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1 Factorial (semi)rings

theory Fuctorial-Ring
imports

Main

HOL— Library. Multiset
begin

unbundle multiset.lifting

1.1 Irreducible and prime elements

context comm-semiring-1
begin

definition irreducible :: 'a = bool where
irreducible p «— p # 0 AN —pdvd 1 AN (Vab.p=axb— advd1V bdvudl)

lemma not-irreducible-zero [simp|: —irreducible 0
{proof)

lemma irreducible-not-unit: irreducible p =—> —p dvd 1
(proof)

lemma not-irreducible-one [simp): —irreducible 1
(proof)

lemma irreduciblel:

p# 0= —pdvd 1 = (Nab.p=a*xb= advd 1V bdvd1)= irreducible
p

(proof )

lemma irreducibleD: irreducible p = p = ax b= a dvd 1 V b dvd 1
(proof)

lemma irreducible-mono:
assumes irr: irreducible b and a dvd b —a dvd 1
shows irreducible a

(proof)

lemma irreducible-multD:
assumes [: irreducible (axb)
shows a dvd 1 A irreducible b V b dvd 1 A irreducible a

(proof)

lemma irreducible-power-iff [simp]:
irreducible (p ~m) <— dirreducible p A n = 1

(proof)



definition prime-elem :: ‘a = bool where
prime-elem p «— p# 0 AN —pdvd 1 AN (YVab. pdvd (a*b) — pdvdaV pdvd
b)

lemma not-prime-elem-zero [simp|: —prime-elem 0
(proof)

lemma prime-elem-not-unit: prime-elem p = —p dvd 1
(proof )

lemma prime-eleml:
p# 0= —-pdvd 1 = (ANab. pdvd (a xb) = pdvd aV pdvdbd) =
prime-elem p
(proof )

lemma prime-elem-dvd-multD:
prime-elem p = p dvd (a x b) = p dvd a V p dvd b
(proof )

lemma prime-elem-dvd-mult-iff:
prime-elem p = p dvd (a * b) <— p dvd a V p dvd b
(proof )

lemma not-prime-elem-one [simpl:
- prime-elem 1
(proof)

lemma prime-elem-not-zerol:
assumes prime-elem p
shows p # 0

(proof)

lemma prime-elem-dvd-power:
prime-elem p = p dvd z " n = p dvd x
(proof)

lemma prime-elem-dvd-power-iff:
prime-elem p = n > 0 = pdvdz " n <— p dvd z
(proof)

lemma prime-elem-imp-nonzero [simp]:
ASSUMPTION (prime-elem ©) = z # 0
(proof )

lemma prime-elem-imp-not-one [simp]:
ASSUMPTION (prime-elem ©) = x # 1
(proof )

end



lemma (in normalization-semidom) irreducible-cong:
assumes normalize a = normalize b
shows irreducible a <— irreducible b

(proof)

lemma (in normalization-semidom) associatedFE1:
assumes normalize a = normalize b
obtains u where is-unit u a = u * b

(proof)

lemma (in normalization-semidom) associatedE2:
assumes normalize a = normalize b
obtains u where is-unit u b = u * a

(proof)

lemma (in normalization-semidom) normalize-power-normalize:
normalize (normalize x ~ n) = normalize (x ~ n)

(proof)

context algebraic-semidom
begin

lemma prime-elem-imp-irreducible:
assumes prime-elem p
shows irreducible p

(proof)

lemma (in algebraic-semidom) unit-imp-no-irreducible-divisors:
assumes is-unit x irreducible p
shows —p dvd x

(proof)

lemma unit-imp-no-prime-divisors:
assumes is-unit x prime-elem p
shows —p dvd x

{proof)

lemma prime-elem-mono:
assumes prime-elem p —q dvd 1 q dvd p
shows prime-elem q

(proof)

lemma irreducibleD:
assumes irreducible a b dvd a
shows a dvd bV is-unit b



(proof)

lemma irreduciblel”:
assumes a # 0 —is-unit a Ab. b dvd a = a dvd b V is-unit b
shows irreducible a

(proof)

lemma irreducible-altdef:
irreducible x <— x # 0 N —is-unit x A (Vb. b dvd x — z dvd b V is-unit b)

(proof)

lemma prime-elem-multD:
assumes prime-elem (a * b)
shows is-unit a V is-unit b

(proof)

lemma prime-elemD2:
assumes prime-elem p and a dvd p and — is-unit a
shows p dvd a

(proof)

lemma prime-elem-dvd-prod-msetE:
assumes prime-elem p
assumes dvd: p dvd prod-mset A
obtains a where ¢ €# A and p dvd a

(proof)

context
begin

lemma prime-elem-powerD:
assumes prime-elem (p ~ n)
shows prime-elem p A n =1
(proof)

lemma prime-elem-power-iff:
prime-elem (p ~n) «— prime-elem p A n = 1
(proof)

end

lemma irreducible-mult-unit-left:
is-unit a = irreducible (a x p) +— irreducible p

{proof)

lemma prime-elem-mult-unit-left:
is-unit a = prime-elem (a * p) +— prime-elem p
(proof)



lemma prime-elem-dvd-cases:

assumes pk: pxk dvd mxn and p: prime-elem p

shows (Fz. k dvd xxn A m = pxz) V (Jy. k dvd mxy A n = pxy)
(proof )

lemma prime-elem-power-dvd-prod:
assumes pc: p ¢ dvd mxn and p: prime-elem p
shows Ja b. a+b=c A p~advdm A p~b dvdn

(proof)

lemma prime-elem-power-dvd-cases:
assumes p ¢ dvd m x n and a + b = Suc ¢ and prime-elem p
shows p “advd mV p “bdvdn

(proof)

lemma prime-elem-not-unit’ [simp):
ASSUMPTION (prime-elem x) => —is-unit ©
{proof)

lemma prime-elem-dvd-power-iff:
assumes prime-elem p
shows pdvda "n+— pdvda A n>0

{proof)

lemma prime-power-dvd-multD:
assumes prime-elem p
assumes p ndvd a* band n > 0 and = p dvd a
shows p " n dvd b

{proof)

end

1.2 Generalized primes: normalized prime elements

context normalization-semidom
begin

lemma irreducible-normalized-divisors:
assumes irreducible x y dvd © normalize y = y
shows y =1V y = normalize =

(proof)

lemma irreducible-normalize-iff [simp]: irreducible (normalize x) = irreducible
{proof)

lemma prime-elem-normalize-iff [simp]: prime-elem (normalize ) = prime-elem

{proof)
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lemma prime-elem-associated:
assumes prime-elem p and prime-elem q and q dvd p
shows normalize ¢ = normalize p

(proof)

definition prime :: ‘a = bool where
prime p <— prime-elem p N\ normalize p = p

lemma not-prime-0 [simp]: —prime 0 (proof)

lemma not-prime-unit: is-unit r =— —prime
(proof )

lemma not-prime-1 [simp): —prime 1 (proof)

lemma primel: prime-elem © — normalize t = x* —> prime «
(proof )

lemma prime-imp-prime-elem [dest]: prime p = prime-elem p
(proof )

lemma normalize-prime: prime p =—> normalize p = p
(proof )

lemma prime-normalize-iff [simp]: prime (normalize p) +— prime-elem p
(proof )

lemma prime-power-iff:
prime (p ~n) «— primep A n = 1
(proof )

lemma prime-imp-nonzero [simp):
ASSUMPTION (prime x) = © # 0
(proof)

lemma prime-imp-not-one [simp):
ASSUMPTION (prime x) = © # 1
(proof )

lemma prime-not-unit’ [simp]:
ASSUMPTION (prime ) = —is-unit x
(proof)

lemma prime-normalize’ [simp]: ASSUMPTION (prime x) = normalize © = x
{proof)

lemma unit-factor-prime: prime x = unit-factor x = 1
(proof )

11



lemma unit-factor-prime’ [simp]: ASSUMPTION (prime x) = unit-factor © =
1

{proof)

lemma prime-imp-prime-elem’ [simp]: ASSUMPTION (prime x) = prime-elem
T
{proof)

lemma prime-dvd-multD: prime p => p dvd a x b => p dvd a V p dvd b
(proof )

lemma prime-dvd-mult-iff: prime p = p dvd a * b <— p dvd a V p dvd b
(proof)

lemma prime-dvd-power:
primep = pdvd x " n = p dvd z
(proof )

lemma prime-dvd-power-iff:
primep = n >0 = pdvdx " n+— pdvdx
(proof )

lemma prime-dvd-prod-mset-iff: prime p = p dvd prod-mset A +— (Jz. v €H#
A A p dvd x)
(proof )

lemma prime-dvd-prod-iff: finite A = prime p = p dvd prod f A +— (Fz€A.
p dvd f x)
(proof )

lemma primes-dvd-imp-eq:
assumes prime p prime q p dvd q
shows p=g¢

(proof)

lemma prime-dvd-prod-mset-primes-iff:
assumes prime p \q. ¢ €# A = prime q
shows p dvd prod-mset A «— p €# A
(proof)

lemma prod-mset-primes-dvd-imp-subset:

assumes prod-mset A dvd prod-mset B \p. p €# A = prime p A\p. p €# B
—> prime p

shows A C# B
(proof)

lemma prod-mset-dvd-prod-mset-primes-iff:

assumes A\z. v €# A = prime ¢ \z. x €# B = prime x
shows prod-mset A dvd prod-mset B +— A C# B

12



{proof)

lemma is-unit-prod-mset-primes-iff:
assumes A\z. ¥ €# A = prime x
shows is-unit (prod-mset A) +— A = {#}
(proof)

lemma prod-mset-primes-irreducible-imp-prime:
assumes irred: irreducible (prod-mset A)
assumes A: A\z. ¢ €# A = prime z
assumes B: \z. © €# B = prime z
assumes C: \z. z €# C = prime x
assumes dvd: prod-mset A dvd prod-mset B x prod-mset C
shows prod-mset A dvd prod-mset B V prod-mset A dvd prod-mset C

(proof)

lemma prod-mset-primes-finite-divisor-powers:
assumes A: A\z. z €# A = prime x
assumes B: \z. x €# B = prime x
assumes A # {#}
shows finite {n. prod-mset A ™ n dvd prod-mset B}

(proof)

end

1.3 In a semiring with GCD, each irreducible element is a
prime element

context semiring-gcd
begin

lemma irreducible-imp-prime-elem-gcd:
assumes irreducible x
shows prime-elem z

(proof)

lemma prime-elem-imp-coprime:
assumes prime-elem p —p dvd n
shows coprime p n

(proof)

lemma prime-imp-coprime:
assumes prime p —p dvd n
shows coprime p n

(proof)
lemma prime-elem-imp-power-coprime:

prime-elem p = — p dvd a = coprime a (p ~ m)
(proof)
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lemma prime-imp-power-coprime:
prime p = — p dvd a = coprime a (p ~ m)
(proof)

lemma prime-elem-divprod-pow:
assumes p: prime-elem p and ab: coprime a b and pab: pn dvd a x b
shows pndvdaV pndvudbd

{proof)

lemma primes-coprime:
prime p = prime ¢ = p £ q => coprime p q
(proof)

end

1.4 Factorial semirings: algebraic structures with unique prime
factorizations

class factorial-semiring = normalization-semidom +
assumes prime-factorization-ezists:
r# 0= 3A (Vz. z €# A — prime-elem x) A normalize (prod-mset A) =
normalize x

Alternative characterization

lemma (in normalization-semidom) factorial-semiring-altl-auz:
assumes finite-divisors: A\z. © # 0 = finite {y. y dvd x A normalize y = y}
assumes irreducible-imp-prime-elem: Az. irreducible v = prime-elem x
assumes z # 0
shows 3JA. (Vz. z €# A — prime-elem ) A normalize (prod-mset A) =
normalize x

(proof)

lemma factorial-semiring-altl:

assumes finite-divisors: \z::'a. © # 0 = finite {y. y dvd x N normalize y =
yh

assumes irreducible-imp-prime: A\z::'a. irreducible x = prime-elem x

shows OFCLASS('a :: normalization-semidom, factorial-semiring-class)

(proof)

Properties

context factorial-semiring
begin

lemma prime-factorization-exists’:

assumes t # 0

obtains A where A\z. z €# A = prime x normalize (prod-mset A) = normalize
T

(proof)

14



lemma irreducible-imp-prime-elem:
assumes irreductble
shows prime-elem x

(proof)

lemma finite-divisor-powers:
assumes y # 0 —is-unit ©
shows finite {n. " n dvd y}
{(proof)

lemma finite-prime-divisors:

assumes z # 0

shows finite {p. prime p A p dvd z}
(proof)

lemma infinite-unit-divisor-powers:
assumes y # 0

assumes is-unit

shows infinite {n. z™n dvd y}

(proof)

corollary is-unit-iff-infinite-divisor-powers:
assumes y # 0
shows is-unit © <— infinite {n. z7n dvd y}

(proof)

lemma prime-elem-iff-irreducible: prime-elem x <— irreducible x
(proof)

lemma prime-divisor-exists:
assumes a # (0 —is-unit a
shows 3b. b dvd a A prime b
(proof)

lemma prime-divisors-induct [case-names zero unit factor:
assumes P 0 Az. is-unit x = P x A\p z. primep = Px = P (p * )
shows Pz

(proof)

lemma no-prime-divisors-imp-unit:
assumes a # 0 Ab. b dvd a = normalize b = b = — prime-elem b
shows is-unit a

(proof)

lemma prime-divisorE:
assumes a # 0 and — is-unit a
obtains p where prime p and p dvd a

{proof)

15



definition multiplicity :: 'a = 'a = nat where
multiplicity p x = (if finite {n. p " n dvd z} then Maz {n. p " n dvd z} else 0)

lemma multiplicity-dvd: p ~ multiplicity p = dvd z
(proof)

lemma multiplicity-dvd”: n < multiplicity p x = p ~n dvd z
(proof )

context

fixeszp::'a

assumes xp: © # 0 —is-unit p
begin

lemma multiplicity-eq-Maz: multiplicity p x = Maz {n. p " n dvd z}
(proof)

lemma multiplicity-gel:
assumes p ~ n dvd x
shows multiplicity p x > n

(proof)

lemma multiplicity-lessl:
assumes —p ~ n dvd x
shows multiplicity p x < n

(proof)

lemma power-dvd-iff-le-multiplicity:
p ndvd x <— n < multiplicity p

(proof)

lemma multiplicity-eq-zero-iff :
shows multiplicity p x = 0 +— —p dvd z
{proof )

lemma multiplicity-gt-zero-iff:
shows  multiplicity p x > 0 +— p dvd x
(proof )

lemma multiplicity-decompose:
—p dvd (x div p ~ multiplicity p x)
(proof)

lemma multiplicity-decompose’:
obtains y where = = p ~ multiplicity p x * y —p dvd y
(proof )

end

16



lemma multiplicity-zero [simp|: multiplicity p 0 = 0
(proof )

lemma prime-elem-multiplicity-eq-zero-iff :
prime-elem p = ¢ # 0 = multiplicity p t = 0 +— —p dvd x
(proof)

lemma prime-multiplicity-other:
assumes prime p prime ¢ p # q
shows  multiplicity p ¢ = 0

{proof)

lemma prime-multiplicity-gt-zero-iff:
prime-elem p = = # 0 = multiplicity p x > 0 +— p dvd x
(proof)

lemma multiplicity-unit-left: is-unit p = multiplicity p x = 0
(proof)

lemma multiplicity-unit-right:
assumes s-unit T
shows multiplicity p x = 0
(proof)

lemma multiplicity-one [simp]: multiplicity p 1 = 0
(proof )

lemma multiplicity-eql:
assumes p ~n dvd x —p ~ Suc n dvd x
shows multiplicity p z = n

(proof)

context

fixeszp:: 'a

assumes zp: T # 0 —is-unit p
begin

lemma multiplicity-times-same:

assumes p # 0

shows multiplicity p (p * =) = Suc (multiplicity p )
(proof)

end
lemma multiplicity-same-power': multiplicity p (p " n) = (if p = 0 V is-unit p

then 0 else n)
(proof)

17



lemma multiplicity-same-power:
p # 0 = —is-unit p = multiplicity p (p " n) = n
(proof )

lemma multiplicity-prime-elem-times-other:
assumes prime-elem p —p dvd q
shows multiplicity p (¢ * x) = multiplicity p x
(proof)

lemma multiplicity-self:
assumes p # 0 —is-unit p
shows multiplicity p p = 1
(proof)

lemma multiplicity-times-unit-left:

assumes s-unit c

shows multiplicity (¢ x p) © = multiplicity p
(proof)

lemma multiplicity-times-unit-right:

assumes s-unit c

shows multiplicity p (¢ x ) = multiplicity p =
(proof)

lemma multiplicity-normalize-left [simp):
multiplicity (normalize p) © = multiplicity p =

(proof)

lemma multiplicity-normalize-right [simpl:
multiplicity p (normalize ©) = multiplicity p x

(proof)

lemma multiplicity-prime [simp|: prime-elem p = multiplicity p p = 1
(proof)

lemma multiplicity-prime-power [simpl: prime-elem p = multiplicity p (p ~ n)
=n

{proof)

lift-definition prime-factorization :: 'a = 'a multiset is
Az p. if prime p then multiplicity p x else 0
(proof)

abbreviation prime-factors :: ‘a = 'a set where
prime-factors a = set-mset (prime-factorization a)

lemma count-prime-factorization-nonprime:
—prime p => count (prime-factorization ) p = 0
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{proof)

lemma count-prime-factorization-prime:
prime p = count (prime-factorization x) p = multiplicity p x
(proof )

lemma count-prime-factorization:
count (prime-factorization x) p = (if prime p then multiplicity p x else 0)

{proof)

lemma dvd-imp-multiplicity-le:

assumes a dvd b b # 0

shows multiplicity p a < multiplicity p b
(proof)

lemma prime-power-ing:
assumes primeaa m=a n
shows m =n

(proof)

lemma prime-power-inj”:
assumes prime p prime q
assumes p m=gq nm>0n>0
shows p=q¢gm=n

(proof)

lemma prime-power-eg-one-iff [simp]: primep = p " n=1+—n=10
(proof)

lemma one-eq-prime-power-iff [simpl: prime p = 1 =p "n+—>n=10

(proof)

lemma prime-power-inj’":
assumes prime p prime q
shows p " m=q¢ né—>(m=0An=0)V (p=qgAm=n)
(proof )

lemma prime-factorization-0 [simpl: prime-factorization 0 = {#}
(proof )

lemma prime-factorization-empty-iff:
prime-factorization x = {#} +— x = 0 V is-unit ©

(proof)

lemma prime-factorization-unit:
assumes is-unit T
shows prime-factorization x = {#}

(proof)
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lemma prime-factorization-1 [simp|: prime-factorization 1 = {#}
(proof )

lemma prime-factorization-times-prime:

assumes z # 0 prime p

shows prime-factorization (p x ) = {#p#} + prime-factorization
(proof)

lemma prod-mset-prime-factorization-weak:
assumes t # 0
shows normalize (prod-mset (prime-factorization x)) = normalize

{proof)

lemma in-prime-factors-iff:
p € prime-factors © <— x # 0 N\ p dvd x N prime p

(proof)

lemma in-prime-factors-imp-prime [intro]:
p € prime-factors x => prime p
(proof )

lemma in-prime-factors-imp-dvd |dest]:
p € prime-factors t = p dvd x
(proof)

lemma prime-factorsi:
x # 0 = prime p => p dvd x = p € prime-factors
(proof )

lemma prime-factors-dvd:
z # 0 = prime-factors = {p. prime p A p dvd z}
(proof)

lemma prime-factors-multiplicity:
prime-factors n = {p. prime p A multiplicity p n > 0}
(proof)

lemma prime-factorization-prime:
assumes prime p
shows prime-factorization p = {#p#}

(proof)

lemma prime-factorization-prod-mset-primes:
assumes Ap. p €# A = prime p
shows prime-factorization (prod-mset A) = A
(proof)

lemma prime-factorization-cong:
normalize © = normalize y => prime-factorization x = prime-factorization y
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{proof)

lemma prime-factorization-unique:

assumes z #* 0y # 0

shows prime-factorization © = prime-factorization y <— normalize T = nor-
malize y

(proof)

lemma prime-factorization-normalize [simp]:
prime-factorization (normalize ) = prime-factorization

(proof)

lemma prime-factorization-eql-strong:
assumes Ap. p €# P = prime p prod-mset P = n
shows prime-factorization n = P
(proof )

lemma prime-factorization-eql:
assumes A\p. p €# P = prime p normalize (prod-mset P) = normalize n
shows prime-factorization n = P

(proof)

lemma prime-factorization-mult:

assumes ¢ # 0y # 0

shows prime-factorization (z * y) = prime-factorization x + prime-factorization
)
(proof)

lemma prime-factorization-prod:
assumes finite A N\o. 1 € A = fz £ 0
shows prime-factorization (prod f A) = (> n€A. prime-factorization (f n))
{proof)

lemma prime-elem-multiplicity-mult-distrib:

assumes prime-elem p x # 0y # 0

shows multiplicity p (x * y) = multiplicity p x + multiplicity p y
(proof)

lemma prime-elem-multiplicity-prod-mset-distrib:

assumes prime-elem p 0 ¢# A

shows  multiplicity p (prod-mset A) = sum-mset (image-mset (multiplicity p)
4)

(proof)

lemma prime-elem-multiplicity-power-distrib:
assumes prime-elem p  # 0
shows multiplicity p (x ~ n) = n x multiplicity p =
(proof )
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lemma prime-elem-multiplicity-prod-distrib:

assumes prime-elem p 0 ¢ f “ A finite A

shows multiplicity p (prod f A) = (> x€A. multiplicity p (f ©))
(proof )

lemma multiplicity-distinct-prime-power:
prime p = prime ¢ = p # q = multiplicity p (¢ " n) = 0
(proof )

lemma prime-factorization-prime-power:
prime p = prime-factorization (p ~ n) = replicate-mset n p
(proof)

lemma prime-factorization-subset-iff-duvd:
assumes [simp]: © £ 0y # 0
shows prime-factorization x C# prime-factorization y <— x dvd y

(proof)

lemma prime-factorization-subset-imp-dvd:
z # 0 = (prime-factorization © CH# prime-factorization y) = z dvd y
(proof )

lemma prime-factorization-divide:

assumes b dvd a

shows prime-factorization (a div b) = prime-factorization a — prime-factorization
b
(proof)

lemma zero-not-in-prime-factors [simp|: 0 ¢ prime-factors x
(proof )

lemma prime-prime-factors:
prime p = prime-factors p = {p}
(proof)

lemma prime-factors-product:
x# 0 = y # 0 = prime-factors (z x y) = prime-factors © U prime-factors y
(proof)

lemma dvd-prime-factors [introl:
y # 0 = z dvd y = prime-factors x C prime-factors y

(proof )

lemma multiplicity-le-imp-dvd:
assumes z # 0 A\p. prime p = multiplicity p x < multiplicity p y
shows 1z dvd y

(proof)
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lemma dvd-multiplicity-eq:
z# 0= y# 0= zdvdy+— (Vp. multiplicity p x < multiplicity p y)
(proof )

lemma multiplicity-eq-imp-eq:
assumes © # 0y # 0
assumes Ap. prime p = multiplicity p x = multiplicity p y
shows normalize x = normalize y
(proof )

lemma prime-factorization-unique’:

assumes Vp €# M. prime pVp €# N. prime p ([[i €# M. i) = (J[¢ €# N.
i)

shows M = N
{proof)

lemma prime-factorization-unique’”:

assumes Vp €# M. prime p ¥Vp €# N. prime p normalize ([[i €# M. i)
normalize ([[i €# N. Q)

shows M = N
(proof )

lemma multiplicity-cong:
(Ar.p “rdvd a <— p " rdvd b) = multiplicity p a = multiplicity p b
(proof )

lemma not-dvd-imp-multiplicity-0:
assumes —p dvd T
shows multiplicity p x = 0
(proof)

lemma multiplicity-zero-left [simp]: multiplicity 0 © = 0

{proof)

lemma inj-on-Prod-primes:
assumes APp. P€ A = p € P = prime p
assumes AP. P € A = finite P
shows inj-on Prod A

(proof)

lemma divides-primepow-weak:
assumes prime p and a dvd p "~ n
obtains m where m < n and normalize a = normalize (p ~ m)

(proof)

lemma divide-out-primepow-ex:

assumes n # 0 dpeprime-factors n. P p

obtains p k n’ where P p prime p p dvd n =p dvd n" k> 0n=p "k *n’
(proof)
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lemma divide-out-primepow:
assumes n # 0 —is-unit n
obtains p k n’ where prime p pdvd n —-pdvdn’ k> 0n=p " kx*xn’
(proof )

1.5 GCD and LCM computation with unique factorizations

definition gcd-factorial a b = (if a = 0 then normalize b
else if b = 0 then normalize a
else normalize (prod-mset (prime-factorization a N# prime-factorization b)))

definition Icm-factorial a b = (if a = 0 V b = 0 then 0
else normalize (prod-mset (prime-factorization a U# prime-factorization b)))

definition Gcd-factorial A =
(if A C {0} then 0 else normalize (prod-mset (Inf (prime-factorization © (A —

{0))))

definition Lem-factorial A =
(if A = {} then 1
else if 0 ¢ A A subset-mset.bdd-above (prime-factorization ‘(A — {0})) then
normalize (prod-mset (Sup (prime-factorization © A)))
else
0)

lemma prime-factorization-gcd-factorial:
assumes [simp]: a # 0 b # 0

shows  prime-factorization (gcd-factorial a b) = prime-factorization a N#
prime-factorization b
(proof)

lemma prime-factorization-lem-factorial:

assumes [simp]: a # 0 b # 0

shows  prime-factorization (lem-factorial a b) = prime-factorization a U4
prime-factorization b

(proof)

lemma prime-factorization-Gcd-factorial:

assumes -4 C {0}

shows prime-factorization (Gcd-factorial A) = Inf (prime-factorization * (A —
{0}))
(proof)

lemma prime-factorization-Lem-factorial:

assumes (0 ¢ A subset-mset.bdd-above (prime-factorization ¢ A)

shows prime-factorization (Lem-factorial A) = Sup (prime-factorization < A)
(proo)
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lemma gcd-factorial-commute: ged-factorial a b = ged-factorial b a
{proof )

lemma gcd-factorial-dvdl: ged-factorial a b dvd a
(proof )

lemma gcd-factorial-dvd2: ged-factorial a b dvd b
(proof)

lemma normalize-ged-factorial [simp]: normalize (ged-factorial a b) = ged-factorial
ab

{proof)

lemma normalize-lem-factorial [simp]: normalize (lem-factorial a b) = lem-factorial
ab

(proof)

lemma gcd-factorial-greatest: ¢ dvd gcd-factorial a b if ¢ dvd a ¢ dvd b for a b ¢
(proof)

lemma lcm-factorial-gced-factorial:
lem-factorial a b = normalize (a * b div gcd-factorial a b) for a b
(proof)

lemma normalize-Ged-factorial:
normalize (Ged-factorial A) = Ged-factorial A

{proof)

lemma Gcd-factorial-eq-0-iff:
Ged-factorial A = 0 +— A C {0}
(proof )

lemma Ged-factorial-dvd:
assumes z € A
shows Gcd-factorial A dvd x

(proof)

lemma Gcd-factorial-greatest:
assumes A\y. y € A = z dvd y
shows z dvd Ged-factorial A

(proof)

lemma normalize-Lem-factorial:
normalize (Lem-factorial A) = Lem-factorial A

(proof)
lemma Lcem-factorial-eq-0-iff:

Lem-factorial A = 0 <+— 0 € A V —subset-mset.bdd-above (prime-factorization
(A)
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{proof)

lemma dvd-Lem-factorial:
assumes z € A
shows 1z dvd Lem-factorial A

(proof)

lemma Lcem-factorial-least:
assumes A\y. y € A = y dvd ¢
shows Lem-factorial A dvd z

(proof)

lemmas gcd-lem-factorial =
gcd-factorial-dvd1 ged-factorial-dvd2 gced-factorial-greatest
normalize-gcd-factorial lem-factorial-ged-factorial
normalize-Ged-factorial Ged-factorial-dvd Ged-factorial-greatest
normalize-Lem-factorial dvd-Lem-factorial Lem-factorial-least

end

class factorial-semiring-ged = factorial-semiring + gcd + Ged +
assumes gcd-eq-ged-factorial: ged a b = ged-factorial a b
and lem-eq-lem-factorial: lem a b = lem-factorial a b
and Ged-eq-Ged-factorial: Ged A = Ged-factorial A
and Leme-eg-Lem-factorial: Lem A = Lem-factorial A
begin

lemma prime-factorization-ged:

assumes [simp]: a # 0 b # 0

shows prime-factorization (ged a b) = prime-factorization a N# prime-factorization
b

(proof)

lemma prime-factorization-lem:
assumes [simp]: a # 0 b # 0
shows prime-factorization (lem a b) = prime-factorization a U# prime-factorization

b
{proof)

lemma prime-factorization-Ged:
assumes Ged A # 0
shows prime-factorization (Ged A) = Inf (prime-factorization ‘ (A — {0}))
(proof )

lemma prime-factorization-Lcm:
assumes Lem A # 0
shows  prime-factorization (Lem A) = Sup (prime-factorization * A)
(proof )
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lemma prime-factors-ged [simpl:
a# 0= b# 0 = prime-factors (gcd a b) =
prime-factors a N prime-factors b
(proof )

lemma prime-factors-lem [simp]:
a# 0 = b# 0 = prime-factors (lem a b) =
prime-factors a U prime-factors b
(proof)

subclass semiring-gcd
(proof)

subclass semiring-Ged

(proof)

lemma
assumes ¢ # 0y # 0
shows gcd-eq-factorial’:
ged x y = normalize ([[p € prime-factors x N prime-factors y.
p ~ min (multiplicity p x) (multiplicity p y)) (is - = ?rhsi)
and Ilcm-eq-factorial”:
lem z y = normalize ([ p € prime-factors x U prime-factors y.
p ~ maz (multiplicity p ) (multiplicity p y)) (is - = ?rhs2)
(proof)

lemma
assumes z # 0 y # 0 prime p
shows  multiplicity-gcd: multiplicity p (ged z y) = min (multiplicity p z)
(multiplicity p y)
and  multiplicity-lem: multiplicity p (lem z y) = mazx (multiplicity p z)
(multiplicity p y)
{proof)

lemma gcd-lem-distrib:
ged x (lem y z) = lem (ged z y) (ged x 2)
(proof)

lemma lcm-gcd-distrib:
lem z (ged y 2) = ged (lem z y) (lem z z)
(proof)

end

class factorial-ring-gcd = factorial-semiring-ged + idom
begin

subclass ring-ged (proof)
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subclass idom-divide (proof)

end

class factorial-semiring-multiplicative =
factorial-semiring + normalization-semidom-multiplicative
begin

lemma normalize-prod-mset-primes:
(Ap. p €# A = prime p) = normalize (prod-mset A) = prod-mset A
(proof)

lemma prod-mset-prime-factorization:
assumes t # 0
shows prod-mset (prime-factorization ) = normalize

(proof)

lemma prime-decomposition: unit-factor x x prod-mset (prime-factorization x) =
x

(proof)

lemma prod-prime-factors:
assumes z #
shows ([[p € prime-factors . p ~ multiplicity p x) = normalize x

(proof)

lemma prime-factorization-unique'”:
assumes S-eq: S = {p. 0 < fp}
and finite S
and S: Vp€eS. prime p normalize n = ([[ p€S. p ~ [ p)
shows S = prime-factors n A (¥ p. prime p — f p = multiplicity p n)

(proof)

lemma divides-primepow:
assumes prime p and a dvd p " n
obtains m where m < n and normalize a = p ~m

{proof)

lemma Ez-other-prime-factor:
assumes n # 0 and —~(3 k. normalize n = p ~ k) prime p
shows dqgeprime-factors n. q # p

(proof)

Now a string of results due to Maya Kdzioka

lemma multiplicity-dvd-iff-dvd:
assumes z # 0
shows p k dvd © «<— p~k dvd p multiplicity p x

(proof)
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lemma multiplicity-decomposel :

assumes z = p k * 2’ and — p dvd 2’ and p # 0
shows multiplicity p ¢ = k

(proof )

lemma multiplicity-sum-It:

assumes multiplicity p a < multiplicity p b a # 0 b # 0
shows multiplicity p (a + b) = multiplicity p a

{(proof)

corollary multiplicity-sum-min:

assumes multiplicity p a # multiplicity p b a # 0 b # 0

shows multiplicity p (a + b) = min (multiplicity p a) (multiplicity p b)
{proof )

end

lifting-update multiset.lifting
lifting-forget multiset.lifting

end

2 Abstract euclidean algorithm in euclidean (semi)rings

theory Fuclidean-Algorithm
imports Factorial-Ring
begin

2.1 Generic construction of the (simple) euclidean algorithm

class normalization-euclidean-semiring = euclidean-semiring + normalization-semidom
begin

lemma euclidean-size-normalize [simp):
euclidean-size (normalize a) = euclidean-size a

(proof)

context
begin

qualified function gcd :: 'a = 'a = 'a
where ged a b = (if b = 0 then normalize a else ged b (a mod b))

(proof)
termination
(proof )

declare gcd.simps [simp del]
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lemma eucl-induct [case-names zero mod):
assumes H1: \b. P b 0
and H2: Nab. b# 0 = P b (a mod b) = Pab
shows P a b
(proof) lemma gcd-0:
ged a 0 = normalize a
(proof) lemma gcd-mod:
a# 0= ged a (b mod a) = ged b a
(proof) definition lem :: 'a = 'a = 'a
where lem a b = normalize (a * b div ged a b)

qualified definition Lem :: ‘a set = 'a — Somewhat complicated definition of
Lem that has the advantage of working for infinite sets as well
where
[code del]: Lem A = (if 1. 1# 0 A (Va€A. a dvd ) then
let | =SOME 1.1+ 0 A (Va€A. a dvd 1) A euclidean-size | =
(LEAST n.31.1# 0 A (Va€A. a dvd l) A euclidean-size | = n)
in normalize |
else 0)

qualified definition Gcd :: 'a set = 'a
where [code del]: Ged A = Lem {d. Y a€A. d dvd a}

lemma semiring-gcd:
class.semiring-gecd one zero times ged lem
divide plus minus unit-factor normalize

(proof)

interpretation semiring-gcd one zero times ged lem
divide plus minus unit-factor normalize

(proof)

lemma semiring-Gcd:
class.semiring-Ged one zero times ged lem Ged Lem
divide plus minus unit-factor normalize

(proof)

end

interpretation semiring-Ged one zero times

Euclidean-Algorithm.gcd Euclidean-Algorithm.lem Euclidean-Algorithm.Ged Fu-
clidean-Algorithm.Lcem

divide plus minus unit-factor normalize

{proof)

subclass factorial-semiring

{(proof)

lemma Ged-eucl-set [code]:
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Euclidean-Algorithm.Ged (set zs) = fold Fuclidean-Algorithm.ged xs 0
{proof )

lemma Lem-eucl-set [codel:
Euclidean-Algorithm.Lem (set xs) = fold Euclidean-Algorithm.lem xs 1

{proof)

end

lemma prime-elem-int-abs-iff [simp]:
fixes p :: int
shows prime-elem |p| +— prime-elem p
(proof)

lemma prime-elem-int-minus-iff [simpl:
fixes p :: int
shows prime-elem (— p) +— prime-elem p
(proof)

lemma prime-int-iff:
fixes p :: int
shows prime p «<— p > 0 A prime-elem p
(proof)

2.2 The (simple) euclidean algorithm as gcd computation

class euclidean-semiring-ged = normalization-euclidean-semiring + ged + Ged +

assumes gcd-eucl: Euclidean-Algorithm.ged = GCD.gcd
and Icm-eucl: Euclidean-Algorithm.lem = GCD.lem
assumes Ged-eucl: FEuclidean-Algorithm.Ged = GCD.Ged
and Lem-eucl: Euclidean-Algorithm.Lem = GCD.Lem
begin

subclass semiring-gcd
(proof )

subclass semiring-Ged
(proof)

subclass factorial-semiring-gcd

(proof)

lemma gcd-mod-right [simp]:
a# 0= ged a (bmoda) =gcdab
(proof )

lemma ged-mod-left [simp]:

b# 0 = ged (amodb) b= gedab
{proof)
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lemma euclidean-size-ged-lel [simp):
assumes a # 0
shows euclidean-size (ged a b) < euclidean-size a

(proof)

lemma euclidean-size-ged-le2 [simp]:
b # 0 = euclidean-size (ged a b) < euclidean-size b

{proof)

lemma euclidean-size-ged-less!:
assumes a # 0 and — a dvd b
shows euclidean-size (ged a b) < euclidean-size a

(proof)

lemma euclidean-size-gcd-less2:
assumes b # 0 and — b dvd a
shows euclidean-size (ged a b) < euclidean-size b

{proof)

lemma euclidean-size-lem-lel:
assumes o # 0 and b # 0
shows euclidean-size a < euclidean-size (lcm a b)

(proof)

lemma euclidean-size-lem-le2:
a# 0= b+# 0 = euclidean-size b < euclidean-size (lcm a b)

{proof)

lemma euclidean-size-lem-less1:
assumes b # 0 and = b dvd a
shows euclidean-size a < euclidean-size (lem a b)

(proof)

lemma euclidean-size-lecm-less2:
assumes a # () and — a dvd b
shows euclidean-size b < euclidean-size (lecm a b)

{proof)

end

lemma factorial-euclidean-semiring-gcdl:

OFCLASS('a::{factorial-semiring-gcd, normalization-euclidean-semiring}, euclidean-semiring-ged-class)
(proof)
2.3 The extended euclidean algorithm

class euclidean-ring-gcd = euclidean-semiring-ged + idom
begin
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subclass euclidean-ring (proof)
subclass ring-ged (proof)
subclass factorial-ring-ged (proof)
function euclid-ezt-auz :: 'a = 'a = 'a = 'a = ‘a = 'a = ('a x 'a) X 'a
where euclid-ext-auz s" st' t ' r = (
if = 0 then let ¢ = 1 div unit-factor v’ in ((s' * ¢, t’ x ¢), normalize r')
else let ¢ = r' div r
in euclid-ext-aux s (' — g+ s) t (t' — g = t) r (r' mod r))
(proof)
termination

{proof)

abbreviation (input) euclid-ext :: 'a = 'a = ('a x 'a) X 'a

where euclid-ext = euclid-ext-aux 1 0 0 1

lemma
assumes ged v’ v = ged a b
assumes s’ x a + t' x b= 1’
assumes s x a + t* b =1
assumes euclid-ext-auz s" s t' t r' r = ((z, y), ¢)
shows euclid-ext-aux-eq-ged: ¢ = ged a b
and euclid-ext-auz-bezout: T x a + y x b = ged a b
(proof)

declare cuclid-ext-auz.simps [simp del]

definition bezout-coefficients :: 'a = ‘a = 'a x 'a
where [code]: bezout-coefficients a b = fst (euclid-ext a b)

lemma bezout-coefficients-0:
bezout-coefficients a 0 = (1 div unit-factor a, 0)

{proof)

lemma bezout-coefficients-left-0:
bezout-coefficients 0 a = (0, 1 div unit-factor a)

{proof)

lemma bezout-coefficients:
assumes bezout-coefficients a b = (z, y)
shows z x a + y*x b=gced ad

{proof)

lemma bezout-coefficients-fst-snd:
fst (bezout-coefficients a b) * a + snd (bezout-coefficients a b) * b = gcd a b

(proof)

lemma euclid-ext-eq [simp]:
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euclid-ext a b = (bezout-coefficients a b, ged a b) (is #p = ?2q)
(proof)

declare euclid-ext-eq [symmetric, code-unfold)

end

class normalization-euclidean-semiring-multiplicative =
normalization-euclidean-semiring + normalization-semidom-multiplicative

begin

subclass factorial-semiring-multiplicative {proof)

end

class field-ged =

field + unique-euclidean-ring + euclidean-ring-gcd + normalization-semidom-multiplicative

begin

subclass normalization-euclidean-semiring-multiplicative {proof)

subclass normalization-euclidean-semiring (proof)

subclass semiring-gcd-mult-normalize (proof)

end

2.4 Typical instances

instance nat :: normalization-euclidean-semiring (proof)

instance nat :: euclidean-semiring-gcd
(proof)

instance nat :: normalization-euclidean-semiring-multiplicative (proof)

lemma prime-factorization-Suc-0 [simp|: prime-factorization (Suc 0) = {#}
{proof)

instance int :: normalization-euclidean-semiring (proof)

instance int :: euclidean-ring-gcd
(proof)

instance int :: normalization-euclidean-semiring-multiplicative {proof)
lemma (in idom) prime-CHAR-semidom:

assumes CHAR('a) > 0
shows prime CHAR('a)
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(proof)

end

3 Primes

theory Primes
imports Fuclidean-Algorithm
begin

3.1 Primes on nat and int
lemma Suc-0-not-prime-nat [simp]: = prime (Suc 0)
(proof)

lemma prime-ge-2-nat:
p > 2 if prime p for p :: nat
(proof)

lemma prime-ge-2-int:
p > 2 if prime p for p :: int
(proof)

lemma prime-ge-0-int: prime p => p > (0::int)

(proof)

lemma prime-gt-0-nat: prime p = p > (0::nat)
(proof )

lemma prime-gt-0-int: prime p = p > (0::int)
(proof )

lemma prime-ge-1-nat: prime p => p > (1::nat)
(proof)

lemma prime-ge-Suc-0-nat: prime p = p > Suc 0

(proof)

lemma prime-ge-1-int: prime p => p > (1::int)
(proof )

lemma prime-gt-1-nat: prime p = p > (1::nat)
(proof )

lemma prime-gt-Suc-0-nat: prime p = p > Suc 0
(proof)
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lemma prime-gt-1-int: prime p = p > (1::int)
(proof )

lemma prime-natl:
prime p if p > 2 and Am n. p dvd m x n = p dvd m V p dvd n for p :: nat
(proof )

lemma prime-intl:
prime p if p > 2 and Am n. p dvd m x n = p dvd m V p dvd n for p :: int
(proof )

lemma prime-elem-nat-iff [simp]:
prime-elem n <— prime n for n :: nat
(proof )

lemma prime-elem-iff-prime-abs [simp):
prime-elem k <— prime |k| for k :: int
(proof)

lemma prime-nat-int-transfer [simpl:
prime (int n) <— prime n (is 7P +— Q)
(proof)

lemma prime-nat-iff-prime [simp]:
prime (nat k) <— prime k
(proof)

lemma prime-int-nat-transfer:
prime k <— k > 0 A prime (nat k)
(proof)

lemma prime-nat-naivel:
prime p if p > 2 and dvd: An. ndvd p = n=1V n = p for p :: nat
(proof)

lemma prime-int-naivel:
prime p if p > 2 and dvd: N\k. k dvd p = |k| = 1 V |k| = p for p :: int
(proof)

lemma prime-nat-iff:
prime (n = nat) «— (I <n A N¥m. mdvdn — m=1V m=n))

(proof)

lemma prime-nat-iff "
prime (p :: nat) «— p > 1 A (Vn € {2..<p}. = n dvd p)
(proof)

lemma prime-int-iff:
prime (n:int) «— (I <n A N¥m.m>0Amdvdn — m=1V m=n))
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(proof)

lemma prime-int-iff ":
prime (p = int) «— p > 1 A (Vn € {2..<p}. = n dvd p) (is 2P +— ?Q)
(proof)

lemma prime-nat-not-dvd:
assumes prime p p > n n # (1::nat)
shows —n dvd p

{(proof)

lemma prime-int-not-dvd:
assumes prime p p > nn > (1:int)
shows —n dvd p

(proof)

lemma prime-odd-nat: prime p = p > (2::nat) = odd p
(proof)

lemma prime-odd-int: prime p = p > (2::int) = odd p
(proof )

lemma prime-int-altdef:
primep = (1 < p A (Vmzint. m > 0 — m dvd p —
m=1V m=p))
(proof )

lemma not-prime-eq-prod-nat:
assumes m > 1 — prime (m::nat)
shows dnk n=mxkAIl <mAmM<nAIl <kANE<n

(proof)

3.2 Make prime naively executable

lemma prime-int-numeral-eq [simp]:
prime (numeral m :: int) <— prime (numeral m :: nat)
{proof )

class check-prime-by-range = normalization-semidom + discrete-linordered-semidom

+
assumes prime-iff: <prime a <— 1 < a A (Vde{2..a div 2}. = d dvd a)»
begin

lemma two-is-prime [simp]:

<prime 2)
(proof )

end
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lemma divisor-less-eq-half-nat:
m < n div 2y if <m dvd ny <m < n> for m n :: nat

{proof)

instance nat :: check-prime-by-range
(proof)

lemma two-is-prime-nat [simp):
<prime (2::nat)>
{proof)

lemma divisor-less-eq-half-int:
k< ldw2yif <kdvdly k<l <l >0k >0 for kl: int
(proof)

instance int :: check-prime-by-range
(proof)

lemma prime-nat-numeral-eq [simp]: — TODO Sieve Of Erathosthenes might
speed this up
prime (numeral m :: nat) «—
(1::nat) < numeral m A
(Vnunat € set [2..<Suc (numeral m div 2)]. = n dvd numeral m)

{proof)

context check-prime-by-range
begin

definition check-divisors :: <'a = 'a = 'a = bool
where <check-divisors 1 v a «— (Vde{l..u}. = d dvd a)>

lemma check-divisors-rec [code]:
<check-divisors l v a <— v < IV (=l dvd a N check-divisors (I + 1) u a)»

{proof)

lemma prime-eq-check-divisors [code]:
<prime a «— a > 1 A check-divisors 2 (a div 2) a
{proof)

end

3.3 Largest exponent of a prime factor

lemma prime-factor-nat:
n # (1:nat) = Ip. prime p A p dvd n
(proof)

lemma prime-factor-int:
fixes k :: int
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assumes |k| # 1
obtains p where prime p p dvd k

(proof)

Possibly duplicates other material, but avoid the complexities of multisets.

lemma prime-power-cancel-less:

assumes prime p and eg: m * (p " k) = m’ * (p " k') and less: k < k' and —
p dvd m

shows Fulse

{(proof)

lemma prime-power-cancel:
assumes prime p and eq¢: m x (p ~ k) =m’' x (p " k') and = p dvd m — p dvd

m/

shows k = k'
(proof)

lemma prime-power-cancel?2:
assumes prime pm * (p " k) =m’'x (p " k') = p dvd m = p dvd m’
obtains m = m’ k = k'
(proof )

lemma prime-power-canonical:
fixes m :: nat
assumes prime p m > 0
shows 3kn. = pdvdn Am=nxxp  k

(proof)

3.4 Infinitely many primes
lemma next-prime-bound: 3 p::nat. prime p An < p A p < fact n + 1

(proof)

lemma bigger-prime: 3 p. prime p A p > (n::nat)

(proof )

lemma primes-infinite: — (finite {(p::nat). prime p})
(proof)

3.5 Powers of Primes

Versions for type nat only

lemma prime-product:
fixes p::nat
assumes prime (p * q)
shows p=1Vq¢g=1
(proof)
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lemma prime-power-mult-nat:
fixes p :: nat
assumes p: prime pand zy: x x y = p _ k
shows dij.c=p " iANy=pj

(proof )

lemma prime-power-exp-nat:
fixes p::nat
assumes p: prime p and n: n # 0
and zn: x'n = p k shows Ji. z = pi
(proof)

lemma divides-primepow-nat:
fixes p :: nat
assumes p: prime p
shows d dvd p "k +— (Fi<k. d=p ")
(proof)

lemma gcd-prime-int:

assumes prime (p :: int)

shows ged p k = (if p dvd k then p else 1)
(proof)

3.6 Chinese Remainder Theorem Variants

lemma bezout-ged-nat:
fixes a::nat shows 3z y. axz —bxy=gcdabV bxx —ax*xy=gcedabd

{proof)

lemma gcd-bezout-sum-nat:
fixes a::nat
assumes a x ¢ + bx y = d
shows gcd a b dvd d

{(proof)

A binary form of the Chinese Remainder Theorem.

lemma chinese-remainder:
fixes a::nat assumes ab: coprime a b and a: a # 0 and b: b # 0
shows dz ql ¢g2. 2 =u+ql xa ANz =v+ g2 *xb

(proof)

Primality

lemma coprime-bezout-strong:
fixes a::nat assumes coprime a b b # 1
shows 3z y. axz=bxy+ 1

{proof)

lemma bezout-prime:
assumes p: prime p and pa: - p dvd a
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shows 3z y. axx = Suc (pxy)
{(proof)

3.7 Multiplicity and primality for natural numbers and in-
tegers

lemma prime-factors-gt-0-nat:
p € prime-factors © = p > (0::nat)

(proof )

lemma prime-factors-gt-0-int:
p € prime-factors t => p > (0::int)
{proof )

lemma prime-factors-ge-0-int [elim]:
fixes n :: int
shows p € prime-factors n = p > 0
(proof)

lemma prod-mset-prime-factorization-int:
fixes n :: int
assumes n > (
shows prod-mset (prime-factorization n) = n

{proof)

lemma prime-factorization-exists-nat:
n> 0= (IM. (Vp:nat € set-mset M. prime p) A n = ([[i €# M. i))
{proof )

lemma prod-mset-prime-factorization-nat [simpl:
(n:nat) > 0 = prod-mset (prime-factorization n) = n
(proof )

lemma prime-factorization-nat:
n > (0:nat) = n = ([[p € prime-factors n. p ~ multiplicity p n)
(proof )

lemma prime-factorization-int:
n > (0:int) = n = ([[ p € prime-factors n. p ~ multiplicity p n)
(proof )

lemma prime-factorization-unique-nat:
fixes f :: nat = -
assumes S-eq: S = {p. 0 < fp}
and finite S
and S: VpeS. prime p n = ([[p€S. p ~ fp)
shows S = prime-factors n A (¥ p. prime p — fp = multiplicity p n)
(proof)
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lemma prime-factorization-unique-int:
fixes f :: int = -
assumes S-eq: S = {p. 0 < [ p}
and finite S
and S: VpeS. prime p abs n = ([[p€S. p " fp)
shows S = prime-factors n A (¥ p. prime p — [ p = multiplicity p n)
(proof)

lemma prime-factors-characterization-nat:
S={p. 0<f (pnat)} =
finite S = VpeS. prime p = n = ([[ p€S. p ~ f p) = prime-factors n = S
(proof)

lemma prime-factors-characterization’-nat:
finite {p. 0 < f (p::nat)} =
(Vp. 0 < fp— prime p) =
prime-factors ([Tp | 0 < fp.p " fp) = {p. 0 < fp}
{proof )

lemma prime-factors-characterization-int:
S ={p. 0 < f (p:int)} = finite S =
vV peS. prime p = abs n = ([[p€S. p ~ fp) = prime-factors n = S
(proof )

lemma abs-prod: abs (prod f A :: 'a :: linordered-idom) = prod (Az. abs (f z)) A
{proof)

lemma primes-characterization’-int [rule-format]:
finite {p. p >0 N0 <[ (p:int)} = Vp. 0 < fp— prime p =
prime-factors ([Ip | p > 0N 0 <fp.p "fp)={p.p>0AN0<fp}
{proof)

lemma multiplicity-characterization-nat:
S ={p. 0 <f (p:nat)} = finite S = V p€S. prime p = prime p =
n = ([[peS. p ~ fp) = multiplicity pn = fp
(proof )

lemma multiplicity-characterization’-nat: finite {p. 0 < f (p::nat)} —
(Vp. 0 < fp — prime p) — prime p —>
maltiplicity p ([Tp | 0 < fp.p ~fp)=1[p
(proof )

lemma multiplicity-characterization-int: S = {p. 0 < f (p:int)} =
finite S = VY peS. prime p = prime p = n = ([[peS. p ~ fp) =

multiplicity pn = fp
(proof )

lemma multiplicity-characterization’-int [rule-format]:
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finite {p. p > 0 N 0 < f (puint)} =
(Vp. 0 < fp — prime p) = prime p =
multiplicity p ([[plp > 0AN0<fp.p " fp)=fp
(proof )

lemma multiplicity-one-nat [simpl: multiplicity p (Suc 0) = 0
(proof)

lemma multiplicity-eq-nat:
fixes = and y::nat
assumes z > 0y > 0 Ap. prime p = multiplicity p x = multiplicity p y
shows z = y
(proof)

lemma multiplicity-eq-int:
fixes = y :: int
assumes z > 0y > 0 Ap. prime p = multiplicity p x = multiplicity p y
shows z = y
(proof)

lemma multiplicity-prod-prime-powers:

assumes finite S A\z. x € S = prime z prime p

shows multiplicity p ([[p € S.p ~fp) = (if p € S then f p else 0)
(proof)

lemma prime-factorization-prod-mset:

assumes 0 ¢# A

shows prime-factorization (prod-mset A) = > 4 (image-mset prime-factorization
A4)

(proof)

lemma prime-factors-prod:
assumes finite Aand 0 ¢ f‘ A
shows prime-factors (prod f A) = | ((prime-factors o f) < A)
{proof )

lemma prime-factors-fact:
prime-factors (fact n) = {p € {2..n}. prime p} (is M = ¢N)
(proof)

lemma prime-dvd-fact-iff:
assumes prime p
shows p dvd fact n «+— p < n
(proof)

lemma dvd-choose-prime:
assumes kn: k < nand k: k # 0 and n: n # 0 and prime-n: prime n
shows n dvd (n choose k)

(proof)
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lemma (in ring-1) minus-power-prime-CHAR:
assumes p = CHAR('a) prime p
shows (—z :: ‘a) "p = —(x " p)

(proof )

3.8 Rings and fields with prime characteristic

We introduce some type classes for rings and fields with prime characteristic.

class semiring-prime-char = semiring-1 +
assumes prime-char-auz: I n. prime n A of-nat n = (0 :: 'a)
begin

lemma CHAR-pos [intro, simp]: CHAR('a) > 0
{proof)

lemma CHAR-nonzero [simp]: CHAR('a) # 0
{proof)

lemma CHAR-prime [intro, simp]: prime CHAR('a)
{proof)

end

lemma semiring-prime-charl [intro?):
prime CHAR('a :: semiring-1) => OFCLASS('a, semiring-prime-char-class)
(proof )

lemma idom-prime-charl [intro?):
assumes CHAR('a :: idom) > 0
shows OFCLASS('a, semiring-prime-char-class)

(proof)

class comm-semiring-prime-char = comm-semiring-1 + semiring-prime-char
class comm-ring-prime-char = comm-ring-1 + semiring-prime-char

begin

subclass comm-semiring-prime-char {proof)

end

class idom-prime-char = idom + semiring-prime-char

begin

subclass comm-ring-prime-char {proof)

end

class field-prime-char = field +

assumes pos-char-ezists: 3n>0. of-nat n = (0 :: 'a)
begin
subclass idom-prime-char

(proof)
end
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lemma field-prime-charl [intro?):
n> 0 = of-nat n = (0 :: 'a :: field) = OFCLASS('a, field-prime-char-class)
{proof)

lemma field-prime-charl’ [intro?):
CHAR('a :: field) > 0 = OFCLASS('a, field-prime-char-class)
(proof)

3.9 Finite fields
class finite-field = field-prime-char + finite

lemma finite-fieldl [intro?):
assumes finite (UNIV :: 'a :: field set)
shows OFCLASS('a, finite-field-class)

(proof)

On a finite field with n elements, taking the n-th power of an element is the
identity. This is an obvious consequence of the fact that the multiplicative
group of the field is a finite group of order n — 1, so z™n = 1 for any
non-zero .

