
Hoare Logic

Norbert Galm
Walter Guttmann

Farhad Mehta
Tobias Nipkow

Leonor Prensa Nieto

January 18, 2026

Abstract

These theories contain a Hoare logic for a simple imperative pro-
gramming language with while-loops, including a verification condition
generator.

Special infrastructure for modelling and reasoning about pointer
programs is provided, together with many examples, including Schorr-
Waite. See [1, 2] for an excellent exposition.

Contents
1 Concrete syntax for Hoare logic, with translations for vari-

ables 5

2 Hoare logic VCG tactic 6

3 Hoare logic 7
3.1 Sugared semantic embedding of Hoare logic 7

3.1.1 Concrete syntax . 9
3.1.2 Proof methods: VCG 9

4 More arithmetic 9
4.1 cd . 10
4.2 gcd . 10
4.3 pow . 10

5 Various examples 11
5.1 Arithmetic . 11

5.1.1 Multiplication by successive addition 11
5.1.2 Euclid’s algorithm for GCD 12

5.1.3 Dijkstra’s extension of Euclid’s algorithm for simulta-
neous GCD and SCM 12

5.1.4 Power by iterated squaring and multiplication 12
5.1.5 Factorial . 13
5.1.6 Square root . 13

5.2 Lists . 14
5.3 Arrays . 15

5.3.1 Search for a key . 15

6 Hoare Logic with an Abort statement for modelling run time
errors 16
6.1 Concrete syntax . 19
6.2 Proof methods: VCG . 19

7 Some small examples for programs that may abort 19

8 Examples using Hoare Logic for Total Correctness 20

9 Alternative pointers 22
9.1 References . 22
9.2 Field access and update . 22
9.3 The heap . 23

9.3.1 Paths in the heap . 23
9.3.2 Lists on the heap . 23
9.3.3 Functional abstraction 24

9.4 Verifications . 25
9.4.1 List reversal . 25
9.4.2 Searching in a list . 25
9.4.3 Merging two lists . 26
9.4.4 Storage allocation . 27

10 Pointers, heaps and heap abstractions 27
10.1 References . 27
10.2 The heap . 28

10.2.1 Paths in the heap . 28
10.2.2 Non-repeating paths 28
10.2.3 Lists on the heap . 28
10.2.4 Functional abstraction 29

11 Heap syntax 30
11.1 Field access and update . 30

2

12 Examples of verifications of pointer programs 31
12.1 Verifications . 31

12.1.1 List reversal . 31
12.1.2 Searching in a list . 32
12.1.3 Splicing two lists . 33
12.1.4 Merging two lists . 33
12.1.5 Cyclic list reversal . 36
12.1.6 Storage allocation . 37

13 Heap syntax (abort) 37
13.1 Field access and update . 37

14 Examples of verifications of pointer programs 38
14.1 Verifications . 38

14.1.1 List reversal . 38

15 Proof of the Schorr-Waite graph marking algorithm 39
15.1 Machinery for the Schorr-Waite proof 39
15.2 The Schorr-Waite algorithm 42

16 Heap abstractions for Separation Logic 42
16.1 Paths in the heap . 43
16.2 Lists on the heap . 43

17 Separation logic 44

3

Arith2

Examples ExamplesAbortExamplesTC

Heap

HeapSyntax HeapSyntaxAbort

Hoare_Logic Hoare_Logic_Abort

Hoare_Syntax Hoare_Tac

Pointer_Examples Pointer_ExamplesAbort

Pointers0

README

SchorrWaite

SepLogHeap

Separation

[HOL]

[Pure]

[Tools]

4

1 Concrete syntax for Hoare logic, with transla-
tions for variables

theory Hoare-Syntax
imports Main

begin

syntax
-assign :: idt ⇒ ′b ⇒ ′com
(‹(‹indent notation=‹infix Hoare assignment››- :=/ -)› [70 , 65] 61)

-Seq :: ′com ⇒ ′com ⇒ ′com
(‹(‹notation=‹infix Hoare sequential composition››-;/ -)› [61 , 60] 60)

-Cond :: ′bexp ⇒ ′com ⇒ ′com ⇒ ′com
(‹(‹notation=‹mixfix Hoare if expression››IF -/ THEN - / ELSE -/ FI)› [0 , 0 ,

0] 61)
-While :: ′bexp ⇒ ′assn ⇒ ′var ⇒ ′com ⇒ ′com
(‹(‹notation=‹mixfix Hoare while expression››WHILE -/ INV {(-)} / VAR {(-)}

//DO - /OD)› [0 , 0 , 0 , 0] 61)

The VAR {-} syntax supports two variants:

• VAR {x = t} where t::nat is the decreasing expression, the variant,
and x a variable that can be referred to from inner annotations. The
x can be necessary for nested loops, e.g. to prove that the inner loops
do not mess with t.

• VAR {t} where the variable is omitted because it is not needed.

syntax
-While0 :: ′bexp ⇒ ′assn ⇒ ′com ⇒ ′com
(‹(‹indent=1 notation=‹mixfix Hoare while expression››WHILE -/ INV (‹open-block

notation=‹mixfix Hoare invariant››{-}) //DO - /OD)› [0 , 0 , 0] 61)

The -While0 syntax is translated into the -While syntax with the trivial
variant 0. This is ok because partial correctness proofs do not make use of
the variant.
syntax

-hoare-vars :: [idts, ′assn, ′com, ′assn] ⇒ bool
(‹(‹open-block notation=‹mixfix Hoare triple››VARS -// (‹open-block nota-

tion=‹mixfix Hoare precondition››{-}) // - // (‹open-block notation=‹mixfix Hoare
postcondition››{-}))› [0 , 0 , 55 , 0] 50)

-hoare-vars-tc :: [idts, ′assn, ′com, ′assn] ⇒ bool
(‹(‹open-block notation=‹mixfix Hoare triple››VARS -// (‹open-block nota-

tion=‹mixfix Hoare precondition››[-]) // - // (‹open-block notation=‹mixfix Hoare
postcondition››[-]))› [0 , 0 , 55 , 0] 50)
syntax (output)

-hoare :: [′assn, ′com, ′assn] ⇒ bool
(‹(‹notation=‹mixfix Hoare triple››(‹open-block notation=‹mixfix Hoare precon-

dition››{-})//-//(‹open-block notation=‹mixfix Hoare postcondition››{-}))› [0 , 55 ,
0] 50)

5

-hoare-tc :: [′assn, ′com, ′assn] ⇒ bool
(‹(‹notation=‹mixfix Hoare triple››(‹open-block notation=‹mixfix Hoare precon-

dition››[-])//-//(‹open-block notation=‹mixfix Hoare postcondition››[-]))› [0 , 55 ,
0] 50)

Completeness requires(?) the ability to refer to an outer variant in an
inner invariant. Thus we need to abstract over a variable equated with the
variant, the x in VAR {x = t}. But the x should only occur in invariants. To
enforce this, syntax translations in hoare_syntax.ML separate the program
from its annotations and only the latter are abstracted over over x. (Thus x
can also occur in inner variants, but that neither helps nor hurts.)
datatype ′a anno =

Abasic |
Aseq ′a anno ′a anno |
Acond ′a anno ′a anno |
Awhile ′a set ′a ⇒ nat nat ⇒ ′a anno

〈ML〉

end

2 Hoare logic VCG tactic
theory Hoare-Tac

imports Main
begin

context
begin

qualified named-theorems BasicRule
qualified named-theorems SkipRule
qualified named-theorems AbortRule
qualified named-theorems SeqRule
qualified named-theorems CondRule
qualified named-theorems WhileRule

qualified named-theorems BasicRuleTC
qualified named-theorems SkipRuleTC
qualified named-theorems SeqRuleTC
qualified named-theorems CondRuleTC
qualified named-theorems WhileRuleTC

lemma Compl-Collect: −(Collect b) = {x. ¬(b x)}
〈proof 〉

〈ML〉

6

end

end

3 Hoare logic
theory Hoare-Logic

imports Hoare-Syntax Hoare-Tac
begin

3.1 Sugared semantic embedding of Hoare logic
Strictly speaking a shallow embedding (as implemented by Norbert Galm
following Mike Gordon) would suffice. Maybe the datatype com comes in
useful later.
type-synonym ′a bexp = ′a set
type-synonym ′a assn = ′a set

datatype ′a com =
Basic ′a ⇒ ′a
| Seq ′a com ′a com
| Cond ′a bexp ′a com ′a com
| While ′a bexp ′a com

abbreviation annskip (‹SKIP›) where SKIP == Basic id

type-synonym ′a sem = ′a => ′a => bool

inductive Sem :: ′a com ⇒ ′a sem
where

Sem (Basic f) s (f s)
| Sem c1 s s ′′ =⇒ Sem c2 s ′′ s ′ =⇒ Sem (Seq c1 c2) s s ′

| s ∈ b =⇒ Sem c1 s s ′ =⇒ Sem (Cond b c1 c2) s s ′

| s /∈ b =⇒ Sem c2 s s ′ =⇒ Sem (Cond b c1 c2) s s ′

| s /∈ b =⇒ Sem (While b c) s s
| s ∈ b =⇒ Sem c s s ′′ =⇒ Sem (While b c) s ′′ s ′ =⇒

