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Abstract

These theories contain a Hoare logic for a simple imperative pro-
gramming language with while-loops, including a verification condition
generator.

Special infrastructure for modelling and reasoning about pointer
programs is provided, together with many examples, including Schorr-
Waite. See [1, 2] for an excellent exposition.
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1 Concrete syntax for Hoare logic, with transla-
tions for variables

theory Hoare-Syntax
imports Main

begin

syntax
-assign :: idt ⇒ ′b ⇒ ′com
(‹(‹indent notation=‹infix Hoare assignment››- :=/ -)› [70 , 65 ] 61 )

-Seq :: ′com ⇒ ′com ⇒ ′com
(‹(‹notation=‹infix Hoare sequential composition››-;/ -)› [61 , 60 ] 60 )

-Cond :: ′bexp ⇒ ′com ⇒ ′com ⇒ ′com
(‹(‹notation=‹mixfix Hoare if expression››IF -/ THEN - / ELSE -/ FI )› [0 , 0 ,

0 ] 61 )
-While :: ′bexp ⇒ ′assn ⇒ ′var ⇒ ′com ⇒ ′com
(‹(‹notation=‹mixfix Hoare while expression››WHILE -/ INV {(-)} / VAR {(-)}

//DO - /OD)› [0 , 0 , 0 , 0 ] 61 )

The VAR {-} syntax supports two variants:

• VAR {x = t} where t::nat is the decreasing expression, the variant,
and x a variable that can be referred to from inner annotations. The
x can be necessary for nested loops, e.g. to prove that the inner loops
do not mess with t.

• VAR {t} where the variable is omitted because it is not needed.

syntax
-While0 :: ′bexp ⇒ ′assn ⇒ ′com ⇒ ′com
(‹(‹indent=1 notation=‹mixfix Hoare while expression››WHILE -/ INV (‹open-block

notation=‹mixfix Hoare invariant››{-}) //DO - /OD)› [0 , 0 , 0 ] 61 )

The -While0 syntax is translated into the -While syntax with the trivial
variant 0. This is ok because partial correctness proofs do not make use of
the variant.
syntax

-hoare-vars :: [idts, ′assn, ′com, ′assn] ⇒ bool
(‹(‹open-block notation=‹mixfix Hoare triple››VARS -// (‹open-block nota-

tion=‹mixfix Hoare precondition››{-}) // - // (‹open-block notation=‹mixfix Hoare
postcondition››{-}))› [0 , 0 , 55 , 0 ] 50 )

-hoare-vars-tc :: [idts, ′assn, ′com, ′assn] ⇒ bool
(‹(‹open-block notation=‹mixfix Hoare triple››VARS -// (‹open-block nota-

tion=‹mixfix Hoare precondition››[-]) // - // (‹open-block notation=‹mixfix Hoare
postcondition››[-]))› [0 , 0 , 55 , 0 ] 50 )
syntax (output)

-hoare :: [ ′assn, ′com, ′assn] ⇒ bool
(‹(‹notation=‹mixfix Hoare triple››(‹open-block notation=‹mixfix Hoare precon-

dition››{-})//-//(‹open-block notation=‹mixfix Hoare postcondition››{-}))› [0 , 55 ,
0 ] 50 )
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-hoare-tc :: [ ′assn, ′com, ′assn] ⇒ bool
(‹(‹notation=‹mixfix Hoare triple››(‹open-block notation=‹mixfix Hoare precon-

dition››[-])//-//(‹open-block notation=‹mixfix Hoare postcondition››[-]))› [0 , 55 ,
0 ] 50 )

Completeness requires(?) the ability to refer to an outer variant in an
inner invariant. Thus we need to abstract over a variable equated with the
variant, the x in VAR {x = t}. But the x should only occur in invariants. To
enforce this, syntax translations in hoare_syntax.ML separate the program
from its annotations and only the latter are abstracted over over x. (Thus x
can also occur in inner variants, but that neither helps nor hurts.)
datatype ′a anno =

Abasic |
Aseq ′a anno ′a anno |
Acond ′a anno ′a anno |
Awhile ′a set ′a ⇒ nat nat ⇒ ′a anno

ML-file ‹hoare-syntax.ML›

end

2 Hoare logic VCG tactic
theory Hoare-Tac

imports Main
begin

context
begin

qualified named-theorems BasicRule
qualified named-theorems SkipRule
qualified named-theorems AbortRule
qualified named-theorems SeqRule
qualified named-theorems CondRule
qualified named-theorems WhileRule

qualified named-theorems BasicRuleTC
qualified named-theorems SkipRuleTC
qualified named-theorems SeqRuleTC
qualified named-theorems CondRuleTC
qualified named-theorems WhileRuleTC

lemma Compl-Collect: −(Collect b) = {x. ¬(b x)}
by blast

ML-file ‹hoare-tac.ML›
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end

end

3 Hoare logic
theory Hoare-Logic

imports Hoare-Syntax Hoare-Tac
begin

3.1 Sugared semantic embedding of Hoare logic
Strictly speaking a shallow embedding (as implemented by Norbert Galm
following Mike Gordon) would suffice. Maybe the datatype com comes in
useful later.
type-synonym ′a bexp = ′a set
type-synonym ′a assn = ′a set

datatype ′a com =
Basic ′a ⇒ ′a
| Seq ′a com ′a com
| Cond ′a bexp ′a com ′a com
| While ′a bexp ′a com

abbreviation annskip (‹SKIP›) where SKIP == Basic id

type-synonym ′a sem = ′a => ′a => bool

inductive Sem :: ′a com ⇒ ′a sem
where

Sem (Basic f ) s (f s)
| Sem c1 s s ′′ =⇒ Sem c2 s ′′ s ′ =⇒ Sem (Seq c1 c2 ) s s ′

| s ∈ b =⇒ Sem c1 s s ′ =⇒ Sem (Cond b c1 c2 ) s s ′

| s /∈ b =⇒ Sem c2 s s ′ =⇒ Sem (Cond b c1 c2 ) s s ′

| s /∈ b =⇒ Sem (While b c) s s
| s ∈ b =⇒ Sem c s s ′′ =⇒ Sem (While b c) s ′′ s ′ =⇒

Sem (While b c) s s ′

definition Valid :: ′a bexp ⇒ ′a com ⇒ ′a anno ⇒ ′a bexp ⇒ bool
where Valid p c a q ≡ ∀ s s ′. Sem c s s ′ −→ s ∈ p −→ s ′ ∈ q

definition ValidTC :: ′a bexp ⇒ ′a com ⇒ ′a anno ⇒ ′a bexp ⇒ bool
where ValidTC p c a q ≡ ∀ s. s ∈ p −→ (∃ t. Sem c s t ∧ t ∈ q)

inductive-cases [elim!]:
Sem (Basic f ) s s ′ Sem (Seq c1 c2 ) s s ′

Sem (Cond b c1 c2 ) s s ′
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lemma Sem-deterministic:
assumes Sem c s s1

and Sem c s s2
shows s1 = s2

proof −
have Sem c s s1 =⇒ (∀ s2 . Sem c s s2 −→ s1 = s2 )

by (induct rule: Sem.induct) (subst Sem.simps, blast)+
thus ?thesis

using assms by simp
qed

lemma tc-implies-pc:
ValidTC p c a q =⇒ Valid p c a q
by (metis Sem-deterministic Valid-def ValidTC-def )

lemma tc-extract-function:
ValidTC p c a q =⇒ ∃ f . ∀ s . s ∈ p −→ f s ∈ q
by (metis ValidTC-def )

lemma SkipRule: p ⊆ q =⇒ Valid p (Basic id) a q
by (auto simp:Valid-def )

lemma BasicRule: p ⊆ {s. f s ∈ q} =⇒ Valid p (Basic f ) a q
by (auto simp:Valid-def )

lemma SeqRule: Valid P c1 a1 Q =⇒ Valid Q c2 a2 R =⇒ Valid P (Seq c1 c2 )
(Aseq a1 a2 ) R
by (auto simp:Valid-def )

lemma CondRule:
p ⊆ {s. (s ∈ b −→ s ∈ w) ∧ (s /∈ b −→ s ∈ w ′)}
=⇒ Valid w c1 a1 q =⇒ Valid w ′ c2 a2 q =⇒ Valid p (Cond b c1 c2 ) (Acond a1

a2 ) q
by (auto simp:Valid-def )

lemma While-aux:
assumes Sem (While b c) s s ′

shows ∀ s s ′. Sem c s s ′ −→ s ∈ I ∧ s ∈ b −→ s ′ ∈ I =⇒
s ∈ I =⇒ s ′ ∈ I ∧ s ′ /∈ b

using assms
by (induct While b c s s ′) auto

lemma WhileRule:
p ⊆ i =⇒ Valid (i ∩ b) c (A 0 ) i =⇒ i ∩ (−b) ⊆ q =⇒ Valid p (While b c)
(Awhile i v A) q
apply (clarsimp simp:Valid-def )
apply(drule While-aux)

apply assumption
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apply blast
apply blast
done

lemma SkipRuleTC :
assumes p ⊆ q

shows ValidTC p (Basic id) a q
by (metis assms Sem.intros(1 ) ValidTC-def id-apply subsetD)

lemma BasicRuleTC :
assumes p ⊆ {s. f s ∈ q}

shows ValidTC p (Basic f ) a q
by (metis assms Ball-Collect Sem.intros(1 ) ValidTC-def )

lemma SeqRuleTC :
assumes ValidTC p c1 a1 q

and ValidTC q c2 a2 r
shows ValidTC p (Seq c1 c2 ) (Aseq a1 a2 ) r

by (meson assms Sem.intros(2 ) ValidTC-def )

lemma CondRuleTC :
assumes p ⊆ {s. (s ∈ b −→ s ∈ w) ∧ (s /∈ b −→ s ∈ w ′)}

and ValidTC w c1 a1 q
and ValidTC w ′ c2 a2 q

shows ValidTC p (Cond b c1 c2 ) (Acond a1 a2 ) q
proof (unfold ValidTC-def , rule allI )

fix s
show s ∈ p −→ (∃ t . Sem (Cond b c1 c2 ) s t ∧ t ∈ q)

apply (cases s ∈ b)
apply (metis (mono-tags, lifting) assms(1 ,2 ) Ball-Collect Sem.intros(3 ) ValidTC-def )
by (metis (mono-tags, lifting) assms(1 ,3 ) Ball-Collect Sem.intros(4 ) ValidTC-def )

qed

lemma WhileRuleTC :
assumes p ⊆ i

and
∧

n::nat . ValidTC (i ∩ b ∩ {s . v s = n}) c (A n) (i ∩ {s . v s < n})
and i ∩ uminus b ⊆ q

shows ValidTC p (While b c) (Awhile i v (λn. A n)) q
proof −

have s ∈ i ∧ v s = n −→ (∃ t . Sem (While b c) s t ∧ t ∈ q) for s n
proof (induction n arbitrary: s rule: less-induct)

fix n :: nat
fix s :: ′a
assume 1 :

∧
(m::nat) s:: ′a . m < n =⇒ s ∈ i ∧ v s = m −→ (∃ t . Sem (While

b c) s t ∧ t ∈ q)
show s ∈ i ∧ v s = n −→ (∃ t . Sem (While b c) s t ∧ t ∈ q)
proof (rule impI , cases s ∈ b)

assume 2 : s ∈ b and s ∈ i ∧ v s = n
hence s ∈ i ∩ b ∩ {s . v s = n}
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using assms(1 ) by auto
hence ∃ t . Sem c s t ∧ t ∈ i ∩ {s . v s < n}

by (metis assms(2 ) ValidTC-def )
from this obtain t where 3 : Sem c s t ∧ t ∈ i ∩ {s . v s < n}

by auto
hence ∃ u . Sem (While b c) t u ∧ u ∈ q

using 1 by auto
thus ∃ t . Sem (While b c) s t ∧ t ∈ q

using 2 3 Sem.intros(6 ) by force
next

assume s /∈ b and s ∈ i ∧ v s = n
thus ∃ t . Sem (While b c) s t ∧ t ∈ q

using Sem.intros(5 ) assms(3 ) by fastforce
qed

qed
thus ?thesis

using assms(1 ) ValidTC-def by force
qed

3.1.1 Concrete syntax
setup ‹

Hoare-Syntax.setup
{Basic = const-syntax ‹Basic›,
Skip = const-syntax ‹annskip›,
Seq = const-syntax ‹Seq›,
Cond = const-syntax ‹Cond›,
While = const-syntax ‹While›,
Valid = const-syntax ‹Valid›,
ValidTC = const-syntax ‹ValidTC ›}

›

3.1.2 Proof methods: VCG
declare BasicRule [Hoare-Tac.BasicRule]

and SkipRule [Hoare-Tac.SkipRule]
and SeqRule [Hoare-Tac.SeqRule]
and CondRule [Hoare-Tac.CondRule]
and WhileRule [Hoare-Tac.WhileRule]

declare BasicRuleTC [Hoare-Tac.BasicRuleTC ]
and SkipRuleTC [Hoare-Tac.SkipRuleTC ]
and SeqRuleTC [Hoare-Tac.SeqRuleTC ]
and CondRuleTC [Hoare-Tac.CondRuleTC ]
and WhileRuleTC [Hoare-Tac.WhileRuleTC ]

method-setup vcg = ‹
Scan.succeed (fn ctxt => SIMPLE-METHOD ′ (Hoare-Tac.hoare-tac ctxt (K

all-tac)))›
verification condition generator
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method-setup vcg-simp = ‹
Scan.succeed (fn ctxt =>

SIMPLE-METHOD ′ (Hoare-Tac.hoare-tac ctxt (asm-full-simp-tac ctxt)))›
verification condition generator plus simplification

method-setup vcg-tc = ‹
Scan.succeed (fn ctxt => SIMPLE-METHOD ′ (Hoare-Tac.hoare-tc-tac ctxt (K

all-tac)))›
verification condition generator

method-setup vcg-tc-simp = ‹
Scan.succeed (fn ctxt =>

SIMPLE-METHOD ′ (Hoare-Tac.hoare-tc-tac ctxt (asm-full-simp-tac ctxt)))›
verification condition generator plus simplification

end

4 More arithmetic
theory Arith2

imports Main
begin

definition cd :: [nat, nat, nat] ⇒ bool
where cd x m n ←→ x dvd m ∧ x dvd n

definition gcd :: [nat, nat] ⇒ nat
where gcd m n = (SOME x. cd x m n & (∀ y.(cd y m n) −→ y≤x))

primrec fac :: nat ⇒ nat
where

fac 0 = Suc 0
| fac (Suc n) = Suc n ∗ fac n

4.1 cd
lemma cd-nnn: 0<n =⇒ cd n n n

apply (simp add: cd-def )
done

lemma cd-le: [| cd x m n; 0<m; 0<n |] ==> x<=m & x<=n
apply (unfold cd-def )
apply (blast intro: dvd-imp-le)
done

lemma cd-swap: cd x m n = cd x n m
apply (unfold cd-def )
apply blast
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done

lemma cd-diff-l: n≤m =⇒ cd x m n = cd x (m−n) n
apply (unfold cd-def )
apply (fastforce dest: dvd-diffD)
done

lemma cd-diff-r : m≤n =⇒ cd x m n = cd x m (n−m)
apply (unfold cd-def )
apply (fastforce dest: dvd-diffD)
done

4.2 gcd
lemma gcd-nnn: 0<n =⇒ n = gcd n n

apply (unfold gcd-def )
apply (frule cd-nnn)
apply (rule some-equality [symmetric])
apply (blast dest: cd-le)
apply (blast intro: le-antisym dest: cd-le)
done

lemma gcd-swap: gcd m n = gcd n m
apply (simp add: gcd-def cd-swap)
done

lemma gcd-diff-l: n≤m =⇒ gcd m n = gcd (m−n) n
apply (unfold gcd-def )
apply (subgoal-tac n≤m =⇒ ∀ x. cd x m n = cd x (m−n) n)
apply simp
apply (rule allI )
apply (erule cd-diff-l)
done

lemma gcd-diff-r : m≤n =⇒ gcd m n = gcd m (n−m)
apply (unfold gcd-def )
apply (subgoal-tac m≤n =⇒ ∀ x. cd x m n = cd x m (n−m) )
apply simp
apply (rule allI )
apply (erule cd-diff-r)
done