Note that this result is sharp in the sense that the multiplicative group of
a finite field is cyclic, i.e. it contains an element of order n — 1. (We don’t
prove this here.)

lemma finite-field-power-card-eq-same:
fixes = :: 'a :: finite-field
shows x ~card (UNIV :: 'a set) = x
(proof)

lemma finite-field-power-card-power-eq-same:
fixes = :: 'a :: finite-field
assumes m = card (UNIV :: 'a set) " n
shows =z " m=z

(proof )
class enum-finite-field = finite-field +
fixes enum-finite-field :: nat = 'a

assumes enum-finite-field: enum-finite-field ‘{..<card (UNIV :: 'a set)} = UNIV
begin

lemma inj-on-enum-finite-field: inj-on enum-finite-field {..<card (UNIV :: 'a set)}
(proof )

end

To get rid of the pending sort hypotheses, we prove that the field with 2
elements is indeed a finite field.
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typedef gf2 = {0, 1 :: nat}
(proof )

setup-lifting type-definition-gf2

instantiation g¢f2 :: field

begin

lift-definition zero-gf2 :: gf2 is 0 (proof)

lift-definition one-gf2 :: gf2 is 1 (proof)

lift-definition uminus-gf2 :: gf2 = g¢f2 is Az. = (proof)

lift-definition plus-gf2 :: gf2 = ¢f2 = gf2 is Az y. if x = y then 0 else 1 {proof)
lift-definition minus-gf2 :: gf2 = ¢f2 = gf2 is Az y. if = y then 0 else 1 {proof)
lift-definition times-gf2 :: gf2 = gf2 = gf2 is Az y. © * y (proof)
lift-definition inverse-gf2 :: gf2 = g¢f2 is Az. z (proof)

lift-definition divide-gf2 :: gf2 = gf2 = gf2 is Az y. z * y {proof)

instance
(proof )

end

instance ¢f2 :: finite-field
(proof )

3.10 The Freshman’s Dream in rings of prime characteristic

lemma (in comm-semiring-1) freshmans-dream:
fixes z y :: '/a and n :: nat
assumes prime CHAR('a)
assumes n-def: n = CHAR('a)
shows (z+vy) "n=2z "n+y n
(proof)

lemma (in comm-semiring-1) freshmans-dream’:
assumes [simp|: prime CHAR('a) and m = CHAR('a) " n
shows (z+y:'a) "m=2z " m+y m
{proof )

lemma (in comm-semiring-1) freshmans-dream-sum:
fixes f : b= "a
assumes prime CHAR('a) and n = CHAR('a)
shows sum fA " n =sum (Mi. fi "n) A
(proof)

lemma (in comm-semiring-1) freshmans-dream-sum’:
fixes f : b= "a
assumes prime CHAR('a) m = CHAR('a) " n
shows sum fA “m = sum (Mi. f{i " m) A
(proof)
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lemmas prime-imp-coprime-nat = prime-imp-coprime[where ?'a = nat]
lemmas prime-imp-coprime-int = prime-imp-coprime[where ?'a = int]
lemmas prime-dvd-mult-nat = prime-dvd-mult-iff[where ?'a = nat]

lemmas prime-dvd-mult-int = prime-dvd-mult-iff [ where ?'a = int]

lemmas prime-dvd-mult-eq-nat = prime-dvd-mult-iff[where ?'a = nat]

lemmas prime-dvd-mult-eq-int = prime-dvd-mult-iff [ where ?'a = int]

lemmas prime-dvd-power-nat = prime-dvd-power[where ?'a = nat]

lemmas prime-dvd-power-int = prime-dvd-power|[where ?'a = ini]

lemmas prime-dvd-power-nat-iff = prime-dvd-power-iff [ where ?'a = nat]
lemmas prime-dvd-power-int-iff = prime-dvd-power-iff [ where ?'a = int]
lemmas prime-imp-power-coprime-nat = prime-imp-power-coprime[where ?'a =
nat)

lemmas prime-imp-power-coprime-int = prime-imp-power-coprime[where ?'a =
int]

lemmas primes-coprime-nat = primes-coprime|where ?'a = nat]

lemmas primes-coprime-int = primes-coprime[where ?'a = nat]

lemmas prime-divprod-pow-nat = prime-elem-divprod-pow[where ?'a = nat]
lemmas prime-exp = prime-elem-power-iff [where ?'a = nat]

end

4 Polynomials as type over a ring structure

theory Polynomial
imports
Complez-Main
HOL- Library.More-List
HOL— Library.Infinite-Set
Primes
begin

context semidom-modulo
begin

lemma not-dvd-imp-mod-neq-0:
<a mod b # 0y if <= b dvd >
(proof)

end

4.1 Auxiliary: operations for lists (later) representing coef-
ficients

definition cCons :: 'a::zero = 'a list = 'a list (infixr ##> 65)
where © ## zs = (if xzs = [| A © = 0 then [] else © # xs)
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lemma cCons-0-Nil-eq [simp]: 0 ## || = |]
(proof)

lemma cCons-Cons-eq [simp|: © ## y # ys =z # y # ys
(proof)

lemma cCons-append-Cons-eq [simp]: © ## xs Q y # ys = z # xs Q y # ys
(proof )

lemma cCons-not-0-eq [simp]: © # 0 = x #F# xs =z # xs
(proof)

lemma strip-while-not-0-Cons-eq [simp]:
strip-while (Az. x = 0) (z # xs) = x #4# strip-while (Ax. z = 0) xs
(proof)

lemma ti-cCons [simp]: tl (x #4# xs) = xs
{proof)

4.2 Definition of type poly

typedef (overloaded) ‘a poly = {f :: nat = ’a::zero. Voo n. fn =0}
morphisms coeff Abs-poly
(proof )

setup-lifting type-definition-poly

lemma poly-eq-iff: p = q «— (V' n. coeff p n = coeff q n)

(proof )

lemma poly-eql: (An. coeff p n = coeff g n) = p = ¢
(proof )

lemma MOST-coeff-eq-0: ¥V oo n. coeff pn =0
(proof )

lemma coeff-Abs-poly:
assumes A\i. i >n = fi=10
shows coeff (Abs-poly f) = f
(proof)

4.3 Degree of a polynomial

definition degree :: 'a::zero poly = nat
where degree p = (LEAST n. ¥V i>n. coeff p i = 0)

lemma degree-cong:
assumes Ai. coeff pi = 0 «— coeff gi =0
shows degree p = degree q
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(proof)

lemma coeff-Abs-poly-If-le:
coeff (Abs-poly (Ai. if i < n then fielse 0)) = (M. if i < n then fi else 0)
(proof)

lemma coeff-eq-0:
assumes degree p < n
shows coeff pn =0

{(proof)

lemma le-degree: coeff p n # 0 = n < degree p
(proof)

lemma degree-le: Vi>n. coeff p i = 0 = degree p < n
(proof )

lemma less-degree-imp: n < degree p =—> Ji>n. coeff p i # 0
(proof)

lemma poly-eql2:
assumes degree p = degree ¢ and A\i. i < degree p = coeff p i = coeff q i
shows p = ¢
(proof)

4.4 The zero polynomial
instantiation poly :: (zero) zero

begin

lift-definition zero-poly :: 'a poly
is A-. 0
(proof )

instance (proof)
end

lemma coeff-0 [simp]: coeff 0 n = 0
(proof )

lemma degree-0 [simp]: degree 0 = 0
(proof )

lemma leading-coeff-neq-0:
assumes p # 0
shows coeff p (degree p) # 0

(proof)
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lemma leading-coeff-0-iff [simp]: coeff p (degree p) = 0 «+— p =0
{proof )

lemma degree-lessi:
assumes p # 0V n > 0Vk>n. coeff pk =0
shows degree p < n

(proof)

lemma eg-zero-or-degree-less:
assumes degree p < n and coeff p n = 0
shows p = 0 V degree p < n

(proof)

lemma coeff-0-degree-minus-1: coeff rrr dr = 0 = degree rrr < dr = degree
rrr < dr — 1

(proof)

4.5 List-style constructor for polynomials

lift-definition pCons :: ‘a::zero = 'a poly = 'a poly
is Aa p. case-nat a (coeff p)
(proof )

lemmas coeff-pCons = pCons.rep-eq

lemma coeff-pCons’: poly.coeff (pCons ¢ p) n = (if n = 0 then c else poly.coeff p
(n — 1))
(proof )

lemma coeff-pCons-0 [simp]: coeff (pCons a p) 0 = a
(proof)

lemma coeff-pCons-Suc [simp]: coeff (pCons a p) (Suc n) = coeff p n
(proof )

lemma degree-pCons-le: degree (pCons a p) < Suc (degree p)
{proof)

lemma degree-pCons-eq: p # 0 = degree (pCons a p) = Suc (degree p)
(proof )

lemma degree-pCons-0: degree (pCons a 0) = 0
(proof)

lemma degree-pCons-eq-if [simp]: degree (pCons a p) = (if p = 0 then 0 else Suc
(degree p))
(proof)

lemma pCons-0-0 [simp]: pCons 0 0 = 0
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{proof)

lemma pCons-eq-iff [simp]: pCons a p = pCons b g +— a=b A p=q
(proof )

lemma pCons-eq-0-iff [simp]: pCons ap=0+—>a=0ANp=10
(proof )

lemma pCons-cases [cases type: poly):
obtains (pCons) a ¢ where p = pCons a ¢

(proof)

lemma pCons-induct [case-names 0 pCons, induct type: poly|:
assumes zero: P 0
assumes pCons: Aap. a %0V p# 0 = Pp = P (pCons a p)
shows P p

(proof)

lemma degree-eq-zerok:
fixes p :: ’a::zero poly
assumes degree p = 0
obtains ¢ where p = pCons a 0

(proof)

4.6 Quickcheck generator for polynomials

quickcheck-generator poly constructors: 0 :: - poly, pCons

4.7 List-style syntax for polynomials

syntax
-poly :: args = 'a poly («(<indent=2 notation=<mizfix polynomial enumera-
tionyy[:=:])»)

syntax-consts
-poly = pCons

translations
[z, zs:] = CONST pCons z [:xs:]
[:z:] = CONST pCons x 0

lemma degree-0-id:
assumes degree p = 0
shows [: coeff p 0 ] = p
(proof)

lemma degree0-coeffs: degree p = 0 = 3 a. p = [: a ]
(proof )

lemma degreel-coeffs:

fixes p :: ‘a::zero poly
assumes degree p = 1

o1



obtains a b where p =[: b, a:] a # 0
(proof)

lemma degree2-coeffs:

fixes p :: a::zero poly

assumes degree p = 2

obtains a b ¢ where p=[: ¢, b, a:] a # 0
(proof)

4.8 Representation of polynomials by lists of coefficients

primrec Poly :: 'a::zero list = 'a poly
where
[code-post]: Poly [| = 0
| [code-post]: Poly (a # as) = pCons a (Poly as)

lemma Poly-replicate-0 [simp]: Poly (replicate n 0) = 0
(proof )

lemma Poly-eg-0: Poly as = 0 <— (In. as = replicate n 0)
{proof )

lemma Poly-append-replicate-zero [simp]: Poly (as Q replicate n 0) = Poly as
(proof )

lemma Poly-snoc-zero [simp]: Poly (as @ [0]) = Poly as
{proof)

lemma Poly-cCons-eq-pCons-Poly [simp]: Poly (a ## p) = pCons a (Poly p)
(proof)

lemma Poly-on-rev-starting-with-0 [simp]: hd as = 0 = Poly (rev (tl as)) = Poly
(rev as)

(proof)

lemma degree-Poly: degree (Poly xzs) < length zs
{proof )

lemma coeff-Poly-eq [simp]: coeff (Poly xs) = nth-default 0 zs
{proof)

definition coeffs :: 'a poly = 'a::zero list
where coeffs p = (if p = 0 then || else map (Ai. coeff p i) [0 ..< Suc (degree p)])

lemma coeffs-eq-Nil [simp]: coeffs p =[] +— p =0
{proof)

lemma not-0-coeffs-not-Nil: p # 0 = coeffs p # []
(proof )
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lemma coeffs-0-eq-Nil [simp]: coeffs 0 = ||
(proof )

lemma coeffs-pCons-eq-cCons [simp]: coeffs (pCons a p) = a ## coeffs p
(proof)

lemma length-coeffs: p # 0 = length (coeffs p) = degree p + 1
(proof )

lemma coeffs-nth: p # 0 = n < degree p = coeffs p ! n = coeff p n
(proof)

lemma coeff-in-coeffs: p # 0 = n < degree p => coeff p n € set (coeffs p)

(proof)

lemma not-0-cCons-eq [simpl: p # 0 => a ## coeffs p = a # coeffs p
(proof )

lemma Poly-coeffs [simp, code abstype]: Poly (coeffs p) = p
(proof )

lemma coeffs-Poly [simp]: coeffs (Poly as) = strip-while (HOL.eq 0) as
(proof)

lemma no-trailing-coeffs [simp):
no-trailing (HOL.eq 0) (coeffs p)
{proof )

lemma strip-while-coeffs [simp):
strip-while (HOL.eq 0) (coeffs p) = coeffs p
(proof)

lemma coeffs-eq-iff: p = q «— coeffs p = coeffs q
(is 7P +— ?Q)
(proof)

lemma nth-default-coeffs-eq: nth-default 0 (coeffs p) = coeff p
(proof )

lemma range-coeff: range (coeff p) = insert 0 (set (coeffs p))
(proof )

lemma [codel: coeff p = nth-default 0 (coeffs p)
(proof )

lemma coeffs-eql:

assumes coeff: An. coeff p n = nth-default 0 zs n
assumes zero: no-trailing (HOL.eq 0) xs
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shows coeffs p = xs
(proof )

lemma degree-eq-length-coeffs [code]: degree p = length (coeffs p) — 1
(proof )

lemma length-coeffs-degree: p # 0 = length (coeffs p) = Suc (degree p)
(proof )

lemma [code abstract]: coeffs 0 = []
(proof)

lemma [code abstract]: coeffs (pCons a p) = a #F# coeffs p
(proof )

lemma set-coeffs-subset-singleton-0-iff [simp]:
set (coeffs p) C{0} «+— p=10
(proof )

lemma set-coeffs-not-only-0 [simp]:

set (coeffs p) # {0}
{proof)

lemma forall-coeffs-conv:
(Vn. P (coeff p n)) «— (V¢ € set (coeffs p). Pc)if PO
(proof)

instantiation poly :: ({zero, equal}) equal
begin

definition [code]: HOL.equal (p::'a poly) q «+— HOL.equal (coeffs p) (coeffs q)

instance
(proof )

end

lemma [code nbe]: HOL.equal (p :: - poly) p <— True
(proof)

definition is-zero :: ‘a::zero poly = bool
where [code]: is-zero p +— List.null (coeffs p)

lemma is-zero-null [code-abbrev]: is-zero p <— p = 0
{proof)

Reconstructing the polynomial from the list

definition poly-of-list :: 'a::comm-monoid-add list = 'a poly
where [simp]: poly-of-list = Poly
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lemma poly-of-list-impl [code abstract]: coeffs (poly-of-list as) = strip-while (HOL.eq
0) as
(proof )

4.9 Fold combinator for polynomials

definition fold-coeffs :: (‘a::zero = 'b = 'b) = 'a poly = 'b = b
where fold-coeffs f p = foldr f (coeffs p)

lemma fold-coeffs-0-eq [simp]: fold-coeffs f 0 = id
(proof )

lemma fold-coeffs-pCons-eq [simp]: f 0 = id => fold-coeffs f (pCons a p) = fa o
fold-coeffs f p
(proof )

lemma fold-coeffs-pCons-0-0-eq [simp]: fold-coeffs f (pCons 0 0) = id
(proof )

lemma fold-coeffs-pCons-coeff-not-0-eq [simp):
a # 0 = fold-coeffs f (pCons a p) = f a o fold-coeffs f p
(proof )

lemma fold-coeffs-pCons-not-0-0-eq [simp]:

p # 0 = fold-coeffs f (pCons a p) = f a o fold-coeffs f p
(proof )

4.10 Canonical morphism on polynomials — evaluation
definition poly :: <'a::comm-semiring-0 poly = 'a = 'a

where <poly p a = horner-sum id a (coeffs p)»

lemma poly-eq-fold-coeffs:
<poly p = fold-coeffs (Aa fz. a + x x fz) p (Az. 0)
(proof )

lemma poly-0 [simp]: poly 0 z = 0
(proof )

lemma poly-pCons [simp]: poly (pCons a p) x = a + = * poly p ©
(proof)

lemma poly-altdef: poly p x = (3 i<degree p. coeff p i x x ~ 1)
for z :: 'a::{comm-semiring-0,semiring-1}

(proof)

lemma poly-0-coeff-0: poly p 0 = coeff p 0
(proof)
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lemma poly-zero:
fixes p :: 'a :: comm-ring-1 poly
assumes z: poly p £ = 0 shows p = 0 +— degree p = 0

(proof)

4.11 Monomials

lift-definition monom :: ‘a = nat = 'a::zero poly
is Aa m n. if m = n then a else 0

{proof)

lemma coeff-monom [simp]: coeff (monom a m) n = (if m = n then a else 0)
{proof)

lemma monom-0: monom a 0 = [:a:]
{proof)

lemma monom-Suc: monom a (Suc n) = pCons 0 (monom a n)
{proof)

lemma monom-eq-0 [simp]: monom 0 n = 0
{proof)

lemma monom-eq-0-iff [simp]: monom an =0 <— a =0
(proof)

lemma monom-eq-iff [simp]: monom a n = monom bn +— a =05
(proof )

lemma degree-monom-le: degree (monom a n) < n
(proof )

lemma degree-monom-eq: a # 0 = degree (monom a n) = n

(proof)

lemma coeffs-monom [code abstract]:
coeffs (monom a n) = (if a = 0 then [] else replicate n 0 Q [a])

{proof)

lemma fold-coeffs-monom [simp]: a # 0 = fold-coeffs f (monom an) =f0
nofa
(proof )

lemma poly-monom: poly (monom an) x = a* x ~n
for a z :: 'a::comm-semiring-1
(proof )

lemma monom-eq-iff . monom ¢ n = monom dm +— c=d A (c=0V n=
m)
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{proof)

lemma monom-eg-const-iff: monom cn = [:d;] «— c=d A (c=0V n=0)
{proof)

4.12 Leading coefficient

abbreviation lead-coeff:: 'a::zero poly = 'a
where lead-coeff p = coeff p (degree p)

lemma lead-coeff-pCons|[simp]:
p # 0 = lead-coeff (pCons a p) = lead-coeff p
p = 0 = lead-coeff (pCons a p) = a
(proof)

lemma lead-coeff-monom [simp]: lead-coeff (monom ¢ n) = ¢
{proof)

lemma last-coeffs-eq-coeff-degree:
last (coeffs p) = lead-coeff p if p # 0
{proof )

lemma lead-coeff-list-def:
lead-coeff p = (if coeffs p=|[] then 0 else last (coeffs p))
(proof)

4.13 Addition and subtraction

instantiation poly :: (comm-monoid-add) comm-monoid-add
begin

lift-definition plus-poly :: ‘a poly = 'a poly = 'a poly
is Ap ¢ n. coeff p n + coeff g n
(proof)

lemma coeff-add [simp]: coeff (p + q) n = coeff p n + coeff g n
(proof)

instance

(proof)

end

instantiation poly :: (cancel-comm-monoid-add) cancel-comm-monoid-add
begin

lift-definition minus-poly :: 'a poly = 'a poly = 'a poly

is Ap ¢ n. coeff p n — coeff g n
(proof)
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lemma coeff-diff [simp]: coeff (p — q) n = coeff p n — coeff ¢ n
{proof )

instance

(proof)

end

instantiation poly :: (ab-group-add) ab-group-add
begin

lift-definition uminus-poly :: 'a poly = 'a poly
isApn. — coeff pn
(proof)

lemma coeff-minus [simp]: coeff (— p) n = — coeff p n
(proof )

instance
(proof)

end

lemma add-pCons [simp]: pCons a p + pCons b ¢ = pCons (a + b) (p + q)
(proof )

lemma minus-pCons [simp]: — pCons a p = pCons (— a) (— p)
(proof)

lemma diff-pCons [simp]: pCons a p — pCons b ¢ = pCons (a — b) (p — q)
(proof )

lemma degree-add-le-maz: degree (p + q) < maz (degree p) (degree q)
{proof)

lemma degree-add-le: degree p < n = degree ¢ < n = degree (p + q) < n
(proof )

lemma degree-add-less: degree p < n = degree ¢ < n = degree (p + q) < n
(proof)

lemma degree-add-eq-right: assumes degree p < degree q shows degree (p + q)
= degree q
(proof)

lemma degree-add-eg-left: degree q < degree p = degree (p + q) = degree p
(proof )

lemma degree-minus [simpl: degree (— p) = degree p

o8



{proof)

lemma lead-coeff-add-le: degree p < degree ¢ = lead-coeff (p + q) = lead-coeff q
(proof )

lemma lead-coeff-minus: lead-coeff (— p) = — lead-coeff p
(proof )

lemma degree-diff-le-max: degree (p — q) < max (degree p) (degree q)
for p q :: 'a::ab-group-add poly
(proof )

lemma degree-diff-le: degree p < n = degree ¢ < n = degree (p — q) < n
for p q :: 'a::ab-group-add poly
(proof )

lemma degree-diff-less: degree p < n = degree ¢ < n = degree (p — q) < n
for p q :: 'a::ab-group-add poly
{proof )

lemma add-monom: monom a n + monom b n = monom (a + b) n
(proof )

lemma diff-monom: monom a n — monom b n = monom (a — b) n
{proof)

lemma minus-monom: — monom a n = monom (— a) n
{proof)

lemma coeff-sum: coeff (3> z€A. px)i= (D x€A. coeff (p z) 7)
(proof)

lemma monom-sum: monom (> z€A. a ) n = (> z€A. monom (a x) n)
{proof)

fun plus-coeffs :: 'a::comm-monoid-add list = 'a list = 'a list
where
plus-coeffs xs [| = xs
| plus-coeffs [| ys = ys
| plus-coeffs (z # xs) (y # ys) = (z + y) ## plus-coeffs zs ys

lemma coeffs-plus-eq-plus-coeffs [code abstract]:
coeffs (p + q) = plus-coeffs (coeffs p) (coeffs q)
(proof)

lemma coeffs-uminus [code abstract):
coeffs (— p) = map uminus (coeffs p)

(proof)
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lemma [code]: p — g =p + — ¢
for p q :: 'a::ab-group-add poly
(proof)

lemma poly-add [simp]: poly (p + q) © = poly p = + poly q x
(proof)

lemma poly-minus [simp]: poly (— p) x = — poly p x
for z :: 'a::comm-ring
(proof )

lemma poly-diff [simp]: poly (p — ¢q) = = poly p x — poly q x
for z :: 'a::comm-ring

{proof)

lemma poly-sum: poly (D k€A. p k) x = (D keA. poly (p k) z)
(proof)

lemma poly-sum-list: poly (3 p<ps. p) y = (O p<ps. poly p y)
(proof )

lemma poly-sum-mset: poly (3. z€#A. px) y= (O xe#A. poly (p x) y)
(proof )

lemma degree-sum-le: finite S = (A\p. p € S = degree (f p) < n) = degree
(sum fS) <n

(proof)

lemma degree-sum-less:
assumes A\z. r € A = degree (fz) <nn >0
shows degree (sum f A) < n

(proof)

lemma poly-as-sum-of-monoms':
assumes degree p < n
shows (> i<n. monom (coeff p i) i) = p

(proof)

lemma poly-as-sum-of-monoms: (> i<degree p. monom (coeff p ©) i) = p
(proof )

lemma Poly-snoc: Poly (xs @ [z]) = Poly xs + monom z (length xs)
{proof)

4.14 Multiplication by a constant, polynomial multiplication
and the unit polynomial

lift-definition smult :: 'a::comm-semiring-0 = ’a poly = 'a poly
is Aapn. ax coeffpn
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(proof)

lemma coeff-smult [simp]: coeff (smult a p) n = a * coeff p n
(proof )

lemma degree-smult-le: degree (smult a p) < degree p
(proof)

lemma smult-smult [simpl: smult a (smult b p) = smult (a * b) p
{proof)

lemma smult-0-right [simp]: smult a 0 = 0
{proof)

lemma smult-0-left [simp]: smult 0 p = 0
{proof)

lemma smult-1-left [simp]: smult (1::'a::comm-semiring-1) p = p
(proof )

lemma smult-add-right: smult a (p + q) = smult a p + smult a g
(proof)

lemma smult-add-left: smult (a + b) p = smult a p + smult b p
(proof )

lemma smult-minus-right [simp]: smult a (— p) = — smult a p
for a :: ‘a::comm-ring
(proof)

lemma smult-minus-left [simp]: smult (— a) p = — smult a p
for a :: 'a::comm-ring
(proof)

lemma smult-diff-right: smult a (p — q) = smult a p — smult a q
for a :: 'a::comm-ring
(proof )

lemma smult-diff-left: smult (a — b) p = smult a p — smult b p
for a b :: 'a::comm-ring
(proof )
lemmas smult-distribs =
smult-add-left smult-add-right
smult-diff-left smult-diff-right

lemma smult-pCons [simp]: smult a (pCons b p) = pCons (a * b) (smult a p)
{proof)
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lemma smult-monom: smult a (monom b n) = monom (a * b) n
{proof)

lemma smult-Poly: smult ¢ (Poly xs) = Poly (map ((x) ¢) s)
(proof)

lemma degree-smult-eq [simp): degree (smult a p) = (if a = 0 then 0 else degree p)
for a :: 'a::{ comm-semiring-0,semiring-no-zero-divisors}
(proof)

lemma smult-eqg-0-iff [simp]: smult a p =0 <— a=0V p=10
for a :: 'a::{comm-semiring-0,semiring-no-zero-divisors}
(proof )

lemma coeffs-smult [code abstract):
coeffs (smult a p) = (if a = 0 then || else map (Groups.times a) (coeffs p))
for p :: 'a::{comm-semiring-0,semiring-no-zero-divisors} poly

(proof )

lemma smult-eq-iff:
fixes b :: 'a :: field
assumes b # 0
shows smult a p = smult b ¢ «— smult (a / b) p = ¢
(is ?lhs <— ?rhs)
(proof)

lemma smult-cancel:
fixes p::'a::idom poly
assumes c#£0 and smult: smult ¢ p = smult ¢ q
shows p=¢q

{(proof)

instantiation poly :: (comm-semiring-0) comm-semiring-0
begin

definition p x ¢ = fold-coeffs (Aa p. smult a ¢ + pCons 0 p) p 0

lemma mult-poly-0-left: (0::'a poly) x ¢ = 0
(proof )

lemma mult-pCons-left [simp]: pCons a p * ¢ = smult a ¢ + pCons 0 (p * q)
(proof )

lemma mult-poly-0-right: p x (0::'a poly) = 0
(proof )

lemma mult-pCons-right [simp]: p x pCons a ¢ = smult a p + pCons 0 (p x q)
(proof)
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lemmas mult-poly-0 = mult-poly-0-left mult-poly-0-right

lemma mult-smult-left [simpl: smult a p * ¢ = smult a (p * q)
(proof)

lemma mult-smult-right [simp]: p * smult a ¢ = smult a (p * q)
(proof)

lemma mult-poly-add-left: (p + q) x T =p*xr 4+ g% 71
for p q r :: 'a poly
(proof)

instance
(proof)

end

lemma coeff-mult-degree-sum:
coeff (p * q) (degree p + degree q) = coeff p (degree p) * coeff q (degree q)
(proof )

instance poly :: ({ comm-semiring-0,semiring-no-zero-divisors}) semiring-no-zero-divisors
(proof)

instance poly :: (comm-semiring-0-cancel) comm-semiring-0-cancel {proof)

lemma coeff-mult: coeff (p * q) n = (3 i<n. coeff p i * coeff q¢ (n—1))
(proof)

lemma coeff-mult-0: coeff (p * q) 0 = coeff p 0 * coeff q 0
(proof )

lemma degree-mult-le: degree (p x q) < degree p + degree q
(proof )

lemma mult-monom: monom a m x monom b n = monom (a * b) (m + n)
(proof)

instantiation poly :: (comm-semiring-1) comm-semiring-1
begin

lift-definition one-poly :: 'a poly
is An. of-bool (n = 0)
(proof)

lemma coeff-1 [simp]:

coeff 1 n = of-bool (n = 0)
{proof)
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lemma one-pCons:
1 =11
(proof)

lemma pCons-one:
[[1:] =1
(proof )

instance
(proof)

end

lemma poly-1 [simp]:
poly 1z =1
(proof )

lemma one-poly-eg-simps [simp]:
1 =1[:1:] +— True
[(1:] = 1 +— True
(proof )

lemma degree-1 [simpl:

degree 1 = 0
(proof)
lemma coeffs-1-eq [simp, code abstract):
coeffs 1 = [1]
(proof )
lemma smult-one [simp]:
smult ¢ 1 = [:¢]
(proof )

lemma smult-sum: smult (> i€ S. fi)p= (i€ S. smult (fi) p)
{proof)

lemma smult-power: (smult a p) ~n = smult (¢ ~n) (p " n)
(proof)

lemma monom-eq-1 [simpl:
monom 1 0 = 1
(proof )

lemma monom-eq-1-iff:
monomcn=1+—c=1ANn=20

(proof)

lemma monom-altdef:
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monom ¢ n = smult ¢ ([:0, 1:] " n)
{proof)

lemma degree-sum-list-le: (\ p . p € set ps => degree p < n)
= degree (sum-list ps) < n

(proof)

lemma degree-prod-list-le: degree (prod-list ps) < sum-list (map degree ps)
(proof)

instance poly :: ({ comm-semiring-1,semiring-1-no-zero-divisors}) semiring-1-no-zero-divisors
(proof)

instance poly :: (comm-ring) comm-ring {proof)

instance poly :: (comm-ring-1) comm-ring-1 (proof)

instance poly :: (comm-ring-1) comm-semiring-1-cancel (proof)

lemma prod-smult: ([[x€A. smult (¢ z) (p x)) = smult (prod ¢ A) (prod p A)
{proof)

lemma degree-power-le: degree (p ~n) < degree p x n
(proof )

lemma coeff-0-power: coeff (p " n) 0 = coeff p 0 " n
(proof )

lemma poly-smult [simp]: poly (smult a p) x = a % poly p x
(proof )

lemma poly-mult [simp]: poly (p * q) x = poly p z * poly q =
(proof )

lemma poly-power [simp]: poly (p " n) x = poly px " n
for p :: 'a::comm-semiring-1 poly
(proof)

lemma poly-prod: poly ([[k€A. p k) x = ([ k€A. poly (p k) z)
(proof)

lemma poly-prod-list: poly (][ p+<ps. p) y = ([[ p<ps. poly p v)
(proof )

lemma poly-prod-mset: poly ([[z€#A. p z) y = ([[z€#A. poly (p z) y)
(proof)

lemma poly-const-pow: [: ¢:] “n=1[ ¢ n:

{proof)

lemma monom-power: monom ¢ n ~ k = monom (¢ " k) (n * k)

{proof)
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lemma degree-prod-sum-le: finite S = degree (prod f S) < sum (degree o f) S
(proof)

lemma coeff-0-prod-list: coeff (prod-list xs) 0 = prod-list (map (Ap. coeff p 0) xs)
(proof)

lemma coeff-monom-mult: coeff (monom c n % p) k = (if k < n then 0 else ¢ *
cocff p (k — n))
{(proof)

lemma coeff-monom-Suc: coeff (monom a (Suc d) % p) (Suc i) = coeff (monom
adxp)i
{proof)

lemma monom-1-dvd-iff = monom 1 n dvd p +— (Vk<n. coeff p k = 0)

(proof)

lemma coeff-sum-monom:

assumes n: n < d

shows coeff (3> i<d. monom (fi) i) n=fn (is 9l = -)
(proof )

4.15 Mapping polynomials

definition map-poly :: ('a :: zero = 'b :: zero) = 'a poly = 'b poly
where map-poly f p = Poly (map f (coeffs p))

lemma map-poly-0 [simpl: map-poly f 0 = 0
(proof)

lemma map-poly-1: map-poly f 1 = [:f 1:]
(proof )

lemma map-poly-1' [simp]: f 1 = 1 = map-poly f 1 = 1
(proof )

lemma coeff-map-poly:
assumes f 0 = 0
shows coeff (map-poly fp) n = f (coeff p n)
(proof)

lemma lead-coeff-map-poly-nz:
assumes f (lead-coeff p) £ 0f0 =0
shows lead-coeff (map-poly f p) = f (lead-coeff p)

{proof)

lemma coeffs-map-poly [code abstract):
coeffs (map-poly f p) = strip-while (=) 0) (map f (coeffs p))
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{proof)

lemma coeffs-map-poly’:
assumes A\z. 2 # 0 = fz # 0
shows coeffs (map-poly f p) = map [ (coeffs p)
(proof )

lemma set-coeffs-map-poly:
(Nz. fz=0+— x=0) = set (coeffs (map-poly fp)) = [ * set (coeffs p)
(proof )

lemma degree-map-poly:
assumes A\z. 2 # 0 = fz # 0
shows degree (map-poly f p) = degree p
(proof )

lemma map-poly-eq-0-iff :
assumes f 0 = 0 Az. x € set (coeffs p) = z# 0 = fz # 0
shows map-poly fp =0 +— p =10

(proof)

lemma map-poly-smult:
assumes f0 = OAcz. f (cxz)=fcx* fx
shows map-poly f (smult ¢ p) = smult (f ¢) (map-poly f p)
(proof)

lemma map-poly-pCons:
assumes f 0 = 0

shows map-poly f (pCons ¢ p) = pCons (f ¢) (map-poly f p)
(proof )

lemma map-poly-map-poly:
assumes f0 =0¢g 0 =0
shows map-poly f (map-poly g p) = map-poly (f o g) p
(proof)

lemma map-poly-id [simp]: map-poly id p = p
(proof)

lemma map-poly-id’ [simp]: map-poly (Az. z) p = p
(proof)

lemma map-poly-cong:
assumes (Az. z € set (coeffs p) = fz = g z)
shows map-poly f p = map-poly g p

(proof)

lemma map-poly-monom: f 0 = 0 => map-poly f (monom ¢ n) = monom (f ¢) n

{proof)
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lemma map-poly-idl:
assumes Az. z € set (coeffs p) = fz ==z
shows map-poly fp = p

(proof)

lemma map-poly-idl "
assumes Az. z € set (coeffs p) = fz =1
shows p = map-poly [ p
(proof)

lemma smult-conv-map-poly: smult ¢ p = map-poly (Az. ¢ * x) p
(proof)

lemma poly-cnj: cnj (poly p z) = poly (map-poly cnj p) (cnj z)
(proof )

lemma poly-cnj-real:
assumes An. poly.coeff p n € R
shows ¢nj (poly p z) = poly p (cnj 2)
{proof)

lemma real-poly-cnj-root-iff:

assumes An. poly.coeff pn € R

shows poly p (enjz) = 0 +— polyp 2z =10
(proof)

lemma sum-to-poly: (3 z€A. [:f ©:]) = [:D_ z€A. f ]
{proof)

lemma diff-to-poly: [:c:] — [:d:] = [:¢ — d]
(proof)

lemma mult-to-poly: [:c:] * [:d:] = [:c * d]
{proof)

lemma prod-to-poly: ([ z€A. [:f :]) = [:[[z€A. f z]
{proof)

lemma poly-map-poly-cnj [simpl: poly (map-poly cnj p) x = cnj (poly p (cnj x))
(proof )

lemma map-poly-degree-eq:
assumes | (lead-coeff p) # 0
shows degree (map-poly f p) = degree p
(proof)

lemma map-poly-degree-less:
assumes | (lead-coeff p) =0 degree p#£0
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shows degree (map-poly f p) < degree p
(proof )

lemma map-poly-degree-leq:
shows degree (map-poly f p) < degree p
(proof )

4.16 Conversions
lemma of-nat-poly: of-nat n = [:of-nat n:]

{proof)

lemma of-nat-monom: of-nat n = monom (of-nat n) 0
(proof )

lemma degree-of-nat [simp]: degree (of-nat n) = 0
(proof )

lemma lead-coeff-of-nat [simp]: lead-coeff (of-nat n) = of-nat n

{proof)

lemma of-int-poly: of-int k = [:of-int k:]
(proof)

lemma of-int-monom: of-int k = monom (of-int k) 0
(proof)

lemma degree-of-int [simpl: degree (of-int k) = 0
(proof )

lemma lead-coeff-of-int [simp]: lead-coeff (of-int k) = of-int k
(proof )

lemma poly-of-nat [simpl: poly (of-nat n) x = of-nat n
(proof )

lemma poly-of-int [simp]: poly (of-int n) © = of-int n
(proof )

lemma poly-numeral [simp]: poly (numeral n) x = numeral n
{proof)

lemma numeral-poly: numeral n = [:numeral n:
(proof)

lemma numeral-monom:
numeral n = monom (numeral n) 0

{proof)
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lemma degree-numeral [simp]:
degree (numeral n) = 0

{proof)

lemma lead-coeff-numeral [simp]:
lead-coeff (numeral n) = numeral n

{proof)

lemma coeff-linear-poly-power:

fixes ¢ :: 'a :: semiring-1

assumes 1 < n
shows coeff ([:a, b:] " n) i = of-nat (n choose i) x b ~i*x a ~(n — i)
(proof)

4.17 Lemmas about divisibility

lemma dvd-smult:
assumes p dvd q
shows p dvd smult a q

(proof)

lemma dvd-smult-cancel: p dvd smult a ¢ = a # 0 = p dvd q
for a :: 'a::field
(proof)

lemma dvd-smult-iff: a # 0 = p dvd smult a ¢ <— p dvd q
for a :: 'a::field
(proof )

lemma smult-dvd-cancel:

assumes smult a p dvd q
shows p dvd q

(proof)

lemma smult-dvd: p dvd ¢ = a # 0 = smult a p dvd q
for a :: 'a::field
(proof)
lemma smult-dvd-iff: smult a p dvd q «— (if a = 0 then q = 0 else p dvd q)
for a :: 'a::field
(proof)

lemma is-unit-smult-iff: smult ¢ p dvd 1 +— ¢ dvd 1 A p dvd 1

{(proof)

4.18 Polynomials form an integral domain

instance poly :: (idom) idom (proof)

instance poly :: ({ring-char-0, comm-ring-1}) ring-char-0
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{proof)

lemma semiring-char-poly [simp]: CHAR('a :: comm-semiring-1 poly) = CHAR('a)
(proof)

instance poly :: ({semiring-prime-char,comm-semiring-1}) semiring-prime-char
{proof )
instance poly :: ({ comm-semiring-prime-char,comm-semiring-1}) comm-semiring-prime-char
(proof)
instance poly :: ({ comm-ring-prime-char,comm-semiring-1}) comm-ring-prime-char
(proof )
instance poly :: ({idom-prime-char,comm-semiring-1}) idom-prime-char
{proof )

lemma degree-mult-eq: p # 0 = q # 0 = degree (p * q) = degree p + degree q
for p q :: 'a::{comm-semiring-0,semiring-no-zero-divisors} poly
(proof )

lemma degree-prod-sum-eq:
Ne.z€e A= fz#0) =
degree (prod f A :: 'a :: idom poly) = (> x€A. degree (f x))
(proof )

lemma dvd-imp-degree:
<degree x < degree y» if <x dvd > <x # 0> <y # 0>
for z y :: ‘a::{comm-semiring-1,semiring-no-zero-divisors} poly>

(proof)

lemma degree-prod-eq-sum-degree:
fixes A :: 'a set
and [ :: 'a = 'b:idom poly
assumes f0: Vi€A. fi #£ 0
shows degree ([[i€A. (fi)) = (O icA. degree (f i))
(proof)

lemma degree-mult-eq-0:
degree (px ¢) =0 +—>p=0Vqg=0V (p#0ANq# 0N degreep=0 A

degree ¢ = 0)
for p q :: 'a::{comm-semiring-0,semiring-no-zero-divisors} poly
(proof )

lemma degree-power-eq: p # 0 = degree ((p :: 'a :: idom poly) ~n) = n * degree
p
(proof )

lemma degree-mult-right-le:
fixes p q :: 'a::{comm-semiring-0,semiring-no-zero-divisors} poly
assumes q # 0
shows degree p < degree (p * q)
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{proof)

lemma coeff-degree-mult: coeff (p x q) (degree (p x q)) = coeff q (degree q) * coeff

p (degree p)
for p q :: 'a::{comm-semiring-0,semiring-no-zero-divisors} poly

{proof)

lemma dvd-imp-degree-le: p dvd ¢ = q # 0 = degree p < degree q
for p q :: 'a::{comm-semiring-1,semiring-no-zero-divisors} poly
(proof )

lemma divides-degree:
fixes p q :: 'a ::{comm-semiring-1,semiring-no-zero-divisors} poly
assumes p dvd ¢
shows degree p < degree q V q = 0
(proof )

lemma const-poly-dvd-iff:
fixes ¢ :: 'a:{comm-semiring-1,semiring-no-zero-divisors}
shows [:¢:] dvd p +— (Vn. ¢ dvd coeff p n)

(proof )

lemma const-poly-dvd-const-poly-iff [simp]: [:a:] dvd [:b:] <+— a dvd b
for a b :: ‘a::{ comm-semiring-1,semiring-no-zero-divisors}
{proof)

lemma lead-coeff-mult: lead-coeff (p * q) = lead-coeff p x lead-coeff q
for p ¢ :: 'a::{comm-semiring-0, semiring-no-zero-divisors} poly
(proof )

lemma lead-coeff-prod: lead-coeff (prod f A) = ([[x€A. lead-coeff (f x))
for f :: 'a = 'b::{comm-semiring-1, semiring-no-zero-divisors} poly

{proof)

lemma lead-coeff-smult: lead-coeff (smult ¢ p) = ¢ * lead-coeff p
for p :: ‘a::{comm-semiring-0,semiring-no-zero-divisors} poly

(proof)

lemma lead-coeff-1 [simp]: lead-coeff 1 = 1
(proof )

lemma lead-coeff-power: lead-coeff (p ~ n) = lead-coeff p " n
for p :: ‘a::{comm-semiring-1,semiring-no-zero-divisors} poly
(proof)

4.19 Polynomials form an ordered integral domain

definition pos-poly :: 'a::linordered-semidom poly = bool
where pos-poly p «— 0 < coeff p (degree p)
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lemma pos-poly-pCons: pos-poly (pCons a p) +— pos-poly p V (p =0 A 0 < a)
(proof )

lemma not-pos-poly-0 [simpl: = pos-poly 0
(proof)

lemma pos-poly-add: pos-poly p = pos-poly ¢ = pos-poly (p + q)
(proof)

lemma pos-poly-mult: pos-poly p = pos-poly ¢ = pos-poly (p * q)
(proof)

lemma pos-poly-total: p = 0 V pos-poly p V pos-poly (— p)

for p :: 'a::linordered-idom poly

(proof )
lemma pos-poly-coeffs [code]: pos-poly p «— (let as = coeffs p in as # [| A last as
> 0)

(is ?lhs <— ?rhs)

(proof)

instantiation poly :: (linordered-idom) linordered-idom
begin

definition = < y +— pos-poly (y — z)

definition z < y +— z = y V pos-poly (y — x)

definition |z::’a poly| = (if © < 0 then — z else z)

definition sgn (x::'a poly) = (if ¢ = 0 then 0 else if 0 < z then 1 else — 1)

instance
(proof)

end

TODO: Simplification rules for comparisons

4.20 Synthetic division and polynomial roots
4.20.1 Synthetic division
Synthetic division is simply division by the linear polynomial  — ec.

definition synthetic-divmod :: 'a::comm-semiring-0 poly = 'a = 'a poly x 'a
where synthetic-divmod p ¢ = fold-coeffs (Aa (q, r). (pCons r q, a + ¢ *x 1)) p
(0, 0)
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definition synthetic-div :: 'a::comm-semiring-0 poly = 'a = 'a poly
where synthetic-div p ¢ = fst (synthetic-divmod p c)

lemma synthetic-divmod-0 [simp]: synthetic-divmod 0 ¢ = (0, 0)
(proof )

lemma synthetic-divmod-pCons [simp]:

synthetic-divmod (pCons a p) ¢ = (A(q, 7). (pCons T q, a + ¢ * r)) (synthetic-divmod
pc)

{proof)

lemma synthetic-div-0 [simp]: synthetic-div 0 ¢ = 0
(proof )

lemma synthetic-div-unique-lemma: smult ¢ p = pCons a p = p = 0
(proof)

lemma snd-synthetic-divmod: snd (synthetic-divmod p ¢) = poly p ¢
(proof)

lemma synthetic-div-pCons [simp]:
synthetic-div (pCons a p) ¢ = pCons (poly p ¢) (synthetic-div p c)
{proof )

lemma synthetic-div-eq-0-iff : synthetic-div p ¢ = 0 +— degree p = 0
(proof)

lemma degree-synthetic-div: degree (synthetic-div p ¢) = degree p — 1
(proof)

lemma synthetic-div-correct:
p + smult ¢ (synthetic-div p ¢) = pCons (poly p ¢) (synthetic-div p c)
(proof)

lemma synthetic-div-unique: p + smult ¢ ¢ = pCons rq = r =polyp ¢ N\ q¢ =
synthetic-div p c

(proof )

lemma synthetic-div-correct”: [:—c, 1:] * synthetic-div p ¢ + [:poly p ¢:] = p
for c :: 'a::comm-ring-1
(proof )

4.20.2 Polynomial roots

lemma poly-eq-0-iff-dvd: poly p ¢ = 0 +— [:— ¢, 1:] dvd p
(is ?lhs «— ?rhs)
for c :: 'a::comm-ring-1

(proof)
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lemma dvd-iff-poly-eq-0: [:c, 1:] dvd p <— poly p (— ¢) = 0
for c :: 'a::comm-ring-1
(proof )

lemma poly-roots-finite: p # 0 = finite {z. poly p x = 0}
for p :: 'a::{comm-ring-1,ring-no-zero-divisors} poly
(proof)

lemma poly-eq-poly-eq-iff: poly p = poly ¢ +— p = ¢
(is ?lhs «— ?rhs)
for p q :: 'a::{comm-ring-1,ring-no-zero-divisors,ring-char-0} poly

(proof)

A nice extension rule for polynomials.

lemma poly-ext:
fixes p q :: 'a :: {ring-char-0, idom} poly
assumes Az. poly p x = poly q © shows p = ¢
(proof )

Copied from non-negative variants.

lemma coeff-linear-power-neg[simpl:

fixes a :: ‘a::comm-ring-1

shows coeff ([:a, —=1:] “n)n=(—-1)"n
(proof)

lemma degree-linear-power-neg[simp]:
fixes a :: 'a::{idom,comm-ring-1}
shows degree ([:a, —1:] “n) = n
{proof)

lemma poly-all-0-iff-0: (Vx. polyp x = 0) «— p =10
for p :: 'a::{ring-char-0,comm-ring-1,ring-no-zero-divisors} poly
(proof )

lemma card-poly-roots-bound:
fixes p :: ‘a::{comm-ring-1,ring-no-zero-divisors} poly
assumes p # 0
shows card {z. poly p x = 0} < degree p

(proof)

lemma poly-eql-degree:
fixes p q :: 'a :: {comm-ring-1, ring-no-zero-divisors} poly
assumes Az. 2 € A = poly p x = poly q x
assumes card A > degree p card A > degree q
shows p = ¢
(proof)

lemma poly-eql-degree-lead-coeff:
fixes p q :: 'a :: {comm-ring-1, ring-no-zero-divisors} poly
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assumes poly.coeff p n = poly.coeff ¢ n card A > n degree p < n degree ¢ < n
assumes A\z. 2z € A = poly p z = poly q z
shows p = ¢

(proof)

4.20.3 Order of polynomial roots

definition order :: ‘a::idom = 'a poly = nat
where order a p = (LEAST n. = [:—a, 1:] ~ Suc n dvd p)

lemma coeff-linear-power: coeff ([:a, 1:] " n) n =1
for a :: 'a::comm-semiring-1

(proof)

lemma degree-linear-power: degree ([:a, 1:] " n) = n
for a :: 'a::comm-semiring-1

(proof)

lemma order-1: [:—a, 1:] ~order a p dvd p

{(proof)

lemma order-2:

assumes p # 0

shows — [:—a, 1:] ~ Suc (order a p) dvd p
(proof)

lemma order: p # 0 = [:—a, 1:] ~order a p dvd p A — [:—a, 1:] ~ Suc (order a
p) dvd p
(proof)

lemma order-degree:
assumes p: p # 0
shows order a p < degree p

(proof)

lemma order-root: poly p a = 0 «— p = 0 V order a p # 0 (is ?lhs = ?rhs)

(proof)

lemma order-0I: poly p a # 0 = order a p = 0
(proof)

lemma order-unique-lemma:
fixes p :: ’a::idom poly
assumes [:—a, 1] “ndvd p - [:—a, 1:] " Suc n dvd p
shows order a p = n
(proof )

lemma order-mult:
assumes p x ¢ # 0 shows order a (p x q) = order a p + order a q
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(proof)

lemma order-smult:
assumes ¢ # 0
shows order z (smult ¢ p) = order z p

(proof)

lemma order-gt-0-iff: p # 0 = order zp > 0 <— polyp x = 0
(proof )

lemma order-eq-0-iff: p # 0 = order z p = 0 <— poly p x # 0
(proof)

Next three lemmas contributed by Wenda Li

lemma order-1-eq-0 [simpl:order x 1 = 0
{proof)

lemma order-uminus[simp): order z (—p) = order x p
(proof)

lemma order-power-n-n: order a ([:—a,1:] " n)=n

(proof)

lemma order-0-monom [simp]: ¢ # 0 = order 0 (monom c n) = n
{proof)

lemma dvd-imp-order-le: ¢ # 0 = p dvd ¢ = Polynomial.order a p < Polyno-
mial.order a q
(proof)

Now justify the standard squarefree decomposition, i.e. f / ged f f.

lemma order-divides: [:—a, 1:] "ndvdp +— p=0V n < order ap
(proof )

lemma order-decomp:

assumes p # 0

shows 3¢. p=[— a, 1:] "orderap* ¢ A - [:— a, 1:] dvd q
(proof)

lemma monom-1-dvd-iff: p # 0 = monom 1 n dvd p +— n < order 0 p
(proof)

lemma poly-root-order-induct [case-names 0 no-roots root|:
fixes p :: 'a :: idom poly
assumes P 0 Ap. (A\z. polypz # 0) = Pp
Apzn.on>0= plypz# 0= Pp= P ([:—z, 1] " n*p)
shows Pp
(proof)
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context
includes multiset.lifting
begin

lift-definition proots :: (‘a :: idom) poly = 'a multiset is
Xp iz 'a poly) (z :: 'a). if p = 0 then 0 else order z p
(proof)

lemma proots-0 [simp]: proots (0 :: 'a :: idom poly) = {#}
(proof)

lemma proots-1 [simp]: proots (1 :: 'a :: idom poly) = {#}
{proof)

lemma proots-const [simp]: proots [: z :] = 0
{proof)

lemma proots-numeral [simpl: proots (numeral n) = 0
{proof)

lemma count-proots [simp):
p # 0 = count (proots p) a = order a p
(proof )

lemma set-count-proots [simp):
p # 0 = set-mset (proots p) = {z. poly p x = 0}
(proof)

lemma proots-uminus [simpl: proots (—p) = proots p
(proof)

lemma proots-smult [simp: ¢ # 0 => proots (smult ¢ p) = proots p
(proof )

lemma proots-mult:
assumes p # 0 q¢ # 0
shows proots (p * q) = proots p + proots q
(proof)

lemma proots-prod:
assumes \z. 2 € A = fzx #£ 0
shows proots ([[z€A. fz) = (O z€A. proots (f x))
(proof )

lemma proots-prod-mset:
assumes 0 ¢# A

shows proots ([[ pe#A. p) = (O pe#A. proots p)
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{proof)

lemma proots-prod-list:
assumes 0 ¢ set ps
shows proots ([ p<ps. p) = (O p<ps. proots p)
(proof )

lemma proots-power: proots (p ~ n) = repeat-mset n (proots p)
(proof)

lemma proots-linear-factor [simp]: proots [:x, 1:] = {#—a#}
(proof)

lemma size-proots-le: size (proots p) < degree p

(proof)

end

4.21 Additional induction rules on polynomials

An induction rule for induction over the roots of a polynomial with a certain
property. (e.g. all positive roots)
lemma poly-root-induct [case-names 0 no-roots root|:
fixes p :: ‘a :: idom poly
assumes @ 0
and Ap. (Ae. Pa = polypa#0) = Qp
and Aap. Pa = Qp = Q ([:a, —1:] * p)
shows @ p
(proof)

lemma drop While-replicate-append:
dropWhile ((=) a) (replicate n a Q ys) = drop While ((=) a) ys
{proof)

lemma Poly-append-replicate-0: Poly (xs @ replicate n 0) = Poly xs
(proof)

An induction rule for simultaneous induction over two polynomials, prepend-
ing one coefficient in each step.

lemma poly-induct2 [case-names 0 pConsl:
assumes P 00 Aapbq Ppq= P (pCons ap) (pCons b q)
shows P p ¢

(proof)

4.22 Composition of polynomials

definition pcompose :: 'a::comm-semiring-0 poly = 'a poly = 'a poly
where pcompose p q¢ = fold-coeffs (Aa c. [:a:] + ¢ * ¢) p 0
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notation pcompose (infixl <o, 71)

lemma pcompose-0 [simp|: pcompose 0 ¢ = 0
(proof )

lemma pcompose-pCons: pcompose (pCons a p) q = [:a:] + q * pcompose p q
(proof )

lemma pcompose-altdef: pcompose p ¢ = poly (map-poly (Az. [:x:]) p) ¢
(proof )

lemma coeff-pcompose-0 [simp]:
coeff (pcompose p q) 0 = poly p (coeff q 0)
(proof )

lemma pcompose-1: pcompose 1 p = 1
for p :: 'a::comm-semiring-1 poly
(proof)

lemma poly-pcompose: poly (pcompose p q) © = poly p (poly q )
(proof)

lemma degree-pcompose-le: degree (pcompose p q) < degree p * degree q
(proof)

lemma pcompose-add: pcompose (p + q) r = pcompose p v + pcompose q T
for p ¢ r :: 'a::{comm-semiring-0, ab-semigroup-add} poly

(proof)

lemma pcompose-uminus: pcompose (—p) r = —pcompose p r
for p r :: 'a::comm-ring poly
{proof)

lemma pcompose-diff: pcompose (p — q) r = pcompose p v — pcompose q T
for p q r :: 'a::comm-ring poly
(proof )

lemma pcompose-smult: pcompose (smult a p) r = smult a (pcompose p )
for p r :: 'a::comm-semiring-0 poly

{proof)

lemma pcompose-mult: pcompose (p * q) r = pcompose p T * pcompose q T
for p q r :: 'a::comm-semiring-0 poly
(proof)

lemma pcompose-assoc: pcompose p (pcompose q r) = pcompose (pcompose p q) T

for p q r :: 'a::comm-semiring-0 poly

{proof)
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lemma pcompose-idR[simp|: pcompose p [: 0, 1 :] = p
for p :: 'a::comm-semiring-1 poly
(proof )

lemma pcompose-sum: pcompose (sum f A) p = sum (Ai. pcompose (f i) p) A
(proof)

lemma pcompose-prod: pcompose (prod f A) p = prod (Ai. pcompose (f i) p) A
(proof )

lemma pcompose-const [simp|: pcompose [:a:] ¢ = [:a:]
{proof )

lemma pcompose-0": pcompose p 0 = [:coeff p 0]
{proof)

lemma pcompose-coeff-0:
coeff (pcompose p q) 0 = poly p (coeff q 0)
(proof )

lemma pcompose-pCons-0: pcompose p [:a:] = [:poly p a:]
(proof)

lemma degree-pcompose: degree (pcompose p q) = degree p * degree q
for p q :: 'a::{comm-semiring-0,semiring-no-zero-divisors} poly

(proof)

lemma pcompose-eq-0:
fixes p q :: 'a:{comm-semiring-0,semiring-no-zero-divisors} poly
assumes pcompose p q = 0 degree q > 0
shows p = 0

(proof)

lemma pcompose-eq-0-iff:
fixes p q :: 'a::{comm-semiring-0,semiring-no-zero-divisors} poly
assumes degree q >
shows pcompose p ¢ = 0 +— p =0
(proof )

lemma coeff-pcompose-linear:
coeff (pcompose p [:0, a :: 'a :: comm-semiring-1:]) i = a ~ { % coeff p i
(proof)

lemma lead-coeff-comp:
fixes p q :: 'a:{comm-semiring-1,semiring-no-zero-divisors} poly
assumes degree ¢ > 0
shows lead-coeff (pcompose p q) = lead-coeff p * lead-coeff q ~ (degree p)

(proof)
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lemma coeff-pcompose-monom-linear [simpl:
fixes p :: 'a :: comm-ring-1 poly
shows coeff (pcompose p (monom ¢ (Suc 0))) k= c ~k x coeff p k
(proof )

lemma of-nat-mult-conv-smult: of-nat n x P = smult (of-nat n) P
(proof )

lemma numeral-mult-conv-smult: numeral n x P = smult (numeral n) P
(proof )

lemma sum-order-le-degree:
assumes p # 0
shows (> x| poly p x = 0. order x p) < degree p
(proof )

4.23 Closure properties of coefficients

context
fixes R :: ‘a :: comm-semiring-1 set
assumes R-0: 0 € R
assumes R-plus: A\zy. t€e R—y€R=—z+y<R
assumes R-mult: Aty t€e R— ye R=—= z*xy € R
begin

lemma coeff-mult-semiring-closed:
assumes Ai. coeff pi € R N\i. coeff gi € R
shows coeff (pxq) i € R

(proof)

lemma coeff-pcompose-semiring-closed:
assumes Ai. coeff pi € R N\i. coeff gi € R
shows coeff (pcompose p q) i € R
(proof )

end

4.24 Shifting polynomials
definition poly-shift :: nat = ’a::zero poly = 'a poly
where poly-shift n p = Abs-poly (Mi. coeff p (i + n))

lemma nth-default-drop: nth-default = (drop n xs) m = nth-default © zs (m + n)
(proof )

lemma nth-default-take: nth-default © (take n xs) m = (if m < n then nth-default
x xs m else x)

{proof)
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lemma coeff-poly-shift: coeff (poly-shift n p) i = coeff p (i + n)
(proof )

lemma poly-shift-id [simp]: poly-shift 0 = (\z. x)
(proof )

lemma poly-shift-0 [simp]: poly-shift n 0 = 0
(proof )

lemma poly-shift-1: poly-shift n 1 = (if n = 0 then 1 else 0)
(proof )

lemma poly-shift-monom: poly-shift n (monom ¢ m) = (if m > n then monom c
(m — n) else 0)
(proof )

lemma coeffs-shift-poly [code abstract]:
coeffs (poly-shift n p) = drop n (coeffs p)
(proof)

4.25 Truncating polynomials
definition poly-cutoff
where poly-cutoff n p = Abs-poly (Ak. if k < n then coeff p k else 0)

lemma coeff-poly-cutoff: coeff (poly-cutoff n p) k = (if k < n then coeff p k else
0)
(proof )

lemma poly-cutoff-0 [simp]: poly-cutoff n 0 = 0
(proof )

lemma poly-cutoff-1 [simp]: poly-cutoff n 1 = (if n = 0 then 0 else 1)
(proof)

lemma coeffs-poly-cutoff [code abstract]:
coeffs (poly-cutoff n p) = strip-while ((=) 0) (take n (coeffs p))
(proof )

4.26 Reflecting polynomials
definition reflect-poly :: 'a::zero poly = 'a poly
where reflect-poly p = Poly (rev (coeffs p))

lemma coeffs-reflect-poly [code abstract]:
coeffs (reflect-poly p) = rev (dropWhile ((=) 0) (coeffs p))
(proof )

lemma reflect-poly-0 [simp]: reflect-poly 0 = 0
(proof )
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lemma reflect-poly-1 [simp]: reflect-poly 1 = 1
(proof )

lemma coeff-refiect-poly:
coeff (reflect-poly p) n = (if n > degree p then 0 else coeff p (degree p — n))
(proof )

lemma coeff-0-reflect-poly-0-iff [simp]: coeff (reflect-poly p) 0 = 0 +— p =0
(proof )

lemma reflect-poly-at-0-eq-0-iff [simp]: poly (reflect-poly p) 0 = 0 +— p = 0
(proof )

lemma reflect-poly-pCons’:
p # 0 = reflect-poly (pCons ¢ p) = reflect-poly p + monom ¢ (Suc (degree p))
(proof)

lemma reflect-poly-const [simpl: reflect-poly [:a:] = [:a:]
(proof)

lemma poly-reflect-poly-nz:
x # 0 = poly (reflect-poly p) x = z ~ degree p * poly p (inverse x)
for z :: 'a::field
(proof )

lemma coeff-0-reflect-poly [simp]: coeff (reflect-poly p) 0 = lead-coeff p
(proof )

lemma poly-reflect-poly-0 [simp]: poly (reflect-poly p) 0 = lead-coeff p
(proof )

lemma reflect-poly-reflect-poly [simp]: coeff p 0 # 0 = reflect-poly (reflect-poly
p)=1p
{proof )

lemma degree-reflect-poly-le: degree (reflect-poly p) < degree p
(proof)

lemma reflect-poly-pCons: a # 0 = reflect-poly (pCons a p) = Poly (rev (a #

coeffs p))
(proof )

lemma degree-reflect-poly-eq [simpl: coeff p 0 # 0 = degree (reflect-poly p) =
degree p
(proof )

lemma reflect-poly-eq-0-iff [simp]: reflect-poly p = 0 «— p = 0
(proof )
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lemma reflect-poly-mult: reflect-poly (p * q) = reflect-poly p * reflect-poly q
for p q :: 'a::{comm-semiring-0,semiring-no-zero-divisors} poly

