un = %y)
proof —
have [simp]: neg o neg = id
by force
have 7f (?f 2y) = %y

equator n)
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apply (subst hom__induced__compose’ [OF e¢m_neg __ cm_neg))
apply(force simp: equator _def)
apply (simp add: upcarr hom__induced_id__gen)
done
moreover have ?f %y = un
using upcarr apply (simp only: gh__een.hom__int_pow hi_up__eq _un)
by (metis (no__types, lifting) Brouwer _degree2 21 GE.group 1 invl GE.l_inv_ex
group.int_pow__1 group.int_pow_pow power?2 _eq 1 _iff uncarr zmult_eq 1_iff)
ultimately show ¢f un = %y
by simp
qed
have ?hi_ee fun = un [7] ?rhgn, (equator n) @ © 2rhgn (equator n) UP [] ?rhgn (equator n)
b
proof —
let TE = topspace (nsphere n) N equator n
have fneg: (f o neg) © = (neg o f) z if = € topspace (nsphere n) for x
using f [OF that] by (force simp: neg_def)
have neg _im: neg € (topspace (nsphere n) N equator n) — topspace (nsphere
n) N equator n
using c¢m_ neg continuous _map__image_subset_topspace equator _def
by fastforce
have 1: hom_induced n (nsphere n) ?TE (nsphere n) ¢TE f o hom__induced n
(nsphere n) ?TE (nsphere n) ?TE neg
= hom__induced n (nsphere n) ¢TE (nsphere n) ?TFE neg o hom__induced
n (nsphere n) ?TE (nsphere n) ?TE f
using neg_im fimeq cm__neg cmf fneg
apply (simp flip: hom__induced__compose del: hom__induced_restrict)
using frneg by (auto intro: hom__induced__eq)
have (un [7] ?rhgn (equator n) a) © 2rhgn, (equator n) (up [7] ?rhgn (equator n) b)
=un[7] 2rhgn (equator n) (Brouwer_degree2 (n — 1) neg * a x Brouwer_degree2
(n — 1) neg)
@ 2rhgn (equator n)
up [ 7] 2rhgn (equator n) (Brouwer_degree2 (n — 1) neg * b * Brouwer_degree2

(n = 1) neg)

proof —
have Brouwer_degree2 (n — Suc 0) neg = 1 V Brouwer_degree2 (n — Suc
0) neg = — 1

using Brouwer _degree2 21 power2_eq 1_iff by blast
then show ?thesis
by fastforce
qed
also have ... = ((un [7] 2rhgn (equator n) Brouwer _degree2 (n — 1) neg)

[] ?rhgn (equator n) ¢ D erhgn (equator n)

Brouwer_degree2 (n — 1) neg) [7] 2rhgn (equator n)

(up [7] 2rhgn (equator n)
b) [] ?rhgn (equator n)
Brouwer _degree2 (n — 1) neg
by (simp add: GE.int_pow_distrib GE.int_pow__pow uncarr upcarr)

also have ... = ?hi_ee neg (?hi_ee fup) [7] 2rhgn (equator n) Brouwer _degree2
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(n — Suc 0) neg
by (simp add: gh__een.hom__int_pow hi_un_eq up hi_up_eq un uncarr
up__ab upcarr)

finally have 2: (un [7] ?rhgn (equator n) a) @ 2rhgn (equator n) (up [7] ?rhgn (equator n)

b)
= %hi_ee neg (?hi_ee fup) [7] 2rhgn (equator n) Brouwer_degree2 (n —
Suc 0) neg .
have un = ?hi_ee neg up [ 2rhgn (equator n) Brouwer_degree2 (n — Suc 0)
neg

by (metis (no__types, opaque_lifting) Brouwer _degree2_ 21 GE.int_pow 1
GE.int_pow_pow hi_up_eq un power2_eq 1_iff uncarr zmult_eq 1_iff)
moreover have ?hi_ee f ((?hi_ee neg up) [7] 2rhgn ( Brouwer_degree2
(n — Suc 0) neg))

= un [] ?rhgn (equator n) @ @ erhgn (equator n) UP [] ?rhgn (equator n)

equator n) (

b
using 1 2 by (simp add: hom__induced__carrier gh__eef .hom__int_pow fun__eq_iff)
ultimately show ?thesis
by blast
qed
then have ?hi_ee fu = u [ 2rhgn (equator n) (a —b)
by (simp add: u__def upcarr uncarr up__ab GE.int_pow_diff GE.m__ac GE.int_pow __distrib
GE.int_pow_inv GE.inv_mult_group)
ultimately
have Brouwer degree2 n f = a — b
using iff by blast
with Bd ab show “thesis
by simp
qed simp

0.4.2 General Jordan-Brouwer separation theorem and in-
variance of dimension

proposition relative__homology group FEuclidean__complement __step:
assumes closedin (Euclidean__space n) S
shows relative__homology__group p (Euclidean__space n) (topspace( Euclidean__space
n) — 9)
2 relative__homology__group (p + k) (Euclidean__space (n+k)) (topspace( Buclidean__space
(n+8)) — 8)
proof —
have «: relative__homology__group p (Euclidean__space n) (topspace( Euclidean__space
n) — 9)
= relative__homology__group (p + 1) (Euclidean__space (Suc n)) (topspace( Euclidean__space
(Sucn)) —{ze S zn=20})
(is ?lhs = %rhs)
if clo: closedin (Euclidean_space (Suc n)) S and cong: Az y. [x € S; N\i. i #
n—=zi=yi = yes
forpn S
proof —
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have Ssub: S C topspace (Fuclidean__space (Suc n))
by (meson clo closedin__def)
define lo where lo = {z € topspace(Euclidean__space (Suc n)). z n < (if ¢ €
S then 0 else 1)}
define hi where hi = {z € topspace(Euclidean_space (Suc n)). zn > (if ¢ €
S then 0 else —1)}
have lo_hi_Int: lo N hi = {z € topspace(Euclidean__space (Suc n)) — S. z n
e{-1<.<1}}
by (auto simp: hi_def lo__def)
have lo_hi_ Un: lo U hi = topspace(Euclidean__space (Suc n)) — {x € S. z n
_
by (auto simp: hi_def lo__def)
define ret where ret = Ac::real. Az i. if i = n then c else x i
have c¢m_ret: continuous _map (powertop_real UNIV') (powertop_real UNIV')
(ret t) for ¢
by (auto simp: ret_def continuous_map_ componentwise_ UNIV intro: con-
tinuous_map__product__projection)
let ST = At. subtopology (Euclidean__space (Suc n)) {z. x n = t}
define squashable where
squashable = At S.Vzt. z € SA(zn <t/ ANt/ <tVi<t' ANt <zn)
— rett'z el
have squashable: squashable t (topspace( Euclidean__space(Suc n))) for ¢
by (simp add: squashable__def topspace_FEuclidean__space ret__def)
have squashableD: [squashable t S; z € S;xn < t'ANt' <tViI<t'ANt' <z
n] = rett'z e Sforzt'ts
by (auto simp: squashable _def)
have squashable 1 hi
by (force simp: squashable def hi_def ret_def topspace FEuclidean_ space
intro: cong)
have squashable t UNIV for t
by (force simp: squashable_def hi_def ret_def topspace FEuclidean__space
intro: cong)
have squashable_0_lohi: squashable 0 (lo N hi)
using Ssub
by (auto simp: squashable__def hi__deflo_def ret_def topspace_Euclidean__space
intro: cong)
have rm_ ret: retraction_maps (subtopology (Euclidean_space (Suc n)) U)
(subtopology (Euclidean__space (Suc n)) {z. z € U A z
n = t})
(ret t) id

if squashable t U for t U

unfolding retraction_maps_def
proof (intro congl balll)

show continuous_map (subtopology (Euclidean__space (Suc n)) U)

(subtopology (Euclidean__space (Suc n)) {z € U. zn = t}) (ret t)
apply (simp add: em__ret continuous_map__in__subtopology continuous _map__from__subtopology
Euclidean__space__def)
using that by (fastforce simp: squashable_def ret_def)

next
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show continuous_map (subtopology (Fuclidean__space (Suc n)) {x € U. z n

= t})
(subtopology (Euclidean__space (Suc n)) U) id
using continuous_map__in_subtopology by fastforce
show ret ¢ (id z) = z
if © € topspace (subtopology (Fuclidean__space (Suc n)) {x € U. z n = t})
for z
using that by (simp add: topspace_Euclidean__space ret_def fun__eq iff)
qged
have cm__snd: continuous_map (prod__topology (top_of _set {0..1}) (subtopology
(powertop__real UNIV) S))
euclideanreal (Az. snd z k) for k::nat and S
using continuous__map__componentwise_ UNIV continuous _map__into__fulltopology
continuous_map__snd by fastforce
have ¢cm__ fstsnd: continuous _map (prod__topology (top_of set {0..1}) (subtopology
(powertop__real UNIV) S))
euclideanreal (A\x. fst x * snd z k) for k::nat and S
by (intro continuous_intros continuous_map__into__fulltopology [OF continu-
ous_map__fst] ecm__snd)
have hw_sub: homotopic_with (Ak. k *V C V) (subtopology (Fuclidean _space
(Suc n)) U)
(subtopology (Euclidean__space (Suc n)) U) (ret t) id
if squashable t U squashable t V for U V' t
unfolding homotopic_with__def
proof (intro exI congl alll balll)
define h where h = A\(z,z). ret (1 —2)*t+ zxzn)zx
show (\z. h (u, 2)) 'V C Vifue {0..1} for u
using that unfolding h_def
by clarsimp (metis squashableD [OF <squashable t V] convex__bound_le
diff _ge_ 0 _iff ge eq diff eq’ le__cases less_eq real def segment_bound_lemma)
have Az y i. [Vk>Sucn. yk=0; Sucn <i] = ret (1 —z)xt+azx*y
n)yi=>0
by (simp add: ret_def)
then have h € {0..1} x ({z. Vi>Sucn. zi=0} N U) = {z. Vi>Suc n. =
i=0}NU
using squashableD [OF <squashable t Us] segment_bound_lemma
apply (clarsimp simp: h__def Pi_iff)
by (metis convex__bound_le eq diff _eq ge_iff diff _ge 0 linorder_le_cases)
moreover
have continuous_map (prod__topology (top_of _set {0..1}) (subtopology (powertop__real
UNIV)
({z.Vi>Sucn. xi= 0} N U))) (powertop_real UNIV) h
apply (auto simp: h__def case_prod__unfold ret__def continuous_map__componentwise_ UNIV)
apply (intro continuous_map__into__fulltopology [OF continuous_map_ fst]
em__snd continuous__intros)
by (auto simp: ¢cm__snd)
ultimately show continuous_map (prod_topology (top_of set {0..1})
(subtopology (Euclidean__space (Suc n)) U))
(subtopology (Euclidean__space (Suc n)) U) h
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by (simp add: continuous _map__in__subtopology Euclidean__space__def subtopol-
ogy__subtopology)
qed (auto simp: ret_def)
have cs_hi: contractible_space(subtopology (Fuclidean__space(Suc n)) hi)
proof —
have homotopic_with (Az. True) (ST 1) (ST 1) id (Ax. (Ai. if ¢ = n then
1 else 0))
apply (subst homotopic__with__sym)
apply (simp add: homotopic_ with)
apply (rule_tac x=(\(z,z) . if i=n then 1 else z x = i) in exl)
apply (auto simp: Euclidean__space__def subtopology__subtopology continu-
ous__map__in__subtopology case_prod__unfold continuous__map__componentwise_ UNIV
cm_fstsnd)
done
then have contractible_space (ST 1)
unfolding contractible_space_def by metis
moreover have ?thesis = contractible_space (ST 1)
proof (intro deformation_retract_imp__homotopy _equivalent space homo-
topy__equivalent _space__contractibility)
have {z. Vi>Sucn. zi=0}N{x € hi.zcn=1} ={z. Vi>Sucn. i =
0yNn{z.an=1}
by (auto simp: hi_def topspace_Euclidean__space)
then have eq: subtopology (Fuclidean__space (Suc n)) {z. z € hi AN z n =
1} = 28T 1
by (simp add: Euclidean__space__def subtopology _subtopology)
show homotopic_with (Az. True) (subtopology (Euclidean_space (Suc n))
hi) (subtopology (Fuclidean__space (Suc n)) hi) (ret 1) id
using hw_sub [OF <squashable 1 hi> <squashable 1 UNIV>] eq by simp
show retraction__maps (subtopology (Euclidean__space (Suc n)) hi) (?ST 1)
(ret 1) id
using rm__ret [OF <squashable 1 hiy] eq by simp
qed
ultimately show “thesis by metis
qed
have ?lhs & relative__homology__group p (FEuclidean__space (Suc n)) (lo N hi)
proof (rule group.iso_sym [OF __ deformation__retract_imp__isomorphic__relative__homology _groups|)
have {z. Vi>Sucn. zi =0} N{z. xn= 0} = {z. Vi>n. 2 i = (0::real)}
by auto (metis le_less_Suc__eq not_le)
then have ?2ST 0 = FEuclidean__space n
by (simp add: Euclidean__space__def subtopology _subtopology)
then show retraction_maps (Euclidean__space (Suc n)) (Euclidean__space n)
(ret 0) id
using rm__ret [OF <squashable 0 UNIV»] by auto
then have ret 0 x € topspace (Euclidean__space n)
if © € topspace (Euclidean__space (Suc n)) —1 < znzn < 1 for z
using that by (metis continuous _map__image__subset_topspace image__subset__iff
retraction__maps__def)
then show (ret 0) € (lo N hi) — topspace (EBuclidean_space n) — S
by (auto simp: local.cong ret__def hi__def lo__def)
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show homotopic_with (Ah. h “ (lo N hi) C lo N hi) (Euclidean__space (Suc
n)) (Buclidean__space (Suc n)) (ret 0) id
using hw_sub [OF squashable squashable 0 _lohi] by simp
qed (auto simp: lo_def hi_def Fuclidean space__def)

~

also have ... = relative_homology_group p (subtopology (FEuclidean _space
(Suc n)) hi) (lo N hi)
proof (rule group.iso__sym [OF __ isomorphic__relative__homology__groups__inclusion__contractible])

show contractible__space (subtopology (Euclidean__space (Suc n)) hi)
by (simp add: cs_hi)

show topspace (Euclidean_ space (Suc n)) N hi # {}
apply (simp add: hi_def topspace_Fuclidean__space set__eq iff)
apply (rule_tac z=\i. if i = n then 1 else 0 in exl, auto)

done
qged auto
also have ... = relative _homology_group p (subtopology (FEuclidean _space
(Suc n)) (lo U hi)) lo
proof —