4.3 pow
lemma sq-pow-div2 [simp]:

m mod 2 = 0 =⇒ ((n::nat)∗n)^(m div 2 ) = n^m
apply (simp add: power2-eq-square [symmetric] power-mult [symmetric] mi-

nus-mod-eq-mult-div [symmetric])
done
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end

5 Various examples
theory Examples

imports Hoare-Logic Arith2
begin

5.1 Arithmetic
5.1.1 Multiplication by successive addition
lemma multiply-by-add: VARS m s a b
{a=A ∧ b=B}
m := 0 ; s := 0 ;
WHILE m 6=a
INV {s=m∗b ∧ a=A ∧ b=B}
DO s := s+b; m := m+(1 ::nat) OD
{s = A∗B}

by vcg-simp

lemma multiply-by-add-time: VARS m s a b t
{a=A ∧ b=B ∧ t=0}
m := 0 ; t := t+1 ; s := 0 ; t := t+1 ;
WHILE m 6=a
INV {s=m∗b ∧ a=A ∧ b=B ∧ t = 2∗m + 2}
DO s := s+b; t := t+1 ; m := m+(1 ::nat); t := t+1 OD
{s = A∗B ∧ t = 2∗A + 2}

by vcg-simp

lemma multiply-by-add2 : VARS M N P :: int
{m=M ∧ n=N}
IF M < 0 THEN M := −M ; N := −N ELSE SKIP FI ;
P := 0 ;
WHILE 0 < M
INV {0 ≤ M ∧ (∃ p. p = (if m<0 then −m else m) & p∗N = m∗n & P =
(p−M )∗N )}
DO P := P+N ; M := M − 1 OD
{P = m∗n}

apply vcg-simp
apply (auto simp add:int-distrib)

done

lemma multiply-by-add2-time: VARS M N P t :: int
{m=M ∧ n=N ∧ t=0}
IF M < 0 THEN M := −M ; t := t+1 ; N := −N ; t := t+1 ELSE SKIP FI ;
P := 0 ; t := t+1 ;
WHILE 0 < M
INV {0 ≤ M & (∃ p. p = (if m<0 then −m else m) & p∗N = m∗n & P =
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(p−M )∗N & t ≥ 0 & t ≤ 2∗(p−M )+3 )}
DO P := P+N ; t := t+1 ; M := M − 1 ; t := t+1 OD
{P = m∗n & t ≤ 2∗abs m + 3}

apply vcg-simp
apply (auto simp add:int-distrib)

done

5.1.2 Euclid’s algorithm for GCD
lemma Euclid-GCD: VARS a b
{0<A & 0<B}
a := A; b := B;
WHILE a 6= b
INV {0<a & 0<b & gcd A B = gcd a b}
DO IF a<b THEN b := b−a ELSE a := a−b FI OD
{a = gcd A B}

apply vcg
— Now prove the verification conditions
apply auto
apply(simp add: gcd-diff-r less-imp-le)

apply(simp add: linorder-not-less gcd-diff-l)
apply(erule gcd-nnn)
done

lemma Euclid-GCD-time: VARS a b t
{0<A & 0<B & t=0}
a := A; t := t+1 ; b := B; t := t+1 ;
WHILE a 6= b
INV {0<a & 0<b & gcd A B = gcd a b & a≤A & b≤B & t ≤ max A B − max

a b + 2}
DO IF a<b THEN b := b−a; t := t+1 ELSE a := a−b; t := t+1 FI OD
{a = gcd A B & t ≤ max A B + 2}

apply vcg
— Now prove the verification conditions
apply auto
apply(simp add: gcd-diff-r less-imp-le)

apply(simp add: linorder-not-less gcd-diff-l)
apply(erule gcd-nnn)
done

5.1.3 Dijkstra’s extension of Euclid’s algorithm for simultaneous
GCD and SCM

From E.W. Disjkstra. Selected Writings on Computing, p 98 (EWD474),
where it is given without the invariant. Instead of defining scm explicitly
we have used the theorem scm x y = x ∗ y / gcd x y and avoided division
by mupltiplying with gcd x y.
lemmas distribs =

diff-mult-distrib diff-mult-distrib2 add-mult-distrib add-mult-distrib2
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lemma gcd-scm: VARS a b x y
{0<A & 0<B & a=A & b=B & x=B & y=A}
WHILE a ∼= b
INV {0<a & 0<b & gcd A B = gcd a b & 2∗A∗B = a∗x + b∗y}
DO IF a<b THEN (b := b−a; x := x+y) ELSE (a := a−b; y := y+x) FI OD
{a = gcd A B & 2∗A∗B = a∗(x+y)}

apply vcg
apply simp

apply(simp add: distribs gcd-diff-r linorder-not-less gcd-diff-l)
apply(simp add: distribs gcd-nnn)
done

5.1.4 Power by iterated squaring and multiplication
lemma power-by-mult: VARS a b c
{a=A & b=B}
c := (1 ::nat);
WHILE b ∼= 0
INV {A^B = c ∗ a^b}
DO WHILE b mod 2 = 0

INV {A^B = c ∗ a^b}
DO a := a∗a; b := b div 2 OD;
c := c∗a; b := b − 1

OD
{c = A^B}

apply vcg-simp
apply(case-tac b)
apply simp

apply simp
done

5.1.5 Factorial
lemma factorial: VARS a b
{a=A}
b := 1 ;
WHILE a > 0
INV {fac A = b ∗ fac a}
DO b := b∗a; a := a − 1 OD
{b = fac A}

apply vcg-simp
apply(clarsimp split: nat-diff-split)
done

lemma factorial-time: VARS a b t
{a=A & t=0}
b := 1 ; t := t+1 ;
WHILE a > 0
INV {fac A = b ∗ fac a & a ≤ A & t = 2∗(A−a)+1}
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DO b := b∗a; t := t+1 ; a := a − 1 ; t := t+1 OD
{b = fac A & t = 2∗A + 1}

apply vcg-simp
apply(clarsimp split: nat-diff-split)
done

lemma [simp]: 1 ≤ i =⇒ fac (i − Suc 0 ) ∗ i = fac i
by(induct i, simp-all)

lemma factorial2 : VARS i f
{True}
i := (1 ::nat); f := 1 ;
WHILE i <= n INV {f = fac(i − 1 ) & 1 <= i & i <= n+1}
DO f := f ∗i; i := i+1 OD
{f = fac n}

apply vcg-simp
apply(subgoal-tac i = Suc n)
apply simp
apply arith
done

lemma factorial2-time: VARS i f t
{t=0}
i := (1 ::nat); t := t+1 ; f := 1 ; t := t+1 ;
WHILE i ≤ n INV {f = fac(i − 1 ) & 1 ≤ i & i ≤ n+1 & t = 2∗(i−1 )+2}
DO f := f ∗i; t := t+1 ; i := i+1 ; t := t+1 OD
{f = fac n & t = 2∗n+2}

apply vcg-simp
apply auto

apply(subgoal-tac i = Suc n)
apply simp

apply arith
done

5.1.6 Square root
lemma sqrt: VARS r x
{True}
r := (0 ::nat);
WHILE (r+1 )∗(r+1 ) <= X
INV {r∗r ≤ X}
DO r := r+1 OD
{r∗r <= X & X < (r+1 )∗(r+1 )}

apply vcg-simp
done

lemma sqrt-time: VARS r t
{t=0}
r := (0 ::nat); t := t+1 ;
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WHILE (r+1 )∗(r+1 ) <= X
INV {r∗r ≤ X & t = r+1}
DO r := r+1 ; t := t+1 OD
{r∗r <= X & X < (r+1 )∗(r+1 ) & (t−1 )∗(t−1 ) ≤ X}

apply vcg-simp
done

— without multiplication
lemma sqrt-without-multiplication: VARS u w r
{x=X}
u := 1 ; w := 1 ; r := (0 ::nat);
WHILE w <= X
INV {u = r+r+1 & w = (r+1 )∗(r+1 ) & r∗r <= X}
DO r := r + 1 ; w := w + u + 2 ; u := u + 2 OD
{r∗r <= X & X < (r+1 )∗(r+1 )}

apply vcg-simp
done

5.2 Lists
lemma imperative-reverse: VARS y x
{x=X}
y:=[];
WHILE x ∼= []
INV {rev(x)@y = rev(X)}
DO y := (hd x # y); x := tl x OD
{y=rev(X)}

apply vcg-simp
apply(simp add: neq-Nil-conv)
apply auto

done

lemma imperative-reverse-time: VARS y x t
{x=X & t=0}
y:=[]; t := t+1 ;
WHILE x ∼= []
INV {rev(x)@y = rev(X) & t = 2∗(length y) + 1}
DO y := (hd x # y); t := t+1 ; x := tl x ; t := t+1 OD
{y=rev(X) & t = 2∗length X + 1}

apply vcg-simp
apply(simp add: neq-Nil-conv)
apply auto

done

lemma imperative-append: VARS x y
{x=X & y=Y }
x := rev(x);
WHILE x∼=[]
INV {rev(x)@y = X@Y }
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DO y := (hd x # y);
x := tl x

OD
{y = X@Y }

apply vcg-simp
apply(simp add: neq-Nil-conv)
apply auto
done

lemma imperative-append-time-no-rev: VARS x y t
{x=X & y=Y }
x := rev(x); t := 0 ;
WHILE x∼=[]
INV {rev(x)@y = X@Y & length x ≤ length X & t = 2 ∗ (length X − length x)}
DO y := (hd x # y); t := t+1 ;

x := tl x ; t := t+1
OD
{y = X@Y & t = 2 ∗ length X}

apply vcg-simp
apply(simp add: neq-Nil-conv)
apply auto
done

5.3 Arrays
5.3.1 Search for a key
lemma zero-search: VARS A i
{True}
i := 0 ;
WHILE i < length A & A!i 6= key
INV {∀ j. j<i −−> A!j 6= key}
DO i := i+1 OD
{(i < length A −−> A!i = key) &
(i = length A −−> (∀ j. j < length A −→ A!j 6= key))}

apply vcg-simp
apply(blast elim!: less-SucE)
done

lemma zero-search-time: VARS A i t
{t=0}
i := 0 ; t := t+1 ;
WHILE i < length A ∧ A!i 6= key
INV {(∀ j. j<i −→ A!j 6= key) ∧ i ≤ length A ∧ t = i+1}
DO i := i+1 ; t := t+1 OD
{(i < length A −→ A!i = key) ∧
(i = length A −→ (∀ j. j < length A −−> A!j 6= key)) ∧ t ≤ length A + 1}

apply vcg-simp
apply(blast elim!: less-SucE)
done
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The partition procedure for quicksort.

• A is the array to be sorted (modelled as a list).

• Elements of A must be of class order to infer at the end that the
elements between u and l are equal to pivot.

Ambiguity warnings of parser are due to := being used both for assign-
ment and list update.
lemma Partition:

fixes pivot
defines leq ≡ λA i. ∀ k. k<i −→ A!k ≤ pivot

and geq ≡ λA i. ∀ k. i<k ∧ k<length A −→ pivot ≤ A!k
shows

VARS A u l
{0 < length(A::( ′a::order)list)}
l := 0 ; u := length A − Suc 0 ;
WHILE l ≤ u
INV {leq A l ∧ geq A u ∧ u<length A ∧ l≤length A}
DO WHILE l < length A ∧ A!l ≤ pivot

INV {leq A l & geq A u ∧ u<length A ∧ l≤length A}
DO l := l+1 OD;
WHILE 0 < u & pivot ≤ A!u
INV {leq A l & geq A u ∧ u<length A ∧ l≤length A}
DO u := u − 1 OD;
IF l ≤ u THEN A := A[l := A!u, u := A!l] ELSE SKIP FI

OD
{leq A u & (∀ k. u<k ∧ k<l −−> A!k = pivot) ∧ geq A l}

proof −
have eq: m − Suc 0 < n =⇒ m < Suc n for m n

by arith
show ?thesis

apply (simp add: assms)
apply vcg-simp

apply (force simp: neq-Nil-conv)
apply (blast elim!: less-SucE intro: Suc-leI )

apply (blast elim!: less-SucE intro: less-imp-diff-less dest: eq)
apply (force simp: nth-list-update)
done

qed

end

6 Hoare Logic with an Abort statement for mod-
elling run time errors

theory Hoare-Logic-Abort
imports Hoare-Syntax Hoare-Tac
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begin

type-synonym ′a bexp = ′a set
type-synonym ′a assn = ′a set
type-synonym ′a var = ′a ⇒ nat

datatype ′a com =
Basic ′a ⇒ ′a
| Abort
| Seq ′a com ′a com
| Cond ′a bexp ′a com ′a com
| While ′a bexp ′a com

abbreviation annskip (‹SKIP›) where SKIP == Basic id

type-synonym ′a sem = ′a option => ′a option => bool

inductive Sem :: ′a com ⇒ ′a sem
where

Sem (Basic f ) None None
| Sem (Basic f ) (Some s) (Some (f s))
| Sem Abort s None
| Sem c1 s s ′′ =⇒ Sem c2 s ′′ s ′ =⇒ Sem (Seq c1 c2 ) s s ′

| Sem (Cond b c1 c2 ) None None
| s ∈ b =⇒ Sem c1 (Some s) s ′ =⇒ Sem (Cond b c1 c2 ) (Some s) s ′

| s /∈ b =⇒ Sem c2 (Some s) s ′ =⇒ Sem (Cond b c1 c2 ) (Some s) s ′

| Sem (While b c) None None
| s /∈ b =⇒ Sem (While b c) (Some s) (Some s)
| s ∈ b =⇒ Sem c (Some s) s ′′ =⇒ Sem (While b c) s ′′ s ′ =⇒

Sem (While b c) (Some s) s ′

inductive-cases [elim!]:
Sem (Basic f ) s s ′ Sem (Seq c1 c2 ) s s ′

Sem (Cond b c1 c2 ) s s ′

lemma Sem-deterministic:
assumes Sem c s s1

and Sem c s s2
shows s1 = s2

proof −
have Sem c s s1 =⇒ (∀ s2 . Sem c s s2 −→ s1 = s2 )

by (induct rule: Sem.induct) (subst Sem.simps, blast)+
thus ?thesis

using assms by simp
qed

definition Valid :: ′a bexp ⇒ ′a com ⇒ ′a anno ⇒ ′a bexp ⇒ bool
where Valid p c a q ≡ ∀ s s ′. Sem c s s ′ −→ s ∈ Some ‘ p −→ s ′ ∈ Some ‘ q
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definition ValidTC :: ′a bexp ⇒ ′a com ⇒ ′a anno ⇒ ′a bexp ⇒ bool
where ValidTC p c a q ≡ ∀ s . s ∈ p −→ (∃ t . Sem c (Some s) (Some t) ∧ t ∈

q)

lemma tc-implies-pc:
ValidTC p c a q =⇒ Valid p c a q
by (smt (verit) Sem-deterministic ValidTC-def Valid-def image-iff )

lemma tc-extract-function:
ValidTC p c a q =⇒ ∃ f . ∀ s . s ∈ p −→ f s ∈ q
by (meson ValidTC-def )

