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1 Factorial (semi)rings
theory Factorial-Ring
imports

Main
HOL−Library.Multiset

begin

unbundle multiset.lifting

1.1 Irreducible and prime elements
context comm-semiring-1
begin

definition irreducible :: ′a ⇒ bool where
irreducible p ←→ p 6= 0 ∧ ¬p dvd 1 ∧ (∀ a b. p = a ∗ b −→ a dvd 1 ∨ b dvd 1 )

lemma not-irreducible-zero [simp]: ¬irreducible 0
〈proof 〉

lemma irreducible-not-unit: irreducible p =⇒ ¬p dvd 1
〈proof 〉

lemma not-irreducible-one [simp]: ¬irreducible 1
〈proof 〉

lemma irreducibleI :
p 6= 0 =⇒ ¬p dvd 1 =⇒ (

∧
a b. p = a ∗ b =⇒ a dvd 1 ∨ b dvd 1 ) =⇒ irreducible

p
〈proof 〉

lemma irreducibleD: irreducible p =⇒ p = a ∗ b =⇒ a dvd 1 ∨ b dvd 1
〈proof 〉

lemma irreducible-mono:
assumes irr : irreducible b and a dvd b ¬a dvd 1
shows irreducible a
〈proof 〉

lemma irreducible-multD:
assumes l: irreducible (a∗b)
shows a dvd 1 ∧ irreducible b ∨ b dvd 1 ∧ irreducible a
〈proof 〉

lemma irreducible-power-iff [simp]:
irreducible (p ^ n) ←→ irreducible p ∧ n = 1
〈proof 〉
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definition prime-elem :: ′a ⇒ bool where
prime-elem p ←→ p 6= 0 ∧ ¬p dvd 1 ∧ (∀ a b. p dvd (a ∗ b) −→ p dvd a ∨ p dvd

b)

lemma not-prime-elem-zero [simp]: ¬prime-elem 0
〈proof 〉

lemma prime-elem-not-unit: prime-elem p =⇒ ¬p dvd 1
〈proof 〉

lemma prime-elemI :
p 6= 0 =⇒ ¬p dvd 1 =⇒ (

∧
a b. p dvd (a ∗ b) =⇒ p dvd a ∨ p dvd b) =⇒

prime-elem p
〈proof 〉

lemma prime-elem-dvd-multD:
prime-elem p =⇒ p dvd (a ∗ b) =⇒ p dvd a ∨ p dvd b
〈proof 〉

lemma prime-elem-dvd-mult-iff :
prime-elem p =⇒ p dvd (a ∗ b) ←→ p dvd a ∨ p dvd b
〈proof 〉

lemma not-prime-elem-one [simp]:
¬ prime-elem 1
〈proof 〉

lemma prime-elem-not-zeroI :
assumes prime-elem p
shows p 6= 0
〈proof 〉

lemma prime-elem-dvd-power :
prime-elem p =⇒ p dvd x ^ n =⇒ p dvd x
〈proof 〉

lemma prime-elem-dvd-power-iff :
prime-elem p =⇒ n > 0 =⇒ p dvd x ^ n ←→ p dvd x
〈proof 〉

lemma prime-elem-imp-nonzero [simp]:
ASSUMPTION (prime-elem x) =⇒ x 6= 0
〈proof 〉

lemma prime-elem-imp-not-one [simp]:
ASSUMPTION (prime-elem x) =⇒ x 6= 1
〈proof 〉

end
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lemma (in normalization-semidom) irreducible-cong:
assumes normalize a = normalize b
shows irreducible a ←→ irreducible b
〈proof 〉

lemma (in normalization-semidom) associatedE1 :
assumes normalize a = normalize b
obtains u where is-unit u a = u ∗ b
〈proof 〉

lemma (in normalization-semidom) associatedE2 :
assumes normalize a = normalize b
obtains u where is-unit u b = u ∗ a
〈proof 〉

lemma (in normalization-semidom) normalize-power-normalize:
normalize (normalize x ^ n) = normalize (x ^ n)
〈proof 〉

context algebraic-semidom
begin

lemma prime-elem-imp-irreducible:
assumes prime-elem p
shows irreducible p
〈proof 〉

lemma (in algebraic-semidom) unit-imp-no-irreducible-divisors:
assumes is-unit x irreducible p
shows ¬p dvd x
〈proof 〉

lemma unit-imp-no-prime-divisors:
assumes is-unit x prime-elem p
shows ¬p dvd x
〈proof 〉

lemma prime-elem-mono:
assumes prime-elem p ¬q dvd 1 q dvd p
shows prime-elem q
〈proof 〉

lemma irreducibleD ′:
assumes irreducible a b dvd a
shows a dvd b ∨ is-unit b
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〈proof 〉

lemma irreducibleI ′:
assumes a 6= 0 ¬is-unit a

∧
b. b dvd a =⇒ a dvd b ∨ is-unit b

shows irreducible a
〈proof 〉

lemma irreducible-altdef :
irreducible x ←→ x 6= 0 ∧ ¬is-unit x ∧ (∀ b. b dvd x −→ x dvd b ∨ is-unit b)
〈proof 〉

lemma prime-elem-multD:
assumes prime-elem (a ∗ b)
shows is-unit a ∨ is-unit b
〈proof 〉

lemma prime-elemD2 :
assumes prime-elem p and a dvd p and ¬ is-unit a
shows p dvd a
〈proof 〉

lemma prime-elem-dvd-prod-msetE :
assumes prime-elem p
assumes dvd: p dvd prod-mset A
obtains a where a ∈# A and p dvd a
〈proof 〉

context
begin

lemma prime-elem-powerD:
assumes prime-elem (p ^ n)
shows prime-elem p ∧ n = 1
〈proof 〉

lemma prime-elem-power-iff :
prime-elem (p ^ n) ←→ prime-elem p ∧ n = 1
〈proof 〉

end

lemma irreducible-mult-unit-left:
is-unit a =⇒ irreducible (a ∗ p) ←→ irreducible p
〈proof 〉

lemma prime-elem-mult-unit-left:
is-unit a =⇒ prime-elem (a ∗ p) ←→ prime-elem p
〈proof 〉
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lemma prime-elem-dvd-cases:
assumes pk: p∗k dvd m∗n and p: prime-elem p
shows (∃ x. k dvd x∗n ∧ m = p∗x) ∨ (∃ y. k dvd m∗y ∧ n = p∗y)
〈proof 〉

lemma prime-elem-power-dvd-prod:
assumes pc: p^c dvd m∗n and p: prime-elem p
shows ∃ a b. a+b = c ∧ p^a dvd m ∧ p^b dvd n
〈proof 〉

lemma prime-elem-power-dvd-cases:
assumes p ^ c dvd m ∗ n and a + b = Suc c and prime-elem p
shows p ^ a dvd m ∨ p ^ b dvd n
〈proof 〉

lemma prime-elem-not-unit ′ [simp]:
ASSUMPTION (prime-elem x) =⇒ ¬is-unit x
〈proof 〉

lemma prime-elem-dvd-power-iff :
assumes prime-elem p
shows p dvd a ^ n ←→ p dvd a ∧ n > 0
〈proof 〉

lemma prime-power-dvd-multD:
assumes prime-elem p
assumes p ^ n dvd a ∗ b and n > 0 and ¬ p dvd a
shows p ^ n dvd b
〈proof 〉

end

1.2 Generalized primes: normalized prime elements
context normalization-semidom
begin

lemma irreducible-normalized-divisors:
assumes irreducible x y dvd x normalize y = y
shows y = 1 ∨ y = normalize x
〈proof 〉

lemma irreducible-normalize-iff [simp]: irreducible (normalize x) = irreducible x
〈proof 〉

lemma prime-elem-normalize-iff [simp]: prime-elem (normalize x) = prime-elem
x
〈proof 〉
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lemma prime-elem-associated:
assumes prime-elem p and prime-elem q and q dvd p
shows normalize q = normalize p
〈proof 〉

definition prime :: ′a ⇒ bool where
prime p ←→ prime-elem p ∧ normalize p = p

lemma not-prime-0 [simp]: ¬prime 0 〈proof 〉

lemma not-prime-unit: is-unit x =⇒ ¬prime x
〈proof 〉

lemma not-prime-1 [simp]: ¬prime 1 〈proof 〉

lemma primeI : prime-elem x =⇒ normalize x = x =⇒ prime x
〈proof 〉

lemma prime-imp-prime-elem [dest]: prime p =⇒ prime-elem p
〈proof 〉

lemma normalize-prime: prime p =⇒ normalize p = p
〈proof 〉

lemma prime-normalize-iff [simp]: prime (normalize p) ←→ prime-elem p
〈proof 〉

lemma prime-power-iff :
prime (p ^ n) ←→ prime p ∧ n = 1
〈proof 〉

lemma prime-imp-nonzero [simp]:
ASSUMPTION (prime x) =⇒ x 6= 0
〈proof 〉

lemma prime-imp-not-one [simp]:
ASSUMPTION (prime x) =⇒ x 6= 1
〈proof 〉

lemma prime-not-unit ′ [simp]:
ASSUMPTION (prime x) =⇒ ¬is-unit x
〈proof 〉

lemma prime-normalize ′ [simp]: ASSUMPTION (prime x) =⇒ normalize x = x
〈proof 〉

lemma unit-factor-prime: prime x =⇒ unit-factor x = 1
〈proof 〉
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lemma unit-factor-prime ′ [simp]: ASSUMPTION (prime x) =⇒ unit-factor x =
1
〈proof 〉

lemma prime-imp-prime-elem ′ [simp]: ASSUMPTION (prime x) =⇒ prime-elem
x
〈proof 〉

lemma prime-dvd-multD: prime p =⇒ p dvd a ∗ b =⇒ p dvd a ∨ p dvd b
〈proof 〉

lemma prime-dvd-mult-iff : prime p =⇒ p dvd a ∗ b ←→ p dvd a ∨ p dvd b
〈proof 〉

lemma prime-dvd-power :
prime p =⇒ p dvd x ^ n =⇒ p dvd x
〈proof 〉

lemma prime-dvd-power-iff :
prime p =⇒ n > 0 =⇒ p dvd x ^ n ←→ p dvd x
〈proof 〉

lemma prime-dvd-prod-mset-iff : prime p =⇒ p dvd prod-mset A ←→ (∃ x. x ∈#
A ∧ p dvd x)
〈proof 〉

lemma prime-dvd-prod-iff : finite A =⇒ prime p =⇒ p dvd prod f A ←→ (∃ x∈A.
p dvd f x)
〈proof 〉

lemma primes-dvd-imp-eq:
assumes prime p prime q p dvd q
shows p = q
〈proof 〉

lemma prime-dvd-prod-mset-primes-iff :
assumes prime p

∧
q. q ∈# A =⇒ prime q

shows p dvd prod-mset A ←→ p ∈# A
〈proof 〉

lemma prod-mset-primes-dvd-imp-subset:
assumes prod-mset A dvd prod-mset B

∧
p. p ∈# A =⇒ prime p

∧
p. p ∈# B

=⇒ prime p
shows A ⊆# B
〈proof 〉

lemma prod-mset-dvd-prod-mset-primes-iff :
assumes

∧
x. x ∈# A =⇒ prime x

∧
x. x ∈# B =⇒ prime x

shows prod-mset A dvd prod-mset B ←→ A ⊆# B
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〈proof 〉

lemma is-unit-prod-mset-primes-iff :
assumes

∧
x. x ∈# A =⇒ prime x

shows is-unit (prod-mset A) ←→ A = {#}
〈proof 〉

lemma prod-mset-primes-irreducible-imp-prime:
assumes irred: irreducible (prod-mset A)
assumes A:

∧
x. x ∈# A =⇒ prime x

assumes B:
∧

x. x ∈# B =⇒ prime x
assumes C :

∧
x. x ∈# C =⇒ prime x

assumes dvd: prod-mset A dvd prod-mset B ∗ prod-mset C
shows prod-mset A dvd prod-mset B ∨ prod-mset A dvd prod-mset C
〈proof 〉

lemma prod-mset-primes-finite-divisor-powers:
assumes A:

∧
x. x ∈# A =⇒ prime x

assumes B:
∧

x. x ∈# B =⇒ prime x
assumes A 6= {#}
shows finite {n. prod-mset A ^ n dvd prod-mset B}
〈proof 〉

end

1.3 In a semiring with GCD, each irreducible element is a
prime element

context semiring-gcd
begin

lemma irreducible-imp-prime-elem-gcd:
assumes irreducible x
shows prime-elem x
〈proof 〉

lemma prime-elem-imp-coprime:
assumes prime-elem p ¬p dvd n
shows coprime p n
〈proof 〉

lemma prime-imp-coprime:
assumes prime p ¬p dvd n
shows coprime p n
〈proof 〉

lemma prime-elem-imp-power-coprime:
prime-elem p =⇒ ¬ p dvd a =⇒ coprime a (p ^ m)
〈proof 〉
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lemma prime-imp-power-coprime:
prime p =⇒ ¬ p dvd a =⇒ coprime a (p ^ m)
〈proof 〉

lemma prime-elem-divprod-pow:
assumes p: prime-elem p and ab: coprime a b and pab: p^n dvd a ∗ b
shows p^n dvd a ∨ p^n dvd b
〈proof 〉

lemma primes-coprime:
prime p =⇒ prime q =⇒ p 6= q =⇒ coprime p q
〈proof 〉

end

1.4 Factorial semirings: algebraic structures with unique prime
factorizations

class factorial-semiring = normalization-semidom +
assumes prime-factorization-exists:

x 6= 0 =⇒ ∃A. (∀ x. x ∈# A −→ prime-elem x) ∧ normalize (prod-mset A) =
normalize x

Alternative characterization
lemma (in normalization-semidom) factorial-semiring-altI-aux:

assumes finite-divisors:
∧

x. x 6= 0 =⇒ finite {y. y dvd x ∧ normalize y = y}
assumes irreducible-imp-prime-elem:

∧
x. irreducible x =⇒ prime-elem x

assumes x 6= 0
shows ∃A. (∀ x. x ∈# A −→ prime-elem x) ∧ normalize (prod-mset A) =

normalize x
〈proof 〉

lemma factorial-semiring-altI :
assumes finite-divisors:

∧
x:: ′a. x 6= 0 =⇒ finite {y. y dvd x ∧ normalize y =

y}
assumes irreducible-imp-prime:

∧
x:: ′a. irreducible x =⇒ prime-elem x

shows OFCLASS( ′a :: normalization-semidom, factorial-semiring-class)
〈proof 〉

Properties
context factorial-semiring
begin

lemma prime-factorization-exists ′:
assumes x 6= 0
obtains A where

∧
x. x ∈# A =⇒ prime x normalize (prod-mset A) = normalize

x
〈proof 〉
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lemma irreducible-imp-prime-elem:
assumes irreducible x
shows prime-elem x
〈proof 〉

lemma finite-divisor-powers:
assumes y 6= 0 ¬is-unit x
shows finite {n. x ^ n dvd y}
〈proof 〉

lemma finite-prime-divisors:
assumes x 6= 0
shows finite {p. prime p ∧ p dvd x}
〈proof 〉

lemma infinite-unit-divisor-powers:
assumes y 6= 0
assumes is-unit x
shows infinite {n. x^n dvd y}
〈proof 〉

corollary is-unit-iff-infinite-divisor-powers:
assumes y 6= 0
shows is-unit x ←→ infinite {n. x^n dvd y}
〈proof 〉

lemma prime-elem-iff-irreducible: prime-elem x ←→ irreducible x
〈proof 〉

lemma prime-divisor-exists:
assumes a 6= 0 ¬is-unit a
shows ∃ b. b dvd a ∧ prime b
〈proof 〉

lemma prime-divisors-induct [case-names zero unit factor ]:
assumes P 0

∧
x. is-unit x =⇒ P x

∧
p x. prime p =⇒ P x =⇒ P (p ∗ x)

shows P x
〈proof 〉

lemma no-prime-divisors-imp-unit:
assumes a 6= 0

∧
b. b dvd a =⇒ normalize b = b =⇒ ¬ prime-elem b

shows is-unit a
〈proof 〉

lemma prime-divisorE :
assumes a 6= 0 and ¬ is-unit a
obtains p where prime p and p dvd a
〈proof 〉
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definition multiplicity :: ′a ⇒ ′a ⇒ nat where
multiplicity p x = (if finite {n. p ^ n dvd x} then Max {n. p ^ n dvd x} else 0 )

lemma multiplicity-dvd: p ^ multiplicity p x dvd x
〈proof 〉

lemma multiplicity-dvd ′: n ≤ multiplicity p x =⇒ p ^ n dvd x
〈proof 〉

context
fixes x p :: ′a
assumes xp: x 6= 0 ¬is-unit p

begin

lemma multiplicity-eq-Max: multiplicity p x = Max {n. p ^ n dvd x}
〈proof 〉

lemma multiplicity-geI :
assumes p ^ n dvd x
shows multiplicity p x ≥ n
〈proof 〉

lemma multiplicity-lessI :
assumes ¬p ^ n dvd x
shows multiplicity p x < n
〈proof 〉

lemma power-dvd-iff-le-multiplicity:
p ^ n dvd x ←→ n ≤ multiplicity p x
〈proof 〉

lemma multiplicity-eq-zero-iff :
shows multiplicity p x = 0 ←→ ¬p dvd x
〈proof 〉

lemma multiplicity-gt-zero-iff :
shows multiplicity p x > 0 ←→ p dvd x
〈proof 〉

lemma multiplicity-decompose:
¬p dvd (x div p ^ multiplicity p x)
〈proof 〉

lemma multiplicity-decompose ′:
obtains y where x = p ^ multiplicity p x ∗ y ¬p dvd y
〈proof 〉

end
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lemma multiplicity-zero [simp]: multiplicity p 0 = 0
〈proof 〉

lemma prime-elem-multiplicity-eq-zero-iff :
prime-elem p =⇒ x 6= 0 =⇒ multiplicity p x = 0 ←→ ¬p dvd x
〈proof 〉

lemma prime-multiplicity-other :
assumes prime p prime q p 6= q
shows multiplicity p q = 0
〈proof 〉

lemma prime-multiplicity-gt-zero-iff :
prime-elem p =⇒ x 6= 0 =⇒ multiplicity p x > 0 ←→ p dvd x
〈proof 〉

lemma multiplicity-unit-left: is-unit p =⇒ multiplicity p x = 0
〈proof 〉

lemma multiplicity-unit-right:
assumes is-unit x
shows multiplicity p x = 0
〈proof 〉

lemma multiplicity-one [simp]: multiplicity p 1 = 0
〈proof 〉

lemma multiplicity-eqI :
assumes p ^ n dvd x ¬p ^ Suc n dvd x
shows multiplicity p x = n
〈proof 〉

context
fixes x p :: ′a
assumes xp: x 6= 0 ¬is-unit p

begin

lemma multiplicity-times-same:
assumes p 6= 0
shows multiplicity p (p ∗ x) = Suc (multiplicity p x)
〈proof 〉

end

lemma multiplicity-same-power ′: multiplicity p (p ^ n) = (if p = 0 ∨ is-unit p
then 0 else n)
〈proof 〉
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lemma multiplicity-same-power :
p 6= 0 =⇒ ¬is-unit p =⇒ multiplicity p (p ^ n) = n
〈proof 〉

lemma multiplicity-prime-elem-times-other :
assumes prime-elem p ¬p dvd q
shows multiplicity p (q ∗ x) = multiplicity p x
〈proof 〉

lemma multiplicity-self :
assumes p 6= 0 ¬is-unit p
shows multiplicity p p = 1
〈proof 〉

lemma multiplicity-times-unit-left:
assumes is-unit c
shows multiplicity (c ∗ p) x = multiplicity p x
〈proof 〉

lemma multiplicity-times-unit-right:
assumes is-unit c
shows multiplicity p (c ∗ x) = multiplicity p x
〈proof 〉

lemma multiplicity-normalize-left [simp]:
multiplicity (normalize p) x = multiplicity p x
〈proof 〉

lemma multiplicity-normalize-right [simp]:
multiplicity p (normalize x) = multiplicity p x
〈proof 〉

lemma multiplicity-prime [simp]: prime-elem p =⇒ multiplicity p p = 1
〈proof 〉

lemma multiplicity-prime-power [simp]: prime-elem p =⇒ multiplicity p (p ^ n)
= n
〈proof 〉

lift-definition prime-factorization :: ′a ⇒ ′a multiset is
λx p. if prime p then multiplicity p x else 0
〈proof 〉

abbreviation prime-factors :: ′a ⇒ ′a set where
prime-factors a ≡ set-mset (prime-factorization a)

lemma count-prime-factorization-nonprime:
¬prime p =⇒ count (prime-factorization x) p = 0
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〈proof 〉

lemma count-prime-factorization-prime:
prime p =⇒ count (prime-factorization x) p = multiplicity p x
〈proof 〉

lemma count-prime-factorization:
count (prime-factorization x) p = (if prime p then multiplicity p x else 0 )
〈proof 〉

lemma dvd-imp-multiplicity-le:
assumes a dvd b b 6= 0
shows multiplicity p a ≤ multiplicity p b
〈proof 〉

lemma prime-power-inj:
assumes prime a a ^ m = a ^ n
shows m = n
〈proof 〉

lemma prime-power-inj ′:
assumes prime p prime q
assumes p ^ m = q ^ n m > 0 n > 0
shows p = q m = n
〈proof 〉

lemma prime-power-eq-one-iff [simp]: prime p =⇒ p ^ n = 1 ←→ n = 0
〈proof 〉

lemma one-eq-prime-power-iff [simp]: prime p =⇒ 1 = p ^ n ←→ n = 0
〈proof 〉

lemma prime-power-inj ′′:
assumes prime p prime q
shows p ^ m = q ^ n ←→ (m = 0 ∧ n = 0 ) ∨ (p = q ∧ m = n)
〈proof 〉

lemma prime-factorization-0 [simp]: prime-factorization 0 = {#}
〈proof 〉

lemma prime-factorization-empty-iff :
prime-factorization x = {#} ←→ x = 0 ∨ is-unit x
〈proof 〉

lemma prime-factorization-unit:
assumes is-unit x
shows prime-factorization x = {#}
〈proof 〉
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lemma prime-factorization-1 [simp]: prime-factorization 1 = {#}
〈proof 〉

lemma prime-factorization-times-prime:
assumes x 6= 0 prime p
shows prime-factorization (p ∗ x) = {#p#} + prime-factorization x
〈proof 〉

lemma prod-mset-prime-factorization-weak:
assumes x 6= 0
shows normalize (prod-mset (prime-factorization x)) = normalize x
〈proof 〉

lemma in-prime-factors-iff :
p ∈ prime-factors x ←→ x 6= 0 ∧ p dvd x ∧ prime p
〈proof 〉

lemma in-prime-factors-imp-prime [intro]:
p ∈ prime-factors x =⇒ prime p
〈proof 〉

lemma in-prime-factors-imp-dvd [dest]:
p ∈ prime-factors x =⇒ p dvd x
〈proof 〉

lemma prime-factorsI :
x 6= 0 =⇒ prime p =⇒ p dvd x =⇒ p ∈ prime-factors x
〈proof 〉

lemma prime-factors-dvd:
x 6= 0 =⇒ prime-factors x = {p. prime p ∧ p dvd x}
〈proof 〉

lemma prime-factors-multiplicity:
prime-factors n = {p. prime p ∧ multiplicity p n > 0}
〈proof 〉

lemma prime-factorization-prime:
assumes prime p
shows prime-factorization p = {#p#}
〈proof 〉

lemma prime-factorization-prod-mset-primes:
assumes

∧
p. p ∈# A =⇒ prime p

shows prime-factorization (prod-mset A) = A
〈proof 〉

lemma prime-factorization-cong:
normalize x = normalize y =⇒ prime-factorization x = prime-factorization y
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〈proof 〉

lemma prime-factorization-unique:
assumes x 6= 0 y 6= 0
shows prime-factorization x = prime-factorization y ←→ normalize x = nor-

malize y
〈proof 〉

lemma prime-factorization-normalize [simp]:
prime-factorization (normalize x) = prime-factorization x
〈proof 〉

lemma prime-factorization-eqI-strong:
assumes

∧
p. p ∈# P =⇒ prime p prod-mset P = n

shows prime-factorization n = P
〈proof 〉

lemma prime-factorization-eqI :
assumes

∧
p. p ∈# P =⇒ prime p normalize (prod-mset P) = normalize n

shows prime-factorization n = P
〈proof 〉

lemma prime-factorization-mult:
assumes x 6= 0 y 6= 0
shows prime-factorization (x ∗ y) = prime-factorization x + prime-factorization

y
〈proof 〉

lemma prime-factorization-prod:
assumes finite A

∧
x. x ∈ A =⇒ f x 6= 0

shows prime-factorization (prod f A) = (
∑

n∈A. prime-factorization (f n))
〈proof 〉

lemma prime-elem-multiplicity-mult-distrib:
assumes prime-elem p x 6= 0 y 6= 0
shows multiplicity p (x ∗ y) = multiplicity p x + multiplicity p y
〈proof 〉

lemma prime-elem-multiplicity-prod-mset-distrib:
assumes prime-elem p 0 /∈# A
shows multiplicity p (prod-mset A) = sum-mset (image-mset (multiplicity p)

A)
〈proof 〉

lemma prime-elem-multiplicity-power-distrib:
assumes prime-elem p x 6= 0
shows multiplicity p (x ^ n) = n ∗ multiplicity p x
〈proof 〉
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lemma prime-elem-multiplicity-prod-distrib:
assumes prime-elem p 0 /∈ f ‘ A finite A
shows multiplicity p (prod f A) = (

∑
x∈A. multiplicity p (f x))

〈proof 〉

lemma multiplicity-distinct-prime-power :
prime p =⇒ prime q =⇒ p 6= q =⇒ multiplicity p (q ^ n) = 0
〈proof 〉

lemma prime-factorization-prime-power :
prime p =⇒ prime-factorization (p ^ n) = replicate-mset n p
〈proof 〉

lemma prime-factorization-subset-iff-dvd:
assumes [simp]: x 6= 0 y 6= 0
shows prime-factorization x ⊆# prime-factorization y ←→ x dvd y
〈proof 〉

lemma prime-factorization-subset-imp-dvd:
x 6= 0 =⇒ (prime-factorization x ⊆# prime-factorization y) =⇒ x dvd y
〈proof 〉

lemma prime-factorization-divide:
assumes b dvd a
shows prime-factorization (a div b) = prime-factorization a − prime-factorization

b
〈proof 〉

lemma zero-not-in-prime-factors [simp]: 0 /∈ prime-factors x
〈proof 〉

lemma prime-prime-factors:
prime p =⇒ prime-factors p = {p}
〈proof 〉

lemma prime-factors-product:
x 6= 0 =⇒ y 6= 0 =⇒ prime-factors (x ∗ y) = prime-factors x ∪ prime-factors y
〈proof 〉

lemma dvd-prime-factors [intro]:
y 6= 0 =⇒ x dvd y =⇒ prime-factors x ⊆ prime-factors y
〈proof 〉

lemma multiplicity-le-imp-dvd:
assumes x 6= 0

∧
p. prime p =⇒ multiplicity p x ≤ multiplicity p y

shows x dvd y
〈proof 〉
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lemma dvd-multiplicity-eq:
x 6= 0 =⇒ y 6= 0 =⇒ x dvd y ←→ (∀ p. multiplicity p x ≤ multiplicity p y)
〈proof 〉

lemma multiplicity-eq-imp-eq:
assumes x 6= 0 y 6= 0
assumes

∧
p. prime p =⇒ multiplicity p x = multiplicity p y

shows normalize x = normalize y
〈proof 〉

lemma prime-factorization-unique ′:
assumes ∀ p ∈# M . prime p ∀ p ∈# N . prime p (

∏
i ∈# M . i) = (

∏
i ∈# N .

i)
shows M = N
〈proof 〉

lemma prime-factorization-unique ′′:
assumes ∀ p ∈# M . prime p ∀ p ∈# N . prime p normalize (

∏
i ∈# M . i) =

normalize (
∏

i ∈# N . i)
shows M = N
〈proof 〉

lemma multiplicity-cong:
(
∧

r . p ^ r dvd a ←→ p ^ r dvd b) =⇒ multiplicity p a = multiplicity p b
〈proof 〉

lemma not-dvd-imp-multiplicity-0 :
assumes ¬p dvd x
shows multiplicity p x = 0
〈proof 〉

lemma multiplicity-zero-left [simp]: multiplicity 0 x = 0
〈proof 〉

lemma inj-on-Prod-primes:
assumes

∧
P p. P ∈ A =⇒ p ∈ P =⇒ prime p

assumes
∧

P. P ∈ A =⇒ finite P
shows inj-on Prod A
〈proof 〉

lemma divides-primepow-weak:
assumes prime p and a dvd p ^ n
obtains m where m ≤ n and normalize a = normalize (p ^ m)
〈proof 〉

lemma divide-out-primepow-ex:
assumes n 6= 0 ∃ p∈prime-factors n. P p
obtains p k n ′ where P p prime p p dvd n ¬p dvd n ′ k > 0 n = p ^ k ∗ n ′

〈proof 〉
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lemma divide-out-primepow:
assumes n 6= 0 ¬is-unit n
obtains p k n ′ where prime p p dvd n ¬p dvd n ′ k > 0 n = p ^ k ∗ n ′

〈proof 〉

1.5 GCD and LCM computation with unique factorizations
definition gcd-factorial a b = (if a = 0 then normalize b

else if b = 0 then normalize a
else normalize (prod-mset (prime-factorization a ∩# prime-factorization b)))

definition lcm-factorial a b = (if a = 0 ∨ b = 0 then 0
else normalize (prod-mset (prime-factorization a ∪# prime-factorization b)))

definition Gcd-factorial A =
(if A ⊆ {0} then 0 else normalize (prod-mset (Inf (prime-factorization ‘ (A −
{0})))))

definition Lcm-factorial A =
(if A = {} then 1
else if 0 /∈ A ∧ subset-mset.bdd-above (prime-factorization ‘ (A − {0})) then

normalize (prod-mset (Sup (prime-factorization ‘ A)))
else

0 )

lemma prime-factorization-gcd-factorial:
assumes [simp]: a 6= 0 b 6= 0
shows prime-factorization (gcd-factorial a b) = prime-factorization a ∩#

prime-factorization b
〈proof 〉

lemma prime-factorization-lcm-factorial:
assumes [simp]: a 6= 0 b 6= 0
shows prime-factorization (lcm-factorial a b) = prime-factorization a ∪#

prime-factorization b
〈proof 〉

lemma prime-factorization-Gcd-factorial:
assumes ¬A ⊆ {0}
shows prime-factorization (Gcd-factorial A) = Inf (prime-factorization ‘ (A −
{0}))
〈proof 〉

lemma prime-factorization-Lcm-factorial:
assumes 0 /∈ A subset-mset.bdd-above (prime-factorization ‘ A)
shows prime-factorization (Lcm-factorial A) = Sup (prime-factorization ‘ A)
〈proof 〉
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lemma gcd-factorial-commute: gcd-factorial a b = gcd-factorial b a
〈proof 〉

lemma gcd-factorial-dvd1 : gcd-factorial a b dvd a
〈proof 〉

lemma gcd-factorial-dvd2 : gcd-factorial a b dvd b
〈proof 〉

lemma normalize-gcd-factorial [simp]: normalize (gcd-factorial a b) = gcd-factorial
a b
〈proof 〉

lemma normalize-lcm-factorial [simp]: normalize (lcm-factorial a b) = lcm-factorial
a b
〈proof 〉

lemma gcd-factorial-greatest: c dvd gcd-factorial a b if c dvd a c dvd b for a b c
〈proof 〉

lemma lcm-factorial-gcd-factorial:
lcm-factorial a b = normalize (a ∗ b div gcd-factorial a b) for a b
〈proof 〉

lemma normalize-Gcd-factorial:
normalize (Gcd-factorial A) = Gcd-factorial A
〈proof 〉

lemma Gcd-factorial-eq-0-iff :
Gcd-factorial A = 0 ←→ A ⊆ {0}
〈proof 〉

lemma Gcd-factorial-dvd:
assumes x ∈ A
shows Gcd-factorial A dvd x
〈proof 〉

lemma Gcd-factorial-greatest:
assumes

∧
y. y ∈ A =⇒ x dvd y

shows x dvd Gcd-factorial A
〈proof 〉

lemma normalize-Lcm-factorial:
normalize (Lcm-factorial A) = Lcm-factorial A
〈proof 〉

lemma Lcm-factorial-eq-0-iff :
Lcm-factorial A = 0 ←→ 0 ∈ A ∨ ¬subset-mset.bdd-above (prime-factorization

‘ A)
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〈proof 〉

lemma dvd-Lcm-factorial:
assumes x ∈ A
shows x dvd Lcm-factorial A
〈proof 〉

lemma Lcm-factorial-least:
assumes

∧
y. y ∈ A =⇒ y dvd x

shows Lcm-factorial A dvd x
〈proof 〉

lemmas gcd-lcm-factorial =
gcd-factorial-dvd1 gcd-factorial-dvd2 gcd-factorial-greatest
normalize-gcd-factorial lcm-factorial-gcd-factorial
normalize-Gcd-factorial Gcd-factorial-dvd Gcd-factorial-greatest
normalize-Lcm-factorial dvd-Lcm-factorial Lcm-factorial-least

end

class factorial-semiring-gcd = factorial-semiring + gcd + Gcd +
assumes gcd-eq-gcd-factorial: gcd a b = gcd-factorial a b
and lcm-eq-lcm-factorial: lcm a b = lcm-factorial a b
and Gcd-eq-Gcd-factorial: Gcd A = Gcd-factorial A
and Lcm-eq-Lcm-factorial: Lcm A = Lcm-factorial A

begin

lemma prime-factorization-gcd:
assumes [simp]: a 6= 0 b 6= 0
shows prime-factorization (gcd a b) = prime-factorization a ∩# prime-factorization

b
〈proof 〉

lemma prime-factorization-lcm:
assumes [simp]: a 6= 0 b 6= 0
shows prime-factorization (lcm a b) = prime-factorization a ∪# prime-factorization

b
〈proof 〉

lemma prime-factorization-Gcd:
assumes Gcd A 6= 0
shows prime-factorization (Gcd A) = Inf (prime-factorization ‘ (A − {0}))
〈proof 〉

lemma prime-factorization-Lcm:
assumes Lcm A 6= 0
shows prime-factorization (Lcm A) = Sup (prime-factorization ‘ A)
〈proof 〉
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lemma prime-factors-gcd [simp]:
a 6= 0 =⇒ b 6= 0 =⇒ prime-factors (gcd a b) =

prime-factors a ∩ prime-factors b
〈proof 〉

lemma prime-factors-lcm [simp]:
a 6= 0 =⇒ b 6= 0 =⇒ prime-factors (lcm a b) =

prime-factors a ∪ prime-factors b
〈proof 〉

subclass semiring-gcd
〈proof 〉

subclass semiring-Gcd
〈proof 〉

lemma
assumes x 6= 0 y 6= 0
shows gcd-eq-factorial ′:

gcd x y = normalize (
∏

p ∈ prime-factors x ∩ prime-factors y.
p ^ min (multiplicity p x) (multiplicity p y)) (is - = ?rhs1 )

and lcm-eq-factorial ′:
lcm x y = normalize (

∏
p ∈ prime-factors x ∪ prime-factors y.

p ^ max (multiplicity p x) (multiplicity p y)) (is - = ?rhs2 )
〈proof 〉

lemma
assumes x 6= 0 y 6= 0 prime p
shows multiplicity-gcd: multiplicity p (gcd x y) = min (multiplicity p x)

(multiplicity p y)
and multiplicity-lcm: multiplicity p (lcm x y) = max (multiplicity p x)

(multiplicity p y)
〈proof 〉

lemma gcd-lcm-distrib:
gcd x (lcm y z) = lcm (gcd x y) (gcd x z)
〈proof 〉

lemma lcm-gcd-distrib:
lcm x (gcd y z) = gcd (lcm x y) (lcm x z)
〈proof 〉

end

class factorial-ring-gcd = factorial-semiring-gcd + idom
begin

subclass ring-gcd 〈proof 〉
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subclass idom-divide 〈proof 〉

end

class factorial-semiring-multiplicative =
factorial-semiring + normalization-semidom-multiplicative

begin

lemma normalize-prod-mset-primes:
(
∧

p. p ∈# A =⇒ prime p) =⇒ normalize (prod-mset A) = prod-mset A
〈proof 〉

lemma prod-mset-prime-factorization:
assumes x 6= 0
shows prod-mset (prime-factorization x) = normalize x
〈proof 〉

lemma prime-decomposition: unit-factor x ∗ prod-mset (prime-factorization x) =
x
〈proof 〉

lemma prod-prime-factors:
assumes x 6= 0
shows (

∏
p ∈ prime-factors x. p ^ multiplicity p x) = normalize x

〈proof 〉

lemma prime-factorization-unique ′′:
assumes S-eq: S = {p. 0 < f p}

and finite S
and S : ∀ p∈S . prime p normalize n = (

∏
p∈S . p ^ f p)

shows S = prime-factors n ∧ (∀ p. prime p −→ f p = multiplicity p n)
〈proof 〉

lemma divides-primepow:
assumes prime p and a dvd p ^ n
obtains m where m ≤ n and normalize a = p ^ m
〈proof 〉

lemma Ex-other-prime-factor :
assumes n 6= 0 and ¬(∃ k. normalize n = p ^ k) prime p
shows ∃ q∈prime-factors n. q 6= p
〈proof 〉

Now a string of results due to Maya Kdzioka
lemma multiplicity-dvd-iff-dvd:
assumes x 6= 0
shows p^k dvd x ←→ p^k dvd p^multiplicity p x
〈proof 〉
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lemma multiplicity-decomposeI :
assumes x = p^k ∗ x ′ and ¬ p dvd x ′ and p 6= 0
shows multiplicity p x = k
〈proof 〉

lemma multiplicity-sum-lt:
assumes multiplicity p a < multiplicity p b a 6= 0 b 6= 0
shows multiplicity p (a + b) = multiplicity p a
〈proof 〉

corollary multiplicity-sum-min:
assumes multiplicity p a 6= multiplicity p b a 6= 0 b 6= 0
shows multiplicity p (a + b) = min (multiplicity p a) (multiplicity p b)
〈proof 〉

end

lifting-update multiset.lifting
lifting-forget multiset.lifting

end

2 Abstract euclidean algorithm in euclidean (semi)rings
theory Euclidean-Algorithm

imports Factorial-Ring
begin

2.1 Generic construction of the (simple) euclidean algorithm
class normalization-euclidean-semiring = euclidean-semiring + normalization-semidom
begin

lemma euclidean-size-normalize [simp]:
euclidean-size (normalize a) = euclidean-size a
〈proof 〉

context
begin

qualified function gcd :: ′a ⇒ ′a ⇒ ′a
where gcd a b = (if b = 0 then normalize a else gcd b (a mod b))
〈proof 〉

termination
〈proof 〉

declare gcd.simps [simp del]
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lemma eucl-induct [case-names zero mod]:
assumes H1 :

∧
b. P b 0

and H2 :
∧

a b. b 6= 0 =⇒ P b (a mod b) =⇒ P a b
shows P a b
〈proof 〉 lemma gcd-0 :

gcd a 0 = normalize a
〈proof 〉 lemma gcd-mod:
a 6= 0 =⇒ gcd a (b mod a) = gcd b a
〈proof 〉 definition lcm :: ′a ⇒ ′a ⇒ ′a
where lcm a b = normalize (a ∗ b div gcd a b)

qualified definition Lcm :: ′a set ⇒ ′a — Somewhat complicated definition of
Lcm that has the advantage of working for infinite sets as well

where
[code del]: Lcm A = (if ∃ l. l 6= 0 ∧ (∀ a∈A. a dvd l) then

let l = SOME l. l 6= 0 ∧ (∀ a∈A. a dvd l) ∧ euclidean-size l =
(LEAST n. ∃ l. l 6= 0 ∧ (∀ a∈A. a dvd l) ∧ euclidean-size l = n)
in normalize l

else 0 )

qualified definition Gcd :: ′a set ⇒ ′a
where [code del]: Gcd A = Lcm {d. ∀ a∈A. d dvd a}

lemma semiring-gcd:
class.semiring-gcd one zero times gcd lcm

divide plus minus unit-factor normalize
〈proof 〉

interpretation semiring-gcd one zero times gcd lcm
divide plus minus unit-factor normalize
〈proof 〉

lemma semiring-Gcd:
class.semiring-Gcd one zero times gcd lcm Gcd Lcm

divide plus minus unit-factor normalize
〈proof 〉

end

interpretation semiring-Gcd one zero times
Euclidean-Algorithm.gcd Euclidean-Algorithm.lcm Euclidean-Algorithm.Gcd Eu-

clidean-Algorithm.Lcm
divide plus minus unit-factor normalize
〈proof 〉

subclass factorial-semiring
〈proof 〉

lemma Gcd-eucl-set [code]:
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Euclidean-Algorithm.Gcd (set xs) = fold Euclidean-Algorithm.gcd xs 0
〈proof 〉

lemma Lcm-eucl-set [code]:
Euclidean-Algorithm.Lcm (set xs) = fold Euclidean-Algorithm.lcm xs 1
〈proof 〉

end

lemma prime-elem-int-abs-iff [simp]:
fixes p :: int
shows prime-elem |p| ←→ prime-elem p
〈proof 〉

lemma prime-elem-int-minus-iff [simp]:
fixes p :: int
shows prime-elem (− p) ←→ prime-elem p
〈proof 〉

lemma prime-int-iff :
fixes p :: int
shows prime p ←→ p > 0 ∧ prime-elem p
〈proof 〉

2.2 The (simple) euclidean algorithm as gcd computation
class euclidean-semiring-gcd = normalization-euclidean-semiring + gcd + Gcd +

assumes gcd-eucl: Euclidean-Algorithm.gcd = GCD.gcd
and lcm-eucl: Euclidean-Algorithm.lcm = GCD.lcm

assumes Gcd-eucl: Euclidean-Algorithm.Gcd = GCD.Gcd
and Lcm-eucl: Euclidean-Algorithm.Lcm = GCD.Lcm

begin

subclass semiring-gcd
〈proof 〉

subclass semiring-Gcd
〈proof 〉

subclass factorial-semiring-gcd
〈proof 〉

lemma gcd-mod-right [simp]:
a 6= 0 =⇒ gcd a (b mod a) = gcd a b
〈proof 〉

lemma gcd-mod-left [simp]:
b 6= 0 =⇒ gcd (a mod b) b = gcd a b
〈proof 〉
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lemma euclidean-size-gcd-le1 [simp]:
assumes a 6= 0
shows euclidean-size (gcd a b) ≤ euclidean-size a
〈proof 〉

lemma euclidean-size-gcd-le2 [simp]:
b 6= 0 =⇒ euclidean-size (gcd a b) ≤ euclidean-size b
〈proof 〉

lemma euclidean-size-gcd-less1 :
assumes a 6= 0 and ¬ a dvd b
shows euclidean-size (gcd a b) < euclidean-size a
〈proof 〉

lemma euclidean-size-gcd-less2 :
assumes b 6= 0 and ¬ b dvd a
shows euclidean-size (gcd a b) < euclidean-size b
〈proof 〉

lemma euclidean-size-lcm-le1 :
assumes a 6= 0 and b 6= 0
shows euclidean-size a ≤ euclidean-size (lcm a b)
〈proof 〉

lemma euclidean-size-lcm-le2 :
a 6= 0 =⇒ b 6= 0 =⇒ euclidean-size b ≤ euclidean-size (lcm a b)
〈proof 〉

lemma euclidean-size-lcm-less1 :
assumes b 6= 0 and ¬ b dvd a
shows euclidean-size a < euclidean-size (lcm a b)
〈proof 〉

lemma euclidean-size-lcm-less2 :
assumes a 6= 0 and ¬ a dvd b
shows euclidean-size b < euclidean-size (lcm a b)
〈proof 〉

end

lemma factorial-euclidean-semiring-gcdI :
OFCLASS( ′a::{factorial-semiring-gcd, normalization-euclidean-semiring}, euclidean-semiring-gcd-class)
〈proof 〉

2.3 The extended euclidean algorithm
class euclidean-ring-gcd = euclidean-semiring-gcd + idom
begin
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subclass euclidean-ring 〈proof 〉
subclass ring-gcd 〈proof 〉
subclass factorial-ring-gcd 〈proof 〉

function euclid-ext-aux :: ′a ⇒ ′a ⇒ ′a ⇒ ′a ⇒ ′a ⇒ ′a ⇒ ( ′a × ′a) × ′a
where euclid-ext-aux s ′ s t ′ t r ′ r = (

if r = 0 then let c = 1 div unit-factor r ′ in ((s ′ ∗ c, t ′ ∗ c), normalize r ′)
else let q = r ′ div r

in euclid-ext-aux s (s ′ − q ∗ s) t (t ′ − q ∗ t) r (r ′ mod r))
〈proof 〉

termination
〈proof 〉

abbreviation (input) euclid-ext :: ′a ⇒ ′a ⇒ ( ′a × ′a) × ′a
where euclid-ext ≡ euclid-ext-aux 1 0 0 1

lemma
assumes gcd r ′ r = gcd a b
assumes s ′ ∗ a + t ′ ∗ b = r ′

assumes s ∗ a + t ∗ b = r
assumes euclid-ext-aux s ′ s t ′ t r ′ r = ((x, y), c)
shows euclid-ext-aux-eq-gcd: c = gcd a b

and euclid-ext-aux-bezout: x ∗ a + y ∗ b = gcd a b
〈proof 〉

declare euclid-ext-aux.simps [simp del]

definition bezout-coefficients :: ′a ⇒ ′a ⇒ ′a × ′a
where [code]: bezout-coefficients a b = fst (euclid-ext a b)

lemma bezout-coefficients-0 :
bezout-coefficients a 0 = (1 div unit-factor a, 0 )
〈proof 〉

lemma bezout-coefficients-left-0 :
bezout-coefficients 0 a = (0 , 1 div unit-factor a)
〈proof 〉

lemma bezout-coefficients:
assumes bezout-coefficients a b = (x, y)
shows x ∗ a + y ∗ b = gcd a b
〈proof 〉

lemma bezout-coefficients-fst-snd:
fst (bezout-coefficients a b) ∗ a + snd (bezout-coefficients a b) ∗ b = gcd a b
〈proof 〉

lemma euclid-ext-eq [simp]:
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euclid-ext a b = (bezout-coefficients a b, gcd a b) (is ?p = ?q)
〈proof 〉

declare euclid-ext-eq [symmetric, code-unfold]

end

class normalization-euclidean-semiring-multiplicative =
normalization-euclidean-semiring + normalization-semidom-multiplicative

begin

subclass factorial-semiring-multiplicative 〈proof 〉

end

class field-gcd =
field + unique-euclidean-ring + euclidean-ring-gcd + normalization-semidom-multiplicative

begin

subclass normalization-euclidean-semiring-multiplicative 〈proof 〉

subclass normalization-euclidean-semiring 〈proof 〉

subclass semiring-gcd-mult-normalize 〈proof 〉

end

2.4 Typical instances
instance nat :: normalization-euclidean-semiring 〈proof 〉

instance nat :: euclidean-semiring-gcd
〈proof 〉

instance nat :: normalization-euclidean-semiring-multiplicative 〈proof 〉

lemma prime-factorization-Suc-0 [simp]: prime-factorization (Suc 0 ) = {#}
〈proof 〉

instance int :: normalization-euclidean-semiring 〈proof 〉

instance int :: euclidean-ring-gcd
〈proof 〉

instance int :: normalization-euclidean-semiring-multiplicative 〈proof 〉

lemma (in idom) prime-CHAR-semidom:
assumes CHAR( ′a) > 0
shows prime CHAR( ′a)
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〈proof 〉

end

3 Primes
theory Primes
imports Euclidean-Algorithm
begin

3.1 Primes on nat and int
lemma Suc-0-not-prime-nat [simp]: ¬ prime (Suc 0 )
〈proof 〉

lemma prime-ge-2-nat:
p ≥ 2 if prime p for p :: nat
〈proof 〉

lemma prime-ge-2-int:
p ≥ 2 if prime p for p :: int
〈proof 〉

lemma prime-ge-0-int: prime p =⇒ p ≥ (0 ::int)
〈proof 〉

lemma prime-gt-0-nat: prime p =⇒ p > (0 ::nat)
〈proof 〉

lemma prime-gt-0-int: prime p =⇒ p > (0 ::int)
〈proof 〉

lemma prime-ge-1-nat: prime p =⇒ p ≥ (1 ::nat)
〈proof 〉

lemma prime-ge-Suc-0-nat: prime p =⇒ p ≥ Suc 0
〈proof 〉

lemma prime-ge-1-int: prime p =⇒ p ≥ (1 ::int)
〈proof 〉

lemma prime-gt-1-nat: prime p =⇒ p > (1 ::nat)
〈proof 〉

lemma prime-gt-Suc-0-nat: prime p =⇒ p > Suc 0
〈proof 〉
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lemma prime-gt-1-int: prime p =⇒ p > (1 ::int)
〈proof 〉

lemma prime-natI :
prime p if p ≥ 2 and

∧
m n. p dvd m ∗ n =⇒ p dvd m ∨ p dvd n for p :: nat

〈proof 〉

lemma prime-intI :
prime p if p ≥ 2 and

∧
m n. p dvd m ∗ n =⇒ p dvd m ∨ p dvd n for p :: int

〈proof 〉

lemma prime-elem-nat-iff [simp]:
prime-elem n ←→ prime n for n :: nat
〈proof 〉

lemma prime-elem-iff-prime-abs [simp]:
prime-elem k ←→ prime |k| for k :: int
〈proof 〉

lemma prime-nat-int-transfer [simp]:
prime (int n) ←→ prime n (is ?P ←→ ?Q)
〈proof 〉

lemma prime-nat-iff-prime [simp]:
prime (nat k) ←→ prime k
〈proof 〉

lemma prime-int-nat-transfer :
prime k ←→ k ≥ 0 ∧ prime (nat k)
〈proof 〉

lemma prime-nat-naiveI :
prime p if p ≥ 2 and dvd:

∧
n. n dvd p =⇒ n = 1 ∨ n = p for p :: nat

〈proof 〉

lemma prime-int-naiveI :
prime p if p ≥ 2 and dvd:

∧
k. k dvd p =⇒ |k| = 1 ∨ |k| = p for p :: int

〈proof 〉

lemma prime-nat-iff :
prime (n :: nat) ←→ (1 < n ∧ (∀m. m dvd n −→ m = 1 ∨ m = n))
〈proof 〉

lemma prime-nat-iff ′:
prime (p :: nat) ←→ p > 1 ∧ (∀n ∈ {2 ..<p}. ¬ n dvd p)
〈proof 〉

lemma prime-int-iff :
prime (n::int) ←→ (1 < n ∧ (∀m. m ≥ 0 ∧ m dvd n −→ m = 1 ∨ m = n))
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〈proof 〉

lemma prime-int-iff ′:
prime (p :: int) ←→ p > 1 ∧ (∀n ∈ {2 ..<p}. ¬ n dvd p) (is ?P ←→ ?Q)
〈proof 〉

lemma prime-nat-not-dvd:
assumes prime p p > n n 6= (1 ::nat)
shows ¬n dvd p
〈proof 〉

lemma prime-int-not-dvd:
assumes prime p p > n n > (1 ::int)
shows ¬n dvd p
〈proof 〉

lemma prime-odd-nat: prime p =⇒ p > (2 ::nat) =⇒ odd p
〈proof 〉

lemma prime-odd-int: prime p =⇒ p > (2 ::int) =⇒ odd p
〈proof 〉

lemma prime-int-altdef :
prime p = (1 < p ∧ (∀m::int. m ≥ 0 −→ m dvd p −→

m = 1 ∨ m = p))
〈proof 〉

lemma not-prime-eq-prod-nat:
assumes m > 1 ¬ prime (m::nat)
shows ∃n k. n = m ∗ k ∧ 1 < m ∧ m < n ∧ 1 < k ∧ k < n
〈proof 〉

3.2 Make prime naively executable
lemma prime-int-numeral-eq [simp]:

prime (numeral m :: int) ←→ prime (numeral m :: nat)
〈proof 〉

class check-prime-by-range = normalization-semidom + discrete-linordered-semidom
+

assumes prime-iff : ‹prime a ←→ 1 < a ∧ (∀ d∈{2 ..a div 2}. ¬ d dvd a)›
begin

lemma two-is-prime [simp]:
‹prime 2 ›
〈proof 〉

end
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lemma divisor-less-eq-half-nat:
‹m ≤ n div 2 › if ‹m dvd n› ‹m < n› for m n :: nat
〈proof 〉

instance nat :: check-prime-by-range
〈proof 〉

lemma two-is-prime-nat [simp]:
‹prime (2 ::nat)›
〈proof 〉

lemma divisor-less-eq-half-int:
‹k ≤ l div 2 › if ‹k dvd l› ‹k < l› ‹l ≥ 0 › ‹k ≥ 0 › for k l :: int
〈proof 〉

instance int :: check-prime-by-range
〈proof 〉

lemma prime-nat-numeral-eq [simp]: — TODO Sieve Of Erathosthenes might
speed this up

prime (numeral m :: nat) ←→
(1 ::nat) < numeral m ∧
(∀n::nat ∈ set [2 ..<Suc (numeral m div 2 )]. ¬ n dvd numeral m)
〈proof 〉

context check-prime-by-range
begin

definition check-divisors :: ‹ ′a ⇒ ′a ⇒ ′a ⇒ bool›
where ‹check-divisors l u a ←→ (∀ d∈{l..u}. ¬ d dvd a)›

lemma check-divisors-rec [code]:
‹check-divisors l u a ←→ u < l ∨ (¬ l dvd a ∧ check-divisors (l + 1 ) u a)›
〈proof 〉

lemma prime-eq-check-divisors [code]:
‹prime a ←→ a > 1 ∧ check-divisors 2 (a div 2 ) a›
〈proof 〉

end

3.3 Largest exponent of a prime factor
lemma prime-factor-nat:

n 6= (1 ::nat) =⇒ ∃ p. prime p ∧ p dvd n
〈proof 〉

lemma prime-factor-int:
fixes k :: int
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assumes |k| 6= 1
obtains p where prime p p dvd k
〈proof 〉

Possibly duplicates other material, but avoid the complexities of multisets.
lemma prime-power-cancel-less:

assumes prime p and eq: m ∗ (p ^ k) = m ′ ∗ (p ^ k ′) and less: k < k ′ and ¬
p dvd m

shows False
〈proof 〉

lemma prime-power-cancel:
assumes prime p and eq: m ∗ (p ^ k) = m ′ ∗ (p ^ k ′) and ¬ p dvd m ¬ p dvd

m ′

shows k = k ′

〈proof 〉

lemma prime-power-cancel2 :
assumes prime p m ∗ (p ^ k) = m ′ ∗ (p ^ k ′) ¬ p dvd m ¬ p dvd m ′

obtains m = m ′ k = k ′

〈proof 〉

lemma prime-power-canonical:
fixes m :: nat
assumes prime p m > 0
shows ∃ k n. ¬ p dvd n ∧ m = n ∗ p ^ k
〈proof 〉

3.4 Infinitely many primes
lemma next-prime-bound: ∃ p::nat. prime p ∧ n < p ∧ p ≤ fact n + 1
〈proof 〉

lemma bigger-prime: ∃ p. prime p ∧ p > (n::nat)
〈proof 〉

lemma primes-infinite: ¬ (finite {(p::nat). prime p})
〈proof 〉

3.5 Powers of Primes

Versions for type nat only
lemma prime-product:

fixes p::nat
assumes prime (p ∗ q)
shows p = 1 ∨ q = 1
〈proof 〉
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lemma prime-power-mult-nat:
fixes p :: nat
assumes p: prime p and xy: x ∗ y = p ^ k
shows ∃ i j. x = p ^ i ∧ y = p^ j
〈proof 〉

lemma prime-power-exp-nat:
fixes p::nat
assumes p: prime p and n: n 6= 0

and xn: x^n = p^k shows ∃ i. x = p^i
〈proof 〉

lemma divides-primepow-nat:
fixes p :: nat
assumes p: prime p
shows d dvd p ^ k ←→ (∃ i≤k. d = p ^ i)
〈proof 〉

lemma gcd-prime-int:
assumes prime (p :: int)
shows gcd p k = (if p dvd k then p else 1 )
〈proof 〉

3.6 Chinese Remainder Theorem Variants
lemma bezout-gcd-nat:

fixes a::nat shows ∃ x y. a ∗ x − b ∗ y = gcd a b ∨ b ∗ x − a ∗ y = gcd a b
〈proof 〉

lemma gcd-bezout-sum-nat:
fixes a::nat
assumes a ∗ x + b ∗ y = d
shows gcd a b dvd d
〈proof 〉

A binary form of the Chinese Remainder Theorem.
lemma chinese-remainder :

fixes a::nat assumes ab: coprime a b and a: a 6= 0 and b: b 6= 0
shows ∃ x q1 q2 . x = u + q1 ∗ a ∧ x = v + q2 ∗ b
〈proof 〉

Primality
lemma coprime-bezout-strong:

fixes a::nat assumes coprime a b b 6= 1
shows ∃ x y. a ∗ x = b ∗ y + 1
〈proof 〉

lemma bezout-prime:
assumes p: prime p and pa: ¬ p dvd a
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shows ∃ x y. a∗x = Suc (p∗y)
〈proof 〉

3.7 Multiplicity and primality for natural numbers and in-
tegers

lemma prime-factors-gt-0-nat:
p ∈ prime-factors x =⇒ p > (0 ::nat)
〈proof 〉

lemma prime-factors-gt-0-int:
p ∈ prime-factors x =⇒ p > (0 ::int)
〈proof 〉

lemma prime-factors-ge-0-int [elim]:
fixes n :: int
shows p ∈ prime-factors n =⇒ p ≥ 0
〈proof 〉

lemma prod-mset-prime-factorization-int:
fixes n :: int
assumes n > 0
shows prod-mset (prime-factorization n) = n
〈proof 〉

lemma prime-factorization-exists-nat:
n > 0 =⇒ (∃M . (∀ p::nat ∈ set-mset M . prime p) ∧ n = (

∏
i ∈# M . i))

〈proof 〉

lemma prod-mset-prime-factorization-nat [simp]:
(n::nat) > 0 =⇒ prod-mset (prime-factorization n) = n
〈proof 〉

lemma prime-factorization-nat:
n > (0 ::nat) =⇒ n = (

∏
p ∈ prime-factors n. p ^ multiplicity p n)

〈proof 〉

lemma prime-factorization-int:
n > (0 ::int) =⇒ n = (

∏
p ∈ prime-factors n. p ^ multiplicity p n)

〈proof 〉

lemma prime-factorization-unique-nat:
fixes f :: nat ⇒ -
assumes S-eq: S = {p. 0 < f p}

and finite S
and S : ∀ p∈S . prime p n = (

∏
p∈S . p ^ f p)

shows S = prime-factors n ∧ (∀ p. prime p −→ f p = multiplicity p n)
〈proof 〉
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lemma prime-factorization-unique-int:
fixes f :: int ⇒ -
assumes S-eq: S = {p. 0 < f p}

and finite S
and S : ∀ p∈S . prime p abs n = (

∏
p∈S . p ^ f p)

shows S = prime-factors n ∧ (∀ p. prime p −→ f p = multiplicity p n)
〈proof 〉

lemma prime-factors-characterization-nat:
S = {p. 0 < f (p::nat)} =⇒

finite S =⇒ ∀ p∈S . prime p =⇒ n = (
∏

p∈S . p ^ f p) =⇒ prime-factors n = S
〈proof 〉

lemma prime-factors-characterization ′-nat:
finite {p. 0 < f (p::nat)} =⇒
(∀ p. 0 < f p −→ prime p) =⇒

prime-factors (
∏

p | 0 < f p. p ^ f p) = {p. 0 < f p}
〈proof 〉

lemma prime-factors-characterization-int:
S = {p. 0 < f (p::int)} =⇒ finite S =⇒
∀ p∈S . prime p =⇒ abs n = (

∏
p∈S . p ^ f p) =⇒ prime-factors n = S

〈proof 〉

lemma abs-prod: abs (prod f A :: ′a :: linordered-idom) = prod (λx. abs (f x)) A
〈proof 〉

lemma primes-characterization ′-int [rule-format]:
finite {p. p ≥ 0 ∧ 0 < f (p::int)} =⇒ ∀ p. 0 < f p −→ prime p =⇒

prime-factors (
∏

p | p ≥ 0 ∧ 0 < f p. p ^ f p) = {p. p ≥ 0 ∧ 0 < f p}
〈proof 〉

lemma multiplicity-characterization-nat:
S = {p. 0 < f (p::nat)} =⇒ finite S =⇒ ∀ p∈S . prime p =⇒ prime p =⇒

n = (
∏

p∈S . p ^ f p) =⇒ multiplicity p n = f p
〈proof 〉

lemma multiplicity-characterization ′-nat: finite {p. 0 < f (p::nat)} −→
(∀ p. 0 < f p −→ prime p) −→ prime p −→

multiplicity p (
∏

p | 0 < f p. p ^ f p) = f p
〈proof 〉

lemma multiplicity-characterization-int: S = {p. 0 < f (p::int)} =⇒
finite S =⇒ ∀ p∈S . prime p =⇒ prime p =⇒ n = (

∏
p∈S . p ^ f p) =⇒

multiplicity p n = f p
〈proof 〉

lemma multiplicity-characterization ′-int [rule-format]:
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finite {p. p ≥ 0 ∧ 0 < f (p::int)} =⇒
(∀ p. 0 < f p −→ prime p) =⇒ prime p =⇒

multiplicity p (
∏

p | p ≥ 0 ∧ 0 < f p. p ^ f p) = f p
〈proof 〉

lemma multiplicity-one-nat [simp]: multiplicity p (Suc 0 ) = 0
〈proof 〉

lemma multiplicity-eq-nat:
fixes x and y::nat
assumes x > 0 y > 0

∧
p. prime p =⇒ multiplicity p x = multiplicity p y

shows x = y
〈proof 〉

lemma multiplicity-eq-int:
fixes x y :: int
assumes x > 0 y > 0

∧
p. prime p =⇒ multiplicity p x = multiplicity p y

shows x = y
〈proof 〉

lemma multiplicity-prod-prime-powers:
assumes finite S

∧
x. x ∈ S =⇒ prime x prime p

shows multiplicity p (
∏

p ∈ S . p ^ f p) = (if p ∈ S then f p else 0 )
〈proof 〉

lemma prime-factorization-prod-mset:
assumes 0 /∈# A
shows prime-factorization (prod-mset A) =

∑
#(image-mset prime-factorization

A)
〈proof 〉

lemma prime-factors-prod:
assumes finite A and 0 /∈ f ‘ A
shows prime-factors (prod f A) =

⋃
((prime-factors ◦ f ) ‘ A)

〈proof 〉

lemma prime-factors-fact:
prime-factors (fact n) = {p ∈ {2 ..n}. prime p} (is ?M = ?N )
〈proof 〉

lemma prime-dvd-fact-iff :
assumes prime p
shows p dvd fact n ←→ p ≤ n
〈proof 〉

lemma dvd-choose-prime:
assumes kn: k < n and k: k 6= 0 and n: n 6= 0 and prime-n: prime n
shows n dvd (n choose k)
〈proof 〉
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lemma (in ring-1 ) minus-power-prime-CHAR:
assumes p = CHAR( ′a) prime p
shows (−x :: ′a) ^ p = −(x ^ p)
〈proof 〉

3.8 Rings and fields with prime characteristic

We introduce some type classes for rings and fields with prime characteristic.
class semiring-prime-char = semiring-1 +

assumes prime-char-aux: ∃n. prime n ∧ of-nat n = (0 :: ′a)
begin

lemma CHAR-pos [intro, simp]: CHAR( ′a) > 0
〈proof 〉

lemma CHAR-nonzero [simp]: CHAR( ′a) 6= 0
〈proof 〉

lemma CHAR-prime [intro, simp]: prime CHAR( ′a)
〈proof 〉

end

lemma semiring-prime-charI [intro?]:
prime CHAR( ′a :: semiring-1 ) =⇒ OFCLASS( ′a, semiring-prime-char-class)
〈proof 〉

lemma idom-prime-charI [intro?]:
assumes CHAR( ′a :: idom) > 0
shows OFCLASS( ′a, semiring-prime-char-class)
〈proof 〉

class comm-semiring-prime-char = comm-semiring-1 + semiring-prime-char
class comm-ring-prime-char = comm-ring-1 + semiring-prime-char
begin
subclass comm-semiring-prime-char 〈proof 〉
end
class idom-prime-char = idom + semiring-prime-char
begin
subclass comm-ring-prime-char 〈proof 〉
end

class field-prime-char = field +
assumes pos-char-exists: ∃n>0 . of-nat n = (0 :: ′a)

begin
subclass idom-prime-char
〈proof 〉

end
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lemma field-prime-charI [intro?]:
n > 0 =⇒ of-nat n = (0 :: ′a :: field) =⇒ OFCLASS( ′a, field-prime-char-class)
〈proof 〉

lemma field-prime-charI ′ [intro?]:
CHAR( ′a :: field) > 0 =⇒ OFCLASS( ′a, field-prime-char-class)
〈proof 〉