(proof)

lemma reflect-poly-smult: reflect-poly (smult ¢ p) = smult ¢ (reflect-poly p)
for p :: ‘a::{comm-semiring-0,semiring-no-zero-divisors} poly
(proof)

lemma reflect-poly-power: reflect-poly (p ~ n) = reflect-poly p " n
for p :: 'a::{comm-semiring-1,semiring-no-zero-divisors} poly

{proof)

lemma reflect-poly-prod: reflect-poly (prod f A) = prod (Az. reflect-poly (f z)) A

for f :: - = -::{comm-semiring-0,semiring-no-zero-divisors} poly

(proof)
lemma reflect-poly-prod-list: reflect-poly (prod-list xs) = prod-list (map reflect-poly
xs)

for zs :: -:{comm-semiring-0,semiring-no-zero-divisors} poly list

(proof)

lemma reflect-poly-Poly-nz:
no-trailing (HOL.eq 0) s = reflect-poly (Poly xs) = Poly (rev xs)
(proof )

lemmas reflect-poly-simps =
reflect-poly-0 reflect-poly-1 refiect-poly-const reflect-poly-smult reflect-poly-mult
reflect-poly-power reflect-poly-prod reflect-poly-prod-list

4.27 Derivatives

function pderiv :: ('a :: {comm-semiring-1,semiring-no-zero-divisors}) poly = 'a
poly
where pderiv (pCons a p) = (if p = 0 then 0 else p + pCons 0 (pderiv p))
{proof )

termination pderiv
(proof )

declare pderiv.simps[simp del]

lemma pderiv-0 [simp]: pderiv 0 = 0
(proof )

lemma pderiv-pCons: pderiv (pCons a p) = p + pCons 0 (pderiv p)
(proof )
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lemma pderiv-1 [simp]: pderiv 1 = 0
(proof )

lemma pderiv-of-nat [simpl: pderiv (of-nat n) = 0
and pderiv-numeral [simp]: pderiv (numeral m) = 0
(proof)

lemma coeff-pderiv: coeff (pderiv p) n = of-nat (Suc n) * coeff p (Suc n)
(proof )

fun pderiv-coeffs-code :: 'a::{ comm-semiring-1,semiring-no-zero-divisors} = 'a list
= 'a list
where
pderiv-coeffs-code f (x # xs) = cCons (f * x) (pderiv-coeffs-code (f+1) xs)
| pderiv-coeffs-code f || = |]

definition pderiv-coeffs :: 'a::{ comm-semiring-1,semiring-no-zero-divisors} list =
‘a list
where pderiv-coeffs xs = pderiv-coeffs-code 1 (tl xs)

lemma pderiv-coeffs-code:
nth-default 0 (pderiv-coeffs-code f xs) n = (f + of-nat n) x nth-default 0 s n
(proof)

lemma coeffs-pderiv-code [code abstract]: coeffs (pderiv p) = pderiv-coeffs (coeffs

p)
(proof)

lemma pderiv-eq-0-iff: pderiv p = 0 «— degree p = 0
for p :: ‘a::{comm-semiring-1,semiring-no-zero-divisors,semiring-char-0} poly

(proof)

lemma degree-pderiv: degree (pderiv p) = degree p — 1
for p :: ‘a::{comm-semiring-1,semiring-no-zero-divisors,semiring-char-0} poly
(proof)

lemma not-dvd-pderiv:
fixes p :: ‘a::{comm-semiring-1,semiring-no-zero-divisors,semiring-char-0} poly
assumes degree p # 0
shows — p dvd pderiv p

(proof)

lemma dvd-pderiv-iff [simp]: p dvd pderiv p «— degree p = 0
for p :: ‘a::{comm-semiring-1,semiring-no-zero-divisors,semiring-char-0} poly
(proof )

lemma pderiv-singleton [simp): pderiv [:a:] = 0

{proof)
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lemma pderiv-add: pderiv (p + q) = pderiv p + pderiv q

(proof )

lemma pderiv-minus: pderiv (— p :: 'a :: idom poly) = — pderiv p
(proof )

lemma pderiv-diff: pderiv ((p :: - :: idom poly) — q) = pderiv p — pderiv q
(proof)

lemma pderiv-smult: pderiv (smult a p) = smult a (pderiv p)
(proof)

lemma pderiv-mult: pderiv (p * q) = p * pderiv ¢ + q * pderiv p
(proof )

o~

lemma pderiv-power-Suc: pderiv (p ~ Suc n) = smult (of-nat (Suc n)) (p
pderiv p
(proof)

n) *

lemma pderiv-power:
pderiv (p ~n) = smult (of-nat n) (p ~ (n — 1) * pderiv p)
(proof)

lemma pderiv-monom:
pderiv (monom ¢ n) = monom (of-nat n x ¢) (n — 1)
(proof )

lemma pderiv-pcompose: pderiv (pcompose p q) = pcompose (pderiv p) q * pderiv
q
(proof )

lemma pderiv-prod: pderiv (prod f (as)) = (3 a€as. prod f (as — {a}) * pderiv

(fa))
(proof)

lemma coeff-higher-pderiv:
coeff ((pderiv =" m) f) n = pochhammer (of-nat (Suc n)) m x coeff f (n + m)
(proof)

lemma higher-pderiv-0 [simp]: (pderiv =" n) 0 = 0
(proof)

lemma higher-pderiv-add: (pderiv =" n) (p + q) = (pderiv =" n) p + (pderiv ~
n)q
{proof)

lemma higher-pderiv-smult: (pderiv = n) (smult ¢ p) = smult ¢ ((pderiv ™" n) p)

{proof)
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lemma higher-pderiv-monom:
m < n+ 1 = (pderiv =" m) (monom c n) = monom (pochhammer (int n —
intm+ 1) mx*c) (n— m)

(proof)

lemma higher-pderiv-monom-eg-zero:
m >n+ 1 = (pderiv = m) (monom ¢ n) = 0

(proof)

lemma higher-pderiv-sum: (pderiv = n) (sum f A) = (O z€A. (pderiv ™" n) (f

z))
{proof)

lemma higher-pderiv-sum-mset: (pderiv = n) (sum-mset A) = (> pe#A. (pderiv
T n)p)
{proof )

lemma higher-pderiv-sum-list: (pderiv =" n) (sum-list ps) = (> p+ps. (pderiv ~
n) p)
{proof)

lemma degree-higher-pderiv: Polynomial.degree ((pderiv ~ " n) p) = Polynomial.degree
pD—n
for p :: ‘a::{comm-semiring-1,semiring-no-zero-divisors,semiring-char-0} poly
(proof )

lemma DERIV-pow2: DERIV (Az. x ~ Suc n) z :> real (Suc n) * (z ~n)

{proof)
declare DERIV-pow2 [simp] DERIV-pow [simp]

lemma DERIV-add-const: DERIV fx :> D = DERIV (Az. a + fz :: 'a::real-normed-field)
x:>D
{proof )

lemma poly-DERIV [simp]: DERIV (Ax. poly p ) x :> poly (pderiv p) x
(proof)

lemma poly-isCont[simp]:
fixes z::'a::real-normed-field
shows isCont (Az. poly p x)

(proof )
lemma tendsto-poly [tendsto-intros]: (f —— a) FF = ((Az. poly p (f z)) ——
poly p a) F

for f :: - = 'a:real-normed-field

(proof)
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lemma continuous-within-poly: continuous (at z within s) (poly p)
for z :: 'a::{real-normed-field}
{proof)

lemma continuous-poly [continuous-intros|: continuous F f = continuous F (Az.
poly p (f z))

for f :: - = 'a:real-normed-field

{proof)

lemma continuous-on-poly [continuous-intros|:
fixes p :: ‘a :: {real-normed-field} poly
assumes continuous-on A f
shows continuous-on A (Az. poly p (f x))

{proof)

Consequences of the derivative theorem above.

lemma poly-differentiable[simp|: (Az. poly p x) differentiable (at x)
for z :: real
(proof )

lemma poly-IVT-pos: a < b = polypa < 0 = 0 < poly p b= Jz. a < x A
r< bApolypz=20

for a b :: real

(proof)

lemma poly-IVT-neg: a < b = 0 < polypa = polyp b < 0 = Jz. a < x A
r< bApolypzx =20

for a b :: real

(proof )

lemma poly-IVT: a < b= polyp a*polyp b < 0 = Fz>a. x < b A polypx
=0

for p :: real poly

{proof )

lemma poly-MVT: a < b= Fz.a<z Az <bApolypb— polypa=(b-—
a) * poly (pderiv p) z
for a b :: real

(proof)

lemma poly-MVT":

fixes a b :: real

assumes {min a b..maz a b} C A

shows Jz€A. poly p b — poly p a = (b — a) x poly (pderiv p) x
(proof)

lemma poly-pinfty-gt-lc:
fixes p :: real poly
assumes lead-coeff p > 0
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shows In. V x > n. poly p v > lead-coeff p
(proof)

lemma dvd-monic:
fixes p ¢:: ‘a :: idom poly
assumes monic:lead-coeff p=1 and p dvd (smult ¢ q) and c#£0
shows p dvd q (proof)

lemma lemma-order-pderivi :
pderiv ([;— a, 1:] ~ Suc n * q)
= [— a, 1:] 7 Suc n * pderiv ¢ + smult (of-nat (Suc n)) (¢ * [— a, 1:] " n)
(proof)

lemma order-pderiv:
fixes p::’a::{idom,semiring-char-0} poly
assumes p#£0 poly p x = 0
shows order x p = Suc (order z (pderiv p)) (proof)

lemma lemma-order-pderiv:
fixes p :: a :: field-char-0 poly
assumes n: 0 < n
and pd: pderiv p # 0
and pe: p=[—a, 1:] "nxgq
and nd: - [:— a, 1:] dvd q
shows n = Suc (order a (pderiv p))
(proof )

lemma poly-squarefree-decomp-order:
fixes p :: 'a::field-char-0 poly
assumes pderiv p # 0
and p: p=gqxd
and p” pderivp = e x d
and d: d =7 % p + s * pderiv p
shows order a ¢ = (if order a p = 0 then 0 else 1)
(proof)

lemma poly-squarefree-decomp-order2:
pderivp # 0 = p=q*x d = pderivp = e x d =
d=71%p+ sx* pderivp = Va. order a ¢ = (if order a p = 0 then 0 else 1)
for p :: 'a:field-char-0 poly
(proof )

lemma order-pderiv2:

pderiv p # 0 = order a p # 0 = order a (pderiv p) = n <— order a p = Suc
n

for p :: 'a:field-char-0 poly

(proof )

definition rsquarefree :: 'a::idom poly = bool
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where rsquarefree p «— p # 0 AN (Va. order ap =0V order ap = 1)

lemma pderiv-iszero: pderiv p = 0 = Fh. p = [:hi]
for p :: ‘a::{semidom,semiring-char-0} poly

(proof )
lemma rsquarefree-roots: rsquarefree p «— (Y a. = (poly p a = 0 A poly (pderiv
p) a = 0))

for p :: 'a:field-char-0 poly
{(proof)

lemma rsquarefree-root-order:
assumes rsquarefree p poly p z = 0p # 0
shows order zp = 1

(proof)

lemma poly-squarefree-decomp:
fixes p :: ‘a::field-char-0 poly
assumes pderiv p # 0
and p=gqgx d
and pderivp = e x d
and d =7 % p + s * pderiv p
shows rsquarefree ¢ A (Va. poly g a = 0 <— poly p a = 0)
(proof)

lemma has-field-derivative-poly [derivative-intros|:
assumes (f has-field-derivative f') (at x within A)
shows ((Az. poly p (f z)) has-field-derivative

(f" * poly (pderiv p) (f x))) (at z within A)
{proof)

4.28 Algebraic numbers

lemma intpolyFE:
assumes . poly.coeff p i € Z
obtains ¢ where p = map-poly of-int q
(proof)

lemma ratpolyFE:
assumes Ai. poly.coeff p i € Q
obtains ¢ where p = map-poly of-rat q
(proof)

Algebraic numbers can be defined in two equivalent ways: all real num-
bers that are roots of rational polynomials or of integer polynomials. The
Algebraic-Numbers AFP entry uses the rational definition, but we need the
integer definition.

The equivalence is obvious since any rational polynomial can be multiplied
with the LCM of its coefficients, yielding an integer polynomial with the
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same roots.

definition algebraic :: 'a :: field-char-0 = bool
where algebraic x +— (Ip. (Vi. coeff pi € Z) AN p# 0 A poly p z = 0)

lemma algebraicl: (\i. coeff pi € Z) = p # 0 = poly p x = 0 = algebraic
T

{proof)

lemma algebraick:
assumes algebraic x
obtains p where Ai. coeff pi € Z p # 0 polypz =0
(proof)

lemma algebraic-altdef: algebraic x «— (Ip. (Vi. coeff pi € Q) A p # 0 A poly
pr=10)

for p :: 'a:field-char-0 poly
(proof)

lemma algebraicl’: (\i. coeff pi € Q) = p # 0 = poly p x = 0 = algebraic
T
(proof )

lemma algebraicE’:

assumes algebraic (z :: 'a :: field-char-0)

obtains p where p # 0 poly (map-poly of-int p) = 0
{proof)

lemma algebraicE’-nonzero:

assumes algebraic (z :: 'a i field-char-0) © # 0

obtains p where p # 0 coeff p 0 # 0 poly (map-poly of-int p) x = 0
(proof)

lemma rat-imp-algebraic: x € Q = algebraic x
(proof)

lemma algebraic-0 [simp, intro]: algebraic 0
and algebraic-1 [simp, intro]: algebraic 1
and algebraic-numeral [simp, introl: algebraic (numeral n)
and algebraic-of-nat [simp, intro]: algebraic (of-nat k)
and algebraic-of-int [simp, intro): algebraic (of-int m)
{proof)

lemma algebraic-ii [simp, intro|: algebraic i
(proof)

lemma algebraic-minus [intro:
assumes algebraic x
shows algebraic (—x)

(proof)
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lemma algebraic-minus-iff [simp:
algebraic (—z) <— algebraic (z :: 'a :: field-char-0)
{proof)

lemma algebraic-inverse [intro]:
assumes algebraic x
shows algebraic (inverse )

(proof)

lemma algebraic-root:
assumes algebraic y
and poly p x = y and V1. coeff p i € Z and lead-coeff p = 1 and degree p
> 0
shows algebraic

(proof)

lemma algebraic-abs-real [simp]:
algebraic |z :: real| +— algebraic
{proof)

lemma algebraic-nth-root-real [introl:
assumes algebraic x
shows algebraic (root n x)

(proof)

lemma algebraic-sqrt [intro]: algebraic x = algebraic (sqrt x)
(proof )

lemma algebraic-csqrt [introl: algebraic x = algebraic (csqrt )

(proof)

lemma algebraic-cnj [introl:
assumes algebraic x
shows algebraic (cnj x)

(proof)

lemma algebraic-cng-iff [simp]: algebraic (cnj x) «— algebraic x
(proof )

lemma algebraic-of-real [intro):
assumes algebraic x
shows algebraic (of-real 1)

(proof)

lemma algebraic-of-real-iff [simp]:
algebraic (of-real z :: 'a :: {real-algebra-1,field-char-0}) <— algebraic

(proof)
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4.29 Algebraic integers

inductive algebraic-int :: 'a :: field = bool where
[lead-coeff p = 1; YV i. coeff p i € Z; poly p x = 0] = algebraic-int =

lemma algebraic-int-altdef-ipoly:

fixes x :: a :: field-char-0

shows algebraic-int © «— (I p. poly (map-poly of-int p) x = 0 A lead-coeff p =
1)
(proof)

theorem rational-algebraic-int-is-int:
assumes algebraic-int x and z € Q
shows ze€Z

(proof)

lemma algebraic-int-imp-algebraic [dest]: algebraic-int © = algebraic x
{proof )

lemma int-imp-algebraic-int:
assumes 1 € Z
shows algebraic-int z

(proof)

lemma algebraic-int-0 [simp, intro|: algebraic-int 0
and algebraic-int-1 [simp, introl: algebraic-int 1
and algebraic-int-numeral [simp, intro): algebraic-int (numeral n)
and algebraic-int-of-nat [simp, intro]: algebraic-int (of-nat k)
and algebraic-int-of-int [simp, intro|: algebraic-int (of-int m)
(proof )

lemma algebraic-int-ii [simp, intro]: algebraic-int i

(proof)

lemma algebraic-int-minus [intro]:
assumes algebraic-int x
shows algebraic-int (—x)

(proof)

lemma algebraic-int-minus-iff [simp):
algebraic-int (—z) +— algebraic-int (z :: 'a :: field-char-0)
(proof)

lemma algebraic-int-inverse [intro]:
assumes poly p x = 0 and Vi. coeff p i € Z and coeff p 0 = 1
shows algebraic-int (inverse z)

(proof)

lemma algebraic-int-root:
assumes algebraic-int y
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and poly p x = y and Vi. coeff p i € Z and lead-coeff p = 1 and degree p
> 0
shows algebraic-int x

(proof)

lemma algebraic-int-abs-real [simp):
algebraic-int |x :: real| <— algebraic-int x
{proof )

lemma algebraic-int-nth-root-real [intro]:
assumes algebraic-int ©
shows algebraic-int (root n x)

(proof)

lemma algebraic-int-sqrt [intro]: algebraic-int t = algebraic-int (sqrt z)
{proof)

lemma algebraic-int-csqrt [intro]: algebraic-int x = algebraic-int (csqrt x)
(proof )

lemma algebraic-int-cnj [introl:
assumes algebraic-int ©
shows algebraic-int (cnj x)
(proof)

lemma algebraic-int-cnj-iff [simp]: algebraic-int (cnj x) +— algebraic-int
(proof )

lemma algebraic-int-of-real [intro):
assumes algebraic-int x
shows algebraic-int (of-real x)

(proof)

lemma algebraic-int-of-real-iff [simp]:
algebraic-int (of-real z :: 'a :: {field-char-0, real-algebra-1}) +— algebraic-int
(proof)

4.30 Division of polynomials

4.30.1 Division in general

instantiation poly :: (idom-divide) idom-divide
begin

fun divide-poly-main :: 'a = 'a poly = 'a poly = 'a poly = nat = nat = 'a poly
where
divide-poly-main lc ¢ v d dr (Suc n) =
(let er = coeff r dr; a = cr div lc; mon = monom a n in
if False V a % lc = cr then — False V is only because of problem in
function-package
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divide-poly-main
le
(¢ + mon)
(r — mon * d)
d (dr — 1) n else 0)
| divide-poly-main lc q v d dr 0 = ¢

definition divide-poly :: 'a poly = 'a poly = 'a poly
where divide-poly f g =
(if g = 0 then 0
else
divide-poly-main (coeff g (degree g)) 0 f g (degree f)
(1 + length (coeffs f) — length (coeffs g)))

lemma divide-poly-main:
assumes d: d # 0 lc = coeff d (degree d)
and degree (d x r) < dr divide-poly-main lc g (d * r) d dr n = ¢’
andn=1+4+dr —degreedVdr=0An=0ANdx*xr=20
shows ¢’ = q + r
(proof )

lemma divide-poly-main-0: divide-poly-main 0 0 r d dr n = 0
(proof)

lemma divide-poly:

assumes ¢g: g # 0

shows (f % g) div g = (f :: 'a poly)
(proof)

lemma divide-poly-0: f div 0 = 0
for f :: 'a poly
(proof )

instance
(proof )

end
instance poly :: (idom-divide) algebraic-semidom (proof)

lemma div-const-poly-conv-map-poly:
assumes [:c:] dvd p
shows p div [:¢:] = map-poly (Az. x div ¢) p
(proof)

lemma is-unit-monom-0:
fixes a :: ‘a:field
assumes a # 0
shows is-unit (monom a 0)
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(proof)

lemma is-unit-triv: a # 0 = is-unit [:a:]
for a :: 'a::field
(proof)

lemma is-unit-iff-degree:
fixes p :: ‘a::field poly
assumes p # 0
shows is-unit p «— degree p = 0
(is ?lhs <— ?2rhs)

(proof)

lemma is-unit-pCons-iff: is-unit (pCons a p) +—p=0Na# 0
for p :: 'a:field poly
(proof )

lemma is-unit-monom-trivial: is-unit p = monom (coeff p (degree p)) 0 = p
for p :: 'a::field poly
(proof )

lemma is-unit-const-poly-iff: [:c:] dvd 1 «— ¢ dvd 1
for c¢ :: 'a::{comm-semiring-1,semiring-no-zero-divisors}
(proof)

lemma is-unit-polyE:
fixes p :: 'a :: {comm-semiring-1,semiring-no-zero-divisors} poly
assumes p dvd 1
obtains ¢ where p = [:¢] ¢ dvd 1

(proof)

lemma is-unit-polyE":
fixes p :: 'a::field poly
assumes s-unit p
obtains a where p = monom a 0 and a # 0

(proof)

lemma is-unit-poly-iff: p dvd 1 «— (Jc. p = [:c:] A ¢ dvd 1)
for p :: 'a::{comm-semiring-1,semiring-no-zero-divisors} poly
(proof)

lemma coprime-poly-0:

poly px # 0V poly q x # 0 if coprime p q
for z :: 'a :: field
(proof)

lemma root-imp-reducible-poly:

fixes z :: ‘a :: field
assumes poly p x = 0 and degree p > 1
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shows —irreducible p
(proof)

lemma reducible-polyl:
fixes p :: ‘a :: field poly
assumes p = q * r degree q¢ > 0 degree r > 0
shows —irreducible p

{proof)

4.30.2 Pseudo-Division

This part is by René Thiemann and Akihisa Yamada.

fun pseudo-divmod-main ::
‘a :: comm-ring-1 = 'a poly = 'a poly = 'a poly = nat = nat = 'a poly x 'a

poly
where
pseudo-divmod-main lc g r d dr (Suc n) =
(let
rr = smult lc T,
qq = coeff r dr;

rrr = rr — monom qq n x d;

qqq = smult lc ¢ + monom qq n

in pseudo-divmod-main lc qqq rrr d (dr — 1) n)
| pseudo-divmod-main lc g v d dr 0 = (q,r)

definition pseudo-divmod :: 'a :: comm-ring-1 poly = 'a poly = 'a poly x 'a poly
where pseudo-divmod p q =
if ¢ = 0 then (0, p)
else
pseudo-divmod-main (coeff q (degree q)) 0 p q (degree p)
(1 + length (coeffs p) — length (coeffs q))

lemma pseudo-divmod-main:
assumes d: d # 0 lc = coeff d (degree d)
and degree r < dr pseudo-divmod-main lc g r d dr n = (q’,r’)
andn=1+4+dr —degreedV dr=0An=0Ar=20
shows (r' = 0 V degree ' < degree d) A smult (Ic™n) (d« q+ 1) =d=*q¢ + 1’
(proof )

lemma pseudo-divmod:
assumes ¢g: g # 0
and *: pseudo-divmod f g = (gq,r)
shows smult (coeff g (degree g) ~ (Suc (degree f) — degree g9)) f = g ¢ + r (is
?4)
and r = 0 V degree r < degree g (is ?B)
(proof)

definition pseudo-mod-main lc r d dr n = snd (pseudo-divmod-main lc 0 r d dr
n)
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lemma snd-pseudo-divmod-main:

snd (pseudo-divmod-main lc q r d dr n) = snd (pseudo-divmod-main lc ¢' r d dr
n)

(proof )

definition pseudo-mod :: 'a::{ comm-ring-1,semiring-1-no-zero-divisors} poly = 'a
poly = 'a poly
where pseudo-mod f g = snd (pseudo-divmod f g)

lemma pseudo-mod:
fixes f g :: 'a::{comm-ring-1,semiring-1-no-zero-divisors} poly
defines r = pseudo-mod f g
assumes ¢g: g # 0
shows Ja q. a # 0 Nsmultaf=g*q+ rr =0V degree r < degree g

(proof)

lemma fst-pseudo-divmod-main-as-divide-poly-main:
assumes d: d # 0
defines lc: lc = coeff d (degree d)
shows fst (pseudo-divmod-main lc g r d dr n) =
divide-poly-main lc (smult (Ic™n) q) (smult (Ic™n) r) d dr n
(proof)

4.30.3 Division in polynomials over fields

lemma pseudo-divmod-field:
fixes g :: ‘a::field poly
assumes ¢: g # 0
and *: pseudo-divmod f g = (q,r)
defines ¢ = coeff g (degree g) ~ (Suc (degree f) — degree g)
shows [ = g * smult (1/c¢) g+ smult (1/c) r
(proof)

lemma divide-poly-main-field:

fixes d :: 'a::field poly

assumes d: d # 0

defines lc: lc = coeff d (degree d)

shows divide-poly-main lc ¢ r d dr n =

fst (pseudo-divmod-main lc (smult ((1 / lc)™n) q) (smult ((1 / lc)™n) r) d dr

n)

(proof )

lemma divide-poly-field:
fixes f g :: 'a::field poly
defines f' = smult ((1 / coeff g (degree g)) ~ (Suc (degree f) — degree g)) f
shows f div g = fst (pseudo-divmod f' g)

(proof)
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instantiation poly :: ({ semidom-divide-unit-factor,idom-divide}) normalization-semidom
begin

definition unit-factor-poly :: 'a poly = 'a poly
where unit-factor-poly p = [:unit-factor (lead-coeff p):]

definition normalize-poly :: 'a poly = 'a poly
where normalize p = p div [:unit-factor (lead-coeff p):]

instance

(proof)

end

instance poly :: ({semidom-divide-unit-factor,idom-divide,normalization-semidom-multiplicative})
normalization-semidom-multiplicative
{proof )

lemma normalize-poly-eq-map-poly: normalize p = map-poly (Az. x div unit-factor
(lead-coeff p)) p
(proof)

lemma coeff-normalize [simp]:
coeff (normalize p) n = coeff p n div unit-factor (lead-coeff p)
(proof )

class field-unit-factor = field + unit-factor +
assumes unit-factor-field [simp|: unit-factor = id
begin

subclass semidom-divide-unit-factor

(proof)

end

lemma unit-factor-pCons:
unit-factor (pCons a p) = (if p = 0 then [:unit-factor a:] else unit-factor p)
(proof)

lemma normalize-monom [simp|: normalize (monom a n) = monom (normalize
a) n

(proof)

lemma unit-factor-monom [simp: unit-factor (monom a n) = [:unit-factor a:]
{proof)

lemma normalize-const-poly: normalize [:¢c:] = [:normalize c]
{proof)
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lemma normalize-smult:
fixes ¢ :: 'a :: {normalization-semidom-multiplicative, idom-divide}
shows normalize (smult ¢ p) = smult (normalize c¢) (normalize p)

(proof)

instantiation poly :: (field) idom-modulo
begin

definition modulo-poly :: 'a poly = 'a poly = 'a poly
where mod-poly-def: f mod g =
(if g = 0 then f else pseudo-mod (smult ((1 / lead-coeff g) ~ (Suc (degree f) —
degree g)) f) g)

instance

(proof)

end

lemma pseudo-divmod-eq-div-mod:
«pseudo-divmod f g = (f div g, f mod g)» if <lead-coeff g = 1>
(proof )

lemma degree-mod-less-degree:
<degree (x mod y) < degree y» if <y # 0> <— y dvd x>

(proof)

instantiation poly :: (field) unique-euclidean-ring
begin

definition euclidean-size-poly :: 'a poly = nat
where euclidean-size-poly p = (if p = 0 then 0 else 2 ~ degree p)

definition division-segment-poly :: 'a poly = 'a poly
where [simp|: division-segment-poly p = 1

instance (proof)
end

lemma euclidean-relation-polyl [case-names by0 divides euclidean-relation]:
«(z div y,  mod y) = (g, )
ifby0: «y=0= q=0ANr=um
and divides: <y # 0 —= ydvdx —= r=0ANx = q* 1
and euclidean-relation: <y # 0 = — y dvd © => degree r < degree y \ © = q
*y+m
(proof )

lemma div-poly-eq-0-iff:
divy=0+—xz=0Vy=0YV degree x < degree y» for x y :: ('a::field poly>
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{proof)

lemma div-poly-less:
«x divy = 0y if «degree x < degree y» for x y :: <a::field poly
(proof)

lemma mod-poly-less:
<x mod y = x if <degree x < degree y»

{proof)

lemma degree-div-less:
<degree (x div y) < degree x>
if <degree x > 0> <degree y > 0>
for = y :: <'a::field poly)
{proof )

lemma degree-mod-less”: b # 0 = a mod b # 0 = degree (a mod b) < degree b
{proof )

lemma degree-mod-less: y # 0 = z mod y = 0 V degree (z mod y) < degree y
(proof )

lemma div-smult-left: <smult a = divy = smult o (z div y)> (is ?Q)
and mod-smult-left: <smult a x mod y = smult a (z mod y)» (is ?R)
for x y :: 'a::field poly>

(proof)

lemma poly-div-minus-left [simp]: (— z) divy = — (z div y)
for z y :: 'a::field poly
(proof )

lemma poly-mod-minus-left [simp]: (— z) mod y = — (z mod y)
for z y :: 'a:field poly
(proof)

lemma poly-div-add-left: «(z + y) div z = x div z + y div 2> (is ?Q)
and poly-mod-add-left: «(z + y) mod z = x mod z + y mod 2> (is ?R)
for z y z :: a:field poly>

(proof)

lemma poly-div-diff-left: (z — y) div z = x div z — y div 2
for z y z :: a:field poly
(proof )
lemma poly-mod-diff-left: (x — y) mod z = x mod z — y mod 2z
for z y 2z :: a:field poly
(proof )

lemma div-smult-right: «x div smult a y = smult (inverse a) (x div y)> (is ?2Q)
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and mod-smult-right: <x mod smult a y = (if a = 0 then z else x mod y)> (is ?R)
(proof)

lemma mod-mult-unit-eq:
<z mod (z x y) = = mod y»
if <is-unit 2
for z y z :: a::field poly»

(proof )

lemma poly-div-minus-right [simp]: z div (— y) = — (z div y)
for z y :: 'a::field poly
{proof )

lemma poly-mod-minus-right [simp]: £ mod (— y) = z mod y
for z y :: 'a::field poly
(proof )

lemma poly-div-mult-right: <z div (y x z) = (z div y) div 2> (is Q)

and poly-mod-mult-right: «x mod (y % z) = y * (z div y mod z) + = mod y» (is
?R)

for z y z :: 'a::field poly»
(proof)

lemma dvd-pCons-imp-dvd-pCons-mod:
<y dvd pCons a (z mod y)» if <y dvd pCons a x

(proof)

lemma degree-less-if-less-eql:
<degree © < degree y» if <degree x < degree y» <coeff x (degree y) = 0> <x # 0»
(proof)

lemma div-pCons-eq:
«<pCons a p div ¢ = (if ¢ = 0 then 0 else pCons (coeff (pCons a (p mod q))
(degree q) | lead-coeff q) (p div q))» (is ?Q)
and mod-pCons-eq:
<pCons a p mod q = (if ¢ = 0 then pCons a p else pCons a (p mod q) — smult
(coeff (pCons a (p mod q)) (degree q) / lead-coeff q) q)> (is ?R)
for z y :: <'a::field poly
(proof)

lemma div-mod-fold-coeffs:
(p div q, p mod q) =
(if ¢ = 0 then (0, p)
else
fold-coeffs
(Ma (s, 7).
let b = coeff (pCons a r) (degree q) /| coeff q (degree q)
in (pCons b s, pCons ar — smult b q)) p (0, 0))
(proof)
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lemma mod-pCons:
fixes a :: 'a:field
and z y :: 'a::field poly
assumes y: y # 0
defines b = coeff (pCons a (x mod y)) (degree y) / coeff y (degree y)
shows (pCons a z) mod y = pCons a (x mod y) — smult b y

{proof)

4.30.4 List-based versions for fast implementation

fun minus-poly-rev-list :: 'a :: group-add list = 'a list = 'a list
where
minus-poly-rev-list (z # xs) (y # ys) = (z — y) # (minus-poly-rev-list xs ys)
| minus-poly-rev-list xs [| = xs
| minus-poly-rev-list [| (y # ys) = ||

fun pseudo-divmod-main-list ::
‘a::comm-ring-1 = 'a list = 'a list = 'a list = nat = ‘a list x 'a list
where
pseudo-divmod-main-list lc ¢ v d (Suc n) =

(let
rr = map ((x) le) r;
a = hdr;

qqq = cCons a (map ((x) lc) q);
rrr = tl (if a = 0 then rr else minus-poly-rev-list rr (map ((x) a) d))
in pseudo-divmod-main-list lc qqq rrr d n)

| pseudo-divmod-main-list lc g v d 0 = (q, )

fun pseudo-mod-main-list :: 'a::comm-ring-1 = 'a list = 'a list = nat = 'a list
where
pseudo-mod-main-list lc v d (Suc n) =

(let
rr = map ((x) lc) r;
a = hdr;

rrr = tl (if a = 0 then rr else minus-poly-rev-list rr (map ((x) a) d))
in pseudo-mod-main-list lc rrr d n)
| pseudo-mod-main-list lc rd 0 = r

fun divmod-poly-one-main-list ::
'a::comm-ring-1 list = 'a list = 'a list = nat = 'a list X 'a list
where
divmod-poly-one-main-list ¢ v d (Suc n) =
(let
a = hdr;
qqq = cCons a g
rr = tl (if a = 0 then r else minus-poly-rev-list v (map ((x) a) d))
in divmod-poly-one-main-list qqq rr d n)
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| divmod-poly-one-main-list ¢ v d 0 = (q, )

fun mod-poly-one-main-list :: 'a::comm-ring-1 list = 'a list = nat = 'a list
where
mod-poly-one-main-list v d (Suc n) =
(let
a = hdr;
rr = tl (if a = 0 then r else minus-poly-rev-list v (map ((x) a) d))
in mod-poly-one-main-list rr d n)
| mod-poly-one-main-list r d 0 = r

definition pseudo-divmod-list :: 'a::comm-ring-1 list = 'a list = 'a list x 'a list
where pseudo-divmod-list p q =
(if g = ] then ([, p)
else
(let rqg = rev g;
(qu,re) = pseudo-divmod-main-list (hd rq) [| (rev p) rq (1 + length p —
length q)
in (qu, rev re)))

definition pseudo-mod-list :: 'a::comm-ring-1 list = 'a list = 'a list
where pseudo-mod-list p ¢ =
(if ¢ =[] then p

else

(let
rq = Tev g;
re = pseudo-mod-main-list (hd rq) (rev p) rq (1 + length p — length q)
in rev re))

lemma minus-zero-does-nothing: minus-poly-rev-list z (map ((x) 0) y) = z
for z :: 'a::ring list
(proof )

lemma length-minus-poly-rev-list [simp]: length (minus-poly-rev-list xs ys) = length
xs
(proof )

lemma if-0-minus-poly-rev-list:
(if a = 0 then z else minus-poly-rev-list z (map ((x) a) y)) =
minus-poly-rev-list z (map ((x) a) y)
for a :: 'a::ring
(proof )

lemma Poly-append: Poly (a @ b) = Poly a + monom 1 (length a) x Poly b
for a :: 'a::comm-semiring-1 list
(proof )

lemma minus-poly-rev-list: length p > length ¢ =
Poly (rev (minus-poly-rev-list (rev p) (rev q))) =
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Poly p — monom 1 (length p — length q) * Poly q
for p q :: 'a :: comm-ring-1 list
(proof)

lemma smult-monom-mult: smult a (monom b n x f) = monom (a * b) n * f
(proof)

lemma head-minus-poly-rev-list:
length d < length r = d # [| =
hd (minus-poly-rev-list (map ((x) (last d)) r) (map ((x) (hd 1)) (rev d))) = 0
for d r :: 'a::comm-ring list

(proof)

lemma Poly-map: Poly (map ((x) a) p) = smult a (Poly p)
(proof)

lemma last-coeff-is-hd: xs # [| = coeff (Poly xs) (length zs — 1) = hd (rev zs)
{proof)

lemma pseudo-divmod-main-list-invar:
assumes leading-nonzero: last d # 0
and lc: last d = lc
and d # ||
and pseudo-divmod-main-list lc q (rev r) (rev d) n = (¢’, rev r’)
and n = 1 + length r — length d
shows pseudo-divmod-main lc (monom 1 n x Poly q) (Poly r) (Poly d) (length r
—1)n=
(Poly q', Poly 1)
(proof)

lemma pseudo-divmod-impl [code]:
pseudo-divmod f g = map-prod poly-of-list poly-of-list (pseudo-divmod-list (coeffs
) (coeffs g))

for f g :: 'a::comm-ring-1 poly
(proof)
lemma pseudo-mod-main-list:

snd (pseudo-divmod-main-list | q xs ys n) = pseudo-mod-main-list | Ts ys n
(proof)

lemma pseudo-mod-impl[code]: pseudo-mod f g = poly-of-list (pseudo-mod-list (coeffs
) (coeffs g))
(proof)

4.30.5 Improved Code-Equations for Polynomial (Pseudo) Divi-
sion

lemma pdivmod-via-pseudo-divmod:
«(f div g, f mod g) =
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(if g = 0 then (0, f)
else
let
ile = inverse (lead-coeff g);
h = smult ilc g;
(q,m) = pseudo-divmod f h
in (smult ilc q, 7))
(is <2l = )
(proof)

lemma pdivmod-via-pseudo-divmod-list:
(f div g, f mod g) =
(let cg = coeffs g in
if cg = | then (0, /)
else
let
cf = coeffs f;
ile = inverse (last cg);
ch = map ((*) ilc) cg;
(g, r) = pseudo-divmod-main-list 1 [] (rev ¢f) (rev ch) (1 + length cf —
length cqg)
in (poly-of-list (map ((x) ilc) q), poly-of-list (rev r)))
(proof)

lemma pseudo-divmod-main-list-1: pseudo-divmod-main-list 1 = divmod-poly-one-main-list

(proof)

fun divide-poly-main-list :: 'a::idom-divide = 'a list = 'a list = 'a list = nat =
‘a list

where
divide-poly-main-list lc ¢ r d (Suc n) =
(let
cr="hdr

in if cr = 0 then divide-poly-main-list lc (cCons cr q) (tl r) d n else let
a = cr div lc;
qq = cCons a g;
rr = minus-poly-rev-list v (map ((%) a) d)
in if hd rr = 0 then divide-poly-main-list lc qq (tL rr) d n else [])
| divide-poly-main-list lc ¢ 7 d 0 = ¢

lemma divide-poly-main-list-simp [simp]:
divide-poly-main-list lc ¢ r d (Suc n) =
(let
cr = hd r;
a = cr div lc;
qq = cCons a ¢;
rr = minus-poly-rev-list r (map ((*) a) d)
in if hd rr = 0 then divide-poly-main-list lc qq (tl rr) d n else [])
(proof)

107



declare divide-poly-main-list.simps(1)[simp del]

definition divide-poly-list :: 'a::idom-divide poly = 'a poly = 'a poly
where divide-poly-list f g =
(let cg = coeffs g in
if cg =[] then g
else
let
cf = coeffs f;
cgr = rev cg
in poly-of-list (divide-poly-main-list (hd cgr) || (rev ¢f) cgr (1 + length cf
— length cg)))

lemmas pdivmod-via-divmod-list = pdivmod-via-pseudo-divmod-list|unfolded pseudo-divmod-main-list-1]

lemma mod-poly-one-main-list: snd (divmod-poly-one-main-list ¢ r d n) = mod-poly-one-main-list
rdn

(proof)
lemma mod-poly-code [code]:
fmod g=
(let cg = coeffs g in
if cg =[] then f
else
let
cf = coeffs f;

ile = inverse (last cg);
ch = map ((*) ilc) cg;
r = mod-poly-one-main-list (rev cf) (rev ch) (1 + length ¢f — length cg)
in poly-of-list (rev r))
(is - = ?rhs)

(proof)

definition div-field-poly-impl :: 'a :: field poly = 'a poly = 'a poly
where div-field-poly-impl f g =
(let cg = coeffs g in
if cg =[] then 0
else
let
cf = coeffs f;
ile = inverse (last cg);
ch = map ((*) ilc) cg;
q = fst (divmod-poly-one-main-list [| (rev ¢f) (rev ch) (1 + length cf —
length cqg))
in poly-of-list ((map ((x) ilc) q)))

We do not declare the following lemma as code equation, since then poly-
nomial division on non-fields will no longer be executable. However, a code-
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unfold is possible, since div-field-poly-impl is a bit more efficient than the
generic polynomial division.

lemma div-field-poly-impl|code-unfold): (div) = div-field-poly-impl
(proof)

lemma divide-poly-main-list:
assumes [c0: lc # 0
and lc: last d = lc
and d: d # []
and n = (1 + length r — length d)
shows Poly (divide-poly-main-list lc g (rev 1) (rev d) n) =
divide-poly-main lc (monom 1 n % Poly q) (Poly r) (Poly d) (length r — 1) n
(proof )

lemma divide-poly-list[code]: f div g = divide-poly-list f g
(proof )

lemma poly-mod:
poly (p mod q) z = poly p x if poly g x = 0
(proof)

4.31 Primality and irreducibility in polynomial rings

lemma prod-mset-const-poly: ([[z€#A. [:f x:]) = [:prod-mset (image-mset f A):]
{proof)

lemma irreducible-const-poly-iff:
fixes ¢ :: 'a :: {comm-semiring-1,semiring-no-zero-divisors}
shows irreducible [:c:] «— irreducible ¢

(proof)

lemma [lift-prime-elem-poly:
assumes prime-elem (c :: 'a :: semidom)
shows prime-elem [:c:]

(proof)

lemma prime-elem-const-poly-iff:

fixes ¢ :: 'a :: semidom

shows prime-elem [:c:] «— prime-elem ¢
(proof)

4.32 Content and primitive part of a polynomial

definition content :: 'a::semiring-ged poly = 'a
where content p = ged-list (coeffs p)

lemma content-eq-fold-coeffs [code]: content p = fold-coeffs ged p 0
(proof)
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lemma content-0 [simp]: content 0 = 0

{proof)

lemma content-1 [simp]: content 1 = 1
(proof)

lemma content-const [simp]: content [:c:] = normalize ¢
{proof)

lemma const-poly-dvd-iff-dvd-content: [:c:] dvd p +— ¢ dvd content p
for c :: 'a::semiring-gcd

(proof)

lemma content-dvd [simp)]: [:content p:] dvd p

(proof)

lemma content-dvd-coeff [simp]: content p dvd coeff p n
(proof)

lemma content-dvd-coeffs: ¢ € set (coeffs p) = content p dvd c

(proof)

lemma normalize-content [simpl: normalize (content p) = content p
{proof)

lemma is-unit-content-iff [simp]: is-unit (content p) <— content p = 1

(proof)

lemma content-smult [simp):
fixes ¢ :: 'a :: {normalization-semidom-multiplicative, semiring-gcd}
shows content (smult ¢ p) = normalize ¢ * content p
(proof )

lemma content-eq-zero-iff [simp]: content p = 0 +— p = 0
(proof )

definition primitive-part :: 'a :: semiring-gcd poly = 'a poly
where primitive-part p = map-poly (Az. = div content p) p

lemma primitive-part-0 [simp]: primitive-part 0 = 0
(proof)

lemma content-times-primitive-part [simp|: smult (content p) (primitive-part p) =

p
for p :: 'a :: semiring-gcd poly

(proof)

lemma primitive-part-eq-0-iff [simpl: primitive-part p = 0 <— p = 0

(proof)
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lemma content-primitive-part [simp):
fixes p :: ‘a :: {normalization-semidom-multiplicative, semiring-ged} poly
assumes p # 0
shows content (primitive-part p) = 1

(proof)

lemma content-decompose:
obtains p’ :: ‘a :: {normalization-semidom-multiplicative, semiring-ged} poly
where p = smult (content p) p’ content p’ = 1

(proof)

lemma content-dvd-contentl [intro]: p dvd ¢ => content p dvd content q
(proof )

lemma primitive-part-const-poly [simp]: primitive-part [:x:] = [unit-factor z:]
(proof)

lemma primitive-part-prim: content p = 1 = primitive-part p = p
(proof)

lemma degree-primitive-part [simp|: degree (primitive-part p) = degree p
(proof)

lemma smult-content-normalize-primitive-part [simp):

fixes p :: ‘a :: {normalization-semidom-multiplicative, semiring-gcd, idom-divide}
poly

shows smult (content p) (normalize (primitive-part p)) = normalize p
(proof)

context
begin

private

lemma content-1-mult:
fixes f g :: 'a i {semiring-gcd, factorial-semiring} poly
assumes content f = 1 content g = 1
shows content (f x g) = 1

(proof)

lemma content-mult:

fixes p q :: 'a :: {factorial-semiring, semiring-gcd, normalization-semidom-multiplicative}
poly

shows content (p * q) = content p x content q
(proof)

end
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lemma primitive-part-mult:
fixes p q :: 'a :: {factorial-semiring, semiring-Gecd, ring-gcd, idom-divide,
normalization-semidom-multiplicative} poly
shows primitive-part (p * q) = primitive-part p * primitive-part q

(proof)

lemma primitive-part-smult:
fixes p :: ‘a :: {factorial-semiring, semiring-Ged, ring-ged, idom-divide,
normalization-semidom-multiplicative} poly
shows primitive-part (smult a p) = smult (unit-factor a) (primitive-part p)

(proof)

lemma primitive-part-dvd-primitive-partl [intro]:
fixes p q :: 'a i {factorial-semiring, semiring-Ged, ring-ged, idom-divide,
normalization-semidom-multiplicative} poly
shows p dvd ¢ = primitive-part p dvd primitive-part q
(proof)

lemma content-prod-mset:
fixes A :: ‘a :: {factorial-semiring, semiring-Ged, normalization-semidom-multiplicative}
poly multiset
shows content (prod-mset A) = prod-mset (image-mset content A)

{proof)

lemma content-prod-eq-1-iff:
fixes p q :: 'a :: {factorial-semiring, semiring-Ged, normalization-semidom-multiplicative}

poly
shows content (p x ¢) = 1 <— content p = 1 A content ¢ = 1

(proof)

4.33 A typeclass for algebraically closed fields

Since the required sort constraints are not available inside the class, we
have to resort to a somewhat awkward way of writing the definition of
algebraically closed fields:

class alg-closed-field = field +
assumes alg-closed: n > 0 = fn # 0 = Jz. O k<n. fhkxz " k)=10

We can then however easily show the equivalence to the proper definition:

lemma alg-closed-imp-poly-has-root:
assumes degree (p :: 'a :: alg-closed-field poly) > 0
shows dz. polypx =10

(proof)

lemma alg-closedI [Pure.intro:
assumes Ap :: ‘a poly. degree p > 0 = lead-coeff p = 1 = Jz. poly p x = 0
shows OFCLASS('a :: field, alg-closed-field-class)

(proof)
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lemma (in alg-closed-field) nth-root-exists:
assumes n > 0
shows Jy.y "n=(z:a)

(proof)

We can now prove by induction that every polynomial of degree n splits into
a product of n linear factors:

lemma alg-closed-imp-factorization:
fixes p :: ‘a :: alg-closed-field poly
assumes p # 0
shows J A. size A = degree p A p = smult (lead-coeff p) (] z€#A. [—=, 1:])
{proof )

As an alternative characterisation of algebraic closure, one can also say that
any polynomial of degree at least 2 splits into non-constant factors:

lemma alg-closed-imp-reducible:
assumes degree (p :: 'a :: alg-closed-field poly) > 1
shows —irreducible p

(proof)

When proving algebraic closure through reducibility, we can assume w.l.o.g.
that the polynomial is monic and has a non-zero constant coefficient:

lemma alg-closedI-reducible:
assumes Ap :: ‘a poly. degree p > 1 = lead-coeff p = 1 = coeff p 0 # 0 =

—irreducible p
shows OFCLASS('a :: field, alg-closed-field-class)

(proof)

Using a clever Tschirnhausen transformation mentioned e.g. in the article
by Nowak [1], we can also assume w.l.0.g. that the coefficient a,_; is zero.

lemma alg-closedI-reducible-coeff-deg-minus-one-eq-0:
assumes Ap :: ‘a poly. degree p > 1 = lead-coeff p = 1 = coeff p (degree p
-1)=0=
coeff p 0 # 0 = —irreducible p
shows OFCLASS('a :: field-char-0, alg-closed-field-class)

(proof)

As a consequence of the full factorisation lemma proven above, we can also
show that any polynomial with at least two different roots splits into two
non-constant coprime factors:
lemma alg-closed-imp-poly-splits-coprime:

assumes degree (p :: 'a :: {alg-closed-field} poly) > 1

assumes poly px = O0polypy=0x #£y

obtains r s where degree v > 0 degree s > 0 coprime rsp =1 * s
(proof)
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4.34 Polynomials and limits

lemma filterlim-poly-at-infinity:

fixes p::'a::real-normed-field poly

assumes degree p>0

shows filterlim (poly p) at-infinity at-infinity
(proof)

lemma poly-divide-tendsto-aux:

fixes p::'a::real-normed-field poly

shows ((A\z. poly p z/x (degree p)) —— lead-coeff p) at-infinity
(proof)

lemma filterlim-power-at-infinity:
assumes n#0
shows filterlim (A\z::'a::real-normed-field. ™n) at-infinity at-infinity
(proof )

lemma poly-divide-tendsto-0-at-infinity:

fixes p::'a::real-normed-field poly

assumes degree p > degree q

shows ((A\z. poly q z / poly p ) —— 0 ) at-infinity
(proof)

lemma poly-eventually-not-zero:
fixes p::real poly
assumes p#(0
shows eventually (Az. poly p x # 0) at-infinity

(proof)
no-notation cCons (infixr ##> 65)

end

5 A formalization of formal power series

theory Formal-Power-Series
imports
Complez-Main
Euclidean-Algorithm
Primes
HOL- Library. FuncSet
HOL— Library. Multiset
begin

5.1 The type of formal power series

typedef ‘a fps = {f :: nat = 'a. True}
morphisms fps-nth Abs-fps
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(proof )
notation fps-nth (infixl <$» 75)

lemma expand-fps-eq: p = g <— (Vn.p$n=q$n)
(proof)

lemmas fps-eq-iff = expand-fps-eq

lemma fps-ext: (An.p$Sn=¢q8n) = p=g
(proof)

lemma fps-nth-Abs-fps [simp]: Abs-fps f $ n = fn
(proof )

Definition of the basic elements 0 and 1 and the basic operations of addition,
negation and multiplication.

instantiation fps :: (zero) zero

begin
definition fps-zero-def: 0 = Abs-fps (An. 0)
instance (proof)

end

lemma fps-zero-nth [simp]: 0 $ n = 0
(proof)

lemma fps-nonzero-nth: f # 0 «— (3 n. f $ n # 0)
(proof )

lemma fps-nonzero-nth-minimal: f # 0 +— @n. f$nA 0N (VYm<n f$m

= 0))

(is ?lhs «— ?rhs)

(proof)

lemma fps-nonzerol: f$n # 0 = f # 0
(proof )

instantiation fps :: ({one, zero}) one

begin
definition fps-one-def: 1 = Abs-fps (An. if n = 0 then 1 else 0)
instance (proof)

end

lemma fps-one-nth [simp]: 1 $ n = (if n = 0 then 1 else 0)
{proof)

instantiation fps :: (plus) plus

begin
definition fps-plus-def: (+) = (Af g. Abs-fps (An. f $n+ g $ n))
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instance (proof)
end

lemma fps-add-nth [simpl: (f + ) $n=f8$n+g%n
(proof )

instantiation fps :: (minus) minus

begin
definition fps-minus-def: (=) = (Af g. Abs-fps (An. f $n — g $ n))
instance (proof)

end

lemma fps-sub-nth [simp]: (f —¢g)$n=f%n—g%n
(proof)

instantiation fps :: (uminus) uminus

begin
definition fps-uminus-def: uminus = (\f. Abs-fps (An. — (f $ n)))
instance (proof)

end

lemma fps-neg-nth [simp]: (— f) $n=—(f $ n)
(proof )

lemma fps-neg-0 [simpl: —(0::'a::group-add fps) = 0
(proof )

instantiation fps :: ({comm-monoid-add, times}) times
begin

definition fps-times-def: (x) = (Af g. Abs-fps (An. > i=0..n. f $i*xg$ (n —
0)))

instance (proof)
end

lemma fps-mult-nth: (f * g) $ n = (3 i=0..n. f$i x ¢3(n — 7))
(proof)

lemma fps-mult-nth-0 [simp]: (f x g) $ 0 =f$0*xg$ 0
(proof )

lemma fps-mult-nth-1: (f * g) $ 1 = f$0 = ¢31 + f$1 * ¢g$0
(proof )

lemma fps-mult-nth-1" [simp]: (f * g) $ Suc 0 = f$0 x g$Suc 0 + f$Suc 0 x g$0
(proof )

lemmas mult-nth-0 = fps-mult-nth-0
lemmas mult-nth-1 = fps-mult-nth-1
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instance fps :: ({comm-monoid-add, mult-zero}) mult-zero
(proof)

declare atLeastAtMost-iff [presburger]
declare Bez-def [presburger]
declare Ball-def [presburger]

lemma mult-delta-left:
fixes z y :: 'a::mult-zero
shows (if b then z else 0) x y = (if b then z * y else 0)
(proof )

lemma mult-delta-right:
fixes z y :: 'a::mult-zero
shows z * (if b then y else 0) = (if b then x x y else 0)
(proof )

lemma fps-one-mult:
fixes f :: 'a::{comm-monoid-add, mult-zero, monoid-mult} fps
shows 1 x f = f
and fx1=f
(proof )

5.2 Subdegrees

definition subdegree :: (‘a::zero) fps = nat where
subdegree f = (if f = 0 then 0 else LEAST n. f$n # 0)

lemma subdegreel:
assumes f$d# 0and \i. i<d= f$i=0
shows subdegree f = d
(proof)

lemma nth-subdegree-nonzero [simp,intro): f # 0 = [ $ subdegree f # 0
(proof )

lemma nth-less-subdegree-zero [dest]: n < subdegree f —> f $ n =0
(proof)

lemma subdegree-gel:
assumes f £ 0 Ni.i<n= f$i =10
shows subdegree f > n
(proof)

lemma subdegree-greaterl:
assumes [ # 0 N\i. i < n = [$i
shows subdegree f > n
(proof)

I
S
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lemma subdegree-lel:
f$n+# 0= subdegree f < n
{proof )

lemma subdegree-0 [simp]: subdegree 0 = 0
{proof)

lemma subdegree-1 [simp]: subdegree 1 = 0
(proof)

lemma subdegree-eq-0-iff: subdegree f = 0 «+— f =0V f$ 0 # 0
(proof)

lemma subdegree-eq-0 [simp]: f $ 0 # 0 = subdegree f = 0
(proof )

lemma nth-subdegree-zero-iff [simp]: f $ subdegree f = 0 «— f =0
{proof )

lemma fps-nonzero-subdegree-nonzerol: subdegree f > 0 = f # 0

(proof )

lemma subdegree-uminus [simp:
subdegree (—(f::("a::group-add) fps)) = subdegree f
(proof)

lemma subdegree-minus-commute [simp:
fixes f :: 'a::group-add fps
shows subdegree (f—g) = subdegree (g — f)
(proof)

lemma subdegree-add-ge’:
fixes fg : 'a::monoid-add fps
assumes f + g # 0
shows subdegree (f + g) > min (subdegree f) (subdegree g)

{proof)

lemma subdegree-add-ge:

assumes [ # —(g = (‘a :: group-add) fps)

shows subdegree (f + g) > min (subdegree f) (subdegree g)
(proof)

lemma subdegree-add-eql:
assumes f # 0
and subdegree f < subdegree (g :: 'a::monoid-add fps)
shows subdegree (f + g) = subdegree f
(proof )

lemma subdegree-add-eq2:
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assumes g # 0
and subdegree g < subdegree (f :: 'a :: monoid-add fps)
shows subdegree (f + g) = subdegree g

{proof)

lemma subdegree-diff-eq1:
assumes f # 0
and subdegree f < subdegree (g :: 'a :: group-add fps)
shows subdegree (f — g) = subdegree f
(proof )

lemma subdegree-diff-eq1-cancel:
assumes f # 0
and subdegree f < subdegree (g :: 'a :: cancel-comm-monoid-add fps)
shows subdegree (f — g) = subdegree f

(proof)

lemma subdegree-diff-eq2:
assumes g # 0
and  subdegree g < subdegree (f :: 'a :: group-add fps)
shows subdegree (f — g) = subdegree g
(proof )

lemma subdegree-diff-ge [simp]:

assumes f # (g :: 'a :: group-add fps)

shows subdegree (f — g) > min (subdegree f) (subdegree g)
{proof)

lemma subdegree-diff-ge’:
fixes fg: 'a:: comm-monoid-diff fps
assumes f — g # 0
shows subdegree (f — g) > subdegree f

{proof)

lemma nth-subdegree-mult-left [simp]:
fixes f g :: ('a :: {mult-zero,comm-monoid-add}) fps
shows (f x g) $ (subdegree f) = f $ subdegree f x ¢ $ 0
(proof )

lemma nth-subdegree-mult-right [simp):
fixes f g :: ('a :: {mult-zero,comm-monoid-add}) fps
shows (f x g) $ (subdegree g) = f $ 0 * g $ subdegree g
(proof )

lemma nth-subdegree-mult [simp]:

fixes f g :: ('a :: {mult-zero,comm-monoid-add}) fps

shows (f x g) $ (subdegree f + subdegree g) = f $ subdegree f * g $ subdegree g
(proof)
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lemma fps-mult-nth-eq0:
fixes f g :: 'a::{ comm-monoid-add,mult-zero} fps
assumes n < subdegree f + subdegree g
shows (f*xg) $n =20