The proof rules for partial correctness
lemma SkipRule: p ⊆ q =⇒ Valid p (Basic id) a q
by (auto simp:Valid-def )

lemma BasicRule: p ⊆ {s. f s ∈ q} =⇒ Valid p (Basic f ) a q
by (auto simp:Valid-def )

lemma SeqRule: Valid P c1 a1 Q =⇒ Valid Q c2 a2 R =⇒ Valid P (Seq c1 c2 )
(Aseq a1 a2 ) R
by (auto simp:Valid-def )

lemma CondRule:
p ⊆ {s. (s ∈ b −→ s ∈ w) ∧ (s /∈ b −→ s ∈ w ′)}
=⇒ Valid w c1 a1 q =⇒ Valid w ′ c2 a2 q =⇒ Valid p (Cond b c1 c2 ) (Acond a1

a2 ) q
by (fastforce simp:Valid-def image-def )

lemma While-aux:
assumes Sem (While b c) s s ′

shows ∀ s s ′. Sem c s s ′ −→ s ∈ Some ‘ (I ∩ b) −→ s ′ ∈ Some ‘ I =⇒
s ∈ Some ‘ I =⇒ s ′ ∈ Some ‘ (I ∩ −b)

using assms
by (induct While b c s s ′) auto

lemma WhileRule:
p ⊆ i =⇒ Valid (i ∩ b) c (A 0 ) i =⇒ i ∩ (−b) ⊆ q =⇒ Valid p (While b c)
(Awhile i v A) q
apply (clarsimp simp:Valid-def )
apply(drule While-aux)

apply assumption
apply blast

apply blast
done

lemma AbortRule: p ⊆ {s. False} =⇒ Valid p Abort a q
by(auto simp:Valid-def )

The proof rules for total correctness
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lemma SkipRuleTC :
assumes p ⊆ q

shows ValidTC p (Basic id) a q
by (metis Sem.intros(2 ) ValidTC-def assms id-def subsetD)

lemma BasicRuleTC :
assumes p ⊆ {s. f s ∈ q}

shows ValidTC p (Basic f ) a q
by (metis Ball-Collect Sem.intros(2 ) ValidTC-def assms)

lemma SeqRuleTC :
assumes ValidTC p c1 a1 q

and ValidTC q c2 a2 r
shows ValidTC p (Seq c1 c2 ) (Aseq a1 a2 ) r

by (meson assms Sem.intros(4 ) ValidTC-def )

lemma CondRuleTC :
assumes p ⊆ {s. (s ∈ b −→ s ∈ w) ∧ (s /∈ b −→ s ∈ w ′)}

and ValidTC w c1 a1 q
and ValidTC w ′ c2 a2 q

shows ValidTC p (Cond b c1 c2 ) (Acons a1 a2 ) q
proof (unfold ValidTC-def , rule allI )

fix s
show s ∈ p −→ (∃ t . Sem (Cond b c1 c2 ) (Some s) (Some t) ∧ t ∈ q)

apply (cases s ∈ b)
apply (metis (mono-tags, lifting) Ball-Collect Sem.intros(6 ) ValidTC-def assms(1 ,2 ))
by (metis (mono-tags, lifting) Ball-Collect Sem.intros(7 ) ValidTC-def assms(1 ,3 ))

qed

lemma WhileRuleTC :
assumes p ⊆ i

and
∧

n::nat . ValidTC (i ∩ b ∩ {s . v s = n}) c (A n) (i ∩ {s . v s < n})
and i ∩ uminus b ⊆ q

shows ValidTC p (While b c) (Awhile i v A) q
proof −

have s ∈ i ∧ v s = n −→ (∃ t . Sem (While b c) (Some s) (Some t) ∧ t ∈ q) for
s n

proof (induction n arbitrary: s rule: less-induct)
fix n :: nat
fix s :: ′a
assume 1 :

∧
(m::nat) s:: ′a . m < n =⇒ s ∈ i ∧ v s = m −→ (∃ t . Sem (While

b c) (Some s) (Some t) ∧ t ∈ q)
show s ∈ i ∧ v s = n −→ (∃ t . Sem (While b c) (Some s) (Some t) ∧ t ∈ q)
proof (rule impI , cases s ∈ b)

assume 2 : s ∈ b and s ∈ i ∧ v s = n
hence s ∈ i ∩ b ∩ {s . v s = n}

using assms(1 ) by auto
hence ∃ t . Sem c (Some s) (Some t) ∧ t ∈ i ∩ {s . v s < n}

by (metis assms(2 ) ValidTC-def )

22



from this obtain t where 3 : Sem c (Some s) (Some t) ∧ t ∈ i ∩ {s . v s <
n}

by auto
hence ∃ u . Sem (While b c) (Some t) (Some u) ∧ u ∈ q

using 1 by auto
thus ∃ t . Sem (While b c) (Some s) (Some t) ∧ t ∈ q

using 2 3 Sem.intros(10 ) by force
next

assume s /∈ b and s ∈ i ∧ v s = n
thus ∃ t . Sem (While b c) (Some s) (Some t) ∧ t ∈ q

using Sem.intros(9 ) assms(3 ) by fastforce
qed

qed
thus ?thesis

using assms(1 ) ValidTC-def by force
qed

6.1 Concrete syntax
setup ‹

Hoare-Syntax.setup
{Basic = const-syntax ‹Basic›,
Skip = const-syntax ‹annskip›,
Seq = const-syntax ‹Seq›,
Cond = const-syntax ‹Cond›,
While = const-syntax ‹While›,
Valid = const-syntax ‹Valid›,
ValidTC = const-syntax ‹ValidTC ›}

›

— Special syntax for guarded statements and guarded array updates:
syntax

-guarded-com :: bool ⇒ ′a com ⇒ ′a com
(‹(‹indent=2 notation=‹mixfix Hoare guarded statement››- →/ -)› 71 )

-array-update :: ′a list ⇒ nat ⇒ ′a ⇒ ′a com
(‹(‹indent=2 notation=‹mixfix Hoare array update››-[-] :=/ -)› [70 , 65 ] 61 )

translations
P → c ⇀↽ IF P THEN c ELSE CONST Abort FI
a[i] := v ⇀ (i < CONST length a) → (a := CONST list-update a i v)
— reverse translation not possible because of duplicate a

Note: there is no special syntax for guarded array access. Thus you must
write j < length a → a[i] := a!j.

6.2 Proof methods: VCG
declare BasicRule [Hoare-Tac.BasicRule]

and SkipRule [Hoare-Tac.SkipRule]
and AbortRule [Hoare-Tac.AbortRule]
and SeqRule [Hoare-Tac.SeqRule]
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and CondRule [Hoare-Tac.CondRule]
and WhileRule [Hoare-Tac.WhileRule]

declare BasicRuleTC [Hoare-Tac.BasicRuleTC ]
and SkipRuleTC [Hoare-Tac.SkipRuleTC ]
and SeqRuleTC [Hoare-Tac.SeqRuleTC ]
and CondRuleTC [Hoare-Tac.CondRuleTC ]
and WhileRuleTC [Hoare-Tac.WhileRuleTC ]

method-setup vcg = ‹
Scan.succeed (fn ctxt => SIMPLE-METHOD ′ (Hoare-Tac.hoare-tac ctxt (K

all-tac)))›
verification condition generator

method-setup vcg-simp = ‹
Scan.succeed (fn ctxt =>

SIMPLE-METHOD ′ (Hoare-Tac.hoare-tac ctxt (asm-full-simp-tac ctxt)))›
verification condition generator plus simplification

method-setup vcg-tc = ‹
Scan.succeed (fn ctxt => SIMPLE-METHOD ′ (Hoare-Tac.hoare-tc-tac ctxt (K

all-tac)))›
verification condition generator

method-setup vcg-tc-simp = ‹
Scan.succeed (fn ctxt =>

SIMPLE-METHOD ′ (Hoare-Tac.hoare-tc-tac ctxt (asm-full-simp-tac ctxt)))›
verification condition generator plus simplification

end

7 Some small examples for programs that may
abort

theory ExamplesAbort
imports Hoare-Logic-Abort

begin

lemma VARS x y z::nat
{y = z & z 6= 0} z 6= 0 → x := y div z {x = 1}

by vcg-simp

lemma
VARS a i j
{k <= length a & i < k & j < k} j < length a → a[i] := a!j {True}

by vcg-simp

lemma VARS (a::int list) i
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{True}
i := 0 ;
WHILE i < length a
INV {i <= length a}
DO a[i] := 7 ; i := i+1 OD
{True}

by vcg-simp

end

8 Examples using Hoare Logic for Total Correct-
ness

theory ExamplesTC
imports Hoare-Logic

begin

This theory demonstrates a few simple partial- and total-correctness
proofs. The first example is taken from HOL/Hoare/Examples.thy written
by N. Galm. We have added the invariant m ≤ a.
lemma multiply-by-add: VARS m s a b
{a=A ∧ b=B}
m := 0 ; s := 0 ;
WHILE m 6=a
INV {s=m∗b ∧ a=A ∧ b=B ∧ m≤a}
DO s := s+b; m := m+(1 ::nat) OD
{s = A∗B}
by vcg-simp

Here is the total-correctness proof for the same program. It needs the
additional invariant m ≤ a.
lemma multiply-by-add-tc: VARS m s a b
[a=A ∧ b=B]
m := 0 ; s := 0 ;
WHILE m 6=a
INV {s=m∗b ∧ a=A ∧ b=B ∧ m≤a}
VAR {a−m}
DO s := s+b; m := m+(1 ::nat) OD
[s = A∗B]
apply vcg-tc-simp
by auto

Next, we prove partial correctness of a program that computes powers.
lemma power : VARS (p::int) i
{ True }
p := 1 ;
i := 0 ;
WHILE i < n
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INV { p = x^i ∧ i ≤ n }
DO p := p ∗ x;

i := i + 1
OD

{ p = x^n }
apply vcg-simp
by auto

Here is its total-correctness proof.
lemma power-tc: VARS (p::int) i
[ True ]
p := 1 ;
i := 0 ;
WHILE i < n

INV { p = x^i ∧ i ≤ n }
VAR { n − i }
DO p := p ∗ x;

i := i + 1
OD

[ p = x^n ]
apply vcg-tc
by auto

The last example is again taken from HOL/Hoare/Examples.thy. We
have modified it to integers so it requires precondition 0 ≤ x.
lemma sqrt-tc: VARS r
[0 ≤ (x::int)]
r := 0 ;
WHILE (r+1 )∗(r+1 ) <= x
INV {r∗r ≤ x}
VAR { nat (x−r)}
DO r := r+1 OD
[r∗r ≤ x ∧ x < (r+1 )∗(r+1 )]
apply vcg-tc-simp
by (smt (verit) div-pos-pos-trivial mult-less-0-iff nonzero-mult-div-cancel-left)

A total-correctness proof allows us to extract a function for further use.
For every input satisfying the precondition the function returns an output
satisfying the postcondition.
lemma sqrt-exists:

0 ≤ (x::int) =⇒ ∃ r ′ . r ′∗r ′ ≤ x ∧ x < (r ′+1 )∗(r ′+1 )
using tc-extract-function sqrt-tc by blast

definition sqrt (x::int) ≡ (SOME r ′ . r ′∗r ′ ≤ x ∧ x < (r ′+1 )∗(r ′+1 ))

lemma sqrt-function:
assumes 0 ≤ (x::int)

and r ′ = sqrt x
shows r ′∗r ′ ≤ x ∧ x < (r ′+1 )∗(r ′+1 )
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proof −
let ?P = λr ′ . r ′∗r ′ ≤ x ∧ x < (r ′+1 )∗(r ′+1 )
have ?P (SOME z . ?P z)

by (metis (mono-tags, lifting) assms(1 ) sqrt-exists some-eq-imp)
thus ?thesis

using assms(2 ) sqrt-def by auto
qed

Nested loops!
lemma VARS (i::nat) j
[ True ]
WHILE 0 < i

INV { True }
VAR { z = i }
DO i := i − 1 ; j := i;

WHILE 0 < j
INV { z = i+1 }
VAR { j }
DO j := j − 1 OD

OD
[ i ≤ 0 ]
apply vcg-tc
by auto

end

9 Alternative pointers
theory Pointers0

imports Hoare-Logic
begin

9.1 References
class ref =

fixes Null :: ′a

9.2 Field access and update
syntax

-fassign :: ′a::ref => id => ′v => ′s com
(‹(‹indent=2 notation=‹mixfix Hoare field assignment››-^.- :=/ -)› [70 ,1000 ,65 ]

61 )
-faccess :: ′a::ref => ( ′a::ref ⇒ ′v) => ′v
(‹(‹open-block notation=‹mixfix Hoare field access››-^.-)› [65 ,1000 ] 65 )

translations
p^.f := e => f := CONST fun-upd f p e
p^.f => f p

An example due to Suzuki:
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lemma VARS v n
{distinct[w,x,y,z]}
w^.v := (1 ::int); w^.n := x;
x^.v := 2 ; x^.n := y;
y^.v := 3 ; y^.n := z;
z^.v := 4 ; x^.n := z
{w^.n^.n^.v = 4}

by vcg-simp

9.3 The heap
9.3.1 Paths in the heap
primrec Path :: ( ′a::ref ⇒ ′a) ⇒ ′a ⇒ ′a list ⇒ ′a ⇒ bool
where

Path h x [] y = (x = y)
| Path h x (a#as) y = (x 6= Null ∧ x = a ∧ Path h (h a) as y)

lemma [iff ]: Path h Null xs y = (xs = [] ∧ y = Null)
apply(case-tac xs)
apply fastforce
apply fastforce
done

lemma [simp]: a 6= Null =⇒ Path h a as z =
(as = [] ∧ z = a ∨ (∃ bs. as = a#bs ∧ Path h (h a) bs z))

apply(case-tac as)
apply fastforce
apply fastforce
done

lemma [simp]:
∧

x. Path f x (as@bs) z = (∃ y. Path f x as y ∧ Path f y bs z)
by(induct as, simp+)

lemma [simp]:
∧

x. u /∈ set as =⇒ Path (f (u := v)) x as y = Path f x as y
by(induct as, simp, simp add:eq-sym-conv)

9.3.2 Lists on the heap
Relational abstraction definition List :: ( ′a::ref ⇒ ′a) ⇒ ′a ⇒ ′a list ⇒
bool

where List h x as = Path h x as Null

lemma [simp]: List h x [] = (x = Null)
by(simp add:List-def )

lemma [simp]: List h x (a#as) = (x 6= Null ∧ x = a ∧ List h (h a) as)
by(simp add:List-def )

lemma [simp]: List h Null as = (as = [])
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by(case-tac as, simp-all)

lemma List-Ref [simp]:
a 6= Null =⇒ List h a as = (∃ bs. as = a#bs ∧ List h (h a) bs)

by(case-tac as, simp-all, fast)

theorem notin-List-update[simp]:∧
x. a /∈ set as =⇒ List (h(a := y)) x as = List h x as

apply(induct as)
apply simp
apply(clarsimp simp add:fun-upd-apply)
done

declare fun-upd-apply[simp del]fun-upd-same[simp] fun-upd-other [simp]

lemma List-unique:
∧

x bs. List h x as =⇒ List h x bs =⇒ as = bs
by(induct as, simp, clarsimp)

lemma List-unique1 : List h p as =⇒ ∃ !as. List h p as
by(blast intro:List-unique)

lemma List-app:
∧

x. List h x (as@bs) = (∃ y. Path h x as y ∧ List h y bs)
by(induct as, simp, clarsimp)

lemma List-hd-not-in-tl[simp]: List h (h a) as =⇒ a /∈ set as
apply (clarsimp simp add:in-set-conv-decomp)
apply(frule List-app[THEN iffD1 ])
apply(fastforce dest: List-unique)
done

lemma List-distinct[simp]:
∧

x. List h x as =⇒ distinct as
apply(induct as, simp)
apply(fastforce dest:List-hd-not-in-tl)
done