Sem (While b c) s s ′

definition Valid :: ′a bexp ⇒ ′a com ⇒ ′a anno ⇒ ′a bexp ⇒ bool
where Valid p c a q ≡ ∀ s s ′. Sem c s s ′ −→ s ∈ p −→ s ′ ∈ q

definition ValidTC :: ′a bexp ⇒ ′a com ⇒ ′a anno ⇒ ′a bexp ⇒ bool
where ValidTC p c a q ≡ ∀ s. s ∈ p −→ (∃ t. Sem c s t ∧ t ∈ q)

inductive-cases [elim!]:
Sem (Basic f) s s ′ Sem (Seq c1 c2) s s ′

Sem (Cond b c1 c2) s s ′

7

lemma Sem-deterministic:
assumes Sem c s s1

and Sem c s s2
shows s1 = s2

〈proof 〉

lemma tc-implies-pc:
ValidTC p c a q =⇒ Valid p c a q
〈proof 〉

lemma tc-extract-function:
ValidTC p c a q =⇒ ∃ f . ∀ s . s ∈ p −→ f s ∈ q
〈proof 〉

lemma SkipRule: p ⊆ q =⇒ Valid p (Basic id) a q
〈proof 〉

lemma BasicRule: p ⊆ {s. f s ∈ q} =⇒ Valid p (Basic f) a q
〈proof 〉

lemma SeqRule: Valid P c1 a1 Q =⇒ Valid Q c2 a2 R =⇒ Valid P (Seq c1 c2)
(Aseq a1 a2) R
〈proof 〉

lemma CondRule:
p ⊆ {s. (s ∈ b −→ s ∈ w) ∧ (s /∈ b −→ s ∈ w ′)}
=⇒ Valid w c1 a1 q =⇒ Valid w ′ c2 a2 q =⇒ Valid p (Cond b c1 c2) (Acond a1

a2) q
〈proof 〉

lemma While-aux:
assumes Sem (While b c) s s ′

shows ∀ s s ′. Sem c s s ′ −→ s ∈ I ∧ s ∈ b −→ s ′ ∈ I =⇒
s ∈ I =⇒ s ′ ∈ I ∧ s ′ /∈ b
〈proof 〉

lemma WhileRule:
p ⊆ i =⇒ Valid (i ∩ b) c (A 0) i =⇒ i ∩ (−b) ⊆ q =⇒ Valid p (While b c)
(Awhile i v A) q
〈proof 〉

lemma SkipRuleTC :
assumes p ⊆ q

shows ValidTC p (Basic id) a q
〈proof 〉

lemma BasicRuleTC :
assumes p ⊆ {s. f s ∈ q}

8

shows ValidTC p (Basic f) a q
〈proof 〉

lemma SeqRuleTC :
assumes ValidTC p c1 a1 q

and ValidTC q c2 a2 r
shows ValidTC p (Seq c1 c2) (Aseq a1 a2) r
〈proof 〉

lemma CondRuleTC :
assumes p ⊆ {s. (s ∈ b −→ s ∈ w) ∧ (s /∈ b −→ s ∈ w ′)}

and ValidTC w c1 a1 q
and ValidTC w ′ c2 a2 q

shows ValidTC p (Cond b c1 c2) (Acond a1 a2) q
〈proof 〉

lemma WhileRuleTC :
assumes p ⊆ i

and
∧

n::nat . ValidTC (i ∩ b ∩ {s . v s = n}) c (A n) (i ∩ {s . v s < n})
and i ∩ uminus b ⊆ q

shows ValidTC p (While b c) (Awhile i v (λn. A n)) q
〈proof 〉

3.1.1 Concrete syntax
〈ML〉

3.1.2 Proof methods: VCG
declare BasicRule [Hoare-Tac.BasicRule]

and SkipRule [Hoare-Tac.SkipRule]
and SeqRule [Hoare-Tac.SeqRule]
and CondRule [Hoare-Tac.CondRule]
and WhileRule [Hoare-Tac.WhileRule]

declare BasicRuleTC [Hoare-Tac.BasicRuleTC]
and SkipRuleTC [Hoare-Tac.SkipRuleTC]
and SeqRuleTC [Hoare-Tac.SeqRuleTC]
and CondRuleTC [Hoare-Tac.CondRuleTC]
and WhileRuleTC [Hoare-Tac.WhileRuleTC]

〈ML〉

end

4 More arithmetic
theory Arith2

imports Main

9

begin

definition cd :: [nat, nat, nat] ⇒ bool
where cd x m n ←→ x dvd m ∧ x dvd n

definition gcd :: [nat, nat] ⇒ nat
where gcd m n = (SOME x. cd x m n & (∀ y.(cd y m n) −→ y≤x))

primrec fac :: nat ⇒ nat
where

fac 0 = Suc 0
| fac (Suc n) = Suc n ∗ fac n

4.1 cd
lemma cd-nnn: 0<n =⇒ cd n n n
〈proof 〉

lemma cd-le: [| cd x m n; 0<m; 0<n |] ==> x<=m & x<=n
〈proof 〉

lemma cd-swap: cd x m n = cd x n m
〈proof 〉

lemma cd-diff-l: n≤m =⇒ cd x m n = cd x (m−n) n
〈proof 〉

lemma cd-diff-r : m≤n =⇒ cd x m n = cd x m (n−m)
〈proof 〉

4.2 gcd
lemma gcd-nnn: 0<n =⇒ n = gcd n n
〈proof 〉

lemma gcd-swap: gcd m n = gcd n m
〈proof 〉

lemma gcd-diff-l: n≤m =⇒ gcd m n = gcd (m−n) n
〈proof 〉

lemma gcd-diff-r : m≤n =⇒ gcd m n = gcd m (n−m)
〈proof 〉

4.3 pow
lemma sq-pow-div2 [simp]:

m mod 2 = 0 =⇒ ((n::nat)∗n)^(m div 2) = n^m
〈proof 〉

10

end

5 Various examples
theory Examples

imports Hoare-Logic Arith2
begin

5.1 Arithmetic
5.1.1 Multiplication by successive addition
lemma multiply-by-add: VARS m s a b
{a=A ∧ b=B}
m := 0 ; s := 0 ;
WHILE m 6=a
INV {s=m∗b ∧ a=A ∧ b=B}
DO s := s+b; m := m+(1 ::nat) OD
{s = A∗B}
〈proof 〉

lemma multiply-by-add-time: VARS m s a b t
{a=A ∧ b=B ∧ t=0}
m := 0 ; t := t+1 ; s := 0 ; t := t+1 ;
WHILE m 6=a
INV {s=m∗b ∧ a=A ∧ b=B ∧ t = 2∗m + 2}
DO s := s+b; t := t+1 ; m := m+(1 ::nat); t := t+1 OD
{s = A∗B ∧ t = 2∗A + 2}
〈proof 〉

lemma multiply-by-add2 : VARS M N P :: int
{m=M ∧ n=N}
IF M < 0 THEN M := −M ; N := −N ELSE SKIP FI ;
P := 0 ;
WHILE 0 < M
INV {0 ≤ M ∧ (∃ p. p = (if m<0 then −m else m) & p∗N = m∗n & P =
(p−M)∗N)}
DO P := P+N ; M := M − 1 OD
{P = m∗n}
〈proof 〉

lemma multiply-by-add2-time: VARS M N P t :: int
{m=M ∧ n=N ∧ t=0}
IF M < 0 THEN M := −M ; t := t+1 ; N := −N ; t := t+1 ELSE SKIP FI ;
P := 0 ; t := t+1 ;
WHILE 0 < M
INV {0 ≤ M & (∃ p. p = (if m<0 then −m else m) & p∗N = m∗n & P =
(p−M)∗N & t ≥ 0 & t ≤ 2∗(p−M)+3)}
DO P := P+N ; t := t+1 ; M := M − 1 ; t := t+1 OD

11

{P = m∗n & t ≤ 2∗abs m + 3}
〈proof 〉

5.1.2 Euclid’s algorithm for GCD
lemma Euclid-GCD: VARS a b
{0<A & 0<B}
a := A; b := B;
WHILE a 6= b
INV {0<a & 0<b & gcd A B = gcd a b}
DO IF a<b THEN b := b−a ELSE a := a−b FI OD
{a = gcd A B}
〈proof 〉

lemma Euclid-GCD-time: VARS a b t
{0<A & 0<B & t=0}
a := A; t := t+1 ; b := B; t := t+1 ;
WHILE a 6= b
INV {0<a & 0<b & gcd A B = gcd a b & a≤A & b≤B & t ≤ max A B − max

a b + 2}
DO IF a<b THEN b := b−a; t := t+1 ELSE a := a−b; t := t+1 FI OD
{a = gcd A B & t ≤ max A B + 2}
〈proof 〉

5.1.3 Dijkstra’s extension of Euclid’s algorithm for simultaneous
GCD and SCM

From E.W. Disjkstra. Selected Writings on Computing, p 98 (EWD474),
where it is given without the invariant. Instead of defining scm explicitly
we have used the theorem scm x y = x ∗ y / gcd x y and avoided division
by mupltiplying with gcd x y.
lemmas distribs =

diff-mult-distrib diff-mult-distrib2 add-mult-distrib add-mult-distrib2

lemma gcd-scm: VARS a b x y
{0<A & 0<B & a=A & b=B & x=B & y=A}
WHILE a ∼= b
INV {0<a & 0<b & gcd A B = gcd a b & 2∗A∗B = a∗x + b∗y}
DO IF a<b THEN (b := b−a; x := x+y) ELSE (a := a−b; y := y+x) FI OD
{a = gcd A B & 2∗A∗B = a∗(x+y)}
〈proof 〉

5.1.4 Power by iterated squaring and multiplication
lemma power-by-mult: VARS a b c
{a=A & b=B}
c := (1 ::nat);
WHILE b ∼= 0
INV {A^B = c ∗ a^b}

12

DO WHILE b mod 2 = 0
INV {A^B = c ∗ a^b}
DO a := a∗a; b := b div 2 OD;
c := c∗a; b := b − 1

OD
{c = A^B}
〈proof 〉

5.1.5 Factorial
lemma factorial: VARS a b
{a=A}
b := 1 ;
WHILE a > 0
INV {fac A = b ∗ fac a}
DO b := b∗a; a := a − 1 OD
{b = fac A}
〈proof 〉

lemma factorial-time: VARS a b t
{a=A & t=0}
b := 1 ; t := t+1 ;
WHILE a > 0
INV {fac A = b ∗ fac a & a ≤ A & t = 2∗(A−a)+1}
DO b := b∗a; t := t+1 ; a := a − 1 ; t := t+1 OD
{b = fac A & t = 2∗A + 1}
〈proof 〉

lemma [simp]: 1 ≤ i =⇒ fac (i − Suc 0) ∗ i = fac i
〈proof 〉

lemma factorial2 : VARS i f
{True}
i := (1 ::nat); f := 1 ;
WHILE i <= n INV {f = fac(i − 1) & 1 <= i & i <= n+1}
DO f := f ∗i; i := i+1 OD
{f = fac n}
〈proof 〉

lemma factorial2-time: VARS i f t
{t=0}
i := (1 ::nat); t := t+1 ; f := 1 ; t := t+1 ;
WHILE i ≤ n INV {f = fac(i − 1) & 1 ≤ i & i ≤ n+1 & t = 2∗(i−1)+2}
DO f := f ∗i; t := t+1 ; i := i+1 ; t := t+1 OD
{f = fac n & t = 2∗n+2}
〈proof 〉

5.1.6 Square root
lemma sqrt: VARS r x

13

{True}
r := (0 ::nat);
WHILE (r+1)∗(r+1) <= X
INV {r∗r ≤ X}
DO r := r+1 OD
{r∗r <= X & X < (r+1)∗(r+1)}
〈proof 〉

lemma sqrt-time: VARS r t
{t=0}
r := (0 ::nat); t := t+1 ;
WHILE (r+1)∗(r+1) <= X
INV {r∗r ≤ X & t = r+1}
DO r := r+1 ; t := t+1 OD
{r∗r <= X & X < (r+1)∗(r+1) & (t−1)∗(t−1) ≤ X}
〈proof 〉
lemma sqrt-without-multiplication: VARS u w r
{x=X}
u := 1 ; w := 1 ; r := (0 ::nat);
WHILE w <= X
INV {u = r+r+1 & w = (r+1)∗(r+1) & r∗r <= X}
DO r := r + 1 ; w := w + u + 2 ; u := u + 2 OD
{r∗r <= X & X < (r+1)∗(r+1)}
〈proof 〉

