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0.1 Homology, I: Simplices
theory Simplices

imports
HOL−Analysis.Function_Metric
HOL−Analysis.Abstract_Euclidean_Space
HOL−Algebra.Free_Abelian_Groups

begin

0.1.1 Standard simplices, all of which are topological sub-
spaces of R^n.

type_synonym ′a chain = ((nat ⇒ real) ⇒ ′a) ⇒0 int

definition standard_simplex :: nat ⇒ (nat ⇒ real) set where
standard_simplex p ≡
{x. (∀ i. 0 ≤ x i ∧ x i ≤ 1 ) ∧ (∀ i>p. x i = 0 ) ∧ (

∑
i≤p. x i) = 1}

lemma topspace_standard_simplex:
topspace(subtopology (powertop_real UNIV ) (standard_simplex p))
= standard_simplex p

by simp

lemma basis_in_standard_simplex [simp]:
(λj. if j = i then 1 else 0 ) ∈ standard_simplex p ←→ i ≤ p

by (auto simp: standard_simplex_def )

lemma nonempty_standard_simplex: standard_simplex p 6= {}
using basis_in_standard_simplex by blast

lemma standard_simplex_0 : standard_simplex 0 = {(λj. if j = 0 then 1 else 0 )}
by (auto simp: standard_simplex_def )

lemma standard_simplex_mono:
assumes p ≤ q
shows standard_simplex p ⊆ standard_simplex q
using assms

proof (clarsimp simp: standard_simplex_def )
fix x :: nat ⇒ real
assume ∀ i. 0 ≤ x i ∧ x i ≤ 1 and ∀ i>p. x i = 0 and sum x {..p} = 1
then show sum x {..q} = 1

using sum.mono_neutral_left [of {..q} {..p} x] assms by auto
qed

lemma closedin_standard_simplex:
closedin (powertop_real UNIV ) (standard_simplex p)
(is closedin ?X ?S)

proof −
have eq: standard_simplex p =
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(
⋂

i. {x. x ∈ topspace ?X ∧ x i ∈ {0 ..1}}) ∩
(
⋂

i ∈ {p<..}. {x ∈ topspace ?X . x i ∈ {0}}) ∩
{x ∈ topspace ?X . (

∑
i≤p. x i) ∈ {1}}

by (auto simp: standard_simplex_def topspace_product_topology)
show ?thesis

unfolding eq
by (rule closedin_Int closedin_Inter continuous_map_sum

continuous_map_product_projection closedin_continuous_map_preimage
| force | clarify)+
qed

lemma standard_simplex_01 : standard_simplex p ⊆ UNIV →E {0 ..1}
using standard_simplex_def by auto

lemma compactin_standard_simplex:
compactin (powertop_real UNIV ) (standard_simplex p)

proof (rule closed_compactin)
show compactin (powertop_real UNIV ) (UNIV →E {0 ..1})

by (simp add: compactin_PiE)
show standard_simplex p ⊆ UNIV →E {0 ..1}

by (simp add: standard_simplex_01 )
show closedin (powertop_real UNIV ) (standard_simplex p)

by (simp add: closedin_standard_simplex)
qed

lemma convex_standard_simplex:
[[x ∈ standard_simplex p; y ∈ standard_simplex p;

0 ≤ u; u ≤ 1 ]]
=⇒ (λi. (1 − u) ∗ x i + u ∗ y i) ∈ standard_simplex p

by (simp add: standard_simplex_def sum.distrib convex_bound_le flip: sum_distrib_left)

lemma path_connectedin_standard_simplex:
path_connectedin (powertop_real UNIV ) (standard_simplex p)

proof −
define g where g ≡ λx y::nat⇒real. λu i. (1 − u) ∗ x i + u ∗ y i
have continuous_map

(subtopology euclideanreal {0 ..1}) (powertop_real UNIV )
(g x y)

if x ∈ standard_simplex p y ∈ standard_simplex p for x y
unfolding g_def continuous_map_componentwise
by (force intro: continuous_intros)

moreover
have g x y ∈ {0 ..1} → standard_simplex p g x y 0 = x g x y 1 = y

if x ∈ standard_simplex p y ∈ standard_simplex p for x y
using that by (auto simp: convex_standard_simplex g_def )

ultimately
show ?thesis

unfolding path_connectedin_def path_connected_space_def pathin_def
by (metis continuous_map_in_subtopology euclidean_product_topology top_greatest
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topspace_euclidean topspace_euclidean_subtopology)
qed

lemma connectedin_standard_simplex:
connectedin (powertop_real UNIV ) (standard_simplex p)

by (simp add: path_connectedin_imp_connectedin path_connectedin_standard_simplex)

0.1.2 Face map
definition simplical_face :: nat ⇒ (nat ⇒ ′a) ⇒ nat ⇒ ′a::comm_monoid_add
where

simplical_face k x ≡ λi. if i < k then x i else if i = k then 0 else x(i −1 )

lemma simplical_face_in_standard_simplex:
assumes 1 ≤ p k ≤ p x ∈ standard_simplex (p − Suc 0 )
shows (simplical_face k x) ∈ standard_simplex p

proof −
have x01 :

∧
i. 0 ≤ x i ∧ x i ≤ 1 and sumx: sum x {..p − Suc 0} = 1

using assms by (auto simp: standard_simplex_def simplical_face_def )
have gg:

∧
g. sum g {..p} = sum g {..<k} + sum g {k..p}

using ‹k ≤ p› sum.union_disjoint [of {..<k} {k..p}]
by (force simp: ivl_disj_un ivl_disj_int)

have eq: (
∑

i≤p. if i < k then x i else if i = k then 0 else x (i −1 ))
= (

∑
i < k. x i) + (

∑
i ∈ {k..p}. if i = k then 0 else x (i −1 ))

by (simp add: gg)
consider k ≤ p − Suc 0 | k = p

using ‹k ≤ p› by linarith
then have (

∑
i≤p. if i < k then x i else if i = k then 0 else x (i −1 )) = 1

proof cases
case 1
have [simp]: Suc (p − Suc 0 ) = p

using ‹1 ≤ p› by auto
have (

∑
i = k..p. if i = k then 0 else x (i −1 )) = (

∑
i = k+1 ..p. if i = k then

0 else x (i −1 ))
by (rule sum.mono_neutral_right) auto

also have . . . = (
∑

i = k+1 ..p. x (i −1 ))
by simp

also have . . . = (
∑

i = k..p−1 . x i)
using sum.atLeastAtMost_reindex [of Suc k p−1 λi. x (i − Suc 0 )] 1 by

simp
finally have eq2 : (

∑
i = k..p. if i = k then 0 else x (i −1 )) = (

∑
i = k..p−1 .

x i) .
with 1 show ?thesis
by (metis (no_types, lifting) One_nat_def eq finite_atLeastAtMost finite_lessThan

ivl_disj_int(4 ) ivl_disj_un(10 ) sum.union_disjoint sumx)
next

case 2
have [simp]: ({..p} ∩ {x. x < p}) = {..p − Suc 0}

using assms by auto
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have (
∑

i≤p. if i < p then x i else if i = k then 0 else x (i −1 )) = (
∑

i≤p. if
i < p then x i else 0 )

by (rule sum.cong) (auto simp: 2 )
also have . . . = sum x {..p−1}

by (simp add: sum.If_cases)
also have . . . = 1

by (simp add: sumx)
finally show ?thesis

using 2 by simp
qed
then show ?thesis

using assms by (auto simp: standard_simplex_def simplical_face_def )
qed

0.1.3 Singular simplices, forcing canonicity outside the in-
tended domain

definition singular_simplex :: nat ⇒ ′a topology ⇒ ((nat ⇒ real) ⇒ ′a) ⇒ bool
where
singular_simplex p X f ≡

continuous_map(subtopology (powertop_real UNIV ) (standard_simplex p)) X
f
∧ f ∈ extensional (standard_simplex p)

abbreviation singular_simplex_set :: nat ⇒ ′a topology ⇒ ((nat ⇒ real) ⇒ ′a)
set where
singular_simplex_set p X ≡ Collect (singular_simplex p X)

lemma singular_simplex_empty:
topspace X = {} =⇒ ¬ singular_simplex p X f

by (simp add: singular_simplex_def continuous_map nonempty_standard_simplex)

lemma singular_simplex_mono:
[[singular_simplex p (subtopology X T ) f ; T ⊆ S ]] =⇒ singular_simplex p

(subtopology X S) f
by (auto simp: singular_simplex_def continuous_map_in_subtopology)

lemma singular_simplex_subtopology:
singular_simplex p (subtopology X S) f ←→

singular_simplex p X f ∧ f ‘ (standard_simplex p) ⊆ S
by (auto simp: singular_simplex_def continuous_map_in_subtopology)

Singular face
definition singular_face :: nat ⇒ nat ⇒ ((nat ⇒ real) ⇒ ′a) ⇒ (nat ⇒ real) ⇒
′a

where singular_face p k f ≡ restrict (f ◦ simplical_face k) (standard_simplex
(p − Suc 0 ))

lemma singular_simplex_singular_face:
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assumes f : singular_simplex p X f and 1 ≤ p k ≤ p
shows singular_simplex (p − Suc 0 ) X (singular_face p k f )

proof −
let ?PT = (powertop_real UNIV )
have 0 : simplical_face k ∈ standard_simplex (p − Suc 0 ) → standard_simplex

p
using assms simplical_face_in_standard_simplex by auto

have 1 : continuous_map (subtopology ?PT (standard_simplex (p − Suc 0 )))
(subtopology ?PT (standard_simplex p))
(simplical_face k)

proof (clarsimp simp add: continuous_map_in_subtopology simplical_face_in_standard_simplex
continuous_map_componentwise 0 )

fix i
have continuous_map ?PT euclideanreal (λx. if i < k then x i else if i = k

then 0 else x (i −1 ))
by (auto intro: continuous_map_product_projection)

then show continuous_map (subtopology ?PT (standard_simplex (p − Suc
0 ))) euclideanreal

(λx. simplical_face k x i)
by (simp add: simplical_face_def continuous_map_from_subtopology)

qed
have 2 : continuous_map (subtopology ?PT (standard_simplex p)) X f

using assms(1 ) singular_simplex_def by blast
show ?thesis
by (simp add: singular_simplex_def singular_face_def continuous_map_compose

[OF 1 2 ])
qed

0.1.4 Singular chains
definition singular_chain :: [nat, ′a topology, ′a chain] ⇒ bool

where singular_chain p X c ≡ Poly_Mapping.keys c ⊆ singular_simplex_set p
X

abbreviation singular_chain_set :: [nat, ′a topology] ⇒ ( ′a chain) set
where singular_chain_set p X ≡ Collect (singular_chain p X)

lemma singular_chain_empty:
topspace X = {} =⇒ singular_chain p X c ←→ c = 0

by (auto simp: singular_chain_def singular_simplex_empty subset_eq poly_mapping_eqI )

lemma singular_chain_mono:
[[singular_chain p (subtopology X T ) c; T ⊆ S ]]

=⇒ singular_chain p (subtopology X S) c
unfolding singular_chain_def using singular_simplex_mono by blast

lemma singular_chain_subtopology:
singular_chain p (subtopology X S) c ←→

singular_chain p X c ∧ (∀ f ∈ Poly_Mapping.keys c. f ‘ (standard_simplex
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p) ⊆ S)
unfolding singular_chain_def
by (fastforce simp add: singular_simplex_subtopology subset_eq)

lemma singular_chain_0 [iff ]: singular_chain p X 0
by (auto simp: singular_chain_def )

lemma singular_chain_of :
singular_chain p X (frag_of c) ←→ singular_simplex p X c

by (auto simp: singular_chain_def )

lemma singular_chain_cmul:
singular_chain p X c =⇒ singular_chain p X (frag_cmul a c)

by (auto simp: singular_chain_def )

lemma singular_chain_minus:
singular_chain p X (−c) ←→ singular_chain p X c

by (auto simp: singular_chain_def )

lemma singular_chain_add:
[[singular_chain p X a; singular_chain p X b]] =⇒ singular_chain p X (a+b)

unfolding singular_chain_def
using keys_add [of a b] by blast

lemma singular_chain_diff :
[[singular_chain p X a; singular_chain p X b]] =⇒ singular_chain p X (a−b)

unfolding singular_chain_def
using keys_diff [of a b] by blast

lemma singular_chain_sum:
(
∧

i. i ∈ I =⇒ singular_chain p X (f i)) =⇒ singular_chain p X (
∑

i∈I . f i)
unfolding singular_chain_def
using keys_sum [of f I ] by blast

lemma singular_chain_extend:
(
∧

c. c ∈ Poly_Mapping.keys x =⇒ singular_chain p X (f c))
=⇒ singular_chain p X (frag_extend f x)

by (simp add: frag_extend_def singular_chain_cmul singular_chain_sum)

0.1.5 Boundary homomorphism for singular chains
definition chain_boundary :: nat ⇒ ( ′a chain) ⇒ ′a chain

where chain_boundary p c ≡
(if p = 0 then 0 else
frag_extend (λf . (

∑
k≤p. frag_cmul ((−1 ) ^ k) (frag_of (singular_face

p k f )))) c)

lemma singular_chain_boundary:
assumes singular_chain p X c
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shows singular_chain (p − Suc 0 ) X (chain_boundary p c)
unfolding chain_boundary_def

proof (clarsimp intro!: singular_chain_extend singular_chain_sum singular_chain_cmul)
show

∧
d k. [[0 < p; d ∈ Poly_Mapping.keys c; k ≤ p]]

=⇒ singular_chain (p − Suc 0 ) X (frag_of (singular_face p k d))
using assms by (auto simp: singular_chain_def intro: singular_simplex_singular_face)

qed

lemma singular_chain_boundary_alt:
singular_chain (Suc p) X c =⇒ singular_chain p X (chain_boundary (Suc p)

c)
using singular_chain_boundary by force

lemma chain_boundary_0 [simp]: chain_boundary p 0 = 0
by (simp add: chain_boundary_def )

lemma chain_boundary_cmul:
chain_boundary p (frag_cmul k c) = frag_cmul k (chain_boundary p c)

by (auto simp: chain_boundary_def frag_extend_cmul)

lemma chain_boundary_minus:
chain_boundary p (− c) = − (chain_boundary p c)

by (metis chain_boundary_cmul frag_cmul_minus_one)

lemma chain_boundary_add:
chain_boundary p (a+b) = chain_boundary p a + chain_boundary p b

by (simp add: chain_boundary_def frag_extend_add)

lemma chain_boundary_diff :
chain_boundary p (a−b) = chain_boundary p a − chain_boundary p b

using chain_boundary_add [of p a −b]
by (simp add: chain_boundary_minus)

lemma chain_boundary_sum:
chain_boundary p (sum g I ) = sum (chain_boundary p ◦ g) I

by (induction I rule: infinite_finite_induct) (simp_all add: chain_boundary_add)

lemma chain_boundary_sum ′:
finite I =⇒ chain_boundary p (sum ′ g I ) = sum ′ (chain_boundary p ◦ g) I

by (induction I rule: finite_induct) (simp_all add: chain_boundary_add)

lemma chain_boundary_of :
chain_boundary p (frag_of f ) =

(if p = 0 then 0
else (

∑
k≤p. frag_cmul ((−1 ) ^ k) (frag_of (singular_face p k f ))))

by (simp add: chain_boundary_def )
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0.1.6 Factoring out chains in a subtopology for relative ho-
mology

definition mod_subset
where mod_subset p X ≡ {(a,b). singular_chain p X (a − b)}

lemma mod_subset_empty [simp]:
(a,b) ∈ (mod_subset p (subtopology X {})) ←→ a = b

by (simp add: mod_subset_def singular_chain_empty)

lemma mod_subset_refl [simp]: (c,c) ∈ mod_subset p X
by (auto simp: mod_subset_def )

lemma mod_subset_cmul:
assumes (a,b) ∈ mod_subset p X
shows (frag_cmul k a, frag_cmul k b) ∈ mod_subset p X
using assms
by (simp add: mod_subset_def ) (metis (no_types, lifting) add_diff_cancel diff_add_cancel

frag_cmul_distrib2 singular_chain_cmul)

lemma mod_subset_add:
[[(c1 ,c2 ) ∈ mod_subset p X ; (d1 ,d2 ) ∈ mod_subset p X ]] =⇒ (c1+d1 , c2+d2 )

∈ mod_subset p X
by (simp add: mod_subset_def add_diff_add singular_chain_add)

0.1.7 Relative cycles ZpX(S) where X is a topology and S a
subset

definition singular_relcycle :: nat ⇒ ′a topology ⇒ ′a set ⇒ ( ′a chain) ⇒ bool
where singular_relcycle ≡

λp X S c. singular_chain p X c ∧ (chain_boundary p c, 0 ) ∈ mod_subset
(p−1 ) (subtopology X S)

abbreviation singular_relcycle_set
where singular_relcycle_set p X S ≡ Collect (singular_relcycle p X S)

lemma singular_relcycle_restrict [simp]:
singular_relcycle p X (topspace X ∩ S) = singular_relcycle p X S

proof −
have eq: subtopology X (topspace X ∩ S) = subtopology X S

by (metis subtopology_subtopology subtopology_topspace)
show ?thesis

by (force simp: singular_relcycle_def eq)
qed

lemma singular_relcycle:
singular_relcycle ≡
λp X S c. singular_chain p X c ∧ singular_chain (p−1 ) (subtopology X S)

(chain_boundary p c)
by (simp add: singular_relcycle_def mod_subset_def )
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lemma singular_relcycle_0 [simp]: singular_relcycle p X S 0
by (auto simp: singular_relcycle_def )

lemma singular_relcycle_cmul:
singular_relcycle p X S c =⇒ singular_relcycle p X S (frag_cmul k c)

by (auto simp: singular_relcycle_def chain_boundary_cmul dest: singular_chain_cmul
mod_subset_cmul)

lemma singular_relcycle_minus:
singular_relcycle p X S (−c) ←→ singular_relcycle p X S c

by (simp add: chain_boundary_minus singular_chain_minus singular_relcycle)

lemma singular_relcycle_add:
[[singular_relcycle p X S a; singular_relcycle p X S b]]

=⇒ singular_relcycle p X S (a+b)
by (simp add: singular_relcycle_def chain_boundary_add mod_subset_def sin-

gular_chain_add)

lemma singular_relcycle_sum:
[[
∧

i. i ∈ I =⇒ singular_relcycle p X S (f i)]]
=⇒ singular_relcycle p X S (sum f I )

by (induction I rule: infinite_finite_induct) (auto simp: singular_relcycle_add)

lemma singular_relcycle_diff :
[[singular_relcycle p X S a; singular_relcycle p X S b]]

=⇒ singular_relcycle p X S (a−b)
by (metis singular_relcycle_add singular_relcycle_minus uminus_add_conv_diff )

lemma singular_cycle:
singular_relcycle p X {} c ←→ singular_chain p X c ∧ chain_boundary p c =

0
using mod_subset_empty by (auto simp: singular_relcycle_def )

lemma singular_cycle_mono:
[[singular_relcycle p (subtopology X T ) {} c; T ⊆ S ]]

=⇒ singular_relcycle p (subtopology X S) {} c
by (auto simp: singular_cycle elim: singular_chain_mono)

0.1.8 Relative boundaries BpXS, where X is a topology and
S a subset.

definition singular_relboundary :: nat ⇒ ′a topology ⇒ ′a set ⇒ ( ′a chain) ⇒
bool

where
singular_relboundary p X S ≡

λc. ∃ d. singular_chain (Suc p) X d ∧ (chain_boundary (Suc p) d, c) ∈
(mod_subset p (subtopology X S))
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abbreviation singular_relboundary_set :: nat ⇒ ′a topology ⇒ ′a set ⇒ ( ′a
chain) set

where singular_relboundary_set p X S ≡ Collect (singular_relboundary p X S)

lemma singular_relboundary_restrict [simp]:
singular_relboundary p X (topspace X ∩ S) = singular_relboundary p X S

unfolding singular_relboundary_def
by (metis (no_types, opaque_lifting) subtopology_subtopology subtopology_topspace)

lemma singular_relboundary_alt:
singular_relboundary p X S c ←→
(∃ d e. singular_chain (Suc p) X d ∧ singular_chain p (subtopology X S) e ∧

chain_boundary (Suc p) d = c + e)
unfolding singular_relboundary_def mod_subset_def by fastforce

lemma singular_relboundary:
singular_relboundary p X S c ←→
(∃ d e. singular_chain (Suc p) X d ∧ singular_chain p (subtopology X S) e ∧

(chain_boundary (Suc p) d) + e = c)
using singular_chain_minus
by (fastforce simp add: singular_relboundary_alt)

lemma singular_boundary:
singular_relboundary p X {} c ←→
(∃ d. singular_chain (Suc p) X d ∧ chain_boundary (Suc p) d = c)

by (meson mod_subset_empty singular_relboundary_def )

lemma singular_boundary_imp_chain:
singular_relboundary p X {} c =⇒ singular_chain p X c

by (auto simp: singular_relboundary singular_chain_boundary_alt singular_chain_empty)

lemma singular_boundary_mono:
[[T ⊆ S ; singular_relboundary p (subtopology X T ) {} c]]

=⇒ singular_relboundary p (subtopology X S) {} c
by (metis mod_subset_empty singular_chain_mono singular_relboundary_def )

lemma singular_relboundary_imp_chain:
singular_relboundary p X S c =⇒ singular_chain p X c

unfolding singular_relboundary singular_chain_subtopology
by (blast intro: singular_chain_add singular_chain_boundary_alt)

lemma singular_chain_imp_relboundary:
singular_chain p (subtopology X S) c =⇒ singular_relboundary p X S c

unfolding singular_relboundary_def
using mod_subset_def singular_chain_minus by fastforce

lemma singular_relboundary_0 [simp]: singular_relboundary p X S 0
unfolding singular_relboundary_def
by (rule_tac x=0 in exI ) auto
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lemma singular_relboundary_cmul:
singular_relboundary p X S c =⇒ singular_relboundary p X S (frag_cmul a c)

unfolding singular_relboundary_def
by (metis chain_boundary_cmul mod_subset_cmul singular_chain_cmul)

lemma singular_relboundary_minus:
singular_relboundary p X S (−c) ←→ singular_relboundary p X S c

using singular_relboundary_cmul
by (metis add.inverse_inverse frag_cmul_minus_one)

lemma singular_relboundary_add:
[[singular_relboundary p X S a; singular_relboundary p X S b]] =⇒ singu-

lar_relboundary p X S (a+b)
unfolding singular_relboundary_def
by (metis chain_boundary_add mod_subset_add singular_chain_add)

lemma singular_relboundary_diff :
[[singular_relboundary p X S a; singular_relboundary p X S b]] =⇒ singu-

lar_relboundary p X S (a−b)
by (metis uminus_add_conv_diff singular_relboundary_minus singular_relboundary_add)

0.1.9 The (relative) homology relation
definition homologous_rel :: [nat, ′a topology, ′a set, ′a chain, ′a chain] ⇒ bool

where homologous_rel p X S ≡ λa b. singular_relboundary p X S (a−b)

abbreviation homologous_rel_set
where homologous_rel_set p X S a ≡ Collect (homologous_rel p X S a)

lemma homologous_rel_restrict [simp]:
homologous_rel p X (topspace X ∩ S) = homologous_rel p X S

unfolding homologous_rel_def by (metis singular_relboundary_restrict)

lemma homologous_rel_refl [simp]: homologous_rel p X S c c
unfolding homologous_rel_def by auto

lemma homologous_rel_sym:
homologous_rel p X S a b = homologous_rel p X S b a

unfolding homologous_rel_def
using singular_relboundary_minus by fastforce

lemma homologous_rel_trans:
assumes homologous_rel p X S b c homologous_rel p X S a b
shows homologous_rel p X S a c
using homologous_rel_def

proof −
have singular_relboundary p X S (b − c)

using assms unfolding homologous_rel_def by blast
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moreover have singular_relboundary p X S (b − a)
using assms by (meson homologous_rel_def homologous_rel_sym)

ultimately have singular_relboundary p X S (c − a)
using singular_relboundary_diff by fastforce

then show ?thesis
by (meson homologous_rel_def homologous_rel_sym)

qed

lemma homologous_rel_eq:
homologous_rel p X S a = homologous_rel p X S b ←→
homologous_rel p X S a b

using homologous_rel_sym homologous_rel_trans by fastforce

lemma homologous_rel_set_eq:
homologous_rel_set p X S a = homologous_rel_set p X S b ←→
homologous_rel p X S a b

by (metis homologous_rel_eq mem_Collect_eq)

lemma homologous_rel_singular_chain:
homologous_rel p X S a b =⇒ (singular_chain p X a ←→ singular_chain p X b)
unfolding homologous_rel_def
using singular_chain_diff singular_chain_add
by (fastforce dest: singular_relboundary_imp_chain)

lemma homologous_rel_add:
[[homologous_rel p X S a a ′; homologous_rel p X S b b ′]]

=⇒ homologous_rel p X S (a+b) (a ′+b ′)
unfolding homologous_rel_def
by (simp add: add_diff_add singular_relboundary_add)

lemma homologous_rel_diff :
assumes homologous_rel p X S a a ′ homologous_rel p X S b b ′

shows homologous_rel p X S (a − b) (a ′ − b ′)
proof −

have singular_relboundary p X S ((a − a ′) − (b − b ′))
using assms singular_relboundary_diff unfolding homologous_rel_def by

blast
then show ?thesis

by (simp add: homologous_rel_def algebra_simps)
qed

lemma homologous_rel_sum:
assumes f : finite {i ∈ I . f i 6= 0} and g: finite {i ∈ I . g i 6= 0}

and h:
∧

i. i ∈ I =⇒ homologous_rel p X S (f i) (g i)
shows homologous_rel p X S (sum f I ) (sum g I )

proof (cases finite I )
case True
let ?L = {i ∈ I . f i 6= 0} ∪ {i ∈ I . g i 6= 0}
have L: finite ?L ?L ⊆ I
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using f g by blast+
have sum f I = sum f ?L

by (rule comm_monoid_add_class.sum.mono_neutral_right [OF True]) auto
moreover have sum g I = sum g ?L

by (rule comm_monoid_add_class.sum.mono_neutral_right [OF True]) auto
moreover have ∗: homologous_rel p X S (f i) (g i) if i ∈ ?L for i

using h that by auto
have homologous_rel p X S (sum f ?L) (sum g ?L)

using L
proof induction

case (insert j J )
then show ?case

by (simp add: h homologous_rel_add)
qed auto
ultimately show ?thesis

by simp
qed auto

lemma chain_homotopic_imp_homologous_rel:
assumes∧

c. singular_chain p X c =⇒ singular_chain (Suc p) X ′ (h c)∧
c. singular_chain (p −1 ) (subtopology X S) c =⇒ singular_chain p (subtopology

X ′ T ) (h ′ c)∧
c. singular_chain p X c

=⇒ (chain_boundary (Suc p) (h c)) + (h ′(chain_boundary p c)) = f c
− g c

singular_relcycle p X S c
shows homologous_rel p X ′ T (f c) (g c)

proof −
have singular_chain p (subtopology X ′ T ) (chain_boundary (Suc p) (h c) − (f

c − g c))
using assms

by (metis (no_types, lifting) add_diff_cancel_left ′ minus_diff_eq singular_chain_minus
singular_relcycle)

then show ?thesis
using assms

by (metis homologous_rel_def singular_relboundary singular_relcycle)
qed

0.1.10 Show that all boundaries are cycles, the key "chain
complex" property.

lemma chain_boundary_boundary:
assumes singular_chain p X c
shows chain_boundary (p − Suc 0 ) (chain_boundary p c) = 0

proof (cases p −1 = 0 )
case False
then have 2 ≤ p
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by auto
show ?thesis

using assms
unfolding singular_chain_def

proof (induction rule: frag_induction)
case (one g)
then have ss: singular_simplex p X g

by simp
have eql: {..p} × {..p − Suc 0} ∩ {(x, y). y < x} = (λ(j,i). (Suc i, j)) ‘ {(i,j).

i ≤ j ∧ j ≤ p −1}
using False
by (auto simp: image_def ) (metis One_nat_def diff_Suc_1 diff_le_mono

le_refl lessE less_imp_le_nat)
have eqr : {..p} × {..p − Suc 0} − {(x, y). y < x} = {(i,j). i ≤ j ∧ j ≤ p −1}

by auto
have eqf : singular_face (p − Suc 0 ) i (singular_face p (Suc j) g) =

singular_face (p − Suc 0 ) j (singular_face p i g) if i ≤ j j ≤ p − Suc
0 for i j

proof (rule ext)
fix t
show singular_face (p − Suc 0 ) i (singular_face p (Suc j) g) t =

singular_face (p − Suc 0 ) j (singular_face p i g) t
proof (cases t ∈ standard_simplex (p −1 −1 ))

case True
have fi: simplical_face i t ∈ standard_simplex (p − Suc 0 )

using False True simplical_face_in_standard_simplex that by force
have fj: simplical_face j t ∈ standard_simplex (p − Suc 0 )

by (metis False One_nat_def True simplical_face_in_standard_simplex
less_one not_less that(2 ))

have eq: simplical_face (Suc j) (simplical_face i t) = simplical_face i
(simplical_face j t)

using True that ss
unfolding standard_simplex_def simplical_face_def by fastforce

show ?thesis by (simp add: singular_face_def fi fj eq)
qed (simp add: singular_face_def )

qed
show ?case
proof (cases p = 1 )

case False
have eq0 : frag_cmul (−1 ) a = b =⇒ a + b = 0 for a b

by (simp add: neg_eq_iff_add_eq_0 )
have ∗: (

∑
x≤p.

∑
i≤p − Suc 0 .

frag_cmul ((−1 ) ^ (x + i)) (frag_of (singular_face (p − Suc 0 ) i
(singular_face p x g))))

= 0
apply (simp add: sum.cartesian_product sum.Int_Diff [of _ × _ _ {(x,y).

y < x}])
apply (rule eq0 )

unfolding frag_cmul_sum prod.case_distrib [of frag_cmul (−1 )] frag_cmul_cmul
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eql eqr
apply (force simp: inj_on_def sum.reindex add.commute eqf intro: sum.cong)

done
show ?thesis

using False by (simp add: chain_boundary_of chain_boundary_sum
chain_boundary_cmul frag_cmul_sum ∗ flip: power_add)

qed (simp add: chain_boundary_def )
next

case (diff a b)
then show ?case

by (simp add: chain_boundary_diff )
qed auto

qed (simp add: chain_boundary_def )

lemma chain_boundary_boundary_alt:
singular_chain (Suc p) X c =⇒ chain_boundary p (chain_boundary (Suc p) c)

= 0
using chain_boundary_boundary by force

lemma singular_relboundary_imp_relcycle:
assumes singular_relboundary p X S c
shows singular_relcycle p X S c

proof −
obtain d e where d: singular_chain (Suc p) X d

and e: singular_chain p (subtopology X S) e
and c: c = chain_boundary (Suc p) d + e

using assms by (auto simp: singular_relboundary singular_relcycle)
have 1 : singular_chain (p − Suc 0 ) (subtopology X S) (chain_boundary p

(chain_boundary (Suc p) d))
using d chain_boundary_boundary_alt by fastforce

have 2 : singular_chain (p − Suc 0 ) (subtopology X S) (chain_boundary p e)
using ‹singular_chain p (subtopology X S) e› singular_chain_boundary by

auto
have singular_chain p X c

using assms singular_relboundary_imp_chain by auto
moreover have singular_chain (p − Suc 0 ) (subtopology X S) (chain_boundary

p c)
by (simp add: c chain_boundary_add singular_chain_add 1 2 )

ultimately show ?thesis
by (simp add: singular_relcycle)

qed

lemma homologous_rel_singular_relcycle_1 :
assumes homologous_rel p X S c1 c2 singular_relcycle p X S c1
shows singular_relcycle p X S c2
using assms
by (metis diff_add_cancel homologous_rel_def homologous_rel_sym singular_relboundary_imp_relcycle

singular_relcycle_add)
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lemma homologous_rel_singular_relcycle:
assumes homologous_rel p X S c1 c2
shows singular_relcycle p X S c1 = singular_relcycle p X S c2
using assms homologous_rel_singular_relcycle_1
using homologous_rel_sym by blast

0.1.11 Operations induced by a continuous map g between
topological spaces

definition simplex_map :: nat ⇒ ( ′b ⇒ ′a) ⇒ ((nat ⇒ real) ⇒ ′b) ⇒ (nat ⇒
real) ⇒ ′a

where simplex_map p g c ≡ restrict (g ◦ c) (standard_simplex p)

lemma singular_simplex_simplex_map:
[[singular_simplex p X f ; continuous_map X X ′ g]]

=⇒ singular_simplex p X ′ (simplex_map p g f )
unfolding singular_simplex_def simplex_map_def
by (auto simp: continuous_map_compose)

lemma simplex_map_eq:
[[singular_simplex p X c;∧

x. x ∈ topspace X =⇒ f x = g x]]
=⇒ simplex_map p f c = simplex_map p g c

by (auto simp: singular_simplex_def simplex_map_def continuous_map_def
Pi_iff )

lemma simplex_map_id_gen:
[[singular_simplex p X c;∧

x. x ∈ topspace X =⇒ f x = x]]
=⇒ simplex_map p f c = c

unfolding singular_simplex_def simplex_map_def continuous_map_def
using extensional_arb by fastforce

lemma simplex_map_id [simp]:
simplex_map p id = (λc. restrict c (standard_simplex p))

by (auto simp: simplex_map_def )

lemma simplex_map_compose:
simplex_map p (h ◦ g) = simplex_map p h ◦ simplex_map p g

unfolding simplex_map_def by force

lemma singular_face_simplex_map:
[[1 ≤ p; k ≤ p]]

=⇒ singular_face p k (simplex_map p f c) = simplex_map (p − Suc 0 ) f
(c ◦ simplical_face k)

unfolding simplex_map_def singular_face_def
by (force simp: simplical_face_in_standard_simplex)
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lemma singular_face_restrict [simp]:
assumes p > 0 i ≤ p
shows singular_face p i (restrict f (standard_simplex p)) = singular_face p i f
by (metis assms One_nat_def Suc_leI simplex_map_id singular_face_def sin-

gular_face_simplex_map)

definition chain_map :: nat ⇒ ( ′b ⇒ ′a) ⇒ (((nat ⇒ real) ⇒ ′b) ⇒0 int) ⇒ ′a
chain

where chain_map p g c ≡ frag_extend (frag_of ◦ simplex_map p g) c

lemma singular_chain_chain_map:
[[singular_chain p X c; continuous_map X X ′ g]] =⇒ singular_chain p X ′

(chain_map p g c)
unfolding chain_map_def
by (force simp add: singular_chain_def subset_iff

intro!: singular_chain_extend singular_simplex_simplex_map)

lemma chain_map_0 [simp]: chain_map p g 0 = 0
by (auto simp: chain_map_def )

lemma chain_map_of [simp]: chain_map p g (frag_of f ) = frag_of (simplex_map
p g f )

by (simp add: chain_map_def )

lemma chain_map_cmul [simp]:
chain_map p g (frag_cmul a c) = frag_cmul a (chain_map p g c)

by (simp add: frag_extend_cmul chain_map_def )

lemma chain_map_minus: chain_map p g (−c) = − (chain_map p g c)
by (simp add: frag_extend_minus chain_map_def )

lemma chain_map_add:
chain_map p g (a+b) = chain_map p g a + chain_map p g b

by (simp add: frag_extend_add chain_map_def )

lemma chain_map_diff :
chain_map p g (a−b) = chain_map p g a − chain_map p g b

by (simp add: frag_extend_diff chain_map_def )

lemma chain_map_sum:
finite I =⇒ chain_map p g (sum f I ) = sum (chain_map p g ◦ f ) I

by (simp add: frag_extend_sum chain_map_def )

lemma chain_map_eq:
[[singular_chain p X c;

∧
x. x ∈ topspace X =⇒ f x = g x]]

=⇒ chain_map p f c = chain_map p g c
unfolding singular_chain_def

proof (induction rule: frag_induction)
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case (one x)
then show ?case
by (metis (no_types, lifting) chain_map_of mem_Collect_eq simplex_map_eq)

qed (auto simp: chain_map_diff )

lemma chain_map_id_gen:
[[singular_chain p X c;

∧
x. x ∈ topspace X =⇒ f x = x]]

=⇒ chain_map p f c = c
unfolding singular_chain_def
by (erule frag_induction) (auto simp: chain_map_diff simplex_map_id_gen)

lemma chain_map_ident:
singular_chain p X c =⇒ chain_map p id c = c

by (simp add: chain_map_id_gen)

lemma chain_map_id:
chain_map p id = frag_extend (frag_of ◦ (λf . restrict f (standard_simplex p)))
by (auto simp: chain_map_def )

lemma chain_map_compose:
chain_map p (h ◦ g) = chain_map p h ◦ chain_map p g

proof
show chain_map p (h ◦ g) c = (chain_map p h ◦ chain_map p g) c for c

using subset_UNIV
proof (induction c rule: frag_induction)

case (one x)
then show ?case

by simp (metis (mono_tags, lifting) comp_eq_dest_lhs restrict_apply sim-
plex_map_def )

next
case (diff a b)
then show ?case

by (simp add: chain_map_diff )
qed auto

qed

lemma singular_simplex_chain_map_id:
assumes singular_simplex p X f
shows chain_map p f (frag_of (restrict id (standard_simplex p))) = frag_of f

proof −
have (restrict (f ◦ restrict id (standard_simplex p)) (standard_simplex p)) = f
by (rule ext) (metis assms comp_apply extensional_arb id_apply restrict_apply

singular_simplex_def )
then show ?thesis

by (simp add: simplex_map_def )
qed

lemma chain_boundary_chain_map:
assumes singular_chain p X c
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shows chain_boundary p (chain_map p g c) = chain_map (p − Suc 0 ) g
(chain_boundary p c)

using assms unfolding singular_chain_def
proof (induction c rule: frag_induction)

case (one x)
then have singular_face p i (simplex_map p g x) = simplex_map (p − Suc 0 )

g (singular_face p i x)
if 0 ≤ i i ≤ p p 6= 0 for i
using that

by (fastforce simp add: singular_face_def simplex_map_def simplical_face_in_standard_simplex)
then show ?case

by (auto simp: chain_boundary_of chain_map_sum)
next

case (diff a b)
then show ?case

by (simp add: chain_boundary_diff chain_map_diff )
qed auto

lemma singular_relcycle_chain_map:
assumes singular_relcycle p X S c continuous_map X X ′ g g ∈ S → T
shows singular_relcycle p X ′ T (chain_map p g c)

proof −
have continuous_map (subtopology X S) (subtopology X ′ T ) g

using assms
by (metis Pi_anti_mono continuous_map_from_subtopology continuous_map_in_subtopology

openin_imp_subset openin_topspace subsetD)
then show ?thesis

using chain_boundary_chain_map [of p X c g]
by (metis One_nat_def assms(1 ) assms(2 ) singular_chain_chain_map singu-

lar_relcycle)
qed

lemma singular_relboundary_chain_map:
assumes singular_relboundary p X S c continuous_map X X ′ g g ∈ S → T
shows singular_relboundary p X ′ T (chain_map p g c)

proof −
obtain d e where d: singular_chain (Suc p) X d

and e: singular_chain p (subtopology X S) e and c: c = chain_boundary (Suc
p) d + e

using assms by (auto simp: singular_relboundary)
have singular_chain (Suc p) X ′ (chain_map (Suc p) g d)

using assms(2 ) d singular_chain_chain_map by blast
moreover have singular_chain p (subtopology X ′ T ) (chain_map p g e)
proof −

have
∧

Y . g ∈ topspace (subtopology Y S) → T
using assms(3 ) by auto

then show ?thesis
by (metis assms(2 ) continuous_map_from_subtopology continuous_map_into_subtopology
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e
singular_chain_chain_map)

qed
moreover have chain_boundary (Suc p) (chain_map (Suc p) g d) + chain_map

p g e =
chain_map p g (chain_boundary (Suc p) d + e)

by (metis One_nat_def chain_boundary_chain_map chain_map_add d diff_Suc_1 )
ultimately show ?thesis

unfolding singular_relboundary
using c by blast

qed

0.1.12 Homology of one-point spaces degenerates except for
p = 0.

lemma singular_simplex_singleton:
assumes topspace X = {a}
shows singular_simplex p X f ←→ f = restrict (λx. a) (standard_simplex p) (is

?lhs = ?rhs)
proof

assume L: ?lhs
then show ?rhs
proof −
have continuous_map (subtopology (product_topology (λn. euclideanreal) UNIV )

(standard_simplex p)) X f
using ‹singular_simplex p X f › singular_simplex_def by blast

then have
∧

c. c /∈ standard_simplex p ∨ f c = a
by (simp add: assms continuous_map_def Pi_iff )

then show ?thesis
by (metis (no_types) L extensional_restrict restrict_ext singular_simplex_def )

qed
next

assume ?rhs
with assms show ?lhs

by (auto simp: singular_simplex_def )
qed

lemma singular_chain_singleton:
assumes topspace X = {a}
shows singular_chain p X c ←→

(∃ b. c = frag_cmul b (frag_of (restrict (λx. a) (standard_simplex p))))
(is ?lhs = ?rhs)

proof
let ?f = restrict (λx. a) (standard_simplex p)
assume L: ?lhs
with assms have Poly_Mapping.keys c ⊆ {?f }

by (auto simp: singular_chain_def singular_simplex_singleton)
then consider Poly_Mapping.keys c = {} | Poly_Mapping.keys c = {?f }

by blast
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then show ?rhs
proof cases

case 1
with L show ?thesis

by (metis frag_cmul_zero keys_eq_empty)
next

case 2
then have ∃ b. frag_extend frag_of c = frag_cmul b (frag_of (λx∈standard_simplex

p. a))
by (force simp: frag_extend_def )

then show ?thesis
by (metis frag_expansion)

qed
next

assume ?rhs
with assms show ?lhs

by (auto simp: singular_chain_def singular_simplex_singleton)
qed

lemma chain_boundary_of_singleton:
assumes tX : topspace X = {a} and sc: singular_chain p X c
shows chain_boundary p c =

(if p = 0 ∨ odd p then 0
else frag_extend (λf . frag_of (restrict (λx. a) (standard_simplex (p −1 ))))

c)
(is ?lhs = ?rhs)

proof (cases p = 0 )
case False
have ?lhs = frag_extend (λf . if odd p then 0 else frag_of (restrict (λx. a)

(standard_simplex (p −1 )))) c
proof (simp only: chain_boundary_def False if_False, rule frag_extend_eq)

fix f
assume f ∈ Poly_Mapping.keys c
with assms have singular_simplex p X f

by (auto simp: singular_chain_def )
then have ∗:

∧
k. k ≤ p =⇒ singular_face p k f = (λx∈standard_simplex (p

−1 ). a)
using False singular_simplex_singular_face
by (fastforce simp flip: singular_simplex_singleton [OF tX ])

define c where c ≡ frag_of (λx∈standard_simplex (p −1 ). a)
have (

∑
k≤p. frag_cmul ((−1 ) ^ k) (frag_of (singular_face p k f )))

= (
∑

k≤p. frag_cmul ((−1 ) ^ k) c)
by (auto simp: c_def ∗ intro: sum.cong)

also have . . . = (if odd p then 0 else c)
by (induction p) (auto simp: c_def restrict_def )

finally show (
∑

k≤p. frag_cmul ((−1 ) ^ k) (frag_of (singular_face p k f )))
= (if odd p then 0 else frag_of (λx∈standard_simplex (p −1 ). a))

unfolding c_def .
qed
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also have . . . = ?rhs
by (auto simp: False frag_extend_eq_0 )

finally show ?thesis .
qed (simp add: chain_boundary_def )

lemma singular_cycle_singleton:
assumes topspace X = {a}
shows singular_relcycle p X {} c ←→ singular_chain p X c ∧ (p = 0 ∨ odd p
∨ c = 0 )
proof −

have c = 0 if singular_chain p X c and chain_boundary p c = 0 and even p
and p 6= 0

using that assms singular_chain_singleton [of X a p c] chain_boundary_of_singleton
[OF assms]

by (auto simp: frag_extend_cmul)
moreover
have chain_boundary p c = 0 if sc: singular_chain p X c and odd p

by (simp add: chain_boundary_of_singleton [OF assms sc] that)
moreover have chain_boundary 0 c = 0 if singular_chain 0 X c and p = 0

by (simp add: chain_boundary_def )
ultimately show ?thesis
using assms by (auto simp: singular_cycle)

qed

lemma singular_boundary_singleton:
assumes topspace X = {a}
shows singular_relboundary p X {} c ←→ singular_chain p X c ∧ (odd p ∨ c

= 0 )
proof (cases singular_chain p X c)

case True
have ∃ d. singular_chain (Suc p) X d ∧ chain_boundary (Suc p) d = c

if singular_chain p X c and odd p
proof −
obtain b where b: c = frag_cmul b (frag_of (restrict (λx. a) (standard_simplex

p)))
by (metis True assms singular_chain_singleton)

let ?d = frag_cmul b (frag_of (λx∈standard_simplex (Suc p). a))
have scd: singular_chain (Suc p) X ?d

by (metis assms singular_chain_singleton)
moreover have chain_boundary (Suc p) ?d = c

by (simp add: assms scd chain_boundary_of_singleton [of X a Suc p] b
frag_extend_cmul ‹odd p›)

ultimately show ?thesis
by metis

qed
with True assms show ?thesis

by (auto simp: singular_boundary chain_boundary_of_singleton)



Simplices.thy 27

next
case False
with assms singular_boundary_imp_chain show ?thesis

by metis
qed

lemma singular_boundary_eq_cycle_singleton:
assumes topspace X = {a} 1 ≤ p
shows singular_relboundary p X {} c ←→ singular_relcycle p X {} c (is ?lhs

= ?rhs)
proof

show ?lhs =⇒ ?rhs
by (simp add: singular_relboundary_imp_relcycle)

show ?rhs =⇒ ?lhs
by (metis assms not_one_le_zero singular_boundary_singleton singular_cycle_singleton)

qed

lemma singular_boundary_set_eq_cycle_singleton:
assumes topspace X = {a} 1 ≤ p
shows singular_relboundary_set p X {} = singular_relcycle_set p X {}
using singular_boundary_eq_cycle_singleton [OF assms]
by blast

0.1.13 Simplicial chains

Simplicial chains, effectively those resulting from linear maps. We still allow
the map to be singular, so the name is questionable. These are intended as
building-blocks for singular subdivision, rather than as a axis for 1 simplicial
homology.

definition oriented_simplex
where oriented_simplex p l ≡ (λx∈standard_simplex p. λi. (

∑
j≤p. l j i ∗ x j))

definition simplicial_simplex
where

simplicial_simplex p S f ≡
singular_simplex p (subtopology (powertop_real UNIV ) S) f ∧
(∃ l. f = oriented_simplex p l)

lemma simplicial_simplex:
simplicial_simplex p S f ←→ f ‘ (standard_simplex p) ⊆ S ∧ (∃ l. f = ori-

ented_simplex p l)
(is ?lhs = ?rhs)

proof
assume R: ?rhs
have continuous_map (subtopology (powertop_real UNIV ) (standard_simplex

p))
(powertop_real UNIV ) (λx i.

∑
j≤p. l j i ∗ x j) for l :: nat ⇒ ′a ⇒
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real
unfolding continuous_map_componentwise
by (force intro: continuous_intros continuous_map_from_subtopology contin-

uous_map_product_projection)
with R show ?lhs

unfolding simplicial_simplex_def singular_simplex_subtopology
by (auto simp add: singular_simplex_def oriented_simplex_def )

qed (simp add: simplicial_simplex_def singular_simplex_subtopology)

lemma simplicial_simplex_empty [simp]: ¬ simplicial_simplex p {} f
by (simp add: nonempty_standard_simplex simplicial_simplex)

definition simplicial_chain
where simplicial_chain p S c ≡ Poly_Mapping.keys c ⊆ Collect (simplicial_simplex

p S)

lemma simplicial_chain_0 [simp]: simplicial_chain p S 0
by (simp add: simplicial_chain_def )

lemma simplicial_chain_of [simp]:
simplicial_chain p S (frag_of c) ←→ simplicial_simplex p S c

by (simp add: simplicial_chain_def )

lemma simplicial_chain_cmul:
simplicial_chain p S c =⇒ simplicial_chain p S (frag_cmul a c)

by (auto simp: simplicial_chain_def )

lemma simplicial_chain_diff :
[[simplicial_chain p S c1 ; simplicial_chain p S c2 ]] =⇒ simplicial_chain p S (c1
− c2 )

unfolding simplicial_chain_def by (meson UnE keys_diff subset_iff )

lemma simplicial_chain_sum:
(
∧

i. i ∈ I =⇒ simplicial_chain p S (f i)) =⇒ simplicial_chain p S (sum f I )
unfolding simplicial_chain_def
using order_trans [OF keys_sum [of f I ]]
by (simp add: UN_least)

lemma simplicial_simplex_oriented_simplex:
simplicial_simplex p S (oriented_simplex p l)
←→ ((λx i.

∑
j≤p. l j i ∗ x j) ‘ standard_simplex p ⊆ S)

by (auto simp: simplicial_simplex oriented_simplex_def )

lemma simplicial_imp_singular_simplex:
simplicial_simplex p S f

=⇒ singular_simplex p (subtopology (powertop_real UNIV ) S) f
by (simp add: simplicial_simplex_def )

lemma simplicial_imp_singular_chain:
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simplicial_chain p S c
=⇒ singular_chain p (subtopology (powertop_real UNIV ) S) c

unfolding simplicial_chain_def singular_chain_def
by (auto intro: simplicial_imp_singular_simplex)

lemma oriented_simplex_eq:
oriented_simplex p l = oriented_simplex p l ′←→ (∀ i. i ≤ p −→ l i = l ′ i)
(is ?lhs = ?rhs)

proof
assume L: ?lhs
show ?rhs
proof clarify

fix i
assume i ≤ p
let ?fi = (λj. if j = i then 1 else 0 )
have (

∑
j≤p. l j k ∗ ?fi j) = (

∑
j≤p. l ′ j k ∗ ?fi j) for k

using L ‹i ≤ p›
by (simp add: fun_eq_iff oriented_simplex_def split: if_split_asm)

with ‹i ≤ p› show l i = l ′ i
by (simp add: if_distrib ext cong: if_cong)

qed
qed (auto simp: oriented_simplex_def )

lemma singular_face_oriented_simplex:
assumes 1 ≤ p k ≤ p
shows singular_face p k (oriented_simplex p l) =

oriented_simplex (p −1 ) (λj. if j < k then l j else l (Suc j))
proof −

have (
∑

j≤p. l j i ∗ simplical_face k x j)
= (

∑
j≤p − Suc 0 . (if j < k then l j else l (Suc j)) i ∗ x j)

if x ∈ standard_simplex (p − Suc 0 ) for i x
proof −

show ?thesis
unfolding simplical_face_def
using sum.zero_middle [OF assms, where ′a=real, symmetric]

by (simp add: if_distrib [of λx. _ ∗ x] if_distrib [of λf . f i ∗ _] atLeast0AtMost
cong: if_cong)

qed
then show ?thesis

using simplical_face_in_standard_simplex assms
by (auto simp: singular_face_def oriented_simplex_def restrict_def )

qed

lemma simplicial_simplex_singular_face:
fixes f :: (nat ⇒ real) ⇒ nat ⇒ real
assumes ss: simplicial_simplex p S f and p: 1 ≤ p k ≤ p
shows simplicial_simplex (p − Suc 0 ) S (singular_face p k f )

proof −
let ?X = subtopology (powertop_real UNIV ) S
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obtain m where l: singular_simplex p ?X (oriented_simplex p m)
and feq: f = oriented_simplex p m

using assms by (force simp: simplicial_simplex_def )
moreover
have singular_face p k f = oriented_simplex (p − Suc 0 ) (λi. if i < k then m i

else m (Suc i))
using feq p singular_face_oriented_simplex by auto

ultimately
show ?thesis

using p simplicial_simplex_def singular_simplex_singular_face by blast
qed

lemma simplicial_chain_boundary:
simplicial_chain p S c =⇒ simplicial_chain (p −1 ) S (chain_boundary p c)

unfolding simplicial_chain_def
proof (induction rule: frag_induction)

case (one f )
then have simplicial_simplex p S f

by simp
have simplicial_chain (p − Suc 0 ) S (frag_of (singular_face p i f ))

if 0 < p i ≤ p for i
using that one
by (force simp: simplicial_simplex_def singular_simplex_singular_face singu-

lar_face_oriented_simplex)
then have simplicial_chain (p − Suc 0 ) S (chain_boundary p (frag_of f ))

unfolding chain_boundary_def frag_extend_of
by (auto intro!: simplicial_chain_cmul simplicial_chain_sum)

then show ?case
by (simp add: simplicial_chain_def [symmetric])

next
case (diff a b)
then show ?case

by (metis chain_boundary_diff simplicial_chain_def simplicial_chain_diff )
qed auto

0.1.14 The cone construction on simplicial simplices.
consts simplex_cone :: [nat, nat ⇒ real, [nat ⇒ real, nat] ⇒ real, nat ⇒ real,
nat] ⇒ real
specification (simplex_cone)

simplex_cone:∧
p v l. simplex_cone p v (oriented_simplex p l) =

oriented_simplex (Suc p) (λi. if i = 0 then v else l(i −1 ))
proof −

have ∗:
∧

x. ∀ xv. ∃ y. (λl. oriented_simplex (Suc x)
(λi. if i = 0 then xv else l (i − 1 ))) =

y ◦ oriented_simplex x
by (simp add: oriented_simplex_eq flip: choice_iff function_factors_left)

then show ?thesis
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unfolding o_def by (metis(no_types))
qed

lemma simplicial_simplex_simplex_cone:
assumes f : simplicial_simplex p S f

and T :
∧

x u. [[0 ≤ u; u ≤ 1 ; x ∈ S ]] =⇒ (λi. (1 − u) ∗ v i + u ∗ x i) ∈ T
shows simplicial_simplex (Suc p) T (simplex_cone p v f )

proof −
obtain l where l:

∧
x. x ∈ standard_simplex p =⇒ oriented_simplex p l x ∈ S

and feq: f = oriented_simplex p l
using f by (auto simp: simplicial_simplex)

have oriented_simplex p l x ∈ S if x ∈ standard_simplex p for x
using f that by (auto simp: simplicial_simplex feq)

then have S :
∧

x. [[
∧

i. 0 ≤ x i ∧ x i ≤ 1 ;
∧

i. i>p =⇒ x i = 0 ; sum x {..p} =
1 ]]

=⇒ (λi.
∑

j≤p. l j i ∗ x j) ∈ S
by (simp add: oriented_simplex_def standard_simplex_def )

have oriented_simplex (Suc p) (λi. if i = 0 then v else l (i −1 )) x ∈ T
if x ∈ standard_simplex (Suc p) for x

proof (simp add: that oriented_simplex_def sum.atMost_Suc_shift del: sum.atMost_Suc)
have x01 :

∧
i. 0 ≤ x i ∧ x i ≤ 1 and x0 :

∧
i. i > Suc p =⇒ x i = 0 and x1 :

sum x {..Suc p} = 1
using that by (auto simp: oriented_simplex_def standard_simplex_def )

obtain a where a ∈ S
using f by force

show (λi. v i ∗ x 0 + (
∑

j≤p. l j i ∗ x (Suc j))) ∈ T
proof (cases x 0 = 1 )

case True
then have sum x {Suc 0 ..Suc p} = 0

using x1 by (simp add: atMost_atLeast0 sum.atLeast_Suc_atMost)
then have [simp]: x (Suc j) = 0 if j≤p for j

unfolding sum.atLeast_Suc_atMost_Suc_shift
using x01 that by (simp add: sum_nonneg_eq_0_iff )

then show ?thesis
using T [of 0 a] ‹a ∈ S› by (auto simp: True)

next
case False
then have (λi. v i ∗ x 0 + (

∑
j≤p. l j i ∗ x (Suc j))) = (λi. (1 − (1 − x

0 )) ∗ v i + (1 − x 0 ) ∗ (inverse (1 − x 0 ) ∗ (
∑

j≤p. l j i ∗ x (Suc j))))
by (force simp: field_simps)

also have . . . ∈ T
proof (rule T )

have x 0 < 1
by (simp add: False less_le x01 )

have xle: x (Suc i) ≤ (1 − x 0 ) for i
proof (cases i ≤ p)

case True
have sum x {0 , Suc i} ≤ sum x {..Suc p}

by (rule sum_mono2 ) (auto simp: True x01 )
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then show ?thesis
using x1 x01 by (simp add: algebra_simps not_less)

qed (simp add: x0 x01 )
have (λi. (

∑
j≤p. l j i ∗ (x (Suc j) ∗ inverse (1 − x 0 )))) ∈ S

proof (rule S)
have x 0 + (

∑
j≤p. x (Suc j)) = sum x {..Suc p}

by (metis sum.atMost_Suc_shift)
with x1 have (

∑
j≤p. x (Suc j)) = 1 − x 0

by simp
with False show (

∑
j≤p. x (Suc j) ∗ inverse (1 − x 0 )) = 1

by (metis add_diff_cancel_left ′ diff_diff_eq2 diff_zero right_inverse
sum_distrib_right)

qed (use x01 x0 xle ‹x 0 < 1 › in ‹auto simp: field_split_simps›)
then show (λi. inverse (1 − x 0 ) ∗ (

∑
j≤p. l j i ∗ x (Suc j))) ∈ S

by (simp add: field_simps sum_divide_distrib)
qed (use x01 in auto)
finally show ?thesis .

qed
qed

then show ?thesis
by (auto simp: simplicial_simplex feq simplex_cone)

qed

definition simplicial_cone
where simplicial_cone p v ≡ frag_extend (frag_of ◦ simplex_cone p v)

lemma simplicial_chain_simplicial_cone:
assumes c: simplicial_chain p S c

and T :
∧

x u. [[0 ≤ u; u ≤ 1 ; x ∈ S ]] =⇒ (λi. (1 − u) ∗ v i + u ∗ x i) ∈ T
shows simplicial_chain (Suc p) T (simplicial_cone p v c)
using c unfolding simplicial_chain_def simplicial_cone_def

proof (induction rule: frag_induction)
case (one x)
then show ?case

by (simp add: T simplicial_simplex_simplex_cone)
next

case (diff a b)
then show ?case

by (metis frag_extend_diff simplicial_chain_def simplicial_chain_diff )
qed auto

lemma chain_boundary_simplicial_cone_of ′:
assumes f = oriented_simplex p l
shows chain_boundary (Suc p) (simplicial_cone p v (frag_of f )) =

frag_of f
− (if p = 0 then frag_of (λu∈standard_simplex p. v)

else simplicial_cone (p −1 ) v (chain_boundary p (frag_of f )))
proof (simp, intro impI conjI )
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assume p = 0
have eq: (oriented_simplex 0 (λj. if j = 0 then v else l j)) = (λu∈standard_simplex

0 . v)
by (force simp: oriented_simplex_def standard_simplex_def )

show chain_boundary (Suc 0 ) (simplicial_cone 0 v (frag_of f ))
= frag_of f − frag_of (λu∈standard_simplex 0 . v)

by (simp add: assms simplicial_cone_def chain_boundary_of ‹p = 0 › sim-
plex_cone singular_face_oriented_simplex eq cong: if_cong)
next

assume 0 < p
have 0 : simplex_cone (p − Suc 0 ) v (singular_face p x (oriented_simplex p l))

= oriented_simplex p
(λj. if j < Suc x

then if j = 0 then v else l (j −1 )
else if Suc j = 0 then v else l (Suc j −1 )) if x ≤ p for x

using ‹0 < p› that
by (auto simp: Suc_leI singular_face_oriented_simplex simplex_cone ori-

ented_simplex_eq)
have 1 : frag_extend (frag_of ◦ simplex_cone (p − Suc 0 ) v)

(
∑

k = 0 ..p. frag_cmul ((−1 ) ^ k) (frag_of (singular_face p k
(oriented_simplex p l))))

= − (
∑

k = Suc 0 ..Suc p. frag_cmul ((−1 ) ^ k)
(frag_of (singular_face (Suc p) k (simplex_cone p v (oriented_simplex

p l)))))
unfolding sum.atLeast_Suc_atMost_Suc_shift

by (auto simp: 0 simplex_cone singular_face_oriented_simplex frag_extend_sum
frag_extend_cmul simp flip: sum_negf )

moreover have 2 : singular_face (Suc p) 0 (simplex_cone p v (oriented_simplex
p l))

= oriented_simplex p l
by (simp add: simplex_cone singular_face_oriented_simplex)

show chain_boundary (Suc p) (simplicial_cone p v (frag_of f ))
= frag_of f − simplicial_cone (p − Suc 0 ) v (chain_boundary p (frag_of

f ))
using ‹p > 0 ›

apply (simp add: assms simplicial_cone_def chain_boundary_of atMost_atLeast0
del: sum.atMost_Suc)

apply (subst sum.atLeast_Suc_atMost [of 0 ])
apply (simp_all add: 1 2 del: sum.atMost_Suc)

done
qed

lemma chain_boundary_simplicial_cone_of :
assumes simplicial_simplex p S f
shows chain_boundary (Suc p) (simplicial_cone p v (frag_of f )) =

frag_of f
− (if p = 0 then frag_of (λu∈standard_simplex p. v)

else simplicial_cone (p −1 ) v (chain_boundary p (frag_of f )))
using chain_boundary_simplicial_cone_of ′ assms unfolding simplicial_simplex_def
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by blast

lemma chain_boundary_simplicial_cone:
simplicial_chain p S c
=⇒ chain_boundary (Suc p) (simplicial_cone p v c) =

c − (if p = 0 then frag_extend (λf . frag_of (λu∈standard_simplex p. v)) c
else simplicial_cone (p −1 ) v (chain_boundary p c))

unfolding simplicial_chain_def
proof (induction rule: frag_induction)

case (one x)
then show ?case

by (auto simp: chain_boundary_simplicial_cone_of )
qed (auto simp: chain_boundary_diff simplicial_cone_def frag_extend_diff )

lemma simplex_map_oriented_simplex:
assumes l: simplicial_simplex p (standard_simplex q) (oriented_simplex p l)

and g: simplicial_simplex r S g and q ≤ r
shows simplex_map p g (oriented_simplex p l) = oriented_simplex p (g ◦ l)

proof −
obtain m where geq: g = oriented_simplex r m

using g by (auto simp: simplicial_simplex_def )
have g (λi.

∑
j≤p. l j i ∗ x j) i = (

∑
j≤p. g (l j) i ∗ x j)

if x ∈ standard_simplex p for x i
proof −

have ssr : (λi.
∑

j≤p. l j i ∗ x j) ∈ standard_simplex r
using l that standard_simplex_mono [OF ‹q ≤ r›]
unfolding simplicial_simplex_oriented_simplex by auto

have lss: l j ∈ standard_simplex r if j≤p for j
proof −

have q: (λx i.
∑

j≤p. l j i ∗ x j) ‘ standard_simplex p ⊆ standard_simplex q
using l by (simp add: simplicial_simplex_oriented_simplex)

let ?x = (λi. if i = j then 1 else 0 )
have p: l j ∈ (λx i.

∑
j≤p. l j i ∗ x j) ‘ standard_simplex p

proof
show l j = (λi.

∑
j≤p. l j i ∗ ?x j)

using ‹j≤p› by (force simp: if_distrib cong: if_cong)
show ?x ∈ standard_simplex p

by (simp add: that)
qed
show ?thesis

using standard_simplex_mono [OF ‹q ≤ r›] q p
by blast

qed
have g (λi.

∑
j≤p. l j i ∗ x j) i = (

∑
j≤r .

∑
n≤p. m j i ∗ (l n j ∗ x n))

by (simp add: geq oriented_simplex_def sum_distrib_left ssr)
also have ... = (

∑
j≤p.

∑
n≤r . m n i ∗ (l j n ∗ x j))

by (rule sum.swap)
also have ... = (

∑
j≤p. g (l j) i ∗ x j)

by (simp add: geq oriented_simplex_def sum_distrib_right mult.assoc lss)
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finally show ?thesis .
qed
then show ?thesis

by (force simp: oriented_simplex_def simplex_map_def o_def )
qed

lemma chain_map_simplicial_cone:
assumes g: simplicial_simplex r S g

and c: simplicial_chain p (standard_simplex q) c
and v: v ∈ standard_simplex q and q ≤ r

shows chain_map (Suc p) g (simplicial_cone p v c) = simplicial_cone p (g v)
(chain_map p g c)
proof −

have ∗: simplex_map (Suc p) g (simplex_cone p v f ) = simplex_cone p (g v)
(simplex_map p g f )

if f ∈ Poly_Mapping.keys c for f
proof −

have simplicial_simplex p (standard_simplex q) f
using c that by (auto simp: simplicial_chain_def )

then obtain m where feq: f = oriented_simplex p m
by (auto simp: simplicial_simplex)

have 0 : simplicial_simplex p (standard_simplex q) (oriented_simplex p m)
using ‹simplicial_simplex p (standard_simplex q) f › feq by blast

then have 1 : simplicial_simplex (Suc p) (standard_simplex q)
(oriented_simplex (Suc p) (λi. if i = 0 then v else m (i −1 )))

using convex_standard_simplex v
by (simp flip: simplex_cone add: simplicial_simplex_simplex_cone)

show ?thesis
using simplex_map_oriented_simplex [OF 1 g ‹q ≤ r›]

simplex_map_oriented_simplex [of p q m r S g, OF 0 g ‹q ≤ r›]
by (simp add: feq oriented_simplex_eq simplex_cone)

qed
show ?thesis

by (auto simp: chain_map_def simplicial_cone_def frag_extend_compose ∗
intro: frag_extend_eq)
qed

0.1.15 Barycentric subdivision of a linear ("simplicial") sim-
plex’s image

definition simplicial_vertex
where simplicial_vertex i f = f (λj. if j = i then 1 else 0 )

lemma simplicial_vertex_oriented_simplex:
simplicial_vertex i (oriented_simplex p l) = (if i ≤ p then l i else undefined)

by (simp add: simplicial_vertex_def oriented_simplex_def if_distrib cong: if_cong)

Simplices.html


36

primrec simplicial_subdivision
where

simplicial_subdivision 0 = id
| simplicial_subdivision (Suc p) =

frag_extend
(λf . simplicial_cone p

(λi. (
∑

j≤Suc p. simplicial_vertex j f i) / (p + 2 ))
(simplicial_subdivision p (chain_boundary (Suc p) (frag_of f ))))

lemma simplicial_subdivision_0 [simp]:
simplicial_subdivision p 0 = 0

by (induction p) auto

lemma simplicial_subdivision_diff :
simplicial_subdivision p (c1−c2 ) = simplicial_subdivision p c1 − simplicial_subdivision

p c2
by (induction p) (auto simp: frag_extend_diff )

lemma simplicial_subdivision_of :
simplicial_subdivision p (frag_of f ) =

(if p = 0 then frag_of f
else simplicial_cone (p −1 )

(λi. (
∑

j≤p. simplicial_vertex j f i) / (Suc p))
(simplicial_subdivision (p −1 ) (chain_boundary p (frag_of f ))))

by (induction p) (auto simp: add.commute)

lemma simplicial_chain_simplicial_subdivision:
simplicial_chain p S c

=⇒ simplicial_chain p S (simplicial_subdivision p c)
proof (induction p arbitrary: S c)

case (Suc p)
show ?case

using Suc.prems [unfolded simplicial_chain_def ]
proof (induction c rule: frag_induction)

case (one f )
then have f : simplicial_simplex (Suc p) S f

by auto
then have simplicial_chain p (f ‘ standard_simplex (Suc p))

(simplicial_subdivision p (chain_boundary (Suc p) (frag_of f )))
by (metis Suc.IH diff_Suc_1 simplicial_chain_boundary simplicial_chain_of

simplicial_simplex subsetI )
moreover
obtain l where l:

∧
x. x ∈ standard_simplex (Suc p) =⇒ (λi. (

∑
j≤Suc p. l

j i ∗ x j)) ∈ S
and feq: f = oriented_simplex (Suc p) l
using f by (fastforce simp: simplicial_simplex oriented_simplex_def simp

del: sum.atMost_Suc)
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have (λi. (1 − u) ∗ ((
∑

j≤Suc p. simplicial_vertex j f i) / (real p + 2 )) + u
∗ y i) ∈ S

if 0 ≤ u u ≤ 1 and y: y ∈ f ‘ standard_simplex (Suc p) for y u
proof −

obtain x where x: x ∈ standard_simplex (Suc p) and yeq: y = ori-
ented_simplex (Suc p) l x

using y feq by blast
have (λi.

∑
j≤Suc p. l j i ∗ ((if j ≤ Suc p then (1 − u) ∗ inverse (p + 2 )

+ u ∗ x j else 0 ))) ∈ S
proof (rule l)

have inverse (2 + real p) ≤ 1 (2 + real p) ∗ ((1 − u) ∗ inverse (2 + real
p)) + u = 1

by (auto simp add: field_split_simps)
then show (λj. if j ≤ Suc p then (1 − u) ∗ inverse (real (p + 2 )) + u ∗ x

j else 0 ) ∈ standard_simplex (Suc p)
using x ‹0 ≤ u› ‹u ≤ 1 ›

by (simp add: sum.distrib standard_simplex_def linepath_le_1 flip:
sum_distrib_left del: sum.atMost_Suc)

qed
moreover have (λi.

