
Notable Examples in Isabelle/HOL

January 18, 2026

Contents
1 Ad Hoc Overloading 3

1.1 Plain Ad Hoc Overloading . 4
1.2 Adhoc Overloading inside Locales 5

2 Permutation Types 6

3 A Tail-Recursive, Stack-Based Ackermann’s Function 8
3.1 Example of proving termination by reasoning about the domain 8
3.2 Example of proving termination using a multiset ordering . . 10

4 Cantor’s Theorem 11
4.1 Mathematical statement and proof 11
4.2 Automated proofs . 11
4.3 Elementary version in higher-order predicate logic 11
4.4 Classic Isabelle/HOL example 12

5 Coherent Logic Problems 12
5.1 Equivalence of two versions of Pappus’ Axiom 12
5.2 Preservation of the Diamond Property under reflexive closure 14

6 Some Isar command definitions 14
6.1 Diagnostic command: no state change 14
6.2 Old-style global theory declaration 14
6.3 Local theory specification . 15

7 The Drinker’s Principle 15

8 Examples of function definitions 16
8.1 Very basic . 16
8.2 Currying . 16
8.3 Nested recursion . 16

8.3.1 Here comes McCarthy’s 91-function 17

1

8.3.2 Here comes Takeuchi’s function 17
8.4 More general patterns . 18

8.4.1 Overlapping patterns 18
8.4.2 Guards . 18

8.5 Mutual Recursion . 18
8.6 Definitions in local contexts 19
8.7 fun_cases . 20

8.7.1 Predecessor . 20
8.7.2 List to option . 20
8.7.3 Boolean Functions . 20
8.7.4 Many parameters . 21

8.8 Partial Function Definitions 21
8.9 Regression tests . 21

8.9.1 Context recursion . 22
8.9.2 A combination of context and nested recursion 22
8.9.3 Context, but no recursive call 22
8.9.4 Tupled nested recursion 22
8.9.5 Let . 22
8.9.6 Abbreviations . 22
8.9.7 Simple Higher-Order Recursion 23
8.9.8 Pattern matching on records 23
8.9.9 The diagonal function 23
8.9.10 Many equations (quadratic blowup) 23
8.9.11 Automatic pattern splitting 24
8.9.12 Polymorphic partial-function 24

9 Gauss Numbers: integral gauss numbers 24
9.1 Basic arithmetic . 25
9.2 The Gauss Number i . 26
9.3 Gauss Conjugation . 28
9.4 Algebraic division . 30

10 Groebner Basis Examples 31
10.1 Basic examples . 31
10.2 Lemmas for Lagrange’s theorem 32
10.3 Colinearity is invariant by rotation 33

11 Example of Declaring an Oracle 33
11.1 Oracle declaration . 33
11.2 Oracle as low-level rule . 33
11.3 Oracle as proof method . 34

12 Examples of automatically derived induction rules 34
12.1 Some simple induction principles on nat 34

2

13 Textbook-style reasoning: the Knaster-Tarski Theorem 35
13.1 Prose version . 35
13.2 Formal versions . 35

14 Isabelle/ML basics 36
14.1 ML expressions . 36
14.2 Antiquotations . 36
14.3 Recursive ML evaluation . 37
14.4 IDE support . 37
14.5 Example: factorial and ackermann function in Isabelle/ML . 37
14.6 Parallel Isabelle/ML . 37
14.7 Function specifications in Isabelle/HOL 38

15 Peirce’s Law 38

16 Using extensible records in HOL – points and coloured points 39
16.1 Points . 39

16.1.1 Introducing concrete records and record schemes . . . 40
16.1.2 Record selection and record update 40
16.1.3 Some lemmas about records 40

16.2 Coloured points: record extension 41
16.2.1 Non-coercive structural subtyping 42

16.3 Other features . 42
16.4 Simprocs for update and equality 43
16.5 A more complex record expression 45
16.6 Some code generation . 45

17 The rewrite Proof Method by Example 45

18 Finite sequences 50

19 Square roots of primes are irrational 50

1 Ad Hoc Overloading
theory Adhoc_Overloading
imports

Main
HOL−Library.Infinite_Set

begin

Adhoc overloading allows to overload a constant depending on its type. Typ-
ically this involves to introduce an uninterpreted constant (used for input
and output) and then add some variants (used internally).

3

1.1 Plain Ad Hoc Overloading

Consider the type of first-order terms.
datatype (′a, ′b) term =

Var ′b |
Fun ′a (′a, ′b) term list

The set of variables of a term might be computed as follows.
fun term_vars :: (′a, ′b) term ⇒ ′b set where

term_vars (Var x) = {x} |
term_vars (Fun f ts) =

⋃
(set (map term_vars ts))

However, also for rules (i.e., pairs of terms) and term rewrite systems (i.e.,
sets of rules), the set of variables makes sense. Thus we introduce an un-
specified constant vars.
consts vars :: ′a ⇒ ′b set

Which is then overloaded with variants for terms, rules, and TRSs.
adhoc_overloading

vars
 term_vars

value [nbe] vars (Fun ′′f ′′ [Var 0 , Var 1])

fun rule_vars :: (′a, ′b) term × (′a, ′b) term ⇒ ′b set where
rule_vars (l, r) = vars l ∪ vars r

adhoc_overloading
vars
 rule_vars

value [nbe] vars (Var 1 , Var 0)

definition trs_vars :: ((′a, ′b) term × (′a, ′b) term) set ⇒ ′b set where
trs_vars R =

⋃
(rule_vars ‘ R)

adhoc_overloading
vars
 trs_vars

value [nbe] vars {(Var 1 , Var 0)}

Sometimes it is necessary to add explicit type constraints before a variant
can be determined.
value vars (R :: ((′a, ′b) term × (′a, ′b) term) set)

It is also possible to remove variants.
no_adhoc_overloading

vars
 term_vars rule_vars

4

As stated earlier, the overloaded constant is only used for input and output.
Internally, always a variant is used, as can be observed by the configuration
option show_variants.
adhoc_overloading

vars
 term_vars

declare [[show_variants]]

term vars (Var 1)

1.2 Adhoc Overloading inside Locales

As example we use permutations that are parametrized over an atom type
′a.
definition perms :: (′a ⇒ ′a) set where

perms = {f . bij f ∧ finite {x. f x 6= x}}

typedef ′a perm = perms :: (′a ⇒ ′a) set
〈proof 〉

First we need some auxiliary lemmas.
lemma permsI [Pure.intro]:

assumes bij f and MOST x. f x = x
shows f ∈ perms
〈proof 〉

lemma perms_imp_bij:
f ∈ perms =⇒ bij f
〈proof 〉

lemma perms_imp_MOST_eq:
f ∈ perms =⇒ MOST x . f x = x
〈proof 〉

lemma id_perms [simp]:
id ∈ perms
(λx. x) ∈ perms
〈proof 〉

lemma perms_comp [simp]:
assumes f : f ∈ perms and g: g ∈ perms
shows (f ◦ g) ∈ perms
〈proof 〉

lemma perms_inv:
assumes f : f ∈ perms
shows inv f ∈ perms
〈proof 〉

5

lemma bij_Rep_perm: bij (Rep_perm p)
〈proof 〉

instantiation perm :: (type) group_add
begin

definition 0 = Abs_perm id
definition − p = Abs_perm (inv (Rep_perm p))
definition p + q = Abs_perm (Rep_perm p ◦ Rep_perm q)
definition (p1 :: ′a perm) − p2 = p1 + − p2

lemma Rep_perm_0 : Rep_perm 0 = id
〈proof 〉

lemma Rep_perm_add:
Rep_perm (p1 + p2) = Rep_perm p1 ◦ Rep_perm p2
〈proof 〉

lemma Rep_perm_uminus:
Rep_perm (− p) = inv (Rep_perm p)
〈proof 〉

instance
〈proof 〉

end

lemmas Rep_perm_simps =
Rep_perm_0
Rep_perm_add
Rep_perm_uminus

2 Permutation Types

We want to be able to apply permutations to arbitrary types. To this end
we introduce a constant PERMUTE together with convenient infix syntax.
consts PERMUTE :: ′a perm ⇒ ′b ⇒ ′b (infixr ‹·› 75)

Then we add a locale for types ′b that support appliciation of permutations.
locale permute =

fixes permute :: ′a perm ⇒ ′b ⇒ ′b
assumes permute_zero [simp]: permute 0 x = x

and permute_plus [simp]: permute (p + q) x = permute p (permute q x)
begin

adhoc_overloading
PERMUTE
 permute

6

end

Permuting atoms.
definition permute_atom :: ′a perm ⇒ ′a ⇒ ′a where

permute_atom p a = (Rep_perm p) a

adhoc_overloading
PERMUTE
 permute_atom

interpretation atom_permute: permute permute_atom
〈proof 〉

Permuting permutations.
definition permute_perm :: ′a perm ⇒ ′a perm ⇒ ′a perm where

permute_perm p q = p + q − p

adhoc_overloading
PERMUTE
 permute_perm

interpretation perm_permute: permute permute_perm
〈proof 〉

Permuting functions.
locale fun_permute =

dom: permute perm1 + ran: permute perm2
for perm1 :: ′a perm ⇒ ′b ⇒ ′b
and perm2 :: ′a perm ⇒ ′c ⇒ ′c

begin

adhoc_overloading
PERMUTE
 perm1 perm2

definition permute_fun :: ′a perm ⇒ (′b ⇒ ′c) ⇒ (′b ⇒ ′c) where
permute_fun p f = (λx. p · (f (−p · x)))

adhoc_overloading
PERMUTE
 permute_fun

end

sublocale fun_permute ⊆ permute permute_fun
〈proof 〉

lemma (Abs_perm id :: nat perm) · Suc 0 = Suc 0
〈proof 〉

interpretation atom_fun_permute: fun_permute permute_atom permute_atom
〈proof 〉

7

adhoc_overloading
PERMUTE
 atom_fun_permute.permute_fun

lemma (Abs_perm id :: ′a perm) · id = id
〈proof 〉

end

3 A Tail-Recursive, Stack-Based Ackermann’s Func-
tion

theory Ackermann
imports HOL−Library.Multiset_Order HOL−Library.Product_Lexorder

begin

This theory investigates a stack-based implementation of Ackermann’s func-
tion. Let’s recall the traditional definition, as modified by Péter Rózsa and
Raphael Robinson.
fun ack :: [nat, nat] ⇒ nat

where
ack 0 n = Suc n
| ack (Suc m) 0 = ack m 1
| ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

