Hoare Logic for Parallel Programs

Leonor Prensa Nieto

January 18, 2026



Abstract

In the following theories a formalization of the Owicki-Gries and the rely-
guarantee methods is presented. These methods are widely used for cor-
rectness proofs of parallel imperative programs with shared variables. We
define syntax, semantics and proof rules in Isabelle/HOL. The proof rules
also provide for programs parameterized in the number of parallel compo-
nents. Their correctness w.r.t. the semantics is proven. Completeness proofs
for both methods are extended to the new case of parameterized programs.
(These proofs have not been formalized in Isabelle. They can be found
in [1].) Using this formalizations we verify several non-trivial examples for
parameterized and non-parameterized programs. For the automatic gener-
ation of verification conditions with the Owicki-Gries method we define a
tactic based on the proof rules. The most involved examples are the veri-
fication of two garbage-collection algorithms, the second one parameterized
in the number of mutators.
For excellent descriptions of this work see [2, 4, 1, 3].
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Chapter 1

The Owicki-Gries Method

1.1 Abstract Syntax

theory OG-Com imports Main begin

Type abbreviations for boolean expressions and assertions:

type-synonym ’a bezp = 'a set
type-synonym ’‘a assn = 'a set

The syntax of commands is defined by two mutually recursive datatypes: ‘a
ann-com for annotated commands and ‘a com for non-annotated commands.

datatype ’a ann-com =
AnnBasic ('a assn) ('a = 'a)
| AnnSeq ('a ann-com) (‘a ann-com)
| AnnCondl ('a assn) ('a bexp) ('a ann-com) (‘a ann-com)
| AnnCond2 (‘a assn) ('a bexp) ('a ann-com)
| AnnWhile (‘a assn) (‘a bexp) (‘a assn) (‘a ann-com)
| AnnAwait (‘a assn) (‘a bexp) (‘a com)
and ‘a com =
Parallel (‘a ann-com option x 'a assn) list
| Basic ('a = 'a)
| Seq (‘a com) ('a com)
| Cond (‘a bexp) (‘a com) (‘a com)
| While (‘a bexp) (‘a assn) ('a com)

The function pre extracts the precondition of an annotated command:

primrec pre ::'a ann-com = 'a assn where
pre (AnnBasic r f) = r

| pre (AnnSeq cl ¢2) = pre cl

| pre (AnnCondl r b cl ¢2) = r

| pre (AnnCond2 b c) = r

| pre (AnnWhile rbic) =r

| pre (AnnAwait b ¢) = r

Well-formedness predicate for atomic programs:



primrec atom-com :: ‘a com = bool where
atom-com (Parallel Ts) = False
| atom-com (Basic f) = True
| atom-com (Seq c1 ¢2) = (atom-com c1 N atom-com c2)
| atom-com (Cond b cZ c2) = (atom-com c1 N atom-com c2)
| atom-com (While b i ¢) = atom-com ¢

end

1.2 Operational Semantics

theory OG-Tran imports OG-Com begin

type-synonym ‘a ann-com-op = ('a ann-com) option
type-synonym ‘a ann-triple-op = ('a ann-com-op x 'a assn)

primrec com :: 'a ann-triple-op = ’'a ann-com-op where
com (¢, q) = ¢

primrec post :: 'a ann-triple-op = 'a assn where
post (¢, q) = q

definition All-None :: 'a ann-triple-op list = bool where
All-None Ts =V (¢, q) € set Ts. ¢ = None

1.2.1 The Transition Relation

inductive-set
ann-transition :: (('a ann-com-op x 'a) x ('a ann-com-op x 'a)) set
and transition :: ((‘a com x 'a) x (a com x 'a)) set
and ann-transition’ :: (‘a ann-com-op x 'a) = (‘a ann-com-op x ’a) = bool
(«- —1— -[81,81] 100)
and transition’ :: (‘a com x 'a) = (‘a com x 'a) = bool
(- —P1— [81,81] 100)
and transitions :: (‘a com x 'a) = (‘a com x 'a) = bool
(«- —Px— -[81,81] 100)
where
con-0 —1— con-1 = (con-0, con-1) € ann-transition
| con-0 —P1— con-1 = (con-0, con-1) € transition
| con-0 —Px— con-1 = (con-0, con-1) € transition*

| AnnBasic: (Some (AnnBasic r f), s) —1— (None, f )
| AnnSeql: (Some c0, s) —1— (None, t) =
(Some (AnnSeq c0 c1), s) —1— (Some c1, t)
| AnnSeq2: (Some c0, s) —1— (Some ¢2, t) =
(Some (AnnSeq c0 c1), s) —1— (Some (AnnSeq c2 c1), t)

| AnnCond1T: s € b = (Some (AnnCondl r b ¢l c2), s) —1— (Some ci, s)



| AnnCond1F: s ¢ b = (Some (AnnCondl r b cl ¢2), s) —1— (Some c2, s)

| AnnCond2T: s € b = (Some (AnnCond2 r b c), s) —1— (Some ¢, s)
| AnnCond2F: s ¢ b = (Some (AnnCond2 r b c), s) —1— (None, s)

| AnnWhileF: s ¢ b = (Some (AnnWhile r b i ¢), s) —1— (None, s)
| AnnWhileT: s € b = (Some (AnnWhile r b i ¢), s) —1—
(Some (AnnSeq ¢ (AnnWhile i b i c)), s)

| AnnAwait: | s € b; atom-com ¢; (¢, s) —Px— (Parallel [], t) | =
(Some (AnnAwait r b ¢), s) —1— (None, t)

| Parallel: [ i<length Ts; Tsli = (Some c, q); (Some ¢, s) —1— (r, t) ]
= (Parallel Ts, s) —P1— (Parallel (Ts [i:=(r, q)]), t)

| Basic: (Basic f, s) —P1— (Parallel [], f s)

| Seq1: All-None Ts = (Seq (Parallel Ts) ¢, s) —P1— (c, s)
| Seq2: (c0,s) —P1— (c2,t) = (Seq c0 cl, s) —P1— (Seq c2 c1, t)

| CondT: s € b= (Cond b cl c2, s) —P1— (c1, s)
| CondF: s ¢ b = (Cond b cl c2, s) —P1— (c2, s)

| WhileF: s ¢ b = (While b i ¢, s) —P1— (Parallel [], s)
| WhileT: s € b = (While b i c, s) —P1— (Seq ¢ (While b i c), s)

monos rtrancl-mono

The corresponding abbreviations are:

abbreviation
ann-transition-n :: (‘a ann-com-op X 'a) = nat = ('a ann-com-op x 'a)
= bool (- —-— -»[81,81] 100) where
con-0 —n— con-1 = (con-0, con-1) € ann-transition ~ n

abbreviation
ann-transitions :: ('a ann-com-op X 'a) = ('a ann-com-op x 'a) = bool
(¢- —x— -»[81,81] 100) where
con-0 —x— con-1 = (con-0, con-1) € ann-transition*

abbreviation
transition-n :: (‘a com x 'a) = nat = (‘a com x 'a) = bool
(¢- =P-— -[81,81,81] 100) where
con-0 —Pn— con-1 = (con-0, con-1) € transition ~ n

1.2.2 Definition of Semantics

definition ann-sem :: 'a ann-com = 'a = 'a set where
ann-sem ¢ = As. {t. (Some ¢, s) —x— (None, t)}



definition ann-SEM :: 'a ann-com = 'a set = 'a set where
ann-SEM ¢ S = | (ann-sem ¢ * S)

definition sem :: ‘a com = 'a = 'a set where
sem ¢ = As. {t. 3T5. (¢, s) —Px— (Parallel Ts, t) N All-None Ts}

definition SEM :: 'a com = 'a set = 'a set where

SEM ¢ S =J(semc “95)

abbreviation Omega :: 'a com  («Q» 63)
where Q = While UNIV UNIV (Basic id)

primrec fwhile :: 'a bexp = 'a com = nat = 'a com where
fwhile b ¢ 0 = Q
| fwhile b ¢ (Suc n) = Cond b (Seq ¢ (fwhile b ¢ n)) (Basic id)

Proofs

declare ann-transition-transition.intros [intro)
inductive-cases transition-cases:

(Parallel T s) —P1— t

(Basic f, s) —P1— ¢

(Seq cl c2,s) —P1—t

(Cond b cl c2,s) —P1—t

(While bic, s) —P1—t

lemma Parallel-empty-lemma [rule-format (no-asm)]:
(Parallel [),s) —Pn— (Parallel Ts,t) — Ts=[] A n=0 A s=t

(proof)

lemma Parallel-AllNone-lemma [rule-format (no-asm)]:
All-None Ss — (Parallel Ss,s) —Pn— (Parallel Ts,t) — Ts=Ss A n=0 A s=t
(proof )

lemma Parallel-AllNone: All-None Ts = (SEM (Parallel Ts) X) = X
(proof)

lemma Parallel-empty: Ts=[] = (SEM (Parallel Ts) X) = X
(proof)

Set of lemmas from Apt and Olderog "Verification of sequential and concur-
rent programs", page 63.

lemma L3-5i: XCY = SEM ¢ X C SEM c Y
(proof)

lemma L3-5ii-lemmal:

[ (c1, s1) —Px— (Parallel Ts, s2); All-None Ts;
(c2, s2) —Px— (Parallel Ss, s3); All-None Ss |
= (Seq c1 ¢2, s1) —Px— (Parallel Ss, s3)



(proof)

lemma L3-5ii-lemma2 [rule-format (no-asm)l:

Vel ¢2st. (Seq ¢l ¢2, s) —Pn— (Parallel Ts, t) —
(All-None Ts) — (3y m Rs. (cl1,s) —Px— (Parallel Rs, y) A
(All-None Rs) A (¢2, y) —Pm— (Parallel Ts, t) A m < n)

(proof)

lemma L3-5ii-lemmad:

[(Seq ¢l ¢2,s) —Px— (Parallel Ts,t); All-None T§] —
(3y Rs. (c1,s) —Px— (Parallel Rs,y) N All-None Rs
A (c2,y) —Px— (Parallel Ts,t))

(proof)

lemma L3-5ii: SEM (Seq c1 ¢2) X = SEM ¢2 (SEM c1 X)
(proof)

lemma L3-5iii: SEM (Seq (Seq c1 c2) ¢3) X = SEM (Seq c1 (Seq ¢2 ¢3)) X
(proof)

lemma L3-5iv:
SEM (Cond b ¢l ¢2) X = (SEM c1 (X Nb)) Un (SEM ¢2 (X N (=b)))

(proof)

lemma L3-5v-lemmal [rule-format]:
(S,s) —Pn— (T,t) — S=Q — (=(3 Rs. T=(Parallel Rs) \ All-None Rs))
(proof )

lemma L3-5v-lemma2: [(2, s) —Px— (Parallel Ts, t); All-None Ts | = False
(proof)

lemma L3-5v-lemma3: SEM (Q2) S = {}
(proof)

lemma LS3-5v-lemmad [rule-format]:
Vs. (While b i ¢, s) —Pn— (Parallel Ts, t) — All-None Ts —
(k. (fwhile b ¢ k, s) —Px— (Parallel Ts, t))

(proof)

lemma L3-5v-lemmad [rule-format]:

V' s. (fwhile b ¢ k, s) —Px— (Parallel Ts, t) — All-None Ts —
(While b i ¢, s) —Px— (Parallel Ts,t)

(proof)

lemma L3-5v: SEM (While b i ¢) = (Az. (Jk. SEM (fwhile b ¢ k) z))
(proof)



1.3 Validity of Correctness Formulas

definition com-validity :: 'a assn = 'a com = 'a assn = bool («(3||=-// -//-)»
[90,55,90] 50) where
[=pcqg=SEMcpCq

definition ann-com-validity :: 'a ann-com = 'a assn = bool (<= - -» [60,90] 45)
where
= cqg=ann-SEM ¢ (pre ¢) C ¢

end

1.4 The Proof System

theory OG-Hoare imports OG-Tran begin

primrec assertions :: 'a ann-com = ('a assn) set where
assertions (AnnBasic r f) = {r}
| assertions (AnnSeq c1 ¢2) = assertions c1 U assertions c2
| assertions (AnnCondl r b c1 ¢2) = {r} U assertions ¢l U assertions c2
| assertions (AnnCond2 r b ¢) = {r} U assertions c
| assertions (AnnWhile r b i ¢) = {r, i} U assertions c
| assertions (AnnAwait r b ¢) = {r}

primrec atomics :: 'a ann-com = ('a assn X 'a com) set where
atomics (AnnBasic r f) = {(r, Basic f)}

| atomics (AnnSeq cl ¢2) = atomics c1 U atomics c2

| atomics (AnnCondl v b ¢l ¢2) = atomics c1 U atomics c2

| atomics (AnnCond2 r b ¢) = atomics ¢

| atomics (AnnWhile r b i ¢) = atomics ¢

| atomics (AnnAwait v b ¢) = {(r N b, ¢)}

primrec com :: 'a ann-triple-op = 'a ann-com-op where
com (¢, q) = ¢

primrec post :: ‘a ann-triple-op = 'a assn where
post (¢, q) = q

definition interfree-aux :: (‘a ann-com-op X 'a assn X 'a ann-com-op) = bool
where
interfree-auz = A(co, q, co’). co’= None V
(V(r,a) € atomics (the co’). |=(¢gNr)aqA
(co = None V (Vp € assertions (the co). |= (p N 1) a p)))

definition interfree :: (('a ann-triple-op) list) = bool where
interfree Ts =V ij. i < length Ts N\ j < length Ts N\ i # j —
interfree-auz (com (7Ts!i), post (Tsli), com (Tslj))

inductive



oghoare :: 'a assn = 'a com = 'a assn = bool («(3||— -//-//-) [90,55,90] 50)

and ann-hoare :: 'a ann-com = 'a assn = bool («(2+ -// -)» [60,90] 45)
where

AnnBasic: v C {s. fs € ¢} =+ (AnnBasic r ) ¢

| AnnSeq: [F cOprecl; - cl q] =+ (AnnSeq c0 c1) ¢
| AnnCond1: [ rN b Cprecl; b cl ggr N —bC prec2; b c2d]
= F (AnnCond1 v b c1 c2) ¢
| AnnCond2: [rNbCprec;kcqgrnN—-bC q] =+ (AnnCond2 r b c) q

| AnnWhile: [r C;iNbCprec;bEci; i N —bC q]
= F (AnnWhile r b i ¢) q

| AnnAwait: [ atom-com ¢; ||— (rNbd) ¢ q ] = + (AnnAwait r b ¢) ¢
| AnnConseq: [F cq; g C ¢'] =F c ¢’
| Parallel: [ Vi<length Ts. 3¢ q. Tsli = (Some ¢, q) A F ¢ ¢; interfree Ts |

= |- (Ni€{i. i<length Ts}. pre(the(com(Ts!7))))

Parallel Ts
(Nie{i. i<length Ts}. post(Tsli))

| Basic: ||— {s. fs €q} (Basic f) q
| Seq: [ll—pclr||—rc2q] = |— p (Seqct c2) q
| Cond: [||-(@nNnbd)clg|—(mEnN=b)c2q]=|—p (Condbclc2)q
| While: [||— (pNbd)ecp] = ||—p (Whilebic)(pn —b)

| Conseq: [p'Cps|l-pcag;qCqd]=|-p"cq

1.5 Soundness
lemmas [cong del] = if-weak-cong

lemmas ann-hoare-induct = oghoare-ann-hoare.induct [THEN conjunct2)
lemmas oghoare-induct = oghoare-ann-hoare.induct [THEN conjunct1]

lemmas AnnBasic = oghoare-ann-hoare. AnnBasic
lemmas AnnSeq = oghoare-ann-hoare. AnnSeq
lemmas AnnCondl = oghoare-ann-hoare. AnnCond1
lemmas AnnCond2 = oghoare-ann-hoare. AnnCond2
lemmas AnnWhile = oghoare-ann-hoare. AnnWhile
lemmas AnnAwait = oghoare-ann-hoare. AnnAwait
lemmas AnnConseq = oghoare-ann-hoare. AnnConseq
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lemmas Parallel = oghoare-ann-hoare. Parallel
lemmas Basic = oghoare-ann-hoare. Basic
lemmas Seq = oghoare-ann-hoare.Seq
lemmas Cond = oghoare-ann-hoare. Cond
lemmas While = oghoare-ann-hoare. While
lemmas Conseq = oghoare-ann-hoare. Conseq