9.3.3 Functional abstraction
definition islist :: ( ′a::ref ⇒ ′a) ⇒ ′a ⇒ bool

where islist h p ←→ (∃ as. List h p as)

definition list :: ( ′a::ref ⇒ ′a) ⇒ ′a ⇒ ′a list
where list h p = (SOME as. List h p as)

lemma List-conv-islist-list: List h p as = (islist h p ∧ as = list h p)
apply(simp add:islist-def list-def )
apply(rule iffI )
apply(rule conjI )
apply blast
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apply(subst some1-equality)
apply(erule List-unique1 )

apply assumption
apply(rule refl)
apply simp
apply(rule someI-ex)
apply fast
done

lemma [simp]: islist h Null
by(simp add:islist-def )

lemma [simp]: a 6= Null =⇒ islist h a = islist h (h a)
by(simp add:islist-def )

lemma [simp]: list h Null = []
by(simp add:list-def )

lemma list-Ref-conv[simp]:
[[ a 6= Null; islist h (h a) ]] =⇒ list h a = a # list h (h a)

apply(insert List-Ref [of - h])
apply(fastforce simp:List-conv-islist-list)
done

lemma [simp]: islist h (h a) =⇒ a /∈ set(list h (h a))
apply(insert List-hd-not-in-tl[of h])
apply(simp add:List-conv-islist-list)
done

lemma list-upd-conv[simp]:
islist h p =⇒ y /∈ set(list h p) =⇒ list (h(y := q)) p = list h p

apply(drule notin-List-update[of - - h q p])
apply(simp add:List-conv-islist-list)
done

lemma islist-upd[simp]:
islist h p =⇒ y /∈ set(list h p) =⇒ islist (h(y := q)) p

apply(frule notin-List-update[of - - h q p])
apply(simp add:List-conv-islist-list)
done

9.4 Verifications
9.4.1 List reversal

A short but unreadable proof:
lemma VARS tl p q r
{List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {}}
WHILE p 6= Null
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INV {∃ ps qs. List tl p ps ∧ List tl q qs ∧ set ps ∩ set qs = {} ∧
rev ps @ qs = rev Ps @ Qs}

DO r := p; p := p^.tl; r^.tl := q; q := r OD
{List tl q (rev Ps @ Qs)}

apply vcg-simp
apply fastforce
apply(fastforce intro:notin-List-update[THEN iffD2 ])
— explicit:
//////apply/////////clarify
/////////////////////apply(rename-tac////ps////qs)
//////apply////////////clarsimp
/////////////////////apply(rename-tac//////ps ′)
/////////////////apply(rule-tac//x///=/////ps ′///in//////exI )
//////apply///////simp
/////////////////apply(rule-tac//x///=////////p#qs///in//////exI )
//////apply///////simp
done

A longer readable version:
lemma VARS tl p q r
{List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {}}
WHILE p 6= Null
INV {∃ ps qs. List tl p ps ∧ List tl q qs ∧ set ps ∩ set qs = {} ∧

rev ps @ qs = rev Ps @ Qs}
DO r := p; p := p^.tl; r^.tl := q; q := r OD
{List tl q (rev Ps @ Qs)}

proof vcg
fix tl p q r
assume List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {}
thus ∃ ps qs. List tl p ps ∧ List tl q qs ∧ set ps ∩ set qs = {} ∧

rev ps @ qs = rev Ps @ Qs by fastforce
next

fix tl p q r
assume (∃ ps qs. List tl p ps ∧ List tl q qs ∧ set ps ∩ set qs = {} ∧

rev ps @ qs = rev Ps @ Qs) ∧ p 6= Null
(is (∃ ps qs. ?I ps qs) ∧ -)

then obtain ps qs where I : ?I ps qs ∧ p 6= Null by fast
then obtain ps ′ where ps = p # ps ′ by fastforce
hence List (tl(p := q)) (p^.tl) ps ′ ∧

List (tl(p := q)) p (p#qs) ∧
set ps ′ ∩ set (p#qs) = {} ∧
rev ps ′ @ (p#qs) = rev Ps @ Qs

using I by fastforce
thus ∃ ps ′ qs ′. List (tl(p := q)) (p^.tl) ps ′ ∧

List (tl(p := q)) p qs ′ ∧
set ps ′ ∩ set qs ′ = {} ∧
rev ps ′ @ qs ′ = rev Ps @ Qs by fast

next
fix tl p q r
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assume (∃ ps qs. List tl p ps ∧ List tl q qs ∧ set ps ∩ set qs = {} ∧
rev ps @ qs = rev Ps @ Qs) ∧ ¬ p 6= Null

thus List tl q (rev Ps @ Qs) by fastforce
qed

Finaly, the functional version. A bit more verbose, but automatic!
lemma VARS tl p q r
{islist tl p ∧ islist tl q ∧
Ps = list tl p ∧ Qs = list tl q ∧ set Ps ∩ set Qs = {}}

WHILE p 6= Null
INV {islist tl p ∧ islist tl q ∧

set(list tl p) ∩ set(list tl q) = {} ∧
rev(list tl p) @ (list tl q) = rev Ps @ Qs}

DO r := p; p := p^.tl; r^.tl := q; q := r OD
{islist tl q ∧ list tl q = rev Ps @ Qs}

apply vcg-simp
apply clarsimp

apply clarsimp
done

9.4.2 Searching in a list

What follows is a sequence of successively more intelligent proofs that a
simple loop finds an element in a linked list.

We start with a proof based on the List predicate. This means it only
works for acyclic lists.
lemma VARS tl p
{List tl p Ps ∧ X ∈ set Ps}
WHILE p 6= Null ∧ p 6= X
INV {p 6= Null ∧ (∃ ps. List tl p ps ∧ X ∈ set ps)}
DO p := p^.tl OD
{p = X}

apply vcg-simp
apply(case-tac p = Null)
apply clarsimp

apply fastforce
apply clarsimp
apply fastforce

apply clarsimp
done

Using Path instead of List generalizes the correctness statement to cyclic
lists as well:
lemma VARS tl p
{Path tl p Ps X}
WHILE p 6= Null ∧ p 6= X
INV {∃ ps. Path tl p ps X}
DO p := p^.tl OD
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{p = X}
apply vcg-simp

apply blast
apply fastforce

apply clarsimp
done

Now it dawns on us that we do not need the list witness at all — it
suffices to talk about reachability, i.e. we can use relations directly.
lemma VARS tl p
{(p,X) ∈ {(x,y). y = tl x & x 6= Null}∗}
WHILE p 6= Null ∧ p 6= X
INV {(p,X) ∈ {(x,y). y = tl x & x 6= Null}∗}
DO p := p^.tl OD
{p = X}

apply vcg-simp
apply clarsimp
apply(erule converse-rtranclE)
apply simp

apply(simp)
apply(fastforce elim:converse-rtranclE)
done

9.4.3 Merging two lists

This is still a bit rough, especially the proof.
fun merge :: ′a list ∗ ′a list ∗ ( ′a ⇒ ′a ⇒ bool) ⇒ ′a list where
merge(x#xs,y#ys,f ) = (if f x y then x # merge(xs,y#ys,f )

else y # merge(x#xs,ys,f )) |
merge(x#xs,[],f ) = x # merge(xs,[],f ) |
merge([],y#ys,f ) = y # merge([],ys,f ) |
merge([],[],f ) = []

lemma imp-disjCL: (P|Q −→ R) = ((P −→ R) ∧ (∼P −→ Q −→ R))
by blast

declare disj-not1 [simp del] imp-disjL[simp del] imp-disjCL[simp]

lemma VARS hd tl p q r s
{List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {} ∧
(p 6= Null ∨ q 6= Null)}

IF if q = Null then True else p ∼= Null & p^.hd ≤ q^.hd
THEN r := p; p := p^.tl ELSE r := q; q := q^.tl FI ;
s := r ;
WHILE p 6= Null ∨ q 6= Null
INV {∃ rs ps qs. Path tl r rs s ∧ List tl p ps ∧ List tl q qs ∧

distinct(s # ps @ qs @ rs) ∧ s 6= Null ∧
merge(Ps,Qs,λx y. hd x ≤ hd y) =
rs @ s # merge(ps,qs,λx y. hd x ≤ hd y) ∧
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(tl s = p ∨ tl s = q)}
DO IF if q = Null then True else p 6= Null ∧ p^.hd ≤ q^.hd

THEN s^.tl := p; p := p^.tl ELSE s^.tl := q; q := q^.tl FI ;
s := s^.tl

OD
{List tl r (merge(Ps,Qs,λx y. hd x ≤ hd y))}

apply vcg-simp

apply (fastforce)

apply clarsimp
apply(rule conjI )
apply clarsimp
apply(simp add:eq-sym-conv)
apply(rule-tac x = rs @ [s] in exI )
apply simp
apply(rule-tac x = bs in exI )
apply (fastforce simp:eq-sym-conv)

apply clarsimp
apply(rule conjI )
apply clarsimp
apply(rule-tac x = rs @ [s] in exI )
apply simp
apply(rule-tac x = bsa in exI )
apply(rule conjI )
apply (simp add:eq-sym-conv)
apply(rule exI )
apply(rule conjI )
apply(rule-tac x = bs in exI )
apply(rule conjI )
apply(rule refl)
apply (simp add:eq-sym-conv)
apply (simp add:eq-sym-conv)

apply(rule conjI )
apply clarsimp
apply(rule-tac x = rs @ [s] in exI )
apply simp
apply(rule-tac x = bs in exI )
apply (simp add:eq-sym-conv)
apply clarsimp
apply(rule-tac x = rs @ [s] in exI )
apply (simp add:eq-sym-conv)
apply(rule exI )
apply(rule conjI )
apply(rule-tac x = bsa in exI )
apply(rule conjI )
apply(rule refl)
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apply (simp add:eq-sym-conv)
apply(rule-tac x = bs in exI )
apply (simp add:eq-sym-conv)

apply(clarsimp simp add:List-app)
done

9.4.4 Storage allocation
definition new :: ′a set ⇒ ′a::ref

where new A = (SOME a. a /∈ A & a 6= Null)

lemma new-notin:
[[ ∼finite(UNIV ::( ′a::ref )set); finite(A:: ′a set); B ⊆ A ]] =⇒
new (A) /∈ B & new A 6= Null

apply(unfold new-def )
apply(rule someI2-ex)
apply (fast dest:ex-new-if-finite[of insert Null A])

apply (fast)
done

lemma ∼finite(UNIV ::( ′a::ref )set) =⇒
VARS xs elem next alloc p q
{Xs = xs ∧ p = (Null:: ′a)}
WHILE xs 6= []
INV {islist next p ∧ set(list next p) ⊆ set alloc ∧

map elem (rev(list next p)) @ xs = Xs}
DO q := new(set alloc); alloc := q#alloc;

q^.next := p; q^.elem := hd xs; xs := tl xs; p := q
OD
{islist next p ∧ map elem (rev(list next p)) = Xs}

apply vcg-simp
apply (clarsimp simp: subset-insert-iff neq-Nil-conv fun-upd-apply new-notin)

done

end

10 Pointers, heaps and heap abstractions
See the paper by Mehta and Nipkow.
theory Heap

imports Main
begin

10.1 References
datatype ′a ref = Null | Ref ′a
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lemma not-Null-eq [iff ]: (x 6= Null) = (∃ y. x = Ref y)
by (induct x) auto

lemma not-Ref-eq [iff ]: (∀ y. x 6= Ref y) = (x = Null)
by (induct x) auto

primrec addr :: ′a ref ⇒ ′a where
addr (Ref a) = a

10.2 The heap
10.2.1 Paths in the heap
primrec Path :: ( ′a ⇒ ′a ref ) ⇒ ′a ref ⇒ ′a list ⇒ ′a ref ⇒ bool where

Path h x [] y ←→ x = y
| Path h x (a#as) y ←→ x = Ref a ∧ Path h (h a) as y

lemma [iff ]: Path h Null xs y = (xs = [] ∧ y = Null)
apply(case-tac xs)
apply fastforce
apply fastforce
done

lemma [simp]: Path h (Ref a) as z =
(as = [] ∧ z = Ref a ∨ (∃ bs. as = a#bs ∧ Path h (h a) bs z))

apply(case-tac as)
apply fastforce
apply fastforce
done

lemma [simp]:
∧

x. Path f x (as@bs) z = (∃ y. Path f x as y ∧ Path f y bs z)
by(induct as, simp+)

lemma Path-upd[simp]:∧
x. u /∈ set as =⇒ Path (f (u := v)) x as y = Path f x as y

by(induct as, simp, simp add:eq-sym-conv)

lemma Path-snoc:
Path (f (a := q)) p as (Ref a) =⇒ Path (f (a := q)) p (as @ [a]) q

by simp

10.2.2 Non-repeating paths
definition distPath :: ( ′a ⇒ ′a ref ) ⇒ ′a ref ⇒ ′a list ⇒ ′a ref ⇒ bool

where distPath h x as y ←→ Path h x as y ∧ distinct as

The term distPath h x as y expresses the fact that a non-repeating path
as connects location x to location y by means of the h field. In the case
where x = y, and there is a cycle from x to itself, as can be both [] and the
non-repeating list of nodes in the cycle.
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lemma neq-dP: p 6= q =⇒ Path h p Ps q =⇒ distinct Ps =⇒
∃ a Qs. p = Ref a ∧ Ps = a#Qs ∧ a /∈ set Qs

by (case-tac Ps, auto)

lemma neq-dP-disp: [[ p 6= q; distPath h p Ps q ]] =⇒
∃ a Qs. p = Ref a ∧ Ps = a#Qs ∧ a /∈ set Qs

apply (simp only:distPath-def )
by (case-tac Ps, auto)

10.2.3 Lists on the heap
Relational abstraction definition List :: ( ′a ⇒ ′a ref ) ⇒ ′a ref ⇒ ′a list
⇒ bool

where List h x as = Path h x as Null

lemma [simp]: List h x [] = (x = Null)
by(simp add:List-def )

lemma [simp]: List h x (a#as) = (x = Ref a ∧ List h (h a) as)
by(simp add:List-def )

lemma [simp]: List h Null as = (as = [])
by(case-tac as, simp-all)

lemma List-Ref [simp]: List h (Ref a) as = (∃ bs. as = a#bs ∧ List h (h a) bs)
by(case-tac as, simp-all, fast)

theorem notin-List-update[simp]:∧
x. a /∈ set as =⇒ List (h(a := y)) x as = List h x as

apply(induct as)
apply simp
apply(clarsimp simp add:fun-upd-apply)
done

lemma List-unique:
∧

x bs. List h x as =⇒ List h x bs =⇒ as = bs
by(induct as, simp, clarsimp)

lemma List-unique1 : List h p as =⇒ ∃ !as. List h p as
by(blast intro:List-unique)

lemma List-app:
∧

x. List h x (as@bs) = (∃ y. Path h x as y ∧ List h y bs)
by(induct as, simp, clarsimp)

lemma List-hd-not-in-tl[simp]: List h (h a) as =⇒ a /∈ set as
apply (clarsimp simp add:in-set-conv-decomp)
apply(frule List-app[THEN iffD1 ])
apply(fastforce dest: List-unique)
done
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lemma List-distinct[simp]:
∧

x. List h x as =⇒ distinct as
apply(induct as, simp)
apply(fastforce dest:List-hd-not-in-tl)
done

lemma Path-is-List:
[[Path h b Ps (Ref a); a /∈ set Ps]] =⇒ List (h(a := Null)) b (Ps @ [a])

apply (induct Ps arbitrary: b)
apply (auto simp add:fun-upd-apply)
done

10.2.4 Functional abstraction
definition islist :: ( ′a ⇒ ′a ref ) ⇒ ′a ref ⇒ bool

where islist h p ←→ (∃ as. List h p as)

definition list :: ( ′a ⇒ ′a ref ) ⇒ ′a ref ⇒ ′a list
where list h p = (SOME as. List h p as)

lemma List-conv-islist-list: List h p as = (islist h p ∧ as = list h p)
apply(simp add:islist-def list-def )
apply(rule iffI )
apply(rule conjI )
apply blast
apply(subst some1-equality)

apply(erule List-unique1 )
apply assumption

apply(rule refl)
apply simp
apply(rule someI-ex)
apply fast
done

lemma [simp]: islist h Null
by(simp add:islist-def )

lemma [simp]: islist h (Ref a) = islist h (h a)
by(simp add:islist-def )

lemma [simp]: list h Null = []
by(simp add:list-def )

lemma list-Ref-conv[simp]:
islist h (h a) =⇒ list h (Ref a) = a # list h (h a)

apply(insert List-Ref [of h])
apply(fastforce simp:List-conv-islist-list)
done
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lemma [simp]: islist h (h a) =⇒ a /∈ set(list h (h a))
apply(insert List-hd-not-in-tl[of h])
apply(simp add:List-conv-islist-list)
done

lemma list-upd-conv[simp]:
islist h p =⇒ y /∈ set(list h p) =⇒ list (h(y := q)) p = list h p

apply(drule notin-List-update[of - - h q p])
apply(simp add:List-conv-islist-list)
done

lemma islist-upd[simp]:
islist h p =⇒ y /∈ set(list h p) =⇒ islist (h(y := q)) p

apply(frule notin-List-update[of - - h q p])
apply(simp add:List-conv-islist-list)
done

end

11 Heap syntax
theory HeapSyntax

imports Hoare-Logic Heap
begin

11.1 Field access and update
syntax

-refupdate :: ( ′a ⇒ ′b) ⇒ ′a ref ⇒ ′b ⇒ ( ′a ⇒ ′b)
(‹(‹open-block notation=‹mixfix Hoare ref update››-/ ′((- → -) ′))› [1000 ,0 ] 900 )