3.9 Finite fields
class finite-field = field-prime-char + finite

lemma finite-fieldI [intro?]:
assumes finite (UNIV :: ′a :: field set)
shows OFCLASS( ′a, finite-field-class)
〈proof 〉

On a finite field with n elements, taking the n-th power of an element is the
identity. This is an obvious consequence of the fact that the multiplicative
group of the field is a finite group of order n − 1, so x^n = 1 for any
non-zero x.
Note that this result is sharp in the sense that the multiplicative group of
a finite field is cyclic, i.e. it contains an element of order n − 1. (We don’t
prove this here.)
lemma finite-field-power-card-eq-same:

fixes x :: ′a :: finite-field
shows x ^ card (UNIV :: ′a set) = x
〈proof 〉

lemma finite-field-power-card-power-eq-same:
fixes x :: ′a :: finite-field
assumes m = card (UNIV :: ′a set) ^ n
shows x ^ m = x
〈proof 〉

class enum-finite-field = finite-field +
fixes enum-finite-field :: nat ⇒ ′a
assumes enum-finite-field: enum-finite-field ‘ {..<card (UNIV :: ′a set)} = UNIV

begin

lemma inj-on-enum-finite-field: inj-on enum-finite-field {..<card (UNIV :: ′a set)}
〈proof 〉

end

To get rid of the pending sort hypotheses, we prove that the field with 2
elements is indeed a finite field.
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typedef gf2 = {0 , 1 :: nat}
〈proof 〉

setup-lifting type-definition-gf2

instantiation gf2 :: field
begin
lift-definition zero-gf2 :: gf2 is 0 〈proof 〉
lift-definition one-gf2 :: gf2 is 1 〈proof 〉
lift-definition uminus-gf2 :: gf2 ⇒ gf2 is λx. x 〈proof 〉
lift-definition plus-gf2 :: gf2 ⇒ gf2 ⇒ gf2 is λx y. if x = y then 0 else 1 〈proof 〉
lift-definition minus-gf2 :: gf2 ⇒ gf2 ⇒ gf2 is λx y. if x = y then 0 else 1 〈proof 〉
lift-definition times-gf2 :: gf2 ⇒ gf2 ⇒ gf2 is λx y. x ∗ y 〈proof 〉
lift-definition inverse-gf2 :: gf2 ⇒ gf2 is λx. x 〈proof 〉
lift-definition divide-gf2 :: gf2 ⇒ gf2 ⇒ gf2 is λx y. x ∗ y 〈proof 〉

instance
〈proof 〉

end

instance gf2 :: finite-field
〈proof 〉

3.10 The Freshman’s Dream in rings of prime characteristic
lemma (in comm-semiring-1 ) freshmans-dream:

fixes x y :: ′a and n :: nat
assumes prime CHAR( ′a)
assumes n-def : n = CHAR( ′a)
shows (x + y) ^ n = x ^ n + y ^ n
〈proof 〉

lemma (in comm-semiring-1 ) freshmans-dream ′:
assumes [simp]: prime CHAR( ′a) and m = CHAR( ′a) ^ n
shows (x + y :: ′a) ^ m = x ^ m + y ^ m
〈proof 〉

lemma (in comm-semiring-1 ) freshmans-dream-sum:
fixes f :: ′b ⇒ ′a
assumes prime CHAR( ′a) and n = CHAR( ′a)
shows sum f A ^ n = sum (λi. f i ^ n) A
〈proof 〉

lemma (in comm-semiring-1 ) freshmans-dream-sum ′:
fixes f :: ′b ⇒ ′a
assumes prime CHAR( ′a) m = CHAR( ′a) ^ n
shows sum f A ^ m = sum (λi. f i ^ m) A
〈proof 〉
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lemmas prime-imp-coprime-nat = prime-imp-coprime[where ? ′a = nat]
lemmas prime-imp-coprime-int = prime-imp-coprime[where ? ′a = int]
lemmas prime-dvd-mult-nat = prime-dvd-mult-iff [where ? ′a = nat]
lemmas prime-dvd-mult-int = prime-dvd-mult-iff [where ? ′a = int]
lemmas prime-dvd-mult-eq-nat = prime-dvd-mult-iff [where ? ′a = nat]
lemmas prime-dvd-mult-eq-int = prime-dvd-mult-iff [where ? ′a = int]
lemmas prime-dvd-power-nat = prime-dvd-power [where ? ′a = nat]
lemmas prime-dvd-power-int = prime-dvd-power [where ? ′a = int]
lemmas prime-dvd-power-nat-iff = prime-dvd-power-iff [where ? ′a = nat]
lemmas prime-dvd-power-int-iff = prime-dvd-power-iff [where ? ′a = int]
lemmas prime-imp-power-coprime-nat = prime-imp-power-coprime[where ? ′a =
nat]
lemmas prime-imp-power-coprime-int = prime-imp-power-coprime[where ? ′a =
int]
lemmas primes-coprime-nat = primes-coprime[where ? ′a = nat]
lemmas primes-coprime-int = primes-coprime[where ? ′a = nat]
lemmas prime-divprod-pow-nat = prime-elem-divprod-pow[where ? ′a = nat]
lemmas prime-exp = prime-elem-power-iff [where ? ′a = nat]

end

4 Polynomials as type over a ring structure
theory Polynomial
imports

Complex-Main
HOL−Library.More-List
HOL−Library.Infinite-Set
Primes

begin

context semidom-modulo
begin

lemma not-dvd-imp-mod-neq-0 :
‹a mod b 6= 0 › if ‹¬ b dvd a›
〈proof 〉

end

4.1 Auxiliary: operations for lists (later) representing coef-
ficients

definition cCons :: ′a::zero ⇒ ′a list ⇒ ′a list (infixr ‹##› 65 )
where x ## xs = (if xs = [] ∧ x = 0 then [] else x # xs)
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lemma cCons-0-Nil-eq [simp]: 0 ## [] = []
〈proof 〉

lemma cCons-Cons-eq [simp]: x ## y # ys = x # y # ys
〈proof 〉

lemma cCons-append-Cons-eq [simp]: x ## xs @ y # ys = x # xs @ y # ys
〈proof 〉

lemma cCons-not-0-eq [simp]: x 6= 0 =⇒ x ## xs = x # xs
〈proof 〉

lemma strip-while-not-0-Cons-eq [simp]:
strip-while (λx. x = 0 ) (x # xs) = x ## strip-while (λx. x = 0 ) xs
〈proof 〉

lemma tl-cCons [simp]: tl (x ## xs) = xs
〈proof 〉

4.2 Definition of type poly
typedef (overloaded) ′a poly = {f :: nat ⇒ ′a::zero. ∀∞ n. f n = 0}

morphisms coeff Abs-poly
〈proof 〉

setup-lifting type-definition-poly

lemma poly-eq-iff : p = q ←→ (∀n. coeff p n = coeff q n)
〈proof 〉

lemma poly-eqI : (
∧

n. coeff p n = coeff q n) =⇒ p = q
〈proof 〉

lemma MOST-coeff-eq-0 : ∀∞ n. coeff p n = 0
〈proof 〉

lemma coeff-Abs-poly:
assumes

∧
i. i > n =⇒ f i = 0

shows coeff (Abs-poly f ) = f
〈proof 〉

4.3 Degree of a polynomial
definition degree :: ′a::zero poly ⇒ nat

where degree p = (LEAST n. ∀ i>n. coeff p i = 0 )

lemma degree-cong:
assumes

∧
i. coeff p i = 0 ←→ coeff q i = 0

shows degree p = degree q
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〈proof 〉

lemma coeff-Abs-poly-If-le:
coeff (Abs-poly (λi. if i ≤ n then f i else 0 )) = (λi. if i ≤ n then f i else 0 )
〈proof 〉

lemma coeff-eq-0 :
assumes degree p < n
shows coeff p n = 0
〈proof 〉

lemma le-degree: coeff p n 6= 0 =⇒ n ≤ degree p
〈proof 〉

lemma degree-le: ∀ i>n. coeff p i = 0 =⇒ degree p ≤ n
〈proof 〉

lemma less-degree-imp: n < degree p =⇒ ∃ i>n. coeff p i 6= 0
〈proof 〉

lemma poly-eqI2 :
assumes degree p = degree q and

∧
i. i ≤ degree p =⇒ coeff p i = coeff q i

shows p = q
〈proof 〉

4.4 The zero polynomial
instantiation poly :: (zero) zero
begin

lift-definition zero-poly :: ′a poly
is λ-. 0
〈proof 〉

instance 〈proof 〉

end

lemma coeff-0 [simp]: coeff 0 n = 0
〈proof 〉

lemma degree-0 [simp]: degree 0 = 0
〈proof 〉

lemma leading-coeff-neq-0 :
assumes p 6= 0
shows coeff p (degree p) 6= 0
〈proof 〉
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lemma leading-coeff-0-iff [simp]: coeff p (degree p) = 0 ←→ p = 0
〈proof 〉

lemma degree-lessI :
assumes p 6= 0 ∨ n > 0 ∀ k≥n. coeff p k = 0
shows degree p < n
〈proof 〉

lemma eq-zero-or-degree-less:
assumes degree p ≤ n and coeff p n = 0
shows p = 0 ∨ degree p < n
〈proof 〉

lemma coeff-0-degree-minus-1 : coeff rrr dr = 0 =⇒ degree rrr ≤ dr =⇒ degree
rrr ≤ dr − 1
〈proof 〉

4.5 List-style constructor for polynomials
lift-definition pCons :: ′a::zero ⇒ ′a poly ⇒ ′a poly

is λa p. case-nat a (coeff p)
〈proof 〉

lemmas coeff-pCons = pCons.rep-eq

lemma coeff-pCons ′: poly.coeff (pCons c p) n = (if n = 0 then c else poly.coeff p
(n − 1 ))
〈proof 〉

lemma coeff-pCons-0 [simp]: coeff (pCons a p) 0 = a
〈proof 〉

lemma coeff-pCons-Suc [simp]: coeff (pCons a p) (Suc n) = coeff p n
〈proof 〉

lemma degree-pCons-le: degree (pCons a p) ≤ Suc (degree p)
〈proof 〉

lemma degree-pCons-eq: p 6= 0 =⇒ degree (pCons a p) = Suc (degree p)
〈proof 〉

lemma degree-pCons-0 : degree (pCons a 0 ) = 0
〈proof 〉

lemma degree-pCons-eq-if [simp]: degree (pCons a p) = (if p = 0 then 0 else Suc
(degree p))
〈proof 〉

lemma pCons-0-0 [simp]: pCons 0 0 = 0
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〈proof 〉

lemma pCons-eq-iff [simp]: pCons a p = pCons b q ←→ a = b ∧ p = q
〈proof 〉

lemma pCons-eq-0-iff [simp]: pCons a p = 0 ←→ a = 0 ∧ p = 0
〈proof 〉

lemma pCons-cases [cases type: poly]:
obtains (pCons) a q where p = pCons a q
〈proof 〉

lemma pCons-induct [case-names 0 pCons, induct type: poly]:
assumes zero: P 0
assumes pCons:

∧
a p. a 6= 0 ∨ p 6= 0 =⇒ P p =⇒ P (pCons a p)

shows P p
〈proof 〉

lemma degree-eq-zeroE :
fixes p :: ′a::zero poly
assumes degree p = 0
obtains a where p = pCons a 0
〈proof 〉

4.6 Quickcheck generator for polynomials
quickcheck-generator poly constructors: 0 :: - poly, pCons

4.7 List-style syntax for polynomials
syntax

-poly :: args ⇒ ′a poly (‹(‹indent=2 notation=‹mixfix polynomial enumera-
tion››[:-:])›)
syntax-consts

-poly 
 pCons
translations
[:x, xs:] 
 CONST pCons x [:xs:]
[:x:] 
 CONST pCons x 0

lemma degree-0-id:
assumes degree p = 0
shows [: coeff p 0 :] = p
〈proof 〉

lemma degree0-coeffs: degree p = 0 =⇒ ∃ a. p = [: a :]
〈proof 〉

lemma degree1-coeffs:
fixes p :: ′a::zero poly
assumes degree p = 1
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obtains a b where p = [: b, a :] a 6= 0
〈proof 〉

lemma degree2-coeffs:
fixes p :: ′a::zero poly
assumes degree p = 2
obtains a b c where p = [: c, b, a :] a 6= 0
〈proof 〉

4.8 Representation of polynomials by lists of coefficients
primrec Poly :: ′a::zero list ⇒ ′a poly

where
[code-post]: Poly [] = 0
| [code-post]: Poly (a # as) = pCons a (Poly as)

lemma Poly-replicate-0 [simp]: Poly (replicate n 0 ) = 0
〈proof 〉

lemma Poly-eq-0 : Poly as = 0 ←→ (∃n. as = replicate n 0 )
〈proof 〉

lemma Poly-append-replicate-zero [simp]: Poly (as @ replicate n 0 ) = Poly as
〈proof 〉

lemma Poly-snoc-zero [simp]: Poly (as @ [0 ]) = Poly as
〈proof 〉

lemma Poly-cCons-eq-pCons-Poly [simp]: Poly (a ## p) = pCons a (Poly p)
〈proof 〉

lemma Poly-on-rev-starting-with-0 [simp]: hd as = 0 =⇒ Poly (rev (tl as)) = Poly
(rev as)
〈proof 〉

lemma degree-Poly: degree (Poly xs) ≤ length xs
〈proof 〉

lemma coeff-Poly-eq [simp]: coeff (Poly xs) = nth-default 0 xs
〈proof 〉

definition coeffs :: ′a poly ⇒ ′a::zero list
where coeffs p = (if p = 0 then [] else map (λi. coeff p i) [0 ..< Suc (degree p)])

lemma coeffs-eq-Nil [simp]: coeffs p = [] ←→ p = 0
〈proof 〉

lemma not-0-coeffs-not-Nil: p 6= 0 =⇒ coeffs p 6= []
〈proof 〉
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lemma coeffs-0-eq-Nil [simp]: coeffs 0 = []
〈proof 〉

lemma coeffs-pCons-eq-cCons [simp]: coeffs (pCons a p) = a ## coeffs p
〈proof 〉

lemma length-coeffs: p 6= 0 =⇒ length (coeffs p) = degree p + 1
〈proof 〉

lemma coeffs-nth: p 6= 0 =⇒ n ≤ degree p =⇒ coeffs p ! n = coeff p n
〈proof 〉

lemma coeff-in-coeffs: p 6= 0 =⇒ n ≤ degree p =⇒ coeff p n ∈ set (coeffs p)
〈proof 〉

lemma not-0-cCons-eq [simp]: p 6= 0 =⇒ a ## coeffs p = a # coeffs p
〈proof 〉

lemma Poly-coeffs [simp, code abstype]: Poly (coeffs p) = p
〈proof 〉

lemma coeffs-Poly [simp]: coeffs (Poly as) = strip-while (HOL.eq 0 ) as
〈proof 〉

lemma no-trailing-coeffs [simp]:
no-trailing (HOL.eq 0 ) (coeffs p)
〈proof 〉

lemma strip-while-coeffs [simp]:
strip-while (HOL.eq 0 ) (coeffs p) = coeffs p
〈proof 〉

lemma coeffs-eq-iff : p = q ←→ coeffs p = coeffs q
(is ?P ←→ ?Q)
〈proof 〉

lemma nth-default-coeffs-eq: nth-default 0 (coeffs p) = coeff p
〈proof 〉

lemma range-coeff : range (coeff p) = insert 0 (set (coeffs p))
〈proof 〉

lemma [code]: coeff p = nth-default 0 (coeffs p)
〈proof 〉

lemma coeffs-eqI :
assumes coeff :

∧
n. coeff p n = nth-default 0 xs n

assumes zero: no-trailing (HOL.eq 0 ) xs
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shows coeffs p = xs
〈proof 〉

lemma degree-eq-length-coeffs [code]: degree p = length (coeffs p) − 1
〈proof 〉

lemma length-coeffs-degree: p 6= 0 =⇒ length (coeffs p) = Suc (degree p)
〈proof 〉

lemma [code abstract]: coeffs 0 = []
〈proof 〉

lemma [code abstract]: coeffs (pCons a p) = a ## coeffs p
〈proof 〉

lemma set-coeffs-subset-singleton-0-iff [simp]:
set (coeffs p) ⊆ {0} ←→ p = 0
〈proof 〉

lemma set-coeffs-not-only-0 [simp]:
set (coeffs p) 6= {0}
〈proof 〉

lemma forall-coeffs-conv:
(∀n. P (coeff p n)) ←→ (∀ c ∈ set (coeffs p). P c) if P 0
〈proof 〉

instantiation poly :: ({zero, equal}) equal
begin

definition [code]: HOL.equal (p:: ′a poly) q ←→ HOL.equal (coeffs p) (coeffs q)

instance
〈proof 〉

end

lemma [code nbe]: HOL.equal (p :: - poly) p ←→ True
〈proof 〉

definition is-zero :: ′a::zero poly ⇒ bool
where [code]: is-zero p ←→ List.null (coeffs p)

lemma is-zero-null [code-abbrev]: is-zero p ←→ p = 0
〈proof 〉

Reconstructing the polynomial from the list
definition poly-of-list :: ′a::comm-monoid-add list ⇒ ′a poly

where [simp]: poly-of-list = Poly
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lemma poly-of-list-impl [code abstract]: coeffs (poly-of-list as) = strip-while (HOL.eq
0 ) as
〈proof 〉

4.9 Fold combinator for polynomials
definition fold-coeffs :: ( ′a::zero ⇒ ′b ⇒ ′b) ⇒ ′a poly ⇒ ′b ⇒ ′b

where fold-coeffs f p = foldr f (coeffs p)

lemma fold-coeffs-0-eq [simp]: fold-coeffs f 0 = id
〈proof 〉

lemma fold-coeffs-pCons-eq [simp]: f 0 = id =⇒ fold-coeffs f (pCons a p) = f a ◦
fold-coeffs f p
〈proof 〉

lemma fold-coeffs-pCons-0-0-eq [simp]: fold-coeffs f (pCons 0 0 ) = id
〈proof 〉

lemma fold-coeffs-pCons-coeff-not-0-eq [simp]:
a 6= 0 =⇒ fold-coeffs f (pCons a p) = f a ◦ fold-coeffs f p
〈proof 〉

lemma fold-coeffs-pCons-not-0-0-eq [simp]:
p 6= 0 =⇒ fold-coeffs f (pCons a p) = f a ◦ fold-coeffs f p
〈proof 〉

4.10 Canonical morphism on polynomials – evaluation
definition poly :: ‹ ′a::comm-semiring-0 poly ⇒ ′a ⇒ ′a›

where ‹poly p a = horner-sum id a (coeffs p)›

lemma poly-eq-fold-coeffs:
‹poly p = fold-coeffs (λa f x. a + x ∗ f x) p (λx. 0 )›
〈proof 〉

lemma poly-0 [simp]: poly 0 x = 0
〈proof 〉

lemma poly-pCons [simp]: poly (pCons a p) x = a + x ∗ poly p x
〈proof 〉

lemma poly-altdef : poly p x = (
∑

i≤degree p. coeff p i ∗ x ^ i)
for x :: ′a::{comm-semiring-0 ,semiring-1}
〈proof 〉

lemma poly-0-coeff-0 : poly p 0 = coeff p 0
〈proof 〉
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lemma poly-zero:
fixes p :: ′a :: comm-ring-1 poly
assumes x: poly p x = 0 shows p = 0 ←→ degree p = 0
〈proof 〉

4.11 Monomials
lift-definition monom :: ′a ⇒ nat ⇒ ′a::zero poly

is λa m n. if m = n then a else 0
〈proof 〉

lemma coeff-monom [simp]: coeff (monom a m) n = (if m = n then a else 0 )
〈proof 〉

lemma monom-0 : monom a 0 = [:a:]
〈proof 〉

lemma monom-Suc: monom a (Suc n) = pCons 0 (monom a n)
〈proof 〉

lemma monom-eq-0 [simp]: monom 0 n = 0
〈proof 〉

lemma monom-eq-0-iff [simp]: monom a n = 0 ←→ a = 0
〈proof 〉

lemma monom-eq-iff [simp]: monom a n = monom b n ←→ a = b
〈proof 〉

lemma degree-monom-le: degree (monom a n) ≤ n
〈proof 〉

lemma degree-monom-eq: a 6= 0 =⇒ degree (monom a n) = n
〈proof 〉

lemma coeffs-monom [code abstract]:
coeffs (monom a n) = (if a = 0 then [] else replicate n 0 @ [a])
〈proof 〉

lemma fold-coeffs-monom [simp]: a 6= 0 =⇒ fold-coeffs f (monom a n) = f 0 ^^
n ◦ f a
〈proof 〉

lemma poly-monom: poly (monom a n) x = a ∗ x ^ n
for a x :: ′a::comm-semiring-1
〈proof 〉

lemma monom-eq-iff ′: monom c n = monom d m ←→ c = d ∧ (c = 0 ∨ n =
m)
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〈proof 〉

lemma monom-eq-const-iff : monom c n = [:d:] ←→ c = d ∧ (c = 0 ∨ n = 0 )
〈proof 〉

4.12 Leading coefficient
abbreviation lead-coeff :: ′a::zero poly ⇒ ′a

where lead-coeff p ≡ coeff p (degree p)

lemma lead-coeff-pCons[simp]:
p 6= 0 =⇒ lead-coeff (pCons a p) = lead-coeff p
p = 0 =⇒ lead-coeff (pCons a p) = a
〈proof 〉

lemma lead-coeff-monom [simp]: lead-coeff (monom c n) = c
〈proof 〉

lemma last-coeffs-eq-coeff-degree:
last (coeffs p) = lead-coeff p if p 6= 0
〈proof 〉

lemma lead-coeff-list-def :
lead-coeff p = (if coeffs p=[] then 0 else last (coeffs p))
〈proof 〉

4.13 Addition and subtraction
instantiation poly :: (comm-monoid-add) comm-monoid-add
begin

lift-definition plus-poly :: ′a poly ⇒ ′a poly ⇒ ′a poly
is λp q n. coeff p n + coeff q n
〈proof 〉

lemma coeff-add [simp]: coeff (p + q) n = coeff p n + coeff q n
〈proof 〉

instance
〈proof 〉

end

instantiation poly :: (cancel-comm-monoid-add) cancel-comm-monoid-add
begin

lift-definition minus-poly :: ′a poly ⇒ ′a poly ⇒ ′a poly
is λp q n. coeff p n − coeff q n
〈proof 〉
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lemma coeff-diff [simp]: coeff (p − q) n = coeff p n − coeff q n
〈proof 〉

instance
〈proof 〉

end

instantiation poly :: (ab-group-add) ab-group-add
begin

lift-definition uminus-poly :: ′a poly ⇒ ′a poly
is λp n. − coeff p n
〈proof 〉

lemma coeff-minus [simp]: coeff (− p) n = − coeff p n
〈proof 〉

instance
〈proof 〉

end

lemma add-pCons [simp]: pCons a p + pCons b q = pCons (a + b) (p + q)
〈proof 〉

lemma minus-pCons [simp]: − pCons a p = pCons (− a) (− p)
〈proof 〉

lemma diff-pCons [simp]: pCons a p − pCons b q = pCons (a − b) (p − q)
〈proof 〉

lemma degree-add-le-max: degree (p + q) ≤ max (degree p) (degree q)
〈proof 〉

lemma degree-add-le: degree p ≤ n =⇒ degree q ≤ n =⇒ degree (p + q) ≤ n
〈proof 〉

lemma degree-add-less: degree p < n =⇒ degree q < n =⇒ degree (p + q) < n
〈proof 〉

lemma degree-add-eq-right: assumes degree p < degree q shows degree (p + q)
= degree q
〈proof 〉

lemma degree-add-eq-left: degree q < degree p =⇒ degree (p + q) = degree p
〈proof 〉

lemma degree-minus [simp]: degree (− p) = degree p
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〈proof 〉

lemma lead-coeff-add-le: degree p < degree q =⇒ lead-coeff (p + q) = lead-coeff q
〈proof 〉

lemma lead-coeff-minus: lead-coeff (− p) = − lead-coeff p
〈proof 〉

lemma degree-diff-le-max: degree (p − q) ≤ max (degree p) (degree q)
for p q :: ′a::ab-group-add poly
〈proof 〉

lemma degree-diff-le: degree p ≤ n =⇒ degree q ≤ n =⇒ degree (p − q) ≤ n
for p q :: ′a::ab-group-add poly
〈proof 〉

lemma degree-diff-less: degree p < n =⇒ degree q < n =⇒ degree (p − q) < n
for p q :: ′a::ab-group-add poly
〈proof 〉

lemma add-monom: monom a n + monom b n = monom (a + b) n
〈proof 〉

lemma diff-monom: monom a n − monom b n = monom (a − b) n
〈proof 〉

lemma minus-monom: − monom a n = monom (− a) n
〈proof 〉

lemma coeff-sum: coeff (
∑

x∈A. p x) i = (
∑

x∈A. coeff (p x) i)
〈proof 〉

lemma monom-sum: monom (
∑

x∈A. a x) n = (
∑

x∈A. monom (a x) n)
〈proof 〉

fun plus-coeffs :: ′a::comm-monoid-add list ⇒ ′a list ⇒ ′a list
where

plus-coeffs xs [] = xs
| plus-coeffs [] ys = ys
| plus-coeffs (x # xs) (y # ys) = (x + y) ## plus-coeffs xs ys

lemma coeffs-plus-eq-plus-coeffs [code abstract]:
coeffs (p + q) = plus-coeffs (coeffs p) (coeffs q)
〈proof 〉

lemma coeffs-uminus [code abstract]:
coeffs (− p) = map uminus (coeffs p)
〈proof 〉
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lemma [code]: p − q = p + − q
for p q :: ′a::ab-group-add poly
〈proof 〉

lemma poly-add [simp]: poly (p + q) x = poly p x + poly q x
〈proof 〉

lemma poly-minus [simp]: poly (− p) x = − poly p x
for x :: ′a::comm-ring
〈proof 〉

lemma poly-diff [simp]: poly (p − q) x = poly p x − poly q x
for x :: ′a::comm-ring
〈proof 〉

lemma poly-sum: poly (
∑

k∈A. p k) x = (
∑

k∈A. poly (p k) x)
〈proof 〉

lemma poly-sum-list: poly (
∑

p←ps. p) y = (
∑

p←ps. poly p y)
〈proof 〉

lemma poly-sum-mset: poly (
∑

x∈#A. p x) y = (
∑

x∈#A. poly (p x) y)
〈proof 〉

lemma degree-sum-le: finite S =⇒ (
∧

p. p ∈ S =⇒ degree (f p) ≤ n) =⇒ degree
(sum f S) ≤ n
〈proof 〉

lemma degree-sum-less:
assumes

∧
x. x ∈ A =⇒ degree (f x) < n n > 0

shows degree (sum f A) < n
〈proof 〉

lemma poly-as-sum-of-monoms ′:
assumes degree p ≤ n
shows (

∑
i≤n. monom (coeff p i) i) = p

〈proof 〉

lemma poly-as-sum-of-monoms: (
∑

i≤degree p. monom (coeff p i) i) = p
〈proof 〉

lemma Poly-snoc: Poly (xs @ [x]) = Poly xs + monom x (length xs)
〈proof 〉

4.14 Multiplication by a constant, polynomial multiplication
and the unit polynomial

lift-definition smult :: ′a::comm-semiring-0 ⇒ ′a poly ⇒ ′a poly
is λa p n. a ∗ coeff p n
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〈proof 〉

lemma coeff-smult [simp]: coeff (smult a p) n = a ∗ coeff p n
〈proof 〉

lemma degree-smult-le: degree (smult a p) ≤ degree p
〈proof 〉

lemma smult-smult [simp]: smult a (smult b p) = smult (a ∗ b) p
〈proof 〉

lemma smult-0-right [simp]: smult a 0 = 0
〈proof 〉

lemma smult-0-left [simp]: smult 0 p = 0
〈proof 〉

lemma smult-1-left [simp]: smult (1 :: ′a::comm-semiring-1 ) p = p
〈proof 〉

lemma smult-add-right: smult a (p + q) = smult a p + smult a q
〈proof 〉

lemma smult-add-left: smult (a + b) p = smult a p + smult b p
〈proof 〉

lemma smult-minus-right [simp]: smult a (− p) = − smult a p
for a :: ′a::comm-ring
〈proof 〉

lemma smult-minus-left [simp]: smult (− a) p = − smult a p
for a :: ′a::comm-ring
〈proof 〉

lemma smult-diff-right: smult a (p − q) = smult a p − smult a q
for a :: ′a::comm-ring
〈proof 〉

lemma smult-diff-left: smult (a − b) p = smult a p − smult b p
for a b :: ′a::comm-ring
〈proof 〉

lemmas smult-distribs =
smult-add-left smult-add-right
smult-diff-left smult-diff-right

lemma smult-pCons [simp]: smult a (pCons b p) = pCons (a ∗ b) (smult a p)
〈proof 〉
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lemma smult-monom: smult a (monom b n) = monom (a ∗ b) n
〈proof 〉

lemma smult-Poly: smult c (Poly xs) = Poly (map ((∗) c) xs)
〈proof 〉

lemma degree-smult-eq [simp]: degree (smult a p) = (if a = 0 then 0 else degree p)
for a :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors}
〈proof 〉

lemma smult-eq-0-iff [simp]: smult a p = 0 ←→ a = 0 ∨ p = 0
for a :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors}
〈proof 〉

lemma coeffs-smult [code abstract]:
coeffs (smult a p) = (if a = 0 then [] else map (Groups.times a) (coeffs p))
for p :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
〈proof 〉

lemma smult-eq-iff :
fixes b :: ′a :: field
assumes b 6= 0
shows smult a p = smult b q ←→ smult (a / b) p = q
(is ?lhs ←→ ?rhs)

〈proof 〉

lemma smult-cancel:
fixes p:: ′a::idom poly
assumes c 6=0 and smult: smult c p = smult c q
shows p=q
〈proof 〉

instantiation poly :: (comm-semiring-0 ) comm-semiring-0
begin

definition p ∗ q = fold-coeffs (λa p. smult a q + pCons 0 p) p 0

lemma mult-poly-0-left: (0 :: ′a poly) ∗ q = 0
〈proof 〉

lemma mult-pCons-left [simp]: pCons a p ∗ q = smult a q + pCons 0 (p ∗ q)
〈proof 〉

lemma mult-poly-0-right: p ∗ (0 :: ′a poly) = 0
〈proof 〉

lemma mult-pCons-right [simp]: p ∗ pCons a q = smult a p + pCons 0 (p ∗ q)
〈proof 〉
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lemmas mult-poly-0 = mult-poly-0-left mult-poly-0-right

lemma mult-smult-left [simp]: smult a p ∗ q = smult a (p ∗ q)
〈proof 〉

lemma mult-smult-right [simp]: p ∗ smult a q = smult a (p ∗ q)
〈proof 〉

lemma mult-poly-add-left: (p + q) ∗ r = p ∗ r + q ∗ r
for p q r :: ′a poly
〈proof 〉

instance
〈proof 〉

end

lemma coeff-mult-degree-sum:
coeff (p ∗ q) (degree p + degree q) = coeff p (degree p) ∗ coeff q (degree q)
〈proof 〉

instance poly :: ({comm-semiring-0 ,semiring-no-zero-divisors}) semiring-no-zero-divisors
〈proof 〉

instance poly :: (comm-semiring-0-cancel) comm-semiring-0-cancel 〈proof 〉

lemma coeff-mult: coeff (p ∗ q) n = (
∑

i≤n. coeff p i ∗ coeff q (n−i))
〈proof 〉

lemma coeff-mult-0 : coeff (p ∗ q) 0 = coeff p 0 ∗ coeff q 0
〈proof 〉

lemma degree-mult-le: degree (p ∗ q) ≤ degree p + degree q
〈proof 〉

lemma mult-monom: monom a m ∗ monom b n = monom (a ∗ b) (m + n)
〈proof 〉

instantiation poly :: (comm-semiring-1 ) comm-semiring-1
begin

lift-definition one-poly :: ′a poly
is λn. of-bool (n = 0 )
〈proof 〉

lemma coeff-1 [simp]:
coeff 1 n = of-bool (n = 0 )
〈proof 〉
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lemma one-pCons:
1 = [:1 :]
〈proof 〉

lemma pCons-one:
[:1 :] = 1
〈proof 〉

instance
〈proof 〉

end

lemma poly-1 [simp]:
poly 1 x = 1
〈proof 〉

lemma one-poly-eq-simps [simp]:
1 = [:1 :] ←→ True
[:1 :] = 1 ←→ True
〈proof 〉

lemma degree-1 [simp]:
degree 1 = 0
〈proof 〉

lemma coeffs-1-eq [simp, code abstract]:
coeffs 1 = [1 ]
〈proof 〉

lemma smult-one [simp]:
smult c 1 = [:c:]
〈proof 〉

lemma smult-sum: smult (
∑

i ∈ S . f i) p = (
∑

i ∈ S . smult (f i) p)
〈proof 〉

lemma smult-power : (smult a p) ^ n = smult (a ^ n) (p ^ n)
〈proof 〉

lemma monom-eq-1 [simp]:
monom 1 0 = 1
〈proof 〉

lemma monom-eq-1-iff :
monom c n = 1 ←→ c = 1 ∧ n = 0
〈proof 〉

lemma monom-altdef :
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monom c n = smult c ([:0 , 1 :] ^ n)
〈proof 〉

lemma degree-sum-list-le: (
∧

p . p ∈ set ps =⇒ degree p ≤ n)
=⇒ degree (sum-list ps) ≤ n
〈proof 〉

lemma degree-prod-list-le: degree (prod-list ps) ≤ sum-list (map degree ps)
〈proof 〉

instance poly :: ({comm-semiring-1 ,semiring-1-no-zero-divisors}) semiring-1-no-zero-divisors
〈proof 〉
instance poly :: (comm-ring) comm-ring 〈proof 〉
instance poly :: (comm-ring-1 ) comm-ring-1 〈proof 〉
instance poly :: (comm-ring-1 ) comm-semiring-1-cancel 〈proof 〉

lemma prod-smult: (
∏

x∈A. smult (c x) (p x)) = smult (prod c A) (prod p A)
〈proof 〉

lemma degree-power-le: degree (p ^ n) ≤ degree p ∗ n
〈proof 〉

lemma coeff-0-power : coeff (p ^ n) 0 = coeff p 0 ^ n
〈proof 〉

lemma poly-smult [simp]: poly (smult a p) x = a ∗ poly p x
〈proof 〉

lemma poly-mult [simp]: poly (p ∗ q) x = poly p x ∗ poly q x
〈proof 〉

lemma poly-power [simp]: poly (p ^ n) x = poly p x ^ n
for p :: ′a::comm-semiring-1 poly
〈proof 〉

lemma poly-prod: poly (
∏

k∈A. p k) x = (
∏

k∈A. poly (p k) x)
〈proof 〉

lemma poly-prod-list: poly (
∏

p←ps. p) y = (
∏

p←ps. poly p y)
〈proof 〉

lemma poly-prod-mset: poly (
∏

x∈#A. p x) y = (
∏

x∈#A. poly (p x) y)
〈proof 〉

lemma poly-const-pow: [: c :] ^ n = [: c ^ n :]
〈proof 〉

lemma monom-power : monom c n ^ k = monom (c ^ k) (n ∗ k)
〈proof 〉
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lemma degree-prod-sum-le: finite S =⇒ degree (prod f S) ≤ sum (degree ◦ f ) S
〈proof 〉

lemma coeff-0-prod-list: coeff (prod-list xs) 0 = prod-list (map (λp. coeff p 0 ) xs)
〈proof 〉

lemma coeff-monom-mult: coeff (monom c n ∗ p) k = (if k < n then 0 else c ∗
coeff p (k − n))
〈proof 〉

lemma coeff-monom-Suc: coeff (monom a (Suc d) ∗ p) (Suc i) = coeff (monom
a d ∗ p) i
〈proof 〉

lemma monom-1-dvd-iff ′: monom 1 n dvd p ←→ (∀ k<n. coeff p k = 0 )
〈proof 〉

lemma coeff-sum-monom:
assumes n: n ≤ d
shows coeff (

∑
i≤d. monom (f i) i) n = f n (is ?l = -)

〈proof 〉

4.15 Mapping polynomials
definition map-poly :: ( ′a :: zero ⇒ ′b :: zero) ⇒ ′a poly ⇒ ′b poly

where map-poly f p = Poly (map f (coeffs p))

lemma map-poly-0 [simp]: map-poly f 0 = 0
〈proof 〉

lemma map-poly-1 : map-poly f 1 = [:f 1 :]
〈proof 〉

lemma map-poly-1 ′ [simp]: f 1 = 1 =⇒ map-poly f 1 = 1
〈proof 〉

lemma coeff-map-poly:
assumes f 0 = 0
shows coeff (map-poly f p) n = f (coeff p n)
〈proof 〉

lemma lead-coeff-map-poly-nz:
assumes f (lead-coeff p) 6= 0 f 0 = 0
shows lead-coeff (map-poly f p) = f (lead-coeff p)
〈proof 〉

lemma coeffs-map-poly [code abstract]:
coeffs (map-poly f p) = strip-while ((=) 0 ) (map f (coeffs p))
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〈proof 〉

lemma coeffs-map-poly ′:
assumes

∧
x. x 6= 0 =⇒ f x 6= 0

shows coeffs (map-poly f p) = map f (coeffs p)
〈proof 〉

lemma set-coeffs-map-poly:
(
∧

x. f x = 0 ←→ x = 0 ) =⇒ set (coeffs (map-poly f p)) = f ‘ set (coeffs p)
〈proof 〉

lemma degree-map-poly:
assumes

∧
x. x 6= 0 =⇒ f x 6= 0

shows degree (map-poly f p) = degree p
〈proof 〉

lemma map-poly-eq-0-iff :
assumes f 0 = 0

∧
x. x ∈ set (coeffs p) =⇒ x 6= 0 =⇒ f x 6= 0

shows map-poly f p = 0 ←→ p = 0
〈proof 〉

lemma map-poly-smult:
assumes f 0 = 0

∧
c x. f (c ∗ x) = f c ∗ f x

shows map-poly f (smult c p) = smult (f c) (map-poly f p)
〈proof 〉

lemma map-poly-pCons:
assumes f 0 = 0
shows map-poly f (pCons c p) = pCons (f c) (map-poly f p)
〈proof 〉

lemma map-poly-map-poly:
assumes f 0 = 0 g 0 = 0
shows map-poly f (map-poly g p) = map-poly (f ◦ g) p
〈proof 〉

lemma map-poly-id [simp]: map-poly id p = p
〈proof 〉

lemma map-poly-id ′ [simp]: map-poly (λx. x) p = p
〈proof 〉

lemma map-poly-cong:
assumes (

∧
x. x ∈ set (coeffs p) =⇒ f x = g x)

shows map-poly f p = map-poly g p
〈proof 〉

lemma map-poly-monom: f 0 = 0 =⇒ map-poly f (monom c n) = monom (f c) n
〈proof 〉
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lemma map-poly-idI :
assumes

∧
x. x ∈ set (coeffs p) =⇒ f x = x

shows map-poly f p = p
〈proof 〉

lemma map-poly-idI ′:
assumes

∧
x. x ∈ set (coeffs p) =⇒ f x = x

shows p = map-poly f p
〈proof 〉

lemma smult-conv-map-poly: smult c p = map-poly (λx. c ∗ x) p
〈proof 〉

lemma poly-cnj: cnj (poly p z) = poly (map-poly cnj p) (cnj z)
〈proof 〉

lemma poly-cnj-real:
assumes

∧
n. poly.coeff p n ∈ �

shows cnj (poly p z) = poly p (cnj z)
〈proof 〉

lemma real-poly-cnj-root-iff :
assumes

∧
n. poly.coeff p n ∈ �

shows poly p (cnj z) = 0 ←→ poly p z = 0
〈proof 〉

lemma sum-to-poly: (
∑

x∈A. [:f x:]) = [:
∑

x∈A. f x:]
〈proof 〉

lemma diff-to-poly: [:c:] − [:d:] = [:c − d:]
〈proof 〉

lemma mult-to-poly: [:c:] ∗ [:d:] = [:c ∗ d:]
〈proof 〉

lemma prod-to-poly: (
∏

x∈A. [:f x:]) = [:
∏

x∈A. f x:]
〈proof 〉

lemma poly-map-poly-cnj [simp]: poly (map-poly cnj p) x = cnj (poly p (cnj x))
〈proof 〉

lemma map-poly-degree-eq:
assumes f (lead-coeff p) 6= 0
shows degree (map-poly f p) = degree p
〈proof 〉

lemma map-poly-degree-less:
assumes f (lead-coeff p) =0 degree p 6=0
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shows degree (map-poly f p) < degree p
〈proof 〉

lemma map-poly-degree-leq:
shows degree (map-poly f p) ≤ degree p
〈proof 〉

4.16 Conversions
lemma of-nat-poly: of-nat n = [:of-nat n:]
〈proof 〉

lemma of-nat-monom: of-nat n = monom (of-nat n) 0
〈proof 〉

lemma degree-of-nat [simp]: degree (of-nat n) = 0
〈proof 〉

lemma lead-coeff-of-nat [simp]: lead-coeff (of-nat n) = of-nat n
〈proof 〉

lemma of-int-poly: of-int k = [:of-int k:]
〈proof 〉

lemma of-int-monom: of-int k = monom (of-int k) 0
〈proof 〉

lemma degree-of-int [simp]: degree (of-int k) = 0
〈proof 〉

lemma lead-coeff-of-int [simp]: lead-coeff (of-int k) = of-int k
〈proof 〉

lemma poly-of-nat [simp]: poly (of-nat n) x = of-nat n
〈proof 〉

lemma poly-of-int [simp]: poly (of-int n) x = of-int n
〈proof 〉

lemma poly-numeral [simp]: poly (numeral n) x = numeral n
〈proof 〉

lemma numeral-poly: numeral n = [:numeral n:]
〈proof 〉

lemma numeral-monom:
numeral n = monom (numeral n) 0
〈proof 〉
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lemma degree-numeral [simp]:
degree (numeral n) = 0
〈proof 〉

lemma lead-coeff-numeral [simp]:
lead-coeff (numeral n) = numeral n
〈proof 〉

lemma coeff-linear-poly-power :
fixes c :: ′a :: semiring-1
assumes i ≤ n
shows coeff ([:a, b:] ^ n) i = of-nat (n choose i) ∗ b ^ i ∗ a ^ (n − i)
〈proof 〉

4.17 Lemmas about divisibility
lemma dvd-smult:

assumes p dvd q
shows p dvd smult a q
〈proof 〉

lemma dvd-smult-cancel: p dvd smult a q =⇒ a 6= 0 =⇒ p dvd q
for a :: ′a::field
〈proof 〉

lemma dvd-smult-iff : a 6= 0 =⇒ p dvd smult a q ←→ p dvd q
for a :: ′a::field
〈proof 〉

lemma smult-dvd-cancel:
assumes smult a p dvd q
shows p dvd q
〈proof 〉

lemma smult-dvd: p dvd q =⇒ a 6= 0 =⇒ smult a p dvd q
for a :: ′a::field
〈proof 〉

lemma smult-dvd-iff : smult a p dvd q ←→ (if a = 0 then q = 0 else p dvd q)
for a :: ′a::field
〈proof 〉

lemma is-unit-smult-iff : smult c p dvd 1 ←→ c dvd 1 ∧ p dvd 1
〈proof 〉

4.18 Polynomials form an integral domain
instance poly :: (idom) idom 〈proof 〉

instance poly :: ({ring-char-0 , comm-ring-1}) ring-char-0
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〈proof 〉

lemma semiring-char-poly [simp]: CHAR( ′a :: comm-semiring-1 poly) = CHAR( ′a)
〈proof 〉

instance poly :: ({semiring-prime-char ,comm-semiring-1}) semiring-prime-char
〈proof 〉

instance poly :: ({comm-semiring-prime-char ,comm-semiring-1}) comm-semiring-prime-char
〈proof 〉

instance poly :: ({comm-ring-prime-char ,comm-semiring-1}) comm-ring-prime-char
〈proof 〉

instance poly :: ({idom-prime-char ,comm-semiring-1}) idom-prime-char
〈proof 〉

lemma degree-mult-eq: p 6= 0 =⇒ q 6= 0 =⇒ degree (p ∗ q) = degree p + degree q
for p q :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
〈proof 〉

lemma degree-prod-sum-eq:
(
∧

x. x ∈ A =⇒ f x 6= 0 ) =⇒
degree (prod f A :: ′a :: idom poly) = (

∑
x∈A. degree (f x))

〈proof 〉

lemma dvd-imp-degree:
‹degree x ≤ degree y› if ‹x dvd y› ‹x 6= 0 › ‹y 6= 0 ›

for x y :: ‹ ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly›
〈proof 〉

lemma degree-prod-eq-sum-degree:
fixes A :: ′a set
and f :: ′a ⇒ ′b::idom poly
assumes f0 : ∀ i∈A. f i 6= 0
shows degree (

∏
i∈A. (f i)) = (

∑
i∈A. degree (f i))

〈proof 〉

lemma degree-mult-eq-0 :
degree (p ∗ q) = 0 ←→ p = 0 ∨ q = 0 ∨ (p 6= 0 ∧ q 6= 0 ∧ degree p = 0 ∧

degree q = 0 )
for p q :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
〈proof 〉

lemma degree-power-eq: p 6= 0 =⇒ degree ((p :: ′a :: idom poly) ^ n) = n ∗ degree
p
〈proof 〉

lemma degree-mult-right-le:
fixes p q :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
assumes q 6= 0
shows degree p ≤ degree (p ∗ q)
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〈proof 〉

lemma coeff-degree-mult: coeff (p ∗ q) (degree (p ∗ q)) = coeff q (degree q) ∗ coeff
p (degree p)

for p q :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
〈proof 〉

lemma dvd-imp-degree-le: p dvd q =⇒ q 6= 0 =⇒ degree p ≤ degree q
for p q :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly
〈proof 〉

lemma divides-degree:
fixes p q :: ′a ::{comm-semiring-1 ,semiring-no-zero-divisors} poly
assumes p dvd q
shows degree p ≤ degree q ∨ q = 0
〈proof 〉

lemma const-poly-dvd-iff :
fixes c :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors}
shows [:c:] dvd p ←→ (∀n. c dvd coeff p n)
〈proof 〉

lemma const-poly-dvd-const-poly-iff [simp]: [:a:] dvd [:b:] ←→ a dvd b
for a b :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors}
〈proof 〉

lemma lead-coeff-mult: lead-coeff (p ∗ q) = lead-coeff p ∗ lead-coeff q
for p q :: ′a::{comm-semiring-0 , semiring-no-zero-divisors} poly
〈proof 〉

lemma lead-coeff-prod: lead-coeff (prod f A) = (
∏

x∈A. lead-coeff (f x))
for f :: ′a ⇒ ′b::{comm-semiring-1 , semiring-no-zero-divisors} poly
〈proof 〉

lemma lead-coeff-smult: lead-coeff (smult c p) = c ∗ lead-coeff p
for p :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
〈proof 〉

lemma lead-coeff-1 [simp]: lead-coeff 1 = 1
〈proof 〉

lemma lead-coeff-power : lead-coeff (p ^ n) = lead-coeff p ^ n
for p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly
〈proof 〉

4.19 Polynomials form an ordered integral domain
definition pos-poly :: ′a::linordered-semidom poly ⇒ bool

where pos-poly p ←→ 0 < coeff p (degree p)
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lemma pos-poly-pCons: pos-poly (pCons a p) ←→ pos-poly p ∨ (p = 0 ∧ 0 < a)
〈proof 〉

lemma not-pos-poly-0 [simp]: ¬ pos-poly 0
〈proof 〉

lemma pos-poly-add: pos-poly p =⇒ pos-poly q =⇒ pos-poly (p + q)
〈proof 〉

lemma pos-poly-mult: pos-poly p =⇒ pos-poly q =⇒ pos-poly (p ∗ q)
〈proof 〉

lemma pos-poly-total: p = 0 ∨ pos-poly p ∨ pos-poly (− p)
for p :: ′a::linordered-idom poly
〈proof 〉

lemma pos-poly-coeffs [code]: pos-poly p ←→ (let as = coeffs p in as 6= [] ∧ last as
> 0 )
(is ?lhs ←→ ?rhs)
〈proof 〉

instantiation poly :: (linordered-idom) linordered-idom
begin

definition x < y ←→ pos-poly (y − x)

definition x ≤ y ←→ x = y ∨ pos-poly (y − x)

definition |x:: ′a poly| = (if x < 0 then − x else x)

definition sgn (x:: ′a poly) = (if x = 0 then 0 else if 0 < x then 1 else − 1 )

instance
〈proof 〉

end

TODO: Simplification rules for comparisons

4.20 Synthetic division and polynomial roots
4.20.1 Synthetic division

Synthetic division is simply division by the linear polynomial x − c.
definition synthetic-divmod :: ′a::comm-semiring-0 poly ⇒ ′a ⇒ ′a poly × ′a

where synthetic-divmod p c = fold-coeffs (λa (q, r). (pCons r q, a + c ∗ r)) p
(0 , 0 )
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definition synthetic-div :: ′a::comm-semiring-0 poly ⇒ ′a ⇒ ′a poly
where synthetic-div p c = fst (synthetic-divmod p c)

lemma synthetic-divmod-0 [simp]: synthetic-divmod 0 c = (0 , 0 )
〈proof 〉

lemma synthetic-divmod-pCons [simp]:
synthetic-divmod (pCons a p) c = (λ(q, r). (pCons r q, a + c ∗ r)) (synthetic-divmod

p c)
〈proof 〉

lemma synthetic-div-0 [simp]: synthetic-div 0 c = 0
〈proof 〉

lemma synthetic-div-unique-lemma: smult c p = pCons a p =⇒ p = 0
〈proof 〉

lemma snd-synthetic-divmod: snd (synthetic-divmod p c) = poly p c
〈proof 〉

lemma synthetic-div-pCons [simp]:
synthetic-div (pCons a p) c = pCons (poly p c) (synthetic-div p c)
〈proof 〉

lemma synthetic-div-eq-0-iff : synthetic-div p c = 0 ←→ degree p = 0
〈proof 〉

lemma degree-synthetic-div: degree (synthetic-div p c) = degree p − 1
〈proof 〉

lemma synthetic-div-correct:
p + smult c (synthetic-div p c) = pCons (poly p c) (synthetic-div p c)
〈proof 〉

lemma synthetic-div-unique: p + smult c q = pCons r q =⇒ r = poly p c ∧ q =
synthetic-div p c
〈proof 〉

lemma synthetic-div-correct ′: [:−c, 1 :] ∗ synthetic-div p c + [:poly p c:] = p
for c :: ′a::comm-ring-1
〈proof 〉

4.20.2 Polynomial roots
lemma poly-eq-0-iff-dvd: poly p c = 0 ←→ [:− c, 1 :] dvd p
(is ?lhs ←→ ?rhs)
for c :: ′a::comm-ring-1
〈proof 〉
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lemma dvd-iff-poly-eq-0 : [:c, 1 :] dvd p ←→ poly p (− c) = 0
for c :: ′a::comm-ring-1
〈proof 〉

lemma poly-roots-finite: p 6= 0 =⇒ finite {x. poly p x = 0}
for p :: ′a::{comm-ring-1 ,ring-no-zero-divisors} poly
〈proof 〉

lemma poly-eq-poly-eq-iff : poly p = poly q ←→ p = q
(is ?lhs ←→ ?rhs)
for p q :: ′a::{comm-ring-1 ,ring-no-zero-divisors,ring-char-0} poly
〈proof 〉

A nice extension rule for polynomials.
lemma poly-ext:

fixes p q :: ′a :: {ring-char-0 , idom} poly
assumes

∧
x. poly p x = poly q x shows p = q

〈proof 〉

Copied from non-negative variants.
lemma coeff-linear-power-neg[simp]:

fixes a :: ′a::comm-ring-1
shows coeff ([:a, −1 :] ^ n) n = (−1 )^n
〈proof 〉

lemma degree-linear-power-neg[simp]:
fixes a :: ′a::{idom,comm-ring-1}
shows degree ([:a, −1 :] ^ n) = n
〈proof 〉

lemma poly-all-0-iff-0 : (∀ x. poly p x = 0 ) ←→ p = 0
for p :: ′a::{ring-char-0 ,comm-ring-1 ,ring-no-zero-divisors} poly
〈proof 〉

lemma card-poly-roots-bound:
fixes p :: ′a::{comm-ring-1 ,ring-no-zero-divisors} poly
assumes p 6= 0
shows card {x. poly p x = 0} ≤ degree p
〈proof 〉

lemma poly-eqI-degree:
fixes p q :: ′a :: {comm-ring-1 , ring-no-zero-divisors} poly
assumes

∧
x. x ∈ A =⇒ poly p x = poly q x

assumes card A > degree p card A > degree q
shows p = q
〈proof 〉

lemma poly-eqI-degree-lead-coeff :
fixes p q :: ′a :: {comm-ring-1 , ring-no-zero-divisors} poly
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assumes poly.coeff p n = poly.coeff q n card A ≥ n degree p ≤ n degree q ≤ n
assumes

∧
z. z ∈ A =⇒ poly p z = poly q z

shows p = q
〈proof 〉

4.20.3 Order of polynomial roots
definition order :: ′a::idom ⇒ ′a poly ⇒ nat

where order a p = (LEAST n. ¬ [:−a, 1 :] ^ Suc n dvd p)

lemma coeff-linear-power : coeff ([:a, 1 :] ^ n) n = 1
for a :: ′a::comm-semiring-1
〈proof 〉

lemma degree-linear-power : degree ([:a, 1 :] ^ n) = n
for a :: ′a::comm-semiring-1
〈proof 〉

lemma order-1 : [:−a, 1 :] ^ order a p dvd p
〈proof 〉

lemma order-2 :
assumes p 6= 0
shows ¬ [:−a, 1 :] ^ Suc (order a p) dvd p
〈proof 〉

lemma order : p 6= 0 =⇒ [:−a, 1 :] ^ order a p dvd p ∧ ¬ [:−a, 1 :] ^ Suc (order a
p) dvd p
〈proof 〉

lemma order-degree:
assumes p: p 6= 0
shows order a p ≤ degree p
〈proof 〉

lemma order-root: poly p a = 0 ←→ p = 0 ∨ order a p 6= 0 (is ?lhs = ?rhs)
〈proof 〉

lemma order-0I : poly p a 6= 0 =⇒ order a p = 0
〈proof 〉

lemma order-unique-lemma:
fixes p :: ′a::idom poly
assumes [:−a, 1 :] ^ n dvd p ¬ [:−a, 1 :] ^ Suc n dvd p
shows order a p = n
〈proof 〉

lemma order-mult:
assumes p ∗ q 6= 0 shows order a (p ∗ q) = order a p + order a q
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〈proof 〉

lemma order-smult:
assumes c 6= 0
shows order x (smult c p) = order x p
〈proof 〉

lemma order-gt-0-iff : p 6= 0 =⇒ order x p > 0 ←→ poly p x = 0
〈proof 〉

lemma order-eq-0-iff : p 6= 0 =⇒ order x p = 0 ←→ poly p x 6= 0
〈proof 〉

Next three lemmas contributed by Wenda Li
lemma order-1-eq-0 [simp]:order x 1 = 0
〈proof 〉

lemma order-uminus[simp]: order x (−p) = order x p
〈proof 〉

lemma order-power-n-n: order a ([:−a,1 :]^n)=n
〈proof 〉

lemma order-0-monom [simp]: c 6= 0 =⇒ order 0 (monom c n) = n
〈proof 〉

lemma dvd-imp-order-le: q 6= 0 =⇒ p dvd q =⇒ Polynomial.order a p ≤ Polyno-
mial.order a q
〈proof 〉

Now justify the standard squarefree decomposition, i.e. f / gcd f f ′.
lemma order-divides: [:−a, 1 :] ^ n dvd p ←→ p = 0 ∨ n ≤ order a p
〈proof 〉

lemma order-decomp:
assumes p 6= 0
shows ∃ q. p = [:− a, 1 :] ^ order a p ∗ q ∧ ¬ [:− a, 1 :] dvd q
〈proof 〉

lemma monom-1-dvd-iff : p 6= 0 =⇒ monom 1 n dvd p ←→ n ≤ order 0 p
〈proof 〉

lemma poly-root-order-induct [case-names 0 no-roots root]:
fixes p :: ′a :: idom poly
assumes P 0

∧
p. (

∧
x. poly p x 6= 0 ) =⇒ P p∧

p x n. n > 0 =⇒ poly p x 6= 0 =⇒ P p =⇒ P ([:−x, 1 :] ^ n ∗ p)
shows P p
〈proof 〉
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context
includes multiset.lifting

begin

lift-definition proots :: ( ′a :: idom) poly ⇒ ′a multiset is
λ(p :: ′a poly) (x :: ′a). if p = 0 then 0 else order x p
〈proof 〉

lemma proots-0 [simp]: proots (0 :: ′a :: idom poly) = {#}
〈proof 〉

lemma proots-1 [simp]: proots (1 :: ′a :: idom poly) = {#}
〈proof 〉

lemma proots-const [simp]: proots [: x :] = 0
〈proof 〉

lemma proots-numeral [simp]: proots (numeral n) = 0
〈proof 〉

lemma count-proots [simp]:
p 6= 0 =⇒ count (proots p) a = order a p
〈proof 〉

lemma set-count-proots [simp]:
p 6= 0 =⇒ set-mset (proots p) = {x. poly p x = 0}
〈proof 〉

lemma proots-uminus [simp]: proots (−p) = proots p
〈proof 〉

lemma proots-smult [simp]: c 6= 0 =⇒ proots (smult c p) = proots p
〈proof 〉

lemma proots-mult:
assumes p 6= 0 q 6= 0
shows proots (p ∗ q) = proots p + proots q
〈proof 〉

lemma proots-prod:
assumes

∧
x. x ∈ A =⇒ f x 6= 0

shows proots (
∏

x∈A. f x) = (
∑

x∈A. proots (f x))
〈proof 〉

lemma proots-prod-mset:
assumes 0 /∈# A
shows proots (

∏
p∈#A. p) = (

∑
p∈#A. proots p)
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〈proof 〉

lemma proots-prod-list:
assumes 0 /∈ set ps
shows proots (

∏
p←ps. p) = (

∑
p←ps. proots p)

〈proof 〉

lemma proots-power : proots (p ^ n) = repeat-mset n (proots p)
〈proof 〉

lemma proots-linear-factor [simp]: proots [:x, 1 :] = {#−x#}
〈proof 〉

lemma size-proots-le: size (proots p) ≤ degree p
〈proof 〉

end

4.21 Additional induction rules on polynomials

An induction rule for induction over the roots of a polynomial with a certain
property. (e.g. all positive roots)
lemma poly-root-induct [case-names 0 no-roots root]:

fixes p :: ′a :: idom poly
assumes Q 0

and
∧

p. (
∧

a. P a =⇒ poly p a 6= 0 ) =⇒ Q p
and

∧
a p. P a =⇒ Q p =⇒ Q ([:a, −1 :] ∗ p)

shows Q p
〈proof 〉

lemma dropWhile-replicate-append:
dropWhile ((=) a) (replicate n a @ ys) = dropWhile ((=) a) ys
〈proof 〉

lemma Poly-append-replicate-0 : Poly (xs @ replicate n 0 ) = Poly xs
〈proof 〉

An induction rule for simultaneous induction over two polynomials, prepend-
ing one coefficient in each step.
lemma poly-induct2 [case-names 0 pCons]:

assumes P 0 0
∧

a p b q. P p q =⇒ P (pCons a p) (pCons b q)
shows P p q
〈proof 〉

4.22 Composition of polynomials
definition pcompose :: ′a::comm-semiring-0 poly ⇒ ′a poly ⇒ ′a poly

where pcompose p q = fold-coeffs (λa c. [:a:] + q ∗ c) p 0
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notation pcompose (infixl ‹◦p› 71 )

lemma pcompose-0 [simp]: pcompose 0 q = 0
〈proof 〉

lemma pcompose-pCons: pcompose (pCons a p) q = [:a:] + q ∗ pcompose p q
〈proof 〉

lemma pcompose-altdef : pcompose p q = poly (map-poly (λx. [:x:]) p) q
〈proof 〉

lemma coeff-pcompose-0 [simp]:
coeff (pcompose p q) 0 = poly p (coeff q 0 )
〈proof 〉

lemma pcompose-1 : pcompose 1 p = 1
for p :: ′a::comm-semiring-1 poly
〈proof 〉

lemma poly-pcompose: poly (pcompose p q) x = poly p (poly q x)
〈proof 〉

lemma degree-pcompose-le: degree (pcompose p q) ≤ degree p ∗ degree q
〈proof 〉

lemma pcompose-add: pcompose (p + q) r = pcompose p r + pcompose q r
for p q r :: ′a::{comm-semiring-0 , ab-semigroup-add} poly
〈proof 〉

lemma pcompose-uminus: pcompose (−p) r = −pcompose p r
for p r :: ′a::comm-ring poly
〈proof 〉

lemma pcompose-diff : pcompose (p − q) r = pcompose p r − pcompose q r
for p q r :: ′a::comm-ring poly
〈proof 〉

lemma pcompose-smult: pcompose (smult a p) r = smult a (pcompose p r)
for p r :: ′a::comm-semiring-0 poly
〈proof 〉

lemma pcompose-mult: pcompose (p ∗ q) r = pcompose p r ∗ pcompose q r
for p q r :: ′a::comm-semiring-0 poly
〈proof 〉

lemma pcompose-assoc: pcompose p (pcompose q r) = pcompose (pcompose p q) r
for p q r :: ′a::comm-semiring-0 poly
〈proof 〉
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lemma pcompose-idR[simp]: pcompose p [: 0 , 1 :] = p
for p :: ′a::comm-semiring-1 poly
〈proof 〉

lemma pcompose-sum: pcompose (sum f A) p = sum (λi. pcompose (f i) p) A
〈proof 〉

lemma pcompose-prod: pcompose (prod f A) p = prod (λi. pcompose (f i) p) A
〈proof 〉

lemma pcompose-const [simp]: pcompose [:a:] q = [:a:]
〈proof 〉

lemma pcompose-0 ′: pcompose p 0 = [:coeff p 0 :]
〈proof 〉

lemma pcompose-coeff-0 :
coeff (pcompose p q) 0 = poly p (coeff q 0 )
〈proof 〉

lemma pcompose-pCons-0 : pcompose p [:a:] = [:poly p a:]
〈proof 〉

lemma degree-pcompose: degree (pcompose p q) = degree p ∗ degree q
for p q :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
〈proof 〉

lemma pcompose-eq-0 :
fixes p q :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
assumes pcompose p q = 0 degree q > 0
shows p = 0
〈proof 〉

lemma pcompose-eq-0-iff :
fixes p q :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
assumes degree q > 0
shows pcompose p q = 0 ←→ p = 0
〈proof 〉

lemma coeff-pcompose-linear :
coeff (pcompose p [:0 , a :: ′a :: comm-semiring-1 :]) i = a ^ i ∗ coeff p i
〈proof 〉

lemma lead-coeff-comp:
fixes p q :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly
assumes degree q > 0
shows lead-coeff (pcompose p q) = lead-coeff p ∗ lead-coeff q ^ (degree p)
〈proof 〉
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lemma coeff-pcompose-monom-linear [simp]:
fixes p :: ′a :: comm-ring-1 poly
shows coeff (pcompose p (monom c (Suc 0 ))) k = c ^ k ∗ coeff p k
〈proof 〉

lemma of-nat-mult-conv-smult: of-nat n ∗ P = smult (of-nat n) P
〈proof 〉

lemma numeral-mult-conv-smult: numeral n ∗ P = smult (numeral n) P
〈proof 〉

lemma sum-order-le-degree:
assumes p 6= 0
shows (

∑
x | poly p x = 0 . order x p) ≤ degree p

〈proof 〉

4.23 Closure properties of coefficients
context

fixes R :: ′a :: comm-semiring-1 set
assumes R-0 : 0 ∈ R
assumes R-plus:

∧
x y. x ∈ R =⇒ y ∈ R =⇒ x + y ∈ R

assumes R-mult:
∧

x y. x ∈ R =⇒ y ∈ R =⇒ x ∗ y ∈ R
begin

lemma coeff-mult-semiring-closed:
assumes

∧
i. coeff p i ∈ R

∧
i. coeff q i ∈ R

shows coeff (p ∗ q) i ∈ R
〈proof 〉

lemma coeff-pcompose-semiring-closed:
assumes

∧
i. coeff p i ∈ R

∧
i. coeff q i ∈ R

shows coeff (pcompose p q) i ∈ R
〈proof 〉

end

4.24 Shifting polynomials
definition poly-shift :: nat ⇒ ′a::zero poly ⇒ ′a poly

where poly-shift n p = Abs-poly (λi. coeff p (i + n))

lemma nth-default-drop: nth-default x (drop n xs) m = nth-default x xs (m + n)
〈proof 〉

lemma nth-default-take: nth-default x (take n xs) m = (if m < n then nth-default
x xs m else x)
〈proof 〉
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lemma coeff-poly-shift: coeff (poly-shift n p) i = coeff p (i + n)
〈proof 〉

lemma poly-shift-id [simp]: poly-shift 0 = (λx. x)
〈proof 〉

lemma poly-shift-0 [simp]: poly-shift n 0 = 0
〈proof 〉

lemma poly-shift-1 : poly-shift n 1 = (if n = 0 then 1 else 0 )
〈proof 〉

lemma poly-shift-monom: poly-shift n (monom c m) = (if m ≥ n then monom c
(m − n) else 0 )
〈proof 〉

lemma coeffs-shift-poly [code abstract]:
coeffs (poly-shift n p) = drop n (coeffs p)
〈proof 〉

4.25 Truncating polynomials
definition poly-cutoff

where poly-cutoff n p = Abs-poly (λk. if k < n then coeff p k else 0 )

lemma coeff-poly-cutoff : coeff (poly-cutoff n p) k = (if k < n then coeff p k else
0 )
〈proof 〉

lemma poly-cutoff-0 [simp]: poly-cutoff n 0 = 0
〈proof 〉

lemma poly-cutoff-1 [simp]: poly-cutoff n 1 = (if n = 0 then 0 else 1 )
〈proof 〉

lemma coeffs-poly-cutoff [code abstract]:
coeffs (poly-cutoff n p) = strip-while ((=) 0 ) (take n (coeffs p))
〈proof 〉

4.26 Reflecting polynomials
definition reflect-poly :: ′a::zero poly ⇒ ′a poly

where reflect-poly p = Poly (rev (coeffs p))

lemma coeffs-reflect-poly [code abstract]:
coeffs (reflect-poly p) = rev (dropWhile ((=) 0 ) (coeffs p))
〈proof 〉

lemma reflect-poly-0 [simp]: reflect-poly 0 = 0
〈proof 〉
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lemma reflect-poly-1 [simp]: reflect-poly 1 = 1
〈proof 〉

lemma coeff-reflect-poly:
coeff (reflect-poly p) n = (if n > degree p then 0 else coeff p (degree p − n))
〈proof 〉

lemma coeff-0-reflect-poly-0-iff [simp]: coeff (reflect-poly p) 0 = 0 ←→ p = 0
〈proof 〉

lemma reflect-poly-at-0-eq-0-iff [simp]: poly (reflect-poly p) 0 = 0 ←→ p = 0
〈proof 〉

lemma reflect-poly-pCons ′:
p 6= 0 =⇒ reflect-poly (pCons c p) = reflect-poly p + monom c (Suc (degree p))
〈proof 〉

lemma reflect-poly-const [simp]: reflect-poly [:a:] = [:a:]
〈proof 〉

lemma poly-reflect-poly-nz:
x 6= 0 =⇒ poly (reflect-poly p) x = x ^ degree p ∗ poly p (inverse x)
for x :: ′a::field
〈proof 〉

lemma coeff-0-reflect-poly [simp]: coeff (reflect-poly p) 0 = lead-coeff p
〈proof 〉

lemma poly-reflect-poly-0 [simp]: poly (reflect-poly p) 0 = lead-coeff p
〈proof 〉

lemma reflect-poly-reflect-poly [simp]: coeff p 0 6= 0 =⇒ reflect-poly (reflect-poly
p) = p
〈proof 〉

lemma degree-reflect-poly-le: degree (reflect-poly p) ≤ degree p
〈proof 〉

lemma reflect-poly-pCons: a 6= 0 =⇒ reflect-poly (pCons a p) = Poly (rev (a #
coeffs p))
〈proof 〉

lemma degree-reflect-poly-eq [simp]: coeff p 0 6= 0 =⇒ degree (reflect-poly p) =
degree p
〈proof 〉

lemma reflect-poly-eq-0-iff [simp]: reflect-poly p = 0 ←→ p = 0
〈proof 〉
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lemma reflect-poly-mult: reflect-poly (p ∗ q) = reflect-poly p ∗ reflect-poly q
for p q :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
〈proof 〉

lemma reflect-poly-smult: reflect-poly (smult c p) = smult c (reflect-poly p)
for p :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
〈proof 〉

lemma reflect-poly-power : reflect-poly (p ^ n) = reflect-poly p ^ n
for p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly
〈proof 〉

lemma reflect-poly-prod: reflect-poly (prod f A) = prod (λx. reflect-poly (f x)) A
for f :: - ⇒ -::{comm-semiring-0 ,semiring-no-zero-divisors} poly
〈proof 〉

lemma reflect-poly-prod-list: reflect-poly (prod-list xs) = prod-list (map reflect-poly
xs)

for xs :: -::{comm-semiring-0 ,semiring-no-zero-divisors} poly list
〈proof 〉

lemma reflect-poly-Poly-nz:
no-trailing (HOL.eq 0 ) xs =⇒ reflect-poly (Poly xs) = Poly (rev xs)
〈proof 〉

lemmas reflect-poly-simps =
reflect-poly-0 reflect-poly-1 reflect-poly-const reflect-poly-smult reflect-poly-mult
reflect-poly-power reflect-poly-prod reflect-poly-prod-list

4.27 Derivatives
function pderiv :: ( ′a :: {comm-semiring-1 ,semiring-no-zero-divisors}) poly ⇒ ′a
poly

where pderiv (pCons a p) = (if p = 0 then 0 else p + pCons 0 (pderiv p))
〈proof 〉

termination pderiv
〈proof 〉

declare pderiv.simps[simp del]

lemma pderiv-0 [simp]: pderiv 0 = 0
〈proof 〉

lemma pderiv-pCons: pderiv (pCons a p) = p + pCons 0 (pderiv p)
〈proof 〉
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lemma pderiv-1 [simp]: pderiv 1 = 0
〈proof 〉

lemma pderiv-of-nat [simp]: pderiv (of-nat n) = 0
and pderiv-numeral [simp]: pderiv (numeral m) = 0
〈proof 〉

lemma coeff-pderiv: coeff (pderiv p) n = of-nat (Suc n) ∗ coeff p (Suc n)
〈proof 〉

fun pderiv-coeffs-code :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} ⇒ ′a list
⇒ ′a list

where
pderiv-coeffs-code f (x # xs) = cCons (f ∗ x) (pderiv-coeffs-code (f+1 ) xs)
| pderiv-coeffs-code f [] = []

definition pderiv-coeffs :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} list ⇒
′a list

where pderiv-coeffs xs = pderiv-coeffs-code 1 (tl xs)

lemma pderiv-coeffs-code:
nth-default 0 (pderiv-coeffs-code f xs) n = (f + of-nat n) ∗ nth-default 0 xs n
〈proof 〉

lemma coeffs-pderiv-code [code abstract]: coeffs (pderiv p) = pderiv-coeffs (coeffs
p)
〈proof 〉

lemma pderiv-eq-0-iff : pderiv p = 0 ←→ degree p = 0
for p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors,semiring-char-0} poly
〈proof 〉

lemma degree-pderiv: degree (pderiv p) = degree p − 1
for p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors,semiring-char-0} poly
〈proof 〉

lemma not-dvd-pderiv:
fixes p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors,semiring-char-0} poly
assumes degree p 6= 0
shows ¬ p dvd pderiv p
〈proof 〉

lemma dvd-pderiv-iff [simp]: p dvd pderiv p ←→ degree p = 0
for p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors,semiring-char-0} poly
〈proof 〉

lemma pderiv-singleton [simp]: pderiv [:a:] = 0
〈proof 〉
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lemma pderiv-add: pderiv (p + q) = pderiv p + pderiv q
〈proof 〉

lemma pderiv-minus: pderiv (− p :: ′a :: idom poly) = − pderiv p
〈proof 〉

lemma pderiv-diff : pderiv ((p :: - :: idom poly) − q) = pderiv p − pderiv q
〈proof 〉

lemma pderiv-smult: pderiv (smult a p) = smult a (pderiv p)
〈proof 〉

lemma pderiv-mult: pderiv (p ∗ q) = p ∗ pderiv q + q ∗ pderiv p
〈proof 〉

lemma pderiv-power-Suc: pderiv (p ^ Suc n) = smult (of-nat (Suc n)) (p ^ n) ∗
pderiv p
〈proof 〉

lemma pderiv-power :
pderiv (p ^ n) = smult (of-nat n) (p ^ (n − 1 ) ∗ pderiv p)
〈proof 〉

lemma pderiv-monom:
pderiv (monom c n) = monom (of-nat n ∗ c) (n − 1 )
〈proof 〉

lemma pderiv-pcompose: pderiv (pcompose p q) = pcompose (pderiv p) q ∗ pderiv
q
〈proof 〉

lemma pderiv-prod: pderiv (prod f (as)) = (
∑

a∈as. prod f (as − {a}) ∗ pderiv
(f a))
〈proof 〉

lemma coeff-higher-pderiv:
coeff ((pderiv ^^ m) f ) n = pochhammer (of-nat (Suc n)) m ∗ coeff f (n + m)
〈proof 〉

lemma higher-pderiv-0 [simp]: (pderiv ^^ n) 0 = 0
〈proof 〉

lemma higher-pderiv-add: (pderiv ^^ n) (p + q) = (pderiv ^^ n) p + (pderiv ^^
n) q
〈proof 〉

lemma higher-pderiv-smult: (pderiv ^^ n) (smult c p) = smult c ((pderiv ^^ n) p)
〈proof 〉
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lemma higher-pderiv-monom:
m ≤ n + 1 =⇒ (pderiv ^^ m) (monom c n) = monom (pochhammer (int n −

int m + 1 ) m ∗ c) (n − m)
〈proof 〉

lemma higher-pderiv-monom-eq-zero:
m > n + 1 =⇒ (pderiv ^^ m) (monom c n) = 0
〈proof 〉

lemma higher-pderiv-sum: (pderiv ^^ n) (sum f A) = (
∑

x∈A. (pderiv ^^ n) (f
x))
〈proof 〉

lemma higher-pderiv-sum-mset: (pderiv ^^ n) (sum-mset A) = (
∑

p∈#A. (pderiv
^^ n) p)
〈proof 〉

lemma higher-pderiv-sum-list: (pderiv ^^ n) (sum-list ps) = (
∑

p←ps. (pderiv ^^
n) p)
〈proof 〉

lemma degree-higher-pderiv: Polynomial.degree ((pderiv ^^ n) p) = Polynomial.degree
p − n

for p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors,semiring-char-0} poly
〈proof 〉

lemma DERIV-pow2 : DERIV (λx. x ^ Suc n) x :> real (Suc n) ∗ (x ^ n)
〈proof 〉

declare DERIV-pow2 [simp] DERIV-pow [simp]

lemma DERIV-add-const: DERIV f x :> D =⇒ DERIV (λx. a + f x :: ′a::real-normed-field)
x :> D
〈proof 〉

lemma poly-DERIV [simp]: DERIV (λx. poly p x) x :> poly (pderiv p) x
〈proof 〉

lemma poly-isCont[simp]:
fixes x:: ′a::real-normed-field
shows isCont (λx. poly p x) x
〈proof 〉

lemma tendsto-poly [tendsto-intros]: (f −−−→ a) F =⇒ ((λx. poly p (f x)) −−−→
poly p a) F

for f :: - ⇒ ′a::real-normed-field
〈proof 〉
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lemma continuous-within-poly: continuous (at z within s) (poly p)
for z :: ′a::{real-normed-field}
〈proof 〉

lemma continuous-poly [continuous-intros]: continuous F f =⇒ continuous F (λx.
poly p (f x))

for f :: - ⇒ ′a::real-normed-field
〈proof 〉

lemma continuous-on-poly [continuous-intros]:
fixes p :: ′a :: {real-normed-field} poly
assumes continuous-on A f
shows continuous-on A (λx. poly p (f x))
〈proof 〉

Consequences of the derivative theorem above.
lemma poly-differentiable[simp]: (λx. poly p x) differentiable (at x)

for x :: real
〈proof 〉

lemma poly-IVT-pos: a < b =⇒ poly p a < 0 =⇒ 0 < poly p b =⇒ ∃ x. a < x ∧
x < b ∧ poly p x = 0

for a b :: real
〈proof 〉

lemma poly-IVT-neg: a < b =⇒ 0 < poly p a =⇒ poly p b < 0 =⇒ ∃ x. a < x ∧
x < b ∧ poly p x = 0

for a b :: real
〈proof 〉

lemma poly-IVT : a < b =⇒ poly p a ∗ poly p b < 0 =⇒ ∃ x>a. x < b ∧ poly p x
= 0

for p :: real poly
〈proof 〉

lemma poly-MVT : a < b =⇒ ∃ x. a < x ∧ x < b ∧ poly p b − poly p a = (b −
a) ∗ poly (pderiv p) x

for a b :: real
〈proof 〉

lemma poly-MVT ′:
fixes a b :: real
assumes {min a b..max a b} ⊆ A
shows ∃ x∈A. poly p b − poly p a = (b − a) ∗ poly (pderiv p) x
〈proof 〉

lemma poly-pinfty-gt-lc:
fixes p :: real poly
assumes lead-coeff p > 0
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shows ∃n. ∀ x ≥ n. poly p x ≥ lead-coeff p
〈proof 〉

lemma dvd-monic:
fixes p q:: ′a :: idom poly
assumes monic:lead-coeff p=1 and p dvd (smult c q) and c 6=0
shows p dvd q 〈proof 〉

lemma lemma-order-pderiv1 :
pderiv ([:− a, 1 :] ^ Suc n ∗ q)
= [:− a, 1 :] ^ Suc n ∗ pderiv q + smult (of-nat (Suc n)) (q ∗ [:− a, 1 :] ^ n)
〈proof 〉

lemma order-pderiv:
fixes p:: ′a::{idom,semiring-char-0} poly
assumes p 6=0 poly p x = 0
shows order x p = Suc (order x (pderiv p)) 〈proof 〉

lemma lemma-order-pderiv:
fixes p :: ′a :: field-char-0 poly
assumes n: 0 < n

and pd: pderiv p 6= 0
and pe: p = [:− a, 1 :] ^ n ∗ q
and nd: ¬ [:− a, 1 :] dvd q

shows n = Suc (order a (pderiv p))
〈proof 〉

lemma poly-squarefree-decomp-order :
fixes p :: ′a::field-char-0 poly
assumes pderiv p 6= 0

and p: p = q ∗ d
and p ′: pderiv p = e ∗ d
and d: d = r ∗ p + s ∗ pderiv p

shows order a q = (if order a p = 0 then 0 else 1 )
〈proof 〉

lemma poly-squarefree-decomp-order2 :
pderiv p 6= 0 =⇒ p = q ∗ d =⇒ pderiv p = e ∗ d =⇒

d = r ∗ p + s ∗ pderiv p =⇒ ∀ a. order a q = (if order a p = 0 then 0 else 1 )
for p :: ′a::field-char-0 poly
〈proof 〉

lemma order-pderiv2 :
pderiv p 6= 0 =⇒ order a p 6= 0 =⇒ order a (pderiv p) = n ←→ order a p = Suc

n
for p :: ′a::field-char-0 poly
〈proof 〉

definition rsquarefree :: ′a::idom poly ⇒ bool
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where rsquarefree p ←→ p 6= 0 ∧ (∀ a. order a p = 0 ∨ order a p = 1 )

lemma pderiv-iszero: pderiv p = 0 =⇒ ∃ h. p = [:h:]
for p :: ′a::{semidom,semiring-char-0} poly
〈proof 〉

lemma rsquarefree-roots: rsquarefree p ←→ (∀ a. ¬ (poly p a = 0 ∧ poly (pderiv
p) a = 0 ))

for p :: ′a::field-char-0 poly
〈proof 〉

lemma rsquarefree-root-order :
assumes rsquarefree p poly p z = 0 p 6= 0
shows order z p = 1
〈proof 〉

lemma poly-squarefree-decomp:
fixes p :: ′a::field-char-0 poly
assumes pderiv p 6= 0

and p = q ∗ d
and pderiv p = e ∗ d
and d = r ∗ p + s ∗ pderiv p

shows rsquarefree q ∧ (∀ a. poly q a = 0 ←→ poly p a = 0 )
〈proof 〉

lemma has-field-derivative-poly [derivative-intros]:
assumes (f has-field-derivative f ′) (at x within A)
shows ((λx. poly p (f x)) has-field-derivative

(f ′ ∗ poly (pderiv p) (f x))) (at x within A)
〈proof 〉

4.28 Algebraic numbers
lemma intpolyE :

assumes
∧

i. poly.coeff p i ∈ �
obtains q where p = map-poly of-int q
〈proof 〉

lemma ratpolyE :
assumes

∧
i. poly.coeff p i ∈ �

obtains q where p = map-poly of-rat q
〈proof 〉

Algebraic numbers can be defined in two equivalent ways: all real num-
bers that are roots of rational polynomials or of integer polynomials. The
Algebraic-Numbers AFP entry uses the rational definition, but we need the
integer definition.
The equivalence is obvious since any rational polynomial can be multiplied
with the LCM of its coefficients, yielding an integer polynomial with the

91



same roots.
definition algebraic :: ′a :: field-char-0 ⇒ bool

where algebraic x ←→ (∃ p. (∀ i. coeff p i ∈ �) ∧ p 6= 0 ∧ poly p x = 0 )

lemma algebraicI : (
∧

i. coeff p i ∈ �) =⇒ p 6= 0 =⇒ poly p x = 0 =⇒ algebraic
x
〈proof 〉

lemma algebraicE :
assumes algebraic x
obtains p where

∧
i. coeff p i ∈ � p 6= 0 poly p x = 0

〈proof 〉

lemma algebraic-altdef : algebraic x ←→ (∃ p. (∀ i. coeff p i ∈ �) ∧ p 6= 0 ∧ poly
p x = 0 )

for p :: ′a::field-char-0 poly
〈proof 〉

lemma algebraicI ′: (
∧

i. coeff p i ∈ �) =⇒ p 6= 0 =⇒ poly p x = 0 =⇒ algebraic
x
〈proof 〉

lemma algebraicE ′:
assumes algebraic (x :: ′a :: field-char-0 )
obtains p where p 6= 0 poly (map-poly of-int p) x = 0
〈proof 〉

lemma algebraicE ′-nonzero:
assumes algebraic (x :: ′a :: field-char-0 ) x 6= 0
obtains p where p 6= 0 coeff p 0 6= 0 poly (map-poly of-int p) x = 0
〈proof 〉

lemma rat-imp-algebraic: x ∈ � =⇒ algebraic x
〈proof 〉

lemma algebraic-0 [simp, intro]: algebraic 0
and algebraic-1 [simp, intro]: algebraic 1
and algebraic-numeral [simp, intro]: algebraic (numeral n)
and algebraic-of-nat [simp, intro]: algebraic (of-nat k)
and algebraic-of-int [simp, intro]: algebraic (of-int m)
〈proof 〉

lemma algebraic-ii [simp, intro]: algebraic i
〈proof 〉

lemma algebraic-minus [intro]:
assumes algebraic x
shows algebraic (−x)
〈proof 〉
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lemma algebraic-minus-iff [simp]:
algebraic (−x) ←→ algebraic (x :: ′a :: field-char-0 )
〈proof 〉

lemma algebraic-inverse [intro]:
assumes algebraic x
shows algebraic (inverse x)
〈proof 〉

lemma algebraic-root:
assumes algebraic y

and poly p x = y and ∀ i. coeff p i ∈ � and lead-coeff p = 1 and degree p
> 0

shows algebraic x
〈proof 〉

lemma algebraic-abs-real [simp]:
algebraic |x :: real| ←→ algebraic x
〈proof 〉

lemma algebraic-nth-root-real [intro]:
assumes algebraic x
shows algebraic (root n x)
〈proof 〉

lemma algebraic-sqrt [intro]: algebraic x =⇒ algebraic (sqrt x)
〈proof 〉

lemma algebraic-csqrt [intro]: algebraic x =⇒ algebraic (csqrt x)
〈proof 〉

lemma algebraic-cnj [intro]:
assumes algebraic x
shows algebraic (cnj x)
〈proof 〉

lemma algebraic-cnj-iff [simp]: algebraic (cnj x) ←→ algebraic x
〈proof 〉

lemma algebraic-of-real [intro]:
assumes algebraic x
shows algebraic (of-real x)
〈proof 〉

lemma algebraic-of-real-iff [simp]:
algebraic (of-real x :: ′a :: {real-algebra-1 ,field-char-0}) ←→ algebraic x

〈proof 〉
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4.29 Algebraic integers
inductive algebraic-int :: ′a :: field ⇒ bool where
[[lead-coeff p = 1 ; ∀ i. coeff p i ∈ �; poly p x = 0 ]] =⇒ algebraic-int x

lemma algebraic-int-altdef-ipoly:
fixes x :: ′a :: field-char-0
shows algebraic-int x ←→ (∃ p. poly (map-poly of-int p) x = 0 ∧ lead-coeff p =

1 )
〈proof 〉

theorem rational-algebraic-int-is-int:
assumes algebraic-int x and x ∈ �
shows x ∈ �
〈proof 〉

lemma algebraic-int-imp-algebraic [dest]: algebraic-int x =⇒ algebraic x
〈proof 〉

lemma int-imp-algebraic-int:
assumes x ∈ �
shows algebraic-int x
〈proof 〉

lemma algebraic-int-0 [simp, intro]: algebraic-int 0
and algebraic-int-1 [simp, intro]: algebraic-int 1
and algebraic-int-numeral [simp, intro]: algebraic-int (numeral n)
and algebraic-int-of-nat [simp, intro]: algebraic-int (of-nat k)
and algebraic-int-of-int [simp, intro]: algebraic-int (of-int m)
〈proof 〉

lemma algebraic-int-ii [simp, intro]: algebraic-int i
〈proof 〉

lemma algebraic-int-minus [intro]:
assumes algebraic-int x
shows algebraic-int (−x)
〈proof 〉

lemma algebraic-int-minus-iff [simp]:
algebraic-int (−x) ←→ algebraic-int (x :: ′a :: field-char-0 )
〈proof 〉

lemma algebraic-int-inverse [intro]:
assumes poly p x = 0 and ∀ i. coeff p i ∈ � and coeff p 0 = 1
shows algebraic-int (inverse x)
〈proof 〉

lemma algebraic-int-root:
assumes algebraic-int y
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and poly p x = y and ∀ i. coeff p i ∈ � and lead-coeff p = 1 and degree p
> 0

shows algebraic-int x
〈proof 〉

lemma algebraic-int-abs-real [simp]:
algebraic-int |x :: real| ←→ algebraic-int x
〈proof 〉

lemma algebraic-int-nth-root-real [intro]:
assumes algebraic-int x
shows algebraic-int (root n x)
〈proof 〉

lemma algebraic-int-sqrt [intro]: algebraic-int x =⇒ algebraic-int (sqrt x)
〈proof 〉

lemma algebraic-int-csqrt [intro]: algebraic-int x =⇒ algebraic-int (csqrt x)
〈proof 〉

lemma algebraic-int-cnj [intro]:
assumes algebraic-int x
shows algebraic-int (cnj x)
〈proof 〉

lemma algebraic-int-cnj-iff [simp]: algebraic-int (cnj x) ←→ algebraic-int x
〈proof 〉

lemma algebraic-int-of-real [intro]:
assumes algebraic-int x
shows algebraic-int (of-real x)
〈proof 〉

lemma algebraic-int-of-real-iff [simp]:
algebraic-int (of-real x :: ′a :: {field-char-0 , real-algebra-1}) ←→ algebraic-int x
〈proof 〉

4.30 Division of polynomials
4.30.1 Division in general
instantiation poly :: (idom-divide) idom-divide
begin

fun divide-poly-main :: ′a ⇒ ′a poly ⇒ ′a poly ⇒ ′a poly ⇒ nat ⇒ nat ⇒ ′a poly
where

divide-poly-main lc q r d dr (Suc n) =
(let cr = coeff r dr ; a = cr div lc; mon = monom a n in

if False ∨ a ∗ lc = cr then — False ∨ is only because of problem in
function-package
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divide-poly-main
lc
(q + mon)
(r − mon ∗ d)
d (dr − 1 ) n else 0 )

| divide-poly-main lc q r d dr 0 = q

definition divide-poly :: ′a poly ⇒ ′a poly ⇒ ′a poly
where divide-poly f g =
(if g = 0 then 0
else
divide-poly-main (coeff g (degree g)) 0 f g (degree f )
(1 + length (coeffs f ) − length (coeffs g)))

lemma divide-poly-main:
assumes d: d 6= 0 lc = coeff d (degree d)

and degree (d ∗ r) ≤ dr divide-poly-main lc q (d ∗ r) d dr n = q ′

and n = 1 + dr − degree d ∨ dr = 0 ∧ n = 0 ∧ d ∗ r = 0
shows q ′ = q + r
〈proof 〉

lemma divide-poly-main-0 : divide-poly-main 0 0 r d dr n = 0
〈proof 〉

lemma divide-poly:
assumes g: g 6= 0
shows (f ∗ g) div g = (f :: ′a poly)
〈proof 〉

lemma divide-poly-0 : f div 0 = 0
for f :: ′a poly
〈proof 〉

instance
〈proof 〉

end

instance poly :: (idom-divide) algebraic-semidom 〈proof 〉

lemma div-const-poly-conv-map-poly:
assumes [:c:] dvd p
shows p div [:c:] = map-poly (λx. x div c) p
〈proof 〉

lemma is-unit-monom-0 :
fixes a :: ′a::field
assumes a 6= 0
shows is-unit (monom a 0 )
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〈proof 〉

lemma is-unit-triv: a 6= 0 =⇒ is-unit [:a:]
for a :: ′a::field
〈proof 〉

lemma is-unit-iff-degree:
fixes p :: ′a::field poly
assumes p 6= 0
shows is-unit p ←→ degree p = 0
(is ?lhs ←→ ?rhs)

〈proof 〉

lemma is-unit-pCons-iff : is-unit (pCons a p) ←→ p = 0 ∧ a 6= 0
for p :: ′a::field poly
〈proof 〉

lemma is-unit-monom-trivial: is-unit p =⇒ monom (coeff p (degree p)) 0 = p
for p :: ′a::field poly
〈proof 〉

lemma is-unit-const-poly-iff : [:c:] dvd 1 ←→ c dvd 1
for c :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors}
〈proof 〉

lemma is-unit-polyE :
fixes p :: ′a :: {comm-semiring-1 ,semiring-no-zero-divisors} poly
assumes p dvd 1
obtains c where p = [:c:] c dvd 1
〈proof 〉

lemma is-unit-polyE ′:
fixes p :: ′a::field poly
assumes is-unit p
obtains a where p = monom a 0 and a 6= 0
〈proof 〉

lemma is-unit-poly-iff : p dvd 1 ←→ (∃ c. p = [:c:] ∧ c dvd 1 )
for p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly
〈proof 〉

lemma coprime-poly-0 :
poly p x 6= 0 ∨ poly q x 6= 0 if coprime p q
for x :: ′a :: field
〈proof 〉

lemma root-imp-reducible-poly:
fixes x :: ′a :: field
assumes poly p x = 0 and degree p > 1
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shows ¬irreducible p
〈proof 〉

lemma reducible-polyI :
fixes p :: ′a :: field poly
assumes p = q ∗ r degree q > 0 degree r > 0
shows ¬irreducible p
〈proof 〉

4.30.2 Pseudo-Division

This part is by René Thiemann and Akihisa Yamada.
fun pseudo-divmod-main ::

′a :: comm-ring-1 ⇒ ′a poly ⇒ ′a poly ⇒ ′a poly ⇒ nat ⇒ nat ⇒ ′a poly × ′a
poly

where
pseudo-divmod-main lc q r d dr (Suc n) =
(let

rr = smult lc r ;
qq = coeff r dr ;
rrr = rr − monom qq n ∗ d;
qqq = smult lc q + monom qq n

in pseudo-divmod-main lc qqq rrr d (dr − 1 ) n)
| pseudo-divmod-main lc q r d dr 0 = (q,r)

definition pseudo-divmod :: ′a :: comm-ring-1 poly ⇒ ′a poly ⇒ ′a poly × ′a poly
where pseudo-divmod p q ≡

if q = 0 then (0 , p)
else

pseudo-divmod-main (coeff q (degree q)) 0 p q (degree p)
(1 + length (coeffs p) − length (coeffs q))

lemma pseudo-divmod-main:
assumes d: d 6= 0 lc = coeff d (degree d)

and degree r ≤ dr pseudo-divmod-main lc q r d dr n = (q ′,r ′)
and n = 1 + dr − degree d ∨ dr = 0 ∧ n = 0 ∧ r = 0

shows (r ′ = 0 ∨ degree r ′ < degree d) ∧ smult (lc^n) (d ∗ q + r) = d ∗ q ′ + r ′

〈proof 〉

lemma pseudo-divmod:
assumes g: g 6= 0

and ∗: pseudo-divmod f g = (q,r)
shows smult (coeff g (degree g) ^ (Suc (degree f ) − degree g)) f = g ∗ q + r (is

?A)
and r = 0 ∨ degree r < degree g (is ?B)

〈proof 〉

definition pseudo-mod-main lc r d dr n = snd (pseudo-divmod-main lc 0 r d dr
n)
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lemma snd-pseudo-divmod-main:
snd (pseudo-divmod-main lc q r d dr n) = snd (pseudo-divmod-main lc q ′ r d dr

n)
〈proof 〉

definition pseudo-mod :: ′a::{comm-ring-1 ,semiring-1-no-zero-divisors} poly ⇒ ′a
poly ⇒ ′a poly

where pseudo-mod f g = snd (pseudo-divmod f g)

lemma pseudo-mod:
fixes f g :: ′a::{comm-ring-1 ,semiring-1-no-zero-divisors} poly
defines r ≡ pseudo-mod f g
assumes g: g 6= 0
shows ∃ a q. a 6= 0 ∧ smult a f = g ∗ q + r r = 0 ∨ degree r < degree g
〈proof 〉

lemma fst-pseudo-divmod-main-as-divide-poly-main:
assumes d: d 6= 0
defines lc: lc ≡ coeff d (degree d)
shows fst (pseudo-divmod-main lc q r d dr n) =

divide-poly-main lc (smult (lc^n) q) (smult (lc^n) r) d dr n
〈proof 〉

4.30.3 Division in polynomials over fields
lemma pseudo-divmod-field:

fixes g :: ′a::field poly
assumes g: g 6= 0

and ∗: pseudo-divmod f g = (q,r)
defines c ≡ coeff g (degree g) ^ (Suc (degree f ) − degree g)
shows f = g ∗ smult (1/c) q + smult (1/c) r
〈proof 〉

lemma divide-poly-main-field:
fixes d :: ′a::field poly
assumes d: d 6= 0
defines lc: lc ≡ coeff d (degree d)
shows divide-poly-main lc q r d dr n =

fst (pseudo-divmod-main lc (smult ((1 / lc)^n) q) (smult ((1 / lc)^n) r) d dr
n)
〈proof 〉

lemma divide-poly-field:
fixes f g :: ′a::field poly
defines f ′ ≡ smult ((1 / coeff g (degree g)) ^ (Suc (degree f ) − degree g)) f
shows f div g = fst (pseudo-divmod f ′ g)
〈proof 〉
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instantiation poly :: ({semidom-divide-unit-factor ,idom-divide}) normalization-semidom
begin

definition unit-factor-poly :: ′a poly ⇒ ′a poly
where unit-factor-poly p = [:unit-factor (lead-coeff p):]

definition normalize-poly :: ′a poly ⇒ ′a poly
where normalize p = p div [:unit-factor (lead-coeff p):]

instance
〈proof 〉

end

instance poly :: ({semidom-divide-unit-factor ,idom-divide,normalization-semidom-multiplicative})
normalization-semidom-multiplicative
〈proof 〉

lemma normalize-poly-eq-map-poly: normalize p = map-poly (λx. x div unit-factor
(lead-coeff p)) p
〈proof 〉

lemma coeff-normalize [simp]:
coeff (normalize p) n = coeff p n div unit-factor (lead-coeff p)
〈proof 〉

class field-unit-factor = field + unit-factor +
assumes unit-factor-field [simp]: unit-factor = id

begin

subclass semidom-divide-unit-factor
〈proof 〉

end

lemma unit-factor-pCons:
unit-factor (pCons a p) = (if p = 0 then [:unit-factor a:] else unit-factor p)
〈proof 〉

lemma normalize-monom [simp]: normalize (monom a n) = monom (normalize
a) n
〈proof 〉

lemma unit-factor-monom [simp]: unit-factor (monom a n) = [:unit-factor a:]
〈proof 〉

lemma normalize-const-poly: normalize [:c:] = [:normalize c:]
〈proof 〉
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lemma normalize-smult:
fixes c :: ′a :: {normalization-semidom-multiplicative, idom-divide}
shows normalize (smult c p) = smult (normalize c) (normalize p)
〈proof 〉

instantiation poly :: (field) idom-modulo
begin

definition modulo-poly :: ′a poly ⇒ ′a poly ⇒ ′a poly
where mod-poly-def : f mod g =
(if g = 0 then f else pseudo-mod (smult ((1 / lead-coeff g) ^ (Suc (degree f ) −

degree g)) f ) g)

instance
〈proof 〉

end

lemma pseudo-divmod-eq-div-mod:
‹pseudo-divmod f g = (f div g, f mod g)› if ‹lead-coeff g = 1 ›
〈proof 〉

lemma degree-mod-less-degree:
‹degree (x mod y) < degree y› if ‹y 6= 0 › ‹¬ y dvd x›
〈proof 〉

instantiation poly :: (field) unique-euclidean-ring
begin

definition euclidean-size-poly :: ′a poly ⇒ nat
where euclidean-size-poly p = (if p = 0 then 0 else 2 ^ degree p)

definition division-segment-poly :: ′a poly ⇒ ′a poly
where [simp]: division-segment-poly p = 1

instance 〈proof 〉

end

lemma euclidean-relation-polyI [case-names by0 divides euclidean-relation]:
‹(x div y, x mod y) = (q, r)›

if by0 : ‹y = 0 =⇒ q = 0 ∧ r = x›
and divides: ‹y 6= 0 =⇒ y dvd x =⇒ r = 0 ∧ x = q ∗ y›
and euclidean-relation: ‹y 6= 0 =⇒ ¬ y dvd x =⇒ degree r < degree y ∧ x = q

∗ y + r›
〈proof 〉

lemma div-poly-eq-0-iff :
‹x div y = 0 ←→ x = 0 ∨ y = 0 ∨ degree x < degree y› for x y :: ‹ ′a::field poly›
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〈proof 〉

lemma div-poly-less:
‹x div y = 0 › if ‹degree x < degree y› for x y :: ‹ ′a::field poly›
〈proof 〉

lemma mod-poly-less:
‹x mod y = x› if ‹degree x < degree y›
〈proof 〉

lemma degree-div-less:
‹degree (x div y) < degree x›

if ‹degree x > 0 › ‹degree y > 0 ›
for x y :: ‹ ′a::field poly›

〈proof 〉

lemma degree-mod-less ′: b 6= 0 =⇒ a mod b 6= 0 =⇒ degree (a mod b) < degree b
〈proof 〉

lemma degree-mod-less: y 6= 0 =⇒ x mod y = 0 ∨ degree (x mod y) < degree y
〈proof 〉

lemma div-smult-left: ‹smult a x div y = smult a (x div y)› (is ?Q)
and mod-smult-left: ‹smult a x mod y = smult a (x mod y)› (is ?R)
for x y :: ‹ ′a::field poly›
〈proof 〉

lemma poly-div-minus-left [simp]: (− x) div y = − (x div y)
for x y :: ′a::field poly
〈proof 〉

lemma poly-mod-minus-left [simp]: (− x) mod y = − (x mod y)
for x y :: ′a::field poly
〈proof 〉

lemma poly-div-add-left: ‹(x + y) div z = x div z + y div z› (is ?Q)
and poly-mod-add-left: ‹(x + y) mod z = x mod z + y mod z› (is ?R)
for x y z :: ‹ ′a::field poly›
〈proof 〉

lemma poly-div-diff-left: (x − y) div z = x div z − y div z
for x y z :: ′a::field poly
〈proof 〉

lemma poly-mod-diff-left: (x − y) mod z = x mod z − y mod z
for x y z :: ′a::field poly
〈proof 〉

lemma div-smult-right: ‹x div smult a y = smult (inverse a) (x div y)› (is ?Q)
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and mod-smult-right: ‹x mod smult a y = (if a = 0 then x else x mod y)› (is ?R)
〈proof 〉

lemma mod-mult-unit-eq:
‹x mod (z ∗ y) = x mod y›
if ‹is-unit z›
for x y z :: ‹ ′a::field poly›
〈proof 〉

lemma poly-div-minus-right [simp]: x div (− y) = − (x div y)
for x y :: ′a::field poly
〈proof 〉

lemma poly-mod-minus-right [simp]: x mod (− y) = x mod y
for x y :: ′a::field poly
〈proof 〉

lemma poly-div-mult-right: ‹x div (y ∗ z) = (x div y) div z› (is ?Q)
and poly-mod-mult-right: ‹x mod (y ∗ z) = y ∗ (x div y mod z) + x mod y› (is

?R)
for x y z :: ‹ ′a::field poly›
〈proof 〉

lemma dvd-pCons-imp-dvd-pCons-mod:
‹y dvd pCons a (x mod y)› if ‹y dvd pCons a x›
〈proof 〉

lemma degree-less-if-less-eqI :
‹degree x < degree y› if ‹degree x ≤ degree y› ‹coeff x (degree y) = 0 › ‹x 6= 0 ›
〈proof 〉

lemma div-pCons-eq:
‹pCons a p div q = (if q = 0 then 0 else pCons (coeff (pCons a (p mod q))

(degree q) / lead-coeff q) (p div q))› (is ?Q)
and mod-pCons-eq:

‹pCons a p mod q = (if q = 0 then pCons a p else pCons a (p mod q) − smult
(coeff (pCons a (p mod q)) (degree q) / lead-coeff q) q)› (is ?R)

for x y :: ‹ ′a::field poly›
〈proof 〉

lemma div-mod-fold-coeffs:
(p div q, p mod q) =
(if q = 0 then (0 , p)
else
fold-coeffs
(λa (s, r).

let b = coeff (pCons a r) (degree q) / coeff q (degree q)
in (pCons b s, pCons a r − smult b q)) p (0 , 0 ))

〈proof 〉
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lemma mod-pCons:
fixes a :: ′a::field

and x y :: ′a::field poly
assumes y: y 6= 0
defines b ≡ coeff (pCons a (x mod y)) (degree y) / coeff y (degree y)
shows (pCons a x) mod y = pCons a (x mod y) − smult b y
〈proof 〉

4.30.4 List-based versions for fast implementation
fun minus-poly-rev-list :: ′a :: group-add list ⇒ ′a list ⇒ ′a list

where
minus-poly-rev-list (x # xs) (y # ys) = (x − y) # (minus-poly-rev-list xs ys)
| minus-poly-rev-list xs [] = xs
| minus-poly-rev-list [] (y # ys) = []

fun pseudo-divmod-main-list ::
′a::comm-ring-1 ⇒ ′a list ⇒ ′a list ⇒ ′a list ⇒ nat ⇒ ′a list × ′a list
where

pseudo-divmod-main-list lc q r d (Suc n) =
(let

rr = map ((∗) lc) r ;
a = hd r ;
qqq = cCons a (map ((∗) lc) q);
rrr = tl (if a = 0 then rr else minus-poly-rev-list rr (map ((∗) a) d))

in pseudo-divmod-main-list lc qqq rrr d n)
| pseudo-divmod-main-list lc q r d 0 = (q, r)

fun pseudo-mod-main-list :: ′a::comm-ring-1 ⇒ ′a list ⇒ ′a list ⇒ nat ⇒ ′a list
where

pseudo-mod-main-list lc r d (Suc n) =
(let

rr = map ((∗) lc) r ;
a = hd r ;
rrr = tl (if a = 0 then rr else minus-poly-rev-list rr (map ((∗) a) d))

in pseudo-mod-main-list lc rrr d n)
| pseudo-mod-main-list lc r d 0 = r

fun divmod-poly-one-main-list ::
′a::comm-ring-1 list ⇒ ′a list ⇒ ′a list ⇒ nat ⇒ ′a list × ′a list

where
divmod-poly-one-main-list q r d (Suc n) =
(let

a = hd r ;
qqq = cCons a q;
rr = tl (if a = 0 then r else minus-poly-rev-list r (map ((∗) a) d))

in divmod-poly-one-main-list qqq rr d n)

104



| divmod-poly-one-main-list q r d 0 = (q, r)

fun mod-poly-one-main-list :: ′a::comm-ring-1 list ⇒ ′a list ⇒ nat ⇒ ′a list
where

mod-poly-one-main-list r d (Suc n) =
(let

a = hd r ;
rr = tl (if a = 0 then r else minus-poly-rev-list r (map ((∗) a) d))

in mod-poly-one-main-list rr d n)
| mod-poly-one-main-list r d 0 = r

definition pseudo-divmod-list :: ′a::comm-ring-1 list ⇒ ′a list ⇒ ′a list × ′a list
where pseudo-divmod-list p q =
(if q = [] then ([], p)
else
(let rq = rev q;

(qu,re) = pseudo-divmod-main-list (hd rq) [] (rev p) rq (1 + length p −
length q)

in (qu, rev re)))

definition pseudo-mod-list :: ′a::comm-ring-1 list ⇒ ′a list ⇒ ′a list
where pseudo-mod-list p q =
(if q = [] then p
else
(let

rq = rev q;
re = pseudo-mod-main-list (hd rq) (rev p) rq (1 + length p − length q)

in rev re))

lemma minus-zero-does-nothing: minus-poly-rev-list x (map ((∗) 0 ) y) = x
for x :: ′a::ring list
〈proof 〉

lemma length-minus-poly-rev-list [simp]: length (minus-poly-rev-list xs ys) = length
xs
〈proof 〉

lemma if-0-minus-poly-rev-list:
(if a = 0 then x else minus-poly-rev-list x (map ((∗) a) y)) =

minus-poly-rev-list x (map ((∗) a) y)
for a :: ′a::ring
〈proof 〉

lemma Poly-append: Poly (a @ b) = Poly a + monom 1 (length a) ∗ Poly b
for a :: ′a::comm-semiring-1 list
〈proof 〉

lemma minus-poly-rev-list: length p ≥ length q =⇒
Poly (rev (minus-poly-rev-list (rev p) (rev q))) =
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Poly p − monom 1 (length p − length q) ∗ Poly q
for p q :: ′a :: comm-ring-1 list
〈proof 〉

lemma smult-monom-mult: smult a (monom b n ∗ f ) = monom (a ∗ b) n ∗ f
〈proof 〉

lemma head-minus-poly-rev-list:
length d ≤ length r =⇒ d 6= [] =⇒

hd (minus-poly-rev-list (map ((∗) (last d)) r) (map ((∗) (hd r)) (rev d))) = 0
for d r :: ′a::comm-ring list
〈proof 〉

lemma Poly-map: Poly (map ((∗) a) p) = smult a (Poly p)
〈proof 〉

lemma last-coeff-is-hd: xs 6= [] =⇒ coeff (Poly xs) (length xs − 1 ) = hd (rev xs)
〈proof 〉

lemma pseudo-divmod-main-list-invar :
assumes leading-nonzero: last d 6= 0

and lc: last d = lc
and d 6= []
and pseudo-divmod-main-list lc q (rev r) (rev d) n = (q ′, rev r ′)
and n = 1 + length r − length d

shows pseudo-divmod-main lc (monom 1 n ∗ Poly q) (Poly r) (Poly d) (length r
− 1 ) n =

(Poly q ′, Poly r ′)
〈proof 〉

lemma pseudo-divmod-impl [code]:
pseudo-divmod f g = map-prod poly-of-list poly-of-list (pseudo-divmod-list (coeffs

f ) (coeffs g))
for f g :: ′a::comm-ring-1 poly

〈proof 〉

lemma pseudo-mod-main-list:
snd (pseudo-divmod-main-list l q xs ys n) = pseudo-mod-main-list l xs ys n
〈proof 〉

lemma pseudo-mod-impl[code]: pseudo-mod f g = poly-of-list (pseudo-mod-list (coeffs
f ) (coeffs g))
〈proof 〉

4.30.5 Improved Code-Equations for Polynomial (Pseudo) Divi-
sion

lemma pdivmod-via-pseudo-divmod:
‹(f div g, f mod g) =
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(if g = 0 then (0 , f )
else
let

ilc = inverse (lead-coeff g);
h = smult ilc g;
(q,r) = pseudo-divmod f h

in (smult ilc q, r))›
(is ‹?l = ?r›)
〈proof 〉

lemma pdivmod-via-pseudo-divmod-list:
(f div g, f mod g) =
(let cg = coeffs g in

if cg = [] then (0 , f )
else

let
cf = coeffs f ;
ilc = inverse (last cg);
ch = map ((∗) ilc) cg;
(q, r) = pseudo-divmod-main-list 1 [] (rev cf ) (rev ch) (1 + length cf −

length cg)
in (poly-of-list (map ((∗) ilc) q), poly-of-list (rev r)))

〈proof 〉

lemma pseudo-divmod-main-list-1 : pseudo-divmod-main-list 1 = divmod-poly-one-main-list
〈proof 〉

fun divide-poly-main-list :: ′a::idom-divide ⇒ ′a list ⇒ ′a list ⇒ ′a list ⇒ nat ⇒
′a list

where
divide-poly-main-list lc q r d (Suc n) =
(let

cr = hd r
in if cr = 0 then divide-poly-main-list lc (cCons cr q) (tl r) d n else let
a = cr div lc;
qq = cCons a q;
rr = minus-poly-rev-list r (map ((∗) a) d)

in if hd rr = 0 then divide-poly-main-list lc qq (tl rr) d n else [])
| divide-poly-main-list lc q r d 0 = q

lemma divide-poly-main-list-simp [simp]:
divide-poly-main-list lc q r d (Suc n) =
(let

cr = hd r ;
a = cr div lc;
qq = cCons a q;
rr = minus-poly-rev-list r (map ((∗) a) d)

in if hd rr = 0 then divide-poly-main-list lc qq (tl rr) d n else [])
〈proof 〉
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declare divide-poly-main-list.simps(1 )[simp del]

definition divide-poly-list :: ′a::idom-divide poly ⇒ ′a poly ⇒ ′a poly
where divide-poly-list f g =
(let cg = coeffs g in

if cg = [] then g
else

let
cf = coeffs f ;
cgr = rev cg

in poly-of-list (divide-poly-main-list (hd cgr) [] (rev cf ) cgr (1 + length cf
− length cg)))

lemmas pdivmod-via-divmod-list = pdivmod-via-pseudo-divmod-list[unfolded pseudo-divmod-main-list-1 ]

lemma mod-poly-one-main-list: snd (divmod-poly-one-main-list q r d n) = mod-poly-one-main-list
r d n
〈proof 〉

lemma mod-poly-code [code]:
f mod g =
(let cg = coeffs g in

if cg = [] then f
else

let
cf = coeffs f ;
ilc = inverse (last cg);
ch = map ((∗) ilc) cg;
r = mod-poly-one-main-list (rev cf ) (rev ch) (1 + length cf − length cg)

in poly-of-list (rev r))
(is - = ?rhs)
〈proof 〉

definition div-field-poly-impl :: ′a :: field poly ⇒ ′a poly ⇒ ′a poly
where div-field-poly-impl f g =
(let cg = coeffs g in

if cg = [] then 0
else

let
cf = coeffs f ;
ilc = inverse (last cg);
ch = map ((∗) ilc) cg;
q = fst (divmod-poly-one-main-list [] (rev cf ) (rev ch) (1 + length cf −

length cg))
in poly-of-list ((map ((∗) ilc) q)))

We do not declare the following lemma as code equation, since then poly-
nomial division on non-fields will no longer be executable. However, a code-
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unfold is possible, since div-field-poly-impl is a bit more efficient than the
generic polynomial division.
lemma div-field-poly-impl[code-unfold]: (div) = div-field-poly-impl
〈proof 〉

lemma divide-poly-main-list:
assumes lc0 : lc 6= 0

and lc: last d = lc
and d: d 6= []
and n = (1 + length r − length d)

shows Poly (divide-poly-main-list lc q (rev r) (rev d) n) =
divide-poly-main lc (monom 1 n ∗ Poly q) (Poly r) (Poly d) (length r − 1 ) n
〈proof 〉

lemma divide-poly-list[code]: f div g = divide-poly-list f g
〈proof 〉

lemma poly-mod:
poly (p mod q) x = poly p x if poly q x = 0
〈proof 〉

4.31 Primality and irreducibility in polynomial rings
lemma prod-mset-const-poly: (

∏
x∈#A. [:f x:]) = [:prod-mset (image-mset f A):]

〈proof 〉

lemma irreducible-const-poly-iff :
fixes c :: ′a :: {comm-semiring-1 ,semiring-no-zero-divisors}
shows irreducible [:c:] ←→ irreducible c
〈proof 〉

lemma lift-prime-elem-poly:
assumes prime-elem (c :: ′a :: semidom)
shows prime-elem [:c:]
〈proof 〉

lemma prime-elem-const-poly-iff :
fixes c :: ′a :: semidom
shows prime-elem [:c:] ←→ prime-elem c
〈proof 〉

4.32 Content and primitive part of a polynomial
definition content :: ′a::semiring-gcd poly ⇒ ′a

where content p = gcd-list (coeffs p)

lemma content-eq-fold-coeffs [code]: content p = fold-coeffs gcd p 0
〈proof 〉
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lemma content-0 [simp]: content 0 = 0
〈proof 〉

lemma content-1 [simp]: content 1 = 1
〈proof 〉

lemma content-const [simp]: content [:c:] = normalize c
〈proof 〉

lemma const-poly-dvd-iff-dvd-content: [:c:] dvd p ←→ c dvd content p
for c :: ′a::semiring-gcd
〈proof 〉

lemma content-dvd [simp]: [:content p:] dvd p
〈proof 〉

lemma content-dvd-coeff [simp]: content p dvd coeff p n
〈proof 〉

lemma content-dvd-coeffs: c ∈ set (coeffs p) =⇒ content p dvd c
〈proof 〉

lemma normalize-content [simp]: normalize (content p) = content p
〈proof 〉

lemma is-unit-content-iff [simp]: is-unit (content p) ←→ content p = 1
〈proof 〉

lemma content-smult [simp]:
fixes c :: ′a :: {normalization-semidom-multiplicative, semiring-gcd}
shows content (smult c p) = normalize c ∗ content p
〈proof 〉

lemma content-eq-zero-iff [simp]: content p = 0 ←→ p = 0
〈proof 〉

definition primitive-part :: ′a :: semiring-gcd poly ⇒ ′a poly
where primitive-part p = map-poly (λx. x div content p) p

lemma primitive-part-0 [simp]: primitive-part 0 = 0
〈proof 〉

lemma content-times-primitive-part [simp]: smult (content p) (primitive-part p) =
p

for p :: ′a :: semiring-gcd poly
〈proof 〉

lemma primitive-part-eq-0-iff [simp]: primitive-part p = 0 ←→ p = 0
〈proof 〉
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lemma content-primitive-part [simp]:
fixes p :: ′a :: {normalization-semidom-multiplicative, semiring-gcd} poly
assumes p 6= 0
shows content (primitive-part p) = 1
〈proof 〉

lemma content-decompose:
obtains p ′ :: ′a :: {normalization-semidom-multiplicative, semiring-gcd} poly
where p = smult (content p) p ′ content p ′ = 1
〈proof 〉

lemma content-dvd-contentI [intro]: p dvd q =⇒ content p dvd content q
〈proof 〉

lemma primitive-part-const-poly [simp]: primitive-part [:x:] = [:unit-factor x:]
〈proof 〉

lemma primitive-part-prim: content p = 1 =⇒ primitive-part p = p
〈proof 〉

lemma degree-primitive-part [simp]: degree (primitive-part p) = degree p
〈proof 〉

lemma smult-content-normalize-primitive-part [simp]:
fixes p :: ′a :: {normalization-semidom-multiplicative, semiring-gcd, idom-divide}

poly
shows smult (content p) (normalize (primitive-part p)) = normalize p
〈proof 〉

context
begin

private

lemma content-1-mult:
fixes f g :: ′a :: {semiring-gcd, factorial-semiring} poly
assumes content f = 1 content g = 1
shows content (f ∗ g) = 1
〈proof 〉

lemma content-mult:
fixes p q :: ′a :: {factorial-semiring, semiring-gcd, normalization-semidom-multiplicative}

poly
shows content (p ∗ q) = content p ∗ content q
〈proof 〉

end
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lemma primitive-part-mult:
fixes p q :: ′a :: {factorial-semiring, semiring-Gcd, ring-gcd, idom-divide,

normalization-semidom-multiplicative} poly
shows primitive-part (p ∗ q) = primitive-part p ∗ primitive-part q
〈proof 〉

lemma primitive-part-smult:
fixes p :: ′a :: {factorial-semiring, semiring-Gcd, ring-gcd, idom-divide,

normalization-semidom-multiplicative} poly
shows primitive-part (smult a p) = smult (unit-factor a) (primitive-part p)
〈proof 〉

lemma primitive-part-dvd-primitive-partI [intro]:
fixes p q :: ′a :: {factorial-semiring, semiring-Gcd, ring-gcd, idom-divide,

normalization-semidom-multiplicative} poly
shows p dvd q =⇒ primitive-part p dvd primitive-part q
〈proof 〉

lemma content-prod-mset:
fixes A :: ′a :: {factorial-semiring, semiring-Gcd, normalization-semidom-multiplicative}

poly multiset
shows content (prod-mset A) = prod-mset (image-mset content A)
〈proof 〉

lemma content-prod-eq-1-iff :
fixes p q :: ′a :: {factorial-semiring, semiring-Gcd, normalization-semidom-multiplicative}

poly
shows content (p ∗ q) = 1 ←→ content p = 1 ∧ content q = 1
〈proof 〉

4.33 A typeclass for algebraically closed fields

Since the required sort constraints are not available inside the class, we
have to resort to a somewhat awkward way of writing the definition of
algebraically closed fields:
class alg-closed-field = field +

assumes alg-closed: n > 0 =⇒ f n 6= 0 =⇒ ∃ x. (
∑

k≤n. f k ∗ x ^ k) = 0

We can then however easily show the equivalence to the proper definition:
lemma alg-closed-imp-poly-has-root:

assumes degree (p :: ′a :: alg-closed-field poly) > 0
shows ∃ x. poly p x = 0
〈proof 〉

lemma alg-closedI [Pure.intro]:
assumes

∧
p :: ′a poly. degree p > 0 =⇒ lead-coeff p = 1 =⇒ ∃ x. poly p x = 0

shows OFCLASS( ′a :: field, alg-closed-field-class)
〈proof 〉
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lemma (in alg-closed-field) nth-root-exists:
assumes n > 0
shows ∃ y. y ^ n = (x :: ′a)
〈proof 〉

We can now prove by induction that every polynomial of degree n splits into
a product of n linear factors:
lemma alg-closed-imp-factorization:

fixes p :: ′a :: alg-closed-field poly
assumes p 6= 0
shows ∃A. size A = degree p ∧ p = smult (lead-coeff p) (

∏
x∈#A. [:−x, 1 :])

〈proof 〉

As an alternative characterisation of algebraic closure, one can also say that
any polynomial of degree at least 2 splits into non-constant factors:
lemma alg-closed-imp-reducible:

assumes degree (p :: ′a :: alg-closed-field poly) > 1
shows ¬irreducible p
〈proof 〉

When proving algebraic closure through reducibility, we can assume w.l.o.g.
that the polynomial is monic and has a non-zero constant coefficient:
lemma alg-closedI-reducible:

assumes
∧

p :: ′a poly. degree p > 1 =⇒ lead-coeff p = 1 =⇒ coeff p 0 6= 0 =⇒
¬irreducible p

shows OFCLASS( ′a :: field, alg-closed-field-class)
〈proof 〉

Using a clever Tschirnhausen transformation mentioned e.g. in the article
by Nowak [1], we can also assume w.l.o.g. that the coefficient an−1 is zero.
lemma alg-closedI-reducible-coeff-deg-minus-one-eq-0 :

assumes
∧

p :: ′a poly. degree p > 1 =⇒ lead-coeff p = 1 =⇒ coeff p (degree p
− 1 ) = 0 =⇒

coeff p 0 6= 0 =⇒ ¬irreducible p
shows OFCLASS( ′a :: field-char-0 , alg-closed-field-class)
〈proof 〉

As a consequence of the full factorisation lemma proven above, we can also
show that any polynomial with at least two different roots splits into two
non-constant coprime factors:
lemma alg-closed-imp-poly-splits-coprime:

assumes degree (p :: ′a :: {alg-closed-field} poly) > 1
assumes poly p x = 0 poly p y = 0 x 6= y
obtains r s where degree r > 0 degree s > 0 coprime r s p = r ∗ s
〈proof 〉
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4.34 Polynomials and limits
lemma filterlim-poly-at-infinity:

fixes p:: ′a::real-normed-field poly
assumes degree p>0
shows filterlim (poly p) at-infinity at-infinity
〈proof 〉

lemma poly-divide-tendsto-aux:
fixes p:: ′a::real-normed-field poly
shows ((λx. poly p x/x^(degree p)) −−−→ lead-coeff p) at-infinity
〈proof 〉

lemma filterlim-power-at-infinity:
assumes n 6=0
shows filterlim (λx:: ′a::real-normed-field. x^n) at-infinity at-infinity
〈proof 〉

lemma poly-divide-tendsto-0-at-infinity:
fixes p:: ′a::real-normed-field poly
assumes degree p > degree q
shows ((λx. poly q x / poly p x) −−−→ 0 ) at-infinity
〈proof 〉

lemma poly-eventually-not-zero:
fixes p::real poly
assumes p 6=0
shows eventually (λx. poly p x 6= 0 ) at-infinity
〈proof 〉

no-notation cCons (infixr ‹##› 65 )

end

5 A formalization of formal power series
theory Formal-Power-Series
imports

Complex-Main
Euclidean-Algorithm
Primes
HOL−Library.FuncSet
HOL−Library.Multiset

begin

5.1 The type of formal power series
typedef ′a fps = {f :: nat ⇒ ′a. True}

morphisms fps-nth Abs-fps
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〈proof 〉

notation fps-nth (infixl ‹$› 75 )

lemma expand-fps-eq: p = q ←→ (∀n. p $ n = q $ n)
〈proof 〉

lemmas fps-eq-iff = expand-fps-eq

lemma fps-ext: (
∧

n. p $ n = q $ n) =⇒ p = q
〈proof 〉

lemma fps-nth-Abs-fps [simp]: Abs-fps f $ n = f n
〈proof 〉

Definition of the basic elements 0 and 1 and the basic operations of addition,
negation and multiplication.
instantiation fps :: (zero) zero
begin

definition fps-zero-def : 0 = Abs-fps (λn. 0 )
instance 〈proof 〉

end

lemma fps-zero-nth [simp]: 0 $ n = 0
〈proof 〉

lemma fps-nonzero-nth: f 6= 0 ←→ (∃ n. f $ n 6= 0 )
〈proof 〉

lemma fps-nonzero-nth-minimal: f 6= 0 ←→ (∃n. f $ n 6= 0 ∧ (∀m < n. f $ m
= 0 ))
(is ?lhs ←→ ?rhs)
〈proof 〉

lemma fps-nonzeroI : f $n 6= 0 =⇒ f 6= 0
〈proof 〉

instantiation fps :: ({one, zero}) one
begin

definition fps-one-def : 1 = Abs-fps (λn. if n = 0 then 1 else 0 )
instance 〈proof 〉

end

lemma fps-one-nth [simp]: 1 $ n = (if n = 0 then 1 else 0 )
〈proof 〉

instantiation fps :: (plus) plus
begin

definition fps-plus-def : (+) = (λf g. Abs-fps (λn. f $ n + g $ n))
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instance 〈proof 〉
end

lemma fps-add-nth [simp]: (f + g) $ n = f $ n + g $ n
〈proof 〉

instantiation fps :: (minus) minus
begin

definition fps-minus-def : (−) = (λf g. Abs-fps (λn. f $ n − g $ n))
instance 〈proof 〉

end

lemma fps-sub-nth [simp]: (f − g) $ n = f $ n − g $ n
〈proof 〉

instantiation fps :: (uminus) uminus
begin

definition fps-uminus-def : uminus = (λf . Abs-fps (λn. − (f $ n)))
instance 〈proof 〉

end

lemma fps-neg-nth [simp]: (− f ) $ n = − (f $ n)
〈proof 〉

lemma fps-neg-0 [simp]: −(0 :: ′a::group-add fps) = 0
〈proof 〉

instantiation fps :: ({comm-monoid-add, times}) times
begin

definition fps-times-def : (∗) = (λf g. Abs-fps (λn.
∑

i=0 ..n. f $ i ∗ g $ (n −
i)))

instance 〈proof 〉
end

lemma fps-mult-nth: (f ∗ g) $ n = (
∑

i=0 ..n. f $i ∗ g$(n − i))
〈proof 〉

lemma fps-mult-nth-0 [simp]: (f ∗ g) $ 0 = f $ 0 ∗ g $ 0
〈proof 〉

lemma fps-mult-nth-1 : (f ∗ g) $ 1 = f $0 ∗ g$1 + f $1 ∗ g$0
〈proof 〉

lemma fps-mult-nth-1 ′ [simp]: (f ∗ g) $ Suc 0 = f $0 ∗ g$Suc 0 + f $Suc 0 ∗ g$0
〈proof 〉

lemmas mult-nth-0 = fps-mult-nth-0
lemmas mult-nth-1 = fps-mult-nth-1
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instance fps :: ({comm-monoid-add, mult-zero}) mult-zero
〈proof 〉

declare atLeastAtMost-iff [presburger ]
declare Bex-def [presburger ]
declare Ball-def [presburger ]

lemma mult-delta-left:
fixes x y :: ′a::mult-zero
shows (if b then x else 0 ) ∗ y = (if b then x ∗ y else 0 )
〈proof 〉

lemma mult-delta-right:
fixes x y :: ′a::mult-zero
shows x ∗ (if b then y else 0 ) = (if b then x ∗ y else 0 )
〈proof 〉

lemma fps-one-mult:
fixes f :: ′a::{comm-monoid-add, mult-zero, monoid-mult} fps
shows 1 ∗ f = f
and f ∗ 1 = f
〈proof 〉

5.2 Subdegrees
definition subdegree :: ( ′a::zero) fps ⇒ nat where

subdegree f = (if f = 0 then 0 else LEAST n. f $n 6= 0 )

lemma subdegreeI :
assumes f $ d 6= 0 and

∧
i. i < d =⇒ f $ i = 0

shows subdegree f = d
〈proof 〉

lemma nth-subdegree-nonzero [simp,intro]: f 6= 0 =⇒ f $ subdegree f 6= 0
〈proof 〉

lemma nth-less-subdegree-zero [dest]: n < subdegree f =⇒ f $ n = 0
〈proof 〉

lemma subdegree-geI :
assumes f 6= 0

∧
i. i < n =⇒ f $i = 0

shows subdegree f ≥ n
〈proof 〉

lemma subdegree-greaterI :
assumes f 6= 0

∧
i. i ≤ n =⇒ f $i = 0

shows subdegree f > n
〈proof 〉
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lemma subdegree-leI :
f $ n 6= 0 =⇒ subdegree f ≤ n
〈proof 〉

lemma subdegree-0 [simp]: subdegree 0 = 0
〈proof 〉

lemma subdegree-1 [simp]: subdegree 1 = 0
〈proof 〉

lemma subdegree-eq-0-iff : subdegree f = 0 ←→ f = 0 ∨ f $ 0 6= 0
〈proof 〉

lemma subdegree-eq-0 [simp]: f $ 0 6= 0 =⇒ subdegree f = 0
〈proof 〉

lemma nth-subdegree-zero-iff [simp]: f $ subdegree f = 0 ←→ f = 0
〈proof 〉

lemma fps-nonzero-subdegree-nonzeroI : subdegree f > 0 =⇒ f 6= 0
〈proof 〉

lemma subdegree-uminus [simp]:
subdegree (−(f ::( ′a::group-add) fps)) = subdegree f
〈proof 〉

lemma subdegree-minus-commute [simp]:
fixes f :: ′a::group-add fps
shows subdegree (f−g) = subdegree (g − f )
〈proof 〉

lemma subdegree-add-ge ′:
fixes f g :: ′a::monoid-add fps
assumes f + g 6= 0
shows subdegree (f + g) ≥ min (subdegree f ) (subdegree g)
〈proof 〉

lemma subdegree-add-ge:
assumes f 6= −(g :: ( ′a :: group-add) fps)
shows subdegree (f + g) ≥ min (subdegree f ) (subdegree g)
〈proof 〉

lemma subdegree-add-eq1 :
assumes f 6= 0
and subdegree f < subdegree (g :: ′a::monoid-add fps)
shows subdegree (f + g) = subdegree f
〈proof 〉

lemma subdegree-add-eq2 :
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assumes g 6= 0
and subdegree g < subdegree (f :: ′a :: monoid-add fps)
shows subdegree (f + g) = subdegree g
〈proof 〉

lemma subdegree-diff-eq1 :
assumes f 6= 0
and subdegree f < subdegree (g :: ′a :: group-add fps)
shows subdegree (f − g) = subdegree f
〈proof 〉

lemma subdegree-diff-eq1-cancel:
assumes f 6= 0
and subdegree f < subdegree (g :: ′a :: cancel-comm-monoid-add fps)
shows subdegree (f − g) = subdegree f
〈proof 〉

lemma subdegree-diff-eq2 :
assumes g 6= 0
and subdegree g < subdegree (f :: ′a :: group-add fps)
shows subdegree (f − g) = subdegree g
〈proof 〉

lemma subdegree-diff-ge [simp]:
assumes f 6= (g :: ′a :: group-add fps)
shows subdegree (f − g) ≥ min (subdegree f ) (subdegree g)
〈proof 〉

lemma subdegree-diff-ge ′:
fixes f g :: ′a :: comm-monoid-diff fps
assumes f − g 6= 0
shows subdegree (f − g) ≥ subdegree f
〈proof 〉

lemma nth-subdegree-mult-left [simp]:
fixes f g :: ( ′a :: {mult-zero,comm-monoid-add}) fps
shows (f ∗ g) $ (subdegree f ) = f $ subdegree f ∗ g $ 0
〈proof 〉

lemma nth-subdegree-mult-right [simp]:
fixes f g :: ( ′a :: {mult-zero,comm-monoid-add}) fps
shows (f ∗ g) $ (subdegree g) = f $ 0 ∗ g $ subdegree g
〈proof 〉

lemma nth-subdegree-mult [simp]:
fixes f g :: ( ′a :: {mult-zero,comm-monoid-add}) fps
shows (f ∗ g) $ (subdegree f + subdegree g) = f $ subdegree f ∗ g $ subdegree g
〈proof 〉
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lemma fps-mult-nth-eq0 :
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
assumes n < subdegree f + subdegree g
shows (f ∗g) $ n = 0
〈proof 〉

lemma fps-mult-subdegree-ge:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
assumes f ∗g 6= 0
shows subdegree (f ∗g) ≥ subdegree f + subdegree g
〈proof 〉

lemma subdegree-mult ′:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
assumes f $ subdegree f ∗ g $ subdegree g 6= 0
shows subdegree (f ∗g) = subdegree f + subdegree g
〈proof 〉

lemma subdegree-mult [simp]:
fixes f g :: ′a :: {semiring-no-zero-divisors} fps
assumes f 6= 0 g 6= 0
shows subdegree (f ∗ g) = subdegree f + subdegree g
〈proof 〉

lemma fps-mult-nth-conv-upto-subdegree-left:
fixes f g :: ( ′a :: {mult-zero,comm-monoid-add}) fps
shows (f ∗ g) $ n = (

∑
i=subdegree f ..n. f $ i ∗ g $ (n − i))

〈proof 〉

lemma fps-mult-nth-conv-upto-subdegree-right:
fixes f g :: ( ′a :: {mult-zero,comm-monoid-add}) fps
shows (f ∗ g) $ n = (

∑
i=0 ..n − subdegree g. f $ i ∗ g $ (n − i))

〈proof 〉

lemma fps-mult-nth-conv-inside-subdegrees:
fixes f g :: ( ′a :: {mult-zero,comm-monoid-add}) fps
shows (f ∗ g) $ n = (

∑
i=subdegree f ..n − subdegree g. f $ i ∗ g $ (n − i))

〈proof 〉

lemma fps-mult-nth-outside-subdegrees:
fixes f g :: ( ′a :: {mult-zero,comm-monoid-add}) fps
shows n < subdegree f =⇒ (f ∗ g) $ n = 0
and n < subdegree g =⇒ (f ∗ g) $ n = 0
〈proof 〉

5.3 Ring structure
instance fps :: (semigroup-add) semigroup-add
〈proof 〉
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instance fps :: (ab-semigroup-add) ab-semigroup-add
〈proof 〉

instance fps :: (monoid-add) monoid-add
〈proof 〉

instance fps :: (comm-monoid-add) comm-monoid-add
〈proof 〉

instance fps :: (cancel-semigroup-add) cancel-semigroup-add
〈proof 〉

instance fps :: (cancel-ab-semigroup-add) cancel-ab-semigroup-add
〈proof 〉

instance fps :: (cancel-comm-monoid-add) cancel-comm-monoid-add 〈proof 〉

instance fps :: (group-add) group-add
〈proof 〉

instance fps :: (ab-group-add) ab-group-add
〈proof 〉

instance fps :: (zero-neq-one) zero-neq-one
〈proof 〉

lemma fps-mult-assoc-lemma:
fixes k :: nat

and f :: nat ⇒ nat ⇒ nat ⇒ ′a::comm-monoid-add
shows (

∑
j=0 ..k.