(proof )

lemma fps-mult-subdegree-ge:
fixes fg :: 'a:{comm-monoid-add,mult-zero} fps
assumes fxg # 0
shows subdegree (fxg) > subdegree f + subdegree g

(proof)

lemma subdegree-mult':
fixes fg :: 'a::{comm-monoid-add,mult-zero} fps
assumes | $ subdegree f * g $ subdegree g # 0
shows subdegree (fxg) = subdegree f + subdegree g

(proof)

lemma subdegree-mult [simpl:
fixes fg: 'a:: {semiring-no-zero-divisors} fps
assumes f # 0 g # 0
shows subdegree (f * g) = subdegree f + subdegree g
(proof )

lemma fps-mult-nth-conv-upto-subdegree-left:

fixes f g : ('a :: {mult-zero,comm-monoid-add}) fps

shows (f x g) $§ n = (. i=subdegree f.n. f $ i % g $ (n — 7))
(proof)

lemma fps-mult-nth-conv-upto-subdegree-right:

fixes f g :: ('a :: {mult-zero,comm-monoid-add}) fps

shows (f x g) $ n = (3 i=0..n — subdegree g. f $ i % g $ (n — 7))
(proof)

lemma fps-mult-nth-conv-inside-subdegrees:

fixes f g :: ('a :: {mult-zero,comm-monoid-add}) fps

shows (f x g) $ n = (3 i=subdegree f..n — subdegree g. f $ i % g $ (n — 7))
(proof)

lemma fps-mult-nth-outside-subdegrees:
fixes f g :: ('a :: {mult-zero,comm-monoid-add}) fps
shows n < subdegree f = (f x g) $n =0
and n < subdegree g = (f x g) $n=20
(proof)

5.3 Ring structure

instance fps :: (semigroup-add) semigroup-add
(proof)
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instance fps :

(proof)

instance fps :

(proof)

instance fps :

(proof)

instance fps ::

(proof)

instance fps :

(proof)

instance fps ::

instance fps :

(proof)

instance fps ::

(proof)

instance fps :

(proof)

(ab-semigroup-add) ab-semigroup-add

(monoid-add) monoid-add

(comm-monoid-add) comm-monoid-add

(cancel-semigroup-add) cancel-semigroup-add

(cancel-ab-semigroup-add) cancel-ab-semigroup-add

(cancel-comm-monoid-add) cancel-comm-monoid-add (proof)

(group-add) group-add

(ab-group-add) ab-group-add

(zero-neg-one) zero-neg-one

lemma fps-mult-assoc-lemma:

fixes k :: nat

and [ :: nat = nat = nat = 'a::comm-monoid-add
shows (3. j=0..k. > i=0.j. fi (j — i) (n — j)) =
>j=0.k. > i=0..k —j. fji(n —j—1)

{proof)

instance fps :

(proof)

instance fps ::

(semiring-0) semiring-0

(semiring-0-cancel) semiring-0-cancel {proof)

lemma fps-mult-commute-lemma:

fixes n :: nat

and [ :: nat = nat = 'a::comm-monoid-add

shows (> i=0..n. fi (n — 1)) = (O i=0..n. f (n — i) Q)

{proof)

instance fps :

{(proof)

instance fps ::

(comme-semiring-0) comm-semiring-0

(comm-semiring-0-cancel) comm-semiring-0-cancel {proof)
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instance fps :: (semiring-1) semiring-1
(proof)

instance fps :: (comm-semiring-1) comm-semiring-1
(proof )

instance fps :: (semiring-1-cancel) semiring-1-cancel {proof)

lemma fps-square-nth: (f2) $n= O k<n. f$kxf$ (n—k)
(proof )

lemma fps-sum-nth: sum f S $ n = sum (Ak. (fk) $n) S
(proof)

definition fps-const ¢ = Abs-fps (An. if n = 0 then c else 0)

lemma fps-nth-fps-const [simpl: fps-const ¢ $ n = (if n = 0 then c else 0)
(proof)

lemma fps-const-0-eq-0 [simp]: fps-const 0 = 0
(proof)

lemma fps-const-nonzero-eq-nonzero: ¢ # 0 = fps-const ¢ # 0
(proof )

lemma fps-const-eq-0-iff [simp]: fps-const ¢ = 0 +— ¢ =0
(proof )

lemma fps-const-1-eq-1 [simp]: fps-const 1 = 1
(proof)

lemma fps-const-eq-1-iff [simpl: fps-const ¢ = 1 +— ¢ =1
(proof )

lemma subdegree-fps-const [simp]: subdegree (fps-const ¢) = 0
(proof )

lemma fps-const-neg [simp]: — (fps-const (c::’a::group-add)) = fps-const (— ¢)
(proof)
lemma fps-const-add [simp): fps-const (c::'a::monoid-add) + fps-const d = fps-const
(¢ + d)
(proof)

lemma fps-const-add-left: fps-const (c::'az:monoid-add) + f =
Abs-fps (An. if n = 0 then ¢ + f$0 else f3n)
(proof )
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lemma fps-const-add-right: f + fps-const (c::'a::monoid-add) =
Abs-fps (An. if n = 0 then f$0 + c else f$n)
(proof )

lemma fps-const-sub [simp]: fps-const (c::’a::group-add) — fps-const d = fps-const
(¢ —d)
(proof)

lemmas fps-const-minus = fps-const-sub

lemma fps-const-mult[simp]:
fixes ¢ d :: 'a:{comm-monoid-add,mult-zero}
shows fps-const ¢ * fps-const d = fps-const (¢ * d)

(proof)

lemma fps-const-mult-left:
fps-const (c::'a::{comm-monoid-add,mult-zero}) x f = Abs-fps (An. ¢ x f$n)
(proof )

lemma fps-const-mult-right:
[ * fps-const (c::'a::{ comm-monoid-add,mult-zero}) = Abs-fps (An. f8n x ¢)
(proof)

lemma fps-mult-left-const-nth [simp]:

(fps-const (c::'a::{ comm-monoid-add,mult-zero}) x f)$n = cx f8n
(proof )

lemma fps-mult-right-const-nth [simpl:
(f * fps-const (c::'a::{ comm-monoid-add,mult-zero}))$n = f$n x ¢

(proof )

lemma fps-const-power [simpl: fps-const ¢ ~ n = fps-const (¢ "n)
(proof )

instance fps :: (ring) ring (proof)

instance fps :: (comm-ring) comm-ring {proof)

instance fps :: (ring-1) ring-1 {proof)

instance fps :: (comm-ring-1) comm-ring-1 (proof)

instance fps :: (semiring-no-zero-divisors) semiring-no-zero-divisors
(proof )

instance fps :: (semiring-1-no-zero-divisors) semiring-1-no-zero-divisors {proof)
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instance fps :: ({cancel-semigroup-add,semiring-no-zero-divisors-cancel})
semiring-no-zero-divisors-cancel

(proof)

instance fps :: (ring-no-zero-divisors) ring-no-zero-divisors {proof)
instance fps :: (ring-1-no-zero-divisors) ring-1-no-zero-divisors {proof)
instance fps :: (idom) idom {proof)

lemma fps-of-nat: fps-const (of-nat ¢) = of-nat ¢
(proof)

lemma fps-of-int: fps-const (of-int ¢) = of-int ¢

(proof)

lemma semiring-char-fps [simp|: CHAR('a :: comm-semiring-1 fps) = CHAR('a)
{proof )

instance fps :: ({semiring-prime-char,comm-semiring-1}) semiring-prime-char

(proof)

instance fps :: ({ comm-semiring-prime-char,comm-semiring-1}) comm-semiring-prime-char
{proof )

instance fps :: ({ comm-ring-prime-char,comm-semiring-1}) comm-ring-prime-char
(proof)

instance fps :: ({idom-prime-char,comm-semiring-1}) idom-prime-char
{proof)

lemma fps-numeral-fps-const: numeral k = fps-const (numeral k)
(proof )

lemmas numeral-fps-const = fps-numeral-fps-const

lemma neg-numeral-fps-const:
(— numeral k :: 'a :: ring-1 fps) = fps-const (— numeral k)
(proof )

lemma fps-numeral-nth: numeral n $ i = (if i = 0 then numeral n else 0)
(proof)

lemma fps-numeral-nth-0 [simp]: numeral n $ 0 = numeral n
(proof )

lemma subdegree-numeral [simp]: subdegree (numeral n) = 0
{proof)

lemma fps-nth-of-nat [simp]:

(of-nat ¢) $ n = (if n=0 then of-nat ¢ else 0)
(proof)
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lemma fps-nth-of-int [simp]:
(of-int ¢) $ n = (if n=0 then of-int c else 0)
{proof)

lemma fps-mult-of-nat-nth [simp):
shows (of-nat k * ) $ n = of-nat k x f8n
and (f % of-natk ) $ n = f8n * of-nat k
(proof )

lemma fps-mult-of-int-nth [simp):
shows (of-int k = ) $ n = of-int k * f3n
and (f % of-int k) $ n = fSn * of-int k
(proof)

lemma numeral-neg-fps-zero [simp]: (numeral f :: 'a :: field-char-0 fps) # 0

(proof)

instance fps :: (semiring-char-0) semiring-char-0
(proof)

lemma subdegree-power-ge:
fn # 0 = subdegree (f™n) > n * subdegree f
(proof)

lemma fps-pow-nth-below-subdegree:
k < n * subdegree f = (fn) $ k=0
(proof)

lemma fps-pow-base [simp]:
(f “n) $ (n * subdegree f) = (f $ subdegree f) " n
(proof)

lemma subdegree-power-eql:

fixes f :: 'a::semiring-1 fps

shows (f $ subdegree f) ~n # 0 = subdegree (f ~n) = n * subdegree f
(proof )

lemma subdegree-power [simp]:
subdegree ((f :: ('a :: semiring-1-no-zero-divisors) fps) ~ n) = n * subdegree f
(proof )

lemma subdegree-prod:
fixes f :: 'a = 'b :: idom fps
assumes A\z. 2 € A = fz # 0
shows subdegree ([[z€A. fz) = (O z€A. subdegree (f x))

(proof)
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lemma minus-one-power-iff: (— (1::'a::ring-1)) ~n = (if even n then 1 else — 1)
{proof)

definition fps-X = Abs-fps (An. if n = 1 then 1 else 0)

lemma subdegree-fps-X [simp]: subdegree (fps-X :: (‘a :: zero-neg-one) fps) = 1
(proof)

lemma fps-X-mult-nth [simp]:
fixes f :: 'a::{ comm-monoid-add,mult-zero,monoid-mult} fps
shows (fps-X * f) $n= (if n=0then Oelse f $ (n — 1))
(proof )

lemma fps-X-mult-right-nth [simp:
fixes a :: ‘a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows (a * fps-X) $n = (if n = 0 then Oelse a $ (n — 1))
(proof)

lemma fps-mult-fps-X-commute:
fixes a :: ‘a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows fps-X *x a = a x fps-X
(proof )

lemma fps-mult-fps-X-power-commute: fps-X "k x a = a * fps-X "k
(proof)

lemma fps-subdegree-mult-fps-X:
fixes f :: 'a::{comm-monoid-add,mult-zero,monoid-mult} fps
assumes f # 0
shows subdegree (fps-X * f) = subdegree f + 1
and subdegree (f * fps-X) = subdegree f + 1
(proof )

lemma fps-mult-fps-X-nonzero:
fixes [ :: 'a:{comm-monoid-add,mult-zero,monoid-mult} fps
assumes [ # 0
shows fps-X = f # 0
and [ x fps-X # 0
(proof)

lemma fps-mult-fps-X-power-nonzero:
assumes [ # (
shows fps-X “nx f#£0
and [ * fps-X "n#0

(proof)

lemma fps-X-power-iff: fps-X ~n = Abs-fps (Am. if m = n then 1 else 0)
(proof )
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lemma fps-X-nth[simp]: fps-X$n = (if n = 1 then 1 else 0)
{proof)

lemma fps-X-power-nth[simp|: (fps-X"k) $n = (if n = k then 1 else 0)
(proof )

lemma fps-X-power-subdegree: subdegree (fps-X"n) = n
(proof )

lemma fps-X-power-mult-nth:
(fps-X "k = f) $n=(ifn < kthen Oelse f $ (n — k))
(proof )

lemma fps-X-power-mult-right-nth:
(f * fos-X7k) $n = (if n < k then O else f $ (n — k))
(proof )

lemma fps-subdegree-mult-fps-X-power:
assumes f # 0
shows subdegree (fps-X ~n * f) = subdegree f + n
and  subdegree (f = fps-X ~n) = subdegree f + n
(proof)

lemma fps-mult-fps-X-plus-1-nth:

((14fps-X)*a) $n = (if n = 0 then (a$n :: 'a::semiring-1) else a$n + a$(n —
1))
(proof )

lemma fps-mult-right-fps-X-plus-1-nth:
fixes a :: 'a :: semiring-1 fps
shows (ax(1+fps-X)) $ n = (if n = 0 then a$n else a$n + a$(n — 1))

(proof)

lemma fps-X-neq-fps-const [simpl: (fps-X :: 'a :: zero-neq-one fps) # fps-const c
(proof)

lemma fps-X-neg-zero [simpl: (fps-X :: 'a :: zero-neg-one fps) # 0
(proof )

lemma fps-X-neg-one [simpl: (fps-X :: 'a :: zero-neg-one fps) # 1
(proof)

lemma fps-X-neg-numeral [simp]: fps-X # numeral ¢
(proof)

lemma fps-X-pow-eq-fps-X-pow-iff [simp]: fps-X “m = fps-X "n+— m=n
{proof )
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5.4 Shifting and slicing

definition fps-shift :: nat = 'a fps = 'a fps where
fps-shift n f = Abs-fps (Mi. f $ (i + n))

lemma fps-shift-nth [simp]: fps-shift n f $i=f$ (i + n)
(proof )

lemma fps-shift-0 [simp): fps-shift 0 f = f
(proof)

lemma fps-shift-zero [simp]: fps-shift n 0 = 0
(proof )

lemma fps-shift-one: fps-shift n 1 = (if n = 0 then 1 else 0)
(proof )

lemma fps-shift-fps-const: fps-shift n (fps-const ¢) = (if n = 0 then fps-const c
else 0)
(proof )

lemma fps-shift-numeral: fps-shift n (numeral ¢) = (if n = 0 then numeral ¢ else
0)
(proof)

lemma fps-shift-fps-X [simp]:
n > 1 = fps-shift n fps-X = (if n = 1 then 1 else 0)
(proof)

lemma fps-shift-fps-X-power [simp]:
n < m = fps-shift n (fps-X ~m) = fps-X " (m — n)
(proof )

lemma fps-shift-subdegree [simp]:
n < subdegree f = subdegree (fps-shift n f) = subdegree f — n
(proof )

lemma fps-shift-fps-shift:
fos-shift (m + n) f = fps-shift m (fps-shift n f)
(proof)

lemma fps-shift-fps-shift-reorder:
fos-shift m (fps-shift n f) = fps-shift n (fps-shift m f)
(proof )

lemma fps-shift-rev-shift:
m < n = fps-shift n (Abs-fps (Ak. if k<m then 0 else f $ (k—m))) = fps-shift
(n—m) f
m > n = fps-shift n (Abs-fps (Ak. if k<m then 0 else f § (k—m))) =
Abs-fps (Ak. if k<m—mn then 0 else f $ (k—(m—n)))
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(proof)

lemma fps-shift-add:
fos-shift n (f + g) = fps-shift n f + fps-shift n g
(proof)

lemma fps-shift-diff:
fos-shift n (f — g) = fps-shift n f — fps-shift n g
(proof )

lemma fps-shift-uminus:
fos-shift n (—f) = — fps-shift n f
(proof)

lemma fps-shift-mult:
assumes n < subdegree (g :: 'b :: {comm-monoid-add, mult-zero} fps)
shows fps-shift n (hxg) = h * fps-shift n g

(proof)

lemma fps-shift-mult-right-noncomm:
assumes n < subdegree (g :: 'b :: {comm-monoid-add, mult-zero} fps)
shows fps-shift n (gxh) = fps-shift n g *x h

(proof )

lemma fps-shift-mult-right:
assumes n < subdegree (g :: 'b :: comm-semiring-0 fps)
shows fps-shift n (gxh) = h * fps-shift n g
(proof )

lemma fps-shift-mult-both:
fixes fg: 'a:{comm-monoid-add, mult-zero} fps
assumes m < subdegree f n < subdegree g
shows  fps-shift m f = fps-shift n g = fps-shift (m+n) (fxg)
(proof)

lemma fps-shift-subdegree-zero-iff [simpl:
fps-shift (subdegree f) f = 0 «— f =10
(proof )

lemma fps-shift-times-fps-X:
fixes f g :: 'a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows 1 < subdegree f = fps-shift 1 f = fps-X = f
(proof )

lemma fps-shift-times-fps-X' [simp]:
fixes f :: 'a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows fps-shift 1 (f = fps-X) = f
(proof )
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lemma fps-shift-times-fps-X'":
fixes f :: 'a::{ comm-monoid-add,mult-zero,monoid-mult} fps
shows 1 < n = fps-shift n (f * fps-X) = fps-shift (n — 1) f
(proof )

lemma fps-shift-times-fps-X-power:
n < subdegree f = fps-shift n f * fps-X “n=f
{proof )

lemma fps-shift-times-fps-X-power’ [simp]:
fps-shift n (f * fps-X"n) = f
(proof)

lemma fps-shift-times-fps-X-power’":
m < n = fps-shift n (f * fps-X"m) = fps-shift (n — m) f
(proof )

lemma fps-shift-times-fps-X-power'"":
m > n = fps-shift n (f * fps-X"m) = f x fps-X"(m — n)
(proof )

lemma subdegree-decompose:
| = fps-shift (subdegree f) f * fps-X ~ subdegree f
(proof)

lemma subdegree-decompose’:
n < subdegree f = f = fps-shift n [ x fps-X"n
(proof)

instantiation fps :: (zero) unit-factor

begin

definition fps-unit-factor-def [simp]:
unit-factor f = fps-shift (subdegree f) f

instance (proof)

end

lemma fps-unit-factor-zero-iff : unit-factor (f::'a::zero fps) = 0 +— f =0
(proof )

lemma fps-unit-factor-nth-0: f # 0 = unit-factor f $ 0 # 0
(proof)

lemma fps-X-unit-factor: unit-factor (fps-X :: 'a :: zero-neg-one fps) = 1

{proof)

lemma fps-X-power-unit-factor: unit-factor (fps-X ~n) = 1

{(proof)

lemma fps-unit-factor-decompose:
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f = unit-factor f * fps-X ~ subdegree f
{proof )

lemma fps-unit-factor-decompose’:
f = fps-X ~ subdegree [ x unit-factor f
(proof)

lemma fps-unit-factor-uminus:
unit-factor (—f) = — unit-factor (f::'a::group-add fps)
(proof )

lemma fps-unit-factor-shift:
assumes n < subdegree f
shows unit-factor (fps-shift n ) = unit-factor f
(proof )

lemma fps-unit-factor-mult-fps-X:
fixes f :: 'a::{ comm-monoid-add,monoid-mult,mult-zero} fps
shows unit-factor (fps-X * f) = unit-factor f
and unit-factor (f = fps-X) = unit-factor f

(proof )

lemma fps-unit-factor-mult-fps-X-power:
shows unit-factor (fps-X ~ n * f) = unit-factor f
and unit-factor (f * fps-X ~n) = unit-factor f
(proof)

lemma fps-unit-factor-mult-unit-factor:
fixes f g :: 'a::{ comm-monoid-add,mult-zero} fps
shows unit-factor (f * unit-factor g) = unit-factor (f * g)
and unit-factor (unit-factor f x g) = unit-factor (f * g)
(proof )

lemma fps-unit-factor-mult-both-unit-factor:
fixes f g :: 'a::{comm-monoid-add,mult-zero} fps
shows unit-factor (unit-factor f * unit-factor g) = unit-factor (f * g)

(proof)

lemma fps-unit-factor-mult’:
fixes fg :: 'a::{comm-monoid-add,mult-zero} fps
assumes | $ subdegree f * g $ subdegree g # 0
shows unit-factor (f * g) = unit-factor f * unit-factor g
(proof )

lemma fps-unit-factor-mult:
fixes f g :: 'a::semiring-no-zero-divisors fps
shows unit-factor (f * g) = unit-factor f x unit-factor g

(proof)
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definition fps-cutoff n f = Abs-fps (Ai. if i < n then f$i else 0)

lemma fps-cutoff-nth [simpl: fps-cutoff n f $ i = (if i < n then f$i else 0)
(proof)

lemma fps-cutoff-zero-iff: fps-cutoff n f = 0 <— (f = 0 V n < subdegree f)
(proof)

lemma fps-cutoff-0 [simpl: fps-cutoff 0 f = 0
(proof )

lemma fps-cutoff-zero [simpl: fps-cutoff n 0 = 0
(proof )

lemma fps-cutoff-one: fps-cutoff n 1 = (if n = 0 then 0 else 1)
(proof )

lemma fps-cutoff-fps-const: fps-cutoff n (fps-const ¢) = (if n = 0 then 0 else
fps-const c)

{proof)

lemma fps-cutoff-numeral: fps-cutoff n (numeral ¢) = (if n = 0 then 0 else numeral
c)
(proof)

lemma fps-shift-cutoff:
fps-shift n f * fps-X"n + fps-cutoff n f = f
(proof)

lemma fps-shift-cutoff "
fps-X"n x fps-shift n f + fps-cutoff n f = f
(proof )

lemma fps-cutoff-left-mult-nth:
k<n= (fps-cutoff n f x g) $ k= (f*g)$k
(proof )

lemma fps-cutoff-add: fps-cutoff n (f + g :: 'a :: monoid-add fps) = fps-cutoff n f
+ fps-cutoff n g
(proof )

lemma fps-cutoff-diff: fps-cutoff n (f — g =+ 'a :: group-add fps) = fps-cutoff n f
— fps-cutoff n g
(proof )

lemma fps-cutoff-uminus: fps-cutoff n (—f = 'a :: group-add fps) = —fps-cutoff n

f
(proof)
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lemma fps-cutoff-right-mult-nth:

assumes k < n

shows (f  fps-cutoff ng) $ k= (f+g) %k
(proof )

lemma fps-cutoff-eq-fps-cutoff-iff:
fos-cutoff n f = fps-cutoff n g +— (Vk<n. fps-nth f k = fps-nth g k)
(proof)

lemma fps-conv-fps-X-power-mult-fps-shift:
assumes f = 0 V subdegree f > n
shows [ = fps-X " n x fps-shift n f
(proof)

5.5 Metrizability

instantiation fps :: ({minus,zero}) dist
begin

definition
dist-fps-def: dist (a :: 'a fps) b = (if a = b then 0 else inverse (2 ~ subdegree (a
— b))

lemma dist-fps-ge0: dist (a :: 'a fps) b > 0
(proof )

instance (proof)
end

instantiation fps :: (group-add) metric-space
begin

definition uniformity-fps-def [code del]:

(uniformity :: (‘a fps x 'a fps) filter) = (INF e€{0 <..}. principal {(z, y). dist
zy < e})
definition open-fps-def’ [code del]:

open (U :: 'a fps set) «— (VaxeU. eventually (M(z', y). 2’ = 2 — y € U)

uniformity)

lemma dist-fps-sym: dist (a :: 'a fps) b = dist b a
(proof )

instance

(proof)

end
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declare uniformity-Abort[where 'a="a :: group-add fps, code]

lemma open-fps-def: open (S :: 'a::group-add fps set) = (Va € S. Ir. r >0 A {y.
distya <r} CS)
(proof )

Topology

5.6 The topology of formal power series

A set of formal power series is open iff for any power series f in it, there
exists some number n such that all power series that agree with f on the
first n components are also in it.
lemma open-fps-iff:

open A +— (VFeA. An. {G. fps-cutoff n G = fps-cutoff n F} C A)
(proof)

lemma open-fps-cutoff: open {H. fps-cutoff N H = fps-cutoff N G}
(proof )

lemma eventually-fps-nth-eq-nhds-fps-strong:
eventually (Ag. Vk<n. fps-nth g k = fps-nth f k) (nhds f)
(proof)

lemma cventually-fps-nth-eq-nhds-fps: eventually (M\g. fps-nth g k = fps-nth [ k)
(nhds f)

{proof)

A family of formal power series f, tends to a limit series ¢ at some filter
F iff for any N > 0, the set of x for which f, and G agree on the first N
coeflicients is in F'.

For a sequence (f;)n>0 this means that f; — G iff for any N > 0, f, and
G agree for all but finitely many x.

lemma tendsto-fps-iff:
filterlim f (nhds (g :: 'a :: group-add fps)) F «—
(V n. eventually (Az. fps-nth (f £) n = fps-nth g n) F)
(proof)

lemma tendsto-fpsI:
assumes An. eventually (Az. fps-nth (f ) n = fps-nth G n) F
shows filterlim f (nhds (G :: 'a :: group-add fps)) F
(proof)

The infinite sums and justification of the notation in textbooks.

lemma reals-power-lt-ex:
fixes = y :: real
assumes zp: T > 0
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and yIl:y > 1
shows 3k>0. (1/y) k < x
(proof)

lemma fps-sum-rep-nth: (sum (Ai. fps-const(a$i)*xfps-X"%) {0..m})$n = (if n <
m then a$n else 0)
(proof)

lemma fps-notation: (An. sum (Xi. fps-const(a$i) * fps-X7%) {0..n}) —— a
(is 9s —— a)

(proof)

5.7 Division

declare sum.cong|fundef-cong]

fun fps-left-inverse-constructor ::
'a::{ comm-monoid-add,times,uminus} fps = ‘a = nat = 'a
where
fps-left-inverse-constructor fa 0 = a
| fos-left-inverse-constructor f a (Suc n) =
— sum (\i. fps-left-inverse-constructor f a i x f$(Suc n — 7)) {0..n} * a

— This will construct a left inverse for f in case that z x f $ 0 = 1
abbreviation fps-left-inverse = (\f x. Abs-fps (fps-left-inverse-constructor f x))

fun fps-right-inverse-constructor ::
'a::{ comm-monoid-add,times,uminus} fps = 'a = nat = 'a
where
fps-right-inverse-constructor f a 0 = a
| fps-right-inverse-constructor f a n =
— a * sum (Ai. f$i x fps-right-inverse-constructor f a (n — 7)) {1..n}

— This will construct a right inverse for f in case that f $ 0 *x y = 1
abbreviation fps-right-inverse = (Af y. Abs-fps (fps-right-inverse-constructor f y))

instantiation fps :: ({comm-monoid-add,inverse,times,uminus}) inverse
begin

— For backwards compatibility.
abbreviation natfun-inverse:: ‘a fps = nat = 'a
where natfun-inverse f = fps-right-inverse-constructor f (inverse (f$0))

definition fps-inverse-def: inverse f = Abs-fps (natfun-inverse f)
— With scalars from a (possibly non-commutative) ring, this defines a right inverse.
Furthermore, if scalars are of class mult-zero and satisfy condition inverse 0 = 0,

then this will evaluate to zero when the zeroth term is zero.

definition fps-divide-def: f div g = fps-shift (subdegree g) (f * inverse (unit-factor
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9))

— If scalars are of class mult-zero and satisfy condition inverse 0 = 0, then div by
zero will equal zero.

instance (proof)
end

lemma fps-lr-inverse-0-iff:
(fps-left-inverse fz) $ 0 =
(fps-right-inverse fz) $ 0 = 0 «+— z =0
(proof )

lemma fps-inverse-0-iff " (inverse f) $ 0 = 0 +— inverse (f $ 0) = 0

(proof)

lemma fps-inverse-0-iff [simp]: (inverse f) $ 0 = (0::'a::division-ring) <— f $ 0
iy
{proof)

lemma fps-lr-inverse-nth-0:
(fps-left-inverse f ) $ 0 = z (fps-right-inverse fz) $ 0 = x
(proof )

lemma fps-inverse-nth-0 [simp]: (inverse f) $ 0 = inverse (f $ 0)
(proof)

lemma fps-lr-inverse-starting0:
fixes f :: 'a::{ comm-monoid-add,mult-zero,uminus} fps
and ¢ :: 'b::{ab-group-add,mult-zero} fps
shows fps-left-inverse f 0 = 0
and fps-right-inverse g 0 = 0
(proof)

lemma fps-lr-inverse-eq0-imp-starting0:
fps-left-inverse fo = 0 = = 0
fps-right-inverse fz = 0 = z = 0

(proof)

lemma fps-lr-inverse-eq-0-iff:
fixes z :: ‘a::{comm-monoid-add,mult-zero,uminus}
and y :: 'b:{ab-group-add,mult-zero}
shows fps-left-inverse fx = 0 +— z =0
and fps-right-inverse g y = 0 «— y = 0
(proof)

lemma fps-inverse-eq-0-iff .

fixes f :: 'a::{ab-group-add,inverse,mult-zero} fps
shows inverse f = 0 +— inverse (f $ 0) = 0
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{proof)

lemma fps-inverse-eq-0-iff [simp]: inverse f = (0:: ('a::division-ring) fps) +— [ $
0=20
(proof )

lemmas fps-inverse-eq-0' = iff D2[OF fps-inverse-eq-0-iff ]
lemmas fps-inverse-eq-0 = iffD2[OF fps-inverse-eq-0-iff]

lemma fps-const-lr-inverse:
fixes a :: ‘a::{ab-group-add,mult-zero}
and b :: 'b::{ comm-monoid-add,mult-zero,uminus}
shows fps-left-inverse (fps-const a) x = fps-const x
and fps-right-inverse (fps-const b) y = fps-const y
(proof)

lemma fps-const-inverse:
fixes a :: 'a::{comm-monoid-add,inverse,mult-zero,uminus}
shows  inverse (fps-const a) = fps-const (inverse a)

{proof)

lemma fps-lr-inverse-zero:
fixes z :: ‘a::{ab-group-add,mult-zero}
and y :: 'b:{comm-monoid-add,mult-zero,uminus}
shows fps-left-inverse 0 x = fps-const x
and fps-right-inverse 0 y = fps-const y
(proof)

lemma fps-inverse-zero-conv-fps-const:

inverse (0::'a::{ comm-monoid-add, mult-zero,uminus,inverse} fps) = fps-const (inverse
0)

{proof)

lemma fps-inverse-zero”:
assumes inverse (0::'a::{comm-monoid-add,inverse,mult-zero,uminus}) = 0
shows inverse (0::'a fps) = 0
(proof)

lemma fps-inverse-zero [simp]:
inverse (0::'a::division-ring fps) = 0
(proof )

lemma fps-lr-inverse-one:
fixes z :: ‘a::{ab-group-add,mult-zero,one}
and y :: 'b::{comm-monoid-add, mult-zero,uminus,one}
shows fps-left-inverse 1 © = fps-const x
and fps-right-inverse 1 y = fps-const y
(proof )
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lemma fps-lr-inverse-one-one:
fps-left-inverse 1 1 = (1::'a::{ab-group-add,mult-zero,one} fps)
fps-right-inverse 1 1 = (1::'b::{ comm-monoid-add,mult-zero,uminus,one} fps)
(proof )

lemma fps-inverse-one':
y oy y Y " —
assumes inverse (1::'a::{comm-monoid-add,inverse,mult-zero,uminus,one}) = 1
shows inverse (1 :: 'a fps) = 1
{proof)

lemma fps-inverse-one [simp|: inverse (1 :: 'a :: division-ring fps) = 1
(proof )

lemma fps-lr-inverse-minus:
fixes f :: 'a:ring-1 fps

shows fps-left-inverse (—f) (—z) = — fps-left-inverse f x

and fps-right-inverse (—f) (—z) = — fps-right-inverse f x
(proo)
lemma fps-inverse-minus [simp]: inverse (—f) = —inverse (f :: 'a :: division-ring
fps)

(proof )

lemma fps-left-inverse:

fixes f :: 'a:ring-1 fps

assumes f0: r * f$0 = 1

shows fps-left-inverse fxz x f = 1
(proof)

lemma fps-right-inverse:

fixes f :: ‘auring-1 fps

assumes f0: f$0 x y = 1

shows f x fps-right-inverse fy = 1
(proof)

It is possible in a ring for an element to have a left inverse but not a right
inverse, or vice versa. But when an element has both, they must be the
same.

lemma fps-left-inverse-eq-fps-right-inverse:
fixes f :: ‘a:ring-1 fps
assumes f0: x x f$0 =180 xy=1
— These assumptions imply that = equals y, but no need to assume that.
shows fps-left-inverse f x = fps-right-inverse fy
(proof)

lemma fps-left-inverse-eq-fps-right-inverse-comm:
fixes f :: ‘a::comm-ring-1 fps
assumes f0: z * f$0 = 1
shows fps-left-inverse f x = fps-right-inverse f x
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{proof)

lemma fps-left-inverse”:
fixes f :: ‘a:ring-1 fps
assumes z * f$0 = 1 f$0 x y = 1
— These assumptions imply x equals y, but no need to assume that.
shows fps-right-inverse fy x f = 1
(proof)

lemma fps-right-inverse”:
fixes f :: ‘auring-1 fps
assumes z * f$0 = 1 f$0 x y = 1
— These assumptions imply x equals y, but no need to assume that.
shows f x fps-left-inverse fx = 1
(proof )

lemma inverse-mult-eq-1 [introl:
assumes f$0 # (0::'a::division-ring)
shows inverse f x f = 1
{proof)

lemma inverse-mult-eq-1":
assumes f$0 # (0::'a::division-ring)
shows f * inverse f = 1
(proof )

lemma fps-mult-left-inverse-unit-factor:

fixes [ :: 'a:ring-1 fps

assumes z * f $§ subdegree f = 1

shows fps-left-inverse (unit-factor f) = = f = fps-X ~ subdegree f
{proof )

lemma fps-mult-right-inverse-unit-factor:

fixes [ :: 'a:ring-1 fps

assumes [ $ subdegree f x y = 1

shows f x fps-right-inverse (unit-factor f) y = fps-X ~ subdegree f
(proof)

lemma fps-mult-right-inverse-unit-factor-divring:

(f =2 'a::division-ring fps) # 0 = [ x inverse (unit-factor ) = fps-X ~ subdegree
f

(proof )

lemma fps-left-inverse-idempotent-ringl1 :
fixes [ :: 'a:ring-1 fps
assumes z x f$0 = 1y *xz = 1
— These assumptions imply y equals f$0, but no need to assume that.
shows fps-left-inverse (fps-left-inverse f ) y = f
(proof)
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lemma fps-left-inverse-idempotent-comm-ringl :
fixes [ :: ‘a::comm-ring-1 fps
assumes 7 * f$0 = 1
shows  fps-left-inverse (fps-left-inverse f x) (f$0) = f
(proof)

lemma fps-right-inverse-idempotent-ring1:
fixes [ :: ‘a:ring-1 fps
assumes f$0 x r = 1z %y = 1
— These assumptions imply y equals f$0, but no need to assume that.
shows  fps-right-inverse (fps-right-inverse fz) y = f
(proof)

lemma fps-right-inverse-idempotent-comm-ring1 :
fixes [ :: ‘a::comm-ring-1 fps
assumes f$0 x z = 1
shows fps-right-inverse (fps-right-inverse f z) (f$0) = f
(proof)

lemma fps-inverse-idempotent[intro, simp:
180 # (0::'a::division-ring) = inverse (inverse f) = f
(proof)

lemma fps-lr-inverse-unique-ring1:
fixes fg: 'a:: ring-1 fps
assumes fg: f x g = 1 ¢$0 * f$0 = 1
shows fps-left-inverse g (f$0) = f
and  fps-right-inverse f (¢$0) = g
(proof)

lemma fps-lr-inverse-unique-divring:
fixes fg: 'a ::division-ring fps
assumes fg: f x g = 1
shows fps-left-inverse g (f$0) = f
and  fps-right-inverse f (¢$0) = g
(proof )

lemma fps-inverse-unique:
fixes fg: 'a:: division-ring fps
assumes fg: f x g = 1
shows inverse f = g

(proof)

lemma inverse-fps-numeral:
inverse (numeral n :: ('a :: field-char-0) fps) = fps-const (inverse (numeral n))

(proof)

lemma inverse-fps-of-nat:
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inverse (of-nat n :: 'a :: {semiring-1,times,uminus,inverse} fps) =
fps-const (inverse (of-nat n))
{proof)

lemma fps-lr-inverse-mult-ring1:
fixes fg:: ‘atring-1 fps
assumes z: z * f$0 = 1 f$0 x 2 = 1
and y:yxg30=1g¢30*xy=1
shows fps-left-inverse (f * g) (yxx) = fps-left-inverse g y * fps-left-inverse f x
and  fps-right-inverse (f * g) (yxx) = fps-right-inverse g y * fps-right-inverse
fx
(proof)

lemma fps-lr-inverse-mult-divring:
fixes f g :: 'a::division-ring fps
shows fps-left-inverse (f x g) (inverse ((fxg)$0)) =
fps-left-inverse g (inverse (g$0)) * fps-left-inverse f (inverse (f$0))
and fps-right-inverse (f x g) (inverse ((fxg)$0)) =
fps-right-inverse g (inverse (g$0)) * fps-right-inverse f (inverse (f$0))
(proof)

lemma fps-inverse-mult-divring:
inverse (f * g) = inverse g * inverse (f :: 'a::division-ring fps)
(proof )

lemma fps-inverse-mult: inverse (f * g :: 'a::field fps) = inverse f x inverse g
(proof)

lemma inverse-prod-fps: inverse (prod f A) = ([[z€A. inverse (f z) :: 'a :: field
fps)
(proof )

lemma fps-lr-inverse-gp-ring1:
fixes ones ones-inv :: 'a :: ring-1 fps
defines ones = Abs-fps (An. 1)
and ones-inv = Abs-fps (An. if n=0 then 1 else if n=1 then — 1 else 0)
shows fps-left-inverse ones 1 = ones-inv
and  fps-right-inverse ones 1 = ones-inv

(proof)

lemma fps-lr-inverse-gp-ringl
fixes ones :: 'a :: ring-1 fps
defines ones = Abs-fps (An. 1)
shows fps-left-inverse ones 1 = 1 — fps-X
and  fps-right-inverse ones 1 = 1 — fps-X
(proof)

lemma fps-inverse-gp:
inverse (Abs-fps(An. (1::'a::division-ring))) =
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Abs-fps (An. if n= 0 then 1 else if n=1 then — 1 else 0)
{proof )

lemma fps-inverse-gp’: inverse (Abs-fps (An. 1::'a::division-ring)) = 1 — fps-X
(proof )

lemma fps-lr-inverse-one-minus-fps-X:
fixes ones :: ‘a :: ring-1 fps
defines ones = Abs-fps (An. 1)
shows fps-left-inverse (1 — fps-X) 1 = ones
and fps-right-inverse (1 — fps-X) 1 = ones

(proof)

lemma fps-inverse-one-minus-fps-X:
fixes ones :: 'a :: division-ring fps
defines ones = Abs-fps (An. 1)
shows inverse (1 — fps-X) = ones

{proof)

lemma fps-lr-one-over-one-minus-fps-X-squared:
shows  fps-left-inverse ((1 — fps-X)72) (1::'a:ring-1) = Abs-fps (An. of-nat
(n+1))
fps-right-inverse ((1 — fps-X)"2) (1::'a) = Abs-fps (An. of-nat (n+1))
(proof)

lemma fps-one-over-one-minus-fps-X-squared’:
assumes inverse (1::'a:{ring-1 inverse}) = 1
shows inverse ((1 — fps-X)72 :: 'a fps) = Abs-fps (An. of-nat (n+1))
(proof)

lemma fps-one-over-one-minus-fps-X-squared:
inverse ((1 — fps-X)72 :: 'a :: division-ring fps) = Abs-fps (An. of-nat (n+1))
(proof)

lemma fps-lr-inverse-fps-X-plus1:
fos-left-inverse (1 + fps-X) (1::'aring-1) = Abs-fps (An. (—1)"n)
fos-right-inverse (1 + fps-X) (1::'a) = Abs-fps (An. (—1)"n)
(proof)

lemma fps-inverse-fps-X-plusl’:
assumes inverse (1::'a:{ring-1 inverse}) = 1
shows inverse (I + fps-X) = Abs-fps (An. (— (1::'a)) ~n)
(proof )

lemma fps-inverse-fps-X-plusi:
inverse (1 + fps-X) = Abs-fps (An. (— (1::'a::division-ring)) ~ n)
(proof )

lemma subdegree-lr-inverse:

142



fixes z :: ‘a::{ comm-monoid-add,mult-zero,uminus}
and y :: 'b:{ab-group-add,mult-zero}

shows subdegree (fps-left-inverse fz) = 0

and subdegree (fps-right-inverse g y) = 0

(proof)

lemma subdegree-inverse [simpl:
fixes f :: 'a::{ab-group-add,inverse,mult-zero} fps
shows subdegree (inverse f) = 0
(proof)

lemma fps-right-inverse-constructor-rec:
n > 0 = fps-right-inverse-constructor f a n =
—a *x sum (\i. fps-nth f i x fps-right-inverse-constructor f a (n — 1))
{1..n}

(proof)

lemma fps-right-inverse-constructor-cong:
assumes A\k. k < n = fps-nth f k = fps-nth g k
shows fps-right-inverse-constructor f ¢ n = fps-right-inverse-constructor g ¢ n
(proof )

lemma fps-cutoff-inverse:

fixes f :: 'a :: field fps

assumes fps-nth f 0 # 0

shows  fps-cutoff n (inverse (fps-cutoff n f)) = fps-cutoff n (inverse f)
{proof)

lemma tendsto-inverse-fps-auz:
fixes f :: 'a :: field fps
assumes fps-nth f 0 # 0
shows ((\f. inverse ) —— inverse f) (at f)

{proof)

lemma tendsto-inverse-fps [tendsto-intros|:
fixes g :: 'a :: field fps
assumes (f —— g) F
assumes fps-nth g 0 # 0
shows ((Az. inverse (f z)) — inverse g) F

{proof)

lemma fps-div-zero [simp]:
0 div (g :: 'a :: {comm-monoid-add,inverse,mult-zero,uminus} fps) = 0
(proof)

lemma fps-div-by-zero’:
fixes ¢ :: ‘a::{comm-monoid-add,inverse,mult-zero,uminus} fps
assumes inverse (0::'a) = 0
shows g div 0 =0
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{proof)

lemma fps-div-by-zero [simp]: (g::'a::division-ring fps) div 0 = 0
(proof)

lemma fps-divide-unit”: subdegree ¢ = 0 = f div g = [ * inverse g
(proof)

lemma fps-divide-unit: ¢80 # 0 = [ div g = [ * inverse g
(proof )

lemma fps-divide-nth-0":
subdegree (g::'a::division-ring fps) = 0 = (fdivg) $ 0 =30/ (g% 0)
(proof)

lemma fps-divide-nth-0 [simp]:
g$80#0= (fdivg)$0=f$0/ (g% 0 : -: division-ring)
{proof )

lemma fps-divide-nth-below:
fixes f g :: 'a::{comm-monoid-add,uminus,mult-zero,inverse} fps
shows n < subdegree f — subdegree ¢ = (f div g) $ n =0
(proof)

lemma fps-divide-nth-base:

fixes fg :: 'a::division-ring fps

assumes subdegree g < subdegree f

shows (f div g) $ (subdegree f — subdegree g) = f $ subdegree f * inverse (g $
subdegree g)

(proof )

lemma fps-divide-subdegree-ge:
fixes fg :: ‘a::{comm-monoid-add,uminus,mult-zero,inverse} fps
assumes f / g # 0
shows subdegree (f / g) > subdegree f — subdegree g

{proof)

lemma fps-divide-subdegree:
fixes [ g :: 'a::division-ring fps
assumes f # 0 g # 0 subdegree g < subdegree f
shows subdegree (f / g) = subdegree f — subdegree g

(proof)

lemma fps-divide-shift-numer:
fixes fg :: ‘an:{inverse,comm-monoid-add,uminus,mult-zero} fps
assumes n < subdegree f
shows fps-shift n f | g = fps-shift n (f/g)
(proof )
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lemma fps-divide-shift-denom:
fixes fg :: 'an:{inverse,comm-monoid-add,uminus,mult-zero} fps
assumes n < subdegree g subdegree g < subdegree f
shows f / fps-shift n g = Abs-fps (Ak. if k<n then 0 else (f/g) $ (k—n))
(proof )

lemma fps-divide-unit-factor-numer:
fixes fg :: 'a:{inverse,comm-monoid-add,uminus,mult-zero} fps
shows unit-factor f / g = fps-shift (subdegree f) (f/g)
(proof )

lemma fps-divide-unit-factor-denom:
fixes fg :: 'a:{inverse,comm-monoid-add,uminus,mult-zero} fps
assumes subdegree g < subdegree f
shows
I/ unit-factor g = Abs-fps (Mk. if k<subdegree g then 0 else (f/g) $ (k—subdegree

9))
(proof)

lemma fps-divide-unit-factor-both’:

fixes fg :: 'a:{inverse,comm-monoid-add,uminus,mult-zero} fps

assumes subdegree g < subdegree f

shows unit-factor f / unit-factor g = fps-shift (subdegree f — subdegree g) (f /
9)

(proof)

lemma fps-divide-unit-factor-both:
fixes fg :: 'a::division-ring fps
assumes subdegree g < subdegree f
shows unit-factor f / unit-factor g = unit-factor (f / g)

(proof)

lemma fps-divide-self:
(f::'a::division-ring fps) # 0 = f /| f = 1
(proof)

lemma fps-divide-add:
fixes f g h :: 'a::{semiring-0 inverse,uminus} fps
shows (f+¢9) /h=f/h+g/h
(proof)

lemma fps-divide-diff:
fixes f g h :: 'a::{ring,inverse} fps
shows (f —g) /h=f/h—g/h
{proof )

lemma fps-divide-uminus:
fixes f g h :: 'a::{ring,inverse} fps
shows (— f) / g=—(f/9)
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{proof)

lemma fps-divide-uminus':
fixes f g h :: 'a::division-ring fps
shows f / (= g) =—(f/ 9)
(proof)

lemma fps-divide-times:
fixes fgh : ‘a::{semiring-0,inverse,uminus} fps
assumes subdegree h < subdegree g
shows (fxg)/h=[x(g/h)
(proof)

lemma fps-divide-times2:
fixes fgh : ‘a:{comm-semiring-0,inverse,uminus} fps
assumes subdegree h < subdegree f
shows (fxg)/h=(f/h)*g
(proof)

lemma fps-times-divide-eq:
fixes fg: 'a:field fps
assumes g # 0 and subdegree f > subdegree g
shows fdivgx*xg=f
(proof)

lemma fps-divide-times-eq:
(g :: 'a:division-ring fps) £ 0 = (f x g) divg = f
(proof )

lemma fps-divide-by-mult':
fixes fgh: 'a:: division-ring fps
assumes subdegree h < subdegree f
shows [/ (gxh)=f/h/yg
(proof)

lemma fps-divide-by-mult:
fixes fgh: 'a:: field fps
assumes subdegree g < subdegree f
shows f/(gxh)=f/g/h
(proof)

lemma fps-divide-cancel:
fixes fgh: 'a:: division-ring fps
shows h # 0 = (f * h) div (g x h) = fdiv g
{proof )

lemma fps-divide-1":

fixes a:: 'a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult}
fps
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assumes inverse (1::'a) = 1
shows a/1=a
{proof)

lemma fps-divide-1 [simp]: (a :: 'a::division-ring fps) / 1 = a
{proof)

lemma fps-divide-X"

fixes f::'a:{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult }
fps

assumes inverse (1::'a) = 1

shows f / fps-X = fps-shift 1 f

(proof )

lemma fps-divide-X [simp]: a / fps-X = fps-shift 1 (a::'a::division-ring fps)
(proof )

lemma fps-divide-X-power':
fixes [ :: 'a:{semiring-1,inverse,uminus} fps
assumes inverse (1::'a) = 1
shows f / (fps-X ~n) = fps-shift n f
(proof )

lemma fps-divide-X-power [simpl: a / (fps-X ~n) = fps-shift n (a::'a::division-ring
fps)
(proof )

lemma fps-divide-shift-denom-conv-times-fps-X-power:
fixes fg :: 'a:{semiring-1,inverse,uminus} fps
assumes n < subdegree g subdegree g < subdegree f
shows f / fps-shiftng=1f/ g« fps-X "n
(proof )

lemma fps-divide-unit-factor-denom-conv-times-fps- X-power:
fixes fg :: 'a:{semiring-1,inverse,uminus} fps
assumes subdegree g < subdegree f
shows f / unit-factor g = f / g % fps-X ~ subdegree g
(proof)

lemma fps-shift-altdef":
fixes f :: 'a:{semiring-1,inverse,uminus} fps
assumes inverse (1::'a) = 1
shows fps-shift n f = f div fps-X"n
(proof)

lemma fps-shift-altdef:

fos-shift n f = (f == 'a :: division-ring fps) div fps-X n
(proof )
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lemma fps-div-fps-X-power-nth’:
fixes [ :: 'an:{semiring-1,inverse,uminus} fps
assumes inverse (1:'a) = 1
shows (fdiv fps-Xn)$k=f8$ (k+ n)
(proof )

lemma fps-div-fps-X-power-nth: ((f :: ’a :: division-ring fps) div fps-X"n) $ k = f
$ (k+ n)
(proof)

lemma fps-div-fps-X-nth’:
fixes f :: 'a::{semiring-1,inverse,uminus} fps
assumes inverse (1:'a) = 1
shows (f div fps-X) $ k=f$ Suck
(proof)

lemma fps-div-fps-X-nth: ((f :: 'a :: division-ring fps) div fps-X) $ k= f $ Suc k
(proof )

lemma divide-fps-const’:
fixes ¢ :: 'a i {inverse,comm-monoid-add,uminus,mult-zero}
shows f / fps-const ¢ = f x fps-const (inverse c)
(proof )

lemma divide-fps-const [simp]:
fixes ¢ :: ‘a1 {comm-semiring-0,inverse,uminus}
shows [ / fps-const ¢ = fps-const (inverse c) x f
{proof )

lemma fps-const-divide: fps-const (z :: - :: division-ring) / fps-const y = fps-const

(z / y)

(proof)

lemma fps-numeral-divide-divide:
z / numeral b / numeral ¢ = (z / numeral (b * ¢) :: 'a :: field fps)
{proof)

lemma fps-numeral-mult-divide:
numeral b x x / numeral ¢ = (numeral b / numeral ¢ x z :: 'a =2 field fps)

{proof)

lemmas fps-numeral-simps =
fps-numeral-divide-divide fps-numeral-mult-divide inverse-fps-numeral neg-numeral-fps-const

lemma fps-is-left-unit-iff-zeroth-is-left-unit:
fixes f :: 'a :: ring-1 fps
shows (3g. 1 = fxg) +— (Fk. 1 = 80 = k)
{proof )
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lemma fps-is-right-unit-iff-zeroth-is-right-unit:
fixes f :: 'a :: ring-1 fps
shows (3g. I = g* f) +— (Fk. 1 =k x $0)
(proof)

lemma fps-is-unit-iff [simp]: (f :: 'a :: field fps) dvd 1 +— f$ 0 # 0
(proof)

lemma subdegree-eq-0-left:
fixes f : 'au{comm-monoid-add,zero-neq-one,mult-zero} fps
assumes Jg. I = fx g
shows subdegree f = 0

(proof)

lemma subdegree-eq-0-right:
fixes f :: 'a:{comm-monoid-add,zero-neq-one,mult-zero} fps
assumes 3g. 1 =g x f
shows subdegree f = 0

(proof)

lemma subdegree-eq-0' [simp): (f :: 'a :: field fps) dvd 1 = subdegree f = 0
(proof )

lemma fps-dvd1-left-trivial-unit-factor:
fixes f :: 'a:{comm-monoid-add, zero-neg-one, mult-zero} fps
assumes 3g. 1 = f *x g
shows unit-factor f = f
(proof )

lemma fps-dvd1-right-trivial-unit-factor:
fixes f :: 'ax{comm-monoid-add, zero-neg-one, mult-zero} fps
assumes 3g. 1 =g x f
shows wunit-factor f = f

{proof)

lemma fps-dvd1-trivial-unit-factor:
(f == 'a::comm-semiring-1 fps) dvd 1 = unit-factor f = f
(proof )

lemma fps-unit-dvd-left:
fixes [ ::’'a :: division-ring fps
assumes f $ 0 # 0
shows dg. 1 =fxg
(proof)

lemma fps-unit-dvd-right:
fixes [ ::'a :: division-ring fps
assumes f $ 0 # 0
shows dg. 1 =gxf

149



{proof)

lemma fps-unit-dvd [simpl: (f $ 0 :: 'a :: field) # 0 = fdvd g
(proof)

lemma dvd-left-imp-subdegree-le:
fixes fg :: 'a::{comm-monoid-add,mult-zero} fps
assumes 3k. g=fxkg+# 0
shows subdegree f < subdegree g

(proof)

lemma dvd-right-imp-subdegree-le:
fixes fg :: 'a:{comm-monoid-add,mult-zero} fps
assumes 3k. g=kx fg# 0
shows subdegree f < subdegree g

(proof)

lemma dvd-imp-subdegree-le:
fdvd g = g # 0 = subdegree f < subdegree g
(proof )

lemma subdegree-le-imp-dvd-left-ring1:
fixes fg: 'a:: ring-1 fps
assumes Jy. f $ subdegree f x y = 1 subdegree f < subdegree g
shows 3Jk. g=fxk

(proof)

lemma subdegree-le-imp-dvd-left-divring:
fixes fg: 'a:: division-ring fps
assumes f # 0 subdegree f < subdegree g
shows k. g=fxk

(proof)

lemma subdegree-le-imp-dvd-right-ring1 :
fixes fg: 'a:: ring-1 fps
assumes 3z. x x f $ subdegree f = 1 subdegree f < subdegree g
shows Jdk.g=Fkxf

(proof)

lemma subdegree-le-imp-dvd-right-divring:
fixes fg: 'a:: division-ring fps
assumes [ # 0 subdegree f < subdegree g
shows k. g=Fkxf

(proof)

lemma fps-dvd-iff:

assumes (f :: 'a :: field fps) # 0g # 0
shows f dvd g <— subdegree f < subdegree g

(proof)
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lemma subdegree-div':
fixes p q :: 'a:division-ring fps
assumes k. p =k x ¢
shows subdegree (p div q) = subdegree p — subdegree q

(proof)

lemma subdegree-div:
fixes pq:’a:: field fps
assumes ¢ dvd p
shows subdegree (p div q) = subdegree p — subdegree q

{proof)

lemma subdegree-div-unit”:
fixes p q:: 'a:: {ab-group-add,mult-zero,inverse} fps
assumes ¢ $ 0 # 0 p $ subdegree p x inverse (¢ $ 0) # 0
shows subdegree (p div q) = subdegree p

{proof)

lemma subdegree-div-unit’”:
fixes p q:: 'a:: {ring-no-zero-divisors,inverse} fps
assumes ¢ $ 0 # 0 inverse (¢ $ 0) # 0
shows subdegree (p div q) = subdegree p

{proof)

lemma subdegree-div-unit:
fixes p q:: 'a:: division-ring fps
assumes ¢ $ 0 # 0
shows subdegree (p div q) = subdegree p

{proof)

instantiation fps :: ({comm-semiring-1,inverse,uminus}) modulo
begin

definition fps-mod-def:
fmod g = (if g = 0 then f else
let h = unit-factor g in fps-cutoff (subdegree g) (f * inverse h) x h)
instance (proof)

end

lemma fps-mod-zero [simp]:
(f::'a::{ comm-semiring-1inverse,uminus} fps) mod 0 = f
(proof)

lemma fps-mod-eq-zero:

assumes g # 0 and subdegree f > subdegree g
shows fmod g =0
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(proof)

lemma fps-mod-unit [simp]: ¢80 # 0 = fmod g = 0
(proof)

lemma subdegree-mod:
assumes subdegree (f::'a::field fps) < subdegree g
shows subdegree (f mod g) = subdegree f

(proof)

instance fps :: (field) idom-modulo

(proof)

instantiation fps :: (field) normalization-semidom-multiplicative
begin

definition fps-normalize-def [simp]:
normalize f = (if f = 0 then 0 else fps-X ~ subdegree f)

instance (proof)

end

5.8 Computing reciprocals via Hensel lifting

lemma inverse-fps-hensel-lifting:

fixes F' G :: 'a :: field fps and n :: nat

assumes G-eq: fps-cutoff n G = fps-cutoff n (inverse F)

assumes unit: fps-nth F 0 # 0

shows fps-cutoff (2xn) (inverse F') = fps-cutoff (2%n) (G % (2 — F * G))
(proof)

lemma inverse-fps-hensel-lifting:

fixes F G :: 'a :: field fps and n :: nat

assumes G-eq: fps-cutoff n G = fps-cutoff n (inverse F)

assumes unit: fps-nth F 0 # 0

defines P = fps-shift n (F' « G — 1)

shows fps-cutoff (2xn) (inverse F) = fps-cutoff (2xn) (G * (1 — fps-X " n x
P))
(proof)