∑
j≤Suc p. l j i ∗ ((1 − u) ∗ inverse (2 + real p) + u

∗ x j))
= (λi. (1 − u) ∗ (

∑
j≤Suc p. l j i) / (real p + 2 ) + u ∗ (

∑
j≤Suc

p. l j i ∗ x j))
proof

fix i
have (

∑
j≤Suc p. l j i ∗ ((1 − u) ∗ inverse (2 + real p) + u ∗ x j))

= (
∑

j≤Suc p. (1 − u) ∗ l j i / (real p + 2 ) + u ∗ l j i ∗ x j) (is ?lhs
= _)

by (simp add: field_simps cong: sum.cong)
also have . . . = (1 − u) ∗ (

∑
j≤Suc p. l j i) / (real p + 2 ) + u ∗ (

∑
j≤Suc

p. l j i ∗ x j) (is _ = ?rhs)
by (simp add: sum_distrib_left sum.distrib sum_divide_distrib mult.assoc

del: sum.atMost_Suc)
finally show ?lhs = ?rhs .

qed
ultimately show ?thesis

using feq x yeq
by (simp add: simplicial_vertex_oriented_simplex) (simp add: oriented_simplex_def )

qed
ultimately show ?case

by (simp add: simplicial_chain_simplicial_cone)
next

case (diff a b)
then show ?case

by (metis simplicial_chain_diff simplicial_subdivision_diff )
qed auto

qed auto

lemma chain_boundary_simplicial_subdivision:
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simplicial_chain p S c
=⇒ chain_boundary p (simplicial_subdivision p c) = simplicial_subdivision (p

−1 ) (chain_boundary p c)
proof (induction p arbitrary: c)

case (Suc p)
show ?case

using Suc.prems [unfolded simplicial_chain_def ]
proof (induction c rule: frag_induction)

case (one f )
then have f : simplicial_simplex (Suc p) S f

by simp
then have simplicial_chain p S (simplicial_subdivision p (chain_boundary

(Suc p) (frag_of f )))
by (metis diff_Suc_1 simplicial_chain_boundary simplicial_chain_of sim-

plicial_chain_simplicial_subdivision)
moreover have simplicial_chain p S (chain_boundary (Suc p) (frag_of f ))

using one simplicial_chain_boundary simplicial_chain_of by fastforce
moreover have simplicial_subdivision (p − Suc 0 ) (chain_boundary p (chain_boundary

(Suc p) (frag_of f ))) = 0
by (metis f chain_boundary_boundary_alt simplicial_simplex_def simpli-

cial_subdivision_0 singular_chain_of )
ultimately show ?case

using chain_boundary_simplicial_cone Suc
by (auto simp: chain_boundary_of frag_extend_diff simplicial_cone_def )

next
case (diff a b)
then show ?case
by (simp add: simplicial_subdivision_diff chain_boundary_diff frag_extend_diff )

qed auto
qed auto

A MESS AND USED ONLY ONCE

lemma simplicial_subdivision_shrinks:
[[simplicial_chain p S c;∧

f x y. [[f ∈ Poly_Mapping.keys c; x ∈ standard_simplex p; y ∈ stan-
dard_simplex p]] =⇒ |f x k − f y k| ≤ d;

f ∈ Poly_Mapping.keys(simplicial_subdivision p c);
x ∈ standard_simplex p; y ∈ standard_simplex p]]
=⇒ |f x k − f y k| ≤ (p / (Suc p)) ∗ d

proof (induction p arbitrary: d c f x y)
case (Suc p)
define Sigp where Sigp ≡ λf :: (nat ⇒ real) ⇒ nat ⇒ real. λi. (

∑
j≤Suc p.

simplicial_vertex j f i) / real (p + 2 )
define CB where CB ≡ λf ::(nat ⇒ real) ⇒ nat ⇒ real. chain_boundary (Suc

p) (frag_of f )
have ∗: Poly_Mapping.keys

(simplicial_cone p (Sigp f )
(simplicial_subdivision p (CB f )))

⊆ {f . ∀ x∈standard_simplex (Suc p). ∀ y∈standard_simplex (Suc p).
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|f x k − f y k| ≤ Suc p / (real p + 2 ) ∗ d} (is ?lhs ⊆ ?rhs)
if f : f ∈ Poly_Mapping.keys c for f

proof −
have ssf : simplicial_simplex (Suc p) S f

using Suc.prems(1 ) simplicial_chain_def that by auto
have 2 :

∧
x y. [[x ∈ standard_simplex (Suc p); y ∈ standard_simplex (Suc p)]]

=⇒ |f x k − f y k| ≤ d
by (meson Suc.prems(2 ) f subsetD le_Suc_eq order_refl standard_simplex_mono)
have sub: Poly_Mapping.keys ((frag_of ◦ simplex_cone p (Sigp f )) g) ⊆ ?rhs

if g ∈ Poly_Mapping.keys (simplicial_subdivision p (CB f )) for g
proof −

have 1 : simplicial_chain p S (CB f )
unfolding CB_def
using ssf simplicial_chain_boundary simplicial_chain_of by fastforce

have simplicial_chain (Suc p) (f ‘ standard_simplex(Suc p)) (frag_of f )
by (metis simplicial_chain_of simplicial_simplex ssf subset_refl)

then have sc_sub: Poly_Mapping.keys (CB f )
⊆ Collect (simplicial_simplex p (f ‘ standard_simplex (Suc p)))

by (metis diff_Suc_1 simplicial_chain_boundary simplicial_chain_def
CB_def )

have led:
∧

h x y. [[h ∈ Poly_Mapping.keys (CB f );
x ∈ standard_simplex p; y ∈ standard_simplex p]] =⇒ |h x k

− h y k| ≤ d
using Suc.prems(2 ) f sc_sub
by (simp add: simplicial_simplex subset_iff image_iff ) metis

have
∧

f ′ x y. [[f ′ ∈ Poly_Mapping.keys (simplicial_subdivision p (CB f ));
x ∈ standard_simplex p; y ∈ standard_simplex p]]

=⇒ |f ′ x k − f ′ y k| ≤ (p / (Suc p)) ∗ d
by (blast intro: led Suc.IH [of CB f , OF 1 ])

then have g:
∧

x y. [[x ∈ standard_simplex p; y ∈ standard_simplex p]] =⇒
|g x k − g y k| ≤ (p / (Suc p)) ∗ d

using that by blast
have d ≥ 0

using Suc.prems(2 )[OF f ] ‹x ∈ standard_simplex (Suc p)› by force
have 3 : simplex_cone p (Sigp f ) g ∈ ?rhs
proof −

have simplicial_simplex p (f ‘ standard_simplex(Suc p)) g
by (metis (mono_tags, opaque_lifting) sc_sub mem_Collect_eq simpli-

cial_chain_def simplicial_chain_simplicial_subdivision subsetD that)
then obtain m where m: g ‘ standard_simplex p ⊆ f ‘ standard_simplex

(Suc p)
and geq: g = oriented_simplex p m
using ssf by (auto simp: simplicial_simplex)

have m_in_gim: m i ∈ g ‘ standard_simplex p if i ≤ p for i
proof

show m i = g (λj. if j = i then 1 else 0 )
by (simp add: geq oriented_simplex_def that if_distrib cong: if_cong)

show (λj. if j = i then 1 else 0 ) ∈ standard_simplex p
by (simp add: oriented_simplex_def that)
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qed
obtain l where l: f ‘ standard_simplex (Suc p) ⊆ S

and feq: f = oriented_simplex (Suc p) l
using ssf by (auto simp: simplicial_simplex)

show ?thesis
proof (clarsimp simp add: geq simp del: sum.atMost_Suc)

fix x y
assume x: x ∈ standard_simplex (Suc p) and y: y ∈ standard_simplex

(Suc p)
then have x ′: (∀ i. 0 ≤ x i ∧ x i ≤ 1 ) ∧ (∀ i>Suc p. x i = 0 ) ∧ (

∑
i≤Suc

p. x i) = 1
and y ′: (∀ i. 0 ≤ y i ∧ y i ≤ 1 ) ∧ (∀ i>Suc p. y i = 0 ) ∧ (

∑
i≤Suc p.

y i) = 1
by (auto simp: standard_simplex_def )

have |(
∑

j≤Suc p. (if j = 0 then λi. (
∑

j≤Suc p. l j i) / (2 + real p) else
m (j −1 )) k ∗ x j) −

(
∑

j≤Suc p. (if j = 0 then λi. (
∑

j≤Suc p. l j i) / (2 + real p) else
m (j −1 )) k ∗ y j)|

≤ (1 + real p) ∗ d / (2 + real p)
proof −

have zero: |m (s − Suc 0 ) k − (
∑

j≤Suc p. l j k) / (2 + real p)| ≤ (1
+ real p) ∗ d / (2 + real p)

if 0 < s and s ≤ Suc p for s
proof −

have m (s − Suc 0 ) ∈ f ‘ standard_simplex (Suc p)
using m m_in_gim that(2 ) by auto

then obtain z where eq: m (s − Suc 0 ) = (λi.
∑

j≤Suc p. l j i ∗ z
j) and z: z ∈ standard_simplex (Suc p)

using feq unfolding oriented_simplex_def by auto
show ?thesis

unfolding eq
proof (rule convex_sum_bound_le)

fix i
assume i: i ∈ {..Suc p}
then have [simp]: card ({..Suc p} − {i}) = Suc p

by (simp add: card_Suc_Diff1 )
have (

∑
j≤Suc p. |l i k / (p + 2 ) − l j k / (p + 2 )|) = (

∑
j≤Suc p.

|l i k − l j k| / (p + 2 ))
by (rule sum.cong) (simp_all add: flip: diff_divide_distrib)

also have . . . = (
∑

j ∈ {..Suc p} − {i}. |l i k − l j k| / (p + 2 ))
by (rule sum.mono_neutral_right) auto

also have . . . ≤ (1 + real p) ∗ d / (p + 2 )
proof (rule sum_bounded_above_divide)

fix i ′ :: nat
assume i ′: i ′ ∈ {..Suc p} − {i}
have lf : l r ∈ f ‘ standard_simplex(Suc p) if r ≤ Suc p for r
proof

show l r = f (λj. if j = r then 1 else 0 )
using that by (simp add: feq oriented_simplex_def if_distrib



Simplices.thy 41

cong: if_cong)
show (λj. if j = r then 1 else 0 ) ∈ standard_simplex (Suc p)

by (auto simp: oriented_simplex_def that)
qed
show |l i k − l i ′ k| / real (p + 2 ) ≤ (1 + real p) ∗ d / real (p +

2 ) / real (card ({..Suc p} − {i}))
using i i ′ lf [of i] lf [of i ′] 2
by (auto simp: image_iff divide_simps)

qed auto
finally have (

∑
j≤Suc p. |l i k / (p + 2 ) − l j k / (p + 2 )|) ≤ (1

+ real p) ∗ d / (p + 2 ) .
then have |

∑
j≤Suc p. l i k / (p + 2 ) − l j k / (p + 2 )| ≤ (1 +

real p) ∗ d / (p + 2 )
by (rule order_trans [OF sum_abs])

then show |l i k − (
∑

j≤Suc p. l j k) / (2 + real p)| ≤ (1 + real p)
∗ d / (2 + real p)

by (simp add: sum_subtractf sum_divide_distrib del: sum.atMost_Suc)
qed (use standard_simplex_def z in auto)

qed
have nonz: |m (s − Suc 0 ) k − m (r − Suc 0 ) k| ≤ (1 + real p) ∗ d /

(2 + real p) (is ?lhs ≤ ?rhs)
if r < s and 0 < r and r ≤ Suc p and s ≤ Suc p for r s

proof −
have ?lhs ≤ (p / (Suc p)) ∗ d
using m_in_gim [of r − Suc 0 ] m_in_gim [of s − Suc 0 ] that g by

fastforce
also have . . . ≤ ?rhs

by (simp add: field_simps ‹0 ≤ d›)
finally show ?thesis .

qed
have jj: j ≤ Suc p ∧ j ′ ≤ Suc p
−→ |(if j ′ = 0 then λi. (

∑
j≤Suc p. l j i) / (2 + real p) else m (j ′

−1 )) k −
(if j = 0 then λi. (

∑
j≤Suc p. l j i) / (2 + real p) else m (j −1 ))

k|
≤ (1 + real p) ∗ d / (2 + real p) for j j ′

using ‹0 ≤ d›
by (rule_tac a=j and b = j ′ in linorder_less_wlog; force simp: zero

nonz simp del: sum.atMost_Suc)
show ?thesis

apply (rule convex_sum_bound_le)
using x ′ apply blast
using x ′ apply blast
apply (subst abs_minus_commute)
apply (rule convex_sum_bound_le)
using y ′ apply blast
using y ′ apply blast
using jj by blast

qed
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then show |simplex_cone p (Sigp f ) (oriented_simplex p m) x k −
simplex_cone p (Sigp f ) (oriented_simplex p m) y k|

≤ (1 + real p) ∗ d / (real p + 2 )
apply (simp add: feq Sigp_def simplicial_vertex_oriented_simplex

simplex_cone del: sum.atMost_Suc)
apply (simp add: oriented_simplex_def algebra_simps x y del: sum.atMost_Suc)

done
qed

qed
show ?thesis

using Suc.IH [OF 1 , where f=g] 2 3 by simp
qed
then show ?thesis

unfolding simplicial_chain_def simplicial_cone_def
by (simp add: order_trans [OF keys_frag_extend] sub UN_subset_iff )

qed
obtain ff where ff ∈ Poly_Mapping.keys c

f ∈ Poly_Mapping.keys
(simplicial_cone p
(λi. (

∑
j≤Suc p. simplicial_vertex j ff i) /

(real p + 2 ))
(simplicial_subdivision p (CB ff )))

using Suc.prems(3 ) subsetD [OF keys_frag_extend]
by (force simp: CB_def simp del: sum.atMost_Suc)

then show ?case
using Suc ∗ by (simp add: add.commute Sigp_def subset_iff )

qed (auto simp: standard_simplex_0 )

0.1.16 Singular subdivision
definition singular_subdivision

where singular_subdivision p ≡
frag_extend

(λf . chain_map p f
(simplicial_subdivision p

(frag_of (restrict id (standard_simplex p)))))

lemma singular_subdivision_0 [simp]: singular_subdivision p 0 = 0
by (simp add: singular_subdivision_def )

lemma singular_subdivision_add:
singular_subdivision p (a + b) = singular_subdivision p a + singular_subdivision

p b
by (simp add: singular_subdivision_def frag_extend_add)

lemma singular_subdivision_diff :
singular_subdivision p (a − b) = singular_subdivision p a − singular_subdivision

p b
by (simp add: singular_subdivision_def frag_extend_diff )
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lemma simplicial_simplex_id [simp]:
simplicial_simplex p S (restrict id (standard_simplex p)) ←→ standard_simplex

p ⊆ S
(is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs

by (simp add: simplicial_simplex)
next

assume R: ?rhs
then have cm: continuous_map

(subtopology (powertop_real UNIV ) (standard_simplex p))
(subtopology (powertop_real UNIV ) S) id

using continuous_map_from_subtopology_mono continuous_map_id by blast
moreover have ∃ l. restrict id (standard_simplex p) = oriented_simplex p l
proof

show restrict id (standard_simplex p) = oriented_simplex p (λi j. if i = j then
1 else 0 )

by (force simp: oriented_simplex_def standard_simplex_def if_distrib [of λu.
u ∗ _] cong: if_cong)

qed
ultimately show ?lhs

by (simp add: simplicial_simplex_def singular_simplex_def )
qed

lemma singular_chain_singular_subdivision:
assumes singular_chain p X c
shows singular_chain p X (singular_subdivision p c)
unfolding singular_subdivision_def

proof (rule singular_chain_extend)
fix ca
assume ca ∈ Poly_Mapping.keys c
with assms have singular_simplex p X ca

by (simp add: singular_chain_def subset_iff )
then show singular_chain p X (chain_map p ca (simplicial_subdivision p

(frag_of (restrict id (standard_simplex p)))))
unfolding singular_simplex_def

by (metis order_refl simplicial_chain_of simplicial_chain_simplicial_subdivision
simplicial_imp_singular_chain simplicial_simplex_id singular_chain_chain_map)
qed

lemma naturality_singular_subdivision:
singular_chain p X c
=⇒ singular_subdivision p (chain_map p g c) = chain_map p g (singular_subdivision

p c)
unfolding singular_chain_def

proof (induction rule: frag_induction)
case (one f )
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then have singular_simplex p X f
by auto

have [[simplicial_chain p (standard_simplex p) d]]
=⇒ chain_map p (simplex_map p g f ) d = chain_map p g (chain_map p f d)

for d
unfolding simplicial_chain_def

proof (induction rule: frag_induction)
case (one x)

then have simplex_map p (simplex_map p g f ) x = simplex_map p g (simplex_map
p f x)

by (force simp: simplex_map_def restrict_compose_left simplicial_simplex)
then show ?case

by auto
qed (auto simp: chain_map_diff )
then show ?case
using simplicial_chain_simplicial_subdivision [of p standard_simplex p frag_of

(restrict id (standard_simplex p))]
by (simp add: singular_subdivision_def )

next
case (diff a b)
then show ?case

by (simp add: chain_map_diff singular_subdivision_diff )
qed auto

lemma simplicial_chain_chain_map:
assumes f : simplicial_simplex q X f and c: simplicial_chain p (standard_simplex

q) c
shows simplicial_chain p X (chain_map p f c)
using c unfolding simplicial_chain_def

proof (induction c rule: frag_induction)
case (one g)
have ∃n. simplex_map p (oriented_simplex q l)

(oriented_simplex p m) = oriented_simplex p n
if m: singular_simplex p

(subtopology (powertop_real UNIV ) (standard_simplex q)) (oriented_simplex
p m)

for l m
proof −

have (λi.
∑

j≤p. m j i ∗ x j) ∈ standard_simplex q
if x ∈ standard_simplex p for x
using that m unfolding oriented_simplex_def singular_simplex_def
by (auto simp: continuous_map_in_subtopology Pi_iff )

then show ?thesis
unfolding oriented_simplex_def simplex_map_def
apply (rule_tac x=λj k. (

∑
i≤q. l i k ∗ m j i) in exI )

apply (force simp: sum_distrib_left sum_distrib_right mult.assoc intro:
sum.swap)

done
qed
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then show ?case
using f one
apply (simp add: simplicial_simplex_def )
using singular_simplex_def singular_simplex_simplex_map by blast

next
case (diff a b)
then show ?case

by (metis chain_map_diff simplicial_chain_def simplicial_chain_diff )
qed auto

lemma singular_subdivision_simplicial_simplex:
simplicial_chain p S c

=⇒ singular_subdivision p c = simplicial_subdivision p c
proof (induction p arbitrary: S c)

case 0
then show ?case

unfolding simplicial_chain_def
proof (induction rule: frag_induction)

case (one x)
then show ?case

using singular_simplex_chain_map_id simplicial_imp_singular_simplex
by (fastforce simp: singular_subdivision_def simplicial_subdivision_def )

qed (auto simp: singular_subdivision_diff )
next

case (Suc p)
show ?case

using Suc.prems unfolding simplicial_chain_def
proof (induction rule: frag_induction)

case (one f )
then have ssf : simplicial_simplex (Suc p) S f

by (auto simp: simplicial_simplex)
then have 1 : simplicial_chain p (standard_simplex (Suc p))

(simplicial_subdivision p
(chain_boundary (Suc p)
(frag_of (restrict id (standard_simplex (Suc p))))))

by (metis diff_Suc_1 order_refl simplicial_chain_boundary simplicial_chain_of
simplicial_chain_simplicial_subdivision simplicial_simplex_id)

have 2 : (λi. (
∑

j≤Suc p. simplicial_vertex j (restrict id (standard_simplex
(Suc p))) i) / (real p + 2 ))

∈ standard_simplex (Suc p)
by (simp add: simplicial_vertex_def standard_simplex_def del: sum.atMost_Suc)

have ss_Sp: (λi. (if i ≤ Suc p then 1 else 0 ) / (real p + 2 )) ∈ standard_simplex
(Suc p)

by (simp add: standard_simplex_def field_split_simps)
obtain l where feq: f = oriented_simplex (Suc p) l

using one unfolding simplicial_simplex by blast
then have 3 : f (λi. (

∑
j≤Suc p. simplicial_vertex j (restrict id (standard_simplex

(Suc p))) i) / (real p + 2 ))
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= (λi. (
∑

j≤Suc p. simplicial_vertex j f i) / (real p + 2 ))
unfolding simplicial_vertex_def oriented_simplex_def

by (simp add: ss_Sp if_distrib [of λx. _ ∗ x] sum_divide_distrib del:
sum.atMost_Suc cong: if_cong)

have scp: singular_chain (Suc p)
(subtopology (powertop_real UNIV ) (standard_simplex (Suc p)))
(frag_of (restrict id (standard_simplex (Suc p))))

by (simp add: simplicial_imp_singular_chain)
have scps: simplicial_chain p (standard_simplex (Suc p))

(chain_boundary (Suc p) (frag_of (restrict id (standard_simplex
(Suc p)))))

by (metis diff_Suc_1 order_refl simplicial_chain_boundary simplicial_chain_of
simplicial_simplex_id)

have scpf : simplicial_chain p S
(chain_map p f

(chain_boundary (Suc p) (frag_of (restrict id (standard_simplex
(Suc p))))))

using scps simplicial_chain_chain_map ssf by blast
have 4 : chain_map p f

(simplicial_subdivision p
(chain_boundary (Suc p) (frag_of (restrict id (standard_simplex

(Suc p))))))
= simplicial_subdivision p (chain_boundary (Suc p) (frag_of f ))

proof −
have singular_simplex (Suc p) (subtopology (powertop_real UNIV ) S) f

using simplicial_simplex_def ssf by blast
then have chain_map (Suc p) f (frag_of (restrict id (standard_simplex

(Suc p)))) = frag_of f
using singular_simplex_chain_map_id by blast

then show ?thesis
by (metis (no_types) Suc.IH chain_boundary_chain_map diff_Suc_Suc

diff_zero
naturality_singular_subdivision scp scpf scps simplicial_imp_singular_chain)

qed
show ?case

apply (simp add: singular_subdivision_def del: sum.atMost_Suc)
apply (simp only: ssf 1 2 3 4 chain_map_simplicial_cone [of Suc p S _ p

Suc p])
done

qed (auto simp: frag_extend_diff singular_subdivision_diff )
qed

lemma naturality_simplicial_subdivision:
[[simplicial_chain p (standard_simplex q) c; simplicial_simplex q S g]]
=⇒ simplicial_subdivision p (chain_map p g c) = chain_map p g (simplicial_subdivision

p c)
by (metis naturality_singular_subdivision simplicial_chain_chain_map simpli-

cial_imp_singular_chain
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singular_subdivision_simplicial_simplex)

lemma chain_boundary_singular_subdivision:
singular_chain p X c

=⇒ chain_boundary p (singular_subdivision p c) =
singular_subdivision (p − Suc 0 ) (chain_boundary p c)

unfolding singular_chain_def
proof (induction rule: frag_induction)

case (one f )
then have ssf : singular_simplex p X f

by (auto simp: singular_simplex_def )
then have scp: simplicial_chain p (standard_simplex p) (frag_of (restrict id

(standard_simplex p)))
by simp

have scp1 : simplicial_chain (p − Suc 0 ) (standard_simplex p)
(chain_boundary p (frag_of (restrict id (standard_simplex p))))

using simplicial_chain_boundary by force
have sgp1 : singular_chain (p − Suc 0 )

(subtopology (powertop_real UNIV ) (standard_simplex p))
(chain_boundary p (frag_of (restrict id (standard_simplex p))))

using scp1 simplicial_imp_singular_chain by blast
have scpp: singular_chain p (subtopology (powertop_real UNIV ) (standard_simplex

p))
(frag_of (restrict id (standard_simplex p)))

using scp simplicial_imp_singular_chain by blast
then show ?case

unfolding singular_subdivision_def
using chain_boundary_chain_map [of p subtopology (powertop_real UNIV )

(standard_simplex p) _ f ]
apply (simp add: simplicial_chain_simplicial_subdivision

simplicial_imp_singular_chain chain_boundary_simplicial_subdivision
[OF scp]

flip: singular_subdivision_simplicial_simplex [OF scp1 ] naturality_singular_subdivision
[OF sgp1 ])

by (metis (full_types) singular_subdivision_def chain_boundary_chain_map
[OF scpp] singular_simplex_chain_map_id [OF ssf ])
qed (auto simp: singular_subdivision_def frag_extend_diff chain_boundary_diff )

lemma singular_subdivision_zero:
singular_chain 0 X c =⇒ singular_subdivision 0 c = c
unfolding singular_chain_def

proof (induction rule: frag_induction)
case (one f )
then have restrict (f ◦ restrict id (standard_simplex 0 )) (standard_simplex 0 )

= f
by (simp add: extensional_restrict restrict_compose_right singular_simplex_def )

then show ?case
by (auto simp: singular_subdivision_def simplex_map_def )

qed (auto simp: singular_subdivision_def frag_extend_diff )
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primrec subd where
subd 0 = (λx. 0 )
| subd (Suc p) =

frag_extend
(λf . simplicial_cone (Suc p) (λi. (

∑
j≤Suc p. simplicial_vertex j f i) / real

(Suc p + 1 ))
(simplicial_subdivision (Suc p) (frag_of f ) − frag_of f −
subd p (chain_boundary (Suc p) (frag_of f ))))

lemma subd_0 [simp]: subd p 0 = 0
by (induction p) auto

lemma subd_diff [simp]: subd p (c1 − c2 ) = subd p c1 − subd p c2
by (induction p) (auto simp: frag_extend_diff )

lemma subd_uminus [simp]: subd p (−c) = − subd p c
by (metis diff_0 subd_0 subd_diff )

lemma subd_power_uminus: subd p (frag_cmul ((−1 ) ^ k) c) = frag_cmul ((−1 )
^ k) (subd p c)
proof (induction k)

case 0
then show ?case by simp

next
case (Suc k)
then show ?case

by (metis frag_cmul_cmul frag_cmul_minus_one power_Suc subd_uminus)
qed

lemma subd_power_sum: subd p (sum f I ) = sum (subd p ◦ f ) I
proof (induction I rule: infinite_finite_induct)

case (insert i I )
then show ?case
by (metis (no_types, lifting) comp_apply diff_minus_eq_add subd_diff subd_uminus

sum.insert)
qed auto

lemma subd: simplicial_chain p (standard_simplex s) c
=⇒ (∀ r g. simplicial_simplex s (standard_simplex r) g −→ chain_map (Suc

p) g (subd p c) = subd p (chain_map p g c))
∧ simplicial_chain (Suc p) (standard_simplex s) (subd p c)
∧ (chain_boundary (Suc p) (subd p c)) + (subd (p − Suc 0 ) (chain_boundary

p c)) = (simplicial_subdivision p c) − c
proof (induction p arbitrary: c)

case (Suc p)
show ?case

using Suc.prems [unfolded simplicial_chain_def ]
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proof (induction rule: frag_induction)
case (one f )
then obtain l where l: (λx i.

∑
j≤Suc p. l j i ∗ x j) ‘ standard_simplex (Suc

p) ⊆ standard_simplex s
and feq: f = oriented_simplex (Suc p) l

by (metis (mono_tags) mem_Collect_eq simplicial_simplex simplicial_simplex_oriented_simplex)
have scf : simplicial_chain (Suc p) (standard_simplex s) (frag_of f )

using one by simp
have lss: l i ∈ standard_simplex s if i ≤ Suc p for i
proof −

have (λi ′.
∑

j≤Suc p. l j i ′ ∗ (if j = i then 1 else 0 )) ∈ standard_simplex s
using subsetD [OF l] basis_in_standard_simplex that by blast

moreover have (λi ′.
∑

j≤Suc p. l j i ′ ∗ (if j = i then 1 else 0 )) = l i
using that by (simp add: if_distrib [of λx. _ ∗ x] del: sum.atMost_Suc

cong: if_cong)
ultimately show ?thesis

by simp
qed
have ∗: (

∧
i. i ≤ n =⇒ l i ∈ standard_simplex s)

=⇒ (λi. (
∑

j≤n. l j i) / (Suc n)) ∈ standard_simplex s for n
proof (induction n)

case (Suc n)
let ?x = λi. (1 − inverse (n + 2 )) ∗ ((

∑
j≤n. l j i) / (Suc n)) + inverse (n

+ 2 ) ∗ l (Suc n) i
have ?x ∈ standard_simplex s
proof (rule convex_standard_simplex)

show (λi. (
∑

j≤n. l j i) / real (Suc n)) ∈ standard_simplex s
using Suc by simp

qed (auto simp: lss Suc inverse_le_1_iff )
moreover have ?x = (λi. (

∑
j≤Suc n. l j i) / real (Suc (Suc n)))

by (force simp: divide_simps)
ultimately show ?case

by simp
qed auto
have ∗∗: (λi. (

∑
j≤Suc p. simplicial_vertex j f i) / (2 + real p)) ∈ stan-

dard_simplex s
using ∗ [of Suc p] lss by (simp add: simplicial_vertex_oriented_simplex feq)

show ?case
proof (intro conjI impI allI )

fix r g
assume g: simplicial_simplex s (standard_simplex r) g
then obtain m where geq: g = oriented_simplex s m

using simplicial_simplex by blast
have 1 : simplicial_chain (Suc p) (standard_simplex s) (simplicial_subdivision

(Suc p) (frag_of f ))
by (metis mem_Collect_eq one.hyps simplicial_chain_of simplicial_chain_simplicial_subdivision)
have 2 : (

∑
j≤Suc p.

∑
i≤s. m i k ∗ simplicial_vertex j f i)

= (
∑

j≤Suc p. simplicial_vertex j
(simplex_map (Suc p) (oriented_simplex s m) f ) k) for k

Simplices.html


50

proof (rule sum.cong [OF refl])
fix j
assume j: j ∈ {..Suc p}
have eq: simplex_map (Suc p) (oriented_simplex s m) (oriented_simplex

(Suc p) l)
= oriented_simplex (Suc p) (oriented_simplex s m ◦ l)

proof (rule simplex_map_oriented_simplex)
show simplicial_simplex (Suc p) (standard_simplex s) (oriented_simplex

(Suc p) l)
using one by (simp add: feq flip: oriented_simplex_def )

show simplicial_simplex s (standard_simplex r) (oriented_simplex s m)
using g by (simp add: geq)

qed auto
show (

∑
i≤s. m i k ∗ simplicial_vertex j f i)

= simplicial_vertex j (simplex_map (Suc p) (oriented_simplex s m) f ) k
using one j

apply (simp add: feq eq simplicial_vertex_oriented_simplex simpli-
cial_simplex_oriented_simplex image_subset_iff )

apply (drule_tac x=(λi. if i = j then 1 else 0 ) in bspec)
apply (auto simp: oriented_simplex_def lss)

done
qed
have 4 : chain_map (Suc p) g (subd p (chain_boundary (Suc p) (frag_of f )))

= subd p (chain_boundary (Suc p) (frag_of (simplex_map (Suc p) g
f )))

by (metis (no_types) One_nat_def scf Suc.IH chain_boundary_chain_map
chain_map_of diff_Suc_Suc diff_zero g simplicial_chain_boundary simplicial_imp_singular_chain)

show chain_map (Suc (Suc p)) g (subd (Suc p) (frag_of f )) = subd (Suc p)
(chain_map (Suc p) g (frag_of f ))

unfolding subd.simps frag_extend_of
using g
apply (subst chain_map_simplicial_cone [of s standard_simplex r _ Suc p

s], assumption)
apply (metis 1 Suc.IH diff_Suc_1 scf simplicial_chain_boundary simpli-

cial_chain_diff )
using ∗∗ apply auto[1 ]
apply (rule order_refl)

unfolding chain_map_of frag_extend_of
apply (rule arg_cong2 [where f = simplicial_cone (Suc p)])

apply (simp add: geq sum_distrib_left oriented_simplex_def ∗∗ del:
sum.atMost_Suc flip: sum_divide_distrib)

using 2 apply (simp only: oriented_simplex_def sum.swap [where A =
{..s}])

using naturality_simplicial_subdivision scf apply (fastforce simp add: 4
chain_map_diff )

done
next

have sc: simplicial_chain (Suc p) (standard_simplex s)
(simplicial_cone p
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(λi. (
∑

j≤Suc p. simplicial_vertex j f i) / (Suc (Suc p)))
(simplicial_subdivision p
(chain_boundary (Suc p) (frag_of f ))))

by (metis diff_Suc_1 nat.simps(3 ) simplicial_subdivision_of scf simpli-
cial_chain_simplicial_subdivision)

have ff : simplicial_chain (Suc p) (standard_simplex s) (subd p (chain_boundary
(Suc p) (frag_of f )))

by (metis (no_types) Suc.IH diff_Suc_1 scf simplicial_chain_boundary)
show simplicial_chain (Suc (Suc p)) (standard_simplex s) (subd (Suc p)

(frag_of f ))
using one
unfolding subd.simps frag_extend_of

apply (rule_tac S=standard_simplex s in simplicial_chain_simplicial_cone)
apply (meson ff scf simplicial_chain_diff simplicial_chain_simplicial_subdivision)

using ∗∗ convex_standard_simplex by force
have simplicial_chain p (standard_simplex s) (chain_boundary (Suc p)

(frag_of f ))
using scf simplicial_chain_boundary by fastforce

then have chain_boundary (Suc p) (simplicial_subdivision (Suc p) (frag_of
f ) − frag_of f

− subd p (chain_boundary (Suc p) (frag_of f )))
= 0

unfolding chain_boundary_diff
using Suc.IH chain_boundary_boundary

by (metis One_nat_def add_diff_cancel_left ′ chain_boundary_simplicial_subdivision
diff_Suc_1 scf

simplicial_imp_singular_chain subd_0 )
moreover have simplicial_chain (Suc p) (standard_simplex s)

(simplicial_subdivision (Suc p) (frag_of f ) − frag_of f −
subd p (chain_boundary (Suc p) (frag_of f )))

by (meson ff scf simplicial_chain_diff simplicial_chain_simplicial_subdivision)
ultimately show chain_boundary (Suc (Suc p)) (subd (Suc p) (frag_of f ))
+ subd (Suc p − Suc 0 ) (chain_boundary (Suc p) (frag_of f ))
= simplicial_subdivision (Suc p) (frag_of f ) − frag_of f

unfolding subd.simps frag_extend_of
apply (simp add: chain_boundary_simplicial_cone )

apply (simp add: simplicial_cone_def del: sum.atMost_Suc simplicial_subdivision.simps)
done

qed
next

case (diff a b)
then show ?case

apply safe
apply (metis chain_map_diff subd_diff )

apply (metis simplicial_chain_diff subd_diff )
by (smt (verit, ccfv_threshold) add_diff_add chain_boundary_diff diff_add_cancel

simplicial_subdivision_diff subd_diff )
qed auto

qed simp
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lemma chain_homotopic_simplicial_subdivision1 :
[[simplicial_chain p (standard_simplex q) c; simplicial_simplex q (standard_simplex

r) g]]
=⇒ chain_map (Suc p) g (subd p c) = subd p (chain_map p g c)

by (simp add: subd)

lemma chain_homotopic_simplicial_subdivision2 :
simplicial_chain p (standard_simplex q) c

=⇒ simplicial_chain (Suc p) (standard_simplex q) (subd p c)
by (simp add: subd)

lemma chain_homotopic_simplicial_subdivision3 :
simplicial_chain p (standard_simplex q) c
=⇒ chain_boundary (Suc p) (subd p c) = (simplicial_subdivision p c) − c −

subd (p − Suc 0 ) (chain_boundary p c)
by (simp add: subd algebra_simps)

lemma chain_homotopic_simplicial_subdivision:
∃ h. (∀ p. h p 0 = 0 ) ∧

(∀ p c1 c2 . h p (c1−c2 ) = h p c1 − h p c2 ) ∧
(∀ p q r g c.

simplicial_chain p (standard_simplex q) c
−→ simplicial_simplex q (standard_simplex r) g
−→ chain_map (Suc p) g (h p c) = h p (chain_map p g c)) ∧

(∀ p q c. simplicial_chain p (standard_simplex q) c
−→ simplicial_chain (Suc p) (standard_simplex q) (h p c)) ∧

(∀ p q c. simplicial_chain p (standard_simplex q) c
−→ chain_boundary (Suc p) (h p c) + h (p − Suc 0 ) (chain_boundary

p c)
= (simplicial_subdivision p c) − c)

by (rule_tac x=subd in exI ) (fastforce simp: subd)

lemma chain_homotopic_singular_subdivision:
obtains h where∧

p. h p 0 = 0∧
p c1 c2 . h p (c1−c2 ) = h p c1 − h p c2∧
p X c. singular_chain p X c =⇒ singular_chain (Suc p) X (h p c)∧
p X c. singular_chain p X c

=⇒ chain_boundary (Suc p) (h p c) + h (p − Suc 0 ) (chain_boundary
p c) = singular_subdivision p c − c
proof −

define k where k ≡ λp. frag_extend (λf :: (nat ⇒ real) ⇒ ′a. chain_map (Suc
p) f (subd p (frag_of (restrict id (standard_simplex p)))))

show ?thesis
proof

fix p X and c :: ′a chain
assume c: singular_chain p X c
have singular_chain (Suc p) X (k p c) ∧
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chain_boundary (Suc p) (k p c) + k (p − Suc 0 ) (chain_boundary p
c) = singular_subdivision p c − c

using c [unfolded singular_chain_def ]
proof (induction rule: frag_induction)

case (one f )
let ?X = subtopology (powertop_real UNIV ) (standard_simplex p)
show ?case
proof (simp add: k_def , intro conjI )

show singular_chain (Suc p) X (chain_map (Suc p) f (subd p (frag_of
(restrict id (standard_simplex p)))))

proof (rule singular_chain_chain_map)
show singular_chain (Suc p) ?X (subd p (frag_of (restrict id (standard_simplex

p))))
by (simp add: chain_homotopic_simplicial_subdivision2 simplicial_imp_singular_chain)
show continuous_map ?X X f

using one.hyps singular_simplex_def by auto
qed

next
have scp: singular_chain (Suc p) ?X (subd p (frag_of (restrict id (standard_simplex

p))))
by (simp add: chain_homotopic_simplicial_subdivision2 simplicial_imp_singular_chain)
have feqf : frag_of (simplex_map p f (restrict id (standard_simplex p))) =

frag_of f
using one.hyps singular_simplex_chain_map_id by auto

have ∗: chain_map p f
(subd (p − Suc 0 )
(
∑

k≤p. frag_cmul ((−1 ) ^ k) (frag_of (singular_face p k id))))
= (

∑
x≤p. frag_cmul ((−1 ) ^ x)

(chain_map p (singular_face p x f )
(subd (p − Suc 0 ) (frag_of (restrict id (standard_simplex

(p − Suc 0 )))))))
(is ?lhs = ?rhs)
if p > 0

proof −
have eqc: subd (p − Suc 0 ) (frag_of (singular_face p i id))

= chain_map p (singular_face p i id)
(subd (p − Suc 0 ) (frag_of (restrict id (standard_simplex

(p − Suc 0 )))))
if i ≤ p for i

proof −
have 1 : simplicial_chain (p − Suc 0 ) (standard_simplex (p − Suc 0 ))

(frag_of (restrict id (standard_simplex (p − Suc 0 ))))
by simp

have 2 : simplicial_simplex (p − Suc 0 ) (standard_simplex p) (singular_face
p i id)

by (metis One_nat_def Suc_leI ‹0 < p› simplicial_simplex_id
simplicial_simplex_singular_face singular_face_restrict subsetI that)

have 3 : simplex_map (p − Suc 0 ) (singular_face p i id) (restrict id
(standard_simplex (p − Suc 0 )))
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= singular_face p i id
by (force simp: simplex_map_def singular_face_def )

show ?thesis
using chain_homotopic_simplicial_subdivision1 [OF 1 2 ]

that ‹p > 0 › by (simp add: 3 )
qed
have xx: simplicial_chain p (standard_simplex(p − Suc 0 ))

(subd (p − Suc 0 ) (frag_of (restrict id (standard_simplex (p −
Suc 0 )))))

by (metis Suc_pred chain_homotopic_simplicial_subdivision2 order_refl
simplicial_chain_of simplicial_simplex_id that)

have yy:
∧

k. k ≤ p =⇒
chain_map p f

(chain_map p (singular_face p k id) h) = chain_map p (singular_face
p k f ) h

if simplicial_chain p (standard_simplex(p − Suc 0 )) h for h
using that unfolding simplicial_chain_def

proof (induction h rule: frag_induction)
case (one x)
then show ?case

using one
apply (simp add: chain_map_of singular_simplex_def simpli-

cial_simplex_def , auto)
apply (rule arg_cong [where f=frag_of ])

by (auto simp: image_subset_iff simplex_map_def simplicial_simplex
singular_face_def )

qed (auto simp: chain_map_diff )
have ?lhs

= chain_map p f
(
∑

k≤p. frag_cmul ((−1 ) ^ k)
(chain_map p (singular_face p k id)
(subd (p − Suc 0 ) (frag_of (restrict id (standard_simplex

(p − Suc 0 )))))))
by (simp add: subd_power_sum subd_power_uminus eqc)

also have . . . = ?rhs
by (simp add: chain_map_sum xx yy)

finally show ?thesis .
qed

have chain_map p f
(simplicial_subdivision p (frag_of (restrict id (standard_simplex

p)))
− subd (p − Suc 0 ) (chain_boundary p (frag_of (restrict id

(standard_simplex p)))))
= singular_subdivision p (frag_of f )
− frag_extend

(λf . chain_map (Suc (p − Suc 0 )) f
(subd (p − Suc 0 ) (frag_of (restrict id (standard_simplex (p

− Suc 0 ))))))
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(chain_boundary p (frag_of f ))
apply (simp add: singular_subdivision_def chain_map_diff )
apply (clarsimp simp add: chain_boundary_def )
apply (simp add: frag_extend_sum frag_extend_cmul ∗)
done

then show chain_boundary (Suc p) (chain_map (Suc p) f (subd p (frag_of
(restrict id (standard_simplex p)))))

+ frag_extend
(λf . chain_map (Suc (p − Suc 0 )) f

(subd (p − Suc 0 ) (frag_of (restrict id (standard_simplex (p
− Suc 0 ))))))

(chain_boundary p (frag_of f ))
= singular_subdivision p (frag_of f ) − frag_of f

by (simp add: chain_boundary_chain_map [OF scp] chain_homotopic_simplicial_subdivision3
[where q=p] chain_map_diff feqf )

qed
next

case (diff a b)
then show ?case
apply (simp only: k_def singular_chain_diff chain_boundary_diff frag_extend_diff

singular_subdivision_diff )
by (metis (no_types, lifting) add_diff_add diff_add_cancel)

qed (auto simp: k_def )
then show singular_chain (Suc p) X (k p c) chain_boundary (Suc p) (k p c)

+ k (p − Suc 0 ) (chain_boundary p c) = singular_subdivision p c − c
by auto

qed (auto simp: k_def frag_extend_diff )
qed

lemma homologous_rel_singular_subdivision:
assumes singular_relcycle p X T c
shows homologous_rel p X T (singular_subdivision p c) c

proof (cases p = 0 )
case True
with assms show ?thesis

by (auto simp: singular_relcycle_def singular_subdivision_zero)
next

case False
with assms show ?thesis

unfolding homologous_rel_def singular_relboundary singular_relcycle
by (metis One_nat_def Suc_diff_1 chain_homotopic_singular_subdivision

gr_zeroI )
qed
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0.1.17 Excision argument that we keep doing singular sub-
division

lemma singular_subdivision_power_0 [simp]: (singular_subdivision p ^^ n) 0 =
0

by (induction n) auto

lemma singular_subdivision_power_diff :
(singular_subdivision p ^^ n) (a − b) = (singular_subdivision p ^^ n) a −

(singular_subdivision p ^^ n) b
by (induction n) (auto simp: singular_subdivision_diff )

lemma iterated_singular_subdivision:
singular_chain p X c

=⇒ (singular_subdivision p ^^ n) c =
frag_extend
(λf . chain_map p f

((simplicial_subdivision p ^^ n)
(frag_of (restrict id (standard_simplex p))))) c

proof (induction n arbitrary: c)
case 0
then show ?case

unfolding singular_chain_def
proof (induction c rule: frag_induction)

case (one f )
then have restrict f (standard_simplex p) = f

by (simp add: extensional_restrict singular_simplex_def )
then show ?case

by (auto simp: simplex_map_def cong: restrict_cong)
qed (auto simp: frag_extend_diff )

next
case (Suc n)
show ?case

using Suc.prems unfolding singular_chain_def
proof (induction c rule: frag_induction)

case (one f )
then have singular_simplex p X f

by simp
have scp: simplicial_chain p (standard_simplex p)

((simplicial_subdivision p ^^ n) (frag_of (restrict id (standard_simplex
p))))

proof (induction n)
case 0
then show ?case

by (metis funpow_0 order_refl simplicial_chain_of simplicial_simplex_id)
next

case (Suc n)
then show ?case

by (simp add: simplicial_chain_simplicial_subdivision)
qed
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have scnp: simplicial_chain p (standard_simplex p)
((simplicial_subdivision p ^^ n) (frag_of (λx∈standard_simplex p.

x)))
proof (induction n)

case 0
then show ?case

by (metis eq_id_iff funpow_0 order_refl simplicial_chain_of simpli-
cial_simplex_id)

next
case (Suc n)
then show ?case

by (simp add: simplicial_chain_simplicial_subdivision)
qed
have sff : singular_chain p X (frag_of f )

by (simp add: ‹singular_simplex p X f › singular_chain_of )
then show ?case
using Suc.IH [OF sff ] naturality_singular_subdivision [OF simplicial_imp_singular_chain

[OF scp], of f ] singular_subdivision_simplicial_simplex [OF scnp]
by (simp add: singular_chain_of id_def del: restrict_apply)

qed (auto simp: singular_subdivision_power_diff singular_subdivision_diff frag_extend_diff )
qed

lemma chain_homotopic_iterated_singular_subdivision:
obtains h where∧

p. h p 0 = (0 :: ′a chain)∧
p c1 c2 . h p (c1−c2 ) = h p c1 − h p c2∧
p X c. singular_chain p X c =⇒ singular_chain (Suc p) X (h p c)∧
p X c. singular_chain p X c

=⇒ chain_boundary (Suc p) (h p c) + h (p − Suc 0 ) (chain_boundary
p c)

= (singular_subdivision p ^^ n) c − c
proof (induction n arbitrary: thesis)

case 0
show ?case

by (rule 0 [of (λp x. 0 )]) auto
next

case (Suc n)
then obtain k where k:∧

p. k p 0 = (0 :: ′a chain)∧
p c1 c2 . k p (c1−c2 ) = k p c1 − k p c2∧
p X c. singular_chain p X c =⇒ singular_chain (Suc p) X (k p c)∧
p X c. singular_chain p X c

=⇒ chain_boundary (Suc p) (k p c) + k (p − Suc 0 ) (chain_boundary
p c)

= (singular_subdivision p ^^ n) c − c
by metis

obtain h where h:∧
p. h p 0 = (0 :: ′a chain)
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∧
p c1 c2 . h p (c1−c2 ) = h p c1 − h p c2∧
p X c. singular_chain p X c =⇒ singular_chain (Suc p) X (h p c)∧
p X c. singular_chain p X c

=⇒ chain_boundary (Suc p) (h p c) + h (p − Suc 0 ) (chain_boundary
p c) = singular_subdivision p c − c

by (blast intro: chain_homotopic_singular_subdivision)
let ?h = (λp c. singular_subdivision (Suc p) (k p c) + h p c)
show ?case
proof (rule Suc.prems)

fix p X and c :: ′a chain
assume singular_chain p X c
then show singular_chain (Suc p) X (?h p c)

by (simp add: h k singular_chain_add singular_chain_singular_subdivision)
next

fix p :: nat and X :: ′a topology and c :: ′a chain
assume sc: singular_chain p X c
have f5 : chain_boundary (Suc p) (singular_subdivision (Suc p) (k p c)) =

singular_subdivision p (chain_boundary (Suc p) (k p c))
using chain_boundary_singular_subdivision k(3 ) sc by fastforce

have [simp]: singular_subdivision (Suc (p − Suc 0 )) (k (p − Suc 0 ) (chain_boundary
p c)) =

singular_subdivision p (k (p − Suc 0 ) (chain_boundary p c))
proof (cases p)

case 0
then show ?thesis

by (simp add: k chain_boundary_def )
qed auto
show chain_boundary (Suc p) (?h p c) + ?h (p − Suc 0 ) (chain_boundary p

c) = (singular_subdivision p ^^ Suc n) c − c
using chain_boundary_singular_subdivision [of Suc p X ]
apply (simp add: chain_boundary_add f5 h k algebra_simps)
by (smt (verit, del_insts) add.commute add.left_commute diff_add_cancel

h(4 ) k(4 ) sc singular_subdivision_add)
qed (auto simp: k h singular_subdivision_diff )

qed

lemma llemma:
assumes p: standard_simplex p ⊆

⋃
C

and C:
∧

U . U ∈ C =⇒ openin (powertop_real UNIV ) U
obtains d where 0 < d∧

K . [[K ⊆ standard_simplex p;∧
x y i. [[i ≤ p; x ∈ K ; y ∈ K ]] =⇒ |x i − y i| ≤ d]]

=⇒ ∃U . U ∈ C ∧ K ⊆ U
proof −

have ∃ e U . 0 < e ∧ U ∈ C ∧ x ∈ U ∧
(∀ y. (∀ i≤p. |y i − x i| ≤ 2 ∗ e) ∧ (∀ i>p. y i = 0 ) −→ y ∈ U )

if x: x ∈ standard_simplex p for x
proof−

obtain U where U : U ∈ C x ∈ U
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using x p by blast
then obtain V where finV : finite {i. V i 6= UNIV } and openV :

∧
i. open

(V i)
and xV : x ∈ PiE UNIV V and UV : PiE UNIV V ⊆ U

using C unfolding openin_product_topology_alt by force
have xVi: x i ∈ V i for i

using PiE_mem [OF xV ] by simp
have

∧
i. ∃ e>0 . ∀ x ′. |x ′ − x i| < e −→ x ′ ∈ V i

by (rule openV [unfolded open_real, rule_format, OF xVi])
then obtain d where d:

∧
i. d i > 0 and dV :

∧
i x ′. |x ′ − x i| < d i =⇒ x ′

∈ V i
by metis

define e where e ≡ Inf (insert 1 (d ‘ {i. V i 6= UNIV })) / 3
have ed3 : e ≤ d i / 3 if V i 6= UNIV for i

using that finV by (auto simp: e_def intro: cInf_le_finite)
show ∃ e U . 0 < e ∧ U ∈ C ∧ x ∈ U ∧

(∀ y. (∀ i≤p. |y i − x i| ≤ 2 ∗ e) ∧ (∀ i>p. y i = 0 ) −→ y ∈ U )
proof (intro exI conjI allI impI )

show e > 0
using d finV by (simp add: e_def finite_less_Inf_iff )

fix y assume y: (∀ i≤p. |y i − x i| ≤ 2 ∗ e) ∧ (∀ i>p. y i = 0 )
have y ∈ PiE UNIV V
proof

show y i ∈ V i for i
proof (cases p < i)

case True
then show ?thesis
by (metis (mono_tags, lifting) y x mem_Collect_eq standard_simplex_def

xVi)
next

case False show ?thesis
proof (cases V i = UNIV )

case False show ?thesis
proof (rule dV )

have |y i − x i| ≤ 2 ∗ e
using y ‹¬ p < i› by simp

also have . . . < d i
using ed3 [OF False] ‹e > 0 › by simp

finally show |y i − x i| < d i .
qed

qed auto
qed

qed auto
with UV show y ∈ U

by blast
qed (use U in auto)

qed
then obtain e U where

eU :
∧

x. x ∈ standard_simplex p =⇒
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0 < e x ∧ U x ∈ C ∧ x ∈ U x
and UI :

∧
x y. [[x ∈ standard_simplex p;

∧
i. i ≤ p =⇒ |y i − x i| ≤ 2 ∗ e

x;
∧

i. i > p =⇒ y i = 0 ]]
=⇒ y ∈ U x

by metis
define F where F ≡ λx. PiE UNIV (λi. if i ≤ p then {x i − e x<..<x i + e

x} else UNIV )
have ∀S ∈ F ‘ standard_simplex p. openin (powertop_real UNIV ) S

by (simp add: F_def openin_PiE_gen)
moreover have pF : standard_simplex p ⊆

⋃
(F ‘ standard_simplex p)

by (force simp: F_def PiE_iff eU )
ultimately have ∃F . finite F ∧ F ⊆ F ‘ standard_simplex p ∧ standard_simplex

p ⊆
⋃
F

using compactin_standard_simplex [of p]
unfolding compactin_def by force

then obtain S where finite S and ssp: S ⊆ standard_simplex p standard_simplex
p ⊆

⋃
(F ‘ S)

unfolding ex_finite_subset_image by (auto simp: ex_finite_subset_image)
then have S 6= {}

by (auto simp: nonempty_standard_simplex)
show ?thesis
proof

show Inf (e ‘ S) > 0
using ‹finite S› ‹S 6= {}› ssp eU by (auto simp: finite_less_Inf_iff )

fix k :: (nat ⇒ real) set
assume k: k ⊆ standard_simplex p

and kle:
∧

x y i. [[i ≤ p; x ∈ k; y ∈ k]] =⇒ |x i − y i| ≤ Inf (e ‘ S)
show ∃U . U ∈ C ∧ k ⊆ U
proof (cases k = {})

case True
then show ?thesis

using ‹S 6= {}› eU equals0I ssp(1 ) subset_eq p by auto
next

case False
with k ssp obtain x a where x ∈ k x ∈ standard_simplex p

and a: a ∈ S and Fa: x ∈ F a
by blast

then have le_ea:
∧

i. i ≤ p =⇒ abs (x i − a i) < e a
by (simp add: F_def PiE_iff if_distrib abs_diff_less_iff cong: if_cong)

show ?thesis
proof (intro exI conjI )

show U a ∈ C
using a eU ssp(1 ) by auto

show k ⊆ U a
proof clarify

fix y assume y ∈ k
with k have y: y ∈ standard_simplex p

by blast
show y ∈ U a
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proof (rule UI )
show a ∈ standard_simplex p

using a ssp(1 ) by auto
fix i :: nat
assume i ≤ p
then have |x i − y i| ≤ e a

by (meson kle [OF ‹i ≤ p›] a ‹finite S› ‹x ∈ k› ‹y ∈ k› cInf_le_finite
finite_imageI imageI order_trans)

then show |y i − a i| ≤ 2 ∗ e a
using le_ea [OF ‹i ≤ p›] by linarith

next
fix i assume p < i
then show y i = 0

using standard_simplex_def y by auto
qed

qed
qed

qed
qed

qed

proposition sufficient_iterated_singular_subdivision_exists:
assumes C:

∧
U . U ∈ C =⇒ openin X U

and X : topspace X ⊆
⋃
C

and p: singular_chain p X c
obtains n where

∧
m f . [[n ≤ m; f ∈ Poly_Mapping.keys ((singular_subdivision

p ^^ m) c)]]
=⇒ ∃V ∈ C. f ∈ (standard_simplex p) → V

proof (cases c = 0 )
case False
then show ?thesis
proof (cases topspace X = {})

case True
show ?thesis

using p that by (force simp: singular_chain_empty True)
next

case False
show ?thesis
proof (cases C = {})

case True
then show ?thesis

using False X by blast
next

case False
have ∃ e. 0 < e ∧

(∀K . K ⊆ standard_simplex p −→ (∀ x y i. x ∈ K ∧ y ∈ K ∧ i ≤ p
−→ |x i − y i| ≤ e)

−→ (∃V . V ∈ C ∧ f ∈ K → V ))
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if f : f ∈ Poly_Mapping.keys c for f
proof −

have ssf : singular_simplex p X f
using f p by (auto simp: singular_chain_def )

then have fp:
∧

x. x ∈ standard_simplex p =⇒ f x ∈ topspace X
by (auto simp: singular_simplex_def image_subset_iff dest: continu-

ous_map_image_subset_topspace)
have ∃T . openin (powertop_real UNIV ) T ∧

standard_simplex p ∩ f −‘ V = T ∩ standard_simplex p
if V : V ∈ C for V

proof −
have singular_simplex p X f

using p f unfolding singular_chain_def by blast
then have openin (subtopology (powertop_real UNIV ) (standard_simplex

p))
{x ∈ standard_simplex p. f x ∈ V }

using C [OF ‹V ∈ C›] by (simp add: singular_simplex_def continu-
ous_map_def )

moreover have standard_simplex p ∩ f −‘ V = {x ∈ standard_simplex
p. f x ∈ V }

by blast
ultimately show ?thesis

by (simp add: openin_subtopology)
qed
then obtain g where gope:

∧
V . V ∈ C =⇒ openin (powertop_real UNIV )

(g V )
and geq:

∧
V . V ∈ C =⇒ standard_simplex p ∩ f −‘ V = g V ∩

standard_simplex p
by metis

obtain d where 0 < d
and d:

∧
K . [[K ⊆ standard_simplex p;

∧
x y i. [[i ≤ p; x ∈ K ; y ∈ K ]]

=⇒ |x i − y i| ≤ d]]
=⇒ ∃U . U ∈ g ‘ C ∧ K ⊆ U

proof (rule llemma [of p g ‘ C])
show standard_simplex p ⊆

⋃
(g ‘ C)

using geq X fp by (fastforce simp add:)
show openin (powertop_real UNIV ) U if U ∈ g ‘ C for U :: (nat ⇒ real)

set
using gope that by blast

qed auto
show ?thesis
proof (rule exI , intro allI conjI impI )

fix K :: (nat ⇒ real) set
assume K : K ⊆ standard_simplex p

and Kd: ∀ x y i. x ∈ K ∧ y ∈ K ∧ i ≤ p −→ |x i − y i| ≤ d
then have ∃U . U ∈ g ‘ C ∧ K ⊆ U

using d [OF K ] by auto
then show ∃V . V ∈ C ∧ f ∈ K → V

using K geq by fastforce
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qed (rule ‹d > 0 ›)
qed
then obtain ψ where epos: ∀ f ∈ Poly_Mapping.keys c. 0 < ψ f

and e:
∧

f K . [[f ∈ Poly_Mapping.keys c; K ⊆ standard_simplex p;∧
x y i. x ∈ K ∧ y ∈ K ∧ i ≤ p =⇒ |x i − y i| ≤ ψ f ]]

=⇒ ∃V . V ∈ C ∧ f ∈ K → V
by metis

obtain d where 0 < d
and d:

∧
f K . [[f ∈ Poly_Mapping.keys c; K ⊆ standard_simplex p;∧

x y i. [[x ∈ K ; y ∈ K ; i ≤ p]] =⇒ |x i − y i| ≤ d]]
=⇒ ∃V . V ∈ C ∧ f ∈ K → V

proof
show Inf (ψ ‘ Poly_Mapping.keys c) > 0

by (simp add: finite_less_Inf_iff ‹c 6= 0 › epos)
fix f K
assume fK : f ∈ Poly_Mapping.keys c K ⊆ standard_simplex p

and le:
∧

x y i. [[x ∈ K ; y ∈ K ; i ≤ p]] =⇒ |x i − y i| ≤ Inf (ψ ‘
Poly_Mapping.keys c)

then have lef : Inf (ψ ‘ Poly_Mapping.keys c) ≤ ψ f
by (auto intro: cInf_le_finite)

show ∃V . V ∈ C ∧ f ∈ K → V
using le lef by (blast intro: dual_order .trans e [OF fK ])

qed
let ?d = λm. (simplicial_subdivision p ^^ m) (frag_of (restrict id (standard_simplex

p)))
obtain n where n: (p / (Suc p)) ^ n < d

using real_arch_pow_inv ‹0 < d› by fastforce
show ?thesis
proof

fix m h
assume n ≤ m and h ∈ Poly_Mapping.keys ((singular_subdivision p ^^

m) c)
then obtain f where f ∈ Poly_Mapping.keys c h ∈ Poly_Mapping.keys

(chain_map p f (?d m))
using subsetD [OF keys_frag_extend] iterated_singular_subdivision [OF

p, of m] by force
then obtain g where g: g ∈ Poly_Mapping.keys (?d m) and heq: h =

restrict (f ◦ g) (standard_simplex p)
using keys_frag_extend by (force simp: chain_map_def simplex_map_def )
have xx: simplicial_chain p (standard_simplex p) (?d n) ∧

(∀ f ∈ Poly_Mapping.keys(?d n). ∀ x ∈ standard_simplex p. ∀ y ∈
standard_simplex p.

|f x i − f y i| ≤ (p / (Suc p)) ^ n)
for n i

proof (induction n)
case 0
have simplicial_simplex p (standard_simplex p) (λa∈standard_simplex p.

a)
by (metis eq_id_iff order_refl simplicial_simplex_id)
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moreover have (∀ x∈standard_simplex p. ∀ y∈standard_simplex p. |x i −
y i| ≤ 1 )

unfolding standard_simplex_def
by (auto simp: abs_if dest!: spec [where x=i])

ultimately show ?case
unfolding power_0 funpow_0 by simp

next
case (Suc n)
show ?case

unfolding power_Suc funpow.simps o_def
proof (intro conjI ballI )

show simplicial_chain p (standard_simplex p) (simplicial_subdivision p
(?d n))

by (simp add: Suc simplicial_chain_simplicial_subdivision)
show |f x i − f y i| ≤ real p / real (Suc p) ∗ (real p / real (Suc p)) ^ n

if f ∈ Poly_Mapping.keys (simplicial_subdivision p (?d n))
and x ∈ standard_simplex p and y ∈ standard_simplex p for f x y

using Suc that by (blast intro: simplicial_subdivision_shrinks)
qed

qed
have g ‘ standard_simplex p ⊆ standard_simplex p

using g xx [of m] unfolding simplicial_chain_def simplicial_simplex by
auto

moreover
have |g x i − g y i| ≤ d if i ≤ p x ∈ standard_simplex p y ∈ standard_simplex

p for x y i
proof −

have |g x i − g y i| ≤ (p / (Suc p)) ^ m
using g xx [of m] that by blast

also have . . . ≤ (p / (Suc p)) ^ n
by (auto intro: power_decreasing [OF ‹n ≤ m›])

finally show ?thesis using n by simp
qed
then have |x i − y i| ≤ d

if x ∈ g ‘ (standard_simplex p) y ∈ g ‘ (standard_simplex p) i ≤ p for i
x y

using that by blast
ultimately show ∃V∈C. h ∈ standard_simplex p → V

using ‹f ∈ Poly_Mapping.keys c› d [of f g ‘ standard_simplex p]
using heq image_subset_iff_funcset by fastforce

qed
qed

qed
qed force

lemma small_homologous_rel_relcycle_exists:
assumes C:

∧
U . U ∈ C =⇒ openin X U

and X : topspace X ⊆
⋃
C
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and p: singular_relcycle p X S c
obtains c ′ where singular_relcycle p X S c ′ homologous_rel p X S c c ′∧

f . f ∈ Poly_Mapping.keys c ′ =⇒ ∃V ∈ C. f ∈ (standard_simplex
p) → V
proof −

have singular_chain p X c
(chain_boundary p c, 0 ) ∈ (mod_subset (p − Suc 0 ) (subtopology X S))

using p unfolding singular_relcycle_def by auto
then obtain n where n:

∧
m f . [[n ≤ m; f ∈ Poly_Mapping.keys ((singular_subdivision

p ^^ m) c)]]
=⇒ ∃V ∈ C. f ∈ (standard_simplex p) → V

by (blast intro: sufficient_iterated_singular_subdivision_exists [OF C X ])
let ?c ′ = (singular_subdivision p ^^ n) c
show ?thesis
proof

show homologous_rel p X S c ?c ′

proof (induction n)
case 0
then show ?case by auto

next
case (Suc n)
then show ?case
by simp (metis homologous_rel_eq p homologous_rel_singular_subdivision

homologous_rel_singular_relcycle)
qed
then show singular_relcycle p X S ?c ′

by (metis homologous_rel_singular_relcycle p)
next

fix f :: (nat ⇒ real) ⇒ ′a
assume f ∈ Poly_Mapping.keys ?c ′

then show ∃V∈C. f ∈ (standard_simplex p) → V
by (rule n [OF order_refl])

qed
qed

lemma excised_chain_exists:
fixes S :: ′a set
assumes X closure_of U ⊆ X interior_of T T ⊆ S singular_chain p (subtopology

X S) c
obtains n d e where singular_chain p (subtopology X (S − U )) d

singular_chain p (subtopology X T ) e
(singular_subdivision p ^^ n) c = d + e

proof −
have ∗: ∃n d e. singular_chain p (subtopology X (S − U )) d ∧

singular_chain p (subtopology X T ) e ∧
(singular_subdivision p ^^ n) c = d + e

if c: singular_chain p (subtopology X S) c
and X : X closure_of U ⊆ X interior_of T U ⊆ topspace X and S : T ⊆ S

S ⊆ topspace X
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for p X c S and T U :: ′a set
proof −
obtain n where n:

∧
m f . [[n ≤ m; f ∈ Poly_Mapping.keys ((singular_subdivision

p ^^ m) c)]]
=⇒ ∃V ∈ {S ∩ X interior_of T , S − X closure_of U}. f

∈ (standard_simplex p) → V
apply (rule sufficient_iterated_singular_subdivision_exists

[of {S ∩ X interior_of T , S − X closure_of U}])
using X S c

by (auto simp: topspace_subtopology openin_subtopology_Int2 openin_subtopology_diff_closed)
let ?c ′ = λn. (singular_subdivision p ^^ n) c
have singular_chain p (subtopology X S) (?c ′ m) for m

by (induction m) (auto simp: singular_chain_singular_subdivision c)
then have scp: singular_chain p (subtopology X S) (?c ′ n) .

have SS : Poly_Mapping.keys (?c ′ n) ⊆ singular_simplex_set p (subtopology X
(S − U ))

∪ singular_simplex_set p (subtopology X T )
proof (clarsimp)

fix f
assume f : f ∈ Poly_Mapping.keys ((singular_subdivision p ^^ n) c)

and non: ¬ singular_simplex p (subtopology X T ) f
show singular_simplex p (subtopology X (S − U )) f

using n [OF order_refl f ] scp f non closure_of_subset [OF ‹U ⊆ topspace
X›] interior_of_subset [of X T ]

by (fastforce simp: image_subset_iff singular_simplex_subtopology singu-
lar_chain_def )

qed
show ?thesis

unfolding singular_chain_def using frag_split [OF SS ] by metis
qed
have (subtopology X (topspace X ∩ S)) = (subtopology X S)

by (metis subtopology_subtopology subtopology_topspace)
with assms have c: singular_chain p (subtopology X (topspace X ∩ S)) c

by simp
have Xsub: X closure_of (topspace X ∩ U ) ⊆ X interior_of (topspace X ∩ T )

using assms closure_of_restrict interior_of_restrict by fastforce
obtain n d e where

d: singular_chain p (subtopology X (topspace X ∩ S − topspace X ∩ U )) d
and e: singular_chain p (subtopology X (topspace X ∩ T )) e
and de: (singular_subdivision p ^^ n) c = d + e
using ∗[OF c Xsub, simplified] assms by force

show thesis
proof

show singular_chain p (subtopology X (S − U )) d
by (metis d Diff_Int_distrib inf .cobounded2 singular_chain_mono)

show singular_chain p (subtopology X T ) e
by (metis e inf .cobounded2 singular_chain_mono)

show (singular_subdivision p ^^ n) c = d + e
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by (rule de)
qed

qed

lemma excised_relcycle_exists:
fixes S :: ′a set
assumes X : X closure_of U ⊆ X interior_of T and T ⊆ S

and c: singular_relcycle p (subtopology X S) T c
obtains c ′ where singular_relcycle p (subtopology X (S − U )) (T − U ) c ′

homologous_rel p (subtopology X S) T c c ′

proof −
have [simp]: (S − U ) ∩ (T − U ) = T − U S ∩ T = T

using ‹T ⊆ S› by auto
have scc: singular_chain p (subtopology X S) c

and scp1 : singular_chain (p − Suc 0 ) (subtopology X T ) (chain_boundary p
c)

using c by (auto simp: singular_relcycle_def mod_subset_def subtopology_subtopology)
obtain n d e where d: singular_chain p (subtopology X (S − U )) d

and e: singular_chain p (subtopology X T ) e
and de: (singular_subdivision p ^^ n) c = d + e
using excised_chain_exists [OF X ‹T ⊆ S› scc] .

have scSUd: singular_chain (p − Suc 0 ) (subtopology X (S − U )) (chain_boundary
p d)

by (simp add: singular_chain_boundary d)
have sccn: singular_chain p (subtopology X S) ((singular_subdivision p ^^ n) c)

for n
by (induction n) (auto simp: singular_chain_singular_subdivision scc)

have singular_chain (p − Suc 0 ) (subtopology X T ) (chain_boundary p ((singular_subdivision
p ^^ n) c))

proof (induction n)
case (Suc n)
then show ?case
by (simp add: singular_chain_singular_subdivision chain_boundary_singular_subdivision

[OF sccn])
qed (auto simp: scp1 )
then have singular_chain (p − Suc 0 ) (subtopology X T ) (chain_boundary p

((singular_subdivision p ^^ n) c − e))
by (simp add: chain_boundary_diff singular_chain_diff singular_chain_boundary

e)
with de have scTd: singular_chain (p − Suc 0 ) (subtopology X T ) (chain_boundary

p d)
by simp

show thesis
proof

have singular_chain (p − Suc 0 ) X (chain_boundary p d)
using scTd singular_chain_subtopology by blast

with scSUd scTd have singular_chain (p − Suc 0 ) (subtopology X (T − U ))
(chain_boundary p d)
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by (fastforce simp add: singular_chain_subtopology)
then show singular_relcycle p (subtopology X (S − U )) (T − U ) d
by (auto simp: singular_relcycle_def mod_subset_def subtopology_subtopology

d)
have homologous_rel p (subtopology X S) T (c−0 ) ((singular_subdivision p ^^

n) c − e)
proof (rule homologous_rel_diff )
show homologous_rel p (subtopology X S) T c ((singular_subdivision p ^^ n)

c)
proof (induction n)

case (Suc n)
then show ?case

apply simp
by (metis c homologous_rel_eq homologous_rel_singular_relcycle_1

homologous_rel_singular_subdivision)
qed auto
show homologous_rel p (subtopology X S) T 0 e

unfolding homologous_rel_def using e
by (intro singular_relboundary_diff singular_chain_imp_relboundary; simp

add: subtopology_subtopology)
qed
with de show homologous_rel p (subtopology X S) T c d

by simp
qed

qed

0.1.18 Homotopy invariance
theorem homotopic_imp_homologous_rel_chain_maps:
assumes hom: homotopic_with (λh. h ∈ T → V ) S U f g and c: singular_relcycle

p S T c
shows homologous_rel p U V (chain_map p f c) (chain_map p g c)

proof −
note sum.atMost_Suc [simp del]
have contf : continuous_map S U f and contg: continuous_map S U g

using homotopic_with_imp_continuous_maps [OF hom] by metis+
obtain h where conth: continuous_map (prod_topology (top_of_set {0 ..1 ::real})

S) U h
and h0 :

∧
x. h(0 , x) = f x

and h1 :
∧

x. h(1 , x) = g x
and hV :

∧
t x. [[0 ≤ t; t ≤ 1 ; x ∈ T ]] =⇒ h(t,x) ∈ V

using hom by (fastforce simp: homotopic_with_def )
define vv where vv ≡ λj i. if i = Suc j then 1 else (0 ::real)
define ww where ww ≡ λj i. if i=0 ∨ i = Suc j then 1 else (0 ::real)
define simp where simp ≡ λq i. oriented_simplex (Suc q) (λj. if j ≤ i then vv

j else ww(j −1 ))
define pr where pr ≡ λq c.

∑
i≤q. frag_cmul ((−1 ) ^ i)

(frag_of (simplex_map (Suc q) (λz. h(z 0 , c(z ◦
Suc))) (simp q i)))



Simplices.thy 69

have ss_ss: simplicial_simplex (Suc q) ({x. x 0 ∈ {0 ..1} ∧ (x ◦ Suc) ∈ stan-
dard_simplex q}) (simp q i)

if i ≤ q for q i
proof −

have (
∑

j≤Suc q. (if j ≤ i then vv j 0 else ww (j −1 ) 0 ) ∗ x j) ∈ {0 ..1}
if x ∈ standard_simplex (Suc q) for x

proof −
have (

∑
j≤Suc q. if j ≤ i then 0 else x j) ≤ sum x {..Suc q}

using that unfolding standard_simplex_def
by (force intro!: sum_mono)

with ‹i ≤ q› that show ?thesis
by (simp add: vv_def ww_def standard_simplex_def if_distrib [of λu. u ∗

_] sum_nonneg cong: if_cong)
qed
moreover
have (λk.

∑
j≤Suc q. (if j ≤ i then vv j k else ww (j −1 ) k) ∗ x j) ◦ Suc ∈

standard_simplex q
if x ∈ standard_simplex (Suc q) for x

proof −
have card: ({..q} ∩ {k. Suc k = j}) = {j−1} if 0 < j j ≤ Suc q for j

using that by auto
have eq: (

∑
j≤Suc q.