∑
i=0 ..j. f i (j − i) (n − j)) =

(
∑

j=0 ..k.
∑

i=0 ..k − j. f j i (n − j − i))
〈proof 〉

instance fps :: (semiring-0 ) semiring-0
〈proof 〉

instance fps :: (semiring-0-cancel) semiring-0-cancel 〈proof 〉

lemma fps-mult-commute-lemma:
fixes n :: nat

and f :: nat ⇒ nat ⇒ ′a::comm-monoid-add
shows (

∑
i=0 ..n. f i (n − i)) = (

∑
i=0 ..n. f (n − i) i)

〈proof 〉

instance fps :: (comm-semiring-0 ) comm-semiring-0
〈proof 〉

instance fps :: (comm-semiring-0-cancel) comm-semiring-0-cancel 〈proof 〉
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instance fps :: (semiring-1 ) semiring-1
〈proof 〉

instance fps :: (comm-semiring-1 ) comm-semiring-1
〈proof 〉

instance fps :: (semiring-1-cancel) semiring-1-cancel 〈proof 〉

lemma fps-square-nth: (f^2 ) $ n = (
∑

k≤n. f $ k ∗ f $ (n − k))
〈proof 〉

lemma fps-sum-nth: sum f S $ n = sum (λk. (f k) $ n) S
〈proof 〉

definition fps-const c = Abs-fps (λn. if n = 0 then c else 0 )

lemma fps-nth-fps-const [simp]: fps-const c $ n = (if n = 0 then c else 0 )
〈proof 〉

lemma fps-const-0-eq-0 [simp]: fps-const 0 = 0
〈proof 〉

lemma fps-const-nonzero-eq-nonzero: c 6= 0 =⇒ fps-const c 6= 0
〈proof 〉

lemma fps-const-eq-0-iff [simp]: fps-const c = 0 ←→ c = 0
〈proof 〉

lemma fps-const-1-eq-1 [simp]: fps-const 1 = 1
〈proof 〉

lemma fps-const-eq-1-iff [simp]: fps-const c = 1 ←→ c = 1
〈proof 〉

lemma subdegree-fps-const [simp]: subdegree (fps-const c) = 0
〈proof 〉

lemma fps-const-neg [simp]: − (fps-const (c:: ′a::group-add)) = fps-const (− c)
〈proof 〉

lemma fps-const-add [simp]: fps-const (c:: ′a::monoid-add) + fps-const d = fps-const
(c + d)
〈proof 〉

lemma fps-const-add-left: fps-const (c:: ′a::monoid-add) + f =
Abs-fps (λn. if n = 0 then c + f $0 else f $n)
〈proof 〉
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lemma fps-const-add-right: f + fps-const (c:: ′a::monoid-add) =
Abs-fps (λn. if n = 0 then f $0 + c else f $n)
〈proof 〉

lemma fps-const-sub [simp]: fps-const (c:: ′a::group-add) − fps-const d = fps-const
(c − d)
〈proof 〉

lemmas fps-const-minus = fps-const-sub

lemma fps-const-mult[simp]:
fixes c d :: ′a::{comm-monoid-add,mult-zero}
shows fps-const c ∗ fps-const d = fps-const (c ∗ d)
〈proof 〉

lemma fps-const-mult-left:
fps-const (c:: ′a::{comm-monoid-add,mult-zero}) ∗ f = Abs-fps (λn. c ∗ f $n)
〈proof 〉

lemma fps-const-mult-right:
f ∗ fps-const (c:: ′a::{comm-monoid-add,mult-zero}) = Abs-fps (λn. f $n ∗ c)
〈proof 〉

lemma fps-mult-left-const-nth [simp]:
(fps-const (c:: ′a::{comm-monoid-add,mult-zero}) ∗ f )$n = c∗ f $n
〈proof 〉

lemma fps-mult-right-const-nth [simp]:
(f ∗ fps-const (c:: ′a::{comm-monoid-add,mult-zero}))$n = f $n ∗ c
〈proof 〉

lemma fps-const-power [simp]: fps-const c ^ n = fps-const (c^n)
〈proof 〉

instance fps :: (ring) ring 〈proof 〉

instance fps :: (comm-ring) comm-ring 〈proof 〉

instance fps :: (ring-1 ) ring-1 〈proof 〉

instance fps :: (comm-ring-1 ) comm-ring-1 〈proof 〉

instance fps :: (semiring-no-zero-divisors) semiring-no-zero-divisors
〈proof 〉

instance fps :: (semiring-1-no-zero-divisors) semiring-1-no-zero-divisors 〈proof 〉
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instance fps :: ({cancel-semigroup-add,semiring-no-zero-divisors-cancel})
semiring-no-zero-divisors-cancel
〈proof 〉

instance fps :: (ring-no-zero-divisors) ring-no-zero-divisors 〈proof 〉

instance fps :: (ring-1-no-zero-divisors) ring-1-no-zero-divisors 〈proof 〉

instance fps :: (idom) idom 〈proof 〉

lemma fps-of-nat: fps-const (of-nat c) = of-nat c
〈proof 〉

lemma fps-of-int: fps-const (of-int c) = of-int c
〈proof 〉

lemma semiring-char-fps [simp]: CHAR( ′a :: comm-semiring-1 fps) = CHAR( ′a)
〈proof 〉

instance fps :: ({semiring-prime-char ,comm-semiring-1}) semiring-prime-char
〈proof 〉

instance fps :: ({comm-semiring-prime-char ,comm-semiring-1}) comm-semiring-prime-char
〈proof 〉

instance fps :: ({comm-ring-prime-char ,comm-semiring-1}) comm-ring-prime-char
〈proof 〉

instance fps :: ({idom-prime-char ,comm-semiring-1}) idom-prime-char
〈proof 〉

lemma fps-numeral-fps-const: numeral k = fps-const (numeral k)
〈proof 〉

lemmas numeral-fps-const = fps-numeral-fps-const

lemma neg-numeral-fps-const:
(− numeral k :: ′a :: ring-1 fps) = fps-const (− numeral k)
〈proof 〉

lemma fps-numeral-nth: numeral n $ i = (if i = 0 then numeral n else 0 )
〈proof 〉

lemma fps-numeral-nth-0 [simp]: numeral n $ 0 = numeral n
〈proof 〉

lemma subdegree-numeral [simp]: subdegree (numeral n) = 0
〈proof 〉

lemma fps-nth-of-nat [simp]:
(of-nat c) $ n = (if n=0 then of-nat c else 0 )
〈proof 〉
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lemma fps-nth-of-int [simp]:
(of-int c) $ n = (if n=0 then of-int c else 0 )
〈proof 〉

lemma fps-mult-of-nat-nth [simp]:
shows (of-nat k ∗ f ) $ n = of-nat k ∗ f $n
and (f ∗ of-nat k ) $ n = f $n ∗ of-nat k
〈proof 〉

lemma fps-mult-of-int-nth [simp]:
shows (of-int k ∗ f ) $ n = of-int k ∗ f $n
and (f ∗ of-int k ) $ n = f $n ∗ of-int k
〈proof 〉

lemma numeral-neq-fps-zero [simp]: (numeral f :: ′a :: field-char-0 fps) 6= 0
〈proof 〉

instance fps :: (semiring-char-0 ) semiring-char-0
〈proof 〉

lemma subdegree-power-ge:
f^n 6= 0 =⇒ subdegree (f^n) ≥ n ∗ subdegree f
〈proof 〉

lemma fps-pow-nth-below-subdegree:
k < n ∗ subdegree f =⇒ (f^n) $ k = 0
〈proof 〉

lemma fps-pow-base [simp]:
(f ^ n) $ (n ∗ subdegree f ) = (f $ subdegree f ) ^ n
〈proof 〉

lemma subdegree-power-eqI :
fixes f :: ′a::semiring-1 fps
shows (f $ subdegree f ) ^ n 6= 0 =⇒ subdegree (f ^ n) = n ∗ subdegree f
〈proof 〉

lemma subdegree-power [simp]:
subdegree ((f :: ( ′a :: semiring-1-no-zero-divisors) fps) ^ n) = n ∗ subdegree f
〈proof 〉

lemma subdegree-prod:
fixes f :: ′a ⇒ ′b :: idom fps
assumes

∧
x. x ∈ A =⇒ f x 6= 0

shows subdegree (
∏

x∈A. f x) = (
∑

x∈A. subdegree (f x))
〈proof 〉
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lemma minus-one-power-iff : (− (1 :: ′a::ring-1 )) ^ n = (if even n then 1 else − 1 )
〈proof 〉

definition fps-X = Abs-fps (λn. if n = 1 then 1 else 0 )

lemma subdegree-fps-X [simp]: subdegree (fps-X :: ( ′a :: zero-neq-one) fps) = 1
〈proof 〉

lemma fps-X-mult-nth [simp]:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows (fps-X ∗ f ) $ n = (if n = 0 then 0 else f $ (n − 1 ))
〈proof 〉

lemma fps-X-mult-right-nth [simp]:
fixes a :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows (a ∗ fps-X) $ n = (if n = 0 then 0 else a $ (n − 1 ))
〈proof 〉

lemma fps-mult-fps-X-commute:
fixes a :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows fps-X ∗ a = a ∗ fps-X
〈proof 〉

lemma fps-mult-fps-X-power-commute: fps-X ^ k ∗ a = a ∗ fps-X ^ k
〈proof 〉

lemma fps-subdegree-mult-fps-X :
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fps
assumes f 6= 0
shows subdegree (fps-X ∗ f ) = subdegree f + 1
and subdegree (f ∗ fps-X) = subdegree f + 1
〈proof 〉

lemma fps-mult-fps-X-nonzero:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fps
assumes f 6= 0
shows fps-X ∗ f 6= 0
and f ∗ fps-X 6= 0
〈proof 〉

lemma fps-mult-fps-X-power-nonzero:
assumes f 6= 0
shows fps-X ^ n ∗ f 6= 0
and f ∗ fps-X ^ n 6= 0
〈proof 〉

lemma fps-X-power-iff : fps-X ^ n = Abs-fps (λm. if m = n then 1 else 0 )
〈proof 〉
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lemma fps-X-nth[simp]: fps-X$n = (if n = 1 then 1 else 0 )
〈proof 〉

lemma fps-X-power-nth[simp]: (fps-X^k) $n = (if n = k then 1 else 0 )
〈proof 〉

lemma fps-X-power-subdegree: subdegree (fps-X^n) = n
〈proof 〉

lemma fps-X-power-mult-nth:
(fps-X^k ∗ f ) $ n = (if n < k then 0 else f $ (n − k))
〈proof 〉

lemma fps-X-power-mult-right-nth:
(f ∗ fps-X^k) $ n = (if n < k then 0 else f $ (n − k))
〈proof 〉

lemma fps-subdegree-mult-fps-X-power :
assumes f 6= 0
shows subdegree (fps-X ^ n ∗ f ) = subdegree f + n
and subdegree (f ∗ fps-X ^ n) = subdegree f + n
〈proof 〉

lemma fps-mult-fps-X-plus-1-nth:
((1+fps-X)∗a) $n = (if n = 0 then (a$n :: ′a::semiring-1 ) else a$n + a$(n −

1 ))
〈proof 〉

lemma fps-mult-right-fps-X-plus-1-nth:
fixes a :: ′a :: semiring-1 fps
shows (a∗(1+fps-X)) $ n = (if n = 0 then a$n else a$n + a$(n − 1 ))
〈proof 〉

lemma fps-X-neq-fps-const [simp]: (fps-X :: ′a :: zero-neq-one fps) 6= fps-const c
〈proof 〉

lemma fps-X-neq-zero [simp]: (fps-X :: ′a :: zero-neq-one fps) 6= 0
〈proof 〉

lemma fps-X-neq-one [simp]: (fps-X :: ′a :: zero-neq-one fps) 6= 1
〈proof 〉

lemma fps-X-neq-numeral [simp]: fps-X 6= numeral c
〈proof 〉

lemma fps-X-pow-eq-fps-X-pow-iff [simp]: fps-X ^ m = fps-X ^ n ←→ m = n
〈proof 〉
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5.4 Shifting and slicing
definition fps-shift :: nat ⇒ ′a fps ⇒ ′a fps where

fps-shift n f = Abs-fps (λi. f $ (i + n))

lemma fps-shift-nth [simp]: fps-shift n f $ i = f $ (i + n)
〈proof 〉

lemma fps-shift-0 [simp]: fps-shift 0 f = f
〈proof 〉

lemma fps-shift-zero [simp]: fps-shift n 0 = 0
〈proof 〉

lemma fps-shift-one: fps-shift n 1 = (if n = 0 then 1 else 0 )
〈proof 〉

lemma fps-shift-fps-const: fps-shift n (fps-const c) = (if n = 0 then fps-const c
else 0 )
〈proof 〉

lemma fps-shift-numeral: fps-shift n (numeral c) = (if n = 0 then numeral c else
0 )
〈proof 〉

lemma fps-shift-fps-X [simp]:
n ≥ 1 =⇒ fps-shift n fps-X = (if n = 1 then 1 else 0 )
〈proof 〉

lemma fps-shift-fps-X-power [simp]:
n ≤ m =⇒ fps-shift n (fps-X ^ m) = fps-X ^ (m − n)
〈proof 〉

lemma fps-shift-subdegree [simp]:
n ≤ subdegree f =⇒ subdegree (fps-shift n f ) = subdegree f − n
〈proof 〉

lemma fps-shift-fps-shift:
fps-shift (m + n) f = fps-shift m (fps-shift n f )
〈proof 〉

lemma fps-shift-fps-shift-reorder :
fps-shift m (fps-shift n f ) = fps-shift n (fps-shift m f )
〈proof 〉

lemma fps-shift-rev-shift:
m ≤ n =⇒ fps-shift n (Abs-fps (λk. if k<m then 0 else f $ (k−m))) = fps-shift

(n−m) f
m > n =⇒ fps-shift n (Abs-fps (λk. if k<m then 0 else f $ (k−m))) =

Abs-fps (λk. if k<m−n then 0 else f $ (k−(m−n)))
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〈proof 〉

lemma fps-shift-add:
fps-shift n (f + g) = fps-shift n f + fps-shift n g
〈proof 〉

lemma fps-shift-diff :
fps-shift n (f − g) = fps-shift n f − fps-shift n g
〈proof 〉

lemma fps-shift-uminus:
fps-shift n (−f ) = − fps-shift n f
〈proof 〉

lemma fps-shift-mult:
assumes n ≤ subdegree (g :: ′b :: {comm-monoid-add, mult-zero} fps)
shows fps-shift n (h∗g) = h ∗ fps-shift n g
〈proof 〉

lemma fps-shift-mult-right-noncomm:
assumes n ≤ subdegree (g :: ′b :: {comm-monoid-add, mult-zero} fps)
shows fps-shift n (g∗h) = fps-shift n g ∗ h
〈proof 〉

lemma fps-shift-mult-right:
assumes n ≤ subdegree (g :: ′b :: comm-semiring-0 fps)
shows fps-shift n (g∗h) = h ∗ fps-shift n g
〈proof 〉

lemma fps-shift-mult-both:
fixes f g :: ′a::{comm-monoid-add, mult-zero} fps
assumes m ≤ subdegree f n ≤ subdegree g
shows fps-shift m f ∗ fps-shift n g = fps-shift (m+n) (f ∗g)
〈proof 〉

lemma fps-shift-subdegree-zero-iff [simp]:
fps-shift (subdegree f ) f = 0 ←→ f = 0
〈proof 〉

lemma fps-shift-times-fps-X :
fixes f g :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows 1 ≤ subdegree f =⇒ fps-shift 1 f ∗ fps-X = f
〈proof 〉

lemma fps-shift-times-fps-X ′ [simp]:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows fps-shift 1 (f ∗ fps-X) = f
〈proof 〉

129



lemma fps-shift-times-fps-X ′′:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows 1 ≤ n =⇒ fps-shift n (f ∗ fps-X) = fps-shift (n − 1 ) f
〈proof 〉

lemma fps-shift-times-fps-X-power :
n ≤ subdegree f =⇒ fps-shift n f ∗ fps-X ^ n = f
〈proof 〉

lemma fps-shift-times-fps-X-power ′ [simp]:
fps-shift n (f ∗ fps-X^n) = f
〈proof 〉

lemma fps-shift-times-fps-X-power ′′:
m ≤ n =⇒ fps-shift n (f ∗ fps-X^m) = fps-shift (n − m) f
〈proof 〉

lemma fps-shift-times-fps-X-power ′′′:
m > n =⇒ fps-shift n (f ∗ fps-X^m) = f ∗ fps-X^(m − n)
〈proof 〉

lemma subdegree-decompose:
f = fps-shift (subdegree f ) f ∗ fps-X ^ subdegree f
〈proof 〉

lemma subdegree-decompose ′:
n ≤ subdegree f =⇒ f = fps-shift n f ∗ fps-X^n
〈proof 〉

instantiation fps :: (zero) unit-factor
begin
definition fps-unit-factor-def [simp]:

unit-factor f = fps-shift (subdegree f ) f
instance 〈proof 〉
end

lemma fps-unit-factor-zero-iff : unit-factor (f :: ′a::zero fps) = 0 ←→ f = 0
〈proof 〉

lemma fps-unit-factor-nth-0 : f 6= 0 =⇒ unit-factor f $ 0 6= 0
〈proof 〉

lemma fps-X-unit-factor : unit-factor (fps-X :: ′a :: zero-neq-one fps) = 1
〈proof 〉

lemma fps-X-power-unit-factor : unit-factor (fps-X ^ n) = 1
〈proof 〉

lemma fps-unit-factor-decompose:
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f = unit-factor f ∗ fps-X ^ subdegree f
〈proof 〉

lemma fps-unit-factor-decompose ′:
f = fps-X ^ subdegree f ∗ unit-factor f
〈proof 〉

lemma fps-unit-factor-uminus:
unit-factor (−f ) = − unit-factor (f :: ′a::group-add fps)
〈proof 〉

lemma fps-unit-factor-shift:
assumes n ≤ subdegree f
shows unit-factor (fps-shift n f ) = unit-factor f
〈proof 〉

lemma fps-unit-factor-mult-fps-X :
fixes f :: ′a::{comm-monoid-add,monoid-mult,mult-zero} fps
shows unit-factor (fps-X ∗ f ) = unit-factor f
and unit-factor (f ∗ fps-X) = unit-factor f
〈proof 〉

lemma fps-unit-factor-mult-fps-X-power :
shows unit-factor (fps-X ^ n ∗ f ) = unit-factor f
and unit-factor (f ∗ fps-X ^ n) = unit-factor f
〈proof 〉

lemma fps-unit-factor-mult-unit-factor :
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
shows unit-factor (f ∗ unit-factor g) = unit-factor (f ∗ g)
and unit-factor (unit-factor f ∗ g) = unit-factor (f ∗ g)
〈proof 〉

lemma fps-unit-factor-mult-both-unit-factor :
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
shows unit-factor (unit-factor f ∗ unit-factor g) = unit-factor (f ∗ g)
〈proof 〉

lemma fps-unit-factor-mult ′:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
assumes f $ subdegree f ∗ g $ subdegree g 6= 0
shows unit-factor (f ∗ g) = unit-factor f ∗ unit-factor g
〈proof 〉

lemma fps-unit-factor-mult:
fixes f g :: ′a::semiring-no-zero-divisors fps
shows unit-factor (f ∗ g) = unit-factor f ∗ unit-factor g
〈proof 〉
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definition fps-cutoff n f = Abs-fps (λi. if i < n then f $i else 0 )

lemma fps-cutoff-nth [simp]: fps-cutoff n f $ i = (if i < n then f $i else 0 )
〈proof 〉

lemma fps-cutoff-zero-iff : fps-cutoff n f = 0 ←→ (f = 0 ∨ n ≤ subdegree f )
〈proof 〉

lemma fps-cutoff-0 [simp]: fps-cutoff 0 f = 0
〈proof 〉

lemma fps-cutoff-zero [simp]: fps-cutoff n 0 = 0
〈proof 〉

lemma fps-cutoff-one: fps-cutoff n 1 = (if n = 0 then 0 else 1 )
〈proof 〉

lemma fps-cutoff-fps-const: fps-cutoff n (fps-const c) = (if n = 0 then 0 else
fps-const c)
〈proof 〉

lemma fps-cutoff-numeral: fps-cutoff n (numeral c) = (if n = 0 then 0 else numeral
c)
〈proof 〉

lemma fps-shift-cutoff :
fps-shift n f ∗ fps-X^n + fps-cutoff n f = f
〈proof 〉

lemma fps-shift-cutoff ′:
fps-X^n ∗ fps-shift n f + fps-cutoff n f = f
〈proof 〉

lemma fps-cutoff-left-mult-nth:
k < n =⇒ (fps-cutoff n f ∗ g) $ k = (f ∗ g) $ k
〈proof 〉

lemma fps-cutoff-add: fps-cutoff n (f + g :: ′a :: monoid-add fps) = fps-cutoff n f
+ fps-cutoff n g
〈proof 〉

lemma fps-cutoff-diff : fps-cutoff n (f − g :: ′a :: group-add fps) = fps-cutoff n f
− fps-cutoff n g
〈proof 〉

lemma fps-cutoff-uminus: fps-cutoff n (−f :: ′a :: group-add fps) = −fps-cutoff n
f
〈proof 〉
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lemma fps-cutoff-right-mult-nth:
assumes k < n
shows (f ∗ fps-cutoff n g) $ k = (f ∗ g) $ k
〈proof 〉

lemma fps-cutoff-eq-fps-cutoff-iff :
fps-cutoff n f = fps-cutoff n g ←→ (∀ k<n. fps-nth f k = fps-nth g k)
〈proof 〉

lemma fps-conv-fps-X-power-mult-fps-shift:
assumes f = 0 ∨ subdegree f ≥ n
shows f = fps-X ^ n ∗ fps-shift n f
〈proof 〉

5.5 Metrizability
instantiation fps :: ({minus,zero}) dist
begin

definition
dist-fps-def : dist (a :: ′a fps) b = (if a = b then 0 else inverse (2 ^ subdegree (a
− b)))

lemma dist-fps-ge0 : dist (a :: ′a fps) b ≥ 0
〈proof 〉

instance 〈proof 〉

end

instantiation fps :: (group-add) metric-space
begin

definition uniformity-fps-def [code del]:
(uniformity :: ( ′a fps × ′a fps) filter) = (INF e∈{0 <..}. principal {(x, y). dist

x y < e})

definition open-fps-def ′ [code del]:
open (U :: ′a fps set) ←→ (∀ x∈U . eventually (λ(x ′, y). x ′ = x −→ y ∈ U )

uniformity)

lemma dist-fps-sym: dist (a :: ′a fps) b = dist b a
〈proof 〉

instance
〈proof 〉

end
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declare uniformity-Abort[where ′a= ′a :: group-add fps, code]

lemma open-fps-def : open (S :: ′a::group-add fps set) = (∀ a ∈ S . ∃ r . r >0 ∧ {y.
dist y a < r} ⊆ S)
〈proof 〉

Topology

5.6 The topology of formal power series

A set of formal power series is open iff for any power series f in it, there
exists some number n such that all power series that agree with f on the
first n components are also in it.
lemma open-fps-iff :

open A ←→ (∀F∈A. ∃n. {G. fps-cutoff n G = fps-cutoff n F} ⊆ A)
〈proof 〉

lemma open-fps-cutoff : open {H . fps-cutoff N H = fps-cutoff N G}
〈proof 〉

lemma eventually-fps-nth-eq-nhds-fps-strong:
eventually (λg. ∀ k≤n. fps-nth g k = fps-nth f k) (nhds f )
〈proof 〉

lemma eventually-fps-nth-eq-nhds-fps: eventually (λg. fps-nth g k = fps-nth f k)
(nhds f )
〈proof 〉

A family of formal power series fx tends to a limit series g at some filter
F iff for any N ≥ 0, the set of x for which fx and G agree on the first N
coefficients is in F .
For a sequence (fi)n≥0 this means that fi −→ G iff for any N ≥ 0, fx and
G agree for all but finitely many x.
lemma tendsto-fps-iff :

filterlim f (nhds (g :: ′a :: group-add fps)) F ←→
(∀n. eventually (λx. fps-nth (f x) n = fps-nth g n) F)

〈proof 〉

lemma tendsto-fpsI :
assumes

∧
n. eventually (λx. fps-nth (f x) n = fps-nth G n) F

shows filterlim f (nhds (G :: ′a :: group-add fps)) F
〈proof 〉

The infinite sums and justification of the notation in textbooks.
lemma reals-power-lt-ex:

fixes x y :: real
assumes xp: x > 0
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and y1 : y > 1
shows ∃ k>0 . (1/y)^k < x
〈proof 〉

lemma fps-sum-rep-nth: (sum (λi. fps-const(a$i)∗fps-X^i) {0 ..m})$n = (if n ≤
m then a$n else 0 )
〈proof 〉

lemma fps-notation: (λn. sum (λi. fps-const(a$i) ∗ fps-X^i) {0 ..n}) −−−−→ a
(is ?s −−−−→ a)
〈proof 〉

5.7 Division
declare sum.cong[fundef-cong]

fun fps-left-inverse-constructor ::
′a::{comm-monoid-add,times,uminus} fps ⇒ ′a ⇒ nat ⇒ ′a

where
fps-left-inverse-constructor f a 0 = a
| fps-left-inverse-constructor f a (Suc n) =
− sum (λi. fps-left-inverse-constructor f a i ∗ f $(Suc n − i)) {0 ..n} ∗ a

— This will construct a left inverse for f in case that x ∗ f $ 0 = 1
abbreviation fps-left-inverse ≡ (λf x. Abs-fps (fps-left-inverse-constructor f x))

fun fps-right-inverse-constructor ::
′a::{comm-monoid-add,times,uminus} fps ⇒ ′a ⇒ nat ⇒ ′a

where
fps-right-inverse-constructor f a 0 = a
| fps-right-inverse-constructor f a n =
− a ∗ sum (λi. f $i ∗ fps-right-inverse-constructor f a (n − i)) {1 ..n}

— This will construct a right inverse for f in case that f $ 0 ∗ y = 1
abbreviation fps-right-inverse ≡ (λf y. Abs-fps (fps-right-inverse-constructor f y))

instantiation fps :: ({comm-monoid-add,inverse,times,uminus}) inverse
begin

— For backwards compatibility.
abbreviation natfun-inverse:: ′a fps ⇒ nat ⇒ ′a

where natfun-inverse f ≡ fps-right-inverse-constructor f (inverse (f $0 ))

definition fps-inverse-def : inverse f = Abs-fps (natfun-inverse f )
— With scalars from a (possibly non-commutative) ring, this defines a right inverse.
Furthermore, if scalars are of class mult-zero and satisfy condition inverse 0 = 0,
then this will evaluate to zero when the zeroth term is zero.

definition fps-divide-def : f div g = fps-shift (subdegree g) (f ∗ inverse (unit-factor
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g))
— If scalars are of class mult-zero and satisfy condition inverse 0 = 0, then div by
zero will equal zero.

instance 〈proof 〉

end

lemma fps-lr-inverse-0-iff :
(fps-left-inverse f x) $ 0 = 0 ←→ x = 0
(fps-right-inverse f x) $ 0 = 0 ←→ x = 0
〈proof 〉

lemma fps-inverse-0-iff ′: (inverse f ) $ 0 = 0 ←→ inverse (f $ 0 ) = 0
〈proof 〉

lemma fps-inverse-0-iff [simp]: (inverse f ) $ 0 = (0 :: ′a::division-ring) ←→ f $ 0
= 0
〈proof 〉

lemma fps-lr-inverse-nth-0 :
(fps-left-inverse f x) $ 0 = x (fps-right-inverse f x) $ 0 = x
〈proof 〉

lemma fps-inverse-nth-0 [simp]: (inverse f ) $ 0 = inverse (f $ 0 )
〈proof 〉

lemma fps-lr-inverse-starting0 :
fixes f :: ′a::{comm-monoid-add,mult-zero,uminus} fps
and g :: ′b::{ab-group-add,mult-zero} fps
shows fps-left-inverse f 0 = 0
and fps-right-inverse g 0 = 0
〈proof 〉

lemma fps-lr-inverse-eq0-imp-starting0 :
fps-left-inverse f x = 0 =⇒ x = 0
fps-right-inverse f x = 0 =⇒ x = 0
〈proof 〉

lemma fps-lr-inverse-eq-0-iff :
fixes x :: ′a::{comm-monoid-add,mult-zero,uminus}
and y :: ′b::{ab-group-add,mult-zero}
shows fps-left-inverse f x = 0 ←→ x = 0
and fps-right-inverse g y = 0 ←→ y = 0
〈proof 〉

lemma fps-inverse-eq-0-iff ′:
fixes f :: ′a::{ab-group-add,inverse,mult-zero} fps
shows inverse f = 0 ←→ inverse (f $ 0 ) = 0
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〈proof 〉

lemma fps-inverse-eq-0-iff [simp]: inverse f = (0 :: ( ′a::division-ring) fps) ←→ f $
0 = 0
〈proof 〉

lemmas fps-inverse-eq-0 ′ = iffD2 [OF fps-inverse-eq-0-iff ′]
lemmas fps-inverse-eq-0 = iffD2 [OF fps-inverse-eq-0-iff ]

lemma fps-const-lr-inverse:
fixes a :: ′a::{ab-group-add,mult-zero}
and b :: ′b::{comm-monoid-add,mult-zero,uminus}
shows fps-left-inverse (fps-const a) x = fps-const x
and fps-right-inverse (fps-const b) y = fps-const y
〈proof 〉

lemma fps-const-inverse:
fixes a :: ′a::{comm-monoid-add,inverse,mult-zero,uminus}
shows inverse (fps-const a) = fps-const (inverse a)
〈proof 〉

lemma fps-lr-inverse-zero:
fixes x :: ′a::{ab-group-add,mult-zero}
and y :: ′b::{comm-monoid-add,mult-zero,uminus}
shows fps-left-inverse 0 x = fps-const x
and fps-right-inverse 0 y = fps-const y
〈proof 〉

lemma fps-inverse-zero-conv-fps-const:
inverse (0 :: ′a::{comm-monoid-add,mult-zero,uminus,inverse} fps) = fps-const (inverse

0 )
〈proof 〉

lemma fps-inverse-zero ′:
assumes inverse (0 :: ′a::{comm-monoid-add,inverse,mult-zero,uminus}) = 0
shows inverse (0 :: ′a fps) = 0
〈proof 〉

lemma fps-inverse-zero [simp]:
inverse (0 :: ′a::division-ring fps) = 0
〈proof 〉

lemma fps-lr-inverse-one:
fixes x :: ′a::{ab-group-add,mult-zero,one}
and y :: ′b::{comm-monoid-add,mult-zero,uminus,one}
shows fps-left-inverse 1 x = fps-const x
and fps-right-inverse 1 y = fps-const y
〈proof 〉
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lemma fps-lr-inverse-one-one:
fps-left-inverse 1 1 = (1 :: ′a::{ab-group-add,mult-zero,one} fps)
fps-right-inverse 1 1 = (1 :: ′b::{comm-monoid-add,mult-zero,uminus,one} fps)
〈proof 〉

lemma fps-inverse-one ′:
assumes inverse (1 :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,one}) = 1
shows inverse (1 :: ′a fps) = 1
〈proof 〉

lemma fps-inverse-one [simp]: inverse (1 :: ′a :: division-ring fps) = 1
〈proof 〉

lemma fps-lr-inverse-minus:
fixes f :: ′a::ring-1 fps
shows fps-left-inverse (−f ) (−x) = − fps-left-inverse f x
and fps-right-inverse (−f ) (−x) = − fps-right-inverse f x
〈proof 〉

lemma fps-inverse-minus [simp]: inverse (−f ) = −inverse (f :: ′a :: division-ring
fps)
〈proof 〉

lemma fps-left-inverse:
fixes f :: ′a::ring-1 fps
assumes f0 : x ∗ f $0 = 1
shows fps-left-inverse f x ∗ f = 1
〈proof 〉

lemma fps-right-inverse:
fixes f :: ′a::ring-1 fps
assumes f0 : f $0 ∗ y = 1
shows f ∗ fps-right-inverse f y = 1
〈proof 〉

It is possible in a ring for an element to have a left inverse but not a right
inverse, or vice versa. But when an element has both, they must be the
same.
lemma fps-left-inverse-eq-fps-right-inverse:

fixes f :: ′a::ring-1 fps
assumes f0 : x ∗ f $0 = 1 f $ 0 ∗ y = 1
— These assumptions imply that x equals y, but no need to assume that.
shows fps-left-inverse f x = fps-right-inverse f y
〈proof 〉

lemma fps-left-inverse-eq-fps-right-inverse-comm:
fixes f :: ′a::comm-ring-1 fps
assumes f0 : x ∗ f $0 = 1
shows fps-left-inverse f x = fps-right-inverse f x
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〈proof 〉

lemma fps-left-inverse ′:
fixes f :: ′a::ring-1 fps
assumes x ∗ f $0 = 1 f $0 ∗ y = 1
— These assumptions imply x equals y, but no need to assume that.
shows fps-right-inverse f y ∗ f = 1
〈proof 〉

lemma fps-right-inverse ′:
fixes f :: ′a::ring-1 fps
assumes x ∗ f $0 = 1 f $0 ∗ y = 1
— These assumptions imply x equals y, but no need to assume that.
shows f ∗ fps-left-inverse f x = 1
〈proof 〉

lemma inverse-mult-eq-1 [intro]:
assumes f $0 6= (0 :: ′a::division-ring)
shows inverse f ∗ f = 1
〈proof 〉

lemma inverse-mult-eq-1 ′:
assumes f $0 6= (0 :: ′a::division-ring)
shows f ∗ inverse f = 1
〈proof 〉

lemma fps-mult-left-inverse-unit-factor :
fixes f :: ′a::ring-1 fps
assumes x ∗ f $ subdegree f = 1
shows fps-left-inverse (unit-factor f ) x ∗ f = fps-X ^ subdegree f
〈proof 〉

lemma fps-mult-right-inverse-unit-factor :
fixes f :: ′a::ring-1 fps
assumes f $ subdegree f ∗ y = 1
shows f ∗ fps-right-inverse (unit-factor f ) y = fps-X ^ subdegree f
〈proof 〉

lemma fps-mult-right-inverse-unit-factor-divring:
(f :: ′a::division-ring fps) 6= 0 =⇒ f ∗ inverse (unit-factor f ) = fps-X ^ subdegree

f
〈proof 〉

lemma fps-left-inverse-idempotent-ring1 :
fixes f :: ′a::ring-1 fps
assumes x ∗ f $0 = 1 y ∗ x = 1
— These assumptions imply y equals f $0, but no need to assume that.
shows fps-left-inverse (fps-left-inverse f x) y = f
〈proof 〉
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lemma fps-left-inverse-idempotent-comm-ring1 :
fixes f :: ′a::comm-ring-1 fps
assumes x ∗ f $0 = 1
shows fps-left-inverse (fps-left-inverse f x) (f $0 ) = f
〈proof 〉

lemma fps-right-inverse-idempotent-ring1 :
fixes f :: ′a::ring-1 fps
assumes f $0 ∗ x = 1 x ∗ y = 1
— These assumptions imply y equals f $0, but no need to assume that.
shows fps-right-inverse (fps-right-inverse f x) y = f
〈proof 〉

lemma fps-right-inverse-idempotent-comm-ring1 :
fixes f :: ′a::comm-ring-1 fps
assumes f $0 ∗ x = 1
shows fps-right-inverse (fps-right-inverse f x) (f $0 ) = f
〈proof 〉

lemma fps-inverse-idempotent[intro, simp]:
f $0 6= (0 :: ′a::division-ring) =⇒ inverse (inverse f ) = f
〈proof 〉

lemma fps-lr-inverse-unique-ring1 :
fixes f g :: ′a :: ring-1 fps
assumes fg: f ∗ g = 1 g$0 ∗ f $0 = 1
shows fps-left-inverse g (f $0 ) = f
and fps-right-inverse f (g$0 ) = g
〈proof 〉

lemma fps-lr-inverse-unique-divring:
fixes f g :: ′a ::division-ring fps
assumes fg: f ∗ g = 1
shows fps-left-inverse g (f $0 ) = f
and fps-right-inverse f (g$0 ) = g
〈proof 〉

lemma fps-inverse-unique:
fixes f g :: ′a :: division-ring fps
assumes fg: f ∗ g = 1
shows inverse f = g
〈proof 〉

lemma inverse-fps-numeral:
inverse (numeral n :: ( ′a :: field-char-0 ) fps) = fps-const (inverse (numeral n))
〈proof 〉

lemma inverse-fps-of-nat:
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inverse (of-nat n :: ′a :: {semiring-1 ,times,uminus,inverse} fps) =
fps-const (inverse (of-nat n))
〈proof 〉

lemma fps-lr-inverse-mult-ring1 :
fixes f g :: ′a::ring-1 fps
assumes x: x ∗ f $0 = 1 f $0 ∗ x = 1
and y: y ∗ g$0 = 1 g$0 ∗ y = 1
shows fps-left-inverse (f ∗ g) (y∗x) = fps-left-inverse g y ∗ fps-left-inverse f x
and fps-right-inverse (f ∗ g) (y∗x) = fps-right-inverse g y ∗ fps-right-inverse

f x
〈proof 〉

lemma fps-lr-inverse-mult-divring:
fixes f g :: ′a::division-ring fps
shows fps-left-inverse (f ∗ g) (inverse ((f ∗g)$0 )) =

fps-left-inverse g (inverse (g$0 )) ∗ fps-left-inverse f (inverse (f $0 ))
and fps-right-inverse (f ∗ g) (inverse ((f ∗g)$0 )) =

fps-right-inverse g (inverse (g$0 )) ∗ fps-right-inverse f (inverse (f $0 ))
〈proof 〉

lemma fps-inverse-mult-divring:
inverse (f ∗ g) = inverse g ∗ inverse (f :: ′a::division-ring fps)
〈proof 〉

lemma fps-inverse-mult: inverse (f ∗ g :: ′a::field fps) = inverse f ∗ inverse g
〈proof 〉

lemma inverse-prod-fps: inverse (prod f A) = (
∏

x∈A. inverse (f x) :: ′a :: field
fps)
〈proof 〉

lemma fps-lr-inverse-gp-ring1 :
fixes ones ones-inv :: ′a :: ring-1 fps
defines ones ≡ Abs-fps (λn. 1 )
and ones-inv ≡ Abs-fps (λn. if n=0 then 1 else if n=1 then − 1 else 0 )
shows fps-left-inverse ones 1 = ones-inv
and fps-right-inverse ones 1 = ones-inv
〈proof 〉

lemma fps-lr-inverse-gp-ring1 ′:
fixes ones :: ′a :: ring-1 fps
defines ones ≡ Abs-fps (λn. 1 )
shows fps-left-inverse ones 1 = 1 − fps-X
and fps-right-inverse ones 1 = 1 − fps-X
〈proof 〉

lemma fps-inverse-gp:
inverse (Abs-fps(λn. (1 :: ′a::division-ring))) =
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Abs-fps (λn. if n= 0 then 1 else if n=1 then − 1 else 0 )
〈proof 〉

lemma fps-inverse-gp ′: inverse (Abs-fps (λn. 1 :: ′a::division-ring)) = 1 − fps-X
〈proof 〉

lemma fps-lr-inverse-one-minus-fps-X :
fixes ones :: ′a :: ring-1 fps
defines ones ≡ Abs-fps (λn. 1 )
shows fps-left-inverse (1 − fps-X) 1 = ones
and fps-right-inverse (1 − fps-X) 1 = ones
〈proof 〉

lemma fps-inverse-one-minus-fps-X :
fixes ones :: ′a :: division-ring fps
defines ones ≡ Abs-fps (λn. 1 )
shows inverse (1 − fps-X) = ones
〈proof 〉

lemma fps-lr-one-over-one-minus-fps-X-squared:
shows fps-left-inverse ((1 − fps-X)^2 ) (1 :: ′a::ring-1 ) = Abs-fps (λn. of-nat

(n+1 ))
fps-right-inverse ((1 − fps-X)^2 ) (1 :: ′a) = Abs-fps (λn. of-nat (n+1 ))

〈proof 〉

lemma fps-one-over-one-minus-fps-X-squared ′:
assumes inverse (1 :: ′a::{ring-1 ,inverse}) = 1
shows inverse ((1 − fps-X)^2 :: ′a fps) = Abs-fps (λn. of-nat (n+1 ))
〈proof 〉

lemma fps-one-over-one-minus-fps-X-squared:
inverse ((1 − fps-X)^2 :: ′a :: division-ring fps) = Abs-fps (λn. of-nat (n+1 ))
〈proof 〉

lemma fps-lr-inverse-fps-X-plus1 :
fps-left-inverse (1 + fps-X) (1 :: ′a::ring-1 ) = Abs-fps (λn. (−1 )^n)
fps-right-inverse (1 + fps-X) (1 :: ′a) = Abs-fps (λn. (−1 )^n)
〈proof 〉

lemma fps-inverse-fps-X-plus1 ′:
assumes inverse (1 :: ′a::{ring-1 ,inverse}) = 1
shows inverse (1 + fps-X) = Abs-fps (λn. (− (1 :: ′a)) ^ n)
〈proof 〉

lemma fps-inverse-fps-X-plus1 :
inverse (1 + fps-X) = Abs-fps (λn. (− (1 :: ′a::division-ring)) ^ n)
〈proof 〉

lemma subdegree-lr-inverse:
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fixes x :: ′a::{comm-monoid-add,mult-zero,uminus}
and y :: ′b::{ab-group-add,mult-zero}
shows subdegree (fps-left-inverse f x) = 0
and subdegree (fps-right-inverse g y) = 0
〈proof 〉

lemma subdegree-inverse [simp]:
fixes f :: ′a::{ab-group-add,inverse,mult-zero} fps
shows subdegree (inverse f ) = 0
〈proof 〉

lemma fps-right-inverse-constructor-rec:
n > 0 =⇒ fps-right-inverse-constructor f a n =

−a ∗ sum (λi. fps-nth f i ∗ fps-right-inverse-constructor f a (n − i))
{1 ..n}
〈proof 〉

lemma fps-right-inverse-constructor-cong:
assumes

∧
k. k ≤ n =⇒ fps-nth f k = fps-nth g k

shows fps-right-inverse-constructor f c n = fps-right-inverse-constructor g c n
〈proof 〉

lemma fps-cutoff-inverse:
fixes f :: ′a :: field fps
assumes fps-nth f 0 6= 0
shows fps-cutoff n (inverse (fps-cutoff n f )) = fps-cutoff n (inverse f )
〈proof 〉

lemma tendsto-inverse-fps-aux:
fixes f :: ′a :: field fps
assumes fps-nth f 0 6= 0
shows ((λf . inverse f ) −−−→ inverse f ) (at f )
〈proof 〉

lemma tendsto-inverse-fps [tendsto-intros]:
fixes g :: ′a :: field fps
assumes (f −−−→ g) F
assumes fps-nth g 0 6= 0
shows ((λx. inverse (f x)) −−−→ inverse g) F
〈proof 〉

lemma fps-div-zero [simp]:
0 div (g :: ′a :: {comm-monoid-add,inverse,mult-zero,uminus} fps) = 0
〈proof 〉

lemma fps-div-by-zero ′:
fixes g :: ′a::{comm-monoid-add,inverse,mult-zero,uminus} fps
assumes inverse (0 :: ′a) = 0
shows g div 0 = 0
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〈proof 〉

lemma fps-div-by-zero [simp]: (g:: ′a::division-ring fps) div 0 = 0
〈proof 〉

lemma fps-divide-unit ′: subdegree g = 0 =⇒ f div g = f ∗ inverse g
〈proof 〉

lemma fps-divide-unit: g$0 6= 0 =⇒ f div g = f ∗ inverse g
〈proof 〉

lemma fps-divide-nth-0 ′:
subdegree (g:: ′a::division-ring fps) = 0 =⇒ (f div g) $ 0 = f $ 0 / (g $ 0 )
〈proof 〉

lemma fps-divide-nth-0 [simp]:
g $ 0 6= 0 =⇒ (f div g) $ 0 = f $ 0 / (g $ 0 :: - :: division-ring)
〈proof 〉

lemma fps-divide-nth-below:
fixes f g :: ′a::{comm-monoid-add,uminus,mult-zero,inverse} fps
shows n < subdegree f − subdegree g =⇒ (f div g) $ n = 0
〈proof 〉

lemma fps-divide-nth-base:
fixes f g :: ′a::division-ring fps
assumes subdegree g ≤ subdegree f
shows (f div g) $ (subdegree f − subdegree g) = f $ subdegree f ∗ inverse (g $

subdegree g)
〈proof 〉

lemma fps-divide-subdegree-ge:
fixes f g :: ′a::{comm-monoid-add,uminus,mult-zero,inverse} fps
assumes f / g 6= 0
shows subdegree (f / g) ≥ subdegree f − subdegree g
〈proof 〉

lemma fps-divide-subdegree:
fixes f g :: ′a::division-ring fps
assumes f 6= 0 g 6= 0 subdegree g ≤ subdegree f
shows subdegree (f / g) = subdegree f − subdegree g
〈proof 〉

lemma fps-divide-shift-numer :
fixes f g :: ′a::{inverse,comm-monoid-add,uminus,mult-zero} fps
assumes n ≤ subdegree f
shows fps-shift n f / g = fps-shift n (f /g)
〈proof 〉
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lemma fps-divide-shift-denom:
fixes f g :: ′a::{inverse,comm-monoid-add,uminus,mult-zero} fps
assumes n ≤ subdegree g subdegree g ≤ subdegree f
shows f / fps-shift n g = Abs-fps (λk. if k<n then 0 else (f /g) $ (k−n))
〈proof 〉

lemma fps-divide-unit-factor-numer :
fixes f g :: ′a::{inverse,comm-monoid-add,uminus,mult-zero} fps
shows unit-factor f / g = fps-shift (subdegree f ) (f /g)
〈proof 〉

lemma fps-divide-unit-factor-denom:
fixes f g :: ′a::{inverse,comm-monoid-add,uminus,mult-zero} fps
assumes subdegree g ≤ subdegree f
shows
f / unit-factor g = Abs-fps (λk. if k<subdegree g then 0 else (f /g) $ (k−subdegree

g))
〈proof 〉

lemma fps-divide-unit-factor-both ′:
fixes f g :: ′a::{inverse,comm-monoid-add,uminus,mult-zero} fps
assumes subdegree g ≤ subdegree f
shows unit-factor f / unit-factor g = fps-shift (subdegree f − subdegree g) (f /

g)
〈proof 〉

lemma fps-divide-unit-factor-both:
fixes f g :: ′a::division-ring fps
assumes subdegree g ≤ subdegree f
shows unit-factor f / unit-factor g = unit-factor (f / g)
〈proof 〉

lemma fps-divide-self :
(f :: ′a::division-ring fps) 6= 0 =⇒ f / f = 1
〈proof 〉

lemma fps-divide-add:
fixes f g h :: ′a::{semiring-0 ,inverse,uminus} fps
shows (f + g) / h = f / h + g / h
〈proof 〉

lemma fps-divide-diff :
fixes f g h :: ′a::{ring,inverse} fps
shows (f − g) / h = f / h − g / h
〈proof 〉

lemma fps-divide-uminus:
fixes f g h :: ′a::{ring,inverse} fps
shows (− f ) / g = − (f / g)
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〈proof 〉

lemma fps-divide-uminus ′:
fixes f g h :: ′a::division-ring fps
shows f / (− g) = − (f / g)
〈proof 〉

lemma fps-divide-times:
fixes f g h :: ′a::{semiring-0 ,inverse,uminus} fps
assumes subdegree h ≤ subdegree g
shows (f ∗ g) / h = f ∗ (g / h)
〈proof 〉

lemma fps-divide-times2 :
fixes f g h :: ′a::{comm-semiring-0 ,inverse,uminus} fps
assumes subdegree h ≤ subdegree f
shows (f ∗ g) / h = (f / h) ∗ g
〈proof 〉

lemma fps-times-divide-eq:
fixes f g :: ′a::field fps
assumes g 6= 0 and subdegree f ≥ subdegree g
shows f div g ∗ g = f
〈proof 〉

lemma fps-divide-times-eq:
(g :: ′a::division-ring fps) 6= 0 =⇒ (f ∗ g) div g = f
〈proof 〉

lemma fps-divide-by-mult ′:
fixes f g h :: ′a :: division-ring fps
assumes subdegree h ≤ subdegree f
shows f / (g ∗ h) = f / h / g
〈proof 〉

lemma fps-divide-by-mult:
fixes f g h :: ′a :: field fps
assumes subdegree g ≤ subdegree f
shows f / (g ∗ h) = f / g / h
〈proof 〉

lemma fps-divide-cancel:
fixes f g h :: ′a :: division-ring fps
shows h 6= 0 =⇒ (f ∗ h) div (g ∗ h) = f div g
〈proof 〉

lemma fps-divide-1 ′:
fixes a :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult}

fps
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assumes inverse (1 :: ′a) = 1
shows a / 1 = a
〈proof 〉

lemma fps-divide-1 [simp]: (a :: ′a::division-ring fps) / 1 = a
〈proof 〉

lemma fps-divide-X ′:
fixes f :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult}

fps
assumes inverse (1 :: ′a) = 1
shows f / fps-X = fps-shift 1 f
〈proof 〉

lemma fps-divide-X [simp]: a / fps-X = fps-shift 1 (a:: ′a::division-ring fps)
〈proof 〉

lemma fps-divide-X-power ′:
fixes f :: ′a::{semiring-1 ,inverse,uminus} fps
assumes inverse (1 :: ′a) = 1
shows f / (fps-X ^ n) = fps-shift n f
〈proof 〉

lemma fps-divide-X-power [simp]: a / (fps-X ^ n) = fps-shift n (a:: ′a::division-ring
fps)
〈proof 〉

lemma fps-divide-shift-denom-conv-times-fps-X-power :
fixes f g :: ′a::{semiring-1 ,inverse,uminus} fps
assumes n ≤ subdegree g subdegree g ≤ subdegree f
shows f / fps-shift n g = f / g ∗ fps-X ^ n
〈proof 〉

lemma fps-divide-unit-factor-denom-conv-times-fps-X-power :
fixes f g :: ′a::{semiring-1 ,inverse,uminus} fps
assumes subdegree g ≤ subdegree f
shows f / unit-factor g = f / g ∗ fps-X ^ subdegree g
〈proof 〉

lemma fps-shift-altdef ′:
fixes f :: ′a::{semiring-1 ,inverse,uminus} fps
assumes inverse (1 :: ′a) = 1
shows fps-shift n f = f div fps-X^n
〈proof 〉

lemma fps-shift-altdef :
fps-shift n f = (f :: ′a :: division-ring fps) div fps-X^n
〈proof 〉
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lemma fps-div-fps-X-power-nth ′:
fixes f :: ′a::{semiring-1 ,inverse,uminus} fps
assumes inverse (1 :: ′a) = 1
shows (f div fps-X^n) $ k = f $ (k + n)
〈proof 〉

lemma fps-div-fps-X-power-nth: ((f :: ′a :: division-ring fps) div fps-X^n) $ k = f
$ (k + n)
〈proof 〉

lemma fps-div-fps-X-nth ′:
fixes f :: ′a::{semiring-1 ,inverse,uminus} fps
assumes inverse (1 :: ′a) = 1
shows (f div fps-X) $ k = f $ Suc k
〈proof 〉

lemma fps-div-fps-X-nth: ((f :: ′a :: division-ring fps) div fps-X) $ k = f $ Suc k
〈proof 〉

lemma divide-fps-const ′:
fixes c :: ′a :: {inverse,comm-monoid-add,uminus,mult-zero}
shows f / fps-const c = f ∗ fps-const (inverse c)
〈proof 〉

lemma divide-fps-const [simp]:
fixes c :: ′a :: {comm-semiring-0 ,inverse,uminus}
shows f / fps-const c = fps-const (inverse c) ∗ f
〈proof 〉

lemma fps-const-divide: fps-const (x :: - :: division-ring) / fps-const y = fps-const
(x / y)
〈proof 〉

lemma fps-numeral-divide-divide:
x / numeral b / numeral c = (x / numeral (b ∗ c) :: ′a :: field fps)
〈proof 〉

lemma fps-numeral-mult-divide:
numeral b ∗ x / numeral c = (numeral b / numeral c ∗ x :: ′a :: field fps)
〈proof 〉

lemmas fps-numeral-simps =
fps-numeral-divide-divide fps-numeral-mult-divide inverse-fps-numeral neg-numeral-fps-const

lemma fps-is-left-unit-iff-zeroth-is-left-unit:
fixes f :: ′a :: ring-1 fps
shows (∃ g. 1 = f ∗ g) ←→ (∃ k. 1 = f $0 ∗ k)
〈proof 〉
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lemma fps-is-right-unit-iff-zeroth-is-right-unit:
fixes f :: ′a :: ring-1 fps
shows (∃ g. 1 = g ∗ f ) ←→ (∃ k. 1 = k ∗ f $0 )
〈proof 〉

lemma fps-is-unit-iff [simp]: (f :: ′a :: field fps) dvd 1 ←→ f $ 0 6= 0
〈proof 〉

lemma subdegree-eq-0-left:
fixes f :: ′a::{comm-monoid-add,zero-neq-one,mult-zero} fps
assumes ∃ g. 1 = f ∗ g
shows subdegree f = 0
〈proof 〉

lemma subdegree-eq-0-right:
fixes f :: ′a::{comm-monoid-add,zero-neq-one,mult-zero} fps
assumes ∃ g. 1 = g ∗ f
shows subdegree f = 0
〈proof 〉

lemma subdegree-eq-0 ′ [simp]: (f :: ′a :: field fps) dvd 1 =⇒ subdegree f = 0
〈proof 〉

lemma fps-dvd1-left-trivial-unit-factor :
fixes f :: ′a::{comm-monoid-add, zero-neq-one, mult-zero} fps
assumes ∃ g. 1 = f ∗ g
shows unit-factor f = f
〈proof 〉

lemma fps-dvd1-right-trivial-unit-factor :
fixes f :: ′a::{comm-monoid-add, zero-neq-one, mult-zero} fps
assumes ∃ g. 1 = g ∗ f
shows unit-factor f = f
〈proof 〉

lemma fps-dvd1-trivial-unit-factor :
(f :: ′a::comm-semiring-1 fps) dvd 1 =⇒ unit-factor f = f
〈proof 〉

lemma fps-unit-dvd-left:
fixes f :: ′a :: division-ring fps
assumes f $ 0 6= 0
shows ∃ g. 1 = f ∗ g
〈proof 〉

lemma fps-unit-dvd-right:
fixes f :: ′a :: division-ring fps
assumes f $ 0 6= 0
shows ∃ g. 1 = g ∗ f
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〈proof 〉

lemma fps-unit-dvd [simp]: (f $ 0 :: ′a :: field) 6= 0 =⇒ f dvd g
〈proof 〉

lemma dvd-left-imp-subdegree-le:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
assumes ∃ k. g = f ∗ k g 6= 0
shows subdegree f ≤ subdegree g
〈proof 〉

lemma dvd-right-imp-subdegree-le:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
assumes ∃ k. g = k ∗ f g 6= 0
shows subdegree f ≤ subdegree g
〈proof 〉

lemma dvd-imp-subdegree-le:
f dvd g =⇒ g 6= 0 =⇒ subdegree f ≤ subdegree g
〈proof 〉

lemma subdegree-le-imp-dvd-left-ring1 :
fixes f g :: ′a :: ring-1 fps
assumes ∃ y. f $ subdegree f ∗ y = 1 subdegree f ≤ subdegree g
shows ∃ k. g = f ∗ k
〈proof 〉

lemma subdegree-le-imp-dvd-left-divring:
fixes f g :: ′a :: division-ring fps
assumes f 6= 0 subdegree f ≤ subdegree g
shows ∃ k. g = f ∗ k
〈proof 〉

lemma subdegree-le-imp-dvd-right-ring1 :
fixes f g :: ′a :: ring-1 fps
assumes ∃ x. x ∗ f $ subdegree f = 1 subdegree f ≤ subdegree g
shows ∃ k. g = k ∗ f
〈proof 〉

lemma subdegree-le-imp-dvd-right-divring:
fixes f g :: ′a :: division-ring fps
assumes f 6= 0 subdegree f ≤ subdegree g
shows ∃ k. g = k ∗ f
〈proof 〉

lemma fps-dvd-iff :
assumes (f :: ′a :: field fps) 6= 0 g 6= 0
shows f dvd g ←→ subdegree f ≤ subdegree g
〈proof 〉

150



lemma subdegree-div ′:
fixes p q :: ′a::division-ring fps
assumes ∃ k. p = k ∗ q
shows subdegree (p div q) = subdegree p − subdegree q
〈proof 〉

lemma subdegree-div:
fixes p q :: ′a :: field fps
assumes q dvd p
shows subdegree (p div q) = subdegree p − subdegree q
〈proof 〉

lemma subdegree-div-unit ′:
fixes p q :: ′a :: {ab-group-add,mult-zero,inverse} fps
assumes q $ 0 6= 0 p $ subdegree p ∗ inverse (q $ 0 ) 6= 0
shows subdegree (p div q) = subdegree p
〈proof 〉

lemma subdegree-div-unit ′′:
fixes p q :: ′a :: {ring-no-zero-divisors,inverse} fps
assumes q $ 0 6= 0 inverse (q $ 0 ) 6= 0
shows subdegree (p div q) = subdegree p
〈proof 〉

lemma subdegree-div-unit:
fixes p q :: ′a :: division-ring fps
assumes q $ 0 6= 0
shows subdegree (p div q) = subdegree p
〈proof 〉

instantiation fps :: ({comm-semiring-1 ,inverse,uminus}) modulo
begin

definition fps-mod-def :
f mod g = (if g = 0 then f else

let h = unit-factor g in fps-cutoff (subdegree g) (f ∗ inverse h) ∗ h)

instance 〈proof 〉

end

lemma fps-mod-zero [simp]:
(f :: ′a::{comm-semiring-1 ,inverse,uminus} fps) mod 0 = f
〈proof 〉

lemma fps-mod-eq-zero:
assumes g 6= 0 and subdegree f ≥ subdegree g
shows f mod g = 0
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〈proof 〉

lemma fps-mod-unit [simp]: g$0 6= 0 =⇒ f mod g = 0
〈proof 〉

lemma subdegree-mod:
assumes subdegree (f :: ′a::field fps) < subdegree g
shows subdegree (f mod g) = subdegree f
〈proof 〉

instance fps :: (field) idom-modulo
〈proof 〉

instantiation fps :: (field) normalization-semidom-multiplicative
begin

definition fps-normalize-def [simp]:
normalize f = (if f = 0 then 0 else fps-X ^ subdegree f )

instance 〈proof 〉

end

5.8 Computing reciprocals via Hensel lifting
lemma inverse-fps-hensel-lifting:

fixes F G :: ′a :: field fps and n :: nat
assumes G-eq: fps-cutoff n G = fps-cutoff n (inverse F)
assumes unit: fps-nth F 0 6= 0
shows fps-cutoff (2∗n) (inverse F) = fps-cutoff (2∗n) (G ∗ (2 − F ∗ G))
〈proof 〉

lemma inverse-fps-hensel-lifting ′:
fixes F G :: ′a :: field fps and n :: nat
assumes G-eq: fps-cutoff n G = fps-cutoff n (inverse F)
assumes unit: fps-nth F 0 6= 0
defines P ≡ fps-shift n (F ∗ G − 1 )
shows fps-cutoff (2∗n) (inverse F) = fps-cutoff (2∗n) (G ∗ (1 − fps-X ^ n ∗