-fassign :: ′a ref => id => ′v => ′s com
(‹(‹indent=2 notation=‹mixfix Hoare ref assignment››-^.- :=/ -)› [70 ,1000 ,65 ]

61 )
-faccess :: ′a ref => ( ′a ref ⇒ ′v) => ′v
(‹(‹open-block notation=‹infix Hoare ref access››-^.-)› [65 ,1000 ] 65 )

translations
f (r → v) == f (CONST addr r := v)
p^.f := e => f := f (p → e)
p^.f => f (CONST addr p)

declare fun-upd-apply[simp del] fun-upd-same[simp] fun-upd-other [simp]

An example due to Suzuki:
lemma VARS v n
{w = Ref w0 & x = Ref x0 & y = Ref y0 & z = Ref z0 &
distinct[w0 ,x0 ,y0 ,z0 ]}

w^.v := (1 ::int); w^.n := x;
x^.v := 2 ; x^.n := y;
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y^.v := 3 ; y^.n := z;
z^.v := 4 ; x^.n := z
{w^.n^.n^.v = 4}

by vcg-simp

end

12 Examples of verifications of pointer programs
theory Pointer-Examples

imports HeapSyntax
begin

axiomatization where unproven: PROP A

12.1 Verifications
12.1.1 List reversal

A short but unreadable proof:
lemma VARS tl p q r
{List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {}}
WHILE p 6= Null
INV {∃ ps qs. List tl p ps ∧ List tl q qs ∧ set ps ∩ set qs = {} ∧

rev ps @ qs = rev Ps @ Qs}
DO r := p; p := p^.tl; r^.tl := q; q := r OD
{List tl q (rev Ps @ Qs)}

apply vcg-simp
apply fastforce
apply(fastforce intro:notin-List-update[THEN iffD2 ])
— explicit:
//////apply/////////clarify
/////////////////////apply(rename-tac////ps//b/////qs)
//////apply////////////clarsimp
/////////////////////apply(rename-tac//////ps ′)
//////////////////apply(fastforce/////////////////////////////////////intro:notin-List-update[THEN//////////iffD2 ])
done

And now with ghost variables ps and qs. Even “more automatic”.
lemma VARS next p ps q qs r
{List next p Ps ∧ List next q Qs ∧ set Ps ∩ set Qs = {} ∧
ps = Ps ∧ qs = Qs}

WHILE p 6= Null
INV {List next p ps ∧ List next q qs ∧ set ps ∩ set qs = {} ∧

rev ps @ qs = rev Ps @ Qs}
DO r := p; p := p^.next; r^.next := q; q := r ;

qs := (hd ps) # qs; ps := tl ps OD
{List next q (rev Ps @ Qs)}

apply vcg-simp
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apply fastforce
done

A longer readable version:
lemma VARS tl p q r
{List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {}}
WHILE p 6= Null
INV {∃ ps qs. List tl p ps ∧ List tl q qs ∧ set ps ∩ set qs = {} ∧

rev ps @ qs = rev Ps @ Qs}
DO r := p; p := p^.tl; r^.tl := q; q := r OD
{List tl q (rev Ps @ Qs)}

proof vcg
fix tl p q r
assume List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {}
thus ∃ ps qs. List tl p ps ∧ List tl q qs ∧ set ps ∩ set qs = {} ∧

rev ps @ qs = rev Ps @ Qs by fastforce
next

fix tl p q r
assume (∃ ps qs. List tl p ps ∧ List tl q qs ∧ set ps ∩ set qs = {} ∧

rev ps @ qs = rev Ps @ Qs) ∧ p 6= Null
(is (∃ ps qs. ?I ps qs) ∧ -)

then obtain ps qs a where I : ?I ps qs ∧ p = Ref a
by fast

then obtain ps ′ where ps = a # ps ′ by fastforce
hence List (tl(p → q)) (p^.tl) ps ′ ∧

List (tl(p → q)) p (a#qs) ∧
set ps ′ ∩ set (a#qs) = {} ∧
rev ps ′ @ (a#qs) = rev Ps @ Qs

using I by fastforce
thus ∃ ps ′ qs ′. List (tl(p → q)) (p^.tl) ps ′ ∧

List (tl(p → q)) p qs ′ ∧
set ps ′ ∩ set qs ′ = {} ∧
rev ps ′ @ qs ′ = rev Ps @ Qs by fast

next
fix tl p q r
assume (∃ ps qs. List tl p ps ∧ List tl q qs ∧ set ps ∩ set qs = {} ∧

rev ps @ qs = rev Ps @ Qs) ∧ ¬ p 6= Null
thus List tl q (rev Ps @ Qs) by fastforce

qed

Finaly, the functional version. A bit more verbose, but automatic!
lemma VARS tl p q r
{islist tl p ∧ islist tl q ∧
Ps = list tl p ∧ Qs = list tl q ∧ set Ps ∩ set Qs = {}}

WHILE p 6= Null
INV {islist tl p ∧ islist tl q ∧

set(list tl p) ∩ set(list tl q) = {} ∧
rev(list tl p) @ (list tl q) = rev Ps @ Qs}

DO r := p; p := p^.tl; r^.tl := q; q := r OD
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{islist tl q ∧ list tl q = rev Ps @ Qs}
apply vcg-simp

apply clarsimp
apply clarsimp

done

12.1.2 Searching in a list

What follows is a sequence of successively more intelligent proofs that a
simple loop finds an element in a linked list.

We start with a proof based on the List predicate. This means it only
works for acyclic lists.
lemma VARS tl p
{List tl p Ps ∧ X ∈ set Ps}
WHILE p 6= Null ∧ p 6= Ref X
INV {∃ ps. List tl p ps ∧ X ∈ set ps}
DO p := p^.tl OD
{p = Ref X}

apply vcg-simp
apply blast

apply clarsimp
apply clarsimp
done

Using Path instead of List generalizes the correctness statement to cyclic
lists as well:
lemma VARS tl p
{Path tl p Ps X}
WHILE p 6= Null ∧ p 6= X
INV {∃ ps. Path tl p ps X}
DO p := p^.tl OD
{p = X}

apply vcg-simp
apply blast

apply fastforce
apply clarsimp
done

Now it dawns on us that we do not need the list witness at all — it
suffices to talk about reachability, i.e. we can use relations directly. The
first version uses a relation on ′a ref :
lemma VARS tl p
{(p,X) ∈ {(Ref x,tl x) |x. True}∗}
WHILE p 6= Null ∧ p 6= X
INV {(p,X) ∈ {(Ref x,tl x) |x. True}∗}
DO p := p^.tl OD
{p = X}

apply vcg-simp
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apply clarsimp
apply(erule converse-rtranclE)
apply simp

apply(clarsimp elim:converse-rtranclE)
apply(fast elim:converse-rtranclE)
done

Finally, a version based on a relation on type ′a:
lemma VARS tl p
{p 6= Null ∧ (addr p,X) ∈ {(x,y). tl x = Ref y}∗}
WHILE p 6= Null ∧ p 6= Ref X
INV {p 6= Null ∧ (addr p,X) ∈ {(x,y). tl x = Ref y}∗}
DO p := p^.tl OD
{p = Ref X}

apply vcg-simp
apply clarsimp
apply(erule converse-rtranclE)
apply simp

apply clarsimp
apply clarsimp
done

12.1.3 Splicing two lists
lemma VARS tl p q pp qq
{List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {} ∧ size Qs ≤ size Ps}
pp := p;
WHILE q 6= Null
INV {∃ as bs qs.

distinct as ∧ Path tl p as pp ∧ List tl pp bs ∧ List tl q qs ∧
set bs ∩ set qs = {} ∧ set as ∩ (set bs ∪ set qs) = {} ∧
size qs ≤ size bs ∧ splice Ps Qs = as @ splice bs qs}

DO qq := q^.tl; q^.tl := pp^.tl; pp^.tl := q; pp := q^.tl; q := qq OD
{List tl p (splice Ps Qs)}

apply vcg-simp
apply(rule-tac x = [] in exI )
apply fastforce

apply clarsimp
apply(rename-tac y bs qqs)
apply(case-tac bs) apply simp
apply clarsimp
apply(rename-tac x bbs)
apply(rule-tac x = as @ [x,y] in exI )
apply simp
apply(rule-tac x = bbs in exI )
apply simp
apply(rule-tac x = qqs in exI )
apply simp

apply (fastforce simp:List-app)
done
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12.1.4 Merging two lists

This is still a bit rough, especially the proof.
definition cor :: bool ⇒ bool ⇒ bool

where cor P Q ←→ (if P then True else Q)

definition cand :: bool ⇒ bool ⇒ bool
where cand P Q ←→ (if P then Q else False)

fun merge :: ′a list ∗ ′a list ∗ ( ′a ⇒ ′a ⇒ bool) ⇒ ′a list
where

merge(x#xs,y#ys,f ) = (if f x y then x # merge(xs,y#ys,f )
else y # merge(x#xs,ys,f ))

| merge(x#xs,[],f ) = x # merge(xs,[],f )
| merge([],y#ys,f ) = y # merge([],ys,f )
| merge([],[],f ) = []

Simplifies the proof a little:
lemma [simp]: ({} = insert a A ∩ B) = (a /∈ B & {} = A ∩ B)
by blast
lemma [simp]: ({} = A ∩ insert b B) = (b /∈ A & {} = A ∩ B)
by blast
lemma [simp]: ({} = A ∩ (B ∪ C )) = ({} = A ∩ B & {} = A ∩ C )
by blast

lemma VARS hd tl p q r s
{List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {} ∧
(p 6= Null ∨ q 6= Null)}

IF cor (q = Null) (cand (p 6= Null) (p^.hd ≤ q^.hd))
THEN r := p; p := p^.tl ELSE r := q; q := q^.tl FI ;
s := r ;
WHILE p 6= Null ∨ q 6= Null
INV {∃ rs ps qs a. Path tl r rs s ∧ List tl p ps ∧ List tl q qs ∧

distinct(a # ps @ qs @ rs) ∧ s = Ref a ∧
merge(Ps,Qs,λx y. hd x ≤ hd y) =
rs @ a # merge(ps,qs,λx y. hd x ≤ hd y) ∧
(tl a = p ∨ tl a = q)}

DO IF cor (q = Null) (cand (p 6= Null) (p^.hd ≤ q^.hd))
THEN s^.tl := p; p := p^.tl ELSE s^.tl := q; q := q^.tl FI ;
s := s^.tl

OD
{List tl r (merge(Ps,Qs,λx y. hd x ≤ hd y))}

apply vcg-simp
apply (simp-all add: cand-def cor-def )

apply (fastforce)

apply clarsimp
apply(rule conjI )
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apply clarsimp
apply(rule conjI )
apply (fastforce intro!:Path-snoc intro:Path-upd[THEN iffD2 ] notin-List-update[THEN
iffD2 ] simp:eq-sym-conv)
apply clarsimp
apply(rule conjI )
apply (clarsimp)
apply(rule-tac x = rs @ [a] in exI )
apply(clarsimp simp:eq-sym-conv)
apply(rule-tac x = bs in exI )
apply(clarsimp simp:eq-sym-conv)
apply(rule-tac x = ya#bsa in exI )
apply(simp)
apply(clarsimp simp:eq-sym-conv)
apply(rule-tac x = rs @ [a] in exI )
apply(clarsimp simp:eq-sym-conv)
apply(rule-tac x = y#bs in exI )
apply(clarsimp simp:eq-sym-conv)
apply(rule-tac x = bsa in exI )
apply(simp)
apply (fastforce intro!:Path-snoc intro:Path-upd[THEN iffD2 ] notin-List-update[THEN
iffD2 ] simp:eq-sym-conv)

apply(clarsimp simp add:List-app)
done

And now with ghost variables:
lemma VARS elem next p q r s ps qs rs a
{List next p Ps ∧ List next q Qs ∧ set Ps ∩ set Qs = {} ∧
(p 6= Null ∨ q 6= Null) ∧ ps = Ps ∧ qs = Qs}

IF cor (q = Null) (cand (p 6= Null) (p^.elem ≤ q^.elem))
THEN r := p; p := p^.next; ps := tl ps
ELSE r := q; q := q^.next; qs := tl qs FI ;
s := r ; rs := []; a := addr s;
WHILE p 6= Null ∨ q 6= Null
INV {Path next r rs s ∧ List next p ps ∧ List next q qs ∧

distinct(a # ps @ qs @ rs) ∧ s = Ref a ∧
merge(Ps,Qs,λx y. elem x ≤ elem y) =
rs @ a # merge(ps,qs,λx y. elem x ≤ elem y) ∧
(next a = p ∨ next a = q)}

DO IF cor (q = Null) (cand (p 6= Null) (p^.elem ≤ q^.elem))
THEN s^.next := p; p := p^.next; ps := tl ps
ELSE s^.next := q; q := q^.next; qs := tl qs FI ;
rs := rs @ [a]; s := s^.next; a := addr s

OD
{List next r (merge(Ps,Qs,λx y. elem x ≤ elem y))}

apply vcg-simp
apply (simp-all add: cand-def cor-def )
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apply (fastforce)

apply clarsimp
apply(rule conjI )
apply(clarsimp)
apply(rule conjI )
apply(clarsimp simp:neq-commute)
apply(clarsimp simp:neq-commute)
apply(clarsimp simp:neq-commute)

apply(clarsimp simp add:List-app)
done

The proof is a LOT simpler because it does not need instantiations any-
more, but it is still not quite automatic, probably because of this wrong
orientation business.

More of the previous proof without ghost variables can be automated,
but the runtime goes up drastically. In general it is usually more efficient
to give the witness directly than to have it found by proof.