5.9 FEuclidean division

instantiation fps :: (field) euclidean-ring-cancel
begin

definition fps-euclidean-size-def:
euclidean-size f = (if f = 0 then 0 else 2 ~ subdegree f)

instance (proof)
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end
instance fps :: (field) normalization-euclidean-semiring (proof)

instantiation fps :: (field) euclidean-ring-gcd

begin

definition fps-ged-def: (ged :: 'a fps = -) = Fuclidean-Algorithm.ged
definition fps-lem-def: (lem :: 'a fps = -) = Euclidean-Algorithm.lem
definition fps-Ged-def: (Ged :: 'a fps set = -) = Euclidean-Algorithm.Ged
definition fps-Lem-def: (Lem :: 'a fps set = -) = FEuclidean-Algorithm.Lem
instance (proof)

end

lemma fps-gcd:

assumes [simp]: f # 0 g # 0

shows gcd f g = fps-X ~ min (subdegree f) (subdegree g)
(proof)

lemma fps-ged-altdef: ged f g =
(if f =0 N g = 0 then 0 else
if f = 0 then fps-X ~ subdegree g else
if g = 0 then fps-X ~ subdegree f else
fps-X ~ min (subdegree f) (subdegree g))
(proof )

lemma fps-lem:

assumes [simpl: f £ 0g # 0

shows lem f g = fps-X ~ mazx (subdegree f) (subdegree g)
(proof)

lemma fps-lem-altdef: lem f g =
(if f =0V g = 0then 0 else fps-X ~ maz (subdegree f) (subdegree g))
(proof)

lemma fps-Ged:

assumes A — {0} # {}

shows Gced A = fps-X ~ (INF fe A—{0}. subdegree f)
(proof)

lemma fps-Ged-altdef: Ged A =
(if A C {0} then 0 else fps-X ~ (INF fe A—{0}. subdegree f))
(proof )

lemma fps-Lem:
assumes A # {} 0 ¢ A bdd-above (subdegree‘A)
shows Lem A = fps-X ~ (SUP feA. subdegree f)

(proof)
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lemma fps-Lem-altdef:
Lem A =
(if 0 € AV —bdd-above (subdegree‘A) then 0 else
if A ={} then 1 else fps-X ~ (SUP feA. subdegree f))

(proof)

5.10 Formal Derivatives
definition fps-deriv f = Abs-fps (An. of-nat (n + 1) x f $ (n + 1))

lemma fps-deriv-nth[simp|: fps-deriv f $ n = of-nat (n + 1) x f $ (n + 1)
(proof)

lemma fps-0th-higher-deriv:
(fps-deriv ""n) f$ 0 = factnx f $ n
(proof)

lemma fps-deriv-mult]simp):
fos-deriv (f = g) = f = fps-deriv g + fps-deriv f = g

(proof)

lemma fps-deriv-fps-X[simp|: fps-deriv fps-X = 1
(proof )

lemma fps-deriv-neg[simp]:
fos-deriv (— (f:: 'a:ring-1 fps)) = — (fps-deriv f)
(proof )

lemma fps-deriv-add[simp): fps-deriv (f + g) = fps-deriv f + fps-deriv g
(proof )

lemma fps-deriv-sub[simp:
fos-deriv ((f:: 'azring-1 fps) — g) = fps-deriv f — fps-deriv g
(proof )

lemma fps-deriv-const[simp]: fps-deriv (fps-const ¢) = 0
{proof)

lemma fps-deriv-of-nat [simpl: fps-deriv (of-nat n) = 0
(proof )

lemma fps-deriv-of-int [simp]: fps-deriv (of-int n) = 0
(proof )

lemma fps-deriv-numeral [simp]: fps-deriv (numeral n) = 0
{proof)

lemma fps-deriv-mult-const-left[simp]:
fos-deriv (fps-const ¢ x ) = fps-const ¢ * fps-deriv f
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{proof)

lemma fps-deriv-linear(simp]:
fps-deriv (fps-const a * f + fps-const b x g) =
fps-const a x fps-deriv f + fps-const b * fps-deriv g
(proof)

lemma fps-deriv-0[simp|: fps-deriv 0 = 0
(proof)

lemma fps-deriv-1[simp|: fps-deriv 1 = 0
{proof)

lemma fps-deriv-mult-const-right[simp]:
fos-deriv (f = fps-const ¢) = fps-deriv f * fps-const ¢
(proof )

lemma fps-deriv-sum:
fps-deriv (sum fS) = sum (\i. fps-deriv (fi)) S
(proof)

lemma fps-deriv-eq-0-iff [simp]:
fos-deriv f = 0 +— f = fps-const (f$0 :: 'a::{semiring-no-zero-divisors,semiring-char-0})
(proof)

lemma fps-deriv-eq-iff:

fixes f g :: 'a::{ring-1-no-zero-divisors,semiring-char-0} fps

shows fps-deriv f = fps-deriv g +— (f = fps-const(f$0 — g$0) + g)
(proof)

lemma fps-deriv-eq-iff-ex:
fixes f g :: 'a::{ring-1-no-zero-divisors,semiring-char-0} fps
shows (fps-deriv f = fps-deriv g) +— (Fec. f = fps-const ¢ + g)
(proof)

fun fps-nth-deriv :: nat = 'a::semiring-1 fps = 'a fps
where

fps-nth-deriv 0 f = f
| fos-nth-deriv (Suc n) f = fps-nth-deriv n (fps-deriv f)

lemma fps-nth-deriv-commute: fps-nth-deriv (Suc n) f = fps-deriv (fps-nth-deriv
n f)
(proof )

lemma fps-nth-deriv-linear|simp):
fps-nth-deriv n (fps-const a * f + fps-const b * g) =
fps-const a x fps-nth-deriv n f + fps-const b x fps-nth-deriv n g
(proof)
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lemma fps-nth-deriv-neg[simp]:
fos-nth-deriv n (— (f :: 'az:ring-1 fps)) = — (fps-nth-deriv n f)
(proof )

lemma fps-nth-deriv-add]simp]:
fos-nth-deriv n ((f :: 'az:ring-1 fps) + g) = fps-nth-deriv n f + fps-nth-deriv n g
(proof)

lemma fps-nth-deriv-sub|simpl:
fos-nth-deriv n ((f :: 'az:ring-1 fps) — g) = fps-nth-deriv n f — fps-nth-deriv n g
(proof )

lemma fps-nth-deriv-0[simp): fps-nth-deriv n 0 = 0
(proof )

lemma fps-nth-deriv-1[simp|: fps-nth-deriv n 1 = (if n = 0 then 1 else 0)
(proof )

lemma fps-nth-deriv-const[simp):
fps-nth-deriv n (fps-const ¢) = (if n = 0 then fps-const c else 0)
(proof )

lemma fps-nth-deriv-mult-const-left[simp):
fos-nth-deriv n (fps-const ¢ * f) = fps-const ¢ * fps-nth-deriv n f
(proof )

lemma fps-nth-deriv-mult-const-right[simp]:
fos-nth-deriv n (f * fps-const ¢) = fps-nth-deriv n f * fps-const c
(proof )

lemma fps-nth-deriv-sum:
fps-nth-deriv n (sum fS) = sum (Ai. fps-nth-deriv n (f i 2 'a:ring-1 fps)) S
(proof)

lemma fps-deriv-maclauren-0:
(fps-nth-deriv k (f :: 'a::comm-semiring-1 fps)) $ 0 = of-nat (fact k) « f $ k
(proof )

lemma fps-deriv-lr-inverse:
fixes zy: 'a:ring-1
assumes z * f$0 = 1 f$0 x y = 1
— These assumptions imply x equals y, but no need to assume that.
shows fps-deriv (fps-left-inverse f x) =
— fps-left-inverse f x x fps-deriv f * fps-left-inverse f x
and  fps-deriv (fps-right-inverse fy) =
— fps-right-inverse f y x fps-deriv f = fps-right-inverse f y
{proof )
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lemma fps-deriv-lr-inverse-comm:
fixes 1z :: 'a::comm-ring-1
assumes 7 * f$0 = 1

shows fps-deriv (fps-left-inverse f x) = — fps-deriv f * (fps-left-inverse f x)?
and  fps-deriv (fps-right-inverse f x) = — fps-deriv f * (fps-right-inverse f x)?
(proof )

lemma fps-inverse-deriv-divring:
fixes a :: 'a::division-ring fps
assumes a$0 # 0
shows fps-deriv (inverse a) = — inverse a * fps-deriv a * inverse a

{proof)

lemma fps-inverse-deriv:
fixes a :: 'a::field fps
assumes a$0 # 0
shows fps-deriv (inverse a) = — fps-deriv a x (inverse a)

{proof)

2

lemma fps-inverse-deriv’”:
fixes a :: 'a:field fps
assumes a0: a $ 0 # 0
shows fps-deriv (inverse a) = — fps-deriv a | a*
(proof)

lemma fps-divide-deriv:

assumes b dvd (a :: 'a :: field fps)

shows fps-deriv (a / b) = (fps-deriv a x b — a x fps-deriv b) / b2
(proof )

lemma fps-nth-deriv-fps-X[simp|: fps-nth-deriv n fps-X = (if n = 0 then fps-X else
if n=1 then 1 else 0)
(proof )

5.11 Powers

lemma fps-power-zeroth: (a™n) $ 0 = (a$0)™n
(proof)

lemma fps-power-zeroth-eq-one: a$0 = 1 = a n $ 0 = 1
(proof)
lemma fps-power-first:
fixes a :: 'a::comm-semiring-1 fps
shows (a™n) $ 1 = of-nat n * (a$0) (n—1) x a$1
(proof)

lemma fps-power-first-eq: a $ 0 = 1 = a™n $ 1 = of-nat n * a$1
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(proof)

lemma fps-power-first-eq:

assumes a $ 1 = 1

shows a™m $ I = of-nat n * (a$0) (n—1)
(proof)

lemmas startsby-one-power = fps-power-zeroth-eq-one

lemma startsby-zero-power: a $ 0 = 0 = n > 0 = a n $0 = 0
(proof )

lemma startsby-power: a $0 = v = a"n $0 = v'n

{proof)

lemma startsby-nonzero-power:
fixes a :: 'a::semiring-1-no-zero-divisors fps
shows a $ 0 #0 = an$0#0
(proof)

lemma startsby-zero-power-iff [simp]:
a"n $0 = (0::'a::semiring-1-no-zero-divisors) «— n # 0 A a$0 = 0
(proof )

lemma startsby-zero-power-prefix:
assumes a0: a $ 0 = 0
shows Vn <k.a "k$Sn=20

(proof)

lemma startsby-zero-sum-depends:
assumes a0: a $0 = 0
and kn: n > k
shows sum (Ai. (a ~0)$k) {0 .. n} = sum (Ai. (a ~0)$k) {0 .. k}
(proof)

lemma startsby-zero-power-nth-same:
assumes a0: a$0 = 0
shows a™n$n=(a¥1) "n
(proof)

lemma fps-lr-inverse-power:
fixes a :: ‘a::ring-1 fps
assumes 7 x a$0 = 1 a$0 * z = 1
shows fps-left-inverse (a"n) (z™n) = fps-left-inverse a x "~ n
and fps-right-inverse (a"n) (z™n) = fps-right-inverse a x ~ n
(proof)

lemma fps-inverse-power:
fixes a :: 'a::division-ring fps
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shows inverse (a™n) = inverse a ~ n
(proof)

lemma fps-deriv-power”:

fixes a :: 'a::comm-semiring-1 fps

shows fps-deriv (a ~ n) = (of-nat n) x fps-deriva x a = (n — 1)
(proof)

lemma fps-deriv-power:
fixes a :: 'a::comm-semiring-1 fps
shows fps-deriv (a ~ n) = fps-const (of-nat n) * fps-deriva x a ~(n — 1)
{proof )

5.12 Finite and infinite products

lemma fps-prod-nth’:

assumes finite A

shows fps-nth ([[z€A. fz) n = (3 Xemultisets-of-size A n. [[z€A. fps-nth
(f z) (count X x))

(proof)

theorem tendsto-prod-fps:

fixes f :: nat = ‘a :: {idom, t2-space} fps

assumes [simp]: Nk. fk # 0

assumes ¢g: An k. k> g n = subdegree (fk — 1) > n

defines P = Abs-fps (An. (3. Xemultisets-of-size {..g n} n. [[i<g n. fps-nth (f
i) (count X 1))

shows (An. [[k<n.fk) —— P
(proof)

5.13 Integration

definition fps-integral :: 'a::{semiring-1inverse} fps = 'a = 'a fps
where fps-integral a a0 =
Abs-fps (An. if n=0 then a0 else inverse (of-nat n) * a$(n — 1))

abbreviation fps-integral0 a = fps-integral a 0

lemma fps-integral-nth-0-Suc [simp):
fixes a :: ‘a::{semiring-1,inverse} fps
shows fps-integral a a0 $ 0 = a0
and fps-integral a a0 $ Suc n = inverse (of-nat (Suc n)) * a $ n

{proof)

lemma fps-integral-conv-plus-const:
fps-integral a a0 = fps-integral a 0 + fps-const a0

{proof)

lemma fps-deriv-fps-integral:
fixes a :: ‘a::{division-ring,ring-char-0} fps
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shows fps-deriv (fps-integral a a0) = a
(proof)

lemma fps-integral0-deriv:

fixes a :: ‘a::{division-ring,ring-char-0} fps

shows fps-integral0 (fps-deriv a) = a — fps-const (a$0)
(proof)

lemma fps-integral-deriv:
fixes a :: ‘a::{division-ring,ring-char-0} fps
shows fps-integral (fps-deriv a) (a$0) = a
(proof )

lemma fps-integral0-zero:
fps-integral0 (0::'a::{semiring-1inverse} fps) = 0
{proof)

lemma fps-integral(-fps-const':
fixes ¢ :: ‘a::{semiring-1,inverse}
assumes inverse (1::'a) = 1
shows  fps-integral0 (fps-const ¢) = fps-const ¢ * fps-X

(proof)

lemma fps-integral0-fps-const:
fixes c :: 'a::division-ring
shows fps-integral0 (fps-const ¢) = fps-const ¢ * fps-X
(proof)

lemma fps-integral0-one’:
assumes inverse (1::'a::{semiring-1,inverse}) = 1
shows  fps-integral0 (1::'a fps) = fps-X
(proof )

lemma fps-integral0-one:
fps-integral0 (1::'a::division-ring fps) = fps-X
(proof )

lemma fps-integral0-fps-const-mult-left:

fixes a :: 'a::division-ring fps

shows fps-integral0 (fps-const ¢ * a) = fps-const ¢ x fps-integral0 a
(proof)

lemma fps-integral0-fps-const-mult-right:
fixes a :: 'a::{semiring-1,inverse} fps
shows fps-integral0 (a * fps-const ¢) = fps-integral0 a * fps-const ¢
(proof )

lemma fps-integral0-neg:
fixes a :: 'a::{ring-1,inverse} fps
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shows fps-integral0) (—a) = — fps-integral0 a
(proof )

lemma fps-integral0-add:
fps-integral0 (a+b) = fps-integral0 a + fps-integral0 b
(proof )

lemma fps-integral0-linear:
fixes a b :: 'a::division-ring
shows fps-integral0 (fps-const a = f + fps-const b x g) =
fps-const a x fps-integral0 f + fps-const b = fps-integral0 g
(proof)

lemma fps-integral0-linear2:
fps-integral0 (f * fps-const a + g * fps-const b) =
fps-integral0 f * fps-const a + fps-integral0 g * fps-const b
(proof)

lemma fps-integral-linear:
fixes a b a0 b0 :: 'a::division-ring
shows
fps-integral (fps-const a = f + fps-const b x g) (axa0 + bxb0) =
fps-const a x fps-integral f a0 + fps-const b % fps-integral g b0
(proof)

lemma fps-integral0-sub:
fixes a b :: ‘a::{ring-1,inverse} fps
shows fps-integral0 (a—b) = fps-integral0 a — fps-integral0 b
(proof)

lemma fps-integral0-of-nat:
fos-integral0 (of-nat n :: 'a::division-ring fps) = of-nat n * fps-X
(proof )

lemma fps-integral0-sum:
fps-integral0 (sum fS) = sum (\i. fps-integral0 (f 7)) S
(proof)

lemma fps-integral0-by-parts:
fixes a b :: ‘a::{division-ring,ring-char-0} fps
shows
fps-integral0 (a * b) =
a * fps-integral0 b — fps-integral0 (fps-deriv a x fps-integral0 b)
(proof)

lemma fps-integral0-fps-X:
fps-integral0 (fps-X::'a::{semiring-1 inverse} fps) =
fps-const (inverse (of-nat 2)) * fps-X>
(proof )
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lemma fps-integral0-fps-X-power:
fps-integral0 ((fps-X::'a::{semiring-1,inverse} fps) ~n) =
fps-const (inverse (of-nat (Suc n))) * fps-X ~ Suc n
(proof )

5.14 Composition
definition fps-compose :: 'a::semiring-1 fps = 'a fps = 'a fps (infixl <00y 55)

where a 00 b = Abs-fps (An. sum (Xi. a$i x (b7i$n)) {0..n})

lemma fps-compose-nth: (a oo b)$n = sum (Ai. a$i * (b7i%$n)) {0..n}
{proof)

lemma fps-compose-nth-0 [simpl: (foo g) $ 0 =f$ 0
(proof )

lemma fps-compose-fps-X[simp]: a oo fps-X = (a :: ‘a::comm-ring-1 fps)
(proof)

lemma fps-const-compose[simp|: fps-const (a::'a::comm-ring-1) oo b = fps-const a
(proof )

lemma numeral-compose[simp: (numeral k :: 'a::comm-ring-1 fps) oo b = numeral

k
(proof)

lemma neg-numeral-compose[simpl: (— numeral k :: 'a::comm-ring-1 fps) oo b =
— numeral k
(proof )

lemma fps-X-fps-compose-startby0|[simpl: a30 = 0 => fps-X 0o a = (a :: 'a::comm-ring-1
fps)
(proof )
5.15 Rules from Herbert Wilf’s Generatingfunctionology
5.15.1 Rule 1

lemma fps-power-mult-eq-shift:
fos-X"Suc k x Abs-fps (An. a (n + Suc k)) =
Abs-fps a — sum (Ai. fps-const (a i :: 'a::comm-ring-1) * fps-X"7) {0 .. k}
(is ?lhs = %rhs)
(proof)

5.15.2 Rule 2
definition fps-XD = (x) fps-X o fps-deriv
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lemma fps-XD-add[simp):fps-XD (a + b) = fps-XD a + fps-XD (b :: 'a::comm-ring-1
fps)
(proof )

lemma fps-XD-mult-const[simp:fps-XD (fps-const (c::'a::comm-ring-1) * a) =
fps-const ¢ * fps-XD a
(proof)

lemma fps-XD-linear[simpl: fps-XD (fps-const ¢ *x a + fps-const d * b) =
fps-const ¢ x fps-XD a + fps-const d x fps-XD (b :: ‘a::comm-ring-1 fps)
(proof )

lemma fps-XDN-linear:

(fps-XD "7 n) (fps-const ¢ * a + fps-const d x b) =

fps-const ¢ x (fps-XD """ n) a + fps-const d * (fps-XD " n) (b :: ‘a::comm-ring-1
Ips)

(proof)

lemma fps-mult-fps-X-deriv-shift: fps-Xx fps-deriv a = Abs-fps (An. of-nat nx a$n)
(proof )

lemma fps-mult-fps- X D-shift:
(fps-XD "7 k) (a :: 'a::comm-ring-1 fps) = Abs-fps (An. (of-nat n ~ k) x a$n)
(proof)

5.15.3 Rule 3

Rule 3 is trivial and is given by fps_times_def.

5.15.4 Rule 5 — summation and “division” by 1 — X

lemma fps-divide-fps-X-minusi-sum-lemma:
a = ((1:"axring-1 fps) — fps-X) x Abs-fps (An. sum (Ai. a $ ©) {0..n})
(proof)

lemma fps-divide-fps-X-minus1-sum-ringl:

assumes inverse 1 = (1::'a::{ring-1inverse})

shows a /((1::'a fps) — fps-X) = Abs-fps (An. sum (Ai. a $ 7) {0..n})
(proof )

lemma fps-divide-fps-X-minus1-sum:

a /((1:a::division-ring fps) — fps-X) = Abs-fps (An. sum (Ai. a $ 7) {0..n})
(proof )

5.15.5 Rule 4 in its more general form

This generalizes Rule 3 for an arbitrary finite product of FPS, also the
relevant instance of powers of a FPS.
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definition natpermute n k = {l :: nat list. length | = k A sum-list | = n}

lemma natlist-trivial-1: natpermute n 1 = {[n]}

(proof)

lemma natlist-trivial-SucO [simp]: natpermute n (Suc 0) = {[n]}
(proof)

lemma append-natpermute-less-eq:
assumes zs Q ys € natpermute n k
shows sum-list zs < n
and sum-list ys < n
(proof)

lemma natpermute-split:
assumes h <
shows natpermute n k =
(Um €{0..n}. {i1 @12 ]i112. I1 € natpermute m h A 12 € natpermute (n —
m) (k - h)})
(is /L = ?Ris - = (Um €{0..n}. ?S m))
(proof )

lemma natpermute-0: natpermute n 0 = (if n = 0 then {[|} else {})
{proof)

lemma natpermute-0'[simpl: natpermute 0 k = (if k = 0 then {[]} else {replicate
ko})
{proof)

lemma natpermute-finite: finite (natpermute n k)

{(proof)

lemma natpermute-contain-maximal:

{zs € natpermute n (k + 1). n € set xs} = (|Ji€{0 .. k}. {(replicate (k + 1) 0)
[i:=n]})

(is 7A = 7B)
(proof)

The general form.

lemma fps-prod-nth:
fixes m :: nat
and a :: nat = ‘a:comm-ring-1 fps
shows (prod a {0 .. m}) $ n =
sum (Av. prod (N\j. (a j) $ (v!§)) {0..m}) (natpermute n (m+1))
(is 2P m n)

(proof)

The special form for powers.

lemma fps-power-nth-Suc:
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fixes m :: nat
and a :: ‘a::comm-ring-1 fps
shows (a ~ Suc m)$n = sum (Av. prod (Aj. a $ (v!j)) {0..m}) (natpermute n
(m+1))
(proof)

lemma fps-power-nth:
fixes m :: nat
and a :: 'a::comm-ring-1 fps
shows (a “m)$n =
(if m=0 then 1$n else sum (Av. prod (A\j. a $ (v1j)) {0..m — 1}) (natpermute
nm))

(proof)
lemmas fps-nth-power-0 = fps-power-zeroth

lemma natpermute-max-card:
assumes n0: n # 0
shows card {zs € natpermute n (k + 1). n € set s} =k + 1

{proof)

lemma fps-power-Suc-nth:
fixes f :: 'a :: comm-ring-1 fps
assumes k: k > 0
shows (f ~Sucm) $ k =
of-nat (Suc m) x (f$ k= (f$0) "~m)+
(3" ve{venatpermute k (m+1). k & set v}. [[j=0.m. f$v!}j)
(proof)

lemma fps-power-Suc-eqD:
fixes f g :: 'a i {idom,semiring-char-0} fps
assumes f " Sucm =9 Sucmf$0=9g8$0f$0#0
shows f=yg

(proof)

lemma fps-power-Suc-eqD":
fixes f g :: 'a i {idom,semiring-char-0} fps
assumes [~ Sucm = g ~ Suc m f $ subdegree f = g $ subdegree g
shows f =g

(proof)

lemma fps-power-eqD":
fixes f g :: 'a i {idom,semiring-char-0} fps
assumes f " m =g~ m [ $ subdegree f = g $ subdegree g m > 0
shows f =g
(proof)

lemma fps-power-eqD:
fixes f g :: 'a :: {idom,semiring-char-0} fps
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assumes f " m=¢9g mf$0=9g8$0f$0£0m>0
shows f=g
(proof)

lemma fps-compose-inj-right:
assumes a0: a$0 = (0::'a::idom)
and al: a$1 # 0
shows (b oo a=cooa)«— b=c
(is ?lhs «— ?rhs)

{(proof)

5.16 Radicals

declare prod.cong [fundef-cong]

function radical :: (nat = 'a = ’a) = nat = 'a::field fps = nat = 'a
where
radical 7 0 a 0 = 1
| radical r 0 a (Suc n) = 0
| radical r (Suc k) a 0 = r (Suc k) (a$0)
| radical r (Suc k) a (Suc n) =
(a$ Suc n — sum (Axs. prod (N\j. radical r (Suc k) a (zs!j)) {0..k})
{zs. zs € natpermute (Suc n) (Suc k) A Suc n ¢ set xs}) /
(of-nat (Suc k) * (radical r (Suc k) a 0)7k)
(proof )

termination radical
(proof)

definition fps-radical r n a = Abs-fps (radical r n a)

lemma radical-0 [simp]: An. 0 < n = radical r 0 a n = 0
{proof)

lemma fps-radical0[simp]: fps-radical r 0 a = 1

{proof)

lemma fps-radical-nth-0[simp]: fps-radical v n a $ 0 = (if n = 0 then 1 else r n
(a$0))
(proof )

lemma fps-radical-power-nth|simp]:

assumes r: (7 k (a$0)) "k = a$0

shows fps-radical rk a "k $ 0 = (if k = 0 then 1 else a$0)
(proof)

lemma power-radical:
fixes a:: 'a:field-char-0 fps
assumes a0: a$0 # 0
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shows (r (Suc k) (a$0)) ~ Suc k = a$0 «— (fps-radical v (Suc k) a) ~ (Suc k)
=a
(is ?lhs <— ?rhs)
(proof)

lemma radical-unique:
assumes r0: (r (Suc k) (b$0)) ~ Suc k = b$0
and a0: r (Suc k) (080 :'a::field-char-0) = a$0
and b0: b$0 # 0
shows a (Suc k) = b +— a = fps-radical v (Suc k) b

(is ?lhs <— ?rhsis - «— a = ?r)
(proof)

lemma radical-power:
assumes r0: r (Suc k) ((a$0) ~ Suc k) = a$0

and a0: (a$0 :: 'a:field-char-0) # 0
shows (fps-radical v (Suc k) (a ~ Suc k)) = a

(proof)

lemma fps-deriv-radical’:
fixes a :: ‘a:field-char-0 fps
assumes r0: (r (Suc k) (a$0)) ~ Suc k = a$0
and a0: a$0 # 0
shows fps-deriv (fps-radical v (Suc k) a) =
fos-deriv a / ((of-nat (Suc k)) * (fps-radical r (Suc k)

(proof)

a) k)

lemma fps-deriv-radical:
fixes a :: ‘a:field-char-0 fps
assumes r0: (r (Suc k) (a$0)) ™ Suc k = a$0
and a0: a$0 # 0
shows fps-deriv (fps-radical v (Suc k) a) =
fos-deriv a | (fps-const (of-nat (Suc k)) * (fps-radical v (Suc k) a) ~ k)

{proof)

lemma radical-mult-distrib:

fixes a :: ‘a:field-char-0 fps

assumes k: k > 0
and ra0: rk (a $ 0
and rb0: r k(b $ 0) ~
and a0: a $ 0 #
and b0: b $ 0 #

shows 7k ((a * b)
fos-radical r k (a
(is ?lhs <— %rhs

{(proof)

0)=rk(a$30)xrk(b$0)+—
b) = fps-radical v k a * fps-radical v k b

v*%QQ
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lemma radical-divide:
fixes a :: ‘a:field-char-0 fps
assumes kp: k > 0

and ra0: (rk (a$0)) "k=a$0
and 700: (rk (b$0)) "k=0%0
and a0: a$0 # 0
and b0: b$0 # 0
shows rk ((a $ 0) / (b80)) =71k (a$0) / 7k (b $ 0) +—

)
fos-radical r k (a/b) = fps-radical v k o | fps-radical r k b
(is ?lhs = %rhs)

(proof)

lemma radical-inverse:

fixes a :: ‘a::field-char-0 fps

assumes k: k > 0
and ra0: rk (a$0) "k=a$0
and r1: (rk1) k=1
and a0: a$0 # 0

shows r k (inverse (a $ 0))=rk1 / (rk(a$ 0)) +—
fos-radical r k (inverse a) = fps-radical v k 1 / fps-radical v k a

{proof)

5.17 Chain rule

lemma fps-compose-deriv:

fixes a :: 'a::idom fps

assumes b0: b$0 = 0

shows fps-deriv (a oo b) = ((fps-deriv a) oo b) x fps-deriv b
(proof)

lemma fps-poly-sum-fps-X:

assumes Vi > n. a$i = 0

shows a = sum (Ai. fps-const (a$7) * fps-X"%) {0..n} (is a = ?r)
(proof)

5.18 Compositional inverses

fun compinv :: ‘a fps = nat = 'a:field
where
compinv a 0 = fps-X$0
| compinv a (Suc n) =
(fps-X$ Suc n — sum (Mi. (compinv a i) x (a7%)$Suc n) {0 .. n}) / (a$1) ~
Suc n

definition fps-inv a = Abs-fps (compinv a)
lemma fps-inv:

assumes a0: a$0 = 0
and al: a$1 # 0
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shows fps-inv a 00 a = fps-X
(proof)

fun gcompinv :: 'a fps = 'a fps = nat = 'a:field
where

gcompinv b a 0 = b$0
| gcompinv b a (Suc n) =

(6% Suc n — sum (\i. (gcompinv b a i) x (a”7)$Suc n) {0 ..

n
definition fps-ginv b a = Abs-fps (gcompinv b a)

lemma fps-ginv:
assumes a0: a$0 = 0
and al: a$1 # 0
shows fps-ginv b a 0o a = b

(proof)

lemma fps-inv-ginv: fps-inv = fps-ginv fps-X
(proof )

lemma fps-compose-1[simp]: 1 oo a = 1
(proof )

lemma fps-compose-0[simp]: 0 0o a = 0
(proof )

lemma fps-compose-0-right[simpl: a oo 0 = fps-const (a $ 0)
(proof)

n}) / (a$1) ~ Suc

lemma fps-compose-add-distrib: (a + b) oo ¢ = (a 0o ¢) + (b oo c)

{proof)

lemma fps-compose-sum-distrib: (sum fS) oo a = sum (Ai. fi 00 a) S

(proof)

lemma convolution-eq:
sum (M. a (i nat) x b (n — 7)) {0 .. n} =
sum (A(4,5). at % bj) {(ij).- i <nAj<nAi+j=n}
{proof)

lemma product-composition-lemma:
assumes c0: c¢$0 = (0::'a::idom)
and d0: d$0 = 0
shows ((a 0o ¢) * (b oo d))$n =

sum (A(k,m). a8k * b$m x (¢7k * d"m) $ n) {(k;m). k + m < n} (is 2l = ?r)

(proof)
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lemma sum-pair-less-iff:
sum (A((k:nat),m). a k « bm x c (k+ m)) {(ksm). k + m < n} =
sum (As. sum (M. aixb (s —1i)*cs){0.s}) {0..n}
(is 21 = ?r)

(proof)

lemma fps-compose-mult-distrib-lemma:

assumes c0: ¢80 = (0::'a::idom)

shows ((a 00 ¢) * (b oo ¢))$n = sum (As. sum (Ai. a$i = b$(s — ) * (¢7s) $ n)
{0..s}) {0..n}

(proof)

lemma fps-compose-mult-distrib:
assumes c0: ¢ $ 0 = (0::'a::idom)
shows (a * b) 0o ¢ = (a 0o ¢) * (b oo c)

(proof)

lemma fps-compose-prod-distrib:

assumes c0: ¢80 = (0::'a::idom)

shows prod a S 0o ¢ = prod (M\k. a k oo ¢) S
(proof)

lemma fps-compose-divide:

assumes [simp]: g dvd fh $ 0 = 0

shows  fps-compose f h = fps-compose (f | g = 'a :: field fps) h x fps-compose
gh
(proof)

lemma fps-compose-divide-distrib:

assumes g dvd fh $ 0 = 0 fps-compose g h # 0

shows  fps-compose (f / g :: 'a :: field fps) h = fps-compose f h /| fps-compose
gh

(proof)

lemma fps-compose-power:
assumes c0: ¢$0 = (0::'a::idom)
shows (a 0o ¢)™n = a"n oo ¢
(proof )

lemma fps-compose-uminus: — (a::'a::ring-1 fps) oo ¢ = — (a 0o ¢)

(proof)
lemma fps-compose-sub-distrib: (a — b) oo (c::'a::ring-1 fps) = (a 0o ¢) — (b oo
c)

(proof)

lemma fps-X-fps-compose: fps-X oo a = Abs-fps (An. if n = 0 then (0::'a::comm-ring-1)
else a$n)
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{proof)

lemma fps-compose-eq-0-iff:

fixes F' G :: 'a :: idom fps

assumes fps-nth G 0 = 0

shows fps-compose F G =0 +— F =0V (G=0A fps-nth F 0 = 0)
(proof)

lemma subdegree-fps-compose [simp]:

fixes F' G :: 'a :: idom fps

assumes [simp]: fps-nth G 0 = 0

shows subdegree (fps-compose F' G) = subdegree F * subdegree G
(proof)

lemma fps-inverse-compose:
assumes b0: (b$0 :: 'az:field) = 0
and a0: a$0 # 0
shows inverse a oo b = inverse (a oo b)

(proof)

lemma fps-divide-compose:
assumes c0: (¢$0 :: 'a::field) = 0
and b0: b$0 # 0
shows (a/b) 0o ¢ = (a oo ¢) / (b oo ¢)

(proof)

lemma gp:
assumes a0: a$0 = (0::'a:field)
shows (Abs-fps (An. 1)) oo a = 1/(1 — a)
(is ?one 0o a = -)

{(proof)

lemma fps-compose-radical:
assumes b0: b$0 = (0::'a::field-char-0)
and ra0: r (Suc k) (a$0) ~ Suc k = a$0
and a0: a$0 # 0
shows fps-radical r (Suc k) a oo b = fps-radical v (Suc k) (a oo b)

(proof)

lemma fps-const-mult-apply-left: fps-const ¢ x (a 0o b) = (fps-const ¢ x a) oo b
(proof )

lemma fps-const-mult-apply-right:
(a 00 b) * fps-const (c::'a::comm-semiring-1) = (fps-const ¢ * a) 00 b
{proof)

lemma fps-compose-assoc:

assumes c0: ¢$0 = (0::’a::idom)
and b0: 430 = 0
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shows a 0o (b oo ¢) = a 00 b oo ¢ (is 21 = ?r)
(proof)

lemma fps-X-power-compose:
assumes a0: a$0=0
shows fps-X"k oo a = (a::'a::idom fps) k
(is 21l = %r)

(proof)

lemma fps-inv-right:
assumes a0: a$0 = 0
and al: a$1 # 0
shows a oo fps-inv a = fps-X

(proof)

lemma fps-inv-deriv:
assumes a0: a$0 = (0::'a::field)
and al: a$1 # 0
shows fps-deriv (fps-inv a) = inverse (fps-deriv a oo fps-inv a)

(proof)

lemma fps-inv-idempotent:
assumes a0: a$0 = 0
and al: a$1 # 0
shows fps-inv (fps-inv a) = a

(proof)

lemma fps-ginv-ginv:
assumes a0: a$0 = 0
and al: a$1 # 0
and c0: ¢$0 = 0
and cl: c¢$1 # 0
shows fps-ginv b (fps-ginv ¢ a) = b 0o a oo fps-inv ¢
(proof)

lemma fps-ginv-deriv:
assumes a0:a$0 = (0::'a::field)
and al: a$1 # 0
shows fps-deriv (fps-ginv b a) = (fps-deriv b / fps-deriv a) oo fps-ginv fps-X a
(proof)

lemma fps-compose-linear:
fos-compose (f :: 'a :: comm-ring-1 fps) (fps-const ¢ x fps-X) = Abs-fps (An. ¢"n
«f$n)

{proof)

lemma fps-compose-uminus’”:
fps-compose f (—fps-X :: 'a :: comm-ring-1 fps) = Abs-fps (An. (—1) n x f $ n)
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(proof)
lemma fps-nth-compose-linear [simp):

fixes f :: 'a :: comm-ring-1 fps

shows fps-nth (fps-compose f (fps-const ¢ x fps-X)) n = ¢ " n x fps-nth fn
(proof )

5.19 Elementary series

5.19.1 Exponential series

definition fps-exp © = Abs-fps (An. z™n / of-nat (fact n))

lemma fps-exp-deriv[simp]: fps-deriv (fps-exp a) = fps-const (a::'a:field-char-0) x
fps-exp a
(is 21l = ?r)

{(proof)

lemma fps-exp-unique-ODE:
fps-deriv a = fps-const ¢ * a +— a = fps-const (a$0) * fps-exp (c::'a::field-char-0)
(is ?lhs «— ?rhs)

(proof)

lemma fps-exp-add-mult: fps-exp (a + b) = fps-exp (a::'a:field-char-0) * fps-exp
b (is 21 = ?2r)

(proof)

lemma fps-exp-nth[simp): fps-exp a $ n = a™n / of-nat (fact n)
(proof)

lemma fps-exp-0[simp|: fps-exp (0::'a:field) = 1
(proof )

lemma fps-exp-neg: fps-exp (— a) = inverse (fps-exp (a::'a::field-char-0))
(proof)

lemma fps-exp-nth-deriv[simp):
fos-nth-deriv n (fps-exp (a::'a:field-char-0)) = (fps-const a) "n * (fps-exp a)
(proof )

lemma fps-X-compose-fps-exp[simp]: fps-X oo fps-exp (a::'a:field) = fps-exp a —
1
(proof )

lemma fps-inv-fps-exp-compose:
assumes a: a # 0
shows fps-inv (fps-exp a — 1) oo (fps-exp a — 1) = fps-X
and (fps-ezp a — 1) oo fps-inv (fps-exp a — 1) = fps-X
(proof)

lemma fps-exp-power-mult: (fps-exp (c::'a::field-char-0)) "n = fps-exp (of-nat n x
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)
(proof)

lemma radical-fps-exp:

assumes 7: 1 (Suc k) 1 = 1

shows fps-radical v (Suc k) (fps-exp (c::'a::field-char-0)) = fps-exp (¢ / of-nat
(Suc k))
{proof)

lemma fps-exp-compose-linear [simp):
fos-exp (d::'a::field-char-0) oo (fps-const ¢ * fps-X) = fps-exp (¢ * d)
(proof)

lemma fps-fps-exp-compose-minus [simpl:
fps-compose (fps-exp ¢) (—fps-X) = fps-exp (—c :: 'a :: field-char-0)
(proof)

lemma fps-exp-eq-iff [simp]: fps-exp ¢ = fps-exp d +— ¢ = (d :: 'a :: field-char-0)
(proof)

lemma fps-exp-eq-fps-const-iff [simp]:
fos-exp (c == 'a :: field-char-0) = fps-const ¢/ +— ¢ =0 N ¢' =1
(proof)

lemma fps-exp-neq-0 [simp]: —fps-exp (¢ :: 'a :: field-char-0) = 0
(proof )

lemma fps-exp-eq-1-iff [simp]: fps-exp (¢ :: 'a :: field-char-0) = 1 +— ¢ =0
(proof )

lemma fps-exp-neg-numeral-iff [simp:
fos-exp (c =2 'a :: field-char-0) = numeral n <— ¢ = 0 A n = Num.One

{proof)

5.19.2 Logarithmic series

lemma Abs-fps-if-0:
Abs-fps (An. if n = 0 then (v::'a::ring-1) else fn) =
fps-const v + fps-X x Abs-fps (An. [ (Suc n))
{proof )

definition fps-In :: 'a::field-char-0 = 'a fps
where fps-ln ¢ = fps-const (1/c) x Abs-fps (An. if n = 0 then 0 else (— 1) ~(n
— 1) / of-nat n)

lemma fps-In-deriv: fps-deriv (fps-In ¢) = fps-const (1/c) x inverse (1 + fps-X)
(proof )

lemma fps-ln-nth: fps-in ¢ $ n = (if n = 0 then Oelse 1/cx ((— 1) " (n—1)/
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of-nat n))
{proof)

lemma fps-In-0 [simp]: fps-ln ¢ $ 0 = 0 (proof)

lemma fps-In-fps-exp-inv:

fixes a :: ‘a:field-char-0

assumes a: a # 0

shows fps-ln a = fps-inv (fps-exp a — 1) (is 2l = ?r)
(proof )

lemma fps-In-mult-add:
assumes c0: c¢#0
and d0: d#0
shows fps-ln ¢ + fps-In d = fps-const (c+d) * fps-In (cxd)
(is 7r = ?I)

(proof)

lemma fps-X-dvd-fps-In [simp]: fps-X dvd fps-In ¢
(proof)

5.19.3 Binomial series

definition fps-binomial a = Abs-fps (An. a gchoose n)

lemma fps-binomial-nth[simp|: fps-binomial a $ n = a gchoose n

{proof)

lemma fps-binomial-ODE-unique:

fixes c :: 'a::field-char-0

shows fps-deriv a = (fps-const ¢ x a) / (1 + fps-X) «— a = fps-const (a$0) *
fps-binomial ¢

(is ?lhs «— ?rhs)
(proof)

lemma fps-binomial-ODE-unique’:

(fps-deriv a = fps-const ¢ x a |/ (1 + fps-X) A a$ 0 =1) +— (a = fps-binomial
c)

(proof)

lemma fps-binomial-deriv: fps-deriv (fps-binomial ¢) = fps-const ¢ x fps-binomial
¢/ (1 + fps-X)

(proof)

lemma fps-binomial-add-mult: fps-binomial (c+d) = fps-binomial ¢ x fps-binomial
d (is 2l = or)

(proof)

lemma fps-binomial-minus-one: fps-binomial (— 1) = inverse (1 + fps-X)
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(is 2l = inverse 9r)
(proof)

lemma fps-binomial-of-nat: fps-binomial (of-nat n) = (1 + fps-X :: 'a :: field-char-0
fps) T n
(proof)

lemma fps-binomial-0 [simp]: fps-binomial 0 = 1

{proof)

lemma fps-binomial-power: fps-binomial a ~ n = fps-binomial (of-nat n * a)
(proof )

lemma fps-binomial-1: fps-binomial 1 = 1 + fps-X
(proof )

lemma fps-binomial-minus-of-nat:
fps-binomial (— of-nat n) = inverse ((1 + fps-X :: 'a :: field-char-0 fps) ~n)
(proof)

lemma one-minus-const-fps-X-power:
¢ # 0 = (1 — fps-const ¢ * fps-X) " n =
fps-compose (fps-binomial (of-nat n)) (—fps-const ¢ * fps-X)
(proof)

lemma one-minus-fps-X-const-neg-power:
inverse ((1 — fps-const ¢ * fps-X) " n) =
fps-compose (fps-binomial (—of-nat n)) (—fps-const ¢ * fps-X)
(proof)

lemma fps-X-plus-const-power:
¢ # 0 = (fps-X + fps-const ¢) " n =
fps-const (¢"n) x fps-compose (fps-binomial (of-nat n)) (fps-const (inverse c)
* fps-X)
{proof )

lemma fps-X-plus-const-neg-power:
¢ # 0 = inverse ((fps-X + fps-const ¢) "~ n) =
fps-const (inverse ¢ n) * fps-compose (fps-binomial (—of-nat n)) (fps-const
(inverse c) * fps-X)
(proof )

lemma one-minus-const-fps-X-neg-power’:

fixes ¢ :: 'a :: field-char-0

assumes n > 0

shows inverse ((1 — fps-const ¢ x fps-X) ~n) = Abs-fps (k. of-nat ((n + k —
1) choose k) * ¢k)
(proof)
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Vandermonde’s Identity as a consequence.

lemma gbinomial- Vandermonde:
sum (Ak. (a gchoose k) = (b gchoose (n — k))) {0..n} = (a + b) gchoose n
(proof)

lemma binomial- Vandermonde:

sum (Ak. (a choose k) * (b choose (n — k))) {0..n} = (a + b) choose n
{proof)

lemma binomial-Vandermonde-same: sum (Mk. (n choose k)?) {0..n} = (2 x n)
choose n

{proof)

lemma Vandermonde-pochhammer-lemma:
fixes a :: 'a::field-char-0
assumes b: \j. j<n = b # of-nat j
shows sum (Ak. (pochhammer (— a) k % pochhammer (— (of-nat n)) k) /
(of-nat (fact k) x pochhammer (b — of-nat n + 1) k)) {0..n} =
pochhammer (— (a + b)) n / pochhammer (— b) n
(is 21 = ?7r)

(proof)

lemma Vandermonde-pochhammer:
fixes a :: ‘a:field-char-0
assumes c: Vi € {0..< n}. ¢ # — of-nat i
shows sum (k. (pochhammer a k x pochhammer (— (of-nat n)) k) /
(of-nat (fact k) x pochhammer ¢ k)) {0..n} = pochhammer (¢ — a) n / pochham-
mer ¢ n

(proof)

5.19.4 Trigonometric functions
definition fps-sin (c::'a:field-char-0) =

Abs-fps (An. if even n then 0 else (— 1) ((n — 1) div 2) * ¢"n /(of-nat (fact
n)))

definition fps-cos (c::'a::field-char-0) =
Abs-fps (An. if even n then (— 1) ~(n div 2) * ¢"n / (of-nat (fact n)) else 0)

lemma fps-sin-0 [simp]: fps-sin 0 = 0
(proof )

lemma fps-cos-0 [simp]: fps-cos 0 = 1
(proof )

lemma fps-sin-deriv:
fos-deriv (fps-sin ¢) = fps-const ¢ x fps-cos ¢
(is ?lhs = %rhs)

(proof)
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lemma fps-cos-deriv: fps-deriv (fps-cos ¢) = fps-const (— ¢)x (fps-sin c)
(is ?lhs = %rhs)

(proof)

lemma fps-sin-cos-sum-of-squares: (fps-cos ¢)? + (fps-sin ¢)? = 1
(is ?lhs = -)
(proof)

lemma fps-sin-nth-0 [simp]: fps-sin ¢ $ 0 = 0
(proof )

lemma fps-sin-nth-1 [simp]: fps-sin ¢ $ Suc 0 = ¢

{proof)

lemma fps-sin-nth-add-2:

fos-sinc$ (n+ 2)=— (c* c* fps-sinc$n/ (of-nat (n + 1) * of-nat (n +
2)))
(proof )

lemma fps-cos-nth-0 [simp]: fps-cos ¢ $ 0 = 1
(proof)

lemma fps-cos-nth-1 [simp): fps-cos ¢ $ Suc 0 = 0
(proof )

lemma fps-cos-nth-add-2:

fps-cos ¢ $ (n 4+ 2) = — (¢ x ¢ * fps-cos ¢ $ n / (of-nat (n + 1) x of-nat (n +
2)))
(proof)

lemma nat-add-1-add-1: (n:nat) + 1 + 1 =n + 2
{proof)

lemma eq-fps-sin:
assumes a0: a $ 0 = 0
and al:a$ 1 =c¢

and a2: fps-deriv (fps-deriv a) = — (fps-const ¢ * fps-const ¢ x a)
shows fps-sin ¢ = a
(proof)

lemma eg-fps-cos:
assumes a0: a $ 0 = 1
and al:a$ 1 =0

and a2: fps-deriv (fps-deriv a) = — (fps-const ¢ * fps-const ¢ * a)
shows fps-cos ¢ = a
(proof)
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lemma fps-sin-add: fps-sin (a + b) = fps-sin a x fps-cos b + fps-cos a x fps-sin b
(proof)

lemma fps-cos-add: fps-cos (a + b) = fps-cos a x fps-cos b — fps-sin a * fps-sin b
(proof)

lemma fps-sin-even: fps-sin (— ¢) = — fps-sin ¢
(proof )

lemma fps-cos-odd: fps-cos (— ¢) = fps-cos c
(proof)

definition fps-tan ¢ = fps-sin ¢ / fps-cos ¢

lemma fps-tan-0 [simp]: fps-tan 0 = 0
(proof)

lemma fps-tan-deriv: fps-deriv (fps-tan c) = fps-const ¢ | (fps-cos c)?

(proof)

Connection to fps-exp over the complex numbers — Euler and de Moivre.
lemma fps-exp-ii-sin-cos: fps-exp (i * ¢) = fps-cos ¢ + fps-const i * fps-sin ¢
(is 71 = ?r)

(proof)

lemma fps-exp-minus-ii-sin-cos: fps-exp (— (i * ¢)) = fps-cos ¢ — fps-const i *
fps-sin ¢
(proof )

lemma fps-cos-fps-exp-ii: fps-cos ¢ = (fps-exp (1 * ¢) + fps-exp (— i % ¢)) /
fps-const 2

(proof)

lemma fps-sin-fps-exp-ii: fps-sin ¢ = (fps-exp (i * ¢) — fps-exp (—1ix* ¢)) / fps-const
(2xi)
(proof )

lemma fps-tan-fps-exp-ii:
fos-tan ¢ = (fps-exp (i x ¢) — fps-exp (— 1% ¢)) /
(fps-const i * (fps-exp (i * ¢) + fps-exp (— 1 * ¢)))
(proof)

lemma fps-demoivre:
(fps-cos a + fps-const i x fps-sin a) n =
fps-cos (of-nat n x a) + fps-const i x fps-sin (of-nat n * a)
(proof )
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5.20 Hypergeometric series

definition fps-hypergeo as bs (c::'a::field-char-0) =
Abs-fps (An. (foldl (Ar a. r* pochhammer a n) 1 as x ¢™n) /
(foldl (Ar b. v % pochhammer b n) 1 bs x of-nat (fact n)))

lemma fps-hypergeo-nth[simp|: fps-hypergeo as bs ¢ $ n =
(foldl (Ar a. r+ pochhammer a n) 1 as *x ¢ n) /
(foldl (Ar b. r % pochhammer b n) 1 bs * of-nat (fact n))

(proof)

lemma foldl-mult-start:
fixes v :: ‘a::comm-ring-1
shows foldl (Ar z. r x fx) vas* x = foldl (Arz. r* fz) (v* 1) as
(proof)

lemma foldr-mult-foldl:
fixes v :: ‘a::comm-ring-1
shows foldr (A r. v * fz) as v = foldl (A\rz. r x fz) v as
{proof)

lemma fps-hypergeo-nth-alt:
fps-hypergeo as bs ¢ $ n = foldr (Aa r. v * pochhammer a n) as (¢ "~ n) /
foldr (Ab r. r x pochhammer b n) bs (of-nat (fact n))

{proof)

lemma fps-hypergeo-fps-exp[simp|: fps-hypergeo || || ¢ = fps-exp ¢
(proof )

lemma fps-hypergeo-1-0[simp): fps-hypergeo [1][] ¢ = 1/(1 — fps-const ¢ * fps-X)
{proof )

lemma fps-hypergeo-B[simp): fps-hypergeo [—a] [| (— 1) = fps-binomial a
{proof)

lemma fps-hypergeo-0[simp]: fps-hypergeo as bs ¢ $ 0 = 1
{proof)

lemma foldl-prod-prod:
foldl (A(r::"b::comm-ring-1) (z::'a::comm-ring-1). r * fz) v as * foldl (A\r z. r *
gx) was=
foldl Arz.rxfaxgzx) (v*w) as
(proof )

lemma fps-hypergeo-rec:
fps-hypergeo as bs ¢ $ Suc n = ((foldl (Ar a. r+ (a + of-nat n)) ¢ as) /
(foldl (Ar b. 7 % (b + of-nat n)) (of-nat (Suc n)) bs)) * fps-hypergeo as bs ¢ $

{proof)
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lemma fps-XD-nth[simp|: fps-XD a $ n = of-nat n * a$n
(proof )

lemma fps-XD-0th[simp|: fps-XD a $ 0 = 0

(proof )
lemma fps-XD-Suc[simp]: fps-XD a $ Suc n = of-nat (Suc n) * a $ Suc n

(proof)
definition fps-XDp ¢ a = fps-XD a + fps-const ¢ * a

lemma fps-XDp-nth[simp]: fps-XDp ¢ a $ n = (¢ + of-nat n) * a$n
(proof )

lemma fps-XDp-commute: fps-XDp b o fps-XDp (c::'a::comm-ring-1) = fps-XDp
co fps-XDp b
(proof )

lemma fps-XDp0 [simp]: fps-XDp 0 = fps-XD
(proof)

lemma fps-XDp-fps-integral [simp]:
fixes a :: ‘a::{division-ring,ring-char-0} fps
shows fps-XDp 0 (fps-integral a ¢) = fps-X * a
(proof )

lemma fps-hypergeo-minus-nat:
fos-hypergeo [— of-nat n] [— of-nat (n + m)] (c::'a::field-char-0) $ k =
(if kK < n then
pochhammer (— of-nat n) k * ¢ ~k / (pochhammer (— of-nat (n + m)) k *
of-nat (fact k))
else 0)
fps-hypergeo [— of-nat m] [— of-nat (m + n)] (c:'a:field-char-0) $ k =
(if K < m then
pochhammer (— of-nat m) k x ¢ ~ k / (pochhammer (— of-nat (m + n)) k *
of-nat (fact k))
else 0)
{proof)

lemma pochhammer-rec-if: pochhammer a n = (if n = 0 then 1 else a x pochham-
mer (a + 1) (n — 1))

(proof )
lemma fps-XDp-foldr-nth [simp]: foldr (Ac r. fps-XDp ¢ o 1) cs (Ae. fps-XDp ¢ a)
c0$n=

foldr (Ac r. (¢ + of-nat n) x r) cs (c0 + of-nat n) * a$n
(proof)

lemma genric-fps-XDp-foldr-nth:
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assumes f:Vnca. fca$n=(ofnatn+ kc)xadn
shows foldr (A\cr. fcor)cs(Ae.gca) c0$n=

foldr (Acr. (kc+ of-natn) x r) c¢s (g c0a$ n)
{proof)

lemma dist-less-imp-nth-equal:
assumes dist f g < inverse (2 i)
andj < i
shows f$§j=98%j
{proof)

lemma nth-equal-imp-dist-less:
assumes \j. j<i= f$j=¢g8%]j
shows dist f g < inverse (2 ~ 1)

(proof)
lemma dist-less-eq-nth-equal: dist f g < inverse (2 " i) «— Vj<i. f$ij=98$
7)

{proof)

instance fps :: (comm-ring-1) complete-space

(proof)

bundle fps-syntax

begin

notation fps-nth (infixl «$» 75)
end

unbundle no fps-syntax

end

6 Converting polynomials to formal power series

theory Polynomial-FPS
imports Polynomial Formal-Power-Series
begin

context
includes fps-syntax

begin

definition fps-of-poly where
fps-of-poly p = Abs-fps (coeff p)

lemma fps-of-poly-eq-iff: fps-of-poly p = fps-of-poly ¢ +— p = ¢q
(proof)
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lemma fps-of-poly-nth [simp): fps-of-poly p $ n = coeff p n
(proof )

lemma fps-of-poly-const: fps-of-poly [:¢c:] = fps-const ¢
(proof )

lemma fps-of-poly-0 [simp]: fps-of-poly 0 = 0
(proof )

lemma fps-of-poly-1 [simp]: fps-of-poly 1 = 1
(proof)

lemma fps-of-poly-1' [simp]: fps-of-poly [:1:] = 1
(proof )

lemma fps-of-poly-numeral [simp]: fps-of-poly (numeral n) = numeral n
(proof)

lemma fps-of-poly-numeral’ [simp]: fps-of-poly [:numeral n:] = numeral n
(proof)

lemma fps-of-poly-fps-X [simp]: fps-of-poly [:0, 1:] = fps-X
(proof)

lemma fps-of-poly-add: fps-of-poly (p + q) = fps-of-poly p + fps-of-poly q
(proof)

lemma fps-of-poly-diff: fps-of-poly (p — q) = fps-of-poly p — fps-of-poly q
(proof)

lemma fps-of-poly-uminus: fps-of-poly (—p) = —fps-of-poly p
(proof )

lemma fps-of-poly-mult: fps-of-poly (p * q) = fps-of-poly p * fps-of-poly q
(proof)

lemma fps-of-poly-smult:
fos-of-poly (smult ¢ p) = fps-const ¢ x fps-of-poly p
(proof )

lemma fps-of-poly-sum: fps-of-poly (sum f A) = sum (Az. fps-of-poly (f x)) A
(proof )

lemma fps-of-poly-sum-list: fps-of-poly (sum-list xs) = sum-list (map fps-of-poly
xs)
(proof)
lemma fps-of-poly-prod: fps-of-poly (prod f A) = prod (Ax. fps-of-poly (f x)) A
(proof )
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lemma fps-of-poly-prod-list: fps-of-poly (prod-list xs) = prod-list (map fps-of-poly
xs)
(proof)

lemma fps-of-poly-pCons:
fos-of-poly (pCons (c :: 'a :: semiring-1) p) = fps-const ¢ + fps-of-poly p * fps-X
(proof)

lemma fps-of-poly-pderiv: fps-of-poly (pderiv p) = fps-deriv (fps-of-poly p)
(proof )

lemma fps-of-poly-power: fps-of-poly (p ~n) = fps-of-poly p " n
(proof )

lemma fps-of-poly-monom: fps-of-poly (monom (¢ :: 'a :: comm-ring-1) n) =
fps-const ¢ x fps-X " n
(proof)

lemma fps-of-poly-monom” fps-of-poly (monom (1 :: 'a :: comm-ring-1) n) =

fps-X T n
(proof)

lemma fps-of-poly-div:

assumes (¢ :: 'a :: field poly) dvd p

shows  fps-of-poly (p div q) = fps-of-poly p /| fps-of-poly q
{proof)

lemma fps-of-poly-divide-numeral:
fps-of-poly (smult (inverse (numeral ¢ :: 'a :: field)) p) = fps-of-poly p / numeral
c

(proof)

lemma subdegree-fps-of-poly:
assumes p # 0
defines n = Polynomial.order 0 p
shows  subdegree (fps-of-poly p) = n
(proof)

lemma fps-of-poly-duvd:

assumes p dvd q

shows  fps-of-poly (p :: 'a :: field poly) dvd fps-of-poly q
(proof)

lemmas fps-of-poly-simps =
fps-of-poly-0 fps-of-poly-1 fps-of-poly-numeral fps-of-poly-const fps-of-poly-fps-X
fps-of-poly-add fps-of-poly-diff fps-of-poly-uminus fps-of-poly-mult fps-of-poly-smult

184



fps-of-poly-sum fps-of-poly-sum-list fps-of-poly-prod fps-of-poly-prod-list
fps-of-poly-pCons fps-of-poly-pderiv fps-of-poly-power fps-of-poly-monom
fps-of-poly-divide-numeral

lemma fps-of-poly-pcompose:
assumes coeff ¢ 0 = (0 :: 'a :: idom)
shows  fps-of-poly (pcompose p q) = fps-compose (fps-of-poly p) (fps-of-poly q)
(proof )

!

lemmas reify-fps-atom =
fps-of-poly-0 fps-of-poly-1" fps-of-poly-numeral’ fps-of-poly-const fps-of-poly-fps-X

The following simproc can reduce the equality of two polynomial FPSs
two equality of the respective polynomials. A polynomial FPS is one that
only has finitely many non-zero coefficients and can therefore be written as
fps-of-poly p for some polynomial p.