P))
〈proof 〉

5.9 Euclidean division
instantiation fps :: (field) euclidean-ring-cancel
begin

definition fps-euclidean-size-def :
euclidean-size f = (if f = 0 then 0 else 2 ^ subdegree f )

instance 〈proof 〉
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end

instance fps :: (field) normalization-euclidean-semiring 〈proof 〉

instantiation fps :: (field) euclidean-ring-gcd
begin
definition fps-gcd-def : (gcd :: ′a fps ⇒ -) = Euclidean-Algorithm.gcd
definition fps-lcm-def : (lcm :: ′a fps ⇒ -) = Euclidean-Algorithm.lcm
definition fps-Gcd-def : (Gcd :: ′a fps set ⇒ -) = Euclidean-Algorithm.Gcd
definition fps-Lcm-def : (Lcm :: ′a fps set ⇒ -) = Euclidean-Algorithm.Lcm
instance 〈proof 〉
end

lemma fps-gcd:
assumes [simp]: f 6= 0 g 6= 0
shows gcd f g = fps-X ^ min (subdegree f ) (subdegree g)
〈proof 〉

lemma fps-gcd-altdef : gcd f g =
(if f = 0 ∧ g = 0 then 0 else
if f = 0 then fps-X ^ subdegree g else
if g = 0 then fps-X ^ subdegree f else

fps-X ^ min (subdegree f ) (subdegree g))
〈proof 〉

lemma fps-lcm:
assumes [simp]: f 6= 0 g 6= 0
shows lcm f g = fps-X ^ max (subdegree f ) (subdegree g)
〈proof 〉

lemma fps-lcm-altdef : lcm f g =
(if f = 0 ∨ g = 0 then 0 else fps-X ^ max (subdegree f ) (subdegree g))
〈proof 〉

lemma fps-Gcd:
assumes A − {0} 6= {}
shows Gcd A = fps-X ^ (INF f∈A−{0}. subdegree f )
〈proof 〉

lemma fps-Gcd-altdef : Gcd A =
(if A ⊆ {0} then 0 else fps-X ^ (INF f∈A−{0}. subdegree f ))
〈proof 〉

lemma fps-Lcm:
assumes A 6= {} 0 /∈ A bdd-above (subdegree‘A)
shows Lcm A = fps-X ^ (SUP f∈A. subdegree f )
〈proof 〉
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lemma fps-Lcm-altdef :
Lcm A =

(if 0 ∈ A ∨ ¬bdd-above (subdegree‘A) then 0 else
if A = {} then 1 else fps-X ^ (SUP f∈A. subdegree f ))

〈proof 〉

5.10 Formal Derivatives
definition fps-deriv f = Abs-fps (λn. of-nat (n + 1 ) ∗ f $ (n + 1 ))

lemma fps-deriv-nth[simp]: fps-deriv f $ n = of-nat (n + 1 ) ∗ f $ (n + 1 )
〈proof 〉

lemma fps-0th-higher-deriv:
(fps-deriv ^^ n) f $ 0 = fact n ∗ f $ n
〈proof 〉

lemma fps-deriv-mult[simp]:
fps-deriv (f ∗ g) = f ∗ fps-deriv g + fps-deriv f ∗ g
〈proof 〉

lemma fps-deriv-fps-X [simp]: fps-deriv fps-X = 1
〈proof 〉

lemma fps-deriv-neg[simp]:
fps-deriv (− (f :: ′a::ring-1 fps)) = − (fps-deriv f )
〈proof 〉

lemma fps-deriv-add[simp]: fps-deriv (f + g) = fps-deriv f + fps-deriv g
〈proof 〉

lemma fps-deriv-sub[simp]:
fps-deriv ((f :: ′a::ring-1 fps) − g) = fps-deriv f − fps-deriv g
〈proof 〉

lemma fps-deriv-const[simp]: fps-deriv (fps-const c) = 0
〈proof 〉

lemma fps-deriv-of-nat [simp]: fps-deriv (of-nat n) = 0
〈proof 〉

lemma fps-deriv-of-int [simp]: fps-deriv (of-int n) = 0
〈proof 〉

lemma fps-deriv-numeral [simp]: fps-deriv (numeral n) = 0
〈proof 〉

lemma fps-deriv-mult-const-left[simp]:
fps-deriv (fps-const c ∗ f ) = fps-const c ∗ fps-deriv f
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〈proof 〉

lemma fps-deriv-linear [simp]:
fps-deriv (fps-const a ∗ f + fps-const b ∗ g) =

fps-const a ∗ fps-deriv f + fps-const b ∗ fps-deriv g
〈proof 〉

lemma fps-deriv-0 [simp]: fps-deriv 0 = 0
〈proof 〉

lemma fps-deriv-1 [simp]: fps-deriv 1 = 0
〈proof 〉

lemma fps-deriv-mult-const-right[simp]:
fps-deriv (f ∗ fps-const c) = fps-deriv f ∗ fps-const c
〈proof 〉

lemma fps-deriv-sum:
fps-deriv (sum f S) = sum (λi. fps-deriv (f i)) S
〈proof 〉

lemma fps-deriv-eq-0-iff [simp]:
fps-deriv f = 0 ←→ f = fps-const (f $0 :: ′a::{semiring-no-zero-divisors,semiring-char-0})
〈proof 〉

lemma fps-deriv-eq-iff :
fixes f g :: ′a::{ring-1-no-zero-divisors,semiring-char-0} fps
shows fps-deriv f = fps-deriv g ←→ (f = fps-const(f $0 − g$0 ) + g)
〈proof 〉

lemma fps-deriv-eq-iff-ex:
fixes f g :: ′a::{ring-1-no-zero-divisors,semiring-char-0} fps
shows (fps-deriv f = fps-deriv g) ←→ (∃ c. f = fps-const c + g)
〈proof 〉

fun fps-nth-deriv :: nat ⇒ ′a::semiring-1 fps ⇒ ′a fps
where

fps-nth-deriv 0 f = f
| fps-nth-deriv (Suc n) f = fps-nth-deriv n (fps-deriv f )

lemma fps-nth-deriv-commute: fps-nth-deriv (Suc n) f = fps-deriv (fps-nth-deriv
n f )
〈proof 〉

lemma fps-nth-deriv-linear [simp]:
fps-nth-deriv n (fps-const a ∗ f + fps-const b ∗ g) =

fps-const a ∗ fps-nth-deriv n f + fps-const b ∗ fps-nth-deriv n g
〈proof 〉
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lemma fps-nth-deriv-neg[simp]:
fps-nth-deriv n (− (f :: ′a::ring-1 fps)) = − (fps-nth-deriv n f )
〈proof 〉

lemma fps-nth-deriv-add[simp]:
fps-nth-deriv n ((f :: ′a::ring-1 fps) + g) = fps-nth-deriv n f + fps-nth-deriv n g
〈proof 〉

lemma fps-nth-deriv-sub[simp]:
fps-nth-deriv n ((f :: ′a::ring-1 fps) − g) = fps-nth-deriv n f − fps-nth-deriv n g
〈proof 〉

lemma fps-nth-deriv-0 [simp]: fps-nth-deriv n 0 = 0
〈proof 〉

lemma fps-nth-deriv-1 [simp]: fps-nth-deriv n 1 = (if n = 0 then 1 else 0 )
〈proof 〉

lemma fps-nth-deriv-const[simp]:
fps-nth-deriv n (fps-const c) = (if n = 0 then fps-const c else 0 )
〈proof 〉

lemma fps-nth-deriv-mult-const-left[simp]:
fps-nth-deriv n (fps-const c ∗ f ) = fps-const c ∗ fps-nth-deriv n f
〈proof 〉

lemma fps-nth-deriv-mult-const-right[simp]:
fps-nth-deriv n (f ∗ fps-const c) = fps-nth-deriv n f ∗ fps-const c
〈proof 〉

lemma fps-nth-deriv-sum:
fps-nth-deriv n (sum f S) = sum (λi. fps-nth-deriv n (f i :: ′a::ring-1 fps)) S
〈proof 〉

lemma fps-deriv-maclauren-0 :
(fps-nth-deriv k (f :: ′a::comm-semiring-1 fps)) $ 0 = of-nat (fact k) ∗ f $ k
〈proof 〉

lemma fps-deriv-lr-inverse:
fixes x y :: ′a::ring-1
assumes x ∗ f $0 = 1 f $0 ∗ y = 1
— These assumptions imply x equals y, but no need to assume that.
shows fps-deriv (fps-left-inverse f x) =

− fps-left-inverse f x ∗ fps-deriv f ∗ fps-left-inverse f x
and fps-deriv (fps-right-inverse f y) =

− fps-right-inverse f y ∗ fps-deriv f ∗ fps-right-inverse f y
〈proof 〉
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lemma fps-deriv-lr-inverse-comm:
fixes x :: ′a::comm-ring-1
assumes x ∗ f $0 = 1
shows fps-deriv (fps-left-inverse f x) = − fps-deriv f ∗ (fps-left-inverse f x)2
and fps-deriv (fps-right-inverse f x) = − fps-deriv f ∗ (fps-right-inverse f x)2
〈proof 〉

lemma fps-inverse-deriv-divring:
fixes a :: ′a::division-ring fps
assumes a$0 6= 0
shows fps-deriv (inverse a) = − inverse a ∗ fps-deriv a ∗ inverse a
〈proof 〉

lemma fps-inverse-deriv:
fixes a :: ′a::field fps
assumes a$0 6= 0
shows fps-deriv (inverse a) = − fps-deriv a ∗ (inverse a)2
〈proof 〉

lemma fps-inverse-deriv ′:
fixes a :: ′a::field fps
assumes a0 : a $ 0 6= 0
shows fps-deriv (inverse a) = − fps-deriv a / a2

〈proof 〉

lemma fps-divide-deriv:
assumes b dvd (a :: ′a :: field fps)
shows fps-deriv (a / b) = (fps-deriv a ∗ b − a ∗ fps-deriv b) / b^2
〈proof 〉

lemma fps-nth-deriv-fps-X [simp]: fps-nth-deriv n fps-X = (if n = 0 then fps-X else
if n=1 then 1 else 0 )
〈proof 〉

5.11 Powers
lemma fps-power-zeroth: (a^n) $ 0 = (a$0 )^n
〈proof 〉

lemma fps-power-zeroth-eq-one: a$0 = 1 =⇒ a^n $ 0 = 1
〈proof 〉

lemma fps-power-first:
fixes a :: ′a::comm-semiring-1 fps
shows (a^n) $ 1 = of-nat n ∗ (a$0 )^(n−1 ) ∗ a$1
〈proof 〉

lemma fps-power-first-eq: a $ 0 = 1 =⇒ a^n $ 1 = of-nat n ∗ a$1
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〈proof 〉

lemma fps-power-first-eq ′:
assumes a $ 1 = 1
shows a^n $ 1 = of-nat n ∗ (a$0 )^(n−1 )
〈proof 〉

lemmas startsby-one-power = fps-power-zeroth-eq-one

lemma startsby-zero-power : a $ 0 = 0 =⇒ n > 0 =⇒ a^n $0 = 0
〈proof 〉

lemma startsby-power : a $0 = v =⇒ a^n $0 = v^n
〈proof 〉

lemma startsby-nonzero-power :
fixes a :: ′a::semiring-1-no-zero-divisors fps
shows a $ 0 6= 0 =⇒ a^n $ 0 6= 0
〈proof 〉

lemma startsby-zero-power-iff [simp]:
a^n $0 = (0 :: ′a::semiring-1-no-zero-divisors) ←→ n 6= 0 ∧ a$0 = 0
〈proof 〉

lemma startsby-zero-power-prefix:
assumes a0 : a $ 0 = 0
shows ∀n < k. a ^ k $ n = 0
〈proof 〉

lemma startsby-zero-sum-depends:
assumes a0 : a $0 = 0

and kn: n ≥ k
shows sum (λi. (a ^ i)$k) {0 .. n} = sum (λi. (a ^ i)$k) {0 .. k}
〈proof 〉

lemma startsby-zero-power-nth-same:
assumes a0 : a$0 = 0
shows a^n $ n = (a$1 ) ^ n
〈proof 〉

lemma fps-lr-inverse-power :
fixes a :: ′a::ring-1 fps
assumes x ∗ a$0 = 1 a$0 ∗ x = 1
shows fps-left-inverse (a^n) (x^n) = fps-left-inverse a x ^ n
and fps-right-inverse (a^n) (x^n) = fps-right-inverse a x ^ n
〈proof 〉

lemma fps-inverse-power :
fixes a :: ′a::division-ring fps
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shows inverse (a^n) = inverse a ^ n
〈proof 〉

lemma fps-deriv-power ′:
fixes a :: ′a::comm-semiring-1 fps
shows fps-deriv (a ^ n) = (of-nat n) ∗ fps-deriv a ∗ a ^ (n − 1 )
〈proof 〉

lemma fps-deriv-power :
fixes a :: ′a::comm-semiring-1 fps
shows fps-deriv (a ^ n) = fps-const (of-nat n) ∗ fps-deriv a ∗ a ^ (n − 1 )
〈proof 〉

5.12 Finite and infinite products
lemma fps-prod-nth ′:

assumes finite A
shows fps-nth (

∏
x∈A. f x) n = (

∑
X∈multisets-of-size A n.

∏
x∈A. fps-nth

(f x) (count X x))
〈proof 〉

theorem tendsto-prod-fps:
fixes f :: nat ⇒ ′a :: {idom, t2-space} fps
assumes [simp]:

∧
k. f k 6= 0

assumes g:
∧

n k. k > g n =⇒ subdegree (f k − 1 ) > n
defines P ≡ Abs-fps (λn. (

∑
X∈multisets-of-size {..g n} n.

∏
i≤g n. fps-nth (f

i) (count X i)))
shows (λn.

∏
k≤n. f k) −−−−→ P

〈proof 〉

5.13 Integration
definition fps-integral :: ′a::{semiring-1 ,inverse} fps ⇒ ′a ⇒ ′a fps

where fps-integral a a0 =
Abs-fps (λn. if n=0 then a0 else inverse (of-nat n) ∗ a$(n − 1 ))

abbreviation fps-integral0 a ≡ fps-integral a 0

lemma fps-integral-nth-0-Suc [simp]:
fixes a :: ′a::{semiring-1 ,inverse} fps
shows fps-integral a a0 $ 0 = a0
and fps-integral a a0 $ Suc n = inverse (of-nat (Suc n)) ∗ a $ n
〈proof 〉

lemma fps-integral-conv-plus-const:
fps-integral a a0 = fps-integral a 0 + fps-const a0
〈proof 〉

lemma fps-deriv-fps-integral:
fixes a :: ′a::{division-ring,ring-char-0} fps
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shows fps-deriv (fps-integral a a0 ) = a
〈proof 〉

lemma fps-integral0-deriv:
fixes a :: ′a::{division-ring,ring-char-0} fps
shows fps-integral0 (fps-deriv a) = a − fps-const (a$0 )
〈proof 〉

lemma fps-integral-deriv:
fixes a :: ′a::{division-ring,ring-char-0} fps
shows fps-integral (fps-deriv a) (a$0 ) = a
〈proof 〉

lemma fps-integral0-zero:
fps-integral0 (0 :: ′a::{semiring-1 ,inverse} fps) = 0
〈proof 〉

lemma fps-integral0-fps-const ′:
fixes c :: ′a::{semiring-1 ,inverse}
assumes inverse (1 :: ′a) = 1
shows fps-integral0 (fps-const c) = fps-const c ∗ fps-X
〈proof 〉

lemma fps-integral0-fps-const:
fixes c :: ′a::division-ring
shows fps-integral0 (fps-const c) = fps-const c ∗ fps-X
〈proof 〉

lemma fps-integral0-one ′:
assumes inverse (1 :: ′a::{semiring-1 ,inverse}) = 1
shows fps-integral0 (1 :: ′a fps) = fps-X
〈proof 〉

lemma fps-integral0-one:
fps-integral0 (1 :: ′a::division-ring fps) = fps-X
〈proof 〉

lemma fps-integral0-fps-const-mult-left:
fixes a :: ′a::division-ring fps
shows fps-integral0 (fps-const c ∗ a) = fps-const c ∗ fps-integral0 a
〈proof 〉

lemma fps-integral0-fps-const-mult-right:
fixes a :: ′a::{semiring-1 ,inverse} fps
shows fps-integral0 (a ∗ fps-const c) = fps-integral0 a ∗ fps-const c
〈proof 〉

lemma fps-integral0-neg:
fixes a :: ′a::{ring-1 ,inverse} fps
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shows fps-integral0 (−a) = − fps-integral0 a
〈proof 〉

lemma fps-integral0-add:
fps-integral0 (a+b) = fps-integral0 a + fps-integral0 b
〈proof 〉

lemma fps-integral0-linear :
fixes a b :: ′a::division-ring
shows fps-integral0 (fps-const a ∗ f + fps-const b ∗ g) =

fps-const a ∗ fps-integral0 f + fps-const b ∗ fps-integral0 g
〈proof 〉

lemma fps-integral0-linear2 :
fps-integral0 (f ∗ fps-const a + g ∗ fps-const b) =

fps-integral0 f ∗ fps-const a + fps-integral0 g ∗ fps-const b
〈proof 〉

lemma fps-integral-linear :
fixes a b a0 b0 :: ′a::division-ring
shows
fps-integral (fps-const a ∗ f + fps-const b ∗ g) (a∗a0 + b∗b0 ) =

fps-const a ∗ fps-integral f a0 + fps-const b ∗ fps-integral g b0
〈proof 〉

lemma fps-integral0-sub:
fixes a b :: ′a::{ring-1 ,inverse} fps
shows fps-integral0 (a−b) = fps-integral0 a − fps-integral0 b
〈proof 〉

lemma fps-integral0-of-nat:
fps-integral0 (of-nat n :: ′a::division-ring fps) = of-nat n ∗ fps-X
〈proof 〉

lemma fps-integral0-sum:
fps-integral0 (sum f S) = sum (λi. fps-integral0 (f i)) S
〈proof 〉

lemma fps-integral0-by-parts:
fixes a b :: ′a::{division-ring,ring-char-0} fps
shows

fps-integral0 (a ∗ b) =
a ∗ fps-integral0 b − fps-integral0 (fps-deriv a ∗ fps-integral0 b)

〈proof 〉

lemma fps-integral0-fps-X :
fps-integral0 (fps-X :: ′a::{semiring-1 ,inverse} fps) =

fps-const (inverse (of-nat 2 )) ∗ fps-X2

〈proof 〉
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lemma fps-integral0-fps-X-power :
fps-integral0 ((fps-X :: ′a::{semiring-1 ,inverse} fps) ^ n) =

fps-const (inverse (of-nat (Suc n))) ∗ fps-X ^ Suc n
〈proof 〉

5.14 Composition
definition fps-compose :: ′a::semiring-1 fps ⇒ ′a fps ⇒ ′a fps (infixl ‹oo› 55 )

where a oo b = Abs-fps (λn. sum (λi. a$i ∗ (b^i$n)) {0 ..n})

lemma fps-compose-nth: (a oo b)$n = sum (λi. a$i ∗ (b^i$n)) {0 ..n}
〈proof 〉

lemma fps-compose-nth-0 [simp]: (f oo g) $ 0 = f $ 0
〈proof 〉

lemma fps-compose-fps-X [simp]: a oo fps-X = (a :: ′a::comm-ring-1 fps)
〈proof 〉

lemma fps-const-compose[simp]: fps-const (a:: ′a::comm-ring-1 ) oo b = fps-const a
〈proof 〉

lemma numeral-compose[simp]: (numeral k :: ′a::comm-ring-1 fps) oo b = numeral
k
〈proof 〉

lemma neg-numeral-compose[simp]: (− numeral k :: ′a::comm-ring-1 fps) oo b =
− numeral k
〈proof 〉

lemma fps-X-fps-compose-startby0 [simp]: a$0 = 0 =⇒ fps-X oo a = (a :: ′a::comm-ring-1
fps)
〈proof 〉

5.15 Rules from Herbert Wilf’s Generatingfunctionology
5.15.1 Rule 1
lemma fps-power-mult-eq-shift:

fps-X^Suc k ∗ Abs-fps (λn. a (n + Suc k)) =
Abs-fps a − sum (λi. fps-const (a i :: ′a::comm-ring-1 ) ∗ fps-X^i) {0 .. k}

(is ?lhs = ?rhs)
〈proof 〉

5.15.2 Rule 2
definition fps-XD = (∗) fps-X ◦ fps-deriv
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lemma fps-XD-add[simp]:fps-XD (a + b) = fps-XD a + fps-XD (b :: ′a::comm-ring-1
fps)
〈proof 〉

lemma fps-XD-mult-const[simp]:fps-XD (fps-const (c:: ′a::comm-ring-1 ) ∗ a) =
fps-const c ∗ fps-XD a
〈proof 〉

lemma fps-XD-linear [simp]: fps-XD (fps-const c ∗ a + fps-const d ∗ b) =
fps-const c ∗ fps-XD a + fps-const d ∗ fps-XD (b :: ′a::comm-ring-1 fps)
〈proof 〉

lemma fps-XDN-linear :
(fps-XD ^^ n) (fps-const c ∗ a + fps-const d ∗ b) =
fps-const c ∗ (fps-XD ^^ n) a + fps-const d ∗ (fps-XD ^^ n) (b :: ′a::comm-ring-1

fps)
〈proof 〉

lemma fps-mult-fps-X-deriv-shift: fps-X∗ fps-deriv a = Abs-fps (λn. of-nat n∗ a$n)
〈proof 〉

lemma fps-mult-fps-XD-shift:
(fps-XD ^^ k) (a :: ′a::comm-ring-1 fps) = Abs-fps (λn. (of-nat n ^ k) ∗ a$n)
〈proof 〉

5.15.3 Rule 3

Rule 3 is trivial and is given by fps_times_def.

5.15.4 Rule 5 — summation and “division” by 1−X

lemma fps-divide-fps-X-minus1-sum-lemma:
a = ((1 :: ′a::ring-1 fps) − fps-X) ∗ Abs-fps (λn. sum (λi. a $ i) {0 ..n})
〈proof 〉

lemma fps-divide-fps-X-minus1-sum-ring1 :
assumes inverse 1 = (1 :: ′a::{ring-1 ,inverse})
shows a /((1 :: ′a fps) − fps-X) = Abs-fps (λn. sum (λi. a $ i) {0 ..n})
〈proof 〉

lemma fps-divide-fps-X-minus1-sum:
a /((1 :: ′a::division-ring fps) − fps-X) = Abs-fps (λn. sum (λi. a $ i) {0 ..n})
〈proof 〉

5.15.5 Rule 4 in its more general form

This generalizes Rule 3 for an arbitrary finite product of FPS, also the
relevant instance of powers of a FPS.
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definition natpermute n k = {l :: nat list. length l = k ∧ sum-list l = n}

lemma natlist-trivial-1 : natpermute n 1 = {[n]}
〈proof 〉

lemma natlist-trivial-Suc0 [simp]: natpermute n (Suc 0 ) = {[n]}
〈proof 〉

lemma append-natpermute-less-eq:
assumes xs @ ys ∈ natpermute n k
shows sum-list xs ≤ n

and sum-list ys ≤ n
〈proof 〉

lemma natpermute-split:
assumes h ≤ k
shows natpermute n k =
(
⋃

m ∈{0 ..n}. {l1 @ l2 |l1 l2 . l1 ∈ natpermute m h ∧ l2 ∈ natpermute (n −
m) (k − h)})
(is ?L = ?R is - = (

⋃
m ∈{0 ..n}. ?S m))

〈proof 〉

lemma natpermute-0 : natpermute n 0 = (if n = 0 then {[]} else {})
〈proof 〉

lemma natpermute-0 ′[simp]: natpermute 0 k = (if k = 0 then {[]} else {replicate
k 0})
〈proof 〉

lemma natpermute-finite: finite (natpermute n k)
〈proof 〉

lemma natpermute-contain-maximal:
{xs ∈ natpermute n (k + 1 ). n ∈ set xs} = (

⋃
i∈{0 .. k}. {(replicate (k + 1 ) 0 )

[i:=n]})
(is ?A = ?B)
〈proof 〉

The general form.
lemma fps-prod-nth:

fixes m :: nat
and a :: nat ⇒ ′a::comm-ring-1 fps

shows (prod a {0 .. m}) $ n =
sum (λv. prod (λj. (a j) $ (v!j)) {0 ..m}) (natpermute n (m+1 ))

(is ?P m n)
〈proof 〉

The special form for powers.
lemma fps-power-nth-Suc:
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fixes m :: nat
and a :: ′a::comm-ring-1 fps

shows (a ^ Suc m)$n = sum (λv. prod (λj. a $ (v!j)) {0 ..m}) (natpermute n
(m+1 ))
〈proof 〉

lemma fps-power-nth:
fixes m :: nat

and a :: ′a::comm-ring-1 fps
shows (a ^m)$n =
(if m=0 then 1$n else sum (λv. prod (λj. a $ (v!j)) {0 ..m − 1}) (natpermute

n m))
〈proof 〉

lemmas fps-nth-power-0 = fps-power-zeroth

lemma natpermute-max-card:
assumes n0 : n 6= 0
shows card {xs ∈ natpermute n (k + 1 ). n ∈ set xs} = k + 1
〈proof 〉

lemma fps-power-Suc-nth:
fixes f :: ′a :: comm-ring-1 fps
assumes k: k > 0
shows (f ^ Suc m) $ k =

of-nat (Suc m) ∗ (f $ k ∗ (f $ 0 ) ^ m) +
(
∑

v∈{v∈natpermute k (m+1 ). k /∈ set v}.
∏

j = 0 ..m. f $ v ! j)
〈proof 〉

lemma fps-power-Suc-eqD:
fixes f g :: ′a :: {idom,semiring-char-0} fps
assumes f ^ Suc m = g ^ Suc m f $ 0 = g $ 0 f $ 0 6= 0
shows f = g
〈proof 〉

lemma fps-power-Suc-eqD ′:
fixes f g :: ′a :: {idom,semiring-char-0} fps
assumes f ^ Suc m = g ^ Suc m f $ subdegree f = g $ subdegree g
shows f = g
〈proof 〉

lemma fps-power-eqD ′:
fixes f g :: ′a :: {idom,semiring-char-0} fps
assumes f ^ m = g ^ m f $ subdegree f = g $ subdegree g m > 0
shows f = g
〈proof 〉

lemma fps-power-eqD:
fixes f g :: ′a :: {idom,semiring-char-0} fps
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assumes f ^ m = g ^ m f $ 0 = g $ 0 f $ 0 6= 0 m > 0
shows f = g
〈proof 〉

lemma fps-compose-inj-right:
assumes a0 : a$0 = (0 :: ′a::idom)

and a1 : a$1 6= 0
shows (b oo a = c oo a) ←→ b = c
(is ?lhs ←→?rhs)
〈proof 〉

5.16 Radicals
declare prod.cong [fundef-cong]

function radical :: (nat ⇒ ′a ⇒ ′a) ⇒ nat ⇒ ′a::field fps ⇒ nat ⇒ ′a
where

radical r 0 a 0 = 1
| radical r 0 a (Suc n) = 0
| radical r (Suc k) a 0 = r (Suc k) (a$0 )
| radical r (Suc k) a (Suc n) =

(a$ Suc n − sum (λxs. prod (λj. radical r (Suc k) a (xs ! j)) {0 ..k})
{xs. xs ∈ natpermute (Suc n) (Suc k) ∧ Suc n /∈ set xs}) /

(of-nat (Suc k) ∗ (radical r (Suc k) a 0 )^k)
〈proof 〉

termination radical
〈proof 〉

definition fps-radical r n a = Abs-fps (radical r n a)

lemma radical-0 [simp]:
∧

n. 0 < n =⇒ radical r 0 a n = 0
〈proof 〉

lemma fps-radical0 [simp]: fps-radical r 0 a = 1
〈proof 〉

lemma fps-radical-nth-0 [simp]: fps-radical r n a $ 0 = (if n = 0 then 1 else r n
(a$0 ))
〈proof 〉

lemma fps-radical-power-nth[simp]:
assumes r : (r k (a$0 )) ^ k = a$0
shows fps-radical r k a ^ k $ 0 = (if k = 0 then 1 else a$0 )
〈proof 〉

lemma power-radical:
fixes a:: ′a::field-char-0 fps
assumes a0 : a$0 6= 0
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shows (r (Suc k) (a$0 )) ^ Suc k = a$0 ←→ (fps-radical r (Suc k) a) ^ (Suc k)
= a

(is ?lhs ←→ ?rhs)
〈proof 〉

lemma radical-unique:
assumes r0 : (r (Suc k) (b$0 )) ^ Suc k = b$0

and a0 : r (Suc k) (b$0 :: ′a::field-char-0 ) = a$0
and b0 : b$0 6= 0

shows a^(Suc k) = b ←→ a = fps-radical r (Suc k) b
(is ?lhs ←→ ?rhs is - ←→ a = ?r)

〈proof 〉

lemma radical-power :
assumes r0 : r (Suc k) ((a$0 ) ^ Suc k) = a$0

and a0 : (a$0 :: ′a::field-char-0 ) 6= 0
shows (fps-radical r (Suc k) (a ^ Suc k)) = a
〈proof 〉

lemma fps-deriv-radical ′:
fixes a :: ′a::field-char-0 fps
assumes r0 : (r (Suc k) (a$0 )) ^ Suc k = a$0

and a0 : a$0 6= 0
shows fps-deriv (fps-radical r (Suc k) a) =

fps-deriv a / ((of-nat (Suc k)) ∗ (fps-radical r (Suc k) a) ^ k)
〈proof 〉

lemma fps-deriv-radical:
fixes a :: ′a::field-char-0 fps
assumes r0 : (r (Suc k) (a$0 )) ^ Suc k = a$0

and a0 : a$0 6= 0
shows fps-deriv (fps-radical r (Suc k) a) =

fps-deriv a / (fps-const (of-nat (Suc k)) ∗ (fps-radical r (Suc k) a) ^ k)
〈proof 〉

lemma radical-mult-distrib:
fixes a :: ′a::field-char-0 fps
assumes k: k > 0

and ra0 : r k (a $ 0 ) ^ k = a $ 0
and rb0 : r k (b $ 0 ) ^ k = b $ 0
and a0 : a $ 0 6= 0
and b0 : b $ 0 6= 0

shows r k ((a ∗ b) $ 0 ) = r k (a $ 0 ) ∗ r k (b $ 0 ) ←→
fps-radical r k (a ∗ b) = fps-radical r k a ∗ fps-radical r k b
(is ?lhs ←→ ?rhs)

〈proof 〉
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lemma radical-divide:
fixes a :: ′a::field-char-0 fps
assumes kp: k > 0

and ra0 : (r k (a $ 0 )) ^ k = a $ 0
and rb0 : (r k (b $ 0 )) ^ k = b $ 0
and a0 : a$0 6= 0
and b0 : b$0 6= 0

shows r k ((a $ 0 ) / (b$0 )) = r k (a$0 ) / r k (b $ 0 ) ←→
fps-radical r k (a/b) = fps-radical r k a / fps-radical r k b

(is ?lhs = ?rhs)
〈proof 〉

lemma radical-inverse:
fixes a :: ′a::field-char-0 fps
assumes k: k > 0

and ra0 : r k (a $ 0 ) ^ k = a $ 0
and r1 : (r k 1 )^k = 1
and a0 : a$0 6= 0

shows r k (inverse (a $ 0 )) = r k 1 / (r k (a $ 0 )) ←→
fps-radical r k (inverse a) = fps-radical r k 1 / fps-radical r k a
〈proof 〉

5.17 Chain rule
lemma fps-compose-deriv:

fixes a :: ′a::idom fps
assumes b0 : b$0 = 0
shows fps-deriv (a oo b) = ((fps-deriv a) oo b) ∗ fps-deriv b
〈proof 〉

lemma fps-poly-sum-fps-X :
assumes ∀ i > n. a$i = 0
shows a = sum (λi. fps-const (a$i) ∗ fps-X^i) {0 ..n} (is a = ?r)
〈proof 〉

5.18 Compositional inverses
fun compinv :: ′a fps ⇒ nat ⇒ ′a::field
where

compinv a 0 = fps-X$0
| compinv a (Suc n) =

(fps-X$ Suc n − sum (λi. (compinv a i) ∗ (a^i)$Suc n) {0 .. n}) / (a$1 ) ^
Suc n

definition fps-inv a = Abs-fps (compinv a)

lemma fps-inv:
assumes a0 : a$0 = 0

and a1 : a$1 6= 0
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shows fps-inv a oo a = fps-X
〈proof 〉

fun gcompinv :: ′a fps ⇒ ′a fps ⇒ nat ⇒ ′a::field
where

gcompinv b a 0 = b$0
| gcompinv b a (Suc n) =

(b$ Suc n − sum (λi. (gcompinv b a i) ∗ (a^i)$Suc n) {0 .. n}) / (a$1 ) ^ Suc
n

definition fps-ginv b a = Abs-fps (gcompinv b a)

lemma fps-ginv:
assumes a0 : a$0 = 0

and a1 : a$1 6= 0
shows fps-ginv b a oo a = b
〈proof 〉

lemma fps-inv-ginv: fps-inv = fps-ginv fps-X
〈proof 〉

lemma fps-compose-1 [simp]: 1 oo a = 1
〈proof 〉

lemma fps-compose-0 [simp]: 0 oo a = 0
〈proof 〉

lemma fps-compose-0-right[simp]: a oo 0 = fps-const (a $ 0 )
〈proof 〉

lemma fps-compose-add-distrib: (a + b) oo c = (a oo c) + (b oo c)
〈proof 〉

lemma fps-compose-sum-distrib: (sum f S) oo a = sum (λi. f i oo a) S
〈proof 〉

lemma convolution-eq:
sum (λi. a (i :: nat) ∗ b (n − i)) {0 .. n} =

sum (λ(i,j). a i ∗ b j) {(i,j). i ≤ n ∧ j ≤ n ∧ i + j = n}
〈proof 〉

lemma product-composition-lemma:
assumes c0 : c$0 = (0 :: ′a::idom)

and d0 : d$0 = 0
shows ((a oo c) ∗ (b oo d))$n =

sum (λ(k,m). a$k ∗ b$m ∗ (c^k ∗ d^m) $ n) {(k,m). k + m ≤ n} (is ?l = ?r)
〈proof 〉
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lemma sum-pair-less-iff :
sum (λ((k::nat),m). a k ∗ b m ∗ c (k + m)) {(k,m). k + m ≤ n} =

sum (λs. sum (λi. a i ∗ b (s − i) ∗ c s) {0 ..s}) {0 ..n}
(is ?l = ?r)
〈proof 〉

lemma fps-compose-mult-distrib-lemma:
assumes c0 : c$0 = (0 :: ′a::idom)
shows ((a oo c) ∗ (b oo c))$n = sum (λs. sum (λi. a$i ∗ b$(s − i) ∗ (c^s) $ n)
{0 ..s}) {0 ..n}
〈proof 〉

lemma fps-compose-mult-distrib:
assumes c0 : c $ 0 = (0 :: ′a::idom)
shows (a ∗ b) oo c = (a oo c) ∗ (b oo c)
〈proof 〉

lemma fps-compose-prod-distrib:
assumes c0 : c$0 = (0 :: ′a::idom)
shows prod a S oo c = prod (λk. a k oo c) S
〈proof 〉

lemma fps-compose-divide:
assumes [simp]: g dvd f h $ 0 = 0
shows fps-compose f h = fps-compose (f / g :: ′a :: field fps) h ∗ fps-compose

g h
〈proof 〉

lemma fps-compose-divide-distrib:
assumes g dvd f h $ 0 = 0 fps-compose g h 6= 0
shows fps-compose (f / g :: ′a :: field fps) h = fps-compose f h / fps-compose

g h
〈proof 〉

lemma fps-compose-power :
assumes c0 : c$0 = (0 :: ′a::idom)
shows (a oo c)^n = a^n oo c
〈proof 〉

lemma fps-compose-uminus: − (a:: ′a::ring-1 fps) oo c = − (a oo c)
〈proof 〉

lemma fps-compose-sub-distrib: (a − b) oo (c:: ′a::ring-1 fps) = (a oo c) − (b oo
c)
〈proof 〉

lemma fps-X-fps-compose: fps-X oo a = Abs-fps (λn. if n = 0 then (0 :: ′a::comm-ring-1 )
else a$n)
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〈proof 〉

lemma fps-compose-eq-0-iff :
fixes F G :: ′a :: idom fps
assumes fps-nth G 0 = 0
shows fps-compose F G = 0 ←→ F = 0 ∨ (G = 0 ∧ fps-nth F 0 = 0 )
〈proof 〉

lemma subdegree-fps-compose [simp]:
fixes F G :: ′a :: idom fps
assumes [simp]: fps-nth G 0 = 0
shows subdegree (fps-compose F G) = subdegree F ∗ subdegree G
〈proof 〉

lemma fps-inverse-compose:
assumes b0 : (b$0 :: ′a::field) = 0

and a0 : a$0 6= 0
shows inverse a oo b = inverse (a oo b)
〈proof 〉

lemma fps-divide-compose:
assumes c0 : (c$0 :: ′a::field) = 0

and b0 : b$0 6= 0
shows (a/b) oo c = (a oo c) / (b oo c)
〈proof 〉

lemma gp:
assumes a0 : a$0 = (0 :: ′a::field)
shows (Abs-fps (λn. 1 )) oo a = 1/(1 − a)
(is ?one oo a = -)

〈proof 〉

lemma fps-compose-radical:
assumes b0 : b$0 = (0 :: ′a::field-char-0 )

and ra0 : r (Suc k) (a$0 ) ^ Suc k = a$0
and a0 : a$0 6= 0

shows fps-radical r (Suc k) a oo b = fps-radical r (Suc k) (a oo b)
〈proof 〉

lemma fps-const-mult-apply-left: fps-const c ∗ (a oo b) = (fps-const c ∗ a) oo b
〈proof 〉

lemma fps-const-mult-apply-right:
(a oo b) ∗ fps-const (c:: ′a::comm-semiring-1 ) = (fps-const c ∗ a) oo b
〈proof 〉

lemma fps-compose-assoc:
assumes c0 : c$0 = (0 :: ′a::idom)

and b0 : b$0 = 0
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shows a oo (b oo c) = a oo b oo c (is ?l = ?r)
〈proof 〉

lemma fps-X-power-compose:
assumes a0 : a$0=0
shows fps-X^k oo a = (a:: ′a::idom fps)^k
(is ?l = ?r)
〈proof 〉

lemma fps-inv-right:
assumes a0 : a$0 = 0

and a1 : a$1 6= 0
shows a oo fps-inv a = fps-X
〈proof 〉

lemma fps-inv-deriv:
assumes a0 : a$0 = (0 :: ′a::field)

and a1 : a$1 6= 0
shows fps-deriv (fps-inv a) = inverse (fps-deriv a oo fps-inv a)
〈proof 〉

lemma fps-inv-idempotent:
assumes a0 : a$0 = 0

and a1 : a$1 6= 0
shows fps-inv (fps-inv a) = a
〈proof 〉

lemma fps-ginv-ginv:
assumes a0 : a$0 = 0

and a1 : a$1 6= 0
and c0 : c$0 = 0
and c1 : c$1 6= 0

shows fps-ginv b (fps-ginv c a) = b oo a oo fps-inv c
〈proof 〉

lemma fps-ginv-deriv:
assumes a0 :a$0 = (0 :: ′a::field)

and a1 : a$1 6= 0
shows fps-deriv (fps-ginv b a) = (fps-deriv b / fps-deriv a) oo fps-ginv fps-X a
〈proof 〉

lemma fps-compose-linear :
fps-compose (f :: ′a :: comm-ring-1 fps) (fps-const c ∗ fps-X) = Abs-fps (λn. c^n
∗ f $ n)
〈proof 〉

lemma fps-compose-uminus ′:
fps-compose f (−fps-X :: ′a :: comm-ring-1 fps) = Abs-fps (λn. (−1 )^n ∗ f $ n)
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〈proof 〉
lemma fps-nth-compose-linear [simp]:

fixes f :: ′a :: comm-ring-1 fps
shows fps-nth (fps-compose f (fps-const c ∗ fps-X)) n = c ^ n ∗ fps-nth f n
〈proof 〉

5.19 Elementary series
5.19.1 Exponential series
definition fps-exp x = Abs-fps (λn. x^n / of-nat (fact n))

lemma fps-exp-deriv[simp]: fps-deriv (fps-exp a) = fps-const (a:: ′a::field-char-0 ) ∗
fps-exp a
(is ?l = ?r)
〈proof 〉

lemma fps-exp-unique-ODE :
fps-deriv a = fps-const c ∗ a ←→ a = fps-const (a$0 ) ∗ fps-exp (c:: ′a::field-char-0 )
(is ?lhs ←→ ?rhs)
〈proof 〉

lemma fps-exp-add-mult: fps-exp (a + b) = fps-exp (a:: ′a::field-char-0 ) ∗ fps-exp
b (is ?l = ?r)
〈proof 〉

lemma fps-exp-nth[simp]: fps-exp a $ n = a^n / of-nat (fact n)
〈proof 〉

lemma fps-exp-0 [simp]: fps-exp (0 :: ′a::field) = 1
〈proof 〉

lemma fps-exp-neg: fps-exp (− a) = inverse (fps-exp (a:: ′a::field-char-0 ))
〈proof 〉

lemma fps-exp-nth-deriv[simp]:
fps-nth-deriv n (fps-exp (a:: ′a::field-char-0 )) = (fps-const a)^n ∗ (fps-exp a)
〈proof 〉

lemma fps-X-compose-fps-exp[simp]: fps-X oo fps-exp (a:: ′a::field) = fps-exp a −
1
〈proof 〉

lemma fps-inv-fps-exp-compose:
assumes a: a 6= 0
shows fps-inv (fps-exp a − 1 ) oo (fps-exp a − 1 ) = fps-X

and (fps-exp a − 1 ) oo fps-inv (fps-exp a − 1 ) = fps-X
〈proof 〉

lemma fps-exp-power-mult: (fps-exp (c:: ′a::field-char-0 ))^n = fps-exp (of-nat n ∗
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c)
〈proof 〉

lemma radical-fps-exp:
assumes r : r (Suc k) 1 = 1
shows fps-radical r (Suc k) (fps-exp (c:: ′a::field-char-0 )) = fps-exp (c / of-nat

(Suc k))
〈proof 〉

lemma fps-exp-compose-linear [simp]:
fps-exp (d:: ′a::field-char-0 ) oo (fps-const c ∗ fps-X) = fps-exp (c ∗ d)
〈proof 〉

lemma fps-fps-exp-compose-minus [simp]:
fps-compose (fps-exp c) (−fps-X) = fps-exp (−c :: ′a :: field-char-0 )
〈proof 〉

lemma fps-exp-eq-iff [simp]: fps-exp c = fps-exp d ←→ c = (d :: ′a :: field-char-0 )
〈proof 〉

lemma fps-exp-eq-fps-const-iff [simp]:
fps-exp (c :: ′a :: field-char-0 ) = fps-const c ′←→ c = 0 ∧ c ′ = 1
〈proof 〉

lemma fps-exp-neq-0 [simp]: ¬fps-exp (c :: ′a :: field-char-0 ) = 0
〈proof 〉

lemma fps-exp-eq-1-iff [simp]: fps-exp (c :: ′a :: field-char-0 ) = 1 ←→ c = 0
〈proof 〉

lemma fps-exp-neq-numeral-iff [simp]:
fps-exp (c :: ′a :: field-char-0 ) = numeral n ←→ c = 0 ∧ n = Num.One
〈proof 〉

5.19.2 Logarithmic series
lemma Abs-fps-if-0 :

Abs-fps (λn. if n = 0 then (v:: ′a::ring-1 ) else f n) =
fps-const v + fps-X ∗ Abs-fps (λn. f (Suc n))
〈proof 〉

definition fps-ln :: ′a::field-char-0 ⇒ ′a fps
where fps-ln c = fps-const (1/c) ∗ Abs-fps (λn. if n = 0 then 0 else (− 1 ) ^ (n
− 1 ) / of-nat n)

lemma fps-ln-deriv: fps-deriv (fps-ln c) = fps-const (1/c) ∗ inverse (1 + fps-X)
〈proof 〉

lemma fps-ln-nth: fps-ln c $ n = (if n = 0 then 0 else 1/c ∗ ((− 1 ) ^ (n − 1 ) /
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of-nat n))
〈proof 〉

lemma fps-ln-0 [simp]: fps-ln c $ 0 = 0 〈proof 〉

lemma fps-ln-fps-exp-inv:
fixes a :: ′a::field-char-0
assumes a: a 6= 0
shows fps-ln a = fps-inv (fps-exp a − 1 ) (is ?l = ?r)
〈proof 〉

lemma fps-ln-mult-add:
assumes c0 : c 6=0

and d0 : d 6=0
shows fps-ln c + fps-ln d = fps-const (c+d) ∗ fps-ln (c∗d)
(is ?r = ?l)
〈proof 〉

lemma fps-X-dvd-fps-ln [simp]: fps-X dvd fps-ln c
〈proof 〉

5.19.3 Binomial series
definition fps-binomial a = Abs-fps (λn. a gchoose n)

lemma fps-binomial-nth[simp]: fps-binomial a $ n = a gchoose n
〈proof 〉

lemma fps-binomial-ODE-unique:
fixes c :: ′a::field-char-0
shows fps-deriv a = (fps-const c ∗ a) / (1 + fps-X) ←→ a = fps-const (a$0 ) ∗

fps-binomial c
(is ?lhs ←→ ?rhs)
〈proof 〉

lemma fps-binomial-ODE-unique ′:
(fps-deriv a = fps-const c ∗ a / (1 + fps-X) ∧ a $ 0 = 1 ) ←→ (a = fps-binomial

c)
〈proof 〉

lemma fps-binomial-deriv: fps-deriv (fps-binomial c) = fps-const c ∗ fps-binomial
c / (1 + fps-X)
〈proof 〉

lemma fps-binomial-add-mult: fps-binomial (c+d) = fps-binomial c ∗ fps-binomial
d (is ?l = ?r)
〈proof 〉

lemma fps-binomial-minus-one: fps-binomial (− 1 ) = inverse (1 + fps-X)
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(is ?l = inverse ?r)
〈proof 〉

lemma fps-binomial-of-nat: fps-binomial (of-nat n) = (1 + fps-X :: ′a :: field-char-0
fps) ^ n
〈proof 〉

lemma fps-binomial-0 [simp]: fps-binomial 0 = 1
〈proof 〉

lemma fps-binomial-power : fps-binomial a ^ n = fps-binomial (of-nat n ∗ a)
〈proof 〉

lemma fps-binomial-1 : fps-binomial 1 = 1 + fps-X
〈proof 〉

lemma fps-binomial-minus-of-nat:
fps-binomial (− of-nat n) = inverse ((1 + fps-X :: ′a :: field-char-0 fps) ^ n)
〈proof 〉

lemma one-minus-const-fps-X-power :
c 6= 0 =⇒ (1 − fps-const c ∗ fps-X) ^ n =

fps-compose (fps-binomial (of-nat n)) (−fps-const c ∗ fps-X)
〈proof 〉

lemma one-minus-fps-X-const-neg-power :
inverse ((1 − fps-const c ∗ fps-X) ^ n) =

fps-compose (fps-binomial (−of-nat n)) (−fps-const c ∗ fps-X)
〈proof 〉

lemma fps-X-plus-const-power :
c 6= 0 =⇒ (fps-X + fps-const c) ^ n =

fps-const (c^n) ∗ fps-compose (fps-binomial (of-nat n)) (fps-const (inverse c)
∗ fps-X)
〈proof 〉

lemma fps-X-plus-const-neg-power :
c 6= 0 =⇒ inverse ((fps-X + fps-const c) ^ n) =

fps-const (inverse c^n) ∗ fps-compose (fps-binomial (−of-nat n)) (fps-const
(inverse c) ∗ fps-X)
〈proof 〉

lemma one-minus-const-fps-X-neg-power ′:
fixes c :: ′a :: field-char-0
assumes n > 0
shows inverse ((1 − fps-const c ∗ fps-X) ^ n) = Abs-fps (λk. of-nat ((n + k −

1 ) choose k) ∗ c^k)
〈proof 〉
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Vandermonde’s Identity as a consequence.
lemma gbinomial-Vandermonde:

sum (λk. (a gchoose k) ∗ (b gchoose (n − k))) {0 ..n} = (a + b) gchoose n
〈proof 〉

lemma binomial-Vandermonde:
sum (λk. (a choose k) ∗ (b choose (n − k))) {0 ..n} = (a + b) choose n
〈proof 〉

lemma binomial-Vandermonde-same: sum (λk. (n choose k)2) {0 ..n} = (2 ∗ n)
choose n
〈proof 〉

lemma Vandermonde-pochhammer-lemma:
fixes a :: ′a::field-char-0
assumes b:

∧
j. j<n =⇒ b 6= of-nat j

shows sum (λk. (pochhammer (− a) k ∗ pochhammer (− (of-nat n)) k) /
(of-nat (fact k) ∗ pochhammer (b − of-nat n + 1 ) k)) {0 ..n} =

pochhammer (− (a + b)) n / pochhammer (− b) n
(is ?l = ?r)
〈proof 〉

lemma Vandermonde-pochhammer :
fixes a :: ′a::field-char-0
assumes c: ∀ i ∈ {0 ..< n}. c 6= − of-nat i
shows sum (λk. (pochhammer a k ∗ pochhammer (− (of-nat n)) k) /
(of-nat (fact k) ∗ pochhammer c k)) {0 ..n} = pochhammer (c − a) n / pochham-

mer c n
〈proof 〉

5.19.4 Trigonometric functions
definition fps-sin (c:: ′a::field-char-0 ) =

Abs-fps (λn. if even n then 0 else (− 1 ) ^((n − 1 ) div 2 ) ∗ c^n /(of-nat (fact
n)))

definition fps-cos (c:: ′a::field-char-0 ) =
Abs-fps (λn. if even n then (− 1 ) ^ (n div 2 ) ∗ c^n / (of-nat (fact n)) else 0 )

lemma fps-sin-0 [simp]: fps-sin 0 = 0
〈proof 〉

lemma fps-cos-0 [simp]: fps-cos 0 = 1
〈proof 〉

lemma fps-sin-deriv:
fps-deriv (fps-sin c) = fps-const c ∗ fps-cos c
(is ?lhs = ?rhs)
〈proof 〉
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lemma fps-cos-deriv: fps-deriv (fps-cos c) = fps-const (− c)∗ (fps-sin c)
(is ?lhs = ?rhs)
〈proof 〉

lemma fps-sin-cos-sum-of-squares: (fps-cos c)2 + (fps-sin c)2 = 1
(is ?lhs = -)
〈proof 〉

lemma fps-sin-nth-0 [simp]: fps-sin c $ 0 = 0
〈proof 〉

lemma fps-sin-nth-1 [simp]: fps-sin c $ Suc 0 = c
〈proof 〉

lemma fps-sin-nth-add-2 :
fps-sin c $ (n + 2 ) = − (c ∗ c ∗ fps-sin c $ n / (of-nat (n + 1 ) ∗ of-nat (n +

2 )))
〈proof 〉

lemma fps-cos-nth-0 [simp]: fps-cos c $ 0 = 1
〈proof 〉

lemma fps-cos-nth-1 [simp]: fps-cos c $ Suc 0 = 0
〈proof 〉

lemma fps-cos-nth-add-2 :
fps-cos c $ (n + 2 ) = − (c ∗ c ∗ fps-cos c $ n / (of-nat (n + 1 ) ∗ of-nat (n +

2 )))
〈proof 〉

lemma nat-add-1-add-1 : (n::nat) + 1 + 1 = n + 2
〈proof 〉

lemma eq-fps-sin:
assumes a0 : a $ 0 = 0

and a1 : a $ 1 = c
and a2 : fps-deriv (fps-deriv a) = − (fps-const c ∗ fps-const c ∗ a)

shows fps-sin c = a
〈proof 〉

lemma eq-fps-cos:
assumes a0 : a $ 0 = 1

and a1 : a $ 1 = 0
and a2 : fps-deriv (fps-deriv a) = − (fps-const c ∗ fps-const c ∗ a)

shows fps-cos c = a
〈proof 〉
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lemma fps-sin-add: fps-sin (a + b) = fps-sin a ∗ fps-cos b + fps-cos a ∗ fps-sin b
〈proof 〉

lemma fps-cos-add: fps-cos (a + b) = fps-cos a ∗ fps-cos b − fps-sin a ∗ fps-sin b
〈proof 〉

lemma fps-sin-even: fps-sin (− c) = − fps-sin c
〈proof 〉

lemma fps-cos-odd: fps-cos (− c) = fps-cos c
〈proof 〉

definition fps-tan c = fps-sin c / fps-cos c

lemma fps-tan-0 [simp]: fps-tan 0 = 0
〈proof 〉

lemma fps-tan-deriv: fps-deriv (fps-tan c) = fps-const c / (fps-cos c)2
〈proof 〉

Connection to fps-exp over the complex numbers — Euler and de Moivre.
lemma fps-exp-ii-sin-cos: fps-exp (i ∗ c) = fps-cos c + fps-const i ∗ fps-sin c
(is ?l = ?r)
〈proof 〉

lemma fps-exp-minus-ii-sin-cos: fps-exp (− (i ∗ c)) = fps-cos c − fps-const i ∗
fps-sin c
〈proof 〉

lemma fps-cos-fps-exp-ii: fps-cos c = (fps-exp (i ∗ c) + fps-exp (− i ∗ c)) /
fps-const 2
〈proof 〉

lemma fps-sin-fps-exp-ii: fps-sin c = (fps-exp (i ∗ c) − fps-exp (− i ∗ c)) / fps-const
(2∗i)
〈proof 〉

lemma fps-tan-fps-exp-ii:
fps-tan c = (fps-exp (i ∗ c) − fps-exp (− i ∗ c)) /

(fps-const i ∗ (fps-exp (i ∗ c) + fps-exp (− i ∗ c)))
〈proof 〉

lemma fps-demoivre:
(fps-cos a + fps-const i ∗ fps-sin a)^n =

fps-cos (of-nat n ∗ a) + fps-const i ∗ fps-sin (of-nat n ∗ a)
〈proof 〉
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5.20 Hypergeometric series
definition fps-hypergeo as bs (c:: ′a::field-char-0 ) =

Abs-fps (λn. (foldl (λr a. r∗ pochhammer a n) 1 as ∗ c^n) /
(foldl (λr b. r ∗ pochhammer b n) 1 bs ∗ of-nat (fact n)))

lemma fps-hypergeo-nth[simp]: fps-hypergeo as bs c $ n =
(foldl (λr a. r∗ pochhammer a n) 1 as ∗ c^n) /
(foldl (λr b. r ∗ pochhammer b n) 1 bs ∗ of-nat (fact n))
〈proof 〉

lemma foldl-mult-start:
fixes v :: ′a::comm-ring-1
shows foldl (λr x. r ∗ f x) v as ∗ x = foldl (λr x. r ∗ f x) (v ∗ x) as
〈proof 〉

lemma foldr-mult-foldl:
fixes v :: ′a::comm-ring-1
shows foldr (λx r . r ∗ f x) as v = foldl (λr x. r ∗ f x) v as
〈proof 〉

lemma fps-hypergeo-nth-alt:
fps-hypergeo as bs c $ n = foldr (λa r . r ∗ pochhammer a n) as (c ^ n) /

foldr (λb r . r ∗ pochhammer b n) bs (of-nat (fact n))
〈proof 〉

lemma fps-hypergeo-fps-exp[simp]: fps-hypergeo [] [] c = fps-exp c
〈proof 〉

lemma fps-hypergeo-1-0 [simp]: fps-hypergeo [1 ] [] c = 1/(1 − fps-const c ∗ fps-X)
〈proof 〉

lemma fps-hypergeo-B[simp]: fps-hypergeo [−a] [] (− 1 ) = fps-binomial a
〈proof 〉

lemma fps-hypergeo-0 [simp]: fps-hypergeo as bs c $ 0 = 1
〈proof 〉

lemma foldl-prod-prod:
foldl (λ(r :: ′b::comm-ring-1 ) (x:: ′a::comm-ring-1 ). r ∗ f x) v as ∗ foldl (λr x. r ∗

g x) w as =
foldl (λr x. r ∗ f x ∗ g x) (v ∗ w) as
〈proof 〉

lemma fps-hypergeo-rec:
fps-hypergeo as bs c $ Suc n = ((foldl (λr a. r∗ (a + of-nat n)) c as) /
(foldl (λr b. r ∗ (b + of-nat n)) (of-nat (Suc n)) bs )) ∗ fps-hypergeo as bs c $

n
〈proof 〉
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lemma fps-XD-nth[simp]: fps-XD a $ n = of-nat n ∗ a$n
〈proof 〉

lemma fps-XD-0th[simp]: fps-XD a $ 0 = 0
〈proof 〉

lemma fps-XD-Suc[simp]: fps-XD a $ Suc n = of-nat (Suc n) ∗ a $ Suc n
〈proof 〉

definition fps-XDp c a = fps-XD a + fps-const c ∗ a

lemma fps-XDp-nth[simp]: fps-XDp c a $ n = (c + of-nat n) ∗ a$n
〈proof 〉

lemma fps-XDp-commute: fps-XDp b ◦ fps-XDp (c:: ′a::comm-ring-1 ) = fps-XDp
c ◦ fps-XDp b
〈proof 〉

lemma fps-XDp0 [simp]: fps-XDp 0 = fps-XD
〈proof 〉

lemma fps-XDp-fps-integral [simp]:
fixes a :: ′a::{division-ring,ring-char-0} fps
shows fps-XDp 0 (fps-integral a c) = fps-X ∗ a
〈proof 〉

lemma fps-hypergeo-minus-nat:
fps-hypergeo [− of-nat n] [− of-nat (n + m)] (c:: ′a::field-char-0 ) $ k =
(if k ≤ n then

pochhammer (− of-nat n) k ∗ c ^ k / (pochhammer (− of-nat (n + m)) k ∗
of-nat (fact k))

else 0 )
fps-hypergeo [− of-nat m] [− of-nat (m + n)] (c:: ′a::field-char-0 ) $ k =
(if k ≤ m then

pochhammer (− of-nat m) k ∗ c ^ k / (pochhammer (− of-nat (m + n)) k ∗
of-nat (fact k))

else 0 )
〈proof 〉

lemma pochhammer-rec-if : pochhammer a n = (if n = 0 then 1 else a ∗ pochham-
mer (a + 1 ) (n − 1 ))
〈proof 〉

lemma fps-XDp-foldr-nth [simp]: foldr (λc r . fps-XDp c ◦ r) cs (λc. fps-XDp c a)
c0 $ n =

foldr (λc r . (c + of-nat n) ∗ r) cs (c0 + of-nat n) ∗ a$n
〈proof 〉

lemma genric-fps-XDp-foldr-nth:
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assumes f : ∀n c a. f c a $ n = (of-nat n + k c) ∗ a$n
shows foldr (λc r . f c ◦ r) cs (λc. g c a) c0 $ n =

foldr (λc r . (k c + of-nat n) ∗ r) cs (g c0 a $ n)
〈proof 〉

lemma dist-less-imp-nth-equal:
assumes dist f g < inverse (2 ^ i)

andj ≤ i
shows f $ j = g $ j
〈proof 〉

lemma nth-equal-imp-dist-less:
assumes

∧
j. j ≤ i =⇒ f $ j = g $ j

shows dist f g < inverse (2 ^ i)
〈proof 〉

lemma dist-less-eq-nth-equal: dist f g < inverse (2 ^ i) ←→ (∀ j ≤ i. f $ j = g $
j)
〈proof 〉

instance fps :: (comm-ring-1 ) complete-space
〈proof 〉

bundle fps-syntax
begin
notation fps-nth (infixl ‹$› 75 )
end

unbundle no fps-syntax

end

6 Converting polynomials to formal power series
theory Polynomial-FPS

imports Polynomial Formal-Power-Series
begin

context
includes fps-syntax

begin

definition fps-of-poly where
fps-of-poly p = Abs-fps (coeff p)

lemma fps-of-poly-eq-iff : fps-of-poly p = fps-of-poly q ←→ p = q
〈proof 〉
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lemma fps-of-poly-nth [simp]: fps-of-poly p $ n = coeff p n
〈proof 〉

lemma fps-of-poly-const: fps-of-poly [:c:] = fps-const c
〈proof 〉

lemma fps-of-poly-0 [simp]: fps-of-poly 0 = 0
〈proof 〉

lemma fps-of-poly-1 [simp]: fps-of-poly 1 = 1
〈proof 〉

lemma fps-of-poly-1 ′ [simp]: fps-of-poly [:1 :] = 1
〈proof 〉

lemma fps-of-poly-numeral [simp]: fps-of-poly (numeral n) = numeral n
〈proof 〉

lemma fps-of-poly-numeral ′ [simp]: fps-of-poly [:numeral n:] = numeral n
〈proof 〉

lemma fps-of-poly-fps-X [simp]: fps-of-poly [:0 , 1 :] = fps-X
〈proof 〉

lemma fps-of-poly-add: fps-of-poly (p + q) = fps-of-poly p + fps-of-poly q
〈proof 〉

lemma fps-of-poly-diff : fps-of-poly (p − q) = fps-of-poly p − fps-of-poly q
〈proof 〉

lemma fps-of-poly-uminus: fps-of-poly (−p) = −fps-of-poly p
〈proof 〉

lemma fps-of-poly-mult: fps-of-poly (p ∗ q) = fps-of-poly p ∗ fps-of-poly q
〈proof 〉

lemma fps-of-poly-smult:
fps-of-poly (smult c p) = fps-const c ∗ fps-of-poly p
〈proof 〉

lemma fps-of-poly-sum: fps-of-poly (sum f A) = sum (λx. fps-of-poly (f x)) A
〈proof 〉

lemma fps-of-poly-sum-list: fps-of-poly (sum-list xs) = sum-list (map fps-of-poly
xs)
〈proof 〉

lemma fps-of-poly-prod: fps-of-poly (prod f A) = prod (λx. fps-of-poly (f x)) A
〈proof 〉
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lemma fps-of-poly-prod-list: fps-of-poly (prod-list xs) = prod-list (map fps-of-poly
xs)
〈proof 〉

lemma fps-of-poly-pCons:
fps-of-poly (pCons (c :: ′a :: semiring-1 ) p) = fps-const c + fps-of-poly p ∗ fps-X
〈proof 〉

lemma fps-of-poly-pderiv: fps-of-poly (pderiv p) = fps-deriv (fps-of-poly p)
〈proof 〉

lemma fps-of-poly-power : fps-of-poly (p ^ n) = fps-of-poly p ^ n
〈proof 〉

lemma fps-of-poly-monom: fps-of-poly (monom (c :: ′a :: comm-ring-1 ) n) =
fps-const c ∗ fps-X ^ n
〈proof 〉

lemma fps-of-poly-monom ′: fps-of-poly (monom (1 :: ′a :: comm-ring-1 ) n) =
fps-X ^ n
〈proof 〉

lemma fps-of-poly-div:
assumes (q :: ′a :: field poly) dvd p
shows fps-of-poly (p div q) = fps-of-poly p / fps-of-poly q
〈proof 〉

lemma fps-of-poly-divide-numeral:
fps-of-poly (smult (inverse (numeral c :: ′a :: field)) p) = fps-of-poly p / numeral

c
〈proof 〉

lemma subdegree-fps-of-poly:
assumes p 6= 0
defines n ≡ Polynomial.order 0 p
shows subdegree (fps-of-poly p) = n
〈proof 〉

lemma fps-of-poly-dvd:
assumes p dvd q
shows fps-of-poly (p :: ′a :: field poly) dvd fps-of-poly q
〈proof 〉

lemmas fps-of-poly-simps =
fps-of-poly-0 fps-of-poly-1 fps-of-poly-numeral fps-of-poly-const fps-of-poly-fps-X
fps-of-poly-add fps-of-poly-diff fps-of-poly-uminus fps-of-poly-mult fps-of-poly-smult
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fps-of-poly-sum fps-of-poly-sum-list fps-of-poly-prod fps-of-poly-prod-list
fps-of-poly-pCons fps-of-poly-pderiv fps-of-poly-power fps-of-poly-monom
fps-of-poly-divide-numeral

lemma fps-of-poly-pcompose:
assumes coeff q 0 = (0 :: ′a :: idom)
shows fps-of-poly (pcompose p q) = fps-compose (fps-of-poly p) (fps-of-poly q)
〈proof 〉

lemmas reify-fps-atom =
fps-of-poly-0 fps-of-poly-1 ′ fps-of-poly-numeral ′ fps-of-poly-const fps-of-poly-fps-X

