
Computational Algebra

January 18, 2026

Contents
1 Factorial (semi)rings 6

1.1 Irreducible and prime elements 6
1.2 Generalized primes: normalized prime elements 16
1.3 In a semiring with GCD, each irreducible element is a prime

element . 20
1.4 Factorial semirings: algebraic structures with unique prime

factorizations . 22
1.5 GCD and LCM computation with unique factorizations . . . 43

2 Abstract euclidean algorithm in euclidean (semi)rings 54
2.1 Generic construction of the (simple) euclidean algorithm . . . 55
2.2 The (simple) euclidean algorithm as gcd computation 61
2.3 The extended euclidean algorithm 64
2.4 Typical instances . 66

3 Primes 69
3.1 Primes on nat and int . 69
3.2 Make prime naively executable 75
3.3 Largest exponent of a prime factor 76
3.4 Infinitely many primes . 78
3.5 Powers of Primes . 79
3.6 Chinese Remainder Theorem Variants 81
3.7 Multiplicity and primality for natural numbers and integers . 82
3.8 Rings and fields with prime characteristic 86
3.9 Finite fields . 87
3.10 The Freshman’s Dream in rings of prime characteristic 89

4 Polynomials as type over a ring structure 91
4.1 Auxiliary: operations for lists (later) representing coefficients 91
4.2 Definition of type poly . 92
4.3 Degree of a polynomial . 93
4.4 The zero polynomial . 94

1

4.5 List-style constructor for polynomials 96
4.6 Quickcheck generator for polynomials 98
4.7 List-style syntax for polynomials 98
4.8 Representation of polynomials by lists of coefficients 99
4.9 Fold combinator for polynomials 102
4.10 Canonical morphism on polynomials – evaluation 103
4.11 Monomials . 104
4.12 Leading coefficient . 105
4.13 Addition and subtraction . 105
4.14 Multiplication by a constant, polynomial multiplication and

the unit polynomial . 110
4.15 Mapping polynomials . 118
4.16 Conversions . 122
4.17 Lemmas about divisibility . 124
4.18 Polynomials form an integral domain 125
4.19 Polynomials form an ordered integral domain 128
4.20 Synthetic division and polynomial roots 129

4.20.1 Synthetic division . 129
4.20.2 Polynomial roots . 131
4.20.3 Order of polynomial roots 135

4.21 Additional induction rules on polynomials 141
4.22 Composition of polynomials 142
4.23 Closure properties of coefficients 148
4.24 Shifting polynomials . 149
4.25 Truncating polynomials . 150
4.26 Reflecting polynomials . 151
4.27 Derivatives . 154
4.28 Algebraic numbers . 167
4.29 Algebraic integers . 173
4.30 Division of polynomials . 179

4.30.1 Division in general . 179
4.30.2 Pseudo-Division . 185
4.30.3 Division in polynomials over fields 189
4.30.4 List-based versions for fast implementation 201
4.30.5 Improved Code-Equations for Polynomial (Pseudo) Di-

vision . 207
4.31 Primality and irreducibility in polynomial rings 212
4.32 Content and primitive part of a polynomial 215
4.33 A typeclass for algebraically closed fields 220
4.34 Polynomials and limits . 227

2

5 A formalization of formal power series 230
5.1 The type of formal power series 230
5.2 Subdegrees . 233
5.3 Ring structure . 239
5.4 Shifting and slicing . 251
5.5 Metrizability . 259
5.6 The topology of formal power series 260
5.7 Division . 265
5.8 Computing reciprocals via Hensel lifting 295
5.9 Euclidean division . 298
5.10 Formal Derivatives . 300
5.11 Powers . 306
5.12 Finite and infinite products 310
5.13 Integration . 313
5.14 Composition . 317
5.15 Rules from Herbert Wilf’s Generatingfunctionology 318

5.15.1 Rule 1 . 318
5.15.2 Rule 2 . 318
5.15.3 Rule 3 . 319
5.15.4 Rule 5 — summation and “division” by 1−X 319
5.15.5 Rule 4 in its more general form 320

5.16 Radicals . 328
5.17 Chain rule . 337
5.18 Compositional inverses . 339
5.19 Elementary series . 350

5.19.1 Exponential series . 350
5.19.2 Logarithmic series . 353
5.19.3 Binomial series . 355
5.19.4 Trigonometric functions 363

5.20 Hypergeometric series . 369

6 Converting polynomials to formal power series 373

7 A formalization of formal Laurent series 381
7.1 The type of formal Laurent series 381

7.1.1 Type definition . 381
7.1.2 Definition of basic Laurent series 382

7.2 Subdegrees . 384
7.3 Shifting . 386

7.3.1 Shift definition . 386
7.3.2 Base factor . 388

7.4 Conversion between formal power and Laurent series 389
7.4.1 Converting Laurent to power series 389
7.4.2 Converting power to Laurent series 394

3

7.5 Algebraic structures . 398
7.5.1 Addition . 398
7.5.2 Subtraction and negatives 399
7.5.3 Multiplication . 401
7.5.4 Powers . 417
7.5.5 Inverses . 423
7.5.6 Division . 443
7.5.7 Units . 450

7.6 Composition . 450
7.7 Formal differentiation and integration 458

7.7.1 Derivative . 458
7.7.2 Algebraic rules of the derivative 461
7.7.3 Equality of derivatives 465
7.7.4 Residues . 465
7.7.5 Integral definition and basic properties 468
7.7.6 Algebraic rules of the integral 473
7.7.7 Derivatives of integrals and vice versa 474

7.8 Topology . 475
7.9 Notation . 477

8 The fraction field of any integral domain 477
8.1 General fractions construction 477

8.1.1 Construction of the type of fractions 477
8.1.2 Representation and basic operations 478
8.1.3 The field of rational numbers 481
8.1.4 The ordered field of fractions over an ordered idom . . 482

9 Fundamental Theorem of Algebra 487
9.1 More lemmas about module of complex numbers 487
9.2 Basic lemmas about polynomials 487
9.3 Fundamental theorem of algebra 489
9.4 Nullstellensatz, degrees and divisibility of polynomials 500

10 n-th powers and roots of naturals 520
10.1 The set of n-th powers . 521
10.2 The n-root of a natural number 524

11 Polynomials, fractions and rings 527
11.1 Lifting elements into the field of fractions 527
11.2 Lifting polynomial coefficients to the field of fractions 528
11.3 Fractional content . 530
11.4 Polynomials over a field are a Euclidean ring 533
11.5 Primality and irreducibility in polynomial rings 534
11.6 Prime factorisation of polynomials 538

4

11.7 Typeclass instances . 540
11.8 Polynomial GCD . 541

12 Squarefreeness 543

13 Pieces of computational Algebra 551

14 Computation checks 554

Computation_Checks

Computational_Algebra

Euclidean_Algorithm

Factorial_Ring

Field_as_Ring

Formal_Laurent_Series

Formal_Power_Series

Fraction_Field

Fundamental_Theorem_Algebra

Group_Closure

Normalized_Fraction

Nth_Powers Polynomial

Polynomial_FPSPolynomial_Factorial

Primes

Squarefree

[HOL-Library]

[HOL]

[Pure]

[Tools]

5

1 Factorial (semi)rings
theory Factorial-Ring
imports

Main
HOL−Library.Multiset

begin

unbundle multiset.lifting

1.1 Irreducible and prime elements
context comm-semiring-1
begin

definition irreducible :: ′a ⇒ bool where
irreducible p ←→ p 6= 0 ∧ ¬p dvd 1 ∧ (∀ a b. p = a ∗ b −→ a dvd 1 ∨ b dvd 1)

lemma not-irreducible-zero [simp]: ¬irreducible 0
by (simp add: irreducible-def)

lemma irreducible-not-unit: irreducible p =⇒ ¬p dvd 1
by (simp add: irreducible-def)

lemma not-irreducible-one [simp]: ¬irreducible 1
by (simp add: irreducible-def)

lemma irreducibleI :
p 6= 0 =⇒ ¬p dvd 1 =⇒ (

∧
a b. p = a ∗ b =⇒ a dvd 1 ∨ b dvd 1) =⇒ irreducible

p
by (simp add: irreducible-def)

lemma irreducibleD: irreducible p =⇒ p = a ∗ b =⇒ a dvd 1 ∨ b dvd 1
by (simp add: irreducible-def)

lemma irreducible-mono:
assumes irr : irreducible b and a dvd b ¬a dvd 1
shows irreducible a

proof (rule irreducibleI)
fix c d assume a = c ∗ d
from assms obtain k where [simp]: b = a ∗ k by auto
from ‹a = c ∗ d› have b = c ∗ d ∗ k

by simp
hence c dvd 1 ∨ (d ∗ k) dvd 1

using irreducibleD[OF irr , of c d ∗ k] by (auto simp: mult.assoc)
thus c dvd 1 ∨ d dvd 1

by auto
qed (use assms in ‹auto simp: irreducible-def ›)

lemma irreducible-multD:

6

assumes l: irreducible (a∗b)
shows a dvd 1 ∧ irreducible b ∨ b dvd 1 ∧ irreducible a

proof−
have ∗: irreducible b if l: irreducible (a∗b) and a: a dvd 1 for a b :: ′a
proof (rule irreducibleI)

show ¬(b dvd 1)
proof

assume b dvd 1
hence a ∗ b dvd 1 ∗ 1

using ‹a dvd 1 › by (intro mult-dvd-mono) auto
with l show False

by (auto simp: irreducible-def)
qed

next
fix x y assume b = x ∗ y
have a ∗ x dvd 1 ∨ y dvd 1

using l by (rule irreducibleD) (use ‹b = x ∗ y› in ‹auto simp: mult-ac›)
thus x dvd 1 ∨ y dvd 1

by auto
qed (use l a in auto)

from irreducibleD[OF assms refl] have a dvd 1 ∨ b dvd 1
by (auto simp: irreducible-def)

with ∗[of a b] ∗[of b a] l show ?thesis
by (auto simp: mult.commute)

qed

lemma irreducible-power-iff [simp]:
irreducible (p ^ n) ←→ irreducible p ∧ n = 1

proof
assume ∗: irreducible (p ^ n)
have irreducible p

using ∗ by (induction n) (auto dest!: irreducible-multD)
hence [simp]: ¬p dvd 1

using ∗ by (auto simp: irreducible-def)

consider n = 0 | n = 1 | n > 1
by linarith

thus irreducible p ∧ n = 1
proof cases

assume n > 1
hence p ^ n = p ∗ p ^ (n − 1)

by (cases n) auto
with ∗ ‹¬ p dvd 1 › have p ^ (n − 1) dvd 1

using irreducible-multD[of p p ^ (n − 1)] by auto
with ‹¬p dvd 1 › and ‹n > 1 › have False

by (meson dvd-power dvd-trans zero-less-diff)
thus ?thesis ..

qed (use ∗ in auto)

7

qed auto

definition prime-elem :: ′a ⇒ bool where
prime-elem p ←→ p 6= 0 ∧ ¬p dvd 1 ∧ (∀ a b. p dvd (a ∗ b) −→ p dvd a ∨ p dvd

b)

lemma not-prime-elem-zero [simp]: ¬prime-elem 0
by (simp add: prime-elem-def)

lemma prime-elem-not-unit: prime-elem p =⇒ ¬p dvd 1
by (simp add: prime-elem-def)

lemma prime-elemI :
p 6= 0 =⇒ ¬p dvd 1 =⇒ (

∧
a b. p dvd (a ∗ b) =⇒ p dvd a ∨ p dvd b) =⇒

prime-elem p
by (simp add: prime-elem-def)

lemma prime-elem-dvd-multD:
prime-elem p =⇒ p dvd (a ∗ b) =⇒ p dvd a ∨ p dvd b

by (simp add: prime-elem-def)

lemma prime-elem-dvd-mult-iff :
prime-elem p =⇒ p dvd (a ∗ b) ←→ p dvd a ∨ p dvd b
by (auto simp: prime-elem-def)

lemma not-prime-elem-one [simp]:
¬ prime-elem 1
by (auto dest: prime-elem-not-unit)

lemma prime-elem-not-zeroI :
assumes prime-elem p
shows p 6= 0
using assms by (auto intro: ccontr)

lemma prime-elem-dvd-power :
prime-elem p =⇒ p dvd x ^ n =⇒ p dvd x
by (induction n) (auto dest: prime-elem-dvd-multD intro: dvd-trans[of - 1])

lemma prime-elem-dvd-power-iff :
prime-elem p =⇒ n > 0 =⇒ p dvd x ^ n ←→ p dvd x
by (auto dest: prime-elem-dvd-power intro: dvd-trans)

lemma prime-elem-imp-nonzero [simp]:
ASSUMPTION (prime-elem x) =⇒ x 6= 0
unfolding ASSUMPTION-def by (rule prime-elem-not-zeroI)

lemma prime-elem-imp-not-one [simp]:
ASSUMPTION (prime-elem x) =⇒ x 6= 1

8

unfolding ASSUMPTION-def by auto

end

lemma (in normalization-semidom) irreducible-cong:
assumes normalize a = normalize b
shows irreducible a ←→ irreducible b

proof (cases a = 0 ∨ a dvd 1)
case True
hence ¬irreducible a by (auto simp: irreducible-def)
from True have normalize a = 0 ∨ normalize a dvd 1

by auto
also note assms
finally have b = 0 ∨ b dvd 1 by simp
hence ¬irreducible b by (auto simp: irreducible-def)
with ‹¬irreducible a› show ?thesis by simp

next
case False
hence b: b 6= 0 ¬is-unit b using assms

by (auto simp: is-unit-normalize[of b])
show ?thesis
proof

assume irreducible a
thus irreducible b

by (rule irreducible-mono) (use assms False b in ‹auto dest: associatedD2 ›)
next

assume irreducible b
thus irreducible a

by (rule irreducible-mono) (use assms False b in ‹auto dest: associatedD1 ›)
qed

qed

lemma (in normalization-semidom) associatedE1 :
assumes normalize a = normalize b
obtains u where is-unit u a = u ∗ b

proof (cases a = 0)
case [simp]: False
from assms have [simp]: b 6= 0 by auto
show ?thesis
proof (rule that)

show is-unit (unit-factor a div unit-factor b)
by auto

have unit-factor a div unit-factor b ∗ b = unit-factor a ∗ (b div unit-factor b)
using ‹b 6= 0 › unit-div-commute unit-div-mult-swap unit-factor-is-unit by

metis
also have b div unit-factor b = normalize b by simp
finally show a = unit-factor a div unit-factor b ∗ b

by (metis assms unit-factor-mult-normalize)

9

qed
next

case [simp]: True
hence [simp]: b = 0

using assms[symmetric] by auto
show ?thesis

by (intro that[of 1]) auto
qed

lemma (in normalization-semidom) associatedE2 :
assumes normalize a = normalize b
obtains u where is-unit u b = u ∗ a

proof −
from assms have normalize b = normalize a

by simp
then obtain u where is-unit u b = u ∗ a

by (elim associatedE1)
thus ?thesis using that by blast

qed

lemma (in normalization-semidom) normalize-power-normalize:
normalize (normalize x ^ n) = normalize (x ^ n)

proof (induction n)
case (Suc n)
have normalize (normalize x ^ Suc n) = normalize (x ∗ normalize (normalize x

^ n))
by simp

also note Suc.IH
finally show ?case by simp

qed auto

context algebraic-semidom
begin

lemma prime-elem-imp-irreducible:
assumes prime-elem p
shows irreducible p

proof (rule irreducibleI)
fix a b
assume p-eq: p = a ∗ b
with assms have nz: a 6= 0 b 6= 0 by auto
from p-eq have p dvd a ∗ b by simp
with ‹prime-elem p› have p dvd a ∨ p dvd b by (rule prime-elem-dvd-multD)
with ‹p = a ∗ b› have a ∗ b dvd 1 ∗ b ∨ a ∗ b dvd a ∗ 1 by auto
thus a dvd 1 ∨ b dvd 1
by (simp only: dvd-times-left-cancel-iff [OF nz(1)] dvd-times-right-cancel-iff [OF

nz(2)])

10

qed (insert assms, simp-all add: prime-elem-def)

lemma (in algebraic-semidom) unit-imp-no-irreducible-divisors:
assumes is-unit x irreducible p
shows ¬p dvd x

proof (rule notI)
assume p dvd x
with ‹is-unit x› have is-unit p

by (auto intro: dvd-trans)
with ‹irreducible p› show False

by (simp add: irreducible-not-unit)
qed

lemma unit-imp-no-prime-divisors:
assumes is-unit x prime-elem p
shows ¬p dvd x
using unit-imp-no-irreducible-divisors[OF assms(1) prime-elem-imp-irreducible[OF

assms(2)]] .

lemma prime-elem-mono:
assumes prime-elem p ¬q dvd 1 q dvd p
shows prime-elem q

proof −
from ‹q dvd p› obtain r where r : p = q ∗ r by (elim dvdE)
hence p dvd q ∗ r by simp
with ‹prime-elem p› have p dvd q ∨ p dvd r by (rule prime-elem-dvd-multD)
hence p dvd q
proof

assume p dvd r
then obtain s where s: r = p ∗ s by (elim dvdE)
from r have p ∗ 1 = p ∗ (q ∗ s) by (subst (asm) s) (simp add: mult-ac)
with ‹prime-elem p› have q dvd 1

by (subst (asm) mult-cancel-left) auto
with ‹¬q dvd 1 › show ?thesis by contradiction

qed

show ?thesis
proof (rule prime-elemI)

fix a b assume q dvd (a ∗ b)
with ‹p dvd q› have p dvd (a ∗ b) by (rule dvd-trans)
with ‹prime-elem p› have p dvd a ∨ p dvd b by (rule prime-elem-dvd-multD)
with ‹q dvd p› show q dvd a ∨ q dvd b by (blast intro: dvd-trans)

qed (insert assms, auto)
qed

lemma irreducibleD ′:
assumes irreducible a b dvd a
shows a dvd b ∨ is-unit b

proof −

11

from assms obtain c where c: a = b ∗ c by (elim dvdE)
from irreducibleD[OF assms(1) this] have is-unit b ∨ is-unit c .
thus ?thesis by (auto simp: c mult-unit-dvd-iff)

qed

lemma irreducibleI ′:
assumes a 6= 0 ¬is-unit a

∧
b. b dvd a =⇒ a dvd b ∨ is-unit b

shows irreducible a
proof (rule irreducibleI)

fix b c assume a-eq: a = b ∗ c
hence a dvd b ∨ is-unit b by (intro assms) simp-all
thus is-unit b ∨ is-unit c
proof

assume a dvd b
hence b ∗ c dvd b ∗ 1 by (simp add: a-eq)
moreover from ‹a 6= 0 › a-eq have b 6= 0 by auto
ultimately show ?thesis by (subst (asm) dvd-times-left-cancel-iff) auto

qed blast
qed (simp-all add: assms(1 ,2))

lemma irreducible-altdef :
irreducible x ←→ x 6= 0 ∧ ¬is-unit x ∧ (∀ b. b dvd x −→ x dvd b ∨ is-unit b)
using irreducibleI ′[of x] irreducibleD ′[of x] irreducible-not-unit[of x] by auto

lemma prime-elem-multD:
assumes prime-elem (a ∗ b)
shows is-unit a ∨ is-unit b

proof −
from assms have a 6= 0 b 6= 0 by (auto dest!: prime-elem-not-zeroI)
moreover from assms prime-elem-dvd-multD [of a ∗ b] have a ∗ b dvd a ∨ a ∗

b dvd b
by auto

ultimately show ?thesis
using dvd-times-left-cancel-iff [of a b 1]

dvd-times-right-cancel-iff [of b a 1]
by auto

qed

lemma prime-elemD2 :
assumes prime-elem p and a dvd p and ¬ is-unit a
shows p dvd a

proof −
from ‹a dvd p› obtain b where p = a ∗ b ..
with ‹prime-elem p› prime-elem-multD ‹¬ is-unit a› have is-unit b by auto
with ‹p = a ∗ b› show ?thesis

by (auto simp add: mult-unit-dvd-iff)
qed

lemma prime-elem-dvd-prod-msetE :

12

assumes prime-elem p
assumes dvd: p dvd prod-mset A
obtains a where a ∈# A and p dvd a

proof −
from dvd have ∃ a. a ∈# A ∧ p dvd a
proof (induct A)

case empty then show ?case
using ‹prime-elem p› by (simp add: prime-elem-not-unit)

next
case (add a A)
then have p dvd a ∗ prod-mset A by simp
with ‹prime-elem p› consider (A) p dvd prod-mset A | (B) p dvd a

by (blast dest: prime-elem-dvd-multD)
then show ?case proof cases

case B then show ?thesis by auto
next

case A
with add.hyps obtain b where b ∈# A p dvd b

by auto
then show ?thesis by auto

qed
qed
with that show thesis by blast

qed

context
begin

lemma prime-elem-powerD:
assumes prime-elem (p ^ n)
shows prime-elem p ∧ n = 1

proof (cases n)
case (Suc m)
note assms
also from Suc have p ^ n = p ∗ p^m by simp
finally have is-unit p ∨ is-unit (p^m) by (rule prime-elem-multD)
moreover from assms have ¬is-unit p by (simp add: prime-elem-def is-unit-power-iff)
ultimately have is-unit (p ^ m) by simp
with ‹¬is-unit p› have m = 0 by (simp add: is-unit-power-iff)
with Suc assms show ?thesis by simp

qed (insert assms, simp-all)

lemma prime-elem-power-iff :
prime-elem (p ^ n) ←→ prime-elem p ∧ n = 1
by (auto dest: prime-elem-powerD)

end

13

lemma irreducible-mult-unit-left:
is-unit a =⇒ irreducible (a ∗ p) ←→ irreducible p
by (auto simp: irreducible-altdef mult.commute[of a] is-unit-mult-iff

mult-unit-dvd-iff dvd-mult-unit-iff)

lemma prime-elem-mult-unit-left:
is-unit a =⇒ prime-elem (a ∗ p) ←→ prime-elem p
by (auto simp: prime-elem-def mult.commute[of a] is-unit-mult-iff mult-unit-dvd-iff)

lemma prime-elem-dvd-cases:
assumes pk: p∗k dvd m∗n and p: prime-elem p
shows (∃ x. k dvd x∗n ∧ m = p∗x) ∨ (∃ y. k dvd m∗y ∧ n = p∗y)

proof −
have p dvd m∗n using dvd-mult-left pk by blast
then consider p dvd m | p dvd n

using p prime-elem-dvd-mult-iff by blast
then show ?thesis
proof cases

case 1 then obtain a where m = p ∗ a by (metis dvd-mult-div-cancel)
then have ∃ x. k dvd x ∗ n ∧ m = p ∗ x

using p pk by (auto simp: mult.assoc)
then show ?thesis ..

next
case 2 then obtain b where n = p ∗ b by (metis dvd-mult-div-cancel)
with p pk have ∃ y. k dvd m∗y ∧ n = p∗y
by (metis dvd-mult-right dvd-times-left-cancel-iff mult.left-commute mult-zero-left)
then show ?thesis ..

qed
qed

lemma prime-elem-power-dvd-prod:
assumes pc: p^c dvd m∗n and p: prime-elem p
shows ∃ a b. a+b = c ∧ p^a dvd m ∧ p^b dvd n

using pc
proof (induct c arbitrary: m n)

case 0 show ?case by simp
next

case (Suc c)
consider x where p^c dvd x∗n m = p∗x | y where p^c dvd m∗y n = p∗y

using prime-elem-dvd-cases [of - p^c, OF - p] Suc.prems by force
then show ?case
proof cases

case (1 x)
with Suc.hyps[of x n] obtain a b where a + b = c ∧ p ^ a dvd x ∧ p ^ b dvd

n by blast
with 1 have Suc a + b = Suc c ∧ p ^ Suc a dvd m ∧ p ^ b dvd n

by (auto intro: mult-dvd-mono)
thus ?thesis by blast

next

14

case (2 y)
with Suc.hyps[of m y] obtain a b where a + b = c ∧ p ^ a dvd m ∧ p ^ b

dvd y by blast
with 2 have a + Suc b = Suc c ∧ p ^ a dvd m ∧ p ^ Suc b dvd n

by (auto intro: mult-dvd-mono)
with Suc.hyps [of m y] show ∃ a b. a + b = Suc c ∧ p ^ a dvd m ∧ p ^ b dvd

n
by blast

qed
qed

lemma prime-elem-power-dvd-cases:
assumes p ^ c dvd m ∗ n and a + b = Suc c and prime-elem p
shows p ^ a dvd m ∨ p ^ b dvd n

proof −
from assms obtain r s

where r + s = c ∧ p ^ r dvd m ∧ p ^ s dvd n
by (blast dest: prime-elem-power-dvd-prod)

moreover with assms have
a ≤ r ∨ b ≤ s by arith

ultimately show ?thesis by (auto intro: power-le-dvd)
qed

lemma prime-elem-not-unit ′ [simp]:
ASSUMPTION (prime-elem x) =⇒ ¬is-unit x
unfolding ASSUMPTION-def by (rule prime-elem-not-unit)

lemma prime-elem-dvd-power-iff :
assumes prime-elem p
shows p dvd a ^ n ←→ p dvd a ∧ n > 0
using assms by (induct n) (auto dest: prime-elem-not-unit prime-elem-dvd-multD)

lemma prime-power-dvd-multD:
assumes prime-elem p
assumes p ^ n dvd a ∗ b and n > 0 and ¬ p dvd a
shows p ^ n dvd b
using ‹p ^ n dvd a ∗ b› and ‹n > 0 ›

proof (induct n arbitrary: b)
case 0 then show ?case by simp

next
case (Suc n) show ?case
proof (cases n = 0)

case True with Suc ‹prime-elem p› ‹¬ p dvd a› show ?thesis
by (simp add: prime-elem-dvd-mult-iff)

next
case False then have n > 0 by simp
from ‹prime-elem p› have p 6= 0 by auto
from Suc.prems have ∗: p ∗ p ^ n dvd a ∗ b

by simp

15

then have p dvd a ∗ b
by (rule dvd-mult-left)

with Suc ‹prime-elem p› ‹¬ p dvd a› have p dvd b
by (simp add: prime-elem-dvd-mult-iff)

moreover define c where c = b div p
ultimately have b: b = p ∗ c by simp
with ∗ have p ∗ p ^ n dvd p ∗ (a ∗ c)

by (simp add: ac-simps)
with ‹p 6= 0 › have p ^ n dvd a ∗ c

by simp
with Suc.hyps ‹n > 0 › have p ^ n dvd c

by blast
with ‹p 6= 0 › show ?thesis

by (simp add: b)
qed

qed

end

1.2 Generalized primes: normalized prime elements
context normalization-semidom
begin

lemma irreducible-normalized-divisors:
assumes irreducible x y dvd x normalize y = y
shows y = 1 ∨ y = normalize x

proof −
from assms have is-unit y ∨ x dvd y by (auto simp: irreducible-altdef)
thus ?thesis
proof (elim disjE)

assume is-unit y
hence normalize y = 1 by (simp add: is-unit-normalize)
with assms show ?thesis by simp

next
assume x dvd y
with ‹y dvd x› have normalize y = normalize x by (rule associatedI)
with assms show ?thesis by simp

qed
qed

lemma irreducible-normalize-iff [simp]: irreducible (normalize x) = irreducible x
using irreducible-mult-unit-left[of 1 div unit-factor x x]
by (cases x = 0) (simp-all add: unit-div-commute)

lemma prime-elem-normalize-iff [simp]: prime-elem (normalize x) = prime-elem
x

using prime-elem-mult-unit-left[of 1 div unit-factor x x]
by (cases x = 0) (simp-all add: unit-div-commute)

16

lemma prime-elem-associated:
assumes prime-elem p and prime-elem q and q dvd p
shows normalize q = normalize p

using ‹q dvd p› proof (rule associatedI)
from ‹prime-elem q› have ¬ is-unit q

by (auto simp add: prime-elem-not-unit)
with ‹prime-elem p› ‹q dvd p› show p dvd q

by (blast intro: prime-elemD2)
qed

definition prime :: ′a ⇒ bool where
prime p ←→ prime-elem p ∧ normalize p = p

lemma not-prime-0 [simp]: ¬prime 0 by (simp add: prime-def)

lemma not-prime-unit: is-unit x =⇒ ¬prime x
using prime-elem-not-unit[of x] by (auto simp add: prime-def)

lemma not-prime-1 [simp]: ¬prime 1 by (simp add: not-prime-unit)

lemma primeI : prime-elem x =⇒ normalize x = x =⇒ prime x
by (simp add: prime-def)

lemma prime-imp-prime-elem [dest]: prime p =⇒ prime-elem p
by (simp add: prime-def)

lemma normalize-prime: prime p =⇒ normalize p = p
by (simp add: prime-def)

lemma prime-normalize-iff [simp]: prime (normalize p) ←→ prime-elem p
by (auto simp add: prime-def)

lemma prime-power-iff :
prime (p ^ n) ←→ prime p ∧ n = 1
by (auto simp: prime-def prime-elem-power-iff)

lemma prime-imp-nonzero [simp]:
ASSUMPTION (prime x) =⇒ x 6= 0
unfolding ASSUMPTION-def prime-def by auto

lemma prime-imp-not-one [simp]:
ASSUMPTION (prime x) =⇒ x 6= 1
unfolding ASSUMPTION-def by auto

lemma prime-not-unit ′ [simp]:
ASSUMPTION (prime x) =⇒ ¬is-unit x
unfolding ASSUMPTION-def prime-def by auto

17

lemma prime-normalize ′ [simp]: ASSUMPTION (prime x) =⇒ normalize x = x
unfolding ASSUMPTION-def prime-def by simp

lemma unit-factor-prime: prime x =⇒ unit-factor x = 1
using unit-factor-normalize[of x] unfolding prime-def by auto

lemma unit-factor-prime ′ [simp]: ASSUMPTION (prime x) =⇒ unit-factor x =
1

unfolding ASSUMPTION-def by (rule unit-factor-prime)

lemma prime-imp-prime-elem ′ [simp]: ASSUMPTION (prime x) =⇒ prime-elem
x

by (simp add: prime-def ASSUMPTION-def)

lemma prime-dvd-multD: prime p =⇒ p dvd a ∗ b =⇒ p dvd a ∨ p dvd b
by (intro prime-elem-dvd-multD) simp-all

lemma prime-dvd-mult-iff : prime p =⇒ p dvd a ∗ b ←→ p dvd a ∨ p dvd b
by (auto dest: prime-dvd-multD)

lemma prime-dvd-power :
prime p =⇒ p dvd x ^ n =⇒ p dvd x
by (auto dest!: prime-elem-dvd-power simp: prime-def)

lemma prime-dvd-power-iff :
prime p =⇒ n > 0 =⇒ p dvd x ^ n ←→ p dvd x
by (subst prime-elem-dvd-power-iff) simp-all

lemma prime-dvd-prod-mset-iff : prime p =⇒ p dvd prod-mset A ←→ (∃ x. x ∈#
A ∧ p dvd x)

by (induction A) (simp-all add: prime-elem-dvd-mult-iff prime-imp-prime-elem,
blast+)

lemma prime-dvd-prod-iff : finite A =⇒ prime p =⇒ p dvd prod f A ←→ (∃ x∈A.
p dvd f x)

by (auto simp: prime-dvd-prod-mset-iff prod-unfold-prod-mset)

lemma primes-dvd-imp-eq:
assumes prime p prime q p dvd q
shows p = q

proof −
from assms have irreducible q by (simp add: prime-elem-imp-irreducible prime-def)
from irreducibleD ′[OF this ‹p dvd q›] assms have q dvd p by simp
with ‹p dvd q› have normalize p = normalize q by (rule associatedI)
with assms show p = q by simp

qed

lemma prime-dvd-prod-mset-primes-iff :
assumes prime p

∧
q. q ∈# A =⇒ prime q

18

shows p dvd prod-mset A ←→ p ∈# A
proof −

from assms(1) have p dvd prod-mset A ←→ (∃ x. x ∈# A ∧ p dvd x) by (rule
prime-dvd-prod-mset-iff)

also from assms have . . . ←→ p ∈# A by (auto dest: primes-dvd-imp-eq)
finally show ?thesis .

qed

lemma prod-mset-primes-dvd-imp-subset:
assumes prod-mset A dvd prod-mset B

∧
p. p ∈# A =⇒ prime p

∧
p. p ∈# B

=⇒ prime p
shows A ⊆# B

using assms
proof (induction A arbitrary: B)

case empty
thus ?case by simp

next
case (add p A B)
hence p: prime p by simp
define B ′ where B ′ = B − {#p#}
from add.prems have p dvd prod-mset B by (simp add: dvd-mult-left)
with add.prems have p ∈# B

by (subst (asm) (2) prime-dvd-prod-mset-primes-iff) simp-all
hence B: B = B ′ + {#p#} by (simp add: B ′-def)
from add.prems p have A ⊆# B ′ by (intro add.IH) (simp-all add: B)
thus ?case by (simp add: B)

qed

lemma prod-mset-dvd-prod-mset-primes-iff :
assumes

∧
x. x ∈# A =⇒ prime x

∧
x. x ∈# B =⇒ prime x

shows prod-mset A dvd prod-mset B ←→ A ⊆# B
using assms by (auto intro: prod-mset-subset-imp-dvd prod-mset-primes-dvd-imp-subset)

lemma is-unit-prod-mset-primes-iff :
assumes

∧
x. x ∈# A =⇒ prime x

shows is-unit (prod-mset A) ←→ A = {#}
by (auto simp add: is-unit-prod-mset-iff)
(meson all-not-in-conv assms not-prime-unit set-mset-eq-empty-iff)

lemma prod-mset-primes-irreducible-imp-prime:
assumes irred: irreducible (prod-mset A)
assumes A:

∧
x. x ∈# A =⇒ prime x

assumes B:
∧

x. x ∈# B =⇒ prime x
assumes C :

∧
x. x ∈# C =⇒ prime x

assumes dvd: prod-mset A dvd prod-mset B ∗ prod-mset C
shows prod-mset A dvd prod-mset B ∨ prod-mset A dvd prod-mset C

proof −
from dvd have prod-mset A dvd prod-mset (B + C)

by simp

19

with A B C have subset: A ⊆# B + C
by (subst (asm) prod-mset-dvd-prod-mset-primes-iff) auto

define A1 and A2 where A1 = A ∩# B and A2 = A − A1
have A = A1 + A2 unfolding A1-def A2-def

by (rule sym, intro subset-mset.add-diff-inverse) simp-all
from subset have A1 ⊆# B A2 ⊆# C
by (auto simp: A1-def A2-def Multiset.subset-eq-diff-conv Multiset.union-commute)
from ‹A = A1 + A2 › have prod-mset A = prod-mset A1 ∗ prod-mset A2 by

simp
from irred and this have is-unit (prod-mset A1) ∨ is-unit (prod-mset A2)

by (rule irreducibleD)
with A have A1 = {#} ∨ A2 = {#} unfolding A1-def A2-def
by (subst (asm) (1 2) is-unit-prod-mset-primes-iff) (auto dest: Multiset.in-diffD)

with dvd ‹A = A1 + A2 › ‹A1 ⊆# B› ‹A2 ⊆# C › show ?thesis
by (auto intro: prod-mset-subset-imp-dvd)

qed

lemma prod-mset-primes-finite-divisor-powers:
assumes A:

∧
x. x ∈# A =⇒ prime x

assumes B:
∧

x. x ∈# B =⇒ prime x
assumes A 6= {#}
shows finite {n. prod-mset A ^ n dvd prod-mset B}

proof −
from ‹A 6= {#}› obtain x where x: x ∈# A by blast
define m where m = count B x
have {n. prod-mset A ^ n dvd prod-mset B} ⊆ {..m}
proof safe

fix n assume dvd: prod-mset A ^ n dvd prod-mset B
from x have x ^ n dvd prod-mset A ^ n by (intro dvd-power-same dvd-prod-mset)
also note dvd
also have x ^ n = prod-mset (replicate-mset n x) by simp
finally have replicate-mset n x ⊆# B

by (rule prod-mset-primes-dvd-imp-subset) (insert A B x, simp-all split:
if-splits)

thus n ≤ m by (simp add: count-le-replicate-mset-subset-eq m-def)
qed
moreover have finite {..m} by simp
ultimately show ?thesis by (rule finite-subset)

qed

end

1.3 In a semiring with GCD, each irreducible element is a
prime element

context semiring-gcd
begin

lemma irreducible-imp-prime-elem-gcd:

20

assumes irreducible x
shows prime-elem x

proof (rule prime-elemI)
fix a b assume x dvd a ∗ b
from dvd-productE [OF this] obtain y z where yz: x = y ∗ z y dvd a z dvd b .
from ‹irreducible x› and ‹x = y ∗ z› have is-unit y ∨ is-unit z by (rule irre-

ducibleD)
with yz show x dvd a ∨ x dvd b

by (auto simp: mult-unit-dvd-iff mult-unit-dvd-iff ′)
qed (insert assms, auto simp: irreducible-not-unit)

lemma prime-elem-imp-coprime:
assumes prime-elem p ¬p dvd n
shows coprime p n

proof (rule coprimeI)
fix d assume d dvd p d dvd n
show is-unit d
proof (rule ccontr)

assume ¬is-unit d
from ‹prime-elem p› and ‹d dvd p› and this have p dvd d

by (rule prime-elemD2)
from this and ‹d dvd n› have p dvd n by (rule dvd-trans)
with ‹¬p dvd n› show False by contradiction

qed
qed

lemma prime-imp-coprime:
assumes prime p ¬p dvd n
shows coprime p n
using assms by (simp add: prime-elem-imp-coprime)

lemma prime-elem-imp-power-coprime:
prime-elem p =⇒ ¬ p dvd a =⇒ coprime a (p ^ m)
by (cases m > 0) (auto dest: prime-elem-imp-coprime simp add: ac-simps)

lemma prime-imp-power-coprime:
prime p =⇒ ¬ p dvd a =⇒ coprime a (p ^ m)
by (rule prime-elem-imp-power-coprime) simp-all

lemma prime-elem-divprod-pow:
assumes p: prime-elem p and ab: coprime a b and pab: p^n dvd a ∗ b
shows p^n dvd a ∨ p^n dvd b
using assms

proof −
from p have ¬ is-unit p

by simp
with ab p have ¬ p dvd a ∨ ¬ p dvd b

using not-coprimeI by blast
with p have coprime (p ^ n) a ∨ coprime (p ^ n) b

21

by (auto dest: prime-elem-imp-power-coprime simp add: ac-simps)
with pab show ?thesis

by (auto simp add: coprime-dvd-mult-left-iff coprime-dvd-mult-right-iff)
qed

lemma primes-coprime:
prime p =⇒ prime q =⇒ p 6= q =⇒ coprime p q
using prime-imp-coprime primes-dvd-imp-eq by blast

end

1.4 Factorial semirings: algebraic structures with unique prime
factorizations

class factorial-semiring = normalization-semidom +
assumes prime-factorization-exists:

x 6= 0 =⇒ ∃A. (∀ x. x ∈# A −→ prime-elem x) ∧ normalize (prod-mset A) =
normalize x

Alternative characterization
lemma (in normalization-semidom) factorial-semiring-altI-aux:

assumes finite-divisors:
∧

x. x 6= 0 =⇒ finite {y. y dvd x ∧ normalize y = y}
assumes irreducible-imp-prime-elem:

∧
x. irreducible x =⇒ prime-elem x

assumes x 6= 0
shows ∃A. (∀ x. x ∈# A −→ prime-elem x) ∧ normalize (prod-mset A) =

normalize x
using ‹x 6= 0 ›
proof (induction card {b. b dvd x ∧ normalize b = b} arbitrary: x rule: less-induct)

case (less a)
let ?fctrs = λa. {b. b dvd a ∧ normalize b = b}
show ?case
proof (cases is-unit a)

case True
thus ?thesis by (intro exI [of - {#}]) (auto simp: is-unit-normalize)

next
case False
show ?thesis
proof (cases ∃ b. b dvd a ∧ ¬is-unit b ∧ ¬a dvd b)

case False
with ‹¬is-unit a› less.prems have irreducible a by (auto simp: irreducible-altdef)

hence prime-elem a by (rule irreducible-imp-prime-elem)
thus ?thesis by (intro exI [of - {#normalize a#}]) auto

next
case True
then obtain b where b: b dvd a ¬ is-unit b ¬ a dvd b by auto
from b have ?fctrs b ⊆ ?fctrs a by (auto intro: dvd-trans)
moreover from b have normalize a /∈ ?fctrs b normalize a ∈ ?fctrs a by

simp-all
hence ?fctrs b 6= ?fctrs a by blast

22

ultimately have ?fctrs b ⊂ ?fctrs a by (subst subset-not-subset-eq) blast
with finite-divisors[OF ‹a 6= 0 ›] have card (?fctrs b) < card (?fctrs a)

by (rule psubset-card-mono)
moreover from ‹a 6= 0 › b have b 6= 0 by auto

ultimately have ∃A. (∀ x. x ∈# A −→ prime-elem x) ∧ normalize (prod-mset
A) = normalize b

by (intro less) auto
then obtain A where A: (∀ x. x ∈# A −→ prime-elem x) ∧ normalize (

∏
#

A) = normalize b
by auto

define c where c = a div b
from b have c: a = b ∗ c by (simp add: c-def)
from less.prems c have c 6= 0 by auto
from b c have ?fctrs c ⊆ ?fctrs a by (auto intro: dvd-trans)
moreover have normalize a /∈ ?fctrs c
proof safe

assume normalize a dvd c
hence b ∗ c dvd 1 ∗ c by (simp add: c)
hence b dvd 1 by (subst (asm) dvd-times-right-cancel-iff) fact+
with b show False by simp

qed
with ‹normalize a ∈ ?fctrs a› have ?fctrs a 6= ?fctrs c by blast
ultimately have ?fctrs c ⊂ ?fctrs a by (subst subset-not-subset-eq) blast
with finite-divisors[OF ‹a 6= 0 ›] have card (?fctrs c) < card (?fctrs a)

by (rule psubset-card-mono)
with ‹c 6= 0 › have ∃A. (∀ x. x ∈# A −→ prime-elem x) ∧ normalize

(prod-mset A) = normalize c
by (intro less) auto

then obtain B where B: (∀ x. x ∈# B −→ prime-elem x) ∧ normalize (
∏

#

B) = normalize c
by auto

show ?thesis
proof (rule exI [of - A + B]; safe)

have normalize (prod-mset (A + B)) =
normalize (normalize (prod-mset A) ∗ normalize (prod-mset B))

by simp
also have . . . = normalize (b ∗ c)

by (simp only: A B) auto
also have b ∗ c = a

using c by simp
finally show normalize (prod-mset (A + B)) = normalize a .

next
qed (use A B in auto)

qed
qed

qed

23

lemma factorial-semiring-altI :
assumes finite-divisors:

∧
x:: ′a. x 6= 0 =⇒ finite {y. y dvd x ∧ normalize y =

y}
assumes irreducible-imp-prime:

∧
x:: ′a. irreducible x =⇒ prime-elem x

shows OFCLASS(′a :: normalization-semidom, factorial-semiring-class)
by intro-classes (rule factorial-semiring-altI-aux[OF assms])

Properties
context factorial-semiring
begin

lemma prime-factorization-exists ′:
assumes x 6= 0
obtains A where

∧
x. x ∈# A =⇒ prime x normalize (prod-mset A) = normalize

x
proof −

from prime-factorization-exists[OF assms] obtain A
where A:

∧
x. x ∈# A =⇒ prime-elem x normalize (prod-mset A) = normalize

x by blast
define A ′ where A ′ = image-mset normalize A
have normalize (prod-mset A ′) = normalize (prod-mset A)

by (simp add: A ′-def normalize-prod-mset-normalize)
also note A(2)
finally have normalize (prod-mset A ′) = normalize x by simp
moreover from A(1) have ∀ x. x ∈# A ′ −→ prime x by (auto simp: prime-def

A ′-def)
ultimately show ?thesis by (intro that[of A ′]) blast

qed

lemma irreducible-imp-prime-elem:
assumes irreducible x
shows prime-elem x

proof (rule prime-elemI)
fix a b assume dvd: x dvd a ∗ b
from assms have x 6= 0 by auto
show x dvd a ∨ x dvd b
proof (cases a = 0 ∨ b = 0)

case False
hence a 6= 0 b 6= 0 by blast+
note nz = ‹x 6= 0 › this
from nz[THEN prime-factorization-exists ′] obtain A B C

where ABC :∧
z. z ∈# A =⇒ prime z

normalize (
∏

A) = normalize x∧
z. z ∈# B =⇒ prime z

normalize (
∏

B) = normalize a∧
z. z ∈# C =⇒ prime z

normalize (
∏

C) = normalize b
by this blast

24

have irreducible (prod-mset A)
by (subst irreducible-cong[OF ABC (2)]) fact

moreover have normalize (prod-mset A) dvd
normalize (normalize (prod-mset B) ∗ normalize (prod-mset C))

unfolding ABC using dvd by simp
hence prod-mset A dvd prod-mset B ∗ prod-mset C

unfolding normalize-mult-normalize-left normalize-mult-normalize-right by
simp

ultimately have prod-mset A dvd prod-mset B ∨ prod-mset A dvd prod-mset
C

by (intro prod-mset-primes-irreducible-imp-prime) (use ABC in auto)
hence normalize (prod-mset A) dvd normalize (prod-mset B) ∨

normalize (prod-mset A) dvd normalize (prod-mset C) by simp
thus ?thesis unfolding ABC by simp

qed auto
qed (use assms in ‹simp-all add: irreducible-def ›)

lemma finite-divisor-powers:
assumes y 6= 0 ¬is-unit x
shows finite {n. x ^ n dvd y}

proof (cases x = 0)
case True
with assms have {n. x ^ n dvd y} = {0} by (auto simp: power-0-left)
thus ?thesis by simp

next
case False
note nz = this ‹y 6= 0 ›
from nz[THEN prime-factorization-exists ′] obtain A B

where AB:∧
z. z ∈# A =⇒ prime z

normalize (
∏

A) = normalize x∧
z. z ∈# B =⇒ prime z

normalize (
∏

B) = normalize y
by this blast

from AB assms have A 6= {#} by (auto simp: normalize-1-iff)
from AB(2 ,4) prod-mset-primes-finite-divisor-powers [of A B, OF AB(1 ,3) this]

have finite {n. prod-mset A ^ n dvd prod-mset B} by simp
also have {n. prod-mset A ^ n dvd prod-mset B} =

{n. normalize (normalize (prod-mset A) ^ n) dvd normalize (prod-mset
B)}

unfolding normalize-power-normalize by simp
also have . . . = {n. x ^ n dvd y}

unfolding AB unfolding normalize-power-normalize by simp
finally show ?thesis .

qed

lemma finite-prime-divisors:

25

assumes x 6= 0
shows finite {p. prime p ∧ p dvd x}

proof −
from prime-factorization-exists ′[OF assms] obtain A

where A:
∧

z. z ∈# A =⇒ prime z normalize (
∏

A) = normalize x by this
blast

have {p. prime p ∧ p dvd x} ⊆ set-mset A
proof safe

fix p assume p: prime p and dvd: p dvd x
from dvd have p dvd normalize x by simp
also from A have normalize x = normalize (prod-mset A) by simp
finally have p dvd prod-mset A

by simp
thus p ∈# A using p A

by (subst (asm) prime-dvd-prod-mset-primes-iff)
qed
moreover have finite (set-mset A) by simp
ultimately show ?thesis by (rule finite-subset)

qed

lemma infinite-unit-divisor-powers:
assumes y 6= 0
assumes is-unit x
shows infinite {n. x^n dvd y}

proof −
from ‹is-unit x› have is-unit (x^n) for n

using is-unit-power-iff by auto
hence x^n dvd y for n

by auto
hence {n. x^n dvd y} = UNIV

by auto
thus ?thesis

by auto
qed

corollary is-unit-iff-infinite-divisor-powers:
assumes y 6= 0
shows is-unit x ←→ infinite {n. x^n dvd y}
using infinite-unit-divisor-powers finite-divisor-powers assms by auto

lemma prime-elem-iff-irreducible: prime-elem x ←→ irreducible x
by (blast intro: irreducible-imp-prime-elem prime-elem-imp-irreducible)

lemma prime-divisor-exists:
assumes a 6= 0 ¬is-unit a
shows ∃ b. b dvd a ∧ prime b

proof −
from prime-factorization-exists ′[OF assms(1)]
obtain A where A:

∧
z. z ∈# A =⇒ prime z normalize (

∏
A) = normalize a

26

by this blast
with assms have A 6= {#} by auto
then obtain x where x ∈# A by blast
with A(1) have ∗: x dvd normalize (prod-mset A) prime x

by (auto simp: dvd-prod-mset)
hence x dvd a by (simp add: A(2))
with ∗ show ?thesis by blast

qed

lemma prime-divisors-induct [case-names zero unit factor]:
assumes P 0

∧
x. is-unit x =⇒ P x

∧
p x. prime p =⇒ P x =⇒ P (p ∗ x)

shows P x
proof (cases x = 0)

case False
from prime-factorization-exists ′[OF this]
obtain A where A:

∧
z. z ∈# A =⇒ prime z normalize (

∏
A) = normalize x

by this blast
from A obtain u where u: is-unit u x = u ∗ prod-mset A

by (elim associatedE2)

from A(1) have P (u ∗ prod-mset A)
proof (induction A)

case (add p A)
from add.prems have prime p by simp
moreover from add.prems have P (u ∗ prod-mset A) by (intro add.IH)

simp-all
ultimately have P (p ∗ (u ∗ prod-mset A)) by (rule assms(3))
thus ?case by (simp add: mult-ac)

qed (simp-all add: assms False u)
with A u show ?thesis by simp

qed (simp-all add: assms(1))

lemma no-prime-divisors-imp-unit:
assumes a 6= 0

∧
b. b dvd a =⇒ normalize b = b =⇒ ¬ prime-elem b

shows is-unit a
proof (rule ccontr)

assume ¬is-unit a
from prime-divisor-exists[OF assms(1) this] obtain b where b dvd a prime b

by auto
with assms(2)[of b] show False by (simp add: prime-def)

qed

lemma prime-divisorE :
assumes a 6= 0 and ¬ is-unit a
obtains p where prime p and p dvd a
using assms no-prime-divisors-imp-unit unfolding prime-def by blast

definition multiplicity :: ′a ⇒ ′a ⇒ nat where
multiplicity p x = (if finite {n. p ^ n dvd x} then Max {n. p ^ n dvd x} else 0)

27

lemma multiplicity-dvd: p ^ multiplicity p x dvd x
proof (cases finite {n. p ^ n dvd x})

case True
hence multiplicity p x = Max {n. p ^ n dvd x}

by (simp add: multiplicity-def)
also have . . . ∈ {n. p ^ n dvd x}

by (rule Max-in) (auto intro!: True exI [of - 0 ::nat])
finally show ?thesis by simp

qed (simp add: multiplicity-def)

lemma multiplicity-dvd ′: n ≤ multiplicity p x =⇒ p ^ n dvd x
by (rule dvd-trans[OF le-imp-power-dvd multiplicity-dvd])

context
fixes x p :: ′a
assumes xp: x 6= 0 ¬is-unit p

begin

lemma multiplicity-eq-Max: multiplicity p x = Max {n. p ^ n dvd x}
using finite-divisor-powers[OF xp] by (simp add: multiplicity-def)

lemma multiplicity-geI :
assumes p ^ n dvd x
shows multiplicity p x ≥ n

proof −
from assms have n ≤ Max {n. p ^ n dvd x}

by (intro Max-ge finite-divisor-powers xp) simp-all
thus ?thesis by (subst multiplicity-eq-Max)

qed

lemma multiplicity-lessI :
assumes ¬p ^ n dvd x
shows multiplicity p x < n

proof (rule ccontr)
assume ¬(n > multiplicity p x)
hence p ^ n dvd x by (intro multiplicity-dvd ′) simp
with assms show False by contradiction

qed

lemma power-dvd-iff-le-multiplicity:
p ^ n dvd x ←→ n ≤ multiplicity p x
using multiplicity-geI [of n] multiplicity-lessI [of n] by (cases p ^ n dvd x) auto

lemma multiplicity-eq-zero-iff :
shows multiplicity p x = 0 ←→ ¬p dvd x
using power-dvd-iff-le-multiplicity[of 1] by auto

lemma multiplicity-gt-zero-iff :

28

shows multiplicity p x > 0 ←→ p dvd x
using power-dvd-iff-le-multiplicity[of 1] by auto

lemma multiplicity-decompose:
¬p dvd (x div p ^ multiplicity p x)

proof
assume ∗: p dvd x div p ^ multiplicity p x
have x = x div p ^ multiplicity p x ∗ (p ^ multiplicity p x)

using multiplicity-dvd[of p x] by simp
also from ∗ have x div p ^ multiplicity p x = (x div p ^ multiplicity p x div p)
∗ p by simp

also have x div p ^ multiplicity p x div p ∗ p ∗ p ^ multiplicity p x =
x div p ^ multiplicity p x div p ∗ p ^ Suc (multiplicity p x)

by (simp add: mult-assoc)
also have p ^ Suc (multiplicity p x) dvd . . . by (rule dvd-triv-right)
finally show False by (subst (asm) power-dvd-iff-le-multiplicity) simp

qed

lemma multiplicity-decompose ′:
obtains y where x = p ^ multiplicity p x ∗ y ¬p dvd y
using that[of x div p ^ multiplicity p x]
by (simp add: multiplicity-decompose multiplicity-dvd)

end

lemma multiplicity-zero [simp]: multiplicity p 0 = 0
by (simp add: multiplicity-def)

lemma prime-elem-multiplicity-eq-zero-iff :
prime-elem p =⇒ x 6= 0 =⇒ multiplicity p x = 0 ←→ ¬p dvd x
by (rule multiplicity-eq-zero-iff) simp-all

lemma prime-multiplicity-other :
assumes prime p prime q p 6= q
shows multiplicity p q = 0
using assms by (subst prime-elem-multiplicity-eq-zero-iff) (auto dest: primes-dvd-imp-eq)

lemma prime-multiplicity-gt-zero-iff :
prime-elem p =⇒ x 6= 0 =⇒ multiplicity p x > 0 ←→ p dvd x
by (rule multiplicity-gt-zero-iff) simp-all

lemma multiplicity-unit-left: is-unit p =⇒ multiplicity p x = 0
by (simp add: multiplicity-def is-unit-power-iff unit-imp-dvd)

lemma multiplicity-unit-right:
assumes is-unit x
shows multiplicity p x = 0

proof (cases is-unit p ∨ x = 0)
case False

29

with multiplicity-lessI [of x p 1] this assms
show ?thesis by (auto dest: dvd-unit-imp-unit)

qed (auto simp: multiplicity-unit-left)

lemma multiplicity-one [simp]: multiplicity p 1 = 0
by (rule multiplicity-unit-right) simp-all

lemma multiplicity-eqI :
assumes p ^ n dvd x ¬p ^ Suc n dvd x
shows multiplicity p x = n

proof −
consider x = 0 | is-unit p | x 6= 0 ¬is-unit p by blast
thus ?thesis
proof cases

assume xp: x 6= 0 ¬is-unit p
from xp assms(1) have multiplicity p x ≥ n by (intro multiplicity-geI)
moreover from assms(2) xp have multiplicity p x < Suc n by (intro multi-

plicity-lessI)
ultimately show ?thesis by simp

next
assume is-unit p
hence is-unit (p ^ Suc n) by (simp add: is-unit-power-iff del: power-Suc)
hence p ^ Suc n dvd x by (rule unit-imp-dvd)
with ‹¬p ^ Suc n dvd x› show ?thesis by contradiction

qed (insert assms, simp-all)
qed

context
fixes x p :: ′a
assumes xp: x 6= 0 ¬is-unit p

begin

lemma multiplicity-times-same:
assumes p 6= 0
shows multiplicity p (p ∗ x) = Suc (multiplicity p x)

proof (rule multiplicity-eqI)
show p ^ Suc (multiplicity p x) dvd p ∗ x

by (auto intro!: mult-dvd-mono multiplicity-dvd)
from xp assms show ¬ p ^ Suc (Suc (multiplicity p x)) dvd p ∗ x

using power-dvd-iff-le-multiplicity[OF xp, of Suc (multiplicity p x)] by simp
qed

end

lemma multiplicity-same-power ′: multiplicity p (p ^ n) = (if p = 0 ∨ is-unit p
then 0 else n)
proof −

consider p = 0 | is-unit p |p 6= 0 ¬is-unit p by blast

30

thus ?thesis
proof cases

assume p 6= 0 ¬is-unit p
thus ?thesis by (induction n) (simp-all add: multiplicity-times-same)

qed (simp-all add: power-0-left multiplicity-unit-left)
qed

lemma multiplicity-same-power :
p 6= 0 =⇒ ¬is-unit p =⇒ multiplicity p (p ^ n) = n
by (simp add: multiplicity-same-power ′)

lemma multiplicity-prime-elem-times-other :
assumes prime-elem p ¬p dvd q
shows multiplicity p (q ∗ x) = multiplicity p x

proof (cases x = 0)
case False
show ?thesis
proof (rule multiplicity-eqI)

have 1 ∗ p ^ multiplicity p x dvd q ∗ x
by (intro mult-dvd-mono multiplicity-dvd) simp-all

thus p ^ multiplicity p x dvd q ∗ x by simp
next

define n where n = multiplicity p x
from assms have ¬is-unit p by simp
from multiplicity-decompose ′[OF False this]
obtain y where y [folded n-def]: x = p ^ multiplicity p x ∗ y ¬ p dvd y .
from y have p ^ Suc n dvd q ∗ x ←→ p ^ n ∗ p dvd p ^ n ∗ (q ∗ y) by (simp

add: mult-ac)
also from assms have . . . ←→ p dvd q ∗ y by simp
also have . . . ←→ p dvd q ∨ p dvd y by (rule prime-elem-dvd-mult-iff) fact+
also from assms y have . . . ←→ False by simp
finally show ¬(p ^ Suc n dvd q ∗ x) by blast

qed
qed simp-all

lemma multiplicity-self :
assumes p 6= 0 ¬is-unit p
shows multiplicity p p = 1

proof −
from assms have multiplicity p p = Max {n. p ^ n dvd p}

by (simp add: multiplicity-eq-Max)
also from assms have p ^ n dvd p ←→ n ≤ 1 for n

using dvd-power-iff [of p n 1] by auto
hence {n. p ^ n dvd p} = {..1} by auto
also have . . . = {0 ,1} by auto
finally show ?thesis by simp

qed

lemma multiplicity-times-unit-left:

31

assumes is-unit c
shows multiplicity (c ∗ p) x = multiplicity p x

proof −
from assms have {n. (c ∗ p) ^ n dvd x} = {n. p ^ n dvd x}
by (subst mult.commute) (simp add: mult-unit-dvd-iff power-mult-distrib is-unit-power-iff)

thus ?thesis by (simp add: multiplicity-def)
qed

lemma multiplicity-times-unit-right:
assumes is-unit c
shows multiplicity p (c ∗ x) = multiplicity p x

proof −
from assms have {n. p ^ n dvd c ∗ x} = {n. p ^ n dvd x}

by (subst mult.commute) (simp add: dvd-mult-unit-iff)
thus ?thesis by (simp add: multiplicity-def)

qed

lemma multiplicity-normalize-left [simp]:
multiplicity (normalize p) x = multiplicity p x

proof (cases p = 0)
case [simp]: False
have normalize p = (1 div unit-factor p) ∗ p

by (simp add: unit-div-commute is-unit-unit-factor)
also have multiplicity . . . x = multiplicity p x

by (rule multiplicity-times-unit-left) (simp add: is-unit-unit-factor)
finally show ?thesis .

qed simp-all

lemma multiplicity-normalize-right [simp]:
multiplicity p (normalize x) = multiplicity p x

proof (cases x = 0)
case [simp]: False
have normalize x = (1 div unit-factor x) ∗ x

by (simp add: unit-div-commute is-unit-unit-factor)
also have multiplicity p . . . = multiplicity p x

by (rule multiplicity-times-unit-right) (simp add: is-unit-unit-factor)
finally show ?thesis .

qed simp-all

lemma multiplicity-prime [simp]: prime-elem p =⇒ multiplicity p p = 1
by (rule multiplicity-self) auto

lemma multiplicity-prime-power [simp]: prime-elem p =⇒ multiplicity p (p ^ n)
= n

by (subst multiplicity-same-power ′) auto

lift-definition prime-factorization :: ′a ⇒ ′a multiset is
λx p. if prime p then multiplicity p x else 0

proof −

32

fix x :: ′a
show finite {p. 0 < (if prime p then multiplicity p x else 0)} (is finite ?A)
proof (cases x = 0)

case False
from False have ?A ⊆ {p. prime p ∧ p dvd x}

by (auto simp: multiplicity-gt-zero-iff)
moreover from False have finite {p. prime p ∧ p dvd x}

by (rule finite-prime-divisors)
ultimately show ?thesis by (rule finite-subset)

qed simp-all
qed

abbreviation prime-factors :: ′a ⇒ ′a set where
prime-factors a ≡ set-mset (prime-factorization a)

lemma count-prime-factorization-nonprime:
¬prime p =⇒ count (prime-factorization x) p = 0
by transfer simp

lemma count-prime-factorization-prime:
prime p =⇒ count (prime-factorization x) p = multiplicity p x
by transfer simp

lemma count-prime-factorization:
count (prime-factorization x) p = (if prime p then multiplicity p x else 0)
by transfer simp

lemma dvd-imp-multiplicity-le:
assumes a dvd b b 6= 0
shows multiplicity p a ≤ multiplicity p b

proof (cases is-unit p)
case False
with assms show ?thesis
by (intro multiplicity-geI) (auto intro: dvd-trans[OF multiplicity-dvd ′ assms(1)])

qed (insert assms, auto simp: multiplicity-unit-left)

lemma prime-power-inj:
assumes prime a a ^ m = a ^ n
shows m = n

proof −
have multiplicity a (a ^ m) = multiplicity a (a ^ n) by (simp only: assms)
thus ?thesis using assms by (subst (asm) (1 2) multiplicity-prime-power) simp-all

qed

lemma prime-power-inj ′:
assumes prime p prime q
assumes p ^ m = q ^ n m > 0 n > 0
shows p = q m = n

proof −

33

from assms have p ^ 1 dvd p ^ m by (intro le-imp-power-dvd) simp
also have p ^ m = q ^ n by fact
finally have p dvd q ^ n by simp
with assms have p dvd q using prime-dvd-power [of p q] by simp
with assms show p = q by (simp add: primes-dvd-imp-eq)
with assms show m = n by (simp add: prime-power-inj)

qed

lemma prime-power-eq-one-iff [simp]: prime p =⇒ p ^ n = 1 ←→ n = 0
using prime-power-inj[of p n 0] by auto

lemma one-eq-prime-power-iff [simp]: prime p =⇒ 1 = p ^ n ←→ n = 0
using prime-power-inj[of p 0 n] by auto

lemma prime-power-inj ′′:
assumes prime p prime q
shows p ^ m = q ^ n ←→ (m = 0 ∧ n = 0) ∨ (p = q ∧ m = n)
using assms
by (cases m = 0 ; cases n = 0)

(auto dest: prime-power-inj ′[OF assms])

lemma prime-factorization-0 [simp]: prime-factorization 0 = {#}
by (simp add: multiset-eq-iff count-prime-factorization)

lemma prime-factorization-empty-iff :
prime-factorization x = {#} ←→ x = 0 ∨ is-unit x

proof
assume ∗: prime-factorization x = {#}
{

assume x: x 6= 0 ¬is-unit x
{

fix p assume p: prime p
have count (prime-factorization x) p = 0 by (simp add: ∗)
also from p have count (prime-factorization x) p = multiplicity p x

by (rule count-prime-factorization-prime)
also from x p have . . . = 0 ←→ ¬p dvd x by (simp add: multiplic-

ity-eq-zero-iff)
finally have ¬p dvd x .

}
with prime-divisor-exists[OF x] have False by blast

}
thus x = 0 ∨ is-unit x by blast

next
assume x = 0 ∨ is-unit x
thus prime-factorization x = {#}
proof

assume x: is-unit x
{

fix p assume p: prime p

34

from p x have multiplicity p x = 0
by (subst multiplicity-eq-zero-iff)

(auto simp: multiplicity-eq-zero-iff dest: unit-imp-no-prime-divisors)
}
thus ?thesis by (simp add: multiset-eq-iff count-prime-factorization)

qed simp-all
qed

lemma prime-factorization-unit:
assumes is-unit x
shows prime-factorization x = {#}

proof (rule multiset-eqI)
fix p :: ′a
show count (prime-factorization x) p = count {#} p
proof (cases prime p)

case True
with assms have multiplicity p x = 0

by (subst multiplicity-eq-zero-iff)
(auto simp: multiplicity-eq-zero-iff dest: unit-imp-no-prime-divisors)

with True show ?thesis by (simp add: count-prime-factorization-prime)
qed (simp-all add: count-prime-factorization-nonprime)

qed

lemma prime-factorization-1 [simp]: prime-factorization 1 = {#}
by (simp add: prime-factorization-unit)

lemma prime-factorization-times-prime:
assumes x 6= 0 prime p
shows prime-factorization (p ∗ x) = {#p#} + prime-factorization x

proof (rule multiset-eqI)
fix q :: ′a
consider ¬prime q | p = q | prime q p 6= q by blast
thus count (prime-factorization (p ∗ x)) q = count ({#p#} + prime-factorization

x) q
proof cases

assume q: prime q p 6= q
with assms primes-dvd-imp-eq[of q p] have ¬q dvd p by auto
with q assms show ?thesis

by (simp add: multiplicity-prime-elem-times-other count-prime-factorization)
qed (insert assms, auto simp: count-prime-factorization multiplicity-times-same)

qed

lemma prod-mset-prime-factorization-weak:
assumes x 6= 0
shows normalize (prod-mset (prime-factorization x)) = normalize x
using assms

proof (induction x rule: prime-divisors-induct)
case (factor p x)
have normalize (prod-mset (prime-factorization (p ∗ x))) =

35

normalize (p ∗ normalize (prod-mset (prime-factorization x)))
using factor .prems factor .hyps by (simp add: prime-factorization-times-prime)

also have normalize (prod-mset (prime-factorization x)) = normalize x
by (rule factor .IH) (use factor in auto)

finally show ?case by simp
qed (auto simp: prime-factorization-unit is-unit-normalize)

lemma in-prime-factors-iff :
p ∈ prime-factors x ←→ x 6= 0 ∧ p dvd x ∧ prime p

proof −
have p ∈ prime-factors x ←→ count (prime-factorization x) p > 0 by simp
also have . . . ←→ x 6= 0 ∧ p dvd x ∧ prime p
by (subst count-prime-factorization, cases x = 0)

(auto simp: multiplicity-eq-zero-iff multiplicity-gt-zero-iff)
finally show ?thesis .

qed

lemma in-prime-factors-imp-prime [intro]:
p ∈ prime-factors x =⇒ prime p
by (simp add: in-prime-factors-iff)

lemma in-prime-factors-imp-dvd [dest]:
p ∈ prime-factors x =⇒ p dvd x
by (simp add: in-prime-factors-iff)

lemma prime-factorsI :
x 6= 0 =⇒ prime p =⇒ p dvd x =⇒ p ∈ prime-factors x
by (auto simp: in-prime-factors-iff)

lemma prime-factors-dvd:
x 6= 0 =⇒ prime-factors x = {p. prime p ∧ p dvd x}
by (auto intro: prime-factorsI)

lemma prime-factors-multiplicity:
prime-factors n = {p. prime p ∧ multiplicity p n > 0}
by (cases n = 0) (auto simp add: prime-factors-dvd prime-multiplicity-gt-zero-iff)

lemma prime-factorization-prime:
assumes prime p
shows prime-factorization p = {#p#}

proof (rule multiset-eqI)
fix q :: ′a
consider ¬prime q | q = p | prime q q 6= p by blast
thus count (prime-factorization p) q = count {#p#} q

by cases (insert assms, auto dest: primes-dvd-imp-eq
simp: count-prime-factorization multiplicity-self multiplicity-eq-zero-iff)

qed

lemma prime-factorization-prod-mset-primes:

36

assumes
∧

p. p ∈# A =⇒ prime p
shows prime-factorization (prod-mset A) = A
using assms

proof (induction A)
case (add p A)
from add.prems[of 0] have 0 /∈# A by auto
hence prod-mset A 6= 0 by auto
with add show ?case
by (simp-all add: mult-ac prime-factorization-times-prime Multiset.union-commute)

qed simp-all

lemma prime-factorization-cong:
normalize x = normalize y =⇒ prime-factorization x = prime-factorization y
by (simp add: multiset-eq-iff count-prime-factorization

multiplicity-normalize-right [of - x, symmetric]
multiplicity-normalize-right [of - y, symmetric]

del: multiplicity-normalize-right)

lemma prime-factorization-unique:
assumes x 6= 0 y 6= 0
shows prime-factorization x = prime-factorization y ←→ normalize x = nor-

malize y
proof

assume prime-factorization x = prime-factorization y
hence prod-mset (prime-factorization x) = prod-mset (prime-factorization y) by

simp
hence normalize (prod-mset (prime-factorization x)) =

normalize (prod-mset (prime-factorization y))
by (simp only:)

with assms show normalize x = normalize y
by (simp add: prod-mset-prime-factorization-weak)

qed (rule prime-factorization-cong)

lemma prime-factorization-normalize [simp]:
prime-factorization (normalize x) = prime-factorization x
by (cases x = 0 , simp, subst prime-factorization-unique) auto

lemma prime-factorization-eqI-strong:
assumes

∧
p. p ∈# P =⇒ prime p prod-mset P = n

shows prime-factorization n = P
using prime-factorization-prod-mset-primes[of P] assms by simp

lemma prime-factorization-eqI :
assumes

∧
p. p ∈# P =⇒ prime p normalize (prod-mset P) = normalize n

shows prime-factorization n = P
proof −

have P = prime-factorization (normalize (prod-mset P))
using prime-factorization-prod-mset-primes[of P] assms(1) by simp

with assms(2) show ?thesis by simp

37

qed

lemma prime-factorization-mult:
assumes x 6= 0 y 6= 0
shows prime-factorization (x ∗ y) = prime-factorization x + prime-factorization

y
proof −
have normalize (prod-mset (prime-factorization x) ∗ prod-mset (prime-factorization

y)) =
normalize (normalize (prod-mset (prime-factorization x)) ∗

normalize (prod-mset (prime-factorization y)))
by (simp only: normalize-mult-normalize-left normalize-mult-normalize-right)

also have . . . = normalize (x ∗ y)
by (subst (1 2) prod-mset-prime-factorization-weak) (use assms in auto)

finally show ?thesis
by (intro prime-factorization-eqI) auto

qed

lemma prime-factorization-prod:
assumes finite A

∧
x. x ∈ A =⇒ f x 6= 0

shows prime-factorization (prod f A) = (
∑

n∈A. prime-factorization (f n))
using assms by (induction A rule: finite-induct)

(auto simp: Sup-multiset-empty prime-factorization-mult)

lemma prime-elem-multiplicity-mult-distrib:
assumes prime-elem p x 6= 0 y 6= 0
shows multiplicity p (x ∗ y) = multiplicity p x + multiplicity p y

proof −
have multiplicity p (x ∗ y) = count (prime-factorization (x ∗ y)) (normalize p)

by (subst count-prime-factorization-prime) (simp-all add: assms)
also from assms
have prime-factorization (x ∗ y) = prime-factorization x + prime-factorization

y
by (intro prime-factorization-mult)

also have count . . . (normalize p) =
count (prime-factorization x) (normalize p) + count (prime-factorization y)

(normalize p)
by simp

also have . . . = multiplicity p x + multiplicity p y
by (subst (1 2) count-prime-factorization-prime) (simp-all add: assms)

finally show ?thesis .
qed

lemma prime-elem-multiplicity-prod-mset-distrib:
assumes prime-elem p 0 /∈# A
shows multiplicity p (prod-mset A) = sum-mset (image-mset (multiplicity p)

A)
using assms by (induction A) (auto simp: prime-elem-multiplicity-mult-distrib)

38

lemma prime-elem-multiplicity-power-distrib:
assumes prime-elem p x 6= 0
shows multiplicity p (x ^ n) = n ∗ multiplicity p x
using assms prime-elem-multiplicity-prod-mset-distrib [of p replicate-mset n x]
by simp

lemma prime-elem-multiplicity-prod-distrib:
assumes prime-elem p 0 /∈ f ‘ A finite A
shows multiplicity p (prod f A) = (

∑
x∈A. multiplicity p (f x))

proof −
have multiplicity p (prod f A) = (

∑
x∈#mset-set A. multiplicity p (f x))

using assms by (subst prod-unfold-prod-mset)
(simp-all add: prime-elem-multiplicity-prod-mset-distrib sum-unfold-sum-mset

multiset.map-comp o-def)
also from ‹finite A› have . . . = (

∑
x∈A. multiplicity p (f x))

by (induction A rule: finite-induct) simp-all
finally show ?thesis .

qed

lemma multiplicity-distinct-prime-power :
prime p =⇒ prime q =⇒ p 6= q =⇒ multiplicity p (q ^ n) = 0
by (subst prime-elem-multiplicity-power-distrib) (auto simp: prime-multiplicity-other)

lemma prime-factorization-prime-power :
prime p =⇒ prime-factorization (p ^ n) = replicate-mset n p
by (induction n)
(simp-all add: prime-factorization-mult prime-factorization-prime Multiset.union-commute)

lemma prime-factorization-subset-iff-dvd:
assumes [simp]: x 6= 0 y 6= 0
shows prime-factorization x ⊆# prime-factorization y ←→ x dvd y

proof −
have x dvd y ←→
normalize (prod-mset (prime-factorization x)) dvd normalize (prod-mset (prime-factorization

y))
using assms by (subst (1 2) prod-mset-prime-factorization-weak) auto

also have . . . ←→ prime-factorization x ⊆# prime-factorization y
by (auto intro!: prod-mset-primes-dvd-imp-subset prod-mset-subset-imp-dvd)

finally show ?thesis ..
qed

lemma prime-factorization-subset-imp-dvd:
x 6= 0 =⇒ (prime-factorization x ⊆# prime-factorization y) =⇒ x dvd y
by (cases y = 0) (simp-all add: prime-factorization-subset-iff-dvd)

lemma prime-factorization-divide:
assumes b dvd a
shows prime-factorization (a div b) = prime-factorization a − prime-factorization

b

39

proof (cases a = 0)
case [simp]: False
from assms have [simp]: b 6= 0 by auto
have prime-factorization ((a div b) ∗ b) = prime-factorization (a div b) +

prime-factorization b
by (intro prime-factorization-mult) (insert assms, auto elim!: dvdE)

with assms show ?thesis by simp
qed simp-all

lemma zero-not-in-prime-factors [simp]: 0 /∈ prime-factors x
by (auto dest: in-prime-factors-imp-prime)

lemma prime-prime-factors:
prime p =⇒ prime-factors p = {p}
by (drule prime-factorization-prime) simp

lemma prime-factors-product:
x 6= 0 =⇒ y 6= 0 =⇒ prime-factors (x ∗ y) = prime-factors x ∪ prime-factors y
by (simp add: prime-factorization-mult)

lemma dvd-prime-factors [intro]:
y 6= 0 =⇒ x dvd y =⇒ prime-factors x ⊆ prime-factors y
by (intro set-mset-mono, subst prime-factorization-subset-iff-dvd) auto

lemma multiplicity-le-imp-dvd:
assumes x 6= 0

∧
p. prime p =⇒ multiplicity p x ≤ multiplicity p y

shows x dvd y
proof (cases y = 0)

case False
from assms this have prime-factorization x ⊆# prime-factorization y

by (intro mset-subset-eqI) (auto simp: count-prime-factorization)
with assms False show ?thesis by (subst (asm) prime-factorization-subset-iff-dvd)

qed auto

lemma dvd-multiplicity-eq:
x 6= 0 =⇒ y 6= 0 =⇒ x dvd y ←→ (∀ p. multiplicity p x ≤ multiplicity p y)
by (auto intro: dvd-imp-multiplicity-le multiplicity-le-imp-dvd)

lemma multiplicity-eq-imp-eq:
assumes x 6= 0 y 6= 0
assumes

∧
p. prime p =⇒ multiplicity p x = multiplicity p y

shows normalize x = normalize y
using assms by (intro associatedI multiplicity-le-imp-dvd) simp-all

lemma prime-factorization-unique ′:
assumes ∀ p ∈# M . prime p ∀ p ∈# N . prime p (

∏
i ∈# M . i) = (

∏
i ∈# N .

i)
shows M = N

40

proof −
have prime-factorization (

∏
i ∈# M . i) = prime-factorization (

∏
i ∈# N . i)

by (simp only: assms)
also from assms have prime-factorization (

∏
i ∈# M . i) = M

by (subst prime-factorization-prod-mset-primes) simp-all
also from assms have prime-factorization (

∏
i ∈# N . i) = N

by (subst prime-factorization-prod-mset-primes) simp-all
finally show ?thesis .

qed

lemma prime-factorization-unique ′′:
assumes ∀ p ∈# M . prime p ∀ p ∈# N . prime p normalize (

∏
i ∈# M . i) =

normalize (
∏

i ∈# N . i)
shows M = N

proof −
have prime-factorization (normalize (

∏
i ∈# M . i)) =

prime-factorization (normalize (
∏

i ∈# N . i))
by (simp only: assms)

also from assms have prime-factorization (normalize (
∏

i ∈# M . i)) = M
by (subst prime-factorization-normalize, subst prime-factorization-prod-mset-primes)

simp-all
also from assms have prime-factorization (normalize (

∏
i ∈# N . i)) = N

by (subst prime-factorization-normalize, subst prime-factorization-prod-mset-primes)
simp-all

finally show ?thesis .
qed

lemma multiplicity-cong:
(
∧

r . p ^ r dvd a ←→ p ^ r dvd b) =⇒ multiplicity p a = multiplicity p b
by (simp add: multiplicity-def)

lemma not-dvd-imp-multiplicity-0 :
assumes ¬p dvd x
shows multiplicity p x = 0

proof −
from assms have multiplicity p x < 1

by (intro multiplicity-lessI) auto
thus ?thesis by simp

qed

lemma multiplicity-zero-left [simp]: multiplicity 0 x = 0
by (cases x = 0) (auto intro: not-dvd-imp-multiplicity-0)

lemma inj-on-Prod-primes:
assumes

∧
P p. P ∈ A =⇒ p ∈ P =⇒ prime p

assumes
∧

P. P ∈ A =⇒ finite P
shows inj-on Prod A

proof (rule inj-onI)
fix P Q assume PQ: P ∈ A Q ∈ A

∏
P =

∏
Q

41

with prime-factorization-unique ′[of mset-set P mset-set Q] assms[of P] assms[of
Q]

have mset-set P = mset-set Q by (auto simp: prod-unfold-prod-mset)
with assms[of P] assms[of Q] PQ show P = Q by simp

qed

lemma divides-primepow-weak:
assumes prime p and a dvd p ^ n
obtains m where m ≤ n and normalize a = normalize (p ^ m)

proof −
from assms have a 6= 0

by auto
with assms
have normalize (prod-mset (prime-factorization a)) dvd

normalize (prod-mset (prime-factorization (p ^ n)))
by (subst (1 2) prod-mset-prime-factorization-weak) auto

then have prime-factorization a ⊆# prime-factorization (p ^ n)
by (simp add: in-prime-factors-imp-prime prod-mset-dvd-prod-mset-primes-iff)

with assms have prime-factorization a ⊆# replicate-mset n p
by (simp add: prime-factorization-prime-power)

then obtain m where m ≤ n and prime-factorization a = replicate-mset m p
by (rule msubseteq-replicate-msetE)

then have ∗: normalize (prod-mset (prime-factorization a)) =
normalize (prod-mset (replicate-mset m p)) by metis

also have normalize (prod-mset (prime-factorization a)) = normalize a
using ‹a 6= 0 › by (simp add: prod-mset-prime-factorization-weak)

also have prod-mset (replicate-mset m p) = p ^ m
by simp

finally show ?thesis using ‹m ≤ n›
by (intro that[of m])

qed

lemma divide-out-primepow-ex:
assumes n 6= 0 ∃ p∈prime-factors n. P p
obtains p k n ′ where P p prime p p dvd n ¬p dvd n ′ k > 0 n = p ^ k ∗ n ′

proof −
from assms obtain p where p: P p prime p p dvd n

by auto
define k where k = multiplicity p n
define n ′ where n ′ = n div p ^ k
have n ′: n = p ^ k ∗ n ′ ¬p dvd n ′

using assms p multiplicity-decompose[of n p]
by (auto simp: n ′-def k-def multiplicity-dvd)

from n ′ p have k > 0 by (intro Nat.gr0I) auto
with n ′ p that[of p n ′ k] show ?thesis by auto

qed

lemma divide-out-primepow:
assumes n 6= 0 ¬is-unit n

42

obtains p k n ′ where prime p p dvd n ¬p dvd n ′ k > 0 n = p ^ k ∗ n ′

using divide-out-primepow-ex[OF assms(1), of λ-. True] prime-divisor-exists[OF
assms] assms

prime-factorsI by metis

1.5 GCD and LCM computation with unique factorizations
definition gcd-factorial a b = (if a = 0 then normalize b

else if b = 0 then normalize a
else normalize (prod-mset (prime-factorization a ∩# prime-factorization b)))

definition lcm-factorial a b = (if a = 0 ∨ b = 0 then 0
else normalize (prod-mset (prime-factorization a ∪# prime-factorization b)))

definition Gcd-factorial A =
(if A ⊆ {0} then 0 else normalize (prod-mset (Inf (prime-factorization ‘ (A −
{0})))))

definition Lcm-factorial A =
(if A = {} then 1
else if 0 /∈ A ∧ subset-mset.bdd-above (prime-factorization ‘ (A − {0})) then

normalize (prod-mset (Sup (prime-factorization ‘ A)))
else

0)

lemma prime-factorization-gcd-factorial:
assumes [simp]: a 6= 0 b 6= 0
shows prime-factorization (gcd-factorial a b) = prime-factorization a ∩#

prime-factorization b
proof −

have prime-factorization (gcd-factorial a b) =
prime-factorization (prod-mset (prime-factorization a ∩# prime-factorization

b))
by (simp add: gcd-factorial-def)

also have . . . = prime-factorization a ∩# prime-factorization b
by (subst prime-factorization-prod-mset-primes) auto

finally show ?thesis .
qed

lemma prime-factorization-lcm-factorial:
assumes [simp]: a 6= 0 b 6= 0
shows prime-factorization (lcm-factorial a b) = prime-factorization a ∪#

prime-factorization b
proof −

have prime-factorization (lcm-factorial a b) =
prime-factorization (prod-mset (prime-factorization a ∪# prime-factorization

b))
by (simp add: lcm-factorial-def)

also have . . . = prime-factorization a ∪# prime-factorization b

43

by (subst prime-factorization-prod-mset-primes) auto
finally show ?thesis .

qed

lemma prime-factorization-Gcd-factorial:
assumes ¬A ⊆ {0}
shows prime-factorization (Gcd-factorial A) = Inf (prime-factorization ‘ (A −
{0}))
proof −

from assms obtain x where x: x ∈ A − {0} by auto
hence Inf (prime-factorization ‘ (A − {0})) ⊆# prime-factorization x

by (intro subset-mset.cInf-lower) simp-all
hence ∀ y. y ∈# Inf (prime-factorization ‘ (A − {0})) −→ y ∈ prime-factors x

by (auto dest: mset-subset-eqD)
with in-prime-factors-imp-prime[of - x]

have ∀ p. p ∈# Inf (prime-factorization ‘ (A − {0})) −→ prime p by blast
with assms show ?thesis

by (simp add: Gcd-factorial-def prime-factorization-prod-mset-primes)
qed

lemma prime-factorization-Lcm-factorial:
assumes 0 /∈ A subset-mset.bdd-above (prime-factorization ‘ A)
shows prime-factorization (Lcm-factorial A) = Sup (prime-factorization ‘ A)

proof (cases A = {})
case True
hence prime-factorization ‘ A = {} by auto
also have Sup . . . = {#} by (simp add: Sup-multiset-empty)
finally show ?thesis by (simp add: Lcm-factorial-def)

next
case False
have ∀ y. y ∈# Sup (prime-factorization ‘ A) −→ prime y

by (auto simp: in-Sup-multiset-iff assms)
with assms False show ?thesis

by (simp add: Lcm-factorial-def prime-factorization-prod-mset-primes)
qed

lemma gcd-factorial-commute: gcd-factorial a b = gcd-factorial b a
by (simp add: gcd-factorial-def multiset-inter-commute)

lemma gcd-factorial-dvd1 : gcd-factorial a b dvd a
proof (cases a = 0 ∨ b = 0)

case False
hence gcd-factorial a b 6= 0 by (auto simp: gcd-factorial-def)
with False show ?thesis

by (subst prime-factorization-subset-iff-dvd [symmetric])
(auto simp: prime-factorization-gcd-factorial)

qed (auto simp: gcd-factorial-def)

lemma gcd-factorial-dvd2 : gcd-factorial a b dvd b

44

by (subst gcd-factorial-commute) (rule gcd-factorial-dvd1)

lemma normalize-gcd-factorial [simp]: normalize (gcd-factorial a b) = gcd-factorial
a b

by (simp add: gcd-factorial-def)

lemma normalize-lcm-factorial [simp]: normalize (lcm-factorial a b) = lcm-factorial
a b

by (simp add: lcm-factorial-def)

lemma gcd-factorial-greatest: c dvd gcd-factorial a b if c dvd a c dvd b for a b c
proof (cases a = 0 ∨ b = 0)

case False
with that have [simp]: c 6= 0 by auto
let ?p = prime-factorization
from that False have ?p c ⊆# ?p a ?p c ⊆# ?p b

by (simp-all add: prime-factorization-subset-iff-dvd)
hence prime-factorization c ⊆#

prime-factorization (prod-mset (prime-factorization a ∩# prime-factorization
b))

using False by (subst prime-factorization-prod-mset-primes) auto
with False show ?thesis

by (auto simp: gcd-factorial-def prime-factorization-subset-iff-dvd [symmetric])
qed (auto simp: gcd-factorial-def that)

lemma lcm-factorial-gcd-factorial:
lcm-factorial a b = normalize (a ∗ b div gcd-factorial a b) for a b

proof (cases a = 0 ∨ b = 0)
case False
let ?p = prime-factorization
have 1 : normalize x ∗ normalize y dvd z ←→ x ∗ y dvd z for x y z :: ′a
proof −

have normalize (normalize x ∗ normalize y) dvd z ←→ x ∗ y dvd z
unfolding normalize-mult-normalize-left normalize-mult-normalize-right by

simp
thus ?thesis unfolding normalize-dvd-iff by simp

qed

have ?p (a ∗ b) = (?p a ∪# ?p b) + (?p a ∩# ?p b)
using False by (subst prime-factorization-mult) (auto intro!: multiset-eqI)

hence normalize (prod-mset (?p (a ∗ b))) =
normalize (prod-mset ((?p a ∪# ?p b) + (?p a ∩# ?p b)))

by (simp only:)
hence ∗: normalize (a ∗ b) = normalize (lcm-factorial a b ∗ gcd-factorial a b)

using False
by (subst (asm) prod-mset-prime-factorization-weak)

(auto simp: lcm-factorial-def gcd-factorial-def)

have [simp]: gcd-factorial a b dvd a ∗ b lcm-factorial a b dvd a ∗ b

45

using associatedD2 [OF ∗] by auto
from False have [simp]: gcd-factorial a b 6= 0 lcm-factorial a b 6= 0

by (auto simp: gcd-factorial-def lcm-factorial-def)

show ?thesis
by (rule associated-eqI)

(use ∗ in ‹auto simp: dvd-div-iff-mult div-dvd-iff-mult dest: associatedD1
associatedD2 ›)
qed (auto simp: lcm-factorial-def)

lemma normalize-Gcd-factorial:
normalize (Gcd-factorial A) = Gcd-factorial A
by (simp add: Gcd-factorial-def)

lemma Gcd-factorial-eq-0-iff :
Gcd-factorial A = 0 ←→ A ⊆ {0}
by (auto simp: Gcd-factorial-def in-Inf-multiset-iff split: if-splits)

lemma Gcd-factorial-dvd:
assumes x ∈ A
shows Gcd-factorial A dvd x

proof (cases x = 0)
case False
with assms have prime-factorization (Gcd-factorial A) = Inf (prime-factorization

‘ (A − {0}))
by (intro prime-factorization-Gcd-factorial) auto

also from False assms have . . . ⊆# prime-factorization x
by (intro subset-mset.cInf-lower) auto

finally show ?thesis
by (subst (asm) prime-factorization-subset-iff-dvd)

(insert assms False, auto simp: Gcd-factorial-eq-0-iff)
qed simp-all

lemma Gcd-factorial-greatest:
assumes

∧
y. y ∈ A =⇒ x dvd y

shows x dvd Gcd-factorial A
proof (cases A ⊆ {0})

case False
from False obtain y where y ∈ A y 6= 0 by auto
with assms[of y] have nz: x 6= 0 by auto
from nz assms have prime-factorization x ⊆# prime-factorization y if y ∈ A −
{0} for y

using that by (subst prime-factorization-subset-iff-dvd) auto
with False have prime-factorization x ⊆# Inf (prime-factorization ‘ (A − {0}))

by (intro subset-mset.cInf-greatest) auto
also from False have . . . = prime-factorization (Gcd-factorial A)

by (rule prime-factorization-Gcd-factorial [symmetric])
finally show ?thesis

by (subst (asm) prime-factorization-subset-iff-dvd)

46

(insert nz False, auto simp: Gcd-factorial-eq-0-iff)
qed (simp-all add: Gcd-factorial-def)

lemma normalize-Lcm-factorial:
normalize (Lcm-factorial A) = Lcm-factorial A
by (simp add: Lcm-factorial-def)

lemma Lcm-factorial-eq-0-iff :
Lcm-factorial A = 0 ←→ 0 ∈ A ∨ ¬subset-mset.bdd-above (prime-factorization

‘ A)
by (auto simp: Lcm-factorial-def in-Sup-multiset-iff)

lemma dvd-Lcm-factorial:
assumes x ∈ A
shows x dvd Lcm-factorial A

proof (cases 0 /∈ A ∧ subset-mset.bdd-above (prime-factorization ‘ A))
case True
with assms have [simp]: 0 /∈ A x 6= 0 A 6= {} by auto
from assms True have prime-factorization x ⊆# Sup (prime-factorization ‘ A)

by (intro subset-mset.cSup-upper) auto
also have . . . = prime-factorization (Lcm-factorial A)

by (rule prime-factorization-Lcm-factorial [symmetric]) (insert True, simp-all)
finally show ?thesis

by (subst (asm) prime-factorization-subset-iff-dvd)
(insert True, auto simp: Lcm-factorial-eq-0-iff)

qed (insert assms, auto simp: Lcm-factorial-def)

lemma Lcm-factorial-least:
assumes

∧
y. y ∈ A =⇒ y dvd x

shows Lcm-factorial A dvd x
proof −

consider A = {} | 0 ∈ A | x = 0 | A 6= {} 0 /∈ A x 6= 0 by blast
thus ?thesis
proof cases

assume ∗: A 6= {} 0 /∈ A x 6= 0
hence nz: x 6= 0 if x ∈ A for x using that by auto
from ∗ have bdd: subset-mset.bdd-above (prime-factorization ‘ A)

by (intro subset-mset.bdd-aboveI [of - prime-factorization x])
(auto simp: prime-factorization-subset-iff-dvd nz dest: assms)

have prime-factorization (Lcm-factorial A) = Sup (prime-factorization ‘ A)
by (rule prime-factorization-Lcm-factorial) fact+

also from ∗ have . . . ⊆# prime-factorization x
by (intro subset-mset.cSup-least)

(auto simp: prime-factorization-subset-iff-dvd nz dest: assms)
finally show ?thesis

by (subst (asm) prime-factorization-subset-iff-dvd)
(insert ∗ bdd, auto simp: Lcm-factorial-eq-0-iff)

qed (auto simp: Lcm-factorial-def dest: assms)
qed

47

lemmas gcd-lcm-factorial =
gcd-factorial-dvd1 gcd-factorial-dvd2 gcd-factorial-greatest
normalize-gcd-factorial lcm-factorial-gcd-factorial
normalize-Gcd-factorial Gcd-factorial-dvd Gcd-factorial-greatest
normalize-Lcm-factorial dvd-Lcm-factorial Lcm-factorial-least

end

class factorial-semiring-gcd = factorial-semiring + gcd + Gcd +
assumes gcd-eq-gcd-factorial: gcd a b = gcd-factorial a b
and lcm-eq-lcm-factorial: lcm a b = lcm-factorial a b
and Gcd-eq-Gcd-factorial: Gcd A = Gcd-factorial A
and Lcm-eq-Lcm-factorial: Lcm A = Lcm-factorial A

begin

lemma prime-factorization-gcd:
assumes [simp]: a 6= 0 b 6= 0
shows prime-factorization (gcd a b) = prime-factorization a ∩# prime-factorization

b
by (simp add: gcd-eq-gcd-factorial prime-factorization-gcd-factorial)

lemma prime-factorization-lcm:
assumes [simp]: a 6= 0 b 6= 0
shows prime-factorization (lcm a b) = prime-factorization a ∪# prime-factorization

b
by (simp add: lcm-eq-lcm-factorial prime-factorization-lcm-factorial)

lemma prime-factorization-Gcd:
assumes Gcd A 6= 0
shows prime-factorization (Gcd A) = Inf (prime-factorization ‘ (A − {0}))
using assms
by (simp add: prime-factorization-Gcd-factorial Gcd-eq-Gcd-factorial Gcd-factorial-eq-0-iff)

lemma prime-factorization-Lcm:
assumes Lcm A 6= 0
shows prime-factorization (Lcm A) = Sup (prime-factorization ‘ A)
using assms
by (simp add: prime-factorization-Lcm-factorial Lcm-eq-Lcm-factorial Lcm-factorial-eq-0-iff)

lemma prime-factors-gcd [simp]:
a 6= 0 =⇒ b 6= 0 =⇒ prime-factors (gcd a b) =

prime-factors a ∩ prime-factors b
by (subst prime-factorization-gcd) auto

lemma prime-factors-lcm [simp]:
a 6= 0 =⇒ b 6= 0 =⇒ prime-factors (lcm a b) =

prime-factors a ∪ prime-factors b
by (subst prime-factorization-lcm) auto

48

subclass semiring-gcd
by (standard, unfold gcd-eq-gcd-factorial lcm-eq-lcm-factorial)

(rule gcd-lcm-factorial; assumption)+

subclass semiring-Gcd
by (standard, unfold Gcd-eq-Gcd-factorial Lcm-eq-Lcm-factorial)

(rule gcd-lcm-factorial; assumption)+

lemma
assumes x 6= 0 y 6= 0
shows gcd-eq-factorial ′:

gcd x y = normalize (
∏

p ∈ prime-factors x ∩ prime-factors y.
p ^ min (multiplicity p x) (multiplicity p y)) (is - = ?rhs1)

and lcm-eq-factorial ′:
lcm x y = normalize (

∏
p ∈ prime-factors x ∪ prime-factors y.

p ^ max (multiplicity p x) (multiplicity p y)) (is - = ?rhs2)
proof −

have gcd x y = gcd-factorial x y by (rule gcd-eq-gcd-factorial)
also have . . . = ?rhs1

by (auto simp: gcd-factorial-def assms prod-mset-multiplicity
count-prime-factorization-prime
intro!: arg-cong[of - - normalize] dest: in-prime-factors-imp-prime intro!:

prod.cong)
finally show gcd x y = ?rhs1 .
have lcm x y = lcm-factorial x y by (rule lcm-eq-lcm-factorial)
also have . . . = ?rhs2

by (auto simp: lcm-factorial-def assms prod-mset-multiplicity
count-prime-factorization-prime intro!: arg-cong[of - - normalize]
dest: in-prime-factors-imp-prime intro!: prod.cong)

finally show lcm x y = ?rhs2 .
qed

lemma
assumes x 6= 0 y 6= 0 prime p
shows multiplicity-gcd: multiplicity p (gcd x y) = min (multiplicity p x)

(multiplicity p y)
and multiplicity-lcm: multiplicity p (lcm x y) = max (multiplicity p x)

(multiplicity p y)
proof −

have gcd x y = gcd-factorial x y by (rule gcd-eq-gcd-factorial)
also from assms have multiplicity p . . . = min (multiplicity p x) (multiplicity p

y)
by (simp add: count-prime-factorization-prime [symmetric] prime-factorization-gcd-factorial)

finally show multiplicity p (gcd x y) = min (multiplicity p x) (multiplicity p y) .
have lcm x y = lcm-factorial x y by (rule lcm-eq-lcm-factorial)
also from assms have multiplicity p . . . = max (multiplicity p x) (multiplicity

p y)
by (simp add: count-prime-factorization-prime [symmetric] prime-factorization-lcm-factorial)

49

finally show multiplicity p (lcm x y) = max (multiplicity p x) (multiplicity p y)
.
qed

lemma gcd-lcm-distrib:
gcd x (lcm y z) = lcm (gcd x y) (gcd x z)

proof (cases x = 0 ∨ y = 0 ∨ z = 0)
case True
thus ?thesis

by (auto simp: lcm-proj1-if-dvd lcm-proj2-if-dvd)
next

case False
hence normalize (gcd x (lcm y z)) = normalize (lcm (gcd x y) (gcd x z))

by (intro associatedI prime-factorization-subset-imp-dvd)
(auto simp: lcm-eq-0-iff prime-factorization-gcd prime-factorization-lcm

subset-mset.inf-sup-distrib1)
thus ?thesis by simp

qed

lemma lcm-gcd-distrib:
lcm x (gcd y z) = gcd (lcm x y) (lcm x z)

proof (cases x = 0 ∨ y = 0 ∨ z = 0)
case True
thus ?thesis

by (auto simp: lcm-proj1-if-dvd lcm-proj2-if-dvd)
next

case False
hence normalize (lcm x (gcd y z)) = normalize (gcd (lcm x y) (lcm x z))

by (intro associatedI prime-factorization-subset-imp-dvd)
(auto simp: lcm-eq-0-iff prime-factorization-gcd prime-factorization-lcm

subset-mset.sup-inf-distrib1)
thus ?thesis by simp

qed

end

class factorial-ring-gcd = factorial-semiring-gcd + idom
begin

subclass ring-gcd ..

subclass idom-divide ..

end

class factorial-semiring-multiplicative =
factorial-semiring + normalization-semidom-multiplicative

begin

50

lemma normalize-prod-mset-primes:
(
∧

p. p ∈# A =⇒ prime p) =⇒ normalize (prod-mset A) = prod-mset A
proof (induction A)

case (add p A)
hence prime p by simp
hence normalize p = p by simp
with add show ?case by (simp add: normalize-mult)

qed simp-all

lemma prod-mset-prime-factorization:
assumes x 6= 0
shows prod-mset (prime-factorization x) = normalize x
using assms
by (induction x rule: prime-divisors-induct)

(simp-all add: prime-factorization-unit prime-factorization-times-prime
is-unit-normalize normalize-mult)

lemma prime-decomposition: unit-factor x ∗ prod-mset (prime-factorization x) =
x

by (cases x = 0) (simp-all add: prod-mset-prime-factorization)

lemma prod-prime-factors:
assumes x 6= 0
shows (

∏
p ∈ prime-factors x. p ^ multiplicity p x) = normalize x

proof −
have normalize x = prod-mset (prime-factorization x)

by (simp add: prod-mset-prime-factorization assms)
also have . . . = (

∏
p ∈ prime-factors x. p ^ count (prime-factorization x) p)

by (subst prod-mset-multiplicity) simp-all
also have . . . = (

∏
p ∈ prime-factors x. p ^ multiplicity p x)

by (intro prod.cong)
(simp-all add: assms count-prime-factorization-prime in-prime-factors-imp-prime)

finally show ?thesis ..
qed

lemma prime-factorization-unique ′′:
assumes S-eq: S = {p. 0 < f p}

and finite S
and S : ∀ p∈S . prime p normalize n = (

∏
p∈S . p ^ f p)

shows S = prime-factors n ∧ (∀ p. prime p −→ f p = multiplicity p n)
proof

define A where A = Abs-multiset f
from ‹finite S› S(1) have (

∏
p∈S . p ^ f p) 6= 0 by auto

with S(2) have nz: n 6= 0 by auto
from S-eq ‹finite S› have count-A: count A = f

unfolding A-def by (subst multiset.Abs-multiset-inverse) simp-all
from S-eq count-A have set-mset-A: set-mset A = S

by (simp only: set-mset-def)

51

from S(2) have normalize n = (
∏

p∈S . p ^ f p) .
also have . . . = prod-mset A by (simp add: prod-mset-multiplicity S-eq set-mset-A

count-A)
also from nz have normalize n = prod-mset (prime-factorization n)

by (simp add: prod-mset-prime-factorization)
finally have prime-factorization (prod-mset A) =

prime-factorization (prod-mset (prime-factorization n)) by simp
also from S(1) have prime-factorization (prod-mset A) = A

by (intro prime-factorization-prod-mset-primes) (auto simp: set-mset-A)
also have prime-factorization (prod-mset (prime-factorization n)) = prime-factorization

n
by (intro prime-factorization-prod-mset-primes) auto

finally show S = prime-factors n by (simp add: set-mset-A [symmetric])

show (∀ p. prime p −→ f p = multiplicity p n)
proof safe

fix p :: ′a assume p: prime p
have multiplicity p n = multiplicity p (normalize n) by simp
also have normalize n = prod-mset A

by (simp add: prod-mset-multiplicity S-eq set-mset-A count-A S)
also from p set-mset-A S(1)
have multiplicity p . . . = sum-mset (image-mset (multiplicity p) A)

by (intro prime-elem-multiplicity-prod-mset-distrib) auto
also from S(1) p
have image-mset (multiplicity p) A = image-mset (λq. if p = q then 1 else 0)

A
by (intro image-mset-cong) (auto simp: set-mset-A multiplicity-self prime-multiplicity-other)
also have sum-mset . . . = f p

by (simp add: semiring-1-class.sum-mset-delta ′ count-A)
finally show f p = multiplicity p n ..

qed
qed

lemma divides-primepow:
assumes prime p and a dvd p ^ n
obtains m where m ≤ n and normalize a = p ^ m
using divides-primepow-weak[OF assms] that assms
by (auto simp add: normalize-power)

lemma Ex-other-prime-factor :
assumes n 6= 0 and ¬(∃ k. normalize n = p ^ k) prime p
shows ∃ q∈prime-factors n. q 6= p

proof (rule ccontr)
assume ∗: ¬(∃ q∈prime-factors n. q 6= p)
have normalize n = (

∏
p∈prime-factors n. p ^ multiplicity p n)

using assms(1) by (intro prod-prime-factors [symmetric]) auto
also from ∗ have . . . = (

∏
p∈{p}. p ^ multiplicity p n)

using assms(3) by (intro prod.mono-neutral-left) (auto simp: prime-factors-multiplicity)
finally have normalize n = p ^ multiplicity p n by auto

52

with assms show False by auto
qed

Now a string of results due to Maya Kdzioka
lemma multiplicity-dvd-iff-dvd:
assumes x 6= 0
shows p^k dvd x ←→ p^k dvd p^multiplicity p x

proof (cases is-unit p)
case True
then have is-unit (p^k)

using is-unit-power-iff by simp
hence p^k dvd x

by auto
moreover from ‹is-unit p› have p^k dvd p^multiplicity p x

using multiplicity-unit-left is-unit-power-iff by simp
ultimately show ?thesis by simp

next
case False
show ?thesis
proof (cases p = 0)

case True
then have p^multiplicity p x = 1

by simp
moreover have p^k dvd x =⇒ k = 0
proof (rule ccontr)

assume p^k dvd x and k 6= 0
with ‹p = 0 › have p^k = 0 by auto
with ‹p^k dvd x› have 0 dvd x by auto
hence x = 0 by auto
with ‹x 6= 0 › show False by auto

qed
ultimately show ?thesis

by (auto simp add: is-unit-power-iff ‹¬ is-unit p›)
next

case False
with ‹x 6= 0 › ‹¬ is-unit p› show ?thesis
by (simp add: power-dvd-iff-le-multiplicity dvd-power-iff multiplicity-same-power)

qed
qed

lemma multiplicity-decomposeI :
assumes x = p^k ∗ x ′ and ¬ p dvd x ′ and p 6= 0
shows multiplicity p x = k
using assms local.multiplicity-eqI local.power-Suc2 by force

lemma multiplicity-sum-lt:
assumes multiplicity p a < multiplicity p b a 6= 0 b 6= 0
shows multiplicity p (a + b) = multiplicity p a

proof −

53

let ?vp = multiplicity p
have unit: ¬ is-unit p
proof

assume is-unit p
then have ?vp a = 0 and ?vp b = 0 using multiplicity-unit-left by auto
with assms show False by auto

qed

from multiplicity-decompose ′ obtain a ′ where a ′: a = p^?vp a ∗ a ′ ¬ p dvd a ′

using unit assms by metis
from multiplicity-decompose ′ obtain b ′ where b ′: b = p^?vp b ∗ b ′

using unit assms by metis

show ?vp (a + b) = ?vp a
proof (rule multiplicity-decomposeI)

let ?k = ?vp b − ?vp a
from assms have k: ?k > 0 by simp
with b ′ have b = p^?vp a ∗ p^?k ∗ b ′

by (simp flip: power-add)
with a ′ show ∗: a + b = p^?vp a ∗ (a ′ + p^?k ∗ b ′)

by (simp add: ac-simps distrib-left)
moreover show ¬ p dvd a ′ + p^?k ∗ b ′

using a ′ k dvd-add-left-iff by auto
show p 6= 0 using assms by auto

qed
qed

corollary multiplicity-sum-min:
assumes multiplicity p a 6= multiplicity p b a 6= 0 b 6= 0
shows multiplicity p (a + b) = min (multiplicity p a) (multiplicity p b)

proof −
let ?vp = multiplicity p
from assms have ?vp a < ?vp b ∨ ?vp a > ?vp b

by auto
then show ?thesis
by (metis assms multiplicity-sum-lt min.commute add-commute min.strict-order-iff)

qed

end

lifting-update multiset.lifting
lifting-forget multiset.lifting

end

2 Abstract euclidean algorithm in euclidean (semi)rings
theory Euclidean-Algorithm

54

imports Factorial-Ring
begin

2.1 Generic construction of the (simple) euclidean algorithm
class normalization-euclidean-semiring = euclidean-semiring + normalization-semidom
begin

lemma euclidean-size-normalize [simp]:
euclidean-size (normalize a) = euclidean-size a

proof (cases a = 0)
case True
then show ?thesis

by simp
next

case [simp]: False
have euclidean-size (normalize a) ≤ euclidean-size (normalize a ∗ unit-factor a)

by (rule size-mult-mono) simp
moreover have euclidean-size a ≤ euclidean-size (a ∗ (1 div unit-factor a))

by (rule size-mult-mono) simp
ultimately show ?thesis

by simp
qed

context
begin

qualified function gcd :: ′a ⇒ ′a ⇒ ′a
where gcd a b = (if b = 0 then normalize a else gcd b (a mod b))
by pat-completeness simp

termination
by (relation measure (euclidean-size ◦ snd)) (simp-all add: mod-size-less)

declare gcd.simps [simp del]

lemma eucl-induct [case-names zero mod]:
assumes H1 :

∧
b. P b 0

and H2 :
∧

a b. b 6= 0 =⇒ P b (a mod b) =⇒ P a b
shows P a b

proof (induct a b rule: gcd.induct)
case (1 a b)
show ?case
proof (cases b = 0)

case True then show P a b by simp (rule H1)
next

case False
then have P b (a mod b)

by (rule 1 .hyps)
with ‹b 6= 0 › show P a b

55

by (blast intro: H2)
qed

qed

qualified lemma gcd-0 :
gcd a 0 = normalize a
by (simp add: gcd.simps [of a 0])

qualified lemma gcd-mod:
a 6= 0 =⇒ gcd a (b mod a) = gcd b a
by (simp add: gcd.simps [of b 0] gcd.simps [of b a])

qualified definition lcm :: ′a ⇒ ′a ⇒ ′a
where lcm a b = normalize (a ∗ b div gcd a b)

qualified definition Lcm :: ′a set ⇒ ′a — Somewhat complicated definition of
Lcm that has the advantage of working for infinite sets as well

where
[code del]: Lcm A = (if ∃ l. l 6= 0 ∧ (∀ a∈A. a dvd l) then

let l = SOME l. l 6= 0 ∧ (∀ a∈A. a dvd l) ∧ euclidean-size l =
(LEAST n. ∃ l. l 6= 0 ∧ (∀ a∈A. a dvd l) ∧ euclidean-size l = n)
in normalize l

else 0)

qualified definition Gcd :: ′a set ⇒ ′a
where [code del]: Gcd A = Lcm {d. ∀ a∈A. d dvd a}

lemma semiring-gcd:
class.semiring-gcd one zero times gcd lcm

divide plus minus unit-factor normalize
proof

show gcd a b dvd a
and gcd a b dvd b for a b
by (induct a b rule: eucl-induct)
(simp-all add: local.gcd-0 local.gcd-mod dvd-mod-iff)

next
show c dvd a =⇒ c dvd b =⇒ c dvd gcd a b for a b c
proof (induct a b rule: eucl-induct)

case (zero a) from ‹c dvd a› show ?case
by (rule dvd-trans) (simp add: local.gcd-0)

next
case (mod a b)
then show ?case

by (simp add: local.gcd-mod dvd-mod-iff)
qed

next
show normalize (gcd a b) = gcd a b for a b

by (induct a b rule: eucl-induct)
(simp-all add: local.gcd-0 local.gcd-mod)

56

next
show lcm a b = normalize (a ∗ b div gcd a b) for a b

by (fact local.lcm-def)
qed

interpretation semiring-gcd one zero times gcd lcm
divide plus minus unit-factor normalize
by (fact semiring-gcd)

lemma semiring-Gcd:
class.semiring-Gcd one zero times gcd lcm Gcd Lcm

divide plus minus unit-factor normalize
proof −

show ?thesis
proof

have (∀ a∈A. a dvd Lcm A) ∧ (∀ b. (∀ a∈A. a dvd b) −→ Lcm A dvd b) for A
proof (cases ∃ l. l 6= 0 ∧ (∀ a∈A. a dvd l))

case False
then have Lcm A = 0

by (auto simp add: local.Lcm-def)
with False show ?thesis

by auto
next

case True
then obtain l0 where l0-props: l0 6= 0 ∀ a∈A. a dvd l0 by blast

define n where n = (LEAST n. ∃ l. l 6= 0 ∧ (∀ a∈A. a dvd l) ∧ euclidean-size
l = n)

define l where l = (SOME l. l 6= 0 ∧ (∀ a∈A. a dvd l) ∧ euclidean-size l =
n)

have ∃ l. l 6= 0 ∧ (∀ a∈A. a dvd l) ∧ euclidean-size l = n
apply (subst n-def)
apply (rule LeastI [of - euclidean-size l0])
apply (rule exI [of - l0])
apply (simp add: l0-props)
done

from someI-ex [OF this] have l 6= 0 and ∀ a∈A. a dvd l
and euclidean-size l = n
unfolding l-def by simp-all

{
fix l ′ assume ∀ a∈A. a dvd l ′
with ‹∀ a∈A. a dvd l› have ∀ a∈A. a dvd gcd l l ′

by (auto intro: gcd-greatest)
moreover from ‹l 6= 0 › have gcd l l ′ 6= 0

by simp
ultimately have ∃ b. b 6= 0 ∧ (∀ a∈A. a dvd b) ∧

euclidean-size b = euclidean-size (gcd l l ′)
by (intro exI [of - gcd l l ′], auto)

then have euclidean-size (gcd l l ′) ≥ n
by (subst n-def) (rule Least-le)

57

moreover have euclidean-size (gcd l l ′) ≤ n
proof −

have gcd l l ′ dvd l
by simp

then obtain a where l = gcd l l ′ ∗ a ..
with ‹l 6= 0 › have a 6= 0

by auto
hence euclidean-size (gcd l l ′) ≤ euclidean-size (gcd l l ′ ∗ a)

by (rule size-mult-mono)
also have gcd l l ′ ∗ a = l using ‹l = gcd l l ′ ∗ a› ..
also note ‹euclidean-size l = n›
finally show euclidean-size (gcd l l ′) ≤ n .

qed
ultimately have ∗: euclidean-size l = euclidean-size (gcd l l ′)

by (intro le-antisym, simp-all add: ‹euclidean-size l = n›)
from ‹l 6= 0 › have l dvd gcd l l ′

by (rule dvd-euclidean-size-eq-imp-dvd) (auto simp add: ∗)
hence l dvd l ′ by (rule dvd-trans [OF - gcd-dvd2])

}
with ‹∀ a∈A. a dvd l› and ‹l 6= 0 ›

have (∀ a∈A. a dvd normalize l) ∧
(∀ l ′. (∀ a∈A. a dvd l ′) −→ normalize l dvd l ′)

by auto
also from True have normalize l = Lcm A

by (simp add: local.Lcm-def Let-def n-def l-def)
finally show ?thesis .

qed
then show dvd-Lcm: a ∈ A =⇒ a dvd Lcm A

and Lcm-least: (
∧

a. a ∈ A =⇒ a dvd b) =⇒ Lcm A dvd b for A and a b
by auto

show a ∈ A =⇒ Gcd A dvd a for A and a
by (auto simp add: local.Gcd-def intro: Lcm-least)

show (
∧

a. a ∈ A =⇒ b dvd a) =⇒ b dvd Gcd A for A and b
by (auto simp add: local.Gcd-def intro: dvd-Lcm)

show [simp]: normalize (Lcm A) = Lcm A for A
by (simp add: local.Lcm-def)

show normalize (Gcd A) = Gcd A for A
by (simp add: local.Gcd-def)

qed
qed

end

interpretation semiring-Gcd one zero times
Euclidean-Algorithm.gcd Euclidean-Algorithm.lcm Euclidean-Algorithm.Gcd Eu-

clidean-Algorithm.Lcm
divide plus minus unit-factor normalize

by (fact semiring-Gcd)

58

subclass factorial-semiring
proof −

show class.factorial-semiring divide plus minus zero times one
unit-factor normalize

proof (standard, rule factorial-semiring-altI-aux) — FIXME rule
fix x assume x 6= 0
thus finite {p. p dvd x ∧ normalize p = p}
proof (induction euclidean-size x arbitrary: x rule: less-induct)

case (less x)
show ?case
proof (cases ∃ y. y dvd x ∧ ¬x dvd y ∧ ¬is-unit y)

case False
have {p. p dvd x ∧ normalize p = p} ⊆ {1 , normalize x}
proof

fix p assume p: p ∈ {p. p dvd x ∧ normalize p = p}
with False have is-unit p ∨ x dvd p by blast
thus p ∈ {1 , normalize x}
proof (elim disjE)

assume is-unit p
hence normalize p = 1 by (simp add: is-unit-normalize)
with p show ?thesis by simp

next
assume x dvd p
with p have normalize p = normalize x by (intro associatedI) simp-all
with p show ?thesis by simp

qed
qed
moreover have finite . . . by simp
ultimately show ?thesis by (rule finite-subset)

next
case True
then obtain y where y: y dvd x ¬x dvd y ¬is-unit y by blast
define z where z = x div y
let ?fctrs = λx. {p. p dvd x ∧ normalize p = p}
from y have x: x = y ∗ z by (simp add: z-def)
with less.prems have y 6= 0 z 6= 0 by auto
have normalized-factors-product:
{p. p dvd a ∗ b ∧ normalize p = p} ⊆

(λ(x,y). normalize (x ∗ y)) ‘ ({p. p dvd a ∧ normalize p = p} × {p. p
dvd b ∧ normalize p = p})

for a b
proof safe

fix p assume p: p dvd a ∗ b normalize p = p
from p(1) obtain x y where xy: p = x ∗ y x dvd a y dvd b

by (rule dvd-productE)
define x ′ y ′ where x ′ = normalize x and y ′ = normalize y
have p = normalize (x ′ ∗ y ′)

using p by (simp add: xy x ′-def y ′-def)
moreover have x ′ dvd a ∧ normalize x ′ = x ′ and y ′ dvd b ∧ normalize

59

y ′ = y ′

using xy by (auto simp: x ′-def y ′-def)
ultimately show p ∈ (λ(x, y). normalize (x ∗ y)) ‘

({p. p dvd a ∧ normalize p = p} × {p. p dvd b ∧ normalize p = p})
by fast

qed
from x y have ¬is-unit z by (auto simp: mult-unit-dvd-iff)
have ?fctrs x ⊆ (λ(p,p ′). normalize (p ∗ p ′)) ‘ (?fctrs y × ?fctrs z)

by (subst x) (rule normalized-factors-product)
moreover have ¬y ∗ z dvd y ∗ 1 ¬y ∗ z dvd 1 ∗ z

by (subst dvd-times-left-cancel-iff dvd-times-right-cancel-iff ; fact)+
hence finite ((λ(p,p ′). normalize (p ∗ p ′)) ‘ (?fctrs y × ?fctrs z))
by (intro finite-imageI finite-cartesian-product less dvd-proper-imp-size-less)

(auto simp: x)
ultimately show ?thesis by (rule finite-subset)

qed
qed

next
fix p
assume irreducible p
then show prime-elem p

by (rule irreducible-imp-prime-elem-gcd)
qed

qed

lemma Gcd-eucl-set [code]:
Euclidean-Algorithm.Gcd (set xs) = fold Euclidean-Algorithm.gcd xs 0
by (fact Gcd-set-eq-fold)

lemma Lcm-eucl-set [code]:
Euclidean-Algorithm.Lcm (set xs) = fold Euclidean-Algorithm.lcm xs 1
by (fact Lcm-set-eq-fold)

end

lemma prime-elem-int-abs-iff [simp]:
fixes p :: int
shows prime-elem |p| ←→ prime-elem p
using prime-elem-normalize-iff [of p] by simp

lemma prime-elem-int-minus-iff [simp]:
fixes p :: int
shows prime-elem (− p) ←→ prime-elem p
using prime-elem-normalize-iff [of − p] by simp

lemma prime-int-iff :
fixes p :: int
shows prime p ←→ p > 0 ∧ prime-elem p
by (auto simp add: prime-def dest: prime-elem-not-zeroI)

60

2.2 The (simple) euclidean algorithm as gcd computation
class euclidean-semiring-gcd = normalization-euclidean-semiring + gcd + Gcd +

assumes gcd-eucl: Euclidean-Algorithm.gcd = GCD.gcd
and lcm-eucl: Euclidean-Algorithm.lcm = GCD.lcm

assumes Gcd-eucl: Euclidean-Algorithm.Gcd = GCD.Gcd
and Lcm-eucl: Euclidean-Algorithm.Lcm = GCD.Lcm

begin

subclass semiring-gcd
unfolding gcd-eucl [symmetric] lcm-eucl [symmetric]
by (fact semiring-gcd)

subclass semiring-Gcd
unfolding gcd-eucl [symmetric] lcm-eucl [symmetric]

Gcd-eucl [symmetric] Lcm-eucl [symmetric]
by (fact semiring-Gcd)

subclass factorial-semiring-gcd
proof

show gcd a b = gcd-factorial a b for a b
apply (rule sym)
apply (rule gcdI)

apply (fact gcd-lcm-factorial)+
done

then show lcm a b = lcm-factorial a b for a b
by (simp add: lcm-factorial-gcd-factorial lcm-gcd)

show Gcd A = Gcd-factorial A for A
apply (rule sym)
apply (rule GcdI)

apply (fact gcd-lcm-factorial)+
done

show Lcm A = Lcm-factorial A for A
apply (rule sym)
apply (rule LcmI)

apply (fact gcd-lcm-factorial)+
done

qed

lemma gcd-mod-right [simp]:
a 6= 0 =⇒ gcd a (b mod a) = gcd a b
unfolding gcd.commute [of a b]
by (simp add: gcd-eucl [symmetric] local.gcd-mod)

lemma gcd-mod-left [simp]:
b 6= 0 =⇒ gcd (a mod b) b = gcd a b
by (drule gcd-mod-right [of - a]) (simp add: gcd.commute)

lemma euclidean-size-gcd-le1 [simp]:
assumes a 6= 0

61

shows euclidean-size (gcd a b) ≤ euclidean-size a
proof −

from gcd-dvd1 obtain c where A: a = gcd a b ∗ c ..
with assms have c 6= 0

by auto
moreover from this
have euclidean-size (gcd a b) ≤ euclidean-size (gcd a b ∗ c)

by (rule size-mult-mono)
with A show ?thesis

by simp
qed

lemma euclidean-size-gcd-le2 [simp]:
b 6= 0 =⇒ euclidean-size (gcd a b) ≤ euclidean-size b
by (subst gcd.commute, rule euclidean-size-gcd-le1)

lemma euclidean-size-gcd-less1 :
assumes a 6= 0 and ¬ a dvd b
shows euclidean-size (gcd a b) < euclidean-size a

proof (rule ccontr)
assume ¬euclidean-size (gcd a b) < euclidean-size a
with ‹a 6= 0 › have A: euclidean-size (gcd a b) = euclidean-size a

by (intro le-antisym, simp-all)
have a dvd gcd a b

by (rule dvd-euclidean-size-eq-imp-dvd) (simp-all add: assms A)
hence a dvd b using dvd-gcdD2 by blast
with ‹¬ a dvd b› show False by contradiction

qed

lemma euclidean-size-gcd-less2 :
assumes b 6= 0 and ¬ b dvd a
shows euclidean-size (gcd a b) < euclidean-size b
using assms by (subst gcd.commute, rule euclidean-size-gcd-less1)

lemma euclidean-size-lcm-le1 :
assumes a 6= 0 and b 6= 0
shows euclidean-size a ≤ euclidean-size (lcm a b)

proof −
have a dvd lcm a b by (rule dvd-lcm1)
then obtain c where A: lcm a b = a ∗ c ..
with ‹a 6= 0 › and ‹b 6= 0 › have c 6= 0 by (auto simp: lcm-eq-0-iff)
then show ?thesis by (subst A, intro size-mult-mono)

qed

lemma euclidean-size-lcm-le2 :
a 6= 0 =⇒ b 6= 0 =⇒ euclidean-size b ≤ euclidean-size (lcm a b)
using euclidean-size-lcm-le1 [of b a] by (simp add: ac-simps)

lemma euclidean-size-lcm-less1 :

62

assumes b 6= 0 and ¬ b dvd a
shows euclidean-size a < euclidean-size (lcm a b)

proof (rule ccontr)
from assms have a 6= 0 by auto
assume ¬euclidean-size a < euclidean-size (lcm a b)
with ‹a 6= 0 › and ‹b 6= 0 › have euclidean-size (lcm a b) = euclidean-size a

by (intro le-antisym, simp, intro euclidean-size-lcm-le1)
with assms have lcm a b dvd a

by (rule-tac dvd-euclidean-size-eq-imp-dvd) (auto simp: lcm-eq-0-iff)
hence b dvd a by (rule lcm-dvdD2)
with ‹¬b dvd a› show False by contradiction

qed

lemma euclidean-size-lcm-less2 :
assumes a 6= 0 and ¬ a dvd b
shows euclidean-size b < euclidean-size (lcm a b)
using assms euclidean-size-lcm-less1 [of a b] by (simp add: ac-simps)

end

lemma factorial-euclidean-semiring-gcdI :
OFCLASS(′a::{factorial-semiring-gcd, normalization-euclidean-semiring}, euclidean-semiring-gcd-class)

proof
interpret semiring-Gcd 1 0 times

Euclidean-Algorithm.gcd Euclidean-Algorithm.lcm
Euclidean-Algorithm.Gcd Euclidean-Algorithm.Lcm
divide plus minus unit-factor normalize
rewrites dvd.dvd (∗) = Rings.dvd
by (fact semiring-Gcd) (simp add: dvd.dvd-def dvd-def fun-eq-iff)

show [simp]: Euclidean-Algorithm.gcd = (gcd :: ′a ⇒ -)
proof (rule ext)+

fix a b :: ′a
show Euclidean-Algorithm.gcd a b = gcd a b
proof (induct a b rule: eucl-induct)

case zero
then show ?case

by simp
next

case (mod a b)
moreover have gcd b (a mod b) = gcd b a

using GCD.gcd-add-mult [of b a div b a mod b, symmetric]
by (simp add: div-mult-mod-eq)

ultimately show ?case
by (simp add: Euclidean-Algorithm.gcd-mod ac-simps)

qed
qed
show [simp]: Euclidean-Algorithm.Lcm = (Lcm :: ′a set ⇒ -)

by (auto intro!: Lcm-eqI GCD.dvd-Lcm GCD.Lcm-least)
show Euclidean-Algorithm.lcm = (lcm :: ′a ⇒ -)

63

by (simp add: fun-eq-iff Euclidean-Algorithm.lcm-def semiring-gcd-class.lcm-gcd)
show Euclidean-Algorithm.Gcd = (Gcd :: ′a set ⇒ -)
by (simp add: fun-eq-iff Euclidean-Algorithm.Gcd-def semiring-Gcd-class.Gcd-Lcm)

qed

2.3 The extended euclidean algorithm
class euclidean-ring-gcd = euclidean-semiring-gcd + idom
begin

subclass euclidean-ring ..
subclass ring-gcd ..
subclass factorial-ring-gcd ..

function euclid-ext-aux :: ′a ⇒ ′a ⇒ ′a ⇒ ′a ⇒ ′a ⇒ ′a ⇒ (′a × ′a) × ′a
where euclid-ext-aux s ′ s t ′ t r ′ r = (

if r = 0 then let c = 1 div unit-factor r ′ in ((s ′ ∗ c, t ′ ∗ c), normalize r ′)
else let q = r ′ div r

in euclid-ext-aux s (s ′ − q ∗ s) t (t ′ − q ∗ t) r (r ′ mod r))
by auto

termination
by (relation measure (λ(-, -, -, -, -, b). euclidean-size b))
(simp-all add: mod-size-less)

abbreviation (input) euclid-ext :: ′a ⇒ ′a ⇒ (′a × ′a) × ′a
where euclid-ext ≡ euclid-ext-aux 1 0 0 1

lemma
assumes gcd r ′ r = gcd a b
assumes s ′ ∗ a + t ′ ∗ b = r ′

assumes s ∗ a + t ∗ b = r
assumes euclid-ext-aux s ′ s t ′ t r ′ r = ((x, y), c)
shows euclid-ext-aux-eq-gcd: c = gcd a b

and euclid-ext-aux-bezout: x ∗ a + y ∗ b = gcd a b
proof −

have case euclid-ext-aux s ′ s t ′ t r ′ r of ((x, y), c) ⇒
x ∗ a + y ∗ b = c ∧ c = gcd a b (is ?P (euclid-ext-aux s ′ s t ′ t r ′ r))
using assms(1−3)

proof (induction s ′ s t ′ t r ′ r rule: euclid-ext-aux.induct)
case (1 s ′ s t ′ t r ′ r)
show ?case
proof (cases r = 0)

case True
hence euclid-ext-aux s ′ s t ′ t r ′ r =

((s ′ div unit-factor r ′, t ′ div unit-factor r ′), normalize r ′)
by (subst euclid-ext-aux.simps) (simp add: Let-def)

also have ?P . . .
proof safe

have s ′ div unit-factor r ′ ∗ a + t ′ div unit-factor r ′ ∗ b =

64

(s ′ ∗ a + t ′ ∗ b) div unit-factor r ′

by (cases r ′ = 0) (simp-all add: unit-div-commute)
also have s ′ ∗ a + t ′ ∗ b = r ′ by fact
also have . . . div unit-factor r ′ = normalize r ′ by simp
finally show s ′ div unit-factor r ′ ∗ a + t ′ div unit-factor r ′ ∗ b = normalize

r ′ .
next

from 1 .prems True show normalize r ′ = gcd a b
by simp

qed
finally show ?thesis .

next
case False
hence euclid-ext-aux s ′ s t ′ t r ′ r =

euclid-ext-aux s (s ′ − r ′ div r ∗ s) t (t ′ − r ′ div r ∗ t) r (r ′ mod r)
by (subst euclid-ext-aux.simps) (simp add: Let-def)

also from 1 .prems False have ?P . . .
proof (intro 1 .IH)

have (s ′ − r ′ div r ∗ s) ∗ a + (t ′ − r ′ div r ∗ t) ∗ b =
(s ′ ∗ a + t ′ ∗ b) − r ′ div r ∗ (s ∗ a + t ∗ b) by (simp add: algebra-simps)

also have s ′ ∗ a + t ′ ∗ b = r ′ by fact
also have s ∗ a + t ∗ b = r by fact
also have r ′ − r ′ div r ∗ r = r ′ mod r using div-mult-mod-eq [of r ′ r]

by (simp add: algebra-simps)
finally show (s ′ − r ′ div r ∗ s) ∗ a + (t ′ − r ′ div r ∗ t) ∗ b = r ′ mod r .

qed (auto simp: algebra-simps minus-mod-eq-div-mult [symmetric] gcd.commute)
finally show ?thesis .

qed
qed
with assms(4) show c = gcd a b x ∗ a + y ∗ b = gcd a b

by simp-all
qed

declare euclid-ext-aux.simps [simp del]

definition bezout-coefficients :: ′a ⇒ ′a ⇒ ′a × ′a
where [code]: bezout-coefficients a b = fst (euclid-ext a b)

lemma bezout-coefficients-0 :
bezout-coefficients a 0 = (1 div unit-factor a, 0)
by (simp add: bezout-coefficients-def euclid-ext-aux.simps)

lemma bezout-coefficients-left-0 :
bezout-coefficients 0 a = (0 , 1 div unit-factor a)
by (simp add: bezout-coefficients-def euclid-ext-aux.simps)

lemma bezout-coefficients:
assumes bezout-coefficients a b = (x, y)
shows x ∗ a + y ∗ b = gcd a b

65

using assms by (simp add: bezout-coefficients-def
euclid-ext-aux-bezout [of a b a b 1 0 0 1 x y] prod-eq-iff)

lemma bezout-coefficients-fst-snd:
fst (bezout-coefficients a b) ∗ a + snd (bezout-coefficients a b) ∗ b = gcd a b
by (rule bezout-coefficients) simp

lemma euclid-ext-eq [simp]:
euclid-ext a b = (bezout-coefficients a b, gcd a b) (is ?p = ?q)

proof
show fst ?p = fst ?q

by (simp add: bezout-coefficients-def)
have snd (euclid-ext-aux 1 0 0 1 a b) = gcd a b

by (rule euclid-ext-aux-eq-gcd [of a b a b 1 0 0 1])
(simp-all add: prod-eq-iff)

then show snd ?p = snd ?q
by simp

qed

declare euclid-ext-eq [symmetric, code-unfold]

end

class normalization-euclidean-semiring-multiplicative =
normalization-euclidean-semiring + normalization-semidom-multiplicative

begin

subclass factorial-semiring-multiplicative ..

end

class field-gcd =
field + unique-euclidean-ring + euclidean-ring-gcd + normalization-semidom-multiplicative

begin

subclass normalization-euclidean-semiring-multiplicative ..

subclass normalization-euclidean-semiring ..

subclass semiring-gcd-mult-normalize ..

end

2.4 Typical instances
instance nat :: normalization-euclidean-semiring ..

instance nat :: euclidean-semiring-gcd
proof

66

interpret semiring-Gcd 1 0 times
Euclidean-Algorithm.gcd Euclidean-Algorithm.lcm
Euclidean-Algorithm.Gcd Euclidean-Algorithm.Lcm
divide plus minus unit-factor normalize
rewrites dvd.dvd (∗) = Rings.dvd
by (fact semiring-Gcd) (simp add: dvd.dvd-def dvd-def fun-eq-iff)

show [simp]: (Euclidean-Algorithm.gcd :: nat ⇒ -) = gcd
proof (rule ext)+

fix m n :: nat
show Euclidean-Algorithm.gcd m n = gcd m n
proof (induct m n rule: eucl-induct)

case zero
then show ?case

by simp
next

case (mod m n)
then have gcd n (m mod n) = gcd n m

using gcd-nat.simps [of m n] by (simp add: ac-simps)
with mod show ?case

by (simp add: Euclidean-Algorithm.gcd-mod ac-simps)
qed

qed
show [simp]: (Euclidean-Algorithm.Lcm :: nat set ⇒ -) = Lcm

by (auto intro!: ext Lcm-eqI)
show (Euclidean-Algorithm.lcm :: nat ⇒ -) = lcm
by (simp add: fun-eq-iff Euclidean-Algorithm.lcm-def semiring-gcd-class.lcm-gcd)

show (Euclidean-Algorithm.Gcd :: nat set ⇒ -) = Gcd
by (simp add: fun-eq-iff Euclidean-Algorithm.Gcd-def semiring-Gcd-class.Gcd-Lcm)

qed

instance nat :: normalization-euclidean-semiring-multiplicative ..

lemma prime-factorization-Suc-0 [simp]: prime-factorization (Suc 0) = {#}
unfolding One-nat-def [symmetric] using prime-factorization-1 .

instance int :: normalization-euclidean-semiring ..

instance int :: euclidean-ring-gcd
proof

interpret semiring-Gcd 1 0 times
Euclidean-Algorithm.gcd Euclidean-Algorithm.lcm
Euclidean-Algorithm.Gcd Euclidean-Algorithm.Lcm
divide plus minus unit-factor normalize
rewrites dvd.dvd (∗) = Rings.dvd
by (fact semiring-Gcd) (simp add: dvd.dvd-def dvd-def fun-eq-iff)

show [simp]: (Euclidean-Algorithm.gcd :: int ⇒ -) = gcd
proof (rule ext)+

fix k l :: int
show Euclidean-Algorithm.gcd k l = gcd k l

67

proof (induct k l rule: eucl-induct)
case zero
then show ?case

by simp
next

case (mod k l)
have gcd l (k mod l) = gcd l k
proof (cases l 0 ::int rule: linorder-cases)

case less
then show ?thesis

using gcd-non-0-int [of − l − k] by (simp add: ac-simps)
next

case equal
with mod show ?thesis

by simp
next

case greater
then show ?thesis

using gcd-non-0-int [of l k] by (simp add: ac-simps)
qed
with mod show ?case

by (simp add: Euclidean-Algorithm.gcd-mod ac-simps)
qed

qed
show [simp]: (Euclidean-Algorithm.Lcm :: int set ⇒ -) = Lcm

by (auto intro!: ext Lcm-eqI)
show (Euclidean-Algorithm.lcm :: int ⇒ -) = lcm
by (simp add: fun-eq-iff Euclidean-Algorithm.lcm-def semiring-gcd-class.lcm-gcd)

show (Euclidean-Algorithm.Gcd :: int set ⇒ -) = Gcd
by (simp add: fun-eq-iff Euclidean-Algorithm.Gcd-def semiring-Gcd-class.Gcd-Lcm)

qed

instance int :: normalization-euclidean-semiring-multiplicative ..

lemma (in idom) prime-CHAR-semidom:
assumes CHAR(′a) > 0
shows prime CHAR(′a)

proof −
have False if ab: a 6= 1 b 6= 1 CHAR(′a) = a ∗ b for a b
proof −

from assms ab have a > 0 b > 0
by (auto intro!: Nat.gr0I)

have of-nat (a ∗ b) = (0 :: ′a)
using ab by (metis of-nat-CHAR)

also have of-nat (a ∗ b) = (of-nat a :: ′a) ∗ of-nat b
by simp

finally have of-nat a ∗ of-nat b = (0 :: ′a) .
moreover have of-nat a ∗ of-nat b 6= (0 :: ′a)

using ab ‹a > 0 › ‹b > 0 ›

68

by (intro no-zero-divisors) (auto simp: of-nat-eq-0-iff-char-dvd)
ultimately show False

by contradiction
qed
moreover have CHAR(′a) > 1

using assms CHAR-not-1 ′ by linarith
ultimately have prime-elem CHAR(′a)
by (intro irreducible-imp-prime-elem) (auto simp: Factorial-Ring.irreducible-def)

thus ?thesis
by (auto simp: prime-def)

qed

end

3 Primes
theory Primes
imports Euclidean-Algorithm
begin

3.1 Primes on nat and int
lemma Suc-0-not-prime-nat [simp]: ¬ prime (Suc 0)

using not-prime-1 [where ? ′a = nat] by simp

lemma prime-ge-2-nat:
p ≥ 2 if prime p for p :: nat

proof −
from that have p 6= 0 and p 6= 1

by (auto dest: prime-elem-not-zeroI prime-elem-not-unit)
then show ?thesis

by simp
qed

lemma prime-ge-2-int:
p ≥ 2 if prime p for p :: int

proof −
from that have prime-elem p and |p| = p

by (auto dest: normalize-prime)
then have p 6= 0 and |p| 6= 1 and p ≥ 0

by (auto dest: prime-elem-not-zeroI prime-elem-not-unit)
then show ?thesis

by simp
qed

lemma prime-ge-0-int: prime p =⇒ p ≥ (0 ::int)
using prime-ge-2-int [of p] by simp

lemma prime-gt-0-nat: prime p =⇒ p > (0 ::nat)

69

using prime-ge-2-nat [of p] by simp

lemma prime-gt-0-int: prime p =⇒ p > (0 ::int)
using prime-ge-2-int [of p] by simp

lemma prime-ge-1-nat: prime p =⇒ p ≥ (1 ::nat)
using prime-ge-2-nat [of p] by simp

lemma prime-ge-Suc-0-nat: prime p =⇒ p ≥ Suc 0
using prime-ge-1-nat [of p] by simp

lemma prime-ge-1-int: prime p =⇒ p ≥ (1 ::int)
using prime-ge-2-int [of p] by simp

lemma prime-gt-1-nat: prime p =⇒ p > (1 ::nat)
using prime-ge-2-nat [of p] by simp

lemma prime-gt-Suc-0-nat: prime p =⇒ p > Suc 0
using prime-gt-1-nat [of p] by simp

lemma prime-gt-1-int: prime p =⇒ p > (1 ::int)
using prime-ge-2-int [of p] by simp

lemma prime-natI :
prime p if p ≥ 2 and

∧
m n. p dvd m ∗ n =⇒ p dvd m ∨ p dvd n for p :: nat

using that by (auto intro!: primeI prime-elemI)

lemma prime-intI :
prime p if p ≥ 2 and

∧
m n. p dvd m ∗ n =⇒ p dvd m ∨ p dvd n for p :: int

using that by (auto intro!: primeI prime-elemI)

lemma prime-elem-nat-iff [simp]:
prime-elem n ←→ prime n for n :: nat
by (simp add: prime-def)

lemma prime-elem-iff-prime-abs [simp]:
prime-elem k ←→ prime |k| for k :: int
by (auto intro: primeI)

lemma prime-nat-int-transfer [simp]:
prime (int n) ←→ prime n (is ?P ←→ ?Q)

proof
assume ?P
then have n ≥ 2

by (auto dest: prime-ge-2-int)
then show ?Q
proof (rule prime-natI)

70

fix r s
assume n dvd r ∗ s
with of-nat-dvd-iff [of n r ∗ s] have int n dvd int r ∗ int s

by simp
with ‹?P› have int n dvd int r ∨ int n dvd int s

using prime-dvd-mult-iff [of int n int r int s]
by simp

then show n dvd r ∨ n dvd s
by simp

qed
next

assume ?Q
then have int n ≥ 2

by (auto dest: prime-ge-2-nat)
then show ?P
proof (rule prime-intI)

fix r s
assume int n dvd r ∗ s
then have n dvd nat |r ∗ s|

by simp
then have n dvd nat |r | ∗ nat |s|

by (simp add: nat-abs-mult-distrib)
with ‹?Q› have n dvd nat |r | ∨ n dvd nat |s|

using prime-dvd-mult-iff [of n nat |r | nat |s|]
by simp

then show int n dvd r ∨ int n dvd s
by simp

qed
qed

lemma prime-nat-iff-prime [simp]:
prime (nat k) ←→ prime k

proof (cases k ≥ 0)
case True
then show ?thesis

using prime-nat-int-transfer [of nat k] by simp
next

case False
then show ?thesis

by (auto dest: prime-ge-2-int)
qed

lemma prime-int-nat-transfer :
prime k ←→ k ≥ 0 ∧ prime (nat k)
by (auto dest: prime-ge-2-int)

lemma prime-nat-naiveI :
prime p if p ≥ 2 and dvd:

∧
n. n dvd p =⇒ n = 1 ∨ n = p for p :: nat

proof (rule primeI , rule prime-elemI)

71

fix m n :: nat
assume p dvd m ∗ n
then obtain r s where p = r ∗ s r dvd m s dvd n

by (blast dest: division-decomp)
moreover have r = 1 ∨ r = p

using ‹r dvd m› ‹p = r ∗ s› dvd [of r] by simp
ultimately show p dvd m ∨ p dvd n

by auto
qed (use ‹p ≥ 2 › in simp-all)

lemma prime-int-naiveI :
prime p if p ≥ 2 and dvd:

∧
k. k dvd p =⇒ |k| = 1 ∨ |k| = p for p :: int

proof −
from ‹p ≥ 2 › have nat p ≥ 2

by simp
then have prime (nat p)
proof (rule prime-nat-naiveI)

fix n
assume n dvd nat p
with ‹p ≥ 2 › have n dvd nat |p|

by simp
then have int n dvd p

by simp
with dvd [of int n] show n = 1 ∨ n = nat p

by auto
qed
then show ?thesis

by simp
qed

lemma prime-nat-iff :
prime (n :: nat) ←→ (1 < n ∧ (∀m. m dvd n −→ m = 1 ∨ m = n))

proof (safe intro!: prime-gt-1-nat)
assume prime n
then have ∗: prime-elem n

by simp
fix m assume m: m dvd n m 6= n
from ∗ ‹m dvd n› have n dvd m ∨ is-unit m

by (intro irreducibleD ′ prime-elem-imp-irreducible)
with m show m = 1 by (auto dest: dvd-antisym)

next
assume n > 1 ∀m. m dvd n −→ m = 1 ∨ m = n
then show prime n

using prime-nat-naiveI [of n] by auto
qed

lemma prime-nat-iff ′:
prime (p :: nat) ←→ p > 1 ∧ (∀n ∈ {2 ..<p}. ¬ n dvd p)

proof safe

72

assume p > 1 and ∗: ∀n∈{2 ..<p}. ¬n dvd p
show prime p unfolding prime-nat-iff
proof (intro conjI allI impI)

fix m assume m dvd p
with ‹p > 1 › have m 6= 0 by (intro notI) auto
hence m ≥ 1 by simp
moreover from ‹m dvd p› and ∗ have m /∈ {2 ..<p} by blast
with ‹m dvd p› and ‹p > 1 › have m ≤ 1 ∨ m = p by (auto dest: dvd-imp-le)
ultimately show m = 1 ∨ m = p by simp

qed fact+
qed (auto simp: prime-nat-iff)

lemma prime-int-iff :
prime (n::int) ←→ (1 < n ∧ (∀m. m ≥ 0 ∧ m dvd n −→ m = 1 ∨ m = n))

proof (intro iffI conjI allI impI ; (elim conjE)?)
assume ∗: prime n
hence irred: irreducible n by (auto intro: prime-elem-imp-irreducible)
from ∗ have n ≥ 0 n 6= 0 n 6= 1

by (auto simp add: prime-ge-0-int)
thus n > 1 by presburger
fix m assume m dvd n ‹m ≥ 0 ›
with irred have m dvd 1 ∨ n dvd m by (auto simp: irreducible-altdef)
with ‹m dvd n› ‹m ≥ 0 › ‹n > 1 › show m = 1 ∨ m = n

using associated-iff-dvd[of m n] by auto
next

assume n: 1 < n ∀m. m ≥ 0 ∧ m dvd n −→ m = 1 ∨ m = n
hence nat n > 1 by simp
moreover have ∀m. m dvd nat n −→ m = 1 ∨ m = nat n
proof (intro allI impI)

fix m assume m dvd nat n
with ‹n > 1 › have m dvd nat |n|

by simp
then have int m dvd n

by simp
with n(2) have int m = 1 ∨ int m = n

using of-nat-0-le-iff by blast
thus m = 1 ∨ m = nat n by auto

qed
ultimately show prime n

unfolding prime-int-nat-transfer prime-nat-iff by auto
qed

lemma prime-int-iff ′:
prime (p :: int) ←→ p > 1 ∧ (∀n ∈ {2 ..<p}. ¬ n dvd p) (is ?P ←→ ?Q)

proof (cases p ≥ 0)
case True
have ?P ←→ prime (nat p)

by simp
also have . . . ←→ p > 1 ∧ (∀n∈{2 ..<nat p}. ¬ n dvd nat |p|)

73

using True by (simp add: prime-nat-iff ′)
also have {2 ..<nat p} = nat ‘ {2 ..<p}

using True int-eq-iff by fastforce
finally show ?P ←→ ?Q by simp

next
case False
then show ?thesis

by (auto simp add: prime-ge-0-int)
qed

lemma prime-nat-not-dvd:
assumes prime p p > n n 6= (1 ::nat)
shows ¬n dvd p

proof
assume n dvd p
from assms(1) have irreducible p by (simp add: prime-elem-imp-irreducible)
from irreducibleD ′[OF this ‹n dvd p›] ‹n dvd p› ‹p > n› assms show False

by (cases n = 0) (auto dest!: dvd-imp-le)
qed

lemma prime-int-not-dvd:
assumes prime p p > n n > (1 ::int)
shows ¬n dvd p

proof
assume n dvd p
from assms(1) have irreducible p by (auto intro: prime-elem-imp-irreducible)
from irreducibleD ′[OF this ‹n dvd p›] ‹n dvd p› ‹p > n› assms show False

by (auto dest!: zdvd-imp-le)
qed

lemma prime-odd-nat: prime p =⇒ p > (2 ::nat) =⇒ odd p
by (intro prime-nat-not-dvd) auto

lemma prime-odd-int: prime p =⇒ p > (2 ::int) =⇒ odd p
by (intro prime-int-not-dvd) auto

lemma prime-int-altdef :
prime p = (1 < p ∧ (∀m::int. m ≥ 0 −→ m dvd p −→

m = 1 ∨ m = p))
unfolding prime-int-iff by blast

lemma not-prime-eq-prod-nat:
assumes m > 1 ¬ prime (m::nat)
shows ∃n k. n = m ∗ k ∧ 1 < m ∧ m < n ∧ 1 < k ∧ k < n
using assms irreducible-altdef [of m]
by (auto simp: prime-elem-iff-irreducible irreducible-altdef)

74

3.2 Make prime naively executable
lemma prime-int-numeral-eq [simp]:

prime (numeral m :: int) ←→ prime (numeral m :: nat)
by (simp add: prime-int-nat-transfer)

class check-prime-by-range = normalization-semidom + discrete-linordered-semidom
+

assumes prime-iff : ‹prime a ←→ 1 < a ∧ (∀ d∈{2 ..a div 2}. ¬ d dvd a)›
begin

lemma two-is-prime [simp]:
‹prime 2 ›
by (simp add: prime-iff)

end

lemma divisor-less-eq-half-nat:
‹m ≤ n div 2 › if ‹m dvd n› ‹m < n› for m n :: nat
using that by (auto simp add: less-eq-div-iff-mult-less-eq)

instance nat :: check-prime-by-range
apply standard
apply (auto simp add: prime-nat-iff)
apply (rule ccontr)
apply (auto simp add: neq-iff)
apply (metis One-nat-def Suc-1 Suc-leI atLeastAtMost-iff divisor-less-eq-half-nat)
done

lemma two-is-prime-nat [simp]:
‹prime (2 ::nat)›
by (fact two-is-prime)

lemma divisor-less-eq-half-int:
‹k ≤ l div 2 › if ‹k dvd l› ‹k < l› ‹l ≥ 0 › ‹k ≥ 0 › for k l :: int

proof −
define m n where ‹m = nat |k|› ‹n = nat |l|›
with ‹l ≥ 0 › ‹k ≥ 0 › have ‹k = int m› ‹l = int n›

by simp-all
with that show ?thesis

using divisor-less-eq-half-nat [of m n] by simp
qed

instance int :: check-prime-by-range
apply standard
apply (auto simp add: prime-int-iff)
apply (smt (verit) int-div-less-self)
apply (rule ccontr)
apply (auto simp add: neq-iff zdvd-not-zless)
apply (metis div-by-0 dvd-div-eq-0-iff less-le-not-le one-dvd order-le-less