This may sound trivial, but it covers a number of annoying side conditions
like 1 + fps-X # 0 that would otherwise not be solved automatically.

(ML)

lemma fps-of-poly-linear: fps-of-poly [:a,1 :: 'a :: field:] = fps-X + fps-const a
(proof)

lemma fps-of-poly-linear”: fps-of-poly [:1,a :: 'a :: field:] = 1 + fps-const a * fps-X
(proof )

lemma fps-of-poly-cutoff [simp]:
[ps-of-poly (poly-cutoff n p) = fps-cutoff n (fps-of-poly p)
(proof )

lemma fps-of-poly-shift [simp]: fps-of-poly (poly-shift n p) = fps-shift n (fps-of-poly
p)
(proof )

definition poly-subdegree :: 'a::zero poly = nat where
poly-subdegree p = subdegree (fps-of-poly p)
lemma coeff-less-poly-subdegree:

k < poly-subdegree p => coeff p k = 0
(proof)

definition prefiz-length :: ('a = bool) = 'a list = nat where
prefiz-length P zs = length (take While P xs)

primrec prefiz-length-auz :: (‘a = bool) = nat = 'a list = nat where
prefiz-length-aux P acc || = acc

185



| prefiz-length-aux P acc (z#xs) = (if P x then prefiz-length-auz P (Suc acc) xs
else acc)

lemma prefiz-length-auz-correct: prefiz-length-aux P acc xs = prefiz-length P xs +
acc

{proof)

lemma prefiz-length-code [code]: prefiz-length P zs = prefiz-length-auz P 0 zs
(proof )

lemma prefiz-length-le-length: prefiz-length P xs < length s
(proof)

lemma prefiz-length-less-length: (3 z€set xs. =P ©) = prefiz-length P zs < length
xs

(proof)

lemma nth-prefiz-length:
(Fzeset xs. P x) = =P (zs ! prefiz-length P xs)

{proof)

lemma nth-less-prefix-length:
n < prefiz-length P xs = P (zs ! n)
(proof)

lemma poly-subdegree-code [code]: poly-subdegree p = prefiz-length ((=) 0) (coeffs
p)
(proof)

end

Truncation of formal power series: all monomials cx¥ with k > n are re-
moved; the remainder is a polynomial of degree at most n — 1.

lift-definition truncate-fps :: nat = 'a fps = 'a :: zero poly is
An F k. if k > n then 0 else fps-nth F k
{proof )

lemma coeff-truncate-fps’ [simpl:

k > n = coeff (truncate-fps n F) k=0

k < n = coeff (truncate-fps n F) k = fps-nth F k

(proof )
lemma coeff-truncate-fps: coeff (truncate-fps n F) k = (if k < n then fps-nth F k
else 0)

(proof)

lemma truncate-0-fps [simp]: truncate-fps 0 F = 0
(proof)
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lemma degree-truncate-fps: n > 0 = degree (truncate-fps n F) < n
(proof)

lemma truncate-fps-0 [simpl: truncate-fps n 0 = 0
(proof)

lemma truncate-fps-add: truncate-fps n (f + g) = truncate-fps n f + truncate-fps
ng
(proof )

lemma truncate-fps-diff: truncate-fps n (f — g) = truncate-fps n f — truncate-fps
ng
(proof )

lemma truncate-fps-uminus: truncate-fps n (—f) = —truncate-fps n f
(proof)

lemma fps-of-poly-truncate [simpl: fps-of-poly (truncate-fps n f) = fps-cutoff n f
(proof )

end

7 A formalization of formal Laurent series

theory Formal-Laurent-Series
imports
Polynomial-FPS
begin
7.1 The type of formal Laurent series

7.1.1 Type definition

typedef (overloaded) a fls = {f::int = ’a::zero. V o nunat. f (— int n) = 0}
morphisms fls-nth Abs-fls

(proof)

setup-lifting type-definition-fls

unbundle fps-syntaz
notation fls-nth (infixl «$$) 75)

lemmas fis-eql = iffD1][OF fls-nth-inject, OF iffD2, OF fun-eq-iff, OF alll]

lemma fls-eq-iff: f = g +— (Vn. f $$ n = g $$ n)
(proof)

lemma nth-Abs-fls [simp]: ¥V oon. f (— int n) = 0 = Abs-fils f $$ n = fn
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{proof)

lemmas nth-Abs-fls-finite-nonzero-neg-nth = nth-Abs-fls|OF iffD2, OF eventu-
ally-cofinite]

lemmas nth-Abs-fls-ex-nat-lower-bound = nth-Abs-fls|OF iffD2, OF MOST-nat]
lemmas nth-Abs-fls-nat-lower-bound = nth-Abs-fls-ex-nat-lower-bound[OF ezl

lemma nth-Abs-fls-ex-lower-bound:
assumes IN. Vn<N. fn =10
shows Abs-flsf$8n=fn
(proof)

lemmas nth-Abs-fls-lower-bound = nth-Abs-fls-ez-lower-bound|[ OF ex|

lemmas MOST-fls-neg-nth-eq-0 [simp] = CollectD[OF fls-nth]
lemmas fis-finite-nonzero-neg-nth = iff D1[OF eventually-cofinite MOST-fls-neg-nth-eq-0]

lemma fls-nth-vanishes-below-natE:
fixes [ :: ‘a:zero fls
obtains N :: nat
where Vn>N. f$$(—int n) = 0

{proof)

lemma fis-nth-vanishes-belowE:
fixes [ :: ‘a:zero fls
obtains N :: int
where Vn<N. f$$n = 0
(proof)

7.1.2 Definition of basic Laurent series

instantiation fls :: (zero) zero

begin
lift-definition zero-fls :: ‘a fls is A-. 0 {proof)
instance (proof)

end

lemma fls-zero-nth [simp]: 0 $$ n = 0

{proof)

lemma fls-zero-eql: (An. f$$n =0) = f =0
(proof )

lemma fls-nonzerol: f$$n # 0 = f # 0
(proof )

lemma fls-nonzero-nth: f #= 0 +— (3 n. f $$ n £ 0)
(proof )
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lemma fls-trivial-delta-eq-zero [simp]: b = 0 = Abs-fls (An. if n=a then b else
0)=10
(proof )

lemma fis-delta-nth [simp]:
Abs-fls (An. if n=a then b else 0) $$ n = (if n=a then b else 0)
{proof )

instantiation fls :: ({zero,one}) one
begin
lift-definition one-fls :: ‘a fls is M\k. if k = 0 then 1 else 0
(proof )

instance (proof)
end

lemma fls-one-nth [simp]:
1 8% n=(if n=0then 1 else 0)
{proof)

instance fls :: (zero-neg-one) zero-neg-one

(proof)

definition fls-const :: 'a::zero = 'a fls
where fls-const ¢ = Abs-fls (An. if n = 0 then c else 0)

lemma fls-const-nth [simp]: fls-const ¢ $$ n = (if n = 0 then c else 0)
(proof )

lemma fls-const-0 [simp]: fls-const 0 = 0
(proof )

lemma fis-const-nonzero: ¢ # 0 = fls-const ¢ # 0

{proof)

lemma fls-const-eq-0-iff [simp]: fls-const ¢ = 0 +— ¢ = 0
(proof)

lemma fis-const-1 [simp)|: fls-const 1 = 1
{proof)

lemma fls-const-eq-1-iff [simp]: fls-const ¢ = 1 +— ¢ = 1
(proof )

lift-definition fis-X :: ‘a::{zero,one} fls
is An. if n = 1 then 1 else 0
(proof )

lemma fls-X-nth [simp]:
fis-X 88 n = (if n = 1 then 1 else 0)
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{proof)

lemma fls-X-nonzero [simp]: (fls-X :: 'a :: zero-neg-one fls) # 0
(proof)

lift-definition fls-X-inv :: ‘a::{zero,one} fls
is An. if n = —1 then 1 else 0
(proof)

lemma fls-X-inv-nth [simp]:
fls-X-inv 88 n = (if n = —1 then 1 else 0)
{proof )

lemma fls-X-inv-nonzero [simp]: (fls-X-inv :: 'a :: zero-neg-one fls) # 0

(proof)

7.2 Subdegrees

lemma unique-fis-subdegree:

assumes f # 0

shows 3Jln. f83n # 0 A (Vm. f8m # 0 — n < m)
(proof)

definition fls-subdegree :: ('a::zero) fls = int
where fls-subdegree f = (if f = 0 then 0 else LEAST n::int. f$$n # 0)

lemma fls-zero-subdegree [simp): fls-subdegree 0 = 0
(proof )

lemma nth-fls-subdegree-nonzero [simpl: f # 0 = f $$ fls-subdegree f # 0
(proof )

lemma nth-fls-subdegree-zero-iff: (f $3 fls-subdegree f = 0) +— (f = 0)
(proof )

lemma fls-subdegree-lel: f $8 n # 0 = fls-subdegree f < n
(proof)

lemma fls-subdegree-lel”: [ $$ n # 0 = n < m = fls-subdegree f < m
(proof )

lemma fls-eq0-below-subdegree [simpl: n < fls-subdegree f = f $$ n = 0
(proof )

lemma fls-subdegree-gel: f # 0 = (Nk- k <n = f$$ k =0) = n <
fls-subdegree f
(proof )

lemma fls-subdegree-ge0I: (Nk. k < 0 = f $$ k = 0) = 0 < fls-subdegree f
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{proof)

lemma fis-subdegree-greaterl:
assumes f # 0 N\k. k<n= f$$ k=0
shows n < fls-subdegree f
(proof)

lemma fls-subdegree-eql: f $$ n # 0 = (Nk.- k <n = [ 88 k = 0) =
fls-subdegree f = n
(proof )

lemma fls-delta-subdegree [simp]:
b # 0 = fls-subdegree (Abs-fls (An. if n=a then b else 0)) = a
{proof)

lemma fls-delta0-subdegree: fls-subdegree (Abs-fls (An. if n=0 then a else 0)) = 0
(proof)

lemma fls-one-subdegree [simp): fls-subdegree 1 = 0
(proof )

lemma fls-const-subdegree [simp]: fls-subdegree (fls-const ¢) = 0
(proof)

lemma fls-X-subdegree [simp): fls-subdegree (fls-X::'a::{zero-neg-one} fls) = 1
(proof )

lemma fls-X-inv-subdegree [simp|: fls-subdegree (fls-X-inv::'a::{zero-neg-one} fls)
=1

(proof )
lemma fis-eq-above-subdegreel

assumes N < fls-subdegree f N < fls-subdegree g VEK>N. f $$ k = g $$ k

shows f =g
(proof)

7.3 Shifting
7.3.1 Shift definition

definition fls-shift :: int = (‘a::zero) fls = 'a fls

where fls-shift n f = Abs-fls (Mk. f $$ (k+n))
— Since the index set is unbounded in both directions, we can shift in either
direction.

lemma fls-shift-nth [simp|: fls-shift m f $8 n = f $$ (n+m)
(proof )

lemma fls-shift-eq-iff: (fls-shift m f = fls-shift m g) «+— (f = g)
(proof)
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lemma fls-shift-0 [simp]: fls-shift 0 f = f
(proof )

lemma fls-shift-subdegree [simp]:
f # 0 = fls-subdegree (fls-shift n f) = fls-subdegree f — n
(proof )

lemma fls-shift-fls-shift [simp]: fls-shift m (fls-shift k f) = fls-shift (k+m) f
(proof )

lemma fis-shift-fis-shift-reorder:
fls-shift m (fls-shift k f) = fls-shift k (fls-shift m f)
(proof )

lemma fls-shift-zero [simp): fls-shift m 0 = 0
(proof )

lemma fis-shift-eqO0-iff: fls-shift m f = 0 +— f =0
(proof )

lemma fls-shift-eq-1-iff: fls-shift n f = 1 +— f = fls-shift (—n) 1
(proof )

lemma fis-shift-nonneg-subdegree: m < fls-subdegree f = fls-subdegree (fls-shift
mf) >0
(proof)

lemma fis-shift-delta:

fls-shift m (Abs-fls (An. if n=a then b else 0)) = Abs-fls (An. if n=a—m then b
else 0)

(proof )

lemma fis-shift-const:
fls-shift m (fls-const ¢) = Abs-fls (An. if n=—m then c else 0)
(proof )

lemma fis-shift-const-nth:
fls-shift m (fls-const ¢) $8 n = (if n=—m then c else 0)
{proof )

lemma fls-X-conv-shift-1: fls-X = fls-shift (—1) 1
(proof)

lemma fls-X-shift-to-one [simp]: fls-shift 1 fls-X = 1
(proof )

lemma fis-X-inv-conv-shift-1: fis-X-inv = fls-shift 1 1
(proof)
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lemma fls-X-inv-shift-to-one [simp|: fls-shift (—1) fls-X-inv = 1
(proof )

lemma fis-X-fls- X-inv-conv:
fls-X = fls-shift (—2) fis-X-inv fls-X-inv = fls-shift 2 fls-X
(proof)

7.3.2 Base factor

Similarly to the unit-factor for formal power series, we can decompose a
formal Laurent series as a power of the implied variable times a series of
subdegree 0. (See lemma fis-base-factor-X-power-decompose.) But we will
call this something other unit-factor because it will not satisfy assumption
is-unit-unit-factor of semidom-divide-unit-factor.
definition fls-base-factor :: ('a::zero) fls = 'a fls

where fls-base-factor-def[simp): fls-base-factor f = fls-shift (fls-subdegree f) f

lemma fls-base-factor-nth: fls-base-factor f $$ n = f $$ (n + fls-subdegree f)
(proof )

lemma fls-base-factor-nonzero [simpl: f # 0 = fls-base-factor f # 0
(proof )

lemma fls-base-factor-subdegree [simp]: fls-subdegree (fls-base-factor f) = 0
(proof )

lemma fls-base-factor-base [simp]:
fls-base-factor f $$ fls-subdegree (fls-base-factor f) = f $$ fls-subdegree f
(proof )

lemma fis-conv-base-factor-shift-subdegree:
| = fls-shift (—fls-subdegree f) (fls-base-factor f)
{proof )

lemma fis-base-factor-idem:
fls-base-factor (fls-base-factor (f::'a::zero fls)) = fls-base-factor f
(proof )

lemma fls-base-factor-zero: fls-base-factor (0::'a::zero fls) = 0
(proof )

lemma fls-base-factor-zero-iff: fls-base-factor (f::'a::zero fls) = 0 «— f =0
(proof)

lemma fls-base-factor-nth-0: f # 0 = fls-base-factor f $$ 0 # 0
(proof )
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lemma fis-base-factor-one: fls-base-factor (1::'a::{zero,one} fls) = 1
{proof)

lemma fis-base-factor-const: fls-base-factor (fls-const ¢) = fls-const ¢
(proof )

lemma fis-base-factor-delta:
fls-base-factor (Abs-fls (An. if n=a then c else 0)) = fls-const ¢

{proof)

lemma fis-base-factor-X: fis-base-factor (fls-X::'a::{zero-neg-one} fls) = 1
(proof)

lemma fis-base-factor-X-inv: fls-base-factor (fls-X-inv::'a::{zero-neg-one} fls) = 1

(proof)

lemma fis-base-factor-shift [simp|: fls-base-factor (fls-shift n f) = fls-base-factor f
{proof )

7.4 Conversion between formal power and Laurent series

7.4.1 Converting Laurent to power series

We can truncate a Laurent series at index 0 to create a power series, called
the regular part.
lift-definition fls-regpart :: (‘a::zero) fls = 'a fps

is Af. Abs-fps (An. f (int n))

(proof)

lemma fls-regpart-nth [simp): fls-regpart f $ n = f $$ (int n)
(proof)

lemma fls-regpart-zero [simp): fls-regpart 0 = 0
(proof )

lemma fls-regpart-one [simpl: fls-regpart 1 = 1
(proof)

lemma fis-regpart-Abs-fls:
Veon. F (— int n) = 0 = fls-regpart (Abs-fls F) = Abs-fps (An. F (int n))
{proof )

lemma fis-regpart-delta:
fls-regpart (Abs-fls (An. if n=a then b else 0)) =
(if a < 0 then 0 else Abs-fps (An. if n=nat a then b else 0))
(proof)

lemma fls-regpart-const [simp]: fls-regpart (fls-const ¢) = fps-const ¢
(proof )
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lemma fis-regpart-fls-X [simp]: fls-regpart fls-X = fps-X
(proof )

lemma fis-regpart-fis-X-inv [simp]: fls-regpart fls-X-inv = 0
(proof )

lemma fis-regpart-eq0-imp-nonpos-subdegree:
assumes fis-regpart f = 0
shows fls-subdegree f < 0

(proof)

lemma fis-subdegree-lt-fls-regpart-subdegree:
fls-subdegree f < int (subdegree (fls-regpart f))
(proof )

lemma fis-regpart-subdegree-conv:

assumes fis-subdegree f > 0

shows subdegree (fls-regpart f) = nat (fls-subdegree f)
— This is the best we can do since if the subdegree is negative, we might still have
the bad luck that the term at index 0 is equal to 0.

(proof)

lemma fis-eq-conv-fps-eql:
assumes 0 < fls-subdegree f 0 < fls-subdegree g fls-regpart f = fls-regpart g
shows f=g

(proof)

lemma fis-regpart-shift-conv-fps-shift:
m > 0 = fls-regpart (fls-shift m f) = fps-shift (nat m) (fls-regpart f)
(proof )

lemma fps-shift-fls-regpart-conv-fis-shift:
fps-shift m (fls-regpart ) = fls-regpart (fls-shift m f)
(proof)

lemma fps-unit-factor-fls-regpart:
fls-subdegree f > 0 = unit-factor (fls-regpart f) = fls-regpart (fls-base-factor f)
(proof )

The terms below the zeroth form a polynomial in the inverse of the implied
variable, called the principle part.

lift-definition fis-prpart :: (‘a::zero) fls = 'a poly
is Af. Abs-poly (An. if n = 0 then 0 else f (— int n))
(proof)

lemma fls-prpart-coeff [simpl: coeff (fls-prpart f) n = (if n = 0 then 0 else f $$

(— int n))
(proof)
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lemma fls-prpart-eq0-iff: (fls-prpart f = 0) +— (fls-subdegree f > 0)
(proof)

lemma fls-prpart0 [simp): fls-prpart 0 = 0
(proof)

lemma fls-prpart-one [simpl: fls-prpart 1 = 0
(proof)

lemma fis-prpart-delta:
fls-prpart (Abs-fls (An. if n=a then b else 0)) =
(if a<0 then Poly (replicate (nat (—a)) 0 @ [b]) else 0)
(proof )

lemma fls-prpart-const [simp|: fls-prpart (fls-const ¢) = 0
(proof )

lemma fls-prpart-X [simp): fls-prpart fls-X = 0
(proof)

lemma fls-prpart-X-inv: fls-prpart fls-X-inv = [:0,1:]
(proof)

lemma degree-fls-prpart [simp]:
degree (fls-prpart f) = nat (—fls-subdegree f)
{proof)

lemma fils-prpart-shift:

assumes m < (

shows  fls-prpart (fls-shift m f) = pCons 0 (poly-shift (Suc (nat (—m)))
(fls-prpart [))
(proof )

lemma fls-prpart-base-factor: fls-prpart (fls-base-factor f) = 0
(proof )

The essential data of a formal Laurant series resides from the subdegree up.

abbreviation fis-base-factor-to-fps :: ('a::zero) fls = ‘a fps
where fls-base-factor-to-fps f = fls-regpart (fls-base-factor f)

lemma fis-base-factor-to-fps-conv-fps-shift:
assumes fis-subdegree f > 0
shows fls-base-factor-to-fps f = fps-shift (nat (fls-subdegree f)) (fls-regpart f)
(proof )

lemma fis-base-factor-to-fps-nth:

fls-base-factor-to-fps f $ n = f $3$ (fls-subdegree f + int n)
(proof)
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lemma fls-base-factor-to-fps-base: f # 0 = fls-base-factor-to-fps f $ 0 # 0
(proof)

lemma fis-base-factor-to-fps-nonzero: f # 0 = fis-base-factor-to-fps f # 0
(proof)

lemma fls-base-factor-to-fps-subdegree [simp]: subdegree (fls-base-factor-to-fps f) =
0
(proof )

lemma fis-base-factor-to-fps-trivial:
fls-subdegree f = 0 = fls-base-factor-to-fps f = fls-regpart f
(proof )

lemma fis-base-factor-to-fps-zero: fls-base-factor-to-fps 0 = 0
(proof)

lemma fis-base-factor-to-fps-one: fls-base-factor-to-fps 1 = 1
(proof )

lemma fis-base-factor-to-fps-delta:
fls-base-factor-to-fps (Abs-fls (An. if n=a then c else 0)) = fps-const ¢

{proof)

lemma fis-base-factor-to-fps-const:
fls-base-factor-to-fps (fls-const ¢) = fps-const ¢
(proof )

lemma fis-base-factor-to-fps-X:
fls-base-factor-to-fps (fls-X::'a::{zero-neq-one} fls) = 1
(proof )

lemma fis-base-factor-to-fps-X-inv:
fls-base-factor-to-fps (fls-X-inv::'a::{zero-neg-one} fls) = 1
(proof)

lemma fis-base-factor-to-fps-shift:
fls-base-factor-to-fps (fls-shift m f) = fls-base-factor-to-fps f
(proof)

lemma fis-base-factor-to-fps-base-factor:
fls-base-factor-to-fps (fls-base-factor f) = fls-base-factor-to-fps f
(proof)

lemma fps-unit-factor-fls-base-factor:
unit-factor (fls-base-factor-to-fps f) = fls-base-factor-to-fps f
(proof )
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7.4.2 Converting power to Laurent series

We can extend a power series by Os below to create a Laurent series.

definition fps-to-fls :: (‘a::zero) fps = 'a fls
where fps-to-fls f = Abs-fls (Mk::int. if k<0 then 0 else f $ (nat k))

lemma fps-to-fls-nth [simp]:
(fps-to-fls f) $8 n = (if n < 0 then 0 else f$(nat n))
{proof)

lemma fps-to-fis-eq-imp-fps-eq:
assumes fps-to-fls f = fps-to-fls g
shows f=yg

(proof)

lemma fps-to-fis-eq-iff [simp): fps-to-fls f = fps-to-fls g +— f =g
(proof )

lemma fps-zero-to-fls [simp]: fps-to-fls 0 = 0
(proof )

lemma fps-to-fls-nonzerol: f # 0 = fps-to-fis f # 0
(proof)

lemma fps-one-to-fls [simp]: fps-to-fls 1 = 1
(proof )

lemma fps-to-fis-Abs-fps:

fos-to-fls (Abs-fps F) = Abs-fls (An. if n<0 then 0 else F (nat n))

(proof)
lemma fps-delta-to-fls:

fos-to-fls (Abs-fps (An. if n=a then b else 0)) = Abs-fls (An. if n=int a then b
else 0)

(proof)

lemma fps-const-to-fls [simp]: fps-to-fls (fps-const ¢) = fls-const ¢
(proof )

lemma fps-X-to-fls [simp]: fps-to-fls fps-X = fls-X
(proof )

lemma fps-to-fls-eq-0-iff [simp]: (fps-to-fls f = 0) +— (f=0)
(proof)

lemma fps-to-fls-eq-1-iff [simp]: fps-to-fls f =1 +— f =1
(proof )

lemma fls-subdegree-fis-to-fps-gt0: fls-subdegree (fps-to-fls f) > 0
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(proof)

lemma fls-subdegree-fls-to-fps: fls-subdegree (fps-to-fls f) = int (subdegree f)
(proof )

lemma fps-shift-to-fls [simp]:
n < subdegree f = fps-to-fls (fps-shift n f) = fls-shift (int n) (fps-to-fls f)
(proof )

lemma fis-base-factor-fps-to-fis: fls-base-factor (fps-to-fls f) = fps-to-fls (unit-factor
)
(proof)

lemma fls-regpart-to-fls-trivial [simp):
fls-subdegree f > 0 = fps-to-fls (fls-regpart f) = f
(proof )

lemma fls-regpart-fps-trivial [simpl: fls-regpart (fps-to-fls f) = f
(proof )

lemma fps-to-fis-base-factor-to-fps:
fos-to-fls (fls-base-factor-to-fps f) = fls-base-factor f
(proof )

lemma fis-conv-base-factor-to-fps-shift-subdegree:
f = fis-shift (—fis-subdegree f) (fps-to-fls (fls-base-factor-to-fps f))
(proof)

lemma fls-base-factor-to-fps-to-fls:
fls-base-factor-to-fps (fps-to-fls f) = wunit-factor f
(proof )

lemma fis-as-fps:

fixes f :: 'a :: zero fls and n :: int

assumes n: n > —fls-subdegree f

obtains f’ where f = fls-shift n (fps-to-fls ')
(proof)

lemma fls-as-fps”:
fixes f :: 'a :: zero fls and n :: int
assumes n: n > —fils-subdegree f
shows 3f’. f = fis-shift n (fps-to-fls f7)
(proof)

abbreviation

fls-regpart-as-fls f = fps-to-fls (fls-regpart f)
abbreviation

fls-prpart-as-fis f =
fls-shift (—fls-subdegree f) (fps-to-fls (fps-of-poly (reflect-poly (fls-prpart f))))
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lemma fls-regpart-as-fls-nth:
fis-regpart-as-fls f $8 n = (if n < 0 then 0 else f $$ n)
(proof)

lemma fis-regpart-idem:
fls-regpart (fls-regpart-as-fls f) = fls-regpart f
(proof )

lemma fis-prpart-as-fis-nth:
fls-prpart-as-fls f $8 n = (if n < 0 then [ $$ n else 0)
(proof)

lemma fls-prpart-idem [simp): fls-prpart (fls-prpart-as-fls f) = fls-prpart f
(proof )

lemma fls-regpart-prpart: fls-regpart (fls-prpart-as-fls f) = 0
(proof)

lemma fls-prpart-regpart: fls-prpart (fls-regpart-as-fis f) = 0
(proof )

7.5 Algebraic structures
7.5.1 Addition

instantiation fis :: (monoid-add) plus

begin
lift-definition plus-fis :: ‘a fls = 'a fls = 'a flsis \Mfgn. fn+ gn
(proof)
instance (proof)

end

lemma fls-plus-nth [simp]: (f + ¢) 33 n=7%3n + ¢g$$ n
(proof)

lemma fls-plus-const: fls-const x + fls-const y = fls-const (z+y)
(proof )

lemma fis-plus-subdegree:
[+ g# 0 = fis-subdegree (f + g) > min (fls-subdegree f) (fls-subdegree g)
(proof )

lemma fls-shift-plus [simp]:
fls-shift m (f + g) = (fls-shift m f) + (fls-shift m g)
{proof )

lemma fls-regpart-plus [simpl: fls-regpart (f + g) = fis-regpart f + fls-regpart g
(proof )
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lemma fls-prpart-plus [simp)] : fls-prpart (f + g) = fls-prpart f + fls-prpart g
(proof)

lemma fis-decompose-reg-pr-parts:
fixes f :: 'a :: monoid-add fls
defines R = fls-regpart-as-fis f
and P = fls-prpart-as-fis f
shows f=P+ R
and f=R+ P
(proof )

lemma fps-to-fls-plus [simp]: fps-to-fls (f + g) = fps-to-fls f + fps-to-fls g
(proof )

instance fls :: (monoid-add) monoid-add

(proof)

instance fls :: (comm-monoid-add) comm-monoid-add
{proof)

lemma fis-nth-sum: fls-nth (3 z€A. fx) n = (D> x€A. fls-nth (f ) n)
(proof )

7.5.2 Subtraction and negatives
instantiation fis :: (group-add) minus
begin
lift-definition minus-fls :: 'a fls = 'a fls = ‘a flsis A\fgn. fn —gn

{proof )
instance (proof)
end

lemma fls-minus-nth [simp]: (f — ¢) $$n=7%%n — g $$ n
(proof )

lemma fls-minus-const: fls-const x — fls-const y = fls-const (z—y)
(proof )

lemma fis-subdegree-minus:
[ — g # 0 = fis-subdegree (f — g) > min (fls-subdegree f) (fls-subdegree g)
(proof )

lemma fls-shift-minus [simp]: fls-shift m (f — g) = (fls-shift m f) — (fls-shift m
9)
(proof )

lemma fls-regpart-minus [simpl: fls-regpart (f — g) = fls-regpart f — fls-regpart g
(proof )
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lemma fls-prpart-minus [simp] : fls-prpart (f — g) = fls-prpart f — fls-prpart g
(proof )

lemma fps-to-fls-minus [simp]: fps-to-fls (f — g) = fps-to-fls f — fps-to-fls g
(proof )

instantiation fls :: (group-add) uminus
begin
lift-definition uminus-fls :: 'a fls = 'a flsis A\f n. — fn

{proof)
instance (proof)
end

lemma fls-uminus-nth [simpl: (—f) $$ n = — (f $$ n)
(proof )

lemma fls-const-uminus[simpl: fls-const (—z) = —fls-const
{proof)

lemma fls-shift-uminus [simp]: fls-shift m (— f) = — (fls-shift m f)
(proof)

lemma fls-regpart-uminus [simp): fls-regpart (— f) = — fls-regpart f
(proof )

lemma fls-prpart-uminus [simp)] : fls-prpart (— f) = — fls-prpart f
(proof )

lemma fps-to-fls-uminus [simp]: fps-to-fls (— f) = — fps-to-fls f
(proof )

instance fls :: (group-add) group-add
(proof)

instance fls :: (ab-group-add) ab-group-add
(proof)

lemma fls-uminus-subdegree [simp)|: fls-subdegree (—f) = fls-subdegree f
(proof )

lemma fls-subdegree-minus-sym: fls-subdegree (g9 — f) = fls-subdegree (f — g)
(proof )

lemma fls-regpart-sub-prpart: fls-regpart (f — fls-prpart-as-fls f) = fls-regpart f
(proof)

lemma fls-prpart-sub-regpart: fls-prpart (f — fls-regpart-as-fls f) = fls-prpart f
(proof )
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7.5.3 Multiplication

instantiation fls :: ({comm-monoid-add, times}) times
begin
definition fis-times-def:
(1) = (\f g
fls-shift
(= (fls-subdegree f + fls-subdegree g))
(fps-to-fls (fls-base-factor-to-fps f * fls-base-factor-to-fps g))

instance (proof)
end

lemma fls-times-nth-eq0: n < fls-subdegree f + fls-subdegree g =—> (f * g) $% n =
0
(proof)

lemma fis-times-nth:

fixes fdf gdg

defines df = fls-subdegree f and dg = fis-subdegree g

shows (f x g) $$ n = (O i=df + dg..n. f $$ (i — dg) * g $% (dg + n — i))

and (f*xg)$8Sn=_ i=df-n—dg. f$%ixg8%(n— 1))

and (fxg) 88 n= 0 i=dg.n—df. /88 (df + i — dg) * g $$ (dg + n —
df — 1))

and (fx9) % n=0_i=0.n—(df +dg). f$S(df + i) xg 3% (n — df —
i)
(proof)

lemma fls-times-base [simp]:
(f * g) 88 (fls-subdegree f + fls-subdegree g) =
(f $$ fls-subdegree f) * (g $$ fls-subdegree g)
(proof)

instance fls :: ({comm-monoid-add, mult-zero}) mult-zero
(proof)

lemma fls-mult-one:
fixes [ :: 'a::{comm-monoid-add, mult-zero, monoid-mult} fls
shows 1 x f = f
and fx1=Ff
(proof )

lemma fls-mult-const-nth [simp):
fixes [ :: 'a::{comm-monoid-add, mult-zero} fls
shows (fls-const z x ) $$ n = z x f$$n
and (f * fls-const z ) $$ n = f$$n x =
(proof)

lemma fls-const-mult-const[simp]:
fixes = y :: 'a::{comm-monoid-add, mult-zero}
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shows fls-const © * fls-const y = fls-const (zxy)
{proof )

lemma fis-subdegree-add-eq1:
assumes f # 0 fls-subdegree f < fls-subdegree g
shows fls-subdegree (f + g) = fls-subdegree f
(proof)

lemma fis-subdegree-add-eq2:
assumes g # 0 fls-subdegree g < fls-subdegree f
shows fls-subdegree (f + g) = fls-subdegree g
(proof)

lemma fis-subdegree-diff-eq1:
assumes f # 0 fis-subdegree f < fls-subdegree g
shows fls-subdegree (f — g) = fls-subdegree f
(proof)

lemma fis-subdegree-diff-eq2:
assumes ¢ # 0 fls-subdegree g < fis-subdegree f
shows fls-subdegree (f — g) = fls-subdegree g
(proof)

lemma nat-minus-fls-subdegree-plus-const-eq:
nat (—fls-subdegree (F + fls-const ¢)) = nat (—fls-subdegree F)
(proof)

lemma fis-mult-subdegree-ge:
fixes fg :: 'a:{comm-monoid-add,mult-zero} fls
assumes fxg # 0
shows fls-subdegree (fxg) > fls-subdegree f + fls-subdegree g
(proof )

lemma fis-mult-subdegree-ge-0:
fixes fg :: 'a:{comm-monoid-add,mult-zero} fls
assumes fis-subdegree f > 0 fls-subdegree g > 0
shows fls-subdegree (fxg) > 0
(proof)

lemma fls-mult-nonzero-base-subdegree-eq:
fixes fg :: 'a:{comm-monoid-add,mult-zero} fls
assumes [ $$ (fls-subdegree f) * g $$ (fls-subdegree g) # 0
shows fls-subdegree (fxg) = fls-subdegree f + fls-subdegree g
(proof)

lemma fls-subdegree-mult [simp):
fixes fg :: ‘a:semiring-no-zero-divisors fls
assumes f # 0 g # 0
shows fls-subdegree (f * g) = fls-subdegree f + fls-subdegree g
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{proof)

lemma fis-shifted-times-simps:

fixes f g :: 'a::{comm-monoid-add, mult-zero} fls

shows f x (fls-shift n g) = fis-shift n (fxg) (fls-shift n f) x g = fls-shift n (fxg)
(proof)

lemma fis-shifted-times-transfer:
fixes f g :: 'a::{comm-monoid-add, mult-zero} fls
shows fis-shift n f x g = f x fls-shift n g
(proof)

lemma fis-times-both-shifted-simp:
fixes f g :: 'a::{comm-monoid-add, mult-zero} fls
shows (fls-shift m f) x (fls-shift n g) = fls-shift (m+n) (fxg)
(proof )

lemma fis-base-factor-mult-base-factor:
fixes f g :: 'a::{comm-monoid-add, mult-zero} fls
shows fls-base-factor (f * fls-base-factor g) = fls-base-factor (f = g)
and fls-base-factor (fls-base-factor f x g) = fls-base-factor (f * g)
(proof)

lemma fis-base-factor-mult-both-base-factor:

fixes f g :: 'a::{comm-monoid-add,mult-zero} fls

shows fls-base-factor (fls-base-factor f * fls-base-factor g) = fls-base-factor (f *
9)

(proof)

lemma fis-base-factor-mult:
fixes f g :: 'a::semiring-no-zero-divisors fls
shows fls-base-factor (f = g) = fls-base-factor f * fls-base-factor g
(proof)

lemma fis-times-conv-base-factor-times:
fixes f g :: 'a::{comm-monoid-add, mult-zero} fls
shows
frg=
fls-shift (—(fls-subdegree f + fls-subdegree g)) (fls-base-factor f = fls-base-factor
9)
(proof )

lemma fis-times-base-factor-conv-shifted-times:
— Convenience form of lemma fls-times-both-shifted-simp.
fixes f g :: 'a::{comm-monoid-add, mult-zero} fls
shows
fls-base-factor f * fls-base-factor g = fls-shift (fls-subdegree f + fls-subdegree g)
(f = g)
(proof)
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lemma fis-times-conv-regpart:
fixes fg :: 'a:{comm-monoid-add,mult-zero} fls
assumes fis-subdegree f > 0 fls-subdegree g > 0
shows fls-regpart (f * g) = fls-regpart f * fls-regpart g
(proof)

lemma fis-base-factor-to-fps-mult-conv-unit-factor:
fixes f g :: 'a::{comm-monoid-add,mult-zero} fls
shows
fls-base-factor-to-fps (f x g) =
unit-factor (fls-base-factor-to-fps f * fls-base-factor-to-fps g)
(proof)

lemma fls-base-factor-to-fps-mult’:

fixes fg: 'a:{comm-monoid-add,mult-zero} fls

assumes (f $3$ fls-subdegree f) * (g $$ fls-subdegree g) # 0

shows fls-base-factor-to-fps (f * g) = fls-base-factor-to-fps f * fls-base-factor-to-fps
g

(proof )

lemma fis-base-factor-to-fps-mult:

fixes f g :: 'a::semiring-no-zero-divisors fls

shows fls-base-factor-to-fps (f * g) = fls-base-factor-to-fps f * fls-base-factor-to-fps
g

(proof )

lemma fis-times-conv-fps-times:
fixes fg :: 'a:{comm-monoid-add,mult-zero} fls
assumes fis-subdegree f > 0 fls-subdegree g > 0
shows f % g = fps-to-fls (fls-regpart f * fls-regpart g)
(proof )

lemma fps-times-conv-fls-times:
fixes fg :: 'a:{comm-monoid-add,mult-zero} fps
shows f % g = fls-regpart (fps-to-fls f * fps-to-fls g)
(proof )

lemma fis-times-fps-to-fis:
fixes f g :: 'a::{ comm-monoid-add,mult-zero} fps
shows fps-to-fls (f * g) = fps-to-fls f * fps-to-fls g
{proof )

lemma fis- X-times-conv-shift:
fixes f :: 'a::{ comm-monoid-add,mult-zero,monoid-mult} fls
shows fls-X * f = fls-shift (—1) ff * fis-X = fls-shift (1) f
(proof )

lemmas fls-X-times-comm = trans-sym[OF fls-X-times-conv-shift]
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lemma fls-subdegree-mult-fls-X:
fixes [ :: 'a:{comm-monoid-add,mult-zero,monoid-mult} fls
assumes [ # 0
shows fls-subdegree (fls-X « f) = fls-subdegree f + 1
and  fls-subdegree (f * fls-X) = fls-subdegree f + 1
(proof )

lemma fis-mult-fls-X-nonzero:
fixes [ :: 'a:{comm-monoid-add,mult-zero,monoid-mult} fls
assumes [ # 0
shows fls-X x f # 0
and [ x fls-X #£ 0
(proof)

lemma fis-base-factor-mult-fls-X:
fixes [ :: 'a::{comm-monoid-add,monoid-mult,mult-zero} fls
shows fls-base-factor (fls-X * f) = fls-base-factor f
and fls-base-factor (f % fls-X) = fls-base-factor f
(proof )

lemma fis-X-inv-times-conv-shift:
fixes [ :: 'a::{comm-monoid-add,mult-zero,monoid-mult} fls
shows fis-X-inv x f = fls-shift 1 f f x fls-X-inv = fls-shift 1 f
(proof )

lemmas fls-X-inv-times-comm = trans-sym|[OF fls-X-inv-times-conv-shift]

lemma fis-subdegree-mult-fls-X-inv:
fixes [ :: 'a:{comm-monoid-add,mult-zero,monoid-mult} fls
assumes [ # 0
shows fls-subdegree (fls-X-inv * f) = fls-subdegree f — 1
and  fls-subdegree (f * fls-X-inv) = fls-subdegree f — 1
(proof)

lemma fis-mult-fis-X-inv-nonzero:
fixes f :: 'ax{comm-monoid-add,mult-zero,monoid-mult} fls
assumes [ # 0
shows fls-X-inv x f # 0
and  f * fls-X-inv #£ 0
(proof)

lemma fis-base-factor-mult-fls-X-inv:
fixes [ :: 'a::{comm-monoid-add,monoid-mult,mult-zero} fls
shows fls-base-factor (fls-X-inv x f) = fls-base-factor f
and fls-base-factor (f * fls-X-inv) = fls-base-factor f
(proof )

lemma fis-mult-assoc-subdegree-ge-0:
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fixes fgh:: 'a:semiring-0 fls

assumes fis-subdegree f > 0 fls-subdegree g > 0 fls-subdegree h > 0
shows fxgx*xh=/fx(gxh)

(proof )

lemma fis-mult-assoc-base-factor:
fixes a b ¢ :: 'a::semiring-0 fls
shows
fis-base-factor a * fls-base-factor b * fls-base-factor ¢ =
fls-base-factor a * (fls-base-factor b x fls-base-factor c)

(proof)

lemma fls-mult-distrib-subdegree-ge-0:
fixes fgh :: 'a:semiring-0 fls
assumes fis-subdegree f > 0 fls-subdegree g > 0 fls-subdegree h > 0
shows (f+g)xh=fxh+g=xh
and hx(f+g)=hxf+hxg
(proof)

lemma fls-mult-distrib-base-factor:
fixes a b c :: 'a::semiring-0 fls
shows
fls-base-factor a x (fls-base-factor b + fls-base-factor ¢) =
fls-base-factor a * fls-base-factor b + fls-base-factor a * fls-base-factor c
(proof )

instance fls :: (semiring-0) semiring-0

(proof)

lemma fls-mult-commute-subdegree-ge-0:
fixes fg :: ‘a::comm-semiring-0 fls
assumes fis-subdegree f > 0 fls-subdegree g > 0
shows fxg=g=xf
(proof)

lemma fis-mult-commute-base-factor:
fixes a b c :: 'a::comm-semiring-0 fls
shows fis-base-factor a x fls-base-factor b = fls-base-factor b * fis-base-factor a
(proof)

instance fls :: (comm-semiring-0) comm-semiring-0

(proof)

instance fls :: (semiring-1) semiring-1
{proof)

lemma fls-of-nat: (of-nat n :: ‘a::semiring-1 fls) = fls-const (of-nat n)
(proof )
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lemma fis-of-nat-nth: of-nat n $% k = (if k=0 then of-nat n else 0)
(proof)

lemma fls-mult-of-nat-nth [simpl:
shows (of-nat k x f) $$ n = of-nat k * f$$n
and (f * of-nat k) $$ n = f$$n * of-nat k
(proo)

lemma fls-subdegree-of-nat [simpl: fls-subdegree (of-nat n) = 0
(proof )

lemma fis-shift-of-nat-nth:
fls-shift k (of-nat a) $3 n = (if n=—Fk then of-nat a else 0)
(proof)

lemma fls-base-factor-of-nat [simp):
fls-base-factor (of-nat n :: 'a::semiring-1 fls) = (of-nat n :: 'a fls)
(proof)

lemma fis-regpart-of-nat [simpl: fls-regpart (of-nat n) = (of-nat n :: 'a::semiring-1
fps)
(proof )

lemma fls-prpart-of-nat [simp]: fls-prpart (of-nat n) = 0
(proof )

lemma fis-base-factor-to-fps-of-nat:
fls-base-factor-to-fps (of-nat n) = (of-nat n :: 'a::semiring-1 fps)
(proof )

lemma fps-to-fls-of-nat:
fos-to-fls (of-nat n) = (of-nat n :: 'a::semiring-1 fls)
(proof)

lemma fps-to-fls-numeral [simpl: fps-to-fls (numeral n) = numeral n
(proof )

lemma fls-const-power: fls-const (a ~ b) = fls-const a ~ b
(proof)

lemma fls-const-numeral [simp): fls-const (numeral n) = numeral n
(proof)

lemma fls-mult-of-numeral-nth [simp):

shows (numeral k * f) $8 n = numeral k x f $$ n
and (f * numeral k) 38 n = f $$ n * numeral k

(proof)

lemma fls-nth-numeral’ [simp]:
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numeral n $8 0 = numeral n k # 0 = numeral n $$ k = 0
(proof)

instance fls :: (comm-semiring-1) comm-semiring-1
(proof )

instance fls :: (ring) ring (proof)
instance fls :: (comm-ring) comm-ring (proof)
instance fls :: (ring-1) ring-1 {(proof)

lemma fls-of-int-nonneg: (of-int (int n) :: 'a::ring-1 fls) = fls-const (of-int (int
n))
(proof)

lemma fls-of-int: (of-int @ :: 'a::ring-1 fls) = fls-const (of-int 1)
(proof )

lemma fls-of-int-nth: of-int n $% k = (if k=0 then of-int n else 0)
(proof )

lemma fls-mult-of-int-nth [simp]:
shows (of-int k x f) $$ n = of-int k * f$$n
and (f % of-int k) $$ n = f$8n * of-int k
(proof )

lemma fls-subdegree-of-int [simp]: fls-subdegree (of-int i) = 0
(proof )

lemma fis-shift-of-int-nth:
fls-shift k (of-int ©) $8 n = (if n=—Fk then of-int i else 0)
(proof )

lemma fls-base-factor-of-int [simpl:
fls-base-factor (of-int i :: 'a::ring-1 fls) = (of-int i :: 'a fls)
(proof )

lemma fls-regpart-of-int [simp]:
fls-regpart (of-int i) = (of-int i :: 'a::ring-1 fps)
(proof )

lemma fls-prpart-of-int [simp): fls-prpart (of-int n) = 0
(proof )

lemma fis-base-factor-to-fps-of-int:

fls-base-factor-to-fps (of-int i) = (of-int © :: ‘a::ring-1 fps)
(proof)
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lemma fps-to-fis-of-int:
fos-to-fls (of-int i) = (of-int i :: 'a::ring-1 fls)

(proof)

instance fis ::

instance fis ::

(proof)

instance fis ::
instance fis ::
instance fis :

instance fis ::

(comm-ring-1) comm-ring-1 (proof)

(semiring-no-zero-divisors) semiring-no-zero-divisors

(semiring-1-no-zero-divisors) semiring-1-no-zero-divisors {proof )
(ring-no-zero-divisors) ring-no-zero-divisors {proof)
(ring-1-no-zero-divisors) ring-1-no-zero-divisors {proof)

(idom) idom {proof)

lemma semiring-char-fls [simp]: CHAR('a :: comm-semiring-1 fls) = CHAR('a)

{proof)

instance fis

(proof)
instance fis

(proof)
instance fis

(proof)

instance fis ::

{proof)

i ({semiring-prime-char,comm-semiring-1}) semiring-prime-char
:: ({ comm-semiring-prime-char,comm-semiring-1}) comm-semiring-prime-char
it ({comm-ring-prime-char,comm-semiring-1}) comm-ring-prime-char

({idom-prime-char,comm-semiring-1}) idom-prime-char

lemma fls-subdegree-numeral [simp): fls-subdegree (numeral n) = 0

(proof)

lemma fls-regpart-numeral [simp): fls-regpart (numeral n) = numeral n

{proof)

7.5.4 Powers

lemma fis-subdegree-prod:

fixes F' :: '/

a = 'b :: field-char-0 fls

assumes A\z. 2 € [ = Fz # 0
shows fls-subdegree ([[z€l. F z) = (> z€l. fls-subdegree (F x))

(proof)

lemma fls-subdegree-prod’:

fixes F' :: '/

a = 'b:: field-char-0 fls

assumes A\z. x € [ = fls-subdegree (F x) # 0
shows fls-subdegree ([[z€l. F z) = (> z€l. fls-subdegree (F x))

(proof)
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lemma fls-pow-subdegree-ge:
fn # 0 = fis-subdegree (f"n) > n x fls-subdegree f
(proof )

lemma fis-pow-nth-below-subdegree:
k < n * fls-subdegree f = (f™n) $$ k
(proof)

0

lemma fls-pow-base [simp]:
(f " n) 3% (n x fls-subdegree ) = (f $$ fls-subdegree f) " n
(proof)

lemma fis-pow-subdegree-eql:
(f $% fls-subdegree f) "~ n # 0 = fls-subdegree (f"n) = n * fls-subdegree f
(proof )

lemma fls-unit-base-subdegree-power:
z x [ 8% fls-subdegree f = 1 = fls-subdegree (f ~n) = n * fls-subdegree f
f 8% fis-subdegree f x y = 1 = fls-subdegree (f ~n) = n x fls-subdegree f
(proof )

lemma fis-base-dvd1-subdegree-power:
[ 88 fls-subdegree f dvd 1 = fls-subdegree (f ~n) = n * fls-subdegree f
(proof )

lemma fis-pow-subdegree-ge0:
assumes fils-subdegree f > 0
shows  fls-subdegree (f™n) > 0
(proof)

lemma fis-subdegree-pow:
fixes [ :: 'a::semiring-1-no-zero-divisors fls
shows fls-subdegree (f ~ n) = n x fls-subdegree f
(proof )

lemma fis-shifted-pow:
(fls-shift m f) ~n = fls-shift (nxm) (f " n)
(proof)

lemma fis-pow-conv-fps-pow:

assumes fis-subdegree f > 0

shows f 7 n = fps-to-fls ( (fls-regpart f) "~ n)
(proof)

lemma fps-to-fls-power: fps-to-fls (f "~ n) = fps-to-fls f " n
(proof)

lemma fls-pow-conv-regpart:
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fls-subdegree f > 0 = fls-regpart (f ~ n) = (fls-regpart f) "~ n
{proof )

These two lemmas show that shifting 1 is equivalent to powers of the implied
variable.

lemma fls-X-power-conv-shift-1: fls-X ~n = fls-shift (—n) 1
(proof )

lemma fls- X-inv-power-conv-shift-1: fls-X-inv ~ n = fls-shift n 1

(proof)

abbreviation fls-X-intpow = (\i. fls-shift (—i) 1)

— Unifies fis-X and fls-X-inv so that fls-X-intpow returns the equivalent of the
implied variable raised to the supplied integer argument of fls-X-intpow, whether
positive or negative.

lemma fls-X-intpow-nonzero[simp|: (fls-X-intpow i :: 'a::zero-neq-one fls) # 0
(proof)

lemma fls-X-intpow-power: (fls-X-intpow i) ~ n = fls-X-intpow (n * i)
(proof )

lemma fls-X-power-nth [simp]: fls-X ~n $$ k = (if k=n then 1 else 0)
(proof )

lemma fls-X-inv-power-nth [simp]: fls-X-inv " n $% k = (if k=—n then 1 else 0)
(proof)

lemma fls-X-pow-nonzero[simp|: (fls-X ~n :: 'a :: semiring-1 fls) # 0
(proof)

lemma fls-X-inv-pow-nonzero[simp|: (fls-X-inv " n :: 'a :: semiring-1 fls) # 0

(proof)

lemma fls-subdegree-fls-X-pow [simp]: fls-subdegree (fls-X ~n) = n
(proof )

lemma fls-subdegree-fls-X-inv-pow [simp]: fls-subdegree (fls-X-inv ~n) = —n
(proof )

lemma fls-subdegree-fls-X-intpow [simp]:
fls-subdegree ((fls-X-intpow @) :: 'a::zero-neg-one fls) = i
(proof )

lemma fls-X-pow-conv-fps-X-pow: fls-regpart (fls-X ~n) = fps-X " n
(proof )

lemma fls-X-inv-pow-regpart: n > 0 = fls-regpart (fls-X-inv " n) = 0
(proof)
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lemma fis- X-intpow-regpart:
fls-regpart (fls-X-intpow i) = (if i>0 then fps-X ~ nat i else 0)
(proof )

lemma fis-X-power-times-conv-shift:
fls-X T nox f = fls-shift (—int n) ff * fls-X " n = fls-shift (—int n) f
(proof)

lemma fis- X-inv-power-times-conv-shift:
fls-X-inv " n x f = fls-shift (int n) ff * fls-X-inv ~ n = fls-shift (int n) f
(proof)

lemma fis- X-intpow-times-conv-shift:
fixes f :: 'a::semiring-1 fls
shows fls-X-intpow i * [ = fls-shift (—i) f [ = fls-X-intpow i = fls-shift (—i) f
(proof)

lemmas fls-X-power-times-comm = trans-sym|[OF fls-X-power-times-conv-shift]
lemmas fis-X-inv-power-times-comm = trans-sym|OF fls-X-inv-power-times-conv-shift]

lemma fis-X-intpow-times-comm:
fixes f :: 'a::semiring-1 fls
shows fls-X-intpow i x f = f * fls-X-intpow i
(proof )

lemma fis- X-intpow-times-fis- X-intpow:
(fls-X-intpow @ :: 'a::semiring-1 fls) * fls-X-intpow j = fls-X-intpow (i+j)
(proof )

lemma fis- X-intpow-diff-conv-times:
fls-X-intpow (i—j) = (fls-X-intpow i :: 'a::semiring-1 fls) * fls-X-intpow (—7)
(proof )

lemma fis-mult-fls- X-power-nonzero:
assumes [ # 0
shows fls-X "nxf#0fx fls-X "n#0
(proof)

lemma fls-mult-fls- X-inv-power-nonzero:
assumes [ # 0
shows fls-X-inv "n x f # 0 f * fls-X-inv "n # 0
(proof)

lemma fls-mult-fls- X-intpow-nonzero:
fixes f :: 'a::semiring-1 fls
assumes [ # 0
shows fls-X-intpow i x f # 0 f * fls-X-intpow i # 0
(proof)
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lemma fls-subdegree-mult-fls- X-power:
assumes f # 0
shows  fls-subdegree (fls-X ~n x f) = fls-subdegree f + n
and  fls-subdegree (f * fls-X " n) = fls-subdegree f + n
(proof )

lemma fis-subdegree-mult-fls- X-inv-power:
assumes [ # 0
shows  fls-subdegree (fls-X-inv " n * f) = fls-subdegree f — n
and  fls-subdegree (f * fls-X-inv ~ n) = fls-subdegree f — n
(proof)

lemma fis-subdegree-mult-fls- X-intpow:
fixes [ :: 'a:semiring-1 fls
assumes f # 0
shows  fls-subdegree (fls-X-intpow i x f) = fls-subdegree f + i
and  fis-subdegree (f * fls-X-intpow i) = fls-subdegree f + i
(proof)

lemma fis- X-shift:
fls-shift (—int n) fls-X = fls-X ~ Suc n
fis-shift (int (Suc n)) fils-X = fls-X-inv "~ n
(proof)

lemma fis- X-inv-shift:
fls-shift (int n) fls-X-inv = fls-X-inv ~ Suc n
fls-shift (— int (Suc n)) fls-X-inv = fls-X " n
(proof)

lemma fls-X-power-base-factor: fls-base-factor (fls-X ~n) = 1
(proof )

lemma fls-X-inv-power-base-factor: fls-base-factor (fls-X-inv ~n) = 1
(proof )

lemma fls-X-intpow-base-factor: fls-base-factor (fls-X-intpow i) = 1
(proof)

lemma fis-base-factor-mult-fls-X-power:
shows fls-base-factor (fls-X ~n * f) = fls-base-factor f
and fis-base-factor (f x fls-X ~n) = fls-base-factor f
(proof)

lemma fis-base-factor-mult-fls-X-inv-power:
shows fls-base-factor (fls-X-inv ~ n x f) = fls-base-factor f
and fls-base-factor (f x fls-X-inv ~ n) = fls-base-factor f
(proof )

215



lemma fis-base-factor-mult-fls- X-intpow:
fixes f :: 'a::semiring-1 fls
shows fls-base-factor (fls-X-intpow i x f) = fls-base-factor f
and fls-base-factor (f = fls-X-intpow i) = fls-base-factor f
(proof )

lemma fls-X-power-base-factor-to-fps: fls-base-factor-to-fps (fls-X ~n) = 1
(proof)

lemma fis-X-inv-power-base-factor-to-fps: fls-base-factor-to-fps (fls-X-inv ~ n) =
1
(proof)

lemma fls-X-intpow-base-factor-to-fps: fls-base-factor-to-fps (fls-X-intpow i) = 1
{proof )

lemma fis-base-factor-X-power-decompose:
fixes f :: 'a::semiring-1 fls
shows f = fls-base-factor [ * fls-X-intpow (fls-subdegree f)
and [ = fls-X-intpow (fls-subdegree f) * fls-base-factor f
(proof )

lemma fis-normalized-product-of-inverses:
assumes [ x g = 1
shows fis-base-factor f x fls-base-factor g =
fis-X 7 (nat (—(fls-subdegree f+fls-subdegree g)))
and  fis-base-factor f x fls-base-factor g =
fls-X-intpow (—(fls-subdegree f+fls-subdegree g))
(proof)

lemma fis-fps-normalized-product-of-inverses:
assumes f x g = 1
shows fis-base-factor-to-fps f * fls-base-factor-to-fps g =
fps-X ~ (nat (—(fls-subdegree f+fls-subdegree g)))
(proof)

7.5.5 Inverses

abbreviation fls-left-inverse ::
'a::{ comm-monoid-add,uminus,times} fls = 'a = 'a fls
where
fis-left-inverse fr =
fls-shift (fls-subdegree f) (fps-to-fls (fps-left-inverse (fls-base-factor-to-fps f) x))

abbreviation fis-right-inverse ::
'a::{ comm-monoid-add,uminus,times} fls = 'a = 'a fls
where
fls-right-inverse f y =
fls-shift (fls-subdegree f) (fps-to-fls (fps-right-inverse (fls-base-factor-to-fps f)
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Y))

instantiation fls :: ({comm-monoid-add,uminus,times,inverse}) inverse
begin
definition fls-divide-def:
fdivg=
fls-shift (fls-subdegree g — fls-subdegree f) (
fos-to-fls ((fls-base-factor-to-fps f) div (fis-base-factor-to-fps g))
)

definition fls-inverse-def:
inverse f = fls-shift (fls-subdegree f) (fps-to-fls (inverse (fls-base-factor-to-fps
)
instance (proof)
end

lemma fls-inverse-def".
inverse [ = fls-right-inverse f (inverse (f $$ fls-subdegree f))
(proof)

lemma fis-lr-inverse-base:
fls-left-inverse f x $$ (—fls-subdegree ) = x
fls-right-inverse fy $$ (—fls-subdegree f) =y
(proof)

lemma fis-inverse-base:
f # 0 = inverse f $$ (—fls-subdegree f) = inverse (f $$ fls-subdegree f)
(proof)

lemma fis-lr-inverse-starting0:
fixes f :: 'a::{ comm-monoid-add,mult-zero,uminus} fls
and g :: 'b::{ab-group-add,mult-zero} fls
shows fis-left-inverse f 0 = 0
and fis-right-inverse g 0 = 0
(proof)

lemma fis-lr-inverse-eq0-imp-starting0:
fis-left-inverse fz = 0 = = = 0
fls-right-inverse fx = 0 =— z = 0
(proof)

lemma fis-lr-inverse-eq-0-iff:
fixes z :: 'a::{comm-monoid-add,mult-zero,uminus}
and vy :: 'b::{ab-group-add,mult-zero}
shows fis-left-inverse fx = 0 «— z =0
and fls-right-inverse g y = 0 <— y = 0