The following simproc can reduce the equality of two polynomial FPSs
two equality of the respective polynomials. A polynomial FPS is one that
only has finitely many non-zero coefficients and can therefore be written as
fps-of-poly p for some polynomial p.
This may sound trivial, but it covers a number of annoying side conditions
like 1 + fps-X 6= 0 that would otherwise not be solved automatically.
〈ML〉

lemma fps-of-poly-linear : fps-of-poly [:a,1 :: ′a :: field:] = fps-X + fps-const a
〈proof 〉

lemma fps-of-poly-linear ′: fps-of-poly [:1 ,a :: ′a :: field:] = 1 + fps-const a ∗ fps-X
〈proof 〉

lemma fps-of-poly-cutoff [simp]:
fps-of-poly (poly-cutoff n p) = fps-cutoff n (fps-of-poly p)
〈proof 〉

lemma fps-of-poly-shift [simp]: fps-of-poly (poly-shift n p) = fps-shift n (fps-of-poly
p)
〈proof 〉

definition poly-subdegree :: ′a::zero poly ⇒ nat where
poly-subdegree p = subdegree (fps-of-poly p)

lemma coeff-less-poly-subdegree:
k < poly-subdegree p =⇒ coeff p k = 0
〈proof 〉

definition prefix-length :: ( ′a ⇒ bool) ⇒ ′a list ⇒ nat where
prefix-length P xs = length (takeWhile P xs)

primrec prefix-length-aux :: ( ′a ⇒ bool) ⇒ nat ⇒ ′a list ⇒ nat where
prefix-length-aux P acc [] = acc
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| prefix-length-aux P acc (x#xs) = (if P x then prefix-length-aux P (Suc acc) xs
else acc)

lemma prefix-length-aux-correct: prefix-length-aux P acc xs = prefix-length P xs +
acc
〈proof 〉

lemma prefix-length-code [code]: prefix-length P xs = prefix-length-aux P 0 xs
〈proof 〉

lemma prefix-length-le-length: prefix-length P xs ≤ length xs
〈proof 〉

lemma prefix-length-less-length: (∃ x∈set xs. ¬P x) =⇒ prefix-length P xs < length
xs
〈proof 〉

lemma nth-prefix-length:
(∃ x∈set xs. ¬P x) =⇒ ¬P (xs ! prefix-length P xs)
〈proof 〉

lemma nth-less-prefix-length:
n < prefix-length P xs =⇒ P (xs ! n)
〈proof 〉

lemma poly-subdegree-code [code]: poly-subdegree p = prefix-length ((=) 0 ) (coeffs
p)
〈proof 〉

end

Truncation of formal power series: all monomials cxk with k ≥ n are re-
moved; the remainder is a polynomial of degree at most n− 1.
lift-definition truncate-fps :: nat ⇒ ′a fps ⇒ ′a :: zero poly is
λn F k. if k ≥ n then 0 else fps-nth F k
〈proof 〉

lemma coeff-truncate-fps ′ [simp]:
k ≥ n =⇒ coeff (truncate-fps n F) k = 0
k < n =⇒ coeff (truncate-fps n F) k = fps-nth F k
〈proof 〉

lemma coeff-truncate-fps: coeff (truncate-fps n F) k = (if k < n then fps-nth F k
else 0 )
〈proof 〉

lemma truncate-0-fps [simp]: truncate-fps 0 F = 0
〈proof 〉

186



lemma degree-truncate-fps: n > 0 =⇒ degree (truncate-fps n F) < n
〈proof 〉

lemma truncate-fps-0 [simp]: truncate-fps n 0 = 0
〈proof 〉

lemma truncate-fps-add: truncate-fps n (f + g) = truncate-fps n f + truncate-fps
n g
〈proof 〉

lemma truncate-fps-diff : truncate-fps n (f − g) = truncate-fps n f − truncate-fps
n g
〈proof 〉

lemma truncate-fps-uminus: truncate-fps n (−f ) = −truncate-fps n f
〈proof 〉

lemma fps-of-poly-truncate [simp]: fps-of-poly (truncate-fps n f ) = fps-cutoff n f
〈proof 〉

end

7 A formalization of formal Laurent series
theory Formal-Laurent-Series
imports

Polynomial-FPS
begin

7.1 The type of formal Laurent series
7.1.1 Type definition
typedef (overloaded) ′a fls = {f ::int ⇒ ′a::zero. ∀∞ n::nat. f (− int n) = 0}

morphisms fls-nth Abs-fls
〈proof 〉

setup-lifting type-definition-fls

unbundle fps-syntax
notation fls-nth (infixl ‹$$› 75 )

lemmas fls-eqI = iffD1 [OF fls-nth-inject, OF iffD2 , OF fun-eq-iff , OF allI ]

lemma fls-eq-iff : f = g ←→ (∀n. f $$ n = g $$ n)
〈proof 〉

lemma nth-Abs-fls [simp]: ∀∞n. f (− int n) = 0 =⇒ Abs-fls f $$ n = f n
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〈proof 〉

lemmas nth-Abs-fls-finite-nonzero-neg-nth = nth-Abs-fls[OF iffD2 , OF eventu-
ally-cofinite]
lemmas nth-Abs-fls-ex-nat-lower-bound = nth-Abs-fls[OF iffD2 , OF MOST-nat]
lemmas nth-Abs-fls-nat-lower-bound = nth-Abs-fls-ex-nat-lower-bound[OF exI ]

lemma nth-Abs-fls-ex-lower-bound:
assumes ∃N . ∀n<N . f n = 0
shows Abs-fls f $$ n = f n
〈proof 〉

lemmas nth-Abs-fls-lower-bound = nth-Abs-fls-ex-lower-bound[OF exI ]

lemmas MOST-fls-neg-nth-eq-0 [simp] = CollectD[OF fls-nth]
lemmas fls-finite-nonzero-neg-nth = iffD1 [OF eventually-cofinite MOST-fls-neg-nth-eq-0 ]

lemma fls-nth-vanishes-below-natE :
fixes f :: ′a::zero fls
obtains N :: nat
where ∀n>N . f $$(−int n) = 0
〈proof 〉

lemma fls-nth-vanishes-belowE :
fixes f :: ′a::zero fls
obtains N :: int
where ∀n<N . f $$n = 0
〈proof 〉

7.1.2 Definition of basic Laurent series
instantiation fls :: (zero) zero
begin

lift-definition zero-fls :: ′a fls is λ-. 0 〈proof 〉
instance 〈proof 〉

end

lemma fls-zero-nth [simp]: 0 $$ n = 0
〈proof 〉

lemma fls-zero-eqI : (
∧

n. f $$n = 0 ) =⇒ f = 0
〈proof 〉

lemma fls-nonzeroI : f $$n 6= 0 =⇒ f 6= 0
〈proof 〉

lemma fls-nonzero-nth: f 6= 0 ←→ (∃ n. f $$ n 6= 0 )
〈proof 〉
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lemma fls-trivial-delta-eq-zero [simp]: b = 0 =⇒ Abs-fls (λn. if n=a then b else
0 ) = 0
〈proof 〉

lemma fls-delta-nth [simp]:
Abs-fls (λn. if n=a then b else 0 ) $$ n = (if n=a then b else 0 )
〈proof 〉

instantiation fls :: ({zero,one}) one
begin

lift-definition one-fls :: ′a fls is λk. if k = 0 then 1 else 0
〈proof 〉

instance 〈proof 〉
end

lemma fls-one-nth [simp]:
1 $$ n = (if n = 0 then 1 else 0 )
〈proof 〉

instance fls :: (zero-neq-one) zero-neq-one
〈proof 〉

definition fls-const :: ′a::zero ⇒ ′a fls
where fls-const c ≡ Abs-fls (λn. if n = 0 then c else 0 )

lemma fls-const-nth [simp]: fls-const c $$ n = (if n = 0 then c else 0 )
〈proof 〉

lemma fls-const-0 [simp]: fls-const 0 = 0
〈proof 〉

lemma fls-const-nonzero: c 6= 0 =⇒ fls-const c 6= 0
〈proof 〉

lemma fls-const-eq-0-iff [simp]: fls-const c = 0 ←→ c = 0
〈proof 〉

lemma fls-const-1 [simp]: fls-const 1 = 1
〈proof 〉

lemma fls-const-eq-1-iff [simp]: fls-const c = 1 ←→ c = 1
〈proof 〉

lift-definition fls-X :: ′a::{zero,one} fls
is λn. if n = 1 then 1 else 0
〈proof 〉

lemma fls-X-nth [simp]:
fls-X $$ n = (if n = 1 then 1 else 0 )
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〈proof 〉

lemma fls-X-nonzero [simp]: (fls-X :: ′a :: zero-neq-one fls) 6= 0
〈proof 〉

lift-definition fls-X-inv :: ′a::{zero,one} fls
is λn. if n = −1 then 1 else 0
〈proof 〉

lemma fls-X-inv-nth [simp]:
fls-X-inv $$ n = (if n = −1 then 1 else 0 )
〈proof 〉

lemma fls-X-inv-nonzero [simp]: (fls-X-inv :: ′a :: zero-neq-one fls) 6= 0
〈proof 〉

7.2 Subdegrees
lemma unique-fls-subdegree:

assumes f 6= 0
shows ∃ !n. f $$n 6= 0 ∧ (∀m. f $$m 6= 0 −→ n ≤ m)
〈proof 〉

definition fls-subdegree :: ( ′a::zero) fls ⇒ int
where fls-subdegree f ≡ (if f = 0 then 0 else LEAST n::int. f $$n 6= 0 )

lemma fls-zero-subdegree [simp]: fls-subdegree 0 = 0
〈proof 〉

lemma nth-fls-subdegree-nonzero [simp]: f 6= 0 =⇒ f $$ fls-subdegree f 6= 0
〈proof 〉

lemma nth-fls-subdegree-zero-iff : (f $$ fls-subdegree f = 0 ) ←→ (f = 0 )
〈proof 〉

lemma fls-subdegree-leI : f $$ n 6= 0 =⇒ fls-subdegree f ≤ n
〈proof 〉

lemma fls-subdegree-leI ′: f $$ n 6= 0 =⇒ n ≤ m =⇒ fls-subdegree f ≤ m
〈proof 〉

lemma fls-eq0-below-subdegree [simp]: n < fls-subdegree f =⇒ f $$ n = 0
〈proof 〉

lemma fls-subdegree-geI : f 6= 0 =⇒ (
∧

k. k < n =⇒ f $$ k = 0 ) =⇒ n ≤
fls-subdegree f
〈proof 〉

lemma fls-subdegree-ge0I : (
∧

k. k < 0 =⇒ f $$ k = 0 ) =⇒ 0 ≤ fls-subdegree f
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〈proof 〉

lemma fls-subdegree-greaterI :
assumes f 6= 0

∧
k. k ≤ n =⇒ f $$ k = 0

shows n < fls-subdegree f
〈proof 〉

lemma fls-subdegree-eqI : f $$ n 6= 0 =⇒ (
∧

k. k < n =⇒ f $$ k = 0 ) =⇒
fls-subdegree f = n
〈proof 〉

lemma fls-delta-subdegree [simp]:
b 6= 0 =⇒ fls-subdegree (Abs-fls (λn. if n=a then b else 0 )) = a
〈proof 〉

lemma fls-delta0-subdegree: fls-subdegree (Abs-fls (λn. if n=0 then a else 0 )) = 0
〈proof 〉

lemma fls-one-subdegree [simp]: fls-subdegree 1 = 0
〈proof 〉

lemma fls-const-subdegree [simp]: fls-subdegree (fls-const c) = 0
〈proof 〉

lemma fls-X-subdegree [simp]: fls-subdegree (fls-X :: ′a::{zero-neq-one} fls) = 1
〈proof 〉

lemma fls-X-inv-subdegree [simp]: fls-subdegree (fls-X-inv:: ′a::{zero-neq-one} fls)
= −1
〈proof 〉

lemma fls-eq-above-subdegreeI :
assumes N ≤ fls-subdegree f N ≤ fls-subdegree g ∀ k≥N . f $$ k = g $$ k
shows f = g
〈proof 〉

7.3 Shifting
7.3.1 Shift definition
definition fls-shift :: int ⇒ ( ′a::zero) fls ⇒ ′a fls

where fls-shift n f ≡ Abs-fls (λk. f $$ (k+n))
— Since the index set is unbounded in both directions, we can shift in either
direction.

lemma fls-shift-nth [simp]: fls-shift m f $$ n = f $$ (n+m)
〈proof 〉

lemma fls-shift-eq-iff : (fls-shift m f = fls-shift m g) ←→ (f = g)
〈proof 〉
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lemma fls-shift-0 [simp]: fls-shift 0 f = f
〈proof 〉

lemma fls-shift-subdegree [simp]:
f 6= 0 =⇒ fls-subdegree (fls-shift n f ) = fls-subdegree f − n
〈proof 〉

lemma fls-shift-fls-shift [simp]: fls-shift m (fls-shift k f ) = fls-shift (k+m) f
〈proof 〉

lemma fls-shift-fls-shift-reorder :
fls-shift m (fls-shift k f ) = fls-shift k (fls-shift m f )
〈proof 〉

lemma fls-shift-zero [simp]: fls-shift m 0 = 0
〈proof 〉

lemma fls-shift-eq0-iff : fls-shift m f = 0 ←→ f = 0
〈proof 〉

lemma fls-shift-eq-1-iff : fls-shift n f = 1 ←→ f = fls-shift (−n) 1
〈proof 〉

lemma fls-shift-nonneg-subdegree: m ≤ fls-subdegree f =⇒ fls-subdegree (fls-shift
m f ) ≥ 0
〈proof 〉

lemma fls-shift-delta:
fls-shift m (Abs-fls (λn. if n=a then b else 0 )) = Abs-fls (λn. if n=a−m then b

else 0 )
〈proof 〉

lemma fls-shift-const:
fls-shift m (fls-const c) = Abs-fls (λn. if n=−m then c else 0 )
〈proof 〉

lemma fls-shift-const-nth:
fls-shift m (fls-const c) $$ n = (if n=−m then c else 0 )
〈proof 〉

lemma fls-X-conv-shift-1 : fls-X = fls-shift (−1 ) 1
〈proof 〉

lemma fls-X-shift-to-one [simp]: fls-shift 1 fls-X = 1
〈proof 〉

lemma fls-X-inv-conv-shift-1 : fls-X-inv = fls-shift 1 1
〈proof 〉
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lemma fls-X-inv-shift-to-one [simp]: fls-shift (−1 ) fls-X-inv = 1
〈proof 〉

lemma fls-X-fls-X-inv-conv:
fls-X = fls-shift (−2 ) fls-X-inv fls-X-inv = fls-shift 2 fls-X
〈proof 〉

7.3.2 Base factor

Similarly to the unit-factor for formal power series, we can decompose a
formal Laurent series as a power of the implied variable times a series of
subdegree 0. (See lemma fls-base-factor-X-power-decompose.) But we will
call this something other unit-factor because it will not satisfy assumption
is-unit-unit-factor of semidom-divide-unit-factor.
definition fls-base-factor :: ( ′a::zero) fls ⇒ ′a fls

where fls-base-factor-def [simp]: fls-base-factor f = fls-shift (fls-subdegree f ) f

lemma fls-base-factor-nth: fls-base-factor f $$ n = f $$ (n + fls-subdegree f )
〈proof 〉

lemma fls-base-factor-nonzero [simp]: f 6= 0 =⇒ fls-base-factor f 6= 0
〈proof 〉

lemma fls-base-factor-subdegree [simp]: fls-subdegree (fls-base-factor f ) = 0
〈proof 〉

lemma fls-base-factor-base [simp]:
fls-base-factor f $$ fls-subdegree (fls-base-factor f ) = f $$ fls-subdegree f
〈proof 〉

lemma fls-conv-base-factor-shift-subdegree:
f = fls-shift (−fls-subdegree f ) (fls-base-factor f )
〈proof 〉

lemma fls-base-factor-idem:
fls-base-factor (fls-base-factor (f :: ′a::zero fls)) = fls-base-factor f
〈proof 〉

lemma fls-base-factor-zero: fls-base-factor (0 :: ′a::zero fls) = 0
〈proof 〉

lemma fls-base-factor-zero-iff : fls-base-factor (f :: ′a::zero fls) = 0 ←→ f = 0
〈proof 〉

lemma fls-base-factor-nth-0 : f 6= 0 =⇒ fls-base-factor f $$ 0 6= 0
〈proof 〉
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lemma fls-base-factor-one: fls-base-factor (1 :: ′a::{zero,one} fls) = 1
〈proof 〉

lemma fls-base-factor-const: fls-base-factor (fls-const c) = fls-const c
〈proof 〉

lemma fls-base-factor-delta:
fls-base-factor (Abs-fls (λn. if n=a then c else 0 )) = fls-const c
〈proof 〉

lemma fls-base-factor-X : fls-base-factor (fls-X :: ′a::{zero-neq-one} fls) = 1
〈proof 〉

lemma fls-base-factor-X-inv: fls-base-factor (fls-X-inv:: ′a::{zero-neq-one} fls) = 1
〈proof 〉

lemma fls-base-factor-shift [simp]: fls-base-factor (fls-shift n f ) = fls-base-factor f
〈proof 〉

7.4 Conversion between formal power and Laurent series
7.4.1 Converting Laurent to power series

We can truncate a Laurent series at index 0 to create a power series, called
the regular part.
lift-definition fls-regpart :: ( ′a::zero) fls ⇒ ′a fps

is λf . Abs-fps (λn. f (int n))
〈proof 〉

lemma fls-regpart-nth [simp]: fls-regpart f $ n = f $$ (int n)
〈proof 〉

lemma fls-regpart-zero [simp]: fls-regpart 0 = 0
〈proof 〉

lemma fls-regpart-one [simp]: fls-regpart 1 = 1
〈proof 〉

lemma fls-regpart-Abs-fls:
∀∞n. F (− int n) = 0 =⇒ fls-regpart (Abs-fls F) = Abs-fps (λn. F (int n))
〈proof 〉

lemma fls-regpart-delta:
fls-regpart (Abs-fls (λn. if n=a then b else 0 )) =
(if a < 0 then 0 else Abs-fps (λn. if n=nat a then b else 0 ))
〈proof 〉

lemma fls-regpart-const [simp]: fls-regpart (fls-const c) = fps-const c
〈proof 〉
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lemma fls-regpart-fls-X [simp]: fls-regpart fls-X = fps-X
〈proof 〉

lemma fls-regpart-fls-X-inv [simp]: fls-regpart fls-X-inv = 0
〈proof 〉

lemma fls-regpart-eq0-imp-nonpos-subdegree:
assumes fls-regpart f = 0
shows fls-subdegree f ≤ 0
〈proof 〉

lemma fls-subdegree-lt-fls-regpart-subdegree:
fls-subdegree f ≤ int (subdegree (fls-regpart f ))
〈proof 〉

lemma fls-regpart-subdegree-conv:
assumes fls-subdegree f ≥ 0
shows subdegree (fls-regpart f ) = nat (fls-subdegree f )

— This is the best we can do since if the subdegree is negative, we might still have
the bad luck that the term at index 0 is equal to 0.
〈proof 〉

lemma fls-eq-conv-fps-eqI :
assumes 0 ≤ fls-subdegree f 0 ≤ fls-subdegree g fls-regpart f = fls-regpart g
shows f = g
〈proof 〉

lemma fls-regpart-shift-conv-fps-shift:
m ≥ 0 =⇒ fls-regpart (fls-shift m f ) = fps-shift (nat m) (fls-regpart f )
〈proof 〉

lemma fps-shift-fls-regpart-conv-fls-shift:
fps-shift m (fls-regpart f ) = fls-regpart (fls-shift m f )
〈proof 〉

lemma fps-unit-factor-fls-regpart:
fls-subdegree f ≥ 0 =⇒ unit-factor (fls-regpart f ) = fls-regpart (fls-base-factor f )
〈proof 〉

The terms below the zeroth form a polynomial in the inverse of the implied
variable, called the principle part.
lift-definition fls-prpart :: ( ′a::zero) fls ⇒ ′a poly

is λf . Abs-poly (λn. if n = 0 then 0 else f (− int n))
〈proof 〉

lemma fls-prpart-coeff [simp]: coeff (fls-prpart f ) n = (if n = 0 then 0 else f $$
(− int n))
〈proof 〉
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lemma fls-prpart-eq0-iff : (fls-prpart f = 0 ) ←→ (fls-subdegree f ≥ 0 )
〈proof 〉

lemma fls-prpart0 [simp]: fls-prpart 0 = 0
〈proof 〉

lemma fls-prpart-one [simp]: fls-prpart 1 = 0
〈proof 〉

lemma fls-prpart-delta:
fls-prpart (Abs-fls (λn. if n=a then b else 0 )) =
(if a<0 then Poly (replicate (nat (−a)) 0 @ [b]) else 0 )
〈proof 〉

lemma fls-prpart-const [simp]: fls-prpart (fls-const c) = 0
〈proof 〉

lemma fls-prpart-X [simp]: fls-prpart fls-X = 0
〈proof 〉

lemma fls-prpart-X-inv: fls-prpart fls-X-inv = [:0 ,1 :]
〈proof 〉

lemma degree-fls-prpart [simp]:
degree (fls-prpart f ) = nat (−fls-subdegree f )
〈proof 〉

lemma fls-prpart-shift:
assumes m ≤ 0
shows fls-prpart (fls-shift m f ) = pCons 0 (poly-shift (Suc (nat (−m)))

(fls-prpart f ))
〈proof 〉

lemma fls-prpart-base-factor : fls-prpart (fls-base-factor f ) = 0
〈proof 〉

The essential data of a formal Laurant series resides from the subdegree up.
abbreviation fls-base-factor-to-fps :: ( ′a::zero) fls ⇒ ′a fps

where fls-base-factor-to-fps f ≡ fls-regpart (fls-base-factor f )

lemma fls-base-factor-to-fps-conv-fps-shift:
assumes fls-subdegree f ≥ 0
shows fls-base-factor-to-fps f = fps-shift (nat (fls-subdegree f )) (fls-regpart f )
〈proof 〉

lemma fls-base-factor-to-fps-nth:
fls-base-factor-to-fps f $ n = f $$ (fls-subdegree f + int n)
〈proof 〉
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lemma fls-base-factor-to-fps-base: f 6= 0 =⇒ fls-base-factor-to-fps f $ 0 6= 0
〈proof 〉

lemma fls-base-factor-to-fps-nonzero: f 6= 0 =⇒ fls-base-factor-to-fps f 6= 0
〈proof 〉

lemma fls-base-factor-to-fps-subdegree [simp]: subdegree (fls-base-factor-to-fps f ) =
0
〈proof 〉

lemma fls-base-factor-to-fps-trivial:
fls-subdegree f = 0 =⇒ fls-base-factor-to-fps f = fls-regpart f
〈proof 〉

lemma fls-base-factor-to-fps-zero: fls-base-factor-to-fps 0 = 0
〈proof 〉

lemma fls-base-factor-to-fps-one: fls-base-factor-to-fps 1 = 1
〈proof 〉

lemma fls-base-factor-to-fps-delta:
fls-base-factor-to-fps (Abs-fls (λn. if n=a then c else 0 )) = fps-const c
〈proof 〉

lemma fls-base-factor-to-fps-const:
fls-base-factor-to-fps (fls-const c) = fps-const c
〈proof 〉

lemma fls-base-factor-to-fps-X :
fls-base-factor-to-fps (fls-X :: ′a::{zero-neq-one} fls) = 1
〈proof 〉

lemma fls-base-factor-to-fps-X-inv:
fls-base-factor-to-fps (fls-X-inv:: ′a::{zero-neq-one} fls) = 1
〈proof 〉

lemma fls-base-factor-to-fps-shift:
fls-base-factor-to-fps (fls-shift m f ) = fls-base-factor-to-fps f
〈proof 〉

lemma fls-base-factor-to-fps-base-factor :
fls-base-factor-to-fps (fls-base-factor f ) = fls-base-factor-to-fps f
〈proof 〉

lemma fps-unit-factor-fls-base-factor :
unit-factor (fls-base-factor-to-fps f ) = fls-base-factor-to-fps f
〈proof 〉
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7.4.2 Converting power to Laurent series

We can extend a power series by 0s below to create a Laurent series.
definition fps-to-fls :: ( ′a::zero) fps ⇒ ′a fls

where fps-to-fls f ≡ Abs-fls (λk::int. if k<0 then 0 else f $ (nat k))

lemma fps-to-fls-nth [simp]:
(fps-to-fls f ) $$ n = (if n < 0 then 0 else f $(nat n))
〈proof 〉

lemma fps-to-fls-eq-imp-fps-eq:
assumes fps-to-fls f = fps-to-fls g
shows f = g
〈proof 〉

lemma fps-to-fls-eq-iff [simp]: fps-to-fls f = fps-to-fls g ←→ f = g
〈proof 〉

lemma fps-zero-to-fls [simp]: fps-to-fls 0 = 0
〈proof 〉

lemma fps-to-fls-nonzeroI : f 6= 0 =⇒ fps-to-fls f 6= 0
〈proof 〉

lemma fps-one-to-fls [simp]: fps-to-fls 1 = 1
〈proof 〉

lemma fps-to-fls-Abs-fps:
fps-to-fls (Abs-fps F) = Abs-fls (λn. if n<0 then 0 else F (nat n))
〈proof 〉

lemma fps-delta-to-fls:
fps-to-fls (Abs-fps (λn. if n=a then b else 0 )) = Abs-fls (λn. if n=int a then b

else 0 )
〈proof 〉

lemma fps-const-to-fls [simp]: fps-to-fls (fps-const c) = fls-const c
〈proof 〉

lemma fps-X-to-fls [simp]: fps-to-fls fps-X = fls-X
〈proof 〉

lemma fps-to-fls-eq-0-iff [simp]: (fps-to-fls f = 0 ) ←→ (f=0 )
〈proof 〉

lemma fps-to-fls-eq-1-iff [simp]: fps-to-fls f = 1 ←→ f = 1
〈proof 〉

lemma fls-subdegree-fls-to-fps-gt0 : fls-subdegree (fps-to-fls f ) ≥ 0
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〈proof 〉

lemma fls-subdegree-fls-to-fps: fls-subdegree (fps-to-fls f ) = int (subdegree f )
〈proof 〉

lemma fps-shift-to-fls [simp]:
n ≤ subdegree f =⇒ fps-to-fls (fps-shift n f ) = fls-shift (int n) (fps-to-fls f )
〈proof 〉

lemma fls-base-factor-fps-to-fls: fls-base-factor (fps-to-fls f ) = fps-to-fls (unit-factor
f )
〈proof 〉

lemma fls-regpart-to-fls-trivial [simp]:
fls-subdegree f ≥ 0 =⇒ fps-to-fls (fls-regpart f ) = f
〈proof 〉

lemma fls-regpart-fps-trivial [simp]: fls-regpart (fps-to-fls f ) = f
〈proof 〉

lemma fps-to-fls-base-factor-to-fps:
fps-to-fls (fls-base-factor-to-fps f ) = fls-base-factor f
〈proof 〉

lemma fls-conv-base-factor-to-fps-shift-subdegree:
f = fls-shift (−fls-subdegree f ) (fps-to-fls (fls-base-factor-to-fps f ))
〈proof 〉

lemma fls-base-factor-to-fps-to-fls:
fls-base-factor-to-fps (fps-to-fls f ) = unit-factor f
〈proof 〉

lemma fls-as-fps:
fixes f :: ′a :: zero fls and n :: int
assumes n: n ≥ −fls-subdegree f
obtains f ′ where f = fls-shift n (fps-to-fls f ′)
〈proof 〉

lemma fls-as-fps ′:
fixes f :: ′a :: zero fls and n :: int
assumes n: n ≥ −fls-subdegree f
shows ∃ f ′. f = fls-shift n (fps-to-fls f ′)
〈proof 〉

abbreviation
fls-regpart-as-fls f ≡ fps-to-fls (fls-regpart f )

abbreviation
fls-prpart-as-fls f ≡

fls-shift (−fls-subdegree f ) (fps-to-fls (fps-of-poly (reflect-poly (fls-prpart f ))))
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lemma fls-regpart-as-fls-nth:
fls-regpart-as-fls f $$ n = (if n < 0 then 0 else f $$ n)
〈proof 〉

lemma fls-regpart-idem:
fls-regpart (fls-regpart-as-fls f ) = fls-regpart f
〈proof 〉

lemma fls-prpart-as-fls-nth:
fls-prpart-as-fls f $$ n = (if n < 0 then f $$ n else 0 )
〈proof 〉

lemma fls-prpart-idem [simp]: fls-prpart (fls-prpart-as-fls f ) = fls-prpart f
〈proof 〉

lemma fls-regpart-prpart: fls-regpart (fls-prpart-as-fls f ) = 0
〈proof 〉

lemma fls-prpart-regpart: fls-prpart (fls-regpart-as-fls f ) = 0
〈proof 〉

7.5 Algebraic structures
7.5.1 Addition
instantiation fls :: (monoid-add) plus
begin

lift-definition plus-fls :: ′a fls ⇒ ′a fls ⇒ ′a fls is λf g n. f n + g n
〈proof 〉
instance 〈proof 〉

end

lemma fls-plus-nth [simp]: (f + g) $$ n = f $$ n + g $$ n
〈proof 〉

lemma fls-plus-const: fls-const x + fls-const y = fls-const (x+y)
〈proof 〉

lemma fls-plus-subdegree:
f + g 6= 0 =⇒ fls-subdegree (f + g) ≥ min (fls-subdegree f ) (fls-subdegree g)
〈proof 〉

lemma fls-shift-plus [simp]:
fls-shift m (f + g) = (fls-shift m f ) + (fls-shift m g)
〈proof 〉

lemma fls-regpart-plus [simp]: fls-regpart (f + g) = fls-regpart f + fls-regpart g
〈proof 〉
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lemma fls-prpart-plus [simp] : fls-prpart (f + g) = fls-prpart f + fls-prpart g
〈proof 〉

lemma fls-decompose-reg-pr-parts:
fixes f :: ′a :: monoid-add fls
defines R ≡ fls-regpart-as-fls f
and P ≡ fls-prpart-as-fls f
shows f = P + R
and f = R + P
〈proof 〉

lemma fps-to-fls-plus [simp]: fps-to-fls (f + g) = fps-to-fls f + fps-to-fls g
〈proof 〉

instance fls :: (monoid-add) monoid-add
〈proof 〉

instance fls :: (comm-monoid-add) comm-monoid-add
〈proof 〉

lemma fls-nth-sum: fls-nth (
∑

x∈A. f x) n = (
∑

x∈A. fls-nth (f x) n)
〈proof 〉

7.5.2 Subtraction and negatives
instantiation fls :: (group-add) minus
begin

lift-definition minus-fls :: ′a fls ⇒ ′a fls ⇒ ′a fls is λf g n. f n − g n
〈proof 〉
instance 〈proof 〉

end

lemma fls-minus-nth [simp]: (f − g) $$ n = f $$ n − g $$ n
〈proof 〉

lemma fls-minus-const: fls-const x − fls-const y = fls-const (x−y)
〈proof 〉

lemma fls-subdegree-minus:
f − g 6= 0 =⇒ fls-subdegree (f − g) ≥ min (fls-subdegree f ) (fls-subdegree g)
〈proof 〉

lemma fls-shift-minus [simp]: fls-shift m (f − g) = (fls-shift m f ) − (fls-shift m
g)
〈proof 〉

lemma fls-regpart-minus [simp]: fls-regpart (f − g) = fls-regpart f − fls-regpart g
〈proof 〉
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lemma fls-prpart-minus [simp] : fls-prpart (f − g) = fls-prpart f − fls-prpart g
〈proof 〉

lemma fps-to-fls-minus [simp]: fps-to-fls (f − g) = fps-to-fls f − fps-to-fls g
〈proof 〉

instantiation fls :: (group-add) uminus
begin

lift-definition uminus-fls :: ′a fls ⇒ ′a fls is λf n. − f n
〈proof 〉
instance 〈proof 〉

end

lemma fls-uminus-nth [simp]: (−f ) $$ n = − (f $$ n)
〈proof 〉

lemma fls-const-uminus[simp]: fls-const (−x) = −fls-const x
〈proof 〉

lemma fls-shift-uminus [simp]: fls-shift m (− f ) = − (fls-shift m f )
〈proof 〉

lemma fls-regpart-uminus [simp]: fls-regpart (− f ) = − fls-regpart f
〈proof 〉

lemma fls-prpart-uminus [simp] : fls-prpart (− f ) = − fls-prpart f
〈proof 〉

lemma fps-to-fls-uminus [simp]: fps-to-fls (− f ) = − fps-to-fls f
〈proof 〉

instance fls :: (group-add) group-add
〈proof 〉

instance fls :: (ab-group-add) ab-group-add
〈proof 〉

lemma fls-uminus-subdegree [simp]: fls-subdegree (−f ) = fls-subdegree f
〈proof 〉

lemma fls-subdegree-minus-sym: fls-subdegree (g − f ) = fls-subdegree (f − g)
〈proof 〉

lemma fls-regpart-sub-prpart: fls-regpart (f − fls-prpart-as-fls f ) = fls-regpart f
〈proof 〉

lemma fls-prpart-sub-regpart: fls-prpart (f − fls-regpart-as-fls f ) = fls-prpart f
〈proof 〉
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7.5.3 Multiplication
instantiation fls :: ({comm-monoid-add, times}) times
begin

definition fls-times-def :
(∗) = (λf g.

fls-shift
(− (fls-subdegree f + fls-subdegree g))
(fps-to-fls (fls-base-factor-to-fps f ∗ fls-base-factor-to-fps g))

)
instance 〈proof 〉

end

lemma fls-times-nth-eq0 : n < fls-subdegree f + fls-subdegree g =⇒ (f ∗ g) $$ n =
0
〈proof 〉

lemma fls-times-nth:
fixes f df g dg
defines df ≡ fls-subdegree f and dg ≡ fls-subdegree g
shows (f ∗ g) $$ n = (

∑
i=df + dg..n. f $$ (i − dg) ∗ g $$ (dg + n − i))

and (f ∗ g) $$ n = (
∑

i=df ..n − dg. f $$ i ∗ g $$ (n − i))
and (f ∗ g) $$ n = (

∑
i=dg..n − df . f $$ (df + i − dg) ∗ g $$ (dg + n −

df − i))
and (f ∗ g) $$ n = (

∑
i=0 ..n − (df + dg). f $$ (df + i) ∗ g $$ (n − df −

i))
〈proof 〉

lemma fls-times-base [simp]:
(f ∗ g) $$ (fls-subdegree f + fls-subdegree g) =
(f $$ fls-subdegree f ) ∗ (g $$ fls-subdegree g)
〈proof 〉

instance fls :: ({comm-monoid-add, mult-zero}) mult-zero
〈proof 〉

lemma fls-mult-one:
fixes f :: ′a::{comm-monoid-add, mult-zero, monoid-mult} fls
shows 1 ∗ f = f
and f ∗ 1 = f
〈proof 〉

lemma fls-mult-const-nth [simp]:
fixes f :: ′a::{comm-monoid-add, mult-zero} fls
shows (fls-const x ∗ f ) $$ n = x ∗ f $$n
and (f ∗ fls-const x ) $$ n = f $$n ∗ x
〈proof 〉

lemma fls-const-mult-const[simp]:
fixes x y :: ′a::{comm-monoid-add, mult-zero}
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shows fls-const x ∗ fls-const y = fls-const (x∗y)
〈proof 〉

lemma fls-subdegree-add-eq1 :
assumes f 6= 0 fls-subdegree f < fls-subdegree g
shows fls-subdegree (f + g) = fls-subdegree f
〈proof 〉

lemma fls-subdegree-add-eq2 :
assumes g 6= 0 fls-subdegree g < fls-subdegree f
shows fls-subdegree (f + g) = fls-subdegree g
〈proof 〉

lemma fls-subdegree-diff-eq1 :
assumes f 6= 0 fls-subdegree f < fls-subdegree g
shows fls-subdegree (f − g) = fls-subdegree f
〈proof 〉

lemma fls-subdegree-diff-eq2 :
assumes g 6= 0 fls-subdegree g < fls-subdegree f
shows fls-subdegree (f − g) = fls-subdegree g
〈proof 〉

lemma nat-minus-fls-subdegree-plus-const-eq:
nat (−fls-subdegree (F + fls-const c)) = nat (−fls-subdegree F)
〈proof 〉

lemma fls-mult-subdegree-ge:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fls
assumes f ∗g 6= 0
shows fls-subdegree (f ∗g) ≥ fls-subdegree f + fls-subdegree g
〈proof 〉

lemma fls-mult-subdegree-ge-0 :
fixes f g :: ′a::{comm-monoid-add,mult-zero} fls
assumes fls-subdegree f ≥ 0 fls-subdegree g ≥ 0
shows fls-subdegree (f ∗g) ≥ 0
〈proof 〉

lemma fls-mult-nonzero-base-subdegree-eq:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fls
assumes f $$ (fls-subdegree f ) ∗ g $$ (fls-subdegree g) 6= 0
shows fls-subdegree (f ∗g) = fls-subdegree f + fls-subdegree g
〈proof 〉

lemma fls-subdegree-mult [simp]:
fixes f g :: ′a::semiring-no-zero-divisors fls
assumes f 6= 0 g 6= 0
shows fls-subdegree (f ∗ g) = fls-subdegree f + fls-subdegree g
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〈proof 〉

lemma fls-shifted-times-simps:
fixes f g :: ′a::{comm-monoid-add, mult-zero} fls
shows f ∗ (fls-shift n g) = fls-shift n (f ∗g) (fls-shift n f ) ∗ g = fls-shift n (f ∗g)
〈proof 〉

lemma fls-shifted-times-transfer :
fixes f g :: ′a::{comm-monoid-add, mult-zero} fls
shows fls-shift n f ∗ g = f ∗ fls-shift n g
〈proof 〉

lemma fls-times-both-shifted-simp:
fixes f g :: ′a::{comm-monoid-add, mult-zero} fls
shows (fls-shift m f ) ∗ (fls-shift n g) = fls-shift (m+n) (f ∗g)
〈proof 〉

lemma fls-base-factor-mult-base-factor :
fixes f g :: ′a::{comm-monoid-add, mult-zero} fls
shows fls-base-factor (f ∗ fls-base-factor g) = fls-base-factor (f ∗ g)
and fls-base-factor (fls-base-factor f ∗ g) = fls-base-factor (f ∗ g)
〈proof 〉

lemma fls-base-factor-mult-both-base-factor :
fixes f g :: ′a::{comm-monoid-add,mult-zero} fls
shows fls-base-factor (fls-base-factor f ∗ fls-base-factor g) = fls-base-factor (f ∗

g)
〈proof 〉

lemma fls-base-factor-mult:
fixes f g :: ′a::semiring-no-zero-divisors fls
shows fls-base-factor (f ∗ g) = fls-base-factor f ∗ fls-base-factor g
〈proof 〉

lemma fls-times-conv-base-factor-times:
fixes f g :: ′a::{comm-monoid-add, mult-zero} fls
shows

f ∗ g =
fls-shift (−(fls-subdegree f + fls-subdegree g)) (fls-base-factor f ∗ fls-base-factor

g)
〈proof 〉

lemma fls-times-base-factor-conv-shifted-times:
— Convenience form of lemma fls-times-both-shifted-simp.

fixes f g :: ′a::{comm-monoid-add, mult-zero} fls
shows

fls-base-factor f ∗ fls-base-factor g = fls-shift (fls-subdegree f + fls-subdegree g)
(f ∗ g)
〈proof 〉
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lemma fls-times-conv-regpart:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fls
assumes fls-subdegree f ≥ 0 fls-subdegree g ≥ 0
shows fls-regpart (f ∗ g) = fls-regpart f ∗ fls-regpart g
〈proof 〉

lemma fls-base-factor-to-fps-mult-conv-unit-factor :
fixes f g :: ′a::{comm-monoid-add,mult-zero} fls
shows

fls-base-factor-to-fps (f ∗ g) =
unit-factor (fls-base-factor-to-fps f ∗ fls-base-factor-to-fps g)

〈proof 〉

lemma fls-base-factor-to-fps-mult ′:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fls
assumes (f $$ fls-subdegree f ) ∗ (g $$ fls-subdegree g) 6= 0
shows fls-base-factor-to-fps (f ∗ g) = fls-base-factor-to-fps f ∗ fls-base-factor-to-fps

g
〈proof 〉

lemma fls-base-factor-to-fps-mult:
fixes f g :: ′a::semiring-no-zero-divisors fls
shows fls-base-factor-to-fps (f ∗ g) = fls-base-factor-to-fps f ∗ fls-base-factor-to-fps

g
〈proof 〉

lemma fls-times-conv-fps-times:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fls
assumes fls-subdegree f ≥ 0 fls-subdegree g ≥ 0
shows f ∗ g = fps-to-fls (fls-regpart f ∗ fls-regpart g)
〈proof 〉

lemma fps-times-conv-fls-times:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
shows f ∗ g = fls-regpart (fps-to-fls f ∗ fps-to-fls g)
〈proof 〉

lemma fls-times-fps-to-fls:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
shows fps-to-fls (f ∗ g) = fps-to-fls f ∗ fps-to-fls g
〈proof 〉

lemma fls-X-times-conv-shift:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fls
shows fls-X ∗ f = fls-shift (−1 ) f f ∗ fls-X = fls-shift (−1 ) f
〈proof 〉

lemmas fls-X-times-comm = trans-sym[OF fls-X-times-conv-shift]

206



lemma fls-subdegree-mult-fls-X :
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fls
assumes f 6= 0
shows fls-subdegree (fls-X ∗ f ) = fls-subdegree f + 1
and fls-subdegree (f ∗ fls-X) = fls-subdegree f + 1
〈proof 〉

lemma fls-mult-fls-X-nonzero:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fls
assumes f 6= 0
shows fls-X ∗ f 6= 0
and f ∗ fls-X 6= 0
〈proof 〉

lemma fls-base-factor-mult-fls-X :
fixes f :: ′a::{comm-monoid-add,monoid-mult,mult-zero} fls
shows fls-base-factor (fls-X ∗ f ) = fls-base-factor f
and fls-base-factor (f ∗ fls-X) = fls-base-factor f
〈proof 〉

lemma fls-X-inv-times-conv-shift:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fls
shows fls-X-inv ∗ f = fls-shift 1 f f ∗ fls-X-inv = fls-shift 1 f
〈proof 〉

lemmas fls-X-inv-times-comm = trans-sym[OF fls-X-inv-times-conv-shift]

lemma fls-subdegree-mult-fls-X-inv:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fls
assumes f 6= 0
shows fls-subdegree (fls-X-inv ∗ f ) = fls-subdegree f − 1
and fls-subdegree (f ∗ fls-X-inv) = fls-subdegree f − 1
〈proof 〉

lemma fls-mult-fls-X-inv-nonzero:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fls
assumes f 6= 0
shows fls-X-inv ∗ f 6= 0
and f ∗ fls-X-inv 6= 0
〈proof 〉

lemma fls-base-factor-mult-fls-X-inv:
fixes f :: ′a::{comm-monoid-add,monoid-mult,mult-zero} fls
shows fls-base-factor (fls-X-inv ∗ f ) = fls-base-factor f
and fls-base-factor (f ∗ fls-X-inv) = fls-base-factor f
〈proof 〉

lemma fls-mult-assoc-subdegree-ge-0 :
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fixes f g h :: ′a::semiring-0 fls
assumes fls-subdegree f ≥ 0 fls-subdegree g ≥ 0 fls-subdegree h ≥ 0
shows f ∗ g ∗ h = f ∗ (g ∗ h)
〈proof 〉

lemma fls-mult-assoc-base-factor :
fixes a b c :: ′a::semiring-0 fls
shows

fls-base-factor a ∗ fls-base-factor b ∗ fls-base-factor c =
fls-base-factor a ∗ (fls-base-factor b ∗ fls-base-factor c)

〈proof 〉

lemma fls-mult-distrib-subdegree-ge-0 :
fixes f g h :: ′a::semiring-0 fls
assumes fls-subdegree f ≥ 0 fls-subdegree g ≥ 0 fls-subdegree h ≥ 0
shows (f + g) ∗ h = f ∗ h + g ∗ h
and h ∗ (f + g) = h ∗ f + h ∗ g
〈proof 〉

lemma fls-mult-distrib-base-factor :
fixes a b c :: ′a::semiring-0 fls
shows

fls-base-factor a ∗ (fls-base-factor b + fls-base-factor c) =
fls-base-factor a ∗ fls-base-factor b + fls-base-factor a ∗ fls-base-factor c

〈proof 〉

instance fls :: (semiring-0 ) semiring-0
〈proof 〉

lemma fls-mult-commute-subdegree-ge-0 :
fixes f g :: ′a::comm-semiring-0 fls
assumes fls-subdegree f ≥ 0 fls-subdegree g ≥ 0
shows f ∗ g = g ∗ f
〈proof 〉

lemma fls-mult-commute-base-factor :
fixes a b c :: ′a::comm-semiring-0 fls
shows fls-base-factor a ∗ fls-base-factor b = fls-base-factor b ∗ fls-base-factor a
〈proof 〉

instance fls :: (comm-semiring-0 ) comm-semiring-0
〈proof 〉

instance fls :: (semiring-1 ) semiring-1
〈proof 〉

lemma fls-of-nat: (of-nat n :: ′a::semiring-1 fls) = fls-const (of-nat n)
〈proof 〉
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lemma fls-of-nat-nth: of-nat n $$ k = (if k=0 then of-nat n else 0 )
〈proof 〉

lemma fls-mult-of-nat-nth [simp]:
shows (of-nat k ∗ f ) $$ n = of-nat k ∗ f $$n
and (f ∗ of-nat k ) $$ n = f $$n ∗ of-nat k
〈proof 〉

lemma fls-subdegree-of-nat [simp]: fls-subdegree (of-nat n) = 0
〈proof 〉

lemma fls-shift-of-nat-nth:
fls-shift k (of-nat a) $$ n = (if n=−k then of-nat a else 0 )
〈proof 〉

lemma fls-base-factor-of-nat [simp]:
fls-base-factor (of-nat n :: ′a::semiring-1 fls) = (of-nat n :: ′a fls)
〈proof 〉

lemma fls-regpart-of-nat [simp]: fls-regpart (of-nat n) = (of-nat n :: ′a::semiring-1
fps)
〈proof 〉

lemma fls-prpart-of-nat [simp]: fls-prpart (of-nat n) = 0
〈proof 〉

lemma fls-base-factor-to-fps-of-nat:
fls-base-factor-to-fps (of-nat n) = (of-nat n :: ′a::semiring-1 fps)
〈proof 〉

lemma fps-to-fls-of-nat:
fps-to-fls (of-nat n) = (of-nat n :: ′a::semiring-1 fls)
〈proof 〉

lemma fps-to-fls-numeral [simp]: fps-to-fls (numeral n) = numeral n
〈proof 〉

lemma fls-const-power : fls-const (a ^ b) = fls-const a ^ b
〈proof 〉

lemma fls-const-numeral [simp]: fls-const (numeral n) = numeral n
〈proof 〉

lemma fls-mult-of-numeral-nth [simp]:
shows (numeral k ∗ f ) $$ n = numeral k ∗ f $$ n
and (f ∗ numeral k) $$ n = f $$ n ∗ numeral k
〈proof 〉

lemma fls-nth-numeral ′ [simp]:
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numeral n $$ 0 = numeral n k 6= 0 =⇒ numeral n $$ k = 0
〈proof 〉

instance fls :: (comm-semiring-1 ) comm-semiring-1
〈proof 〉

instance fls :: (ring) ring 〈proof 〉

instance fls :: (comm-ring) comm-ring 〈proof 〉

instance fls :: (ring-1 ) ring-1 〈proof 〉

lemma fls-of-int-nonneg: (of-int (int n) :: ′a::ring-1 fls) = fls-const (of-int (int
n))
〈proof 〉

lemma fls-of-int: (of-int i :: ′a::ring-1 fls) = fls-const (of-int i)
〈proof 〉

lemma fls-of-int-nth: of-int n $$ k = (if k=0 then of-int n else 0 )
〈proof 〉

lemma fls-mult-of-int-nth [simp]:
shows (of-int k ∗ f ) $$ n = of-int k ∗ f $$n
and (f ∗ of-int k ) $$ n = f $$n ∗ of-int k
〈proof 〉

lemma fls-subdegree-of-int [simp]: fls-subdegree (of-int i) = 0
〈proof 〉

lemma fls-shift-of-int-nth:
fls-shift k (of-int i) $$ n = (if n=−k then of-int i else 0 )
〈proof 〉

lemma fls-base-factor-of-int [simp]:
fls-base-factor (of-int i :: ′a::ring-1 fls) = (of-int i :: ′a fls)
〈proof 〉

lemma fls-regpart-of-int [simp]:
fls-regpart (of-int i) = (of-int i :: ′a::ring-1 fps)
〈proof 〉

lemma fls-prpart-of-int [simp]: fls-prpart (of-int n) = 0
〈proof 〉

lemma fls-base-factor-to-fps-of-int:
fls-base-factor-to-fps (of-int i) = (of-int i :: ′a::ring-1 fps)
〈proof 〉
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lemma fps-to-fls-of-int:
fps-to-fls (of-int i) = (of-int i :: ′a::ring-1 fls)
〈proof 〉

instance fls :: (comm-ring-1 ) comm-ring-1 〈proof 〉

instance fls :: (semiring-no-zero-divisors) semiring-no-zero-divisors
〈proof 〉

instance fls :: (semiring-1-no-zero-divisors) semiring-1-no-zero-divisors 〈proof 〉

instance fls :: (ring-no-zero-divisors) ring-no-zero-divisors 〈proof 〉

instance fls :: (ring-1-no-zero-divisors) ring-1-no-zero-divisors 〈proof 〉

instance fls :: (idom) idom 〈proof 〉

lemma semiring-char-fls [simp]: CHAR( ′a :: comm-semiring-1 fls) = CHAR( ′a)
〈proof 〉

instance fls :: ({semiring-prime-char ,comm-semiring-1}) semiring-prime-char
〈proof 〉

instance fls :: ({comm-semiring-prime-char ,comm-semiring-1}) comm-semiring-prime-char
〈proof 〉

instance fls :: ({comm-ring-prime-char ,comm-semiring-1}) comm-ring-prime-char
〈proof 〉

instance fls :: ({idom-prime-char ,comm-semiring-1}) idom-prime-char
〈proof 〉

lemma fls-subdegree-numeral [simp]: fls-subdegree (numeral n) = 0
〈proof 〉

lemma fls-regpart-numeral [simp]: fls-regpart (numeral n) = numeral n
〈proof 〉

7.5.4 Powers
lemma fls-subdegree-prod:

fixes F :: ′a ⇒ ′b :: field-char-0 fls
assumes

∧
x. x ∈ I =⇒ F x 6= 0

shows fls-subdegree (
∏

x∈I . F x) = (
∑

x∈I . fls-subdegree (F x))
〈proof 〉

lemma fls-subdegree-prod ′:
fixes F :: ′a ⇒ ′b :: field-char-0 fls
assumes

∧
x. x ∈ I =⇒ fls-subdegree (F x) 6= 0

shows fls-subdegree (
∏

x∈I . F x) = (
∑

x∈I . fls-subdegree (F x))
〈proof 〉
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lemma fls-pow-subdegree-ge:
f^n 6= 0 =⇒ fls-subdegree (f^n) ≥ n ∗ fls-subdegree f
〈proof 〉

lemma fls-pow-nth-below-subdegree:
k < n ∗ fls-subdegree f =⇒ (f^n) $$ k = 0
〈proof 〉

lemma fls-pow-base [simp]:
(f ^ n) $$ (n ∗ fls-subdegree f ) = (f $$ fls-subdegree f ) ^ n
〈proof 〉

lemma fls-pow-subdegree-eqI :
(f $$ fls-subdegree f ) ^ n 6= 0 =⇒ fls-subdegree (f^n) = n ∗ fls-subdegree f
〈proof 〉

lemma fls-unit-base-subdegree-power :
x ∗ f $$ fls-subdegree f = 1 =⇒ fls-subdegree (f ^ n) = n ∗ fls-subdegree f
f $$ fls-subdegree f ∗ y = 1 =⇒ fls-subdegree (f ^ n) = n ∗ fls-subdegree f
〈proof 〉

lemma fls-base-dvd1-subdegree-power :
f $$ fls-subdegree f dvd 1 =⇒ fls-subdegree (f ^ n) = n ∗ fls-subdegree f
〈proof 〉

lemma fls-pow-subdegree-ge0 :
assumes fls-subdegree f ≥ 0
shows fls-subdegree (f^n) ≥ 0
〈proof 〉

lemma fls-subdegree-pow:
fixes f :: ′a::semiring-1-no-zero-divisors fls
shows fls-subdegree (f ^ n) = n ∗ fls-subdegree f
〈proof 〉

lemma fls-shifted-pow:
(fls-shift m f ) ^ n = fls-shift (n∗m) (f ^ n)
〈proof 〉

lemma fls-pow-conv-fps-pow:
assumes fls-subdegree f ≥ 0
shows f ^ n = fps-to-fls ( (fls-regpart f ) ^ n )
〈proof 〉

lemma fps-to-fls-power : fps-to-fls (f ^ n) = fps-to-fls f ^ n
〈proof 〉

lemma fls-pow-conv-regpart:
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fls-subdegree f ≥ 0 =⇒ fls-regpart (f ^ n) = (fls-regpart f ) ^ n
〈proof 〉

These two lemmas show that shifting 1 is equivalent to powers of the implied
variable.
lemma fls-X-power-conv-shift-1 : fls-X ^ n = fls-shift (−n) 1
〈proof 〉

lemma fls-X-inv-power-conv-shift-1 : fls-X-inv ^ n = fls-shift n 1
〈proof 〉

abbreviation fls-X-intpow ≡ (λi. fls-shift (−i) 1 )
— Unifies fls-X and fls-X-inv so that fls-X-intpow returns the equivalent of the
implied variable raised to the supplied integer argument of fls-X-intpow, whether
positive or negative.

lemma fls-X-intpow-nonzero[simp]: (fls-X-intpow i :: ′a::zero-neq-one fls) 6= 0
〈proof 〉

lemma fls-X-intpow-power : (fls-X-intpow i) ^ n = fls-X-intpow (n ∗ i)
〈proof 〉

lemma fls-X-power-nth [simp]: fls-X ^ n $$ k = (if k=n then 1 else 0 )
〈proof 〉

lemma fls-X-inv-power-nth [simp]: fls-X-inv ^ n $$ k = (if k=−n then 1 else 0 )
〈proof 〉

lemma fls-X-pow-nonzero[simp]: (fls-X ^ n :: ′a :: semiring-1 fls) 6= 0
〈proof 〉

lemma fls-X-inv-pow-nonzero[simp]: (fls-X-inv ^ n :: ′a :: semiring-1 fls) 6= 0
〈proof 〉

lemma fls-subdegree-fls-X-pow [simp]: fls-subdegree (fls-X ^ n) = n
〈proof 〉

lemma fls-subdegree-fls-X-inv-pow [simp]: fls-subdegree (fls-X-inv ^ n) = −n
〈proof 〉

lemma fls-subdegree-fls-X-intpow [simp]:
fls-subdegree ((fls-X-intpow i) :: ′a::zero-neq-one fls) = i
〈proof 〉

lemma fls-X-pow-conv-fps-X-pow: fls-regpart (fls-X ^ n) = fps-X ^ n
〈proof 〉

lemma fls-X-inv-pow-regpart: n > 0 =⇒ fls-regpart (fls-X-inv ^ n) = 0
〈proof 〉

213



lemma fls-X-intpow-regpart:
fls-regpart (fls-X-intpow i) = (if i≥0 then fps-X ^ nat i else 0 )
〈proof 〉

lemma fls-X-power-times-conv-shift:
fls-X ^ n ∗ f = fls-shift (−int n) f f ∗ fls-X ^ n = fls-shift (−int n) f
〈proof 〉

lemma fls-X-inv-power-times-conv-shift:
fls-X-inv ^ n ∗ f = fls-shift (int n) f f ∗ fls-X-inv ^ n = fls-shift (int n) f
〈proof 〉

lemma fls-X-intpow-times-conv-shift:
fixes f :: ′a::semiring-1 fls
shows fls-X-intpow i ∗ f = fls-shift (−i) f f ∗ fls-X-intpow i = fls-shift (−i) f
〈proof 〉

lemmas fls-X-power-times-comm = trans-sym[OF fls-X-power-times-conv-shift]
lemmas fls-X-inv-power-times-comm = trans-sym[OF fls-X-inv-power-times-conv-shift]

lemma fls-X-intpow-times-comm:
fixes f :: ′a::semiring-1 fls
shows fls-X-intpow i ∗ f = f ∗ fls-X-intpow i
〈proof 〉

lemma fls-X-intpow-times-fls-X-intpow:
(fls-X-intpow i :: ′a::semiring-1 fls) ∗ fls-X-intpow j = fls-X-intpow (i+j)
〈proof 〉

lemma fls-X-intpow-diff-conv-times:
fls-X-intpow (i−j) = (fls-X-intpow i :: ′a::semiring-1 fls) ∗ fls-X-intpow (−j)
〈proof 〉

lemma fls-mult-fls-X-power-nonzero:
assumes f 6= 0
shows fls-X ^ n ∗ f 6= 0 f ∗ fls-X ^ n 6= 0
〈proof 〉

lemma fls-mult-fls-X-inv-power-nonzero:
assumes f 6= 0
shows fls-X-inv ^ n ∗ f 6= 0 f ∗ fls-X-inv ^ n 6= 0
〈proof 〉

lemma fls-mult-fls-X-intpow-nonzero:
fixes f :: ′a::semiring-1 fls
assumes f 6= 0
shows fls-X-intpow i ∗ f 6= 0 f ∗ fls-X-intpow i 6= 0
〈proof 〉
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lemma fls-subdegree-mult-fls-X-power :
assumes f 6= 0
shows fls-subdegree (fls-X ^ n ∗ f ) = fls-subdegree f + n
and fls-subdegree (f ∗ fls-X ^ n) = fls-subdegree f + n
〈proof 〉

lemma fls-subdegree-mult-fls-X-inv-power :
assumes f 6= 0
shows fls-subdegree (fls-X-inv ^ n ∗ f ) = fls-subdegree f − n
and fls-subdegree (f ∗ fls-X-inv ^ n) = fls-subdegree f − n
〈proof 〉

lemma fls-subdegree-mult-fls-X-intpow:
fixes f :: ′a::semiring-1 fls
assumes f 6= 0
shows fls-subdegree (fls-X-intpow i ∗ f ) = fls-subdegree f + i
and fls-subdegree (f ∗ fls-X-intpow i) = fls-subdegree f + i
〈proof 〉

lemma fls-X-shift:
fls-shift (−int n) fls-X = fls-X ^ Suc n
fls-shift (int (Suc n)) fls-X = fls-X-inv ^ n
〈proof 〉

lemma fls-X-inv-shift:
fls-shift (int n) fls-X-inv = fls-X-inv ^ Suc n
fls-shift (− int (Suc n)) fls-X-inv = fls-X ^ n
〈proof 〉

lemma fls-X-power-base-factor : fls-base-factor (fls-X ^ n) = 1
〈proof 〉

lemma fls-X-inv-power-base-factor : fls-base-factor (fls-X-inv ^ n) = 1
〈proof 〉

lemma fls-X-intpow-base-factor : fls-base-factor (fls-X-intpow i) = 1
〈proof 〉

lemma fls-base-factor-mult-fls-X-power :
shows fls-base-factor (fls-X ^ n ∗ f ) = fls-base-factor f
and fls-base-factor (f ∗ fls-X ^ n) = fls-base-factor f
〈proof 〉

lemma fls-base-factor-mult-fls-X-inv-power :
shows fls-base-factor (fls-X-inv ^ n ∗ f ) = fls-base-factor f
and fls-base-factor (f ∗ fls-X-inv ^ n) = fls-base-factor f
〈proof 〉
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lemma fls-base-factor-mult-fls-X-intpow:
fixes f :: ′a::semiring-1 fls
shows fls-base-factor (fls-X-intpow i ∗ f ) = fls-base-factor f
and fls-base-factor (f ∗ fls-X-intpow i) = fls-base-factor f
〈proof 〉

lemma fls-X-power-base-factor-to-fps: fls-base-factor-to-fps (fls-X ^ n) = 1
〈proof 〉

lemma fls-X-inv-power-base-factor-to-fps: fls-base-factor-to-fps (fls-X-inv ^ n) =
1
〈proof 〉

lemma fls-X-intpow-base-factor-to-fps: fls-base-factor-to-fps (fls-X-intpow i) = 1
〈proof 〉

lemma fls-base-factor-X-power-decompose:
fixes f :: ′a::semiring-1 fls
shows f = fls-base-factor f ∗ fls-X-intpow (fls-subdegree f )
and f = fls-X-intpow (fls-subdegree f ) ∗ fls-base-factor f
〈proof 〉

lemma fls-normalized-product-of-inverses:
assumes f ∗ g = 1
shows fls-base-factor f ∗ fls-base-factor g =

fls-X ^ (nat (−(fls-subdegree f+fls-subdegree g)))
and fls-base-factor f ∗ fls-base-factor g =

fls-X-intpow (−(fls-subdegree f+fls-subdegree g))
〈proof 〉

lemma fls-fps-normalized-product-of-inverses:
assumes f ∗ g = 1
shows fls-base-factor-to-fps f ∗ fls-base-factor-to-fps g =

fps-X ^ (nat (−(fls-subdegree f+fls-subdegree g)))
〈proof 〉

7.5.5 Inverses
abbreviation fls-left-inverse ::

′a::{comm-monoid-add,uminus,times} fls ⇒ ′a ⇒ ′a fls
where
fls-left-inverse f x ≡

fls-shift (fls-subdegree f ) (fps-to-fls (fps-left-inverse (fls-base-factor-to-fps f ) x))

abbreviation fls-right-inverse ::
′a::{comm-monoid-add,uminus,times} fls ⇒ ′a ⇒ ′a fls
where
fls-right-inverse f y ≡

fls-shift (fls-subdegree f ) (fps-to-fls (fps-right-inverse (fls-base-factor-to-fps f )
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y))

instantiation fls :: ({comm-monoid-add,uminus,times,inverse}) inverse
begin

definition fls-divide-def :
f div g =

fls-shift (fls-subdegree g − fls-subdegree f ) (
fps-to-fls ((fls-base-factor-to-fps f ) div (fls-base-factor-to-fps g))