1.5.1 Soundness of the System for Atomic Programs

lemma Basic-ntran [rule-format):
(Basic f, s) —Pn— (Parallel Ts, t) — All-None Ts — t = f s

(proof)

lemma SEM-fwhile: SEM S (p N'b) C p = SEM (fwhile b Sk) p C (p N —b)
(proof)

lemma atom-hoare-sound [rule-format]:
I— p ¢ ¢ — atom-com(c) — ||=p ¢ q

(proof)

1.5.2 Soundness of the System for Component Programs

inductive-cases ann-transition-cases:
(None,s) —1— (c’, s')
(Some (AnnBasic r f),s) —1— (c', s')
(Some (AnnSeq cl ¢2), s) —1— (c¢’, ")
(Some (AnnCondl b cl ¢2), s) —1— (c', s)
(Some (AnnCond2 r b ¢), s) —1— (c', ')
(Some (AnnWhile v b I ¢), s) —1— (c', s')
(Some (AnnAwait r b ¢),s) —1— (c'; s')

Strong Soundness for Component Programs:

lemma ann-hoare-case-analysis [rule-format]: = C ¢ —
(Vrf. C=AnnBasicrf — (3q. r C{s.fs€q} ANqgC q)) A
(VeOcl. C = AnnSeq c0 ¢l — (q. ¢ C ¢’ AN cOprecl N ¢l q)) A
(Vrbeclc2 C=AnnCondl rbcl c2 — (3q. ¢ C ¢’ A
rNbCprecl ANbclgNANrN—=bCprec2 ANt c2q)) A
(Vrbe C=AnnCond2rbc —
Fq.¢qC¢dArnNnbClprec A cqgArnN—=bCq)A
(Vribc C= AnnWhilerbic—
Fq¢qC¢dArCiNiNbCprecAFciANiN—=bCq)) A
(Vrbe C=AnnAwait rbc — (3qg. ¢ C ¢ A ||— (rNb) cq)))
(proof)

lemma Help: (transition N {(z,y). True}) = (transition)

(proof)

lemma Strong-Soundness-auz-auz [rule-format]:
(co, 8) —=1— (co’, t) — (Vc. co = Some ¢ — s€ pre ¢ —
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(Vq. F ¢ ¢ — (if co’ = None then t€q else t € pre(the co’) A F (the co’) q)))
(proof)

lemma Strong-Soundness-aux: | (Some ¢, s) —x— (co, t); s € pre ¢; F ¢ q ]
= if co = None then t € q else t € pre (the co) N F (the co) ¢

(proof)

lemma Strong-Soundness: [ (Some ¢, s)—*—(co, t); s € pre ¢; F ¢ q ]
= if co = None then t€q else t € pre (the co)

{(proof)

lemma ann-hoare-sound: + ¢ ¢ = | ¢ ¢
(proof)

1.5.3 Soundness of the System for Parallel Programs

lemma Parallel-length-post-P1: (Parallel Ts,s) —P1— (R', t) =
(3Rs. R’ = (Parallel Rs) A (length Rs) = (length Ts) A
(Vi. i<length Ts — post(Rs ! i) = post(Ts ! ©)))

(proof )

lemma Parallel-length-post-PStar: (Parallel Ts,s) —Px— (R't) =
(3Rs. R’ = (Parallel Rs) A (length Rs) = (length Ts) A
(Vi. i<length Ts — post(Ts ! i) = post(Rs ! i)))

(proof )

lemma assertions-lemma: pre ¢ € assertions c
(proof)

lemma interfree-auzl [rule-format):
(¢,8) —1— (r,t) —> (interfree-aux(cl, q1, ¢) — interfree-auz(cl, q1, r))
(proof)

lemma interfree-auz2 [rule-format):
(¢e,s8) —1— (r,t) — (interfree-auz(c, q, a) — interfree-aux(r, ¢, a))

(proof)

lemma interfree-lemma: [ (Some ¢, s) —1— (r, t);interfree Ts ; i<length Ts;
Tsli = (Some ¢, q) | = interfree (Ts[i:= (r, q)])
(proof)

Strong Soundness Theorem for Parallel Programs:

lemma Parallel-Strong-Soundness-Seq-auz:
[interfree Ts; i<length Ts; com(Ts ! i) = Some(AnnSeq c0 c1) |
= interfree (Ts[i:=(Some c0, pre c1)])

(proof)

lemma Parallel-Strong-Soundness-Seq [rule-format (no-asm)]:
[ Vi<length Ts. (if com(Tsli) = None then b € post(Ts!%)

12



else b € pre(the(com(Ts!9))) A & the(com(Ts!i)) post(Ts!i));
com(Ts | i) = Some(AnnSeq c0 c1); i<length Ts; interfree Ts | =
(Via<length Ts. (if com(Ts[i:=(Some c0, pre c1)]! ia) = None
then b € post(Ts[i:=(Some c0, pre c1)]! ia)
else b € pre(the(com(Ts[i:=(Some c0, pre c1)]! ia))) A
F the(com(Tsli:=(Some c0, pre c1)]! ia)) post(Ts[i:=(Some c0, pre c1)]! ia)))
A interfree (Ts[i:= (Some c0, pre c1)])
(proof)

lemma Parallel-Strong-Soundness-auz-auz [rule-format]:
(Some ¢, b) —1— (co, t) —
(V Ts. i<length Ts — com(Ts ! i) = Some ¢ —>
(Vi<length Ts. (if com(Ts ! i) = None then bepost(Ts!i)
else bepre(the(com(Ts!i))) A+ the(com(Ts!i)) post(Tsli))) —
interfree Ts —
(Vj. j<length Ts N i#£j — (if com(Tslj) = None then tEpost(Ts!j)
else tepre(the(com(Ts!5))) A b the(com(Tslf)) post(Tsly))) )
(proof)

lemma Parallel-Strong-Soundness-aux [rule-format]:
[(Ts',s) —Px— (Rs',t); Ts' = (Parallel Ts); interfree Ts;
Vi. i<length Ts — (3¢ q. (Ts! i) = (Some ¢, q) AN s€(prec) ANFcq)] =
YV Rs. Rs' = (Parallel Rs) — (Vj. j<length Rs —
(if com(Rs ! j) = None then t€post(Ts ! 7)
else tepre(the(com(Rs ! j))) A b the(com(Rs ! j)) post(Ts ! §))) A interfree Rs
(proof)

lemma Parallel-Strong-Soundness:
[(Parallel Ts, s) —Px— (Parallel Rs, t); interfree Ts; j<length Rs;
Vi. i<length Ts — (3cq. Ts ! i = (Some ¢, q) A s€prec ANF cq) ] =
if com(Rs ! j) = None then t€post(Ts | j) else t€pre (the(com(Rs ! j)))
(proof)

lemma oghoare-sound [rule-format]: ||[— pcq — ||=p c ¢
(proof)

end

1.6 Generation of Verification Conditions

theory OG-Tuctics
imports OG-Hoare
begin

lemmas ann-hoare-intros=AnnBasic AnnSeq AnnCond1l AnnCond2 AnnWhile An-
nAwait AnnConseq

lemmas oghoare-intros=Parallel Basic Seq Cond While Conseq

lemma ParallelConseqRule:
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[» C (Niefi. i<length Ts}. pre(the(com(Ts ! 7))));
I— (Nie{i. i<length Ts}. pre(the(com(Ts ! 7))))
(Parallel Ts)
(Niefi. i<length Ts}. post(Ts ! i));
(N iefi. i<length Ts}. post(Ts ! 4)) C q ]
= ||— p (Parallel Ts) q
(proof)

lemma SkipRule: p C ¢ = ||— p (Basic id) ¢
{(proof)

lemma BasicRule: p C {s. (f s)€q} = ||— p (Basic f) ¢
(proof )

lemma SeqRule: [ ||[— pclr;||-rc2q] = ||— p (Seq cl ¢c2) ¢
(proof)

lemma CondRule:

[pC{s (s€b — scw) A (s¢b — scw)}; ||— wel g; ||— w' ¢2q]
= ||— p (Cond b cl ¢c2) q
(proof)

lemma WhileRule: [ p Ci; ||— (iNb) ci; (iN(=b) Cq]
= ||— p (While b i c) q
(proof)
Three new proof rules for special instances of the AnnBasic and the An-

nAwait commands when the transformation performed on the state is the
identity, and for an AnnAwait command where the boolean condition is {s.

True}:
lemma AnnatomRule:

[ atom-com(c); ||— rc q] = F (AnnAwait r {s. True} c) q
(proof)

lemma AnnskipRule:
r C ¢ = F (AnnBasic r id) q

(proof)

lemma AnnwaitRule:
[(rnd) Cq] = F (AnnAwait r b (Basic id)) q

(proof)

Lemmata to avoid using the definition of map-ann-hoare, interfree-auz, in-
terfree-swap and interfree by splitting it into different cases:

lemma interfree-auz-rulel: interfree-auz(co, q, None)

(proof)

lemma interfree-auz-rule2:
V (R,r)e(atomics a). ||— (¢ N R) r ¢ = interfree-auz(None, g, Some a)
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(proof)

lemma interfree-auz-rule3:
(V(R, r)e(atomics a). ||— (¢ N R) r ¢ A (Vp€E(assertions c). ||— (p N R) r p))
= interfree-aux(Some ¢, q, Some a)

(proof)

lemma AnnBasic-assertions:
[interfree-auz(None, r, Some a); interfree-auz(None, ¢, Some a)] =
interfree-auz(Some (AnnBasic r f), q, Some a)

(proof)

lemma AnnSeg-assertions:
[ interfree-auz(Some cl1, q, Some a); interfree-auz(Some c2, q, Some a)]=
interfree-auz(Some (AnnSeq c1 ¢2), q, Some a)

(proof)

lemma AnnCondI-assertions:
[ interfree-auz(None, r, Some a); interfree-aux(Some c1, g, Some a);
interfree-auz(Some c2, q, Some a)]=
interfree-auz(Some(AnnCondl r b ¢l ¢2), q, Some a)

(proof)

lemma AnnCond2-assertions:
[ interfree-aux(None, r, Some a); interfree-aux(Some ¢, g, Some a)]—>
interfree-auz(Some (AnnCond2 r b ¢), q, Some a)

(proof)

lemma AnnWhile-assertions:
[ interfree-aux(None, r, Some a); interfree-aux(None, i, Some a);
interfree-auz(Some ¢, q, Some a)]—
interfree-auz(Some (AnnWhile r b i ¢), q, Some a)

(proof)

lemma AnnAwait-assertions:
[ interfree-aux(None, r, Some a); interfree-aux(None, g, Some a)]—>
interfree-auz(Some (AnnAwait r b ¢), q, Some a)

(proof)

lemma AnnBasic-atomics:
II— (¢ N r) (Basic f) ¢ = interfree-auz(None, q, Some (AnnBasic r f))

(proof)

lemma AnnSeg-atomics:
[ interfree-aux(Any, q, Some al); interfree-aux(Any, q, Some a2)]—=>
interfree-auz(Any, g, Some (AnnSeq al a2))

{(proof)

lemma AnnCondI-atomics:
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[ interfree-aux(Any, q, Some al); interfree-aux(Any, q, Some a2)]=
interfree-auz(Any, q, Some (AnnCondl r b al a2))

(proof)

lemma AnnCond2-atomics:

interfree-auxr (Any, q, Some a)=> interfree-aux(Any, q, Some (AnnCond2 r b
a))
(proof )

lemma AnnWhile-atomics: interfree-auz (Any, q, Some a)
= interfree-aux(Any, q, Some (AnnWhile r b i a))

(proof)

lemma Annatom-atomics:
I— (¢ N r) a ¢ = interfree-aux (None, q, Some (AnnAwait r {x. True} a))

(proof)

lemma AnnAwait-atomics:
I— (¢ N (r N b)) a g = interfree-auxz (None, q, Some (AnnAwait v b a))

(proof)

definition interfree-swap :: ('a ann-triple-op x ('a ann-triple-op) list) = bool where
interfree-swap == \(z, xs). V yEset xs. interfree-auz (com z, post x, com y)
A interfree-auz(com y, post y, com x)

lemma interfree-swap-Empty: interfree-swap (z, [])

(proof)

lemma interfree-swap-List:
[ interfree-aux (com x, post x, com y);
interfree-aux (com y, post y ,com x); interfree-swap (z, xs) |
= interfree-swap (z, y#s)

(proof)

lemma interfree-swap-Map: ¥ k. i<k N k<j — interfree-aux (com z, post z, c k)
A interfree-aux (¢ k, Q k, com x)

= interfree-swap (xz, map (Ak. (¢ k, Q k)) [i..<j])

(proof)

lemma interfree-Empty: interfree ||
(proof)

lemma interfree-List:
[ interfree-swap(z, xs); interfree xs | = interfree (x#xs)
(proof)

lemma interfree-Map:

(Vij. a<i Ai<b A a<j A j<b A i#£j — interfree-auz (¢ i, Q i, ¢ j))
= interfree (map (\k. (¢ k, Q k)) [a..<D])
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(proof)

definition map-ann-hoare :: (('a ann-com-op * 'a assn) list) = bool (:[F] -» [0]
45) where
[F] Ts == (Vi<length Ts. 3¢ q. Tsli=(Some ¢, q) A F ¢ q)

lemma MapAnnEmpty: [-] ||
{(proof )

lemma MapAnnList: [F ¢ q; [F] s ] = [F] (Some ¢,q)#xs
(proof)

lemma MapAnnMap:
Vk. i<k N k<j — F (ck) (Qk) = [F] map (Mk. (Some (c k), Q k)) [i..<J]
(proof)

lemma ParallelRule:[ [F] Ts ; interfree Ts |
= ||— (N i€{i. i<length Ts}. pre(the(com(Ts7))))
Parallel Ts
(Nie{i. i<length Ts}. post(Ts'i))
(proof)

The following are some useful lemmas and simplification tactics to control
which theorems are used to simplify at each moment, so that the original
input does not suffer any unexpected transformation.

lemma Compl-Collect: —(Collect b) = {z. =(b z)}
{proof)

lemma list-length: length [|=0 length (z#xs) = Suc(length xs)

(proof )
lemma list-lemmas: length [|=0 length (z#xs) = Suc(length zs)

(z#xs) ! 0 = x (x#xs) ! Sucn=uas!n

(proof)
lemma le-Suc-eg-insert: {i. i <Suc n} = insert n {i. i< n}

(proof )
lemmas primrecdef-list = pre.simps assertions.simps atomics.simps atom-com.simps
lemmas my-simp-list = list-lemmas fst-conv snd-conv
not-less0 refl le-Suc-eq-insert Suc-not-Zero Zero-not-Suc nat.inject
Collect-mem-eq ball-simps option.simps primrecdef-list
lemmas ParallelConseq-list = INTER-eq Collect-conj-eq length-map length-upt length-append

(ML)

The following tactic applies tac to each conjunct in a subgoal of the form A
= al A a2 A .. A an returning n subgoals, one for each conjunct:

(ML)
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Tactic for the generation of the verification conditions

The tactic basically uses two subtactics:

HoareRuleTac is called at the level of parallel programs, it uses the Par-

allelTac to solve parallel composition of programs. This verification
has two parts, namely, (1) all component programs are correct and
(2) they are interference free. HoareRuleTac is also called at the level
of atomic regions, i.e. () and AWAIT b THEN - END, and at each
interference freedom test.

AnnHoareRuleTac is for component programs which are annotated pro-

(ML)

grams and so, there are not unknown assertions (no need to use the
parameter precond, see NOTE).

NOTE: precond(::bool) informs if the subgoal has the form ||— %p ¢
¢, in this case we have precond=False and the generated verification
condition would have the form ?p C ... which can be solved by rtac
subset-refl, if True we proceed to simplify it using the simplification
tactics above.

The final tactic is given the name oghoare:

(ML)

Notice that the tactic for parallel programs oghoare-tac is initially invoked
with the value true for the parameter precond.

Parts of the tactic can be also individually used to generate the verification
conditions for annotated sequential programs and to generate verification
conditions out of interference freedom tests:

(ML)

The so defined ML tactics are then “exported” to be used in Isabelle proofs.