have oo: openin (Euclidean__space (Suc n)) {x € topspace (Fuclidean__space
(Suc n)). zn € A}
if open A for A
proof (rule openin__continuous _map__preimage)
show continuous_map (Euclidean__space (Suc n)) euclideanreal (Az. x n)
proof —
have Vn f. continuous_map (product_topology f UNIV) (f (n::nat)) (Af.
f nireal)
by (simp add: continuous_map_ product_projection)
then show ?thesis
using Fuclidean__space__def continuous_map__from__subtopology
by (metis (mono__tags))
qed
qed (auto intro: that)
have openin (Euclidean__space(Suc n)) lo
apply (simp add: openin__subopen [of __ lo])
apply (simp add: lo_def, safe)
apply (force intro: oo [of lessThan 0, simplified] open_ Collect_less)
apply (rule_tac z={x € topspace( Euclidean__space(Suc n)). zn < 1}
N (topspace( Euclidean__space(Suc n)) — ) in exl)
using clo apply (force intro: oo [of lessThan 1, simplified] open__Collect less)
done
moreover have openin (Euclidean__space(Suc n)) hi
apply (simp add: openin__subopen [of __ hi])
apply (simp add: hi_def, safe)
apply (force intro: oo [of greaterThan 0, simplified] open__Collect_less)
apply (rule_tac z={x € topspace(Euclidean__space(Suc n)). x n > —1}
N (topspace( Buclidean__space(Suc n)) — ) in exl)
using clo apply (force intro: oo [of greaterThan (—1), simplified] open__Collect_less)
done
ultimately
have *: subtopology (Euclidean__space (Suc n)) (lo U hi) closure_of
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(topspace (subtopology (Euclidean__space (Suc n)) (lo U hi)) — hi)
C subtopology (Euclidean__space (Suc n)) (lo U hi) interior_of lo
by (metis (no__types, lifting) Diff idemp Diff subset_conv Un__commute
Un__upper2 closure__of _interior_of interior_of _closure_of interior_of complement
interior_of _eqlo__hi_Un openin__Un openin__open__subtopology topspace__subtopology _subset)
have eq: ((lo U hi) N (lo U hi — (topspace (Euclidean__space (Suc n)) N (lo
U hi) — hi))) = hi
(lo — (topspace (Euclidean__space (Suc n)) N (lo U hi) — hi)) = lo N hi
by (auto simp: lo__def hi_def Euclidean__space__def)
show ?thesis
using homology__excision__axiom [OF x, of lo U hi p]
by (force simp: subtopology__subtopology eq is_iso__def)
qed
also have ... 2 relative__homology__group (p + 1 — 1) (subtopology (Euclidean__space
(Suc n)) (lo U hi)) lo
by simp
also have ... 2 relative__homology_group (p + 1) (Euclidean__space (Suc n))
(lo U hi)
proof (rule group.iso__sym [OF __ isomorphic_relative _homology__groups_relboundary__contractible])
have proj: continuous_map (powertop _real UNIV') euclideanreal (Af. f n)
by (metis UNIV_I continuous_map_ product_projection)
have hilo: Az. © € hi = (\i. if i = n then — z i elsez i) € lo
Nz. x € lo= (Ni. if { = n then — z i else x i) € hi
using local.cong
by (auto simp: hi__def lo__def topspace FEuclidean__space split: if _split_asm)
have subtopology (Fuclidean__space (Suc n)) hi homeomorphic__space subtopol-
ogy (Euclidean__space (Suc n)) lo
unfolding homeomorphic__space__def
apply (rule_tac z=Az i. if i = n then —(x 1) else z i in exl)+
using proj
apply (auto simp: homeomorphic_maps_def Euclidean__space__def continu-
ous_map__in__subtopology
hilo continuous _map__componentwise_ UNIV continu-
ous_map__from__subtopology continuous_map__minus
intro: continuous_map__from__subtopology continuous _map_ product__projection)
done
then have contractible_space(subtopology (Fuclidean_space(Suc n)) hi)
+— contractible__space (subtopology (Fuclidean__space (Suc n)) lo)
by (rule homeomorphic__space__contractibility)
then show contractible__space (subtopology (Euclidean__space (Suc n)) lo)
using cs_hi by auto
show topspace (Euclidean__space (Suc n)) N lo # {}
apply (simp add: lo__def Euclidean__space__def set__eq iff)
apply (rule_tac x=Xi. if { = n then —1 else 0 in exl, auto)
done
qed auto
also have ... = ?rhs
by (simp flip: lo_hi_Un)
finally show ?thesis .
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qed
show ?thesis
proof (induction k)
case (Suc m)
with assms obtain T where cloT: closedin (powertop_real UNIV) T
and SeqT: S =T N{z.Vi>n. zi= 0}
by (auto simp: Euclidean__space__def closedin__subtopology)
then have closedin (Euclidean__space (m + n)) S
apply (simp add: Euclidean__space__def closedin__subtopology)
apply (rule_tac =T N topspace( Euclidean__space n) in exI)
using closedin__ Fuclidean__space topspace_Euclidean__space by force
moreover have relative_homology_group p (Fuclidean__space n) (topspace
(Fuclidean__space n) — S)
= relative__homology_group (p + 1) (Buclidean__space (Suc n))
(topspace (Euclidean_space (Suc n)) — S)
if closedin (Euclidean__space n) S for p n
proof —
define S’ where S’ = {z € topspace(Euclidean__space(Suc n)). (Ai. if i < n
then z i else 0) € S}
have Ssub_n: S C topspace (Fuclidean _space n)
by (meson that closedin__def)
have relative__homology__group p (Euclidean__space n) (topspace( Euclidean__space
n) — S
= relative__homology__group (p + 1) (Euclidean__space (Suc n)) (topspace( Euclidean__space
(Suc n)) —{z € S zn=0})
proof (rule x)
have cm: continuous_map (powertop_real UNIV) euclideanreal (Af. f u)
for u
by (metis UNIV_I continuous_map__product__projection)
have continuous_map (subtopology (powertop_real UNIV) {z. Vi>n. z i =
0}) euclideanreal
(Az. if k < n then z k else 0) for k
by (simp add: continuous_map__from__subtopology [OF cm])
moreover have Vi>n. (if i < n then z i else 0) = 0
if © € topspace (subtopology (powertop_real UNIV) {z. Vi>n. z i = 0})
for z
using that by simp
ultimately have continuous map (Euclidean__space (Suc n)) (Euclidean__space
n) (Az i. if { < n then x i else 0)
by (simp add: Euclidean__space_def continuous map__in__subtopology
continuous__map__componentwise_ UNIV
continuous_map__from__subtopology [OF cm| image__subset__iff)
then show closedin (Fuclidean__space (Suc n)) S’
unfolding S’ _def using that by (rule closedin__continuous_map__preimage)
next
fix zy
assume zy: N\i. i #Fn=zi=yiz e S’
then have (Ai. if i < n then z i else 0) = (M\i. if i < n then y i else 0)
by (simp add: S’_def Euclidean__space__def fun__eq iff)
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with zy show y € S’
by (simp add: S’ _def Euclidean__space__def)
qed
moreover
have abs_eq: (Ai. if i < nthenzielse 0) =z if \i.i>n= zi= 0 for
x :: nat = real and n
using that by auto
then have topspace (Euclidean_space n) — S’ = topspace (Euclidean__space
n) — S
by (simp add: S’_def Euclidean__space__def set_eq_iff cong: conj__cong)
moreover
have topspace (FEuclidean_space (Suc n)) — {x € S’. 2 n = 0} = topspace
(EBuclidean__space (Suc n)) — S
using Ssub_n
apply (auto simp: S'_def subset_iff Euclidean_space_def set_eq iff abs__eq
cong: conj__cong)
by (metis abs_eq le__antisym not_less _eq eq)
ultimately show %thesis
by simp
qed
ultimately have relative _homology_group (p + m)(FEuclidean_space (m +
n))(topspace (Euclidean__space (m + n)) — S)
= relative__homology__group (p + m + 1) (Euclidean__space (Suc (m +
n))) (topspace (Euclidean__space (Suc (m + n))) — S)
by (metis <closedin (Euclidean_space (m + n)) S»)
then show ?case
using Suc.IH iso_trans by (force simp: algebra__simps)
qged (simp add: iso_refl)
qed

lemma iso_ FEuclidean__complements_lemmal:
assumes S: closedin (Euclidean__space m) S and cmf: continuous_map(subtopology
(Euclidean__space m) S) (Euclidean__space n) f
obtains g where continuous_map (Euclidean__space m) (Euclidean__space n) g
Ne.zeS=gz=fx
proof —
have cont: continuous_on (topspace (FEuclidean_space m) N S) (Ax. fz i) for ¢
by (metis (no__types) continuous__on__product_then__coordinatewise
c¢m__Euclidean__space__iff _continuous__on cmf topspace__subtopology)
have f  (topspace (Euclidean__space m) N S) C topspace (Euclidean__space n)
using cmf continuous _map__image subset_topspace by fastforce
then
have 3 g. continuous_on (topspace (Euclidean_space m)) g AN Nz € S. gz = f
z i) for i
using S Tietze__unbounded [OF cont [of ]
by (metis closedin__Euclidean__space__iff closedin__closed__Int topspace__subtopology
topspace__subtopology _subset)
then obtain g where cmg: A\i. continuous _map (Euclidean__space m) euclidean-
real (g 17)
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and gf: Niz.z € S= gixz=fxi
unfolding continuous map_Fuclidean__space__iff by metis
let GG = Az i. if i < n then gix else 0
show thesis
proof
show continuous_map (Euclidean__space m) (FEuclidean__space n) ?GG
unfolding Fuclidean__space__def [of n]
by (auto simp: continuous_map__in__subtopology continuous_map__componentwise
cmg)
show ?GG z = fzifx € S for x
proof —
have S C topspace (Euclidean__space m)
by (meson S closedin__def)
then have fz € topspace (Fuclidean__space n)
using cmf that unfolding continuous map def topspace subtopology by
blast
then show “thesis
by (force simp: topspace_Euclidean__space gf that)
qed
qed
qed

lemma iso_FEuclidean__complements lemmaZ2:
assumes S: closedin (Euclidean__space m) S
and T: closedin (Euclidean_space n) T
and hom: homeomorphic_map (subtopology (Euclidean__space m) S) (subtopology
(Euclidean__space n) T) f
obtains g where homeomorphic_map (prod__topology (Euclidean__space m) (Euclidean__space

n))

(prod__topology (Euclidean__space n) (Euclidean__space
m)) g
Nz. z € § = g(z,(\i. 0)) = (f z,(Ni. 0))
proof —
obtain g where cmf: continuous _map (subtopology (Euclidean__space m) S)
(subtopology (Euclidean__space n) T) f
and cmg: continuous_map (subtopology (Fuclidean__space n) T) (subtopology
(Euclidean__space m) S) g
and gf: Ae.z € S =g (fz) ==
and fo: \y.y € T = f(gy) =y
using hom S T closedin__subset unfolding homeomorphic_map_maps home-
omorphic_maps__def
by fastforce
obtain f’ where cmf”: continuous _map (Euclidean__space m) (Euclidean__space
n) f’
and f'f: N\z.z € S = flz=fx
using iso_Fuclidean__complements_lemmal S emf continuous _map__into_ fulltopology
by metis
obtain ¢’ where c¢cmg”: continuous map (Euclidean__space n) (Euclidean__space
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and g'g: N\e.z€e T= g’z =gux
using iso_ Fuclidean__complements_lemmal T cmg continuous__map__into_ fulltopology
by metis
define p where p = A\(z,y). (z,(Ni. yi + f' z 1))
define p’ where p’ = \(,y). (z,(Mi. y i — f' 2 7))
define ¢ where ¢ = \(z,y). (z,(Mi. yi + g’ x 1))
define ¢’ where ¢’ = A\(z,y). (z,(Ni. y i — g’ 7))
have homeomorphic_maps (prod__topology (Euclidean__space m) (Euclidean__space
")
(prod__topology (Fuclidean__space m) (Euclidean__space n))
pp
homeomorphic_maps (prod__topology (Euclidean__space n) (Euclidean__space
m))
(prod__topology (Euclidean _space n) (Euclidean__space m))
qq
homeomorphic_maps (prod_topology (Euclidean__space m) (Euclidean__space

n))
(prod__topology (Euclidean__space n) (Euclidean__space m))
(A@y). (1:2)) Az9). (3,2))
apply (simp_all add: p_def p’_def q_def q'_def homeomorphic_maps__def
continuousfmapfpairwise)
apply (force simp: case__prod_unfold continuous_map__of _fst [unfolded o__def]
emf’ emg’ intro: continuous__intros)+
done
then have homeomorphic_maps (prod__topology (Fuclidean__space m) (Euclidean__space
n)
(prod__topology (Fuclidean__space n) (Euclidean__space m))
(¢"0 (\(zg). (5.2)) © p) (0" © (A(z:9). (1:2)) © 1))
using homeomorphic_maps__compose homeomorphic_maps_sym by (metis
(no__types, lifting))
moreover
have A\z. 2 € S = (¢’ o (A(z,y). (y,z)) o p) (z, A\i. 0) = (f x, Xi. 0)
apply (simp add: q'_def p_def f'f)
apply (simp add: fun__eq iff)
by (metis S T closedin__subset g'g gf hom homeomorphic_imp__surjective__map
image__eql topspace__subtopology subset)
ultimately
show thesis
using homeomorphic_map_maps that by blast
qed

proposition isomorphic_relative _homology__groups Fuclidean__complements:

assumes S: closedin (Euclidean__space n) S and T: closedin (Euclidean__space
n) T

and hom: (subtopology (Fuclidean__space n) S) homeomorphic__space (subtopology
(Euclidean__space n) T)

shows relative__homology__group p (Euclidean__space n) (topspace( Euclidean__space
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n) = 5)

= relative__homology__group p (Euclidean__space n) (topspace( Euclidean__space
n) —T)
proof —

have subST: S C topspace(Euclidean__space n) T C topspace(Euclidean__space
n)
by (meson S T closedin__def)+
have relative__homology__group p (Euclidean__space n) (topspace (Euclidean__space
n) — S)
& relative__homology__group (p + int n) (Euclidean__space (n + n)) (topspace
(Euclidean__space (n + n)) — 5)
using relative__homology__group_ Euclidean__complement__step [OF S| by blast
moreover have relative__homology _group p (Euclidean__space n) (topspace (Euclidean__space
n) — T)
& relative__homology__group (p + int n) (Euclidean__space (n + n)) (topspace
(Euclidean__space (n + n)) — T)
using relative__homology__group_ Euclidean__complement__step [OF T| by blast
moreover have relative_homology group (p + int n) (Euclidean__space (n +
n)) (topspace (Euclidean__space (n + n)) — S)
& relative__homology group (p + int n) (Euclidean_space (n + n))
(topspace (Euclidean__space (n + n)) — T)
proof —
obtain f where f: homeomorphic_map (subtopology (Euclidean__space n) S)
(subtopology (Euclidean__space n) T) f
using hom unfolding homeomorphic__space by blast
obtain g where g: homeomorphic_map (prod_topology (Euclidean__space n)
(EBuclidean__space n))
(prod__topology (FEuclidean__space n) (Euclidean__space
n)) g
and gf: Az. z € § = g(z,(\i. 0)) = (f z,(Ni. 0))
using S T fiso_ Euclidean__complements_lemma2 by blast
define h where h = Az:nat =real. (M. if i < n then z i else 0), (A\j. if j <
n then z(n + j) else 0))
define k where k = \(x,y) @. if i < 2 x n then if i < n then z i else y(i — n)
else (0::real)
have hk: homeomorphic_maps (Euclidean__space(2 x n)) (prod__topology (Euclidean__space
n) (Buclidean__space n)) h k
unfolding homeomorphic_maps_def
proof safe
show continuous_map (Euclidean__space (2 % n))
(prod__topology (Euclidean__space n) (Euclidean__space n)) h
apply (simp add: h__def continuous_map__pairwise o__def continuous__map__componentwise_ FEuclidean _space)
unfolding FEuclidean_space_def
by (metis (mono__tags) UNIV_I continuous_map__from__subtopology con-
tinuous_map__product__projection)
have continuous_map (prod__topology (Fuclidean space n) (Euclidean__space
n)) euclideanreal (Ap. fst p i) for i
using Fuclidean__space__def continuous_map__into__fulltopology continu-
ous_map__fst by fastforce
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moreover
have continuous_map (prod__topology (Fuclidean__space n) (Euclidean__space
n)) euclideanreal (Ap. snd p (i — n)) for i
using Fuclidean__space__def continuous map __into__fulltopology continu-
ous_map__snd by fastforce
ultimately
show continuous_map (prod_topology (Euclidean__space n) (Buclidean__space

")
(Buclidean__space (2 * n)) k
by (simp add: k_def continuous _map__ pairwise o__def continuous_map__componentwise_Euclidean_
case__prod__unfold)
qed (auto simp: k_def h__def fun__eq_iff topspace_Euclidean__space)
define kgh where kgh = ko go h
let %i = hom__induced (p + n) (Euclidean__space(2 % n)) (topspace( Euclidean__space(2
s ) — 8)
(Euclidean__space(2 * n)) (topspace( Euclidean__space(2
xn)) — T) kgh
have ?i € iso (relative_homology__group (p + int n) (Euclidean__space (2 % n))
(topspace (Euclidean__space (2 % n)) — S))
(relative__homology__group (p + int n) (Euclidean_space (2 * n))
(topspace (Euclidean_space (2 % n)) — T))
proof (rule homeomorphic_map__relative__homology_iso)
show hm: homeomorphic_map (Euclidean__space (2 * n)) (Fuclidean__space
(2 % n)) kgh
unfolding kgh_ def by (meson hk g homeomorphic_map_maps homeomor-
phic_maps__compose homeomorphic_maps__sym,)
have Teq: T=f°S
using f homeomorphic_imp__surjective_map subST (1) subST(2) topspace subtopology subset
by blast
have khf: Az. 2 € S = k(h(fz)) =fz
by (metis (no__types, lifting) Teq hk homeomorphic_maps__def image__subset__iff
le__addl mult_2 subST(2) subsetD subset_Fuclidean__space)
have gh: g(h z) = h(fz) if z € S for z
proof —
have [simp]: (Ai. if i < nthenzielse 0) =z
using subST (1) that topspace_Fuclidean__space by (auto simp: fun__eq iff)
have f z € topspace(Euclidean__space n)
using Teq subST(2) that by blast
moreover have (\j. if j < n then z (n + j) else 0) = (N\j. 0::real)
using Fuclidean_space__def subST(1) that by force
ultimately show ¢thesis
by (simp add: topspace_ Fuclidean_space h__def gf «x € Sy fun__eq iff)
qed
have x: [S C U; T C U; kgh * U = U; inj_on kgh U; kgh * S = T] = kgh
‘(U-8)=U-Tfor U
unfolding inj on_ def set_eq iff by blast
show kgh  (topspace (Euclidean__space (2 % n)) — S) = topspace (Euclidean__space
(2xn)—T
proof (rule x)
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show kgh ‘ topspace (Euclidean__space (2 % n)) = topspace (Euclidean__space
(2 % n))
by (simp add: hm homeomorphic_imp__ surjective_map)
show inj_on kgh (topspace (Euclidean__space (2 % n)))
using hm homeomorphic_map__def by auto
show kgh ‘S =T
by (simp add: Teq kgh__def gh khf)
qed (use subST topspace FEuclidean__space in <fastforce+)
qged auto
then show ?thesis
by (simp add: is_isol mult_2)
qed
ultimately show ?Zthesis
by (meson group.iso__sym iso__trans group_relative__homology__group)
qed