3.1 Example of proving termination by reasoning about the
domain

The stack-based version uses lists.
function (domintros) ackloop :: nat list ⇒ nat

where
ackloop (n # 0 # l) = ackloop (Suc n # l)
| ackloop (0 # Suc m # l) = ackloop (1 # m # l)
| ackloop (Suc n # Suc m # l) = ackloop (n # Suc m # m # l)
| ackloop [m] = m
| ackloop [] = 0
〈proof 〉

The key task is to prove termination. In the first recursive call, the head
of the list gets bigger while the list gets shorter, suggesting that the length
of the list should be the primary termination criterion. But in the third
recursive call, the list gets longer. The idea of trying a multiset-based ter-
mination argument is frustrated by the second recursive call when m = 0 :
the list elements are simply permuted.
Fortunately, the function definition package allows us to define a function
and only later identify its domain of termination. Instead, it makes all the

8

recursion equations conditional on satisfying the function’s domain predi-
cate. Here we shall eventually be able to show that the predicate is always
satisfied.

ackloop_dom (Suc n # l) =⇒ ackloop_dom (n # 0 # l)
ackloop_dom (Suc 0 # m # l) =⇒ ackloop_dom (0 # Suc m # l)
ackloop_dom (n # Suc m # m # l) =⇒ ackloop_dom (Suc n # Suc m # l)
ackloop_dom [m]
ackloop_dom []

declare ackloop.domintros [simp]

Termination is trivial if the length of the list is less then two. The following
lemma is the key to proving termination for longer lists.
lemma ackloop_dom (ack m n # l) =⇒ ackloop_dom (n # m # l)
〈proof 〉

The proof above (which actually is unused) can be expressed concisely as
follows.
lemma ackloop_dom_longer :

ackloop_dom (ack m n # l) =⇒ ackloop_dom (n # m # l)
〈proof 〉

This function codifies what ackloop is designed to do. Proving the two
functions equivalent also shows that ackloop can be used to compute Acker-
mann’s function.
fun acklist :: nat list ⇒ nat

where
acklist (n#m#l) = acklist (ack m n # l)
| acklist [m] = m
| acklist [] = 0

The induction rule for acklist is

[[
∧

n m l. P (ack m n # l) =⇒ P (n # m # l);
∧

m. P [m]; P []]] =⇒ P a0

.
lemma ackloop_dom: ackloop_dom l
〈proof 〉

termination ackloop
〈proof 〉

This result is trivial even by inspection of the function definitions (which
faithfully follow the definition of Ackermann’s function). All that we needed
was termination.

9

lemma ackloop_acklist: ackloop l = acklist l
〈proof 〉

theorem ack: ack m n = ackloop [n,m]
〈proof 〉

3.2 Example of proving termination using a multiset order-
ing

This termination proof uses the argument from Nachum Dershowitz and Zo-
har Manna. Proving termination with multiset orderings. Communications
of the ACM 22 (8) 1979, 465–476.

Setting up the termination proof. Note that Dershowitz had z as a global
variable. The top two stack elements are treated differently from the rest.
fun ack_mset :: nat list ⇒ (nat×nat) multiset

where
ack_mset [] = {#}
| ack_mset [x] = {#}
| ack_mset (z#y#l) = mset ((y,z) # map (λx. (Suc x, 0)) l)

lemma case1 : ack_mset (Suc n # l) < add_mset (0 ,n) {# (Suc x, 0). x ∈#
mset l #}
〈proof 〉

The stack-based version again. We need a fresh copy because we’ve already
proved the termination of ackloop.
function Ackloop :: nat list ⇒ nat

where
Ackloop (n # 0 # l) = Ackloop (Suc n # l)
| Ackloop (0 # Suc m # l) = Ackloop (1 # m # l)
| Ackloop (Suc n # Suc m # l) = Ackloop (n # Suc m # m # l)
| Ackloop [m] = m
| Ackloop [] = 0
〈proof 〉

In each recursive call, the function ack_mset decreases according to the
multiset ordering.
termination
〈proof 〉

Another shortcut compared with before: equivalence follows directly from
this lemma.
lemma Ackloop_ack: Ackloop (n # m # l) = Ackloop (ack m n # l)
〈proof 〉

theorem ack m n = Ackloop [n,m]

10

〈proof 〉

end

4 Cantor’s Theorem
theory Cantor

imports Main
begin

4.1 Mathematical statement and proof

Cantor’s Theorem states that there is no surjection from a set to its powerset.
The proof works by diagonalization. E.g. see

• http://mathworld.wolfram.com/CantorDiagonalMethod.html

• https://en.wikipedia.org/wiki/Cantor’s_diagonal_argument

theorem Cantor : @ f :: ′a ⇒ ′a set. ∀A. ∃ x. A = f x
〈proof 〉

4.2 Automated proofs

These automated proofs are much shorter, but lack information why and
how it works.
theorem @ f :: ′a ⇒ ′a set. ∀A. ∃ x. f x = A
〈proof 〉

theorem @ f :: ′a ⇒ ′a set. ∀A. ∃ x. f x = A
〈proof 〉

4.3 Elementary version in higher-order predicate logic

The subsequent formulation bypasses set notation of HOL; it uses elemen-
tary λ-calculus and predicate logic, with standard introduction and elim-
ination rules. This also shows that the proof does not require classical
reasoning.
lemma iff_contradiction:

assumes ∗: ¬ A ←→ A
shows False
〈proof 〉

theorem Cantor ′: @ f :: ′a ⇒ ′a ⇒ bool. ∀A. ∃ x. A = f x
〈proof 〉

11

http://mathworld.wolfram.com/CantorDiagonalMethod.html
https://en.wikipedia.org/wiki/Cantor's_diagonal_argument

4.4 Classic Isabelle/HOL example

The following treatment of Cantor’s Theorem follows the classic example
from the early 1990s, e.g. see the file 92/HOL/ex/set.ML in Isabelle92 or
[2, §18.7]. The old tactic scripts synthesize key information of the proof by
refinement of schematic goal states. In contrast, the Isar proof needs to say
explicitly what is proven.

Cantor’s Theorem states that every set has more subsets than it has ele-
ments. It has become a favourite basic example in pure higher-order logic
since it is so easily expressed:

∀ f ::α ⇒ α ⇒ bool. ∃S ::α ⇒ bool. ∀ x::α. f x 6= S

Viewing types as sets, α ⇒ bool represents the powerset of α. This version
of the theorem states that for every function from α to its powerset, some
subset is outside its range. The Isabelle/Isar proofs below uses HOL’s set
theory, with the type α set and the operator range :: (α ⇒ β) ⇒ β set.
theorem ∃S . S /∈ range (f :: ′a ⇒ ′a set)
〈proof 〉

How much creativity is required? As it happens, Isabelle can prove this theo-
rem automatically using best-first search. Depth-first search would diverge,
but best-first search successfully navigates through the large search space.
The context of Isabelle’s classical prover contains rules for the relevant con-
structs of HOL’s set theory.
theorem ∃S . S /∈ range (f :: ′a ⇒ ′a set)
〈proof 〉

end

5 Coherent Logic Problems
theory Coherent
imports Main
begin

5.1 Equivalence of two versions of Pappus’ Axiom
no_notation comp (infixl ‹o› 55)
unbundle no relcomp_syntax

lemma p1p2 :
assumes col a b c l ∧ col d e f m

and col b f g n ∧ col c e g o
and col b d h p ∧ col a e h q

12

and col c d i r ∧ col a f i s
and el n o =⇒ goal
and el p q =⇒ goal
and el s r =⇒ goal
and

∧
A. el A A =⇒ pl g A =⇒ pl h A =⇒ pl i A =⇒ goal

and
∧

A B C D. col A B C D =⇒ pl A D
and

∧
A B C D. col A B C D =⇒ pl B D

and
∧

A B C D. col A B C D =⇒ pl C D
and

∧
A B. pl A B =⇒ ep A A

and
∧

A B. ep A B =⇒ ep B A
and

∧
A B C . ep A B =⇒ ep B C =⇒ ep A C

and
∧

A B. pl A B =⇒ el B B
and

∧
A B. el A B =⇒ el B A

and
∧

A B C . el A B =⇒ el B C =⇒ el A C
and

∧
A B C . ep A B =⇒ pl B C =⇒ pl A C

and
∧

A B C . pl A B =⇒ el B C =⇒ pl A C
and

∧
A B C D E F G H I J K L M N O P Q.

col A B C D =⇒ col E F G H =⇒ col B G I J =⇒ col C F I K =⇒
col B E L M =⇒ col A F L N =⇒ col C E O P =⇒ col A G O Q =⇒
(∃ R. col I L O R) ∨ pl A H ∨ pl B H ∨ pl C H ∨ pl E D ∨ pl F D ∨ pl