∑
k≤q. if j ≤ i then if k = j then x j else 0 else if Suc

k = j then x j else 0 )
= (

∑
j≤Suc q. x j)

by (rule sum.cong [OF refl]) (use ‹i ≤ q› in ‹simp add: sum.If_cases card›)
have (

∑
j≤Suc q. if j ≤ i then if k = j then x j else 0 else if Suc k = j then

x j else 0 )
≤ sum x {..Suc q} for k

using that unfolding standard_simplex_def
by (force intro!: sum_mono)

then show ?thesis
using ‹i ≤ q› that
by (simp add: vv_def ww_def standard_simplex_def if_distrib [of λu. u ∗

_] sum_nonneg
sum.swap [where A = atMost q] eq cong: if_cong)

qed
ultimately show ?thesis
by (simp add: that simplicial_simplex_oriented_simplex simp_def image_subset_iff

if_distribR)
qed
obtain prism where prism:

∧
q. prism q 0 = 0∧

q c. singular_chain q S c =⇒ singular_chain (Suc q) U (prism q c)∧
q c. singular_chain q (subtopology S T ) c

=⇒ singular_chain (Suc q) (subtopology U V ) (prism q c)∧
q c. singular_chain q S c

=⇒ chain_boundary (Suc q) (prism q c) =
chain_map q g c − chain_map q f c − prism (q −1 )

(chain_boundary q c)
proof
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show (frag_extend ◦ pr) q 0 = 0 for q
by (simp add: pr_def )

next
show singular_chain (Suc q) U ((frag_extend ◦ pr) q c)

if singular_chain q S c for q c
using that [unfolded singular_chain_def ]

proof (induction c rule: frag_induction)
case (one m)
show ?case
proof (simp add: pr_def , intro singular_chain_cmul singular_chain_sum)

fix i :: nat
assume i ∈ {..q}
define X where X = subtopology (powertop_real UNIV ) {x. x 0 ∈ {0 ..1}

∧ (x ◦ Suc) ∈ standard_simplex q}
show singular_chain (Suc q) U

(frag_of (simplex_map (Suc q) (λz. h (z 0 , m (z ◦ Suc))) (simp q
i)))

unfolding singular_chain_of
proof (rule singular_simplex_simplex_map)

show singular_simplex (Suc q) X (simp q i)
unfolding X_def using ‹i ∈ {..q}› simplicial_imp_singular_simplex

ss_ss by blast
have 0 : continuous_map X (top_of_set {0 ..1}) (λx. x 0 )
unfolding continuous_map_in_subtopology topspace_subtopology X_def

by (auto intro: continuous_map_product_projection continuous_map_from_subtopology)
have 1 : continuous_map X S (m ◦ (λx j. x (Suc j)))
proof (rule continuous_map_compose)

have continuous_map (powertop_real UNIV ) (powertop_real UNIV )
(λx j. x (Suc j))

by (auto intro: continuous_map_product_projection)
then show continuous_map X (subtopology (powertop_real UNIV )

(standard_simplex q)) (λx j. x (Suc j))
unfolding X_def o_def

by (auto simp: continuous_map_in_subtopology intro: continu-
ous_map_from_subtopology continuous_map_product_projection)

qed (use one in ‹simp add: singular_simplex_def ›)
show continuous_map X U (λz. h (z 0 , m (z ◦ Suc)))

apply (rule continuous_map_compose [unfolded o_def , OF _ conth])
using 0 1 by (simp add: continuous_map_pairwise o_def )

qed
qed

next
case (diff a b)
then show ?case

by (simp add: frag_extend_diff singular_chain_diff )
qed auto

next
show singular_chain (Suc q) (subtopology U V ) ((frag_extend ◦ pr) q c)

if singular_chain q (subtopology S T ) c for q c
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using that [unfolded singular_chain_def ]
proof (induction c rule: frag_induction)

case (one m)
show ?case
proof (simp add: pr_def , intro singular_chain_cmul singular_chain_sum)

fix i :: nat
assume i ∈ {..q}
define X where X = subtopology (powertop_real UNIV ) {x. x 0 ∈ {0 ..1}

∧ (x ◦ Suc) ∈ standard_simplex q}
show singular_chain (Suc q) (subtopology U V )

(frag_of (simplex_map (Suc q) (λz. h (z 0 , m (z ◦ Suc))) (simp q
i)))

unfolding singular_chain_of
proof (rule singular_simplex_simplex_map)

show singular_simplex (Suc q) X (simp q i)
unfolding X_def using ‹i ∈ {..q}› simplicial_imp_singular_simplex

ss_ss by blast
have 0 : continuous_map X (top_of_set {0 ..1}) (λx. x 0 )
unfolding continuous_map_in_subtopology topspace_subtopology X_def

by (auto intro: continuous_map_product_projection continuous_map_from_subtopology)
have 1 : continuous_map X (subtopology S T ) (m ◦ (λx j. x (Suc j)))
proof (rule continuous_map_compose)

have continuous_map (powertop_real UNIV ) (powertop_real UNIV )
(λx j. x (Suc j))

by (auto intro: continuous_map_product_projection)
then show continuous_map X (subtopology (powertop_real UNIV )

(standard_simplex q)) (λx j. x (Suc j))
unfolding X_def o_def

by (auto simp: continuous_map_in_subtopology intro: continu-
ous_map_from_subtopology continuous_map_product_projection)

show continuous_map (subtopology (powertop_real UNIV ) (standard_simplex
q)) (subtopology S T ) m

using one continuous_map_into_fulltopology by (auto simp: singu-
lar_simplex_def )

qed
have continuous_map X (subtopology U V ) (h ◦ (λz. (z 0 , m (z ◦ Suc))))
proof (rule continuous_map_compose)

show continuous_map X (prod_topology (top_of_set {0 ..1 ::real})
(subtopology S T )) (λz. (z 0 , m (z ◦ Suc)))

using 0 1 by (simp add: continuous_map_pairwise o_def )
have continuous_map (subtopology (prod_topology euclideanreal S)

({0 ..1} × T )) U h
by (metis conth continuous_map_from_subtopology subtopology_Times

subtopology_topspace)
with hV show continuous_map (prod_topology (top_of_set {0 ..1 ::real})

(subtopology S T )) (subtopology U V ) h
by (force simp: topspace_subtopology continuous_map_in_subtopology

subtopology_restrict subtopology_Times)
qed
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then show continuous_map X (subtopology U V ) (λz. h (z 0 , m (z ◦
Suc)))

by (simp add: o_def )
qed

qed
next

case (diff a b)
then show ?case

by (metis comp_apply frag_extend_diff singular_chain_diff )
qed auto

next
show chain_boundary (Suc q) ((frag_extend ◦ pr) q c) =

chain_map q g c − chain_map q f c − (frag_extend ◦ pr) (q −1 )
(chain_boundary q c)

if singular_chain q S c for q c
using that [unfolded singular_chain_def ]

proof (induction c rule: frag_induction)
case (one m)
have eq2 : Sigma S T = (λi. (i,i)) ‘ {i ∈ S . i ∈ T i} ∪ (Sigma S (λi. T i −

{i})) for S :: nat set and T
by force

have 1 : (
∑

(i,j)∈(λi. (i, i)) ‘ {i. i ≤ q ∧ i ≤ Suc q}.
frag_cmul (((−1 ) ^ i) ∗ (−1 ) ^ j)

(frag_of
(singular_face (Suc q) j
(simplex_map (Suc q) (λz. h (z 0 , m (z ◦ Suc))) (simp q i)))))

+ (
∑

(i,j)∈(λi. (i, i)) ‘ {i. i ≤ q}.
frag_cmul (− ((−1 ) ^ i ∗ (−1 ) ^ j))

(frag_of
(singular_face (Suc q) (Suc j)

(simplex_map (Suc q) (λz. h (z 0 , m (z ◦ Suc))) (simp q
i)))))

= frag_of (simplex_map q g m) − frag_of (simplex_map q f m)
proof −

have restrict ((λz. h (z 0 , m (z ◦ Suc))) ◦ (simp q 0 ◦ simplical_face 0 ))
(standard_simplex q)

= restrict (g ◦ m) (standard_simplex q)
proof (rule restrict_ext)

fix x
assume x: x ∈ standard_simplex q
have (

∑
j≤Suc q. if j = 0 then 0 else x (j − Suc 0 )) = (

∑
j≤q. x j)

by (simp add: sum.atMost_Suc_shift)
with x have simp q 0 (simplical_face 0 x) 0 = 1

apply (simp add: oriented_simplex_def simp_def simplical_face_in_standard_simplex)
apply (simp add: simplical_face_def if_distrib ww_def standard_simplex_def

cong: if_cong)
done

moreover
have (λn. if n ≤ q then x n else 0 ) = x
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using standard_simplex_def x by auto
then have (λn. simp q 0 (simplical_face 0 x) (Suc n)) = x

unfolding oriented_simplex_def simp_def ww_def using x
apply (simp add: simplical_face_in_standard_simplex)
apply (simp add: simplical_face_def if_distrib)
apply (simp add: if_distribR if_distrib cong: if_cong)
done

ultimately show ((λz. h (z 0 , m (z ◦ Suc))) ◦ (simp q 0 ◦ simplical_face
0 )) x = (g ◦ m) x

by (simp add: o_def h1 )
qed
then have a: frag_of (singular_face (Suc q) 0 (simplex_map (Suc q) (λz.

h (z 0 , m (z ◦ Suc))) (simp q 0 )))
= frag_of (simplex_map q g m)

by (simp add: singular_face_simplex_map) (simp add: simplex_map_def )
have restrict ((λz. h (z 0 , m (z ◦ Suc))) ◦ (simp q q ◦ simplical_face (Suc

q))) (standard_simplex q)
= restrict (f ◦ m) (standard_simplex q)

proof (rule restrict_ext)
fix x
assume x: x ∈ standard_simplex q
then have simp q q (simplical_face (Suc q) x) 0 = 0

unfolding oriented_simplex_def simp_def
by (simp add: simplical_face_in_standard_simplex sum.atMost_Suc)

(simp add: simplical_face_def vv_def )
moreover have (λn. simp q q (simplical_face (Suc q) x) (Suc n)) = x

unfolding oriented_simplex_def simp_def vv_def using x
apply (simp add: simplical_face_in_standard_simplex)

apply (force simp: standard_simplex_def simplical_face_def if_distribR
if_distrib [of λx. x ∗ _] sum.atMost_Suc cong: if_cong)

done
ultimately show ((λz. h (z 0 , m (z ◦ Suc))) ◦ (simp q q ◦ simplical_face

(Suc q))) x = (f ◦ m) x
by (simp add: o_def h0 )

qed
then have b: frag_of (singular_face (Suc q) (Suc q)

(simplex_map (Suc q) (λz. h (z 0 , m (z ◦ Suc))) (simp q q)))
= frag_of (simplex_map q f m)

by (simp add: singular_face_simplex_map) (simp add: simplex_map_def )
have sfeq: simplex_map q (λz. h (z 0 , m (z ◦ Suc))) (simp q (Suc i) ◦

simplical_face (Suc i))
= simplex_map q (λz. h (z 0 , m (z ◦ Suc))) (simp q i ◦ simplical_face

(Suc i))
if i < q for i
unfolding simplex_map_def

proof (rule restrict_ext)
fix x
assume x ∈ standard_simplex q

then have (simp q (Suc i) ◦ simplical_face (Suc i)) x = (simp q i ◦
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simplical_face (Suc i)) x
unfolding oriented_simplex_def simp_def simplical_face_def
by (force intro: sum.cong)

then show ((λz. h (z 0 , m (z ◦ Suc))) ◦ (simp q (Suc i) ◦ simplical_face
(Suc i))) x

= ((λz. h (z 0 , m (z ◦ Suc))) ◦ (simp q i ◦ simplical_face (Suc i))) x
by simp

qed
have eqq: {i. i ≤ q ∧ i ≤ Suc q} = {..q}

by force
have qeq: {..q} = insert 0 ((λi. Suc i) ‘ {i. i < q}) {i. i ≤ q} = insert q

{i. i < q}
using le_imp_less_Suc less_Suc_eq_0_disj by auto

show ?thesis
using a b
apply (simp add: sum.reindex inj_on_def eqq)

apply (simp add: qeq sum.insert_if sum.reindex sum_negf singular_face_simplex_map
sfeq)

done
qed
have 2 : (

∑
(i,j)∈(SIGMA i:{..q}. {0 ..min (Suc q) i} − {i}).
frag_cmul ((−1 ) ^ i ∗ (−1 ) ^ j)
(frag_of
(singular_face (Suc q) j
(simplex_map (Suc q) (λz. h (z 0 , m (z ◦ Suc))) (simp q i)))))

+ (
∑

(i,j)∈(SIGMA i:{..q}. {i..q} − {i}).
frag_cmul (− ((−1 ) ^ i ∗ (−1 ) ^ j))
(frag_of
(singular_face (Suc q) (Suc j)
(simplex_map (Suc q) (λz. h (z 0 , m (z ◦ Suc))) (simp q i)))))

= − frag_extend (pr (q − Suc 0 )) (chain_boundary q (frag_of m))
proof (cases q=0 )

case True
then show ?thesis

by (simp add: chain_boundary_def flip: sum.Sigma)
next

case False
have eq: {..q − Suc 0} × {..q} = Sigma {..q − Suc 0} (λi. {0 ..min q i})

∪ Sigma {..q} (λi. {i<..q})
by force

have I : (
∑

(i,j)∈(SIGMA i:{..q}. {0 ..min (Suc q) i} − {i}).
frag_cmul ((−1 ) ^ (i + j))
(frag_of
(singular_face (Suc q) j
(simplex_map (Suc q) (λz. h (z 0 , m (z ◦ Suc))) (simp q i)))))

= (
∑

(i,j)∈(SIGMA i:{..q − Suc 0}. {0 ..min q i}).
frag_cmul (− ((−1 ) ^ (j + i)))
(frag_of
(simplex_map q (λz. h (z 0 , singular_face q j m (z ◦ Suc)))
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(simp (q − Suc 0 ) i))))
proof −

have seq: simplex_map q (λz. h (z 0 , singular_face q j m (z ◦ Suc)))
(simp (q − Suc 0 ) (i − Suc 0 ))

= simplex_map q (λz. h (z 0 , m (z ◦ Suc))) (simp q i ◦ simplical_face
j)

if ij: i ≤ q j 6= i j ≤ i for i j
unfolding simplex_map_def

proof (rule restrict_ext)
fix x
assume x: x ∈ standard_simplex q
have i > 0

using that by force
then have iq: i − Suc 0 ≤ q − Suc 0

using ‹i ≤ q› False by simp
have q0_eq: {..Suc q} = insert 0 (Suc ‘ {..q})

by (auto simp: image_def gr0_conv_Suc)
have α: simp (q − Suc 0 ) (i − Suc 0 ) x 0 = simp q i (simplical_face j

x) 0
using False x ij
unfolding oriented_simplex_def simp_def vv_def ww_def
apply (simp add: simplical_face_in_standard_simplex)

apply (force simp: simplical_face_def q0_eq sum.reindex intro!:
sum.cong)

done
have β: simplical_face j (simp (q − Suc 0 ) (i − Suc 0 ) x ◦ Suc) = simp

q i (simplical_face j x) ◦ Suc
proof

fix k
show simplical_face j (simp (q − Suc 0 ) (i − Suc 0 ) x ◦ Suc) k

= (simp q i (simplical_face j x) ◦ Suc) k
using False x ij
unfolding oriented_simplex_def simp_def o_def vv_def ww_def
apply (simp add: simplical_face_in_standard_simplex if_distribR)
apply (simp add: simplical_face_def if_distrib [of λu. u ∗ _] cong:

if_cong)
apply (intro impI conjI )
apply (force simp: sum.atMost_Suc intro: sum.cong)

apply (force simp: q0_eq sum.reindex intro!: sum.cong)
done

qed
have simp (q − Suc 0 ) (i − Suc 0 ) x ◦ Suc ∈ standard_simplex (q −

Suc 0 )
using ss_ss [OF iq] ‹i ≤ q› False ‹i > 0 ›
by (simp add: image_subset_iff simplicial_simplex x)

then show ((λz. h (z 0 , singular_face q j m (z ◦ Suc))) ◦ simp (q −
Suc 0 ) (i − Suc 0 )) x

= ((λz. h (z 0 , m (z ◦ Suc))) ◦ (simp q i ◦ simplical_face j)) x
by (simp add: singular_face_def α β)
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qed
have [simp]: (−1 ::int) ^ (i + j − Suc 0 ) = − ((−1 ) ^ (i + j)) if i 6= j

for i j::nat
proof −

have i + j > 0
using that by blast

then show ?thesis
by (metis (no_types, opaque_lifting) One_nat_def Suc_diff_1

add.inverse_inverse mult.left_neutral mult_minus_left power_Suc)
qed
show ?thesis

apply (rule sum.eq_general_inverses [where h = λ(a,b). (a−1 ,b) and
k = λ(a,b). (Suc a,b)])

using False apply (auto simp: singular_face_simplex_map seq add.commute)
done

qed
have ∗: singular_face (Suc q) (Suc j) (simplex_map (Suc q) (λz. h (z 0 , m

(z ◦ Suc))) (simp q i))
= simplex_map q (λz. h (z 0 , singular_face q j m (z ◦ Suc))) (simp

(q − Suc 0 ) i)
if ij: i < j j ≤ q for i j

proof −
have iq: i ≤ q − Suc 0

using that by auto
have sf_eqh: singular_face (Suc q) (Suc j)

(λx. if x ∈ standard_simplex (Suc q)
then ((λz. h (z 0 , m (z ◦ Suc))) ◦ simp q i) x else

undefined) x
= h (simp (q − Suc 0 ) i x 0 ,

singular_face q j m (λxa. simp (q − Suc 0 ) i x (Suc xa)))
if x: x ∈ standard_simplex q for x

proof −
let ?f = λk.

∑
j≤q. if j ≤ i then if k = j then x j else 0

else if Suc k = j then x j else 0
have fm: simplical_face (Suc j) x ∈ standard_simplex (Suc q)

using ss_ss [OF iq] that ij
by (simp add: simplical_face_in_standard_simplex)

have ss: ?f ∈ standard_simplex (q − Suc 0 )
unfolding standard_simplex_def

proof (intro CollectI conjI impI allI )
fix k
show 0 ≤ ?f k

using that by (simp add: sum_nonneg standard_simplex_def )
show ?f k ≤ 1

using x sum_le_included [of {..q} {..q} x id]
by (simp add: standard_simplex_def )

assume k: q − Suc 0 < k
show ?f k = 0
by (rule sum.neutral) (use that x iq k standard_simplex_def in auto)
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next
have (

∑
k≤q − Suc 0 . ?f k)

= (
∑

(k,j) ∈ ({..q − Suc 0} × {..q}) ∩ {(k,j). if j ≤ i then k = j
else Suc k = j}. x j)

apply (simp add: sum.Sigma)
by (rule sum.mono_neutral_cong) (auto simp: split: if_split_asm)

also have . . . = sum x {..q}
apply (rule sum.eq_general_inverses
[where h = λ(k,j). if j≤i ∧ k=j ∨ j>i ∧ Suc k = j then j else Suc

q
and k = λj. if j ≤ i then (j,j) else (j − Suc 0 , j)])

using ij by auto
also have . . . = 1

using x by (simp add: standard_simplex_def )
finally show (

∑
k≤q − Suc 0 . ?f k) = 1

by (simp add: standard_simplex_def )
qed
let ?g = λk. if k ≤ i then 0

else if k < Suc j then x k
else if k = Suc j then 0 else x (k − Suc 0 )

have eq: {..Suc q} = {..j} ∪ {Suc j} ∪ Suc‘{j<..q} {..q} = {..j} ∪
{j<..q}

using ij image_iff less_Suc_eq_0_disj less_Suc_eq_le
by (force simp: image_iff )+

then have (
∑

k≤Suc q. ?g k) = (
∑

k∈{..j} ∪ {Suc j} ∪ Suc‘{j<..q}.
?g k)

by simp
also have . . . = (

∑
k∈{..j} ∪ Suc‘{j<..q}. ?g k)

by (rule sum.mono_neutral_right) auto
also have . . . = (

∑
k∈{..j}. ?g k) + (

∑
k∈Suc‘{j<..q}. ?g k)

by (rule sum.union_disjoint) auto
also have . . . = (

∑
k∈{..j}. ?g k) + (

∑
k∈{j<..q}. ?g (Suc k))

by (auto simp: sum.reindex)
also have . . . = (

∑
k∈{..j}. if k ≤ i then 0 else x k)

+ (
∑

k∈{j<..q}. if k ≤ i then 0 else x k)
by (intro sum.cong arg_cong2 [of concl: (+)]) (use ij in auto)

also have . . . = (
∑

k≤q. if k ≤ i then 0 else x k)
unfolding eq by (subst sum.union_disjoint) auto

finally have (
∑

k≤Suc q. ?g k) = (
∑

k≤q. if k ≤ i then 0 else x k) .
then have QQ: (

∑
l≤Suc q. if l ≤ i then 0 else simplical_face (Suc j)

x l) = (
∑

j≤q. if j ≤ i then 0 else x j)
by (simp add: simplical_face_def cong: if_cong)

have WW : (λk.
∑

l≤Suc q. if l ≤ i
then if k = l then simplical_face (Suc j) x l else 0
else if Suc k = l then simplical_face (Suc j) x l
else 0 )

= simplical_face j
(λk.

∑
j≤q. if j ≤ i then if k = j then x j else 0

else if Suc k = j then x j else 0 )
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proof −
have ∗: (

∑
l≤q. if l ≤ i then 0 else if Suc k = l then x (l − Suc 0 )

else 0 )
= (

∑
l≤q. if l ≤ i then if k − Suc 0 = l then x l else 0 else if k =

l then x l else 0 )
(is ?lhs = ?rhs)
if k 6= q k > j for k

proof (cases k ≤ q)
case True
have ?lhs = sum (λl. x (l − Suc 0 )) {Suc k} ?rhs = sum x {k}
by (rule sum.mono_neutral_cong_right; use True ij that in auto)+

then show ?thesis
by simp

next
case False
have ?lhs = 0 ?rhs = 0

by (rule sum.neutral; use False ij in auto)+
then show ?thesis

by simp
qed
have xq: x q = (

∑
j≤q. if j ≤ i then if q − Suc 0 = j then x j else 0
else if q = j then x j else 0 ) if q 6=j

using ij that
by (force simp flip: ivl_disj_un(2 ) intro: sum.neutral)

show ?thesis
using ij unfolding simplical_face_def
by (intro ext) (auto simp: ∗ sum.atMost_Suc xq cong: if_cong)

qed
show ?thesis

using False that iq
unfolding oriented_simplex_def simp_def vv_def ww_def
apply (simp add: if_distribR simplical_face_def if_distrib [of λu. u ∗

_] o_def cong: if_cong)
apply (simp add: singular_face_def fm ss QQ WW )
done

qed
show ?thesis

unfolding simplex_map_def restrict_def
apply (simp add: simplicial_simplex image_subset_iff o_def sf_eqh

fun_eq_iff )
apply (simp add: singular_face_def )
done

qed
have sgeq: (SIGMA i:{..q}. {i..q} − {i}) = (SIGMA i:{..q}. {i<..q})

by force
have II : (

∑
(i,j)∈(SIGMA i:{..q}. {i..q} − {i}).

frag_cmul (− ((−1 ) ^ (i + j)))
(frag_of
(singular_face (Suc q) (Suc j)
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(simplex_map (Suc q) (λz. h (z 0 , m (z ◦ Suc))) (simp q
i))))) =

(
∑

(i,j)∈(SIGMA i:{..q}. {i<..q}).
frag_cmul (− ((−1 ) ^ (j + i)))
(frag_of
(simplex_map q (λz. h (z 0 , singular_face q j m (z ◦ Suc)))
(simp (q − Suc 0 ) i))))

by (force simp: ∗ sgeq add.commute intro: sum.cong)
show ?thesis

using False
apply (simp add: chain_boundary_def frag_extend_sum frag_extend_cmul

frag_cmul_sum pr_def flip: sum_negf power_add)
apply (subst sum.swap [where A = {..q}])

apply (simp add: sum.cartesian_product eq sum.union_disjoint dis-
joint_iff_not_equal I II )

done
qed
have ∗: [[a+b = w; c+d = −z]] =⇒ (a + c) + (b+d) = w−z for a b w c d z

:: ′c ⇒0 int
by (auto simp: algebra_simps)

have eq: {..q} × {..Suc q} =
Sigma {..q} (λi. {0 ..min (Suc q) i})
∪ Sigma {..q} (λi. {Suc i..Suc q})

by force
show ?case

apply (subst pr_def )
apply (simp add: chain_boundary_sum chain_boundary_cmul)
apply (subst chain_boundary_def )
apply simp

apply (simp add: frag_cmul_sum sum.cartesian_product eq sum.union_disjoint
disjoint_iff_not_equal

sum.atLeast_Suc_atMost_Suc_shift del: sum.cl_ivl_Suc min.absorb2
min.absorb4

flip: comm_monoid_add_class.sum.Sigma)
apply (simp add: sum.Sigma eq2 [of _ λi. {_ i.._ i}]

del: min.absorb2 min.absorb4 )
apply (simp add: sum.union_disjoint disjoint_iff_not_equal ∗ [OF 1 2 ])
done

next
case (diff a b)
then show ?case

by (simp add: chain_boundary_diff frag_extend_diff chain_map_diff )
qed auto

qed
have ∗: singular_chain p (subtopology U V ) (prism (p − Suc 0 ) (chain_boundary

p c))
if singular_chain p S c singular_chain (p − Suc 0 ) (subtopology S T ) (chain_boundary

p c)
proof (cases p)
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case 0 then show ?thesis by (simp add: chain_boundary_def prism)
next

case (Suc p ′)
with prism that show ?thesis by auto

qed
then show ?thesis

using c
unfolding singular_relcycle_def homologous_rel_def singular_relboundary_def

mod_subset_def
apply (rule_tac x=− prism p c in exI )

by (simp add: chain_boundary_minus prism(2 ) prism(4 ) singular_chain_minus)
qed

end

0.2 Homology, II: Homology Groups
theory Homology_Groups

imports Simplices HOL−Algebra.Exact_Sequence

begin

0.2.1 Homology Groups

Now actually connect to group theory and set up homology groups. Note
that we define homomogy groups for all integers p, since this seems to avoid
some special-case reasoning, though they are trivial for p < 0.
definition chain_group :: nat ⇒ ′a topology ⇒ ′a chain monoid

where chain_group p X ≡ free_Abelian_group (singular_simplex_set p X)

lemma carrier_chain_group [simp]: carrier(chain_group p X) = singular_chain_set
p X

by (auto simp: chain_group_def singular_chain_def free_Abelian_group_def )

lemma one_chain_group [simp]: one(chain_group p X) = 0
by (auto simp: chain_group_def free_Abelian_group_def )

lemma mult_chain_group [simp]: monoid.mult(chain_group p X) = (+)
by (auto simp: chain_group_def free_Abelian_group_def )

lemma m_inv_chain_group [simp]: Poly_Mapping.keys a ⊆ singular_simplex_set
p X =⇒ invchain_group p X a = −a

unfolding chain_group_def by simp

lemma group_chain_group [simp]: Group.group (chain_group p X)
by (simp add: chain_group_def )

lemma abelian_chain_group: comm_group(chain_group p X)
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by (simp add: free_Abelian_group_def group.group_comm_groupI [OF group_chain_group])

lemma subgroup_singular_relcycle:
subgroup (singular_relcycle_set p X S) (chain_group p X)

proof
show x ⊗chain_group p X y ∈ singular_relcycle_set p X S

if x ∈ singular_relcycle_set p X S and y ∈ singular_relcycle_set p X S for x
y

using that by (simp add: singular_relcycle_add)
next

show invchain_group p X x ∈ singular_relcycle_set p X S
if x ∈ singular_relcycle_set p X S for x
using that
by clarsimp (metis m_inv_chain_group singular_chain_def singular_relcycle

singular_relcycle_minus)
qed (auto simp: singular_relcycle)

definition relcycle_group :: nat ⇒ ′a topology ⇒ ′a set ⇒ ( ′a chain) monoid
where relcycle_group p X S ≡

subgroup_generated (chain_group p X) (Collect(singular_relcycle p X S))

lemma carrier_relcycle_group [simp]:
carrier (relcycle_group p X S) = singular_relcycle_set p X S

proof −
have carrier (chain_group p X) ∩ singular_relcycle_set p X S = singular_relcycle_set

p X S
using subgroup.subset subgroup_singular_relcycle by blast

moreover have generate (chain_group p X) (singular_relcycle_set p X S) ⊆
singular_relcycle_set p X S

by (simp add: group.generate_subgroup_incl group_chain_group subgroup_singular_relcycle)
ultimately show ?thesis

by (auto simp: relcycle_group_def subgroup_generated_def generate.incl)
qed

lemma one_relcycle_group [simp]: one(relcycle_group p X S) = 0
by (simp add: relcycle_group_def )

lemma mult_relcycle_group [simp]: (⊗relcycle_group p X S) = (+)

by (simp add: relcycle_group_def )

lemma abelian_relcycle_group [simp]:
comm_group(relcycle_group p X S)

unfolding relcycle_group_def
by (intro group.abelian_subgroup_generated group_chain_group) (auto simp:

abelian_chain_group singular_relcycle)

lemma group_relcycle_group [simp]: group(relcycle_group p X S)
by (simp add: comm_group.axioms(2 ))
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lemma relcycle_group_restrict [simp]:
relcycle_group p X (topspace X ∩ S) = relcycle_group p X S

by (metis relcycle_group_def singular_relcycle_restrict)

definition relative_homology_group :: int ⇒ ′a topology ⇒ ′a set ⇒ ( ′a chain)
set monoid

where
relative_homology_group p X S ≡

if p < 0 then singleton_group undefined else
(relcycle_group (nat p) X S) Mod (singular_relboundary_set (nat p) X S)

abbreviation homology_group
where homology_group p X ≡ relative_homology_group p X {}

lemma relative_homology_group_restrict [simp]:
relative_homology_group p X (topspace X ∩ S) = relative_homology_group p

X S
by (simp add: relative_homology_group_def )

lemma nontrivial_relative_homology_group:
fixes p::nat
shows relative_homology_group p X S

= relcycle_group p X S Mod singular_relboundary_set p X S
by (simp add: relative_homology_group_def )

lemma singular_relboundary_ss:
singular_relboundary p X S x =⇒ Poly_Mapping.keys x ⊆ singular_simplex_set

p X
using singular_chain_def singular_relboundary_imp_chain by blast

lemma trivial_relative_homology_group [simp]:
p < 0 =⇒ trivial_group(relative_homology_group p X S)
by (simp add: relative_homology_group_def )

lemma subgroup_singular_relboundary:
subgroup (singular_relboundary_set p X S) (chain_group p X)

unfolding chain_group_def
proof unfold_locales

show singular_relboundary_set p X S
⊆ carrier (free_Abelian_group (singular_simplex_set p X))

using singular_chain_def singular_relboundary_imp_chain by fastforce
next

fix x
assume x ∈ singular_relboundary_set p X S
then show invfree_Abelian_group (singular_simplex_set p X) x

∈ singular_relboundary_set p X S
by (simp add: singular_relboundary_ss singular_relboundary_minus)
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qed (auto simp: free_Abelian_group_def singular_relboundary_add)

lemma subgroup_singular_relboundary_relcycle:
subgroup (singular_relboundary_set p X S) (relcycle_group p X S)
unfolding relcycle_group_def
by (simp add: Collect_mono group.subgroup_of_subgroup_generated singular_relboundary_imp_relcycle

subgroup_singular_relboundary)

lemma normal_subgroup_singular_relboundary_relcycle:
(singular_relboundary_set p X S) � (relcycle_group p X S)

by (simp add: comm_group.normal_iff_subgroup subgroup_singular_relboundary_relcycle)

lemma group_relative_homology_group [simp]:
group (relative_homology_group p X S)
by (simp add: relative_homology_group_def normal.factorgroup_is_group

normal_subgroup_singular_relboundary_relcycle)

lemma right_coset_singular_relboundary:
r_coset (relcycle_group p X S) (singular_relboundary_set p X S)
= (λa. {b. homologous_rel p X S a b})
using singular_relboundary_minus
by (force simp: r_coset_def homologous_rel_def relcycle_group_def subgroup_generated_def )

lemma carrier_relative_homology_group:
carrier(relative_homology_group (int p) X S)

= (homologous_rel_set p X S) ‘ singular_relcycle_set p X S
by (auto simp: set_eq_iff image_iff relative_homology_group_def FactGroup_def

RCOSETS_def right_coset_singular_relboundary)

lemma carrier_relative_homology_group_0 :
carrier(relative_homology_group 0 X S)

= (homologous_rel_set 0 X S) ‘ singular_relcycle_set 0 X S
using carrier_relative_homology_group [of 0 X S ] by simp

lemma one_relative_homology_group [simp]:
one(relative_homology_group (int p) X S) = singular_relboundary_set p X S
by (simp add: relative_homology_group_def FactGroup_def )

lemma mult_relative_homology_group:
(⊗relative_homology_group (int p) X S) = (λR S . (

⋃
r∈R.

⋃
s∈S . {r + s}))

unfolding relcycle_group_def subgroup_generated_def chain_group_def free_Abelian_group_def
set_mult_def relative_homology_group_def FactGroup_def

by force

lemma inv_relative_homology_group:
assumes R ∈ carrier (relative_homology_group (int p) X S)
shows m_inv(relative_homology_group (int p) X S) R = uminus ‘ R

proof (rule group.inv_equality [OF group_relative_homology_group _ assms])
obtain c where c: R = homologous_rel_set p X S c singular_relcycle p X S c
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using assms by (auto simp: carrier_relative_homology_group)
have singular_relboundary p X S (b − a)

if a ∈ R and b ∈ R for a b
using c that
by clarify (metis homologous_rel_def homologous_rel_eq)

moreover
have x ∈ (

⋃
x∈R.

⋃
y∈R. {y − x})

if singular_relboundary p X S x for x
using c
by simp (metis diff_eq_eq homologous_rel_def homologous_rel_refl homolo-

gous_rel_sym that)
ultimately
have (

⋃
x∈R.

⋃
xa∈R. {xa − x}) = singular_relboundary_set p X S

by auto
then show uminus ‘ R ⊗relative_homology_group (int p) X S R =

1relative_homology_group (int p) X S
by (auto simp: carrier_relative_homology_group mult_relative_homology_group)

have singular_relcycle p X S (−c)
using c by (simp add: singular_relcycle_minus)

moreover have homologous_rel p X S c x =⇒ homologous_rel p X S (−c) (−
x) for x

by (metis homologous_rel_def homologous_rel_sym minus_diff_eq minus_diff_minus)
moreover have homologous_rel p X S (−c) x =⇒ x ∈ uminus ‘ homolo-

gous_rel_set p X S c for x
by (clarsimp simp: image_iff ) (metis add.inverse_inverse diff_0 homolo-

gous_rel_diff homologous_rel_refl)
ultimately show uminus ‘ R ∈ carrier (relative_homology_group (int p) X S)

using c by (auto simp: carrier_relative_homology_group)
qed

lemma homologous_rel_eq_relboundary:
homologous_rel p X S c = singular_relboundary p X S

←→ singular_relboundary p X S c (is ?lhs = ?rhs)
proof

assume ?lhs
then show ?rhs

unfolding homologous_rel_def
by (metis diff_zero singular_relboundary_0 )

next
assume R: ?rhs
show ?lhs

unfolding homologous_rel_def
using singular_relboundary_diff R by fastforce

qed

lemma homologous_rel_set_eq_relboundary:
homologous_rel_set p X S c = singular_relboundary_set p X S ←→ singu-

lar_relboundary p X S c
by (auto simp flip: homologous_rel_eq_relboundary)
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Lift the boundary and induced maps to homology groups. We totalize both
quite aggressively to the appropriate group identity in all "undefined" situ-
ations, which makes several of the properties cleaner and simpler.

lemma homomorphism_chain_boundary:
chain_boundary p ∈ hom (relcycle_group p X S) (relcycle_group(p − Suc 0 )

(subtopology X S) {})
(is ?h ∈ hom ?G ?H )

proof (rule homI )
show

∧
x. x ∈ carrier ?G =⇒ ?h x ∈ carrier ?H

by (auto simp: singular_relcycle_def mod_subset_def chain_boundary_boundary)
qed (simp add: relcycle_group_def subgroup_generated_def chain_boundary_add)

lemma hom_boundary1 :
∃ d. ∀ p X S .

d p X S ∈ hom (relative_homology_group (int p) X S)
(homology_group (int (p − Suc 0 )) (subtopology X S))

∧ (∀ c. singular_relcycle p X S c
−→ d p X S (homologous_rel_set p X S c)

= homologous_rel_set (p − Suc 0 ) (subtopology X S) {} (chain_boundary
p c))

(is ∃ d. ∀ p X S . ?Φ (d p X S) p X S)
proof ((subst choice_iff [symmetric])+, clarify)

fix p X and S :: ′a set
define ϑ where ϑ ≡ r_coset (relcycle_group(p − Suc 0 ) (subtopology X S) {})

(singular_relboundary_set (p − Suc 0 ) (subtopology X S) {}) ◦
chain_boundary p

define H where H ≡ relative_homology_group (int (p − Suc 0 )) (subtopology
X S) {}

define J where J ≡ relcycle_group (p − Suc 0 ) (subtopology X S) {}

have ϑ: ϑ ∈ hom (relcycle_group p X S) H
unfolding ϑ_def

proof (rule hom_compose)
show chain_boundary p ∈ hom (relcycle_group p X S) J

by (simp add: J_def homomorphism_chain_boundary)
show (#>relcycle_group (p − Suc 0 ) (subtopology X S) {})

(singular_relboundary_set (p − Suc 0 ) (subtopology X S) {}) ∈ hom J H
by (simp add: H_def J_def nontrivial_relative_homology_group

normal.r_coset_hom_Mod normal_subgroup_singular_relboundary_relcycle)
qed
have ∗: singular_relboundary (p − Suc 0 ) (subtopology X S) {} (chain_boundary

p c)
if singular_relboundary p X S c for c

proof (cases p=0 )
case True
then show ?thesis

by (metis chain_boundary_def singular_relboundary_0 )
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next
case False
with that have ∃ d. singular_chain p (subtopology X S) d ∧ chain_boundary

p d = chain_boundary p c
by (metis add.left_neutral chain_boundary_add chain_boundary_boundary_alt

singular_relboundary)
with that False show ?thesis

by (auto simp: singular_boundary)
qed
have ϑ_eq: ϑ x = ϑ y

if x: x ∈ singular_relcycle_set p X S and y: y ∈ singular_relcycle_set p X S
and eq: singular_relboundary_set p X S #>relcycle_group p X S x

= singular_relboundary_set p X S #>relcycle_group p X S y for x y
proof −

have singular_relboundary p X S (x−y)
by (metis eq homologous_rel_def homologous_rel_eq mem_Collect_eq right_coset_singular_relboundary)

with ∗ have (singular_relboundary (p − Suc 0 ) (subtopology X S) {}) (chain_boundary
p (x−y))

by blast
then show ?thesis

unfolding ϑ_def comp_def
by (metis chain_boundary_diff homologous_rel_def homologous_rel_eq right_coset_singular_relboundary)

qed
obtain d

where d ∈ hom ((relcycle_group p X S) Mod (singular_relboundary_set p X
S)) H

and d:
∧

u. u ∈ singular_relcycle_set p X S =⇒ d (homologous_rel_set p X
S u) = ϑ u

by (metis FactGroup_universal [OF ϑ normal_subgroup_singular_relboundary_relcycle
ϑ_eq] right_coset_singular_relboundary carrier_relcycle_group)

then have d ∈ hom (relative_homology_group p X S) H
by (simp add: nontrivial_relative_homology_group)

then show ∃ d. ?Φ d p X S
by (force simp: H_def right_coset_singular_relboundary d ϑ_def )

qed

lemma hom_boundary2 :
∃ d. (∀ p X S .

(d p X S) ∈ hom (relative_homology_group p X S)
(homology_group (p−1 ) (subtopology X S)))

∧ (∀ p X S c. singular_relcycle p X S c ∧ Suc 0 ≤ p
−→ d p X S (homologous_rel_set p X S c)
= homologous_rel_set (p − Suc 0 ) (subtopology X S) {} (chain_boundary

p c))
(is ∃ d. ?Φ d)

proof −
have ∗: ∃ f . Φ(λp. if p ≤ 0 then λq r t. undefined else f (nat p)) =⇒ ∃ f . Φ f for

Φ
by blast
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show ?thesis
apply (rule ∗ [OF ex_forward [OF hom_boundary1 ]])

apply (simp add: not_le relative_homology_group_def nat_diff_distrib ′ int_eq_iff
nat_diff_distrib flip: nat_1 )

by (simp add: hom_def singleton_group_def )
qed

lemma hom_boundary3 :
∃ d. ((∀ p X S c. c /∈ carrier(relative_homology_group p X S)

−→ d p X S c = one(homology_group (p−1 ) (subtopology X S))) ∧
(∀ p X S .

d p X S ∈ hom (relative_homology_group p X S)
(homology_group (p−1 ) (subtopology X S))) ∧

(∀ p X S c.
singular_relcycle p X S c ∧ 1 ≤ p
−→ d p X S (homologous_rel_set p X S c)
= homologous_rel_set (p − Suc 0 ) (subtopology X S) {} (chain_boundary

p c)) ∧
(∀ p X S . d p X S = d p X (topspace X ∩ S))) ∧
(∀ p X S c. d p X S c ∈ carrier(homology_group (p−1 ) (subtopology X S)))

∧
(∀ p. p ≤ 0 −→ d p = (λq r t. undefined))

(is ∃ x. ?P x ∧ ?Q x ∧ ?R x)
proof −

have
∧

x. ?Q x =⇒ ?R x
by (erule all_forward) (force simp: relative_homology_group_def )

moreover have ∃ x. ?P x ∧ ?Q x
proof −

obtain d:: [int, ′a topology, ′a set, ( ′a chain) set] ⇒ ( ′a chain) set
where 1 :

∧
p X S . d p X S ∈ hom (relative_homology_group p X S)

(homology_group (p−1 ) (subtopology X S))
and 2 :

∧
n X S c. singular_relcycle n X S c ∧ Suc 0 ≤ n

=⇒ d n X S (homologous_rel_set n X S c)
= homologous_rel_set (n − Suc 0 ) (subtopology X S) {}

(chain_boundary n c)
using hom_boundary2 by blast

have 4 : c ∈ carrier (relative_homology_group p X S) =⇒
d p X (topspace X ∩ S) c ∈ carrier (relative_homology_group (p−1 )

(subtopology X S) {})
for p X S c
using hom_carrier [OF 1 [of p X topspace X ∩ S ]]
by (simp add: image_subset_iff subtopology_restrict)

show ?thesis
apply (rule_tac x=λp X S c.

if c ∈ carrier(relative_homology_group p X S)
then d p X (topspace X ∩ S) c
else one(homology_group (p−1 ) (subtopology X S)) in exI )

apply (simp add: Int_left_absorb subtopology_restrict carrier_relative_homology_group
group.is_monoid group.restrict_hom_iff 4 cong: if_cong)
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by (metis 1 2 homologous_rel_restrict relative_homology_group_restrict
singular_relcycle_def subtopology_restrict)

qed
ultimately show ?thesis

by auto
qed

consts hom_boundary :: [int, ′a topology, ′a set, ′a chain set] ⇒ ′a chain set
specification (hom_boundary)

hom_boundary:
((∀ p X S c. c /∈ carrier(relative_homology_group p X S)

−→ hom_boundary p X S c = one(homology_group (p−1 ) (subtopology
X (S :: ′a set)))) ∧

(∀ p X S .
hom_boundary p X S ∈ hom (relative_homology_group p X S)

(homology_group (p−1 ) (subtopology X (S :: ′a set)))) ∧
(∀ p X S c.

singular_relcycle p X S c ∧ 1 ≤ p
−→ hom_boundary p X S (homologous_rel_set p X S c)

= homologous_rel_set (p − Suc 0 ) (subtopology X (S :: ′a set)) {}
(chain_boundary p c)) ∧

(∀ p X S . hom_boundary p X S = hom_boundary p X (topspace X ∩ (S :: ′a
set)))) ∧

(∀ p X S c. hom_boundary p X S c ∈ carrier(homology_group (p−1 )
(subtopology X (S :: ′a set)))) ∧

(∀ p. p ≤ 0 −→ hom_boundary p = (λq r . λt:: ′a chain set. undefined))
by (fact hom_boundary3 )

lemma hom_boundary_default:
c /∈ carrier(relative_homology_group p X S)

=⇒ hom_boundary p X S c = one(homology_group (p−1 ) (subtopology X S))
and hom_boundary_hom: hom_boundary p X S ∈ hom (relative_homology_group

p X S) (homology_group (p−1 ) (subtopology X S))
and hom_boundary_restrict [simp]: hom_boundary p X (topspace X ∩ S) =

hom_boundary p X S
and hom_boundary_carrier : hom_boundary p X S c ∈ carrier(homology_group

(p−1 ) (subtopology X S))
and hom_boundary_trivial: p ≤ 0 =⇒ hom_boundary p = (λq r t. undefined)
by (metis hom_boundary)+

lemma hom_boundary_chain_boundary:
[[singular_relcycle p X S c; 1 ≤ p]]
=⇒ hom_boundary (int p) X S (homologous_rel_set p X S c) =

homologous_rel_set (p − Suc 0 ) (subtopology X S) {} (chain_boundary p
c)

by (metis hom_boundary)+

lemma hom_chain_map:
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[[continuous_map X Y f ; f ∈ S → T ]]
=⇒ (chain_map p f ) ∈ hom (relcycle_group p X S) (relcycle_group p Y T )

by (simp add: chain_map_add hom_def singular_relcycle_chain_map)

lemma hom_induced1 :
∃ hom_relmap.
(∀ p X S Y T f .

continuous_map X Y f ∧ f ∈ (topspace X ∩ S) → T
−→ (hom_relmap p X S Y T f ) ∈ hom (relative_homology_group (int p) X

S)
(relative_homology_group (int p) Y T )) ∧

(∀ p X S Y T f c.
continuous_map X Y f ∧ f ∈ (topspace X ∩ S) → T ∧
singular_relcycle p X S c
−→ hom_relmap p X S Y T f (homologous_rel_set p X S c) =

homologous_rel_set p Y T (chain_map p f c))
proof −
have ∃ y. (y ∈ hom (relative_homology_group (int p) X S) (relative_homology_group

(int p) Y T )) ∧
(∀ c. singular_relcycle p X S c −→

y (homologous_rel_set p X S c) = homologous_rel_set p Y T
(chain_map p f c))

if contf : continuous_map X Y f and fim: f ∈ (topspace X ∩ S) → T
for p X S Y T and f :: ′a ⇒ ′b

proof −
let ?f = (#>relcycle_group p Y T) (singular_relboundary_set p Y T ) ◦ chain_map

p f
let ?F = λx. singular_relboundary_set p X S #>relcycle_group p X S x
have chain_map p f ∈ hom (relcycle_group p X S) (relcycle_group p Y T )

by (metis contf fim hom_chain_map relcycle_group_restrict)
then have 1 : ?f ∈ hom (relcycle_group p X S) (relative_homology_group (int

p) Y T )
by (simp add: hom_compose normal.r_coset_hom_Mod normal_subgroup_singular_relboundary_relcycle

relative_homology_group_def )
have 2 : singular_relboundary_set p X S � relcycle_group p X S

using normal_subgroup_singular_relboundary_relcycle by blast
have 3 : ?f x = ?f y

if singular_relcycle p X S x singular_relcycle p X S y ?F x = ?F y for x y
proof −

have homologous_rel p X S x y
by (metis (no_types) homologous_rel_set_eq right_coset_singular_relboundary

that(3 ))
then have singular_relboundary p Y T (chain_map p f (x − y))

using singular_relboundary_chain_map [OF _ contf fim] by (simp add:
homologous_rel_def )

then have singular_relboundary p Y T (chain_map p f x − chain_map p f
y)

by (simp add: chain_map_diff )
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with that
show ?thesis
by (metis comp_apply homologous_rel_def homologous_rel_set_eq right_coset_singular_relboundary)

qed
obtain g where g ∈ hom (relcycle_group p X S Mod singular_relboundary_set

p X S)
(relative_homology_group (int p) Y T )∧

x. x ∈ singular_relcycle_set p X S =⇒ g (?F x) = ?f x
using FactGroup_universal [OF 1 2 3 , unfolded carrier_relcycle_group] by

blast
then show ?thesis
by (force simp: right_coset_singular_relboundary nontrivial_relative_homology_group)

qed
then show ?thesis

apply (simp flip: all_conj_distrib)
apply ((subst choice_iff [symmetric])+)
apply metis
done

qed

lemma hom_induced2 :
∃ hom_relmap.
(∀ p X S Y T f .

continuous_map X Y f ∧
f ∈ (topspace X ∩ S) → T
−→ (hom_relmap p X S Y T f ) ∈ hom (relative_homology_group p X S)

(relative_homology_group p Y T )) ∧
(∀ p X S Y T f c.

continuous_map X Y f ∧
f ∈ (topspace X ∩ S) → T ∧
singular_relcycle p X S c
−→ hom_relmap p X S Y T f (homologous_rel_set p X S c) =

homologous_rel_set p Y T (chain_map p f c)) ∧
(∀ p. p < 0 −→ hom_relmap p = (λX S Y T f c. undefined))

(is ∃ d. ?Φ d)
proof −

have ∗: ∃ f . Φ(λp. if p < 0 then λX S Y T f c. undefined else f (nat p)) =⇒ ∃ f .
Φ f for Φ

by blast
show ?thesis

apply (rule ∗ [OF ex_forward [OF hom_induced1 ]])
apply (simp add: not_le relative_homology_group_def nat_diff_distrib ′ int_eq_iff

nat_diff_distrib flip: nat_1 )
done

qed

lemma hom_induced3 :
∃ hom_relmap.
((∀ p X S Y T f c.
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∼(continuous_map X Y f ∧ f ∈ (topspace X ∩ S) → T ∧
c ∈ carrier(relative_homology_group p X S))
−→ hom_relmap p X S Y T f c = one(relative_homology_group p Y T )) ∧

(∀ p X S Y T f .
hom_relmap p X S Y T f ∈ hom (relative_homology_group p X S)

(relative_homology_group p Y T )) ∧
(∀ p X S Y T f c.

continuous_map X Y f ∧ f ∈ (topspace X ∩ S) → T ∧ singular_relcycle p
X S c

−→ hom_relmap p X S Y T f (homologous_rel_set p X S c) =
homologous_rel_set p Y T (chain_map p f c)) ∧

(∀ p X S Y T .
hom_relmap p X S Y T =
hom_relmap p X (topspace X ∩ S) Y (topspace Y ∩ T ))) ∧

(∀ p X S Y f T c.
hom_relmap p X S Y T f c ∈ carrier(relative_homology_group p Y T )) ∧

(∀ p. p < 0 −→ hom_relmap p = (λX S Y T f c. undefined))
(is ∃ x. ?P x ∧ ?Q x ∧ ?R x)

proof −
have

∧
x. ?Q x =⇒ ?R x

by (erule all_forward) (fastforce simp: relative_homology_group_def )
moreover have ∃ x. ?P x ∧ ?Q x
proof −

obtain hom_relmap:: [int, ′a topology, ′a set, ′b topology, ′b set, ′a ⇒ ′b,( ′a chain)
set] ⇒ ( ′b chain) set

where 1 :
∧

p X S Y T f . [[continuous_map X Y f ; f ∈ (topspace X ∩ S) →
T ]] =⇒

hom_relmap p X S Y T f
∈ hom (relative_homology_group p X S) (relative_homology_group

p Y T )
and 2 :

∧
p X S Y T f c.

[[continuous_map X Y f ; f ∈ (topspace X ∩ S)→ T ; singular_relcycle
p X S c]]

=⇒
hom_relmap (int p) X S Y T f (homologous_rel_set p X S c) =
homologous_rel_set p Y T (chain_map p f c)

and 3 : (∀ p. p < 0 −→ hom_relmap p = (λX S Y T f c. undefined))
using hom_induced2 [where ? ′a= ′a and ? ′b= ′b]
by (fastforce simp: Pi_iff )

have 4 : [[continuous_map X Y f ; f ∈ (topspace X ∩ S) → T ; c ∈ carrier
(relative_homology_group p X S)]] =⇒

hom_relmap p X (topspace X ∩ S) Y (topspace Y ∩ T ) f c
∈ carrier (relative_homology_group p Y T )

for p X S Y f T c
using hom_carrier [OF 1 [of X Y f topspace X ∩ S topspace Y ∩ T p]]

continuous_map_image_subset_topspace by fastforce
have inhom: (λc. if continuous_map X Y f ∧ f ∈ (topspace X ∩ S) → T ∧

c ∈ carrier (relative_homology_group p X S)
then hom_relmap p X (topspace X ∩ S) Y (topspace Y ∩ T ) f c
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else 1relative_homology_group p Y T)

∈ hom (relative_homology_group p X S) (relative_homology_group p Y T )
(is ?h ∈ hom ?GX ?GY )

for p X S Y T f
proof (rule homI )

show
∧

x. x ∈ carrier ?GX =⇒ ?h x ∈ carrier ?GY
by (auto simp: 4 group.is_monoid)

show ?h (x ⊗?GX y) = ?h x ⊗?GY?h y if x ∈ carrier ?GX y ∈ carrier ?GX
for x y

proof (cases p < 0 )
case True
with that show ?thesis

by (simp add: relative_homology_group_def singleton_group_def 3 )
next

case False
show ?thesis
proof (cases continuous_map X Y f )

case True
then have f ∈ (topspace X ∩ S) → topspace Y

using continuous_map_image_subset_topspace by blast
then show ?thesis

using True False that
using 1 [of X Y f topspace X ∩ S topspace Y ∩ T p]
by (simp add: 4 Pi_iff continuous_map_funspace hom_mult not_less

group.is_monoid monoid.m_closed Int_left_absorb)
qed (simp add: group.is_monoid)

qed
qed

have hrel: [[continuous_map X Y f ; f ∈ (topspace X ∩ S)→ T ; singular_relcycle
p X S c]]

=⇒ hom_relmap (int p) X (topspace X ∩ S) Y (topspace Y ∩ T )
f (homologous_rel_set p X S c) = homologous_rel_set p Y T (chain_map

p f c)
for p X S Y T f c

using 2 [of X Y f topspace X ∩ S topspace Y ∩ T p c]
continuous_map_image_subset_topspace by fastforce

show ?thesis
apply (rule_tac x=λp X S Y T f c.

if continuous_map X Y f ∧ f ∈ (topspace X ∩ S) → T ∧
c ∈ carrier(relative_homology_group p X S)

then hom_relmap p X (topspace X ∩ S) Y (topspace Y ∩ T ) f c
else one(relative_homology_group p Y T ) in exI )

apply (simp add: Int_left_absorb subtopology_restrict carrier_relative_homology_group
group.is_monoid group.restrict_hom_iff 4 inhom hrel split: if_splits)

apply (intro ext strip)
apply (auto simp: continuous_map_def )
done

qed
ultimately show ?thesis
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by auto
qed

consts hom_induced:: [int, ′a topology, ′a set, ′b topology, ′b set, ′a ⇒ ′b,( ′a chain)
set] ⇒ ( ′b chain) set
specification (hom_induced)

hom_induced:
((∀ p X S Y T f c.

∼(continuous_map X Y f ∧
f ∈ (topspace X ∩ S) → T ∧
c ∈ carrier(relative_homology_group p X S))
−→ hom_induced p X (S :: ′a set) Y (T :: ′b set) f c =

one(relative_homology_group p Y T )) ∧
(∀ p X S Y T f .
(hom_induced p X (S :: ′a set) Y (T :: ′b set) f ) ∈ hom (relative_homology_group

p X S)
(relative_homology_group p Y T )) ∧

(∀ p X S Y T f c.
continuous_map X Y f ∧
f ∈ (topspace X ∩ S) → T ∧
singular_relcycle p X S c
−→ hom_induced p X (S :: ′a set) Y (T :: ′b set) f (homologous_rel_set p X

S c) =
homologous_rel_set p Y T (chain_map p f c)) ∧

(∀ p X S Y T .
hom_induced p X (S :: ′a set) Y (T :: ′b set) =
hom_induced p X (topspace X ∩ S) Y (topspace Y ∩ T ))) ∧

(∀ p X S Y f T c.
hom_induced p X (S :: ′a set) Y (T :: ′b set) f c ∈
carrier(relative_homology_group p Y T )) ∧

(∀ p. p < 0 −→ hom_induced p = (λX S Y T . λf :: ′a⇒ ′b. λc. undefined))
by (fact hom_induced3 )

lemma hom_induced_default:
∼(continuous_map X Y f ∧ f ∈ (topspace X ∩ S)→ T ∧ c ∈ carrier(relative_homology_group

p X S))
=⇒ hom_induced p X S Y T f c = one(relative_homology_group p Y T )

and hom_induced_hom:
hom_induced p X S Y T f ∈ hom (relative_homology_group p X S) (relative_homology_group

p Y T )
and hom_induced_restrict [simp]:

hom_induced p X (topspace X ∩ S) Y (topspace Y ∩ T ) = hom_induced p X
S Y T

and hom_induced_carrier :
hom_induced p X S Y T f c ∈ carrier(relative_homology_group p Y T )

and hom_induced_trivial: p < 0 =⇒ hom_induced p = (λX S Y T f c. undefined)
by (metis hom_induced)+
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lemma hom_induced_chain_map_gen:
[[continuous_map X Y f ; f ∈ (topspace X ∩ S) → T ; singular_relcycle p X S c]]
=⇒ hom_induced p X S Y T f (homologous_rel_set p X S c) = homolo-

gous_rel_set p Y T (chain_map p f c)
by (metis hom_induced)

lemma hom_induced_chain_map:
[[continuous_map X Y f ; f ∈ S → T ; singular_relcycle p X S c]]
=⇒ hom_induced p X S Y T f (homologous_rel_set p X S c)
= homologous_rel_set p Y T (chain_map p f c)

by (simp add: Pi_iff hom_induced_chain_map_gen)

lemma hom_induced_eq:
assumes

∧
x. x ∈ topspace X =⇒ f x = g x

shows hom_induced p X S Y T f = hom_induced p X S Y T g
proof −

consider p < 0 | n where p = int n
by (metis int_nat_eq not_less)

then show ?thesis
proof cases

case 1
then show ?thesis

by (simp add: hom_induced_trivial)
next

case 2
have hom_induced n X S Y T f C = hom_induced n X S Y T g C for C
proof −

have continuous_map X Y f ∧ f ∈ (topspace X ∩ S) → T ∧ C ∈ carrier
(relative_homology_group n X S)

←→ continuous_map X Y g ∧ g ∈ (topspace X ∩ S) → T ∧ C ∈ carrier
(relative_homology_group n X S)

(is ?P = ?Q)
using assms Pi_iff continuous_map_eq [of X Y ]
by (smt (verit, ccfv_SIG) Int_iff )

then consider ¬ ?P ∧ ¬ ?Q | ?P ∧ ?Q
by blast

then show ?thesis
proof cases

case 1
then show ?thesis

by (simp add: hom_induced_default)
next

case 2
have homologous_rel_set n Y T (chain_map n f c) = homologous_rel_set

n Y T (chain_map n g c)
if continuous_map X Y f f ∈ (topspace X ∩ S) → T

continuous_map X Y g g ∈ (topspace X ∩ S) → T
C = homologous_rel_set n X S c singular_relcycle n X S c
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for c
proof −

have chain_map n f c = chain_map n g c
using assms chain_map_eq singular_relcycle that by metis

then show ?thesis
by simp

qed
with 2 show ?thesis

by (force simp: relative_homology_group_def carrier_FactGroup
right_coset_singular_relboundary hom_induced_chain_map_gen)

qed
qed
with 2 show ?thesis

by auto
qed

qed

0.2.2 Towards the Eilenberg-Steenrod axioms

First prove we get functors into abelian groups with the boundary map
being a natural transformation between them, and prove Eilenberg-Steenrod
axioms (we also prove additivity a bit later on if one counts that).
lemma abelian_relative_homology_group [simp]:

comm_group(relative_homology_group p X S)
by (simp add: comm_group.abelian_FactGroup relative_homology_group_def

subgroup_singular_relboundary_relcycle)

lemma abelian_homology_group: comm_group(homology_group p X)
by simp

lemma hom_induced_id_gen:
assumes contf : continuous_map X X f and feq:

∧
x. x ∈ topspace X =⇒ f x =

x
and c: c ∈ carrier (relative_homology_group p X S)

shows hom_induced p X S X S f c = c
proof −

consider p < 0 | n where p = int n
by (metis int_nat_eq not_less)

then show ?thesis
proof cases

case 1
with c show ?thesis

by (simp add: hom_induced_trivial relative_homology_group_def )
next

case 2
have cm: chain_map n f d = d if singular_relcycle n X S d for d

using that assms by (auto simp: chain_map_id_gen singular_relcycle)
have f ‘ (topspace X ∩ S) ⊆ S
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using feq by auto
with 2 c show ?thesis

by (auto simp: nontrivial_relative_homology_group carrier_FactGroup
cm right_coset_singular_relboundary hom_induced_chain_map_gen

assms)
qed

qed

lemma hom_induced_id:
c ∈ carrier (relative_homology_group p X S) =⇒ hom_induced p X S X S id c

= c
by (rule hom_induced_id_gen) auto

lemma hom_induced_compose:
assumes continuous_map X Y f f ∈ S → T continuous_map Y Z g g ∈ T → U
shows hom_induced p X S Z U (g ◦ f ) = hom_induced p Y T Z U g ◦

hom_induced p X S Y T f
proof −

consider (neg) p < 0 | (int) n where p = int n
by (metis int_nat_eq not_less)

then show ?thesis
proof cases

case int
have gf : continuous_map X Z (g ◦ f )

using assms continuous_map_compose by fastforce
have gfim: (g ◦ f ) ∈ S → U

unfolding o_def using assms by blast
have sr :

∧
a. singular_relcycle n X S a =⇒ singular_relcycle n Y T (chain_map

n f a)
by (simp add: assms singular_relcycle_chain_map)

show ?thesis
proof

fix c
show hom_induced p X S Z U (g ◦ f ) c = (hom_induced p Y T Z U g ◦

hom_induced p X S Y T f ) c
proof (cases c ∈ carrier(relative_homology_group p X S))

case True
with gfim show ?thesis

unfolding int
by (auto simp: carrier_relative_homology_group gf gfim assms

sr chain_map_compose hom_induced_chain_map)
next

case False
then show ?thesis

by (simp add: hom_induced_default hom_one [OF hom_induced_hom])
qed

qed
qed (force simp: hom_induced_trivial)
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qed

lemma hom_induced_compose ′:
assumes continuous_map X Y f f ∈ S → T continuous_map Y Z g g ∈ T → U
shows hom_induced p Y T Z U g (hom_induced p X S Y T f x) = hom_induced

p X S Z U (g ◦ f ) x
using hom_induced_compose [OF assms] by simp

lemma naturality_hom_induced:
assumes continuous_map X Y f f ∈ S → T
shows hom_boundary q Y T ◦ hom_induced q X S Y T f

= hom_induced (q − 1 ) (subtopology X S) {} (subtopology Y T ) {} f ◦
hom_boundary q X S
proof (cases q ≤ 0 )

case False
then obtain p where p1 : p ≥ Suc 0 and q: q = int p

using zero_le_imp_eq_int by force
show ?thesis
proof

fix c
show (hom_boundary q Y T ◦ hom_induced q X S Y T f ) c =

(hom_induced (q − 1 ) (subtopology X S) {} (subtopology Y T ) {} f ◦
hom_boundary q X S) c

proof (cases c ∈ carrier(relative_homology_group p X S))
case True
then obtain a where ceq: c = homologous_rel_set p X S a and a: singu-

lar_relcycle p X S a
by (force simp: carrier_relative_homology_group)

then have sr : singular_relcycle p Y T (chain_map p f a)
using assms singular_relcycle_chain_map by fastforce

then have sb: singular_relcycle (p − Suc 0 ) (subtopology X S) {} (chain_boundary
p a)

by (metis One_nat_def a chain_boundary_boundary singular_chain_0
singular_relcycle)

have p1_eq: int p − 1 = int (p − Suc 0 )
using p1 by auto

have cbm: (chain_boundary p (chain_map p f a))
= (chain_map (p − Suc 0 ) f (chain_boundary p a))

using a chain_boundary_chain_map singular_relcycle by metis
have contf : continuous_map (subtopology X S) (subtopology Y T ) f

using assms
by (auto simp: continuous_map_in_subtopology continuous_map_from_subtopology)
show ?thesis

unfolding q using assms p1 a
by (simp add: cbm ceq contf hom_boundary_chain_boundary hom_induced_chain_map

p1_eq sb sr
del: of_nat_diff )

next
case False
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with assms show ?thesis
unfolding q o_def using assms
apply (simp add: hom_induced_default hom_boundary_default)

by (metis group_relative_homology_group hom_boundary hom_induced
hom_one one_relative_homology_group)

qed
qed

qed (force simp: hom_induced_trivial hom_boundary_trivial)

lemma homology_exactness_axiom_1 :
exact_seq ([homology_group (p−1 ) (subtopology X S), relative_homology_group

p X S , homology_group p X ],
[hom_boundary p X S ,hom_induced p X {} X S id])

proof −
consider (neg) p < 0 | (int) n where p = int n

by (metis int_nat_eq not_less)
then have (hom_induced p X {} X S id) ‘ carrier (homology_group p X)

= kernel (relative_homology_group p X S) (homology_group (p−1 )
(subtopology X S))

(hom_boundary p X S)
proof cases

case neg
then show ?thesis

unfolding kernel_def singleton_group_def relative_homology_group_def
by (auto simp: hom_induced_trivial hom_boundary_trivial)

next
case int
have hom_induced (int m) X {} X S id ‘ carrier (relative_homology_group

(int m) X {})
= carrier (relative_homology_group (int m) X S) ∩
{c. hom_boundary (int m) X S c = 1relative_homology_group (int m − 1 ) (subtopology X S) {}}

for m
proof (cases m)

case 0
have hom_induced 0 X {} X S id ‘ carrier (relative_homology_group 0 X

{})
= carrier (relative_homology_group 0 X S) (is ?lhs = ?rhs)

proof
show ?lhs ⊆ ?rhs

using hom_induced_hom [of 0 X {} X S id]
by (simp add: hom_induced_hom hom_carrier)

show ?rhs ⊆ ?lhs
apply (clarsimp simp add: image_iff carrier_relative_homology_group [of

0 , simplified] singular_relcycle)
apply (force simp: chain_map_id_gen chain_boundary_def singu-

lar_relcycle
hom_induced_chain_map [of concl: 0 , simplified])
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done
qed
with 0 show ?thesis
by (simp add: hom_boundary_trivial relative_homology_group_def [of −1 ]

singleton_group_def )
next

case (Suc n)
have (hom_induced (int (Suc n)) X {} X S id ◦

homologous_rel_set (Suc n) X {}) ‘ singular_relcycle_set (Suc n) X {}
= homologous_rel_set (Suc n) X S ‘
(singular_relcycle_set (Suc n) X S ∩
{c. hom_boundary (int (Suc n)) X S (homologous_rel_set (Suc n) X S

c)
= singular_relboundary_set n (subtopology X S) {}})

(is ?lhs = ?rhs)
proof −

have 1 : (
∧

x. x ∈ A =⇒ x ∈ B ←→ x ∈ C ) =⇒ f ‘ (A ∩ B) = f ‘ (A ∩ C )
for f A B C

by blast
have 2 : [[

∧
x. x ∈ A =⇒ ∃ y. y ∈ B ∧ f x = f y;

∧
x. x ∈ B =⇒ ∃ y. y ∈ A

∧ f x = f y]]
=⇒ f ‘ A = f ‘ B for f A B

by blast
have ?lhs = homologous_rel_set (Suc n) X S ‘ singular_relcycle_set (Suc

n) X {}
using hom_induced_chain_map chain_map_ident [of _ X ] singu-

lar_relcycle
by (smt (verit, best) comp_apply continuous_map_id empty_iff funcsetI

image_cong mem_Collect_eq)
also have . . . = homologous_rel_set (Suc n) X S ‘

(singular_relcycle_set (Suc n) X S ∩
{c. singular_relboundary n (subtopology X S) {} (chain_boundary

(Suc n) c)})
proof (rule 2 )

fix c
assume c ∈ singular_relcycle_set (Suc n) X {}
then show ∃ y. y ∈ singular_relcycle_set (Suc n) X S ∩

{c. singular_relboundary n (subtopology X S) {} (chain_boundary
(Suc n) c)} ∧

homologous_rel_set (Suc n) X S c = homologous_rel_set (Suc n)
X S y

using singular_cycle singular_relcycle
by (metis Int_Collect mem_Collect_eq singular_chain_0

singular_relboundary_0 )
next

fix c
assume c: c ∈ singular_relcycle_set (Suc n) X S ∩

{c. singular_relboundary n (subtopology X S) {} (chain_boundary
(Suc n) c)}
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then obtain d where d: singular_chain (Suc n) (subtopology X S) d
chain_boundary (Suc n) d = chain_boundary (Suc n) c
by (auto simp: singular_boundary)

with c have c − d ∈ singular_relcycle_set (Suc n) X {}
by (auto simp: singular_cycle chain_boundary_diff singular_chain_subtopology

singular_relcycle singular_chain_diff )
moreover have homologous_rel_set (Suc n) X S c = homologous_rel_set

(Suc n) X S (c − d)
proof (simp add: homologous_rel_set_eq)

show homologous_rel (Suc n) X S c (c − d)
using d by (simp add: homologous_rel_def singular_chain_imp_relboundary)
qed
ultimately show ∃ y. y ∈ singular_relcycle_set (Suc n) X {} ∧

homologous_rel_set (Suc n) X S c = homologous_rel_set (Suc n)
X S y

by blast
qed
also have . . . = ?rhs

by (rule 1 ) (simp add: hom_boundary_chain_boundary homologous_rel_set_eq_relboundary
del: of_nat_Suc)

finally show ?lhs = ?rhs .
qed
with Suc show ?thesis

unfolding carrier_relative_homology_group image_comp id_def by auto
qed
then show ?thesis

by (auto simp: kernel_def int)
qed
then show ?thesis

using hom_boundary_hom hom_induced_hom
by (force simp: group_hom_def group_hom_axioms_def )

qed

lemma homology_exactness_axiom_2 :
exact_seq ([homology_group (p−1 ) X , homology_group (p−1 ) (subtopology X

S), relative_homology_group p X S ],
[hom_induced (p−1 ) (subtopology X S) {} X {} id, hom_boundary p

X S ])
proof −

consider (neg) p ≤ 0 | (int) n where p = int (Suc n)
by (metis linear not0_implies_Suc of_nat_0 zero_le_imp_eq_int)

then have kernel (relative_homology_group (p−1 ) (subtopology X S) {})
(relative_homology_group (p−1 ) X {})
(hom_induced (p−1 ) (subtopology X S) {} X {} id)

= hom_boundary p X S ‘ carrier (relative_homology_group p X S)
proof cases

case neg
obtain x where x ∈ carrier (relative_homology_group p X S)
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using group_relative_homology_group group.is_monoid by blast
with neg show ?thesis

unfolding kernel_def singleton_group_def relative_homology_group_def
by (force simp: hom_induced_trivial hom_boundary_trivial)

next
case int
have hom_boundary (int (Suc n)) X S ‘ carrier (relative_homology_group (int

(Suc n)) X S)
= carrier (relative_homology_group n (subtopology X S) {}) ∩
{c. hom_induced n (subtopology X S) {} X {} id c =
1relative_homology_group n X {}}

(is ?lhs = ?rhs)
proof −

have 1 : (
∧

x. x ∈ A =⇒ x ∈ B ←→ x ∈ C ) =⇒ f ‘ (A ∩ B) = f ‘ (A ∩ C )
for f A B C

by blast
have 2 : (

∧
x. x ∈ A =⇒ x ∈ B ←→ x ∈ f −‘ C ) =⇒ f ‘ (A ∩ B) = f ‘ A ∩

C for f A B C
by blast

have ?lhs = homologous_rel_set n (subtopology X S) {}
‘ (chain_boundary (Suc n) ‘ singular_relcycle_set (Suc n) X S)

unfolding carrier_relative_homology_group image_comp
by (rule image_cong [OF refl]) (simp add: o_def hom_boundary_chain_boundary

del: of_nat_Suc)
also have . . . = homologous_rel_set n (subtopology X S) {} ‘

(singular_relcycle_set n (subtopology X S) {} ∩ singu-
lar_relboundary_set n X {})

by (force simp: singular_relcycle singular_boundary chain_boundary_boundary_alt)
also have . . . = ?rhs

unfolding carrier_relative_homology_group vimage_def
by (intro 2 ) (auto simp: hom_induced_chain_map chain_map_ident ho-

mologous_rel_set_eq_relboundary singular_relcycle)
finally show ?thesis .

qed
then show ?thesis

by (auto simp: kernel_def int)
qed
then show ?thesis

using hom_boundary_hom hom_induced_hom
by (force simp: group_hom_def group_hom_axioms_def )

qed

lemma homology_exactness_axiom_3 :
exact_seq ([relative_homology_group p X S , homology_group p X , homol-

ogy_group p (subtopology X S)],
[hom_induced p X {} X S id, hom_induced p (subtopology X S) {} X

{} id])
proof (cases p < 0 )
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case True
then show ?thesis

unfolding relative_homology_group_def
by (simp add: group_hom.kernel_to_trivial_group group_hom_axioms_def

group_hom_def hom_induced_trivial)
next

case False
then obtain n where peq: p = int n

by (metis int_ops(1 ) linorder_neqE_linordered_idom pos_int_cases)
have hom_induced n (subtopology X S) {} X {} id ‘

(homologous_rel_set n (subtopology X S) {} ‘
singular_relcycle_set n (subtopology X S) {})

= {c ∈ homologous_rel_set n X {} ‘ singular_relcycle_set n X {}.
hom_induced n X {} X S id c = singular_relboundary_set n X S}
(is ?lhs = ?rhs)

proof −
have 2 : [[

∧
x. x ∈ A =⇒ ∃ y. y ∈ B ∧ f x = f y;

∧
x. x ∈ B =⇒ ∃ y. y ∈ A ∧

f x = f y]]
=⇒ f ‘ A = f ‘ B for f A B

by blast
have

∧
f . singular_chain n (subtopology X S) f ∧

singular_chain (n − Suc 0 ) trivial_topology (chain_boundary n f ) =⇒
hom_induced (int n) (subtopology X S) {} X {} id (homologous_rel_set n

(subtopology X S) {} f ) =
homologous_rel_set n X {} f

by (auto simp: chain_map_ident hom_induced_chain_map singular_relcycle)
then have ?lhs = homologous_rel_set n X {} ‘ (singular_relcycle_set n