(proof)

lemma fls-inverse-eq-0-iff ":

217



fixes [ :: 'a::{ab-group-add,inverse,mult-zero} fls
shows inverse f = 0 +— (inverse (f $3$ fls-subdegree f) = 0)
(proof )

lemma fls-inverse-eq-0-iff [simp]:
inverse [ = (0:: ('a::division-ring) fls) <— f 33 fls-subdegree f = 0
(proof )

lemmas fls-inverse-eq-0' = iffD2[OF fls-inverse-eq-0-iff ']
lemmas fls-inverse-eq-0 = iff D2[OF fis-inverse-eq-0-iff]

lemma fis-lr-inverse-const:
fixes a :: ‘a::{ab-group-add,mult-zero}
and b :: 'b::{comm-monoid-add,mult-zero,uminus}
shows fls-left-inverse (fls-const a) x = fls-const
and fls-right-inverse (fls-const b) y = fls-const y
(proof)

lemma fls-inverse-const:
fixes a :: ‘a::{comm-monoid-add,inverse,mult-zero,uminus}
shows inverse (fls-const a) = fls-const (inverse a)

{proof)

lemma fis-lr-inverse-of-nat:
fixes z :: ‘a::{ring-1,mult-zero}
and y :: 'bu{semiring-1,uminus}
shows fls-left-inverse (of-nat n) z = fls-const ©
and fls-right-inverse (of-nat n) y = fls-const y
(proof)

lemma fis-inverse-of-nat:

inverse (of-nat n = 'a :: {semiring-1,inverse,uminus} fls) = fls-const (inverse
(of-nat n))

(proof)

lemma fis-lr-inverse-of-int:
fixes z :: ‘a::{ring-1,mult-zero}
shows fls-left-inverse (of-int n) © = fls-const
and fls-right-inverse (of-int n) x = fls-const
(proof)

lemma fis-inverse-of-int:

inverse (of-int n :: 'a :: {ring-1,inverse,uminus} fls) = fls-const (inverse (of-int
n))

(proof )

lemma fis-lr-inverse-zero:

fixes = :: ‘a::{ab-group-add,mult-zero}
and y 2 'bu{comm-monoid-add,mult-zero,uminus}
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shows fis-left-inverse 0 x = fls-const x
and fls-right-inverse 0 y = fls-const y
(proof)

lemma fis-inverse-zero-conv-fis-const:

inverse (0::'a::{ comm-monoid-add,mult-zero,uminus,inverse} fls) = fls-const (inverse
0)

(proof)

lemma fls-inverse-zero”:
assumes inverse (0::'a::{ comm-monoid-add,inverse,mult-zero,uminus}) = 0
shows inverse (0::'a fls) = 0
(proof)

lemma fls-inverse-zero [simp)]: inverse (0::'a::division-ring fls) = 0
{proof)

lemma fls-inverse-base2:
fixes f :: 'a::{comm-monoid-add,mult-zero,uminus,inverse} fls
shows inverse f $$ (—fls-subdegree f) = inverse (f $$ fls-subdegree f)
(proof )

lemma fis-lr-inverse-one:
fixes z :: ‘a::{ab-group-add,mult-zero,one}
and y 2 'b:{comm-monoid-add,mult-zero,uminus,one}
shows fis-left-inverse 1 x = fls-const x
and fis-right-inverse 1 y = fls-const y
(proof )

lemma fis-lr-inverse-one-one:
fis-left-inverse 1 1 =
(1:'a::{ab-group-add,mult-zero,one} fls)
fls-right-inverse 1 1 =
(1::"b::{ comm-monoid-add,mult-zero,uminus,one} fls)
(proof)

lemma fls-inverse-one:
assumes inverse (1::'a::{comm-monoid-add,inverse,mult-zero,uminus,one}) = 1
shows inverse (1::'a fls) = 1
(proof)

lemma fis-left-inverse-delta:
fixes b :: ‘a:{ab-group-add,mult-zero}
assumes b # 0
shows fls-left-inverse (Abs-fls (An. if n=a then b else 0)) x =
Abs-fls (An. if n=—a then x else 0)
(proof)

lemma fis-right-inverse-delta:
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fixes b :: ‘a::{comm-monoid-add,mult-zero,uminus}
assumes b # 0
shows  fls-right-inverse (Abs-fls (An. if n=a then b else 0)) v =
Abs-fls (An. if n=—a then x else 0)
(proof)

lemma fis-inverse-delta-nonzero:
fixes b :: 'a:{comm-monoid-add,inverse,mult-zero,uminus}
assumes b # 0
shows inverse (Abs-fls (An. if n=a then b else 0)) =
Abs-fls (An. if n=—a then inverse b else 0)
{proof)

lemma fis-inverse-delta:
fixes b :: 'a::division-ring
shows inverse (Abs-fls (An. if n=a then b else 0)) =
Abs-fls (An. if n=—a then inverse b else 0)

{proof)

lemma fis-lr-inverse-X:
fixes z :: ‘a::{ab-group-add,mult-zero,zero-neq-one}
and vy :: 'b::{comm-monoid-add,uminus,mult-zero,zero-neq-one}
shows fls-left-inverse fls-X x = fls-shift 1 (fls-const x)
and fls-right-inverse fls-X y = fls-shift 1 (fls-const y)
(proof)

lemma fls-lr-inverse-X":
fixes z :: ‘a::{ab-group-add,mult-zero,zero-neq-one,monoid-mult}
and y :: 'b:{comm-monoid-add,uminus,mult-zero,zero-neq-one,monoid-mult}
shows fis-left-inverse fls-X x = fls-const © * fls-X-inv
and fis-right-inverse fls-X y = fls-const y * fls-X-inv
(proof )

lemma fls-inverse-X"

assumes inverse 1 = (1::'a:{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one})
shows inverse (fls-X::'a fls) = fls-X-inv
(proof)

lemma fls-inverse-X: inverse (fls-X::'a::division-ring fls) = fls-X-inv
(proof )

lemma fis-lr-inverse-X-inv:
fixes z :: ‘a::{ab-group-add, mult-zero,zero-neq-one}
and vy :: 'b::{comm-monoid-add,uminus,mult-zero,zero-neq-one}
shows fls-left-inverse fls-X-inv © = fls-shift (—1) (fls-const x)
and fls-right-inverse fls-X-inv y = fls-shift (—1) (fls-const y)
(proof )

lemma fls-lr-inverse-X-inv":
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fixes z :: ‘a::{ab-group-add,mult-zero,zero-neq-one,monoid-mult}

and y :: 'b:{comm-monoid-add,uminus,mult-zero,zero-neq-one,monoid-mult }
shows fis-left-inverse fls-X-inv x = fls-const © * fls-X

and fis-right-inverse fls-X-inv y = fls-const y * fls-X

(proof )

lemma fls-inverse-X-inv”:

assumes inverse 1 = (1::'a:{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one})
shows inverse (fls-X-inv::'a fls) = fls-X
{proof)

lemma fls-inverse-X-inv: inverse (fls-X-inv::'a::division-ring fls) = fls-X
(proof )

lemma fis-lr-inverse-subdegree:
assumes z # 0

shows fls-subdegree (fls-left-inverse f x) = — fls-subdegree f
and fls-subdegree (fls-right-inverse f ©) = — fls-subdegree f
{proof )

lemma fls-inverse-subdegree’:

inverse (f 3% fls-subdegree f) # 0 = fls-subdegree (inverse f) = — fls-subdegree
f

(proof )

lemma fls-inverse-subdegree [simp):
fixes [ :: 'a:division-ring fls
shows fls-subdegree (inverse f) = — fls-subdegree f
(proof)

lemma fis-inverse-subdegree-base-nonzero:
assumes f # 0 inverse (f $$ fls-subdegree f) # 0
shows inverse f $$ (fls-subdegree (inverse f)) =

{proof)

inverse (f $$ fls-subdegree f)

lemma fis-inverse-subdegree-base:
fixes f :: 'a::{ab-group-add,inverse,mult-zero} fls
shows inverse [ $$ (fls-subdegree (inverse f)) = inverse (f $$ fls-subdegree f)
(proof)

lemma fis-lr-inverse-subdegree-0:
assumes fis-subdegree f = 0
shows fls-subdegree (fls-left-inverse f ) > 0
and  fis-subdegree (fls-right-inverse f x) > 0
(proof)

lemma fis-inverse-subdegree-0:
fls-subdegree f = 0 = fls-subdegree (inverse f) > 0

{proof)
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lemma fis-lr-inverse-shift-nonzero:
fixes [ :: 'a:{comm-monoid-add,mult-zero,uminus} fls
assumes [ # 0
shows fls-left-inverse (fls-shift m f) © = fls-shift (—m) (fls-left-inverse f x)
and  fls-right-inverse (fls-shift m f) x = fls-shift (—m) (fls-right-inverse f x)
(proof )

lemma fis-inverse-shift-nonzero:
fixes [ :: ‘au{comm-monoid-add,inverse,mult-zero,uminus} fls
assumes [ # 0
shows inverse (fls-shift m f) = fls-shift (—m) (inverse f)
(proof)

lemma fis-inverse-shift:
fixes [ :: 'a:division-ring fls
shows inverse (fls-shift m f) = fls-shift (—m) (inverse f)
(proof)

lemma fis-left-inverse-base-factor:
fixes x :: ‘a::{ab-group-add,mult-zero}
assumes z # 0
shows fls-left-inverse (fls-base-factor f) © = fls-base-factor (fls-left-inverse f x)
(proof)

lemma fis-right-inverse-base-factor:

fixes y : ‘a::{comm-monoid-add,mult-zero,uminus}

assumes y # 0

shows fls-right-inverse (fls-base-factor f) y = fls-base-factor (fls-right-inverse
fy)

(proof)

lemma fls-inverse-base-factor’:
fixes f :: 'a::{comm-monoid-add,inverse,mult-zero,uminus} fls
assumes inverse (f $$ fls-subdegree f) # 0
shows inverse (fls-base-factor f) = fls-base-factor (inverse f)

(proof)

lemma fis-inverse-base-factor:
fixes f :: 'a::{ab-group-add,inverse,mult-zero} fls
shows inverse (fls-base-factor f) = fls-base-factor (inverse f)
(proof )

lemma fis-lr-inverse-regpart:
assumes fis-subdegree f = 0
shows fls-regpart (fls-left-inverse f x) = fps-left-inverse (fls-regpart f) x
and  fis-regpart (fls-right-inverse f y) = fps-right-inverse (fls-regpart f) y
(proof )
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lemma fis-inverse-regpart:
assumes fis-subdegree f = 0
shows fls-regpart (inverse f) = inverse (fls-regpart f)
(proof )

lemma fis-base-factor-to-fps-left-inverse:
fixes 1z :: 'a::{ab-group-add,mult-zero}
shows  fls-base-factor-to-fps (fls-left-inverse f ) =
fps-left-inverse (fls-base-factor-to-fps f) x
(proof )

lemma fis-base-factor-to-fps-right-inverse-nonzero:
fixes y :: ‘a::{comm-monoid-add,mult-zero,uminus}
assumes y # 0
shows  fls-base-factor-to-fps (fls-right-inverse f y) =
fps-right-inverse (fls-base-factor-to-fps f) y
(proof)

lemma fis-base-factor-to-fps-right-inverse:
fixes y :: ‘a::{ab-group-add,mult-zero}
shows  fls-base-factor-to-fps (fls-right-inverse f y) =
fps-right-inverse (fls-base-factor-to-fps f) y
(proof )

lemma fis-base-factor-to-fps-inverse-nonzero:
fixes [ :: 'au{comm-monoid-add,inverse,mult-zero,uminus} fls
assumes inverse (f $$ fls-subdegree f) # 0
shows  fls-base-factor-to-fps (inverse f) = inverse (fls-base-factor-to-fps f)
(proof)

lemma fis-base-factor-to-fps-inverse:
fixes f :: 'a::{ab-group-add,inverse,mult-zero} fls
shows fls-base-factor-to-fps (inverse f) = inverse (fls-base-factor-to-fps f)
(proof)

lemma fis-lr-inverse-fps-to-fis:
assumes subdegree f = 0
shows fls-left-inverse (fps-to-fls f) © = fps-to-fls (fps-left-inverse f x)
and  fls-right-inverse (fps-to-fls f) = = fps-to-fls (fps-right-inverse f x)
(proof)

lemma fis-inverse-fps-to-fis:
subdegree f = 0 = inverse (fps-to-fls f) = fps-to-fls (inverse f)
(proof )

lemma fis-lr-inverse-X-power:
fixes z :: 'a::ring-1
and y 2 'b::{semiring-1,uminus}
shows fis-left-inverse (fls-X ~n) x = fls-shift n (fls-const x)
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and fls-right-inverse (fls-X ~n) y = fls-shift n (fls-const y)
{proof )

lemma fls-Ir-inverse-X-power":
fixes z :: 'a::ring-1
and vy :: 'bu:{semiring-1,uminus}
shows fis-left-inverse (fls-X ~n) x = fls-const z x fls-X-inv "~ n
and fls-right-inverse (fls-X ~n) y = fls-const y x fls-X-inv " n
(proof )

lemma fls-inverse-X-power”:
assumes inverse 1 = (1::’a::{semiring-1,uminus,inverse})
shows inverse ((fls-X ~n)::'a fls) = fls-X-inv " n
{proof)

lemma fis-inverse-X-power:
inverse ((fls-X::'a::division-ring fls) ~n) = fls-X-inv " n
{proof )

lemma fis-lr-inverse-X-inv-power:
fixes z :: 'a::ring-1
and vy :: 'bu:{semiring-1,uminus}
shows fls-left-inverse (fls-X-inv ~n) x = fls-shift (—n) (fls-const x)
and fls-right-inverse (fls-X-inv ~ n) y = fls-shift (—n) (fls-const y)
(proof )

lemma fls-lr-inverse-X-inv-power":
fixes = :: 'a::ring-1
and y :: 'b:{semiring-1,uminus}
shows fls-left-inverse (fls-X-inv " n) x = fls-const z x fls-X " n
and fls-right-inverse (fls-X-inv " n) y = fls-const y x fls-X " n
(proof )

lemma fls-inverse-X-inv-power”:
assumes inverse 1 = (1::'a::{semiring-1,uminus,inverse})
shows inverse ((fls-X-inv " n)::'a fls) = fils-X "n
(proof)

lemma fis-inverse-X-inv-power:
inverse ((fls-X-inv::'a::division-ring fls) ~n) = fls-X " n
{proof)

lemma fis-lr-inverse-X-intpow:
fixes z :: ‘a::ring-1
and y :: 'b:{semiring-1,uminus}
shows fls-left-inverse (fls-X-intpow @) x = fls-shift i (fls-const z)
and fls-right-inverse (fls-X-intpow 1) y = fls-shift i (fls-const y)
(proof )
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lemma fls-Ir-inverse-X-intpow":
fixes = :: 'a::ring-1
and y :: 'b:{semiring-1,uminus}
shows fls-left-inverse (fls-X-intpow i) © = fls-const x x fls-X-intpow (—1)
and fls-right-inverse (fls-X-intpow i) y = fls-const y * fls-X-intpow (—1)
(proof )

lemma fls-inverse-X-intpow":
assumes inverse 1 = (1::'a:{semiring-1,uminus,inverse})
shows inverse (fls-X-intpow i :: 'a fls) = fls-X-intpow (—1)
(proof)

lemma fis-inverse-X-intpow:
inverse (fls-X-intpow i :: 'a::division-ring fls) = fls-X-intpow (—1)

(proof)

lemma fis-left-inverse:
fixes [ :: 'a:ring-1 fls
assumes z * [ $$ fls-subdegree f =
shows fis-left-inverse fz x f =

(proof)

~
~

lemma fis-right-inverse:
fixes [ :: ‘a:ring-1 fls
assumes | $$ fls-subdegree f x y = 1
shows f x fis-right-inverse fy = 1
(proof)
lemma fis-left-inverse-eq-fis-right-inverse:
fixes [ :: ‘a:ring-1 fls
assumes z * [ $$ fls-subdegree f = 1 f $$ fls-subdegree f * y = 1
— These assumptions imply x equals y, but no need to assume that.
shows fis-left-inverse f x = fls-right-inverse f y

{proof)

lemma fis-left-inverse-eq-inverse:

fixes [ :: 'a::division-ring fls

shows fls-left-inverse f (inverse (f $$ fls-subdegree f)) = inverse f
(proof)

lemma fis-right-inverse-eq-inverse:

fixes f :: 'a::division-ring fls

shows fls-right-inverse f (inverse (f $$ fls-subdegree f)) = inverse f
(proof)

lemma fis-left-inverse-eq-fls-right-inverse-comm:
fixes [ :: ‘a::comm-ring-1 fls
assumes z * [ $$ fls-subdegree f = 1
shows fis-left-inverse f x = fls-right-inverse f

{proof)
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lemma fls-left-inverse’:
fixes [ :: ‘a:ring-1 fls
assumes z * f $$ fls-subdegree f = 1 f $$ fls-subdegree f * y = 1
— These assumptions imply x equals y, but no need to assume that.
shows fis-right-inverse fy x f = 1
(proof)

lemma fls-right-inverse':
fixes f :: ‘auring-1 fls
assumes z * [ $$ fls-subdegree f = 1 f $$ fls-subdegree f x y = 1
— These assumptions imply x equals y, but no need to assume that.
shows f x fis-left-inverse fz = 1
(proof )

lemma fis-mult-left-inverse-base-factor:
fixes [ :: ‘a:ring-1 fls
assumes z * (f $$ fls-subdegree f) = 1
shows fls-left-inverse (fls-base-factor f) x x f = fls-X-intpow (fls-subdegree f)
(proof )

lemma fis-mult-right-inverse-base-factor:
fixes [ :: 'a:ring-1 fls
assumes (f $3$ fls-subdegree f) x y = 1
shows [ x fls-right-inverse (fls-base-factor f) y = fls-X-intpow (fls-subdegree f)
(proof )

lemma fis-mult-inverse-base-factor:
fixes [ :: 'a::division-ring fls
assumes f # 0
shows f x inverse (fls-base-factor f) = fls-X-intpow (fls-subdegree f)
(proof )

lemma fis-left-inverse-idempotent-ring1 :

fixes [ :: ‘a:ring-1 fls

assumes z * [ $$ fls-subdegree f = 1y x z = 1

— These assumptions imply y equals f $$ fls-subdegree f, but no need to assume
that.

shows fls-left-inverse (fls-left-inverse fx) y = f
(proof)

lemma fis-left-inverse-idempotent-comm-ring1
fixes [ :: ‘a::comm-ring-1 fls
assumes z x f $$ fls-subdegree f = 1
shows  fls-left-inverse (fls-left-inverse f x) (f $$ fls-subdegree f) = f
(proof )

lemma fis-right-inverse-idempotent-ring1 :
fixes f :: ‘anring-1 fls
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assumes | $$ fls-subdegree f * 1 = 1z x y = 1

— These assumptions imply y equals f $$ fls-subdegree f, but no need to assume
that.

shows  fls-right-inverse (fls-right-inverse fx) y = f
(proof )

lemma fis-right-inverse-idempotent-comm-ring1 :
fixes [ :: ‘a::comm-ring-1 fls
assumes | $$ fls-subdegree f x © = 1
shows  fls-right-inverse (fls-right-inverse f x) (f $$ fls-subdegree f) = f
(proof )

lemma fis-lr-inverse-unique-ring1:
fixes fg: 'a:: ring-1fls
assumes fg: f * g = 1 g $3 fls-subdegree g * f $$ fls-subdegree f = 1
shows fls-left-inverse g (f $$ fls-subdegree ) = f
and  fls-right-inverse f (g $$ fls-subdegree g) = g
(proo)

lemma fis-lr-inverse-unique-divring:
fixes fg :: 'a ::division-ring fls
assumes fg: f x g = 1
shows fls-left-inverse g (f $3$ fls-subdegree ) = f
and  fls-right-inverse (g $$ fls-subdegree g) = g
(proof)

lemma fls-lr-inverse-minus:
fixes f :: 'a::ring-1 fls
shows fls-left-inverse (—f) (—x) = — fls-left-inverse f x

and fls-right-inverse (—f) (—z) = — fls-right-inverse f x

{proof)
lemma fls-inverse-minus [simp]: inverse (—f) = —inverse (f :: 'a :: division-ring
fis)

{proof)

lemma fis-lr-inverse-mult-ring1 :
fixes fg: ‘anring-1 fls
assumes z: 7 * [ $$ fls-subdegree f = 1 f $$ fls-subdegree f * © = 1
and y: y * g $8 fls-subdegree g = 1 g $$ fls-subdegree g x y = 1
shows fls-left-inverse (f * g) (yxx) = fls-left-inverse g y * fls-left-inverse f
and  fis-right-inverse (f % g) (yxx) = fls-right-inverse g y * fls-right-inverse f
x

(proof)

lemma fis-lr-inverse-power-ring1:
fixes [ :: ‘a:ring-1 fls
assumes z: z * f $$ fls-subdegree f = 1 f $$ fls-subdegree f * z = 1
shows fls-left-inverse (f ~n) (x ~n) = (fls-left-inverse fz) " n
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fls-right-inverse (f ~n) (x ~ n) = (fls-right-inverse f x) " n
(proof)

lemma fis-divide-convert-times-inverse:
fixes fg :: 'a:{comm-monoid-add,inverse,mult-zero,uminus} fls
shows f /g = f x inverse g
(proof )

instance fls :: (division-ring) division-ring

{(proof)

lemma fis-lr-inverse-mult-divring:
fixes fg : ’a:division-ring fls
and df dg :: int
defines df = fls-subdegree f
and dg = fis-subdegree g
shows fls-left-inverse (fxg) (inverse ((f*g)$$(df+dg))) =
fls-left-inverse g (inverse (g$$8dg)) * fls-left-inverse f (inverse (f$$df))
and  fls-right-inverse (fxg) (inverse ((f*g)$$(df+dg))) =
fls-right-inverse g (inverse (¢$$dg)) * fls-right-inverse f (inverse (f$$df))
{proof)

lemma fis-lr-inverse-power-divring:
fis-left-inverse (f ~n) ((inverse (f $$ fls-subdegree f)) " n) =
(fls-left-inverse f (inverse (f $$ fls-subdegree f))) ~n (is 2P)
and fls-right-inverse (f ~n) ((inverse (f $$ fls-subdegree f)) ~n) =
(fis-right-inverse f (inverse (f $$ fls-subdegree f))) " n (is ?Q)
for f :: 'a::division-ring fls
(proof)

lemma one-plus-fis-X-powi-eq:
(1 + fls-X) powi n = fps-to-fls (fps-binomial (of-int n :: 'a :: field-char-0))
(proof)

instance fls :: (field) field
(proof )

instance fls :: ({field-prime-char,comm-semiring-1}) field-prime-char
{proof )

instance fls :: (semiring-char-0) semiring-char-0

(proof)

instance fls :: (field-char-0) field-char-0 (proof)

lemma fls-subdegree-power-int [simp]:
fixes F ::'a : field fls
shows fls-subdegree (F powi n) = n * fls-subdegree F'
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{proof)

7.5.6 Division

lemma fis-divide-nth-below:
fixes f g :: 'a::{comm-monoid-add,uminus,times,inverse} fls
shows n < fls-subdegree f — fls-subdegree g —> (f div g) $$ n = 0
(proof )

lemma fis-divide-nth-base:
fixes f g :: 'a::division-ring fls
shows
(f div g) $$ (fls-subdegree f — fls-subdegree g) =
I $$ fls-subdegree f | g $$ fls-subdegree g
(proof )

lemma fls-div-zero [simp]:
0 div (g = 'a :: {comm-monoid-add,inverse,mult-zero,uminus} fls) = 0
{proof)

lemma fis-div-by-zero:
fixes g :: ‘a::{comm-monoid-add,inverse,mult-zero,uminus} fls
assumes inverse (0::'a) = 0
shows g div0 =0
(proof)

lemma fls-divide-times:
fixes f g :: 'a::{semiring-0,inverse,uminus} fls
shows (f  g) / h =[x (g9/h)
(proof )

lemma fis-divide-times2:
fixes f g :: 'a::{comm-semiring-0,inverse,uminus} fls
shows (f x g) / h=(f/ h) *g
(proof )

lemma fis-divide-subdegree-ge:
fixes fg :: ‘ai:{comm-monoid-add,uminus,times,inverse} fls
assumes f / g # 0
shows fls-subdegree (f / g) > fls-subdegree f — fls-subdegree g
(proof )

lemma fis-divide-subdegree:
fixes [ g :: 'a::division-ring fls
assumes f # 0 g # 0
shows fls-subdegree (f / g) = fls-subdegree f — fls-subdegree g

(proof)

lemma fis-divide-shift-numer-nonzero:
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fixes fg: 'a:: {comm-monoid-add,inverse,times,uminus} fls
assumes f # 0

shows fls-shift m f / g = fls-shift m (f/g)

(proof )

lemma fis-divide-shift-numer:
fixes f g :: 'a :: {comm-monoid-add,inverse,mult-zero,uminus} fls
shows fls-shift m f | g = fls-shift m (f/g)
(proof )

lemma fis-divide-shift-denom-nonzero:
fixes fg: 'a:: {comm-monoid-add,inverse,times,uminus} fls
assumes g # 0
shows f / fls-shift m g = fls-shift (—m) (f/g)
(proof )

lemma fis-divide-shift-denom:
fixes fg:: 'a:: division-ring fls
shows [ / fls-shift m g = fls-shift (—m) (f/g)
(proof)

lemma fis-divide-shift-both-nonzero:
fixes fg: 'a:: {comm-monoid-add,inverse,times,uminus} fls
assumes f # 0 g # 0
shows fls-shift n f / fls-shift m g = fls-shift (n—m) (f/g)
(proof )

lemma fls-divide-shift-both [simp]:
fixes fg: 'a:: division-ring fls
shows fls-shift n f / fls-shift m g = fls-shift (n—m) (f/g)
(proof )

lemma fis-divide-base-factor-numer:

fls-base-factor f | g = fls-shift (fls-subdegree f) (f/g)
(proof )

lemma fis-divide-base-factor-denom:
I/ fls-base-factor g = fls-shift (—fls-subdegree g) (f/g)
(proof )

lemma fls-divide-base-factor’:
fis-base-factor f | fls-base-factor g = fls-shift (fls-subdegree f — fls-subdegree g)
(f/9)

{proof)

lemma fis-divide-base-factor:
fixes f g :: 'a :: division-ring fls
shows fls-base-factor f / fls-base-factor g = fis-base-factor (f/g)
(proof )
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lemma fls-divide-regpart:
fixes fg :: 'a:{inverse,comm-monoid-add,uminus,mult-zero} fls
assumes fis-subdegree f > 0 fls-subdegree g > 0
shows  fls-regpart (f / g) = fls-regpart f |/ fls-regpart g

(proof)

lemma fls-divide-fls-base-factor-to-fps’:
fixes f g :: 'a::{comm-monoid-add,uminus,inverse,mult-zero} fls
shows
fls-base-factor-to-fps f /| fls-base-factor-to-fps g =
fls-regpart (fls-shift (fls-subdegree f — fls-subdegree g) (f / g))
(proof)

lemma fis-divide-fls-base-factor-to-fps:

fixes f g :: 'a::division-ring fls

shows fls-base-factor-to-fps f | fls-base-factor-to-fps g = fls-base-factor-to-fps (f
/9)

{proof )

lemma fis-divide-fps-to-fls:
fixes f g :: 'a::{inverse,ab-group-add,mult-zero} fps
assumes subdegree f > subdegree g
shows fps-to-fis f | fps-to-fls g = fps-to-fis (f/g)
(proof)

lemma fls-divide-1":

fixes f:: 'a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult}
fls

assumes inverse (1:'a) = 1

shows f/1=f

(proof)

lemma fls-divide-1 [simp]: a / 1 = (a::'a::division-ring fls)
{proof)

lemma fis-const-divide-const:
fixes z y :: 'a::division-ring
shows fls-const x |/ fls-const y = fls-const (z/y)
(proof)

lemma fls-divide-X":

fixes f:: 'a:{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult }
fls

assumes inverse (1:'a) = 1

shows f / fls-X = fls-shift 1 f

(proof)

lemma fis-divide-X [simp]:
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fixes [ :: 'a:division-ring fls
shows [ / fls-X = fls-shift 1 f
{proof )

lemma fls-divide-X-power":
fixes [ :: 'a::{semiring-1 inverse,uminus} fls
assumes inverse (1::'a) = 1
shows f / (fls-X " n) = fls-shift n f

(proof)

lemma fls-divide-X-power [simp]:
fixes f :: 'a::division-ring fls
shows [ / (fls-X " n) = fls-shift n
(proof )

lemma fls-divide-X-inv":

fixes f::'a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult}
fls

assumes inverse (1:'a) = 1

shows [/ fls-X-inv = fls-shift (—1) f

(proof )

lemma fls-divide-X-inv [simp]:
fixes f :: 'a::division-ring fls
shows [ / fls-X-inv = fls-shift (—1) f
(proof)

lemma fls-divide- X-inv-power’:
fixes [ :: ‘a:{semiring-1,inverse,uminus} fls
assumes inverse (1:'a) = 1
shows [/ (fls-X-inv " n) = fls-shift (—int n) f
(proof )

lemma fls-divide- X-inv-power [simp]:
fixes f :: 'a::division-ring fls
shows f / (fis-X-inv ~ n) = fls-shift (—int n) f
(proof )

lemma fls-divide-X-intpow”:
fixes [ :: ‘a:{semiring-1,inverse,uminus} fls
assumes inverse (1:'a) = 1
shows f / (fls-X-intpow i) = fls-shift i f
(proof)

lemma fls-divide- X-intpow-conv-times':
fixes [ :: ‘a:{semiring-1 inverse,uminus} fls
assumes inverse (1::'a) = 1
shows f / (fls-X-intpow i) = f * fls-X-intpow (—1)
(proof)
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lemma fis-divide- X-intpow:
fixes f :: 'a::division-ring fls
shows f / (fls-X-intpow i) = fls-shift i f
(proof )

lemma fis-divide- X-intpow-conv-times:
fixes f :: 'a::division-ring fls
shows f / (fls-X-intpow i) = f * fls-X-intpow (—1)
(proof )

lemma fis- X-intpow-div-fis-X-intpow-semiring1 :
assumes inverse (1::'a:{semiring-1inverse,uminus}) = 1
shows  (fls-X-intpow i :: 'a fls) / fls-X-intpow j = fls-X-intpow (i—j)
(proof)

lemma fis-X-intpow-div-fis-X-intpow:
(fis-X-intpow i :: 'a::division-ring fls) / fls-X-intpow j = fls-X-intpow (i—j)
(proof)

lemma fis-divide-add:
fixes fgh :: 'a:{semiring-0,inverse,uminus} fls
shows (f+g)/h=f/h+g/h
(proof)

lemma fis-divide-diff:
fixes f g h :: 'a::{ring,inverse} fls
shows (f —g) /h=f/h—g/h
{proof )

lemma fis-divide-uminus:
fixes f g h :: 'a::{ring,inverse} fis
shows (— f) /g =—(f/9)
{proof )

lemma fls-divide-uminus”:
fixes f g h :: 'a::division-ring fls

shows f /(= g) = - (f/ 9)
{proof)

7.5.7 Units

lemma fis-is-left-unit-iff-base-is-left-unit:

fixes f :: 'a :: ring-1-no-zero-divisors fls

shows (3g. I = f x g) «— (k. 1 = f 33 fls-subdegree | * k)
(proof)

lemma fis-is-right-unit-iff-base-is-right-unit:
fixes f :: 'a :: ring-1-no-zero-divisors fls
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shows (3g. I = g* f) +— (k. 1 = k % f $$ fls-subdegree f)
(proof)

7.6 Composition

definition fls-compose-fps :: 'a :: field fls = 'a fps = 'a fls where
fls-compose-fps F G =
fps-to-fls (fps-compose (fls-base-factor-to-fps F) G) * fps-to-fls G powi fls-subdegree
F

lemma fps-compose-of-nat [simp): fps-compose (of-nat n :: 'a :: comm-ring-1 fps)
H = of-nat n

and fps-compose-of-int [simp]: fps-compose (of-int i) H = of-int i

(proof)

lemmas [simp] = fps-to-fls-of-nat fps-to-fls-of-int

lemma fls-compose-fps-0 [simp]: fls-compose-fps 0 H = 0
and fls-compose-fps-1 [simp]: fls-compose-fps 1 H = 1
and fls-compose-fps-const [simp): fls-compose-fps (fls-const ¢) H = fls-const ¢
and fls-compose-fps-of-nat [simp]: fls-compose-fps (of-nat n) H = of-nat n
and fls-compose-fps-of-int [simp]: fls-compose-fps (of-int i) H = of-int i
and fls-compose-fps-X [simp]: fls-compose-fps fis-X F = fps-to-fls F
(proof )

lemma fis-compose-fps-0-right:
fls-compose-fps F 0 = (if 0 < fls-subdegree F then fls-const (F $$ 0) else 0)
(proof)

lemma fis-compose-fps-shift:

assumes H # 0

shows  fls-compose-fps (fls-shift n F) H = fls-compose-fps F' H * fps-to-fls H
powi (—n)

{(proof)

lemma fls-compose-fps-to-fls [simpl:

assumes [simp]: G # 0 fps-nth G 0 = 0

shows  fls-compose-fps (fps-to-fls F') G = fps-to-fls (fps-compose F Q)
(proof)

lemma fis-compose-fps-mult:

assumes [simp|: H # 0 fps-nth H 0 = 0

shows  fls-compose-fps (F' x G) H = fls-compose-fps F' H * fls-compose-fps G
H

(proof )

lemma fis-compose-fps-power:

assumes [simp]: G # 0 fps-nth G 0 = 0
shows fls-compose-fps (F' ~n) G = fls-compose-fps F G " n
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{proof)

lemma fis-compose-fps-add:

assumes [simp|: H # 0 fps-nth H 0 = 0

shows fls-compose-fps (F + G) H = fls-compose-fps F H + fls-compose-fps G
H
(proof)

lemma fls-compose-fps-uminus [simp)]: fls-compose-fps (—F) H = —fls-compose-fps
FH
(proof)

lemma fis-compose-fps-diff:

assumes [simp|: H # 0 fps-nth H 0 = 0

shows fls-compose-fps (F — G) H = fls-compose-fps F H — fls-compose-fps G
H

(proof)

lemma fis-compose-fps-eq-0-iff:
assumes H # 0 fps-nth H 0 = 0
shows fis-compose-fps F H = 0 +— F = 0
(proof)

lemma fls-compose-fps-inverse:

assumes [simp|: H # 0 fps-nth H 0 = 0

shows  fls-compose-fps (inverse F) H = inverse (fls-compose-fps F H)
(proof)

lemma fis-compose-fps-divide:

assumes [simp|: H # 0 fps-nth H 0 = 0

shows  fls-compose-fps (F / G) H = fls-compose-fps F H /| fls-compose-fps G
H

(proof)

lemma fis-compose-fps-powsi:
assumes [simp|: H # 0 fps-nth H 0 = 0
shows  fls-compose-fps (F powi n) H = fls-compose-fps F H powi n
(proof )

lemma fis-compose-fps-assoc:

assumes [simp|: G # 0 fps-nth G 0 = 0 H # 0 fps-nth H 0 = 0

shows fis-compose-fps (fls-compose-fps F G) H = fls-compose-fps F (fps-compose
G H)
(proof)

lemma subdegree-pos-iff: subdegree F > 0 <— F # 0 A fps-nth F 0 = 0
(proof )

lemma fls-X-power-int [simp]: fls-X powi n = (fls-X-intpow n :: 'a :: division-ring
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fis)
{proof)

lemma fls-const-power-int: fls-const (¢ powi n) = fls-const (¢ :: 'a :: division-ring)
powi n
(proof )

lemma fis-nth-fls-compose-fps-linear:

fixes c :: 'a :: field

assumes [simp]: ¢ # 0

shows fls-compose-fps F (fps-const ¢ * fps-X) $$ n = F $% n * ¢ powi n
(proof )

lemma fls-const-transfer [transfer-rule]:

rel-fun (=) (per-fls (=))
(Ac n. if n = 0 then c else 0) fls-const
(proof)

lemma fls-shift-transfer [transfer-rule]:
rel-fun (=) (rel-fun (per-fls (=)) (per-fis (=)))
(An fk. f (k+n)) fls-shift
(proof )

lift-definition fls-compose-power :: 'a :: zero fls = nat = 'a fls is
A dn.ifd> 0 A int d dvd n then f (n div int d) else 0
(proof)

lemma fis-nth-compose-power:

assumes d > 0

shows fls-compose-power f d $$ n = (if int d dvd n then f 3% (n div int d) else
0)

(proof )

lemma fls-compose-power-0-left [simp]: fls-compose-power 0 d = 0
(proof )

lemma fls-compose-power-1-left [simp]: d > 0 = fls-compose-power 1 d = 1
(proof)

lemma fls-compose-power-const-left [simp]:
d > 0 = fls-compose-power (fls-const ¢) d = fls-const c
(proof )

lemma fls-compose-power-shift [simpl:

d > 0 = fls-compose-power (fls-shift n f) d = fls-shift (d * n) (fls-compose-power
fd)

(proof )
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lemma fls-compose-power-X-intpow [simp]:
d > 0 = fls-compose-power (fls-X-intpow n) d = fls-X-intpow (int d * n)
(proof )

lemma fls-compose-power-X [simp]:
d > 0 = fls-compose-power fls-X d = fls-X-intpow (int d)
(proof )

lemma fls-compose-power-X-inv [simp]:
d > 0 = fls-compose-power fls-X-inv d = fls-X-intpow (—int d)
(proof )

lemma fls-compose-power-0-right [simp]: fls-compose-power f 0 = 0
(proof )

lemma fls-compose-power-add [simp]:
fls-compose-power (f + g) d = fls-compose-power f d + fls-compose-power g d
(proof)

lemma fls-compose-power-diff [simp]:
fls-compose-power (f — g) d = fls-compose-power f d — fls-compose-power g d
(proof)

lemma fls-compose-power-uminus [simpl:
fls-compose-power (—f) d = —fls-compose-power f d
(proof )

lemma fps-nth-compose-X-power:
fos-nth (f oo (fps-X ~d)) n = (if d dvd n then fps-nth f (n div d) else 0)
(proof)

lemma fis-compose-power-fps-to-fis:

assumes d > 0

shows  fls-compose-power (fps-to-fls ) d = fps-to-fls (fps-compose f (fps-X ~
d))

(proof)

lemma fls-compose-power-mult [simp]:

fls-compose-power (f * g :: 'a :: idom fls) d = fls-compose-power f d x fls-compose-power
gd

(proof)

lemma fls-compose-power-power [simp]:

assumes d > 0V n > 0

shows fls-compose-power (f ~n :: 'a :: idom fls) d = fls-compose-power fd " n
(proof)

lemma fls-nth-compose-power’ [simpl:
d =0V =d dvd n = fls-compose-power f d $$ int n = 0
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ddvdn = d > 0 = fls-compose-power f d $$ int n = f $$ int (n div d)
(proof )

lemma subdegree-fls-compose-fps [simp):

fixes G :: 'a :: field fps

assumes [simp]: fps-nth G 0 = 0

shows fls-subdegree (fls-compose-fps F G) = fls-subdegree F x subdegree G
(proof)

7.7 Formal differentiation and integration

7.7.1 Derivative
definition fis-deriv f = Abs-fls (An. of-int (n+1) * f$$(n+1))

lemma fls-deriv-nth[simp]: fls-deriv f $8 n = of-int (n+1) = f3$(n+1)
(proof )

lemma fls-deriv-residue: fls-deriv f $8 —1 = 0
(proof)

lemma fls-deriv-const[simp]: fls-deriv (fls-const ) = 0

(proof)

lemma fls-deriv-of-nat[simpl: fls-deriv (of-nat n) = 0
(proof )

lemma fls-deriv-of-int[simp]: fls-deriv (of-int i) = 0
(proof)

lemma fls-deriv-zero[simp|: fls-deriv 0 = 0

(proof)

lemma fls-deriv-one[simpl: fls-deriv 1 = 0
(proof)

lemma fls-deriv-numeral [simp): fls-deriv (numeral n) = 0
{proof)

lemma fls-deriv-subdegree’:
assumes of-int (fls-subdegree f) x f $$ fls-subdegree f # 0
shows  fls-subdegree (fls-deriv f) = fls-subdegree f — 1
(proof )

lemma fls-deriv-subdegree0:

assumes fis-subdegree f = 0

shows  fls-subdegree (fls-deriv f) > 0
(proof )

lemma fls-subdegree-deriv’:
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fixes [ :: 'a:ring-1-no-zero-divisors fls

assumes (of-int (fls-subdegree f) :: 'a) # 0

shows  fls-subdegree (fls-deriv ) = fls-subdegree f — 1
(proof )

lemma fis-subdegree-deriv:
fixes f :: 'a::{ring-1-no-zero-divisors,ring-char-0} fls
assumes fis-subdegree f # 0
shows  fls-subdegree (fls-deriv f) = fls-subdegree f — 1
(proof )

lemma fps-deriv-fis-regpart: fps-deriv (fls-regpart F') = fls-regpart (fls-deriv F)
(proof )

Shifting is like multiplying by a power of the implied variable, and so satisfies
a product-like rule.

lemma fis-deriv-shift:
fls-deriv (fls-shift n ) = of-int (—n) * fls-shift (n+1) f + fls-shift n (fls-deriv f)
(proof )

lemma fls-deriv-X [simp]: fls-deriv fls-X = 1
(proof )

lemma fis-deriv-X-inv [simp]: fls-deriv fls-X-inv = — (fls-X-inv?)
(proof)

lemma fis-deriv-delta:
fls-deriv (Abs-fls (An. if n=m then c else 0)) =
Abs-fls (An. if n=m—1 then of-int m * c else 0)
(proof)

lemma fis-deriv-base-factor:
fls-deriv (fls-base-factor f) =
of-int (—fls-subdegree f) x fls-shift (fls-subdegree f + 1) f +
fls-shift (fls-subdegree f) (fls-deriv f)
(proof )

lemma fls-regpart-deriv: fls-regpart (fls-deriv f) = fps-deriv (fls-regpart f)
(proof)

lemma fis-prpart-deriv:
fixes f :: 'a :: {comm-ring-1,ring-no-zero-divisors} fls
— Commutivity and no zero divisors are required by the definition of pderiv.

shows fls-prpart (fls-deriv f) = — pCons 0 (pCons 0 (pderiv (fls-prpart f)))
(proof)
lemma pderiv-fls-prpart:

pderiv (fls-prpart f) = — poly-shift 2 (fls-prpart (fls-deriv f))

(proof)

239



lemma fls-deriv-fps-to-fis: fls-deriv (fps-to-fls ) = fps-to-fls (fps-deriv f)
(proof)

7.7.2 Algebraic rules of the derivative

lemma fls-deriv-add [simp]: fls-deriv (f+g) = fls-deriv f + fls-deriv g
(proof )

lemma fls-deriv-sub [simp]: fls-deriv (f—g) = fls-deriv f — fls-deriv g
(proof )

lemma fls-deriv-neg [simp|: fls-deriv (—f) = — fls-deriv f
(proof)

lemma fls-deriv-mult [simp]:
fls-deriv (fxg) = f * fls-deriv g + fls-deriv f % g
(proof)

lemma fis-deriv-mult-const-left:
fls-deriv (fls-const ¢ * f) = fls-const ¢ * fls-deriv f
(proof)

lemma fis-deriv-linear:
fls-deriv (fls-const a x f + fls-const b x g) =
fls-const a * fis-deriv f + fls-const b x fls-deriv g
(proof)

lemma fis-deriv-mult-const-right:
fis-deriv (f * fls-const ¢) = fls-deriv f % fls-const ¢
(proof )

lemma fis-deriv-linear2:
fls-deriv (f * fls-const a + g * fls-const b) =
fis-deriv f x fls-const a + fls-deriv g * fls-const b
(proof )

lemma fis-deriv-sum:
fis-deriv (sum fS) = sum (Ai. fls-deriv (f 7)) S
(proof)

lemma fis-deriv-power:

fixes [ :: 'a::comm-ring-1 fls

shows fls-deriv (f™n) = of-nat n * f(n—1) x fls-deriv f
(proof)

lemma fis-deriv-X-power:

fls-deriv (fls-X " n) = of-nat n x fls-X ~ (n—1)
(proof)
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lemma fis-deriv-X-inv-power:
fls-deriv (fls-X-inv ~n) = — of-nat n x fls-X-inv ~ (Suc n)
(proof)

lemma fis-deriv-X-intpow:
fls-deriv (fls-X-intpow i) = of-int i * fls-X-intpow (i—1)
(proof )

lemma fis-deriv-lr-inverse:
assumes z * [ $$ fls-subdegree f = 1 f $$ fls-subdegree f x y = 1
— These assumptions imply x equals y, but no need to assume that.
shows fls-deriv (fls-left-inverse f x) =
— fis-left-inverse f x * fls-deriv f * fls-left-inverse f x
and  fls-deriv (fls-right-inverse f y) =
— fls-right-inverse f y % fls-deriv f * fls-right-inverse fy
(proof)

lemma fis-deriv-lr-inverse-comm:
fixes zy:: 'a:comm-ring-1
assumes = * [ $$ fls-subdegree f = 1
shows fis-deriv (fls-left-inverse f x) = — fls-deriv f * (fls-left-inverse f x)?
and  fls-deriv (fls-right-inverse f ) = — fls-deriv f x (fls-right-inverse f )?
(proof)

lemma fis-inverse-deriv-divring:

fixes a :: 'a::division-ring fls

shows fls-deriv (inverse a) = — inverse a * fls-deriv a * inverse a
(proof)

lemma fis-inverse-deriv:
fixes a :: ‘a:field fls
shows fls-deriv (inverse a) = — fls-deriv a * (inverse a)
{proof )

2

lemma fls-inverse-deriv”:
fixes a :: ‘a:field fls
shows fls-deriv (inverse a) = — fls-deriv a / a?
(proof)

7.7.3 Equality of derivatives

lemma fis-deriv-eq-0-iff:
fls-deriv f = 0 «— f = fls-const (f$30 :: 'a::{ring-1-no-zero-divisors,ring-char-0})
(proof)

lemma fis-deriv-eq-iff:

fixes f g :: 'a::{ring-1-no-zero-divisors,ring-char-0} fls
shows fls-deriv f = fls-deriv g <— (f = fls-const(f$$0 — ¢$%0) + g)
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(proof)

lemma fis-deriv-eq-iff-ex:
fixes f g :: 'a::{ring-1-no-zero-divisors,ring-char-0} fls
shows (fls-deriv f = fls-deriv g) +— (F¢. f = fls-const ¢ + g)
(proof )

7.7.4 Residues
definition fls-residue-def[simp]: fls-residue f = f $$ —1

lemma fls-residue-deriv: fls-residue (fls-deriv f) = 0
(proof )

lemma fls-residue-add: fls-residue (f+g) = fls-residue f + fls-residue g
(proof)

lemma fls-residue-times-deriv:
fls-residue (fls-deriv f x g) = — fls-residue (f * fls-deriv g)
(proof )

lemma fis-residue-power-series: fis-subdegree f > 0 = fls-residue f = 0
(proof)

lemma fis-residue-fls-X-intpow:
fis-residue (fls-X-intpow i) = (if i=—1 then 1 else 0)
(proof)

lemma fis-residue-shift-nth:
fixes f :: 'a::semiring-1 fls
shows f$$n = fls-residue (fls-X-intpow (—n—1) * f)
(proof )

lemma fis-residue-fls-const-times:
fixes f :: 'a::{comm-monoid-add, mult-zero} fls
shows fls-residue (fls-const ¢ x f) = ¢ * fls-residue f
and fls-residue (f * fls-const ¢) = fls-residue f * ¢
(proof)

lemma fis-residue-of-int-times:
fixes f :: 'a::ring-1 fls
shows fls-residue (of-int i x f) = of-int i * fls-residue f
and fls-residue (f x of-int ¢) = fls-residue f * of-int i
(proof)

lemma fis-residue-deriv-times-lr-inverse-eq-subdegree:
fixes fg: ‘anring-1 fls
assumes y x (f $$ fls-subdegree f) = 1 (f $$ fls-subdegree f) x y = 1
shows fls-residue (fls-deriv f * fls-right-inverse fy) = of-int (fls-subdegree f)
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and  fls-residue (fls-deriv f * fls-left-inverse fy) = of-int (fls-subdegree f)

and  fls-residue (fls-left-inverse fy * fls-deriv f) = of-int (fls-subdegree f)

and  fis-residue (fls-right-inverse fy * fls-deriv f) = of-int (fls-subdegree f)
(proof )

lemma fis-residue-deriv-times-inverse-eq-subdegree:
fixes f g :: 'a::division-ring fls
shows fls-residue (fls-deriv f * inverse f) = of-int (fls-subdegree f)
and fls-residue (inverse f * fls-deriv f) = of-int (fls-subdegree f)
(proof )

7.7.5 Integral definition and basic properties

definition fls-integral :: 'a::{ring-1inverse} fls = 'a fls
where fls-integral a = Abs-fls (An. if n=0 then 0 else inverse (of-int n) * a$$(n

- 1))

lemma fls-integral-nth [simp]:
fis-integral a $$ n = (if n=0 then 0 else inverse (of-int n) * a$$(n—1))
(proof)

lemma fis-integral-conv-fps-zeroth-integral:

assumes fis-subdegree a > 0

shows fls-integral a = fps-to-fls (fps-integral0 (fls-regpart a))
(proof )

lemma fls-integral-zero [simp): fls-integral 0 = 0
(proof)

lemma fls-integral-const:
fixes x : ‘a::{ring-1,inverse}
assumes inverse (1::'a) = 1
shows fls-integral (fls-const z) = fls-const x * fls-X
(proof)

lemma fis-integral-const:
fixes x :: 'a::division-ring
shows fls-integral (fls-const x) = fls-const x x fls-X
(proof)

lemma fls-integral-of-nat”:
assumes inverse (1::'a:{ring-1 inverse}) = 1
shows fls-integral (of-nat n :: 'a fls) = of-nat n x fls-X
(proof )

lemma fis-integral-of-nat:

fis-integral (of-nat n :: 'a::division-ring fls) = of-nat n * fls-X
(proof )
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lemma fls-integral-of-int”:
assumes inverse (1::'a:{ring-1 inverse}) = 1
shows fls-integral (of-int i :: 'a fls) = of-int i * fls-X
(proof)

lemma fis-integral-of-int:
fls-integral (of-int i :: 'a::division-ring fls) = of-int © * fls-X
(proof )

lemma fls-integral-one’:
assumes inverse (1::'a:{ring-1 inverse}) = 1
shows fls-integral (1::'a fls) = fls-X
(proof)

lemma fls-integral-one: fls-integral (1::'a::division-ring fls) = fls-X
(proof )

lemma fls-subdegree-integral-ge:
fls-integral f # 0 = fls-subdegree (fls-integral f) > fls-subdegree f + 1
(proof )

lemma fis-subdegree-integral:
fixes f :: 'az:{division-ring,ring-char-0} fls
assumes [ # 0 fls-subdegree f # —1
shows  fls-subdegree (fls-integral f) = fls-subdegree f + 1
(proof )

lemma fls-integral-X [simp]:
fls-integral (fls-X::'a::{ring-1,inverse} fls) =
fls-const (inverse (of-int 2)) * fls-X>
(proof)

lemma fis-integral-X-power:
fls-integral (fls-X ~n :'a i {ring-1inverse} fls) =
fls-const (inverse (of-nat (Suc n))) * fls-X = Suc n
(proof)

lemma fis-integral-X-power-char0:
fls-integral (fls-X ~n :: 'a 2 {ring-char-0,inverse} fls) =
inverse (of-nat (Suc n)) * fls-X = Suc n
(proof)

lemma fls-integral-X-inv [simp]: fls-integral (fls-X-inv::'a::{ring-1 inverse} fls) =
0
(proof )

lemma fis-integral-X-inv-power:

assumes n > 2
shows
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fls-integral (fls-X-inv " n = 'a :: {ring-1inverse} fls) =
fls-const (inverse (of-int (1 — int n))) * fls-X-inv = (n—1)
(proof )

lemma fis-integral- X-inv-power-char0:
assumes n > 2
shows
fls-integral (fls-X-inv " n :: 'a 2 {ring-char-0,inverse} fls) =
inverse (of-int (1 — int n)) x fls-X-inv ~ (n—1)
{proof)

lemma fls-integral-X-inv-power’:
assumes n > I
shows
fls-integral (fls-X-inv " n i 'a i division-ring fls) =
— fls-const (inverse (of-nat (n—1))) * fls-X-inv ~ (n—1)
(proof)

lemma fls-integral-X-inv-power-char0’:
assumes n > I
shows
fls-integral (fls-X-inv ~ n = 'a :: {division-ring,ring-char-0} fls) =
— inverse (of-nat (n—1)) * fls-X-inv ~ (n—1)
(proof)

lemma fis-integral-delta:
assumes m # —1
shows
fls-integral (Abs-fls (An. if n=m then c else 0)) =
Abs-fls (An. if n=m~+1 then inverse (of-int (m+1)) x c else 0)
(proof )

lemma fis-regpart-integral:
fls-regpart (fls-integral f) = fps-integral0 (fls-regpart f)
(proof)

lemma fis-integral-fps-to-fls:
fls-integral (fps-to-fls f) = fps-to-fls (fps-integral0 f)
(proof)

7.7.6 Algebraic rules of the integral

lemma fis-integral-add [simp]: fls-integral (f+g) = fls-integral f + fls-integral g
(proof )

lemma fls-integral-sub [simpl: fls-integral (f—g) = fls-integral f — fls-integral g
(proof )

lemma fis-integral-neg [simp]: fls-integral (—f) = — fls-integral f
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{proof)

lemma fis-integral-mult-const-left:
fis-integral (fls-const ¢ x f) = fls-const ¢ = fls-integral (f :: 'a::division-ring fls)
(proof )

lemma fis-integral-mult-const-left-comm:
fixes f :: 'a::{comm-ring-1 jinverse} fls
shows fls-integral (fls-const ¢ x f) = fls-const ¢ = fls-integral f
(proof )

lemma fis-integral-linear:
fixes f g :: 'a::division-ring fls
shows
fls-integral (fls-const a x f + fls-const b x g) =
fls-const a * fls-integral f + fls-const b x fis-integral g
(proof)

lemma fis-integral-linear-comm:
fixes f g :: 'a::{comm-ring-1 jinverse} fls
shows
fls-integral (fls-const a x f + fls-const b * g) =
fls-const a * fis-integral f + fls-const b * fls-integral g
(proof)

lemma fis-integral-mult-const-right:
fls-integral (f = fls-const ¢) = fls-integral f * fls-const ¢
(proof)

lemma fis-integral-linear2:
fls-integral (f * fls-const a + g * fls-const b) =
fls-integral f x fls-const a + fls-integral g * fls-const b
(proof)

lemma fis-integral-sum:
fis-integral (sum fS) = sum (X\i. fls-integral (f 7)) S
(proof)

7.7.7 Derivatives of integrals and vice versa

lemma fis-integral-fis-deriv:
fixes a :: ‘a::{division-ring,ring-char-0} fls
shows fls-integral (fls-deriv a) + fls-const (a$30) = a
(proof)

lemma fis-deriv-fis-integral:
fixes a :: ‘a::{division-ring,ring-char-0} fls
assumes fis-residue a = 0
shows fls-deriv (fls-integral a) = a
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(proof)

Series with zero residue are precisely the derivatives.

lemma fis-residue-nonzero-ex-antiderivative:
fixes [ :: 'a:{division-ring,ring-char-0} fls
assumes fis-residue f = 0
shows 3JF. fils-deriv F = f

{proof)

lemma fis-ex-antiderivative-residue-nonzero:
assumes 3 F. fis-deriv F = f
shows fis-residue f = 0
(proof )

lemma fls-residue-nonzero-ex-anitderivative-iff:
fixes f :: 'a::{division-ring,ring-char-0} fls
shows fls-residue f = 0 +— (3 F. fls-deriv F = f)
(proof )

7.8 Topology

instantiation fls :: (group-add) metric-space
begin

definition
dist-fls-def:
dist (a :: 'a fls) b=
(ifa=b
then 0
else if fls-subdegree (a—b) > 0
then inverse (2 ~ nat (fls-subdegree (a—b)))
else 2 ~ nat (—fls-subdegree (a—b))
)

lemma dist-fls-ge0: dist (a :: 'a fls) b > 0
(proof)

definition uniformity-fls-def [code del]:

(uniformity :: ('a fls x 'a fls) filter) = (INF e € {0 <..}. principal {(z, y). dist
zy < e})
definition open-fis-def’ [code del]:

open (U :: 'a fls set) +— (VzeU. eventually (MNz’, y). 2/ =2z — y € U)

uniformity)

lemma dist-fls-sym: dist (a :: 'a fls) b = dist b a
(proof )

context
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begin

private lemma instance-helper:

fixes abc: 'afls

assumes neq: a#£b a#c

and dist-ineq: dist a b > dist a ¢

shows  fls-subdegree (a — b) < fls-subdegree (a — ¢)
(proof)

instance

(proof)

end
end

declare uniformity-Abortjwhere ‘a="a :: group-add fls, code]

lemma open-fls-def:
open (S :: 'a::group-add fls set) = Va € S. Ar.r >0 A {y. distya < r} C9)
{proof)

7.9 Notation

bundle fps-syntaz

begin

notation fls-nth (infixl <$$» 75)
end

unbundle no fps-syntax

end

8 The fraction field of any integral domain

theory Fraction-Field

imports Main

begin

8.1 General fractions construction

8.1.1 Construction of the type of fractions

context idom begin

definition fractrel :: 'a x 'a = 'a x 'a = bool where
fractrel = Az y. sndx # 0 N sndy # 0 A fstx x sndy = fsty * snd x)

lemma fractrel-iff [simp]:
fractrel x y <— sndx # 0 N sndy # 0 N fst x x snd y = fst y x snd z
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{proof)

lemma symp-fractrel: symp fractrel
(proof )

lemma transp-fractrel: transp fractrel
(proof)

lemma part-equivp-fractrel: part-equivp fractrel
{(proof)

end

quotient-type (overloaded) ‘a fract = 'a :: idom x 'a / partial: fractrel

(proof)