5.2 Lists
lemma imperative-reverse: VARS y x
{x=X}
y:=[];
WHILE x ∼= []
INV {rev(x)@y = rev(X)}
DO y := (hd x # y); x := tl x OD
{y=rev(X)}
〈proof 〉

lemma imperative-reverse-time: VARS y x t
{x=X & t=0}
y:=[]; t := t+1 ;
WHILE x ∼= []
INV {rev(x)@y = rev(X) & t = 2∗(length y) + 1}
DO y := (hd x # y); t := t+1 ; x := tl x ; t := t+1 OD
{y=rev(X) & t = 2∗length X + 1}
〈proof 〉

lemma imperative-append: VARS x y
{x=X & y=Y }
x := rev(x);
WHILE x∼=[]

14

INV {rev(x)@y = X@Y }
DO y := (hd x # y);

x := tl x
OD
{y = X@Y }
〈proof 〉

lemma imperative-append-time-no-rev: VARS x y t
{x=X & y=Y }
x := rev(x); t := 0 ;
WHILE x∼=[]
INV {rev(x)@y = X@Y & length x ≤ length X & t = 2 ∗ (length X − length x)}
DO y := (hd x # y); t := t+1 ;

x := tl x ; t := t+1
OD
{y = X@Y & t = 2 ∗ length X}
〈proof 〉

5.3 Arrays
5.3.1 Search for a key
lemma zero-search: VARS A i
{True}
i := 0 ;
WHILE i < length A & A!i 6= key
INV {∀ j. j<i −−> A!j 6= key}
DO i := i+1 OD
{(i < length A −−> A!i = key) &
(i = length A −−> (∀ j. j < length A −→ A!j 6= key))}
〈proof 〉

lemma zero-search-time: VARS A i t
{t=0}
i := 0 ; t := t+1 ;
WHILE i < length A ∧ A!i 6= key
INV {(∀ j. j<i −→ A!j 6= key) ∧ i ≤ length A ∧ t = i+1}
DO i := i+1 ; t := t+1 OD
{(i < length A −→ A!i = key) ∧
(i = length A −→ (∀ j. j < length A −−> A!j 6= key)) ∧ t ≤ length A + 1}
〈proof 〉

The partition procedure for quicksort.

• A is the array to be sorted (modelled as a list).

• Elements of A must be of class order to infer at the end that the
elements between u and l are equal to pivot.

Ambiguity warnings of parser are due to := being used both for assign-
ment and list update.

15

lemma Partition:
fixes pivot
defines leq ≡ λA i. ∀ k. k<i −→ A!k ≤ pivot

and geq ≡ λA i. ∀ k. i<k ∧ k<length A −→ pivot ≤ A!k
shows

VARS A u l
{0 < length(A::(′a::order)list)}
l := 0 ; u := length A − Suc 0 ;
WHILE l ≤ u
INV {leq A l ∧ geq A u ∧ u<length A ∧ l≤length A}
DO WHILE l < length A ∧ A!l ≤ pivot

INV {leq A l & geq A u ∧ u<length A ∧ l≤length A}
DO l := l+1 OD;
WHILE 0 < u & pivot ≤ A!u
INV {leq A l & geq A u ∧ u<length A ∧ l≤length A}
DO u := u − 1 OD;
IF l ≤ u THEN A := A[l := A!u, u := A!l] ELSE SKIP FI

OD
{leq A u & (∀ k. u<k ∧ k<l −−> A!k = pivot) ∧ geq A l}

〈proof 〉

end

6 Hoare Logic with an Abort statement for mod-
elling run time errors

theory Hoare-Logic-Abort
imports Hoare-Syntax Hoare-Tac

begin

type-synonym ′a bexp = ′a set
type-synonym ′a assn = ′a set
type-synonym ′a var = ′a ⇒ nat

datatype ′a com =
Basic ′a ⇒ ′a
| Abort
| Seq ′a com ′a com
| Cond ′a bexp ′a com ′a com
| While ′a bexp ′a com

abbreviation annskip (‹SKIP›) where SKIP == Basic id

type-synonym ′a sem = ′a option => ′a option => bool

inductive Sem :: ′a com ⇒ ′a sem
where

Sem (Basic f) None None

16

| Sem (Basic f) (Some s) (Some (f s))
| Sem Abort s None
| Sem c1 s s ′′ =⇒ Sem c2 s ′′ s ′ =⇒ Sem (Seq c1 c2) s s ′

| Sem (Cond b c1 c2) None None
| s ∈ b =⇒ Sem c1 (Some s) s ′ =⇒ Sem (Cond b c1 c2) (Some s) s ′

| s /∈ b =⇒ Sem c2 (Some s) s ′ =⇒ Sem (Cond b c1 c2) (Some s) s ′

| Sem (While b c) None None
| s /∈ b =⇒ Sem (While b c) (Some s) (Some s)
| s ∈ b =⇒ Sem c (Some s) s ′′ =⇒ Sem (While b c) s ′′ s ′ =⇒

Sem (While b c) (Some s) s ′

inductive-cases [elim!]:
Sem (Basic f) s s ′ Sem (Seq c1 c2) s s ′

Sem (Cond b c1 c2) s s ′

lemma Sem-deterministic:
assumes Sem c s s1

and Sem c s s2
shows s1 = s2

〈proof 〉

definition Valid :: ′a bexp ⇒ ′a com ⇒ ′a anno ⇒ ′a bexp ⇒ bool
where Valid p c a q ≡ ∀ s s ′. Sem c s s ′ −→ s ∈ Some ‘ p −→ s ′ ∈ Some ‘ q

definition ValidTC :: ′a bexp ⇒ ′a com ⇒ ′a anno ⇒ ′a bexp ⇒ bool
where ValidTC p c a q ≡ ∀ s . s ∈ p −→ (∃ t . Sem c (Some s) (Some t) ∧ t ∈

q)

lemma tc-implies-pc:
ValidTC p c a q =⇒ Valid p c a q
〈proof 〉

lemma tc-extract-function:
ValidTC p c a q =⇒ ∃ f . ∀ s . s ∈ p −→ f s ∈ q
〈proof 〉

The proof rules for partial correctness
lemma SkipRule: p ⊆ q =⇒ Valid p (Basic id) a q
〈proof 〉

lemma BasicRule: p ⊆ {s. f s ∈ q} =⇒ Valid p (Basic f) a q
〈proof 〉

lemma SeqRule: Valid P c1 a1 Q =⇒ Valid Q c2 a2 R =⇒ Valid P (Seq c1 c2)
(Aseq a1 a2) R
〈proof 〉

lemma CondRule:
p ⊆ {s. (s ∈ b −→ s ∈ w) ∧ (s /∈ b −→ s ∈ w ′)}

17

=⇒ Valid w c1 a1 q =⇒ Valid w ′ c2 a2 q =⇒ Valid p (Cond b c1 c2) (Acond a1
a2) q
〈proof 〉

lemma While-aux:
assumes Sem (While b c) s s ′

shows ∀ s s ′. Sem c s s ′ −→ s ∈ Some ‘ (I ∩ b) −→ s ′ ∈ Some ‘ I =⇒
s ∈ Some ‘ I =⇒ s ′ ∈ Some ‘ (I ∩ −b)
〈proof 〉

lemma WhileRule:
p ⊆ i =⇒ Valid (i ∩ b) c (A 0) i =⇒ i ∩ (−b) ⊆ q =⇒ Valid p (While b c)
(Awhile i v A) q
〈proof 〉

lemma AbortRule: p ⊆ {s. False} =⇒ Valid p Abort a q
〈proof 〉

The proof rules for total correctness
lemma SkipRuleTC :

assumes p ⊆ q
shows ValidTC p (Basic id) a q
〈proof 〉

lemma BasicRuleTC :
assumes p ⊆ {s. f s ∈ q}

shows ValidTC p (Basic f) a q
〈proof 〉

lemma SeqRuleTC :
assumes ValidTC p c1 a1 q

and ValidTC q c2 a2 r
shows ValidTC p (Seq c1 c2) (Aseq a1 a2) r
〈proof 〉

lemma CondRuleTC :
assumes p ⊆ {s. (s ∈ b −→ s ∈ w) ∧ (s /∈ b −→ s ∈ w ′)}

and ValidTC w c1 a1 q
and ValidTC w ′ c2 a2 q

shows ValidTC p (Cond b c1 c2) (Acons a1 a2) q
〈proof 〉

lemma WhileRuleTC :
assumes p ⊆ i

and
∧

n::nat . ValidTC (i ∩ b ∩ {s . v s = n}) c (A n) (i ∩ {s . v s < n})
and i ∩ uminus b ⊆ q

shows ValidTC p (While b c) (Awhile i v A) q
〈proof 〉

18

6.1 Concrete syntax
〈ML〉
syntax

-guarded-com :: bool ⇒ ′a com ⇒ ′a com
(‹(‹indent=2 notation=‹mixfix Hoare guarded statement››- →/ -)› 71)

-array-update :: ′a list ⇒ nat ⇒ ′a ⇒ ′a com
(‹(‹indent=2 notation=‹mixfix Hoare array update››-[-] :=/ -)› [70 , 65] 61)

translations
P → c ⇀↽ IF P THEN c ELSE CONST Abort FI
a[i] := v ⇀ (i < CONST length a) → (a := CONST list-update a i v)
— reverse translation not possible because of duplicate a

Note: there is no special syntax for guarded array access. Thus you must
write j < length a → a[i] := a!j.