(subtopology X S) {})
by (simp add: singular_relcycle image_comp)

also have . . . = homologous_rel_set n X {} ‘ (singular_relcycle_set n X {}
∩ singular_relboundary_set n X S)

proof (rule 2 )
fix c
assume c ∈ singular_relcycle_set n (subtopology X S) {}

then show ∃ y. y ∈ singular_relcycle_set n X {} ∩ singular_relboundary_set
n X S ∧

homologous_rel_set n X {} c = homologous_rel_set n X {} y
using singular_chain_imp_relboundary singular_relboundary_imp_chain
by (fastforce simp: singular_cycle)

next
fix c
assume c ∈ singular_relcycle_set n X {} ∩ singular_relboundary_set n X S
then obtain d e where c: singular_relcycle n X {} c singular_relboundary

n X S c
and d: singular_chain n (subtopology X S) d
and e: singular_chain (Suc n) X e chain_boundary (Suc n) e = c + d
using singular_relboundary_alt by blast

then have chain_boundary n (c + d) = 0
using chain_boundary_boundary_alt by fastforce
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then have chain_boundary n c + chain_boundary n d = 0
by (metis chain_boundary_add)

with c have singular_relcycle n (subtopology X S) {} (− d)
by (metis (no_types) d eq_add_iff singular_cycle singular_relcycle_minus)

moreover have homologous_rel n X {} c (− d)
using c
by (metis diff_minus_eq_add e homologous_rel_def singular_boundary)

ultimately
show ∃ y. y ∈ singular_relcycle_set n (subtopology X S) {} ∧

homologous_rel_set n X {} c = homologous_rel_set n X {} y
by (force simp: homologous_rel_set_eq)

qed
also have . . . = homologous_rel_set n X {} ‘

(singular_relcycle_set n X {} ∩ homologous_rel_set n X {} −‘ {x.
hom_induced n X {} X S id x = singular_relboundary_set n X S})

by (rule 2 ) (auto simp: hom_induced_chain_map homologous_rel_set_eq_relboundary
chain_map_ident [of _ X ] singular_cycle cong: conj_cong)

also have . . . = ?rhs
by blast

finally show ?thesis .
qed
then have kernel (relative_homology_group p X {}) (relative_homology_group

p X S) (hom_induced p X {} X S id)
= hom_induced p (subtopology X S) {} X {} id ‘ carrier (relative_homology_group

p (subtopology X S) {})
by (simp add: kernel_def carrier_relative_homology_group peq)

then show ?thesis
by (simp add: not_less group_hom_def group_hom_axioms_def hom_induced_hom)

qed

lemma homology_dimension_axiom:
assumes X : topspace X = {a} and p 6= 0
shows trivial_group(homology_group p X)

proof (cases p < 0 )
case True
then show ?thesis

by simp
next

case False
then obtain n where peq: p = int n n > 0

by (metis assms(2 ) neq0_conv nonneg_int_cases not_less of_nat_0 )
have homologous_rel_set n X {} ‘ singular_relcycle_set n X {} = {singular_relcycle_set

n X {}}
(is ?lhs = ?rhs)

proof
show ?lhs ⊆ ?rhs

using peq assms
by (auto simp: image_subset_iff homologous_rel_set_eq_relboundary simp
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flip: singular_boundary_set_eq_cycle_singleton)
have singular_relboundary n X {} 0

by simp
with peq assms
show ?rhs ⊆ ?lhs

by (auto simp: image_iff simp flip: homologous_rel_eq_relboundary singu-
lar_boundary_set_eq_cycle_singleton)

qed
with peq assms show ?thesis

unfolding trivial_group_def
by (simp add: carrier_relative_homology_group singular_boundary_set_eq_cycle_singleton

[OF X ])
qed

proposition homology_homotopy_axiom:
assumes homotopic_with (λh. h ∈ S → T ) X Y f g
shows hom_induced p X S Y T f = hom_induced p X S Y T g

proof (cases p < 0 )
case True
then show ?thesis

by (simp add: hom_induced_trivial)
next

case False
then obtain n where peq: p = int n

by (metis int_nat_eq not_le)
have cont: continuous_map X Y f continuous_map X Y g

using assms homotopic_with_imp_continuous_maps by blast+
have im: f ∈ (topspace X ∩ S) → T g ∈ (topspace X ∩ S) → T

using homotopic_with_imp_property assms by blast+
show ?thesis
proof

fix c show hom_induced p X S Y T f c = hom_induced p X S Y T g c
proof (cases c ∈ carrier(relative_homology_group p X S))

case True
then obtain a where a: c = homologous_rel_set n X S a singular_relcycle

n X S a
unfolding carrier_relative_homology_group peq by auto

with assms homotopic_imp_homologous_rel_chain_maps show ?thesis
by (force simp add: peq hom_induced_chain_map_gen cont im homolo-

gous_rel_set_eq)
qed (simp add: hom_induced_default)

qed
qed

proposition homology_excision_axiom:
assumes X closure_of U ⊆ X interior_of T T ⊆ S
shows
hom_induced p (subtopology X (S − U )) (T − U ) (subtopology X S) T id
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∈ iso (relative_homology_group p (subtopology X (S − U )) (T − U ))
(relative_homology_group p (subtopology X S) T )

proof (cases p < 0 )
case True
then show ?thesis

unfolding iso_def bij_betw_def relative_homology_group_def by (simp add:
hom_induced_trivial)
next

case False
then obtain n where peq: p = int n

by (metis int_nat_eq not_le)
have cont: continuous_map (subtopology X (S − U )) (subtopology X S) id

by (meson Diff_subset continuous_map_from_subtopology_mono continu-
ous_map_id)

have TU : topspace X ∩ (S − U ) ∩ (T − U ) ⊆ T
by auto

show ?thesis
proof (simp add: iso_def peq carrier_relative_homology_group bij_betw_def

hom_induced_hom, intro conjI )
show inj_on (hom_induced n (subtopology X (S − U )) (T − U ) (subtopology

X S) T id)
(homologous_rel_set n (subtopology X (S − U )) (T − U ) ‘
singular_relcycle_set n (subtopology X (S − U )) (T − U ))

unfolding inj_on_def
proof (clarsimp simp add: homologous_rel_set_eq)

fix c d
assume c: singular_relcycle n (subtopology X (S − U )) (T − U ) c

and d: singular_relcycle n (subtopology X (S − U )) (T − U ) d
and hh: hom_induced n (subtopology X (S − U )) (T − U ) (subtopology X

S) T id
(homologous_rel_set n (subtopology X (S − U )) (T − U ) c)

= hom_induced n (subtopology X (S − U )) (T − U ) (subtopology X
S) T id

(homologous_rel_set n (subtopology X (S − U )) (T − U ) d)
then obtain scc: singular_chain n (subtopology X (S − U )) c

and scd: singular_chain n (subtopology X (S − U )) d
using singular_relcycle by metis

have singular_relboundary n (subtopology X (S − U )) (T − U ) c
if srb: singular_relboundary n (subtopology X S) T c

and src: singular_relcycle n (subtopology X (S − U )) (T − U ) c for c
proof −

have [simp]: (S − U ) ∩ (T − U ) = T − U S ∩ T = T
using ‹T ⊆ S› by blast+

have c: singular_chain n (subtopology X (S − U )) c
singular_chain (n − Suc 0 ) (subtopology X (T − U )) (chain_boundary

n c)
using that by (auto simp: singular_relcycle_def mod_subset_def subtopol-

ogy_subtopology)
obtain d e where d: singular_chain (Suc n) (subtopology X S) d
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and e: singular_chain n (subtopology X T ) e
and dce: chain_boundary (Suc n) d = c + e

using srb by (auto simp: singular_relboundary_alt subtopology_subtopology)
obtain m f g where f : singular_chain (Suc n) (subtopology X (S − U )) f

and g: singular_chain (Suc n) (subtopology X T ) g
and dfg: (singular_subdivision (Suc n) ^^ m) d = f + g

using excised_chain_exists [OF assms d] .
obtain h where

h0 :
∧

p. h p 0 = (0 :: ′a chain)
and hdiff :

∧
p c1 c2 . h p (c1−c2 ) = h p c1 − h p c2

and hSuc:
∧

p X c. singular_chain p X c =⇒ singular_chain (Suc p) X (h
p c)

and hchain:
∧

p X c. singular_chain p X c
=⇒ chain_boundary (Suc p) (h p c) + h (p − Suc 0 )

(chain_boundary p c)
= (singular_subdivision p ^^ m) c − c

using chain_homotopic_iterated_singular_subdivision by blast
have hadd:

∧
p c1 c2 . h p (c1 + c2 ) = h p c1 + h p c2

by (metis add_diff_cancel diff_add_cancel hdiff )
define c1 where c1 ≡ f − h n c

define c2 where c2 ≡ chain_boundary (Suc n) (h n e) − (chain_boundary
(Suc n) g − e)

show ?thesis
unfolding singular_relboundary_alt

proof (intro exI conjI )
show c1 : singular_chain (Suc n) (subtopology X (S − U )) c1

by (simp add: ‹singular_chain n (subtopology X (S − U )) c› c1_def f
hSuc singular_chain_diff )

have chain_boundary (Suc n) (chain_boundary (Suc (Suc n)) (h (Suc n)
d) + h n (c+e))

= chain_boundary (Suc n) (f + g − d)
using hchain [OF d] by (simp add: dce dfg)

then have chain_boundary (Suc n) (h n (c + e))
= chain_boundary (Suc n) f + chain_boundary (Suc n) g − (c + e)

using chain_boundary_boundary_alt [of Suc n subtopology X S ]
by (simp add: chain_boundary_add chain_boundary_diff d hSuc dce)

then have chain_boundary (Suc n) (h n c) + chain_boundary (Suc n)
(h n e)

= chain_boundary (Suc n) f + chain_boundary (Suc n) g − (c + e)
by (simp add: chain_boundary_add hadd)

then have ∗: chain_boundary (Suc n) (f − h n c) = c + (chain_boundary
(Suc n) (h n e) − (chain_boundary (Suc n) g − e))

by (simp add: algebra_simps chain_boundary_diff )
then show chain_boundary (Suc n) c1 = c + c2
unfolding c1_def c2_def

by (simp add: algebra_simps chain_boundary_diff )
obtain singular_chain n (subtopology X (S − U )) c2 singular_chain n

(subtopology X T ) c2
using singular_chain_diff c c1 ∗
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unfolding c1_def c2_def
by (metis add_diff_cancel_left ′ e g hSuc singular_chain_boundary_alt)
then show singular_chain n (subtopology (subtopology X (S − U )) (T

− U )) c2
by (fastforce simp add: singular_chain_subtopology)

qed
qed
then have singular_relboundary n (subtopology X S) T (c − d) =⇒

singular_relboundary n (subtopology X (S − U )) (T − U ) (c − d)
using c d singular_relcycle_diff by metis

with hh show homologous_rel n (subtopology X (S − U )) (T − U ) c d
apply (simp add: hom_induced_chain_map cont c d chain_map_ident [OF

scc] chain_map_ident [OF scd])
using homologous_rel_set_eq homologous_rel_def by metis

qed
next

have h: homologous_rel_set n (subtopology X S) T a
∈ (λx. homologous_rel_set n (subtopology X S) T (chain_map n id x)) ‘

singular_relcycle_set n (subtopology X (S − U )) (T − U )
if a: singular_relcycle n (subtopology X S) T a for a

proof −
obtain c ′ where c ′: singular_relcycle n (subtopology X (S − U )) (T − U )

c ′

homologous_rel n (subtopology X S) T a c ′

using a by (blast intro: excised_relcycle_exists [OF assms])
then have scc ′: singular_chain n (subtopology X S) c ′

using homologous_rel_singular_chain that
by (force simp: singular_relcycle)

then show ?thesis
using scc ′ chain_map_ident [of _ subtopology X S ] c ′ homologous_rel_set_eq

by fastforce
qed
have (λx. homologous_rel_set n (subtopology X S) T (chain_map n id x)) ‘

singular_relcycle_set n (subtopology X (S − U )) (T − U ) =
homologous_rel_set n (subtopology X S) T ‘
singular_relcycle_set n (subtopology X S) T

by (force simp: cont h singular_relcycle_chain_map)
then
show hom_induced n (subtopology X (S − U )) (T − U ) (subtopology X S) T

id ‘
homologous_rel_set n (subtopology X (S − U )) (T − U ) ‘
singular_relcycle_set n (subtopology X (S − U )) (T − U )
= homologous_rel_set n (subtopology X S) T ‘ singular_relcycle_set n

(subtopology X S) T
by (simp add: image_comp o_def hom_induced_chain_map_gen cont TU

cong: image_cong_simp)
qed

qed
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0.2.3 Additivity axiom

Not in the original Eilenberg-Steenrod list but usually included nowadays,
following Milnor’s "On Axiomatic Homology Theory".

lemma iso_chain_group_sum:
assumes disj: pairwise disjnt U and UU :

⋃
U = topspace X

and subs:
∧

C T . [[compactin X C ; path_connectedin X C ; T ∈ U ; ∼ disjnt C
T ]] =⇒ C ⊆ T

shows (λf . sum ′ f U) ∈ iso (sum_group U (λS . chain_group p (subtopology X
S))) (chain_group p X)
proof −

have pw: pairwise (λi j. disjnt (singular_simplex_set p (subtopology X i))
(singular_simplex_set p (subtopology X j))) U

proof
fix S T
assume S ∈ U T ∈ U S 6= T
then show disjnt (singular_simplex_set p (subtopology X S))

(singular_simplex_set p (subtopology X T ))
using nonempty_standard_simplex [of p] disj

by (fastforce simp: pairwise_def disjnt_def singular_simplex_subtopology
image_subset_iff )

qed
have ∃S∈U . singular_simplex p (subtopology X S) f

if f : singular_simplex p X f for f
proof −

obtain x where x: x ∈ topspace X x ∈ f ‘ standard_simplex p
using f nonempty_standard_simplex [of p] continuous_map_image_subset_topspace

unfolding singular_simplex_def by fastforce
then obtain S where S ∈ U x ∈ S

using UU by auto
have f ‘ standard_simplex p ⊆ S
proof (rule subs)

have cont: continuous_map (subtopology (powertop_real UNIV )
(standard_simplex p)) X f

using f singular_simplex_def by auto
show compactin X (f ‘ standard_simplex p)

by (simp add: compactin_subtopology compactin_standard_simplex im-
age_compactin [OF _ cont])

show path_connectedin X (f ‘ standard_simplex p)
by (simp add: path_connectedin_subtopology path_connectedin_standard_simplex

path_connectedin_continuous_map_image [OF cont])
have standard_simplex p 6= {}

by (simp add: nonempty_standard_simplex)
then
show ¬ disjnt (f ‘ standard_simplex p) S

using x ‹x ∈ S› by (auto simp: disjnt_def )
qed (auto simp: ‹S ∈ U›)
then show ?thesis

by (meson ‹S ∈ U› singular_simplex_subtopology that)
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qed
then have (

⋃
i∈U . singular_simplex_set p (subtopology X i)) = singular_simplex_set

p X
by (auto simp: singular_simplex_subtopology)

then show ?thesis
using iso_free_Abelian_group_sum [OF pw] by (simp add: chain_group_def )

qed

lemma relcycle_group_0_eq_chain_group: relcycle_group 0 X {} = chain_group
0 X
proof (rule monoid.equality)

show carrier (relcycle_group 0 X {}) = carrier (chain_group 0 X)
by (simp add: Collect_mono chain_boundary_def singular_cycle subset_antisym)

qed (simp_all add: relcycle_group_def chain_group_def )

proposition iso_cycle_group_sum:
assumes disj: pairwise disjnt U and UU :

⋃
U = topspace X

and subs:
∧

C T . [[compactin X C ; path_connectedin X C ; T ∈ U ; ¬ disjnt C
T ]] =⇒ C ⊆ T

shows (λf . sum ′ f U) ∈ iso (sum_group U (λT . relcycle_group p (subtopology
X T ) {}))

(relcycle_group p X {})
proof (cases p = 0 )

case True
then show ?thesis

by (simp add: relcycle_group_0_eq_chain_group iso_chain_group_sum [OF
assms])
next

case False
let ?SG = (sum_group U (λT . chain_group p (subtopology X T )))
let ?PI = (ΠE T∈U . singular_relcycle_set p (subtopology X T ) {})
have (λf . sum ′ f U) ∈ Group.iso (subgroup_generated ?SG (carrier ?SG ∩ ?PI ))

(subgroup_generated (chain_group p X) (singular_relcycle_set
p X {}))

proof (rule group_hom.iso_between_subgroups)
have iso: (λf . sum ′ f U) ∈ Group.iso ?SG (chain_group p X)

by (auto simp: assms iso_chain_group_sum)
then show group_hom ?SG (chain_group p X) (λf . sum ′ f U)
by (auto simp: iso_imp_homomorphism group_hom_def group_hom_axioms_def )
have B: sum ′ f U ∈ singular_relcycle_set p X {} ←→ f ∈ (carrier ?SG ∩

?PI )
if f ∈ (carrier ?SG) for f

proof −
have f :

∧
S . S ∈ U −→ singular_chain p (subtopology X S) (f S)

f ∈ extensional U finite {i ∈ U . f i 6= 0}
using that by (auto simp: carrier_sum_group PiE_def Pi_def )

then have rfin: finite {S ∈ U . restrict (chain_boundary p ◦ f ) U S 6= 0}
by (auto elim: rev_finite_subset)

have chain_boundary p ((
∑

x | x ∈ U ∧ f x 6= 0 . f x)) = 0
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←→ (∀S ∈ U . chain_boundary p (f S) = 0 ) (is ?cb = 0 ←→ ?rhs)
proof

assume ?cb = 0
moreover have ?cb = sum ′ (λS . chain_boundary p (f S)) U

unfolding sum.G_def using rfin f
by (force simp: chain_boundary_sum intro: sum.mono_neutral_right cong:

conj_cong)
ultimately have eq0 : sum ′ (λS . chain_boundary p (f S)) U = 0

by simp
have (λf . sum ′ f U) ∈ hom (sum_group U (λS . chain_group (p − Suc 0 )

(subtopology X S)))
(chain_group (p − Suc 0 ) X)

and inj: inj_on (λf . sum ′ f U) (carrier (sum_group U (λS . chain_group
(p − Suc 0 ) (subtopology X S))))

using iso_chain_group_sum [OF assms, of p−1 ] by (auto simp: iso_def
bij_betw_def )

then have eq: [[f ∈ (ΠE i∈U . singular_chain_set (p − Suc 0 ) (subtopology
X i));

finite {S ∈ U . f S 6= 0}; sum ′ f U = 0 ; S ∈ U ]] =⇒ f S = 0 for f S
apply (simp add: group_hom_def group_hom_axioms_def group_hom.inj_on_one_iff

[of _ chain_group (p−1 ) X ])
apply (auto simp: carrier_sum_group fun_eq_iff that)
done

show ?rhs
proof clarify

fix S assume S ∈ U
then show chain_boundary p (f S) = 0

using eq [of restrict (chain_boundary p ◦ f ) U S ] rfin f eq0
by (simp add: singular_chain_boundary cong: conj_cong)

qed
next

assume ?rhs
then show ?cb = 0

by (force simp: chain_boundary_sum intro: sum.mono_neutral_right)
qed
moreover
have (

∧
S . S ∈ U −→ singular_chain p (subtopology X S) (f S))

=⇒ singular_chain p X (
∑

x | x ∈ U ∧ f x 6= 0 . f x)
by (metis (no_types, lifting) mem_Collect_eq singular_chain_subtopology

singular_chain_sum)
ultimately show ?thesis

using f by (auto simp: carrier_sum_group sum.G_def singular_cycle
PiE_iff )

qed
have singular_relcycle_set p X {} ⊆ carrier (chain_group p X)

using subgroup.subset subgroup_singular_relcycle by blast
then show (λf . sum ′ f U) ‘ (carrier ?SG ∩ ?PI ) = singular_relcycle_set p X

{}
using iso B unfolding Group.iso_def
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by (smt (verit, del_insts) Int_iff bij_betw_def image_iff mem_Collect_eq
subset_antisym subset_iff )

qed (auto simp: assms iso_chain_group_sum)
then show ?thesis
by (simp add: relcycle_group_def sum_group_subgroup_generated subgroup_singular_relcycle)

qed

proposition homology_additivity_axiom_gen:
assumes disj: pairwise disjnt U and UU :

⋃
U = topspace X

and subs:
∧

C T . [[compactin X C ; path_connectedin X C ; T ∈ U ; ¬ disjnt C
T ]] =⇒ C ⊆ T

shows (λx. gfinprod (homology_group p X)
(λV . hom_induced p (subtopology X V ) {} X {} id (x V )) U)

∈ iso (sum_group U (λS . homology_group p (subtopology X S))) (homology_group
p X)

(is ?h ∈ iso ?SG ?HG)
proof (cases p < 0 )

case True
then have [simp]: gfinprod (singleton_group undefined) (λv. undefined) U =

undefined
by (metis Pi_I carrier_singleton_group comm_group_def comm_monoid.gfinprod_closed

singletonD singleton_abelian_group)
show ?thesis

using True
apply (simp add: iso_def relative_homology_group_def hom_induced_trivial

carrier_sum_group)
apply (auto simp: singleton_group_def bij_betw_def inj_on_def fun_eq_iff )
done

next
case False
then obtain n where peq: p = int n

by (metis int_ops(1 ) linorder_neqE_linordered_idom pos_int_cases)
interpret comm_group homology_group p X

by (rule abelian_homology_group)
show ?thesis
proof (simp add: iso_def bij_betw_def , intro conjI )

show ?h ∈ hom ?SG ?HG
by (rule hom_group_sum) (simp_all add: hom_induced_hom)

then interpret group_hom ?SG ?HG ?h
by (simp add: group_hom_def group_hom_axioms_def )

have carrSG: carrier ?SG
= (λx. λS∈U . homologous_rel_set n (subtopology X S) {} (x S))
‘ (carrier (sum_group U (λS . relcycle_group n (subtopology X S) {}))) (is

?lhs = ?rhs)
proof

show ?lhs ⊆ ?rhs
proof (clarsimp simp: carrier_sum_group carrier_relative_homology_group

peq)
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fix z
assume z: z ∈ (ΠE S∈U . homologous_rel_set n (subtopology X S) {} ‘

singular_relcycle_set n (subtopology X S) {})
and fin: finite {S ∈ U . z S 6= singular_relboundary_set n (subtopology X S)

{}}
then obtain c where c: ∀S∈U . singular_relcycle n (subtopology X S) {}

(c S)
∧ z S = homologous_rel_set n (subtopology X S) {} (c S)

by (simp add: PiE_def Pi_def image_def ) metis
let ?f = λS∈U . if singular_relboundary n (subtopology X S) {} (c S) then

0 else c S
have z = (λS∈U . homologous_rel_set n (subtopology X S) {} (?f S))

by (smt (verit) PiE_restrict c homologous_rel_eq_relboundary re-
strict_apply restrict_ext singular_relboundary_0 z)

moreover have ?f ∈ (ΠE i∈U . singular_relcycle_set n (subtopology X i)
{})

by (simp add: c fun_eq_iff PiE_arb [OF z])
moreover have finite {i ∈ U . ?f i 6= 0}

using z c by (intro finite_subset [OF _ fin]) auto
ultimately
show z ∈ (λx. λS∈U . homologous_rel_set n (subtopology X S) {} (x S)) ‘
{x ∈ ΠE i∈U . singular_relcycle_set n (subtopology X i) {}. finite {i ∈

U . x i 6= 0}}
by blast

qed
show ?rhs ⊆ ?lhs

by (force simp: peq carrier_sum_group carrier_relative_homology_group
homologous_rel_set_eq_relboundary

elim: rev_finite_subset)
qed
have gf : gfinprod (homology_group p X)

(λV . hom_induced n (subtopology X V ) {} X {} id
((λS∈U . homologous_rel_set n (subtopology X S) {} (z S)) V ))

U
= homologous_rel_set n X {} (sum ′ z U) (is ?lhs = ?rhs)

if z: z ∈ carrier (sum_group U (λS . relcycle_group n (subtopology X S) {}))
for z

proof −
have hom_pi: (λS . homologous_rel_set n X {} (z S)) ∈ U → carrier

(homology_group p X)
using z

by (intro Pi_I ) (force simp: peq carrier_sum_group carrier_relative_homology_group
singular_chain_subtopology singular_cycle)

have fin: finite {S ∈ U . z S 6= 0}
using that by (force simp: carrier_sum_group)

have ?lhs = gfinprod (homology_group p X) (λS . homologous_rel_set n X
{} (z S)) U

proof (rule gfinprod_cong [OF refl Pi_I ])
fix i
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show i ∈ U =simp=> hom_induced (int n) (subtopology X i) {} X {} id
((λS∈U . homologous_rel_set n (subtopology X S) {} (z S)) i)

= homologous_rel_set n X {} (z i)
using that
by (auto simp: peq simp_implies_def carrier_sum_group PiE_def Pi_def

chain_map_ident singular_cycle hom_induced_chain_map)
qed (simp add: hom_induced_carrier peq)
also have . . . = gfinprod (homology_group p X)

(λS . homologous_rel_set n X {} (z S)) {S ∈ U . z S 6= 0}
proof −

have homologous_rel_set n X {} 0 = singular_relboundary_set n X {}
by (metis homologous_rel_eq_relboundary singular_relboundary_0 )

with hom_pi peq show ?thesis
by (intro gfinprod_mono_neutral_cong_right) auto

qed
also have . . . = ?rhs
proof −

have gfinprod (homology_group p X) (λS . homologous_rel_set n X {} (z
S)) F

= homologous_rel_set n X {} (sum z F)
if finite F F ⊆ {S ∈ U . z S 6= 0} for F
using that

proof (induction F)
case empty
have 1homology_group p X = homologous_rel_set n X {} 0
by (metis homologous_rel_eq_relboundary one_relative_homology_group

peq singular_relboundary_0 )
then show ?case

by simp
next

case (insert S F)
with z have pi: (λS . homologous_rel_set n X {} (z S)) ∈ F → carrier

(homology_group p X)
homologous_rel_set n X {} (z S) ∈ carrier (homology_group p X)

by (force simp: peq carrier_sum_group carrier_relative_homology_group
singular_chain_subtopology singular_cycle)+

have hom: homologous_rel_set n X {} (z S) ∈ carrier (homology_group
p X)

using insert z
by (force simp: peq carrier_sum_group carrier_relative_homology_group

singular_chain_subtopology singular_cycle)
show ?case

using insert z
proof (simp add: pi)

have
∧

x. homologous_rel n X {} (z S + sum z F) x
=⇒ ∃ u v. homologous_rel n X {} (z S) u ∧ homologous_rel n X {} (sum

z F) v ∧ x = u + v
by (metis (no_types, lifting) diff_add_cancel diff_diff_eq2 homolo-

gous_rel_def homologous_rel_refl)
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with insert z
show homologous_rel_set n X {} (z S) ⊗homology_group p X homolo-

gous_rel_set n X {} (sum z F)
= homologous_rel_set n X {} (z S + sum z F)

using insert z by (auto simp: peq homologous_rel_add mult_relative_homology_group)
qed

qed
with fin show ?thesis

by (simp add: sum.G_def )
qed
finally show ?thesis .

qed
show inj_on ?h (carrier ?SG)
proof (clarsimp simp add: inj_on_one_iff )

fix x
assume x: x ∈ carrier (sum_group U (λS . homology_group p (subtopology X

S)))
and 1 : gfinprod (homology_group p X) (λV . hom_induced p (subtopology

X V ) {} X {} id (x V )) U
= 1homology_group p X

have feq: (λS∈U . homologous_rel_set n (subtopology X S) {} (z S))
= (λS∈U . 1homology_group p (subtopology X S))

if z: z ∈ carrier (sum_group U (λS . relcycle_group n (subtopology X S) {}))
and eq: homologous_rel_set n X {} (sum ′ z U) = 1homology_group p X

for z
proof −
have z ∈ (ΠE S∈U . singular_relcycle_set n (subtopology X S) {}) finite {S

∈ U . z S 6= 0}
using z by (auto simp: carrier_sum_group)

have singular_relboundary n X {} (sum ′ z U)
using eq singular_chain_imp_relboundary by (auto simp: relative_homology_group_def

peq)
then obtain d where scd: singular_chain (Suc n) X d and cbd: chain_boundary

(Suc n) d = sum ′ z U
by (auto simp: singular_boundary)

have ∗: ∃ d. singular_chain (Suc n) (subtopology X S) d ∧ chain_boundary
(Suc n) d = z S

if S ∈ U for S
proof −
have inj ′: inj_on (λf . sum ′ f U) {x ∈ ΠE S∈U . singular_chain_set (Suc

n) (subtopology X S). finite {S ∈ U . x S 6= 0}}
using iso_chain_group_sum [OF assms, of Suc n]
by (simp add: iso_iff_mon_epi mon_def carrier_sum_group)

obtain w where w: w ∈ (ΠE S∈U . singular_chain_set (Suc n) (subtopology
X S))

and finw: finite {S ∈ U . w S 6= 0}
and deq: d = sum ′ w U
using iso_chain_group_sum [OF assms, of Suc n] scd

by (auto simp: iso_iff_mon_epi epi_def carrier_sum_group set_eq_iff )
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with ‹S ∈ U› have scwS : singular_chain (Suc n) (subtopology X S) (w S)
by blast

have inj_on (λf . sum ′ f U) {x ∈ ΠE S∈U . singular_chain_set n
(subtopology X S). finite {S ∈ U . x S 6= 0}}

using iso_chain_group_sum [OF assms, of n]
by (simp add: iso_iff_mon_epi mon_def carrier_sum_group)

then have (λS∈U . chain_boundary (Suc n) (w S)) = z
proof (rule inj_onD)

have sum ′ (λS∈U . chain_boundary (Suc n) (w S)) U = sum ′ (chain_boundary
(Suc n) ◦ w) {S ∈ U . w S 6= 0}

by (auto simp: o_def intro: sum.mono_neutral_right ′)
also have . . . = chain_boundary (Suc n) d

by (auto simp: sum.G_def deq chain_boundary_sum finw intro:
finite_subset [OF _ finw] sum.mono_neutral_left)

finally show sum ′ (λS∈U . chain_boundary (Suc n) (w S)) U = sum ′ z
U

by (simp add: cbd)
show (λS∈U . chain_boundary (Suc n) (w S)) ∈ {x ∈ ΠE S∈U .

singular_chain_set n (subtopology X S). finite {S ∈ U . x S 6= 0}}
using w by (auto simp: PiE_iff singular_chain_boundary_alt cong:

rev_conj_cong intro: finite_subset [OF _ finw])
show z ∈ {x ∈ ΠE S∈U . singular_chain_set n (subtopology X S). finite

{S ∈ U . x S 6= 0}}
using z by (simp_all add: carrier_sum_group PiE_iff singular_cycle)

qed
with ‹S ∈ U› scwS show ?thesis

by force
qed
show ?thesis

using that ∗
by (force intro!: restrict_ext simp add: singular_boundary relative_homology_group_def

homologous_rel_set_eq_relboundary peq)
qed
show x = (λS∈U . 1homology_group p (subtopology X S))

using x 1 carrSG gf
by (auto simp: peq feq)

qed
show ?h ‘ carrier ?SG = carrier ?HG
proof safe

fix A
assume A ∈ carrier (homology_group p X)
then obtain y where y: singular_relcycle n X {} y and xeq: A = homolo-

gous_rel_set n X {} y
by (auto simp: peq carrier_relative_homology_group)
then obtain x where x ∈ carrier (sum_group U (λT . relcycle_group n

(subtopology X T ) {}))
y = sum ′ x U

using iso_cycle_group_sum [OF assms, of n] that by (force simp: iso_iff_mon_epi
epi_def )
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then show A ∈ (λx. gfinprod (homology_group p X) (λV . hom_induced p
(subtopology X V ) {} X {} id (x V )) U) ‘

carrier (sum_group U (λS . homology_group p (subtopology X S)))
apply (simp add: carrSG image_comp o_def xeq)
apply (simp add: hom_induced_carrier peq flip: gf cong: gfinprod_cong)
done

qed auto
qed

qed

corollary homology_additivity_axiom:
assumes disj: pairwise disjnt U and UU :

⋃
U = topspace X

and ope:
∧

v. v ∈ U =⇒ openin X v
shows (λx. gfinprod (homology_group p X)

(λv. hom_induced p (subtopology X v) {} X {} id (x v)) U)
∈ iso (sum_group U (λS . homology_group p (subtopology X S))) (homology_group

p X)
proof (rule homology_additivity_axiom_gen [OF disj UU ])

fix C T
assume

compactin X C and
path_connectedin X C and
T ∈ U and
¬ disjnt C T

then have ∗:
∧

B. [[openin X T ; T ∩ B ∩ C = {}; C ⊆ T ∪ B; openin X B]]
=⇒ B ∩ C = {}

by (meson connectedin disjnt_def disjnt_sym path_connectedin_imp_connectedin)
have C ⊆ Union U

by (simp add: UU ‹compactin X C › compactin_subset_topspace)
moreover have

⋃
(U − {T}) ∩ C = {}

proof (rule ∗)
show T ∩

⋃
(U − {T}) ∩ C = {}

using ‹T ∈ U› disj disjointD by fastforce
show C ⊆ T ∪

⋃
(U − {T})

using ‹C ⊆
⋃
U› by fastforce

qed (auto simp: ‹T ∈ U› ope)
ultimately show C ⊆ T

by blast
qed

0.2.4 Special properties of singular homology

In particular: the zeroth homology group is isomorphic to the free abelian
group generated by the path components. So, the "coefficient group" is the
integers.
lemma iso_integer_zeroth_homology_group_aux:

assumes X : path_connected_space X and f : singular_simplex 0 X f and f ′:
singular_simplex 0 X f ′
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shows homologous_rel 0 X {} (frag_of f ) (frag_of f ′)
proof −

let ?p = λj. if j = 0 then 1 else 0
have f ?p ∈ topspace X f ′ ?p ∈ topspace X
using assms by (auto simp: singular_simplex_def continuous_map_def )
then obtain g where g: pathin X g

and g0 : g 0 = f ?p
and g1 : g 1 = f ′ ?p

using assms by (force simp: path_connected_space_def )
then have contg: continuous_map (subtopology euclideanreal {0 ..1}) X g

by (simp add: pathin_def )
have singular_chain (Suc 0 ) X (frag_of (restrict (g ◦ (λx. x 0 )) (standard_simplex

1 )))
proof −

have continuous_map (subtopology (powertop_real UNIV ) (standard_simplex
(Suc 0 )))

euclideanreal (λx. x 0 )
by (metis (mono_tags) UNIV_I continuous_map_from_subtopology contin-

uous_map_product_projection)
then have continuous_map (subtopology (powertop_real UNIV ) (standard_simplex

(Suc 0 )))
(top_of_set {0 ..1}) (λx. x 0 )

unfolding continuous_map_in_subtopology g
by (auto simp: continuous_map_in_subtopology standard_simplex_def g)

moreover have continuous_map (top_of_set {0 ..1}) X g
using contg by blast

ultimately show ?thesis
by (force simp: singular_chain_of chain_boundary_of singular_simplex_def

continuous_map_compose)
qed
moreover
have chain_boundary (Suc 0 ) (frag_of (restrict (g ◦ (λx. x 0 )) (standard_simplex

1 ))) =
frag_of f − frag_of f ′

proof −
have singular_face (Suc 0 ) 0 (g ◦ (λx. x 0 )) = f

singular_face (Suc 0 ) (Suc 0 ) (g ◦ (λx. x 0 )) = f ′

using assms
by (auto simp: singular_face_def singular_simplex_def extensional_def sim-

plical_face_def standard_simplex_0 g0 g1 )
then show ?thesis

by (simp add: singular_chain_of chain_boundary_of )
qed
ultimately
show ?thesis

by (auto simp: homologous_rel_def singular_boundary)
qed
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proposition iso_integer_zeroth_homology_group:
assumes X : path_connected_space X and f : singular_simplex 0 X f
shows pow (homology_group 0 X) (homologous_rel_set 0 X {} (frag_of f ))
∈ iso integer_group (homology_group 0 X) (is pow ?H ?q ∈ iso _ ?H )

proof −
have srf : singular_relcycle 0 X {} (frag_of f )

by (simp add: chain_boundary_def f singular_chain_of singular_cycle)
then have qcarr : ?q ∈ carrier ?H

by (simp add: carrier_relative_homology_group_0 )
have 1 : homologous_rel_set 0 X {} a ∈ range (λn. homologous_rel_set 0 X {}

(frag_cmul n (frag_of f )))
if singular_relcycle 0 X {} a for a

proof −
have singular_chain 0 X d =⇒

homologous_rel_set 0 X {} d ∈ range (λn. homologous_rel_set 0 X {}
(frag_cmul n (frag_of f ))) for d

unfolding singular_chain_def
proof (induction d rule: frag_induction)

case zero
then show ?case

by (metis frag_cmul_zero rangeI )
next

case (one x)
then have ∃ i. homologous_rel_set 0 X {} (frag_cmul i (frag_of f ))

= homologous_rel_set 0 X {} (frag_of x)
by (metis (no_types) iso_integer_zeroth_homology_group_aux [OF X ] f

frag_cmul_one homologous_rel_eq mem_Collect_eq)
with one show ?case

by auto
next

case (diff a b)
then obtain c d where

homologous_rel 0 X {} (a − b) (frag_cmul c (frag_of f ) − frag_cmul d
(frag_of f ))

using homologous_rel_diff by (fastforce simp add: homologous_rel_set_eq)
then show ?case

by (rule_tac x=c−d in image_eqI ) (auto simp: homologous_rel_set_eq
frag_cmul_diff_distrib)

qed
with that show ?thesis

unfolding singular_relcycle_def by blast
qed
have 2 : n = 0
if homologous_rel_set 0 X {} (frag_cmul n (frag_of f )) = 1relative_homology_group 0 X {}
for n

proof −
have singular_chain (Suc 0 ) X d

=⇒ frag_extend (λx. frag_of f ) (chain_boundary (Suc 0 ) d) = 0 for d
unfolding singular_chain_def
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proof (induction d rule: frag_induction)
case (one x)
then show ?case

by (simp add: frag_extend_diff chain_boundary_of )
next

case (diff a b)
then show ?case

by (simp add: chain_boundary_diff frag_extend_diff )
qed auto
with that show ?thesis

by (force simp: singular_boundary relative_homology_group_def homolo-
gous_rel_set_eq_relboundary frag_extend_cmul)

qed
interpret GH : group_hom integer_group ?H ([^]?H) ?q
by (simp add: group_hom_def group_hom_axioms_def qcarr group.hom_integer_group_pow)
have eq: pow ?H ?q = (λn. homologous_rel_set 0 X {} (frag_cmul n (frag_of

f )))
proof

fix n
have frag_of f

∈ carrier (subgroup_generated
(free_Abelian_group (singular_simplex_set 0 X)) (singular_relcycle_set

0 X {}))
by (metis carrier_relcycle_group chain_group_def mem_Collect_eq relcy-

cle_group_def srf )
then have ff : frag_of f [^]relcycle_group 0 X {} n = frag_cmul n (frag_of f )
by (simp add: relcycle_group_def chain_group_def group.int_pow_subgroup_generated

f )
show pow ?H ?q n = homologous_rel_set 0 X {} (frag_cmul n (frag_of f ))

apply (rule subst [OF right_coset_singular_relboundary])
by (simp add: ff normal.FactGroup_int_pow normal_subgroup_singular_relboundary_relcycle

relative_homology_group_def srf )
qed
show ?thesis

apply (subst GH .iso_iff )
apply (simp add: eq)
apply (auto simp: carrier_relative_homology_group_0 1 2 )
done

qed

corollary isomorphic_integer_zeroth_homology_group:
assumes X : path_connected_space X topspace X 6= {}
shows homology_group 0 X ∼= integer_group

proof −
obtain a where a: a ∈ topspace X

using assms by blast
have singular_simplex 0 X (restrict (λx. a) (standard_simplex 0 ))

by (simp add: singular_simplex_def a)
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then show ?thesis
using X group.iso_sym group_integer_group is_isoI iso_integer_zeroth_homology_group

by blast
qed

corollary homology_coefficients:
topspace X = {a} =⇒ homology_group 0 X ∼= integer_group
using isomorphic_integer_zeroth_homology_group path_connectedin_topspace

by fastforce

proposition zeroth_homology_group:
homology_group 0 X ∼= free_Abelian_group (path_components_of X)

proof −
obtain h where h: h ∈ iso (sum_group (path_components_of X) (λS . homol-

ogy_group 0 (subtopology X S)))
(homology_group 0 X)

proof (rule that [OF homology_additivity_axiom_gen])
show disjoint (path_components_of X)

by (simp add: pairwise_disjoint_path_components_of )
show

⋃
(path_components_of X) = topspace X

by (rule Union_path_components_of )
next

fix C T
assume path_connectedin X C T ∈ path_components_of X ¬ disjnt C T
then show C ⊆ T

by (metis path_components_of_maximal disjnt_sym)+
qed
have homology_group 0 X ∼= sum_group (path_components_of X) (λS . homol-

ogy_group 0 (subtopology X S))
by (rule group.iso_sym) (use h is_iso_def in auto)

also have . . . ∼= sum_group (path_components_of X) (λi. integer_group)
proof (rule iso_sum_groupI )
show homology_group 0 (subtopology X i) ∼= integer_group if i ∈ path_components_of

X for i
by (metis that isomorphic_integer_zeroth_homology_group nonempty_path_components_of

path_connectedin_def path_connectedin_path_components_of topspace_subtopology_subset)
qed auto
also have . . . ∼= free_Abelian_group (path_components_of X)
using path_connectedin_path_components_of nonempty_path_components_of
by (simp add: isomorphic_sum_integer_group path_connectedin_def )

finally show ?thesis .
qed

lemma isomorphic_homology_imp_path_components:
assumes homology_group 0 X ∼= homology_group 0 Y
shows path_components_of X ≈ path_components_of Y

proof −
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have free_Abelian_group (path_components_of X) ∼= homology_group 0 X
by (rule group.iso_sym) (auto simp: zeroth_homology_group)

also have . . . ∼= homology_group 0 Y
by (rule assms)

also have . . . ∼= free_Abelian_group (path_components_of Y )
by (rule zeroth_homology_group)

finally have free_Abelian_group (path_components_of X) ∼= free_Abelian_group
(path_components_of Y ) .

then show ?thesis
by (simp add: isomorphic_free_Abelian_groups)

qed

lemma isomorphic_homology_imp_path_connectedness:
assumes homology_group 0 X ∼= homology_group 0 Y
shows path_connected_space X ←→ path_connected_space Y

proof −
obtain h where h: bij_betw h (path_components_of X) (path_components_of

Y )
using assms isomorphic_homology_imp_path_components eqpoll_def by blast

have 1 : path_components_of X ⊆ {a} =⇒ path_components_of Y ⊆ {h a} for
a

using h unfolding bij_betw_def by blast
have 2 : path_components_of Y ⊆ {a}

=⇒ path_components_of X ⊆ {inv_into (path_components_of X) h a}
for a

using h [THEN bij_betw_inv_into] unfolding bij_betw_def by blast
show ?thesis

unfolding path_connected_space_iff_components_subset_singleton
by (blast intro: dest: 1 2 )

qed

0.2.5 More basic properties of homology groups, deduced
from the E-S axioms

lemma trivial_homology_group:
p < 0 =⇒ trivial_group(homology_group p X)

by simp

lemma hom_induced_empty_hom:
(hom_induced p X {} X ′ {} f ) ∈ hom (homology_group p X) (homology_group

p X ′)
by (simp add: hom_induced_hom)

lemma hom_induced_compose_empty:
[[continuous_map X Y f ; continuous_map Y Z g]]
=⇒ hom_induced p X {} Z {} (g ◦ f ) = hom_induced p Y {} Z {} g ◦

hom_induced p X {} Y {} f
by (simp add: hom_induced_compose)
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lemma homology_homotopy_empty:
homotopic_with (λh. True) X Y f g =⇒ hom_induced p X {} Y {} f =

hom_induced p X {} Y {} g
by (simp add: homology_homotopy_axiom)

lemma homotopy_equivalence_relative_homology_group_isomorphisms:
assumes contf : continuous_map X Y f and fim: f ∈ S → T

and contg: continuous_map Y X g and gim: g ∈ T → S
and gf : homotopic_with (λh. h ∈ S → S) X X (g ◦ f ) id
and fg: homotopic_with (λk. k ∈ T → T ) Y Y (f ◦ g) id

shows group_isomorphisms (relative_homology_group p X S) (relative_homology_group
p Y T )

(hom_induced p X S Y T f ) (hom_induced p Y T X S g)
unfolding group_isomorphisms_def

proof (intro conjI ballI )
fix x
assume x: x ∈ carrier (relative_homology_group p X S)
then show hom_induced p Y T X S g (hom_induced p X S Y T f x) = x

using homology_homotopy_axiom [OF gf , of p]
by (simp add: contf contg fim gim hom_induced_compose ′ hom_induced_id)

next
fix y
assume y ∈ carrier (relative_homology_group p Y T )
then show hom_induced p X S Y T f (hom_induced p Y T X S g y) = y

using homology_homotopy_axiom [OF fg, of p]
by (simp add: contf contg fim gim hom_induced_compose ′ hom_induced_id)

qed (auto simp: hom_induced_hom)

lemma homotopy_equivalence_relative_homology_group_isomorphism:
assumes continuous_map X Y f and fim: f ∈ S → T

and continuous_map Y X g and gim: g ∈ T → S
and homotopic_with (λh. h ∈ S → S) X X (g ◦ f ) id
and homotopic_with (λk. k ∈ T → T ) Y Y (f ◦ g) id

shows (hom_induced p X S Y T f ) ∈ iso (relative_homology_group p X S)
(relative_homology_group p Y T )
using homotopy_equivalence_relative_homology_group_isomorphisms [OF assms]

group_isomorphisms_imp_iso
by metis

lemma homotopy_equivalence_homology_group_isomorphism:
assumes continuous_map X Y f

and continuous_map Y X g
and homotopic_with (λh. True) X X (g ◦ f ) id
and homotopic_with (λk. True) Y Y (f ◦ g) id

shows (hom_induced p X {} Y {} f ) ∈ iso (homology_group p X) (homology_group
p Y )
using assms by (intro homotopy_equivalence_relative_homology_group_isomorphism)
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auto

lemma homotopy_equivalent_space_imp_isomorphic_relative_homology_groups:
assumes continuous_map X Y f and fim: f ∈ S → T

and continuous_map Y X g and gim: g ∈ T → S
and homotopic_with (λh. h ∈ S → S) X X (g ◦ f ) id
and homotopic_with (λk. k ∈ T → T ) Y Y (f ◦ g) id

shows relative_homology_group p X S ∼= relative_homology_group p Y T
using homotopy_equivalence_relative_homology_group_isomorphism [OF assms]
unfolding is_iso_def by blast

lemma homotopy_equivalent_space_imp_isomorphic_homology_groups:
X homotopy_equivalent_space Y =⇒ homology_group p X ∼= homology_group

p Y
unfolding homotopy_equivalent_space_def
by (auto intro: homotopy_equivalent_space_imp_isomorphic_relative_homology_groups)

lemma homeomorphic_space_imp_isomorphic_homology_groups:
X homeomorphic_space Y =⇒ homology_group p X ∼= homology_group p Y

by (simp add: homeomorphic_imp_homotopy_equivalent_space homotopy_equivalent_space_imp_isomorphic_homology_groups)

lemma trivial_relative_homology_group_gen:
assumes continuous_map X (subtopology X S) f

homotopic_with (λh. True) (subtopology X S) (subtopology X S) f id
homotopic_with (λk. True) X X f id

shows trivial_group(relative_homology_group p X S)
proof (rule exact_seq_imp_triviality)

show exact_seq ([homology_group (p−1 ) X ,
homology_group (p−1 ) (subtopology X S),

relative_homology_group p X S , homology_group p X , homol-
ogy_group p (subtopology X S)],

[hom_induced (p−1 ) (subtopology X S) {} X {} id,
hom_boundary p X S ,
hom_induced p X {} X S id,
hom_induced p (subtopology X S) {} X {} id])

using homology_exactness_axiom_1 homology_exactness_axiom_2 homol-
ogy_exactness_axiom_3

by (metis exact_seq_cons_iff )
next

show hom_induced p (subtopology X S) {} X {} id
∈ iso (homology_group p (subtopology X S)) (homology_group p X)

hom_induced (p−1 ) (subtopology X S) {} X {} id
∈ iso (homology_group (p−1 ) (subtopology X S)) (homology_group (p−1 )

X)
using assms

by (auto intro: homotopy_equivalence_relative_homology_group_isomorphism)
qed
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lemma trivial_relative_homology_group_topspace:
trivial_group(relative_homology_group p X (topspace X))

by (rule trivial_relative_homology_group_gen [where f=id]) auto

lemma trivial_relative_homology_group_empty:
topspace X = {} =⇒ trivial_group(relative_homology_group p X S)
by (metis Int_absorb2 empty_subsetI relative_homology_group_restrict triv-

ial_relative_homology_group_topspace)

lemma trivial_homology_group_empty:
topspace X = {} =⇒ trivial_group(homology_group p X)

by (simp add: trivial_relative_homology_group_empty)

lemma homeomorphic_maps_relative_homology_group_isomorphisms:
assumes homeomorphic_maps X Y f g and im: f ∈ S → T g ∈ T → S
shows group_isomorphisms (relative_homology_group p X S) (relative_homology_group

p Y T )
(hom_induced p X S Y T f ) (hom_induced p Y T X S g)

proof −
have fg: continuous_map X Y f continuous_map Y X g

(∀ x∈topspace X . g (f x) = x) (∀ y∈topspace Y . f (g y) = y)
using assms by (simp_all add: homeomorphic_maps_def )
have group_isomorphisms

(relative_homology_group p X (topspace X ∩ S))
(relative_homology_group p Y (topspace Y ∩ T ))
(hom_induced p X (topspace X ∩ S) Y (topspace Y ∩ T ) f )
(hom_induced p Y (topspace Y ∩ T ) X (topspace X ∩ S) g)

proof (rule homotopy_equivalence_relative_homology_group_isomorphisms)
show homotopic_with (λh. h ∈ (topspace X ∩ S) → topspace X ∩ S) X X (g

◦ f ) id
using fg im by (auto intro: homotopic_with_equal continuous_map_compose)

next
show homotopic_with (λk. k ∈ (topspace Y ∩ T ) → topspace Y ∩ T ) Y Y (f

◦ g) id
using fg im by (auto intro: homotopic_with_equal continuous_map_compose)

qed (use im fg in ‹auto simp: continuous_map_def ›)
then show ?thesis

by simp
qed

lemma homeomorphic_map_relative_homology_iso:
assumes f : homeomorphic_map X Y f and S : S ⊆ topspace X f ‘ S = T
shows (hom_induced p X S Y T f ) ∈ iso (relative_homology_group p X S)

(relative_homology_group p Y T )
proof −

obtain g where g: homeomorphic_maps X Y f g
using homeomorphic_map_maps f by metis

then have group_isomorphisms (relative_homology_group p X S) (relative_homology_group
p Y T )
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(hom_induced p X S Y T f ) (hom_induced p Y T X S g)
using S g by (auto simp: homeomorphic_maps_def intro!: homeomorphic_maps_relative_homology_group_isomorphisms)

then show ?thesis
by (rule group_isomorphisms_imp_iso)

qed

lemma inj_on_hom_induced_section_map:
assumes section_map X Y f
shows inj_on (hom_induced p X {} Y {} f ) (carrier (homology_group p X))

proof −
obtain g where cont: continuous_map X Y f continuous_map Y X g

and gf :
∧

x. x ∈ topspace X =⇒ g (f x) = x
using assms by (auto simp: section_map_def retraction_maps_def )

show ?thesis
proof (rule inj_on_inverseI )

fix x
assume x: x ∈ carrier (homology_group p X)
have continuous_map X X (λx. g (f x))

by (metis (no_types, lifting) continuous_map_eq continuous_map_id gf
id_apply)

with x show hom_induced p Y {} X {} g (hom_induced p X {} Y {} f x) =
x

using hom_induced_compose_empty [OF cont, symmetric]
by (metis comp_apply cont continuous_map_compose gf hom_induced_id_gen)

qed
qed

corollary mon_hom_induced_section_map:
assumes section_map X Y f
shows (hom_induced p X {} Y {} f ) ∈ mon (homology_group p X) (homology_group

p Y )
by (simp add: hom_induced_empty_hom inj_on_hom_induced_section_map

[OF assms] mon_def )

lemma surj_hom_induced_retraction_map:
assumes retraction_map X Y f
shows carrier (homology_group p Y ) = (hom_induced p X {} Y {} f ) ‘ carrier

(homology_group p X)
(is ?lhs = ?rhs)

proof −
obtain g where cont: continuous_map Y X g continuous_map X Y f

and fg:
∧

x. x ∈ topspace Y =⇒ f (g x) = x
using assms by (auto simp: retraction_map_def retraction_maps_def )

have x = hom_induced p X {} Y {} f (hom_induced p Y {} X {} g x)
if x: x ∈ carrier (homology_group p Y ) for x

proof −
have continuous_map Y Y (λx. f (g x))

by (metis (no_types, lifting) continuous_map_eq continuous_map_id fg
id_apply)
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with x show ?thesis
using hom_induced_compose_empty [OF cont, symmetric]

by (metis comp_def cont continuous_map_compose fg hom_induced_id_gen)
qed
moreover
have (hom_induced p Y {} X {} g x) ∈ carrier (homology_group p X)

if x ∈ carrier (homology_group p Y ) for x
by (metis hom_induced)

ultimately have ?lhs ⊆ ?rhs
by auto

moreover have ?rhs ⊆ ?lhs
using hom_induced_hom [of p X {} Y {} f ]
by (simp add: hom_def flip: image_subset_iff_funcset)

ultimately show ?thesis
by auto

qed

corollary epi_hom_induced_retraction_map:
assumes retraction_map X Y f
shows (hom_induced p X {} Y {} f ) ∈ epi (homology_group p X) (homology_group

p Y )
using assms epi_iff_subset hom_induced_empty_hom surj_hom_induced_retraction_map

by fastforce

lemma homeomorphic_map_homology_iso:
assumes homeomorphic_map X Y f
shows (hom_induced p X {} Y {} f ) ∈ iso (homology_group p X) (homology_group

p Y )
using assms by (simp add: homeomorphic_map_relative_homology_iso)

lemma inj_on_hom_induced_inclusion:
assumes S = {} ∨ S retract_of_space X
shows inj_on (hom_induced p (subtopology X S) {} X {} id) (carrier (homology_group

p (subtopology X S)))
using assms

proof
assume S = {}
then have trivial_group(homology_group p (subtopology X S))

by (auto simp: topspace_subtopology intro: trivial_homology_group_empty)
then show ?thesis

by (auto simp: inj_on_def trivial_group_def )
next

assume S retract_of_space X
then show ?thesis
by (simp add: retract_of_space_section_map inj_on_hom_induced_section_map)

qed
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lemma trivial_homomorphism_hom_boundary_inclusion:
assumes S = {} ∨ S retract_of_space X
shows trivial_homomorphism

(relative_homology_group p X S) (homology_group (p−1 ) (subtopology
X S))

(hom_boundary p X S)
using exact_seq_mon_eq_triviality inj_on_hom_induced_inclusion [OF assms]
by (metis exact_seq_cons_iff homology_exactness_axiom_1 homology_exactness_axiom_2 )

lemma epi_hom_induced_relativization:
assumes S = {} ∨ S retract_of_space X
shows (hom_induced p X {} X S id) ‘ carrier (homology_group p X) = carrier

(relative_homology_group p X S)
using exact_seq_epi_eq_triviality trivial_homomorphism_hom_boundary_inclusion
by (metis assms exact_seq_cons_iff homology_exactness_axiom_1 homology_exactness_axiom_2 )

lemmas short_exact_sequence_hom_induced_inclusion = homology_exactness_axiom_3

lemma group_isomorphisms_homology_group_prod_retract:
assumes S = {} ∨ S retract_of_space X
obtains H K where

subgroup H (homology_group p X)
subgroup K (homology_group p X)
(λ(x, y). x ⊗homology_group p X y)
∈ iso (DirProd (subgroup_generated (homology_group p X) H) (subgroup_generated

(homology_group p X) K))
(homology_group p X)

(hom_induced p (subtopology X S) {} X {} id)
∈ iso (homology_group p (subtopology X S)) (subgroup_generated (homology_group

p X) H)
(hom_induced p X {} X S id)
∈ iso (subgroup_generated (homology_group p X) K) (relative_homology_group

p X S)
using assms

proof
assume S = {}
show thesis
proof (rule splitting_lemma_left [OF homology_exactness_axiom_3 [of p]])

let ?f = λx. one(homology_group p (subtopology X {}))
show ?f ∈ hom (homology_group p X) (homology_group p (subtopology X {}))

by (simp add: trivial_hom)
have tg: trivial_group (homology_group p (subtopology X {}))

by (auto simp: topspace_subtopology trivial_homology_group_empty)
then have [simp]: carrier (homology_group p (subtopology X {})) = {one

(homology_group p (subtopology X {}))}
by (auto simp: trivial_group_def )

then show ?f (hom_induced p (subtopology X {}) {} X {} id x) = x
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if x ∈ carrier (homology_group p (subtopology X {})) for x
using that by auto

show inj_on (hom_induced p (subtopology X {}) {} X {} id)
(carrier (homology_group p (subtopology X {})))

by (meson inj_on_hom_induced_inclusion)
show hom_induced p X {} X {} id ‘ carrier (homology_group p X) = carrier

(homology_group p X)
by (metis epi_hom_induced_relativization)

next
fix H K
assume ∗: H � homology_group p X K � homology_group p X
H ∩ K ⊆ {1homology_group p X}
hom_induced p (subtopology X {}) {} X {} id
∈ Group.iso (homology_group p (subtopology X {})) (subgroup_generated

(homology_group p X) H)
hom_induced p X {} X {} id
∈ Group.iso (subgroup_generated (homology_group p X) K) (relative_homology_group

p X {})
H <#>homology_group p X K = carrier (homology_group p X)

show thesis
proof (rule that)

show (λ(x, y). x ⊗homology_group p X y)
∈ iso (subgroup_generated (homology_group p X) H ×× subgroup_generated

(homology_group p X) K)
(homology_group p X)

using ∗ by (simp add: group_disjoint_sum.iso_group_mul normal_def
group_disjoint_sum_def )

qed (use ‹S = {}› ∗ in ‹auto simp: normal_def ›)
qed

next
assume S retract_of_space X
then obtain r where S ⊆ topspace X and r : continuous_map X (subtopology

X S) r
and req: ∀ x ∈ S . r x = x

by (auto simp: retract_of_space_def )
show thesis
proof (rule splitting_lemma_left [OF homology_exactness_axiom_3 [of p]])

let ?f = hom_induced p X {} (subtopology X S) {} r
show ?f ∈ hom (homology_group p X) (homology_group p (subtopology X S))

by (simp add: hom_induced_empty_hom)
show eqx: ?f (hom_induced p (subtopology X S) {} X {} id x) = x

if x ∈ carrier (homology_group p (subtopology X S)) for x
proof −

have hom_induced p (subtopology X S) {} (subtopology X S) {} r x = x
by (metis ‹S ⊆ topspace X› continuous_map_from_subtopology hom_induced_id_gen

inf .absorb_iff2 r req that topspace_subtopology)
then show ?thesis
by (simp add: r hom_induced_compose [unfolded o_def fun_eq_iff , rule_format,

symmetric])
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qed
then show inj_on (hom_induced p (subtopology X S) {} X {} id)

(carrier (homology_group p (subtopology X S)))
unfolding inj_on_def by metis

show hom_induced p X {} X S id ‘ carrier (homology_group p X) = carrier
(relative_homology_group p X S)

by (simp add: ‹S retract_of_space X› epi_hom_induced_relativization)
next

fix H K
assume ∗: H � homology_group p X K � homology_group p X
H ∩ K ⊆ {1homology_group p X}
H <#>homology_group p X K = carrier (homology_group p X)

hom_induced p (subtopology X S) {} X {} id
∈ Group.iso (homology_group p (subtopology X S)) (subgroup_generated

(homology_group p X) H)
hom_induced p X {} X S id
∈ Group.iso (subgroup_generated (homology_group p X) K) (relative_homology_group

p X S)
show thesis
proof (rule that)

show (λ(x, y). x ⊗homology_group p X y)
∈ iso (subgroup_generated (homology_group p X) H ×× subgroup_generated

(homology_group p X) K)
(homology_group p X)

using ∗
by (simp add: group_disjoint_sum.iso_group_mul normal_def group_disjoint_sum_def )

qed (use ∗ in ‹auto simp: normal_def ›)
qed

qed

lemma isomorphic_group_homology_group_prod_retract:
assumes S = {} ∨ S retract_of_space X
shows homology_group p X ∼= homology_group p (subtopology X S) ×× rela-

tive_homology_group p X S
(is ?lhs ∼= ?rhs)

proof −
obtain H K where

subgroup H (homology_group p X)
subgroup K (homology_group p X)

and 1 : (λ(x, y). x ⊗homology_group p X y)
∈ iso (DirProd (subgroup_generated (homology_group p X) H) (subgroup_generated

(homology_group p X) K))
(homology_group p X)

(hom_induced p (subtopology X S) {} X {} id)
∈ iso (homology_group p (subtopology X S)) (subgroup_generated (homology_group

p X) H)
(hom_induced p X {} X S id)
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∈ iso (subgroup_generated (homology_group p X) K) (relative_homology_group
p X S)

using group_isomorphisms_homology_group_prod_retract [OF assms] by blast
have ?lhs ∼= subgroup_generated (homology_group p X) H ×× subgroup_generated

(homology_group p X) K
by (meson DirProd_group 1 abelian_homology_group comm_group_def group.abelian_subgroup_generated

group.iso_sym is_isoI )
also have . . . ∼= ?rhs
by (meson 1 (2 ) 1 (3 ) abelian_homology_group comm_group_def group.DirProd_iso_trans

group.abelian_subgroup_generated group.iso_sym is_isoI )
finally show ?thesis .

qed

lemma homology_additivity_explicit:
assumes openin X S openin X T disjnt S T and SUT : S ∪ T = topspace X
shows (λ(a,b).(hom_induced p (subtopology X S) {} X {} id a)

⊗homology_group p X
(hom_induced p (subtopology X T ) {} X {} id b))

∈ iso (DirProd (homology_group p (subtopology X S)) (homology_group p
(subtopology X T )))

(homology_group p X)
proof −

have closedin X S closedin X T
using assms Un_commute disjnt_sym

by (metis Diff_cancel Diff_triv Un_Diff disjnt_def openin_closedin_eq sup_bot.right_neutral)+
with ‹openin X S› ‹openin X T › have SS : X closure_of S ⊆ X interior_of S

and TT : X closure_of T ⊆ X interior_of T
by (simp_all add: closure_of_closedin interior_of_openin)

have [simp]: S ∪ T − T = S S ∪ T − S = T
using ‹disjnt S T ›
by (auto simp: Diff_triv Un_Diff disjnt_def )

let ?f = hom_induced p X {} X T id
let ?g = hom_induced p X {} X S id
let ?h = hom_induced p (subtopology X S) {} X T id
let ?i = hom_induced p (subtopology X S) {} X {} id
let ?j = hom_induced p (subtopology X T ) {} X {} id
let ?k = hom_induced p (subtopology X T ) {} X S id
let ?A = homology_group p (subtopology X S)
let ?B = homology_group p (subtopology X T )
let ?C = relative_homology_group p X T
let ?D = relative_homology_group p X S
let ?G = homology_group p X
have h: ?h ∈ iso ?A ?C and k: ?k ∈ iso ?B ?D

using homology_excision_axiom [OF TT , of S ∪ T p]
using homology_excision_axiom [OF SS , of S ∪ T p]
by auto (simp_all add: SUT )

have 1 :
∧

x. (hom_induced p X {} X T id ◦ hom_induced p (subtopology X S)
{} X {} id) x
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= hom_induced p (subtopology X S) {} X T id x
by (simp flip: hom_induced_compose)

have 2 :
∧

x. (hom_induced p X {} X S id ◦ hom_induced p (subtopology X T )
{} X {} id) x

= hom_induced p (subtopology X T ) {} X S id x
by (simp flip: hom_induced_compose)

show ?thesis
using exact_sequence_sum_lemma

[OF abelian_homology_group h k homology_exactness_axiom_3 homol-
ogy_exactness_axiom_3 ] 1 2

by auto
qed

0.2.6 Generalize exact homology sequence to triples
definition hom_relboundary :: [int, ′a topology, ′a set, ′a set, ′a chain set] ⇒ ′a
chain set

where
hom_relboundary p X S T =

hom_induced (p−1 ) (subtopology X S) {} (subtopology X S) T id ◦
hom_boundary p X S

lemma group_homomorphism_hom_relboundary:
hom_relboundary p X S T
∈ hom (relative_homology_group p X S) (relative_homology_group (p−1 ) (subtopology

X S) T )
unfolding hom_relboundary_def
proof (rule hom_compose)
show hom_boundary p X S ∈ hom (relative_homology_group p X S) (homology_group(p−1 )

(subtopology X S))
by (simp add: hom_boundary_hom)

show hom_induced (p−1 ) (subtopology X S) {} (subtopology X S) T id
∈ hom (homology_group(p−1 ) (subtopology X S)) (relative_homology_group

(p−1 ) (subtopology X S) T )
by (simp add: hom_induced_hom)

qed

lemma hom_relboundary:
hom_relboundary p X S T c ∈ carrier (relative_homology_group (p−1 ) (subtopology

X S) T )
by (simp add: hom_relboundary_def hom_induced_carrier)

lemma hom_relboundary_empty: hom_relboundary p X S {} = hom_boundary p
X S
by (simp add: ext hom_boundary_carrier hom_induced_id hom_relboundary_def )

lemma naturality_hom_induced_relboundary:
assumes continuous_map X Y f f ∈ S → U f ∈ T → V
shows hom_relboundary p Y U V ◦
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hom_induced p X S Y (U ) f =
hom_induced (p−1 ) (subtopology X S) T (subtopology Y U ) V f ◦
hom_relboundary p X S T

proof −
have [simp]: continuous_map (subtopology X S) (subtopology Y U ) f
using assms continuous_map_from_subtopology continuous_map_in_subtopology

topspace_subtopology
by (fastforce simp: Pi_iff )

have hom_induced (p−1 ) (subtopology Y U ) {} (subtopology Y U ) V id ◦
hom_induced (p−1 ) (subtopology X S) {} (subtopology Y U ) {} f

= hom_induced (p−1 ) (subtopology X S) T (subtopology Y U ) V f ◦
hom_induced (p−1 ) (subtopology X S) {} (subtopology X S) T id

using assms by (simp flip: hom_induced_compose)
with assms show ?thesis

unfolding hom_relboundary_def
by (metis (no_types, lifting) ext fun.map_comp naturality_hom_induced)

qed

proposition homology_exactness_triple_1 :
assumes T ⊆ S
shows exact_seq ([relative_homology_group(p−1 ) (subtopology X S) T ,

relative_homology_group p X S ,
relative_homology_group p X T ],
[hom_relboundary p X S T , hom_induced p X T X S id])

(is exact_seq ([?G1 ,?G2 ,?G3 ], [?h1 ,?h2 ]))
proof −

have iTS : id ∈ T → S and [simp]: S ∩ T = T
using assms by auto

have ?h2 B ∈ kernel ?G2 ?G1 ?h1 for B
proof −

have hom_boundary p X T B ∈ carrier (relative_homology_group (p−1 )
(subtopology X T ) {})

by (metis (no_types) hom_boundary)
then have ∗: hom_induced (p−1 ) (subtopology X S) {} (subtopology X S) T

id
(hom_induced (p−1 ) (subtopology X T ) {} (subtopology X S) {} id
(hom_boundary p X T B))

= 1?G1
using homology_exactness_axiom_3 [of p−1 subtopology X S T ]
by (auto simp: subtopology_subtopology kernel_def )

show ?thesis
using naturality_hom_induced [OF continuous_map_id iTS ]

by (smt (verit, best) ∗ comp_apply hom_induced_carrier hom_relboundary_def
kernel_def mem_Collect_eq)

qed
moreover have B ∈ ?h2 ‘ carrier ?G3 if B ∈ kernel ?G2 ?G1 ?h1 for B
proof −

have Bcarr : B ∈ carrier ?G2
and Beq: ?h1 B = 1?G1
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using that by (auto simp: kernel_def )
have ∃A ′ ∈ carrier (homology_group (p−1 ) (subtopology X T )). hom_induced

(p−1 ) (subtopology X T ) {} (subtopology X S) {} id A ′ = A
if A ∈ carrier (homology_group (p−1 ) (subtopology X S))

hom_induced (p−1 ) (subtopology X S) {} (subtopology X S) T id A =
1?G1 for A
using homology_exactness_axiom_3 [of p−1 subtopology X S T ] that

by (simp add: kernel_def subtopology_subtopology image_iff set_eq_iff )
meson

then obtain C where Ccarr : C ∈ carrier (homology_group (p−1 ) (subtopology
X T ))

and Ceq: hom_induced (p−1 ) (subtopology X T ) {} (subtopology X S) {} id
C = hom_boundary p X S B

using Beq by (simp add: hom_relboundary_def ) (metis hom_boundary_carrier)
let ?hi_XT = hom_induced (p−1 ) (subtopology X T ) {} X {} id
have ?hi_XT

= hom_induced (p−1 ) (subtopology X S) {} X {} id
◦ (hom_induced (p−1 ) (subtopology X T ) {} (subtopology X S) {} id)

by (metis assms comp_id continuous_map_id_subt hom_induced_compose_empty
inf .absorb_iff2 subtopology_subtopology)

then have ?hi_XT C
= hom_induced (p−1 ) (subtopology X S) {} X {} id (hom_boundary p X

S B)
by (simp add: Ceq)

also have eq: . . . = 1homology_group (p−1 ) X
using homology_exactness_axiom_2 [of p X S ] Bcarr by (auto simp: ker-

nel_def )
finally have ?hi_XT C = 1homology_group (p−1 ) X .
then obtain D where Dcarr : D ∈ carrier ?G3 and Deq: hom_boundary p X

T D = C
using homology_exactness_axiom_2 [of p X T ] Ccarr
by (auto simp: kernel_def image_iff set_eq_iff ) meson

interpret hb: group_hom ?G2 homology_group (p−1 ) (subtopology X S)
hom_boundary p X S

using hom_boundary_hom group_hom_axioms_def group_hom_def by fast-
force

let ?A = B ⊗?G2 inv?G2 ?h2 D
have ∃A ′ ∈ carrier (homology_group p X). hom_induced p X {} X S id A ′ =

A
if A ∈ carrier ?G2

hom_boundary p X S A = one (homology_group (p−1 ) (subtopology X S))
for A

using that homology_exactness_axiom_1 [of p X S ]
by (simp add: kernel_def subtopology_subtopology image_iff set_eq_iff )

meson
moreover
have ?A ∈ carrier ?G2

by (simp add: Bcarr abelian_relative_homology_group comm_groupE(1 )
hom_induced_carrier)
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moreover have hom_boundary p X S (?h2 D) = hom_boundary p X S B
by (metis (mono_tags, lifting) Ceq Deq comp_eq_dest continuous_map_id

iTS naturality_hom_induced)
then have hom_boundary p X S ?A = one (homology_group (p−1 ) (subtopology

X S))
by (simp add: hom_induced_carrier Bcarr)

ultimately obtain W where Wcarr : W ∈ carrier (homology_group p X)
and Weq: hom_induced p X {} X S id W = ?A
by blast

let ?W = D ⊗?G3 hom_induced p X {} X T id W
show ?thesis
proof

interpret comm_group ?G2
by (rule abelian_relative_homology_group)
have hom_induced p X T X S id (hom_induced p X {} X T id W ) =

hom_induced p X {} X S id W
using assms iTS by (simp add: hom_induced_compose ′)

then have B = (?h2 ◦ hom_induced p X {} X T id) W ⊗?G2 ?h2 D
by (simp add: Bcarr Weq hb.G.m_assoc hom_induced_carrier)

then show B = ?h2 ?W
by (metis hom_mult [OF hom_induced_hom] Dcarr comp_apply hom_induced_carrier

m_comm)
show ?W ∈ carrier ?G3

by (simp add: Dcarr comm_groupE(1 ) hom_induced_carrier)
qed

qed
ultimately show ?thesis

by (auto simp: group_hom_def group_hom_axioms_def hom_induced_hom
group_homomorphism_hom_relboundary)
qed

proposition homology_exactness_triple_2 :
assumes T ⊆ S
shows exact_seq ([relative_homology_group(p−1 ) X T ,

relative_homology_group(p−1 ) (subtopology X S) T ,
relative_homology_group p X S ],

[hom_induced (p−1 ) (subtopology X S) T X T id, hom_relboundary
p X S T ])

(is exact_seq ([?G1 ,?G2 ,?G3 ], [?h1 ,?h2 ]))
proof −

let ?H2 = homology_group (p−1 ) (subtopology X S)
have iTS : id ∈ T → S and [simp]: S ∩ T = T

using assms by auto
have ?h2 C ∈ kernel ?G2 ?G1 ?h1 for C
proof −

have ?h1 (?h2 C )
= (hom_induced (p−1 ) X {} X T id ◦ hom_induced (p−1 ) (subtopology X