G D
and

∧
A B C D. pl A B =⇒ pl A C =⇒ pl D B =⇒ pl D C =⇒ ep A D ∨ el

B C
and

∧
A B. ep A A =⇒ ep B B =⇒ ∃C . pl A C ∧ pl B C

shows goal 〈proof 〉

lemma p2p1 :
assumes col a b c l ∧ col d e f m

and col b f g n ∧ col c e g o
and col b d h p ∧ col a e h q
and col c d i r ∧ col a f i s
and pl a m =⇒ goal
and pl b m =⇒ goal
and pl c m =⇒ goal
and pl d l =⇒ goal
and pl e l =⇒ goal
and pl f l =⇒ goal
and

∧
A. pl g A =⇒ pl h A =⇒ pl i A =⇒ goal

and
∧

A B C D. col A B C D =⇒ pl A D
and

∧
A B C D. col A B C D =⇒ pl B D

and
∧

A B C D. col A B C D =⇒ pl C D
and

∧
A B. pl A B =⇒ ep A A

and
∧

A B. ep A B =⇒ ep B A
and

∧
A B C . ep A B =⇒ ep B C =⇒ ep A C

and
∧

A B. pl A B =⇒ el B B
and

∧
A B. el A B =⇒ el B A

and
∧

A B C . el A B =⇒ el B C =⇒ el A C
and

∧
A B C . ep A B =⇒ pl B C =⇒ pl A C

and
∧

A B C . pl A B =⇒ el B C =⇒ pl A C

13

and
∧

A B C D E F G H I J K L M N O P Q.
col A B C J =⇒ col D E F K =⇒ col B F G L =⇒ col C E G M =⇒
col B D H N =⇒ col A E H O =⇒ col C D I P =⇒ col A F I Q =⇒
(∃ R. col G H I R) ∨ el L M ∨ el N O ∨ el P Q

and
∧

A B C D. pl C A =⇒ pl C B =⇒ pl D A =⇒ pl D B =⇒ ep C D ∨ el
A B

and
∧

A B C . ep A A =⇒ ep B B =⇒ ∃C . pl A C ∧ pl B C
shows goal 〈proof 〉

5.2 Preservation of the Diamond Property under reflexive
closure

lemma diamond:
assumes reflexive_rewrite a b reflexive_rewrite a c

and
∧

A. reflexive_rewrite b A =⇒ reflexive_rewrite c A =⇒ goal
and

∧
A. equalish A A

and
∧

A B. equalish A B =⇒ equalish B A
and

∧
A B C . equalish A B =⇒ reflexive_rewrite B C =⇒ reflexive_rewrite A

C
and

∧
A B. equalish A B =⇒ reflexive_rewrite A B

and
∧

A B. rewrite A B =⇒ reflexive_rewrite A B
and

∧
A B. reflexive_rewrite A B =⇒ equalish A B ∨ rewrite A B

and
∧

A B C . rewrite A B =⇒ rewrite A C =⇒ ∃D. rewrite B D ∧ rewrite C
D

shows goal 〈proof 〉

end

6 Some Isar command definitions
theory Commands
imports Main
keywords

print_test :: diag and
global_test :: thy_decl and
local_test :: thy_decl

begin

6.1 Diagnostic command: no state change
〈ML〉

print_test x
print_test λx. x = a

6.2 Old-style global theory declaration
〈ML〉

14

global_test a
global_test b
print_test a

6.3 Local theory specification
〈ML〉

local_test true = True
print_test true
thm true_def

local_test identity = λx. x
print_test identity x
thm identity_def

context fixes x y :: nat
begin

local_test test = x + y
print_test test
thm test_def

end

print_test test 0 1
thm test_def

end

7 The Drinker’s Principle
theory Drinker

imports Main
begin

Here is another example of classical reasoning: the Drinker’s Principle says
that for some person, if he is drunk, everybody else is drunk!
We first prove a classical part of de-Morgan’s law.
lemma de_Morgan:

assumes ¬ (∀ x. P x)
shows ∃ x. ¬ P x
〈proof 〉

theorem Drinker ′s_Principle: ∃ x. drunk x −→ (∀ x. drunk x)
〈proof 〉

end

15

8 Examples of function definitions
theory Functions
imports Main HOL−Library.Monad_Syntax
begin

8.1 Very basic
fun fib :: nat ⇒ nat
where

fib 0 = 1
| fib (Suc 0) = 1
| fib (Suc (Suc n)) = fib n + fib (Suc n)

Partial simp and induction rules:
thm fib.psimps
thm fib.pinduct

There is also a cases rule to distinguish cases along the definition:
thm fib.cases

Total simp and induction rules:
thm fib.simps
thm fib.induct

Elimination rules:
thm fib.elims

8.2 Currying
fun add
where

add 0 y = y
| add (Suc x) y = Suc (add x y)

thm add.simps
thm add.induct — Note the curried induction predicate

8.3 Nested recursion
function nz
where

nz 0 = 0
| nz (Suc x) = nz (nz x)
〈proof 〉

lemma nz_is_zero: — A lemma we need to prove termination
assumes trm: nz_dom x
shows nz x = 0

16

〈proof 〉

termination nz
〈proof 〉

thm nz.simps
thm nz.induct

8.3.1 Here comes McCarthy’s 91-function
function f91 :: nat ⇒ nat
where

f91 n = (if 100 < n then n − 10 else f91 (f91 (n + 11)))
〈proof 〉

Prove a lemma before attempting a termination proof:
lemma f91_estimate:

assumes trm: f91_dom n
shows n < f91 n + 11
〈proof 〉

termination
〈proof 〉

Now trivial (even though it does not belong here):
lemma f91 n = (if 100 < n then n − 10 else 91)
〈proof 〉

8.3.2 Here comes Takeuchi’s function
definition tak_m1 where tak_m1 = (λ(x,y,z). if x ≤ y then 0 else 1)
definition tak_m2 where tak_m2 = (λ(x,y,z). nat (Max {x, y, z} − Min {x, y,
z}))
definition tak_m3 where tak_m3 = (λ(x,y,z). nat (x − Min {x, y, z}))

function tak :: int ⇒ int ⇒ int ⇒ int where
tak x y z = (if x ≤ y then y else tak (tak (x−1) y z) (tak (y−1) z x) (tak (z−1)

x y))
〈proof 〉

lemma tak_pcorrect:
tak_dom (x, y, z) =⇒ tak x y z = (if x ≤ y then y else if y ≤ z then z else x)
〈proof 〉

termination
〈proof 〉

theorem tak_correct: tak x y z = (if x ≤ y then y else if y ≤ z then z else x)
〈proof 〉

17

8.4 More general patterns
8.4.1 Overlapping patterns

Currently, patterns must always be compatible with each other, since no
automatic splitting takes place. But the following definition of GCD is OK,
although patterns overlap:
fun gcd2 :: nat ⇒ nat ⇒ nat
where

gcd2 x 0 = x
| gcd2 0 y = y
| gcd2 (Suc x) (Suc y) = (if x < y then gcd2 (Suc x) (y − x)

else gcd2 (x − y) (Suc y))

thm gcd2 .simps
thm gcd2 .induct

8.4.2 Guards

We can reformulate the above example using guarded patterns:
function gcd3 :: nat ⇒ nat ⇒ nat
where

gcd3 x 0 = x
| gcd3 0 y = y
| gcd3 (Suc x) (Suc y) = gcd3 (Suc x) (y − x) if x < y
| gcd3 (Suc x) (Suc y) = gcd3 (x − y) (Suc y) if ¬ x < y
〈proof 〉

termination 〈proof 〉

thm gcd3 .simps
thm gcd3 .induct

General patterns allow even strange definitions:
function ev :: nat ⇒ bool
where

ev (2 ∗ n) = True
| ev (2 ∗ n + 1) = False
〈proof 〉
termination 〈proof 〉

thm ev.simps
thm ev.induct
thm ev.cases

8.5 Mutual Recursion
fun evn od :: nat ⇒ bool
where

18

evn 0 = True
| od 0 = False
| evn (Suc n) = od n
| od (Suc n) = evn n

thm evn.simps
thm od.simps

thm evn_od.induct
thm evn_od.termination

thm evn.elims
thm od.elims

8.6 Definitions in local contexts
locale my_monoid =

fixes opr :: ′a ⇒ ′a ⇒ ′a
and un :: ′a

assumes assoc: opr (opr x y) z = opr x (opr y z)
and lunit: opr un x = x
and runit: opr x un = x

begin

fun foldR :: ′a list ⇒ ′a
where

foldR [] = un
| foldR (x # xs) = opr x (foldR xs)

fun foldL :: ′a list ⇒ ′a
where

foldL [] = un
| foldL [x] = x
| foldL (x # y # ys) = foldL (opr x y # ys)

thm foldL.simps

lemma foldR_foldL: foldR xs = foldL xs
〈proof 〉

thm foldR_foldL

end

thm my_monoid.foldL.simps
thm my_monoid.foldR_foldL

19

8.7 fun_cases
8.7.1 Predecessor
fun pred :: nat ⇒ nat
where

pred 0 = 0
| pred (Suc n) = n

thm pred.elims

lemma
assumes pred x = y
obtains x = 0 y = 0 | n where x = Suc n y = n
〈proof 〉

If the predecessor of a number is 0, that number must be 0 or 1.
fun_cases pred0E [elim]: pred n = 0

lemma pred n = 0 =⇒ n = 0 ∨ n = Suc 0
〈proof 〉

Other expressions on the right-hand side also work, but whether the gener-
ated rule is useful depends on how well the simplifier can simplify it. This
example works well:
fun_cases pred42E [elim]: pred n = 42

lemma pred n = 42 =⇒ n = 43
〈proof 〉

8.7.2 List to option
fun list_to_option :: ′a list ⇒ ′a option
where

list_to_option [x] = Some x
| list_to_option _ = None

fun_cases list_to_option_NoneE : list_to_option xs = None
and list_to_option_SomeE : list_to_option xs = Some x

lemma list_to_option xs = Some y =⇒ xs = [y]
〈proof 〉

8.7.3 Boolean Functions
fun xor :: bool ⇒ bool ⇒ bool
where

xor False False = False
| xor True True = False
| xor _ _ = True

20

thm xor .elims

fun_cases does not only recognise function equations, but also works with
functions that return a boolean, e.g.:
fun_cases xor_TrueE : xor a b and xor_FalseE : ¬xor a b
print_theorems