(ML)

Tactics useful for dealing with the generated verification conditions:

(ML)

end

1.7

Concrete Syntax

theory Quote-Antiquote imports Main begin

syntax
-quote = 'b = ('a = 'b) («<(«-»)» [0] 1000)
-antiquote :: ('a = 'b) = b («"- [1000] 1000)
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-Assert i 'a = 'a set <({-I)» [0] 1000)

translations
{b}p —= CONST Collect «b»

(ML)

end

theory OG-Syntax

imports OG-Tactics Quote-Antiquote
begin

Syntax for commands and for assertions and boolean expressions in com-
mands com and annotated commands ann-com.

abbreviation Skip :: ‘a com (<(SKIP»> 63)
where SKIP = Basic id

abbreviation AnnSkip :: 'a assn = 'a ann-com (<-//SKIP> [90] 63)
where r SKIP = AnnBasic r id

notation
Seq (¢-,,/ - [65, 56] 55) and
AnnSeq («;/ -» [60,61] 60)

syntax
-Assign widt = b= 'a com  («(7-:=/ <) [70, 65] 61)
-AnnAssign  :: 'a assn = idt = 'b = 'a com  («(- "-:=/ -)» [90,70,65] 61)

translations
‘¢ := a — CONST Basic « (-update-name x (A-. a))»
r 'z := a — CONST AnnBasic r « (-update-name x (A-. a))»

syntax

-AnnCondl  :: 'a assn = 'a berp = 'a ann-com = 'a ann-com = 'a ann-com
(«- //IF - /THEN - JELSE - /FI, [90,0,0,0] 61)

-AnnCond2  :: 'a assn = 'a bexp = 'a ann-com = 'a ann-com
(«- //IF - JTHEN - /FI) [90,0,0] 61)

-AnnWhile  :: 'a assn = 'a bexp = 'a assn = 'a ann-com = 'a ann-com
(«- //WHILE - /INV - / /DO -]/ OD> [90,0,0,0] 61)

-AnnAwait  :: 'a assn = 'a bexp = 'a com = 'a ann-com
(«- //AWAIT - JTHEN /- JEND; [90,0,0] 61)

-AnnAtom i 'a assn = 'a com = 'a ann-com («-//{(-)> [90,0] 61)

-AnnWait  :: 'a assn = 'a bexp = 'a ann-com («-// WAIT - END» [90,0] 61)

-Cond ' bexp = 'a com = 'a com = 'a com

(«(0IF -/ THEN -/ ELSE -/ FI)) [0, 0, 0] 61)
-Cond2 it 'a bexp = 'a com = 'a com (<IF - THEN - FI> [0,0] 56)
-While-inv  :: 'a bexp = 'a assn = 'a com = 'a com

(«(OWHILE -/ INV - //DO - /OD)s [0, 0, 0] 61)
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-While : 'a bexp = 'a com = 'a com

(«((OWHILE - //DO - /OD)> [0, 0] 61)

translations
IF b THEN c1 ELSE c2 FI — CONST Cond {b} c1 c2
IF b THEN ¢ FI = IF b THEN ¢ ELSE SKIP FI
WHILE b INV i DO ¢ OD — CONST While {b} i ¢
WHILE b DO ¢ OD = WHILE b INV CONST undefined DO ¢ OD

r IF b THEN cl ELSE ¢2 FI — CONST AnnCondl r {b} c1 c2
r IF b THEN ¢ FI — CONST AnnCond2 r {b} ¢

r WHILE b INV ¢ DO ¢ OD — CONST AnnWhile r {b|} i ¢

r AWAIT b THEN ¢ END — CONST AnnAwait v {b} ¢

r (c) = r AWAIT CONST True THEN ¢ END

r WAIT b END = r AWAIT b THEN SKIP END

nonterminal prgs

syntax
-PAR :: prgs = 'a («COBEGIN//-//COEND: [57] 56)
-prg :: ['a, 'a] = prgs («<-//-» [60, 90] 57)

-prgs :: ['a, 'a, prgs| = prgs (<-//-//|\//- 160,90,57] 57)

-prg-scheme :: ['a, 'a, 'a, 'a, 'a] = prygs
((SCHEME |- < - < ] -// - [0,0,0,60, 90] 57)

translations

-prg ¢ ¢ = [(CONST Some ¢, q)]

-prgs ¢ ¢ ps = (CONST Some ¢, q) # ps

-PAR ps = CONST Parallel ps

-prg-scheme j i k ¢ ¢ = CONST map (Ai. (CONST Some ¢, q)) [j..<Kk]
(ML)

end

1.8 Examples

theory OG-Ezamples imports OG-Syntar begin

1.8.1 Mutual Exclusion
Peterson’s Algorithm I

Eike Best. "Semantics of Sequential and Parallel Programs", page 217.

record Petersons-mutex-1 =
prl :: nat
pr2 :: nat
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inl :: bool
n2 :: bool
hold :: nat

lemma Petersons-mutez-1:
I— { pri=0 AN ="in1 A "pr2=0 N ="in2 |}
COBEGIN {’pr1=0 A = inl|
WHILE True INV {'pri=0 A —="inl}
DO
4 pri=0 A ="inl}} { “inl:=True, pri:=1);
{ pri=1 A “inl} { "hold:=1,,"pr1:=2);;
{'pri=2 A “inl A ("hold=1 V "hold=2 A "pr2=2)}
AWAIT (=" in2 vV =("hold=1)) THEN “pr1:=3 END;;
4 pri=3 A “inl A ("hold=1 V “hold=2 A "pr2=2)}
("in1:=False,, pr1:=0)
OD {’pri=0 N —="inl]
|
{4 pr2=0 N =" in2|}
WHILE True INV { pr2=0 A = in2}
DO
1 pr2=0 A =72} { “in2:=True,, pr2:=1 );;
{ pre2=1 A "in2} { "hold:=2,,"pr2:=2 );;
{ ' pr2=2 A "in2 A ("hold=2 V ("hold=1 A "pri=2))|
AWAIT (=" in1 v —("hold=2)) THEN ‘pr2:=3 END;;
4 pr2=3 A "in2 A ("hold=2 V ("hold=1 A "pri=2))}
("in2:=False,, pr2:=0)
OD {’pr2=0 N =" in2]}
COEND
{'pri=0 N ="in1 A "pr2=0 A = in2}
(proof)

Peterson’s Algorithm II: A Busy Wait Solution

Apt and Olderog. "Verification of sequential and concurrent Programs",
page 282.

record Busy-wait-muter =
flagl1 :: bool

flag2 :: bool

turn :: nat

afterl :: bool

after2 :: bool

lemma Busy-wait-mutez:
= {{ Truef
“flagl:=False,, *flag2:=False,,
COBEGIN {—"flag1|
WHILE True
INV {—"flag1}
DO {—"flagl} { *flagl:=True,, afterl:=False );;
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{ flag1 N ="after1] { “turn:=1,," afterl:=True );;
{ flagl A “after] A (“turn=1 V “turn=2)}
WHILE —(’flag2 — “turn=2)
INV { flagt A “afterl A (“turn=1 V “turn=2)}
DO {’flagl N “after! A (“turn=1 V “turn=2)} SKIP OD:;
{ flagl N “afterl A ("flag2 N ~after?2 — “turn=2)}
"flag1:=Fualse
OD
{Falsel}
|
{~"flag2]t
WHILE True
INV {="flag2}}
DO {—"flag2} { *flag2:=True,,” after2:=False );;
{ flag2 N —"after2} { “turn:=2,," after2:=True );;
{ flag2 N “after2 A (“turn=1 V “turn=2)}
WHILE —(’flagl — “turn=1)
INV {"flag2 A “after2 A (“turn=1 V “turn=2)|}
DO { flag2 N ~after2 A (“turn=1 V “turn=2)} SKIP OD;;
{ flag2 N “after2 A (“flagl N “after] — “turn=1)}
"flag2:=False
OD
{Falsel}
COEND
{Falsel}

(proof)

Peterson’s Algorithm III: A Solution using Semaphores

record Semaphores-muter =
out :: bool
who :: nat

lemma Semaphores-mutex:
= i)
“out:=True ,,
COBEGIN {i#j}
WHILE True INV {i#j}
DO {i#£j}} AWAIT “out THEN ~out:=False,, “who:=i END;;
{—"out A “who=i A i#j} “out:=True OD
{Falsel

{i#i}
WHILE True INV {i#j}
DO {i#j}} AWAIT “out THEN ~out:=False,, who:=j END;;
{="out A “who=j A i#£j} “out:=True OD
{False}
COEND
{Falsel

22



(proof)

Peterson’s Algorithm III: Parameterized version:

lemma Semaphores-parameterized-mutex:
0<n = ||— {True}
“out:=True ,,
COBEGIN
SCHEME [0< i< n]
{ True}
WHILE True INV { Truel
DO {True} AWAIT “out THEN ~out:=Fulse,, “who:=i ENDj;
{—"out N "who=il} ~out:=True OD
{Falsel
COEND
{Falsel}

(proof)

The Ticket Algorithm

record Ticket-mutexr =
num :: nat

nextv :: nat

turn :: nat list

index :: nat

lemma Ticket-mutez:
[ 0<n; I=«n=length “turn A 0<'nextv AN (VkIl. k<n A l<n A k#l
— “turnlk < “num A (“turnlk =0V “turnlk# turnll))» ]
= ||— {n=length “turn}
“index:= 0,,
WHILE “index < n INV {n=length "turn A (Vi< index. "turn!i=0)]}
DO “turn:= "turn[ index:=0],, “index:="index +1 OD,,
‘num:=1 ,, ‘nextvi=1 ,,

COBEGIN
SCHEME [0< i< n]
1)
WHILE True INV {’I}
DO {1} { “turn :="turn[i:="num],, "num:="num+1 );;

41} WAIT “turn!i="nextv END;;
41T A “turnli="nextv]} “nextvi="nextv+1
OD
{False|
COEND
{Falsel

(proof)

1.8.2 Parallel Zero Search

Synchronized Zero Search. Zero-6
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Apt and Olderog. "Verification of sequential and concurrent Programs" page
294

record Zero-search =
turn :: nat
found :: bool
T nat
Yy nat

lemma Zero-search:
[{1= « a<’z A ("found — (a<’z A f("2)=0) V ("y<a A f("y)=0))
A (= found N a<” x — f("2)#0) » ;
2= «"y<a+1 A (“found — (a<’z A f("2)=0) V ("y<a A f("y)=0))
A (= found N "y<a — f("y)#£0) » | =
I- 43 u. f(u)=0}
“turn:=1,, ~found:= False,,
‘r:=a,, ‘y:i=a+1 ,,
COBEGIN {’I1}
WHILE -’ found
INV {11}
DO {a<’z A (“found — "y<a A f("y)=0) A (a<’z — f("2)#0)}
WAIT “turn=1 END;;
fa< s A (“found — “y<a A f('5)=0) A (a<’s — f('5)£0)}
“turn:=2;;
{a<’z A (“found — “y<a A f("y)=0) A (a<"z —> f("2)#0)}
("m="z+1,,
IF f("x)=0 THEN ’ found:=True ELSE SKIP FI)
OD;;
{11 A ’found]
“turn:=2
{11 N 7 found]}
I

{ 12

WHILE —’ found

INV {12}

DO {"y<a+1 A ("found — a<’z A f("z)=0) A ("y<a — f("y)#0)}
WAIT “turn=2 END;;
Py<ati A (found — a<’s A f('5)=0) A ("y<a — F("5)£0)}

“turn:=1;;
{"y<at+1 A (“found — a<’z A f("2)=0) A ("y<a — f("y)#0)}
< /y::(,y - 1))7
IF f("y)=0 THEN ’ found:=True ELSE SKIP FI)
OD;;
{12 A 7 found]}
“turn:=1
{12 A 7 found]}
COEND
U 0)=0 v f("y)=0)

(proof)
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Easier Version: without AWAIT. Apt and Olderog. page 256:

lemma Zero-Search-2:
[[1=« a<’z A ("found — (a<’z A f("2)=0) V ("y<a A f("y)=0))
A (= found N a<’z — f(Tx)F£0)»;
2= «"y<a+1 A (“found — (a<’z A f("2)=0) V ("y<a A f("y)=0))
A (= found N “y<a — f("y)#0)»] =
|- {34 f(u)=0}
" found:= False,,
‘ri=a,, ‘y:=a+1,,
COBEGIN {’I1}}
WHILE —’ found
INV {11}
DO {a<’z A ("found — "y<a A f("y)=0) A (a<’z — f("2)#0)]}
( "m="x+1,IF f("z)=0 THEN ’found:=True ELSE SKIP FI)
OD
{11 N 7 found]}
|

{ 12}
WHILE —’ found
INV {12}
DO {"y<a+1 A ("found — a<’z A f("z)=0) A ("y<a — f("y)#£0)}
("y=Cy - 1),IF f("y)=0 THEN ' found:=True ELSE SKIP FI)

OD
{12 A 7 found]}

COEND

{f(Cz)=0 v f("y)=0}

(proof )

1.8.3 Producer/Consumer

Previous lemmas

lemma nat-lemma2: [ b = mx(nunat) + t; a = s¥n + u; t=u; b—a < n] = m
<s
(proof)

lemma mod-lemma: [ (c:inat) < a; a < by b—c<n] = bmodn# amodn
(proof)

Producer/Consumer Algorithm

record Producer-consumer =
mns :: nat
outs :: nat
li :: nat
lj :: nat
vr  nat
vy nat
buffer :: nat list
b :: nat list
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The whole proof takes aprox. 4 minutes.

lemma Producer-consumer:
[INIT= «0<length a N 0<length “buffer A length “b=length a» ;
I= «(Vk<ins. “outs<k — (a ! k) = “buffer ! (k mod (length “buffer))) A
“outs<’ins A “ins—"outs<length “buffer» ;
I1= «"I N "li<length a» ;
pl= «"I1 A "li="ins» ;
I2 = «' T AN(VE<. (al k)=("b1 k) A “li<length a» ;
p2 = «I2 A "lj="outsy | =
|- 4 IvIT)
“ins:=0,, “outs:=0,, "li:=0,, "lj:=0,,
COBEGIN {’p1 A “INIT}
WHILE “li <length a
INV {’p1 A “INIT}
DO {’p1 A "INIT A "li<length ol
“vri= (a ! )
{'p1 N "INIT A “li<length a N “vz=(a ! "li)}
WAIT “ins—"outs < length “buffer END:;;
{'p1 N "INIT A “li<length a A “vz=(a ! "li)
A “ins—"outs < length ~buffer]
“buffer:=(list-update “buffer (“ins mod (length “buffer)) "vz);;
{'p1 N "INIT A “li<length a
A (a ! “lD)=("buffer | ("ins mod (length “buffer)))
A “ins—"outs <length ~buffer|}
“ins:="1ins+1;;
{11 AN "INIT A (Pli+1)="ins A “li<length a
lii="li+1
OD
{'p1 AN "INIT A “li=length af
|
{'p2 A “INIT}
WHILE “lj < length a
INV {"p2 A “INIT}
DO {’'p2 A "lji<length a A "INIT|}
WAIT ~outs<’ins END;;
{"p2 A “lji<length a N “outs<’ins A "INIT|}
“vy:=("buffer ! (" outs mod (length “buffer)));;
{'p2 A “li<length a A “outs<’ins N “vy=(a ! "lj) A "INIT|
“outs:="outs+13;;
412 A (Clj+1)="0outs A "lji<length a N “vy=(a ! "lj) A "INIT}
“b:=(list-update “b "lj “vy);;
{12 A (Clj+1)="0outs A "lji<length a A (a! "lj)=("b! "lj) AN "INIT[}
lji="l+1
OD
4’ p2 A “lji=length a A "INIT}
COEND
{ Vk<length a. (a ! k)=("b! k)}
(proof)
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1.8.4 Parameterized Examples

Set Elements of an Array to Zero

record Eramplel =
a :: nat = nat

lemma Ezamplel:

|I— { Truel}
COBEGIN SCHEME [0<i<n] {True} "a:="a (i:=0) {"a i=0} COEND
Vi< n “ai=0}

(proof )

Same example with lists as auxiliary variables.

record Ezxamplel-list =
A :: nat list
lemma FEzamplel-list:
I— {n < length ~ Al
COBEGIN
SCHEME [0<i<n] {n < length “A} ~A:="Ali:=0] { Ali=0]}
COEND
Vi < n. "Ali = 0}
(proof)

Increment a Variable in Parallel

First some lemmas about summation properties.

lemma Ezample2-lemma2-auz: 1b. j<n =

O i=0..<n. (b i:nat)) =

Oi=0..<j. bi) + bj+ (O i=0..<n—(Suc j) . b (Suc j + 1))
(proof)

lemma FEzample2-lemma2-auz2:
Mo, j< s = (O] iunat=0..<j. (b (s:=t)) i) = >_i=0..<j. b Q)
(proof)

lemma Erample2-lemma2:

b, [i<n; b j=0] = Suc (3 iznat=0..<n. b ©)=(>_ i=0..<n. (b (j := Suc 0))
i)

(proof )

record Erample2 =
c :: nat = nat
T :: nat

lemma Ezample-2: 0<n —

= { z=0 A (3 i=0..<n. "¢ i)=0}
COBEGIN
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SCHEME [0<i<n]

{'z2=0"i=0..<n. "ci) A "ci=0]}

( "z:="x+(Suc 0),, "e:="c¢ (i:=(Suc 0)) )
{72="i=0..<n. "¢ i) A "¢ i=(Suc 0)}
COEND
1 o=n}

(proof)

end
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Chapter 2

Case Study: Single and
Multi-Mutator Garbage
Collection Algorithms

2.1 Formalization of the Memory

theory Graph imports Main begin
datatype node = Black | White

type-synonym nodes = node list
type-synonym edge = nat X nat
type-synonym edges = edge list

consts Roots :: nat set

definition Proper-Roots :: nodes = bool where
Proper-Roots M = Roots#{} N Roots C {i. i<length M}

definition Proper-Edges :: (nodes x edges) = bool where
Proper-Edges = (A(M,E). Vi<length E. fst(Eli)<length M A snd(E'{)<length
M)

definition BtoW :: (edge X nodes) = bool where
BtoW = (M e,M). (M!fst e)=Black N (M'snd e)#Black)

definition Blacks :: nodes = nat set where
Blacks M = {i. i<length M N M!i=Black}

definition Reach :: edges = nat set where
Reach E = {z. (3 path. 1 <length path A path!(length path — 1)€Roots A\ x=path!0
A (Vi<length path — 1. (3j<length E. E\j=(pathl(i+1), pathli))))
V z€Roots}
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Reach: the set of reachable nodes is the set of Roots together with the
nodes reachable from some Root by a path represented by a list of nodes (at
least two since we traverse at least one edge), where two consecutive nodes
correspond to an edge in E.