)

definition fls-inverse-def :
inverse f = fls-shift (fls-subdegree f ) (fps-to-fls (inverse (fls-base-factor-to-fps

f )))
instance 〈proof 〉

end

lemma fls-inverse-def ′:
inverse f = fls-right-inverse f (inverse (f $$ fls-subdegree f ))
〈proof 〉

lemma fls-lr-inverse-base:
fls-left-inverse f x $$ (−fls-subdegree f ) = x
fls-right-inverse f y $$ (−fls-subdegree f ) = y
〈proof 〉

lemma fls-inverse-base:
f 6= 0 =⇒ inverse f $$ (−fls-subdegree f ) = inverse (f $$ fls-subdegree f )
〈proof 〉

lemma fls-lr-inverse-starting0 :
fixes f :: ′a::{comm-monoid-add,mult-zero,uminus} fls
and g :: ′b::{ab-group-add,mult-zero} fls
shows fls-left-inverse f 0 = 0
and fls-right-inverse g 0 = 0
〈proof 〉

lemma fls-lr-inverse-eq0-imp-starting0 :
fls-left-inverse f x = 0 =⇒ x = 0
fls-right-inverse f x = 0 =⇒ x = 0
〈proof 〉

lemma fls-lr-inverse-eq-0-iff :
fixes x :: ′a::{comm-monoid-add,mult-zero,uminus}
and y :: ′b::{ab-group-add,mult-zero}
shows fls-left-inverse f x = 0 ←→ x = 0
and fls-right-inverse g y = 0 ←→ y = 0
〈proof 〉

lemma fls-inverse-eq-0-iff ′:
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fixes f :: ′a::{ab-group-add,inverse,mult-zero} fls
shows inverse f = 0 ←→ (inverse (f $$ fls-subdegree f ) = 0 )
〈proof 〉

lemma fls-inverse-eq-0-iff [simp]:
inverse f = (0 :: ( ′a::division-ring) fls) ←→ f $$ fls-subdegree f = 0
〈proof 〉

lemmas fls-inverse-eq-0 ′ = iffD2 [OF fls-inverse-eq-0-iff ′]
lemmas fls-inverse-eq-0 = iffD2 [OF fls-inverse-eq-0-iff ]

lemma fls-lr-inverse-const:
fixes a :: ′a::{ab-group-add,mult-zero}
and b :: ′b::{comm-monoid-add,mult-zero,uminus}
shows fls-left-inverse (fls-const a) x = fls-const x
and fls-right-inverse (fls-const b) y = fls-const y
〈proof 〉

lemma fls-inverse-const:
fixes a :: ′a::{comm-monoid-add,inverse,mult-zero,uminus}
shows inverse (fls-const a) = fls-const (inverse a)
〈proof 〉

lemma fls-lr-inverse-of-nat:
fixes x :: ′a::{ring-1 ,mult-zero}
and y :: ′b::{semiring-1 ,uminus}
shows fls-left-inverse (of-nat n) x = fls-const x
and fls-right-inverse (of-nat n) y = fls-const y
〈proof 〉

lemma fls-inverse-of-nat:
inverse (of-nat n :: ′a :: {semiring-1 ,inverse,uminus} fls) = fls-const (inverse

(of-nat n))
〈proof 〉

lemma fls-lr-inverse-of-int:
fixes x :: ′a::{ring-1 ,mult-zero}
shows fls-left-inverse (of-int n) x = fls-const x
and fls-right-inverse (of-int n) x = fls-const x
〈proof 〉

lemma fls-inverse-of-int:
inverse (of-int n :: ′a :: {ring-1 ,inverse,uminus} fls) = fls-const (inverse (of-int

n))
〈proof 〉

lemma fls-lr-inverse-zero:
fixes x :: ′a::{ab-group-add,mult-zero}
and y :: ′b::{comm-monoid-add,mult-zero,uminus}
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shows fls-left-inverse 0 x = fls-const x
and fls-right-inverse 0 y = fls-const y
〈proof 〉

lemma fls-inverse-zero-conv-fls-const:
inverse (0 :: ′a::{comm-monoid-add,mult-zero,uminus,inverse} fls) = fls-const (inverse

0 )
〈proof 〉

lemma fls-inverse-zero ′:
assumes inverse (0 :: ′a::{comm-monoid-add,inverse,mult-zero,uminus}) = 0
shows inverse (0 :: ′a fls) = 0
〈proof 〉

lemma fls-inverse-zero [simp]: inverse (0 :: ′a::division-ring fls) = 0
〈proof 〉

lemma fls-inverse-base2 :
fixes f :: ′a::{comm-monoid-add,mult-zero,uminus,inverse} fls
shows inverse f $$ (−fls-subdegree f ) = inverse (f $$ fls-subdegree f )
〈proof 〉

lemma fls-lr-inverse-one:
fixes x :: ′a::{ab-group-add,mult-zero,one}
and y :: ′b::{comm-monoid-add,mult-zero,uminus,one}
shows fls-left-inverse 1 x = fls-const x
and fls-right-inverse 1 y = fls-const y
〈proof 〉

lemma fls-lr-inverse-one-one:
fls-left-inverse 1 1 =
(1 :: ′a::{ab-group-add,mult-zero,one} fls)

fls-right-inverse 1 1 =
(1 :: ′b::{comm-monoid-add,mult-zero,uminus,one} fls)
〈proof 〉

lemma fls-inverse-one:
assumes inverse (1 :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,one}) = 1
shows inverse (1 :: ′a fls) = 1
〈proof 〉

lemma fls-left-inverse-delta:
fixes b :: ′a::{ab-group-add,mult-zero}
assumes b 6= 0
shows fls-left-inverse (Abs-fls (λn. if n=a then b else 0 )) x =

Abs-fls (λn. if n=−a then x else 0 )
〈proof 〉

lemma fls-right-inverse-delta:
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fixes b :: ′a::{comm-monoid-add,mult-zero,uminus}
assumes b 6= 0
shows fls-right-inverse (Abs-fls (λn. if n=a then b else 0 )) x =

Abs-fls (λn. if n=−a then x else 0 )
〈proof 〉

lemma fls-inverse-delta-nonzero:
fixes b :: ′a::{comm-monoid-add,inverse,mult-zero,uminus}
assumes b 6= 0
shows inverse (Abs-fls (λn. if n=a then b else 0 )) =

Abs-fls (λn. if n=−a then inverse b else 0 )
〈proof 〉

lemma fls-inverse-delta:
fixes b :: ′a::division-ring
shows inverse (Abs-fls (λn. if n=a then b else 0 )) =

Abs-fls (λn. if n=−a then inverse b else 0 )
〈proof 〉

lemma fls-lr-inverse-X :
fixes x :: ′a::{ab-group-add,mult-zero,zero-neq-one}
and y :: ′b::{comm-monoid-add,uminus,mult-zero,zero-neq-one}
shows fls-left-inverse fls-X x = fls-shift 1 (fls-const x)
and fls-right-inverse fls-X y = fls-shift 1 (fls-const y)
〈proof 〉

lemma fls-lr-inverse-X ′:
fixes x :: ′a::{ab-group-add,mult-zero,zero-neq-one,monoid-mult}
and y :: ′b::{comm-monoid-add,uminus,mult-zero,zero-neq-one,monoid-mult}
shows fls-left-inverse fls-X x = fls-const x ∗ fls-X-inv
and fls-right-inverse fls-X y = fls-const y ∗ fls-X-inv
〈proof 〉

lemma fls-inverse-X ′:
assumes inverse 1 = (1 :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one})
shows inverse (fls-X :: ′a fls) = fls-X-inv
〈proof 〉

lemma fls-inverse-X : inverse (fls-X :: ′a::division-ring fls) = fls-X-inv
〈proof 〉

lemma fls-lr-inverse-X-inv:
fixes x :: ′a::{ab-group-add,mult-zero,zero-neq-one}
and y :: ′b::{comm-monoid-add,uminus,mult-zero,zero-neq-one}
shows fls-left-inverse fls-X-inv x = fls-shift (−1 ) (fls-const x)
and fls-right-inverse fls-X-inv y = fls-shift (−1 ) (fls-const y)
〈proof 〉

lemma fls-lr-inverse-X-inv ′:
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fixes x :: ′a::{ab-group-add,mult-zero,zero-neq-one,monoid-mult}
and y :: ′b::{comm-monoid-add,uminus,mult-zero,zero-neq-one,monoid-mult}
shows fls-left-inverse fls-X-inv x = fls-const x ∗ fls-X
and fls-right-inverse fls-X-inv y = fls-const y ∗ fls-X
〈proof 〉

lemma fls-inverse-X-inv ′:
assumes inverse 1 = (1 :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one})
shows inverse (fls-X-inv:: ′a fls) = fls-X
〈proof 〉

lemma fls-inverse-X-inv: inverse (fls-X-inv:: ′a::division-ring fls) = fls-X
〈proof 〉

lemma fls-lr-inverse-subdegree:
assumes x 6= 0
shows fls-subdegree (fls-left-inverse f x) = − fls-subdegree f
and fls-subdegree (fls-right-inverse f x) = − fls-subdegree f
〈proof 〉

lemma fls-inverse-subdegree ′:
inverse (f $$ fls-subdegree f ) 6= 0 =⇒ fls-subdegree (inverse f ) = − fls-subdegree

f
〈proof 〉

lemma fls-inverse-subdegree [simp]:
fixes f :: ′a::division-ring fls
shows fls-subdegree (inverse f ) = − fls-subdegree f
〈proof 〉

lemma fls-inverse-subdegree-base-nonzero:
assumes f 6= 0 inverse (f $$ fls-subdegree f ) 6= 0
shows inverse f $$ (fls-subdegree (inverse f )) = inverse (f $$ fls-subdegree f )
〈proof 〉

lemma fls-inverse-subdegree-base:
fixes f :: ′a::{ab-group-add,inverse,mult-zero} fls
shows inverse f $$ (fls-subdegree (inverse f )) = inverse (f $$ fls-subdegree f )
〈proof 〉

lemma fls-lr-inverse-subdegree-0 :
assumes fls-subdegree f = 0
shows fls-subdegree (fls-left-inverse f x) ≥ 0
and fls-subdegree (fls-right-inverse f x) ≥ 0
〈proof 〉

lemma fls-inverse-subdegree-0 :
fls-subdegree f = 0 =⇒ fls-subdegree (inverse f ) ≥ 0
〈proof 〉

221



lemma fls-lr-inverse-shift-nonzero:
fixes f :: ′a::{comm-monoid-add,mult-zero,uminus} fls
assumes f 6= 0
shows fls-left-inverse (fls-shift m f ) x = fls-shift (−m) (fls-left-inverse f x)
and fls-right-inverse (fls-shift m f ) x = fls-shift (−m) (fls-right-inverse f x)
〈proof 〉

lemma fls-inverse-shift-nonzero:
fixes f :: ′a::{comm-monoid-add,inverse,mult-zero,uminus} fls
assumes f 6= 0
shows inverse (fls-shift m f ) = fls-shift (−m) (inverse f )
〈proof 〉

lemma fls-inverse-shift:
fixes f :: ′a::division-ring fls
shows inverse (fls-shift m f ) = fls-shift (−m) (inverse f )
〈proof 〉

lemma fls-left-inverse-base-factor :
fixes x :: ′a::{ab-group-add,mult-zero}
assumes x 6= 0
shows fls-left-inverse (fls-base-factor f ) x = fls-base-factor (fls-left-inverse f x)
〈proof 〉

lemma fls-right-inverse-base-factor :
fixes y :: ′a::{comm-monoid-add,mult-zero,uminus}
assumes y 6= 0
shows fls-right-inverse (fls-base-factor f ) y = fls-base-factor (fls-right-inverse

f y)
〈proof 〉

lemma fls-inverse-base-factor ′:
fixes f :: ′a::{comm-monoid-add,inverse,mult-zero,uminus} fls
assumes inverse (f $$ fls-subdegree f ) 6= 0
shows inverse (fls-base-factor f ) = fls-base-factor (inverse f )
〈proof 〉

lemma fls-inverse-base-factor :
fixes f :: ′a::{ab-group-add,inverse,mult-zero} fls
shows inverse (fls-base-factor f ) = fls-base-factor (inverse f )
〈proof 〉

lemma fls-lr-inverse-regpart:
assumes fls-subdegree f = 0
shows fls-regpart (fls-left-inverse f x) = fps-left-inverse (fls-regpart f ) x
and fls-regpart (fls-right-inverse f y) = fps-right-inverse (fls-regpart f ) y
〈proof 〉
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lemma fls-inverse-regpart:
assumes fls-subdegree f = 0
shows fls-regpart (inverse f ) = inverse (fls-regpart f )
〈proof 〉

lemma fls-base-factor-to-fps-left-inverse:
fixes x :: ′a::{ab-group-add,mult-zero}
shows fls-base-factor-to-fps (fls-left-inverse f x) =

fps-left-inverse (fls-base-factor-to-fps f ) x
〈proof 〉

lemma fls-base-factor-to-fps-right-inverse-nonzero:
fixes y :: ′a::{comm-monoid-add,mult-zero,uminus}
assumes y 6= 0
shows fls-base-factor-to-fps (fls-right-inverse f y) =

fps-right-inverse (fls-base-factor-to-fps f ) y
〈proof 〉

lemma fls-base-factor-to-fps-right-inverse:
fixes y :: ′a::{ab-group-add,mult-zero}
shows fls-base-factor-to-fps (fls-right-inverse f y) =

fps-right-inverse (fls-base-factor-to-fps f ) y
〈proof 〉

lemma fls-base-factor-to-fps-inverse-nonzero:
fixes f :: ′a::{comm-monoid-add,inverse,mult-zero,uminus} fls
assumes inverse (f $$ fls-subdegree f ) 6= 0
shows fls-base-factor-to-fps (inverse f ) = inverse (fls-base-factor-to-fps f )
〈proof 〉

lemma fls-base-factor-to-fps-inverse:
fixes f :: ′a::{ab-group-add,inverse,mult-zero} fls
shows fls-base-factor-to-fps (inverse f ) = inverse (fls-base-factor-to-fps f )
〈proof 〉

lemma fls-lr-inverse-fps-to-fls:
assumes subdegree f = 0
shows fls-left-inverse (fps-to-fls f ) x = fps-to-fls (fps-left-inverse f x)
and fls-right-inverse (fps-to-fls f ) x = fps-to-fls (fps-right-inverse f x)
〈proof 〉

lemma fls-inverse-fps-to-fls:
subdegree f = 0 =⇒ inverse (fps-to-fls f ) = fps-to-fls (inverse f )
〈proof 〉

lemma fls-lr-inverse-X-power :
fixes x :: ′a::ring-1
and y :: ′b::{semiring-1 ,uminus}
shows fls-left-inverse (fls-X ^ n) x = fls-shift n (fls-const x)
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and fls-right-inverse (fls-X ^ n) y = fls-shift n (fls-const y)
〈proof 〉

lemma fls-lr-inverse-X-power ′:
fixes x :: ′a::ring-1
and y :: ′b::{semiring-1 ,uminus}
shows fls-left-inverse (fls-X ^ n) x = fls-const x ∗ fls-X-inv ^ n
and fls-right-inverse (fls-X ^ n) y = fls-const y ∗ fls-X-inv ^ n
〈proof 〉

lemma fls-inverse-X-power ′:
assumes inverse 1 = (1 :: ′a::{semiring-1 ,uminus,inverse})
shows inverse ((fls-X ^ n):: ′a fls) = fls-X-inv ^ n
〈proof 〉

lemma fls-inverse-X-power :
inverse ((fls-X :: ′a::division-ring fls) ^ n) = fls-X-inv ^ n
〈proof 〉

lemma fls-lr-inverse-X-inv-power :
fixes x :: ′a::ring-1
and y :: ′b::{semiring-1 ,uminus}
shows fls-left-inverse (fls-X-inv ^ n) x = fls-shift (−n) (fls-const x)
and fls-right-inverse (fls-X-inv ^ n) y = fls-shift (−n) (fls-const y)
〈proof 〉

lemma fls-lr-inverse-X-inv-power ′:
fixes x :: ′a::ring-1
and y :: ′b::{semiring-1 ,uminus}
shows fls-left-inverse (fls-X-inv ^ n) x = fls-const x ∗ fls-X ^ n
and fls-right-inverse (fls-X-inv ^ n) y = fls-const y ∗ fls-X ^ n
〈proof 〉

lemma fls-inverse-X-inv-power ′:
assumes inverse 1 = (1 :: ′a::{semiring-1 ,uminus,inverse})
shows inverse ((fls-X-inv ^ n):: ′a fls) = fls-X ^ n
〈proof 〉

lemma fls-inverse-X-inv-power :
inverse ((fls-X-inv:: ′a::division-ring fls) ^ n) = fls-X ^ n
〈proof 〉

lemma fls-lr-inverse-X-intpow:
fixes x :: ′a::ring-1
and y :: ′b::{semiring-1 ,uminus}
shows fls-left-inverse (fls-X-intpow i) x = fls-shift i (fls-const x)
and fls-right-inverse (fls-X-intpow i) y = fls-shift i (fls-const y)
〈proof 〉
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lemma fls-lr-inverse-X-intpow ′:
fixes x :: ′a::ring-1
and y :: ′b::{semiring-1 ,uminus}
shows fls-left-inverse (fls-X-intpow i) x = fls-const x ∗ fls-X-intpow (−i)
and fls-right-inverse (fls-X-intpow i) y = fls-const y ∗ fls-X-intpow (−i)
〈proof 〉

lemma fls-inverse-X-intpow ′:
assumes inverse 1 = (1 :: ′a::{semiring-1 ,uminus,inverse})
shows inverse (fls-X-intpow i :: ′a fls) = fls-X-intpow (−i)
〈proof 〉

lemma fls-inverse-X-intpow:
inverse (fls-X-intpow i :: ′a::division-ring fls) = fls-X-intpow (−i)
〈proof 〉

lemma fls-left-inverse:
fixes f :: ′a::ring-1 fls
assumes x ∗ f $$ fls-subdegree f = 1
shows fls-left-inverse f x ∗ f = 1
〈proof 〉

lemma fls-right-inverse:
fixes f :: ′a::ring-1 fls
assumes f $$ fls-subdegree f ∗ y = 1
shows f ∗ fls-right-inverse f y = 1
〈proof 〉
lemma fls-left-inverse-eq-fls-right-inverse:

fixes f :: ′a::ring-1 fls
assumes x ∗ f $$ fls-subdegree f = 1 f $$ fls-subdegree f ∗ y = 1
— These assumptions imply x equals y, but no need to assume that.
shows fls-left-inverse f x = fls-right-inverse f y
〈proof 〉

lemma fls-left-inverse-eq-inverse:
fixes f :: ′a::division-ring fls
shows fls-left-inverse f (inverse (f $$ fls-subdegree f )) = inverse f
〈proof 〉

lemma fls-right-inverse-eq-inverse:
fixes f :: ′a::division-ring fls
shows fls-right-inverse f (inverse (f $$ fls-subdegree f )) = inverse f
〈proof 〉

lemma fls-left-inverse-eq-fls-right-inverse-comm:
fixes f :: ′a::comm-ring-1 fls
assumes x ∗ f $$ fls-subdegree f = 1
shows fls-left-inverse f x = fls-right-inverse f x
〈proof 〉
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lemma fls-left-inverse ′:
fixes f :: ′a::ring-1 fls
assumes x ∗ f $$ fls-subdegree f = 1 f $$ fls-subdegree f ∗ y = 1
— These assumptions imply x equals y, but no need to assume that.
shows fls-right-inverse f y ∗ f = 1
〈proof 〉

lemma fls-right-inverse ′:
fixes f :: ′a::ring-1 fls
assumes x ∗ f $$ fls-subdegree f = 1 f $$ fls-subdegree f ∗ y = 1
— These assumptions imply x equals y, but no need to assume that.
shows f ∗ fls-left-inverse f x = 1
〈proof 〉

lemma fls-mult-left-inverse-base-factor :
fixes f :: ′a::ring-1 fls
assumes x ∗ (f $$ fls-subdegree f ) = 1
shows fls-left-inverse (fls-base-factor f ) x ∗ f = fls-X-intpow (fls-subdegree f )
〈proof 〉

lemma fls-mult-right-inverse-base-factor :
fixes f :: ′a::ring-1 fls
assumes (f $$ fls-subdegree f ) ∗ y = 1
shows f ∗ fls-right-inverse (fls-base-factor f ) y = fls-X-intpow (fls-subdegree f )
〈proof 〉

lemma fls-mult-inverse-base-factor :
fixes f :: ′a::division-ring fls
assumes f 6= 0
shows f ∗ inverse (fls-base-factor f ) = fls-X-intpow (fls-subdegree f )
〈proof 〉

lemma fls-left-inverse-idempotent-ring1 :
fixes f :: ′a::ring-1 fls
assumes x ∗ f $$ fls-subdegree f = 1 y ∗ x = 1
— These assumptions imply y equals f $$ fls-subdegree f, but no need to assume

that.
shows fls-left-inverse (fls-left-inverse f x) y = f
〈proof 〉

lemma fls-left-inverse-idempotent-comm-ring1 :
fixes f :: ′a::comm-ring-1 fls
assumes x ∗ f $$ fls-subdegree f = 1
shows fls-left-inverse (fls-left-inverse f x) (f $$ fls-subdegree f ) = f
〈proof 〉

lemma fls-right-inverse-idempotent-ring1 :
fixes f :: ′a::ring-1 fls
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assumes f $$ fls-subdegree f ∗ x = 1 x ∗ y = 1
— These assumptions imply y equals f $$ fls-subdegree f, but no need to assume

that.
shows fls-right-inverse (fls-right-inverse f x) y = f
〈proof 〉

lemma fls-right-inverse-idempotent-comm-ring1 :
fixes f :: ′a::comm-ring-1 fls
assumes f $$ fls-subdegree f ∗ x = 1
shows fls-right-inverse (fls-right-inverse f x) (f $$ fls-subdegree f ) = f
〈proof 〉

lemma fls-lr-inverse-unique-ring1 :
fixes f g :: ′a :: ring-1 fls
assumes fg: f ∗ g = 1 g $$ fls-subdegree g ∗ f $$ fls-subdegree f = 1
shows fls-left-inverse g (f $$ fls-subdegree f ) = f
and fls-right-inverse f (g $$ fls-subdegree g) = g
〈proof 〉

lemma fls-lr-inverse-unique-divring:
fixes f g :: ′a ::division-ring fls
assumes fg: f ∗ g = 1
shows fls-left-inverse g (f $$ fls-subdegree f ) = f
and fls-right-inverse f (g $$ fls-subdegree g) = g
〈proof 〉

lemma fls-lr-inverse-minus:
fixes f :: ′a::ring-1 fls
shows fls-left-inverse (−f ) (−x) = − fls-left-inverse f x
and fls-right-inverse (−f ) (−x) = − fls-right-inverse f x
〈proof 〉

lemma fls-inverse-minus [simp]: inverse (−f ) = −inverse (f :: ′a :: division-ring
fls)
〈proof 〉

lemma fls-lr-inverse-mult-ring1 :
fixes f g :: ′a::ring-1 fls
assumes x: x ∗ f $$ fls-subdegree f = 1 f $$ fls-subdegree f ∗ x = 1
and y: y ∗ g $$ fls-subdegree g = 1 g $$ fls-subdegree g ∗ y = 1
shows fls-left-inverse (f ∗ g) (y∗x) = fls-left-inverse g y ∗ fls-left-inverse f x
and fls-right-inverse (f ∗ g) (y∗x) = fls-right-inverse g y ∗ fls-right-inverse f

x
〈proof 〉

lemma fls-lr-inverse-power-ring1 :
fixes f :: ′a::ring-1 fls
assumes x: x ∗ f $$ fls-subdegree f = 1 f $$ fls-subdegree f ∗ x = 1
shows fls-left-inverse (f ^ n) (x ^ n) = (fls-left-inverse f x) ^ n
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fls-right-inverse (f ^ n) (x ^ n) = (fls-right-inverse f x) ^ n
〈proof 〉

lemma fls-divide-convert-times-inverse:
fixes f g :: ′a::{comm-monoid-add,inverse,mult-zero,uminus} fls
shows f / g = f ∗ inverse g
〈proof 〉

instance fls :: (division-ring) division-ring
〈proof 〉

lemma fls-lr-inverse-mult-divring:
fixes f g :: ′a::division-ring fls
and df dg :: int
defines df ≡ fls-subdegree f
and dg ≡ fls-subdegree g
shows fls-left-inverse (f ∗g) (inverse ((f ∗g)$$(df+dg))) =

fls-left-inverse g (inverse (g$$dg)) ∗ fls-left-inverse f (inverse (f $$df ))
and fls-right-inverse (f ∗g) (inverse ((f ∗g)$$(df+dg))) =

fls-right-inverse g (inverse (g$$dg)) ∗ fls-right-inverse f (inverse (f $$df ))
〈proof 〉

lemma fls-lr-inverse-power-divring:
fls-left-inverse (f ^ n) ((inverse (f $$ fls-subdegree f )) ^ n) =
(fls-left-inverse f (inverse (f $$ fls-subdegree f ))) ^ n (is ?P)

and fls-right-inverse (f ^ n) ((inverse (f $$ fls-subdegree f )) ^ n) =
(fls-right-inverse f (inverse (f $$ fls-subdegree f ))) ^ n (is ?Q)

for f :: ′a::division-ring fls
〈proof 〉

lemma one-plus-fls-X-powi-eq:
(1 + fls-X) powi n = fps-to-fls (fps-binomial (of-int n :: ′a :: field-char-0 ))
〈proof 〉

instance fls :: (field) field
〈proof 〉

instance fls :: ({field-prime-char ,comm-semiring-1}) field-prime-char
〈proof 〉

instance fls :: (semiring-char-0 ) semiring-char-0
〈proof 〉

instance fls :: (field-char-0 ) field-char-0 〈proof 〉

lemma fls-subdegree-power-int [simp]:
fixes F :: ′a :: field fls
shows fls-subdegree (F powi n) = n ∗ fls-subdegree F
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〈proof 〉

7.5.6 Division
lemma fls-divide-nth-below:

fixes f g :: ′a::{comm-monoid-add,uminus,times,inverse} fls
shows n < fls-subdegree f − fls-subdegree g =⇒ (f div g) $$ n = 0
〈proof 〉

lemma fls-divide-nth-base:
fixes f g :: ′a::division-ring fls
shows
(f div g) $$ (fls-subdegree f − fls-subdegree g) =

f $$ fls-subdegree f / g $$ fls-subdegree g
〈proof 〉

lemma fls-div-zero [simp]:
0 div (g :: ′a :: {comm-monoid-add,inverse,mult-zero,uminus} fls) = 0
〈proof 〉

lemma fls-div-by-zero:
fixes g :: ′a::{comm-monoid-add,inverse,mult-zero,uminus} fls
assumes inverse (0 :: ′a) = 0
shows g div 0 = 0
〈proof 〉

lemma fls-divide-times:
fixes f g :: ′a::{semiring-0 ,inverse,uminus} fls
shows (f ∗ g) / h = f ∗ (g / h)
〈proof 〉

lemma fls-divide-times2 :
fixes f g :: ′a::{comm-semiring-0 ,inverse,uminus} fls
shows (f ∗ g) / h = (f / h) ∗ g
〈proof 〉

lemma fls-divide-subdegree-ge:
fixes f g :: ′a::{comm-monoid-add,uminus,times,inverse} fls
assumes f / g 6= 0
shows fls-subdegree (f / g) ≥ fls-subdegree f − fls-subdegree g
〈proof 〉

lemma fls-divide-subdegree:
fixes f g :: ′a::division-ring fls
assumes f 6= 0 g 6= 0
shows fls-subdegree (f / g) = fls-subdegree f − fls-subdegree g
〈proof 〉

lemma fls-divide-shift-numer-nonzero:
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fixes f g :: ′a :: {comm-monoid-add,inverse,times,uminus} fls
assumes f 6= 0
shows fls-shift m f / g = fls-shift m (f /g)
〈proof 〉

lemma fls-divide-shift-numer :
fixes f g :: ′a :: {comm-monoid-add,inverse,mult-zero,uminus} fls
shows fls-shift m f / g = fls-shift m (f /g)
〈proof 〉

lemma fls-divide-shift-denom-nonzero:
fixes f g :: ′a :: {comm-monoid-add,inverse,times,uminus} fls
assumes g 6= 0
shows f / fls-shift m g = fls-shift (−m) (f /g)
〈proof 〉

lemma fls-divide-shift-denom:
fixes f g :: ′a :: division-ring fls
shows f / fls-shift m g = fls-shift (−m) (f /g)
〈proof 〉

lemma fls-divide-shift-both-nonzero:
fixes f g :: ′a :: {comm-monoid-add,inverse,times,uminus} fls
assumes f 6= 0 g 6= 0
shows fls-shift n f / fls-shift m g = fls-shift (n−m) (f /g)
〈proof 〉

lemma fls-divide-shift-both [simp]:
fixes f g :: ′a :: division-ring fls
shows fls-shift n f / fls-shift m g = fls-shift (n−m) (f /g)
〈proof 〉

lemma fls-divide-base-factor-numer :
fls-base-factor f / g = fls-shift (fls-subdegree f ) (f /g)
〈proof 〉

lemma fls-divide-base-factor-denom:
f / fls-base-factor g = fls-shift (−fls-subdegree g) (f /g)
〈proof 〉

lemma fls-divide-base-factor ′:
fls-base-factor f / fls-base-factor g = fls-shift (fls-subdegree f − fls-subdegree g)

(f /g)
〈proof 〉

lemma fls-divide-base-factor :
fixes f g :: ′a :: division-ring fls
shows fls-base-factor f / fls-base-factor g = fls-base-factor (f /g)
〈proof 〉
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lemma fls-divide-regpart:
fixes f g :: ′a::{inverse,comm-monoid-add,uminus,mult-zero} fls
assumes fls-subdegree f ≥ 0 fls-subdegree g ≥ 0
shows fls-regpart (f / g) = fls-regpart f / fls-regpart g
〈proof 〉

lemma fls-divide-fls-base-factor-to-fps ′:
fixes f g :: ′a::{comm-monoid-add,uminus,inverse,mult-zero} fls
shows

fls-base-factor-to-fps f / fls-base-factor-to-fps g =
fls-regpart (fls-shift (fls-subdegree f − fls-subdegree g) (f / g))

〈proof 〉

lemma fls-divide-fls-base-factor-to-fps:
fixes f g :: ′a::division-ring fls
shows fls-base-factor-to-fps f / fls-base-factor-to-fps g = fls-base-factor-to-fps (f

/ g)
〈proof 〉

lemma fls-divide-fps-to-fls:
fixes f g :: ′a::{inverse,ab-group-add,mult-zero} fps
assumes subdegree f ≥ subdegree g
shows fps-to-fls f / fps-to-fls g = fps-to-fls (f /g)
〈proof 〉

lemma fls-divide-1 ′:
fixes f :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult}

fls
assumes inverse (1 :: ′a) = 1
shows f / 1 = f
〈proof 〉

lemma fls-divide-1 [simp]: a / 1 = (a:: ′a::division-ring fls)
〈proof 〉

lemma fls-const-divide-const:
fixes x y :: ′a::division-ring
shows fls-const x / fls-const y = fls-const (x/y)
〈proof 〉

lemma fls-divide-X ′:
fixes f :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult}

fls
assumes inverse (1 :: ′a) = 1
shows f / fls-X = fls-shift 1 f
〈proof 〉

lemma fls-divide-X [simp]:

231



fixes f :: ′a::division-ring fls
shows f / fls-X = fls-shift 1 f
〈proof 〉

lemma fls-divide-X-power ′:
fixes f :: ′a::{semiring-1 ,inverse,uminus} fls
assumes inverse (1 :: ′a) = 1
shows f / (fls-X ^ n) = fls-shift n f
〈proof 〉

lemma fls-divide-X-power [simp]:
fixes f :: ′a::division-ring fls
shows f / (fls-X ^ n) = fls-shift n f
〈proof 〉

lemma fls-divide-X-inv ′:
fixes f :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult}

fls
assumes inverse (1 :: ′a) = 1
shows f / fls-X-inv = fls-shift (−1 ) f
〈proof 〉

lemma fls-divide-X-inv [simp]:
fixes f :: ′a::division-ring fls
shows f / fls-X-inv = fls-shift (−1 ) f
〈proof 〉

lemma fls-divide-X-inv-power ′:
fixes f :: ′a::{semiring-1 ,inverse,uminus} fls
assumes inverse (1 :: ′a) = 1
shows f / (fls-X-inv ^ n) = fls-shift (−int n) f
〈proof 〉

lemma fls-divide-X-inv-power [simp]:
fixes f :: ′a::division-ring fls
shows f / (fls-X-inv ^ n) = fls-shift (−int n) f
〈proof 〉

lemma fls-divide-X-intpow ′:
fixes f :: ′a::{semiring-1 ,inverse,uminus} fls
assumes inverse (1 :: ′a) = 1
shows f / (fls-X-intpow i) = fls-shift i f
〈proof 〉

lemma fls-divide-X-intpow-conv-times ′:
fixes f :: ′a::{semiring-1 ,inverse,uminus} fls
assumes inverse (1 :: ′a) = 1
shows f / (fls-X-intpow i) = f ∗ fls-X-intpow (−i)
〈proof 〉
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lemma fls-divide-X-intpow:
fixes f :: ′a::division-ring fls
shows f / (fls-X-intpow i) = fls-shift i f
〈proof 〉

lemma fls-divide-X-intpow-conv-times:
fixes f :: ′a::division-ring fls
shows f / (fls-X-intpow i) = f ∗ fls-X-intpow (−i)
〈proof 〉

lemma fls-X-intpow-div-fls-X-intpow-semiring1 :
assumes inverse (1 :: ′a::{semiring-1 ,inverse,uminus}) = 1
shows (fls-X-intpow i :: ′a fls) / fls-X-intpow j = fls-X-intpow (i−j)
〈proof 〉

lemma fls-X-intpow-div-fls-X-intpow:
(fls-X-intpow i :: ′a::division-ring fls) / fls-X-intpow j = fls-X-intpow (i−j)
〈proof 〉

lemma fls-divide-add:
fixes f g h :: ′a::{semiring-0 ,inverse,uminus} fls
shows (f + g) / h = f / h + g / h
〈proof 〉

lemma fls-divide-diff :
fixes f g h :: ′a::{ring,inverse} fls
shows (f − g) / h = f / h − g / h
〈proof 〉

lemma fls-divide-uminus:
fixes f g h :: ′a::{ring,inverse} fls
shows (− f ) / g = − (f / g)
〈proof 〉

lemma fls-divide-uminus ′:
fixes f g h :: ′a::division-ring fls
shows f / (− g) = − (f / g)
〈proof 〉

7.5.7 Units
lemma fls-is-left-unit-iff-base-is-left-unit:

fixes f :: ′a :: ring-1-no-zero-divisors fls
shows (∃ g. 1 = f ∗ g) ←→ (∃ k. 1 = f $$ fls-subdegree f ∗ k)
〈proof 〉

lemma fls-is-right-unit-iff-base-is-right-unit:
fixes f :: ′a :: ring-1-no-zero-divisors fls
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shows (∃ g. 1 = g ∗ f ) ←→ (∃ k. 1 = k ∗ f $$ fls-subdegree f )
〈proof 〉

7.6 Composition
definition fls-compose-fps :: ′a :: field fls ⇒ ′a fps ⇒ ′a fls where

fls-compose-fps F G =
fps-to-fls (fps-compose (fls-base-factor-to-fps F) G) ∗ fps-to-fls G powi fls-subdegree

F

lemma fps-compose-of-nat [simp]: fps-compose (of-nat n :: ′a :: comm-ring-1 fps)
H = of-nat n

and fps-compose-of-int [simp]: fps-compose (of-int i) H = of-int i
〈proof 〉

lemmas [simp] = fps-to-fls-of-nat fps-to-fls-of-int

lemma fls-compose-fps-0 [simp]: fls-compose-fps 0 H = 0
and fls-compose-fps-1 [simp]: fls-compose-fps 1 H = 1
and fls-compose-fps-const [simp]: fls-compose-fps (fls-const c) H = fls-const c
and fls-compose-fps-of-nat [simp]: fls-compose-fps (of-nat n) H = of-nat n
and fls-compose-fps-of-int [simp]: fls-compose-fps (of-int i) H = of-int i
and fls-compose-fps-X [simp]: fls-compose-fps fls-X F = fps-to-fls F
〈proof 〉

lemma fls-compose-fps-0-right:
fls-compose-fps F 0 = (if 0 ≤ fls-subdegree F then fls-const (F $$ 0 ) else 0 )
〈proof 〉

lemma fls-compose-fps-shift:
assumes H 6= 0
shows fls-compose-fps (fls-shift n F) H = fls-compose-fps F H ∗ fps-to-fls H

powi (−n)
〈proof 〉

lemma fls-compose-fps-to-fls [simp]:
assumes [simp]: G 6= 0 fps-nth G 0 = 0
shows fls-compose-fps (fps-to-fls F) G = fps-to-fls (fps-compose F G)
〈proof 〉

lemma fls-compose-fps-mult:
assumes [simp]: H 6= 0 fps-nth H 0 = 0
shows fls-compose-fps (F ∗ G) H = fls-compose-fps F H ∗ fls-compose-fps G

H
〈proof 〉

lemma fls-compose-fps-power :
assumes [simp]: G 6= 0 fps-nth G 0 = 0
shows fls-compose-fps (F ^ n) G = fls-compose-fps F G ^ n
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〈proof 〉

lemma fls-compose-fps-add:
assumes [simp]: H 6= 0 fps-nth H 0 = 0
shows fls-compose-fps (F + G) H = fls-compose-fps F H + fls-compose-fps G

H
〈proof 〉

lemma fls-compose-fps-uminus [simp]: fls-compose-fps (−F) H = −fls-compose-fps
F H
〈proof 〉

lemma fls-compose-fps-diff :
assumes [simp]: H 6= 0 fps-nth H 0 = 0
shows fls-compose-fps (F − G) H = fls-compose-fps F H − fls-compose-fps G

H
〈proof 〉

lemma fls-compose-fps-eq-0-iff :
assumes H 6= 0 fps-nth H 0 = 0
shows fls-compose-fps F H = 0 ←→ F = 0
〈proof 〉

lemma fls-compose-fps-inverse:
assumes [simp]: H 6= 0 fps-nth H 0 = 0
shows fls-compose-fps (inverse F) H = inverse (fls-compose-fps F H )
〈proof 〉

lemma fls-compose-fps-divide:
assumes [simp]: H 6= 0 fps-nth H 0 = 0
shows fls-compose-fps (F / G) H = fls-compose-fps F H / fls-compose-fps G

H
〈proof 〉

lemma fls-compose-fps-powi:
assumes [simp]: H 6= 0 fps-nth H 0 = 0
shows fls-compose-fps (F powi n) H = fls-compose-fps F H powi n
〈proof 〉

lemma fls-compose-fps-assoc:
assumes [simp]: G 6= 0 fps-nth G 0 = 0 H 6= 0 fps-nth H 0 = 0
shows fls-compose-fps (fls-compose-fps F G) H = fls-compose-fps F (fps-compose

G H )
〈proof 〉

lemma subdegree-pos-iff : subdegree F > 0 ←→ F 6= 0 ∧ fps-nth F 0 = 0
〈proof 〉

lemma fls-X-power-int [simp]: fls-X powi n = (fls-X-intpow n :: ′a :: division-ring
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fls)
〈proof 〉

lemma fls-const-power-int: fls-const (c powi n) = fls-const (c :: ′a :: division-ring)
powi n
〈proof 〉

lemma fls-nth-fls-compose-fps-linear :
fixes c :: ′a :: field
assumes [simp]: c 6= 0
shows fls-compose-fps F (fps-const c ∗ fps-X) $$ n = F $$ n ∗ c powi n
〈proof 〉

lemma fls-const-transfer [transfer-rule]:
rel-fun (=) (pcr-fls (=))

(λc n. if n = 0 then c else 0 ) fls-const
〈proof 〉

lemma fls-shift-transfer [transfer-rule]:
rel-fun (=) (rel-fun (pcr-fls (=)) (pcr-fls (=)))

(λn f k. f (k+n)) fls-shift
〈proof 〉

lift-definition fls-compose-power :: ′a :: zero fls ⇒ nat ⇒ ′a fls is
λf d n. if d > 0 ∧ int d dvd n then f (n div int d) else 0
〈proof 〉

lemma fls-nth-compose-power :
assumes d > 0
shows fls-compose-power f d $$ n = (if int d dvd n then f $$ (n div int d) else

0 )
〈proof 〉

lemma fls-compose-power-0-left [simp]: fls-compose-power 0 d = 0
〈proof 〉

lemma fls-compose-power-1-left [simp]: d > 0 =⇒ fls-compose-power 1 d = 1
〈proof 〉

lemma fls-compose-power-const-left [simp]:
d > 0 =⇒ fls-compose-power (fls-const c) d = fls-const c
〈proof 〉

lemma fls-compose-power-shift [simp]:
d > 0 =⇒ fls-compose-power (fls-shift n f ) d = fls-shift (d ∗ n) (fls-compose-power

f d)
〈proof 〉
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lemma fls-compose-power-X-intpow [simp]:
d > 0 =⇒ fls-compose-power (fls-X-intpow n) d = fls-X-intpow (int d ∗ n)
〈proof 〉

lemma fls-compose-power-X [simp]:
d > 0 =⇒ fls-compose-power fls-X d = fls-X-intpow (int d)
〈proof 〉

lemma fls-compose-power-X-inv [simp]:
d > 0 =⇒ fls-compose-power fls-X-inv d = fls-X-intpow (−int d)
〈proof 〉

lemma fls-compose-power-0-right [simp]: fls-compose-power f 0 = 0
〈proof 〉

lemma fls-compose-power-add [simp]:
fls-compose-power (f + g) d = fls-compose-power f d + fls-compose-power g d
〈proof 〉

lemma fls-compose-power-diff [simp]:
fls-compose-power (f − g) d = fls-compose-power f d − fls-compose-power g d
〈proof 〉

lemma fls-compose-power-uminus [simp]:
fls-compose-power (−f ) d = −fls-compose-power f d
〈proof 〉

lemma fps-nth-compose-X-power :
fps-nth (f oo (fps-X ^ d)) n = (if d dvd n then fps-nth f (n div d) else 0 )
〈proof 〉

lemma fls-compose-power-fps-to-fls:
assumes d > 0
shows fls-compose-power (fps-to-fls f ) d = fps-to-fls (fps-compose f (fps-X ^

d))
〈proof 〉

lemma fls-compose-power-mult [simp]:
fls-compose-power (f ∗ g :: ′a :: idom fls) d = fls-compose-power f d ∗ fls-compose-power

g d
〈proof 〉

lemma fls-compose-power-power [simp]:
assumes d > 0 ∨ n > 0
shows fls-compose-power (f ^ n :: ′a :: idom fls) d = fls-compose-power f d ^ n
〈proof 〉

lemma fls-nth-compose-power ′ [simp]:
d = 0 ∨ ¬d dvd n =⇒ fls-compose-power f d $$ int n = 0
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d dvd n =⇒ d > 0 =⇒ fls-compose-power f d $$ int n = f $$ int (n div d)
〈proof 〉

lemma subdegree-fls-compose-fps [simp]:
fixes G :: ′a :: field fps
assumes [simp]: fps-nth G 0 = 0
shows fls-subdegree (fls-compose-fps F G) = fls-subdegree F ∗ subdegree G
〈proof 〉

7.7 Formal differentiation and integration
7.7.1 Derivative
definition fls-deriv f = Abs-fls (λn. of-int (n+1 ) ∗ f $$(n+1 ))

lemma fls-deriv-nth[simp]: fls-deriv f $$ n = of-int (n+1 ) ∗ f $$(n+1 )
〈proof 〉

lemma fls-deriv-residue: fls-deriv f $$ −1 = 0
〈proof 〉

lemma fls-deriv-const[simp]: fls-deriv (fls-const x) = 0
〈proof 〉

lemma fls-deriv-of-nat[simp]: fls-deriv (of-nat n) = 0
〈proof 〉

lemma fls-deriv-of-int[simp]: fls-deriv (of-int i) = 0
〈proof 〉

lemma fls-deriv-zero[simp]: fls-deriv 0 = 0
〈proof 〉

lemma fls-deriv-one[simp]: fls-deriv 1 = 0
〈proof 〉

lemma fls-deriv-numeral [simp]: fls-deriv (numeral n) = 0
〈proof 〉

lemma fls-deriv-subdegree ′:
assumes of-int (fls-subdegree f ) ∗ f $$ fls-subdegree f 6= 0
shows fls-subdegree (fls-deriv f ) = fls-subdegree f − 1
〈proof 〉

lemma fls-deriv-subdegree0 :
assumes fls-subdegree f = 0
shows fls-subdegree (fls-deriv f ) ≥ 0
〈proof 〉

lemma fls-subdegree-deriv ′:
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fixes f :: ′a::ring-1-no-zero-divisors fls
assumes (of-int (fls-subdegree f ) :: ′a) 6= 0
shows fls-subdegree (fls-deriv f ) = fls-subdegree f − 1
〈proof 〉

lemma fls-subdegree-deriv:
fixes f :: ′a::{ring-1-no-zero-divisors,ring-char-0} fls
assumes fls-subdegree f 6= 0
shows fls-subdegree (fls-deriv f ) = fls-subdegree f − 1
〈proof 〉

lemma fps-deriv-fls-regpart: fps-deriv (fls-regpart F) = fls-regpart (fls-deriv F)
〈proof 〉

Shifting is like multiplying by a power of the implied variable, and so satisfies
a product-like rule.
lemma fls-deriv-shift:

fls-deriv (fls-shift n f ) = of-int (−n) ∗ fls-shift (n+1 ) f + fls-shift n (fls-deriv f )
〈proof 〉

lemma fls-deriv-X [simp]: fls-deriv fls-X = 1
〈proof 〉

lemma fls-deriv-X-inv [simp]: fls-deriv fls-X-inv = − (fls-X-inv2)
〈proof 〉

lemma fls-deriv-delta:
fls-deriv (Abs-fls (λn. if n=m then c else 0 )) =

Abs-fls (λn. if n=m−1 then of-int m ∗ c else 0 )
〈proof 〉

lemma fls-deriv-base-factor :
fls-deriv (fls-base-factor f ) =

of-int (−fls-subdegree f ) ∗ fls-shift (fls-subdegree f + 1 ) f +
fls-shift (fls-subdegree f ) (fls-deriv f )
〈proof 〉

lemma fls-regpart-deriv: fls-regpart (fls-deriv f ) = fps-deriv (fls-regpart f )
〈proof 〉

lemma fls-prpart-deriv:
fixes f :: ′a :: {comm-ring-1 ,ring-no-zero-divisors} fls
— Commutivity and no zero divisors are required by the definition of pderiv.
shows fls-prpart (fls-deriv f ) = − pCons 0 (pCons 0 (pderiv (fls-prpart f )))
〈proof 〉

lemma pderiv-fls-prpart:
pderiv (fls-prpart f ) = − poly-shift 2 (fls-prpart (fls-deriv f ))
〈proof 〉
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lemma fls-deriv-fps-to-fls: fls-deriv (fps-to-fls f ) = fps-to-fls (fps-deriv f )
〈proof 〉

7.7.2 Algebraic rules of the derivative
lemma fls-deriv-add [simp]: fls-deriv (f+g) = fls-deriv f + fls-deriv g
〈proof 〉

lemma fls-deriv-sub [simp]: fls-deriv (f−g) = fls-deriv f − fls-deriv g
〈proof 〉

lemma fls-deriv-neg [simp]: fls-deriv (−f ) = − fls-deriv f
〈proof 〉

lemma fls-deriv-mult [simp]:
fls-deriv (f ∗g) = f ∗ fls-deriv g + fls-deriv f ∗ g
〈proof 〉

lemma fls-deriv-mult-const-left:
fls-deriv (fls-const c ∗ f ) = fls-const c ∗ fls-deriv f
〈proof 〉

lemma fls-deriv-linear :
fls-deriv (fls-const a ∗ f + fls-const b ∗ g) =

fls-const a ∗ fls-deriv f + fls-const b ∗ fls-deriv g
〈proof 〉

lemma fls-deriv-mult-const-right:
fls-deriv (f ∗ fls-const c) = fls-deriv f ∗ fls-const c
〈proof 〉

lemma fls-deriv-linear2 :
fls-deriv (f ∗ fls-const a + g ∗ fls-const b) =

fls-deriv f ∗ fls-const a + fls-deriv g ∗ fls-const b
〈proof 〉

lemma fls-deriv-sum:
fls-deriv (sum f S) = sum (λi. fls-deriv (f i)) S
〈proof 〉

lemma fls-deriv-power :
fixes f :: ′a::comm-ring-1 fls
shows fls-deriv (f^n) = of-nat n ∗ f^(n−1 ) ∗ fls-deriv f
〈proof 〉

lemma fls-deriv-X-power :
fls-deriv (fls-X ^ n) = of-nat n ∗ fls-X ^ (n−1 )
〈proof 〉

240



lemma fls-deriv-X-inv-power :
fls-deriv (fls-X-inv ^ n) = − of-nat n ∗ fls-X-inv ^ (Suc n)
〈proof 〉

lemma fls-deriv-X-intpow:
fls-deriv (fls-X-intpow i) = of-int i ∗ fls-X-intpow (i−1 )
〈proof 〉

lemma fls-deriv-lr-inverse:
assumes x ∗ f $$ fls-subdegree f = 1 f $$ fls-subdegree f ∗ y = 1
— These assumptions imply x equals y, but no need to assume that.
shows fls-deriv (fls-left-inverse f x) =

− fls-left-inverse f x ∗ fls-deriv f ∗ fls-left-inverse f x
and fls-deriv (fls-right-inverse f y) =

− fls-right-inverse f y ∗ fls-deriv f ∗ fls-right-inverse f y
〈proof 〉

lemma fls-deriv-lr-inverse-comm:
fixes x y :: ′a::comm-ring-1
assumes x ∗ f $$ fls-subdegree f = 1
shows fls-deriv (fls-left-inverse f x) = − fls-deriv f ∗ (fls-left-inverse f x)2
and fls-deriv (fls-right-inverse f x) = − fls-deriv f ∗ (fls-right-inverse f x)2
〈proof 〉

lemma fls-inverse-deriv-divring:
fixes a :: ′a::division-ring fls
shows fls-deriv (inverse a) = − inverse a ∗ fls-deriv a ∗ inverse a
〈proof 〉

lemma fls-inverse-deriv:
fixes a :: ′a::field fls
shows fls-deriv (inverse a) = − fls-deriv a ∗ (inverse a)2
〈proof 〉

lemma fls-inverse-deriv ′:
fixes a :: ′a::field fls
shows fls-deriv (inverse a) = − fls-deriv a / a2

〈proof 〉

7.7.3 Equality of derivatives
lemma fls-deriv-eq-0-iff :
fls-deriv f = 0 ←→ f = fls-const (f $$0 :: ′a::{ring-1-no-zero-divisors,ring-char-0})
〈proof 〉

lemma fls-deriv-eq-iff :
fixes f g :: ′a::{ring-1-no-zero-divisors,ring-char-0} fls
shows fls-deriv f = fls-deriv g ←→ (f = fls-const(f $$0 − g$$0 ) + g)
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〈proof 〉

lemma fls-deriv-eq-iff-ex:
fixes f g :: ′a::{ring-1-no-zero-divisors,ring-char-0} fls
shows (fls-deriv f = fls-deriv g) ←→ (∃ c. f = fls-const c + g)
〈proof 〉

7.7.4 Residues
definition fls-residue-def [simp]: fls-residue f ≡ f $$ −1

lemma fls-residue-deriv: fls-residue (fls-deriv f ) = 0
〈proof 〉

lemma fls-residue-add: fls-residue (f+g) = fls-residue f + fls-residue g
〈proof 〉

lemma fls-residue-times-deriv:
fls-residue (fls-deriv f ∗ g) = − fls-residue (f ∗ fls-deriv g)
〈proof 〉

lemma fls-residue-power-series: fls-subdegree f ≥ 0 =⇒ fls-residue f = 0
〈proof 〉

lemma fls-residue-fls-X-intpow:
fls-residue (fls-X-intpow i) = (if i=−1 then 1 else 0 )
〈proof 〉

lemma fls-residue-shift-nth:
fixes f :: ′a::semiring-1 fls
shows f $$n = fls-residue (fls-X-intpow (−n−1 ) ∗ f )
〈proof 〉

lemma fls-residue-fls-const-times:
fixes f :: ′a::{comm-monoid-add, mult-zero} fls
shows fls-residue (fls-const c ∗ f ) = c ∗ fls-residue f
and fls-residue (f ∗ fls-const c) = fls-residue f ∗ c
〈proof 〉

lemma fls-residue-of-int-times:
fixes f :: ′a::ring-1 fls
shows fls-residue (of-int i ∗ f ) = of-int i ∗ fls-residue f
and fls-residue (f ∗ of-int i) = fls-residue f ∗ of-int i
〈proof 〉

lemma fls-residue-deriv-times-lr-inverse-eq-subdegree:
fixes f g :: ′a::ring-1 fls
assumes y ∗ (f $$ fls-subdegree f ) = 1 (f $$ fls-subdegree f ) ∗ y = 1
shows fls-residue (fls-deriv f ∗ fls-right-inverse f y) = of-int (fls-subdegree f )
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and fls-residue (fls-deriv f ∗ fls-left-inverse f y) = of-int (fls-subdegree f )
and fls-residue (fls-left-inverse f y ∗ fls-deriv f ) = of-int (fls-subdegree f )
and fls-residue (fls-right-inverse f y ∗ fls-deriv f ) = of-int (fls-subdegree f )
〈proof 〉

lemma fls-residue-deriv-times-inverse-eq-subdegree:
fixes f g :: ′a::division-ring fls
shows fls-residue (fls-deriv f ∗ inverse f ) = of-int (fls-subdegree f )
and fls-residue (inverse f ∗ fls-deriv f ) = of-int (fls-subdegree f )
〈proof 〉

7.7.5 Integral definition and basic properties
definition fls-integral :: ′a::{ring-1 ,inverse} fls ⇒ ′a fls

where fls-integral a = Abs-fls (λn. if n=0 then 0 else inverse (of-int n) ∗ a$$(n
− 1 ))

lemma fls-integral-nth [simp]:
fls-integral a $$ n = (if n=0 then 0 else inverse (of-int n) ∗ a$$(n−1 ))
〈proof 〉

lemma fls-integral-conv-fps-zeroth-integral:
assumes fls-subdegree a ≥ 0
shows fls-integral a = fps-to-fls (fps-integral0 (fls-regpart a))
〈proof 〉

lemma fls-integral-zero [simp]: fls-integral 0 = 0
〈proof 〉

lemma fls-integral-const ′:
fixes x :: ′a::{ring-1 ,inverse}
assumes inverse (1 :: ′a) = 1
shows fls-integral (fls-const x) = fls-const x ∗ fls-X
〈proof 〉

lemma fls-integral-const:
fixes x :: ′a::division-ring
shows fls-integral (fls-const x) = fls-const x ∗ fls-X
〈proof 〉

lemma fls-integral-of-nat ′:
assumes inverse (1 :: ′a::{ring-1 ,inverse}) = 1
shows fls-integral (of-nat n :: ′a fls) = of-nat n ∗ fls-X
〈proof 〉

lemma fls-integral-of-nat:
fls-integral (of-nat n :: ′a::division-ring fls) = of-nat n ∗ fls-X
〈proof 〉
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lemma fls-integral-of-int ′:
assumes inverse (1 :: ′a::{ring-1 ,inverse}) = 1
shows fls-integral (of-int i :: ′a fls) = of-int i ∗ fls-X
〈proof 〉

lemma fls-integral-of-int:
fls-integral (of-int i :: ′a::division-ring fls) = of-int i ∗ fls-X
〈proof 〉

lemma fls-integral-one ′:
assumes inverse (1 :: ′a::{ring-1 ,inverse}) = 1
shows fls-integral (1 :: ′a fls) = fls-X
〈proof 〉

lemma fls-integral-one: fls-integral (1 :: ′a::division-ring fls) = fls-X
〈proof 〉

lemma fls-subdegree-integral-ge:
fls-integral f 6= 0 =⇒ fls-subdegree (fls-integral f ) ≥ fls-subdegree f + 1
〈proof 〉

lemma fls-subdegree-integral:
fixes f :: ′a::{division-ring,ring-char-0} fls
assumes f 6= 0 fls-subdegree f 6= −1
shows fls-subdegree (fls-integral f ) = fls-subdegree f + 1
〈proof 〉

lemma fls-integral-X [simp]:
fls-integral (fls-X :: ′a::{ring-1 ,inverse} fls) =

fls-const (inverse (of-int 2 )) ∗ fls-X2

〈proof 〉

lemma fls-integral-X-power :
fls-integral (fls-X ^ n :: ′a :: {ring-1 ,inverse} fls) =

fls-const (inverse (of-nat (Suc n))) ∗ fls-X ^ Suc n
〈proof 〉

lemma fls-integral-X-power-char0 :
fls-integral (fls-X ^ n :: ′a :: {ring-char-0 ,inverse} fls) =

inverse (of-nat (Suc n)) ∗ fls-X ^ Suc n
〈proof 〉

lemma fls-integral-X-inv [simp]: fls-integral (fls-X-inv:: ′a::{ring-1 ,inverse} fls) =
0
〈proof 〉

lemma fls-integral-X-inv-power :
assumes n ≥ 2
shows
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fls-integral (fls-X-inv ^ n :: ′a :: {ring-1 ,inverse} fls) =
fls-const (inverse (of-int (1 − int n))) ∗ fls-X-inv ^ (n−1 )

〈proof 〉

lemma fls-integral-X-inv-power-char0 :
assumes n ≥ 2
shows

fls-integral (fls-X-inv ^ n :: ′a :: {ring-char-0 ,inverse} fls) =
inverse (of-int (1 − int n)) ∗ fls-X-inv ^ (n−1 )

〈proof 〉

lemma fls-integral-X-inv-power ′:
assumes n ≥ 1
shows

fls-integral (fls-X-inv ^ n :: ′a :: division-ring fls) =
− fls-const (inverse (of-nat (n−1 ))) ∗ fls-X-inv ^ (n−1 )

〈proof 〉

lemma fls-integral-X-inv-power-char0 ′:
assumes n ≥ 1
shows

fls-integral (fls-X-inv ^ n :: ′a :: {division-ring,ring-char-0} fls) =
− inverse (of-nat (n−1 )) ∗ fls-X-inv ^ (n−1 )

〈proof 〉

lemma fls-integral-delta:
assumes m 6= −1
shows

fls-integral (Abs-fls (λn. if n=m then c else 0 )) =
Abs-fls (λn. if n=m+1 then inverse (of-int (m+1 )) ∗ c else 0 )

〈proof 〉

lemma fls-regpart-integral:
fls-regpart (fls-integral f ) = fps-integral0 (fls-regpart f )
〈proof 〉

lemma fls-integral-fps-to-fls:
fls-integral (fps-to-fls f ) = fps-to-fls (fps-integral0 f )
〈proof 〉

7.7.6 Algebraic rules of the integral
lemma fls-integral-add [simp]: fls-integral (f+g) = fls-integral f + fls-integral g
〈proof 〉

lemma fls-integral-sub [simp]: fls-integral (f−g) = fls-integral f − fls-integral g
〈proof 〉

lemma fls-integral-neg [simp]: fls-integral (−f ) = − fls-integral f
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〈proof 〉

lemma fls-integral-mult-const-left:
fls-integral (fls-const c ∗ f ) = fls-const c ∗ fls-integral (f :: ′a::division-ring fls)
〈proof 〉

lemma fls-integral-mult-const-left-comm:
fixes f :: ′a::{comm-ring-1 ,inverse} fls
shows fls-integral (fls-const c ∗ f ) = fls-const c ∗ fls-integral f
〈proof 〉

lemma fls-integral-linear :
fixes f g :: ′a::division-ring fls
shows

fls-integral (fls-const a ∗ f + fls-const b ∗ g) =
fls-const a ∗ fls-integral f + fls-const b ∗ fls-integral g

〈proof 〉

lemma fls-integral-linear-comm:
fixes f g :: ′a::{comm-ring-1 ,inverse} fls
shows

fls-integral (fls-const a ∗ f + fls-const b ∗ g) =
fls-const a ∗ fls-integral f + fls-const b ∗ fls-integral g

〈proof 〉

lemma fls-integral-mult-const-right:
fls-integral (f ∗ fls-const c) = fls-integral f ∗ fls-const c
〈proof 〉

lemma fls-integral-linear2 :
fls-integral (f ∗ fls-const a + g ∗ fls-const b) =

fls-integral f ∗ fls-const a + fls-integral g ∗ fls-const b
〈proof 〉

lemma fls-integral-sum:
fls-integral (sum f S) = sum (λi. fls-integral (f i)) S
〈proof 〉

7.7.7 Derivatives of integrals and vice versa
lemma fls-integral-fls-deriv:

fixes a :: ′a::{division-ring,ring-char-0} fls
shows fls-integral (fls-deriv a) + fls-const (a$$0 ) = a
〈proof 〉

lemma fls-deriv-fls-integral:
fixes a :: ′a::{division-ring,ring-char-0} fls
assumes fls-residue a = 0
shows fls-deriv (fls-integral a) = a
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〈proof 〉

Series with zero residue are precisely the derivatives.
lemma fls-residue-nonzero-ex-antiderivative:

fixes f :: ′a::{division-ring,ring-char-0} fls
assumes fls-residue f = 0
shows ∃F . fls-deriv F = f
〈proof 〉

lemma fls-ex-antiderivative-residue-nonzero:
assumes ∃F . fls-deriv F = f
shows fls-residue f = 0
〈proof 〉

lemma fls-residue-nonzero-ex-anitderivative-iff :
fixes f :: ′a::{division-ring,ring-char-0} fls
shows fls-residue f = 0 ←→ (∃F . fls-deriv F = f )
〈proof 〉

7.8 Topology
instantiation fls :: (group-add) metric-space
begin

definition
dist-fls-def :

dist (a :: ′a fls) b =
(if a = b

then 0
else if fls-subdegree (a−b) ≥ 0

then inverse (2 ^ nat (fls-subdegree (a−b)))
else 2 ^ nat (−fls-subdegree (a−b))

)

lemma dist-fls-ge0 : dist (a :: ′a fls) b ≥ 0
〈proof 〉

definition uniformity-fls-def [code del]:
(uniformity :: ( ′a fls × ′a fls) filter) = (INF e ∈ {0 <..}. principal {(x, y). dist

x y < e})

definition open-fls-def ′ [code del]:
open (U :: ′a fls set) ←→ (∀ x∈U . eventually (λ(x ′, y). x ′ = x −→ y ∈ U )

uniformity)

lemma dist-fls-sym: dist (a :: ′a fls) b = dist b a
〈proof 〉

context
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begin

private lemma instance-helper :
fixes a b c :: ′a fls
assumes neq: a 6=b a 6=c
and dist-ineq: dist a b > dist a c
shows fls-subdegree (a − b) < fls-subdegree (a − c)
〈proof 〉

instance
〈proof 〉

end
end

declare uniformity-Abort[where ′a= ′a :: group-add fls, code]

lemma open-fls-def :
open (S :: ′a::group-add fls set) = (∀ a ∈ S . ∃ r . r >0 ∧ {y. dist y a < r} ⊆ S)
〈proof 〉

7.9 Notation
bundle fps-syntax
begin
notation fls-nth (infixl ‹$$› 75 )
end

unbundle no fps-syntax

end

8 The fraction field of any integral domain
theory Fraction-Field
imports Main
begin

8.1 General fractions construction
8.1.1 Construction of the type of fractions
context idom begin

definition fractrel :: ′a × ′a ⇒ ′a ∗ ′a ⇒ bool where
fractrel = (λx y. snd x 6= 0 ∧ snd y 6= 0 ∧ fst x ∗ snd y = fst y ∗ snd x)

lemma fractrel-iff [simp]:
fractrel x y ←→ snd x 6= 0 ∧ snd y 6= 0 ∧ fst x ∗ snd y = fst y ∗ snd x

248



〈proof 〉

lemma symp-fractrel: symp fractrel
〈proof 〉

lemma transp-fractrel: transp fractrel
〈proof 〉

lemma part-equivp-fractrel: part-equivp fractrel
〈proof 〉

end

quotient-type (overloaded) ′a fract = ′a :: idom × ′a / partial: fractrel
〈proof 〉