lemma lemma_ iod:
assumes S C T S # {} and Tsub: T C topspace( Euclidean__space n)
and S: Aabu. Jae S;beT;0<uu<i]= (M. (I —u)*xai+ ux
bi)e S
shows path__connectedin (FEuclidean__space n) T
proof —
obtain ¢ where a € S
using assms by blast
have path__component of (subtopology (Euclidean_space n) T) a bif b € T for
b
unfolding path_component_of def
proof (intro exl conjI)
have [simp]: Vi>n. a i = 0
using Tsub <a € S» assms(1) topspace Euclidean__space by auto
have [simp]: Vi>n. bi =0
using Tsub that topspace_Fuclidean__space by auto
have inT: (A\i. (I —z)xai+2xxbi)e Tif0<zaxz<1forz
proof (casesz =0V z=1)
case True
with <a € Sy <b € T) «§ C T»> show ?thesis
by force
next
case Fulse
then show ?thesis
using subsetD [OF <S C T» S| <a € S» <b € T that by auto
qed
have continuous_on {0..1} (Az. (1 — z) * a k + z x b k) for k
by (intro continuous__intros)
then show pathin (subtopology (Fuclidean_space n) T) (Ati. (I —t) * a i +
t*bi)
apply (simp add: Euclidean__space__def subtopology__subtopology pathin__subtopology)
apply (simp add: pathin__def continuous_map__componentwise_ UNIV inT)
done
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ged auto
then have path_connected__space (subtopology (Euclidean__space n) T)
by (metis Tsub path__component__of _equiv path__connected__space_iff _path _component
topspace__subtopology _subset)
then show ?thesis
by (simp add: Tsub path__connectedin__def)
qed

lemma invariance_of dimension__closedin__Euclidean__space:
assumes closedin (Euclidean__space n) S
shows subtopology (Euclidean__space n) S homeomorphic__space Euclidean__space
n
+— S = topspace(Euclidean__space n)
is %lhs = ?rhs)
proof
assume L: ?lhs
have Ssub: S C topspace (Euclidean__space n)
by (meson assms closedin__def)
moreover have Fulse if a ¢ S and a € topspace (Fuclidean__space n) for a
proof —
have cl_n: closedin (Euclidean__space (Suc n)) (topspace( Euclidean__space n))
using Fuclidean__space__def closedin__Fuclidean__space closedin__subtopology
by fastforce
then have sub: subtopology (Euclidean__space(Suc n)) (topspace( Euclidean__space
n)) = Euclidean__space n
by (metis (no_types, lifting) Euclidean__space__def closedin__subset subtopol-
ogy__subtopology topspace_ Euclidean__space topspace__subtopology topspace__subtopology__subset)
then have cl_S: closedin (Fuclidean__space(Suc n)) S
using cl_n assms closedin__closed__subtopology by fastforce
have sub__SucS: subtopology (Euclidean__space (Suc n)) S = subtopology (Euclidean__space
n) S
by (metis Ssub sub subtopology__subtopology topspace__subtopology topspace__subtopology__subset)
have non0: {y. Iz:nat=real. (Vi>Sucn. zi=0) A (Fi>n. xi# 0) Ny =
zn} = —{0)
proof safe
show Fulse if Vi>Sucn. fi=00=fnn <ifi+# 0 for f::nat=real and
by (metis that le__antisym not_less eq eq)
show 3 f:unat=real. (Vi>Sucn. fi=0) AN Fi>n. fi#0)Na=fnifa
# 0 for a
by (rule_tac x=(\i. 0)(n:= a) in exI) (force simp: that)
qed
have homology_group 0 (subtopology (FEuclidean_space (Suc n)) (topspace
(Euclidean__space (Suc n)) — 5))
= homology__group 0 (subtopology (Euclidean__space (Suc n)) (topspace
(Euclidean__space (Suc n)) — topspace (Fuclidean__space n)))
proof (rule isomorphic_relative__contractible__space__imp__homology__groups)
show (topspace (Euclidean__space (Suc n)) — S ={}) =
(topspace (Euclidean__space (Suc n)) — topspace (Euclidean__space n) =
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{
using cl_n closedin__subset that by auto
next
fix p
show relative__homology__group p (FEuclidean__space (Suc n))
(topspace (Euclidean__space (Suc n)) — ) =
relative__homology__group p (Fuclidean__space (Suc n))
(topspace (Euclidean__space (Suc n)) — topspace (Euclidean__space n))
by (simp add: L sub_SucS cl_S cl_nisomorphic_relative _homology__groups_FEuclidean__complements
sub)
qged (auto simp: L)
moreover
have continuous_map (powertop_real UNIV') euclideanreal (Az. z n)
by (metis (no__types) UNIV_I continuous_map__product_projection)
then have cm: continuous_map (subtopology (Fuclidean__space (Suc n)) (topspace
(EBuclidean__space (Suc n)) — topspace (Euclidean__space n)))
euclideanreal (A\z. © n)
by (simp add: Euclidean__space__def continuous map_ from__subtopology)
have Fualse if path__connected_space
(subtopology (Euclidean__space (Suc n))
(topspace (Fuclidean,__space (Suc n)) — topspace (Euclidean_ space
n)))
using path__connectedin__continuous_map__image [OF cm that [unfolded
path__connectedin__topspace [symmetricl]|
bounded__path__connected_ Compl_real [of {0}]
by (simp add: topspace Fuclidean space image_def Bex_def non0 flip:
path__connectedin__topspace)

moreover
have e¢: T=TN{z.2n <0} U T N{z. zn> 0} for T :: (nat = real) set
by auto
have path_ connectedin (Euclidean__space (Suc n)) (topspace (Euclidean__space
(Suc n)) — 5)

proof (subst eq, rule path__connectedin__Un)
have topspace( Euclidean__space(Suc n)) N {z. x n = 0} = topspace( Euclidean__space
n
)
apply (auto simp: topspace_Fuclidean _space)
by (metis Suc_lel inf.absorb_iff2 inf.orderE lel)
let S = topspace( Euclidean__space(Suc n)) N {z. zn < 0}
show path__connectedin (Euclidean__space (Suc n))
((topspace (Euclidean__space (Suc n)) — S) N {z. zn < 0})
proof (rule lemma_iod)
show 25 C (topspace (Euclidean_space (Suc n)) — ) N {z. zn < 0}
using Ssub topspace FEuclidean__space by auto
show 25 # {}
apply (simp add: topspace_Euclidean__space set__eq iff)
apply (rule_tac z=(Xi. 0)(n:= —1) in exl)
apply auto
done
fix a b and u::real
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assume
a€?50<uu<1
b € (topspace (Buclidean__space (Suc n)) — S) N {z. xn < 0}
then show (Ai. (I —u)*xai+ uxbi)e ?S
by (simp add: topspace_Fuclidean__space add_neg _nonpos less_eq _real def
mult_less 0 _iff)
aed (simp add: topspace_Euclidean__space subset_iff)
let ?T = topspace(Euclidean__space(Suc n)) N {z. zn > 0}
show path__connectedin (Fuclidean__space (Suc n))
((topspace (Euclidean_ space (Suc n)) — S) N {z. 0 < z n})
proof (rule lemma__iod)
show ?T C (topspace (Euclidean__space (Suc n)) — S) N {z. 0 < x n}
using Ssub topspace__Fuclidean__space by auto
show ?T # {}
apply (simp add: topspace_ Euclidean__space set__eq iff)
apply (rule_tac z=(X\i. 0)(n:= 1) in exl)
apply auto
done
fix a b and wu::real
assume a € T 0 < uu < 1b € (topspace (Euclidean_space (Suc n)) —
S)yn{z. 0 <zn}
then show (A\i. (1 —u)*ai+ uxbi)e ?T
by (simp add: topspace_ Euclidean__space add_pos _nonneg)
qed (simp add: topspace_Euclidean__space subset_iff)
show (topspace (Euclidean__space (Suc n)) — S) N{z. zn < 0} N
((topspace (Euclidean__space (Suc n)) — S) N {z. 0 < zn}) # {}
using that
apply (auto simp: Set.set_eq iff topspace Euclidean__space)
by (metis Suc_leD order_refl)
qed
then have path_connected__space (subtopology (Euclidean__space (Suc n))
(topspace (Euclidean__space (Suc n)) — S))
apply (simp add: path__connectedin__subtopology flip: path__connectedin__topspace)
by (metis Int_Diff inf idem)
ultimately
show ?thesis
using isomorphic__homology imp_ path__connectedness by blast
qed
ultimately show ?rhs
by blast
qed (simp add: homeomorphic__space__refl)

lemma isomorphic_homology_groups Fuclidean__complements:
assumes closedin (Euclidean__space n) S closedin (Euclidean__space n) T
(subtopology (Fuclidean__space n) S) homeomorphic__space (subtopology
(Euclidean__space n) T)
shows homology__group p (subtopology (Euclidean__space n) (topspace( Euclidean__space
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n) = 5))
= homology__group p (subtopology (Fuclidean__space n) (topspace( Buclidean__space
n) - 1))
proof (rule isomorphic_relative__contractible _space__imp__homology _groups)
show topspace (Euclidean_space n) — S C topspace (Euclidean__space n)
using assms homeomorphic__space__sym invariance_of dimension__ closedin__Euclidean__space
subtopology__superset by fastforce
show topspace (Euclidean__space n) — T C topspace (Euclidean__space n)
using assms invariance_of dimension__closedin__ Euclidean__space subtopol-
ogy__superset by force
show (topspace (Fuclidean_space n) — S = {}) = (topspace (Euclidean__space
n - T = {})
by (metis Diff _eq empty_iff assms closedin__subset homeomorphic__space__sym
invariance_of _dimension__closedin__Euclidean__space subset__antisym subtopology_topspace)
show relative__homology__group p (Euclidean__space n) (topspace (Euclidean__space
n) —S)
relative__homology__group p (Euclidean__space n) (topspace (Euclidean__space
n) — T) for p
using assms isomorphic__relative__homology groups FEuclidean__complements
by blast
qed auto

lemma eqpoll_path__components Fuclidean__complements:
assumes closedin (Euclidean__space n) S closedin (Euclidean__space n) T
(subtopology (Euclidean__space n) S) homeomorphic__space (subtopology
(Fuclidean__space n) T)
shows path__components_of
(subtopology (Euclidean__space n)
(topspace( Buclidean__space n) — S))
~ path__components_of
(subtopology (Euclidean__space n)
(topspace( Euclidean__space n) — T))
by (simp add: assms isomorphic__homology__groups__Fuclidean__complements iso-
morphic__homology__imp__path__components)

lemma path__connectedin__Fuclidean__complements:
assumes closedin (Euclidean_space n) S closedin (Euclidean__space n) T
(subtopology (Fuclidean__space n) S) homeomorphic_space (subtopology
(Buclidean__space n) T)
shows path__connectedin (FEuclidean__space n) (topspace( Euclidean__space n) —
5)
< path__connectedin (Euclidean__space n) (topspace( Euclidean__space n)
—T)
by (meson Diff _subset assms isomorphic_homology _groups Euclidean__complements
isomorphic__homology _imp _path__connectedness path__connectedin__def)

lemma eqpoll_connected__components_Fuclidean__complements:
assumes S: closedin (Euclidean_space n) S and T: closedin (Euclidean__space
n) T
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and ST: (subtopology (Fuclidean__space n) S) homeomorphic__space (subtopology
(Euclidean__space n) T)
shows connected__components of
(subtopology (Euclidean__space n)
(topspace( Buclidean__space n) — S))
~ connected__components_of
(subtopology (Euclidean__space n)
(topspace( Buclidean__space n) — T))
using egpoll _path__components Euclidean__complements [OF assms]
by (metis S T closedin__def locally__path__connected_Fuclidean__space locally _path__connected__space o
pathfcomponentsfeqfconnectedfcomponentsfof)

lemma connected_in__ Fuclidean__complements:

assumes closedin (Euclidean_space n) S closedin (Euclidean__space n) T

(subtopology (Euclidean__space n) S) homeomorphic__space (subtopology

(Euclidean__space n) T)

shows connectedin (Euclidean__space n) (topspace( Euclidean__space n) — S)

+— connectedin (FEuclidean_space n) (topspace(Buclidean__space n) — T)

apply (simp add: connectedin__def connected__space__iff components__subset_singleton
subset__singleton__iff lepoll)

using egpoll__connected__components_FEuclidean__complements [OF assms]

by (meson egpoll_sym lepoll transl)

theorem invariance of dimension__ Fuclidean__space:
FEuclidean__space m homeomorphic__space Euclidean_space n <— m = n
proof (cases m n rule: linorder_cases)
case less
then have *: topspace (FEuclidean__space m) C topspace (Euclidean__space n)
by (meson le_cases not_le subset_Fuclidean _space)
then have Fuclidean_space m = subtopology (Euclidean__space n) (topspace( Euclidean__space
m))
by (simp add: Euclidean__space__def inf.absorb__iff2 subtopology subtopology)
then show ?thesis
by (metis (no__types, lifting) * Euclidean__space__def closedin__Fuclidean__space
closedin__closed__subtopology eq iff invariance__of _dimension__closedin__ Euclidean__space
subset_Fuclidean__space topspace_FEuclidean__space)
next
case equal
then show ?thesis
by (simp add: homeomorphic__space__refl)
next
case greater
then have x: topspace (Fuclidean__space n) C topspace (Fuclidean__space m)
by (meson le__cases not_le subset_Fuclidean__space)
then have Fuclidean_space n = subtopology (Fuclidean__space m) (topspace( Euclidean__space
n))
by (simp add: Euclidean__space__def inf.absorb__iff2 subtopology subtopology)
then show ?thesis
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by (metis (no__types, lifting) * Euclidean__space__def closedin__Euclidean__space
closedin__closed__subtopology eq iff homeomorphic__space__sym invariance__of _dimension__closedin__ Fuclidean__spac
subset__FEuclidean__space topspace_Euclidean__space)
qed

lemma biglemma:
assumes n # 0 and S: compactin (Euclidean__space n) S
and cmh: continuous_map (subtopology (Euclidean__space n) S) (Euclidean__space
n) h
and inj_onh S
shows path__connectedin (Fuclidean__space n) (topspace( Euclidean__space n) —
h ¢8)
< path__connectedin (Euclidean__space n) (topspace( Euclidean__space n) —
5)
proof (rule path__connectedin__ Euclidean__complements)
have hS_sub: h * S C topspace( Fuclidean _space n)
by (metis (no__types) S ecmh compactin_subspace continuous_map__image__subset__topspace
topspace__subtopology _subset)
show clo_S: closedin (Euclidean__space n) S
using assms by (simp add: continuous_map__in__subtopology Hausdorff _Fuclidean__space
compactin__imp__closedin)
show clo_ hS: closedin (Euclidean__space n) (h ¢ S)
using Hausdorff Fuclidean__space S cmh compactin__absolute compactin_imp__closedin
image__compactin by blast
have homeomorphic_map (subtopology (Euclidean__space n) S) (subtopology (Fuclidean__space
n) (h*8) b
proof (rule continuous__imp__homeomorphic_map)
show compact _space (subtopology (Fuclidean space n) S)
by (simp add: S compact__space__subtopology)
show Hausdorff_space (subtopology (Euclidean__space n) (h ¢ S))
using hS_sub
by (simp add: Hausdor(f _Euclidean__space Hausdorff _space__subtopology)
show continuous__map (subtopology (Euclidean__space n) S) (subtopology (Euclidean__space
n) (h* ) h
using c¢mh continuous__map_in_subtopology by fastforce
show h ‘ topspace (subtopology (Fuclidean__space n) S) = topspace (subtopology
(Buclidean__space n) (h ¢ S))
using clo_hS clo_S closedin__subset by auto
show inj_on h (topspace (subtopology (FEuclidean_space n) S))
by (metis <inj_on h S» clo_S closedin__def topspace__subtopology__subset)
qed
then show subtopology (Euclidean__space n) (h ¢ S) homeomorphic_space subtopol-
ogy (Euclidean__space n) S
using homeomorphic__space homeomorphic__space sym by blast
qed
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lemma lemmalOD:
assumes
IT. TeUANcCTIAT. TeUANIdCTYU=cUdNT. TeU=T
#{}
pairwise disjnt U ~(3T. U C {T})
shows c € U
using assms
apply safe
subgoal for C’ D’
proof (cases C'=D’)
show c € U
ifUU:J U=cuUd
and U: N\T. T € U= T # {} disjoint Uand AT. U C {T} cC C' D’
evdcCcD C'=D’
proof —
have cU d =D’
using Union__upper sup_mono UU that(5) that(6) that(7) that(8) by auto
then have | JU = D’
by (simp add: UU)
with U have U = {D'}
by (metis (no__types, lifting) disjnt_Unionl disjnt_self iff empty insertCI
pairwiseD subset iff that(4) that(6))
then show ?thesis
using that(4) by auto
qed
show c € U
if J U=cUddisjoint UC'€e UcC C'D'e UdC D' C'"#D’
proof —
have C'N D' = {}
using «disjoint Uy <C' € U» <D’ € Uy <C' # D’»unfolding disjnt_iff
pairwise__def
by blast
then show ?thesis
using subset__antisym that(1) «C' € Uy <«¢ C C’ «d C D" by fastforce
qed
qed
done

theorem invariance of domain__Euclidean__space:

assumes U: openin (Fuclidean__space n) U

and cmf: continuous__map (subtopology (Euclidean__space n) U) (EBuclidean__space
n) f

and inj _on fU

shows openin (Euclidean__space n) (f < U) (is openin ?E (f < U))
proof (cases n = 0)