75

zdvd-not-zless)
apply (metis atLeastAtMost-iff divisor-less-eq-half-int dvd-div-eq-0-iff

int-one-le-iff-zero-less nle-le one-add-one pos-imp-zdiv-nonneg-iff zdiv-eq-0-iff
zless-imp-add1-zle)

done

lemma prime-nat-numeral-eq [simp]: — TODO Sieve Of Erathosthenes might
speed this up

prime (numeral m :: nat) ←→
(1 ::nat) < numeral m ∧
(∀n::nat ∈ set [2 ..<Suc (numeral m div 2)]. ¬ n dvd numeral m)

using prime-iff [of ‹numeral m :: nat›]
by (simp only: set-upt atLeastLessThanSuc-atLeastAtMost)

context check-prime-by-range
begin

definition check-divisors :: ‹ ′a ⇒ ′a ⇒ ′a ⇒ bool›
where ‹check-divisors l u a ←→ (∀ d∈{l..u}. ¬ d dvd a)›

lemma check-divisors-rec [code]:
‹check-divisors l u a ←→ u < l ∨ (¬ l dvd a ∧ check-divisors (l + 1) u a)›
apply (auto simp add: check-divisors-def not-less)
apply (metis local.add-increasing2 local.atLeastAtMost-iff local.linear local.order-eq-iff

local.zero-le-one)
subgoal for d

apply (cases ‹l + 1 ≤ d›)
apply (auto simp add: not-le)

apply (metis local.dual-order .antisym local.less-eq-iff-succ-less)
done

done

lemma prime-eq-check-divisors [code]:
‹prime a ←→ a > 1 ∧ check-divisors 2 (a div 2) a›
by (simp add: check-divisors-def prime-iff)

end

3.3 Largest exponent of a prime factor
lemma prime-factor-nat:

n 6= (1 ::nat) =⇒ ∃ p. prime p ∧ p dvd n
using prime-divisor-exists[of n]
by (cases n = 0) (auto intro: exI [of - 2 ::nat])

lemma prime-factor-int:
fixes k :: int
assumes |k| 6= 1
obtains p where prime p p dvd k

76

proof (cases k = 0)
case True
then have prime (2 ::int) and 2 dvd k

by simp-all
with that show thesis

by blast
next

case False
with assms prime-divisor-exists [of k] obtain p where prime p p dvd k

by auto
with that show thesis

by blast
qed

Possibly duplicates other material, but avoid the complexities of multisets.
lemma prime-power-cancel-less:

assumes prime p and eq: m ∗ (p ^ k) = m ′ ∗ (p ^ k ′) and less: k < k ′ and ¬
p dvd m

shows False
proof −

obtain l where l: k ′ = k + l and l > 0
using less less-imp-add-positive by auto

have m = m ∗ (p ^ k) div (p ^ k)
using ‹prime p› by simp

also have . . . = m ′ ∗ (p ^ k ′) div (p ^ k)
using eq by simp

also have . . . = m ′ ∗ (p ^ l) ∗ (p ^ k) div (p ^ k)
by (simp add: l mult.commute mult.left-commute power-add)

also have ... = m ′ ∗ (p ^ l)
using ‹prime p› by simp

finally have p dvd m
using ‹l > 0 › by simp

with assms show False
by simp

qed

lemma prime-power-cancel:
assumes prime p and eq: m ∗ (p ^ k) = m ′ ∗ (p ^ k ′) and ¬ p dvd m ¬ p dvd

m ′

shows k = k ′

using prime-power-cancel-less [OF ‹prime p›] assms
by (metis linorder-neqE-nat)

lemma prime-power-cancel2 :
assumes prime p m ∗ (p ^ k) = m ′ ∗ (p ^ k ′) ¬ p dvd m ¬ p dvd m ′

obtains m = m ′ k = k ′

using prime-power-cancel [OF assms] assms by auto

lemma prime-power-canonical:

77

fixes m :: nat
assumes prime p m > 0
shows ∃ k n. ¬ p dvd n ∧ m = n ∗ p ^ k

using ‹m > 0 ›
proof (induction m rule: less-induct)

case (less m)
show ?case
proof (cases p dvd m)

case True
then obtain m ′ where m ′: m = p ∗ m ′

using dvdE by blast
with ‹prime p› have 0 < m ′ m ′ < m

using less.prems prime-nat-iff by auto
with m ′ less show ?thesis

by (metis power-Suc mult.left-commute)
next

case False
then show ?thesis

by (metis mult.right-neutral power-0)
qed

qed

3.4 Infinitely many primes
lemma next-prime-bound: ∃ p::nat. prime p ∧ n < p ∧ p ≤ fact n + 1
proof−

have f1 : fact n + 1 6= (1 ::nat) using fact-ge-1 [of n, where ′a=nat] by arith
from prime-factor-nat [OF f1]
obtain p :: nat where prime p and p dvd fact n + 1 by auto
then have p ≤ fact n + 1 apply (intro dvd-imp-le) apply auto done
{ assume p ≤ n

from ‹prime p› have p ≥ 1
by (cases p, simp-all)

with ‹p <= n› have p dvd fact n
by (intro dvd-fact)

with ‹p dvd fact n + 1 › have p dvd fact n + 1 − fact n
by (rule dvd-diff-nat)

then have p dvd 1 by simp
then have p <= 1 by auto
moreover from ‹prime p› have p > 1

using prime-nat-iff by blast
ultimately have False by auto}

then have n < p by presburger
with ‹prime p› and ‹p <= fact n + 1 › show ?thesis by auto

qed

lemma bigger-prime: ∃ p. prime p ∧ p > (n::nat)
using next-prime-bound by auto

78

lemma primes-infinite: ¬ (finite {(p::nat). prime p})
proof

assume finite {(p::nat). prime p}
with Max-ge have (∃ b. (∀ x ∈ {(p::nat). prime p}. x ≤ b))

by auto
then obtain b where ∀ (x::nat). prime x −→ x ≤ b

by auto
with bigger-prime [of b] show False

by auto
qed

3.5 Powers of Primes

Versions for type nat only
lemma prime-product:

fixes p::nat
assumes prime (p ∗ q)
shows p = 1 ∨ q = 1

proof −
from assms have

1 < p ∗ q and P:
∧

m. m dvd p ∗ q =⇒ m = 1 ∨ m = p ∗ q
unfolding prime-nat-iff by auto

from ‹1 < p ∗ q› have p 6= 0 by (cases p) auto
then have Q: p = p ∗ q ←→ q = 1 by auto
have p dvd p ∗ q by simp
then have p = 1 ∨ p = p ∗ q by (rule P)
then show ?thesis by (simp add: Q)

qed

lemma prime-power-mult-nat:
fixes p :: nat
assumes p: prime p and xy: x ∗ y = p ^ k
shows ∃ i j. x = p ^ i ∧ y = p^ j

using xy
proof(induct k arbitrary: x y)

case 0 thus ?case apply simp by (rule exI [where x=0], simp)
next

case (Suc k x y)
from Suc.prems have pxy: p dvd x∗y by auto
from prime-dvd-multD [OF p pxy] have pxyc: p dvd x ∨ p dvd y .
from p have p0 : p 6= 0 by − (rule ccontr , simp)
{assume px: p dvd x

then obtain d where d: x = p∗d unfolding dvd-def by blast
from Suc.prems d have p∗d∗y = p^Suc k by simp
hence th: d∗y = p^k using p0 by simp
from Suc.hyps[OF th] obtain i j where ij: d = p^i y = p^j by blast
with d have x = p^Suc i by simp
with ij(2) have ?case by blast}

79

moreover
{assume px: p dvd y

then obtain d where d: y = p∗d unfolding dvd-def by blast
from Suc.prems d have p∗d∗x = p^Suc k by (simp add: mult.commute)
hence th: d∗x = p^k using p0 by simp
from Suc.hyps[OF th] obtain i j where ij: d = p^i x = p^j by blast
with d have y = p^Suc i by simp
with ij(2) have ?case by blast}

ultimately show ?case using pxyc by blast
qed

lemma prime-power-exp-nat:
fixes p::nat
assumes p: prime p and n: n 6= 0

and xn: x^n = p^k shows ∃ i. x = p^i
using n xn

proof(induct n arbitrary: k)
case 0 thus ?case by simp

next
case (Suc n k) hence th: x∗x^n = p^k by simp
{assume n = 0 with Suc have ?case by simp (rule exI [where x=k], simp)}
moreover
{assume n: n 6= 0

from prime-power-mult-nat[OF p th]
obtain i j where ij: x = p^i x^n = p^jby blast
from Suc.hyps[OF n ij(2)] have ?case .}

ultimately show ?case by blast
qed

lemma divides-primepow-nat:
fixes p :: nat
assumes p: prime p
shows d dvd p ^ k ←→ (∃ i≤k. d = p ^ i)
using assms divides-primepow [of p d k] by (auto intro: le-imp-power-dvd)

lemma gcd-prime-int:
assumes prime (p :: int)
shows gcd p k = (if p dvd k then p else 1)

proof −
have p ≥ 0

using assms prime-ge-0-int by auto
show ?thesis
proof (cases p dvd k)

case True
thus ?thesis using assms ‹p ≥ 0 › by auto

next
case False
hence coprime p k

using assms by (simp add: prime-imp-coprime)

80

with False show ?thesis
by auto

qed
qed

3.6 Chinese Remainder Theorem Variants
lemma bezout-gcd-nat:

fixes a::nat shows ∃ x y. a ∗ x − b ∗ y = gcd a b ∨ b ∗ x − a ∗ y = gcd a b
using bezout-nat[of a b]

by (metis bezout-nat diff-add-inverse gcd-add-mult gcd.commute
gcd-nat.right-neutral mult-0)

lemma gcd-bezout-sum-nat:
fixes a::nat
assumes a ∗ x + b ∗ y = d
shows gcd a b dvd d

proof−
let ?g = gcd a b

have dv: ?g dvd a∗x ?g dvd b ∗ y
by simp-all

from dvd-add[OF dv] assms
show ?thesis by auto

qed

A binary form of the Chinese Remainder Theorem.
lemma chinese-remainder :

fixes a::nat assumes ab: coprime a b and a: a 6= 0 and b: b 6= 0
shows ∃ x q1 q2 . x = u + q1 ∗ a ∧ x = v + q2 ∗ b

proof−
from bezout-add-strong-nat[OF a, of b] bezout-add-strong-nat[OF b, of a]
obtain d1 x1 y1 d2 x2 y2 where dxy1 : d1 dvd a d1 dvd b a ∗ x1 = b ∗ y1 + d1

and dxy2 : d2 dvd b d2 dvd a b ∗ x2 = a ∗ y2 + d2 by blast
then have d12 : d1 = 1 d2 = 1

using ab coprime-common-divisor-nat [of a b] by blast+
let ?x = v ∗ a ∗ x1 + u ∗ b ∗ x2
let ?q1 = v ∗ x1 + u ∗ y2
let ?q2 = v ∗ y1 + u ∗ x2
from dxy2 (3)[simplified d12] dxy1 (3)[simplified d12]
have ?x = u + ?q1 ∗ a ?x = v + ?q2 ∗ b

by algebra+
thus ?thesis by blast

qed

Primality
lemma coprime-bezout-strong:

fixes a::nat assumes coprime a b b 6= 1
shows ∃ x y. a ∗ x = b ∗ y + 1

81

by (metis add.commute add.right-neutral assms(1) assms(2) chinese-remainder
coprime-1-left coprime-1-right coprime-crossproduct-nat mult.commute mult.right-neutral
mult-cancel-left)

lemma bezout-prime:
assumes p: prime p and pa: ¬ p dvd a
shows ∃ x y. a∗x = Suc (p∗y)

proof −
have ap: coprime a p

using coprime-commute p pa prime-imp-coprime by auto
moreover from p have p 6= 1 by auto
ultimately have ∃ x y. a ∗ x = p ∗ y + 1

by (rule coprime-bezout-strong)
then show ?thesis by simp

qed

3.7 Multiplicity and primality for natural numbers and in-
tegers

lemma prime-factors-gt-0-nat:
p ∈ prime-factors x =⇒ p > (0 ::nat)
by (simp add: in-prime-factors-imp-prime prime-gt-0-nat)

lemma prime-factors-gt-0-int:
p ∈ prime-factors x =⇒ p > (0 ::int)
by (simp add: in-prime-factors-imp-prime prime-gt-0-int)

lemma prime-factors-ge-0-int [elim]:
fixes n :: int
shows p ∈ prime-factors n =⇒ p ≥ 0
by (drule prime-factors-gt-0-int) simp

lemma prod-mset-prime-factorization-int:
fixes n :: int
assumes n > 0
shows prod-mset (prime-factorization n) = n
using assms by (simp add: prod-mset-prime-factorization)

lemma prime-factorization-exists-nat:
n > 0 =⇒ (∃M . (∀ p::nat ∈ set-mset M . prime p) ∧ n = (

∏
i ∈# M . i))

using prime-factorization-exists[of n] by auto

lemma prod-mset-prime-factorization-nat [simp]:
(n::nat) > 0 =⇒ prod-mset (prime-factorization n) = n
by (subst prod-mset-prime-factorization) simp-all

lemma prime-factorization-nat:
n > (0 ::nat) =⇒ n = (

∏
p ∈ prime-factors n. p ^ multiplicity p n)

by (simp add: prod-prime-factors)

82

lemma prime-factorization-int:
n > (0 ::int) =⇒ n = (

∏
p ∈ prime-factors n. p ^ multiplicity p n)

by (simp add: prod-prime-factors)

lemma prime-factorization-unique-nat:
fixes f :: nat ⇒ -
assumes S-eq: S = {p. 0 < f p}

and finite S
and S : ∀ p∈S . prime p n = (

∏
p∈S . p ^ f p)

shows S = prime-factors n ∧ (∀ p. prime p −→ f p = multiplicity p n)
using assms by (intro prime-factorization-unique ′′) auto

lemma prime-factorization-unique-int:
fixes f :: int ⇒ -
assumes S-eq: S = {p. 0 < f p}

and finite S
and S : ∀ p∈S . prime p abs n = (

∏
p∈S . p ^ f p)

shows S = prime-factors n ∧ (∀ p. prime p −→ f p = multiplicity p n)
using assms by (intro prime-factorization-unique ′′) auto

lemma prime-factors-characterization-nat:
S = {p. 0 < f (p::nat)} =⇒

finite S =⇒ ∀ p∈S . prime p =⇒ n = (
∏

p∈S . p ^ f p) =⇒ prime-factors n = S
by (rule prime-factorization-unique-nat [THEN conjunct1 , symmetric])

lemma prime-factors-characterization ′-nat:
finite {p. 0 < f (p::nat)} =⇒
(∀ p. 0 < f p −→ prime p) =⇒

prime-factors (
∏

p | 0 < f p. p ^ f p) = {p. 0 < f p}
by (rule prime-factors-characterization-nat) auto

lemma prime-factors-characterization-int:
S = {p. 0 < f (p::int)} =⇒ finite S =⇒
∀ p∈S . prime p =⇒ abs n = (

∏
p∈S . p ^ f p) =⇒ prime-factors n = S

by (rule prime-factorization-unique-int [THEN conjunct1 , symmetric])

lemma abs-prod: abs (prod f A :: ′a :: linordered-idom) = prod (λx. abs (f x)) A
by (cases finite A, induction A rule: finite-induct) (simp-all add: abs-mult)

lemma primes-characterization ′-int [rule-format]:
finite {p. p ≥ 0 ∧ 0 < f (p::int)} =⇒ ∀ p. 0 < f p −→ prime p =⇒

prime-factors (
∏

p | p ≥ 0 ∧ 0 < f p. p ^ f p) = {p. p ≥ 0 ∧ 0 < f p}
by (rule prime-factors-characterization-int) (auto simp: abs-prod prime-ge-0-int)

lemma multiplicity-characterization-nat:
S = {p. 0 < f (p::nat)} =⇒ finite S =⇒ ∀ p∈S . prime p =⇒ prime p =⇒

n = (
∏

p∈S . p ^ f p) =⇒ multiplicity p n = f p

83

by (frule prime-factorization-unique-nat [of S f n, THEN conjunct2 , rule-format,
symmetric]) auto

lemma multiplicity-characterization ′-nat: finite {p. 0 < f (p::nat)} −→
(∀ p. 0 < f p −→ prime p) −→ prime p −→

multiplicity p (
∏

p | 0 < f p. p ^ f p) = f p
by (intro impI , rule multiplicity-characterization-nat) auto

lemma multiplicity-characterization-int: S = {p. 0 < f (p::int)} =⇒
finite S =⇒ ∀ p∈S . prime p =⇒ prime p =⇒ n = (

∏
p∈S . p ^ f p) =⇒

multiplicity p n = f p
by (frule prime-factorization-unique-int [of S f n, THEN conjunct2 , rule-format,

symmetric])
(auto simp: abs-prod power-abs prime-ge-0-int intro!: prod.cong)

lemma multiplicity-characterization ′-int [rule-format]:
finite {p. p ≥ 0 ∧ 0 < f (p::int)} =⇒
(∀ p. 0 < f p −→ prime p) =⇒ prime p =⇒

multiplicity p (
∏

p | p ≥ 0 ∧ 0 < f p. p ^ f p) = f p
by (rule multiplicity-characterization-int) (auto simp: prime-ge-0-int)

lemma multiplicity-one-nat [simp]: multiplicity p (Suc 0) = 0
unfolding One-nat-def [symmetric] by (rule multiplicity-one)

lemma multiplicity-eq-nat:
fixes x and y::nat
assumes x > 0 y > 0

∧
p. prime p =⇒ multiplicity p x = multiplicity p y

shows x = y
using multiplicity-eq-imp-eq[of x y] assms by simp

lemma multiplicity-eq-int:
fixes x y :: int
assumes x > 0 y > 0

∧
p. prime p =⇒ multiplicity p x = multiplicity p y

shows x = y
using multiplicity-eq-imp-eq[of x y] assms by simp

lemma multiplicity-prod-prime-powers:
assumes finite S

∧
x. x ∈ S =⇒ prime x prime p

shows multiplicity p (
∏

p ∈ S . p ^ f p) = (if p ∈ S then f p else 0)
proof −

define g where g = (λx. if x ∈ S then f x else 0)
define A where A = Abs-multiset g
have {x. g x > 0} ⊆ S by (auto simp: g-def)
from finite-subset[OF this assms(1)] have [simp]: finite {x. 0 < g x}

by simp
from assms have count-A: count A x = g x for x unfolding A-def

by simp
have set-mset-A: set-mset A = {x∈S . f x > 0}

unfolding set-mset-def count-A by (auto simp: g-def)

84

with assms have prime: prime x if x ∈# A for x using that by auto
from set-mset-A assms have (

∏
p ∈ S . p ^ f p) = (

∏
p ∈ S . p ^ g p)

by (intro prod.cong) (auto simp: g-def)
also from set-mset-A assms have . . . = (

∏
p ∈ set-mset A. p ^ g p)

by (intro prod.mono-neutral-right) (auto simp: g-def set-mset-A)
also have . . . = prod-mset A

by (auto simp: prod-mset-multiplicity count-A set-mset-A intro!: prod.cong)
also from assms have multiplicity p . . . = sum-mset (image-mset (multiplicity

p) A)
by (subst prime-elem-multiplicity-prod-mset-distrib) (auto dest: prime)

also from assms have image-mset (multiplicity p) A = image-mset (λx. if x =
p then 1 else 0) A

by (intro image-mset-cong) (auto simp: prime-multiplicity-other dest: prime)
also have sum-mset . . . = (if p ∈ S then f p else 0) by (simp add: sum-mset-delta

count-A g-def)
finally show ?thesis .

qed

lemma prime-factorization-prod-mset:
assumes 0 /∈# A
shows prime-factorization (prod-mset A) =

∑
#(image-mset prime-factorization

A)
using assms by (induct A) (auto simp add: prime-factorization-mult)

lemma prime-factors-prod:
assumes finite A and 0 /∈ f ‘ A
shows prime-factors (prod f A) =

⋃
((prime-factors ◦ f) ‘ A)

using assms by (simp add: prod-unfold-prod-mset prime-factorization-prod-mset)

lemma prime-factors-fact:
prime-factors (fact n) = {p ∈ {2 ..n}. prime p} (is ?M = ?N)

proof (rule set-eqI)
fix p
{ fix m :: nat

assume p ∈ prime-factors m
then have prime p and p dvd m by auto
moreover assume m > 0
ultimately have 2 ≤ p and p ≤ m

by (auto intro: prime-ge-2-nat dest: dvd-imp-le)
moreover assume m ≤ n
ultimately have 2 ≤ p and p ≤ n

by (auto intro: order-trans)
} note ∗ = this
show p ∈ ?M ←→ p ∈ ?N
by (auto simp add: fact-prod prime-factors-prod Suc-le-eq dest!: prime-prime-factors

intro: ∗)
qed

lemma prime-dvd-fact-iff :

85

assumes prime p
shows p dvd fact n ←→ p ≤ n
using assms
by (auto simp add: prime-factorization-subset-iff-dvd [symmetric]

prime-factorization-prime prime-factors-fact prime-ge-2-nat)

lemma dvd-choose-prime:
assumes kn: k < n and k: k 6= 0 and n: n 6= 0 and prime-n: prime n
shows n dvd (n choose k)

proof −
have n dvd (fact n) by (simp add: fact-num-eq-if n)
moreover have ¬ n dvd (fact k ∗ fact (n−k))
by (metis prime-dvd-fact-iff prime-dvd-mult-iff assms neq0-conv diff-less linorder-not-less)

moreover have (fact n::nat) = fact k ∗ fact (n−k) ∗ (n choose k)
using binomial-fact-lemma kn by auto

ultimately show ?thesis using prime-n
by (auto simp add: prime-dvd-mult-iff)

qed

lemma (in ring-1) minus-power-prime-CHAR:
assumes p = CHAR(′a) prime p
shows (−x :: ′a) ^ p = −(x ^ p)

proof (cases p = 2)
case False
have prime p

using assms by blast
hence odd p
using prime-imp-coprime assms False coprime-right-2-iff-odd gcd-nat.strict-iff-not

by blast
thus ?thesis

by simp
qed (use assms in ‹auto simp: uminus-CHAR-2 ›)

3.8 Rings and fields with prime characteristic

We introduce some type classes for rings and fields with prime characteristic.
class semiring-prime-char = semiring-1 +

assumes prime-char-aux: ∃n. prime n ∧ of-nat n = (0 :: ′a)
begin

lemma CHAR-pos [intro, simp]: CHAR(′a) > 0
using local.CHAR-pos-iff local.prime-char-aux prime-gt-0-nat by blast

lemma CHAR-nonzero [simp]: CHAR(′a) 6= 0
using CHAR-pos by auto

lemma CHAR-prime [intro, simp]: prime CHAR(′a)
by (metis (mono-tags, lifting) gcd-nat.order-iff-strict local.of-nat-1 local.of-nat-eq-0-iff-char-dvd

local.one-neq-zero local.prime-char-aux prime-nat-iff)

86

end

lemma semiring-prime-charI [intro?]:
prime CHAR(′a :: semiring-1) =⇒ OFCLASS(′a, semiring-prime-char-class)
by standard auto

lemma idom-prime-charI [intro?]:
assumes CHAR(′a :: idom) > 0
shows OFCLASS(′a, semiring-prime-char-class)

proof
show prime CHAR(′a)

using assms prime-CHAR-semidom by blast
qed

class comm-semiring-prime-char = comm-semiring-1 + semiring-prime-char
class comm-ring-prime-char = comm-ring-1 + semiring-prime-char
begin
subclass comm-semiring-prime-char ..
end
class idom-prime-char = idom + semiring-prime-char
begin
subclass comm-ring-prime-char ..
end

class field-prime-char = field +
assumes pos-char-exists: ∃n>0 . of-nat n = (0 :: ′a)

begin
subclass idom-prime-char

apply standard
using pos-char-exists local.CHAR-pos-iff local.of-nat-CHAR local.prime-CHAR-semidom

by blast
end

lemma field-prime-charI [intro?]:
n > 0 =⇒ of-nat n = (0 :: ′a :: field) =⇒ OFCLASS(′a, field-prime-char-class)
by standard auto

lemma field-prime-charI ′ [intro?]:
CHAR(′a :: field) > 0 =⇒ OFCLASS(′a, field-prime-char-class)
by standard auto

3.9 Finite fields
class finite-field = field-prime-char + finite

lemma finite-fieldI [intro?]:
assumes finite (UNIV :: ′a :: field set)
shows OFCLASS(′a, finite-field-class)

87

proof standard
show ∃n>0 . of-nat n = (0 :: ′a)

using assms prime-CHAR-semidom[where ? ′a = ′a] finite-imp-CHAR-pos[OF
assms]

by (intro exI [of - CHAR(′a)]) auto
qed fact+

On a finite field with n elements, taking the n-th power of an element is the
identity. This is an obvious consequence of the fact that the multiplicative
group of the field is a finite group of order n − 1, so x^n = 1 for any
non-zero x.
Note that this result is sharp in the sense that the multiplicative group of
a finite field is cyclic, i.e. it contains an element of order n − 1. (We don’t
prove this here.)
lemma finite-field-power-card-eq-same:

fixes x :: ′a :: finite-field
shows x ^ card (UNIV :: ′a set) = x

proof (cases x = 0)
case False
have x ∗ (

∏
y∈UNIV−{0}. x ∗ y) = x ∗ x ^ (card (UNIV :: ′a set) − 1) ∗∏

(UNIV−{0})
by (simp add: prod.distrib mult-ac)

also have x ∗ x ^ (card (UNIV :: ′a set) − 1) = x ^ Suc (card (UNIV :: ′a set)
− 1)

by (subst power-Suc) auto
also have Suc (card (UNIV :: ′a set) − 1) = card (UNIV :: ′a set)

using finite-UNIV-card-ge-0 [where ? ′a = ′a] by simp
also have (

∏
y∈UNIV−{0}. x ∗ y) = (

∏
y∈UNIV−{0}. y)

by (rule prod.reindex-bij-witness[of - λy. y / x λy. x ∗ y]) (use False in auto)
finally show ?thesis

by simp
qed (use finite-UNIV-card-ge-0 [where ? ′a = ′a] in auto)

lemma finite-field-power-card-power-eq-same:
fixes x :: ′a :: finite-field
assumes m = card (UNIV :: ′a set) ^ n
shows x ^ m = x
unfolding assms
by (induction n) (simp-all add: finite-field-power-card-eq-same power-mult)

class enum-finite-field = finite-field +
fixes enum-finite-field :: nat ⇒ ′a
assumes enum-finite-field: enum-finite-field ‘ {..<card (UNIV :: ′a set)} = UNIV

begin

lemma inj-on-enum-finite-field: inj-on enum-finite-field {..<card (UNIV :: ′a set)}
using enum-finite-field by (simp add: eq-card-imp-inj-on)

88

end

To get rid of the pending sort hypotheses, we prove that the field with 2
elements is indeed a finite field.
typedef gf2 = {0 , 1 :: nat}

by auto

setup-lifting type-definition-gf2

instantiation gf2 :: field
begin
lift-definition zero-gf2 :: gf2 is 0 by auto
lift-definition one-gf2 :: gf2 is 1 by auto
lift-definition uminus-gf2 :: gf2 ⇒ gf2 is λx. x .
lift-definition plus-gf2 :: gf2 ⇒ gf2 ⇒ gf2 is λx y. if x = y then 0 else 1 by auto
lift-definition minus-gf2 :: gf2 ⇒ gf2 ⇒ gf2 is λx y. if x = y then 0 else 1 by
auto
lift-definition times-gf2 :: gf2 ⇒ gf2 ⇒ gf2 is λx y. x ∗ y by auto
lift-definition inverse-gf2 :: gf2 ⇒ gf2 is λx. x .
lift-definition divide-gf2 :: gf2 ⇒ gf2 ⇒ gf2 is λx y. x ∗ y by auto

instance
by standard (transfer ; fastforce)+

end

instance gf2 :: finite-field
proof

interpret type-definition Rep-gf2 Abs-gf2 {0 , 1 :: nat}
by (rule type-definition-gf2)

show finite (UNIV :: gf2 set)
by (metis Abs-image finite.emptyI finite.insertI finite-imageI)

qed

3.10 The Freshman’s Dream in rings of prime characteristic
lemma (in comm-semiring-1) freshmans-dream:

fixes x y :: ′a and n :: nat
assumes prime CHAR(′a)
assumes n-def : n = CHAR(′a)
shows (x + y) ^ n = x ^ n + y ^ n

proof −
interpret comm-semiring-prime-char

by standard (auto intro!: exI [of - CHAR(′a)] assms)
have n > 0

unfolding n-def by simp
have (x + y) ^ n = (

∑
k≤n. of-nat (n choose k) ∗ x ^ k ∗ y ^ (n − k))

by (rule binomial-ring)
also have . . . = (

∑
k∈{0 ,n}. of-nat (n choose k) ∗ x ^ k ∗ y ^ (n − k))

89

proof (intro sum.mono-neutral-right ballI)
fix k assume k ∈ {..n} − {0 , n}
hence k: k > 0 k < n

by auto
have CHAR(′a) dvd (n choose k)

unfolding n-def
by (rule dvd-choose-prime) (use k in ‹auto simp: n-def ›)

hence of-nat (n choose k) = (0 :: ′a)
using of-nat-eq-0-iff-char-dvd by blast

thus of-nat (n choose k) ∗ x ^ k ∗ y ^ (n − k) = 0
by simp

qed auto
finally show ?thesis

using ‹n > 0 › by (simp add: add-ac)
qed

lemma (in comm-semiring-1) freshmans-dream ′:
assumes [simp]: prime CHAR(′a) and m = CHAR(′a) ^ n
shows (x + y :: ′a) ^ m = x ^ m + y ^ m
unfolding assms(2)

proof (induction n)
case (Suc n)
have (x + y) ^ (CHAR(′a) ^ n ∗ CHAR(′a)) = ((x + y) ^ (CHAR(′a) ^ n)) ^

CHAR(′a)
by (rule power-mult)

thus ?case
by (simp add: Suc.IH freshmans-dream Groups.mult-ac flip: power-mult)

qed auto

lemma (in comm-semiring-1) freshmans-dream-sum:
fixes f :: ′b ⇒ ′a
assumes prime CHAR(′a) and n = CHAR(′a)
shows sum f A ^ n = sum (λi. f i ^ n) A
using assms
by (induct A rule: infinite-finite-induct)

(auto simp add: power-0-left freshmans-dream)

lemma (in comm-semiring-1) freshmans-dream-sum ′:
fixes f :: ′b ⇒ ′a
assumes prime CHAR(′a) m = CHAR(′a) ^ n
shows sum f A ^ m = sum (λi. f i ^ m) A
using assms
by (induction A rule: infinite-finite-induct)

(auto simp: freshmans-dream ′ power-0-left)

lemmas prime-imp-coprime-nat = prime-imp-coprime[where ? ′a = nat]

90

lemmas prime-imp-coprime-int = prime-imp-coprime[where ? ′a = int]
lemmas prime-dvd-mult-nat = prime-dvd-mult-iff [where ? ′a = nat]
lemmas prime-dvd-mult-int = prime-dvd-mult-iff [where ? ′a = int]
lemmas prime-dvd-mult-eq-nat = prime-dvd-mult-iff [where ? ′a = nat]
lemmas prime-dvd-mult-eq-int = prime-dvd-mult-iff [where ? ′a = int]
lemmas prime-dvd-power-nat = prime-dvd-power [where ? ′a = nat]
lemmas prime-dvd-power-int = prime-dvd-power [where ? ′a = int]
lemmas prime-dvd-power-nat-iff = prime-dvd-power-iff [where ? ′a = nat]
lemmas prime-dvd-power-int-iff = prime-dvd-power-iff [where ? ′a = int]
lemmas prime-imp-power-coprime-nat = prime-imp-power-coprime[where ? ′a =
nat]
lemmas prime-imp-power-coprime-int = prime-imp-power-coprime[where ? ′a =
int]
lemmas primes-coprime-nat = primes-coprime[where ? ′a = nat]
lemmas primes-coprime-int = primes-coprime[where ? ′a = nat]
lemmas prime-divprod-pow-nat = prime-elem-divprod-pow[where ? ′a = nat]
lemmas prime-exp = prime-elem-power-iff [where ? ′a = nat]

end

4 Polynomials as type over a ring structure
theory Polynomial
imports

Complex-Main
HOL−Library.More-List
HOL−Library.Infinite-Set
Primes

begin

context semidom-modulo
begin

lemma not-dvd-imp-mod-neq-0 :
‹a mod b 6= 0 › if ‹¬ b dvd a›
using that mod-0-imp-dvd [of a b] by blast

end

4.1 Auxiliary: operations for lists (later) representing coef-
ficients

definition cCons :: ′a::zero ⇒ ′a list ⇒ ′a list (infixr ‹##› 65)
where x ## xs = (if xs = [] ∧ x = 0 then [] else x # xs)

lemma cCons-0-Nil-eq [simp]: 0 ## [] = []
by (simp add: cCons-def)

lemma cCons-Cons-eq [simp]: x ## y # ys = x # y # ys

91

by (simp add: cCons-def)

lemma cCons-append-Cons-eq [simp]: x ## xs @ y # ys = x # xs @ y # ys
by (simp add: cCons-def)

lemma cCons-not-0-eq [simp]: x 6= 0 =⇒ x ## xs = x # xs
by (simp add: cCons-def)

lemma strip-while-not-0-Cons-eq [simp]:
strip-while (λx. x = 0) (x # xs) = x ## strip-while (λx. x = 0) xs

proof (cases x = 0)
case False
then show ?thesis by simp

next
case True
show ?thesis
proof (induct xs rule: rev-induct)

case Nil
with True show ?case by simp

next
case (snoc y ys)
then show ?case

by (cases y = 0) (simp-all add: append-Cons [symmetric] del: append-Cons)
qed

qed

lemma tl-cCons [simp]: tl (x ## xs) = xs
by (simp add: cCons-def)

4.2 Definition of type poly
typedef (overloaded) ′a poly = {f :: nat ⇒ ′a::zero. ∀∞ n. f n = 0}

morphisms coeff Abs-poly
by (auto intro!: ALL-MOST)

setup-lifting type-definition-poly

lemma poly-eq-iff : p = q ←→ (∀n. coeff p n = coeff q n)
by (simp add: coeff-inject [symmetric] fun-eq-iff)

lemma poly-eqI : (
∧

n. coeff p n = coeff q n) =⇒ p = q
by (simp add: poly-eq-iff)

lemma MOST-coeff-eq-0 : ∀∞ n. coeff p n = 0
using coeff [of p] by simp

lemma coeff-Abs-poly:
assumes

∧
i. i > n =⇒ f i = 0

shows coeff (Abs-poly f) = f

92

proof (rule Abs-poly-inverse, clarify)
have eventually (λi. i > n) cofinite

by (auto simp: MOST-nat)
thus eventually (λi. f i = 0) cofinite

by eventually-elim (use assms in auto)
qed

4.3 Degree of a polynomial
definition degree :: ′a::zero poly ⇒ nat

where degree p = (LEAST n. ∀ i>n. coeff p i = 0)

lemma degree-cong:
assumes

∧
i. coeff p i = 0 ←→ coeff q i = 0

shows degree p = degree q
proof −

have (λn. ∀ i>n. poly.coeff p i = 0) = (λn. ∀ i>n. poly.coeff q i = 0)
using assms by (auto simp: fun-eq-iff)

thus ?thesis
by (simp only: degree-def)

qed

lemma coeff-Abs-poly-If-le:
coeff (Abs-poly (λi. if i ≤ n then f i else 0)) = (λi. if i ≤ n then f i else 0)

proof (rule Abs-poly-inverse, clarify)
have eventually (λi. i > n) cofinite

by (auto simp: MOST-nat)
thus eventually (λi. (if i ≤ n then f i else 0) = 0) cofinite

by eventually-elim auto
qed

lemma coeff-eq-0 :
assumes degree p < n
shows coeff p n = 0

proof −
have ∃n. ∀ i>n. coeff p i = 0

using MOST-coeff-eq-0 by (simp add: MOST-nat)
then have ∀ i>degree p. coeff p i = 0

unfolding degree-def by (rule LeastI-ex)
with assms show ?thesis by simp

qed

lemma le-degree: coeff p n 6= 0 =⇒ n ≤ degree p
using coeff-eq-0 linorder-le-less-linear by blast

lemma degree-le: ∀ i>n. coeff p i = 0 =⇒ degree p ≤ n
unfolding degree-def by (erule Least-le)

lemma less-degree-imp: n < degree p =⇒ ∃ i>n. coeff p i 6= 0

93

unfolding degree-def by (drule not-less-Least, simp)

lemma poly-eqI2 :
assumes degree p = degree q and

∧
i. i ≤ degree p =⇒ coeff p i = coeff q i

shows p = q
by (metis assms le-degree poly-eqI)

4.4 The zero polynomial
instantiation poly :: (zero) zero
begin

lift-definition zero-poly :: ′a poly
is λ-. 0
by (rule MOST-I) simp

instance ..

end

lemma coeff-0 [simp]: coeff 0 n = 0
by transfer rule

lemma degree-0 [simp]: degree 0 = 0
by (rule order-antisym [OF degree-le le0]) simp

lemma leading-coeff-neq-0 :
assumes p 6= 0
shows coeff p (degree p) 6= 0

proof (cases degree p)
case 0
from ‹p 6= 0 › obtain n where coeff p n 6= 0

by (auto simp add: poly-eq-iff)
then have n ≤ degree p

by (rule le-degree)
with ‹coeff p n 6= 0 › and ‹degree p = 0 › show coeff p (degree p) 6= 0

by simp
next

case (Suc n)
from ‹degree p = Suc n› have n < degree p

by simp
then have ∃ i>n. coeff p i 6= 0

by (rule less-degree-imp)
then obtain i where n < i and coeff p i 6= 0

by blast
from ‹degree p = Suc n› and ‹n < i› have degree p ≤ i

by simp
also from ‹coeff p i 6= 0 › have i ≤ degree p

by (rule le-degree)

94

finally have degree p = i .
with ‹coeff p i 6= 0 › show coeff p (degree p) 6= 0 by simp

qed

lemma leading-coeff-0-iff [simp]: coeff p (degree p) = 0 ←→ p = 0
by (cases p = 0) (simp-all add: leading-coeff-neq-0)

lemma degree-lessI :
assumes p 6= 0 ∨ n > 0 ∀ k≥n. coeff p k = 0
shows degree p < n

proof (cases p = 0)
case False
show ?thesis
proof (rule ccontr)

assume ∗: ¬(degree p < n)
define d where d = degree p
from ‹p 6= 0 › have coeff p d 6= 0

by (auto simp: d-def)
moreover have coeff p d = 0

using assms(2) ∗ by (auto simp: not-less)
ultimately show False by contradiction

qed
qed (use assms in auto)

lemma eq-zero-or-degree-less:
assumes degree p ≤ n and coeff p n = 0
shows p = 0 ∨ degree p < n

proof (cases n)
case 0
with ‹degree p ≤ n› and ‹coeff p n = 0 › have coeff p (degree p) = 0

by simp
then have p = 0 by simp
then show ?thesis ..

next
case (Suc m)
from ‹degree p ≤ n› have ∀ i>n. coeff p i = 0

by (simp add: coeff-eq-0)
with ‹coeff p n = 0 › have ∀ i≥n. coeff p i = 0

by (simp add: le-less)
with ‹n = Suc m› have ∀ i>m. coeff p i = 0

by (simp add: less-eq-Suc-le)
then have degree p ≤ m

by (rule degree-le)
with ‹n = Suc m› have degree p < n

by (simp add: less-Suc-eq-le)
then show ?thesis ..

qed

lemma coeff-0-degree-minus-1 : coeff rrr dr = 0 =⇒ degree rrr ≤ dr =⇒ degree

95

rrr ≤ dr − 1
using eq-zero-or-degree-less by fastforce

4.5 List-style constructor for polynomials
lift-definition pCons :: ′a::zero ⇒ ′a poly ⇒ ′a poly

is λa p. case-nat a (coeff p)
by (rule MOST-SucD) (simp add: MOST-coeff-eq-0)

lemmas coeff-pCons = pCons.rep-eq

lemma coeff-pCons ′: poly.coeff (pCons c p) n = (if n = 0 then c else poly.coeff p
(n − 1))

by transfer ′(auto split: nat.splits)

lemma coeff-pCons-0 [simp]: coeff (pCons a p) 0 = a
by transfer simp

lemma coeff-pCons-Suc [simp]: coeff (pCons a p) (Suc n) = coeff p n
by (simp add: coeff-pCons)

lemma degree-pCons-le: degree (pCons a p) ≤ Suc (degree p)
by (rule degree-le) (simp add: coeff-eq-0 coeff-pCons split: nat.split)

lemma degree-pCons-eq: p 6= 0 =⇒ degree (pCons a p) = Suc (degree p)
by (simp add: degree-pCons-le le-antisym le-degree)

lemma degree-pCons-0 : degree (pCons a 0) = 0
proof −

have degree (pCons a 0) ≤ Suc 0
by (metis (no-types) degree-0 degree-pCons-le)

then show ?thesis
by (metis coeff-0 coeff-pCons-Suc degree-0 eq-zero-or-degree-less less-Suc0)

qed

lemma degree-pCons-eq-if [simp]: degree (pCons a p) = (if p = 0 then 0 else Suc
(degree p))

by (simp add: degree-pCons-0 degree-pCons-eq)

lemma pCons-0-0 [simp]: pCons 0 0 = 0
by (rule poly-eqI) (simp add: coeff-pCons split: nat.split)

lemma pCons-eq-iff [simp]: pCons a p = pCons b q ←→ a = b ∧ p = q
proof safe

assume pCons a p = pCons b q
then have coeff (pCons a p) 0 = coeff (pCons b q) 0

by simp
then show a = b

by simp

96

next
assume pCons a p = pCons b q
then have coeff (pCons a p) (Suc n) = coeff (pCons b q) (Suc n) for n

by simp
then show p = q

by (simp add: poly-eq-iff)
qed

lemma pCons-eq-0-iff [simp]: pCons a p = 0 ←→ a = 0 ∧ p = 0
using pCons-eq-iff [of a p 0 0] by simp

lemma pCons-cases [cases type: poly]:
obtains (pCons) a q where p = pCons a q

proof
show p = pCons (coeff p 0) (Abs-poly (λn. coeff p (Suc n)))

by transfer
(simp-all add: MOST-inj[where f=Suc and P=λn. p n = 0 for p] fun-eq-iff

Abs-poly-inverse
split: nat.split)

qed

lemma pCons-induct [case-names 0 pCons, induct type: poly]:
assumes zero: P 0
assumes pCons:

∧
a p. a 6= 0 ∨ p 6= 0 =⇒ P p =⇒ P (pCons a p)

shows P p
proof (induct p rule: measure-induct-rule [where f=degree])

case (less p)
obtain a q where p = pCons a q by (rule pCons-cases)
have P q
proof (cases q = 0)

case True
then show P q by (simp add: zero)

next
case False
then have degree (pCons a q) = Suc (degree q)

by (rule degree-pCons-eq)
with ‹p = pCons a q› have degree q < degree p

by simp
then show P q

by (rule less.hyps)
qed
have P (pCons a q)
proof (cases a 6= 0 ∨ q 6= 0)

case True
with ‹P q› show ?thesis by (auto intro: pCons)

next
case False
with zero show ?thesis by simp

qed

97

with ‹p = pCons a q› show ?case
by simp

qed

lemma degree-eq-zeroE :
fixes p :: ′a::zero poly
assumes degree p = 0
obtains a where p = pCons a 0

proof −
obtain a q where p: p = pCons a q

by (cases p)
with assms have q = 0

by (cases q = 0) simp-all
with p have p = pCons a 0

by simp
then show thesis ..

qed

4.6 Quickcheck generator for polynomials
quickcheck-generator poly constructors: 0 :: - poly, pCons

4.7 List-style syntax for polynomials
syntax

-poly :: args ⇒ ′a poly (‹(‹indent=2 notation=‹mixfix polynomial enumera-
tion››[:-:])›)
syntax-consts

-poly
 pCons
translations
[:x, xs:]
 CONST pCons x [:xs:]
[:x:]
 CONST pCons x 0

lemma degree-0-id:
assumes degree p = 0
shows [: coeff p 0 :] = p
by (metis assms coeff-pCons-0 degree-eq-zeroE)

lemma degree0-coeffs: degree p = 0 =⇒ ∃ a. p = [: a :]
by (meson degree-eq-zeroE)

lemma degree1-coeffs:
fixes p :: ′a::zero poly
assumes degree p = 1
obtains a b where p = [: b, a :] a 6= 0

proof −
obtain b a q where p = pCons b q q = pCons a 0
by (metis assms degree0-coeffs degree-0 degree-pCons-eq-if lessI less-one pCons-cases)

then show thesis
using assms that by force

98

qed

lemma degree2-coeffs:
fixes p :: ′a::zero poly
assumes degree p = 2
obtains a b c where p = [: c, b, a :] a 6= 0

proof −
obtain c q where p = pCons c q degree q = 1

by (metis One-nat-def assms degree-0 degree-pCons-eq-if fact-0 fact-2 nat.inject
numeral-2-eq-2 pCons-cases)

then show thesis
by (metis degree1-coeffs that)

qed

4.8 Representation of polynomials by lists of coefficients
primrec Poly :: ′a::zero list ⇒ ′a poly

where
[code-post]: Poly [] = 0
| [code-post]: Poly (a # as) = pCons a (Poly as)

lemma Poly-replicate-0 [simp]: Poly (replicate n 0) = 0
by (induct n) simp-all

lemma Poly-eq-0 : Poly as = 0 ←→ (∃n. as = replicate n 0)
by (induct as) (auto simp add: Cons-replicate-eq)

lemma Poly-append-replicate-zero [simp]: Poly (as @ replicate n 0) = Poly as
by (induct as) simp-all

lemma Poly-snoc-zero [simp]: Poly (as @ [0]) = Poly as
using Poly-append-replicate-zero [of as 1] by simp

lemma Poly-cCons-eq-pCons-Poly [simp]: Poly (a ## p) = pCons a (Poly p)
by (simp add: cCons-def)

lemma Poly-on-rev-starting-with-0 [simp]: hd as = 0 =⇒ Poly (rev (tl as)) = Poly
(rev as)

by (cases as) simp-all

lemma degree-Poly: degree (Poly xs) ≤ length xs
by (induct xs) simp-all

lemma coeff-Poly-eq [simp]: coeff (Poly xs) = nth-default 0 xs
by (induct xs) (simp-all add: fun-eq-iff coeff-pCons split: nat.splits)

definition coeffs :: ′a poly ⇒ ′a::zero list
where coeffs p = (if p = 0 then [] else map (λi. coeff p i) [0 ..< Suc (degree p)])

99

lemma coeffs-eq-Nil [simp]: coeffs p = [] ←→ p = 0
by (simp add: coeffs-def)

lemma not-0-coeffs-not-Nil: p 6= 0 =⇒ coeffs p 6= []
by simp

lemma coeffs-0-eq-Nil [simp]: coeffs 0 = []
by simp

lemma coeffs-pCons-eq-cCons [simp]: coeffs (pCons a p) = a ## coeffs p
proof −

have ∗: ∀m∈set ms. m > 0 =⇒ map (case-nat x f) ms = map f (map (λn. n −
1) ms)

for ms :: nat list and f :: nat ⇒ ′a and x :: ′a
by (induct ms) (auto split: nat.split)

show ?thesis
by (simp add: ∗ coeffs-def upt-conv-Cons coeff-pCons map-decr-upt del: upt-Suc)

qed

lemma length-coeffs: p 6= 0 =⇒ length (coeffs p) = degree p + 1
by (simp add: coeffs-def)

lemma coeffs-nth: p 6= 0 =⇒ n ≤ degree p =⇒ coeffs p ! n = coeff p n
by (auto simp: coeffs-def simp del: upt-Suc)

lemma coeff-in-coeffs: p 6= 0 =⇒ n ≤ degree p =⇒ coeff p n ∈ set (coeffs p)
using coeffs-nth [of p n, symmetric] by (simp add: length-coeffs)

lemma not-0-cCons-eq [simp]: p 6= 0 =⇒ a ## coeffs p = a # coeffs p
by (simp add: cCons-def)

lemma Poly-coeffs [simp, code abstype]: Poly (coeffs p) = p
by (induct p) auto

lemma coeffs-Poly [simp]: coeffs (Poly as) = strip-while (HOL.eq 0) as
proof (induct as)

case Nil
then show ?case by simp

next
case (Cons a as)
from replicate-length-same [of as 0] have (∀n. as 6= replicate n 0) ←→ (∃ a∈set

as. a 6= 0)
by (auto dest: sym [of - as])

with Cons show ?case by auto
qed

lemma no-trailing-coeffs [simp]:
no-trailing (HOL.eq 0) (coeffs p)
by (induct p) auto

100

lemma strip-while-coeffs [simp]:
strip-while (HOL.eq 0) (coeffs p) = coeffs p
by simp

lemma coeffs-eq-iff : p = q ←→ coeffs p = coeffs q
(is ?P ←→ ?Q)

proof
assume ?P
then show ?Q by simp

next
assume ?Q
then have Poly (coeffs p) = Poly (coeffs q) by simp
then show ?P by simp

qed

lemma nth-default-coeffs-eq: nth-default 0 (coeffs p) = coeff p
by (metis Poly-coeffs coeff-Poly-eq)

lemma range-coeff : range (coeff p) = insert 0 (set (coeffs p))
by (metis nth-default-coeffs-eq range-nth-default)

lemma [code]: coeff p = nth-default 0 (coeffs p)
by (simp add: nth-default-coeffs-eq)

lemma coeffs-eqI :
assumes coeff :

∧
n. coeff p n = nth-default 0 xs n

assumes zero: no-trailing (HOL.eq 0) xs
shows coeffs p = xs

proof −
from coeff have p = Poly xs

by (simp add: poly-eq-iff)
with zero show ?thesis by simp

qed

lemma degree-eq-length-coeffs [code]: degree p = length (coeffs p) − 1
by (simp add: coeffs-def)

lemma length-coeffs-degree: p 6= 0 =⇒ length (coeffs p) = Suc (degree p)
by (induct p) (auto simp: cCons-def)

lemma [code abstract]: coeffs 0 = []
by (fact coeffs-0-eq-Nil)

lemma [code abstract]: coeffs (pCons a p) = a ## coeffs p
by (fact coeffs-pCons-eq-cCons)

lemma set-coeffs-subset-singleton-0-iff [simp]:
set (coeffs p) ⊆ {0} ←→ p = 0

101

by (auto simp add: coeffs-def intro: classical)

lemma set-coeffs-not-only-0 [simp]:
set (coeffs p) 6= {0}
by (auto simp add: set-eq-subset)

lemma forall-coeffs-conv:
(∀n. P (coeff p n)) ←→ (∀ c ∈ set (coeffs p). P c) if P 0
using that by (auto simp add: coeffs-def)
(metis atLeastLessThan-iff coeff-eq-0 not-less-iff-gr-or-eq zero-le)

instantiation poly :: ({zero, equal}) equal
begin

definition [code]: HOL.equal (p:: ′a poly) q ←→ HOL.equal (coeffs p) (coeffs q)

instance
by standard (simp add: equal equal-poly-def coeffs-eq-iff)

end

lemma [code nbe]: HOL.equal (p :: - poly) p ←→ True
by (fact equal-refl)

definition is-zero :: ′a::zero poly ⇒ bool
where [code]: is-zero p ←→ List.null (coeffs p)

lemma is-zero-null [code-abbrev]: is-zero p ←→ p = 0
by (simp add: is-zero-def)

Reconstructing the polynomial from the list
definition poly-of-list :: ′a::comm-monoid-add list ⇒ ′a poly

where [simp]: poly-of-list = Poly

lemma poly-of-list-impl [code abstract]: coeffs (poly-of-list as) = strip-while (HOL.eq
0) as

by simp

4.9 Fold combinator for polynomials
definition fold-coeffs :: (′a::zero ⇒ ′b ⇒ ′b) ⇒ ′a poly ⇒ ′b ⇒ ′b

where fold-coeffs f p = foldr f (coeffs p)

lemma fold-coeffs-0-eq [simp]: fold-coeffs f 0 = id
by (simp add: fold-coeffs-def)

lemma fold-coeffs-pCons-eq [simp]: f 0 = id =⇒ fold-coeffs f (pCons a p) = f a ◦
fold-coeffs f p

by (simp add: fold-coeffs-def cCons-def fun-eq-iff)

102

lemma fold-coeffs-pCons-0-0-eq [simp]: fold-coeffs f (pCons 0 0) = id
by (simp add: fold-coeffs-def)

lemma fold-coeffs-pCons-coeff-not-0-eq [simp]:
a 6= 0 =⇒ fold-coeffs f (pCons a p) = f a ◦ fold-coeffs f p
by (simp add: fold-coeffs-def)

lemma fold-coeffs-pCons-not-0-0-eq [simp]:
p 6= 0 =⇒ fold-coeffs f (pCons a p) = f a ◦ fold-coeffs f p
by (simp add: fold-coeffs-def)

4.10 Canonical morphism on polynomials – evaluation
definition poly :: ‹ ′a::comm-semiring-0 poly ⇒ ′a ⇒ ′a›

where ‹poly p a = horner-sum id a (coeffs p)›

lemma poly-eq-fold-coeffs:
‹poly p = fold-coeffs (λa f x. a + x ∗ f x) p (λx. 0)›
by (induction p) (auto simp add: fun-eq-iff poly-def)

lemma poly-0 [simp]: poly 0 x = 0
by (simp add: poly-def)

lemma poly-pCons [simp]: poly (pCons a p) x = a + x ∗ poly p x
by (cases p = 0 ∧ a = 0) (auto simp add: poly-def)

lemma poly-altdef : poly p x = (
∑

i≤degree p. coeff p i ∗ x ^ i)
for x :: ′a::{comm-semiring-0 ,semiring-1}

proof (induction p rule: pCons-induct)
case 0
then show ?case

by simp
next

case (pCons a p)
show ?case
proof (cases p = 0)

case True
then show ?thesis by simp

next
case False
let ?p ′ = pCons a p
note poly-pCons[of a p x]
also note pCons.IH
also have a + x ∗ (

∑
i≤degree p. coeff p i ∗ x ^ i) =

coeff ?p ′ 0 ∗ x^0 + (
∑

i≤degree p. coeff ?p ′ (Suc i) ∗ x^Suc i)
by (simp add: field-simps sum-distrib-left coeff-pCons)

also note sum.atMost-Suc-shift[symmetric]
also note degree-pCons-eq[OF ‹p 6= 0 ›, of a, symmetric]

103

finally show ?thesis .
qed

qed

lemma poly-0-coeff-0 : poly p 0 = coeff p 0
by (cases p) (auto simp: poly-altdef)

lemma poly-zero:
fixes p :: ′a :: comm-ring-1 poly
assumes x: poly p x = 0 shows p = 0 ←→ degree p = 0

proof
assume degp: degree p = 0
hence poly p x = coeff p (degree p) by(subst degree-0-id[OF degp,symmetric],

simp)
hence coeff p (degree p) = 0 using x by auto
thus p = 0 by auto

qed auto

4.11 Monomials
lift-definition monom :: ′a ⇒ nat ⇒ ′a::zero poly

is λa m n. if m = n then a else 0
by (simp add: MOST-iff-cofinite)

lemma coeff-monom [simp]: coeff (monom a m) n = (if m = n then a else 0)
by transfer rule

lemma monom-0 : monom a 0 = [:a:]
by (rule poly-eqI) (simp add: coeff-pCons split: nat.split)

lemma monom-Suc: monom a (Suc n) = pCons 0 (monom a n)
by (rule poly-eqI) (simp add: coeff-pCons split: nat.split)

lemma monom-eq-0 [simp]: monom 0 n = 0
by (rule poly-eqI) simp

lemma monom-eq-0-iff [simp]: monom a n = 0 ←→ a = 0
by (simp add: poly-eq-iff)

lemma monom-eq-iff [simp]: monom a n = monom b n ←→ a = b
by (simp add: poly-eq-iff)

lemma degree-monom-le: degree (monom a n) ≤ n
by (rule degree-le, simp)

lemma degree-monom-eq: a 6= 0 =⇒ degree (monom a n) = n
by (metis coeff-monom leading-coeff-0-iff)

lemma coeffs-monom [code abstract]:

104

coeffs (monom a n) = (if a = 0 then [] else replicate n 0 @ [a])
by (induct n) (simp-all add: monom-0 monom-Suc)

lemma fold-coeffs-monom [simp]: a 6= 0 =⇒ fold-coeffs f (monom a n) = f 0 ^^
n ◦ f a

by (simp add: fold-coeffs-def coeffs-monom fun-eq-iff)

lemma poly-monom: poly (monom a n) x = a ∗ x ^ n
for a x :: ′a::comm-semiring-1
by (cases a = 0 , simp-all) (induct n, simp-all add: mult.left-commute poly-eq-fold-coeffs)

lemma monom-eq-iff ′: monom c n = monom d m ←→ c = d ∧ (c = 0 ∨ n =
m)

by (auto simp: poly-eq-iff)

lemma monom-eq-const-iff : monom c n = [:d:] ←→ c = d ∧ (c = 0 ∨ n = 0)
using monom-eq-iff ′[of c n d 0] by (simp add: monom-0)

4.12 Leading coefficient
abbreviation lead-coeff :: ′a::zero poly ⇒ ′a

where lead-coeff p ≡ coeff p (degree p)

lemma lead-coeff-pCons[simp]:
p 6= 0 =⇒ lead-coeff (pCons a p) = lead-coeff p
p = 0 =⇒ lead-coeff (pCons a p) = a
by auto

lemma lead-coeff-monom [simp]: lead-coeff (monom c n) = c
by (cases c = 0) (simp-all add: degree-monom-eq)

lemma last-coeffs-eq-coeff-degree:
last (coeffs p) = lead-coeff p if p 6= 0
using that by (simp add: coeffs-def)

lemma lead-coeff-list-def :
lead-coeff p = (if coeffs p=[] then 0 else last (coeffs p))
by (simp add: last-coeffs-eq-coeff-degree)

4.13 Addition and subtraction
instantiation poly :: (comm-monoid-add) comm-monoid-add
begin

lift-definition plus-poly :: ′a poly ⇒ ′a poly ⇒ ′a poly
is λp q n. coeff p n + coeff q n

proof −
fix q p :: ′a poly
show ∀∞n. coeff p n + coeff q n = 0

using MOST-coeff-eq-0 [of p] MOST-coeff-eq-0 [of q] by eventually-elim simp

105

qed

lemma coeff-add [simp]: coeff (p + q) n = coeff p n + coeff q n
by (simp add: plus-poly.rep-eq)

instance
proof

fix p q r :: ′a poly
show (p + q) + r = p + (q + r)

by (simp add: poly-eq-iff add.assoc)
show p + q = q + p

by (simp add: poly-eq-iff add.commute)
show 0 + p = p

by (simp add: poly-eq-iff)
qed

end

instantiation poly :: (cancel-comm-monoid-add) cancel-comm-monoid-add
begin

lift-definition minus-poly :: ′a poly ⇒ ′a poly ⇒ ′a poly
is λp q n. coeff p n − coeff q n

proof −
fix q p :: ′a poly
show ∀∞n. coeff p n − coeff q n = 0

using MOST-coeff-eq-0 [of p] MOST-coeff-eq-0 [of q] by eventually-elim simp
qed

lemma coeff-diff [simp]: coeff (p − q) n = coeff p n − coeff q n
by (simp add: minus-poly.rep-eq)

instance
proof

fix p q r :: ′a poly
show p + q − p = q

by (simp add: poly-eq-iff)
show p − q − r = p − (q + r)

by (simp add: poly-eq-iff diff-diff-eq)
qed

end

instantiation poly :: (ab-group-add) ab-group-add
begin

lift-definition uminus-poly :: ′a poly ⇒ ′a poly
is λp n. − coeff p n

proof −

106

fix p :: ′a poly
show ∀∞n. − coeff p n = 0

using MOST-coeff-eq-0 by simp
qed

lemma coeff-minus [simp]: coeff (− p) n = − coeff p n
by (simp add: uminus-poly.rep-eq)

instance
proof

fix p q :: ′a poly
show − p + p = 0

by (simp add: poly-eq-iff)
show p − q = p + − q

by (simp add: poly-eq-iff)
qed

end

lemma add-pCons [simp]: pCons a p + pCons b q = pCons (a + b) (p + q)
by (rule poly-eqI) (simp add: coeff-pCons split: nat.split)

lemma minus-pCons [simp]: − pCons a p = pCons (− a) (− p)
by (rule poly-eqI) (simp add: coeff-pCons split: nat.split)

lemma diff-pCons [simp]: pCons a p − pCons b q = pCons (a − b) (p − q)
by (rule poly-eqI) (simp add: coeff-pCons split: nat.split)

lemma degree-add-le-max: degree (p + q) ≤ max (degree p) (degree q)
by (rule degree-le) (auto simp add: coeff-eq-0)

lemma degree-add-le: degree p ≤ n =⇒ degree q ≤ n =⇒ degree (p + q) ≤ n
by (auto intro: order-trans degree-add-le-max)

lemma degree-add-less: degree p < n =⇒ degree q < n =⇒ degree (p + q) < n
by (auto intro: le-less-trans degree-add-le-max)

lemma degree-add-eq-right: assumes degree p < degree q shows degree (p + q)
= degree q
proof (cases q = 0)

case False
show ?thesis
proof (rule order-antisym)

show degree (p + q) ≤ degree q
by (simp add: assms degree-add-le order .strict-implies-order)

show degree q ≤ degree (p + q)
by (simp add: False assms coeff-eq-0 le-degree)

qed
qed (use assms in auto)

107

lemma degree-add-eq-left: degree q < degree p =⇒ degree (p + q) = degree p
using degree-add-eq-right [of q p] by (simp add: add.commute)

lemma degree-minus [simp]: degree (− p) = degree p
by (simp add: degree-def)

lemma lead-coeff-add-le: degree p < degree q =⇒ lead-coeff (p + q) = lead-coeff q
by (metis coeff-add coeff-eq-0 monoid-add-class.add.left-neutral degree-add-eq-right)

lemma lead-coeff-minus: lead-coeff (− p) = − lead-coeff p
by (metis coeff-minus degree-minus)

lemma degree-diff-le-max: degree (p − q) ≤ max (degree p) (degree q)
for p q :: ′a::ab-group-add poly
using degree-add-le [where p=p and q=−q] by simp

lemma degree-diff-le: degree p ≤ n =⇒ degree q ≤ n =⇒ degree (p − q) ≤ n
for p q :: ′a::ab-group-add poly
using degree-add-le [of p n − q] by simp

lemma degree-diff-less: degree p < n =⇒ degree q < n =⇒ degree (p − q) < n
for p q :: ′a::ab-group-add poly
using degree-add-less [of p n − q] by simp

lemma add-monom: monom a n + monom b n = monom (a + b) n
by (rule poly-eqI) simp

lemma diff-monom: monom a n − monom b n = monom (a − b) n
by (rule poly-eqI) simp

lemma minus-monom: − monom a n = monom (− a) n
by (rule poly-eqI) simp

lemma coeff-sum: coeff (
∑

x∈A. p x) i = (
∑

x∈A. coeff (p x) i)
by (induct A rule: infinite-finite-induct) simp-all

lemma monom-sum: monom (
∑

x∈A. a x) n = (
∑

x∈A. monom (a x) n)
by (rule poly-eqI) (simp add: coeff-sum)

fun plus-coeffs :: ′a::comm-monoid-add list ⇒ ′a list ⇒ ′a list
where

plus-coeffs xs [] = xs
| plus-coeffs [] ys = ys
| plus-coeffs (x # xs) (y # ys) = (x + y) ## plus-coeffs xs ys

lemma coeffs-plus-eq-plus-coeffs [code abstract]:
coeffs (p + q) = plus-coeffs (coeffs p) (coeffs q)

proof −

108

have ∗: nth-default 0 (plus-coeffs xs ys) n = nth-default 0 xs n + nth-default 0
ys n

for xs ys :: ′a list and n
proof (induct xs ys arbitrary: n rule: plus-coeffs.induct)

case (3 x xs y ys n)
then show ?case

by (cases n) (auto simp add: cCons-def)
qed simp-all
have ∗∗: no-trailing (HOL.eq 0) (plus-coeffs xs ys)

if no-trailing (HOL.eq 0) xs and no-trailing (HOL.eq 0) ys
for xs ys :: ′a list
using that by (induct xs ys rule: plus-coeffs.induct) (simp-all add: cCons-def)

show ?thesis
by (rule coeffs-eqI) (auto simp add: ∗ nth-default-coeffs-eq intro: ∗∗)

qed

lemma coeffs-uminus [code abstract]:
coeffs (− p) = map uminus (coeffs p)

proof −
have eq-0 : HOL.eq 0 ◦ uminus = HOL.eq (0 :: ′a)

by (simp add: fun-eq-iff)
show ?thesis
by (rule coeffs-eqI) (simp-all add: nth-default-map-eq nth-default-coeffs-eq no-trailing-map

eq-0)
qed

lemma [code]: p − q = p + − q
for p q :: ′a::ab-group-add poly
by (fact diff-conv-add-uminus)

lemma poly-add [simp]: poly (p + q) x = poly p x + poly q x
proof (induction p arbitrary: q)

case (pCons a p)
then show ?case

by (cases q) (simp add: algebra-simps)
qed auto

lemma poly-minus [simp]: poly (− p) x = − poly p x
for x :: ′a::comm-ring
by (induct p) simp-all

lemma poly-diff [simp]: poly (p − q) x = poly p x − poly q x
for x :: ′a::comm-ring
using poly-add [of p − q x] by simp

lemma poly-sum: poly (
∑

k∈A. p k) x = (
∑

k∈A. poly (p k) x)
by (induct A rule: infinite-finite-induct) simp-all

lemma poly-sum-list: poly (
∑

p←ps. p) y = (
∑

p←ps. poly p y)

109

by (induction ps) auto

lemma poly-sum-mset: poly (
∑

x∈#A. p x) y = (
∑

x∈#A. poly (p x) y)
by (induction A) auto

lemma degree-sum-le: finite S =⇒ (
∧

p. p ∈ S =⇒ degree (f p) ≤ n) =⇒ degree
(sum f S) ≤ n
proof (induct S rule: finite-induct)

case empty
then show ?case by simp

next
case (insert p S)
then have degree (sum f S) ≤ n degree (f p) ≤ n

by auto
then show ?case

unfolding sum.insert[OF insert(1−2)] by (metis degree-add-le)
qed

lemma degree-sum-less:
assumes

∧
x. x ∈ A =⇒ degree (f x) < n n > 0

shows degree (sum f A) < n
using assms by (induction rule: infinite-finite-induct) (auto intro!: degree-add-less)

lemma poly-as-sum-of-monoms ′:
assumes degree p ≤ n
shows (

∑
i≤n. monom (coeff p i) i) = p

proof −
have eq:

∧
i. {..n} ∩ {i} = (if i ≤ n then {i} else {})

by auto
from assms show ?thesis

by (simp add: poly-eq-iff coeff-sum coeff-eq-0 sum.If-cases eq
if-distrib[where f=λx. x ∗ a for a])

qed

lemma poly-as-sum-of-monoms: (
∑

i≤degree p. monom (coeff p i) i) = p
by (intro poly-as-sum-of-monoms ′ order-refl)

lemma Poly-snoc: Poly (xs @ [x]) = Poly xs + monom x (length xs)
by (induct xs) (simp-all add: monom-0 monom-Suc)

4.14 Multiplication by a constant, polynomial multiplication
and the unit polynomial

lift-definition smult :: ′a::comm-semiring-0 ⇒ ′a poly ⇒ ′a poly
is λa p n. a ∗ coeff p n

proof −
fix a :: ′a and p :: ′a poly
show ∀∞ i. a ∗ coeff p i = 0

using MOST-coeff-eq-0 [of p] by eventually-elim simp

110

qed

lemma coeff-smult [simp]: coeff (smult a p) n = a ∗ coeff p n
by (simp add: smult.rep-eq)

lemma degree-smult-le: degree (smult a p) ≤ degree p
by (rule degree-le) (simp add: coeff-eq-0)

lemma smult-smult [simp]: smult a (smult b p) = smult (a ∗ b) p
by (rule poly-eqI) (simp add: mult.assoc)

lemma smult-0-right [simp]: smult a 0 = 0
by (rule poly-eqI) simp

lemma smult-0-left [simp]: smult 0 p = 0
by (rule poly-eqI) simp

lemma smult-1-left [simp]: smult (1 :: ′a::comm-semiring-1) p = p
by (rule poly-eqI) simp

lemma smult-add-right: smult a (p + q) = smult a p + smult a q
by (rule poly-eqI) (simp add: algebra-simps)

lemma smult-add-left: smult (a + b) p = smult a p + smult b p
by (rule poly-eqI) (simp add: algebra-simps)

lemma smult-minus-right [simp]: smult a (− p) = − smult a p
for a :: ′a::comm-ring
by (rule poly-eqI) simp

lemma smult-minus-left [simp]: smult (− a) p = − smult a p
for a :: ′a::comm-ring
by (rule poly-eqI) simp

lemma smult-diff-right: smult a (p − q) = smult a p − smult a q
for a :: ′a::comm-ring
by (rule poly-eqI) (simp add: algebra-simps)

lemma smult-diff-left: smult (a − b) p = smult a p − smult b p
for a b :: ′a::comm-ring
by (rule poly-eqI) (simp add: algebra-simps)

lemmas smult-distribs =
smult-add-left smult-add-right
smult-diff-left smult-diff-right

lemma smult-pCons [simp]: smult a (pCons b p) = pCons (a ∗ b) (smult a p)
by (rule poly-eqI) (simp add: coeff-pCons split: nat.split)

111

lemma smult-monom: smult a (monom b n) = monom (a ∗ b) n
by (induct n) (simp-all add: monom-0 monom-Suc)

lemma smult-Poly: smult c (Poly xs) = Poly (map ((∗) c) xs)
by (auto simp: poly-eq-iff nth-default-def)

lemma degree-smult-eq [simp]: degree (smult a p) = (if a = 0 then 0 else degree p)
for a :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors}
by (cases a = 0) (simp-all add: degree-def)

lemma smult-eq-0-iff [simp]: smult a p = 0 ←→ a = 0 ∨ p = 0
for a :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors}
by (simp add: poly-eq-iff)

lemma coeffs-smult [code abstract]:
coeffs (smult a p) = (if a = 0 then [] else map (Groups.times a) (coeffs p))
for p :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly

proof −
have eq-0 : HOL.eq 0 ◦ times a = HOL.eq (0 :: ′a) if a 6= 0

using that by (simp add: fun-eq-iff)
show ?thesis
by (rule coeffs-eqI) (auto simp add: no-trailing-map nth-default-map-eq nth-default-coeffs-eq

eq-0)
qed

lemma smult-eq-iff :
fixes b :: ′a :: field
assumes b 6= 0
shows smult a p = smult b q ←→ smult (a / b) p = q
(is ?lhs ←→ ?rhs)

proof
assume ?lhs
also from assms have smult (inverse b) . . . = q

by simp
finally show ?rhs

by (simp add: field-simps)
next

assume ?rhs
with assms show ?lhs by auto

qed

lemma smult-cancel:
fixes p:: ′a::idom poly
assumes c 6=0 and smult: smult c p = smult c q
shows p=q

proof −
have smult c (p−q) = 0 using smult by (metis diff-self smult-diff-right)
thus ?thesis using ‹c 6=0 › by auto

qed

112

instantiation poly :: (comm-semiring-0) comm-semiring-0
begin

definition p ∗ q = fold-coeffs (λa p. smult a q + pCons 0 p) p 0

lemma mult-poly-0-left: (0 :: ′a poly) ∗ q = 0
by (simp add: times-poly-def)

lemma mult-pCons-left [simp]: pCons a p ∗ q = smult a q + pCons 0 (p ∗ q)
by (cases p = 0 ∧ a = 0) (auto simp add: times-poly-def)

lemma mult-poly-0-right: p ∗ (0 :: ′a poly) = 0
by (induct p) (simp-all add: mult-poly-0-left)

lemma mult-pCons-right [simp]: p ∗ pCons a q = smult a p + pCons 0 (p ∗ q)
by (induct p) (simp-all add: mult-poly-0-left algebra-simps)

lemmas mult-poly-0 = mult-poly-0-left mult-poly-0-right

lemma mult-smult-left [simp]: smult a p ∗ q = smult a (p ∗ q)
by (induct p) (simp-all add: mult-poly-0 smult-add-right)

lemma mult-smult-right [simp]: p ∗ smult a q = smult a (p ∗ q)
by (induct q) (simp-all add: mult-poly-0 smult-add-right)

lemma mult-poly-add-left: (p + q) ∗ r = p ∗ r + q ∗ r
for p q r :: ′a poly
by (induct r) (simp-all add: mult-poly-0 smult-distribs algebra-simps)

instance
proof

fix p q r :: ′a poly
show 0 : 0 ∗ p = 0

by (rule mult-poly-0-left)
show p ∗ 0 = 0

by (rule mult-poly-0-right)
show (p + q) ∗ r = p ∗ r + q ∗ r

by (rule mult-poly-add-left)
show (p ∗ q) ∗ r = p ∗ (q ∗ r)

by (induct p) (simp-all add: mult-poly-0 mult-poly-add-left)
show p ∗ q = q ∗ p

by (induct p) (simp-all add: mult-poly-0)
qed

end

lemma coeff-mult-degree-sum:
coeff (p ∗ q) (degree p + degree q) = coeff p (degree p) ∗ coeff q (degree q)

113

by (induct p) (simp-all add: coeff-eq-0)

instance poly :: ({comm-semiring-0 ,semiring-no-zero-divisors}) semiring-no-zero-divisors
proof

fix p q :: ′a poly
assume p 6= 0 and q 6= 0
have coeff (p ∗ q) (degree p + degree q) = coeff p (degree p) ∗ coeff q (degree q)

by (rule coeff-mult-degree-sum)
also from ‹p 6= 0 › ‹q 6= 0 › have coeff p (degree p) ∗ coeff q (degree q) 6= 0

by simp
finally have ∃n. coeff (p ∗ q) n 6= 0 ..
then show p ∗ q 6= 0

by (simp add: poly-eq-iff)
qed

instance poly :: (comm-semiring-0-cancel) comm-semiring-0-cancel ..

lemma coeff-mult: coeff (p ∗ q) n = (
∑

i≤n. coeff p i ∗ coeff q (n−i))
proof (induct p arbitrary: n)

case 0
show ?case by simp

next
case (pCons a p n)
then show ?case

by (cases n) (simp-all add: sum.atMost-Suc-shift del: sum.atMost-Suc)
qed

lemma coeff-mult-0 : coeff (p ∗ q) 0 = coeff p 0 ∗ coeff q 0
by (simp add: coeff-mult)

lemma degree-mult-le: degree (p ∗ q) ≤ degree p + degree q
proof (rule degree-le)

show ∀ i>degree p + degree q. coeff (p ∗ q) i = 0
by (induct p) (simp-all add: coeff-eq-0 coeff-pCons split: nat.split)

qed

lemma mult-monom: monom a m ∗ monom b n = monom (a ∗ b) (m + n)
by (induct m) (simp add: monom-0 smult-monom, simp add: monom-Suc)

instantiation poly :: (comm-semiring-1) comm-semiring-1
begin

lift-definition one-poly :: ′a poly
is λn. of-bool (n = 0)
by (rule MOST-SucD) simp

lemma coeff-1 [simp]:
coeff 1 n = of-bool (n = 0)
by (simp add: one-poly.rep-eq)

114

lemma one-pCons:
1 = [:1 :]
by (simp add: poly-eq-iff coeff-pCons split: nat.splits)

lemma pCons-one:
[:1 :] = 1
by (simp add: one-pCons)

instance
by standard (simp-all add: one-pCons)

end

lemma poly-1 [simp]:
poly 1 x = 1
by (simp add: one-pCons)

lemma one-poly-eq-simps [simp]:
1 = [:1 :] ←→ True
[:1 :] = 1 ←→ True
by (simp-all add: one-pCons)

lemma degree-1 [simp]:
degree 1 = 0
by (simp add: one-pCons)

lemma coeffs-1-eq [simp, code abstract]:
coeffs 1 = [1]
by (simp add: one-pCons)

lemma smult-one [simp]:
smult c 1 = [:c:]
by (simp add: one-pCons)

lemma smult-sum: smult (
∑

i ∈ S . f i) p = (
∑

i ∈ S . smult (f i) p)
by (induct S rule: infinite-finite-induct, auto simp: smult-add-left)

lemma smult-power : (smult a p) ^ n = smult (a ^ n) (p ^ n)
by (induct n, auto simp: field-simps)

lemma monom-eq-1 [simp]:
monom 1 0 = 1
by (simp add: monom-0 one-pCons)

lemma monom-eq-1-iff :
monom c n = 1 ←→ c = 1 ∧ n = 0
using monom-eq-const-iff [of c n 1] by auto

115

lemma monom-altdef :
monom c n = smult c ([:0 , 1 :] ^ n)
by (induct n) (simp-all add: monom-0 monom-Suc)

lemma degree-sum-list-le: (
∧

p . p ∈ set ps =⇒ degree p ≤ n)
=⇒ degree (sum-list ps) ≤ n

proof (induct ps)
case (Cons p ps)
hence degree (sum-list ps) ≤ n degree p ≤ n by auto
thus ?case unfolding sum-list.Cons by (metis degree-add-le)

qed simp

lemma degree-prod-list-le: degree (prod-list ps) ≤ sum-list (map degree ps)
proof (induct ps)

case (Cons p ps)
show ?case unfolding prod-list.Cons

by (rule order .trans[OF degree-mult-le], insert Cons, auto)
qed simp

instance poly :: ({comm-semiring-1 ,semiring-1-no-zero-divisors}) semiring-1-no-zero-divisors
..
instance poly :: (comm-ring) comm-ring ..
instance poly :: (comm-ring-1) comm-ring-1 ..
instance poly :: (comm-ring-1) comm-semiring-1-cancel ..

lemma prod-smult: (
∏

x∈A. smult (c x) (p x)) = smult (prod c A) (prod p A)
by (induction A rule: infinite-finite-induct) (auto simp: mult-ac)

lemma degree-power-le: degree (p ^ n) ≤ degree p ∗ n
by (induct n) (auto intro: order-trans degree-mult-le)

lemma coeff-0-power : coeff (p ^ n) 0 = coeff p 0 ^ n
by (induct n) (simp-all add: coeff-mult)

lemma poly-smult [simp]: poly (smult a p) x = a ∗ poly p x
by (induct p) (simp-all add: algebra-simps)

lemma poly-mult [simp]: poly (p ∗ q) x = poly p x ∗ poly q x
by (induct p) (simp-all add: algebra-simps)

lemma poly-power [simp]: poly (p ^ n) x = poly p x ^ n
for p :: ′a::comm-semiring-1 poly
by (induct n) simp-all

lemma poly-prod: poly (
∏

k∈A. p k) x = (
∏

k∈A. poly (p k) x)
by (induct A rule: infinite-finite-induct) simp-all

lemma poly-prod-list: poly (
∏

p←ps. p) y = (
∏

p←ps. poly p y)
by (induction ps) auto

116

lemma poly-prod-mset: poly (
∏

x∈#A. p x) y = (
∏

x∈#A. poly (p x) y)
by (induction A) auto

lemma poly-const-pow: [: c :] ^ n = [: c ^ n :]
by (induction n) (auto simp: algebra-simps)

lemma monom-power : monom c n ^ k = monom (c ^ k) (n ∗ k)
by (induction k) (auto simp: mult-monom)

lemma degree-prod-sum-le: finite S =⇒ degree (prod f S) ≤ sum (degree ◦ f) S
proof (induct S rule: finite-induct)

case empty
then show ?case by simp

next
case (insert a S)
show ?case

unfolding prod.insert[OF insert(1−2)] sum.insert[OF insert(1−2)]
by (rule le-trans[OF degree-mult-le]) (use insert in auto)

qed

lemma coeff-0-prod-list: coeff (prod-list xs) 0 = prod-list (map (λp. coeff p 0) xs)
by (induct xs) (simp-all add: coeff-mult)

lemma coeff-monom-mult: coeff (monom c n ∗ p) k = (if k < n then 0 else c ∗
coeff p (k − n))
proof −

have coeff (monom c n ∗ p) k = (
∑

i≤k. (if n = i then c else 0) ∗ coeff p (k −
i))

by (simp add: coeff-mult)
also have . . . = (

∑
i≤k. (if n = i then c ∗ coeff p (k − i) else 0))

by (intro sum.cong) simp-all
also have . . . = (if k < n then 0 else c ∗ coeff p (k − n))

by simp
finally show ?thesis .

qed

lemma coeff-monom-Suc: coeff (monom a (Suc d) ∗ p) (Suc i) = coeff (monom
a d ∗ p) i

by (simp add: monom-Suc)

lemma monom-1-dvd-iff ′: monom 1 n dvd p ←→ (∀ k<n. coeff p k = 0)
proof

assume monom 1 n dvd p
then obtain r where p = monom 1 n ∗ r

by (rule dvdE)
then show ∀ k<n. coeff p k = 0

by (simp add: coeff-mult)
next

117

assume zero: (∀ k<n. coeff p k = 0)
define r where r = Abs-poly (λk. coeff p (k + n))
have ∀∞k. coeff p (k + n) = 0

by (subst cofinite-eq-sequentially, subst eventually-sequentially-seg,
subst cofinite-eq-sequentially [symmetric]) transfer

then have coeff-r [simp]: coeff r k = coeff p (k + n) for k
unfolding r-def by (subst poly.Abs-poly-inverse) simp-all

have p = monom 1 n ∗ r
by (rule poly-eqI , subst coeff-monom-mult) (simp-all add: zero)

then show monom 1 n dvd p by simp
qed

lemma coeff-sum-monom:
assumes n: n ≤ d
shows coeff (

∑
i≤d. monom (f i) i) n = f n (is ?l = -)

proof −
have ?l = (

∑
i≤d. coeff (monom (f i) i) n) (is - = sum ?cmf -)

using coeff-sum.
also have {..d} = insert n ({..d}−{n}) using n by auto

hence sum ?cmf {..d} = sum ?cmf ... by auto
also have ... = sum ?cmf ({..d}−{n}) + ?cmf n by (subst sum.insert,auto)
also have sum ?cmf ({..d}−{n}) = 0 by (subst sum.neutral, auto)
finally show ?thesis by simp

qed

4.15 Mapping polynomials
definition map-poly :: (′a :: zero ⇒ ′b :: zero) ⇒ ′a poly ⇒ ′b poly

where map-poly f p = Poly (map f (coeffs p))

lemma map-poly-0 [simp]: map-poly f 0 = 0
by (simp add: map-poly-def)

lemma map-poly-1 : map-poly f 1 = [:f 1 :]
by (simp add: map-poly-def)

lemma map-poly-1 ′ [simp]: f 1 = 1 =⇒ map-poly f 1 = 1
by (simp add: map-poly-def one-pCons)

lemma coeff-map-poly:
assumes f 0 = 0
shows coeff (map-poly f p) n = f (coeff p n)
by (auto simp: assms map-poly-def nth-default-def coeffs-def not-less Suc-le-eq

coeff-eq-0
simp del: upt-Suc)

lemma lead-coeff-map-poly-nz:
assumes f (lead-coeff p) 6= 0 f 0 = 0
shows lead-coeff (map-poly f p) = f (lead-coeff p)

118

by (metis (no-types, lifting) antisym assms coeff-0 coeff-map-poly le-degree lead-
ing-coeff-0-iff)

lemma coeffs-map-poly [code abstract]:
coeffs (map-poly f p) = strip-while ((=) 0) (map f (coeffs p))
by (simp add: map-poly-def)

lemma coeffs-map-poly ′:
assumes

∧
x. x 6= 0 =⇒ f x 6= 0

shows coeffs (map-poly f p) = map f (coeffs p)
using assms
by (auto simp add: coeffs-map-poly strip-while-idem-iff

last-coeffs-eq-coeff-degree no-trailing-unfold last-map)

lemma set-coeffs-map-poly:
(
∧

x. f x = 0 ←→ x = 0) =⇒ set (coeffs (map-poly f p)) = f ‘ set (coeffs p)
by (simp add: coeffs-map-poly ′)

lemma degree-map-poly:
assumes

∧
x. x 6= 0 =⇒ f x 6= 0

shows degree (map-poly f p) = degree p
by (simp add: degree-eq-length-coeffs coeffs-map-poly ′ assms)

lemma map-poly-eq-0-iff :
assumes f 0 = 0

∧
x. x ∈ set (coeffs p) =⇒ x 6= 0 =⇒ f x 6= 0

shows map-poly f p = 0 ←→ p = 0
proof −

have (coeff (map-poly f p) n = 0) = (coeff p n = 0) for n
proof −

have coeff (map-poly f p) n = f (coeff p n)
by (simp add: coeff-map-poly assms)

also have . . . = 0 ←→ coeff p n = 0
proof (cases n < length (coeffs p))

case True
then have coeff p n ∈ set (coeffs p)

by (auto simp: coeffs-def simp del: upt-Suc)
with assms show f (coeff p n) = 0 ←→ coeff p n = 0

by auto
next

case False
then show ?thesis
by (auto simp: assms length-coeffs nth-default-coeffs-eq [symmetric] nth-default-def)

qed
finally show ?thesis .

qed
then show ?thesis by (auto simp: poly-eq-iff)

qed

lemma map-poly-smult:

119

assumes f 0 = 0
∧

c x. f (c ∗ x) = f c ∗ f x
shows map-poly f (smult c p) = smult (f c) (map-poly f p)
by (intro poly-eqI) (simp-all add: assms coeff-map-poly)

lemma map-poly-pCons:
assumes f 0 = 0
shows map-poly f (pCons c p) = pCons (f c) (map-poly f p)
by (intro poly-eqI) (simp-all add: assms coeff-map-poly coeff-pCons split: nat.splits)

lemma map-poly-map-poly:
assumes f 0 = 0 g 0 = 0
shows map-poly f (map-poly g p) = map-poly (f ◦ g) p
by (intro poly-eqI) (simp add: coeff-map-poly assms)

lemma map-poly-id [simp]: map-poly id p = p
by (simp add: map-poly-def)

lemma map-poly-id ′ [simp]: map-poly (λx. x) p = p
by (simp add: map-poly-def)

lemma map-poly-cong:
assumes (

∧
x. x ∈ set (coeffs p) =⇒ f x = g x)

shows map-poly f p = map-poly g p
proof −

from assms have map f (coeffs p) = map g (coeffs p)
by (intro map-cong) simp-all

then show ?thesis
by (simp only: coeffs-eq-iff coeffs-map-poly)

qed

lemma map-poly-monom: f 0 = 0 =⇒ map-poly f (monom c n) = monom (f c) n
by (intro poly-eqI) (simp-all add: coeff-map-poly)

lemma map-poly-idI :
assumes

∧
x. x ∈ set (coeffs p) =⇒ f x = x

shows map-poly f p = p
using map-poly-cong[OF assms, of - id] by simp

lemma map-poly-idI ′:
assumes

∧
x. x ∈ set (coeffs p) =⇒ f x = x

shows p = map-poly f p
using map-poly-cong[OF assms, of - id] by simp

lemma smult-conv-map-poly: smult c p = map-poly (λx. c ∗ x) p
by (intro poly-eqI) (simp-all add: coeff-map-poly)

lemma poly-cnj: cnj (poly p z) = poly (map-poly cnj p) (cnj z)
by (simp add: poly-altdef degree-map-poly coeff-map-poly)

120

lemma poly-cnj-real:
assumes

∧
n. poly.coeff p n ∈ �

shows cnj (poly p z) = poly p (cnj z)
proof −

from assms have map-poly cnj p = p
by (intro poly-eqI) (auto simp: coeff-map-poly Reals-cnj-iff)

with poly-cnj[of p z] show ?thesis by simp
qed

lemma real-poly-cnj-root-iff :
assumes

∧
n. poly.coeff p n ∈ �

shows poly p (cnj z) = 0 ←→ poly p z = 0
proof −

have poly p (cnj z) = cnj (poly p z)
by (simp add: poly-cnj-real assms)

also have . . . = 0 ←→ poly p z = 0 by simp
finally show ?thesis .

qed

lemma sum-to-poly: (
∑

x∈A. [:f x:]) = [:
∑

x∈A. f x:]
by (induction A rule: infinite-finite-induct) auto

lemma diff-to-poly: [:c:] − [:d:] = [:c − d:]
by (simp add: poly-eq-iff mult-ac)

lemma mult-to-poly: [:c:] ∗ [:d:] = [:c ∗ d:]
by (simp add: poly-eq-iff mult-ac)

lemma prod-to-poly: (
∏

x∈A. [:f x:]) = [:
∏

x∈A. f x:]
by (induction A rule: infinite-finite-induct) (auto simp: mult-to-poly mult-ac)

lemma poly-map-poly-cnj [simp]: poly (map-poly cnj p) x = cnj (poly p (cnj x))
using complex-cnj-cnj poly-cnj by force

lemma map-poly-degree-eq:
assumes f (lead-coeff p) 6= 0
shows degree (map-poly f p) = degree p
using assms
unfolding map-poly-def degree-eq-length-coeffs coeffs-Poly lead-coeff-list-def
by (metis (full-types) last-conv-nth-default length-map no-trailing-unfold nth-default-coeffs-eq

nth-default-map-eq strip-while-idem)

lemma map-poly-degree-less:
assumes f (lead-coeff p) =0 degree p 6=0
shows degree (map-poly f p) < degree p

proof −
have length (coeffs p) >1

using ‹degree p 6=0 › by (simp add: degree-eq-length-coeffs)

121

then obtain xs x where xs-def :coeffs p=xs@[x] length xs>0
by (metis One-nat-def add-0 append-Nil length-greater-0-conv list.size(4) nat-neq-iff

not-less-zero rev-exhaust)
have f x=0 using assms(1) by (simp add: lead-coeff-list-def xs-def (1))
have degree (map-poly f p) = length (strip-while ((=) 0) (map f (xs@[x]))) − 1

unfolding map-poly-def degree-eq-length-coeffs coeffs-Poly
by (subst xs-def ,auto)

also have . . . = length (strip-while ((=) 0) (map f xs)) − 1
using ‹f x=0 › by simp

also have . . . ≤ length xs −1
using length-strip-while-le by (metis diff-le-mono length-map)

also have . . . < length (xs@[x]) − 1
using xs-def (2) by auto

also have . . . = degree p
unfolding degree-eq-length-coeffs xs-def by simp

finally show ?thesis .
qed

lemma map-poly-degree-leq:
shows degree (map-poly f p) ≤ degree p
unfolding map-poly-def degree-eq-length-coeffs
by (metis coeffs-Poly diff-le-mono length-map length-strip-while-le)

4.16 Conversions
lemma of-nat-poly: of-nat n = [:of-nat n:]

by (induct n) (simp-all add: one-pCons)

lemma of-nat-monom: of-nat n = monom (of-nat n) 0
by (simp add: of-nat-poly monom-0)

lemma degree-of-nat [simp]: degree (of-nat n) = 0
by (simp add: of-nat-poly)

lemma lead-coeff-of-nat [simp]: lead-coeff (of-nat n) = of-nat n
by (simp add: of-nat-poly)

lemma of-int-poly: of-int k = [:of-int k:]
by (simp only: of-int-of-nat of-nat-poly) simp

lemma of-int-monom: of-int k = monom (of-int k) 0
by (simp add: of-int-poly monom-0)

lemma degree-of-int [simp]: degree (of-int k) = 0
by (simp add: of-int-poly)

lemma lead-coeff-of-int [simp]: lead-coeff (of-int k) = of-int k
by (simp add: of-int-poly)

122

lemma poly-of-nat [simp]: poly (of-nat n) x = of-nat n
by (simp add: of-nat-poly)

lemma poly-of-int [simp]: poly (of-int n) x = of-int n
by (simp add: of-int-poly)

lemma poly-numeral [simp]: poly (numeral n) x = numeral n
by (metis of-nat-numeral poly-of-nat)

lemma numeral-poly: numeral n = [:numeral n:]
proof −

have numeral n = of-nat (numeral n)
by simp

also have . . . = [:of-nat (numeral n):]
by (simp add: of-nat-poly)

finally show ?thesis
by simp

qed

lemma numeral-monom:
numeral n = monom (numeral n) 0
by (simp add: numeral-poly monom-0)

lemma degree-numeral [simp]:
degree (numeral n) = 0
by (simp add: numeral-poly)

lemma lead-coeff-numeral [simp]:
lead-coeff (numeral n) = numeral n
by (simp add: numeral-poly)

lemma coeff-linear-poly-power :
fixes c :: ′a :: semiring-1
assumes i ≤ n
shows coeff ([:a, b:] ^ n) i = of-nat (n choose i) ∗ b ^ i ∗ a ^ (n − i)

proof −
have [:a, b:] = monom b 1 + [:a:]

by (simp add: monom-altdef)
also have coeff (. . . ^ n) i = (

∑
k≤n. a^(n−k) ∗ of-nat (n choose k) ∗ (if k =

i then b ^ k else 0))
by (subst binomial-ring) (simp add: coeff-sum of-nat-poly monom-power poly-const-pow

mult-ac)
also have . . . = (

∑
k∈{i}. a ^ (n − i) ∗ b ^ i ∗ of-nat (n choose k))

using assms by (intro sum.mono-neutral-cong-right) (auto simp: mult-ac)
finally show ∗: ?thesis by (simp add: mult-ac)

qed

123

4.17 Lemmas about divisibility
lemma dvd-smult:

assumes p dvd q
shows p dvd smult a q

proof −
from assms obtain k where q = p ∗ k ..
then have smult a q = p ∗ smult a k by simp
then show p dvd smult a q ..

qed

lemma dvd-smult-cancel: p dvd smult a q =⇒ a 6= 0 =⇒ p dvd q
for a :: ′a::field
by (drule dvd-smult [where a=inverse a]) simp

lemma dvd-smult-iff : a 6= 0 =⇒ p dvd smult a q ←→ p dvd q
for a :: ′a::field
by (safe elim!: dvd-smult dvd-smult-cancel)

lemma smult-dvd-cancel:
assumes smult a p dvd q
shows p dvd q

proof −
from assms obtain k where q = smult a p ∗ k ..
then have q = p ∗ smult a k by simp
then show p dvd q ..

qed

lemma smult-dvd: p dvd q =⇒ a 6= 0 =⇒ smult a p dvd q
for a :: ′a::field
by (rule smult-dvd-cancel [where a=inverse a]) simp

lemma smult-dvd-iff : smult a p dvd q ←→ (if a = 0 then q = 0 else p dvd q)
for a :: ′a::field
by (auto elim: smult-dvd smult-dvd-cancel)

lemma is-unit-smult-iff : smult c p dvd 1 ←→ c dvd 1 ∧ p dvd 1
proof −

have smult c p = [:c:] ∗ p by simp
also have . . . dvd 1 ←→ c dvd 1 ∧ p dvd 1
proof safe

assume ∗: [:c:] ∗ p dvd 1
then show p dvd 1

by (rule dvd-mult-right)
from ∗ obtain q where q: 1 = [:c:] ∗ p ∗ q

by (rule dvdE)
have c dvd c ∗ (coeff p 0 ∗ coeff q 0)

by simp
also have . . . = coeff ([:c:] ∗ p ∗ q) 0

by (simp add: mult.assoc coeff-mult)

124

also note q [symmetric]
finally have c dvd coeff 1 0 .
then show c dvd 1 by simp

next
assume c dvd 1 p dvd 1
from this(1) obtain d where 1 = c ∗ d

by (rule dvdE)
then have 1 = [:c:] ∗ [:d:]

by (simp add: one-pCons ac-simps)
then have [:c:] dvd 1

by (rule dvdI)
from mult-dvd-mono[OF this ‹p dvd 1 ›] show [:c:] ∗ p dvd 1

by simp
qed
finally show ?thesis .

qed

4.18 Polynomials form an integral domain
instance poly :: (idom) idom ..

instance poly :: ({ring-char-0 , comm-ring-1}) ring-char-0
by standard (auto simp add: of-nat-poly intro: injI)

lemma semiring-char-poly [simp]: CHAR(′a :: comm-semiring-1 poly) = CHAR(′a)
by (rule CHAR-eqI) (auto simp: of-nat-poly of-nat-eq-0-iff-char-dvd)

instance poly :: ({semiring-prime-char ,comm-semiring-1}) semiring-prime-char
by (rule semiring-prime-charI) auto

instance poly :: ({comm-semiring-prime-char ,comm-semiring-1}) comm-semiring-prime-char
by standard

instance poly :: ({comm-ring-prime-char ,comm-semiring-1}) comm-ring-prime-char
by standard

instance poly :: ({idom-prime-char ,comm-semiring-1}) idom-prime-char
by standard

lemma degree-mult-eq: p 6= 0 =⇒ q 6= 0 =⇒ degree (p ∗ q) = degree p + degree q
for p q :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
by (rule order-antisym [OF degree-mult-le le-degree]) (simp add: coeff-mult-degree-sum)

lemma degree-prod-sum-eq:
(
∧

x. x ∈ A =⇒ f x 6= 0) =⇒
degree (prod f A :: ′a :: idom poly) = (

∑
x∈A. degree (f x))

by (induction A rule: infinite-finite-induct) (auto simp: degree-mult-eq)

lemma dvd-imp-degree:
‹degree x ≤ degree y› if ‹x dvd y› ‹x 6= 0 › ‹y 6= 0 ›

for x y :: ‹ ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly›
proof −

125

from ‹x dvd y› obtain z where ‹y = x ∗ z› ..
with ‹x 6= 0 › ‹y 6= 0 › show ?thesis

by (simp add: degree-mult-eq)
qed

lemma degree-prod-eq-sum-degree:
fixes A :: ′a set
and f :: ′a ⇒ ′b::idom poly
assumes f0 : ∀ i∈A. f i 6= 0
shows degree (

∏
i∈A. (f i)) = (

∑
i∈A. degree (f i))

using assms
by (induction A rule: infinite-finite-induct) (auto simp: degree-mult-eq)

lemma degree-mult-eq-0 :
degree (p ∗ q) = 0 ←→ p = 0 ∨ q = 0 ∨ (p 6= 0 ∧ q 6= 0 ∧ degree p = 0 ∧

degree q = 0)
for p q :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
by (auto simp: degree-mult-eq)

lemma degree-power-eq: p 6= 0 =⇒ degree ((p :: ′a :: idom poly) ^ n) = n ∗ degree
p

by (induction n) (simp-all add: degree-mult-eq)

lemma degree-mult-right-le:
fixes p q :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
assumes q 6= 0
shows degree p ≤ degree (p ∗ q)
using assms by (cases p = 0) (simp-all add: degree-mult-eq)

lemma coeff-degree-mult: coeff (p ∗ q) (degree (p ∗ q)) = coeff q (degree q) ∗ coeff
p (degree p)

for p q :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
by (cases p = 0 ∨ q = 0) (auto simp: degree-mult-eq coeff-mult-degree-sum

mult-ac)

lemma dvd-imp-degree-le: p dvd q =⇒ q 6= 0 =⇒ degree p ≤ degree q
for p q :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly
by (erule dvdE , hypsubst, subst degree-mult-eq) auto

lemma divides-degree:
fixes p q :: ′a ::{comm-semiring-1 ,semiring-no-zero-divisors} poly
assumes p dvd q
shows degree p ≤ degree q ∨ q = 0
by (metis dvd-imp-degree-le assms)

lemma const-poly-dvd-iff :
fixes c :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors}
shows [:c:] dvd p ←→ (∀n. c dvd coeff p n)

proof (cases c = 0 ∨ p = 0)

126

case True
then show ?thesis

by (auto intro!: poly-eqI)
next

case False
show ?thesis
proof

assume [:c:] dvd p
then show ∀n. c dvd coeff p n

by (auto simp: coeffs-def)
next

assume ∗: ∀n. c dvd coeff p n
define mydiv where mydiv x y = (SOME z. x = y ∗ z) for x y :: ′a
have mydiv: x = y ∗ mydiv x y if y dvd x for x y

using that unfolding mydiv-def dvd-def by (rule someI-ex)
define q where q = Poly (map (λa. mydiv a c) (coeffs p))
from False ∗ have p = q ∗ [:c:]

by (intro poly-eqI)
(auto simp: q-def nth-default-def not-less length-coeffs-degree coeffs-nth

intro!: coeff-eq-0 mydiv)
then show [:c:] dvd p

by (simp only: dvd-triv-right)
qed

qed

lemma const-poly-dvd-const-poly-iff [simp]: [:a:] dvd [:b:] ←→ a dvd b
for a b :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors}
by (subst const-poly-dvd-iff) (auto simp: coeff-pCons split: nat.splits)

lemma lead-coeff-mult: lead-coeff (p ∗ q) = lead-coeff p ∗ lead-coeff q
for p q :: ′a::{comm-semiring-0 , semiring-no-zero-divisors} poly
by (cases p = 0 ∨ q = 0) (auto simp: coeff-mult-degree-sum degree-mult-eq)

lemma lead-coeff-prod: lead-coeff (prod f A) = (
∏

x∈A. lead-coeff (f x))
for f :: ′a ⇒ ′b::{comm-semiring-1 , semiring-no-zero-divisors} poly
by (induction A rule: infinite-finite-induct) (auto simp: lead-coeff-mult)

lemma lead-coeff-smult: lead-coeff (smult c p) = c ∗ lead-coeff p
for p :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly

proof −
have smult c p = [:c:] ∗ p by simp
also have lead-coeff . . . = c ∗ lead-coeff p

by (subst lead-coeff-mult) simp-all
finally show ?thesis .

qed

lemma lead-coeff-1 [simp]: lead-coeff 1 = 1
by simp

127

lemma lead-coeff-power : lead-coeff (p ^ n) = lead-coeff p ^ n
for p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly
by (induct n) (simp-all add: lead-coeff-mult)

4.19 Polynomials form an ordered integral domain
definition pos-poly :: ′a::linordered-semidom poly ⇒ bool

where pos-poly p ←→ 0 < coeff p (degree p)

lemma pos-poly-pCons: pos-poly (pCons a p) ←→ pos-poly p ∨ (p = 0 ∧ 0 < a)
by (simp add: pos-poly-def)

lemma not-pos-poly-0 [simp]: ¬ pos-poly 0
by (simp add: pos-poly-def)

lemma pos-poly-add: pos-poly p =⇒ pos-poly q =⇒ pos-poly (p + q)
proof (induction p arbitrary: q)

case (pCons a p)
then show ?case

by (cases q; force simp add: pos-poly-pCons add-pos-pos)
qed auto

lemma pos-poly-mult: pos-poly p =⇒ pos-poly q =⇒ pos-poly (p ∗ q)
by (simp add: pos-poly-def coeff-degree-mult)

lemma pos-poly-total: p = 0 ∨ pos-poly p ∨ pos-poly (− p)
for p :: ′a::linordered-idom poly
by (induct p) (auto simp: pos-poly-pCons)

lemma pos-poly-coeffs [code]: pos-poly p ←→ (let as = coeffs p in as 6= [] ∧ last as
> 0)
(is ?lhs ←→ ?rhs)

proof
assume ?rhs
then show ?lhs

by (auto simp add: pos-poly-def last-coeffs-eq-coeff-degree)
next

assume ?lhs
then have ∗: 0 < coeff p (degree p)

by (simp add: pos-poly-def)
then have p 6= 0

by auto
with ∗ show ?rhs

by (simp add: last-coeffs-eq-coeff-degree)
qed

instantiation poly :: (linordered-idom) linordered-idom
begin

128

definition x < y ←→ pos-poly (y − x)

definition x ≤ y ←→ x = y ∨ pos-poly (y − x)

definition |x:: ′a poly| = (if x < 0 then − x else x)

definition sgn (x:: ′a poly) = (if x = 0 then 0 else if 0 < x then 1 else − 1)

instance
proof

fix x y z :: ′a poly
show x < y ←→ x ≤ y ∧ ¬ y ≤ x

unfolding less-eq-poly-def less-poly-def
using pos-poly-add by force

then show x ≤ y =⇒ y ≤ x =⇒ x = y
using less-eq-poly-def less-poly-def by force

show x ≤ x
by (simp add: less-eq-poly-def)

show x ≤ y =⇒ y ≤ z =⇒ x ≤ z
using less-eq-poly-def pos-poly-add by fastforce

show x ≤ y =⇒ z + x ≤ z + y
by (simp add: less-eq-poly-def)

show x ≤ y ∨ y ≤ x
unfolding less-eq-poly-def
using pos-poly-total [of x − y]
by auto

show x < y =⇒ 0 < z =⇒ z ∗ x < z ∗ y
by (simp add: less-poly-def right-diff-distrib [symmetric] pos-poly-mult)

show |x| = (if x < 0 then − x else x)
by (rule abs-poly-def)

show sgn x = (if x = 0 then 0 else if 0 < x then 1 else − 1)
by (rule sgn-poly-def)

qed

end

TODO: Simplification rules for comparisons

4.20 Synthetic division and polynomial roots
4.20.1 Synthetic division

Synthetic division is simply division by the linear polynomial x − c.
definition synthetic-divmod :: ′a::comm-semiring-0 poly ⇒ ′a ⇒ ′a poly × ′a

where synthetic-divmod p c = fold-coeffs (λa (q, r). (pCons r q, a + c ∗ r)) p
(0 , 0)

definition synthetic-div :: ′a::comm-semiring-0 poly ⇒ ′a ⇒ ′a poly
where synthetic-div p c = fst (synthetic-divmod p c)

129

lemma synthetic-divmod-0 [simp]: synthetic-divmod 0 c = (0 , 0)
by (simp add: synthetic-divmod-def)

lemma synthetic-divmod-pCons [simp]:
synthetic-divmod (pCons a p) c = (λ(q, r). (pCons r q, a + c ∗ r)) (synthetic-divmod

p c)
by (cases p = 0 ∧ a = 0) (auto simp add: synthetic-divmod-def)

lemma synthetic-div-0 [simp]: synthetic-div 0 c = 0
by (simp add: synthetic-div-def)

lemma synthetic-div-unique-lemma: smult c p = pCons a p =⇒ p = 0
by (induct p arbitrary: a) simp-all

lemma snd-synthetic-divmod: snd (synthetic-divmod p c) = poly p c
by (induct p) (simp-all add: split-def)

lemma synthetic-div-pCons [simp]:
synthetic-div (pCons a p) c = pCons (poly p c) (synthetic-div p c)
by (simp add: synthetic-div-def split-def snd-synthetic-divmod)

lemma synthetic-div-eq-0-iff : synthetic-div p c = 0 ←→ degree p = 0
proof (induct p)

case 0
then show ?case by simp

next
case (pCons a p)
then show ?case by (cases p) simp

qed

lemma degree-synthetic-div: degree (synthetic-div p c) = degree p − 1
by (induct p) (simp-all add: synthetic-div-eq-0-iff)

lemma synthetic-div-correct:
p + smult c (synthetic-div p c) = pCons (poly p c) (synthetic-div p c)
by (induct p) simp-all

lemma synthetic-div-unique: p + smult c q = pCons r q =⇒ r = poly p c ∧ q =
synthetic-div p c
proof (induction p arbitrary: q r)

case 0
then show ?case

using synthetic-div-unique-lemma by fastforce
next

case (pCons a p)
then show ?case

by (cases q; force)
qed

130

lemma synthetic-div-correct ′: [:−c, 1 :] ∗ synthetic-div p c + [:poly p c:] = p
for c :: ′a::comm-ring-1
using synthetic-div-correct [of p c] by (simp add: algebra-simps)

4.20.2 Polynomial roots
lemma poly-eq-0-iff-dvd: poly p c = 0 ←→ [:− c, 1 :] dvd p
(is ?lhs ←→ ?rhs)
for c :: ′a::comm-ring-1

proof
assume ?lhs
with synthetic-div-correct ′ [of c p] have p = [:−c, 1 :] ∗ synthetic-div p c by simp
then show ?rhs ..

next
assume ?rhs
then obtain k where p = [:−c, 1 :] ∗ k by (rule dvdE)
then show ?lhs by simp

qed

lemma dvd-iff-poly-eq-0 : [:c, 1 :] dvd p ←→ poly p (− c) = 0
for c :: ′a::comm-ring-1
by (simp add: poly-eq-0-iff-dvd)

lemma poly-roots-finite: p 6= 0 =⇒ finite {x. poly p x = 0}
for p :: ′a::{comm-ring-1 ,ring-no-zero-divisors} poly

proof (induct n ≡ degree p arbitrary: p)
case 0
then obtain a where a 6= 0 and p = [:a:]

by (cases p) (simp split: if-splits)
then show finite {x. poly p x = 0}

by simp
next

case (Suc n)
show finite {x. poly p x = 0}
proof (cases ∃ x. poly p x = 0)

case False
then show finite {x. poly p x = 0} by simp

next
case True
then obtain a where poly p a = 0 ..
then have [:−a, 1 :] dvd p

by (simp only: poly-eq-0-iff-dvd)
then obtain k where k: p = [:−a, 1 :] ∗ k ..
with ‹p 6= 0 › have k 6= 0

by auto
with k have degree p = Suc (degree k)

by (simp add: degree-mult-eq del: mult-pCons-left)
with ‹Suc n = degree p› have n = degree k

131

by simp
from this ‹k 6= 0 › have finite {x. poly k x = 0}

by (rule Suc.hyps)
then have finite (insert a {x. poly k x = 0})

by simp
then show finite {x. poly p x = 0}

by (simp add: k Collect-disj-eq del: mult-pCons-left)
qed

qed

lemma poly-eq-poly-eq-iff : poly p = poly q ←→ p = q
(is ?lhs ←→ ?rhs)
for p q :: ′a::{comm-ring-1 ,ring-no-zero-divisors,ring-char-0} poly

proof
assume ?rhs
then show ?lhs by simp

next
assume ?lhs
have poly p = poly 0 ←→ p = 0 for p :: ′a poly
proof (cases p = 0)

case False
then show ?thesis

by (auto simp add: infinite-UNIV-char-0 dest: poly-roots-finite)
qed auto
from ‹?lhs› and this [of p − q] show ?rhs

by auto
qed

A nice extension rule for polynomials.
lemma poly-ext:

fixes p q :: ′a :: {ring-char-0 , idom} poly
assumes

∧
x. poly p x = poly q x shows p = q

unfolding poly-eq-poly-eq-iff [symmetric]
using assms by (rule ext)

Copied from non-negative variants.
lemma coeff-linear-power-neg[simp]:

fixes a :: ′a::comm-ring-1
shows coeff ([:a, −1 :] ^ n) n = (−1)^n

proof (induct n)
case 0
then show ?case by simp

next
case (Suc n)
then have degree ([:a, − 1 :] ^ n) < Suc n

by (auto intro: le-less-trans degree-power-le)
with Suc show ?case

by (simp add: coeff-eq-0)
qed

132

lemma degree-linear-power-neg[simp]:
fixes a :: ′a::{idom,comm-ring-1}
shows degree ([:a, −1 :] ^ n) = n
by (simp add: degree-power-eq)

lemma poly-all-0-iff-0 : (∀ x. poly p x = 0) ←→ p = 0
for p :: ′a::{ring-char-0 ,comm-ring-1 ,ring-no-zero-divisors} poly
by (auto simp add: poly-eq-poly-eq-iff [symmetric])

lemma card-poly-roots-bound:
fixes p :: ′a::{comm-ring-1 ,ring-no-zero-divisors} poly
assumes p 6= 0
shows card {x. poly p x = 0} ≤ degree p

using assms
proof (induction degree p arbitrary: p rule: less-induct)

case (less p)
show ?case
proof (cases ∃ x. poly p x = 0)

case False
hence {x. poly p x = 0} = {} by blast
thus ?thesis by simp

next
case True
then obtain x where x: poly p x = 0 by blast
hence [:−x, 1 :] dvd p by (subst (asm) poly-eq-0-iff-dvd)
then obtain q where q: p = [:−x, 1 :] ∗ q by (auto simp: dvd-def)
with ‹p 6= 0 › have [simp]: q 6= 0 by auto
have deg: degree p = Suc (degree q)

by (subst q, subst degree-mult-eq) auto
have card {x. poly p x = 0} ≤ card (insert x {x. poly q x = 0})

by (intro card-mono) (auto intro: poly-roots-finite simp: q)
also have . . . ≤ Suc (card {x. poly q x = 0})

by (rule card-insert-le-m1) auto
also from deg have card {x. poly q x = 0} ≤ degree q

using ‹p 6= 0 › and q by (intro less) auto
also have Suc . . . = degree p by (simp add: deg)
finally show ?thesis by − simp-all

qed
qed

lemma poly-eqI-degree:
fixes p q :: ′a :: {comm-ring-1 , ring-no-zero-divisors} poly
assumes

∧
x. x ∈ A =⇒ poly p x = poly q x

assumes card A > degree p card A > degree q
shows p = q

proof (rule ccontr)
assume neq: p 6= q
have degree (p − q) ≤ max (degree p) (degree q)

133

by (rule degree-diff-le-max)
also from assms have . . . < card A by linarith
also have . . . ≤ card {x. poly (p − q) x = 0}

using neq and assms by (intro card-mono poly-roots-finite) auto
finally have degree (p − q) < card {x. poly (p − q) x = 0} .
moreover have degree (p − q) ≥ card {x. poly (p − q) x = 0}

using neq by (intro card-poly-roots-bound) auto
ultimately show False by linarith

qed

lemma poly-eqI-degree-lead-coeff :
fixes p q :: ′a :: {comm-ring-1 , ring-no-zero-divisors} poly
assumes poly.coeff p n = poly.coeff q n card A ≥ n degree p ≤ n degree q ≤ n
assumes

∧
z. z ∈ A =⇒ poly p z = poly q z

shows p = q
proof (rule ccontr)

assume p 6= q

have n > 0
proof (rule ccontr)

assume ¬(n > 0)
thus False

using assms ‹p 6= q› by (auto elim!: degree-eq-zeroE)
qed

have n ≤ card A
by fact

also have card A ≤ card {x. poly (p − q) x = 0}
by (intro card-mono poly-roots-finite) (use ‹p 6= q› assms in auto)

also have card {x. poly (p − q) x = 0} ≤ degree (p − q)
by (rule card-poly-roots-bound) (use ‹p 6= q› in auto)

also have degree (p − q) < n
proof (intro degree-lessI allI impI)

fix k assume k ≥ n
show poly.coeff (p − q) k = 0
proof (cases k = n)

case False
hence poly.coeff p k = 0 poly.coeff q k = 0

using assms ‹k ≥ n› by (auto simp: coeff-eq-0)
thus ?thesis

by simp
qed (use assms in auto)

qed (use ‹n > 0 › in auto)
finally show False

by simp
qed

134

4.20.3 Order of polynomial roots
definition order :: ′a::idom ⇒ ′a poly ⇒ nat

where order a p = (LEAST n. ¬ [:−a, 1 :] ^ Suc n dvd p)

lemma coeff-linear-power : coeff ([:a, 1 :] ^ n) n = 1
for a :: ′a::comm-semiring-1

proof (induct n)
case (Suc n)
have degree ([:a, 1 :] ^ n) ≤ 1 ∗ n
by (metis One-nat-def degree-pCons-eq-if degree-power-le one-neq-zero one-pCons)

then have coeff ([:a, 1 :] ^ n) (Suc n) = 0
by (simp add: coeff-eq-0)

then show ?case
using Suc.hyps by fastforce

qed auto

lemma degree-linear-power : degree ([:a, 1 :] ^ n) = n
for a :: ′a::comm-semiring-1

proof (rule order-antisym)
show degree ([:a, 1 :] ^ n) ≤ n
by (metis One-nat-def degree-pCons-eq-if degree-power-le mult.left-neutral one-neq-zero

one-pCons)
qed (simp add: coeff-linear-power le-degree)

lemma order-1 : [:−a, 1 :] ^ order a p dvd p
proof (cases p = 0)

case False
show ?thesis
proof (cases order a p)

case (Suc n)
then show ?thesis

by (metis lessI not-less-Least order-def)
qed auto

qed auto

lemma order-2 :
assumes p 6= 0
shows ¬ [:−a, 1 :] ^ Suc (order a p) dvd p

proof −
have False if [:− a, 1 :] ^ Suc (degree p) dvd p

using dvd-imp-degree-le [OF that]
by (metis Suc-n-not-le-n assms degree-linear-power)

then show ?thesis
unfolding order-def
by (metis (no-types, lifting) LeastI)

qed

lemma order : p 6= 0 =⇒ [:−a, 1 :] ^ order a p dvd p ∧ ¬ [:−a, 1 :] ^ Suc (order a
p) dvd p

135

by (rule conjI [OF order-1 order-2])

lemma order-degree:
assumes p: p 6= 0
shows order a p ≤ degree p

proof −
have order a p = degree ([:−a, 1 :] ^ order a p)

by (simp only: degree-linear-power)
also from order-1 p have . . . ≤ degree p

by (rule dvd-imp-degree-le)
finally show ?thesis .

qed

lemma order-root: poly p a = 0 ←→ p = 0 ∨ order a p 6= 0 (is ?lhs = ?rhs)
proof

show ?lhs =⇒ ?rhs
by (metis One-nat-def order-2 poly-eq-0-iff-dvd power-one-right)

show ?rhs =⇒ ?lhs
by (meson dvd-power dvd-trans neq0-conv order-1 poly-0 poly-eq-0-iff-dvd)

qed

lemma order-0I : poly p a 6= 0 =⇒ order a p = 0
by (subst (asm) order-root) auto

lemma order-unique-lemma:
fixes p :: ′a::idom poly
assumes [:−a, 1 :] ^ n dvd p ¬ [:−a, 1 :] ^ Suc n dvd p
shows order a p = n
unfolding Polynomial.order-def
by (metis (mono-tags, lifting) Least-equality assms not-less-eq-eq power-le-dvd)

lemma order-mult:
assumes p ∗ q 6= 0 shows order a (p ∗ q) = order a p + order a q

proof −
define i where i ≡ order a p
define j where j ≡ order a q
define t where t ≡ [:−a, 1 :]
have t-dvd-iff :

∧
u. t dvd u ←→ poly u a = 0

by (simp add: t-def dvd-iff-poly-eq-0)
have dvd: t ^ i dvd p t ^ j dvd q and ¬ t ^ Suc i dvd p ¬ t ^ Suc j dvd q

using assms i-def j-def order-1 order-2 t-def by auto
then have ¬ t ^ Suc(i + j) dvd p ∗ q

by (elim dvdE) (simp add: power-add t-dvd-iff)
moreover have t ^ (i + j) dvd p ∗ q

using dvd by (simp add: mult-dvd-mono power-add)
ultimately show order a (p ∗ q) = i + j

using order-unique-lemma t-def by blast
qed

136

lemma order-smult:
assumes c 6= 0
shows order x (smult c p) = order x p

proof (cases p = 0)
case True
then show ?thesis

by simp
next

case False
have smult c p = [:c:] ∗ p by simp
also from assms False have order x . . . = order x [:c:] + order x p

by (subst order-mult) simp-all
also have order x [:c:] = 0

by (rule order-0I) (use assms in auto)
finally show ?thesis

by simp
qed

lemma order-gt-0-iff : p 6= 0 =⇒ order x p > 0 ←→ poly p x = 0
by (subst order-root) auto

lemma order-eq-0-iff : p 6= 0 =⇒ order x p = 0 ←→ poly p x 6= 0
by (subst order-root) auto

Next three lemmas contributed by Wenda Li
lemma order-1-eq-0 [simp]:order x 1 = 0

by (metis order-root poly-1 zero-neq-one)

lemma order-uminus[simp]: order x (−p) = order x p
by (metis neg-equal-0-iff-equal order-smult smult-1-left smult-minus-left)

lemma order-power-n-n: order a ([:−a,1 :]^n)=n
proof (induct n)

case 0
then show ?case

by (metis order-root poly-1 power-0 zero-neq-one)
next

case (Suc n)
have order a ([:− a, 1 :] ^ Suc n) = order a ([:− a, 1 :] ^ n) + order a [:−a,1 :]
by (metis (no-types, opaque-lifting) One-nat-def add-Suc-right monoid-add-class.add.right-neutral
one-neq-zero order-mult pCons-eq-0-iff power-add power-eq-0-iff power-one-right)

moreover have order a [:−a,1 :] = 1
unfolding order-def

proof (rule Least-equality, rule notI)
assume [:− a, 1 :] ^ Suc 1 dvd [:− a, 1 :]
then have degree ([:− a, 1 :] ^ Suc 1) ≤ degree ([:− a, 1 :])

by (rule dvd-imp-degree-le) auto
then show False

137

by auto
next

fix y
assume ∗: ¬ [:− a, 1 :] ^ Suc y dvd [:− a, 1 :]
show 1 ≤ y
proof (rule ccontr)

assume ¬ 1 ≤ y
then have y = 0 by auto
then have [:− a, 1 :] ^ Suc y dvd [:− a, 1 :] by auto
with ∗ show False by auto

qed
qed
ultimately show ?case

using Suc by auto
qed

lemma order-0-monom [simp]: c 6= 0 =⇒ order 0 (monom c n) = n
using order-power-n-n[of 0 n] by (simp add: monom-altdef order-smult)

lemma dvd-imp-order-le: q 6= 0 =⇒ p dvd q =⇒ Polynomial.order a p ≤ Polyno-
mial.order a q

by (auto simp: order-mult)

Now justify the standard squarefree decomposition, i.e. f / gcd f f ′.
lemma order-divides: [:−a, 1 :] ^ n dvd p ←→ p = 0 ∨ n ≤ order a p

by (meson dvd-0-right not-less-eq-eq order-1 order-2 power-le-dvd)

lemma order-decomp:
assumes p 6= 0
shows ∃ q. p = [:− a, 1 :] ^ order a p ∗ q ∧ ¬ [:− a, 1 :] dvd q

proof −
from assms have ∗: [:− a, 1 :] ^ order a p dvd p

and ∗∗: ¬ [:− a, 1 :] ^ Suc (order a p) dvd p
by (auto dest: order)

from ∗ obtain q where q: p = [:− a, 1 :] ^ order a p ∗ q ..
with ∗∗ have ¬ [:− a, 1 :] ^ Suc (order a p) dvd [:− a, 1 :] ^ order a p ∗ q

by simp
then have ¬ [:− a, 1 :] ^ order a p ∗ [:− a, 1 :] dvd [:− a, 1 :] ^ order a p ∗ q

by simp
with idom-class.dvd-mult-cancel-left [of [:− a, 1 :] ^ order a p [:− a, 1 :] q]
have ¬ [:− a, 1 :] dvd q by auto
with q show ?thesis by blast

qed

lemma monom-1-dvd-iff : p 6= 0 =⇒ monom 1 n dvd p ←→ n ≤ order 0 p
using order-divides[of 0 n p] by (simp add: monom-altdef)

lemma poly-root-order-induct [case-names 0 no-roots root]:
fixes p :: ′a :: idom poly

138

assumes P 0
∧

p. (
∧

x. poly p x 6= 0) =⇒ P p∧
p x n. n > 0 =⇒ poly p x 6= 0 =⇒ P p =⇒ P ([:−x, 1 :] ^ n ∗ p)

shows P p
proof (induction degree p arbitrary: p rule: less-induct)

case (less p)
consider p = 0 | p 6= 0 ∃ x. poly p x = 0 |

∧
x. poly p x 6= 0 by blast

thus ?case
proof cases

case 3
with assms(2)[of p] show ?thesis by simp

next
case 2
then obtain x where x: poly p x = 0 by auto
have [:−x, 1 :] ^ order x p dvd p by (intro order-1)
then obtain q where q: p = [:−x, 1 :] ^ order x p ∗ q by (auto simp: dvd-def)
with 2 have [simp]: q 6= 0 by auto
have order-pos: order x p > 0

using ‹p 6= 0 › and x by (auto simp: order-root)
have order x p = order x p + order x q

by (subst q, subst order-mult) (auto simp: order-power-n-n)
hence [simp]: order x q = 0 by simp
have deg: degree p = order x p + degree q

by (subst q, subst degree-mult-eq) (auto simp: degree-power-eq)
with order-pos have degree q < degree p by simp
hence P q by (rule less)
with order-pos have P ([:−x, 1 :] ^ order x p ∗ q)

by (intro assms(3)) (auto simp: order-root)
with q show ?thesis by simp

qed (simp-all add: assms(1))
qed

context
includes multiset.lifting

begin

lift-definition proots :: (′a :: idom) poly ⇒ ′a multiset is
λ(p :: ′a poly) (x :: ′a). if p = 0 then 0 else order x p

proof −
fix p :: ′a poly
show finite {x. 0 < (if p = 0 then 0 else order x p)}

by (cases p = 0)
(auto simp: order-gt-0-iff intro: finite-subset[OF - poly-roots-finite[of p]])

qed

lemma proots-0 [simp]: proots (0 :: ′a :: idom poly) = {#}
by transfer ′ auto

lemma proots-1 [simp]: proots (1 :: ′a :: idom poly) = {#}

139

by transfer ′ auto

lemma proots-const [simp]: proots [: x :] = 0
by transfer ′ (auto split: if-splits simp: fun-eq-iff order-eq-0-iff)

lemma proots-numeral [simp]: proots (numeral n) = 0
by (simp add: numeral-poly)

lemma count-proots [simp]:
p 6= 0 =⇒ count (proots p) a = order a p
by transfer ′ auto

lemma set-count-proots [simp]:
p 6= 0 =⇒ set-mset (proots p) = {x. poly p x = 0}

by (auto simp: set-mset-def order-gt-0-iff)

lemma proots-uminus [simp]: proots (−p) = proots p
by (cases p = 0 ; rule multiset-eqI) auto

lemma proots-smult [simp]: c 6= 0 =⇒ proots (smult c p) = proots p
by (cases p = 0 ; rule multiset-eqI) (auto simp: order-smult)

lemma proots-mult:
assumes p 6= 0 q 6= 0
shows proots (p ∗ q) = proots p + proots q
using assms by (intro multiset-eqI) (auto simp: order-mult)

lemma proots-prod:
assumes

∧
x. x ∈ A =⇒ f x 6= 0

shows proots (
∏

x∈A. f x) = (
∑

x∈A. proots (f x))
using assms by (induction A rule: infinite-finite-induct) (auto simp: proots-mult)

lemma proots-prod-mset:
assumes 0 /∈# A
shows proots (

∏
p∈#A. p) = (

∑
p∈#A. proots p)

using assms by (induction A) (auto simp: proots-mult)

lemma proots-prod-list:
assumes 0 /∈ set ps
shows proots (

∏
p←ps. p) = (

∑
p←ps. proots p)

using assms by (induction ps) (auto simp: proots-mult prod-list-zero-iff)

lemma proots-power : proots (p ^ n) = repeat-mset n (proots p)
proof (cases p = 0)

case False
thus ?thesis

by (induction n) (auto simp: proots-mult)
qed (auto simp: power-0-left)

140

lemma proots-linear-factor [simp]: proots [:x, 1 :] = {#−x#}
proof −

have order (−x) [:x, 1 :] > 0
by (subst order-gt-0-iff) auto

moreover have order (−x) [:x, 1 :] ≤ degree [:x, 1 :]
by (rule order-degree) auto

moreover have order y [:x, 1 :] = 0 if y 6= −x for y
by (rule order-0I) (use that in ‹auto simp: add-eq-0-iff ›)

ultimately show ?thesis
by (intro multiset-eqI) auto

qed

lemma size-proots-le: size (proots p) ≤ degree p
proof (induction p rule: poly-root-order-induct)

case (no-roots p)
hence proots p = 0

by (simp add: multiset-eqI order-root)
thus ?case by simp

next
case (root p x n)
have [simp]: p 6= 0

using root.hyps by auto
from root.IH show ?case

by (auto simp: proots-mult proots-power degree-mult-eq degree-power-eq)
qed auto

end

4.21 Additional induction rules on polynomials

An induction rule for induction over the roots of a polynomial with a certain
property. (e.g. all positive roots)
lemma poly-root-induct [case-names 0 no-roots root]:

fixes p :: ′a :: idom poly
assumes Q 0

and
∧

p. (
∧

a. P a =⇒ poly p a 6= 0) =⇒ Q p
and

∧
a p. P a =⇒ Q p =⇒ Q ([:a, −1 :] ∗ p)

shows Q p
proof (induction degree p arbitrary: p rule: less-induct)

case (less p)
show ?case
proof (cases p = 0)

case True
with assms(1) show ?thesis by simp

next
case False
show ?thesis
proof (cases ∃ a. P a ∧ poly p a = 0)

case False

141

then show ?thesis by (intro assms(2)) blast
next

case True
then obtain a where a: P a poly p a = 0

by blast
then have −[:−a, 1 :] dvd p

by (subst minus-dvd-iff) (simp add: poly-eq-0-iff-dvd)
then obtain q where q: p = [:a, −1 :] ∗ q by (elim dvdE) simp
with False have q 6= 0 by auto
have degree p = Suc (degree q)

by (subst q, subst degree-mult-eq) (simp-all add: ‹q 6= 0 ›)
then have Q q by (intro less) simp
with a(1) have Q ([:a, −1 :] ∗ q)

by (rule assms(3))
with q show ?thesis by simp

qed
qed

qed

lemma dropWhile-replicate-append:
dropWhile ((=) a) (replicate n a @ ys) = dropWhile ((=) a) ys
by (induct n) simp-all

lemma Poly-append-replicate-0 : Poly (xs @ replicate n 0) = Poly xs
by (subst coeffs-eq-iff) (simp-all add: strip-while-def dropWhile-replicate-append)

An induction rule for simultaneous induction over two polynomials, prepend-
ing one coefficient in each step.
lemma poly-induct2 [case-names 0 pCons]:

assumes P 0 0
∧

a p b q. P p q =⇒ P (pCons a p) (pCons b q)
shows P p q

proof −
define n where n = max (length (coeffs p)) (length (coeffs q))
define xs where xs = coeffs p @ (replicate (n − length (coeffs p)) 0)
define ys where ys = coeffs q @ (replicate (n − length (coeffs q)) 0)
have length xs = length ys

by (simp add: xs-def ys-def n-def)
then have P (Poly xs) (Poly ys)

by (induct rule: list-induct2) (simp-all add: assms)
also have Poly xs = p

by (simp add: xs-def Poly-append-replicate-0)
also have Poly ys = q

by (simp add: ys-def Poly-append-replicate-0)
finally show ?thesis .

qed

4.22 Composition of polynomials
definition pcompose :: ′a::comm-semiring-0 poly ⇒ ′a poly ⇒ ′a poly

142

where pcompose p q = fold-coeffs (λa c. [:a:] + q ∗ c) p 0

notation pcompose (infixl ‹◦p› 71)

lemma pcompose-0 [simp]: pcompose 0 q = 0
by (simp add: pcompose-def)

lemma pcompose-pCons: pcompose (pCons a p) q = [:a:] + q ∗ pcompose p q
by (cases p = 0 ∧ a = 0) (auto simp add: pcompose-def)

lemma pcompose-altdef : pcompose p q = poly (map-poly (λx. [:x:]) p) q
by (induction p) (simp-all add: map-poly-pCons pcompose-pCons)

lemma coeff-pcompose-0 [simp]:
coeff (pcompose p q) 0 = poly p (coeff q 0)
by (induction p) (simp-all add: coeff-mult-0 pcompose-pCons)

lemma pcompose-1 : pcompose 1 p = 1
for p :: ′a::comm-semiring-1 poly
by (auto simp: one-pCons pcompose-pCons)

lemma poly-pcompose: poly (pcompose p q) x = poly p (poly q x)
by (induct p) (simp-all add: pcompose-pCons)

lemma degree-pcompose-le: degree (pcompose p q) ≤ degree p ∗ degree q
proof (induction p)

case (pCons a p)
then show ?case
proof (clarsimp simp add: pcompose-pCons)

assume degree (p ◦p q) ≤ degree p ∗ degree q p 6= 0
then have degree (q ∗ p ◦p q) ≤ degree q + degree p ∗ degree q

by (meson add-le-cancel-left degree-mult-le dual-order .trans pCons.IH)
then show degree ([:a:] + q ∗ p ◦p q) ≤ degree q + degree p ∗ degree q

by (simp add: degree-add-le)
qed

qed auto

lemma pcompose-add: pcompose (p + q) r = pcompose p r + pcompose q r
for p q r :: ′a::{comm-semiring-0 , ab-semigroup-add} poly

proof (induction p q rule: poly-induct2)
case 0
then show ?case by simp

next
case (pCons a p b q)
have pcompose (pCons a p + pCons b q) r = [:a + b:] + r ∗ pcompose p r + r
∗ pcompose q r

by (simp-all add: pcompose-pCons pCons.IH algebra-simps)
also have [:a + b:] = [:a:] + [:b:] by simp
also have . . . + r ∗ pcompose p r + r ∗ pcompose q r = pcompose (pCons a p)

143

r + pcompose (pCons b q) r
by (simp only: pcompose-pCons add-ac)

finally show ?case .
qed

lemma pcompose-uminus: pcompose (−p) r = −pcompose p r
for p r :: ′a::comm-ring poly
by (induct p) (simp-all add: pcompose-pCons)

lemma pcompose-diff : pcompose (p − q) r = pcompose p r − pcompose q r
for p q r :: ′a::comm-ring poly
using pcompose-add[of p −q] by (simp add: pcompose-uminus)

lemma pcompose-smult: pcompose (smult a p) r = smult a (pcompose p r)
for p r :: ′a::comm-semiring-0 poly
by (induct p) (simp-all add: pcompose-pCons pcompose-add smult-add-right)

lemma pcompose-mult: pcompose (p ∗ q) r = pcompose p r ∗ pcompose q r
for p q r :: ′a::comm-semiring-0 poly
by (induct p arbitrary: q) (simp-all add: pcompose-add pcompose-smult pcom-

pose-pCons algebra-simps)

lemma pcompose-assoc: pcompose p (pcompose q r) = pcompose (pcompose p q) r
for p q r :: ′a::comm-semiring-0 poly
by (induct p arbitrary: q) (simp-all add: pcompose-pCons pcompose-add pcom-

pose-mult)

lemma pcompose-idR[simp]: pcompose p [: 0 , 1 :] = p
for p :: ′a::comm-semiring-1 poly
by (induct p) (simp-all add: pcompose-pCons)

lemma pcompose-sum: pcompose (sum f A) p = sum (λi. pcompose (f i) p) A
by (induct A rule: infinite-finite-induct) (simp-all add: pcompose-1 pcompose-add)

lemma pcompose-prod: pcompose (prod f A) p = prod (λi. pcompose (f i) p) A
by (induct A rule: infinite-finite-induct) (simp-all add: pcompose-1 pcompose-mult)

lemma pcompose-const [simp]: pcompose [:a:] q = [:a:]
by (subst pcompose-pCons) simp

lemma pcompose-0 ′: pcompose p 0 = [:coeff p 0 :]
by (induct p) (auto simp add: pcompose-pCons)

lemma pcompose-coeff-0 :
coeff (pcompose p q) 0 = poly p (coeff q 0)
by (metis poly-0-coeff-0 poly-pcompose)

lemma pcompose-pCons-0 : pcompose p [:a:] = [:poly p a:]
by (metis (no-types, lifting) coeff-pCons-0 pcompose-0 ′ pcompose-assoc poly-0-coeff-0

144

poly-pcompose)

lemma degree-pcompose: degree (pcompose p q) = degree p ∗ degree q
for p q :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly

proof (induct p)
case 0
then show ?case by auto

next
case (pCons a p)
consider degree (q ∗ pcompose p q) = 0 | degree (q ∗ pcompose p q) > 0

by blast
then show ?case
proof cases

case prems: 1
show ?thesis
proof (cases p = 0)

case True
then show ?thesis by auto

next
case False
from prems have degree q = 0 ∨ pcompose p q = 0

by (auto simp add: degree-mult-eq-0)
moreover have False if pcompose p q = 0 degree q 6= 0
proof −

from pCons.hyps(2) that have degree p = 0
by auto

then obtain a1 where p = [:a1 :]
by (metis degree-pCons-eq-if old.nat.distinct(2) pCons-cases)

with ‹pcompose p q = 0 › ‹p 6= 0 › show False
by auto

qed
ultimately have degree (pCons a p) ∗ degree q = 0

by auto
moreover have degree (pcompose (pCons a p) q) = 0
proof −

from prems have 0 = max (degree [:a:]) (degree (q ∗ pcompose p q))
by simp

also have . . . ≥ degree ([:a:] + q ∗ pcompose p q)
by (rule degree-add-le-max)

finally show ?thesis
by (auto simp add: pcompose-pCons)

qed
ultimately show ?thesis by simp

qed
next

case prems: 2
then have p 6= 0 q 6= 0 pcompose p q 6= 0

by auto
from prems degree-add-eq-right [of [:a:]]

145

have degree (pcompose (pCons a p) q) = degree (q ∗ pcompose p q)
by (auto simp: pcompose-pCons)

with pCons.hyps(2) degree-mult-eq[OF ‹q 6=0 › ‹pcompose p q 6=0 ›] show ?thesis
by auto

qed
qed

lemma pcompose-eq-0 :
fixes p q :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
assumes pcompose p q = 0 degree q > 0
shows p = 0

proof −
from assms degree-pcompose [of p q] have degree p = 0

by auto
then obtain a where p = [:a:]

by (metis degree-pCons-eq-if gr0-conv-Suc neq0-conv pCons-cases)
with assms(1) have a = 0

by auto
with ‹p = [:a:]› show ?thesis

by simp
qed

lemma pcompose-eq-0-iff :
fixes p q :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
assumes degree q > 0
shows pcompose p q = 0 ←→ p = 0
using pcompose-eq-0 [OF - assms] by auto

lemma coeff-pcompose-linear :
coeff (pcompose p [:0 , a :: ′a :: comm-semiring-1 :]) i = a ^ i ∗ coeff p i
by (induction p arbitrary: i) (auto simp: pcompose-pCons coeff-pCons mult-ac

split: nat.splits)

lemma lead-coeff-comp:
fixes p q :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly
assumes degree q > 0
shows lead-coeff (pcompose p q) = lead-coeff p ∗ lead-coeff q ^ (degree p)

proof (induct p)
case 0
then show ?case by auto

next
case (pCons a p)
consider degree (q ∗ pcompose p q) = 0 | degree (q ∗ pcompose p q) > 0

by blast
then show ?case
proof cases

case prems: 1
then have pcompose p q = 0

by (metis assms degree-0 degree-mult-eq-0 neq0-conv)

146

with pcompose-eq-0 [OF - ‹degree q > 0 ›] have p = 0
by simp

then show ?thesis
by auto

next
case prems: 2
then have degree [:a:] < degree (q ∗ pcompose p q)

by simp
then have lead-coeff ([:a:] + q ∗ p ◦p q) = lead-coeff (q ∗ p ◦p q)

by (rule lead-coeff-add-le)
then have lead-coeff (pcompose (pCons a p) q) = lead-coeff (q ∗ pcompose p

q)
by (simp add: pcompose-pCons)

also have . . . = lead-coeff q ∗ (lead-coeff p ∗ lead-coeff q ^ degree p)
using pCons.hyps(2) lead-coeff-mult[of q pcompose p q] by simp

also have . . . = lead-coeff p ∗ lead-coeff q ^ (degree p + 1)
by (auto simp: mult-ac)

finally show ?thesis by auto
qed

qed

lemma coeff-pcompose-monom-linear [simp]:
fixes p :: ′a :: comm-ring-1 poly
shows coeff (pcompose p (monom c (Suc 0))) k = c ^ k ∗ coeff p k
by (induction p arbitrary: k)

(auto simp: coeff-pCons coeff-monom-mult pcompose-pCons split: nat.splits)

lemma of-nat-mult-conv-smult: of-nat n ∗ P = smult (of-nat n) P
by (simp add: monom-0 of-nat-monom)

lemma numeral-mult-conv-smult: numeral n ∗ P = smult (numeral n) P
by (simp add: numeral-poly)

lemma sum-order-le-degree:
assumes p 6= 0
shows (

∑
x | poly p x = 0 . order x p) ≤ degree p

using assms
proof (induction degree p arbitrary: p rule: less-induct)

case (less p)
show ?case
proof (cases ∃ x. poly p x = 0)

case False
thus ?thesis

by auto
next

case True
then obtain x where x: poly p x = 0

by auto
have [:−x, 1 :] ^ order x p dvd p

147

by (simp add: order-1)
then obtain q where q: p = [:−x, 1 :] ^ order x p ∗ q

by (elim dvdE)
have [simp]: q 6= 0

using q less.prems by auto
have order x p = order x p + order x q

by (subst q, subst order-mult) (auto simp: order-power-n-n)
hence order x q = 0

by auto
hence [simp]: poly q x 6= 0

by (simp add: order-root)
have deg-p: degree p = degree q + order x p

by (subst q, subst degree-mult-eq) (auto simp: degree-power-eq)
moreover have order x p > 0

using x less.prems by (simp add: order-root)
ultimately have degree q < degree p

by linarith
hence (

∑
x | poly q x = 0 . order x q) ≤ degree q

by (intro less.hyps) auto
hence order x p + (

∑
x | poly q x = 0 . order x q) ≤ degree p

by (simp add: deg-p)
also have {y. poly q y = 0} = {y. poly p y = 0} − {x}

by (subst q) auto
also have (

∑
y ∈ {y. poly p y = 0} − {x}. order y q) =

(
∑

y ∈ {y. poly p y = 0} − {x}. order y p)
by (intro sum.cong refl, subst q)

(auto simp: order-mult order-power-n-n intro!: order-0I)
also have order x p + . . . = (

∑
y ∈ insert x ({y. poly p y = 0} − {x}). order

y p)
using ‹p 6= 0 › by (subst sum.insert) (auto simp: poly-roots-finite)

also have insert x ({y. poly p y = 0} − {x}) = {y. poly p y = 0}
using ‹poly p x = 0 › by auto

finally show ?thesis .
qed

qed

4.23 Closure properties of coefficients
context

fixes R :: ′a :: comm-semiring-1 set
assumes R-0 : 0 ∈ R
assumes R-plus:

∧
x y. x ∈ R =⇒ y ∈ R =⇒ x + y ∈ R

assumes R-mult:
∧

x y. x ∈ R =⇒ y ∈ R =⇒ x ∗ y ∈ R
begin

lemma coeff-mult-semiring-closed:
assumes

∧
i. coeff p i ∈ R

∧
i. coeff q i ∈ R

shows coeff (p ∗ q) i ∈ R
proof −

148

have R-sum: sum f A ∈ R if
∧

x. x ∈ A =⇒ f x ∈ R for A and f :: nat ⇒ ′a
using that by (induction A rule: infinite-finite-induct) (auto intro: R-0 R-plus)

show ?thesis
unfolding coeff-mult by (auto intro!: R-sum R-mult assms)

qed

lemma coeff-pcompose-semiring-closed:
assumes

∧
i. coeff p i ∈ R

∧
i. coeff q i ∈ R

shows coeff (pcompose p q) i ∈ R
using assms(1)

proof (induction p arbitrary: i)
case (pCons a p i)
have [simp]: a ∈ R

using pCons.prems[of 0] by auto
have coeff p i ∈ R for i

using pCons.prems[of Suc i] by auto
hence coeff (p ◦p q) i ∈ R for i

using pCons.prems by (intro pCons.IH)
thus ?case

by (auto simp: pcompose-pCons coeff-pCons split: nat.splits
intro!: assms R-plus coeff-mult-semiring-closed)

qed auto

end

4.24 Shifting polynomials
definition poly-shift :: nat ⇒ ′a::zero poly ⇒ ′a poly

where poly-shift n p = Abs-poly (λi. coeff p (i + n))

lemma nth-default-drop: nth-default x (drop n xs) m = nth-default x xs (m + n)
by (auto simp add: nth-default-def add-ac)

lemma nth-default-take: nth-default x (take n xs) m = (if m < n then nth-default
x xs m else x)

by (auto simp add: nth-default-def add-ac)

lemma coeff-poly-shift: coeff (poly-shift n p) i = coeff p (i + n)
proof −

from MOST-coeff-eq-0 [of p] obtain m where ∀ k>m. coeff p k = 0
by (auto simp: MOST-nat)

then have ∀ k>m. coeff p (k + n) = 0
by auto

then have ∀∞k. coeff p (k + n) = 0
by (auto simp: MOST-nat)

then show ?thesis
by (simp add: poly-shift-def poly.Abs-poly-inverse)

qed

149

lemma poly-shift-id [simp]: poly-shift 0 = (λx. x)
by (simp add: poly-eq-iff fun-eq-iff coeff-poly-shift)

lemma poly-shift-0 [simp]: poly-shift n 0 = 0
by (simp add: poly-eq-iff coeff-poly-shift)

lemma poly-shift-1 : poly-shift n 1 = (if n = 0 then 1 else 0)
by (simp add: poly-eq-iff coeff-poly-shift)

lemma poly-shift-monom: poly-shift n (monom c m) = (if m ≥ n then monom c
(m − n) else 0)

by (auto simp add: poly-eq-iff coeff-poly-shift)

lemma coeffs-shift-poly [code abstract]:
coeffs (poly-shift n p) = drop n (coeffs p)

proof (cases p = 0)
case True
then show ?thesis by simp

next
case False
then show ?thesis

by (intro coeffs-eqI)
(simp-all add: coeff-poly-shift nth-default-drop nth-default-coeffs-eq)

qed

4.25 Truncating polynomials
definition poly-cutoff

where poly-cutoff n p = Abs-poly (λk. if k < n then coeff p k else 0)

lemma coeff-poly-cutoff : coeff (poly-cutoff n p) k = (if k < n then coeff p k else
0)

unfolding poly-cutoff-def
by (subst poly.Abs-poly-inverse) (auto simp: MOST-nat intro: exI [of - n])

lemma poly-cutoff-0 [simp]: poly-cutoff n 0 = 0
by (simp add: poly-eq-iff coeff-poly-cutoff)

lemma poly-cutoff-1 [simp]: poly-cutoff n 1 = (if n = 0 then 0 else 1)
by (simp add: poly-eq-iff coeff-poly-cutoff)

lemma coeffs-poly-cutoff [code abstract]:
coeffs (poly-cutoff n p) = strip-while ((=) 0) (take n (coeffs p))

proof (cases strip-while ((=) 0) (take n (coeffs p)) = [])
case True
then have coeff (poly-cutoff n p) k = 0 for k

unfolding coeff-poly-cutoff
by (auto simp: nth-default-coeffs-eq [symmetric] nth-default-def set-conv-nth)

then have poly-cutoff n p = 0

150

by (simp add: poly-eq-iff)
then show ?thesis

by (subst True) simp-all
next

case False
have no-trailing ((=) 0) (strip-while ((=) 0) (take n (coeffs p)))

by simp
with False have last (strip-while ((=) 0) (take n (coeffs p))) 6= 0

unfolding no-trailing-unfold by auto
then show ?thesis

by (intro coeffs-eqI)
(simp-all add: coeff-poly-cutoff nth-default-take nth-default-coeffs-eq)

qed

4.26 Reflecting polynomials
definition reflect-poly :: ′a::zero poly ⇒ ′a poly

where reflect-poly p = Poly (rev (coeffs p))

lemma coeffs-reflect-poly [code abstract]:
coeffs (reflect-poly p) = rev (dropWhile ((=) 0) (coeffs p))
by (simp add: reflect-poly-def)

lemma reflect-poly-0 [simp]: reflect-poly 0 = 0
by (simp add: reflect-poly-def)

lemma reflect-poly-1 [simp]: reflect-poly 1 = 1
by (simp add: reflect-poly-def one-pCons)

lemma coeff-reflect-poly:
coeff (reflect-poly p) n = (if n > degree p then 0 else coeff p (degree p − n))
by (cases p = 0)
(auto simp add: reflect-poly-def nth-default-def

rev-nth degree-eq-length-coeffs coeffs-nth not-less
dest: le-imp-less-Suc)

lemma coeff-0-reflect-poly-0-iff [simp]: coeff (reflect-poly p) 0 = 0 ←→ p = 0
by (simp add: coeff-reflect-poly)

lemma reflect-poly-at-0-eq-0-iff [simp]: poly (reflect-poly p) 0 = 0 ←→ p = 0
by (simp add: coeff-reflect-poly poly-0-coeff-0)

lemma reflect-poly-pCons ′:
p 6= 0 =⇒ reflect-poly (pCons c p) = reflect-poly p + monom c (Suc (degree p))
by (intro poly-eqI)
(auto simp: coeff-reflect-poly coeff-pCons not-less Suc-diff-le split: nat.split)

lemma reflect-poly-const [simp]: reflect-poly [:a:] = [:a:]
by (cases a = 0) (simp-all add: reflect-poly-def)