8.7.4 Many parameters
fun sum4 :: nat ⇒ nat ⇒ nat ⇒ nat ⇒ nat

where sum4 a b c d = a + b + c + d

fun_cases sum40E : sum4 a b c d = 0

lemma sum4 a b c d = 0 =⇒ a = 0
〈proof 〉

8.8 Partial Function Definitions

Partial functions in the option monad:
partial_function (option)

collatz :: nat ⇒ nat list option
where

collatz n =
(if n ≤ 1 then Some [n]
else if even n

then do { ns ← collatz (n div 2); Some (n # ns) }
else do { ns ← collatz (3 ∗ n + 1); Some (n # ns)})

declare collatz.simps[code]
value collatz 23

Tail-recursive functions:
partial_function (tailrec) fixpoint :: (′a ⇒ ′a) ⇒ ′a ⇒ ′a
where

fixpoint f x = (if f x = x then x else fixpoint f (f x))

8.9 Regression tests

The following examples mainly serve as tests for the function package.
fun listlen :: ′a list ⇒ nat
where

listlen [] = 0
| listlen (x#xs) = Suc (listlen xs)

21

8.9.1 Context recursion
fun f :: nat ⇒ nat
where

zero: f 0 = 0
| succ: f (Suc n) = (if f n = 0 then 0 else f n)

8.9.2 A combination of context and nested recursion
function h :: nat ⇒ nat
where

h 0 = 0
| h (Suc n) = (if h n = 0 then h (h n) else h n)
〈proof 〉

8.9.3 Context, but no recursive call
fun i :: nat ⇒ nat
where

i 0 = 0
| i (Suc n) = (if n = 0 then 0 else i n)

8.9.4 Tupled nested recursion
fun fa :: nat ⇒ nat ⇒ nat
where

fa 0 y = 0
| fa (Suc n) y = (if fa n y = 0 then 0 else fa n y)

8.9.5 Let
fun j :: nat ⇒ nat
where

j 0 = 0
| j (Suc n) = (let u = n in Suc (j u))

There were some problems with fresh names . . .
function k :: nat ⇒ nat
where

k x = (let a = x; b = x in k x)
〈proof 〉

function f2 :: (nat × nat) ⇒ (nat × nat)
where

f2 p = (let (x,y) = p in f2 (y,x))
〈proof 〉

8.9.6 Abbreviations
fun f3 :: ′a set ⇒ bool

22

where
f3 x = finite x

8.9.7 Simple Higher-Order Recursion
datatype ′a tree = Leaf ′a | Branch ′a tree list

fun treemap :: (′a ⇒ ′a) ⇒ ′a tree ⇒ ′a tree
where

treemap fn (Leaf n) = (Leaf (fn n))
| treemap fn (Branch l) = (Branch (map (treemap fn) l))

fun tinc :: nat tree ⇒ nat tree
where

tinc (Leaf n) = Leaf (Suc n)
| tinc (Branch l) = Branch (map tinc l)

fun testcase :: ′a tree ⇒ ′a list
where

testcase (Leaf a) = [a]
| testcase (Branch x) =

(let xs = concat (map testcase x);
ys = concat (map testcase x) in

xs @ ys)

8.9.8 Pattern matching on records
record point =

Xcoord :: int
Ycoord :: int

function swp :: point ⇒ point
where

swp (| Xcoord = x, Ycoord = y |) = (| Xcoord = y, Ycoord = x |)
〈proof 〉
termination 〈proof 〉

8.9.9 The diagonal function
fun diag :: bool ⇒ bool ⇒ bool ⇒ nat
where

diag x True False = 1
| diag False y True = 2
| diag True False z = 3
| diag True True True = 4
| diag False False False = 5

8.9.10 Many equations (quadratic blowup)
datatype DT =

23

A | B | C | D | E | F | G | H | I | J | K | L | M | N | P
| Q | R | S | T | U | V

fun big :: DT ⇒ nat
where

big A = 0
| big B = 0
| big C = 0
| big D = 0
| big E = 0
| big F = 0
| big G = 0
| big H = 0
| big I = 0
| big J = 0
| big K = 0
| big L = 0
| big M = 0
| big N = 0
| big P = 0
| big Q = 0
| big R = 0
| big S = 0
| big T = 0
| big U = 0
| big V = 0

8.9.11 Automatic pattern splitting
fun f4 :: nat ⇒ nat ⇒ bool
where

f4 0 0 = True
| f4 _ _ = False

8.9.12 Polymorphic partial-function
partial_function (option) f5 :: ′a list ⇒ ′a option
where

f5 x = f5 x

end

9 Gauss Numbers: integral gauss numbers
theory Gauss_Numbers

imports HOL−Library.Centered_Division
begin

codatatype gauss = Gauss (Re: int) (Im: int)

24

lemma gauss_eqI [intro?]:
‹x = y› if ‹Re x = Re y› ‹Im x = Im y›
〈proof 〉

lemma gauss_eq_iff :
‹x = y ←→ Re x = Re y ∧ Im x = Im y›
〈proof 〉

9.1 Basic arithmetic
instantiation gauss :: comm_ring_1
begin

primcorec zero_gauss :: ‹gauss›
where

‹Re 0 = 0 ›
| ‹Im 0 = 0 ›

primcorec one_gauss :: ‹gauss›
where

‹Re 1 = 1 ›
| ‹Im 1 = 0 ›

primcorec plus_gauss :: ‹gauss ⇒ gauss ⇒ gauss›
where

‹Re (x + y) = Re x + Re y›
| ‹Im (x + y) = Im x + Im y›

primcorec uminus_gauss :: ‹gauss ⇒ gauss›
where

‹Re (− x) = − Re x›
| ‹Im (− x) = − Im x›

primcorec minus_gauss :: ‹gauss ⇒ gauss ⇒ gauss›
where

‹Re (x − y) = Re x − Re y›
| ‹Im (x − y) = Im x − Im y›

primcorec times_gauss :: ‹gauss ⇒ gauss ⇒ gauss›
where

‹Re (x ∗ y) = Re x ∗ Re y − Im x ∗ Im y›
| ‹Im (x ∗ y) = Re x ∗ Im y + Im x ∗ Re y›

instance
〈proof 〉

end

25

lemma of_nat_gauss:
‹of_nat n = Gauss (int n) 0 ›
〈proof 〉

lemma numeral_gauss:
‹numeral n = Gauss (numeral n) 0 ›
〈proof 〉

lemma of_int_gauss:
‹of_int k = Gauss k 0 ›
〈proof 〉

lemma conversion_simps [simp]:
‹Re (numeral m) = numeral m›
‹Im (numeral m) = 0 ›
‹Re (of_nat n) = int n›
‹Im (of_nat n) = 0 ›
‹Re (of_int k) = k›
‹Im (of_int k) = 0 ›
〈proof 〉

lemma gauss_eq_0 :
‹z = 0 ←→ (Re z)2 + (Im z)2 = 0 ›
〈proof 〉

lemma gauss_neq_0 :
‹z 6= 0 ←→ (Re z)2 + (Im z)2 > 0 ›
〈proof 〉

lemma Re_sum [simp]:
‹Re (sum f s) = (

∑
x∈s. Re (f x))›

〈proof 〉

lemma Im_sum [simp]:
‹Im (sum f s) = (

∑
x∈s. Im (f x))›

〈proof 〉

instance gauss :: idom
〈proof 〉

9.2 The Gauss Number i

primcorec imaginary_unit :: gauss (‹i›)
where

‹Re i = 0 ›
| ‹Im i = 1 ›

lemma Gauss_eq:
‹Gauss a b = of_int a + i ∗ of_int b›

26

〈proof 〉

lemma gauss_eq:
‹a = of_int (Re a) + i ∗ of_int (Im a)›
〈proof 〉

lemma gauss_i_not_zero [simp]:
‹i 6= 0 ›
〈proof 〉

lemma gauss_i_not_one [simp]:
‹i 6= 1 ›
〈proof 〉

lemma gauss_i_not_numeral [simp]:
‹i 6= numeral n›
〈proof 〉

lemma gauss_i_not_neg_numeral [simp]:
‹i 6= − numeral n›
〈proof 〉

lemma i_mult_i_eq [simp]:
‹i ∗ i = − 1 ›
〈proof 〉

lemma gauss_i_mult_minus [simp]:
‹i ∗ (i ∗ x) = − x›
〈proof 〉

lemma i_squared [simp]:
‹i2 = − 1 ›
〈proof 〉

lemma i_even_power [simp]:
‹i ^ (n ∗ 2) = (− 1) ^ n›
〈proof 〉

lemma Re_i_times [simp]:
‹Re (i ∗ z) = − Im z›
〈proof 〉

lemma Im_i_times [simp]:
‹Im (i ∗ z) = Re z›
〈proof 〉

lemma i_times_eq_iff :
‹i ∗ w = z ←→ w = − (i ∗ z)›
〈proof 〉

27

lemma is_unit_i [simp]:
‹i dvd 1 ›
〈proof 〉

lemma gauss_numeral [code_post]:
‹Gauss 0 0 = 0 ›
‹Gauss 1 0 = 1 ›
‹Gauss (− 1) 0 = − 1 ›
‹Gauss (numeral n) 0 = numeral n›
‹Gauss (− numeral n) 0 = − numeral n›
‹Gauss 0 1 = i›
‹Gauss 0 (− 1) = − i›
‹Gauss 0 (numeral n) = numeral n ∗ i›
‹Gauss 0 (− numeral n) = − numeral n ∗ i›
‹Gauss 1 1 = 1 + i›
‹Gauss (− 1) 1 = − 1 + i›
‹Gauss (numeral n) 1 = numeral n + i›
‹Gauss (− numeral n) 1 = − numeral n + i›
‹Gauss 1 (− 1) = 1 − i›
‹Gauss 1 (numeral n) = 1 + numeral n ∗ i›
‹Gauss 1 (− numeral n) = 1 − numeral n ∗ i›
‹Gauss (− 1) (− 1) = − 1 − i›
‹Gauss (numeral n) (− 1) = numeral n − i›
‹Gauss (− numeral n) (− 1) = − numeral n − i›
‹Gauss (− 1) (numeral n) = − 1 + numeral n ∗ i›
‹Gauss (− 1) (− numeral n) = − 1 − numeral n ∗ i›
‹Gauss (numeral m) (numeral n) = numeral m + numeral n ∗ i›
‹Gauss (− numeral m) (numeral n) = − numeral m + numeral n ∗ i›
‹Gauss (numeral m) (− numeral n) = numeral m − numeral n ∗ i›
‹Gauss (− numeral m) (− numeral n) = − numeral m − numeral n ∗ i›
〈proof 〉