case True
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have [simp]: Fuclidean__space 0 = discrete__topology {\i. 0}
by (auto simp: subtopology__eq _discrete__topology _sing topspace_Euclidean__space)
show ?thesis
using ¢mf True U by auto
next
case Fulse
define enorm where enorm = Ax. sqrt(d_i<n. z i~ 2)
have enorm__if [simp]: enorm (Mi. if i = k then d else 0) = (if k < n then |d|
else 0) for k d
using «n # 0» by (auto simp: enorm__def power2_eq _square if _distrib [of Az.
x % _] cong: if _cong)
define zero::nat=-real where zero = \i. 0
have zero_in [simp]: zero € topspace ?E
using False by (simp add: zero__def topspace_Euclidean__space)
have enorm_eq 0 [simp]: enorm z = 0 +— x = zero
if © € topspace(Euclidean__space n) for z
using that unfolding zero def enorm__def
apply (simp add: sum_nonneg_eq 0_iff fun_eq iff topspace_Fuclidean _space)
using le_less linear by blast
have [simp]: enorm zero = 0
by (simp add: zero__def enorm__def)
have c¢cm__enorm: continuous _map ?E euclideanreal enorm
unfolding enorm__def
proof (intro continuous__intros)
show continuous _map ?F euclideanreal (Az. x 1)
if i € {.<n} for {
using that by (auto simp: Fuclidean__space__def intro: continuous_map__ product_projection
continuous_map__from__subtopology)
qed auto
have enorm__ge0: 0 < enorm x for z
by (auto simp: enorm__def sum__nonneg)
have le_enorm: |z i| < enorm z if i < n for i z
proof —
have |z i| < sqrt (3 ke{i}. (z k)?)
by auto
also have ... < sqrt (3 k<n. (z k)?)
by (rule real _sqrt_le_mono [OF sum_mono2]) (use that in auto)
finally show ?thesis
by (simp add: enorm__def)
qed
define B where B = Ar. {z € topspace ?E. enorm z < r}
define C' where C = Ar. {z € topspace ?E. enorm z < r}
define S where S = Ar. {z € topspace ?E. enorm © = r}
have BC: Br C Cr and SC: Sr C C r and disjSB: disjnt (S r) (B r) and
eqC: BruU Sr=Crforr
by (auto simp: B_def C_def S_def disjnt_def)
consider n =1 |n> 2
using Fualse by linarith
then have xx: openin ?E (h (B 1))
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if > 0 and cmh: continuous_map(subtopology ?E (C r)) ?E h and injh:
inj_onh (Cr)for rh
proof cases
case I
define e :: [real,nat|=real where e = Az i. if i = 0 then z else 0
define ¢’ :: (nat=real)=real where e’ = \z. z 0
have continuous_map euclidean euclideanreal (\f. f (0::nat))
by auto
then have continuous map (subtopology (powertop _real UNIV') {f. V n>Suc
0. fn = 0}) euclideanreal (Af. f 0)
by (metis (mono__tags) continuous_map__from__subtopology euclidean__product__topology)
then have hom__ee’: homeomorphic_maps euclideanreal (Fuclidean_space 1)
ee’
by (auto simp: homeomorphic_maps_def e_def e’ _def continuous_map__in__subtopology
Euclidean__space__def)
have eBr: e ‘{—-r<..<r} = Br
unfolding B def e_def C'_def
by (force simp: 1 topspace_Fuclidean__space enorm__def power2__eq square
if _distrib [of Ax. x % _] cong: if _cong)
have in_ Cr: N\z. [-r < z;z < r] = (Xi. if i = O then z else 0) € C'r
using «n # 0> by (auto simp: C_def topspace_Euclidean__space)
have inj: inj_on (e’ o hoe) {— r<.<r}
proof (clarsimp simp: inj _on_def e_def e'_def)
show (z::real) = y
if f: b (M. if i = 0 then z else 0) 0 = h (Xi. if i = 0 then y else 0) 0
and —r<zz<r-r<yy<r
for z y :: real
proof —
have z: (Ai. if i = 0 then z else 0) € C r and y: (Ai. if i = 0 then y else
0)e Cr
by (blast intro: inj_onD [OF <inj _on h (C r)] that in_ Cr)+
have continuous_map (subtopology (Fuclidean__space (Suc 0)) (C r))
(Euclidean__space (Suc 0)) h
using c¢mh by (simp add: 1)
then have h ‘ ({z. Vi>Suc 0. 2 i =0} N Cr) C {x. Vi>Suc 0. z i = 0}
by (force simp: Euclidean__space__def subtopology__subtopology continu-
ous_map__def)
have h (Xi. if i = 0 then x else 0) j = h (\i. if i = 0 then y else 0) j for j
proof (cases j)
case (Suc j')
have h ‘ ({z. Vi>Suc 0. 2 i =0} N Cr) C {z. Vi>Suc 0. z{ = 0}
using continuous_map__image__subset_topspace [OF cmbh)
by (simp add: 1 Euclidean__space__def subtopology__subtopology)
with Suc f z y show ?thesis
by (simp add: 1 image__subset__iff)
qed (use f in blast)
then have (\i. if i = 0 then z else 0) = (Aiznat. if i = 0 then y else 0)
by (blast intro: inj _onD [OF <inj_on h (C r)] that in_Cr)
then show ?thesis
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by (simp add: fun_eq iff) presburger
qed
qed
have hom__e’: homeomorphic_map (Euclidean__space 1) euclideanreal e’
using hom__ee’ homeomorphic_maps_map by blast
have openin (Euclidean_space n) (h ‘e ‘{— r<..<r})
unfolding 1
proof (subst homeomorphic_map_openness [OF hom__e', symmetric])
show hesub: h ‘e ‘{— r<..<r} C topspace (FEuclidean__space 1)
using 1 C'_def «A\r. Br C Cr) emh continuous_map__image__subset_topspace
eBr by fastforce
have cont: continuous _on {— r<..<r} (e’ o h o e)
proof (intro continuous_on__compose)
have Ai. continuous_on {— r<..<r} (Az. if i = 0 then x else 0)
by (auto simp: continuous__on__topological)
then show continuous on {— r<..<r} e
by (force simp: e__def intro: continuous__on__coordinatewise__then__product)
have subCr: e ‘ {— r<..<r} C topspace (subtopology ?E (C r))
by (auto simp: eBr <A\r. Br C C 1) (auto simp: B_def)
with e¢mh show continuous _on (e ‘ {— r<..<r}) h
by (meson cm__Euclidean__space_iff _continuous__on continuous__on__subset)
have continuous_on (topspace ?E) e’
by (metis 1 continuous_map__Euclidean__space__iff hom__ee’ homeomor-
phic_maps__def)
then show continuous_on (h ‘e ‘{— r<.<r}) e’
using hesub by (simp add: 1 e’_def continuous on__subset)
qed
show openin euclideanreal (' ‘h ‘e ‘{— r<.<r})
using injective_eq _1d_open_map_UNIV [OF cont] inj by (simp add:
image__image is_interval 1)
qed
then show ?thesis
by (simp flip: eBr)
next
case 2
have cloC: Ar. closedin (Euclidean_space n) (C )
unfolding C _def
by (rule closedin__continuous_map_ preimage [OF e¢m__enorm, of concl: {.._},
simplified])
have cloS: Ar. closedin (Fuclidean__space n) (S 1)
unfolding S def
by (rule closedin__continuous_map_ preimage [OF c¢cm__enorm, of concl: {_},
simplified])
have C'_subset: C v C UNIV —g {— |r|..|r|}
using le_enorm <r > 0>
apply (auto simp: C_def topspace Euclidean__space abs_le_iff)
apply (metis add.inverse_neutral le__cases less_minus__iff not_le order_trans)
by (metis enorm__ge0 not_le order.trans)
have compactinC: compactin (Euclidean__space n) (C r)


Invariance{_}{\kern 0pt}of{_}{\kern 0pt}Domain.html

216

unfolding Fuclidean_space_def compactin__subtopology
proof
show compactin (powertop_real UNIV) (C'r)
proof (rule closed_compactin [OF _ C_subset))
show closedin (powertop_real UNIV') (C 1)
by (metis Euclidean__space__def cloC closedin__Euclidean__space closedin__closed__subtopology
topspace__Fuclidean__space)
qed (simp add: compactin_PiE)
qged (auto simp: C_def topspace_Fuclidean__space)
have compactinS: compactin (Euclidean_space n) (S r)
unfolding FEuclidean_space_def compactin__subtopology
proof
show compactin (powertop_real UNIV) (S 1)
proof (rule closed _compactin)
show S r C UNIV —g {— |r|..|r|}
using C_subset <A\r. S C C r by blast
show closedin (powertop_real UNIV') (S r)
by (metis Euclidean__space__def cloS closedin_Euclidean__space closedin__closed__subtopology
topspace__Euclidean__space)
qed (simp add: compactin_PiE)
qed (auto simp: S_def topspace_Euclidean__space)
have h_if B: \y.y € Br = h y € topspace ?F
using B_def «Ar. BrU Sr = Cr» cmh continuous_map__image__subset__topspace
by fastforce
have com_ hSr: compactin (Euclidean__space n) (h * S r)
by (meson <Ar. S r C C r cmh compactinS compactin_subtopology im-
age__compactin)
have ope__comp__hSr: openin (Euclidean__space n) (topspace (Euclidean__space
n) —h*‘Sr)
proof (rule openin__diff)
show closedin (Euclidean__space n) (h S r)
using Hausdorff _FEuclidean__space com__hSr compactin_imp_closedin by
blast
qed auto
have h_pcs: h ‘(B r) € path__components_of (subtopology ?E (topspace ?E —
B (S 7))
proof (rule lemmalOD)
have pc__interval: path__connectedin (Euclidean__space n) {z € topspace( Euclidean__space
n). enormz € T}
if T: is_interval T for T
proof —
define mul :: [real, nat = real, nat] = real where mul = Xa zi. a * z {
let ?neg = mul (—1)
have neg_neg [simp]: ?neg (?neg z) = x for z
by (simp add: mul_def)
have enorm_mul [simp]: enorm(mul a x) = abs a * enorm x for a x
by (simp add: enorm__def mul__def power _mult__distrib) (metis real _sqrt_abs
real _sqrt_mult sum__distrib_left)
have mul_in_top: mul a x € topspace ?E
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if z € topspace ?E for a z
using mul_def that topspace_FEuclidean__space by auto
have neg_in_S: %negx € Sr
ifze Srforazr
using that topspace_Fuclidean__space S_def by simp (simp add: mul_def)
have *: path__connectedin ?E (S d)
if d > 0 for d
proof (cases d = 0)
let ?ES = subtopology ?E (S d)
case Fulse
then have d > 0
using that by linarith
moreover have path_connected space ?ES
unfolding path_connected_space iff path__component
proof clarify
have xx: path__component_of ?ES x y
if x: z € topspace ?ES and y: y € topspace ?ES x # ?neq y for x y
proof —
show ?thesis
unfolding path__component of def pathin__def S _def
proof (intro exl conjI)
let 2g = (Ax. mul (d / enormx) x) o (At d. (I —t) xx i+ t*xyi)
show continuous_map (top_of _set {0::real..1}) (subtopology ?E {z
€ topspace ?E. enorm x = d}) ?g
proof (rule continuous_map__compose)
let ?Y = subtopology ?E (— {zero})
have xx: Fulse
ifeq0: Nj. (1 —r)xzj+rxyj=20
and ne: zi # — y 1
and d: enorm x = d enorm y = d
and r: 0 <rr<1
for i r
proof —
have mul (1—r) z = %neg (mul r y)
using eq0 by (simp add: mul_def fun__eq iff algebra__simps)
then have enorm (mul (1—r) z) = enorm (?neg (mul r y))
by metis
with r have (1—r) x enorm © = r * enorm y
by simp
then have r12: r = 1/2
using «d # 0) d by auto
show ?thesis
using ne eq0 [of i] unfolding r12 by (simp add: algebra__simps)
qged
show continuous_map (top__of set {0..1}) 2Y (Ati. (I —t)*x x4
+ ¢t xyi)
using z y
unfolding continuous map_componentwise_ UNIV Eu-
clidean__space__def continuous _map__in__subtopology
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apply (intro congl alll continuous__intros)
apply (auto simp: zero__def mul_def S_def Euclidean__space__def
fun_eq_iff)
using xx by blast
have c¢cm__enorm’”: continuous_map (subtopology (powertop_real
UNIV) A) euclideanreal enorm for A
unfolding enorm__def by (intro continuous_intros) auto
have continuous_map ?Y (subtopology ?E {x. enorm z = d}) (Az.
mul (d / enorm z) x)
unfolding continuous map__in__subtopology
proof (intro conjl)
show continuous_map ?Y (Euclidean__space n) (Az. mul (d /
enorm x) )
unfolding continuous map__in_ subtopology Fuclidean__space _def
mul__def zero__def subtopology__subtopology continuous__map _componentwise_ UNIV
proof (intro conjl alll ecm__enorm’ continuous__intros)
show enorm x # 0
if x € topspace (subtopology (powertop_real UNIV) ({z. Vi>n.
zi=0}N—{\i. 0})) for z
using that by simp (metis abs_le zero_iff le_enorm not_less)
qed auto
qed (use <d > 0» enorm__ge0 in auto)
moreover have subtopology E {z € topspace ?E. enorm x = d}
= subtopology ?E {x. enorm z = d}
by (simp add: subtopology_restrict Collect conj_eq)
ultimately show continuous_map ?Y (subtopology (Fuclidean _space
n) {x € topspace (Euclidean__space n). enorm © = d}) (Az. mul (d / enorm x) x)
by metis
qed
show ?g (0::real) = x %9 (1::real) =y
using that by (auto simp: S_def zero__def mul_def fun__eq iff)
qed
qged
obtain a b where a: a € topspace ?ES and b: b € topspace ?ES
and a # b and negab: neg a # b
proof
let 2v = A\j i::nat. if i = j then d else 0
show ?v 0 € topspace (subtopology ?E (S d)) ?v 1 € topspace (subtopology
?F (S d))
using «n > 2) <d > 0> by (auto simp: S__def topspace_Euclidean__space)
show %0 0 # %v 1 %neg (v 0) # (v 1)
using «d > 0» by (auto simp: mul_def fun_eq iff)
qed
show path_component_of ?ES z y
if x: x© € topspace ?ES and y: y € topspace ?ES
for z y
proof —
have path__component_of ?ES x (?neg x)
proof —
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have path__component_of ?ES x a
by (metis (no__types, opaque_lifting) *x a b <a # b> negab
path__component _of trans path__component _of sym x)
moreover
have pa__ab: path__component_of ?ES a b using ** a b negab neg_neg
by blast
then have path_component_of ?ES a (?neg x)
by (metis xx <a # by cloS closedin__def neg_in__S path__component_of _equiv
topspace__subtopology _subset x)
ultimately show ?Zthesis
by (meson path__component_of trans)
qed
then show ?thesis
using *x = y by force
qed
qed
ultimately show ?thesis
by (simp add: cloS closedin__subset path__connectedin__def)
qed (simp add: S_def cong: conj cong)
have path__component_of (subtopology ?E {x € topspace ?E. enorm x €
T} zy
if enorm © = a = € topspace ?E enorm x € T enorm y = b y € topspace
?E enormy € T
forxyab
using that
proof (induction a b arbitrary: x y rule: linorder less _wlog)
case (less a b)
then have a > 0
using enorm__ge0 by blast
with less.hyps have b > 0
by linarith
show ?Zcase
proof (rule path__component_of _trans)
have y’_ts: mul (a / b) y € topspace ?E
using <y € topspace ?E> mul_in_top by blast
moreover have enorm (mul (a / b) y) = a
unfolding enorm__mul using <0 < by <0 < a) less.prems by simp
ultimately have y’_S: mul (a / b)) y € S a
using S def by blast
have z € S a
using S def less.prems by blast
with <z € topspace ?E> y'_tsy’ S
have path__component_of (subtopology ?E (S a)) = (mul (a / b) y)
by (metis x [OF <a > 03] path__connected__space_iff _path__component
path__connectedin__def topspace__subtopology _subset)
moreover
have {f € topspace ?E. enorm f = a} C {f € topspace ?E. enorm f €
T}
using <enorm z = a> <enorm x € T) by force
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ultimately
show path__component__of (subtopology ?E {x. x € topspace ?E A

enorm z € T}) x (mul (a / ) y)

by (simp add: S_def path__component_of mono)
have pathin ?E (At. mul (1 —¢) x b+ t*xa)/ b) y)
using <b > 0» <y € topspace ?E>
unfolding pathin_def FEuclidean_space def mul_def continu-

ous_map__in__subtopology continuous_map_ componentwise_ UNIV

z €T}

z e T}

by (intro alll conjl continuous_intros) auto
moreover have mul (((1 — t) x b+ ¢t x a) / b) y € topspace ?E
if t € {0..1} for t
using <y € topspace ?E> mul_in_top by blast
moreover have enorm (mul (1 —t)* b+ t*a) /b))y €T
ift € {0..1} for ¢
proof —
have a e Tbe T
using less.prems by auto
then have [(1 —¢)x b+ t*xal €T
proof (rule mem__is_interval _1_I [OF T])
show a < [(1 — t) x b+ t * q
using that <a > 0) less.hyps segment__bound__lemma by auto
show [(I — ¢) b+ t*al <b
using that <a > 0> less.hyps by (auto intro: convex__bound__le)
qed
then show ?thesis
unfolding enorm__mul <enorm y = b using that <b > 0> by simp
qed
ultimately have pa: pathin (subtopology ?E {x € topspace ?E. enorm