151

lemma poly-reflect-poly-nz:
x 6= 0 =⇒ poly (reflect-poly p) x = x ^ degree p ∗ poly p (inverse x)
for x :: ′a::field
by (induct rule: pCons-induct) (simp-all add: field-simps reflect-poly-pCons ′ poly-monom)

lemma coeff-0-reflect-poly [simp]: coeff (reflect-poly p) 0 = lead-coeff p
by (simp add: coeff-reflect-poly)

lemma poly-reflect-poly-0 [simp]: poly (reflect-poly p) 0 = lead-coeff p
by (simp add: poly-0-coeff-0)

lemma reflect-poly-reflect-poly [simp]: coeff p 0 6= 0 =⇒ reflect-poly (reflect-poly
p) = p

by (cases p rule: pCons-cases) (simp add: reflect-poly-def)

lemma degree-reflect-poly-le: degree (reflect-poly p) ≤ degree p
by (simp add: degree-eq-length-coeffs coeffs-reflect-poly length-dropWhile-le diff-le-mono)

lemma reflect-poly-pCons: a 6= 0 =⇒ reflect-poly (pCons a p) = Poly (rev (a #
coeffs p))

by (subst coeffs-eq-iff) (simp add: coeffs-reflect-poly)

lemma degree-reflect-poly-eq [simp]: coeff p 0 6= 0 =⇒ degree (reflect-poly p) =
degree p
by (cases p rule: pCons-cases) (simp add: reflect-poly-pCons degree-eq-length-coeffs)

lemma reflect-poly-eq-0-iff [simp]: reflect-poly p = 0 ←→ p = 0
using coeff-0-reflect-poly-0-iff by fastforce

lemma reflect-poly-mult: reflect-poly (p ∗ q) = reflect-poly p ∗ reflect-poly q
for p q :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly

proof (cases p = 0 ∨ q = 0)
case False
then have [simp]: p 6= 0 q 6= 0 by auto
show ?thesis
proof (rule poly-eqI)

show coeff (reflect-poly (p ∗ q)) i = coeff (reflect-poly p ∗ reflect-poly q) i for i
proof (cases i ≤ degree (p ∗ q))

case True
define A where A = {..i} ∩ {i − degree q..degree p}
define B where B = {..degree p} ∩ {degree p − i..degree (p∗q) − i}
let ?f = λj. degree p − j

from True have coeff (reflect-poly (p ∗ q)) i = coeff (p ∗ q) (degree (p ∗ q)
− i)

by (simp add: coeff-reflect-poly)
also have . . . = (

∑
j≤degree (p ∗ q) − i. coeff p j ∗ coeff q (degree (p ∗ q)

152

− i − j))
by (simp add: coeff-mult)

also have . . . = (
∑

j∈B. coeff p j ∗ coeff q (degree (p ∗ q) − i − j))
by (intro sum.mono-neutral-right) (auto simp: B-def degree-mult-eq not-le

coeff-eq-0)
also from True have . . . = (

∑
j∈A. coeff p (degree p − j) ∗ coeff q (degree

q − (i − j)))
by (intro sum.reindex-bij-witness[of - ?f ?f])
(auto simp: A-def B-def degree-mult-eq add-ac)

also have . . . =
(
∑

j≤i.
if j ∈ {i − degree q..degree p}
then coeff p (degree p − j) ∗ coeff q (degree q − (i − j))
else 0)

by (subst sum.inter-restrict [symmetric]) (simp-all add: A-def)
also have . . . = coeff (reflect-poly p ∗ reflect-poly q) i

by (fastforce simp: coeff-mult coeff-reflect-poly intro!: sum.cong)
finally show ?thesis .
qed (auto simp: coeff-mult coeff-reflect-poly coeff-eq-0 degree-mult-eq intro!:

sum.neutral)
qed

qed auto

lemma reflect-poly-smult: reflect-poly (smult c p) = smult c (reflect-poly p)
for p :: ′a::{comm-semiring-0 ,semiring-no-zero-divisors} poly
using reflect-poly-mult[of [:c:] p] by simp

lemma reflect-poly-power : reflect-poly (p ^ n) = reflect-poly p ^ n
for p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly
by (induct n) (simp-all add: reflect-poly-mult)

lemma reflect-poly-prod: reflect-poly (prod f A) = prod (λx. reflect-poly (f x)) A
for f :: - ⇒ -::{comm-semiring-0 ,semiring-no-zero-divisors} poly
by (induct A rule: infinite-finite-induct) (simp-all add: reflect-poly-mult)

lemma reflect-poly-prod-list: reflect-poly (prod-list xs) = prod-list (map reflect-poly
xs)

for xs :: -::{comm-semiring-0 ,semiring-no-zero-divisors} poly list
by (induct xs) (simp-all add: reflect-poly-mult)

lemma reflect-poly-Poly-nz:
no-trailing (HOL.eq 0) xs =⇒ reflect-poly (Poly xs) = Poly (rev xs)
by (simp add: reflect-poly-def)

lemmas reflect-poly-simps =
reflect-poly-0 reflect-poly-1 reflect-poly-const reflect-poly-smult reflect-poly-mult
reflect-poly-power reflect-poly-prod reflect-poly-prod-list

153

4.27 Derivatives
function pderiv :: (′a :: {comm-semiring-1 ,semiring-no-zero-divisors}) poly ⇒ ′a
poly

where pderiv (pCons a p) = (if p = 0 then 0 else p + pCons 0 (pderiv p))
by (auto intro: pCons-cases)

termination pderiv
by (relation measure degree) simp-all

declare pderiv.simps[simp del]

lemma pderiv-0 [simp]: pderiv 0 = 0
using pderiv.simps [of 0 0] by simp

lemma pderiv-pCons: pderiv (pCons a p) = p + pCons 0 (pderiv p)
by (simp add: pderiv.simps)

lemma pderiv-1 [simp]: pderiv 1 = 0
by (simp add: one-pCons pderiv-pCons)

lemma pderiv-of-nat [simp]: pderiv (of-nat n) = 0
and pderiv-numeral [simp]: pderiv (numeral m) = 0
by (simp-all add: of-nat-poly numeral-poly pderiv-pCons)

lemma coeff-pderiv: coeff (pderiv p) n = of-nat (Suc n) ∗ coeff p (Suc n)
by (induct p arbitrary: n)
(auto simp add: pderiv-pCons coeff-pCons algebra-simps split: nat.split)

fun pderiv-coeffs-code :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} ⇒ ′a list
⇒ ′a list

where
pderiv-coeffs-code f (x # xs) = cCons (f ∗ x) (pderiv-coeffs-code (f+1) xs)
| pderiv-coeffs-code f [] = []

definition pderiv-coeffs :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} list ⇒
′a list

where pderiv-coeffs xs = pderiv-coeffs-code 1 (tl xs)

lemma pderiv-coeffs-code:
nth-default 0 (pderiv-coeffs-code f xs) n = (f + of-nat n) ∗ nth-default 0 xs n

proof (induct xs arbitrary: f n)
case Nil
then show ?case by simp

next
case (Cons x xs)
show ?case
proof (cases n)

case 0

154

then show ?thesis
by (cases pderiv-coeffs-code (f + 1) xs = [] ∧ f ∗ x = 0) (auto simp: cCons-def)

next
case n: (Suc m)
show ?thesis
proof (cases pderiv-coeffs-code (f + 1) xs = [] ∧ f ∗ x = 0)

case False
then have nth-default 0 (pderiv-coeffs-code f (x # xs)) n =

nth-default 0 (pderiv-coeffs-code (f + 1) xs) m
by (auto simp: cCons-def n)

also have . . . = (f + of-nat n) ∗ nth-default 0 xs m
by (simp add: Cons n add-ac)

finally show ?thesis
by (simp add: n)

next
case True
have empty: pderiv-coeffs-code g xs = [] =⇒ g + of-nat m = 0 ∨ nth-default

0 xs m = 0 for g
proof (induct xs arbitrary: g m)

case Nil
then show ?case by simp

next
case (Cons x xs)
from Cons(2) have empty: pderiv-coeffs-code (g + 1) xs = [] and g: g =

0 ∨ x = 0
by (auto simp: cCons-def split: if-splits)

note IH = Cons(1)[OF empty]
from IH [of m] IH [of m − 1] g show ?case

by (cases m) (auto simp: field-simps)
qed
from True have nth-default 0 (pderiv-coeffs-code f (x # xs)) n = 0

by (auto simp: cCons-def n)
moreover from True have (f + of-nat n) ∗ nth-default 0 (x # xs) n = 0

by (simp add: n) (use empty[of f+1] in ‹auto simp: field-simps›)
ultimately show ?thesis by simp

qed
qed

qed

lemma coeffs-pderiv-code [code abstract]: coeffs (pderiv p) = pderiv-coeffs (coeffs
p)

unfolding pderiv-coeffs-def
proof (rule coeffs-eqI , unfold pderiv-coeffs-code coeff-pderiv, goal-cases)

case (1 n)
have id: coeff p (Suc n) = nth-default 0 (map (λi. coeff p (Suc i)) [0 ..<degree

p]) n
by (cases n < degree p) (auto simp: nth-default-def coeff-eq-0)

show ?case
unfolding coeffs-def map-upt-Suc by (auto simp: id)

155

next
case 2
obtain n :: ′a and xs where defs: tl (coeffs p) = xs 1 = n

by simp
from 2 show ?case

unfolding defs by (induct xs arbitrary: n) (auto simp: cCons-def)
qed

lemma pderiv-eq-0-iff : pderiv p = 0 ←→ degree p = 0
for p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors,semiring-char-0} poly

proof (cases degree p)
case 0
then show ?thesis

by (metis degree-eq-zeroE pderiv.simps)
next

case (Suc n)
then show ?thesis
using coeff-0 coeff-pderiv degree-0 leading-coeff-0-iff mult-eq-0-iff nat.distinct(1)

of-nat-eq-0-iff
by (metis coeff-0 coeff-pderiv degree-0 leading-coeff-0-iff mult-eq-0-iff nat.distinct(1)

of-nat-eq-0-iff)
qed

lemma degree-pderiv: degree (pderiv p) = degree p − 1
for p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors,semiring-char-0} poly

proof −
have degree p − 1 ≤ degree (pderiv p)
proof (cases degree p)

case (Suc n)
then show ?thesis
by (metis coeff-pderiv degree-0 diff-Suc-1 le-degree leading-coeff-0-iff mult-eq-0-iff

nat.distinct(1) of-nat-eq-0-iff)
qed auto
moreover have ∀ i>degree p − 1 . coeff (pderiv p) i = 0

by (simp add: coeff-eq-0 coeff-pderiv)
ultimately show ?thesis

using order-antisym [OF degree-le] by blast
qed

lemma not-dvd-pderiv:
fixes p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors,semiring-char-0} poly
assumes degree p 6= 0
shows ¬ p dvd pderiv p

proof
assume dvd: p dvd pderiv p
then obtain q where p: pderiv p = p ∗ q

unfolding dvd-def by auto
from dvd have le: degree p ≤ degree (pderiv p)

by (simp add: assms dvd-imp-degree-le pderiv-eq-0-iff)

156

from assms and this [unfolded degree-pderiv]
show False by auto

qed

lemma dvd-pderiv-iff [simp]: p dvd pderiv p ←→ degree p = 0
for p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors,semiring-char-0} poly
using not-dvd-pderiv[of p] by (auto simp: pderiv-eq-0-iff [symmetric])

lemma pderiv-singleton [simp]: pderiv [:a:] = 0
by (simp add: pderiv-pCons)

lemma pderiv-add: pderiv (p + q) = pderiv p + pderiv q
by (rule poly-eqI) (simp add: coeff-pderiv algebra-simps)

lemma pderiv-minus: pderiv (− p :: ′a :: idom poly) = − pderiv p
by (rule poly-eqI) (simp add: coeff-pderiv algebra-simps)

lemma pderiv-diff : pderiv ((p :: - :: idom poly) − q) = pderiv p − pderiv q
by (rule poly-eqI) (simp add: coeff-pderiv algebra-simps)

lemma pderiv-smult: pderiv (smult a p) = smult a (pderiv p)
by (rule poly-eqI) (simp add: coeff-pderiv algebra-simps)

lemma pderiv-mult: pderiv (p ∗ q) = p ∗ pderiv q + q ∗ pderiv p
by (induct p) (auto simp: pderiv-add pderiv-smult pderiv-pCons algebra-simps)

lemma pderiv-power-Suc: pderiv (p ^ Suc n) = smult (of-nat (Suc n)) (p ^ n) ∗
pderiv p
proof (induction n)

case (Suc n)
then show ?case

by (simp add: pderiv-mult smult-add-left algebra-simps)
qed auto

lemma pderiv-power :
pderiv (p ^ n) = smult (of-nat n) (p ^ (n − 1) ∗ pderiv p)
by (cases n) (simp-all add: pderiv-power-Suc del: power-Suc)

lemma pderiv-monom:
pderiv (monom c n) = monom (of-nat n ∗ c) (n − 1)
by (cases n)
(simp-all add: monom-altdef pderiv-power-Suc pderiv-smult pderiv-pCons mult-ac

del: power-Suc)

lemma pderiv-pcompose: pderiv (pcompose p q) = pcompose (pderiv p) q ∗ pderiv
q

by (induction p rule: pCons-induct)
(auto simp: pcompose-pCons pderiv-add pderiv-mult pderiv-pCons pcompose-add

algebra-simps)

157

lemma pderiv-prod: pderiv (prod f (as)) = (
∑

a∈as. prod f (as − {a}) ∗ pderiv
(f a))
proof (induct as rule: infinite-finite-induct)

case (insert a as)
then have id: prod f (insert a as) = f a ∗ prod f as∧

g. sum g (insert a as) = g a + sum g as
insert a as − {a} = as
by auto

have prod f (insert a as − {b}) = f a ∗ prod f (as − {b}) if b ∈ as for b
proof −

from ‹a /∈ as› that have ∗: insert a as − {b} = insert a (as − {b})
by auto

show ?thesis
unfolding ∗ by (subst prod.insert) (use insert in auto)

qed
then show ?case

unfolding id pderiv-mult insert(3) sum-distrib-left
by (auto simp add: ac-simps intro!: sum.cong)

qed auto

lemma coeff-higher-pderiv:
coeff ((pderiv ^^ m) f) n = pochhammer (of-nat (Suc n)) m ∗ coeff f (n + m)
by (induction m arbitrary: n) (simp-all add: coeff-pderiv pochhammer-rec alge-

bra-simps)

lemma higher-pderiv-0 [simp]: (pderiv ^^ n) 0 = 0
by (induction n) simp-all

lemma higher-pderiv-add: (pderiv ^^ n) (p + q) = (pderiv ^^ n) p + (pderiv ^^
n) q

by (induction n arbitrary: p q) (simp-all del: funpow.simps add: funpow-Suc-right
pderiv-add)

lemma higher-pderiv-smult: (pderiv ^^ n) (smult c p) = smult c ((pderiv ^^ n) p)
by (induction n arbitrary: p) (simp-all del: funpow.simps add: funpow-Suc-right

pderiv-smult)

lemma higher-pderiv-monom:
m ≤ n + 1 =⇒ (pderiv ^^ m) (monom c n) = monom (pochhammer (int n −

int m + 1) m ∗ c) (n − m)
proof (induction m arbitrary: c n)

case (Suc m)
thus ?case

by (cases n)
(simp-all del: funpow.simps add: funpow-Suc-right pderiv-monom pochham-

mer-rec ′ Suc.IH)
qed simp-all

158

lemma higher-pderiv-monom-eq-zero:
m > n + 1 =⇒ (pderiv ^^ m) (monom c n) = 0

proof (induction m arbitrary: c n)
case (Suc m)
thus ?case

by (cases n)
(simp-all del: funpow.simps add: funpow-Suc-right pderiv-monom pochham-

mer-rec ′ Suc.IH)
qed simp-all

lemma higher-pderiv-sum: (pderiv ^^ n) (sum f A) = (
∑

x∈A. (pderiv ^^ n) (f
x))

by (induction A rule: infinite-finite-induct) (simp-all add: higher-pderiv-add)

lemma higher-pderiv-sum-mset: (pderiv ^^ n) (sum-mset A) = (
∑

p∈#A. (pderiv
^^ n) p)

by (induction A) (simp-all add: higher-pderiv-add)

lemma higher-pderiv-sum-list: (pderiv ^^ n) (sum-list ps) = (
∑

p←ps. (pderiv ^^
n) p)

by (induction ps) (simp-all add: higher-pderiv-add)

lemma degree-higher-pderiv: Polynomial.degree ((pderiv ^^ n) p) = Polynomial.degree
p − n

for p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors,semiring-char-0} poly
by (induction n) (auto simp: degree-pderiv)

lemma DERIV-pow2 : DERIV (λx. x ^ Suc n) x :> real (Suc n) ∗ (x ^ n)
by (rule DERIV-cong, rule DERIV-pow) simp

declare DERIV-pow2 [simp] DERIV-pow [simp]

lemma DERIV-add-const: DERIV f x :> D =⇒ DERIV (λx. a + f x :: ′a::real-normed-field)
x :> D

by (rule DERIV-cong, rule DERIV-add) auto

lemma poly-DERIV [simp]: DERIV (λx. poly p x) x :> poly (pderiv p) x
by (induct p) (auto intro!: derivative-eq-intros simp add: pderiv-pCons)

lemma poly-isCont[simp]:
fixes x:: ′a::real-normed-field
shows isCont (λx. poly p x) x

by (rule poly-DERIV [THEN DERIV-isCont])

lemma tendsto-poly [tendsto-intros]: (f −−−→ a) F =⇒ ((λx. poly p (f x)) −−−→
poly p a) F

for f :: - ⇒ ′a::real-normed-field
by (rule isCont-tendsto-compose [OF poly-isCont])

159

lemma continuous-within-poly: continuous (at z within s) (poly p)
for z :: ′a::{real-normed-field}
by (simp add: continuous-within tendsto-poly)

lemma continuous-poly [continuous-intros]: continuous F f =⇒ continuous F (λx.
poly p (f x))

for f :: - ⇒ ′a::real-normed-field
unfolding continuous-def by (rule tendsto-poly)

lemma continuous-on-poly [continuous-intros]:
fixes p :: ′a :: {real-normed-field} poly
assumes continuous-on A f
shows continuous-on A (λx. poly p (f x))
by (metis DERIV-continuous-on assms continuous-on-compose2 poly-DERIV sub-

set-UNIV)

Consequences of the derivative theorem above.
lemma poly-differentiable[simp]: (λx. poly p x) differentiable (at x)

for x :: real
by (simp add: real-differentiable-def) (blast intro: poly-DERIV)

lemma poly-IVT-pos: a < b =⇒ poly p a < 0 =⇒ 0 < poly p b =⇒ ∃ x. a < x ∧
x < b ∧ poly p x = 0

for a b :: real
using IVT [of poly p a 0 b] by (auto simp add: order-le-less)

lemma poly-IVT-neg: a < b =⇒ 0 < poly p a =⇒ poly p b < 0 =⇒ ∃ x. a < x ∧
x < b ∧ poly p x = 0

for a b :: real
using poly-IVT-pos [where p = − p] by simp

lemma poly-IVT : a < b =⇒ poly p a ∗ poly p b < 0 =⇒ ∃ x>a. x < b ∧ poly p x
= 0

for p :: real poly
by (metis less-not-sym mult-less-0-iff poly-IVT-neg poly-IVT-pos)

lemma poly-MVT : a < b =⇒ ∃ x. a < x ∧ x < b ∧ poly p b − poly p a = (b −
a) ∗ poly (pderiv p) x

for a b :: real
by (simp add: MVT2)

lemma poly-MVT ′:
fixes a b :: real
assumes {min a b..max a b} ⊆ A
shows ∃ x∈A. poly p b − poly p a = (b − a) ∗ poly (pderiv p) x

proof (cases a b rule: linorder-cases)
case less
from poly-MVT [OF less, of p] obtain x

where a < x x < b poly p b − poly p a = (b − a) ∗ poly (pderiv p) x

160

by auto
then show ?thesis by (intro bexI [of - x]) (auto intro!: subsetD[OF assms])

next
case greater
from poly-MVT [OF greater , of p] obtain x

where b < x x < a poly p a − poly p b = (a − b) ∗ poly (pderiv p) x by auto
then show ?thesis by (intro bexI [of - x]) (auto simp: algebra-simps intro!: sub-

setD[OF assms])
qed (use assms in auto)

lemma poly-pinfty-gt-lc:
fixes p :: real poly
assumes lead-coeff p > 0
shows ∃n. ∀ x ≥ n. poly p x ≥ lead-coeff p
using assms

proof (induct p)
case 0
then show ?case by auto

next
case (pCons a p)
from this(1) consider a 6= 0 p = 0 | p 6= 0 by auto
then show ?case
proof cases

case 1
then show ?thesis by auto

next
case 2
with pCons obtain n1 where gte-lcoeff : ∀ x≥n1 . lead-coeff p ≤ poly p x

by auto
from pCons(3) ‹p 6= 0 › have gt-0 : lead-coeff p > 0 by auto
define n where n = max n1 (1 + |a| / lead-coeff p)
have lead-coeff (pCons a p) ≤ poly (pCons a p) x if n ≤ x for x
proof −

from gte-lcoeff that have lead-coeff p ≤ poly p x
by (auto simp: n-def)

with gt-0 have |a| / lead-coeff p ≥ |a| / poly p x and poly p x > 0
by (auto intro: frac-le)

with ‹n ≤ x›[unfolded n-def] have x ≥ 1 + |a| / poly p x
by auto

with ‹lead-coeff p ≤ poly p x› ‹poly p x > 0 › ‹p 6= 0 ›
show lead-coeff (pCons a p) ≤ poly (pCons a p) x

by (auto simp: field-simps)
qed
then show ?thesis by blast

qed
qed

lemma dvd-monic:
fixes p q:: ′a :: idom poly

161

assumes monic:lead-coeff p=1 and p dvd (smult c q) and c 6=0
shows p dvd q using assms

proof (cases q=0 ∨ degree p=0)
case True
thus ?thesis using assms

by (auto elim!: degree-eq-zeroE simp add: const-poly-dvd-iff)
next

case False
hence q 6=0 and degree p 6=0 by auto
obtain k where k:smult c q = p∗k using assms dvd-def by metis
hence k 6=0 by (metis False assms(3) mult-zero-right smult-eq-0-iff)
hence deg-eq:degree q=degree p + degree k

by (metis False assms(3) degree-0 degree-mult-eq degree-smult-eq k)
have c-dvd:∀n≤degree k. c dvd coeff k (degree k − n)
proof (rule,rule)

fix n assume n ≤ degree k
thus c dvd coeff k (degree k − n)
proof (induct n rule:nat-less-induct)

case (1 n)
define T where T≡(λi. coeff p i ∗ coeff k (degree p+degree k − n − i))
have c ∗ coeff q (degree q − n) = (

∑
i≤degree q − n. coeff p i ∗ coeff k

(degree q − n − i))
using coeff-mult[of p k degree q − n] k coeff-smult[of c q degree q −n] by

auto
also have ...=(

∑
i≤degree p+degree k − n. T i)

using deg-eq unfolding T-def by auto
also have ...=(

∑
i∈{0 ..<degree p}. T i) + sum T {(degree p)}+

sum T {degree p + 1 ..degree p + degree k − n}
proof −

define C where C≡{{0 ..<degree p}, {degree p},{degree p+1 ..degree
p+degree k−n}}

have ∀A∈C . finite A unfolding C-def by auto
moreover have ∀A∈C . ∀B∈C . A 6= B −→ A ∩ B = {}

unfolding C-def by auto
ultimately have sum T (

⋃
C) = sum (sum T) C

using sum.Union-disjoint by auto
moreover have

⋃
C={..degree p + degree k − n}

using ‹n ≤ degree k› unfolding C-def by auto
moreover have sum (sum T) C= sum T {0 ..<degree p} + sum T {(degree

p)} +
sum T {degree p + 1 ..degree p + degree k − n}

proof −
have {0 ..<degree p}6={degree p}

by (metis atLeast0LessThan insertI1 lessThan-iff less-imp-not-eq)
moreover have {degree p}6={degree p + 1 ..degree p + degree k − n}
by (metis add.commute add-diff-cancel-right ′ atLeastAtMost-singleton-iff

diff-self-eq-0 eq-imp-le not-one-le-zero)
moreover have {0 ..<degree p}6={degree p + 1 ..degree p + degree k − n}

using ‹degree k≥n› ‹degree p 6=0 › by fastforce

162

ultimately show ?thesis unfolding C-def by auto
qed
ultimately show ?thesis by auto

qed
also have ...=(

∑
i∈{0 ..<degree p}. T i) + coeff k (degree k − n)

proof −
have ∀ x∈{degree p + 1 ..degree p + degree k − n}. T x=0

using coeff-eq-0 [of p] unfolding T-def by simp
hence sum T {degree p + 1 ..degree p + degree k − n}=0 by auto
moreover have T (degree p)=coeff k (degree k − n)

using monic by (simp add: T-def)
ultimately show ?thesis by auto

qed
finally have c-coeff : c ∗ coeff q (degree q − n) = sum T {0 ..<degree p}

+ coeff k (degree k − n) .
moreover have n 6=0=⇒c dvd sum T {0 ..<degree p}
proof (rule dvd-sum)

fix i assume i:i ∈ {0 ..<degree p} and n 6=0
hence (n+i−degree p)≤degree k using ‹n ≤ degree k› by auto
moreover have n + i − degree p <n using i ‹n 6=0 › by auto
ultimately have c dvd coeff k (degree k − (n+i−degree p))

using 1 (1) by auto
hence c dvd coeff k (degree p + degree k − n − i)

by (metis add-diff-cancel-left ′ deg-eq diff-diff-left dvd-0-right le-degree
le-diff-conv add.commute ordered-cancel-comm-monoid-diff-class.diff-diff-right)

thus c dvd T i unfolding T-def by auto
qed
moreover have n=0 =⇒?case
proof −

assume n=0
hence ∀ i∈{0 ..<degree p}. coeff k (degree p + degree k − n − i) =0

using coeff-eq-0 [of k] by simp
hence c ∗ coeff q (degree q − n) = coeff k (degree k − n)

using c-coeff unfolding T-def by auto
thus ?thesis by (metis dvdI)

qed
ultimately show ?case by (metis dvd-add-right-iff dvd-triv-left)

qed
qed
hence ∀n. c dvd coeff k n

by (metis diff-diff-cancel dvd-0-right le-add2 le-add-diff-inverse le-degree)
then obtain f where f :∀n. c ∗ f n=coeff k n unfolding dvd-def by metis
have ∀∞ n. f n = 0
by (metis (mono-tags, lifting) MOST-coeff-eq-0 MOST-mono assms(3) f mult-eq-0-iff)

hence smult c (Abs-poly f)=k
using f smult.abs-eq[of c Abs-poly f] Abs-poly-inverse[of f] coeff-inverse[of k]
by simp

hence q=p∗ Abs-poly f using k ‹c 6=0 › smult-cancel by auto
thus ?thesis unfolding dvd-def by auto

163

qed

lemma lemma-order-pderiv1 :
pderiv ([:− a, 1 :] ^ Suc n ∗ q)
= [:− a, 1 :] ^ Suc n ∗ pderiv q + smult (of-nat (Suc n)) (q ∗ [:− a, 1 :] ^ n)
unfolding pderiv-mult pderiv-power-Suc
by (simp del: power-Suc of-nat-Suc add: pderiv-pCons)

lemma order-pderiv:
fixes p:: ′a::{idom,semiring-char-0} poly
assumes p 6=0 poly p x = 0
shows order x p = Suc (order x (pderiv p)) using assms

proof −
define xx op where xx=[:− x, 1 :] and op = order x p
have op 6= 0 unfolding op-def using assms order-root by blast
obtain pp where pp:p = xx ^ op ∗ pp ¬ xx dvd pp

using order-decomp[OF ‹p 6=0 ›,of x,folded xx-def op-def] by auto
have p-der :pderiv p = smult (of-nat op) (xx^(op −1)) ∗ pp + xx^op∗pderiv pp

unfolding pp(1) by (auto simp:pderiv-mult pderiv-power xx-def algebra-simps
pderiv-pCons)

have xx^(op −1) dvd (pderiv p)
unfolding p-der
by (metis ‹op 6= 0 › dvd-add-left-iff dvd-mult2 dvd-refl dvd-smult dvd-triv-right

power-eq-if)
moreover have ¬ xx^op dvd (pderiv p)
proof

assume xx ^ op dvd pderiv p
then have xx ^ op dvd smult (of-nat op) (xx^(op −1) ∗ pp)

unfolding p-der by (simp add: dvd-add-left-iff)
then have xx ^ op dvd (xx^(op −1)) ∗ pp

apply (elim dvd-monic[rotated])
using ‹op 6=0 › by (auto simp:lead-coeff-power xx-def)

then have xx ^ (op−1) ∗ xx dvd (xx^(op −1))
using ‹¬ xx dvd pp› by (simp add: ‹op 6= 0 › mult.commute power-eq-if)

then have xx dvd 1
using assms(1) pp(1) by auto

then show False unfolding xx-def by (meson assms(1) dvd-trans one-dvd
order-decomp)

qed
ultimately have op − 1 = order x (pderiv p)

using order-unique-lemma[of x op−1 pderiv p,folded xx-def] ‹op 6=0 ›
by auto

then show ?thesis using ‹op 6=0 › unfolding op-def by auto
qed

lemma lemma-order-pderiv:
fixes p :: ′a :: field-char-0 poly
assumes n: 0 < n

and pd: pderiv p 6= 0

164

and pe: p = [:− a, 1 :] ^ n ∗ q
and nd: ¬ [:− a, 1 :] dvd q

shows n = Suc (order a (pderiv p))
by (metis add.right-neutral gr0-conv-Suc n nat.case nd order-mult order-pderiv

order-power-n-n order-root pd pderiv-0 pe poly-eq-0-iff-dvd)

lemma poly-squarefree-decomp-order :
fixes p :: ′a::field-char-0 poly
assumes pderiv p 6= 0

and p: p = q ∗ d
and p ′: pderiv p = e ∗ d
and d: d = r ∗ p + s ∗ pderiv p

shows order a q = (if order a p = 0 then 0 else 1)
proof (rule classical)

assume 1 : ¬ ?thesis
from ‹pderiv p 6= 0 › have p 6= 0 by auto
with p have order a p = order a q + order a d

by (simp add: order-mult)
with 1 have order a p 6= 0

by (auto split: if-splits)
from ‹pderiv p 6= 0 › ‹pderiv p = e ∗ d› have oapp: order a (pderiv p) = order

a e + order a d
by (simp add: order-mult)

from ‹pderiv p 6= 0 › ‹order a p 6= 0 › have oap: order a p = Suc (order a (pderiv
p))

using ‹p 6= 0 › order-pderiv order-root by blast
from ‹p 6= 0 › ‹p = q ∗ d› have d 6= 0

by simp
have [:− a, 1 :] ^ order a (pderiv p) dvd r ∗ p

by (metis dvd-trans dvd-triv-right oap order-1 power-Suc)
then have ([:−a, 1 :] ^ (order a (pderiv p))) dvd d

by (simp add: d order-1)
with ‹d 6= 0 › have order a (pderiv p) ≤ order a d

by (simp add: order-divides)
show ?thesis

using ‹order a p = order a q + order a d›
and oapp oap
and ‹order a (pderiv p) ≤ order a d›

by auto
qed

lemma poly-squarefree-decomp-order2 :
pderiv p 6= 0 =⇒ p = q ∗ d =⇒ pderiv p = e ∗ d =⇒

d = r ∗ p + s ∗ pderiv p =⇒ ∀ a. order a q = (if order a p = 0 then 0 else 1)
for p :: ′a::field-char-0 poly
by (blast intro: poly-squarefree-decomp-order)

lemma order-pderiv2 :
pderiv p 6= 0 =⇒ order a p 6= 0 =⇒ order a (pderiv p) = n ←→ order a p = Suc

165

n
for p :: ′a::field-char-0 poly
by (metis nat.inject order-pderiv order-root pderiv-0)

definition rsquarefree :: ′a::idom poly ⇒ bool
where rsquarefree p ←→ p 6= 0 ∧ (∀ a. order a p = 0 ∨ order a p = 1)

lemma pderiv-iszero: pderiv p = 0 =⇒ ∃ h. p = [:h:]
for p :: ′a::{semidom,semiring-char-0} poly
by (cases p) (auto simp: pderiv-eq-0-iff split: if-splits)

lemma rsquarefree-roots: rsquarefree p ←→ (∀ a. ¬ (poly p a = 0 ∧ poly (pderiv
p) a = 0))

for p :: ′a::field-char-0 poly
proof (cases p = 0)

case False
show ?thesis
proof (cases pderiv p = 0)

case True
with ‹p 6= 0 › pderiv-iszero show ?thesis

by (force simp add: order-0I rsquarefree-def)
next

case False
with ‹p 6= 0 › order-pderiv2 show ?thesis

by (force simp add: rsquarefree-def order-root)
qed

qed (simp add: rsquarefree-def)

lemma rsquarefree-root-order :
assumes rsquarefree p poly p z = 0 p 6= 0
shows order z p = 1

proof −
from assms have order z p ∈ {0 , 1} by (auto simp: rsquarefree-def)
moreover from assms have order z p > 0 by (auto simp: order-root)
ultimately show order z p = 1 by auto

qed

lemma poly-squarefree-decomp:
fixes p :: ′a::field-char-0 poly
assumes pderiv p 6= 0

and p = q ∗ d
and pderiv p = e ∗ d
and d = r ∗ p + s ∗ pderiv p

shows rsquarefree q ∧ (∀ a. poly q a = 0 ←→ poly p a = 0)
proof −

from ‹pderiv p 6= 0 › have p 6= 0 by auto
with ‹p = q ∗ d› have q 6= 0 by simp
from assms have ∀ a. order a q = (if order a p = 0 then 0 else 1)

by (rule poly-squarefree-decomp-order2)

166

with ‹p 6= 0 › ‹q 6= 0 › show ?thesis
by (simp add: rsquarefree-def order-root)

qed

lemma has-field-derivative-poly [derivative-intros]:
assumes (f has-field-derivative f ′) (at x within A)
shows ((λx. poly p (f x)) has-field-derivative

(f ′ ∗ poly (pderiv p) (f x))) (at x within A)
using DERIV-chain[OF poly-DERIV assms, of p] by (simp add: o-def mult-ac)

4.28 Algebraic numbers
lemma intpolyE :

assumes
∧

i. poly.coeff p i ∈ �
obtains q where p = map-poly of-int q

proof −
have ∀ i∈{..Polynomial.degree p}. ∃ x. poly.coeff p i = of-int x

using assms by (auto simp: Ints-def)
from bchoice[OF this] obtain f

where f :
∧

i. i ≤ Polynomial.degree p =⇒ poly.coeff p i = of-int (f i) by blast
define q where q = Poly (map f [0 ..<Suc (Polynomial.degree p)])
have p = map-poly of-int q

by (intro poly-eqI)
(auto simp: coeff-map-poly q-def nth-default-def f coeff-eq-0 simp del: upt-Suc)

with that show ?thesis by blast
qed

lemma ratpolyE :
assumes

∧
i. poly.coeff p i ∈ �

obtains q where p = map-poly of-rat q
proof −

have ∀ i∈{..Polynomial.degree p}. ∃ x. poly.coeff p i = of-rat x
using assms by (auto simp: Rats-def)

from bchoice[OF this] obtain f
where f :

∧
i. i ≤ Polynomial.degree p =⇒ poly.coeff p i = of-rat (f i) by blast

define q where q = Poly (map f [0 ..<Suc (Polynomial.degree p)])
have p = map-poly of-rat q

by (intro poly-eqI)
(auto simp: coeff-map-poly q-def nth-default-def f coeff-eq-0 simp del: upt-Suc)

with that show ?thesis by blast
qed

Algebraic numbers can be defined in two equivalent ways: all real num-
bers that are roots of rational polynomials or of integer polynomials. The
Algebraic-Numbers AFP entry uses the rational definition, but we need the
integer definition.
The equivalence is obvious since any rational polynomial can be multiplied
with the LCM of its coefficients, yielding an integer polynomial with the
same roots.

167

definition algebraic :: ′a :: field-char-0 ⇒ bool
where algebraic x ←→ (∃ p. (∀ i. coeff p i ∈ �) ∧ p 6= 0 ∧ poly p x = 0)

lemma algebraicI : (
∧

i. coeff p i ∈ �) =⇒ p 6= 0 =⇒ poly p x = 0 =⇒ algebraic
x

unfolding algebraic-def by blast

lemma algebraicE :
assumes algebraic x
obtains p where

∧
i. coeff p i ∈ � p 6= 0 poly p x = 0

using assms unfolding algebraic-def by blast

lemma algebraic-altdef : algebraic x ←→ (∃ p. (∀ i. coeff p i ∈ �) ∧ p 6= 0 ∧ poly
p x = 0)

for p :: ′a::field-char-0 poly
proof safe

fix p
assume rat: ∀ i. coeff p i ∈ � and root: poly p x = 0 and nz: p 6= 0
define cs where cs = coeffs p
from rat have ∀ c∈range (coeff p). ∃ c ′. c = of-rat c ′

unfolding Rats-def by blast
then obtain f where f : coeff p i = of-rat (f (coeff p i)) for i

by (subst (asm) bchoice-iff) blast
define cs ′ where cs ′ = map (quotient-of ◦ f) (coeffs p)
define d where d = Lcm (set (map snd cs ′))
define p ′ where p ′ = smult (of-int d) p

have coeff p ′ n ∈ � for n
proof (cases n ≤ degree p)

case True
define c where c = coeff p n
define a where a = fst (quotient-of (f (coeff p n)))
define b where b = snd (quotient-of (f (coeff p n)))
have b-pos: b > 0

unfolding b-def using quotient-of-denom-pos ′ by simp
have coeff p ′ n = of-int d ∗ coeff p n

by (simp add: p ′-def)
also have coeff p n = of-rat (of-int a / of-int b)

unfolding a-def b-def
by (subst quotient-of-div [of f (coeff p n), symmetric]) (simp-all add: f

[symmetric])
also have of-int d ∗ . . . = of-rat (of-int (a∗d) / of-int b)

by (simp add: of-rat-mult of-rat-divide)
also from nz True have b ∈ snd ‘ set cs ′

by (force simp: cs ′-def o-def b-def coeffs-def simp del: upt-Suc)
then have b dvd (a ∗ d)

by (simp add: d-def)
then have of-int (a ∗ d) / of-int b ∈ (� :: rat set)

by (rule of-int-divide-in-Ints)

168

then have of-rat (of-int (a ∗ d) / of-int b) ∈ � by (elim Ints-cases) auto
finally show ?thesis .

next
case False
then show ?thesis

by (auto simp: p ′-def not-le coeff-eq-0)
qed
moreover have set (map snd cs ′) ⊆ {0<..}

unfolding cs ′-def using quotient-of-denom-pos ′ by (auto simp: coeffs-def simp
del: upt-Suc)

then have d 6= 0
unfolding d-def by (induct cs ′) simp-all

with nz have p ′ 6= 0 by (simp add: p ′-def)
moreover from root have poly p ′ x = 0

by (simp add: p ′-def)
ultimately show algebraic x

unfolding algebraic-def by blast
next

assume algebraic x
then obtain p where p: coeff p i ∈ � poly p x = 0 p 6= 0 for i

by (force simp: algebraic-def)
moreover have coeff p i ∈ � =⇒ coeff p i ∈ � for i

by (elim Ints-cases) simp
ultimately show ∃ p. (∀ i. coeff p i ∈ �) ∧ p 6= 0 ∧ poly p x = 0 by auto

qed

lemma algebraicI ′: (
∧

i. coeff p i ∈ �) =⇒ p 6= 0 =⇒ poly p x = 0 =⇒ algebraic
x

unfolding algebraic-altdef by blast

lemma algebraicE ′:
assumes algebraic (x :: ′a :: field-char-0)
obtains p where p 6= 0 poly (map-poly of-int p) x = 0

proof −
from assms obtain q where q:

∧
i. coeff q i ∈ � q 6= 0 poly q x = 0

by (erule algebraicE)
moreover from this(1) obtain q ′ where q ′: q = map-poly of-int q ′ by (erule

intpolyE)
moreover have q ′ 6= 0

using q ′ q by auto
ultimately show ?thesis by (intro that[of q ′]) simp-all

qed

lemma algebraicE ′-nonzero:
assumes algebraic (x :: ′a :: field-char-0) x 6= 0
obtains p where p 6= 0 coeff p 0 6= 0 poly (map-poly of-int p) x = 0

proof −
from assms(1) obtain p where p: p 6= 0 poly (map-poly of-int p) x = 0

by (erule algebraicE ′)

169

define n :: nat where n = order 0 p
have monom 1 n dvd p by (simp add: monom-1-dvd-iff p n-def)
then obtain q where q: p = monom 1 n ∗ q by (erule dvdE)
have [simp]: map-poly of-int (monom 1 n ∗ q) = monom (1 :: ′a) n ∗ map-poly

of-int q
by (induction n) (auto simp: monom-0 monom-Suc map-poly-pCons)

from p have q 6= 0 poly (map-poly of-int q) x = 0 by (auto simp: q poly-monom
assms(2))
moreover from this have order 0 p = n + order 0 q by (simp add: q order-mult)
hence order 0 q = 0 by (simp add: n-def)
with ‹q 6= 0 › have poly q 0 6= 0 by (simp add: order-root)
ultimately show ?thesis using that[of q] by (auto simp: poly-0-coeff-0)

qed

lemma rat-imp-algebraic: x ∈ � =⇒ algebraic x
proof (rule algebraicI ′)

show poly [:−x, 1 :] x = 0
by simp

qed (auto simp: coeff-pCons split: nat.splits)

lemma algebraic-0 [simp, intro]: algebraic 0
and algebraic-1 [simp, intro]: algebraic 1
and algebraic-numeral [simp, intro]: algebraic (numeral n)
and algebraic-of-nat [simp, intro]: algebraic (of-nat k)
and algebraic-of-int [simp, intro]: algebraic (of-int m)
by (simp-all add: rat-imp-algebraic)

lemma algebraic-ii [simp, intro]: algebraic i
proof (rule algebraicI)

show poly [:1 , 0 , 1 :] i = 0
by simp

qed (auto simp: coeff-pCons split: nat.splits)

lemma algebraic-minus [intro]:
assumes algebraic x
shows algebraic (−x)

proof −
from assms obtain p where p: ∀ i. coeff p i ∈ � poly p x = 0 p 6= 0

by (elim algebraicE) auto
define s where s = (if even (degree p) then 1 else −1 :: ′a)

define q where q = Polynomial.smult s (pcompose p [:0 , −1 :])
have poly q (−x) = 0

using p by (auto simp: q-def poly-pcompose s-def)
moreover have q 6= 0

using p by (auto simp: q-def s-def pcompose-eq-0-iff)
find-theorems pcompose - - = 0
moreover have coeff q i ∈ � for i
proof −

170

have coeff (pcompose p [:0 , −1 :]) i ∈ �
using p by (intro coeff-pcompose-semiring-closed) (auto simp: coeff-pCons

split: nat.splits)
thus ?thesis by (simp add: q-def s-def)

qed
ultimately show ?thesis

by (auto simp: algebraic-def)
qed

lemma algebraic-minus-iff [simp]:
algebraic (−x) ←→ algebraic (x :: ′a :: field-char-0)
using algebraic-minus[of x] algebraic-minus[of −x] by auto

lemma algebraic-inverse [intro]:
assumes algebraic x
shows algebraic (inverse x)

proof (cases x = 0)
case [simp]: False
from assms obtain p where p: ∀ i. coeff p i ∈ � poly p x = 0 p 6= 0

by (elim algebraicE) auto
show ?thesis
proof (rule algebraicI)

show poly (reflect-poly p) (inverse x) = 0
using assms p by (simp add: poly-reflect-poly-nz)

qed (use assms p in ‹auto simp: coeff-reflect-poly›)
qed auto

lemma algebraic-root:
assumes algebraic y

and poly p x = y and ∀ i. coeff p i ∈ � and lead-coeff p = 1 and degree p
> 0

shows algebraic x
proof −

from assms obtain q where q: poly q y = 0 ∀ i. coeff q i ∈ � q 6= 0
by (elim algebraicE) auto

show ?thesis
proof (rule algebraicI)

from assms q show pcompose q p 6= 0
by (auto simp: pcompose-eq-0-iff)

from assms q show coeff (pcompose q p) i ∈ � for i
by (intro allI coeff-pcompose-semiring-closed) auto

show poly (pcompose q p) x = 0
using assms q by (simp add: poly-pcompose)

qed
qed

lemma algebraic-abs-real [simp]:
algebraic |x :: real| ←→ algebraic x
by (auto simp: abs-if)

171

lemma algebraic-nth-root-real [intro]:
assumes algebraic x
shows algebraic (root n x)

proof (cases n = 0)
case False
show ?thesis
proof (rule algebraic-root)

show poly (monom 1 n) (root n x) = (if even n then |x| else x)
using sgn-power-root[of n x] False
by (auto simp add: poly-monom sgn-if split: if-splits)

qed (use False assms in ‹auto simp: degree-monom-eq›)
qed auto

lemma algebraic-sqrt [intro]: algebraic x =⇒ algebraic (sqrt x)
by (auto simp: sqrt-def)

lemma algebraic-csqrt [intro]: algebraic x =⇒ algebraic (csqrt x)
by (rule algebraic-root[where p = monom 1 2])

(auto simp: poly-monom degree-monom-eq)

lemma algebraic-cnj [intro]:
assumes algebraic x
shows algebraic (cnj x)

proof −
from assms obtain p where p: poly p x = 0 ∀ i. coeff p i ∈ � p 6= 0

by (elim algebraicE) auto
show ?thesis
proof (rule algebraicI)

show poly (map-poly cnj p) (cnj x) = 0
using p by simp

show map-poly cnj p 6= 0
using p by (auto simp: map-poly-eq-0-iff)

show coeff (map-poly cnj p) i ∈ � for i
using p by (auto simp: coeff-map-poly)

qed
qed

lemma algebraic-cnj-iff [simp]: algebraic (cnj x) ←→ algebraic x
using algebraic-cnj[of x] algebraic-cnj[of cnj x] by auto

lemma algebraic-of-real [intro]:
assumes algebraic x
shows algebraic (of-real x)

proof −
from assms obtain p where p: p 6= 0 poly (map-poly of-int p) x = 0 by (erule

algebraicE ′)
have 1 : map-poly of-int p 6= (0 :: ′a poly)

using p by (metis coeff-0 coeff-map-poly leading-coeff-0-iff of-int-eq-0-iff)

172

have poly (map-poly of-int p) (of-real x :: ′a) = of-real (poly (map-poly of-int p)
x)

by (simp add: poly-altdef degree-map-poly coeff-map-poly)
also note p(2)
finally have 2 : poly (map-poly of-int p) (of-real x :: ′a) = 0

by simp

from 1 2 show algebraic (of-real x :: ′a)
by (intro algebraicI [of map-poly of-int p]) (auto simp: coeff-map-poly)

qed

lemma algebraic-of-real-iff [simp]:
algebraic (of-real x :: ′a :: {real-algebra-1 ,field-char-0}) ←→ algebraic x

proof
assume algebraic (of-real x :: ′a)
then obtain p where p: p 6= 0 poly (map-poly of-int p) (of-real x :: ′a) = 0

by (erule algebraicE ′)
have 1 : (map-poly of-int p :: real poly) 6= 0
using p by (metis coeff-0 coeff-map-poly leading-coeff-0-iff of-int-0 of-int-eq-iff)

note p(2)
also have poly (map-poly of-int p) (of-real x :: ′a) = of-real (poly (map-poly of-int

p) x)
by (simp add: poly-altdef degree-map-poly coeff-map-poly)

also have . . . = 0 ←→ poly (map-poly of-int p) x = 0
using of-real-eq-0-iff by blast

finally have 2 : poly (map-poly real-of-int p) x = 0 .

from 1 and 2 show algebraic x
by (intro algebraicI [of map-poly of-int p]) (auto simp: coeff-map-poly)

qed auto

4.29 Algebraic integers
inductive algebraic-int :: ′a :: field ⇒ bool where
[[lead-coeff p = 1 ; ∀ i. coeff p i ∈ �; poly p x = 0]] =⇒ algebraic-int x

lemma algebraic-int-altdef-ipoly:
fixes x :: ′a :: field-char-0
shows algebraic-int x ←→ (∃ p. poly (map-poly of-int p) x = 0 ∧ lead-coeff p =

1)
proof

assume algebraic-int x
then obtain p where p: lead-coeff p = 1 ∀ i. coeff p i ∈ � poly p x = 0

by (auto elim: algebraic-int.cases)
define the-int where the-int = (λx:: ′a. THE r . x = of-int r)
define p ′ where p ′ = map-poly the-int p
have of-int-the-int: of-int (the-int x) = x if x ∈ � for x

173

unfolding the-int-def by (rule sym, rule theI ′) (insert that, auto simp: Ints-def)
have the-int-0-iff : the-int x = 0 ←→ x = 0 if x ∈ � for x

using of-int-the-int[OF that] by auto
have [simp]: the-int 0 = 0

by (subst the-int-0-iff) auto
have map-poly of-int p ′ = map-poly (of-int ◦ the-int) p

by (simp add: p ′-def map-poly-map-poly)
also from p of-int-the-int have . . . = p

by (subst poly-eq-iff) (auto simp: coeff-map-poly)
finally have p-p ′: map-poly of-int p ′ = p .

show (∃ p. poly (map-poly of-int p) x = 0 ∧ lead-coeff p = 1)
proof (intro exI conjI notI)

from p show poly (map-poly of-int p ′) x = 0 by (simp add: p-p ′)
next

show lead-coeff p ′ = 1
using p by (simp flip: p-p ′ add: degree-map-poly coeff-map-poly)

qed
next

assume ∃ p. poly (map-poly of-int p) x = 0 ∧ lead-coeff p = 1
then obtain p where p: poly (map-poly of-int p) x = 0 lead-coeff p = 1

by auto
define p ′ where p ′ = (map-poly of-int p :: ′a poly)
from p have lead-coeff p ′ = 1 poly p ′ x = 0 ∀ i. coeff p ′ i ∈ �

by (auto simp: p ′-def coeff-map-poly degree-map-poly)
thus algebraic-int x

by (intro algebraic-int.intros)
qed

theorem rational-algebraic-int-is-int:
assumes algebraic-int x and x ∈ �
shows x ∈ �

proof −
from assms(2) obtain a b where ab: b > 0 Rings.coprime a b and x-eq: x =

of-int a / of-int b
by (auto elim: Rats-cases ′)

from ‹b > 0 › have [simp]: b 6= 0
by auto

from assms(1) obtain p
where p: lead-coeff p = 1 ∀ i. coeff p i ∈ � poly p x = 0
by (auto simp: algebraic-int.simps)

define q :: ′a poly where q = [:−of-int a, of-int b:]
have poly q x = 0 q 6= 0 ∀ i. coeff q i ∈ �

by (auto simp: x-eq q-def coeff-pCons split: nat.splits)
define n where n = degree p
have n > 0

using p by (intro Nat.gr0I) (auto simp: n-def elim!: degree-eq-zeroE)
have (

∑
i<n. coeff p i ∗ of-int (a ^ i ∗ b ^ (n − i − 1))) ∈ �

174

using p by auto
then obtain R where R: of-int R = (

∑
i<n. coeff p i ∗ of-int (a ^ i ∗ b ^ (n

− i − 1)))
by (auto simp: Ints-def)

have [simp]: coeff p n = 1
using p by (auto simp: n-def)

have 0 = poly p x ∗ of-int b ^ n
using p by simp

also have . . . = (
∑

i≤n. coeff p i ∗ x ^ i ∗ of-int b ^ n)
by (simp add: poly-altdef n-def sum-distrib-right)

also have . . . = (
∑

i≤n. coeff p i ∗ of-int (a ^ i ∗ b ^ (n − i)))
by (intro sum.cong) (auto simp: x-eq field-simps simp flip: power-add)

also have {..n} = insert n {..<n}
using ‹n > 0 › by auto

also have (
∑

i∈. . . . coeff p i ∗ of-int (a ^ i ∗ b ^ (n − i))) =
coeff p n ∗ of-int (a ^ n) + (

∑
i<n. coeff p i ∗ of-int (a ^ i ∗ b ^ (n

− i)))
by (subst sum.insert) auto

also have (
∑

i<n. coeff p i ∗ of-int (a ^ i ∗ b ^ (n − i))) =
(
∑

i<n. coeff p i ∗ of-int (a ^ i ∗ b ∗ b ^ (n − i − 1)))
by (intro sum.cong) (auto simp flip: power-add power-Suc simp: Suc-diff-Suc)

also have . . . = of-int (b ∗ R)
by (simp add: R sum-distrib-left sum-distrib-right mult-ac)

finally have of-int (a ^ n) = (−of-int (b ∗ R) :: ′a)
by (auto simp: add-eq-0-iff)

hence a ^ n = −b ∗ R
by (simp flip: of-int-mult of-int-power of-int-minus)

hence b dvd a ^ n
by simp

with ‹Rings.coprime a b› have b dvd 1
by (meson coprime-power-left-iff dvd-refl not-coprimeI)

with x-eq and ‹b > 0 › show ?thesis
by auto

qed

lemma algebraic-int-imp-algebraic [dest]: algebraic-int x =⇒ algebraic x
by (auto simp: algebraic-int.simps algebraic-def)

lemma int-imp-algebraic-int:
assumes x ∈ �
shows algebraic-int x

proof
show ∀ i. coeff [:−x, 1 :] i ∈ �

using assms by (auto simp: coeff-pCons split: nat.splits)
qed auto

lemma algebraic-int-0 [simp, intro]: algebraic-int 0
and algebraic-int-1 [simp, intro]: algebraic-int 1

175

and algebraic-int-numeral [simp, intro]: algebraic-int (numeral n)
and algebraic-int-of-nat [simp, intro]: algebraic-int (of-nat k)
and algebraic-int-of-int [simp, intro]: algebraic-int (of-int m)
by (simp-all add: int-imp-algebraic-int)

lemma algebraic-int-ii [simp, intro]: algebraic-int i
proof

show poly [:1 , 0 , 1 :] i = 0
by simp

qed (auto simp: coeff-pCons split: nat.splits)

lemma algebraic-int-minus [intro]:
assumes algebraic-int x
shows algebraic-int (−x)

proof −
from assms obtain p where p: lead-coeff p = 1 ∀ i. coeff p i ∈ � poly p x = 0

by (auto simp: algebraic-int.simps)
define s where s = (if even (degree p) then 1 else −1 :: ′a)

define q where q = Polynomial.smult s (pcompose p [:0 , −1 :])
have lead-coeff q = s ∗ lead-coeff (pcompose p [:0 , −1 :])

by (simp add: q-def)
also have lead-coeff (pcompose p [:0 , −1 :]) = lead-coeff p ∗ (− 1) ^ degree p

by (subst lead-coeff-comp) auto
finally have poly q (−x) = 0 and lead-coeff q = 1

using p by (auto simp: q-def poly-pcompose s-def)
moreover have coeff q i ∈ � for i
proof −

have coeff (pcompose p [:0 , −1 :]) i ∈ �
using p by (intro coeff-pcompose-semiring-closed) (auto simp: coeff-pCons

split: nat.splits)
thus ?thesis by (simp add: q-def s-def)

qed
ultimately show ?thesis

by (auto simp: algebraic-int.simps)
qed

lemma algebraic-int-minus-iff [simp]:
algebraic-int (−x) ←→ algebraic-int (x :: ′a :: field-char-0)
using algebraic-int-minus[of x] algebraic-int-minus[of −x] by auto

lemma algebraic-int-inverse [intro]:
assumes poly p x = 0 and ∀ i. coeff p i ∈ � and coeff p 0 = 1
shows algebraic-int (inverse x)

proof
from assms have [simp]: x 6= 0

by (auto simp: poly-0-coeff-0)
show poly (reflect-poly p) (inverse x) = 0

using assms by (simp add: poly-reflect-poly-nz)

176

qed (use assms in ‹auto simp: coeff-reflect-poly›)

lemma algebraic-int-root:
assumes algebraic-int y

and poly p x = y and ∀ i. coeff p i ∈ � and lead-coeff p = 1 and degree p
> 0

shows algebraic-int x
proof −

from assms obtain q where q: poly q y = 0 ∀ i. coeff q i ∈ � lead-coeff q = 1
by (auto simp: algebraic-int.simps)

show ?thesis
proof

from assms q show lead-coeff (pcompose q p) = 1
by (subst lead-coeff-comp) auto

from assms q show ∀ i. coeff (pcompose q p) i ∈ �
by (intro allI coeff-pcompose-semiring-closed) auto

show poly (pcompose q p) x = 0
using assms q by (simp add: poly-pcompose)

qed
qed

lemma algebraic-int-abs-real [simp]:
algebraic-int |x :: real| ←→ algebraic-int x
by (auto simp: abs-if)

lemma algebraic-int-nth-root-real [intro]:
assumes algebraic-int x
shows algebraic-int (root n x)

proof (cases n = 0)
case False
show ?thesis
proof (rule algebraic-int-root)

show poly (monom 1 n) (root n x) = (if even n then |x| else x)
using sgn-power-root[of n x] False
by (auto simp add: poly-monom sgn-if split: if-splits)

qed (use False assms in ‹auto simp: degree-monom-eq›)
qed auto

lemma algebraic-int-sqrt [intro]: algebraic-int x =⇒ algebraic-int (sqrt x)
by (auto simp: sqrt-def)

lemma algebraic-int-csqrt [intro]: algebraic-int x =⇒ algebraic-int (csqrt x)
by (rule algebraic-int-root[where p = monom 1 2])

(auto simp: poly-monom degree-monom-eq)

lemma algebraic-int-cnj [intro]:
assumes algebraic-int x
shows algebraic-int (cnj x)

proof −

177

from assms obtain p where p: lead-coeff p = 1 ∀ i. coeff p i ∈ � poly p x = 0
by (auto simp: algebraic-int.simps)

show ?thesis
proof

show poly (map-poly cnj p) (cnj x) = 0
using p by simp

show lead-coeff (map-poly cnj p) = 1
using p by (simp add: coeff-map-poly degree-map-poly)

show ∀ i. coeff (map-poly cnj p) i ∈ �
using p by (auto simp: coeff-map-poly)

qed
qed

lemma algebraic-int-cnj-iff [simp]: algebraic-int (cnj x) ←→ algebraic-int x
using algebraic-int-cnj[of x] algebraic-int-cnj[of cnj x] by auto

lemma algebraic-int-of-real [intro]:
assumes algebraic-int x
shows algebraic-int (of-real x)

proof −
from assms obtain p where p: poly p x = 0 ∀ i. coeff p i ∈ � lead-coeff p = 1

by (auto simp: algebraic-int.simps)
show algebraic-int (of-real x :: ′a)
proof

have poly (map-poly of-real p) (of-real x) = (of-real (poly p x) :: ′a)
by (induction p) (auto simp: map-poly-pCons)

thus poly (map-poly of-real p) (of-real x) = (0 :: ′a)
using p by simp

qed (use p in ‹auto simp: coeff-map-poly degree-map-poly›)
qed

lemma algebraic-int-of-real-iff [simp]:
algebraic-int (of-real x :: ′a :: {field-char-0 , real-algebra-1}) ←→ algebraic-int x

proof
assume algebraic-int (of-real x :: ′a)
then obtain p

where p: poly (map-poly of-int p) (of-real x :: ′a) = 0 lead-coeff p = 1
by (auto simp: algebraic-int-altdef-ipoly)

show algebraic-int x
unfolding algebraic-int-altdef-ipoly

proof (intro exI [of - p] conjI)
have of-real (poly (map-poly real-of-int p) x) = poly (map-poly of-int p) (of-real

x :: ′a)
by (induction p) (auto simp: map-poly-pCons)

also note p(1)
finally show poly (map-poly real-of-int p) x = 0 by simp

qed (use p in auto)
qed auto

178

4.30 Division of polynomials
4.30.1 Division in general
instantiation poly :: (idom-divide) idom-divide
begin

fun divide-poly-main :: ′a ⇒ ′a poly ⇒ ′a poly ⇒ ′a poly ⇒ nat ⇒ nat ⇒ ′a poly
where

divide-poly-main lc q r d dr (Suc n) =
(let cr = coeff r dr ; a = cr div lc; mon = monom a n in

if False ∨ a ∗ lc = cr then — False ∨ is only because of problem in
function-package

divide-poly-main
lc
(q + mon)
(r − mon ∗ d)
d (dr − 1) n else 0)

| divide-poly-main lc q r d dr 0 = q

definition divide-poly :: ′a poly ⇒ ′a poly ⇒ ′a poly
where divide-poly f g =
(if g = 0 then 0
else
divide-poly-main (coeff g (degree g)) 0 f g (degree f)
(1 + length (coeffs f) − length (coeffs g)))

lemma divide-poly-main:
assumes d: d 6= 0 lc = coeff d (degree d)

and degree (d ∗ r) ≤ dr divide-poly-main lc q (d ∗ r) d dr n = q ′

and n = 1 + dr − degree d ∨ dr = 0 ∧ n = 0 ∧ d ∗ r = 0
shows q ′ = q + r
using assms(3−)

proof (induct n arbitrary: q r dr)
case (Suc n)
let ?rr = d ∗ r
let ?a = coeff ?rr dr
let ?qq = ?a div lc
define b where [simp]: b = monom ?qq n
let ?rrr = d ∗ (r − b)
let ?qqq = q + b
note res = Suc(3)
from Suc(4) have dr : dr = n + degree d by auto
from d have lc: lc 6= 0 by auto
have coeff (b ∗ d) dr = coeff b n ∗ coeff d (degree d)
proof (cases ?qq = 0)

case True
then show ?thesis by simp

next
case False

179

then have n: n = degree b
by (simp add: degree-monom-eq)

show ?thesis
unfolding n dr by (simp add: coeff-mult-degree-sum)

qed
also have . . . = lc ∗ coeff b n

by (simp add: d)
finally have c2 : coeff (b ∗ d) dr = lc ∗ coeff b n .
have rrr : ?rrr = ?rr − b ∗ d

by (simp add: field-simps)
have c1 : coeff (d ∗ r) dr = lc ∗ coeff r n
proof (cases degree r = n)

case True
with Suc(2) show ?thesis
unfolding dr using coeff-mult-degree-sum[of d r] d by (auto simp: ac-simps)

next
case False
from dr Suc(2) have degree r ≤ n

by auto
(metis add.commute add-le-cancel-left d(1) degree-0 degree-mult-eq

diff-is-0-eq diff-zero le-cases)
with False have r-n: degree r < n

by auto
then have right: lc ∗ coeff r n = 0

by (simp add: coeff-eq-0)
have coeff (d ∗ r) dr = coeff (d ∗ r) (degree d + n)

by (simp add: dr ac-simps)
also from r-n have . . . = 0

by (metis False Suc.prems(1) add.commute add-left-imp-eq coeff-degree-mult
coeff-eq-0

coeff-mult-degree-sum degree-mult-le dr le-eq-less-or-eq)
finally show ?thesis

by (simp only: right)
qed
have c0 : coeff ?rrr dr = 0

and id: lc ∗ (coeff (d ∗ r) dr div lc) = coeff (d ∗ r) dr
unfolding rrr coeff-diff c2
unfolding b-def coeff-monom coeff-smult c1 using lc by auto

from res[unfolded divide-poly-main.simps[of lc q] Let-def] id
have res: divide-poly-main lc ?qqq ?rrr d (dr − 1) n = q ′

by (simp del: divide-poly-main.simps add: field-simps)
note IH = Suc(1)[OF - res]
from Suc(4) have dr : dr = n + degree d by auto
from Suc(2) have deg-rr : degree ?rr ≤ dr by auto
have deg-bd: degree (b ∗ d) ≤ dr

unfolding dr b-def by (rule order .trans[OF degree-mult-le]) (auto simp: de-
gree-monom-le)

have degree ?rrr ≤ dr
unfolding rrr by (rule degree-diff-le[OF deg-rr deg-bd])

180

with c0 have deg-rrr : degree ?rrr ≤ (dr − 1)
by (rule coeff-0-degree-minus-1)

have n = 1 + (dr − 1) − degree d ∨ dr − 1 = 0 ∧ n = 0 ∧ ?rrr = 0
proof (cases dr)

case 0
with Suc(4) have 0 : dr = 0 n = 0 degree d = 0

by auto
with deg-rrr have degree ?rrr = 0

by simp
from degree-eq-zeroE [OF this] obtain a where rrr : ?rrr = [:a:]

by metis
show ?thesis

unfolding 0 using c0 unfolding rrr 0 by simp
next

case -: Suc
with Suc(4) show ?thesis by auto

qed
from IH [OF deg-rrr this] show ?case

by simp
next

case 0
show ?case
proof (cases r = 0)

case True
with 0 show ?thesis by auto

next
case False
from d False have degree (d ∗ r) = degree d + degree r

by (subst degree-mult-eq) auto
with 0 d show ?thesis by auto

qed
qed

lemma divide-poly-main-0 : divide-poly-main 0 0 r d dr n = 0
proof (induct n arbitrary: r d dr)

case 0
then show ?case by simp

next
case Suc
show ?case

unfolding divide-poly-main.simps[of - - r] Let-def
by (simp add: Suc del: divide-poly-main.simps)

qed

lemma divide-poly:
assumes g: g 6= 0
shows (f ∗ g) div g = (f :: ′a poly)

proof −
have len: length (coeffs f) = Suc (degree f) if f 6= 0 for f :: ′a poly

181

using that unfolding degree-eq-length-coeffs by auto
have divide-poly-main (coeff g (degree g)) 0 (g ∗ f) g (degree (g ∗ f))
(1 + length (coeffs (g ∗ f)) − length (coeffs g)) = (f ∗ g) div g
by (simp add: divide-poly-def Let-def ac-simps)

note main = divide-poly-main[OF g refl le-refl this]
have (f ∗ g) div g = 0 + f
proof (rule main, goal-cases)

case 1
show ?case
proof (cases f = 0)

case True
with g show ?thesis

by (auto simp: degree-eq-length-coeffs)
next

case False
with g have fg: g ∗ f 6= 0 by auto
show ?thesis

unfolding len[OF fg] len[OF g] by auto
qed

qed
then show ?thesis by simp

qed

lemma divide-poly-0 : f div 0 = 0
for f :: ′a poly
by (simp add: divide-poly-def Let-def divide-poly-main-0)

instance
by standard (auto simp: divide-poly divide-poly-0)

end

instance poly :: (idom-divide) algebraic-semidom ..

lemma div-const-poly-conv-map-poly:
assumes [:c:] dvd p
shows p div [:c:] = map-poly (λx. x div c) p

proof (cases c = 0)
case True
then show ?thesis

by (auto intro!: poly-eqI simp: coeff-map-poly)
next

case False
from assms obtain q where p: p = [:c:] ∗ q by (rule dvdE)
moreover {

have smult c q = [:c:] ∗ q
by simp

also have . . . div [:c:] = q
by (rule nonzero-mult-div-cancel-left) (use False in auto)

182

finally have smult c q div [:c:] = q .
}
ultimately show ?thesis by (intro poly-eqI) (auto simp: coeff-map-poly False)

qed

lemma is-unit-monom-0 :
fixes a :: ′a::field
assumes a 6= 0
shows is-unit (monom a 0)

proof
from assms show 1 = monom a 0 ∗ monom (inverse a) 0

by (simp add: mult-monom)
qed

lemma is-unit-triv: a 6= 0 =⇒ is-unit [:a:]
for a :: ′a::field
by (simp add: is-unit-monom-0 monom-0 [symmetric])

lemma is-unit-iff-degree:
fixes p :: ′a::field poly
assumes p 6= 0
shows is-unit p ←→ degree p = 0
(is ?lhs ←→ ?rhs)

proof
assume ?rhs
then obtain a where p = [:a:]

by (rule degree-eq-zeroE)
with assms show ?lhs

by (simp add: is-unit-triv)
next

assume ?lhs
then obtain q where q 6= 0 p ∗ q = 1 ..
then have degree (p ∗ q) = degree 1

by simp
with ‹p 6= 0 › ‹q 6= 0 › have degree p + degree q = 0

by (simp add: degree-mult-eq)
then show ?rhs by simp

qed

lemma is-unit-pCons-iff : is-unit (pCons a p) ←→ p = 0 ∧ a 6= 0
for p :: ′a::field poly
by (cases p = 0) (auto simp: is-unit-triv is-unit-iff-degree)

lemma is-unit-monom-trivial: is-unit p =⇒ monom (coeff p (degree p)) 0 = p
for p :: ′a::field poly
by (cases p) (simp-all add: monom-0 is-unit-pCons-iff)

lemma is-unit-const-poly-iff : [:c:] dvd 1 ←→ c dvd 1
for c :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors}

183

by (auto simp: one-pCons)

lemma is-unit-polyE :
fixes p :: ′a :: {comm-semiring-1 ,semiring-no-zero-divisors} poly
assumes p dvd 1
obtains c where p = [:c:] c dvd 1

proof −
from assms obtain q where 1 = p ∗ q

by (rule dvdE)
then have p 6= 0 and q 6= 0

by auto
from ‹1 = p ∗ q› have degree 1 = degree (p ∗ q)

by simp
also from ‹p 6= 0 › and ‹q 6= 0 › have . . . = degree p + degree q

by (simp add: degree-mult-eq)
finally have degree p = 0 by simp
with degree-eq-zeroE obtain c where c: p = [:c:] .
with ‹p dvd 1 › have c dvd 1

by (simp add: is-unit-const-poly-iff)
with c show thesis ..

qed

lemma is-unit-polyE ′:
fixes p :: ′a::field poly
assumes is-unit p
obtains a where p = monom a 0 and a 6= 0

proof −
obtain a q where p = pCons a q

by (cases p)
with assms have p = [:a:] and a 6= 0

by (simp-all add: is-unit-pCons-iff)
with that show thesis by (simp add: monom-0)

qed

lemma is-unit-poly-iff : p dvd 1 ←→ (∃ c. p = [:c:] ∧ c dvd 1)
for p :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly
by (auto elim: is-unit-polyE simp add: is-unit-const-poly-iff)

lemma coprime-poly-0 :
poly p x 6= 0 ∨ poly q x 6= 0 if coprime p q
for x :: ′a :: field

proof (rule ccontr)
assume ¬ (poly p x 6= 0 ∨ poly q x 6= 0)
then have [:−x, 1 :] dvd p [:−x, 1 :] dvd q

by (simp-all add: poly-eq-0-iff-dvd)
with that have is-unit [:−x, 1 :]

by (rule coprime-common-divisor)
then show False

by (auto simp add: is-unit-pCons-iff)

184

qed

lemma root-imp-reducible-poly:
fixes x :: ′a :: field
assumes poly p x = 0 and degree p > 1
shows ¬irreducible p

proof −
from assms have p 6= 0

by auto
define q where q = [:−x, 1 :]
have q dvd p

using assms by (simp add: poly-eq-0-iff-dvd q-def)
then obtain r where p-eq: p = q ∗ r

by (elim dvdE)
have [simp]: q 6= 0 r 6= 0

using ‹p 6= 0 › by (auto simp: p-eq)
have degree p = Suc (degree r)

unfolding p-eq by (subst degree-mult-eq) (auto simp: q-def)
with assms(2) have degree r > 0

by auto
hence ¬r dvd 1

by (auto simp: is-unit-poly-iff)
moreover have ¬q dvd 1

by (auto simp: is-unit-poly-iff q-def)
ultimately show ?thesis using p-eq

by (auto simp: irreducible-def)
qed

lemma reducible-polyI :
fixes p :: ′a :: field poly
assumes p = q ∗ r degree q > 0 degree r > 0
shows ¬irreducible p
using assms unfolding irreducible-def
by (metis (no-types, opaque-lifting) is-unitE is-unit-iff-degree not-gr0)

4.30.2 Pseudo-Division

This part is by René Thiemann and Akihisa Yamada.
fun pseudo-divmod-main ::

′a :: comm-ring-1 ⇒ ′a poly ⇒ ′a poly ⇒ ′a poly ⇒ nat ⇒ nat ⇒ ′a poly × ′a
poly

where
pseudo-divmod-main lc q r d dr (Suc n) =
(let

rr = smult lc r ;
qq = coeff r dr ;
rrr = rr − monom qq n ∗ d;
qqq = smult lc q + monom qq n

in pseudo-divmod-main lc qqq rrr d (dr − 1) n)

185

| pseudo-divmod-main lc q r d dr 0 = (q,r)

definition pseudo-divmod :: ′a :: comm-ring-1 poly ⇒ ′a poly ⇒ ′a poly × ′a poly
where pseudo-divmod p q ≡

if q = 0 then (0 , p)
else

pseudo-divmod-main (coeff q (degree q)) 0 p q (degree p)
(1 + length (coeffs p) − length (coeffs q))

lemma pseudo-divmod-main:
assumes d: d 6= 0 lc = coeff d (degree d)

and degree r ≤ dr pseudo-divmod-main lc q r d dr n = (q ′,r ′)
and n = 1 + dr − degree d ∨ dr = 0 ∧ n = 0 ∧ r = 0

shows (r ′ = 0 ∨ degree r ′ < degree d) ∧ smult (lc^n) (d ∗ q + r) = d ∗ q ′ + r ′

using assms(3−)
proof (induct n arbitrary: q r dr)

case 0
then show ?case by auto

next
case (Suc n)
let ?rr = smult lc r
let ?qq = coeff r dr
define b where [simp]: b = monom ?qq n
let ?rrr = ?rr − b ∗ d
let ?qqq = smult lc q + b
note res = Suc(3)
from res[unfolded pseudo-divmod-main.simps[of lc q] Let-def]
have res: pseudo-divmod-main lc ?qqq ?rrr d (dr − 1) n = (q ′,r ′)

by (simp del: pseudo-divmod-main.simps)
from Suc(4) have dr : dr = n + degree d by auto
have coeff (b ∗ d) dr = coeff b n ∗ coeff d (degree d)
proof (cases ?qq = 0)

case True
then show ?thesis by auto

next
case False
then have n: n = degree b

by (simp add: degree-monom-eq)
show ?thesis

unfolding n dr by (simp add: coeff-mult-degree-sum)
qed
also have . . . = lc ∗ coeff b n by (simp add: d)
finally have coeff (b ∗ d) dr = lc ∗ coeff b n .
moreover have coeff ?rr dr = lc ∗ coeff r dr

by simp
ultimately have c0 : coeff ?rrr dr = 0

by auto
from Suc(4) have dr : dr = n + degree d by auto
have deg-rr : degree ?rr ≤ dr

186

using Suc(2) degree-smult-le dual-order .trans by blast
have deg-bd: degree (b ∗ d) ≤ dr
unfolding dr by (rule order .trans[OF degree-mult-le]) (auto simp: degree-monom-le)

have degree ?rrr ≤ dr
using degree-diff-le[OF deg-rr deg-bd] by auto

with c0 have deg-rrr : degree ?rrr ≤ (dr − 1)
by (rule coeff-0-degree-minus-1)

have n = 1 + (dr − 1) − degree d ∨ dr − 1 = 0 ∧ n = 0 ∧ ?rrr = 0
proof (cases dr)

case 0
with Suc(4) have 0 : dr = 0 n = 0 degree d = 0 by auto
with deg-rrr have degree ?rrr = 0 by simp
then have ∃ a. ?rrr = [:a:]

by (metis degree-pCons-eq-if old.nat.distinct(2) pCons-cases)
from this obtain a where rrr : ?rrr = [:a:]

by auto
show ?thesis

unfolding 0 using c0 unfolding rrr 0 by simp
next

case -: Suc
with Suc(4) show ?thesis by auto

qed
note IH = Suc(1)[OF deg-rrr res this]
show ?case
proof (intro conjI)

from IH show r ′ = 0 ∨ degree r ′ < degree d
by blast

show smult (lc ^ Suc n) (d ∗ q + r) = d ∗ q ′ + r ′

unfolding IH [THEN conjunct2 ,symmetric]
by (simp add: field-simps smult-add-right)

qed
qed

lemma pseudo-divmod:
assumes g: g 6= 0

and ∗: pseudo-divmod f g = (q,r)
shows smult (coeff g (degree g) ^ (Suc (degree f) − degree g)) f = g ∗ q + r (is

?A)
and r = 0 ∨ degree r < degree g (is ?B)

proof −
from ∗[unfolded pseudo-divmod-def Let-def]
have pseudo-divmod-main (coeff g (degree g)) 0 f g (degree f)

(1 + length (coeffs f) − length (coeffs g)) = (q, r)
by (auto simp: g)

note main = pseudo-divmod-main[OF - - - this, OF g refl le-refl]
from g have 1 + length (coeffs f) − length (coeffs g) = 1 + degree f − degree

g ∨
degree f = 0 ∧ 1 + length (coeffs f) − length (coeffs g) = 0 ∧ f = 0
by (cases f = 0 ; cases coeffs g) (auto simp: degree-eq-length-coeffs)

187

note main ′ = main[OF this]
then show r = 0 ∨ degree r < degree g by auto
show smult (coeff g (degree g) ^ (Suc (degree f) − degree g)) f = g ∗ q + r
by (subst main ′[THEN conjunct2 , symmetric], simp add: degree-eq-length-coeffs,

cases f = 0 ; cases coeffs g, use g in auto)
qed

definition pseudo-mod-main lc r d dr n = snd (pseudo-divmod-main lc 0 r d dr
n)

lemma snd-pseudo-divmod-main:
snd (pseudo-divmod-main lc q r d dr n) = snd (pseudo-divmod-main lc q ′ r d dr

n)
by (induct n arbitrary: q q ′ lc r d dr) (simp-all add: Let-def)

definition pseudo-mod :: ′a::{comm-ring-1 ,semiring-1-no-zero-divisors} poly ⇒ ′a
poly ⇒ ′a poly

where pseudo-mod f g = snd (pseudo-divmod f g)

lemma pseudo-mod:
fixes f g :: ′a::{comm-ring-1 ,semiring-1-no-zero-divisors} poly
defines r ≡ pseudo-mod f g
assumes g: g 6= 0
shows ∃ a q. a 6= 0 ∧ smult a f = g ∗ q + r r = 0 ∨ degree r < degree g

proof −
let ?cg = coeff g (degree g)
let ?cge = ?cg ^ (Suc (degree f) − degree g)
define a where a = ?cge
from r-def [unfolded pseudo-mod-def] obtain q where pdm: pseudo-divmod f g

= (q, r)
by (cases pseudo-divmod f g) auto

from pseudo-divmod[OF g pdm] have id: smult a f = g ∗ q + r and r = 0 ∨
degree r < degree g

by (auto simp: a-def)
show r = 0 ∨ degree r < degree g by fact
from g have a 6= 0

by (auto simp: a-def)
with id show ∃ a q. a 6= 0 ∧ smult a f = g ∗ q + r

by auto
qed

lemma fst-pseudo-divmod-main-as-divide-poly-main:
assumes d: d 6= 0
defines lc: lc ≡ coeff d (degree d)
shows fst (pseudo-divmod-main lc q r d dr n) =

divide-poly-main lc (smult (lc^n) q) (smult (lc^n) r) d dr n
proof (induct n arbitrary: q r dr)

case 0
then show ?case by simp

188

next
case (Suc n)
note lc0 = leading-coeff-neq-0 [OF d, folded lc]
then have pseudo-divmod-main lc q r d dr (Suc n) =

pseudo-divmod-main lc (smult lc q + monom (coeff r dr) n)
(smult lc r − monom (coeff r dr) n ∗ d) d (dr − 1) n

by (simp add: Let-def ac-simps)
also have fst . . . = divide-poly-main lc

(smult (lc^n) (smult lc q + monom (coeff r dr) n))
(smult (lc^n) (smult lc r − monom (coeff r dr) n ∗ d))
d (dr − 1) n

by (simp only: Suc[unfolded divide-poly-main.simps Let-def])
also have . . . = divide-poly-main lc (smult (lc ^ Suc n) q) (smult (lc ^ Suc n)

r) d dr (Suc n)
unfolding smult-monom smult-distribs mult-smult-left[symmetric]
using lc0 by (simp add: Let-def ac-simps)

finally show ?case .
qed

4.30.3 Division in polynomials over fields
lemma pseudo-divmod-field:

fixes g :: ′a::field poly
assumes g: g 6= 0

and ∗: pseudo-divmod f g = (q,r)
defines c ≡ coeff g (degree g) ^ (Suc (degree f) − degree g)
shows f = g ∗ smult (1/c) q + smult (1/c) r

proof −
from leading-coeff-neq-0 [OF g] have c0 : c 6= 0

by (auto simp: c-def)
from pseudo-divmod(1)[OF g ∗, folded c-def] have smult c f = g ∗ q + r

by auto
also have smult (1 / c) . . . = g ∗ smult (1 / c) q + smult (1 / c) r

by (simp add: smult-add-right)
finally show ?thesis

using c0 by auto
qed

lemma divide-poly-main-field:
fixes d :: ′a::field poly
assumes d: d 6= 0
defines lc: lc ≡ coeff d (degree d)
shows divide-poly-main lc q r d dr n =

fst (pseudo-divmod-main lc (smult ((1 / lc)^n) q) (smult ((1 / lc)^n) r) d dr
n)

unfolding lc by (subst fst-pseudo-divmod-main-as-divide-poly-main) (auto simp:
d power-one-over)

lemma divide-poly-field:

189

fixes f g :: ′a::field poly
defines f ′ ≡ smult ((1 / coeff g (degree g)) ^ (Suc (degree f) − degree g)) f
shows f div g = fst (pseudo-divmod f ′ g)

proof (cases g = 0)
case True
show ?thesis

unfolding divide-poly-def pseudo-divmod-def Let-def f ′-def True
by (simp add: divide-poly-main-0)

next
case False
from leading-coeff-neq-0 [OF False] have degree f ′ = degree f

by (auto simp: f ′-def)
then show ?thesis

using length-coeffs-degree[of f ′] length-coeffs-degree[of f]
unfolding divide-poly-def pseudo-divmod-def Let-def

divide-poly-main-field[OF False]
length-coeffs-degree[OF False]
f ′-def

by force
qed

instantiation poly :: ({semidom-divide-unit-factor ,idom-divide}) normalization-semidom
begin

definition unit-factor-poly :: ′a poly ⇒ ′a poly
where unit-factor-poly p = [:unit-factor (lead-coeff p):]

definition normalize-poly :: ′a poly ⇒ ′a poly
where normalize p = p div [:unit-factor (lead-coeff p):]

instance
proof

fix p :: ′a poly
show unit-factor p ∗ normalize p = p
proof (cases p = 0)

case True
then show ?thesis

by (simp add: unit-factor-poly-def normalize-poly-def)
next

case False
then have lead-coeff p 6= 0

by simp
then have ∗: unit-factor (lead-coeff p) 6= 0

using unit-factor-is-unit [of lead-coeff p] by auto
then have unit-factor (lead-coeff p) dvd 1

by (auto intro: unit-factor-is-unit)
then have ∗∗: unit-factor (lead-coeff p) dvd c for c

by (rule dvd-trans) simp
have ∗∗∗: unit-factor (lead-coeff p) ∗ (c div unit-factor (lead-coeff p)) = c for

190

c
proof −

from ∗∗ obtain b where c = unit-factor (lead-coeff p) ∗ b ..
with False ∗ show ?thesis by simp

qed
have p div [:unit-factor (lead-coeff p):] =

map-poly (λc. c div unit-factor (lead-coeff p)) p
by (simp add: const-poly-dvd-iff div-const-poly-conv-map-poly ∗∗)

then show ?thesis
by (simp add: normalize-poly-def unit-factor-poly-def

smult-conv-map-poly map-poly-map-poly o-def ∗∗∗)
qed

next
fix p :: ′a poly
assume is-unit p
then obtain c where p: p = [:c:] c dvd 1

by (auto simp: is-unit-poly-iff)
then show unit-factor p = p

by (simp add: unit-factor-poly-def monom-0 is-unit-unit-factor)
next

fix p :: ′a poly
assume p 6= 0
then show is-unit (unit-factor p)

by (simp add: unit-factor-poly-def monom-0 is-unit-poly-iff unit-factor-is-unit)
next

fix a b :: ′a poly assume is-unit a
thus unit-factor (a ∗ b) = a ∗ unit-factor b
by (auto simp: unit-factor-poly-def lead-coeff-mult unit-factor-mult elim!: is-unit-polyE)

qed (simp-all add: normalize-poly-def unit-factor-poly-def monom-0 lead-coeff-mult
unit-factor-mult)

end

instance poly :: ({semidom-divide-unit-factor ,idom-divide,normalization-semidom-multiplicative})
normalization-semidom-multiplicative
by intro-classes (auto simp: unit-factor-poly-def lead-coeff-mult unit-factor-mult)

lemma normalize-poly-eq-map-poly: normalize p = map-poly (λx. x div unit-factor
(lead-coeff p)) p
proof −

have [:unit-factor (lead-coeff p):] dvd p
by (metis unit-factor-poly-def unit-factor-self)

then show ?thesis
by (simp add: normalize-poly-def div-const-poly-conv-map-poly)

qed

lemma coeff-normalize [simp]:
coeff (normalize p) n = coeff p n div unit-factor (lead-coeff p)
by (simp add: normalize-poly-eq-map-poly coeff-map-poly)

191

class field-unit-factor = field + unit-factor +
assumes unit-factor-field [simp]: unit-factor = id

begin

subclass semidom-divide-unit-factor
proof

fix a
assume a 6= 0
then have 1 = a ∗ inverse a by simp
then have a dvd 1 ..
then show unit-factor a dvd 1 by simp

qed simp-all

end

lemma unit-factor-pCons:
unit-factor (pCons a p) = (if p = 0 then [:unit-factor a:] else unit-factor p)
by (simp add: unit-factor-poly-def)

lemma normalize-monom [simp]: normalize (monom a n) = monom (normalize
a) n

by (cases a = 0) (simp-all add: map-poly-monom normalize-poly-eq-map-poly
degree-monom-eq)

lemma unit-factor-monom [simp]: unit-factor (monom a n) = [:unit-factor a:]
by (cases a = 0) (simp-all add: unit-factor-poly-def degree-monom-eq)

lemma normalize-const-poly: normalize [:c:] = [:normalize c:]
by (simp add: normalize-poly-eq-map-poly map-poly-pCons)

lemma normalize-smult:
fixes c :: ′a :: {normalization-semidom-multiplicative, idom-divide}
shows normalize (smult c p) = smult (normalize c) (normalize p)

proof −
have smult c p = [:c:] ∗ p by simp
also have normalize . . . = smult (normalize c) (normalize p)

by (subst normalize-mult) (simp add: normalize-const-poly)
finally show ?thesis .

qed

instantiation poly :: (field) idom-modulo
begin

definition modulo-poly :: ′a poly ⇒ ′a poly ⇒ ′a poly
where mod-poly-def : f mod g =
(if g = 0 then f else pseudo-mod (smult ((1 / lead-coeff g) ^ (Suc (degree f) −

degree g)) f) g)

192

instance
proof

fix x y :: ′a poly
show x div y ∗ y + x mod y = x
proof (cases y = 0)

case True
then show ?thesis

by (simp add: divide-poly-0 mod-poly-def)
next

case False
then have pseudo-divmod (smult ((1 / lead-coeff y) ^ (Suc (degree x) − degree

y)) x) y =
(x div y, x mod y)

by (simp add: divide-poly-field mod-poly-def pseudo-mod-def)
with False pseudo-divmod [OF False this] show ?thesis

by (simp add: power-mult-distrib [symmetric] ac-simps)
qed

qed

end

lemma pseudo-divmod-eq-div-mod:
‹pseudo-divmod f g = (f div g, f mod g)› if ‹lead-coeff g = 1 ›
using that by (auto simp add: divide-poly-field mod-poly-def pseudo-mod-def)

lemma degree-mod-less-degree:
‹degree (x mod y) < degree y› if ‹y 6= 0 › ‹¬ y dvd x›

proof −
from pseudo-mod(2) [of y] ‹y 6= 0 ›
have ∗: ‹pseudo-mod f y 6= 0 =⇒ degree (pseudo-mod f y) < degree y› for f

by blast
from ‹¬ y dvd x› have ‹x mod y 6= 0 ›

by blast
with ‹y 6= 0 › show ?thesis

by (auto simp add: mod-poly-def intro: ∗)
qed

instantiation poly :: (field) unique-euclidean-ring
begin

definition euclidean-size-poly :: ′a poly ⇒ nat
where euclidean-size-poly p = (if p = 0 then 0 else 2 ^ degree p)

definition division-segment-poly :: ′a poly ⇒ ′a poly
where [simp]: division-segment-poly p = 1

instance proof
show ‹(q ∗ p + r) div p = q› if ‹p 6= 0 ›

and ‹euclidean-size r < euclidean-size p› for q p r :: ‹ ′a poly›

193

proof (cases ‹r = 0 ›)
case True
with that show ?thesis

by simp
next

case False
with ‹p 6= 0 › ‹euclidean-size r < euclidean-size p›
have ‹degree r < degree p›

by (simp add: euclidean-size-poly-def)
with ‹r 6= 0 › have ‹¬ p dvd r›

by (auto dest: dvd-imp-degree)
have ‹(q ∗ p + r) div p = q ∧ (q ∗ p + r) mod p = r›
proof (rule ccontr)

assume ‹¬ ?thesis›
moreover have ∗: ‹((q ∗ p + r) div p − q) ∗ p = r − (q ∗ p + r) mod p›

by (simp add: algebra-simps)
ultimately have ‹(q ∗ p + r) div p 6= q› and ‹(q ∗ p + r) mod p 6= r›

using ‹p 6= 0 › by auto
from ‹¬ p dvd r› have ‹¬ p dvd (q ∗ p + r)›

by simp
with ‹p 6= 0 › have ‹degree ((q ∗ p + r) mod p) < degree p›

by (rule degree-mod-less-degree)
with ‹degree r < degree p› ‹(q ∗ p + r) mod p 6= r›
have ‹degree (r − (q ∗ p + r) mod p) < degree p›

by (auto intro: degree-diff-less)
also have ‹degree p ≤ degree ((q ∗ p + r) div p − q) + degree p›

by simp
also from ‹(q ∗ p + r) div p 6= q› ‹p 6= 0 ›
have ‹. . . = degree (((q ∗ p + r) div p − q) ∗ p)›

by (simp add: degree-mult-eq)
also from ∗ have ‹. . . = degree (r − (q ∗ p + r) mod p)›

by simp
finally have ‹degree (r − (q ∗ p + r) mod p) < degree (r − (q ∗ p + r) mod

p)› .
then show False

by simp
qed
then show ‹(q ∗ p + r) div p = q› ..

qed
qed (auto simp: euclidean-size-poly-def degree-mult-eq power-add intro: degree-mod-less-degree)

end

lemma euclidean-relation-polyI [case-names by0 divides euclidean-relation]:
‹(x div y, x mod y) = (q, r)›

if by0 : ‹y = 0 =⇒ q = 0 ∧ r = x›
and divides: ‹y 6= 0 =⇒ y dvd x =⇒ r = 0 ∧ x = q ∗ y›
and euclidean-relation: ‹y 6= 0 =⇒ ¬ y dvd x =⇒ degree r < degree y ∧ x = q

∗ y + r›

194

by (rule euclidean-relationI)
(use that in ‹simp-all add: euclidean-size-poly-def ›)

lemma div-poly-eq-0-iff :
‹x div y = 0 ←→ x = 0 ∨ y = 0 ∨ degree x < degree y› for x y :: ‹ ′a::field poly›
by (simp add: unique-euclidean-semiring-class.div-eq-0-iff euclidean-size-poly-def)

lemma div-poly-less:
‹x div y = 0 › if ‹degree x < degree y› for x y :: ‹ ′a::field poly›
using that by (simp add: div-poly-eq-0-iff)

lemma mod-poly-less:
‹x mod y = x› if ‹degree x < degree y›
using that by (simp add: mod-eq-self-iff-div-eq-0 div-poly-eq-0-iff)

lemma degree-div-less:
‹degree (x div y) < degree x›

if ‹degree x > 0 › ‹degree y > 0 ›
for x y :: ‹ ′a::field poly›

proof (cases ‹x div y = 0 ›)
case True
with ‹degree x > 0 › show ?thesis

by simp
next

case False
from that have ‹x 6= 0 › ‹y 6= 0 ›

and ∗: ‹degree (x div y ∗ y + x mod y) > 0 ›
by auto

show ?thesis
proof (cases ‹y dvd x›)

case True
then obtain z where ‹x = y ∗ z› ..
then have ‹degree (x div y) < degree (x div y ∗ y)›

using ‹y 6= 0 › ‹x 6= 0 › ‹degree y > 0 › by (simp add: degree-mult-eq)
with ‹y dvd x› show ?thesis

by simp
next

case False
with ‹y 6= 0 › have ‹degree (x mod y) < degree y›

by (rule degree-mod-less-degree)
with ‹y 6= 0 › ‹x div y 6= 0 › have ‹degree (x mod y) < degree (x div y ∗ y)›

by (simp add: degree-mult-eq)
then have ‹degree (x div y ∗ y + x mod y) = degree (x div y ∗ y)›

by (rule degree-add-eq-left)
with ‹y 6= 0 › ‹x div y 6= 0 › ‹degree y > 0 › show ?thesis

by (simp add: degree-mult-eq)
qed

qed

195

lemma degree-mod-less ′: b 6= 0 =⇒ a mod b 6= 0 =⇒ degree (a mod b) < degree b
by (rule degree-mod-less-degree) auto

lemma degree-mod-less: y 6= 0 =⇒ x mod y = 0 ∨ degree (x mod y) < degree y
using degree-mod-less ′ by blast

lemma div-smult-left: ‹smult a x div y = smult a (x div y)› (is ?Q)
and mod-smult-left: ‹smult a x mod y = smult a (x mod y)› (is ?R)
for x y :: ‹ ′a::field poly›

proof −
have ‹(smult a x div y, smult a x mod y) = (smult a (x div y), smult a (x mod

y))›
proof (cases ‹a = 0 ›)

case True
then show ?thesis

by simp
next

case False
show ?thesis

by (rule euclidean-relation-polyI)
(use False in ‹simp-all add: dvd-smult-iff degree-mod-less-degree flip: smult-add-right›)

qed
then show ?Q and ?R

by simp-all
qed

lemma poly-div-minus-left [simp]: (− x) div y = − (x div y)
for x y :: ′a::field poly
using div-smult-left [of − 1 :: ′a] by simp

lemma poly-mod-minus-left [simp]: (− x) mod y = − (x mod y)
for x y :: ′a::field poly
using mod-smult-left [of − 1 :: ′a] by simp

lemma poly-div-add-left: ‹(x + y) div z = x div z + y div z› (is ?Q)
and poly-mod-add-left: ‹(x + y) mod z = x mod z + y mod z› (is ?R)
for x y z :: ‹ ′a::field poly›

proof −
have ‹((x + y) div z, (x + y) mod z) = (x div z + y div z, x mod z + y mod z)›
proof (induction rule: euclidean-relation-polyI)

case by0
then show ?case by simp

next
case divides
then obtain w where ‹x + y = z ∗ w›

by blast
then have y: ‹y = z ∗ w − x›

by (simp add: algebra-simps)
from ‹z 6= 0 › show ?case

196

using mod-mult-self4 [of z w ‹− x›] div-mult-self4 [of z w ‹− x›]
by (simp add: algebra-simps y)

next
case euclidean-relation
then have ‹degree (x mod z + y mod z) < degree z›

using degree-mod-less-degree [of z x] degree-mod-less-degree [of z y]
dvd-add-right-iff [of z x y] dvd-add-left-iff [of z y x]

by (cases ‹z dvd x ∨ z dvd y›) (auto intro: degree-add-less)
moreover have ‹x + y = (x div z + y div z) ∗ z + (x mod z + y mod z)›

by (simp add: algebra-simps)
ultimately show ?case

by simp
qed
then show ?Q and ?R

by simp-all
qed

lemma poly-div-diff-left: (x − y) div z = x div z − y div z
for x y z :: ′a::field poly
by (simp only: diff-conv-add-uminus poly-div-add-left poly-div-minus-left)

lemma poly-mod-diff-left: (x − y) mod z = x mod z − y mod z
for x y z :: ′a::field poly
by (simp only: diff-conv-add-uminus poly-mod-add-left poly-mod-minus-left)

lemma div-smult-right: ‹x div smult a y = smult (inverse a) (x div y)› (is ?Q)
and mod-smult-right: ‹x mod smult a y = (if a = 0 then x else x mod y)› (is ?R)

proof −
have ‹(x div smult a y, x mod smult a y) = (smult (inverse a) (x div y), (if a =

0 then x else x mod y))›
proof (induction rule: euclidean-relation-polyI)

case by0
then show ?case by auto

next
case divides
moreover define w where ‹w = x div y›
ultimately have ‹x = y ∗ w›

by (simp add: smult-dvd-iff)
with divides show ?case

by simp
next

case euclidean-relation
then show ?case

by (simp add: smult-dvd-iff degree-mod-less-degree)
qed
then show ?Q and ?R

by simp-all
qed

197

lemma mod-mult-unit-eq:
‹x mod (z ∗ y) = x mod y›
if ‹is-unit z›
for x y z :: ‹ ′a::field poly›

proof (cases ‹y = 0 ›)
case True
then show ?thesis

by simp
next

case False
moreover have ‹z 6= 0 ›

using that by auto
moreover define a where ‹a = lead-coeff z›
ultimately have ‹z = [:a:]› ‹a 6= 0 ›

using that monom-0 [of a] by (simp-all add: is-unit-monom-trivial)
then show ?thesis

by (simp add: mod-smult-right)
qed

lemma poly-div-minus-right [simp]: x div (− y) = − (x div y)
for x y :: ′a::field poly
using div-smult-right [of - − 1 :: ′a] by (simp add: nonzero-inverse-minus-eq)

lemma poly-mod-minus-right [simp]: x mod (− y) = x mod y
for x y :: ′a::field poly
using mod-smult-right [of - − 1 :: ′a] by simp

lemma poly-div-mult-right: ‹x div (y ∗ z) = (x div y) div z› (is ?Q)
and poly-mod-mult-right: ‹x mod (y ∗ z) = y ∗ (x div y mod z) + x mod y› (is

?R)
for x y z :: ‹ ′a::field poly›

proof −
have ‹(x div (y ∗ z), x mod (y ∗ z)) = ((x div y) div z, y ∗ (x div y mod z) + x

mod y)›
proof (induction rule: euclidean-relation-polyI)

case by0
then show ?case by auto

next
case divides
then show ?case by auto

next
case euclidean-relation
then have ‹y 6= 0 › ‹z 6= 0 ›

by simp-all
with ‹¬ y ∗ z dvd x› have ‹degree (y ∗ (x div y mod z) + x mod y) < degree

(y ∗ z)›
using degree-mod-less-degree [of y x] degree-mod-less-degree [of z ‹x div y›]

degree-add-eq-left [of ‹x mod y› ‹y ∗ (x div y mod z)›]
by (cases ‹z dvd x div y›; cases ‹y dvd x›)

198

(auto simp add: degree-mult-eq not-dvd-imp-mod-neq-0 dvd-div-iff-mult)
moreover have ‹x = x div y div z ∗ (y ∗ z) + (y ∗ (x div y mod z) + x mod

y)›
by (simp add: field-simps flip: distrib-left)

ultimately show ?case
by simp

qed
then show ?Q and ?R

by simp-all
qed

lemma dvd-pCons-imp-dvd-pCons-mod:
‹y dvd pCons a (x mod y)› if ‹y dvd pCons a x›

proof −
have ‹pCons a x = pCons a (x div y ∗ y + x mod y)›

by simp
also have ‹. . . = pCons 0 (x div y ∗ y) + pCons a (x mod y)›

by simp
also have ‹pCons 0 (x div y ∗ y) = (x div y ∗ monom 1 (Suc 0)) ∗ y›

by (simp add: monom-Suc)
finally show ‹y dvd pCons a (x mod y)›

using ‹y dvd pCons a x› by simp
qed

lemma degree-less-if-less-eqI :
‹degree x < degree y› if ‹degree x ≤ degree y› ‹coeff x (degree y) = 0 › ‹x 6= 0 ›

proof (cases ‹degree x = degree y›)
case True
with ‹coeff x (degree y) = 0 › have ‹lead-coeff x = 0 ›

by simp
then have ‹x = 0 ›

by simp
with ‹x 6= 0 › show ?thesis

by simp
next

case False
with ‹degree x ≤ degree y› show ?thesis

by simp
qed

lemma div-pCons-eq:
‹pCons a p div q = (if q = 0 then 0 else pCons (coeff (pCons a (p mod q))

(degree q) / lead-coeff q) (p div q))› (is ?Q)
and mod-pCons-eq:

‹pCons a p mod q = (if q = 0 then pCons a p else pCons a (p mod q) − smult
(coeff (pCons a (p mod q)) (degree q) / lead-coeff q) q)› (is ?R)

for x y :: ‹ ′a::field poly›
proof −

have ‹?Q› and ‹?R› if ‹q = 0 ›

199

using that by simp-all
moreover have ‹?Q› and ‹?R› if ‹q 6= 0 ›
proof −

define b where ‹b = coeff (pCons a (p mod q)) (degree q) / lead-coeff q›
have ‹(pCons a p div q, pCons a p mod q) =
(pCons b (p div q), (pCons a (p mod q) − smult b q))› (is ‹- = (?q, ?r)›)

proof (induction rule: euclidean-relation-polyI)
case by0
with ‹q 6= 0 › show ?case by simp

next
case divides
show ?case
proof (cases ‹pCons a (p mod q) = 0 ›)

case True
then show ?thesis

by (auto simp add: b-def)
next

case False
have ‹q dvd pCons a (p mod q)›

using ‹q dvd pCons a p› by (rule dvd-pCons-imp-dvd-pCons-mod)
then obtain s where ∗: ‹pCons a (p mod q) = q ∗ s› ..
with False have ‹s 6= 0 ›

by auto
from ‹q 6= 0 › have ‹degree (pCons a (p mod q)) ≤ degree q›

by (auto simp add: Suc-le-eq intro: degree-mod-less-degree)
moreover from ‹s 6= 0 › have ‹degree q ≤ degree (pCons a (p mod q))›

by (simp add: degree-mult-right-le ∗)
ultimately have ‹degree (pCons a (p mod q)) = degree q›

by (rule order .antisym)
with ‹s 6= 0 › ‹q 6= 0 › have ‹degree s = 0 ›

by (simp add: ∗ degree-mult-eq)
then obtain c where ‹s = [:c:]›

by (rule degree-eq-zeroE)
also have ‹c = b›

using ‹q 6= 0 › by (simp add: b-def ∗ ‹s = [:c:]›)
finally have ‹smult b q = pCons a (p mod q)›

by (simp add: ∗)
then show ?thesis

by simp
qed

next
case euclidean-relation
then have ‹degree q > 0 ›

using is-unit-iff-degree by blast
from ‹q 6= 0 › have ‹degree (pCons a (p mod q)) ≤ degree q›

by (auto simp add: Suc-le-eq intro: degree-mod-less-degree)
moreover have ‹degree (smult b q) ≤ degree q›

by (rule degree-smult-le)
ultimately have ‹degree (pCons a (p mod q) − smult b q) ≤ degree q›

200

by (rule degree-diff-le)
moreover have ‹coeff (pCons a (p mod q) − smult b q) (degree q) = 0 ›

using ‹degree q > 0 › by (auto simp add: b-def)
ultimately have ‹degree (pCons a (p mod q) − smult b q) < degree q›

using ‹degree q > 0 ›
by (cases ‹pCons a (p mod q) = smult b q›)
(auto intro: degree-less-if-less-eqI)

then show ?case
by simp

qed
with ‹q 6= 0 › show ?Q and ?R

by (simp-all add: b-def)
qed
ultimately show ?Q and ?R

by simp-all
qed

lemma div-mod-fold-coeffs:
(p div q, p mod q) =
(if q = 0 then (0 , p)
else
fold-coeffs
(λa (s, r).

let b = coeff (pCons a r) (degree q) / coeff q (degree q)
in (pCons b s, pCons a r − smult b q)) p (0 , 0))

by (rule sym, induct p) (auto simp: div-pCons-eq mod-pCons-eq Let-def)

lemma mod-pCons:
fixes a :: ′a::field

and x y :: ′a::field poly
assumes y: y 6= 0
defines b ≡ coeff (pCons a (x mod y)) (degree y) / coeff y (degree y)
shows (pCons a x) mod y = pCons a (x mod y) − smult b y
unfolding b-def
by (simp add: mod-pCons-eq)

4.30.4 List-based versions for fast implementation
fun minus-poly-rev-list :: ′a :: group-add list ⇒ ′a list ⇒ ′a list

where
minus-poly-rev-list (x # xs) (y # ys) = (x − y) # (minus-poly-rev-list xs ys)
| minus-poly-rev-list xs [] = xs
| minus-poly-rev-list [] (y # ys) = []

fun pseudo-divmod-main-list ::
′a::comm-ring-1 ⇒ ′a list ⇒ ′a list ⇒ ′a list ⇒ nat ⇒ ′a list × ′a list
where

pseudo-divmod-main-list lc q r d (Suc n) =
(let

201

rr = map ((∗) lc) r ;
a = hd r ;
qqq = cCons a (map ((∗) lc) q);
rrr = tl (if a = 0 then rr else minus-poly-rev-list rr (map ((∗) a) d))

in pseudo-divmod-main-list lc qqq rrr d n)
| pseudo-divmod-main-list lc q r d 0 = (q, r)

fun pseudo-mod-main-list :: ′a::comm-ring-1 ⇒ ′a list ⇒ ′a list ⇒ nat ⇒ ′a list
where

pseudo-mod-main-list lc r d (Suc n) =
(let

rr = map ((∗) lc) r ;
a = hd r ;
rrr = tl (if a = 0 then rr else minus-poly-rev-list rr (map ((∗) a) d))

in pseudo-mod-main-list lc rrr d n)
| pseudo-mod-main-list lc r d 0 = r

fun divmod-poly-one-main-list ::
′a::comm-ring-1 list ⇒ ′a list ⇒ ′a list ⇒ nat ⇒ ′a list × ′a list

where
divmod-poly-one-main-list q r d (Suc n) =
(let

a = hd r ;
qqq = cCons a q;
rr = tl (if a = 0 then r else minus-poly-rev-list r (map ((∗) a) d))

in divmod-poly-one-main-list qqq rr d n)
| divmod-poly-one-main-list q r d 0 = (q, r)

fun mod-poly-one-main-list :: ′a::comm-ring-1 list ⇒ ′a list ⇒ nat ⇒ ′a list
where

mod-poly-one-main-list r d (Suc n) =
(let

a = hd r ;
rr = tl (if a = 0 then r else minus-poly-rev-list r (map ((∗) a) d))

in mod-poly-one-main-list rr d n)
| mod-poly-one-main-list r d 0 = r

definition pseudo-divmod-list :: ′a::comm-ring-1 list ⇒ ′a list ⇒ ′a list × ′a list
where pseudo-divmod-list p q =
(if q = [] then ([], p)
else
(let rq = rev q;

(qu,re) = pseudo-divmod-main-list (hd rq) [] (rev p) rq (1 + length p −
length q)

in (qu, rev re)))

definition pseudo-mod-list :: ′a::comm-ring-1 list ⇒ ′a list ⇒ ′a list
where pseudo-mod-list p q =

202

(if q = [] then p
else
(let

rq = rev q;
re = pseudo-mod-main-list (hd rq) (rev p) rq (1 + length p − length q)

in rev re))

lemma minus-zero-does-nothing: minus-poly-rev-list x (map ((∗) 0) y) = x
for x :: ′a::ring list
by (induct x y rule: minus-poly-rev-list.induct) auto

lemma length-minus-poly-rev-list [simp]: length (minus-poly-rev-list xs ys) = length
xs

by (induct xs ys rule: minus-poly-rev-list.induct) auto

lemma if-0-minus-poly-rev-list:
(if a = 0 then x else minus-poly-rev-list x (map ((∗) a) y)) =

minus-poly-rev-list x (map ((∗) a) y)
for a :: ′a::ring
by(cases a = 0) (simp-all add: minus-zero-does-nothing)

lemma Poly-append: Poly (a @ b) = Poly a + monom 1 (length a) ∗ Poly b
for a :: ′a::comm-semiring-1 list
by (induct a) (auto simp: monom-0 monom-Suc)

lemma minus-poly-rev-list: length p ≥ length q =⇒
Poly (rev (minus-poly-rev-list (rev p) (rev q))) =

Poly p − monom 1 (length p − length q) ∗ Poly q
for p q :: ′a :: comm-ring-1 list

proof (induct rev p rev q arbitrary: p q rule: minus-poly-rev-list.induct)
case (1 x xs y ys)
then have length (rev q) ≤ length (rev p)

by simp
from this[folded 1 (2 ,3)] have ys-xs: length ys ≤ length xs

by simp
then have ∗: Poly (rev (minus-poly-rev-list xs ys)) =

Poly (rev xs) − monom 1 (length xs − length ys) ∗ Poly (rev ys)
by (subst 1 .hyps(1)[of rev xs rev ys, unfolded rev-rev-ident length-rev]) auto

have Poly p − monom 1 (length p − length q) ∗ Poly q =
Poly (rev (rev p)) − monom 1 (length (rev (rev p)) − length (rev (rev q))) ∗

Poly (rev (rev q))
by simp

also have . . . =
Poly (rev (x # xs)) − monom 1 (length (x # xs) − length (y # ys)) ∗ Poly

(rev (y # ys))
unfolding 1 (2 ,3) by simp

also from ys-xs have . . . =
Poly (rev xs) + monom x (length xs) −
(monom 1 (length xs − length ys) ∗ Poly (rev ys) + monom y (length xs))

203

by (simp add: Poly-append distrib-left mult-monom smult-monom)
also have . . . = Poly (rev (minus-poly-rev-list xs ys)) + monom (x − y) (length

xs)
unfolding ∗ diff-monom[symmetric] by simp

finally show ?case
by (simp add: 1 (2 ,3)[symmetric] smult-monom Poly-append)

qed auto

lemma smult-monom-mult: smult a (monom b n ∗ f) = monom (a ∗ b) n ∗ f
using smult-monom [of a - n] by (metis mult-smult-left)

lemma head-minus-poly-rev-list:
length d ≤ length r =⇒ d 6= [] =⇒

hd (minus-poly-rev-list (map ((∗) (last d)) r) (map ((∗) (hd r)) (rev d))) = 0
for d r :: ′a::comm-ring list

proof (induct r)
case Nil
then show ?case by simp

next
case (Cons a rs)
then show ?case by (cases rev d) (simp-all add: ac-simps)

qed

lemma Poly-map: Poly (map ((∗) a) p) = smult a (Poly p)
proof (induct p)

case Nil
then show ?case by simp

next
case (Cons x xs)
then show ?case by (cases Poly xs = 0) auto

qed

lemma last-coeff-is-hd: xs 6= [] =⇒ coeff (Poly xs) (length xs − 1) = hd (rev xs)
by (simp-all add: hd-conv-nth rev-nth nth-default-nth nth-append)

lemma pseudo-divmod-main-list-invar :
assumes leading-nonzero: last d 6= 0

and lc: last d = lc
and d 6= []
and pseudo-divmod-main-list lc q (rev r) (rev d) n = (q ′, rev r ′)
and n = 1 + length r − length d

shows pseudo-divmod-main lc (monom 1 n ∗ Poly q) (Poly r) (Poly d) (length r
− 1) n =

(Poly q ′, Poly r ′)
using assms(4−)

proof (induct n arbitrary: r q)
case (Suc n)
from Suc.prems have ∗: ¬ Suc (length r) ≤ length d

by simp

204

with ‹d 6= []› have r 6= []
using Suc-leI length-greater-0-conv list.size(3) by fastforce

let ?a = (hd (rev r))
let ?rr = map ((∗) lc) (rev r)
let ?rrr = rev (tl (minus-poly-rev-list ?rr (map ((∗) ?a) (rev d))))
let ?qq = cCons ?a (map ((∗) lc) q)
from ∗ Suc(3) have n: n = (1 + length r − length d − 1)

by simp
from ∗ have rr-val:(length ?rrr) = (length r − 1)

by auto
with ‹r 6= []› ∗ have rr-smaller : (1 + length r − length d − 1) = (1 + length

?rrr − length d)
by auto

from ∗ have id: Suc (length r) − length d = Suc (length r − length d)
by auto

from Suc.prems ∗
have pseudo-divmod-main-list lc ?qq (rev ?rrr) (rev d) (1 + length r − length d
− 1) = (q ′, rev r ′)

by (simp add: Let-def if-0-minus-poly-rev-list id)
with n have v: pseudo-divmod-main-list lc ?qq (rev ?rrr) (rev d) n = (q ′, rev r ′)

by auto
from ∗ have sucrr :Suc (length r) − length d = Suc (length r − length d)

using Suc-diff-le not-less-eq-eq by blast
from Suc(3) ‹r 6= []› have n-ok : n = 1 + (length ?rrr) − length d

by simp
have cong:

∧
x1 x2 x3 x4 y1 y2 y3 y4 . x1 = y1 =⇒ x2 = y2 =⇒ x3 = y3 =⇒

x4 = y4 =⇒
pseudo-divmod-main lc x1 x2 x3 x4 n = pseudo-divmod-main lc y1 y2 y3 y4 n

by simp
have hd-rev: coeff (Poly r) (length r − Suc 0) = hd (rev r)

using last-coeff-is-hd[OF ‹r 6= []›] by simp
show ?case
unfolding Suc.hyps(1)[OF v n-ok, symmetric] pseudo-divmod-main.simps Let-def

proof (rule cong[OF - - refl], goal-cases)
case 1
show ?case

by (simp add: monom-Suc hd-rev[symmetric] smult-monom Poly-map)
next

case 2
show ?case
proof (subst Poly-on-rev-starting-with-0 , goal-cases)

show hd (minus-poly-rev-list (map ((∗) lc) (rev r)) (map ((∗) (hd (rev r)))
(rev d))) = 0

by (fold lc, subst head-minus-poly-rev-list, insert ∗ ‹d 6= []›, auto)
from ∗ have length d ≤ length r

by simp
then show smult lc (Poly r) − monom (coeff (Poly r) (length r − 1)) n ∗

Poly d =
Poly (rev (minus-poly-rev-list (map ((∗) lc) (rev r)) (map ((∗) (hd (rev

205

r))) (rev d))))
by (fold rev-map) (auto simp add: n smult-monom-mult Poly-map hd-rev

[symmetric]
minus-poly-rev-list)

qed
qed simp

qed simp

lemma pseudo-divmod-impl [code]:
pseudo-divmod f g = map-prod poly-of-list poly-of-list (pseudo-divmod-list (coeffs

f) (coeffs g))
for f g :: ′a::comm-ring-1 poly

proof (cases g = 0)
case False
then have last (coeffs g) 6= 0

and last (coeffs g) = lead-coeff g
and coeffs g 6= []
by (simp-all add: last-coeffs-eq-coeff-degree)

moreover obtain q r where qr : pseudo-divmod-main-list
(last (coeffs g)) (rev [])
(rev (coeffs f)) (rev (coeffs g))
(1 + length (coeffs f) −
length (coeffs g)) = (q, rev (rev r))
by force

ultimately have (Poly q, Poly (rev r)) = pseudo-divmod-main (lead-coeff g) 0
f g

(length (coeffs f) − Suc 0) (Suc (length (coeffs f)) − length (coeffs g))
by (subst pseudo-divmod-main-list-invar [symmetric]) auto

moreover have pseudo-divmod-main-list
(hd (rev (coeffs g))) []
(rev (coeffs f)) (rev (coeffs g))
(1 + length (coeffs f) −
length (coeffs g)) = (q, r)
by (metis hd-rev qr rev.simps(1) rev-swap)

ultimately show ?thesis
by (simp add: degree-eq-length-coeffs pseudo-divmod-def pseudo-divmod-list-def)

next
case True
then show ?thesis

by (auto simp add: pseudo-divmod-def pseudo-divmod-list-def)
qed

lemma pseudo-mod-main-list:
snd (pseudo-divmod-main-list l q xs ys n) = pseudo-mod-main-list l xs ys n
by (induct n arbitrary: l q xs ys) (auto simp: Let-def)

lemma pseudo-mod-impl[code]: pseudo-mod f g = poly-of-list (pseudo-mod-list (coeffs
f) (coeffs g))
proof −

206

have snd-case:
∧

f g p. snd ((λ(x,y). (f x, g y)) p) = g (snd p)
by auto

show ?thesis
unfolding pseudo-mod-def pseudo-divmod-impl pseudo-divmod-list-def

pseudo-mod-list-def Let-def
by (simp add: snd-case pseudo-mod-main-list)

qed

4.30.5 Improved Code-Equations for Polynomial (Pseudo) Divi-
sion

lemma pdivmod-via-pseudo-divmod:
‹(f div g, f mod g) =
(if g = 0 then (0 , f)
else
let

ilc = inverse (lead-coeff g);
h = smult ilc g;
(q,r) = pseudo-divmod f h

in (smult ilc q, r))›
(is ‹?l = ?r›)

proof (cases ‹g = 0 ›)
case True
then show ?thesis by simp

next
case False
define ilc where ‹ilc = inverse (lead-coeff g)›
define h where ‹h = smult ilc g›
from False have ‹lead-coeff h = 1 ›

and ‹ilc 6= 0 ›
by (auto simp: h-def ilc-def)

define q r where ‹q = f div h› and ‹r = f mod h›
with ‹lead-coeff h = 1 › have p: ‹pseudo-divmod f h = (q, r)›

by (simp add: pseudo-divmod-eq-div-mod)
from ‹ilc 6= 0 › have ‹(f div g, f mod g) = (smult ilc q, r)›

by (auto simp: h-def div-smult-right mod-smult-right q-def r-def)
also have ‹(smult ilc q, r) = ?r›

using ‹g 6= 0 › by (auto simp: Let-def p simp flip: h-def ilc-def)
finally show ?thesis .

qed

lemma pdivmod-via-pseudo-divmod-list:
(f div g, f mod g) =
(let cg = coeffs g in

if cg = [] then (0 , f)
else

let
cf = coeffs f ;
ilc = inverse (last cg);

207

ch = map ((∗) ilc) cg;
(q, r) = pseudo-divmod-main-list 1 [] (rev cf) (rev ch) (1 + length cf −

length cg)
in (poly-of-list (map ((∗) ilc) q), poly-of-list (rev r)))

proof −
note d = pdivmod-via-pseudo-divmod pseudo-divmod-impl pseudo-divmod-list-def
show ?thesis
proof (cases g = 0)

case True
with d show ?thesis by auto

next
case False
define ilc where ilc = inverse (coeff g (degree g))
from False have ilc: ilc 6= 0

by (auto simp: ilc-def)
with False have id: g = 0 ←→ False coeffs g = [] ←→ False

last (coeffs g) = coeff g (degree g)
coeffs (smult ilc g) = [] ←→ False
by (auto simp: last-coeffs-eq-coeff-degree)

have id2 : hd (rev (coeffs (smult ilc g))) = 1
by (subst hd-rev, insert id ilc, auto simp: coeffs-smult, subst last-map, auto

simp: id ilc-def)
have id3 : length (coeffs (smult ilc g)) = length (coeffs g)

rev (coeffs (smult ilc g)) = rev (map ((∗) ilc) (coeffs g))
unfolding coeffs-smult using ilc by auto

obtain q r where pair :
pseudo-divmod-main-list 1 [] (rev (coeffs f)) (rev (map ((∗) ilc) (coeffs g)))
(1 + length (coeffs f) − length (coeffs g)) = (q, r)

by force
show ?thesis

unfolding d Let-def id if-False ilc-def [symmetric] map-prod-def [symmetric]
id2

unfolding id3 pair map-prod-def split
by (auto simp: Poly-map)

qed
qed

lemma pseudo-divmod-main-list-1 : pseudo-divmod-main-list 1 = divmod-poly-one-main-list
proof (intro ext, goal-cases)

case (1 q r d n)
have ∗: map ((∗) 1) xs = xs for xs :: ′a list

by (induct xs) auto
show ?case

by (induct n arbitrary: q r d) (auto simp: ∗ Let-def)
qed

fun divide-poly-main-list :: ′a::idom-divide ⇒ ′a list ⇒ ′a list ⇒ ′a list ⇒ nat ⇒
′a list

where

208

divide-poly-main-list lc q r d (Suc n) =
(let

cr = hd r
in if cr = 0 then divide-poly-main-list lc (cCons cr q) (tl r) d n else let
a = cr div lc;
qq = cCons a q;
rr = minus-poly-rev-list r (map ((∗) a) d)

in if hd rr = 0 then divide-poly-main-list lc qq (tl rr) d n else [])
| divide-poly-main-list lc q r d 0 = q

lemma divide-poly-main-list-simp [simp]:
divide-poly-main-list lc q r d (Suc n) =
(let

cr = hd r ;
a = cr div lc;
qq = cCons a q;
rr = minus-poly-rev-list r (map ((∗) a) d)

in if hd rr = 0 then divide-poly-main-list lc qq (tl rr) d n else [])
by (simp add: Let-def minus-zero-does-nothing)

declare divide-poly-main-list.simps(1)[simp del]

definition divide-poly-list :: ′a::idom-divide poly ⇒ ′a poly ⇒ ′a poly
where divide-poly-list f g =
(let cg = coeffs g in

if cg = [] then g
else

let
cf = coeffs f ;
cgr = rev cg

in poly-of-list (divide-poly-main-list (hd cgr) [] (rev cf) cgr (1 + length cf
− length cg)))

lemmas pdivmod-via-divmod-list = pdivmod-via-pseudo-divmod-list[unfolded pseudo-divmod-main-list-1]

lemma mod-poly-one-main-list: snd (divmod-poly-one-main-list q r d n) = mod-poly-one-main-list
r d n

by (induct n arbitrary: q r d) (auto simp: Let-def)

lemma mod-poly-code [code]:
f mod g =
(let cg = coeffs g in

if cg = [] then f
else

let
cf = coeffs f ;
ilc = inverse (last cg);
ch = map ((∗) ilc) cg;
r = mod-poly-one-main-list (rev cf) (rev ch) (1 + length cf − length cg)

209

in poly-of-list (rev r))
(is - = ?rhs)

proof −
have snd (f div g, f mod g) = ?rhs

unfolding pdivmod-via-divmod-list Let-def mod-poly-one-main-list [symmetric,
of - - - Nil]

by (auto split: prod.splits)
then show ?thesis by simp

qed

definition div-field-poly-impl :: ′a :: field poly ⇒ ′a poly ⇒ ′a poly
where div-field-poly-impl f g =
(let cg = coeffs g in

if cg = [] then 0
else

let
cf = coeffs f ;
ilc = inverse (last cg);
ch = map ((∗) ilc) cg;
q = fst (divmod-poly-one-main-list [] (rev cf) (rev ch) (1 + length cf −

length cg))
in poly-of-list ((map ((∗) ilc) q)))

We do not declare the following lemma as code equation, since then poly-
nomial division on non-fields will no longer be executable. However, a code-
unfold is possible, since div-field-poly-impl is a bit more efficient than the
generic polynomial division.
lemma div-field-poly-impl[code-unfold]: (div) = div-field-poly-impl
proof (intro ext)

fix f g :: ′a poly
have fst (f div g, f mod g) = div-field-poly-impl f g

unfolding div-field-poly-impl-def pdivmod-via-divmod-list Let-def
by (auto split: prod.splits)

then show f div g = div-field-poly-impl f g
by simp

qed

lemma divide-poly-main-list:
assumes lc0 : lc 6= 0

and lc: last d = lc
and d: d 6= []
and n = (1 + length r − length d)

shows Poly (divide-poly-main-list lc q (rev r) (rev d) n) =
divide-poly-main lc (monom 1 n ∗ Poly q) (Poly r) (Poly d) (length r − 1) n

using assms(4−)
proof (induct n arbitrary: r q)

case (Suc n)
from Suc.prems have ifCond: ¬ Suc (length r) ≤ length d

by simp

210

with d have r : r 6= []
using Suc-leI length-greater-0-conv list.size(3) by fastforce

then obtain rr lcr where r : r = rr @ [lcr]
by (cases r rule: rev-cases) auto

from d lc obtain dd where d: d = dd @ [lc]
by (cases d rule: rev-cases) auto

from Suc(2) ifCond have n: n = 1 + length rr − length d
by (auto simp: r)

from ifCond have len: length dd ≤ length rr
by (simp add: r d)

show ?case
proof (cases lcr div lc ∗ lc = lcr)

case False
with r d show ?thesis

unfolding Suc(2)[symmetric]
by (auto simp add: Let-def nth-default-append)

next
case True
with r d have id:

?thesis ←→
Poly (divide-poly-main-list lc (cCons (lcr div lc) q)
(rev (rev (minus-poly-rev-list (rev rr) (rev (map ((∗) (lcr div lc)) dd)))))

(rev d) n) =
divide-poly-main lc
(monom 1 (Suc n) ∗ Poly q + monom (lcr div lc) n)
(Poly r − monom (lcr div lc) n ∗ Poly d)
(Poly d) (length rr − 1) n

by (cases r rule: rev-cases; cases d rule: rev-cases)
(auto simp add: Let-def rev-map nth-default-append)

have cong:
∧

x1 x2 x3 x4 y1 y2 y3 y4 . x1 = y1 =⇒ x2 = y2 =⇒ x3 = y3 =⇒
x4 = y4 =⇒

divide-poly-main lc x1 x2 x3 x4 n = divide-poly-main lc y1 y2 y3 y4 n
by simp

show ?thesis
unfolding id

proof (subst Suc(1), simp add: n,
subst minus-poly-rev-list, force simp: len, rule cong[OF - - refl], goal-cases)

case 2
have monom lcr (length rr) = monom (lcr div lc) (length rr − length dd) ∗

monom lc (length dd)
by (simp add: mult-monom len True)

then show ?case unfolding r d Poly-append n ring-distribs
by (auto simp: Poly-map smult-monom smult-monom-mult)

qed (auto simp: len monom-Suc smult-monom)
qed

qed simp

lemma divide-poly-list[code]: f div g = divide-poly-list f g
proof −

211

note d = divide-poly-def divide-poly-list-def
show ?thesis
proof (cases g = 0)

case True
show ?thesis by (auto simp: d True)

next
case False
then obtain cg lcg where cg: coeffs g = cg @ [lcg]

by (cases coeffs g rule: rev-cases) auto
with False have id: (g = 0) = False (cg @ [lcg] = []) = False

by auto
from cg False have lcg: coeff g (degree g) = lcg

using last-coeffs-eq-coeff-degree last-snoc by force
with False have lcg 6= 0 by auto
from cg Poly-coeffs [of g] have ltp: Poly (cg @ [lcg]) = g

by auto
show ?thesis

unfolding d cg Let-def id if-False poly-of-list-def
by (subst divide-poly-main-list, insert False cg ‹lcg 6= 0 ›)
(auto simp: lcg ltp, simp add: degree-eq-length-coeffs)

qed
qed

lemma poly-mod:
poly (p mod q) x = poly p x if poly q x = 0

proof −
from that have poly (p mod q) x = poly (p div q ∗ q) x + poly (p mod q) x

by simp
also have . . . = poly p x

by (simp only: poly-add [symmetric]) simp
finally show ?thesis .

qed

4.31 Primality and irreducibility in polynomial rings
lemma prod-mset-const-poly: (

∏
x∈#A. [:f x:]) = [:prod-mset (image-mset f A):]

by (induct A) (simp-all add: ac-simps)

lemma irreducible-const-poly-iff :
fixes c :: ′a :: {comm-semiring-1 ,semiring-no-zero-divisors}
shows irreducible [:c:] ←→ irreducible c

proof
assume A: irreducible c
show irreducible [:c:]
proof (rule irreducibleI)

fix a b assume ab: [:c:] = a ∗ b
hence degree [:c:] = degree (a ∗ b) by (simp only:)
also from A ab have a 6= 0 b 6= 0 by auto
hence degree (a ∗ b) = degree a + degree b by (simp add: degree-mult-eq)

212

finally have degree a = 0 degree b = 0 by auto
then obtain a ′ b ′ where ab ′: a = [:a ′:] b = [:b ′:] by (auto elim!: degree-eq-zeroE)
from ab have coeff [:c:] 0 = coeff (a ∗ b) 0 by (simp only:)
hence c = a ′ ∗ b ′ by (simp add: ab ′ mult-ac)
from A and this have a ′ dvd 1 ∨ b ′ dvd 1 by (rule irreducibleD)
with ab ′ show a dvd 1 ∨ b dvd 1

by (auto simp add: is-unit-const-poly-iff)
qed (insert A, auto simp: irreducible-def is-unit-poly-iff)

next
assume A: irreducible [:c:]
then have c 6= 0 and ¬ c dvd 1

by (auto simp add: irreducible-def is-unit-const-poly-iff)
then show irreducible c
proof (rule irreducibleI)

fix a b assume ab: c = a ∗ b
hence [:c:] = [:a:] ∗ [:b:] by (simp add: mult-ac)
from A and this have [:a:] dvd 1 ∨ [:b:] dvd 1 by (rule irreducibleD)
then show a dvd 1 ∨ b dvd 1

by (auto simp add: is-unit-const-poly-iff)
qed

qed

lemma lift-prime-elem-poly:
assumes prime-elem (c :: ′a :: semidom)
shows prime-elem [:c:]

proof (rule prime-elemI)
fix a b assume ∗: [:c:] dvd a ∗ b
from ∗ have dvd: c dvd coeff (a ∗ b) n for n

by (subst (asm) const-poly-dvd-iff) blast
{

define m where m = (GREATEST m. ¬c dvd coeff b m)
assume ¬[:c:] dvd b
hence A: ∃ i. ¬c dvd coeff b i by (subst (asm) const-poly-dvd-iff) blast
have B:

∧
i. ¬c dvd coeff b i =⇒ i ≤ degree b

by (auto intro: le-degree)
have coeff-m: ¬c dvd coeff b m unfolding m-def by (rule GreatestI-ex-nat[OF

A B])
have i ≤ m if ¬c dvd coeff b i for i

unfolding m-def by (metis (mono-tags, lifting) B Greatest-le-nat that)
hence dvd-b: c dvd coeff b i if i > m for i using that by force

have c dvd coeff a i for i
proof (induction i rule: nat-descend-induct[of degree a])

case (base i)
thus ?case by (simp add: coeff-eq-0)

next
case (descend i)
let ?A = {..i+m} − {i}
have c dvd coeff (a ∗ b) (i + m) by (rule dvd)

213

also have coeff (a ∗ b) (i + m) = (
∑

k≤i + m. coeff a k ∗ coeff b (i + m
− k))

by (simp add: coeff-mult)
also have {..i+m} = insert i ?A by auto
also have (

∑
k∈. . . . coeff a k ∗ coeff b (i + m − k)) =

coeff a i ∗ coeff b m + (
∑

k∈?A. coeff a k ∗ coeff b (i + m − k))
(is - = - + ?S)
by (subst sum.insert) simp-all

finally have eq: c dvd coeff a i ∗ coeff b m + ?S .
moreover have c dvd ?S
proof (rule dvd-sum)

fix k assume k: k ∈ {..i+m} − {i}
show c dvd coeff a k ∗ coeff b (i + m − k)
proof (cases k < i)

case False
with k have c dvd coeff a k by (intro descend.IH) simp
thus ?thesis by simp

next
case True
hence c dvd coeff b (i + m − k) by (intro dvd-b) simp
thus ?thesis by simp

qed
qed
ultimately have c dvd coeff a i ∗ coeff b m

by (simp add: dvd-add-left-iff)
with assms coeff-m show c dvd coeff a i

by (simp add: prime-elem-dvd-mult-iff)
qed
hence [:c:] dvd a by (subst const-poly-dvd-iff) blast

}
then show [:c:] dvd a ∨ [:c:] dvd b by blast

next
from assms show [:c:] 6= 0 and ¬ [:c:] dvd 1

by (simp-all add: prime-elem-def is-unit-const-poly-iff)
qed

lemma prime-elem-const-poly-iff :
fixes c :: ′a :: semidom
shows prime-elem [:c:] ←→ prime-elem c

proof
assume A: prime-elem [:c:]
show prime-elem c
proof (rule prime-elemI)

fix a b assume c dvd a ∗ b
hence [:c:] dvd [:a:] ∗ [:b:] by (simp add: mult-ac)

from A and this have [:c:] dvd [:a:] ∨ [:c:] dvd [:b:] by (rule prime-elem-dvd-multD)
thus c dvd a ∨ c dvd b by simp

qed (insert A, auto simp: prime-elem-def is-unit-poly-iff)
qed (auto intro: lift-prime-elem-poly)

214

4.32 Content and primitive part of a polynomial
definition content :: ′a::semiring-gcd poly ⇒ ′a

where content p = gcd-list (coeffs p)

lemma content-eq-fold-coeffs [code]: content p = fold-coeffs gcd p 0
by (simp add: content-def Gcd-fin.set-eq-fold fold-coeffs-def foldr-fold fun-eq-iff

ac-simps)

lemma content-0 [simp]: content 0 = 0
by (simp add: content-def)

lemma content-1 [simp]: content 1 = 1
by (simp add: content-def)

lemma content-const [simp]: content [:c:] = normalize c
by (simp add: content-def cCons-def)

lemma const-poly-dvd-iff-dvd-content: [:c:] dvd p ←→ c dvd content p
for c :: ′a::semiring-gcd

proof (cases p = 0)
case True
then show ?thesis by simp

next
case False
have [:c:] dvd p ←→ (∀n. c dvd coeff p n)

by (rule const-poly-dvd-iff)
also have . . . ←→ (∀ a∈set (coeffs p). c dvd a)
proof safe

fix n :: nat
assume ∀ a∈set (coeffs p). c dvd a
then show c dvd coeff p n

by (cases n ≤ degree p) (auto simp: coeff-eq-0 coeffs-def split: if-splits)
qed (auto simp: coeffs-def simp del: upt-Suc split: if-splits)
also have . . . ←→ c dvd content p

by (simp add: content-def dvd-Gcd-fin-iff dvd-mult-unit-iff)
finally show ?thesis .

qed

lemma content-dvd [simp]: [:content p:] dvd p
by (subst const-poly-dvd-iff-dvd-content) simp-all

lemma content-dvd-coeff [simp]: content p dvd coeff p n
proof (cases p = 0)

case True
then show ?thesis

by simp
next

case False
then show ?thesis

215

by (cases n ≤ degree p)
(auto simp add: content-def not-le coeff-eq-0 coeff-in-coeffs intro: Gcd-fin-dvd)

qed

lemma content-dvd-coeffs: c ∈ set (coeffs p) =⇒ content p dvd c
by (simp add: content-def Gcd-fin-dvd)

lemma normalize-content [simp]: normalize (content p) = content p
by (simp add: content-def)

lemma is-unit-content-iff [simp]: is-unit (content p) ←→ content p = 1
proof

assume is-unit (content p)
then have normalize (content p) = 1 by (simp add: is-unit-normalize del: nor-

malize-content)
then show content p = 1 by simp

qed auto

lemma content-smult [simp]:
fixes c :: ′a :: {normalization-semidom-multiplicative, semiring-gcd}
shows content (smult c p) = normalize c ∗ content p
by (simp add: content-def coeffs-smult Gcd-fin-mult normalize-mult)

lemma content-eq-zero-iff [simp]: content p = 0 ←→ p = 0
by (auto simp: content-def simp: poly-eq-iff coeffs-def)

definition primitive-part :: ′a :: semiring-gcd poly ⇒ ′a poly
where primitive-part p = map-poly (λx. x div content p) p

lemma primitive-part-0 [simp]: primitive-part 0 = 0
by (simp add: primitive-part-def)

lemma content-times-primitive-part [simp]: smult (content p) (primitive-part p) =
p

for p :: ′a :: semiring-gcd poly
proof (cases p = 0)

case True
then show ?thesis by simp

next
case False
then show ?thesis
unfolding primitive-part-def
by (auto simp: smult-conv-map-poly map-poly-map-poly o-def content-dvd-coeffs

intro: map-poly-idI)
qed

lemma primitive-part-eq-0-iff [simp]: primitive-part p = 0 ←→ p = 0
proof (cases p = 0)

case True

216

then show ?thesis by simp
next

case False
then have primitive-part p = map-poly (λx. x div content p) p

by (simp add: primitive-part-def)
also from False have . . . = 0 ←→ p = 0

by (intro map-poly-eq-0-iff) (auto simp: dvd-div-eq-0-iff content-dvd-coeffs)
finally show ?thesis

using False by simp
qed

lemma content-primitive-part [simp]:
fixes p :: ′a :: {normalization-semidom-multiplicative, semiring-gcd} poly
assumes p 6= 0
shows content (primitive-part p) = 1

proof −
have p = smult (content p) (primitive-part p)

by simp
also have content . . . = content (primitive-part p) ∗ content p

by (simp del: content-times-primitive-part add: ac-simps)
finally have 1 ∗ content p = content (primitive-part p) ∗ content p

by simp
then have 1 ∗ content p div content p = content (primitive-part p) ∗ content p

div content p
by simp

with assms show ?thesis
by simp

qed

lemma content-decompose:
obtains p ′ :: ′a :: {normalization-semidom-multiplicative, semiring-gcd} poly
where p = smult (content p) p ′ content p ′ = 1

proof (cases p = 0)
case True
then have p = smult (content p) 1 content 1 = 1

by simp-all
then show ?thesis ..

next
case False
then have p = smult (content p) (primitive-part p) content (primitive-part p) =

1
by simp-all

then show ?thesis ..
qed

lemma content-dvd-contentI [intro]: p dvd q =⇒ content p dvd content q
using const-poly-dvd-iff-dvd-content content-dvd dvd-trans by blast

lemma primitive-part-const-poly [simp]: primitive-part [:x:] = [:unit-factor x:]

217

by (simp add: primitive-part-def map-poly-pCons)

lemma primitive-part-prim: content p = 1 =⇒ primitive-part p = p
by (auto simp: primitive-part-def)

lemma degree-primitive-part [simp]: degree (primitive-part p) = degree p
proof (cases p = 0)

case True
then show ?thesis by simp

next
case False
have p = smult (content p) (primitive-part p)

by simp
also from False have degree . . . = degree (primitive-part p)

by (subst degree-smult-eq) simp-all
finally show ?thesis ..

qed

lemma smult-content-normalize-primitive-part [simp]:
fixes p :: ′a :: {normalization-semidom-multiplicative, semiring-gcd, idom-divide}

poly
shows smult (content p) (normalize (primitive-part p)) = normalize p

proof −
have smult (content p) (normalize (primitive-part p)) =

normalize ([:content p:] ∗ primitive-part p)
by (subst normalize-mult) (simp-all add: normalize-const-poly)

also have [:content p:] ∗ primitive-part p = p by simp
finally show ?thesis .

qed

context
begin

private

lemma content-1-mult:
fixes f g :: ′a :: {semiring-gcd, factorial-semiring} poly
assumes content f = 1 content g = 1
shows content (f ∗ g) = 1

proof (cases f ∗ g = 0)
case False
from assms have f 6= 0 g 6= 0 by auto

hence f ∗ g 6= 0 by auto
{

assume ¬is-unit (content (f ∗ g))
with False have ∃ p. p dvd content (f ∗ g) ∧ prime p

by (intro prime-divisor-exists) simp-all
then obtain p where p dvd content (f ∗ g) prime p by blast

218

from ‹p dvd content (f ∗ g)› have [:p:] dvd f ∗ g
by (simp add: const-poly-dvd-iff-dvd-content)

moreover from ‹prime p› have prime-elem [:p:] by (simp add: lift-prime-elem-poly)
ultimately have [:p:] dvd f ∨ [:p:] dvd g

by (simp add: prime-elem-dvd-mult-iff)
with assms have is-unit p by (simp add: const-poly-dvd-iff-dvd-content)
with ‹prime p› have False by simp

}
hence is-unit (content (f ∗ g)) by blast
hence normalize (content (f ∗ g)) = 1 by (simp add: is-unit-normalize del:

normalize-content)
thus ?thesis by simp

qed (insert assms, auto)

lemma content-mult:
fixes p q :: ′a :: {factorial-semiring, semiring-gcd, normalization-semidom-multiplicative}

poly
shows content (p ∗ q) = content p ∗ content q

proof (cases p ∗ q = 0)
case False
then have p 6= 0 and q 6= 0

by simp-all
then have ∗: content (primitive-part p ∗ primitive-part q) = 1

by (auto intro: content-1-mult)
have p ∗ q = smult (content p) (primitive-part p) ∗ smult (content q) (primitive-part

q)
by simp

also have . . . = smult (content p ∗ content q) (primitive-part p ∗ primitive-part
q)

by (metis mult.commute mult-smult-right smult-smult)
with ∗ show ?thesis
by (simp add: normalize-mult)

next
case True
then show ?thesis

by auto
qed

end

lemma primitive-part-mult:
fixes p q :: ′a :: {factorial-semiring, semiring-Gcd, ring-gcd, idom-divide,

normalization-semidom-multiplicative} poly
shows primitive-part (p ∗ q) = primitive-part p ∗ primitive-part q

proof −
have primitive-part (p ∗ q) = p ∗ q div [:content (p ∗ q):]

by (simp add: primitive-part-def div-const-poly-conv-map-poly)
also have . . . = (p div [:content p:]) ∗ (q div [:content q:])

by (subst div-mult-div-if-dvd) (simp-all add: content-mult mult-ac)

219

also have . . . = primitive-part p ∗ primitive-part q
by (simp add: primitive-part-def div-const-poly-conv-map-poly)

finally show ?thesis .
qed

lemma primitive-part-smult:
fixes p :: ′a :: {factorial-semiring, semiring-Gcd, ring-gcd, idom-divide,

normalization-semidom-multiplicative} poly
shows primitive-part (smult a p) = smult (unit-factor a) (primitive-part p)

proof −
have smult a p = [:a:] ∗ p by simp
also have primitive-part . . . = smult (unit-factor a) (primitive-part p)

by (subst primitive-part-mult) simp-all
finally show ?thesis .

qed

lemma primitive-part-dvd-primitive-partI [intro]:
fixes p q :: ′a :: {factorial-semiring, semiring-Gcd, ring-gcd, idom-divide,

normalization-semidom-multiplicative} poly
shows p dvd q =⇒ primitive-part p dvd primitive-part q
by (auto elim!: dvdE simp: primitive-part-mult)

lemma content-prod-mset:
fixes A :: ′a :: {factorial-semiring, semiring-Gcd, normalization-semidom-multiplicative}

poly multiset
shows content (prod-mset A) = prod-mset (image-mset content A)
by (induction A) (simp-all add: content-mult mult-ac)

lemma content-prod-eq-1-iff :
fixes p q :: ′a :: {factorial-semiring, semiring-Gcd, normalization-semidom-multiplicative}

poly
shows content (p ∗ q) = 1 ←→ content p = 1 ∧ content q = 1

proof safe
assume A: content (p ∗ q) = 1
{

fix p q :: ′a poly assume content p ∗ content q = 1
hence 1 = content p ∗ content q by simp
hence content p dvd 1 by (rule dvdI)
hence content p = 1 by simp

} note B = this
from A B[of p q] B [of q p] show content p = 1 content q = 1

by (simp-all add: content-mult mult-ac)
qed (auto simp: content-mult)

4.33 A typeclass for algebraically closed fields

Since the required sort constraints are not available inside the class, we
have to resort to a somewhat awkward way of writing the definition of
algebraically closed fields:

220

class alg-closed-field = field +
assumes alg-closed: n > 0 =⇒ f n 6= 0 =⇒ ∃ x. (

∑
k≤n. f k ∗ x ^ k) = 0

We can then however easily show the equivalence to the proper definition:
lemma alg-closed-imp-poly-has-root:

assumes degree (p :: ′a :: alg-closed-field poly) > 0
shows ∃ x. poly p x = 0

proof −
have ∃ x. (

∑
k≤degree p. coeff p k ∗ x ^ k) = 0

using assms by (intro alg-closed) auto
thus ?thesis

by (simp add: poly-altdef)
qed

lemma alg-closedI [Pure.intro]:
assumes

∧
p :: ′a poly. degree p > 0 =⇒ lead-coeff p = 1 =⇒ ∃ x. poly p x = 0

shows OFCLASS(′a :: field, alg-closed-field-class)
proof

fix n :: nat and f :: nat ⇒ ′a
assume n: n > 0 f n 6= 0
define p where p = Abs-poly (λk. if k ≤ n then f k else 0)
have coeff-p: coeff p k = (if k ≤ n then f k else 0) for k
proof −

have eventually (λk. k > n) cofinite
by (auto simp: MOST-nat)

hence eventually (λk. (if k ≤ n then f k else 0) = 0) cofinite
by eventually-elim auto

thus ?thesis
unfolding p-def by (subst Abs-poly-inverse) auto

qed

from n have degree p ≥ n
by (intro le-degree) (auto simp: coeff-p)

moreover have degree p ≤ n
by (intro degree-le) (auto simp: coeff-p)

ultimately have deg-p: degree p = n
by linarith

from deg-p and n have [simp]: p 6= 0
by auto

define p ′ where p ′ = smult (inverse (lead-coeff p)) p
have deg-p ′: degree p ′ = degree p

by (auto simp: p ′-def)
have lead-coeff-p ′ [simp]: lead-coeff p ′ = 1

by (auto simp: p ′-def)

from deg-p and deg-p ′ and n have degree p ′ > 0
by simp

from assms[OF this] obtain x where poly p ′ x = 0

221

by auto
hence poly p x = 0

by (simp add: p ′-def)
also have poly p x = (

∑
k≤n. f k ∗ x ^ k)

unfolding poly-altdef by (intro sum.cong) (auto simp: deg-p coeff-p)
finally show ∃ x. (

∑
k≤n. f k ∗ x ^ k) = 0 ..

qed

lemma (in alg-closed-field) nth-root-exists:
assumes n > 0
shows ∃ y. y ^ n = (x :: ′a)

proof −
define f where f = (λi. if i = 0 then −x else if i = n then 1 else 0)
have ∃ x. (

∑
k≤n. f k ∗ x ^ k) = 0

by (rule alg-closed) (use assms in ‹auto simp: f-def ›)
also have (λx.