6.2 Proof methods: VCG
declare BasicRule [Hoare-Tac.BasicRule]

and SkipRule [Hoare-Tac.SkipRule]
and AbortRule [Hoare-Tac.AbortRule]
and SeqRule [Hoare-Tac.SeqRule]
and CondRule [Hoare-Tac.CondRule]
and WhileRule [Hoare-Tac.WhileRule]

declare BasicRuleTC [Hoare-Tac.BasicRuleTC]
and SkipRuleTC [Hoare-Tac.SkipRuleTC]
and SeqRuleTC [Hoare-Tac.SeqRuleTC]
and CondRuleTC [Hoare-Tac.CondRuleTC]
and WhileRuleTC [Hoare-Tac.WhileRuleTC]

〈ML〉

end

7 Some small examples for programs that may
abort

theory ExamplesAbort
imports Hoare-Logic-Abort

begin

lemma VARS x y z::nat
{y = z & z 6= 0} z 6= 0 → x := y div z {x = 1}
〈proof 〉

lemma
VARS a i j
{k <= length a & i < k & j < k} j < length a → a[i] := a!j {True}

19

〈proof 〉

lemma VARS (a::int list) i
{True}
i := 0 ;
WHILE i < length a
INV {i <= length a}
DO a[i] := 7 ; i := i+1 OD
{True}
〈proof 〉

end

8 Examples using Hoare Logic for Total Correct-
ness

theory ExamplesTC
imports Hoare-Logic

begin

This theory demonstrates a few simple partial- and total-correctness
proofs. The first example is taken from HOL/Hoare/Examples.thy written
by N. Galm. We have added the invariant m ≤ a.
lemma multiply-by-add: VARS m s a b
{a=A ∧ b=B}
m := 0 ; s := 0 ;
WHILE m 6=a
INV {s=m∗b ∧ a=A ∧ b=B ∧ m≤a}
DO s := s+b; m := m+(1 ::nat) OD
{s = A∗B}
〈proof 〉

Here is the total-correctness proof for the same program. It needs the
additional invariant m ≤ a.
lemma multiply-by-add-tc: VARS m s a b
[a=A ∧ b=B]
m := 0 ; s := 0 ;
WHILE m 6=a
INV {s=m∗b ∧ a=A ∧ b=B ∧ m≤a}
VAR {a−m}
DO s := s+b; m := m+(1 ::nat) OD
[s = A∗B]
〈proof 〉

Next, we prove partial correctness of a program that computes powers.
lemma power : VARS (p::int) i
{ True }
p := 1 ;

20

i := 0 ;
WHILE i < n

INV { p = x^i ∧ i ≤ n }
DO p := p ∗ x;

i := i + 1
OD

{ p = x^n }
〈proof 〉

Here is its total-correctness proof.
lemma power-tc: VARS (p::int) i
[True]
p := 1 ;
i := 0 ;
WHILE i < n

INV { p = x^i ∧ i ≤ n }
VAR { n − i }
DO p := p ∗ x;

i := i + 1
OD

[p = x^n]
〈proof 〉

The last example is again taken from HOL/Hoare/Examples.thy. We
have modified it to integers so it requires precondition 0 ≤ x.
lemma sqrt-tc: VARS r
[0 ≤ (x::int)]
r := 0 ;
WHILE (r+1)∗(r+1) <= x
INV {r∗r ≤ x}
VAR { nat (x−r)}
DO r := r+1 OD
[r∗r ≤ x ∧ x < (r+1)∗(r+1)]
〈proof 〉

A total-correctness proof allows us to extract a function for further use.
For every input satisfying the precondition the function returns an output
satisfying the postcondition.
lemma sqrt-exists:

0 ≤ (x::int) =⇒ ∃ r ′ . r ′∗r ′ ≤ x ∧ x < (r ′+1)∗(r ′+1)
〈proof 〉

definition sqrt (x::int) ≡ (SOME r ′ . r ′∗r ′ ≤ x ∧ x < (r ′+1)∗(r ′+1))

lemma sqrt-function:
assumes 0 ≤ (x::int)

and r ′ = sqrt x
shows r ′∗r ′ ≤ x ∧ x < (r ′+1)∗(r ′+1)
〈proof 〉

21

Nested loops!
lemma VARS (i::nat) j
[True]
WHILE 0 < i

INV { True }
VAR { z = i }
DO i := i − 1 ; j := i;

WHILE 0 < j
INV { z = i+1 }
VAR { j }
DO j := j − 1 OD

OD
[i ≤ 0]
〈proof 〉

end

9 Alternative pointers
theory Pointers0

imports Hoare-Logic
begin

9.1 References
class ref =

fixes Null :: ′a

9.2 Field access and update
syntax

-fassign :: ′a::ref => id => ′v => ′s com
(‹(‹indent=2 notation=‹mixfix Hoare field assignment››-^.- :=/ -)› [70 ,1000 ,65]

61)
-faccess :: ′a::ref => (′a::ref ⇒ ′v) => ′v
(‹(‹open-block notation=‹mixfix Hoare field access››-^.-)› [65 ,1000] 65)

translations
p^.f := e => f := CONST fun-upd f p e
p^.f => f p

An example due to Suzuki:
lemma VARS v n
{distinct[w,x,y,z]}
w^.v := (1 ::int); w^.n := x;
x^.v := 2 ; x^.n := y;
y^.v := 3 ; y^.n := z;
z^.v := 4 ; x^.n := z
{w^.n^.n^.v = 4}
〈proof 〉

22

9.3 The heap
9.3.1 Paths in the heap
primrec Path :: (′a::ref ⇒ ′a) ⇒ ′a ⇒ ′a list ⇒ ′a ⇒ bool
where

Path h x [] y = (x = y)
| Path h x (a#as) y = (x 6= Null ∧ x = a ∧ Path h (h a) as y)

lemma [iff]: Path h Null xs y = (xs = [] ∧ y = Null)
〈proof 〉

lemma [simp]: a 6= Null =⇒ Path h a as z =
(as = [] ∧ z = a ∨ (∃ bs. as = a#bs ∧ Path h (h a) bs z))
〈proof 〉

lemma [simp]:
∧

x. Path f x (as@bs) z = (∃ y. Path f x as y ∧ Path f y bs z)
〈proof 〉

lemma [simp]:
∧

x. u /∈ set as =⇒ Path (f (u := v)) x as y = Path f x as y
〈proof 〉

9.3.2 Lists on the heap
Relational abstraction definition List :: (′a::ref ⇒ ′a) ⇒ ′a ⇒ ′a list ⇒
bool

where List h x as = Path h x as Null

lemma [simp]: List h x [] = (x = Null)
〈proof 〉

lemma [simp]: List h x (a#as) = (x 6= Null ∧ x = a ∧ List h (h a) as)
〈proof 〉

lemma [simp]: List h Null as = (as = [])
〈proof 〉

lemma List-Ref [simp]:
a 6= Null =⇒ List h a as = (∃ bs. as = a#bs ∧ List h (h a) bs)
〈proof 〉

theorem notin-List-update[simp]:∧
x. a /∈ set as =⇒ List (h(a := y)) x as = List h x as

〈proof 〉

declare fun-upd-apply[simp del]fun-upd-same[simp] fun-upd-other [simp]

lemma List-unique:
∧

x bs. List h x as =⇒ List h x bs =⇒ as = bs
〈proof 〉

23

lemma List-unique1 : List h p as =⇒ ∃ !as. List h p as
〈proof 〉

lemma List-app:
∧

x. List h x (as@bs) = (∃ y. Path h x as y ∧ List h y bs)
〈proof 〉

lemma List-hd-not-in-tl[simp]: List h (h a) as =⇒ a /∈ set as
〈proof 〉

lemma List-distinct[simp]:
∧

x. List h x as =⇒ distinct as
〈proof 〉

9.3.3 Functional abstraction
definition islist :: (′a::ref ⇒ ′a) ⇒ ′a ⇒ bool

where islist h p ←→ (∃ as. List h p as)

definition list :: (′a::ref ⇒ ′a) ⇒ ′a ⇒ ′a list
where list h p = (SOME as. List h p as)

lemma List-conv-islist-list: List h p as = (islist h p ∧ as = list h p)
〈proof 〉

lemma [simp]: islist h Null
〈proof 〉

lemma [simp]: a 6= Null =⇒ islist h a = islist h (h a)
〈proof 〉

lemma [simp]: list h Null = []
〈proof 〉

lemma list-Ref-conv[simp]:
[[a 6= Null; islist h (h a)]] =⇒ list h a = a # list h (h a)
〈proof 〉

lemma [simp]: islist h (h a) =⇒ a /∈ set(list h (h a))
〈proof 〉

lemma list-upd-conv[simp]:
islist h p =⇒ y /∈ set(list h p) =⇒ list (h(y := q)) p = list h p
〈proof 〉

lemma islist-upd[simp]:
islist h p =⇒ y /∈ set(list h p) =⇒ islist (h(y := q)) p
〈proof 〉

24

9.4 Verifications
9.4.1 List reversal

A short but unreadable proof:
lemma VARS tl p q r
{List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {}}
WHILE p 6= Null
INV {∃ ps qs. List tl p ps ∧ List tl q qs ∧ set ps ∩ set qs = {} ∧

rev ps @ qs = rev Ps @ Qs}
DO r := p; p := p^.tl; r^.tl := q; q := r OD
{List tl q (rev Ps @ Qs)}
〈proof 〉

A longer readable version:
lemma VARS tl p q r
{List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {}}
WHILE p 6= Null
INV {∃ ps qs. List tl p ps ∧ List tl q qs ∧ set ps ∩ set qs = {} ∧

rev ps @ qs = rev Ps @ Qs}
DO r := p; p := p^.tl; r^.tl := q; q := r OD
{List tl q (rev Ps @ Qs)}
〈proof 〉

Finaly, the functional version. A bit more verbose, but automatic!
lemma VARS tl p q r
{islist tl p ∧ islist tl q ∧
Ps = list tl p ∧ Qs = list tl q ∧ set Ps ∩ set Qs = {}}

WHILE p 6= Null
INV {islist tl p ∧ islist tl q ∧

set(list tl p) ∩ set(list tl q) = {} ∧
rev(list tl p) @ (list tl q) = rev Ps @ Qs}

DO r := p; p := p^.tl; r^.tl := q; q := r OD
{islist tl q ∧ list tl q = rev Ps @ Qs}
〈proof 〉

9.4.2 Searching in a list

What follows is a sequence of successively more intelligent proofs that a
simple loop finds an element in a linked list.