Me.mul (1 —t)*b+t=xa)/b)y)
by (auto simp: pathin__subtopology)
have ex_pathin: 3 g. pathin (subtopology ?E {x € topspace ?E. enorm
g N

g0=yANgl=mul(a/Db)y
apply (rule_tac z=At. mul (((1 — t) * b+ ¢t *xa) / b) y in exl)
using <b > 0) pa by (auto simp: mul_def)
show path__component_of (subtopology ?E {x. x € topspace ?E N

enormz € T}) (mul (a / b) y) y

by (rule path__component__of _sym) (simp add: path__component_of _def

ex__pathin)

S_def)

qged
next
case (refl a)
then have pc: path__component_of (subtopology ?E (S (enorm w))) u v
if u € topspace ?E N S (enorm ) v € topspace ?E N S (enorm u) for

using * [of a] enorm__ge0 that
by (auto simp: path__connectedin__def path__connected__space_iff _path__component
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have sub: {u € topspace ?E. enorm u = enorm z} C {u € topspace ?E.
enorm u € T}
using <enorm z € T» by auto
show ?Zcase
using pc [of z y| refl by (auto simp: S__def path__component_of mono
[OF __ sub])
next
case (sym a b)
then show ?case
by (blast intro: path__component _of sym)
qed
then show ?thesis
by (simp add: path__connectedin__def path__connected__space__iff path__component)
qed
have h S r C topspace ?FE
by (meson SC ¢mh compact_imp__compactin__subtopology compactinS com-
pactin__subset__topspace image__compactin)
moreover
have — compact_space ?FE
by (metis compact_Euclidean__space <n # 0)
then have — compactin ?E (topspace ?F)
by (simp add: compact_space__def topspace_Fuclidean__space)
then have h ‘S r # topspace ?F
using com_ hSr by auto
ultimately have top hSr_ne: topspace (subtopology ?E (topspace ?E — h
Sr))#{}
by auto
show pcl: 3T. T € path__components_of (subtopology ?E (topspace ?E — h
‘ST)AR‘BrCT
proof (rule exists path__component_of superset [OF _ top_hSr_ne])
have path__connectedin ?E (h * B 1)
proof (rule path__connectedin__continuous _map__image)
show continuous_map (subtopology ?E (C'r)) ?E h
by (simp add: c¢mh)
have path__connectedin ¢E (B r)
using pc_interval[of {..<r}] is_interval convexr 1 unfolding B _def
by auto
then show path__connectedin (subtopology ?E (C' r)) (B r)
by (simp add: path__connectedin__subtopology BC')
qed
moreover have h ‘ B r C topspace ?E — h *Sr
apply (auto simp: h_if B)
by (metis BC' SC disjSB disjnt_iff inj _onD [OF injh| subsetD)
ultimately show path__connectedin (subtopology ?E (topspace ?E — h < S
r)) (h*Br)
by (simp add: path__connectedin__subtopology)
qed metis
show 3T. T € path_components_of (subtopology ?E (topspace ?E — h * S
r)) A topspace ?E — h ‘(Cr) C T
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proof (rule exists_path__component_of superset [OF __ top_hSr_ne])
have eq: topspace ?E — {z € topspace ?E. enorm z < r} = {x € topspace
?E. r < enorm x}
by auto
have path__connectedin ?E (topspace ?E — C 1)
using pc_intervalof {r<..}] is_interval_convex_ 1 unfolding C_def eq
by auto
then have path_connectedin ?E (topspace ¢E — h “ C'r)
by (metis biglemma [OF <n # 0> compactinC cmh injh))
then show path_connectedin (subtopology ?E (topspace ?E — h “ S 1))
(topspace E — h “ C'r)
by (simp add: Diff _mono SC image_mono path__connectedin__subtopology)

qed metis

have topspace ?E N (topspace ?E — h S r) =h ‘B r U (topspace E — h
Cr) (is ?lhs = %rhs)

proof

show ?2lhs C ?rhs
using «<Ar. Br U Sr = Cr by auto
have h ‘Brnh ‘Sr={}
by (metis Diff triv <Ar. Br U S r = Cr <A\r. disint (S r) (B r)
disjnt__def inf _commute inj_on__Un injh)
then show ?2rhs C ?2lhs
using path__components_of _subset pcl «<\r. BrU Sr=Cnr
by (fastforce simp add: h_if B)
qed
then show J (path__components_of (subtopology ?E (topspace YE — h ¢S
r))) = h ‘B r U (topspace ?E — h “ (C'r))
by (simp add: Union_path__components_of)
show T # {}
if T € path__components_of (subtopology ?E (topspace ?E — h ‘S r)) for T
using that by (simp add: nonempty path _components_of)
show disjoint (path__components_of (subtopology ?E (topspace ?E — h ‘S

7))
by (simp add: pairwise__disjoint__path__components_of)
have — path__connectedin ?E (topspace E — h S r)
proof (subst biglemma [OF <n # 0> compactinS))
show continuous_map (subtopology ?E (S r)) ?E h
by (metis Un__commaute Un__upperl cmh continuous_map__from__subtopology__mono
eqC)
show inj_on h (S r)
using SC inj_on_subset injh by blast
show — path__connectedin ?E (topspace ?E — S 1)
proof
have topspace ?E — S r = {z € topspace ?E. enorm © # r}
by (auto simp: S__def)
moreover have enorm ‘ {z € topspace ?E. enorm x # r} = {0..} — {r}
proof
have Jz. = € topspace ?E N enorm x # r A d = enorm x
ifd#rd> 0 for d
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proof (intro exl congl)
show (Ai. if i = 0 then d else 0) € topspace ?E
using «n # 0> by (auto simp: Euclidean__space__def)
show enorm (Xi. if i = 0 then d else 0) # r d = enorm (A\i. if i = 0
then d else 0)
using <n # 0> that by simp_all
qed
then show {0..} — {r} C enorm ‘ {x € topspace ?E. enorm x # r}
by (auto simp: image__def)
qed (auto simp: enorm__geQ)
ultimately have non_r: enorm ‘ (topspace ?E — S r) = {0..} — {r}
by simp
have 32>0. z #r Ar <z
by (metis gt_ex le_cases not_le order_trans)
then have — is_interval ({0..} — {r})
unfolding is interval 1
using «r > 0> by (auto simp: Bex_def)
then show Fulse
if path__connectedin ?E (topspace ?E — S r)
using path__connectedin__continuous_map__image [OF ¢m__enorm that)
by (simp add: is_interval_path__connected_1 non_r)
qed
qed
then have — path__connected__space (subtopology ?E (topspace ?E — h © S 1))
by (simp add: path__connectedin__def)
then show # T. path_components of (subtopology ?E (topspace ?E — h * S
") € {T}
by (simp add: path__components_of subset_singleton)
qged
moreover have openin ?FE A
if A € path__components_of (subtopology ?E (topspace E — h ‘(S r))) for
A
using locally__path__connected_Fuclidean__space [of n| that ope__comp_hSr
by (simp add: locally_path__connected__space__open__path__components)
ultimately show ?thesis by metis
qed
have 3T. openin PE T Nfe e TANT CfU
ifz e U for x
proof —
have z: © € topspace ?E
by (meson U in_mono openin__subset that)
obtain V where V: openin (powertop_real UNIV) V and Ueq: U = V N {z.
Vizn. zi= 0}
using U by (auto simp: openin__subtopology Euclidean__space _def)
with <z € U» have z € V by blast
then obtain T where Tfin: finite {i. T i # UNIV} and Topen: Ai. open (T
i)
and Tz: ¢ € Pig UNIV T and TV: Pig UNIVT C V
using V by (force simp: openin__product_topology__alt)
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have 3e>0.Vz' |2/ —zi|<e— 2’ € Tifor i
using Topen [of i] Tz by (auto simp: open__real)
then obtain 3 where B0: A\i. 87> 0 and BT: N\iz'. |z’ —zi| < f i =
' e Ti
by metis
define r where r = Min (insert 1 (8 ‘{i. T i # UNIV}))
have r > 0
by (simp add: BO Tfin r_def)
have inU: y € U
if y: y € topspace ?F and yzr: N\i. i<n = |yi — zi| < r for y
proof —
have y i € T i for ¢
proof (cases T i = UNIV)
show yi € Tiif Ti # UNIV
proof (cases i < n)
case True
then show ?thesis
using yzr [OF True] that by (simp add: r_def BT Tfin)
next
case Fulse
then show ?thesis
using B0 Ueq <z € U topspace_ Euclidean__space y by (force intro: BT)
qed
ged auto
with TV have y € V by auto
then show ?thesis
using that by (auto simp: Ueq topspace_ Euclidean__space)
qed
have zinU: (M\i. z i +yi) € Uify € C(r/2) for y
proof (rule inU)
have y: y € topspace ?FE
using C_def that by blast
show (\i. z ¢ + y i) € topspace ?E
using z y by (simp add: topspace_ FEuclidean__space)
have enorm y < r/2
using that by (simp add: C_def)
then show |27+ yi —z i < rifi < n for i
using le__enorm enorm__ge0 that <0 < ry lel order_trans by fastforce
qed
show ?thesis
proof (intro exl conjI)
show openin ?E ((f o (Ayi. z i+ y i) ‘B (r/2))
proof (rule *x)
have continuous_map (subtopology ?E (C(r/2))) (subtopology ?E U) (\y
i.xi+ i)
by (auto simp: zinU continuous _map__in__subtopology
introl: continuous_intros continuous_map__FEuclidean__space add x)
then show continuous_map (subtopology ?E (C(r/2))) ?E (f o (A\y i. x4

+ y 1))
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by (rule continuous _map__compose) (simp add: cmf)
show inj _on (f o (A\yi. z i+ yi)) (C(r/2))
proof (clarsimp simp add: inj _on_def C_def topspace_ Fuclidean__space
simp del: divide__const__simps)
show y' =y
if ey: enorm y < r / 2 and ey’ enorm y’' < r / 2
and y0: Vi>n. yi= 0 and y'0: Vi>n. y' i = 0
and feq: f (M. zi+y' i)=f (Ni.x i+ yi)
for y' y :: nat = real
proof —
have (\i. z i+ yi) e U
proof (rule inU)
show (\i. x i + y i) € topspace ?FE
using topspace Fuclidean__space x y0 by auto
show |zi+ yi—zi <rifi <nfori
using ey le__enorm [of __ y] «<r > 0> that by fastforce
qged
moreover have (Ai. z i+ y' i) € U
proof (rule inU)
show (\i. x i + y' i) € topspace ?E
using topspace_ Fuclidean_space z y'0 by auto
show |27+ y'i—zi| <rifi<nfori
using ey’ le_enorm [of _ y'] <r > 0> that by fastforce
qed
ultimately have (\i. x ¢ + y' i) = (Ai. @ + y 0)
using feq by (meson <inj_on f U» inj_on_ def)
then show ?thesis
by (auto simp: fun__eq iff)
qged
qed
qed (simp add: <0 < 1))
have z € (A\yi. zi+ yi) ‘B (r/ 2)
proof
show z = (\i. z i + zero i)
by (simp add: zero__def)
qed (auto simp: B_def «r > 0»)
then show fz € (fo (Ayi.zi+ yi) ‘B (r/2)
by (metis image__comp image__eql)
show (fo (A\yi.zi+y1) ‘B(r/2)Cf‘U
using <A\r. Br C C r» zinU by fastforce
qed
qed
then show ?thesis
using openin__subopen by force
qed

corollary invariance of domain__ Fuclidean__space__embedding map:
assumes openin (Fuclidean__space n) U
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and emf: continuous__map(subtopology (Euclidean__space n) U) (Euclidean__space
n) f
and inj_on fU
shows embedding _map(subtopology (Euclidean__space n) U) (Euclidean _space
n) f
proof (rule injective__open__imp__embedding_map [OF cmf])
show open__map (subtopology (Euclidean__space n) U) (Euclidean__space n) f
unfolding open_map def
by (meson assms continuous_map__from__subtopology mono inj on__subset
invariance__of _domain__ Euclidean__space openin__imp _subset openin__trans_ full)
show inj_on f (topspace (subtopology (Euclidean__space n) U))
using assms openin__subset topspace__subtopology__subset by fastforce
qed

corollary invariance_of domain__FEuclidean__space__gen:
assumes n < m and U: openin (Euclidean__space m) U
and emf: continuous__map(subtopology (Euclidean__space m) U) (Euclidean__space
n) f
and inj_on fU
shows openin (Euclidean_ space n) (f < U)
proof —
have x: Euclidean__space n = subtopology (Euclidean__space m) (topspace( Euclidean__space
n))
by (metis Buclidean__space__def <n < m) inf.absorb__iff2 subset FEuclidean__space
subtopology__subtopology topspace_Euclidean__space)
then have openin (Euclidean_space m) (f < U)
by (metis x U assms(4) emf continuous_map__in__subtopology invariance__of _domain__ Fuclidean__spa
moreover have U C topspace (subtopology (Euclidean__space m) U)
by (metis U inf.absorb__iff2 openin__subset openin__subtopology openin__topspace)
ultimately show ¢thesis
by (metis * cmf continuous_map__image__subset__topspace dual_order.antisym
openin__imp__subset openin__topspace subset__openin__subtopology)
qed

corollary invariance_of domain_Fuclidean__space__embedding map__gen:
assumes n < m and U: openin (Euclidean_space m) U
and cmf: continuous__map(subtopology (Fuclidean__space m) U) (Euclidean__space
n) f
and inj_on f U
shows embedding map(subtopology (Euclidean__space m) U) (Euclidean__space
n) f
proof (rule injective_open__imp__embedding_map [OF cmf])
show open__map (subtopology (Euclidean__space m) U) (Euclidean__space n) f
by (meson U «n < my <inj_on f Uy emf continuous _map__from__subtopology__mono
invariance_of _domain_ Fuclidean__space__gen open__map__def openin__open__subtopology
inj _on__subset)
show inj _on f (topspace (subtopology (Fuclidean space m) U))
using assms openin__subset topspace__subtopology subset by fastforce
qed
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0.4.3 Relating two variants of Euclidean space, one within
product topology.

proposition homeomorphic_maps_Fuclidean__space__euclidean__gen_ OLD:
fixes B :: 'n::euclidean_ space set
assumes finite B independent B and orth: pairwise orthogonal B and n: card B
=n
obtains f g where homeomorphic_maps (Euclidean__space n) (top__of set (span
B)) fg
proof —
note representation__basis [OF <independent B, simp]
obtain b where njb: inj_on b {..<n} and beg: b ‘ {..<n} = B
using finite_imp_nal_seg_image_inj on [OF (finite B)]
by (metis n card__Collect_less _nat card_image lessThan__def)
then have biB: A\i. i <n= bi € B
by force
have repr: Av. v € span B = (3 i<n. representation B v (b i) g bi) = v
using real_wvector.sum__representation__eq [OF <independent By __ «finite B»)
by (metis (no__types, lifting) injb beq order_ _refl sum.reindex_cong)
let 2f = Ax. Y i<n.xzix*g bi
let ?g = \vi. if i < n then representation B v (b 1) else 0
show thesis
proof
show homeomorphic_maps (Euclidean__space n) (top_of set (span B)) ¢f %g
unfolding homeomorphic_maps _def
proof (intro conjl)
have *: continuous_map euclidean (top_of set (span B)) ?f
by (metis (mono__tags) biB continuous_map__span__sum lessThan__iff)
show continuous _map (Fuclidean__space n) (top_of set (span B)) ?f
unfolding FEuclidean_space_def
by (rule continuous_map__from__subtopology) (simp add: euclidean__product__topology
*
)
show continuous_map (top__of set (span B)) (Euclidean__space n) %g
unfolding Fuclidean_ space__def
by (auto simp: continuous_map__in__subtopology continuous _map__componentwise_ UNIV
continuous__on__representation <independent B> biB orth pairwise__orthogonal imp_ finite)
have [simp]: Az i. i<n = z i *g b i € span B
by (simp add: biB span__base span__scale)
have representation B (?fz) (bj) ==z j
if 0: Vi>n. i = (0:real) and j < n for z j
proof —
have representation B (?f z) (b j) = (3 i<n. representation B (x i *gr b )
(b))

by (subst real_vector.representation__sum) (auto simp add: <independent

B»)
also have ... = (> i<n. z i * representation B (b i) (b j))
by (simp add: assms(2) biB representation__scale span__base)
also have ... = (D i<n. if b j = b i then z i else 0)

by (simp add: biB if _distrib cong: if _cong)
also have ... =z j
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using that inj_on__eq iff [OF injb] by auto

finally show ?%thesis .