9.3 Gauss Conjugation
primcorec cnj :: ‹gauss ⇒ gauss›

where
‹Re (cnj z) = Re z›
| ‹Im (cnj z) = − Im z›

lemma gauss_cnj_cancel_iff [simp]:
‹cnj x = cnj y ←→ x = y›
〈proof 〉

lemma gauss_cnj_cnj [simp]:
‹cnj (cnj z) = z›
〈proof 〉

lemma gauss_cnj_zero [simp]:

28

‹cnj 0 = 0 ›
〈proof 〉

lemma gauss_cnj_zero_iff [iff]:
‹cnj z = 0 ←→ z = 0 ›
〈proof 〉

lemma gauss_cnj_one_iff [simp]:
‹cnj z = 1 ←→ z = 1 ›
〈proof 〉

lemma gauss_cnj_add [simp]:
‹cnj (x + y) = cnj x + cnj y›
〈proof 〉

lemma cnj_sum [simp]:
‹cnj (sum f s) = (

∑
x∈s. cnj (f x))›

〈proof 〉

lemma gauss_cnj_diff [simp]:
‹cnj (x − y) = cnj x − cnj y›
〈proof 〉

lemma gauss_cnj_minus [simp]:
‹cnj (− x) = − cnj x›
〈proof 〉

lemma gauss_cnj_one [simp]:
‹cnj 1 = 1 ›
〈proof 〉

lemma gauss_cnj_mult [simp]:
‹cnj (x ∗ y) = cnj x ∗ cnj y›
〈proof 〉

lemma cnj_prod [simp]:
‹cnj (prod f s) = (

∏
x∈s. cnj (f x))›

〈proof 〉

lemma gauss_cnj_power [simp]:
‹cnj (x ^ n) = cnj x ^ n›
〈proof 〉

lemma gauss_cnj_numeral [simp]:
‹cnj (numeral w) = numeral w›
〈proof 〉

lemma gauss_cnj_of_nat [simp]:
‹cnj (of_nat n) = of_nat n›

29

〈proof 〉

lemma gauss_cnj_of_int [simp]:
‹cnj (of_int z) = of_int z›
〈proof 〉

lemma gauss_cnj_i [simp]:
‹cnj i = − i›
〈proof 〉

lemma gauss_add_cnj:
‹z + cnj z = of_int (2 ∗ Re z)›
〈proof 〉

lemma gauss_diff_cnj:
‹z − cnj z = of_int (2 ∗ Im z) ∗ i›
〈proof 〉

lemma gauss_mult_cnj:
‹z ∗ cnj z = of_int ((Re z)2 + (Im z)2)›
〈proof 〉

lemma cnj_add_mult_eq_Re:
‹z ∗ cnj w + cnj z ∗ w = of_int (2 ∗ Re (z ∗ cnj w))›
〈proof 〉

lemma gauss_In_mult_cnj_zero [simp]:
‹Im (z ∗ cnj z) = 0 ›
〈proof 〉

9.4 Algebraic division
instantiation gauss :: idom_modulo
begin

primcorec divide_gauss :: ‹gauss ⇒ gauss ⇒ gauss›
where

‹Re (x div y) = (Re x ∗ Re y + Im x ∗ Im y) cdiv ((Re y)2 + (Im y)2)›
| ‹Im (x div y) = (Im x ∗ Re y − Re x ∗ Im y) cdiv ((Re y)2 + (Im y)2)›

primcorec modulo_gauss :: ‹gauss ⇒ gauss ⇒ gauss›
where

‹Re (x mod y) = Re x −
((Re x ∗ Re y + Im x ∗ Im y) cdiv ((Re y)2 + (Im y)2) ∗ Re y −
(Im x ∗ Re y − Re x ∗ Im y) cdiv ((Re y)2 + (Im y)2) ∗ Im y)›

| ‹Im (x mod y) = Im x −
((Re x ∗ Re y + Im x ∗ Im y) cdiv ((Re y)2 + (Im y)2) ∗ Im y +
(Im x ∗ Re y − Re x ∗ Im y) cdiv ((Re y)2 + (Im y)2) ∗ Re y)›

30

instance 〈proof 〉

end

instantiation gauss :: euclidean_ring
begin

definition euclidean_size_gauss :: ‹gauss ⇒ nat›
where ‹euclidean_size x = nat ((Re x)2 + (Im x)2)›

instance 〈proof 〉

end

end

10 Groebner Basis Examples
theory Groebner_Examples
imports Main
begin

10.1 Basic examples
lemma

fixes x :: int
shows x ^ 3 = x ^ 3
〈proof 〉

lemma
fixes x :: int
shows (x − (−2))^5 = x ^ 5 + (10 ∗ x ^ 4 + (40 ∗ x ^ 3 + (80 ∗ x2 + (80
∗ x + 32))))
〈proof 〉

schematic_goal
fixes x :: int
shows (x − (−2))^5 ∗ (y − 78) ^ 8 = ?X
〈proof 〉

lemma ((−3) ^ (Suc (Suc (Suc 0)))) == (X :: ′a::{comm_ring_1})
〈proof 〉

lemma ((x::int) + y)^3 − 1 = (x − z)^2 − 10 =⇒ x = z + 3 =⇒ x = − y
〈proof 〉

lemma (4 ::nat) + 4 = 3 + 5
〈proof 〉

31

lemma (4 ::int) + 0 = 4
〈proof 〉

lemma
assumes a ∗ x2 + b ∗ x + c = (0 ::int) and d ∗ x2 + e ∗ x + f = 0
shows d2 ∗ c2 − 2 ∗ d ∗ c ∗ a ∗ f + a2 ∗ f 2 − e ∗ d ∗ b ∗ c − e ∗ b ∗ a ∗ f +

a ∗ e2 ∗ c + f ∗ d ∗ b2 = 0
〈proof 〉

lemma (x::int)^3 − x^2 − 5∗x − 3 = 0 ←→ (x = 3 ∨ x = −1)
〈proof 〉

theorem x∗ (x2 − x − 5) − 3 = (0 ::int) ←→ (x = 3 ∨ x = −1)
〈proof 〉

lemma
fixes x:: ′a::idom
shows x2∗y = x2 & x∗y2 = y2 ←→ x = 1 & y = 1 | x = 0 & y = 0
〈proof 〉

10.2 Lemmas for Lagrange’s theorem
definition

sq :: ′a::times => ′a where
sq x == x∗x

lemma
fixes x1 :: ′a::{idom}
shows
(sq x1 + sq x2 + sq x3 + sq x4) ∗ (sq y1 + sq y2 + sq y3 + sq y4) =

sq (x1∗y1 − x2∗y2 − x3∗y3 − x4∗y4) +
sq (x1∗y2 + x2∗y1 + x3∗y4 − x4∗y3) +
sq (x1∗y3 − x2∗y4 + x3∗y1 + x4∗y2) +
sq (x1∗y4 + x2∗y3 − x3∗y2 + x4∗y1)
〈proof 〉

lemma
fixes p1 :: ′a::{idom}
shows
(sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) ∗
(sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2)
= sq (p1∗p2 − q1∗q2 − r1∗r2 − s1∗s2 − t1∗t2 − u1∗u2 − v1∗v2 − w1∗w2)

+
sq (p1∗q2 + q1∗p2 + r1∗s2 − s1∗r2 + t1∗u2 − u1∗t2 − v1∗w2 + w1∗v2)

+
sq (p1∗r2 − q1∗s2 + r1∗p2 + s1∗q2 + t1∗v2 + u1∗w2 − v1∗t2 − w1∗u2)

+
sq (p1∗s2 + q1∗r2 − r1∗q2 + s1∗p2 + t1∗w2 − u1∗v2 + v1∗u2 − w1∗t2)