Now we try a functional version of the abstraction relation Path. Since
the result is not that convincing, we do not prove any of the lemmas.
axiomatization

ispath :: ( ′a ⇒ ′a ref ) ⇒ ′a ref ⇒ ′a ref ⇒ bool and
path :: ( ′a ⇒ ′a ref ) ⇒ ′a ref ⇒ ′a ref ⇒ ′a list

First some basic lemmas:
lemma [simp]: ispath f p p
by (rule unproven)
lemma [simp]: path f p p = []
by (rule unproven)
lemma [simp]: ispath f p q =⇒ a /∈ set(path f p q) =⇒ ispath (f (a := r)) p q
by (rule unproven)
lemma [simp]: ispath f p q =⇒ a /∈ set(path f p q) =⇒
path (f (a := r)) p q = path f p q

by (rule unproven)

Some more specific lemmas needed by the example:
lemma [simp]: ispath (f (a := q)) p (Ref a) =⇒ ispath (f (a := q)) p q
by (rule unproven)
lemma [simp]: ispath (f (a := q)) p (Ref a) =⇒
path (f (a := q)) p q = path (f (a := q)) p (Ref a) @ [a]

by (rule unproven)
lemma [simp]: ispath f p (Ref a) =⇒ f a = Ref b =⇒
b /∈ set (path f p (Ref a))

by (rule unproven)
lemma [simp]: ispath f p (Ref a) =⇒ f a = Null =⇒ islist f p
by (rule unproven)
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lemma [simp]: ispath f p (Ref a) =⇒ f a = Null =⇒ list f p = path f p (Ref a) @
[a]
by (rule unproven)

lemma [simp]: islist f p =⇒ distinct (list f p)
by (rule unproven)

lemma VARS hd tl p q r s
{islist tl p ∧ Ps = list tl p ∧ islist tl q ∧ Qs = list tl q ∧
set Ps ∩ set Qs = {} ∧
(p 6= Null ∨ q 6= Null)}

IF cor (q = Null) (cand (p 6= Null) (p^.hd ≤ q^.hd))
THEN r := p; p := p^.tl ELSE r := q; q := q^.tl FI ;
s := r ;
WHILE p 6= Null ∨ q 6= Null
INV {∃ rs ps qs a. ispath tl r s ∧ rs = path tl r s ∧

islist tl p ∧ ps = list tl p ∧ islist tl q ∧ qs = list tl q ∧
distinct(a # ps @ qs @ rs) ∧ s = Ref a ∧
merge(Ps,Qs,λx y. hd x ≤ hd y) =
rs @ a # merge(ps,qs,λx y. hd x ≤ hd y) ∧
(tl a = p ∨ tl a = q)}

DO IF cor (q = Null) (cand (p 6= Null) (p^.hd ≤ q^.hd))
THEN s^.tl := p; p := p^.tl ELSE s^.tl := q; q := q^.tl FI ;
s := s^.tl

OD
{islist tl r & list tl r = (merge(Ps,Qs,λx y. hd x ≤ hd y))}

apply vcg-simp

apply (simp-all add: cand-def cor-def )
apply (fastforce)

apply (fastforce simp: eq-sym-conv)
apply(clarsimp)
done

The proof is automatic, but requires a numbet of special lemmas.

12.1.5 Cyclic list reversal

We consider two algorithms for the reversal of circular lists.
lemma circular-list-rev-I :

VARS next root p q tmp
{root = Ref r ∧ distPath next root (r#Ps) root}
p := root; q := root^.next;
WHILE q 6= root
INV {∃ ps qs. distPath next p ps root ∧ distPath next q qs root ∧

root = Ref r ∧ r /∈ set Ps ∧ set ps ∩ set qs = {} ∧
Ps = (rev ps) @ qs }

DO tmp := q; q := q^.next; tmp^.next := p; p:=tmp OD;
root^.next := p
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{ root = Ref r ∧ distPath next root (r#rev Ps) root}
apply (simp only:distPath-def )
apply vcg-simp

apply (rule-tac x=[] in exI )
apply auto

apply (drule (2 ) neq-dP)
apply clarsimp
apply(rule-tac x=a # ps in exI )

apply clarsimp
done

In the beginning, we are able to assert distPath next root as root, with as
set to [] or [r , a, b, c]. Note that Path next root as root would additionally
give us an infinite number of lists with the recurring sequence [r , a, b, c].

The precondition states that there exists a non-empty non-repeating
path r # Ps from pointer root to itself, given that root points to location r.
Pointers p and q are then set to root and the successor of root respectively.
If q = root, we have circled the loop, otherwise we set the next pointer field
of q to point to p, and shift p and q one step forward. The invariant thus
states that p and q point to two disjoint lists ps and qs, such that Ps = rev
ps @ qs. After the loop terminates, one extra step is needed to close the
loop. As expected, the postcondition states that the distPath from root to
itself is now r # rev Ps.

It may come as a surprise to the reader that the simple algorithm for
acyclic list reversal, with modified annotations, works for cyclic lists as well:
lemma circular-list-rev-II :
VARS next p q tmp
{p = Ref r ∧ distPath next p (r#Ps) p}
q:=Null;
WHILE p 6= Null
INV
{ ((q = Null) −→ (∃ ps. distPath next p (ps) (Ref r) ∧ ps = r#Ps)) ∧
((q 6= Null) −→ (∃ ps qs. distPath next q (qs) (Ref r) ∧ List next p ps ∧

set ps ∩ set qs = {} ∧ rev qs @ ps = Ps@[r ])) ∧
¬ (p = Null ∧ q = Null) }

DO tmp := p; p := p^.next; tmp^.next := q; q:=tmp OD
{q = Ref r ∧ distPath next q (r # rev Ps) q}
apply (simp only:distPath-def )
apply vcg-simp

apply clarsimp
apply (case-tac (q = Null))
apply (fastforce intro: Path-is-List)

apply clarsimp
apply (rule-tac x= bs in exI )
apply (rule-tac x= y # qs in exI )
apply clarsimp

apply (auto simp:fun-upd-apply)
done
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12.1.6 Storage allocation
definition new :: ′a set ⇒ ′a

where new A = (SOME a. a /∈ A)

lemma new-notin:
[[ ∼finite(UNIV :: ′a set); finite(A:: ′a set); B ⊆ A ]] =⇒ new (A) /∈ B

apply(unfold new-def )
apply(rule someI2-ex)
apply (fast intro:ex-new-if-finite)

apply (fast)
done

lemma ∼finite(UNIV :: ′a set) =⇒
VARS xs elem next alloc p q
{Xs = xs ∧ p = (Null:: ′a ref )}
WHILE xs 6= []
INV {islist next p ∧ set(list next p) ⊆ set alloc ∧

map elem (rev(list next p)) @ xs = Xs}
DO q := Ref (new(set alloc)); alloc := (addr q)#alloc;

q^.next := p; q^.elem := hd xs; xs := tl xs; p := q
OD
{islist next p ∧ map elem (rev(list next p)) = Xs}

apply vcg-simp
apply (clarsimp simp: subset-insert-iff neq-Nil-conv fun-upd-apply new-notin)

done

end

13 Heap syntax (abort)
theory HeapSyntaxAbort

imports Hoare-Logic-Abort Heap
begin

13.1 Field access and update
Heap update p^.h := e is now guarded against p being Null. However, p
may still be illegal, e.g. uninitialized or dangling. To guard against that, one
needs a more detailed model of the heap where allocated and free addresses
are distinguished, e.g. by making the heap a map, or by carrying the set of
free addresses around. This is needed anyway as soon as we want to reason
about storage allocation/deallocation.
syntax

-refupdate :: ( ′a ⇒ ′b) ⇒ ′a ref ⇒ ′b ⇒ ( ′a ⇒ ′b)
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(‹(‹open-block notation=‹mixfix Hoare ref update››-/ ′((- → -) ′))› [1000 ,0 ] 900 )
-fassign :: ′a ref => id => ′v => ′s com
(‹(‹indent=2 notation=‹mixfix Hoare ref assignment››-^.- :=/ -)› [70 ,1000 ,65 ]

61 )
-faccess :: ′a ref => ( ′a ref ⇒ ′v) => ′v
(‹(‹open-block notation=‹infix Hoare ref access››-^.-)› [65 ,1000 ] 65 )

translations
-refupdate f r v == f (CONST addr r := v)
p^.f := e => (p 6= CONST Null) → (f := -refupdate f p e)
p^.f => f (CONST addr p)

declare fun-upd-apply[simp del] fun-upd-same[simp] fun-upd-other [simp]

An example due to Suzuki:
lemma VARS v n
{w = Ref w0 & x = Ref x0 & y = Ref y0 & z = Ref z0 &
distinct[w0 ,x0 ,y0 ,z0 ]}

w^.v := (1 ::int); w^.n := x;
x^.v := 2 ; x^.n := y;
y^.v := 3 ; y^.n := z;
z^.v := 4 ; x^.n := z
{w^.n^.n^.v = 4}

by vcg-simp

end

14 Examples of verifications of pointer programs
theory Pointer-ExamplesAbort

imports HeapSyntaxAbort
begin

14.1 Verifications
14.1.1 List reversal

Interestingly, this proof is the same as for the unguarded program:
lemma VARS tl p q r
{List tl p Ps ∧ List tl q Qs ∧ set Ps ∩ set Qs = {}}
WHILE p 6= Null
INV {∃ ps qs. List tl p ps ∧ List tl q qs ∧ set ps ∩ set qs = {} ∧

rev ps @ qs = rev Ps @ Qs}
DO r := p; (p 6= Null → p := p^.tl); r^.tl := q; q := r OD
{List tl q (rev Ps @ Qs)}

apply vcg-simp
apply fastforce

apply(fastforce intro:notin-List-update[THEN iffD2 ])
done
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end

15 Proof of the Schorr-Waite graph marking algo-
rithm

theory SchorrWaite
imports HeapSyntax

begin

15.1 Machinery for the Schorr-Waite proof
definition

— Relations induced by a mapping
rel :: ( ′a ⇒ ′a ref ) ⇒ ( ′a × ′a) set
where rel m = {(x,y). m x = Ref y}

definition
relS :: ( ′a ⇒ ′a ref ) set ⇒ ( ′a × ′a) set
where relS M = (

⋃
m ∈ M . rel m)

definition
addrs :: ′a ref set ⇒ ′a set
where addrs P = {a. Ref a ∈ P}

definition
reachable :: ( ′a × ′a) set ⇒ ′a ref set ⇒ ′a set
where reachable r P = (r∗ ‘‘ addrs P)

lemmas rel-defs = relS-def rel-def

Rewrite rules for relations induced by a mapping
lemma self-reachable: b ∈ B =⇒ b ∈ R∗ ‘‘ B
apply blast
done

lemma oneStep-reachable: b ∈ R‘‘B =⇒ b ∈ R∗ ‘‘ B
apply blast
done

lemma still-reachable: [[B⊆Ra∗‘‘A; ∀ (x,y) ∈ Rb−Ra. y∈ (Ra∗‘‘A)]] =⇒ Rb∗ ‘‘ B
⊆ Ra∗ ‘‘ A
apply (clarsimp simp only:Image-iff )
apply (erule rtrancl-induct)
apply blast

apply (subgoal-tac (y, z) ∈ Ra∪(Rb−Ra))
apply (erule UnE)
apply (auto intro:rtrancl-into-rtrancl)
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apply blast
done

lemma still-reachable-eq: [[ A⊆Rb∗‘‘B; B⊆Ra∗‘‘A; ∀ (x,y) ∈ Ra−Rb. y ∈(Rb∗‘‘B);
∀ (x,y) ∈ Rb−Ra. y∈ (Ra∗‘‘A)]] =⇒ Ra∗‘‘A = Rb∗‘‘B
apply (rule equalityI )
apply (erule still-reachable ,assumption)+

done

lemma reachable-null: reachable mS {Null} = {}
apply (simp add: reachable-def addrs-def )
done

lemma reachable-empty: reachable mS {} = {}
apply (simp add: reachable-def addrs-def )
done

lemma reachable-union: (reachable mS aS ∪ reachable mS bS) = reachable mS (aS
∪ bS)
apply (simp add: reachable-def rel-defs addrs-def )
apply blast
done

lemma reachable-union-sym: reachable r (insert a aS) = (r∗ ‘‘ addrs {a}) ∪ reach-
able r aS
apply (simp add: reachable-def rel-defs addrs-def )
apply blast
done

lemma rel-upd1 : (a,b) /∈ rel (r(q:=t)) =⇒ (a,b) ∈ rel r =⇒ a=q
apply (rule classical)
apply (simp add:rel-defs fun-upd-apply)
done

lemma rel-upd2 : (a,b) /∈ rel r =⇒ (a,b) ∈ rel (r(q:=t)) =⇒ a=q
apply (rule classical)
apply (simp add:rel-defs fun-upd-apply)
done

definition
— Restriction of a relation
restr ::( ′a × ′a) set ⇒ ( ′a ⇒ bool) ⇒ ( ′a × ′a) set
(‹(‹notation=‹mixfix relation restriction››-/ | -)› [50 , 51 ] 50 )

where restr r m = {(x,y). (x,y) ∈ r ∧ ¬ m x}

Rewrite rules for the restriction of a relation
lemma restr-identity[simp]:
(∀ x. ¬ m x) =⇒ (R |m) = R

by (auto simp add:restr-def )
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lemma restr-rtrancl[simp]: [[m l]] =⇒ (R | m)∗ ‘‘ {l} = {l}
by (auto simp add:restr-def elim:converse-rtranclE)

lemma [simp]: [[m l]] =⇒ (l,x) ∈ (R | m)∗ = (l=x)
by (auto simp add:restr-def elim:converse-rtranclE)

lemma restr-upd: ((rel (r (q := t)))|(m(q := True))) = ((rel (r))|(m(q := True)))

apply (auto simp:restr-def rel-def fun-upd-apply)
apply (rename-tac a b)
apply (case-tac a=q)
apply auto

done

lemma restr-un: ((r ∪ s)|m) = (r |m) ∪ (s|m)
by (auto simp add:restr-def )

lemma rel-upd3 : (a, b) /∈ (r |(m(q := t))) =⇒ (a,b) ∈ (r |m) =⇒ a = q
apply (rule classical)
apply (simp add:restr-def fun-upd-apply)
done

definition
— A short form for the stack mapping function for List
S :: ( ′a ⇒ bool) ⇒ ( ′a ⇒ ′a ref ) ⇒ ( ′a ⇒ ′a ref ) ⇒ ( ′a ⇒ ′a ref )
where S c l r = (λx. if c x then r x else l x)

Rewrite rules for Lists using S as their mapping
lemma [rule-format,simp]:
∀ p. a /∈ set stack −→ List (S c l r) p stack = List (S (c(a:=x)) (l(a:=y))

(r(a:=z))) p stack
apply(induct-tac stack)
apply(simp add:fun-upd-apply S-def )+

done

lemma [rule-format,simp]:
∀ p. a /∈ set stack −→ List (S c l (r(a:=z))) p stack = List (S c l r) p stack

apply(induct-tac stack)
apply(simp add:fun-upd-apply S-def )+

done

lemma [rule-format,simp]:
∀ p. a /∈ set stack −→ List (S c (l(a:=z)) r) p stack = List (S c l r) p stack

apply(induct-tac stack)
apply(simp add:fun-upd-apply S-def )+

done

lemma [rule-format,simp]:
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∀ p. a /∈ set stack −→ List (S (c(a:=z)) l r) p stack = List (S c l r) p stack
apply(induct-tac stack)
apply(simp add:fun-upd-apply S-def )+

done

primrec
— Recursive definition of what is means for a the graph/stack structure to be

reconstructible
stkOk :: ( ′a ⇒ bool) ⇒ ( ′a ⇒ ′a ref ) ⇒ ( ′a ⇒ ′a ref ) ⇒ ( ′a ⇒ ′a ref ) ⇒ ( ′a ⇒

′a ref ) ⇒ ′a ref ⇒ ′a list ⇒ bool
where

stkOk-nil: stkOk c l r iL iR t [] = True
| stkOk-cons:

stkOk c l r iL iR t (p#stk) = (stkOk c l r iL iR (Ref p) (stk) ∧
iL p = (if c p then l p else t) ∧
iR p = (if c p then t else r p))

Rewrite rules for stkOk
lemma [simp]:

∧
t. [[ x /∈ set xs; Ref x 6=t ]] =⇒

stkOk (c(x := f )) l r iL iR t xs = stkOk c l r iL iR t xs
apply (induct xs)
apply (auto simp:eq-sym-conv)

done

lemma [simp]:
∧

t. [[ x /∈ set xs; Ref x 6=t ]] =⇒
stkOk c (l(x := g)) r iL iR t xs = stkOk c l r iL iR t xs

apply (induct xs)
apply (auto simp:eq-sym-conv)

done

lemma [simp]:
∧

t. [[ x /∈ set xs; Ref x 6=t ]] =⇒
stkOk c l (r(x := g)) iL iR t xs = stkOk c l r iL iR t xs

apply (induct xs)
apply (auto simp:eq-sym-conv)

done

lemma stkOk-r-rewrite [simp]:
∧

x. x /∈ set xs =⇒
stkOk c l (r(x := g)) iL iR (Ref x) xs = stkOk c l r iL iR (Ref x) xs

apply (induct xs)
apply (auto simp:eq-sym-conv)

done

lemma [simp]:
∧

x. x /∈ set xs =⇒
stkOk c (l(x := g)) r iL iR (Ref x) xs = stkOk c l r iL iR (Ref x) xs

apply (induct xs)
apply (auto simp:eq-sym-conv)

done

lemma [simp]:
∧

x. x /∈ set xs =⇒

54



stkOk (c(x := g)) l r iL iR (Ref x) xs = stkOk c l r iL iR (Ref x) xs
apply (induct xs)
apply (auto simp:eq-sym-conv)

done

15.2 The Schorr-Waite algorithm
theorem SchorrWaiteAlgorithm:
VARS c m l r t p q root
{R = reachable (relS {l, r}) {root} ∧ (∀ x. ¬ m x) ∧ iR = r ∧ iL = l}
t := root; p := Null;
WHILE p 6= Null ∨ t 6= Null ∧ ¬ t^.m
INV {∃ stack.