S) {} X {} id ◦ hom_boundary p X S) C
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unfolding hom_relboundary_def
by (metis Pi_empty comp_eq_dest_lhs continuous_map_id continuous_map_id_subt

funcsetI hom_induced_compose ′ id_apply)
also have . . . = 1?G1
proof −

have ∗: hom_boundary p X S C ∈ carrier ?H2
by (simp add: hom_boundary_carrier)

moreover have hom_boundary p X S C ∈ hom_boundary p X S ‘ carrier
?G3

using homology_exactness_axiom_2 [of p X S ] ∗
apply (simp add: kernel_def set_eq_iff )

by (metis group_relative_homology_group hom_boundary_default hom_one
image_eqI )

ultimately
have 1 : hom_induced (p−1 ) (subtopology X S) {} X {} id (hom_boundary

p X S C )
= 1homology_group (p−1 ) X

using homology_exactness_axiom_2 [of p X S ] by (simp add: kernel_def )
blast

show ?thesis
by (simp add: 1 hom_one [OF hom_induced_hom])

qed
finally have ?h1 (?h2 C ) = 1?G1 .
then show ?thesis

by (simp add: kernel_def hom_relboundary_def hom_induced_carrier)
qed
moreover have x ∈ ?h2 ‘ carrier ?G3 if x ∈ kernel ?G2 ?G1 ?h1 for x
proof −

let ?homX = hom_induced (p−1 ) (subtopology X S) {} X {} id
let ?homXS = hom_induced (p−1 ) (subtopology X S) {} (subtopology X S) T

id
have x ∈ carrier (relative_homology_group (p−1 ) (subtopology X S) T )

using that by (simp add: kernel_def )
moreover
have hom_boundary (p−1 ) X T ◦ hom_induced (p−1 ) (subtopology X S) T

X T id = hom_boundary (p−1 ) (subtopology X S) T
by (metis funcsetI ‹S ∩ T = T › continuous_map_id_subt hom_relboundary_def

hom_relboundary_empty id_apply naturality_hom_induced subtopol-
ogy_subtopology)

then have hom_boundary (p−1 ) (subtopology X S) T x = 1homology_group (p − 2 ) (subtopology (subtopology X S) T)
using naturality_hom_induced [of subtopology X S X id T T p−1 ] that
hom_one [OF hom_boundary_hom group_relative_homology_group group_relative_homology_group,

of p−1 X T ]
by (smt (verit) assms comp_apply inf .absorb_iff2 kernel_def mem_Collect_eq

subtopology_subtopology)
ultimately
obtain y where ycarr : y ∈ carrier ?H2

and yeq: ?homXS y = x
using homology_exactness_axiom_1 [of p−1 subtopology X S T ]
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by (simp add: kernel_def image_def set_eq_iff ) meson
have ?homX y ∈ carrier (homology_group (p−1 ) X)

by (simp add: hom_induced_carrier)
moreover

have (hom_induced (p−1 ) X {} X T id ◦ ?homX) y = 1relative_homology_group (p−1 ) X T
using that
apply (simp add: kernel_def flip: hom_induced_compose)
using hom_induced_compose [of subtopology X S subtopology X S id {} T X

id T p−1 ] yeq
by auto

then have hom_induced (p−1 ) X {} X T id (?homX y) = 1relative_homology_group (p−1 ) X T
by simp
ultimately obtain z where zcarr : z ∈ carrier (homology_group (p−1 )

(subtopology X T ))
and zeq: hom_induced (p−1 ) (subtopology X T ) {} X {} id z = ?homX

y
using homology_exactness_axiom_3 [of p−1 X T ]
by (auto simp: kernel_def dest!: equalityD1 [of Collect _])

have ∗:
∧

t. [[t ∈ carrier ?H2 ;
hom_induced (p−1 ) (subtopology X S) {} X {} id t = 1homology_group (p−1 ) X]]

=⇒ t ∈ hom_boundary p X S ‘ carrier ?G3
using homology_exactness_axiom_2 [of p X S ]
by (auto simp: kernel_def dest!: equalityD1 [of Collect _])

interpret comm_group ?H2
by (rule abelian_relative_homology_group)

interpret gh: group_hom ?H2 homology_group (p−1 ) X hom_induced (p−1 )
(subtopology X S) {} X {} id

by (meson group_hom_axioms_def group_hom_def group_relative_homology_group
hom_induced)

let ?yz = y ⊗?H2 inv?H2 hom_induced (p−1 ) (subtopology X T ) {} (subtopology
X S) {} id z

have yzcarr : ?yz ∈ carrier ?H2
by (simp add: hom_induced_carrier ycarr)

have hom_induced (p−1 ) (subtopology X S) {} X {} id y =
hom_induced (p−1 ) (subtopology X S) {} X {} id
(hom_induced (p−1 ) (subtopology X T ) {} (subtopology X S) {} id z)

by (metis assms continuous_map_id_subt hom_induced_compose_empty
inf .absorb_iff2 o_apply o_id subtopology_subtopology zeq)

then have yzeq: hom_induced (p−1 ) (subtopology X S) {} X {} id ?yz =
1homology_group (p−1 ) X

by (simp add: hom_induced_carrier ycarr gh.inv_solve_right ′)
obtain w where wcarr : w ∈ carrier ?G3 and weq: hom_boundary p X S w =

?yz
using ∗ [OF yzcarr yzeq] by blast

interpret gh2 : group_hom ?H2 ?G2 ?homXS
by (simp add: group_hom_axioms_def group_hom_def hom_induced_hom)

have ?homXS (hom_induced (p−1 ) (subtopology X T ) {} (subtopology X S)
{} id z)

= 1relative_homology_group (p−1 ) (subtopology X S) T
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using homology_exactness_axiom_3 [of p−1 subtopology X S T ] zcarr
by (auto simp: kernel_def subtopology_subtopology)

then show ?thesis
apply (rule_tac x=w in image_eqI )
apply (simp_all add: hom_relboundary_def weq wcarr)

by (metis gh2 .hom_inv gh2 .hom_mult gh2 .inv_one gh2 .r_one group.inv_closed
group_l_invI hom_induced_carrier l_inv_ex ycarr yeq)

qed
ultimately show ?thesis
by (auto simp: group_hom_axioms_def group_hom_def group_homomorphism_hom_relboundary

hom_induced_hom)
qed

proposition homology_exactness_triple_3 :
assumes T ⊆ S
shows exact_seq ([relative_homology_group p X S ,

relative_homology_group p X T ,
relative_homology_group p (subtopology X S) T ],
[hom_induced p X T X S id, hom_induced p (subtopology X S) T

X T id])
(is exact_seq ([?G1 ,?G2 ,?G3 ], [?h1 ,?h2 ]))

proof −
have iTS : id ∈ T → S and [simp]: S ∩ T = T

using assms by auto
have 1 : ?h2 x ∈ kernel ?G2 ?G1 ?h1 for x
proof −

have ?h1 (?h2 x)
= (hom_induced p (subtopology X S) S X S id ◦

hom_induced p (subtopology X S) T (subtopology X S) S id) x
by (simp add: hom_induced_compose ′ iTS)

also have . . . = 1relative_homology_group p X S
proof −

have trivial_group (relative_homology_group p (subtopology X S) S)
using trivial_relative_homology_group_topspace [of p subtopology X S ]

by (metis inf_right_idem relative_homology_group_restrict topspace_subtopology)
then have 1 : hom_induced p (subtopology X S) T (subtopology X S) S id x

= 1relative_homology_group p (subtopology X S) S
using hom_induced_carrier by (fastforce simp add: trivial_group_def )

show ?thesis
by (simp add: 1 hom_one [OF hom_induced_hom])

qed
finally have ?h1 (?h2 x) = 1relative_homology_group p X S .
then show ?thesis

by (simp add: hom_induced_carrier kernel_def )
qed
moreover have x ∈ ?h2 ‘ carrier ?G3 if x: x ∈ kernel ?G2 ?G1 ?h1 for x
proof −

have xcarr : x ∈ carrier ?G2
using that by (auto simp: kernel_def )
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interpret G2 : comm_group ?G2
by (rule abelian_relative_homology_group)

let ?b = hom_boundary p X T x
have bcarr : ?b ∈ carrier(homology_group(p−1 ) (subtopology X T ))

by (simp add: hom_boundary_carrier)
have hom_boundary p X S (hom_induced p X T X S id x)

= hom_induced (p−1 ) (subtopology X T ) {} (subtopology X S) {} id
(hom_boundary p X T x)

using naturality_hom_induced [of X X id T S p] iTS
by (simp add: assms o_def ) meson

with bcarr have hom_boundary p X T x ∈ hom_boundary p (subtopology X
S) T ‘ carrier ?G3

using homology_exactness_axiom_2 [of p subtopology X S T ] x
apply (simp add: kernel_def set_eq_iff subtopology_subtopology)

by (metis group_relative_homology_group hom_boundary_hom hom_one
set_eq_iff )

then obtain u where ucarr : u ∈ carrier ?G3
and ueq: hom_boundary p X T x = hom_boundary p (subtopology X S)

T u
by (auto simp: kernel_def set_eq_iff subtopology_subtopology hom_boundary_carrier)
define y where y = x ⊗?G2 inv?G2 ?h2 u
have ycarr : y ∈ carrier ?G2

using x by (simp add: y_def kernel_def hom_induced_carrier)
interpret hb: group_hom ?G2 homology_group (p−1 ) (subtopology X T )

hom_boundary p X T
by (simp add: group_hom_axioms_def group_hom_def hom_boundary_hom)

have yyy: hom_boundary p X T y = 1homology_group (p−1 ) (subtopology X T)
apply (simp add: y_def bcarr xcarr hom_induced_carrier hom_boundary_carrier

hb.inv_solve_right ′)
using naturality_hom_induced [of concl: p X T subtopology X S T id]
by (metis ‹S ∩ T = T › comp_eq_dest_lhs continuous_map_id_subt

hom_relboundary_def hom_relboundary_empty id_apply image_id
image_subset_iff_funcset subsetI subtopology_subtopology ueq)

then have y ∈ hom_induced p X {} X T id ‘ carrier (homology_group p X)
using homology_exactness_axiom_1 [of p X T ] x ycarr by (auto simp:

kernel_def )
then obtain z where zcarr : z ∈ carrier (homology_group p X)

and zeq: hom_induced p X {} X T id z = y
by auto

interpret gh1 : group_hom ?G2 ?G1 ?h1
by (meson group_hom_axioms_def group_hom_def group_relative_homology_group

hom_induced)

have hom_induced p X {} X S id z = (hom_induced p X T X S id ◦
hom_induced p X {} X T id) z

using iTS by (simp add: assms flip: hom_induced_compose)
also have . . . = 1relative_homology_group p X S

using x 1 by (simp add: kernel_def zeq y_def )
finally have hom_induced p X {} X S id z = 1relative_homology_group p X S .
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then have z ∈ hom_induced p (subtopology X S) {} X {} id ‘
carrier (homology_group p (subtopology X S))

using homology_exactness_axiom_3 [of p X S ] zcarr by (auto simp: ker-
nel_def )

then obtain w where wcarr : w ∈ carrier (homology_group p (subtopology X
S))

and weq: hom_induced p (subtopology X S) {} X {} id w = z
by blast

let ?u = hom_induced p (subtopology X S) {} (subtopology X S) T id w ⊗?G3
u

show ?thesis
proof

have ∗: x = z ⊗?G2 u
if z = x ⊗?G2 inv?G2 u z ∈ carrier ?G2 u ∈ carrier ?G2 for z u

using that by (simp add: group.inv_solve_right xcarr)
have eq: ?h2 ◦ hom_induced p (subtopology X S) {} (subtopology X S) T id

= hom_induced p X {} X T id ◦ hom_induced p (subtopology X S) {}
X {} id

by (simp flip: hom_induced_compose)
show x = hom_induced p (subtopology X S) T X T id ?u

using hom_mult [OF hom_induced_hom] hom_induced_carrier ∗
by (smt (verit, best) comp_eq_dest eq ucarr weq y_def zeq)

show ?u ∈ carrier (relative_homology_group p (subtopology X S) T )
by (simp add: abelian_relative_homology_group comm_groupE(1 ) hom_induced_carrier

ucarr)
qed

qed
ultimately show ?thesis

by (auto simp: group_hom_axioms_def group_hom_def hom_induced_hom)
qed

end

0.3 Homology, III: Brouwer Degree
theory Brouwer_Degree

imports Homology_Groups HOL−Algebra.Multiplicative_Group

begin

0.3.1 Reduced Homology
definition reduced_homology_group :: int ⇒ ′a topology ⇒ ′a chain set monoid

where reduced_homology_group p X ≡
subgroup_generated (homology_group p X)

(kernel (homology_group p X) (homology_group p (discrete_topology
{()}))

(hom_induced p X {} (discrete_topology {()}) {} (λx. ())))
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lemma one_reduced_homology_group: 1reduced_homology_group p X = 1homology_group p X
by (simp add: reduced_homology_group_def )

lemma group_reduced_homology_group [simp]: group (reduced_homology_group
p X)

by (simp add: reduced_homology_group_def group.group_subgroup_generated)

lemma carrier_reduced_homology_group:
carrier (reduced_homology_group p X) =
kernel (homology_group p X) (homology_group p (discrete_topology {()}))

(hom_induced p X {} (discrete_topology {()}) {} (λx. ()))
(is _ = kernel ?G ?H ?h)

proof −
interpret subgroup kernel ?G ?H ?h ?G
by (simp add: hom_induced_empty_hom group_hom_axioms_def group_hom_def

group_hom.subgroup_kernel)
show ?thesis

unfolding reduced_homology_group_def
using carrier_subgroup_generated_subgroup by blast

qed

lemma carrier_reduced_homology_group_subset:
carrier (reduced_homology_group p X) ⊆ carrier (homology_group p X)

by (simp add: group.carrier_subgroup_generated_subset reduced_homology_group_def )

lemma un_reduced_homology_group:
assumes p 6= 0
shows reduced_homology_group p X = homology_group p X

proof −
have (kernel (homology_group p X) (homology_group p (discrete_topology {()}))

(hom_induced p X {} (discrete_topology {()}) {} (λx. ())))
= carrier (homology_group p X)

proof (rule group_hom.kernel_to_trivial_group)
show group_hom (homology_group p X) (homology_group p (discrete_topology

{()}))
(hom_induced p X {} (discrete_topology {()}) {} (λx. ()))

by (auto simp: hom_induced_empty_hom group_hom_def group_hom_axioms_def )
show trivial_group (homology_group p (discrete_topology {()}))

by (simp add: homology_dimension_axiom [OF _ assms])
qed
then show ?thesis
by (simp add: reduced_homology_group_def group.subgroup_generated_group_carrier)

qed

lemma trivial_reduced_homology_group:
p < 0 =⇒ trivial_group(reduced_homology_group p X)

by (simp add: trivial_homology_group un_reduced_homology_group)

lemma hom_induced_reduced_hom:
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(hom_induced p X {} Y {} f ) ∈ hom (reduced_homology_group p X) (reduced_homology_group
p Y )
proof (cases continuous_map X Y f )

case True
have eq: continuous_map X Y f

=⇒ hom_induced p X {} (discrete_topology {()}) {} (λx. ())
= (hom_induced p Y {} (discrete_topology {()}) {} (λx. ()) ◦ hom_induced

p X {} Y {} f )
by (simp flip: hom_induced_compose_empty)

interpret subgroup kernel (homology_group p X)
(homology_group p (discrete_topology {()}))
(hom_induced p X {} (discrete_topology {()}) {} (λx. ()))

homology_group p X
by (meson group_hom.subgroup_kernel group_hom_axioms_def group_hom_def

group_relative_homology_group hom_induced)
have sb: hom_induced p X {} Y {} f ‘ carrier (homology_group p X) ⊆ carrier

(homology_group p Y )
using hom_induced_carrier by blast
show ?thesis
using True
unfolding reduced_homology_group_def

apply (simp add: hom_into_subgroup_eq group_hom.subgroup_kernel hom_induced_empty_hom
group.hom_from_subgroup_generated group_hom_def group_hom_axioms_def )

unfolding kernel_def using eq sb by auto
next

case False
then have hom_induced p X {} Y {} f = (λc. one(reduced_homology_group p

Y ))
by (force simp: hom_induced_default reduced_homology_group_def )

then show ?thesis
by (simp add: trivial_hom)

qed

lemma hom_induced_reduced:
c ∈ carrier(reduced_homology_group p X)

=⇒ hom_induced p X {} Y {} f c ∈ carrier(reduced_homology_group p Y )
by (meson hom_in_carrier hom_induced_reduced_hom)

lemma hom_boundary_reduced_hom:
hom_boundary p X S
∈ hom (relative_homology_group p X S) (reduced_homology_group (p−1 ) (subtopology

X S))
proof −

have ∗: continuous_map X (discrete_topology {()}) (λx. ()) (λx. ()) ∈ S → {()}
by auto

interpret group_hom relative_homology_group p (discrete_topology {()}) {()}
homology_group (p−1 ) (discrete_topology {()})
hom_boundary p (discrete_topology {()}) {()}
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apply (clarsimp simp: group_hom_def group_hom_axioms_def )
by (metis UNIV_unit hom_boundary_hom subtopology_UNIV )

have hom_boundary p X S ‘
carrier (relative_homology_group p X S)
⊆ kernel (homology_group (p − 1 ) (subtopology X S))

(homology_group (p − 1 ) (discrete_topology {()}))
(hom_induced (p − 1 ) (subtopology X S) {}
(discrete_topology {()}) {} (λx. ()))

proof (clarsimp simp add: kernel_def hom_boundary_carrier)
fix c
assume c: c ∈ carrier (relative_homology_group p X S)
have triv: trivial_group (relative_homology_group p (discrete_topology {()})

{()})
by (metis topspace_discrete_topology trivial_relative_homology_group_topspace)
have hom_boundary p (discrete_topology {()}) {()}

(hom_induced p X S (discrete_topology {()}) {()} (λx. ()) c)
= 1homology_group (p − 1 ) (discrete_topology {()})

by (metis hom_induced_carrier local.hom_one singletonD triv trivial_group_def )
then show hom_induced (p − 1 ) (subtopology X S) {} (discrete_topology {()})

{} (λx. ()) (hom_boundary p X S c) =
1homology_group (p − 1 ) (discrete_topology {()})

using naturality_hom_induced [OF ∗, of p, symmetric] by (simp add: o_def
fun_eq_iff )

qed
then show ?thesis
by (simp add: reduced_homology_group_def hom_boundary_hom hom_into_subgroup)

qed

lemma homotopy_equivalence_reduced_homology_group_isomorphisms:
assumes contf : continuous_map X Y f and contg: continuous_map Y X g

and gf : homotopic_with (λh. True) X X (g ◦ f ) id
and fg: homotopic_with (λk. True) Y Y (f ◦ g) id

shows group_isomorphisms (reduced_homology_group p X) (reduced_homology_group
p Y )

(hom_induced p X {} Y {} f ) (hom_induced p Y {} X
{} g)
proof (simp add: hom_induced_reduced_hom group_isomorphisms_def , intro conjI
ballI )

fix a
assume a ∈ carrier (reduced_homology_group p X)
then have (hom_induced p Y {} X {} g ◦ hom_induced p X {} Y {} f ) a = a

apply (simp add: contf contg flip: hom_induced_compose)
using carrier_reduced_homology_group_subset gf hom_induced_id homol-

ogy_homotopy_empty by fastforce
then show hom_induced p Y {} X {} g (hom_induced p X {} Y {} f a) = a

by simp
next

fix b
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assume b ∈ carrier (reduced_homology_group p Y )
then have (hom_induced p X {} Y {} f ◦ hom_induced p Y {} X {} g) b = b

apply (simp add: contf contg flip: hom_induced_compose)
using carrier_reduced_homology_group_subset fg hom_induced_id homol-

ogy_homotopy_empty by fastforce
then show hom_induced p X {} Y {} f (hom_induced p Y {} X {} g b) = b

by (simp add: carrier_reduced_homology_group)
qed

lemma homotopy_equivalence_reduced_homology_group_isomorphism:
assumes continuous_map X Y f continuous_map Y X g

and homotopic_with (λh. True) X X (g ◦ f ) id homotopic_with (λk. True)
Y Y (f ◦ g) id

shows (hom_induced p X {} Y {} f )
∈ iso (reduced_homology_group p X) (reduced_homology_group p Y )

proof (rule group_isomorphisms_imp_iso)
show group_isomorphisms (reduced_homology_group p X) (reduced_homology_group

p Y )
(hom_induced p X {} Y {} f ) (hom_induced p Y {} X {} g)

by (simp add: assms homotopy_equivalence_reduced_homology_group_isomorphisms)
qed

lemma homotopy_equivalent_space_imp_isomorphic_reduced_homology_groups:
X homotopy_equivalent_space Y

=⇒ reduced_homology_group p X ∼= reduced_homology_group p Y
unfolding homotopy_equivalent_space_def
using homotopy_equivalence_reduced_homology_group_isomorphism is_isoI by

blast

lemma homeomorphic_space_imp_isomorphic_reduced_homology_groups:
X homeomorphic_space Y =⇒ reduced_homology_group p X ∼= reduced_homology_group

p Y
by (simp add: homeomorphic_imp_homotopy_equivalent_space homotopy_equivalent_space_imp_isomorphic_reduced_homology_groups)

lemma trivial_reduced_homology_group_empty:
topspace X = {} =⇒ trivial_group(reduced_homology_group p X)

by (metis carrier_reduced_homology_group_subset group.trivial_group_alt group_reduced_homology_group
trivial_group_def trivial_homology_group_empty)

lemma homology_dimension_reduced:
assumes topspace X = {a}
shows trivial_group (reduced_homology_group p X)

proof −
have iso: (hom_induced p X {} (discrete_topology {()}) {} (λx. ()))

∈ iso (homology_group p X) (homology_group p (discrete_topology {()}))
apply (rule homeomorphic_map_homology_iso)

apply (force simp: homeomorphic_map_maps homeomorphic_maps_def assms)
done

show ?thesis
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unfolding reduced_homology_group_def
by (rule group.trivial_group_subgroup_generated) (use iso in ‹auto simp:

iso_kernel_image›)
qed

lemma trivial_reduced_homology_group_contractible_space:
contractible_space X =⇒ trivial_group (reduced_homology_group p X)

apply (simp add: contractible_eq_homotopy_equivalent_singleton_subtopology)
apply (auto simp: trivial_reduced_homology_group_empty)
using isomorphic_group_triviality
by (metis (full_types) group_reduced_homology_group homology_dimension_reduced

homotopy_equivalent_space_imp_isomorphic_reduced_homology_groups path_connectedin_def
path_connectedin_singleton topspace_subtopology_subset)

lemma image_reduced_homology_group:
assumes topspace X ∩ S 6= {}
shows hom_induced p X {} X S id ‘ carrier (reduced_homology_group p X)

= hom_induced p X {} X S id ‘ carrier (homology_group p X)
(is ?h ‘ carrier ?G = ?h ‘ carrier ?H )

proof −
obtain a where a: a ∈ topspace X and a ∈ S

using assms by blast
have [simp]: A ∩ {x ∈ A. P x} = {x ∈ A. P x} for A P

by blast
interpret comm_group homology_group p X

by (rule abelian_relative_homology_group)
have ∗: ∃ x ′. ?h y = ?h x ′ ∧

x ′ ∈ carrier ?H ∧
hom_induced p X {} (discrete_topology {()}) {} (λx. ()) x ′

= 1homology_group p (discrete_topology {()})
if y ∈ carrier ?H for y

proof −
let ?f = hom_induced p (discrete_topology {()}) {} X {} (λx. a)
let ?g = hom_induced p X {} (discrete_topology {()}) {} (λx. ())
have bcarr : ?f (?g y) ∈ carrier ?H

by (simp add: hom_induced_carrier)
interpret gh1 :

group_hom relative_homology_group p X S relative_homology_group p
(discrete_topology {()}) {()}

hom_induced p X S (discrete_topology {()}) {()} (λx. ())
by (meson group_hom_axioms_def group_hom_def hom_induced_hom

group_relative_homology_group)
interpret gh2 :

group_hom relative_homology_group p (discrete_topology {()}) {()} rela-
tive_homology_group p X S

hom_induced p (discrete_topology {()}) {()} X S (λx. a)
by (meson group_hom_axioms_def group_hom_def hom_induced_hom
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group_relative_homology_group)
interpret gh3 :

group_hom homology_group p X relative_homology_group p X S ?h
by (meson group_hom_axioms_def group_hom_def hom_induced_hom

group_relative_homology_group)
interpret gh4 :

group_hom homology_group p X homology_group p (discrete_topology {()})
?g

by (meson group_hom_axioms_def group_hom_def hom_induced_hom
group_relative_homology_group)

interpret gh5 :
group_hom homology_group p (discrete_topology {()}) homology_group p X

?f
by (meson group_hom_axioms_def group_hom_def hom_induced_hom

group_relative_homology_group)
interpret gh6 :
group_hom homology_group p (discrete_topology {()}) relative_homology_group

p (discrete_topology {()}) {()}
hom_induced p (discrete_topology {()}) {} (discrete_topology {()})

{()} id
by (meson group_hom_axioms_def group_hom_def hom_induced_hom

group_relative_homology_group)
show ?thesis
proof (intro exI conjI )

have (?h ◦ ?f ◦ ?g) y
= (hom_induced p (discrete_topology {()}) {()} X S (λx. a) ◦

hom_induced p (discrete_topology {()}) {} (discrete_topology {()}) {()}
id ◦ ?g) y

by (simp add: a ‹a ∈ S› flip: hom_induced_compose)
also have . . . = 1relative_homology_group p X S

using trivial_relative_homology_group_topspace [of p discrete_topology
{()}]

apply simp
by (metis (full_types) empty_iff gh1 .H .one_closed gh1 .H .trivial_group

gh2 .hom_one hom_induced_carrier insert_iff )
finally have ?h (?f (?g y)) = 1relative_homology_group p X S

by simp
then show ?h y = ?h (y ⊗?H inv?H ?f (?g y))

by (simp add: that hom_induced_carrier)
show (y ⊗?H inv?H ?f (?g y)) ∈ carrier (homology_group p X)

by (simp add: hom_induced_carrier that)
have ∗: (?g ◦ hom_induced p X {} X {} (λx. a)) y = hom_induced p X {}

(discrete_topology {()}) {} (λa. ()) y
by (simp add: a ‹a ∈ S› flip: hom_induced_compose)

have ?g (y ⊗?H inv?H (?f ◦ ?g) y)
= 1homology_group p (discrete_topology {()})

by (simp add: a ‹a ∈ S› that hom_induced_carrier flip: hom_induced_compose
∗ [unfolded o_def ])

then show ?g (y ⊗?H inv?H ?f (?g y))
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= 1homology_group p (discrete_topology {()})
by simp

qed
qed
show ?thesis

apply (auto simp: reduced_homology_group_def carrier_subgroup_generated
kernel_def image_iff )

apply (metis (no_types, lifting) generate_in_carrier mem_Collect_eq subsetI )
apply (force simp: dest: ∗ intro: generate.incl)
done

qed

lemma homology_exactness_reduced_1 :
assumes topspace X ∩ S 6= {}
shows exact_seq([reduced_homology_group(p − 1 ) (subtopology X S),

relative_homology_group p X S ,
reduced_homology_group p X ],
[hom_boundary p X S , hom_induced p X {} X S id])

(is exact_seq ([?G1 ,?G2 ,?G3 ], [?h1 ,?h2 ]))
proof −

have ∗: ?h2 ‘ carrier (homology_group p X)
= kernel ?G2 (homology_group (p − 1 ) (subtopology X S)) ?h1

using homology_exactness_axiom_1 [of p X S ] by simp
have gh: group_hom ?G3 ?G2 ?h2
by (simp add: reduced_homology_group_def group_hom_def group_hom_axioms_def
group.group_subgroup_generated group.hom_from_subgroup_generated hom_induced_hom)

show ?thesis
apply (simp add: hom_boundary_reduced_hom gh ∗ image_reduced_homology_group

[OF assms])
apply (simp add: kernel_def one_reduced_homology_group)
done

qed

lemma homology_exactness_reduced_2 :
exact_seq([reduced_homology_group(p − 1 ) X ,

reduced_homology_group(p − 1 ) (subtopology X S),
relative_homology_group p X S ],
[hom_induced (p − 1 ) (subtopology X S) {} X {} id, hom_boundary

p X S ])
(is exact_seq ([?G1 ,?G2 ,?G3 ], [?h1 ,?h2 ]))

using homology_exactness_axiom_2 [of p X S ]
apply (simp add: group_hom_axioms_def group_hom_def hom_boundary_reduced_hom

hom_induced_reduced_hom)
apply (simp add: reduced_homology_group_def group_hom.subgroup_kernel group_hom_axioms_def

group_hom_def hom_induced_hom)
using hom_boundary_reduced_hom [of p X S ]
apply (auto simp: image_def set_eq_iff )
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by (metis carrier_reduced_homology_group hom_in_carrier set_eq_iff )

lemma homology_exactness_reduced_3 :
exact_seq([relative_homology_group p X S ,

reduced_homology_group p X ,
reduced_homology_group p (subtopology X S)],
[hom_induced p X {} X S id, hom_induced p (subtopology X S) {} X

{} id])
(is exact_seq ([?G1 ,?G2 ,?G3 ], [?h1 ,?h2 ]))

proof −
have kernel ?G2 ?G1 ?h1 =

?h2 ‘ carrier ?G3
proof −

obtain U where U :
(hom_induced p (subtopology X S) {} X {} id) ‘ carrier ?G3 ⊆ U
(hom_induced p (subtopology X S) {} X {} id) ‘ carrier ?G3
⊆ (hom_induced p (subtopology X S) {} X {} id) ‘ carrier (homology_group

p (subtopology X S))
U ∩ kernel (homology_group p X) ?G1 (hom_induced p X {} X S id)
= kernel ?G2 ?G1 (hom_induced p X {} X S id)
U ∩ (hom_induced p (subtopology X S) {} X {} id) ‘ carrier (homology_group

p (subtopology X S))
⊆ (hom_induced p (subtopology X S) {} X {} id) ‘ carrier ?G3
proof

show ?h2 ‘ carrier ?G3 ⊆ carrier ?G2
by (simp add: hom_induced_reduced image_subset_iff )

show ?h2 ‘ carrier ?G3 ⊆ ?h2 ‘ carrier (homology_group p (subtopology X
S))

by (meson carrier_reduced_homology_group_subset image_mono)
have subgroup (kernel (homology_group p X) (homology_group p (discrete_topology

{()}))
(hom_induced p X {} (discrete_topology {()}) {} (λx. ())))

(homology_group p X)
by (simp add: group.normal_invE(1 ) group_hom.normal_kernel group_hom_axioms_def

group_hom_def hom_induced_empty_hom)
then show carrier ?G2 ∩ kernel (homology_group p X) ?G1 ?h1 = kernel

?G2 ?G1 ?h1
unfolding carrier_reduced_homology_group
by (auto simp: reduced_homology_group_def )

show carrier ?G2 ∩ ?h2 ‘ carrier (homology_group p (subtopology X S))
⊆ ?h2 ‘ carrier ?G3

by (force simp: carrier_reduced_homology_group kernel_def hom_induced_compose ′)
qed
with homology_exactness_axiom_3 [of p X S ] show ?thesis

by (fastforce simp add:)
qed

then show ?thesis
apply (simp add: group_hom_axioms_def group_hom_def hom_boundary_reduced_hom
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hom_induced_reduced_hom)
apply (simp add: group.hom_from_subgroup_generated hom_induced_hom

reduced_homology_group_def )
done

qed

0.3.2 More homology properties of deformations, retracts,
contractible spaces

lemma iso_relative_homology_of_contractible:
[[contractible_space X ; topspace X ∩ S 6= {}]]
=⇒ hom_boundary p X S
∈ iso (relative_homology_group p X S) (reduced_homology_group(p − 1 )

(subtopology X S))
using very_short_exact_sequence
[of reduced_homology_group (p − 1 ) X

reduced_homology_group (p − 1 ) (subtopology X S)
relative_homology_group p X S
reduced_homology_group p X
hom_induced (p − 1 ) (subtopology X S) {} X {} id
hom_boundary p X S
hom_induced p X {} X S id]

by (meson exact_seq_cons_iff homology_exactness_reduced_1 homology_exactness_reduced_2
trivial_reduced_homology_group_contractible_space)

lemma isomorphic_group_relative_homology_of_contractible:
[[contractible_space X ; topspace X ∩ S 6= {}]]

=⇒ relative_homology_group p X S ∼=
reduced_homology_group(p − 1 ) (subtopology X S)

by (meson iso_relative_homology_of_contractible is_isoI )

lemma isomorphic_group_reduced_homology_of_contractible:
[[contractible_space X ; topspace X ∩ S 6= {}]]
=⇒ reduced_homology_group p (subtopology X S) ∼= relative_homology_group(p

+ 1 ) X S
by (metis add.commute add_diff_cancel_left ′ group.iso_sym group_relative_homology_group

isomorphic_group_relative_homology_of_contractible)

lemma iso_reduced_homology_by_contractible:
[[contractible_space(subtopology X S); topspace X ∩ S 6= {}]]

=⇒ (hom_induced p X {} X S id) ∈ iso (reduced_homology_group p X)
(relative_homology_group p X S)

using very_short_exact_sequence
[of reduced_homology_group (p − 1 ) (subtopology X S)

relative_homology_group p X S
reduced_homology_group p X
reduced_homology_group p (subtopology X S)
hom_boundary p X S
hom_induced p X {} X S id
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hom_induced p (subtopology X S) {} X {} id]
by (meson exact_seq_cons_iff homology_exactness_reduced_1 homology_exactness_reduced_3

trivial_reduced_homology_group_contractible_space)

lemma isomorphic_reduced_homology_by_contractible:
[[contractible_space(subtopology X S); topspace X ∩ S 6= {}]]

=⇒ reduced_homology_group p X ∼= relative_homology_group p X S
using is_isoI iso_reduced_homology_by_contractible by blast

lemma isomorphic_relative_homology_by_contractible:
[[contractible_space(subtopology X S); topspace X ∩ S 6= {}]]

=⇒ relative_homology_group p X S ∼= reduced_homology_group p X
using group.iso_sym group_reduced_homology_group isomorphic_reduced_homology_by_contractible

by blast

lemma isomorphic_reduced_homology_by_singleton:
a ∈ topspace X =⇒ reduced_homology_group p X ∼= relative_homology_group

p X ({a})
by (simp add: contractible_space_subtopology_singleton isomorphic_reduced_homology_by_contractible)

lemma isomorphic_relative_homology_by_singleton:
a ∈ topspace X =⇒ relative_homology_group p X ({a}) ∼= reduced_homology_group

p X
by (simp add: group.iso_sym isomorphic_reduced_homology_by_singleton)

lemma reduced_homology_group_pair :
assumes t1_space X and a: a ∈ topspace X and b: b ∈ topspace X and a 6= b
shows reduced_homology_group p (subtopology X {a,b}) ∼= homology_group p

(subtopology X {a})
(is ?lhs ∼= ?rhs)

proof −
have ?lhs ∼= relative_homology_group p (subtopology X {a,b}) {b}
by (simp add: b isomorphic_reduced_homology_by_singleton topspace_subtopology)

also have . . . ∼= ?rhs
proof −

have sub: subtopology X {a, b} closure_of {b} ⊆ subtopology X {a, b} inte-
rior_of {b}

by (simp add: assms t1_space_subtopology closure_of_singleton subtopol-
ogy_eq_discrete_topology_finite discrete_topology_closure_of )

show ?thesis
using homology_excision_axiom [OF sub, of {a,b} p]
by (simp add: assms(4 ) group.iso_sym is_isoI subtopology_subtopology)

qed
finally show ?thesis .

qed

lemma deformation_retraction_relative_homology_group_isomorphisms:
[[retraction_maps X Y r s; r ∈ U → V ; s ∈ V → U ; homotopic_with (λh. h ‘
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U ⊆ U ) X X (s ◦ r) id]]
=⇒ group_isomorphisms (relative_homology_group p X U ) (relative_homology_group

p Y V )
(hom_induced p X U Y V r) (hom_induced p Y V X U s)

apply (simp add: retraction_maps_def )
apply (rule homotopy_equivalence_relative_homology_group_isomorphisms)

apply (auto simp: image_subset_iff_funcset Pi_iff continuous_map_compose
homotopic_with_equal)

done

lemma deformation_retract_relative_homology_group_isomorphisms:
[[retraction_maps X Y r id; V ⊆ U ; r ∈ U → V ; homotopic_with (λh. h ‘ U

⊆ U ) X X r id]]
=⇒ group_isomorphisms (relative_homology_group p X U ) (relative_homology_group

p Y V )
(hom_induced p X U Y V r) (hom_induced p Y V X U id)

by (simp add: deformation_retraction_relative_homology_group_isomorphisms
in_mono)

lemma deformation_retract_relative_homology_group_isomorphism:
[[retraction_maps X Y r id; V ⊆ U ; r ∈ U → V ; homotopic_with (λh. h ‘ U

⊆ U ) X X r id]]
=⇒ (hom_induced p X U Y V r) ∈ iso (relative_homology_group p X U )

(relative_homology_group p Y V )
by (metis deformation_retract_relative_homology_group_isomorphisms group_isomorphisms_imp_iso)

lemma deformation_retract_relative_homology_group_isomorphism_id:
[[retraction_maps X Y r id; V ⊆ U ; r ∈ U → V ; homotopic_with (λh. h ‘ U

⊆ U ) X X r id]]
=⇒ (hom_induced p Y V X U id) ∈ iso (relative_homology_group p Y V )

(relative_homology_group p X U )
by (metis deformation_retract_relative_homology_group_isomorphisms group_isomorphisms_imp_iso

group_isomorphisms_sym)

lemma deformation_retraction_imp_isomorphic_relative_homology_groups:
[[retraction_maps X Y r s; r ∈ U → V ; s ‘ V ⊆ U ; homotopic_with (λh. h ‘ U

⊆ U ) X X (s ◦ r) id]]
=⇒ relative_homology_group p X U ∼= relative_homology_group p Y V

by (blast intro: is_isoI group_isomorphisms_imp_iso deformation_retraction_relative_homology_group_isomorphisms)

lemma deformation_retraction_imp_isomorphic_homology_groups:
[[retraction_maps X Y r s; homotopic_with (λh. True) X X (s ◦ r) id]]

=⇒ homology_group p X ∼= homology_group p Y
by (simp add: deformation_retraction_imp_homotopy_equivalent_space homo-

topy_equivalent_space_imp_isomorphic_homology_groups)

lemma deformation_retract_imp_isomorphic_relative_homology_groups:
[[retraction_maps X X ′ r id; V ⊆ U ; r ∈ U → V ; homotopic_with (λh. h ‘ U
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⊆ U ) X X r id]]
=⇒ relative_homology_group p X U ∼= relative_homology_group p X ′ V

by (simp add: deformation_retraction_imp_isomorphic_relative_homology_groups)

lemma deformation_retract_imp_isomorphic_homology_groups:
[[retraction_maps X X ′ r id; homotopic_with (λh. True) X X r id]]

=⇒ homology_group p X ∼= homology_group p X ′

by (simp add: deformation_retraction_imp_isomorphic_homology_groups)

lemma epi_hom_induced_inclusion:
assumes homotopic_with (λx. True) X X id f and f ∈ topspace X → S
shows (hom_induced p (subtopology X S) {} X {} id)
∈ epi (homology_group p (subtopology X S)) (homology_group p X)

proof (rule epi_right_invertible)
show hom_induced p (subtopology X S) {} X {} id

∈ hom (homology_group p (subtopology X S)) (homology_group p X)
by (simp add: hom_induced_empty_hom)

show hom_induced p X {} (subtopology X S) {} f
∈ carrier (homology_group p X) → carrier (homology_group p (subtopology

X S))
by (simp add: hom_induced_carrier)

fix x
assume x: x ∈ carrier (homology_group p X)
show hom_induced p (subtopology X S) {} X {} id (hom_induced p X {}

(subtopology X S) {} f x) = x
proof (subst hom_induced_compose ′)

show continuous_map X (subtopology X S) f
by (meson assms continuous_map_into_subtopology

homotopic_with_imp_continuous_maps)
show hom_induced p X {} X {} (id ◦ f ) x = x

by (metis assms(1 ) hom_induced_id homology_homotopy_empty id_comp
x)

qed (use assms in auto)
qed

lemma trivial_homomorphism_hom_induced_relativization:
assumes homotopic_with (λx. True) X X id f and f ∈ topspace X → S
shows trivial_homomorphism (homology_group p X) (relative_homology_group

p X S)
(hom_induced p X {} X S id)

proof −
have (hom_induced p (subtopology X S) {} X {} id)
∈ epi (homology_group p (subtopology X S)) (homology_group p X)

by (metis assms epi_hom_induced_inclusion)
then show ?thesis
using homology_exactness_axiom_3 [of p X S ] homology_exactness_axiom_1

[of p X S ]
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by (simp add: epi_def group.trivial_homomorphism_image group_hom.trivial_hom_iff )
qed

lemma mon_hom_boundary_inclusion:
assumes homotopic_with (λx. True) X X id f and f ∈ topspace X → S
shows (hom_boundary p X S) ∈ mon

(relative_homology_group p X S) (homology_group (p − 1 ) (subtopology
X S))
proof −

have (hom_induced p (subtopology X S) {} X {} id)
∈ epi (homology_group p (subtopology X S)) (homology_group p X)

by (metis assms epi_hom_induced_inclusion)
then show ?thesis
using homology_exactness_axiom_3 [of p X S ] homology_exactness_axiom_1

[of p X S ]
apply (simp add: mon_def epi_def hom_boundary_hom)

by (metis (no_types, opaque_lifting) group_hom.trivial_hom_iff group_hom.trivial_ker_imp_inj
group_hom_axioms_def group_hom_def group_relative_homology_group hom_boundary_hom)
qed

lemma short_exact_sequence_hom_induced_relativization:
assumes homotopic_with (λx. True) X X id f and f ∈ topspace X → S
shows short_exact_sequence (homology_group (p−1 ) X) (homology_group (p−1 )

(subtopology X S)) (relative_homology_group p X S)
(hom_induced (p−1 ) (subtopology X S) {} X {} id) (hom_boundary

p X S)
unfolding short_exact_sequence_iff
by (intro conjI homology_exactness_axiom_2 epi_hom_induced_inclusion [OF

assms] mon_hom_boundary_inclusion [OF assms])

lemma group_isomorphisms_homology_group_prod_deformation:
fixes p::int
assumes homotopic_with (λx. True) X X id f and f ∈ topspace X → S
obtains H K where

subgroup H (homology_group p (subtopology X S))
subgroup K (homology_group p (subtopology X S))
(λ(x, y). x ⊗homology_group p (subtopology X S) y)

∈ Group.iso (subgroup_generated (homology_group p (subtopology X S))
H ××

subgroup_generated (homology_group p (subtopology X S)) K )
(homology_group p (subtopology X S))

hom_boundary (p + 1 ) X S
∈ Group.iso (relative_homology_group (p + 1 ) X S)

(subgroup_generated (homology_group p (subtopology X S)) H )
hom_induced p (subtopology X S) {} X {} id
∈ Group.iso

(subgroup_generated (homology_group p (subtopology X S)) K )
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(homology_group p X)
proof −

let ?rhs = relative_homology_group (p + 1 ) X S
let ?pXS = homology_group p (subtopology X S)
let ?pX = homology_group p X
let ?hb = hom_boundary (p + 1 ) X S
let ?hi = hom_induced p (subtopology X S) {} X {} id
have x: short_exact_sequence (?pX) ?pXS ?rhs ?hi ?hb

using short_exact_sequence_hom_induced_relativization [OF assms, of p +
1 ] by simp

have contf : continuous_map X (subtopology X S) f
by (metis assms continuous_map_into_subtopology homotopic_with_imp_continuous_maps)
obtain H K where HK : H � ?pXS subgroup K ?pXS H ∩ K ⊆ {one ?pXS}

set_mult ?pXS H K = carrier ?pXS
and iso: ?hb ∈ iso ?rhs (subgroup_generated ?pXS H ) ?hi ∈ iso (subgroup_generated

?pXS K ) ?pX
proof (rule splitting_lemma_right [OF x, where g ′ = hom_induced p X {}

(subtopology X S) {} f ])
show hom_induced p X {} (subtopology X S) {} f ∈ hom (homology_group p

X) (homology_group p (subtopology X S))
using hom_induced_empty_hom by blast

next
fix z
assume z ∈ carrier (homology_group p X)
then show hom_induced p (subtopology X S) {} X {} id (hom_induced p X

{} (subtopology X S) {} f z) = z
using assms(1 ) contf hom_induced_id homology_homotopy_empty
by (fastforce simp add: hom_induced_compose ′)

qed blast
show ?thesis
proof

show subgroup H ?pXS
using HK (1 ) normal_imp_subgroup by blast

then show (λ(x, y). x ⊗?pXS y)
∈ Group.iso (subgroup_generated (?pXS) H ×× subgroup_generated (?pXS)

K ) (?pXS)
by (meson HK abelian_relative_homology_group group_disjoint_sum.iso_group_mul

group_disjoint_sum_def group_relative_homology_group)
show subgroup K ?pXS

by (rule HK )
show hom_boundary (p + 1 ) X S ∈ Group.iso ?rhs (subgroup_generated

(?pXS) H )
using iso int_ops(4 ) by presburger

show hom_induced p (subtopology X S) {} X {} id ∈ Group.iso (subgroup_generated
(?pXS) K ) (?pX)

by (simp add: iso(2 ))
qed

qed
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lemma iso_homology_group_prod_deformation:
assumes homotopic_with (λx. True) X X id f and f ∈ topspace X → S
shows homology_group p (subtopology X S)
∼= DirProd (homology_group p X) (relative_homology_group(p + 1 ) X S)

(is ?G ∼= DirProd ?H ?R)
proof −

obtain H K where HK :
(λ(x, y). x ⊗?G y)
∈ Group.iso (subgroup_generated (?G) H ×× subgroup_generated (?G) K )

(?G)
hom_boundary (p + 1 ) X S ∈ Group.iso (?R) (subgroup_generated (?G) H )
hom_induced p (subtopology X S) {} X {} id ∈ Group.iso (subgroup_generated

(?G) K ) (?H )
by (blast intro: group_isomorphisms_homology_group_prod_deformation [OF

assms])
have ?G ∼= DirProd (subgroup_generated (?G) H ) (subgroup_generated (?G)

K )
by (meson DirProd_group HK (1 ) group.group_subgroup_generated group.iso_sym

group_relative_homology_group is_isoI )
also have . . . ∼= DirProd ?R ?H
by (meson HK group.DirProd_iso_trans group.group_subgroup_generated group.iso_sym

group_relative_homology_group is_isoI )
also have . . . ∼= DirProd ?H ?R

by (simp add: DirProd_commute_iso)
finally show ?thesis .

qed

lemma iso_homology_contractible_space_subtopology1 :
assumes contractible_space X S ⊆ topspace X S 6= {}
shows homology_group 0 (subtopology X S) ∼= DirProd integer_group (relative_homology_group(1 )

X S)
proof −

obtain f where homotopic_with (λx. True) X X id f and f ∈ topspace X → S
using assms contractible_space_alt by fastforce

then have homology_group 0 (subtopology X S) ∼= homology_group 0 X ××
relative_homology_group 1 X S

using iso_homology_group_prod_deformation [of X _ S 0 ] by auto
also have . . . ∼= integer_group ×× relative_homology_group 1 X S
using assms contractible_imp_path_connected_space group.DirProd_iso_trans

group_relative_homology_group iso_refl isomorphic_integer_zeroth_homology_group
by blast

finally show ?thesis .
qed

lemma iso_homology_contractible_space_subtopology2 :
[[contractible_space X ; S ⊆ topspace X ; p 6= 0 ; S 6= {}]]
=⇒ homology_group p (subtopology X S) ∼= relative_homology_group (p + 1 )
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X S
by (metis (no_types, opaque_lifting) add.commute isomorphic_group_reduced_homology_of_contractible

topspace_subtopology topspace_subtopology_subset un_reduced_homology_group)

lemma trivial_relative_homology_group_contractible_spaces:
[[contractible_space X ; contractible_space(subtopology X S); topspace X ∩ S 6=

{}]]
=⇒ trivial_group(relative_homology_group p X S)

using group_reduced_homology_group group_relative_homology_group isomor-
phic_group_triviality isomorphic_relative_homology_by_contractible trivial_reduced_homology_group_contractible_space
by blast

lemma trivial_relative_homology_group_alt:
assumes contf : continuous_map X (subtopology X S) f and hom: homotopic_with

(λk. k ‘ S ⊆ S) X X f id
shows trivial_group (relative_homology_group p X S)

proof (rule trivial_relative_homology_group_gen [OF contf ])
show homotopic_with (λh. True) (subtopology X S) (subtopology X S) f id

using hom unfolding homotopic_with_def
apply (rule ex_forward)
apply (auto simp: prod_topology_subtopology continuous_map_in_subtopology

continuous_map_from_subtopology image_subset_iff topspace_subtopology)
done

show homotopic_with (λk. True) X X f id
using assms by (force simp: homotopic_with_def )

qed

lemma iso_hom_induced_relativization_contractible:
assumes contractible_space(subtopology X S) contractible_space(subtopology X

T ) T ⊆ S topspace X ∩ T 6= {}
shows (hom_induced p X T X S id) ∈ iso (relative_homology_group p X T )

(relative_homology_group p X S)
proof (rule very_short_exact_sequence)

show exact_seq
([relative_homology_group(p − 1 ) (subtopology X S) T , relative_homology_group

p X S , relative_homology_group p X T , relative_homology_group p (subtopology
X S) T ],

[hom_relboundary p X S T , hom_induced p X T X S id, hom_induced p
(subtopology X S) T X T id])

using homology_exactness_triple_1 [OF ‹T ⊆ S›] homology_exactness_triple_3
[OF ‹T ⊆ S›]

by fastforce
show trivial_group (relative_homology_group p (subtopology X S) T ) trivial_group

(relative_homology_group(p − 1 ) (subtopology X S) T )
using assms
by (force simp: inf .absorb_iff2 subtopology_subtopology topspace_subtopology

intro!: trivial_relative_homology_group_contractible_spaces)+
qed
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corollary isomorphic_relative_homology_groups_relativization_contractible:
assumes contractible_space(subtopology X S) contractible_space(subtopology X

T ) T ⊆ S topspace X ∩ T 6= {}
shows relative_homology_group p X T ∼= relative_homology_group p X S
by (rule is_isoI ) (rule iso_hom_induced_relativization_contractible [OF assms])

lemma iso_hom_induced_inclusion_contractible:
assumes contractible_space X contractible_space(subtopology X S) T ⊆ S topspace

X ∩ S 6= {}
shows (hom_induced p (subtopology X S) T X T id)
∈ iso (relative_homology_group p (subtopology X S) T ) (relative_homology_group

p X T )
proof (rule very_short_exact_sequence)

show exact_seq
([relative_homology_group p X S , relative_homology_group p X T ,
relative_homology_group p (subtopology X S) T , relative_homology_group

(p+1 ) X S ],
[hom_induced p X T X S id, hom_induced p (subtopology X S) T X T id,

hom_relboundary (p+1 ) X S T ])
using homology_exactness_triple_2 [OF ‹T ⊆ S›] homology_exactness_triple_3

[OF ‹T ⊆ S›]
by (metis add_diff_cancel_left ′ diff_add_cancel exact_seq_cons_iff )

show trivial_group (relative_homology_group (p+1 ) X S) trivial_group (relative_homology_group
p X S)

using assms
by (auto simp: subtopology_subtopology topspace_subtopology intro!: trivial_relative_homology_group_contractible_spaces)

qed

corollary isomorphic_relative_homology_groups_inclusion_contractible:
assumes contractible_space X contractible_space(subtopology X S) T ⊆ S topspace

X ∩ S 6= {}
shows relative_homology_group p (subtopology X S) T ∼= relative_homology_group

p X T
by (rule is_isoI ) (rule iso_hom_induced_inclusion_contractible [OF assms])

lemma iso_hom_relboundary_contractible:
assumes contractible_space X contractible_space(subtopology X T ) T ⊆ S topspace

X ∩ T 6= {}
shows hom_relboundary p X S T

∈ iso (relative_homology_group p X S) (relative_homology_group (p − 1 )
(subtopology X S) T )
proof (rule very_short_exact_sequence)

show exact_seq
([relative_homology_group (p − 1 ) X T , relative_homology_group (p − 1 )

(subtopology X S) T , relative_homology_group p X S , relative_homology_group p
X T ],

[hom_induced (p − 1 ) (subtopology X S) T X T id, hom_relboundary p X
S T , hom_induced p X T X S id])
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using homology_exactness_triple_1 [OF ‹T ⊆ S›] homology_exactness_triple_2
[OF ‹T ⊆ S›] by simp
show trivial_group (relative_homology_group p X T ) trivial_group (relative_homology_group

(p − 1 ) X T )
using assms

by (auto simp: subtopology_subtopology topspace_subtopology intro!: trivial_relative_homology_group_contractible_spaces)
qed

corollary isomorphic_relative_homology_groups_relboundary_contractible:
assumes contractible_space X contractible_space(subtopology X T ) T ⊆ S topspace

X ∩ T 6= {}
shows relative_homology_group p X S ∼= relative_homology_group (p − 1 )

(subtopology X S) T
by (rule is_isoI ) (rule iso_hom_relboundary_contractible [OF assms])

lemma isomorphic_relative_contractible_space_imp_homology_groups:
assumes contractible_space X contractible_space Y S ⊆ topspace X T ⊆ topspace

Y
and ST : S = {} ←→ T = {}
and iso:

∧
p. relative_homology_group p X S ∼= relative_homology_group p Y

T
shows homology_group p (subtopology X S) ∼= homology_group p (subtopology Y

T )
proof (cases T = {})

case True
have homology_group p (subtopology X {}) ∼= homology_group p (subtopology Y
{})

by (simp add: homeomorphic_empty_space_eq homeomorphic_space_imp_isomorphic_homology_groups)
then show ?thesis

using ST True by blast
next

case False
show ?thesis
proof (cases p = 0 )

case True
have homology_group p (subtopology X S) ∼= integer_group ×× relative_homology_group

1 X S
using assms True ‹T 6= {}›
by (simp add: iso_homology_contractible_space_subtopology1 )

also have . . . ∼= integer_group ×× relative_homology_group 1 Y T
by (simp add: assms group.DirProd_iso_trans iso_refl)

also have . . . ∼= homology_group p (subtopology Y T )
by (simp add: True ‹T 6= {}› assms group.iso_sym iso_homology_contractible_space_subtopology1 )
finally show ?thesis .

next
case False
have homology_group p (subtopology X S) ∼= relative_homology_group (p+1 )

X S
using assms False ‹T 6= {}›
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by (simp add: iso_homology_contractible_space_subtopology2 )
also have . . . ∼= relative_homology_group (p+1 ) Y T

by (simp add: assms)
also have . . . ∼= homology_group p (subtopology Y T )
by (simp add: False ‹T 6= {}› assms group.iso_sym iso_homology_contractible_space_subtopology2 )
finally show ?thesis .

qed
qed

0.3.3 Homology groups of spheres
lemma iso_reduced_homology_group_lower_hemisphere:

assumes k ≤ n
shows hom_induced p (nsphere n) {} (nsphere n) {x. x k ≤ 0} id
∈ iso (reduced_homology_group p (nsphere n)) (relative_homology_group p

(nsphere n) {x. x k ≤ 0})
proof (rule iso_reduced_homology_by_contractible)

show contractible_space (subtopology (nsphere n) {x. x k ≤ 0})
by (simp add: assms contractible_space_lower_hemisphere)

have (λi. if i = k then −1 else 0 ) ∈ topspace (nsphere n) ∩ {x. x k ≤ 0}
using assms by (simp add: nsphere if_distrib [of λx. x ^ 2 ] cong: if_cong)

then show topspace (nsphere n) ∩ {x. x k ≤ 0} 6= {}
by blast

qed

lemma topspace_nsphere_1 :
assumes x ∈ topspace (nsphere n) shows (x k)2 ≤ 1

proof (cases k ≤ n)
case True
have (

∑
i ∈ {..n} − {k}. (x i)2) = (

∑
i≤n. (x i)2) − (x k)2

using ‹k ≤ n› by (simp add: sum_diff )
then show ?thesis

using assms
apply (simp add: nsphere)
by (metis diff_ge_0_iff_ge sum_nonneg zero_le_power2 )

next
case False
then show ?thesis

using assms by (simp add: nsphere)
qed

lemma topspace_nsphere_1_eq_0 :
fixes x :: nat ⇒ real
assumes x: x ∈ topspace (nsphere n) and xk: (x k)2 = 1 and i 6= k
shows x i = 0

proof (cases i ≤ n)
case True
have k ≤ n
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using x
by (simp add: nsphere) (metis not_less xk zero_neq_one zero_power2 )

have (
∑

i ∈ {..n} − {k}. (x i)2) = (
∑

i≤n. (x i)2) − (x k)2
using ‹k ≤ n› by (simp add: sum_diff )

also have . . . = 0
using assms by (simp add: nsphere)

finally have ∀ i∈{..n} − {k}. (x i)2 = 0
by (simp add: sum_nonneg_eq_0_iff )

then show ?thesis
using True ‹i 6= k› by auto

next
case False
with x show ?thesis

by (simp add: nsphere)
qed

proposition iso_relative_homology_group_upper_hemisphere:
(hom_induced p (subtopology (nsphere n) {x. x k ≥ 0}) {x. x k = 0} (nsphere

n) {x. x k ≤ 0} id)
∈ iso (relative_homology_group p (subtopology (nsphere n) {x. x k ≥ 0}) {x. x

k = 0})
(relative_homology_group p (nsphere n) {x. x k ≤ 0}) (is ?h ∈ iso ?G ?H )

proof −
have topspace (nsphere n) ∩ {x. x k < − 1 / 2} ⊆ {x ∈ topspace (nsphere n).

x k ∈ {y. y ≤ − 1 / 2}}
by force

moreover have closedin (nsphere n) {x ∈ topspace (nsphere n). x k ∈ {y. y ≤
− 1 / 2}}

apply (rule closedin_continuous_map_preimage [OF continuous_map_nsphere_projection])
using closed_Collect_le [of id λx::real. −1/2 ] apply simp
done

ultimately have nsphere n closure_of {x. x k < −1/2} ⊆ {x ∈ topspace
(nsphere n). x k ∈ {y. y ≤ −1/2}}

by (metis (no_types, lifting) closure_of_eq closure_of_mono closure_of_restrict)
also have . . . ⊆ {x ∈ topspace (nsphere n). x k ∈ {y. y < 0}}

by force
also have . . . ⊆ nsphere n interior_of {x. x k ≤ 0}
proof (rule interior_of_maximal)

show {x ∈ topspace (nsphere n). x k ∈ {y. y < 0}} ⊆ {x. x k ≤ 0}
by force

show openin (nsphere n) {x ∈ topspace (nsphere n). x k ∈ {y. y < 0}}
apply (rule openin_continuous_map_preimage [OF continuous_map_nsphere_projection])

using open_Collect_less [of id λx::real. 0 ] apply simp
done

qed
finally have nn: nsphere n closure_of {x. x k < −1/2} ⊆ nsphere n interior_of
{x. x k ≤ 0} .

have [simp]: {x::nat⇒real. x k ≤ 0} − {x. x k < − (1/2 )} = {x. −1/2 ≤ x k

Brouwer{_}{\kern 0pt}Degree.html


160

∧ x k ≤ 0}
UNIV − {x::nat⇒real. x k < a} = {x. a ≤ x k} for a

by auto
let ?T01 = top_of_set {0 ..1 ::real}
let ?X12 = subtopology (nsphere n) {x. −1/2 ≤ x k}
have 1 : hom_induced p ?X12 {x. −1/2 ≤ x k ∧ x k ≤ 0} (nsphere n) {x. x k
≤ 0} id

∈ iso (relative_homology_group p ?X12 {x. −1/2 ≤ x k ∧ x k ≤ 0})
?H

using homology_excision_axiom [OF nn subset_UNIV , of p] by simp
define h where h ≡ λ(T ,x). let y = max (x k) (−T ) in

(λi. if i = k then y else sqrt(1 − y ^ 2 ) / sqrt(1 − x k ^
2 ) ∗ x i)

have h: h(T ,x) = x if 0 ≤ T T ≤ 1 (
∑

i≤n. (x i)2) = 1 and 0 : ∀ i>n. x i =
0 −T ≤ x k for T x

using that by (force simp: nsphere h_def Let_def max_def intro!: topspace_nsphere_1_eq_0 )
have continuous_map (prod_topology ?T01 ?X12 ) euclideanreal (λx. h x i) for

i
proof −

show ?thesis
proof (rule continuous_map_eq)

show continuous_map (prod_topology ?T01 ?X12 )
euclideanreal (λ(T , x). if 0 ≤ x k then x i else h (T , x) i)

unfolding case_prod_unfold
proof (rule continuous_map_cases_le)
show continuous_map (prod_topology ?T01 ?X12 ) euclideanreal (λx. snd x

k)
apply (subst continuous_map_of_snd [unfolded o_def ])

by (simp add: continuous_map_from_subtopology continuous_map_nsphere_projection)
next
show continuous_map (subtopology (prod_topology ?T01 ?X12 ) {p ∈ topspace

(prod_topology ?T01 ?X12 ). 0 ≤ snd p k})
euclideanreal (λx. snd x i)
apply (rule continuous_map_from_subtopology)
apply (subst continuous_map_of_snd [unfolded o_def ])

by (simp add: continuous_map_from_subtopology continuous_map_nsphere_projection)
next
note fst = continuous_map_into_fulltopology [OF continuous_map_subtopology_fst]

have snd: continuous_map (subtopology (prod_topology ?T01 (subtopology
(nsphere n) T )) S) euclideanreal (λx. snd x k) for k S T

apply (simp add: nsphere)
apply (rule continuous_map_from_subtopology)
apply (subst continuous_map_of_snd [unfolded o_def ])

using continuous_map_from_subtopology continuous_map_nsphere_projection
nsphere by fastforce

show continuous_map (subtopology (prod_topology ?T01 ?X12 ) {p ∈ topspace
(prod_topology ?T01 ?X12 ). snd p k ≤ 0})

euclideanreal (λx. h (fst x, snd x) i)
apply (simp add: h_def case_prod_unfold Let_def )
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apply (intro conjI impI fst snd continuous_intros)
apply (auto simp: nsphere power2_eq_1_iff )
done

qed (auto simp: nsphere h)
qed (auto simp: nsphere h)

qed
moreover
have h ‘ ({0 ..1} × (topspace (nsphere n) ∩ {x. − (1/2 ) ≤ x k}))
⊆ {x. (

∑
i≤n. (x i)2) = 1 ∧ (∀ i>n. x i = 0 )}

proof −
have (

∑
i≤n. (h (T ,x) i)2) = 1

if x: x ∈ topspace (nsphere n) and xk: − (1/2 ) ≤ x k and T : 0 ≤ T T ≤ 1
for T x

proof (cases −T ≤ x k )
case True
then show ?thesis

using that by (auto simp: nsphere h)
next

case False
with x ‹0 ≤ T › have k ≤ n

apply (simp add: nsphere)
by (metis neg_le_0_iff_le not_le)

have 1 − (x k)2 ≥ 0
using topspace_nsphere_1 x by auto

with False T ‹k ≤ n›
have (

∑
i≤n. (h (T ,x) i)2) = T2 + (1 − T2) ∗ (

∑
i∈{..n} − {k}. (x i)2 /

(1 − (x k)2))
unfolding h_def Let_def max_def

by (simp add: not_le square_le_1 power_mult_distrib power_divide
if_distrib [of λx. x ^ 2 ]

sum.delta_remove sum_distrib_left)
also have . . . = 1

using x False xk ‹0 ≤ T ›
by (simp add: nsphere sum_diff not_le ‹k ≤ n› power2_eq_1_iff flip:

sum_divide_distrib)
finally show ?thesis .

qed
moreover
have h (T ,x) i = 0

if x ∈ topspace (nsphere n) − (1/2 ) ≤ x k and n < i 0 ≤ T T ≤ 1
for T x i

proof (cases −T ≤ x k )
case False
then show ?thesis

using that by (auto simp: nsphere h_def Let_def not_le max_def )
qed (use that in ‹auto simp: nsphere h›)
ultimately show ?thesis

by auto
qed
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ultimately
have cmh: continuous_map (prod_topology ?T01 ?X12 ) (nsphere n) h
proof (subst (2 ) nsphere)
qed (fastforce simp add: continuous_map_in_subtopology continuous_map_componentwise_UNIV )
have hom_induced p (subtopology (nsphere n) {x. 0 ≤ x k})

(topspace (subtopology (nsphere n) {x. 0 ≤ x k}) ∩ {x. x k = 0}) ?X12
(topspace ?X12 ∩ {x. − 1/2 ≤ x k ∧ x k ≤ 0}) id
∈ iso (relative_homology_group p (subtopology (nsphere n) {x. 0 ≤ x k})

(topspace (subtopology (nsphere n) {x. 0 ≤ x k}) ∩ {x. x k =
0}))

(relative_homology_group p ?X12 (topspace ?X12 ∩ {x. − 1/2 ≤ x
k ∧ x k ≤ 0}))

proof (rule deformation_retract_relative_homology_group_isomorphism_id)
show retraction_maps ?X12 (subtopology (nsphere n) {x. 0 ≤ x k}) (h ◦ (λx.

(0 ,x))) id
unfolding retraction_maps_def

proof (intro conjI ballI )
show continuous_map ?X12 (subtopology (nsphere n) {x. 0 ≤ x k}) (h ◦ Pair

0 )
apply (simp add: continuous_map_in_subtopology)

apply (intro conjI continuous_map_compose [OF _ cmh] continuous_intros)
apply (auto simp: h_def Let_def )

done
show continuous_map (subtopology (nsphere n) {x. 0 ≤ x k}) ?X12 id

by (simp add: continuous_map_in_subtopology)
qed (simp add: nsphere h)

next
have h0 :

∧
xa. [[xa ∈ topspace (nsphere n); − (1/2 ) ≤ xa k; xa k ≤ 0 ]] =⇒ h

(0 , xa) k = 0
by (simp add: h_def Let_def )

show (h ◦ (λx. (0 ,x))) ∈ (topspace ?X12 ∩ {x. − 1 / 2 ≤ x k ∧ x k ≤ 0})
→ topspace (subtopology (nsphere n) {x. 0 ≤ x k}) ∩ {x. x k = 0}

apply (auto simp: h0 )
apply (rule subsetD [OF continuous_map_image_subset_topspace [OF cmh]])
apply (force simp: nsphere)
done

have hin:
∧

t x. [[x ∈ topspace (nsphere n); − (1/2 ) ≤ x k; 0 ≤ t; t ≤ 1 ]] =⇒
h (t,x) ∈ topspace (nsphere n)

apply (rule subsetD [OF continuous_map_image_subset_topspace [OF cmh]])
apply (force simp: nsphere)
done

have h1 :
∧

x. [[x ∈ topspace (nsphere n); − (1/2 ) ≤ x k]] =⇒ h (1 , x) = x
by (simp add: h nsphere)

have continuous_map (prod_topology ?T01 ?X12 ) (nsphere n) h
using cmh by force

then show homotopic_with
(λh. h ‘ (topspace ?X12 ∩ {x. − 1 / 2 ≤ x k ∧ x k ≤ 0}) ⊆ topspace

?X12 ∩ {x. − 1 / 2 ≤ x k ∧ x k ≤ 0})
?X12 ?X12 (h ◦ (λx. (0 ,x))) id
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apply (subst homotopic_with, force)
apply (rule_tac x=h in exI )
apply (auto simp: hin h1 continuous_map_in_subtopology)

apply (auto simp: h_def Let_def max_def )
done

qed auto
then have 2 : hom_induced p (subtopology (nsphere n) {x. 0 ≤ x k}) {x. x k =

0}
?X12 {x. − 1/2 ≤ x k ∧ x k ≤ 0} id
∈ Group.iso

(relative_homology_group p (subtopology (nsphere n) {x. 0 ≤ x k})
{x. x k = 0})

(relative_homology_group p ?X12 {x. − 1/2 ≤ x k ∧ x k ≤ 0})
by (metis hom_induced_restrict relative_homology_group_restrict topspace_subtopology)

show ?thesis
using iso_set_trans [OF 2 1 ]

by (simp add: subset_iff continuous_map_in_subtopology flip: hom_induced_compose)
qed

corollary iso_upper_hemisphere_reduced_homology_group:
(hom_boundary (1 + p) (subtopology (nsphere (Suc n)) {x. x(Suc n) ≥ 0}) {x.

x(Suc n) = 0})
∈ iso (relative_homology_group (1 + p) (subtopology (nsphere (Suc n)) {x. x(Suc

n) ≥ 0}) {x. x(Suc n) = 0})
(reduced_homology_group p (nsphere n))

proof −
have {x. 0 ≤ x (Suc n)} ∩ {x. x (Suc n) = 0} = {x. x (Suc n) = (0 ::real)}

by auto
then have n: nsphere n = subtopology (subtopology (nsphere (Suc n)) {x. x(Suc

n) ≥ 0}) {x. x(Suc n) = 0}
by (simp add: subtopology_nsphere_equator subtopology_subtopology)

have ne: (λi. if i = n then 1 else 0 ) ∈ topspace (subtopology (nsphere (Suc n))
{x. 0 ≤ x (Suc n)}) ∩ {x. x (Suc n) = 0}

by (simp add: nsphere if_distrib [of λx. x ^ 2 ] cong: if_cong)
show ?thesis

unfolding n
using iso_relative_homology_of_contractible [where p = 1 + p, simplified]
by (metis contractible_space_upper_hemisphere dual_order .refl empty_iff ne)

qed

corollary iso_reduced_homology_group_upper_hemisphere:
assumes k ≤ n
shows hom_induced p (nsphere n) {} (nsphere n) {x. x k ≥ 0} id
∈ iso (reduced_homology_group p (nsphere n)) (relative_homology_group p

(nsphere n) {x. x k ≥ 0})
proof (rule iso_reduced_homology_by_contractible [OF contractible_space_upper_hemisphere
[OF assms]])

have (λi. if i = k then 1 else 0 ) ∈ topspace (nsphere n) ∩ {x. 0 ≤ x k}
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using assms by (simp add: nsphere if_distrib [of λx. x ^ 2 ] cong: if_cong)
then show topspace (nsphere n) ∩ {x. 0 ≤ x k} 6= {}

by blast
qed

lemma iso_relative_homology_group_lower_hemisphere:
hom_induced p (subtopology (nsphere n) {x. x k ≤ 0}) {x. x k = 0} (nsphere n)
{x. x k ≥ 0} id
∈ iso (relative_homology_group p (subtopology (nsphere n) {x. x k ≤ 0}) {x. x

k = 0})
(relative_homology_group p (nsphere n) {x. x k ≥ 0}) (is ?k ∈ iso ?G ?H )

proof −
define r where r ≡ λx i. if i = k then −x i else (x i::real)
then have [simp]: r ◦ r = id

by force
have cmr : continuous_map (subtopology (nsphere n) S) (nsphere n) r for S

using continuous_map_nsphere_reflection [of n k]
by (simp add: continuous_map_from_subtopology r_def )

let ?f = hom_induced p (subtopology (nsphere n) {x. x k ≤ 0}) {x. x k = 0}
(subtopology (nsphere n) {x. x k ≥ 0}) {x. x k = 0} r

let ?g = hom_induced p (subtopology (nsphere n) {x. x k ≥ 0}) {x. x k = 0}
(nsphere n) {x. x k ≤ 0} id

let ?h = hom_induced p (nsphere n) {x. x k ≤ 0} (nsphere n) {x. x k ≥ 0} r
obtain f h where

f : f ∈ iso ?G (relative_homology_group p (subtopology (nsphere n) {x. x k
≥ 0}) {x. x k = 0})

and h: h ∈ iso (relative_homology_group p (nsphere n) {x. x k ≤ 0}) ?H
and eq: h ◦ ?g ◦ f = ?k

proof
have hmr : homeomorphic_map (nsphere n) (nsphere n) r

unfolding homeomorphic_map_maps
by (metis ‹r ◦ r = id› cmr homeomorphic_maps_involution pointfree_idE

subtopology_topspace)
then have hmrs: homeomorphic_map (subtopology (nsphere n) {x. x k ≤ 0})

(subtopology (nsphere n) {x. x k ≥ 0}) r
by (simp add: homeomorphic_map_subtopologies_alt r_def )

have rimeq: r ‘ (topspace (subtopology (nsphere n) {x. x k ≤ 0}) ∩ {x. x k =
0})

= topspace (subtopology (nsphere n) {x. 0 ≤ x k}) ∩ {x. x k = 0}
using continuous_map_eq_topcontinuous_at continuous_map_nsphere_reflection

topcontinuous_at_atin
by (fastforce simp: r_def Pi_iff )

show ?f ∈ iso ?G (relative_homology_group p (subtopology (nsphere n) {x. x
k ≥ 0}) {x. x k = 0})

using homeomorphic_map_relative_homology_iso [OF hmrs Int_lower1
rimeq]

by (metis hom_induced_restrict relative_homology_group_restrict)
have rimeq: r ‘ (topspace (nsphere n) ∩ {x. x k ≤ 0}) = topspace (nsphere n)
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∩ {x. 0 ≤ x k}
by (metis hmrs homeomorphic_imp_surjective_map topspace_subtopology)

show ?h ∈ Group.iso (relative_homology_group p (nsphere n) {x. x k ≤ 0})
?H

using homeomorphic_map_relative_homology_iso [OF hmr Int_lower1 rimeq]
by simp

have [simp]:
∧

x. x k = 0 =⇒ r x k = 0
by (auto simp: r_def )

have ?h ◦ ?g ◦ ?f
= hom_induced p (subtopology (nsphere n) {x. 0 ≤ x k}) {x. x k = 0}

(nsphere n) {x. 0 ≤ x k} r ◦
hom_induced p (subtopology (nsphere n) {x. x k ≤ 0}) {x. x k = 0}

(subtopology (nsphere n) {x. 0 ≤ x k}) {x. x k = 0} r
apply (subst hom_induced_compose [symmetric])
using continuous_map_nsphere_reflection apply (force simp: r_def )+
done

also have . . . = ?k
apply (subst hom_induced_compose [symmetric])

apply (simp_all add: image_subset_iff cmr)
using hmrs homeomorphic_imp_continuous_map apply blast
done

finally show ?h ◦ ?g ◦ ?f = ?k .
qed
with iso_relative_homology_group_upper_hemisphere [of p n k]
have h ◦ hom_induced p (subtopology (nsphere n) {f . 0 ≤ f k}) {f . f k = 0}

(nsphere n) {f . f k ≤ 0} id ◦ f
∈ Group.iso ?G (relative_homology_group p (nsphere n) {f . 0 ≤ f k})

using f h iso_set_trans by blast
then show ?thesis

by (simp add: eq)
qed

lemma iso_lower_hemisphere_reduced_homology_group:
hom_boundary (1 + p) (subtopology (nsphere (Suc n)) {x. x(Suc n) ≤ 0}) {x.

x(Suc n) = 0}
∈ iso (relative_homology_group (1 + p) (subtopology (nsphere (Suc n)) {x. x(Suc

n) ≤ 0})
{x. x(Suc n) = 0})

(reduced_homology_group p (nsphere n))
proof −

have {x. (
∑

i≤n. (x i)2) = 1 ∧ (∀ i>n. x i = 0 )} =
({x. (

∑
i≤n. (x i)2) + (x (Suc n))2 = 1 ∧ (∀ i>Suc n. x i = 0 )} ∩ {x. x

(Suc n) ≤ 0} ∩
{x. x (Suc n) = (0 ::real)})

by (force simp: dest: Suc_lessI )
then have n: nsphere n = subtopology (subtopology (nsphere (Suc n)) {x. x(Suc

n) ≤ 0}) {x. x(Suc n) = 0}
by (simp add: nsphere subtopology_subtopology)
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have ne: (λi. if i = n then 1 else 0 ) ∈ topspace (subtopology (nsphere (Suc n))
{x. x (Suc n) ≤ 0}) ∩ {x. x (Suc n) = 0}

by (simp add: nsphere if_distrib [of λx. x ^ 2 ] cong: if_cong)
show ?thesis

unfolding n
apply (rule iso_relative_homology_of_contractible [where p = 1 + p, sim-

plified])
using contractible_space_lower_hemisphere ne apply blast+
done

qed

lemma isomorphism_sym:
[[f ∈ iso G1 G2 ;

∧
x. x ∈ carrier G1 =⇒ r ′(f x) = f (r x);∧

x. x ∈ carrier G1 =⇒ r x ∈ carrier G1 ; group G1 ; group G2 ]]
=⇒ ∃ f ∈ iso G2 G1 . ∀ x ∈ carrier G2 . r(f x) = f (r ′ x)

apply (clarsimp simp add: group.iso_iff_group_isomorphisms Bex_def )
by (metis (full_types) group_isomorphisms_def group_isomorphisms_sym hom_in_carrier)

lemma isomorphism_trans:
[[∃ f ∈ iso G1 G2 . ∀ x ∈ carrier G1 . r2 (f x) = f (r1 x); ∃ f ∈ iso G2 G3 . ∀ x ∈

carrier G2 . r3 (f x) = f (r2 x)]]
=⇒ ∃ f ∈ iso G1 G3 . ∀ x ∈ carrier G1 . r3 (f x) = f (r1 x)

apply clarify
by (smt (verit, ccfv_threshold) Group.iso_iff hom_in_carrier iso_set_trans

o_apply)

lemma reduced_homology_group_nsphere_step:
∃ f ∈ iso(reduced_homology_group p (nsphere n))

(reduced_homology_group (1 + p) (nsphere (Suc n))).
∀ c ∈ carrier(reduced_homology_group p (nsphere n)).

hom_induced (1 + p) (nsphere(Suc n)) {} (nsphere(Suc n)) {}
(λx i. if i = 0 then −x i else x i) (f c)

= f (hom_induced p (nsphere n) {} (nsphere n) {} (λx i. if i = 0 then
−x i else x i) c)
proof −

define r where r ≡ λx::nat⇒real. λi. if i = 0 then −x i else x i
have cmr : continuous_map (nsphere n) (nsphere n) r for n

unfolding r_def by (rule continuous_map_nsphere_reflection)
have rsub: r ∈ {x. 0 ≤ x (Suc n)} → {x. 0 ≤ x (Suc n)}

r ∈ {x. x (Suc n) ≤ 0} → {x. x (Suc n) ≤ 0}
r ∈ {x. x (Suc n) = 0} → {x. x (Suc n) = 0}

by (force simp: r_def )+
let ?sub = subtopology (nsphere (Suc n)) {x. x (Suc n) ≥ 0}
let ?G2 = relative_homology_group (1 + p) ?sub {x. x (Suc n) = 0}
let ?r2 = hom_induced (1 + p) ?sub {x. x (Suc n) = 0} ?sub {x. x (Suc n) =

0} r
let ?j = λp n. hom_induced p (nsphere n) {} (nsphere n) {} r
show ?thesis

unfolding r_def [symmetric]



Brouwer_Degree.thy 167

proof (rule isomorphism_trans)
let ?f = hom_boundary (1 + p) ?sub {x. x (Suc n) = 0}
show ∃ f∈Group.iso (reduced_homology_group p (nsphere n)) ?G2 .