8.1.2 Representation and basic operations
lift-definition Fract :: 'a :: idom = 'a = 'a fract

is Aa b. if b = 0 then (0, 1) else (a, b)

(proof)

lemma Fract-cases [cases type: fract]:
obtains (Fract) a b where ¢ = Fract a b b # 0

(proof)

lemma Fract-induct [case-names Fract, induct type: fract]:
(Aa b. b# 0 = P (Fract a b)) = P q

{proof)

lemma eq-fract:
shows Aabcd b# 0= d# 0= Fractab=Fractcd<+— axd=cxb
and Aa. Fract a 0 = Fract 0 1
and Aa c. Fract 0 a = Fract 0 ¢

(proof)

instantiation fract :: (idom) comm-ring-1
begin

lift-definition zero-fract :: ‘a fract is (0, 1) (proof)

lemma Zero-fract-def: 0 = Fract 0 1
(proof)

lift-definition one-fract :: 'a fract is (1, 1) {proof)

lemma One-fract-def: 1 = Fract 1 1
(proof)
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lift-definition plus-fract :: 'a fract = 'a fract = 'a fract
is Ag 7. (fst g x sndr + fst r* snd q, snd q * snd r)
(proof)

lemma add-fract [simp]:
[b#0;,d+# 0] = Fract a b+ Fract ¢ d = Fract (a *x d + ¢ % b) (b x d)
(proof )

lift-definition uminus-fract :: 'a fract = 'a fract
is Az. (— fst x, snd x)
(proof)

lemma minus-fract [simp]:

fixes a b :: ‘a:idom

shows — Fract a b = Fract (— a) b
(proof)

lemma minus-fract-cancel [simp|: Fract (— a) (— b) = Fract a b
{proof)

definition diff-fract-def: ¢ — r = q + — (r::'a fract)

lemma diff-fract [simp]:
[b#0;d+# 0] = Fract a b — Fract ¢ d = Fract (a x d — ¢ x b) (b x d)
{proof)

lift-definition times-fract :: 'a fract = 'a fract = 'a fract
is Ag 7. (fst g fstr, snd q x snd )
(proof)

lemma mult-fract [simp]: Fract (a::'a::idom) b * Fract ¢ d = Fract (a % ¢) (b * d)

(proof)

lemma mult-fract-cancel:
¢ # 0 = Fract (¢ x a) (¢ * b) = Fract a b

(proof)

instance
(proof)

end

lemma of-nat-fract: of-nat k = Fract (of-nat k) 1
(proof )

lemma Fract-of-nat-eq: Fract (of-nat k) 1 = of-nat k
(proof )

lemma fract-collapse:
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Fract 0k = 0

Fract 11 =1
Fract k0 =0
(proof )
lemma fract-expand:
0 = Fract 0 1
1 =PFract 11
(proof )

lemma Fract-cases-nonzero:
obtains (Fract) a b where ¢ = Fract a band b # 0 and a # 0

1 (0) ¢g=10
(proof)

8.1.3 The field of rational numbers

context idom
begin

subclass ring-no-zero-divisors (proof)
end

instantiation fract :: (idom) field
begin

lift-definition inverse-fract :: ‘a fract = 'a fract
is Az. if fst x = 0 then (0, 1) else (snd z, fst x)

(proof)

lemma inverse-fract [simp]: inverse (Fract a b) = Fract (b::'a::idom) a

(proof)
definition divide-fract-def: q div r = q * inverse (r:: 'a fract)

lemma divide-fract [simp]: Fract a b div Fract ¢ d = Fract (a % d) (b * ¢)
(proof)

instance

(proof)

end

8.1.4 The ordered field of fractions over an ordered idom

instantiation fract :: (linordered-idom) linorder
begin

lemma less-eq-fract-respect:
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fixesaba b cdc' d ::'a
assumes neq: b £ 0 b/ £ 0 d#0 d' # 0
assumes eql: a * b’ = a’ *
assumes eq2: ¢ x d' = ¢
shows ((a * d) * (b * d)
b % (b % d"))
(proof)

b
"x d
<(exb)x(bxd)) +— ((a"xd)x (b xd) < (c=*

lift-definition less-eq-fract :: 'a fract = 'a fract = bool
is Aqgr. (fst g % sndr) * (snd g % snd r) < (fst r * snd q) * (snd q * snd r)

(proof)
definition less-fract-def: z < (w::'a fract) +— 2 < w A = w < 2z
lemma le-fract [simp]:
[b#0;d# 0] = Fracta b < Fract ¢ d +— (a x d) * (b x d) < (¢ x b) * (b

* d)

(proof)
lemma less-fract [simp]:

[b#0;d# 0] = Fracta b < Fract ¢ d +— (a x d) * (b x d) < (¢ x b) * (b
* d)

(proof)

instance

(proof)

end

instantiation fract :: (linordered-idom) linordered-field
begin

definition abs-fract-def2:
lq| = (if ¢ < 0 then —q else (q::'a fract))

definition sgn-fract-def:
sgn (g::'a fract) = (if ¢ = 0 then 0 else if 0 < q then 1 else — 1)

theorem abs-fract [simp]: |Fract a b| = Fract |a| ||
{proof)

instance (proof)
end

instantiation fract :: (linordered-idom) distrib-lattice
begin

definition inf-fract-def:
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(inf == 'a fract = 'a fract = 'a fract) = min

definition sup-fract-def:
(sup :: 'a fract = 'a fract = 'a fract) = maz

instance
(proof )

end

lemma fract-induct-pos [case-names Fract]:
fixes P :: 'a::linordered-idom fract = bool
assumes step: Aa b. 0 < b = P (Fract a b)
shows P ¢

(proof)

lemma zero-less-Fract-iff: 0 < b = 0 < Fracta b +— 0 < a
{proof )

lemma Fract-less-zero-iff: 0 < b = Fract a b < 0 +— a < 0
(proof )

lemma zero-le-Fract-iff: 0 < b = 0 < Fracta b +— 0 < a
(proof)

lemma Fract-le-zero-iff: 0 < b = Fract a b < 0 +— a < 0
(proof)

lemma one-less-Fract-iff: 0 < b= 1 < Fracta b +— b < a
(proof )

lemma Fract-less-one-iff: 0 < b = Fractab < 1 ¢— a <b
(proof)

lemma one-le-Fract-iff: 0 < b = 1 < Fracta b +— b < a
(proof)

lemma Fract-le-one-iff: 0 < b = Fract a b < 1 +— a < b
(proof)

end

9 Fundamental Theorem of Algebra

theory Fundamental-Theorem-Algebra
imports Polynomial Complex-Main
begin
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9.1 More lemmas about module of complex numbers

The triangle inequality for cmod

lemma complez-mod-triangle-sub: cmod w < cmod (w + z) + norm z
{proof)

9.2 Basic lemmas about polynomials

lemma poly-bound-exists:
fixes p :: ‘a::{comm-semiring-0,real-normed-div-algebra} poly
shows Im. m > 0 A (Vz. norm z < r — norm (poly p z) < m)
(proof)

Offsetting the variable in a polynomial gives another of same degree

definition offset-poly :: 'a::comm-semiring-0 poly = 'a = 'a poly
where offset-poly p h = fold-coeffs (Aa q. smult h ¢ + pCons a q) p 0

lemma offset-poly-0: offset-poly 0 h = 0
(proof)

lemma offset-poly-pCons:
offset-poly (pCons a p) h =
smult b (offset-poly p h) + pCons a (offset-poly p h)
(proof)

lemma offset-poly-single [simp]: offset-poly [:a:] h = [:a:]
(proof)

lemma poly-offset-poly: poly (offset-poly p h) x = poly p (h + x)
(proof )

lemma offset-poly-eq-0-lemma: smult ¢ p + pCons ap =0 = p = 0
(proof )

lemma offset-poly-eq-0-iff [simp]: offset-poly p h = 0 «— p =0
(proof)

lemma degree-offset-poly [simp): degree (offset-poly p h) = degree p
{proof)

definition psize p = (if p = 0 then 0 else Suc (degree p))

lemma psize-eq-0-iff [simp: psizep = 0 +— p =0
(proof )

lemma poly-offset:
fixes p :: ‘a::comm-ring-1 poly
shows 3 q. psize ¢ = psize p A (Vz. poly ¢ x = poly p (a + z))
(proof )
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An alternative useful formulation of completeness of the reals

lemma real-sup-exists:
assumes ex: 3z. Pz
and bz: 3z. V. Pr — < 2
shows Js:ireal. Vy. (Jz. Pz Ay < z)+— y<s

(proof)

9.3 Fundamental theorem of algebra

lemma unimodular-reduce-norm:

assumes md: cmod z = 1

shows c¢cmod (z + 1) < 1V emod (z— 1) < 1V emod (z+1) < 1V cmod (2
—i) < 1

(proof)

Hence we can always reduce modulus of I + b z™n if nonzero

lemma reduce-poly-simple:
assumes b: b # 0
and n: n # 0
shows 3z. cmod (1 + b 2"n) < 1
(proof)

Bolzano-Weierstrass type property for closed disc in complex plane.

lemma metric-bound-lemma: cmod (x — y) < |Re x — Re y| + [Im z — Im y|
(proof)

lemma Bolzano- Weierstrass-complez-disc:

assumes r: Vn. cmod (sn) < r

shows 3f z. strict-mono (f :: nat = nat) A (Ve >0. IN.Vn > N. cmod (s (f
n) —z) < e)
(proof)

Polynomial is continuous.

lemma poly-cont:

fixes p :: ‘a::{comm-semiring-0,real-normed-div-algebra} poly

assumes ep: e > ()

shows 3d >0.Vw. 0 < norm (w — z) A norm (w — z) < d — norm (poly p
w— polyp z) < e
(proof)

Hence a polynomial attains minimum on a closed disc in the complex plane.

lemma poly-minimum-modulus-disc: 3z. Y w. cmod w < r — cmod (poly p z) <
cmod (poly p w)
{proof )

Nonzero polynomial in z goes to infinity as z does.

lemma poly-infinity:
fixes p:: 'a::{comm-semiring-0,real-normed-div-algebra} poly
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assumes ezx: p # 0
shows 3r. Vz. r < norm z — d < norm (poly (pCons a p) z)
{proof)

Hence polynomial’s modulus attains its minimum somewhere.

lemma poly-minimum-modulus: 3 z.¥ w. cmod (poly p z) < emod (poly p w)

(proof)

Constant function (non-syntactic characterization).

definition constant f +— Vzy. fz = fy)

lemma nonconstant-length: — constant (poly p) = psize p > 2
(proof)

lemma poly-replicate-append: poly (monom 1 n *x p) (x::'a::comm-ring-1) = z™n
* poly p x
(proof)

Decomposition of polynomial, skipping zero coefficients after the first.

lemma poly-decompose-lemma:

assumes nz: - (Vz. 2 # 0 — poly p z = (0::'az:idom))

shows 3k a q. a # 0 AN Suc (psize g + k) = psize p A (VY z. poly p z = 27k * poly
(pCons a q) z)

(proof )

lemma poly-decompose:
fixes p :: a::idom poly
assumes nc: — constant (poly p)
shows 3k aq. a# 0Nk # 0N
psize ¢ + k + 1 = psize p A
(Vz. poly p z = poly p 0 + 2"k * poly (pCons a q) 2)
(proof )

Fundamental theorem of algebra

theorem fundamental-theorem-of-algebra:
assumes nc: — constant (poly p)
shows 3 z::complex. poly p z = 0

{proof)

Alternative version with a syntactic notion of constant polynomial.

lemma fundamental-theorem-of-algebra-alt:
assumes nc: - (Jal.aZ 0 AN1=0Ap=pConsal)
shows Jz. poly p z = (0::complex)
(proof)
9.4 Nullstellensatz, degrees and divisibility of polynomials

lemma nullstellensatz-lemma:
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fixes p :: complex poly

assumes Vz. poly pz = 0 — poly q x = 0
and degree p = n
and n # 0

shows p dvd (¢ " n)

(proof)

lemma nullstellensatz-univariate:
(Vz. poly p x = (0::complex) — poly q z = 0) +—
p dvd (g ~ (degree p)) V (p =0 A q = 0)
(proof)

Useful lemma

lemma constant-degree:
fixes p :: ‘a::{idom,ring-char-0} poly
shows constant (poly p) «— degree p = 0 (is ?lhs = ?rhs)

(proof)

lemma complex-poly-decompose:
smult (lead-coeff p) ([] z|poly p z = 0. [:—z, 1:] ~order z p) = (p :: complex poly)
(proof)

instance complez :: alg-closed-field

(proof)

lemma size-proots-complex: size (proots (p :: complex poly)) = degree p
(proof)

lemma complex-poly-decompose-multiset:
smult (lead-coeff p) (] x€#proots p. :—=z, 1:]) = (p :: complex poly)
(proof )

lemma complez-poly-decompose’:

obtains root where smult (lead-coeff p) ([]i<degree p. [:—root i, 1:]) = (p =
complez poly)
(proof)

lemma complex-poly-decompose-rsquarefree:

assumes rsquarefree p

shows smult (lead-coeff p) (I] zlpoly p z = 0. [:—z, 1:]) = (p = complex poly)
(proof)

Arithmetic operations on multivariate polynomials.

lemma mpoly-base-conv:
fixes z :: 'a::comm-ring-1
shows 0 = poly 0 z ¢ = poly [:¢:] x x = poly [:0,1:] x
(proof )

lemma mpoly-norm-conv:
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fixes x :: 'a::comm-ring-1
shows poly [:0:] z = poly 0 x poly [:poly 0 y:] = poly 0 x
(proof)

lemma mpoly-sub-conv:
fixes z :: 'a::comm-ring-1
shows poly p x — poly q x = poly p x + —1 * poly q x
(proof)

lemma poly-pad-rule: poly p x = 0 = poly (pCons 0 p) x = 0
(proof )

lemma poly-cancel-eq-conv:
fixes z :: 'a::field
shows 1 =0 = a# 0= y=0+—axy—bxz=20
(proof )

lemma poly-divides-pad-rule:
fixes p:: ('a::comm-ring-1) poly
assumes pq: p dvd q
shows p dvd (pCons 0 q)

{proof)

lemma poly-divides-conv0:
fixes p:: 'a:field poly
assumes lgpq: degree q < degree p and lg: p # 0
shows p dvd ¢ «— ¢ = 0
(proof)

lemma poly-divides-conv1 :
fixes p :: ‘a::field poly
assumes a0: a # 0
and pp”: p dvd p’
and qrp”: smulta g — p' =1
shows p dvd q¢ <— p dvd r
(proof )

lemma basic-cqe-convl:
(3z. poly pz =0 A poly 0z # 0) «— False
(3z. poly 0z # 0) <— False
(Fz. poly [:c:] x £ 0) «— c# 0
(3z. poly 0 z = 0) +— True
(Fz. poly (] x = 0) «— c=0
(

lemma basic-cqe-conv2:
assumes [: p # 0
shows Jz. poly (pCons a (pCons b p)) x = (0::complex)

{proof)
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lemma basic-cqe-conv-2b: (3z. poly p © # (0::complex)) +— p # 0
(proof )

lemma basic-cqe-conv3:

fixes p q :: complex poly

assumes [: p # 0

shows (3z. poly (pCons ap) x =0 A poly gz # 0) +— — (pCons a p) dvd (g
~ psize p)

(proof )

lemma basic-cqe-convy:
fixes p q :: complex poly
assumes h: Az. poly (¢ ~n) x = poly r
shows p dvd (¢ " n) «— p dvd r
(proof )

lemma poly-const-conuv:
fixes z :: 'a::comm-ring-1
shows poly [c:]z=y+— c=y
(proof )

end

theory Group-Closure
imports

Main
begin

context ab-group-add
begin

inductive-set group-closure :: 'a set = 'a set for S
where base: s € insert 0 S = s € group-closure S
| diff: s € group-closure S = t € group-closure S = s — t € group-closure S

lemma zero-in-group-closure [simp]:
0 € group-closure S
{proof )

lemma group-closure-minus-iff [simp]:
— s € group-closure S <+— s € group-closure S
(proof)

lemma group-closure-add:
s + t € group-closure S if s € group-closure S and t € group-closure S

(proof)
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lemma group-closure-empty [simp]:
group-closure {} = {0}
(proof)

lemma group-closure-insert-zero [simp]:
group-closure (insert 0 S) = group-closure S
{proof )

end

context comm-ring-1
begin

lemma group-closure-scalar-mult-left:
of-nat n x s € group-closure S if s € group-closure S
(proof )

lemma group-closure-scalar-mult-right:
s * of-nat n € group-closure S if s € group-closure S
(proof )

end

lemma group-closure-abs-iff [simpl:
|s| € group-closure S +— s € group-closure S for s :: int
(proof )

lemma group-closure-mult-left:
s * t € group-closure S if s € group-closure S for s t :: int
(proof)

lemma group-closure-mult-right:
s * t € group-closure S if t € group-closure S for st :: int

{proof)

context idom
begin

lemma group-closure-mult-all-eq:
group-closure (times k © S) = times k ‘ group-closure S
(proof)

end
lemma Ged-group-closure-eq-Ged:

Ged (group-closure S) = Ged S for S :: int set
(proof)

lemma group-closure-sum:
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fixes S :: int set
assumes X: finite X X #{} X C S
shows (" z€X. a z * x) € group-closure S

{proof)

lemma Ged-group-closure-in-group-closure:
Gcd (group-closure S) € group-closure S for S :: int set

(proof)

lemma Ged-in-group-closure:
Ged S € group-closure S for S :: int set

{proof)

lemma group-closure-eq:
group-closure S = range (times (Ged S)) for S :: int set

(proof)

end

theory Normalized-Fraction
imports
Main
Euclidean-Algorithm
Fraction-Field
begin

lemma unit-factor-1-imp-normalized: unit-factor x = 1 = normalize t = z
(proof)

definition quot-to-fract :: 'a X 'a = 'a :: idom fract where
quot-to-fract = (A(a,b). Fraction-Field.Fract a b)

definition normalize-quot :: 'a :: {ring-gcd,idom-divide,semiring-gcd-mult-normalize }
x 'a = 'a X 'a where
normalize-quot =
(A(a,b). if b= 0 then (0,1) else let d = ged a b * unit-factor b in (a div d, b
div d))

lemma normalize-quot-zero [simp):
normalize-quot (a, 0) = (0, 1)
(proof)
lemma normalize-quot-proj:
fst (normalize-quot (a, b)) = a div (ged a b * unit-factor b)

snd (normalize-quot (a, b)) = normalize b div ged a b if b # 0

(proof)

definition normalized-fracts :: ('a :: {ring-gcd,idom-divide} x 'a) set where
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normalized-fracts = {(a,b). coprime a b A unit-factor b = 1}

lemma not-normalized-fracts-0-denom [simp]: (a, 0) ¢ normalized-fracts
{proof)

lemma unit-factor-snd-normalize-quot [simp]:
unit-factor (snd (normalize-quot x)) = 1

{proof)

lemma snd-normalize-quot-nonzero [simpl: snd (normalize-quot x) # 0
(proof)

lemma normalize-quot-aux:
fixes a b
assumes b # 0
defines d = gcd a b * unit-factor b
shows a = fst (normalize-quot (a,b)) * d b = snd (normalize-quot (a,b)) * d
d dvd a d dvd b d # 0
(proof)

lemma normalize-quotE:
assumes b # 0
obtains d where a = fst (normalize-quot (a,b)) x d b = snd (normalize-quot
(a,b)) * d
ddvd addvdbd#0
(proof )

lemma normalize-quotE":
assumes snd x # 0
obtains d where fst = fst (normalize-quot x) * d snd x = snd (normalize-quot
z) x d
d dvd fst x d dvd snd x d # 0
(proof)

lemma coprime-normalize-quot:
coprime (fst (normalize-quot x)) (snd (normalize-quot x))

(proof)

lemma normalize-quot-in-normalized-fracts [simp|: normalize-quot x € normal-
ized-fracts

{proof)

lemma normalize-quot-eq-iff:

assumes b # 0 d # 0

shows normalize-quot (a,b) = normalize-quot (¢,d) +— a x d = b * ¢
(proof )

lemma normalize-quot-eq-iff -
assumes snd ¢ # 0 snd y # 0
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shows normalize-quot © = normalize-quot y <— fst x x snd y = snd x * fst y
(proof)

lemma normalize-quot-id: © € normalized-fracts = normalize-quot © = x
(proof )

lemma normalize-quot-idem [simp|: normalize-quot (normalize-quot x) = normal-
ize-quot T
{proof)

lemma fractrel-iff-normalize-quot-eq:
fractrel x y <— normalize-quot © = normalize-quot y A snd z # 0 N snd y # 0

{proof)

lemma fractrel-normalize-quot-left:
assumes snd x # 0
shows fractrel (normalize-quot z) y +— fractrel x y

{proof)

lemma fractrel-normalize-quot-right:
assumes snd x # 0
shows fractrel y (normalize-quot x) +— fractrel y

{proof)

lift-definition quot-of-fract ::
‘a :: {ring-gcd,idom-divide,semiring-ged-mult-normalize} fract = 'a X 'a
is normalize-quot
(proof)

lemma quot-to-fract-quot-of-fract [simpl: quot-to-fract (quot-of-fract ©) = x
(proof )

lemma quot-of-fract-quot-to-fract: quot-of-fract (quot-to-fract x) = normalize-quot
x
(proof)

lemma quot-of-fract-quot-to-fract”:
x € normalized-fracts = quot-of-fract (quot-to-fract ) = x
(proof)

lemma quot-of-fract-in-normalized-fracts [simp]: quot-of-fract x € normalized-fracts
(proof)

lemma normalize-quotl:
assumes a¢ * d = b x ¢ b # 0 (¢, d) € normalized-fracts
shows normalize-quot (a, b) = (¢, d)

(proof)
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lemma td-normalized-fract:
type-definition quot-of-fract quot-to-fract normalized-fracts
(proof)

lemma quot-of-fract-add-auz:
assumes snd x # 0 snd y # 0
shows  (fst z x snd y + fst y * snd z) * (snd (normalize-quot x) * snd
(normalize-quot y)) =
snd z * snd y * (fst (normalize-quot ) * snd (normalize-quot y) +
snd (normalize-quot ) * fst (normalize-quot y))

(proof)

locale fract-as-normalized-quot
begin

setup-lifting td-normalized-fract
end

lemma quot-of-fract-add:
quot-of-fract (x + y) =
(let (a,b) = quot-of-fract x; (¢,d) = quot-of-fract y
in normalize-quot (a x d + b x ¢, b x d))
(proof)

lemma quot-of-fract-uminus:
quot-of-fract (—x) = (let (a,b) = quot-of-fract z in (—a, b))
(proof)

lemma quot-of-fract-diff:
quot-of-fract (z — y) =
(let (a,b) = quot-of-fract x; (¢,d) = quot-of-fract y
in normalize-quot (a x d — b x ¢, b x d)) (is - = %rhs)
(proof)

lemma normalize-quot-mult-coprime:
assumes coprime a b coprime c¢ d unit-factor b = 1 unit-factor d = 1
defines e = fst (normalize-quot (a, d)) and f = snd (normalize-quot (a, d))
and g = fst (normalize-quot (¢, b)) and h = snd (normalize-quot (¢, b))
shows normalize-quot (a x ¢, bx d) = (e x g, f * h)
(proof)

lemma normalize-quot-mult:
assumes snd x # 0 snd y # 0
shows normalize-quot (fst x x fst y, snd z x snd y) = normalize-quot
(fst (normalize-quot x) * fst (normalize-quot y),
snd (normalize-quot x) * snd (normalize-quot y))

(proof)
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lemma quot-of-fract-mult:
quot-of-fract (z * y) =
(let (a,b) = quot-of-fract x; (¢,d) = quot-of-fract y;
(e,f) = normalize-quot (a,d); (g,h) = normalize-quot (c,b)
in (exg, fxh))
(proof)

lemma normalize-quot-0 [simp):
normalize-quot (0, ) = (0, 1) normalize-quot (z, 0) = (0, 1)
{proof)

lemma normalize-quot-eq-0-iff [simp]: fst (normalize-quot x) = 0 +— fst v = 0
Vsndz =0
(proof )

lemma fst-quot-of-fract-0-imp: fst (quot-of-fract ©) = 0 = snd (quot-of-fract x)
=1
(proof )

lemma normalize-quot-swap:
assumes a # 0 b # 0
defines a’ = fst (normalize-quot (a, b)) and b’ = snd (normalize-quot (a, b))
shows normalize-quot (b, a) = (b’ div unit-factor a’, a’ div unit-factor a’)
(proof)

lemma quot-of-fract-inverse:
quot-of-fract (inverse x) =
(let (a,b) = quot-of-fract x; d = unit-factor a
in if d = 0 then (0, 1) else (b div d, a div d))
(proof)

lemma normalize-quot-div-unit-left:
fixes z y u
assumes s-unit u
defines =’ = fst (normalize-quot (z, y)) and y
shows normalize-quot (x div u, y) = (z' div u, y’)

(proof)

"= snd (normalize-quot (z, y))

lemma normalize-quot-div-unit-right:
fixes x y u
assumes is-unit u
defines =’ = fst (normalize-quot (z, y)) and y’ = snd (normalize-quot (z, y))
shows normalize-quot (z, y div u) = (2’ x u, y")

(proof)

lemma normalize-quot-normalize-left:
fixes z y u
defines =’ = fst (normalize-quot (z, y)) and y’ = snd (normalize-quot (z, y))
shows normalize-quot (normalize x, y) = (z' div unit-factor x, y’)
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{proof)

lemma normalize-quot-normalize-right:
fixes z y u
defines =’ = fst (normalize-quot (z, y)) and y’ = snd (normalize-quot (z, y))
shows normalize-quot (z, normalize y) = (x’ x unit-factor y, y’)

{proof)

lemma quot-of-fract-0 [simp]: quot-of-fract 0 = (0, 1)
(proof )

lemma quot-of-fract-1 [simp]: quot-of-fract 1 = (1, 1)
(proof )

lemma quot-of-fract-divide:
quot-of-fract (z / y) = (if y = 0 then (0, 1) else
(let (a,b) = quot-of-fract x; (¢,d) = quot-of-fract y;
(e,f) = normalize-quot (a,c); (g,h) = normalize-quot (d,b)
in (ex g, f*h)) (is - = %rhs)
(proof)

lemma snd-quot-of-fract-nonzero [simp|: snd (quot-of-fract x) # 0
(proof )

lemma Fract-quot-of-fract [simp]: Fract (fst (quot-of-fract x)) (snd (quot-of-fract
z)) ==

{proof)

lemma snd-quot-of-fract-Fract-whole:
assumes y dvd x
shows snd (quot-of-fract (Fract z y)) = 1

(proof)

lemma fst-quot-of-fract-eq-0-iff [simp]: fst (quot-of-fract ) = 0 +— x = 0
(proof )

lemma coprime-quot-of-fract:
coprime (fst (quot-of-fract z)) (snd (quot-of-fract x))
(proof)

lemma unit-factor-snd-quot-of-fract: unit-factor (snd (quot-of-fract z)) = 1

(proof)
lemma normalize-snd-quot-of-fract: normalize (snd (quot-of-fract x)) = snd (quot-of-fract
z)

(proof )

end
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10 n-th powers and roots of naturals

theory Nth-Powers
imports Primes
begin

10.1 The set of n-th powers

definition is-nth-power :: nat = 'a :: monoid-mult = bool where
is-nth-power n x +— (Jy. x =y " n)

lemma is-nth-power-nth-power [simp, intro|: is-nth-power n (z ~ n)
(proof )

lemma is-nth-powerl [intro?: © =y ~— n = is-nth-power n
(proof)

lemma is-nth-powerE: is-nth-power n & = (\y. t =y ~n=— P) = P
(proof )

abbreviation is-square where is-square = is-nth-power 2

lemma is-zeroth-power [simpl: is-nth-power 0 © +— z = 1

(proof)

lemma is-first-power [simp]: is-nth-power 1 x
(proof )

lemma is-first-power’ [simp): is-nth-power (Suc 0)
{proof)

lemma is-nth-power-0 [simp]: n > 0 = is-nth-power n (0 :: 'a :: semiring-1)

{proof)

lemma is-nth-power-0-iff [simp]: is-nth-power n (0 :: 'a :: semiring-1) <— n > 0

(proof)

lemma is-nth-power-1 [simpl: is-nth-power n 1
(proof )

lemma is-nth-power-Suc-0 [simp): is-nth-power n (Suc 0)
(proof)

lemma is-nth-power-conv-multiplicity:
fixes z :: ‘a :: {factorial-semiring, normalization-semidom-multiplicative}
assumes n > 0
shows is-nth-power n (normalize z) +— (V¥ p. prime p — n dvd multiplicity
p )
(proof)
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lemma is-nth-power-conv-multiplicity-nat:
assumes n > 0
shows is-nth-power n (z :: nat) +— (Vp. prime p — n dvd multiplicity p x)
(proof )

lemma is-nth-power-mult:
assumes is-nth-power n a is-nth-power n b
shows is-nth-power n (a * b :: 'a :: comm-monoid-mult)
(proof)

lemma is-nth-power-mult-coprime-natD:
fixes a b :: nat
assumes coprime a b is-nth-power n (a * b) a > 0b > 0
shows is-nth-power n a is-nth-power n b

(proof)

lemma is-nth-power-mult-coprime-nat-iff:
fixes a b :: nat
assumes coprime a b
shows is-nth-power n (a * b) «— is-nth-power n a Ais-nth-power n b

{proof)

lemma is-nth-power-prime-power-nat-iff:
fixes p :: nat assumes prime p
shows is-nth-power n (p " k) +— n dvd k

{proof)

lemma is-nth-power-nth-power”:
assumes 71 dvd n'
shows  is-nth-power n (m ~n')
(proof )

definition is-nth-power-nat :: nat = nat = bool
where [code-abbrev]: is-nth-power-nat = is-nth-power

lemma is-nth-power-nat-code [codel:
is-nth-power-nat n m =
(if n = 0 then m = 1
else if m = 0 then n > 0
else if n = 1 then True
else (Jke{1..m}. k " n =m))
(proof)

lemma is-nth-power-mult-cancel-left:
fixes a b :: 'a :: semiring-gcd
assumes is-nth-power n a a # 0
shows is-nth-power n (a * b) <— is-nth-power n b

(proof)
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lemma is-nth-power-mult-cancel-right:
fixes a b :: 'a :: semiring-gcd
assumes is-nth-power n b b # 0
shows is-nth-power n (a * b) «— is-nth-power n a

{proof)

10.2 The n-root of a natural number

definition nth-root-nat :: nat = nat = nat where
nth-root-nat k n = (if k = 0 then 0 else Maxz {m. m ~k < n})

lemma zeroth-root-nat [simp|: nth-root-nat 0 n = 0
{proof)

lemma nth-root-nat-auzxl:
assumes k > 0
shows {m:nat. m "k < n} C {.n}

(proof)

lemma nth-root-nat-auz2:
assumes k > 0
shows finite {m::nat. m ~k < n} {munat. m "k < n} # {}

(proof)

lemma
assumes k > 0
shows nth-root-nat-power-le: nth-root-nat kn ~k < n
and nth-root-nat-ge: x ~ k < n = x < nth-root-nat k n

(proof)

lemma nth-root-nat-less:
assumes k > 0z " k> n
shows nth-root-nat kn < x

(proof)

lemma nth-root-nat-unique:
assumes m k<n(m+ 1) " k>n
shows nth-root-nat k n = m

(proof)

lemma nth-root-nat-0 [simp|: nth-root-nat k 0 = 0
{proof)

lemma nth-root-nat-1 [simp]: k > 0 = nth-root-nat k 1 = 1
{proof)

lemma nth-root-nat-Suc-0 [simp]: k > 0 = nth-root-nat k (Suc 0) = Suc 0
{proof)
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lemma first-root-nat [simpl: nth-root-nat 1 n = n
{proof)

lemma first-root-nat’ [simp]: nth-root-nat (Suc 0) n = n
{proof)

lemma nth-root-nat-code-naive':
nth-root-nat k n = (if k = 0 then 0 else Maz (Set.filter (Am. m ~k < n) {..n}))

{(proof)

function nth-root-nat-aux :: nat = nat = nat = nat = nat where
nth-root-nat-aux m k acc n =
(let acc’ = (k+ 1) "m
in if k> nV acc’ > n then k else nth-root-nat-aux m (k+1) acc’ n)

{proof)
termination (proof)

lemma nth-root-nat-aux-le:
assumes £k " m < nm>20
shows nth-root-nat-auz m k (k “m) n “m < n
(proof)

lemma nth-root-nat-aux-gt:
assumes m > 0
shows (nth-root-nat-auz m k (k "m) n+ 1) “m >n
(proof)

lemma nth-root-nat-auz-correct:
assumes k " m<nm >0
shows nth-root-nat-auz m k (k ~ m) n = nth-root-nat m n

(proof)

lemma nth-root-nat-naive-code [code]:
nth-root-nat mn = (if m = 0 V n = 0 then O else if m = 1 V n = 1 then n else
nth-root-nat-auz m 1 1 n)

(proof)

lemma nth-root-nat-nth-power [simp): k > 0 = nth-root-nat k (n " k) = n
{proof)

lemma nth-root-nat-nth-power’:
assumes k > 0 k dvd m
shows nth-root-nat k (n ~m) = n ~ (m div k)
(proof)

lemma nth-root-nat-mono:
assumes m < n
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shows nth-root-nat k m < nth-root-nat k n
(proof)

end

11 Polynomials, fractions and rings

theory Polynomial-Factorial
imports
Complex-Main
Polynomial
Normalized-Fraction
begin

11.1 Lifting elements into the field of fractions

definition to-fract :: 'a :: idom = ’a fract
where to-fract x = Fract z 1
— FIXME: more idiomatic name, abbreviation

lemma to-fract-0 [simp]: to-fract 0 = 0
(proof )

lemma to-fract-1 [simp]: to-fract 1 = 1

(proof)

lemma to-fract-add [simp]: to-fract (z + y) = to-fract © + to-fract y
(proof )

lemma to-fract-diff [simp]: to-fract (z — y) = to-fract © — to-fract y
(proof )

lemma to-fract-uminus [simpl: to-fract (—z) = —to-fract
{proof)

lemma to-fract-mult [simp]: to-fract (z * y) = to-fract T x to-fract y
(proof )

lemma to-fract-eq-iff [simp]: to-fract © = to-fract y +— = =y
(proof )

lemma to-fract-eq-0-iff [simp]: to-fract z = 0 +— =z = 0
(proof )

lemma to-fract-quot-of-fract:

assumes snd (quot-of-fract ) = 1

shows to-fract (fst (quot-of-fract z)) = x
(proof)

271



lemma Fract-conv-to-fract: Fract a b = to-fract a | to-fract b
{proof )

lemma quot-of-fract-to-fract [simp|: quot-of-fract (to-fract ) = (z, 1)
(proof )

lemma snd-quot-of-fract-to-fract [simpl: snd (quot-of-fract (to-fract z)) = 1
(proof )

11.2 Lifting polynomial coefficients to the field of fractions

abbreviation (input) fract-poly :: <'a::idom poly = 'a fract poly»
where fract-poly = map-poly to-fract

abbreviation (input) unfract-poly :: <'a::{ring-gcd,semiring-gcd-mult-normalize,idom-divide}
fract poly = 'a poly
where unfract-poly = map-poly (fst o quot-of-fract)

lemma fract-poly-smult [simp]: fract-poly (smult ¢ p) = smult (to-fract ¢) (fract-poly

p)
(proof)

lemma fract-poly-0 [simp]: fract-poly 0 = 0
(proof )

lemma fract-poly-1 [simp]: fract-poly 1 = 1
(proof )

lemma fract-poly-add [simp]:
fract-poly (p + q) = fract-poly p + fract-poly q
(proof )

lemma fract-poly-diff [simp]:
fract-poly (p — q) = fract-poly p — fract-poly q
(proof)

lemma to-fract-sum [simp]: to-fract (sum f A) = sum (Az. to-fract (f z)) A
{proof)

lemma fract-poly-mult [simp]:
fract-poly (p * q) = fract-poly p * fract-poly q
(proof )

lemma fract-poly-eq-iff [simp): fract-poly p = fract-poly ¢ +— p = ¢
(proof )

lemma fract-poly-eq-0-iff [simp]: fract-poly p = 0 «— p = 0
(proof )
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lemma fract-poly-dvd: p dvd ¢ = fract-poly p dvd fract-poly q
(proof)

lemma prod-mset-fract-poly:
(ITz€#A. map-poly to-fract (f x)) = fract-poly (prod-mset (image-mset f A))
(proof )

lemma is-unit-fract-poly-iff:
p dvd 1 +— fract-poly p dvd 1 N content p = 1
{(proof)

lemma fract-poly-is-unit: p dvd 1 = fract-poly p dvd 1
(proof)

lemma fract-poly-smult-eqF:
fixes ¢ :: 'a :: {idom-divide,ring-gcd,semiring-gcd-mult-normalize} fract
assumes fract-poly p = smult ¢ (fract-poly q)
obtains a b
where ¢ = to-fract b / to-fract a smult a p = smult b q coprime a b normalize
a=a

(proof)

11.3 Fractional content

abbreviation (input) Lem-coeff-denoms
: a  {semiring-Ged,idom-divide,ring-ged, semiring-ged-mult-normalize} fract
poly = a
where Lem-coeff-denoms p = Lem (snd  quot-of-fract © set (coeffs p))

definition fract-content :
‘a :: { factorial-semiring,semiring-Ged,ring-gcd,idom-divide, semiring-gcd-mult-normalize }
fract poly = 'a fract where
fract-content p =
(let d = Lem-coeff-denoms p in Fract (content (unfract-poly (smult (to-fract

d) p))) d)

definition primitive-part-fract ::
‘a :: { factorial-semiring,semiring- Ged,ring-gced, idom-divide,semiring-gcd-mult-normalize}
fract poly = 'a poly where
primitive-part-fract p =
primitive-part (unfract-poly (smult (to-fract (Lem-coeff-denoms p)) p))

lemma primitive-part-fract-0 [simp]: primitive-part-fract 0 = 0
(proof)

lemma fract-content-eq-0-iff [simp):

fract-content p = 0 <— p = 0
(proof)
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lemma content-primitive-part-fract [simp):
fixes p :: ‘a :: {semiring-ged-mult-normalize,
factorial-semiring, ring-ged, semiring-Ged,idom-divide} fract poly
shows p # 0 = content (primitive-part-fract p) = 1
(proof )

lemma content-times-primitive-part-fract:
smult (fract-content p) (fract-poly (primitive-part-fract p)) = p

(proof)

lemma fract-content-fract-poly [simpl: fract-content (fract-poly p) = to-fract (content

p)
(proof)

lemma content-decompose-fract:
fixes p :: ‘a :: {factorial-semiring,semiring-Ged,ring-ged,idom-divide,
semiring-ged-mult-normalize} fract poly
obtains ¢ p’ where p = smult ¢ (map-poly to-fract p’) content p’ = 1
(proof)

lemma fract-poly-dvdD:
fixes p :: 'a :: {factorial-semiring,semiring-Gcd,ring-gcd,idom-divide,
semiring-ged-mult-normalize} poly
assumes fract-poly p dvd fract-poly q content p = 1
shows p dvd q

(proof)

11.4 Polynomials over a field are a Euclidean ring

context
begin

interpretation field-poly:

normalization-euclidean-semiring-multiplicative where zero = 0 :: 'a :: field poly
and one = 1 and plus = plus and minus = minus
and times = times
and normalize = A\p. smult (inverse (lead-coeff p)) p
and unit-factor = Ap. [:lead-coeff p:]
and euclidean-size = Ap. if p = 0 then 0 else 2 ~ degree p
and divide = divide and modulo = modulo

rewrites dvd.dvd (times :: 'a poly = -) = Rings.dvd
and comm-monoid-mult.prod-mset times 1 = prod-mset
and comm-semiring-1.irreducible times 1 0 = irreducible
and comm-semiring-1.prime-elem times 1 0 = prime-elem

(proof)

lemma field-poly-irreducible-imp-prime:
prime-elem p if irreducible p for p :: 'a :: field poly
(proof )
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lemma field-poly-prod-mset-prime-factorization:
prod-mset (field-poly.prime-factorization p) = smult (inverse (lead-coeff p)) p
if p #£ 0 for p :: 'a :: field poly
(proof )

lemma field-poly-in-prime-factorization-imp-prime:
prime-elem p if p €# field-poly.prime-factorization z
for p :: 'a :: field poly
(proof )

11.5 Primality and irreducibility in polynomial rings

lemma nonconst-poly-irreducible-iff:

fixes p :: 'a :: {factorial-semiring,semiring-Ged,ring-gcd,idom-divide,semiring-gcd-mult-normalize }
poly

assumes degree p # 0

shows irreducible p «— irreducible (fract-poly p) A content p = 1

(proof)

lemma irreducible-imp-prime-poly:

fixes p :: ‘a :: {factorial-semiring,semiring-Ged,ring-ged,idom-divide,semiring-gcd-mult-normalize}
poly

assumes irreducible p

shows prime-elem p

(proof)

lemma degree-primitive-part-fract [simp):
degree (primitive-part-fract p) = degree p
(proof )

lemma irreducible-primitive-part-fract:

fixes p :: ‘a :: {idom-divide, ring-gcd, factorial-semiring, semiring-Ged,semiring-ged-mult-normalize}
fract poly

assumes irreducible p

shows irreducible (primitive-part-fract p)

(proof)

lemma prime-elem-primitive-part-fract:

fixes p :: ‘a :: {idom-divide, ring-gcd, factorial-semiring, semiring-Ged,semiring-ged-mult-normalize}
fract poly

shows irreducible p = prime-elem (primitive-part-fract p)

(proof)

lemma irreducible-linear-field-poly:
fixes a b :: 'a:field
assumes b # 0
shows irreducible [:a,b:]

(proof)
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lemma prime-elem-linear-field-poly:
(b :: a = field) # 0 = prime-elem [:a,b:]
(proof)

lemma irreducible-linear-poly:
fixes a b :: 'a::{idom-divide,ring-gcd, factorial-semiring, semiring- Ged, semiring-gcd-mult-normalize }
shows b # 0 = coprime a b = irreducible [:a,b:]
(proof )

lemma prime-elem-linear-poly:
fixes a b :: 'a::{idom-divide,ring-gcd, factorial-semiring, semiring- Ged, semiring-gcd-mult-normalize }
shows b # 0 = coprime a b = prime-elem [:a,b:]
(proof )

11.6 Prime factorisation of polynomials

lemma poly-prime-factorization-exists-content-1:

fixes p :: 'a :: {factorial-semiring,semiring-Ged,ring-gcd,idom-divide,semiring-gcd-mult-normalize }
poly

assumes p # 0 content p = 1

shows 3JA. (Vp. p €# A — prime-elem p) A prod-mset A = normalize p

(proof)

lemma poly-prime-factorization-exists:

fixes p :: ‘a :: {factorial-semiring,semiring-Ged,ring-gcd,idom-divide,semiring-gcd-mult-normalize}
poly

assumes p # 0

shows JA. (
normalize p

(proof)

Vp. p €# A — prime-elem p) N normalize (prod-mset A) =

end

11.7 Typeclass instances

instance poly :: ({factorial-ring-gcd,semiring-ged-mult-normalize}) factorial-semiring
{proof )

instantiation poly :: ({factorial-ring-gcd, semiring-gcd-mult-normalize}) factorial-ring-gcd
begin

definition gcd-poly :: 'a poly = 'a poly = 'a poly where
[code del]: ged-poly = ged-factorial

definition lcm-poly :: 'a poly = 'a poly = 'a poly where
[code del]: lem-poly = lem-factorial

definition Ged-poly :: 'a poly set = ’a poly where
[code del]: Ged-poly = Ged-factorial
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definition Lem-poly :: 'a poly set = 'a poly where
[code del]: Lem-poly = Lem-factorial

instance (proof)
end

instance poly :: ({factorial-ring-gcd, semiring-ged-mult-normalize}) semiring-ged-mult-normalize

{(proof)

instance poly :: ({field,factorial-ring-gcd,semiring-gcd-mult-normalize})
normalization-euclidean-semiring (proof)

instance poly :: ({field, normalization-euclidean-semiring, factorial-ring-gcd,
semiring-ged-mult-normalize}) euclidean-ring-ged
(proof)

instance poly :: ({field, normalization-euclidean-semiring, factorial-ring-gcd,
semiring-ged-mult-normalize}) factorial-semiring-multiplicative

(proof)

11.8 Polynomial GCD

lemma gcd-poly-decompose:
fixes p q :: 'a :: {factorial-ring-gcd,semiring-gcd-mult-normalize} poly
shows gcd p q =
smult (ged (content p) (content q)) (ged (primitive-part p) (primitive-part
7))

(proof)

lemma gcd-poly-pseudo-mod:
fixes p q :: 'a i {factorial-ring-gcd,semiring-ged-mult-normalize} poly
assumes nz: ¢ # 0 and prim: content p = 1 content q = 1
shows ged p q = ged g (primitive-part (pseudo-mod p q))

(proof)

lemma degree-pseudo-mod-less:
assumes ¢ # 0 pseudo-mod p q # 0
shows degree (pseudo-mod p q) < degree q
(proof)

function gcd-poly-code-auz :: 'a :: factorial-ring-gcd poly = 'a poly = ’'a poly
where
ged-poly-code-auz p ¢ =
(if ¢ = 0 then normalize p else ged-poly-code-auz q (primitive-part (pseudo-mod
P q)))
(proof)
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termination
(proof )

declare gcd-poly-code-auz.simps [simp del]

lemma gcd-poly-code-auz-correct:
assumes content p = 1 ¢ = 0 V content q = 1
shows gcd-poly-code-auzx p q = ged p q
(proof )

definition gcd-poly-code
2 'a i factorial-ring-ged poly = 'a poly = 'a poly
where gcd-poly-code p q =
(if p = 0 then normalize q else if ¢ = 0 then normalize p else
smult (ged (content p) (content q))
(ged-poly-code-aux (primitive-part p) (primitive-part q)))

lemma ged-poly-code [codel: ged p g = ged-poly-code p q
(proof)

lemma lem-poly-code [codel:
fixes p q :: 'a :: {factorial-ring-gcd,semiring-gcd-mult-normalize} poly
shows lem p ¢ = normalize (p * q div ged p q)
(proof)

lemmas Gcd-poly-set-eq-fold [code] =

Gcd-set-eq-fold [where ?a = 'a :: {factorial-ring-gcd,semiring-gcd-mult-normalize}
poly]
lemmas Lcem-poly-set-eq-fold [code] =

Lem-set-eq-fold [where ?'a = 'a :: {factorial-ring-ged,semiring-ged-mult-normalize
poly]

end

12 Squarefreeness

theory Squarefree
imports Primes
begin

definition squarefree :: 'a :: comm-monoid-mult = bool where

squarefree n «— (Vz. z = 2 dvd n — x dvd 1)

lemma squarefreel: (Az. z = 2 dvd n = z dvd 1) = squarefree n
(proof )

lemma squarefreeD: squarefree n = x ~ 2 dvd n = z dvd 1
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{proof)

lemma not-squarefreel: x ~ 2 dvd n = —x dvd 1 = —squarefree n
(proof )

lemma not-squarefreeE [case-names square-dvd):
—squarefree n = (A\z. 2 ~ 2 dvd n = -~z dvd 1 = P) = P

{proof)

lemma not-squarefree-0 [simp): —squarefree (0 :: 'a :: comm-semiring-1)

(proof)

lemma squarefree-factorial-semiring:

assumes n # 0

shows squarefree (n :: 'a :: factorial-semiring) <— (¥ p. prime p — —p
dvd n)

(proof)

lemma squarefree-factorial-semiring’:
assumes n # 0
shows squarefree (n :: 'a :: factorial-semiring) +—
(Y peprime-factors n. multiplicity p n = 1)
(proof)

lemma squarefree-factorial-semiring’”:
assumes n # 0
shows squarefree (n :: 'a :: factorial-semiring) +—
(Y p. prime p — multiplicity p n < 1)
(proof)

lemma squarefree-unit [simp): is-unit n = squarefree n

(proof)

lemma squarefree-1 [simp]: squarefree (1 :: 'a :: algebraic-semidom)
(proof )

/

lemma squarefree-minus [simp]: squarefree (—n :: 'a :: comm-ring-1) +— square-

free n
{proof )

lemma squarefree-mono: a dvd b = squarefree b = squarefree a
(proof )

lemma squarefree-multD:
assumes squarefree (a x b)
shows squarefree a squarefree b

(proof)

lemma squarefree-prime-elem:
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assumes prime-elem (p :: 'a :: factorial-semiring)
shows squarefree p
(proof)

lemma squarefree-prime:
assumes prime (p :: 'a :: factorial-semiring)
shows squarefree p
(proof )

lemma squarefree-mult-coprime:
fixes a b :: 'a :: factorial-semiring-gcd
assumes coprime a b squarefree a squarefree b
shows  squarefree (a * b)

(proof)

lemma squarefree-prod-coprime:
fixes f :: 'a = 'b :: factorial-semiring-gcd
assumes A\a b.a € A= b€ A= a# b= coprime (fa) (fb)
assumes Aa. a € A = squarefree (f a)
shows squarefree (prod f A)

(proof)

lemma squarefree-powerD: m > 0 = squarefree (n ~ m) = squarefree n
(proof )

lemma squarefree-power-iff:
squarefree (n ~m) «— m = 0 V is-unit n V (squarefree n A m = 1)
(proof)

definition squarefree-nat :: nat = bool where
[code-abbrev]: squarefree-nat = squarefree

lemma squarefree-nat-code-naive [code]:
squarefree-nat n <— n # 0 N (Vke{2..n}. =k ~ 2 dvd n)
(proof)

definition square-part :: 'a :: factorial-semiring = 'a where
square-part n = (if n = 0 then 0 else
normalize ([| p€prime-factors n. p ~ (multiplicity p n div 2)))

lemma square-part-nonzero:

n # 0 = square-part n = normalize ([[ pEprime-factors n. p ~ (multiplicity p
n div 2))

(proof )

lemma square-part-0 [simpl: square-part 0 = 0

{proof)
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lemma square-part-unit [simp)|: is-unit © = square-part x = 1
{proof )

lemma square-part-1 [simpl: square-part 1 = 1
(proof)

lemma square-part-0-iff [simpl: square-part n = 0 +— n = 0
(proof)

lemma normalize-uminus [simp]:
normalize (—z :: 'a :: {normalization-semidom, comm-ring-1}) = normalize

{proof)

lemma multiplicity-uminus-right [simp):
multiplicity (z :: 'a :: {factorial-semiring, comm-ring-1}) (—y) = multiplicity x y

(proof)

lemma multiplicity-uminus-left [simp]:
multiplicity (—z :: 'a 2 {factorial-semiring, comm-ring-1}) y = multiplicity = y

(proof)

lemma prime-factorization-uminus [simp):

prime-factorization (—z :: 'a :: {factorial-semiring, comm-ring-1}) = prime-factorization
x

(proof )

lemma square-part-uminus [simp):
square-part (—z = 'a :: {factorial-semiring, comm-ring-1}) = square-part
(proof )

lemma prime-multiplicity-square-part:

assumes prime p

shows multiplicity p (square-part n) = multiplicity p n div 2
(proof)

lemma square-part-square-dvd [simp, intro]: square-part n ~ 2 dvd n

(proof)

lemma prime-multiplicity-le-imp-dvd:
assumes z #* 0y # 0
shows =z dvd y «— (Vp. prime p — multiplicity p © < multiplicity p y)
(proof )

lemma dvd-square-part-iff: x dvd square-part n +— z ~ 2 dvd n

(proof)

definition squarefree-part :: 'a :: factorial-semiring = 'a where
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squarefree-part n = (if n = 0 then 1 else n div square-part n ~ 2)

lemma squarefree-part-0 [simp]: squarefree-part 0 = 1
(proof)

lemma squarefree-part-unit [simpl: is-unit n => squarefree-part n = n
(proof)

lemma squarefree-part-1 [simp]: squarefree-part 1 = 1
(proof )

lemma squarefree-decompose: n = squarefree-part n * square-part n ~ 2
(proof)

lemma squarefree-part-uminus [simp:

assumes z # 0

shows squarefree-part (—z :: 'a :: {factorial-semiring, comm-ring-1}) = —squarefree-part
T
(proof)

lemma squarefree-part-nonzero [simpl: squarefree-part n # 0
(proof)

lemma prime-multiplicity-squarefree-part:
assumes prime p
shows multiplicity p (squarefree-part n) = multiplicity p n mod 2

(proof)

lemma prime-multiplicity-squarefree-part-le-Suc-0 [introl:
assumes prime p
shows multiplicity p (squarefree-part n) < Suc 0

(proof)

lemma squarefree-squarefree-part [simp, introl: squarefree (squarefree-part n)
(proof)

lemma squarefree-decomposition-unique:
assumes square-part m = square-part n
assumes squarefree-part m = squarefree-part n
shows m =n

{proof)

lemma normalize-square-part [simp]: normalize (square-part ) = square-part
(proof)

lemma square-part-even-power’: square-part (z ~ (2 x n)) = normalize (z ~ n)

{(proof)

lemma square-part-even-power: even n = square-part (r — n) = normalize (z ~
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(n div 2))
{proof)

lemma square-part-odd-power’: square-part (x ~ (Suc (2 * n))) = normalize (x ~
n * square-part )

(proof)

lemma square-part-odd-power:
odd n = square-part (x ~ n) = normalize (z ~ (n div 2) * square-part x)
{proof)

end

13 Pieces of computational Algebra

theory Computational-Algebra
imports
Euclidean-Algorithm
Factorial-Ring
Formal-Laurent-Series
Fraction-Field
Fundamental-Theorem-Algebra
Group-Closure
Normalized-Fraction
Nth-Powers
Polynomial-FPS
Polynomial
Polynomial-Factorial
Primes
Squarefree
begin

end

theory Field-as-Ring
imports
Complez-Main
Euclidean-Algorithm
begin

context field
begin

subclass idom-divide (proof)
definition normalize-field :: 'a = 'a

where [simp]: normalize-field © = (if x = 0 then 0 else 1)
definition unit-factor-field :: 'a = 'a
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where [simp|: unit-factor-field x =
definition cuclidean-size-field :: 'a = nat

where [simp]: euclidean-size-field x = (if = 0 then 0 else 1)
definition mod-field :: 'a = 'a = 'a

where [simp]: mod-field x y = (if y = 0 then x else 0)

end

instantiation real :
{unique-euclidean-ring, normalization-euclidean-semiring, normalization-semidom-multiplicative}
begin

definition [simp]: normalize-real = (normalize-field :: real = -)
definition [simp]: unit-factor-real = (unit-factor-field :: real = -)
definition [simp]: modulo-real = (mod-field :: real = -)

definition [simp]: euclidean-size-real = (euclidean-size-field :: real = -)
definition [simp]: division-segment (z :: real) = 1

instance
(proof)

end

instantiation real :: euclidean-ring-gcd
begin

definition gcd-real :: real = real = real where
gcd-real = Euclidean-Algorithm.ged

definition lem-real :: real = real = real where
lem-real = Euclidean-Algorithm.lcm

definition Gcd-real :: real set = real where
Ged-real = Euclidean-Algorithm.Ged

definition Lem-real :: real set = real where
Lem-real = Fuclidean-Algorithm. Lem

instance (proof)
end
instance real :: field-ged (proof)
instantiation rat ::
{unique-euclidean-ring, normalization-euclidean-semiring, normalization-semidom-multiplicative}
begin
definition [simp]: normalize-rat = (normalize-field :: rat = -)

definition [simp|: unit-factor-rat = (unit-factor-field :: rat = -)
definition [simp]: modulo-rat = (mod-field :: rat = -)
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definition [simp]: euclidean-size-rat = (euclidean-size-field ::

definition [simp]: division-segment (z :: rat) = 1

instance
(proof)

end

instantiation rat :: euclidean-ring-gcd
begin

definition gcd-rat :: rat = rat = rat where
ged-rat = Buclidean-Algorithm.ged
definition lem-rat :: rat = rat = rat where
lem-rat = Euclidean-Algorithm.lcm
definition Gcd-rat :: rat set = rat where
Ged-rat = Euclidean-Algorithm.Ged
definition Lem-rat :: rat set = rat where
Lem-rat = Euclidean-Algorithm. Lem

instance (proof)
end

instance rat :: field-ged (proof)

instantiation complex ::

{unique-euclidean-ring, normalization-euclidean-semiring, normalization-semidom-multiplicative}

rat = -)

begin
definition [simpl|: normalize-complex = (normalize-field :: compler = -)
definition [simp]: unit-factor-complex = (unit-factor-field :: complexr = -)

stmp

simp

definition

definition division-segment (x :: complex) = 1

instance
(proof )

end

instantiation complex :: euclidean-ring-gcd
begin

[simp]:
[simp]:

definition [simp]: modulo-complex = (mod-field :: complex = -)
[ |: euclidean-size-complex = (euclidean-size-field :: complex = -)
[simp]:

definition gcd-complex :: complex = compler = complex where

ged-complex = Euclidean-Algorithm. ged

definition lcm-complex :: compler = complex = complex where

lem-complex = Euclidean-Algorithm.lem
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definition Gecd-complex :: complex set = complex where
Ged-complex = Fuclidean-Algorithm.Ged

definition Lem-complex :: complex set = complex where
Lem-complex = Euclidean-Algorithm. Lem

instance (proof)
end
instance complex :: field-ged (proof)

end

14 Computation checks

theory Computation-Checks
imports Primes Polynomial-Factorial HOL— Library. Discrete- Functions HOL— Library. Code- Target-Numeral
begin

floor-sqrt 16476148165462159 = 128359449

prime 97

prime 97

prime 9973

prime 9973

Ged {[:1, 2, 8, [:2, 8, 4]} = 1

Lem {[:1, 2, 33, [:2, 9, 41} = (124, [72, [:163], [:27), [:12:)]

end
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