+

32

sq (p1∗t2 − q1∗u2 − r1∗v2 − s1∗w2 + t1∗p2 + u1∗q2 + v1∗r2 + w1∗s2)
+

sq (p1∗u2 + q1∗t2 − r1∗w2 + s1∗v2 − t1∗q2 + u1∗p2 − v1∗s2 + w1∗r2)
+

sq (p1∗v2 + q1∗w2 + r1∗t2 − s1∗u2 − t1∗r2 + u1∗s2 + v1∗p2 − w1∗q2)
+

sq (p1∗w2 − q1∗v2 + r1∗u2 + s1∗t2 − t1∗s2 − u1∗r2 + v1∗q2 + w1∗p2)
〈proof 〉

10.3 Colinearity is invariant by rotation
type_synonym point = int × int

definition collinear ::point ⇒ point ⇒ point ⇒ bool where
collinear ≡ λ(Ax,Ay) (Bx,By) (Cx,Cy).
((Ax − Bx) ∗ (By − Cy) = (Ay − By) ∗ (Bx − Cx))

lemma collinear_inv_rotation:
assumes collinear (Ax, Ay) (Bx, By) (Cx, Cy) and c2 + s2 = 1
shows collinear (Ax ∗ c − Ay ∗ s, Ay ∗ c + Ax ∗ s)
(Bx ∗ c − By ∗ s, By ∗ c + Bx ∗ s) (Cx ∗ c − Cy ∗ s, Cy ∗ c + Cx ∗ s)
〈proof 〉

lemma ∃ (d::int). a∗y − a∗x = n∗d =⇒ ∃ u v. a∗u + n∗v = 1 =⇒ ∃ e. y − x =
n∗e
〈proof 〉

end

11 Example of Declaring an Oracle
theory Iff_Oracle

imports Main
begin

11.1 Oracle declaration

This oracle makes tautologies of the form P = (P = (P = P)). The length
is specified by an integer, which is checked to be even and positive.
〈ML〉

11.2 Oracle as low-level rule
〈ML〉
These oracle calls had better fail.
〈ML〉

33

11.3 Oracle as proof method
〈ML〉

lemma A ←→ A
〈proof 〉

lemma A ←→ A ←→ A ←→ A ←→ A ←→ A ←→ A ←→ A ←→ A ←→ A
〈proof 〉

lemma A ←→ A ←→ A ←→ A ←→ A
〈proof 〉

lemma A
〈proof 〉

end

12 Examples of automatically derived induction
rules

theory Induction_Schema
imports Main
begin

12.1 Some simple induction principles on nat
lemma nat_standard_induct:
[[P 0 ;

∧
n. P n =⇒ P (Suc n)]] =⇒ P x

〈proof 〉

lemma nat_induct2 :
[[P 0 ; P (Suc 0);

∧
k. P k ==> P (Suc k) ==> P (Suc (Suc k))]]

=⇒ P n
〈proof 〉

lemma minus_one_induct:
[[
∧

n::nat. (n 6= 0 =⇒ P (n − 1)) =⇒ P n]] =⇒ P x
〈proof 〉

theorem diff_induct:
(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
(!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n

〈proof 〉

lemma list_induct2 ′:
[[P [] [];∧

x xs. P (x#xs) [];

34

∧
y ys. P [] (y#ys);∧
x xs y ys. P xs ys =⇒ P (x#xs) (y#ys)]]

=⇒ P xs ys
〈proof 〉

theorem even_odd_induct:
assumes R 0
assumes Q 0
assumes

∧
n. Q n =⇒ R (Suc n)

assumes
∧

n. R n =⇒ Q (Suc n)
shows R n Q n
〈proof 〉

end

13 Textbook-style reasoning: the Knaster-Tarski
Theorem

theory Knaster_Tarski
imports Main

begin

unbundle lattice_syntax

13.1 Prose version

According to the textbook [1, pages 93–94], the Knaster-Tarski fixpoint the-
orem is as follows.1

The Knaster-Tarski Fixpoint Theorem. Let L be a complete lattice
and f : L → L an order-preserving map. Then

d
{x ∈ L | f (x) ≤ x} is a

fixpoint of f.
Proof. Let H = {x ∈ L | f (x) ≤ x} and a =

d
H. For all x ∈ H we have

a ≤ x, so f (a) ≤ f (x) ≤ x. Thus f (a) is a lower bound of H, whence f (a)
≤ a. We now use this inequality to prove the reverse one (!) and thereby
complete the proof that a is a fixpoint. Since f is order-preserving, f (f (a))
≤ f (a). This says f (a) ∈ H, so a ≤ f (a).

13.2 Formal versions

The Isar proof below closely follows the original presentation. Virtually all
of the prose narration has been rephrased in terms of formal Isar language
elements. Just as many textbook-style proofs, there is a strong bias towards
forward proof, and several bends in the course of reasoning.

1We have dualized the argument, and tuned the notation a little bit.

35

theorem Knaster_Tarski:
fixes f :: ′a::complete_lattice ⇒ ′a
assumes mono f
shows ∃ a. f a = a
〈proof 〉

Above we have used several advanced Isar language elements, such as ex-
plicit block structure and weak assumptions. Thus we have mimicked the
particular way of reasoning of the original text.
In the subsequent version the order of reasoning is changed to achieve struc-
tured top-down decomposition of the problem at the outer level, while only
the inner steps of reasoning are done in a forward manner. We are cer-
tainly more at ease here, requiring only the most basic features of the Isar
language.
theorem Knaster_Tarski ′:

fixes f :: ′a::complete_lattice ⇒ ′a
assumes mono f
shows ∃ a. f a = a
〈proof 〉

end

14 Isabelle/ML basics
theory ML

imports Main
begin

14.1 ML expressions

The Isabelle command ML allows to embed Isabelle/ML source into the
formal text. It is type-checked, compiled, and run within that environment.
Note that side-effects should be avoided, unless the intention is to change
global parameters of the run-time environment (rare).
ML top-level bindings are managed within the theory context.
〈ML〉

14.2 Antiquotations

There are some language extensions (via antiquotations), as explained in
the “Isabelle/Isar implementation manual”, chapter 0.
〈ML〉
Formal entities from the surrounding context may be referenced as follows:
term 1 + 1 — term within theory source

36

〈ML〉

14.3 Recursive ML evaluation
〈ML〉

14.4 IDE support

ML embedded into the Isabelle environment is connected to the Prover IDE.
Poly/ML provides:

• precise positions for warnings / errors

• markup for defining positions of identifiers

• markup for inferred types of sub-expressions

• pretty-printing of ML values with markup

• completion of ML names

• source-level debugger

〈ML〉

14.5 Example: factorial and ackermann function in Isabelle/ML
〈ML〉
See http://mathworld.wolfram.com/AckermannFunction.html.
〈ML〉

14.6 Parallel Isabelle/ML

Future.fork/join/cancel manage parallel evaluation.
Note that within Isabelle theory documents, the top-level command bound-
ary may not be transgressed without special precautions. This is normally
managed by the system when performing parallel proof checking.
〈ML〉
The Par_List module provides high-level combinators for parallel list oper-
ations.
〈ML〉

37

http://mathworld.wolfram.com/AckermannFunction.html

14.7 Function specifications in Isabelle/HOL
fun factorial :: nat ⇒ nat
where

factorial 0 = 1
| factorial (Suc n) = Suc n ∗ factorial n

term factorial 4 — symbolic term
value factorial 4 — evaluation via ML code generation in the background

declare [[ML_source_trace]]
〈ML〉

fun ackermann :: nat ⇒ nat ⇒ nat
where

ackermann 0 n = n + 1
| ackermann (Suc m) 0 = ackermann m 1
| ackermann (Suc m) (Suc n) = ackermann m (ackermann (Suc m) n)

value ackermann 3 5

end

15 Peirce’s Law
theory Peirce

imports Main
begin

We consider Peirce’s Law: ((A −→ B) −→ A) −→ A. This is an inherently
non-intuitionistic statement, so its proof will certainly involve some form of
classical contradiction.
The first proof is again a well-balanced combination of plain backward and
forward reasoning. The actual classical step is where the negated goal may
be introduced as additional assumption. This eventually leads to a contra-
diction.2

theorem ((A −→ B) −→ A) −→ A
〈proof 〉

In the subsequent version the reasoning is rearranged by means of “weak
assumptions” (as introduced by presume). Before assuming the negated
goal ¬ A, its intended consequence A −→ B is put into place in order to
solve the main problem. Nevertheless, we do not get anything for free, but
have to establish A −→ B later on. The overall effect is that of a logical
cut.

2The rule involved there is negation elimination; it holds in intuitionistic logic as well.

38

Technically speaking, whenever some goal is solved by show in the context
of weak assumptions then the latter give rise to new subgoals, which may
be established separately. In contrast, strong assumptions (as introduced by
assume) are solved immediately.
theorem ((A −→ B) −→ A) −→ A
〈proof 〉

Note that the goals stemming from weak assumptions may be even left until
qed time, where they get eventually solved “by assumption” as well. In
that case there is really no fundamental difference between the two kinds of
assumptions, apart from the order of reducing the individual parts of the
proof configuration.
Nevertheless, the “strong” mode of plain assumptions is quite important in
practice to achieve robustness of proof text interpretation. By forcing both
the conclusion and the assumptions to unify with the pending goal to be
solved, goal selection becomes quite deterministic. For example, decomposi-
tion with rules of the “case-analysis” type usually gives rise to several goals
that only differ in there local contexts. With strong assumptions these may
be still solved in any order in a predictable way, while weak ones would
quickly lead to great confusion, eventually demanding even some backtrack-
ing.
end

16 Using extensible records in HOL – points and
coloured points

theory Records
imports Main

begin

16.1 Points
record point =

xpos :: nat
ypos :: nat

Apart many other things, above record declaration produces the following
theorems:
thm point.simps
thm point.iffs
thm point.defs

The set of theorems point.simps is added automatically to the standard
simpset, point.iffs is added to the Classical Reasoner and Simplifier context.