∀ c∈carrier (reduced_homology_group p (nsphere n)). ?r2 (f c) = f (?j p
n c)

proof (rule isomorphism_sym)
show ?f ∈ Group.iso ?G2 (reduced_homology_group p (nsphere n))

using iso_upper_hemisphere_reduced_homology_group
by (metis add.commute)

next
fix c
assume c ∈ carrier ?G2
have cmrs: continuous_map ?sub ?sub r
by (metis (no_types, lifting) IntE Pi_iff cmr continuous_map_from_subtopology

continuous_map_into_subtopology rsub(1 ) topspace_subtopology)
have hom_induced p (nsphere n) {} (nsphere n) {} r ◦ hom_boundary (1 +

p) ?sub {x. x (Suc n) = 0}
= hom_boundary (1 + p) ?sub {x. x (Suc n) = 0} ◦
hom_induced (1 + p) ?sub {x. x (Suc n) = 0} ?sub {x. x (Suc n) = 0}

r
using naturality_hom_induced [OF cmrs rsub(3 ), symmetric, of 1+p,

simplified]
by (simp add: Pi_iff subtopology_subtopology subtopology_nsphere_equator

flip: Collect_conj_eq cong: rev_conj_cong)
then show ?j p n (?f c) = ?f (hom_induced (1 + p) ?sub {x. x (Suc n) =

0} ?sub {x. x (Suc n) = 0} r c)
by (metis comp_def )

next
fix c
assume c ∈ carrier ?G2
show hom_induced (1 + p) ?sub {x. x (Suc n) = 0} ?sub {x. x (Suc n) =

0} r c ∈ carrier ?G2
using hom_induced_carrier by blast

qed auto
next

let ?H2 = relative_homology_group (1 + p) (nsphere (Suc n)) {x. x (Suc n)
≤ 0}

let ?s2 = hom_induced (1 + p) (nsphere (Suc n)) {x. x (Suc n) ≤ 0} (nsphere
(Suc n)) {x. x (Suc n) ≤ 0} r

show ∃ f∈Group.iso ?G2 (reduced_homology_group (1 + p) (nsphere (Suc
n))). ∀ c∈carrier ?G2 . ?j (1 + p) (Suc n) (f c)

= f (?r2 c)
proof (rule isomorphism_trans)

show ∃ f∈Group.iso ?G2 ?H2 .
∀ c∈carrier ?G2 .
?s2 (f c) = f (hom_induced (1 + p) ?sub {x. x (Suc n) = 0} ?sub

{x. x (Suc n) = 0} r c)
proof (intro ballI bexI )

fix c
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assume c ∈ carrier (relative_homology_group (1 + p) ?sub {x. x (Suc n)
= 0})

show ?s2 (hom_induced (1 + p) ?sub {x. x (Suc n) = 0} (nsphere (Suc
n)) {x. x (Suc n) ≤ 0} id c)

= hom_induced (1 + p) ?sub {x. x (Suc n) = 0} (nsphere (Suc n)) {x.
x (Suc n) ≤ 0} id (?r2 c)

apply (simp add: rsub hom_induced_compose ′ Collect_mono_iff cmr)
apply (subst hom_induced_compose ′)

apply (simp_all add: continuous_map_in_subtopology continu-
ous_map_from_subtopology [OF cmr ] rsub)

apply (auto simp: r_def )
done

qed (simp add: iso_relative_homology_group_upper_hemisphere)
next

let ?h = hom_induced (1 + p) (nsphere(Suc n)) {} (nsphere (Suc n)) {x.
x(Suc n) ≤ 0} id

show ∃ f∈Group.iso ?H2 (reduced_homology_group (1 + p) (nsphere (Suc
n))).

∀ c∈carrier ?H2 . ?j (1 + p) (Suc n) (f c) = f (?s2 c)
proof (rule isomorphism_sym)
show ?h ∈ Group.iso (reduced_homology_group (1 + p) (nsphere (Suc n)))

(relative_homology_group (1 + p) (nsphere (Suc n)) {x. x (Suc n) ≤
0})

using iso_reduced_homology_group_lower_hemisphere by blast
next

fix c
assume c ∈ carrier (reduced_homology_group (1 + p) (nsphere (Suc n)))
show ?s2 (?h c) = ?h (?j (1 + p) (Suc n) c)

by (simp add: hom_induced_compose ′ cmr rsub)
next

fix c
assume c ∈ carrier (reduced_homology_group (1 + p) (nsphere (Suc n)))
then show hom_induced (1 + p) (nsphere (Suc n)) {} (nsphere (Suc n))

{} r c
∈ carrier (reduced_homology_group (1 + p) (nsphere (Suc n)))

by (simp add: hom_induced_reduced)
qed auto

qed
qed

qed

lemma reduced_homology_group_nsphere_aux:
if p = int n then reduced_homology_group n (nsphere n) ∼= integer_group

else trivial_group(reduced_homology_group p (nsphere n))
proof (induction n arbitrary: p)

case 0
let ?a = λi::nat. if i = 0 then 1 else (0 ::real)
let ?b = λi::nat. if i = 0 then −1 else (0 ::real)
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have st: subtopology (powertop_real UNIV ) {?a, ?b} = nsphere 0
proof −

have {?a, ?b} = {x. (x 0 )2 = 1 ∧ (∀ i>0 . x i = 0 )}
using power2_eq_iff by fastforce

then show ?thesis
by (simp add: nsphere)

qed
have t1_space (powertop_real UNIV )

using t1_space_euclidean t1_space_product_topology by blast
then have ∗: reduced_homology_group p (subtopology (powertop_real UNIV )
{?a, ?b}) ∼=

homology_group p (subtopology (powertop_real UNIV ) {?a})
by (intro reduced_homology_group_pair) (auto simp: fun_eq_iff )

have reduced_homology_group 0 (nsphere 0 ) ∼= integer_group if p=0
proof −
have reduced_homology_group 0 (nsphere 0 ) ∼= homology_group 0 (top_of_set

{?a}) if p=0
by (metis ∗ euclidean_product_topology st that)

also have . . . ∼= integer_group
by (simp add: homology_coefficients)

finally show ?thesis
using that by blast

qed
moreover have trivial_group (reduced_homology_group p (nsphere 0 )) if p 6=0
using ∗ that homology_dimension_axiom [of subtopology (powertop_real UNIV )

{?a} ?a p]
using isomorphic_group_triviality st by force

ultimately show ?case
by auto

next
case (Suc n)
have eq: reduced_homology_group (int n) (nsphere n) ∼= integer_group if p−1

= n
by (simp add: Suc.IH )

have neq: trivial_group (reduced_homology_group (p−1 ) (nsphere n)) if p−1 6=
n

by (simp add: Suc.IH that)
have iso: reduced_homology_group p (nsphere (Suc n)) ∼= reduced_homology_group

(p−1 ) (nsphere n)
using reduced_homology_group_nsphere_step [of p−1 n] group.iso_sym [OF

_ is_isoI ] group_reduced_homology_group
by fastforce

then show ?case
using eq iso_trans iso isomorphic_group_triviality neq

by (metis (no_types, opaque_lifting) add.commute add_left_cancel diff_add_cancel
group_reduced_homology_group of_nat_Suc)
qed
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lemma reduced_homology_group_nsphere:
reduced_homology_group n (nsphere n) ∼= integer_group
p 6= n =⇒ trivial_group(reduced_homology_group p (nsphere n))
using reduced_homology_group_nsphere_aux by auto

lemma cyclic_reduced_homology_group_nsphere:
cyclic_group(reduced_homology_group p (nsphere n))

by (metis reduced_homology_group_nsphere trivial_imp_cyclic_group cyclic_integer_group
group_integer_group group_reduced_homology_group isomorphic_group_cyclicity)

lemma trivial_reduced_homology_group_nsphere:
trivial_group(reduced_homology_group p (nsphere n)) ←→ (p 6= n)

using group_integer_group isomorphic_group_triviality nontrivial_integer_group
reduced_homology_group_nsphere(1 ) reduced_homology_group_nsphere(2 ) triv-
ial_group_def by blast

lemma non_contractible_space_nsphere: ¬ (contractible_space(nsphere n))
proof (clarsimp simp add: contractible_eq_homotopy_equivalent_singleton_subtopology)
fix a :: nat ⇒ real
assume a: a ∈ topspace (nsphere n)

and he: nsphere n homotopy_equivalent_space subtopology (nsphere n) {a}
have trivial_group (reduced_homology_group (int n) (subtopology (nsphere n)
{a}))

by (simp add: a homology_dimension_reduced [where a=a])
then show False
using isomorphic_group_triviality [OF homotopy_equivalent_space_imp_isomorphic_reduced_homology_groups

[OF he, of n]]
by (simp add: trivial_reduced_homology_group_nsphere)

qed

0.3.4 Brouwer degree of a Map
definition Brouwer_degree2 :: nat ⇒ ((nat ⇒ real) ⇒ nat ⇒ real) ⇒ int

where
Brouwer_degree2 p f ≡

@d::int. ∀ x ∈ carrier(reduced_homology_group p (nsphere p)).
hom_induced p (nsphere p) {} (nsphere p) {} f x = pow (reduced_homology_group

p (nsphere p)) x d

lemma Brouwer_degree2_eq:
(
∧

x. x ∈ topspace(nsphere p) =⇒ f x = g x) =⇒ Brouwer_degree2 p f =
Brouwer_degree2 p g

unfolding Brouwer_degree2_def Ball_def
apply (intro Eps_cong all_cong)
by (metis (mono_tags, lifting) hom_induced_eq)

lemma Brouwer_degree2 :
assumes x ∈ carrier(reduced_homology_group p (nsphere p))
shows hom_induced p (nsphere p) {} (nsphere p) {} f x
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= pow (reduced_homology_group p (nsphere p)) x (Brouwer_degree2 p f )
(is ?h x = pow ?G x _)

proof (cases continuous_map(nsphere p) (nsphere p) f )
case True
interpret group ?G

by simp
interpret group_hom ?G ?G ?h

using hom_induced_reduced_hom group_hom_axioms_def group_hom_def
is_group by blast

obtain a where a: a ∈ carrier ?G
and aeq: subgroup_generated ?G {a} = ?G

using cyclic_reduced_homology_group_nsphere [of p p] by (auto simp: cyclic_group_def )
then have carra: carrier (subgroup_generated ?G {a}) = range (λn::int. pow

?G a n)
using carrier_subgroup_generated_by_singleton by blast

moreover have ?h a ∈ carrier (subgroup_generated ?G {a})
by (simp add: a aeq hom_induced_reduced)

ultimately obtain d::int where d: ?h a = pow ?G a d
by auto

have ∗: hom_induced (int p) (nsphere p) {} (nsphere p) {} f x = x [^]?G d
if x: x ∈ carrier ?G for x

proof −
obtain n::int where xeq: x = pow ?G a n

using carra x aeq by auto
show ?thesis

by (simp add: xeq a d hom_int_pow int_pow_pow mult.commute)
qed
show ?thesis

unfolding Brouwer_degree2_def
apply (rule someI2 [where a=d])
using assms ∗ apply blast+
done

next
case False
show ?thesis

unfolding Brouwer_degree2_def
by (rule someI2 [where a=0 ]) (simp_all add: hom_induced_default False

one_reduced_homology_group assms)
qed

lemma Brouwer_degree2_iff :
assumes f : continuous_map (nsphere p) (nsphere p) f

and x: x ∈ carrier(reduced_homology_group p (nsphere p))
shows (hom_induced (int p) (nsphere p) {} (nsphere p) {} f x =

x [^]reduced_homology_group (int p) (nsphere p) d)
←→ (x = 1reduced_homology_group (int p) (nsphere p) ∨ Brouwer_degree2 p f

= d)
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(is (?h x = x [^]?G d) ←→ _)
proof −

interpret group ?G
by simp

obtain a where a: a ∈ carrier ?G
and aeq: subgroup_generated ?G {a} = ?G

using cyclic_reduced_homology_group_nsphere [of p p] by (auto simp: cyclic_group_def )
then obtain i::int where i: x = (a [^]?G i)

using carrier_subgroup_generated_by_singleton x by fastforce
then have a [^]?G i ∈ carrier ?G

using x by blast
have [simp]: ord a = 0

by (simp add: a aeq iso_finite [OF reduced_homology_group_nsphere(1 )] flip:
infinite_cyclic_subgroup_order)

show ?thesis
by (auto simp: Brouwer_degree2 int_pow_eq_id x i a int_pow_pow int_pow_eq)

qed

lemma Brouwer_degree2_unique:
assumes f : continuous_map (nsphere p) (nsphere p) f

and hi:
∧

x. x ∈ carrier(reduced_homology_group p (nsphere p))
=⇒ hom_induced p (nsphere p) {} (nsphere p) {} f x = pow

(reduced_homology_group p (nsphere p)) x d
(is

∧
x. x ∈ carrier ?G =⇒ ?h x = _)

shows Brouwer_degree2 p f = d
proof −

obtain a where a: a ∈ carrier ?G
and aeq: subgroup_generated ?G {a} = ?G

using cyclic_reduced_homology_group_nsphere [of p p] by (auto simp: cyclic_group_def )
show ?thesis

using hi [OF a] unfolding Brouwer_degree2 a
by (metis Brouwer_degree2_iff a aeq f group.trivial_group_subgroup_generated

group_reduced_homology_group subsetI trivial_reduced_homology_group_nsphere)
qed

lemma Brouwer_degree2_unique_generator :
assumes f : continuous_map (nsphere p) (nsphere p) f

and eq: subgroup_generated (reduced_homology_group p (nsphere p)) {a}
= reduced_homology_group p (nsphere p)

and hi: hom_induced p (nsphere p) {} (nsphere p) {} f a = pow (reduced_homology_group
p (nsphere p)) a d

(is ?h a = pow ?G a _)
shows Brouwer_degree2 p f = d

proof (cases a ∈ carrier ?G)
case True
then show ?thesis
by (metis Brouwer_degree2_iff hi eq f group.trivial_group_subgroup_generated

group_reduced_homology_group
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subset_singleton_iff trivial_reduced_homology_group_nsphere)
next

case False
then show ?thesis

using trivial_reduced_homology_group_nsphere [of p p]
by (metis group.trivial_group_subgroup_generated_eq disjoint_insert(1 ) eq

group_reduced_homology_group inf_bot_right subset_singleton_iff )
qed

lemma Brouwer_degree2_homotopic:
assumes homotopic_with (λx. True) (nsphere p) (nsphere p) f g
shows Brouwer_degree2 p f = Brouwer_degree2 p g

proof −
have continuous_map (nsphere p) (nsphere p) f

using homotopic_with_imp_continuous_maps [OF assms] by auto
show ?thesis

using Brouwer_degree2_def assms homology_homotopy_empty by fastforce
qed

lemma Brouwer_degree2_id [simp]: Brouwer_degree2 p id = 1
proof (rule Brouwer_degree2_unique)

fix x
assume x: x ∈ carrier (reduced_homology_group (int p) (nsphere p))
then have x ∈ carrier (homology_group (int p) (nsphere p))

using carrier_reduced_homology_group_subset by blast
then show hom_induced (int p) (nsphere p) {} (nsphere p) {} id x =

x [^]reduced_homology_group (int p) (nsphere p) (1 ::int)
by (simp add: hom_induced_id group.int_pow_1 x)

qed auto

lemma Brouwer_degree2_compose:
assumes f : continuous_map (nsphere p) (nsphere p) f and g: continuous_map

(nsphere p) (nsphere p) g
shows Brouwer_degree2 p (g ◦ f ) = Brouwer_degree2 p g ∗ Brouwer_degree2 p

f
proof (rule Brouwer_degree2_unique)

show continuous_map (nsphere p) (nsphere p) (g ◦ f )
by (meson continuous_map_compose f g)

next
fix x
assume x: x ∈ carrier (reduced_homology_group (int p) (nsphere p))
have hom_induced (int p) (nsphere p) {} (nsphere p) {} (g ◦ f ) =

hom_induced (int p) (nsphere p) {} (nsphere p) {} g ◦
hom_induced (int p) (nsphere p) {} (nsphere p) {} f

by (blast intro: hom_induced_compose [OF f _ g])
with x show hom_induced (int p) (nsphere p) {} (nsphere p) {} (g ◦ f ) x =

x [^]reduced_homology_group (int p) (nsphere p) (Brouwer_degree2 p g ∗
Brouwer_degree2 p f )

by (simp add: mult.commute hom_induced_reduced flip: Brouwer_degree2
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group.int_pow_pow)
qed

lemma Brouwer_degree2_homotopy_equivalence:
assumes f : continuous_map (nsphere p) (nsphere p) f and g: continuous_map

(nsphere p) (nsphere p) g
and hom: homotopic_with (λx. True) (nsphere p) (nsphere p) (f ◦ g) id

obtains |Brouwer_degree2 p f | = 1 |Brouwer_degree2 p g| = 1 Brouwer_degree2
p g = Brouwer_degree2 p f

using Brouwer_degree2_homotopic [OF hom] Brouwer_degree2_compose f g
zmult_eq_1_iff by auto

lemma Brouwer_degree2_homeomorphic_maps:
assumes homeomorphic_maps (nsphere p) (nsphere p) f g
obtains |Brouwer_degree2 p f | = 1 |Brouwer_degree2 p g| = 1 Brouwer_degree2

p g = Brouwer_degree2 p f
using assms
by (auto simp: homeomorphic_maps_def homotopic_with_equal continuous_map_compose

intro: Brouwer_degree2_homotopy_equivalence)

lemma Brouwer_degree2_retraction_map:
assumes retraction_map (nsphere p) (nsphere p) f
shows |Brouwer_degree2 p f | = 1

proof −
obtain g where g: retraction_maps (nsphere p) (nsphere p) f g

using assms by (auto simp: retraction_map_def )
show ?thesis
proof (rule Brouwer_degree2_homotopy_equivalence)

show homotopic_with (λx. True) (nsphere p) (nsphere p) (f ◦ g) id
using g apply (auto simp: retraction_maps_def )
by (simp add: homotopic_with_equal continuous_map_compose)

show continuous_map (nsphere p) (nsphere p) f continuous_map (nsphere p)
(nsphere p) g

using g retraction_maps_def by blast+
qed

qed

lemma Brouwer_degree2_section_map:
assumes section_map (nsphere p) (nsphere p) f
shows |Brouwer_degree2 p f | = 1

proof −
obtain g where g: retraction_maps (nsphere p) (nsphere p) g f

using assms by (auto simp: section_map_def )
show ?thesis
proof (rule Brouwer_degree2_homotopy_equivalence)

show homotopic_with (λx. True) (nsphere p) (nsphere p) (g ◦ f ) id
using g apply (auto simp: retraction_maps_def )
by (simp add: homotopic_with_equal continuous_map_compose)
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show continuous_map (nsphere p) (nsphere p) g continuous_map (nsphere p)
(nsphere p) f

using g retraction_maps_def by blast+
qed

qed

lemma Brouwer_degree2_homeomorphic_map:
homeomorphic_map (nsphere p) (nsphere p) f =⇒ |Brouwer_degree2 p f | = 1

using Brouwer_degree2_retraction_map section_and_retraction_eq_homeomorphic_map
by blast

lemma Brouwer_degree2_nullhomotopic:
assumes homotopic_with (λx. True) (nsphere p) (nsphere p) f (λx. a)
shows Brouwer_degree2 p f = 0

proof −
have contf : continuous_map (nsphere p) (nsphere p) f
and contc: continuous_map (nsphere p) (nsphere p) (λx. a)
using homotopic_with_imp_continuous_maps [OF assms] by metis+

have Brouwer_degree2 p f = Brouwer_degree2 p (λx. a)
using Brouwer_degree2_homotopic [OF assms] .

moreover
let ?G = reduced_homology_group (int p) (nsphere p)
interpret group ?G

by simp
have Brouwer_degree2 p (λx. a) = 0
proof (rule Brouwer_degree2_unique [OF contc])

fix c
assume c: c ∈ carrier ?G
have continuous_map (nsphere p) (subtopology (nsphere p) {a}) (λf . a)

using contc continuous_map_in_subtopology by blast
then have he: hom_induced p (nsphere p) {} (nsphere p) {} (λx. a)

= hom_induced p (subtopology (nsphere p) {a}) {} (nsphere p) {} id
◦

hom_induced p (nsphere p) {} (subtopology (nsphere p) {a}) {}
(λx. a)

by (metis continuous_map_id_subt fun.map_id hom_induced_compose_empty)
have 1 : hom_induced p (nsphere p) {} (subtopology (nsphere p) {a}) {} (λx.

a) c =
1reduced_homology_group (int p) (subtopology (nsphere p) {a})

using c trivial_reduced_homology_group_contractible_space [of subtopology
(nsphere p) {a} p]

by (simp add: hom_induced_reduced contractible_space_subtopology_singleton
trivial_group_subset group.trivial_group_subset subset_iff )

show hom_induced (int p) (nsphere p) {} (nsphere p) {} (λx. a) c =
c [^]?G (0 ::int)

apply (simp add: he 1 )
using hom_induced_reduced_hom group_hom.hom_one group_hom_axioms_def

group_hom_def group_reduced_homology_group by blast
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qed
ultimately show ?thesis

by metis
qed

lemma Brouwer_degree2_const: Brouwer_degree2 p (λx. a) = 0
proof (cases continuous_map(nsphere p) (nsphere p) (λx. a))

case True
then show ?thesis

by (auto intro: Brouwer_degree2_nullhomotopic [where a=a])
next

case False
let ?G = reduced_homology_group (int p) (nsphere p)
let ?H = homology_group (int p) (nsphere p)
interpret group ?G

by simp
have eq1 : 1?H = 1?G

by (simp add: one_reduced_homology_group)
have ∗: ∀ x∈carrier ?G. hom_induced (int p) (nsphere p) {} (nsphere p) {} (λx.

a) x = 1?H
by (metis False hom_induced_default one_relative_homology_group)

obtain c where c: c ∈ carrier ?G and ceq: subgroup_generated ?G {c} = ?G
using cyclic_reduced_homology_group_nsphere [of p p] by (force simp: cyclic_group_def )

have [simp]: ord c = 0
by (simp add: c ceq iso_finite [OF reduced_homology_group_nsphere(1 )] flip:

infinite_cyclic_subgroup_order)
show ?thesis

unfolding Brouwer_degree2_def
proof (rule some_equality)

fix d :: int
assume ∀ x∈carrier ?G. hom_induced (int p) (nsphere p) {} (nsphere p) {}

(λx. a) x = x [^]?G d
then have c [^]?G d = 1?H

using ∗ c by blast
then have int (ord c) dvd d

using c eq1 int_pow_eq_id by auto
then show d = 0

by (simp add: ∗ del: one_relative_homology_group)
qed (use ∗ eq1 in force)

qed

corollary Brouwer_degree2_nonsurjective:
[[continuous_map(nsphere p) (nsphere p) f ; f ‘ topspace (nsphere p) 6= topspace

(nsphere p)]]
=⇒ Brouwer_degree2 p f = 0

by (meson Brouwer_degree2_nullhomotopic nullhomotopic_nonsurjective_sphere_map)
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proposition Brouwer_degree2_reflection:
Brouwer_degree2 p (λx i. if i = 0 then −x i else x i) = −1 (is Brouwer_degree2

_ ?r = −1 )
proof (induction p)

case 0
let ?G = homology_group 0 (nsphere 0 )
let ?D = homology_group 0 (discrete_topology {()})
interpret group ?G

by simp
define r where r ≡ λx::nat⇒real. λi. if i = 0 then −x i else x i
then have [simp]: r ◦ r = id

by force
have cmr : continuous_map (nsphere 0 ) (nsphere 0 ) r

by (simp add: r_def continuous_map_nsphere_reflection)
have ∗: hom_induced 0 (nsphere 0 ) {} (nsphere 0 ) {} r c = inv?G c

if c ∈ carrier(reduced_homology_group 0 (nsphere 0 )) for c
proof −

have c: c ∈ carrier ?G
and ceq: hom_induced 0 (nsphere 0 ) {} (discrete_topology {()}) {} (λx. ())

c = 1?D
using that by (auto simp: carrier_reduced_homology_group kernel_def )

define pp::nat⇒real where pp ≡ λi. if i = 0 then 1 else 0
define nn::nat⇒real where nn ≡ λi. if i = 0 then −1 else 0
have topn0 : topspace(nsphere 0 ) = {pp,nn}

by (auto simp: nsphere pp_def nn_def fun_eq_iff power2_eq_1_iff split:
if_split_asm)

have t1_space (nsphere 0 )
unfolding nsphere
apply (rule t1_space_subtopology)
by (metis (full_types) open_fun_def t1_space t1_space_def )

then have dtn0 : discrete_topology {pp,nn} = nsphere 0
using finite_t1_space_imp_discrete_topology [OF topn0 ] by auto

have pp 6= nn
by (auto simp: pp_def nn_def fun_eq_iff )

have [simp]: r pp = nn r nn = pp
by (auto simp: r_def pp_def nn_def fun_eq_iff )

have iso: (λ(a,b). hom_induced 0 (subtopology (nsphere 0 ) {pp}) {} (nsphere
0 ) {} id a

⊗?G hom_induced 0 (subtopology (nsphere 0 ) {nn}) {} (nsphere 0 )
{} id b)

∈ iso (homology_group 0 (subtopology (nsphere 0 ) {pp}) ×× homol-
ogy_group 0 (subtopology (nsphere 0 ) {nn}))

?G (is ?f ∈ iso (?P ×× ?N ) ?G)
apply (rule homology_additivity_explicit)
using dtn0 ‹pp 6= nn› by (auto simp: discrete_topology_unique)

then have fim: ?f ‘ carrier(?P ×× ?N ) = carrier ?G
by (simp add: iso_def bij_betw_def )

obtain d d ′ where d: d ∈ carrier ?P and d ′: d ′ ∈ carrier ?N and eqc: ?f (d,d ′)

Brouwer{_}{\kern 0pt}Degree.html


178

= c
using c by (force simp flip: fim)

let ?h = λxx. hom_induced 0 (subtopology (nsphere 0 ) {xx}) {} (discrete_topology
{()}) {} (λx. ())

have continuous_map (subtopology (nsphere 0 ) {nn}) (nsphere 0 ) r
using cmr continuous_map_from_subtopology by blast

then have retraction_map (subtopology (nsphere 0 ) {pp}) (subtopology (nsphere
0 ) {nn}) r

apply (simp add: retraction_map_def retraction_maps_def continuous_map_in_subtopology)
using ‹r nn = pp› ‹r pp = nn› cmr continuous_map_from_subtopology
by blast

then have carrier ?N = (hom_induced 0 (subtopology (nsphere 0 ) {pp}) {}
(subtopology (nsphere 0 ) {nn}) {} r) ‘ carrier ?P

by (rule surj_hom_induced_retraction_map)
then obtain e where e: e ∈ carrier ?P and eqd ′: hom_induced 0 (subtopology

(nsphere 0 ) {pp}) {} (subtopology (nsphere 0 ) {nn}) {} r e = d ′

using d ′ by auto
have section_map (subtopology (nsphere 0 ) {pp}) (discrete_topology {()}) (λx.

())
by (force simp: section_map_def retraction_maps_def topn0 )

then have ?h pp ∈ mon ?P ?D
by (rule mon_hom_induced_section_map)

then have one: x = one ?P
if ?h pp x = 1?D x ∈ carrier ?P for x
using that by (simp add: mon_iff_hom_one)

interpret hpd: group_hom ?P ?D ?h pp
using hom_induced_empty_hom by (simp add: hom_induced_empty_hom

group_hom_axioms_def group_hom_def )
interpret hgd: group_hom ?G ?D hom_induced 0 (nsphere 0 ) {} (discrete_topology

{()}) {} (λx. ())
using hom_induced_empty_hom by (simp add: hom_induced_empty_hom

group_hom_axioms_def group_hom_def )
interpret hpg: group_hom ?P ?G hom_induced 0 (subtopology (nsphere 0 )

{pp}) {} (nsphere 0 ) {} r
using hom_induced_empty_hom by (simp add: hom_induced_empty_hom

group_hom_axioms_def group_hom_def )
interpret hgg: group_hom ?G ?G hom_induced 0 (nsphere 0 ) {} (nsphere 0 )

{} r
using hom_induced_empty_hom by (simp add: hom_induced_empty_hom

group_hom_axioms_def group_hom_def )
have ?h pp d =

(hom_induced 0 (nsphere 0 ) {} (discrete_topology {()}) {} (λx. ())
◦ hom_induced 0 (subtopology (nsphere 0 ) {pp}) {} (nsphere 0 ) {} id) d

by (simp flip: hom_induced_compose_empty)
moreover
have ?h pp = ?h nn ◦ hom_induced 0 (subtopology (nsphere 0 ) {pp}) {}

(subtopology (nsphere 0 ) {nn}) {} r
by (simp add: cmr continuous_map_from_subtopology continuous_map_in_subtopology

image_subset_iff flip: hom_induced_compose_empty)
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then have ?h pp e =
(hom_induced 0 (nsphere 0 ) {} (discrete_topology {()}) {} (λx. ())
◦ hom_induced 0 (subtopology (nsphere 0 ) {nn}) {} (nsphere 0 ) {}

id) d ′

by (simp flip: hom_induced_compose_empty eqd ′)
ultimately have ?h pp (d ⊗?P e) = hom_induced 0 (nsphere 0 ) {} (discrete_topology

{()}) {} (λx. ()) (?f (d,d ′))
by (simp add: d e hom_induced_carrier)

then have ?h pp (d ⊗?P e) = 1?D
using ceq eqc by simp

then have inv_p: inv?P d = e
by (metis (no_types, lifting) Group.group_def d e group.inv_equality group.r_inv

group_relative_homology_group one monoid.m_closed)
have cmr_pn: continuous_map (subtopology (nsphere 0 ) {pp}) (subtopology

(nsphere 0 ) {nn}) r
by (simp add: cmr continuous_map_from_subtopology continuous_map_in_subtopology

image_subset_iff )
then have hom_induced 0 (subtopology (nsphere 0 ) {pp}) {} (nsphere 0 ) {}

(id ◦ r) =
hom_induced 0 (subtopology (nsphere 0 ) {nn}) {} (nsphere 0 ) {} id ◦

hom_induced 0 (subtopology (nsphere 0 ) {pp}) {} (subtopology (nsphere
0 ) {nn}) {} r

using hom_induced_compose_empty continuous_map_id_subt by blast
then have inv?G hom_induced 0 (subtopology (nsphere 0 ) {pp}) {} (nsphere

0 ) {} r d =
hom_induced 0 (subtopology (nsphere 0 ) {nn}) {} (nsphere 0 ) {}

id d ′

apply (simp add: flip: inv_p eqd ′)
using d hpg.hom_inv by auto

then have c: c = (hom_induced 0 (subtopology (nsphere 0 ) {pp}) {} (nsphere
0 ) {} id d)

⊗?G inv?G (hom_induced 0 (subtopology (nsphere 0 ) {pp}) {}
(nsphere 0 ) {} r d)

by (simp flip: eqc)
have hom_induced 0 (nsphere 0 ) {} (nsphere 0 ) {} r ◦

hom_induced 0 (subtopology (nsphere 0 ) {pp}) {} (nsphere 0 ) {} id =
hom_induced 0 (subtopology (nsphere 0 ) {pp}) {} (nsphere 0 ) {} r

by (metis cmr comp_id continuous_map_id_subt hom_induced_compose_empty)
moreover
have hom_induced 0 (nsphere 0 ) {} (nsphere 0 ) {} r ◦

hom_induced 0 (subtopology (nsphere 0 ) {pp}) {} (nsphere 0 ) {} r =
hom_induced 0 (subtopology (nsphere 0 ) {pp}) {} (nsphere 0 ) {} id

by (metis ‹r ◦ r = id› cmr continuous_map_from_subtopology hom_induced_compose_empty)
ultimately show ?thesis
by (metis inv_p c comp_def d e hgg.hom_inv hgg.hom_mult hom_induced_carrier

hpd.G.inv_inv hpg.hom_inv inv_mult_group)
qed
show ?case

unfolding r_def [symmetric]
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using Brouwer_degree2_unique [OF cmr ]
by (auto simp: ∗ group.int_pow_neg group.int_pow_1 reduced_homology_group_def

intro!: Brouwer_degree2_unique [OF cmr ])
next

case (Suc p)
let ?G = reduced_homology_group (int p) (nsphere p)
let ?G1 = reduced_homology_group (1 + int p) (nsphere (Suc p))
obtain f g where fg: group_isomorphisms ?G ?G1 f g

and ∗: ∀ c∈carrier ?G.
hom_induced (1 + int p) (nsphere (Suc p)) {} (nsphere (Suc p)) {} ?r (f

c) =
f (hom_induced p (nsphere p) {} (nsphere p) {} ?r c)

using reduced_homology_group_nsphere_step
by (meson group.iso_iff_group_isomorphisms group_reduced_homology_group)

then have eq: carrier ?G1 = f ‘ carrier ?G
by (fastforce simp add: iso_iff dest: group_isomorphisms_imp_iso)

interpret group_hom ?G ?G1 f
by (meson fg group_hom_axioms_def group_hom_def group_isomorphisms_def

group_reduced_homology_group)
have homf : f ∈ hom ?G ?G1

using fg group_isomorphisms_def by blast
have hom_induced (1 + int p) (nsphere (Suc p)) {} (nsphere (Suc p)) {} ?r (f

y) = f y [^]?G1 (−1 ::int)
if y ∈ carrier ?G for y
by (simp add: that ∗ Brouwer_degree2 Suc hom_int_pow)

then show ?case
by (fastforce simp: eq intro: Brouwer_degree2_unique [OF continuous_map_nsphere_reflection])

qed

end

0.4 Invariance of Domain
theory Invariance_of_Domain
imports Brouwer_Degree HOL−Analysis.Continuous_Extension HOL−Analysis.Homeomorphism

begin

0.4.1 Degree invariance mod 2 for map between pairs
theorem Borsuk_odd_mapping_degree_step:

assumes cmf : continuous_map (nsphere n) (nsphere n) f
and f :

∧
u. u ∈ topspace(nsphere n) =⇒ (f ◦ (λx i. −x i)) u = ((λx i. −x i) ◦

f ) u
and fim: f ∈ (topspace(nsphere(n − Suc 0 ))) → topspace(nsphere(n − Suc 0 ))

shows even (Brouwer_degree2 n f − Brouwer_degree2 (n − Suc 0 ) f )
proof (cases n = 0 )

case False
define neg where neg ≡ λx::nat⇒real. λi. −x i
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define upper where upper ≡ λn. {x::nat⇒real. x n ≥ 0}
define lower where lower ≡ λn. {x::nat⇒real. x n ≤ 0}
define equator where equator ≡ λn. {x::nat⇒real. x n = 0}
define usphere where usphere ≡ λn. subtopology (nsphere n) (upper n)
define lsphere where lsphere ≡ λn. subtopology (nsphere n) (lower n)
have [simp]: neg x i = −x i for x i

by (force simp: neg_def )
have equator_upper : equator n ⊆ upper n

by (force simp: equator_def upper_def )
then have [simp]: id ∈ equator n → upper n

by force
have upper_usphere: subtopology (nsphere n) (upper n) = usphere n

by (simp add: usphere_def )
let ?rhgn = relative_homology_group n (nsphere n)
let ?hi_ee = hom_induced n (nsphere n) (equator n) (nsphere n) (equator n)
interpret GE : comm_group ?rhgn (equator n)

by simp
interpret HB: group_hom ?rhgn (equator n)

homology_group (int n − 1 ) (subtopology (nsphere n) (equator
n))

hom_boundary n (nsphere n) (equator n)
by (simp add: group_hom_axioms_def group_hom_def hom_boundary_hom)

interpret HIU : group_hom ?rhgn (equator n)
?rhgn (upper n)
hom_induced n (nsphere n) (equator n) (nsphere n) (upper

n) id
by (simp add: group_hom_axioms_def group_hom_def hom_induced_hom)

have subt_eq: subtopology (nsphere n) {x. x n = 0} = nsphere (n − Suc 0 )
by (metis False Suc_pred le_zero_eq not_le subtopology_nsphere_equator)

then have equ: subtopology (nsphere n) (equator n) = nsphere(n − Suc 0 )
subtopology (lsphere n) (equator n) = nsphere(n − Suc 0 )
subtopology (usphere n) (equator n) = nsphere(n − Suc 0 )

using False by (auto simp: lsphere_def usphere_def equator_def lower_def
upper_def

subtopology_subtopology simp flip: Collect_conj_eq cong: rev_conj_cong)
have cmr : continuous_map (nsphere(n − Suc 0 )) (nsphere(n − Suc 0 )) f
by (metis cmf continuous_map_from_subtopology continuous_map_in_subtopology

equ(1 )
fim subtopology_restrict topspace_subtopology)

have f x n = 0 if x ∈ topspace (nsphere n) x n = 0 for x
proof −

have x ∈ topspace (nsphere (n − Suc 0 ))
by (simp add: that topspace_nsphere_minus1 )

moreover have topspace (nsphere n) ∩ {f . f n = 0} = topspace (nsphere (n
− Suc 0 ))

by (metis subt_eq topspace_subtopology)
ultimately show ?thesis

using fim by auto
qed
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then have fimeq: f ∈ (topspace (nsphere n) ∩ equator n) → topspace (nsphere
n) ∩ equator n

using fim cmf by (auto simp: equator_def continuous_map_def image_subset_iff )
have

∧
k. continuous_map (powertop_real UNIV ) euclideanreal (λx. − x k)

by (metis UNIV_I continuous_map_product_projection continuous_map_minus)
then have cm_neg: continuous_map (nsphere m) (nsphere m) neg for m

by (force simp: nsphere continuous_map_in_subtopology neg_def continu-
ous_map_componentwise_UNIV intro: continuous_map_from_subtopology)

then have cm_neg_lu: continuous_map (lsphere n) (usphere n) neg
by (auto simp: lsphere_def usphere_def lower_def upper_def continuous_map_from_subtopology

continuous_map_in_subtopology)
have neg_in_top_iff : neg x ∈ topspace(nsphere m) ←→ x ∈ topspace(nsphere

m) for m x
by (simp add: nsphere_def neg_def topspace_Euclidean_space)

obtain z where zcarr : z ∈ carrier (reduced_homology_group (int n − 1 )
(nsphere (n − Suc 0 )))

and zeq: subgroup_generated (reduced_homology_group (int n − 1 ) (nsphere
(n − Suc 0 ))) {z}

= reduced_homology_group (int n − 1 ) (nsphere (n − Suc 0 ))
using cyclic_reduced_homology_group_nsphere [of int n − 1 n − Suc 0 ] by

(auto simp: cyclic_group_def )
have hom_boundary n (subtopology (nsphere n) {x. x n ≤ 0}) {x. x n = 0}
∈ Group.iso (relative_homology_group n

(subtopology (nsphere n) {x. x n ≤ 0}) {x. x n = 0})
(reduced_homology_group (int n − 1 ) (nsphere (n − Suc 0 )))

using iso_lower_hemisphere_reduced_homology_group [of int n − 1 n − Suc
0 ] False by simp

then obtain gp where g: group_isomorphisms
(relative_homology_group n (subtopology (nsphere n) {x. x n

≤ 0}) {x. x n = 0})
(reduced_homology_group (int n − 1 ) (nsphere (n − Suc 0 )))
(hom_boundary n (subtopology (nsphere n) {x. x n ≤ 0}) {x.

x n = 0})
gp

by (auto simp: group.iso_iff_group_isomorphisms)
then interpret gp: group_hom reduced_homology_group (int n − 1 ) (nsphere

(n − Suc 0 ))
relative_homology_group n (subtopology (nsphere n) {x. x n ≤ 0}) {x. x n =

0} gp
by (simp add: group_hom_axioms_def group_hom_def group_isomorphisms_def )
obtain zp where zpcarr : zp ∈ carrier(relative_homology_group n (lsphere n)

(equator n))
and zp_z: hom_boundary n (lsphere n) (equator n) zp = z

and zp_sg: subgroup_generated (relative_homology_group n (lsphere n) (equator
n)) {zp}

= relative_homology_group n (lsphere n) (equator n)
proof

show gp z ∈ carrier (relative_homology_group n (lsphere n) (equator n))
hom_boundary n (lsphere n) (equator n) (gp z) = z
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using g zcarr by (auto simp: lsphere_def equator_def lower_def group_isomorphisms_def )
have giso: gp ∈ Group.iso (reduced_homology_group (int n − 1 ) (nsphere (n

− Suc 0 )))
(relative_homology_group n (subtopology (nsphere n) {x. x n ≤

0}) {x. x n = 0})
by (metis (mono_tags, lifting) g group_isomorphisms_imp_iso group_isomorphisms_sym)
show subgroup_generated (relative_homology_group n (lsphere n) (equator n))

{gp z} =
relative_homology_group n (lsphere n) (equator n)

apply (rule monoid.equality)
using giso gp.subgroup_generated_by_image [of {z}] zcarr
by (auto simp: lsphere_def equator_def lower_def zeq gp.iso_iff )

qed
have hb_iso: hom_boundary n (subtopology (nsphere n) {x. x n ≥ 0}) {x. x n

= 0}
∈ iso (relative_homology_group n (subtopology (nsphere n) {x. x n ≥

0}) {x. x n = 0})
(reduced_homology_group (int n − 1 ) (nsphere (n − Suc 0 )))

using iso_upper_hemisphere_reduced_homology_group [of int n − 1 n − Suc
0 ] False by simp

then obtain gn where g: group_isomorphisms
(relative_homology_group n (subtopology (nsphere n) {x. x n

≥ 0}) {x. x n = 0})
(reduced_homology_group (int n − 1 ) (nsphere (n − Suc 0 )))
(hom_boundary n (subtopology (nsphere n) {x. x n ≥ 0}) {x.

x n = 0})
gn

by (auto simp: group.iso_iff_group_isomorphisms)
then interpret gn: group_hom reduced_homology_group (int n − 1 ) (nsphere

(n − Suc 0 ))
relative_homology_group n (subtopology (nsphere n) {x. x n ≥ 0}) {x. x n =

0} gn
by (simp add: group_hom_axioms_def group_hom_def group_isomorphisms_def )
obtain zn where zncarr : zn ∈ carrier(relative_homology_group n (usphere n)

(equator n))
and zn_z: hom_boundary n (usphere n) (equator n) zn = z

and zn_sg: subgroup_generated (relative_homology_group n (usphere n) (equator
n)) {zn}

= relative_homology_group n (usphere n) (equator n)
proof

show gn z ∈ carrier (relative_homology_group n (usphere n) (equator n))
hom_boundary n (usphere n) (equator n) (gn z) = z

using g zcarr by (auto simp: usphere_def equator_def upper_def group_isomorphisms_def )
have giso: gn ∈ Group.iso (reduced_homology_group (int n − 1 ) (nsphere (n

− Suc 0 )))
(relative_homology_group n (subtopology (nsphere n) {x. x n ≥

0}) {x. x n = 0})
by (metis (mono_tags, lifting) g group_isomorphisms_imp_iso group_isomorphisms_sym)

show subgroup_generated (relative_homology_group n (usphere n) (equator n))
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{gn z} =
relative_homology_group n (usphere n) (equator n)

apply (rule monoid.equality)
using giso gn.subgroup_generated_by_image [of {z}] zcarr
by (auto simp: usphere_def equator_def upper_def zeq gn.iso_iff )

qed
let ?hi_lu = hom_induced n (lsphere n) (equator n) (nsphere n) (upper n) id
interpret gh_lu: group_hom relative_homology_group n (lsphere n) (equator n)

?rhgn (upper n) ?hi_lu
by (simp add: group_hom_axioms_def group_hom_def hom_induced_hom)

interpret gh_eef : group_hom ?rhgn (equator n) ?rhgn (equator n) ?hi_ee f
by (simp add: group_hom_axioms_def group_hom_def hom_induced_hom)

define wp where wp ≡ ?hi_lu zp
then have wpcarr : wp ∈ carrier(?rhgn (upper n))

by (simp add: hom_induced_carrier)
have hom_induced n (nsphere n) {} (nsphere n) {x. x n ≥ 0} id
∈ iso (reduced_homology_group n (nsphere n))

(?rhgn {x. x n ≥ 0})
using iso_reduced_homology_group_upper_hemisphere [of n n n] by auto

then have carrier(?rhgn {x. x n ≥ 0})
⊆ (hom_induced n (nsphere n) {} (nsphere n) {x. x n ≥ 0} id)

‘ carrier(reduced_homology_group n (nsphere n))
by (simp add: iso_iff )

then obtain vp where vpcarr : vp ∈ carrier(reduced_homology_group n (nsphere
n))

and eqwp: hom_induced n (nsphere n) {} (nsphere n) (upper n) id vp = wp
using wpcarr by (auto simp: upper_def )

define wn where wn ≡ hom_induced n (usphere n) (equator n) (nsphere n)
(lower n) id zn

then have wncarr : wn ∈ carrier(?rhgn (lower n))
by (simp add: hom_induced_carrier)

have hom_induced n (nsphere n) {} (nsphere n) {x. x n ≤ 0} id
∈ iso (reduced_homology_group n (nsphere n))

(?rhgn {x. x n ≤ 0})
using iso_reduced_homology_group_lower_hemisphere [of n n n] by auto

then have carrier(?rhgn {x. x n ≤ 0})
⊆ (hom_induced n (nsphere n) {} (nsphere n) {x. x n ≤ 0} id)

‘ carrier(reduced_homology_group n (nsphere n))
by (simp add: iso_iff )

then obtain vn where vpcarr : vn ∈ carrier(reduced_homology_group n (nsphere
n))

and eqwp: hom_induced n (nsphere n) {} (nsphere n) (lower n) id vn = wn
using wncarr by (auto simp: lower_def )

define up where up ≡ hom_induced n (lsphere n) (equator n) (nsphere n)
(equator n) id zp

then have upcarr : up ∈ carrier(?rhgn (equator n))
by (simp add: hom_induced_carrier)

define un where un ≡ hom_induced n (usphere n) (equator n) (nsphere n)
(equator n) id zn
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then have uncarr : un ∈ carrier(?rhgn (equator n))
by (simp add: hom_induced_carrier)

have ∗: (λ(x, y).
hom_induced n (lsphere n) (equator n) (nsphere n) (equator n) id x
⊗?rhgn (equator n)

hom_induced n (usphere n) (equator n) (nsphere n) (equator n) id y)
∈ Group.iso

(relative_homology_group n (lsphere n) (equator n) ××
relative_homology_group n (usphere n) (equator n))
(?rhgn (equator n))

proof (rule conjunct1 [OF exact_sequence_sum_lemma [OF abelian_relative_homology_group]])
show hom_induced n (lsphere n) (equator n) (nsphere n) (upper n) id
∈ Group.iso (relative_homology_group n (lsphere n) (equator n))

(?rhgn (upper n))
unfolding lsphere_def usphere_def equator_def lower_def upper_def
using iso_relative_homology_group_lower_hemisphere by blast

show hom_induced n (usphere n) (equator n) (nsphere n) (lower n) id
∈ Group.iso (relative_homology_group n (usphere n) (equator n))

(?rhgn (lower n))
unfolding lsphere_def usphere_def equator_def lower_def upper_def
using iso_relative_homology_group_upper_hemisphere by blast

show exact_seq
([?rhgn (lower n),

?rhgn (equator n),
relative_homology_group n (lsphere n) (equator n)],
[hom_induced n (nsphere n) (equator n) (nsphere n) (lower n) id,
hom_induced n (lsphere n) (equator n) (nsphere n) (equator n) id])

unfolding lsphere_def usphere_def equator_def lower_def upper_def
by (rule homology_exactness_triple_3 ) force

show exact_seq
([?rhgn (upper n),

?rhgn (equator n),
relative_homology_group n (usphere n) (equator n)],
[hom_induced n (nsphere n) (equator n) (nsphere n) (upper n) id,
hom_induced n (usphere n) (equator n) (nsphere n) (equator n) id])

unfolding lsphere_def usphere_def equator_def lower_def upper_def
by (rule homology_exactness_triple_3 ) force

next
fix x
assume x ∈ carrier (relative_homology_group n (lsphere n) (equator n))
show hom_induced n (nsphere n) (equator n) (nsphere n) (upper n) id

(hom_induced n (lsphere n) (equator n) (nsphere n) (equator n) id x) =
hom_induced n (lsphere n) (equator n) (nsphere n) (upper n) id x
by (simp add: hom_induced_compose ′ subset_iff lsphere_def usphere_def

equator_def lower_def upper_def )
next

fix x
assume x ∈ carrier (relative_homology_group n (usphere n) (equator n))
show hom_induced n (nsphere n) (equator n) (nsphere n) (lower n) id
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(hom_induced n (usphere n) (equator n) (nsphere n) (equator n) id x) =
hom_induced n (usphere n) (equator n) (nsphere n) (lower n) id x
by (simp add: hom_induced_compose ′ subset_iff lsphere_def usphere_def

equator_def lower_def upper_def )
qed
then have sb: carrier (?rhgn (equator n))

⊆ (λ(x, y).
hom_induced n (lsphere n) (equator n) (nsphere n) (equator n) id x
⊗?rhgn (equator n)

hom_induced n (usphere n) (equator n) (nsphere n) (equator n) id y)
‘ carrier (relative_homology_group n (lsphere n) (equator n) ××

relative_homology_group n (usphere n) (equator n))
by (simp add: iso_iff )

obtain a b::int
where up_ab: ?hi_ee f up

= up [^]?rhgn (equator n) a⊗?rhgn (equator n) un [^]?rhgn (equator n) b
proof −

have hiupcarr : ?hi_ee f up ∈ carrier(?rhgn (equator n))
by (simp add: hom_induced_carrier)
obtain u v where u: u ∈ carrier (relative_homology_group n (lsphere n)

(equator n))
and v: v ∈ carrier (relative_homology_group n (usphere n) (equator n))
and eq: ?hi_ee f up =

hom_induced n (lsphere n) (equator n) (nsphere n) (equator n) id u
⊗?rhgn (equator n)
hom_induced n (usphere n) (equator n) (nsphere n) (equator n) id v

using subsetD [OF sb hiupcarr ] by auto
have u ∈ carrier (subgroup_generated (relative_homology_group n (lsphere n)

(equator n)) {zp})
by (simp_all add: u zp_sg)

then obtain a::int where a: u = zp [^]relative_homology_group n (lsphere n) (equator n)
a

by (metis group.carrier_subgroup_generated_by_singleton group_relative_homology_group
rangeE zpcarr)

have ae: hom_induced n (lsphere n) (equator n) (nsphere n) (equator n) id
(pow (relative_homology_group n (lsphere n) (equator n)) zp a)

= pow (?rhgn (equator n)) (hom_induced n (lsphere n) (equator n) (nsphere
n) (equator n) id zp) a

by (meson group_hom.hom_int_pow group_hom_axioms_def group_hom_def
group_relative_homology_group hom_induced zpcarr)

have v ∈ carrier (subgroup_generated (relative_homology_group n (usphere n)
(equator n)) {zn})

by (simp_all add: v zn_sg)
then obtain b::int where b: v = zn [^]relative_homology_group n (usphere n) (equator n)

b
by (metis group.carrier_subgroup_generated_by_singleton group_relative_homology_group

rangeE zncarr)
have be: hom_induced n (usphere n) (equator n) (nsphere n) (equator n) id

(zn [^]relative_homology_group n (usphere n) (equator n) b)
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= hom_induced n (usphere n) (equator n) (nsphere n) (equator n) id
zn [^]relative_homology_group n (nsphere n) (equator n) b

by (meson group_hom.hom_int_pow group_hom_axioms_def group_hom_def
group_relative_homology_group hom_induced zncarr)

show thesis
proof

show ?hi_ee f up
= up [^]?rhgn (equator n) a ⊗?rhgn (equator n) un [^]?rhgn (equator n) b

using a ae b be eq local.up_def un_def by auto
qed

qed
have (hom_boundary n (nsphere n) (equator n)
◦ hom_induced n (lsphere n) (equator n) (nsphere n) (equator n) id) zp = z

using zp_z equ apply (simp add: lsphere_def naturality_hom_induced)
by (metis hom_boundary_carrier hom_induced_id)

then have up_z: hom_boundary n (nsphere n) (equator n) up = z
by (simp add: up_def )

have (hom_boundary n (nsphere n) (equator n)
◦ hom_induced n (usphere n) (equator n) (nsphere n) (equator n) id) zn = z

using zn_z equ apply (simp add: usphere_def naturality_hom_induced)
by (metis hom_boundary_carrier hom_induced_id)

then have un_z: hom_boundary n (nsphere n) (equator n) un = z
by (simp add: un_def )

have Bd_ab: Brouwer_degree2 (n − Suc 0 ) f = a + b
proof (rule Brouwer_degree2_unique_generator ; use False int_ops in simp_all)

show continuous_map (nsphere (n − Suc 0 )) (nsphere (n − Suc 0 )) f
using cmr by auto

show subgroup_generated (reduced_homology_group (int n − 1 ) (nsphere (n
− Suc 0 ))) {z} =

reduced_homology_group (int n − 1 ) (nsphere (n − Suc 0 ))
using zeq by blast

have (hom_induced (int n − 1 ) (nsphere (n − Suc 0 )) {} (nsphere (n − Suc
0 )) {} f

◦ hom_boundary n (nsphere n) (equator n)) up
= (hom_boundary n (nsphere n) (equator n) ◦

?hi_ee f ) up
using naturality_hom_induced [OF cmf fimeq, of n, symmetric]
by (simp add: subtopology_restrict equ fun_eq_iff )

also have . . . = hom_boundary n (nsphere n) (equator n)
(up [^]relative_homology_group n (nsphere n) (equator n)
a ⊗relative_homology_group n (nsphere n) (equator n)
un [^]relative_homology_group n (nsphere n) (equator n) b)

by (simp add: o_def up_ab)
also have . . . = z [^]reduced_homology_group (int n − 1 ) (nsphere (n − Suc 0 ))

(a + b)
using zcarr

apply (simp add: HB.hom_int_pow reduced_homology_group_def group.int_pow_subgroup_generated
upcarr uncarr)
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by (metis equ(1 ) group.int_pow_mult group_relative_homology_group hom_boundary_carrier
un_z up_z)

finally show hom_induced (int n − 1 ) (nsphere (n − Suc 0 )) {} (nsphere (n
− Suc 0 )) {} f z =

z [^]reduced_homology_group (int n − 1 ) (nsphere (n − Suc 0 )) (a + b)
by (simp add: up_z)

qed
define u where u ≡ up ⊗?rhgn (equator n) inv?rhgn (equator n) un
have ucarr : u ∈ carrier (?rhgn (equator n))

by (simp add: u_def uncarr upcarr)
then have u [^]?rhgn (equator n) Brouwer_degree2 n f = u [^]?rhgn (equator n)

(a − b)
←→ (GE .ord u) dvd a − b − Brouwer_degree2 n f

by (simp add: GE .int_pow_eq)
moreover
have GE .ord u = 0
proof (clarsimp simp add: GE .ord_eq_0 ucarr)

fix d :: nat
assume 0 < d

and u [^]?rhgn (equator n) d = singular_relboundary_set n (nsphere n)
(equator n)

then have hom_induced n (nsphere n) (equator n) (nsphere n) (upper n) id u
[^]?rhgn (upper n) d

= 1?rhgn (upper n)
by (metis HIU .hom_one HIU .hom_nat_pow one_relative_homology_group

ucarr)
moreover
have ?hi_lu

= hom_induced n (nsphere n) (equator n) (nsphere n) (upper n) id ◦
hom_induced n (lsphere n) (equator n) (nsphere n) (equator n) id

by (simp add: lsphere_def image_subset_iff equator_upper flip: hom_induced_compose)
then have p: wp = hom_induced n (nsphere n) (equator n) (nsphere n) (upper

n) id up
by (simp add: local.up_def wp_def )

have n: hom_induced n (nsphere n) (equator n) (nsphere n) (upper n) id un =
1?rhgn (upper n)

using homology_exactness_triple_3 [OF equator_upper , of n nsphere n]
using un_def zncarr by (auto simp: upper_usphere kernel_def )

have hom_induced n (nsphere n) (equator n) (nsphere n) (upper n) id u = wp
unfolding u_def
using p n HIU .inv_one HIU .r_one uncarr upcarr by auto

ultimately have (wp [^]?rhgn (upper n) d) = 1?rhgn (upper n)
by simp

moreover have infinite (carrier (subgroup_generated (?rhgn (upper n)) {wp}))
proof −

have ?rhgn (upper n) ∼= reduced_homology_group n (nsphere n)
unfolding upper_def
using iso_reduced_homology_group_upper_hemisphere [of n n n]
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by (blast intro: group.iso_sym group_reduced_homology_group is_isoI )
also have . . . ∼= integer_group

by (simp add: reduced_homology_group_nsphere)
finally have iso: ?rhgn (upper n) ∼= integer_group .
have carrier (subgroup_generated (?rhgn (upper n)) {wp}) = carrier (?rhgn

(upper n))
using gh_lu.subgroup_generated_by_image [of {zp}] zpcarr HIU .carrier_subgroup_generated_subset

gh_lu.iso_iff iso_relative_homology_group_lower_hemisphere zp_sg
by (auto simp: lower_def lsphere_def upper_def equator_def wp_def )

then show ?thesis
using infinite_UNIV_int iso_finite [OF iso] by simp

qed
ultimately show False

using HIU .finite_cyclic_subgroup ‹0 < d› wpcarr by blast
qed
ultimately have iff : u [^]?rhgn (equator n) Brouwer_degree2 n f = u [^]?rhgn (equator n)

(a − b)
←→ Brouwer_degree2 n f = a − b

by auto
have u [^]?rhgn (equator n) Brouwer_degree2 n f = ?hi_ee f u
proof −

have ne: topspace (nsphere n) ∩ equator n 6= {}
using False equator_def in_topspace_nsphere by fastforce

have eq1 : hom_boundary n (nsphere n) (equator n) u
= 1reduced_homology_group (int n − 1 ) (subtopology (nsphere n) (equator n))

using one_reduced_homology_group u_def un_z uncarr up_z upcarr by force
then have uhom: u ∈ hom_induced n (nsphere n) {} (nsphere n) (equator n)

id ‘
carrier (reduced_homology_group (int n) (nsphere n))

using homology_exactness_reduced_1 [OF ne, of n] eq1 ucarr by (auto simp:
kernel_def )

then obtain v where vcarr : v ∈ carrier (reduced_homology_group (int n)
(nsphere n))

and ueq: u = hom_induced n (nsphere n) {} (nsphere n) (equator
n) id v

by blast
interpret GH_hi: group_hom homology_group n (nsphere n)

?rhgn (equator n)
hom_induced n (nsphere n) {} (nsphere n) (equator n) id

by (simp add: group_hom_axioms_def group_hom_def hom_induced_hom)
have poweq: pow (homology_group n (nsphere n)) x i = pow (reduced_homology_group

n (nsphere n)) x i
for x and i::int
by (simp add: False un_reduced_homology_group)

have vcarr ′: v ∈ carrier (homology_group n (nsphere n))
using carrier_reduced_homology_group_subset vcarr by blast

have u [^]?rhgn (equator n) Brouwer_degree2 n f
= hom_induced n (nsphere n) {} (nsphere n) (equator n) f v

using vcarr vcarr ′
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by (simp add: ueq poweq hom_induced_compose ′ cmf flip: GH_hi.hom_int_pow
Brouwer_degree2 )

also have . . . = hom_induced n (nsphere n) (topspace(nsphere n) ∩ equator
n) (nsphere n) (equator n) f

(hom_induced n (nsphere n) {} (nsphere n) (topspace(nsphere n)
∩ equator n) id v)

using fimeq by (simp add: hom_induced_compose ′ cmf Pi_iff )
also have . . . = ?hi_ee f u

by (metis hom_induced inf .left_idem ueq)
finally show ?thesis .

qed
moreover
interpret gh_een: group_hom ?rhgn (equator n) ?rhgn (equator n) ?hi_ee neg

by (simp add: group_hom_axioms_def group_hom_def hom_induced_hom)
have hi_up_eq_un: ?hi_ee neg up = un [^]?rhgn (equator n) Brouwer_degree2

(n − Suc 0 ) neg
proof −

have ?hi_ee neg (hom_induced n (lsphere n) (equator n) (nsphere n) (equator
n) id zp)

= hom_induced n (lsphere n) (equator n) (nsphere n) (equator n) (neg ◦
id) zp

by (intro hom_induced_compose ′) (auto simp: lsphere_def equator_def cm_neg)
also have . . . = hom_induced n (usphere n) (equator n) (nsphere n) (equator

n) id
(hom_induced n (lsphere n) (equator n) (usphere n) (equator n) neg zp)

by (subst hom_induced_compose ′ [OF cm_neg_lu]) (auto simp: usphere_def
equator_def )

also have hom_induced n (lsphere n) (equator n) (usphere n) (equator n) neg
zp

= zn [^]relative_homology_group n (usphere n) (equator n) Brouwer_degree2
(n − Suc 0 ) neg

proof −
let ?hb = hom_boundary n (usphere n) (equator n)
have eq: subtopology (nsphere n) {x. x n ≥ 0} = usphere n ∧ {x. x n = 0}

= equator n
by (auto simp: usphere_def upper_def equator_def )
with hb_iso have inj: inj_on (?hb) (carrier (relative_homology_group n

(usphere n) (equator n)))
by (simp add: iso_iff )
interpret hb_hom: group_hom relative_homology_group n (usphere n)

(equator n)
reduced_homology_group (int n − 1 ) (nsphere (n −

Suc 0 ))
?hb

using hb_iso iso_iff eq group_hom_axioms_def group_hom_def by fastforce
show ?thesis
proof (rule inj_onD [OF inj])

have ∗: hom_induced (int n − 1 ) (nsphere (n − Suc 0 )) {} (nsphere (n −
Suc 0 )) {} neg z
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= z [^]homology_group (int n − 1 ) (nsphere (n − Suc 0 )) Brouwer_degree2
(n − Suc 0 ) neg

using Brouwer_degree2 [of z n − Suc 0 neg] False zcarr
by (simp add: int_ops group.int_pow_subgroup_generated reduced_homology_group_def )
have ?hb ◦

hom_induced n (lsphere n) (equator n) (usphere n) (equator n) neg
= hom_induced (int n − 1 ) (nsphere (n − Suc 0 )) {} (nsphere (n −

Suc 0 )) {} neg ◦
hom_boundary n (lsphere n) (equator n)

apply (subst naturality_hom_induced [OF cm_neg_lu])
apply (force simp: equator_def neg_def )

by (simp add: equ)
then have ?hb

(hom_induced n (lsphere n) (equator n) (usphere n) (equator n)
neg zp)

= (z [^]homology_group (int n − 1 ) (nsphere (n − Suc 0 )) Brouwer_degree2
(n − Suc 0 ) neg)

by (metis ∗ comp_apply zp_z)
also have . . . = ?hb (zn [^]relative_homology_group n (usphere n) (equator n)

Brouwer_degree2 (n − Suc 0 ) neg)
by (metis group.int_pow_subgroup_generated group_relative_homology_group

hb_hom.hom_int_pow reduced_homology_group_def zcarr zn_z zncarr)
finally show ?hb (hom_induced n (lsphere n) (equator n) (usphere n)

(equator n) neg zp) =
?hb (zn [^]relative_homology_group n (usphere n) (equator n)

Brouwer_degree2 (n − Suc 0 ) neg) by simp
qed (auto simp: hom_induced_carrier group.int_pow_closed zncarr)

qed
finally show ?thesis
by (metis (no_types, lifting) group_hom.hom_int_pow group_hom_axioms_def

group_hom_def group_relative_homology_group hom_induced local.up_def un_def
zncarr)

qed
have continuous_map (nsphere (n − Suc 0 )) (nsphere (n − Suc 0 )) neg

using cm_neg by blast
then have homeomorphic_map (nsphere (n − Suc 0 )) (nsphere (n − Suc 0 ))

neg
apply (auto simp: homeomorphic_map_maps homeomorphic_maps_def )
apply (rule_tac x=neg in exI , auto)
done

then have Brouwer_degree2_21 : Brouwer_degree2 (n − Suc 0 ) neg ^ 2 = 1
using Brouwer_degree2_homeomorphic_map power2_eq_1_iff by force

have hi_un_eq_up: ?hi_ee neg un = up [^]?rhgn (equator n) Brouwer_degree2
(n − Suc 0 ) neg (is ?f un = ?y)

proof −
have [simp]: neg ◦ neg = id

by force
have ?f (?f ?y) = ?y
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apply (subst hom_induced_compose ′ [OF cm_neg _ cm_neg])
apply(force simp: equator_def )

apply (simp add: upcarr hom_induced_id_gen)
done

moreover have ?f ?y = un
using upcarr apply (simp only: gh_een.hom_int_pow hi_up_eq_un)

by (metis (no_types, lifting) Brouwer_degree2_21 GE .group_l_invI GE .l_inv_ex
group.int_pow_1 group.int_pow_pow power2_eq_1_iff uncarr zmult_eq_1_iff )

ultimately show ?f un = ?y
by simp

qed
have ?hi_ee f un = un [^]?rhgn (equator n) a ⊗?rhgn (equator n) up [^]?rhgn (equator n)

b
proof −

let ?TE = topspace (nsphere n) ∩ equator n
have fneg: (f ◦ neg) x = (neg ◦ f ) x if x ∈ topspace (nsphere n) for x

using f [OF that] by (force simp: neg_def )
have neg_im: neg ∈ (topspace (nsphere n) ∩ equator n) → topspace (nsphere

n) ∩ equator n
using cm_neg continuous_map_image_subset_topspace equator_def
by fastforce

have 1 : hom_induced n (nsphere n) ?TE (nsphere n) ?TE f ◦ hom_induced n
(nsphere n) ?TE (nsphere n) ?TE neg