∑
k≤n. f k ∗ x ^ k) = (λx.

∑
k∈{0 ,n}. f k ∗ x ^ k)

by (intro ext sum.mono-neutral-right) (auto simp: f-def)
finally show ∃ y. y ^ n = x

using assms by (simp add: f-def)
qed

We can now prove by induction that every polynomial of degree n splits into
a product of n linear factors:
lemma alg-closed-imp-factorization:

fixes p :: ′a :: alg-closed-field poly
assumes p 6= 0
shows ∃A. size A = degree p ∧ p = smult (lead-coeff p) (

∏
x∈#A. [:−x, 1 :])

using assms
proof (induction degree p arbitrary: p rule: less-induct)

case (less p)
show ?case
proof (cases degree p = 0)

case True
thus ?thesis

by (intro exI [of - {#}]) (auto elim!: degree-eq-zeroE)
next

case False
then obtain x where x: poly p x = 0

using alg-closed-imp-poly-has-root by blast
hence [:−x, 1 :] dvd p

using poly-eq-0-iff-dvd by blast
then obtain q where p-eq: p = [:−x, 1 :] ∗ q

by (elim dvdE)
have q 6= 0

using less.prems p-eq by auto
moreover from this have deg: degree p = Suc (degree q)

unfolding p-eq by (subst degree-mult-eq) auto
ultimately obtain A where A: size A = degree q q = smult (lead-coeff q)

(
∏

x∈#A. [:−x, 1 :])

222

using less.hyps[of q] by auto
have smult (lead-coeff p) (

∏
y∈#add-mset x A. [:− y, 1 :]) =

[:− x, 1 :] ∗ smult (lead-coeff q) (
∏

y∈#A. [:− y, 1 :])
unfolding p-eq lead-coeff-mult by simp

also note A(2) [symmetric]
also note p-eq [symmetric]
finally show ?thesis using A(1)

by (intro exI [of - add-mset x A]) (auto simp: deg)
qed

qed

As an alternative characterisation of algebraic closure, one can also say that
any polynomial of degree at least 2 splits into non-constant factors:
lemma alg-closed-imp-reducible:

assumes degree (p :: ′a :: alg-closed-field poly) > 1
shows ¬irreducible p

proof −
have degree p > 0

using assms by auto
then obtain z where z: poly p z = 0

using alg-closed-imp-poly-has-root[of p] by blast
then have dvd: [:−z, 1 :] dvd p

by (subst dvd-iff-poly-eq-0) auto
then obtain q where q: p = [:−z, 1 :] ∗ q

by (erule dvdE)
have [simp]: q 6= 0

using assms q by auto

show ?thesis
proof (rule reducible-polyI)

show p = [:−z, 1 :] ∗ q
by fact

next
have degree p = degree ([:−z, 1 :] ∗ q)

by (simp only: q)
also have . . . = degree q + 1

by (subst degree-mult-eq) auto
finally show degree q > 0

using assms by linarith
qed auto

qed

When proving algebraic closure through reducibility, we can assume w.l.o.g.
that the polynomial is monic and has a non-zero constant coefficient:
lemma alg-closedI-reducible:

assumes
∧

p :: ′a poly. degree p > 1 =⇒ lead-coeff p = 1 =⇒ coeff p 0 6= 0 =⇒
¬irreducible p

shows OFCLASS(′a :: field, alg-closed-field-class)
proof

223

fix p :: ′a poly assume p: degree p > 0 lead-coeff p = 1
show ∃ x. poly p x = 0
proof (cases coeff p 0 = 0)

case True
hence poly p 0 = 0

by (simp add: poly-0-coeff-0)
thus ?thesis by blast

next
case False
from p and this show ?thesis
proof (induction degree p arbitrary: p rule: less-induct)

case (less p)
show ?case
proof (cases degree p = 1)

case True
then obtain a b where p: p = [:a, b:]

by (cases p) (auto split: if-splits elim!: degree-eq-zeroE)
from True have [simp]: b 6= 0

by (auto simp: p)
have poly p (−a/b) = 0

by (auto simp: p)
thus ?thesis by blast

next
case False
hence degree p > 1

using less.prems by auto
from assms[OF ‹degree p > 1 › ‹lead-coeff p = 1 › ‹coeff p 0 6= 0 ›]
have ¬irreducible p by auto
then obtain r s where rs: degree r > 0 degree s > 0 p = r ∗ s

using less.prems unfolding irreducible-def
by (metis is-unit-iff-degree mult-not-zero zero-less-iff-neq-zero)

hence coeff r 0 6= 0
using ‹coeff p 0 6= 0 › by (auto simp: coeff-mult-0)

define r ′ where r ′ = smult (inverse (lead-coeff r)) r
have [simp]: degree r ′ = degree r

by (simp add: r ′-def)
have lc: lead-coeff r ′ = 1

using rs by (auto simp: r ′-def)
have nz: coeff r ′ 0 6= 0

using ‹coeff r 0 6= 0 › by (auto simp: r ′-def)

have degree r < degree r + degree s
using rs by linarith

also have . . . = degree (r ∗ s)
using rs(3) less.prems by (subst degree-mult-eq) auto

also have r ∗ s = p
using rs(3) by simp

finally have ∃ x. poly r ′ x = 0

224

by (intro less) (use lc rs nz in auto)
thus ?thesis

using rs(3) by (auto simp: r ′-def)
qed

qed
qed

qed

Using a clever Tschirnhausen transformation mentioned e.g. in the article
by Nowak [1], we can also assume w.l.o.g. that the coefficient an−1 is zero.
lemma alg-closedI-reducible-coeff-deg-minus-one-eq-0 :

assumes
∧

p :: ′a poly. degree p > 1 =⇒ lead-coeff p = 1 =⇒ coeff p (degree p
− 1) = 0 =⇒

coeff p 0 6= 0 =⇒ ¬irreducible p
shows OFCLASS(′a :: field-char-0 , alg-closed-field-class)

proof (rule alg-closedI-reducible, goal-cases)
case (1 p)
define n where [simp]: n = degree p
define a where a = coeff p (n − 1)
define r where r = [: −a / of-nat n, 1 :]
define s where s = [: a / of-nat n, 1 :]
define q where q = pcompose p r

have n > 0
using 1 by simp

have r-altdef : r = monom 1 1 + [:−a / of-nat n:]
by (simp add: r-def monom-altdef)

have deg-q: degree q = n
by (simp add: q-def r-def degree-pcompose)

have lc-q: lead-coeff q = 1
unfolding q-def using 1 by (subst lead-coeff-comp) (simp-all add: r-def)

have q 6= 0
using 1 deg-q by auto

have coeff q (n − 1) =
(
∑

i≤n.
∑

k≤i. coeff p i ∗ (of-nat (i choose k) ∗
((−a / of-nat n) ^ (i − k) ∗ (if k = n − 1 then 1 else 0))))

unfolding q-def pcompose-altdef poly-altdef r-altdef
by (simp-all add: degree-map-poly coeff-map-poly coeff-sum binomial-ring sum-distrib-left

poly-const-pow
sum-distrib-right mult-ac monom-power coeff-monom-mult of-nat-poly

cong: if-cong)
also have . . . = (

∑
i≤n.

∑
k∈(if i ≥ n − 1 then {n−1} else {}).

coeff p i ∗ (of-nat (i choose k) ∗ (−a / of-nat n) ^ (i − k)))
by (rule sum.cong [OF refl], rule sum.mono-neutral-cong-right) (auto split:

if-splits)
also have . . . = (

∑
i∈{n−1 ,n}.

∑
k∈(if i ≥ n − 1 then {n−1} else {}).

coeff p i ∗ (of-nat (i choose k) ∗ (−a / of-nat n) ^ (i − k)))
by (rule sum.mono-neutral-right) auto

225

also have . . . = a − of-nat (n choose (n − 1)) ∗ a / of-nat n
using 1 by (simp add: a-def)

also have n choose (n − 1) = n
using ‹n > 0 › by (subst binomial-symmetric) auto

also have a − of-nat n ∗ a / of-nat n = 0
using ‹n > 0 › by simp

finally have coeff q (n − 1) = 0 .

show ?case
proof (cases coeff q 0 = 0)

case True
hence poly p (− (a / of-nat (degree p))) = 0

by (auto simp: q-def r-def)
thus ?thesis

by (rule root-imp-reducible-poly) (use 1 in auto)
next

case False
hence ¬irreducible q

using assms[of q] and lc-q and 1 and ‹coeff q (n − 1) = 0 ›
by (auto simp: deg-q)

then obtain u v where uv: degree u > 0 degree v > 0 q = u ∗ v
using ‹q 6= 0 › 1 deg-q unfolding irreducible-def
by (metis degree-mult-eq-0 is-unit-iff-degree n-def neq0-conv not-one-less-zero)

have p = pcompose q s
by (simp add: q-def r-def s-def pcompose-pCons flip: pcompose-assoc)

also have q = u ∗ v
by fact

finally have p = pcompose u s ∗ pcompose v s
by (simp add: pcompose-mult)

moreover have degree (pcompose u s) > 0 degree (pcompose v s) > 0
using uv by (simp-all add: s-def degree-pcompose)

ultimately show ¬irreducible p
using 1 by (intro reducible-polyI)

qed
qed

As a consequence of the full factorisation lemma proven above, we can also
show that any polynomial with at least two different roots splits into two
non-constant coprime factors:
lemma alg-closed-imp-poly-splits-coprime:

assumes degree (p :: ′a :: {alg-closed-field} poly) > 1
assumes poly p x = 0 poly p y = 0 x 6= y
obtains r s where degree r > 0 degree s > 0 coprime r s p = r ∗ s

proof −
define n where n = order x p
have n > 0

using assms by (metis degree-0 gr0I n-def not-one-less-zero order-root)
have [:−x, 1 :] ^ n dvd p

226

unfolding n-def by (simp add: order-1)
then obtain q where p-eq: p = [:−x, 1 :] ^ n ∗ q

by (elim dvdE)
from assms have [simp]: q 6= 0

by (auto simp: p-eq)
have order x p = n + Polynomial.order x q

unfolding p-eq by (subst order-mult) (auto simp: order-power-n-n)
hence Polynomial.order x q = 0

by (simp add: n-def)
hence poly q x 6= 0

by (simp add: order-root)

show ?thesis
proof (rule that)

show coprime ([:−x, 1 :] ^ n) q
proof (rule coprimeI)

fix d
assume d: d dvd [:−x, 1 :] ^ n d dvd q
have degree d = 0
proof (rule ccontr)

assume ¬(degree d = 0)
then obtain z where z: poly d z = 0

using alg-closed-imp-poly-has-root by blast
moreover from this and d(1) have poly ([:−x, 1 :] ^ n) z = 0

using dvd-trans poly-eq-0-iff-dvd by blast
ultimately have poly d x = 0

by auto
with d(2) have poly q x = 0

using dvd-trans poly-eq-0-iff-dvd by blast
with ‹poly q x 6= 0 › show False by contradiction

qed
thus is-unit d using d

by (metis ‹q 6= 0 › dvd-0-left is-unit-iff-degree)
qed

next
have poly q y = 0

using ‹poly p y = 0 › ‹x 6= y› by (auto simp: p-eq)
with ‹q 6= 0 › show degree q > 0

using order-degree order-gt-0-iff order-less-le-trans by blast
qed (use ‹n > 0 › in ‹simp-all add: p-eq degree-power-eq›)

qed

4.34 Polynomials and limits
lemma filterlim-poly-at-infinity:

fixes p:: ′a::real-normed-field poly
assumes degree p>0
shows filterlim (poly p) at-infinity at-infinity

using assms

227

proof (induct p)
case 0
then show ?case by auto

next
case (pCons a p)
have ?case when degree p=0
proof −

obtain c where c-def :p=[:c:] using ‹degree p = 0 › degree-eq-zeroE by blast
then have c 6=0 using ‹0 < degree (pCons a p)› by auto
then show ?thesis unfolding c-def

apply (auto intro!:tendsto-add-filterlim-at-infinity)
apply (subst mult.commute)
by (auto intro!:tendsto-mult-filterlim-at-infinity filterlim-ident)

qed
moreover have ?case when degree p 6=0
proof −

have filterlim (poly p) at-infinity at-infinity
using that by (auto intro:pCons)

then show ?thesis
by (auto intro!:tendsto-add-filterlim-at-infinity filterlim-at-infinity-times filter-

lim-ident)
qed
ultimately show ?case by auto

qed

lemma poly-divide-tendsto-aux:
fixes p:: ′a::real-normed-field poly
shows ((λx. poly p x/x^(degree p)) −−−→ lead-coeff p) at-infinity

proof (induct p)
case 0
then show ?case by (auto intro:tendsto-eq-intros)

next
case (pCons a p)
have ?case when p=0

using that by auto
moreover have ?case when p 6=0
proof −

define g where g=(λx. a/(x∗x^degree p))
define f where f=(λx. poly p x/x^degree p)
have ∀ F x in at-infinity. poly (pCons a p) x / x ^ degree (pCons a p) = g x +

f x
proof (rule eventually-at-infinityI [of 1])

fix x:: ′a assume norm x≥1
then have x 6=0 by auto
then show poly (pCons a p) x / x ^ degree (pCons a p) = g x + f x

using that unfolding g-def f-def by (auto simp add:field-simps)
qed
moreover have ((λx. g x+f x) −−−→ lead-coeff (pCons a p)) at-infinity
proof −

228

have (g −−−→ 0) at-infinity
unfolding g-def using filterlim-poly-at-infinity[of monom 1 (Suc (degree

p))]
apply (auto intro!:tendsto-intros tendsto-divide-0 simp add: degree-monom-eq)

apply (subst filterlim-cong[where g=poly (monom 1 (Suc (degree p)))])
by (auto simp add:poly-monom)

moreover have (f −−−→ lead-coeff (pCons a p)) at-infinity
using pCons ‹p 6=0 › unfolding f-def by auto

ultimately show ?thesis by (auto intro:tendsto-eq-intros)
qed
ultimately show ?thesis by (auto dest:tendsto-cong)

qed
ultimately show ?case by auto

qed

lemma filterlim-power-at-infinity:
assumes n 6=0
shows filterlim (λx:: ′a::real-normed-field. x^n) at-infinity at-infinity
using filterlim-poly-at-infinity[of monom 1 n] assms
by (simp add: filterlim-ident filterlim-power-at-infinity)

lemma poly-divide-tendsto-0-at-infinity:
fixes p:: ′a::real-normed-field poly
assumes degree p > degree q
shows ((λx. poly q x / poly p x) −−−→ 0) at-infinity

proof −
define pp where pp ≡ (λx. x^(degree p) / poly p x)
define qq where qq ≡ (λx. poly q x/x^(degree q))
define dd where dd ≡ (λx:: ′a. 1/x^(degree p − degree q))
have ∀ F x in at-infinity. poly q x / poly p x = qq x ∗ pp x ∗ dd x
proof (rule eventually-at-infinityI [of 1])

fix x:: ′a assume norm x≥1
then have x 6=0 by auto
then show poly q x / poly p x = qq x ∗ pp x ∗ dd x

unfolding qq-def pp-def dd-def using assms
by (auto simp add:field-simps divide-simps power-diff)

qed
moreover have ((λx. qq x ∗ pp x ∗ dd x) −−−→ 0) at-infinity
proof −

have (qq −−−→ lead-coeff q) at-infinity
unfolding qq-def using poly-divide-tendsto-aux[of q] .

moreover have (pp −−−→ 1/lead-coeff p) at-infinity
proof −

have p 6=0 using assms by auto
then show ?thesis

unfolding pp-def using poly-divide-tendsto-aux[of p]
apply (drule-tac tendsto-inverse)
by (auto simp add:inverse-eq-divide)

qed

229

moreover have (dd −−−→ 0) at-infinity
unfolding dd-def
apply (rule tendsto-divide-0)
by (auto intro!: filterlim-power-at-infinity simp add:assms)

ultimately show ?thesis by (auto intro:tendsto-eq-intros)
qed
ultimately show ?thesis by (auto dest:tendsto-cong)

qed

lemma poly-eventually-not-zero:
fixes p::real poly
assumes p 6=0
shows eventually (λx. poly p x 6= 0) at-infinity

proof (rule eventually-at-infinityI [of Max (norm ‘ {x. poly p x = 0}) + 1])
fix x::real assume §: Max (norm ‘ {x. poly p x = 0}) + 1 ≤ norm x
have False when poly p x = 0
proof −

define S where S=norm ‘{x. poly p x = 0}
have norm x∈S

using that unfolding S-def by auto
moreover have finite S

using ‹p 6=0 › poly-roots-finite unfolding S-def by blast
ultimately have norm x≤Max S

by simp
moreover have Max S + 1 ≤ norm x

using § unfolding S-def by simp
ultimately show False by argo

qed
then show poly p x 6= 0 by auto

qed

no-notation cCons (infixr ‹##› 65)

end

5 A formalization of formal power series
theory Formal-Power-Series
imports

Complex-Main
Euclidean-Algorithm
Primes
HOL−Library.FuncSet
HOL−Library.Multiset

begin

5.1 The type of formal power series
typedef ′a fps = {f :: nat ⇒ ′a. True}

230

morphisms fps-nth Abs-fps
by simp

notation fps-nth (infixl ‹$› 75)

lemma expand-fps-eq: p = q ←→ (∀n. p $ n = q $ n)
by (simp add: fps-nth-inject [symmetric] fun-eq-iff)

lemmas fps-eq-iff = expand-fps-eq

lemma fps-ext: (
∧

n. p $ n = q $ n) =⇒ p = q
by (simp add: expand-fps-eq)

lemma fps-nth-Abs-fps [simp]: Abs-fps f $ n = f n
by (simp add: Abs-fps-inverse)

Definition of the basic elements 0 and 1 and the basic operations of addition,
negation and multiplication.
instantiation fps :: (zero) zero
begin

definition fps-zero-def : 0 = Abs-fps (λn. 0)
instance ..

end

lemma fps-zero-nth [simp]: 0 $ n = 0
unfolding fps-zero-def by simp

lemma fps-nonzero-nth: f 6= 0 ←→ (∃ n. f $ n 6= 0)
by (simp add: expand-fps-eq)

lemma fps-nonzero-nth-minimal: f 6= 0 ←→ (∃n. f $ n 6= 0 ∧ (∀m < n. f $ m
= 0))
(is ?lhs ←→ ?rhs)

proof
let ?n = LEAST n. f $ n 6= 0
show ?rhs if ?lhs
proof −

from that have ∃n. f $ n 6= 0
by (simp add: fps-nonzero-nth)

then have f $?n 6= 0
by (rule LeastI-ex)

moreover have ∀m<?n. f $ m = 0
by (auto dest: not-less-Least)

ultimately show ?thesis by metis
qed

qed (auto simp: expand-fps-eq)

lemma fps-nonzeroI : f $n 6= 0 =⇒ f 6= 0
by auto

231

instantiation fps :: ({one, zero}) one
begin

definition fps-one-def : 1 = Abs-fps (λn. if n = 0 then 1 else 0)
instance ..

end

lemma fps-one-nth [simp]: 1 $ n = (if n = 0 then 1 else 0)
unfolding fps-one-def by simp

instantiation fps :: (plus) plus
begin

definition fps-plus-def : (+) = (λf g. Abs-fps (λn. f $ n + g $ n))
instance ..

end

lemma fps-add-nth [simp]: (f + g) $ n = f $ n + g $ n
unfolding fps-plus-def by simp

instantiation fps :: (minus) minus
begin

definition fps-minus-def : (−) = (λf g. Abs-fps (λn. f $ n − g $ n))
instance ..

end

lemma fps-sub-nth [simp]: (f − g) $ n = f $ n − g $ n
unfolding fps-minus-def by simp

instantiation fps :: (uminus) uminus
begin

definition fps-uminus-def : uminus = (λf . Abs-fps (λn. − (f $ n)))
instance ..

end

lemma fps-neg-nth [simp]: (− f) $ n = − (f $ n)
unfolding fps-uminus-def by simp

lemma fps-neg-0 [simp]: −(0 :: ′a::group-add fps) = 0
by (rule iffD2 , rule fps-eq-iff , auto)

instantiation fps :: ({comm-monoid-add, times}) times
begin

definition fps-times-def : (∗) = (λf g. Abs-fps (λn.
∑

i=0 ..n. f $ i ∗ g $ (n −
i)))

instance ..
end

lemma fps-mult-nth: (f ∗ g) $ n = (
∑

i=0 ..n. f $i ∗ g$(n − i))
unfolding fps-times-def by simp

232

lemma fps-mult-nth-0 [simp]: (f ∗ g) $ 0 = f $ 0 ∗ g $ 0
unfolding fps-times-def by simp

lemma fps-mult-nth-1 : (f ∗ g) $ 1 = f $0 ∗ g$1 + f $1 ∗ g$0
by (simp add: fps-mult-nth)

lemma fps-mult-nth-1 ′ [simp]: (f ∗ g) $ Suc 0 = f $0 ∗ g$Suc 0 + f $Suc 0 ∗ g$0
by (simp add: fps-mult-nth)

lemmas mult-nth-0 = fps-mult-nth-0
lemmas mult-nth-1 = fps-mult-nth-1

instance fps :: ({comm-monoid-add, mult-zero}) mult-zero
proof

fix a :: ′a fps
show 0 ∗ a = 0 by (simp add: fps-ext fps-mult-nth)
show a ∗ 0 = 0 by (simp add: fps-ext fps-mult-nth)

qed

declare atLeastAtMost-iff [presburger]
declare Bex-def [presburger]
declare Ball-def [presburger]

lemma mult-delta-left:
fixes x y :: ′a::mult-zero
shows (if b then x else 0) ∗ y = (if b then x ∗ y else 0)
by simp

lemma mult-delta-right:
fixes x y :: ′a::mult-zero
shows x ∗ (if b then y else 0) = (if b then x ∗ y else 0)
by simp

lemma fps-one-mult:
fixes f :: ′a::{comm-monoid-add, mult-zero, monoid-mult} fps
shows 1 ∗ f = f
and f ∗ 1 = f
by (simp-all add: fps-ext fps-mult-nth mult-delta-left mult-delta-right)

5.2 Subdegrees
definition subdegree :: (′a::zero) fps ⇒ nat where

subdegree f = (if f = 0 then 0 else LEAST n. f $n 6= 0)

lemma subdegreeI :
assumes f $ d 6= 0 and

∧
i. i < d =⇒ f $ i = 0

shows subdegree f = d
by (smt (verit) LeastI-ex assms fps-zero-nth linorder-cases not-less-Least subde-

233

gree-def)

lemma nth-subdegree-nonzero [simp,intro]: f 6= 0 =⇒ f $ subdegree f 6= 0
using fps-nonzero-nth-minimal subdegreeI by blast

lemma nth-less-subdegree-zero [dest]: n < subdegree f =⇒ f $ n = 0
by (metis fps-nonzero-nth-minimal fps-zero-nth subdegreeI)

lemma subdegree-geI :
assumes f 6= 0

∧
i. i < n =⇒ f $i = 0

shows subdegree f ≥ n
by (meson assms leI nth-subdegree-nonzero)

lemma subdegree-greaterI :
assumes f 6= 0

∧
i. i ≤ n =⇒ f $i = 0

shows subdegree f > n
by (meson assms leI nth-subdegree-nonzero)

lemma subdegree-leI :
f $ n 6= 0 =⇒ subdegree f ≤ n
using linorder-not-less by blast

lemma subdegree-0 [simp]: subdegree 0 = 0
by (simp add: subdegree-def)

lemma subdegree-1 [simp]: subdegree 1 = 0
by (metis fps-one-nth nth-subdegree-nonzero subdegree-0)

lemma subdegree-eq-0-iff : subdegree f = 0 ←→ f = 0 ∨ f $ 0 6= 0
using nth-subdegree-nonzero subdegree-leI by fastforce

lemma subdegree-eq-0 [simp]: f $ 0 6= 0 =⇒ subdegree f = 0
by (simp add: subdegree-eq-0-iff)

lemma nth-subdegree-zero-iff [simp]: f $ subdegree f = 0 ←→ f = 0
by (cases f = 0) auto

lemma fps-nonzero-subdegree-nonzeroI : subdegree f > 0 =⇒ f 6= 0
by auto

lemma subdegree-uminus [simp]:
subdegree (−(f ::(′a::group-add) fps)) = subdegree f

proof (cases f=0)
case False thus ?thesis by (force intro: subdegreeI)

qed simp

lemma subdegree-minus-commute [simp]:
fixes f :: ′a::group-add fps
shows subdegree (f−g) = subdegree (g − f)

234

proof (cases g−f=0)
case True then show ?thesis

by (metis fps-sub-nth nth-subdegree-nonzero right-minus-eq)
next

case False show ?thesis
using nth-subdegree-nonzero[OF False] by (fastforce intro: subdegreeI)

qed

lemma subdegree-add-ge ′:
fixes f g :: ′a::monoid-add fps
assumes f + g 6= 0
shows subdegree (f + g) ≥ min (subdegree f) (subdegree g)
using assms
by (force intro: subdegree-geI)

lemma subdegree-add-ge:
assumes f 6= −(g :: (′a :: group-add) fps)
shows subdegree (f + g) ≥ min (subdegree f) (subdegree g)

proof (rule subdegree-add-ge ′)
have f + g = 0 =⇒ False
proof−

assume fg: f + g = 0
have

∧
n. f $ n = − g $ n

by (metis add-eq-0-iff equation-minus-iff fg fps-add-nth fps-neg-nth fps-zero-nth)
with assms show False by (auto intro: fps-ext)

qed
thus f + g 6= 0 by fast

qed

lemma subdegree-add-eq1 :
assumes f 6= 0
and subdegree f < subdegree (g :: ′a::monoid-add fps)
shows subdegree (f + g) = subdegree f
using assms by(auto intro: subdegreeI simp: nth-less-subdegree-zero)

lemma subdegree-add-eq2 :
assumes g 6= 0
and subdegree g < subdegree (f :: ′a :: monoid-add fps)
shows subdegree (f + g) = subdegree g
using assms by (auto intro: subdegreeI simp: nth-less-subdegree-zero)

lemma subdegree-diff-eq1 :
assumes f 6= 0
and subdegree f < subdegree (g :: ′a :: group-add fps)
shows subdegree (f − g) = subdegree f
using assms by (auto intro: subdegreeI simp: nth-less-subdegree-zero)

lemma subdegree-diff-eq1-cancel:
assumes f 6= 0

235

and subdegree f < subdegree (g :: ′a :: cancel-comm-monoid-add fps)
shows subdegree (f − g) = subdegree f
using assms by (auto intro: subdegreeI simp: nth-less-subdegree-zero)

lemma subdegree-diff-eq2 :
assumes g 6= 0
and subdegree g < subdegree (f :: ′a :: group-add fps)
shows subdegree (f − g) = subdegree g
using assms by (auto intro: subdegreeI simp: nth-less-subdegree-zero)

lemma subdegree-diff-ge [simp]:
assumes f 6= (g :: ′a :: group-add fps)
shows subdegree (f − g) ≥ min (subdegree f) (subdegree g)

proof−
have f 6= − (− g)

using assms expand-fps-eq by fastforce
moreover have f + − g = f − g by (simp add: fps-ext)
ultimately show ?thesis

using subdegree-add-ge[of f −g] by simp
qed

lemma subdegree-diff-ge ′:
fixes f g :: ′a :: comm-monoid-diff fps
assumes f − g 6= 0
shows subdegree (f − g) ≥ subdegree f
using assms by (auto intro: subdegree-geI simp: nth-less-subdegree-zero)

lemma nth-subdegree-mult-left [simp]:
fixes f g :: (′a :: {mult-zero,comm-monoid-add}) fps
shows (f ∗ g) $ (subdegree f) = f $ subdegree f ∗ g $ 0
by (cases subdegree f) (simp-all add: fps-mult-nth nth-less-subdegree-zero)

lemma nth-subdegree-mult-right [simp]:
fixes f g :: (′a :: {mult-zero,comm-monoid-add}) fps
shows (f ∗ g) $ (subdegree g) = f $ 0 ∗ g $ subdegree g
by (cases subdegree g) (simp-all add: fps-mult-nth nth-less-subdegree-zero

sum.atLeast-Suc-atMost)

lemma nth-subdegree-mult [simp]:
fixes f g :: (′a :: {mult-zero,comm-monoid-add}) fps
shows (f ∗ g) $ (subdegree f + subdegree g) = f $ subdegree f ∗ g $ subdegree g

proof−
let ?n = subdegree f + subdegree g
have (f ∗ g) $?n = (

∑
i=0 ..?n. f $i ∗ g$(?n−i))

by (simp add: fps-mult-nth)
also have ... = (

∑
i=0 ..?n. if i = subdegree f then f $i ∗ g$(?n−i) else 0)

proof (intro sum.cong)
fix x assume x: x ∈ {0 ..?n}
hence x = subdegree f ∨ x < subdegree f ∨ ?n − x < subdegree g by auto

236

thus f $ x ∗ g $ (?n − x) = (if x = subdegree f then f $ x ∗ g $ (?n − x) else
0)

by (elim disjE conjE) auto
qed auto
also have ... = f $ subdegree f ∗ g $ subdegree g by simp
finally show ?thesis .

qed

lemma fps-mult-nth-eq0 :
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
assumes n < subdegree f + subdegree g
shows (f ∗g) $ n = 0

proof−
have

∧
i. i∈{0 ..n} =⇒ f $i ∗ g$(n − i) = 0

proof−
fix i assume i: i∈{0 ..n}
show f $i ∗ g$(n − i) = 0
proof (cases i < subdegree f ∨ n − i < subdegree g)

case False with assms i show ?thesis by auto
qed (auto simp: nth-less-subdegree-zero)

qed
thus (f ∗ g) $ n = 0 by (simp add: fps-mult-nth)

qed

lemma fps-mult-subdegree-ge:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
assumes f ∗g 6= 0
shows subdegree (f ∗g) ≥ subdegree f + subdegree g
using assms fps-mult-nth-eq0
by (intro subdegree-geI) simp

lemma subdegree-mult ′:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
assumes f $ subdegree f ∗ g $ subdegree g 6= 0
shows subdegree (f ∗g) = subdegree f + subdegree g

proof−
from assms have (f ∗ g) $ (subdegree f + subdegree g) 6= 0 by simp
hence f ∗g 6= 0 by fastforce
hence subdegree (f ∗g) ≥ subdegree f + subdegree g using fps-mult-subdegree-ge

by fast
moreover from assms have subdegree (f ∗g) ≤ subdegree f + subdegree g

by (intro subdegree-leI) simp
ultimately show ?thesis by simp

qed

lemma subdegree-mult [simp]:
fixes f g :: ′a :: {semiring-no-zero-divisors} fps
assumes f 6= 0 g 6= 0
shows subdegree (f ∗ g) = subdegree f + subdegree g

237

using assms
by (intro subdegree-mult ′) simp

lemma fps-mult-nth-conv-upto-subdegree-left:
fixes f g :: (′a :: {mult-zero,comm-monoid-add}) fps
shows (f ∗ g) $ n = (

∑
i=subdegree f ..n. f $ i ∗ g $ (n − i))

proof (cases subdegree f ≤ n)
case True
hence {0 ..n} = {0 ..<subdegree f } ∪ {subdegree f ..n} by auto
moreover have {0 ..<subdegree f } ∩ {subdegree f ..n} = {} by auto
ultimately show ?thesis

using nth-less-subdegree-zero[of - f]
by (simp add: fps-mult-nth sum.union-disjoint)

qed (simp add: fps-mult-nth nth-less-subdegree-zero)

lemma fps-mult-nth-conv-upto-subdegree-right:
fixes f g :: (′a :: {mult-zero,comm-monoid-add}) fps
shows (f ∗ g) $ n = (

∑
i=0 ..n − subdegree g. f $ i ∗ g $ (n − i))

proof−
have {0 ..n} = {0 ..n − subdegree g} ∪ {n − subdegree g<..n} by auto
moreover have {0 ..n − subdegree g} ∩ {n − subdegree g<..n} = {} by auto
moreover have ∀ i∈{n − subdegree g<..n}. g $ (n − i) = 0

using nth-less-subdegree-zero[of - g] by auto
ultimately show ?thesis by (simp add: fps-mult-nth sum.union-disjoint)

qed

lemma fps-mult-nth-conv-inside-subdegrees:
fixes f g :: (′a :: {mult-zero,comm-monoid-add}) fps
shows (f ∗ g) $ n = (

∑
i=subdegree f ..n − subdegree g. f $ i ∗ g $ (n − i))

proof (cases subdegree f ≤ n − subdegree g)
case True
hence {subdegree f ..n} = {subdegree f ..n − subdegree g} ∪ {n − subdegree g<..n}

by auto
moreover have {subdegree f ..n − subdegree g} ∩ {n − subdegree g<..n} = {}

by auto
moreover have ∀ i∈{n − subdegree g<..n}. f $ i ∗ g $ (n − i) = 0

using nth-less-subdegree-zero[of - g] by auto
ultimately show ?thesis

using fps-mult-nth-conv-upto-subdegree-left[of f g n]
by (simp add: sum.union-disjoint)

next
case False
hence 1 : subdegree f > n − subdegree g by simp
show ?thesis
proof (cases f ∗g = 0)

case False
with 1 have n < subdegree (f ∗g) using fps-mult-subdegree-ge[of f g] by simp
with 1 show ?thesis by auto

qed (simp add: 1)

238

qed

lemma fps-mult-nth-outside-subdegrees:
fixes f g :: (′a :: {mult-zero,comm-monoid-add}) fps
shows n < subdegree f =⇒ (f ∗ g) $ n = 0
and n < subdegree g =⇒ (f ∗ g) $ n = 0
by (auto simp: fps-mult-nth-conv-inside-subdegrees)

5.3 Ring structure
instance fps :: (semigroup-add) semigroup-add
proof

fix a b c :: ′a fps
show a + b + c = a + (b + c)

by (simp add: fps-ext add.assoc)
qed

instance fps :: (ab-semigroup-add) ab-semigroup-add
proof

fix a b :: ′a fps
show a + b = b + a

by (simp add: fps-ext add.commute)
qed

instance fps :: (monoid-add) monoid-add
proof

fix a :: ′a fps
show 0 + a = a by (simp add: fps-ext)
show a + 0 = a by (simp add: fps-ext)

qed

instance fps :: (comm-monoid-add) comm-monoid-add
proof

fix a :: ′a fps
show 0 + a = a by (simp add: fps-ext)

qed

instance fps :: (cancel-semigroup-add) cancel-semigroup-add
proof

fix a b c :: ′a fps
show b = c if a + b = a + c

using that by (simp add: expand-fps-eq)
show b = c if b + a = c + a

using that by (simp add: expand-fps-eq)
qed

instance fps :: (cancel-ab-semigroup-add) cancel-ab-semigroup-add
proof

fix a b c :: ′a fps

239

show a + b − a = b
by (simp add: expand-fps-eq)

show a − b − c = a − (b + c)
by (simp add: expand-fps-eq diff-diff-eq)

qed

instance fps :: (cancel-comm-monoid-add) cancel-comm-monoid-add ..

instance fps :: (group-add) group-add
proof

fix a b :: ′a fps
show − a + a = 0 by (simp add: fps-ext)
show a + − b = a − b by (simp add: fps-ext)

qed

instance fps :: (ab-group-add) ab-group-add
proof

fix a b :: ′a fps
show − a + a = 0 by (simp add: fps-ext)
show a − b = a + − b by (simp add: fps-ext)

qed

instance fps :: (zero-neq-one) zero-neq-one
by standard (simp add: expand-fps-eq)

lemma fps-mult-assoc-lemma:
fixes k :: nat

and f :: nat ⇒ nat ⇒ nat ⇒ ′a::comm-monoid-add
shows (

∑
j=0 ..k.

∑
i=0 ..j. f i (j − i) (n − j)) =

(
∑

j=0 ..k.
∑

i=0 ..k − j. f j i (n − j − i))
by (induct k) (simp-all add: Suc-diff-le sum.distrib add.assoc)

instance fps :: (semiring-0) semiring-0
proof

fix a b c :: ′a fps
show (a + b) ∗ c = a ∗ c + b ∗ c

by (simp add: expand-fps-eq fps-mult-nth distrib-right sum.distrib)
show a ∗ (b + c) = a ∗ b + a ∗ c

by (simp add: expand-fps-eq fps-mult-nth distrib-left sum.distrib)
show (a ∗ b) ∗ c = a ∗ (b ∗ c)
proof (rule fps-ext)

fix n :: nat
have (

∑
j=0 ..n.

∑
i=0 ..j. a$i ∗ b$(j − i) ∗ c$(n − j)) =

(
∑

j=0 ..n.
∑

i=0 ..n − j. a$j ∗ b$i ∗ c$(n − j − i))
by (rule fps-mult-assoc-lemma)

then show ((a ∗ b) ∗ c) $ n = (a ∗ (b ∗ c)) $ n
by (simp add: fps-mult-nth sum-distrib-left sum-distrib-right mult.assoc)

qed
qed

240

instance fps :: (semiring-0-cancel) semiring-0-cancel ..

lemma fps-mult-commute-lemma:
fixes n :: nat

and f :: nat ⇒ nat ⇒ ′a::comm-monoid-add
shows (

∑
i=0 ..n. f i (n − i)) = (

∑
i=0 ..n. f (n − i) i)

by (rule sum.reindex-bij-witness[where i=(−) n and j=(−) n]) auto

instance fps :: (comm-semiring-0) comm-semiring-0
proof

fix a b c :: ′a fps
show a ∗ b = b ∗ a
proof (rule fps-ext)

fix n :: nat
have (

∑
i=0 ..n. a$i ∗ b$(n − i)) = (

∑
i=0 ..n. a$(n − i) ∗ b$i)

by (rule fps-mult-commute-lemma)
then show (a ∗ b) $ n = (b ∗ a) $ n

by (simp add: fps-mult-nth mult.commute)
qed

qed (simp add: distrib-right)

instance fps :: (comm-semiring-0-cancel) comm-semiring-0-cancel ..

instance fps :: (semiring-1) semiring-1
proof

fix a :: ′a fps
show 1 ∗ a = a a ∗ 1 = a by (simp-all add: fps-one-mult)

qed

instance fps :: (comm-semiring-1) comm-semiring-1
by standard simp

instance fps :: (semiring-1-cancel) semiring-1-cancel ..

lemma fps-square-nth: (f^2) $ n = (
∑

k≤n. f $ k ∗ f $ (n − k))
by (simp add: power2-eq-square fps-mult-nth atLeast0AtMost)

lemma fps-sum-nth: sum f S $ n = sum (λk. (f k) $ n) S
proof (cases finite S)

case True
then show ?thesis by (induct set: finite) auto

next
case False
then show ?thesis by simp

qed

definition fps-const c = Abs-fps (λn. if n = 0 then c else 0)

241

lemma fps-nth-fps-const [simp]: fps-const c $ n = (if n = 0 then c else 0)
unfolding fps-const-def by simp

lemma fps-const-0-eq-0 [simp]: fps-const 0 = 0
by (simp add: fps-ext)

lemma fps-const-nonzero-eq-nonzero: c 6= 0 =⇒ fps-const c 6= 0
using fps-nonzeroI [of fps-const c 0] by simp

lemma fps-const-eq-0-iff [simp]: fps-const c = 0 ←→ c = 0
by (auto simp: fps-eq-iff)

lemma fps-const-1-eq-1 [simp]: fps-const 1 = 1
by (simp add: fps-ext)

lemma fps-const-eq-1-iff [simp]: fps-const c = 1 ←→ c = 1
by (auto simp: fps-eq-iff)

lemma subdegree-fps-const [simp]: subdegree (fps-const c) = 0
by (cases c = 0) (auto intro!: subdegreeI)

lemma fps-const-neg [simp]: − (fps-const (c:: ′a::group-add)) = fps-const (− c)
by (simp add: fps-ext)

lemma fps-const-add [simp]: fps-const (c:: ′a::monoid-add) + fps-const d = fps-const
(c + d)

by (simp add: fps-ext)

lemma fps-const-add-left: fps-const (c:: ′a::monoid-add) + f =
Abs-fps (λn. if n = 0 then c + f $0 else f $n)

by (simp add: fps-ext)

lemma fps-const-add-right: f + fps-const (c:: ′a::monoid-add) =
Abs-fps (λn. if n = 0 then f $0 + c else f $n)

by (simp add: fps-ext)

lemma fps-const-sub [simp]: fps-const (c:: ′a::group-add) − fps-const d = fps-const
(c − d)

by (simp add: fps-ext)

lemmas fps-const-minus = fps-const-sub

lemma fps-const-mult[simp]:
fixes c d :: ′a::{comm-monoid-add,mult-zero}
shows fps-const c ∗ fps-const d = fps-const (c ∗ d)
by (simp add: fps-eq-iff fps-mult-nth sum.neutral)

lemma fps-const-mult-left:

242

fps-const (c:: ′a::{comm-monoid-add,mult-zero}) ∗ f = Abs-fps (λn. c ∗ f $n)
unfolding fps-eq-iff fps-mult-nth
by (simp add: fps-const-def mult-delta-left)

lemma fps-const-mult-right:
f ∗ fps-const (c:: ′a::{comm-monoid-add,mult-zero}) = Abs-fps (λn. f $n ∗ c)
unfolding fps-eq-iff fps-mult-nth
by (simp add: fps-const-def mult-delta-right)

lemma fps-mult-left-const-nth [simp]:
(fps-const (c:: ′a::{comm-monoid-add,mult-zero}) ∗ f)$n = c∗ f $n
by (simp add: fps-mult-nth mult-delta-left)

lemma fps-mult-right-const-nth [simp]:
(f ∗ fps-const (c:: ′a::{comm-monoid-add,mult-zero}))$n = f $n ∗ c
by (simp add: fps-mult-nth mult-delta-right)

lemma fps-const-power [simp]: fps-const c ^ n = fps-const (c^n)
by (induct n) auto

instance fps :: (ring) ring ..

instance fps :: (comm-ring) comm-ring ..

instance fps :: (ring-1) ring-1 ..

instance fps :: (comm-ring-1) comm-ring-1 ..

instance fps :: (semiring-no-zero-divisors) semiring-no-zero-divisors
proof

fix a b :: ′a fps
assume a 6= 0 and b 6= 0
hence (a ∗ b) $ (subdegree a + subdegree b) 6= 0 by simp
thus a ∗ b 6= 0 using fps-nonzero-nth by fast

qed

instance fps :: (semiring-1-no-zero-divisors) semiring-1-no-zero-divisors ..

instance fps :: ({cancel-semigroup-add,semiring-no-zero-divisors-cancel})
semiring-no-zero-divisors-cancel

proof
fix a b c :: ′a fps
show (a ∗ c = b ∗ c) = (c = 0 ∨ a = b)
proof

assume ab: a ∗ c = b ∗ c
have c 6= 0 =⇒ a = b
proof (rule fps-ext)

fix n

243

assume c: c 6= 0
show a $ n = b $ n
proof (induct n rule: nat-less-induct)

case (1 n)
with ab c show ?case

using fps-mult-nth-conv-upto-subdegree-right[of a c subdegree c + n]
fps-mult-nth-conv-upto-subdegree-right[of b c subdegree c + n]

by (cases n) auto
qed

qed
thus c = 0 ∨ a = b by fast

qed auto
show (c ∗ a = c ∗ b) = (c = 0 ∨ a = b)
proof

assume ab: c ∗ a = c ∗ b
have c 6= 0 =⇒ a = b
proof (rule fps-ext)

fix n
assume c: c 6= 0
show a $ n = b $ n
proof (induct n rule: nat-less-induct)

case (1 n)
moreover have ∀ i∈{Suc (subdegree c)..subdegree c + n}. subdegree c + n

− i < n by auto
ultimately show ?case

using ab c fps-mult-nth-conv-upto-subdegree-left[of c a subdegree c + n]
fps-mult-nth-conv-upto-subdegree-left[of c b subdegree c + n]

by (simp add: sum.atLeast-Suc-atMost)
qed

qed
thus c = 0 ∨ a = b by fast

qed auto
qed

instance fps :: (ring-no-zero-divisors) ring-no-zero-divisors ..

instance fps :: (ring-1-no-zero-divisors) ring-1-no-zero-divisors ..

instance fps :: (idom) idom ..

lemma fps-of-nat: fps-const (of-nat c) = of-nat c
by (induction c) (simp-all add: fps-const-add [symmetric] del: fps-const-add)

lemma fps-of-int: fps-const (of-int c) = of-int c
by (induction c) (simp-all add: fps-const-minus [symmetric] fps-of-nat fps-const-neg

[symmetric]
del: fps-const-minus fps-const-neg)

lemma semiring-char-fps [simp]: CHAR(′a :: comm-semiring-1 fps) = CHAR(′a)

244

by (rule CHAR-eqI) (auto simp flip: fps-of-nat simp: of-nat-eq-0-iff-char-dvd)

instance fps :: ({semiring-prime-char ,comm-semiring-1}) semiring-prime-char
by (rule semiring-prime-charI) auto

instance fps :: ({comm-semiring-prime-char ,comm-semiring-1}) comm-semiring-prime-char
by standard

instance fps :: ({comm-ring-prime-char ,comm-semiring-1}) comm-ring-prime-char
by standard

instance fps :: ({idom-prime-char ,comm-semiring-1}) idom-prime-char
by standard

lemma fps-numeral-fps-const: numeral k = fps-const (numeral k)
by (induct k) (simp-all only: numeral.simps fps-const-1-eq-1 fps-const-add [symmetric])

lemmas numeral-fps-const = fps-numeral-fps-const

lemma neg-numeral-fps-const:
(− numeral k :: ′a :: ring-1 fps) = fps-const (− numeral k)
by (simp add: numeral-fps-const)

lemma fps-numeral-nth: numeral n $ i = (if i = 0 then numeral n else 0)
by (simp add: numeral-fps-const)

lemma fps-numeral-nth-0 [simp]: numeral n $ 0 = numeral n
by (simp add: numeral-fps-const)

lemma subdegree-numeral [simp]: subdegree (numeral n) = 0
by (simp add: numeral-fps-const)

lemma fps-nth-of-nat [simp]:
(of-nat c) $ n = (if n=0 then of-nat c else 0)
by (simp add: fps-of-nat[symmetric])

lemma fps-nth-of-int [simp]:
(of-int c) $ n = (if n=0 then of-int c else 0)
by (simp add: fps-of-int[symmetric])

lemma fps-mult-of-nat-nth [simp]:
shows (of-nat k ∗ f) $ n = of-nat k ∗ f $n
and (f ∗ of-nat k) $ n = f $n ∗ of-nat k
by (simp-all add: fps-of-nat[symmetric])

lemma fps-mult-of-int-nth [simp]:
shows (of-int k ∗ f) $ n = of-int k ∗ f $n
and (f ∗ of-int k) $ n = f $n ∗ of-int k
by (simp-all add: fps-of-int[symmetric])

lemma numeral-neq-fps-zero [simp]: (numeral f :: ′a :: field-char-0 fps) 6= 0
proof

245

assume numeral f = (0 :: ′a fps)
from arg-cong[of - - λF . F $ 0 , OF this] show False by simp

qed

instance fps :: (semiring-char-0) semiring-char-0
proof

show inj (of-nat :: nat ⇒ ′a fps)
proof

fix m n :: nat
assume of-nat m = (of-nat n :: ′a fps)
hence fps-nth (of-nat m) 0 = (fps-nth (of-nat n) 0 :: ′a)

by (simp only:)
thus m = n

by simp
qed

qed

lemma subdegree-power-ge:
f^n 6= 0 =⇒ subdegree (f^n) ≥ n ∗ subdegree f

proof (induct n)
case (Suc n) thus ?case using fps-mult-subdegree-ge by fastforce

qed simp

lemma fps-pow-nth-below-subdegree:
k < n ∗ subdegree f =⇒ (f^n) $ k = 0

proof (cases f^n = 0)
case False
assume k < n ∗ subdegree f
with False have k < subdegree (f^n) using subdegree-power-ge[of f n] by simp
thus (f^n) $ k = 0 by auto

qed simp

lemma fps-pow-base [simp]:
(f ^ n) $ (n ∗ subdegree f) = (f $ subdegree f) ^ n

proof (induct n)
case (Suc n)
show ?case
proof (cases Suc n ∗ subdegree f < subdegree f + subdegree (f^n))

case True with Suc show ?thesis
by (auto simp: fps-mult-nth-eq0 distrib-right)

next
case False
hence ∀ i∈{Suc (subdegree f)..Suc n ∗ subdegree f − subdegree (f ^ n)}.

f ^ n $ (Suc n ∗ subdegree f − i) = 0
by (auto simp: fps-pow-nth-below-subdegree)

with False Suc show ?thesis
using fps-mult-nth-conv-inside-subdegrees[of f f^n Suc n ∗ subdegree f]

sum.atLeast-Suc-atMost[of
subdegree f

246

Suc n ∗ subdegree f − subdegree (f ^ n)
λi. f $ i ∗ f ^ n $ (Suc n ∗ subdegree f − i)

]
by simp

qed
qed simp

lemma subdegree-power-eqI :
fixes f :: ′a::semiring-1 fps
shows (f $ subdegree f) ^ n 6= 0 =⇒ subdegree (f ^ n) = n ∗ subdegree f

proof (induct n)
case (Suc n)
from Suc have 1 : subdegree (f ^ n) = n ∗ subdegree f by fastforce
with Suc(2) have f $ subdegree f ∗ f ^ n $ subdegree (f ^ n) 6= 0 by simp
with 1 show ?case using subdegree-mult ′[of f f^n] by simp

qed simp

lemma subdegree-power [simp]:
subdegree ((f :: (′a :: semiring-1-no-zero-divisors) fps) ^ n) = n ∗ subdegree f
by (cases f = 0 ; induction n) simp-all

lemma subdegree-prod:
fixes f :: ′a ⇒ ′b :: idom fps
assumes

∧
x. x ∈ A =⇒ f x 6= 0

shows subdegree (
∏

x∈A. f x) = (
∑

x∈A. subdegree (f x))
using assms by (induction A rule: infinite-finite-induct) auto

lemma minus-one-power-iff : (− (1 :: ′a::ring-1)) ^ n = (if even n then 1 else − 1)
by (induct n) auto

definition fps-X = Abs-fps (λn. if n = 1 then 1 else 0)

lemma subdegree-fps-X [simp]: subdegree (fps-X :: (′a :: zero-neq-one) fps) = 1
by (auto intro!: subdegreeI simp: fps-X-def)

lemma fps-X-mult-nth [simp]:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows (fps-X ∗ f) $ n = (if n = 0 then 0 else f $ (n − 1))

proof (cases n)
case (Suc m)
moreover have (fps-X ∗ f) $ Suc m = f $ (Suc m − 1)
proof (cases m)

case 0 thus ?thesis using fps-mult-nth-1 [of fps-X f] by (simp add: fps-X-def)
next
case (Suc k) thus ?thesis by (simp add: fps-mult-nth fps-X-def sum.atLeast-Suc-atMost)

qed
ultimately show ?thesis by simp

qed (simp add: fps-X-def)

247

lemma fps-X-mult-right-nth [simp]:
fixes a :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows (a ∗ fps-X) $ n = (if n = 0 then 0 else a $ (n − 1))

proof (cases n)
case (Suc m)
moreover have (a ∗ fps-X) $ Suc m = a $ (Suc m − 1)
proof (cases m)

case 0 thus ?thesis using fps-mult-nth-1 [of a fps-X] by (simp add: fps-X-def)
next

case (Suc k)
hence (a ∗ fps-X) $ Suc m = (

∑
i=0 ..k. a$i ∗ fps-X$(Suc m − i)) + a$(Suc

k)
by (simp add: fps-mult-nth fps-X-def)

moreover have ∀ i∈{0 ..k}. a$i ∗ fps-X$(Suc m − i) = 0 by (auto simp: Suc
fps-X-def)

ultimately show ?thesis by (simp add: Suc)
qed
ultimately show ?thesis by simp

qed (simp add: fps-X-def)

lemma fps-mult-fps-X-commute:
fixes a :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows fps-X ∗ a = a ∗ fps-X
by (simp add: fps-eq-iff)

lemma fps-mult-fps-X-power-commute: fps-X ^ k ∗ a = a ∗ fps-X ^ k
proof (induct k)

case (Suc k)
hence fps-X ^ Suc k ∗ a = a ∗ fps-X ∗ fps-X ^ k

by (simp add: mult.assoc fps-mult-fps-X-commute[symmetric])
thus ?case by (simp add: mult.assoc)

qed simp

lemma fps-subdegree-mult-fps-X :
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fps
assumes f 6= 0
shows subdegree (fps-X ∗ f) = subdegree f + 1
and subdegree (f ∗ fps-X) = subdegree f + 1

proof−
show subdegree (fps-X ∗ f) = subdegree f + 1
proof (intro subdegreeI)

fix i :: nat assume i: i < subdegree f + 1
show (fps-X ∗ f) $ i = 0
proof (cases i=0)

case False with i show ?thesis by (simp add: nth-less-subdegree-zero)
next

case True thus ?thesis using fps-X-mult-nth[of f i] by simp
qed

248

qed (simp add: assms)
thus subdegree (f ∗ fps-X) = subdegree f + 1

by (simp add: fps-mult-fps-X-commute)
qed

lemma fps-mult-fps-X-nonzero:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fps
assumes f 6= 0
shows fps-X ∗ f 6= 0
and f ∗ fps-X 6= 0
using assms fps-subdegree-mult-fps-X [of f]

fps-nonzero-subdegree-nonzeroI [of fps-X ∗ f]
fps-nonzero-subdegree-nonzeroI [of f ∗ fps-X]

by auto

lemma fps-mult-fps-X-power-nonzero:
assumes f 6= 0
shows fps-X ^ n ∗ f 6= 0
and f ∗ fps-X ^ n 6= 0

proof −
show fps-X ^ n ∗ f 6= 0

by (induct n) (simp-all add: assms mult.assoc fps-mult-fps-X-nonzero(1))
thus f ∗ fps-X ^ n 6= 0

by (simp add: fps-mult-fps-X-power-commute)
qed

lemma fps-X-power-iff : fps-X ^ n = Abs-fps (λm. if m = n then 1 else 0)
by (induction n) (auto simp: fps-eq-iff)

lemma fps-X-nth[simp]: fps-X$n = (if n = 1 then 1 else 0)
by (simp add: fps-X-def)

lemma fps-X-power-nth[simp]: (fps-X^k) $n = (if n = k then 1 else 0)
by (simp add: fps-X-power-iff)

lemma fps-X-power-subdegree: subdegree (fps-X^n) = n
by (auto intro: subdegreeI)

lemma fps-X-power-mult-nth:
(fps-X^k ∗ f) $ n = (if n < k then 0 else f $ (n − k))
by (cases n<k)

(simp-all add: fps-mult-nth-conv-upto-subdegree-left fps-X-power-subdegree
sum.atLeast-Suc-atMost)

lemma fps-X-power-mult-right-nth:
(f ∗ fps-X^k) $ n = (if n < k then 0 else f $ (n − k))
using fps-mult-fps-X-power-commute[of k f] fps-X-power-mult-nth[of k f] by simp

lemma fps-subdegree-mult-fps-X-power :

249

assumes f 6= 0
shows subdegree (fps-X ^ n ∗ f) = subdegree f + n
and subdegree (f ∗ fps-X ^ n) = subdegree f + n

proof −
from assms show subdegree (fps-X ^ n ∗ f) = subdegree f + n

by (induct n)
(simp-all add: algebra-simps fps-subdegree-mult-fps-X(1) fps-mult-fps-X-power-nonzero(1))

thus subdegree (f ∗ fps-X ^ n) = subdegree f + n
by (simp add: fps-mult-fps-X-power-commute)

qed

lemma fps-mult-fps-X-plus-1-nth:
((1+fps-X)∗a) $n = (if n = 0 then (a$n :: ′a::semiring-1) else a$n + a$(n −

1))
proof (cases n)

case 0
then show ?thesis

by (simp add: fps-mult-nth)
next

case (Suc m)
have ((1 + fps-X)∗a) $ n = sum (λi. (1 + fps-X) $ i ∗ a $ (n − i)) {0 ..n}

by (simp add: fps-mult-nth)
also have . . . = sum (λi. (1+fps-X)$i ∗ a$(n−i)) {0 .. 1}

unfolding Suc by (rule sum.mono-neutral-right) auto
also have . . . = (if n = 0 then a$n else a$n + a$(n − 1))

by (simp add: Suc)
finally show ?thesis .

qed

lemma fps-mult-right-fps-X-plus-1-nth:
fixes a :: ′a :: semiring-1 fps
shows (a∗(1+fps-X)) $ n = (if n = 0 then a$n else a$n + a$(n − 1))
using fps-mult-fps-X-plus-1-nth
by (simp add: distrib-left fps-mult-fps-X-commute distrib-right)

lemma fps-X-neq-fps-const [simp]: (fps-X :: ′a :: zero-neq-one fps) 6= fps-const c
proof

assume (fps-X :: ′a fps) = fps-const (c:: ′a)
hence fps-X$1 = (fps-const (c:: ′a))$1 by (simp only:)
thus False by auto

qed

lemma fps-X-neq-zero [simp]: (fps-X :: ′a :: zero-neq-one fps) 6= 0
by (simp only: fps-const-0-eq-0 [symmetric] fps-X-neq-fps-const) simp

lemma fps-X-neq-one [simp]: (fps-X :: ′a :: zero-neq-one fps) 6= 1
by (simp only: fps-const-1-eq-1 [symmetric] fps-X-neq-fps-const) simp

lemma fps-X-neq-numeral [simp]: fps-X 6= numeral c

250

by (simp only: numeral-fps-const fps-X-neq-fps-const) simp

lemma fps-X-pow-eq-fps-X-pow-iff [simp]: fps-X ^ m = fps-X ^ n ←→ m = n
proof

assume (fps-X :: ′a fps) ^ m = fps-X ^ n
hence (fps-X :: ′a fps) ^ m $ m = fps-X ^ n $ m by (simp only:)
thus m = n by (simp split: if-split-asm)

qed simp-all

5.4 Shifting and slicing
definition fps-shift :: nat ⇒ ′a fps ⇒ ′a fps where

fps-shift n f = Abs-fps (λi. f $ (i + n))

lemma fps-shift-nth [simp]: fps-shift n f $ i = f $ (i + n)
by (simp add: fps-shift-def)

lemma fps-shift-0 [simp]: fps-shift 0 f = f
by (intro fps-ext) (simp add: fps-shift-def)

lemma fps-shift-zero [simp]: fps-shift n 0 = 0
by (intro fps-ext) (simp add: fps-shift-def)

lemma fps-shift-one: fps-shift n 1 = (if n = 0 then 1 else 0)
by (intro fps-ext) (simp add: fps-shift-def)

lemma fps-shift-fps-const: fps-shift n (fps-const c) = (if n = 0 then fps-const c
else 0)

by (intro fps-ext) (simp add: fps-shift-def)

lemma fps-shift-numeral: fps-shift n (numeral c) = (if n = 0 then numeral c else
0)

by (simp add: numeral-fps-const fps-shift-fps-const)

lemma fps-shift-fps-X [simp]:
n ≥ 1 =⇒ fps-shift n fps-X = (if n = 1 then 1 else 0)
by (intro fps-ext) (auto simp: fps-X-def)

lemma fps-shift-fps-X-power [simp]:
n ≤ m =⇒ fps-shift n (fps-X ^ m) = fps-X ^ (m − n)

by (intro fps-ext) auto

lemma fps-shift-subdegree [simp]:
n ≤ subdegree f =⇒ subdegree (fps-shift n f) = subdegree f − n
by (cases f=0) (auto intro: subdegreeI simp: nth-less-subdegree-zero)

lemma fps-shift-fps-shift:
fps-shift (m + n) f = fps-shift m (fps-shift n f)
by (rule fps-ext) (simp add: add-ac)

251

lemma fps-shift-fps-shift-reorder :
fps-shift m (fps-shift n f) = fps-shift n (fps-shift m f)
using fps-shift-fps-shift[of m n f] fps-shift-fps-shift[of n m f] by (simp add:

add.commute)

lemma fps-shift-rev-shift:
m ≤ n =⇒ fps-shift n (Abs-fps (λk. if k<m then 0 else f $ (k−m))) = fps-shift

(n−m) f
m > n =⇒ fps-shift n (Abs-fps (λk. if k<m then 0 else f $ (k−m))) =

Abs-fps (λk. if k<m−n then 0 else f $ (k−(m−n)))
proof −

assume m ≤ n
thus fps-shift n (Abs-fps (λk. if k<m then 0 else f $ (k−m))) = fps-shift (n−m)

f
by (intro fps-ext) auto

next
assume mn: m > n
hence

∧
k. k ≥ m−n =⇒ k+n−m = k − (m−n) by auto

thus
fps-shift n (Abs-fps (λk. if k<m then 0 else f $ (k−m))) =

Abs-fps (λk. if k<m−n then 0 else f $ (k−(m−n)))
by (intro fps-ext) auto

qed

lemma fps-shift-add:
fps-shift n (f + g) = fps-shift n f + fps-shift n g
by (simp add: fps-eq-iff)

lemma fps-shift-diff :
fps-shift n (f − g) = fps-shift n f − fps-shift n g
by (auto intro: fps-ext)

lemma fps-shift-uminus:
fps-shift n (−f) = − fps-shift n f
by (auto intro: fps-ext)

lemma fps-shift-mult:
assumes n ≤ subdegree (g :: ′b :: {comm-monoid-add, mult-zero} fps)
shows fps-shift n (h∗g) = h ∗ fps-shift n g

proof−
have case1 :

∧
a b:: ′b fps. 1 ≤ subdegree b =⇒ fps-shift 1 (a∗b) = a ∗ fps-shift 1

b
proof (rule fps-ext)

fix a b :: ′b fps
and n :: nat
assume b: 1 ≤ subdegree b
have

∧
i. i ≤ n =⇒ n + 1 − i = (n−i) + 1

by (simp add: algebra-simps)

252

with b show fps-shift 1 (a∗b) $ n = (a ∗ fps-shift 1 b) $ n
by (simp add: fps-mult-nth nth-less-subdegree-zero)

qed
have n ≤ subdegree g =⇒ fps-shift n (h∗g) = h ∗ fps-shift n g
proof (induct n)

case (Suc n)
have fps-shift (Suc n) (h∗g) = fps-shift 1 (fps-shift n (h∗g))

by (simp add: fps-shift-fps-shift[symmetric])
also have . . . = h ∗ (fps-shift 1 (fps-shift n g))

using Suc case1 by force
finally show ?case by (simp add: fps-shift-fps-shift[symmetric])

qed simp
with assms show ?thesis by fast

qed

lemma fps-shift-mult-right-noncomm:
assumes n ≤ subdegree (g :: ′b :: {comm-monoid-add, mult-zero} fps)
shows fps-shift n (g∗h) = fps-shift n g ∗ h

proof−
have case1 :

∧
a b:: ′b fps. 1 ≤ subdegree a =⇒ fps-shift 1 (a∗b) = fps-shift 1 a ∗

b
proof (rule fps-ext)

fix a b :: ′b fps
and n :: nat
assume 1 ≤ subdegree a
hence fps-shift 1 (a∗b) $ n = (

∑
i=Suc 0 ..Suc n. a$i ∗ b$(n+1−i))

using sum.atLeast-Suc-atMost[of 0 n+1 λi. a$i ∗ b$(n+1−i)]
by (simp add: fps-mult-nth nth-less-subdegree-zero)

thus fps-shift 1 (a∗b) $ n = (fps-shift 1 a ∗ b) $ n
using sum.shift-bounds-cl-Suc-ivl[of λi. a$i ∗ b$(n+1−i) 0 n]
by (simp add: fps-mult-nth)

qed
have n ≤ subdegree g =⇒ fps-shift n (g∗h) = fps-shift n g ∗ h
proof (induct n)

case (Suc n)
have fps-shift (Suc n) (g∗h) = fps-shift 1 (fps-shift n (g∗h))

by (simp add: fps-shift-fps-shift[symmetric])
also have . . . = (fps-shift 1 (fps-shift n g)) ∗ h

using Suc case1 by force
finally show ?case by (simp add: fps-shift-fps-shift[symmetric])

qed simp
with assms show ?thesis by fast

qed

lemma fps-shift-mult-right:
assumes n ≤ subdegree (g :: ′b :: comm-semiring-0 fps)
shows fps-shift n (g∗h) = h ∗ fps-shift n g
by (simp add: assms fps-shift-mult-right-noncomm mult.commute)

253

lemma fps-shift-mult-both:
fixes f g :: ′a::{comm-monoid-add, mult-zero} fps
assumes m ≤ subdegree f n ≤ subdegree g
shows fps-shift m f ∗ fps-shift n g = fps-shift (m+n) (f ∗g)
using assms
by (simp add: fps-shift-mult fps-shift-mult-right-noncomm fps-shift-fps-shift)

lemma fps-shift-subdegree-zero-iff [simp]:
fps-shift (subdegree f) f = 0 ←→ f = 0
by (subst (1) nth-subdegree-zero-iff [symmetric], cases f = 0)

(simp-all del: nth-subdegree-zero-iff)

lemma fps-shift-times-fps-X :
fixes f g :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows 1 ≤ subdegree f =⇒ fps-shift 1 f ∗ fps-X = f
by (intro fps-ext) (simp add: nth-less-subdegree-zero)

lemma fps-shift-times-fps-X ′ [simp]:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows fps-shift 1 (f ∗ fps-X) = f
by (intro fps-ext) (simp add: nth-less-subdegree-zero)

lemma fps-shift-times-fps-X ′′:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows 1 ≤ n =⇒ fps-shift n (f ∗ fps-X) = fps-shift (n − 1) f
by (intro fps-ext) (simp add: nth-less-subdegree-zero)

lemma fps-shift-times-fps-X-power :
n ≤ subdegree f =⇒ fps-shift n f ∗ fps-X ^ n = f
by (intro fps-ext) (simp add: fps-X-power-mult-right-nth nth-less-subdegree-zero)

lemma fps-shift-times-fps-X-power ′ [simp]:
fps-shift n (f ∗ fps-X^n) = f
by (intro fps-ext) (simp add: fps-X-power-mult-right-nth nth-less-subdegree-zero)

lemma fps-shift-times-fps-X-power ′′:
m ≤ n =⇒ fps-shift n (f ∗ fps-X^m) = fps-shift (n − m) f
by (intro fps-ext) (simp add: fps-X-power-mult-right-nth nth-less-subdegree-zero)

lemma fps-shift-times-fps-X-power ′′′:
m > n =⇒ fps-shift n (f ∗ fps-X^m) = f ∗ fps-X^(m − n)

proof (cases f=0)
case False
assume m: m>n
hence m = n + (m−n) by auto
with False m show ?thesis

using power-add[of fps-X :: ′a fps n m−n]
fps-shift-mult-right-noncomm[of n f ∗ fps-X^n fps-X^(m−n)]

by (simp add: mult.assoc fps-subdegree-mult-fps-X-power(2))

254

qed simp

lemma subdegree-decompose:
f = fps-shift (subdegree f) f ∗ fps-X ^ subdegree f
by (rule fps-ext) (auto simp: fps-X-power-mult-right-nth)

lemma subdegree-decompose ′:
n ≤ subdegree f =⇒ f = fps-shift n f ∗ fps-X^n
by (rule fps-ext) (auto simp: fps-X-power-mult-right-nth intro!: nth-less-subdegree-zero)

instantiation fps :: (zero) unit-factor
begin
definition fps-unit-factor-def [simp]:

unit-factor f = fps-shift (subdegree f) f
instance ..
end

lemma fps-unit-factor-zero-iff : unit-factor (f :: ′a::zero fps) = 0 ←→ f = 0
by simp

lemma fps-unit-factor-nth-0 : f 6= 0 =⇒ unit-factor f $ 0 6= 0
by simp

lemma fps-X-unit-factor : unit-factor (fps-X :: ′a :: zero-neq-one fps) = 1
by (intro fps-ext) auto

lemma fps-X-power-unit-factor : unit-factor (fps-X ^ n) = 1
proof−

define X :: ′a fps where X ≡ fps-X
hence unit-factor (X^n) = fps-shift n (X^n)

by (simp add: fps-X-power-subdegree)
moreover have fps-shift n (X^n) = 1

by (auto intro: fps-ext simp: fps-X-power-iff X-def)
ultimately show ?thesis by (simp add: X-def)

qed

lemma fps-unit-factor-decompose:
f = unit-factor f ∗ fps-X ^ subdegree f
by (simp add: subdegree-decompose)

lemma fps-unit-factor-decompose ′:
f = fps-X ^ subdegree f ∗ unit-factor f
using fps-unit-factor-decompose by (simp add: fps-mult-fps-X-power-commute)

lemma fps-unit-factor-uminus:
unit-factor (−f) = − unit-factor (f :: ′a::group-add fps)
by (simp add: fps-shift-uminus)

lemma fps-unit-factor-shift:

255

assumes n ≤ subdegree f
shows unit-factor (fps-shift n f) = unit-factor f
by (simp add: assms fps-shift-fps-shift[symmetric])

lemma fps-unit-factor-mult-fps-X :
fixes f :: ′a::{comm-monoid-add,monoid-mult,mult-zero} fps
shows unit-factor (fps-X ∗ f) = unit-factor f
and unit-factor (f ∗ fps-X) = unit-factor f

proof −
show unit-factor (fps-X ∗ f) = unit-factor f

by (cases f=0) (auto intro: fps-ext simp: fps-subdegree-mult-fps-X(1))
thus unit-factor (f ∗ fps-X) = unit-factor f by (simp add: fps-mult-fps-X-commute)

qed

lemma fps-unit-factor-mult-fps-X-power :
shows unit-factor (fps-X ^ n ∗ f) = unit-factor f
and unit-factor (f ∗ fps-X ^ n) = unit-factor f

proof −
show unit-factor (fps-X ^ n ∗ f) = unit-factor f
proof (induct n)

case (Suc m) thus ?case
using fps-unit-factor-mult-fps-X(1)[of fps-X ^ m ∗ f] by (simp add: mult.assoc)

qed simp
thus unit-factor (f ∗ fps-X ^ n) = unit-factor f

by (simp add: fps-mult-fps-X-power-commute)
qed

lemma fps-unit-factor-mult-unit-factor :
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
shows unit-factor (f ∗ unit-factor g) = unit-factor (f ∗ g)
and unit-factor (unit-factor f ∗ g) = unit-factor (f ∗ g)

proof −
show unit-factor (f ∗ unit-factor g) = unit-factor (f ∗ g)
proof (cases f ∗g = 0)

case False thus ?thesis
using fps-mult-subdegree-ge[of f g] fps-unit-factor-shift[of subdegree g f ∗g]
by (simp add: fps-shift-mult)

next
case True
moreover have f ∗ unit-factor g = fps-shift (subdegree g) (f ∗g)

by (simp add: fps-shift-mult)
ultimately show ?thesis by simp

qed
show unit-factor (unit-factor f ∗ g) = unit-factor (f ∗ g)
proof (cases f ∗g = 0)

case False thus ?thesis
using fps-mult-subdegree-ge[of f g] fps-unit-factor-shift[of subdegree f f ∗g]
by (simp add: fps-shift-mult-right-noncomm)

next

256

case True
moreover have unit-factor f ∗ g = fps-shift (subdegree f) (f ∗g)

by (simp add: fps-shift-mult-right-noncomm)
ultimately show ?thesis by simp

qed
qed

lemma fps-unit-factor-mult-both-unit-factor :
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
shows unit-factor (unit-factor f ∗ unit-factor g) = unit-factor (f ∗ g)
using fps-unit-factor-mult-unit-factor(1)[of unit-factor f g]

fps-unit-factor-mult-unit-factor(2)[of f g]
by simp

lemma fps-unit-factor-mult ′:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
assumes f $ subdegree f ∗ g $ subdegree g 6= 0
shows unit-factor (f ∗ g) = unit-factor f ∗ unit-factor g
using assms
by (simp add: subdegree-mult ′ fps-shift-mult-both)

lemma fps-unit-factor-mult:
fixes f g :: ′a::semiring-no-zero-divisors fps
shows unit-factor (f ∗ g) = unit-factor f ∗ unit-factor g
using fps-unit-factor-mult ′[of f g]
by (cases f=0 ∨ g=0) auto

definition fps-cutoff n f = Abs-fps (λi. if i < n then f $i else 0)

lemma fps-cutoff-nth [simp]: fps-cutoff n f $ i = (if i < n then f $i else 0)
unfolding fps-cutoff-def by simp

lemma fps-cutoff-zero-iff : fps-cutoff n f = 0 ←→ (f = 0 ∨ n ≤ subdegree f)
proof

assume A: fps-cutoff n f = 0
thus f = 0 ∨ n ≤ subdegree f
proof (cases f = 0)

assume f 6= 0
with A have n ≤ subdegree f

by (intro subdegree-geI) (simp-all add: fps-eq-iff split: if-split-asm)
thus ?thesis ..

qed simp
qed (auto simp: fps-eq-iff intro: nth-less-subdegree-zero)

lemma fps-cutoff-0 [simp]: fps-cutoff 0 f = 0
by (simp add: fps-eq-iff)

lemma fps-cutoff-zero [simp]: fps-cutoff n 0 = 0
by (simp add: fps-eq-iff)

257

lemma fps-cutoff-one: fps-cutoff n 1 = (if n = 0 then 0 else 1)
by (simp add: fps-eq-iff)

lemma fps-cutoff-fps-const: fps-cutoff n (fps-const c) = (if n = 0 then 0 else
fps-const c)

by (simp add: fps-eq-iff)

lemma fps-cutoff-numeral: fps-cutoff n (numeral c) = (if n = 0 then 0 else numeral
c)

by (simp add: numeral-fps-const fps-cutoff-fps-const)

lemma fps-shift-cutoff :
fps-shift n f ∗ fps-X^n + fps-cutoff n f = f
by (simp add: fps-eq-iff fps-X-power-mult-right-nth)

lemma fps-shift-cutoff ′:
fps-X^n ∗ fps-shift n f + fps-cutoff n f = f
by (simp add: fps-eq-iff fps-X-power-mult-nth)

lemma fps-cutoff-left-mult-nth:
k < n =⇒ (fps-cutoff n f ∗ g) $ k = (f ∗ g) $ k
by (simp add: fps-mult-nth)

lemma fps-cutoff-add: fps-cutoff n (f + g :: ′a :: monoid-add fps) = fps-cutoff n f
+ fps-cutoff n g

by (auto simp: fps-eq-iff)

lemma fps-cutoff-diff : fps-cutoff n (f − g :: ′a :: group-add fps) = fps-cutoff n f
− fps-cutoff n g

by (auto simp: fps-eq-iff)

lemma fps-cutoff-uminus: fps-cutoff n (−f :: ′a :: group-add fps) = −fps-cutoff n
f

by (auto simp: fps-eq-iff)

lemma fps-cutoff-right-mult-nth:
assumes k < n
shows (f ∗ fps-cutoff n g) $ k = (f ∗ g) $ k

proof−
from assms have ∀ i∈{0 ..k}. fps-cutoff n g $ (k − i) = g $ (k − i) by auto
thus ?thesis by (simp add: fps-mult-nth)

qed

lemma fps-cutoff-eq-fps-cutoff-iff :
fps-cutoff n f = fps-cutoff n g ←→ (∀ k<n. fps-nth f k = fps-nth g k)
by (subst fps-eq-iff) auto

lemma fps-conv-fps-X-power-mult-fps-shift:

258

assumes f = 0 ∨ subdegree f ≥ n
shows f = fps-X ^ n ∗ fps-shift n f

proof −
have f = fps-X ^ n ∗ fps-shift n f + fps-cutoff n f

by (auto simp: fps-eq-iff fps-X-power-mult-nth)
also have fps-cutoff n f = 0

by (subst fps-cutoff-zero-iff) (use assms in auto)
finally show ?thesis by simp

qed

5.5 Metrizability
instantiation fps :: ({minus,zero}) dist
begin

definition
dist-fps-def : dist (a :: ′a fps) b = (if a = b then 0 else inverse (2 ^ subdegree (a
− b)))

lemma dist-fps-ge0 : dist (a :: ′a fps) b ≥ 0
by (simp add: dist-fps-def)

instance ..

end

instantiation fps :: (group-add) metric-space
begin

definition uniformity-fps-def [code del]:
(uniformity :: (′a fps × ′a fps) filter) = (INF e∈{0 <..}. principal {(x, y). dist

x y < e})

definition open-fps-def ′ [code del]:
open (U :: ′a fps set) ←→ (∀ x∈U . eventually (λ(x ′, y). x ′ = x −→ y ∈ U)

uniformity)

lemma dist-fps-sym: dist (a :: ′a fps) b = dist b a
by (simp add: dist-fps-def)

instance
proof

show th: dist a b = 0 ←→ a = b for a b :: ′a fps
by (simp add: dist-fps-def split: if-split-asm)

then have th ′[simp]: dist a a = 0 for a :: ′a fps by simp

fix a b c :: ′a fps
consider a = b | c = a ∨ c = b | a 6= b a 6= c b 6= c by blast
then show dist a b ≤ dist a c + dist b c

259

proof cases
case 1
then show ?thesis by (simp add: dist-fps-def)

next
case 2
then show ?thesis

by (cases c = a) (simp-all add: th dist-fps-sym)
next

case neq: 3
have False if dist a b > dist a c + dist b c
proof −

let ?n = subdegree (a − b)
from neq have dist a b > 0 dist b c > 0 and dist a c > 0 by (simp-all add:

dist-fps-def)
with that have dist a b > dist a c and dist a b > dist b c by simp-all
with neq have ?n < subdegree (a − c) and ?n < subdegree (b − c)

by (simp-all add: dist-fps-def field-simps)
hence (a − c) $?n = 0 and (b − c) $?n = 0

by (simp-all only: nth-less-subdegree-zero)
hence (a − b) $?n = 0 by simp
moreover from neq have (a − b) $?n 6= 0 by (intro nth-subdegree-nonzero)

simp-all
ultimately show False by contradiction

qed
thus ?thesis by (auto simp add: not-le[symmetric])

qed
qed (rule open-fps-def ′ uniformity-fps-def)+

end

declare uniformity-Abort[where ′a= ′a :: group-add fps, code]

lemma open-fps-def : open (S :: ′a::group-add fps set) = (∀ a ∈ S . ∃ r . r >0 ∧ {y.
dist y a < r} ⊆ S)

unfolding open-dist subset-eq by simp

Topology

5.6 The topology of formal power series

A set of formal power series is open iff for any power series f in it, there
exists some number n such that all power series that agree with f on the
first n components are also in it.
lemma open-fps-iff :

open A ←→ (∀F∈A. ∃n. {G. fps-cutoff n G = fps-cutoff n F} ⊆ A)
proof

assume open A
show ∀F∈A. ∃n. {G. fps-cutoff n G = fps-cutoff n F} ⊆ A

260

proof
fix F :: ′a fps
assume F : F ∈ A
with ‹open A› obtain e where e: e > 0

∧
G. dist G F < e =⇒ G ∈ A

by (force simp: open-fps-def)
thm dist-fps-def
have filterlim (λn. (1/2)^n :: real) (nhds 0) at-top

by (intro LIMSEQ-realpow-zero) auto
from order-tendstoD(2)[OF this e(1)] have eventually (λn. 1 / 2 ^ n < e)

at-top
by (simp add: power-divide)

then obtain n where n: 1 / 2 ^ n < e
by (auto simp: eventually-sequentially)

show ∃n. {G. fps-cutoff n G = fps-cutoff n F} ⊆ A
proof (rule exI [of - n], safe)

fix G assume ∗: fps-cutoff n G = fps-cutoff n F
show G ∈ A
proof (cases G = F)

case False
hence dist G F = inverse (2 ^ subdegree (G − F))

by (auto simp: dist-fps-def)
also have subdegree (G − F) ≥ n
proof (rule subdegree-geI)

fix i assume i < n
hence fps-nth (G − F) i = fps-nth (fps-cutoff n G − fps-cutoff n F) i

by (auto simp: fps-eq-iff)
also from ∗ have . . . = 0

by simp
finally show fps-nth (G − F) i = 0 .

qed (use False in auto)
hence inverse (2 ^ subdegree (G − F) :: real) ≤ inverse (2 ^ n)

by (intro le-imp-inverse-le power-increasing) auto
also have . . . < e

using n by (simp add: field-simps)
finally show G ∈ A

using e(2)[of G] by auto
qed (use ‹F ∈ A› in auto)

qed
qed

next
assume ∗: ∀F∈A. ∃n. {G. fps-cutoff n G = fps-cutoff n F} ⊆ A
show open A

unfolding open-fps-def
proof safe

fix F assume F : F ∈ A
with ∗ obtain n where n:

∧
G. fps-cutoff n G = fps-cutoff n F =⇒ G ∈ A

by blast
show ∃ r>0 . {G. dist G F < r} ⊆ A
proof (rule exI [of - 1 / 2 ^ n], safe)

261

fix G assume dist: dist G F < 1 / 2 ^ n
show G ∈ A
proof (cases G = F)

case False
hence dist G F = inverse (2 ^ subdegree (F − G))

by (simp add: dist-fps-def)
with dist have n < subdegree (F − G)

by (auto simp: field-simps)
hence fps-nth (F − G) i = 0 if i ≤ n for i

using that nth-less-subdegree-zero[of i F − G] by simp
hence fps-cutoff n G = fps-cutoff n F

by (auto simp: fps-eq-iff fps-cutoff-def)
thus G ∈ A

by (rule n)
qed (use ‹F ∈ A› in auto)

qed auto
qed

qed

lemma open-fps-cutoff : open {H . fps-cutoff N H = fps-cutoff N G}
unfolding open-fps-iff

proof safe
fix F assume F : fps-cutoff N F = fps-cutoff N G
show ∃n. {G. fps-cutoff n G = fps-cutoff n F}

⊆ {H . fps-cutoff N H = fps-cutoff N G}
by (rule exI [of - N]) (use F in ‹auto simp: fps-eq-iff ›)

qed

lemma eventually-fps-nth-eq-nhds-fps-strong:
eventually (λg. ∀ k≤n. fps-nth g k = fps-nth f k) (nhds f)

proof −
have eventually (λg. g ∈ {g. fps-cutoff (n+1) g = fps-cutoff (n+1) f }) (nhds

f)
by (rule eventually-nhds-in-open, rule open-fps-cutoff) auto

thus ?thesis
by eventually-elim (auto simp: fps-cutoff-eq-fps-cutoff-iff)

qed

lemma eventually-fps-nth-eq-nhds-fps: eventually (λg. fps-nth g k = fps-nth f k)
(nhds f)

using eventually-fps-nth-eq-nhds-fps-strong[of k] by eventually-elim auto

A family of formal power series fx tends to a limit series g at some filter
F iff for any N ≥ 0, the set of x for which fx and G agree on the first N
coefficients is in F .
For a sequence (fi)n≥0 this means that fi −→ G iff for any N ≥ 0, fx and
G agree for all but finitely many x.
lemma tendsto-fps-iff :

filterlim f (nhds (g :: ′a :: group-add fps)) F ←→

262

(∀n. eventually (λx. fps-nth (f x) n = fps-nth g n) F)
proof safe

assume lim: filterlim f (nhds (g :: ′a :: group-add fps)) F
show eventually (λx. fps-nth (f x) n = fps-nth g n) F for n
proof −

define S where S = {H . fps-cutoff (n+1) H = fps-cutoff (n+1) g}
have S : open S g ∈ S

unfolding S-def using open-fps-cutoff [of n+1 g] by (auto simp: S-def)
from lim and S have eventually (λx. f x ∈ S) F

using topological-tendstoD by blast
thus eventually (λx. fps-nth (f x) n = fps-nth g n) F

by eventually-elim (auto simp: S-def fps-cutoff-eq-fps-cutoff-iff)
qed

next
assume ∗: ∀n. eventually (λx. fps-nth (f x) n = fps-nth g n) F
show filterlim f (nhds (g :: ′a :: group-add fps)) F
proof (rule topological-tendstoI)

fix S :: ′a fps set
assume S : open S g ∈ S
then obtain N where N : {H . fps-cutoff N H = fps-cutoff N g} ⊆ S

unfolding open-fps-iff by blast
have eventually (λx. ∀n∈{..<N}. fps-nth (f x) n = fps-nth g n) F

by (subst eventually-ball-finite-distrib) (use ∗ in auto)
hence eventually (λx. f x ∈ {H . fps-cutoff N H = fps-cutoff N g}) F

by eventually-elim (auto simp: fps-cutoff-eq-fps-cutoff-iff)
thus eventually (λx. f x ∈ S) F

by eventually-elim (use N in auto)
qed

qed

lemma tendsto-fpsI :
assumes

∧
n. eventually (λx. fps-nth (f x) n = fps-nth G n) F

shows filterlim f (nhds (G :: ′a :: group-add fps)) F
unfolding tendsto-fps-iff using assms by blast

The infinite sums and justification of the notation in textbooks.
lemma reals-power-lt-ex:

fixes x y :: real
assumes xp: x > 0

and y1 : y > 1
shows ∃ k>0 . (1/y)^k < x

proof −
have yp: y > 0

using y1 by simp
from reals-Archimedean2 [of max 0 (− log y x) + 1]
obtain k :: nat where k: real k > max 0 (− log y x) + 1

by blast
from k have kp: k > 0

by simp

263

from k have real k > − log y x
by simp

then have ln y ∗ real k > − ln x
unfolding log-def
using ln-gt-zero-iff [OF yp] y1
by (simp add: minus-divide-left field-simps del: minus-divide-left[symmetric])

then have ln y ∗ real k + ln x > 0
by simp

then have exp (real k ∗ ln y + ln x) > exp 0
by (simp add: ac-simps)

then have y ^ k ∗ x > 1
unfolding exp-zero exp-add exp-of-nat-mult exp-ln [OF xp] exp-ln [OF yp]
by simp

then have x > (1 / y)^k using yp
by (simp add: field-simps)

then show ?thesis
using kp by blast

qed

lemma fps-sum-rep-nth: (sum (λi. fps-const(a$i)∗fps-X^i) {0 ..m})$n = (if n ≤
m then a$n else 0)

by (simp add: fps-sum-nth if-distrib cong del: if-weak-cong)

lemma fps-notation: (λn. sum (λi. fps-const(a$i) ∗ fps-X^i) {0 ..n}) −−−−→ a
(is ?s −−−−→ a)

proof −
have ∃n0 . ∀n ≥ n0 . dist (?s n) a < r if r > 0 for r
proof −

obtain n0 where n0 : (1/2)^n0 < r n0 > 0
using reals-power-lt-ex[OF ‹r > 0 ›, of 2] by auto

show ?thesis
proof −

have dist (?s n) a < r if nn0 : n ≥ n0 for n
proof −

from that have thnn0 : (1/2)^n ≤ (1/2 :: real)^n0
by (simp add: field-split-simps)

show ?thesis
proof (cases ?s n = a)

case True
then show ?thesis

unfolding dist-eq-0-iff [of ?s n a, symmetric]
using ‹r > 0 › by (simp del: dist-eq-0-iff)

next
case False
from False have dth: dist (?s n) a = (1/2)^subdegree (?s n − a)

by (simp add: dist-fps-def field-simps)
from False have kn: subdegree (?s n − a) > n

by (intro subdegree-greaterI) (simp-all add: fps-sum-rep-nth)
then have dist (?s n) a < (1/2)^n

264

by (simp add: field-simps dist-fps-def)
also have . . . ≤ (1/2)^n0

using nn0 by (simp add: field-split-simps)
also have . . . < r

using n0 by simp
finally show ?thesis .

qed
qed
then show ?thesis by blast

qed
qed
then show ?thesis

unfolding lim-sequentially by blast
qed

5.7 Division
declare sum.cong[fundef-cong]

fun fps-left-inverse-constructor ::
′a::{comm-monoid-add,times,uminus} fps ⇒ ′a ⇒ nat ⇒ ′a

where
fps-left-inverse-constructor f a 0 = a
| fps-left-inverse-constructor f a (Suc n) =
− sum (λi. fps-left-inverse-constructor f a i ∗ f $(Suc n − i)) {0 ..n} ∗ a

— This will construct a left inverse for f in case that x ∗ f $ 0 = 1
abbreviation fps-left-inverse ≡ (λf x. Abs-fps (fps-left-inverse-constructor f x))

fun fps-right-inverse-constructor ::
′a::{comm-monoid-add,times,uminus} fps ⇒ ′a ⇒ nat ⇒ ′a

where
fps-right-inverse-constructor f a 0 = a
| fps-right-inverse-constructor f a n =
− a ∗ sum (λi. f $i ∗ fps-right-inverse-constructor f a (n − i)) {1 ..n}

— This will construct a right inverse for f in case that f $ 0 ∗ y = 1
abbreviation fps-right-inverse ≡ (λf y. Abs-fps (fps-right-inverse-constructor f y))

instantiation fps :: ({comm-monoid-add,inverse,times,uminus}) inverse
begin

— For backwards compatibility.
abbreviation natfun-inverse:: ′a fps ⇒ nat ⇒ ′a

where natfun-inverse f ≡ fps-right-inverse-constructor f (inverse (f $0))

definition fps-inverse-def : inverse f = Abs-fps (natfun-inverse f)
— With scalars from a (possibly non-commutative) ring, this defines a right inverse.
Furthermore, if scalars are of class mult-zero and satisfy condition inverse 0 = 0,

265

then this will evaluate to zero when the zeroth term is zero.

definition fps-divide-def : f div g = fps-shift (subdegree g) (f ∗ inverse (unit-factor
g))
— If scalars are of class mult-zero and satisfy condition inverse 0 = 0, then div by
zero will equal zero.

instance ..

end

lemma fps-lr-inverse-0-iff :
(fps-left-inverse f x) $ 0 = 0 ←→ x = 0
(fps-right-inverse f x) $ 0 = 0 ←→ x = 0
by auto

lemma fps-inverse-0-iff ′: (inverse f) $ 0 = 0 ←→ inverse (f $ 0) = 0
by (simp add: fps-inverse-def fps-lr-inverse-0-iff (2))

lemma fps-inverse-0-iff [simp]: (inverse f) $ 0 = (0 :: ′a::division-ring) ←→ f $ 0
= 0

by (simp add: fps-inverse-0-iff ′)

lemma fps-lr-inverse-nth-0 :
(fps-left-inverse f x) $ 0 = x (fps-right-inverse f x) $ 0 = x
by auto

lemma fps-inverse-nth-0 [simp]: (inverse f) $ 0 = inverse (f $ 0)
by (simp add: fps-inverse-def)

lemma fps-lr-inverse-starting0 :
fixes f :: ′a::{comm-monoid-add,mult-zero,uminus} fps
and g :: ′b::{ab-group-add,mult-zero} fps
shows fps-left-inverse f 0 = 0
and fps-right-inverse g 0 = 0

proof−
show fps-left-inverse f 0 = 0
proof (rule fps-ext)

fix n show fps-left-inverse f 0 $ n = 0 $ n
by (cases n) (simp-all add: fps-inverse-def)

qed
show fps-right-inverse g 0 = 0
proof (rule fps-ext)

fix n show fps-right-inverse g 0 $ n = 0 $ n
by (cases n) (simp-all add: fps-inverse-def)

qed
qed

lemma fps-lr-inverse-eq0-imp-starting0 :

266

fps-left-inverse f x = 0 =⇒ x = 0
fps-right-inverse f x = 0 =⇒ x = 0

proof−
assume A: fps-left-inverse f x = 0
have 0 = fps-left-inverse f x $ 0 by (subst A) simp
thus x = 0 by simp

next
assume A: fps-right-inverse f x = 0
have 0 = fps-right-inverse f x $ 0 by (subst A) simp
thus x = 0 by simp

qed

lemma fps-lr-inverse-eq-0-iff :
fixes x :: ′a::{comm-monoid-add,mult-zero,uminus}
and y :: ′b::{ab-group-add,mult-zero}
shows fps-left-inverse f x = 0 ←→ x = 0
and fps-right-inverse g y = 0 ←→ y = 0
using fps-lr-inverse-starting0 fps-lr-inverse-eq0-imp-starting0
by auto

lemma fps-inverse-eq-0-iff ′:
fixes f :: ′a::{ab-group-add,inverse,mult-zero} fps
shows inverse f = 0 ←→ inverse (f $ 0) = 0
by (simp add: fps-inverse-def fps-lr-inverse-eq-0-iff (2))

lemma fps-inverse-eq-0-iff [simp]: inverse f = (0 :: (′a::division-ring) fps) ←→ f $
0 = 0

using fps-inverse-eq-0-iff ′[of f] by simp

lemmas fps-inverse-eq-0 ′ = iffD2 [OF fps-inverse-eq-0-iff ′]
lemmas fps-inverse-eq-0 = iffD2 [OF fps-inverse-eq-0-iff]

lemma fps-const-lr-inverse:
fixes a :: ′a::{ab-group-add,mult-zero}
and b :: ′b::{comm-monoid-add,mult-zero,uminus}
shows fps-left-inverse (fps-const a) x = fps-const x
and fps-right-inverse (fps-const b) y = fps-const y

proof−
show fps-left-inverse (fps-const a) x = fps-const x
proof (rule fps-ext)

fix n show fps-left-inverse (fps-const a) x $ n = fps-const x $ n
by (cases n) auto

qed
show fps-right-inverse (fps-const b) y = fps-const y
proof (rule fps-ext)

fix n show fps-right-inverse (fps-const b) y $ n = fps-const y $ n
by (cases n) auto

qed
qed

267

lemma fps-const-inverse:
fixes a :: ′a::{comm-monoid-add,inverse,mult-zero,uminus}
shows inverse (fps-const a) = fps-const (inverse a)
unfolding fps-inverse-def
by (simp add: fps-const-lr-inverse(2))

lemma fps-lr-inverse-zero:
fixes x :: ′a::{ab-group-add,mult-zero}
and y :: ′b::{comm-monoid-add,mult-zero,uminus}
shows fps-left-inverse 0 x = fps-const x
and fps-right-inverse 0 y = fps-const y
using fps-const-lr-inverse[of 0]
by simp-all

lemma fps-inverse-zero-conv-fps-const:
inverse (0 :: ′a::{comm-monoid-add,mult-zero,uminus,inverse} fps) = fps-const (inverse

0)
using fps-lr-inverse-zero(2)[of inverse (0 :: ′a)] by (simp add: fps-inverse-def)

lemma fps-inverse-zero ′:
assumes inverse (0 :: ′a::{comm-monoid-add,inverse,mult-zero,uminus}) = 0
shows inverse (0 :: ′a fps) = 0
by (simp add: assms fps-inverse-zero-conv-fps-const)

lemma fps-inverse-zero [simp]:
inverse (0 :: ′a::division-ring fps) = 0
by (rule fps-inverse-zero ′[OF inverse-zero])

lemma fps-lr-inverse-one:
fixes x :: ′a::{ab-group-add,mult-zero,one}
and y :: ′b::{comm-monoid-add,mult-zero,uminus,one}
shows fps-left-inverse 1 x = fps-const x
and fps-right-inverse 1 y = fps-const y
using fps-const-lr-inverse[of 1]
by simp-all

lemma fps-lr-inverse-one-one:
fps-left-inverse 1 1 = (1 :: ′a::{ab-group-add,mult-zero,one} fps)
fps-right-inverse 1 1 = (1 :: ′b::{comm-monoid-add,mult-zero,uminus,one} fps)
by (simp-all add: fps-lr-inverse-one)

lemma fps-inverse-one ′:
assumes inverse (1 :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,one}) = 1
shows inverse (1 :: ′a fps) = 1
using assms fps-lr-inverse-one-one(2)
by (simp add: fps-inverse-def)

lemma fps-inverse-one [simp]: inverse (1 :: ′a :: division-ring fps) = 1

268

by (rule fps-inverse-one ′[OF inverse-1])

lemma fps-lr-inverse-minus:
fixes f :: ′a::ring-1 fps
shows fps-left-inverse (−f) (−x) = − fps-left-inverse f x
and fps-right-inverse (−f) (−x) = − fps-right-inverse f x

proof−

show fps-left-inverse (−f) (−x) = − fps-left-inverse f x
proof (intro fps-ext)

fix n show fps-left-inverse (−f) (−x) $ n = − fps-left-inverse f x $ n
proof (induct n rule: nat-less-induct)

case (1 n) thus ?case by (cases n) (simp-all add: sum-negf algebra-simps)
qed

qed

show fps-right-inverse (−f) (−x) = − fps-right-inverse f x
proof (intro fps-ext)

fix n show fps-right-inverse (−f) (−x) $ n = − fps-right-inverse f x $ n
proof (induct n rule: nat-less-induct)

case (1 n) show ?case
proof (cases n)

case (Suc m)
with 1 have
∀ i∈{1 ..Suc m}. fps-right-inverse (−f) (−x) $ (Suc m − i) =
− fps-right-inverse f x $ (Suc m − i)

by auto
with Suc show ?thesis by (simp add: sum-negf algebra-simps)

qed simp
qed

qed

qed

lemma fps-inverse-minus [simp]: inverse (−f) = −inverse (f :: ′a :: division-ring
fps)

by (simp add: fps-inverse-def fps-lr-inverse-minus(2))

lemma fps-left-inverse:
fixes f :: ′a::ring-1 fps
assumes f0 : x ∗ f $0 = 1
shows fps-left-inverse f x ∗ f = 1

proof (rule fps-ext)
fix n show (fps-left-inverse f x ∗ f) $ n = 1 $ n

by (cases n) (simp-all add: f0 fps-mult-nth mult.assoc)
qed

lemma fps-right-inverse:
fixes f :: ′a::ring-1 fps

269

assumes f0 : f $0 ∗ y = 1
shows f ∗ fps-right-inverse f y = 1

proof (rule fps-ext)
fix n
show (f ∗ fps-right-inverse f y) $ n = 1 $ n
proof (cases n)

case (Suc k)
moreover from Suc have fps-right-inverse f y $ n =

− y ∗ sum (λi. f $i ∗ fps-right-inverse-constructor f y (n − i)) {1 ..n}
by simp

hence
(f ∗ fps-right-inverse f y) $ n =
− 1 ∗ sum (λi. f $i ∗ fps-right-inverse-constructor f y (n − i)) {1 ..n} +
sum (λi. f $i ∗ (fps-right-inverse-constructor f y (n − i))) {1 ..n}

by (simp add: fps-mult-nth sum.atLeast-Suc-atMost mult.assoc f0 [symmetric])
thus (f ∗ fps-right-inverse f y) $ n = 1 $ n by (simp add: Suc)

qed (simp add: f0 fps-inverse-def)
qed

It is possible in a ring for an element to have a left inverse but not a right
inverse, or vice versa. But when an element has both, they must be the
same.
lemma fps-left-inverse-eq-fps-right-inverse:

fixes f :: ′a::ring-1 fps
assumes f0 : x ∗ f $0 = 1 f $ 0 ∗ y = 1
— These assumptions imply that x equals y, but no need to assume that.
shows fps-left-inverse f x = fps-right-inverse f y

proof−
from f0 (2) have f ∗ fps-right-inverse f y = 1

by (simp add: fps-right-inverse)
hence fps-left-inverse f x ∗ f ∗ fps-right-inverse f y = fps-left-inverse f x

by (simp add: mult.assoc)
moreover from f0 (1) have

fps-left-inverse f x ∗ f ∗ fps-right-inverse f y = fps-right-inverse f y
by (simp add: fps-left-inverse)

ultimately show ?thesis by simp
qed

lemma fps-left-inverse-eq-fps-right-inverse-comm:
fixes f :: ′a::comm-ring-1 fps
assumes f0 : x ∗ f $0 = 1
shows fps-left-inverse f x = fps-right-inverse f x
using assms fps-left-inverse-eq-fps-right-inverse[of x f x]
by (simp add: mult.commute)

lemma fps-left-inverse ′:
fixes f :: ′a::ring-1 fps
assumes x ∗ f $0 = 1 f $0 ∗ y = 1
— These assumptions imply x equals y, but no need to assume that.

270

shows fps-right-inverse f y ∗ f = 1
using assms fps-left-inverse-eq-fps-right-inverse[of x f y] fps-left-inverse[of x f]
by simp

lemma fps-right-inverse ′:
fixes f :: ′a::ring-1 fps
assumes x ∗ f $0 = 1 f $0 ∗ y = 1
— These assumptions imply x equals y, but no need to assume that.
shows f ∗ fps-left-inverse f x = 1
using assms fps-left-inverse-eq-fps-right-inverse[of x f y] fps-right-inverse[of f y]
by simp

lemma inverse-mult-eq-1 [intro]:
assumes f $0 6= (0 :: ′a::division-ring)
shows inverse f ∗ f = 1
using fps-left-inverse ′[of inverse (f $0)]
by (simp add: assms fps-inverse-def)

lemma inverse-mult-eq-1 ′:
assumes f $0 6= (0 :: ′a::division-ring)
shows f ∗ inverse f = 1
using assms fps-right-inverse
by (force simp: fps-inverse-def)

lemma fps-mult-left-inverse-unit-factor :
fixes f :: ′a::ring-1 fps
assumes x ∗ f $ subdegree f = 1
shows fps-left-inverse (unit-factor f) x ∗ f = fps-X ^ subdegree f

proof−
have

fps-left-inverse (unit-factor f) x ∗ f =
fps-left-inverse (unit-factor f) x ∗ unit-factor f ∗ fps-X ^ subdegree f

using fps-unit-factor-decompose[of f] by (simp add: mult.assoc)
with assms show ?thesis by (simp add: fps-left-inverse)

qed

lemma fps-mult-right-inverse-unit-factor :
fixes f :: ′a::ring-1 fps
assumes f $ subdegree f ∗ y = 1
shows f ∗ fps-right-inverse (unit-factor f) y = fps-X ^ subdegree f

proof−
have

f ∗ fps-right-inverse (unit-factor f) y =
fps-X ^ subdegree f ∗ (unit-factor f ∗ fps-right-inverse (unit-factor f) y)

using fps-unit-factor-decompose ′[of f] by (simp add: mult.assoc[symmetric])
with assms show ?thesis by (simp add: fps-right-inverse)

qed

lemma fps-mult-right-inverse-unit-factor-divring:

271

(f :: ′a::division-ring fps) 6= 0 =⇒ f ∗ inverse (unit-factor f) = fps-X ^ subdegree
f

using fps-mult-right-inverse-unit-factor [of f]
by (simp add: fps-inverse-def)

lemma fps-left-inverse-idempotent-ring1 :
fixes f :: ′a::ring-1 fps
assumes x ∗ f $0 = 1 y ∗ x = 1
— These assumptions imply y equals f $0, but no need to assume that.
shows fps-left-inverse (fps-left-inverse f x) y = f

proof−
from assms(1) have

fps-left-inverse (fps-left-inverse f x) y ∗ fps-left-inverse f x ∗ f =
fps-left-inverse (fps-left-inverse f x) y

by (simp add: fps-left-inverse mult.assoc)
moreover from assms(2) have

fps-left-inverse (fps-left-inverse f x) y ∗ fps-left-inverse f x = 1
by (simp add: fps-left-inverse)

ultimately show ?thesis by simp
qed

lemma fps-left-inverse-idempotent-comm-ring1 :
fixes f :: ′a::comm-ring-1 fps
assumes x ∗ f $0 = 1
shows fps-left-inverse (fps-left-inverse f x) (f $0) = f
using assms fps-left-inverse-idempotent-ring1 [of x f f $0]
by (simp add: mult.commute)

lemma fps-right-inverse-idempotent-ring1 :
fixes f :: ′a::ring-1 fps
assumes f $0 ∗ x = 1 x ∗ y = 1
— These assumptions imply y equals f $0, but no need to assume that.
shows fps-right-inverse (fps-right-inverse f x) y = f

proof−
from assms(1) have f ∗ (fps-right-inverse f x ∗ fps-right-inverse (fps-right-inverse

f x) y) =
fps-right-inverse (fps-right-inverse f x) y

by (simp add: fps-right-inverse mult.assoc[symmetric])
moreover from assms(2) have

fps-right-inverse f x ∗ fps-right-inverse (fps-right-inverse f x) y = 1
by (simp add: fps-right-inverse)

ultimately show ?thesis by simp
qed

lemma fps-right-inverse-idempotent-comm-ring1 :
fixes f :: ′a::comm-ring-1 fps
assumes f $0 ∗ x = 1
shows fps-right-inverse (fps-right-inverse f x) (f $0) = f
using assms fps-right-inverse-idempotent-ring1 [of f x f $0]

272

by (simp add: mult.commute)

lemma fps-inverse-idempotent[intro, simp]:
f $0 6= (0 :: ′a::division-ring) =⇒ inverse (inverse f) = f
using fps-right-inverse-idempotent-ring1 [of f]
by (simp add: fps-inverse-def)

lemma fps-lr-inverse-unique-ring1 :
fixes f g :: ′a :: ring-1 fps
assumes fg: f ∗ g = 1 g$0 ∗ f $0 = 1
shows fps-left-inverse g (f $0) = f
and fps-right-inverse f (g$0) = g

proof−

show fps-left-inverse g (f $0) = f
proof (intro fps-ext)

fix n show fps-left-inverse g (f $0) $ n = f $ n
proof (induct n rule: nat-less-induct)

case (1 n) show ?case
proof (cases n)

case (Suc k)
hence ∀ i∈{0 ..k}. fps-left-inverse g (f $0) $ i = f $ i using 1 by simp
hence fps-left-inverse g (f $0) $ Suc k = f $ Suc k − 1 $ Suc k ∗ f $0
by (simp add: fps-mult-nth fg(1)[symmetric] distrib-right mult.assoc fg(2))

with Suc show ?thesis by simp
qed simp

qed
qed

show fps-right-inverse f (g$0) = g
proof (intro fps-ext)

fix n show fps-right-inverse f (g$0) $ n = g $ n
proof (induct n rule: nat-less-induct)

case (1 n) show ?case
proof (cases n)

case (Suc k)
hence ∀ i∈{1 ..Suc k}. fps-right-inverse f (g$0) $ (Suc k − i) = g $ (Suc k

− i)
using 1 by auto

hence
fps-right-inverse f (g$0) $ Suc k = 1 ∗ g $ Suc k − g$0 ∗ 1 $ Suc k

by (simp add: fps-mult-nth fg(1)[symmetric] algebra-simps fg(2)[symmetric]
sum.atLeast-Suc-atMost)

with Suc show ?thesis by simp
qed simp

qed
qed

qed

273

lemma fps-lr-inverse-unique-divring:
fixes f g :: ′a ::division-ring fps
assumes fg: f ∗ g = 1
shows fps-left-inverse g (f $0) = f
and fps-right-inverse f (g$0) = g

proof−
from fg have f $0 ∗ g$0 = 1 using fps-mult-nth-0 [of f g] by simp
hence g$0 ∗ f $0 = 1 using inverse-unique[of f $0] left-inverse[of f $0] by force
thus fps-left-inverse g (f $0) = f fps-right-inverse f (g$0) = g

using fg fps-lr-inverse-unique-ring1 by auto
qed

lemma fps-inverse-unique:
fixes f g :: ′a :: division-ring fps
assumes fg: f ∗ g = 1
shows inverse f = g

proof −
from fg have if0 : inverse (f $0) = g$0 f $0 6= 0

using inverse-unique[of f $0] fps-mult-nth-0 [of f g] by auto
with fg have fps-right-inverse f (g$0) = g

using left-inverse[of f $0] by (intro fps-lr-inverse-unique-ring1 (2)) simp-all
with if0 (1) show ?thesis by (simp add: fps-inverse-def)

qed

lemma inverse-fps-numeral:
inverse (numeral n :: (′a :: field-char-0) fps) = fps-const (inverse (numeral n))
by (intro fps-inverse-unique fps-ext) (simp-all add: fps-numeral-nth)

lemma inverse-fps-of-nat:
inverse (of-nat n :: ′a :: {semiring-1 ,times,uminus,inverse} fps) =

fps-const (inverse (of-nat n))
by (simp add: fps-of-nat fps-const-inverse[symmetric])

lemma fps-lr-inverse-mult-ring1 :
fixes f g :: ′a::ring-1 fps
assumes x: x ∗ f $0 = 1 f $0 ∗ x = 1
and y: y ∗ g$0 = 1 g$0 ∗ y = 1
shows fps-left-inverse (f ∗ g) (y∗x) = fps-left-inverse g y ∗ fps-left-inverse f x
and fps-right-inverse (f ∗ g) (y∗x) = fps-right-inverse g y ∗ fps-right-inverse

f x
proof −

define h where h ≡ fps-left-inverse g y ∗ fps-left-inverse f x
hence h0 : h$0 = y∗x by simp
have fps-left-inverse (f ∗g) (h$0) = h
proof (intro fps-lr-inverse-unique-ring1 (1))

from h-def
have h ∗ (f ∗ g) = fps-left-inverse g y ∗ (fps-left-inverse f x ∗ f) ∗ g
by (simp add: mult.assoc)

274

thus h ∗ (f ∗ g) = 1
using fps-left-inverse[OF x(1)] fps-left-inverse[OF y(1)] by simp

from h-def have (f ∗g)$0 ∗ h$0 = f $0 ∗ 1 ∗ x
by (simp add: mult.assoc y(2)[symmetric])

with x(2) show (f ∗ g) $ 0 ∗ h $ 0 = 1 by simp
qed
with h-def

show fps-left-inverse (f ∗ g) (y∗x) = fps-left-inverse g y ∗ fps-left-inverse f x
by simp

next
define h where h ≡ fps-right-inverse g y ∗ fps-right-inverse f x
hence h0 : h$0 = y∗x by simp
have fps-right-inverse (f ∗g) (h$0) = h
proof (intro fps-lr-inverse-unique-ring1 (2))

from h-def
have f ∗ g ∗ h = f ∗ (g ∗ fps-right-inverse g y) ∗ fps-right-inverse f x
by (simp add: mult.assoc)

thus f ∗ g ∗ h = 1
using fps-right-inverse[OF x(2)] fps-right-inverse[OF y(2)] by simp

from h-def have h$0 ∗ (f ∗g)$0 = y ∗ 1 ∗ g$0
by (simp add: mult.assoc x(1)[symmetric])

with y(1) show h$0 ∗ (f ∗g)$0 = 1 by simp
qed
with h-def

show fps-right-inverse (f ∗ g) (y∗x) = fps-right-inverse g y ∗ fps-right-inverse
f x

by simp
qed

lemma fps-lr-inverse-mult-divring:
fixes f g :: ′a::division-ring fps
shows fps-left-inverse (f ∗ g) (inverse ((f ∗g)$0)) =

fps-left-inverse g (inverse (g$0)) ∗ fps-left-inverse f (inverse (f $0))
and fps-right-inverse (f ∗ g) (inverse ((f ∗g)$0)) =

fps-right-inverse g (inverse (g$0)) ∗ fps-right-inverse f (inverse (f $0))
proof−

show fps-left-inverse (f ∗ g) (inverse ((f ∗g)$0)) =
fps-left-inverse g (inverse (g$0)) ∗ fps-left-inverse f (inverse (f $0))

proof (cases f $0 = 0 ∨ g$0 = 0)
case True
hence fps-left-inverse (f ∗ g) (inverse ((f ∗g)$0)) = 0

by (simp add: fps-lr-inverse-eq-0-iff (1))
moreover from True have

fps-left-inverse g (inverse (g$0)) ∗ fps-left-inverse f (inverse (f $0)) = 0
by (auto simp: fps-lr-inverse-eq-0-iff (1))

ultimately show ?thesis by simp
next

case False
hence fps-left-inverse (f ∗ g) (inverse (g$0) ∗ inverse (f $0)) =

275

fps-left-inverse g (inverse (g$0)) ∗ fps-left-inverse f (inverse (f $0))
by (intro fps-lr-inverse-mult-ring1 (1)) simp-all

with False show ?thesis by (simp add: nonzero-inverse-mult-distrib)
qed
show fps-right-inverse (f ∗ g) (inverse ((f ∗g)$0)) =

fps-right-inverse g (inverse (g$0)) ∗ fps-right-inverse f (inverse (f $0))
proof (cases f $0 = 0 ∨ g$0 = 0)

case True
from True have fps-right-inverse (f ∗ g) (inverse ((f ∗g)$0)) = 0

by (simp add: fps-lr-inverse-eq-0-iff (2))
moreover from True have

fps-right-inverse g (inverse (g$0)) ∗ fps-right-inverse f (inverse (f $0)) = 0
by (auto simp: fps-lr-inverse-eq-0-iff (2))

ultimately show ?thesis by simp
next

case False
hence fps-right-inverse (f ∗ g) (inverse (g$0) ∗ inverse (f $0)) =

fps-right-inverse g (inverse (g$0)) ∗ fps-right-inverse f (inverse (f $0))
by (intro fps-lr-inverse-mult-ring1 (2)) simp-all

with False show ?thesis by (simp add: nonzero-inverse-mult-distrib)
qed

qed

lemma fps-inverse-mult-divring:
inverse (f ∗ g) = inverse g ∗ inverse (f :: ′a::division-ring fps)
using fps-lr-inverse-mult-divring(2) by (simp add: fps-inverse-def)

lemma fps-inverse-mult: inverse (f ∗ g :: ′a::field fps) = inverse f ∗ inverse g
by (simp add: fps-inverse-mult-divring)

lemma inverse-prod-fps: inverse (prod f A) = (
∏

x∈A. inverse (f x) :: ′a :: field
fps)

by (induction A rule: infinite-finite-induct) (auto simp: fps-inverse-mult)

lemma fps-lr-inverse-gp-ring1 :
fixes ones ones-inv :: ′a :: ring-1 fps
defines ones ≡ Abs-fps (λn. 1)
and ones-inv ≡ Abs-fps (λn. if n=0 then 1 else if n=1 then − 1 else 0)
shows fps-left-inverse ones 1 = ones-inv
and fps-right-inverse ones 1 = ones-inv

proof−
show fps-left-inverse ones 1 = ones-inv
proof (rule fps-ext)

fix n
show fps-left-inverse ones 1 $ n = ones-inv $ n
proof (induct n rule: nat-less-induct)

case (1 n) show ?case
proof (cases n)

case (Suc m)

276

have m: n = Suc m by fact
moreover have fps-left-inverse ones 1 $ Suc m = ones-inv $ Suc m
proof (cases m)

case (Suc k) thus ?thesis
using Suc m 1 by (simp add: ones-def ones-inv-def sum.atLeast-Suc-atMost)
qed (simp add: ones-def ones-inv-def)
ultimately show ?thesis by simp

qed (simp add: ones-inv-def)
qed

qed
moreover have fps-right-inverse ones 1 = fps-left-inverse ones 1

by (auto intro: fps-left-inverse-eq-fps-right-inverse[symmetric] simp: ones-def)
ultimately show fps-right-inverse ones 1 = ones-inv by simp

qed

lemma fps-lr-inverse-gp-ring1 ′:
fixes ones :: ′a :: ring-1 fps
defines ones ≡ Abs-fps (λn. 1)
shows fps-left-inverse ones 1 = 1 − fps-X
and fps-right-inverse ones 1 = 1 − fps-X

proof−
define ones-inv :: ′a :: ring-1 fps

where ones-inv ≡ Abs-fps (λn. if n=0 then 1 else if n=1 then − 1 else 0)
hence fps-left-inverse ones 1 = ones-inv
and fps-right-inverse ones 1 = ones-inv

using ones-def fps-lr-inverse-gp-ring1 by auto
thus fps-left-inverse ones 1 = 1 − fps-X
and fps-right-inverse ones 1 = 1 − fps-X

by (auto intro: fps-ext simp: ones-inv-def)
qed

lemma fps-inverse-gp:
inverse (Abs-fps(λn. (1 :: ′a::division-ring))) =

Abs-fps (λn. if n= 0 then 1 else if n=1 then − 1 else 0)
using fps-lr-inverse-gp-ring1 (2) by (simp add: fps-inverse-def)

lemma fps-inverse-gp ′: inverse (Abs-fps (λn. 1 :: ′a::division-ring)) = 1 − fps-X
by (simp add: fps-inverse-def fps-lr-inverse-gp-ring1 ′(2))

lemma fps-lr-inverse-one-minus-fps-X :
fixes ones :: ′a :: ring-1 fps
defines ones ≡ Abs-fps (λn. 1)
shows fps-left-inverse (1 − fps-X) 1 = ones
and fps-right-inverse (1 − fps-X) 1 = ones

proof−
have fps-left-inverse ones 1 = 1 − fps-X

using fps-lr-inverse-gp-ring1 ′(1) by (simp add: ones-def)
thus fps-left-inverse (1 − fps-X) 1 = ones

using fps-left-inverse-idempotent-ring1 [of 1 ones 1] by (simp add: ones-def)

277

have fps-right-inverse ones 1 = 1 − fps-X
using fps-lr-inverse-gp-ring1 ′(2) by (simp add: ones-def)

thus fps-right-inverse (1 − fps-X) 1 = ones
using fps-right-inverse-idempotent-ring1 [of ones 1 1] by (simp add: ones-def)

qed

lemma fps-inverse-one-minus-fps-X :
fixes ones :: ′a :: division-ring fps
defines ones ≡ Abs-fps (λn. 1)
shows inverse (1 − fps-X) = ones
by (simp add: fps-inverse-def assms fps-lr-inverse-one-minus-fps-X(2))

lemma fps-lr-one-over-one-minus-fps-X-squared:
shows fps-left-inverse ((1 − fps-X)^2) (1 :: ′a::ring-1) = Abs-fps (λn. of-nat

(n+1))
fps-right-inverse ((1 − fps-X)^2) (1 :: ′a) = Abs-fps (λn. of-nat (n+1))

proof−
define f invf2 :: ′a fps

where f ≡ (1 − fps-X)
and invf2 ≡ Abs-fps (λn. of-nat (n+1))

have f2-nth-simps:
f^2 $ 1 = − of-nat 2 f^2 $ 2 = 1

∧
n. n>2 =⇒ f^2 $ n = 0

by (simp-all add: power2-eq-square f-def fps-mult-nth sum.atLeast-Suc-atMost)

show fps-left-inverse (f^2) 1 = invf2
proof (intro fps-ext)

fix n show fps-left-inverse (f^2) 1 $ n = invf2 $ n
proof (induct n rule: nat-less-induct)

case (1 t)
hence induct-assm:∧

m. m < t =⇒ fps-left-inverse (f 2) 1 $ m = invf2 $ m
by fast

show ?case
proof (cases t)

case (Suc m)
have m: t = Suc m by fact
moreover have fps-left-inverse (f^2) 1 $ Suc m = invf2 $ Suc m
proof (cases m)

case 0 thus ?thesis using f2-nth-simps(1) by (simp add: invf2-def)
next

case (Suc l)
have l: m = Suc l by fact
moreover have fps-left-inverse (f^2) 1 $ Suc (Suc l) = invf2 $ Suc (Suc

l)
proof (cases l)

case 0 thus ?thesis using f2-nth-simps(1 ,2) by (simp add: Suc-1 [symmetric]
invf2-def)

next

278

case (Suc k)
from Suc l m

have A: fps-left-inverse (f 2) 1 $ Suc (Suc k) = invf2 $ Suc (Suc k)
and B: fps-left-inverse (f 2) 1 $ Suc k = invf2 $ Suc k
using induct-assm[of Suc k] induct-assm[of Suc (Suc k)]
by auto

have times2 :
∧

a::nat. 2∗a = a + a by simp
have ∀ i∈{0 ..k}. (f^2)$(Suc (Suc (Suc k)) − i) = 0

using f2-nth-simps(3) by auto
hence

fps-left-inverse (f^2) 1 $ Suc (Suc (Suc k)) =
fps-left-inverse (f 2) 1 $ Suc (Suc k) ∗ of-nat 2 −
fps-left-inverse (f 2) 1 $ Suc k

using sum.ub-add-nat f2-nth-simps(1 ,2) by simp
also have . . . = of-nat (2 ∗ Suc (Suc (Suc k))) − of-nat (Suc (Suc k))

by (subst A, subst B) (simp add: invf2-def mult.commute)
also have . . . = of-nat (Suc (Suc (Suc k)) + 1)

by (subst times2 [of Suc (Suc (Suc k))]) simp
finally have

fps-left-inverse (f^2) 1 $ Suc (Suc (Suc k)) = invf2 $ Suc (Suc (Suc
k))

by (simp add: invf2-def)
with Suc show ?thesis by simp

qed
ultimately show ?thesis by simp

qed
ultimately show ?thesis by simp

qed (simp add: invf2-def)
qed

qed

moreover have fps-right-inverse (f^2) 1 = fps-left-inverse (f^2) 1
by (auto

intro: fps-left-inverse-eq-fps-right-inverse[symmetric]
simp: f-def power2-eq-square

)
ultimately show fps-right-inverse (f^2) 1 = invf2

by simp

qed

lemma fps-one-over-one-minus-fps-X-squared ′:
assumes inverse (1 :: ′a::{ring-1 ,inverse}) = 1
shows inverse ((1 − fps-X)^2 :: ′a fps) = Abs-fps (λn. of-nat (n+1))
using assms fps-lr-one-over-one-minus-fps-X-squared(2)
by (simp add: fps-inverse-def power2-eq-square)

lemma fps-one-over-one-minus-fps-X-squared:
inverse ((1 − fps-X)^2 :: ′a :: division-ring fps) = Abs-fps (λn. of-nat (n+1))

279

by (rule fps-one-over-one-minus-fps-X-squared ′[OF inverse-1])

lemma fps-lr-inverse-fps-X-plus1 :
fps-left-inverse (1 + fps-X) (1 :: ′a::ring-1) = Abs-fps (λn. (−1)^n)
fps-right-inverse (1 + fps-X) (1 :: ′a) = Abs-fps (λn. (−1)^n)

proof−

show fps-left-inverse (1 + fps-X) (1 :: ′a) = Abs-fps (λn. (−1)^n)
proof (rule fps-ext)

fix n show fps-left-inverse (1 + fps-X) (1 :: ′a) $ n = Abs-fps (λn. (−1)^n) $
n

proof (induct n rule: nat-less-induct)
case (1 n) show ?case
proof (cases n)

case (Suc m)
have m: n = Suc m by fact
from Suc 1 have

A: fps-left-inverse (1 + fps-X) (1 :: ′a) $ n =
− (

∑
i=0 ..m. (− 1)^i ∗ (1 + fps-X) $ (Suc m − i))

by simp
show ?thesis
proof (cases m)

case (Suc l)
have ∀ i∈{0 ..l}. ((1 :: ′a fps) + fps-X) $ (Suc (Suc l) − i) = 0 by auto
with Suc A m show ?thesis by simp

qed (simp add: m A)
qed simp

qed
qed

moreover have
fps-right-inverse (1 + fps-X) (1 :: ′a) = fps-left-inverse (1 + fps-X) 1
by (intro fps-left-inverse-eq-fps-right-inverse[symmetric]) simp-all

ultimately show fps-right-inverse (1 + fps-X) (1 :: ′a) = Abs-fps (λn. (−1)^n)
by simp

qed

lemma fps-inverse-fps-X-plus1 ′:
assumes inverse (1 :: ′a::{ring-1 ,inverse}) = 1
shows inverse (1 + fps-X) = Abs-fps (λn. (− (1 :: ′a)) ^ n)
using assms fps-lr-inverse-fps-X-plus1 (2)
by (simp add: fps-inverse-def)

lemma fps-inverse-fps-X-plus1 :
inverse (1 + fps-X) = Abs-fps (λn. (− (1 :: ′a::division-ring)) ^ n)
by (rule fps-inverse-fps-X-plus1 ′[OF inverse-1])

lemma subdegree-lr-inverse:

280

fixes x :: ′a::{comm-monoid-add,mult-zero,uminus}
and y :: ′b::{ab-group-add,mult-zero}
shows subdegree (fps-left-inverse f x) = 0
and subdegree (fps-right-inverse g y) = 0

proof−
show subdegree (fps-left-inverse f x) = 0

using fps-lr-inverse-eq-0-iff (1) subdegree-eq-0-iff by fastforce
show subdegree (fps-right-inverse g y) = 0

using fps-lr-inverse-eq-0-iff (2) subdegree-eq-0-iff by fastforce
qed

lemma subdegree-inverse [simp]:
fixes f :: ′a::{ab-group-add,inverse,mult-zero} fps
shows subdegree (inverse f) = 0
using subdegree-lr-inverse(2)
by (simp add: fps-inverse-def)

lemma fps-right-inverse-constructor-rec:
n > 0 =⇒ fps-right-inverse-constructor f a n =

−a ∗ sum (λi. fps-nth f i ∗ fps-right-inverse-constructor f a (n − i))
{1 ..n}

by (cases n) auto

lemma fps-right-inverse-constructor-cong:
assumes

∧
k. k ≤ n =⇒ fps-nth f k = fps-nth g k

shows fps-right-inverse-constructor f c n = fps-right-inverse-constructor g c n
using assms

proof (induction n rule: less-induct)
case (less n)
show ?case
proof (cases n > 0)

case n: True
have fps-right-inverse-constructor f c n =

−c ∗ sum (λi. fps-nth f i ∗ fps-right-inverse-constructor f c (n − i))
{1 ..n}

by (subst fps-right-inverse-constructor-rec) (use n in auto)
also have sum (λi. fps-nth f i ∗ fps-right-inverse-constructor f c (n − i)) {1 ..n}

=
sum (λi. fps-nth g i ∗ fps-right-inverse-constructor g c (n − i)) {1 ..n}

by (intro sum.cong refl arg-cong2 [of - - - - (∗)] less) (use assms in auto)
also have −c ∗ . . . = fps-right-inverse-constructor g c n

by (subst (2) fps-right-inverse-constructor-rec) (use n in auto)
finally show ?thesis .

qed auto
qed

lemma fps-cutoff-inverse:
fixes f :: ′a :: field fps
assumes fps-nth f 0 6= 0

281

shows fps-cutoff n (inverse (fps-cutoff n f)) = fps-cutoff n (inverse f)
proof (cases n = 0)

case True
show ?thesis

by (simp add: True)
next

case False
show ?thesis
proof (subst fps-cutoff-eq-fps-cutoff-iff , safe)

fix k assume k < n
have fps-nth (inverse (fps-cutoff n f)) k =

fps-right-inverse-constructor (fps-cutoff n f) (inverse (fps-nth f 0)) k
using False by (simp add: fps-inverse-def)

also have . . . = fps-right-inverse-constructor f (inverse (fps-nth f 0)) k
by (rule fps-right-inverse-constructor-cong) (use ‹k < n› in auto)

also have . . . = fps-nth (inverse f) k
using False by (simp add: fps-inverse-def)

finally show fps-nth (inverse (fps-cutoff n f)) k = fps-nth (inverse f) k .
qed

qed

lemma tendsto-inverse-fps-aux:
fixes f :: ′a :: field fps
assumes fps-nth f 0 6= 0
shows ((λf . inverse f) −−−→ inverse f) (at f)
unfolding tendsto-fps-iff

proof
fix n :: nat
have eventually (λg. ∀ k≤n. fps-nth g k = fps-nth f k) (nhds f)

by (rule eventually-fps-nth-eq-nhds-fps-strong)
hence eventually (λg. ∀ k≤n. fps-nth g k = fps-nth f k) (at f)

using eventually-nhds-conv-at by blast
thus eventually (λg. fps-nth (inverse g) n = fps-nth (inverse f) n) (at f)
proof eventually-elim

case (elim g)
from elim have fps-nth g 0 = fps-nth f 0

by auto
with assms have [simp]: fps-nth g 0 6= 0

by simp
have fps-cutoff (n+1) (inverse f) = fps-cutoff (n+1) (inverse (fps-cutoff (n+1)

f))
by (rule fps-cutoff-inverse [symmetric]) fact

also have fps-cutoff (n+1) f = fps-cutoff (n+1) g
by (subst fps-cutoff-eq-fps-cutoff-iff) (use elim in auto)

also have fps-cutoff (n+1) (inverse . . .) = fps-cutoff (n+1) (inverse g)
by (rule fps-cutoff-inverse) auto

finally show ?case
by (subst (asm) fps-cutoff-eq-fps-cutoff-iff) auto

qed

282

qed

lemma tendsto-inverse-fps [tendsto-intros]:
fixes g :: ′a :: field fps
assumes (f −−−→ g) F
assumes fps-nth g 0 6= 0
shows ((λx. inverse (f x)) −−−→ inverse g) F
by (rule tendsto-compose[OF tendsto-inverse-fps-aux assms(1)]) fact

lemma fps-div-zero [simp]:
0 div (g :: ′a :: {comm-monoid-add,inverse,mult-zero,uminus} fps) = 0
by (simp add: fps-divide-def)

lemma fps-div-by-zero ′:
fixes g :: ′a::{comm-monoid-add,inverse,mult-zero,uminus} fps
assumes inverse (0 :: ′a) = 0
shows g div 0 = 0
by (simp add: fps-divide-def assms fps-inverse-zero ′)

lemma fps-div-by-zero [simp]: (g:: ′a::division-ring fps) div 0 = 0
by (rule fps-div-by-zero ′[OF inverse-zero])

lemma fps-divide-unit ′: subdegree g = 0 =⇒ f div g = f ∗ inverse g
by (simp add: fps-divide-def)

lemma fps-divide-unit: g$0 6= 0 =⇒ f div g = f ∗ inverse g
by (intro fps-divide-unit ′) (simp add: subdegree-eq-0-iff)

lemma fps-divide-nth-0 ′:
subdegree (g:: ′a::division-ring fps) = 0 =⇒ (f div g) $ 0 = f $ 0 / (g $ 0)
by (simp add: fps-divide-unit ′ divide-inverse)

lemma fps-divide-nth-0 [simp]:
g $ 0 6= 0 =⇒ (f div g) $ 0 = f $ 0 / (g $ 0 :: - :: division-ring)
by (simp add: fps-divide-nth-0 ′)

lemma fps-divide-nth-below:
fixes f g :: ′a::{comm-monoid-add,uminus,mult-zero,inverse} fps
shows n < subdegree f − subdegree g =⇒ (f div g) $ n = 0
by (simp add: fps-divide-def fps-mult-nth-eq0)

lemma fps-divide-nth-base:
fixes f g :: ′a::division-ring fps
assumes subdegree g ≤ subdegree f
shows (f div g) $ (subdegree f − subdegree g) = f $ subdegree f ∗ inverse (g $

subdegree g)
by (simp add: assms fps-divide-def fps-divide-unit ′)

lemma fps-divide-subdegree-ge:

283

fixes f g :: ′a::{comm-monoid-add,uminus,mult-zero,inverse} fps
assumes f / g 6= 0
shows subdegree (f / g) ≥ subdegree f − subdegree g
by (intro subdegree-geI) (simp-all add: assms fps-divide-nth-below)

lemma fps-divide-subdegree:
fixes f g :: ′a::division-ring fps
assumes f 6= 0 g 6= 0 subdegree g ≤ subdegree f
shows subdegree (f / g) = subdegree f − subdegree g

proof (intro antisym)
from assms have 1 : (f div g) $ (subdegree f − subdegree g) 6= 0

using fps-divide-nth-base[of g f] by simp
thus subdegree (f / g) ≤ subdegree f − subdegree g by (intro subdegree-leI) simp
from 1 have f / g 6= 0 by (auto intro: fps-nonzeroI)
thus subdegree f − subdegree g ≤ subdegree (f / g) by (rule fps-divide-subdegree-ge)

qed

lemma fps-divide-shift-numer :
fixes f g :: ′a::{inverse,comm-monoid-add,uminus,mult-zero} fps
assumes n ≤ subdegree f
shows fps-shift n f / g = fps-shift n (f /g)
using assms fps-shift-mult-right-noncomm[of n f inverse (unit-factor g)]

fps-shift-fps-shift-reorder [of subdegree g n f ∗ inverse (unit-factor g)]
by (simp add: fps-divide-def)

lemma fps-divide-shift-denom:
fixes f g :: ′a::{inverse,comm-monoid-add,uminus,mult-zero} fps
assumes n ≤ subdegree g subdegree g ≤ subdegree f
shows f / fps-shift n g = Abs-fps (λk. if k<n then 0 else (f /g) $ (k−n))

proof (intro fps-ext)
fix k
from assms(1) have LHS :
(f / fps-shift n g) $ k = (f ∗ inverse (unit-factor g)) $ (k + (subdegree g − n))
using fps-unit-factor-shift[of n g]
by (simp add: fps-divide-def)

show (f / fps-shift n g) $ k = Abs-fps (λk. if k<n then 0 else (f /g) $ (k−n)) $ k
proof (cases k<n)

case True with assms LHS show ?thesis using fps-mult-nth-eq0 [of - f] by
simp

next
case False
hence (f /g) $ (k−n) = (f ∗ inverse (unit-factor g)) $ ((k−n) + subdegree g)

by (simp add: fps-divide-def)
with False LHS assms(1) show ?thesis by auto

qed
qed

lemma fps-divide-unit-factor-numer :
fixes f g :: ′a::{inverse,comm-monoid-add,uminus,mult-zero} fps

284

shows unit-factor f / g = fps-shift (subdegree f) (f /g)
by (simp add: fps-divide-shift-numer)

lemma fps-divide-unit-factor-denom:
fixes f g :: ′a::{inverse,comm-monoid-add,uminus,mult-zero} fps
assumes subdegree g ≤ subdegree f
shows
f / unit-factor g = Abs-fps (λk. if k<subdegree g then 0 else (f /g) $ (k−subdegree

g))
by (simp add: assms fps-divide-shift-denom)

lemma fps-divide-unit-factor-both ′:
fixes f g :: ′a::{inverse,comm-monoid-add,uminus,mult-zero} fps
assumes subdegree g ≤ subdegree f
shows unit-factor f / unit-factor g = fps-shift (subdegree f − subdegree g) (f /

g)
using assms fps-divide-unit-factor-numer [of f unit-factor g]

fps-divide-unit-factor-denom[of g f]
fps-shift-rev-shift(1)[of subdegree g subdegree f f /g]

by simp

lemma fps-divide-unit-factor-both:
fixes f g :: ′a::division-ring fps
assumes subdegree g ≤ subdegree f
shows unit-factor f / unit-factor g = unit-factor (f / g)
using assms fps-divide-unit-factor-both ′[of g f] fps-divide-subdegree[of f g]
by (cases f=0 ∨ g=0) auto

lemma fps-divide-self :
(f :: ′a::division-ring fps) 6= 0 =⇒ f / f = 1
using fps-mult-right-inverse-unit-factor-divring[of f]
by (simp add: fps-divide-def)

lemma fps-divide-add:
fixes f g h :: ′a::{semiring-0 ,inverse,uminus} fps
shows (f + g) / h = f / h + g / h
by (simp add: fps-divide-def algebra-simps fps-shift-add)

lemma fps-divide-diff :
fixes f g h :: ′a::{ring,inverse} fps
shows (f − g) / h = f / h − g / h
by (simp add: fps-divide-def algebra-simps fps-shift-diff)

lemma fps-divide-uminus:
fixes f g h :: ′a::{ring,inverse} fps
shows (− f) / g = − (f / g)
by (simp add: fps-divide-def algebra-simps fps-shift-uminus)

lemma fps-divide-uminus ′:

285

fixes f g h :: ′a::division-ring fps
shows f / (− g) = − (f / g)
by (simp add: fps-divide-def fps-unit-factor-uminus fps-shift-uminus)

lemma fps-divide-times:
fixes f g h :: ′a::{semiring-0 ,inverse,uminus} fps
assumes subdegree h ≤ subdegree g
shows (f ∗ g) / h = f ∗ (g / h)
using assms fps-mult-subdegree-ge[of g inverse (unit-factor h)]

fps-shift-mult[of subdegree h g ∗ inverse (unit-factor h) f]
by (fastforce simp add: fps-divide-def mult.assoc)

lemma fps-divide-times2 :
fixes f g h :: ′a::{comm-semiring-0 ,inverse,uminus} fps
assumes subdegree h ≤ subdegree f
shows (f ∗ g) / h = (f / h) ∗ g
using assms fps-divide-times[of h f g]
by (simp add: mult.commute)

lemma fps-times-divide-eq:
fixes f g :: ′a::field fps
assumes g 6= 0 and subdegree f ≥ subdegree g
shows f div g ∗ g = f
using assms fps-divide-times2 [of g f g]
by (simp add: fps-divide-times fps-divide-self)

lemma fps-divide-times-eq:
(g :: ′a::division-ring fps) 6= 0 =⇒ (f ∗ g) div g = f
by (simp add: fps-divide-times fps-divide-self)

lemma fps-divide-by-mult ′:
fixes f g h :: ′a :: division-ring fps
assumes subdegree h ≤ subdegree f
shows f / (g ∗ h) = f / h / g

proof (cases f=0 ∨ g=0 ∨ h=0)
case False with assms show ?thesis

using fps-unit-factor-mult[of g h]
by (auto simp:

fps-divide-def fps-shift-fps-shift fps-inverse-mult-divring mult.assoc
fps-shift-mult-right-noncomm

)
qed auto

lemma fps-divide-by-mult:
fixes f g h :: ′a :: field fps
assumes subdegree g ≤ subdegree f
shows f / (g ∗ h) = f / g / h

proof−
have f / (g ∗ h) = f / (h ∗ g) by (simp add: mult.commute)

286

also have . . . = f / g / h using fps-divide-by-mult ′[OF assms] by simp
finally show ?thesis by simp

qed

lemma fps-divide-cancel:
fixes f g h :: ′a :: division-ring fps
shows h 6= 0 =⇒ (f ∗ h) div (g ∗ h) = f div g
by (cases f=0)

(auto simp: fps-divide-by-mult ′ fps-divide-times-eq)

lemma fps-divide-1 ′:
fixes a :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult}

fps
assumes inverse (1 :: ′a) = 1
shows a / 1 = a
using assms fps-inverse-one ′ fps-one-mult(2)[of a]
by (force simp: fps-divide-def)

lemma fps-divide-1 [simp]: (a :: ′a::division-ring fps) / 1 = a
by (rule fps-divide-1 ′[OF inverse-1])

lemma fps-divide-X ′:
fixes f :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult}

fps
assumes inverse (1 :: ′a) = 1
shows f / fps-X = fps-shift 1 f
using assms fps-one-mult(2)[of f]
by (simp add: fps-divide-def fps-X-unit-factor fps-inverse-one ′)

lemma fps-divide-X [simp]: a / fps-X = fps-shift 1 (a:: ′a::division-ring fps)
by (rule fps-divide-X ′[OF inverse-1])

lemma fps-divide-X-power ′:
fixes f :: ′a::{semiring-1 ,inverse,uminus} fps
assumes inverse (1 :: ′a) = 1
shows f / (fps-X ^ n) = fps-shift n f
using fps-inverse-one ′[OF assms] fps-one-mult(2)[of f]
by (simp add: fps-divide-def fps-X-power-subdegree)

lemma fps-divide-X-power [simp]: a / (fps-X ^ n) = fps-shift n (a:: ′a::division-ring
fps)

by (rule fps-divide-X-power ′[OF inverse-1])

lemma fps-divide-shift-denom-conv-times-fps-X-power :
fixes f g :: ′a::{semiring-1 ,inverse,uminus} fps
assumes n ≤ subdegree g subdegree g ≤ subdegree f
shows f / fps-shift n g = f / g ∗ fps-X ^ n
using assms
by (intro fps-ext) (simp-all add: fps-divide-shift-denom fps-X-power-mult-right-nth)

287

lemma fps-divide-unit-factor-denom-conv-times-fps-X-power :
fixes f g :: ′a::{semiring-1 ,inverse,uminus} fps
assumes subdegree g ≤ subdegree f
shows f / unit-factor g = f / g ∗ fps-X ^ subdegree g
by (simp add: assms fps-divide-shift-denom-conv-times-fps-X-power)

lemma fps-shift-altdef ′:
fixes f :: ′a::{semiring-1 ,inverse,uminus} fps
assumes inverse (1 :: ′a) = 1
shows fps-shift n f = f div fps-X^n
using assms
by (simp add:

fps-divide-def fps-X-power-subdegree fps-X-power-unit-factor fps-inverse-one ′

)

lemma fps-shift-altdef :
fps-shift n f = (f :: ′a :: division-ring fps) div fps-X^n
by (rule fps-shift-altdef ′[OF inverse-1])

lemma fps-div-fps-X-power-nth ′:
fixes f :: ′a::{semiring-1 ,inverse,uminus} fps
assumes inverse (1 :: ′a) = 1
shows (f div fps-X^n) $ k = f $ (k + n)
using assms
by (simp add: fps-shift-altdef ′ [symmetric])

lemma fps-div-fps-X-power-nth: ((f :: ′a :: division-ring fps) div fps-X^n) $ k = f
$ (k + n)

by (rule fps-div-fps-X-power-nth ′[OF inverse-1])

lemma fps-div-fps-X-nth ′:
fixes f :: ′a::{semiring-1 ,inverse,uminus} fps
assumes inverse (1 :: ′a) = 1
shows (f div fps-X) $ k = f $ Suc k
using assms fps-div-fps-X-power-nth ′[of f 1]
by simp

lemma fps-div-fps-X-nth: ((f :: ′a :: division-ring fps) div fps-X) $ k = f $ Suc k
by (rule fps-div-fps-X-nth ′[OF inverse-1])

lemma divide-fps-const ′:
fixes c :: ′a :: {inverse,comm-monoid-add,uminus,mult-zero}
shows f / fps-const c = f ∗ fps-const (inverse c)
by (simp add: fps-divide-def fps-const-inverse)

lemma divide-fps-const [simp]:
fixes c :: ′a :: {comm-semiring-0 ,inverse,uminus}
shows f / fps-const c = fps-const (inverse c) ∗ f

288

by (simp add: divide-fps-const ′ mult.commute)

lemma fps-const-divide: fps-const (x :: - :: division-ring) / fps-const y = fps-const
(x / y)

by (simp add: fps-divide-def fps-const-inverse divide-inverse)

lemma fps-numeral-divide-divide:
x / numeral b / numeral c = (x / numeral (b ∗ c) :: ′a :: field fps)
by (simp add: fps-divide-by-mult[symmetric])

lemma fps-numeral-mult-divide:
numeral b ∗ x / numeral c = (numeral b / numeral c ∗ x :: ′a :: field fps)
by (simp add: fps-divide-times2)

lemmas fps-numeral-simps =
fps-numeral-divide-divide fps-numeral-mult-divide inverse-fps-numeral neg-numeral-fps-const

lemma fps-is-left-unit-iff-zeroth-is-left-unit:
fixes f :: ′a :: ring-1 fps
shows (∃ g. 1 = f ∗ g) ←→ (∃ k. 1 = f $0 ∗ k)

proof
assume ∃ g. 1 = f ∗ g
then obtain g where 1 = f ∗ g by fast
hence 1 = f $0 ∗ g$0 using fps-mult-nth-0 [of f g] by simp
thus ∃ k. 1 = f $0 ∗ k by auto

next
assume ∃ k. 1 = f $0 ∗ k
then obtain k where 1 = f $0 ∗ k by fast
hence 1 = f ∗ fps-right-inverse f k

using fps-right-inverse by simp
thus ∃ g. 1 = f ∗ g by fast

qed

lemma fps-is-right-unit-iff-zeroth-is-right-unit:
fixes f :: ′a :: ring-1 fps
shows (∃ g. 1 = g ∗ f) ←→ (∃ k. 1 = k ∗ f $0)

proof
assume ∃ g. 1 = g ∗ f
then obtain g where 1 = g ∗ f by fast
hence 1 = g$0 ∗ f $0 using fps-mult-nth-0 [of g f] by simp
thus ∃ k. 1 = k ∗ f $0 by auto

next
assume ∃ k. 1 = k ∗ f $0
then obtain k where 1 = k ∗ f $0 by fast
hence 1 = fps-left-inverse f k ∗ f

using fps-left-inverse by simp
thus ∃ g. 1 = g ∗ f by fast

qed

289

lemma fps-is-unit-iff [simp]: (f :: ′a :: field fps) dvd 1 ←→ f $ 0 6= 0
proof

assume f dvd 1
then obtain g where 1 = f ∗ g by (elim dvdE)
from this[symmetric] have (f ∗g) $ 0 = 1 by simp
thus f $ 0 6= 0 by auto

next
assume A: f $ 0 6= 0
thus f dvd 1 by (simp add: inverse-mult-eq-1 [OF A, symmetric])

qed

lemma subdegree-eq-0-left:
fixes f :: ′a::{comm-monoid-add,zero-neq-one,mult-zero} fps
assumes ∃ g. 1 = f ∗ g
shows subdegree f = 0

proof (intro subdegree-eq-0)
from assms obtain g where 1 = f ∗ g by fast
hence f $0 ∗ g$0 = 1 using fps-mult-nth-0 [of f g] by simp
thus f $0 6= 0 by auto

qed

lemma subdegree-eq-0-right:
fixes f :: ′a::{comm-monoid-add,zero-neq-one,mult-zero} fps
assumes ∃ g. 1 = g ∗ f
shows subdegree f = 0

proof (intro subdegree-eq-0)
from assms obtain g where 1 = g ∗ f by fast
hence g$0 ∗ f $0 = 1 using fps-mult-nth-0 [of g f] by simp
thus f $0 6= 0 by auto

qed

lemma subdegree-eq-0 ′ [simp]: (f :: ′a :: field fps) dvd 1 =⇒ subdegree f = 0
by simp

lemma fps-dvd1-left-trivial-unit-factor :
fixes f :: ′a::{comm-monoid-add, zero-neq-one, mult-zero} fps
assumes ∃ g. 1 = f ∗ g
shows unit-factor f = f
using assms subdegree-eq-0-left
by fastforce

lemma fps-dvd1-right-trivial-unit-factor :
fixes f :: ′a::{comm-monoid-add, zero-neq-one, mult-zero} fps
assumes ∃ g. 1 = g ∗ f
shows unit-factor f = f
using assms subdegree-eq-0-right
by fastforce

lemma fps-dvd1-trivial-unit-factor :