We start with a proof based on the List predicate. This means it only
works for acyclic lists.
lemma VARS tl p
{List tl p Ps ∧ X ∈ set Ps}
WHILE p 6= Null ∧ p 6= X
INV {p 6= Null ∧ (∃ ps. List tl p ps ∧ X ∈ set ps)}
DO p := p^.tl OD
{p = X}
〈proof 〉

25

Using Path instead of List generalizes the correctness statement to cyclic
lists as well:
lemma VARS tl p
{Path tl p Ps X}
WHILE p 6= Null ∧ p 6= X
INV {∃ ps. Path tl p ps X}
DO p := p^.tl OD
{p = X}
〈proof 〉

Now it dawns on us that we do not need the list witness at all — it
suffices to talk about reachability, i.e. we can use relations directly.
lemma VARS tl p
{(p,X) ∈ {(x,y). y = tl x & x 6= Null}∗}
WHILE p 6= Null ∧ p 6= X
INV {(p,X) ∈ {(x,y). y = tl x & x 6= Null}∗}
DO p := p^.tl OD
{p = X}
〈proof 〉

9.4.3 Merging two lists

This is still a bit rough, especially the proof.
fun merge :: ′a list ∗ ′a list ∗ (′a ⇒ ′a ⇒ bool) ⇒ ′a list where
merge(x#xs,y#ys,f) = (if f x y then x # merge(xs,y#ys,f)

else y # merge(x#xs,ys,f)) |
merge(x#xs,[],f) = x # merge(xs,[],f) |
merge([],y#ys,f) = y # merge([],ys,f) |
merge([],[],f) = []

lemma imp-disjCL: (P|Q −→ R) = ((P −→ R) ∧ (∼P −→ Q −→ R))
〈proof 〉

declare disj-not1 [simp del] imp-disjL[simp del] imp-disjCL[simp]

lemma VARS hd tl p q r s
{List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {} ∧
(p 6= Null ∨ q 6= Null)}

IF if q = Null then True else p ∼= Null & p^.hd ≤ q^.hd
THEN r := p; p := p^.tl ELSE r := q; q := q^.tl FI ;
s := r ;
WHILE p 6= Null ∨ q 6= Null
INV {∃ rs ps qs. Path tl r rs s ∧ List tl p ps ∧ List tl q qs ∧

distinct(s # ps @ qs @ rs) ∧ s 6= Null ∧
merge(Ps,Qs,λx y. hd x ≤ hd y) =
rs @ s # merge(ps,qs,λx y. hd x ≤ hd y) ∧
(tl s = p ∨ tl s = q)}

DO IF if q = Null then True else p 6= Null ∧ p^.hd ≤ q^.hd

26

THEN s^.tl := p; p := p^.tl ELSE s^.tl := q; q := q^.tl FI ;
s := s^.tl

OD
{List tl r (merge(Ps,Qs,λx y. hd x ≤ hd y))}
〈proof 〉

9.4.4 Storage allocation
definition new :: ′a set ⇒ ′a::ref

where new A = (SOME a. a /∈ A & a 6= Null)

lemma new-notin:
[[∼finite(UNIV ::(′a::ref)set); finite(A:: ′a set); B ⊆ A]] =⇒
new (A) /∈ B & new A 6= Null
〈proof 〉

lemma ∼finite(UNIV ::(′a::ref)set) =⇒
VARS xs elem next alloc p q
{Xs = xs ∧ p = (Null:: ′a)}
WHILE xs 6= []
INV {islist next p ∧ set(list next p) ⊆ set alloc ∧

map elem (rev(list next p)) @ xs = Xs}
DO q := new(set alloc); alloc := q#alloc;

q^.next := p; q^.elem := hd xs; xs := tl xs; p := q
OD
{islist next p ∧ map elem (rev(list next p)) = Xs}
〈proof 〉

end

10 Pointers, heaps and heap abstractions
See the paper by Mehta and Nipkow.
theory Heap

imports Main
begin

10.1 References
datatype ′a ref = Null | Ref ′a

lemma not-Null-eq [iff]: (x 6= Null) = (∃ y. x = Ref y)
〈proof 〉

lemma not-Ref-eq [iff]: (∀ y. x 6= Ref y) = (x = Null)
〈proof 〉

primrec addr :: ′a ref ⇒ ′a where

27

addr (Ref a) = a

10.2 The heap
10.2.1 Paths in the heap
primrec Path :: (′a ⇒ ′a ref) ⇒ ′a ref ⇒ ′a list ⇒ ′a ref ⇒ bool where

Path h x [] y ←→ x = y
| Path h x (a#as) y ←→ x = Ref a ∧ Path h (h a) as y

lemma [iff]: Path h Null xs y = (xs = [] ∧ y = Null)
〈proof 〉

lemma [simp]: Path h (Ref a) as z =
(as = [] ∧ z = Ref a ∨ (∃ bs. as = a#bs ∧ Path h (h a) bs z))
〈proof 〉

lemma [simp]:
∧

x. Path f x (as@bs) z = (∃ y. Path f x as y ∧ Path f y bs z)
〈proof 〉

lemma Path-upd[simp]:∧
x. u /∈ set as =⇒ Path (f (u := v)) x as y = Path f x as y

〈proof 〉

lemma Path-snoc:
Path (f (a := q)) p as (Ref a) =⇒ Path (f (a := q)) p (as @ [a]) q
〈proof 〉

10.2.2 Non-repeating paths
definition distPath :: (′a ⇒ ′a ref) ⇒ ′a ref ⇒ ′a list ⇒ ′a ref ⇒ bool

where distPath h x as y ←→ Path h x as y ∧ distinct as

The term distPath h x as y expresses the fact that a non-repeating path
as connects location x to location y by means of the h field. In the case
where x = y, and there is a cycle from x to itself, as can be both [] and the
non-repeating list of nodes in the cycle.
lemma neq-dP: p 6= q =⇒ Path h p Ps q =⇒ distinct Ps =⇒
∃ a Qs. p = Ref a ∧ Ps = a#Qs ∧ a /∈ set Qs
〈proof 〉

lemma neq-dP-disp: [[p 6= q; distPath h p Ps q]] =⇒
∃ a Qs. p = Ref a ∧ Ps = a#Qs ∧ a /∈ set Qs
〈proof 〉

10.2.3 Lists on the heap
Relational abstraction definition List :: (′a ⇒ ′a ref) ⇒ ′a ref ⇒ ′a list
⇒ bool

28

where List h x as = Path h x as Null

lemma [simp]: List h x [] = (x = Null)
〈proof 〉

lemma [simp]: List h x (a#as) = (x = Ref a ∧ List h (h a) as)
〈proof 〉

lemma [simp]: List h Null as = (as = [])
〈proof 〉

lemma List-Ref [simp]: List h (Ref a) as = (∃ bs. as = a#bs ∧ List h (h a) bs)
〈proof 〉

theorem notin-List-update[simp]:∧
x. a /∈ set as =⇒ List (h(a := y)) x as = List h x as

〈proof 〉

lemma List-unique:
∧

x bs. List h x as =⇒ List h x bs =⇒ as = bs
〈proof 〉

lemma List-unique1 : List h p as =⇒ ∃ !as. List h p as
〈proof 〉

lemma List-app:
∧

x. List h x (as@bs) = (∃ y. Path h x as y ∧ List h y bs)
〈proof 〉

lemma List-hd-not-in-tl[simp]: List h (h a) as =⇒ a /∈ set as
〈proof 〉

lemma List-distinct[simp]:
∧

x. List h x as =⇒ distinct as
〈proof 〉

lemma Path-is-List:
[[Path h b Ps (Ref a); a /∈ set Ps]] =⇒ List (h(a := Null)) b (Ps @ [a])
〈proof 〉

10.2.4 Functional abstraction
definition islist :: (′a ⇒ ′a ref) ⇒ ′a ref ⇒ bool

where islist h p ←→ (∃ as. List h p as)

definition list :: (′a ⇒ ′a ref) ⇒ ′a ref ⇒ ′a list
where list h p = (SOME as. List h p as)

lemma List-conv-islist-list: List h p as = (islist h p ∧ as = list h p)
〈proof 〉

lemma [simp]: islist h Null

29

〈proof 〉

lemma [simp]: islist h (Ref a) = islist h (h a)
〈proof 〉

lemma [simp]: list h Null = []
〈proof 〉

lemma list-Ref-conv[simp]:
islist h (h a) =⇒ list h (Ref a) = a # list h (h a)
〈proof 〉

lemma [simp]: islist h (h a) =⇒ a /∈ set(list h (h a))
〈proof 〉

lemma list-upd-conv[simp]:
islist h p =⇒ y /∈ set(list h p) =⇒ list (h(y := q)) p = list h p
〈proof 〉

lemma islist-upd[simp]:
islist h p =⇒ y /∈ set(list h p) =⇒ islist (h(y := q)) p
〈proof 〉

end

11 Heap syntax
theory HeapSyntax

imports Hoare-Logic Heap
begin

11.1 Field access and update
syntax

-refupdate :: (′a ⇒ ′b) ⇒ ′a ref ⇒ ′b ⇒ (′a ⇒ ′b)
(‹(‹open-block notation=‹mixfix Hoare ref update››-/ ′((- → -) ′))› [1000 ,0] 900)

-fassign :: ′a ref => id => ′v => ′s com
(‹(‹indent=2 notation=‹mixfix Hoare ref assignment››-^.- :=/ -)› [70 ,1000 ,65]

61)
-faccess :: ′a ref => (′a ref ⇒ ′v) => ′v
(‹(‹open-block notation=‹infix Hoare ref access››-^.-)› [65 ,1000] 65)

translations
f (r → v) == f (CONST addr r := v)
p^.f := e => f := f (p → e)
p^.f => f (CONST addr p)

declare fun-upd-apply[simp del] fun-upd-same[simp] fun-upd-other [simp]

30

An example due to Suzuki:
lemma VARS v n
{w = Ref w0 & x = Ref x0 & y = Ref y0 & z = Ref z0 &
distinct[w0 ,x0 ,y0 ,z0]}

w^.v := (1 ::int); w^.n := x;
x^.v := 2 ; x^.n := y;
y^.v := 3 ; y^.n := z;
z^.v := 4 ; x^.n := z
{w^.n^.n^.v = 4}
〈proof 〉

end

12 Examples of verifications of pointer programs
theory Pointer-Examples

imports HeapSyntax
begin

axiomatization where unproven: PROP A

12.1 Verifications
12.1.1 List reversal

A short but unreadable proof:
lemma VARS tl p q r
{List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {}}
WHILE p 6= Null
INV {∃ ps qs. List tl p ps ∧ List tl q qs ∧ set ps ∩ set qs = {} ∧

rev ps @ qs = rev Ps @ Qs}
DO r := p; p := p^.tl; r^.tl := q; q := r OD
{List tl q (rev Ps @ Qs)}
〈proof 〉

And now with ghost variables ps and qs. Even “more automatic”.
lemma VARS next p ps q qs r
{List next p Ps ∧ List next q Qs ∧ set Ps ∩ set Qs = {} ∧
ps = Ps ∧ qs = Qs}

WHILE p 6= Null
INV {List next p ps ∧ List next q qs ∧ set ps ∩ set qs = {} ∧

rev ps @ qs = rev Ps @ Qs}
DO r := p; p := p^.next; r^.next := q; q := r ;

qs := (hd ps) # qs; ps := tl ps OD
{List next q (rev Ps @ Qs)}
〈proof 〉

A longer readable version:

31

lemma VARS tl p q r
{List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {}}
WHILE p 6= Null
INV {∃ ps qs. List tl p ps ∧ List tl q qs ∧ set ps ∩ set qs = {} ∧

rev ps @ qs = rev Ps @ Qs}
DO r := p; p := p^.tl; r^.tl := q; q := r OD
{List tl q (rev Ps @ Qs)}
〈proof 〉

Finaly, the functional version. A bit more verbose, but automatic!
lemma VARS tl p q r
{islist tl p ∧ islist tl q ∧
Ps = list tl p ∧ Qs = list tl q ∧ set Ps ∩ set Qs = {}}

WHILE p 6= Null
INV {islist tl p ∧ islist tl q ∧

set(list tl p) ∩ set(list tl q) = {} ∧
rev(list tl p) @ (list tl q) = rev Ps @ Qs}

DO r := p; p := p^.tl; r^.tl := q; q := r OD
{islist tl q ∧ list tl q = rev Ps @ Qs}
〈proof 〉

12.1.2 Searching in a list

What follows is a sequence of successively more intelligent proofs that a
simple loop finds an element in a linked list.