Record declarations define new types and type abbreviations:

39

point = (|xpos :: nat, ypos :: nat|) = () point_ext_type
′a point_scheme = (|xpos :: nat, ypos :: nat, ... :: ′a|) = ′a point_ext_type

consts foo2 :: (|xpos :: nat, ypos :: nat|)
consts foo4 :: ′a ⇒ (|xpos :: nat, ypos :: nat, . . . :: ′a|)

16.1.1 Introducing concrete records and record schemes
definition foo1 :: point

where foo1 = (|xpos = 1 , ypos = 0 |)

definition foo3 :: ′a ⇒ ′a point_scheme
where foo3 ext = (|xpos = 1 , ypos = 0 , . . . = ext|)

16.1.2 Record selection and record update
definition getX :: ′a point_scheme ⇒ nat

where getX r = xpos r

definition setX :: ′a point_scheme ⇒ nat ⇒ ′a point_scheme
where setX r n = r (|xpos := n|)

16.1.3 Some lemmas about records

Basic simplifications.
lemma point.make n p = (|xpos = n, ypos = p|)
〈proof 〉

lemma xpos (|xpos = m, ypos = n, . . . = p|) = m
〈proof 〉

lemma (|xpos = m, ypos = n, . . . = p|)(|xpos:= 0 |) = (|xpos = 0 , ypos = n, . . . =
p|)
〈proof 〉

Equality of records.
lemma n = n ′ =⇒ p = p ′ =⇒ (|xpos = n, ypos = p|) = (|xpos = n ′, ypos = p ′|)

— introduction of concrete record equality
〈proof 〉

lemma (|xpos = n, ypos = p|) = (|xpos = n ′, ypos = p ′|) =⇒ n = n ′

— elimination of concrete record equality
〈proof 〉

lemma r(|xpos := n|)(|ypos := m|) = r(|ypos := m|)(|xpos := n|)
— introduction of abstract record equality
〈proof 〉

40

lemma r(|xpos := n|) = r(|xpos := n ′|) if n = n ′

— elimination of abstract record equality (manual proof)
〈proof 〉

Surjective pairing
lemma r = (|xpos = xpos r , ypos = ypos r |)
〈proof 〉

lemma r = (|xpos = xpos r , ypos = ypos r , . . . = point.more r |)
〈proof 〉

Representation of records by cases or (degenerate) induction.
lemma r(|xpos := n|)(|ypos := m|) = r(|ypos := m|)(|xpos := n|)
〈proof 〉

lemma r(|xpos := n|)(|ypos := m|) = r(|ypos := m|)(|xpos := n|)
〈proof 〉

lemma r(|xpos := n|)(|xpos := m|) = r(|xpos := m|)
〈proof 〉

lemma r(|xpos := n|)(|xpos := m|) = r(|xpos := m|)
〈proof 〉

lemma r(|xpos := n|)(|xpos := m|) = r(|xpos := m|)
〈proof 〉

Concrete records are type instances of record schemes.
definition foo5 :: nat

where foo5 = getX (|xpos = 1 , ypos = 0 |)

Manipulating the “...” (more) part.
definition incX :: ′a point_scheme ⇒ ′a point_scheme

where incX r = (|xpos = xpos r + 1 , ypos = ypos r , . . . = point.more r |)

lemma incX r = setX r (Suc (getX r))
〈proof 〉

An alternative definition.
definition incX ′ :: ′a point_scheme ⇒ ′a point_scheme

where incX ′ r = r(|xpos := xpos r + 1 |)

16.2 Coloured points: record extension
datatype colour = Red | Green | Blue

41

record cpoint = point +
colour :: colour

The record declaration defines a new type constructor and abbreviations:

cpoint = (|xpos :: nat, ypos :: nat, colour :: colour |) =
() cpoint_ext_type point_ext_type

′a cpoint_scheme = (|xpos :: nat, ypos :: nat, colour :: colour , . . . :: ′a|) =
′a cpoint_ext_type point_ext_type

consts foo6 :: cpoint
consts foo7 :: (|xpos :: nat, ypos :: nat, colour :: colour |)
consts foo8 :: ′a cpoint_scheme
consts foo9 :: (|xpos :: nat, ypos :: nat, colour :: colour , . . . :: ′a|)

Functions on point schemes work for cpoints as well.
definition foo10 :: nat

where foo10 = getX (|xpos = 2 , ypos = 0 , colour = Blue|)

16.2.1 Non-coercive structural subtyping

Term foo11 has type cpoint, not type point — Great!
definition foo11 :: cpoint

where foo11 = setX (|xpos = 2 , ypos = 0 , colour = Blue|) 0

16.3 Other features

Field names contribute to record identity.
record point ′ =

xpos ′ :: nat
ypos ′ :: nat

May not apply getX to (|xpos ′ = 2 , ypos ′ = 0 |) — type error.

Polymorphic records.
record ′a point ′′ = point +

content :: ′a

type_synonym cpoint ′′ = colour point ′′

Updating a record field with an identical value is simplified.
lemma r(|xpos := xpos r |) = r
〈proof 〉

Only the most recent update to a component survives simplification.
lemma r(|xpos := x, ypos := y, xpos := x ′|) = r(|ypos := y, xpos := x ′|)
〈proof 〉

42

In some cases its convenient to automatically split (quantified) records.
For this purpose there is the simproc Record.split_simproc and the tac-
tic Record.split_simp_tac. The simplification procedure only splits the
records, whereas the tactic also simplifies the resulting goal with the stan-
dard record simplification rules. A (generalized) predicate on the record is
passed as parameter that decides whether or how ‘deep’ to split the record.
It can peek on the subterm starting at the quantified occurrence of the record
(including the quantifier). The value 0 indicates no split, a value greater 0
splits up to the given bound of record extension and finally the value ~1
completely splits the record. Record.split_simp_tac additionally takes a
list of equations for simplification and can also split fixed record variables.
lemma (∀ r . P (xpos r)) −→ (∀ x. P x)
〈proof 〉

lemma (∀ r . P (xpos r)) −→ (∀ x. P x)
〈proof 〉

lemma (∃ r . P (xpos r)) −→ (∃ x. P x)
〈proof 〉

lemma (∃ r . P (xpos r)) −→ (∃ x. P x)
〈proof 〉

lemma
∧

r . P (xpos r) =⇒ (∃ x. P x)
〈proof 〉

lemma
∧

r . P (xpos r) =⇒ (∃ x. P x)
〈proof 〉

lemma P (xpos r) =⇒ (∃ x. P x)
〈proof 〉

notepad
begin
〈proof 〉

end

The effect of simproc Record.ex_sel_eq_simproc is illustrated by the fol-
lowing lemma.
lemma ∃ r . xpos r = x
〈proof 〉

16.4 Simprocs for update and equality
record alph1 =

a :: nat
b :: nat

43

record alph2 = alph1 +
c :: nat
d :: nat

record alph3 = alph2 +
e :: nat
f :: nat

The simprocs that are activated by default are:

• Record.simproc: field selection of (nested) record updates.

• Record.upd_simproc: nested record updates.

• Record.eq_simproc: (componentwise) equality of records.

By default record updates are not ordered by simplification.
schematic_goal r(|b := x, a:= y|) = ?X
〈proof 〉

Normalisation towards an update ordering (string ordering of update func-
tion names) can be configured as follows.
schematic_goal r(|b := y, a := x|) = ?X
〈proof 〉

Note the interplay between update ordering and record equality. Without
update ordering the following equality is handled by Record.eq_simproc.
Record equality is thus solved by componentwise comparison of all the fields
of the records which can be expensive in the presence of many fields.
lemma r(|f := x1 , a:= x2 |) = r(|a := x2 , f := x1 |)
〈proof 〉

lemma r(|f := x1 , a:= x2 |) = r(|a := x2 , f := x1 |)
〈proof 〉

With update ordering the equality is already established after update nor-
malisation. There is no need for componentwise comparison.
lemma r(|f := x1 , a:= x2 |) = r(|a := x2 , f := x1 |)
〈proof 〉

schematic_goal r(|f := x1 , e := x2 , d:= x3 , c:= x4 , b:=x5 , a:= x6 |) = ?X
〈proof 〉

schematic_goal r(|f := x1 , e := x2 , d:= x3 , c:= x4 , e:=x5 , a:= x6 |) = ?X
〈proof 〉

schematic_goal r(|f := x1 , e := x2 , d:= x3 , c:= x4 , e:=x5 , a:= x6 |) = ?X
〈proof 〉

44

16.5 A more complex record expression
record (′a, ′b, ′c) bar = bar1 :: ′a

bar2 :: ′b
bar3 :: ′c
bar21 :: ′b × ′a
bar32 :: ′c × ′b
bar31 :: ′c × ′a

print_record (′a, ′b, ′c) bar

16.6 Some code generation
export_code foo1 foo3 foo5 foo10 checking SML

Code generation can also be switched off, for instance for very large records:
declare [[record_codegen = false]]

record not_so_large_record =
bar520 :: nat
bar521 :: nat × nat

〈ML〉

declare [[record_codegen]]

schematic_goal ‹fld_1 (r(|fld_300 := x300 , fld_20 := x20 , fld_200 := x200 |))
= ?X›
〈proof 〉

schematic_goal ‹r(|fld_300 := x300 , fld_20 := x20 , fld_200 := x200 |) = ?X›
〈proof 〉

end
theory Rewrite_Examples
imports Main HOL−Library.Rewrite
begin

17 The rewrite Proof Method by Example

This theory gives an overview over the features of the pattern-based rewrite
proof method.
Documentation: https://arxiv.org/abs/2111.04082
lemma

fixes a::int and b::int and c::int
assumes P (b + a)
shows P (a + b)