290

(f :: ′a::comm-semiring-1 fps) dvd 1 =⇒ unit-factor f = f
unfolding dvd-def by (rule fps-dvd1-left-trivial-unit-factor) simp

lemma fps-unit-dvd-left:
fixes f :: ′a :: division-ring fps
assumes f $ 0 6= 0
shows ∃ g. 1 = f ∗ g
using assms fps-is-left-unit-iff-zeroth-is-left-unit right-inverse
by fastforce

lemma fps-unit-dvd-right:
fixes f :: ′a :: division-ring fps
assumes f $ 0 6= 0
shows ∃ g. 1 = g ∗ f
using assms fps-is-right-unit-iff-zeroth-is-right-unit left-inverse
by fastforce

lemma fps-unit-dvd [simp]: (f $ 0 :: ′a :: field) 6= 0 =⇒ f dvd g
using fps-unit-dvd-left dvd-trans[of f 1] by simp

lemma dvd-left-imp-subdegree-le:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
assumes ∃ k. g = f ∗ k g 6= 0
shows subdegree f ≤ subdegree g
using assms fps-mult-subdegree-ge
by fastforce

lemma dvd-right-imp-subdegree-le:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
assumes ∃ k. g = k ∗ f g 6= 0
shows subdegree f ≤ subdegree g
using assms fps-mult-subdegree-ge
by fastforce

lemma dvd-imp-subdegree-le:
f dvd g =⇒ g 6= 0 =⇒ subdegree f ≤ subdegree g
using dvd-left-imp-subdegree-le by fast

lemma subdegree-le-imp-dvd-left-ring1 :
fixes f g :: ′a :: ring-1 fps
assumes ∃ y. f $ subdegree f ∗ y = 1 subdegree f ≤ subdegree g
shows ∃ k. g = f ∗ k

proof−
define h :: ′a fps where h ≡ fps-X ^ (subdegree g − subdegree f)
from assms(1) obtain y where f $ subdegree f ∗ y = 1 by fast
hence unit-factor f $ 0 ∗ y = 1 by simp
from this obtain k where 1 = unit-factor f ∗ k

using fps-is-left-unit-iff-zeroth-is-left-unit[of unit-factor f] by auto
hence fps-X ^ subdegree f = fps-X ^ subdegree f ∗ unit-factor f ∗ k

291

by (simp add: mult.assoc)
moreover have fps-X ^ subdegree f ∗ unit-factor f = f

by (rule fps-unit-factor-decompose ′[symmetric])
ultimately have

fps-X ^ (subdegree f + (subdegree g − subdegree f)) = f ∗ k ∗ h
by (simp add: power-add h-def)

hence g = f ∗ (k ∗ h ∗ unit-factor g)
using fps-unit-factor-decompose ′[of g]
by (simp add: assms(2) mult.assoc)

thus ?thesis by fast
qed

lemma subdegree-le-imp-dvd-left-divring:
fixes f g :: ′a :: division-ring fps
assumes f 6= 0 subdegree f ≤ subdegree g
shows ∃ k. g = f ∗ k

proof (intro subdegree-le-imp-dvd-left-ring1)
from assms(1) have f $ subdegree f 6= 0 by simp
thus ∃ y. f $ subdegree f ∗ y = 1 using right-inverse by blast

qed (rule assms(2))

lemma subdegree-le-imp-dvd-right-ring1 :
fixes f g :: ′a :: ring-1 fps
assumes ∃ x. x ∗ f $ subdegree f = 1 subdegree f ≤ subdegree g
shows ∃ k. g = k ∗ f

proof−
define h :: ′a fps where h ≡ fps-X ^ (subdegree g − subdegree f)
from assms(1) obtain x where x ∗ f $ subdegree f = 1 by fast
hence x ∗ unit-factor f $ 0 = 1 by simp
from this obtain k where 1 = k ∗ unit-factor f

using fps-is-right-unit-iff-zeroth-is-right-unit[of unit-factor f] by auto
hence fps-X ^ subdegree f = k ∗ (unit-factor f ∗ fps-X ^ subdegree f)

by (simp add: mult.assoc[symmetric])
moreover have unit-factor f ∗ fps-X ^ subdegree f = f

by (rule fps-unit-factor-decompose[symmetric])
ultimately have fps-X ^ (subdegree g − subdegree f + subdegree f) = h ∗ k ∗ f

by (simp add: power-add h-def mult.assoc)
hence g = unit-factor g ∗ h ∗ k ∗ f

using fps-unit-factor-decompose[of g]
by (simp add: assms(2) mult.assoc)

thus ?thesis by fast
qed

lemma subdegree-le-imp-dvd-right-divring:
fixes f g :: ′a :: division-ring fps
assumes f 6= 0 subdegree f ≤ subdegree g
shows ∃ k. g = k ∗ f

proof (intro subdegree-le-imp-dvd-right-ring1)
from assms(1) have f $ subdegree f 6= 0 by simp

292

thus ∃ x. x ∗ f $ subdegree f = 1 using left-inverse by blast
qed (rule assms(2))

lemma fps-dvd-iff :
assumes (f :: ′a :: field fps) 6= 0 g 6= 0
shows f dvd g ←→ subdegree f ≤ subdegree g

proof
assume subdegree f ≤ subdegree g
with assms show f dvd g

using subdegree-le-imp-dvd-left-divring
by (auto intro: dvdI)

qed (simp add: assms dvd-imp-subdegree-le)

lemma subdegree-div ′:
fixes p q :: ′a::division-ring fps
assumes ∃ k. p = k ∗ q
shows subdegree (p div q) = subdegree p − subdegree q

proof (cases p = 0)
case False
from assms(1) obtain k where k: p = k ∗ q by blast
with False have subdegree (p div q) = subdegree k by (simp add: fps-divide-times-eq)
moreover have k $ subdegree k ∗ q $ subdegree q 6= 0
proof

assume k $ subdegree k ∗ q $ subdegree q = 0
hence k $ subdegree k ∗ q $ subdegree q ∗ inverse (q $ subdegree q) = 0 by

simp
with False k show False by (simp add: mult.assoc)

qed
ultimately show ?thesis by (simp add: k subdegree-mult ′)

qed simp

lemma subdegree-div:
fixes p q :: ′a :: field fps
assumes q dvd p
shows subdegree (p div q) = subdegree p − subdegree q
using assms
unfolding dvd-def
by (auto intro: subdegree-div ′)

lemma subdegree-div-unit ′:
fixes p q :: ′a :: {ab-group-add,mult-zero,inverse} fps
assumes q $ 0 6= 0 p $ subdegree p ∗ inverse (q $ 0) 6= 0
shows subdegree (p div q) = subdegree p
using assms subdegree-mult ′[of p inverse q]
by (auto simp add: fps-divide-unit)

lemma subdegree-div-unit ′′:
fixes p q :: ′a :: {ring-no-zero-divisors,inverse} fps
assumes q $ 0 6= 0 inverse (q $ 0) 6= 0

293

shows subdegree (p div q) = subdegree p
by (cases p = 0) (auto intro: subdegree-div-unit ′ simp: assms)

lemma subdegree-div-unit:
fixes p q :: ′a :: division-ring fps
assumes q $ 0 6= 0
shows subdegree (p div q) = subdegree p
by (intro subdegree-div-unit ′′) (simp-all add: assms)

instantiation fps :: ({comm-semiring-1 ,inverse,uminus}) modulo
begin

definition fps-mod-def :
f mod g = (if g = 0 then f else

let h = unit-factor g in fps-cutoff (subdegree g) (f ∗ inverse h) ∗ h)

instance ..

end

lemma fps-mod-zero [simp]:
(f :: ′a::{comm-semiring-1 ,inverse,uminus} fps) mod 0 = f
by (simp add: fps-mod-def)

lemma fps-mod-eq-zero:
assumes g 6= 0 and subdegree f ≥ subdegree g
shows f mod g = 0

proof (cases f ∗ inverse (unit-factor g) = 0)
case False
have fps-cutoff (subdegree g) (f ∗ inverse (unit-factor g)) = 0

using False assms(2) fps-mult-subdegree-ge fps-cutoff-zero-iff by force
with assms(1) show ?thesis by (simp add: fps-mod-def Let-def)

qed (simp add: assms fps-mod-def)

lemma fps-mod-unit [simp]: g$0 6= 0 =⇒ f mod g = 0
by (intro fps-mod-eq-zero) auto

lemma subdegree-mod:
assumes subdegree (f :: ′a::field fps) < subdegree g
shows subdegree (f mod g) = subdegree f

proof (cases f = 0)
case False
with assms show ?thesis

by (intro subdegreeI)
(auto simp: inverse-mult-eq-1 fps-mod-def Let-def fps-cutoff-left-mult-nth

mult.assoc)
qed (simp add: fps-mod-def)

instance fps :: (field) idom-modulo

294

proof

fix f g :: ′a fps

define n where n = subdegree g
define h where h = f ∗ inverse (unit-factor g)

show f div g ∗ g + f mod g = f
proof (cases g = 0)

case False
with n-def h-def have
f div g ∗ g + f mod g = (fps-shift n h ∗ fps-X ^ n + fps-cutoff n h) ∗ unit-factor

g
by (simp add: fps-divide-def fps-mod-def Let-def subdegree-decompose alge-

bra-simps)
with False show ?thesis

by (simp add: fps-shift-cutoff h-def inverse-mult-eq-1)
qed auto

qed (rule fps-divide-times-eq, simp-all add: fps-divide-def)

instantiation fps :: (field) normalization-semidom-multiplicative
begin

definition fps-normalize-def [simp]:
normalize f = (if f = 0 then 0 else fps-X ^ subdegree f)

instance proof
fix f g :: ′a fps
assume is-unit f
thus unit-factor (f ∗ g) = f ∗ unit-factor g

using fps-unit-factor-mult[of f g] by simp
next

fix f g :: ′a fps
show unit-factor f ∗ normalize f = f

by (simp add: fps-shift-times-fps-X-power)
next

fix f g :: ′a fps
show unit-factor (f ∗ g) = unit-factor f ∗ unit-factor g

using fps-unit-factor-mult[of f g] by simp
qed (simp-all add: fps-divide-def Let-def)

end

5.8 Computing reciprocals via Hensel lifting
lemma inverse-fps-hensel-lifting:

fixes F G :: ′a :: field fps and n :: nat
assumes G-eq: fps-cutoff n G = fps-cutoff n (inverse F)

295

assumes unit: fps-nth F 0 6= 0
shows fps-cutoff (2∗n) (inverse F) = fps-cutoff (2∗n) (G ∗ (2 − F ∗ G))

proof −
define R where R = inverse F − G
have eq: G = inverse F − R

by (simp add: R-def)
from assms have fps-cutoff n R = 0

by (simp add: R-def fps-cutoff-diff)
hence R: R = 0 ∨ subdegree R ≥ n

by (simp add: fps-cutoff-zero-iff)

have G ∗ (2 − F ∗ G) − inverse F =
inverse F + F ∗ inverse F ∗ R ∗ 2 − F ∗ R2 − R ∗ 2 − F ∗ inverse F ∗

inverse F
by (simp add: eq algebra-simps power2-eq-square)

also have F ∗ inverse F = 1
using unit by (simp add: inverse-mult-eq-1 ′)

also have inverse F + 1 ∗ R ∗ 2 − F ∗ R2 − R ∗ 2 − 1 ∗ inverse F = −F ∗
R2

by (simp add: algebra-simps)
finally have fps-cutoff (2∗n) (G ∗ (2 − F ∗ G) − inverse F) = fps-cutoff (2∗n)

(−F ∗ R2)
by (rule arg-cong)

also have . . . = 0
proof (cases −F ∗ R2 = 0)

case False
have 2 ∗ n ≤ subdegree (−F ∗ R2)

using False R unit by simp
thus ?thesis

by (simp add: fps-cutoff-zero-iff)
qed auto
finally show ?thesis

by (simp add: fps-cutoff-diff)
qed

lemma inverse-fps-hensel-lifting ′:
fixes F G :: ′a :: field fps and n :: nat
assumes G-eq: fps-cutoff n G = fps-cutoff n (inverse F)
assumes unit: fps-nth F 0 6= 0
defines P ≡ fps-shift n (F ∗ G − 1)
shows fps-cutoff (2∗n) (inverse F) = fps-cutoff (2∗n) (G ∗ (1 − fps-X ^ n ∗

P))
proof −

define R where R = inverse F − G
have eq: G = inverse F − R

by (simp add: R-def)
from assms have fps-cutoff n R = 0

by (simp add: R-def fps-cutoff-diff)
hence R: R = 0 ∨ subdegree R ≥ n

296

by (simp add: fps-cutoff-zero-iff)

have FG-eq: F ∗ G = 1 + fps-X ^ n ∗ P
proof (cases F ∗ G − 1 = 0)

case False
have eq: F ∗ G − 1 = F ∗ (G − inverse F)

using unit by (simp add: inverse-mult-eq-1 ′ ring-distribs)
have subdegree (F ∗ (G − inverse F)) ≥ n
proof −

have fps-cutoff n (G − inverse F) = 0
using G-eq by (simp add: fps-cutoff-diff)

hence n ≤ subdegree (G − inverse F)
using False unfolding eq by (simp add: fps-cutoff-zero-iff)

also have subdegree (G − inverse F) = subdegree (F ∗ (G − inverse F))
by (subst subdegree-mult) (use unit False in ‹auto simp: eq›)

finally have n ≤ subdegree (F ∗ (G − inverse F)) .
thus ?thesis

by blast
qed
hence F ∗ G − 1 = fps-X ^ n ∗ P

unfolding eq P-def by (intro fps-conv-fps-X-power-mult-fps-shift) auto
thus ?thesis

by (simp add: algebra-simps)
qed (auto simp: P-def)

have G ∗ (1 − fps-X ^ n ∗ P) − inverse F = G ∗ (2 − F ∗ G) − inverse F
by (auto simp: FG-eq)

also have G ∗ (2 − F ∗ G) − inverse F =
inverse F + F ∗ inverse F ∗ R ∗ 2 − F ∗ R2 − R ∗ 2 − F ∗ inverse F ∗

inverse F
by (simp add: eq algebra-simps power2-eq-square)

also have F ∗ inverse F = 1
using unit by (simp add: inverse-mult-eq-1 ′)

also have inverse F + 1 ∗ R ∗ 2 − F ∗ R2 − R ∗ 2 − 1 ∗ inverse F = −F ∗
R2

by (simp add: algebra-simps)
finally have fps-cutoff (2∗n) (G ∗ (1 − fps-X ^ n ∗ P) − inverse F) = fps-cutoff

(2∗n) (−F ∗ R2)
by (rule arg-cong)

also have . . . = 0
proof (cases −F ∗ R2 = 0)

case False
have 2 ∗ n ≤ subdegree (−F ∗ R2)

using False R unit by simp
thus ?thesis

by (simp add: fps-cutoff-zero-iff)
qed auto
finally show ?thesis

by (simp add: fps-cutoff-diff)

297

qed

5.9 Euclidean division
instantiation fps :: (field) euclidean-ring-cancel
begin

definition fps-euclidean-size-def :
euclidean-size f = (if f = 0 then 0 else 2 ^ subdegree f)

instance proof
fix f g :: ′a fps assume [simp]: g 6= 0
show euclidean-size f ≤ euclidean-size (f ∗ g)

by (cases f = 0) (simp-all add: fps-euclidean-size-def)
show euclidean-size (f mod g) < euclidean-size g
proof (cases f = 0)

case True
then show ?thesis

by (simp add: fps-euclidean-size-def)
next

case False
then show ?thesis

using le-less-linear [of subdegree g subdegree f]
by (force simp add: fps-mod-eq-zero fps-euclidean-size-def subdegree-mod)

qed
next

fix f g h :: ′a fps assume [simp]: h 6= 0
show (h ∗ f) div (h ∗ g) = f div g

by (simp add: fps-divide-cancel mult.commute)
show (f + g ∗ h) div h = g + f div h

by (simp add: fps-divide-add fps-divide-times-eq)
qed (simp add: fps-euclidean-size-def)

end

instance fps :: (field) normalization-euclidean-semiring ..

instantiation fps :: (field) euclidean-ring-gcd
begin
definition fps-gcd-def : (gcd :: ′a fps ⇒ -) = Euclidean-Algorithm.gcd
definition fps-lcm-def : (lcm :: ′a fps ⇒ -) = Euclidean-Algorithm.lcm
definition fps-Gcd-def : (Gcd :: ′a fps set ⇒ -) = Euclidean-Algorithm.Gcd
definition fps-Lcm-def : (Lcm :: ′a fps set ⇒ -) = Euclidean-Algorithm.Lcm
instance by standard (simp-all add: fps-gcd-def fps-lcm-def fps-Gcd-def fps-Lcm-def)
end

lemma fps-gcd:
assumes [simp]: f 6= 0 g 6= 0
shows gcd f g = fps-X ^ min (subdegree f) (subdegree g)

298

proof −
let ?m = min (subdegree f) (subdegree g)
show gcd f g = fps-X ^ ?m
proof (rule sym, rule gcdI)

fix d assume d dvd f d dvd g
thus d dvd fps-X ^ ?m by (cases d = 0) (simp-all add: fps-dvd-iff)

qed (simp-all add: fps-dvd-iff)
qed

lemma fps-gcd-altdef : gcd f g =
(if f = 0 ∧ g = 0 then 0 else
if f = 0 then fps-X ^ subdegree g else
if g = 0 then fps-X ^ subdegree f else

fps-X ^ min (subdegree f) (subdegree g))
by (simp add: fps-gcd)

lemma fps-lcm:
assumes [simp]: f 6= 0 g 6= 0
shows lcm f g = fps-X ^ max (subdegree f) (subdegree g)

proof −
let ?m = max (subdegree f) (subdegree g)
show lcm f g = fps-X ^ ?m
proof (rule sym, rule lcmI)

fix d assume f dvd d g dvd d
thus fps-X ^ ?m dvd d by (cases d = 0) (simp-all add: fps-dvd-iff)

qed (simp-all add: fps-dvd-iff)
qed

lemma fps-lcm-altdef : lcm f g =
(if f = 0 ∨ g = 0 then 0 else fps-X ^ max (subdegree f) (subdegree g))
by (simp add: fps-lcm)

lemma fps-Gcd:
assumes A − {0} 6= {}
shows Gcd A = fps-X ^ (INF f∈A−{0}. subdegree f)

proof (rule sym, rule GcdI)
fix f assume f ∈ A
thus fps-X ^ (INF f∈A − {0}. subdegree f) dvd f

by (cases f = 0) (auto simp: fps-dvd-iff intro!: cINF-lower)
next

fix d assume d:
∧

f . f ∈ A =⇒ d dvd f
from assms obtain f where f ∈ A − {0} by auto
with d[of f] have [simp]: d 6= 0 by auto
from d assms have subdegree d ≤ (INF f∈A−{0}. subdegree f)

by (intro cINF-greatest) (simp-all add: fps-dvd-iff [symmetric])
with d assms show d dvd fps-X ^ (INF f∈A−{0}. subdegree f) by (simp add:

fps-dvd-iff)
qed simp-all

299

lemma fps-Gcd-altdef : Gcd A =
(if A ⊆ {0} then 0 else fps-X ^ (INF f∈A−{0}. subdegree f))
using fps-Gcd by auto

lemma fps-Lcm:
assumes A 6= {} 0 /∈ A bdd-above (subdegree‘A)
shows Lcm A = fps-X ^ (SUP f∈A. subdegree f)

proof (rule sym, rule LcmI)
fix f assume f ∈ A
moreover from assms(3) have bdd-above (subdegree ‘ A) by auto
ultimately show f dvd fps-X ^ (SUP f∈A. subdegree f) using assms(2)

by (cases f = 0) (auto simp: fps-dvd-iff intro!: cSUP-upper)
next

fix d assume d:
∧

f . f ∈ A =⇒ f dvd d
from assms obtain f where f : f ∈ A f 6= 0 by auto
show fps-X ^ (SUP f∈A. subdegree f) dvd d
proof (cases d = 0)

assume d 6= 0
moreover from d have

∧
f . f ∈ A =⇒ f 6= 0 =⇒ f dvd d by blast

ultimately have subdegree d ≥ (SUP f∈A. subdegree f) using assms
by (intro cSUP-least) (auto simp: fps-dvd-iff)

with ‹d 6= 0 › show ?thesis by (simp add: fps-dvd-iff)
qed simp-all

qed simp-all

lemma fps-Lcm-altdef :
Lcm A =

(if 0 ∈ A ∨ ¬bdd-above (subdegree‘A) then 0 else
if A = {} then 1 else fps-X ^ (SUP f∈A. subdegree f))

proof (cases bdd-above (subdegree‘A))
assume unbounded: ¬bdd-above (subdegree‘A)
have Lcm A = 0
proof (rule ccontr)

assume Lcm A 6= 0
from unbounded obtain f where f : f ∈ A subdegree (Lcm A) < subdegree f

unfolding bdd-above-def by (auto simp: not-le)
moreover from f and ‹Lcm A 6= 0 › have subdegree f ≤ subdegree (Lcm A)

by (intro dvd-imp-subdegree-le dvd-Lcm) simp-all
ultimately show False by simp

qed
with unbounded show ?thesis by simp

qed (simp-all add: fps-Lcm Lcm-eq-0-I)

5.10 Formal Derivatives
definition fps-deriv f = Abs-fps (λn. of-nat (n + 1) ∗ f $ (n + 1))

lemma fps-deriv-nth[simp]: fps-deriv f $ n = of-nat (n + 1) ∗ f $ (n + 1)
by (simp add: fps-deriv-def)

300

lemma fps-0th-higher-deriv:
(fps-deriv ^^ n) f $ 0 = fact n ∗ f $ n
by (induction n arbitrary: f)

(simp-all add: funpow-Suc-right mult-of-nat-commute algebra-simps del: fun-
pow.simps)

lemma fps-deriv-mult[simp]:
fps-deriv (f ∗ g) = f ∗ fps-deriv g + fps-deriv f ∗ g

proof (intro fps-ext)
fix n
have LHS : fps-deriv (f ∗ g) $ n = (

∑
i=0 ..Suc n. of-nat (n+1) ∗ f $i ∗ g$(Suc

n − i))
by (simp add: fps-mult-nth sum-distrib-left algebra-simps)

have ∀ i∈{1 ..n}. n − (i − 1) = n − i + 1 by auto
moreover have
(
∑

i=0 ..n. of-nat (i+1) ∗ f $(i+1) ∗ g$(n − i)) =
(
∑

i=1 ..Suc n. of-nat i ∗ f $i ∗ g$(n − (i − 1)))
by (intro sum.reindex-bij-witness[where i=λx. x−1 and j=λx. x+1]) auto

ultimately have
(f ∗ fps-deriv g + fps-deriv f ∗ g) $ n =

of-nat (Suc n) ∗ f $0 ∗ g$(Suc n) +
(
∑

i=1 ..n. (of-nat (n − i + 1) + of-nat i) ∗ f $ i ∗ g $ (n − i + 1)) +
of-nat (Suc n) ∗ f $(Suc n) ∗ g$0

by (simp add: fps-mult-nth algebra-simps mult-of-nat-commute sum.atLeast-Suc-atMost
sum.distrib)

moreover have
∀ i∈{1 ..n}.
(of-nat (n − i + 1) + of-nat i) ∗ f $ i ∗ g $ (n − i + 1) =
of-nat (n + 1) ∗ f $ i ∗ g $ (Suc n − i)

proof
fix i assume i: i ∈ {1 ..n}
from i have of-nat (n − i + 1) + (of-nat i :: ′a) = of-nat (n + 1)

using of-nat-add[of n−i+1 i,symmetric] by simp
moreover from i have Suc n − i = n − i + 1 by auto
ultimately show (of-nat (n − i + 1) + of-nat i) ∗ f $ i ∗ g $ (n − i + 1) =

of-nat (n + 1) ∗ f $ i ∗ g $ (Suc n − i)
by simp

qed
ultimately have
(f ∗ fps-deriv g + fps-deriv f ∗ g) $ n =
(
∑

i=0 ..Suc n. of-nat (Suc n) ∗ f $ i ∗ g $ (Suc n − i))
by (simp add: sum.atLeast-Suc-atMost)

with LHS show fps-deriv (f ∗ g) $ n = (f ∗ fps-deriv g + fps-deriv f ∗ g) $ n
by simp

qed

lemma fps-deriv-fps-X [simp]: fps-deriv fps-X = 1

301

by (simp add: fps-deriv-def fps-X-def fps-eq-iff)

lemma fps-deriv-neg[simp]:
fps-deriv (− (f :: ′a::ring-1 fps)) = − (fps-deriv f)
by (simp add: fps-eq-iff fps-deriv-def)

lemma fps-deriv-add[simp]: fps-deriv (f + g) = fps-deriv f + fps-deriv g
by (auto intro: fps-ext simp: algebra-simps)

lemma fps-deriv-sub[simp]:
fps-deriv ((f :: ′a::ring-1 fps) − g) = fps-deriv f − fps-deriv g
using fps-deriv-add [of f − g] by simp

lemma fps-deriv-const[simp]: fps-deriv (fps-const c) = 0
by (simp add: fps-ext fps-deriv-def fps-const-def)

lemma fps-deriv-of-nat [simp]: fps-deriv (of-nat n) = 0
by (simp add: fps-of-nat [symmetric])

lemma fps-deriv-of-int [simp]: fps-deriv (of-int n) = 0
by (simp add: fps-of-int [symmetric])

lemma fps-deriv-numeral [simp]: fps-deriv (numeral n) = 0
by (simp add: numeral-fps-const)

lemma fps-deriv-mult-const-left[simp]:
fps-deriv (fps-const c ∗ f) = fps-const c ∗ fps-deriv f
by simp

lemma fps-deriv-linear [simp]:
fps-deriv (fps-const a ∗ f + fps-const b ∗ g) =

fps-const a ∗ fps-deriv f + fps-const b ∗ fps-deriv g
by simp

lemma fps-deriv-0 [simp]: fps-deriv 0 = 0
by (simp add: fps-deriv-def fps-eq-iff)

lemma fps-deriv-1 [simp]: fps-deriv 1 = 0
by (simp add: fps-deriv-def fps-eq-iff)

lemma fps-deriv-mult-const-right[simp]:
fps-deriv (f ∗ fps-const c) = fps-deriv f ∗ fps-const c
by simp

lemma fps-deriv-sum:
fps-deriv (sum f S) = sum (λi. fps-deriv (f i)) S

proof (cases finite S)
case False
then show ?thesis by simp

302

next
case True
show ?thesis by (induct rule: finite-induct [OF True]) simp-all

qed

lemma fps-deriv-eq-0-iff [simp]:
fps-deriv f = 0 ←→ f = fps-const (f $0 :: ′a::{semiring-no-zero-divisors,semiring-char-0})

proof
assume f : fps-deriv f = 0
show f = fps-const (f $0)
proof (intro fps-ext)

fix n show f $ n = fps-const (f $0) $ n
proof (cases n)

case (Suc m)
have (of-nat (Suc m) :: ′a) 6= 0 by (rule of-nat-neq-0)
with f Suc show ?thesis using fps-deriv-nth[of f] by auto

qed simp
qed

next
show f = fps-const (f $0) =⇒ fps-deriv f = 0 using fps-deriv-const[of f $0] by

simp
qed

lemma fps-deriv-eq-iff :
fixes f g :: ′a::{ring-1-no-zero-divisors,semiring-char-0} fps
shows fps-deriv f = fps-deriv g ←→ (f = fps-const(f $0 − g$0) + g)

proof −
have fps-deriv f = fps-deriv g ←→ fps-deriv (f − g) = 0

using fps-deriv-sub[of f g]
by simp

also have . . . ←→ f − g = fps-const ((f − g) $ 0)
unfolding fps-deriv-eq-0-iff ..

finally show ?thesis
by (simp add: field-simps)

qed

lemma fps-deriv-eq-iff-ex:
fixes f g :: ′a::{ring-1-no-zero-divisors,semiring-char-0} fps
shows (fps-deriv f = fps-deriv g) ←→ (∃ c. f = fps-const c + g)
by (auto simp: fps-deriv-eq-iff)

fun fps-nth-deriv :: nat ⇒ ′a::semiring-1 fps ⇒ ′a fps
where

fps-nth-deriv 0 f = f
| fps-nth-deriv (Suc n) f = fps-nth-deriv n (fps-deriv f)

lemma fps-nth-deriv-commute: fps-nth-deriv (Suc n) f = fps-deriv (fps-nth-deriv
n f)

303

by (induct n arbitrary: f) auto

lemma fps-nth-deriv-linear [simp]:
fps-nth-deriv n (fps-const a ∗ f + fps-const b ∗ g) =

fps-const a ∗ fps-nth-deriv n f + fps-const b ∗ fps-nth-deriv n g
by (induct n arbitrary: f g) auto

lemma fps-nth-deriv-neg[simp]:
fps-nth-deriv n (− (f :: ′a::ring-1 fps)) = − (fps-nth-deriv n f)
by (induct n arbitrary: f) simp-all

lemma fps-nth-deriv-add[simp]:
fps-nth-deriv n ((f :: ′a::ring-1 fps) + g) = fps-nth-deriv n f + fps-nth-deriv n g
using fps-nth-deriv-linear [of n 1 f 1 g] by simp

lemma fps-nth-deriv-sub[simp]:
fps-nth-deriv n ((f :: ′a::ring-1 fps) − g) = fps-nth-deriv n f − fps-nth-deriv n g
using fps-nth-deriv-add [of n f − g] by simp

lemma fps-nth-deriv-0 [simp]: fps-nth-deriv n 0 = 0
by (induct n) simp-all

lemma fps-nth-deriv-1 [simp]: fps-nth-deriv n 1 = (if n = 0 then 1 else 0)
by (induct n) simp-all

lemma fps-nth-deriv-const[simp]:
fps-nth-deriv n (fps-const c) = (if n = 0 then fps-const c else 0)
by (cases n) simp-all

lemma fps-nth-deriv-mult-const-left[simp]:
fps-nth-deriv n (fps-const c ∗ f) = fps-const c ∗ fps-nth-deriv n f
using fps-nth-deriv-linear [of n c f 0 0] by simp

lemma fps-nth-deriv-mult-const-right[simp]:
fps-nth-deriv n (f ∗ fps-const c) = fps-nth-deriv n f ∗ fps-const c
by (induct n arbitrary: f) auto

lemma fps-nth-deriv-sum:
fps-nth-deriv n (sum f S) = sum (λi. fps-nth-deriv n (f i :: ′a::ring-1 fps)) S

proof (cases finite S)
case True
show ?thesis by (induct rule: finite-induct [OF True]) simp-all

next
case False
then show ?thesis by simp

qed

lemma fps-deriv-maclauren-0 :
(fps-nth-deriv k (f :: ′a::comm-semiring-1 fps)) $ 0 = of-nat (fact k) ∗ f $ k

304

by (induct k arbitrary: f) (simp-all add: field-simps)

lemma fps-deriv-lr-inverse:
fixes x y :: ′a::ring-1
assumes x ∗ f $0 = 1 f $0 ∗ y = 1
— These assumptions imply x equals y, but no need to assume that.
shows fps-deriv (fps-left-inverse f x) =

− fps-left-inverse f x ∗ fps-deriv f ∗ fps-left-inverse f x
and fps-deriv (fps-right-inverse f y) =

− fps-right-inverse f y ∗ fps-deriv f ∗ fps-right-inverse f y
proof−

define L where L ≡ fps-left-inverse f x
hence fps-deriv (L ∗ f) = 0 using fps-left-inverse[OF assms(1)] by simp
with assms show fps-deriv L = − L ∗ fps-deriv f ∗ L

using fps-right-inverse ′[OF assms]
by (simp add: minus-unique mult.assoc L-def)

define R where R ≡ fps-right-inverse f y
hence fps-deriv (f ∗ R) = 0 using fps-right-inverse[OF assms(2)] by simp
hence 1 : f ∗ fps-deriv R + fps-deriv f ∗ R = 0 by simp
have R ∗ f ∗ fps-deriv R = − R ∗ fps-deriv f ∗ R

using iffD2 [OF eq-neg-iff-add-eq-0 , OF 1] by (simp add: mult.assoc)
thus fps-deriv R = − R ∗ fps-deriv f ∗ R

using fps-left-inverse ′[OF assms] by (simp add: R-def)

qed

lemma fps-deriv-lr-inverse-comm:
fixes x :: ′a::comm-ring-1
assumes x ∗ f $0 = 1
shows fps-deriv (fps-left-inverse f x) = − fps-deriv f ∗ (fps-left-inverse f x)2
and fps-deriv (fps-right-inverse f x) = − fps-deriv f ∗ (fps-right-inverse f x)2
using assms fps-deriv-lr-inverse[of x f x]
by (simp-all add: mult.commute power2-eq-square)

lemma fps-inverse-deriv-divring:
fixes a :: ′a::division-ring fps
assumes a$0 6= 0
shows fps-deriv (inverse a) = − inverse a ∗ fps-deriv a ∗ inverse a
using assms fps-deriv-lr-inverse(2)[of inverse (a$0) a inverse (a$0)]
by (simp add: fps-inverse-def)

lemma fps-inverse-deriv:
fixes a :: ′a::field fps
assumes a$0 6= 0
shows fps-deriv (inverse a) = − fps-deriv a ∗ (inverse a)2
using assms fps-deriv-lr-inverse-comm(2)[of inverse (a$0) a]
by (simp add: fps-inverse-def)

305

lemma fps-inverse-deriv ′:
fixes a :: ′a::field fps
assumes a0 : a $ 0 6= 0
shows fps-deriv (inverse a) = − fps-deriv a / a2

using fps-inverse-deriv[OF a0] a0
by (simp add: fps-divide-unit power2-eq-square fps-inverse-mult)

lemma fps-divide-deriv:
assumes b dvd (a :: ′a :: field fps)
shows fps-deriv (a / b) = (fps-deriv a ∗ b − a ∗ fps-deriv b) / b^2

proof −
have eq-divide-imp: c 6= 0 =⇒ a ∗ c = b =⇒ a = b div c for a b c :: ′a :: field

fps
by (drule sym) (simp add: mult.assoc)

from assms have a = a / b ∗ b by simp
also have fps-deriv (a / b ∗ b) = fps-deriv (a / b) ∗ b + a / b ∗ fps-deriv b by

simp
finally have fps-deriv (a / b) ∗ b^2 = fps-deriv a ∗ b − a ∗ fps-deriv b using

assms
by (simp add: power2-eq-square algebra-simps)

thus ?thesis by (cases b = 0) (simp-all add: eq-divide-imp)
qed

lemma fps-nth-deriv-fps-X [simp]: fps-nth-deriv n fps-X = (if n = 0 then fps-X else
if n=1 then 1 else 0)

by (cases n) simp-all

5.11 Powers
lemma fps-power-zeroth: (a^n) $ 0 = (a$0)^n

by (induct n) auto

lemma fps-power-zeroth-eq-one: a$0 = 1 =⇒ a^n $ 0 = 1
by (simp add: fps-power-zeroth)

lemma fps-power-first:
fixes a :: ′a::comm-semiring-1 fps
shows (a^n) $ 1 = of-nat n ∗ (a$0)^(n−1) ∗ a$1

proof (cases n)
case (Suc m)
have (a ^ Suc m) $ 1 = of-nat (Suc m) ∗ (a$0)^(Suc m − 1) ∗ a$1
proof (induct m)

case (Suc k)
hence (a ^ Suc (Suc k)) $ 1 =

a$0 ∗ of-nat (Suc k) ∗ (a $ 0)^k ∗ a$1 + a$1 ∗ ((a$0)^(Suc k))
using fps-mult-nth-1 [of a] by (simp add: fps-power-zeroth[symmetric] mult.assoc)
thus ?case by (simp add: algebra-simps)

306

qed simp
with Suc show ?thesis by simp

qed simp

lemma fps-power-first-eq: a $ 0 = 1 =⇒ a^n $ 1 = of-nat n ∗ a$1
proof (induct n)

case (Suc n)
show ?case unfolding power-Suc fps-mult-nth
using Suc.hyps[OF ‹a$0 = 1 ›] ‹a$0 = 1 › fps-power-zeroth-eq-one[OF ‹a$0=1 ›]
by (simp add: algebra-simps)

qed simp

lemma fps-power-first-eq ′:
assumes a $ 1 = 1
shows a^n $ 1 = of-nat n ∗ (a$0)^(n−1)

proof (cases n)
case (Suc m)
from assms have (a ^ Suc m) $ 1 = of-nat (Suc m) ∗ (a$0)^(Suc m − 1)

using fps-mult-nth-1 [of a]
by (induct m)

(simp-all add: algebra-simps mult-of-nat-commute fps-power-zeroth)
with Suc show ?thesis by simp

qed simp

lemmas startsby-one-power = fps-power-zeroth-eq-one

lemma startsby-zero-power : a $ 0 = 0 =⇒ n > 0 =⇒ a^n $0 = 0
by (simp add: fps-power-zeroth zero-power)

lemma startsby-power : a $0 = v =⇒ a^n $0 = v^n
by (simp add: fps-power-zeroth)

lemma startsby-nonzero-power :
fixes a :: ′a::semiring-1-no-zero-divisors fps
shows a $ 0 6= 0 =⇒ a^n $ 0 6= 0
by (simp add: startsby-power)

lemma startsby-zero-power-iff [simp]:
a^n $0 = (0 :: ′a::semiring-1-no-zero-divisors) ←→ n 6= 0 ∧ a$0 = 0

proof
show a ^ n $ 0 = 0 =⇒ n 6= 0 ∧ a $ 0 = 0
proof

assume a: a^n $ 0 = 0
thus a $ 0 = 0 using startsby-nonzero-power by auto
have n = 0 =⇒ a^n $ 0 = 1 by simp
with a show n 6= 0 by fastforce

qed
show n 6= 0 ∧ a $ 0 = 0 =⇒ a ^ n $ 0 = 0

by (cases n) auto

307

qed

lemma startsby-zero-power-prefix:
assumes a0 : a $ 0 = 0
shows ∀n < k. a ^ k $ n = 0

proof (induct k rule: nat-less-induct, clarify)
case (1 k)
fix j :: nat assume j: j < k
show a ^ k $ j = 0
proof (cases k)

case 0 with j show ?thesis by simp
next

case (Suc i)
with 1 j have ∀m∈{0<..j}. a ^ i $ (j − m) = 0 by auto
with Suc a0 show ?thesis by (simp add: fps-mult-nth sum.atLeast-Suc-atMost)

qed
qed

lemma startsby-zero-sum-depends:
assumes a0 : a $0 = 0

and kn: n ≥ k
shows sum (λi. (a ^ i)$k) {0 .. n} = sum (λi. (a ^ i)$k) {0 .. k}

proof (intro strip sum.mono-neutral-right)
show

∧
i. i ∈ {0 ..n} − {0 ..k} =⇒ a ^ i $ k = 0

by (simp add: a0 startsby-zero-power-prefix)
qed (use kn in auto)

lemma startsby-zero-power-nth-same:
assumes a0 : a$0 = 0
shows a^n $ n = (a$1) ^ n

proof (induct n)
case (Suc n)
have ∀ i∈{Suc 1 ..Suc n}. a ^ n $ (Suc n − i) = 0

using a0 startsby-zero-power-prefix[of a n] by auto
thus ?case

using a0 Suc sum.atLeast-Suc-atMost[of 0 Suc n λi. a $ i ∗ a ^ n $ (Suc n −
i)]

sum.atLeast-Suc-atMost[of 1 Suc n λi. a $ i ∗ a ^ n $ (Suc n − i)]
by (simp add: fps-mult-nth)

qed simp

lemma fps-lr-inverse-power :
fixes a :: ′a::ring-1 fps
assumes x ∗ a$0 = 1 a$0 ∗ x = 1
shows fps-left-inverse (a^n) (x^n) = fps-left-inverse a x ^ n
and fps-right-inverse (a^n) (x^n) = fps-right-inverse a x ^ n

proof−

from assms have xn:
∧

n. x^n ∗ (a^n $ 0) = 1
∧

n. (a^n $ 0) ∗ x^n = 1

308

by (simp-all add: left-right-inverse-power fps-power-zeroth)

show fps-left-inverse (a^n) (x^n) = fps-left-inverse a x ^ n
proof (induct n)

case 0
then show ?case by (simp add: fps-lr-inverse-one-one(1))

next
case (Suc n)
with assms show ?case

using xn fps-lr-inverse-mult-ring1 (1)[of x a x^n a^n]
by (simp add: power-Suc2 [symmetric])

qed

moreover have fps-right-inverse (a^n) (x^n) = fps-left-inverse (a^n) (x^n)
using xn by (intro fps-left-inverse-eq-fps-right-inverse[symmetric])

moreover have fps-right-inverse a x = fps-left-inverse a x
using assms by (intro fps-left-inverse-eq-fps-right-inverse[symmetric])

ultimately show fps-right-inverse (a^n) (x^n) = fps-right-inverse a x ^ n
by simp

qed

lemma fps-inverse-power :
fixes a :: ′a::division-ring fps
shows inverse (a^n) = inverse a ^ n

proof (cases n=0 a$0 = 0 rule: case-split[case-product case-split])
case False-True
hence LHS : inverse (a^n) = 0 and RHS : inverse a ^ n = 0

by (simp-all add: startsby-zero-power)
show ?thesis using trans-sym[OF LHS RHS] by fast

next
case False-False
from False-False(2) show ?thesis

by (simp add:
fps-inverse-def fps-power-zeroth power-inverse fps-lr-inverse-power(2)[symmetric]
)

qed auto

lemma fps-deriv-power ′:
fixes a :: ′a::comm-semiring-1 fps
shows fps-deriv (a ^ n) = (of-nat n) ∗ fps-deriv a ∗ a ^ (n − 1)

proof (cases n)
case (Suc m)
moreover have fps-deriv (a^Suc m) = of-nat (Suc m) ∗ fps-deriv a ∗ a^m

by (induct m) (simp-all add: algebra-simps)
ultimately show ?thesis by simp

qed simp

lemma fps-deriv-power :

309

fixes a :: ′a::comm-semiring-1 fps
shows fps-deriv (a ^ n) = fps-const (of-nat n) ∗ fps-deriv a ∗ a ^ (n − 1)
by (simp add: fps-deriv-power ′ fps-of-nat)

5.12 Finite and infinite products
lemma fps-prod-nth ′:

assumes finite A
shows fps-nth (

∏
x∈A. f x) n = (

∑
X∈multisets-of-size A n.

∏
x∈A. fps-nth

(f x) (count X x))
using assms

proof (induction A arbitrary: n rule: finite-induct)
case (insert a A n)
note [simp] = ‹a /∈ A›
note [intro, simp] = ‹finite A›
have (

∑
X∈multisets-of-size (insert a A) n.

∏
x∈insert a A. fps-nth (f x) (count

X x)) =
(
∑

(m,X)∈(SIGMA m:{0 ..n}. multisets-of-size A (n−m)).∏
x∈insert a A. fps-nth (f x) (count (X + replicate-mset m a) x))

by (subst sum.reindex-bij-betw[OF bij-betw-multisets-of-size-insert, symmetric])
(simp-all add: case-prod-unfold)

also have . . . = (
∑

m=0 ..n.
∑

X∈multisets-of-size A (n−m).∏
x∈insert a A. fps-nth (f x) (count (X + replicate-mset m a) x))

by (rule sum.Sigma [symmetric]) auto
also have . . . = (

∑
m=0 ..n. fps-nth (f a) m ∗ fps-nth (

∏
x∈A. f x) (n − m))

proof (rule sum.cong)
fix m
assume m: m ∈ {0 ..n}
have (

∑
X∈multisets-of-size A (n−m).∏
x∈insert a A. fps-nth (f x) (count (X + replicate-mset m a) x)) =

(
∑

X∈multisets-of-size A (n−m). fps-nth (f a) (count X a + m) ∗
(
∏

x∈A. fps-nth (f x) (count (X + replicate-mset m a) x)))
by simp

also have . . . = (
∑

X∈multisets-of-size A (n−m). fps-nth (f a) m ∗
(
∏

x∈A. fps-nth (f x) (count (X + replicate-mset m a) x)))
by (intro sum.cong arg-cong2 [of - - - - (∗)] arg-cong2 [of - - - - fps-nth] refl)

(auto simp: multisets-of-size-def simp flip: not-in-iff)
also have . . . = fps-nth (f a) m ∗ (

∑
X∈multisets-of-size A (n−m).

(
∏

x∈A. fps-nth (f x) (count (X + replicate-mset m a) x)))
by (simp add: sum-distrib-left)

also have (
∑

X∈multisets-of-size A (n−m).
∏

x∈A. fps-nth (f x) (count (X
+ replicate-mset m a) x)) =

(
∑

X∈multisets-of-size A (n−m).
∏

x∈A. fps-nth (f x) (count X x))
by (intro sum.cong prod.cong) auto

also have . . . = fps-nth (
∏

x∈A. f x) (n − m)
by (rule insert.IH [symmetric])

finally show (
∑

X∈multisets-of-size A (n−m).
∏

x∈insert a A. fps-nth (f x)
(count (X + replicate-mset m a) x)) =

fps-nth (f a) m ∗ fps-nth (
∏

x∈A. f x) (n − m) .

310

qed auto
also have . . . = fps-nth (

∏
x∈insert a A. f x) n

by (simp add: fps-mult-nth)
finally show ?case ..

qed auto

theorem tendsto-prod-fps:
fixes f :: nat ⇒ ′a :: {idom, t2-space} fps
assumes [simp]:

∧
k. f k 6= 0

assumes g:
∧

n k. k > g n =⇒ subdegree (f k − 1) > n
defines P ≡ Abs-fps (λn. (

∑
X∈multisets-of-size {..g n} n.

∏
i≤g n. fps-nth (f

i) (count X i)))
shows (λn.

∏
k≤n. f k) −−−−→ P

proof (rule tendsto-fpsI)
fix n :: nat
show eventually (λN . fps-nth (prod f {..N}) n = fps-nth P n) at-top

using eventually-ge-at-top[of g n]
proof eventually-elim

case (elim N)
have fps-nth (prod f {..N}) n = (

∑
X∈multisets-of-size {..N} n.

∏
x≤N .

fps-nth (f x) (count X x))
by (subst fps-prod-nth ′) auto

also have . . . = (
∑

X | X ∈ multisets-of-size {..N} n ∧ (∀ x≤N . fps-nth (f x)
(count X x) 6= 0).∏

x≤N . fps-nth (f x) (count X x))
by (intro sum.mono-neutral-right) auto

also have {X . X ∈ multisets-of-size {..N} n ∧ (∀ x≤N . fps-nth (f x) (count X
x) 6= 0)} =

{X . X ∈ multisets-of-size {..g n} n ∧ (∀ x≤N . fps-nth (f x) (count X
x) 6= 0)}

(is ?lhs = ?rhs)
proof (intro equalityI subsetI)

fix X assume X ∈ ?rhs
thus X ∈ ?lhs using elim multisets-of-size-mono[of {..g n} {..N}] by auto

next
fix X assume X ∈ ?lhs

hence X : set-mset X ⊆ {..N} size X = n
∧

x. x ≤ N =⇒ fps-nth (f x) (count
X x) 6= 0

by (auto simp: multisets-of-size-def)
have set-mset X ⊆ {..g n}
proof

fix x assume ∗: x ∈ set-mset X
show x ∈ {..g n}
proof (rule ccontr)

assume x /∈ {..g n}
hence x: x > g n x ≤ N

using X(1) ∗ by auto
have count X x ≤ n

311

using X x count-le-size[of X x] by (auto simp: Pi-def)
also have n < subdegree (f x − 1)

by (rule g) (use x in auto)
finally have fps-nth (f x − 1) (count X x) = 0

by blast
hence fps-nth (f x) (count X x) = 0

using ∗ by simp
moreover have fps-nth (f x) (count X x) 6= 0

by (intro X(3)) (use x in auto)
ultimately show False by contradiction

qed
qed
thus X ∈ ?rhs using X

by (auto simp: multisets-of-size-def)
qed

also have (
∑

X | X ∈ multisets-of-size {..g n} n ∧ (∀ x≤N . fps-nth (f x) (count
X x) 6= 0). ∏

x≤N . fps-nth (f x) (count X x)) =
(
∑

X | X ∈ multisets-of-size {..g n} n ∧ (∀ x≤N . fps-nth (f x) (count
X x) 6= 0). ∏

i≤g n. fps-nth (f i) (count X i))
proof (intro sum.cong prod.mono-neutral-right ballI)

fix X i
assume i: i ∈ {..N} − {..g n}
assume X ∈ {X . X ∈ multisets-of-size {..g n} n ∧ (∀ x≤N . fps-nth (f x)

(count X x) 6= 0)}
hence h: X ∈ multisets-of-size {..g n} n

∧
x. x ≤ N =⇒ fps-nth (f x) (count

X x) 6= 0
by blast+

have i /∈# X
using i h unfolding multisets-of-size-def by auto

have n < subdegree (f i − 1)
by (intro g) (use i in auto)

moreover have count X i ≤ n
using ‹i /∈# X› by (simp add: not-in-iff)

ultimately have fps-nth (f i − 1) (count X i) = 0
by (intro nth-less-subdegree-zero) auto

thus fps-nth (f i) (count X i) = 1
using h(2) i ‹i /∈# X› by (auto split: if-splits)

qed (use elim in auto)

also have (
∑

X | X ∈ multisets-of-size {..g n} n ∧ (∀ x≤N . fps-nth (f x) (count
X x) 6= 0). ∏

i≤g n. fps-nth (f i) (count X i)) =
(
∑

X ∈ multisets-of-size {..g n} n.
∏

i≤g n. fps-nth (f i) (count X i))
proof (intro sum.mono-neutral-left ballI)

fix X assume X ∈ multisets-of-size {..g n} n −
{X∈multisets-of-size {..g n} n. ∀ x≤N . fps-nth (f x) (count X x)

312

6= 0}
then obtain i

where h: X ∈ multisets-of-size {..g n} n
and i: i ≤ N fps-nth (f i) (count X i) = 0
by blast

have ¬(i > g n)
proof

assume i ′: i > g n
hence count X i = 0

using h by (auto simp: multisets-of-size-def simp flip: not-in-iff)
have subdegree (f i − 1) > n

by (intro g) (use i ′ in auto)
hence subdegree (f i − 1) > 0

by simp
hence fps-nth (f i − 1) 0 = 0

by blast
hence fps-nth (f i) (count X i) = 1

using ‹count X i = 0 › by simp
thus False using i by simp

qed
thus (

∏
x≤g n. fps-nth (f x) (count X x)) = 0

using i by auto
qed auto

also have . . . = fps-nth P n
by (simp add: P-def)

finally show fps-nth (
∏

k≤N . f k) n = fps-nth P n .
qed

qed

5.13 Integration
definition fps-integral :: ′a::{semiring-1 ,inverse} fps ⇒ ′a ⇒ ′a fps

where fps-integral a a0 =
Abs-fps (λn. if n=0 then a0 else inverse (of-nat n) ∗ a$(n − 1))

abbreviation fps-integral0 a ≡ fps-integral a 0

lemma fps-integral-nth-0-Suc [simp]:
fixes a :: ′a::{semiring-1 ,inverse} fps
shows fps-integral a a0 $ 0 = a0
and fps-integral a a0 $ Suc n = inverse (of-nat (Suc n)) ∗ a $ n
by (auto simp: fps-integral-def)

lemma fps-integral-conv-plus-const:
fps-integral a a0 = fps-integral a 0 + fps-const a0
unfolding fps-integral-def by (intro fps-ext) simp

lemma fps-deriv-fps-integral:

313

fixes a :: ′a::{division-ring,ring-char-0} fps
shows fps-deriv (fps-integral a a0) = a

proof (intro fps-ext)
fix n
have (of-nat (Suc n) :: ′a) 6= 0 by (rule of-nat-neq-0)
hence of-nat (Suc n) ∗ inverse (of-nat (Suc n) :: ′a) = 1 by simp
moreover have

fps-deriv (fps-integral a a0) $ n = of-nat (Suc n) ∗ inverse (of-nat (Suc n)) ∗
a $ n

by (simp add: mult.assoc)
ultimately show fps-deriv (fps-integral a a0) $ n = a $ n by simp

qed

lemma fps-integral0-deriv:
fixes a :: ′a::{division-ring,ring-char-0} fps
shows fps-integral0 (fps-deriv a) = a − fps-const (a$0)

proof (intro fps-ext)
fix n
show fps-integral0 (fps-deriv a) $ n = (a − fps-const (a$0)) $ n
proof (cases n)

case (Suc m)
have (of-nat (Suc m) :: ′a) 6= 0 by (rule of-nat-neq-0)
hence inverse (of-nat (Suc m) :: ′a) ∗ of-nat (Suc m) = 1 by simp
moreover have

fps-integral0 (fps-deriv a) $ Suc m =
inverse (of-nat (Suc m)) ∗ of-nat (Suc m) ∗ a $ (Suc m)

by (simp add: mult.assoc)
ultimately show ?thesis using Suc by simp

qed simp
qed

lemma fps-integral-deriv:
fixes a :: ′a::{division-ring,ring-char-0} fps
shows fps-integral (fps-deriv a) (a$0) = a
using fps-integral-conv-plus-const[of fps-deriv a a$0]
by (simp add: fps-integral0-deriv)

lemma fps-integral0-zero:
fps-integral0 (0 :: ′a::{semiring-1 ,inverse} fps) = 0
by (intro fps-ext) (simp add: fps-integral-def)

lemma fps-integral0-fps-const ′:
fixes c :: ′a::{semiring-1 ,inverse}
assumes inverse (1 :: ′a) = 1
shows fps-integral0 (fps-const c) = fps-const c ∗ fps-X

proof (intro fps-ext)
fix n
show fps-integral0 (fps-const c) $ n = (fps-const c ∗ fps-X) $ n

by (cases n) (simp-all add: assms mult-delta-right)

314

qed

lemma fps-integral0-fps-const:
fixes c :: ′a::division-ring
shows fps-integral0 (fps-const c) = fps-const c ∗ fps-X
by (rule fps-integral0-fps-const ′[OF inverse-1])

lemma fps-integral0-one ′:
assumes inverse (1 :: ′a::{semiring-1 ,inverse}) = 1
shows fps-integral0 (1 :: ′a fps) = fps-X
using assms fps-integral0-fps-const ′[of 1 :: ′a]
by simp

lemma fps-integral0-one:
fps-integral0 (1 :: ′a::division-ring fps) = fps-X
by (rule fps-integral0-one ′[OF inverse-1])

lemma fps-integral0-fps-const-mult-left:
fixes a :: ′a::division-ring fps
shows fps-integral0 (fps-const c ∗ a) = fps-const c ∗ fps-integral0 a

proof (intro fps-ext)
fix n
show fps-integral0 (fps-const c ∗ a) $ n = (fps-const c ∗ fps-integral0 a) $ n

using mult-inverse-of-nat-commute[of n c, symmetric]
mult.assoc[of inverse (of-nat n) c a$(n−1)]
mult.assoc[of c inverse (of-nat n) a$(n−1)]

by (simp add: fps-integral-def)
qed

lemma fps-integral0-fps-const-mult-right:
fixes a :: ′a::{semiring-1 ,inverse} fps
shows fps-integral0 (a ∗ fps-const c) = fps-integral0 a ∗ fps-const c
by (intro fps-ext) (simp add: fps-integral-def algebra-simps)

lemma fps-integral0-neg:
fixes a :: ′a::{ring-1 ,inverse} fps
shows fps-integral0 (−a) = − fps-integral0 a
using fps-integral0-fps-const-mult-right[of a −1]
by (simp add: fps-const-neg[symmetric])

lemma fps-integral0-add:
fps-integral0 (a+b) = fps-integral0 a + fps-integral0 b
by (intro fps-ext) (simp add: fps-integral-def algebra-simps)

lemma fps-integral0-linear :
fixes a b :: ′a::division-ring
shows fps-integral0 (fps-const a ∗ f + fps-const b ∗ g) =

fps-const a ∗ fps-integral0 f + fps-const b ∗ fps-integral0 g
by (simp add: fps-integral0-add fps-integral0-fps-const-mult-left)

315

lemma fps-integral0-linear2 :
fps-integral0 (f ∗ fps-const a + g ∗ fps-const b) =

fps-integral0 f ∗ fps-const a + fps-integral0 g ∗ fps-const b
by (simp add: fps-integral0-add fps-integral0-fps-const-mult-right)

lemma fps-integral-linear :
fixes a b a0 b0 :: ′a::division-ring
shows
fps-integral (fps-const a ∗ f + fps-const b ∗ g) (a∗a0 + b∗b0) =

fps-const a ∗ fps-integral f a0 + fps-const b ∗ fps-integral g b0
using fps-integral-conv-plus-const[of

fps-const a ∗ f + fps-const b ∗ g
a∗a0 + b∗b0

]
fps-integral-conv-plus-const[of f a0] fps-integral-conv-plus-const[of g b0]

by (simp add: fps-integral0-linear algebra-simps)

lemma fps-integral0-sub:
fixes a b :: ′a::{ring-1 ,inverse} fps
shows fps-integral0 (a−b) = fps-integral0 a − fps-integral0 b
using fps-integral0-linear2 [of a 1 b −1]
by (simp add: fps-const-neg[symmetric])

lemma fps-integral0-of-nat:
fps-integral0 (of-nat n :: ′a::division-ring fps) = of-nat n ∗ fps-X
using fps-integral0-fps-const[of of-nat n :: ′a] by (simp add: fps-of-nat)

lemma fps-integral0-sum:
fps-integral0 (sum f S) = sum (λi. fps-integral0 (f i)) S

proof (cases finite S)
case True show ?thesis

by (induct rule: finite-induct [OF True])
(simp-all add: fps-integral0-zero fps-integral0-add)

qed (simp add: fps-integral0-zero)

lemma fps-integral0-by-parts:
fixes a b :: ′a::{division-ring,ring-char-0} fps
shows

fps-integral0 (a ∗ b) =
a ∗ fps-integral0 b − fps-integral0 (fps-deriv a ∗ fps-integral0 b)

proof−
have fps-integral0 (fps-deriv (a ∗ fps-integral0 b)) = a ∗ fps-integral0 b

using fps-integral0-deriv[of (a ∗ fps-integral0 b)] by simp
moreover have

fps-integral0 (a ∗ b) =
fps-integral0 (fps-deriv (a ∗ fps-integral0 b)) −
fps-integral0 (fps-deriv a ∗ fps-integral0 b)

by (auto simp: fps-deriv-fps-integral fps-integral0-sub[symmetric])

316

ultimately show ?thesis by simp
qed

lemma fps-integral0-fps-X :
fps-integral0 (fps-X :: ′a::{semiring-1 ,inverse} fps) =

fps-const (inverse (of-nat 2)) ∗ fps-X2

by (intro fps-ext) (auto simp: fps-integral-def)

lemma fps-integral0-fps-X-power :
fps-integral0 ((fps-X :: ′a::{semiring-1 ,inverse} fps) ^ n) =

fps-const (inverse (of-nat (Suc n))) ∗ fps-X ^ Suc n
proof (intro fps-ext)

fix k show
fps-integral0 ((fps-X :: ′a fps) ^ n) $ k =
(fps-const (inverse (of-nat (Suc n))) ∗ fps-X ^ Suc n) $ k

by (cases k) simp-all
qed

5.14 Composition
definition fps-compose :: ′a::semiring-1 fps ⇒ ′a fps ⇒ ′a fps (infixl ‹oo› 55)

where a oo b = Abs-fps (λn. sum (λi. a$i ∗ (b^i$n)) {0 ..n})

lemma fps-compose-nth: (a oo b)$n = sum (λi. a$i ∗ (b^i$n)) {0 ..n}
by (simp add: fps-compose-def)

lemma fps-compose-nth-0 [simp]: (f oo g) $ 0 = f $ 0
by (simp add: fps-compose-nth)

lemma fps-compose-fps-X [simp]: a oo fps-X = (a :: ′a::comm-ring-1 fps)
by (simp add: fps-ext fps-compose-def mult-delta-right)

lemma fps-const-compose[simp]: fps-const (a:: ′a::comm-ring-1) oo b = fps-const a
by (simp add: fps-eq-iff fps-compose-nth mult-delta-left)

lemma numeral-compose[simp]: (numeral k :: ′a::comm-ring-1 fps) oo b = numeral
k

unfolding numeral-fps-const by simp

lemma neg-numeral-compose[simp]: (− numeral k :: ′a::comm-ring-1 fps) oo b =
− numeral k

unfolding neg-numeral-fps-const by simp

lemma fps-X-fps-compose-startby0 [simp]: a$0 = 0 =⇒ fps-X oo a = (a :: ′a::comm-ring-1
fps)

by (simp add: fps-eq-iff fps-compose-def mult-delta-left not-le)

317

5.15 Rules from Herbert Wilf’s Generatingfunctionology
5.15.1 Rule 1
lemma fps-power-mult-eq-shift:

fps-X^Suc k ∗ Abs-fps (λn. a (n + Suc k)) =
Abs-fps a − sum (λi. fps-const (a i :: ′a::comm-ring-1) ∗ fps-X^i) {0 .. k}

(is ?lhs = ?rhs)
proof −

have ?lhs $ n = ?rhs $ n for n :: nat
proof −

have ?lhs $ n = (if n < Suc k then 0 else a n)
unfolding fps-X-power-mult-nth by auto

also have . . . = ?rhs $ n
proof (induct k)

case 0
then show ?case

by (simp add: fps-sum-nth)
next

case (Suc k)
have (Abs-fps a − sum (λi. fps-const (a i :: ′a) ∗ fps-X^i) {0 .. Suc k})$n =
(Abs-fps a − sum (λi. fps-const (a i :: ′a) ∗ fps-X^i) {0 .. k} −

fps-const (a (Suc k)) ∗ fps-X^ Suc k) $ n
by (simp add: field-simps)

also have . . . = (if n < Suc k then 0 else a n) − (fps-const (a (Suc k)) ∗
fps-X^ Suc k)$n

using Suc.hyps[symmetric] unfolding fps-sub-nth by simp
also have . . . = (if n < Suc (Suc k) then 0 else a n)

unfolding fps-X-power-mult-right-nth
by (simp add: not-less le-less-Suc-eq)

finally show ?case
by simp

qed
finally show ?thesis .

qed
then show ?thesis

by (simp add: fps-eq-iff)
qed

5.15.2 Rule 2
definition fps-XD = (∗) fps-X ◦ fps-deriv

lemma fps-XD-add[simp]:fps-XD (a + b) = fps-XD a + fps-XD (b :: ′a::comm-ring-1
fps)

by (simp add: fps-XD-def field-simps)

lemma fps-XD-mult-const[simp]:fps-XD (fps-const (c:: ′a::comm-ring-1) ∗ a) =
fps-const c ∗ fps-XD a

by (simp add: fps-XD-def field-simps)

318

lemma fps-XD-linear [simp]: fps-XD (fps-const c ∗ a + fps-const d ∗ b) =
fps-const c ∗ fps-XD a + fps-const d ∗ fps-XD (b :: ′a::comm-ring-1 fps)

by simp

lemma fps-XDN-linear :
(fps-XD ^^ n) (fps-const c ∗ a + fps-const d ∗ b) =
fps-const c ∗ (fps-XD ^^ n) a + fps-const d ∗ (fps-XD ^^ n) (b :: ′a::comm-ring-1

fps)
by (induct n) simp-all

lemma fps-mult-fps-X-deriv-shift: fps-X∗ fps-deriv a = Abs-fps (λn. of-nat n∗ a$n)
by (simp add: fps-eq-iff)

lemma fps-mult-fps-XD-shift:
(fps-XD ^^ k) (a :: ′a::comm-ring-1 fps) = Abs-fps (λn. (of-nat n ^ k) ∗ a$n)
by (induct k arbitrary: a) (simp-all add: fps-XD-def fps-eq-iff field-simps del:

One-nat-def)

5.15.3 Rule 3

Rule 3 is trivial and is given by fps_times_def.

5.15.4 Rule 5 — summation and “division” by 1−X

lemma fps-divide-fps-X-minus1-sum-lemma:
a = ((1 :: ′a::ring-1 fps) − fps-X) ∗ Abs-fps (λn. sum (λi. a $ i) {0 ..n})

proof (rule fps-ext)
define f g :: ′a fps

where f ≡ 1 − fps-X
and g ≡ Abs-fps (λn. sum (λi. a $ i) {0 ..n})

fix n show a $ n= (f ∗ g) $ n
proof (cases n)

case (Suc m)
hence (f ∗ g) $ n = g $ Suc m − g $ m

using fps-mult-nth[of f g Suc m]
sum.atLeast-Suc-atMost[of 0 Suc m λi. f $ i ∗ g $ (Suc m − i)]
sum.atLeast-Suc-atMost[of 1 Suc m λi. f $ i ∗ g $ (Suc m − i)]

by (simp add: f-def)
with Suc show ?thesis by (simp add: g-def)

qed (simp add: f-def g-def)
qed

lemma fps-divide-fps-X-minus1-sum-ring1 :
assumes inverse 1 = (1 :: ′a::{ring-1 ,inverse})
shows a /((1 :: ′a fps) − fps-X) = Abs-fps (λn. sum (λi. a $ i) {0 ..n})

proof−
from assms have a /((1 :: ′a fps) − fps-X) = a ∗ Abs-fps (λn. 1)

by (simp add: fps-divide-def fps-inverse-def fps-lr-inverse-one-minus-fps-X(2))

319

thus ?thesis by (auto intro: fps-ext simp: fps-mult-nth)
qed

lemma fps-divide-fps-X-minus1-sum:
a /((1 :: ′a::division-ring fps) − fps-X) = Abs-fps (λn. sum (λi. a $ i) {0 ..n})
using fps-divide-fps-X-minus1-sum-ring1 [of a] by simp

5.15.5 Rule 4 in its more general form

This generalizes Rule 3 for an arbitrary finite product of FPS, also the
relevant instance of powers of a FPS.
definition natpermute n k = {l :: nat list. length l = k ∧ sum-list l = n}

lemma natlist-trivial-1 : natpermute n 1 = {[n]}
proof −

have [[length xs = 1 ; n = sum-list xs]] =⇒ xs = [sum-list xs] for xs
by (cases xs) auto

then show ?thesis
by (auto simp add: natpermute-def)

qed

lemma natlist-trivial-Suc0 [simp]: natpermute n (Suc 0) = {[n]}
using natlist-trivial-1 by force

lemma append-natpermute-less-eq:
assumes xs @ ys ∈ natpermute n k
shows sum-list xs ≤ n

and sum-list ys ≤ n
proof −

from assms have sum-list (xs @ ys) = n
by (simp add: natpermute-def)

then have sum-list xs + sum-list ys = n
by simp

then show sum-list xs ≤ n and sum-list ys ≤ n
by simp-all

qed

lemma natpermute-split:
assumes h ≤ k
shows natpermute n k =
(
⋃

m ∈{0 ..n}. {l1 @ l2 |l1 l2 . l1 ∈ natpermute m h ∧ l2 ∈ natpermute (n −
m) (k − h)})
(is ?L = ?R is - = (

⋃
m ∈{0 ..n}. ?S m))

proof
show ?R ⊆ ?L
proof

fix l
assume l: l ∈ ?R
from l obtain m xs ys where h: m ∈ {0 ..n}

320

and xs: xs ∈ natpermute m h
and ys: ys ∈ natpermute (n − m) (k − h)
and leq: l = xs@ys by blast

from xs have xs ′: sum-list xs = m
by (simp add: natpermute-def)

from ys have ys ′: sum-list ys = n − m
by (simp add: natpermute-def)

show l ∈ ?L using leq xs ys h
using assms by (force simp add: natpermute-def)

qed
show ?L ⊆ ?R
proof

fix l
assume l: l ∈ natpermute n k
let ?xs = take h l
let ?ys = drop h l
let ?m = sum-list ?xs
from l have ls: sum-list (?xs @ ?ys) = n

by (simp add: natpermute-def)
have xs: ?xs ∈ natpermute ?m h using l assms

by (simp add: natpermute-def)
have l-take-drop: sum-list l = sum-list (take h l @ drop h l)

by simp
then have ys: ?ys ∈ natpermute (n − ?m) (k − h)
using l assms ls by (auto simp add: natpermute-def simp del: append-take-drop-id)
from ls have m: ?m ∈ {0 ..n}

by (simp add: l-take-drop del: append-take-drop-id)
have sum-list (take h l) ≤ sum-list l

using l-take-drop ls m by presburger
with xs ys ls l show l ∈ ?R

by simp (metis append-take-drop-id m)
qed

qed

lemma natpermute-0 : natpermute n 0 = (if n = 0 then {[]} else {})
by (auto simp add: natpermute-def)

lemma natpermute-0 ′[simp]: natpermute 0 k = (if k = 0 then {[]} else {replicate
k 0})

by (auto simp add: set-replicate-conv-if natpermute-def replicate-length-same)

lemma natpermute-finite: finite (natpermute n k)
proof (induct k arbitrary: n)

case 0
then show ?case

by (simp add: natpermute-0)
next

case (Suc k)
then show ?case

321

using natpermute-split [of k Suc k] finite-UN-I by simp
qed

lemma natpermute-contain-maximal:
{xs ∈ natpermute n (k + 1). n ∈ set xs} = (

⋃
i∈{0 .. k}. {(replicate (k + 1) 0)

[i:=n]})
(is ?A = ?B)

proof
show ?A ⊆ ?B
proof

fix xs
assume xs ∈ ?A
then have H : xs ∈ natpermute n (k + 1) and n: n ∈ set xs

by blast+
then obtain i where i: i ∈ {0 .. k} xs!i = n

unfolding in-set-conv-nth by (auto simp add: less-Suc-eq-le natpermute-def)
have eqs: ({0 ..k} − {i}) ∪ {i} = {0 ..k}

using i by auto
have f : finite({0 ..k} − {i}) finite {i}

by auto
have d: ({0 ..k} − {i}) ∩ {i} = {}

using i by auto
from H have n = sum (nth xs) {0 ..k}
by (auto simp add: natpermute-def atLeastLessThanSuc-atLeastAtMost sum-list-sum-nth)
also have . . . = n + sum (nth xs) ({0 ..k} − {i})

unfolding sum.union-disjoint[OF f d, unfolded eqs] using i by simp
finally have zxs: ∀ j∈ {0 ..k} − {i}. xs!j = 0

by auto
from H have xsl: length xs = k+1

by (simp add: natpermute-def)
from i have i ′: i < length (replicate (k+1) 0) i < k+1

unfolding length-replicate by presburger+
have xs = (replicate (k+1) 0) [i := n]
proof (rule nth-equalityI)

show length xs = length ((replicate (k + 1) 0)[i := n])
by (metis length-list-update length-replicate xsl)

show xs ! j = (replicate (k + 1) 0)[i := n] ! j if j < length xs for j
proof (cases j = i)

case True
then show ?thesis

by (metis i ′(1) i(2) nth-list-update)
next

case False
with that show ?thesis

by (simp add: xsl zxs del: replicate.simps split: nat.split)
qed

qed
then show xs ∈ ?B using i by blast

qed

322

show ?B ⊆ ?A
proof

fix xs
assume xs ∈ ?B
then obtain i where i: i ∈ {0 ..k} and xs: xs = (replicate (k + 1) 0) [i:=n]

by auto
have nxs: n ∈ set xs

unfolding xs using set-update-memI i
by (metis Suc-eq-plus1 atLeast0AtMost atMost-iff le-simps(2) length-replicate)

have xsl: length xs = k + 1
by (simp only: xs length-replicate length-list-update)

have sum-list xs = sum (nth xs) {0 ..<k+1}
unfolding sum-list-sum-nth xsl ..

also have . . . = sum (λj. if j = i then n else 0) {0 ..< k+1}
by (rule sum.cong) (simp-all add: xs del: replicate.simps)

also have . . . = n using i by simp
finally have xs ∈ natpermute n (k + 1)

using xsl unfolding natpermute-def mem-Collect-eq by blast
then show xs ∈ ?A

using nxs by blast
qed

qed

The general form.
lemma fps-prod-nth:

fixes m :: nat
and a :: nat ⇒ ′a::comm-ring-1 fps

shows (prod a {0 .. m}) $ n =
sum (λv. prod (λj. (a j) $ (v!j)) {0 ..m}) (natpermute n (m+1))

(is ?P m n)
proof (induct m arbitrary: n rule: nat-less-induct)

fix m n assume H : ∀m ′ < m. ∀n. ?P m ′ n
show ?P m n
proof (cases m)

case 0
then show ?thesis

by simp
next

case (Suc k)
then have km: k < m by arith
have u0 : {0 .. k} ∪ {m} = {0 ..m}

using Suc by (simp add: set-eq-iff) presburger
have f0 : finite {0 .. k} finite {m} by auto
have d0 : {0 .. k} ∩ {m} = {} using Suc by auto
have (prod a {0 .. m}) $ n = (prod a {0 .. k} ∗ a m) $ n

unfolding prod.union-disjoint[OF f0 d0 , unfolded u0] by simp
also have . . . = (

∑
i = 0 ..n. (

∑
v∈natpermute i (k + 1).

(
∏

j = 0 ..k. a j $ v ! j) ∗ a m $ (n − i)))
unfolding fps-mult-nth H [rule-format, OF km] sum-distrib-right ..

323

also have ... = (
∑

i = 0 ..n.∑
v∈(λl1 . l1 @ [n − i]) ‘ natpermute i (Suc k).

(
∏

j = 0 ..k. a j $ v ! j) ∗ a (Suc k) $ v ! Suc k)
by (intro sum.cong [OF refl sym] sum.reindex-cong) (auto simp: inj-on-def

natpermute-def nth-append Suc)
also have ... = (

∑
v∈(

⋃
x∈{0 ..n}. {l1 @ [n − x] |l1 . l1 ∈ natpermute x (Suc

k)}).
(
∏

j = 0 ..k. a j $ v ! j) ∗ a (Suc k) $ v ! Suc k)
by (subst sum.UNION-disjoint) (auto simp add: natpermute-finite setcompr-eq-image)
also have . . . = (

∑
v∈natpermute n (m + 1).

∏
j∈{0 ..m}. a j $ v ! j)

using natpermute-split[of m m + 1] by (simp add: Suc)
finally show ?thesis .

qed
qed

The special form for powers.
lemma fps-power-nth-Suc:

fixes m :: nat
and a :: ′a::comm-ring-1 fps

shows (a ^ Suc m)$n = sum (λv. prod (λj. a $ (v!j)) {0 ..m}) (natpermute n
(m+1))
proof −

have th0 : a^Suc m = prod (λi. a) {0 ..m}
by (simp add: prod-constant)

show ?thesis unfolding th0 fps-prod-nth ..
qed

lemma fps-power-nth:
fixes m :: nat

and a :: ′a::comm-ring-1 fps
shows (a ^m)$n =
(if m=0 then 1$n else sum (λv. prod (λj. a $ (v!j)) {0 ..m − 1}) (natpermute

n m))
by (cases m) (simp-all add: fps-power-nth-Suc del: power-Suc)

lemmas fps-nth-power-0 = fps-power-zeroth

lemma natpermute-max-card:
assumes n0 : n 6= 0
shows card {xs ∈ natpermute n (k + 1). n ∈ set xs} = k + 1
unfolding natpermute-contain-maximal

proof −
let ?A = λi. {(replicate (k + 1) 0)[i := n]}
let ?K = {0 ..k}
have fK : finite ?K

by simp
have fAK : ∀ i∈?K . finite (?A i)

by auto
have d: ∀ i∈ ?K . ∀ j∈ ?K . i 6= j −→

324

{(replicate (k + 1) 0)[i := n]} ∩ {(replicate (k + 1) 0)[j := n]} = {}
proof clarify

fix i j
assume i: i ∈ ?K and j: j ∈ ?K and ij: i 6= j
have False if eq: (replicate (k+1) 0)[i:=n] = (replicate (k+1) 0)[j:= n]
proof −

have (replicate (k+1) 0) [i:=n] ! i = n
using i by (simp del: replicate.simps)

moreover
have (replicate (k+1) 0) [j:=n] ! i = 0

using i ij by (simp del: replicate.simps)
ultimately show ?thesis

using eq n0 by (simp del: replicate.simps)
qed
then show {(replicate (k + 1) 0)[i := n]} ∩ {(replicate (k + 1) 0)[j := n]} =

{}
by auto

qed
from card-UN-disjoint[OF fK fAK d]
show card (

⋃
i∈{0 ..k}. {(replicate (k + 1) 0)[i := n]}) = k + 1

by simp
qed

lemma fps-power-Suc-nth:
fixes f :: ′a :: comm-ring-1 fps
assumes k: k > 0
shows (f ^ Suc m) $ k =

of-nat (Suc m) ∗ (f $ k ∗ (f $ 0) ^ m) +
(
∑

v∈{v∈natpermute k (m+1). k /∈ set v}.
∏

j = 0 ..m. f $ v ! j)
proof −

define A B
where A = {v∈natpermute k (m+1). k ∈ set v}

and B = {v∈natpermute k (m+1). k /∈ set v}
have [simp]: finite A finite B A ∩ B = {} by (auto simp: A-def B-def natper-

mute-finite)

from natpermute-max-card[of k m] k have card-A: card A = m + 1 by (simp
add: A-def)

{
fix v assume v: v ∈ A
from v have [simp]: length v = Suc m by (simp add: A-def natpermute-def)
from v have ∃ j. j ≤ m ∧ v ! j = k

by (auto simp: set-conv-nth A-def natpermute-def less-Suc-eq-le)
then obtain j where j: j ≤ m v ! j = k by auto

from v have k = sum-list v by (simp add: A-def natpermute-def)
also have . . . = (

∑
i=0 ..m. v ! i)

by (simp add: sum-list-sum-nth atLeastLessThanSuc-atLeastAtMost del: sum.op-ivl-Suc)
also from j have {0 ..m} = insert j ({0 ..m}−{j}) by auto

325

also from j have (
∑

i∈. . . . v ! i) = k + (
∑

i∈{0 ..m}−{j}. v ! i)
by (subst sum.insert) simp-all

finally have (
∑

i∈{0 ..m}−{j}. v ! i) = 0 by simp
hence zero: v ! i = 0 if i ∈ {0 ..m}−{j} for i using that

by (subst (asm) sum-eq-0-iff) auto

from j have {0 ..m} = insert j ({0 ..m} − {j}) by auto
also from j have (

∏
i∈. . . . f $ (v ! i)) = f $ k ∗ (

∏
i∈{0 ..m} − {j}. f $ (v !

i))
by (subst prod.insert) auto

also have (
∏

i∈{0 ..m} − {j}. f $ (v ! i)) = (
∏

i∈{0 ..m} − {j}. f $ 0)
by (intro prod.cong) (simp-all add: zero)

also from j have . . . = (f $ 0) ^ m by (subst prod-constant) simp-all
finally have (

∏
j = 0 ..m. f $ (v ! j)) = f $ k ∗ (f $ 0) ^ m .

} note A = this

have (f ^ Suc m) $ k = (
∑

v∈natpermute k (m + 1).
∏

j = 0 ..m. f $ v ! j)
by (rule fps-power-nth-Suc)

also have natpermute k (m+1) = A ∪ B unfolding A-def B-def by blast
also have (

∑
v∈. . . .

∏
j = 0 ..m. f $ (v ! j)) =

(
∑

v∈A.
∏

j = 0 ..m. f $ (v ! j)) + (
∑

v∈B.
∏

j = 0 ..m. f $ (v ! j))
by (intro sum.union-disjoint) simp-all

also have (
∑

v∈A.
∏

j = 0 ..m. f $ (v ! j)) = of-nat (Suc m) ∗ (f $ k ∗ (f $ 0)
^ m)

by (simp add: A card-A)
finally show ?thesis by (simp add: B-def)

qed

lemma fps-power-Suc-eqD:
fixes f g :: ′a :: {idom,semiring-char-0} fps
assumes f ^ Suc m = g ^ Suc m f $ 0 = g $ 0 f $ 0 6= 0
shows f = g

proof (rule fps-ext)
fix k :: nat
show f $ k = g $ k
proof (induction k rule: less-induct)

case (less k)
show ?case
proof (cases k = 0)

case False
let ?h = λf . (

∑
v | v ∈ natpermute k (m + 1) ∧ k /∈ set v.

∏
j = 0 ..m. f $

v ! j)
from False fps-power-Suc-nth[of k f m] fps-power-Suc-nth[of k g m]

have f $ k ∗ (of-nat (Suc m) ∗ (f $ 0) ^ m) + ?h f =
g $ k ∗ (of-nat (Suc m) ∗ (f $ 0) ^ m) + ?h g using assms

by (simp add: mult-ac del: power-Suc of-nat-Suc)
also have v ! i < k if v ∈ {v∈natpermute k (m+1). k /∈ set v} i ≤ m for v i

using that elem-le-sum-list[of i v] unfolding natpermute-def
by (auto simp: set-conv-nth dest!: spec[of - i])

326

hence ?h f = ?h g
by (intro sum.cong refl prod.cong less lessI) (simp add: natpermute-def)

finally have f $ k ∗ (of-nat (Suc m) ∗ (f $ 0) ^ m) = g $ k ∗ (of-nat (Suc
m) ∗ (f $ 0) ^ m)

by simp
with assms show f $ k = g $ k

by (subst (asm) mult-right-cancel) (auto simp del: of-nat-Suc)
qed (simp-all add: assms)

qed
qed

lemma fps-power-Suc-eqD ′:
fixes f g :: ′a :: {idom,semiring-char-0} fps
assumes f ^ Suc m = g ^ Suc m f $ subdegree f = g $ subdegree g
shows f = g

proof (cases f = 0)
case False
have Suc m ∗ subdegree f = subdegree (f ^ Suc m)

by (rule subdegree-power [symmetric])
also have f ^ Suc m = g ^ Suc m by fact
also have subdegree . . . = Suc m ∗ subdegree g by (rule subdegree-power)
finally have [simp]: subdegree f = subdegree g

by (subst (asm) Suc-mult-cancel1)
have fps-shift (subdegree f) f ∗ fps-X ^ subdegree f = f

by (rule subdegree-decompose [symmetric])
also have . . . ^ Suc m = g ^ Suc m by fact
also have g = fps-shift (subdegree g) g ∗ fps-X ^ subdegree g

by (rule subdegree-decompose)
also have subdegree f = subdegree g by fact
finally have fps-shift (subdegree g) f ^ Suc m = fps-shift (subdegree g) g ^ Suc

m
by (simp add: algebra-simps power-mult-distrib del: power-Suc)

hence fps-shift (subdegree g) f = fps-shift (subdegree g) g
by (rule fps-power-Suc-eqD) (insert assms False, auto)

with subdegree-decompose[of f] subdegree-decompose[of g] show ?thesis by simp
qed (insert assms, simp-all)

lemma fps-power-eqD ′:
fixes f g :: ′a :: {idom,semiring-char-0} fps
assumes f ^ m = g ^ m f $ subdegree f = g $ subdegree g m > 0
shows f = g
using fps-power-Suc-eqD ′[of f m−1 g] assms by simp

lemma fps-power-eqD:
fixes f g :: ′a :: {idom,semiring-char-0} fps
assumes f ^ m = g ^ m f $ 0 = g $ 0 f $ 0 6= 0 m > 0
shows f = g
by (rule fps-power-eqD ′[of f m g]) (insert assms, simp-all)

327

lemma fps-compose-inj-right:
assumes a0 : a$0 = (0 :: ′a::idom)

and a1 : a$1 6= 0
shows (b oo a = c oo a) ←→ b = c
(is ?lhs ←→?rhs)

proof
show ?lhs if ?rhs using that by simp
show ?rhs if ?lhs
proof −

have b$n = c$n for n
proof (induct n rule: nat-less-induct)

fix n
assume H : ∀m<n. b$m = c$m
show b$n = c$n
proof (cases n)

case 0
from ‹?lhs› have (b oo a)$n = (c oo a)$n

by simp
then show ?thesis

using 0 by (simp add: fps-compose-nth)
next

case (Suc n1)
have f : finite {0 .. n1} finite {n} by simp-all
have eq: {0 .. n1} ∪ {n} = {0 .. n} using Suc by auto
have d: {0 .. n1} ∩ {n} = {} using Suc by auto
have seq: (

∑
i = 0 ..n1 . b $ i ∗ a ^ i $ n) = (

∑
i = 0 ..n1 . c $ i ∗ a ^ i $

n)
using H Suc by auto

have th0 : (b oo a) $n = (
∑

i = 0 ..n1 . c $ i ∗ a ^ i $ n) + b$n ∗ (a$1)^n
unfolding fps-compose-nth sum.union-disjoint[OF f d, unfolded eq] seq
using startsby-zero-power-nth-same[OF a0]
by simp

have th1 : (c oo a) $n = (
∑

i = 0 ..n1 . c $ i ∗ a ^ i $ n) + c$n ∗ (a$1)^n
unfolding fps-compose-nth sum.union-disjoint[OF f d, unfolded eq]
using startsby-zero-power-nth-same[OF a0]
by simp

from ‹?lhs›[unfolded fps-eq-iff , rule-format, of n] th0 th1 a1
show ?thesis by auto

qed
qed
then show ?rhs by (simp add: fps-eq-iff)

qed
qed

5.16 Radicals
declare prod.cong [fundef-cong]

function radical :: (nat ⇒ ′a ⇒ ′a) ⇒ nat ⇒ ′a::field fps ⇒ nat ⇒ ′a

328

where
radical r 0 a 0 = 1
| radical r 0 a (Suc n) = 0
| radical r (Suc k) a 0 = r (Suc k) (a$0)
| radical r (Suc k) a (Suc n) =

(a$ Suc n − sum (λxs. prod (λj. radical r (Suc k) a (xs ! j)) {0 ..k})
{xs. xs ∈ natpermute (Suc n) (Suc k) ∧ Suc n /∈ set xs}) /

(of-nat (Suc k) ∗ (radical r (Suc k) a 0)^k)
by pat-completeness auto

termination radical
proof

let ?R = measure (λ(r , k, a, n). n)
{

show wf ?R by auto
next

fix r :: nat ⇒ ′a ⇒ ′a
and a :: ′a fps
and k n xs i
assume xs: xs ∈ {xs ∈ natpermute (Suc n) (Suc k). Suc n /∈ set xs} and i: i

∈ {0 ..k}
have False if c: Suc n ≤ xs ! i
proof −

from xs i have xs !i 6= Suc n
by (simp add: in-set-conv-nth natpermute-def)

with c have c ′: Suc n < xs!i by arith
have fths: finite {0 ..< i} finite {i} finite {i+1 ..<Suc k}

by simp-all
have d: {0 ..< i} ∩ ({i} ∪ {i+1 ..< Suc k}) = {} {i} ∩ {i+1 ..< Suc k} =

{}
by auto

have eqs: {0 ..<Suc k} = {0 ..< i} ∪ ({i} ∪ {i+1 ..< Suc k})
using i by auto

from xs have Suc n = sum-list xs
by (simp add: natpermute-def)

also have . . . = sum (nth xs) {0 ..<Suc k} using xs
by (simp add: natpermute-def sum-list-sum-nth)

also have . . . = xs!i + sum (nth xs) {0 ..<i} + sum (nth xs) {i+1 ..<Suc k}
unfolding eqs sum.union-disjoint[OF fths(1) finite-UnI [OF fths(2 ,3)] d(1)]
unfolding sum.union-disjoint[OF fths(2) fths(3) d(2)]
by simp

finally show ?thesis using c ′ by simp
qed
then show ((r , Suc k, a, xs!i), r , Suc k, a, Suc n) ∈ ?R

using not-less by auto
next

fix r :: nat ⇒ ′a ⇒ ′a
and a :: ′a fps
and k n

329

show ((r , Suc k, a, 0), r , Suc k, a, Suc n) ∈ ?R by simp
}

qed

definition fps-radical r n a = Abs-fps (radical r n a)

lemma radical-0 [simp]:
∧

n. 0 < n =⇒ radical r 0 a n = 0
using radical.elims by blast

lemma fps-radical0 [simp]: fps-radical r 0 a = 1
by (auto simp add: fps-eq-iff fps-radical-def)

lemma fps-radical-nth-0 [simp]: fps-radical r n a $ 0 = (if n = 0 then 1 else r n
(a$0))

by (cases n) (simp-all add: fps-radical-def)

lemma fps-radical-power-nth[simp]:
assumes r : (r k (a$0)) ^ k = a$0
shows fps-radical r k a ^ k $ 0 = (if k = 0 then 1 else a$0)

proof (cases k)
case 0
then show ?thesis by simp

next
case (Suc h)
have eq1 : fps-radical r k a ^ k $ 0 = (

∏
j∈{0 ..h}. fps-radical r k a $ (replicate

k 0) ! j)
unfolding fps-power-nth Suc by simp

also have . . . = (
∏

j∈{0 ..h}. r k (a$0))
proof (rule prod.cong [OF refl])

show fps-radical r k a $ replicate k 0 ! j = r k (a $ 0) if j ∈ {0 ..h} for j
proof −

have j < Suc h
using that by presburger

then show ?thesis
by (metis Suc fps-radical-nth-0 nth-replicate old.nat.distinct(2))

qed
qed
also have . . . = a$0

using r Suc by simp
finally show ?thesis

using Suc by simp
qed

lemma power-radical:
fixes a:: ′a::field-char-0 fps
assumes a0 : a$0 6= 0
shows (r (Suc k) (a$0)) ^ Suc k = a$0 ←→ (fps-radical r (Suc k) a) ^ (Suc k)

= a
(is ?lhs ←→ ?rhs)

330

proof
let ?r = fps-radical r (Suc k) a
show ?rhs if r0 : ?lhs
proof −

from a0 r0 have r00 : r (Suc k) (a$0) 6= 0 by auto
have ?r ^ Suc k $ z = a$z for z
proof (induct z rule: nat-less-induct)

fix n
assume H : ∀m<n. ?r ^ Suc k $ m = a$m
show ?r ^ Suc k $ n = a $n
proof (cases n)

case 0
then show ?thesis

using fps-radical-power-nth[of r Suc k a, OF r0] by simp
next

case (Suc n1)
then have n 6= 0 by simp
let ?Pnk = natpermute n (k + 1)
let ?Pnkn = {xs ∈ ?Pnk. n ∈ set xs}
let ?Pnknn = {xs ∈ ?Pnk. n /∈ set xs}
have eq: ?Pnkn ∪ ?Pnknn = ?Pnk by blast
have d: ?Pnkn ∩ ?Pnknn = {} by blast
have f : finite ?Pnkn finite ?Pnknn

using finite-Un[of ?Pnkn ?Pnknn, unfolded eq]
by (metis natpermute-finite)+

let ?f = λv.
∏

j∈{0 ..k}. ?r $ v ! j
have sum ?f ?Pnkn = sum (λv. ?r $ n ∗ r (Suc k) (a $ 0) ^ k) ?Pnkn
proof (rule sum.cong)

fix v assume v: v ∈ {xs ∈ natpermute n (k + 1). n ∈ set xs}
let ?ths = (

∏
j∈{0 ..k}. fps-radical r (Suc k) a $ v ! j) =

fps-radical r (Suc k) a $ n ∗ r (Suc k) (a $ 0) ^ k
from v obtain i where i: i ∈ {0 ..k} v = (replicate (k+1) 0) [i:= n]

unfolding natpermute-contain-maximal by auto
have (

∏
j∈{0 ..k}. fps-radical r (Suc k) a $ v ! j) =

(
∏

j∈{0 ..k}. if j = i then fps-radical r (Suc k) a $ n else r (Suc k)
(a$0))

using i r0 by (auto simp del: replicate.simps intro: prod.cong)
also have . . . = (fps-radical r (Suc k) a $ n) ∗ r (Suc k) (a$0) ^ k

using i r0 by (simp add: prod-gen-delta)
finally show ?ths .

qed rule
then have sum ?f ?Pnkn = of-nat (k+1) ∗ ?r $ n ∗ r (Suc k) (a $ 0) ^ k

by (simp add: natpermute-max-card[OF ‹n 6= 0 ›, simplified])
also have . . . = a$n − sum ?f ?Pnknn
unfolding Suc using r00 a0 by (simp add: field-simps fps-radical-def del:

of-nat-Suc)
finally have fn: sum ?f ?Pnkn = a$n − sum ?f ?Pnknn .
have (?r ^ Suc k)$n = sum ?f ?Pnkn + sum ?f ?Pnknn

unfolding fps-power-nth-Suc sum.union-disjoint[OF f d, unfolded eq] ..

331

also have . . . = a$n unfolding fn by simp
finally show ?thesis .

qed
qed
then show ?thesis using r0 by (simp add: fps-eq-iff)

qed
show ?lhs if ?rhs
proof −

from that have ((fps-radical r (Suc k) a) ^ (Suc k))$0 = a$0
by simp

then show ?thesis
unfolding fps-power-nth-Suc
by (simp add: prod-constant del: replicate.simps)

qed
qed

lemma radical-unique:
assumes r0 : (r (Suc k) (b$0)) ^ Suc k = b$0

and a0 : r (Suc k) (b$0 :: ′a::field-char-0) = a$0
and b0 : b$0 6= 0

shows a^(Suc k) = b ←→ a = fps-radical r (Suc k) b
(is ?lhs ←→ ?rhs is - ←→ a = ?r)

proof
show ?lhs if ?rhs

using that using power-radical[OF b0 , of r k, unfolded r0] by simp
show ?rhs if ?lhs
proof −

have r00 : r (Suc k) (b$0) 6= 0 using b0 r0 by auto
have ceq: card {0 ..k} = Suc k by simp
from a0 have a0r0 : a$0 = ?r$0 by simp
have a $ n = ?r $ n for n
proof (induct n rule: nat-less-induct)

fix n
assume h: ∀m<n. a$m = ?r $m
show a$n = ?r $ n
proof (cases n)

case 0
then show ?thesis using a0 by simp

next
case (Suc n1)
have fK : finite {0 ..k} by simp
have nz: n 6= 0 using Suc by simp
let ?Pnk = natpermute n (Suc k)
let ?Pnkn = {xs ∈ ?Pnk. n ∈ set xs}
let ?Pnknn = {xs ∈ ?Pnk. n /∈ set xs}
have eq: ?Pnkn ∪ ?Pnknn = ?Pnk by blast
have d: ?Pnkn ∩ ?Pnknn = {} by blast
have f : finite ?Pnkn finite ?Pnknn

using finite-Un[of ?Pnkn ?Pnknn, unfolded eq]

332

by (metis natpermute-finite)+
let ?f = λv.

∏
j∈{0 ..k}. ?r $ v ! j

let ?g = λv.
∏

j∈{0 ..k}. a $ v ! j
have sum ?g ?Pnkn = sum (λv. a $ n ∗ (?r$0)^k) ?Pnkn
proof (rule sum.cong)

fix v
assume v: v ∈ {xs ∈ natpermute n (Suc k). n ∈ set xs}
let ?ths = (

∏
j∈{0 ..k}. a $ v ! j) = a $ n ∗ (?r$0)^k

from v obtain i where i: i ∈ {0 ..k} v = (replicate (k+1) 0) [i:= n]
unfolding Suc-eq-plus1 natpermute-contain-maximal
by (auto simp del: replicate.simps)

have (
∏

j∈{0 ..k}. a $ v ! j) = (
∏

j∈{0 ..k}. if j = i then a $ n else r (Suc
k) (b$0))

using i a0 by (auto simp del: replicate.simps intro: prod.cong)
also have . . . = a $ n ∗ (?r $ 0)^k

using i by (simp add: prod-gen-delta)
finally show ?ths .

qed rule
then have th0 : sum ?g ?Pnkn = of-nat (k+1) ∗ a $ n ∗ (?r $ 0)^k

by (simp add: natpermute-max-card[OF nz, simplified])
have th1 : sum ?g ?Pnknn = sum ?f ?Pnknn
proof (rule sum.cong, rule refl, rule prod.cong, simp)

fix xs i
assume xs: xs ∈ ?Pnknn and i: i ∈ {0 ..k}
have False if c: n ≤ xs ! i
proof −

from xs i have xs ! i 6= n
by (simp add: in-set-conv-nth natpermute-def)

with c have c ′: n < xs!i by arith
have fths: finite {0 ..< i} finite {i} finite {i+1 ..<Suc k}

by simp-all
have d: {0 ..< i} ∩ ({i} ∪ {i+1 ..< Suc k}) = {} {i} ∩ {i+1 ..< Suc

k} = {}
by auto

have eqs: {0 ..<Suc k} = {0 ..< i} ∪ ({i} ∪ {i+1 ..< Suc k})
using i by auto

from xs have n = sum-list xs
by (simp add: natpermute-def)

also have . . . = sum (nth xs) {0 ..<Suc k}
using xs by (simp add: natpermute-def sum-list-sum-nth)

also have . . . = xs!i + sum (nth xs) {0 ..<i} + sum (nth xs) {i+1 ..<Suc
k}

unfolding eqs sum.union-disjoint[OF fths(1) finite-UnI [OF fths(2 ,3)]
d(1)]

unfolding sum.union-disjoint[OF fths(2) fths(3) d(2)]
by simp

finally show ?thesis using c ′ by simp
qed
then have thn: xs!i < n by presburger

333

from h[rule-format, OF thn] show a$(xs !i) = ?r$(xs!i) .
qed
have th00 :

∧
x:: ′a. of-nat (Suc k) ∗ (x ∗ inverse (of-nat (Suc k))) = x

by (simp add: field-simps del: of-nat-Suc)
from ‹?lhs› have b$n = a^Suc k $ n

by (simp add: fps-eq-iff)
also have a ^ Suc k$n = sum ?g ?Pnkn + sum ?g ?Pnknn

unfolding fps-power-nth-Suc
using sum.union-disjoint[OF f d, unfolded Suc-eq-plus1 [symmetric],

unfolded eq, of ?g] by simp
also have . . . = of-nat (k+1) ∗ a $ n ∗ (?r $ 0)^k + sum ?f ?Pnknn

unfolding th0 th1 ..
finally have §: of-nat (k+1) ∗ a $ n ∗ (?r $ 0)^k = b$n − sum ?f ?Pnknn

by simp
have a$n = (b$n − sum ?f ?Pnknn) / (of-nat (k+1) ∗ (?r $ 0)^k)

apply (rule eq-divide-imp)
using r00 § by (simp-all add: ac-simps del: of-nat-Suc)

then show ?thesis
unfolding fps-radical-def Suc
by (simp del: of-nat-Suc)

qed
qed
then show ?rhs by (simp add: fps-eq-iff)

qed
qed

lemma radical-power :
assumes r0 : r (Suc k) ((a$0) ^ Suc k) = a$0

and a0 : (a$0 :: ′a::field-char-0) 6= 0
shows (fps-radical r (Suc k) (a ^ Suc k)) = a

proof −
let ?ak = a^ Suc k
have ak0 : ?ak $ 0 = (a$0) ^ Suc k

by (simp add: fps-nth-power-0 del: power-Suc)
from r0 have th0 : r (Suc k) (a ^ Suc k $ 0) ^ Suc k = a ^ Suc k $ 0

using ak0 by auto
from r0 ak0 have th1 : r (Suc k) (a ^ Suc k $ 0) = a $ 0

by auto
from ak0 a0 have ak00 : ?ak $ 0 6=0

by auto
from radical-unique[of r k ?ak a, OF th0 th1 ak00] show ?thesis

by metis
qed

lemma fps-deriv-radical ′:
fixes a :: ′a::field-char-0 fps
assumes r0 : (r (Suc k) (a$0)) ^ Suc k = a$0

and a0 : a$0 6= 0

334

shows fps-deriv (fps-radical r (Suc k) a) =
fps-deriv a / ((of-nat (Suc k)) ∗ (fps-radical r (Suc k) a) ^ k)

proof −
let ?r = fps-radical r (Suc k) a
let ?w = (of-nat (Suc k)) ∗ ?r ^ k
from a0 r0 have r0 ′: r (Suc k) (a$0) 6= 0

by auto
from r0 ′ have w0 : ?w $ 0 6= 0

by (simp del: of-nat-Suc)
note th0 = inverse-mult-eq-1 [OF w0]
let ?iw = inverse ?w
from iffD1 [OF power-radical[of a r], OF a0 r0]
have fps-deriv (?r ^ Suc k) = fps-deriv a

by simp
then have fps-deriv ?r ∗ ?w = fps-deriv a

by (simp add: fps-deriv-power ′ ac-simps del: power-Suc)
then have ?iw ∗ fps-deriv ?r ∗ ?w = ?iw ∗ fps-deriv a

by simp
with a0 r0 have fps-deriv ?r ∗ (?iw ∗ ?w) = fps-deriv a / ?w

by (subst fps-divide-unit) (auto simp del: of-nat-Suc)
then show ?thesis unfolding th0 by simp

qed

lemma fps-deriv-radical:
fixes a :: ′a::field-char-0 fps
assumes r0 : (r (Suc k) (a$0)) ^ Suc k = a$0

and a0 : a$0 6= 0
shows fps-deriv (fps-radical r (Suc k) a) =

fps-deriv a / (fps-const (of-nat (Suc k)) ∗ (fps-radical r (Suc k) a) ^ k)
using fps-deriv-radical ′[of r k a, OF r0 a0]
by (simp add: fps-of-nat[symmetric])

lemma radical-mult-distrib:
fixes a :: ′a::field-char-0 fps
assumes k: k > 0

and ra0 : r k (a $ 0) ^ k = a $ 0
and rb0 : r k (b $ 0) ^ k = b $ 0
and a0 : a $ 0 6= 0
and b0 : b $ 0 6= 0

shows r k ((a ∗ b) $ 0) = r k (a $ 0) ∗ r k (b $ 0) ←→
fps-radical r k (a ∗ b) = fps-radical r k a ∗ fps-radical r k b
(is ?lhs ←→ ?rhs)

proof
show ?rhs if r0 ′: ?lhs
proof −

from r0 ′ have r0 : (r k ((a ∗ b) $ 0)) ^ k = (a ∗ b) $ 0
by (simp add: fps-mult-nth ra0 rb0 power-mult-distrib)

show ?thesis
proof (cases k)

335

case 0
then show ?thesis using r0 ′ by simp

next
case (Suc h)
let ?ra = fps-radical r (Suc h) a
let ?rb = fps-radical r (Suc h) b
have th0 : r (Suc h) ((a ∗ b) $ 0) = (fps-radical r (Suc h) a ∗ fps-radical r

(Suc h) b) $ 0
using r0 ′ Suc by (simp add: fps-mult-nth)

have ab0 : (a∗b) $ 0 6= 0
using a0 b0 by (simp add: fps-mult-nth)

from radical-unique[of r h a∗b fps-radical r (Suc h) a ∗ fps-radical r (Suc h)
b, OF r0 [unfolded Suc] th0 ab0 , symmetric]

iffD1 [OF power-radical[of - r], OF a0 ra0 [unfolded Suc]] iffD1 [OF power-radical[of
- r], OF b0 rb0 [unfolded Suc]] Suc r0 ′

show ?thesis
by (auto simp add: power-mult-distrib simp del: power-Suc)

qed
qed
show ?lhs if ?rhs
proof −

from that have (fps-radical r k (a ∗ b)) $ 0 = (fps-radical r k a ∗ fps-radical r
k b) $ 0

by simp
then show ?thesis

using k by (simp add: fps-mult-nth)
qed

qed

lemma radical-divide:
fixes a :: ′a::field-char-0 fps
assumes kp: k > 0

and ra0 : (r k (a $ 0)) ^ k = a $ 0
and rb0 : (r k (b $ 0)) ^ k = b $ 0
and a0 : a$0 6= 0
and b0 : b$0 6= 0

shows r k ((a $ 0) / (b$0)) = r k (a$0) / r k (b $ 0) ←→
fps-radical r k (a/b) = fps-radical r k a / fps-radical r k b

(is ?lhs = ?rhs)
proof

let ?r = fps-radical r k
from kp obtain h where k: k = Suc h

by (cases k) auto
have ra0 ′: r k (a$0) 6= 0 using a0 ra0 k by auto
have rb0 ′: r k (b$0) 6= 0 using b0 rb0 k by auto

show ?lhs if ?rhs

336

proof −
from that have ?r (a/b) $ 0 = (?r a / ?r b)$0

by simp
then show ?thesis

using k a0 b0 rb0 ′ by (simp add: fps-divide-unit fps-mult-nth fps-inverse-def
divide-inverse)

qed
show ?rhs if ?lhs
proof −

from a0 b0 have ab0 [simp]: (a/b)$0 = a$0 / b$0
by (simp add: fps-divide-def fps-mult-nth divide-inverse fps-inverse-def)

have th0 : r k ((a/b)$0) ^ k = (a/b)$0
by (simp add: ‹?lhs› power-divide ra0 rb0)

from a0 b0 ra0 ′ rb0 ′ kp ‹?lhs›
have th1 : r k ((a / b) $ 0) = (fps-radical r k a / fps-radical r k b) $ 0

by (simp add: fps-divide-unit fps-mult-nth fps-inverse-def divide-inverse)
from a0 b0 ra0 ′ rb0 ′ kp have ab0 ′: (a / b) $ 0 6= 0
by (simp add: fps-divide-unit fps-mult-nth fps-inverse-def nonzero-imp-inverse-nonzero)

note tha[simp] = iffD1 [OF power-radical[where r=r and k=h], OF a0 ra0 [unfolded
k], unfolded k[symmetric]]

note thb[simp] = iffD1 [OF power-radical[where r=r and k=h], OF b0 rb0 [unfolded
k], unfolded k[symmetric]]

from b0 rb0 ′ have th2 : (?r a / ?r b)^k = a/b
by (simp add: fps-divide-unit power-mult-distrib fps-inverse-power [symmetric])

from iffD1 [OF radical-unique[where r=r and a=?r a / ?r b and b=a/b and
k=h], symmetric, unfolded k[symmetric], OF th0 th1 ab0 ′ th2]

show ?thesis .
qed

qed

lemma radical-inverse:
fixes a :: ′a::field-char-0 fps
assumes k: k > 0

and ra0 : r k (a $ 0) ^ k = a $ 0
and r1 : (r k 1)^k = 1
and a0 : a$0 6= 0

shows r k (inverse (a $ 0)) = r k 1 / (r k (a $ 0)) ←→
fps-radical r k (inverse a) = fps-radical r k 1 / fps-radical r k a

using radical-divide[where k=k and r=r and a=1 and b=a, OF k] ra0 r1 a0
by (simp add: divide-inverse fps-divide-def)

5.17 Chain rule
lemma fps-compose-deriv:

fixes a :: ′a::idom fps
assumes b0 : b$0 = 0
shows fps-deriv (a oo b) = ((fps-deriv a) oo b) ∗ fps-deriv b

proof −

337

have (fps-deriv (a oo b))$n = (((fps-deriv a) oo b) ∗ (fps-deriv b)) $n for n
proof −

have (fps-deriv (a oo b))$n = sum (λi. a $ i ∗ (fps-deriv (b^i))$n) {0 .. Suc n}
by (simp add: fps-compose-def field-simps sum-distrib-left del: of-nat-Suc)

also have . . . = sum (λi. a$i ∗ ((fps-const (of-nat i)) ∗ (fps-deriv b ∗ (b^(i −
1))))$n) {0 .. Suc n}

by (simp add: field-simps fps-deriv-power del: fps-mult-left-const-nth of-nat-Suc)
also have . . . = sum (λi. of-nat i ∗ a$i ∗ (((b^(i − 1)) ∗ fps-deriv b))$n) {0 ..

Suc n}
unfolding fps-mult-left-const-nth by (simp add: field-simps)

also have . . . = sum (λi. of-nat i ∗ a$i ∗ (sum (λj. (b^ (i − 1))$j ∗ (fps-deriv
b)$(n − j)) {0 ..n})) {0 .. Suc n}

unfolding fps-mult-nth ..
also have . . . = sum (λi. of-nat i ∗ a$i ∗ (sum (λj. (b^ (i − 1))$j ∗ (fps-deriv

b)$(n − j)) {0 ..n})) {1 .. Suc n}
by (intro sum.mono-neutral-right) (auto simp add: mult-delta-left not-le)

also have . . . = sum (λi. of-nat (i + 1) ∗ a$(i+1) ∗ (sum (λj. (b^ i)$j ∗
of-nat (n − j + 1) ∗ b$(n − j + 1)) {0 ..n})) {0 .. n}

unfolding fps-deriv-nth
by (rule sum.reindex-cong [of Suc]) (simp-all add: mult.assoc)

finally have th0 : (fps-deriv (a oo b))$n =
sum (λi. of-nat (i + 1) ∗ a$(i+1) ∗ (sum (λj. (b^ i)$j ∗ of-nat (n − j + 1)

∗ b$(n − j + 1)) {0 ..n})) {0 .. n} .

have (((fps-deriv a) oo b) ∗ (fps-deriv b))$n = sum (λi. (fps-deriv b)$ (n − i)
∗ ((fps-deriv a) oo b)$i) {0 ..n}

unfolding fps-mult-nth by (simp add: ac-simps)
also have . . . = sum (λi. sum (λj. of-nat (n − i +1) ∗ b$(n − i + 1) ∗ of-nat

(j + 1) ∗ a$(j+1) ∗ (b^j)$i) {0 ..n}) {0 ..n}
unfolding fps-deriv-nth fps-compose-nth sum-distrib-left mult.assoc
by (auto simp: subset-eq b0 startsby-zero-power-prefix sum.mono-neutral-left

intro: sum.cong)
also have . . . = sum (λi. of-nat (i + 1) ∗ a$(i+1) ∗ (sum (λj. (b^ i)$j ∗

of-nat (n − j + 1) ∗ b$(n − j + 1)) {0 ..n})) {0 .. n}
unfolding sum-distrib-left
by (subst sum.swap) (force intro: sum.cong)

finally show ?thesis
unfolding th0 by simp

qed
then show ?thesis by (simp add: fps-eq-iff)

qed

lemma fps-poly-sum-fps-X :
assumes ∀ i > n. a$i = 0
shows a = sum (λi. fps-const (a$i) ∗ fps-X^i) {0 ..n} (is a = ?r)

proof −
have a$i = ?r$i for i

unfolding fps-sum-nth fps-mult-left-const-nth fps-X-power-nth
by (simp add: mult-delta-right assms)

338

then show ?thesis
unfolding fps-eq-iff by blast

qed

5.18 Compositional inverses
fun compinv :: ′a fps ⇒ nat ⇒ ′a::field
where

compinv a 0 = fps-X$0
| compinv a (Suc n) =

(fps-X$ Suc n − sum (λi. (compinv a i) ∗ (a^i)$Suc n) {0 .. n}) / (a$1) ^
Suc n

definition fps-inv a = Abs-fps (compinv a)

lemma fps-inv:
assumes a0 : a$0 = 0

and a1 : a$1 6= 0
shows fps-inv a oo a = fps-X

proof −
let ?i = fps-inv a oo a
have ?i $n = fps-X$n for n
proof (induct n rule: nat-less-induct)

fix n
assume h: ∀m<n. ?i$m = fps-X$m
show ?i $ n = fps-X$n
proof (cases n)

case 0
then show ?thesis using a0

by (simp add: fps-compose-nth fps-inv-def)
next

case (Suc n1)
have ?i $ n = sum (λi. (fps-inv a $ i) ∗ (a^i)$n) {0 .. n1} + fps-inv a $

Suc n1 ∗ (a $ 1)^ Suc n1
by (simp only: fps-compose-nth) (simp add: Suc startsby-zero-power-nth-same

[OF a0] del: power-Suc)
also have . . . = sum (λi. (fps-inv a $ i) ∗ (a^i)$n) {0 .. n1} +
(fps-X$ Suc n1 − sum (λi. (fps-inv a $ i) ∗ (a^i)$n) {0 .. n1})
using a0 a1 Suc by (simp add: fps-inv-def)

also have . . . = fps-X$n using Suc by simp
finally show ?thesis .

qed
qed
then show ?thesis

by (simp add: fps-eq-iff)
qed

fun gcompinv :: ′a fps ⇒ ′a fps ⇒ nat ⇒ ′a::field

339

where
gcompinv b a 0 = b$0
| gcompinv b a (Suc n) =

(b$ Suc n − sum (λi. (gcompinv b a i) ∗ (a^i)$Suc n) {0 .. n}) / (a$1) ^ Suc
n

definition fps-ginv b a = Abs-fps (gcompinv b a)

lemma fps-ginv:
assumes a0 : a$0 = 0

and a1 : a$1 6= 0
shows fps-ginv b a oo a = b

proof −
let ?i = fps-ginv b a oo a
have ?i $n = b$n for n
proof (induct n rule: nat-less-induct)

fix n
assume h: ∀m<n. ?i$m = b$m
show ?i $ n = b$n
proof (cases n)

case 0
then show ?thesis using a0

by (simp add: fps-compose-nth fps-ginv-def)
next

case (Suc n1)
have ?i $ n = sum (λi. (fps-ginv b a $ i) ∗ (a^i)$n) {0 .. n1} + fps-ginv b

a $ Suc n1 ∗ (a $ 1)^ Suc n1
by (simp only: fps-compose-nth) (simp add: Suc startsby-zero-power-nth-same

[OF a0] del: power-Suc)
also have . . . = sum (λi. (fps-ginv b a $ i) ∗ (a^i)$n) {0 .. n1} +
(b$ Suc n1 − sum (λi. (fps-ginv b a $ i) ∗ (a^i)$n) {0 .. n1})
using a0 a1 Suc by (simp add: fps-ginv-def)

also have . . . = b$n using Suc by simp
finally show ?thesis .

qed
qed
then show ?thesis

by (simp add: fps-eq-iff)
qed

lemma fps-inv-ginv: fps-inv = fps-ginv fps-X
proof −

have compinv x n = gcompinv fps-X x n for n and x :: ′a fps
proof (induction n rule: nat-less-induct)

case (1 n)
then show ?case

by (cases n) auto
qed
then show ?thesis

340

by (auto simp add: fun-eq-iff fps-eq-iff fps-inv-def fps-ginv-def)
qed

lemma fps-compose-1 [simp]: 1 oo a = 1
by (simp add: fps-eq-iff fps-compose-nth mult-delta-left)

lemma fps-compose-0 [simp]: 0 oo a = 0
by (simp add: fps-eq-iff fps-compose-nth)

lemma fps-compose-0-right[simp]: a oo 0 = fps-const (a $ 0)
by (simp add: fps-eq-iff fps-compose-nth power-0-left sum.neutral)

lemma fps-compose-add-distrib: (a + b) oo c = (a oo c) + (b oo c)
by (simp add: fps-eq-iff fps-compose-nth field-simps sum.distrib)

lemma fps-compose-sum-distrib: (sum f S) oo a = sum (λi. f i oo a) S
proof (cases finite S)

case True
show ?thesis
proof (rule finite-induct[OF True])

show sum f {} oo a = (
∑

i∈{}. f i oo a)
by simp

next
fix x F
assume fF : finite F

and xF : x /∈ F
and h: sum f F oo a = sum (λi. f i oo a) F

show sum f (insert x F) oo a = sum (λi. f i oo a) (insert x F)
using fF xF h by (simp add: fps-compose-add-distrib)

qed
next

case False
then show ?thesis by simp

qed

lemma convolution-eq:
sum (λi. a (i :: nat) ∗ b (n − i)) {0 .. n} =

sum (λ(i,j). a i ∗ b j) {(i,j). i ≤ n ∧ j ≤ n ∧ i + j = n}
by (rule sum.reindex-bij-witness[where i=fst and j=λi. (i, n − i)]) auto

lemma product-composition-lemma:
assumes c0 : c$0 = (0 :: ′a::idom)

and d0 : d$0 = 0
shows ((a oo c) ∗ (b oo d))$n =

sum (λ(k,m). a$k ∗ b$m ∗ (c^k ∗ d^m) $ n) {(k,m). k + m ≤ n} (is ?l = ?r)
proof −

let ?S = {(k::nat, m::nat). k + m ≤ n}
have s: ?S ⊆ {0 ..n} × {0 ..n} by (simp add: subset-eq)
have f : finite {(k::nat, m::nat). k + m ≤ n}

341

by (auto intro: finite-subset[OF s])
have ?r = (

∑
(k, m) ∈ {(k, m). k + m ≤ n}.

∑
j = 0 ..n. a $ k ∗ b $ m ∗ (c ^

k $ j ∗ d ^ m $ (n − j)))
by (simp add: fps-mult-nth sum-distrib-left)

also have . . . = (
∑

i = 0 ..n.
∑

(k,m)∈{(k,m). k+m ≤ n}. a $ k ∗ c ^ k $ i ∗
b $ m ∗ d ^ m $ (n−i))

unfolding sum.swap [where A = {0 ..n}] by (auto simp add: field-simps intro:
sum.cong)

also have ... = (
∑

i = 0 ..n.∑
q = 0 ..i.

∑
j = 0 ..n − i. a $ q ∗ c ^ q $ i ∗ (b $ j ∗ d ^ j $ (n

− i)))
apply (rule sum.cong [OF refl])
apply (simp add: sum.cartesian-product mult.assoc)
apply (rule sum.mono-neutral-right[OF f], force)
by clarsimp (meson c0 d0 leI startsby-zero-power-prefix)

also have . . . = ?l
by (simp add: fps-mult-nth fps-compose-nth sum-product)

finally show ?thesis by simp
qed

lemma sum-pair-less-iff :
sum (λ((k::nat),m). a k ∗ b m ∗ c (k + m)) {(k,m). k + m ≤ n} =

sum (λs. sum (λi. a i ∗ b (s − i) ∗ c s) {0 ..s}) {0 ..n}
(is ?l = ?r)

proof −
have th0 : {(k, m). k + m ≤ n} = (

⋃
s∈{0 ..n}.

⋃
i∈{0 ..s}. {(i, s − i)})

by auto
show ?l = ?r

unfolding th0
by (simp add: sum.UNION-disjoint eq-diff-iff disjoint-iff)

qed

lemma fps-compose-mult-distrib-lemma:
assumes c0 : c$0 = (0 :: ′a::idom)
shows ((a oo c) ∗ (b oo c))$n = sum (λs. sum (λi. a$i ∗ b$(s − i) ∗ (c^s) $ n)
{0 ..s}) {0 ..n}

unfolding product-composition-lemma[OF c0 c0] power-add[symmetric]
unfolding sum-pair-less-iff [where a = λk. a$k and b=λm. b$m and c=λs. (c

^ s)$n and n = n] ..

lemma fps-compose-mult-distrib:
assumes c0 : c $ 0 = (0 :: ′a::idom)
shows (a ∗ b) oo c = (a oo c) ∗ (b oo c)

proof (clarsimp simp add: fps-eq-iff fps-compose-mult-distrib-lemma [OF c0])
show (a ∗ b oo c) $ n = (

∑
s = 0 ..n.

∑
i = 0 ..s. a $ i ∗ b $ (s − i) ∗ c ^ s $

n) for n
by (simp add: fps-compose-nth fps-mult-nth sum-distrib-right)

qed

342

lemma fps-compose-prod-distrib:
assumes c0 : c$0 = (0 :: ′a::idom)
shows prod a S oo c = prod (λk. a k oo c) S

proof (induct S rule: infinite-finite-induct)
next

case (insert)
then show ?case

by (simp add: fps-compose-mult-distrib[OF c0])
qed auto

lemma fps-compose-divide:
assumes [simp]: g dvd f h $ 0 = 0
shows fps-compose f h = fps-compose (f / g :: ′a :: field fps) h ∗ fps-compose

g h
proof −

have f = (f / g) ∗ g by simp
also have fps-compose . . . h = fps-compose (f / g) h ∗ fps-compose g h

by (subst fps-compose-mult-distrib) simp-all
finally show ?thesis .

qed

lemma fps-compose-divide-distrib:
assumes g dvd f h $ 0 = 0 fps-compose g h 6= 0
shows fps-compose (f / g :: ′a :: field fps) h = fps-compose f h / fps-compose

g h
using fps-compose-divide[OF assms(1 ,2)] assms(3) by simp

lemma fps-compose-power :
assumes c0 : c$0 = (0 :: ′a::idom)
shows (a oo c)^n = a^n oo c

proof (cases n)
case 0
then show ?thesis by simp

next
case (Suc m)
have (

∏
n = 0 ..m. a) oo c = (

∏
n = 0 ..m. a oo c)

using c0 fps-compose-prod-distrib by blast
moreover have th0 : a^n = prod (λk. a) {0 ..m} (a oo c) ^ n = prod (λk. a oo

c) {0 ..m}
by (simp-all add: prod-constant Suc)

ultimately show ?thesis
by presburger

qed

lemma fps-compose-uminus: − (a:: ′a::ring-1 fps) oo c = − (a oo c)
by (simp add: fps-eq-iff fps-compose-nth field-simps sum-negf [symmetric])

lemma fps-compose-sub-distrib: (a − b) oo (c:: ′a::ring-1 fps) = (a oo c) − (b oo

343

c)
using fps-compose-add-distrib [of a − b c] by (simp add: fps-compose-uminus)

lemma fps-X-fps-compose: fps-X oo a = Abs-fps (λn. if n = 0 then (0 :: ′a::comm-ring-1)
else a$n)

by (simp add: fps-eq-iff fps-compose-nth mult-delta-left)

lemma fps-compose-eq-0-iff :
fixes F G :: ′a :: idom fps
assumes fps-nth G 0 = 0
shows fps-compose F G = 0 ←→ F = 0 ∨ (G = 0 ∧ fps-nth F 0 = 0)

proof safe
assume ∗: fps-compose F G = 0 F 6= 0
have fps-nth (fps-compose F G) 0 = fps-nth F 0

by simp
also have fps-compose F G = 0

by (simp add: ∗)
finally show fps-nth F 0 = 0

by simp
show G = 0
proof (rule ccontr)

assume G 6= 0
hence subdegree G > 0 using assms

using subdegree-eq-0-iff by blast
define N where N = subdegree F ∗ subdegree G
have fps-nth (fps-compose F G) N = (

∑
i = 0 ..N . fps-nth F i ∗ fps-nth (G ^

i) N)
unfolding fps-compose-def by (simp add: N-def)

also have . . . = (
∑

i∈{subdegree F}. fps-nth F i ∗ fps-nth (G ^ i) N)
proof (intro sum.mono-neutral-right ballI)

fix i assume i: i ∈ {0 ..N} − {subdegree F}
show fps-nth F i ∗ fps-nth (G ^ i) N = 0
proof (cases i subdegree F rule: linorder-cases)

assume i > subdegree F
hence fps-nth (G ^ i) N = 0

using i ‹subdegree G > 0 › by (intro fps-pow-nth-below-subdegree) (auto
simp: N-def)

thus ?thesis by simp
qed (use i in ‹auto simp: N-def ›)

qed (use ‹subdegree G > 0 › in ‹auto simp: N-def ›)
also have . . . = fps-nth F (subdegree F) ∗ fps-nth (G ^ subdegree F) N

by simp
also have . . . 6= 0

using ‹G 6= 0 › ‹F 6= 0 › by (auto simp: N-def)
finally show False using ∗ by auto

qed
qed auto

lemma subdegree-fps-compose [simp]:

344

fixes F G :: ′a :: idom fps
assumes [simp]: fps-nth G 0 = 0
shows subdegree (fps-compose F G) = subdegree F ∗ subdegree G

proof (cases G = 0 ; cases F = 0)
assume [simp]: G 6= 0 F 6= 0
define m where m = subdegree F
define F ′ where F ′ = fps-shift m F
have F-eq: F = F ′ ∗ fps-X ^ m

unfolding F ′-def by (simp add: fps-shift-times-fps-X-power m-def)
have [simp]: F ′ 6= 0

using ‹F 6= 0 › unfolding F-eq by auto
have subdegree (fps-compose F G) = subdegree (fps-compose F ′ G) + m ∗ sub-

degree G
by (simp add: F-eq fps-compose-mult-distrib fps-compose-eq-0-iff flip: fps-compose-power)

also have subdegree (fps-compose F ′ G) = 0
by (intro subdegree-eq-0) (auto simp: F ′-def m-def)

finally show ?thesis by (simp add: m-def)
qed auto

lemma fps-inverse-compose:
assumes b0 : (b$0 :: ′a::field) = 0

and a0 : a$0 6= 0
shows inverse a oo b = inverse (a oo b)

proof −
let ?ia = inverse a
let ?ab = a oo b
let ?iab = inverse ?ab

from a0 have ia0 : ?ia $ 0 6= 0 by simp
from a0 have ab0 : ?ab $ 0 6= 0 by (simp add: fps-compose-def)
have (?ia oo b) ∗ (a oo b) = 1

unfolding fps-compose-mult-distrib[OF b0 , symmetric]
unfolding inverse-mult-eq-1 [OF a0]
fps-compose-1 ..

then have (?ia oo b) ∗ (a oo b) ∗ ?iab = 1 ∗ ?iab by simp
then have (?ia oo b) ∗ (?iab ∗ (a oo b)) = ?iab by simp
then show ?thesis unfolding inverse-mult-eq-1 [OF ab0] by simp

qed

lemma fps-divide-compose:
assumes c0 : (c$0 :: ′a::field) = 0

and b0 : b$0 6= 0
shows (a/b) oo c = (a oo c) / (b oo c)
using b0 c0 by (simp add: fps-divide-unit fps-inverse-compose fps-compose-mult-distrib)

lemma gp:
assumes a0 : a$0 = (0 :: ′a::field)
shows (Abs-fps (λn. 1)) oo a = 1/(1 − a)

345

(is ?one oo a = -)
proof −

have o0 : ?one $ 0 6= 0 by simp
have th0 : (1 − fps-X) $ 0 6= (0 :: ′a) by simp
from fps-inverse-gp[where ? ′a = ′a]
have inverse ?one = 1 − fps-X by (simp add: fps-eq-iff)
then have inverse (inverse ?one) = inverse (1 − fps-X) by simp
then have th: ?one = 1/(1 − fps-X) unfolding fps-inverse-idempotent[OF o0]

by (simp add: fps-divide-def)
show ?thesis

unfolding th
unfolding fps-divide-compose[OF a0 th0]
fps-compose-1 fps-compose-sub-distrib fps-X-fps-compose-startby0 [OF a0] ..

qed

lemma fps-compose-radical:
assumes b0 : b$0 = (0 :: ′a::field-char-0)

and ra0 : r (Suc k) (a$0) ^ Suc k = a$0
and a0 : a$0 6= 0

shows fps-radical r (Suc k) a oo b = fps-radical r (Suc k) (a oo b)
proof −

let ?r = fps-radical r (Suc k)
let ?ab = a oo b
have ab0 : ?ab $ 0 = a$0

by (simp add: fps-compose-def)
from ab0 a0 ra0 have rab0 : ?ab $ 0 6= 0 r (Suc k) (?ab $ 0) ^ Suc k = ?ab $ 0

by simp-all
have th00 : r (Suc k) ((a oo b) $ 0) = (fps-radical r (Suc k) a oo b) $ 0

by (simp add: ab0 fps-compose-def)
have th0 : (?r a oo b) ^ (Suc k) = a oo b

unfolding fps-compose-power [OF b0]
unfolding iffD1 [OF power-radical[of a r k], OF a0 ra0] ..

from iffD1 [OF radical-unique[where r=r and k=k and b= ?ab and a = ?r a
oo b, OF rab0 (2) th00 rab0 (1)], OF th0]

show ?thesis .
qed

lemma fps-const-mult-apply-left: fps-const c ∗ (a oo b) = (fps-const c ∗ a) oo b
by (simp add: fps-eq-iff fps-compose-nth sum-distrib-left mult.assoc)

lemma fps-const-mult-apply-right:
(a oo b) ∗ fps-const (c:: ′a::comm-semiring-1) = (fps-const c ∗ a) oo b
by (simp add: fps-const-mult-apply-left mult.commute)

lemma fps-compose-assoc:
assumes c0 : c$0 = (0 :: ′a::idom)

and b0 : b$0 = 0
shows a oo (b oo c) = a oo b oo c (is ?l = ?r)

proof −

346

have ?l$n = ?r$n for n
proof −

have ?l$n = (sum (λi. (fps-const (a$i) ∗ b^i) oo c) {0 ..n})$n
by (simp add: fps-compose-nth fps-compose-power [OF c0] fps-const-mult-apply-left

sum-distrib-left mult.assoc fps-sum-nth)
also have . . . = ((sum (λi. fps-const (a$i) ∗ b^i) {0 ..n}) oo c)$n

by (simp add: fps-compose-sum-distrib)
also have ... = (

∑
i = 0 ..n.

∑
j = 0 ..n. a $ j ∗ (b ^ j $ i ∗ c ^ i $ n))

by (simp add: fps-compose-nth fps-sum-nth sum-distrib-right mult.assoc)
also have ... = (

∑
i = 0 ..n.

∑
j = 0 ..i. a $ j ∗ (b ^ j $ i ∗ c ^ i $ n))

by (intro sum.cong [OF refl] sum.mono-neutral-right; simp add: b0 startsby-zero-power-prefix)
also have . . . = ?r$n

by (simp add: fps-compose-nth sum-distrib-right mult.assoc)
finally show ?thesis .

qed
then show ?thesis

by (simp add: fps-eq-iff)
qed

lemma fps-X-power-compose:
assumes a0 : a$0=0
shows fps-X^k oo a = (a:: ′a::idom fps)^k
(is ?l = ?r)

proof (cases k)
case 0
then show ?thesis by simp

next
case (Suc h)
have ?l $ n = ?r $n for n
proof −

consider k > n | k ≤ n by arith
then show ?thesis
proof cases

case 1
then show ?thesis

using a0 startsby-zero-power-prefix[OF a0] Suc
by (simp add: fps-compose-nth del: power-Suc)

next
case 2
then show ?thesis

by (simp add: fps-compose-nth mult-delta-left)
qed

qed
then show ?thesis

unfolding fps-eq-iff by blast
qed

lemma fps-inv-right:

347

assumes a0 : a$0 = 0
and a1 : a$1 6= 0

shows a oo fps-inv a = fps-X
proof −

let ?ia = fps-inv a
let ?iaa = a oo fps-inv a
have th0 : ?ia $ 0 = 0

by (simp add: fps-inv-def)
have th1 : ?iaa $ 0 = 0

using a0 a1 by (simp add: fps-inv-def fps-compose-nth)
have th2 : fps-X$0 = 0

by simp
from fps-inv[OF a0 a1] have a oo (fps-inv a oo a) = a oo fps-X

by simp
then have (a oo fps-inv a) oo a = fps-X oo a

by (simp add: fps-compose-assoc[OF a0 th0] fps-X-fps-compose-startby0 [OF
a0])

with fps-compose-inj-right[OF a0 a1] show ?thesis
by simp

qed

lemma fps-inv-deriv:
assumes a0 : a$0 = (0 :: ′a::field)

and a1 : a$1 6= 0
shows fps-deriv (fps-inv a) = inverse (fps-deriv a oo fps-inv a)

proof −
let ?ia = fps-inv a
let ?d = fps-deriv a oo ?ia
let ?dia = fps-deriv ?ia
have ia0 : ?ia$0 = 0

by (simp add: fps-inv-def)
have th0 : ?d$0 6= 0

using a1 by (simp add: fps-compose-nth)
from fps-inv-right[OF a0 a1] have ?d ∗ ?dia = 1

by (simp add: fps-compose-deriv[OF ia0 , of a, symmetric])
then have inverse ?d ∗ ?d ∗ ?dia = inverse ?d ∗ 1

by simp
with inverse-mult-eq-1 [OF th0] show ?dia = inverse ?d

by simp
qed

lemma fps-inv-idempotent:
assumes a0 : a$0 = 0

and a1 : a$1 6= 0
shows fps-inv (fps-inv a) = a

proof −
let ?r = fps-inv
have ra0 : ?r a $ 0 = 0

by (simp add: fps-inv-def)

348

from a1 have ra1 : ?r a $ 1 6= 0
by (simp add: fps-inv-def field-simps)

have fps-X0 : fps-X$0 = 0
by simp

from fps-inv[OF ra0 ra1] have ?r (?r a) oo ?r a = fps-X .
then have ?r (?r a) oo ?r a oo a = fps-X oo a

by simp
then have ?r (?r a) oo (?r a oo a) = a

unfolding fps-X-fps-compose-startby0 [OF a0]
unfolding fps-compose-assoc[OF a0 ra0 , symmetric] .

then show ?thesis
unfolding fps-inv[OF a0 a1] by simp

qed

lemma fps-ginv-ginv:
assumes a0 : a$0 = 0

and a1 : a$1 6= 0
and c0 : c$0 = 0
and c1 : c$1 6= 0

shows fps-ginv b (fps-ginv c a) = b oo a oo fps-inv c
proof −

let ?r = fps-ginv
from c0 have rca0 : ?r c a $0 = 0

by (simp add: fps-ginv-def)
from a1 c1 have rca1 : ?r c a $ 1 6= 0

by (simp add: fps-ginv-def field-simps)
from fps-ginv[OF rca0 rca1]
have ?r b (?r c a) oo ?r c a = b .
then have ?r b (?r c a) oo ?r c a oo a = b oo a

by simp
then have ?r b (?r c a) oo (?r c a oo a) = b oo a

by (simp add: a0 fps-compose-assoc rca0)
then have ?r b (?r c a) oo c = b oo a

unfolding fps-ginv[OF a0 a1] .
then have ?r b (?r c a) oo c oo fps-inv c= b oo a oo fps-inv c

by simp
then have ?r b (?r c a) oo (c oo fps-inv c) = b oo a oo fps-inv c

by (metis c0 c1 fps-compose-assoc fps-compose-nth-0 fps-inv fps-inv-right)
then show ?thesis

unfolding fps-inv-right[OF c0 c1] by simp
qed

lemma fps-ginv-deriv:
assumes a0 :a$0 = (0 :: ′a::field)

and a1 : a$1 6= 0
shows fps-deriv (fps-ginv b a) = (fps-deriv b / fps-deriv a) oo fps-ginv fps-X a

proof −
let ?ia = fps-ginv b a
let ?ifps-Xa = fps-ginv fps-X a

349

let ?d = fps-deriv
let ?dia = ?d ?ia
have ifps-Xa0 : ?ifps-Xa $ 0 = 0

by (simp add: fps-ginv-def)
have da0 : ?d a $ 0 6= 0

using a1 by simp
from fps-ginv[OF a0 a1 , of b] have ?d (?ia oo a) = fps-deriv b

by simp
then have (?d ?ia oo a) ∗ ?d a = ?d b

unfolding fps-compose-deriv[OF a0] .
then have (?d ?ia oo a) ∗ ?d a ∗ inverse (?d a) = ?d b ∗ inverse (?d a)

by simp
with a1 have (?d ?ia oo a) ∗ (inverse (?d a) ∗ ?d a) = ?d b / ?d a

by (simp add: fps-divide-unit)
then have (?d ?ia oo a) oo ?ifps-Xa = (?d b / ?d a) oo ?ifps-Xa

unfolding inverse-mult-eq-1 [OF da0] by simp
then have ?d ?ia oo (a oo ?ifps-Xa) = (?d b / ?d a) oo ?ifps-Xa

unfolding fps-compose-assoc[OF ifps-Xa0 a0] .
then show ?thesis unfolding fps-inv-ginv[symmetric]

unfolding fps-inv-right[OF a0 a1] by simp
qed

lemma fps-compose-linear :
fps-compose (f :: ′a :: comm-ring-1 fps) (fps-const c ∗ fps-X) = Abs-fps (λn. c^n
∗ f $ n)

by (simp add: fps-eq-iff fps-compose-def power-mult-distrib
if-distrib cong: if-cong)

lemma fps-compose-uminus ′:
fps-compose f (−fps-X :: ′a :: comm-ring-1 fps) = Abs-fps (λn. (−1)^n ∗ f $ n)
using fps-compose-linear [of f −1]
by (simp only: fps-const-neg [symmetric] fps-const-1-eq-1) simp

lemma fps-nth-compose-linear [simp]:
fixes f :: ′a :: comm-ring-1 fps
shows fps-nth (fps-compose f (fps-const c ∗ fps-X)) n = c ^ n ∗ fps-nth f n

proof −
have fps-nth (fps-compose f (fps-const c ∗ fps-X)) n =

(
∑

i∈{n}. fps-nth f i ∗ fps-nth ((fps-const c ∗ fps-X) ^ i) n)
unfolding fps-compose-nth
by (intro sum.mono-neutral-cong-right) (auto simp: power-mult-distrib)

also have . . . = c ^ n ∗ fps-nth f n
by (simp add: power-mult-distrib)

finally show ?thesis .
qed

5.19 Elementary series
5.19.1 Exponential series
definition fps-exp x = Abs-fps (λn. x^n / of-nat (fact n))

350

lemma fps-exp-deriv[simp]: fps-deriv (fps-exp a) = fps-const (a:: ′a::field-char-0) ∗
fps-exp a
(is ?l = ?r)

proof −
have ?l$n = ?r $ n for n

using of-nat-neq-0 by (auto simp add: fps-exp-def divide-simps)
then show ?thesis

by (simp add: fps-eq-iff)
qed

lemma fps-exp-unique-ODE :
fps-deriv a = fps-const c ∗ a ←→ a = fps-const (a$0) ∗ fps-exp (c:: ′a::field-char-0)
(is ?lhs ←→ ?rhs)

proof
show ?rhs if ?lhs
proof −

from that have th:
∧

n. a $ Suc n = c ∗ a$n / of-nat (Suc n)
by (simp add: fps-deriv-def fps-eq-iff field-simps del: of-nat-Suc)

have th ′: a$n = a$0 ∗ c ^ n/ (fact n) for n
proof (induct n)

case 0
then show ?case by simp

next
case Suc
then show ?case

by (simp add: th divide-simps)
qed
show ?thesis

by (auto simp add: fps-eq-iff fps-const-mult-left fps-exp-def intro: th ′)
qed
show ?lhs if ?rhs

using that by (metis fps-exp-deriv fps-deriv-mult-const-left mult.left-commute)
qed

lemma fps-exp-add-mult: fps-exp (a + b) = fps-exp (a:: ′a::field-char-0) ∗ fps-exp
b (is ?l = ?r)
proof −

have fps-deriv ?r = fps-const (a + b) ∗ ?r
by (simp add: fps-const-add[symmetric] field-simps del: fps-const-add)

then have ?r = ?l
by (simp only: fps-exp-unique-ODE) (simp add: fps-mult-nth fps-exp-def)

then show ?thesis ..
qed

lemma fps-exp-nth[simp]: fps-exp a $ n = a^n / of-nat (fact n)
by (simp add: fps-exp-def)

lemma fps-exp-0 [simp]: fps-exp (0 :: ′a::field) = 1

351

by (simp add: fps-eq-iff power-0-left)

lemma fps-exp-neg: fps-exp (− a) = inverse (fps-exp (a:: ′a::field-char-0))
proof −

from fps-exp-add-mult[of a − a] have th0 : fps-exp a ∗ fps-exp (− a) = 1 by
simp

from fps-inverse-unique[OF th0] show ?thesis by simp
qed

lemma fps-exp-nth-deriv[simp]:
fps-nth-deriv n (fps-exp (a:: ′a::field-char-0)) = (fps-const a)^n ∗ (fps-exp a)
by (induct n) auto

lemma fps-X-compose-fps-exp[simp]: fps-X oo fps-exp (a:: ′a::field) = fps-exp a −
1

by (simp add: fps-eq-iff fps-X-fps-compose)

lemma fps-inv-fps-exp-compose:
assumes a: a 6= 0
shows fps-inv (fps-exp a − 1) oo (fps-exp a − 1) = fps-X

and (fps-exp a − 1) oo fps-inv (fps-exp a − 1) = fps-X
proof −

let ?b = fps-exp a − 1
have b0 : ?b $ 0 = 0

by simp
have b1 : ?b $ 1 6= 0

by (simp add: a)
from fps-inv[OF b0 b1] show fps-inv (fps-exp a − 1) oo (fps-exp a − 1) = fps-X

.
from fps-inv-right[OF b0 b1] show (fps-exp a − 1) oo fps-inv (fps-exp a − 1)

= fps-X .
qed

lemma fps-exp-power-mult: (fps-exp (c:: ′a::field-char-0))^n = fps-exp (of-nat n ∗
c)

by (induct n) (simp-all add: field-simps fps-exp-add-mult)

lemma radical-fps-exp:
assumes r : r (Suc k) 1 = 1
shows fps-radical r (Suc k) (fps-exp (c:: ′a::field-char-0)) = fps-exp (c / of-nat

(Suc k))
proof −

let ?ck = (c / of-nat (Suc k))
let ?r = fps-radical r (Suc k)
have eq0 [simp]: ?ck ∗ of-nat (Suc k) = c of-nat (Suc k) ∗ ?ck = c

by (simp-all del: of-nat-Suc)
have th0 : fps-exp ?ck ^ (Suc k) = fps-exp c unfolding fps-exp-power-mult eq0

..
have th: r (Suc k) (fps-exp c $0) ^ Suc k = fps-exp c $ 0

352

r (Suc k) (fps-exp c $ 0) = fps-exp ?ck $ 0 fps-exp c $ 0 6= 0 using r by
simp-all

from th0 radical-unique[where r=r and k=k, OF th] show ?thesis
by auto

qed

lemma fps-exp-compose-linear [simp]:
fps-exp (d:: ′a::field-char-0) oo (fps-const c ∗ fps-X) = fps-exp (c ∗ d)
by (simp add: fps-compose-linear fps-exp-def fps-eq-iff power-mult-distrib)

lemma fps-fps-exp-compose-minus [simp]:
fps-compose (fps-exp c) (−fps-X) = fps-exp (−c :: ′a :: field-char-0)
using fps-exp-compose-linear [of c −1 :: ′a]
unfolding fps-const-neg [symmetric] fps-const-1-eq-1 by simp

lemma fps-exp-eq-iff [simp]: fps-exp c = fps-exp d ←→ c = (d :: ′a :: field-char-0)
proof

assume fps-exp c = fps-exp d
from arg-cong[of - - λF . F $ 1 , OF this] show c = d by simp

qed simp-all

lemma fps-exp-eq-fps-const-iff [simp]:
fps-exp (c :: ′a :: field-char-0) = fps-const c ′←→ c = 0 ∧ c ′ = 1

proof
assume c = 0 ∧ c ′ = 1
thus fps-exp c = fps-const c ′ by (simp add: fps-eq-iff)

next
assume fps-exp c = fps-const c ′

from arg-cong[of - - λF . F $ 1 , OF this] arg-cong[of - - λF . F $ 0 , OF this]
show c = 0 ∧ c ′ = 1 by simp-all

qed

lemma fps-exp-neq-0 [simp]: ¬fps-exp (c :: ′a :: field-char-0) = 0
unfolding fps-const-0-eq-0 [symmetric] fps-exp-eq-fps-const-iff by simp

lemma fps-exp-eq-1-iff [simp]: fps-exp (c :: ′a :: field-char-0) = 1 ←→ c = 0
unfolding fps-const-1-eq-1 [symmetric] fps-exp-eq-fps-const-iff by simp

lemma fps-exp-neq-numeral-iff [simp]:
fps-exp (c :: ′a :: field-char-0) = numeral n ←→ c = 0 ∧ n = Num.One
unfolding numeral-fps-const fps-exp-eq-fps-const-iff by simp

5.19.2 Logarithmic series
lemma Abs-fps-if-0 :

Abs-fps (λn. if n = 0 then (v:: ′a::ring-1) else f n) =
fps-const v + fps-X ∗ Abs-fps (λn. f (Suc n))

by (simp add: fps-eq-iff)

353

definition fps-ln :: ′a::field-char-0 ⇒ ′a fps
where fps-ln c = fps-const (1/c) ∗ Abs-fps (λn. if n = 0 then 0 else (− 1) ^ (n
− 1) / of-nat n)

lemma fps-ln-deriv: fps-deriv (fps-ln c) = fps-const (1/c) ∗ inverse (1 + fps-X)
unfolding fps-inverse-fps-X-plus1
by (simp add: fps-ln-def fps-eq-iff del: of-nat-Suc)

lemma fps-ln-nth: fps-ln c $ n = (if n = 0 then 0 else 1/c ∗ ((− 1) ^ (n − 1) /
of-nat n))

by (simp add: fps-ln-def field-simps)

lemma fps-ln-0 [simp]: fps-ln c $ 0 = 0 by (simp add: fps-ln-def)

lemma fps-ln-fps-exp-inv:
fixes a :: ′a::field-char-0
assumes a: a 6= 0
shows fps-ln a = fps-inv (fps-exp a − 1) (is ?l = ?r)

proof −
let ?b = fps-exp a − 1
have b0 : ?b $ 0 = 0 by simp
have b1 : ?b $ 1 6= 0 by (simp add: a)
have fps-deriv (fps-exp a − 1) oo fps-inv (fps-exp a − 1) =
(fps-const a ∗ (fps-exp a − 1) + fps-const a) oo fps-inv (fps-exp a − 1)
by (simp add: field-simps)

also have . . . = fps-const a ∗ (fps-X + 1)
by (simp add: fps-compose-add-distrib fps-inv-right[OF b0 b1] distrib-left flip:

fps-const-mult-apply-left)
finally have eq: fps-deriv (fps-exp a − 1) oo fps-inv (fps-exp a − 1) = fps-const

a ∗ (fps-X + 1) .
from fps-inv-deriv[OF b0 b1 , unfolded eq]
have fps-deriv (fps-inv ?b) = fps-const (inverse a) / (fps-X + 1)

using a by (simp add: fps-const-inverse eq fps-divide-def fps-inverse-mult)
then have fps-deriv ?l = fps-deriv ?r

by (simp add: fps-ln-deriv add.commute fps-divide-def divide-inverse)
then show ?thesis unfolding fps-deriv-eq-iff

by (simp add: fps-ln-nth fps-inv-def)
qed

lemma fps-ln-mult-add:
assumes c0 : c 6=0

and d0 : d 6=0
shows fps-ln c + fps-ln d = fps-const (c+d) ∗ fps-ln (c∗d)
(is ?r = ?l)

proof−
from c0 d0 have eq: 1/c + 1/d = (c+d)/(c∗d) by (simp add: field-simps)
have fps-deriv ?r = fps-const (1/c + 1/d) ∗ inverse (1 + fps-X)
by (simp add: fps-ln-deriv fps-const-add[symmetric] algebra-simps del: fps-const-add)

also have . . . = fps-deriv ?l

354

by (simp add: eq fps-ln-deriv)
finally show ?thesis

unfolding fps-deriv-eq-iff by simp
qed

lemma fps-X-dvd-fps-ln [simp]: fps-X dvd fps-ln c
proof −

have fps-ln c = fps-X ∗ Abs-fps (λn. (−1) ^ n / (of-nat (Suc n) ∗ c))
by (intro fps-ext) (simp add: fps-ln-def of-nat-diff)

thus ?thesis by simp
qed

5.19.3 Binomial series
definition fps-binomial a = Abs-fps (λn. a gchoose n)

lemma fps-binomial-nth[simp]: fps-binomial a $ n = a gchoose n
by (simp add: fps-binomial-def)

lemma fps-binomial-ODE-unique:
fixes c :: ′a::field-char-0
shows fps-deriv a = (fps-const c ∗ a) / (1 + fps-X) ←→ a = fps-const (a$0) ∗

fps-binomial c
(is ?lhs ←→ ?rhs)

proof
let ?da = fps-deriv a
let ?x1 = (1 + fps-X):: ′a fps
let ?l = ?x1 ∗ ?da
let ?r = fps-const c ∗ a

have eq: ?l = ?r ←→ ?lhs
proof −

have x10 : ?x1 $ 0 6= 0 by simp
have ?l = ?r ←→ inverse ?x1 ∗ ?l = inverse ?x1 ∗ ?r by simp
also have . . . ←→ ?da = (fps-const c ∗ a) / ?x1

unfolding fps-divide-def mult.assoc[symmetric] inverse-mult-eq-1 [OF x10]
by (simp add: field-simps)

finally show ?thesis .
qed

show ?rhs if ?lhs
proof −

from eq that have h: ?l = ?r ..
have th0 : a$ Suc n = ((c − of-nat n) / of-nat (Suc n)) ∗ a $n for n
proof −

from h have ?l $ n = ?r $ n by simp
then show ?thesis

by (simp add: field-simps del: of-nat-Suc split: if-split-asm)
qed

355

have th1 : a $ n = (c gchoose n) ∗ a $ 0 for n
proof (induct n)

case 0
then show ?case by simp

next
case (Suc m)
have (c − of-nat m) ∗ (c gchoose m) = (c gchoose Suc m) ∗ of-nat (Suc m)

by (metis gbinomial-absorb-comp gbinomial-absorption mult.commute)
with Suc show ?case

unfolding th0
by (simp add: divide-simps del: of-nat-Suc)

qed
show ?thesis
by (metis expand-fps-eq fps-binomial-nth fps-mult-right-const-nth mult.commute

th1)
qed

show ?lhs if ?rhs
proof −

have th00 : x ∗ (a $ 0 ∗ y) = a $ 0 ∗ (x ∗ y) for x y
by (simp add: mult.commute)

have ?l = (1 + fps-X) ∗ fps-deriv (fps-const (a $ 0) ∗ fps-binomial c)
using that by auto

also have ... = fps-const c ∗ (fps-const (a $ 0) ∗ fps-binomial c)
proof (clarsimp simp add: fps-eq-iff algebra-simps)

show a $ 0 ∗ (c gchoose Suc n) + (of-nat n ∗ ((c gchoose n) ∗ a $ 0) +
of-nat n ∗ (a $ 0 ∗ (c gchoose Suc n)))

= c ∗ ((c gchoose n) ∗ a $ 0) for n
unfolding mult.assoc[symmetric]
by (simp add: field-simps gbinomial-mult-1)

qed
also have ... = ?r

using that by auto
finally have ?l = ?r .
with eq show ?thesis ..

qed
qed

lemma fps-binomial-ODE-unique ′:
(fps-deriv a = fps-const c ∗ a / (1 + fps-X) ∧ a $ 0 = 1) ←→ (a = fps-binomial

c)
by (subst fps-binomial-ODE-unique) auto

lemma fps-binomial-deriv: fps-deriv (fps-binomial c) = fps-const c ∗ fps-binomial
c / (1 + fps-X)
proof −

let ?a = fps-binomial c
have th0 : ?a = fps-const (?a$0) ∗ ?a by (simp)
from iffD2 [OF fps-binomial-ODE-unique, OF th0] show ?thesis .