= hom_induced n (nsphere n) ?TE (nsphere n) ?TE neg ◦ hom_induced
n (nsphere n) ?TE (nsphere n) ?TE f

using neg_im fimeq cm_neg cmf fneg
apply (simp flip: hom_induced_compose del: hom_induced_restrict)
using fneg by (auto intro: hom_induced_eq)

have (un [^]?rhgn (equator n) a) ⊗?rhgn (equator n) (up [^]?rhgn (equator n) b)
= un [^]?rhgn (equator n) (Brouwer_degree2 (n − 1 ) neg ∗ a ∗ Brouwer_degree2

(n − 1 ) neg)
⊗?rhgn (equator n)

up [^]?rhgn (equator n) (Brouwer_degree2 (n − 1 ) neg ∗ b ∗ Brouwer_degree2
(n − 1 ) neg)

proof −
have Brouwer_degree2 (n − Suc 0 ) neg = 1 ∨ Brouwer_degree2 (n − Suc

0 ) neg = − 1
using Brouwer_degree2_21 power2_eq_1_iff by blast

then show ?thesis
by fastforce

qed
also have . . . = ((un [^]?rhgn (equator n) Brouwer_degree2 (n − 1 ) neg)

[^]?rhgn (equator n) a ⊗?rhgn (equator n)
(up [^]?rhgn (equator n) Brouwer_degree2 (n − 1 ) neg) [^]?rhgn (equator n)

b) [^]?rhgn (equator n)
Brouwer_degree2 (n − 1 ) neg

by (simp add: GE .int_pow_distrib GE .int_pow_pow uncarr upcarr)
also have . . . = ?hi_ee neg (?hi_ee f up) [^]?rhgn (equator n) Brouwer_degree2
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(n − Suc 0 ) neg
by (simp add: gh_een.hom_int_pow hi_un_eq_up hi_up_eq_un uncarr

up_ab upcarr)
finally have 2 : (un [^]?rhgn (equator n) a) ⊗?rhgn (equator n) (up [^]?rhgn (equator n)

b)
= ?hi_ee neg (?hi_ee f up) [^]?rhgn (equator n) Brouwer_degree2 (n −

Suc 0 ) neg .
have un = ?hi_ee neg up [^]?rhgn (equator n) Brouwer_degree2 (n − Suc 0 )

neg
by (metis (no_types, opaque_lifting) Brouwer_degree2_21 GE .int_pow_1

GE .int_pow_pow hi_up_eq_un power2_eq_1_iff uncarr zmult_eq_1_iff )
moreover have ?hi_ee f ((?hi_ee neg up) [^]?rhgn (equator n) (Brouwer_degree2

(n − Suc 0 ) neg))
= un [^]?rhgn (equator n) a ⊗?rhgn (equator n) up [^]?rhgn (equator n)

b
using 1 2 by (simp add: hom_induced_carrier gh_eef .hom_int_pow fun_eq_iff )
ultimately show ?thesis

by blast
qed
then have ?hi_ee f u = u [^]?rhgn (equator n) (a − b)
by (simp add: u_def upcarr uncarr up_ab GE .int_pow_diff GE .m_ac GE .int_pow_distrib

GE .int_pow_inv GE .inv_mult_group)
ultimately
have Brouwer_degree2 n f = a − b

using iff by blast
with Bd_ab show ?thesis

by simp
qed simp

0.4.2 General Jordan-Brouwer separation theorem and in-
variance of dimension

proposition relative_homology_group_Euclidean_complement_step:
assumes closedin (Euclidean_space n) S
shows relative_homology_group p (Euclidean_space n) (topspace(Euclidean_space

n) − S)
∼= relative_homology_group (p + k) (Euclidean_space (n+k)) (topspace(Euclidean_space

(n+k)) − S)
proof −
have ∗: relative_homology_group p (Euclidean_space n) (topspace(Euclidean_space

n) − S)
∼= relative_homology_group (p + 1 ) (Euclidean_space (Suc n)) (topspace(Euclidean_space

(Suc n)) − {x ∈ S . x n = 0})
(is ?lhs ∼= ?rhs)
if clo: closedin (Euclidean_space (Suc n)) S and cong:

∧
x y. [[x ∈ S ;

∧
i. i 6=

n =⇒ x i = y i]] =⇒ y ∈ S
for p n S

proof −
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have Ssub: S ⊆ topspace (Euclidean_space (Suc n))
by (meson clo closedin_def )

define lo where lo ≡ {x ∈ topspace(Euclidean_space (Suc n)). x n < (if x ∈
S then 0 else 1 )}

define hi where hi = {x ∈ topspace(Euclidean_space (Suc n)). x n > (if x ∈
S then 0 else −1 )}

have lo_hi_Int: lo ∩ hi = {x ∈ topspace(Euclidean_space (Suc n)) − S . x n
∈ {−1<..<1}}

by (auto simp: hi_def lo_def )
have lo_hi_Un: lo ∪ hi = topspace(Euclidean_space (Suc n)) − {x ∈ S . x n

= 0}
by (auto simp: hi_def lo_def )

define ret where ret ≡ λc::real. λx i. if i = n then c else x i
have cm_ret: continuous_map (powertop_real UNIV ) (powertop_real UNIV )

(ret t) for t
by (auto simp: ret_def continuous_map_componentwise_UNIV intro: con-

tinuous_map_product_projection)
let ?ST = λt. subtopology (Euclidean_space (Suc n)) {x. x n = t}
define squashable where

squashable ≡ λt S . ∀ x t ′. x ∈ S ∧ (x n ≤ t ′ ∧ t ′ ≤ t ∨ t ≤ t ′ ∧ t ′ ≤ x n)
−→ ret t ′ x ∈ S

have squashable: squashable t (topspace(Euclidean_space(Suc n))) for t
by (simp add: squashable_def topspace_Euclidean_space ret_def )

have squashableD: [[squashable t S ; x ∈ S ; x n ≤ t ′ ∧ t ′ ≤ t ∨ t ≤ t ′ ∧ t ′ ≤ x
n]] =⇒ ret t ′ x ∈ S for x t ′ t S

by (auto simp: squashable_def )
have squashable 1 hi

by (force simp: squashable_def hi_def ret_def topspace_Euclidean_space
intro: cong)

have squashable t UNIV for t
by (force simp: squashable_def hi_def ret_def topspace_Euclidean_space

intro: cong)
have squashable_0_lohi: squashable 0 (lo ∩ hi)

using Ssub
by (auto simp: squashable_def hi_def lo_def ret_def topspace_Euclidean_space

intro: cong)
have rm_ret: retraction_maps (subtopology (Euclidean_space (Suc n)) U )

(subtopology (Euclidean_space (Suc n)) {x. x ∈ U ∧ x
n = t})

(ret t) id
if squashable t U for t U
unfolding retraction_maps_def

proof (intro conjI ballI )
show continuous_map (subtopology (Euclidean_space (Suc n)) U )

(subtopology (Euclidean_space (Suc n)) {x ∈ U . x n = t}) (ret t)
apply (simp add: cm_ret continuous_map_in_subtopology continuous_map_from_subtopology

Euclidean_space_def )
using that by (fastforce simp: squashable_def ret_def )

next
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show continuous_map (subtopology (Euclidean_space (Suc n)) {x ∈ U . x n
= t})

(subtopology (Euclidean_space (Suc n)) U ) id
using continuous_map_in_subtopology by fastforce

show ret t (id x) = x
if x ∈ topspace (subtopology (Euclidean_space (Suc n)) {x ∈ U . x n = t})

for x
using that by (simp add: topspace_Euclidean_space ret_def fun_eq_iff )

qed
have cm_snd: continuous_map (prod_topology (top_of_set {0 ..1}) (subtopology

(powertop_real UNIV ) S))
euclideanreal (λx. snd x k) for k::nat and S

using continuous_map_componentwise_UNIV continuous_map_into_fulltopology
continuous_map_snd by fastforce

have cm_fstsnd: continuous_map (prod_topology (top_of_set {0 ..1}) (subtopology
(powertop_real UNIV ) S))

euclideanreal (λx. fst x ∗ snd x k) for k::nat and S
by (intro continuous_intros continuous_map_into_fulltopology [OF continu-

ous_map_fst] cm_snd)
have hw_sub: homotopic_with (λk. k ‘ V ⊆ V ) (subtopology (Euclidean_space

(Suc n)) U )
(subtopology (Euclidean_space (Suc n)) U ) (ret t) id

if squashable t U squashable t V for U V t
unfolding homotopic_with_def

proof (intro exI conjI allI ballI )
define h where h ≡ λ(z,x). ret ((1 − z) ∗ t + z ∗ x n) x
show (λx. h (u, x)) ‘ V ⊆ V if u ∈ {0 ..1} for u

using that unfolding h_def
by clarsimp (metis squashableD [OF ‹squashable t V ›] convex_bound_le

diff_ge_0_iff_ge eq_diff_eq ′ le_cases less_eq_real_def segment_bound_lemma)
have

∧
x y i. [[∀ k≥Suc n. y k = 0 ; Suc n ≤ i]] =⇒ ret ((1 − x) ∗ t + x ∗ y

n) y i = 0
by (simp add: ret_def )

then have h ∈ {0 ..1} × ({x. ∀ i≥Suc n. x i = 0} ∩ U ) → {x. ∀ i≥Suc n. x
i = 0} ∩ U

using squashableD [OF ‹squashable t U ›] segment_bound_lemma
apply (clarsimp simp: h_def Pi_iff )

by (metis convex_bound_le eq_diff_eq ge_iff_diff_ge_0 linorder_le_cases)
moreover

have continuous_map (prod_topology (top_of_set {0 ..1}) (subtopology (powertop_real
UNIV )

({x. ∀ i≥Suc n. x i = 0} ∩ U ))) (powertop_real UNIV ) h
apply (auto simp: h_def case_prod_unfold ret_def continuous_map_componentwise_UNIV )

apply (intro continuous_map_into_fulltopology [OF continuous_map_fst]
cm_snd continuous_intros)

by (auto simp: cm_snd)
ultimately show continuous_map (prod_topology (top_of_set {0 ..1})

(subtopology (Euclidean_space (Suc n)) U ))
(subtopology (Euclidean_space (Suc n)) U ) h
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by (simp add: continuous_map_in_subtopology Euclidean_space_def subtopol-
ogy_subtopology)

qed (auto simp: ret_def )
have cs_hi: contractible_space(subtopology (Euclidean_space(Suc n)) hi)
proof −

have homotopic_with (λx. True) (?ST 1 ) (?ST 1 ) id (λx. (λi. if i = n then
1 else 0 ))

apply (subst homotopic_with_sym)
apply (simp add: homotopic_with)
apply (rule_tac x=(λ(z,x) i. if i=n then 1 else z ∗ x i) in exI )
apply (auto simp: Euclidean_space_def subtopology_subtopology continu-

ous_map_in_subtopology case_prod_unfold continuous_map_componentwise_UNIV
cm_fstsnd)

done
then have contractible_space (?ST 1 )

unfolding contractible_space_def by metis
moreover have ?thesis = contractible_space (?ST 1 )
proof (intro deformation_retract_imp_homotopy_equivalent_space homo-

topy_equivalent_space_contractibility)
have {x. ∀ i≥Suc n. x i = 0} ∩ {x ∈ hi. x n = 1} = {x. ∀ i≥Suc n. x i =

0} ∩ {x. x n = 1}
by (auto simp: hi_def topspace_Euclidean_space)

then have eq: subtopology (Euclidean_space (Suc n)) {x. x ∈ hi ∧ x n =
1} = ?ST 1

by (simp add: Euclidean_space_def subtopology_subtopology)
show homotopic_with (λx. True) (subtopology (Euclidean_space (Suc n))

hi) (subtopology (Euclidean_space (Suc n)) hi) (ret 1 ) id
using hw_sub [OF ‹squashable 1 hi› ‹squashable 1 UNIV ›] eq by simp

show retraction_maps (subtopology (Euclidean_space (Suc n)) hi) (?ST 1 )
(ret 1 ) id

using rm_ret [OF ‹squashable 1 hi›] eq by simp
qed
ultimately show ?thesis by metis

qed
have ?lhs ∼= relative_homology_group p (Euclidean_space (Suc n)) (lo ∩ hi)

proof (rule group.iso_sym [OF _ deformation_retract_imp_isomorphic_relative_homology_groups])
have {x. ∀ i≥Suc n. x i = 0} ∩ {x. x n = 0} = {x. ∀ i≥n. x i = (0 ::real)}

by auto (metis le_less_Suc_eq not_le)
then have ?ST 0 = Euclidean_space n

by (simp add: Euclidean_space_def subtopology_subtopology)
then show retraction_maps (Euclidean_space (Suc n)) (Euclidean_space n)

(ret 0 ) id
using rm_ret [OF ‹squashable 0 UNIV ›] by auto

then have ret 0 x ∈ topspace (Euclidean_space n)
if x ∈ topspace (Euclidean_space (Suc n)) −1 < x n x n < 1 for x

using that by (metis continuous_map_image_subset_topspace image_subset_iff
retraction_maps_def )

then show (ret 0 ) ∈ (lo ∩ hi) → topspace (Euclidean_space n) − S
by (auto simp: local.cong ret_def hi_def lo_def )
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show homotopic_with (λh. h ‘ (lo ∩ hi) ⊆ lo ∩ hi) (Euclidean_space (Suc
n)) (Euclidean_space (Suc n)) (ret 0 ) id

using hw_sub [OF squashable squashable_0_lohi] by simp
qed (auto simp: lo_def hi_def Euclidean_space_def )
also have . . . ∼= relative_homology_group p (subtopology (Euclidean_space

(Suc n)) hi) (lo ∩ hi)
proof (rule group.iso_sym [OF _ isomorphic_relative_homology_groups_inclusion_contractible])

show contractible_space (subtopology (Euclidean_space (Suc n)) hi)
by (simp add: cs_hi)

show topspace (Euclidean_space (Suc n)) ∩ hi 6= {}
apply (simp add: hi_def topspace_Euclidean_space set_eq_iff )
apply (rule_tac x=λi. if i = n then 1 else 0 in exI , auto)
done

qed auto
also have . . . ∼= relative_homology_group p (subtopology (Euclidean_space

(Suc n)) (lo ∪ hi)) lo
proof −

have oo: openin (Euclidean_space (Suc n)) {x ∈ topspace (Euclidean_space
(Suc n)). x n ∈ A}

if open A for A
proof (rule openin_continuous_map_preimage)

show continuous_map (Euclidean_space (Suc n)) euclideanreal (λx. x n)
proof −

have ∀n f . continuous_map (product_topology f UNIV ) (f (n::nat)) (λf .
f n::real)

by (simp add: continuous_map_product_projection)
then show ?thesis

using Euclidean_space_def continuous_map_from_subtopology
by (metis (mono_tags))

qed
qed (auto intro: that)
have openin (Euclidean_space(Suc n)) lo

apply (simp add: openin_subopen [of _ lo])
apply (simp add: lo_def , safe)
apply (force intro: oo [of lessThan 0 , simplified] open_Collect_less)

apply (rule_tac x={x ∈ topspace(Euclidean_space(Suc n)). x n < 1}
∩ (topspace(Euclidean_space(Suc n)) − S) in exI )

using clo apply (force intro: oo [of lessThan 1 , simplified] open_Collect_less)
done

moreover have openin (Euclidean_space(Suc n)) hi
apply (simp add: openin_subopen [of _ hi])
apply (simp add: hi_def , safe)
apply (force intro: oo [of greaterThan 0 , simplified] open_Collect_less)

apply (rule_tac x={x ∈ topspace(Euclidean_space(Suc n)). x n > −1}
∩ (topspace(Euclidean_space(Suc n)) − S) in exI )

using clo apply (force intro: oo [of greaterThan (−1 ), simplified] open_Collect_less)
done

ultimately
have ∗: subtopology (Euclidean_space (Suc n)) (lo ∪ hi) closure_of
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(topspace (subtopology (Euclidean_space (Suc n)) (lo ∪ hi)) − hi)
⊆ subtopology (Euclidean_space (Suc n)) (lo ∪ hi) interior_of lo

by (metis (no_types, lifting) Diff_idemp Diff_subset_conv Un_commute
Un_upper2 closure_of_interior_of interior_of_closure_of interior_of_complement
interior_of_eq lo_hi_Un openin_Un openin_open_subtopology topspace_subtopology_subset)

have eq: ((lo ∪ hi) ∩ (lo ∪ hi − (topspace (Euclidean_space (Suc n)) ∩ (lo
∪ hi) − hi))) = hi

(lo − (topspace (Euclidean_space (Suc n)) ∩ (lo ∪ hi) − hi)) = lo ∩ hi
by (auto simp: lo_def hi_def Euclidean_space_def )

show ?thesis
using homology_excision_axiom [OF ∗, of lo ∪ hi p]
by (force simp: subtopology_subtopology eq is_iso_def )

qed
also have . . . ∼= relative_homology_group (p + 1 − 1 ) (subtopology (Euclidean_space

(Suc n)) (lo ∪ hi)) lo
by simp

also have . . . ∼= relative_homology_group (p + 1 ) (Euclidean_space (Suc n))
(lo ∪ hi)

proof (rule group.iso_sym [OF _ isomorphic_relative_homology_groups_relboundary_contractible])
have proj: continuous_map (powertop_real UNIV ) euclideanreal (λf . f n)

by (metis UNIV_I continuous_map_product_projection)
have hilo:

∧
x. x ∈ hi =⇒ (λi. if i = n then − x i else x i) ∈ lo∧

x. x ∈ lo =⇒ (λi. if i = n then − x i else x i) ∈ hi
using local.cong

by (auto simp: hi_def lo_def topspace_Euclidean_space split: if_split_asm)
have subtopology (Euclidean_space (Suc n)) hi homeomorphic_space subtopol-

ogy (Euclidean_space (Suc n)) lo
unfolding homeomorphic_space_def
apply (rule_tac x=λx i. if i = n then −(x i) else x i in exI )+
using proj
apply (auto simp: homeomorphic_maps_def Euclidean_space_def continu-

ous_map_in_subtopology
hilo continuous_map_componentwise_UNIV continu-

ous_map_from_subtopology continuous_map_minus
intro: continuous_map_from_subtopology continuous_map_product_projection)

done
then have contractible_space(subtopology (Euclidean_space(Suc n)) hi)

←→ contractible_space (subtopology (Euclidean_space (Suc n)) lo)
by (rule homeomorphic_space_contractibility)

then show contractible_space (subtopology (Euclidean_space (Suc n)) lo)
using cs_hi by auto

show topspace (Euclidean_space (Suc n)) ∩ lo 6= {}
apply (simp add: lo_def Euclidean_space_def set_eq_iff )
apply (rule_tac x=λi. if i = n then −1 else 0 in exI , auto)
done

qed auto
also have . . . ∼= ?rhs

by (simp flip: lo_hi_Un)
finally show ?thesis .
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qed
show ?thesis
proof (induction k)

case (Suc m)
with assms obtain T where cloT : closedin (powertop_real UNIV ) T

and SeqT : S = T ∩ {x. ∀ i≥n. x i = 0}
by (auto simp: Euclidean_space_def closedin_subtopology)

then have closedin (Euclidean_space (m + n)) S
apply (simp add: Euclidean_space_def closedin_subtopology)
apply (rule_tac x=T ∩ topspace(Euclidean_space n) in exI )
using closedin_Euclidean_space topspace_Euclidean_space by force
moreover have relative_homology_group p (Euclidean_space n) (topspace

(Euclidean_space n) − S)
∼= relative_homology_group (p + 1 ) (Euclidean_space (Suc n))

(topspace (Euclidean_space (Suc n)) − S)
if closedin (Euclidean_space n) S for p n

proof −
define S ′ where S ′ ≡ {x ∈ topspace(Euclidean_space(Suc n)). (λi. if i < n

then x i else 0 ) ∈ S}
have Ssub_n: S ⊆ topspace (Euclidean_space n)

by (meson that closedin_def )
have relative_homology_group p (Euclidean_space n) (topspace(Euclidean_space

n) − S ′)
∼= relative_homology_group (p + 1 ) (Euclidean_space (Suc n)) (topspace(Euclidean_space

(Suc n)) − {x ∈ S ′. x n = 0})
proof (rule ∗)

have cm: continuous_map (powertop_real UNIV ) euclideanreal (λf . f u)
for u

by (metis UNIV_I continuous_map_product_projection)
have continuous_map (subtopology (powertop_real UNIV ) {x. ∀ i>n. x i =

0}) euclideanreal
(λx. if k ≤ n then x k else 0 ) for k

by (simp add: continuous_map_from_subtopology [OF cm])
moreover have ∀ i≥n. (if i < n then x i else 0 ) = 0

if x ∈ topspace (subtopology (powertop_real UNIV ) {x. ∀ i>n. x i = 0})
for x

using that by simp
ultimately have continuous_map (Euclidean_space (Suc n)) (Euclidean_space

n) (λx i. if i < n then x i else 0 )
by (simp add: Euclidean_space_def continuous_map_in_subtopology

continuous_map_componentwise_UNIV
continuous_map_from_subtopology [OF cm] image_subset_iff )

then show closedin (Euclidean_space (Suc n)) S ′

unfolding S ′_def using that by (rule closedin_continuous_map_preimage)
next

fix x y
assume xy:

∧
i. i 6= n =⇒ x i = y i x ∈ S ′

then have (λi. if i < n then x i else 0 ) = (λi. if i < n then y i else 0 )
by (simp add: S ′_def Euclidean_space_def fun_eq_iff )
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with xy show y ∈ S ′

by (simp add: S ′_def Euclidean_space_def )
qed
moreover
have abs_eq: (λi. if i < n then x i else 0 ) = x if

∧
i. i ≥ n =⇒ x i = 0 for

x :: nat ⇒ real and n
using that by auto

then have topspace (Euclidean_space n) − S ′ = topspace (Euclidean_space
n) − S

by (simp add: S ′_def Euclidean_space_def set_eq_iff cong: conj_cong)
moreover
have topspace (Euclidean_space (Suc n)) − {x ∈ S ′. x n = 0} = topspace

(Euclidean_space (Suc n)) − S
using Ssub_n

apply (auto simp: S ′_def subset_iff Euclidean_space_def set_eq_iff abs_eq
cong: conj_cong)

by (metis abs_eq le_antisym not_less_eq_eq)
ultimately show ?thesis

by simp
qed
ultimately have relative_homology_group (p + m)(Euclidean_space (m +

n))(topspace (Euclidean_space (m + n)) − S)
∼= relative_homology_group (p + m + 1 ) (Euclidean_space (Suc (m +

n))) (topspace (Euclidean_space (Suc (m + n))) − S)
by (metis ‹closedin (Euclidean_space (m + n)) S›)

then show ?case
using Suc.IH iso_trans by (force simp: algebra_simps)

qed (simp add: iso_refl)
qed

lemma iso_Euclidean_complements_lemma1 :
assumes S : closedin (Euclidean_space m) S and cmf : continuous_map(subtopology

(Euclidean_space m) S) (Euclidean_space n) f
obtains g where continuous_map (Euclidean_space m) (Euclidean_space n) g∧

x. x ∈ S =⇒ g x = f x
proof −

have cont: continuous_on (topspace (Euclidean_space m) ∩ S) (λx. f x i) for i
by (metis (no_types) continuous_on_product_then_coordinatewise

cm_Euclidean_space_iff_continuous_on cmf topspace_subtopology)
have f ‘ (topspace (Euclidean_space m) ∩ S) ⊆ topspace (Euclidean_space n)

using cmf continuous_map_image_subset_topspace by fastforce
then
have ∃ g. continuous_on (topspace (Euclidean_space m)) g ∧ (∀ x ∈ S . g x = f

x i) for i
using S Tietze_unbounded [OF cont [of i]]

by (metis closedin_Euclidean_space_iff closedin_closed_Int topspace_subtopology
topspace_subtopology_subset)
then obtain g where cmg:

∧
i. continuous_map (Euclidean_space m) euclidean-

real (g i)
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and gf :
∧

i x. x ∈ S =⇒ g i x = f x i
unfolding continuous_map_Euclidean_space_iff by metis

let ?GG = λx i. if i < n then g i x else 0
show thesis
proof

show continuous_map (Euclidean_space m) (Euclidean_space n) ?GG
unfolding Euclidean_space_def [of n]

by (auto simp: continuous_map_in_subtopology continuous_map_componentwise
cmg)

show ?GG x = f x if x ∈ S for x
proof −

have S ⊆ topspace (Euclidean_space m)
by (meson S closedin_def )

then have f x ∈ topspace (Euclidean_space n)
using cmf that unfolding continuous_map_def topspace_subtopology by

blast
then show ?thesis

by (force simp: topspace_Euclidean_space gf that)
qed

qed
qed

lemma iso_Euclidean_complements_lemma2 :
assumes S : closedin (Euclidean_space m) S

and T : closedin (Euclidean_space n) T
and hom: homeomorphic_map (subtopology (Euclidean_space m) S) (subtopology

(Euclidean_space n) T ) f
obtains g where homeomorphic_map (prod_topology (Euclidean_space m) (Euclidean_space

n))
(prod_topology (Euclidean_space n) (Euclidean_space

m)) g ∧
x. x ∈ S =⇒ g(x,(λi. 0 )) = (f x,(λi. 0 ))

proof −
obtain g where cmf : continuous_map (subtopology (Euclidean_space m) S)

(subtopology (Euclidean_space n) T ) f
and cmg: continuous_map (subtopology (Euclidean_space n) T ) (subtopology

(Euclidean_space m) S) g
and gf :

∧
x. x ∈ S =⇒ g (f x) = x

and fg:
∧

y. y ∈ T =⇒ f (g y) = y
using hom S T closedin_subset unfolding homeomorphic_map_maps home-

omorphic_maps_def
by fastforce

obtain f ′ where cmf ′: continuous_map (Euclidean_space m) (Euclidean_space
n) f ′

and f ′f :
∧

x. x ∈ S =⇒ f ′ x = f x
using iso_Euclidean_complements_lemma1 S cmf continuous_map_into_fulltopology

by metis
obtain g ′ where cmg ′: continuous_map (Euclidean_space n) (Euclidean_space
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m) g ′

and g ′g:
∧

x. x ∈ T =⇒ g ′ x = g x
using iso_Euclidean_complements_lemma1 T cmg continuous_map_into_fulltopology

by metis
define p where p ≡ λ(x,y). (x,(λi. y i + f ′ x i))
define p ′ where p ′ ≡ λ(x,y). (x,(λi. y i − f ′ x i))
define q where q ≡ λ(x,y). (x,(λi. y i + g ′ x i))
define q ′ where q ′ ≡ λ(x,y). (x,(λi. y i − g ′ x i))
have homeomorphic_maps (prod_topology (Euclidean_space m) (Euclidean_space

n))
(prod_topology (Euclidean_space m) (Euclidean_space n))
p p ′

homeomorphic_maps (prod_topology (Euclidean_space n) (Euclidean_space
m))

(prod_topology (Euclidean_space n) (Euclidean_space m))
q q ′

homeomorphic_maps (prod_topology (Euclidean_space m) (Euclidean_space
n))

(prod_topology (Euclidean_space n) (Euclidean_space m))
(λ(x,y). (y,x)) (λ(x,y). (y,x))

apply (simp_all add: p_def p ′_def q_def q ′_def homeomorphic_maps_def
continuous_map_pairwise)

apply (force simp: case_prod_unfold continuous_map_of_fst [unfolded o_def ]
cmf ′ cmg ′ intro: continuous_intros)+

done
then have homeomorphic_maps (prod_topology (Euclidean_space m) (Euclidean_space

n))
(prod_topology (Euclidean_space n) (Euclidean_space m))
(q ′ ◦ (λ(x,y). (y,x)) ◦ p) (p ′ ◦ ((λ(x,y). (y,x)) ◦ q))

using homeomorphic_maps_compose homeomorphic_maps_sym by (metis
(no_types, lifting))

moreover
have

∧
x. x ∈ S =⇒ (q ′ ◦ (λ(x,y). (y,x)) ◦ p) (x, λi. 0 ) = (f x, λi. 0 )

apply (simp add: q ′_def p_def f ′f )
apply (simp add: fun_eq_iff )
by (metis S T closedin_subset g ′g gf hom homeomorphic_imp_surjective_map

image_eqI topspace_subtopology_subset)
ultimately
show thesis

using homeomorphic_map_maps that by blast
qed

proposition isomorphic_relative_homology_groups_Euclidean_complements:
assumes S : closedin (Euclidean_space n) S and T : closedin (Euclidean_space

n) T
and hom: (subtopology (Euclidean_space n) S) homeomorphic_space (subtopology

(Euclidean_space n) T )
shows relative_homology_group p (Euclidean_space n) (topspace(Euclidean_space
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n) − S)
∼= relative_homology_group p (Euclidean_space n) (topspace(Euclidean_space

n) − T )
proof −

have subST : S ⊆ topspace(Euclidean_space n) T ⊆ topspace(Euclidean_space
n)

by (meson S T closedin_def )+
have relative_homology_group p (Euclidean_space n) (topspace (Euclidean_space

n) − S)
∼= relative_homology_group (p + int n) (Euclidean_space (n + n)) (topspace

(Euclidean_space (n + n)) − S)
using relative_homology_group_Euclidean_complement_step [OF S ] by blast

moreover have relative_homology_group p (Euclidean_space n) (topspace (Euclidean_space
n) − T )

∼= relative_homology_group (p + int n) (Euclidean_space (n + n)) (topspace
(Euclidean_space (n + n)) − T )

using relative_homology_group_Euclidean_complement_step [OF T ] by blast
moreover have relative_homology_group (p + int n) (Euclidean_space (n +

n)) (topspace (Euclidean_space (n + n)) − S)
∼= relative_homology_group (p + int n) (Euclidean_space (n + n))

(topspace (Euclidean_space (n + n)) − T )
proof −

obtain f where f : homeomorphic_map (subtopology (Euclidean_space n) S)
(subtopology (Euclidean_space n) T ) f

using hom unfolding homeomorphic_space by blast
obtain g where g: homeomorphic_map (prod_topology (Euclidean_space n)

(Euclidean_space n))
(prod_topology (Euclidean_space n) (Euclidean_space

n)) g
and gf :

∧
x. x ∈ S =⇒ g(x,(λi. 0 )) = (f x,(λi. 0 ))

using S T f iso_Euclidean_complements_lemma2 by blast
define h where h ≡ λx::nat ⇒real. ((λi. if i < n then x i else 0 ), (λj. if j <

n then x(n + j) else 0 ))
define k where k ≡ λ(x,y) i. if i < 2 ∗ n then if i < n then x i else y(i − n)

else (0 ::real)
have hk: homeomorphic_maps (Euclidean_space(2 ∗ n)) (prod_topology (Euclidean_space

n) (Euclidean_space n)) h k
unfolding homeomorphic_maps_def

proof safe
show continuous_map (Euclidean_space (2 ∗ n))

(prod_topology (Euclidean_space n) (Euclidean_space n)) h
apply (simp add: h_def continuous_map_pairwise o_def continuous_map_componentwise_Euclidean_space)

unfolding Euclidean_space_def
by (metis (mono_tags) UNIV_I continuous_map_from_subtopology con-

tinuous_map_product_projection)
have continuous_map (prod_topology (Euclidean_space n) (Euclidean_space

n)) euclideanreal (λp. fst p i) for i
using Euclidean_space_def continuous_map_into_fulltopology continu-

ous_map_fst by fastforce
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moreover
have continuous_map (prod_topology (Euclidean_space n) (Euclidean_space

n)) euclideanreal (λp. snd p (i − n)) for i
using Euclidean_space_def continuous_map_into_fulltopology continu-

ous_map_snd by fastforce
ultimately
show continuous_map (prod_topology (Euclidean_space n) (Euclidean_space

n))
(Euclidean_space (2 ∗ n)) k

by (simp add: k_def continuous_map_pairwise o_def continuous_map_componentwise_Euclidean_space
case_prod_unfold)

qed (auto simp: k_def h_def fun_eq_iff topspace_Euclidean_space)
define kgh where kgh ≡ k ◦ g ◦ h

let ?i = hom_induced (p + n) (Euclidean_space(2 ∗ n)) (topspace(Euclidean_space(2
∗ n)) − S)

(Euclidean_space(2 ∗ n)) (topspace(Euclidean_space(2
∗ n)) − T ) kgh

have ?i ∈ iso (relative_homology_group (p + int n) (Euclidean_space (2 ∗ n))
(topspace (Euclidean_space (2 ∗ n)) − S))
(relative_homology_group (p + int n) (Euclidean_space (2 ∗ n))
(topspace (Euclidean_space (2 ∗ n)) − T ))

proof (rule homeomorphic_map_relative_homology_iso)
show hm: homeomorphic_map (Euclidean_space (2 ∗ n)) (Euclidean_space

(2 ∗ n)) kgh
unfolding kgh_def by (meson hk g homeomorphic_map_maps homeomor-

phic_maps_compose homeomorphic_maps_sym)
have Teq: T = f ‘ S
using f homeomorphic_imp_surjective_map subST (1 ) subST (2 ) topspace_subtopology_subset

by blast
have khf :

∧
x. x ∈ S =⇒ k(h(f x)) = f x

by (metis (no_types, lifting) Teq hk homeomorphic_maps_def image_subset_iff
le_add1 mult_2 subST (2 ) subsetD subset_Euclidean_space)

have gh: g(h x) = h(f x) if x ∈ S for x
proof −

have [simp]: (λi. if i < n then x i else 0 ) = x
using subST (1 ) that topspace_Euclidean_space by (auto simp: fun_eq_iff )
have f x ∈ topspace(Euclidean_space n)

using Teq subST (2 ) that by blast
moreover have (λj. if j < n then x (n + j) else 0 ) = (λj. 0 ::real)

using Euclidean_space_def subST (1 ) that by force
ultimately show ?thesis

by (simp add: topspace_Euclidean_space h_def gf ‹x ∈ S› fun_eq_iff )
qed
have ∗: [[S ⊆ U ; T ⊆ U ; kgh ‘ U = U ; inj_on kgh U ; kgh ‘ S = T ]] =⇒ kgh

‘ (U − S) = U − T for U
unfolding inj_on_def set_eq_iff by blast

show kgh ‘ (topspace (Euclidean_space (2 ∗ n)) − S) = topspace (Euclidean_space
(2 ∗ n)) − T

proof (rule ∗)
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show kgh ‘ topspace (Euclidean_space (2 ∗ n)) = topspace (Euclidean_space
(2 ∗ n))

by (simp add: hm homeomorphic_imp_surjective_map)
show inj_on kgh (topspace (Euclidean_space (2 ∗ n)))

using hm homeomorphic_map_def by auto
show kgh ‘ S = T

by (simp add: Teq kgh_def gh khf )
qed (use subST topspace_Euclidean_space in ‹fastforce+›)

qed auto
then show ?thesis

by (simp add: is_isoI mult_2 )
qed
ultimately show ?thesis

by (meson group.iso_sym iso_trans group_relative_homology_group)
qed

lemma lemma_iod:
assumes S ⊆ T S 6= {} and Tsub: T ⊆ topspace(Euclidean_space n)

and S :
∧

a b u. [[a ∈ S ; b ∈ T ; 0 < u; u < 1 ]] =⇒ (λi. (1 − u) ∗ a i + u ∗
b i) ∈ S

shows path_connectedin (Euclidean_space n) T
proof −

obtain a where a ∈ S
using assms by blast

have path_component_of (subtopology (Euclidean_space n) T ) a b if b ∈ T for
b

unfolding path_component_of_def
proof (intro exI conjI )

have [simp]: ∀ i≥n. a i = 0
using Tsub ‹a ∈ S› assms(1 ) topspace_Euclidean_space by auto

have [simp]: ∀ i≥n. b i = 0
using Tsub that topspace_Euclidean_space by auto

have inT : (λi. (1 − x) ∗ a i + x ∗ b i) ∈ T if 0 ≤ x x ≤ 1 for x
proof (cases x = 0 ∨ x = 1 )

case True
with ‹a ∈ S› ‹b ∈ T › ‹S ⊆ T › show ?thesis

by force
next

case False
then show ?thesis

using subsetD [OF ‹S ⊆ T › S ] ‹a ∈ S› ‹b ∈ T › that by auto
qed
have continuous_on {0 ..1} (λx. (1 − x) ∗ a k + x ∗ b k) for k

by (intro continuous_intros)
then show pathin (subtopology (Euclidean_space n) T ) (λt i. (1 − t) ∗ a i +

t ∗ b i)
apply (simp add: Euclidean_space_def subtopology_subtopology pathin_subtopology)

apply (simp add: pathin_def continuous_map_componentwise_UNIV inT )
done
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qed auto
then have path_connected_space (subtopology (Euclidean_space n) T )
by (metis Tsub path_component_of_equiv path_connected_space_iff_path_component

topspace_subtopology_subset)
then show ?thesis

by (simp add: Tsub path_connectedin_def )
qed

lemma invariance_of_dimension_closedin_Euclidean_space:
assumes closedin (Euclidean_space n) S
shows subtopology (Euclidean_space n) S homeomorphic_space Euclidean_space

n
←→ S = topspace(Euclidean_space n)
(is ?lhs = ?rhs)

proof
assume L: ?lhs
have Ssub: S ⊆ topspace (Euclidean_space n)

by (meson assms closedin_def )
moreover have False if a /∈ S and a ∈ topspace (Euclidean_space n) for a
proof −

have cl_n: closedin (Euclidean_space (Suc n)) (topspace(Euclidean_space n))
using Euclidean_space_def closedin_Euclidean_space closedin_subtopology

by fastforce
then have sub: subtopology (Euclidean_space(Suc n)) (topspace(Euclidean_space

n)) = Euclidean_space n
by (metis (no_types, lifting) Euclidean_space_def closedin_subset subtopol-

ogy_subtopology topspace_Euclidean_space topspace_subtopology topspace_subtopology_subset)
then have cl_S : closedin (Euclidean_space(Suc n)) S

using cl_n assms closedin_closed_subtopology by fastforce
have sub_SucS : subtopology (Euclidean_space (Suc n)) S = subtopology (Euclidean_space

n) S
by (metis Ssub sub subtopology_subtopology topspace_subtopology topspace_subtopology_subset)
have non0 : {y. ∃ x::nat⇒real. (∀ i≥Suc n. x i = 0 ) ∧ (∃ i≥n. x i 6= 0 ) ∧ y =

x n} = −{0}
proof safe
show False if ∀ i≥Suc n. f i = 0 0 = f n n ≤ i f i 6= 0 for f ::nat⇒real and i

by (metis that le_antisym not_less_eq_eq)
show ∃ f ::nat⇒real. (∀ i≥Suc n. f i = 0 ) ∧ (∃ i≥n. f i 6= 0 ) ∧ a = f n if a

6= 0 for a
by (rule_tac x=(λi. 0 )(n:= a) in exI ) (force simp: that)

qed
have homology_group 0 (subtopology (Euclidean_space (Suc n)) (topspace

(Euclidean_space (Suc n)) − S))
∼= homology_group 0 (subtopology (Euclidean_space (Suc n)) (topspace

(Euclidean_space (Suc n)) − topspace (Euclidean_space n)))
proof (rule isomorphic_relative_contractible_space_imp_homology_groups)

show (topspace (Euclidean_space (Suc n)) − S = {}) =
(topspace (Euclidean_space (Suc n)) − topspace (Euclidean_space n) =
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{})
using cl_n closedin_subset that by auto

next
fix p
show relative_homology_group p (Euclidean_space (Suc n))

(topspace (Euclidean_space (Suc n)) − S) ∼=
relative_homology_group p (Euclidean_space (Suc n))
(topspace (Euclidean_space (Suc n)) − topspace (Euclidean_space n))

by (simp add: L sub_SucS cl_S cl_n isomorphic_relative_homology_groups_Euclidean_complements
sub)

qed (auto simp: L)
moreover
have continuous_map (powertop_real UNIV ) euclideanreal (λx. x n)

by (metis (no_types) UNIV_I continuous_map_product_projection)
then have cm: continuous_map (subtopology (Euclidean_space (Suc n)) (topspace

(Euclidean_space (Suc n)) − topspace (Euclidean_space n)))
euclideanreal (λx. x n)

by (simp add: Euclidean_space_def continuous_map_from_subtopology)
have False if path_connected_space

(subtopology (Euclidean_space (Suc n))
(topspace (Euclidean_space (Suc n)) − topspace (Euclidean_space

n)))
using path_connectedin_continuous_map_image [OF cm that [unfolded

path_connectedin_topspace [symmetric]]]
bounded_path_connected_Compl_real [of {0}]

by (simp add: topspace_Euclidean_space image_def Bex_def non0 flip:
path_connectedin_topspace)

moreover
have eq: T = T ∩ {x. x n ≤ 0} ∪ T ∩ {x. x n ≥ 0} for T :: (nat ⇒ real) set

by auto
have path_connectedin (Euclidean_space (Suc n)) (topspace (Euclidean_space

(Suc n)) − S)
proof (subst eq, rule path_connectedin_Un)
have topspace(Euclidean_space(Suc n)) ∩ {x. x n = 0} = topspace(Euclidean_space

n)
apply (auto simp: topspace_Euclidean_space)
by (metis Suc_leI inf .absorb_iff2 inf .orderE leI )

let ?S = topspace(Euclidean_space(Suc n)) ∩ {x. x n < 0}
show path_connectedin (Euclidean_space (Suc n))

((topspace (Euclidean_space (Suc n)) − S) ∩ {x. x n ≤ 0})
proof (rule lemma_iod)

show ?S ⊆ (topspace (Euclidean_space (Suc n)) − S) ∩ {x. x n ≤ 0}
using Ssub topspace_Euclidean_space by auto

show ?S 6= {}
apply (simp add: topspace_Euclidean_space set_eq_iff )
apply (rule_tac x=(λi. 0 )(n:= −1 ) in exI )
apply auto
done

fix a b and u::real
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assume
a ∈ ?S 0 < u u < 1
b ∈ (topspace (Euclidean_space (Suc n)) − S) ∩ {x. x n ≤ 0}

then show (λi. (1 − u) ∗ a i + u ∗ b i) ∈ ?S
by (simp add: topspace_Euclidean_space add_neg_nonpos less_eq_real_def

mult_less_0_iff )
qed (simp add: topspace_Euclidean_space subset_iff )
let ?T = topspace(Euclidean_space(Suc n)) ∩ {x. x n > 0}
show path_connectedin (Euclidean_space (Suc n))

((topspace (Euclidean_space (Suc n)) − S) ∩ {x. 0 ≤ x n})
proof (rule lemma_iod)

show ?T ⊆ (topspace (Euclidean_space (Suc n)) − S) ∩ {x. 0 ≤ x n}
using Ssub topspace_Euclidean_space by auto

show ?T 6= {}
apply (simp add: topspace_Euclidean_space set_eq_iff )
apply (rule_tac x=(λi. 0 )(n:= 1 ) in exI )
apply auto
done

fix a b and u::real
assume a ∈ ?T 0 < u u < 1 b ∈ (topspace (Euclidean_space (Suc n)) −

S) ∩ {x. 0 ≤ x n}
then show (λi. (1 − u) ∗ a i + u ∗ b i) ∈ ?T

by (simp add: topspace_Euclidean_space add_pos_nonneg)
qed (simp add: topspace_Euclidean_space subset_iff )
show (topspace (Euclidean_space (Suc n)) − S) ∩ {x. x n ≤ 0} ∩

((topspace (Euclidean_space (Suc n)) − S) ∩ {x. 0 ≤ x n}) 6= {}
using that
apply (auto simp: Set.set_eq_iff topspace_Euclidean_space)
by (metis Suc_leD order_refl)

qed
then have path_connected_space (subtopology (Euclidean_space (Suc n))

(topspace (Euclidean_space (Suc n)) − S))
apply (simp add: path_connectedin_subtopology flip: path_connectedin_topspace)

by (metis Int_Diff inf_idem)
ultimately
show ?thesis

using isomorphic_homology_imp_path_connectedness by blast
qed
ultimately show ?rhs

by blast
qed (simp add: homeomorphic_space_refl)

lemma isomorphic_homology_groups_Euclidean_complements:
assumes closedin (Euclidean_space n) S closedin (Euclidean_space n) T

(subtopology (Euclidean_space n) S) homeomorphic_space (subtopology
(Euclidean_space n) T )
shows homology_group p (subtopology (Euclidean_space n) (topspace(Euclidean_space
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n) − S))
∼= homology_group p (subtopology (Euclidean_space n) (topspace(Euclidean_space

n) − T ))
proof (rule isomorphic_relative_contractible_space_imp_homology_groups)

show topspace (Euclidean_space n) − S ⊆ topspace (Euclidean_space n)
using assms homeomorphic_space_sym invariance_of_dimension_closedin_Euclidean_space

subtopology_superset by fastforce
show topspace (Euclidean_space n) − T ⊆ topspace (Euclidean_space n)

using assms invariance_of_dimension_closedin_Euclidean_space subtopol-
ogy_superset by force

show (topspace (Euclidean_space n) − S = {}) = (topspace (Euclidean_space
n) − T = {})

by (metis Diff_eq_empty_iff assms closedin_subset homeomorphic_space_sym
invariance_of_dimension_closedin_Euclidean_space subset_antisym subtopology_topspace)
show relative_homology_group p (Euclidean_space n) (topspace (Euclidean_space

n) − S) ∼=
relative_homology_group p (Euclidean_space n) (topspace (Euclidean_space

n) − T ) for p
using assms isomorphic_relative_homology_groups_Euclidean_complements

by blast
qed auto

lemma eqpoll_path_components_Euclidean_complements:
assumes closedin (Euclidean_space n) S closedin (Euclidean_space n) T

(subtopology (Euclidean_space n) S) homeomorphic_space (subtopology
(Euclidean_space n) T )
shows path_components_of

(subtopology (Euclidean_space n)
(topspace(Euclidean_space n) − S))

≈ path_components_of
(subtopology (Euclidean_space n)

(topspace(Euclidean_space n) − T ))
by (simp add: assms isomorphic_homology_groups_Euclidean_complements iso-

morphic_homology_imp_path_components)

lemma path_connectedin_Euclidean_complements:
assumes closedin (Euclidean_space n) S closedin (Euclidean_space n) T

(subtopology (Euclidean_space n) S) homeomorphic_space (subtopology
(Euclidean_space n) T )

shows path_connectedin (Euclidean_space n) (topspace(Euclidean_space n) −
S)

←→ path_connectedin (Euclidean_space n) (topspace(Euclidean_space n)
− T )
by (meson Diff_subset assms isomorphic_homology_groups_Euclidean_complements

isomorphic_homology_imp_path_connectedness path_connectedin_def )

lemma eqpoll_connected_components_Euclidean_complements:
assumes S : closedin (Euclidean_space n) S and T : closedin (Euclidean_space

n) T
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and ST : (subtopology (Euclidean_space n) S) homeomorphic_space (subtopology
(Euclidean_space n) T )

shows connected_components_of
(subtopology (Euclidean_space n)

(topspace(Euclidean_space n) − S))
≈ connected_components_of

(subtopology (Euclidean_space n)
(topspace(Euclidean_space n) − T ))

using eqpoll_path_components_Euclidean_complements [OF assms]
by (metis S T closedin_def locally_path_connected_Euclidean_space locally_path_connected_space_open_subset

path_components_eq_connected_components_of )

lemma connected_in_Euclidean_complements:
assumes closedin (Euclidean_space n) S closedin (Euclidean_space n) T

(subtopology (Euclidean_space n) S) homeomorphic_space (subtopology
(Euclidean_space n) T )

shows connectedin (Euclidean_space n) (topspace(Euclidean_space n) − S)
←→ connectedin (Euclidean_space n) (topspace(Euclidean_space n) − T )

apply (simp add: connectedin_def connected_space_iff_components_subset_singleton
subset_singleton_iff_lepoll)

using eqpoll_connected_components_Euclidean_complements [OF assms]
by (meson eqpoll_sym lepoll_trans1 )

theorem invariance_of_dimension_Euclidean_space:
Euclidean_space m homeomorphic_space Euclidean_space n ←→ m = n

proof (cases m n rule: linorder_cases)
case less
then have ∗: topspace (Euclidean_space m) ⊆ topspace (Euclidean_space n)

by (meson le_cases not_le subset_Euclidean_space)
then have Euclidean_space m = subtopology (Euclidean_space n) (topspace(Euclidean_space

m))
by (simp add: Euclidean_space_def inf .absorb_iff2 subtopology_subtopology)

then show ?thesis
by (metis (no_types, lifting) ∗ Euclidean_space_def closedin_Euclidean_space

closedin_closed_subtopology eq_iff invariance_of_dimension_closedin_Euclidean_space
subset_Euclidean_space topspace_Euclidean_space)
next

case equal
then show ?thesis

by (simp add: homeomorphic_space_refl)
next

case greater
then have ∗: topspace (Euclidean_space n) ⊆ topspace (Euclidean_space m)

by (meson le_cases not_le subset_Euclidean_space)
then have Euclidean_space n = subtopology (Euclidean_space m) (topspace(Euclidean_space

n))
by (simp add: Euclidean_space_def inf .absorb_iff2 subtopology_subtopology)

then show ?thesis
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by (metis (no_types, lifting) ∗ Euclidean_space_def closedin_Euclidean_space
closedin_closed_subtopology eq_iff homeomorphic_space_sym invariance_of_dimension_closedin_Euclidean_space
subset_Euclidean_space topspace_Euclidean_space)
qed

lemma biglemma:
assumes n 6= 0 and S : compactin (Euclidean_space n) S

and cmh: continuous_map (subtopology (Euclidean_space n) S) (Euclidean_space
n) h

and inj_on h S
shows path_connectedin (Euclidean_space n) (topspace(Euclidean_space n) −

h ‘ S)
←→ path_connectedin (Euclidean_space n) (topspace(Euclidean_space n) −

S)
proof (rule path_connectedin_Euclidean_complements)

have hS_sub: h ‘ S ⊆ topspace(Euclidean_space n)
by (metis (no_types) S cmh compactin_subspace continuous_map_image_subset_topspace

topspace_subtopology_subset)
show clo_S : closedin (Euclidean_space n) S
using assms by (simp add: continuous_map_in_subtopology Hausdorff_Euclidean_space

compactin_imp_closedin)
show clo_hS : closedin (Euclidean_space n) (h ‘ S)
using Hausdorff_Euclidean_space S cmh compactin_absolute compactin_imp_closedin

image_compactin by blast
have homeomorphic_map (subtopology (Euclidean_space n) S) (subtopology (Euclidean_space

n) (h ‘ S)) h
proof (rule continuous_imp_homeomorphic_map)

show compact_space (subtopology (Euclidean_space n) S)
by (simp add: S compact_space_subtopology)

show Hausdorff_space (subtopology (Euclidean_space n) (h ‘ S))
using hS_sub
by (simp add: Hausdorff_Euclidean_space Hausdorff_space_subtopology)

show continuous_map (subtopology (Euclidean_space n) S) (subtopology (Euclidean_space
n) (h ‘ S)) h

using cmh continuous_map_in_subtopology by fastforce
show h ‘ topspace (subtopology (Euclidean_space n) S) = topspace (subtopology

(Euclidean_space n) (h ‘ S))
using clo_hS clo_S closedin_subset by auto

show inj_on h (topspace (subtopology (Euclidean_space n) S))
by (metis ‹inj_on h S› clo_S closedin_def topspace_subtopology_subset)

qed
then show subtopology (Euclidean_space n) (h ‘ S) homeomorphic_space subtopol-

ogy (Euclidean_space n) S
using homeomorphic_space homeomorphic_space_sym by blast

qed
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lemma lemmaIOD:
assumes
∃T . T ∈ U ∧ c ⊆ T ∃T . T ∈ U ∧ d ⊆ T

⋃
U = c ∪ d

∧
T . T ∈ U =⇒ T

6= {}
pairwise disjnt U ∼(∃T . U ⊆ {T})

shows c ∈ U
using assms
apply safe
subgoal for C ′ D ′

proof (cases C ′=D ′)
show c ∈ U

if UU :
⋃

U = c ∪ d
and U :

∧
T . T ∈ U =⇒ T 6= {} disjoint U and @T . U ⊆ {T} c ⊆ C ′ D ′

∈ U d ⊆ D ′ C ′ = D ′

proof −
have c ∪ d = D ′

using Union_upper sup_mono UU that(5 ) that(6 ) that(7 ) that(8 ) by auto
then have

⋃
U = D ′

by (simp add: UU )
with U have U = {D ′}

by (metis (no_types, lifting) disjnt_Union1 disjnt_self_iff_empty insertCI
pairwiseD subset_iff that(4 ) that(6 ))

then show ?thesis
using that(4 ) by auto

qed
show c ∈ U

if
⋃

U = c ∪ ddisjoint U C ′ ∈ U c ⊆ C ′D ′ ∈ U d ⊆ D ′ C ′ 6= D ′

proof −
have C ′ ∩ D ′ = {}

using ‹disjoint U › ‹C ′ ∈ U › ‹D ′ ∈ U › ‹C ′ 6= D ′›unfolding disjnt_iff
pairwise_def

by blast
then show ?thesis

using subset_antisym that(1 ) ‹C ′ ∈ U › ‹c ⊆ C ′› ‹d ⊆ D ′› by fastforce
qed

qed
done

theorem invariance_of_domain_Euclidean_space:
assumes U : openin (Euclidean_space n) U
and cmf : continuous_map (subtopology (Euclidean_space n) U ) (Euclidean_space

n) f
and inj_on f U

shows openin (Euclidean_space n) (f ‘ U ) (is openin ?E (f ‘ U ))
proof (cases n = 0 )

case True
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have [simp]: Euclidean_space 0 = discrete_topology {λi. 0}
by (auto simp: subtopology_eq_discrete_topology_sing topspace_Euclidean_space)

show ?thesis
using cmf True U by auto

next
case False
define enorm where enorm ≡ λx. sqrt(

∑
i<n. x i ^ 2 )

have enorm_if [simp]: enorm (λi. if i = k then d else 0 ) = (if k < n then |d|
else 0 ) for k d

using ‹n 6= 0 › by (auto simp: enorm_def power2_eq_square if_distrib [of λx.
x ∗ _] cong: if_cong)

define zero::nat⇒real where zero ≡ λi. 0
have zero_in [simp]: zero ∈ topspace ?E

using False by (simp add: zero_def topspace_Euclidean_space)
have enorm_eq_0 [simp]: enorm x = 0 ←→ x = zero

if x ∈ topspace(Euclidean_space n) for x
using that unfolding zero_def enorm_def

apply (simp add: sum_nonneg_eq_0_iff fun_eq_iff topspace_Euclidean_space)
using le_less_linear by blast

have [simp]: enorm zero = 0
by (simp add: zero_def enorm_def )

have cm_enorm: continuous_map ?E euclideanreal enorm
unfolding enorm_def

proof (intro continuous_intros)
show continuous_map ?E euclideanreal (λx. x i)

if i ∈ {..<n} for i
using that by (auto simp: Euclidean_space_def intro: continuous_map_product_projection

continuous_map_from_subtopology)
qed auto
have enorm_ge0 : 0 ≤ enorm x for x

by (auto simp: enorm_def sum_nonneg)
have le_enorm: |x i| ≤ enorm x if i < n for i x
proof −

have |x i| ≤ sqrt (
∑

k∈{i}. (x k)2)
by auto

also have . . . ≤ sqrt (
∑

k<n. (x k)2)
by (rule real_sqrt_le_mono [OF sum_mono2 ]) (use that in auto)

finally show ?thesis
by (simp add: enorm_def )

qed
define B where B ≡ λr . {x ∈ topspace ?E . enorm x < r}
define C where C ≡ λr . {x ∈ topspace ?E . enorm x ≤ r}
define S where S ≡ λr . {x ∈ topspace ?E . enorm x = r}
have BC : B r ⊆ C r and SC : S r ⊆ C r and disjSB: disjnt (S r) (B r) and

eqC : B r ∪ S r = C r for r
by (auto simp: B_def C_def S_def disjnt_def )

consider n = 1 | n ≥ 2
using False by linarith

then have ∗∗: openin ?E (h ‘ (B r))
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if r > 0 and cmh: continuous_map(subtopology ?E (C r)) ?E h and injh:
inj_on h (C r) for r h

proof cases
case 1
define e :: [real,nat]⇒real where e ≡ λx i. if i = 0 then x else 0
define e ′ :: (nat⇒real)⇒real where e ′ ≡ λx. x 0
have continuous_map euclidean euclideanreal (λf . f (0 ::nat))

by auto
then have continuous_map (subtopology (powertop_real UNIV ) {f . ∀n≥Suc

0 . f n = 0}) euclideanreal (λf . f 0 )
by (metis (mono_tags) continuous_map_from_subtopology euclidean_product_topology)
then have hom_ee ′: homeomorphic_maps euclideanreal (Euclidean_space 1 )

e e ′

by (auto simp: homeomorphic_maps_def e_def e ′_def continuous_map_in_subtopology
Euclidean_space_def )

have eBr : e ‘ {−r<..<r} = B r
unfolding B_def e_def C_def

by(force simp: 1 topspace_Euclidean_space enorm_def power2_eq_square
if_distrib [of λx. x ∗ _] cong: if_cong)

have in_Cr :
∧

x. [[−r < x; x < r ]] =⇒ (λi. if i = 0 then x else 0 ) ∈ C r
using ‹n 6= 0 › by (auto simp: C_def topspace_Euclidean_space)

have inj: inj_on (e ′ ◦ h ◦ e) {− r<..<r}
proof (clarsimp simp: inj_on_def e_def e ′_def )

show (x::real) = y
if f : h (λi. if i = 0 then x else 0 ) 0 = h (λi. if i = 0 then y else 0 ) 0

and −r < x x < r −r < y y < r
for x y :: real

proof −
have x: (λi. if i = 0 then x else 0 ) ∈ C r and y: (λi. if i = 0 then y else

0 ) ∈ C r
by (blast intro: inj_onD [OF ‹inj_on h (C r)›] that in_Cr)+
have continuous_map (subtopology (Euclidean_space (Suc 0 )) (C r))

(Euclidean_space (Suc 0 )) h
using cmh by (simp add: 1 )

then have h ‘ ({x. ∀ i≥Suc 0 . x i = 0} ∩ C r) ⊆ {x. ∀ i≥Suc 0 . x i = 0}
by (force simp: Euclidean_space_def subtopology_subtopology continu-

ous_map_def )
have h (λi. if i = 0 then x else 0 ) j = h (λi. if i = 0 then y else 0 ) j for j
proof (cases j)

case (Suc j ′)
have h ‘ ({x. ∀ i≥Suc 0 . x i = 0} ∩ C r) ⊆ {x. ∀ i≥Suc 0 . x i = 0}

using continuous_map_image_subset_topspace [OF cmh]
by (simp add: 1 Euclidean_space_def subtopology_subtopology)

with Suc f x y show ?thesis
by (simp add: 1 image_subset_iff )

qed (use f in blast)
then have (λi. if i = 0 then x else 0 ) = (λi::nat. if i = 0 then y else 0 )

by (blast intro: inj_onD [OF ‹inj_on h (C r)›] that in_Cr)
then show ?thesis
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by (simp add: fun_eq_iff ) presburger
qed

qed
have hom_e ′: homeomorphic_map (Euclidean_space 1 ) euclideanreal e ′

using hom_ee ′ homeomorphic_maps_map by blast
have openin (Euclidean_space n) (h ‘ e ‘ {− r<..<r})

unfolding 1
proof (subst homeomorphic_map_openness [OF hom_e ′, symmetric])

show hesub: h ‘ e ‘ {− r<..<r} ⊆ topspace (Euclidean_space 1 )
using 1 C_def ‹

∧
r . B r ⊆ C r› cmh continuous_map_image_subset_topspace

eBr by fastforce
have cont: continuous_on {− r<..<r} (e ′ ◦ h ◦ e)
proof (intro continuous_on_compose)

have
∧

i. continuous_on {− r<..<r} (λx. if i = 0 then x else 0 )
by (auto simp: continuous_on_topological)

then show continuous_on {− r<..<r} e
by (force simp: e_def intro: continuous_on_coordinatewise_then_product)
have subCr : e ‘ {− r<..<r} ⊆ topspace (subtopology ?E (C r))

by (auto simp: eBr ‹
∧

r . B r ⊆ C r›) (auto simp: B_def )
with cmh show continuous_on (e ‘ {− r<..<r}) h

by (meson cm_Euclidean_space_iff_continuous_on continuous_on_subset)
have continuous_on (topspace ?E) e ′

by (metis 1 continuous_map_Euclidean_space_iff hom_ee ′ homeomor-
phic_maps_def )

then show continuous_on (h ‘ e ‘ {− r<..<r}) e ′

using hesub by (simp add: 1 e ′_def continuous_on_subset)
qed
show openin euclideanreal (e ′ ‘ h ‘ e ‘ {− r<..<r})

using injective_eq_1d_open_map_UNIV [OF cont] inj by (simp add:
image_image is_interval_1 )

qed
then show ?thesis

by (simp flip: eBr)
next

case 2
have cloC :

∧
r . closedin (Euclidean_space n) (C r)

unfolding C_def
by (rule closedin_continuous_map_preimage [OF cm_enorm, of concl: {.._},

simplified])
have cloS :

∧
r . closedin (Euclidean_space n) (S r)

unfolding S_def
by (rule closedin_continuous_map_preimage [OF cm_enorm, of concl: {_},

simplified])
have C_subset: C r ⊆ UNIV →E {− |r |..|r |}

using le_enorm ‹r > 0 ›
apply (auto simp: C_def topspace_Euclidean_space abs_le_iff )

apply (metis add.inverse_neutral le_cases less_minus_iff not_le order_trans)
by (metis enorm_ge0 not_le order .trans)

have compactinC : compactin (Euclidean_space n) (C r)
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unfolding Euclidean_space_def compactin_subtopology
proof

show compactin (powertop_real UNIV ) (C r)
proof (rule closed_compactin [OF _ C_subset])

show closedin (powertop_real UNIV ) (C r)
by (metis Euclidean_space_def cloC closedin_Euclidean_space closedin_closed_subtopology

topspace_Euclidean_space)
qed (simp add: compactin_PiE)

qed (auto simp: C_def topspace_Euclidean_space)
have compactinS : compactin (Euclidean_space n) (S r)

unfolding Euclidean_space_def compactin_subtopology
proof

show compactin (powertop_real UNIV ) (S r)
proof (rule closed_compactin)

show S r ⊆ UNIV →E {− |r |..|r |}
using C_subset ‹

∧
r . S r ⊆ C r› by blast

show closedin (powertop_real UNIV ) (S r)
by (metis Euclidean_space_def cloS closedin_Euclidean_space closedin_closed_subtopology

topspace_Euclidean_space)
qed (simp add: compactin_PiE)

qed (auto simp: S_def topspace_Euclidean_space)
have h_if_B:

∧
y. y ∈ B r =⇒ h y ∈ topspace ?E

using B_def ‹
∧

r . B r ∪ S r = C r› cmh continuous_map_image_subset_topspace
by fastforce

have com_hSr : compactin (Euclidean_space n) (h ‘ S r)
by (meson ‹

∧
r . S r ⊆ C r› cmh compactinS compactin_subtopology im-

age_compactin)
have ope_comp_hSr : openin (Euclidean_space n) (topspace (Euclidean_space

n) − h ‘ S r)
proof (rule openin_diff )

show closedin (Euclidean_space n) (h ‘ S r)
using Hausdorff_Euclidean_space com_hSr compactin_imp_closedin by

blast
qed auto
have h_pcs: h ‘ (B r) ∈ path_components_of (subtopology ?E (topspace ?E −

h ‘ (S r)))
proof (rule lemmaIOD)
have pc_interval: path_connectedin (Euclidean_space n) {x ∈ topspace(Euclidean_space

n). enorm x ∈ T}
if T : is_interval T for T

proof −
define mul :: [real, nat ⇒ real, nat] ⇒ real where mul ≡ λa x i. a ∗ x i
let ?neg = mul (−1 )
have neg_neg [simp]: ?neg (?neg x) = x for x

by (simp add: mul_def )
have enorm_mul [simp]: enorm(mul a x) = abs a ∗ enorm x for a x

by (simp add: enorm_def mul_def power_mult_distrib) (metis real_sqrt_abs
real_sqrt_mult sum_distrib_left)

have mul_in_top: mul a x ∈ topspace ?E



Invariance_of_Domain.thy 217

if x ∈ topspace ?E for a x
using mul_def that topspace_Euclidean_space by auto

have neg_in_S : ?neg x ∈ S r
if x ∈ S r for x r

using that topspace_Euclidean_space S_def by simp (simp add: mul_def )
have ∗: path_connectedin ?E (S d)

if d ≥ 0 for d
proof (cases d = 0 )

let ?ES = subtopology ?E (S d)
case False
then have d > 0

using that by linarith
moreover have path_connected_space ?ES

unfolding path_connected_space_iff_path_component
proof clarify

have ∗∗: path_component_of ?ES x y
if x: x ∈ topspace ?ES and y: y ∈ topspace ?ES x 6= ?neg y for x y

proof −
show ?thesis

unfolding path_component_of_def pathin_def S_def
proof (intro exI conjI )

let ?g = (λx. mul (d / enorm x) x) ◦ (λt i. (1 − t) ∗ x i + t ∗ y i)
show continuous_map (top_of_set {0 ::real..1}) (subtopology ?E {x

∈ topspace ?E . enorm x = d}) ?g
proof (rule continuous_map_compose)

let ?Y = subtopology ?E (− {zero})
have ∗∗: False

if eq0 :
∧

j. (1 − r) ∗ x j + r ∗ y j = 0
and ne: x i 6= − y i
and d: enorm x = d enorm y = d
and r : 0 ≤ r r ≤ 1

for i r
proof −

have mul (1−r) x = ?neg (mul r y)
using eq0 by (simp add: mul_def fun_eq_iff algebra_simps)

then have enorm (mul (1−r) x) = enorm (?neg (mul r y))
by metis

with r have (1−r) ∗ enorm x = r ∗ enorm y
by simp

then have r12 : r = 1/2
using ‹d 6= 0 › d by auto

show ?thesis
using ne eq0 [of i] unfolding r12 by (simp add: algebra_simps)

qed
show continuous_map (top_of_set {0 ..1}) ?Y (λt i. (1 − t) ∗ x i

+ t ∗ y i)
using x y

unfolding continuous_map_componentwise_UNIV Eu-
clidean_space_def continuous_map_in_subtopology
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apply (intro conjI allI continuous_intros)
apply (auto simp: zero_def mul_def S_def Euclidean_space_def

fun_eq_iff )
using ∗∗ by blast
have cm_enorm ′: continuous_map (subtopology (powertop_real

UNIV ) A) euclideanreal enorm for A
unfolding enorm_def by (intro continuous_intros) auto

have continuous_map ?Y (subtopology ?E {x. enorm x = d}) (λx.
mul (d / enorm x) x)

unfolding continuous_map_in_subtopology
proof (intro conjI )

show continuous_map ?Y (Euclidean_space n) (λx. mul (d /
enorm x) x)

unfolding continuous_map_in_subtopology Euclidean_space_def
mul_def zero_def subtopology_subtopology continuous_map_componentwise_UNIV

proof (intro conjI allI cm_enorm ′ continuous_intros)
show enorm x 6= 0
if x ∈ topspace (subtopology (powertop_real UNIV ) ({x. ∀ i≥n.

x i = 0} ∩ − {λi. 0})) for x
using that by simp (metis abs_le_zero_iff le_enorm not_less)

qed auto
qed (use ‹d > 0 › enorm_ge0 in auto)
moreover have subtopology ?E {x ∈ topspace ?E . enorm x = d}

= subtopology ?E {x. enorm x = d}
by (simp add: subtopology_restrict Collect_conj_eq)

ultimately show continuous_map ?Y (subtopology (Euclidean_space
n) {x ∈ topspace (Euclidean_space n). enorm x = d}) (λx. mul (d / enorm x) x)

by metis
qed
show ?g (0 ::real) = x ?g (1 ::real) = y

using that by (auto simp: S_def zero_def mul_def fun_eq_iff )
qed

qed
obtain a b where a: a ∈ topspace ?ES and b: b ∈ topspace ?ES

and a 6= b and negab: ?neg a 6= b
proof

let ?v = λj i::nat. if i = j then d else 0
show ?v 0 ∈ topspace (subtopology ?E (S d)) ?v 1 ∈ topspace (subtopology

?E (S d))
using ‹n ≥ 2 › ‹d ≥ 0 › by (auto simp: S_def topspace_Euclidean_space)

show ?v 0 6= ?v 1 ?neg (?v 0 ) 6= (?v 1 )
using ‹d > 0 › by (auto simp: mul_def fun_eq_iff )

qed
show path_component_of ?ES x y

if x: x ∈ topspace ?ES and y: y ∈ topspace ?ES
for x y

proof −
have path_component_of ?ES x (?neg x)
proof −
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have path_component_of ?ES x a
by (metis (no_types, opaque_lifting) ∗∗ a b ‹a 6= b› negab

path_component_of_trans path_component_of_sym x)
moreover

have pa_ab: path_component_of ?ES a b using ∗∗ a b negab neg_neg
by blast

then have path_component_of ?ES a (?neg x)
by (metis ∗∗ ‹a 6= b› cloS closedin_def neg_in_S path_component_of_equiv

topspace_subtopology_subset x)
ultimately show ?thesis

by (meson path_component_of_trans)
qed
then show ?thesis

using ∗∗ x y by force
qed

qed
ultimately show ?thesis

by (simp add: cloS closedin_subset path_connectedin_def )
qed (simp add: S_def cong: conj_cong)
have path_component_of (subtopology ?E {x ∈ topspace ?E . enorm x ∈

T}) x y
if enorm x = a x ∈ topspace ?E enorm x ∈ T enorm y = b y ∈ topspace

?E enorm y ∈ T
for x y a b
using that
proof (induction a b arbitrary: x y rule: linorder_less_wlog)

case (less a b)
then have a ≥ 0

using enorm_ge0 by blast
with less.hyps have b > 0

by linarith
show ?case
proof (rule path_component_of_trans)

have y ′_ts: mul (a / b) y ∈ topspace ?E
using ‹y ∈ topspace ?E› mul_in_top by blast

moreover have enorm (mul (a / b) y) = a
unfolding enorm_mul using ‹0 < b› ‹0 ≤ a› less.prems by simp

ultimately have y ′_S : mul (a / b) y ∈ S a
using S_def by blast

have x ∈ S a
using S_def less.prems by blast

with ‹x ∈ topspace ?E› y ′_ts y ′_S
have path_component_of (subtopology ?E (S a)) x (mul (a / b) y)
by (metis ∗ [OF ‹a ≥ 0 ›] path_connected_space_iff_path_component

path_connectedin_def topspace_subtopology_subset)
moreover
have {f ∈ topspace ?E . enorm f = a} ⊆ {f ∈ topspace ?E . enorm f ∈

T}
using ‹enorm x = a› ‹enorm x ∈ T › by force
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ultimately
show path_component_of (subtopology ?E {x. x ∈ topspace ?E ∧

enorm x ∈ T}) x (mul (a / b) y)
by (simp add: S_def path_component_of_mono)

have pathin ?E (λt. mul (((1 − t) ∗ b + t ∗ a) / b) y)
using ‹b > 0 › ‹y ∈ topspace ?E›

unfolding pathin_def Euclidean_space_def mul_def continu-
ous_map_in_subtopology continuous_map_componentwise_UNIV

by (intro allI conjI continuous_intros) auto
moreover have mul (((1 − t) ∗ b + t ∗ a) / b) y ∈ topspace ?E

if t ∈ {0 ..1} for t
using ‹y ∈ topspace ?E› mul_in_top by blast
moreover have enorm (mul (((1 − t) ∗ b + t ∗ a) / b) y) ∈ T

if t ∈ {0 ..1} for t
proof −

have a ∈ T b ∈ T
using less.prems by auto

then have |(1 − t) ∗ b + t ∗ a| ∈ T
proof (rule mem_is_interval_1_I [OF T ])

show a ≤ |(1 − t) ∗ b + t ∗ a|
using that ‹a ≥ 0 › less.hyps segment_bound_lemma by auto

show |(1 − t) ∗ b + t ∗ a| ≤ b
using that ‹a ≥ 0 › less.hyps by (auto intro: convex_bound_le)

qed
then show ?thesis
unfolding enorm_mul ‹enorm y = b› using that ‹b > 0 › by simp

qed
ultimately have pa: pathin (subtopology ?E {x ∈ topspace ?E . enorm

x ∈ T})
(λt. mul (((1 − t) ∗ b + t ∗ a) / b) y)

by (auto simp: pathin_subtopology)
have ex_pathin: ∃ g. pathin (subtopology ?E {x ∈ topspace ?E . enorm

x ∈ T}) g ∧
g 0 = y ∧ g 1 = mul (a / b) y

apply (rule_tac x=λt. mul (((1 − t) ∗ b + t ∗ a) / b) y in exI )
using ‹b > 0 › pa by (auto simp: mul_def )
show path_component_of (subtopology ?E {x. x ∈ topspace ?E ∧

enorm x ∈ T}) (mul (a / b) y) y
by (rule path_component_of_sym) (simp add: path_component_of_def

ex_pathin)
qed

next
case (refl a)
then have pc: path_component_of (subtopology ?E (S (enorm u))) u v

if u ∈ topspace ?E ∩ S (enorm x) v ∈ topspace ?E ∩ S (enorm u) for
u v

using ∗ [of a] enorm_ge0 that
by (auto simp: path_connectedin_def path_connected_space_iff_path_component