List (S c l r) p stack ∧ — i1
(∀ x ∈ set stack. m x) ∧ — i2
R = reachable (relS{l, r}) {t,p} ∧ — i3
(∀ x. x ∈ R ∧ ¬m x −→ — i4

x ∈ reachable (relS{l,r}|m) ({t}∪set(map r stack))) ∧
(∀ x. m x −→ x ∈ R) ∧ — i5
(∀ x. x /∈ set stack −→ r x = iR x ∧ l x = iL x) ∧ — i6
(stkOk c l r iL iR t stack) — i7}

DO IF t = Null ∨ t^.m
THEN IF p^.c

THEN q := t; t := p; p := p^.r ; t^.r := q — pop
ELSE q := t; t := p^.r ; p^.r := p^.l; — swing

p^.l := q; p^.c := True FI
ELSE q := p; p := t; t := t^.l; p^.l := q; — push

p^.m := True; p^.c := False FI OD
{(∀ x. (x ∈ R) = m x) ∧ (r = iR ∧ l = iL) }
(is Valid

{(c, m, l, r , t, p, q, root). ?Pre c m l r root}
(Seq - (Seq - (While {(c, m, l, r , t, p, q, root). ?whileB m t p} -)))
(Aseq - (Aseq - (Awhile {(c, m, l, r , t, p, q, root). ?inv c m l r t p} - -))) -)

proof (vcg)
{

fix c m l r t p q root
assume ?Pre c m l r root
thus ?inv c m l r root Null by (auto simp add: reachable-def addrs-def )

next
fix c m l r t p q
let ∃ stack. ?Inv stack = ?inv c m l r t p
assume a: ?inv c m l r t p ∧ ¬(p 6= Null ∨ t 6= Null ∧ ¬ t^.m)
then obtain stack where inv: ?Inv stack by blast
from a have pNull: p = Null and tDisj: t=Null ∨ (t 6=Null ∧ t^.m ) by auto
let ?I1 ∧ - ∧ - ∧ ?I4 ∧ ?I5 ∧ ?I6 ∧ - = ?Inv stack
from inv have i1 : ?I1 and i4 : ?I4 and i5 : ?I5 and i6 : ?I6 by simp+
from pNull i1 have stackEmpty: stack = [] by simp
from tDisj i4 have RisMarked[rule-format]: ∀ x. x ∈ R −→ m x by(auto

simp: reachable-def addrs-def stackEmpty)
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from i5 i6 show (∀ x.(x ∈ R) = m x) ∧ r = iR ∧ l = iL by(auto simp:
stackEmpty fun-eq-iff intro:RisMarked)

next
fix c m l r t p q root
let ∃ stack. ?Inv stack = ?inv c m l r t p
let ∃ stack. ?popInv stack = ?inv c m l (r(p → t)) p (p^.r)
let ∃ stack. ?swInv stack =

?inv (c(p → True)) m (l(p → t)) (r(p → p^.l)) (p^.r) p
let ∃ stack. ?puInv stack =

?inv (c(t → False)) (m(t → True)) (l(t → p)) r (t^.l) t
let ?ifB1 = (t = Null ∨ t^.m)
let ?ifB2 = p^.c

assume (∃ stack.?Inv stack) ∧ ?whileB m t p
then obtain stack where inv: ?Inv stack and whileB: ?whileB m t p by blast
let ?I1 ∧ ?I2 ∧ ?I3 ∧ ?I4 ∧ ?I5 ∧ ?I6 ∧ ?I7 = ?Inv stack
from inv have i1 : ?I1 and i2 : ?I2 and i3 : ?I3 and i4 : ?I4

and i5 : ?I5 and i6 : ?I6 and i7 : ?I7 by simp+
have stackDist: distinct (stack) using i1 by (rule List-distinct)

show (?ifB1 −→ (?ifB2 −→ (∃ stack.?popInv stack)) ∧
(¬?ifB2 −→ (∃ stack.?swInv stack)) ) ∧

(¬?ifB1 −→ (∃ stack.?puInv stack))
proof −

{
assume ifB1 : t = Null ∨ t^.m and ifB2 : p^.c
from ifB1 whileB have pNotNull: p 6= Null by auto
then obtain addr-p where addr-p-eq: p = Ref addr-p by auto
with i1 obtain stack-tl where stack-eq: stack = (addr p) # stack-tl

by auto
with i2 have m-addr-p: p^.m by auto
have stackDist: distinct (stack) using i1 by (rule List-distinct)
from stack-eq stackDist have p-notin-stack-tl: addr p /∈ set stack-tl by simp
let ?poI1∧ ?poI2∧ ?poI3∧ ?poI4∧ ?poI5∧ ?poI6∧ ?poI7 = ?popInv stack-tl
have ?popInv stack-tl
proof −

— List property is maintained:
from i1 p-notin-stack-tl ifB2
have poI1 : List (S c l (r(p → t))) (p^.r) stack-tl

by(simp add: addr-p-eq stack-eq, simp add: S-def )

moreover
— Everything on the stack is marked:
from i2 have poI2 : ∀ x ∈ set stack-tl. m x by (simp add:stack-eq)
moreover

— Everything is still reachable:
let (R = reachable ?Ra ?A) = ?I3
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let ?Rb = (relS {l, r(p → t)})
let ?B = {p, p^.r}
— Our goal is R = reachable ?Rb ?B.
have ?Ra∗ ‘‘ addrs ?A = ?Rb∗ ‘‘ addrs ?B (is ?L = ?R)
proof

show ?L ⊆ ?R
proof (rule still-reachable)
show addrs ?A ⊆ ?Rb∗ ‘‘ addrs ?B by(fastforce simp:addrs-def relS-def

rel-def addr-p-eq
intro:oneStep-reachable Image-iff [THEN iffD2 ])
show ∀ (x,y) ∈ ?Ra−?Rb. y ∈ (?Rb∗ ‘‘ addrs ?B) by (clarsimp

simp:relS-def )
(fastforce simp add:rel-def Image-iff addrs-def dest:rel-upd1 )

qed
show ?R ⊆ ?L
proof (rule still-reachable)

show addrs ?B ⊆ ?Ra∗ ‘‘ addrs ?A
by(fastforce simp:addrs-def rel-defs addr-p-eq

intro:oneStep-reachable Image-iff [THEN iffD2 ])
next

show ∀ (x, y)∈?Rb−?Ra. y∈(?Ra∗‘‘addrs ?A)
by (clarsimp simp:relS-def )

(fastforce simp add:rel-def Image-iff addrs-def dest:rel-upd2 )
qed

qed
with i3 have poI3 : R = reachable ?Rb ?B by (simp add:reachable-def )
moreover

— If it is reachable and not marked, it is still reachable using...
let ∀ x. x ∈ R ∧ ¬ m x −→ x ∈ reachable ?Ra ?A = ?I4
let ?Rb = relS {l, r(p → t)} | m
let ?B = {p} ∪ set (map (r(p → t)) stack-tl)
— Our goal is ∀ x. x ∈ R ∧ ¬ m x −→ x ∈ reachable ?Rb ?B.
let ?T = {t, p^.r}

have ?Ra∗ ‘‘ addrs ?A ⊆ ?Rb∗ ‘‘ (addrs ?B ∪ addrs ?T )
proof (rule still-reachable)

have rewrite: ∀ s∈set stack-tl. (r(p → t)) s = r s
by (auto simp add:p-notin-stack-tl intro:fun-upd-other)

show addrs ?A ⊆ ?Rb∗ ‘‘ (addrs ?B ∪ addrs ?T )
by (fastforce cong:map-cong simp:stack-eq addrs-def rewrite in-

tro:self-reachable)
show ∀ (x, y)∈?Ra−?Rb. y∈(?Rb∗‘‘(addrs ?B ∪ addrs ?T ))

by (clarsimp simp:restr-def relS-def )
(fastforce simp add:rel-def Image-iff addrs-def dest:rel-upd1 )

qed
— We now bring a term from the right to the left of the subset relation.
hence subset: ?Ra∗ ‘‘ addrs ?A − ?Rb∗ ‘‘ addrs ?T ⊆ ?Rb∗ ‘‘ addrs ?B

by blast
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have poI4 : ∀ x. x ∈ R ∧ ¬ m x −→ x ∈ reachable ?Rb ?B
proof (rule allI , rule impI )

fix x
assume a: x ∈ R ∧ ¬ m x
— First, a disjunction on r (addr p) used later in the proof
have pDisj:p^.r = Null ∨ (p^.r 6= Null ∧ p^.r^.m) using poI1 poI2

by auto
— x belongs to the left hand side of subset:
have incl: x ∈ ?Ra∗‘‘addrs ?A using a i4 by (simp only:reachable-def ,

clarsimp)
have excl: x /∈ ?Rb∗‘‘ addrs ?T using pDisj ifB1 a by (auto simp

add:addrs-def )
— And therefore also belongs to the right hand side of subset,
— which corresponds to our goal.

from incl excl subset show x ∈ reachable ?Rb ?B by (auto simp
add:reachable-def )

qed
moreover

— If it is marked, then it is reachable
from i5 have poI5 : ∀ x. m x −→ x ∈ R .
moreover

— If it is not on the stack, then its l and r fields are unchanged
from i7 i6 ifB2
have poI6 : ∀ x. x /∈ set stack-tl −→ (r(p → t)) x = iR x ∧ l x = iL x

by(auto simp: addr-p-eq stack-eq fun-upd-apply)

moreover

— If it is on the stack, then its l and r fields can be reconstructed
from p-notin-stack-tl i7 have poI7 : stkOk c l (r(p → t)) iL iR p stack-tl

by (clarsimp simp:stack-eq addr-p-eq)

ultimately show ?popInv stack-tl by simp
qed
hence ∃ stack. ?popInv stack ..

}
moreover

— Proofs of the Swing and Push arm follow.
— Since they are in principle simmilar to the Pop arm proof,
— we show fewer comments and use frequent pattern matching.
{

— Swing arm
assume ifB1 : ?ifB1 and nifB2 : ¬?ifB2
from ifB1 whileB have pNotNull: p 6= Null by clarsimp
then obtain addr-p where addr-p-eq: p = Ref addr-p by clarsimp
with i1 obtain stack-tl where stack-eq: stack = (addr p) # stack-tl by
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clarsimp
with i2 have m-addr-p: p^.m by clarsimp
from stack-eq stackDist have p-notin-stack-tl: (addr p) /∈ set stack-tl

by simp
let ?swI1∧?swI2∧?swI3∧?swI4∧?swI5∧?swI6∧?swI7 = ?swInv stack
have ?swInv stack
proof −

— List property is maintained:
from i1 p-notin-stack-tl nifB2
have swI1 : ?swI1

by (simp add:addr-p-eq stack-eq, simp add:S-def )
moreover

— Everything on the stack is marked:
from i2
have swI2 : ?swI2 .
moreover

— Everything is still reachable:
let R = reachable ?Ra ?A = ?I3
let R = reachable ?Rb ?B = ?swI3
have ?Ra∗ ‘‘ addrs ?A = ?Rb∗ ‘‘ addrs ?B
proof (rule still-reachable-eq)

show addrs ?A ⊆ ?Rb∗ ‘‘ addrs ?B
by(fastforce simp:addrs-def rel-defs addr-p-eq intro:oneStep-reachable

Image-iff [THEN iffD2 ])
next

show addrs ?B ⊆ ?Ra∗ ‘‘ addrs ?A
by(fastforce simp:addrs-def rel-defs addr-p-eq intro:oneStep-reachable

Image-iff [THEN iffD2 ])
next

show ∀ (x, y)∈?Ra−?Rb. y∈(?Rb∗‘‘addrs ?B)
by (clarsimp simp:relS-def ) (fastforce simp add:rel-def Image-iff addrs-def

fun-upd-apply dest:rel-upd1 )
next

show ∀ (x, y)∈?Rb−?Ra. y∈(?Ra∗‘‘addrs ?A)
by (clarsimp simp:relS-def ) (fastforce simp add:rel-def Image-iff addrs-def

fun-upd-apply dest:rel-upd2 )
qed
with i3
have swI3 : ?swI3 by (simp add:reachable-def )
moreover

— If it is reachable and not marked, it is still reachable using...
let ∀ x. x ∈ R ∧ ¬ m x −→ x ∈ reachable ?Ra ?A = ?I4
let ∀ x. x ∈ R ∧ ¬ m x −→ x ∈ reachable ?Rb ?B = ?swI4
let ?T = {t}
have ?Ra∗‘‘addrs ?A ⊆ ?Rb∗‘‘(addrs ?B ∪ addrs ?T )
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proof (rule still-reachable)
have rewrite: (∀ s∈set stack-tl. (r(addr p := l(addr p))) s = r s)

by (auto simp add:p-notin-stack-tl intro:fun-upd-other)
show addrs ?A ⊆ ?Rb∗ ‘‘ (addrs ?B ∪ addrs ?T )

by (fastforce cong:map-cong simp:stack-eq addrs-def rewrite in-
tro:self-reachable)

next
show ∀ (x, y)∈?Ra−?Rb. y∈(?Rb∗‘‘(addrs ?B ∪ addrs ?T ))
by (clarsimp simp:relS-def restr-def ) (fastforce simp add:rel-def Image-iff

addrs-def fun-upd-apply dest:rel-upd1 )
qed
then have subset: ?Ra∗‘‘addrs ?A − ?Rb∗‘‘addrs ?T ⊆ ?Rb∗‘‘addrs ?B

by blast
have ?swI4
proof (rule allI , rule impI )

fix x
assume a: x ∈ R ∧¬ m x
with i4 addr-p-eq stack-eq have inc: x ∈ ?Ra∗‘‘addrs ?A

by (simp only:reachable-def , clarsimp)
with ifB1 a
have exc: x /∈ ?Rb∗‘‘ addrs ?T

by (auto simp add:addrs-def )
from inc exc subset show x ∈ reachable ?Rb ?B

by (auto simp add:reachable-def )
qed
moreover

— If it is marked, then it is reachable
from i5
have ?swI5 .
moreover

— If it is not on the stack, then its l and r fields are unchanged
from i6 stack-eq
have ?swI6

by clarsimp
moreover

— If it is on the stack, then its l and r fields can be reconstructed
from stackDist i7 nifB2
have ?swI7

by (clarsimp simp:addr-p-eq stack-eq)

ultimately show ?thesis by auto
qed
then have ∃ stack. ?swInv stack by blast

}
moreover
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{
— Push arm
assume nifB1 : ¬?ifB1
from nifB1 whileB have tNotNull: t 6= Null by clarsimp
then obtain addr-t where addr-t-eq: t = Ref addr-t by clarsimp
with i1 obtain new-stack where new-stack-eq: new-stack = (addr t) #

stack by clarsimp
from tNotNull nifB1 have n-m-addr-t: ¬ (t^.m) by clarsimp
with i2 have t-notin-stack: (addr t) /∈ set stack by blast
let ?puI1∧?puI2∧?puI3∧?puI4∧?puI5∧?puI6∧?puI7 = ?puInv new-stack
have ?puInv new-stack
proof −