qed

then show V z€topspace (Euclidean__space n). %9 (?fz) =z
by (auto simp: Euclidean__space__def)

show V yctopspace (top_of _set (span B)). ?f (?9y) =y
using repr by (auto simp: Euclidean__space__def)

qed
qed
qed

proposition homeomorphic_maps_Fuclidean__space__euclidean__gen:
fixes B :: 'n::euclidean_ space set
assumes independent B and orth: pairwise orthogonal B and n: card B = n
and I: Au. u € B= norm u = 1
obtains f g where homeomorphic_maps (Euclidean__space n) (top_of _set (span
B)) fg
and Az. z € topspace (Euclidean_space n) = (norm (f 2))? = (3] i<n. (z
?)
proof —
note representation__basis [OF <independent B>, simp)
have finite B
using <independent B finitel independent by metis
obtain b where injb: inj _on b {..<n} and beq: b ‘ {..<n} = B
using finite_imp_nat_seq_image_inj on [OF (finite B)]
by (metis n card_Collect_less _nat card_image lessThan__def)
then have biB: \i. i <n= bi € B
by force
have 0 ¢ B
using <independent B> dependent_zero by blast
have [simp]: b i« bj= (if j = i then 1 else 0)
ifi<nj<nforij
proof (cases i = j)
case True
with 1 that show ?Zthesis
by (auto simp: norm__eq_sqrt_inner biB)
next
case Fulse
then have b i £ b j
by (meson inj _onD injb lessThan__iff that)
then show ?thesis
using orth by (auto simp: orthogonal _def pairwise_def norm__eq sqrt_inner
that biB)
qed
have [simp]: Nz i. i<n = x i *g b i € span B
by (simp add: biB span__base span__scale)
have repr: Av. v € span B = (> i<n. representation B v (b i) xp bi) = v
using real vector.sum__representation__eq [OF <independent By __ «finite B»]
by (metis (no__types, lifting) injb beq order_refl sum.reindex__cong)
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define f where f = Az. Y i<n. zixg b1
define g where g = \v i. if i < n then representation B v (b i) else 0
show thesis
proof
show homeomorphic_maps (FEuclidean__space n) (top_of _set (span B)) f g
unfolding homeomorphic_maps_def
proof (intro conjI)
have *: continuous_map euclidean (top_of set (span B)) f
unfolding f def
by (rule continuous _map_ span_sum) (use biB <0 ¢ B> in auto)
show continuous_map (Euclidean__space n) (top_of _set (span B)) f
unfolding FEuclidean__space__def
by (rule continuous_map__from__subtopology) (simp add: euclidean__product _topology

show continuous_map (top_of set (span B)) (Euclidean__space n) g
unfolding FEuclidean__space_def g def
by (auto simp: continuous_map__in__subtopology continuous_map__componentwise_ UNIV
continuous__on__representation <independent B> biB orth pairwise _orthogonal imp_finite)
have representation B (f x) (b j) = z j
if 0: Vi>n. i = (0:real) and j < n for z j
proof —
have representation B (f z) (b j) = (3. i<n. representation B (x i *g b ©)
(b))
unfolding f def
by (subst real_vector.representation__sum) (auto simp add: <independent
B»)
also have ... = (3 i<n. z i * representation B (b i) (b j))
by (simp add: <independent By biB representation__scale span__base)
also have ... = (D i<n. if b j = b i then z i else 0)
by (simp add: biB if _distrib cong: if _cong)
also have ... =z j
using that inj_on__eq iff [OF injb] by auto
finally show ?thesis .
qed
then show Y z€ctopspace (Euclidean__space n). g (fz) =z
by (auto simp: Euclidean_space_def f _def g_ def)
show V yctopspace (top_of set (span B)). f (gy) =y
using repr by (auto simp: Fuclidean__space__def f_def g_ def)
ged
show normeq: (norm (fz))? = (3. i<n. (xi)?) if z € topspace (Euclidean__space
n) for z
unfolding f def dot_square_norm [symmetric]
by (simp add: power2__eq square inner_sum__left inner_sum__right if _distrib
biB cong: if _cong)
qed
qed

corollary homeomorphic_maps Fuclidean__space__euclidean:
obtains f :: (nat = real) = 'n::euclidean__space and g
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where homeomorphic_maps (Euclidean__space (DIM('n))) euclidean f g
by (force intro: homeomorphic_maps_FEuclidean__space__euclidean__gen [OF in-
dependent_Basis orthogonal _Basis refl norm__Basis])

lemma homeomorphic_maps nsphere__euclidean__sphere:
fixes B :: 'n:euclidean_space set
assumes B: independent B and orth: pairwise orthogonal B and n: card B = n
and n # 0
and I: Au. u € B = norm u = 1
obtains f :: (nat = real) = 'n::euclidean_space and g
where homeomorphic_maps (nsphere(n — 1)) (top_of _set (sphere 0 1 N span
B)) fg
proof —
have finite B
using <independent B» finitel independent by metis
obtain f g where fg: homeomorphic_maps (Euclidean_space n) (top_of set
(span B)) f g
and normf: \z. z € topspace (Euclidean__space n) = (norm (fz))? = (3_ i<n.
(2 1?)
using homeomorphic_maps_Euclidean__space__euclidean__gen [OF B orth n 1]
by blast
obtain b where injb: inj on b {..<n} and beq: b ‘ {..<n} = B
using finite__imp__nat_seq_image_inj_on [OF <finite B)]
by (metis n card_Collect_less _nat card_image lessThan__def)
then have biB: \i. i <n=bic B
by force
have [simp]: N\i. i <n=bi# 0
using <independent By biB dependent_zero by fastforce
have [simp]: b i - b j = (if j = i then (norm (b i))? else 0)
ifi<nj<nforij
proof (cases i = j)
case Fulse
then have b i £ b j
by (meson inj _onD injb lessThan__iff that)
then show ?thesis
using orth by (auto simp: orthogonal _def pairwise__def norm__eq sqrt_inner
that biB)
qged (auto simp: norm__eq sqrt_inner)
have [simp]: Suc (n — Suc 0) = n
using Suc_pred <n # 0> by blast
then have [simp]: {..card B — Suc 0} = {..<card B}
using n by fastforce
show thesis
proof
have 1: norm (fz) = 1
if (Y i<card B. (z i)?) = (1:real) x € topspace (Euclidean__space n) for x
proof —
have norm (fz) 2 = 1
using normf that by (simp add: n)
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with that show ?Zthesis
by (simp add: power2_eq imp_eq)
qed
have homeomorphic_maps (nsphere (n — 1)) (top_of set (span B N sphere 0
1) fg
unfolding nsphere__def subtopology__subtopology [symmetric]
proof (rule homeomorphic_maps__subtopologies__alt)
show homeomorphic_maps (Euclidean__space (Suc (n — 1))) (top_of _set (span
B)) fg
using fg by (force simp add: )
show f “ (topspace (Euclidean__space (Suc (n — 1))) N {z. (3 i<n — 1. (z4)?)
= 1}) C sphere 0 1
using n by (auto simp: image__subset_iff Euclidean__space_def 1)
have (Y. i<n — Suc 0. (g ui)?) = 1
if u € span B and norm (u::'n) = 1 for u
proof —
obtain v where [simp]: u = fv v € topspace (Euclidean_space n)
using fg unfolding homeomorphic_maps_map subset__iff
by (metis <u € span B> homeomorphic_imp__ surjective_map image__eql
topspace__euclidean__subtopology)
then have [simp]: g (fv) = v
by (meson fg homeomorphic_maps_map)
have fv21: norm (fv) ~2 =1
using that by simp
show ?thesis
using that normf fv21 <v € topspace (Fuclidean space n)> n by force
qed
then show g ‘ (topspace (top_of set (span B)) N sphere 0 1) C {z. (3 i<n
— 1. (zi)?) =1}
by auto
qed
then show homeomorphic_maps (nsphere(n — 1)) (top_of _set (sphere 0 1 N
span B)) [ g
by (simp add: inf _commute)
qed
qed

0.4.4 Invariance of dimension and domain

lemma homeomorphic_maps_iff _homeomorphism [simp):
homeomorphic_maps (top_of _set S) (top_of _set T) f g +— homeomorphism
STfyg
by (force simp: Pi_iff homeomorphic_maps__def homeomorphism__def)

lemma homeomorphic__space_iff _homeomorphic [simp]:
(top_of _set S) homeomorphic__space (top_of _set T) «— S homeomorphic T
by (simp add: homeomorphic_def homeomorphic__space__def)

lemma homeomorphic__subspace_Fuclidean__space:


Invariance{_}{\kern 0pt}of{_}{\kern 0pt}Domain.html

232

fixes S :: 'a::euclidean_space set
assumes subspace S
shows top_of set S homeomorphic_space Fuclidean_space n <— dim S = n
proof —
obtain B where B: B C S independent B span B = S card B = dim S
and orth: pairwise orthogonal B and 1: Az. x € B = norm z = 1
by (metis assms orthonormal__basis__subspace)
then have finite B
by (simp add: pairwise_orthogonal imp__finite)
have top_of set S homeomorphic__space top_ of set (span B)
unfolding homeomorphic__space _iff homeomorphic
by (auto simp: assms B intro: homeomorphic_subspaces)
also have ... homeomorphic_space Euclidean__space (dim S)
unfolding homeomorphic__space__def
using homeomorphic_maps_Fuclidean__space__euclidean__gen [OF <indepen-
dent B> orth] homeomorphic_maps_sym 1 B
by metis
finally have top_of set S homeomorphic_space Fuclidean space (dim S) .
then show #thesis
using homeomorphic__space__sym homeomorphic__space__trans invariance__of _dimension_ FEuclidean .
by blast
qed

lemma homeomorphic__subspace Fuclidean__space _dim:
fixes S :: 'a::euclidean__space set
assumes subspace S
shows top_ of set S homeomorphic__space Euclidean__space (dim S)
by (simp add: homeomorphic_subspace_Fuclidean _space assms)

lemma homeomorphic__subspaces eq:
fixes S T:: 'a::euclidean_ space set
assumes subspace S subspace T
shows S homeomorphic T +— dim S = dim T
proof
show dim S = dim T
if S homeomorphic T
proof —
have Euclidean__space (dim S) homeomorphic__space top_of set S
using <subspace S» homeomorphic__space__sym homeomorphic__subspace_ Euclidean__space__dim

by blast
also have ... homeomorphic__space top_ of set T
by (simp add: that)
also have ... homeomorphic__space Euclidean_space (dim T)

by (simp add: homeomorphic_subspace Fuclidean space assms)
finally have Fuclidean_space (dim S) homeomorphic_space Euclidean__space
(dim T) .
then show ?thesis
by (simp add: invariance__of _dimension_ Fuclidean__space)
qed
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next
show S homeomorphic T
if dim S =dim T
by (metis that assms homeomorphic__subspaces)
qed

lemma homeomorphic__affine_ Fuclidean__space:
assumes affine S
shows top_ of set S homeomorphic_space Fuclidean__space n «— aff dim S =
n
(is X homeomorphic_space ?E +— aff _dim S = n)
proof (cases S = {})
case True
with assms show ?thesis
using homeomorphic__empty space nontrivial_Euclidean__space by fastforce
next
case Fulse
then obtain a where a € §
by force
have (¢X homeomorphic_space ?F)
= (top_of set (image (Az. —a + z) S) homeomorphic_space ?E)
proof
show top_of _set ((+) (— a) *S) homeomorphic_space ?E
if 2X homeomorphic__space ?E
using that
by (meson homeomorphic__space__iff homeomorphic homeomorphic__space__sym
homeomorphic__space__trans homeomorphic__translation)
show ?X homeomorphic_space ?E
if top_of _set ((+) (— a) *S) homeomorphic_space ?E
using that
by (meson homeomorphic__space__iff homeomorphic homeomorphic__space__trans
homeomorphic__translation)
qed
also have ... «+— aff dim S =n
by (metis <a € Sy aff _dim__eq _dim affine_diffs _subspace affine__hull_eq assms
homeomorphic__subspace__Euclidean__space of nat__eq iff)
finally show ?thesis .
qed

corollary invariance__of domain__subspaces:
fixes [ :: 'a:euclidean_space = 'b::euclidean__space
assumes ope: openin (top_of set U) S
and subspace U subspace V and VU: dim V < dim U
and contf: continuous_on S f and fim: f € S — V
and injf: inj_on f S
shows openin (top_of _set V) (f ©5)
proof —
have S C U
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using openin__imp__subset [OF ope] .
have Uhom: top_of set U homeomorphic__space Euclidean__space (dim U)
and Vhom: top_of set V homeomorphic__space Euclidean__space (dim V)
by (simp__all add: assms homeomorphic__subspace_Euclidean__space__dim)
then obtain ¢ ¢’ where hom: homeomorphic_maps (top_of _set U) (Euclidean__space
(dim U)) ¢ ¢
by (auto simp: homeomorphic__space__def)
obtain ¢ ¢’ where v¢: homeomorphic_map (top_of set V) (Fuclidean__space
(dim V) ¥
and Y": VazeV. ' (¢ z) =z
using Vhom by (auto simp: homeomorphic__space__def homeomorphic_maps_map)
have (W ofop)op) “S={of) ‘S
proof (rule image _cong [OF refl])
show (Yo fogp'op)z=@Wof)zxifze S forz
using that unfolding o def
by (metis <S C U> hom homeomorphic_maps_map in__mono topspace__euclidean__subtopology)
qed
moreover
have openin (Fuclidean__space (dim V)) (¢ o f o ') ‘¢ ¢ 5)
proof (rule invariance_of domain_FEuclidean_space gen [OF VU))
show openin (Euclidean__space (dim U)) (¢ ©S5)
using homeomorphic_map__openness _eq hom homeomorphic_maps _map ope
by blast
show continuous_map (subtopology (Euclidean__space (dim U)) (¢ ©S)) (Fuclidean__space
(dim V) (¥ o f o &)
proof (intro continuous_map__compose)
have continuous_on ({z. Vi>dim U. zi =0} N *8S) ¢’
if continuous_on {x. Vi>dim U. zi{ = 0} ¢’
using that by (force elim: continuous _on__subset)
moreover have ¢’ € ({z. Vi>dim U.zi=0}N¢p ‘S) = S
ifVeeU. o' (p2) =z
using that <S C U» by fastforce
ultimately show continuous_map (subtopology (Euclidean__space (dim U))
(¢ ©95)) (top_of set S) ¢’
using hom unfolding homeomorphic_maps def
by (simp add: Euclidean__space__def subtopology _subtopology euclidean__product__topology)
show continuous_map (top_of set S) (top_of set V) f
by (simp add: contf fim)
show continuous_map (top_of _set V) (Euclidean__space (dim V) 1
by (simp add: ¥ homeomorphic__imp__continuous__map)
qed
show inj_on (4 o [ o ') (¢ * 5)
using injf hom <S C U» ¥ fim
by (simp add: inj_on__def homeomorphic_maps_map Pi_iff) (metis subsetD)
qed
ultimately have openin (Euclidean__space (dim V)) (¢ “f ¢ .S)
by (simp add: image__comp)
with fim show ?thesis
by (auto simp: homeomorphic_map__openness_eq [OF 1])
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qged

lemma invariance__of domain:

fixes [ :: 'a = 'a::euclidean__space

assumes continuous_on S f open S inj_on f S shows open(f ¢ S)

using invariance_of _domain__subspaces [of UNIV S UNIV] assms by (force
simp add: )

corollary invariance__of dimension__subspaces:
fixes [ :: 'a:euclidean_space = 'b::euclidean_ space
assumes ope: openin (top_of set U) S
and subspace U subspace V
and contf: continuous_on S f and fim: f ‘S C V
and injf: inj_on fS and S # {}
shows dim U < dim V
proof —
have Fulse if dim V < dim U
proof —
obtain T where subspace T T C U dim T = dim V
using choose__subspace_of _subspace [of dim V U]
by (metis «dim V < dim U> assms(2) order.strict_implies_order span__eq _iff)
then have V homeomorphic T
by (simp add: <subspace V> homeomorphic__subspaces)
then obtain h & where homhk: homeomorphism V T h k
using homeomorphic__def by blast
have continuous _on S (h o f)
by (meson contf continuous _on__compose continuous _on__subset fim homeo-
morphism,__contl homhk)
moreover have (ho f) ‘S C U
using <7 C U» fim homeomorphism__imagel homhk by fastforce
moreover have inj on (ho f) S
apply (clarsimp simp: inj _on__def)
by (metis fim homeomorphism__applyl homhk image__subset_iff inj _onD injf)
ultimately have ope hf: openin (top_of set U) ((ho f) ©§)
using invariance_of domain__subspaces [OF ope (subspace Uy «subspace U»]
by blast
have (hof) *SC T
using fim homeomorphism__imagel homhk by fastforce
then have dim ((ho f) *S) < dim T
by (rule dim__subset)
also have dim ((ho f) *S) = dim U
using «S # {}» <subspace U»
by (blast intro: dim__openin ope__hf)
finally show Fulse
using «<dim V < dim U» «dim T = dim V> by simp
qed
then show ?thesis
using not_less by blast
qed
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corollary invariance_of domain_ affine_sets:
fixes f :: 'a::euclidean__space = 'b::euclidean__space
assumes ope: openin (top_of set U) S
and aff: affine U affine V aff _dim V < aff dim U
and contf: continuous_on S f and fim: f ¢S C V
and injf: inj_on f S
shows openin (top_of _set V) (f ©S)
proof (cases S = {})
case Fulse
obtain a b where a € Sac Ube V
using False fim ope openin__contains_cball by fastforce
have openin (top_of set ((+) (= b) *V)) ((+) (= b) o fo (+) a) *(+) (- a)
(S)
proof (rule invariance_of domain__subspaces)
show openin (top_of set ((+) (— a) “ U)) ((+) (— a) ©95)
by (metis ope homeomorphism__imp__open_map homeomorphism.__translation
translation__galois)
show subspace ((+) (— a) * U)
by (simp add: <a € U affine_diffs subspace subtract <affine U> cong:
image__cong__simp)
show subspace ((+) (= b) * V)
by (simp add: <b € V> affine_diffs_subspace__subtract <affine V> cong:
image__cong__simp)
show dim ((+) (— b) ‘' V) < dim ((+) (— a) * U)
by (metis <a € Uy <b € V> aff _dim__eq dim affine_hull_eq aff of nat_le_iff)
show continuous_on ((+) (— a) “S) (+) (= b) o f o (+) a)
by (metis contf continuous__on__compose homeomorphism__cont2 homeomor-
phism__translation translation__galois)
show ((+) (= b)ofo(+)a)e(+)(—a) S —=(+) (=0 V
using fim by auto
show inj_on ((+) (= b) o f o (+) a) ((+) (= a) *9)
by (auto simp: inj_on__def) (meson inj_onD injf)
qed
then show ?thesis
by (metis (no_types, lifting) homeomorphism__imp_open__map homeomor-
phism__translation image__comp translation__galois)
qed auto