S_def )
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have sub: {u ∈ topspace ?E . enorm u = enorm x} ⊆ {u ∈ topspace ?E .
enorm u ∈ T}

using ‹enorm x ∈ T › by auto
show ?case
using pc [of x y] refl by (auto simp: S_def path_component_of_mono

[OF _ sub])
next

case (sym a b)
then show ?case

by (blast intro: path_component_of_sym)
qed

then show ?thesis
by (simp add: path_connectedin_def path_connected_space_iff_path_component)

qed
have h ‘ S r ⊆ topspace ?E

by (meson SC cmh compact_imp_compactin_subtopology compactinS com-
pactin_subset_topspace image_compactin)

moreover
have ¬ compact_space ?E

by (metis compact_Euclidean_space ‹n 6= 0 ›)
then have ¬ compactin ?E (topspace ?E)

by (simp add: compact_space_def topspace_Euclidean_space)
then have h ‘ S r 6= topspace ?E

using com_hSr by auto
ultimately have top_hSr_ne: topspace (subtopology ?E (topspace ?E − h ‘

S r)) 6= {}
by auto

show pc1 : ∃T . T ∈ path_components_of (subtopology ?E (topspace ?E − h
‘ S r)) ∧ h ‘ B r ⊆ T

proof (rule exists_path_component_of_superset [OF _ top_hSr_ne])
have path_connectedin ?E (h ‘ B r)
proof (rule path_connectedin_continuous_map_image)

show continuous_map (subtopology ?E (C r)) ?E h
by (simp add: cmh)

have path_connectedin ?E (B r)
using pc_interval[of {..<r}] is_interval_convex_1 unfolding B_def

by auto
then show path_connectedin (subtopology ?E (C r)) (B r)

by (simp add: path_connectedin_subtopology BC )
qed
moreover have h ‘ B r ⊆ topspace ?E − h ‘ S r

apply (auto simp: h_if_B)
by (metis BC SC disjSB disjnt_iff inj_onD [OF injh] subsetD)

ultimately show path_connectedin (subtopology ?E (topspace ?E − h ‘ S
r)) (h ‘ B r)

by (simp add: path_connectedin_subtopology)
qed metis
show ∃T . T ∈ path_components_of (subtopology ?E (topspace ?E − h ‘ S

r)) ∧ topspace ?E − h ‘ (C r) ⊆ T
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proof (rule exists_path_component_of_superset [OF _ top_hSr_ne])
have eq: topspace ?E − {x ∈ topspace ?E . enorm x ≤ r} = {x ∈ topspace

?E . r < enorm x}
by auto

have path_connectedin ?E (topspace ?E − C r)
using pc_interval[of {r<..}] is_interval_convex_1 unfolding C_def eq

by auto
then have path_connectedin ?E (topspace ?E − h ‘ C r)

by (metis biglemma [OF ‹n 6= 0 › compactinC cmh injh])
then show path_connectedin (subtopology ?E (topspace ?E − h ‘ S r))

(topspace ?E − h ‘ C r)
by (simp add: Diff_mono SC image_mono path_connectedin_subtopology)

qed metis
have topspace ?E ∩ (topspace ?E − h ‘ S r) = h ‘ B r ∪ (topspace ?E − h ‘

C r) (is ?lhs = ?rhs)
proof

show ?lhs ⊆ ?rhs
using ‹

∧
r . B r ∪ S r = C r› by auto

have h ‘ B r ∩ h ‘ S r = {}
by (metis Diff_triv ‹

∧
r . B r ∪ S r = C r› ‹

∧
r . disjnt (S r) (B r)›

disjnt_def inf_commute inj_on_Un injh)
then show ?rhs ⊆ ?lhs

using path_components_of_subset pc1 ‹
∧

r . B r ∪ S r = C r›
by (fastforce simp add: h_if_B)

qed
then show

⋃
(path_components_of (subtopology ?E (topspace ?E − h ‘ S

r))) = h ‘ B r ∪ (topspace ?E − h ‘ (C r))
by (simp add: Union_path_components_of )

show T 6= {}
if T ∈ path_components_of (subtopology ?E (topspace ?E − h ‘ S r)) for T
using that by (simp add: nonempty_path_components_of )

show disjoint (path_components_of (subtopology ?E (topspace ?E − h ‘ S
r)))

by (simp add: pairwise_disjoint_path_components_of )
have ¬ path_connectedin ?E (topspace ?E − h ‘ S r)
proof (subst biglemma [OF ‹n 6= 0 › compactinS ])

show continuous_map (subtopology ?E (S r)) ?E h
by (metis Un_commute Un_upper1 cmh continuous_map_from_subtopology_mono

eqC )
show inj_on h (S r)

using SC inj_on_subset injh by blast
show ¬ path_connectedin ?E (topspace ?E − S r)
proof

have topspace ?E − S r = {x ∈ topspace ?E . enorm x 6= r}
by (auto simp: S_def )

moreover have enorm ‘ {x ∈ topspace ?E . enorm x 6= r} = {0 ..} − {r}
proof

have ∃ x. x ∈ topspace ?E ∧ enorm x 6= r ∧ d = enorm x
if d 6= r d ≥ 0 for d
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proof (intro exI conjI )
show (λi. if i = 0 then d else 0 ) ∈ topspace ?E

using ‹n 6= 0 › by (auto simp: Euclidean_space_def )
show enorm (λi. if i = 0 then d else 0 ) 6= r d = enorm (λi. if i = 0

then d else 0 )
using ‹n 6= 0 › that by simp_all

qed
then show {0 ..} − {r} ⊆ enorm ‘ {x ∈ topspace ?E . enorm x 6= r}

by (auto simp: image_def )
qed (auto simp: enorm_ge0 )
ultimately have non_r : enorm ‘ (topspace ?E − S r) = {0 ..} − {r}

by simp
have ∃ x≥0 . x 6= r ∧ r ≤ x

by (metis gt_ex le_cases not_le order_trans)
then have ¬ is_interval ({0 ..} − {r})

unfolding is_interval_1
using ‹r > 0 › by (auto simp: Bex_def )

then show False
if path_connectedin ?E (topspace ?E − S r)
using path_connectedin_continuous_map_image [OF cm_enorm that]

by (simp add: is_interval_path_connected_1 non_r)
qed

qed
then have ¬ path_connected_space (subtopology ?E (topspace ?E − h ‘ S r))

by (simp add: path_connectedin_def )
then show @T . path_components_of (subtopology ?E (topspace ?E − h ‘ S

r)) ⊆ {T}
by (simp add: path_components_of_subset_singleton)

qed
moreover have openin ?E A

if A ∈ path_components_of (subtopology ?E (topspace ?E − h ‘ (S r))) for
A

using locally_path_connected_Euclidean_space [of n] that ope_comp_hSr
by (simp add: locally_path_connected_space_open_path_components)

ultimately show ?thesis by metis
qed
have ∃T . openin ?E T ∧ f x ∈ T ∧ T ⊆ f ‘ U

if x ∈ U for x
proof −

have x: x ∈ topspace ?E
by (meson U in_mono openin_subset that)

obtain V where V : openin (powertop_real UNIV ) V and Ueq: U = V ∩ {x.
∀ i≥n. x i = 0}

using U by (auto simp: openin_subtopology Euclidean_space_def )
with ‹x ∈ U › have x ∈ V by blast
then obtain T where Tfin: finite {i. T i 6= UNIV } and Topen:

∧
i. open (T

i)
and Tx: x ∈ PiE UNIV T and TV : PiE UNIV T ⊆ V
using V by (force simp: openin_product_topology_alt)
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have ∃ e>0 . ∀ x ′. |x ′ − x i| < e −→ x ′ ∈ T i for i
using Topen [of i] Tx by (auto simp: open_real)

then obtain β where B0 :
∧

i. β i > 0 and BT :
∧

i x ′. |x ′ − x i| < β i =⇒
x ′ ∈ T i

by metis
define r where r ≡ Min (insert 1 (β ‘ {i. T i 6= UNIV }))
have r > 0

by (simp add: B0 Tfin r_def )
have inU : y ∈ U

if y: y ∈ topspace ?E and yxr :
∧

i. i<n =⇒ |y i − x i| < r for y
proof −

have y i ∈ T i for i
proof (cases T i = UNIV )

show y i ∈ T i if T i 6= UNIV
proof (cases i < n)

case True
then show ?thesis

using yxr [OF True] that by (simp add: r_def BT Tfin)
next

case False
then show ?thesis
using B0 Ueq ‹x ∈ U › topspace_Euclidean_space y by (force intro: BT )

qed
qed auto
with TV have y ∈ V by auto
then show ?thesis

using that by (auto simp: Ueq topspace_Euclidean_space)
qed
have xinU : (λi. x i + y i) ∈ U if y ∈ C (r/2 ) for y
proof (rule inU )

have y: y ∈ topspace ?E
using C_def that by blast

show (λi. x i + y i) ∈ topspace ?E
using x y by (simp add: topspace_Euclidean_space)

have enorm y ≤ r/2
using that by (simp add: C_def )

then show |x i + y i − x i| < r if i < n for i
using le_enorm enorm_ge0 that ‹0 < r› leI order_trans by fastforce

qed
show ?thesis
proof (intro exI conjI )

show openin ?E ((f ◦ (λy i. x i + y i)) ‘ B (r/2 ))
proof (rule ∗∗)

have continuous_map (subtopology ?E (C (r/2 ))) (subtopology ?E U ) (λy
i. x i + y i)

by (auto simp: xinU continuous_map_in_subtopology
intro!: continuous_intros continuous_map_Euclidean_space_add x)

then show continuous_map (subtopology ?E (C (r/2 ))) ?E (f ◦ (λy i. x i
+ y i))
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by (rule continuous_map_compose) (simp add: cmf )
show inj_on (f ◦ (λy i. x i + y i)) (C (r/2 ))
proof (clarsimp simp add: inj_on_def C_def topspace_Euclidean_space

simp del: divide_const_simps)
show y ′ = y

if ey: enorm y ≤ r / 2 and ey ′: enorm y ′ ≤ r / 2
and y0 : ∀ i≥n. y i = 0 and y ′0 : ∀ i≥n. y ′ i = 0
and feq: f (λi. x i + y ′ i) = f (λi. x i + y i)

for y ′ y :: nat ⇒ real
proof −

have (λi. x i + y i) ∈ U
proof (rule inU )

show (λi. x i + y i) ∈ topspace ?E
using topspace_Euclidean_space x y0 by auto

show |x i + y i − x i| < r if i < n for i
using ey le_enorm [of _ y] ‹r > 0 › that by fastforce

qed
moreover have (λi. x i + y ′ i) ∈ U
proof (rule inU )

show (λi. x i + y ′ i) ∈ topspace ?E
using topspace_Euclidean_space x y ′0 by auto

show |x i + y ′ i − x i| < r if i < n for i
using ey ′ le_enorm [of _ y ′] ‹r > 0 › that by fastforce

qed
ultimately have (λi. x i + y ′ i) = (λi. x i + y i)

using feq by (meson ‹inj_on f U › inj_on_def )
then show ?thesis

by (auto simp: fun_eq_iff )
qed

qed
qed (simp add: ‹0 < r›)
have x ∈ (λy i. x i + y i) ‘ B (r / 2 )
proof

show x = (λi. x i + zero i)
by (simp add: zero_def )

qed (auto simp: B_def ‹r > 0 ›)
then show f x ∈ (f ◦ (λy i. x i + y i)) ‘ B (r/2 )

by (metis image_comp image_eqI )
show (f ◦ (λy i. x i + y i)) ‘ B (r/2 ) ⊆ f ‘ U

using ‹
∧

r . B r ⊆ C r› xinU by fastforce
qed

qed
then show ?thesis

using openin_subopen by force
qed

corollary invariance_of_domain_Euclidean_space_embedding_map:
assumes openin (Euclidean_space n) U
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and cmf : continuous_map(subtopology (Euclidean_space n) U ) (Euclidean_space
n) f

and inj_on f U
shows embedding_map(subtopology (Euclidean_space n) U ) (Euclidean_space

n) f
proof (rule injective_open_imp_embedding_map [OF cmf ])

show open_map (subtopology (Euclidean_space n) U ) (Euclidean_space n) f
unfolding open_map_def
by (meson assms continuous_map_from_subtopology_mono inj_on_subset

invariance_of_domain_Euclidean_space openin_imp_subset openin_trans_full)
show inj_on f (topspace (subtopology (Euclidean_space n) U ))

using assms openin_subset topspace_subtopology_subset by fastforce
qed

corollary invariance_of_domain_Euclidean_space_gen:
assumes n ≤ m and U : openin (Euclidean_space m) U
and cmf : continuous_map(subtopology (Euclidean_space m) U ) (Euclidean_space

n) f
and inj_on f U

shows openin (Euclidean_space n) (f ‘ U )
proof −
have ∗: Euclidean_space n = subtopology (Euclidean_space m) (topspace(Euclidean_space

n))
by (metis Euclidean_space_def ‹n ≤ m› inf .absorb_iff2 subset_Euclidean_space

subtopology_subtopology topspace_Euclidean_space)
then have openin (Euclidean_space m) (f ‘ U )
by (metis ∗ U assms(4 ) cmf continuous_map_in_subtopology invariance_of_domain_Euclidean_space)

moreover have U ⊆ topspace (subtopology (Euclidean_space m) U )
by (metis U inf .absorb_iff2 openin_subset openin_subtopology openin_topspace)

ultimately show ?thesis
by (metis ∗ cmf continuous_map_image_subset_topspace dual_order .antisym

openin_imp_subset openin_topspace subset_openin_subtopology)
qed

corollary invariance_of_domain_Euclidean_space_embedding_map_gen:
assumes n ≤ m and U : openin (Euclidean_space m) U
and cmf : continuous_map(subtopology (Euclidean_space m) U ) (Euclidean_space

n) f
and inj_on f U

shows embedding_map(subtopology (Euclidean_space m) U ) (Euclidean_space
n) f

proof (rule injective_open_imp_embedding_map [OF cmf ])
show open_map (subtopology (Euclidean_space m) U ) (Euclidean_space n) f
by (meson U ‹n ≤ m› ‹inj_on f U › cmf continuous_map_from_subtopology_mono

invariance_of_domain_Euclidean_space_gen open_map_def openin_open_subtopology
inj_on_subset)

show inj_on f (topspace (subtopology (Euclidean_space m) U ))
using assms openin_subset topspace_subtopology_subset by fastforce

qed
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0.4.3 Relating two variants of Euclidean space, one within
product topology.

proposition homeomorphic_maps_Euclidean_space_euclidean_gen_OLD:
fixes B :: ′n::euclidean_space set
assumes finite B independent B and orth: pairwise orthogonal B and n: card B

= n
obtains f g where homeomorphic_maps (Euclidean_space n) (top_of_set (span

B)) f g
proof −

note representation_basis [OF ‹independent B›, simp]
obtain b where injb: inj_on b {..<n} and beq: b ‘ {..<n} = B

using finite_imp_nat_seg_image_inj_on [OF ‹finite B›]
by (metis n card_Collect_less_nat card_image lessThan_def )

then have biB:
∧

i. i < n =⇒ b i ∈ B
by force

have repr :
∧

v. v ∈ span B =⇒ (
∑

i<n. representation B v (b i) ∗R b i) = v
using real_vector .sum_representation_eq [OF ‹independent B› _ ‹finite B›]
by (metis (no_types, lifting) injb beq order_refl sum.reindex_cong)

let ?f = λx.
∑

i<n. x i ∗R b i
let ?g = λv i. if i < n then representation B v (b i) else 0
show thesis
proof

show homeomorphic_maps (Euclidean_space n) (top_of_set (span B)) ?f ?g
unfolding homeomorphic_maps_def

proof (intro conjI )
have ∗: continuous_map euclidean (top_of_set (span B)) ?f

by (metis (mono_tags) biB continuous_map_span_sum lessThan_iff )
show continuous_map (Euclidean_space n) (top_of_set (span B)) ?f

unfolding Euclidean_space_def
by (rule continuous_map_from_subtopology) (simp add: euclidean_product_topology

∗)
show continuous_map (top_of_set (span B)) (Euclidean_space n) ?g

unfolding Euclidean_space_def
by (auto simp: continuous_map_in_subtopology continuous_map_componentwise_UNIV

continuous_on_representation ‹independent B› biB orth pairwise_orthogonal_imp_finite)
have [simp]:

∧
x i. i<n =⇒ x i ∗R b i ∈ span B

by (simp add: biB span_base span_scale)
have representation B (?f x) (b j) = x j

if 0 : ∀ i≥n. x i = (0 ::real) and j < n for x j
proof −

have representation B (?f x) (b j) = (
∑

i<n. representation B (x i ∗R b i)
(b j))

by (subst real_vector .representation_sum) (auto simp add: ‹independent
B›)

also have ... = (
∑

i<n. x i ∗ representation B (b i) (b j))
by (simp add: assms(2 ) biB representation_scale span_base)

also have ... = (
∑

i<n. if b j = b i then x i else 0 )
by (simp add: biB if_distrib cong: if_cong)

also have ... = x j
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using that inj_on_eq_iff [OF injb] by auto
finally show ?thesis .

qed
then show ∀ x∈topspace (Euclidean_space n). ?g (?f x) = x

by (auto simp: Euclidean_space_def )
show ∀ y∈topspace (top_of_set (span B)). ?f (?g y) = y

using repr by (auto simp: Euclidean_space_def )
qed

qed
qed

proposition homeomorphic_maps_Euclidean_space_euclidean_gen:
fixes B :: ′n::euclidean_space set
assumes independent B and orth: pairwise orthogonal B and n: card B = n

and 1 :
∧

u. u ∈ B =⇒ norm u = 1
obtains f g where homeomorphic_maps (Euclidean_space n) (top_of_set (span

B)) f g
and

∧
x. x ∈ topspace (Euclidean_space n) =⇒ (norm (f x))2 = (

∑
i<n. (x

i)2)
proof −

note representation_basis [OF ‹independent B›, simp]
have finite B

using ‹independent B› finiteI_independent by metis
obtain b where injb: inj_on b {..<n} and beq: b ‘ {..<n} = B

using finite_imp_nat_seg_image_inj_on [OF ‹finite B›]
by (metis n card_Collect_less_nat card_image lessThan_def )

then have biB:
∧

i. i < n =⇒ b i ∈ B
by force

have 0 /∈ B
using ‹independent B› dependent_zero by blast

have [simp]: b i · b j = (if j = i then 1 else 0 )
if i < n j < n for i j

proof (cases i = j)
case True
with 1 that show ?thesis

by (auto simp: norm_eq_sqrt_inner biB)
next

case False
then have b i 6= b j

by (meson inj_onD injb lessThan_iff that)
then show ?thesis
using orth by (auto simp: orthogonal_def pairwise_def norm_eq_sqrt_inner

that biB)
qed
have [simp]:

∧
x i. i<n =⇒ x i ∗R b i ∈ span B

by (simp add: biB span_base span_scale)
have repr :

∧
v. v ∈ span B =⇒ (

∑
i<n. representation B v (b i) ∗R b i) = v

using real_vector .sum_representation_eq [OF ‹independent B› _ ‹finite B›]
by (metis (no_types, lifting) injb beq order_refl sum.reindex_cong)
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define f where f ≡ λx.
∑

i<n. x i ∗R b i
define g where g ≡ λv i. if i < n then representation B v (b i) else 0

show thesis
proof

show homeomorphic_maps (Euclidean_space n) (top_of_set (span B)) f g
unfolding homeomorphic_maps_def

proof (intro conjI )
have ∗: continuous_map euclidean (top_of_set (span B)) f

unfolding f_def
by (rule continuous_map_span_sum) (use biB ‹0 /∈ B› in auto)

show continuous_map (Euclidean_space n) (top_of_set (span B)) f
unfolding Euclidean_space_def

by (rule continuous_map_from_subtopology) (simp add: euclidean_product_topology
∗)

show continuous_map (top_of_set (span B)) (Euclidean_space n) g
unfolding Euclidean_space_def g_def

by (auto simp: continuous_map_in_subtopology continuous_map_componentwise_UNIV
continuous_on_representation ‹independent B› biB orth pairwise_orthogonal_imp_finite)

have representation B (f x) (b j) = x j
if 0 : ∀ i≥n. x i = (0 ::real) and j < n for x j

proof −
have representation B (f x) (b j) = (

∑
i<n. representation B (x i ∗R b i)

(b j))
unfolding f_def
by (subst real_vector .representation_sum) (auto simp add: ‹independent

B›)
also have ... = (

∑
i<n. x i ∗ representation B (b i) (b j))

by (simp add: ‹independent B› biB representation_scale span_base)
also have ... = (

∑
i<n. if b j = b i then x i else 0 )

by (simp add: biB if_distrib cong: if_cong)
also have ... = x j

using that inj_on_eq_iff [OF injb] by auto
finally show ?thesis .

qed
then show ∀ x∈topspace (Euclidean_space n). g (f x) = x

by (auto simp: Euclidean_space_def f_def g_def )
show ∀ y∈topspace (top_of_set (span B)). f (g y) = y

using repr by (auto simp: Euclidean_space_def f_def g_def )
qed

show normeq: (norm (f x))2 = (
∑

i<n. (x i)2) if x ∈ topspace (Euclidean_space
n) for x

unfolding f_def dot_square_norm [symmetric]
by (simp add: power2_eq_square inner_sum_left inner_sum_right if_distrib

biB cong: if_cong)
qed

qed

corollary homeomorphic_maps_Euclidean_space_euclidean:
obtains f :: (nat ⇒ real) ⇒ ′n::euclidean_space and g
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where homeomorphic_maps (Euclidean_space (DIM ( ′n))) euclidean f g
by (force intro: homeomorphic_maps_Euclidean_space_euclidean_gen [OF in-

dependent_Basis orthogonal_Basis refl norm_Basis])

lemma homeomorphic_maps_nsphere_euclidean_sphere:
fixes B :: ′n::euclidean_space set
assumes B: independent B and orth: pairwise orthogonal B and n: card B = n

and n 6= 0
and 1 :

∧
u. u ∈ B =⇒ norm u = 1

obtains f :: (nat ⇒ real) ⇒ ′n::euclidean_space and g
where homeomorphic_maps (nsphere(n − 1 )) (top_of_set (sphere 0 1 ∩ span

B)) f g
proof −

have finite B
using ‹independent B› finiteI_independent by metis

obtain f g where fg: homeomorphic_maps (Euclidean_space n) (top_of_set
(span B)) f g

and normf :
∧

x. x ∈ topspace (Euclidean_space n) =⇒ (norm (f x))2 = (
∑

i<n.
(x i)2)

using homeomorphic_maps_Euclidean_space_euclidean_gen [OF B orth n 1 ]
by blast

obtain b where injb: inj_on b {..<n} and beq: b ‘ {..<n} = B
using finite_imp_nat_seg_image_inj_on [OF ‹finite B›]
by (metis n card_Collect_less_nat card_image lessThan_def )

then have biB:
∧

i. i < n =⇒ b i ∈ B
by force

have [simp]:
∧

i. i < n =⇒ b i 6= 0
using ‹independent B› biB dependent_zero by fastforce

have [simp]: b i · b j = (if j = i then (norm (b i))2 else 0 )
if i < n j < n for i j

proof (cases i = j)
case False
then have b i 6= b j

by (meson inj_onD injb lessThan_iff that)
then show ?thesis
using orth by (auto simp: orthogonal_def pairwise_def norm_eq_sqrt_inner

that biB)
qed (auto simp: norm_eq_sqrt_inner)
have [simp]: Suc (n − Suc 0 ) = n

using Suc_pred ‹n 6= 0 › by blast
then have [simp]: {..card B − Suc 0} = {..<card B}

using n by fastforce
show thesis
proof

have 1 : norm (f x) = 1
if (

∑
i<card B. (x i)2) = (1 ::real) x ∈ topspace (Euclidean_space n) for x

proof −
have norm (f x)^2 = 1

using normf that by (simp add: n)
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with that show ?thesis
by (simp add: power2_eq_imp_eq)

qed
have homeomorphic_maps (nsphere (n − 1 )) (top_of_set (span B ∩ sphere 0

1 )) f g
unfolding nsphere_def subtopology_subtopology [symmetric]
proof (rule homeomorphic_maps_subtopologies_alt)

show homeomorphic_maps (Euclidean_space (Suc (n − 1 ))) (top_of_set (span
B)) f g

using fg by (force simp add: )
show f ‘ (topspace (Euclidean_space (Suc (n − 1 ))) ∩ {x. (

∑
i≤n − 1 . (x i)2)

= 1}) ⊆ sphere 0 1
using n by (auto simp: image_subset_iff Euclidean_space_def 1 )

have (
∑

i≤n − Suc 0 . (g u i)2) = 1
if u ∈ span B and norm (u:: ′n) = 1 for u

proof −
obtain v where [simp]: u = f v v ∈ topspace (Euclidean_space n)

using fg unfolding homeomorphic_maps_map subset_iff
by (metis ‹u ∈ span B› homeomorphic_imp_surjective_map image_eqI

topspace_euclidean_subtopology)
then have [simp]: g (f v) = v

by (meson fg homeomorphic_maps_map)
have fv21 : norm (f v) ^ 2 = 1

using that by simp
show ?thesis

using that normf fv21 ‹v ∈ topspace (Euclidean_space n)› n by force
qed
then show g ‘ (topspace (top_of_set (span B)) ∩ sphere 0 1 ) ⊆ {x. (

∑
i≤n

− 1 . (x i)2) = 1}
by auto

qed
then show homeomorphic_maps (nsphere(n − 1 )) (top_of_set (sphere 0 1 ∩

span B)) f g
by (simp add: inf_commute)

qed
qed

0.4.4 Invariance of dimension and domain
lemma homeomorphic_maps_iff_homeomorphism [simp]:

homeomorphic_maps (top_of_set S) (top_of_set T ) f g ←→ homeomorphism
S T f g

by (force simp: Pi_iff homeomorphic_maps_def homeomorphism_def )

lemma homeomorphic_space_iff_homeomorphic [simp]:
(top_of_set S) homeomorphic_space (top_of_set T ) ←→ S homeomorphic T

by (simp add: homeomorphic_def homeomorphic_space_def )

lemma homeomorphic_subspace_Euclidean_space:
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fixes S :: ′a::euclidean_space set
assumes subspace S
shows top_of_set S homeomorphic_space Euclidean_space n ←→ dim S = n

proof −
obtain B where B: B ⊆ S independent B span B = S card B = dim S

and orth: pairwise orthogonal B and 1 :
∧

x. x ∈ B =⇒ norm x = 1
by (metis assms orthonormal_basis_subspace)

then have finite B
by (simp add: pairwise_orthogonal_imp_finite)

have top_of_set S homeomorphic_space top_of_set (span B)
unfolding homeomorphic_space_iff_homeomorphic
by (auto simp: assms B intro: homeomorphic_subspaces)

also have . . . homeomorphic_space Euclidean_space (dim S)
unfolding homeomorphic_space_def
using homeomorphic_maps_Euclidean_space_euclidean_gen [OF ‹indepen-

dent B› orth] homeomorphic_maps_sym 1 B
by metis

finally have top_of_set S homeomorphic_space Euclidean_space (dim S) .
then show ?thesis
using homeomorphic_space_sym homeomorphic_space_trans invariance_of_dimension_Euclidean_space

by blast
qed

lemma homeomorphic_subspace_Euclidean_space_dim:
fixes S :: ′a::euclidean_space set
assumes subspace S
shows top_of_set S homeomorphic_space Euclidean_space (dim S)
by (simp add: homeomorphic_subspace_Euclidean_space assms)

lemma homeomorphic_subspaces_eq:
fixes S T :: ′a::euclidean_space set
assumes subspace S subspace T
shows S homeomorphic T ←→ dim S = dim T

proof
show dim S = dim T

if S homeomorphic T
proof −

have Euclidean_space (dim S) homeomorphic_space top_of_set S
using ‹subspace S› homeomorphic_space_sym homeomorphic_subspace_Euclidean_space_dim

by blast
also have . . . homeomorphic_space top_of_set T

by (simp add: that)
also have . . . homeomorphic_space Euclidean_space (dim T )

by (simp add: homeomorphic_subspace_Euclidean_space assms)
finally have Euclidean_space (dim S) homeomorphic_space Euclidean_space

(dim T ) .
then show ?thesis

by (simp add: invariance_of_dimension_Euclidean_space)
qed
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next
show S homeomorphic T

if dim S = dim T
by (metis that assms homeomorphic_subspaces)

qed

lemma homeomorphic_affine_Euclidean_space:
assumes affine S
shows top_of_set S homeomorphic_space Euclidean_space n ←→ aff_dim S =

n
(is ?X homeomorphic_space ?E ←→ aff_dim S = n)

proof (cases S = {})
case True
with assms show ?thesis

using homeomorphic_empty_space nontrivial_Euclidean_space by fastforce
next

case False
then obtain a where a ∈ S

by force
have (?X homeomorphic_space ?E)

= (top_of_set (image (λx. −a + x) S) homeomorphic_space ?E)
proof

show top_of_set ((+) (− a) ‘ S) homeomorphic_space ?E
if ?X homeomorphic_space ?E
using that

by (meson homeomorphic_space_iff_homeomorphic homeomorphic_space_sym
homeomorphic_space_trans homeomorphic_translation)

show ?X homeomorphic_space ?E
if top_of_set ((+) (− a) ‘ S) homeomorphic_space ?E
using that

by (meson homeomorphic_space_iff_homeomorphic homeomorphic_space_trans
homeomorphic_translation)

qed
also have . . . ←→ aff_dim S = n
by (metis ‹a ∈ S› aff_dim_eq_dim affine_diffs_subspace affine_hull_eq assms

homeomorphic_subspace_Euclidean_space of_nat_eq_iff )
finally show ?thesis .

qed

corollary invariance_of_domain_subspaces:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes ope: openin (top_of_set U ) S

and subspace U subspace V and VU : dim V ≤ dim U
and contf : continuous_on S f and fim: f ∈ S → V
and injf : inj_on f S

shows openin (top_of_set V ) (f ‘ S)
proof −

have S ⊆ U
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using openin_imp_subset [OF ope] .
have Uhom: top_of_set U homeomorphic_space Euclidean_space (dim U )
and Vhom: top_of_set V homeomorphic_space Euclidean_space (dim V )
by (simp_all add: assms homeomorphic_subspace_Euclidean_space_dim)

then obtain ϕ ϕ ′ where hom: homeomorphic_maps (top_of_set U ) (Euclidean_space
(dim U )) ϕ ϕ ′

by (auto simp: homeomorphic_space_def )
obtain ψ ψ ′ where ψ: homeomorphic_map (top_of_set V ) (Euclidean_space

(dim V )) ψ
and ψ ′ψ: ∀ x∈V . ψ ′ (ψ x) = x

using Vhom by (auto simp: homeomorphic_space_def homeomorphic_maps_map)
have ((ψ ◦ f ◦ ϕ ′) o ϕ) ‘ S = (ψ o f ) ‘ S
proof (rule image_cong [OF refl])

show (ψ ◦ f ◦ ϕ ′ ◦ ϕ) x = (ψ ◦ f ) x if x ∈ S for x
using that unfolding o_def

by (metis ‹S ⊆ U › hom homeomorphic_maps_map in_mono topspace_euclidean_subtopology)
qed
moreover
have openin (Euclidean_space (dim V )) ((ψ ◦ f ◦ ϕ ′) ‘ ϕ ‘ S)
proof (rule invariance_of_domain_Euclidean_space_gen [OF VU ])

show openin (Euclidean_space (dim U )) (ϕ ‘ S)
using homeomorphic_map_openness_eq hom homeomorphic_maps_map ope

by blast
show continuous_map (subtopology (Euclidean_space (dim U )) (ϕ ‘ S)) (Euclidean_space

(dim V )) (ψ ◦ f ◦ ϕ ′)
proof (intro continuous_map_compose)

have continuous_on ({x. ∀ i≥dim U . x i = 0} ∩ ϕ ‘ S) ϕ ′

if continuous_on {x. ∀ i≥dim U . x i = 0} ϕ ′

using that by (force elim: continuous_on_subset)
moreover have ϕ ′ ∈ ({x. ∀ i≥dim U . x i = 0} ∩ ϕ ‘ S) → S

if ∀ x∈U . ϕ ′ (ϕ x) = x
using that ‹S ⊆ U › by fastforce

ultimately show continuous_map (subtopology (Euclidean_space (dim U ))
(ϕ ‘ S)) (top_of_set S) ϕ ′

using hom unfolding homeomorphic_maps_def
by (simp add: Euclidean_space_def subtopology_subtopology euclidean_product_topology)
show continuous_map (top_of_set S) (top_of_set V ) f

by (simp add: contf fim)
show continuous_map (top_of_set V ) (Euclidean_space (dim V )) ψ

by (simp add: ψ homeomorphic_imp_continuous_map)
qed
show inj_on (ψ ◦ f ◦ ϕ ′) (ϕ ‘ S)

using injf hom ‹S ⊆ U › ψ ′ψ fim
by (simp add: inj_on_def homeomorphic_maps_map Pi_iff ) (metis subsetD)

qed
ultimately have openin (Euclidean_space (dim V )) (ψ ‘ f ‘ S)

by (simp add: image_comp)
with fim show ?thesis

by (auto simp: homeomorphic_map_openness_eq [OF ψ])
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qed

lemma invariance_of_domain:
fixes f :: ′a ⇒ ′a::euclidean_space
assumes continuous_on S f open S inj_on f S shows open(f ‘ S)
using invariance_of_domain_subspaces [of UNIV S UNIV ] assms by (force

simp add: )

corollary invariance_of_dimension_subspaces:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes ope: openin (top_of_set U ) S

and subspace U subspace V
and contf : continuous_on S f and fim: f ‘ S ⊆ V
and injf : inj_on f S and S 6= {}

shows dim U ≤ dim V
proof −

have False if dim V < dim U
proof −

obtain T where subspace T T ⊆ U dim T = dim V
using choose_subspace_of_subspace [of dim V U ]

by (metis ‹dim V < dim U › assms(2 ) order .strict_implies_order span_eq_iff )
then have V homeomorphic T

by (simp add: ‹subspace V › homeomorphic_subspaces)
then obtain h k where homhk: homeomorphism V T h k

using homeomorphic_def by blast
have continuous_on S (h ◦ f )

by (meson contf continuous_on_compose continuous_on_subset fim homeo-
morphism_cont1 homhk)

moreover have (h ◦ f ) ‘ S ⊆ U
using ‹T ⊆ U › fim homeomorphism_image1 homhk by fastforce

moreover have inj_on (h ◦ f ) S
apply (clarsimp simp: inj_on_def )

by (metis fim homeomorphism_apply1 homhk image_subset_iff inj_onD injf )
ultimately have ope_hf : openin (top_of_set U ) ((h ◦ f ) ‘ S)

using invariance_of_domain_subspaces [OF ope ‹subspace U › ‹subspace U ›]
by blast

have (h ◦ f ) ‘ S ⊆ T
using fim homeomorphism_image1 homhk by fastforce

then have dim ((h ◦ f ) ‘ S) ≤ dim T
by (rule dim_subset)

also have dim ((h ◦ f ) ‘ S) = dim U
using ‹S 6= {}› ‹subspace U ›
by (blast intro: dim_openin ope_hf )

finally show False
using ‹dim V < dim U › ‹dim T = dim V › by simp

qed
then show ?thesis

using not_less by blast
qed
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corollary invariance_of_domain_affine_sets:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes ope: openin (top_of_set U ) S

and aff : affine U affine V aff_dim V ≤ aff_dim U
and contf : continuous_on S f and fim: f ‘ S ⊆ V
and injf : inj_on f S

shows openin (top_of_set V ) (f ‘ S)
proof (cases S = {})

case False
obtain a b where a ∈ S a ∈ U b ∈ V

using False fim ope openin_contains_cball by fastforce
have openin (top_of_set ((+) (− b) ‘ V )) (((+) (− b) ◦ f ◦ (+) a) ‘ (+) (− a)

‘ S)
proof (rule invariance_of_domain_subspaces)

show openin (top_of_set ((+) (− a) ‘ U )) ((+) (− a) ‘ S)
by (metis ope homeomorphism_imp_open_map homeomorphism_translation

translation_galois)
show subspace ((+) (− a) ‘ U )

by (simp add: ‹a ∈ U › affine_diffs_subspace_subtract ‹affine U › cong:
image_cong_simp)

show subspace ((+) (− b) ‘ V )
by (simp add: ‹b ∈ V › affine_diffs_subspace_subtract ‹affine V › cong:

image_cong_simp)
show dim ((+) (− b) ‘ V ) ≤ dim ((+) (− a) ‘ U )
by (metis ‹a ∈ U › ‹b ∈ V › aff_dim_eq_dim affine_hull_eq aff of_nat_le_iff )
show continuous_on ((+) (− a) ‘ S) ((+) (− b) ◦ f ◦ (+) a)

by (metis contf continuous_on_compose homeomorphism_cont2 homeomor-
phism_translation translation_galois)

show ((+) (− b) ◦ f ◦ (+) a) ∈ (+) (− a) ‘ S → (+) (− b) ‘ V
using fim by auto

show inj_on ((+) (− b) ◦ f ◦ (+) a) ((+) (− a) ‘ S)
by (auto simp: inj_on_def ) (meson inj_onD injf )

qed
then show ?thesis

by (metis (no_types, lifting) homeomorphism_imp_open_map homeomor-
phism_translation image_comp translation_galois)
qed auto

corollary invariance_of_dimension_affine_sets:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes ope: openin (top_of_set U ) S

and aff : affine U affine V
and contf : continuous_on S f and fim: f ‘ S ⊆ V
and injf : inj_on f S and S 6= {}

shows aff_dim U ≤ aff_dim V
proof −

obtain a b where a ∈ S a ∈ U b ∈ V
using ‹S 6= {}› fim ope openin_contains_cball by fastforce
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have dim ((+) (− a) ‘ U ) ≤ dim ((+) (− b) ‘ V )
proof (rule invariance_of_dimension_subspaces)

show openin (top_of_set ((+) (− a) ‘ U )) ((+) (− a) ‘ S)
by (metis ope homeomorphism_imp_open_map homeomorphism_translation

translation_galois)
show subspace ((+) (− a) ‘ U )

by (simp add: ‹a ∈ U › affine_diffs_subspace_subtract ‹affine U › cong:
image_cong_simp)

show subspace ((+) (− b) ‘ V )
by (simp add: ‹b ∈ V › affine_diffs_subspace_subtract ‹affine V › cong:

image_cong_simp)
show continuous_on ((+) (− a) ‘ S) ((+) (− b) ◦ f ◦ (+) a)

by (metis contf continuous_on_compose homeomorphism_cont2 homeomor-
phism_translation translation_galois)

show ((+) (− b) ◦ f ◦ (+) a) ‘ (+) (− a) ‘ S ⊆ (+) (− b) ‘ V
using fim by auto

show inj_on ((+) (− b) ◦ f ◦ (+) a) ((+) (− a) ‘ S)
by (auto simp: inj_on_def ) (meson inj_onD injf )

qed (use ‹S 6= {}› in auto)
then show ?thesis
by (metis ‹a ∈ U › ‹b ∈ V › aff_dim_eq_dim affine_hull_eq aff of_nat_le_iff )

qed

corollary invariance_of_dimension:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes contf : continuous_on S f and open S

and injf : inj_on f S and S 6= {}
shows DIM ( ′a) ≤ DIM ( ′b)

using invariance_of_dimension_subspaces [of UNIV S UNIV f ] assms
by auto

corollary continuous_injective_image_subspace_dim_le:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes subspace S subspace T

and contf : continuous_on S f and fim: f ‘ S ⊆ T
and injf : inj_on f S

shows dim S ≤ dim T
apply (rule invariance_of_dimension_subspaces [of S S _ f ])
using assms by (auto simp: subspace_affine)

lemma invariance_of_dimension_convex_domain:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes convex S

and contf : continuous_on S f and fim: f ‘ S ⊆ affine hull T
and injf : inj_on f S

shows aff_dim S ≤ aff_dim T
proof (cases S = {})

case True
then show ?thesis by (simp add: aff_dim_geq)
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next
case False
have aff_dim (affine hull S) ≤ aff_dim (affine hull T )
proof (rule invariance_of_dimension_affine_sets)

show openin (top_of_set (affine hull S)) (rel_interior S)
by (simp add: openin_rel_interior)

show continuous_on (rel_interior S) f
using contf continuous_on_subset rel_interior_subset by blast

show f ‘ rel_interior S ⊆ affine hull T
using fim rel_interior_subset by blast

show inj_on f (rel_interior S)
using inj_on_subset injf rel_interior_subset by blast

show rel_interior S 6= {}
by (simp add: False ‹convex S› rel_interior_eq_empty)

qed auto
then show ?thesis

by simp
qed

lemma homeomorphic_convex_sets_le:
assumes convex S S homeomorphic T
shows aff_dim S ≤ aff_dim T

proof −
obtain h k where homhk: homeomorphism S T h k

using homeomorphic_def assms by blast
show ?thesis
proof (rule invariance_of_dimension_convex_domain [OF ‹convex S›])

show continuous_on S h
using homeomorphism_def homhk by blast

show h ‘ S ⊆ affine hull T
by (metis homeomorphism_def homhk hull_subset)

show inj_on h S
by (meson homeomorphism_apply1 homhk inj_on_inverseI )

qed
qed

lemma homeomorphic_convex_sets:
assumes convex S convex T S homeomorphic T
shows aff_dim S = aff_dim T
by (meson assms dual_order .antisym homeomorphic_convex_sets_le homeomor-

phic_sym)

lemma homeomorphic_convex_compact_sets_eq:
assumes convex S compact S convex T compact T
shows S homeomorphic T ←→ aff_dim S = aff_dim T
by (meson assms homeomorphic_convex_compact_sets homeomorphic_convex_sets)

lemma invariance_of_domain_gen:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
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assumes open S continuous_on S f inj_on f S DIM ( ′b) ≤ DIM ( ′a)
shows open(f ‘ S)

using invariance_of_domain_subspaces [of UNIV S UNIV f ] assms by auto

lemma injective_into_1d_imp_open_map_UNIV :
fixes f :: ′a::euclidean_space ⇒ real
assumes open T continuous_on S f inj_on f S T ⊆ S

shows open (f ‘ T )
apply (rule invariance_of_domain_gen [OF ‹open T ›])
using assms apply (auto simp: elim: continuous_on_subset inj_on_subset)
done

lemma continuous_on_inverse_open:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes open S continuous_on S f DIM ( ′b) ≤ DIM ( ′a) and gf :

∧
x. x ∈ S =⇒

g(f x) = x
shows continuous_on (f ‘ S) g

proof (clarsimp simp add: continuous_openin_preimage_eq)
fix T :: ′a set
assume open T
have eq: f ‘ S ∩ g −‘ T = f ‘ (S ∩ T )

by (auto simp: gf )
have openin (top_of_set (f ‘ S)) (f ‘ (S ∩ T ))
proof (rule open_openin_trans [OF invariance_of_domain_gen])

show inj_on f S
using inj_on_inverseI gf by auto

show open (f ‘ (S ∩ T ))
by (meson ‹inj_on f S› ‹open T › assms(1−3 ) continuous_on_subset inf_le1

inj_on_subset invariance_of_domain_gen open_Int)
qed (use assms in auto)
then show openin (top_of_set (f ‘ S)) (f ‘ S ∩ g −‘ T )

by (simp add: eq)
qed

lemma invariance_of_domain_homeomorphism:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes open S continuous_on S f DIM ( ′b) ≤ DIM ( ′a) inj_on f S
obtains g where homeomorphism S (f ‘ S) f g

proof
show homeomorphism S (f ‘ S) f (inv_into S f )

by (simp add: assms continuous_on_inverse_open homeomorphism_def )
qed

corollary invariance_of_domain_homeomorphic:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes open S continuous_on S f DIM ( ′b) ≤ DIM ( ′a) inj_on f S
shows S homeomorphic (f ‘ S)
using invariance_of_domain_homeomorphism [OF assms]
by (meson homeomorphic_def )
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lemma continuous_image_subset_interior :
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes continuous_on S f inj_on f S DIM ( ′b) ≤ DIM ( ′a)
shows f ‘ (interior S) ⊆ interior(f ‘ S)

proof (rule interior_maximal)
show f ‘ interior S ⊆ f ‘ S

by (simp add: image_mono interior_subset)
show open (f ‘ interior S)

using assms
by (auto simp: inj_on_subset interior_subset continuous_on_subset invari-

ance_of_domain_gen)
qed

lemma homeomorphic_interiors_same_dimension:
fixes S :: ′a::euclidean_space set and T :: ′b::euclidean_space set
assumes S homeomorphic T and dimeq: DIM ( ′a) = DIM ( ′b)
shows (interior S) homeomorphic (interior T )
using assms [unfolded homeomorphic_minimal]
unfolding homeomorphic_def

proof (clarify elim!: ex_forward)
fix f g
assume S : ∀ x∈S . f x ∈ T ∧ g (f x) = x and T : ∀ y∈T . g y ∈ S ∧ f (g y) = y

and contf : continuous_on S f and contg: continuous_on T g
then have fST : f ‘ S = T and gTS : g ‘ T = S and inj_on f S inj_on g T

by (auto simp: inj_on_def intro: rev_image_eqI ) metis+
have fim: f ‘ interior S ⊆ interior T

using continuous_image_subset_interior [OF contf ‹inj_on f S›] dimeq fST
by simp

have gim: g ‘ interior T ⊆ interior S
using continuous_image_subset_interior [OF contg ‹inj_on g T ›] dimeq gTS

by simp
show homeomorphism (interior S) (interior T ) f g

unfolding homeomorphism_def
proof (intro conjI ballI )

show
∧

x. x ∈ interior S =⇒ g (f x) = x
by (meson ‹∀ x∈S . f x ∈ T ∧ g (f x) = x› subsetD interior_subset)

have interior T ⊆ f ‘ interior S
proof

fix x assume x ∈ interior T
then have g x ∈ interior S

using gim by blast
then show x ∈ f ‘ interior S

by (metis T ‹x ∈ interior T › image_iff interior_subset subsetCE)
qed
then show f ‘ interior S = interior T

using fim by blast
show continuous_on (interior S) f

by (metis interior_subset continuous_on_subset contf )
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show
∧

y. y ∈ interior T =⇒ f (g y) = y
by (meson T subsetD interior_subset)

have interior S ⊆ g ‘ interior T
proof

fix x assume x ∈ interior S
then have f x ∈ interior T

using fim by blast
then show x ∈ g ‘ interior T

by (metis S ‹x ∈ interior S› image_iff interior_subset subsetCE)
qed
then show g ‘ interior T = interior S

using gim by blast
show continuous_on (interior T ) g

by (metis interior_subset continuous_on_subset contg)
qed

qed

lemma homeomorphic_open_imp_same_dimension:
fixes S :: ′a::euclidean_space set and T :: ′b::euclidean_space set
assumes S homeomorphic T open S S 6= {} open T T 6= {}
shows DIM ( ′a) = DIM ( ′b)

using assms
apply (simp add: homeomorphic_minimal)
apply (rule order_antisym; metis inj_onI invariance_of_dimension)
done

proposition homeomorphic_interiors:
fixes S :: ′a::euclidean_space set and T :: ′b::euclidean_space set
assumes S homeomorphic T interior S = {} ←→ interior T = {}

shows (interior S) homeomorphic (interior T )
proof (cases interior T = {})

case True
with assms show ?thesis by auto

next
case False
then have DIM ( ′a) = DIM ( ′b)

using assms
apply (simp add: homeomorphic_minimal)

apply (rule order_antisym; metis continuous_on_subset inj_onI inj_on_subset
interior_subset invariance_of_dimension open_interior)

done
then show ?thesis
by (rule homeomorphic_interiors_same_dimension [OF ‹S homeomorphic T ›])

qed

lemma homeomorphic_frontiers_same_dimension:
fixes S :: ′a::euclidean_space set and T :: ′b::euclidean_space set
assumes S homeomorphic T closed S closed T and dimeq: DIM ( ′a) = DIM ( ′b)
shows (frontier S) homeomorphic (frontier T )
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using assms [unfolded homeomorphic_minimal]
unfolding homeomorphic_def

proof (clarify elim!: ex_forward)
fix f g
assume S : ∀ x∈S . f x ∈ T ∧ g (f x) = x and T : ∀ y∈T . g y ∈ S ∧ f (g y) = y

and contf : continuous_on S f and contg: continuous_on T g
then have fST : f ‘ S = T and gTS : g ‘ T = S and inj_on f S inj_on g T

by (auto simp: inj_on_def intro: rev_image_eqI ) metis+
have g ‘ interior T ⊆ interior S

using continuous_image_subset_interior [OF contg ‹inj_on g T ›] dimeq gTS
by simp

then have fim: f ‘ frontier S ⊆ frontier T
apply (simp add: frontier_def )
using continuous_image_subset_interior assms(2 ) assms(3 ) S by auto

have f ‘ interior S ⊆ interior T
using continuous_image_subset_interior [OF contf ‹inj_on f S›] dimeq fST

by simp
then have gim: g ‘ frontier T ⊆ frontier S

apply (simp add: frontier_def )
using continuous_image_subset_interior T assms(2 ) assms(3 ) by auto

show homeomorphism (frontier S) (frontier T ) f g
unfolding homeomorphism_def

proof (intro conjI ballI )
show gf :

∧
x. x ∈ frontier S =⇒ g (f x) = x

by (simp add: S assms(2 ) frontier_def )
show fg:

∧
y. y ∈ frontier T =⇒ f (g y) = y

by (simp add: T assms(3 ) frontier_def )
have frontier T ⊆ f ‘ frontier S
proof

fix x assume x ∈ frontier T
then have g x ∈ frontier S

using gim by blast
then show x ∈ f ‘ frontier S

by (metis fg ‹x ∈ frontier T › imageI )
qed
then show f ‘ frontier S = frontier T

using fim by blast
show continuous_on (frontier S) f

by (metis Diff_subset assms(2 ) closure_eq contf continuous_on_subset fron-
tier_def )

have frontier S ⊆ g ‘ frontier T
proof

fix x assume x ∈ frontier S
then have f x ∈ frontier T

using fim by blast
then show x ∈ g ‘ frontier T

by (metis gf ‹x ∈ frontier S› imageI )
qed
then show g ‘ frontier T = frontier S
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using gim by blast
show continuous_on (frontier T ) g

by (metis Diff_subset assms(3 ) closure_closed contg continuous_on_subset
frontier_def )

qed
qed

lemma homeomorphic_frontiers:
fixes S :: ′a::euclidean_space set and T :: ′b::euclidean_space set
assumes S homeomorphic T closed S closed T

interior S = {} ←→ interior T = {}
shows (frontier S) homeomorphic (frontier T )

proof (cases interior T = {})
case True
then show ?thesis

by (metis Diff_empty assms closure_eq frontier_def )
next

case False
show ?thesis

apply (rule homeomorphic_frontiers_same_dimension)
apply (simp_all add: assms)

using False assms homeomorphic_interiors homeomorphic_open_imp_same_dimension
by blast
qed

lemma continuous_image_subset_rel_interior :
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes contf : continuous_on S f and injf : inj_on f S and fim: f ‘ S ⊆ T

and TS : aff_dim T ≤ aff_dim S
shows f ‘ (rel_interior S) ⊆ rel_interior(f ‘ S)

proof (rule rel_interior_maximal)
show f ‘ rel_interior S ⊆ f ‘ S

by(simp add: image_mono rel_interior_subset)
show openin (top_of_set (affine hull f ‘ S)) (f ‘ rel_interior S)
proof (rule invariance_of_domain_affine_sets)

show openin (top_of_set (affine hull S)) (rel_interior S)
by (simp add: openin_rel_interior)

show aff_dim (affine hull f ‘ S) ≤ aff_dim (affine hull S)
by (metis aff_dim_affine_hull aff_dim_subset fim TS order_trans)

show f ‘ rel_interior S ⊆ affine hull f ‘ S
by (meson ‹f ‘ rel_interior S ⊆ f ‘ S› hull_subset order_trans)

show continuous_on (rel_interior S) f
using contf continuous_on_subset rel_interior_subset by blast

show inj_on f (rel_interior S)
using inj_on_subset injf rel_interior_subset by blast

qed auto
qed

lemma homeomorphic_rel_interiors_same_dimension:
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fixes S :: ′a::euclidean_space set and T :: ′b::euclidean_space set
assumes S homeomorphic T and aff : aff_dim S = aff_dim T
shows (rel_interior S) homeomorphic (rel_interior T )
using assms [unfolded homeomorphic_minimal]
unfolding homeomorphic_def

proof (clarify elim!: ex_forward)
fix f g
assume S : ∀ x∈S . f x ∈ T ∧ g (f x) = x and T : ∀ y∈T . g y ∈ S ∧ f (g y) = y

and contf : continuous_on S f and contg: continuous_on T g
then have fST : f ‘ S = T and gTS : g ‘ T = S and inj_on f S inj_on g T

by (auto simp: inj_on_def intro: rev_image_eqI ) metis+
have fim: f ‘ rel_interior S ⊆ rel_interior T

by (metis ‹inj_on f S› aff contf continuous_image_subset_rel_interior fST
order_refl)

have gim: g ‘ rel_interior T ⊆ rel_interior S
by (metis ‹inj_on g T › aff contg continuous_image_subset_rel_interior gTS

order_refl)
show homeomorphism (rel_interior S) (rel_interior T ) f g

unfolding homeomorphism_def
proof (intro conjI ballI )

show gf :
∧

x. x ∈ rel_interior S =⇒ g (f x) = x
using S rel_interior_subset by blast

show fg:
∧

y. y ∈ rel_interior T =⇒ f (g y) = y
using T mem_rel_interior_ball by blast

have rel_interior T ⊆ f ‘ rel_interior S
proof

fix x assume x ∈ rel_interior T
then have g x ∈ rel_interior S

using gim by blast
then show x ∈ f ‘ rel_interior S

by (metis fg ‹x ∈ rel_interior T › imageI )
qed
moreover have f ‘ rel_interior S ⊆ rel_interior T

by (metis ‹inj_on f S› aff contf continuous_image_subset_rel_interior fST
order_refl)

ultimately show f ‘ rel_interior S = rel_interior T
by blast

show continuous_on (rel_interior S) f
using contf continuous_on_subset rel_interior_subset by blast

have rel_interior S ⊆ g ‘ rel_interior T
proof

fix x assume x ∈ rel_interior S
then have f x ∈ rel_interior T

using fim by blast
then show x ∈ g ‘ rel_interior T

by (metis gf ‹x ∈ rel_interior S› imageI )
qed
then show g ‘ rel_interior T = rel_interior S

using gim by blast
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show continuous_on (rel_interior T ) g
using contg continuous_on_subset rel_interior_subset by blast

qed
qed

lemma homeomorphic_rel_interiors:
fixes S :: ′a::euclidean_space set and T :: ′b::euclidean_space set
assumes S homeomorphic T rel_interior S = {} ←→ rel_interior T = {}

shows (rel_interior S) homeomorphic (rel_interior T )
proof (cases rel_interior T = {})

case True
with assms show ?thesis by auto

next
case False
obtain f g

where S : ∀ x∈S . f x ∈ T ∧ g (f x) = x and T : ∀ y∈T . g y ∈ S ∧ f (g y) = y
and contf : continuous_on S f and contg: continuous_on T g

using assms [unfolded homeomorphic_minimal] by auto
have aff_dim (affine hull S) ≤ aff_dim (affine hull T )

apply (rule invariance_of_dimension_affine_sets [of _ rel_interior S _ f ])
apply (simp_all add: openin_rel_interior False assms)

using contf continuous_on_subset rel_interior_subset apply blast
apply (meson S hull_subset image_subsetI rel_interior_subset rev_subsetD)

apply (metis S inj_on_inverseI inj_on_subset rel_interior_subset)
done

moreover have aff_dim (affine hull T ) ≤ aff_dim (affine hull S)
apply (rule invariance_of_dimension_affine_sets [of _ rel_interior T _ g])

apply (simp_all add: openin_rel_interior False assms)
using contg continuous_on_subset rel_interior_subset apply blast
apply (meson T hull_subset image_subsetI rel_interior_subset rev_subsetD)

apply (metis T inj_on_inverseI inj_on_subset rel_interior_subset)
done

ultimately have aff_dim S = aff_dim T by force
then show ?thesis

by (rule homeomorphic_rel_interiors_same_dimension [OF ‹S homeomorphic
T ›])
qed

lemma homeomorphic_rel_boundaries_same_dimension:
fixes S :: ′a::euclidean_space set and T :: ′b::euclidean_space set
assumes S homeomorphic T and aff : aff_dim S = aff_dim T
shows (S − rel_interior S) homeomorphic (T − rel_interior T )
using assms [unfolded homeomorphic_minimal]
unfolding homeomorphic_def

proof (clarify elim!: ex_forward)
fix f g
assume S : ∀ x∈S . f x ∈ T ∧ g (f x) = x and T : ∀ y∈T . g y ∈ S ∧ f (g y) = y

and contf : continuous_on S f and contg: continuous_on T g
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then have fST : f ‘ S = T and gTS : g ‘ T = S and inj_on f S inj_on g T
by (auto simp: inj_on_def intro: rev_image_eqI ) metis+

have fim: f ‘ rel_interior S ⊆ rel_interior T
by (metis ‹inj_on f S› aff contf continuous_image_subset_rel_interior fST

order_refl)
have gim: g ‘ rel_interior T ⊆ rel_interior S

by (metis ‹inj_on g T › aff contg continuous_image_subset_rel_interior gTS
order_refl)

show homeomorphism (S − rel_interior S) (T − rel_interior T ) f g
unfolding homeomorphism_def

proof (intro conjI ballI )
show gf :

∧
x. x ∈ S − rel_interior S =⇒ g (f x) = x

using S rel_interior_subset by blast
show fg:

∧
y. y ∈ T − rel_interior T =⇒ f (g y) = y

using T mem_rel_interior_ball by blast
show f ‘ (S − rel_interior S) = T − rel_interior T

using S fST fim gim by auto
show continuous_on (S − rel_interior S) f

using contf continuous_on_subset rel_interior_subset by blast
show g ‘ (T − rel_interior T ) = S − rel_interior S

using T gTS gim fim by auto
show continuous_on (T − rel_interior T ) g

using contg continuous_on_subset rel_interior_subset by blast
qed

qed

lemma homeomorphic_rel_boundaries:
fixes S :: ′a::euclidean_space set and T :: ′b::euclidean_space set
assumes S homeomorphic T rel_interior S = {} ←→ rel_interior T = {}

shows (S − rel_interior S) homeomorphic (T − rel_interior T )
proof (cases rel_interior T = {})

case True
with assms show ?thesis by auto

next
case False
obtain f g

where S : ∀ x∈S . f x ∈ T ∧ g (f x) = x and T : ∀ y∈T . g y ∈ S ∧ f (g y) = y
and contf : continuous_on S f and contg: continuous_on T g

using assms [unfolded homeomorphic_minimal] by auto
have aff_dim (affine hull S) ≤ aff_dim (affine hull T )

apply (rule invariance_of_dimension_affine_sets [of _ rel_interior S _ f ])
apply (simp_all add: openin_rel_interior False assms)

using contf continuous_on_subset rel_interior_subset apply blast
apply (meson S hull_subset image_subsetI rel_interior_subset rev_subsetD)

apply (metis S inj_on_inverseI inj_on_subset rel_interior_subset)
done

moreover have aff_dim (affine hull T ) ≤ aff_dim (affine hull S)
apply (rule invariance_of_dimension_affine_sets [of _ rel_interior T _ g])

apply (simp_all add: openin_rel_interior False assms)
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using contg continuous_on_subset rel_interior_subset apply blast
apply (meson T hull_subset image_subsetI rel_interior_subset rev_subsetD)

apply (metis T inj_on_inverseI inj_on_subset rel_interior_subset)
done

ultimately have aff_dim S = aff_dim T by force
then show ?thesis

by (rule homeomorphic_rel_boundaries_same_dimension [OF ‹S homeomor-
phic T ›])
qed

proposition uniformly_continuous_homeomorphism_UNIV_trivial:
fixes f :: ′a::euclidean_space ⇒ ′a
assumes contf : uniformly_continuous_on S f and hom: homeomorphism S

UNIV f g
shows S = UNIV

proof (cases S = {})
case True
then show ?thesis

by (metis UNIV_I hom empty_iff homeomorphism_def image_eqI )
next

case False
have inj g

by (metis UNIV_I hom homeomorphism_apply2 injI )
then have open (g ‘ UNIV )

by (blast intro: invariance_of_domain hom homeomorphism_cont2 )
then have open S

using hom homeomorphism_image2 by blast
moreover have complete S

unfolding complete_def
proof clarify

fix σ
assume σ: ∀n. σ n ∈ S and Cauchy σ
have Cauchy (f o σ)

using uniformly_continuous_imp_Cauchy_continuous ‹Cauchy σ› σ contf
unfolding Cauchy_continuous_on_def by blast

then obtain l where (f ◦ σ) −−−−→ l
by (auto simp: convergent_eq_Cauchy [symmetric])

show ∃ l∈S . σ −−−−→ l
proof

show g l ∈ S
using hom homeomorphism_image2 by blast

have (g ◦ (f ◦ σ)) −−−−→ g l
by (meson UNIV_I ‹(f ◦ σ) −−−−→ l› continuous_on_sequentially hom

homeomorphism_cont2 )
then show σ −−−−→ g l
proof −

have ∀n. σ n = (g ◦ (f ◦ σ)) n
by (metis (no_types) σ comp_eq_dest_lhs hom homeomorphism_apply1 )

then show ?thesis
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by (metis (no_types) LIMSEQ_iff ‹(g ◦ (f ◦ σ)) −−−−→ g l›)
qed

qed
qed
then have closed S

by (simp add: complete_eq_closed)
ultimately show ?thesis

using clopen [of S ] False by simp
qed

proposition invariance_of_domain_sphere_affine_set_gen:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes contf : continuous_on S f and injf : inj_on f S and fim: f ‘ S ⊆ T

and U : bounded U convex U
and affine T and affTU : aff_dim T < aff_dim U
and ope: openin (top_of_set (rel_frontier U )) S

shows openin (top_of_set T ) (f ‘ S)
proof (cases rel_frontier U = {})

case True
then show ?thesis

using ope openin_subset by force
next

case False
obtain b c where b: b ∈ rel_frontier U and c: c ∈ rel_frontier U and b 6= c

using ‹bounded U › rel_frontier_not_sing [of U ] subset_singletonD False by
fastforce

obtain V :: ′a set where affine V and affV : aff_dim V = aff_dim U − 1
proof (rule choose_affine_subset [OF affine_UNIV ])

show − 1 ≤ aff_dim U − 1
by (metis aff_dim_empty aff_dim_geq aff_dim_negative_iff affTU diff_0

diff_right_mono not_le)
show aff_dim U − 1 ≤ aff_dim (UNIV :: ′a set)

by (metis aff_dim_UNIV aff_dim_le_DIM le_cases not_le zle_diff1_eq)
qed auto
have SU : S ⊆ rel_frontier U

using ope openin_imp_subset by auto
have homb: rel_frontier U − {b} homeomorphic V
and homc: rel_frontier U − {c} homeomorphic V
using homeomorphic_punctured_sphere_affine_gen [of U _ V ]
by (simp_all add: ‹affine V › affV U b c)

then obtain g h j k
where gh: homeomorphism (rel_frontier U − {b}) V g h

and jk: homeomorphism (rel_frontier U − {c}) V j k
by (auto simp: homeomorphic_def )

with SU have hgsub: (h ‘ g ‘ (S − {b})) ⊆ S and kjsub: (k ‘ j ‘ (S − {c})) ⊆ S
by (simp_all add: homeomorphism_def subset_eq)

have [simp]: aff_dim T ≤ aff_dim V
by (simp add: affTU affV )

have openin (top_of_set T ) ((f ◦ h) ‘ g ‘ (S − {b}))
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proof (rule invariance_of_domain_affine_sets [OF _ ‹affine V ›])
show openin (top_of_set V ) (g ‘ (S − {b}))

apply (rule homeomorphism_imp_open_map [OF gh])
by (meson Diff_mono Diff_subset SU ope openin_delete openin_subset_trans

order_refl)
show continuous_on (g ‘ (S − {b})) (f ◦ h)

apply (rule continuous_on_compose)
apply (meson Diff_mono SU homeomorphism_def homeomorphism_of_subsets

gh set_eq_subset)
using contf continuous_on_subset hgsub by blast

show inj_on (f ◦ h) (g ‘ (S − {b}))
using kjsub
apply (clarsimp simp add: inj_on_def )
by (metis SU b homeomorphism_def inj_onD injf insert_Diff insert_iff gh

rev_subsetD)
show (f ◦ h) ‘ g ‘ (S − {b}) ⊆ T

by (metis fim image_comp image_mono hgsub subset_trans)
qed (auto simp: assms)
moreover
have openin (top_of_set T ) ((f ◦ k) ‘ j ‘ (S − {c}))
proof (rule invariance_of_domain_affine_sets [OF _ ‹affine V ›])

show openin (top_of_set V ) (j ‘ (S − {c}))
apply (rule homeomorphism_imp_open_map [OF jk])

by (meson Diff_mono Diff_subset SU ope openin_delete openin_subset_trans
order_refl)

show continuous_on (j ‘ (S − {c})) (f ◦ k)
apply (rule continuous_on_compose)

apply (meson Diff_mono SU homeomorphism_def homeomorphism_of_subsets
jk set_eq_subset)

using contf continuous_on_subset kjsub by blast
show inj_on (f ◦ k) (j ‘ (S − {c}))

using kjsub
apply (clarsimp simp add: inj_on_def )
by (metis SU c homeomorphism_def inj_onD injf insert_Diff insert_iff jk

rev_subsetD)
show (f ◦ k) ‘ j ‘ (S − {c}) ⊆ T

by (metis fim image_comp image_mono kjsub subset_trans)
qed (auto simp: assms)
ultimately have openin (top_of_set T ) ((f ◦ h) ‘ g ‘ (S − {b}) ∪ ((f ◦ k) ‘ j

‘ (S − {c})))
by (rule openin_Un)

moreover have (f ◦ h) ‘ g ‘ (S − {b}) = f ‘ (S − {b})
proof −

have h ‘ g ‘ (S − {b}) = (S − {b})
proof

show h ‘ g ‘ (S − {b}) ⊆ S − {b}
using homeomorphism_apply1 [OF gh] SU
by (fastforce simp add: image_iff image_subset_iff )

show S − {b} ⊆ h ‘ g ‘ (S − {b})
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using SU gh homeomorphism_apply1 [of ‹(rel_frontier U − {b})› V g h]
by (auto simp add: image_iff ) (metis DiffI singletonD subsetD)

qed
then show ?thesis

by (metis image_comp)
qed
moreover have (f ◦ k) ‘ j ‘ (S − {c}) = f ‘ (S − {c})
proof −

have k ‘ j ‘ (S − {c}) = (S − {c})
proof

show k ‘ j ‘ (S − {c}) ⊆ S − {c}
using homeomorphism_apply1 [OF jk] SU
by (fastforce simp add: image_iff image_subset_iff )

show S − {c} ⊆ k ‘ j ‘ (S − {c})
using SU jk homeomorphism_apply1 [of ‹(rel_frontier U − {c})› V j k]
by (auto simp add: image_iff ) (metis DiffI singletonD subsetD)

qed
then show ?thesis

by (metis image_comp)
qed
moreover have f ‘ (S − {b}) ∪ f ‘ (S − {c}) = f ‘ (S)

using ‹b 6= c› by blast
ultimately show ?thesis

by simp
qed

lemma invariance_of_domain_sphere_affine_set:
fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes contf : continuous_on S f and injf : inj_on f S and fim: f ‘ S ⊆ T

and r 6= 0 affine T and affTU : aff_dim T < DIM ( ′a)
and ope: openin (top_of_set (sphere a r)) S

shows openin (top_of_set T ) (f ‘ S)
proof (cases sphere a r = {})

case True
then show ?thesis

using ope openin_subset by force
next

case False
show ?thesis
proof (rule invariance_of_domain_sphere_affine_set_gen [OF contf injf fim

bounded_cball convex_cball ‹affine T ›])
show aff_dim T < aff_dim (cball a r)
by (metis False affTU aff_dim_cball assms(4 ) linorder_cases sphere_empty)

show openin (top_of_set (rel_frontier (cball a r))) S
by (simp add: ‹r 6= 0 › ope)

qed
qed

lemma no_embedding_sphere_lowdim:



Invariance_of_Domain.thy 251

fixes f :: ′a::euclidean_space ⇒ ′b::euclidean_space
assumes contf : continuous_on (sphere a r) f and injf : inj_on f (sphere a r)

and r > 0
shows DIM ( ′a) ≤ DIM ( ′b)

proof −
have False if DIM ( ′a) > DIM ( ′b)
proof −

have compact (f ‘ sphere a r)
using compact_continuous_image
by (simp add: compact_continuous_image contf )

then have ¬ open (f ‘ sphere a r)
using compact_open

by (metis assms(3 ) image_is_empty not_less_iff_gr_or_eq sphere_eq_empty)
then show False
using invariance_of_domain_sphere_affine_set [OF contf injf subset_UNIV ]

‹r > 0 ›
by (metis aff_dim_UNIV affine_UNIV less_irrefl of_nat_less_iff open_openin

openin_subtopology_self subtopology_UNIV that)
qed
then show ?thesis

using not_less by blast
qed

lemma empty_interior_lowdim_gen:
fixes S :: ′N ::euclidean_space set and T :: ′M ::euclidean_space set
assumes dim: DIM ( ′M ) < DIM ( ′N ) and ST : S homeomorphic T
shows interior S = {}

proof −
obtain h :: ′M ⇒ ′N where linear h

∧
x. norm(h x) = norm x

by (rule isometry_subset_subspace [OF subspace_UNIV subspace_UNIV , where
? ′a = ′M and ? ′b = ′N ])

(use dim in auto)
then have inj h

by (metis linear_inj_iff_eq_0 norm_eq_zero)
then have h ‘ T homeomorphic T

using ‹linear h› homeomorphic_sym linear_homeomorphic_image by blast
then have interior (h ‘ T ) homeomorphic interior S

using homeomorphic_interiors_same_dimension
by (metis ST homeomorphic_sym homeomorphic_trans)

moreover
have interior (range h) = {}

by (simp add: ‹inj h› ‹linear h› dim dim_image_eq empty_interior_lowdim)
then have interior (h ‘ T ) = {}

by (metis image_mono interior_mono subset_empty top_greatest)
ultimately show ?thesis

by simp
qed

lemma empty_interior_lowdim_gen_le:
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fixes S :: ′N ::euclidean_space set and T :: ′M ::euclidean_space set
assumes DIM ( ′M ) ≤ DIM ( ′N ) interior T = {} S homeomorphic T
shows interior S = {}
by (metis assms empty_interior_lowdim_gen homeomorphic_empty(1 ) homeo-

morphic_interiors_same_dimension less_le)

lemma homeomorphic_affine_sets_eq:
fixes S :: ′a::euclidean_space set and T :: ′b::euclidean_space set
assumes affine S affine T
shows S homeomorphic T ←→ aff_dim S = aff_dim T

proof (cases S = {} ∨ T = {})
case True
then show ?thesis

using assms homeomorphic_affine_sets by force
next

case False
then obtain a b where a ∈ S b ∈ T

by blast
then have subspace ((+) (− a) ‘ S) subspace ((+) (− b) ‘ T )

using affine_diffs_subspace assms by blast+
then show ?thesis

by (metis affine_imp_convex assms homeomorphic_affine_sets homeomor-
phic_convex_sets)
qed

lemma homeomorphic_hyperplanes_eq:
fixes a :: ′M ::euclidean_space and c :: ′N ::euclidean_space
assumes a 6= 0 c 6= 0
shows ({x. a · x = b} homeomorphic {x. c · x = d} ←→ DIM ( ′M ) = DIM ( ′N ))

(is ?lhs = ?rhs)
proof −

have (DIM ( ′M ) − Suc 0 = DIM ( ′N ) − Suc 0 ) ←→ (DIM ( ′M ) = DIM ( ′N ))
by auto (metis DIM_positive Suc_pred)

then show ?thesis
using assms by (simp add: homeomorphic_affine_sets_eq affine_hyperplane)

qed

end
theory Homology

imports Invariance_of_Domain
begin

end
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