We start with a proof based on the List predicate. This means it only
works for acyclic lists.
lemma VARS tl p
{List tl p Ps ∧ X ∈ set Ps}
WHILE p 6= Null ∧ p 6= Ref X
INV {∃ ps. List tl p ps ∧ X ∈ set ps}
DO p := p^.tl OD
{p = Ref X}
〈proof 〉

Using Path instead of List generalizes the correctness statement to cyclic
lists as well:
lemma VARS tl p
{Path tl p Ps X}
WHILE p 6= Null ∧ p 6= X
INV {∃ ps. Path tl p ps X}
DO p := p^.tl OD
{p = X}
〈proof 〉

Now it dawns on us that we do not need the list witness at all — it
suffices to talk about reachability, i.e. we can use relations directly. The
first version uses a relation on ′a ref :

32

lemma VARS tl p
{(p,X) ∈ {(Ref x,tl x) |x. True}∗}
WHILE p 6= Null ∧ p 6= X
INV {(p,X) ∈ {(Ref x,tl x) |x. True}∗}
DO p := p^.tl OD
{p = X}
〈proof 〉

Finally, a version based on a relation on type ′a:
lemma VARS tl p
{p 6= Null ∧ (addr p,X) ∈ {(x,y). tl x = Ref y}∗}
WHILE p 6= Null ∧ p 6= Ref X
INV {p 6= Null ∧ (addr p,X) ∈ {(x,y). tl x = Ref y}∗}
DO p := p^.tl OD
{p = Ref X}
〈proof 〉

12.1.3 Splicing two lists
lemma VARS tl p q pp qq
{List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {} ∧ size Qs ≤ size Ps}
pp := p;
WHILE q 6= Null
INV {∃ as bs qs.

distinct as ∧ Path tl p as pp ∧ List tl pp bs ∧ List tl q qs ∧
set bs ∩ set qs = {} ∧ set as ∩ (set bs ∪ set qs) = {} ∧
size qs ≤ size bs ∧ splice Ps Qs = as @ splice bs qs}

DO qq := q^.tl; q^.tl := pp^.tl; pp^.tl := q; pp := q^.tl; q := qq OD
{List tl p (splice Ps Qs)}
〈proof 〉

12.1.4 Merging two lists

This is still a bit rough, especially the proof.
definition cor :: bool ⇒ bool ⇒ bool

where cor P Q ←→ (if P then True else Q)

definition cand :: bool ⇒ bool ⇒ bool
where cand P Q ←→ (if P then Q else False)

fun merge :: ′a list ∗ ′a list ∗ (′a ⇒ ′a ⇒ bool) ⇒ ′a list
where

merge(x#xs,y#ys,f) = (if f x y then x # merge(xs,y#ys,f)
else y # merge(x#xs,ys,f))

| merge(x#xs,[],f) = x # merge(xs,[],f)
| merge([],y#ys,f) = y # merge([],ys,f)
| merge([],[],f) = []

Simplifies the proof a little:

33

lemma [simp]: ({} = insert a A ∩ B) = (a /∈ B & {} = A ∩ B)
〈proof 〉
lemma [simp]: ({} = A ∩ insert b B) = (b /∈ A & {} = A ∩ B)
〈proof 〉
lemma [simp]: ({} = A ∩ (B ∪ C)) = ({} = A ∩ B & {} = A ∩ C)
〈proof 〉

lemma VARS hd tl p q r s
{List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {} ∧
(p 6= Null ∨ q 6= Null)}

IF cor (q = Null) (cand (p 6= Null) (p^.hd ≤ q^.hd))
THEN r := p; p := p^.tl ELSE r := q; q := q^.tl FI ;
s := r ;
WHILE p 6= Null ∨ q 6= Null
INV {∃ rs ps qs a. Path tl r rs s ∧ List tl p ps ∧ List tl q qs ∧

distinct(a # ps @ qs @ rs) ∧ s = Ref a ∧
merge(Ps,Qs,λx y. hd x ≤ hd y) =
rs @ a # merge(ps,qs,λx y. hd x ≤ hd y) ∧
(tl a = p ∨ tl a = q)}

DO IF cor (q = Null) (cand (p 6= Null) (p^.hd ≤ q^.hd))
THEN s^.tl := p; p := p^.tl ELSE s^.tl := q; q := q^.tl FI ;
s := s^.tl

OD
{List tl r (merge(Ps,Qs,λx y. hd x ≤ hd y))}
〈proof 〉

And now with ghost variables:
lemma VARS elem next p q r s ps qs rs a
{List next p Ps ∧ List next q Qs ∧ set Ps ∩ set Qs = {} ∧
(p 6= Null ∨ q 6= Null) ∧ ps = Ps ∧ qs = Qs}

IF cor (q = Null) (cand (p 6= Null) (p^.elem ≤ q^.elem))
THEN r := p; p := p^.next; ps := tl ps
ELSE r := q; q := q^.next; qs := tl qs FI ;
s := r ; rs := []; a := addr s;
WHILE p 6= Null ∨ q 6= Null
INV {Path next r rs s ∧ List next p ps ∧ List next q qs ∧

distinct(a # ps @ qs @ rs) ∧ s = Ref a ∧
merge(Ps,Qs,λx y. elem x ≤ elem y) =
rs @ a # merge(ps,qs,λx y. elem x ≤ elem y) ∧
(next a = p ∨ next a = q)}

DO IF cor (q = Null) (cand (p 6= Null) (p^.elem ≤ q^.elem))
THEN s^.next := p; p := p^.next; ps := tl ps
ELSE s^.next := q; q := q^.next; qs := tl qs FI ;
rs := rs @ [a]; s := s^.next; a := addr s

OD
{List next r (merge(Ps,Qs,λx y. elem x ≤ elem y))}
〈proof 〉

The proof is a LOT simpler because it does not need instantiations any-
more, but it is still not quite automatic, probably because of this wrong

34

orientation business.
More of the previous proof without ghost variables can be automated,

but the runtime goes up drastically. In general it is usually more efficient
to give the witness directly than to have it found by proof.

Now we try a functional version of the abstraction relation Path. Since
the result is not that convincing, we do not prove any of the lemmas.
axiomatization

ispath :: (′a ⇒ ′a ref) ⇒ ′a ref ⇒ ′a ref ⇒ bool and
path :: (′a ⇒ ′a ref) ⇒ ′a ref ⇒ ′a ref ⇒ ′a list

First some basic lemmas:
lemma [simp]: ispath f p p
〈proof 〉
lemma [simp]: path f p p = []
〈proof 〉
lemma [simp]: ispath f p q =⇒ a /∈ set(path f p q) =⇒ ispath (f (a := r)) p q
〈proof 〉
lemma [simp]: ispath f p q =⇒ a /∈ set(path f p q) =⇒
path (f (a := r)) p q = path f p q
〈proof 〉

Some more specific lemmas needed by the example:
lemma [simp]: ispath (f (a := q)) p (Ref a) =⇒ ispath (f (a := q)) p q
〈proof 〉
lemma [simp]: ispath (f (a := q)) p (Ref a) =⇒
path (f (a := q)) p q = path (f (a := q)) p (Ref a) @ [a]
〈proof 〉
lemma [simp]: ispath f p (Ref a) =⇒ f a = Ref b =⇒
b /∈ set (path f p (Ref a))
〈proof 〉
lemma [simp]: ispath f p (Ref a) =⇒ f a = Null =⇒ islist f p
〈proof 〉
lemma [simp]: ispath f p (Ref a) =⇒ f a = Null =⇒ list f p = path f p (Ref a) @
[a]
〈proof 〉

lemma [simp]: islist f p =⇒ distinct (list f p)
〈proof 〉

lemma VARS hd tl p q r s
{islist tl p ∧ Ps = list tl p ∧ islist tl q ∧ Qs = list tl q ∧
set Ps ∩ set Qs = {} ∧
(p 6= Null ∨ q 6= Null)}

IF cor (q = Null) (cand (p 6= Null) (p^.hd ≤ q^.hd))
THEN r := p; p := p^.tl ELSE r := q; q := q^.tl FI ;
s := r ;
WHILE p 6= Null ∨ q 6= Null
INV {∃ rs ps qs a. ispath tl r s ∧ rs = path tl r s ∧

35

islist tl p ∧ ps = list tl p ∧ islist tl q ∧ qs = list tl q ∧
distinct(a # ps @ qs @ rs) ∧ s = Ref a ∧
merge(Ps,Qs,λx y. hd x ≤ hd y) =
rs @ a # merge(ps,qs,λx y. hd x ≤ hd y) ∧
(tl a = p ∨ tl a = q)}

DO IF cor (q = Null) (cand (p 6= Null) (p^.hd ≤ q^.hd))
THEN s^.tl := p; p := p^.tl ELSE s^.tl := q; q := q^.tl FI ;
s := s^.tl

OD
{islist tl r & list tl r = (merge(Ps,Qs,λx y. hd x ≤ hd y))}
〈proof 〉

The proof is automatic, but requires a numbet of special lemmas.

12.1.5 Cyclic list reversal

We consider two algorithms for the reversal of circular lists.
lemma circular-list-rev-I :

VARS next root p q tmp
{root = Ref r ∧ distPath next root (r#Ps) root}
p := root; q := root^.next;
WHILE q 6= root
INV {∃ ps qs. distPath next p ps root ∧ distPath next q qs root ∧

root = Ref r ∧ r /∈ set Ps ∧ set ps ∩ set qs = {} ∧
Ps = (rev ps) @ qs }

DO tmp := q; q := q^.next; tmp^.next := p; p:=tmp OD;
root^.next := p
{ root = Ref r ∧ distPath next root (r#rev Ps) root}
〈proof 〉

In the beginning, we are able to assert distPath next root as root, with as
set to [] or [r , a, b, c]. Note that Path next root as root would additionally
give us an infinite number of lists with the recurring sequence [r , a, b, c].