2.1.1 Proofs about Graphs

lemmas Graph-defs= Blacks-def Proper-Roots-def Proper-Edges-def BtoW-def
declare Graph-defs [simp]

Graph 1

lemma Graphl-aux [rule-format]:
[ RootsCBlacks M; ¥ i<length E. ~BtoW (E!i,M)]
= 1< length path — (path!(length path — 1))€Roots —
(Vi<length path — 1. (3j. j < length E A Elj=(path!(Suc 7), pathli)))
— M!(path!0) = Black

(proof )

lemma Graphl:
[RootsC Blacks M; Proper-Edges(M, E); V¥ i<length E. ~BtoW (Ei,M) ]
—> Reach ECBlacks M

(proof)

Graph 2

lemma Fz-first-occurrence [rule-format):
P (n:nat) — (dm. Pm A (Vi. i<m — — P 1))
(proof )

lemma Compl-lemma: (n::nat)<l = (Im. m<I A n=l — m)

(proof)

lemma FEz-last-occurrence:
[P (n:nat); n<l]] = (3m. P (I — m) A (Vi. i<m — =P (I — 1))
(proof)

lemma Graph2:

[T € Reach E; R<length E] = T € Reach (E[R:=(fst(E!R), T)])
(proof )
Graph 3

declare min.absorbl [simp] min.absorb2 [simp]
lemma Graph3:

[ T€Reach E; R<length E | = Reach(E[R:=(fst(E'R),T)]) C Reach E
(proof)
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Graph 4

lemma Graphj:
[T € Reach E; RootsCBlacks M; I<length E; T<length M; R<length E,
Vi<I. ~BtoW(E'i,M); R<I; M!fst(E'R)=DBlack; M'T+#Black] =
(3r. I<r A r<length E N BtoW (E[R:=(fst(E!R),T)|'r,M))

(proof)

declare min.absorbl [simp del] min.absorb2 [simp del]

Graph 5

lemma Graphb:

[ T € Reach E ; Roots C Blacks M; ¥V i<R. -BtoW (E!i,M); T<length M;
R<length E; M!fst(E'R)=DBlack; M'snd(E'R)=Black; M!T # Black]
= (Ir. R<r A r<length E N BtoW (E[R:=(fst(E!R),T)]!r,M))

(proof)

Other lemmas about graphs

lemma Grapht:

[Proper-Edges(M,E); R<length E ; T<length M| = Proper-Edges(M ,E[R:=(fst(E!R),T)])
(proof)

lemma Graph7:
[Proper-Edges(M,E)] = Proper-Edges(M[T:=al,E)
(proof )

lemma Graph8:

[Proper-Roots(M)] = Proper-Roots(M|[T:=al)

(proof)

Some specific lemmata for the verification of garbage collection algorithms.
lemma Graph9: j<length M = Blacks M CBlacks (M|[j := Black])

(proof )

lemma Graphl0 [rule-format (no-asm)]: Vi. Mli=a — M|i:=a]=M

(proof)

lemma Graphll! [rule-format (no-asm)]:
[ M!j#Black;j<length M| = Blacks M C Blacks (M|j := Black))

(proof)

lemma Graphl2: [aCBlacks M;j<length M| = aCBlacks (M[j := Black])
(proof)

lemma Graphl8: [aC Blacks M;j<length M| = a C Blacks (M[j := Black])
(proof)

declare Graph-defs [simp del]
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end

2.2 The Single Mutator Case

theory Gar-Coll imports Graph OG-Syntaz begin

declare psubsetE [rule del]

Declaration of variables:

record gar-coll-state =
M :: nodes
FE :: edges
be :: nat set
obc :: nat set
Ma :: nodes
ind :: nat
k :: nat
z 12 bool

2.2.1 The Mutator

The mutator first redirects an arbitrary edge R from an arbitrary accessible
node towards an arbitrary accessible node T. It then colors the new target
T black.

We declare the arbitrarily selected node and edge as constants:

consts R :: nat T :: nat

The following predicate states, given a list of nodes m and a list of edges e,
the conditions under which the selected edge R and node T are valid:

definition Mut-init :: gar-coll-state = bool where
Mut-init = « T € Reach “E N R < length "E N T < length "M »

For the mutator we consider two modules, one for each action. An auxiliary
variable “z is set to false if the mutator has already redirected an edge but
has not yet colored the new target.

definition Redirect-Edge :: gar-coll-state ann-com where
Redirect-Edge = {” Mut-init A\ "z} ("E:="E[R:=(fst("E'R), T)],, "z:= (—="2))

definition Color-Target :: gar-coll-state ann-com where
Color-Target = {” Mut-init N ="z} (" M:="M[T:=Black],, "z:= (—"2))

definition Mutator :: gar-coll-state ann-com where
Mutator =
{" Mut-init Nz}
WHILE True INV {’" Mut-init A "z}
DO Redirect-Edge ;; Color-Target OD
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Correctness of the mutator

lemmas mutator-defs = Mut-init-def Redirect-Edge-def Color-Target-def

lemma Redirect-FEdge:
b Redirect-Edge pre( Color-Target)

(proof)

lemma Color-Target:
F Color-Target {” Mut-init A “z|}
(proof)

lemma Mutator:
F Mutator {Falsel

(proof)

2.2.2 The Collector

A constant M-init is used to give “Ma a suitable first value, defined as a list
of nodes where only the Roots are black.

consts M-init :: nodes

definition Proper-M-init :: gar-coll-state = bool where
Proper-M-init = « Blacks M-init=Roots A length M-init=Ilength "M »

definition Proper :: gar-coll-state = bool where
Proper = « Proper-Roots "M A Proper-Edges(" M, "E) A ~ Proper-M-init »

definition Safe :: gar-coll-state = bool where
Safe = « Reach “E C Blacks "M »

lemmas collector-defs = Proper-M-init-def Proper-def Safe-def

Blackening the roots

definition Blacken-Roots :: gar-coll-state ann-com where
Blacken-Roots =
{’ Proper|
“ind:=0;;
{’ Proper A “ind=0}
WHILE “ind<length *M
INV {’ Proper A (Vi<’ind. i € Roots — ~Mli=Black) N “ind<length “M}
DO {’ Proper A (Vi<’ind. i € Roots — “M!i=Black) N “ind<length “M}
IF “indeRoots THEN
{" Proper A (Vi<’ind. { € Roots — “M!i=Black) N “ind<length "M A
“ind€ Rootsl}
"M:="M]|"ind:=Black] FI;;
{" Proper N (Vi<’ind+1.i € Roots — “~M!i=Black) A “ind<length “M}
“ind:="ind+1
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oD

lemma Blacken-Roots:
F Blacken-Roots {” Proper A RootsC Blacks ~M[

(proof)

Propagating black

definition PBInv :: gar-coll-state = nat = bool where
PBInv = « MNind. “obc < Blacks "M Vv (Vi <ind. -BtoW ("E'i, "M) Vv
(=" 2ANi=R A (snd("E'R)) =T A (3r.ind < r A r <length "E N BtoW (" Elr,” M))))»

definition Propagate-Black-auz :: gar-coll-state ann-com where
Propagate-Black-aur =
{’ Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks “M]}
“ind:=0;;
{’ Proper N RootsCBlacks "M N “obcCBlacks "M A “beCBlacks "M A “ind=0}
WHILE “ind<length 'E
INV {’Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks *M
A "PBInv “ind A “ind<length “E}
DO {’ Proper A RootsCBlacks "M N “obcCBlacks "M N “bcCBlacks *M
A "PBInv “ind A “ind<length “E|
IF "M!(fst ("E!"ind)) = Black THEN
{” Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks *M
A "PBInv “ind A “ind<length “E N ~M!\fst(" E!"ind)=DBlack[}
"M:="M|snd(’ E!"ind):=DBlack];
{’ Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks "M
A "PBInv (“ind + 1) A “ind<length “E[
“ind:="ind+1
FI
OD

lemma Propagate-Black-auz:
F  Propagate-Black-aux
{" Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks *M
A ( “obc < Blacks "M V “Safe)}

(proof)

Refining propagating black

definition Auxk :: gar-coll-state = bool where
Auzk = « k<length "M AN ("M k#Black vV =BtoW (" E!"ind, "M) V
“obc<Blacks "M NV (—="z A “ind=R A snd("E'R)=T
A (3r. Zind<r A r<length "E N BtoW (" Elr, "M))))»

definition Propagate-Black :: gar-coll-state ann-com where
Propagate-Black =
{’ Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks “M|}
“ind:=03;
{" Proper A RootsCBlacks "M A “obcCBlacks "M A “bcCBlacks "M A “ind=0]
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WHILE “ind<length "E
INV {’ Proper A RootsCBlacks "M A “obcCBlacks "M A “bcCBlacks *M
A "PBInv “ind A “ind<length “E}
DO {’ Proper A RootsCBlacks "M N “obeCBlacks "M N “beCBlacks *M
A “PBInv “ind A “ind<length *E}
IF ("M!(fst ("E!"ind)))=Black THEN
{’ Proper A RootsCBlacks "M A “obcCBlacks "M A “bcCBlacks "M
A “PBInv “ind A “ind<length "E N ("M!fst(" E!"ind))=DBlackl
“k:=(snd("E!"ind));;
{" Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks *M
A "PBInv “ind A “ind<length “E A ("M!fst("E! ind))=Black
A T Auzkl
("M:="M|[ " k:=Black],, “ind:="ind+1)
ELSE {’ Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks *M
A "PBInv “ind A “ind<length *E[}
(IF ("M!(fst ("E""ind)))#Black THEN "ind:="ind+1 FI)
FI
OD

lemma Propagate-Black:

F  Propagate-Black
{" Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks *M

A ( “obc < Blacks "M V *Safe)l}
(proof)

Counting black nodes

definition CountInv :: gar-coll-state = nat = bool where
CountInv = « Xind. {i. i<ind A ~Mali=Black}C " bc »

definition Count :: gar-coll-state ann-com where

Count =
{’ Proper A RootsCBlacks "M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “becCBlacks “M
A length “Ma=length "M A (“obc < Blacks “Ma Vv “Safe) N “be={}[}
“ind:=0;;
{’ Proper A RootsCBlacks "M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “beCBlacks “M
A length “Ma=length "M A (“obc < Blacks “Ma Vv “Safe) A “be={}
A ind=0}
WHILE “ind<length "M
INV {’ Proper A RootsCBlacks ~M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “beCBlacks "M
A length “Ma=length "M A “CountInv “ind
A ( “obc < Blacks “Ma Vv “Safe) A “ind<length ~M]
DO {’ Proper A RootsCBlacks "M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “beCBlacks *M
A length “Ma=length "M A *CountInv “ind
A ( “obc < Blacks “Ma Vv “Safe) N “ind<length “M]}
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IF "M ind=Black
THEN {’ Proper A RootsCBlacks ~M
A “0bcCBlacks “Ma N Blacks “"MaCBlacks "M N “beC Blacks “M
A length “Ma=length "M A ~CountInv “ind
A ( “obe < Blacks “Ma V “Safe) A “ind<length "M A “M!”ind=Black[
“be:=insert “ind “bc
FI;;
{’ Proper A RootsCBlacks *M
A “0bcCBlacks “Ma N Blacks “MaCBlacks "M N “beCBlacks “M
A length “Ma=length "M N ~CountInv (“ind+1)
A ( “obc < Blacks "Ma Vv “Safe) N\ “ind<length “M[}
“ind:="ind+1
oD

lemma Count:

F Count

{’ Proper A RootsCBlacks “M

A “obcCBlacks “Ma N Blacks “MaC bc A “bcC Blacks "M A length “Ma=length
M

A (“obe < Blacks “Ma V ~Safe)|}
(proof)

Appending garbage nodes to the free list

axiomatization Append-to-free :: nat x edges = edges
where
Append-to-free0: length (Append-to-free (i, e)) = length e and
Append-to-freel: Proper-Edges (m, e)
= Proper-Edges (m, Append-to-free(i, e)) and
Append-to-free2: i ¢ Reach e
= n € Reach (Append-to-free(i, e)) = (n =iV n € Reach e)

definition AppendInv :: gar-coll-state = nat = bool where
AppendInv = «Xind. ¥V i<length “M. ind<i — i€ Reach "E — ~M!i=DBlack»

definition Append :: gar-coll-state ann-com where
Append =
{’ Proper A RootsCBlacks "M A ~Safel}
“ind:=03;
{" Proper A RootsCBlacks "M A ’“Safe A “ind=0}
WHILE “ind<length “M
INV {’ Proper N ~AppendInv “ind A “ind<length “M]
DO {’ Proper A ~AppendInv “ind A “ind<length “M]
IF "M ind=Black THEN
{" Proper N ~AppendInv “ind A “ind<length "M A ~M!"ind=Black]}
‘M:=" M| ind:= White]
ELSE {" Proper A “AppendInv “ind A “ind<length "M A “ind¢ Reach "El}
" E:=Append-to-free("ind,” F)
FI;;
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{’ Proper N ~AppendInv (“ind+1) A “ind<length “M]
“ind:="ind+1
oD

lemma Append:
F Append {’ Proper]}
(proof)

Correctness of the Collector

definition Collector :: gar-coll-state ann-com where
Collector =
{’ Proper|}
WHILE True INV {’ Proper}
DO
Blacken-Roots;;
{’ Proper A RootsCBlacks “M}
“obe:={};;
{" Proper A RootsCBlacks "M A “obc={}|}
“be:=Roots;;
{* Proper A RootsCBlacks "M A “obc={} A ~bc=Roots]}
" Ma:=M-init;;
{" Proper A RootsCBlacks "M A “obc={} N "be=Roots N ~Ma=M-init}
WHILE ~obc#" be
INV {’ Proper A RootsCBlacks ~M
A “obcCBlacks “Ma N Blacks “MaC be A “bcC Blacks “M
A length “Ma=length "M A (“obc < Blacks “Ma Vv ’Safe)|
DO {’ Proper A RootsCBlacks "M N “bcCBlacks “ M}
“obc:="bc;;
Propagate-Blacks;
{’ Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks "M
A (“obe < Blacks "M V ~Safe)|t
"Ma:="M;;
{’ Proper N RootsCBlacks "M A “obcCBlacks “Ma
A Blacks “MaCBlacks "M N “bcCBlacks "M A length “Ma=length M
A ( “obc < Blacks “Ma Vv ’Safe)|
“be:={};;
Count
ODy;
Append
oD

lemma Collector:
F Collector { Falsel

(proof)