45

https://arxiv.org/abs/2111.04082

〈proof 〉

lemma
fixes a b c :: int
assumes f (a − a + (a − a)) + f (0 + c) = f 0 + f c
shows f (a − a + (a − a)) + f ((a − a) + c) = f 0 + f c
〈proof 〉

lemma
fixes a b c :: int
assumes f (a − a + 0) + f ((a − a) + c) = f 0 + f c
shows f (a − a + (a − a)) + f ((a − a) + c) = f 0 + f c
〈proof 〉

lemma
fixes a b c :: int
assumes f (0 + (a − a)) + f ((a − a) + c) = f 0 + f c
shows f (a − a + (a − a)) + f ((a − a) + c) = f 0 + f c
〈proof 〉

lemma
fixes a b c :: int
assumes f (a − a + 0) + f ((a − a) + c) = f 0 + f c
shows f (a − a + (a − a)) + f ((a − a) + c) = f 0 + f c
〈proof 〉

lemma
fixes x y :: nat
showsx + y > c =⇒ y + x > c
〈proof 〉

lemma
fixes x y :: nat
assumes y + x > c =⇒ y + x > c
shows x + y > c =⇒ y + x > c
〈proof 〉

lemma
fixes x y :: nat
assumes y + x > c =⇒ y + x > c
shows x + y > c =⇒ y + x > c
〈proof 〉

lemma
fixes x y :: nat
assumes y + x > c =⇒ y + x > c
shows x + y > c =⇒ y + x > c

46

〈proof 〉

lemma
assumes P {x::int. y + 1 = 1 + x}
shows P {x::int. y + 1 = x + 1}
〈proof 〉

lemma
assumes P {x::int. y + 1 = 1 + x}
shows P {x::int. y + 1 = x + 1}
〈proof 〉

lemma
assumes P {(x::nat, y::nat, z). x + z ∗ 3 = Q (λs t. s ∗ t + y − 3)}
shows P {(x::nat, y::nat, z). x + z ∗ 3 = Q (λs t. y + s ∗ t − 3)}
〈proof 〉

lemma
assumes PROP P ≡ PROP Q
shows PROP R =⇒ PROP P =⇒ PROP Q
〈proof 〉

lemma
assumes PROP P ≡ PROP Q
shows PROP R =⇒ PROP R =⇒ PROP P =⇒ PROP Q
〈proof 〉

lemma
assumes (PROP P =⇒ PROP Q) ≡ (PROP S =⇒ PROP R)
shows PROP S =⇒ (PROP P =⇒ PROP Q) =⇒ PROP R
〈proof 〉

lemma test_theorem:
fixes x :: nat
shows x ≤ y =⇒ x ≥ y =⇒ x = y
〈proof 〉

lemma
fixes f :: nat ⇒ nat
shows f x ≤ 0 =⇒ f x ≥ 0 =⇒ f x = 0
〈proof 〉

47

lemma
assumes rewr : PROP P =⇒ PROP Q =⇒ PROP R ≡ PROP R ′

assumes A1 : PROP S =⇒ PROP T =⇒ PROP U =⇒ PROP P
assumes A2 : PROP S =⇒ PROP T =⇒ PROP U =⇒ PROP Q
assumes C : PROP S =⇒ PROP R ′ =⇒ PROP T =⇒ PROP U =⇒ PROP V
shows PROP S =⇒ PROP R =⇒ PROP T =⇒ PROP U =⇒ PROP V
〈proof 〉

fun f :: nat ⇒ nat where f n = n
definition f_inv (I :: nat ⇒ bool) n ≡ f n

lemma annotate_f : f = f_inv I
〈proof 〉

lemma
assumes P (λn. f_inv (λ_. True) n + 1) = x
shows P (λn. f n + 1) = x
〈proof 〉

lemma
assumes P (λn. f_inv (λx. n < x + 1) n + 1) = x
shows P (λn. f n + 1) = x
〈proof 〉

lemma
assumes P (λn. f_inv (λx. n < x + 1) n + 1) = x
shows P (λn. f n + 1) = x
〈proof 〉

lemma
assumes P (2 + 1)
shows

∧
x y. P (1 + 2 :: nat)

〈proof 〉

lemma
assumes

∧
x y. P (y + x)

shows
∧

x y. P (x + y :: nat)
〈proof 〉

lemma
assumes

∧
x y z. y + x + z = z + y + (x::int)

48

shows
∧

x y z. x + y + z = z + y + (x::int)
〈proof 〉

lemma
assumes

∧
x y z. z + (x + y) = z + y + (x::int)

shows
∧

x y z. x + y + z = z + y + (x::int)
〈proof 〉

lemma
assumes

∧
x y z. x + y + z = y + z + (x::int)

shows
∧

x y z. x + y + z = z + y + (x::int)
〈proof 〉

lemma
assumes eq:

∧
x. P x =⇒ g x = x

assumes f1 :
∧

x. Q x =⇒ P x
assumes f2 :

∧
x. Q x =⇒ x

shows
∧

x. Q x =⇒ g x
〈proof 〉

lemma
assumes (

∧
(x::int). x < 1 + x)

and (x::int) + 1 > x
shows (

∧
(x::int). x + 1 > x) =⇒ (x::int) + 1 > x

〈proof 〉

lemma
assumes

∧
a b. P ((a + 1) ∗ (1 + b))

shows
∧

a b :: nat. P ((a + 1) ∗ (b + 1))
〈proof 〉

lemma
assumes Q (λb :: int. P (λa. a + b) (λa. a + b))
shows Q (λb :: int. P (λa. a + b) (λa. b + a))
〈proof 〉

〈ML〉

Some regression tests
〈ML〉

lemma
assumes eq: PROP A =⇒ PROP B ≡ PROP C
assumes f1 : PROP D =⇒ PROP A
assumes f2 : PROP D =⇒ PROP C
shows

∧
x. PROP D =⇒ PROP B

49

〈proof 〉

end

18 Finite sequences
theory Seq

imports Main
begin

datatype ′a seq = Empty | Seq ′a ′a seq

fun conc :: ′a seq ⇒ ′a seq ⇒ ′a seq
where

conc Empty ys = ys
| conc (Seq x xs) ys = Seq x (conc xs ys)

fun reverse :: ′a seq ⇒ ′a seq
where

reverse Empty = Empty
| reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)

lemma conc_empty: conc xs Empty = xs
〈proof 〉

lemma conc_assoc: conc (conc xs ys) zs = conc xs (conc ys zs)
〈proof 〉

lemma reverse_conc: reverse (conc xs ys) = conc (reverse ys) (reverse xs)
〈proof 〉

lemma reverse_reverse: reverse (reverse xs) = xs
〈proof 〉

end

19 Square roots of primes are irrational
theory Sqrt

imports Complex_Main HOL−Computational_Algebra.Primes
begin

The square root of any prime number (including 2) is irrational.
theorem sqrt_prime_irrational:

fixes p :: nat
assumes prime p
shows sqrt p /∈ �
〈proof 〉

50

corollary sqrt_2_not_rat: sqrt 2 /∈ �
〈proof 〉

Here is an alternative version of the main proof, using mostly linear forward-
reasoning. While this results in less top-down structure, it is probably closer
to proofs seen in mathematics.
theorem

fixes p :: nat
assumes prime p
shows sqrt p /∈ �
〈proof 〉

Another old chestnut, which is a consequence of the irrationality of sqrt 2.
lemma ∃ a b::real. a /∈ � ∧ b /∈ � ∧ a powr b ∈ � (is ∃ a b. ?P a b)
〈proof 〉

end

References

[1] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[2] L. C. Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994.
LNCS 828.

51

	Ad Hoc Overloading
	Plain Ad Hoc Overloading
	Adhoc Overloading inside Locales

	Permutation Types
	A Tail-Recursive, Stack-Based Ackermann's Function
	Example of proving termination by reasoning about the domain
	Example of proving termination using a multiset ordering

	Cantor's Theorem
	Mathematical statement and proof
	Automated proofs
	Elementary version in higher-order predicate logic
	Classic Isabelle/HOL example

	Coherent Logic Problems
	Equivalence of two versions of Pappus' Axiom
	Preservation of the Diamond Property under reflexive closure

	Some Isar command definitions
	Diagnostic command: no state change
	Old-style global theory declaration
	Local theory specification

	The Drinker's Principle
	Examples of function definitions
	Very basic
	Currying
	Nested recursion
	Here comes McCarthy's 91-function
	Here comes Takeuchi's function

	More general patterns
	Overlapping patterns
	Guards

	Mutual Recursion
	Definitions in local contexts
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fun_cases
	Predecessor
	List to option
	Boolean Functions
	Many parameters

	Partial Function Definitions
	Regression tests
	Context recursion
	A combination of context and nested recursion
	Context, but no recursive call
	Tupled nested recursion
	Let
	Abbreviations
	Simple Higher-Order Recursion
	Pattern matching on records
	The diagonal function
	Many equations (quadratic blowup)
	Automatic pattern splitting
	Polymorphic partial-function

	Gauss Numbers: integral gauss numbers
	Basic arithmetic
	The Gauss Number i
	Gauss Conjugation
	Algebraic division

	Groebner Basis Examples
	Basic examples
	Lemmas for Lagrange's theorem
	Colinearity is invariant by rotation

	Example of Declaring an Oracle
	Oracle declaration
	Oracle as low-level rule
	Oracle as proof method

	Examples of automatically derived induction rules
	Some simple induction principles on nat

	Textbook-style reasoning: the Knaster-Tarski Theorem
	Prose version
	Formal versions

	Isabelle/ML basics
	ML expressions
	Antiquotations
	Recursive ML evaluation
	IDE support
	Example: factorial and ackermann function in Isabelle/ML
	Parallel Isabelle/ML
	Function specifications in Isabelle/HOL

	Peirce's Law
	Using extensible records in HOL – points and coloured points
	Points
	Introducing concrete records and record schemes
	Record selection and record update
	Some lemmas about records

	Coloured points: record extension
	Non-coercive structural subtyping

	Other features
	Simprocs for update and equality
	A more complex record expression
	Some code generation

	The rewrite Proof Method by Example
	Finite sequences
	Square roots of primes are irrational