8.1.2 Representation and basic operations
lift-definition Fract :: ′a :: idom ⇒ ′a ⇒ ′a fract

is λa b. if b = 0 then (0 , 1 ) else (a, b)
〈proof 〉

lemma Fract-cases [cases type: fract]:
obtains (Fract) a b where q = Fract a b b 6= 0
〈proof 〉

lemma Fract-induct [case-names Fract, induct type: fract]:
(
∧

a b. b 6= 0 =⇒ P (Fract a b)) =⇒ P q
〈proof 〉

lemma eq-fract:
shows

∧
a b c d. b 6= 0 =⇒ d 6= 0 =⇒ Fract a b = Fract c d ←→ a ∗ d = c ∗ b

and
∧

a. Fract a 0 = Fract 0 1
and

∧
a c. Fract 0 a = Fract 0 c

〈proof 〉

instantiation fract :: (idom) comm-ring-1
begin

lift-definition zero-fract :: ′a fract is (0 , 1 ) 〈proof 〉

lemma Zero-fract-def : 0 = Fract 0 1
〈proof 〉

lift-definition one-fract :: ′a fract is (1 , 1 ) 〈proof 〉

lemma One-fract-def : 1 = Fract 1 1
〈proof 〉
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lift-definition plus-fract :: ′a fract ⇒ ′a fract ⇒ ′a fract
is λq r . (fst q ∗ snd r + fst r ∗ snd q, snd q ∗ snd r)
〈proof 〉

lemma add-fract [simp]:
[[ b 6= 0 ; d 6= 0 ]] =⇒ Fract a b + Fract c d = Fract (a ∗ d + c ∗ b) (b ∗ d)
〈proof 〉

lift-definition uminus-fract :: ′a fract ⇒ ′a fract
is λx. (− fst x, snd x)
〈proof 〉

lemma minus-fract [simp]:
fixes a b :: ′a::idom
shows − Fract a b = Fract (− a) b
〈proof 〉

lemma minus-fract-cancel [simp]: Fract (− a) (− b) = Fract a b
〈proof 〉

definition diff-fract-def : q − r = q + − (r :: ′a fract)

lemma diff-fract [simp]:
[[ b 6= 0 ; d 6= 0 ]] =⇒ Fract a b − Fract c d = Fract (a ∗ d − c ∗ b) (b ∗ d)
〈proof 〉

lift-definition times-fract :: ′a fract ⇒ ′a fract ⇒ ′a fract
is λq r . (fst q ∗ fst r , snd q ∗ snd r)
〈proof 〉

lemma mult-fract [simp]: Fract (a:: ′a::idom) b ∗ Fract c d = Fract (a ∗ c) (b ∗ d)
〈proof 〉

lemma mult-fract-cancel:
c 6= 0 =⇒ Fract (c ∗ a) (c ∗ b) = Fract a b
〈proof 〉

instance
〈proof 〉

end

lemma of-nat-fract: of-nat k = Fract (of-nat k) 1
〈proof 〉

lemma Fract-of-nat-eq: Fract (of-nat k) 1 = of-nat k
〈proof 〉

lemma fract-collapse:
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Fract 0 k = 0
Fract 1 1 = 1
Fract k 0 = 0
〈proof 〉

lemma fract-expand:
0 = Fract 0 1
1 = Fract 1 1
〈proof 〉

lemma Fract-cases-nonzero:
obtains (Fract) a b where q = Fract a b and b 6= 0 and a 6= 0
| (0 ) q = 0

〈proof 〉

8.1.3 The field of rational numbers
context idom
begin

subclass ring-no-zero-divisors 〈proof 〉

end

instantiation fract :: (idom) field
begin

lift-definition inverse-fract :: ′a fract ⇒ ′a fract
is λx. if fst x = 0 then (0 , 1 ) else (snd x, fst x)
〈proof 〉

lemma inverse-fract [simp]: inverse (Fract a b) = Fract (b:: ′a::idom) a
〈proof 〉

definition divide-fract-def : q div r = q ∗ inverse (r :: ′a fract)

lemma divide-fract [simp]: Fract a b div Fract c d = Fract (a ∗ d) (b ∗ c)
〈proof 〉

instance
〈proof 〉

end

8.1.4 The ordered field of fractions over an ordered idom
instantiation fract :: (linordered-idom) linorder
begin

lemma less-eq-fract-respect:
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fixes a b a ′ b ′ c d c ′ d ′ :: ′a
assumes neq: b 6= 0 b ′ 6= 0 d 6= 0 d ′ 6= 0
assumes eq1 : a ∗ b ′ = a ′ ∗ b
assumes eq2 : c ∗ d ′ = c ′ ∗ d
shows ((a ∗ d) ∗ (b ∗ d) ≤ (c ∗ b) ∗ (b ∗ d)) ←→ ((a ′ ∗ d ′) ∗ (b ′ ∗ d ′) ≤ (c ′ ∗

b ′) ∗ (b ′ ∗ d ′))
〈proof 〉

lift-definition less-eq-fract :: ′a fract ⇒ ′a fract ⇒ bool
is λq r . (fst q ∗ snd r) ∗ (snd q ∗ snd r) ≤ (fst r ∗ snd q) ∗ (snd q ∗ snd r)
〈proof 〉

definition less-fract-def : z < (w:: ′a fract) ←→ z ≤ w ∧ ¬ w ≤ z

lemma le-fract [simp]:
[[ b 6= 0 ; d 6= 0 ]] =⇒ Fract a b ≤ Fract c d ←→ (a ∗ d) ∗ (b ∗ d) ≤ (c ∗ b) ∗ (b
∗ d)
〈proof 〉

lemma less-fract [simp]:
[[ b 6= 0 ; d 6= 0 ]] =⇒ Fract a b < Fract c d ←→ (a ∗ d) ∗ (b ∗ d) < (c ∗ b) ∗ (b
∗ d)
〈proof 〉

instance
〈proof 〉

end

instantiation fract :: (linordered-idom) linordered-field
begin

definition abs-fract-def2 :
|q| = (if q < 0 then −q else (q:: ′a fract))

definition sgn-fract-def :
sgn (q:: ′a fract) = (if q = 0 then 0 else if 0 < q then 1 else − 1 )

theorem abs-fract [simp]: |Fract a b| = Fract |a| |b|
〈proof 〉

instance 〈proof 〉

end

instantiation fract :: (linordered-idom) distrib-lattice
begin

definition inf-fract-def :
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(inf :: ′a fract ⇒ ′a fract ⇒ ′a fract) = min

definition sup-fract-def :
(sup :: ′a fract ⇒ ′a fract ⇒ ′a fract) = max

instance
〈proof 〉

end

lemma fract-induct-pos [case-names Fract]:
fixes P :: ′a::linordered-idom fract ⇒ bool
assumes step:

∧
a b. 0 < b =⇒ P (Fract a b)

shows P q
〈proof 〉

lemma zero-less-Fract-iff : 0 < b =⇒ 0 < Fract a b ←→ 0 < a
〈proof 〉

lemma Fract-less-zero-iff : 0 < b =⇒ Fract a b < 0 ←→ a < 0
〈proof 〉

lemma zero-le-Fract-iff : 0 < b =⇒ 0 ≤ Fract a b ←→ 0 ≤ a
〈proof 〉

lemma Fract-le-zero-iff : 0 < b =⇒ Fract a b ≤ 0 ←→ a ≤ 0
〈proof 〉

lemma one-less-Fract-iff : 0 < b =⇒ 1 < Fract a b ←→ b < a
〈proof 〉

lemma Fract-less-one-iff : 0 < b =⇒ Fract a b < 1 ←→ a < b
〈proof 〉

lemma one-le-Fract-iff : 0 < b =⇒ 1 ≤ Fract a b ←→ b ≤ a
〈proof 〉

lemma Fract-le-one-iff : 0 < b =⇒ Fract a b ≤ 1 ←→ a ≤ b
〈proof 〉

end

9 Fundamental Theorem of Algebra
theory Fundamental-Theorem-Algebra
imports Polynomial Complex-Main
begin
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9.1 More lemmas about module of complex numbers

The triangle inequality for cmod
lemma complex-mod-triangle-sub: cmod w ≤ cmod (w + z) + norm z
〈proof 〉

9.2 Basic lemmas about polynomials
lemma poly-bound-exists:

fixes p :: ′a::{comm-semiring-0 ,real-normed-div-algebra} poly
shows ∃m. m > 0 ∧ (∀ z. norm z ≤ r −→ norm (poly p z) ≤ m)
〈proof 〉

Offsetting the variable in a polynomial gives another of same degree
definition offset-poly :: ′a::comm-semiring-0 poly ⇒ ′a ⇒ ′a poly

where offset-poly p h = fold-coeffs (λa q. smult h q + pCons a q) p 0

lemma offset-poly-0 : offset-poly 0 h = 0
〈proof 〉

lemma offset-poly-pCons:
offset-poly (pCons a p) h =

smult h (offset-poly p h) + pCons a (offset-poly p h)
〈proof 〉

lemma offset-poly-single [simp]: offset-poly [:a:] h = [:a:]
〈proof 〉

lemma poly-offset-poly: poly (offset-poly p h) x = poly p (h + x)
〈proof 〉

lemma offset-poly-eq-0-lemma: smult c p + pCons a p = 0 =⇒ p = 0
〈proof 〉

lemma offset-poly-eq-0-iff [simp]: offset-poly p h = 0 ←→ p = 0
〈proof 〉

lemma degree-offset-poly [simp]: degree (offset-poly p h) = degree p
〈proof 〉

definition psize p = (if p = 0 then 0 else Suc (degree p))

lemma psize-eq-0-iff [simp]: psize p = 0 ←→ p = 0
〈proof 〉

lemma poly-offset:
fixes p :: ′a::comm-ring-1 poly
shows ∃ q. psize q = psize p ∧ (∀ x. poly q x = poly p (a + x))
〈proof 〉
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An alternative useful formulation of completeness of the reals
lemma real-sup-exists:

assumes ex: ∃ x. P x
and bz: ∃ z. ∀ x. P x −→ x < z

shows ∃ s::real. ∀ y. (∃ x. P x ∧ y < x) ←→ y < s
〈proof 〉

9.3 Fundamental theorem of algebra
lemma unimodular-reduce-norm:

assumes md: cmod z = 1
shows cmod (z + 1 ) < 1 ∨ cmod (z − 1 ) < 1 ∨ cmod (z + i) < 1 ∨ cmod (z
− i) < 1
〈proof 〉

Hence we can always reduce modulus of 1 + b z^n if nonzero
lemma reduce-poly-simple:

assumes b: b 6= 0
and n: n 6= 0

shows ∃ z. cmod (1 + b ∗ z^n) < 1
〈proof 〉

Bolzano-Weierstrass type property for closed disc in complex plane.
lemma metric-bound-lemma: cmod (x − y) ≤ |Re x − Re y| + |Im x − Im y|
〈proof 〉

lemma Bolzano-Weierstrass-complex-disc:
assumes r : ∀n. cmod (s n) ≤ r
shows ∃ f z. strict-mono (f :: nat ⇒ nat) ∧ (∀ e >0 . ∃N . ∀n ≥ N . cmod (s (f

n) − z) < e)
〈proof 〉

Polynomial is continuous.
lemma poly-cont:

fixes p :: ′a::{comm-semiring-0 ,real-normed-div-algebra} poly
assumes ep: e > 0
shows ∃ d >0 . ∀w. 0 < norm (w − z) ∧ norm (w − z) < d −→ norm (poly p

w − poly p z) < e
〈proof 〉

Hence a polynomial attains minimum on a closed disc in the complex plane.
lemma poly-minimum-modulus-disc: ∃ z. ∀w. cmod w ≤ r −→ cmod (poly p z) ≤
cmod (poly p w)
〈proof 〉

Nonzero polynomial in z goes to infinity as z does.
lemma poly-infinity:

fixes p:: ′a::{comm-semiring-0 ,real-normed-div-algebra} poly
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assumes ex: p 6= 0
shows ∃ r . ∀ z. r ≤ norm z −→ d ≤ norm (poly (pCons a p) z)
〈proof 〉

Hence polynomial’s modulus attains its minimum somewhere.
lemma poly-minimum-modulus: ∃ z.∀w. cmod (poly p z) ≤ cmod (poly p w)
〈proof 〉

Constant function (non-syntactic characterization).
definition constant f ←→ (∀ x y. f x = f y)

lemma nonconstant-length: ¬ constant (poly p) =⇒ psize p ≥ 2
〈proof 〉

lemma poly-replicate-append: poly (monom 1 n ∗ p) (x:: ′a::comm-ring-1 ) = x^n
∗ poly p x
〈proof 〉

Decomposition of polynomial, skipping zero coefficients after the first.
lemma poly-decompose-lemma:

assumes nz: ¬ (∀ z. z 6= 0 −→ poly p z = (0 :: ′a::idom))
shows ∃ k a q. a 6= 0 ∧ Suc (psize q + k) = psize p ∧ (∀ z. poly p z = z^k ∗ poly

(pCons a q) z)
〈proof 〉

lemma poly-decompose:
fixes p :: ′a::idom poly
assumes nc: ¬ constant (poly p)
shows ∃ k a q. a 6= 0 ∧ k 6= 0 ∧

psize q + k + 1 = psize p ∧
(∀ z. poly p z = poly p 0 + z^k ∗ poly (pCons a q) z)

〈proof 〉

Fundamental theorem of algebra
theorem fundamental-theorem-of-algebra:

assumes nc: ¬ constant (poly p)
shows ∃ z::complex. poly p z = 0
〈proof 〉

Alternative version with a syntactic notion of constant polynomial.
lemma fundamental-theorem-of-algebra-alt:

assumes nc: ¬ (∃ a l. a 6= 0 ∧ l = 0 ∧ p = pCons a l)
shows ∃ z. poly p z = (0 ::complex)
〈proof 〉

9.4 Nullstellensatz, degrees and divisibility of polynomials
lemma nullstellensatz-lemma:
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fixes p :: complex poly
assumes ∀ x. poly p x = 0 −→ poly q x = 0

and degree p = n
and n 6= 0

shows p dvd (q ^ n)
〈proof 〉

lemma nullstellensatz-univariate:
(∀ x. poly p x = (0 ::complex) −→ poly q x = 0 ) ←→

p dvd (q ^ (degree p)) ∨ (p = 0 ∧ q = 0 )
〈proof 〉

Useful lemma
lemma constant-degree:

fixes p :: ′a::{idom,ring-char-0} poly
shows constant (poly p) ←→ degree p = 0 (is ?lhs = ?rhs)
〈proof 〉

lemma complex-poly-decompose:
smult (lead-coeff p) (

∏
z|poly p z = 0 . [:−z, 1 :] ^ order z p) = (p :: complex poly)

〈proof 〉

instance complex :: alg-closed-field
〈proof 〉

lemma size-proots-complex: size (proots (p :: complex poly)) = degree p
〈proof 〉

lemma complex-poly-decompose-multiset:
smult (lead-coeff p) (

∏
x∈#proots p. [:−x, 1 :]) = (p :: complex poly)

〈proof 〉

lemma complex-poly-decompose ′:
obtains root where smult (lead-coeff p) (

∏
i<degree p. [:−root i, 1 :]) = (p ::

complex poly)
〈proof 〉

lemma complex-poly-decompose-rsquarefree:
assumes rsquarefree p
shows smult (lead-coeff p) (

∏
z|poly p z = 0 . [:−z, 1 :]) = (p :: complex poly)

〈proof 〉

Arithmetic operations on multivariate polynomials.
lemma mpoly-base-conv:

fixes x :: ′a::comm-ring-1
shows 0 = poly 0 x c = poly [:c:] x x = poly [:0 ,1 :] x
〈proof 〉

lemma mpoly-norm-conv:
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fixes x :: ′a::comm-ring-1
shows poly [:0 :] x = poly 0 x poly [:poly 0 y:] x = poly 0 x
〈proof 〉

lemma mpoly-sub-conv:
fixes x :: ′a::comm-ring-1
shows poly p x − poly q x = poly p x + −1 ∗ poly q x
〈proof 〉

lemma poly-pad-rule: poly p x = 0 =⇒ poly (pCons 0 p) x = 0
〈proof 〉

lemma poly-cancel-eq-conv:
fixes x :: ′a::field
shows x = 0 =⇒ a 6= 0 =⇒ y = 0 ←→ a ∗ y − b ∗ x = 0
〈proof 〉

lemma poly-divides-pad-rule:
fixes p:: ( ′a::comm-ring-1 ) poly
assumes pq: p dvd q
shows p dvd (pCons 0 q)
〈proof 〉

lemma poly-divides-conv0 :
fixes p:: ′a::field poly
assumes lgpq: degree q < degree p and lq: p 6= 0
shows p dvd q ←→ q = 0
〈proof 〉

lemma poly-divides-conv1 :
fixes p :: ′a::field poly
assumes a0 : a 6= 0

and pp ′: p dvd p ′

and qrp ′: smult a q − p ′ = r
shows p dvd q ←→ p dvd r
〈proof 〉

lemma basic-cqe-conv1 :
(∃ x. poly p x = 0 ∧ poly 0 x 6= 0 ) ←→ False
(∃ x. poly 0 x 6= 0 ) ←→ False
(∃ x. poly [:c:] x 6= 0 ) ←→ c 6= 0
(∃ x. poly 0 x = 0 ) ←→ True
(∃ x. poly [:c:] x = 0 ) ←→ c = 0
〈proof 〉

lemma basic-cqe-conv2 :
assumes l: p 6= 0
shows ∃ x. poly (pCons a (pCons b p)) x = (0 ::complex)
〈proof 〉
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lemma basic-cqe-conv-2b: (∃ x. poly p x 6= (0 ::complex)) ←→ p 6= 0
〈proof 〉

lemma basic-cqe-conv3 :
fixes p q :: complex poly
assumes l: p 6= 0
shows (∃ x. poly (pCons a p) x = 0 ∧ poly q x 6= 0 ) ←→ ¬ (pCons a p) dvd (q

^ psize p)
〈proof 〉

lemma basic-cqe-conv4 :
fixes p q :: complex poly
assumes h:

∧
x. poly (q ^ n) x = poly r x

shows p dvd (q ^ n) ←→ p dvd r
〈proof 〉

lemma poly-const-conv:
fixes x :: ′a::comm-ring-1
shows poly [:c:] x = y ←→ c = y
〈proof 〉

end

theory Group-Closure
imports

Main
begin

context ab-group-add
begin

inductive-set group-closure :: ′a set ⇒ ′a set for S
where base: s ∈ insert 0 S =⇒ s ∈ group-closure S
| diff : s ∈ group-closure S =⇒ t ∈ group-closure S =⇒ s − t ∈ group-closure S

lemma zero-in-group-closure [simp]:
0 ∈ group-closure S
〈proof 〉

lemma group-closure-minus-iff [simp]:
− s ∈ group-closure S ←→ s ∈ group-closure S
〈proof 〉

lemma group-closure-add:
s + t ∈ group-closure S if s ∈ group-closure S and t ∈ group-closure S
〈proof 〉

259



lemma group-closure-empty [simp]:
group-closure {} = {0}
〈proof 〉

lemma group-closure-insert-zero [simp]:
group-closure (insert 0 S) = group-closure S
〈proof 〉

end

context comm-ring-1
begin

lemma group-closure-scalar-mult-left:
of-nat n ∗ s ∈ group-closure S if s ∈ group-closure S
〈proof 〉

lemma group-closure-scalar-mult-right:
s ∗ of-nat n ∈ group-closure S if s ∈ group-closure S
〈proof 〉

end

lemma group-closure-abs-iff [simp]:
|s| ∈ group-closure S ←→ s ∈ group-closure S for s :: int
〈proof 〉

lemma group-closure-mult-left:
s ∗ t ∈ group-closure S if s ∈ group-closure S for s t :: int
〈proof 〉

lemma group-closure-mult-right:
s ∗ t ∈ group-closure S if t ∈ group-closure S for s t :: int
〈proof 〉

context idom
begin

lemma group-closure-mult-all-eq:
group-closure (times k ‘ S) = times k ‘ group-closure S
〈proof 〉

end

lemma Gcd-group-closure-eq-Gcd:
Gcd (group-closure S) = Gcd S for S :: int set
〈proof 〉

lemma group-closure-sum:
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fixes S :: int set
assumes X : finite X X 6= {} X ⊆ S
shows (

∑
x∈X . a x ∗ x) ∈ group-closure S

〈proof 〉

lemma Gcd-group-closure-in-group-closure:
Gcd (group-closure S) ∈ group-closure S for S :: int set
〈proof 〉

lemma Gcd-in-group-closure:
Gcd S ∈ group-closure S for S :: int set
〈proof 〉

lemma group-closure-eq:
group-closure S = range (times (Gcd S)) for S :: int set
〈proof 〉

end

theory Normalized-Fraction
imports

Main
Euclidean-Algorithm
Fraction-Field

begin

lemma unit-factor-1-imp-normalized: unit-factor x = 1 =⇒ normalize x = x
〈proof 〉

definition quot-to-fract :: ′a × ′a ⇒ ′a :: idom fract where
quot-to-fract = (λ(a,b). Fraction-Field.Fract a b)

definition normalize-quot :: ′a :: {ring-gcd,idom-divide,semiring-gcd-mult-normalize}
× ′a ⇒ ′a × ′a where

normalize-quot =
(λ(a,b). if b = 0 then (0 ,1 ) else let d = gcd a b ∗ unit-factor b in (a div d, b

div d))

lemma normalize-quot-zero [simp]:
normalize-quot (a, 0 ) = (0 , 1 )
〈proof 〉

lemma normalize-quot-proj:
fst (normalize-quot (a, b)) = a div (gcd a b ∗ unit-factor b)
snd (normalize-quot (a, b)) = normalize b div gcd a b if b 6= 0
〈proof 〉

definition normalized-fracts :: ( ′a :: {ring-gcd,idom-divide} × ′a) set where
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normalized-fracts = {(a,b). coprime a b ∧ unit-factor b = 1}

lemma not-normalized-fracts-0-denom [simp]: (a, 0 ) /∈ normalized-fracts
〈proof 〉

lemma unit-factor-snd-normalize-quot [simp]:
unit-factor (snd (normalize-quot x)) = 1
〈proof 〉

lemma snd-normalize-quot-nonzero [simp]: snd (normalize-quot x) 6= 0
〈proof 〉

lemma normalize-quot-aux:
fixes a b
assumes b 6= 0
defines d ≡ gcd a b ∗ unit-factor b
shows a = fst (normalize-quot (a,b)) ∗ d b = snd (normalize-quot (a,b)) ∗ d

d dvd a d dvd b d 6= 0
〈proof 〉

lemma normalize-quotE :
assumes b 6= 0
obtains d where a = fst (normalize-quot (a,b)) ∗ d b = snd (normalize-quot

(a,b)) ∗ d
d dvd a d dvd b d 6= 0

〈proof 〉

lemma normalize-quotE ′:
assumes snd x 6= 0
obtains d where fst x = fst (normalize-quot x) ∗ d snd x = snd (normalize-quot

x) ∗ d
d dvd fst x d dvd snd x d 6= 0

〈proof 〉

lemma coprime-normalize-quot:
coprime (fst (normalize-quot x)) (snd (normalize-quot x))
〈proof 〉

lemma normalize-quot-in-normalized-fracts [simp]: normalize-quot x ∈ normal-
ized-fracts
〈proof 〉

lemma normalize-quot-eq-iff :
assumes b 6= 0 d 6= 0
shows normalize-quot (a,b) = normalize-quot (c,d) ←→ a ∗ d = b ∗ c
〈proof 〉

lemma normalize-quot-eq-iff ′:
assumes snd x 6= 0 snd y 6= 0
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shows normalize-quot x = normalize-quot y ←→ fst x ∗ snd y = snd x ∗ fst y
〈proof 〉

lemma normalize-quot-id: x ∈ normalized-fracts =⇒ normalize-quot x = x
〈proof 〉

lemma normalize-quot-idem [simp]: normalize-quot (normalize-quot x) = normal-
ize-quot x
〈proof 〉

lemma fractrel-iff-normalize-quot-eq:
fractrel x y ←→ normalize-quot x = normalize-quot y ∧ snd x 6= 0 ∧ snd y 6= 0
〈proof 〉

lemma fractrel-normalize-quot-left:
assumes snd x 6= 0
shows fractrel (normalize-quot x) y ←→ fractrel x y
〈proof 〉

lemma fractrel-normalize-quot-right:
assumes snd x 6= 0
shows fractrel y (normalize-quot x) ←→ fractrel y x
〈proof 〉

lift-definition quot-of-fract ::
′a :: {ring-gcd,idom-divide,semiring-gcd-mult-normalize} fract ⇒ ′a × ′a

is normalize-quot
〈proof 〉

lemma quot-to-fract-quot-of-fract [simp]: quot-to-fract (quot-of-fract x) = x
〈proof 〉

lemma quot-of-fract-quot-to-fract: quot-of-fract (quot-to-fract x) = normalize-quot
x
〈proof 〉

lemma quot-of-fract-quot-to-fract ′:
x ∈ normalized-fracts =⇒ quot-of-fract (quot-to-fract x) = x
〈proof 〉

lemma quot-of-fract-in-normalized-fracts [simp]: quot-of-fract x ∈ normalized-fracts
〈proof 〉

lemma normalize-quotI :
assumes a ∗ d = b ∗ c b 6= 0 (c, d) ∈ normalized-fracts
shows normalize-quot (a, b) = (c, d)
〈proof 〉
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lemma td-normalized-fract:
type-definition quot-of-fract quot-to-fract normalized-fracts
〈proof 〉

lemma quot-of-fract-add-aux:
assumes snd x 6= 0 snd y 6= 0
shows (fst x ∗ snd y + fst y ∗ snd x) ∗ (snd (normalize-quot x) ∗ snd

(normalize-quot y)) =
snd x ∗ snd y ∗ (fst (normalize-quot x) ∗ snd (normalize-quot y) +
snd (normalize-quot x) ∗ fst (normalize-quot y))

〈proof 〉

locale fract-as-normalized-quot
begin
setup-lifting td-normalized-fract
end

lemma quot-of-fract-add:
quot-of-fract (x + y) =

(let (a,b) = quot-of-fract x; (c,d) = quot-of-fract y
in normalize-quot (a ∗ d + b ∗ c, b ∗ d))

〈proof 〉

lemma quot-of-fract-uminus:
quot-of-fract (−x) = (let (a,b) = quot-of-fract x in (−a, b))
〈proof 〉

lemma quot-of-fract-diff :
quot-of-fract (x − y) =

(let (a,b) = quot-of-fract x; (c,d) = quot-of-fract y
in normalize-quot (a ∗ d − b ∗ c, b ∗ d)) (is - = ?rhs)

〈proof 〉

lemma normalize-quot-mult-coprime:
assumes coprime a b coprime c d unit-factor b = 1 unit-factor d = 1
defines e ≡ fst (normalize-quot (a, d)) and f ≡ snd (normalize-quot (a, d))

and g ≡ fst (normalize-quot (c, b)) and h ≡ snd (normalize-quot (c, b))
shows normalize-quot (a ∗ c, b ∗ d) = (e ∗ g, f ∗ h)
〈proof 〉

lemma normalize-quot-mult:
assumes snd x 6= 0 snd y 6= 0
shows normalize-quot (fst x ∗ fst y, snd x ∗ snd y) = normalize-quot

(fst (normalize-quot x) ∗ fst (normalize-quot y),
snd (normalize-quot x) ∗ snd (normalize-quot y))

〈proof 〉
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lemma quot-of-fract-mult:
quot-of-fract (x ∗ y) =

(let (a,b) = quot-of-fract x; (c,d) = quot-of-fract y;
(e,f ) = normalize-quot (a,d); (g,h) = normalize-quot (c,b)

in (e∗g, f ∗h))
〈proof 〉

lemma normalize-quot-0 [simp]:
normalize-quot (0 , x) = (0 , 1 ) normalize-quot (x, 0 ) = (0 , 1 )
〈proof 〉

lemma normalize-quot-eq-0-iff [simp]: fst (normalize-quot x) = 0 ←→ fst x = 0
∨ snd x = 0
〈proof 〉

lemma fst-quot-of-fract-0-imp: fst (quot-of-fract x) = 0 =⇒ snd (quot-of-fract x)
= 1
〈proof 〉

lemma normalize-quot-swap:
assumes a 6= 0 b 6= 0
defines a ′ ≡ fst (normalize-quot (a, b)) and b ′ ≡ snd (normalize-quot (a, b))
shows normalize-quot (b, a) = (b ′ div unit-factor a ′, a ′ div unit-factor a ′)
〈proof 〉

lemma quot-of-fract-inverse:
quot-of-fract (inverse x) =

(let (a,b) = quot-of-fract x; d = unit-factor a
in if d = 0 then (0 , 1 ) else (b div d, a div d))

〈proof 〉

lemma normalize-quot-div-unit-left:
fixes x y u
assumes is-unit u
defines x ′ ≡ fst (normalize-quot (x, y)) and y ′ ≡ snd (normalize-quot (x, y))
shows normalize-quot (x div u, y) = (x ′ div u, y ′)
〈proof 〉

lemma normalize-quot-div-unit-right:
fixes x y u
assumes is-unit u
defines x ′ ≡ fst (normalize-quot (x, y)) and y ′ ≡ snd (normalize-quot (x, y))
shows normalize-quot (x, y div u) = (x ′ ∗ u, y ′)
〈proof 〉

lemma normalize-quot-normalize-left:
fixes x y u
defines x ′ ≡ fst (normalize-quot (x, y)) and y ′ ≡ snd (normalize-quot (x, y))
shows normalize-quot (normalize x, y) = (x ′ div unit-factor x, y ′)
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〈proof 〉

lemma normalize-quot-normalize-right:
fixes x y u
defines x ′ ≡ fst (normalize-quot (x, y)) and y ′ ≡ snd (normalize-quot (x, y))
shows normalize-quot (x, normalize y) = (x ′ ∗ unit-factor y, y ′)
〈proof 〉

lemma quot-of-fract-0 [simp]: quot-of-fract 0 = (0 , 1 )
〈proof 〉

lemma quot-of-fract-1 [simp]: quot-of-fract 1 = (1 , 1 )
〈proof 〉

lemma quot-of-fract-divide:
quot-of-fract (x / y) = (if y = 0 then (0 , 1 ) else

(let (a,b) = quot-of-fract x; (c,d) = quot-of-fract y;
(e,f ) = normalize-quot (a,c); (g,h) = normalize-quot (d,b)

in (e ∗ g, f ∗ h))) (is - = ?rhs)
〈proof 〉

lemma snd-quot-of-fract-nonzero [simp]: snd (quot-of-fract x) 6= 0
〈proof 〉

lemma Fract-quot-of-fract [simp]: Fract (fst (quot-of-fract x)) (snd (quot-of-fract
x)) = x
〈proof 〉

lemma snd-quot-of-fract-Fract-whole:
assumes y dvd x
shows snd (quot-of-fract (Fract x y)) = 1
〈proof 〉

lemma fst-quot-of-fract-eq-0-iff [simp]: fst (quot-of-fract x) = 0 ←→ x = 0
〈proof 〉

lemma coprime-quot-of-fract:
coprime (fst (quot-of-fract x)) (snd (quot-of-fract x))
〈proof 〉

lemma unit-factor-snd-quot-of-fract: unit-factor (snd (quot-of-fract x)) = 1
〈proof 〉

lemma normalize-snd-quot-of-fract: normalize (snd (quot-of-fract x)) = snd (quot-of-fract
x)
〈proof 〉

end
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10 n-th powers and roots of naturals
theory Nth-Powers

imports Primes
begin

10.1 The set of n-th powers
definition is-nth-power :: nat ⇒ ′a :: monoid-mult ⇒ bool where

is-nth-power n x ←→ (∃ y. x = y ^ n)

lemma is-nth-power-nth-power [simp, intro]: is-nth-power n (x ^ n)
〈proof 〉

lemma is-nth-powerI [intro?]: x = y ^ n =⇒ is-nth-power n x
〈proof 〉

lemma is-nth-powerE : is-nth-power n x =⇒ (
∧

y. x = y ^ n =⇒ P) =⇒ P
〈proof 〉

abbreviation is-square where is-square ≡ is-nth-power 2

lemma is-zeroth-power [simp]: is-nth-power 0 x ←→ x = 1
〈proof 〉

lemma is-first-power [simp]: is-nth-power 1 x
〈proof 〉

lemma is-first-power ′ [simp]: is-nth-power (Suc 0 ) x
〈proof 〉

lemma is-nth-power-0 [simp]: n > 0 =⇒ is-nth-power n (0 :: ′a :: semiring-1 )
〈proof 〉

lemma is-nth-power-0-iff [simp]: is-nth-power n (0 :: ′a :: semiring-1 ) ←→ n > 0
〈proof 〉

lemma is-nth-power-1 [simp]: is-nth-power n 1
〈proof 〉

lemma is-nth-power-Suc-0 [simp]: is-nth-power n (Suc 0 )
〈proof 〉

lemma is-nth-power-conv-multiplicity:
fixes x :: ′a :: {factorial-semiring, normalization-semidom-multiplicative}
assumes n > 0
shows is-nth-power n (normalize x) ←→ (∀ p. prime p −→ n dvd multiplicity

p x)
〈proof 〉
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lemma is-nth-power-conv-multiplicity-nat:
assumes n > 0
shows is-nth-power n (x :: nat) ←→ (∀ p. prime p −→ n dvd multiplicity p x)
〈proof 〉

lemma is-nth-power-mult:
assumes is-nth-power n a is-nth-power n b
shows is-nth-power n (a ∗ b :: ′a :: comm-monoid-mult)
〈proof 〉

lemma is-nth-power-mult-coprime-natD:
fixes a b :: nat
assumes coprime a b is-nth-power n (a ∗ b) a > 0 b > 0
shows is-nth-power n a is-nth-power n b
〈proof 〉

lemma is-nth-power-mult-coprime-nat-iff :
fixes a b :: nat
assumes coprime a b
shows is-nth-power n (a ∗ b) ←→ is-nth-power n a ∧is-nth-power n b
〈proof 〉

lemma is-nth-power-prime-power-nat-iff :
fixes p :: nat assumes prime p
shows is-nth-power n (p ^ k) ←→ n dvd k
〈proof 〉

lemma is-nth-power-nth-power ′:
assumes n dvd n ′

shows is-nth-power n (m ^ n ′)
〈proof 〉

definition is-nth-power-nat :: nat ⇒ nat ⇒ bool
where [code-abbrev]: is-nth-power-nat = is-nth-power

lemma is-nth-power-nat-code [code]:
is-nth-power-nat n m =

(if n = 0 then m = 1
else if m = 0 then n > 0
else if n = 1 then True
else (∃ k∈{1 ..m}. k ^ n = m))

〈proof 〉

lemma is-nth-power-mult-cancel-left:
fixes a b :: ′a :: semiring-gcd
assumes is-nth-power n a a 6= 0
shows is-nth-power n (a ∗ b) ←→ is-nth-power n b
〈proof 〉
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lemma is-nth-power-mult-cancel-right:
fixes a b :: ′a :: semiring-gcd
assumes is-nth-power n b b 6= 0
shows is-nth-power n (a ∗ b) ←→ is-nth-power n a
〈proof 〉

10.2 The n-root of a natural number
definition nth-root-nat :: nat ⇒ nat ⇒ nat where

nth-root-nat k n = (if k = 0 then 0 else Max {m. m ^ k ≤ n})

lemma zeroth-root-nat [simp]: nth-root-nat 0 n = 0
〈proof 〉

lemma nth-root-nat-aux1 :
assumes k > 0
shows {m::nat. m ^ k ≤ n} ⊆ {..n}
〈proof 〉

lemma nth-root-nat-aux2 :
assumes k > 0
shows finite {m::nat. m ^ k ≤ n} {m::nat. m ^ k ≤ n} 6= {}
〈proof 〉

lemma
assumes k > 0
shows nth-root-nat-power-le: nth-root-nat k n ^ k ≤ n

and nth-root-nat-ge: x ^ k ≤ n =⇒ x ≤ nth-root-nat k n
〈proof 〉

lemma nth-root-nat-less:
assumes k > 0 x ^ k > n
shows nth-root-nat k n < x
〈proof 〉

lemma nth-root-nat-unique:
assumes m ^ k ≤ n (m + 1 ) ^ k > n
shows nth-root-nat k n = m
〈proof 〉

lemma nth-root-nat-0 [simp]: nth-root-nat k 0 = 0
〈proof 〉

lemma nth-root-nat-1 [simp]: k > 0 =⇒ nth-root-nat k 1 = 1
〈proof 〉

lemma nth-root-nat-Suc-0 [simp]: k > 0 =⇒ nth-root-nat k (Suc 0 ) = Suc 0
〈proof 〉
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lemma first-root-nat [simp]: nth-root-nat 1 n = n
〈proof 〉

lemma first-root-nat ′ [simp]: nth-root-nat (Suc 0 ) n = n
〈proof 〉

lemma nth-root-nat-code-naive ′:
nth-root-nat k n = (if k = 0 then 0 else Max (Set.filter (λm. m ^ k ≤ n) {..n}))
〈proof 〉

function nth-root-nat-aux :: nat ⇒ nat ⇒ nat ⇒ nat ⇒ nat where
nth-root-nat-aux m k acc n =

(let acc ′ = (k + 1 ) ^ m
in if k ≥ n ∨ acc ′ > n then k else nth-root-nat-aux m (k+1 ) acc ′ n)

〈proof 〉
termination 〈proof 〉

lemma nth-root-nat-aux-le:
assumes k ^ m ≤ n m > 0
shows nth-root-nat-aux m k (k ^ m) n ^ m ≤ n
〈proof 〉

lemma nth-root-nat-aux-gt:
assumes m > 0
shows (nth-root-nat-aux m k (k ^ m) n + 1 ) ^ m > n
〈proof 〉

lemma nth-root-nat-aux-correct:
assumes k ^ m ≤ n m > 0
shows nth-root-nat-aux m k (k ^ m) n = nth-root-nat m n
〈proof 〉

lemma nth-root-nat-naive-code [code]:
nth-root-nat m n = (if m = 0 ∨ n = 0 then 0 else if m = 1 ∨ n = 1 then n else

nth-root-nat-aux m 1 1 n)
〈proof 〉

lemma nth-root-nat-nth-power [simp]: k > 0 =⇒ nth-root-nat k (n ^ k) = n
〈proof 〉

lemma nth-root-nat-nth-power ′:
assumes k > 0 k dvd m
shows nth-root-nat k (n ^ m) = n ^ (m div k)
〈proof 〉

lemma nth-root-nat-mono:
assumes m ≤ n
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shows nth-root-nat k m ≤ nth-root-nat k n
〈proof 〉

end

11 Polynomials, fractions and rings
theory Polynomial-Factorial
imports

Complex-Main
Polynomial
Normalized-Fraction

begin

11.1 Lifting elements into the field of fractions
definition to-fract :: ′a :: idom ⇒ ′a fract

where to-fract x = Fract x 1
— FIXME: more idiomatic name, abbreviation

lemma to-fract-0 [simp]: to-fract 0 = 0
〈proof 〉

lemma to-fract-1 [simp]: to-fract 1 = 1
〈proof 〉

lemma to-fract-add [simp]: to-fract (x + y) = to-fract x + to-fract y
〈proof 〉

lemma to-fract-diff [simp]: to-fract (x − y) = to-fract x − to-fract y
〈proof 〉

lemma to-fract-uminus [simp]: to-fract (−x) = −to-fract x
〈proof 〉

lemma to-fract-mult [simp]: to-fract (x ∗ y) = to-fract x ∗ to-fract y
〈proof 〉

lemma to-fract-eq-iff [simp]: to-fract x = to-fract y ←→ x = y
〈proof 〉

lemma to-fract-eq-0-iff [simp]: to-fract x = 0 ←→ x = 0
〈proof 〉

lemma to-fract-quot-of-fract:
assumes snd (quot-of-fract x) = 1
shows to-fract (fst (quot-of-fract x)) = x
〈proof 〉
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lemma Fract-conv-to-fract: Fract a b = to-fract a / to-fract b
〈proof 〉

lemma quot-of-fract-to-fract [simp]: quot-of-fract (to-fract x) = (x, 1 )
〈proof 〉

lemma snd-quot-of-fract-to-fract [simp]: snd (quot-of-fract (to-fract x)) = 1
〈proof 〉

11.2 Lifting polynomial coefficients to the field of fractions
abbreviation (input) fract-poly :: ‹ ′a::idom poly ⇒ ′a fract poly›

where fract-poly ≡ map-poly to-fract

abbreviation (input) unfract-poly :: ‹ ′a::{ring-gcd,semiring-gcd-mult-normalize,idom-divide}
fract poly ⇒ ′a poly›

where unfract-poly ≡ map-poly (fst ◦ quot-of-fract)

lemma fract-poly-smult [simp]: fract-poly (smult c p) = smult (to-fract c) (fract-poly
p)
〈proof 〉

lemma fract-poly-0 [simp]: fract-poly 0 = 0
〈proof 〉

lemma fract-poly-1 [simp]: fract-poly 1 = 1
〈proof 〉

lemma fract-poly-add [simp]:
fract-poly (p + q) = fract-poly p + fract-poly q
〈proof 〉

lemma fract-poly-diff [simp]:
fract-poly (p − q) = fract-poly p − fract-poly q
〈proof 〉

lemma to-fract-sum [simp]: to-fract (sum f A) = sum (λx. to-fract (f x)) A
〈proof 〉

lemma fract-poly-mult [simp]:
fract-poly (p ∗ q) = fract-poly p ∗ fract-poly q
〈proof 〉

lemma fract-poly-eq-iff [simp]: fract-poly p = fract-poly q ←→ p = q
〈proof 〉

lemma fract-poly-eq-0-iff [simp]: fract-poly p = 0 ←→ p = 0
〈proof 〉
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lemma fract-poly-dvd: p dvd q =⇒ fract-poly p dvd fract-poly q
〈proof 〉

lemma prod-mset-fract-poly:
(
∏

x∈#A. map-poly to-fract (f x)) = fract-poly (prod-mset (image-mset f A))
〈proof 〉

lemma is-unit-fract-poly-iff :
p dvd 1 ←→ fract-poly p dvd 1 ∧ content p = 1
〈proof 〉

lemma fract-poly-is-unit: p dvd 1 =⇒ fract-poly p dvd 1
〈proof 〉

lemma fract-poly-smult-eqE :
fixes c :: ′a :: {idom-divide,ring-gcd,semiring-gcd-mult-normalize} fract
assumes fract-poly p = smult c (fract-poly q)
obtains a b

where c = to-fract b / to-fract a smult a p = smult b q coprime a b normalize
a = a
〈proof 〉

11.3 Fractional content
abbreviation (input) Lcm-coeff-denoms

:: ′a :: {semiring-Gcd,idom-divide,ring-gcd,semiring-gcd-mult-normalize} fract
poly ⇒ ′a

where Lcm-coeff-denoms p ≡ Lcm (snd ‘ quot-of-fract ‘ set (coeffs p))

definition fract-content ::
′a :: {factorial-semiring,semiring-Gcd,ring-gcd,idom-divide,semiring-gcd-mult-normalize}

fract poly ⇒ ′a fract where
fract-content p =

(let d = Lcm-coeff-denoms p in Fract (content (unfract-poly (smult (to-fract
d) p))) d)

definition primitive-part-fract ::
′a :: {factorial-semiring,semiring-Gcd,ring-gcd,idom-divide,semiring-gcd-mult-normalize}

fract poly ⇒ ′a poly where
primitive-part-fract p =

primitive-part (unfract-poly (smult (to-fract (Lcm-coeff-denoms p)) p))

lemma primitive-part-fract-0 [simp]: primitive-part-fract 0 = 0
〈proof 〉

lemma fract-content-eq-0-iff [simp]:
fract-content p = 0 ←→ p = 0
〈proof 〉
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lemma content-primitive-part-fract [simp]:
fixes p :: ′a :: {semiring-gcd-mult-normalize,

factorial-semiring, ring-gcd, semiring-Gcd,idom-divide} fract poly
shows p 6= 0 =⇒ content (primitive-part-fract p) = 1
〈proof 〉

lemma content-times-primitive-part-fract:
smult (fract-content p) (fract-poly (primitive-part-fract p)) = p
〈proof 〉

lemma fract-content-fract-poly [simp]: fract-content (fract-poly p) = to-fract (content
p)
〈proof 〉

lemma content-decompose-fract:
fixes p :: ′a :: {factorial-semiring,semiring-Gcd,ring-gcd,idom-divide,

semiring-gcd-mult-normalize} fract poly
obtains c p ′ where p = smult c (map-poly to-fract p ′) content p ′ = 1
〈proof 〉

lemma fract-poly-dvdD:
fixes p :: ′a :: {factorial-semiring,semiring-Gcd,ring-gcd,idom-divide,

semiring-gcd-mult-normalize} poly
assumes fract-poly p dvd fract-poly q content p = 1
shows p dvd q
〈proof 〉

11.4 Polynomials over a field are a Euclidean ring
context
begin

interpretation field-poly:
normalization-euclidean-semiring-multiplicative where zero = 0 :: ′a :: field poly

and one = 1 and plus = plus and minus = minus
and times = times
and normalize = λp. smult (inverse (lead-coeff p)) p
and unit-factor = λp. [:lead-coeff p:]
and euclidean-size = λp. if p = 0 then 0 else 2 ^ degree p
and divide = divide and modulo = modulo

rewrites dvd.dvd (times :: ′a poly ⇒ -) = Rings.dvd
and comm-monoid-mult.prod-mset times 1 = prod-mset
and comm-semiring-1 .irreducible times 1 0 = irreducible
and comm-semiring-1 .prime-elem times 1 0 = prime-elem

〈proof 〉

lemma field-poly-irreducible-imp-prime:
prime-elem p if irreducible p for p :: ′a :: field poly
〈proof 〉
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lemma field-poly-prod-mset-prime-factorization:
prod-mset (field-poly.prime-factorization p) = smult (inverse (lead-coeff p)) p
if p 6= 0 for p :: ′a :: field poly
〈proof 〉

lemma field-poly-in-prime-factorization-imp-prime:
prime-elem p if p ∈# field-poly.prime-factorization x
for p :: ′a :: field poly
〈proof 〉

11.5 Primality and irreducibility in polynomial rings
lemma nonconst-poly-irreducible-iff :
fixes p :: ′a :: {factorial-semiring,semiring-Gcd,ring-gcd,idom-divide,semiring-gcd-mult-normalize}

poly
assumes degree p 6= 0
shows irreducible p ←→ irreducible (fract-poly p) ∧ content p = 1
〈proof 〉

lemma irreducible-imp-prime-poly:
fixes p :: ′a :: {factorial-semiring,semiring-Gcd,ring-gcd,idom-divide,semiring-gcd-mult-normalize}

poly
assumes irreducible p
shows prime-elem p
〈proof 〉

lemma degree-primitive-part-fract [simp]:
degree (primitive-part-fract p) = degree p
〈proof 〉

lemma irreducible-primitive-part-fract:
fixes p :: ′a :: {idom-divide, ring-gcd, factorial-semiring, semiring-Gcd,semiring-gcd-mult-normalize}

fract poly
assumes irreducible p
shows irreducible (primitive-part-fract p)
〈proof 〉

lemma prime-elem-primitive-part-fract:
fixes p :: ′a :: {idom-divide, ring-gcd, factorial-semiring, semiring-Gcd,semiring-gcd-mult-normalize}

fract poly
shows irreducible p =⇒ prime-elem (primitive-part-fract p)
〈proof 〉

lemma irreducible-linear-field-poly:
fixes a b :: ′a::field
assumes b 6= 0
shows irreducible [:a,b:]
〈proof 〉
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lemma prime-elem-linear-field-poly:
(b :: ′a :: field) 6= 0 =⇒ prime-elem [:a,b:]
〈proof 〉

lemma irreducible-linear-poly:
fixes a b :: ′a::{idom-divide,ring-gcd,factorial-semiring,semiring-Gcd,semiring-gcd-mult-normalize}
shows b 6= 0 =⇒ coprime a b =⇒ irreducible [:a,b:]
〈proof 〉

lemma prime-elem-linear-poly:
fixes a b :: ′a::{idom-divide,ring-gcd,factorial-semiring,semiring-Gcd,semiring-gcd-mult-normalize}
shows b 6= 0 =⇒ coprime a b =⇒ prime-elem [:a,b:]
〈proof 〉

11.6 Prime factorisation of polynomials
lemma poly-prime-factorization-exists-content-1 :
fixes p :: ′a :: {factorial-semiring,semiring-Gcd,ring-gcd,idom-divide,semiring-gcd-mult-normalize}

poly
assumes p 6= 0 content p = 1
shows ∃A. (∀ p. p ∈# A −→ prime-elem p) ∧ prod-mset A = normalize p
〈proof 〉

lemma poly-prime-factorization-exists:
fixes p :: ′a :: {factorial-semiring,semiring-Gcd,ring-gcd,idom-divide,semiring-gcd-mult-normalize}

poly
assumes p 6= 0
shows ∃A. (∀ p. p ∈# A −→ prime-elem p) ∧ normalize (prod-mset A) =

normalize p
〈proof 〉

end

11.7 Typeclass instances
instance poly :: ({factorial-ring-gcd,semiring-gcd-mult-normalize}) factorial-semiring
〈proof 〉

instantiation poly :: ({factorial-ring-gcd, semiring-gcd-mult-normalize}) factorial-ring-gcd
begin

definition gcd-poly :: ′a poly ⇒ ′a poly ⇒ ′a poly where
[code del]: gcd-poly = gcd-factorial

definition lcm-poly :: ′a poly ⇒ ′a poly ⇒ ′a poly where
[code del]: lcm-poly = lcm-factorial

definition Gcd-poly :: ′a poly set ⇒ ′a poly where
[code del]: Gcd-poly = Gcd-factorial
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definition Lcm-poly :: ′a poly set ⇒ ′a poly where
[code del]: Lcm-poly = Lcm-factorial

instance 〈proof 〉

end

instance poly :: ({factorial-ring-gcd, semiring-gcd-mult-normalize}) semiring-gcd-mult-normalize
〈proof 〉

instance poly :: ({field,factorial-ring-gcd,semiring-gcd-mult-normalize})
normalization-euclidean-semiring 〈proof 〉

instance poly :: ({field, normalization-euclidean-semiring, factorial-ring-gcd,
semiring-gcd-mult-normalize}) euclidean-ring-gcd

〈proof 〉

instance poly :: ({field, normalization-euclidean-semiring, factorial-ring-gcd,
semiring-gcd-mult-normalize}) factorial-semiring-multiplicative

〈proof 〉

11.8 Polynomial GCD
lemma gcd-poly-decompose:

fixes p q :: ′a :: {factorial-ring-gcd,semiring-gcd-mult-normalize} poly
shows gcd p q =

smult (gcd (content p) (content q)) (gcd (primitive-part p) (primitive-part
q))
〈proof 〉

lemma gcd-poly-pseudo-mod:
fixes p q :: ′a :: {factorial-ring-gcd,semiring-gcd-mult-normalize} poly
assumes nz: q 6= 0 and prim: content p = 1 content q = 1
shows gcd p q = gcd q (primitive-part (pseudo-mod p q))
〈proof 〉

lemma degree-pseudo-mod-less:
assumes q 6= 0 pseudo-mod p q 6= 0
shows degree (pseudo-mod p q) < degree q
〈proof 〉

function gcd-poly-code-aux :: ′a :: factorial-ring-gcd poly ⇒ ′a poly ⇒ ′a poly
where

gcd-poly-code-aux p q =
(if q = 0 then normalize p else gcd-poly-code-aux q (primitive-part (pseudo-mod

p q)))
〈proof 〉
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termination
〈proof 〉

declare gcd-poly-code-aux.simps [simp del]

lemma gcd-poly-code-aux-correct:
assumes content p = 1 q = 0 ∨ content q = 1
shows gcd-poly-code-aux p q = gcd p q
〈proof 〉

definition gcd-poly-code
:: ′a :: factorial-ring-gcd poly ⇒ ′a poly ⇒ ′a poly

where gcd-poly-code p q =
(if p = 0 then normalize q else if q = 0 then normalize p else

smult (gcd (content p) (content q))
(gcd-poly-code-aux (primitive-part p) (primitive-part q)))

lemma gcd-poly-code [code]: gcd p q = gcd-poly-code p q
〈proof 〉

lemma lcm-poly-code [code]:
fixes p q :: ′a :: {factorial-ring-gcd,semiring-gcd-mult-normalize} poly
shows lcm p q = normalize (p ∗ q div gcd p q)
〈proof 〉

lemmas Gcd-poly-set-eq-fold [code] =
Gcd-set-eq-fold [where ? ′a = ′a :: {factorial-ring-gcd,semiring-gcd-mult-normalize}

poly]
lemmas Lcm-poly-set-eq-fold [code] =
Lcm-set-eq-fold [where ? ′a = ′a :: {factorial-ring-gcd,semiring-gcd-mult-normalize}

poly]

end

12 Squarefreeness
theory Squarefree
imports Primes
begin

definition squarefree :: ′a :: comm-monoid-mult ⇒ bool where
squarefree n ←→ (∀ x. x ^ 2 dvd n −→ x dvd 1 )

lemma squarefreeI : (
∧

x. x ^ 2 dvd n =⇒ x dvd 1 ) =⇒ squarefree n
〈proof 〉

lemma squarefreeD: squarefree n =⇒ x ^ 2 dvd n =⇒ x dvd 1
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〈proof 〉

lemma not-squarefreeI : x ^ 2 dvd n =⇒ ¬x dvd 1 =⇒ ¬squarefree n
〈proof 〉

lemma not-squarefreeE [case-names square-dvd]:
¬squarefree n =⇒ (

∧
x. x ^ 2 dvd n =⇒ ¬x dvd 1 =⇒ P) =⇒ P

〈proof 〉

lemma not-squarefree-0 [simp]: ¬squarefree (0 :: ′a :: comm-semiring-1 )
〈proof 〉

lemma squarefree-factorial-semiring:
assumes n 6= 0
shows squarefree (n :: ′a :: factorial-semiring) ←→ (∀ p. prime p −→ ¬p ^ 2

dvd n)
〈proof 〉

lemma squarefree-factorial-semiring ′:
assumes n 6= 0
shows squarefree (n :: ′a :: factorial-semiring) ←→

(∀ p∈prime-factors n. multiplicity p n = 1 )
〈proof 〉

lemma squarefree-factorial-semiring ′′:
assumes n 6= 0
shows squarefree (n :: ′a :: factorial-semiring) ←→

(∀ p. prime p −→ multiplicity p n ≤ 1 )
〈proof 〉

lemma squarefree-unit [simp]: is-unit n =⇒ squarefree n
〈proof 〉

lemma squarefree-1 [simp]: squarefree (1 :: ′a :: algebraic-semidom)
〈proof 〉

lemma squarefree-minus [simp]: squarefree (−n :: ′a :: comm-ring-1 ) ←→ square-
free n
〈proof 〉

lemma squarefree-mono: a dvd b =⇒ squarefree b =⇒ squarefree a
〈proof 〉

lemma squarefree-multD:
assumes squarefree (a ∗ b)
shows squarefree a squarefree b
〈proof 〉

lemma squarefree-prime-elem:
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assumes prime-elem (p :: ′a :: factorial-semiring)
shows squarefree p
〈proof 〉

lemma squarefree-prime:
assumes prime (p :: ′a :: factorial-semiring)
shows squarefree p
〈proof 〉

lemma squarefree-mult-coprime:
fixes a b :: ′a :: factorial-semiring-gcd
assumes coprime a b squarefree a squarefree b
shows squarefree (a ∗ b)
〈proof 〉

lemma squarefree-prod-coprime:
fixes f :: ′a ⇒ ′b :: factorial-semiring-gcd
assumes

∧
a b. a ∈ A =⇒ b ∈ A =⇒ a 6= b =⇒ coprime (f a) (f b)

assumes
∧

a. a ∈ A =⇒ squarefree (f a)
shows squarefree (prod f A)
〈proof 〉

lemma squarefree-powerD: m > 0 =⇒ squarefree (n ^ m) =⇒ squarefree n
〈proof 〉

lemma squarefree-power-iff :
squarefree (n ^ m) ←→ m = 0 ∨ is-unit n ∨ (squarefree n ∧ m = 1 )
〈proof 〉

definition squarefree-nat :: nat ⇒ bool where
[code-abbrev]: squarefree-nat = squarefree

lemma squarefree-nat-code-naive [code]:
squarefree-nat n ←→ n 6= 0 ∧ (∀ k∈{2 ..n}. ¬k ^ 2 dvd n)
〈proof 〉

definition square-part :: ′a :: factorial-semiring ⇒ ′a where
square-part n = (if n = 0 then 0 else

normalize (
∏

p∈prime-factors n. p ^ (multiplicity p n div 2 )))

lemma square-part-nonzero:
n 6= 0 =⇒ square-part n = normalize (

∏
p∈prime-factors n. p ^ (multiplicity p

n div 2 ))
〈proof 〉

lemma square-part-0 [simp]: square-part 0 = 0
〈proof 〉
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lemma square-part-unit [simp]: is-unit x =⇒ square-part x = 1
〈proof 〉

lemma square-part-1 [simp]: square-part 1 = 1
〈proof 〉

lemma square-part-0-iff [simp]: square-part n = 0 ←→ n = 0
〈proof 〉

lemma normalize-uminus [simp]:
normalize (−x :: ′a :: {normalization-semidom, comm-ring-1}) = normalize x
〈proof 〉

lemma multiplicity-uminus-right [simp]:
multiplicity (x :: ′a :: {factorial-semiring, comm-ring-1}) (−y) = multiplicity x y
〈proof 〉

lemma multiplicity-uminus-left [simp]:
multiplicity (−x :: ′a :: {factorial-semiring, comm-ring-1}) y = multiplicity x y
〈proof 〉

lemma prime-factorization-uminus [simp]:
prime-factorization (−x :: ′a :: {factorial-semiring, comm-ring-1}) = prime-factorization

x
〈proof 〉

lemma square-part-uminus [simp]:
square-part (−x :: ′a :: {factorial-semiring, comm-ring-1}) = square-part x
〈proof 〉

lemma prime-multiplicity-square-part:
assumes prime p
shows multiplicity p (square-part n) = multiplicity p n div 2
〈proof 〉

lemma square-part-square-dvd [simp, intro]: square-part n ^ 2 dvd n
〈proof 〉

lemma prime-multiplicity-le-imp-dvd:
assumes x 6= 0 y 6= 0
shows x dvd y ←→ (∀ p. prime p −→ multiplicity p x ≤ multiplicity p y)
〈proof 〉

lemma dvd-square-part-iff : x dvd square-part n ←→ x ^ 2 dvd n
〈proof 〉

definition squarefree-part :: ′a :: factorial-semiring ⇒ ′a where
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squarefree-part n = (if n = 0 then 1 else n div square-part n ^ 2 )

lemma squarefree-part-0 [simp]: squarefree-part 0 = 1
〈proof 〉

lemma squarefree-part-unit [simp]: is-unit n =⇒ squarefree-part n = n
〈proof 〉

lemma squarefree-part-1 [simp]: squarefree-part 1 = 1
〈proof 〉

lemma squarefree-decompose: n = squarefree-part n ∗ square-part n ^ 2
〈proof 〉

lemma squarefree-part-uminus [simp]:
assumes x 6= 0
shows squarefree-part (−x :: ′a :: {factorial-semiring, comm-ring-1}) = −squarefree-part

x
〈proof 〉

lemma squarefree-part-nonzero [simp]: squarefree-part n 6= 0
〈proof 〉

lemma prime-multiplicity-squarefree-part:
assumes prime p
shows multiplicity p (squarefree-part n) = multiplicity p n mod 2
〈proof 〉

lemma prime-multiplicity-squarefree-part-le-Suc-0 [intro]:
assumes prime p
shows multiplicity p (squarefree-part n) ≤ Suc 0
〈proof 〉

lemma squarefree-squarefree-part [simp, intro]: squarefree (squarefree-part n)
〈proof 〉

lemma squarefree-decomposition-unique:
assumes square-part m = square-part n
assumes squarefree-part m = squarefree-part n
shows m = n
〈proof 〉

lemma normalize-square-part [simp]: normalize (square-part x) = square-part x
〈proof 〉

lemma square-part-even-power ′: square-part (x ^ (2 ∗ n)) = normalize (x ^ n)
〈proof 〉

lemma square-part-even-power : even n =⇒ square-part (x ^ n) = normalize (x ^
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(n div 2 ))
〈proof 〉

lemma square-part-odd-power ′: square-part (x ^ (Suc (2 ∗ n))) = normalize (x ^
n ∗ square-part x)
〈proof 〉

lemma square-part-odd-power :
odd n =⇒ square-part (x ^ n) = normalize (x ^ (n div 2 ) ∗ square-part x)
〈proof 〉

end

13 Pieces of computational Algebra
theory Computational-Algebra
imports

Euclidean-Algorithm
Factorial-Ring
Formal-Laurent-Series
Fraction-Field
Fundamental-Theorem-Algebra
Group-Closure
Normalized-Fraction
Nth-Powers
Polynomial-FPS
Polynomial
Polynomial-Factorial
Primes
Squarefree

begin

end

theory Field-as-Ring
imports

Complex-Main
Euclidean-Algorithm

begin

context field
begin

subclass idom-divide 〈proof 〉

definition normalize-field :: ′a ⇒ ′a
where [simp]: normalize-field x = (if x = 0 then 0 else 1 )

definition unit-factor-field :: ′a ⇒ ′a
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where [simp]: unit-factor-field x = x
definition euclidean-size-field :: ′a ⇒ nat

where [simp]: euclidean-size-field x = (if x = 0 then 0 else 1 )
definition mod-field :: ′a ⇒ ′a ⇒ ′a

where [simp]: mod-field x y = (if y = 0 then x else 0 )

end

instantiation real ::
{unique-euclidean-ring, normalization-euclidean-semiring, normalization-semidom-multiplicative}

begin

definition [simp]: normalize-real = (normalize-field :: real ⇒ -)
definition [simp]: unit-factor-real = (unit-factor-field :: real ⇒ -)
definition [simp]: modulo-real = (mod-field :: real ⇒ -)
definition [simp]: euclidean-size-real = (euclidean-size-field :: real ⇒ -)
definition [simp]: division-segment (x :: real) = 1

instance
〈proof 〉

end

instantiation real :: euclidean-ring-gcd
begin

definition gcd-real :: real ⇒ real ⇒ real where
gcd-real = Euclidean-Algorithm.gcd

definition lcm-real :: real ⇒ real ⇒ real where
lcm-real = Euclidean-Algorithm.lcm

definition Gcd-real :: real set ⇒ real where
Gcd-real = Euclidean-Algorithm.Gcd

definition Lcm-real :: real set ⇒ real where
Lcm-real = Euclidean-Algorithm.Lcm

instance 〈proof 〉

end

instance real :: field-gcd 〈proof 〉

instantiation rat ::
{unique-euclidean-ring, normalization-euclidean-semiring, normalization-semidom-multiplicative}

begin

definition [simp]: normalize-rat = (normalize-field :: rat ⇒ -)
definition [simp]: unit-factor-rat = (unit-factor-field :: rat ⇒ -)
definition [simp]: modulo-rat = (mod-field :: rat ⇒ -)
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definition [simp]: euclidean-size-rat = (euclidean-size-field :: rat ⇒ -)
definition [simp]: division-segment (x :: rat) = 1

instance
〈proof 〉

end

instantiation rat :: euclidean-ring-gcd
begin

definition gcd-rat :: rat ⇒ rat ⇒ rat where
gcd-rat = Euclidean-Algorithm.gcd

definition lcm-rat :: rat ⇒ rat ⇒ rat where
lcm-rat = Euclidean-Algorithm.lcm

definition Gcd-rat :: rat set ⇒ rat where
Gcd-rat = Euclidean-Algorithm.Gcd

definition Lcm-rat :: rat set ⇒ rat where
Lcm-rat = Euclidean-Algorithm.Lcm

instance 〈proof 〉

end

instance rat :: field-gcd 〈proof 〉

instantiation complex ::
{unique-euclidean-ring, normalization-euclidean-semiring, normalization-semidom-multiplicative}

begin

definition [simp]: normalize-complex = (normalize-field :: complex ⇒ -)
definition [simp]: unit-factor-complex = (unit-factor-field :: complex ⇒ -)
definition [simp]: modulo-complex = (mod-field :: complex ⇒ -)
definition [simp]: euclidean-size-complex = (euclidean-size-field :: complex ⇒ -)
definition [simp]: division-segment (x :: complex) = 1

instance
〈proof 〉

end

instantiation complex :: euclidean-ring-gcd
begin

definition gcd-complex :: complex ⇒ complex ⇒ complex where
gcd-complex = Euclidean-Algorithm.gcd

definition lcm-complex :: complex ⇒ complex ⇒ complex where
lcm-complex = Euclidean-Algorithm.lcm
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definition Gcd-complex :: complex set ⇒ complex where
Gcd-complex = Euclidean-Algorithm.Gcd

definition Lcm-complex :: complex set ⇒ complex where
Lcm-complex = Euclidean-Algorithm.Lcm

instance 〈proof 〉

end

instance complex :: field-gcd 〈proof 〉

end

14 Computation checks
theory Computation-Checks
imports Primes Polynomial-Factorial HOL−Library.Discrete-Functions HOL−Library.Code-Target-Numeral
begin

floor-sqrt 16476148165462159 = 128359449

prime 97

prime 97

prime 9973

prime 9973

Gcd {[:1 , 2 , 3 :], [:2 , 3 , 4 :]} = 1

Lcm {[:1 , 2 , 3 :], [:2 , 3 , 4 :]} = [:[:2 :], [:7 :], [:16 :], [:17 :], [:12 :]:]
end
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