2.2.3 Interference Freedom

lemmas modules = Redirect-Edge-def Color-Target-def Blacken-Roots-def
Propagate-Black-def Count-def Append-def
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lemmas Invariants = PBInv-def Auzk-def CountInv-def AppendInv-def
lemmas abbrev = collector-defs mutator-defs Invariants

lemma interfree- Blacken-Roots-Redirect- Edge:
interfree-aux (Some Blacken-Roots, {}, Some Redirect-Edge)

(proof)

lemma interfree- Redirect-Edge-Blacken-Roots:
interfree-auz (Some Redirect-Edge, {}, Some Blacken-Roots)

{(proof)

lemma interfree-Blacken-Roots-Color-Target:
interfree-aux (Some Blacken-Roots, {}, Some Color-Target)
(proof)

lemma interfree-Color-Target-Blacken-Roots:
interfree-aux (Some Color-Target, {}, Some Blacken-Roots)

(proof)

lemma interfree- Propagate-Black-Redirect- Edge:
interfree-aux (Some Propagate-Black, {}, Some Redirect-Edge)

(proof)

lemma interfree- Redirect-Edge- Propagate-Black:
interfree-aux (Some Redirect-Edge, {}, Some Propagate-Black)
(proof)

lemma interfree- Propagate-Black-Color-Target:
interfree-aux (Some Propagate-Black, {}, Some Color-Target)
(proof)

lemma interfree-Color-Target- Propagate-Black:
interfree-aux (Some Color-Target, {}, Some Propagate-Black)

(proof)

lemma interfree- Count-Redirect- Edge:
interfree-aux (Some Count, {}, Some Redirect-Edge)

(proof)

lemma interfree- Redirect- Edge-Count:
interfree-aux (Some Redirect-Edge, {}, Some Count)

(proof)

lemma interfree-Count-Color-Target:
interfree-aux (Some Count, {}, Some Color-Target)
(proof)

lemma interfree-Color-Target-Count:
interfree-aux (Some Color-Target, {}, Some Count)
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(proof)

lemma interfree- Append- Redirect-Edge:
interfree-auz (Some Append, {}, Some Redirect-Edge)

(proof)

lemma interfree- Redirect-Edge-Append:
interfree-auz (Some Redirect-Edge, {}, Some Append)

(proof)

lemma interfree-Append-Color-Target:
interfree-auz (Some Append, {}, Some Color-Target)

(proof)

lemma interfree-Color-Target-Append:
interfree-aux (Some Color-Target, {}, Some Append)
(proof)

lemmas collector-mutator-interfree =
interfree- Blacken-Roots- Redirect- Edge interfree- Blacken-Roots-Color-Target
interfree- Propagate- Black- Redirect- Edge interfree- Propagate-Black-Color-Target
interfree-Count-Redirect-Edge interfree-Count-Color-Target
interfree- Append-Redirect-Edge interfree-Append-Color-Target
interfree- Redirect- Edge-Blacken-Roots interfree-Color-Target-Blacken-Roots
interfree- Redirect- Edge- Propagate- Black interfree- Color- Target- Propagate-Black
interfree- Redirect- Edge- Count interfree-Color-Target-Count
interfree- Redirect- Edge- Append interfree-Color-Target-Append

Interference freedom Collector-Mutator

lemma interfree-Collector-Mutator:
interfree-auz (Some Collector, {}, Some Mutator)

(proof)

Interference freedom Mutator-Collector

lemma interfree-Mutator-Collector:
interfree-aux (Some Mutator, {}, Some Collector)

(proof)

The Garbage Collection algorithm

In total there are 289 verification conditions.

lemma Gar-Coll:
I— {~ Proper A *Mut-init A ~z[}
COBEGIN
Collector
{Falsel}
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Mutator
{Falsel}
COEND
{Falsel}

(proof)

end

2.3 The Multi-Mutator Case

theory Mul-Gar-Coll imports Graph OG-Syntax begin

The full theory takes aprox. 18 minutes.

record mut =

Z i bool
R :: nat
T :: nat

Declaration of variables:

record mul-gar-coll-state =
M :: nodes
FE :: edges
bc :: nat set
obc :: nat set
Ma :: nodes
ind :: nat
k :: nat
q :: nat
[ :: nat
Muts :: mut list

2.3.1 The Mutators

definition Mul-mut-init :: mul-gar-coll-state = nat = bool where
Mul-mut-init = « An. n=length “Muts A (Vi<n. R (" Mutsli)<length "E
A T (" Mutsli)<length “M) »

definition Mul-Redirect-Edge :: nat = nat = mul-gar-coll-state ann-com where
Mul-Redirect-Edge j n =
{" Mul-mut-init n N Z (" Muts!j)}
(IF T(’Muts'j) € Reach 'E THEN
"E:= "E[R (" Muts!j):= (fst ("E!R("Muts!j)), T (" Muts!j))] FI,,
"Muts:= *Muts[j:= (" Muts'j) (Z:=False|)])

definition Mul-Color-Target :: nat = nat = mul-gar-coll-state ann-com where
Mul-Color-Target j n =
{" Mul-mut-init n A = Z (" Mutsj)|}
("M:="M[T (" Muts!j):=Black],, *Muts:="Muts[j:= (" Muts!j) (Z:=True))])
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definition Mul-Mutator :: nat = nat = mul-gar-coll-state ann-com where
Mul-Mutator j n =
{" Mul-mut-init n A Z (" Muts!j)}
WHILE True
INV {” Mul-mut-init n A Z (" Muts!j)}
DO Mul-Redirect-Edge j n ;;
Mul-Color-Target j n
oD

lemmas mul-mutator-defs = Mul-mut-init-def Mul-Redirect-Edge-def Mul-Color- Target-def

Correctness of the proof outline of one mutator

lemma Mul-Redirect-Edge: 0<j A j<n =
F Mul-Redirect-Edge j n
pre( Mul-Color-Target j n)
(proof)

lemma Mul-Color-Target: 0<j N j<n =
F  Mul-Color-Target j n
{’ Mul-mut-init n N Z (" Muts!lj)[}
(proof)

lemma Mul-Mutator: 0<j A j<n =
F Mul-Mutator j n { Falsel

(proof)

Interference freedom between mutators

lemma Mul-interfree- Redirect- Edge- Redirect-Edge:

[0<i; i<n; 0<j; j<n; i#j] =

interfree-aux (Some (Mul-Redirect-Edge i n),{}, Some(Mul-Redirect-Edge j n))
(proof)

lemma Mul-interfree- Redirect-Edge-Color-Target:

[0<i; i<n; 0<j; j<n; i#j] =

interfree-aux (Some(Mul-Redirect-Edge i n),{},Some(Mul-Color-Target j n))
(proof)

lemma Mul-interfree- Color- Target- Redirect- Edge:

[0<i; i<n; 0<j; j<n; i#j] =

interfree-aux (Some(Mul-Color-Target i n),{},Some(Mul-Redirect-Edge j n))
(proof)

lemma Mul-interfree-Color-Target-Color-Target:

[0<i; i<n; 0<j; j<n; i#j] =

interfree-aux (Some(Mul-Color-Target i n),{},Some(Mul-Color-Target j n))
(proof)
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lemmas mul-mutator-interfree =
Mul-interfree- Redirect- Edge- Redirect-Edge Mul-interfree- Redirect-Edge-Color-Target
Mul-interfree-Color-Target- Redirect- Edge Mul-interfree-Color-Target-Color-Target

lemma Mul-interfree-Mutator-Mutator: [i < n; j < n; i # j] =
interfree-auz (Some (Mul-Mutator i n), {}, Some (Mul-Mutator j n))
(proof)

Modular Parameterized Mutators

lemma Mul-Parameterized-Mutators: 0<n —>
I— " Mul-mut-init n A (Vi<n. Z (" Muts'i))|
COBEGIN
SCHEME [0< j< n]
Mul-Mutator j n
{False}
COEND
{ False]}

(proof)

2.3.2 The Collector

definition Queue :: mul-gar-coll-state = nat where
Queue = « length (filter (Xi. = Z i N "M\(T i) # Black) ~Muts) »

consts M-init :: nodes

definition Proper-M-init :: mul-gar-coll-state = bool where
Proper-M-init = « Blacks M-init=Roots A length M-init=Ilength "M »

definition Mul-Proper :: mul-gar-coll-state = nat = bool where
Mul-Proper = « An. Proper-Roots M A Proper-Edges ("M, "E) A\ * Proper-M-init
A n=length ~Muts »

definition Safe :: mul-gar-coll-state = bool where
Safe = « Reach “E C Blacks "M »

lemmas mul-collector-defs = Proper-M-init-def Mul-Proper-def Safe-def

Blackening Roots

definition Mul-Blacken-Roots :: nat = mul-gar-coll-state ann-com where

Mul-Blacken-Roots n =

{” Mul-Proper nl

“ind:=0;;

{" Mul-Proper n A “ind=0}

WHILE “ind<length *M

INV {” Mul-Proper n A (Vi< ind. i€ Roots — “Mli=Black) N “ind<length

‘M)

DO {” Mul-Proper n A (Y i<’ ind. i€ Roots — “M!i=Black) A “ind<length M|
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IF “ind€ Roots THEN
{’ Mul-Proper n A (Vi<’ind. i€ Roots — ~Mli=Black) N “ind<length "M A
“ind€ Rootsl}
"M:="M] ind:=Black] FI;;
{” Mul-Proper n A (Vi< ind+1. i€Roots — ~MVi=Black) N “ind<length
“ind:="ind+1
OD

lemma Mul-Blacken-Roots:
F Mul-Blacken-Roots n
{” Mul-Proper n A Roots C Blacks "M}

(proof)

Propagating Black

definition Mul-PBInv :: mul-gar-coll-state = bool where
Mul-PBInv = «”Safe V “obcCBlacks "M V “1<’ Queue
vV (Vi< ind. ~BtoW (" Eli,” M)) N 1<’ Queue»

definition Mul-Auxk :: mul-gar-coll-state = bool where
Mul-Auzk = « 1<’ Queue V "M k#Black v ~BtoW (" E!"ind, M) V “obcC Blacks
“M»

definition Mul-Propagate-Black :: nat = mul-gar-coll-state ann-com where
Mul-Propagate-Black n =
{’ Mul-Proper n A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks "M
A (" Safe v "I<’ Queue V “obeCBlacks *M)[}
“ind:=03;
{” Mul-Proper n A RootsCBlacks *M
A “obcCBlacks "M A Blacks "M CBlacks "M N “becCBlacks M
A (“Safe vV "I<” Queue V “obeCBlacks “M) A “ind=0]
WHILE “ind<length 'FE
INV {” Mul-Proper n A RootsCBlacks *M
A “0bcCBlacks "M N “beCBlacks "M
A “Mul-PBInv A “ind<length *E|}
DO {’ Mul-Proper n A RootsC Blacks *M
A “obcCBlacks "M N “bcCBlacks “M
A “Mul-PBInv A “ind<length “E}
IF "M!(fst (" E!"ind))=Black THEN
{” Mul-Proper n A RootsCBlacks *M
A “obcCBlacks "M N “bcCBlacks “M
A “Mul-PBInv A (" M!fst("E"" ind))=DBlack N “ind<length “E}
"k:=snd("E!"ind);;
{” Mul-Proper n A RootsCBlacks *M
A “obcCBlacks "M N “beCBlacks “M
A ("Safe V “obeCBlacks "M V 1<’ Queue V (Vi< ind. ~BtoW (" Eli,” M))
A TI< Queue N T Mul-Auzk ) N “k<length "M A “M\fst(” E!"ind)=Black
A “ind<length “E}

43



("M:="M|[ k:=Black],,” ind:="ind+1)
ELSE {’ Mul-Proper n A RootsC Blacks "M
A “0bcCBlacks "M N “beCBlacks "M
A “Mul-PBInv A “ind<length “E}
(IF "M\(fst ("E!"ind))#Black THEN “ind:="ind+1 FI) FI
oD

lemma Mul-Propagate-Black:
F Mul-Propagate-Black n
{” Mul-Proper n A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks "M
A ("Safe VvV “obeCBlacks "M V “l<’ Queue A ("I<’Queue V “obeCBlacks

M)
(proof)

Counting Black Nodes

definition Mul-CountInv :: mul-gar-coll-state = nat = bool where
Mul-CountInv = « Aind. {i. i<ind N "Mali=Black}C bc »

definition Mul-Count :: nat = mul-gar-coll-state ann-com where
Mul-Count n =
{” Mul-Proper n A RootsCBlacks “M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “bcCBlacks M
A length “Ma=length "M
A ("Safe v “obeCBlacks "Ma VvV "1<’q A ("q<’ Queue V “obcCBlacks M) )
A “g<nt+1 A “be={}}
“ind:=0;;
{” Mul-Proper n A RootsCBlacks “M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “bcCBlacks “M
A length “Ma=length ~M
A (" Safe V “obcCBlacks "Ma V "I<”q A ("q<” Queue V “obcCBlacks "M) )
A “g<n+1 N “be={} A “ind=0]
WHILE “ind<length "M
INV {’ Mul-Proper n A RootsCBlacks ~M
A “0bcCBlacks “Ma N Blacks "MaCBlacks "M N “beC Blacks “M
A length “Ma=length "M A ~Mul-CountInv “ind
A ("Safe vV “obeCBlacks "Ma V "l1< g A ("¢<” Queue V “obcC Blacks “M))
A “g<n+1 A “ind<length “M]
DO {” Mul-Proper n A RootsC Blacks *M
A “0bcCBlacks “Ma N Blacks “MaC Blacks "M N “beCBlacks "M
A length “Ma=length "M A ~Mul-CountInv “ind
A ("Safe V “obeCBlacks "Ma vV "I< g A ("¢<’Queue V “obcCBlacks “M))
A “g<n+1 A “ind<length “M]}
IF M ind=Black
THEN {’ Mul-Proper n A\ RootsC Blacks "M
A “obcCBlacks “"Ma N Blacks “MaCBlacks "M N “bcCBlacks "M
A length “Ma=length "M A ~Mul-CountInv “ind
A (“Safe V “obeCBlacks "Ma V "l< q A ("q<" Queue V “obcC Blacks
‘M)
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A “g<n+1 A “ind<length "M A “M!"ind=Black]}
“be:=insert “ind “be
FI;
{” Mul-Proper n A RootsCBlacks *M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “bcCBlacks "M
A length “Ma=length "M A *Mul-CountInv (" ind+1)
A (“Safe v “obeCBlacks "Ma VvV “1<’q A ("¢<’ Queue V “obcCBlacks “M))
A “g<n+1 A “ind<length ~M]
“ind:="ind+1
OD

lemma Mul-Count:
F Mul-Count n
{” Mul-Proper n A RootsCBlacks *M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “bcCBlacks "M
A length “Ma=length "M A Blacks “MaC  bc
A (“Safe vV “obcCBlacks "Ma V 1<’ q A ("¢<’ Queue V “obeC Blacks *M))
A Tq<n+1]
(proof)

Appending garbage nodes to the free list

axiomatization Append-to-free :: nat x edges = edges
where
Append-to-free0: length (Append-to-free (i, e)) = length e and
Append-to-freel: Proper-Edges (m, e)
= Proper-Edges (m, Append-to-free(i, e)) and
Append-to-free2: i ¢ Reach e
= n € Reach (Append-to-free(i, e)) = (n =iV n € Reach e)

definition Mul-AppendInv :: mul-gar-coll-state = nat = bool where
Mul-AppendInv = « Aind. (Vi. ind<i — i<length "M — i€Reach "E —
"M'i=Black)»

definition Mul-Append :: nat = mul-gar-coll-state ann-com where
Mul-Append n =
{” Mul-Proper n A RootsCBlacks "M A ’Safel
“ind:=0;;
{” Mul-Proper n A RootsCBlacks "M N “Safe A “ind=0]
WHILE “ind<length "M
INV {” Mul-Proper n A~ Mul-AppendInv “ind A “ind<length *M]
DO {’ Mul-Proper n A ~Mul-AppendInv “ind A “ind<length “M]
IF "M ind=Black THEN
{’ Mul-Proper n A~ Mul-AppendInv “ind A “ind<length "M A *M!" ind=Black}
‘M:=" M| ind:= White]
ELSE
{’ Mul-Proper n A ~Mul-AppendInv “ind A “ind<length "M A “ind¢ Reach
" E:=Append-to-free("ind,” F)
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FI;;
{” Mul-Proper n A~ Mul-AppendInv ("ind+1) A “ind<length “M]}
“ind:="ind+1
OD

lemma Mul-Append:
F Mul-Append n
{’ Mul-Proper nl}
(proof)