— List property is maintained:
from i1 t-notin-stack
have puI1 : ?puI1

by (simp add:addr-t-eq new-stack-eq, simp add:S-def )
moreover

— Everything on the stack is marked:
from i2
have puI2 : ?puI2

by (simp add:new-stack-eq fun-upd-apply)
moreover

— Everything is still reachable:
let R = reachable ?Ra ?A = ?I3
let R = reachable ?Rb ?B = ?puI3
have ?Ra∗ ‘‘ addrs ?A = ?Rb∗ ‘‘ addrs ?B
proof (rule still-reachable-eq)

show addrs ?A ⊆ ?Rb∗ ‘‘ addrs ?B
by(fastforce simp:addrs-def rel-defs addr-t-eq intro:oneStep-reachable

Image-iff [THEN iffD2 ])
next

show addrs ?B ⊆ ?Ra∗ ‘‘ addrs ?A
by(fastforce simp:addrs-def rel-defs addr-t-eq intro:oneStep-reachable

Image-iff [THEN iffD2 ])
next

show ∀ (x, y)∈?Ra−?Rb. y∈(?Rb∗‘‘addrs ?B)
by (clarsimp simp:relS-def ) (fastforce simp add:rel-def Image-iff addrs-def

dest:rel-upd1 )
next

show ∀ (x, y)∈?Rb−?Ra. y∈(?Ra∗‘‘addrs ?A)
by (clarsimp simp:relS-def ) (fastforce simp add:rel-def Image-iff addrs-def

fun-upd-apply dest:rel-upd2 )
qed
with i3
have puI3 : ?puI3 by (simp add:reachable-def )
moreover
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— If it is reachable and not marked, it is still reachable using...
let ∀ x. x ∈ R ∧ ¬ m x −→ x ∈ reachable ?Ra ?A = ?I4
let ∀ x. x ∈ R ∧ ¬ ?new-m x −→ x ∈ reachable ?Rb ?B = ?puI4
let ?T = {t}
have ?Ra∗‘‘addrs ?A ⊆ ?Rb∗‘‘(addrs ?B ∪ addrs ?T )
proof (rule still-reachable)

show addrs ?A ⊆ ?Rb∗ ‘‘ (addrs ?B ∪ addrs ?T )
by (fastforce simp:new-stack-eq addrs-def intro:self-reachable)

next
show ∀ (x, y)∈?Ra−?Rb. y∈(?Rb∗‘‘(addrs ?B ∪ addrs ?T ))

by (clarsimp simp:relS-def new-stack-eq restr-un restr-upd)
(fastforce simp add:rel-def Image-iff restr-def addrs-def fun-upd-apply

addr-t-eq dest:rel-upd3 )
qed
then have subset: ?Ra∗‘‘addrs ?A − ?Rb∗‘‘addrs ?T ⊆ ?Rb∗‘‘addrs ?B

by blast
have ?puI4
proof (rule allI , rule impI )

fix x
assume a: x ∈ R ∧ ¬ ?new-m x
have xDisj: x=(addr t) ∨ x 6=(addr t) by simp
with i4 a have inc: x ∈ ?Ra∗‘‘addrs ?A
by (fastforce simp:addr-t-eq addrs-def reachable-def intro:self-reachable)

have exc: x /∈ ?Rb∗‘‘ addrs ?T
using xDisj a n-m-addr-t
by (clarsimp simp add:addrs-def addr-t-eq)

from inc exc subset show x ∈ reachable ?Rb ?B
by (auto simp add:reachable-def )

qed
moreover

— If it is marked, then it is reachable
from i5
have ?puI5

by (auto simp:addrs-def i3 reachable-def addr-t-eq fun-upd-apply in-
tro:self-reachable)

moreover

— If it is not on the stack, then its l and r fields are unchanged
from i6
have ?puI6

by (simp add:new-stack-eq)
moreover

— If it is on the stack, then its l and r fields can be reconstructed
from stackDist i6 t-notin-stack i7
have ?puI7 by (clarsimp simp:addr-t-eq new-stack-eq)
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ultimately show ?thesis by auto
qed
then have ∃ stack. ?puInv stack by blast

}
ultimately show ?thesis by blast

qed
}

qed

end

16 Heap abstractions for Separation Logic
(at the moment only Path and List)
theory SepLogHeap

imports Main
begin

type-synonym heap = (nat ⇒ nat option)

Some means allocated, None means free. Address 0 serves as the null
reference.

16.1 Paths in the heap
primrec Path :: heap ⇒ nat ⇒ nat list ⇒ nat ⇒ bool
where

Path h x [] y = (x = y)
| Path h x (a#as) y = (x 6=0 ∧ a=x ∧ (∃ b. h x = Some b ∧ Path h b as y))

lemma [iff ]: Path h 0 xs y = (xs = [] ∧ y = 0 )
by (cases xs) simp-all

lemma [simp]: x 6=0 =⇒ Path h x as z =
(as = [] ∧ z = x ∨ (∃ y bs. as = x#bs ∧ h x = Some y & Path h y bs z))

by (cases as) auto

lemma [simp]:
∧

x. Path f x (as@bs) z = (∃ y. Path f x as y ∧ Path f y bs z)
by (induct as) auto

lemma Path-upd[simp]:∧
x. u /∈ set as =⇒ Path (f (u := v)) x as y = Path f x as y

by (induct as) simp-all

16.2 Lists on the heap
definition List :: heap ⇒ nat ⇒ nat list ⇒ bool
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where List h x as = Path h x as 0

lemma [simp]: List h x [] = (x = 0 )
by (simp add: List-def )

lemma [simp]:
List h x (a#as) = (x 6=0 ∧ a=x ∧ (∃ y. h x = Some y ∧ List h y as))

by (simp add: List-def )

lemma [simp]: List h 0 as = (as = [])
by (cases as) simp-all

lemma List-non-null: a 6=0 =⇒
List h a as = (∃ b bs. as = a#bs ∧ h a = Some b ∧ List h b bs)

by (cases as) simp-all

theorem notin-List-update[simp]:∧
x. a /∈ set as =⇒ List (h(a := y)) x as = List h x as

by (induct as) simp-all

lemma List-unique:
∧

x bs. List h x as =⇒ List h x bs =⇒ as = bs
by (induct as) (auto simp add:List-non-null)

lemma List-unique1 : List h p as =⇒ ∃ !as. List h p as
by (blast intro: List-unique)

lemma List-app:
∧

x. List h x (as@bs) = (∃ y. Path h x as y ∧ List h y bs)
by (induct as) auto

lemma List-hd-not-in-tl[simp]: List h b as =⇒ h a = Some b =⇒ a /∈ set as
apply (clarsimp simp add:in-set-conv-decomp)
apply(frule List-app[THEN iffD1 ])
apply(fastforce dest: List-unique)
done

lemma List-distinct[simp]:
∧

x. List h x as =⇒ distinct as
by (induct as) (auto dest:List-hd-not-in-tl)

lemma list-in-heap:
∧

p. List h p ps =⇒ set ps ⊆ dom h
by (induct ps) auto

lemma list-ortho-sum1 [simp]:∧
p. [[ List h1 p ps; dom h1 ∩ dom h2 = {}]] =⇒ List (h1++h2 ) p ps

by (induct ps) (auto simp add:map-add-def split:option.split)

lemma list-ortho-sum2 [simp]:∧
p. [[ List h2 p ps; dom h1 ∩ dom h2 = {}]] =⇒ List (h1++h2 ) p ps

by (induct ps) (auto simp add:map-add-def split:option.split)
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end

17 Separation logic
theory Separation

imports Hoare-Logic-Abort SepLogHeap
begin

The semantic definition of a few connectives:
definition ortho :: heap ⇒ heap ⇒ bool (infix ‹⊥› 55 )

where h1 ⊥ h2 ←→ dom h1 ∩ dom h2 = {}

definition is-empty :: heap ⇒ bool
where is-empty h ←→ h = Map.empty

definition singl:: heap ⇒ nat ⇒ nat ⇒ bool
where singl h x y ←→ dom h = {x} & h x = Some y

definition star :: (heap ⇒ bool) ⇒ (heap ⇒ bool) ⇒ (heap ⇒ bool)
where star P Q = (λh. ∃ h1 h2 . h = h1++h2 ∧ h1 ⊥ h2 ∧ P h1 ∧ Q h2 )

definition wand:: (heap ⇒ bool) ⇒ (heap ⇒ bool) ⇒ (heap ⇒ bool)
where wand P Q = (λh. ∀ h ′. h ′ ⊥ h ∧ P h ′ −→ Q(h++h ′))

This is what assertions look like without any syntactic sugar:
lemma VARS x y z w h
{star (%h. singl h x y) (%h. singl h z w) h}
SKIP
{x 6= z}

apply vcg
apply(auto simp:star-def ortho-def singl-def )
done

Now we add nice input syntax. To suppress the heap parameter of the
connectives, we assume it is always called H and add/remove it upon pars-
ing/printing. Thus every pointer program needs to have a program variable
H, and assertions should not contain any locally bound Hs - otherwise they
may bind the implicit H.
syntax
-emp :: bool (‹emp›)
-singl :: nat ⇒ nat ⇒ bool (‹(‹open-block notation=‹mixfix singl››[- 7→ -])›)
-star :: bool ⇒ bool ⇒ bool (infixl ‹∗∗› 60 )
-wand :: bool ⇒ bool ⇒ bool (infixl ‹−∗› 60 )

syntax-consts
-emp ⇀↽ is-empty and
-singl ⇀↽ singl and
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-star ⇀↽ star and
-wand ⇀↽ wand

ML ‹
— free-tr takes care of free vars in the scope of separation logic connectives: they
are implicitly applied to the heap
fun free-tr(t as Free -) = t $ Syntax.free H
/|//////////////free-tr((list////as/////////////////Free(List,-))$///p//$/////ps)///=/////list//$//////////////Syntax.free////H//$//p///$///ps
| free-tr t = t

fun emp-tr [] = Syntax.const const-syntax ‹is-empty› $ Syntax.free H
| emp-tr ts = raise TERM (emp-tr, ts);

fun singl-tr [p, q] = Syntax.const const-syntax ‹singl› $ Syntax.free H $ p $ q
| singl-tr ts = raise TERM (singl-tr, ts);

fun star-tr [P,Q] = Syntax.const const-syntax ‹star› $
absfree (H, dummyT ) (free-tr P) $ absfree (H, dummyT ) (free-tr Q) $
Syntax.free H

| star-tr ts = raise TERM (star-tr, ts);
fun wand-tr [P, Q] = Syntax.const const-syntax ‹wand› $

absfree (H, dummyT ) P $ absfree (H, dummyT ) Q $ Syntax.free H
| wand-tr ts = raise TERM (wand-tr, ts);

›

parse-translation ‹
[(syntax-const ‹-emp›, K emp-tr),
(syntax-const ‹-singl›, K singl-tr),
(syntax-const ‹-star›, K star-tr),
(syntax-const ‹-wand›, K wand-tr)]

›

Now it looks much better:
lemma VARS H x y z w
{[x 7→y] ∗∗ [z 7→w]}
SKIP
{x 6= z}

apply vcg
apply(auto simp:star-def ortho-def singl-def )
done

lemma VARS H x y z w
{emp ∗∗ emp}
SKIP
{emp}

apply vcg
apply(auto simp:star-def ortho-def is-empty-def )
done

But the output is still unreadable. Thus we also strip the heap parame-
ters upon output:
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ML ‹
local

fun strip (Abs(-,-,(t as Const(-free,-) $ Free -) $ Bound 0 )) = t
| strip (Abs(-,-,(t as Free -) $ Bound 0 )) = t

/|//////strip/////////////////(Abs(-,-,((list////as///////////////////Const(List,-))$/////////Bound///0//$//p///$///////ps)))///=////////////list$p$ps
| strip (Abs(-,-,(t as Const(-var,-) $ Var -) $ Bound 0 )) = t
| strip (Abs(-,-,P)) = P
| strip (Const(const-syntax ‹is-empty›,-)) = Syntax.const syntax-const ‹-emp›
| strip t = t;

in

fun is-empty-tr ′ [-] = Syntax.const syntax-const ‹-emp›
fun singl-tr ′ [-,p,q] = Syntax.const syntax-const ‹-singl› $ p $ q
fun star-tr ′ [P,Q,-] = Syntax.const syntax-const ‹-star› $ strip P $ strip Q
fun wand-tr ′ [P,Q,-] = Syntax.const syntax-const ‹-wand› $ strip P $ strip Q

end
›

print-translation ‹
[(const-syntax ‹is-empty›, K is-empty-tr ′),
(const-syntax ‹singl›, K singl-tr ′),
(const-syntax ‹star›, K star-tr ′),
(const-syntax ‹wand›, K wand-tr ′)]

›

Now the intermediate proof states are also readable:
lemma VARS H x y z w
{[x 7→y] ∗∗ [z 7→w]}
y := w
{x 6= z}

apply vcg
apply(auto simp:star-def ortho-def singl-def )
done

lemma VARS H x y z w
{emp ∗∗ emp}
SKIP
{emp}

apply vcg
apply(auto simp:star-def ortho-def is-empty-def )
done

So far we have unfolded the separation logic connectives in proofs. Here
comes a simple example of a program proof that uses a law of separation
logic instead.
lemma star-comm: P ∗∗ Q = Q ∗∗ P
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by(auto simp add:star-def ortho-def dest: map-add-comm)

lemma VARS H x y z w
{P ∗∗ Q}
SKIP
{Q ∗∗ P}

apply vcg
apply(simp add: star-comm)
done

lemma VARS H
{p 6=0 ∧ [p 7→ x] ∗∗ List H q qs}
H := H (p 7→ q)
{List H p (p#qs)}

apply vcg
apply(simp add: star-def ortho-def singl-def )
apply clarify
apply(subgoal-tac p /∈ set qs)
prefer 2
apply(blast dest:list-in-heap)

apply simp
done

lemma VARS H p q r
{List H p Ps ∗∗ List H q Qs}
WHILE p 6= 0
INV {∃ ps qs. (List H p ps ∗∗ List H q qs) ∧ rev ps @ qs = rev Ps @ Qs}
DO r := p; p := the(H p); H := H (r 7→ q); q := r OD
{List H q (rev Ps @ Qs)}

apply vcg
apply(simp-all add: star-def ortho-def singl-def )

apply fastforce

apply (clarsimp simp add:List-non-null)
apply(rename-tac ps ′)
apply(rule-tac x = ps ′ in exI )
apply(rule-tac x = p#qs in exI )
apply simp
apply(rule-tac x = h1 (p:=None) in exI )
apply(rule-tac x = h2 (p 7→q) in exI )
apply simp
apply(rule conjI )
apply(rule ext)
apply(simp add:map-add-def split:option.split)

apply(rule conjI )
apply blast

apply(simp add:map-add-def split:option.split)
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apply(rule conjI )
apply(subgoal-tac p /∈ set qs)
prefer 2
apply(blast dest:list-in-heap)

apply(simp)
apply fast

apply(fastforce)
done

end
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