corollary invariance of dimension__affine_ sets:
fixes [ :: 'a::euclidean__space = 'b::euclidean__space
assumes ope: openin (top_of set U) S
and aff: affine U affine V
and contf: continuous_on S f and fim: f ¢S C V
and injf: inj _on fS and S # {}
shows aff dim U < aff dim V
proof —
obtain a b where a € Sac Ube V
using S # {}> fim ope openin__contains_cball by fastforce
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have dim ((+) (— a) ‘' U) < dim ((+) (= b) * V)
proof (rule invariance of _dimension__subspaces)
show openin (top_of set ((+) (— a) ‘ U)) ((+) (— a) ©95)
by (metis ope homeomorphism__imp__open__map homeomorphism__translation
translation__galois)
show subspace ((+) (— a) “ U)
by (simp add: <a € U affine_diffs_subspace subtract <affine U) cong:
image__cong__simp)
show subspace ((+) (— b) ‘ V)
by (simp add: <b € V> affine_diffs_subspace_subtract <affine V) cong:
image__cong__simp)
show continuous_on ((+) (— a) *S) ((+) (= b) o f o (+) a)
by (metis contf continuous _on__compose homeomorphism__cont2 homeomor-
phism__translation translation__galois)
show ((+) (— b) o f o (+) a) *(+) (— a) *§ C (+) (~ b) * V
using fim by auto
show inj_on ((+) (= b) o f o (+) a) ((+) (— a) * 5)
by (auto simp: inj _on__def) (meson inj _onD injf)
qed (use «S # {}» in auto)
then show ?thesis
by (metis <a € U» <b € V» aff _dim__eq_dim affine_hull_eq aff of _nat_le_iff)
qed

corollary invariance_of dimension:
fixes [ :: 'a:euclidean__space = 'b::euclidean__space
assumes contf: continuous _on S f and open S
and injf: inj_on f S and S # {}
shows DIM ('a) < DIM('b)
using invariance__of _dimension__subspaces [of UNIV S UNIV f] assms
by auto

corollary continuous injective__image _subspace__dim,__le:

fixes f :: 'a::euclidean_space = 'b::euclidean__space
assumes subspace S subspace T

and contf: continuous_on S f and fim: f S C T

and injf: inj_on f S

shows dim S < dim T

apply (rule invariance_of dimension__subspaces [of S S _ f])
using assms by (auto simp: subspace__affine)

lemma invariance__of dimension__convex__domain:
fixes [ :: 'a:euclidean_space = 'b::euclidean__space
assumes convez S
and contf: continuous_on S f and fim: f * S C affine hull T
and injf: inj_on f S
shows aff dim S < aff dim T
proof (cases S = {})
case True
then show ?thesis by (simp add: aff _dim__geq)
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next
case Fulse
have aff _dim (affine hull S) < aff _dim (affine hull T)
proof (rule invariance_of dimension__affine_ sets)
show openin (top_of set (affine hull S)) (rel_interior S)
by (simp add: openin__rel_interior)
show continuous _on (rel_interior S) f
using contf continuous__on__subset rel_interior _subset by blast
show f ‘ rel_interior S C affine hull T
using fim rel_interior_subset by blast
show inj_on f (rel_interior S)
using inj_on_ subset injf rel_interior_subset by blast
show rel_interior S # {}
by (simp add: False <convex S» rel_interior _eq empty)
qed auto
then show ?thesis
by simp
qed

lemma homeomorphic_convex_sets le:
assumes convez S S homeomorphic T
shows aff dim S < aff dim T
proof —
obtain h k£ where homhk: homeomorphism S T h k
using homeomorphic__def assms by blast
show ?thesis
proof (rule invariance_of _dimension__conver__domain [OF <convex S)])
show continuous _on S h
using homeomorphism__def homhk by blast
show h ‘S C affine hull T
by (metis homeomorphism__def homhk hull _subset)
show inj _on h S
by (meson homeomorphism__applyl homhk inj_on__inversel)
qed
qed

lemma homeomorphic__conver__sets:

assumes convex S convexr T S homeomorphic T

shows aff dim S = aff _dim T

by (meson assms dual__order.antisym homeomorphic__convex_sets_le homeomor-
phic__sym)

lemma homeomorphic__convex__compact_sets eq:
assumes convex S compact S convex T compact T
shows S homeomorphic T «— aff _dim S = aff dim T
by (meson assms homeomorphic__convex__compact__sets homeomorphic__convex _sets)

lemma invariance_of domain__gen:
fixes f :: 'a::euclidean_space = 'b::euclidean__space
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assumes open S continuous_on S finj_on f.S DIM('b) < DIM('a)
shows open(f ¢ S)
using invariance_of domain__subspaces [of UNIV S UNIV f] assms by auto

lemma injective__into__1d_imp_ open_map_ UNIV:
fixes [ :: 'a::euclidean_space = real
assumes open T continuous_on S finj _on fS T C S
shows open (f * T)
apply (rule invariance _of domain__gen [OF <open T)])
using assms apply (auto simp: elim: continuous__on__subset inj _on__subset)
done

lemma continuous on__inverse__open:
fixes [ :: 'a::euclidean__space = 'b::euclidean__space
assumes open S continuous_on S f DIM('b) < DIM('a) and gf: A\z. 2 € S =
g(fz) ==
shows continuous_on (f *S) g
proof (clarsimp simp add: continuous openin__preimage _eq)
fix T :: 'a set
assume open T
haveeg: f*SNg—T=f(SNT)
by (auto simp: gf)
have openin (top_of set (f <S)) (f (SN T))
proof (rule open__openin_trans [OF invariance_of domain__gen))
show inj on f S
using inj _on__inversel gf by auto
show open (f (SN T))
by (meson <inj_on fS» <open T» assms(1—23) continuous_on__subset inf lel
inj _on__subset invariance_of domain__gen open__Int)
ged (use assms in auto)
then show openin (top_of set (f<S)) (f*SnNng—T)
by (simp add: eq)
qged

lemma invariance__of domain__homeomorphism:

fixes [ :: 'a::euclidean__space = 'b::euclidean__space

assumes open S continuous_on S f DIM('b) < DIM('a) inj _on f S

obtains g where homeomorphism S (f ¢ S) f g
proof

show homeomorphism S (f ©S) f (inv_into S f)

by (simp add: assms continuous__on__inverse__open homeomorphism__def)

qed

corollary invariance of domain_homeomorphic:
fixes f :: 'a::euclidean__space = 'b::euclidean__space
assumes open S continuous_on S f DIM('b) < DIM('a) inj_on f S
shows S homeomorphic (f * S)
using invariance_of _domain__homeomorphism [OF assms]
by (meson homeomorphic__def)
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lemma continuous image subset_interior:
fixes f :: 'a::euclidean__space = 'b::euclidean__space
assumes continuous_on S finj_on f .S DIM('b) < DIM('a)
shows f ¢ (interior S) C interior(f < S)
proof (rule interior_maximal)
show f ‘ interior S C f ¢S
by (simp add: image__mono interior__subset)
show open (f ¢ interior S)
using assms
by (auto simp: inj _on_ subset interior _subset continuous on__subset invari-
ance__of _domain__gen)
qed

lemma homeomorphic_interiors_same__dimension:
fixes S :: 'a::euclidean__space set and T :: 'b::euclidean_space set
assumes S homeomorphic T and dimeq: DIM ('a) = DIM('b)
shows (interior S) homeomorphic (interior T)
using assms [unfolded homeomorphic__minimal]
unfolding homeomorphic__def
proof (clarify elim!: ex_forward)
fix fg
assume S:VzeS. fr e TN g (fz)=zand T:VyeT. gy e SAf(gy) =y
and contf: continuous_on S f and contg: continuous_on T g
then have fST: f ‘S = T and ¢g7T5: g ‘T = Sand inj onfSinj ongT
by (auto simp: inj _on__def intro: rev_image _eql) metis+
have fim: f ‘interior S C interior T
using continuous_image__subset_interior [OF contf <inj _on f S»] dimeq fST
by simp
have gim: g ‘ interior T C interior S
using continuous_image__subset _interior [OF contg <inj_on g T»] dimeq gTS
by simp
show homeomorphism (interior S) (interior T) f g
unfolding homeomorphism__def
proof (intro conjl balll)
show Az. z € interior S = ¢ (fz) =z
by (meson ~VzeS. fz € T A g (fz) =
have interior T C f ¢ interior S
proof
fix z assume z € interior T
then have g z € interior S
using gim by blast
then show z € f  interior S
by (metis T <z € interior T) image_iff interior _subset subsetCE)
qed
then show f ‘ interior S = interior T
using fim by blast
show continuous on (interior S) f
by (metis interior _subset continuous on__subset contf)

xy subsetD interior__subset)
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show Ay. y € interior T = f (gy) =y
by (meson T subsetD interior _subset)
have interior S C g ‘ interior T
proof
fix z assume z € interior S
then have fz € interior T
using fim by blast
then show z € g ‘interior T
by (metis S <z € interior Sy image_iff interior _subset subsetCE)
qed
then show g ‘ interior T = interior S
using gim by blast
show continuous _on (interior T) g
by (metis interior_subset continuous_on__subset contg)
qed
qed

lemma homeomorphic__open__imp same__dimension:
fixes S :: 'a::euclidean__space set and T :: 'b::euclidean_ space set
assumes S homeomorphic T open S S # {} open T T # {}
shows DIM('a) = DIM (D)
using assms
apply (simp add: homeomorphic_minimal)
apply (rule order__antisym; metis inj_onl invariance_of _dimension)
done

proposition homeomorphic__interiors:
fixes S :: 'a::euclidean_space set and T :: 'b::euclidean_ space set
assumes S homeomorphic T interior S = {} «— interior T = {}
shows (interior S) homeomorphic (interior T)
proof (cases interior T = {})
case True
with assms show ?thesis by auto
next
case Fulse
then have DIM('a) = DIM('b)
using assms
apply (simp add: homeomorphic_minimal)
apply (rule order__antisym; metis continuous__on__subset inj _onlinj on__subset
interior__subset invariance_of _dimension open__interior)
done
then show ?Zthesis
by (rule homeomorphic_interiors__same_ dimension [OF S homeomorphic T)])
qed

lemma homeomorphic_frontiers same__dimension:
fixes S :: ‘a::euclidean_space set and T :: 'b::euclidean__space set
assumes S homeomorphic T closed S closed T and dimeq: DIM ('a) = DIM('b)
shows (frontier S) homeomorphic (frontier T')
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using assms [unfolded homeomorphic_minimal]
unfolding homeomorphic__def
proof (clarify elim!: ex_forward)
fix fg
assume S:Vze€S. fe e TN g (fz)=zand T:VyeT. gy € SAf(gy) =y
and contf: continuous_on S f and contg: continuous_on T g
then have fST: f ‘S = T and ¢gTS: g ‘T = S and inj_on fSinj_ong T
by (auto simp: inj _on__def intro: rev_image__eql) metis+
have g ‘ interior T C interior S
using continuous_image__subset_interior [OF contg <inj_on g T»| dimeq gTS
by simp
then have fim: f ¢ frontier S C frontier T
apply (simp add: frontier _def)
using continuous_image__subset_interior assms(2) assms(3) S by auto
have f ¢ interior S C interior T
using continuous_image__subset_interior [OF contf <inj _on f S| dimeq fST
by simp
then have gim: g ‘ frontier T C frontier S
apply (simp add: frontier _def)
using continuous _image__subset _interior T assms(2) assms(3) by auto
show homeomorphism (frontier S) (frontier T) f g
unfolding homeomorphism__def
proof (intro conjl balll)
show gf: Az. z € frontier S = g (fz) =z
by (simp add: S assms(2) frontier _def)
show fg: Ay. y € frontier T = f (gy) =y
by (simp add: T assms(3) frontier__def)
have frontier T C f ¢ frontier S
proof
fix  assume z € frontier T
then have g = € frontier S
using gim by blast
then show z € f * frontier S
by (metis fg <x € frontier T imagel)
qed
then show f ‘ frontier S = frontier T
using fim by blast
show continuous_on (frontier S) f
by (metis Diff _subset assms(2) closure__eq contf continuous__on__subset fron-
tier__def)
have frontier S C g ‘ frontier T
proof
fix © assume z € frontier S
then have fxz € frontier T
using fim by blast
then show z € g ‘ frontier T
by (metis gf <x € frontier S» imagel)
qed
then show g ‘ frontier T = frontier S
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using gim by blast
show continuous_on (frontier T) g
by (metis Diff subset assms(83) closure_closed contg continuous__on__subset
frontier _def)
qed
qed

lemma homeomorphic__frontiers:
fixes S :: a::euclidean_space set and T :: 'b::euclidean__space set
assumes S homeomorphic T closed S closed T
interior S = {} «— interior T = {}
shows (frontier S) homeomorphic (frontier T)
proof (cases interior T = {})
case True
then show ?thesis
by (metis Diff _empty assms closure__eq frontier _def)
next
case Fulse
show ?thesis
apply (rule homeomorphic_frontiers same__dimension)
apply (simp__all add: assms)
using False assms homeomorphic__interiors homeomorphic__open__imp__same__dimension
by blast
qed

lemma continuous image_subset_rel interior:
fixes [ :: 'a:euclidean_space = 'b::euclidean_ space
assumes contf: continuous_on S f and injf: inj_on fS and fim: f S C T
and 7TS: aff dim T < aff dim S
shows f ‘ (rel_interior S) C rel_interior(f ¢ S)
proof (rule rel interior_mazimal)
show f ¢ rel_interior S C f S
by (simp add: image_mono rel_interior_subset)
show openin (top_of set (affine hull f S)) (f © rel_interior S)
proof (rule invariance _of domain__affine_sets)
show openin (top_of set (affine hull S)) (rel_interior S)
by (simp add: openin__rel_interior)
show aff _dim (affine hull f ©S) < aff _dim (affine hull S)
by (metis aff _dim__affine_hull aff _dim__subset fim TS order_trans)
show f ‘ rel_interior S C affine hull f © S
by (meson <f ‘ rel_interior S C f ©S» hull_subset order_trans)
show continuous_on (rel_interior S) f
using contf continuous on__subset rel_interior _subset by blast
show inj on f (rel_interior S)
using inj_on_ subset injf rel_interior__subset by blast
qed auto
qed

lemma homeomorphic_rel_interiors _same__dimension:
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fixes S :: ‘a::euclidean_space set and T :: 'b::euclidean_ space set
assumes S homeomorphic T and aff: aff dim S = aff _dim T
shows (rel_interior S) homeomorphic (rel_interior T)
using assms [unfolded homeomorphic__minimal]
unfolding homeomorphic__def
proof (clarify elim!: ex_ forward)
fix fg
assume S:VzeS. fe € TN g (fz)=zand T:VyeT. gy SAf(gy) =y
and contf: continuous_on S f and contg: continuous_on T g
then have fST: f ‘S = T and ¢gTS: ¢ ‘T = S and inj onfSinj _ong T
by (auto simp: inj_on__def intro: rev_image__eql) metis+
have fim: f ‘ rel_interior S C rel_interior T
by (metis <inj_on f Sy aff contf continuous_image_subset_rel interior fST
order_refl)
have gim: g ‘ rel_interior T C rel interior S
by (metis <inj_on g T» aff contg continuous__image__subset_rel interior gTS
order_refl)
show homeomorphism (rel_interior S) (rel_interior T) f g
unfolding homeomorphism__def
proof (intro conjI balll)
show gf: Az. x € rel_interior S = g (fz) =z
using S rel_interior_subset by blast
show fg: Ay. y € rel_interior T = f (gy) = y
using T mem__rel_interior__ball by blast
have rel_interior T C f ‘ rel_interior S
proof
fix z assume z € rel _interior T
then have g x € rel interior S
using gim by blast
then show z € f ‘ rel_interior S
by (metis fg <x € rel_interior T» imagel)
qed
moreover have f ‘ rel_interior S C rel_interior T
by (metis <inj_on [ S aff contf continuous_image_subset_rel_interior fST
order_refl)
ultimately show f ‘ rel_interior S = rel_interior T
by blast
show continuous__on (rel_interior S) f
using contf continuous__on__subset rel_interior__subset by blast
have rel_interior S C g ‘ rel_interior T
proof
fix z assume z € rel_interior S
then have fz € rel_interior T
using fim by blast
then show z € g ‘ rel_interior T
by (metis gf <x € rel_interior S imagel)
qed
then show g ‘ rel_interior T = rel_interior S
using gim by blast
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show continuous_on (rel_interior T) g
using contg continuous__on__subset rel_interior_ _subset by blast
qed
qed