356

qed

lemma fps-binomial-add-mult: fps-binomial (c+d) = fps-binomial c ∗ fps-binomial
d (is ?l = ?r)
proof −

let ?P = ?r − ?l
let ?b = fps-binomial
let ?db = λx. fps-deriv (?b x)
have fps-deriv ?P = ?db c ∗ ?b d + ?b c ∗ ?db d − ?db (c + d) by simp
also have . . . = inverse (1 + fps-X) ∗

(fps-const c ∗ ?b c ∗ ?b d + fps-const d ∗ ?b c ∗ ?b d − fps-const (c+d) ∗ ?b
(c + d))

unfolding fps-binomial-deriv
by (simp add: fps-divide-def field-simps)

also have . . . = (fps-const (c + d)/ (1 + fps-X)) ∗ ?P
by (simp add: field-simps fps-divide-unit fps-const-add[symmetric] del: fps-const-add)

finally have th0 : fps-deriv ?P = fps-const (c+d) ∗ ?P / (1 + fps-X)
by (simp add: fps-divide-def)

have ?P = fps-const (?P$0) ∗ ?b (c + d)
unfolding fps-binomial-ODE-unique[symmetric]
using th0 by simp

then have ?P = 0 by (simp add: fps-mult-nth)
then show ?thesis by simp

qed

lemma fps-binomial-minus-one: fps-binomial (− 1) = inverse (1 + fps-X)
(is ?l = inverse ?r)

proof−
have th: ?r$0 6= 0 by simp
have th ′: fps-deriv (inverse ?r) = fps-const (− 1) ∗ inverse ?r / (1 + fps-X)

by (simp add: fps-inverse-deriv[OF th] fps-divide-def
power2-eq-square mult.commute fps-const-neg[symmetric] del: fps-const-neg)

have eq: inverse ?r $ 0 = 1
by (simp add: fps-inverse-def)

from iffD1 [OF fps-binomial-ODE-unique[of inverse (1 + fps-X) − 1] th ′] eq
show ?thesis by (simp add: fps-inverse-def)

qed

lemma fps-binomial-of-nat: fps-binomial (of-nat n) = (1 + fps-X :: ′a :: field-char-0
fps) ^ n
proof (cases n = 0)

case [simp]: True
have fps-deriv ((1 + fps-X) ^ n :: ′a fps) = 0 by simp
also have . . . = fps-const (of-nat n) ∗ (1 + fps-X) ^ n / (1 + fps-X) by (simp

add: fps-binomial-def)
finally show ?thesis by (subst sym, subst fps-binomial-ODE-unique ′ [symmetric])

simp-all
next

case False

357

have fps-deriv ((1 + fps-X) ^ n :: ′a fps) = fps-const (of-nat n) ∗ (1 + fps-X)
^ (n − 1)

by (simp add: fps-deriv-power)
also have (1 + fps-X :: ′a fps) $ 0 6= 0 by simp
hence (1 + fps-X :: ′a fps) 6= 0 by (intro notI) (simp only: , simp)
with False have (1 + fps-X :: ′a fps) ^ (n − 1) = (1 + fps-X) ^ n / (1 +

fps-X)
by (cases n) (simp-all)

also have fps-const (of-nat n :: ′a) ∗ ((1 + fps-X) ^ n / (1 + fps-X)) =
fps-const (of-nat n) ∗ (1 + fps-X) ^ n / (1 + fps-X)

by (simp add: unit-div-mult-swap)
finally show ?thesis

by (subst sym, subst fps-binomial-ODE-unique ′ [symmetric]) (simp-all add:
fps-power-nth)
qed

lemma fps-binomial-0 [simp]: fps-binomial 0 = 1
using fps-binomial-of-nat[of 0] by simp

lemma fps-binomial-power : fps-binomial a ^ n = fps-binomial (of-nat n ∗ a)
by (induction n) (simp-all add: fps-binomial-add-mult ring-distribs)

lemma fps-binomial-1 : fps-binomial 1 = 1 + fps-X
using fps-binomial-of-nat[of 1] by simp

lemma fps-binomial-minus-of-nat:
fps-binomial (− of-nat n) = inverse ((1 + fps-X :: ′a :: field-char-0 fps) ^ n)
by (rule sym, rule fps-inverse-unique)
(simp add: fps-binomial-of-nat [symmetric] fps-binomial-add-mult [symmetric])

lemma one-minus-const-fps-X-power :
c 6= 0 =⇒ (1 − fps-const c ∗ fps-X) ^ n =

fps-compose (fps-binomial (of-nat n)) (−fps-const c ∗ fps-X)
by (subst fps-binomial-of-nat)
(simp add: fps-compose-power [symmetric] fps-compose-add-distrib fps-const-neg

[symmetric]
del: fps-const-neg)

lemma one-minus-fps-X-const-neg-power :
inverse ((1 − fps-const c ∗ fps-X) ^ n) =

fps-compose (fps-binomial (−of-nat n)) (−fps-const c ∗ fps-X)
proof (cases c = 0)

case False
thus ?thesis
by (subst fps-binomial-minus-of-nat)
(simp add: fps-compose-power [symmetric] fps-inverse-compose fps-compose-add-distrib

fps-const-neg [symmetric] del: fps-const-neg)
qed simp

358

lemma fps-X-plus-const-power :
c 6= 0 =⇒ (fps-X + fps-const c) ^ n =

fps-const (c^n) ∗ fps-compose (fps-binomial (of-nat n)) (fps-const (inverse c)
∗ fps-X)

by (subst fps-binomial-of-nat)
(simp add: fps-compose-power [symmetric] fps-binomial-of-nat fps-compose-add-distrib

fps-const-power [symmetric] power-mult-distrib [symmetric]
algebra-simps inverse-mult-eq-1 ′ del: fps-const-power)

lemma fps-X-plus-const-neg-power :
c 6= 0 =⇒ inverse ((fps-X + fps-const c) ^ n) =

fps-const (inverse c^n) ∗ fps-compose (fps-binomial (−of-nat n)) (fps-const
(inverse c) ∗ fps-X)

by (subst fps-binomial-minus-of-nat)
(simp add: fps-compose-power [symmetric] fps-binomial-of-nat fps-compose-add-distrib

fps-const-power [symmetric] power-mult-distrib [symmetric] fps-inverse-compose

algebra-simps fps-const-inverse [symmetric] fps-inverse-mult [symmetric]
fps-inverse-power [symmetric] inverse-mult-eq-1 ′

del: fps-const-power)

lemma one-minus-const-fps-X-neg-power ′:
fixes c :: ′a :: field-char-0
assumes n > 0
shows inverse ((1 − fps-const c ∗ fps-X) ^ n) = Abs-fps (λk. of-nat ((n + k −

1) choose k) ∗ c^k)
proof −

have §:
∧

j. Abs-fps (λna. (− c) ^ na ∗ fps-binomial (− of-nat n) $ na) $ j =
Abs-fps (λk. of-nat (n + k − 1 choose k) ∗ c ^ k) $ j

using assms
by (simp add: gbinomial-minus binomial-gbinomial of-nat-diff flip: power-mult-distrib

mult.assoc)
show ?thesis

apply (rule fps-ext)
using §

by (metis (no-types, lifting) one-minus-fps-X-const-neg-power fps-const-neg
fps-compose-linear fps-nth-Abs-fps)
qed

Vandermonde’s Identity as a consequence.
lemma gbinomial-Vandermonde:

sum (λk. (a gchoose k) ∗ (b gchoose (n − k))) {0 ..n} = (a + b) gchoose n
proof −

let ?ba = fps-binomial a
let ?bb = fps-binomial b
let ?bab = fps-binomial (a + b)
from fps-binomial-add-mult[of a b] have ?bab $ n = (?ba ∗ ?bb)$n by simp
then show ?thesis by (simp add: fps-mult-nth)

359

qed

lemma binomial-Vandermonde:
sum (λk. (a choose k) ∗ (b choose (n − k))) {0 ..n} = (a + b) choose n
using gbinomial-Vandermonde[of (of-nat a) of-nat b n]
by (simp only: binomial-gbinomial[symmetric] of-nat-mult[symmetric]

of-nat-sum[symmetric] of-nat-add[symmetric] of-nat-eq-iff)

lemma binomial-Vandermonde-same: sum (λk. (n choose k)2) {0 ..n} = (2 ∗ n)
choose n

using binomial-Vandermonde[of n n n, symmetric]
unfolding mult-2
by (metis atMost-atLeast0 choose-square-sum mult-2)

lemma Vandermonde-pochhammer-lemma:
fixes a :: ′a::field-char-0
assumes b:

∧
j. j<n =⇒ b 6= of-nat j

shows sum (λk. (pochhammer (− a) k ∗ pochhammer (− (of-nat n)) k) /
(of-nat (fact k) ∗ pochhammer (b − of-nat n + 1) k)) {0 ..n} =

pochhammer (− (a + b)) n / pochhammer (− b) n
(is ?l = ?r)

proof −
let ?m1 = λm. (− 1 :: ′a) ^ m
let ?f = λm. of-nat (fact m)
let ?p = λ(x:: ′a). pochhammer (− x)
from b have bn0 : ?p b n 6= 0

unfolding pochhammer-eq-0-iff by simp
have th00 :

b gchoose (n − k) =
(?m1 n ∗ ?p b n ∗ ?m1 k ∗ ?p (of-nat n) k) / (?f n ∗ pochhammer (b −

of-nat n + 1) k)
(is ?gchoose)

pochhammer (1 + b − of-nat n) k 6= 0
(is ?pochhammer)

if kn: k ∈ {0 ..n} for k
proof −

from kn have k ≤ n by simp
have nz: pochhammer (1 + b − of-nat n) n 6= 0
proof

assume pochhammer (1 + b − of-nat n) n = 0
then have c: pochhammer (b − of-nat n + 1) n = 0

by (simp add: algebra-simps)
then obtain j where j: j < n b − of-nat n + 1 = − of-nat j

unfolding pochhammer-eq-0-iff by blast
from j have b = of-nat n − of-nat j − of-nat 1

by (simp add: algebra-simps)
then show False

using ‹j < n› j b
by (metis bn0 c mult-cancel-right2 pochhammer-minus)

360

qed

from nz kn [simplified] have nz ′: pochhammer (1 + b − of-nat n) k 6= 0
by (rule pochhammer-neq-0-mono)

consider k = 0 ∨ n = 0 | k 6= 0 n 6= 0
by blast

then have b gchoose (n − k) =
(?m1 n ∗ ?p b n ∗ ?m1 k ∗ ?p (of-nat n) k) / (?f n ∗ pochhammer (b − of-nat

n + 1) k)
proof cases

case 1
then show ?thesis

using kn by (cases k = 0) (simp-all add: gbinomial-pochhammer)
next

case neq: 2
then obtain m where m: n = Suc m

by (cases n) auto
from neq(1) obtain h where h: k = Suc h

by (cases k) auto
show ?thesis
proof (cases k = n)

case True
with pochhammer-minus ′[where k=k and b=b] bn0 show ?thesis

by (simp add: pochhammer-same)
next

case False
with kn have kn ′: k < n

by simp
have h ≤ m

using ‹k ≤ n› h m by blast
have m1nk: ?m1 n = prod (λi. − 1) {..m} ?m1 k = prod (λi. − 1) {0 ..h}

by (simp-all add: m h)
have bnz0 : pochhammer (b − of-nat n + 1) k 6= 0

using bn0 kn
unfolding pochhammer-eq-0-iff
by (metis add.commute add-diff-eq nz ′ pochhammer-eq-0-iff)

have eq1 : prod (λk. (1 :: ′a) + of-nat m − of-nat k) {..h} =
prod of-nat {Suc (m − h) .. Suc m}
using kn ′ h m

by (intro prod.reindex-bij-witness[where i=λk. Suc m − k and j=λk. Suc
m − k])

(auto simp: of-nat-diff)
have (

∏
i = 0 ..<k. 1 + of-nat n − of-nat k + of-nat i) = (

∏
x = n −

k..<n. (1 :: ′a) + of-nat x)
using ‹k ≤ n›

using prod.atLeastLessThan-shift-bounds [where ? ′a = ′a, of λi. 1 +
of-nat i 0 n − k k]

by (auto simp add: of-nat-diff field-simps)

361

then have fact (n − k) ∗ pochhammer ((1 :: ′a) + of-nat n − of-nat k) k =
fact n

using ‹k ≤ n›
by (auto simp add: fact-split [of k n] pochhammer-prod field-simps)

then have th1 : (?m1 k ∗ ?p (of-nat n) k) / ?f n = 1 / of-nat(fact (n − k))
by (simp add: pochhammer-minus field-simps)

have ?m1 n ∗ ?p b n = pochhammer (b − of-nat m) (Suc m)
by (simp add: pochhammer-minus field-simps m)

also have ... = (
∏

i = 0 ..m. b − of-nat i)
by (auto simp add: pochhammer-prod-rev of-nat-diff prod.atLeast-Suc-atMost-Suc-shift

simp del: prod.cl-ivl-Suc)
finally have th20 : ?m1 n ∗ ?p b n = prod (λi. b − of-nat i) {0 ..m} .
have (

∏
x = 0 ..h. b − of-nat m + of-nat (h − x)) = (

∏
i = m − h..m. b

− of-nat i)
using ‹h ≤ m› prod.atLeastAtMost-shift-0 [of m − h m, where ? ′a = ′a]
by (auto simp add: of-nat-diff field-simps)

then have th21 :pochhammer (b − of-nat n + 1) k = prod (λi. b − of-nat
i) {n − k .. n − 1}

using kn by (simp add: pochhammer-prod-rev m h prod.atLeast-Suc-atMost-Suc-shift
del: prod.op-ivl-Suc del: prod.cl-ivl-Suc)

have ?m1 n ∗ ?p b n =
prod (λi. b − of-nat i) {0 .. n − k − 1} ∗ pochhammer (b − of-nat n +

1) k
using kn ′ m h unfolding th20 th21
by (auto simp flip: prod.union-disjoint intro: prod.cong)

then have th2 : (?m1 n ∗ ?p b n)/pochhammer (b − of-nat n + 1) k =
prod (λi. b − of-nat i) {0 .. n − k − 1}
using nz ′ by (simp add: field-simps)

have (?m1 n ∗ ?p b n ∗ ?m1 k ∗ ?p (of-nat n) k) / (?f n ∗ pochhammer (b
− of-nat n + 1) k) =

((?m1 k ∗ ?p (of-nat n) k) / ?f n) ∗ ((?m1 n ∗ ?p b n)/pochhammer (b −
of-nat n + 1) k)

using bnz0
by (simp add: field-simps)

also have . . . = b gchoose (n − k)
unfolding th1 th2
using kn ′ m h
by (auto simp: field-simps gbinomial-mult-fact intro: prod.cong)

finally show ?thesis by simp
qed

qed
then show ?gchoose and ?pochhammer

using nz ′ by force+
qed
have ?r = ((a + b) gchoose n) ∗ (of-nat (fact n) / (?m1 n ∗ pochhammer (− b)

n))
unfolding gbinomial-pochhammer
using bn0 by (auto simp add: field-simps)

also have . . . = ?l

362

using bn0
unfolding gbinomial-Vandermonde[symmetric]
apply (simp add: th00)

by (simp add: gbinomial-pochhammer sum-distrib-right sum-distrib-left field-simps)
finally show ?thesis by simp

qed

lemma Vandermonde-pochhammer :
fixes a :: ′a::field-char-0
assumes c: ∀ i ∈ {0 ..< n}. c 6= − of-nat i
shows sum (λk. (pochhammer a k ∗ pochhammer (− (of-nat n)) k) /
(of-nat (fact k) ∗ pochhammer c k)) {0 ..n} = pochhammer (c − a) n / pochham-

mer c n
proof −

let ?a = − a
let ?b = c + of-nat n − 1
have h: ?b 6= of-nat j if j < n for j
proof −

have c 6= − of-nat (n − j − 1)
using c that by (auto simp: dest!: bspec [where x = n−j−1])

with that show ?thesis
by (auto simp add: algebra-simps of-nat-diff)

qed
have th0 : pochhammer (− (?a + ?b)) n = (− 1)^n ∗ pochhammer (c − a) n

unfolding pochhammer-minus
by (simp add: algebra-simps)

have th1 : pochhammer (− ?b) n = (− 1)^n ∗ pochhammer c n
unfolding pochhammer-minus
by simp

have nz: pochhammer c n 6= 0 using c
by (simp add: pochhammer-eq-0-iff)

from Vandermonde-pochhammer-lemma[where a = ?a and b=?b and n=n, OF
h, unfolded th0 th1]

show ?thesis
using nz by (simp add: field-simps sum-distrib-left)

qed

5.19.4 Trigonometric functions
definition fps-sin (c:: ′a::field-char-0) =

Abs-fps (λn. if even n then 0 else (− 1) ^((n − 1) div 2) ∗ c^n /(of-nat (fact
n)))

definition fps-cos (c:: ′a::field-char-0) =
Abs-fps (λn. if even n then (− 1) ^ (n div 2) ∗ c^n / (of-nat (fact n)) else 0)

lemma fps-sin-0 [simp]: fps-sin 0 = 0
by (intro fps-ext) (auto simp: fps-sin-def elim!: oddE)

363

lemma fps-cos-0 [simp]: fps-cos 0 = 1
by (intro fps-ext) (simp add: fps-cos-def)

lemma fps-sin-deriv:
fps-deriv (fps-sin c) = fps-const c ∗ fps-cos c
(is ?lhs = ?rhs)

proof (rule fps-ext)
fix n :: nat
show ?lhs $ n = ?rhs $ n
proof (cases even n)

case True
have ?lhs$n = of-nat (n+1) ∗ (fps-sin c $ (n+1)) by simp
also have . . . = of-nat (n+1) ∗ ((− 1)^(n div 2) ∗ c^Suc n / of-nat (fact

(Suc n)))
using True by (simp add: fps-sin-def)

also have . . . = (− 1)^(n div 2) ∗ c^Suc n ∗ (of-nat (n+1) / (of-nat (Suc n)
∗ of-nat (fact n)))

unfolding fact-Suc of-nat-mult
by (simp add: field-simps del: of-nat-add of-nat-Suc)

also have . . . = (− 1)^(n div 2) ∗ c^Suc n / of-nat (fact n)
by (simp add: field-simps del: of-nat-add of-nat-Suc)

finally show ?thesis
using True by (simp add: fps-cos-def field-simps)

next
case False
then show ?thesis

by (simp-all add: fps-deriv-def fps-sin-def fps-cos-def)
qed

qed

lemma fps-cos-deriv: fps-deriv (fps-cos c) = fps-const (− c)∗ (fps-sin c)
(is ?lhs = ?rhs)

proof (rule fps-ext)
have th0 : − ((− 1 :: ′a) ^ n) = (− 1)^Suc n for n

by simp
show ?lhs $ n = ?rhs $ n for n
proof (cases even n)

case False
then have n0 : n 6= 0 by presburger
from False have th1 : Suc ((n − 1) div 2) = Suc n div 2

by (cases n) simp-all
have ?lhs$n = of-nat (n+1) ∗ (fps-cos c $ (n+1)) by simp
also have . . . = of-nat (n+1) ∗ ((− 1)^((n + 1) div 2) ∗ c^Suc n / of-nat

(fact (Suc n)))
using False by (simp add: fps-cos-def)

also have . . . = (− 1)^((n + 1) div 2) ∗ c^Suc n ∗ (of-nat (n+1) / (of-nat
(Suc n) ∗ of-nat (fact n)))

unfolding fact-Suc of-nat-mult
by (simp add: field-simps del: of-nat-add of-nat-Suc)

364

also have . . . = (− 1)^((n + 1) div 2) ∗ c^Suc n / of-nat (fact n)
by (simp add: field-simps del: of-nat-add of-nat-Suc)

also have . . . = (− ((− 1)^((n − 1) div 2))) ∗ c^Suc n / of-nat (fact n)
unfolding th0 unfolding th1 by simp

finally show ?thesis
using False by (simp add: fps-sin-def field-simps)

next
case True
then show ?thesis

by (simp-all add: fps-deriv-def fps-sin-def fps-cos-def)
qed

qed

lemma fps-sin-cos-sum-of-squares: (fps-cos c)2 + (fps-sin c)2 = 1
(is ?lhs = -)

proof −
have fps-deriv ?lhs = 0
by (simp add: fps-deriv-power fps-sin-deriv fps-cos-deriv field-simps flip: fps-const-neg)

then have ?lhs = fps-const (?lhs $ 0)
unfolding fps-deriv-eq-0-iff .

also have . . . = 1
by (simp add: fps-eq-iff numeral-2-eq-2 fps-mult-nth fps-cos-def fps-sin-def)

finally show ?thesis .
qed

lemma fps-sin-nth-0 [simp]: fps-sin c $ 0 = 0
unfolding fps-sin-def by simp

lemma fps-sin-nth-1 [simp]: fps-sin c $ Suc 0 = c
unfolding fps-sin-def by simp

lemma fps-sin-nth-add-2 :
fps-sin c $ (n + 2) = − (c ∗ c ∗ fps-sin c $ n / (of-nat (n + 1) ∗ of-nat (n +

2)))
proof (cases n)

case (Suc n ′)
then show ?thesis

unfolding fps-sin-def by (simp add: field-simps)
qed (auto simp: fps-sin-def)

lemma fps-cos-nth-0 [simp]: fps-cos c $ 0 = 1
unfolding fps-cos-def by simp

lemma fps-cos-nth-1 [simp]: fps-cos c $ Suc 0 = 0
unfolding fps-cos-def by simp

lemma fps-cos-nth-add-2 :
fps-cos c $ (n + 2) = − (c ∗ c ∗ fps-cos c $ n / (of-nat (n + 1) ∗ of-nat (n +

365

2)))
proof (cases n)

case (Suc n ′)
then show ?thesis

unfolding fps-cos-def by (simp add: field-simps)
qed (auto simp: fps-cos-def)

lemma nat-add-1-add-1 : (n::nat) + 1 + 1 = n + 2
by simp

lemma eq-fps-sin:
assumes a0 : a $ 0 = 0

and a1 : a $ 1 = c
and a2 : fps-deriv (fps-deriv a) = − (fps-const c ∗ fps-const c ∗ a)

shows fps-sin c = a
proof (rule fps-ext)

fix n
show fps-sin c $ n = a $ n
proof (induction n rule: nat-induct2)

case (step n)
then have of-nat (n + 1) ∗ (of-nat (n + 2) ∗ a $ (n + 2)) =
− (c ∗ c ∗ fps-sin c $ n)
using a2

by (metis fps-const-mult fps-deriv-nth fps-mult-left-const-nth fps-neg-nth nat-add-1-add-1)
with step show ?case
by (metis (no-types, lifting) a0 add.commute add.inverse-inverse fps-sin-nth-0

fps-sin-nth-add-2 mult-divide-mult-cancel-left-if mult-minus-right nonzero-mult-div-cancel-left
not-less-zero of-nat-eq-0-iff plus-1-eq-Suc zero-less-Suc)

qed (use assms in auto)
qed

lemma eq-fps-cos:
assumes a0 : a $ 0 = 1

and a1 : a $ 1 = 0
and a2 : fps-deriv (fps-deriv a) = − (fps-const c ∗ fps-const c ∗ a)

shows fps-cos c = a
proof (rule fps-ext)

fix n
show fps-cos c $ n = a $ n
proof (induction n rule: nat-induct2)

case (step n)
then have of-nat (n + 1) ∗ (of-nat (n + 2) ∗ a $ (n + 2)) =
− (c ∗ c ∗ fps-cos c $ n)
using a2

by (metis fps-const-mult fps-deriv-nth fps-mult-left-const-nth fps-neg-nth nat-add-1-add-1)
with step show ?case
by (metis (no-types, lifting) a0 add.commute add.inverse-inverse fps-cos-nth-0

fps-cos-nth-add-2 mult-divide-mult-cancel-left-if mult-minus-right nonzero-mult-div-cancel-left
not-less-zero of-nat-eq-0-iff plus-1-eq-Suc zero-less-Suc)

366

qed (use assms in auto)
qed

lemma fps-sin-add: fps-sin (a + b) = fps-sin a ∗ fps-cos b + fps-cos a ∗ fps-sin b
proof −

have fps-deriv (fps-deriv (fps-sin a ∗ fps-cos b + fps-cos a ∗ fps-sin b)) =
− (fps-const (a + b) ∗ fps-const (a + b) ∗ (fps-sin a ∗ fps-cos b + fps-cos

a ∗ fps-sin b))
by (simp flip: fps-const-neg fps-const-add fps-const-mult

add: fps-sin-deriv fps-cos-deriv algebra-simps)
then show ?thesis

by (auto intro: eq-fps-sin)
qed

lemma fps-cos-add: fps-cos (a + b) = fps-cos a ∗ fps-cos b − fps-sin a ∗ fps-sin b
proof −

have fps-deriv
(fps-deriv (fps-cos a ∗ fps-cos b − fps-sin a ∗ fps-sin b)) =
− (fps-const (a + b) ∗ fps-const (a + b) ∗

(fps-cos a ∗ fps-cos b − fps-sin a ∗ fps-sin b))
by (simp flip: fps-const-neg fps-const-add fps-const-mult

add: fps-sin-deriv fps-cos-deriv algebra-simps)
then show ?thesis

by (auto intro: eq-fps-cos)
qed

lemma fps-sin-even: fps-sin (− c) = − fps-sin c
by (simp add: fps-eq-iff fps-sin-def)

lemma fps-cos-odd: fps-cos (− c) = fps-cos c
by (simp add: fps-eq-iff fps-cos-def)

definition fps-tan c = fps-sin c / fps-cos c

lemma fps-tan-0 [simp]: fps-tan 0 = 0
by (simp add: fps-tan-def)

lemma fps-tan-deriv: fps-deriv (fps-tan c) = fps-const c / (fps-cos c)2
proof −

have th0 : fps-cos c $ 0 6= 0 by (simp add: fps-cos-def)
from this have fps-cos c 6= 0 by (intro notI) simp
hence fps-deriv (fps-tan c) =

fps-const c ∗ (fps-cos c^2 + fps-sin c^2) / (fps-cos c^2)
by (simp add: fps-tan-def fps-divide-deriv power2-eq-square algebra-simps

fps-sin-deriv fps-cos-deriv fps-const-neg[symmetric] div-mult-swap
del: fps-const-neg)

also note fps-sin-cos-sum-of-squares
finally show ?thesis by simp

367

qed

Connection to fps-exp over the complex numbers — Euler and de Moivre.
lemma fps-exp-ii-sin-cos: fps-exp (i ∗ c) = fps-cos c + fps-const i ∗ fps-sin c
(is ?l = ?r)

proof −
have ?l $ n = ?r $ n for n
proof (cases even n)

case True
then obtain m where m: n = 2 ∗ m ..
show ?thesis
by (simp add: m fps-sin-def fps-cos-def power-mult-distrib power-mult power-minus

[of c ^ 2])
next

case False
then obtain m where m: n = 2 ∗ m + 1 ..
show ?thesis

by (simp add: m fps-sin-def fps-cos-def power-mult-distrib
power-mult power-minus [of c ^ 2])

qed
then show ?thesis

by (simp add: fps-eq-iff)
qed

lemma fps-exp-minus-ii-sin-cos: fps-exp (− (i ∗ c)) = fps-cos c − fps-const i ∗
fps-sin c
unfolding minus-mult-right fps-exp-ii-sin-cos by (simp add: fps-sin-even fps-cos-odd)

lemma fps-cos-fps-exp-ii: fps-cos c = (fps-exp (i ∗ c) + fps-exp (− i ∗ c)) /
fps-const 2
proof −

have th: fps-cos c + fps-cos c = fps-cos c ∗ fps-const 2
by (simp add: numeral-fps-const)

show ?thesis
unfolding fps-exp-ii-sin-cos minus-mult-commute

by (simp add: fps-sin-even fps-cos-odd numeral-fps-const fps-divide-unit fps-const-inverse
th)
qed

lemma fps-sin-fps-exp-ii: fps-sin c = (fps-exp (i ∗ c) − fps-exp (− i ∗ c)) / fps-const
(2∗i)
proof −

have th: fps-const i ∗ fps-sin c + fps-const i ∗ fps-sin c = fps-sin c ∗ fps-const
(2 ∗ i)

by (simp add: fps-eq-iff numeral-fps-const)
show ?thesis

unfolding fps-exp-ii-sin-cos minus-mult-commute
by (simp add: fps-sin-even fps-cos-odd fps-divide-unit fps-const-inverse th)

qed

368

lemma fps-tan-fps-exp-ii:
fps-tan c = (fps-exp (i ∗ c) − fps-exp (− i ∗ c)) /

(fps-const i ∗ (fps-exp (i ∗ c) + fps-exp (− i ∗ c)))
unfolding fps-tan-def fps-sin-fps-exp-ii fps-cos-fps-exp-ii
by (simp add: fps-divide-unit fps-inverse-mult fps-const-inverse)

lemma fps-demoivre:
(fps-cos a + fps-const i ∗ fps-sin a)^n =

fps-cos (of-nat n ∗ a) + fps-const i ∗ fps-sin (of-nat n ∗ a)
unfolding fps-exp-ii-sin-cos[symmetric] fps-exp-power-mult
by (simp add: ac-simps)

5.20 Hypergeometric series
definition fps-hypergeo as bs (c:: ′a::field-char-0) =

Abs-fps (λn. (foldl (λr a. r∗ pochhammer a n) 1 as ∗ c^n) /
(foldl (λr b. r ∗ pochhammer b n) 1 bs ∗ of-nat (fact n)))

lemma fps-hypergeo-nth[simp]: fps-hypergeo as bs c $ n =
(foldl (λr a. r∗ pochhammer a n) 1 as ∗ c^n) /
(foldl (λr b. r ∗ pochhammer b n) 1 bs ∗ of-nat (fact n))

by (simp add: fps-hypergeo-def)

lemma foldl-mult-start:
fixes v :: ′a::comm-ring-1
shows foldl (λr x. r ∗ f x) v as ∗ x = foldl (λr x. r ∗ f x) (v ∗ x) as
by (induct as arbitrary: x v) (auto simp add: algebra-simps)

lemma foldr-mult-foldl:
fixes v :: ′a::comm-ring-1
shows foldr (λx r . r ∗ f x) as v = foldl (λr x. r ∗ f x) v as
by (induct as arbitrary: v) (simp-all add: foldl-mult-start)

lemma fps-hypergeo-nth-alt:
fps-hypergeo as bs c $ n = foldr (λa r . r ∗ pochhammer a n) as (c ^ n) /

foldr (λb r . r ∗ pochhammer b n) bs (of-nat (fact n))
by (simp add: foldl-mult-start foldr-mult-foldl)

lemma fps-hypergeo-fps-exp[simp]: fps-hypergeo [] [] c = fps-exp c
by (simp add: fps-eq-iff)

lemma fps-hypergeo-1-0 [simp]: fps-hypergeo [1] [] c = 1/(1 − fps-const c ∗ fps-X)
proof −

let ?a = (Abs-fps (λn. 1)) oo (fps-const c ∗ fps-X)
have th0 : (fps-const c ∗ fps-X) $ 0 = 0 by simp
show ?thesis unfolding gp[OF th0 , symmetric]

by (simp add: fps-eq-iff pochhammer-fact[symmetric]
fps-compose-nth power-mult-distrib if-distrib cong del: if-weak-cong)

369

qed

lemma fps-hypergeo-B[simp]: fps-hypergeo [−a] [] (− 1) = fps-binomial a
by (simp add: fps-eq-iff gbinomial-pochhammer algebra-simps)

lemma fps-hypergeo-0 [simp]: fps-hypergeo as bs c $ 0 = 1
proof −

have foldl (λ(r :: ′a) (a:: ′a). r) 1 as = 1 for as
by (induction as) auto

then show ?thesis
by auto

qed

lemma foldl-prod-prod:
foldl (λ(r :: ′b::comm-ring-1) (x:: ′a::comm-ring-1). r ∗ f x) v as ∗ foldl (λr x. r ∗

g x) w as =
foldl (λr x. r ∗ f x ∗ g x) (v ∗ w) as

by (induct as arbitrary: v w) (simp-all add: algebra-simps)

lemma fps-hypergeo-rec:
fps-hypergeo as bs c $ Suc n = ((foldl (λr a. r∗ (a + of-nat n)) c as) /
(foldl (λr b. r ∗ (b + of-nat n)) (of-nat (Suc n)) bs)) ∗ fps-hypergeo as bs c $

n
apply (simp add: foldl-mult-start del: of-nat-Suc of-nat-add fact-Suc)
unfolding foldl-prod-prod[unfolded foldl-mult-start] pochhammer-Suc
by (simp add: algebra-simps)

lemma fps-XD-nth[simp]: fps-XD a $ n = of-nat n ∗ a$n
by (simp add: fps-XD-def)

lemma fps-XD-0th[simp]: fps-XD a $ 0 = 0
by simp

lemma fps-XD-Suc[simp]: fps-XD a $ Suc n = of-nat (Suc n) ∗ a $ Suc n
by simp

definition fps-XDp c a = fps-XD a + fps-const c ∗ a

lemma fps-XDp-nth[simp]: fps-XDp c a $ n = (c + of-nat n) ∗ a$n
by (simp add: fps-XDp-def algebra-simps)

lemma fps-XDp-commute: fps-XDp b ◦ fps-XDp (c:: ′a::comm-ring-1) = fps-XDp
c ◦ fps-XDp b

by (simp add: fps-XDp-def fun-eq-iff fps-eq-iff algebra-simps)

lemma fps-XDp0 [simp]: fps-XDp 0 = fps-XD
by (simp add: fun-eq-iff fps-eq-iff)

lemma fps-XDp-fps-integral [simp]:

370

fixes a :: ′a::{division-ring,ring-char-0} fps
shows fps-XDp 0 (fps-integral a c) = fps-X ∗ a
using fps-deriv-fps-integral[of a c]
by (simp add: fps-XD-def)

lemma fps-hypergeo-minus-nat:
fps-hypergeo [− of-nat n] [− of-nat (n + m)] (c:: ′a::field-char-0) $ k =
(if k ≤ n then

pochhammer (− of-nat n) k ∗ c ^ k / (pochhammer (− of-nat (n + m)) k ∗
of-nat (fact k))

else 0)
fps-hypergeo [− of-nat m] [− of-nat (m + n)] (c:: ′a::field-char-0) $ k =
(if k ≤ m then

pochhammer (− of-nat m) k ∗ c ^ k / (pochhammer (− of-nat (m + n)) k ∗
of-nat (fact k))

else 0)
by (simp-all add: pochhammer-eq-0-iff)

lemma pochhammer-rec-if : pochhammer a n = (if n = 0 then 1 else a ∗ pochham-
mer (a + 1) (n − 1))

by (cases n) (simp-all add: pochhammer-rec)

lemma fps-XDp-foldr-nth [simp]: foldr (λc r . fps-XDp c ◦ r) cs (λc. fps-XDp c a)
c0 $ n =

foldr (λc r . (c + of-nat n) ∗ r) cs (c0 + of-nat n) ∗ a$n
by (induct cs arbitrary: c0) (simp-all add: algebra-simps)

lemma genric-fps-XDp-foldr-nth:
assumes f : ∀n c a. f c a $ n = (of-nat n + k c) ∗ a$n
shows foldr (λc r . f c ◦ r) cs (λc. g c a) c0 $ n =

foldr (λc r . (k c + of-nat n) ∗ r) cs (g c0 a $ n)
by (induct cs arbitrary: c0) (simp-all add: algebra-simps f)

lemma dist-less-imp-nth-equal:
assumes dist f g < inverse (2 ^ i)

andj ≤ i
shows f $ j = g $ j

proof (rule ccontr)
assume f $ j 6= g $ j
hence f 6= g by auto
with assms have i < subdegree (f − g)

by (simp add: if-split-asm dist-fps-def)
also have . . . ≤ j

using ‹f $ j 6= g $ j› by (intro subdegree-leI) simp-all
finally show False using ‹j ≤ i› by simp

qed

lemma nth-equal-imp-dist-less:
assumes

∧
j. j ≤ i =⇒ f $ j = g $ j

371

shows dist f g < inverse (2 ^ i)
proof (cases f = g)

case True
then show ?thesis by simp

next
case False
with assms have dist f g = inverse (2 ^ subdegree (f − g))

by (simp add: if-split-asm dist-fps-def)
moreover
from assms and False have i < subdegree (f − g)

by (intro subdegree-greaterI) simp-all
ultimately show ?thesis by simp

qed

lemma dist-less-eq-nth-equal: dist f g < inverse (2 ^ i) ←→ (∀ j ≤ i. f $ j = g $
j)

using dist-less-imp-nth-equal nth-equal-imp-dist-less by blast

instance fps :: (comm-ring-1) complete-space
proof

fix fps-X :: nat ⇒ ′a fps
assume Cauchy fps-X
obtain M where M : ∀ i. ∀m ≥ M i. ∀ j ≤ i. fps-X (M i) $ j = fps-X m $ j
proof −

have ∃M . ∀m ≥ M . ∀ j≤i. fps-X M $ j = fps-X m $ j for i
proof −

have 0 < inverse ((2 ::real)^i) by simp
from metric-CauchyD[OF ‹Cauchy fps-X› this] dist-less-imp-nth-equal
show ?thesis by blast

qed
then show ?thesis using that by metis

qed

show convergent fps-X
proof (rule convergentI)

show fps-X −−−−→ Abs-fps (λi. fps-X (M i) $ i)
unfolding tendsto-iff

proof safe
fix e::real assume e: 0 < e

have (λn. inverse (2 ^ n) :: real) −−−−→ 0 by (rule LIMSEQ-inverse-realpow-zero)
simp-all

from this and e have eventually (λi. inverse (2 ^ i) < e) sequentially
by (rule order-tendstoD)

then obtain i where inverse (2 ^ i) < e
by (auto simp: eventually-sequentially)

have eventually (λx. M i ≤ x) sequentially
by (auto simp: eventually-sequentially)

then show eventually (λx. dist (fps-X x) (Abs-fps (λi. fps-X (M i) $ i)) <
e) sequentially

372

proof eventually-elim
fix x
assume x: M i ≤ x
have fps-X (M i) $ j = fps-X (M j) $ j if j ≤ i for j

using M that by (metis nat-le-linear)
with x have dist (fps-X x) (Abs-fps (λj. fps-X (M j) $ j)) < inverse (2 ^ i)

using M by (force simp: dist-less-eq-nth-equal)
also note ‹inverse (2 ^ i) < e›
finally show dist (fps-X x) (Abs-fps (λj. fps-X (M j) $ j)) < e .

qed
qed

qed
qed

bundle fps-syntax
begin
notation fps-nth (infixl ‹$› 75)
end

unbundle no fps-syntax

end

6 Converting polynomials to formal power series
theory Polynomial-FPS

imports Polynomial Formal-Power-Series
begin

context
includes fps-syntax

begin

definition fps-of-poly where
fps-of-poly p = Abs-fps (coeff p)

lemma fps-of-poly-eq-iff : fps-of-poly p = fps-of-poly q ←→ p = q
by (simp add: fps-of-poly-def poly-eq-iff fps-eq-iff)

lemma fps-of-poly-nth [simp]: fps-of-poly p $ n = coeff p n
by (simp add: fps-of-poly-def)

lemma fps-of-poly-const: fps-of-poly [:c:] = fps-const c
proof (subst fps-eq-iff , clarify)

fix n :: nat show fps-of-poly [:c:] $ n = fps-const c $ n
by (cases n) (auto simp: fps-of-poly-def)

qed

373

lemma fps-of-poly-0 [simp]: fps-of-poly 0 = 0
by (subst fps-const-0-eq-0 [symmetric], subst fps-of-poly-const [symmetric]) simp

lemma fps-of-poly-1 [simp]: fps-of-poly 1 = 1
by (simp add: fps-eq-iff)

lemma fps-of-poly-1 ′ [simp]: fps-of-poly [:1 :] = 1
by (subst fps-const-1-eq-1 [symmetric], subst fps-of-poly-const [symmetric])

(simp add: one-poly-def)

lemma fps-of-poly-numeral [simp]: fps-of-poly (numeral n) = numeral n
by (simp add: numeral-fps-const fps-of-poly-const [symmetric] numeral-poly)

lemma fps-of-poly-numeral ′ [simp]: fps-of-poly [:numeral n:] = numeral n
by (simp add: numeral-fps-const fps-of-poly-const [symmetric] numeral-poly)

lemma fps-of-poly-fps-X [simp]: fps-of-poly [:0 , 1 :] = fps-X
by (auto simp add: fps-of-poly-def fps-eq-iff coeff-pCons split: nat.split)

lemma fps-of-poly-add: fps-of-poly (p + q) = fps-of-poly p + fps-of-poly q
by (simp add: fps-of-poly-def plus-poly.rep-eq fps-plus-def)

lemma fps-of-poly-diff : fps-of-poly (p − q) = fps-of-poly p − fps-of-poly q
by (simp add: fps-of-poly-def minus-poly.rep-eq fps-minus-def)

lemma fps-of-poly-uminus: fps-of-poly (−p) = −fps-of-poly p
by (simp add: fps-of-poly-def uminus-poly.rep-eq fps-uminus-def)

lemma fps-of-poly-mult: fps-of-poly (p ∗ q) = fps-of-poly p ∗ fps-of-poly q
by (simp add: fps-of-poly-def fps-times-def fps-eq-iff coeff-mult atLeast0AtMost)

lemma fps-of-poly-smult:
fps-of-poly (smult c p) = fps-const c ∗ fps-of-poly p
using fps-of-poly-mult[of [:c:] p] by (simp add: fps-of-poly-mult fps-of-poly-const)

lemma fps-of-poly-sum: fps-of-poly (sum f A) = sum (λx. fps-of-poly (f x)) A
by (cases finite A, induction rule: finite-induct) (simp-all add: fps-of-poly-add)

lemma fps-of-poly-sum-list: fps-of-poly (sum-list xs) = sum-list (map fps-of-poly
xs)

by (induction xs) (simp-all add: fps-of-poly-add)

lemma fps-of-poly-prod: fps-of-poly (prod f A) = prod (λx. fps-of-poly (f x)) A
by (cases finite A, induction rule: finite-induct) (simp-all add: fps-of-poly-mult)

lemma fps-of-poly-prod-list: fps-of-poly (prod-list xs) = prod-list (map fps-of-poly
xs)

by (induction xs) (simp-all add: fps-of-poly-mult)

374

lemma fps-of-poly-pCons:
fps-of-poly (pCons (c :: ′a :: semiring-1) p) = fps-const c + fps-of-poly p ∗ fps-X
by (subst fps-mult-fps-X-commute [symmetric], intro fps-ext)

(auto simp: fps-of-poly-def coeff-pCons split: nat.split)

lemma fps-of-poly-pderiv: fps-of-poly (pderiv p) = fps-deriv (fps-of-poly p)
by (intro fps-ext) (simp add: fps-of-poly-nth coeff-pderiv)

lemma fps-of-poly-power : fps-of-poly (p ^ n) = fps-of-poly p ^ n
by (induction n) (simp-all add: fps-of-poly-mult)

lemma fps-of-poly-monom: fps-of-poly (monom (c :: ′a :: comm-ring-1) n) =
fps-const c ∗ fps-X ^ n

by (intro fps-ext) simp-all

lemma fps-of-poly-monom ′: fps-of-poly (monom (1 :: ′a :: comm-ring-1) n) =
fps-X ^ n

by (simp add: fps-of-poly-monom)

lemma fps-of-poly-div:
assumes (q :: ′a :: field poly) dvd p
shows fps-of-poly (p div q) = fps-of-poly p / fps-of-poly q

proof (cases q = 0)
case False
from False fps-of-poly-eq-iff [of q 0] have nz: fps-of-poly q 6= 0 by simp
from assms have p = (p div q) ∗ q by simp
also have fps-of-poly . . . = fps-of-poly (p div q) ∗ fps-of-poly q

by (simp add: fps-of-poly-mult)
also from nz have . . . / fps-of-poly q = fps-of-poly (p div q)

by (intro nonzero-mult-div-cancel-right) (auto simp: fps-of-poly-0)
finally show ?thesis ..

qed simp

lemma fps-of-poly-divide-numeral:
fps-of-poly (smult (inverse (numeral c :: ′a :: field)) p) = fps-of-poly p / numeral

c
proof −

have smult (inverse (numeral c)) p = [:inverse (numeral c):] ∗ p by simp
also have fps-of-poly . . . = fps-of-poly p / numeral c

by (subst fps-of-poly-mult) (simp add: numeral-fps-const fps-of-poly-pCons)
finally show ?thesis by simp

qed

lemma subdegree-fps-of-poly:
assumes p 6= 0
defines n ≡ Polynomial.order 0 p
shows subdegree (fps-of-poly p) = n

proof (rule subdegreeI)

375

from assms have monom 1 n dvd p by (simp add: monom-1-dvd-iff)
thus zero: fps-of-poly p $ i = 0 if i < n for i

using that by (simp add: monom-1-dvd-iff ′)

from assms have ¬monom 1 (Suc n) dvd p
by (auto simp: monom-1-dvd-iff simp del: power-Suc)

then obtain k where k: k ≤ n fps-of-poly p $ k 6= 0
by (auto simp: monom-1-dvd-iff ′ less-Suc-eq-le)

with zero[of k] have k = n by linarith
with k show fps-of-poly p $ n 6= 0 by simp

qed

lemma fps-of-poly-dvd:
assumes p dvd q
shows fps-of-poly (p :: ′a :: field poly) dvd fps-of-poly q

proof (cases p = 0 ∨ q = 0)
case False
with assms fps-of-poly-eq-iff [of p 0] fps-of-poly-eq-iff [of q 0] show ?thesis

by (auto simp: fps-dvd-iff subdegree-fps-of-poly dvd-imp-order-le)
qed (insert assms, auto)

lemmas fps-of-poly-simps =
fps-of-poly-0 fps-of-poly-1 fps-of-poly-numeral fps-of-poly-const fps-of-poly-fps-X
fps-of-poly-add fps-of-poly-diff fps-of-poly-uminus fps-of-poly-mult fps-of-poly-smult
fps-of-poly-sum fps-of-poly-sum-list fps-of-poly-prod fps-of-poly-prod-list
fps-of-poly-pCons fps-of-poly-pderiv fps-of-poly-power fps-of-poly-monom
fps-of-poly-divide-numeral

lemma fps-of-poly-pcompose:
assumes coeff q 0 = (0 :: ′a :: idom)
shows fps-of-poly (pcompose p q) = fps-compose (fps-of-poly p) (fps-of-poly q)
using assms by (induction p rule: pCons-induct)

(auto simp: pcompose-pCons fps-of-poly-simps fps-of-poly-pCons
fps-compose-add-distrib fps-compose-mult-distrib)

lemmas reify-fps-atom =
fps-of-poly-0 fps-of-poly-1 ′ fps-of-poly-numeral ′ fps-of-poly-const fps-of-poly-fps-X

The following simproc can reduce the equality of two polynomial FPSs
two equality of the respective polynomials. A polynomial FPS is one that
only has finitely many non-zero coefficients and can therefore be written as
fps-of-poly p for some polynomial p.
This may sound trivial, but it covers a number of annoying side conditions
like 1 + fps-X 6= 0 that would otherwise not be solved automatically.
ML ‹

(∗ TODO: Support for division ∗)

376

signature POLY-FPS = sig

val reify-conv : conv
val eq-conv : conv
val eq-simproc : cterm −> thm option

end

structure Poly-Fps = struct

fun const-binop-conv s conv ct =
case Thm.term-of ct of
(Const (s ′, -) $ - $ -) =>

if s = s ′ then
Conv.binop-conv conv ct

else
raise CTERM (const-binop-conv, [ct])

| - => raise CTERM (const-binop-conv, [ct])

fun reify-conv ct =
let

val rewr = Conv.rewrs-conv o map (fn thm => thm RS @{thm eq-reflection})
val un = Conv.arg-conv reify-conv
val bin = Conv.binop-conv reify-conv

in
case Thm.term-of ct of
(Const (const-name ‹fps-of-poly›, -) $ -) => ct |> Conv.all-conv
| (Const (const-name ‹Groups.plus›, -) $ - $ -) => ct |> (

bin then-conv rewr @{thms fps-of-poly-add [symmetric]})
| (Const (const-name ‹Groups.uminus›, -) $ -) => ct |> (

un then-conv rewr @{thms fps-of-poly-uminus [symmetric]})
| (Const (const-name ‹Groups.minus›, -) $ - $ -) => ct |> (

bin then-conv rewr @{thms fps-of-poly-diff [symmetric]})
| (Const (const-name ‹Groups.times›, -) $ - $ -) => ct |> (

bin then-conv rewr @{thms fps-of-poly-mult [symmetric]})
| (Const (const-name ‹Rings.divide›, -) $ - $ (Const (const-name ‹Num.numeral›,

-) $ -))
=> ct |> (Conv.fun-conv (Conv.arg-conv reify-conv)

then-conv rewr @{thms fps-of-poly-divide-numeral [symmetric]})
| (Const (const-name ‹Power .power›, -) $ Const (const-name ‹fps-X›,-) $ -)

=> ct |> (
rewr @{thms fps-of-poly-monom ′ [symmetric]})

| (Const (const-name ‹Power .power›, -) $ - $ -) => ct |> (
Conv.fun-conv (Conv.arg-conv reify-conv)
then-conv rewr @{thms fps-of-poly-power [symmetric]})

| - => ct |> (
rewr @{thms reify-fps-atom [symmetric]})

end

377

fun eq-conv ct =
case Thm.term-of ct of
(Const (const-name ‹HOL.eq›, -) $ - $ -) => ct |> (

Conv.binop-conv reify-conv
then-conv Conv.rewr-conv @{thm fps-of-poly-eq-iff [THEN eq-reflection]})

| - => raise CTERM (poly-fps-eq-conv, [ct])

val eq-simproc = try eq-conv

end
›

simproc-setup poly-fps-eq ((f :: ′a fps) = g) = ‹K (K Poly-Fps.eq-simproc)›

lemma fps-of-poly-linear : fps-of-poly [:a,1 :: ′a :: field:] = fps-X + fps-const a
by simp

lemma fps-of-poly-linear ′: fps-of-poly [:1 ,a :: ′a :: field:] = 1 + fps-const a ∗ fps-X
by simp

lemma fps-of-poly-cutoff [simp]:
fps-of-poly (poly-cutoff n p) = fps-cutoff n (fps-of-poly p)
by (simp add: fps-eq-iff coeff-poly-cutoff)

lemma fps-of-poly-shift [simp]: fps-of-poly (poly-shift n p) = fps-shift n (fps-of-poly
p)

by (simp add: fps-eq-iff coeff-poly-shift)

definition poly-subdegree :: ′a::zero poly ⇒ nat where
poly-subdegree p = subdegree (fps-of-poly p)

lemma coeff-less-poly-subdegree:
k < poly-subdegree p =⇒ coeff p k = 0
unfolding poly-subdegree-def using nth-less-subdegree-zero[of k fps-of-poly p] by

simp

definition prefix-length :: (′a ⇒ bool) ⇒ ′a list ⇒ nat where
prefix-length P xs = length (takeWhile P xs)

primrec prefix-length-aux :: (′a ⇒ bool) ⇒ nat ⇒ ′a list ⇒ nat where
prefix-length-aux P acc [] = acc
| prefix-length-aux P acc (x#xs) = (if P x then prefix-length-aux P (Suc acc) xs
else acc)

lemma prefix-length-aux-correct: prefix-length-aux P acc xs = prefix-length P xs +

378

acc
by (induction xs arbitrary: acc) (simp-all add: prefix-length-def)

lemma prefix-length-code [code]: prefix-length P xs = prefix-length-aux P 0 xs
by (simp add: prefix-length-aux-correct)

lemma prefix-length-le-length: prefix-length P xs ≤ length xs
by (induction xs) (simp-all add: prefix-length-def)

lemma prefix-length-less-length: (∃ x∈set xs. ¬P x) =⇒ prefix-length P xs < length
xs

by (induction xs) (simp-all add: prefix-length-def)

lemma nth-prefix-length:
(∃ x∈set xs. ¬P x) =⇒ ¬P (xs ! prefix-length P xs)
by (induction xs) (simp-all add: prefix-length-def)

lemma nth-less-prefix-length:
n < prefix-length P xs =⇒ P (xs ! n)
by (induction xs arbitrary: n)

(auto simp: prefix-length-def nth-Cons split: if-splits nat.splits)

lemma poly-subdegree-code [code]: poly-subdegree p = prefix-length ((=) 0) (coeffs
p)
proof (cases p = 0)

case False
note [simp] = this
define n where n = prefix-length ((=) 0) (coeffs p)
from False have ∃ k. coeff p k 6= 0 by (auto simp: poly-eq-iff)
hence ex: ∃ x∈set (coeffs p). x 6= 0 by (auto simp: coeffs-def)
hence n-less: n < length (coeffs p) and nonzero: coeffs p ! n 6= 0

unfolding n-def by (auto intro!: prefix-length-less-length nth-prefix-length)
show ?thesis unfolding poly-subdegree-def
proof (intro subdegreeI)

from n-less have fps-of-poly p $ n = coeffs p ! n
by (subst coeffs-nth) (simp-all add: degree-eq-length-coeffs)

with nonzero show fps-of-poly p $ prefix-length ((=) 0) (coeffs p) 6= 0
unfolding n-def by simp

next
fix k assume A: k < prefix-length ((=) 0) (coeffs p)
also have . . . ≤ length (coeffs p) by (rule prefix-length-le-length)
finally show fps-of-poly p $ k = 0

using nth-less-prefix-length[OF A]
by (simp add: coeffs-nth degree-eq-length-coeffs)

qed
qed (simp-all add: poly-subdegree-def prefix-length-def)

end

379

Truncation of formal power series: all monomials cxk with k ≥ n are re-
moved; the remainder is a polynomial of degree at most n− 1.
lift-definition truncate-fps :: nat ⇒ ′a fps ⇒ ′a :: zero poly is
λn F k. if k ≥ n then 0 else fps-nth F k

proof goal-cases
case (1 n F)
have eventually (λk. (if n ≤ k then 0 else fps-nth F k) = 0) at-top

using eventually-ge-at-top[of n] by eventually-elim auto
thus ?case

by (simp add: cofinite-eq-sequentially)
qed

lemma coeff-truncate-fps ′ [simp]:
k ≥ n =⇒ coeff (truncate-fps n F) k = 0
k < n =⇒ coeff (truncate-fps n F) k = fps-nth F k
by (transfer ; simp; fail)+

lemma coeff-truncate-fps: coeff (truncate-fps n F) k = (if k < n then fps-nth F k
else 0)

by auto

lemma truncate-0-fps [simp]: truncate-fps 0 F = 0
by (rule poly-eqI) auto

lemma degree-truncate-fps: n > 0 =⇒ degree (truncate-fps n F) < n
by (rule degree-lessI) auto

lemma truncate-fps-0 [simp]: truncate-fps n 0 = 0
by (rule poly-eqI) (auto simp: coeff-truncate-fps)

lemma truncate-fps-add: truncate-fps n (f + g) = truncate-fps n f + truncate-fps
n g

by (rule poly-eqI) (auto simp: coeff-truncate-fps)

lemma truncate-fps-diff : truncate-fps n (f − g) = truncate-fps n f − truncate-fps
n g

by (rule poly-eqI) (auto simp: coeff-truncate-fps)

lemma truncate-fps-uminus: truncate-fps n (−f) = −truncate-fps n f
by (rule poly-eqI) (auto simp: coeff-truncate-fps)

lemma fps-of-poly-truncate [simp]: fps-of-poly (truncate-fps n f) = fps-cutoff n f
by (rule fps-ext) auto

end

380

7 A formalization of formal Laurent series
theory Formal-Laurent-Series
imports

Polynomial-FPS
begin

7.1 The type of formal Laurent series
7.1.1 Type definition
typedef (overloaded) ′a fls = {f ::int ⇒ ′a::zero. ∀∞ n::nat. f (− int n) = 0}

morphisms fls-nth Abs-fls
proof

show (λx. 0) ∈ {f ::int ⇒ ′a::zero. ∀∞ n::nat. f (− int n) = 0}
by simp

qed

setup-lifting type-definition-fls

unbundle fps-syntax
notation fls-nth (infixl ‹$$› 75)

lemmas fls-eqI = iffD1 [OF fls-nth-inject, OF iffD2 , OF fun-eq-iff , OF allI]

lemma fls-eq-iff : f = g ←→ (∀n. f $$ n = g $$ n)
by (simp add: fls-nth-inject[symmetric] fun-eq-iff)

lemma nth-Abs-fls [simp]: ∀∞n. f (− int n) = 0 =⇒ Abs-fls f $$ n = f n
by (simp add: Abs-fls-inverse[OF CollectI])

lemmas nth-Abs-fls-finite-nonzero-neg-nth = nth-Abs-fls[OF iffD2 , OF eventu-
ally-cofinite]
lemmas nth-Abs-fls-ex-nat-lower-bound = nth-Abs-fls[OF iffD2 , OF MOST-nat]
lemmas nth-Abs-fls-nat-lower-bound = nth-Abs-fls-ex-nat-lower-bound[OF exI]

lemma nth-Abs-fls-ex-lower-bound:
assumes ∃N . ∀n<N . f n = 0
shows Abs-fls f $$ n = f n

proof (intro nth-Abs-fls-ex-nat-lower-bound)
from assms obtain N ::int where ∀n<N . f n = 0 by fast
hence ∀n > (if N < 0 then nat (−N) else 0). f (−int n) = 0 by auto
thus ∃M . ∀n>M . f (− int n) = 0 by fast

qed

lemmas nth-Abs-fls-lower-bound = nth-Abs-fls-ex-lower-bound[OF exI]

lemmas MOST-fls-neg-nth-eq-0 [simp] = CollectD[OF fls-nth]
lemmas fls-finite-nonzero-neg-nth = iffD1 [OF eventually-cofinite MOST-fls-neg-nth-eq-0]

381

lemma fls-nth-vanishes-below-natE :
fixes f :: ′a::zero fls
obtains N :: nat
where ∀n>N . f $$(−int n) = 0
using iffD1 [OF MOST-nat MOST-fls-neg-nth-eq-0]
by blast

lemma fls-nth-vanishes-belowE :
fixes f :: ′a::zero fls
obtains N :: int
where ∀n<N . f $$n = 0

proof−
obtain K :: nat where K : ∀n>K . f $$(−int n) = 0 by (elim fls-nth-vanishes-below-natE)
have ∀n < −int K . f $$n = 0
proof clarify

fix n assume n: n < −int K
define m where m ≡ nat (−n)
with n have m > K by simp
moreover from n m-def have f $$n = f $$ (−int m) by simp
ultimately show f $$ n = 0 using K by simp

qed
thus (

∧
N . ∀n<N . f $$ n = 0 =⇒ thesis) =⇒ thesis by fast

qed

7.1.2 Definition of basic Laurent series
instantiation fls :: (zero) zero
begin

lift-definition zero-fls :: ′a fls is λ-. 0 by simp
instance ..

end

lemma fls-zero-nth [simp]: 0 $$ n = 0
by (simp add: zero-fls-def)

lemma fls-zero-eqI : (
∧

n. f $$n = 0) =⇒ f = 0
by (fastforce intro: fls-eqI)

lemma fls-nonzeroI : f $$n 6= 0 =⇒ f 6= 0
by auto

lemma fls-nonzero-nth: f 6= 0 ←→ (∃ n. f $$ n 6= 0)
using fls-zero-eqI by fastforce

lemma fls-trivial-delta-eq-zero [simp]: b = 0 =⇒ Abs-fls (λn. if n=a then b else
0) = 0

by (intro fls-zero-eqI) simp

lemma fls-delta-nth [simp]:

382

Abs-fls (λn. if n=a then b else 0) $$ n = (if n=a then b else 0)
using nth-Abs-fls-lower-bound[of a λn. if n=a then b else 0] by simp

instantiation fls :: ({zero,one}) one
begin

lift-definition one-fls :: ′a fls is λk. if k = 0 then 1 else 0
by (simp add: eventually-cofinite)

instance ..
end

lemma fls-one-nth [simp]:
1 $$ n = (if n = 0 then 1 else 0)
by (simp add: one-fls-def eventually-cofinite)

instance fls :: (zero-neq-one) zero-neq-one
proof (standard, standard)

assume (0 :: ′a fls) = (1 :: ′a fls)
hence (0 :: ′a fls) $$ 0 = (1 :: ′a fls) $$ 0 by simp
thus False by simp

qed

definition fls-const :: ′a::zero ⇒ ′a fls
where fls-const c ≡ Abs-fls (λn. if n = 0 then c else 0)

lemma fls-const-nth [simp]: fls-const c $$ n = (if n = 0 then c else 0)
by (simp add: fls-const-def eventually-cofinite)

lemma fls-const-0 [simp]: fls-const 0 = 0
unfolding fls-const-def using fls-trivial-delta-eq-zero by fast

lemma fls-const-nonzero: c 6= 0 =⇒ fls-const c 6= 0
using fls-nonzeroI [of fls-const c 0] by simp

lemma fls-const-eq-0-iff [simp]: fls-const c = 0 ←→ c = 0
by (auto simp: fls-eq-iff)

lemma fls-const-1 [simp]: fls-const 1 = 1
unfolding fls-const-def one-fls-def ..

lemma fls-const-eq-1-iff [simp]: fls-const c = 1 ←→ c = 1
by (auto simp: fls-eq-iff)

lift-definition fls-X :: ′a::{zero,one} fls
is λn. if n = 1 then 1 else 0
by simp

lemma fls-X-nth [simp]:
fls-X $$ n = (if n = 1 then 1 else 0)
by (simp add: fls-X-def)

383

lemma fls-X-nonzero [simp]: (fls-X :: ′a :: zero-neq-one fls) 6= 0
by (intro fls-nonzeroI) simp

lift-definition fls-X-inv :: ′a::{zero,one} fls
is λn. if n = −1 then 1 else 0
by (simp add: eventually-cofinite)

lemma fls-X-inv-nth [simp]:
fls-X-inv $$ n = (if n = −1 then 1 else 0)
by (simp add: fls-X-inv-def eventually-cofinite)

lemma fls-X-inv-nonzero [simp]: (fls-X-inv :: ′a :: zero-neq-one fls) 6= 0
by (intro fls-nonzeroI) simp

7.2 Subdegrees
lemma unique-fls-subdegree:

assumes f 6= 0
shows ∃ !n. f $$n 6= 0 ∧ (∀m. f $$m 6= 0 −→ n ≤ m)

proof−
obtain N ::nat where N : ∀n>N . f $$(−int n) = 0 by (elim fls-nth-vanishes-below-natE)
define M where M ≡ −int N
have M :

∧
m. f $$m 6= 0 =⇒ M ≤ m

proof−
fix m assume m: f $$m 6= 0
show M ≤ m
proof (cases m<0)

case True with m N M-def show ?thesis
using allE [OF N , of nat (−m) False] by force

qed (simp add: M-def)
qed
have ¬ (∀ k::nat. f $$(M + int k) = 0)
proof

assume above0 : ∀ k::nat. f $$(M + int k) = 0
have f=0
proof (rule fls-zero-eqI)

fix n show f $$n = 0
proof (cases M ≤ n)

case True
define k where k = nat (n − M)
from True have n = M + int k by (simp add: k-def)
with above0 show ?thesis by simp

next
case False with M show ?thesis by auto

qed
qed
with assms show False by fast

qed

384

hence ex-k: ∃ k::nat. f $$(M + int k) 6= 0 by fast
define k where k ≡ (LEAST k::nat. f $$(M + int k) 6= 0)
define n where n ≡ M + int k
from k-def n-def have fn: f $$n 6= 0 using LeastI-ex[OF ex-k] by simp
moreover have ∀m. f $$m 6= 0 −→ n ≤ m
proof (clarify)

fix m assume m: f $$m 6= 0
with M have M ≤ m by fast
define l where l = nat (m − M)
from ‹M ≤ m› have l: m = M + int l by (simp add: l-def)
with n-def m k-def l show n ≤ m

using Least-le[of λk. f $$(M + int k) 6= 0 l] by auto
qed
moreover have

∧
n ′. f $$n ′ 6= 0 =⇒ (∀m. f $$m 6= 0 −→ n ′ ≤ m) =⇒ n ′ = n

proof−
fix n ′ :: int
assume n ′: f $$n ′ 6= 0 ∀m. f $$m 6= 0 −→ n ′ ≤ m
from n ′(1) M have M ≤ n ′ by fast
define l where l = nat (n ′ − M)
from ‹M ≤ n ′› have l: n ′ = M + int l by (simp add: l-def)
with n-def k-def n ′ fn show n ′ = n

using Least-le[of λk. f $$(M + int k) 6= 0 l] by force
qed
ultimately show ?thesis

using ex1I [of λn. f $$n 6= 0 ∧ (∀m. f $$m 6= 0 −→ n ≤ m) n] by blast
qed

definition fls-subdegree :: (′a::zero) fls ⇒ int
where fls-subdegree f ≡ (if f = 0 then 0 else LEAST n::int. f $$n 6= 0)

lemma fls-zero-subdegree [simp]: fls-subdegree 0 = 0
by (simp add: fls-subdegree-def)

lemma nth-fls-subdegree-nonzero [simp]: f 6= 0 =⇒ f $$ fls-subdegree f 6= 0
using Least1I [OF unique-fls-subdegree] by (simp add: fls-subdegree-def)

lemma nth-fls-subdegree-zero-iff : (f $$ fls-subdegree f = 0) ←→ (f = 0)
using nth-fls-subdegree-nonzero by auto

lemma fls-subdegree-leI : f $$ n 6= 0 =⇒ fls-subdegree f ≤ n
using Least1-le[OF unique-fls-subdegree]
by (auto simp: fls-subdegree-def)

lemma fls-subdegree-leI ′: f $$ n 6= 0 =⇒ n ≤ m =⇒ fls-subdegree f ≤ m
using fls-subdegree-leI by fastforce

lemma fls-eq0-below-subdegree [simp]: n < fls-subdegree f =⇒ f $$ n = 0
using fls-subdegree-leI by fastforce

385

lemma fls-subdegree-geI : f 6= 0 =⇒ (
∧

k. k < n =⇒ f $$ k = 0) =⇒ n ≤
fls-subdegree f

using nth-fls-subdegree-nonzero by force

lemma fls-subdegree-ge0I : (
∧

k. k < 0 =⇒ f $$ k = 0) =⇒ 0 ≤ fls-subdegree f
using fls-subdegree-geI [of f 0] by (cases f=0) auto

lemma fls-subdegree-greaterI :
assumes f 6= 0

∧
k. k ≤ n =⇒ f $$ k = 0

shows n < fls-subdegree f
using assms(1) assms(2)[of fls-subdegree f] nth-fls-subdegree-nonzero[of f]
by force

lemma fls-subdegree-eqI : f $$ n 6= 0 =⇒ (
∧

k. k < n =⇒ f $$ k = 0) =⇒
fls-subdegree f = n

using fls-subdegree-leI fls-subdegree-geI [of f]
by fastforce

lemma fls-delta-subdegree [simp]:
b 6= 0 =⇒ fls-subdegree (Abs-fls (λn. if n=a then b else 0)) = a
by (intro fls-subdegree-eqI) simp-all

lemma fls-delta0-subdegree: fls-subdegree (Abs-fls (λn. if n=0 then a else 0)) = 0
by (cases a=0) simp-all

lemma fls-one-subdegree [simp]: fls-subdegree 1 = 0
by (auto intro: fls-delta0-subdegree simp: one-fls-def)

lemma fls-const-subdegree [simp]: fls-subdegree (fls-const c) = 0
by (cases c=0) (auto intro: fls-subdegree-eqI)

lemma fls-X-subdegree [simp]: fls-subdegree (fls-X :: ′a::{zero-neq-one} fls) = 1
by (intro fls-subdegree-eqI) simp-all

lemma fls-X-inv-subdegree [simp]: fls-subdegree (fls-X-inv:: ′a::{zero-neq-one} fls)
= −1

by (intro fls-subdegree-eqI) simp-all

lemma fls-eq-above-subdegreeI :
assumes N ≤ fls-subdegree f N ≤ fls-subdegree g ∀ k≥N . f $$ k = g $$ k
shows f = g

proof (rule fls-eqI)
fix n from assms show f $$ n = g $$ n by (cases n < N) auto

qed

7.3 Shifting
7.3.1 Shift definition
definition fls-shift :: int ⇒ (′a::zero) fls ⇒ ′a fls

386

where fls-shift n f ≡ Abs-fls (λk. f $$ (k+n))
— Since the index set is unbounded in both directions, we can shift in either
direction.

lemma fls-shift-nth [simp]: fls-shift m f $$ n = f $$ (n+m)
unfolding fls-shift-def

proof (rule nth-Abs-fls-ex-lower-bound)
obtain K ::int where K : ∀n<K . f $$n = 0 by (elim fls-nth-vanishes-belowE)
hence ∀n<K−m. f $$(n+m) = 0 by auto
thus ∃N . ∀n<N . f $$ (n + m) = 0 by fast

qed

lemma fls-shift-eq-iff : (fls-shift m f = fls-shift m g) ←→ (f = g)
proof (rule iffI , rule fls-eqI)

fix k
assume 1 : fls-shift m f = fls-shift m g
have f $$ k = fls-shift m g $$ (k − m) by (simp add: 1 [symmetric])
thus f $$ k = g $$ k by simp

qed (intro fls-eqI , simp)

lemma fls-shift-0 [simp]: fls-shift 0 f = f
by (intro fls-eqI) simp

lemma fls-shift-subdegree [simp]:
f 6= 0 =⇒ fls-subdegree (fls-shift n f) = fls-subdegree f − n
by (intro fls-subdegree-eqI) simp-all

lemma fls-shift-fls-shift [simp]: fls-shift m (fls-shift k f) = fls-shift (k+m) f
by (intro fls-eqI) (simp add: algebra-simps)

lemma fls-shift-fls-shift-reorder :
fls-shift m (fls-shift k f) = fls-shift k (fls-shift m f)
using fls-shift-fls-shift[of m k f] fls-shift-fls-shift[of k m f] by (simp add: add.commute)

lemma fls-shift-zero [simp]: fls-shift m 0 = 0
by (intro fls-zero-eqI) simp

lemma fls-shift-eq0-iff : fls-shift m f = 0 ←→ f = 0
using fls-shift-eq-iff [of m f 0] by simp

lemma fls-shift-eq-1-iff : fls-shift n f = 1 ←→ f = fls-shift (−n) 1
by (metis add-minus-cancel fls-shift-eq-iff fls-shift-fls-shift)

lemma fls-shift-nonneg-subdegree: m ≤ fls-subdegree f =⇒ fls-subdegree (fls-shift
m f) ≥ 0

by (cases f=0) (auto intro: fls-subdegree-geI)

lemma fls-shift-delta:
fls-shift m (Abs-fls (λn. if n=a then b else 0)) = Abs-fls (λn. if n=a−m then b

387

else 0)
by (intro fls-eqI) simp

lemma fls-shift-const:
fls-shift m (fls-const c) = Abs-fls (λn. if n=−m then c else 0)
by (intro fls-eqI) simp

lemma fls-shift-const-nth:
fls-shift m (fls-const c) $$ n = (if n=−m then c else 0)
by (simp add: fls-shift-const)

lemma fls-X-conv-shift-1 : fls-X = fls-shift (−1) 1
by (intro fls-eqI) simp

lemma fls-X-shift-to-one [simp]: fls-shift 1 fls-X = 1
using fls-shift-fls-shift[of −1 1 1] by (simp add: fls-X-conv-shift-1)

lemma fls-X-inv-conv-shift-1 : fls-X-inv = fls-shift 1 1
by (intro fls-eqI) simp

lemma fls-X-inv-shift-to-one [simp]: fls-shift (−1) fls-X-inv = 1
using fls-shift-fls-shift[of 1 −1 1] by (simp add: fls-X-inv-conv-shift-1)

lemma fls-X-fls-X-inv-conv:
fls-X = fls-shift (−2) fls-X-inv fls-X-inv = fls-shift 2 fls-X
by (simp-all add: fls-X-conv-shift-1 fls-X-inv-conv-shift-1)

7.3.2 Base factor

Similarly to the unit-factor for formal power series, we can decompose a
formal Laurent series as a power of the implied variable times a series of
subdegree 0. (See lemma fls-base-factor-X-power-decompose.) But we will
call this something other unit-factor because it will not satisfy assumption
is-unit-unit-factor of semidom-divide-unit-factor.
definition fls-base-factor :: (′a::zero) fls ⇒ ′a fls

where fls-base-factor-def [simp]: fls-base-factor f = fls-shift (fls-subdegree f) f

lemma fls-base-factor-nth: fls-base-factor f $$ n = f $$ (n + fls-subdegree f)
by simp

lemma fls-base-factor-nonzero [simp]: f 6= 0 =⇒ fls-base-factor f 6= 0
using fls-nonzeroI [of fls-base-factor f 0] by simp

lemma fls-base-factor-subdegree [simp]: fls-subdegree (fls-base-factor f) = 0
by (cases f=0) auto

lemma fls-base-factor-base [simp]:
fls-base-factor f $$ fls-subdegree (fls-base-factor f) = f $$ fls-subdegree f

388

using fls-base-factor-subdegree[of f] by simp

lemma fls-conv-base-factor-shift-subdegree:
f = fls-shift (−fls-subdegree f) (fls-base-factor f)
by simp

lemma fls-base-factor-idem:
fls-base-factor (fls-base-factor (f :: ′a::zero fls)) = fls-base-factor f
using fls-base-factor-subdegree[of f] by simp

lemma fls-base-factor-zero: fls-base-factor (0 :: ′a::zero fls) = 0
by simp

lemma fls-base-factor-zero-iff : fls-base-factor (f :: ′a::zero fls) = 0 ←→ f = 0
proof

have fls-shift (−fls-subdegree f) (fls-shift (fls-subdegree f) f) = f by simp
thus fls-base-factor f = 0 =⇒ f=0 by simp

qed simp

lemma fls-base-factor-nth-0 : f 6= 0 =⇒ fls-base-factor f $$ 0 6= 0
by simp

lemma fls-base-factor-one: fls-base-factor (1 :: ′a::{zero,one} fls) = 1
by simp

lemma fls-base-factor-const: fls-base-factor (fls-const c) = fls-const c
by simp

lemma fls-base-factor-delta:
fls-base-factor (Abs-fls (λn. if n=a then c else 0)) = fls-const c
by (cases c=0) (auto intro: fls-eqI)

lemma fls-base-factor-X : fls-base-factor (fls-X :: ′a::{zero-neq-one} fls) = 1
by simp

lemma fls-base-factor-X-inv: fls-base-factor (fls-X-inv:: ′a::{zero-neq-one} fls) = 1
by simp

lemma fls-base-factor-shift [simp]: fls-base-factor (fls-shift n f) = fls-base-factor f
by (cases f=0) simp-all

7.4 Conversion between formal power and Laurent series
7.4.1 Converting Laurent to power series

We can truncate a Laurent series at index 0 to create a power series, called
the regular part.
lift-definition fls-regpart :: (′a::zero) fls ⇒ ′a fps

is λf . Abs-fps (λn. f (int n))

389

.

lemma fls-regpart-nth [simp]: fls-regpart f $ n = f $$ (int n)
by (simp add: fls-regpart-def)

lemma fls-regpart-zero [simp]: fls-regpart 0 = 0
by (intro fps-ext) simp

lemma fls-regpart-one [simp]: fls-regpart 1 = 1
by (intro fps-ext) simp

lemma fls-regpart-Abs-fls:
∀∞n. F (− int n) = 0 =⇒ fls-regpart (Abs-fls F) = Abs-fps (λn. F (int n))
by (intro fps-ext) auto

lemma fls-regpart-delta:
fls-regpart (Abs-fls (λn. if n=a then b else 0)) =
(if a < 0 then 0 else Abs-fps (λn. if n=nat a then b else 0))

by (rule fps-ext, auto)

lemma fls-regpart-const [simp]: fls-regpart (fls-const c) = fps-const c
by (intro fps-ext) simp

lemma fls-regpart-fls-X [simp]: fls-regpart fls-X = fps-X
by (intro fps-ext) simp

lemma fls-regpart-fls-X-inv [simp]: fls-regpart fls-X-inv = 0
by (intro fps-ext) simp

lemma fls-regpart-eq0-imp-nonpos-subdegree:
assumes fls-regpart f = 0
shows fls-subdegree f ≤ 0

proof (cases f=0)
case False
have fls-subdegree f ≥ 0 =⇒ f $$ fls-subdegree f = 0
proof−

assume fls-subdegree f ≥ 0
hence f $$ (fls-subdegree f) = (fls-regpart f) $ (nat (fls-subdegree f)) by simp
with assms show f $$ (fls-subdegree f) = 0 by simp

qed
with False show ?thesis by fastforce

qed simp

lemma fls-subdegree-lt-fls-regpart-subdegree:
fls-subdegree f ≤ int (subdegree (fls-regpart f))
using fls-subdegree-leI nth-subdegree-nonzero[of fls-regpart f]
by (cases (fls-regpart f) = 0)

(simp-all add: fls-regpart-eq0-imp-nonpos-subdegree)

390

lemma fls-regpart-subdegree-conv:
assumes fls-subdegree f ≥ 0
shows subdegree (fls-regpart f) = nat (fls-subdegree f)

— This is the best we can do since if the subdegree is negative, we might still have
the bad luck that the term at index 0 is equal to 0.
proof (cases f=0)

case False with assms show ?thesis by (intro subdegreeI) simp-all
qed simp

lemma fls-eq-conv-fps-eqI :
assumes 0 ≤ fls-subdegree f 0 ≤ fls-subdegree g fls-regpart f = fls-regpart g
shows f = g

proof (rule fls-eq-above-subdegreeI , rule assms(1), rule assms(2), clarify)
fix k::int assume 0 ≤ k
with assms(3) show f $$ k = g $$ k

using fls-regpart-nth[of f nat k] fls-regpart-nth[of g] by simp
qed

lemma fls-regpart-shift-conv-fps-shift:
m ≥ 0 =⇒ fls-regpart (fls-shift m f) = fps-shift (nat m) (fls-regpart f)
by (intro fps-ext) simp-all

lemma fps-shift-fls-regpart-conv-fls-shift:
fps-shift m (fls-regpart f) = fls-regpart (fls-shift m f)
by (intro fps-ext) simp-all

lemma fps-unit-factor-fls-regpart:
fls-subdegree f ≥ 0 =⇒ unit-factor (fls-regpart f) = fls-regpart (fls-base-factor f)
by (auto intro: fps-ext simp: fls-regpart-subdegree-conv)

The terms below the zeroth form a polynomial in the inverse of the implied
variable, called the principle part.
lift-definition fls-prpart :: (′a::zero) fls ⇒ ′a poly

is λf . Abs-poly (λn. if n = 0 then 0 else f (− int n))
.

lemma fls-prpart-coeff [simp]: coeff (fls-prpart f) n = (if n = 0 then 0 else f $$
(− int n))
proof−

have {x. (if x = 0 then 0 else f $$ − int x) 6= 0} ⊆ {x. f $$ − int x 6= 0}
by auto

hence finite {x. (if x = 0 then 0 else f $$ − int x) 6= 0}
using fls-finite-nonzero-neg-nth[of f] by (simp add: rev-finite-subset)

hence coeff (fls-prpart f) = (λn. if n = 0 then 0 else f $$ (− int n))
using Abs-poly-inverse[OF CollectI , OF iffD2 , OF eventually-cofinite]
by (simp add: fls-prpart-def)

thus ?thesis by simp
qed

391

lemma fls-prpart-eq0-iff : (fls-prpart f = 0) ←→ (fls-subdegree f ≥ 0)
proof

assume 1 : fls-prpart f = 0
show fls-subdegree f ≥ 0
proof (intro fls-subdegree-ge0I)

fix k::int assume k < 0
with 1 show f $$ k = 0 using fls-prpart-coeff [of f nat (−k)] by simp

qed
qed (intro poly-eqI , simp)

lemma fls-prpart0 [simp]: fls-prpart 0 = 0
by (simp add: fls-prpart-eq0-iff)

lemma fls-prpart-one [simp]: fls-prpart 1 = 0
by (simp add: fls-prpart-eq0-iff)

lemma fls-prpart-delta:
fls-prpart (Abs-fls (λn. if n=a then b else 0)) =
(if a<0 then Poly (replicate (nat (−a)) 0 @ [b]) else 0)

by (intro poly-eqI) (auto simp: nth-default-def nth-append)

lemma fls-prpart-const [simp]: fls-prpart (fls-const c) = 0
by (simp add: fls-prpart-eq0-iff)

lemma fls-prpart-X [simp]: fls-prpart fls-X = 0
by (intro poly-eqI) simp

lemma fls-prpart-X-inv: fls-prpart fls-X-inv = [:0 ,1 :]
proof (intro poly-eqI)

fix n show coeff (fls-prpart fls-X-inv) n = coeff [:0 ,1 :] n
proof (cases n)

case (Suc i) thus ?thesis by (cases i) simp-all
qed simp

qed

lemma degree-fls-prpart [simp]:
degree (fls-prpart f) = nat (−fls-subdegree f)

proof (cases f=0)
case False show ?thesis unfolding degree-def
proof (intro Least-equality)

fix N assume N : ∀ i>N . coeff (fls-prpart f) i = 0
have ∀ i < −int N . f $$ i = 0
proof clarify

fix i assume i: i < −int N
hence nat (−i) > N by simp
with N i show f $$ i = 0 using fls-prpart-coeff [of f nat (−i)] by auto

qed
with False have fls-subdegree f ≥ −int N using fls-subdegree-geI by auto
thus nat (− fls-subdegree f) ≤ N by simp

392

qed auto
qed simp

lemma fls-prpart-shift:
assumes m ≤ 0
shows fls-prpart (fls-shift m f) = pCons 0 (poly-shift (Suc (nat (−m)))

(fls-prpart f))
proof (intro poly-eqI)

fix n
define LHS RHS

where LHS ≡ fls-prpart (fls-shift m f)
and RHS ≡ pCons 0 (poly-shift (Suc (nat (−m))) (fls-prpart f))

show coeff LHS n = coeff RHS n
proof (cases n)

case (Suc k)
from assms have 1 : −int (Suc k + nat (−m)) = −int (Suc k) + m by simp
have coeff RHS n = f $$ (−int (Suc k) + m)

using arg-cong[OF 1 , of ($$) f] by (simp add: Suc RHS-def coeff-poly-shift)
with Suc show ?thesis by (simp add: LHS-def)

qed (simp add: LHS-def RHS-def)
qed

lemma fls-prpart-base-factor : fls-prpart (fls-base-factor f) = 0
using fls-base-factor-subdegree[of f] by (simp add: fls-prpart-eq0-iff)

The essential data of a formal Laurant series resides from the subdegree up.
abbreviation fls-base-factor-to-fps :: (′a::zero) fls ⇒ ′a fps

where fls-base-factor-to-fps f ≡ fls-regpart (fls-base-factor f)

lemma fls-base-factor-to-fps-conv-fps-shift:
assumes fls-subdegree f ≥ 0
shows fls-base-factor-to-fps f = fps-shift (nat (fls-subdegree f)) (fls-regpart f)
by (simp add: assms fls-regpart-shift-conv-fps-shift)

lemma fls-base-factor-to-fps-nth:
fls-base-factor-to-fps f $ n = f $$ (fls-subdegree f + int n)
by (simp add: algebra-simps)

lemma fls-base-factor-to-fps-base: f 6= 0 =⇒ fls-base-factor-to-fps f $ 0 6= 0
by simp

lemma fls-base-factor-to-fps-nonzero: f 6= 0 =⇒ fls-base-factor-to-fps f 6= 0
using fps-nonzeroI [of fls-base-factor-to-fps f 0] fls-base-factor-to-fps-base by simp

lemma fls-base-factor-to-fps-subdegree [simp]: subdegree (fls-base-factor-to-fps f) =
0

by (cases f=0) auto

lemma fls-base-factor-to-fps-trivial:

393

fls-subdegree f = 0 =⇒ fls-base-factor-to-fps f = fls-regpart f
by simp

lemma fls-base-factor-to-fps-zero: fls-base-factor-to-fps 0 = 0
by simp

lemma fls-base-factor-to-fps-one: fls-base-factor-to-fps 1 = 1
by simp

lemma fls-base-factor-to-fps-delta:
fls-base-factor-to-fps (Abs-fls (λn. if n=a then c else 0)) = fps-const c
using fls-base-factor-delta[of a c] by simp

lemma fls-base-factor-to-fps-const:
fls-base-factor-to-fps (fls-const c) = fps-const c
by simp

lemma fls-base-factor-to-fps-X :
fls-base-factor-to-fps (fls-X :: ′a::{zero-neq-one} fls) = 1
by simp

lemma fls-base-factor-to-fps-X-inv:
fls-base-factor-to-fps (fls-X-inv:: ′a::{zero-neq-one} fls) = 1
by simp

lemma fls-base-factor-to-fps-shift:
fls-base-factor-to-fps (fls-shift m f) = fls-base-factor-to-fps f
using fls-base-factor-shift[of m f] by simp

lemma fls-base-factor-to-fps-base-factor :
fls-base-factor-to-fps (fls-base-factor f) = fls-base-factor-to-fps f
using fls-base-factor-to-fps-shift by simp

lemma fps-unit-factor-fls-base-factor :
unit-factor (fls-base-factor-to-fps f) = fls-base-factor-to-fps f
using fls-base-factor-to-fps-subdegree[of f] by simp

7.4.2 Converting power to Laurent series

We can extend a power series by 0s below to create a Laurent series.
definition fps-to-fls :: (′a::zero) fps ⇒ ′a fls

where fps-to-fls f ≡ Abs-fls (λk::int. if k<0 then 0 else f $ (nat k))

lemma fps-to-fls-nth [simp]:
(fps-to-fls f) $$ n = (if n < 0 then 0 else f $(nat n))
using nth-Abs-fls-lower-bound[of 0 (λk::int. if k<0 then 0 else f $ (nat k))]
unfolding fps-to-fls-def
by simp

394

lemma fps-to-fls-eq-imp-fps-eq:
assumes fps-to-fls f = fps-to-fls g
shows f = g

proof (intro fps-ext)
fix n
have f $ n = fps-to-fls g $$ int n by (simp add: assms[symmetric])
thus f $ n = g $ n by simp

qed

lemma fps-to-fls-eq-iff [simp]: fps-to-fls f = fps-to-fls g ←→ f = g
using fps-to-fls-eq-imp-fps-eq by blast

lemma fps-zero-to-fls [simp]: fps-to-fls 0 = 0
by (intro fls-zero-eqI) simp

lemma fps-to-fls-nonzeroI : f 6= 0 =⇒ fps-to-fls f 6= 0
using fps-to-fls-eq-imp-fps-eq[of f 0] by auto

lemma fps-one-to-fls [simp]: fps-to-fls 1 = 1
by (intro fls-eqI) simp

lemma fps-to-fls-Abs-fps:
fps-to-fls (Abs-fps F) = Abs-fls (λn. if n<0 then 0 else F (nat n))
using nth-Abs-fls-lower-bound[of 0 (λn::int. if n<0 then 0 else F (nat n))]
by (intro fls-eqI) simp

lemma fps-delta-to-fls:
fps-to-fls (Abs-fps (λn. if n=a then b else 0)) = Abs-fls (λn. if n=int a then b

else 0)
using fls-eqI [of - Abs-fls (λn. if n=int a then b else 0)] by force

lemma fps-const-to-fls [simp]: fps-to-fls (fps-const c) = fls-const c
by (intro fls-eqI) simp

lemma fps-X-to-fls [simp]: fps-to-fls fps-X = fls-X
by (fastforce intro: fls-eqI)

lemma fps-to-fls-eq-0-iff [simp]: (fps-to-fls f = 0) ←→ (f=0)
using fps-to-fls-nonzeroI by auto

lemma fps-to-fls-eq-1-iff [simp]: fps-to-fls f = 1 ←→ f = 1
using fps-to-fls-eq-iff by fastforce

lemma fls-subdegree-fls-to-fps-gt0 : fls-subdegree (fps-to-fls f) ≥ 0
proof (cases f=0)

case False show ?thesis
proof (rule fls-subdegree-geI , rule fls-nonzeroI)

from False show fps-to-fls f $$ int (subdegree f) 6= 0
by simp

395

qed simp
qed simp

lemma fls-subdegree-fls-to-fps: fls-subdegree (fps-to-fls f) = int (subdegree f)
proof (cases f=0)

case False
have subdegree f = nat (fls-subdegree (fps-to-fls f))
proof (rule subdegreeI)

from False show f $ (nat (fls-subdegree (fps-to-fls f))) 6= 0
using fls-subdegree-fls-to-fps-gt0 [of f] nth-fls-subdegree-nonzero[of fps-to-fls f]

fps-to-fls-nonzeroI [of f]
by simp

next
fix k assume k: k < nat (fls-subdegree (fps-to-fls f))
thus f $ k = 0

using fls-eq0-below-subdegree[of int k fps-to-fls f] by simp
qed
thus ?thesis by (simp add: fls-subdegree-fls-to-fps-gt0)

qed simp

lemma fps-shift-to-fls [simp]:
n ≤ subdegree f =⇒ fps-to-fls (fps-shift n f) = fls-shift (int n) (fps-to-fls f)
by (auto intro: fls-eqI simp: nat-add-distrib nth-less-subdegree-zero)

lemma fls-base-factor-fps-to-fls: fls-base-factor (fps-to-fls f) = fps-to-fls (unit-factor
f)

using nth-less-subdegree-zero[of - f]
by (auto intro: fls-eqI simp: fls-subdegree-fls-to-fps nat-add-distrib)

lemma fls-regpart-to-fls-trivial [simp]:
fls-subdegree f ≥ 0 =⇒ fps-to-fls (fls-regpart f) = f
by (intro fls-eqI) simp

lemma fls-regpart-fps-trivial [simp]: fls-regpart (fps-to-fls f) = f
by (intro fps-ext) simp

lemma fps-to-fls-base-factor-to-fps:
fps-to-fls (fls-base-factor-to-fps f) = fls-base-factor f
by (intro fls-eqI) simp

lemma fls-conv-base-factor-to-fps-shift-subdegree:
f = fls-shift (−fls-subdegree f) (fps-to-fls (fls-base-factor-to-fps f))
using fps-to-fls-base-factor-to-fps[of f] fps-to-fls-base-factor-to-fps[of f] by simp

lemma fls-base-factor-to-fps-to-fls:
fls-base-factor-to-fps (fps-to-fls f) = unit-factor f
using fls-base-factor-fps-to-fls[of f] fls-regpart-fps-trivial[of unit-factor f]
by simp

396

lemma fls-as-fps:
fixes f :: ′a :: zero fls and n :: int
assumes n: n ≥ −fls-subdegree f
obtains f ′ where f = fls-shift n (fps-to-fls f ′)

proof −
have fls-subdegree (fls-shift (− n) f) ≥ 0

by (rule fls-shift-nonneg-subdegree) (use n in simp)
hence f = fls-shift n (fps-to-fls (fls-regpart (fls-shift (−n) f)))

by (subst fls-regpart-to-fls-trivial) simp-all
thus ?thesis

by (rule that)
qed

lemma fls-as-fps ′:
fixes f :: ′a :: zero fls and n :: int
assumes n: n ≥ −fls-subdegree f
shows ∃ f ′. f = fls-shift n (fps-to-fls f ′)
using fls-as-fps[OF assms] by metis

abbreviation
fls-regpart-as-fls f ≡ fps-to-fls (fls-regpart f)

abbreviation
fls-prpart-as-fls f ≡

fls-shift (−fls-subdegree f) (fps-to-fls (fps-of-poly (reflect-poly (fls-prpart f))))

lemma fls-regpart-as-fls-nth:
fls-regpart-as-fls f $$ n = (if n < 0 then 0 else f $$ n)
by simp

lemma fls-regpart-idem:
fls-regpart (fls-regpart-as-fls f) = fls-regpart f
by simp

lemma fls-prpart-as-fls-nth:
fls-prpart-as-fls f $$ n = (if n < 0 then f $$ n else 0)

proof (cases n < fls-subdegree f n < 0 rule: case-split[case-product case-split])
case False-True

hence nat (−fls-subdegree f) − nat (n − fls-subdegree f) = nat (−n) by auto
with False-True show ?thesis

using coeff-reflect-poly[of fls-prpart f nat (n − fls-subdegree f)] by auto
next

case False-False thus ?thesis
using coeff-reflect-poly[of fls-prpart f nat (n − fls-subdegree f)] by auto

qed simp-all

lemma fls-prpart-idem [simp]: fls-prpart (fls-prpart-as-fls f) = fls-prpart f
using fls-prpart-as-fls-nth[of f] by (intro poly-eqI) simp

lemma fls-regpart-prpart: fls-regpart (fls-prpart-as-fls f) = 0

397

using fls-prpart-as-fls-nth[of f] by (intro fps-ext) simp

lemma fls-prpart-regpart: fls-prpart (fls-regpart-as-fls f) = 0
by (intro poly-eqI) simp

7.5 Algebraic structures
7.5.1 Addition
instantiation fls :: (monoid-add) plus
begin

lift-definition plus-fls :: ′a fls ⇒ ′a fls ⇒ ′a fls is λf g n. f n + g n
proof−

fix f f ′ :: int ⇒ ′a
assume ∀∞n. f (− int n) = 0 ∀∞n. f ′ (− int n) = 0
from this obtain N N ′ where ∀n>N . f (−int n) = 0 ∀n>N ′. f ′ (−int n) =

0
by (auto simp: MOST-nat)

hence ∀n > max N N ′. f (−int n) + f ′ (−int n) = 0 by auto
hence ∃K . ∀n>K . f (−int n) + f ′ (−int n) = 0 by fast
thus ∀∞n. f (− int n) + f ′ (−int n) = 0 by (simp add: MOST-nat)

qed
instance ..

end

lemma fls-plus-nth [simp]: (f + g) $$ n = f $$ n + g $$ n
by transfer simp

lemma fls-plus-const: fls-const x + fls-const y = fls-const (x+y)
by (intro fls-eqI) simp

lemma fls-plus-subdegree:
f + g 6= 0 =⇒ fls-subdegree (f + g) ≥ min (fls-subdegree f) (fls-subdegree g)
by (auto intro: fls-subdegree-geI)

lemma fls-shift-plus [simp]:
fls-shift m (f + g) = (fls-shift m f) + (fls-shift m g)
by (intro fls-eqI) simp

lemma fls-regpart-plus [simp]: fls-regpart (f + g) = fls-regpart f + fls-regpart g
by (intro fps-ext) simp

lemma fls-prpart-plus [simp] : fls-prpart (f + g) = fls-prpart f + fls-prpart g
by (intro poly-eqI) simp

lemma fls-decompose-reg-pr-parts:
fixes f :: ′a :: monoid-add fls
defines R ≡ fls-regpart-as-fls f
and P ≡ fls-prpart-as-fls f
shows f = P + R

398

and f = R + P
using fls-prpart-as-fls-nth[of f]
by (auto intro: fls-eqI simp add: assms)

lemma fps-to-fls-plus [simp]: fps-to-fls (f + g) = fps-to-fls f + fps-to-fls g
by (intro fls-eqI) simp

instance fls :: (monoid-add) monoid-add
proof

fix a b c :: ′a fls
show a + b + c = a + (b + c) by transfer (simp add: add.assoc)
show 0 + a = a by transfer simp
show a + 0 = a by transfer simp

qed

instance fls :: (comm-monoid-add) comm-monoid-add
by (standard, transfer , auto simp: add.commute)

lemma fls-nth-sum: fls-nth (
∑

x∈A. f x) n = (
∑

x∈A. fls-nth (f x) n)
by (induction A rule: infinite-finite-induct) auto

7.5.2 Subtraction and negatives
instantiation fls :: (group-add) minus
begin

lift-definition minus-fls :: ′a fls ⇒ ′a fls ⇒ ′a fls is λf g n. f n − g n
proof−

fix f f ′ :: int ⇒ ′a
assume ∀∞n. f (− int n) = 0 ∀∞n. f ′ (− int n) = 0
from this obtain N N ′ where ∀n>N . f (−int n) = 0 ∀n>N ′. f ′ (−int n) =

0
by (auto simp: MOST-nat)

hence ∀n > max N N ′. f (−int n) − f ′ (−int n) = 0 by auto
hence ∃K . ∀n>K . f (−int n) − f ′ (−int n) = 0 by fast
thus ∀∞n. f (− int n) − f ′ (−int n) = 0 by (simp add: MOST-nat)

qed
instance ..

end

lemma fls-minus-nth [simp]: (f − g) $$ n = f $$ n − g $$ n
by transfer simp

lemma fls-minus-const: fls-const x − fls-const y = fls-const (x−y)
by (intro fls-eqI) simp

lemma fls-subdegree-minus:
f − g 6= 0 =⇒ fls-subdegree (f − g) ≥ min (fls-subdegree f) (fls-subdegree g)
by (intro fls-subdegree-geI) simp-all

399

lemma fls-shift-minus [simp]: fls-shift m (f − g) = (fls-shift m f) − (fls-shift m
g)

by (auto intro: fls-eqI)

lemma fls-regpart-minus [simp]: fls-regpart (f − g) = fls-regpart f − fls-regpart g
by (intro fps-ext) simp

lemma fls-prpart-minus [simp] : fls-prpart (f − g) = fls-prpart f − fls-prpart g
by (intro poly-eqI) simp

lemma fps-to-fls-minus [simp]: fps-to-fls (f − g) = fps-to-fls f − fps-to-fls g
by (intro fls-eqI) simp

instantiation fls :: (group-add) uminus
begin

lift-definition uminus-fls :: ′a fls ⇒ ′a fls is λf n. − f n
proof−

fix f :: int ⇒ ′a assume ∀∞n. f (− int n) = 0
from this obtain N where ∀n>N . f (−int n) = 0

by (auto simp: MOST-nat)
hence ∀n>N . − f (−int n) = 0 by auto
hence ∃K . ∀n>K . − f (−int n) = 0 by fast
thus ∀∞n. − f (− int n) = 0 by (simp add: MOST-nat)

qed
instance ..

end

lemma fls-uminus-nth [simp]: (−f) $$ n = − (f $$ n)
by transfer simp

lemma fls-const-uminus[simp]: fls-const (−x) = −fls-const x
by (intro fls-eqI) simp

lemma fls-shift-uminus [simp]: fls-shift m (− f) = − (fls-shift m f)
by (auto intro: fls-eqI)

lemma fls-regpart-uminus [simp]: fls-regpart (− f) = − fls-regpart f
by (intro fps-ext) simp

lemma fls-prpart-uminus [simp] : fls-prpart (− f) = − fls-prpart f
by (intro poly-eqI) simp

lemma fps-to-fls-uminus [simp]: fps-to-fls (− f) = − fps-to-fls f
by (intro fls-eqI) simp

instance fls :: (group-add) group-add
proof

fix a b :: ′a fls
show − a + a = 0 by transfer simp

400

show a + − b = a − b by transfer simp
qed

instance fls :: (ab-group-add) ab-group-add
proof

fix a b :: ′a fls
show − a + a = 0 by transfer simp
show a − b = a + − b by transfer simp

qed

lemma fls-uminus-subdegree [simp]: fls-subdegree (−f) = fls-subdegree f
by (cases f=0) (auto intro: fls-subdegree-eqI)

lemma fls-subdegree-minus-sym: fls-subdegree (g − f) = fls-subdegree (f − g)
using fls-uminus-subdegree[of g−f] by (simp add: algebra-simps)

lemma fls-regpart-sub-prpart: fls-regpart (f − fls-prpart-as-fls f) = fls-regpart f
using fls-decompose-reg-pr-parts(2)[of f]

add-diff-cancel[of fls-regpart-as-fls f fls-prpart-as-fls f]
by simp

lemma fls-prpart-sub-regpart: fls-prpart (f − fls-regpart-as-fls f) = fls-prpart f
using fls-decompose-reg-pr-parts(1)[of f]

add-diff-cancel[of fls-prpart-as-fls f fls-regpart-as-fls f]
by simp

7.5.3 Multiplication
instantiation fls :: ({comm-monoid-add, times}) times
begin

definition fls-times-def :
(∗) = (λf g.

fls-shift
(− (fls-subdegree f + fls-subdegree g))
(fps-to-fls (fls-base-factor-to-fps f ∗ fls-base-factor-to-fps g))

)
instance ..

end

lemma fls-times-nth-eq0 : n < fls-subdegree f + fls-subdegree g =⇒ (f ∗ g) $$ n =
0

by (simp add: fls-times-def)

lemma fls-times-nth:
fixes f df g dg
defines df ≡ fls-subdegree f and dg ≡ fls-subdegree g
shows (f ∗ g) $$ n = (

∑
i=df + dg..n. f $$ (i − dg) ∗ g $$ (dg + n − i))

and (f ∗ g) $$ n = (
∑

i=df ..n − dg. f $$ i ∗ g $$ (n − i))
and (f ∗ g) $$ n = (

∑
i=dg..n − df . f $$ (df + i − dg) ∗ g $$ (dg + n −

401

df − i))
and (f ∗ g) $$ n = (

∑
i=0 ..n − (df + dg). f $$ (df + i) ∗ g $$ (n − df −

i))
proof−

define dfg where dfg ≡ df + dg

show 4 : (f ∗ g) $$ n = (
∑

i=0 ..n − dfg. f $$ (df + i) ∗ g $$ (n − df − i))
proof (cases n < dfg)

case False
from False assms have
(f ∗ g) $$ n =
(
∑

i = 0 ..nat (n − dfg). f $$ (df + int i) ∗ g $$ (dg + int (nat (n − dfg)
− i)))

using fps-mult-nth[of fls-base-factor-to-fps f fls-base-factor-to-fps g]
fls-base-factor-to-fps-nth[of f]
fls-base-factor-to-fps-nth[of g]

by (simp add: dfg-def fls-times-def algebra-simps)
moreover from False have index:∧

i. i ∈ {0 ..nat (n − dfg)} =⇒ dg + int (nat (n − dfg) − i) = n − df − int
i

by (auto simp: dfg-def)
ultimately have
(f ∗ g) $$ n = (

∑
i=0 ..nat (n − dfg). f $$ (df + int i) ∗ g $$ (n − df − int

i))
by (simp del: of-nat-diff)

moreover have
(
∑

i=0 ..nat (n − dfg). f $$ (df + int i) ∗ g $$ (n − df − int i)) =
(
∑

i=0 ..n − dfg. f $$ (df + i) ∗ g $$ (n − df − i))
proof (intro sum.reindex-cong)

show inj-on nat {0 ..n − dfg} by standard auto
show {0 ..nat (n − dfg)} = nat ‘ {0 ..n − dfg}
proof

show {0 ..nat (n − dfg)} ⊆ nat ‘ {0 ..n − dfg}
proof

fix i assume i ∈ {0 ..nat (n − dfg)}
hence i: i ≥ 0 i ≤ nat (n − dfg) by auto
with False have int i ≥ 0 int i ≤ n − dfg by auto
hence int i ∈ {0 ..n − dfg} by simp
moreover from i(1) have i = nat (int i) by simp
ultimately show i ∈ nat ‘ {0 ..n − dfg} by fast

qed
qed (auto simp: False)

qed (simp add: False)
ultimately show (f ∗ g) $$ n = (

∑
i=0 ..n − dfg. f $$ (df + i) ∗ g $$ (n −

df − i))
by simp

qed (simp add: fls-times-nth-eq0 assms dfg-def)

402

have
(
∑

i=dfg..n. f $$ (i − dg) ∗ g $$ (dg + n − i)) =
(
∑

i=0 ..n − dfg. f $$ (df + i) ∗ g $$ (n − df − i))
proof (intro sum.reindex-cong)

define T where T ≡ λi. i + dfg
show inj-on T {0 ..n − dfg} by standard (simp add: T-def)

qed (simp-all add: dfg-def algebra-simps)
with 4 show 1 : (f ∗ g) $$ n = (

∑
i=dfg..n. f $$ (i − dg) ∗ g $$ (dg + n −

i))
by simp

have
(
∑

i=dfg..n. f $$ (i − dg) ∗ g $$ (dg + n − i)) = (
∑

i=df ..n − dg. f $$ i ∗
g $$ (n − i))

proof (intro sum.reindex-cong)
define T where T ≡ λi. i + dg
show inj-on T {df ..n − dg} by standard (simp add: T-def)

qed (auto simp: dfg-def)
with 1 show (f ∗ g) $$ n = (

∑
i=df ..n − dg. f $$ i ∗ g $$ (n − i))

by simp

have
(
∑

i=dfg..n. f $$ (i − dg) ∗ g $$ (dg + n − i)) =
(
∑

i=dg..n − df . f $$ (df + i − dg) ∗ g $$ (dg + n − df − i))
proof (intro sum.reindex-cong)

define T where T ≡ λi. i + df
show inj-on T {dg..n − df } by standard (simp add: T-def)

qed (simp-all add: dfg-def algebra-simps)
with 1 show (f ∗ g) $$ n = (

∑
i=dg..n − df . f $$ (df + i − dg) ∗ g $$ (dg

+ n − df − i))
by simp

qed

lemma fls-times-base [simp]:
(f ∗ g) $$ (fls-subdegree f + fls-subdegree g) =
(f $$ fls-subdegree f) ∗ (g $$ fls-subdegree g)

by (simp add: fls-times-nth(1))

instance fls :: ({comm-monoid-add, mult-zero}) mult-zero
proof

fix a :: ′a fls
have
(0 :: ′a fls) ∗ a =

fls-shift (fls-subdegree a) (fps-to-fls ((0 :: ′a fps)∗(fls-base-factor-to-fps a)))
by (simp add: fls-times-def)

moreover have
a ∗ (0 :: ′a fls) =

fls-shift (fls-subdegree a) (fps-to-fls ((fls-base-factor-to-fps a)∗(0 :: ′a fps)))

403

by (simp add: fls-times-def)
ultimately show 0 ∗ a = (0 :: ′a fls) a ∗ 0 = (0 :: ′a fls)

by auto
qed

lemma fls-mult-one:
fixes f :: ′a::{comm-monoid-add, mult-zero, monoid-mult} fls
shows 1 ∗ f = f
and f ∗ 1 = f
using fls-conv-base-factor-to-fps-shift-subdegree[of f]
by (simp-all add: fls-times-def fps-one-mult)

lemma fls-mult-const-nth [simp]:
fixes f :: ′a::{comm-monoid-add, mult-zero} fls
shows (fls-const x ∗ f) $$ n = x ∗ f $$n
and (f ∗ fls-const x) $$ n = f $$n ∗ x

proof−
show (fls-const x ∗ f) $$ n = x ∗ f $$n
proof (cases n<fls-subdegree f)

case False
hence {fls-subdegree f ..n} = insert (fls-subdegree f) {fls-subdegree f+1 ..n} by

auto
thus ?thesis by (simp add: fls-times-nth(1))

qed (simp add: fls-times-nth-eq0)
show (f ∗ fls-const x) $$ n = f $$n ∗ x
proof (cases n<fls-subdegree f)

case False
hence {fls-subdegree f ..n} = insert n {fls-subdegree f ..n−1} by auto
thus ?thesis by (simp add: fls-times-nth(1))

qed (simp add: fls-times-nth-eq0)
qed

lemma fls-const-mult-const[simp]:
fixes x y :: ′a::{comm-monoid-add, mult-zero}
shows fls-const x ∗ fls-const y = fls-const (x∗y)
by (intro fls-eqI) simp

lemma fls-subdegree-add-eq1 :
assumes f 6= 0 fls-subdegree f < fls-subdegree g
shows fls-subdegree (f + g) = fls-subdegree f

proof (intro antisym)
from assms have ∗: fls-nth (f + g) (fls-subdegree f) 6= 0

by auto
from ∗ show fls-subdegree (f + g) ≤ fls-subdegree f

by (rule fls-subdegree-leI)
from ∗ have f + g 6= 0

using fls-nonzeroI by blast
thus fls-subdegree f ≤ fls-subdegree (f + g)

using assms(2) fls-plus-subdegree by force

404

qed

lemma fls-subdegree-add-eq2 :
assumes g 6= 0 fls-subdegree g < fls-subdegree f
shows fls-subdegree (f + g) = fls-subdegree g

proof (intro antisym)
from assms have ∗: fls-nth (f + g) (fls-subdegree g) 6= 0

by auto
from ∗ show fls-subdegree (f + g) ≤ fls-subdegree g

by (rule fls-subdegree-leI)
from ∗ have f + g 6= 0

using fls-nonzeroI by blast
thus fls-subdegree g ≤ fls-subdegree (f + g)

using assms(2) fls-plus-subdegree by force
qed

lemma fls-subdegree-diff-eq1 :
assumes f 6= 0 fls-subdegree f < fls-subdegree g
shows fls-subdegree (f − g) = fls-subdegree f
using fls-subdegree-add-eq1 [of f −g] assms by simp

lemma fls-subdegree-diff-eq2 :
assumes g 6= 0 fls-subdegree g < fls-subdegree f
shows fls-subdegree (f − g) = fls-subdegree g
using fls-subdegree-add-eq2 [of −g f] assms by simp

lemma nat-minus-fls-subdegree-plus-const-eq:
nat (−fls-subdegree (F + fls-const c)) = nat (−fls-subdegree F)

proof (cases fls-subdegree F < 0)
case True
hence fls-subdegree (F + fls-const c) = fls-subdegree F

by (intro fls-subdegree-add-eq1) auto
thus ?thesis

by simp
next

case False
thus ?thesis

by (auto simp: fls-subdegree-ge0I)
qed

lemma fls-mult-subdegree-ge:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fls
assumes f ∗g 6= 0
shows fls-subdegree (f ∗g) ≥ fls-subdegree f + fls-subdegree g
by (auto intro: fls-subdegree-geI simp: assms fls-times-nth-eq0)

lemma fls-mult-subdegree-ge-0 :
fixes f g :: ′a::{comm-monoid-add,mult-zero} fls
assumes fls-subdegree f ≥ 0 fls-subdegree g ≥ 0

405

shows fls-subdegree (f ∗g) ≥ 0
using assms fls-mult-subdegree-ge[of f g]
by fastforce

lemma fls-mult-nonzero-base-subdegree-eq:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fls
assumes f $$ (fls-subdegree f) ∗ g $$ (fls-subdegree g) 6= 0
shows fls-subdegree (f ∗g) = fls-subdegree f + fls-subdegree g

proof−
from assms have fls-subdegree (f ∗g) ≥ fls-subdegree f + fls-subdegree g

using fls-nonzeroI [of f ∗g fls-subdegree f + fls-subdegree g]
fls-mult-subdegree-ge[of f g]

by simp
moreover from assms have fls-subdegree (f ∗g) ≤ fls-subdegree f + fls-subdegree

g
by (intro fls-subdegree-leI) simp

ultimately show ?thesis by simp
qed

lemma fls-subdegree-mult [simp]:
fixes f g :: ′a::semiring-no-zero-divisors fls
assumes f 6= 0 g 6= 0
shows fls-subdegree (f ∗ g) = fls-subdegree f + fls-subdegree g
using assms
by (auto intro: fls-subdegree-eqI simp: fls-times-nth-eq0)

lemma fls-shifted-times-simps:
fixes f g :: ′a::{comm-monoid-add, mult-zero} fls
shows f ∗ (fls-shift n g) = fls-shift n (f ∗g) (fls-shift n f) ∗ g = fls-shift n (f ∗g)

proof−

show f ∗ (fls-shift n g) = fls-shift n (f ∗g)
proof (cases g=0)

case False
hence

f ∗ (fls-shift n g) =
fls-shift (− (fls-subdegree f + (fls-subdegree g − n)))
(fps-to-fls (fls-base-factor-to-fps f ∗ fls-base-factor-to-fps g))

unfolding fls-times-def by (simp add: fls-base-factor-to-fps-shift)
thus f ∗ (fls-shift n g) = fls-shift n (f ∗g)

by (simp add: algebra-simps fls-times-def)
qed auto

show (fls-shift n f)∗g = fls-shift n (f ∗g)
proof (cases f=0)

case False
hence
(fls-shift n f)∗g =

fls-shift (− ((fls-subdegree f − n) + fls-subdegree g))

406

(fps-to-fls (fls-base-factor-to-fps f ∗ fls-base-factor-to-fps g))
unfolding fls-times-def by (simp add: fls-base-factor-to-fps-shift)

thus (fls-shift n f) ∗ g = fls-shift n (f ∗g)
by (simp add: algebra-simps fls-times-def)

qed auto

qed

lemma fls-shifted-times-transfer :
fixes f g :: ′a::{comm-monoid-add, mult-zero} fls
shows fls-shift n f ∗ g = f ∗ fls-shift n g
using fls-shifted-times-simps(1)[of f n g] fls-shifted-times-simps(2)[of n f g]
by simp

lemma fls-times-both-shifted-simp:
fixes f g :: ′a::{comm-monoid-add, mult-zero} fls
shows (fls-shift m f) ∗ (fls-shift n g) = fls-shift (m+n) (f ∗g)
by (simp add: fls-shifted-times-simps)

lemma fls-base-factor-mult-base-factor :
fixes f g :: ′a::{comm-monoid-add, mult-zero} fls
shows fls-base-factor (f ∗ fls-base-factor g) = fls-base-factor (f ∗ g)
and fls-base-factor (fls-base-factor f ∗ g) = fls-base-factor (f ∗ g)
using fls-base-factor-shift[of fls-subdegree g f ∗g]

fls-base-factor-shift[of fls-subdegree f f ∗g]
by (simp-all add: fls-shifted-times-simps)

lemma fls-base-factor-mult-both-base-factor :
fixes f g :: ′a::{comm-monoid-add,mult-zero} fls
shows fls-base-factor (fls-base-factor f ∗ fls-base-factor g) = fls-base-factor (f ∗

g)
using fls-base-factor-mult-base-factor(1)[of fls-base-factor f g]

fls-base-factor-mult-base-factor(2)[of f g]
by simp

lemma fls-base-factor-mult:
fixes f g :: ′a::semiring-no-zero-divisors fls
shows fls-base-factor (f ∗ g) = fls-base-factor f ∗ fls-base-factor g
by (cases f 6=0 ∧ g 6=0)

(auto simp: fls-times-both-shifted-simp)

lemma fls-times-conv-base-factor-times:
fixes f g :: ′a::{comm-monoid-add, mult-zero} fls
shows

f ∗ g =
fls-shift (−(fls-subdegree f + fls-subdegree g)) (fls-base-factor f ∗ fls-base-factor

g)
by (simp add: fls-times-both-shifted-simp)

407

lemma fls-times-base-factor-conv-shifted-times:
— Convenience form of lemma fls-times-both-shifted-simp.

fixes f g :: ′a::{comm-monoid-add, mult-zero} fls
shows

fls-base-factor f ∗ fls-base-factor g = fls-shift (fls-subdegree f + fls-subdegree g)
(f ∗ g)

by (simp add: fls-times-both-shifted-simp)

lemma fls-times-conv-regpart:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fls
assumes fls-subdegree f ≥ 0 fls-subdegree g ≥ 0
shows fls-regpart (f ∗ g) = fls-regpart f ∗ fls-regpart g

proof−
from assms have 1 :

f ∗ g =
fls-shift (− (fls-subdegree f + fls-subdegree g)) (

fps-to-fls (
fps-shift (nat (fls-subdegree f) + nat (fls-subdegree g)) (

fls-regpart f ∗ fls-regpart g
)

)
)

by (simp add:
fls-times-def fls-base-factor-to-fps-conv-fps-shift[symmetric]
fls-regpart-subdegree-conv fps-shift-mult-both[symmetric]

)
show ?thesis
proof (cases fls-regpart f ∗ fls-regpart g = 0)

case False
with assms have

subdegree (fls-regpart f ∗ fls-regpart g) ≥
nat (fls-subdegree f) + nat (fls-subdegree g)

by (simp add: fps-mult-subdegree-ge fls-regpart-subdegree-conv[symmetric])
with 1 assms show ?thesis by simp

qed (simp add: 1)
qed

lemma fls-base-factor-to-fps-mult-conv-unit-factor :
fixes f g :: ′a::{comm-monoid-add,mult-zero} fls
shows

fls-base-factor-to-fps (f ∗ g) =
unit-factor (fls-base-factor-to-fps f ∗ fls-base-factor-to-fps g)

using fls-base-factor-mult-both-base-factor [of f g]
fps-unit-factor-fls-regpart[of fls-base-factor f ∗ fls-base-factor g]
fls-base-factor-subdegree[of f] fls-base-factor-subdegree[of g]
fls-mult-subdegree-ge-0 [of fls-base-factor f fls-base-factor g]
fls-times-conv-regpart[of fls-base-factor f fls-base-factor g]

by simp

408

lemma fls-base-factor-to-fps-mult ′:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fls
assumes (f $$ fls-subdegree f) ∗ (g $$ fls-subdegree g) 6= 0
shows fls-base-factor-to-fps (f ∗ g) = fls-base-factor-to-fps f ∗ fls-base-factor-to-fps

g
using assms fls-mult-nonzero-base-subdegree-eq[of f g]

fls-times-base-factor-conv-shifted-times[of f g]
fls-times-conv-regpart[of fls-base-factor f fls-base-factor g]
fls-base-factor-subdegree[of f] fls-base-factor-subdegree[of g]

by fastforce

lemma fls-base-factor-to-fps-mult:
fixes f g :: ′a::semiring-no-zero-divisors fls
shows fls-base-factor-to-fps (f ∗ g) = fls-base-factor-to-fps f ∗ fls-base-factor-to-fps

g
using fls-base-factor-to-fps-mult ′[of f g]
by (cases f=0 ∨ g=0) auto

lemma fls-times-conv-fps-times:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fls
assumes fls-subdegree f ≥ 0 fls-subdegree g ≥ 0
shows f ∗ g = fps-to-fls (fls-regpart f ∗ fls-regpart g)
using assms fls-mult-subdegree-ge[of f g]
by (cases f ∗ g = 0) (simp-all add: fls-times-conv-regpart[symmetric])

lemma fps-times-conv-fls-times:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
shows f ∗ g = fls-regpart (fps-to-fls f ∗ fps-to-fls g)
using fls-subdegree-fls-to-fps-gt0 fls-times-conv-regpart[symmetric]
by fastforce

lemma fls-times-fps-to-fls:
fixes f g :: ′a::{comm-monoid-add,mult-zero} fps
shows fps-to-fls (f ∗ g) = fps-to-fls f ∗ fps-to-fls g

proof (intro fls-eq-conv-fps-eqI , rule fls-subdegree-fls-to-fps-gt0)
show fls-subdegree (fps-to-fls f ∗ fps-to-fls g) ≥ 0
proof (cases fps-to-fls f ∗ fps-to-fls g = 0)

case False thus ?thesis
using fls-mult-subdegree-ge fls-subdegree-fls-to-fps-gt0 [of f]

fls-subdegree-fls-to-fps-gt0 [of g]
by fastforce

qed simp
qed (simp add: fps-times-conv-fls-times)

lemma fls-X-times-conv-shift:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fls
shows fls-X ∗ f = fls-shift (−1) f f ∗ fls-X = fls-shift (−1) f
by (simp-all add: fls-X-conv-shift-1 fls-mult-one fls-shifted-times-simps)

409

lemmas fls-X-times-comm = trans-sym[OF fls-X-times-conv-shift]

lemma fls-subdegree-mult-fls-X :
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fls
assumes f 6= 0
shows fls-subdegree (fls-X ∗ f) = fls-subdegree f + 1
and fls-subdegree (f ∗ fls-X) = fls-subdegree f + 1
by (auto simp: fls-X-times-conv-shift assms)

lemma fls-mult-fls-X-nonzero:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fls
assumes f 6= 0
shows fls-X ∗ f 6= 0
and f ∗ fls-X 6= 0
by (auto simp: fls-X-times-conv-shift fls-shift-eq0-iff assms)

lemma fls-base-factor-mult-fls-X :
fixes f :: ′a::{comm-monoid-add,monoid-mult,mult-zero} fls
shows fls-base-factor (fls-X ∗ f) = fls-base-factor f
and fls-base-factor (f ∗ fls-X) = fls-base-factor f
using fls-base-factor-shift[of −1 f]
by (auto simp: fls-X-times-conv-shift)

lemma fls-X-inv-times-conv-shift:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fls
shows fls-X-inv ∗ f = fls-shift 1 f f ∗ fls-X-inv = fls-shift 1 f
by (simp-all add: fls-X-inv-conv-shift-1 fls-mult-one fls-shifted-times-simps)

lemmas fls-X-inv-times-comm = trans-sym[OF fls-X-inv-times-conv-shift]

lemma fls-subdegree-mult-fls-X-inv:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fls
assumes f 6= 0
shows fls-subdegree (fls-X-inv ∗ f) = fls-subdegree f − 1
and fls-subdegree (f ∗ fls-X-inv) = fls-subdegree f − 1
by (auto simp: fls-X-inv-times-conv-shift assms)

lemma fls-mult-fls-X-inv-nonzero:
fixes f :: ′a::{comm-monoid-add,mult-zero,monoid-mult} fls
assumes f 6= 0
shows fls-X-inv ∗ f 6= 0
and f ∗ fls-X-inv 6= 0
by (auto simp: fls-X-inv-times-conv-shift fls-shift-eq0-iff assms)

lemma fls-base-factor-mult-fls-X-inv:
fixes f :: ′a::{comm-monoid-add,monoid-mult,mult-zero} fls
shows fls-base-factor (fls-X-inv ∗ f) = fls-base-factor f
and fls-base-factor (f ∗ fls-X-inv) = fls-base-factor f
using fls-base-factor-shift[of 1 f]

410

by (auto simp: fls-X-inv-times-conv-shift)

lemma fls-mult-assoc-subdegree-ge-0 :
fixes f g h :: ′a::semiring-0 fls
assumes fls-subdegree f ≥ 0 fls-subdegree g ≥ 0 fls-subdegree h ≥ 0
shows f ∗ g ∗ h = f ∗ (g ∗ h)
using assms
by (simp add: fls-times-conv-fps-times fls-subdegree-fls-to-fps-gt0 mult.assoc)

lemma fls-mult-assoc-base-factor :
fixes a b c :: ′a::semiring-0 fls
shows

fls-base-factor a ∗ fls-base-factor b ∗ fls-base-factor c =
fls-base-factor a ∗ (fls-base-factor b ∗ fls-base-factor c)

by (simp add: fls-mult-assoc-subdegree-ge-0 del: fls-base-factor-def)

lemma fls-mult-distrib-subdegree-ge-0 :
fixes f g h :: ′a::semiring-0 fls
assumes fls-subdegree f ≥ 0 fls-subdegree g ≥ 0 fls-subdegree h ≥ 0
shows (f + g) ∗ h = f ∗ h + g ∗ h
and h ∗ (f + g) = h ∗ f + h ∗ g

proof−
have fls-subdegree (f+g) ≥ 0
proof (cases f+g = 0)

case False
with assms(1 ,2) show ?thesis

using fls-plus-subdegree by fastforce
qed simp
with assms show (f + g) ∗ h = f ∗ h + g ∗ h h ∗ (f + g) = h ∗ f + h ∗ g

using distrib-right[of fls-regpart f] distrib-left[of fls-regpart h]
by (simp-all add: fls-times-conv-fps-times)

qed

lemma fls-mult-distrib-base-factor :
fixes a b c :: ′a::semiring-0 fls
shows

fls-base-factor a ∗ (fls-base-factor b + fls-base-factor c) =
fls-base-factor a ∗ fls-base-factor b + fls-base-factor a ∗ fls-base-factor c

by (simp add: fls-mult-distrib-subdegree-ge-0 del: fls-base-factor-def)

instance fls :: (semiring-0) semiring-0
proof

fix a b c :: ′a fls
have

a ∗ b ∗ c =
fls-shift (− (fls-subdegree a + fls-subdegree b + fls-subdegree c))
(fls-base-factor a ∗ fls-base-factor b ∗ fls-base-factor c)

by (simp add: fls-times-both-shifted-simp)

411

moreover have
a ∗ (b ∗ c) =

fls-shift (− (fls-subdegree a + fls-subdegree b + fls-subdegree c))
(fls-base-factor a ∗ fls-base-factor b ∗ fls-base-factor c)

using fls-mult-assoc-base-factor [of a b c] by (simp add: fls-times-both-shifted-simp)
ultimately show a ∗ b ∗ c = a ∗ (b ∗ c) by simp

have ab:
fls-subdegree (fls-shift (min (fls-subdegree a) (fls-subdegree b)) a) ≥ 0
fls-subdegree (fls-shift (min (fls-subdegree a) (fls-subdegree b)) b) ≥ 0
by (simp-all add: fls-shift-nonneg-subdegree)

have
(a + b) ∗ c =

fls-shift (− (min (fls-subdegree a) (fls-subdegree b) + fls-subdegree c)) (
(

fls-shift (min (fls-subdegree a) (fls-subdegree b)) a +
fls-shift (min (fls-subdegree a) (fls-subdegree b)) b

) ∗ fls-base-factor c)
using fls-times-both-shifted-simp[of

−min (fls-subdegree a) (fls-subdegree b)
fls-shift (min (fls-subdegree a) (fls-subdegree b)) a +
fls-shift (min (fls-subdegree a) (fls-subdegree b)) b
−fls-subdegree c fls-base-factor c

]
by simp

also have
. . . =

fls-shift (−(min (fls-subdegree a) (fls-subdegree b) + fls-subdegree c))
(fls-shift (min (fls-subdegree a) (fls-subdegree b)) a ∗ fls-base-factor c)

+
fls-shift (−(min (fls-subdegree a) (fls-subdegree b) + fls-subdegree c))
(fls-shift (min (fls-subdegree a) (fls-subdegree b)) b ∗ fls-base-factor c)

using ab
by (simp add: fls-mult-distrib-subdegree-ge-0 (1) del: fls-base-factor-def)

finally show (a + b) ∗ c = a ∗ c + b ∗ c by (simp add: fls-times-both-shifted-simp)

have bc:
fls-subdegree (fls-shift (min (fls-subdegree b) (fls-subdegree c)) b) ≥ 0
fls-subdegree (fls-shift (min (fls-subdegree b) (fls-subdegree c)) c) ≥ 0
by (simp-all add: fls-shift-nonneg-subdegree)

have
a ∗ (b + c) =

fls-shift (− (fls-subdegree a + min (fls-subdegree b) (fls-subdegree c))) (
fls-base-factor a ∗ (

fls-shift (min (fls-subdegree b) (fls-subdegree c)) b +
fls-shift (min (fls-subdegree b) (fls-subdegree c)) c

)
)

412

using fls-times-both-shifted-simp[of
−fls-subdegree a fls-base-factor a
−min (fls-subdegree b) (fls-subdegree c)
fls-shift (min (fls-subdegree b) (fls-subdegree c)) b +
fls-shift (min (fls-subdegree b) (fls-subdegree c)) c

]
by simp

also have
. . . =

fls-shift (−(fls-subdegree a + min (fls-subdegree b) (fls-subdegree c)))
(fls-base-factor a ∗ fls-shift (min (fls-subdegree b) (fls-subdegree c)) b)

+
fls-shift (−(fls-subdegree a + min (fls-subdegree b) (fls-subdegree c)))
(fls-base-factor a ∗ fls-shift (min (fls-subdegree b) (fls-subdegree c)) c)

using bc
by (simp add: fls-mult-distrib-subdegree-ge-0 (2) del: fls-base-factor-def)

finally show a ∗ (b + c) = a ∗ b + a ∗ c by (simp add: fls-times-both-shifted-simp)

qed

lemma fls-mult-commute-subdegree-ge-0 :
fixes f g :: ′a::comm-semiring-0 fls
assumes fls-subdegree f ≥ 0 fls-subdegree g ≥ 0
shows f ∗ g = g ∗ f
using assms
by (simp add: fls-times-conv-fps-times mult.commute)

lemma fls-mult-commute-base-factor :
fixes a b c :: ′a::comm-semiring-0 fls
shows fls-base-factor a ∗ fls-base-factor b = fls-base-factor b ∗ fls-base-factor a
by (simp add: fls-mult-commute-subdegree-ge-0 del: fls-base-factor-def)

instance fls :: (comm-semiring-0) comm-semiring-0
proof

fix a b c :: ′a fls
show a ∗ b = b ∗ a
using fls-times-conv-base-factor-times[of a b] fls-times-conv-base-factor-times[of

b a]
fls-mult-commute-base-factor [of a b]

by (simp add: add.commute)
qed (simp add: distrib-right)

instance fls :: (semiring-1) semiring-1
by (standard, simp-all add: fls-mult-one)

lemma fls-of-nat: (of-nat n :: ′a::semiring-1 fls) = fls-const (of-nat n)
by (induct n) (auto intro: fls-eqI)

413

lemma fls-of-nat-nth: of-nat n $$ k = (if k=0 then of-nat n else 0)
by (simp add: fls-of-nat)

lemma fls-mult-of-nat-nth [simp]:
shows (of-nat k ∗ f) $$ n = of-nat k ∗ f $$n
and (f ∗ of-nat k) $$ n = f $$n ∗ of-nat k
by (simp-all add: fls-of-nat)

lemma fls-subdegree-of-nat [simp]: fls-subdegree (of-nat n) = 0
by (simp add: fls-of-nat)

lemma fls-shift-of-nat-nth:
fls-shift k (of-nat a) $$ n = (if n=−k then of-nat a else 0)
by (simp add: fls-of-nat fls-shift-const-nth)

lemma fls-base-factor-of-nat [simp]:
fls-base-factor (of-nat n :: ′a::semiring-1 fls) = (of-nat n :: ′a fls)
by (simp add: fls-of-nat)

lemma fls-regpart-of-nat [simp]: fls-regpart (of-nat n) = (of-nat n :: ′a::semiring-1
fps)

by (simp add: fls-of-nat fps-of-nat)

lemma fls-prpart-of-nat [simp]: fls-prpart (of-nat n) = 0
by (simp add: fls-prpart-eq0-iff)

lemma fls-base-factor-to-fps-of-nat:
fls-base-factor-to-fps (of-nat n) = (of-nat n :: ′a::semiring-1 fps)
by simp

lemma fps-to-fls-of-nat:
fps-to-fls (of-nat n) = (of-nat n :: ′a::semiring-1 fls)

proof −
have fps-to-fls (of-nat n) = fps-to-fls (fps-const (of-nat n))

by (simp add: fps-of-nat)
thus ?thesis by (simp add: fls-of-nat)

qed

lemma fps-to-fls-numeral [simp]: fps-to-fls (numeral n) = numeral n
by (metis fps-to-fls-of-nat of-nat-numeral)

lemma fls-const-power : fls-const (a ^ b) = fls-const a ^ b
by (induction b) (auto simp flip: fls-const-mult-const)

lemma fls-const-numeral [simp]: fls-const (numeral n) = numeral n
by (metis fls-of-nat of-nat-numeral)

lemma fls-mult-of-numeral-nth [simp]:
shows (numeral k ∗ f) $$ n = numeral k ∗ f $$ n

414

and (f ∗ numeral k) $$ n = f $$ n ∗ numeral k
by (metis fls-const-numeral fls-mult-const-nth)+

lemma fls-nth-numeral ′ [simp]:
numeral n $$ 0 = numeral n k 6= 0 =⇒ numeral n $$ k = 0
by (metis fls-const-nth fls-const-numeral)+

instance fls :: (comm-semiring-1) comm-semiring-1
by standard simp

instance fls :: (ring) ring ..

instance fls :: (comm-ring) comm-ring ..

instance fls :: (ring-1) ring-1 ..

lemma fls-of-int-nonneg: (of-int (int n) :: ′a::ring-1 fls) = fls-const (of-int (int
n))

by (induct n) (auto intro: fls-eqI)

lemma fls-of-int: (of-int i :: ′a::ring-1 fls) = fls-const (of-int i)
proof (induct i)

case (neg i)
have of-int (int (Suc i)) = fls-const (of-int (int (Suc i)) :: ′a)

using fls-of-int-nonneg[of Suc i] by simp
hence − of-int (int (Suc i)) = − fls-const (of-int (int (Suc i)) :: ′a)

by simp
thus ?case by (simp add: fls-const-uminus[symmetric])

qed (rule fls-of-int-nonneg)

lemma fls-of-int-nth: of-int n $$ k = (if k=0 then of-int n else 0)
by (simp add: fls-of-int)

lemma fls-mult-of-int-nth [simp]:
shows (of-int k ∗ f) $$ n = of-int k ∗ f $$n
and (f ∗ of-int k) $$ n = f $$n ∗ of-int k
by (simp-all add: fls-of-int)

lemma fls-subdegree-of-int [simp]: fls-subdegree (of-int i) = 0
by (simp add: fls-of-int)

lemma fls-shift-of-int-nth:
fls-shift k (of-int i) $$ n = (if n=−k then of-int i else 0)
by (simp add: fls-of-int-nth)

lemma fls-base-factor-of-int [simp]:
fls-base-factor (of-int i :: ′a::ring-1 fls) = (of-int i :: ′a fls)
by (simp add: fls-of-int)

415

lemma fls-regpart-of-int [simp]:
fls-regpart (of-int i) = (of-int i :: ′a::ring-1 fps)
by (simp add: fls-of-int fps-of-int)

lemma fls-prpart-of-int [simp]: fls-prpart (of-int n) = 0
by (simp add: fls-prpart-eq0-iff)

lemma fls-base-factor-to-fps-of-int:
fls-base-factor-to-fps (of-int i) = (of-int i :: ′a::ring-1 fps)
by simp

lemma fps-to-fls-of-int:
fps-to-fls (of-int i) = (of-int i :: ′a::ring-1 fls)

proof −
have fps-to-fls (of-int i) = fps-to-fls (fps-const (of-int i))

by (simp add: fps-of-int)
thus ?thesis by (simp add: fls-of-int)

qed

instance fls :: (comm-ring-1) comm-ring-1 ..

instance fls :: (semiring-no-zero-divisors) semiring-no-zero-divisors
proof

fix a b :: ′a fls
assume a 6= 0 and b 6= 0
hence (a ∗ b) $$ (fls-subdegree a + fls-subdegree b) 6= 0 by simp
thus a ∗ b 6= 0 using fls-nonzeroI by fast

qed

instance fls :: (semiring-1-no-zero-divisors) semiring-1-no-zero-divisors ..

instance fls :: (ring-no-zero-divisors) ring-no-zero-divisors ..

instance fls :: (ring-1-no-zero-divisors) ring-1-no-zero-divisors ..

instance fls :: (idom) idom ..

lemma semiring-char-fls [simp]: CHAR(′a :: comm-semiring-1 fls) = CHAR(′a)
by (rule CHAR-eqI) (auto simp: fls-of-nat of-nat-eq-0-iff-char-dvd fls-const-nonzero)

instance fls :: ({semiring-prime-char ,comm-semiring-1}) semiring-prime-char
by (rule semiring-prime-charI) auto

instance fls :: ({comm-semiring-prime-char ,comm-semiring-1}) comm-semiring-prime-char
by standard

instance fls :: ({comm-ring-prime-char ,comm-semiring-1}) comm-ring-prime-char
by standard

instance fls :: ({idom-prime-char ,comm-semiring-1}) idom-prime-char
by standard

416

lemma fls-subdegree-numeral [simp]: fls-subdegree (numeral n) = 0
by (metis fls-subdegree-of-nat of-nat-numeral)

lemma fls-regpart-numeral [simp]: fls-regpart (numeral n) = numeral n
by (metis fls-regpart-of-nat of-nat-numeral)

7.5.4 Powers
lemma fls-subdegree-prod:

fixes F :: ′a ⇒ ′b :: field-char-0 fls
assumes

∧
x. x ∈ I =⇒ F x 6= 0

shows fls-subdegree (
∏

x∈I . F x) = (
∑

x∈I . fls-subdegree (F x))
using assms by (induction I rule: infinite-finite-induct) auto

lemma fls-subdegree-prod ′:
fixes F :: ′a ⇒ ′b :: field-char-0 fls
assumes

∧
x. x ∈ I =⇒ fls-subdegree (F x) 6= 0

shows fls-subdegree (
∏

x∈I . F x) = (
∑

x∈I . fls-subdegree (F x))
proof (intro fls-subdegree-prod)

show F x 6= 0 if x ∈ I for x
using assms[OF that] by auto

qed

lemma fls-pow-subdegree-ge:
f^n 6= 0 =⇒ fls-subdegree (f^n) ≥ n ∗ fls-subdegree f

proof (induct n)
case (Suc n) thus ?case

using fls-mult-subdegree-ge[of f f^n] by (fastforce simp: algebra-simps)
qed simp

lemma fls-pow-nth-below-subdegree:
k < n ∗ fls-subdegree f =⇒ (f^n) $$ k = 0
using fls-pow-subdegree-ge[of f n] by (cases f^n = 0) auto

lemma fls-pow-base [simp]:
(f ^ n) $$ (n ∗ fls-subdegree f) = (f $$ fls-subdegree f) ^ n

proof (induct n)
case (Suc n)
show ?case
proof (cases Suc n ∗ fls-subdegree f < fls-subdegree f + fls-subdegree (f^n))

case True with Suc show ?thesis
by (simp-all add: fls-times-nth-eq0 distrib-right)

next
case False
from False have
{0 ..int n ∗ fls-subdegree f − fls-subdegree (f ^ n)} =

insert 0 {1 ..int n ∗ fls-subdegree f − fls-subdegree (f ^ n)}
by (auto simp: algebra-simps)

417

with False Suc show ?thesis
by (simp add: algebra-simps fls-times-nth(4) fls-pow-nth-below-subdegree)

qed
qed simp

lemma fls-pow-subdegree-eqI :
(f $$ fls-subdegree f) ^ n 6= 0 =⇒ fls-subdegree (f^n) = n ∗ fls-subdegree f
using fls-pow-nth-below-subdegree by (fastforce intro: fls-subdegree-eqI)

lemma fls-unit-base-subdegree-power :
x ∗ f $$ fls-subdegree f = 1 =⇒ fls-subdegree (f ^ n) = n ∗ fls-subdegree f
f $$ fls-subdegree f ∗ y = 1 =⇒ fls-subdegree (f ^ n) = n ∗ fls-subdegree f

proof−
show x ∗ f $$ fls-subdegree f = 1 =⇒ fls-subdegree (f ^ n) = n ∗ fls-subdegree f

using left-right-inverse-power [of x f $$ fls-subdegree f n]
by (auto intro: fls-pow-subdegree-eqI)

show f $$ fls-subdegree f ∗ y = 1 =⇒ fls-subdegree (f ^ n) = n ∗ fls-subdegree f
using left-right-inverse-power [of f $$ fls-subdegree f y n]
by (auto intro: fls-pow-subdegree-eqI)

qed

lemma fls-base-dvd1-subdegree-power :
f $$ fls-subdegree f dvd 1 =⇒ fls-subdegree (f ^ n) = n ∗ fls-subdegree f
using fls-unit-base-subdegree-power unfolding dvd-def by auto

lemma fls-pow-subdegree-ge0 :
assumes fls-subdegree f ≥ 0
shows fls-subdegree (f^n) ≥ 0

proof (cases f^n = 0)
case False
moreover from assms have int n ∗ fls-subdegree f ≥ 0 by simp
ultimately show ?thesis using fls-pow-subdegree-ge by fastforce

qed simp

lemma fls-subdegree-pow:
fixes f :: ′a::semiring-1-no-zero-divisors fls
shows fls-subdegree (f ^ n) = n ∗ fls-subdegree f

proof (cases f=0)
case False thus ?thesis by (induct n) (simp-all add: algebra-simps)

qed (cases n=0 , auto simp: zero-power)

lemma fls-shifted-pow:
(fls-shift m f) ^ n = fls-shift (n∗m) (f ^ n)
by (induct n) (simp-all add: fls-times-both-shifted-simp algebra-simps)

lemma fls-pow-conv-fps-pow:
assumes fls-subdegree f ≥ 0
shows f ^ n = fps-to-fls ((fls-regpart f) ^ n)

proof (induct n)

418

case (Suc n) with assms show ?case
using fls-pow-subdegree-ge0 [of f n]
by (simp add: fls-times-conv-fps-times)

qed simp

lemma fps-to-fls-power : fps-to-fls (f ^ n) = fps-to-fls f ^ n
by (simp add: fls-pow-conv-fps-pow fls-subdegree-fls-to-fps-gt0)

lemma fls-pow-conv-regpart:
fls-subdegree f ≥ 0 =⇒ fls-regpart (f ^ n) = (fls-regpart f) ^ n
by (simp add: fls-pow-conv-fps-pow)

These two lemmas show that shifting 1 is equivalent to powers of the implied
variable.
lemma fls-X-power-conv-shift-1 : fls-X ^ n = fls-shift (−n) 1

by (simp add: fls-X-conv-shift-1 fls-shifted-pow)

lemma fls-X-inv-power-conv-shift-1 : fls-X-inv ^ n = fls-shift n 1
by (simp add: fls-X-inv-conv-shift-1 fls-shifted-pow)

abbreviation fls-X-intpow ≡ (λi. fls-shift (−i) 1)
— Unifies fls-X and fls-X-inv so that fls-X-intpow returns the equivalent of the
implied variable raised to the supplied integer argument of fls-X-intpow, whether
positive or negative.

lemma fls-X-intpow-nonzero[simp]: (fls-X-intpow i :: ′a::zero-neq-one fls) 6= 0
by (simp add: fls-shift-eq0-iff)

lemma fls-X-intpow-power : (fls-X-intpow i) ^ n = fls-X-intpow (n ∗ i)
by (simp add: fls-shifted-pow)

lemma fls-X-power-nth [simp]: fls-X ^ n $$ k = (if k=n then 1 else 0)
by (simp add: fls-X-power-conv-shift-1)

lemma fls-X-inv-power-nth [simp]: fls-X-inv ^ n $$ k = (if k=−n then 1 else 0)
by (simp add: fls-X-inv-power-conv-shift-1)

lemma fls-X-pow-nonzero[simp]: (fls-X ^ n :: ′a :: semiring-1 fls) 6= 0
proof

assume (fls-X ^ n :: ′a fls) = 0
hence (fls-X ^ n :: ′a fls) $$ n = 0 by simp
thus False by simp

qed

lemma fls-X-inv-pow-nonzero[simp]: (fls-X-inv ^ n :: ′a :: semiring-1 fls) 6= 0
proof

assume (fls-X-inv ^ n :: ′a fls) = 0
hence (fls-X-inv ^ n :: ′a fls) $$ −n = 0 by simp
thus False by simp

419

qed

lemma fls-subdegree-fls-X-pow [simp]: fls-subdegree (fls-X ^ n) = n
by (intro fls-subdegree-eqI) (simp-all add: fls-X-power-conv-shift-1)

lemma fls-subdegree-fls-X-inv-pow [simp]: fls-subdegree (fls-X-inv ^ n) = −n
by (intro fls-subdegree-eqI) (simp-all add: fls-X-inv-power-conv-shift-1)

lemma fls-subdegree-fls-X-intpow [simp]:
fls-subdegree ((fls-X-intpow i) :: ′a::zero-neq-one fls) = i
by simp

lemma fls-X-pow-conv-fps-X-pow: fls-regpart (fls-X ^ n) = fps-X ^ n
by (simp add: fls-pow-conv-regpart)

lemma fls-X-inv-pow-regpart: n > 0 =⇒ fls-regpart (fls-X-inv ^ n) = 0
by (auto intro: fps-ext simp: fls-X-inv-power-conv-shift-1)

lemma fls-X-intpow-regpart:
fls-regpart (fls-X-intpow i) = (if i≥0 then fps-X ^ nat i else 0)
using fls-X-pow-conv-fps-X-pow[of nat i]

fls-regpart-shift-conv-fps-shift[of −i 1]
by (auto simp: fls-X-power-conv-shift-1 fps-shift-one)

lemma fls-X-power-times-conv-shift:
fls-X ^ n ∗ f = fls-shift (−int n) f f ∗ fls-X ^ n = fls-shift (−int n) f
using fls-times-both-shifted-simp[of −int n 1 0 f]

fls-times-both-shifted-simp[of 0 f −int n 1]
by (simp-all add: fls-X-power-conv-shift-1)

lemma fls-X-inv-power-times-conv-shift:
fls-X-inv ^ n ∗ f = fls-shift (int n) f f ∗ fls-X-inv ^ n = fls-shift (int n) f
using fls-times-both-shifted-simp[of int n 1 0 f]

fls-times-both-shifted-simp[of 0 f int n 1]
by (simp-all add: fls-X-inv-power-conv-shift-1)

lemma fls-X-intpow-times-conv-shift:
fixes f :: ′a::semiring-1 fls
shows fls-X-intpow i ∗ f = fls-shift (−i) f f ∗ fls-X-intpow i = fls-shift (−i) f
by (simp-all add: fls-shifted-times-simps)

lemmas fls-X-power-times-comm = trans-sym[OF fls-X-power-times-conv-shift]
lemmas fls-X-inv-power-times-comm = trans-sym[OF fls-X-inv-power-times-conv-shift]

lemma fls-X-intpow-times-comm:
fixes f :: ′a::semiring-1 fls
shows fls-X-intpow i ∗ f = f ∗ fls-X-intpow i
by (simp add: fls-X-intpow-times-conv-shift)