The precondition states that there exists a non-empty non-repeating
path r # Ps from pointer root to itself, given that root points to location r.
Pointers p and q are then set to root and the successor of root respectively.
If q = root, we have circled the loop, otherwise we set the next pointer field
of q to point to p, and shift p and q one step forward. The invariant thus
states that p and q point to two disjoint lists ps and qs, such that Ps = rev
ps @ qs. After the loop terminates, one extra step is needed to close the
loop. As expected, the postcondition states that the distPath from root to
itself is now r # rev Ps.

It may come as a surprise to the reader that the simple algorithm for
acyclic list reversal, with modified annotations, works for cyclic lists as well:
lemma circular-list-rev-II :
VARS next p q tmp
{p = Ref r ∧ distPath next p (r#Ps) p}

36

q:=Null;
WHILE p 6= Null
INV
{ ((q = Null) −→ (∃ ps. distPath next p (ps) (Ref r) ∧ ps = r#Ps)) ∧
((q 6= Null) −→ (∃ ps qs. distPath next q (qs) (Ref r) ∧ List next p ps ∧

set ps ∩ set qs = {} ∧ rev qs @ ps = Ps@[r])) ∧
¬ (p = Null ∧ q = Null) }

DO tmp := p; p := p^.next; tmp^.next := q; q:=tmp OD
{q = Ref r ∧ distPath next q (r # rev Ps) q}
〈proof 〉

12.1.6 Storage allocation
definition new :: ′a set ⇒ ′a

where new A = (SOME a. a /∈ A)

lemma new-notin:
[[∼finite(UNIV :: ′a set); finite(A:: ′a set); B ⊆ A]] =⇒ new (A) /∈ B
〈proof 〉

lemma ∼finite(UNIV :: ′a set) =⇒
VARS xs elem next alloc p q
{Xs = xs ∧ p = (Null:: ′a ref)}
WHILE xs 6= []
INV {islist next p ∧ set(list next p) ⊆ set alloc ∧

map elem (rev(list next p)) @ xs = Xs}
DO q := Ref (new(set alloc)); alloc := (addr q)#alloc;

q^.next := p; q^.elem := hd xs; xs := tl xs; p := q
OD
{islist next p ∧ map elem (rev(list next p)) = Xs}
〈proof 〉

end

13 Heap syntax (abort)
theory HeapSyntaxAbort

imports Hoare-Logic-Abort Heap
begin

13.1 Field access and update
Heap update p^.h := e is now guarded against p being Null. However, p
may still be illegal, e.g. uninitialized or dangling. To guard against that, one
needs a more detailed model of the heap where allocated and free addresses
are distinguished, e.g. by making the heap a map, or by carrying the set of

37

free addresses around. This is needed anyway as soon as we want to reason
about storage allocation/deallocation.
syntax

-refupdate :: (′a ⇒ ′b) ⇒ ′a ref ⇒ ′b ⇒ (′a ⇒ ′b)
(‹(‹open-block notation=‹mixfix Hoare ref update››-/ ′((- → -) ′))› [1000 ,0] 900)

-fassign :: ′a ref => id => ′v => ′s com
(‹(‹indent=2 notation=‹mixfix Hoare ref assignment››-^.- :=/ -)› [70 ,1000 ,65]

61)
-faccess :: ′a ref => (′a ref ⇒ ′v) => ′v
(‹(‹open-block notation=‹infix Hoare ref access››-^.-)› [65 ,1000] 65)

translations
-refupdate f r v == f (CONST addr r := v)
p^.f := e => (p 6= CONST Null) → (f := -refupdate f p e)
p^.f => f (CONST addr p)

declare fun-upd-apply[simp del] fun-upd-same[simp] fun-upd-other [simp]

An example due to Suzuki:
lemma VARS v n
{w = Ref w0 & x = Ref x0 & y = Ref y0 & z = Ref z0 &
distinct[w0 ,x0 ,y0 ,z0]}

w^.v := (1 ::int); w^.n := x;
x^.v := 2 ; x^.n := y;
y^.v := 3 ; y^.n := z;
z^.v := 4 ; x^.n := z
{w^.n^.n^.v = 4}
〈proof 〉

end

14 Examples of verifications of pointer programs
theory Pointer-ExamplesAbort

imports HeapSyntaxAbort
begin

14.1 Verifications
14.1.1 List reversal

Interestingly, this proof is the same as for the unguarded program:
lemma VARS tl p q r
{List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {}}
WHILE p 6= Null
INV {∃ ps qs. List tl p ps ∧ List tl q qs ∧ set ps ∩ set qs = {} ∧

rev ps @ qs = rev Ps @ Qs}
DO r := p; (p 6= Null → p := p^.tl); r^.tl := q; q := r OD

38

{List tl q (rev Ps @ Qs)}
〈proof 〉

end

15 Proof of the Schorr-Waite graph marking algo-
rithm

theory SchorrWaite
imports HeapSyntax

begin

15.1 Machinery for the Schorr-Waite proof
definition

— Relations induced by a mapping
rel :: (′a ⇒ ′a ref) ⇒ (′a × ′a) set
where rel m = {(x,y). m x = Ref y}

definition
relS :: (′a ⇒ ′a ref) set ⇒ (′a × ′a) set
where relS M = (

⋃
m ∈ M . rel m)

definition
addrs :: ′a ref set ⇒ ′a set
where addrs P = {a. Ref a ∈ P}

definition
reachable :: (′a × ′a) set ⇒ ′a ref set ⇒ ′a set
where reachable r P = (r∗ ‘‘ addrs P)

lemmas rel-defs = relS-def rel-def

Rewrite rules for relations induced by a mapping
lemma self-reachable: b ∈ B =⇒ b ∈ R∗ ‘‘ B
〈proof 〉

lemma oneStep-reachable: b ∈ R‘‘B =⇒ b ∈ R∗ ‘‘ B
〈proof 〉

lemma still-reachable: [[B⊆Ra∗‘‘A; ∀ (x,y) ∈ Rb−Ra. y∈ (Ra∗‘‘A)]] =⇒ Rb∗ ‘‘ B
⊆ Ra∗ ‘‘ A
〈proof 〉

lemma still-reachable-eq: [[A⊆Rb∗‘‘B; B⊆Ra∗‘‘A; ∀ (x,y) ∈ Ra−Rb. y ∈(Rb∗‘‘B);
∀ (x,y) ∈ Rb−Ra. y∈ (Ra∗‘‘A)]] =⇒ Ra∗‘‘A = Rb∗‘‘B
〈proof 〉

39

lemma reachable-null: reachable mS {Null} = {}
〈proof 〉

lemma reachable-empty: reachable mS {} = {}
〈proof 〉

lemma reachable-union: (reachable mS aS ∪ reachable mS bS) = reachable mS (aS
∪ bS)
〈proof 〉

lemma reachable-union-sym: reachable r (insert a aS) = (r∗ ‘‘ addrs {a}) ∪ reach-
able r aS
〈proof 〉

lemma rel-upd1 : (a,b) /∈ rel (r(q:=t)) =⇒ (a,b) ∈ rel r =⇒ a=q
〈proof 〉

lemma rel-upd2 : (a,b) /∈ rel r =⇒ (a,b) ∈ rel (r(q:=t)) =⇒ a=q
〈proof 〉

definition
— Restriction of a relation
restr ::(′a × ′a) set ⇒ (′a ⇒ bool) ⇒ (′a × ′a) set
(‹(‹notation=‹mixfix relation restriction››-/ | -)› [50 , 51] 50)

where restr r m = {(x,y). (x,y) ∈ r ∧ ¬ m x}

Rewrite rules for the restriction of a relation
lemma restr-identity[simp]:
(∀ x. ¬ m x) =⇒ (R |m) = R
〈proof 〉

lemma restr-rtrancl[simp]: [[m l]] =⇒ (R | m)∗ ‘‘ {l} = {l}
〈proof 〉

lemma [simp]: [[m l]] =⇒ (l,x) ∈ (R | m)∗ = (l=x)
〈proof 〉

lemma restr-upd: ((rel (r (q := t)))|(m(q := True))) = ((rel (r))|(m(q := True)))

〈proof 〉

lemma restr-un: ((r ∪ s)|m) = (r |m) ∪ (s|m)
〈proof 〉

lemma rel-upd3 : (a, b) /∈ (r |(m(q := t))) =⇒ (a,b) ∈ (r |m) =⇒ a = q
〈proof 〉

definition
— A short form for the stack mapping function for List

40

S :: (′a ⇒ bool) ⇒ (′a ⇒ ′a ref) ⇒ (′a ⇒ ′a ref) ⇒ (′a ⇒ ′a ref)
where S c l r = (λx. if c x then r x else l x)

Rewrite rules for Lists using S as their mapping
lemma [rule-format,simp]:
∀ p. a /∈ set stack −→ List (S c l r) p stack = List (S (c(a:=x)) (l(a:=y))

(r(a:=z))) p stack
〈proof 〉

lemma [rule-format,simp]:
∀ p. a /∈ set stack −→ List (S c l (r(a:=z))) p stack = List (S c l r) p stack
〈proof 〉

lemma [rule-format,simp]:
∀ p. a /∈ set stack −→ List (S c (l(a:=z)) r) p stack = List (S c l r) p stack
〈proof 〉

lemma [rule-format,simp]:
∀ p. a /∈ set stack −→ List (S (c(a:=z)) l r) p stack = List (S c l r) p stack
〈proof 〉

primrec
— Recursive definition of what is means for a the graph/stack structure to be

reconstructible
stkOk :: (′a ⇒ bool) ⇒ (′a ⇒ ′a ref) ⇒ (′a ⇒ ′a ref) ⇒ (′a ⇒ ′a ref) ⇒ (′a ⇒

′a ref) ⇒ ′a ref ⇒ ′a list ⇒ bool
where

stkOk-nil: stkOk c l r iL iR t [] = True
| stkOk-cons:

stkOk c l r iL iR t (p#stk) = (stkOk c l r iL iR (Ref p) (stk) ∧
iL p = (if c p then l p else t) ∧
iR p = (if c p then t else r p))

Rewrite rules for stkOk
lemma [simp]:

∧
t. [[x /∈ set xs; Ref x 6=t]] =⇒

stkOk (c(x := f)) l r iL iR t xs = stkOk c l r iL iR t xs
〈proof 〉

lemma [simp]:
∧

t. [[x /∈ set xs; Ref x 6=t]] =⇒
stkOk c (l(x := g)) r iL iR t xs = stkOk c l r iL iR t xs
〈proof 〉

lemma [simp]:
∧

t. [[x /∈ set xs; Ref x 6=t]] =⇒
stkOk c l (r(x := g)) iL iR t xs = stkOk c l r iL iR t xs
〈proof 〉

lemma stkOk-r-rewrite [simp]:
∧

x. x /∈ set xs =⇒
stkOk c l (r(x := g)) iL iR (Ref x) xs = stkOk c l r iL iR (Ref x) xs
〈proof 〉

41

lemma [simp]:
∧

x. x /∈ set xs =⇒
stkOk c (l(x := g)) r iL iR (Ref x) xs = stkOk c l r iL iR (Ref x) xs
〈proof 〉

lemma [simp]:
∧

x. x /∈ set xs =⇒
stkOk (c(x := g)) l r iL iR (Ref x) xs = stkOk c l r iL iR (Ref x) xs
〈proof 〉

15.2 The Schorr-Waite algorithm
theorem SchorrWaiteAlgorithm:
VARS c m l r t p q root
{R = reachable (relS {l, r}) {root} ∧ (∀ x. ¬ m x) ∧ iR = r ∧ iL = l}
t := root; p := Null;
WHILE p 6= Null ∨ t 6= Null ∧ ¬ t^.m
INV {∃ stack.