lemma homeomorphic__rel_interiors:
fixes S :: 'a::euclidean_space set and T :: 'b::euclidean_ space set
assumes S homeomorphic T rel_interior S = {} «— rel_interior T = {}
shows (rel_interior S) homeomorphic (rel_interior T)
proof (cases rel_interior T = {})
case True
with assms show ?thesis by auto
next
case Fulse
obtain f ¢
where S:VzeS. fe e TAg (fz)=zand T:VyeT. gy e SAf(gy) =y
and contf: continuous_on S f and contg: continuous_on T g
using assms [unfolded homeomorphic_minimal] by auto
have aff _dim (affine hull S) < aff _dim (affine hull T)
apply (rule invariance of dimension__affine_sets [of _ rel_interior S _ f])
apply (simp__all add: openin__rel_interior False assms)
using contf continuous on_ subset rel interior subset apply blast
apply (meson S hull _subset image__subset] rel_interior _subset rev_subsetD)
apply (metis S inj_on__inversel inj _on__subset rel interior _subset)
done
moreover have aff dim (affine hull T') < aff _dim (affine hull S)
apply (rule invariance_of dimension__affine_sets [of _ rel_interior T __ g])
apply (simp__all add: openin_rel _interior False assms)
using contg continuous_on__subset rel_interior _subset apply blast
apply (meson T hull_subset image__subsetl rel_interior _subset rev_subsetD)
apply (metis T inj_on_inversel inj_on_ subset rel interior_ _subset)
done
ultimately have aff dim S = aff _dim T by force
then show ?thesis
by (rule homeomorphic__rel_interiors_same__dimension [OF «S homeomorphic
7))
qed

lemma homeomorphic_rel__boundaries _same__dimension:
fixes S :: 'a::euclidean__space set and T :: 'b::euclidean_ space set
assumes S homeomorphic T and aff: aff dim S = aff _dim T
shows (S — rel_interior S) homeomorphic (T — rel_interior T)
using assms [unfolded homeomorphic_minimal]
unfolding homeomorphic__def
proof (clarify elim!: ex_forward)
fix fg
assume S:VzeS. fo e TN g (fz)=zand T:VyeT. gy € SAf(gy) =y
and contf: continuous_on S f and contg: continuous_on T g
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then have fST: f ‘S = T and gTS: g ‘T = Sand inj onfSinj ongT
by (auto simp: inj _on__def intro: rev_image__eql) metis+
have fim: f ¢ rel_interior S C rel_interior T
by (metis <inj_on f Sy aff contf continuous_image_subset_rel interior fST
order_refl)
have gim: g ‘ rel_interior T C rel_interior S
by (metis <inj_on g T» aff contg continuous__image__subset_rel_interior gTS
order_refl)
show homeomorphism (S — rel_interior S) (T — rel_interior T) f g
unfolding homeomorphism,__def
proof (intro conjl balll)
show gf: Az. x € S — rel_interior S = g (fz) =z
using S rel_interior_subset by blast
show fg: Ay. y € T — rel_interior T = f (gy) =y
using T mem__rel_interior__ball by blast
show [ ‘(S — rel_interior S) = T — rel_interior T
using S fST fim gim by auto
show continuous _on (S — rel_interior S) f
using contf continuous__on__subset rel_interior__subset by blast
show ¢ ‘(T — rel_interior T) = S — rel_interior S
using T ¢T'S gim fim by auto
show continuous_on (T — rel_interior T) g
using contg continuous _on__subset rel_interior_subset by blast
qed
qed

lemma homeomorphic_rel__boundaries:
fixes S :: 'a::euclidean_space set and T :: 'b::euclidean_ space set
assumes S homeomorphic T rel_interior S = {} +— rel_interior T = {}
shows (S — rel_interior S) homeomorphic (T — rel_interior T)
proof (cases rel_interior T = {})
case True
with assms show ?thesis by auto
next
case Fulse
obtain f g
where S:VzeS. fer e TAg (fz)=zand T:VyecT. gye SAf(gy) =y
and contf: continuous_on S f and contg: continuous_on T g
using assms [unfolded homeomorphic__minimal] by auto
have aff _dim (affine hull S) < aff _dim (affine hull T)
apply (rule invariance of dimension__affine_sets [of _ rel_interior S _ f])
apply (simp__all add: openin__rel_interior False assms)
using contf continuous on__ subset rel_interior subset apply blast
apply (meson S hull_subset image__subsetl rel_interior__subset rev_subsetD)
apply (metis S inj_on__inversel inj _on_ subset rel interior _subset)
done
moreover have aff dim (affine hull T) < aff _dim (affine hull S)
apply (rule invariance_of dimension__affine_sets [of _ rel_interior T __ g])
apply (simp__all add: openin_ rel_interior False assms)
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using contg continuous_on__subset rel_interior_subset apply blast
apply (meson T hull_subset image__subsetl rel_interior _subset rev__subsetD)
apply (metis T inj_on_inversel inj_on__subset rel interior_subset)
done
ultimately have aff dim S = aff _dim T by force
then show ?thesis
by (rule homeomorphic_rel _boundaries_same__dimension [OF S homeomor-
phic T)])
qed

proposition uniformly_continuous homeomorphism__ UNIV__trivial:
fixes f :: 'a::euclidean_space = 'a
assumes contf: uniformly_continuous _on S f and hom: homeomorphism S
UNIV f g
shows S = UNIV
proof (cases S = {})
case True
then show ?thesis
by (metis UNIV_I hom empty__iff homeomorphism__def image__eqI)
next
case Fulse
have inj g
by (metis UNIV_I hom homeomorphism__apply2 injI)
then have open (g < UNIV)
by (blast intro: invariance_of domain hom homeomorphism__cont2)
then have open S
using hom homeomorphism__image2 by blast
moreover have complete S
unfolding complete def
proof clarify
fix o
assume o0: Vn. o n € S and Cauchy o
have Cauchy (f o o)
using uniformly__continuous_imp__ Cauchy__continuous < Cauchy oy o contf
unfolding Cauchy continuous on__def by blast
then obtain [ where (f o 0) —— |
by (auto simp: convergent_eq Cauchy [symmetric])
show JleS. 0 —— |
proof
show gl € S
using hom homeomorphism__image2 by blast
have (g o (f © 0)) —— g1
by (meson UNIV_I «(f o 0) —— v continuous__on__sequentially hom
homeomorphism__cont2)
then show 0 —— ¢!
proof —
have Vn.on=(go (foo)) n
by (metis (no_types) o comp__eq_dest_lhs hom homeomorphism__applyl)
then show ?thesis
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by (metis (no__types) LIMSEQ_iff <«(go (f o o)) —— g Iv)
qed
qed
qed
then have closed S
by (simp add: complete__eq _closed)
ultimately show Zthesis
using clopen [of S] False by simp
qed

proposition invariance of domain__sphere__affine_set_gen:
fixes f :: 'a::euclidean__space = 'b::euclidean__space
assumes contf: continuous_on S f and injf: inj _on fS and fim: f S C T
and U: bounded U convexr U
and affine T and offTU: aff dim T < aoff dim U
and ope: openin (top_of _set (rel_frontier U)) S
shows openin (top_of _set T) (f © 5)
proof (cases rel_frontier U = {})
case True
then show ?thesis
using ope openin__subset by force
next
case Fulse
obtain b ¢ where b: b € rel_frontier U and c: ¢ € rel_frontier U and b # ¢
using <bounded U» rel_frontier _not_sing [of U] subset_singletonD False by
fastforce
obtain V :: 'a set where affine V and affV: off dim V = aff dim U — 1
proof (rule choose__affine__subset [OF affine_ UNIV])
show — 1 < aff dim U — 1
by (metis aff _dim__empty aff _dim__geq aff dim_ negative_iff off TU diff 0
diff _right_mono not_le)
show aff dim U — 1 < aff _dim (UNIV::'a set)
by (metis aff _dim_UNIV aff _dim_le_ DIM le_ cases not_le zle_diff1_eq)
qed auto
have SU: § C rel_frontier U
using ope openin__imp_ subset by auto
have homb: rel_frontier U — {b} homeomorphic V
and homec: rel_frontier U — {c} homeomorphic V
using homeomorphic__punctured_sphere__affine_gen [of U _ V]
by (simp__all add: <affine V> off VU b ¢)
then obtain g h j k
where gh: homeomorphism (rel_frontier U — {b}) V g h
and jk: homeomorphism (rel_frontier U — {c}) Vjk
by (auto simp: homeomorphic_def)
with SU have hgsub: (h ‘g ‘(S — {b})) C S and kjsub: (k “j ‘(S — {c})) C S
by (simp__all add: homeomorphism__def subset_eq)
have [simp]: aff _dim T < aff dim V
by (simp add: aff TU off V)
have openin (top_of set T) ((f o h) ‘g ‘(S — {b}))
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proof (rule invariance_of _domain__affine_sets [OF _ <affine V)])
show openin (top_of_set V) (g ‘(S — {b}))
apply (rule homeomorphism__imp_open_map [OF gh])
by (meson Diff _mono Diff subset SU ope openin__delete openin__subset_trans
order_refl)
show continuous_on (g * (S — {b})) (f o h)
apply (rule continuous__on__compose)
apply (meson Diff _mono SU homeomorphism__def homeomorphism__of _subsets
gh set_eq subset)
using contf continuous on__subset hgsub by blast
show inj_on (f o h) (g * (S — {B}))
using kjsub
apply (clarsimp simp add: inj_on__def)
by (metis SU b homeomorphism__def inj _onD injf insert_Diff insert_iff gh
rev__subsetD)
show (foh) ‘g (S—{b})C T
by (metis fim image__comp image_mono hgsub subset_trans)
qed (auto simp: assms)
moreover
have openin (top_of set T) ((f o k) ‘5 (S — {c}))
proof (rule invariance_of domain__affine_sets [OF __ <affine V])
show openin (top_of _set V) (j * (S — {c}))
apply (rule homeomorphism__imp__open__map [OF jk])
by (meson Diff _mono Diff subset SU ope openin__delete openin__subset__trans
order_refl)
show continuous_on (j < (S — {c})) (f o k)
apply (rule continuous__on__compose)
apply (meson Diff _mono SU homeomorphism__def homeomorphism__ of _subsets
jk set_eq subset)
using contf continuous__on__subset kjsub by blast
show inj_on (f o k) (j * (S — {c}))
using kjsub
apply (clarsimp simp add: inj _on__def)
by (metis SU ¢ homeomorphism__def inj_onD injf insert_Diff insert iff jk
rev__subsetD)
show (fok) j(S—{chCT
by (metis fim image__comp image_mono kjsub subset_trans)
qged (auto simp: assms)
ultimately have openin (top_of set T) ((f o h) ‘g (S —{b}) U ((fo k) ‘j
(8 —A{ch)
by (rule openin_ Un)
moreover have (f o h) ‘g ‘(S — {b}) = f (S — {b})
proof —
have h * g * (§ — {b}) = (5 — {b})
proof
show h ‘g ‘(S — {b}) C S — {b}
using homeomorphism__applyl [OF gh| SU
by (fastforce simp add: image_iff image__subset_iff)
show S — {b} Ch ‘g ‘(S — {b})
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using SU gh homeomorphism__applyl [of «(rel_frontier U — {b})> V g h]
by (auto simp add: image__iff) (metis DiffI singletonD subsetD)
qed
then show ?thesis
by (metis image__comp)

qed
moreover have (f o k) ‘5 (S — {c})=f‘(S — {c})
proof —

have k *j * (5 — {c}) = (§ — {c})

proof

show k “j ‘(S — {c}) C S5 — {c}
using homeomorphism__applyl [OF jk] SU
by (fastforce simp add: image_iff image__subset__iff)
show S — {c¢} Ck ‘(S — {c})
using SU jk homeomorphism__applyl |of «(rel_frontier U — {c})» V j K]
by (auto simp add: image_iff) (metis DiffI singletonD subsetD)
qed
then show ?thesis
by (metis image__comp)
qed
moreover have f (S — {b}) U f (S — {c}) = f“(9)
using <b # ¢ by blast
ultimately show Zthesis
by simp
qed

lemma invariance__of domain__sphere__affine_set:
fixes f :: 'a::euclidean__space = 'b::euclidean_space
assumes contf: continuous_on S f and injf: inj_on fS and fim: f S C T
and r # 0 affine T and off TU: aff dim T < DIM('a)
and ope: openin (top_of set (sphere a 1)) S
shows openin (top_of _set T) (f © 9)
proof (cases sphere a r = {})
case True
then show ?thesis
using ope openin__subset by force
next
case Fulse
show ?thesis
proof (rule invariance_of domain__sphere_affine_set _gen [OF contf injf fim
bounded__cball convex__cball <affine T»))
show aff dim T < aff dim (cball a r)
by (metis False aff TU aff _dim__cball assms(4) linorder__cases sphere__empty)
show openin (top_of _set (rel_frontier (cball a r))) S
by (simp add: <r # 0> ope)
qed
qed

lemma no__embedding sphere_lowdim:
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fixes f :: 'a::euclidean_space = 'b::euclidean__space
assumes contf: continuous_on (sphere a r) f and injf: inj_on f (sphere a r)
and r > 0
shows DIM('a) < DIM('b)
proof —
have False if DIM('a) > DIM('b)
proof —
have compact (f ‘ sphere a )
using compact__continuous__image
by (simp add: compact__continuous__image contf)
then have — open (f ¢ sphere a r)
using compact__open
by (metis assms(3) image_is_empty not_less_iff gr_or _eq sphere_eq empty)
then show Fulse
using invariance__of _domain__sphere__affine__set [OF contf injf subset_UNIV]
xr > 0
by (metis aff _dim_ UNIV affine_ UNIV less_irrefl of _nat_less_iff open_openin
openin,__subtopology _self subtopology_ UNIV that)
qed
then show ?thesis
using not_less by blast
qed

lemma empty_interior_lowdim__gen:
fixes S :: 'N::euclidean_space set and T :: 'M::euclidean__space set
assumes dim: DIM('M) < DIM('N) and ST: S homeomorphic T
shows interior S = {}
proof —
obtain h :: ‘M = 'N where linear h Az. norm(h ) = norm z
by (rule isometry__subset__subspace [OF subspace_UNIV subspaceUNIV, where
?’a = 'M and ?'b = 'NJ)
(use dim in auto)
then have inj h
by (metis linear_inj_iff eq 0 norm__eq_zero)
then have h ‘ T homeomorphic T
using <linear h> homeomorphic__sym linear _homeomorphic__image by blast
then have interior (h * T)) homeomorphic interior S
using homeomorphic__interiors__same__dimension
by (metis ST homeomorphic__sym homeomorphic__trans)
moreover
have interior (range h) = {}
by (simp add: <inj hy <linear hy dim dim__image__eq empty_interior_lowdim)
then have interior (h * T) = {}
by (metis image__mono interior_mono subset_empty topfgreatest)
ultimately show ?Zthesis
by simp
qed

lemma empty interior_lowdim__gen_le:
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fixes S :: 'N::euclidean space set and T :: 'M::euclidean_ space set

assumes DIM ('M) < DIM('N) interior T = {} S homeomorphic T

shows interior S = {}

by (metis assms empty_interior_lowdim__gen homeomorphic__empty(1) homeo-
morphic__interiors__same__dimension less_le)

lemma homeomorphic__affine_sets_eq:
fixes S :: ‘a::euclidean__space set and T :: 'b::euclidean_ space set
assumes affine S affine T
shows S homeomorphic T «— aoff _dim S = aff _dim T
proof (cases S ={} v T ={})
case True
then show ?thesis
using assms homeomorphic__affine__sets by force
next
case Fulse
then obtain a b where a € Sbe T
by blast
then have subspace ((+) (— a) *S) subspace ((+) (— b) “ T)
using affine diffs _subspace assms by blast+
then show #thesis
by (metis affine_imp__convex assms homeomorphic_affine_sets homeomor-
phic__convez__sets)
qed

lemma homeomorphic__hyperplanes eq:
fixes a :: 'M::euclidean__space and c :: 'N::euclidean_space
assumes a # 0 ¢ # 0
shows ({z. a - £ = b} homeomorphic {z. ¢ - x = d} +— DIM('M) = DIM('N))
(is ?lhs = %rhs)
proof —
have (DIM('M) — Suc 0 = DIM('N) — Suc 0) +— (DIM('M) = DIM('N))
by auto (metis DIM__positive Suc__pred)
then show ?thesis
using assms by (simp add: homeomorphic__affine_sets _eq affine_hyperplane)
qed

end
theory Homology

imports Invariance_of Domain
begin

end
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