Collector

definition Mul-Collector :: nat = mul-gar-coll-state ann-com where
Mul-Collector n =
{’ Mul-Proper n}}
WHILE True INV {’ Mul-Proper nl
DO
Mul-Blacken-Roots n ;;
{’ Mul-Proper n A RootsC Blacks M|}
“obe:={};;
{’ Mul-Proper n A RootsCBlacks "M A “obc={}|}
“be:=Roots;;
{” Mul-Proper n A RootsCBlacks "M A “obc={} N “bc=Rootsl}
=03
{’ Mul-Proper n A RootsCBlacks "M A “obc={} N "be=Roots N\ "I=0]
WHILE “l<n+1
INV {” Mul-Proper n A RootsCBlacks "M A “bcCBlacks "M A
("Safe Vv ("1<” Queue V "beCBlacks M) N “l<n+1)}
DO {’ Mul-Proper n A\ RootsCBlacks "M N "bcCBlacks *M
A (“Safe vV 1<’ Queue V “beC Blacks “M)
“obc:="bc;;
Mul-Propagate-Black n;;
{’ Mul-Proper n A\ RootsC Blacks "M
A “obcCBlacks "M N “becCBlacks "M
A ("Safe V “obcCBlacks "M V “l<’ Queue
A (1< Queue V “obeCBlacks “M))}
“be:={};;
{’ Mul-Proper n A\ RootsC Blacks "M
A “obcCBlacks "M N “bcCBlacks “M
A ("Safe V “obeCBlacks "M V “l<’ Queue
A (7I<” Queue V “obcCBlacks “M)) N “be={}}
( "Ma:="M,, " q:="Queue );;
Mul-Count n;;
{ Mul-Proper n A\ RootsCBlacks "M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “beCBlacks "M
A length “Ma=length "M A Blacks “MaC " bc
A ("Safe V “obeCBlacks "Ma vV "I< q A ("¢<’Queue V “obcCBlacks “M))
A g<n+1}
IF “obc="bc THEN
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{’ Mul-Proper n A\ RootsC Blacks "M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “bcCBlacks “M
A length “Ma=length "M A Blacks “MaC " bc
A ("Safe V “obeCBlacks "Ma vV "I< q A ("¢<’Queue V “obcCBlacks “M))
A “g<n+1 A “obe="bcl}
="1+1
ELSE {” Mul-Proper n A RootsCBlacks “M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “bcCBlacks "M
A length “Ma=length "M A Blacks “~MaC  bc
A ("Safe v “obeCBlacks "Ma V "l1< g A ("¢<” Queue V “obcC Blacks “M))
A “q<n+1 A “obe£ bl
“I:=0 FI
ODy;
Mul-Append n
0D

lemmas mul-modules = Mul-Redirect-Edge-def Mul-Color-Target-def
Mul-Blacken-Roots-def Mul-Propagate-Black-def
Mul-Count-def Mul-Append-def

lemma Mul-Collector:
F Mul-Collector n
{Falsel

(proof)

2.3.3 Interference Freedom

lemma le-length-filter-update|[rule-format):

Vi. (=P (listli) vV P j) A i<length list

— length(filter P list) < length(filter P (list[i:=j]))
(proof)

lemma less-length-filter-update [rule-format):

Vi. Pj A —(P (listli)) A i<length list

— length(filter P list) < length(filter P (list[i:=j]))
(proof)

lemma Mul-interfree- Blacken-Roots-Redirect-Edge: [0<j; j<n] =
interfree-auz (Some(Mul-Blacken-Roots n),{},Some(Mul-Redirect-Edge j n))
(proof)

lemma Mul-interfree- Redirect-Edge-Blacken-Roots: [0<j; j<n]—>
interfree-aux (Some(Mul-Redirect-Edge j n ),{},Some (Mul-Blacken-Roots n))
(proof)

lemma Mul-interfree-Blacken-Roots-Color-Target: [0<j; j<n]—
interfree-aux (Some(Mul-Blacken-Roots n),{},Some (Mul-Color-Target j n ))

(proof)
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lemma Mul-interfree-Color-Target-Blacken-Roots: [0<j; j<n]=—
interfree-auz (Some(Mul-Color-Target j n ),{},Some (Mul-Blacken-Roots n ))
(proof)

lemma Mul-interfree- Propagate-Black-Redirect-Edge: [0<j; j<n]—=—
interfree-aux (Some(Mul-Propagate-Black n),{},Some (Mul-Redirect-Edge j n ))
(proof)

lemma Mul-interfree- Redirect- Edge- Propagate-Black: [0<j; j<n]—
interfree-aux (Some(Mul-Redirect-Edge j n ),{},Some (Mul-Propagate-Black n))
(proof )

lemma Mul-interfree- Propagate-Black-Color-Target: [0<j; j<n]—
interfree-auz (Some(Mul-Propagate-Black n),{},Some (Mul-Color-Target jn ))
(proof)

lemma Mul-interfree-Color-Target-Propagate-Black: [0<j; j<n]=—
interfree-aux (Some(Mul-Color-Target j n),{},Some(Mul-Propagate-Black n ))
(proof )

lemma Mul-interfree-Count-Redirect-Edge: [0<j; j<n]—
interfree-aux (Some(Mul-Count n ),{},Some(Mul-Redirect-Edge j n))
(proof)

lemma Mul-interfree- Redirect- Edge-Count: [0<j; j<n]—
interfree-auz (Some(Mul-Redirect-Edge j n),{},Some(Mul-Count n ))
(proof )

lemma Mul-interfree-Count-Color-Target: [0<j; j<n]=
interfree-auz (Some(Mul-Count n ),{},Some(Mul-Color-Target j n))
(proof)

lemma Mul-interfree-Color-Target-Count: [0<j; j<n]=—
interfree-aux (Some(Mul-Color-Target j n),{}, Some(Mul-Count n ))
(proof )

lemma Mul-interfree- Append-Redirect-Edge: [0<j; j<n]—
interfree-auz (Some(Mul-Append n),{}, Some(Mul-Redirect-Edge j n))
(proof)

lemma Mul-interfree- Redirect-Edge-Append: [0<j; j<n]—
interfree-aux (Some(Mul-Redirect-Edge j n),{},Some(Mul-Append n))
(proof )

lemma Mul-interfree- Append-Color-Target: [0<j; j<n]=—
interfree-auz (Some(Mul-Append n),{}, Some(Mul-Color-Target j n))
(proof)

lemma Mul-interfree-Color-Target-Append: [0<j; j<n]=
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interfree-auz (Some(Mul-Color-Target j n),{}, Some(Mul-Append n))
(proof)

Interference freedom Collector-Mutator

lemmas mul-collector-mutator-interfree =
Mul-interfree- Blacken-Roots- Redirect-Edge Mul-interfree-Blacken-Roots-Color-Target
Mul-interfree- Propagate-Black- Redirect- Edge Mul-interfree- Propagate-Black-Color-Target
Mul-interfree-Count-Redirect- Edge Mul-interfree-Count-Color-Target
Mul-interfree- Append-Redirect-Edge Mul-interfree-Append-Color-Target
Mul-interfree- Redirect- Edge- Blacken-Roots Mul-interfree- Color-Target- Blacken- Roots
Mul-interfree- Redirect- Edge- Propagate- Black Mul-interfree-Color-Target-Propagate-Black
Mul-interfree-Redirect-Edge- Count Mul-interfree-Color-Target-Count
Mul-interfree- Redirect- Edge- Append Mul-interfree-Color-Target-Append

lemma Mul-interfree-Collector-Mutator: j<n —
interfree-aux (Some (Mul-Collector n), {}, Some (Mul-Mutator j n))

(proof)

Interference freedom Mutator-Collector

lemma Mul-interfree-Mutator-Collector: j < n —
interfree-auz (Some (Mul-Mutator j n), {}, Some (Mul-Collector n))
(proof)

The Multi-Mutator Garbage Collection Algorithm

The total number of verification conditions is 328

lemma Mul-Gar-Coll:
I— {" Mul-Proper n A~ Mul-mut-init n A (Vi<n. Z (" Muts!i))]}
COBEGIN
Mul-Collector n
{False}
|
SCHEME [0< j< n]
Mul-Mutator j n
{Falsel}
COEND
{False}

(proof)

end
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Chapter 3

The Rely-Guarantee Method

3.1 Abstract Syntax

theory RG-Com imports Main begin

Semantics of assertions and boolean expressions (bexp) as sets of states.
Syntax of commands com and parallel commands par-com.
type-synonym ’a bexp = 'a set
datatype ‘a com =
Basic 'a ='a
| Seq ‘a com 'a com
| Cond 'a bexp 'a com 'a com

| While 'a bexp 'a com
| Await ‘a bexp 'a com

type-synonym ’a par-com = 'a com option list

end

3.2 Operational Semantics

theory RG-Tran
imports RG-Com
begin

3.2.1 Semantics of Component Programs

Environment transitions
type-synonym ‘a conf = ((‘a com) option) X 'a

inductive-set
etran :: (‘a conf x 'a conf) set
and etran’ :: 'a conf = 'a conf = bool (<- —e— -» [81,81] 80)
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where
P —e— Q = (P,Q) € etran
| Env: (P, s) —e— (P, t)

lemma etranE: ¢ —e— ¢’ = (APst.c=(P,s) = ¢'= (P, t) = Q) = @
{proof)

Component transitions

inductive-set
ctran :: (‘a conf x 'a conf) set
and ctran’ :: 'a conf = 'a conf = bool (- —c— - [81,81] 80)
and ctrans :: 'a conf = 'a conf = bool (- —cx— - [81,81] 80)
where
P —c— Q= (P,Q) € ctran
| P —cx— @ = (P,Q) € ctran*

| Basic: (Some(Basic f), s) —c— (None, fs)

| Seql: (Some PO, s) —c— (None, t) = (Some(Seq PO P1), s) —c— (Some P1,
t)

| Seq2: (Some PO, s) —c— (Some P2, t) = (Some(Seq PO P1), s) —c—
(Some(Seq P2 P1), t)

| CondT: s€b = (Some(Cond b P1 P2), s) —c— (Some P1, s)
| CondF: s¢b = (Some(Cond b P1 P2), s) —c— (Some P2, s)

| WhileF: s¢b => (Some(While b P), s) —c— (None, s)
| WhileT: s€b = (Some(While b P), s) —c— (Some(Seq P (While b P)), s)

| Await: [s€b; (Some P, s) —cx— (None, t)] = (Some(Await b P), s) —c—
(None, t)

monos rtrancl-mono

3.2.2 Semantics of Parallel Programs

type-synonym ‘a par-conf = ('a par-com) x 'a

inductive-set

par-etran :: ('a par-conf x 'a par-conf) set

and par-etran’ :: ['a par-conf,’a par-conf] = bool (- —pe— -» [81,81] 80)
where

P —pe— Q = (P,Q) € par-etran
| ParEnv: (Ps, s) —pe— (Ps, t)

inductive-set

par-ctran :: ('a par-conf x 'a par-conf) set
and par-ctran’ :: ['a par-conf,’a par-conf] = bool (- —pc— - [81,81] 80)
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where
P —pc— Q = (P,Q) € par-ctran
| ParComp: [i<length Ps; (Psli, s) —c— (r, t)] = (Ps, s) —pc— (Ps[i:=r], t)

lemma par-ctranE: ¢ —pc— ¢/ =
(Ni Pssrt.c=(Ps, s) = ¢’ = (Ps[i :==r], t) = i < length Ps =
(Ps'!i, s) —c— (r, t) = P) =
{proof )

3.2.3 Computations

Sequential computations

type-synonym ’a confs = 'a conf list

inductive-set cptn :: ‘a confs set
where
CptnOne: [(P,s)] € cptn
| CptnEnv: (P, t)#xs € cptn = (P,s)#(P,t)#xs € cpin
| CptnComp: [(P,s) —c— (Q,t); (Q, H)#xs € cptn | = (P,s)#(Q,t)F#xs € cpin

definition cp :: (‘a com) option = 'a = ('a confs) set where
cp Ps={l.110=(P,s) Nl € cptn}

Parallel computations

type-synonym ’a par-confs = 'a par-conf list

inductive-set par-cptn :: ‘a par-confs set
where
ParCptnOne: [(P,s)] € par-cptn
| ParCptnEnv: (P,t)#xs € par-cptn = (P,s)#(P,t)#xs € par-cptn
| ParCptnComp: [ (P,s) —pc— (Q,t); (Q,t)#xs € par-cptn | = (P,s)#(Q,t)#xs
€ par-cpin

definition par-cp :: ‘a par-com = 'a = ('a par-confs) set where
par-cp P s = {l. 10=(P,s) A | € par-cptn}

3.2.4 Modular Definition of Computation

definition lift :: 'a com = 'a conf = ’a conf where
lift @ = AP, s). (if P=None then (Some Q,s) else (Some(Seq (the P) Q), s))

inductive-set cptn-mod :: (‘a confs) set
where
CptnModOne: [(P, s)] € cptn-mod
| CptnModEnv: (P, t)#xs € cptn-mod = (P, s)#(P, t)#xs € cptn-mod
| CptnModNone: [(Some P, s) —c— (None, t); (None, t)#zs € cptn-mod | =
(Some P,s)#(None, t)#xs €cptn-mod
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| CptnModCondT: [(Some PO, s)#ys € cptn-mod; s € b | = (Some(Cond b PO
P1), s)#(Some PO, s)#ys € cptn-mod
| CptnModCondF: [(Some P1, s)#ys € cptn-mod; s ¢ b ]| = (Some(Cond b PO
P1), s)#(Some P1, s)#ys € cptn-mod
| CptnModSeq1: [(Some PO, s)#xs € cptn-mod; zs=map (lift P1) zs ]
= (Some(Seq PO P1), s)#zs € cptn-mod

| CptnModSeq?2:

[(Some PO, s)#xs € cptn-mod; fst(last ((Some PO, s)#xs)) = None;

(Some P1, snd(last ((Some PO, s)#uxs)))#ys € cptn-mod;

zs=(map (lift P1) xs)Qys | = (Some(Seq PO P1), s)#zs € cptn-mod

| CptnModWhilel:

[ (Some P, s)#zxs € cptn-mod; s € b; zs=map (lift (While b P)) xs |

= (Some(While b P), s)#(Some(Seq P (While b P)), s)#zs € cptn-mod
| CptnModWhile2:

[ (Some P, s)#uxs € cptn-mod; fst(last ((Some P, s)#xs))=None; s € b;

zs=(map (lift (While b P)) xs)Qys;

(Some(While b P), snd(last ((Some P, s)#xs)))#ys € cptn-mod]

= (Some(While b P), s)#(Some(Seq P (While b P)), s)#zs € cptn-mod

3.2.5 Equivalence of Both Definitions.

lemma last-length: ((a#txs)!(length xs))=last (aftxs)
{proof)

lemma div-seq [rule-format]: list € cptn-mod —>
(Vs P Q zs. list=(Some (Seq P Q), s)#zs —>
(3zs. (Some P, s)#as € cptn-mod A (zs=(map (lift Q) zs) V
( fst(((Some P, s)#uxs)llength xs)=None A
(Fys. (Some Q, snd(((Some P, s)#xs)!length xs))#ys € cptn-mod
A zs=(map (lift (Q)) zs)Qys)))))
(proof)

lemma cptn-onlyif-cptn-mod-auz [rule-format):
Vs Q tzs.((Some a, s), Q, t) € ctran — (Q, t) # xs € cptn-mod
— (Some a, s) # (Q, t) # xs € cptn-mod
(proof )

lemma cpitn-onlyif-cptn-mod [rule-format]: ¢ € cptn = ¢ € cptn-mod
(proof )

lemma lift-is-cptn: c€cptn = map (lift P) ¢ € cpin

(proof )

lemma cptn-append-is-cptn [rule-format]:

Vb a. b#cl€cptn — a#tc2€cptn — (b#tcl)length c1=a — bFtcl@Qc2€cpin
(proof)

lemma last-lift: [zs#[]; fst(zs!(length s — (Suc 0)))=None]

93



<:> fstg(map (lift P) xzs)!(length (map (lift P) zs)— (Suc 0)))=(Some P)
proof

lemma last-fst [rule-format]: P((a#x)!length ) — —P a — P (z!(length © —
(Suc 0)))
(proof )

lemma last-fst-esp:
fst(((Some a,s)#xs)!(length xs))=None = fst(xs!(length xs — (Suc 0)))=None
{(proof)

lemma last-snd: xs#[] =

snd(((map (lift P) zs))!(length (map (lift P) xs) — (Suc 0)))=snd(zs!(length s
— (Suc 0)))

{proof)

lemma Cons-lift: (Some (Seq P Q), s) # (map (lift Q) xs) = map (lift Q) ((Some
P, s) # 1)
{proof)

lemma Cons-lift-append:

(Some (Seq P @), s) # (map (lift Q) zs) @ ys = map (lift Q) ((Some P, s) #
xs)@ ys

{proof)

lemma lift-nth: i<length s = map (lift Q) xs ! i = lift Q (xs! 7)
(proof )

lemma snd-lift: i< length xs = snd(lift Q (s ! i))= snd (xs! Q)
{proof)

lemma cptn-if-cptn-mod: ¢ € cptn-mod = ¢ € cpin

(proof)

theorem cpin-iff-cptn-mod: (¢ € cptn) = (¢ € cptn-mod)
(proof)

3.3 Validity of Correctness Formulas

3.3.1 Validity for Component Programs.

type-synonym ’a rgformula =
‘a com x 'a set x ('a x 'a) set x (a x 'a) set X 'a set

definition assum :: (‘a set x (‘a x 'a) set) = ('a confs) set where
assum = X(pre, rely). {c. snd(cl0) € pre A (V1. Suc i<length ¢ —
cli —e— c(Suc i) — (snd(cli), snd(clSuc ©)) € rely)}

definition comm :: ((a x ’a) set x 'a set) = ('a confs) set where
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comm = A(guar, post). {c. (Vi. Suc i<length ¢ —
cli —c— c(Suc i) — (snd(cli), snd(c!Suc i) € guar) A
(fst (last ¢) = None — snd (last ¢) € post)}

definition com-validity :: 'a com = 'a set = (‘a x 'a) set = (‘a x 'a) set = 'a
set = bool
(= - sat [-, -, - -] [60,0,0,0,0] 45) where
E P sat [pre, rely, guar, post] =
Vs. ep (Some P) s N assum(pre, rely) C comm(guar, post)

3.3.2 Validity for Parallel Programs.

definition All-None :: (('a com) option) list = bool where
All-None zs = V ceset zs. c=None

definition par-assum :: ('a set x (‘a x 'a) set) = ('a par-confs) set where
par-assum = X(pre, rely). {c. snd(c!0) € pre A (Vi. Suc i<length ¢ —
cli —pe— c!Suc i — (snd(cli), snd(c!Suc 7)) € rely)}

par-comm = A(guar, post). {c. (Vi. Suc i<length ¢ —
cli —pe— clSuc i — (snd(cli), snd(clSuc ©)) € guar) A
(All-None (fst (last ¢)) — snd( last ¢) € post)}

definition par-comm :: (('a x 'a) set x 'a set) = ('a par-confs) set where
(

definition par-com-validity :: 'a par-com = 'a set = ('a x 'a) set = (‘a x 'a)
set
= 'a set = bool (<= - SAT [, -, -, - [60,0,0,0,0] 45) where

= Ps SAT [pre, rely, guar, post] =

V' s. par-cp Ps s N par-assum(pre, rely) C par-comm(guar, post)

3.3.3 Compositionality of the Semantics

Definition of the conjoin operator

definition same-length :: 'a par-confs = ('a confs) list = bool where
same-length c clist = (Y i<length clist. length(clist!i)=length c)

definition same-state :: 'a par-confs = (‘a confs) list = bool where
same-state ¢ clist = (Vi <length clist. ¥V j<length c. snd(c!j) = snd((clist!i)!]))

definition same-program :: 'a par-confs = ('a confs) list = bool where
same-program ¢ clist = (Vj<length c. fst(c!j) = map (A\z. fst(nth z j)) clist)

definition compat-label :: 'a par-confs = ('a confs) list = bool where
compat-label ¢ clist = (Vj. Suc j<length ¢ —
(clj —pc— clSuc j A (Fi<length clist. (clist!i)lj —c— (clist!i)! Suc j A
(Vi<length clist. I£i — (clist!])lj —e— (clist!l)! Suc j))) V
(clj —pe— clSuc j A (Vi<length clist. (clist!i)!j —e— (clist!i)! Suc 7)))
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definition conjoin :: 'a par-confs = ('a confs) list = bool («- < -» [65,65] 64)
where

¢ x clist = (same-length c clist) A (same-state c clist) N\ (same-program c clist)
A (compat-label ¢ clist)

Some previous lemmas

lemma list-eq-if [rule-format]:
Vys. xs=ys — (length zs = length ys) — (Vi<length xs. zsli=ysli)

(proof)

lemma list-eq: (length xs = length ys N\ (Vi<length xs. zsli=ys!i)) = (zs=ys)
(proof)

lemma nth-tl: | ys!0=a; ys#[] | = ys=(a#(tl ys))
{proof)

lemma nth-tl-if [rule-format]: ys#[] — ys!l0=a — P ys — P (a#(tl ys))
{proof)

lemma nth-tl-onlyif [rule-format]: ys#[] — ys!l0=a — P (a#(tl ys)) — P ys
(proof )

lemma seg-not-eql: Seq c1 c2#cl
(proof )

lemma seg-not-eq2: Seq c1 c2#c2
(proof )

lemma if-not-eql: Cond b c1 c2 #cl
(proof )

lemma if-not-eq2: Cond b c1 c2#c2
(proof)

lemmas seq-and-if-not-eq [simp] = seq-not-eql seq-not-eq2
seg-not-eql [THEN not-sym| seg-not-eq2 [THEN not-sym|
if-not-eql if-not-eq?2 if-not-eql [THEN not-sym)| if-not-eq2 [THEN not-sym)

lemma prog-not-eq-in-ctran-aux:
assumes c¢: (P,s) —c— (Q,?)

shows P#£Q (proof)

lemma prog-not-eq-in-ctran [simp]: = (P,s) —c— (P,t)
(proof)

lemma prog-not-eg-in-par-ctran-auzx [rule-format]: (P,s) —pc— (Q,t) = (P#Q)
(proof)
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lemma prog-not-eq-in-par-ctran [simpl: = (P,s) —pc— (P,t)
(proof)

lemma tl-in-cpin: [ a#zs €cpin; 1s#[] | = zs€cpin
(proof)

lemma tl-zero[rule-format]:
P (ys!Suc j) — Suc j<length ys — ys#£[] — P (tl(ys)!))
(proof )

3.3.4 The Semantics is Compositional

lemma aua-if [rule-format]:
Vs s clist. (length clist = length zs A (Y i<length xs. (zsli,s)#clist!i € cptn)
A ((zs, s)F#ys o< map (Ai. (fst i,8)#snd i) (zip s clist))
— (zs, $)#ys € par-cptn)

(proof)

lemma aux-onlyif [rule-format]: ¥ zs s. (zs, s)#ys € par-cptn —
(F clist. (length clist = length xs) A
(xs, s)#ys o< map (Ai. (fst i,s)#(snd 7)) (zip zs clist) A
(Vi<length xs. (zsli,s)#(clist!i) € cptn))
{proof)

lemma one-iff-auz: zs#£[] = (Vys. ((zs, s)#ys € par-cptn) =
(3 clist. length clist= length xs A

(xs, s)#ys oc map (ANi. (fst i,s)#(snd 7)) (zip zs clist)) A
Vi<length xzs. (zsli,s)#(clist!i) € cptn))) =

par-cp (xs) s = {c. 3 clist. (length clist)=(length xs) N
Vi<length clist. (clistli) € cp(xsli) s) A ¢ o« clist})

(proof )

(
(
(
(

theorem one: zs#£[] =

par-cp xs s = {c. Aclist. (length clist)=(length zs) A
(Vi<length clist. (clist!i) € cp(xsli) s) A ¢ o clist}

(proof )

end

3.4 The Proof System

theory RG-Hoare imports RG-Tran begin

3.4.1 Proof System for Component Programs
declare Un-subset-iff [simp del| sup.bounded-iff [simp del]

definition stable :: 'a set = ('a x 'a) set = bool where

x 'a)
stable = A\fg. Vzy.z € f — (x,y) € g — y € f)
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inductive
rghoare :: ['a com, 'a set, (‘a x 'a) set, ('a x 'a) set, 'a set] = bool
(- - sat [-, - - ] [60,0,0,0,0] 45)
where
Basic: [ pre C {s. fs € post}; {(s,t). s € pre A (t=fs V t=s)} C guar;
stable pre rely; stable post rely |
= b Basic f sat [pre, rely, guar, post]

| Seq: [ F P sat [pre, rely, guar, mid]; b Q sat [mid, rely, guar, post] |
= I Seq P Q sat [pre, rely, guar, post]

| Cond: [ stable pre rely; - P1 sat [pre N b, rely, guar, post];
F P2 sat [pre N —b, rely, guar, post]; V's. (s,s)Eguar |
=+ Cond b P1 P2 sat [pre, rely, guar, post]

| While: | stable pre rely; (pre N —b) C post; stable post rely;
F P sat [pre N b, rely, guar, pre]; Vs. (s,8)Eguar |
= b While b P sat [pre, rely, guar, post]

| Await: | stable pre rely; stable post rely;
VV.kF Psat [pre N bN {V}, {(s t). s = t},
UNIV, {s. (V, s) € guar} N post] ]
=+ Await b P sat [pre, rely, guar, post]

| Conseq: [ pre C pre’; rely C rely’; guar’ C guar; post’ C post;
F P sat [pre’, rely’, guar’, post’] |
= b P sat [pre, rely, guar, post]

definition Pre :: ‘a rgformula = ’a set where
Pre z = fst(snd x)

definition Post :: 'a rgformula = 'a set where
Post x = snd(snd(snd(snd z)))

definition Rely :: ‘a rgformula = (‘a X ’a) set where
Rely x = fst(snd(snd z))

definition Guar :: 'a rgformula = (‘a X 'a) set where
Guar © = fst(snd(snd(snd x)))

definition Com :: 'a rgformula = ’'a com where
Com x = fstx

3.4.2 Proof System for Parallel Programs

type-synonym 'a par-rgformula =
('a rgformula) list x 'a set x ('a x 'a) set x ('a x 'a) set x 'a set
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inductive
par-rghoare :: (‘a rgformula) list = 'a set = (‘a x 'a) set = (‘a x 'a) set = 'a
set = bool

(< - SAT [-, -, -, -] [60,0,0,0,0] 45)
where
Parallel:

[ Vi<length xs. rely U (Jje{j. j<length zs A j#i}. Guar(zslj)) C Rely(zsli);
(Ujefy. j<length zs}. Guar(zslj)) C guar;
pre C ((i€{i. i<length xs}. Pre(xs!i));
(Nie{i. i<length xs}. Post(xsli)) C post;
Vi<length zs. b Com(zs!i) sat [Pre(xsli),Rely(xs!i), Guar(xsli),Post(zs!i)] ]
= |+ xzs SAT [pre, rely, guar, post]

3.5 Soundness

Some previous lemmas

lemma tl-of-assum-in-assum:
(P, s) # (P, t) # zs € assum (pre, rely) => stable pre rely
= (P, t) # xs € assum (pre, rely)

(proof)

lemma etran-in-comm:
(P, t) # zs € comm(guar, post) = (P, s) # (P, t) # xs € comm(guar, post)
(proof)

lemma ctran-in-comm:
(s, 5) € guar; (Q, s) # zs € comm(guar, post)]
= (P, s) # (Q, s) # xs € comm(guar, post)
(proof )

lemma takecptn-is-cptn [rule-format, elim!]:
Vj. ¢ € cptn — take (Suc j) ¢ € cptn

{(proof)

lemma dropeptn-is-cptn [rule-format,elim!]:
Vij<length c. ¢ € cptn — drop j ¢ € cptn
(proof)

lemma takepar-cptn-is-par-cptn [rule-format,elim]:
Vj. ¢ € par-cptn — take (Suc j) ¢ € par-cptn
(proof)

lemma droppar-cptn-is-par-cptn [rule-format]:
Vj<length c. ¢ € par-cptn — drop j ¢ € par-cptn

(proof)

lemma tl-of-cptn-is-cptn: [x # xs € cptn; xs # [|]] = zs € cpin
(proof)
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lemma not-ctran-None [rule-format]:
Vs. (None, s)#xs € cptn — (Vi<length zs. ((None, s)#xs)li —e— wsl9)

(proof)

lemma cptn-not-empty [simpl:[] ¢ cptn
(proof)

lemma etran-or-ctran [rule-format]:
Vm i. z€cptn — m < length x
— (Vi. Suci < m — = zli —¢c— z!Suc i) — Suci < m
— zli —e— x!Suc i
(proof)

lemma etran-or-ctran2 [rule-format):
Vi. Suc i<length v — z€cptn — (xli —c— z!Suc i — — zli —e— z!Suc 7)
V (zli —e— z!Suc i — — zli —c— x!Suc 7)

(proof)

lemma etran-or-ctran2-disjl1:
[ z€cptn; Suc i<length z; xli —c— z!Suc i] = — zli —e— x!Suc i

(proof)

lemma etran-or-ctran2-disjI2:
[ zecptn; Suc i<length z; z!i —e— z!Suc i] = - zli —c— z!Suc i

(proof)

lemma not-ctran-None2 [rule-format]:
[ (None, s) # zs €cptn; i<length zs] = — ((None, s) # zs) ! i —c— xs ! i
(proof)

lemma FEz-first-occurrence [rule-format]: P (n:nat) — (Im. P m A (Vi<m. -
P )
(proof)

lemma stability [rule-format]:
Vjk. z € cptn —> stable p rely — j<k — k<length v — snd(z!j)ep —>
(Vi. (Suc i)<length © —
(zli —e— 2!(Suc 7)) — (snd(z!9), snd(z!(Suc 7))) € rely) —
(Vi. j<i N i<k — zli —e— z!Suc i) — snd(zlk)ep A fst(zlf)=fst(x!k)
(proof)

3.5.1 Soundness of the System for Component Programs

Soundness of the Basic rule

lemma unique-ctran-Basic [rule-format]:
Vsi z € cptn — z! 0 = (Some (Basic f), s) —
Suc i<length © — x!i —c— z!Suc i —
(Vj. Suc j<length x — i#j — zlj —e— z!Suc j)
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(proof)

lemma exists-ctran-Basic-None [rule-format]:
Vsi. x€ cptn — z! 0 = (Some (Basic f), s)
— i<length ¥ — fst(zli)=None — (3 j<i. z!j —c— z!Suc j)

(proof)

lemma Basic-sound:
[pre C {s. f s € post}; {(s, t). s € pre A t = f s} C guar;
stable pre rely; stable post rely]
= |= Basic f sat [pre, rely, guar, post)
(proof)

Soundness of the Await rule

lemma unique-ctran-Await [rule-format]:
Vsi zé€cptn — z! 0 = (Some (Await b c), s) —
Suc i<length © — x4 —c— z!Suc 1 —
(Vj. Suc j<length x — i#j — zlj —e— z!Suc j)

{(proof)

lemma exists-ctran- Await-None [rule-format]:
Vsi. x€ cptn — z! 0 = (Some (Await b ¢), s)
— i<length v — fst(z!i)=None — (I j<i. zlj —c— z!Suc j)

(proof)

lemma Star-imp-cptn:
(P, s) —cx— (R, t) = 3l € cp P s. (last )=(R, 1)
A (Vi. Suc i<length | — Vi —c— lSuc 1)

(proof)

lemma Await-sound:
[stable pre rely; stable post rely;
VV.FE Psat [prenbn{s.s=V} {(s, t). s =t}
UNIV, {s. (V, s) € guar} N post] A
E Psat [prenbn{s. s=V} {(s t). s = t},
UNIV, {s. (V, s) € guar} N post] |
= = Await b P sat [pre, rely, guar, post|
(proof)