List (S c l r) p stack ∧ — i1
(∀ x ∈ set stack. m x) ∧ — i2
R = reachable (relS{l, r}) {t,p} ∧ — i3
(∀ x. x ∈ R ∧ ¬m x −→ — i4

x ∈ reachable (relS{l,r}|m) ({t}∪set(map r stack))) ∧
(∀ x. m x −→ x ∈ R) ∧ — i5
(∀ x. x /∈ set stack −→ r x = iR x ∧ l x = iL x) ∧ — i6
(stkOk c l r iL iR t stack) — i7}

DO IF t = Null ∨ t^.m
THEN IF p^.c

THEN q := t; t := p; p := p^.r ; t^.r := q — pop
ELSE q := t; t := p^.r ; p^.r := p^.l; — swing

p^.l := q; p^.c := True FI
ELSE q := p; p := t; t := t^.l; p^.l := q; — push

p^.m := True; p^.c := False FI OD
{(∀ x. (x ∈ R) = m x) ∧ (r = iR ∧ l = iL) }
(is Valid

{(c, m, l, r , t, p, q, root). ?Pre c m l r root}
(Seq - (Seq - (While {(c, m, l, r , t, p, q, root). ?whileB m t p} -)))
(Aseq - (Aseq - (Awhile {(c, m, l, r , t, p, q, root). ?inv c m l r t p} - -))) -)

〈proof 〉

end

16 Heap abstractions for Separation Logic
(at the moment only Path and List)
theory SepLogHeap

imports Main
begin

42

type-synonym heap = (nat ⇒ nat option)

Some means allocated, None means free. Address 0 serves as the null
reference.

16.1 Paths in the heap
primrec Path :: heap ⇒ nat ⇒ nat list ⇒ nat ⇒ bool
where

Path h x [] y = (x = y)
| Path h x (a#as) y = (x 6=0 ∧ a=x ∧ (∃ b. h x = Some b ∧ Path h b as y))

lemma [iff]: Path h 0 xs y = (xs = [] ∧ y = 0)
〈proof 〉

lemma [simp]: x 6=0 =⇒ Path h x as z =
(as = [] ∧ z = x ∨ (∃ y bs. as = x#bs ∧ h x = Some y & Path h y bs z))
〈proof 〉

lemma [simp]:
∧

x. Path f x (as@bs) z = (∃ y. Path f x as y ∧ Path f y bs z)
〈proof 〉

lemma Path-upd[simp]:∧
x. u /∈ set as =⇒ Path (f (u := v)) x as y = Path f x as y

〈proof 〉

16.2 Lists on the heap
definition List :: heap ⇒ nat ⇒ nat list ⇒ bool

where List h x as = Path h x as 0

lemma [simp]: List h x [] = (x = 0)
〈proof 〉

lemma [simp]:
List h x (a#as) = (x 6=0 ∧ a=x ∧ (∃ y. h x = Some y ∧ List h y as))
〈proof 〉

lemma [simp]: List h 0 as = (as = [])
〈proof 〉

lemma List-non-null: a 6=0 =⇒
List h a as = (∃ b bs. as = a#bs ∧ h a = Some b ∧ List h b bs)
〈proof 〉

theorem notin-List-update[simp]:∧
x. a /∈ set as =⇒ List (h(a := y)) x as = List h x as

〈proof 〉

lemma List-unique:
∧

x bs. List h x as =⇒ List h x bs =⇒ as = bs

43

〈proof 〉

lemma List-unique1 : List h p as =⇒ ∃ !as. List h p as
〈proof 〉

lemma List-app:
∧

x. List h x (as@bs) = (∃ y. Path h x as y ∧ List h y bs)
〈proof 〉

lemma List-hd-not-in-tl[simp]: List h b as =⇒ h a = Some b =⇒ a /∈ set as
〈proof 〉

lemma List-distinct[simp]:
∧

x. List h x as =⇒ distinct as
〈proof 〉

lemma list-in-heap:
∧

p. List h p ps =⇒ set ps ⊆ dom h
〈proof 〉

lemma list-ortho-sum1 [simp]:∧
p. [[List h1 p ps; dom h1 ∩ dom h2 = {}]] =⇒ List (h1++h2) p ps

〈proof 〉

lemma list-ortho-sum2 [simp]:∧
p. [[List h2 p ps; dom h1 ∩ dom h2 = {}]] =⇒ List (h1++h2) p ps

〈proof 〉

end

17 Separation logic
theory Separation

imports Hoare-Logic-Abort SepLogHeap
begin

The semantic definition of a few connectives:
definition ortho :: heap ⇒ heap ⇒ bool (infix ‹⊥› 55)

where h1 ⊥ h2 ←→ dom h1 ∩ dom h2 = {}

definition is-empty :: heap ⇒ bool
where is-empty h ←→ h = Map.empty

definition singl:: heap ⇒ nat ⇒ nat ⇒ bool
where singl h x y ←→ dom h = {x} & h x = Some y

definition star :: (heap ⇒ bool) ⇒ (heap ⇒ bool) ⇒ (heap ⇒ bool)
where star P Q = (λh. ∃ h1 h2 . h = h1++h2 ∧ h1 ⊥ h2 ∧ P h1 ∧ Q h2)

definition wand:: (heap ⇒ bool) ⇒ (heap ⇒ bool) ⇒ (heap ⇒ bool)
where wand P Q = (λh. ∀ h ′. h ′ ⊥ h ∧ P h ′ −→ Q(h++h ′))

44

This is what assertions look like without any syntactic sugar:
lemma VARS x y z w h
{star (%h. singl h x y) (%h. singl h z w) h}
SKIP
{x 6= z}
〈proof 〉

Now we add nice input syntax. To suppress the heap parameter of the
connectives, we assume it is always called H and add/remove it upon pars-
ing/printing. Thus every pointer program needs to have a program variable
H, and assertions should not contain any locally bound Hs - otherwise they
may bind the implicit H.
syntax
-emp :: bool (‹emp›)
-singl :: nat ⇒ nat ⇒ bool (‹(‹open-block notation=‹mixfix singl››[- 7→ -])›)
-star :: bool ⇒ bool ⇒ bool (infixl ‹∗∗› 60)
-wand :: bool ⇒ bool ⇒ bool (infixl ‹−∗› 60)

syntax-consts
-emp ⇀↽ is-empty and
-singl ⇀↽ singl and
-star ⇀↽ star and
-wand ⇀↽ wand

〈ML〉

Now it looks much better:
lemma VARS H x y z w
{[x 7→y] ∗∗ [z 7→w]}
SKIP
{x 6= z}
〈proof 〉

lemma VARS H x y z w
{emp ∗∗ emp}
SKIP
{emp}
〈proof 〉

But the output is still unreadable. Thus we also strip the heap parame-
ters upon output:
〈ML〉

Now the intermediate proof states are also readable:
lemma VARS H x y z w
{[x 7→y] ∗∗ [z 7→w]}
y := w
{x 6= z}

45

〈proof 〉

lemma VARS H x y z w
{emp ∗∗ emp}
SKIP
{emp}
〈proof 〉

So far we have unfolded the separation logic connectives in proofs. Here
comes a simple example of a program proof that uses a law of separation
logic instead.
lemma star-comm: P ∗∗ Q = Q ∗∗ P
〈proof 〉

lemma VARS H x y z w
{P ∗∗ Q}
SKIP
{Q ∗∗ P}
〈proof 〉

lemma VARS H
{p 6=0 ∧ [p 7→ x] ∗∗ List H q qs}
H := H (p 7→ q)
{List H p (p#qs)}
〈proof 〉

lemma VARS H p q r
{List H p Ps ∗∗ List H q Qs}
WHILE p 6= 0
INV {∃ ps qs. (List H p ps ∗∗ List H q qs) ∧ rev ps @ qs = rev Ps @ Qs}
DO r := p; p := the(H p); H := H (r 7→ q); q := r OD
{List H q (rev Ps @ Qs)}
〈proof 〉

end

References
[1] Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-

order logic. In F. Baader, editor, Automated Deduction — CADE-19,
volume 2741 of LNCS, pages 121–135. Springer, 2003.

[2] Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-
order logic. Information and Computation, 199:200–227, 2005.

46

	Concrete syntax for Hoare logic, with translations for variables
	Hoare logic VCG tactic
	Hoare logic
	Sugared semantic embedding of Hoare logic
	Concrete syntax
	Proof methods: VCG

	More arithmetic
	cd
	gcd
	pow

	Various examples
	Arithmetic
	Multiplication by successive addition
	Euclid's algorithm for GCD
	Dijkstra's extension of Euclid's algorithm for simultaneous GCD and SCM
	Power by iterated squaring and multiplication
	Factorial
	Square root

	Lists
	Arrays
	Search for a key

	Hoare Logic with an Abort statement for modelling run time errors
	Concrete syntax
	Proof methods: VCG

	Some small examples for programs that may abort
	Examples using Hoare Logic for Total Correctness
	Alternative pointers
	References
	Field access and update
	The heap
	Paths in the heap
	Lists on the heap
	Functional abstraction

	Verifications
	List reversal
	Searching in a list
	Merging two lists
	Storage allocation

	Pointers, heaps and heap abstractions
	References
	The heap
	Paths in the heap
	Non-repeating paths
	Lists on the heap
	Functional abstraction

	Heap syntax
	Field access and update

	Examples of verifications of pointer programs
	Verifications
	List reversal
	Searching in a list
	Splicing two lists
	Merging two lists
	Cyclic list reversal
	Storage allocation

	Heap syntax (abort)
	Field access and update

	Examples of verifications of pointer programs
	Verifications
	List reversal

	Proof of the Schorr-Waite graph marking algorithm
	Machinery for the Schorr-Waite proof
	The Schorr-Waite algorithm

	Heap abstractions for Separation Logic
	Paths in the heap
	Lists on the heap

	Separation logic