420

lemma fls-X-intpow-times-fls-X-intpow:
(fls-X-intpow i :: ′a::semiring-1 fls) ∗ fls-X-intpow j = fls-X-intpow (i+j)
by (simp add: fls-times-both-shifted-simp)

lemma fls-X-intpow-diff-conv-times:
fls-X-intpow (i−j) = (fls-X-intpow i :: ′a::semiring-1 fls) ∗ fls-X-intpow (−j)
using fls-X-intpow-times-fls-X-intpow[of i −j,symmetric] by simp

lemma fls-mult-fls-X-power-nonzero:
assumes f 6= 0
shows fls-X ^ n ∗ f 6= 0 f ∗ fls-X ^ n 6= 0
by (auto simp: fls-X-power-times-conv-shift fls-shift-eq0-iff assms)

lemma fls-mult-fls-X-inv-power-nonzero:
assumes f 6= 0
shows fls-X-inv ^ n ∗ f 6= 0 f ∗ fls-X-inv ^ n 6= 0
by (auto simp: fls-X-inv-power-times-conv-shift fls-shift-eq0-iff assms)

lemma fls-mult-fls-X-intpow-nonzero:
fixes f :: ′a::semiring-1 fls
assumes f 6= 0
shows fls-X-intpow i ∗ f 6= 0 f ∗ fls-X-intpow i 6= 0
by (auto simp: fls-X-intpow-times-conv-shift fls-shift-eq0-iff assms)

lemma fls-subdegree-mult-fls-X-power :
assumes f 6= 0
shows fls-subdegree (fls-X ^ n ∗ f) = fls-subdegree f + n
and fls-subdegree (f ∗ fls-X ^ n) = fls-subdegree f + n
by (auto simp: fls-X-power-times-conv-shift assms)

lemma fls-subdegree-mult-fls-X-inv-power :
assumes f 6= 0
shows fls-subdegree (fls-X-inv ^ n ∗ f) = fls-subdegree f − n
and fls-subdegree (f ∗ fls-X-inv ^ n) = fls-subdegree f − n
by (auto simp: fls-X-inv-power-times-conv-shift assms)

lemma fls-subdegree-mult-fls-X-intpow:
fixes f :: ′a::semiring-1 fls
assumes f 6= 0
shows fls-subdegree (fls-X-intpow i ∗ f) = fls-subdegree f + i
and fls-subdegree (f ∗ fls-X-intpow i) = fls-subdegree f + i
by (auto simp: fls-X-intpow-times-conv-shift assms)

lemma fls-X-shift:
fls-shift (−int n) fls-X = fls-X ^ Suc n
fls-shift (int (Suc n)) fls-X = fls-X-inv ^ n
using fls-X-power-conv-shift-1 [of Suc n, symmetric]
by (simp-all add: fls-X-conv-shift-1 fls-X-inv-power-conv-shift-1)

421

lemma fls-X-inv-shift:
fls-shift (int n) fls-X-inv = fls-X-inv ^ Suc n
fls-shift (− int (Suc n)) fls-X-inv = fls-X ^ n
using fls-X-inv-power-conv-shift-1 [of Suc n, symmetric]
by (simp-all add: fls-X-inv-conv-shift-1 fls-X-power-conv-shift-1)

lemma fls-X-power-base-factor : fls-base-factor (fls-X ^ n) = 1
by (simp add: fls-X-power-conv-shift-1)

lemma fls-X-inv-power-base-factor : fls-base-factor (fls-X-inv ^ n) = 1
by (simp add: fls-X-inv-power-conv-shift-1)

lemma fls-X-intpow-base-factor : fls-base-factor (fls-X-intpow i) = 1
using fls-base-factor-shift[of −i 1] by simp

lemma fls-base-factor-mult-fls-X-power :
shows fls-base-factor (fls-X ^ n ∗ f) = fls-base-factor f
and fls-base-factor (f ∗ fls-X ^ n) = fls-base-factor f
using fls-base-factor-shift[of −int n f]
by (auto simp: fls-X-power-times-conv-shift)

lemma fls-base-factor-mult-fls-X-inv-power :
shows fls-base-factor (fls-X-inv ^ n ∗ f) = fls-base-factor f
and fls-base-factor (f ∗ fls-X-inv ^ n) = fls-base-factor f
using fls-base-factor-shift[of int n f]
by (auto simp: fls-X-inv-power-times-conv-shift)

lemma fls-base-factor-mult-fls-X-intpow:
fixes f :: ′a::semiring-1 fls
shows fls-base-factor (fls-X-intpow i ∗ f) = fls-base-factor f
and fls-base-factor (f ∗ fls-X-intpow i) = fls-base-factor f
using fls-base-factor-shift[of −i f]
by (auto simp: fls-X-intpow-times-conv-shift)

lemma fls-X-power-base-factor-to-fps: fls-base-factor-to-fps (fls-X ^ n) = 1
proof−

define X where X ≡ fls-X :: ′a::semiring-1 fls
hence fls-base-factor (X ^ n) = 1 using fls-X-power-base-factor by simp
thus fls-base-factor-to-fps (X^n) = 1 by simp

qed

lemma fls-X-inv-power-base-factor-to-fps: fls-base-factor-to-fps (fls-X-inv ^ n) =
1
proof−

define iX where iX ≡ fls-X-inv :: ′a::semiring-1 fls
hence fls-base-factor (iX ^ n) = 1 using fls-X-inv-power-base-factor by simp
thus fls-base-factor-to-fps (iX^n) = 1 by simp

qed

422

lemma fls-X-intpow-base-factor-to-fps: fls-base-factor-to-fps (fls-X-intpow i) = 1
proof−

define f :: ′a fls where f ≡ fls-X-intpow i
moreover have fls-base-factor (fls-X-intpow i) = 1 by (rule fls-X-intpow-base-factor)
ultimately have fls-base-factor f = 1 by simp
thus fls-base-factor-to-fps f = 1 by simp

qed

lemma fls-base-factor-X-power-decompose:
fixes f :: ′a::semiring-1 fls
shows f = fls-base-factor f ∗ fls-X-intpow (fls-subdegree f)
and f = fls-X-intpow (fls-subdegree f) ∗ fls-base-factor f
by (simp-all add: fls-times-both-shifted-simp)

lemma fls-normalized-product-of-inverses:
assumes f ∗ g = 1
shows fls-base-factor f ∗ fls-base-factor g =

fls-X ^ (nat (−(fls-subdegree f+fls-subdegree g)))
and fls-base-factor f ∗ fls-base-factor g =

fls-X-intpow (−(fls-subdegree f+fls-subdegree g))
using fls-mult-subdegree-ge[of f g]

fls-times-base-factor-conv-shifted-times[of f g]
by (simp-all add: assms fls-X-power-conv-shift-1 algebra-simps)

lemma fls-fps-normalized-product-of-inverses:
assumes f ∗ g = 1
shows fls-base-factor-to-fps f ∗ fls-base-factor-to-fps g =

fps-X ^ (nat (−(fls-subdegree f+fls-subdegree g)))
using fls-times-conv-regpart[of fls-base-factor f fls-base-factor g]

fls-base-factor-subdegree[of f] fls-base-factor-subdegree[of g]
fls-normalized-product-of-inverses(1)[OF assms]

by (force simp: fls-X-pow-conv-fps-X-pow)

7.5.5 Inverses
abbreviation fls-left-inverse ::

′a::{comm-monoid-add,uminus,times} fls ⇒ ′a ⇒ ′a fls
where
fls-left-inverse f x ≡

fls-shift (fls-subdegree f) (fps-to-fls (fps-left-inverse (fls-base-factor-to-fps f) x))

abbreviation fls-right-inverse ::
′a::{comm-monoid-add,uminus,times} fls ⇒ ′a ⇒ ′a fls
where
fls-right-inverse f y ≡

fls-shift (fls-subdegree f) (fps-to-fls (fps-right-inverse (fls-base-factor-to-fps f)
y))

instantiation fls :: ({comm-monoid-add,uminus,times,inverse}) inverse

423

begin
definition fls-divide-def :

f div g =
fls-shift (fls-subdegree g − fls-subdegree f) (

fps-to-fls ((fls-base-factor-to-fps f) div (fls-base-factor-to-fps g))
)

definition fls-inverse-def :
inverse f = fls-shift (fls-subdegree f) (fps-to-fls (inverse (fls-base-factor-to-fps

f)))
instance ..

end

lemma fls-inverse-def ′:
inverse f = fls-right-inverse f (inverse (f $$ fls-subdegree f))
by (simp add: fls-inverse-def fps-inverse-def)

lemma fls-lr-inverse-base:
fls-left-inverse f x $$ (−fls-subdegree f) = x
fls-right-inverse f y $$ (−fls-subdegree f) = y
by auto

lemma fls-inverse-base:
f 6= 0 =⇒ inverse f $$ (−fls-subdegree f) = inverse (f $$ fls-subdegree f)
by (simp add: fls-inverse-def ′)

lemma fls-lr-inverse-starting0 :
fixes f :: ′a::{comm-monoid-add,mult-zero,uminus} fls
and g :: ′b::{ab-group-add,mult-zero} fls
shows fls-left-inverse f 0 = 0
and fls-right-inverse g 0 = 0
by (simp-all add: fps-lr-inverse-starting0)

lemma fls-lr-inverse-eq0-imp-starting0 :
fls-left-inverse f x = 0 =⇒ x = 0
fls-right-inverse f x = 0 =⇒ x = 0
by (metis fls-lr-inverse-base fls-nonzeroI)+

lemma fls-lr-inverse-eq-0-iff :
fixes x :: ′a::{comm-monoid-add,mult-zero,uminus}
and y :: ′b::{ab-group-add,mult-zero}
shows fls-left-inverse f x = 0 ←→ x = 0
and fls-right-inverse g y = 0 ←→ y = 0
using fls-lr-inverse-starting0 fls-lr-inverse-eq0-imp-starting0
by auto

lemma fls-inverse-eq-0-iff ′:
fixes f :: ′a::{ab-group-add,inverse,mult-zero} fls
shows inverse f = 0 ←→ (inverse (f $$ fls-subdegree f) = 0)

424

using fls-lr-inverse-eq-0-iff (2)[of f inverse (f $$ fls-subdegree f)]
by (simp add: fls-inverse-def ′)

lemma fls-inverse-eq-0-iff [simp]:
inverse f = (0 :: (′a::division-ring) fls) ←→ f $$ fls-subdegree f = 0
using fls-inverse-eq-0-iff ′[of f] by (cases f=0) auto

lemmas fls-inverse-eq-0 ′ = iffD2 [OF fls-inverse-eq-0-iff ′]
lemmas fls-inverse-eq-0 = iffD2 [OF fls-inverse-eq-0-iff]

lemma fls-lr-inverse-const:
fixes a :: ′a::{ab-group-add,mult-zero}
and b :: ′b::{comm-monoid-add,mult-zero,uminus}
shows fls-left-inverse (fls-const a) x = fls-const x
and fls-right-inverse (fls-const b) y = fls-const y
by (simp-all add: fps-const-lr-inverse)

lemma fls-inverse-const:
fixes a :: ′a::{comm-monoid-add,inverse,mult-zero,uminus}
shows inverse (fls-const a) = fls-const (inverse a)
using fls-lr-inverse-const(2)
by (auto simp: fls-inverse-def ′)

lemma fls-lr-inverse-of-nat:
fixes x :: ′a::{ring-1 ,mult-zero}
and y :: ′b::{semiring-1 ,uminus}
shows fls-left-inverse (of-nat n) x = fls-const x
and fls-right-inverse (of-nat n) y = fls-const y
using fls-lr-inverse-const
by (auto simp: fls-of-nat)

lemma fls-inverse-of-nat:
inverse (of-nat n :: ′a :: {semiring-1 ,inverse,uminus} fls) = fls-const (inverse

(of-nat n))
by (simp add: fls-inverse-const fls-of-nat)

lemma fls-lr-inverse-of-int:
fixes x :: ′a::{ring-1 ,mult-zero}
shows fls-left-inverse (of-int n) x = fls-const x
and fls-right-inverse (of-int n) x = fls-const x
using fls-lr-inverse-const
by (auto simp: fls-of-int)

lemma fls-inverse-of-int:
inverse (of-int n :: ′a :: {ring-1 ,inverse,uminus} fls) = fls-const (inverse (of-int

n))
by (simp add: fls-inverse-const fls-of-int)

lemma fls-lr-inverse-zero:

425

fixes x :: ′a::{ab-group-add,mult-zero}
and y :: ′b::{comm-monoid-add,mult-zero,uminus}
shows fls-left-inverse 0 x = fls-const x
and fls-right-inverse 0 y = fls-const y
using fls-lr-inverse-const[of 0]
by auto

lemma fls-inverse-zero-conv-fls-const:
inverse (0 :: ′a::{comm-monoid-add,mult-zero,uminus,inverse} fls) = fls-const (inverse

0)
using fls-lr-inverse-zero(2)[of inverse (0 :: ′a)] by (simp add: fls-inverse-def ′)

lemma fls-inverse-zero ′:
assumes inverse (0 :: ′a::{comm-monoid-add,inverse,mult-zero,uminus}) = 0
shows inverse (0 :: ′a fls) = 0
by (simp add: fls-inverse-zero-conv-fls-const assms)

lemma fls-inverse-zero [simp]: inverse (0 :: ′a::division-ring fls) = 0
by (rule fls-inverse-zero ′[OF inverse-zero])

lemma fls-inverse-base2 :
fixes f :: ′a::{comm-monoid-add,mult-zero,uminus,inverse} fls
shows inverse f $$ (−fls-subdegree f) = inverse (f $$ fls-subdegree f)
by (cases f=0) (simp-all add: fls-inverse-zero-conv-fls-const fls-inverse-def ′)

lemma fls-lr-inverse-one:
fixes x :: ′a::{ab-group-add,mult-zero,one}
and y :: ′b::{comm-monoid-add,mult-zero,uminus,one}
shows fls-left-inverse 1 x = fls-const x
and fls-right-inverse 1 y = fls-const y
using fls-lr-inverse-const[of 1]
by auto

lemma fls-lr-inverse-one-one:
fls-left-inverse 1 1 =
(1 :: ′a::{ab-group-add,mult-zero,one} fls)

fls-right-inverse 1 1 =
(1 :: ′b::{comm-monoid-add,mult-zero,uminus,one} fls)

using fls-lr-inverse-one[of 1] by auto

lemma fls-inverse-one:
assumes inverse (1 :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,one}) = 1
shows inverse (1 :: ′a fls) = 1
using assms fls-lr-inverse-one-one(2)
by (simp add: fls-inverse-def ′)

lemma fls-left-inverse-delta:
fixes b :: ′a::{ab-group-add,mult-zero}
assumes b 6= 0

426

shows fls-left-inverse (Abs-fls (λn. if n=a then b else 0)) x =
Abs-fls (λn. if n=−a then x else 0)

proof (intro fls-eqI)
fix n from assms show

fls-left-inverse (Abs-fls (λn. if n=a then b else 0)) x $$ n
= Abs-fls (λn. if n = − a then x else 0) $$ n

using fls-base-factor-to-fps-delta[of a b]
fls-lr-inverse-const(1)[of b]
fls-shift-const

by simp
qed

lemma fls-right-inverse-delta:
fixes b :: ′a::{comm-monoid-add,mult-zero,uminus}
assumes b 6= 0
shows fls-right-inverse (Abs-fls (λn. if n=a then b else 0)) x =

Abs-fls (λn. if n=−a then x else 0)
proof (intro fls-eqI)

fix n from assms show
fls-right-inverse (Abs-fls (λn. if n=a then b else 0)) x $$ n
= Abs-fls (λn. if n = − a then x else 0) $$ n

using fls-base-factor-to-fps-delta[of a b]
fls-lr-inverse-const(2)[of b]
fls-shift-const

by simp
qed

lemma fls-inverse-delta-nonzero:
fixes b :: ′a::{comm-monoid-add,inverse,mult-zero,uminus}
assumes b 6= 0
shows inverse (Abs-fls (λn. if n=a then b else 0)) =

Abs-fls (λn. if n=−a then inverse b else 0)
using assms fls-nonzeroI [of Abs-fls (λn. if n=a then b else 0) a]
by (simp add: fls-inverse-def ′ fls-right-inverse-delta[symmetric])

lemma fls-inverse-delta:
fixes b :: ′a::division-ring
shows inverse (Abs-fls (λn. if n=a then b else 0)) =

Abs-fls (λn. if n=−a then inverse b else 0)
by (cases b=0) (simp-all add: fls-inverse-delta-nonzero)

lemma fls-lr-inverse-X :
fixes x :: ′a::{ab-group-add,mult-zero,zero-neq-one}
and y :: ′b::{comm-monoid-add,uminus,mult-zero,zero-neq-one}
shows fls-left-inverse fls-X x = fls-shift 1 (fls-const x)
and fls-right-inverse fls-X y = fls-shift 1 (fls-const y)
using fls-lr-inverse-one(1)[of x] fls-lr-inverse-one(2)[of y]
by auto

427

lemma fls-lr-inverse-X ′:
fixes x :: ′a::{ab-group-add,mult-zero,zero-neq-one,monoid-mult}
and y :: ′b::{comm-monoid-add,uminus,mult-zero,zero-neq-one,monoid-mult}
shows fls-left-inverse fls-X x = fls-const x ∗ fls-X-inv
and fls-right-inverse fls-X y = fls-const y ∗ fls-X-inv
using fls-lr-inverse-X(1)[of x] fls-lr-inverse-X(2)[of y]
by (simp-all add: fls-X-inv-times-conv-shift(2))

lemma fls-inverse-X ′:
assumes inverse 1 = (1 :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one})
shows inverse (fls-X :: ′a fls) = fls-X-inv
using assms fls-lr-inverse-X(2)[of 1 :: ′a]
by (simp add: fls-inverse-def ′ fls-X-inv-conv-shift-1)

lemma fls-inverse-X : inverse (fls-X :: ′a::division-ring fls) = fls-X-inv
by (simp add: fls-inverse-X ′)

lemma fls-lr-inverse-X-inv:
fixes x :: ′a::{ab-group-add,mult-zero,zero-neq-one}
and y :: ′b::{comm-monoid-add,uminus,mult-zero,zero-neq-one}
shows fls-left-inverse fls-X-inv x = fls-shift (−1) (fls-const x)
and fls-right-inverse fls-X-inv y = fls-shift (−1) (fls-const y)
using fls-lr-inverse-one(1)[of x] fls-lr-inverse-one(2)[of y]
by auto

lemma fls-lr-inverse-X-inv ′:
fixes x :: ′a::{ab-group-add,mult-zero,zero-neq-one,monoid-mult}
and y :: ′b::{comm-monoid-add,uminus,mult-zero,zero-neq-one,monoid-mult}
shows fls-left-inverse fls-X-inv x = fls-const x ∗ fls-X
and fls-right-inverse fls-X-inv y = fls-const y ∗ fls-X
using fls-lr-inverse-X-inv(1)[of x] fls-lr-inverse-X-inv(2)[of y]
by (simp-all add: fls-X-times-conv-shift(2))

lemma fls-inverse-X-inv ′:
assumes inverse 1 = (1 :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one})
shows inverse (fls-X-inv:: ′a fls) = fls-X
using assms fls-lr-inverse-X-inv(2)[of 1 :: ′a]
by (simp add: fls-inverse-def ′ fls-X-conv-shift-1)

lemma fls-inverse-X-inv: inverse (fls-X-inv:: ′a::division-ring fls) = fls-X
by (simp add: fls-inverse-X-inv ′)

lemma fls-lr-inverse-subdegree:
assumes x 6= 0
shows fls-subdegree (fls-left-inverse f x) = − fls-subdegree f
and fls-subdegree (fls-right-inverse f x) = − fls-subdegree f
by (auto intro: fls-subdegree-eqI simp: assms)

lemma fls-inverse-subdegree ′:

428

inverse (f $$ fls-subdegree f) 6= 0 =⇒ fls-subdegree (inverse f) = − fls-subdegree
f

using fls-lr-inverse-subdegree(2)[of inverse (f $$ fls-subdegree f)]
by (simp add: fls-inverse-def ′)

lemma fls-inverse-subdegree [simp]:
fixes f :: ′a::division-ring fls
shows fls-subdegree (inverse f) = − fls-subdegree f
by (cases f=0)

(auto intro: fls-inverse-subdegree ′ simp: nonzero-imp-inverse-nonzero)

lemma fls-inverse-subdegree-base-nonzero:
assumes f 6= 0 inverse (f $$ fls-subdegree f) 6= 0
shows inverse f $$ (fls-subdegree (inverse f)) = inverse (f $$ fls-subdegree f)
using assms fls-inverse-subdegree ′[of f] fls-inverse-base[of f]
by simp

lemma fls-inverse-subdegree-base:
fixes f :: ′a::{ab-group-add,inverse,mult-zero} fls
shows inverse f $$ (fls-subdegree (inverse f)) = inverse (f $$ fls-subdegree f)
using fls-inverse-eq-0-iff ′[of f] fls-inverse-subdegree-base-nonzero[of f]
by (cases f=0 ∨ inverse (f $$ fls-subdegree f) = 0)

(auto simp: fls-inverse-zero-conv-fls-const)

lemma fls-lr-inverse-subdegree-0 :
assumes fls-subdegree f = 0
shows fls-subdegree (fls-left-inverse f x) ≥ 0
and fls-subdegree (fls-right-inverse f x) ≥ 0
using fls-subdegree-ge0I [of fls-left-inverse f x]

fls-subdegree-ge0I [of fls-right-inverse f x]
by (auto simp: assms)

lemma fls-inverse-subdegree-0 :
fls-subdegree f = 0 =⇒ fls-subdegree (inverse f) ≥ 0
using fls-lr-inverse-subdegree-0 (2)[of f] by (simp add: fls-inverse-def ′)

lemma fls-lr-inverse-shift-nonzero:
fixes f :: ′a::{comm-monoid-add,mult-zero,uminus} fls
assumes f 6= 0
shows fls-left-inverse (fls-shift m f) x = fls-shift (−m) (fls-left-inverse f x)
and fls-right-inverse (fls-shift m f) x = fls-shift (−m) (fls-right-inverse f x)
using assms fls-base-factor-to-fps-shift[of m f] fls-shift-subdegree
by auto

lemma fls-inverse-shift-nonzero:
fixes f :: ′a::{comm-monoid-add,inverse,mult-zero,uminus} fls
assumes f 6= 0
shows inverse (fls-shift m f) = fls-shift (−m) (inverse f)
using assms fls-lr-inverse-shift-nonzero(2)[of f m inverse (f $$ fls-subdegree f)]

429

by (simp add: fls-inverse-def ′)

lemma fls-inverse-shift:
fixes f :: ′a::division-ring fls
shows inverse (fls-shift m f) = fls-shift (−m) (inverse f)
using fls-inverse-shift-nonzero
by (cases f=0) simp-all

lemma fls-left-inverse-base-factor :
fixes x :: ′a::{ab-group-add,mult-zero}
assumes x 6= 0
shows fls-left-inverse (fls-base-factor f) x = fls-base-factor (fls-left-inverse f x)
using assms fls-lr-inverse-zero(1)[of x] fls-lr-inverse-subdegree(1)[of x]
by (cases f=0) auto

lemma fls-right-inverse-base-factor :
fixes y :: ′a::{comm-monoid-add,mult-zero,uminus}
assumes y 6= 0
shows fls-right-inverse (fls-base-factor f) y = fls-base-factor (fls-right-inverse

f y)
using assms fls-lr-inverse-zero(2)[of y] fls-lr-inverse-subdegree(2)[of y]
by (cases f=0) auto

lemma fls-inverse-base-factor ′:
fixes f :: ′a::{comm-monoid-add,inverse,mult-zero,uminus} fls
assumes inverse (f $$ fls-subdegree f) 6= 0
shows inverse (fls-base-factor f) = fls-base-factor (inverse f)
by (cases f=0)

(simp-all add:
assms fls-inverse-shift-nonzero fls-inverse-subdegree ′

fls-inverse-zero-conv-fls-const
)

lemma fls-inverse-base-factor :
fixes f :: ′a::{ab-group-add,inverse,mult-zero} fls
shows inverse (fls-base-factor f) = fls-base-factor (inverse f)
using fls-base-factor-base[of f] fls-inverse-eq-0-iff ′[of f]

fls-inverse-eq-0-iff ′[of fls-base-factor f] fls-inverse-base-factor ′[of f]
by (cases inverse (f $$ fls-subdegree f) = 0) simp-all

lemma fls-lr-inverse-regpart:
assumes fls-subdegree f = 0
shows fls-regpart (fls-left-inverse f x) = fps-left-inverse (fls-regpart f) x
and fls-regpart (fls-right-inverse f y) = fps-right-inverse (fls-regpart f) y
using assms
by auto

lemma fls-inverse-regpart:
assumes fls-subdegree f = 0

430

shows fls-regpart (inverse f) = inverse (fls-regpart f)
by (simp add: assms fls-inverse-def)

lemma fls-base-factor-to-fps-left-inverse:
fixes x :: ′a::{ab-group-add,mult-zero}
shows fls-base-factor-to-fps (fls-left-inverse f x) =

fps-left-inverse (fls-base-factor-to-fps f) x
using fls-left-inverse-base-factor [of x f] fls-base-factor-subdegree[of f]
by (cases x=0) (simp-all add: fls-lr-inverse-starting0 (1) fps-lr-inverse-starting0 (1))

lemma fls-base-factor-to-fps-right-inverse-nonzero:
fixes y :: ′a::{comm-monoid-add,mult-zero,uminus}
assumes y 6= 0
shows fls-base-factor-to-fps (fls-right-inverse f y) =

fps-right-inverse (fls-base-factor-to-fps f) y
using assms fls-right-inverse-base-factor [of y f]

fls-base-factor-subdegree[of f]
by simp

lemma fls-base-factor-to-fps-right-inverse:
fixes y :: ′a::{ab-group-add,mult-zero}
shows fls-base-factor-to-fps (fls-right-inverse f y) =

fps-right-inverse (fls-base-factor-to-fps f) y
using fls-base-factor-to-fps-right-inverse-nonzero[of y f]
by (cases y=0) (simp-all add: fls-lr-inverse-starting0 (2) fps-lr-inverse-starting0 (2))

lemma fls-base-factor-to-fps-inverse-nonzero:
fixes f :: ′a::{comm-monoid-add,inverse,mult-zero,uminus} fls
assumes inverse (f $$ fls-subdegree f) 6= 0
shows fls-base-factor-to-fps (inverse f) = inverse (fls-base-factor-to-fps f)
using assms fls-base-factor-to-fps-right-inverse-nonzero
by (simp add: fls-inverse-def ′ fps-inverse-def)

lemma fls-base-factor-to-fps-inverse:
fixes f :: ′a::{ab-group-add,inverse,mult-zero} fls
shows fls-base-factor-to-fps (inverse f) = inverse (fls-base-factor-to-fps f)
using fls-base-factor-to-fps-right-inverse
by (simp add: fls-inverse-def ′ fps-inverse-def)

lemma fls-lr-inverse-fps-to-fls:
assumes subdegree f = 0
shows fls-left-inverse (fps-to-fls f) x = fps-to-fls (fps-left-inverse f x)
and fls-right-inverse (fps-to-fls f) x = fps-to-fls (fps-right-inverse f x)
using assms fls-base-factor-to-fps-to-fls[of f]
by (simp-all add: fls-subdegree-fls-to-fps)

lemma fls-inverse-fps-to-fls:
subdegree f = 0 =⇒ inverse (fps-to-fls f) = fps-to-fls (inverse f)
using nth-subdegree-nonzero[of f]

431

by (cases f=0)
(auto simp add:

fps-to-fls-nonzeroI fls-inverse-def ′ fls-subdegree-fls-to-fps fps-inverse-def
fls-lr-inverse-fps-to-fls(2)

)

lemma fls-lr-inverse-X-power :
fixes x :: ′a::ring-1
and y :: ′b::{semiring-1 ,uminus}
shows fls-left-inverse (fls-X ^ n) x = fls-shift n (fls-const x)
and fls-right-inverse (fls-X ^ n) y = fls-shift n (fls-const y)
using fls-lr-inverse-one(1)[of x] fls-lr-inverse-one(2)[of y]
by (simp-all add: fls-X-power-conv-shift-1)

lemma fls-lr-inverse-X-power ′:
fixes x :: ′a::ring-1
and y :: ′b::{semiring-1 ,uminus}
shows fls-left-inverse (fls-X ^ n) x = fls-const x ∗ fls-X-inv ^ n
and fls-right-inverse (fls-X ^ n) y = fls-const y ∗ fls-X-inv ^ n
using fls-lr-inverse-X-power(1)[of n x] fls-lr-inverse-X-power(2)[of n y]
by (simp-all add: fls-X-inv-power-times-conv-shift(2))

lemma fls-inverse-X-power ′:
assumes inverse 1 = (1 :: ′a::{semiring-1 ,uminus,inverse})
shows inverse ((fls-X ^ n):: ′a fls) = fls-X-inv ^ n
using fls-lr-inverse-X-power ′(2)[of n 1]
by (simp add: fls-inverse-def ′ assms)

lemma fls-inverse-X-power :
inverse ((fls-X :: ′a::division-ring fls) ^ n) = fls-X-inv ^ n
by (simp add: fls-inverse-X-power ′)

lemma fls-lr-inverse-X-inv-power :
fixes x :: ′a::ring-1
and y :: ′b::{semiring-1 ,uminus}
shows fls-left-inverse (fls-X-inv ^ n) x = fls-shift (−n) (fls-const x)
and fls-right-inverse (fls-X-inv ^ n) y = fls-shift (−n) (fls-const y)
using fls-lr-inverse-one(1)[of x] fls-lr-inverse-one(2)[of y]
by (simp-all add: fls-X-inv-power-conv-shift-1)

lemma fls-lr-inverse-X-inv-power ′:
fixes x :: ′a::ring-1
and y :: ′b::{semiring-1 ,uminus}
shows fls-left-inverse (fls-X-inv ^ n) x = fls-const x ∗ fls-X ^ n
and fls-right-inverse (fls-X-inv ^ n) y = fls-const y ∗ fls-X ^ n
using fls-lr-inverse-X-inv-power(1)[of n x] fls-lr-inverse-X-inv-power(2)[of n y]
by (simp-all add: fls-X-power-times-conv-shift(2))

lemma fls-inverse-X-inv-power ′:

432

assumes inverse 1 = (1 :: ′a::{semiring-1 ,uminus,inverse})
shows inverse ((fls-X-inv ^ n):: ′a fls) = fls-X ^ n
using fls-lr-inverse-X-inv-power ′(2)[of n 1]
by (simp add: fls-inverse-def ′ assms)

lemma fls-inverse-X-inv-power :
inverse ((fls-X-inv:: ′a::division-ring fls) ^ n) = fls-X ^ n
by (simp add: fls-inverse-X-inv-power ′)

lemma fls-lr-inverse-X-intpow:
fixes x :: ′a::ring-1
and y :: ′b::{semiring-1 ,uminus}
shows fls-left-inverse (fls-X-intpow i) x = fls-shift i (fls-const x)
and fls-right-inverse (fls-X-intpow i) y = fls-shift i (fls-const y)
using fls-lr-inverse-one(1)[of x] fls-lr-inverse-one(2)[of y]
by auto

lemma fls-lr-inverse-X-intpow ′:
fixes x :: ′a::ring-1
and y :: ′b::{semiring-1 ,uminus}
shows fls-left-inverse (fls-X-intpow i) x = fls-const x ∗ fls-X-intpow (−i)
and fls-right-inverse (fls-X-intpow i) y = fls-const y ∗ fls-X-intpow (−i)
using fls-lr-inverse-X-intpow(1)[of i x] fls-lr-inverse-X-intpow(2)[of i y]
by (simp-all add: fls-shifted-times-simps(1))

lemma fls-inverse-X-intpow ′:
assumes inverse 1 = (1 :: ′a::{semiring-1 ,uminus,inverse})
shows inverse (fls-X-intpow i :: ′a fls) = fls-X-intpow (−i)
using fls-lr-inverse-X-intpow ′(2)[of i 1]
by (simp add: fls-inverse-def ′ assms)

lemma fls-inverse-X-intpow:
inverse (fls-X-intpow i :: ′a::division-ring fls) = fls-X-intpow (−i)
by (simp add: fls-inverse-X-intpow ′)

lemma fls-left-inverse:
fixes f :: ′a::ring-1 fls
assumes x ∗ f $$ fls-subdegree f = 1
shows fls-left-inverse f x ∗ f = 1

proof−
from assms have x 6= 0 x ∗ (fls-base-factor-to-fps f $0) = 1 by auto
thus ?thesis

using fls-base-factor-to-fps-left-inverse[of f x]
fls-lr-inverse-subdegree(1)[of x] fps-left-inverse

by (fastforce simp: fls-times-def)
qed

lemma fls-right-inverse:
fixes f :: ′a::ring-1 fls

433

assumes f $$ fls-subdegree f ∗ y = 1
shows f ∗ fls-right-inverse f y = 1

proof−
from assms have y 6= 0 (fls-base-factor-to-fps f $0) ∗ y = 1 by auto
thus ?thesis

using fls-base-factor-to-fps-right-inverse[of f y]
fls-lr-inverse-subdegree(2)[of y] fps-right-inverse

by (fastforce simp: fls-times-def)
qed

— It is possible in a ring for an element to have a left inverse but not a right inverse,
or vice versa. But when an element has both, they must be the same.
lemma fls-left-inverse-eq-fls-right-inverse:

fixes f :: ′a::ring-1 fls
assumes x ∗ f $$ fls-subdegree f = 1 f $$ fls-subdegree f ∗ y = 1
— These assumptions imply x equals y, but no need to assume that.
shows fls-left-inverse f x = fls-right-inverse f y
using assms
by (simp add: fps-left-inverse-eq-fps-right-inverse)

lemma fls-left-inverse-eq-inverse:
fixes f :: ′a::division-ring fls
shows fls-left-inverse f (inverse (f $$ fls-subdegree f)) = inverse f

proof (cases f=0)
case True
hence fls-left-inverse f (inverse (f $$ fls-subdegree f)) = fls-const (0 :: ′a)

by (simp add: fls-lr-inverse-zero(1)[symmetric])
with True show ?thesis by simp

next
case False thus ?thesis

using fls-left-inverse-eq-fls-right-inverse[of inverse (f $$ fls-subdegree f)]
by (auto simp add: fls-inverse-def ′)

qed

lemma fls-right-inverse-eq-inverse:
fixes f :: ′a::division-ring fls
shows fls-right-inverse f (inverse (f $$ fls-subdegree f)) = inverse f

proof (cases f=0)
case True
hence fls-right-inverse f (inverse (f $$ fls-subdegree f)) = fls-const (0 :: ′a)

by (simp add: fls-lr-inverse-zero(2)[symmetric])
with True show ?thesis by simp

qed (simp add: fls-inverse-def ′)

lemma fls-left-inverse-eq-fls-right-inverse-comm:
fixes f :: ′a::comm-ring-1 fls
assumes x ∗ f $$ fls-subdegree f = 1
shows fls-left-inverse f x = fls-right-inverse f x
using assms fls-left-inverse-eq-fls-right-inverse[of x f x]

434

by (simp add: mult.commute)

lemma fls-left-inverse ′:
fixes f :: ′a::ring-1 fls
assumes x ∗ f $$ fls-subdegree f = 1 f $$ fls-subdegree f ∗ y = 1
— These assumptions imply x equals y, but no need to assume that.
shows fls-right-inverse f y ∗ f = 1
using assms fls-left-inverse-eq-fls-right-inverse[of x f y] fls-left-inverse[of x f]
by simp

lemma fls-right-inverse ′:
fixes f :: ′a::ring-1 fls
assumes x ∗ f $$ fls-subdegree f = 1 f $$ fls-subdegree f ∗ y = 1
— These assumptions imply x equals y, but no need to assume that.
shows f ∗ fls-left-inverse f x = 1
using assms fls-left-inverse-eq-fls-right-inverse[of x f y] fls-right-inverse[of f y]
by simp

lemma fls-mult-left-inverse-base-factor :
fixes f :: ′a::ring-1 fls
assumes x ∗ (f $$ fls-subdegree f) = 1
shows fls-left-inverse (fls-base-factor f) x ∗ f = fls-X-intpow (fls-subdegree f)
using assms fls-base-factor-to-fps-base-factor [of f] fls-base-factor-subdegree[of f]

fls-shifted-times-simps(2)[of −fls-subdegree f fls-left-inverse f x f]
fls-left-inverse[of x f]

by simp

lemma fls-mult-right-inverse-base-factor :
fixes f :: ′a::ring-1 fls
assumes (f $$ fls-subdegree f) ∗ y = 1
shows f ∗ fls-right-inverse (fls-base-factor f) y = fls-X-intpow (fls-subdegree f)
using assms fls-base-factor-to-fps-base-factor [of f] fls-base-factor-subdegree[of f]

fls-shifted-times-simps(1)[of f −fls-subdegree f fls-right-inverse f y]
fls-right-inverse[of f y]

by simp

lemma fls-mult-inverse-base-factor :
fixes f :: ′a::division-ring fls
assumes f 6= 0
shows f ∗ inverse (fls-base-factor f) = fls-X-intpow (fls-subdegree f)
using fls-mult-right-inverse-base-factor [of f inverse (f $$ fls-subdegree f)]

fls-base-factor-base[of f]
by (simp add: assms fls-right-inverse-eq-inverse[symmetric])

lemma fls-left-inverse-idempotent-ring1 :
fixes f :: ′a::ring-1 fls
assumes x ∗ f $$ fls-subdegree f = 1 y ∗ x = 1
— These assumptions imply y equals f $$ fls-subdegree f, but no need to assume

that.

435

shows fls-left-inverse (fls-left-inverse f x) y = f
proof−

from assms(1) have
fls-left-inverse (fls-left-inverse f x) y ∗ fls-left-inverse f x ∗ f =

fls-left-inverse (fls-left-inverse f x) y
using fls-left-inverse[of x f]
by (simp add: mult.assoc)

moreover have
fls-left-inverse (fls-left-inverse f x) y ∗ fls-left-inverse f x = 1
using assms fls-lr-inverse-subdegree(1)[of x f] fls-lr-inverse-base(1)[of f x]
by (fastforce intro: fls-left-inverse)

ultimately show ?thesis by simp
qed

lemma fls-left-inverse-idempotent-comm-ring1 :
fixes f :: ′a::comm-ring-1 fls
assumes x ∗ f $$ fls-subdegree f = 1
shows fls-left-inverse (fls-left-inverse f x) (f $$ fls-subdegree f) = f
using assms fls-left-inverse-idempotent-ring1 [of x f f $$ fls-subdegree f]
by (simp add: mult.commute)

lemma fls-right-inverse-idempotent-ring1 :
fixes f :: ′a::ring-1 fls
assumes f $$ fls-subdegree f ∗ x = 1 x ∗ y = 1
— These assumptions imply y equals f $$ fls-subdegree f, but no need to assume

that.
shows fls-right-inverse (fls-right-inverse f x) y = f

proof−
from assms(1) have

f ∗ (fls-right-inverse f x ∗ fls-right-inverse (fls-right-inverse f x) y) =
fls-right-inverse (fls-right-inverse f x) y

using fls-right-inverse [of f]
by (simp add: mult.assoc[symmetric])

moreover have
fls-right-inverse f x ∗ fls-right-inverse (fls-right-inverse f x) y = 1
using assms fls-lr-inverse-subdegree(2)[of x f] fls-lr-inverse-base(2)[of f x]
by (fastforce intro: fls-right-inverse)

ultimately show ?thesis by simp
qed

lemma fls-right-inverse-idempotent-comm-ring1 :
fixes f :: ′a::comm-ring-1 fls
assumes f $$ fls-subdegree f ∗ x = 1
shows fls-right-inverse (fls-right-inverse f x) (f $$ fls-subdegree f) = f
using assms fls-right-inverse-idempotent-ring1 [of f x f $$ fls-subdegree f]
by (simp add: mult.commute)

lemma fls-lr-inverse-unique-ring1 :
fixes f g :: ′a :: ring-1 fls

436

assumes fg: f ∗ g = 1 g $$ fls-subdegree g ∗ f $$ fls-subdegree f = 1
shows fls-left-inverse g (f $$ fls-subdegree f) = f
and fls-right-inverse f (g $$ fls-subdegree g) = g

proof−

have f $$ fls-subdegree f ∗ g $$ fls-subdegree g 6= 0
proof

assume f $$ fls-subdegree f ∗ g $$ fls-subdegree g = 0
hence f $$ fls-subdegree f ∗ (g $$ fls-subdegree g ∗ f $$ fls-subdegree f) = 0

by (simp add: mult.assoc[symmetric])
with fg(2) show False by simp

qed
with fg(1) have subdeg-sum: fls-subdegree f + fls-subdegree g = 0

using fls-mult-nonzero-base-subdegree-eq[of f g] by simp
hence subdeg-sum ′:

fls-subdegree f = −fls-subdegree g fls-subdegree g = −fls-subdegree f
by auto

from fg(1) have f-ne-0 : f 6=0 by auto
moreover have

fps-left-inverse (fls-base-factor-to-fps g) (fls-regpart (fls-shift (−fls-subdegree g)
f)$0)

= fls-regpart (fls-shift (−fls-subdegree g) f)
proof (intro fps-lr-inverse-unique-ring1 (1))

from fg(1) show
fls-regpart (fls-shift (−fls-subdegree g) f) ∗ fls-base-factor-to-fps g = 1

using f-ne-0 fls-times-conv-regpart[of fls-shift (−fls-subdegree g) f fls-base-factor
g]

fls-base-factor-subdegree[of g]
by (simp add: fls-times-both-shifted-simp subdeg-sum)

from fg(2) show
fls-base-factor-to-fps g $ 0 ∗ fls-regpart (fls-shift (−fls-subdegree g) f) $ 0 = 1
by (simp add: subdeg-sum ′(2))

qed
ultimately show fls-left-inverse g (f $$ fls-subdegree f) = f

by (simp add: subdeg-sum ′(2))

from fg(1) have g-ne-0 : g 6=0 by auto
moreover have

fps-right-inverse (fls-base-factor-to-fps f) (fls-regpart (fls-shift (−fls-subdegree
f) g)$0)

= fls-regpart (fls-shift (−fls-subdegree f) g)
proof (intro fps-lr-inverse-unique-ring1 (2))

from fg(1) show
fls-base-factor-to-fps f ∗ fls-regpart (fls-shift (−fls-subdegree f) g) = 1
using g-ne-0 fls-times-conv-regpart[of fls-base-factor f fls-shift (−fls-subdegree

f) g]
fls-base-factor-subdegree[of f]

by (simp add: fls-times-both-shifted-simp subdeg-sum add.commute)

437

from fg(2) show
fls-regpart (fls-shift (−fls-subdegree f) g) $ 0 ∗ fls-base-factor-to-fps f $ 0 = 1
by (simp add: subdeg-sum ′(1))

qed
ultimately show fls-right-inverse f (g $$ fls-subdegree g) = g

by (simp add: subdeg-sum ′(2))

qed

lemma fls-lr-inverse-unique-divring:
fixes f g :: ′a ::division-ring fls
assumes fg: f ∗ g = 1
shows fls-left-inverse g (f $$ fls-subdegree f) = f
and fls-right-inverse f (g $$ fls-subdegree g) = g

proof−
from fg have f 6=0 g 6= 0 by auto
with fg have fls-subdegree f + fls-subdegree g = 0 using fls-subdegree-mult by

force
with fg have f $$ fls-subdegree f ∗ g $$ fls-subdegree g = 1

using fls-times-base[of f g] by simp
hence g $$ fls-subdegree g ∗ f $$ fls-subdegree f = 1

using inverse-unique[of f $$ fls-subdegree f] left-inverse[of f $$ fls-subdegree f]
by force

thus
fls-left-inverse g (f $$ fls-subdegree f) = f
fls-right-inverse f (g $$ fls-subdegree g) = g
using fg fls-lr-inverse-unique-ring1
by auto

qed

lemma fls-lr-inverse-minus:
fixes f :: ′a::ring-1 fls
shows fls-left-inverse (−f) (−x) = − fls-left-inverse f x
and fls-right-inverse (−f) (−x) = − fls-right-inverse f x
by (simp-all add: fps-lr-inverse-minus)

lemma fls-inverse-minus [simp]: inverse (−f) = −inverse (f :: ′a :: division-ring
fls)

using fls-lr-inverse-minus(2)[of f] by (simp add: fls-inverse-def ′)

lemma fls-lr-inverse-mult-ring1 :
fixes f g :: ′a::ring-1 fls
assumes x: x ∗ f $$ fls-subdegree f = 1 f $$ fls-subdegree f ∗ x = 1
and y: y ∗ g $$ fls-subdegree g = 1 g $$ fls-subdegree g ∗ y = 1
shows fls-left-inverse (f ∗ g) (y∗x) = fls-left-inverse g y ∗ fls-left-inverse f x
and fls-right-inverse (f ∗ g) (y∗x) = fls-right-inverse g y ∗ fls-right-inverse f

x
proof−

from x(1) y(2) have x ∗ (f $$ fls-subdegree f ∗ g $$ fls-subdegree g) ∗ y = 1

438

by (simp add: mult.assoc)
hence base-prod: f $$ fls-subdegree f ∗ g $$ fls-subdegree g 6= 0 by auto
hence subdegrees: fls-subdegree (f ∗g) = fls-subdegree f + fls-subdegree g

using fls-mult-nonzero-base-subdegree-eq[of f g] by simp

have norm:
fls-base-factor-to-fps (f ∗ g) = fls-base-factor-to-fps f ∗ fls-base-factor-to-fps g
using base-prod fls-base-factor-to-fps-mult ′[of f g] by simp

have
fls-left-inverse (f ∗ g) (y∗x) =

fls-shift (fls-subdegree (f ∗ g)) (
fps-to-fls (

fps-left-inverse (fls-base-factor-to-fps f ∗ fls-base-factor-to-fps g) (y∗x)
)

)

using norm
by simp

thus fls-left-inverse (f ∗ g) (y∗x) = fls-left-inverse g y ∗ fls-left-inverse f x
using x y

fps-lr-inverse-mult-ring1 (1)[of
x fls-base-factor-to-fps f y fls-base-factor-to-fps g

]
by (simp add:

fls-times-both-shifted-simp fls-times-fps-to-fls subdegrees algebra-simps
)

have
fls-right-inverse (f ∗ g) (y∗x) =

fls-shift (fls-subdegree (f ∗ g)) (
fps-to-fls (

fps-right-inverse (fls-base-factor-to-fps f ∗ fls-base-factor-to-fps g) (y∗x)
)

)

using norm
by simp

thus fls-right-inverse (f ∗ g) (y∗x) = fls-right-inverse g y ∗ fls-right-inverse f x
using x y

fps-lr-inverse-mult-ring1 (2)[of
x fls-base-factor-to-fps f y fls-base-factor-to-fps g

]
by (simp add:

fls-times-both-shifted-simp fls-times-fps-to-fls subdegrees algebra-simps
)

qed

439

lemma fls-lr-inverse-power-ring1 :
fixes f :: ′a::ring-1 fls
assumes x: x ∗ f $$ fls-subdegree f = 1 f $$ fls-subdegree f ∗ x = 1
shows fls-left-inverse (f ^ n) (x ^ n) = (fls-left-inverse f x) ^ n

fls-right-inverse (f ^ n) (x ^ n) = (fls-right-inverse f x) ^ n
proof−

show fls-left-inverse (f ^ n) (x ^ n) = (fls-left-inverse f x) ^ n
proof (induct n)

case 0 show ?case using fls-lr-inverse-one(1)[of 1] by simp
next

case (Suc n) with assms show ?case
using fls-lr-inverse-mult-ring1 (1)[of x f x^n f^n]
by (simp add:

power-Suc2 [symmetric] fls-unit-base-subdegree-power(1) left-right-inverse-power
)

qed

show fls-right-inverse (f ^ n) (x ^ n) = (fls-right-inverse f x) ^ n
proof (induct n)

case 0 show ?case using fls-lr-inverse-one(2)[of 1] by simp
next

case (Suc n) with assms show ?case
using fls-lr-inverse-mult-ring1 (2)[of x f x^n f^n]
by (simp add:

power-Suc2 [symmetric] fls-unit-base-subdegree-power(1) left-right-inverse-power
)

qed

qed

lemma fls-divide-convert-times-inverse:
fixes f g :: ′a::{comm-monoid-add,inverse,mult-zero,uminus} fls
shows f / g = f ∗ inverse g
using fls-base-factor-to-fps-subdegree[of g] fps-to-fls-base-factor-to-fps[of f]

fls-times-both-shifted-simp[of −fls-subdegree f fls-base-factor f]
by (simp add:

fls-divide-def fps-divide-unit ′ fls-times-fps-to-fls
fls-conv-base-factor-shift-subdegree fls-inverse-def

)

instance fls :: (division-ring) division-ring
proof

fix a b :: ′a fls
show a 6= 0 =⇒ inverse a ∗ a = 1

using fls-left-inverse ′[of inverse (a $$ fls-subdegree a) a]
by (simp add: fls-inverse-def ′)

show a 6= 0 =⇒ a ∗ inverse a = 1
using fls-right-inverse[of a]

440

by (simp add: fls-inverse-def ′)
show a / b = a ∗ inverse b using fls-divide-convert-times-inverse by fast
show inverse (0 :: ′a fls) = 0 by simp

qed

lemma fls-lr-inverse-mult-divring:
fixes f g :: ′a::division-ring fls
and df dg :: int
defines df ≡ fls-subdegree f
and dg ≡ fls-subdegree g
shows fls-left-inverse (f ∗g) (inverse ((f ∗g)$$(df+dg))) =

fls-left-inverse g (inverse (g$$dg)) ∗ fls-left-inverse f (inverse (f $$df))
and fls-right-inverse (f ∗g) (inverse ((f ∗g)$$(df+dg))) =

fls-right-inverse g (inverse (g$$dg)) ∗ fls-right-inverse f (inverse (f $$df))
proof −

show
fls-left-inverse (f ∗g) (inverse ((f ∗g)$$(df+dg))) =

fls-left-inverse g (inverse (g$$dg)) ∗ fls-left-inverse f (inverse (f $$df))
proof (cases f=0 ∨ g=0)

case True thus ?thesis
using fls-lr-inverse-zero(1)[of inverse (0 :: ′a)] by (auto simp add: assms)

next
case False thus ?thesis

using fls-left-inverse-eq-inverse[of f ∗g] nonzero-inverse-mult-distrib[of f g]
fls-left-inverse-eq-inverse[of g] fls-left-inverse-eq-inverse[of f]

by (simp add: assms)
qed
show

fls-right-inverse (f ∗g) (inverse ((f ∗g)$$(df+dg))) =
fls-right-inverse g (inverse (g$$dg)) ∗ fls-right-inverse f (inverse (f $$df))

proof (cases f=0 ∨ g=0)
case True thus ?thesis

using fls-lr-inverse-zero(2)[of inverse (0 :: ′a)] by (auto simp add: assms)
next

case False thus ?thesis
using fls-inverse-def ′[of f ∗g] nonzero-inverse-mult-distrib[of f g]

fls-inverse-def ′[of g] fls-inverse-def ′[of f]
by (simp add: assms)

qed
qed

lemma fls-lr-inverse-power-divring:
fls-left-inverse (f ^ n) ((inverse (f $$ fls-subdegree f)) ^ n) =
(fls-left-inverse f (inverse (f $$ fls-subdegree f))) ^ n (is ?P)

and fls-right-inverse (f ^ n) ((inverse (f $$ fls-subdegree f)) ^ n) =
(fls-right-inverse f (inverse (f $$ fls-subdegree f))) ^ n (is ?Q)

for f :: ′a::division-ring fls
proof −

note fls-left-inverse-eq-inverse [of f] fls-right-inverse-eq-inverse[of f]

441

moreover have
fls-right-inverse (f ^ n) ((inverse (f $$ fls-subdegree f)) ^ n) =

inverse f ^ n
using fls-right-inverse-eq-inverse [of f ^ n]
by (simp add: fls-subdegree-pow power-inverse)

moreover have
fls-left-inverse (f ^ n) ((inverse (f $$ fls-subdegree f)) ^ n) =

inverse f ^ n
using fls-left-inverse-eq-inverse [of f ^ n]
by (simp add: fls-subdegree-pow power-inverse)

ultimately show ?P and ?Q
by simp-all

qed

lemma one-plus-fls-X-powi-eq:
(1 + fls-X) powi n = fps-to-fls (fps-binomial (of-int n :: ′a :: field-char-0))

proof (cases n ≥ 0)
case True
thus ?thesis

using fps-binomial-of-nat[of nat n, where ? ′a = ′a]
by (simp add: power-int-def fps-to-fls-power)

next
case False
thus ?thesis

using fps-binomial-minus-of-nat[of nat (−n), where ? ′a = ′a]
by (simp add: power-int-def fps-to-fls-power fps-inverse-power flip: fls-inverse-fps-to-fls)

qed

instance fls :: (field) field
by (standard, simp-all add: field-simps)

instance fls :: ({field-prime-char ,comm-semiring-1}) field-prime-char
by (rule field-prime-charI ′) auto

instance fls :: (semiring-char-0) semiring-char-0
proof

show inj (of-nat :: nat ⇒ ′a fls)
by (metis fls-regpart-of-nat injI of-nat-eq-iff)

qed

instance fls :: (field-char-0) field-char-0 ..

lemma fls-subdegree-power-int [simp]:
fixes F :: ′a :: field fls
shows fls-subdegree (F powi n) = n ∗ fls-subdegree F
by (auto simp: power-int-def fls-subdegree-pow)

442

7.5.6 Division
lemma fls-divide-nth-below:

fixes f g :: ′a::{comm-monoid-add,uminus,times,inverse} fls
shows n < fls-subdegree f − fls-subdegree g =⇒ (f div g) $$ n = 0
by (simp add: fls-divide-def)

lemma fls-divide-nth-base:
fixes f g :: ′a::division-ring fls
shows
(f div g) $$ (fls-subdegree f − fls-subdegree g) =

f $$ fls-subdegree f / g $$ fls-subdegree g
using fps-divide-nth-0 ′[of fls-base-factor-to-fps g fls-base-factor-to-fps f]

fls-base-factor-to-fps-subdegree[of g]
by (simp add: fls-divide-def)

lemma fls-div-zero [simp]:
0 div (g :: ′a :: {comm-monoid-add,inverse,mult-zero,uminus} fls) = 0
by (simp add: fls-divide-def)

lemma fls-div-by-zero:
fixes g :: ′a::{comm-monoid-add,inverse,mult-zero,uminus} fls
assumes inverse (0 :: ′a) = 0
shows g div 0 = 0
by (simp add: fls-divide-def assms fps-div-by-zero ′)

lemma fls-divide-times:
fixes f g :: ′a::{semiring-0 ,inverse,uminus} fls
shows (f ∗ g) / h = f ∗ (g / h)
by (simp add: fls-divide-convert-times-inverse mult.assoc)

lemma fls-divide-times2 :
fixes f g :: ′a::{comm-semiring-0 ,inverse,uminus} fls
shows (f ∗ g) / h = (f / h) ∗ g
using fls-divide-times[of g f h]
by (simp add: mult.commute)

lemma fls-divide-subdegree-ge:
fixes f g :: ′a::{comm-monoid-add,uminus,times,inverse} fls
assumes f / g 6= 0
shows fls-subdegree (f / g) ≥ fls-subdegree f − fls-subdegree g
using assms fls-divide-nth-below
by (intro fls-subdegree-geI) simp

lemma fls-divide-subdegree:
fixes f g :: ′a::division-ring fls
assumes f 6= 0 g 6= 0
shows fls-subdegree (f / g) = fls-subdegree f − fls-subdegree g

proof (intro antisym)
from assms have f $$ fls-subdegree f / g $$ fls-subdegree g 6= 0 by (simp add:

443

field-simps)
thus fls-subdegree (f /g) ≤ fls-subdegree f − fls-subdegree g

using fls-divide-nth-base[of f g] by (intro fls-subdegree-leI) simp
from assms have f / g 6= 0 by (simp add: field-simps)
thus fls-subdegree (f /g) ≥ fls-subdegree f − fls-subdegree g

using fls-divide-subdegree-ge by fast
qed

lemma fls-divide-shift-numer-nonzero:
fixes f g :: ′a :: {comm-monoid-add,inverse,times,uminus} fls
assumes f 6= 0
shows fls-shift m f / g = fls-shift m (f /g)
using assms fls-base-factor-to-fps-shift[of m f]
by (simp add: fls-divide-def algebra-simps)

lemma fls-divide-shift-numer :
fixes f g :: ′a :: {comm-monoid-add,inverse,mult-zero,uminus} fls
shows fls-shift m f / g = fls-shift m (f /g)
using fls-divide-shift-numer-nonzero
by (cases f=0) auto

lemma fls-divide-shift-denom-nonzero:
fixes f g :: ′a :: {comm-monoid-add,inverse,times,uminus} fls
assumes g 6= 0
shows f / fls-shift m g = fls-shift (−m) (f /g)
using assms fls-base-factor-to-fps-shift[of m g]
by (simp add: fls-divide-def algebra-simps)

lemma fls-divide-shift-denom:
fixes f g :: ′a :: division-ring fls
shows f / fls-shift m g = fls-shift (−m) (f /g)
using fls-divide-shift-denom-nonzero
by (cases g=0) auto

lemma fls-divide-shift-both-nonzero:
fixes f g :: ′a :: {comm-monoid-add,inverse,times,uminus} fls
assumes f 6= 0 g 6= 0
shows fls-shift n f / fls-shift m g = fls-shift (n−m) (f /g)
by (simp add: assms fls-divide-shift-numer-nonzero fls-divide-shift-denom-nonzero)

lemma fls-divide-shift-both [simp]:
fixes f g :: ′a :: division-ring fls
shows fls-shift n f / fls-shift m g = fls-shift (n−m) (f /g)
using fls-divide-shift-both-nonzero
by (cases f=0 ∨ g=0) auto

lemma fls-divide-base-factor-numer :
fls-base-factor f / g = fls-shift (fls-subdegree f) (f /g)
using fls-base-factor-to-fps-base-factor [of f]

444

fls-base-factor-subdegree[of f]
by (simp add: fls-divide-def algebra-simps)

lemma fls-divide-base-factor-denom:
f / fls-base-factor g = fls-shift (−fls-subdegree g) (f /g)
using fls-base-factor-to-fps-base-factor [of g]

fls-base-factor-subdegree[of g]
by (simp add: fls-divide-def)

lemma fls-divide-base-factor ′:
fls-base-factor f / fls-base-factor g = fls-shift (fls-subdegree f − fls-subdegree g)

(f /g)
using fls-divide-base-factor-numer [of f fls-base-factor g]

fls-divide-base-factor-denom[of f g]
by simp

lemma fls-divide-base-factor :
fixes f g :: ′a :: division-ring fls
shows fls-base-factor f / fls-base-factor g = fls-base-factor (f /g)
using fls-divide-subdegree[of f g] fls-divide-base-factor ′

by fastforce

lemma fls-divide-regpart:
fixes f g :: ′a::{inverse,comm-monoid-add,uminus,mult-zero} fls
assumes fls-subdegree f ≥ 0 fls-subdegree g ≥ 0
shows fls-regpart (f / g) = fls-regpart f / fls-regpart g

proof −
have deg0 :∧

g. fls-subdegree g = 0 =⇒
fls-regpart (f / g) = fls-regpart f / fls-regpart g

by (simp add:
assms(1) fls-divide-convert-times-inverse fls-inverse-subdegree-0

fls-times-conv-regpart fls-inverse-regpart fls-regpart-subdegree-conv fps-divide-unit ′

)
show ?thesis
proof (cases fls-subdegree g = 0)

case False
hence fls-base-factor g 6= 0 using fls-base-factor-nonzero[of g] by force
with assms(2) show ?thesis

using fls-divide-shift-denom-nonzero[of fls-base-factor g f −fls-subdegree g]
fps-shift-fls-regpart-conv-fls-shift[of

nat (fls-subdegree g) f / fls-base-factor g
]
fls-base-factor-subdegree[of g] deg0
fls-regpart-subdegree-conv[of g] fps-unit-factor-fls-regpart[of g]

by (simp add:
fls-conv-base-factor-shift-subdegree fls-regpart-subdegree-conv fps-divide-def
)

qed (rule deg0)

445

qed

lemma fls-divide-fls-base-factor-to-fps ′:
fixes f g :: ′a::{comm-monoid-add,uminus,inverse,mult-zero} fls
shows

fls-base-factor-to-fps f / fls-base-factor-to-fps g =
fls-regpart (fls-shift (fls-subdegree f − fls-subdegree g) (f / g))

using fls-base-factor-subdegree[of f] fls-base-factor-subdegree[of g]
fls-divide-regpart[of fls-base-factor f fls-base-factor g]
fls-divide-base-factor ′[of f g]

by simp

lemma fls-divide-fls-base-factor-to-fps:
fixes f g :: ′a::division-ring fls
shows fls-base-factor-to-fps f / fls-base-factor-to-fps g = fls-base-factor-to-fps (f

/ g)
using fls-divide-fls-base-factor-to-fps ′ fls-divide-subdegree[of f g]
by fastforce

lemma fls-divide-fps-to-fls:
fixes f g :: ′a::{inverse,ab-group-add,mult-zero} fps
assumes subdegree f ≥ subdegree g
shows fps-to-fls f / fps-to-fls g = fps-to-fls (f /g)

proof−
have 1 :

fps-to-fls f / fps-to-fls g =
fls-shift (int (subdegree g)) (fps-to-fls (f ∗ inverse (unit-factor g)))

using fls-base-factor-to-fps-to-fls[of f] fls-base-factor-to-fps-to-fls[of g]
fls-subdegree-fls-to-fps[of f] fls-subdegree-fls-to-fps[of g]
fps-divide-def [of unit-factor f unit-factor g]
fls-times-fps-to-fls[of unit-factor f inverse (unit-factor g)]
fls-shifted-times-simps(2)[of −int (subdegree f) fps-to-fls (unit-factor f)]
fls-times-fps-to-fls[of f inverse (unit-factor g)]

by (simp add: fls-divide-def)
with assms show ?thesis

using fps-mult-subdegree-ge[of f inverse (unit-factor g)]
fps-shift-to-fls[of subdegree g f ∗ inverse (unit-factor g)]

by (cases f ∗ inverse (unit-factor g) = 0) (simp-all add: fps-divide-def)
qed

lemma fls-divide-1 ′:
fixes f :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult}

fls
assumes inverse (1 :: ′a) = 1
shows f / 1 = f
using assms fls-conv-base-factor-to-fps-shift-subdegree[of f]
by (simp add: fls-divide-def fps-divide-1 ′)

lemma fls-divide-1 [simp]: a / 1 = (a:: ′a::division-ring fls)

446

by (rule fls-divide-1 ′[OF inverse-1])

lemma fls-const-divide-const:
fixes x y :: ′a::division-ring
shows fls-const x / fls-const y = fls-const (x/y)
by (simp add: fls-divide-def fls-base-factor-to-fps-const fps-const-divide)

lemma fls-divide-X ′:
fixes f :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult}

fls
assumes inverse (1 :: ′a) = 1
shows f / fls-X = fls-shift 1 f

proof−
from assms have

f / fls-X =
fls-shift 1 (fls-shift (−fls-subdegree f) (fps-to-fls (fls-base-factor-to-fps f)))

by (simp add: fls-divide-def fps-divide-1 ′)
also have . . . = fls-shift 1 f

using fls-conv-base-factor-to-fps-shift-subdegree[of f]
by simp

finally show ?thesis by simp
qed

lemma fls-divide-X [simp]:
fixes f :: ′a::division-ring fls
shows f / fls-X = fls-shift 1 f
by (rule fls-divide-X ′[OF inverse-1])

lemma fls-divide-X-power ′:
fixes f :: ′a::{semiring-1 ,inverse,uminus} fls
assumes inverse (1 :: ′a) = 1
shows f / (fls-X ^ n) = fls-shift n f

proof−
have fls-base-factor-to-fps ((fls-X :: ′a fls) ^ n) = 1 by (rule fls-X-power-base-factor-to-fps)
with assms have

f / (fls-X ^ n) =
fls-shift n (fls-shift (−fls-subdegree f) (fps-to-fls (fls-base-factor-to-fps f)))

by (simp add: fls-divide-def fps-divide-1 ′)
also have . . . = fls-shift n f

using fls-conv-base-factor-to-fps-shift-subdegree[of f] by simp
finally show ?thesis by simp

qed

lemma fls-divide-X-power [simp]:
fixes f :: ′a::division-ring fls
shows f / (fls-X ^ n) = fls-shift n f
by (rule fls-divide-X-power ′[OF inverse-1])

lemma fls-divide-X-inv ′:

447

fixes f :: ′a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult}
fls

assumes inverse (1 :: ′a) = 1
shows f / fls-X-inv = fls-shift (−1) f

proof−
from assms have

f / fls-X-inv =
fls-shift (−1) (fls-shift (−fls-subdegree f) (fps-to-fls (fls-base-factor-to-fps f)))

by (simp add: fls-divide-def fps-divide-1 ′ algebra-simps)
also have . . . = fls-shift (−1) f

using fls-conv-base-factor-to-fps-shift-subdegree[of f]
by simp

finally show ?thesis by simp
qed

lemma fls-divide-X-inv [simp]:
fixes f :: ′a::division-ring fls
shows f / fls-X-inv = fls-shift (−1) f
by (rule fls-divide-X-inv ′[OF inverse-1])

lemma fls-divide-X-inv-power ′:
fixes f :: ′a::{semiring-1 ,inverse,uminus} fls
assumes inverse (1 :: ′a) = 1
shows f / (fls-X-inv ^ n) = fls-shift (−int n) f

proof−
have fls-base-factor-to-fps ((fls-X-inv:: ′a fls) ^ n) = 1

by (rule fls-X-inv-power-base-factor-to-fps)
with assms have

f / (fls-X-inv ^ n) =
fls-shift (−int n + −fls-subdegree f) (fps-to-fls (fls-base-factor-to-fps f))

by (simp add: fls-divide-def fps-divide-1 ′)
also have
. . . = fls-shift (−int n) (fls-shift (−fls-subdegree f) (fps-to-fls (fls-base-factor-to-fps

f)))
by (simp add: add.commute)

also have . . . = fls-shift (−int n) f
using fls-conv-base-factor-to-fps-shift-subdegree[of f] by simp

finally show ?thesis by simp
qed

lemma fls-divide-X-inv-power [simp]:
fixes f :: ′a::division-ring fls
shows f / (fls-X-inv ^ n) = fls-shift (−int n) f
by (rule fls-divide-X-inv-power ′[OF inverse-1])

lemma fls-divide-X-intpow ′:
fixes f :: ′a::{semiring-1 ,inverse,uminus} fls
assumes inverse (1 :: ′a) = 1
shows f / (fls-X-intpow i) = fls-shift i f

448

using assms
by (simp add: fls-divide-shift-denom-nonzero fls-divide-1 ′)

lemma fls-divide-X-intpow-conv-times ′:
fixes f :: ′a::{semiring-1 ,inverse,uminus} fls
assumes inverse (1 :: ′a) = 1
shows f / (fls-X-intpow i) = f ∗ fls-X-intpow (−i)
using assms fls-X-intpow-times-conv-shift(2)[of f −i]
by (simp add: fls-divide-X-intpow ′)

lemma fls-divide-X-intpow:
fixes f :: ′a::division-ring fls
shows f / (fls-X-intpow i) = fls-shift i f
by (rule fls-divide-X-intpow ′[OF inverse-1])

lemma fls-divide-X-intpow-conv-times:
fixes f :: ′a::division-ring fls
shows f / (fls-X-intpow i) = f ∗ fls-X-intpow (−i)
by (rule fls-divide-X-intpow-conv-times ′[OF inverse-1])

lemma fls-X-intpow-div-fls-X-intpow-semiring1 :
assumes inverse (1 :: ′a::{semiring-1 ,inverse,uminus}) = 1
shows (fls-X-intpow i :: ′a fls) / fls-X-intpow j = fls-X-intpow (i−j)
by (simp add: assms fls-divide-shift-both-nonzero fls-divide-1 ′)

lemma fls-X-intpow-div-fls-X-intpow:
(fls-X-intpow i :: ′a::division-ring fls) / fls-X-intpow j = fls-X-intpow (i−j)
by (rule fls-X-intpow-div-fls-X-intpow-semiring1 [OF inverse-1])

lemma fls-divide-add:
fixes f g h :: ′a::{semiring-0 ,inverse,uminus} fls
shows (f + g) / h = f / h + g / h
by (simp add: fls-divide-convert-times-inverse algebra-simps)

lemma fls-divide-diff :
fixes f g h :: ′a::{ring,inverse} fls
shows (f − g) / h = f / h − g / h
by (simp add: fls-divide-convert-times-inverse algebra-simps)

lemma fls-divide-uminus:
fixes f g h :: ′a::{ring,inverse} fls
shows (− f) / g = − (f / g)
by (simp add: fls-divide-convert-times-inverse)

lemma fls-divide-uminus ′:
fixes f g h :: ′a::division-ring fls
shows f / (− g) = − (f / g)
by (simp add: fls-divide-convert-times-inverse)

449

7.5.7 Units
lemma fls-is-left-unit-iff-base-is-left-unit:

fixes f :: ′a :: ring-1-no-zero-divisors fls
shows (∃ g. 1 = f ∗ g) ←→ (∃ k. 1 = f $$ fls-subdegree f ∗ k)

proof
assume ∃ g. 1 = f ∗ g
then obtain g where 1 = f ∗ g by fast
hence 1 = (f $$ fls-subdegree f) ∗ (g $$ fls-subdegree g)

using fls-subdegree-mult[of f g] fls-times-base[of f g] by fastforce
thus ∃ k. 1 = f $$ fls-subdegree f ∗ k by fast

next
assume ∃ k. 1 = f $$ fls-subdegree f ∗ k
then obtain k where 1 = f $$ fls-subdegree f ∗ k by fast
hence 1 = f ∗ fls-right-inverse f k

using fls-right-inverse by simp
thus ∃ g. 1 = f ∗ g by fast

qed

lemma fls-is-right-unit-iff-base-is-right-unit:
fixes f :: ′a :: ring-1-no-zero-divisors fls
shows (∃ g. 1 = g ∗ f) ←→ (∃ k. 1 = k ∗ f $$ fls-subdegree f)

proof
assume ∃ g. 1 = g ∗ f
then obtain g where 1 = g ∗ f by fast
hence 1 = (g $$ fls-subdegree g) ∗ (f $$ fls-subdegree f)

using fls-subdegree-mult[of g f] fls-times-base[of g f] by fastforce
thus ∃ k. 1 = k ∗ f $$ fls-subdegree f by fast

next
assume ∃ k. 1 = k ∗ f $$ fls-subdegree f
then obtain k where 1 = k ∗ f $$ fls-subdegree f by fast
hence 1 = fls-left-inverse f k ∗ f

using fls-left-inverse by simp
thus ∃ g. 1 = g ∗ f by fast

qed

7.6 Composition
definition fls-compose-fps :: ′a :: field fls ⇒ ′a fps ⇒ ′a fls where

fls-compose-fps F G =
fps-to-fls (fps-compose (fls-base-factor-to-fps F) G) ∗ fps-to-fls G powi fls-subdegree

F

lemma fps-compose-of-nat [simp]: fps-compose (of-nat n :: ′a :: comm-ring-1 fps)
H = of-nat n

and fps-compose-of-int [simp]: fps-compose (of-int i) H = of-int i
unfolding fps-of-nat [symmetric] fps-of-int [symmetric] numeral-fps-const
by (rule fps-const-compose)+

lemmas [simp] = fps-to-fls-of-nat fps-to-fls-of-int

450

lemma fls-compose-fps-0 [simp]: fls-compose-fps 0 H = 0
and fls-compose-fps-1 [simp]: fls-compose-fps 1 H = 1
and fls-compose-fps-const [simp]: fls-compose-fps (fls-const c) H = fls-const c
and fls-compose-fps-of-nat [simp]: fls-compose-fps (of-nat n) H = of-nat n
and fls-compose-fps-of-int [simp]: fls-compose-fps (of-int i) H = of-int i
and fls-compose-fps-X [simp]: fls-compose-fps fls-X F = fps-to-fls F
by (simp-all add: fls-compose-fps-def)

lemma fls-compose-fps-0-right:
fls-compose-fps F 0 = (if 0 ≤ fls-subdegree F then fls-const (F $$ 0) else 0)
by (cases fls-subdegree F = 0) (simp-all add: fls-compose-fps-def)

lemma fls-compose-fps-shift:
assumes H 6= 0
shows fls-compose-fps (fls-shift n F) H = fls-compose-fps F H ∗ fps-to-fls H

powi (−n)
proof (cases F = 0)

case False
thus ?thesis

using assms by (simp add: fls-compose-fps-def power-int-diff power-int-minus
field-simps)
qed auto

lemma fls-compose-fps-to-fls [simp]:
assumes [simp]: G 6= 0 fps-nth G 0 = 0
shows fls-compose-fps (fps-to-fls F) G = fps-to-fls (fps-compose F G)

proof (cases F = 0)
case False
define n where n = subdegree F
define F ′ where F ′ = fps-shift n F
have [simp]: F ′ 6= 0 subdegree F ′ = 0

using False by (auto simp: F ′-def n-def)
have F-eq: F = F ′ ∗ fps-X ^ n

unfolding F ′-def n-def using subdegree-decompose by blast
have fls-compose-fps (fps-to-fls F) G =

fps-to-fls (fps-shift n (fls-regpart (fps-to-fls F ′ ∗ fls-X-intpow (int n))) oo
G) ∗ fps-to-fls (G ^ n)

unfolding F-eq fls-compose-fps-def
by (simp add: fls-times-fps-to-fls fls-X-power-conv-shift-1 power-int-add

fls-subdegree-fls-to-fps fps-to-fls-power fls-regpart-shift-conv-fps-shift
flip: fls-times-both-shifted-simp)

also have fps-to-fls F ′ ∗ fls-X-intpow (int n) = fps-to-fls F
by (simp add: F-eq fls-times-fps-to-fls fps-to-fls-power fls-X-power-conv-shift-1)

also have fps-to-fls (fps-shift n (fls-regpart (fps-to-fls F)) oo G) ∗ fps-to-fls (G
^ n) =

fps-to-fls ((fps-shift n (fls-regpart (fps-to-fls F)) ∗ fps-X ^ n) oo G)
by (simp add: fls-times-fps-to-fls flip: fps-compose-power add: fps-compose-mult-distrib)

also have fps-shift n (fls-regpart (fps-to-fls F)) ∗ fps-X ^ n = F

451

by (simp add: F-eq)
finally show ?thesis .

qed (auto simp: fls-compose-fps-def)

lemma fls-compose-fps-mult:
assumes [simp]: H 6= 0 fps-nth H 0 = 0
shows fls-compose-fps (F ∗ G) H = fls-compose-fps F H ∗ fls-compose-fps G

H
using assms

proof (cases F ∗ G = 0)
case False
hence [simp]: F 6= 0 G 6= 0

by auto
define n m where n = fls-subdegree F m = fls-subdegree G
define F ′ where F ′ = fls-regpart (fls-shift n F)
define G ′ where G ′ = fls-regpart (fls-shift m G)
have F-eq: F = fls-shift (−n) (fps-to-fls F ′) and G-eq: G = fls-shift (−m)

(fps-to-fls G ′)
by (simp-all add: F ′-def G ′-def n-m-def)

have fls-compose-fps (F ∗ G) H = fls-compose-fps (fls-shift (−(n + m)) (fps-to-fls
(F ′ ∗ G ′))) H

by (simp add: fls-times-fps-to-fls F-eq G-eq fls-shifted-times-simps)
also have . . . = fps-to-fls ((F ′ oo H) ∗ (G ′ oo H)) ∗ fps-to-fls H powi (m + n)

by (simp add: fls-compose-fps-shift fps-compose-mult-distrib)
also have . . . = fls-compose-fps F H ∗ fls-compose-fps G H

by (simp add: F-eq G-eq fls-compose-fps-shift fls-times-fps-to-fls power-int-add)
finally show ?thesis .

qed auto

lemma fls-compose-fps-power :
assumes [simp]: G 6= 0 fps-nth G 0 = 0
shows fls-compose-fps (F ^ n) G = fls-compose-fps F G ^ n
by (induction n) (auto simp: fls-compose-fps-mult)

lemma fls-compose-fps-add:
assumes [simp]: H 6= 0 fps-nth H 0 = 0
shows fls-compose-fps (F + G) H = fls-compose-fps F H + fls-compose-fps G

H
proof (cases F = 0 ∨ G = 0)

case False
hence [simp]: F 6= 0 G 6= 0

by auto
define n where n = min (fls-subdegree F) (fls-subdegree G)
define F ′ where F ′ = fls-regpart (fls-shift n F)
define G ′ where G ′ = fls-regpart (fls-shift n G)
have F-eq: F = fls-shift (−n) (fps-to-fls F ′) and G-eq: G = fls-shift (−n)

(fps-to-fls G ′)
unfolding n-def by (simp-all add: F ′-def G ′-def n-def)

have F + G = fls-shift (−n) (fps-to-fls (F ′ + G ′))

452

by (simp add: F-eq G-eq)
also have fls-compose-fps . . . H = fls-compose-fps (fps-to-fls (F ′ + G ′)) H ∗

fps-to-fls H powi n
by (subst fls-compose-fps-shift) auto

also have . . . = fps-to-fls (fps-compose (F ′ + G ′) H) ∗ fps-to-fls H powi n
by (subst fls-compose-fps-to-fls) auto

also have . . . = fls-compose-fps F H + fls-compose-fps G H
by (simp add: F-eq G-eq fls-compose-fps-shift fps-compose-add-distrib alge-

bra-simps)
finally show ?thesis .

qed auto

lemma fls-compose-fps-uminus [simp]: fls-compose-fps (−F) H = −fls-compose-fps
F H

by (simp add: fls-compose-fps-def fps-compose-uminus)

lemma fls-compose-fps-diff :
assumes [simp]: H 6= 0 fps-nth H 0 = 0
shows fls-compose-fps (F − G) H = fls-compose-fps F H − fls-compose-fps G

H
using fls-compose-fps-add[of H F −G] by simp

lemma fls-compose-fps-eq-0-iff :
assumes H 6= 0 fps-nth H 0 = 0
shows fls-compose-fps F H = 0 ←→ F = 0
using assms fls-base-factor-to-fps-nonzero[of F]
by (cases F = 0) (auto simp: fls-compose-fps-def fps-compose-eq-0-iff)

lemma fls-compose-fps-inverse:
assumes [simp]: H 6= 0 fps-nth H 0 = 0
shows fls-compose-fps (inverse F) H = inverse (fls-compose-fps F H)

proof (cases F = 0)
case False
have fls-compose-fps (inverse F) H ∗ fls-compose-fps F H =

fls-compose-fps (inverse F ∗ F) H
by (subst fls-compose-fps-mult) auto

also have inverse F ∗ F = 1
using False by simp

finally show ?thesis
using False by (simp add: field-simps fls-compose-fps-eq-0-iff)

qed auto

lemma fls-compose-fps-divide:
assumes [simp]: H 6= 0 fps-nth H 0 = 0
shows fls-compose-fps (F / G) H = fls-compose-fps F H / fls-compose-fps G

H
using fls-compose-fps-mult[of H F inverse G] fls-compose-fps-inverse[of H G]
by (simp add: field-simps)

453

lemma fls-compose-fps-powi:
assumes [simp]: H 6= 0 fps-nth H 0 = 0
shows fls-compose-fps (F powi n) H = fls-compose-fps F H powi n
by (simp add: power-int-def fls-compose-fps-power fls-compose-fps-inverse)

lemma fls-compose-fps-assoc:
assumes [simp]: G 6= 0 fps-nth G 0 = 0 H 6= 0 fps-nth H 0 = 0
shows fls-compose-fps (fls-compose-fps F G) H = fls-compose-fps F (fps-compose

G H)
proof (cases F = 0)

case [simp]: False
define n where n = fls-subdegree F
define F ′ where F ′ = fls-regpart (fls-shift n F)
have F-eq: F = fls-shift (−n) (fps-to-fls F ′)

by (simp add: F ′-def n-def)
show ?thesis
by (simp add: F-eq fls-compose-fps-shift fls-compose-fps-mult fls-compose-fps-powi

fps-compose-eq-0-iff fps-compose-assoc)
qed auto

lemma subdegree-pos-iff : subdegree F > 0 ←→ F 6= 0 ∧ fps-nth F 0 = 0
using subdegree-eq-0-iff [of F] by auto

lemma fls-X-power-int [simp]: fls-X powi n = (fls-X-intpow n :: ′a :: division-ring
fls)
by (auto simp: power-int-def fls-X-power-conv-shift-1 fls-inverse-X fls-inverse-shift

simp flip: fls-inverse-X-power)

lemma fls-const-power-int: fls-const (c powi n) = fls-const (c :: ′a :: division-ring)
powi n

by (auto simp: power-int-def fls-const-power fls-inverse-const)

lemma fls-nth-fls-compose-fps-linear :
fixes c :: ′a :: field
assumes [simp]: c 6= 0
shows fls-compose-fps F (fps-const c ∗ fps-X) $$ n = F $$ n ∗ c powi n

proof −
{

assume ∗: n ≥ fls-subdegree F
hence c ^ nat (n − fls-subdegree F) = c powi int (nat (n − fls-subdegree F))

by (simp add: power-int-def)
also have . . . ∗ c powi fls-subdegree F = c powi (int (nat (n − fls-subdegree

F)) + fls-subdegree F)
using ∗ by (subst power-int-add) auto

also have . . . = c powi n
using ∗ by simp

finally have c ^ nat (n − fls-subdegree F) ∗ c powi fls-subdegree F = c powi n
.

}

454

thus ?thesis
by (simp add: fls-compose-fps-def fps-compose-linear fls-times-fps-to-fls power-int-mult-distrib

fls-shifted-times-simps
flip: fls-const-power-int)

qed

lemma fls-const-transfer [transfer-rule]:
rel-fun (=) (pcr-fls (=))

(λc n. if n = 0 then c else 0) fls-const
by (auto simp: fls-const-def rel-fun-def pcr-fls-def OO-def cr-fls-def)

lemma fls-shift-transfer [transfer-rule]:
rel-fun (=) (rel-fun (pcr-fls (=)) (pcr-fls (=)))

(λn f k. f (k+n)) fls-shift
by (auto simp: fls-const-def rel-fun-def pcr-fls-def OO-def cr-fls-def)

lift-definition fls-compose-power :: ′a :: zero fls ⇒ nat ⇒ ′a fls is
λf d n. if d > 0 ∧ int d dvd n then f (n div int d) else 0

proof −
fix f :: int ⇒ ′a and d :: nat
assume ∗: eventually (λn. f (−int n) = 0) cofinite
show eventually (λn. (if d > 0 ∧ int d dvd −int n then f (−int n div int d) else

0) = 0) cofinite
proof (cases d = 0)

case False
from ∗ have eventually (λn. f (−int n) = 0) at-top

by (simp add: cofinite-eq-sequentially)
hence eventually (λn. f (−int (n div d)) = 0) at-top

by (rule eventually-compose-filterlim[OF - filterlim-at-top-div-const-nat]) (use
False in auto)

hence eventually (λn. (if d > 0 ∧ int d dvd −int n then f (−int n div int d)
else 0) = 0) at-top

by eventually-elim (auto simp: zdiv-int dvd-neg-div)
thus ?thesis

by (simp add: cofinite-eq-sequentially)
qed auto

qed

lemma fls-nth-compose-power :
assumes d > 0
shows fls-compose-power f d $$ n = (if int d dvd n then f $$ (n div int d) else

0)
by (simp add: assms fls-compose-power .rep-eq)

lemma fls-compose-power-0-left [simp]: fls-compose-power 0 d = 0
by transfer auto

lemma fls-compose-power-1-left [simp]: d > 0 =⇒ fls-compose-power 1 d = 1

455

by transfer (auto simp: fun-eq-iff)

lemma fls-compose-power-const-left [simp]:
d > 0 =⇒ fls-compose-power (fls-const c) d = fls-const c
by transfer (auto simp: fun-eq-iff)

lemma fls-compose-power-shift [simp]:
d > 0 =⇒ fls-compose-power (fls-shift n f) d = fls-shift (d ∗ n) (fls-compose-power

f d)
by transfer (auto simp: fun-eq-iff add-ac mult-ac)

lemma fls-compose-power-X-intpow [simp]:
d > 0 =⇒ fls-compose-power (fls-X-intpow n) d = fls-X-intpow (int d ∗ n)
by simp

lemma fls-compose-power-X [simp]:
d > 0 =⇒ fls-compose-power fls-X d = fls-X-intpow (int d)
by transfer (auto simp: fun-eq-iff)

lemma fls-compose-power-X-inv [simp]:
d > 0 =⇒ fls-compose-power fls-X-inv d = fls-X-intpow (−int d)
by (simp add: fls-X-inv-conv-shift-1)

lemma fls-compose-power-0-right [simp]: fls-compose-power f 0 = 0
by transfer auto

lemma fls-compose-power-add [simp]:
fls-compose-power (f + g) d = fls-compose-power f d + fls-compose-power g d
by transfer auto

lemma fls-compose-power-diff [simp]:
fls-compose-power (f − g) d = fls-compose-power f d − fls-compose-power g d
by transfer auto

lemma fls-compose-power-uminus [simp]:
fls-compose-power (−f) d = −fls-compose-power f d
by transfer auto

lemma fps-nth-compose-X-power :
fps-nth (f oo (fps-X ^ d)) n = (if d dvd n then fps-nth f (n div d) else 0)

proof −
have fps-nth (f oo (fps-X ^ d)) n = (

∑
i = 0 ..n. f $ i ∗ (fps-X ^ (d ∗ i)) $ n)

unfolding fps-compose-def by (simp add: power-mult)
also have . . . = (

∑
i∈(if d dvd n then {n div d} else {}). f $ i ∗ (fps-X ^ (d ∗

i)) $ n)
by (intro sum.mono-neutral-right) auto

also have . . . = (if d dvd n then fps-nth f (n div d) else 0)
by auto

finally show ?thesis .

456

qed

lemma fls-compose-power-fps-to-fls:
assumes d > 0
shows fls-compose-power (fps-to-fls f) d = fps-to-fls (fps-compose f (fps-X ^

d))
using assms
by (intro fls-eqI) (auto simp: fls-nth-compose-power fps-nth-compose-X-power

pos-imp-zdiv-neg-iff div-neg-pos-less0 nat-div-distrib
simp flip: int-dvd-int-iff)

lemma fls-compose-power-mult [simp]:
fls-compose-power (f ∗ g :: ′a :: idom fls) d = fls-compose-power f d ∗ fls-compose-power

g d
proof (cases d > 0)

case True
define n where n = nat (max 0 (max (− fls-subdegree f) (− fls-subdegree g)))
have n-ge: −fls-subdegree f ≤ int n −fls-subdegree g ≤ int n

unfolding n-def by auto
obtain f ′ where f ′: f = fls-shift n (fps-to-fls f ′)

using fls-as-fps[OF n-ge(1)] by (auto simp: n-def)
obtain g ′ where g ′: g = fls-shift n (fps-to-fls g ′)

using fls-as-fps[OF n-ge(2)] by (auto simp: n-def)
show ?thesis using ‹d > 0 ›

by (simp add: f ′ g ′ fls-shifted-times-simps mult-ac fls-compose-power-fps-to-fls
fps-compose-mult-distrib flip: fls-times-fps-to-fls)

qed auto

lemma fls-compose-power-power [simp]:
assumes d > 0 ∨ n > 0
shows fls-compose-power (f ^ n :: ′a :: idom fls) d = fls-compose-power f d ^ n

proof (cases d > 0)
case True
thus ?thesis by (induction n) auto

qed (use assms in auto)

lemma fls-nth-compose-power ′ [simp]:
d = 0 ∨ ¬d dvd n =⇒ fls-compose-power f d $$ int n = 0
d dvd n =⇒ d > 0 =⇒ fls-compose-power f d $$ int n = f $$ int (n div d)
by (transfer ; force; fail)+

lemma subdegree-fls-compose-fps [simp]:
fixes G :: ′a :: field fps
assumes [simp]: fps-nth G 0 = 0
shows fls-subdegree (fls-compose-fps F G) = fls-subdegree F ∗ subdegree G

proof (cases F = 0 ; cases G = 0)
assume [simp]: G 6= 0 F 6= 0
have nz1 : fls-base-factor-to-fps F 6= 0

using ‹F 6= 0 › fls-base-factor-to-fps-nonzero by blast

457

show ?thesis
unfolding fls-compose-fps-def using nz1

by (subst fls-subdegree-mult) (simp-all add: fps-compose-eq-0-iff fls-subdegree-fls-to-fps)
qed (auto simp: fls-compose-fps-0-right)

7.7 Formal differentiation and integration
7.7.1 Derivative
definition fls-deriv f = Abs-fls (λn. of-int (n+1) ∗ f $$(n+1))

lemma fls-deriv-nth[simp]: fls-deriv f $$ n = of-int (n+1) ∗ f $$(n+1)
proof−

obtain N where ∀n<N . f $$n = 0 by (elim fls-nth-vanishes-belowE)
hence ∀n<N−1 . of-int (n+1) ∗ f $$(n+1) = 0 by auto
thus ?thesis using nth-Abs-fls-lower-bound unfolding fls-deriv-def by simp

qed

lemma fls-deriv-residue: fls-deriv f $$ −1 = 0
by simp

lemma fls-deriv-const[simp]: fls-deriv (fls-const x) = 0
proof (intro fls-eqI)

fix n show fls-deriv (fls-const x) $$ n = 0$$n
by (cases n+1=0) auto

qed

lemma fls-deriv-of-nat[simp]: fls-deriv (of-nat n) = 0
by (simp add: fls-of-nat)

lemma fls-deriv-of-int[simp]: fls-deriv (of-int i) = 0
by (simp add: fls-of-int)

lemma fls-deriv-zero[simp]: fls-deriv 0 = 0
using fls-deriv-const[of 0] by simp

lemma fls-deriv-one[simp]: fls-deriv 1 = 0
using fls-deriv-const[of 1] by simp

lemma fls-deriv-numeral [simp]: fls-deriv (numeral n) = 0
by (metis fls-deriv-of-int of-int-numeral)

lemma fls-deriv-subdegree ′:
assumes of-int (fls-subdegree f) ∗ f $$ fls-subdegree f 6= 0
shows fls-subdegree (fls-deriv f) = fls-subdegree f − 1
by (auto intro: fls-subdegree-eqI simp: assms)

lemma fls-deriv-subdegree0 :
assumes fls-subdegree f = 0
shows fls-subdegree (fls-deriv f) ≥ 0

458

proof (cases fls-deriv f = 0)
case False
show ?thesis
proof (intro fls-subdegree-geI , rule False)

fix k :: int assume k < 0
with assms show fls-deriv f $$ k = 0 by (cases k=−1) auto

qed
qed simp

lemma fls-subdegree-deriv ′:
fixes f :: ′a::ring-1-no-zero-divisors fls
assumes (of-int (fls-subdegree f) :: ′a) 6= 0
shows fls-subdegree (fls-deriv f) = fls-subdegree f − 1
using assms nth-fls-subdegree-zero-iff [of f]
by (auto intro: fls-deriv-subdegree ′)

lemma fls-subdegree-deriv:
fixes f :: ′a::{ring-1-no-zero-divisors,ring-char-0} fls
assumes fls-subdegree f 6= 0
shows fls-subdegree (fls-deriv f) = fls-subdegree f − 1
by (auto intro: fls-subdegree-deriv ′ simp: assms)

lemma fps-deriv-fls-regpart: fps-deriv (fls-regpart F) = fls-regpart (fls-deriv F)
by (intro fps-ext) (auto simp: add-ac)

Shifting is like multiplying by a power of the implied variable, and so satisfies
a product-like rule.
lemma fls-deriv-shift:

fls-deriv (fls-shift n f) = of-int (−n) ∗ fls-shift (n+1) f + fls-shift n (fls-deriv f)
by (intro fls-eqI) (simp flip: fls-shift-fls-shift add: algebra-simps)

lemma fls-deriv-X [simp]: fls-deriv fls-X = 1
by (intro fls-eqI) simp

lemma fls-deriv-X-inv [simp]: fls-deriv fls-X-inv = − (fls-X-inv2)
proof−

have fls-deriv fls-X-inv = − (fls-shift 2 1)
by (simp add: fls-X-inv-conv-shift-1 fls-deriv-shift)

thus ?thesis by (simp add: fls-X-inv-power-conv-shift-1)
qed

lemma fls-deriv-delta:
fls-deriv (Abs-fls (λn. if n=m then c else 0)) =

Abs-fls (λn. if n=m−1 then of-int m ∗ c else 0)
proof−

have
fls-deriv (Abs-fls (λn. if n=m then c else 0)) = fls-shift (1−m) (fls-const (of-int

m ∗ c))
using fls-deriv-shift[of −m fls-const c]

459

by (simp
add: fls-shift-const fls-of-int fls-shifted-times-simps(1)[symmetric]
fls-const-mult-const[symmetric]
del: fls-const-mult-const

)
thus ?thesis by (simp add: fls-shift-const)

qed

lemma fls-deriv-base-factor :
fls-deriv (fls-base-factor f) =

of-int (−fls-subdegree f) ∗ fls-shift (fls-subdegree f + 1) f +
fls-shift (fls-subdegree f) (fls-deriv f)

by (simp add: fls-deriv-shift)

lemma fls-regpart-deriv: fls-regpart (fls-deriv f) = fps-deriv (fls-regpart f)
proof (intro fps-ext)

fix n
have 1 : (of-nat n :: ′a) + 1 = of-nat (n+1)
and 2 : int n + 1 = int (n + 1)

by auto
show fls-regpart (fls-deriv f) $ n = fps-deriv (fls-regpart f) $ n by (simp add: 1

2)
qed

lemma fls-prpart-deriv:
fixes f :: ′a :: {comm-ring-1 ,ring-no-zero-divisors} fls
— Commutivity and no zero divisors are required by the definition of pderiv.
shows fls-prpart (fls-deriv f) = − pCons 0 (pCons 0 (pderiv (fls-prpart f)))

proof (intro poly-eqI)
fix n
show

coeff (fls-prpart (fls-deriv f)) n =
coeff (− pCons 0 (pCons 0 (pderiv (fls-prpart f)))) n

proof (cases n)
case (Suc m)
hence n: n = Suc m by fast
show ?thesis
proof (cases m)

case (Suc k)
with n have

coeff (− pCons 0 (pCons 0 (pderiv (fls-prpart f)))) n =
− coeff (pderiv (fls-prpart f)) k

by (simp flip: coeff-minus)
with Suc n show ?thesis by (simp add: coeff-pderiv algebra-simps)

qed (simp add: n)
qed simp

qed

lemma pderiv-fls-prpart:

460

pderiv (fls-prpart f) = − poly-shift 2 (fls-prpart (fls-deriv f))
by (intro poly-eqI) (simp add: coeff-pderiv coeff-poly-shift algebra-simps)

lemma fls-deriv-fps-to-fls: fls-deriv (fps-to-fls f) = fps-to-fls (fps-deriv f)
proof (intro fls-eqI)

fix n
show fls-deriv (fps-to-fls f) $$ n = fps-to-fls (fps-deriv f) $$ n
proof (cases n≥0)

case True
from True have 1 : nat (n + 1) = nat n + 1 by simp
from True have 2 : (of-int (n + 1) :: ′a) = of-nat (nat (n+1)) by simp
from True show ?thesis using arg-cong[OF 2 , of λx. x ∗ f $ (nat n+1)] by

(simp add: 1)
next

case False thus ?thesis by (cases n=−1) auto
qed

qed

7.7.2 Algebraic rules of the derivative
lemma fls-deriv-add [simp]: fls-deriv (f+g) = fls-deriv f + fls-deriv g

by (auto intro: fls-eqI simp: algebra-simps)

lemma fls-deriv-sub [simp]: fls-deriv (f−g) = fls-deriv f − fls-deriv g
by (auto intro: fls-eqI simp: algebra-simps)

lemma fls-deriv-neg [simp]: fls-deriv (−f) = − fls-deriv f
using fls-deriv-sub[of 0 f] by simp

lemma fls-deriv-mult [simp]:
fls-deriv (f ∗g) = f ∗ fls-deriv g + fls-deriv f ∗ g

proof−
define df dg :: int

where df ≡ fls-subdegree f
and dg ≡ fls-subdegree g

define uf ug :: ′a fls
where uf ≡ fls-base-factor f
and ug ≡ fls-base-factor g

have
f ∗ fls-deriv g =

of-int dg ∗ fls-shift (1 − dg) (f ∗ ug) + fls-shift (−dg) (f ∗ fls-deriv ug)
fls-deriv f ∗ g =

of-int df ∗ fls-shift (1 − df) (uf ∗ g) + fls-shift (−df) (fls-deriv uf ∗ g)
using fls-deriv-shift[of −df uf] fls-deriv-shift[of −dg ug]

mult-of-int-commute[of dg f]
mult.assoc[of of-int dg f]
fls-shifted-times-simps(1)[of f 1 − dg ug]
fls-shifted-times-simps(1)[of f −dg fls-deriv ug]
fls-shifted-times-simps(2)[of 1 − df uf g]

461

fls-shifted-times-simps(2)[of −df fls-deriv uf g]
by (auto simp add: algebra-simps df-def dg-def uf-def ug-def)

moreover have
fls-deriv (f ∗g) =
(of-int dg ∗ fls-shift (1 − dg) (f ∗ ug) + fls-shift (−dg) (f ∗ fls-deriv ug)) +
(of-int df ∗ fls-shift (1 − df) (uf ∗ g) + fls-shift (−df) (fls-deriv uf ∗ g))

using fls-deriv-shift[of
− (df + dg) fps-to-fls (fls-base-factor-to-fps f ∗ fls-base-factor-to-fps g)

]
fls-deriv-fps-to-fls[of fls-base-factor-to-fps f ∗ fls-base-factor-to-fps g]
fps-deriv-mult[of fls-base-factor-to-fps f fls-base-factor-to-fps g]
distrib-right[of

of-int df of-int dg
fls-shift (1 − (df + dg)) (

fps-to-fls (fls-base-factor-to-fps f ∗ fls-base-factor-to-fps g)
)

]
fls-times-conv-fps-times[of uf ug]
fls-base-factor-subdegree[of f] fls-base-factor-subdegree[of g]
fls-regpart-deriv[of ug]
fls-times-conv-fps-times[of uf fls-deriv ug]
fls-deriv-subdegree0 [of ug]
fls-regpart-deriv[of uf]
fls-times-conv-fps-times[of fls-deriv uf ug]
fls-deriv-subdegree0 [of uf]
fls-shifted-times-simps(1)[of uf −dg ug]
fls-shifted-times-simps(1)[of fls-deriv uf −dg ug]
fls-shifted-times-simps(2)[of −df uf ug]
fls-shifted-times-simps(2)[of −df uf fls-deriv ug]

by (simp add: fls-times-def algebra-simps df-def dg-def uf-def ug-def)
ultimately show ?thesis by simp

qed

lemma fls-deriv-mult-const-left:
fls-deriv (fls-const c ∗ f) = fls-const c ∗ fls-deriv f
by simp

lemma fls-deriv-linear :
fls-deriv (fls-const a ∗ f + fls-const b ∗ g) =

fls-const a ∗ fls-deriv f + fls-const b ∗ fls-deriv g
by simp

lemma fls-deriv-mult-const-right:
fls-deriv (f ∗ fls-const c) = fls-deriv f ∗ fls-const c
by simp

lemma fls-deriv-linear2 :
fls-deriv (f ∗ fls-const a + g ∗ fls-const b) =

462

fls-deriv f ∗ fls-const a + fls-deriv g ∗ fls-const b
by simp

lemma fls-deriv-sum:
fls-deriv (sum f S) = sum (λi. fls-deriv (f i)) S

proof (cases finite S)
case True show ?thesis

by (induct rule: finite-induct [OF True]) simp-all
qed simp

lemma fls-deriv-power :
fixes f :: ′a::comm-ring-1 fls
shows fls-deriv (f^n) = of-nat n ∗ f^(n−1) ∗ fls-deriv f

proof (cases n)
case (Suc m)
have fls-deriv (f^Suc m) = of-nat (Suc m) ∗ f^m ∗ fls-deriv f

by (induct m) (simp-all add: algebra-simps)
with Suc show ?thesis by simp

qed simp

lemma fls-deriv-X-power :
fls-deriv (fls-X ^ n) = of-nat n ∗ fls-X ^ (n−1)

proof (cases n)
case (Suc m)
have fls-deriv (fls-X^Suc m) = of-nat (Suc m) ∗ fls-X^m

by (induct m) (simp-all add: mult-of-nat-commute algebra-simps)
with Suc show ?thesis by simp

qed simp

lemma fls-deriv-X-inv-power :
fls-deriv (fls-X-inv ^ n) = − of-nat n ∗ fls-X-inv ^ (Suc n)

proof (cases n)
case (Suc m)
define iX :: ′a fls where iX ≡ fls-X-inv
have fls-deriv (iX ^ Suc m) = − of-nat (Suc m) ∗ iX ^ (Suc (Suc m))
proof (induct m)

case (Suc m)
have − of-nat (Suc m + 1) ∗ iX ^ Suc (Suc (Suc m)) =

iX ∗ (−of-nat (Suc m) ∗ iX ^ Suc (Suc m)) +
− (iX ^ 2 ∗ iX ^ Suc m)

using distrib-right[of −of-nat (Suc m) −(1 :: ′a fls) fls-X-inv ^ Suc (Suc (Suc
m))]

by (simp add: algebra-simps mult-of-nat-commute power2-eq-square Suc iX-def)
thus ?case using Suc by (simp add: iX-def)

qed (simp add: numeral-2-eq-2 iX-def)
with Suc show ?thesis by (simp add: iX-def)

qed simp

lemma fls-deriv-X-intpow:

463

fls-deriv (fls-X-intpow i) = of-int i ∗ fls-X-intpow (i−1)
by (simp add: fls-deriv-shift)

lemma fls-deriv-lr-inverse:
assumes x ∗ f $$ fls-subdegree f = 1 f $$ fls-subdegree f ∗ y = 1
— These assumptions imply x equals y, but no need to assume that.
shows fls-deriv (fls-left-inverse f x) =

− fls-left-inverse f x ∗ fls-deriv f ∗ fls-left-inverse f x
and fls-deriv (fls-right-inverse f y) =

− fls-right-inverse f y ∗ fls-deriv f ∗ fls-right-inverse f y
proof−

define L where L ≡ fls-left-inverse f x
hence fls-deriv (L ∗ f) = 0 using fls-left-inverse[OF assms(1)] by simp
with assms show fls-deriv L = − L ∗ fls-deriv f ∗ L

using fls-right-inverse ′[OF assms]
by (simp add: minus-unique mult.assoc L-def)

define R where R ≡ fls-right-inverse f y
hence fls-deriv (f ∗ R) = 0 using fls-right-inverse[OF assms(2)] by simp
hence 1 : f ∗ fls-deriv R + fls-deriv f ∗ R = 0 by simp
have R ∗ f ∗ fls-deriv R = − R ∗ fls-deriv f ∗ R

using iffD2 [OF eq-neg-iff-add-eq-0 , OF 1] by (simp add: mult.assoc)
thus fls-deriv R = − R ∗ fls-deriv f ∗ R

using fls-left-inverse ′[OF assms] by (simp add: R-def)

qed

lemma fls-deriv-lr-inverse-comm:
fixes x y :: ′a::comm-ring-1
assumes x ∗ f $$ fls-subdegree f = 1
shows fls-deriv (fls-left-inverse f x) = − fls-deriv f ∗ (fls-left-inverse f x)2
and fls-deriv (fls-right-inverse f x) = − fls-deriv f ∗ (fls-right-inverse f x)2
using assms fls-deriv-lr-inverse[of x f x]
by (simp-all add: mult.commute power2-eq-square)

lemma fls-inverse-deriv-divring:
fixes a :: ′a::division-ring fls
shows fls-deriv (inverse a) = − inverse a ∗ fls-deriv a ∗ inverse a

proof (cases a=0)
case False thus ?thesis

using fls-deriv-lr-inverse(2)[of
inverse (a $$ fls-subdegree a) a inverse (a $$ fls-subdegree a)

]
by (auto simp add: fls-inverse-def ′)

qed simp

lemma fls-inverse-deriv:
fixes a :: ′a::field fls

464

shows fls-deriv (inverse a) = − fls-deriv a ∗ (inverse a)2
by (simp add: fls-inverse-deriv-divring power2-eq-square)

lemma fls-inverse-deriv ′:
fixes a :: ′a::field fls
shows fls-deriv (inverse a) = − fls-deriv a / a2

using fls-inverse-deriv[of a]
by (simp add: field-simps)

7.7.3 Equality of derivatives
lemma fls-deriv-eq-0-iff :
fls-deriv f = 0 ←→ f = fls-const (f $$0 :: ′a::{ring-1-no-zero-divisors,ring-char-0})

proof
assume f : fls-deriv f = 0
show f = fls-const (f $$0)
proof (intro fls-eqI)

fix n
from f have of-int n ∗ f $$ n = 0 using fls-deriv-nth[of f n−1] by simp
thus f $$n = fls-const (f $$0) $$ n by (cases n=0) auto

qed
next

show f = fls-const (f $$0) =⇒ fls-deriv f = 0 using fls-deriv-const[of f $$0] by
simp
qed

lemma fls-deriv-eq-iff :
fixes f g :: ′a::{ring-1-no-zero-divisors,ring-char-0} fls
shows fls-deriv f = fls-deriv g ←→ (f = fls-const(f $$0 − g$$0) + g)

proof −
have fls-deriv f = fls-deriv g ←→ fls-deriv (f − g) = 0

by simp
also have . . . ←→ f − g = fls-const ((f − g) $$ 0)

unfolding fls-deriv-eq-0-iff ..
finally show ?thesis

by (simp add: field-simps)
qed

lemma fls-deriv-eq-iff-ex:
fixes f g :: ′a::{ring-1-no-zero-divisors,ring-char-0} fls
shows (fls-deriv f = fls-deriv g) ←→ (∃ c. f = fls-const c + g)
by (auto simp: fls-deriv-eq-iff)

7.7.4 Residues
definition fls-residue-def [simp]: fls-residue f ≡ f $$ −1

lemma fls-residue-deriv: fls-residue (fls-deriv f) = 0
by simp

465

lemma fls-residue-add: fls-residue (f+g) = fls-residue f + fls-residue g
by simp

lemma fls-residue-times-deriv:
fls-residue (fls-deriv f ∗ g) = − fls-residue (f ∗ fls-deriv g)
using fls-residue-deriv[of f ∗g] minus-unique[of fls-residue (f ∗ fls-deriv g)]
by simp

lemma fls-residue-power-series: fls-subdegree f ≥ 0 =⇒ fls-residue f = 0
by simp

lemma fls-residue-fls-X-intpow:
fls-residue (fls-X-intpow i) = (if i=−1 then 1 else 0)
by simp

lemma fls-residue-shift-nth:
fixes f :: ′a::semiring-1 fls
shows f $$n = fls-residue (fls-X-intpow (−n−1) ∗ f)
by (simp add: fls-shifted-times-transfer)

lemma fls-residue-fls-const-times:
fixes f :: ′a::{comm-monoid-add, mult-zero} fls
shows fls-residue (fls-const c ∗ f) = c ∗ fls-residue f
and fls-residue (f ∗ fls-const c) = fls-residue f ∗ c
by simp-all

lemma fls-residue-of-int-times:
fixes f :: ′a::ring-1 fls
shows fls-residue (of-int i ∗ f) = of-int i ∗ fls-residue f
and fls-residue (f ∗ of-int i) = fls-residue f ∗ of-int i
by (simp-all add: fls-residue-fls-const-times fls-of-int)

lemma fls-residue-deriv-times-lr-inverse-eq-subdegree:
fixes f g :: ′a::ring-1 fls
assumes y ∗ (f $$ fls-subdegree f) = 1 (f $$ fls-subdegree f) ∗ y = 1
shows fls-residue (fls-deriv f ∗ fls-right-inverse f y) = of-int (fls-subdegree f)
and fls-residue (fls-deriv f ∗ fls-left-inverse f y) = of-int (fls-subdegree f)
and fls-residue (fls-left-inverse f y ∗ fls-deriv f) = of-int (fls-subdegree f)
and fls-residue (fls-right-inverse f y ∗ fls-deriv f) = of-int (fls-subdegree f)

proof−
define df :: int where df ≡ fls-subdegree f
define B X :: ′a fls

where B ≡ fls-base-factor f
and X ≡ (fls-X-intpow df :: ′a fls)

define D L R :: ′a fls
where D ≡ fls-deriv B
and L ≡ fls-left-inverse B y
and R ≡ fls-right-inverse B y

have intpow-diff : fls-X-intpow (df − 1) = X ∗ fls-X-inv

466

using fls-X-intpow-diff-conv-times[of df 1] by (simp add: X-def fls-X-inv-conv-shift-1)

show fls-residue (fls-deriv f ∗ fls-right-inverse f y) = of-int df
proof−

have subdegree-DR: fls-subdegree (D ∗ R) ≥ 0
using fls-base-factor-subdegree[of f] fls-base-factor-subdegree[of fls-right-inverse

f y]
assms(1) fls-right-inverse-base-factor [of y f] fls-mult-subdegree-ge-0 [of D

R]
by (force simp: fls-deriv-subdegree0 D-def R-def B-def)

have decomp: f = X ∗ B
unfolding X-def B-def df-def by (rule fls-base-factor-X-power-decompose(2)[of

f])
hence fls-deriv f = X ∗ D + of-int df ∗ X ∗ fls-X-inv ∗ B

using intpow-diff fls-deriv-mult[of X B]
by (simp add: fls-deriv-X-intpow X-def B-def D-def mult.assoc)

moreover from assms have fls-right-inverse (X ∗ B) y = R ∗ fls-right-inverse
X 1

using fls-base-factor-base[of f] fls-lr-inverse-mult-ring1 (2)[of 1 X]
by (simp add: X-def B-def R-def)

ultimately have
fls-deriv f ∗ fls-right-inverse f y =
(D + of-int df ∗ fls-X-inv ∗ B) ∗ R ∗ (X ∗ fls-right-inverse X 1)

by (simp add: decomp algebra-simps X-def fls-X-intpow-times-comm)
also have . . . = D ∗ R + of-int df ∗ fls-X-inv

using fls-right-inverse[of X 1]
assms fls-base-factor-base[of f] fls-right-inverse[of B y]

by (simp add: X-def distrib-right mult.assoc B-def R-def)
finally show ?thesis using subdegree-DR by simp

qed

with assms show fls-residue (fls-deriv f ∗ fls-left-inverse f y) = of-int df
using fls-left-inverse-eq-fls-right-inverse[of y f] by simp

show fls-residue (fls-left-inverse f y ∗ fls-deriv f) = of-int df
proof−

have subdegree-LD: fls-subdegree (L ∗ D) ≥ 0
using fls-base-factor-subdegree[of f] fls-base-factor-subdegree[of fls-left-inverse

f y]
assms(1) fls-left-inverse-base-factor [of y f] fls-mult-subdegree-ge-0 [of L

D]
by (force simp: fls-deriv-subdegree0 D-def L-def B-def)

have decomp: f = B ∗ X
unfolding X-def B-def df-def by (rule fls-base-factor-X-power-decompose(1)[of

f])
hence fls-deriv f = D ∗ X + B ∗ of-int df ∗ X ∗ fls-X-inv

using intpow-diff fls-deriv-mult[of B X]
by (simp add: fls-deriv-X-intpow X-def D-def B-def mult.assoc)

467

moreover from assms have fls-left-inverse (B ∗ X) y = fls-left-inverse X 1 ∗
L

using fls-base-factor-base[of f] fls-lr-inverse-mult-ring1 (1)[of - - 1 X]
by (simp add: X-def B-def L-def)

ultimately have
fls-left-inverse f y ∗ fls-deriv f =

fls-left-inverse X 1 ∗ X ∗ L ∗ (D + B ∗ (of-int df ∗ fls-X-inv))
by (simp add: decomp algebra-simps X-def fls-X-intpow-times-comm)

also have . . . = L ∗ D + of-int df ∗ fls-X-inv
using assms fls-left-inverse[of 1 X] fls-base-factor-base[of f] fls-left-inverse[of

y B]
by (simp add: X-def distrib-left mult.assoc[symmetric] L-def B-def)

finally show ?thesis using subdegree-LD by simp
qed

with assms show fls-residue (fls-right-inverse f y ∗ fls-deriv f) = of-int df
using fls-left-inverse-eq-fls-right-inverse[of y f] by simp

qed

lemma fls-residue-deriv-times-inverse-eq-subdegree:
fixes f g :: ′a::division-ring fls
shows fls-residue (fls-deriv f ∗ inverse f) = of-int (fls-subdegree f)
and fls-residue (inverse f ∗ fls-deriv f) = of-int (fls-subdegree f)

proof−
show fls-residue (fls-deriv f ∗ inverse f) = of-int (fls-subdegree f)

using fls-residue-deriv-times-lr-inverse-eq-subdegree(1)[of - f]
by (cases f=0) (auto simp: fls-inverse-def ′)

show fls-residue (inverse f ∗ fls-deriv f) = of-int (fls-subdegree f)
using fls-residue-deriv-times-lr-inverse-eq-subdegree(4)[of - f]
by (cases f=0) (auto simp: fls-inverse-def ′)

qed

7.7.5 Integral definition and basic properties
definition fls-integral :: ′a::{ring-1 ,inverse} fls ⇒ ′a fls

where fls-integral a = Abs-fls (λn. if n=0 then 0 else inverse (of-int n) ∗ a$$(n
− 1))

lemma fls-integral-nth [simp]:
fls-integral a $$ n = (if n=0 then 0 else inverse (of-int n) ∗ a$$(n−1))

proof−
define F where F ≡ (λn. if n=0 then 0 else inverse (of-int n) ∗ a$$(n − 1))
obtain N where ∀n<N . a$$n = 0 by (elim fls-nth-vanishes-belowE)
hence ∀n<N . F n = 0 by (auto simp add: F-def)
thus ?thesis using nth-Abs-fls-lower-bound[of N F] unfolding fls-integral-def

F-def by simp
qed

468

lemma fls-integral-conv-fps-zeroth-integral:
assumes fls-subdegree a ≥ 0
shows fls-integral a = fps-to-fls (fps-integral0 (fls-regpart a))

proof (rule fls-eqI)
fix n
show fls-integral a $$ n = fps-to-fls (fps-integral0 (fls-regpart a)) $$ n
proof (cases n>0)

case False with assms show ?thesis by simp
next

case True
hence int ((nat n) − 1) = n − 1 by simp
with True show ?thesis by (simp add: fps-integral-def)

qed
qed

lemma fls-integral-zero [simp]: fls-integral 0 = 0
by (intro fls-eqI) simp

lemma fls-integral-const ′:
fixes x :: ′a::{ring-1 ,inverse}
assumes inverse (1 :: ′a) = 1
shows fls-integral (fls-const x) = fls-const x ∗ fls-X
by (intro fls-eqI) (simp add: assms)

lemma fls-integral-const:
fixes x :: ′a::division-ring
shows fls-integral (fls-const x) = fls-const x ∗ fls-X
by (rule fls-integral-const ′[OF inverse-1])

lemma fls-integral-of-nat ′:
assumes inverse (1 :: ′a::{ring-1 ,inverse}) = 1
shows fls-integral (of-nat n :: ′a fls) = of-nat n ∗ fls-X
by (simp add: assms fls-integral-const ′ fls-of-nat)

lemma fls-integral-of-nat:
fls-integral (of-nat n :: ′a::division-ring fls) = of-nat n ∗ fls-X
by (rule fls-integral-of-nat ′[OF inverse-1])

lemma fls-integral-of-int ′:
assumes inverse (1 :: ′a::{ring-1 ,inverse}) = 1
shows fls-integral (of-int i :: ′a fls) = of-int i ∗ fls-X
by (simp add: assms fls-integral-const ′ fls-of-int)

lemma fls-integral-of-int:
fls-integral (of-int i :: ′a::division-ring fls) = of-int i ∗ fls-X
by (rule fls-integral-of-int ′[OF inverse-1])

lemma fls-integral-one ′:
assumes inverse (1 :: ′a::{ring-1 ,inverse}) = 1

469

shows fls-integral (1 :: ′a fls) = fls-X
using fls-integral-const ′[of 1]
by (force simp: assms)

lemma fls-integral-one: fls-integral (1 :: ′a::division-ring fls) = fls-X
by (rule fls-integral-one ′[OF inverse-1])

lemma fls-subdegree-integral-ge:
fls-integral f 6= 0 =⇒ fls-subdegree (fls-integral f) ≥ fls-subdegree f + 1
by (intro fls-subdegree-geI) simp-all

lemma fls-subdegree-integral:
fixes f :: ′a::{division-ring,ring-char-0} fls
assumes f 6= 0 fls-subdegree f 6= −1
shows fls-subdegree (fls-integral f) = fls-subdegree f + 1
using assms of-int-0-eq-iff [of fls-subdegree f + 1] fls-subdegree-integral-ge
by (intro fls-subdegree-eqI) simp-all

lemma fls-integral-X [simp]:
fls-integral (fls-X :: ′a::{ring-1 ,inverse} fls) =

fls-const (inverse (of-int 2)) ∗ fls-X2

proof (intro fls-eqI)
fix n
show fls-integral (fls-X :: ′a fls) $$ n = (fls-const (inverse (of-int 2)) ∗ fls-X2) $$

n
using arg-cong[OF fls-X-power-nth, of λx. inverse (of-int 2) ∗ x, of 2 n,

symmetric]
by (auto simp add:)

qed

lemma fls-integral-X-power :
fls-integral (fls-X ^ n :: ′a :: {ring-1 ,inverse} fls) =

fls-const (inverse (of-nat (Suc n))) ∗ fls-X ^ Suc n
proof (intro fls-eqI)

fix k
have (fls-X :: ′a fls) ^ Suc n $$ k = (if k=Suc n then 1 else 0)

by (rule fls-X-power-nth)
thus

fls-integral ((fls-X :: ′a fls) ^ n) $$ k =
(fls-const (inverse (of-nat (Suc n))) ∗ (fls-X :: ′a fls) ^ Suc n) $$ k

by simp
qed

lemma fls-integral-X-power-char0 :
fls-integral (fls-X ^ n :: ′a :: {ring-char-0 ,inverse} fls) =

inverse (of-nat (Suc n)) ∗ fls-X ^ Suc n
proof −

have (of-nat (Suc n) :: ′a) 6= 0 by (rule of-nat-neq-0)
hence fls-const (inverse (of-nat (Suc n) :: ′a)) = inverse (fls-const (of-nat (Suc

470

n)))
by (simp add: fls-inverse-const)

moreover have
fls-integral ((fls-X :: ′a fls) ^ n) = fls-const (inverse (of-nat (Suc n))) ∗ fls-X ^

Suc n
by (rule fls-integral-X-power)

ultimately show ?thesis by (simp add: fls-of-nat)
qed

lemma fls-integral-X-inv [simp]: fls-integral (fls-X-inv:: ′a::{ring-1 ,inverse} fls) =
0

by (intro fls-eqI) simp

lemma fls-integral-X-inv-power :
assumes n ≥ 2
shows

fls-integral (fls-X-inv ^ n :: ′a :: {ring-1 ,inverse} fls) =
fls-const (inverse (of-int (1 − int n))) ∗ fls-X-inv ^ (n−1)

proof (rule fls-eqI)
fix k show

fls-integral (fls-X-inv ^ n :: ′a fls) $$ k=
(fls-const (inverse (of-int (1 − int n))) ∗ fls-X-inv ^ (n−1)) $$ k

proof (cases k=0)
case True with assms show ?thesis by simp

next
case False
from assms have int (n−1) = int n − 1 by simp
hence
(fls-const (inverse (of-int (1 − int n))) ∗ (fls-X-inv:: ′a fls) ^ (n−1)) $$ k =
(if k = 1 − int n then inverse (of-int k) else 0)
by (simp add: fls-X-inv-power-times-conv-shift(2))

with False show ?thesis by (simp add: algebra-simps)
qed

qed

lemma fls-integral-X-inv-power-char0 :
assumes n ≥ 2
shows

fls-integral (fls-X-inv ^ n :: ′a :: {ring-char-0 ,inverse} fls) =
inverse (of-int (1 − int n)) ∗ fls-X-inv ^ (n−1)

proof−
from assms have (of-int (1 − int n) :: ′a) 6= 0 by simp
hence

fls-const (inverse (of-int (1 − int n) :: ′a)) = inverse (fls-const (of-int (1 −
int n)))

by (simp add: fls-inverse-const)
moreover have

fls-integral (fls-X-inv ^ n :: ′a fls) =
fls-const (inverse (of-int (1 − int n))) ∗ fls-X-inv ^ (n−1)

471

using assms by (rule fls-integral-X-inv-power)
ultimately show ?thesis by (simp add: fls-of-int)

qed

lemma fls-integral-X-inv-power ′:
assumes n ≥ 1
shows

fls-integral (fls-X-inv ^ n :: ′a :: division-ring fls) =
− fls-const (inverse (of-nat (n−1))) ∗ fls-X-inv ^ (n−1)

proof (cases n = 1)
case False
with assms have n: n ≥ 2 by simp
hence

fls-integral (fls-X-inv ^ n :: ′a fls) =
fls-const (inverse (− of-nat (nat (int n − 1)))) ∗ fls-X-inv ^ (n−1)

by (simp add: fls-integral-X-inv-power)
moreover from n have nat (int n − 1) = n − 1 by simp
ultimately show ?thesis

using inverse-minus-eq[of of-nat (n−1) :: ′a] by simp
qed simp

lemma fls-integral-X-inv-power-char0 ′:
assumes n ≥ 1
shows

fls-integral (fls-X-inv ^ n :: ′a :: {division-ring,ring-char-0} fls) =
− inverse (of-nat (n−1)) ∗ fls-X-inv ^ (n−1)

proof (cases n=1)
case False with assms show ?thesis

by (simp add: fls-integral-X-inv-power ′ fls-inverse-const fls-of-nat)
qed simp

lemma fls-integral-delta:
assumes m 6= −1
shows

fls-integral (Abs-fls (λn. if n=m then c else 0)) =
Abs-fls (λn. if n=m+1 then inverse (of-int (m+1)) ∗ c else 0)

using assms
by (intro fls-eqI) auto

lemma fls-regpart-integral:
fls-regpart (fls-integral f) = fps-integral0 (fls-regpart f)

proof (rule fps-ext)
fix n
show fls-regpart (fls-integral f) $ n = fps-integral0 (fls-regpart f) $ n

by (cases n) (simp-all add: fps-integral-def)
qed

lemma fls-integral-fps-to-fls:
fls-integral (fps-to-fls f) = fps-to-fls (fps-integral0 f)

472

proof (intro fls-eqI)
fix n :: int
show fls-integral (fps-to-fls f) $$ n = fps-to-fls (fps-integral0 f) $$ n
proof (cases n<1)

case True thus ?thesis by simp
next

case False
hence nat (n−1) = nat n − 1 by simp
with False show ?thesis by (cases nat n) auto

qed
qed

7.7.6 Algebraic rules of the integral
lemma fls-integral-add [simp]: fls-integral (f+g) = fls-integral f + fls-integral g

by (intro fls-eqI) (simp add: algebra-simps)

lemma fls-integral-sub [simp]: fls-integral (f−g) = fls-integral f − fls-integral g
by (intro fls-eqI) (simp add: algebra-simps)

lemma fls-integral-neg [simp]: fls-integral (−f) = − fls-integral f
using fls-integral-sub[of 0 f] by simp

lemma fls-integral-mult-const-left:
fls-integral (fls-const c ∗ f) = fls-const c ∗ fls-integral (f :: ′a::division-ring fls)
by (intro fls-eqI) (simp add: mult.assoc mult-inverse-of-int-commute)

lemma fls-integral-mult-const-left-comm:
fixes f :: ′a::{comm-ring-1 ,inverse} fls
shows fls-integral (fls-const c ∗ f) = fls-const c ∗ fls-integral f
by (intro fls-eqI) (simp add: mult.assoc mult.commute)

lemma fls-integral-linear :
fixes f g :: ′a::division-ring fls
shows

fls-integral (fls-const a ∗ f + fls-const b ∗ g) =
fls-const a ∗ fls-integral f + fls-const b ∗ fls-integral g

by (simp add: fls-integral-mult-const-left)

lemma fls-integral-linear-comm:
fixes f g :: ′a::{comm-ring-1 ,inverse} fls
shows

fls-integral (fls-const a ∗ f + fls-const b ∗ g) =
fls-const a ∗ fls-integral f + fls-const b ∗ fls-integral g

by (simp add: fls-integral-mult-const-left-comm)

lemma fls-integral-mult-const-right:
fls-integral (f ∗ fls-const c) = fls-integral f ∗ fls-const c
by (intro fls-eqI) (simp add: mult.assoc)

473

lemma fls-integral-linear2 :
fls-integral (f ∗ fls-const a + g ∗ fls-const b) =

fls-integral f ∗ fls-const a + fls-integral g ∗ fls-const b
by (simp add: fls-integral-mult-const-right)

lemma fls-integral-sum:
fls-integral (sum f S) = sum (λi. fls-integral (f i)) S

proof (cases finite S)
case True show ?thesis

by (induct rule: finite-induct [OF True]) simp-all
qed simp

7.7.7 Derivatives of integrals and vice versa
lemma fls-integral-fls-deriv:

fixes a :: ′a::{division-ring,ring-char-0} fls
shows fls-integral (fls-deriv a) + fls-const (a$$0) = a
by (intro fls-eqI) (simp add: mult.assoc[symmetric])

lemma fls-deriv-fls-integral:
fixes a :: ′a::{division-ring,ring-char-0} fls
assumes fls-residue a = 0
shows fls-deriv (fls-integral a) = a

proof (intro fls-eqI)
fix n :: int
show fls-deriv (fls-integral a) $$ n = a $$ n
proof (cases n=−1)

case True with assms show ?thesis by simp
next

case False
hence (of-int (n+1) :: ′a) 6= 0 using of-int-eq-0-iff [of n+1] by simp
hence (of-int (n+1) :: ′a) ∗ inverse (of-int (n+1) :: ′a) = (1 :: ′a)

using of-int-eq-0-iff [of n+1] by simp
moreover have

fls-deriv (fls-integral a) $$ n =
(if n=−1 then 0 else of-int (n+1) ∗ inverse (of-int (n+1)) ∗ a$$n)

by (simp add: mult.assoc)
ultimately show ?thesis

by (simp add: False)
qed

qed

Series with zero residue are precisely the derivatives.
lemma fls-residue-nonzero-ex-antiderivative:

fixes f :: ′a::{division-ring,ring-char-0} fls
assumes fls-residue f = 0
shows ∃F . fls-deriv F = f
using assms fls-deriv-fls-integral

474

by auto

lemma fls-ex-antiderivative-residue-nonzero:
assumes ∃F . fls-deriv F = f
shows fls-residue f = 0
using assms fls-residue-deriv
by auto

lemma fls-residue-nonzero-ex-anitderivative-iff :
fixes f :: ′a::{division-ring,ring-char-0} fls
shows fls-residue f = 0 ←→ (∃F . fls-deriv F = f)
using fls-residue-nonzero-ex-antiderivative fls-ex-antiderivative-residue-nonzero
by fast

7.8 Topology
instantiation fls :: (group-add) metric-space
begin

definition
dist-fls-def :

dist (a :: ′a fls) b =
(if a = b

then 0
else if fls-subdegree (a−b) ≥ 0

then inverse (2 ^ nat (fls-subdegree (a−b)))
else 2 ^ nat (−fls-subdegree (a−b))

)

lemma dist-fls-ge0 : dist (a :: ′a fls) b ≥ 0
by (simp add: dist-fls-def)

definition uniformity-fls-def [code del]:
(uniformity :: (′a fls × ′a fls) filter) = (INF e ∈ {0 <..}. principal {(x, y). dist

x y < e})

definition open-fls-def ′ [code del]:
open (U :: ′a fls set) ←→ (∀ x∈U . eventually (λ(x ′, y). x ′ = x −→ y ∈ U)

uniformity)

lemma dist-fls-sym: dist (a :: ′a fls) b = dist b a
by (cases a 6=b, cases fls-subdegree (a−b) ≥ 0)

(simp-all add: fls-subdegree-minus-sym dist-fls-def)

context
begin

private lemma instance-helper :
fixes a b c :: ′a fls

475

assumes neq: a 6=b a 6=c
and dist-ineq: dist a b > dist a c
shows fls-subdegree (a − b) < fls-subdegree (a − c)

proof (
cases fls-subdegree (a−b) ≥ 0 fls-subdegree (a−c) ≥ 0
rule: case-split[case-product case-split]

)
case True-True with neq dist-ineq show ?thesis by (simp add: dist-fls-def)

next
case False-True with dist-ineq show ?thesis by (simp add: dist-fls-def)

next
case False-False with neq dist-ineq show ?thesis by (simp add: dist-fls-def)

next
case True-False
with neq

have (1 ::real) > 2 ^ (nat (fls-subdegree (a−b)) + nat (−fls-subdegree (a−c)))
and nat (fls-subdegree (a−b)) + nat (−fls-subdegree (a−c)) =

nat (fls-subdegree (a−b) − fls-subdegree (a−c))
using dist-ineq
by (simp-all add: dist-fls-def field-simps power-add)

hence ¬ (1 ::real) < 2 ^ (nat (fls-subdegree (a−b) − fls-subdegree (a−c))) by
simp

hence ¬ (0 < nat (fls-subdegree (a − b) − fls-subdegree (a − c))) by auto
hence fls-subdegree (a − b) ≤ fls-subdegree (a − c) by simp
with True-False show ?thesis by simp

qed

instance
proof

show th: dist a b = 0 ←→ a = b for a b :: ′a fls
by (simp add: dist-fls-def split: if-split-asm)

then have th ′[simp]: dist a a = 0 for a :: ′a fls by simp

fix a b c :: ′a fls
consider a = b | c = a ∨ c = b | a 6= b a 6= c b 6= c by blast
then show dist a b ≤ dist a c + dist b c
proof cases

case 1
then show ?thesis by (simp add: dist-fls-def)

next
case 2
then show ?thesis

by (cases c = a) (simp-all add: th dist-fls-sym)
next

case neq: 3
have False if dist a b > dist a c + dist b c
proof −

from neq have dist a b > 0 dist b c > 0 dist a c > 0 by (simp-all add:
dist-fls-def)

476

with that have dist-ineq: dist a b > dist a c dist a b > dist b c by simp-all
have fls-subdegree (a − b) < fls-subdegree (a − c)
and fls-subdegree (a − b) < fls-subdegree (b − c)

using instance-helper [of a b c] instance-helper [of b a c] neq dist-ineq
by (simp-all add: dist-fls-sym fls-subdegree-minus-sym)

hence (a − c) $$ fls-subdegree (a − b) = 0 and (b − c) $$ fls-subdegree (a
− b) = 0

by (simp-all only: fls-eq0-below-subdegree)
hence (a − b) $$ fls-subdegree (a − b) = 0 by simp
moreover from neq have (a − b) $$ fls-subdegree (a − b) 6= 0

by (intro nth-fls-subdegree-nonzero) simp
ultimately show False by contradiction

qed
thus ?thesis by (auto simp: not-le[symmetric])

qed
qed (rule open-fls-def ′ uniformity-fls-def)+

end
end

declare uniformity-Abort[where ′a= ′a :: group-add fls, code]

lemma open-fls-def :
open (S :: ′a::group-add fls set) = (∀ a ∈ S . ∃ r . r >0 ∧ {y. dist y a < r} ⊆ S)
unfolding open-dist subset-eq by simp

7.9 Notation
bundle fps-syntax
begin
notation fls-nth (infixl ‹$$› 75)
end

unbundle no fps-syntax

end

8 The fraction field of any integral domain
theory Fraction-Field
imports Main
begin

8.1 General fractions construction
8.1.1 Construction of the type of fractions
context idom begin

477

definition fractrel :: ′a × ′a ⇒ ′a ∗ ′a ⇒ bool where
fractrel = (λx y. snd x 6= 0 ∧ snd y 6= 0 ∧ fst x ∗ snd y = fst y ∗ snd x)

lemma fractrel-iff [simp]:
fractrel x y ←→ snd x 6= 0 ∧ snd y 6= 0 ∧ fst x ∗ snd y = fst y ∗ snd x
by (simp add: fractrel-def)

lemma symp-fractrel: symp fractrel
by (simp add: symp-def)

lemma transp-fractrel: transp fractrel
proof (rule transpI , unfold split-paired-all)

fix a b a ′ b ′ a ′′ b ′′ :: ′a
assume A: fractrel (a, b) (a ′, b ′)
assume B: fractrel (a ′, b ′) (a ′′, b ′′)
have b ′ ∗ (a ∗ b ′′) = b ′′ ∗ (a ∗ b ′) by (simp add: ac-simps)
also from A have a ∗ b ′ = a ′ ∗ b by auto
also have b ′′ ∗ (a ′ ∗ b) = b ∗ (a ′ ∗ b ′′) by (simp add: ac-simps)
also from B have a ′ ∗ b ′′ = a ′′ ∗ b ′ by auto
also have b ∗ (a ′′ ∗ b ′) = b ′ ∗ (a ′′ ∗ b) by (simp add: ac-simps)
finally have b ′ ∗ (a ∗ b ′′) = b ′ ∗ (a ′′ ∗ b) .
moreover from B have b ′ 6= 0 by auto
ultimately have a ∗ b ′′ = a ′′ ∗ b by simp
with A B show fractrel (a, b) (a ′′, b ′′) by auto

qed

lemma part-equivp-fractrel: part-equivp fractrel
using - symp-fractrel transp-fractrel
by(rule part-equivpI)(rule exI [where x=(0 , 1)]; simp)

end

quotient-type (overloaded) ′a fract = ′a :: idom × ′a / partial: fractrel
by(rule part-equivp-fractrel)

8.1.2 Representation and basic operations
lift-definition Fract :: ′a :: idom ⇒ ′a ⇒ ′a fract

is λa b. if b = 0 then (0 , 1) else (a, b)
by simp

lemma Fract-cases [cases type: fract]:
obtains (Fract) a b where q = Fract a b b 6= 0

by transfer simp

lemma Fract-induct [case-names Fract, induct type: fract]:
(
∧

a b. b 6= 0 =⇒ P (Fract a b)) =⇒ P q
by (cases q) simp

478

lemma eq-fract:
shows

∧
a b c d. b 6= 0 =⇒ d 6= 0 =⇒ Fract a b = Fract c d ←→ a ∗ d = c ∗ b

and
∧

a. Fract a 0 = Fract 0 1
and

∧
a c. Fract 0 a = Fract 0 c

by(transfer ; simp)+

instantiation fract :: (idom) comm-ring-1
begin

lift-definition zero-fract :: ′a fract is (0 , 1) by simp

lemma Zero-fract-def : 0 = Fract 0 1
by transfer simp

lift-definition one-fract :: ′a fract is (1 , 1) by simp

lemma One-fract-def : 1 = Fract 1 1
by transfer simp

lift-definition plus-fract :: ′a fract ⇒ ′a fract ⇒ ′a fract
is λq r . (fst q ∗ snd r + fst r ∗ snd q, snd q ∗ snd r)

by(auto simp add: algebra-simps)

lemma add-fract [simp]:
[[b 6= 0 ; d 6= 0]] =⇒ Fract a b + Fract c d = Fract (a ∗ d + c ∗ b) (b ∗ d)

by transfer simp

lift-definition uminus-fract :: ′a fract ⇒ ′a fract
is λx. (− fst x, snd x)

by simp

lemma minus-fract [simp]:
fixes a b :: ′a::idom
shows − Fract a b = Fract (− a) b

by transfer simp

lemma minus-fract-cancel [simp]: Fract (− a) (− b) = Fract a b
by (cases b = 0) (simp-all add: eq-fract)

definition diff-fract-def : q − r = q + − (r :: ′a fract)

lemma diff-fract [simp]:
[[b 6= 0 ; d 6= 0]] =⇒ Fract a b − Fract c d = Fract (a ∗ d − c ∗ b) (b ∗ d)
by (simp add: diff-fract-def)

lift-definition times-fract :: ′a fract ⇒ ′a fract ⇒ ′a fract
is λq r . (fst q ∗ fst r , snd q ∗ snd r)

by(simp add: algebra-simps)

479

lemma mult-fract [simp]: Fract (a:: ′a::idom) b ∗ Fract c d = Fract (a ∗ c) (b ∗ d)
by transfer simp

lemma mult-fract-cancel:
c 6= 0 =⇒ Fract (c ∗ a) (c ∗ b) = Fract a b

by transfer simp

instance
proof

fix q r s :: ′a fract
show (q ∗ r) ∗ s = q ∗ (r ∗ s)

by (cases q, cases r , cases s) (simp add: eq-fract algebra-simps)
show q ∗ r = r ∗ q

by (cases q, cases r) (simp add: eq-fract algebra-simps)
show 1 ∗ q = q

by (cases q) (simp add: One-fract-def eq-fract)
show (q + r) + s = q + (r + s)

by (cases q, cases r , cases s) (simp add: eq-fract algebra-simps)
show q + r = r + q

by (cases q, cases r) (simp add: eq-fract algebra-simps)
show 0 + q = q

by (cases q) (simp add: Zero-fract-def eq-fract)
show − q + q = 0

by (cases q) (simp add: Zero-fract-def eq-fract)
show q − r = q + − r

by (cases q, cases r) (simp add: eq-fract)
show (q + r) ∗ s = q ∗ s + r ∗ s

by (cases q, cases r , cases s) (simp add: eq-fract algebra-simps)
show (0 :: ′a fract) 6= 1

by (simp add: Zero-fract-def One-fract-def eq-fract)
qed

end

lemma of-nat-fract: of-nat k = Fract (of-nat k) 1
by (induct k) (simp-all add: Zero-fract-def One-fract-def)

lemma Fract-of-nat-eq: Fract (of-nat k) 1 = of-nat k
by (rule of-nat-fract [symmetric])

lemma fract-collapse:
Fract 0 k = 0
Fract 1 1 = 1
Fract k 0 = 0

by(transfer ; simp)+

lemma fract-expand:
0 = Fract 0 1
1 = Fract 1 1

480

by (simp-all add: fract-collapse)

lemma Fract-cases-nonzero:
obtains (Fract) a b where q = Fract a b and b 6= 0 and a 6= 0
| (0) q = 0

proof (cases q = 0)
case True
then show thesis using 0 by auto

next
case False
then obtain a b where q = Fract a b and b 6= 0 by (cases q) auto
with False have 0 6= Fract a b by simp
with ‹b 6= 0 › have a 6= 0 by (simp add: Zero-fract-def eq-fract)
with Fract ‹q = Fract a b› ‹b 6= 0 › show thesis by auto

qed

8.1.3 The field of rational numbers
context idom
begin

subclass ring-no-zero-divisors ..

end

instantiation fract :: (idom) field
begin

lift-definition inverse-fract :: ′a fract ⇒ ′a fract
is λx. if fst x = 0 then (0 , 1) else (snd x, fst x)

by(auto simp add: algebra-simps)

lemma inverse-fract [simp]: inverse (Fract a b) = Fract (b:: ′a::idom) a
by transfer simp

definition divide-fract-def : q div r = q ∗ inverse (r :: ′a fract)

lemma divide-fract [simp]: Fract a b div Fract c d = Fract (a ∗ d) (b ∗ c)
by (simp add: divide-fract-def)

instance
proof

fix q :: ′a fract
assume q 6= 0
then show inverse q ∗ q = 1

by (cases q rule: Fract-cases-nonzero)
(simp-all add: fract-expand eq-fract mult.commute)

next
fix q r :: ′a fract

481

show q div r = q ∗ inverse r by (simp add: divide-fract-def)
next

show inverse 0 = (0 :: ′a fract)
by (simp add: fract-expand) (simp add: fract-collapse)

qed

end

8.1.4 The ordered field of fractions over an ordered idom
instantiation fract :: (linordered-idom) linorder
begin

lemma less-eq-fract-respect:
fixes a b a ′ b ′ c d c ′ d ′ :: ′a
assumes neq: b 6= 0 b ′ 6= 0 d 6= 0 d ′ 6= 0
assumes eq1 : a ∗ b ′ = a ′ ∗ b
assumes eq2 : c ∗ d ′ = c ′ ∗ d
shows ((a ∗ d) ∗ (b ∗ d) ≤ (c ∗ b) ∗ (b ∗ d)) ←→ ((a ′ ∗ d ′) ∗ (b ′ ∗ d ′) ≤ (c ′ ∗

b ′) ∗ (b ′ ∗ d ′))
proof −

let ?le = λa b c d. ((a ∗ d) ∗ (b ∗ d) ≤ (c ∗ b) ∗ (b ∗ d))
{

fix a b c d x :: ′a
assume x: x 6= 0
have ?le a b c d = ?le (a ∗ x) (b ∗ x) c d
proof −

from x have 0 < x ∗ x
by (auto simp add: zero-less-mult-iff)

then have ?le a b c d =
((a ∗ d) ∗ (b ∗ d) ∗ (x ∗ x) ≤ (c ∗ b) ∗ (b ∗ d) ∗ (x ∗ x))

by (simp add: mult-le-cancel-right)
also have ... = ?le (a ∗ x) (b ∗ x) c d

by (simp add: ac-simps)
finally show ?thesis .

qed
} note le-factor = this

let ?D = b ∗ d and ?D ′ = b ′ ∗ d ′

from neq have D: ?D 6= 0 by simp
from neq have ?D ′ 6= 0 by simp
then have ?le a b c d = ?le (a ∗ ?D ′) (b ∗ ?D ′) c d

by (rule le-factor)
also have ... = ((a ∗ b ′) ∗ ?D ∗ ?D ′ ∗ d ∗ d ′ ≤ (c ∗ d ′) ∗ ?D ∗ ?D ′ ∗ b ∗ b ′)

by (simp add: ac-simps)
also have ... = ((a ′ ∗ b) ∗ ?D ∗ ?D ′ ∗ d ∗ d ′ ≤ (c ′ ∗ d) ∗ ?D ∗ ?D ′ ∗ b ∗ b ′)

by (simp only: eq1 eq2)
also have ... = ?le (a ′ ∗ ?D) (b ′ ∗ ?D) c ′ d ′

by (simp add: ac-simps)

482

also from D have ... = ?le a ′ b ′ c ′ d ′

by (rule le-factor [symmetric])
finally show ?le a b c d = ?le a ′ b ′ c ′ d ′ .

qed

lift-definition less-eq-fract :: ′a fract ⇒ ′a fract ⇒ bool
is λq r . (fst q ∗ snd r) ∗ (snd q ∗ snd r) ≤ (fst r ∗ snd q) ∗ (snd q ∗ snd r)

by (clarsimp simp add: less-eq-fract-respect)

definition less-fract-def : z < (w:: ′a fract) ←→ z ≤ w ∧ ¬ w ≤ z

lemma le-fract [simp]:
[[b 6= 0 ; d 6= 0]] =⇒ Fract a b ≤ Fract c d ←→ (a ∗ d) ∗ (b ∗ d) ≤ (c ∗ b) ∗ (b
∗ d)

by transfer simp

lemma less-fract [simp]:
[[b 6= 0 ; d 6= 0]] =⇒ Fract a b < Fract c d ←→ (a ∗ d) ∗ (b ∗ d) < (c ∗ b) ∗ (b
∗ d)

by (simp add: less-fract-def less-le-not-le ac-simps)

instance
proof

fix q r s :: ′a fract
assume q ≤ r and r ≤ s
then show q ≤ s
proof (induct q, induct r , induct s)

fix a b c d e f :: ′a
assume neq: b 6= 0 d 6= 0 f 6= 0
assume 1 : Fract a b ≤ Fract c d
assume 2 : Fract c d ≤ Fract e f
show Fract a b ≤ Fract e f
proof −

from neq obtain bb: 0 < b ∗ b and dd: 0 < d ∗ d and ff : 0 < f ∗ f
by (auto simp add: zero-less-mult-iff linorder-neq-iff)

have (a ∗ d) ∗ (b ∗ d) ∗ (f ∗ f) ≤ (c ∗ b) ∗ (b ∗ d) ∗ (f ∗ f)
proof −

from neq 1 have (a ∗ d) ∗ (b ∗ d) ≤ (c ∗ b) ∗ (b ∗ d)
by simp

with ff show ?thesis by (simp add: mult-le-cancel-right)
qed
also have ... = (c ∗ f) ∗ (d ∗ f) ∗ (b ∗ b)

by (simp only: ac-simps)
also have ... ≤ (e ∗ d) ∗ (d ∗ f) ∗ (b ∗ b)
proof −

from neq 2 have (c ∗ f) ∗ (d ∗ f) ≤ (e ∗ d) ∗ (d ∗ f)
by simp

with bb show ?thesis by (simp add: mult-le-cancel-right)
qed

483

finally have (a ∗ f) ∗ (b ∗ f) ∗ (d ∗ d) ≤ e ∗ b ∗ (b ∗ f) ∗ (d ∗ d)
by (simp only: ac-simps)

with dd have (a ∗ f) ∗ (b ∗ f) ≤ (e ∗ b) ∗ (b ∗ f)
by (simp add: mult-le-cancel-right)

with neq show ?thesis by simp
qed

qed
next

fix q r :: ′a fract
assume q ≤ r and r ≤ q
then show q = r
proof (induct q, induct r)

fix a b c d :: ′a
assume neq: b 6= 0 d 6= 0
assume 1 : Fract a b ≤ Fract c d
assume 2 : Fract c d ≤ Fract a b
show Fract a b = Fract c d
proof −

from neq 1 have (a ∗ d) ∗ (b ∗ d) ≤ (c ∗ b) ∗ (b ∗ d)
by simp

also have ... ≤ (a ∗ d) ∗ (b ∗ d)
proof −

from neq 2 have (c ∗ b) ∗ (d ∗ b) ≤ (a ∗ d) ∗ (d ∗ b)
by simp

then show ?thesis by (simp only: ac-simps)
qed
finally have (a ∗ d) ∗ (b ∗ d) = (c ∗ b) ∗ (b ∗ d) .
moreover from neq have b ∗ d 6= 0 by simp
ultimately have a ∗ d = c ∗ b by simp
with neq show ?thesis by (simp add: eq-fract)

qed
qed

next
fix q r :: ′a fract
show q ≤ q

by (induct q) simp
show (q < r) = (q ≤ r ∧ ¬ r ≤ q)

by (simp only: less-fract-def)
show q ≤ r ∨ r ≤ q

by (induct q, induct r)
(simp add: mult.commute, rule linorder-linear)

qed

end

instantiation fract :: (linordered-idom) linordered-field
begin

definition abs-fract-def2 :

484

|q| = (if q < 0 then −q else (q:: ′a fract))

definition sgn-fract-def :
sgn (q:: ′a fract) = (if q = 0 then 0 else if 0 < q then 1 else − 1)

theorem abs-fract [simp]: |Fract a b| = Fract |a| |b|
unfolding abs-fract-def2 not-le [symmetric]
by transfer (auto simp add: zero-less-mult-iff le-less)

instance proof
fix q r s :: ′a fract
assume q ≤ r
then show s + q ≤ s + r
proof (induct q, induct r , induct s)

fix a b c d e f :: ′a
assume neq: b 6= 0 d 6= 0 f 6= 0
assume le: Fract a b ≤ Fract c d
show Fract e f + Fract a b ≤ Fract e f + Fract c d
proof −

let ?F = f ∗ f from neq have F : 0 < ?F
by (auto simp add: zero-less-mult-iff)

from neq le have (a ∗ d) ∗ (b ∗ d) ≤ (c ∗ b) ∗ (b ∗ d)
by simp

with F have (a ∗ d) ∗ (b ∗ d) ∗ ?F ∗ ?F ≤ (c ∗ b) ∗ (b ∗ d) ∗ ?F ∗ ?F
by (simp add: mult-le-cancel-right)

with neq show ?thesis by (simp add: field-simps)
qed

qed
next

fix q r s :: ′a fract
assume q < r and 0 < s
then show s ∗ q < s ∗ r
proof (induct q, induct r , induct s)

fix a b c d e f :: ′a
assume neq: b 6= 0 d 6= 0 f 6= 0
assume le: Fract a b < Fract c d
assume gt: 0 < Fract e f
show Fract e f ∗ Fract a b < Fract e f ∗ Fract c d
proof −

let ?E = e ∗ f and ?F = f ∗ f
from neq gt have 0 < ?E

by (auto simp add: Zero-fract-def order-less-le eq-fract)
moreover from neq have 0 < ?F

by (auto simp add: zero-less-mult-iff)
moreover from neq le have (a ∗ d) ∗ (b ∗ d) < (c ∗ b) ∗ (b ∗ d)

by simp
ultimately have (a ∗ d) ∗ (b ∗ d) ∗ ?E ∗ ?F < (c ∗ b) ∗ (b ∗ d) ∗ ?E ∗ ?F

by (simp add: mult-less-cancel-right)
with neq show ?thesis

485

by (simp add: ac-simps)
qed

qed
qed (fact sgn-fract-def abs-fract-def2)+

end

instantiation fract :: (linordered-idom) distrib-lattice
begin

definition inf-fract-def :
(inf :: ′a fract ⇒ ′a fract ⇒ ′a fract) = min

definition sup-fract-def :
(sup :: ′a fract ⇒ ′a fract ⇒ ′a fract) = max

instance
by standard (simp-all add: inf-fract-def sup-fract-def max-min-distrib2)

end

lemma fract-induct-pos [case-names Fract]:
fixes P :: ′a::linordered-idom fract ⇒ bool
assumes step:

∧
a b. 0 < b =⇒ P (Fract a b)

shows P q
proof (cases q)

case (Fract a b)
{

fix a b :: ′a
assume b: b < 0
have P (Fract a b)
proof −

from b have 0 < − b by simp
then have P (Fract (− a) (− b))

by (rule step)
then show P (Fract a b)

by (simp add: order-less-imp-not-eq [OF b])
qed

}
with Fract show P q

by (auto simp add: linorder-neq-iff step)
qed

lemma zero-less-Fract-iff : 0 < b =⇒ 0 < Fract a b ←→ 0 < a
by (auto simp add: Zero-fract-def zero-less-mult-iff)

lemma Fract-less-zero-iff : 0 < b =⇒ Fract a b < 0 ←→ a < 0
by (auto simp add: Zero-fract-def mult-less-0-iff)

486

lemma zero-le-Fract-iff : 0 < b =⇒ 0 ≤ Fract a b ←→ 0 ≤ a
by (auto simp add: Zero-fract-def zero-le-mult-iff)

lemma Fract-le-zero-iff : 0 < b =⇒ Fract a b ≤ 0 ←→ a ≤ 0
by (auto simp add: Zero-fract-def mult-le-0-iff)

lemma one-less-Fract-iff : 0 < b =⇒ 1 < Fract a b ←→ b < a
by (auto simp add: One-fract-def mult-less-cancel-right-disj)

lemma Fract-less-one-iff : 0 < b =⇒ Fract a b < 1 ←→ a < b
by (auto simp add: One-fract-def mult-less-cancel-right-disj)

lemma one-le-Fract-iff : 0 < b =⇒ 1 ≤ Fract a b ←→ b ≤ a
by (auto simp add: One-fract-def mult-le-cancel-right)

lemma Fract-le-one-iff : 0 < b =⇒ Fract a b ≤ 1 ←→ a ≤ b
by (auto simp add: One-fract-def mult-le-cancel-right)

end

9 Fundamental Theorem of Algebra
theory Fundamental-Theorem-Algebra
imports Polynomial Complex-Main
begin

9.1 More lemmas about module of complex numbers

The triangle inequality for cmod
lemma complex-mod-triangle-sub: cmod w ≤ cmod (w + z) + norm z

by (metis add-diff-cancel norm-triangle-ineq4)

9.2 Basic lemmas about polynomials
lemma poly-bound-exists:

fixes p :: ′a::{comm-semiring-0 ,real-normed-div-algebra} poly
shows ∃m. m > 0 ∧ (∀ z. norm z ≤ r −→ norm (poly p z) ≤ m)

proof (induct p)
case 0
then show ?case by (rule exI [where x=1]) simp

next
case (pCons c cs)
from pCons.hyps obtain m where m: ∀ z. norm z ≤ r −→ norm (poly cs z) ≤

m
by blast

let ?k = 1 + norm c + |r ∗ m|
have kp: ?k > 0

using abs-ge-zero[of r∗m] norm-ge-zero[of c] by arith

487

have norm (poly (pCons c cs) z) ≤ ?k if H : norm z ≤ r for z
proof −

from m H have th: norm (poly cs z) ≤ m
by blast

from H have rp: r ≥ 0
using norm-ge-zero[of z] by arith

have norm (poly (pCons c cs) z) ≤ norm c + norm (z ∗ poly cs z)
using norm-triangle-ineq[of c z∗ poly cs z] by simp

also have . . . ≤ ?k
using mult-mono[OF H th rp norm-ge-zero[of poly cs z]]
by (simp add: norm-mult)

finally show ?thesis .
qed
with kp show ?case by blast

qed

Offsetting the variable in a polynomial gives another of same degree
definition offset-poly :: ′a::comm-semiring-0 poly ⇒ ′a ⇒ ′a poly

where offset-poly p h = fold-coeffs (λa q. smult h q + pCons a q) p 0

lemma offset-poly-0 : offset-poly 0 h = 0
by (simp add: offset-poly-def)

lemma offset-poly-pCons:
offset-poly (pCons a p) h =

smult h (offset-poly p h) + pCons a (offset-poly p h)
by (cases p = 0 ∧ a = 0) (auto simp add: offset-poly-def)

lemma offset-poly-single [simp]: offset-poly [:a:] h = [:a:]
by (simp add: offset-poly-pCons offset-poly-0)

lemma poly-offset-poly: poly (offset-poly p h) x = poly p (h + x)
by (induct p) (auto simp add: offset-poly-0 offset-poly-pCons algebra-simps)

lemma offset-poly-eq-0-lemma: smult c p + pCons a p = 0 =⇒ p = 0
by (induct p arbitrary: a) (simp, force)

lemma offset-poly-eq-0-iff [simp]: offset-poly p h = 0 ←→ p = 0
proof

show offset-poly p h = 0 =⇒ p = 0
proof(induction p)

case 0
then show ?case by blast

next
case (pCons a p)
then show ?case

by (metis offset-poly-eq-0-lemma offset-poly-pCons offset-poly-single)
qed

qed (simp add: offset-poly-0)

488

lemma degree-offset-poly [simp]: degree (offset-poly p h) = degree p
proof(induction p)

case 0
then show ?case

by (simp add: offset-poly-0)
next

case (pCons a p)
have p 6= 0 =⇒ degree (offset-poly (pCons a p) h) = Suc (degree p)

by (metis degree-add-eq-right degree-pCons-eq degree-smult-le le-imp-less-Suc
offset-poly-eq-0-iff offset-poly-pCons pCons.IH)

then show ?case
by simp

qed

definition psize p = (if p = 0 then 0 else Suc (degree p))

lemma psize-eq-0-iff [simp]: psize p = 0 ←→ p = 0
unfolding psize-def by simp

lemma poly-offset:
fixes p :: ′a::comm-ring-1 poly
shows ∃ q. psize q = psize p ∧ (∀ x. poly q x = poly p (a + x))
by (metis degree-offset-poly offset-poly-eq-0-iff poly-offset-poly psize-def)

An alternative useful formulation of completeness of the reals
lemma real-sup-exists:

assumes ex: ∃ x. P x
and bz: ∃ z. ∀ x. P x −→ x < z

shows ∃ s::real. ∀ y. (∃ x. P x ∧ y < x) ←→ y < s
proof

from bz have bdd-above (Collect P)
by (force intro: less-imp-le)

then show ∀ y. (∃ x. P x ∧ y < x) ←→ y < Sup (Collect P)
using ex bz by (subst less-cSup-iff) auto

qed

9.3 Fundamental theorem of algebra
lemma unimodular-reduce-norm:

assumes md: cmod z = 1
shows cmod (z + 1) < 1 ∨ cmod (z − 1) < 1 ∨ cmod (z + i) < 1 ∨ cmod (z
− i) < 1
proof −

obtain x y where z: z = Complex x y
by (cases z) auto

from md z have xy: x2 + y2 = 1
by (simp add: cmod-def)

have False if cmod (z + 1) ≥ 1 cmod (z − 1) ≥ 1 cmod (z + i) ≥ 1 cmod (z

489

− i) ≥ 1
proof −

from that z xy have ∗: 2 ∗ x ≤ 1 2 ∗ x ≥ −1 2 ∗ y ≤ 1 2 ∗ y ≥ −1
by (simp-all add: cmod-def power2-eq-square algebra-simps)

then have |2 ∗ x| ≤ 1 |2 ∗ y| ≤ 1
by simp-all

then have |2 ∗ x|2 ≤ 1 2 |2 ∗ y|2 ≤ 1 2

by (metis abs-square-le-1 one-power2 power2-abs)+
with xy ∗ show ?thesis

by (smt (verit, best) four-x-squared square-le-1)
qed
then show ?thesis

by force
qed

Hence we can always reduce modulus of 1 + b z^n if nonzero
lemma reduce-poly-simple:

assumes b: b 6= 0
and n: n 6= 0

shows ∃ z. cmod (1 + b ∗ z^n) < 1
using n

proof (induct n rule: nat-less-induct)
fix n
assume IH : ∀m<n. m 6= 0 −→ (∃ z. cmod (1 + b ∗ z ^ m) < 1)
assume n: n 6= 0
let ?P = λz n. cmod (1 + b ∗ z ^ n) < 1
show ∃ z. ?P z n
proof cases

assume even n
then obtain m where m: n = 2 ∗ m and m 6= 0 m < n

using n by auto
with IH obtain z where z: ?P z m

by blast
from z have ?P (csqrt z) n

by (simp add: m power-mult)
then show ?thesis ..

next
assume odd n
then have ∃m. n = Suc (2 ∗ m)

by presburger+
then obtain m where m: n = Suc (2 ∗ m)

by blast
have 0 : cmod (complex-of-real (cmod b) / b) = 1

using b by (simp add: norm-divide)
have ∃ v. cmod (complex-of-real (cmod b) / b + v^n) < 1
proof (cases cmod (complex-of-real (cmod b) / b + 1) < 1)

case True
then show ?thesis

by (metis power-one)

490

next
case F1 : False
show ?thesis
proof (cases cmod (complex-of-real (cmod b) / b − 1) < 1)

case True
with ‹odd n› show ?thesis

by (metis add-uminus-conv-diff neg-one-odd-power)
next

case F2 : False
show ?thesis
proof (cases cmod (complex-of-real (cmod b) / b + i) < 1)

case T1 : True
show ?thesis
proof (cases even m)

case True
with T1 show ?thesis

by (rule-tac x=i in exI) (simp add: m power-mult)
next

case False
with T1 show ?thesis

by (rule-tac x=− i in exI) (simp add: m power-mult)
qed

next
case False
then have lt1 : cmod (of-real (cmod b) / b − i) < 1

using 0 F1 F2 unimodular-reduce-norm by blast
show ?thesis
proof (cases even m)

case True
with m lt1 show ?thesis

by (rule-tac x=− i in exI) (simp add: power-mult)
next

case False
with m lt1 show ?thesis

by (rule-tac x=i in exI) (simp add: power-mult)
qed

qed
qed

qed
then obtain v where v: cmod (complex-of-real (cmod b) / b + v^n) < 1

by blast
let ?w = v / complex-of-real (root n (cmod b))
from odd-real-root-pow[OF ‹odd n›, of cmod b]
have 1 : ?w ^ n = v^n / complex-of-real (cmod b)

by (simp add: power-divide of-real-power [symmetric])
have 2 :cmod (complex-of-real (cmod b) / b) = 1

using b by (simp add: norm-divide)
then have 3 : cmod (complex-of-real (cmod b) / b) ≥ 0

by simp

491

have 4 : cmod (complex-of-real (cmod b) / b) ∗
cmod (1 + b ∗ (v ^ n / complex-of-real (cmod b))) <
cmod (complex-of-real (cmod b) / b) ∗ 1

apply (simp only: norm-mult[symmetric] distrib-left)
using b v
apply (simp add: 2)
done

show ?thesis
by (metis 1 mult-left-less-imp-less[OF 4 3])

qed
qed

Bolzano-Weierstrass type property for closed disc in complex plane.
lemma metric-bound-lemma: cmod (x − y) ≤ |Re x − Re y| + |Im x − Im y|

using real-sqrt-sum-squares-triangle-ineq[of Re x − Re y 0 0 Im x − Im y]
unfolding cmod-def by simp

lemma Bolzano-Weierstrass-complex-disc:
assumes r : ∀n. cmod (s n) ≤ r
shows ∃ f z. strict-mono (f :: nat ⇒ nat) ∧ (∀ e >0 . ∃N . ∀n ≥ N . cmod (s (f

n) − z) < e)
proof −

from seq-monosub[of Re ◦ s]
obtain f where f : strict-mono f monoseq (λn. Re (s (f n)))

unfolding o-def by blast
from seq-monosub[of Im ◦ s ◦ f]
obtain g where g: strict-mono g monoseq (λn. Im (s (f (g n))))

unfolding o-def by blast
let ?h = f ◦ g
have r ≥ 0

by (meson norm-ge-zero order-trans r)
have ∀n. r + 1 ≥ |Re (s n)|

by (smt (verit, ccfv-threshold) abs-Re-le-cmod r)
then have conv1 : convergent (λn. Re (s (f n)))

by (metis Bseq-monoseq-convergent f (2) BseqI ′ real-norm-def)
have ∀n. r + 1 ≥ |Im (s n)|

by (smt (verit) abs-Im-le-cmod r)
then have conv2 : convergent (λn. Im (s (f (g n))))

by (metis Bseq-monoseq-convergent g(2) BseqI ′ real-norm-def)

obtain x where x: ∀ r>0 . ∃n0 . ∀n≥n0 . |Re (s (f n)) − x| < r
using conv1 [unfolded convergent-def] LIMSEQ-iff real-norm-def by metis

obtain y where y: ∀ r>0 . ∃n0 . ∀n≥n0 . |Im (s (f (g n))) − y| < r
using conv2 [unfolded convergent-def] LIMSEQ-iff real-norm-def by metis

let ?w = Complex x y
from f (1) g(1) have hs: strict-mono ?h

unfolding strict-mono-def by auto
have ∃N . ∀n≥N . cmod (s (?h n) − ?w) < e if e > 0 for e
proof −

492

from that have e2 : e/2 > 0
by simp

from x y e2
obtain N1 N2 where N1 : ∀n≥N1 . |Re (s (f n)) − x| < e / 2

and N2 : ∀n≥N2 . |Im (s (f (g n))) − y| < e / 2
by blast

have cmod (s (?h n) − ?w) < e if n ≥ N1 + N2 for n
proof −

from that have nN1 : g n ≥ N1 and nN2 : n ≥ N2
using seq-suble[OF g(1), of n] by arith+

show ?thesis
using metric-bound-lemma[of s (f (g n)) ?w] N1 N2 nN1 nN2 by fastforce

qed
then show ?thesis by blast

qed
with hs show ?thesis by blast

qed

Polynomial is continuous.
lemma poly-cont:

fixes p :: ′a::{comm-semiring-0 ,real-normed-div-algebra} poly
assumes ep: e > 0
shows ∃ d >0 . ∀w. 0 < norm (w − z) ∧ norm (w − z) < d −→ norm (poly p

w − poly p z) < e
proof −

obtain q where degree q = degree p and q:
∧

w. poly p w = poly q (w − z)
by (metis add.commute degree-offset-poly diff-add-cancel poly-offset-poly)

show ?thesis unfolding q
proof (induct q)

case 0
then show ?case

using ep by auto
next

case (pCons c cs)
obtain m where m: m > 0 norm z ≤ 1 =⇒ norm (poly cs z) ≤ m for z

using poly-bound-exists[of 1 cs] by blast
with ep have em0 : e/m > 0

by (simp add: field-simps)
obtain d where d: d > 0 d < 1 d < e / m

by (meson em0 field-lbound-gt-zero zero-less-one)
then have

∧
w. norm (w − z) < d =⇒ norm (w − z) ∗ norm (poly cs (w −

z)) < e
by (smt (verit, del-insts) m mult-left-mono norm-ge-zero pos-less-divide-eq)

with d show ?case
by (force simp add: norm-mult)

qed
qed

Hence a polynomial attains minimum on a closed disc in the complex plane.