Soundness of the Conditional rule

lemma Cond-sound:
[ stable pre rely; = P1 sat [pre N b, rely, guar, post];
= P2 sat [pre N — b, rely, guar, post]; Vs. (s,s)Eguar]
= |= (Cond b P1 P2) sat [pre, rely, guar, post]
(proof)
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Soundness of the Sequential rule

inductive-cases Seg-cases [eliml]: (Some (Seq P Q), s) —c— ¢

lemma last-lift-not-None: fst ((lift Q) ((z#tzs)!(length zs))) # None
(proof)

lemma Seg-sound! [rule-format]:
z€ cptn-mod = Vs P. x 10=(Some (Seq P @), s) —
(Vi<length z. fst(xli)#Some Q) —
(Fzs€ ¢p (Some P) s. xz=map (lift Q) xs)
(proof)

lemma Seq-sound2 [rule-format]:
z € cptn = Vs P i. z10=(Some (Seq P Q), s) — i<length x
— fst(xli)=Some Q —
(Vji<i. fst(zlj)#(Some Q)) —
(zs ys. xs € cp (Some P) s A length xs=Suc i
A ys € cp (Some Q) (snd(zs 7)) A xz=(map (lift Q) zs)Qtl ys)
{proof)

lemma last-lift-not-None2: fst ((lift Q) (last (z#xs))) # None
(proof)

lemma Seg-sound:
[E P sat [pre, rely, guar, mid]; = Q sat [mid, rely, guar, post]]
= = Seq P Q sat [pre, rely, guar, post|

(proof)

Soundness of the While rule

lemma last-append[rule-format]:
Vas. ys#[] — ((zsQys)!(length (zsQys) — (Suc 0)))=(ys!(length ys — (Suc 0)))
(proof)

lemma assum-after-body:
[ = P sat [pre N b, rely, guar, pre];
(Some P, s) # xs € cptn-mod; fst (last ((Some P, s) # xs)) = None; s € b;
(Some (While b P), s) # (Some (Seq P (While b P)), s) #
map (lift (While b P)) zs Q ys € assum (pre, rely)]
= (Some (While b P), snd (last ((Some P, s) # xs))) # ys € assum (pre, rely)
(proof )

lemma While-sound-auz [rule-format):

[ pre N — b C post; = P sat [pre N b, rely, guar, pre|; Vs. (s, s) € guar;

stable pre rely; stable post rely; © € cptn-mod |

= Vs zs. x=(Some(While b P),s)#xs — z€assum(pre, rely) — x € comm
(guar, post)

(proof)

62



lemma While-sound:
[stable pre rely; pre N — b C post; stable post rely;
E P sat [pre N b, rely, guar, pre]; Vs. (s,s)€guar]
= |= While b P sat [pre, rely, guar, post]
(proof)

Soundness of the Rule of Consequence

lemma Conseg-sound:
[pre C pre’; rely C rely’; guar’ C guar; post’ C post;
= P sat [pre', rely’, guar’, post’]]
= = P sat [pre, rely, guar, post]

(proof)

Soundness of the system for sequential component programs

theorem rgsound:
F P sat [pre, rely, guar, post) => = P sat [pre, rely, guar, post)

(proof)

3.5.2 Soundness of the System for Parallel Programs

definition ParallelCom :: (‘a rgformula) list = 'a par-com where
ParallelCom Ps = map (Some o fst) Ps

lemma two:
[ Vi<length xs. rely U (Jj€{j. j < length zs A j # i}. Guar (zs! j))
C Rely (zs ! i);
pre C (N i€{i. i < length zs}. Pre (zs ! i));
Vi<length xs.
E Com (xzs! i) sat [Pre (zs! i), Rely (xs ! i), Guar (zs! i), Post (zs!7)];
length xs=length clist; © € par-cp (ParallelCom xs) s; x€par-assum(pre, rely);
Vi<length clist. clistliccp (Some(Com(zsli))) s; x o clist |
= Vji. i<length clist A Suc j<length x —> (clist!i!j) —c— (clist!i!Suc 7)
— (snd(clist!ily), snd(clist!i!Suc j)) € Guar(zs'i)
(proof)

lemma three [rule-format]:

[ zs#[]; Vi<length zs. rely U (Jje{j. j < length zs A j # i}. Guar (zs! j))

C Rely (zs ! );

pre C (N i€{i. i < length xs}. Pre (zs ! 7));

Vi<length xs.

E Com (xs ! i) sat [Pre (zs! i), Rely (zs! i), Guar (zs! i), Post (zs ! i)];

length xs=length clist; x € par-cp (ParallelCom xs) s; © € par-assum(pre, rely);

Vi<length clist. clistliccp (Some(Com(xsli))) s; © o clist |

= Vji. i<length clist A Suc j<length x — (clist!i!lj) —e— (clist!i!Suc j)

— (snd(clistlily), snd(clistli!Suc j)) € rely U (Uj€{j. 7 < length xs N j # i}.
Guar (zs!j))
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(proof)

lemma four:
[xs#[); Vi < length xs. rely U (Uje{j. j < length xs A\ j # i}. Guar (zs ! j))
C Rely (zs ! i);
(Uj€dlj. j < length zs}. Guar (zs!j)) C guar;
pre C (N i€{i. i < length zs}. Pre (zs ! i));
Vi < length zs.
E Com (xs! i) sat [Pre (zs! i), Rely (zs! i), Guar (zs! i), Post (zs! i)];
z € par-cp (ParallelCom xs) s; x € par-assum (pre, rely); Suc i < length x;
z! i —pc— z ! Suc ]
= (snd (z ! i), snd (z! Suc 7)) € guar
(proof)

lemma parcptn-not-empty [simp):[] ¢ par-cptn

(proof)

lemma five:

[xs#]]; Vi<length zs. rely U (Jj€{j. j < length zs A j # i}. Guar (zs! 7))
C Rely (zs ! 7);

pre C (N i€{i. i < length zs}. Pre (zs ! i));

(Ni€fi. i < length zs}. Post (zs ! i)) C post;

Vi < length zs.
E Com (xzs! i) sat [Pre (zs! i), Rely (xzs! i), Guar (zs! i), Post (zs! 7)];
z € par-cp (ParallelCom xs) s; © € par-assum (pre, rely);

All-None (fst (last z)) | = snd (last x) € post

(proof)

lemma ParallelEmpty [rule-format]:
Vis. z € par-cp (ParallelCom []) s —
Suc i < length t — (x| i, x| Suc ©) ¢ par-ctran

(proof)

theorem par-rgsound:
F ¢ SAT [pre, rely, guar, post] =
& (ParallelCom ¢) SAT [pre, rely, guar, post]

(proof)

end

3.6 Concrete Syntax

theory RG-Syntax
imports RG-Hoare Quote-Antiquote
begin

abbreviation Skip :: ‘a com (<(SKIP»)
where SKIP = Basic id
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notation Seq («(-;;/ -)» [60,61] 60)

syntax

-Assign :idt = 'b = 'a com («("-:=/ - [70, 65] 61)

-Cond i 'a bexp = 'a com = 'a com = 'a com («(OIF -/ THEN -/ ELSE
JFI) [0, 0, 0] 61)

-Cond2  ::'a bexp = 'a com = 'a com («(0IF - THEN - FI)» [0,0]
56)

-While — :: 'a bexp = 'a com = 'a com («(OWHILE - /DO - /OD))
[0, 0] 61)

-Await 2 'a bexp = 'a com = 'a com (<«(OAWAIT - /THEN /-
JEND)> [0,0] 61)

-Atom it 'a com = 'a com («({(-))» 61)

- Wait i 'a bexp = 'a com («(OWAIT - END) 61)
translations

‘z := a — CONST Basic «’(-update-name x (A-. a))»
IF b THEN c1 ELSE ¢2 FI — CONST Cond {b} c1 c2
IF b THEN ¢ FI = IF b THEN ¢ ELSE SKIP FI
WHILE b DO ¢ OD — CONST While {b}} ¢

AWAIT b THEN ¢ END = CONST Await {b} ¢

(¢) = AWAIT CONST True THEN ¢ END

WAIT b END = AWAIT b THEN SKIP END

nonterminal prgs

syntax
-PAR oprgs = a («COBEGIN//-//COEND> 60)
-prg i 'a = prgs (<> 57)
-prgs i ['a, prgs] = prys («-//I/ /- [60,57] 57)
translations

prg a — [d]
-prgs a ps — a F# ps
-PAR ps — ps

syntax
-prg-scheme :: ['a, 'a, 'a, 'a] = prgs ((SCHEME [- < - < -] - [0,0,0,60] 57)

translations
-prg-scheme j i k ¢ = (CONST map (Xi. ¢) [j..<k])

Translations for variables before and after a transition:

syntax
-before i id = 'a (¢9-)
-after ::id = 'a (<*-)

translations
°r = x "CONST fst

65



2r = x "CONST snd

(ML)

3.7 Examples

theory RG-FEzamples
imports RG-Syntax
begin

lemmas definitions [simp|= stable-def Pre-def Rely-def Guar-def Post-def Com-def

3.7.1 Set Elements of an Array to Zero

lemma le-less-trans2: [(j::nat)<k; i< j] = i<k

(proof)

lemma add-le-less-mono: [ (a:nat) < ¢; b<d] = a+b<c+ d
(proof)

record Eramplel =
A :: nat list

lemma Ezamplel:
F COBEGIN
SCHEME [0 < i < n]
("A = "Ai:= 0],
{ n < length “A [},
{ length A = length *A AN 2A ! i =2A 14 |},
{ length A = length *A A (Vj<n.i#j—2A1j=2417§) |,
{Ali=01])
COEND
SAT [{ n <length A}, {°A=2A}, { True}, {Vi<n "Ali=20]
(proof)

lemma Ezxamplel-parameterized:
E<t=
F COBEGIN
SCHEME [kxn<i<(Suc k)xn] (" A:="Ali:=0],
{txn < length "Al,
{txn < length °A A length ©A=length *A N ¢Ali = 2Al4},
{txn < length °A A length ¢A=length *A N (Vj<length °A . i#j — °Alj =
“A1),
{ Ali=0})
COEND
SAT [{txn < length ~Al},
{txn < length ®A A length ¢ A=length 2A A (Vi<n. CAl(kxn—+i)=>Al(kxn+i))[},
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{txn < length °A A length ®A=length *A A
(Vi<length A . (i<kxn — 2Ali = 2Al) A ((Suc k)xn < i— 2Ali = 2A410))},
Vi<n. “Al(kxn+i) = 0}]

(proof)

3.7.2 Increment a Variable in Parallel

Two components

record Erample2 =

T :: nat
c-0 :: nat
c-1 :: nat

lemma Ezrample2:
F COBEGIN
(( "m="x+1;; "c-0:="¢c-0 + 1),
{'z="¢c0+ "¢c-1 N "c-0=0F,
{%¢-0 = 2¢c-0 N
(°z=°c-0 + °c-1
— 2p =2¢-0 + 2¢-1)},
{%-1 = 2c-1 A
(Cx=°c-0 + °c-1
— 2z =%c-0 + *c-1)],
{'z2="¢c-0+ "c-1 N "c-0=1})
|
(( "m="z+1;; "c-1:="c-1+1 ),
{'z="c0+ "¢-1 N "c-1=0 [},
{%c-1 = 2c-1 A
(Px=c-0 + °c-1
— g = 2¢-0 4 2c-1)],
{c-0 = 2c-0 A
(°x=2c-0 + ©c-1
— g =Pc-0 + c-1)},
{’2="¢c-0+ "¢-1 N "c-1=1}})
COEND
SAT [{ 2=0 N "¢c-0=0 N “c-1=0},
{2z=2z A ©c-0= 2c-0 N ®c-1=2c-1],
{ Truel,
I z=2]]
(proof)

Parameterized

lemma FEzample2-lemma2-aux: j<n —

(> i=0..<n. (b i:znat)) =

Oi=0..<j. bi) + bj+ O i=0..<n—(Sucj) . b (Sucj+ 7))
(proof)

lemma FEzample2-lemma2-aux2:
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i< s = (O innat=0..<j. (b (s:=t)) ©) = (O i=0..<j. b 7)
{proof)

lemma Erample2-lemma?2:
li<n; b j=0] = Suc (3. iznat=0..<n. b ))=(>_i=0..<n. (b (j := Suc 0)) i)
(proof )

lemma FEzample2-lemma2-SucO: [j<n; b j=0] =
Suc (> iunat=0..< n. b ))=(>_ i=0..< n. (b (j:=Suc 0)) 7)
{(proof)

record Example2-parameterized =
C :: nat = nat
y o nat

lemma FEzample2-parameterized: 0<n —>
- COBEGIN SCHEME [0<i<n]
(“y="yt 15 C="C (i=1) ),
1 'y=0"i=0..<n. "C i) N "Ci=0},
{eCi=2Cin
(Cy=(>"1i=0..<n. °C i) — 2y =3 i=0..<n. *C1Q))},
{(vj<n. i) — 2Cj =2Cj) A
Cy=0_i=0..<n. °C i) — 2y =1 i=0..<n. 2C 1))},
{ y:(ZZ—O <n. 'Ci) N "Ci=1})
COEN.
SAT [{"y=0 N (O i=0..<n. "Ci)=0 [}, {2C=2C A °y=2y}, { True}, { y=n}]
(proof)

3.7.3 Find Least Element

A previous lemma;:

lemma mod-aux :[i < (n:nat); a modn =14, j<a+ n;jmodn =71 a<j] =
False
(proof )

record Eramples =
X 2 nat = nat
Y :: nat = nat

lemma Ezample3: m mod n=0 —
F COBEGIN
SCHEME [0<i<n)]
(WHILE (Vj<n. "X i< "Y}j) DO
IF P(BY("X 4)) THEN "Y:="Y (i:="X 1)
ELSE "X:= "X (i:=("X i)+ n) FI
OD,
{("X i) mod n=i A (Vj< X i. jmod n=i — —P(Bj)) A ("Yi<m — P(B!("Y
) A Y i< meil,
{(Vj<n. i#j — 2Y j <°Yj) A°X i=23XiA
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oy § = ay ],

{(Vj<n. ij — °Xj=2XjA°Yj=2Yj) A

2y < oY i),
{(" X %) mod n=i A (Vj< X i.jmod n=i{ — —P(B!j)) A ("Yi<m — P(B!("Y
) A Y i< mi) A (Jj<n. 'Y< X))}

COEND

SAT [{ Vi<n. "X i=i A 'Y i=m+i }{oX=2X A °Y=2Y} { True]},

{Vi<n. ("X i) mod n=i A (Vj< X i. j mod n=i — —P(Blj)) A

(Yi<m — P(BICY ) A “Yi< m4i) A (3j<n. "Yj< X i)}

(proof)

Same but with a list as auxiliary variable:

record Erample3-list =
X :: nat list
Y i nat list

lemma FEzxample3-list: m mod n=0 = + (COBEGIN SCHEME [0<i<n]
(WHILE (Vj<n. "Xl < ' Y1j) DO
IF P(B\("X'i)) THEN ' Y:="Y[i:="X| ELSE *X:= "X[i:=(' X!i)+ n] FI
OD,
{n<length "X A n<length "Y A ("X'i) mod n=i A (Vj< Xli. j mod n=i —
=P(B%)) A (" Yli<m — P(BI("Y!)) A "YY< m+0) ],
1(Vi<n. i#j — 2Y1j < °V1j) A °Xli = 2X15 A
°Yli = 2Y!li A length °X = length *X A length °Y = length * Y},
{(Vi<n. i#£j — °Xlj =2X1j A Y1) =2Y15) A
aYli <Yl A length °X = length X A length °Y = length Y},
{(" X'%) mod n=i A (Vi< Xi. jmod n=i — —P(Blj)) A (" Yli<m — P(B!("Y!))
A7 YVU< m4i) A (3j<n. "Y1 < “X1i) }) COEND)
SAT [{n<length "X A n<length “Y A (Vi<n. "Xli=i A " Yli=m+i) [},
{eX=2X A °Y=2Y],
{ Truel},
Vi<n. (" X1%) mod n=i N (Vj< Xli. j mod n=i — —P(Blj)) A
(" Yli<cm — P(BI(" Y10)) A " YH< m+i) A (Jj<n. " Y1j < "X}
(proof )
end
theory Hoare-Parallel
imports OG-Ezxamples Gar-Coll Mul-Gar-Coll RG-Examples
begin

end
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