493

lemma poly-minimum-modulus-disc: ∃ z. ∀w. cmod w ≤ r −→ cmod (poly p z) ≤
cmod (poly p w)
proof −

show ?thesis
proof (cases r ≥ 0)

case False
then show ?thesis

by (metis norm-ge-zero order .trans)
next

case True
then have mth1 : ∃ x z. cmod z ≤ r ∧ cmod (poly p z) = − x

by (metis add.inverse-inverse norm-zero)
obtain s where s: ∀ y. (∃ x. (∃ z. cmod z ≤ r ∧ cmod (poly p z) = − x) ∧ y

< x) ←→ y < s
by (smt (verit, del-insts) real-sup-exists[OF mth1] norm-zero zero-less-norm-iff)

let ?m = − s
have s1 : (∃ z. cmod z ≤ r ∧ − (− cmod (poly p z)) < y) ←→ ?m < y for y

by (metis add.inverse-inverse minus-less-iff s)
then have s1m:

∧
z. cmod z ≤ r =⇒ cmod (poly p z) ≥ ?m

by force
have ∃ z. cmod z ≤ r ∧ cmod (poly p z) < − s + 1 / real (Suc n) for n

using s1 [of ?m + 1/real (Suc n)] by simp
then obtain g where g: ∀n. cmod (g n) ≤ r ∀n. cmod (poly p (g n)) <?m +

1 /real(Suc n)
by metis

from Bolzano-Weierstrass-complex-disc[OF g(1)]
obtain f ::nat ⇒ nat and z where fz: strict-mono f ∀ e>0 . ∃N . ∀n≥N . cmod

(g (f n) − z) < e
by blast

{
fix w
assume wr : cmod w ≤ r
let ?e = |cmod (poly p z) − ?m|
{

assume e: ?e > 0
then have e2 : ?e/2 > 0

by simp
with poly-cont obtain d

where d > 0 and d:
∧

w. 0<cmod (w − z)∧ cmod(w − z) < d −→
cmod(poly p w − poly p z) < ?e/2

by blast
have 1 : cmod(poly p w − poly p z) < ?e / 2 if w: cmod (w − z) < d for w

using d[of w] w e by (cases w = z) simp-all
from fz(2) ‹d > 0 › obtain N1 where N1 : ∀n≥N1 . cmod (g (f n) − z) <

d
by blast

from reals-Archimedean2 obtain N2 :: nat where N2 : 2/?e < real N2
by blast

494

have 2 : cmod (poly p (g (f (N1 + N2))) − poly p z) < ?e/2
using N1 1 by auto

have 0 : a < e2 =⇒ |b − m| < e2 =⇒ 2 ∗ e2 ≤ |b − m| + a =⇒ False
for a b e2 m :: real
by arith

from seq-suble[OF fz(1), of N1 + N2]
have 00 : ?m + 1 / real (Suc (f (N1 + N2))) ≤ ?m + 1 / real (Suc (N1

+ N2))
by (simp add: frac-le)

from N2 e2 less-imp-inverse-less[of 2/?e real (Suc (N1 + N2))]
have ?e/2 > 1/ real (Suc (N1 + N2))

by (simp add: inverse-eq-divide)
with order-less-le-trans[OF - 00]
have 1 : |cmod (poly p (g (f (N1 + N2)))) − ?m| < ?e/2

using g s1 by (smt (verit))
with 0 [OF 2] have False

by (smt (verit) field-sum-of-halves norm-triangle-ineq3)
}
then have ?e = 0

by auto
with s1m[OF wr] have cmod (poly p z) ≤ cmod (poly p w)

by simp
}
then show ?thesis by blast

qed
qed

Nonzero polynomial in z goes to infinity as z does.
lemma poly-infinity:

fixes p:: ′a::{comm-semiring-0 ,real-normed-div-algebra} poly
assumes ex: p 6= 0
shows ∃ r . ∀ z. r ≤ norm z −→ d ≤ norm (poly (pCons a p) z)
using ex

proof (induct p arbitrary: a d)
case 0
then show ?case by simp

next
case (pCons c cs a d)
show ?case
proof (cases cs = 0)

case False
with pCons.hyps obtain r where r : ∀ z. r ≤ norm z −→ d + norm a ≤ norm

(poly (pCons c cs) z)
by blast

let ?r = 1 + |r |
have d ≤ norm (poly (pCons a (pCons c cs)) z) if 1 + |r | ≤ norm z for z
proof −

have d ≤ norm(z ∗ poly (pCons c cs) z) − norm a
by (smt (verit, best) norm-ge-zero mult-less-cancel-right2 norm-mult r that)

495

with norm-diff-ineq add.commute
show ?thesis

by (metis order .trans poly-pCons)
qed
then show ?thesis by blast

next
case True
have d ≤ norm (poly (pCons a (pCons c cs)) z)

if (|d| + norm a) / norm c ≤ norm z for z :: ′a
proof −

have |d| + norm a ≤ norm (z ∗ c)
by (metis that True norm-mult pCons.hyps(1) pos-divide-le-eq zero-less-norm-iff)
also have . . . ≤ norm (a + z ∗ c) + norm a

by (simp add: add.commute norm-add-leD)
finally show ?thesis

using True by auto
qed
then show ?thesis by blast

qed
qed

Hence polynomial’s modulus attains its minimum somewhere.
lemma poly-minimum-modulus: ∃ z.∀w. cmod (poly p z) ≤ cmod (poly p w)
proof (induct p)

case 0
then show ?case by simp

next
case (pCons c cs)
show ?case
proof (cases cs = 0)

case False
from poly-infinity[OF False, of cmod (poly (pCons c cs) 0) c]
obtain r where r : cmod (poly (pCons c cs) 0) ≤ cmod (poly (pCons c cs) z)

if r ≤ cmod z for z
by blast

from poly-minimum-modulus-disc[of |r | pCons c cs] show ?thesis
by (smt (verit, del-insts) order .trans linorder-linear r)

qed (use pCons.hyps in auto)
qed

Constant function (non-syntactic characterization).
definition constant f ←→ (∀ x y. f x = f y)

lemma nonconstant-length: ¬ constant (poly p) =⇒ psize p ≥ 2
by (induct p) (auto simp: constant-def psize-def)

lemma poly-replicate-append: poly (monom 1 n ∗ p) (x:: ′a::comm-ring-1) = x^n
∗ poly p x

by (simp add: poly-monom)

496

Decomposition of polynomial, skipping zero coefficients after the first.
lemma poly-decompose-lemma:

assumes nz: ¬ (∀ z. z 6= 0 −→ poly p z = (0 :: ′a::idom))
shows ∃ k a q. a 6= 0 ∧ Suc (psize q + k) = psize p ∧ (∀ z. poly p z = z^k ∗ poly

(pCons a q) z)
unfolding psize-def
using nz

proof (induct p)
case 0
then show ?case by simp

next
case (pCons c cs)
show ?case
proof (cases c = 0)

case True
from pCons.hyps pCons.prems True show ?thesis

apply auto
apply (rule-tac x=k+1 in exI)
apply (rule-tac x=a in exI)
apply clarsimp
apply (rule-tac x=q in exI)
apply auto
done

qed force
qed

lemma poly-decompose:
fixes p :: ′a::idom poly
assumes nc: ¬ constant (poly p)
shows ∃ k a q. a 6= 0 ∧ k 6= 0 ∧

psize q + k + 1 = psize p ∧
(∀ z. poly p z = poly p 0 + z^k ∗ poly (pCons a q) z)

using nc
proof (induct p)

case 0
then show ?case

by (simp add: constant-def)
next

case (pCons c cs)
have ¬ (∀ z. z 6= 0 −→ poly cs z = 0)

by (smt (verit) constant-def mult-eq-0-iff pCons.prems poly-pCons)
from poly-decompose-lemma[OF this]
obtain k a q where ∗: a 6= 0 ∧

Suc (psize q + k) = psize cs ∧ (∀ z. poly cs z = z ^ k ∗ poly (pCons a q) z)
by blast

then have psize q + k + 2 = psize (pCons c cs)
by (auto simp add: psize-def split: if-splits)

then show ?case
using ∗ by force

497

qed

Fundamental theorem of algebra
theorem fundamental-theorem-of-algebra:

assumes nc: ¬ constant (poly p)
shows ∃ z::complex. poly p z = 0
using nc

proof (induct psize p arbitrary: p rule: less-induct)
case less
let ?p = poly p
let ?ths = ∃ z. ?p z = 0

from nonconstant-length[OF less(2)] have n2 : psize p ≥ 2 .
from poly-minimum-modulus obtain c where c: ∀w. cmod (?p c) ≤ cmod (?p

w)
by blast

show ?ths
proof (cases ?p c = 0)

case True
then show ?thesis by blast

next
case False
obtain q where q: psize q = psize p ∀ x. poly q x = ?p (c + x)

using poly-offset[of p c] by blast
then have qnc: ¬ constant (poly q)

by (metis (no-types, opaque-lifting) add.commute constant-def diff-add-cancel
less.prems)

from q(2) have pqc0 : ?p c = poly q 0
by simp

from c pqc0 have cq0 : ∀w. cmod (poly q 0) ≤ cmod (?p w)
by simp

let ?a0 = poly q 0
from False pqc0 have a00 : ?a0 6= 0

by simp
from a00 have qr : ∀ z. poly q z = poly (smult (inverse ?a0) q) z ∗ ?a0

by simp
let ?r = smult (inverse ?a0) q
have lgqr : psize q = psize ?r

by (simp add: a00 psize-def)
have rnc: ¬ constant (poly ?r)

using constant-def qnc qr by fastforce
have r01 : poly ?r 0 = 1

by (simp add: a00)
have mrmq-eq: cmod (poly ?r w) < 1 ←→ cmod (poly q w) < cmod ?a0 for w
by (smt (verit, del-insts) a00 mult-less-cancel-right2 norm-mult qr zero-less-norm-iff)
from poly-decompose[OF rnc] obtain k a s where

kas: a 6= 0 k 6= 0 psize s + k + 1 = psize ?r
∀ z. poly ?r z = poly ?r 0 + z^k∗ poly (pCons a s) z by blast

498

have ∃w. cmod (poly ?r w) < 1
proof (cases psize p = k + 1)

case True
with kas q have s0 : s = 0

by (simp add: lgqr)
with reduce-poly-simple kas show ?thesis

by (metis mult.commute mult.right-neutral poly-1 poly-smult r01 smult-one)
next

case False note kn = this
from kn kas(3) q(1) lgqr have k1n: k + 1 < psize p

by simp
have 01 : ¬ constant (poly (pCons 1 (monom a (k − 1))))

unfolding constant-def poly-pCons poly-monom
by (metis add-cancel-left-right kas(1) mult.commute mult-cancel-right2

power-one)
have 02 : k + 1 = psize (pCons 1 (monom a (k − 1)))

using kas by (simp add: psize-def degree-monom-eq)
from less(1) [OF - 01] k1n 02
obtain w where w: 1 + w^k ∗ a = 0

by (metis kas(2) mult.commute mult.left-commute poly-monom poly-pCons
power-eq-if)

from poly-bound-exists[of cmod w s] obtain m where
m: m > 0 ∀ z. cmod z ≤ cmod w −→ cmod (poly s z) ≤ m by blast

have w 6= 0
using kas(2) w by (auto simp add: power-0-left)

from w have wm1 : w^k ∗ a = − 1
by (simp add: add-eq-0-iff)

have inv0 : 0 < inverse (cmod w ^ (k + 1) ∗ m)
by (simp add: ‹w 6= 0 › m(1))

with field-lbound-gt-zero[OF zero-less-one] obtain t where
t: t > 0 t < 1 t < inverse (cmod w ^ (k + 1) ∗ m) by blast

let ?ct = complex-of-real t
let ?w = ?ct ∗ w
have 1 + ?w^k ∗ (a + ?w ∗ poly s ?w) = 1 + ?ct^k ∗ (w^k ∗ a) + ?w^k ∗

?w ∗ poly s ?w
using kas(1) by (simp add: algebra-simps power-mult-distrib)

also have . . . = complex-of-real (1 − t^k) + ?w^k ∗ ?w ∗ poly s ?w
unfolding wm1 by simp

finally have cmod (1 + ?w^k ∗ (a + ?w ∗ poly s ?w)) =
cmod (complex-of-real (1 − t^k) + ?w^k ∗ ?w ∗ poly s ?w)
by metis

with norm-triangle-ineq[of complex-of-real (1 − t^k) ?w^k ∗ ?w ∗ poly s ?w]
have 11 : cmod (1 + ?w^k ∗ (a + ?w ∗ poly s ?w)) ≤ |1 − t^k| + cmod

(?w^k ∗ ?w ∗ poly s ?w)
unfolding norm-of-real by simp

have ath:
∧

x t::real. 0 ≤ x =⇒ x < t =⇒ t ≤ 1 =⇒ |1 − t| + x < 1
by arith

have tw: cmod ?w ≤ cmod w
by (smt (verit) mult-le-cancel-right2 norm-ge-zero norm-mult norm-of-real

499

t)
have t ∗ (cmod w ^ (k + 1) ∗ m) < 1
by (smt (verit, best) inv0 inverse-positive-iff-positive left-inverse mult-strict-right-mono

t(3))
with zero-less-power [OF t(1), of k] have 30 : t^k ∗ (t∗ (cmod w ^ (k + 1) ∗

m)) < t^k
by simp

have cmod (?w^k ∗ ?w ∗ poly s ?w) = t^k ∗ (t∗ (cmod w ^ (k + 1) ∗ cmod
(poly s ?w)))

using ‹w 6= 0 › t(1) by (simp add: algebra-simps norm-power norm-mult)
with 30 have 120 : cmod (?w^k ∗ ?w ∗ poly s ?w) < t^k

by (smt (verit, ccfv-SIG) m(2) mult-left-mono norm-ge-zero t(1) tw
zero-le-power)

from power-strict-mono[OF t(2), of k] t(1) kas(2) have 121 : t^k ≤ 1
by auto

from ath[OF norm-ge-zero[of ?w^k ∗ ?w ∗ poly s ?w] 120 121]
show ?thesis

by (smt (verit) 11 kas(4) poly-pCons r01)
qed
with cq0 q(2) show ?thesis

by (smt (verit) mrmq-eq)
qed

qed

Alternative version with a syntactic notion of constant polynomial.
lemma fundamental-theorem-of-algebra-alt:

assumes nc: ¬ (∃ a l. a 6= 0 ∧ l = 0 ∧ p = pCons a l)
shows ∃ z. poly p z = (0 ::complex)

proof (rule ccontr)
assume N : @ z. poly p z = 0
then have ¬ constant (poly p)

unfolding constant-def
by (metis (no-types, opaque-lifting) nc poly-pcompose pcompose-0 ′ pcompose-const

poly-0-coeff-0
poly-all-0-iff-0 poly-diff right-minus-eq)

then show False
using N fundamental-theorem-of-algebra by blast

qed

9.4 Nullstellensatz, degrees and divisibility of polynomials
lemma nullstellensatz-lemma:

fixes p :: complex poly
assumes ∀ x. poly p x = 0 −→ poly q x = 0

and degree p = n
and n 6= 0

shows p dvd (q ^ n)
using assms

proof (induct n arbitrary: p q rule: nat-less-induct)

500

fix n :: nat
fix p q :: complex poly
assume IH : ∀m<n. ∀ p q.

(∀ x. poly p x = (0 ::complex) −→ poly q x = 0) −→
degree p = m −→ m 6= 0 −→ p dvd (q ^ m)

and pq0 : ∀ x. poly p x = 0 −→ poly q x = 0
and dpn: degree p = n
and n0 : n 6= 0

from dpn n0 have pne: p 6= 0 by auto
show p dvd (q ^ n)
proof (cases ∃ a. poly p a = 0)

case True
then obtain a where a: poly p a = 0 ..
have ?thesis if oa: order a p 6= 0
proof −

let ?op = order a p
from pne have ap: ([:− a, 1 :] ^ ?op) dvd p ¬ [:− a, 1 :] ^ (Suc ?op) dvd p

using order by blast+
note oop = order-degree[OF pne, unfolded dpn]
show ?thesis
proof (cases q = 0)

case True
with n0 show ?thesis by (simp add: power-0-left)

next
case False
from pq0 [rule-format, OF a, unfolded poly-eq-0-iff-dvd]
obtain r where r : q = [:− a, 1 :] ∗ r by (rule dvdE)
from ap(1) obtain s where s: p = [:− a, 1 :] ^ ?op ∗ s

by (rule dvdE)
have sne: s 6= 0

using s pne by auto
show ?thesis
proof (cases degree s = 0)

case True
then obtain k where kpn: s = [:k:]

by (cases s) (auto split: if-splits)
from sne kpn have k: k 6= 0 by simp
let ?w = ([:1/k:] ∗ ([:−a,1 :] ^ (n − ?op))) ∗ (r ^ n)
have q^n = [:− a, 1 :] ^ n ∗ r ^ n

using power-mult-distrib r by blast
also have ... = [:− a, 1 :] ^ order a p ∗ [:k:] ∗ ([:1 / k:] ∗ [:− a, 1 :] ^ (n

− order a p) ∗ r ^ n)
using k oop [of a] by (simp flip: power-add)

also have ... = p ∗ ?w
by (metis s kpn)

finally show ?thesis
unfolding dvd-def by blast

next
case False

501

with sne dpn s oa have dsn: degree s < n
by (metis add-diff-cancel-right ′ degree-0 degree-linear-power degree-mult-eq

gr0I zero-less-diff)
have poly r x = 0 if h: poly s x = 0 for x
proof −

have x 6= a
by (metis ap(2) dvd-refl mult-dvd-mono poly-eq-0-iff-dvd power-Suc

power-commutes s that)
moreover have poly p x = 0

by (metis (no-types) mult-eq-0-iff poly-mult s that)
ultimately show ?thesis

using pq0 r by auto
qed
with False IH dsn obtain u where u: r ^ (degree s) = s ∗ u

by blast
then have u ′:

∧
x. poly s x ∗ poly u x = poly r x ^ degree s

by (simp only: poly-mult[symmetric] poly-power [symmetric])
have q^n = [:− a, 1 :] ^ n ∗ r ^ n

using power-mult-distrib r by blast
also have ... = [:− a, 1 :] ^ order a p ∗ (s ∗ u ∗ ([:− a, 1 :] ^ (n − order

a p) ∗ r ^ (n − degree s)))
by (smt (verit, del-insts) s u mult-ac power-add add-diff-cancel-right ′

degree-linear-power degree-mult-eq dpn mult-zero-left)
also have ... = p ∗ (u ∗ ([:−a,1 :] ^ (n − ?op))) ∗ (r ^ (n − degree s))

using s by force
finally show ?thesis

unfolding dvd-def by auto
qed

qed
qed
then show ?thesis

using a order-root pne by blast
next

case False
then show ?thesis

using dpn n0 fundamental-theorem-of-algebra-alt[of p]
by fastforce

qed
qed

lemma nullstellensatz-univariate:
(∀ x. poly p x = (0 ::complex) −→ poly q x = 0) ←→

p dvd (q ^ (degree p)) ∨ (p = 0 ∧ q = 0)
proof −

consider p = 0 | p 6= 0 degree p = 0 | n where p 6= 0 degree p = Suc n
by (cases degree p) auto

then show ?thesis
proof cases

case p: 1

502

then have (∀ x. poly p x = (0 ::complex) −→ poly q x = 0) ←→ q = 0
by (auto simp add: poly-all-0-iff-0)

with p show ?thesis
by force

next
case dp: 2
then show ?thesis

by (meson dvd-trans is-unit-iff-degree poly-eq-0-iff-dvd unit-imp-dvd)
next

case dp: 3
have False if p dvd (q ^ (Suc n)) poly p x = 0 poly q x 6= 0 for x

by (metis dvd-trans poly-eq-0-iff-dvd poly-power power-eq-0-iff that)
with dp nullstellensatz-lemma[of p q degree p] show ?thesis

by auto
qed

qed

Useful lemma
lemma constant-degree:

fixes p :: ′a::{idom,ring-char-0} poly
shows constant (poly p) ←→ degree p = 0 (is ?lhs = ?rhs)

proof
show ?rhs if ?lhs
proof −

from that[unfolded constant-def , rule-format, of - 0]
have poly p = poly [:poly p 0 :]

by auto
then show ?thesis

by (metis degree-pCons-0 poly-eq-poly-eq-iff)
qed
show ?lhs if ?rhs

unfolding constant-def
by (metis degree-eq-zeroE pcompose-const poly-0 poly-pcompose that)

qed

lemma complex-poly-decompose:
smult (lead-coeff p) (

∏
z|poly p z = 0 . [:−z, 1 :] ^ order z p) = (p :: complex poly)

proof (induction p rule: poly-root-order-induct)
case (no-roots p)
show ?case
proof (cases degree p = 0)

case False
hence ¬constant (poly p) by (subst constant-degree)
with fundamental-theorem-of-algebra and no-roots show ?thesis by blast

qed (auto elim!: degree-eq-zeroE)
next

case (root p x n)
from root have ∗: {z. poly ([:− x, 1 :] ^ n ∗ p) z = 0} = insert x {z. poly p z =

0}

503

by auto
have smult (lead-coeff ([:−x, 1 :] ^ n ∗ p))

(
∏

z|poly ([:−x,1 :] ^ n ∗ p) z = 0 . [:−z, 1 :] ^ order z ([:− x, 1 :] ^ n ∗
p)) =

[:− x, 1 :] ^ order x ([:− x, 1 :] ^ n ∗ p) ∗
smult (lead-coeff p) (

∏
z∈{z. poly p z = 0}. [:− z, 1 :] ^ order z ([:− x, 1 :]

^ n ∗ p))
by (subst ∗, subst prod.insert)
(insert root, auto intro: poly-roots-finite simp: mult-ac lead-coeff-mult lead-coeff-power)

also have order x ([:− x, 1 :] ^ n ∗ p) = n
using root by (subst order-mult) (auto simp: order-power-n-n order-0I)

also have (
∏

z∈{z. poly p z = 0}. [:− z, 1 :] ^ order z ([:− x, 1 :] ^ n ∗ p)) =
(
∏

z∈{z. poly p z = 0}. [:− z, 1 :] ^ order z p)
proof (intro prod.cong refl, goal-cases)

case (1 y)
with root have order y ([:−x,1 :] ^ n) = 0 by (intro order-0I) auto
thus ?case using root by (subst order-mult) auto

qed
also note root.IH
finally show ?case .

qed simp-all

instance complex :: alg-closed-field
by standard (use fundamental-theorem-of-algebra constant-degree neq0-conv in

blast)

lemma size-proots-complex: size (proots (p :: complex poly)) = degree p
proof (cases p = 0)

case [simp]: False
show size (proots p) = degree p

by (subst (1 2) complex-poly-decompose [symmetric])
(simp add: proots-prod proots-power degree-prod-sum-eq degree-power-eq)

qed auto

lemma complex-poly-decompose-multiset:
smult (lead-coeff p) (

∏
x∈#proots p. [:−x, 1 :]) = (p :: complex poly)

proof (cases p = 0)
case False
hence (

∏
x∈#proots p. [:−x, 1 :]) = (

∏
x | poly p x = 0 . [:−x, 1 :] ^ order x p)

by (subst image-prod-mset-multiplicity) simp-all
also have smult (lead-coeff p) . . . = p

by (rule complex-poly-decompose)
finally show ?thesis .

qed auto

lemma complex-poly-decompose ′:
obtains root where smult (lead-coeff p) (

∏
i<degree p. [:−root i, 1 :]) = (p ::

complex poly)
proof −

504

obtain roots where roots: mset roots = proots p
using ex-mset by blast

have p = smult (lead-coeff p) (
∏

x∈#proots p. [:−x, 1 :])
by (rule complex-poly-decompose-multiset [symmetric])

also have (
∏

x∈#proots p. [:−x, 1 :]) = (
∏

x←roots. [:−x, 1 :])
by (subst prod-mset-prod-list [symmetric]) (simp add: roots)

also have . . . = (
∏

i<length roots. [:−roots ! i, 1 :])
by (subst prod.list-conv-set-nth) (auto simp: atLeast0LessThan)

finally have eq: p = smult (lead-coeff p) (
∏

i<length roots. [:−roots ! i, 1 :]) .
also have [simp]: degree p = length roots

using roots by (subst eq) (auto simp: degree-prod-sum-eq)
finally show ?thesis by (intro that[of λi. roots ! i]) auto

qed

lemma complex-poly-decompose-rsquarefree:
assumes rsquarefree p
shows smult (lead-coeff p) (

∏
z|poly p z = 0 . [:−z, 1 :]) = (p :: complex poly)

proof (cases p = 0)
case False
have (

∏
z|poly p z = 0 . [:−z, 1 :]) = (

∏
z|poly p z = 0 . [:−z, 1 :] ^ order z p)

using assms False by (intro prod.cong) (auto simp: rsquarefree-root-order)
also have smult (lead-coeff p) . . . = p

by (rule complex-poly-decompose)
finally show ?thesis .

qed auto

Arithmetic operations on multivariate polynomials.
lemma mpoly-base-conv:

fixes x :: ′a::comm-ring-1
shows 0 = poly 0 x c = poly [:c:] x x = poly [:0 ,1 :] x
by simp-all

lemma mpoly-norm-conv:
fixes x :: ′a::comm-ring-1
shows poly [:0 :] x = poly 0 x poly [:poly 0 y:] x = poly 0 x
by simp-all

lemma mpoly-sub-conv:
fixes x :: ′a::comm-ring-1
shows poly p x − poly q x = poly p x + −1 ∗ poly q x
by simp

lemma poly-pad-rule: poly p x = 0 =⇒ poly (pCons 0 p) x = 0
by simp

lemma poly-cancel-eq-conv:
fixes x :: ′a::field
shows x = 0 =⇒ a 6= 0 =⇒ y = 0 ←→ a ∗ y − b ∗ x = 0

505

by auto

lemma poly-divides-pad-rule:
fixes p:: (′a::comm-ring-1) poly
assumes pq: p dvd q
shows p dvd (pCons 0 q)
by (metis add-0 dvd-def mult-pCons-right pq smult-0-left)

lemma poly-divides-conv0 :
fixes p:: ′a::field poly
assumes lgpq: degree q < degree p and lq: p 6= 0
shows p dvd q ←→ q = 0
using lgpq mod-poly-less by fastforce

lemma poly-divides-conv1 :
fixes p :: ′a::field poly
assumes a0 : a 6= 0

and pp ′: p dvd p ′

and qrp ′: smult a q − p ′ = r
shows p dvd q ←→ p dvd r
by (metis a0 diff-add-cancel dvd-add-left-iff dvd-smult-iff pp ′ qrp ′)

lemma basic-cqe-conv1 :
(∃ x. poly p x = 0 ∧ poly 0 x 6= 0) ←→ False
(∃ x. poly 0 x 6= 0) ←→ False
(∃ x. poly [:c:] x 6= 0) ←→ c 6= 0
(∃ x. poly 0 x = 0) ←→ True
(∃ x. poly [:c:] x = 0) ←→ c = 0
by simp-all

lemma basic-cqe-conv2 :
assumes l: p 6= 0
shows ∃ x. poly (pCons a (pCons b p)) x = (0 ::complex)
by (meson fundamental-theorem-of-algebra-alt l pCons-eq-0-iff pCons-eq-iff)

lemma basic-cqe-conv-2b: (∃ x. poly p x 6= (0 ::complex)) ←→ p 6= 0
by (metis poly-all-0-iff-0)

lemma basic-cqe-conv3 :
fixes p q :: complex poly
assumes l: p 6= 0
shows (∃ x. poly (pCons a p) x = 0 ∧ poly q x 6= 0) ←→ ¬ (pCons a p) dvd (q

^ psize p)
by (metis degree-pCons-eq-if l nullstellensatz-univariate pCons-eq-0-iff psize-def)

lemma basic-cqe-conv4 :
fixes p q :: complex poly
assumes h:

∧
x. poly (q ^ n) x = poly r x

shows p dvd (q ^ n) ←→ p dvd r

506

by (metis (no-types) basic-cqe-conv-2b h poly-diff right-minus-eq)

lemma poly-const-conv:
fixes x :: ′a::comm-ring-1
shows poly [:c:] x = y ←→ c = y
by simp

end

theory Group-Closure
imports

Main
begin

context ab-group-add
begin

inductive-set group-closure :: ′a set ⇒ ′a set for S
where base: s ∈ insert 0 S =⇒ s ∈ group-closure S
| diff : s ∈ group-closure S =⇒ t ∈ group-closure S =⇒ s − t ∈ group-closure S

lemma zero-in-group-closure [simp]:
0 ∈ group-closure S
using group-closure.base [of 0 S] by simp

lemma group-closure-minus-iff [simp]:
− s ∈ group-closure S ←→ s ∈ group-closure S
using group-closure.diff [of 0 S s] group-closure.diff [of 0 S − s] by auto

lemma group-closure-add:
s + t ∈ group-closure S if s ∈ group-closure S and t ∈ group-closure S
using that group-closure.diff [of s S − t] by auto

lemma group-closure-empty [simp]:
group-closure {} = {0}
by (rule ccontr) (auto elim: group-closure.induct)

lemma group-closure-insert-zero [simp]:
group-closure (insert 0 S) = group-closure S
by (auto elim: group-closure.induct intro: group-closure.intros)

end

context comm-ring-1
begin

lemma group-closure-scalar-mult-left:
of-nat n ∗ s ∈ group-closure S if s ∈ group-closure S

507

using that by (induction n) (auto simp add: algebra-simps intro: group-closure-add)

lemma group-closure-scalar-mult-right:
s ∗ of-nat n ∈ group-closure S if s ∈ group-closure S
using that group-closure-scalar-mult-left [of s S n] by (simp add: ac-simps)

end

lemma group-closure-abs-iff [simp]:
|s| ∈ group-closure S ←→ s ∈ group-closure S for s :: int
by (simp add: abs-if)

lemma group-closure-mult-left:
s ∗ t ∈ group-closure S if s ∈ group-closure S for s t :: int

proof −
from that group-closure-scalar-mult-right [of s S nat |t|]

have s ∗ int (nat |t|) ∈ group-closure S
by (simp only:)

then show ?thesis
by (cases t ≥ 0) simp-all

qed

lemma group-closure-mult-right:
s ∗ t ∈ group-closure S if t ∈ group-closure S for s t :: int
using that group-closure-mult-left [of t S s] by (simp add: ac-simps)

context idom
begin

lemma group-closure-mult-all-eq:
group-closure (times k ‘ S) = times k ‘ group-closure S

proof (rule; rule)
fix s
have ∗: k ∗ a + k ∗ b = k ∗ (a + b)

k ∗ a − k ∗ b = k ∗ (a − b) for a b
by (simp-all add: algebra-simps)

assume s ∈ group-closure (times k ‘ S)
then show s ∈ times k ‘ group-closure S
by induction (auto simp add: ∗ image-iff intro: group-closure.base group-closure.diff

bexI [of - 0])
next

fix s
assume s ∈ times k ‘ group-closure S
then obtain r where r : r ∈ group-closure S and s: s = k ∗ r

by auto
from r have k ∗ r ∈ group-closure (times k ‘ S)
by (induction arbitrary: s) (auto simp add: algebra-simps intro: group-closure.intros)

with s show s ∈ group-closure (times k ‘ S)
by simp

508

qed

end

lemma Gcd-group-closure-eq-Gcd:
Gcd (group-closure S) = Gcd S for S :: int set

proof (rule associated-eqI)
have Gcd S dvd s if s ∈ group-closure S for s

using that by induction auto
then show Gcd S dvd Gcd (group-closure S)

by auto
have Gcd (group-closure S) dvd s if s ∈ S for s
proof −

from that have s ∈ group-closure S
by (simp add: group-closure.base)

then show ?thesis
by (rule Gcd-dvd)

qed
then show Gcd (group-closure S) dvd Gcd S

by auto
qed simp-all

lemma group-closure-sum:
fixes S :: int set
assumes X : finite X X 6= {} X ⊆ S
shows (

∑
x∈X . a x ∗ x) ∈ group-closure S

using X by (induction X rule: finite-ne-induct)
(auto intro: group-closure-mult-right group-closure.base group-closure-add)

lemma Gcd-group-closure-in-group-closure:
Gcd (group-closure S) ∈ group-closure S for S :: int set

proof (cases S ⊆ {0})
case True
then have S = {} ∨ S = {0}

by auto
then show ?thesis

by auto
next

case False
then obtain s where s: s 6= 0 s ∈ S

by auto
then have s ′: |s| 6= 0 |s| ∈ group-closure S

by (auto intro: group-closure.base)
define m where m = (LEAST n. n > 0 ∧ int n ∈ group-closure S)
have m > 0 ∧ int m ∈ group-closure S

unfolding m-def
apply (rule LeastI [of - nat |s|])
using s ′

by simp

509

then have m: int m ∈ group-closure S and 0 < m
by auto

have Gcd (group-closure S) = int m
proof (rule associated-eqI)

from m show Gcd (group-closure S) dvd int m
by (rule Gcd-dvd)

show int m dvd Gcd (group-closure S)
proof (rule Gcd-greatest)

fix s
assume s: s ∈ group-closure S
show int m dvd s
proof (rule ccontr)

assume ¬ int m dvd s
then have ∗: 0 < s mod int m

using ‹0 < m› le-less by fastforce
have m ≤ nat (s mod int m)
proof (subst m-def , rule Least-le, rule)

from ∗ show 0 < nat (s mod int m)
by simp

from minus-div-mult-eq-mod [symmetric, of s int m]
have s mod int m = s − s div int m ∗ int m

by auto
also have s − s div int m ∗ int m ∈ group-closure S

by (auto intro: group-closure.diff s group-closure-mult-right m)
finally show int (nat (s mod int m)) ∈ group-closure S

by simp
qed
with ∗ have int m ≤ s mod int m

by simp
moreover have s mod int m < int m

using ‹0 < m› by simp
ultimately show False

by auto
qed

qed
qed simp-all
with m show ?thesis

by simp
qed

lemma Gcd-in-group-closure:
Gcd S ∈ group-closure S for S :: int set
using Gcd-group-closure-in-group-closure [of S]
by (simp add: Gcd-group-closure-eq-Gcd)

lemma group-closure-eq:
group-closure S = range (times (Gcd S)) for S :: int set

proof (auto intro: Gcd-in-group-closure group-closure-mult-left)

510

fix s
assume s ∈ group-closure S
then show s ∈ range (times (Gcd S))
proof induction

case (base s)
then have Gcd S dvd s

by (auto intro: Gcd-dvd)
then obtain t where s = Gcd S ∗ t ..
then show ?case

by auto
next

case (diff s t)
moreover have Gcd S ∗ a − Gcd S ∗ b = Gcd S ∗ (a − b) for a b

by (simp add: algebra-simps)
ultimately show ?case

by auto
qed

qed

end

theory Normalized-Fraction
imports

Main
Euclidean-Algorithm
Fraction-Field

begin

lemma unit-factor-1-imp-normalized: unit-factor x = 1 =⇒ normalize x = x
using unit-factor-mult-normalize [of x] by simp

definition quot-to-fract :: ′a × ′a ⇒ ′a :: idom fract where
quot-to-fract = (λ(a,b). Fraction-Field.Fract a b)

definition normalize-quot :: ′a :: {ring-gcd,idom-divide,semiring-gcd-mult-normalize}
× ′a ⇒ ′a × ′a where

normalize-quot =
(λ(a,b). if b = 0 then (0 ,1) else let d = gcd a b ∗ unit-factor b in (a div d, b

div d))

lemma normalize-quot-zero [simp]:
normalize-quot (a, 0) = (0 , 1)
by (simp add: normalize-quot-def)

lemma normalize-quot-proj:
fst (normalize-quot (a, b)) = a div (gcd a b ∗ unit-factor b)
snd (normalize-quot (a, b)) = normalize b div gcd a b if b 6= 0
using that by (simp-all add: normalize-quot-def Let-def mult.commute [of -

511

unit-factor b] dvd-div-mult2-eq mult-unit-dvd-iff ′)

definition normalized-fracts :: (′a :: {ring-gcd,idom-divide} × ′a) set where
normalized-fracts = {(a,b). coprime a b ∧ unit-factor b = 1}

lemma not-normalized-fracts-0-denom [simp]: (a, 0) /∈ normalized-fracts
by (auto simp: normalized-fracts-def)

lemma unit-factor-snd-normalize-quot [simp]:
unit-factor (snd (normalize-quot x)) = 1
by (simp add: normalize-quot-def case-prod-unfold Let-def dvd-unit-factor-div

mult-unit-dvd-iff unit-factor-mult unit-factor-gcd)

lemma snd-normalize-quot-nonzero [simp]: snd (normalize-quot x) 6= 0
using unit-factor-snd-normalize-quot[of x]
by (auto simp del: unit-factor-snd-normalize-quot)

lemma normalize-quot-aux:
fixes a b
assumes b 6= 0
defines d ≡ gcd a b ∗ unit-factor b
shows a = fst (normalize-quot (a,b)) ∗ d b = snd (normalize-quot (a,b)) ∗ d

d dvd a d dvd b d 6= 0
proof −

from assms show d dvd a d dvd b
by (simp-all add: d-def mult-unit-dvd-iff)

thus a = fst (normalize-quot (a,b)) ∗ d b = snd (normalize-quot (a,b)) ∗ d d 6=
0

by (auto simp: normalize-quot-def Let-def d-def ‹b 6= 0 ›)
qed

lemma normalize-quotE :
assumes b 6= 0
obtains d where a = fst (normalize-quot (a,b)) ∗ d b = snd (normalize-quot

(a,b)) ∗ d
d dvd a d dvd b d 6= 0

using that[OF normalize-quot-aux[OF assms]] .

lemma normalize-quotE ′:
assumes snd x 6= 0
obtains d where fst x = fst (normalize-quot x) ∗ d snd x = snd (normalize-quot

x) ∗ d
d dvd fst x d dvd snd x d 6= 0

proof −
from normalize-quotE [OF assms, of fst x] obtain d where

fst x = fst (normalize-quot (fst x, snd x)) ∗ d
snd x = snd (normalize-quot (fst x, snd x)) ∗ d
d dvd fst x
d dvd snd x

512

d 6= 0 .
then show ?thesis unfolding prod.collapse by (intro that[of d])

qed

lemma coprime-normalize-quot:
coprime (fst (normalize-quot x)) (snd (normalize-quot x))
by (simp add: normalize-quot-def case-prod-unfold div-mult-unit2)
(metis coprime-mult-self-right-iff div-gcd-coprime unit-div-mult-self unit-factor-is-unit)

lemma normalize-quot-in-normalized-fracts [simp]: normalize-quot x ∈ normal-
ized-fracts

by (simp add: normalized-fracts-def coprime-normalize-quot case-prod-unfold)

lemma normalize-quot-eq-iff :
assumes b 6= 0 d 6= 0
shows normalize-quot (a,b) = normalize-quot (c,d) ←→ a ∗ d = b ∗ c

proof −
define x y where x = normalize-quot (a,b) and y = normalize-quot (c,d)
from normalize-quotE [OF assms(1), of a] normalize-quotE [OF assms(2), of c]

obtain d1 d2
where a = fst x ∗ d1 b = snd x ∗ d1 c = fst y ∗ d2 d = snd y ∗ d2 d1 6= 0

d2 6= 0
unfolding x-def y-def by metis

hence a ∗ d = b ∗ c ←→ fst x ∗ snd y = snd x ∗ fst y by simp
also have . . . ←→ fst x = fst y ∧ snd x = snd y
by (intro coprime-crossproduct ′) (simp-all add: x-def y-def coprime-normalize-quot)

also have . . . ←→ x = y using prod-eqI by blast
finally show x = y ←→ a ∗ d = b ∗ c ..

qed

lemma normalize-quot-eq-iff ′:
assumes snd x 6= 0 snd y 6= 0
shows normalize-quot x = normalize-quot y ←→ fst x ∗ snd y = snd x ∗ fst y
using assms by (cases x, cases y, hypsubst) (subst normalize-quot-eq-iff , simp-all)

lemma normalize-quot-id: x ∈ normalized-fracts =⇒ normalize-quot x = x
by (auto simp: normalized-fracts-def normalize-quot-def case-prod-unfold)

lemma normalize-quot-idem [simp]: normalize-quot (normalize-quot x) = normal-
ize-quot x

by (rule normalize-quot-id) simp-all

lemma fractrel-iff-normalize-quot-eq:
fractrel x y ←→ normalize-quot x = normalize-quot y ∧ snd x 6= 0 ∧ snd y 6= 0
by (cases x, cases y) (auto simp: fractrel-def normalize-quot-eq-iff)

lemma fractrel-normalize-quot-left:
assumes snd x 6= 0
shows fractrel (normalize-quot x) y ←→ fractrel x y

513

using assms by (subst (1 2) fractrel-iff-normalize-quot-eq) auto

lemma fractrel-normalize-quot-right:
assumes snd x 6= 0
shows fractrel y (normalize-quot x) ←→ fractrel y x
using assms by (subst (1 2) fractrel-iff-normalize-quot-eq) auto

lift-definition quot-of-fract ::
′a :: {ring-gcd,idom-divide,semiring-gcd-mult-normalize} fract ⇒ ′a × ′a

is normalize-quot
by (subst (asm) fractrel-iff-normalize-quot-eq) simp-all

lemma quot-to-fract-quot-of-fract [simp]: quot-to-fract (quot-of-fract x) = x
unfolding quot-to-fract-def

proof transfer
fix x :: ′a × ′a assume rel: fractrel x x
define x ′ where x ′ = normalize-quot x
obtain a b where [simp]: x = (a, b) by (cases x)
from rel have b 6= 0 by simp
from normalize-quotE [OF this, of a] obtain d

where
a = fst (normalize-quot (a, b)) ∗ d
b = snd (normalize-quot (a, b)) ∗ d
d dvd a
d dvd b
d 6= 0 .

hence a = fst x ′ ∗ d b = snd x ′ ∗ d d 6= 0 snd x ′ 6= 0 by (simp-all add: x ′-def)
thus fractrel (case x ′ of (a, b) ⇒ if b = 0 then (0 , 1) else (a, b)) x

by (auto simp add: case-prod-unfold)
qed

lemma quot-of-fract-quot-to-fract: quot-of-fract (quot-to-fract x) = normalize-quot
x
proof (cases snd x = 0)

case True
thus ?thesis unfolding quot-to-fract-def

by transfer (simp add: case-prod-unfold normalize-quot-def)
next

case False
thus ?thesis unfolding quot-to-fract-def by transfer (simp add: case-prod-unfold)

qed

lemma quot-of-fract-quot-to-fract ′:
x ∈ normalized-fracts =⇒ quot-of-fract (quot-to-fract x) = x
unfolding quot-to-fract-def by transfer (auto simp: normalize-quot-id)

lemma quot-of-fract-in-normalized-fracts [simp]: quot-of-fract x ∈ normalized-fracts
by transfer simp

514

lemma normalize-quotI :
assumes a ∗ d = b ∗ c b 6= 0 (c, d) ∈ normalized-fracts
shows normalize-quot (a, b) = (c, d)

proof −
from assms have normalize-quot (a, b) = normalize-quot (c, d)

by (subst normalize-quot-eq-iff) auto
also have . . . = (c, d) by (intro normalize-quot-id) fact
finally show ?thesis .

qed

lemma td-normalized-fract:
type-definition quot-of-fract quot-to-fract normalized-fracts
by standard (simp-all add: quot-of-fract-quot-to-fract ′)

lemma quot-of-fract-add-aux:
assumes snd x 6= 0 snd y 6= 0
shows (fst x ∗ snd y + fst y ∗ snd x) ∗ (snd (normalize-quot x) ∗ snd

(normalize-quot y)) =
snd x ∗ snd y ∗ (fst (normalize-quot x) ∗ snd (normalize-quot y) +
snd (normalize-quot x) ∗ fst (normalize-quot y))

proof −
from normalize-quotE ′[OF assms(1)] obtain d

where d:
fst x = fst (normalize-quot x) ∗ d
snd x = snd (normalize-quot x) ∗ d
d dvd fst x
d dvd snd x
d 6= 0 .

from normalize-quotE ′[OF assms(2)] obtain e
where e:

fst y = fst (normalize-quot y) ∗ e
snd y = snd (normalize-quot y) ∗ e
e dvd fst y
e dvd snd y
e 6= 0 .

show ?thesis by (simp-all add: d e algebra-simps)
qed

locale fract-as-normalized-quot
begin
setup-lifting td-normalized-fract
end

lemma quot-of-fract-add:
quot-of-fract (x + y) =

(let (a,b) = quot-of-fract x; (c,d) = quot-of-fract y

515

in normalize-quot (a ∗ d + b ∗ c, b ∗ d))
by transfer (insert quot-of-fract-add-aux,

simp-all add: Let-def case-prod-unfold normalize-quot-eq-iff)

lemma quot-of-fract-uminus:
quot-of-fract (−x) = (let (a,b) = quot-of-fract x in (−a, b))
by transfer (auto simp: case-prod-unfold Let-def normalize-quot-def dvd-neg-div

mult-unit-dvd-iff)

lemma quot-of-fract-diff :
quot-of-fract (x − y) =

(let (a,b) = quot-of-fract x; (c,d) = quot-of-fract y
in normalize-quot (a ∗ d − b ∗ c, b ∗ d)) (is - = ?rhs)

proof −
have x − y = x + −y by simp
also have quot-of-fract . . . = ?rhs

by (simp only: quot-of-fract-add quot-of-fract-uminus Let-def case-prod-unfold)
simp-all

finally show ?thesis .
qed

lemma normalize-quot-mult-coprime:
assumes coprime a b coprime c d unit-factor b = 1 unit-factor d = 1
defines e ≡ fst (normalize-quot (a, d)) and f ≡ snd (normalize-quot (a, d))

and g ≡ fst (normalize-quot (c, b)) and h ≡ snd (normalize-quot (c, b))
shows normalize-quot (a ∗ c, b ∗ d) = (e ∗ g, f ∗ h)

proof (rule normalize-quotI)
from assms have gcd a b = 1 gcd c d = 1

by simp-all
from assms have b 6= 0 d 6= 0 by auto
with assms have normalize b = b normalize d = d

by (auto intro: normalize-unit-factor-eqI)
from normalize-quotE [OF ‹b 6= 0 ›, of c] obtain k

where
c = fst (normalize-quot (c, b)) ∗ k
b = snd (normalize-quot (c, b)) ∗ k
k dvd c k dvd b k 6= 0 .

note k = this [folded ‹gcd a b = 1 › ‹gcd c d = 1 › assms(3) assms(4)]
from normalize-quotE [OF ‹d 6= 0 ›, of a] obtain l

where a = fst (normalize-quot (a, d)) ∗ l
d = snd (normalize-quot (a, d)) ∗ l
l dvd a l dvd d l 6= 0 .

note l = this [folded ‹gcd a b = 1 › ‹gcd c d = 1 › assms(3) assms(4)]
from k l show a ∗ c ∗ (f ∗ h) = b ∗ d ∗ (e ∗ g)

by (metis e-def f-def g-def h-def mult.commute mult.left-commute)
from assms have [simp]: unit-factor f = 1 unit-factor h = 1

by simp-all
from assms have coprime e f coprime g h by (simp-all add: coprime-normalize-quot)
with k l assms(1 ,2) ‹b 6= 0 › ‹d 6= 0 › ‹unit-factor b = 1 › ‹unit-factor d = 1 ›

516

‹normalize b = b› ‹normalize d = d›
show (e ∗ g, f ∗ h) ∈ normalized-fracts

by (simp add: normalized-fracts-def unit-factor-mult e-def f-def g-def h-def
coprime-normalize-quot dvd-unit-factor-div unit-factor-gcd)
(metis coprime-mult-left-iff coprime-mult-right-iff)

qed (insert assms(3 ,4), auto)

lemma normalize-quot-mult:
assumes snd x 6= 0 snd y 6= 0
shows normalize-quot (fst x ∗ fst y, snd x ∗ snd y) = normalize-quot

(fst (normalize-quot x) ∗ fst (normalize-quot y),
snd (normalize-quot x) ∗ snd (normalize-quot y))

proof −
from normalize-quotE ′[OF assms(1)] obtain d where d:

fst x = fst (normalize-quot x) ∗ d
snd x = snd (normalize-quot x) ∗ d
d dvd fst x
d dvd snd x
d 6= 0 .

from normalize-quotE ′[OF assms(2)] obtain e where e:
fst y = fst (normalize-quot y) ∗ e
snd y = snd (normalize-quot y) ∗ e
e dvd fst y
e dvd snd y
e 6= 0 .

show ?thesis by (simp-all add: d e algebra-simps normalize-quot-eq-iff)
qed

lemma quot-of-fract-mult:
quot-of-fract (x ∗ y) =

(let (a,b) = quot-of-fract x; (c,d) = quot-of-fract y;
(e,f) = normalize-quot (a,d); (g,h) = normalize-quot (c,b)

in (e∗g, f ∗h))
by transfer

(simp add: split-def Let-def coprime-normalize-quot normalize-quot-mult nor-
malize-quot-mult-coprime)

lemma normalize-quot-0 [simp]:
normalize-quot (0 , x) = (0 , 1) normalize-quot (x, 0) = (0 , 1)

by (simp-all add: normalize-quot-def)

lemma normalize-quot-eq-0-iff [simp]: fst (normalize-quot x) = 0 ←→ fst x = 0
∨ snd x = 0
by (auto simp: normalize-quot-def case-prod-unfold Let-def div-mult-unit2 dvd-div-eq-0-iff)

lemma fst-quot-of-fract-0-imp: fst (quot-of-fract x) = 0 =⇒ snd (quot-of-fract x)
= 1

by transfer auto

517

lemma normalize-quot-swap:
assumes a 6= 0 b 6= 0
defines a ′ ≡ fst (normalize-quot (a, b)) and b ′ ≡ snd (normalize-quot (a, b))
shows normalize-quot (b, a) = (b ′ div unit-factor a ′, a ′ div unit-factor a ′)

proof (rule normalize-quotI)
from normalize-quotE [OF assms(2), of a] obtain d where

a = fst (normalize-quot (a, b)) ∗ d
b = snd (normalize-quot (a, b)) ∗ d
d dvd a d dvd b d 6= 0 .

note d = this [folded assms(3 ,4)]
show b ∗ (a ′ div unit-factor a ′) = a ∗ (b ′ div unit-factor a ′)

using assms(1 ,2) d
by (simp add: div-unit-factor [symmetric] unit-div-mult-swap mult-ac del:

div-unit-factor)
have coprime a ′ b ′ by (simp add: a ′-def b ′-def coprime-normalize-quot)
thus (b ′ div unit-factor a ′, a ′ div unit-factor a ′) ∈ normalized-fracts

using assms(1 ,2) d
by (auto simp add: normalized-fracts-def ac-simps dvd-div-unit-iff elim: co-

prime-imp-coprime)
qed fact+

lemma quot-of-fract-inverse:
quot-of-fract (inverse x) =

(let (a,b) = quot-of-fract x; d = unit-factor a
in if d = 0 then (0 , 1) else (b div d, a div d))

proof (transfer , goal-cases)
case (1 x)
from normalize-quot-swap[of fst x snd x] show ?case

by (auto simp: Let-def case-prod-unfold)
qed

lemma normalize-quot-div-unit-left:
fixes x y u
assumes is-unit u
defines x ′ ≡ fst (normalize-quot (x, y)) and y ′ ≡ snd (normalize-quot (x, y))
shows normalize-quot (x div u, y) = (x ′ div u, y ′)

proof (cases y = 0)
case False
define v where v = 1 div u
with ‹is-unit u› have is-unit v and u:

∧
a. a div u = a ∗ v

by simp-all
from ‹is-unit v› have coprime v = top

by (simp add: fun-eq-iff is-unit-left-imp-coprime)
from normalize-quotE [OF False, of x] obtain d where

x = fst (normalize-quot (x, y)) ∗ d
y = snd (normalize-quot (x, y)) ∗ d
d dvd x d dvd y d 6= 0 .

note d = this[folded assms(2 ,3)]
from assms have coprime x ′ y ′ unit-factor y ′ = 1

518

by (simp-all add: coprime-normalize-quot)
with d ‹coprime v = top› have normalize-quot (x ∗ v, y) = (x ′ ∗ v, y ′)

by (auto simp: normalized-fracts-def intro: normalize-quotI)
then show ?thesis

by (simp add: u)
qed (simp-all add: assms)

lemma normalize-quot-div-unit-right:
fixes x y u
assumes is-unit u
defines x ′ ≡ fst (normalize-quot (x, y)) and y ′ ≡ snd (normalize-quot (x, y))
shows normalize-quot (x, y div u) = (x ′ ∗ u, y ′)

proof (cases y = 0)
case False
from normalize-quotE [OF this, of x]
obtain d where d:

x = fst (normalize-quot (x, y)) ∗ d
y = snd (normalize-quot (x, y)) ∗ d
d dvd x d dvd y d 6= 0 .

note d = this[folded assms(2 ,3)]
from assms have coprime x ′ y ′ unit-factor y ′= 1 by (simp-all add: coprime-normalize-quot)
with d ‹is-unit u› show ?thesis
by (auto simp add: normalized-fracts-def is-unit-left-imp-coprime unit-div-eq-0-iff

intro: normalize-quotI)
qed (simp-all add: assms)

lemma normalize-quot-normalize-left:
fixes x y u
defines x ′ ≡ fst (normalize-quot (x, y)) and y ′ ≡ snd (normalize-quot (x, y))
shows normalize-quot (normalize x, y) = (x ′ div unit-factor x, y ′)
using normalize-quot-div-unit-left[of unit-factor x x y]
by (cases x = 0) (simp-all add: assms)

lemma normalize-quot-normalize-right:
fixes x y u
defines x ′ ≡ fst (normalize-quot (x, y)) and y ′ ≡ snd (normalize-quot (x, y))
shows normalize-quot (x, normalize y) = (x ′ ∗ unit-factor y, y ′)
using normalize-quot-div-unit-right[of unit-factor y x y]
by (cases y = 0) (simp-all add: assms)

lemma quot-of-fract-0 [simp]: quot-of-fract 0 = (0 , 1)
by transfer auto

lemma quot-of-fract-1 [simp]: quot-of-fract 1 = (1 , 1)
by transfer (rule normalize-quotI , simp-all add: normalized-fracts-def)

lemma quot-of-fract-divide:
quot-of-fract (x / y) = (if y = 0 then (0 , 1) else

(let (a,b) = quot-of-fract x; (c,d) = quot-of-fract y;

519

(e,f) = normalize-quot (a,c); (g,h) = normalize-quot (d,b)
in (e ∗ g, f ∗ h))) (is - = ?rhs)

proof (cases y = 0)
case False
hence A: fst (quot-of-fract y) 6= 0 by transfer auto
have x / y = x ∗ inverse y by (simp add: divide-inverse)
also from False A have quot-of-fract . . . = ?rhs

by (simp only: quot-of-fract-mult quot-of-fract-inverse)
(simp-all add: Let-def case-prod-unfold fst-quot-of-fract-0-imp

normalize-quot-div-unit-left normalize-quot-div-unit-right
normalize-quot-normalize-right normalize-quot-normalize-left)

finally show ?thesis .
qed simp-all

lemma snd-quot-of-fract-nonzero [simp]: snd (quot-of-fract x) 6= 0
by transfer simp

lemma Fract-quot-of-fract [simp]: Fract (fst (quot-of-fract x)) (snd (quot-of-fract
x)) = x

by transfer (simp del: fractrel-iff , subst fractrel-normalize-quot-left, simp)

lemma snd-quot-of-fract-Fract-whole:
assumes y dvd x
shows snd (quot-of-fract (Fract x y)) = 1
using assms by transfer (auto simp: normalize-quot-def Let-def gcd-proj2-if-dvd)

lemma fst-quot-of-fract-eq-0-iff [simp]: fst (quot-of-fract x) = 0 ←→ x = 0
by transfer simp

lemma coprime-quot-of-fract:
coprime (fst (quot-of-fract x)) (snd (quot-of-fract x))
by transfer (simp add: coprime-normalize-quot)

lemma unit-factor-snd-quot-of-fract: unit-factor (snd (quot-of-fract x)) = 1
using quot-of-fract-in-normalized-fracts[of x]
by (simp add: normalized-fracts-def case-prod-unfold)

lemma normalize-snd-quot-of-fract: normalize (snd (quot-of-fract x)) = snd (quot-of-fract
x)

by (intro unit-factor-1-imp-normalized unit-factor-snd-quot-of-fract)

end

10 n-th powers and roots of naturals
theory Nth-Powers

imports Primes
begin

520

10.1 The set of n-th powers
definition is-nth-power :: nat ⇒ ′a :: monoid-mult ⇒ bool where

is-nth-power n x ←→ (∃ y. x = y ^ n)

lemma is-nth-power-nth-power [simp, intro]: is-nth-power n (x ^ n)
by (auto simp add: is-nth-power-def)

lemma is-nth-powerI [intro?]: x = y ^ n =⇒ is-nth-power n x
by (auto simp: is-nth-power-def)

lemma is-nth-powerE : is-nth-power n x =⇒ (
∧

y. x = y ^ n =⇒ P) =⇒ P
by (auto simp: is-nth-power-def)

abbreviation is-square where is-square ≡ is-nth-power 2

lemma is-zeroth-power [simp]: is-nth-power 0 x ←→ x = 1
by (simp add: is-nth-power-def)

lemma is-first-power [simp]: is-nth-power 1 x
by (simp add: is-nth-power-def)

lemma is-first-power ′ [simp]: is-nth-power (Suc 0) x
by (simp add: is-nth-power-def)

lemma is-nth-power-0 [simp]: n > 0 =⇒ is-nth-power n (0 :: ′a :: semiring-1)
by (auto simp: is-nth-power-def power-0-left intro!: exI [of - 0])

lemma is-nth-power-0-iff [simp]: is-nth-power n (0 :: ′a :: semiring-1) ←→ n > 0
by (cases n) auto

lemma is-nth-power-1 [simp]: is-nth-power n 1
by (auto simp: is-nth-power-def intro!: exI [of - 1])

lemma is-nth-power-Suc-0 [simp]: is-nth-power n (Suc 0)
by (metis One-nat-def is-nth-power-1)

lemma is-nth-power-conv-multiplicity:
fixes x :: ′a :: {factorial-semiring, normalization-semidom-multiplicative}
assumes n > 0
shows is-nth-power n (normalize x) ←→ (∀ p. prime p −→ n dvd multiplicity

p x)
proof (cases x = 0)

case False
show ?thesis
proof (safe intro!: is-nth-powerI elim!: is-nth-powerE)

fix y p :: ′a assume ∗: normalize x = y ^ n prime p
with assms and False have [simp]: y 6= 0 by (auto simp: power-0-left)
have multiplicity p x = multiplicity p (y ^ n)

521

by (metis ∗(1) multiplicity-normalize-right)
with False and ∗ and assms show n dvd multiplicity p x

by (auto simp: prime-elem-multiplicity-power-distrib)
next

assume ∗: ∀ p. prime p −→ n dvd multiplicity p x
have multiplicity p ((

∏
p∈prime-factors x. p ^ (multiplicity p x div n)) ^ n) =

multiplicity p x if prime p for p
proof −

from that and ∗ have n dvd multiplicity p x by blast
have multiplicity p x = 0 if p /∈ prime-factors x

using that and ‹prime p› by (simp add: prime-factors-multiplicity)
with that and ∗ and assms show ?thesis unfolding prod-power-distrib

power-mult [symmetric]
by (subst multiplicity-prod-prime-powers) (auto simp: in-prime-factors-imp-prime)

qed
with assms False

have normalize x = normalize ((
∏

p∈prime-factors x. p ^ (multiplicity p x
div n)) ^ n)

by (intro multiplicity-eq-imp-eq) (auto simp: multiplicity-prod-prime-powers)
thus normalize x = normalize (

∏
p∈prime-factors x. p ^ (multiplicity p x div

n)) ^ n
by (simp add: normalize-power)

qed
qed (insert assms, auto)

lemma is-nth-power-conv-multiplicity-nat:
assumes n > 0
shows is-nth-power n (x :: nat) ←→ (∀ p. prime p −→ n dvd multiplicity p x)
using is-nth-power-conv-multiplicity[OF assms, of x] by simp

lemma is-nth-power-mult:
assumes is-nth-power n a is-nth-power n b
shows is-nth-power n (a ∗ b :: ′a :: comm-monoid-mult)
by (metis assms is-nth-power-def power-mult-distrib)

lemma is-nth-power-mult-coprime-natD:
fixes a b :: nat
assumes coprime a b is-nth-power n (a ∗ b) a > 0 b > 0
shows is-nth-power n a is-nth-power n b

proof −
have A: is-nth-power n a if coprime a b is-nth-power n (a ∗ b) a 6= 0 b 6= 0 n >

0
for a b :: nat unfolding is-nth-power-conv-multiplicity-nat[OF ‹n > 0 ›]

proof safe
fix p :: nat assume p: prime p
from ‹coprime a b› have ¬(p dvd a ∧ p dvd b)

using coprime-common-divisor-nat[of a b p] p by auto
moreover from that and p

have n dvd multiplicity p a + multiplicity p b

522

by (auto simp: is-nth-power-conv-multiplicity-nat prime-elem-multiplicity-mult-distrib)
ultimately show n dvd multiplicity p a

by (auto simp: not-dvd-imp-multiplicity-0)
qed
from A [of a b] assms show is-nth-power n a

by (cases n = 0) simp-all
from A [of b a] assms show is-nth-power n b

by (cases n = 0) (simp-all add: ac-simps)
qed

lemma is-nth-power-mult-coprime-nat-iff :
fixes a b :: nat
assumes coprime a b
shows is-nth-power n (a ∗ b) ←→ is-nth-power n a ∧is-nth-power n b
using assms
by (cases a = 0 ; cases b = 0)

(auto intro: is-nth-power-mult dest: is-nth-power-mult-coprime-natD[of a b n]
simp del: One-nat-def)

lemma is-nth-power-prime-power-nat-iff :
fixes p :: nat assumes prime p
shows is-nth-power n (p ^ k) ←→ n dvd k
using assms
by (cases n > 0)
(auto simp: is-nth-power-conv-multiplicity-nat prime-elem-multiplicity-power-distrib)

lemma is-nth-power-nth-power ′:
assumes n dvd n ′

shows is-nth-power n (m ^ n ′)
by (metis assms dvd-div-mult-self is-nth-power-def power-mult)

definition is-nth-power-nat :: nat ⇒ nat ⇒ bool
where [code-abbrev]: is-nth-power-nat = is-nth-power

lemma is-nth-power-nat-code [code]:
is-nth-power-nat n m =

(if n = 0 then m = 1
else if m = 0 then n > 0
else if n = 1 then True
else (∃ k∈{1 ..m}. k ^ n = m))

by (auto simp: is-nth-power-nat-def is-nth-power-def power-eq-iff-eq-base self-le-power)

lemma is-nth-power-mult-cancel-left:
fixes a b :: ′a :: semiring-gcd
assumes is-nth-power n a a 6= 0
shows is-nth-power n (a ∗ b) ←→ is-nth-power n b

proof (cases n > 0)
case True
show ?thesis

523

proof
assume is-nth-power n (a ∗ b)
then obtain x where x: a ∗ b = x ^ n

by (elim is-nth-powerE)
obtain y where y: a = y ^ n

using assms by (elim is-nth-powerE)
have y ^ n dvd x ^ n

by (simp flip: x y)
hence y dvd x

using ‹n > 0 › by simp
then obtain z where z: x = y ∗ z

by (elim dvdE)
with ‹a 6= 0 › show is-nth-power n b

by (metis is-nth-powerI mult-left-cancel power-mult-distrib x y)
qed (use assms in ‹auto intro: is-nth-power-mult›)

qed (use assms in auto)

lemma is-nth-power-mult-cancel-right:
fixes a b :: ′a :: semiring-gcd
assumes is-nth-power n b b 6= 0
shows is-nth-power n (a ∗ b) ←→ is-nth-power n a
by (metis assms is-nth-power-mult-cancel-left mult.commute)

10.2 The n-root of a natural number
definition nth-root-nat :: nat ⇒ nat ⇒ nat where

nth-root-nat k n = (if k = 0 then 0 else Max {m. m ^ k ≤ n})

lemma zeroth-root-nat [simp]: nth-root-nat 0 n = 0
by (simp add: nth-root-nat-def)

lemma nth-root-nat-aux1 :
assumes k > 0
shows {m::nat. m ^ k ≤ n} ⊆ {..n}

proof safe
fix m assume m ^ k ≤ n
show m ≤ n
proof (cases m = 0)

case False
with assms have m ^ 1 ≤ m ^ k by (intro power-increasing) simp-all
also note ‹m ^ k ≤ n›
finally show ?thesis by simp

qed simp-all
qed

lemma nth-root-nat-aux2 :
assumes k > 0
shows finite {m::nat. m ^ k ≤ n} {m::nat. m ^ k ≤ n} 6= {}

proof −

524

from assms have {m. m ^ k ≤ n} ⊆ {..n} by (rule nth-root-nat-aux1)
moreover have finite {..n} by simp
ultimately show finite {m::nat. m ^ k ≤ n} by (rule finite-subset)

next
from assms show {m::nat. m ^ k ≤ n} 6= {} by (auto intro!: exI [of - 0] simp:

power-0-left)
qed

lemma
assumes k > 0
shows nth-root-nat-power-le: nth-root-nat k n ^ k ≤ n

and nth-root-nat-ge: x ^ k ≤ n =⇒ x ≤ nth-root-nat k n
using Max-in[OF nth-root-nat-aux2 [OF assms], of n]

Max-ge[OF nth-root-nat-aux2 (1)[OF assms], of x n] assms
by (auto simp: nth-root-nat-def)

lemma nth-root-nat-less:
assumes k > 0 x ^ k > n
shows nth-root-nat k n < x
by (meson assms nth-root-nat-power-le order .strict-trans1 power-less-imp-less-base

zero-le)

lemma nth-root-nat-unique:
assumes m ^ k ≤ n (m + 1) ^ k > n
shows nth-root-nat k n = m

proof (cases k > 0)
case True
from nth-root-nat-less[OF ‹k > 0 › assms(2)]

have nth-root-nat k n ≤ m by simp
moreover from ‹k > 0 › and assms(1) have nth-root-nat k n ≥ m

by (intro nth-root-nat-ge)
ultimately show ?thesis by (rule antisym)

qed (insert assms, auto)

lemma nth-root-nat-0 [simp]: nth-root-nat k 0 = 0
by (simp add: nth-root-nat-def)

lemma nth-root-nat-1 [simp]: k > 0 =⇒ nth-root-nat k 1 = 1
by (rule nth-root-nat-unique) (auto simp del: One-nat-def)

lemma nth-root-nat-Suc-0 [simp]: k > 0 =⇒ nth-root-nat k (Suc 0) = Suc 0
using One-nat-def is-nth-power-nat-def nth-root-nat-1
by presburger

lemma first-root-nat [simp]: nth-root-nat 1 n = n
by (intro nth-root-nat-unique) auto

lemma first-root-nat ′ [simp]: nth-root-nat (Suc 0) n = n
by (intro nth-root-nat-unique) auto

525

lemma nth-root-nat-code-naive ′:
nth-root-nat k n = (if k = 0 then 0 else Max (Set.filter (λm. m ^ k ≤ n) {..n}))

proof (cases k > 0)
case True
then have {m. m ^ k ≤ n} ⊆ {..n} by (rule nth-root-nat-aux1)
then have Set.filter (λm. m ^ k ≤ n) {..n} = {m. m ^ k ≤ n}

by (auto simp:)
with True show ?thesis

by (simp add: nth-root-nat-def)
qed simp

function nth-root-nat-aux :: nat ⇒ nat ⇒ nat ⇒ nat ⇒ nat where
nth-root-nat-aux m k acc n =

(let acc ′ = (k + 1) ^ m
in if k ≥ n ∨ acc ′ > n then k else nth-root-nat-aux m (k+1) acc ′ n)

by auto
termination by (relation measure (λ(-,k,-,n). n − k), goal-cases) auto

lemma nth-root-nat-aux-le:
assumes k ^ m ≤ n m > 0
shows nth-root-nat-aux m k (k ^ m) n ^ m ≤ n
using assms
by (induction m k k ^ m n rule: nth-root-nat-aux.induct) (auto simp: Let-def)

lemma nth-root-nat-aux-gt:
assumes m > 0
shows (nth-root-nat-aux m k (k ^ m) n + 1) ^ m > n
using assms

proof (induction m k k ^ m n rule: nth-root-nat-aux.induct)
case (1 m k n)
have n < Suc k ^ m if n ≤ k
proof −

note that
also have k < Suc k ^ 1 by simp
also from ‹m > 0 › have . . . ≤ Suc k ^ m

by (intro power-increasing) simp-all
finally show ?thesis .

qed
with 1 show ?case by (auto simp: Let-def)

qed

lemma nth-root-nat-aux-correct:
assumes k ^ m ≤ n m > 0
shows nth-root-nat-aux m k (k ^ m) n = nth-root-nat m n
by (metis assms nth-root-nat-aux-gt nth-root-nat-aux-le nth-root-nat-unique)

lemma nth-root-nat-naive-code [code]:
nth-root-nat m n = (if m = 0 ∨ n = 0 then 0 else if m = 1 ∨ n = 1 then n else

526

nth-root-nat-aux m 1 1 n)
using nth-root-nat-aux-correct[of 1 m n] by auto

lemma nth-root-nat-nth-power [simp]: k > 0 =⇒ nth-root-nat k (n ^ k) = n
by (intro nth-root-nat-unique order .refl power-strict-mono) simp-all

lemma nth-root-nat-nth-power ′:
assumes k > 0 k dvd m
shows nth-root-nat k (n ^ m) = n ^ (m div k)
by (metis assms dvd-div-mult-self nth-root-nat-nth-power power-mult)

lemma nth-root-nat-mono:
assumes m ≤ n
shows nth-root-nat k m ≤ nth-root-nat k n

proof (cases k = 0)
case False
with assms show ?thesis unfolding nth-root-nat-def

using nth-root-nat-aux2 [of k m] nth-root-nat-aux2 [of k n]
by (auto intro!: Max-mono)

qed auto

end

11 Polynomials, fractions and rings
theory Polynomial-Factorial
imports

Complex-Main
Polynomial
Normalized-Fraction

begin

11.1 Lifting elements into the field of fractions
definition to-fract :: ′a :: idom ⇒ ′a fract

where to-fract x = Fract x 1
— FIXME: more idiomatic name, abbreviation

lemma to-fract-0 [simp]: to-fract 0 = 0
by (simp add: to-fract-def eq-fract Zero-fract-def)

lemma to-fract-1 [simp]: to-fract 1 = 1
by (simp add: to-fract-def eq-fract One-fract-def)

lemma to-fract-add [simp]: to-fract (x + y) = to-fract x + to-fract y
by (simp add: to-fract-def)

lemma to-fract-diff [simp]: to-fract (x − y) = to-fract x − to-fract y

527

by (simp add: to-fract-def)

lemma to-fract-uminus [simp]: to-fract (−x) = −to-fract x
by (simp add: to-fract-def)

lemma to-fract-mult [simp]: to-fract (x ∗ y) = to-fract x ∗ to-fract y
by (simp add: to-fract-def)

lemma to-fract-eq-iff [simp]: to-fract x = to-fract y ←→ x = y
by (simp add: to-fract-def eq-fract)

lemma to-fract-eq-0-iff [simp]: to-fract x = 0 ←→ x = 0
by (simp add: to-fract-def Zero-fract-def eq-fract)

lemma to-fract-quot-of-fract:
assumes snd (quot-of-fract x) = 1
shows to-fract (fst (quot-of-fract x)) = x

proof −
have x = Fract (fst (quot-of-fract x)) (snd (quot-of-fract x)) by simp
also note assms
finally show ?thesis by (simp add: to-fract-def)

qed

lemma Fract-conv-to-fract: Fract a b = to-fract a / to-fract b
by (simp add: to-fract-def)

lemma quot-of-fract-to-fract [simp]: quot-of-fract (to-fract x) = (x, 1)
unfolding to-fract-def by transfer (simp add: normalize-quot-def)

lemma snd-quot-of-fract-to-fract [simp]: snd (quot-of-fract (to-fract x)) = 1
unfolding to-fract-def by (rule snd-quot-of-fract-Fract-whole) simp-all

11.2 Lifting polynomial coefficients to the field of fractions
abbreviation (input) fract-poly :: ‹ ′a::idom poly ⇒ ′a fract poly›

where fract-poly ≡ map-poly to-fract

abbreviation (input) unfract-poly :: ‹ ′a::{ring-gcd,semiring-gcd-mult-normalize,idom-divide}
fract poly ⇒ ′a poly›

where unfract-poly ≡ map-poly (fst ◦ quot-of-fract)

lemma fract-poly-smult [simp]: fract-poly (smult c p) = smult (to-fract c) (fract-poly
p)

by (simp add: smult-conv-map-poly map-poly-map-poly o-def)

lemma fract-poly-0 [simp]: fract-poly 0 = 0
by (simp add: poly-eqI coeff-map-poly)

lemma fract-poly-1 [simp]: fract-poly 1 = 1

528

by (simp add: map-poly-pCons)

lemma fract-poly-add [simp]:
fract-poly (p + q) = fract-poly p + fract-poly q
by (intro poly-eqI) (simp-all add: coeff-map-poly)

lemma fract-poly-diff [simp]:
fract-poly (p − q) = fract-poly p − fract-poly q
by (intro poly-eqI) (simp-all add: coeff-map-poly)

lemma to-fract-sum [simp]: to-fract (sum f A) = sum (λx. to-fract (f x)) A
by (cases finite A, induction A rule: finite-induct) simp-all

lemma fract-poly-mult [simp]:
fract-poly (p ∗ q) = fract-poly p ∗ fract-poly q
by (intro poly-eqI) (simp-all add: coeff-map-poly coeff-mult)

lemma fract-poly-eq-iff [simp]: fract-poly p = fract-poly q ←→ p = q
by (auto simp: poly-eq-iff coeff-map-poly)

lemma fract-poly-eq-0-iff [simp]: fract-poly p = 0 ←→ p = 0
using fract-poly-eq-iff [of p 0] by (simp del: fract-poly-eq-iff)

lemma fract-poly-dvd: p dvd q =⇒ fract-poly p dvd fract-poly q
by auto

lemma prod-mset-fract-poly:
(
∏

x∈#A. map-poly to-fract (f x)) = fract-poly (prod-mset (image-mset f A))
by (induct A) (simp-all add: ac-simps)

lemma is-unit-fract-poly-iff :
p dvd 1 ←→ fract-poly p dvd 1 ∧ content p = 1

proof safe
assume A: p dvd 1
with fract-poly-dvd [of p 1] show is-unit (fract-poly p)

by simp
from A show content p = 1

by (auto simp: is-unit-poly-iff normalize-1-iff)
next

assume A: fract-poly p dvd 1 and B: content p = 1
from A obtain c where c: fract-poly p = [:c:] by (auto simp: is-unit-poly-iff)
{

fix n :: nat assume n > 0
have to-fract (coeff p n) = coeff (fract-poly p) n by (simp add: coeff-map-poly)
also note c
also from ‹n > 0 › have coeff [:c:] n = 0 by (simp add: coeff-pCons split:

nat.splits)
finally have coeff p n = 0 by simp

}

529

hence degree p ≤ 0 by (intro degree-le) simp-all
with B show p dvd 1 by (auto simp: is-unit-poly-iff normalize-1-iff elim!: de-

gree-eq-zeroE)
qed

lemma fract-poly-is-unit: p dvd 1 =⇒ fract-poly p dvd 1
using fract-poly-dvd[of p 1] by simp

lemma fract-poly-smult-eqE :
fixes c :: ′a :: {idom-divide,ring-gcd,semiring-gcd-mult-normalize} fract
assumes fract-poly p = smult c (fract-poly q)
obtains a b

where c = to-fract b / to-fract a smult a p = smult b q coprime a b normalize
a = a
proof −

define a b where a = fst (quot-of-fract c) and b = snd (quot-of-fract c)
have smult (to-fract a) (fract-poly q) = smult (to-fract b) (fract-poly p)
by (subst smult-eq-iff) (simp-all add: a-def b-def Fract-conv-to-fract [symmetric]

assms)
hence fract-poly (smult a q) = fract-poly (smult b p) by (simp del: fract-poly-eq-iff)
hence smult b p = smult a q by (simp only: fract-poly-eq-iff)
moreover have c = to-fract a / to-fract b coprime b a normalize b = b

by (simp-all add: a-def b-def coprime-quot-of-fract [of c] ac-simps
normalize-snd-quot-of-fract Fract-conv-to-fract [symmetric])

ultimately show ?thesis by (intro that[of a b])
qed

11.3 Fractional content
abbreviation (input) Lcm-coeff-denoms

:: ′a :: {semiring-Gcd,idom-divide,ring-gcd,semiring-gcd-mult-normalize} fract
poly ⇒ ′a

where Lcm-coeff-denoms p ≡ Lcm (snd ‘ quot-of-fract ‘ set (coeffs p))

definition fract-content ::
′a :: {factorial-semiring,semiring-Gcd,ring-gcd,idom-divide,semiring-gcd-mult-normalize}

fract poly ⇒ ′a fract where
fract-content p =

(let d = Lcm-coeff-denoms p in Fract (content (unfract-poly (smult (to-fract
d) p))) d)

definition primitive-part-fract ::
′a :: {factorial-semiring,semiring-Gcd,ring-gcd,idom-divide,semiring-gcd-mult-normalize}

fract poly ⇒ ′a poly where
primitive-part-fract p =

primitive-part (unfract-poly (smult (to-fract (Lcm-coeff-denoms p)) p))

lemma primitive-part-fract-0 [simp]: primitive-part-fract 0 = 0
by (simp add: primitive-part-fract-def)

530

lemma fract-content-eq-0-iff [simp]:
fract-content p = 0 ←→ p = 0
unfolding fract-content-def Let-def Zero-fract-def
by (subst eq-fract) (auto simp: Lcm-0-iff map-poly-eq-0-iff)

lemma content-primitive-part-fract [simp]:
fixes p :: ′a :: {semiring-gcd-mult-normalize,

factorial-semiring, ring-gcd, semiring-Gcd,idom-divide} fract poly
shows p 6= 0 =⇒ content (primitive-part-fract p) = 1
unfolding primitive-part-fract-def
by (rule content-primitive-part)

(auto simp: primitive-part-fract-def map-poly-eq-0-iff Lcm-0-iff)

lemma content-times-primitive-part-fract:
smult (fract-content p) (fract-poly (primitive-part-fract p)) = p

proof −
define p ′ where p ′ = unfract-poly (smult (to-fract (Lcm-coeff-denoms p)) p)
have fract-poly p ′ =

map-poly (to-fract ◦ fst ◦ quot-of-fract) (smult (to-fract (Lcm-coeff-denoms
p)) p)

unfolding primitive-part-fract-def p ′-def
by (subst map-poly-map-poly) (simp-all add: o-assoc)

also have . . . = smult (to-fract (Lcm-coeff-denoms p)) p
proof (intro map-poly-idI , unfold o-apply)

fix c assume c ∈ set (coeffs (smult (to-fract (Lcm-coeff-denoms p)) p))
then obtain c ′ where c: c ′ ∈ set (coeffs p) c = to-fract (Lcm-coeff-denoms p)

∗ c ′

by (auto simp add: Lcm-0-iff coeffs-smult split: if-splits)
note c(2)
also have c ′ = Fract (fst (quot-of-fract c ′)) (snd (quot-of-fract c ′))

by simp
also have to-fract (Lcm-coeff-denoms p) ∗ . . . =

Fract (Lcm-coeff-denoms p ∗ fst (quot-of-fract c ′)) (snd (quot-of-fract
c ′))

unfolding to-fract-def by (subst mult-fract) simp-all
also have snd (quot-of-fract . . .) = 1
by (intro snd-quot-of-fract-Fract-whole dvd-mult2 dvd-Lcm) (insert c(1), auto)

finally show to-fract (fst (quot-of-fract c)) = c
by (rule to-fract-quot-of-fract)

qed
also have p ′ = smult (content p ′) (primitive-part p ′)

by (rule content-times-primitive-part [symmetric])
also have primitive-part p ′ = primitive-part-fract p

by (simp add: primitive-part-fract-def p ′-def)
also have fract-poly (smult (content p ′) (primitive-part-fract p)) =

smult (to-fract (content p ′)) (fract-poly (primitive-part-fract p)) by
simp

finally have smult (to-fract (content p ′)) (fract-poly (primitive-part-fract p)) =

531

smult (to-fract (Lcm-coeff-denoms p)) p .
thus ?thesis

by (subst (asm) smult-eq-iff)
(auto simp add: Let-def p ′-def Fract-conv-to-fract field-simps Lcm-0-iff

fract-content-def)
qed

lemma fract-content-fract-poly [simp]: fract-content (fract-poly p) = to-fract (content
p)
proof −

have Lcm-coeff-denoms (fract-poly p) = 1
by (auto simp: set-coeffs-map-poly)

hence fract-content (fract-poly p) =
to-fract (content (map-poly (fst ◦ quot-of-fract ◦ to-fract) p))

by (simp add: fract-content-def to-fract-def fract-collapse map-poly-map-poly
del: Lcm-1-iff)

also have map-poly (fst ◦ quot-of-fract ◦ to-fract) p = p
by (intro map-poly-idI) simp-all

finally show ?thesis .
qed

lemma content-decompose-fract:
fixes p :: ′a :: {factorial-semiring,semiring-Gcd,ring-gcd,idom-divide,

semiring-gcd-mult-normalize} fract poly
obtains c p ′ where p = smult c (map-poly to-fract p ′) content p ′ = 1

proof (cases p = 0)
case True
hence p = smult 0 (map-poly to-fract 1) content 1 = 1 by simp-all
thus ?thesis ..

next
case False
thus ?thesis
by (rule that[OF content-times-primitive-part-fract [symmetric] content-primitive-part-fract])

qed

lemma fract-poly-dvdD:
fixes p :: ′a :: {factorial-semiring,semiring-Gcd,ring-gcd,idom-divide,

semiring-gcd-mult-normalize} poly
assumes fract-poly p dvd fract-poly q content p = 1
shows p dvd q

proof −
from assms(1) obtain r where r : fract-poly q = fract-poly p ∗ r by (erule

dvdE)
from content-decompose-fract[of r]
obtain c r ′ where r ′: r = smult c (map-poly to-fract r ′) content r ′ = 1 .
from r r ′ have eq: fract-poly q = smult c (fract-poly (p ∗ r ′)) by simp
from fract-poly-smult-eqE [OF this] obtain a b

where ab:
c = to-fract b / to-fract a

532

smult a q = smult b (p ∗ r ′)
coprime a b
normalize a = a .

have content (smult a q) = content (smult b (p ∗ r ′)) by (simp only: ab(2))
hence eq ′: normalize b = a ∗ content q by (simp add: assms content-mult r ′

ab(4))
have 1 = gcd a (normalize b) by (simp add: ab)
also note eq ′

also have gcd a (a ∗ content q) = a by (simp add: gcd-proj1-if-dvd ab(4))
finally have [simp]: a = 1 by simp
from eq ab have q = p ∗ ([:b:] ∗ r ′) by simp
thus ?thesis by (rule dvdI)

qed

11.4 Polynomials over a field are a Euclidean ring
context
begin

interpretation field-poly:
normalization-euclidean-semiring-multiplicative where zero = 0 :: ′a :: field poly

and one = 1 and plus = plus and minus = minus
and times = times
and normalize = λp. smult (inverse (lead-coeff p)) p
and unit-factor = λp. [:lead-coeff p:]
and euclidean-size = λp. if p = 0 then 0 else 2 ^ degree p
and divide = divide and modulo = modulo

rewrites dvd.dvd (times :: ′a poly ⇒ -) = Rings.dvd
and comm-monoid-mult.prod-mset times 1 = prod-mset
and comm-semiring-1 .irreducible times 1 0 = irreducible
and comm-semiring-1 .prime-elem times 1 0 = prime-elem

proof −
show dvd.dvd (times :: ′a poly ⇒ -) = Rings.dvd

by (simp add: dvd-dict)
show comm-monoid-mult.prod-mset times 1 = prod-mset

by (simp add: prod-mset-dict)
show comm-semiring-1 .irreducible times 1 0 = irreducible

by (simp add: irreducible-dict)
show comm-semiring-1 .prime-elem times 1 0 = prime-elem

by (simp add: prime-elem-dict)
show class.normalization-euclidean-semiring-multiplicative divide plus minus (0

:: ′a poly) times 1
modulo (λp. if p = 0 then 0 else 2 ^ degree p)
(λp. [:lead-coeff p:]) (λp. smult (inverse (lead-coeff p)) p)

proof (standard, fold dvd-dict)
fix p :: ′a poly
show [:lead-coeff p:] ∗ smult (inverse (lead-coeff p)) p = p

by (cases p = 0) simp-all
next

533

fix p :: ′a poly assume is-unit p
then show [:lead-coeff p:] = p

by (elim is-unit-polyE) (auto simp: monom-0 one-poly-def field-simps)
next

fix p :: ′a poly assume p 6= 0
then show is-unit [:lead-coeff p:]

by (simp add: is-unit-pCons-iff)
next

fix a b :: ′a poly assume is-unit a
thus [:lead-coeff (a ∗ b):] = a ∗ [:lead-coeff b:]

by (auto elim!: is-unit-polyE)
qed (auto simp: lead-coeff-mult Rings.div-mult-mod-eq intro!: degree-mod-less ′

degree-mult-right-le)
qed

lemma field-poly-irreducible-imp-prime:
prime-elem p if irreducible p for p :: ′a :: field poly
using that by (fact field-poly.irreducible-imp-prime-elem)

lemma field-poly-prod-mset-prime-factorization:
prod-mset (field-poly.prime-factorization p) = smult (inverse (lead-coeff p)) p
if p 6= 0 for p :: ′a :: field poly
using that by (fact field-poly.prod-mset-prime-factorization)

lemma field-poly-in-prime-factorization-imp-prime:
prime-elem p if p ∈# field-poly.prime-factorization x
for p :: ′a :: field poly
by (rule field-poly.prime-imp-prime-elem, rule field-poly.in-prime-factors-imp-prime)
(fact that)

11.5 Primality and irreducibility in polynomial rings
lemma nonconst-poly-irreducible-iff :
fixes p :: ′a :: {factorial-semiring,semiring-Gcd,ring-gcd,idom-divide,semiring-gcd-mult-normalize}

poly
assumes degree p 6= 0
shows irreducible p ←→ irreducible (fract-poly p) ∧ content p = 1

proof safe
assume p: irreducible p

from content-decompose[of p] obtain p ′ where p ′: p = smult (content p) p ′

content p ′ = 1 .
hence p = [:content p:] ∗ p ′ by simp
from p this have [:content p:] dvd 1 ∨ p ′ dvd 1 by (rule irreducibleD)
moreover have ¬p ′ dvd 1
proof

assume p ′ dvd 1
hence degree p = 0 by (subst p ′) (auto simp: is-unit-poly-iff)
with assms show False by contradiction

534

qed
ultimately show [simp]: content p = 1 by (simp add: is-unit-const-poly-iff)

show irreducible (map-poly to-fract p)
proof (rule irreducibleI)

have fract-poly p = 0 ←→ p = 0 by (intro map-poly-eq-0-iff) auto
with assms show map-poly to-fract p 6= 0 by auto

next
show ¬is-unit (fract-poly p)
proof

assume is-unit (map-poly to-fract p)
hence degree (map-poly to-fract p) = 0

by (auto simp: is-unit-poly-iff)
hence degree p = 0 by (simp add: degree-map-poly)
with assms show False by contradiction

qed
next

fix q r assume qr : fract-poly p = q ∗ r
from content-decompose-fract[of q]
obtain cg q ′ where q: q = smult cg (map-poly to-fract q ′) content q ′ = 1 .
from content-decompose-fract[of r]
obtain cr r ′ where r : r = smult cr (map-poly to-fract r ′) content r ′ = 1 .
from qr q r p have nz: cg 6= 0 cr 6= 0 by auto
from qr have eq: fract-poly p = smult (cr ∗ cg) (fract-poly (q ′ ∗ r ′))

by (simp add: q r)
from fract-poly-smult-eqE [OF this] obtain a b

where ab: cr ∗ cg = to-fract b / to-fract a
smult a p = smult b (q ′ ∗ r ′) coprime a b normalize a = a .

hence content (smult a p) = content (smult b (q ′ ∗ r ′)) by (simp only:)
with ab(4) have a: a = normalize b by (simp add: content-mult q r)
then have normalize b = gcd a b

by simp
with ‹coprime a b› have normalize b = 1

by simp
then have a = 1 is-unit b

by (simp-all add: a normalize-1-iff)

note eq
also from ab(1) ‹a = 1 › have cr ∗ cg = to-fract b by simp
also have smult . . . (fract-poly (q ′ ∗ r ′)) = fract-poly (smult b (q ′ ∗ r ′)) by

simp
finally have p = ([:b:] ∗ q ′) ∗ r ′ by (simp del: fract-poly-smult)
from p and this have ([:b:] ∗ q ′) dvd 1 ∨ r ′ dvd 1 by (rule irreducibleD)

hence q ′ dvd 1 ∨ r ′ dvd 1 by (auto dest: dvd-mult-right simp del: mult-pCons-left)
hence fract-poly q ′ dvd 1 ∨ fract-poly r ′ dvd 1 by (auto simp: fract-poly-is-unit)
with q r show is-unit q ∨ is-unit r

by (auto simp add: is-unit-smult-iff dvd-field-iff nz)
qed

535

next

assume irred: irreducible (fract-poly p) and primitive: content p = 1
show irreducible p
proof (rule irreducibleI)

from irred show p 6= 0 by auto
next

from irred show ¬p dvd 1
by (auto simp: irreducible-def dest: fract-poly-is-unit)

next
fix q r assume qr : p = q ∗ r
hence fract-poly p = fract-poly q ∗ fract-poly r by simp
from irred and this have fract-poly q dvd 1 ∨ fract-poly r dvd 1

by (rule irreducibleD)
with primitive qr show q dvd 1 ∨ r dvd 1

by (auto simp: content-prod-eq-1-iff is-unit-fract-poly-iff)
qed

qed

lemma irreducible-imp-prime-poly:
fixes p :: ′a :: {factorial-semiring,semiring-Gcd,ring-gcd,idom-divide,semiring-gcd-mult-normalize}

poly
assumes irreducible p
shows prime-elem p

proof (cases degree p = 0)
case True
with assms show ?thesis

by (auto simp: prime-elem-const-poly-iff irreducible-const-poly-iff
intro!: irreducible-imp-prime-elem elim!: degree-eq-zeroE)

next
case False
from assms False have irred: irreducible (fract-poly p) and primitive: content p

= 1
by (simp-all add: nonconst-poly-irreducible-iff)

from irred have prime: prime-elem (fract-poly p) by (rule field-poly-irreducible-imp-prime)
show ?thesis
proof (rule prime-elemI)

fix q r assume p dvd q ∗ r
hence fract-poly p dvd fract-poly (q ∗ r) by (rule fract-poly-dvd)
hence fract-poly p dvd fract-poly q ∗ fract-poly r by simp
from prime and this have fract-poly p dvd fract-poly q ∨ fract-poly p dvd

fract-poly r
by (rule prime-elem-dvd-multD)

with primitive show p dvd q ∨ p dvd r by (auto dest: fract-poly-dvdD)
qed (insert assms, auto simp: irreducible-def)

qed

lemma degree-primitive-part-fract [simp]:
degree (primitive-part-fract p) = degree p

536

proof −
have p = smult (fract-content p) (fract-poly (primitive-part-fract p))

by (simp add: content-times-primitive-part-fract)
also have degree . . . = degree (primitive-part-fract p)

by (auto simp: degree-map-poly)
finally show ?thesis ..

qed

lemma irreducible-primitive-part-fract:
fixes p :: ′a :: {idom-divide, ring-gcd, factorial-semiring, semiring-Gcd,semiring-gcd-mult-normalize}

fract poly
assumes irreducible p
shows irreducible (primitive-part-fract p)

proof −
from assms have deg: degree (primitive-part-fract p) 6= 0

by (intro notI)
(auto elim!: degree-eq-zeroE simp: irreducible-def is-unit-poly-iff dvd-field-iff)

hence [simp]: p 6= 0 by auto

note ‹irreducible p›
also have p = [:fract-content p:] ∗ fract-poly (primitive-part-fract p)

by (simp add: content-times-primitive-part-fract)
also have irreducible . . . ←→ irreducible (fract-poly (primitive-part-fract p))

by (intro irreducible-mult-unit-left) (simp-all add: is-unit-poly-iff dvd-field-iff)
finally show ?thesis using deg

by (simp add: nonconst-poly-irreducible-iff)
qed

lemma prime-elem-primitive-part-fract:
fixes p :: ′a :: {idom-divide, ring-gcd, factorial-semiring, semiring-Gcd,semiring-gcd-mult-normalize}

fract poly
shows irreducible p =⇒ prime-elem (primitive-part-fract p)
by (intro irreducible-imp-prime-poly irreducible-primitive-part-fract)

lemma irreducible-linear-field-poly:
fixes a b :: ′a::field
assumes b 6= 0
shows irreducible [:a,b:]

proof (rule irreducibleI)
fix p q assume pq: [:a,b:] = p ∗ q
also from pq assms have degree . . . = degree p + degree q

by (intro degree-mult-eq) auto
finally have degree p = 0 ∨ degree q = 0 using assms by auto
with assms pq show is-unit p ∨ is-unit q

by (auto simp: is-unit-const-poly-iff dvd-field-iff elim!: degree-eq-zeroE)
qed (insert assms, auto simp: is-unit-poly-iff)

lemma prime-elem-linear-field-poly:
(b :: ′a :: field) 6= 0 =⇒ prime-elem [:a,b:]

537

by (rule field-poly-irreducible-imp-prime, rule irreducible-linear-field-poly)

lemma irreducible-linear-poly:
fixes a b :: ′a::{idom-divide,ring-gcd,factorial-semiring,semiring-Gcd,semiring-gcd-mult-normalize}
shows b 6= 0 =⇒ coprime a b =⇒ irreducible [:a,b:]
by (auto intro!: irreducible-linear-field-poly

simp: nonconst-poly-irreducible-iff content-def map-poly-pCons)

lemma prime-elem-linear-poly:
fixes a b :: ′a::{idom-divide,ring-gcd,factorial-semiring,semiring-Gcd,semiring-gcd-mult-normalize}
shows b 6= 0 =⇒ coprime a b =⇒ prime-elem [:a,b:]
by (rule irreducible-imp-prime-poly, rule irreducible-linear-poly)

11.6 Prime factorisation of polynomials
lemma poly-prime-factorization-exists-content-1 :
fixes p :: ′a :: {factorial-semiring,semiring-Gcd,ring-gcd,idom-divide,semiring-gcd-mult-normalize}

poly
assumes p 6= 0 content p = 1
shows ∃A. (∀ p. p ∈# A −→ prime-elem p) ∧ prod-mset A = normalize p

proof −
let ?P = field-poly.prime-factorization (fract-poly p)
define c where c = prod-mset (image-mset fract-content ?P)
define c ′ where c ′ = c ∗ to-fract (lead-coeff p)
define e where e = prod-mset (image-mset primitive-part-fract ?P)
define A where A = image-mset (normalize ◦ primitive-part-fract) ?P
have content e = (

∏
x∈#field-poly.prime-factorization (map-poly to-fract p).

content (primitive-part-fract x))
by (simp add: e-def content-prod-mset multiset.map-comp o-def)

also have image-mset (λx. content (primitive-part-fract x)) ?P = image-mset
(λ-. 1) ?P

by (intro image-mset-cong content-primitive-part-fract) auto
finally have content-e: content e = 1

by simp

from ‹p 6= 0 › have fract-poly p = [:lead-coeff (fract-poly p):] ∗
smult (inverse (lead-coeff (fract-poly p))) (fract-poly p)
by simp

also have [:lead-coeff (fract-poly p):] = [:to-fract (lead-coeff p):]
by (simp add: monom-0 degree-map-poly coeff-map-poly)

also from assms have smult (inverse (lead-coeff (fract-poly p))) (fract-poly p)
= prod-mset ?P

by (subst field-poly-prod-mset-prime-factorization) simp-all
also have . . . = prod-mset (image-mset id ?P) by simp
also have image-mset id ?P =

image-mset (λx. [:fract-content x :] ∗ fract-poly (primitive-part-fract x))
?P

by (intro image-mset-cong) (auto simp: content-times-primitive-part-fract)
also have prod-mset . . . = smult c (fract-poly e)

538

by (subst prod-mset.distrib) (simp-all add: prod-mset-fract-poly prod-mset-const-poly
c-def e-def)

also have [:to-fract (lead-coeff p):] ∗ . . . = smult c ′ (fract-poly e)
by (simp add: c ′-def)

finally have eq: fract-poly p = smult c ′ (fract-poly e) .
also obtain b where b: c ′ = to-fract b is-unit b
proof −

from fract-poly-smult-eqE [OF eq]
obtain a b where ab:

c ′ = to-fract b / to-fract a
smult a p = smult b e
coprime a b
normalize a = a .

from ab(2) have content (smult a p) = content (smult b e) by (simp only:)
with assms content-e have a = normalize b by (simp add: ab(4))
with ab have ab ′: a = 1 is-unit b

by (simp-all add: normalize-1-iff)
with ab ab ′ have c ′ = to-fract b by auto
from this and ‹is-unit b› show ?thesis by (rule that)

qed
hence smult c ′ (fract-poly e) = fract-poly (smult b e) by simp
finally have p = smult b e by (simp only: fract-poly-eq-iff)
hence p = [:b:] ∗ e by simp
with b have normalize p = normalize e

by (simp only: normalize-mult) (simp add: is-unit-normalize is-unit-poly-iff)
also have normalize e = prod-mset A

by (simp add: multiset.map-comp e-def A-def normalize-prod-mset)
finally have prod-mset A = normalize p ..

have prime-elem p if p ∈# A for p
using that by (auto simp: A-def prime-elem-primitive-part-fract prime-elem-imp-irreducible

dest!: field-poly-in-prime-factorization-imp-prime)
from this and ‹prod-mset A = normalize p› show ?thesis

by (intro exI [of - A]) blast
qed

lemma poly-prime-factorization-exists:
fixes p :: ′a :: {factorial-semiring,semiring-Gcd,ring-gcd,idom-divide,semiring-gcd-mult-normalize}

poly
assumes p 6= 0
shows ∃A. (∀ p. p ∈# A −→ prime-elem p) ∧ normalize (prod-mset A) =

normalize p
proof −

define B where B = image-mset (λx. [:x:]) (prime-factorization (content p))
have ∃A. (∀ p. p ∈# A −→ prime-elem p) ∧ prod-mset A = normalize (primitive-part

p)
by (rule poly-prime-factorization-exists-content-1) (insert assms, simp-all)

then obtain A where A: ∀ p. p ∈# A −→ prime-elem p
∏

A = normalize

539

(primitive-part p)
by blast

have normalize (prod-mset (A + B)) = normalize (prod-mset A ∗ normalize
(prod-mset B))

by simp
also from assms have normalize (prod-mset B) = normalize [:content p:]
by (simp add: prod-mset-const-poly normalize-const-poly prod-mset-prime-factorization-weak

B-def)
also have prod-mset A = normalize (primitive-part p)

using A by simp
finally have normalize (prod-mset (A + B)) = normalize (primitive-part p ∗

[:content p:])
by simp

moreover have ∀ p. p ∈# B −→ prime-elem p
by (auto simp: B-def intro!: lift-prime-elem-poly dest: in-prime-factors-imp-prime)

ultimately show ?thesis using A by (intro exI [of - A + B]) (auto)
qed

end

11.7 Typeclass instances
instance poly :: ({factorial-ring-gcd,semiring-gcd-mult-normalize}) factorial-semiring

by standard (rule poly-prime-factorization-exists)

instantiation poly :: ({factorial-ring-gcd, semiring-gcd-mult-normalize}) factorial-ring-gcd
begin

definition gcd-poly :: ′a poly ⇒ ′a poly ⇒ ′a poly where
[code del]: gcd-poly = gcd-factorial

definition lcm-poly :: ′a poly ⇒ ′a poly ⇒ ′a poly where
[code del]: lcm-poly = lcm-factorial

definition Gcd-poly :: ′a poly set ⇒ ′a poly where
[code del]: Gcd-poly = Gcd-factorial

definition Lcm-poly :: ′a poly set ⇒ ′a poly where
[code del]: Lcm-poly = Lcm-factorial

instance by standard (simp-all add: gcd-poly-def lcm-poly-def Gcd-poly-def Lcm-poly-def)

end

instance poly :: ({factorial-ring-gcd, semiring-gcd-mult-normalize}) semiring-gcd-mult-normalize
..

instance poly :: ({field,factorial-ring-gcd,semiring-gcd-mult-normalize})
normalization-euclidean-semiring ..

540

instance poly :: ({field, normalization-euclidean-semiring, factorial-ring-gcd,
semiring-gcd-mult-normalize}) euclidean-ring-gcd

by (rule euclidean-ring-gcd-class.intro, rule factorial-euclidean-semiring-gcdI) stan-
dard

instance poly :: ({field, normalization-euclidean-semiring, factorial-ring-gcd,
semiring-gcd-mult-normalize}) factorial-semiring-multiplicative ..

11.8 Polynomial GCD
lemma gcd-poly-decompose:

fixes p q :: ′a :: {factorial-ring-gcd,semiring-gcd-mult-normalize} poly
shows gcd p q =

smult (gcd (content p) (content q)) (gcd (primitive-part p) (primitive-part
q))
proof (rule sym, rule gcdI)

have [:gcd (content p) (content q):] ∗ gcd (primitive-part p) (primitive-part q)
dvd

[:content p:] ∗ primitive-part p by (intro mult-dvd-mono) simp-all
thus smult (gcd (content p) (content q)) (gcd (primitive-part p) (primitive-part

q)) dvd p
by simp

next
have [:gcd (content p) (content q):] ∗ gcd (primitive-part p) (primitive-part q)

dvd
[:content q:] ∗ primitive-part q by (intro mult-dvd-mono) simp-all

thus smult (gcd (content p) (content q)) (gcd (primitive-part p) (primitive-part
q)) dvd q

by simp
next

fix d assume d dvd p d dvd q
hence [:content d:] ∗ primitive-part d dvd

[:gcd (content p) (content q):] ∗ gcd (primitive-part p) (primitive-part q)
by (intro mult-dvd-mono) auto

thus d dvd smult (gcd (content p) (content q)) (gcd (primitive-part p) (primitive-part
q))

by simp
qed (auto simp: normalize-smult)

lemma gcd-poly-pseudo-mod:
fixes p q :: ′a :: {factorial-ring-gcd,semiring-gcd-mult-normalize} poly
assumes nz: q 6= 0 and prim: content p = 1 content q = 1
shows gcd p q = gcd q (primitive-part (pseudo-mod p q))

proof −
define r s where r = fst (pseudo-divmod p q) and s = snd (pseudo-divmod p

q)
define a where a = [:coeff q (degree q) ^ (Suc (degree p) − degree q):]

541

have [simp]: primitive-part a = unit-factor a
by (simp add: a-def unit-factor-poly-def unit-factor-power monom-0)

from nz have [simp]: a 6= 0 by (auto simp: a-def)

have rs: pseudo-divmod p q = (r , s) by (simp add: r-def s-def)
have gcd (q ∗ r + s) q = gcd q s

using gcd-add-mult[of q r s] by (simp add: gcd.commute add-ac mult-ac)
with pseudo-divmod(1)[OF nz rs]

have gcd (p ∗ a) q = gcd q s by (simp add: a-def)
also from prim have gcd (p ∗ a) q = gcd p q

by (subst gcd-poly-decompose)
(auto simp: primitive-part-mult gcd-mult-unit1 primitive-part-prim

simp del: mult-pCons-right)
also from prim have gcd q s = gcd q (primitive-part s)

by (subst gcd-poly-decompose) (simp-all add: primitive-part-prim)
also have s = pseudo-mod p q by (simp add: s-def pseudo-mod-def)
finally show ?thesis .

qed

lemma degree-pseudo-mod-less:
assumes q 6= 0 pseudo-mod p q 6= 0
shows degree (pseudo-mod p q) < degree q
using pseudo-mod(2)[of q p] assms by auto

function gcd-poly-code-aux :: ′a :: factorial-ring-gcd poly ⇒ ′a poly ⇒ ′a poly
where

gcd-poly-code-aux p q =
(if q = 0 then normalize p else gcd-poly-code-aux q (primitive-part (pseudo-mod

p q)))
by auto
termination

by (relation measure ((λp. if p = 0 then 0 else Suc (degree p)) ◦ snd))
(auto simp: degree-pseudo-mod-less)

declare gcd-poly-code-aux.simps [simp del]

lemma gcd-poly-code-aux-correct:
assumes content p = 1 q = 0 ∨ content q = 1
shows gcd-poly-code-aux p q = gcd p q
using assms

proof (induction p q rule: gcd-poly-code-aux.induct)
case (1 p q)
show ?case
proof (cases q = 0)

case True
thus ?thesis by (subst gcd-poly-code-aux.simps) auto

next
case False
hence gcd-poly-code-aux p q = gcd-poly-code-aux q (primitive-part (pseudo-mod

542

p q))
by (subst gcd-poly-code-aux.simps) simp-all

also from 1 .prems False
have primitive-part (pseudo-mod p q) = 0 ∨

content (primitive-part (pseudo-mod p q)) = 1
by (cases pseudo-mod p q = 0) auto

with 1 .prems False
have gcd-poly-code-aux q (primitive-part (pseudo-mod p q)) =

gcd q (primitive-part (pseudo-mod p q))
by (intro 1) simp-all

also from 1 .prems False
have . . . = gcd p q by (intro gcd-poly-pseudo-mod [symmetric]) auto

finally show ?thesis .
qed

qed

definition gcd-poly-code
:: ′a :: factorial-ring-gcd poly ⇒ ′a poly ⇒ ′a poly

where gcd-poly-code p q =
(if p = 0 then normalize q else if q = 0 then normalize p else

smult (gcd (content p) (content q))
(gcd-poly-code-aux (primitive-part p) (primitive-part q)))

lemma gcd-poly-code [code]: gcd p q = gcd-poly-code p q
by (simp add: gcd-poly-code-def gcd-poly-code-aux-correct gcd-poly-decompose [symmetric])

lemma lcm-poly-code [code]:
fixes p q :: ′a :: {factorial-ring-gcd,semiring-gcd-mult-normalize} poly
shows lcm p q = normalize (p ∗ q div gcd p q)
by (fact lcm-gcd)

lemmas Gcd-poly-set-eq-fold [code] =
Gcd-set-eq-fold [where ? ′a = ′a :: {factorial-ring-gcd,semiring-gcd-mult-normalize}

poly]
lemmas Lcm-poly-set-eq-fold [code] =
Lcm-set-eq-fold [where ? ′a = ′a :: {factorial-ring-gcd,semiring-gcd-mult-normalize}

poly]

end

12 Squarefreeness
theory Squarefree
imports Primes
begin

definition squarefree :: ′a :: comm-monoid-mult ⇒ bool where

543

squarefree n ←→ (∀ x. x ^ 2 dvd n −→ x dvd 1)

lemma squarefreeI : (
∧

x. x ^ 2 dvd n =⇒ x dvd 1) =⇒ squarefree n
by (auto simp: squarefree-def)

lemma squarefreeD: squarefree n =⇒ x ^ 2 dvd n =⇒ x dvd 1
by (auto simp: squarefree-def)

lemma not-squarefreeI : x ^ 2 dvd n =⇒ ¬x dvd 1 =⇒ ¬squarefree n
by (auto simp: squarefree-def)

lemma not-squarefreeE [case-names square-dvd]:
¬squarefree n =⇒ (

∧
x. x ^ 2 dvd n =⇒ ¬x dvd 1 =⇒ P) =⇒ P

by (auto simp: squarefree-def)

lemma not-squarefree-0 [simp]: ¬squarefree (0 :: ′a :: comm-semiring-1)
by (rule not-squarefreeI [of 0]) auto

lemma squarefree-factorial-semiring:
assumes n 6= 0
shows squarefree (n :: ′a :: factorial-semiring) ←→ (∀ p. prime p −→ ¬p ^ 2

dvd n)
unfolding squarefree-def

proof safe
assume ∗: ∀ p. prime p −→ ¬p ^ 2 dvd n
fix x :: ′a assume x: x ^ 2 dvd n
{

assume ¬is-unit x
moreover from assms and x have x 6= 0 by auto
ultimately obtain p where p dvd x prime p

using prime-divisor-exists by blast
with ∗ have ¬p ^ 2 dvd n by blast
moreover from ‹p dvd x› have p ^ 2 dvd x ^ 2 by (rule dvd-power-same)
ultimately have ¬x ^ 2 dvd n by (blast dest: dvd-trans)
with x have False by contradiction

}
thus is-unit x by blast

qed auto

lemma squarefree-factorial-semiring ′:
assumes n 6= 0
shows squarefree (n :: ′a :: factorial-semiring) ←→

(∀ p∈prime-factors n. multiplicity p n = 1)
proof (subst squarefree-factorial-semiring [OF assms], safe)

fix p assume ∀ p∈#prime-factorization n. multiplicity p n = 1 prime p p^2 dvd
n

with assms show False
by (cases p dvd n)
(auto simp: prime-factors-dvd power-dvd-iff-le-multiplicity not-dvd-imp-multiplicity-0)

544

qed (auto intro!: multiplicity-eqI simp: power2-eq-square [symmetric])

lemma squarefree-factorial-semiring ′′:
assumes n 6= 0
shows squarefree (n :: ′a :: factorial-semiring) ←→

(∀ p. prime p −→ multiplicity p n ≤ 1)
by (subst squarefree-factorial-semiring ′[OF assms]) (auto simp: prime-factors-multiplicity)

lemma squarefree-unit [simp]: is-unit n =⇒ squarefree n
proof (rule squarefreeI)

fix x assume x^2 dvd n n dvd 1
hence is-unit (x^2) by (rule dvd-unit-imp-unit)
thus is-unit x by (simp add: is-unit-power-iff)

qed

lemma squarefree-1 [simp]: squarefree (1 :: ′a :: algebraic-semidom)
by simp

lemma squarefree-minus [simp]: squarefree (−n :: ′a :: comm-ring-1) ←→ square-
free n

by (simp add: squarefree-def)

lemma squarefree-mono: a dvd b =⇒ squarefree b =⇒ squarefree a
by (auto simp: squarefree-def intro: dvd-trans)

lemma squarefree-multD:
assumes squarefree (a ∗ b)
shows squarefree a squarefree b
by (rule squarefree-mono[OF - assms], simp)+

lemma squarefree-prime-elem:
assumes prime-elem (p :: ′a :: factorial-semiring)
shows squarefree p

proof −
from assms have p 6= 0 by auto
show ?thesis
proof (subst squarefree-factorial-semiring [OF ‹p 6= 0 ›]; safe)

fix q assume ∗: prime q q^2 dvd p
with assms have multiplicity q p ≥ 2 by (intro multiplicity-geI) auto
thus False using assms ‹prime q› prime-multiplicity-other [of q normalize p]

by (cases q = normalize p) simp-all
qed

qed

lemma squarefree-prime:
assumes prime (p :: ′a :: factorial-semiring)
shows squarefree p
using assms by (intro squarefree-prime-elem) auto

545

lemma squarefree-mult-coprime:
fixes a b :: ′a :: factorial-semiring-gcd
assumes coprime a b squarefree a squarefree b
shows squarefree (a ∗ b)

proof −
from assms have nz: a ∗ b 6= 0 by auto
show ?thesis unfolding squarefree-factorial-semiring ′[OF nz]
proof

fix p assume p: p ∈ prime-factors (a ∗ b)
with nz have prime p

by (simp add: prime-factors-dvd)
have ¬ (p dvd a ∧ p dvd b)
proof

assume p dvd a ∧ p dvd b
with ‹coprime a b› have is-unit p

by (auto intro: coprime-common-divisor)
with ‹prime p› show False

by simp
qed
moreover from p have p dvd a ∨ p dvd b using nz

by (auto simp: prime-factors-dvd prime-dvd-mult-iff)
ultimately show multiplicity p (a ∗ b) = 1 using nz p assms(2 ,3)

by (auto simp: prime-elem-multiplicity-mult-distrib prime-factors-multiplicity
not-dvd-imp-multiplicity-0 squarefree-factorial-semiring ′)

qed
qed

lemma squarefree-prod-coprime:
fixes f :: ′a ⇒ ′b :: factorial-semiring-gcd
assumes

∧
a b. a ∈ A =⇒ b ∈ A =⇒ a 6= b =⇒ coprime (f a) (f b)

assumes
∧

a. a ∈ A =⇒ squarefree (f a)
shows squarefree (prod f A)
using assms
by (induction A rule: infinite-finite-induct)

(auto intro!: squarefree-mult-coprime prod-coprime-right)

lemma squarefree-powerD: m > 0 =⇒ squarefree (n ^ m) =⇒ squarefree n
by (cases m) (auto dest: squarefree-multD)

lemma squarefree-power-iff :
squarefree (n ^ m) ←→ m = 0 ∨ is-unit n ∨ (squarefree n ∧ m = 1)

proof safe
assume squarefree (n ^ m) m > 0 ¬is-unit n
show m = 1
proof (rule ccontr)

assume m 6= 1
with ‹m > 0 › have n ^ 2 dvd n ^ m by (intro le-imp-power-dvd) auto
from this and ‹¬is-unit n› have ¬squarefree (n ^ m) by (rule not-squarefreeI)
with ‹squarefree (n ^ m)› show False by contradiction

546

qed
qed (auto simp: is-unit-power-iff dest: squarefree-powerD)

definition squarefree-nat :: nat ⇒ bool where
[code-abbrev]: squarefree-nat = squarefree

lemma squarefree-nat-code-naive [code]:
squarefree-nat n ←→ n 6= 0 ∧ (∀ k∈{2 ..n}. ¬k ^ 2 dvd n)

proof safe
assume ∗: ∀ k∈{2 ..n}. ¬ k2 dvd n and n: n > 0
show squarefree-nat n unfolding squarefree-nat-def
proof (rule squarefreeI)

fix k assume k: k ^ 2 dvd n
have k dvd n by (rule dvd-trans[OF - k]) auto
with n have k ≤ n by (intro dvd-imp-le)
with bspec[OF ∗, of k] k have ¬k > 1 by (intro notI) auto
moreover from k and n have k 6= 0 by (intro notI) auto
ultimately have k = 1 by presburger
thus is-unit k by simp

qed
qed (auto simp: squarefree-nat-def squarefree-def intro!: Nat.gr0I)

definition square-part :: ′a :: factorial-semiring ⇒ ′a where
square-part n = (if n = 0 then 0 else

normalize (
∏

p∈prime-factors n. p ^ (multiplicity p n div 2)))

lemma square-part-nonzero:
n 6= 0 =⇒ square-part n = normalize (

∏
p∈prime-factors n. p ^ (multiplicity p

n div 2))
by (simp add: square-part-def)

lemma square-part-0 [simp]: square-part 0 = 0
by (simp add: square-part-def)

lemma square-part-unit [simp]: is-unit x =⇒ square-part x = 1
by (auto simp: square-part-def prime-factorization-unit)

lemma square-part-1 [simp]: square-part 1 = 1
by simp

lemma square-part-0-iff [simp]: square-part n = 0 ←→ n = 0
by (simp add: square-part-def)

lemma normalize-uminus [simp]:
normalize (−x :: ′a :: {normalization-semidom, comm-ring-1}) = normalize x
by (rule associatedI) auto

547

lemma multiplicity-uminus-right [simp]:
multiplicity (x :: ′a :: {factorial-semiring, comm-ring-1}) (−y) = multiplicity x y

proof −
have multiplicity x (−y) = multiplicity x (normalize (−y))

by (rule multiplicity-normalize-right [symmetric])
also have . . . = multiplicity x y by simp
finally show ?thesis .

qed

lemma multiplicity-uminus-left [simp]:
multiplicity (−x :: ′a :: {factorial-semiring, comm-ring-1}) y = multiplicity x y

proof −
have multiplicity (−x) y = multiplicity (normalize (−x)) y

by (rule multiplicity-normalize-left [symmetric])
also have . . . = multiplicity x y by simp
finally show ?thesis .

qed

lemma prime-factorization-uminus [simp]:
prime-factorization (−x :: ′a :: {factorial-semiring, comm-ring-1}) = prime-factorization

x
by (rule prime-factorization-cong) simp-all

lemma square-part-uminus [simp]:
square-part (−x :: ′a :: {factorial-semiring, comm-ring-1}) = square-part x

by (simp add: square-part-def)

lemma prime-multiplicity-square-part:
assumes prime p
shows multiplicity p (square-part n) = multiplicity p n div 2

proof (cases n = 0)
case False
thus ?thesis unfolding square-part-nonzero[OF False] multiplicity-normalize-right

using finite-prime-divisors[of n] assms
by (subst multiplicity-prod-prime-powers)
(auto simp: not-dvd-imp-multiplicity-0 prime-factors-dvd multiplicity-prod-prime-powers)

qed auto

lemma square-part-square-dvd [simp, intro]: square-part n ^ 2 dvd n
proof (cases n = 0)

case False
thus ?thesis

by (intro multiplicity-le-imp-dvd)
(auto simp: prime-multiplicity-square-part prime-elem-multiplicity-power-distrib)

qed auto

lemma prime-multiplicity-le-imp-dvd:
assumes x 6= 0 y 6= 0
shows x dvd y ←→ (∀ p. prime p −→ multiplicity p x ≤ multiplicity p y)

548

using assms by (auto intro: multiplicity-le-imp-dvd dvd-imp-multiplicity-le)

lemma dvd-square-part-iff : x dvd square-part n ←→ x ^ 2 dvd n
proof (cases x = 0 ; cases n = 0)

assume nz: x 6= 0 n 6= 0
thus ?thesis

by (subst (1 2) prime-multiplicity-le-imp-dvd)
(auto simp: prime-multiplicity-square-part prime-elem-multiplicity-power-distrib)

qed auto

definition squarefree-part :: ′a :: factorial-semiring ⇒ ′a where
squarefree-part n = (if n = 0 then 1 else n div square-part n ^ 2)

lemma squarefree-part-0 [simp]: squarefree-part 0 = 1
by (simp add: squarefree-part-def)

lemma squarefree-part-unit [simp]: is-unit n =⇒ squarefree-part n = n
by (auto simp add: squarefree-part-def)

lemma squarefree-part-1 [simp]: squarefree-part 1 = 1
by simp

lemma squarefree-decompose: n = squarefree-part n ∗ square-part n ^ 2
by (simp add: squarefree-part-def)

lemma squarefree-part-uminus [simp]:
assumes x 6= 0
shows squarefree-part (−x :: ′a :: {factorial-semiring, comm-ring-1}) = −squarefree-part

x
proof −

have −(squarefree-part x ∗ square-part x ^ 2) = −x
by (subst squarefree-decompose [symmetric]) auto

also have . . . = squarefree-part (−x) ∗ square-part (−x) ^ 2 by (rule square-
free-decompose)

finally have (− squarefree-part x) ∗ square-part x ^ 2 =
squarefree-part (−x) ∗ square-part x ^ 2 by simp

thus ?thesis using assms by (subst (asm) mult-right-cancel) auto
qed

lemma squarefree-part-nonzero [simp]: squarefree-part n 6= 0
using squarefree-decompose[of n] by (cases n 6= 0) auto

lemma prime-multiplicity-squarefree-part:
assumes prime p
shows multiplicity p (squarefree-part n) = multiplicity p n mod 2

proof (cases n = 0)
case False
hence n: n 6= 0 by auto

549

have multiplicity p n mod 2 + 2 ∗ (multiplicity p n div 2) = multiplicity p n by
simp

also have . . . = multiplicity p (squarefree-part n ∗ square-part n ^ 2)
by (subst squarefree-decompose[of n]) simp

also from assms n have . . . = multiplicity p (squarefree-part n) + 2 ∗ (multiplicity
p n div 2)

by (subst prime-elem-multiplicity-mult-distrib)
(auto simp: prime-elem-multiplicity-power-distrib prime-multiplicity-square-part)

finally show ?thesis by (subst (asm) add-right-cancel) simp
qed auto

lemma prime-multiplicity-squarefree-part-le-Suc-0 [intro]:
assumes prime p
shows multiplicity p (squarefree-part n) ≤ Suc 0
by (simp add: assms prime-multiplicity-squarefree-part)

lemma squarefree-squarefree-part [simp, intro]: squarefree (squarefree-part n)
by (subst squarefree-factorial-semiring ′′)

(auto simp: prime-multiplicity-squarefree-part-le-Suc-0)

lemma squarefree-decomposition-unique:
assumes square-part m = square-part n
assumes squarefree-part m = squarefree-part n
shows m = n
by (subst (1 2) squarefree-decompose) (simp-all add: assms)

lemma normalize-square-part [simp]: normalize (square-part x) = square-part x
by (simp add: square-part-def)

lemma square-part-even-power ′: square-part (x ^ (2 ∗ n)) = normalize (x ^ n)
proof (cases x = 0)

case False
have normalize (square-part (x ^ (2 ∗ n))) = normalize (x ^ n) using False

by (intro multiplicity-eq-imp-eq)
(auto simp: prime-multiplicity-square-part prime-elem-multiplicity-power-distrib)

thus ?thesis by simp
qed (auto simp: power-0-left)

lemma square-part-even-power : even n =⇒ square-part (x ^ n) = normalize (x ^
(n div 2))

by (subst square-part-even-power ′ [symmetric]) auto

lemma square-part-odd-power ′: square-part (x ^ (Suc (2 ∗ n))) = normalize (x ^
n ∗ square-part x)
proof (cases x = 0)

case False
have normalize (square-part (x ^ (Suc (2 ∗ n)))) = normalize (square-part x ∗

x ^ n)
proof (rule multiplicity-eq-imp-eq, goal-cases)

550

case (3 p)
hence multiplicity p (square-part (x ^ Suc (2 ∗ n))) =

(2 ∗ (n ∗ multiplicity p x) + multiplicity p x) div 2
by (subst prime-multiplicity-square-part)

(auto simp: False prime-elem-multiplicity-power-distrib algebra-simps simp
del: power-Suc)

also from 3 False have . . . = multiplicity p (square-part x ∗ x ^ n)
by (subst div-mult-self4) (auto simp: prime-multiplicity-square-part

prime-elem-multiplicity-mult-distrib prime-elem-multiplicity-power-distrib)
finally show ?case .

qed (insert False, auto)
thus ?thesis by (simp add: mult-ac)

qed auto

lemma square-part-odd-power :
odd n =⇒ square-part (x ^ n) = normalize (x ^ (n div 2) ∗ square-part x)
by (subst square-part-odd-power ′ [symmetric]) auto

end

13 Pieces of computational Algebra
theory Computational-Algebra
imports

Euclidean-Algorithm
Factorial-Ring
Formal-Laurent-Series
Fraction-Field
Fundamental-Theorem-Algebra
Group-Closure
Normalized-Fraction
Nth-Powers
Polynomial-FPS
Polynomial
Polynomial-Factorial
Primes
Squarefree

begin

end

theory Field-as-Ring
imports

Complex-Main
Euclidean-Algorithm

begin

context field

551

begin

subclass idom-divide ..

definition normalize-field :: ′a ⇒ ′a
where [simp]: normalize-field x = (if x = 0 then 0 else 1)

definition unit-factor-field :: ′a ⇒ ′a
where [simp]: unit-factor-field x = x

definition euclidean-size-field :: ′a ⇒ nat
where [simp]: euclidean-size-field x = (if x = 0 then 0 else 1)

definition mod-field :: ′a ⇒ ′a ⇒ ′a
where [simp]: mod-field x y = (if y = 0 then x else 0)

end

instantiation real ::
{unique-euclidean-ring, normalization-euclidean-semiring, normalization-semidom-multiplicative}

begin

definition [simp]: normalize-real = (normalize-field :: real ⇒ -)
definition [simp]: unit-factor-real = (unit-factor-field :: real ⇒ -)
definition [simp]: modulo-real = (mod-field :: real ⇒ -)
definition [simp]: euclidean-size-real = (euclidean-size-field :: real ⇒ -)
definition [simp]: division-segment (x :: real) = 1

instance
by standard
(simp-all add: dvd-field-iff field-split-simps split: if-splits)

end

instantiation real :: euclidean-ring-gcd
begin

definition gcd-real :: real ⇒ real ⇒ real where
gcd-real = Euclidean-Algorithm.gcd

definition lcm-real :: real ⇒ real ⇒ real where
lcm-real = Euclidean-Algorithm.lcm

definition Gcd-real :: real set ⇒ real where
Gcd-real = Euclidean-Algorithm.Gcd

definition Lcm-real :: real set ⇒ real where
Lcm-real = Euclidean-Algorithm.Lcm

instance by standard (simp-all add: gcd-real-def lcm-real-def Gcd-real-def Lcm-real-def)

end

instance real :: field-gcd ..

552

instantiation rat ::
{unique-euclidean-ring, normalization-euclidean-semiring, normalization-semidom-multiplicative}

begin

definition [simp]: normalize-rat = (normalize-field :: rat ⇒ -)
definition [simp]: unit-factor-rat = (unit-factor-field :: rat ⇒ -)
definition [simp]: modulo-rat = (mod-field :: rat ⇒ -)
definition [simp]: euclidean-size-rat = (euclidean-size-field :: rat ⇒ -)
definition [simp]: division-segment (x :: rat) = 1

instance
by standard
(simp-all add: dvd-field-iff field-split-simps split: if-splits)

end

instantiation rat :: euclidean-ring-gcd
begin

definition gcd-rat :: rat ⇒ rat ⇒ rat where
gcd-rat = Euclidean-Algorithm.gcd

definition lcm-rat :: rat ⇒ rat ⇒ rat where
lcm-rat = Euclidean-Algorithm.lcm

definition Gcd-rat :: rat set ⇒ rat where
Gcd-rat = Euclidean-Algorithm.Gcd

definition Lcm-rat :: rat set ⇒ rat where
Lcm-rat = Euclidean-Algorithm.Lcm

instance by standard (simp-all add: gcd-rat-def lcm-rat-def Gcd-rat-def Lcm-rat-def)

end

instance rat :: field-gcd ..

instantiation complex ::
{unique-euclidean-ring, normalization-euclidean-semiring, normalization-semidom-multiplicative}

begin

definition [simp]: normalize-complex = (normalize-field :: complex ⇒ -)
definition [simp]: unit-factor-complex = (unit-factor-field :: complex ⇒ -)
definition [simp]: modulo-complex = (mod-field :: complex ⇒ -)
definition [simp]: euclidean-size-complex = (euclidean-size-field :: complex ⇒ -)
definition [simp]: division-segment (x :: complex) = 1

instance
by standard
(simp-all add: dvd-field-iff field-split-simps split: if-splits)

553

Computation-Checks.thy 554

end

instantiation complex :: euclidean-ring-gcd
begin

definition gcd-complex :: complex ⇒ complex ⇒ complex where
gcd-complex = Euclidean-Algorithm.gcd

definition lcm-complex :: complex ⇒ complex ⇒ complex where
lcm-complex = Euclidean-Algorithm.lcm

definition Gcd-complex :: complex set ⇒ complex where
Gcd-complex = Euclidean-Algorithm.Gcd

definition Lcm-complex :: complex set ⇒ complex where
Lcm-complex = Euclidean-Algorithm.Lcm

instance by standard (simp-all add: gcd-complex-def lcm-complex-def Gcd-complex-def
Lcm-complex-def)

end

instance complex :: field-gcd ..

end

14 Computation checks
theory Computation-Checks
imports Primes Polynomial-Factorial HOL−Library.Discrete-Functions HOL−Library.Code-Target-Numeral
begin

floor-sqrt 16476148165462159 = 128359449

prime 97

prime 97

prime 9973

prime 9973

Gcd {[:1 , 2 , 3 :], [:2 , 3 , 4 :]} = 1

Lcm {[:1 , 2 , 3 :], [:2 , 3 , 4 :]} = [:[:2 :], [:7 :], [:16 :], [:17 :], [:12 :]:]
end

References

[1] K. J. Nowak. Some elementary proofs of Puiseuxs theorems. Univ. Iagel.
Acta Math, 38:279–282, 2000.

Computation{\protect \unhbox \voidb@x \hbox {-}}{\kern 0pt}Checks.html

	Factorial (semi)rings
	Irreducible and prime elements
	Generalized primes: normalized prime elements
	In a semiring with GCD, each irreducible element is a prime element
	Factorial semirings: algebraic structures with unique prime factorizations
	GCD and LCM computation with unique factorizations

	Abstract euclidean algorithm in euclidean (semi)rings
	Generic construction of the (simple) euclidean algorithm
	The (simple) euclidean algorithm as gcd computation
	The extended euclidean algorithm
	Typical instances

	Primes
	Primes on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 int
	Make prime naively executable
	Largest exponent of a prime factor
	Infinitely many primes
	Powers of Primes
	Chinese Remainder Theorem Variants
	Multiplicity and primality for natural numbers and integers
	Rings and fields with prime characteristic
	Finite fields
	The Freshman's Dream in rings of prime characteristic

	Polynomials as type over a ring structure
	Auxiliary: operations for lists (later) representing coefficients
	Definition of type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 poly
	Degree of a polynomial
	The zero polynomial
	List-style constructor for polynomials
	Quickcheck generator for polynomials
	List-style syntax for polynomials
	Representation of polynomials by lists of coefficients
	Fold combinator for polynomials
	Canonical morphism on polynomials – evaluation
	Monomials
	Leading coefficient
	Addition and subtraction
	Multiplication by a constant, polynomial multiplication and the unit polynomial
	Mapping polynomials
	Conversions
	Lemmas about divisibility
	Polynomials form an integral domain
	Polynomials form an ordered integral domain
	Synthetic division and polynomial roots
	Synthetic division
	Polynomial roots
	Order of polynomial roots

	Additional induction rules on polynomials
	Composition of polynomials
	Closure properties of coefficients
	Shifting polynomials
	Truncating polynomials
	Reflecting polynomials
	Derivatives
	Algebraic numbers
	Algebraic integers
	Division of polynomials
	Division in general
	Pseudo-Division
	Division in polynomials over fields
	List-based versions for fast implementation
	Improved Code-Equations for Polynomial (Pseudo) Division

	Primality and irreducibility in polynomial rings
	Content and primitive part of a polynomial
	A typeclass for algebraically closed fields
	Polynomials and limits

	A formalization of formal power series
	The type of formal power series
	Subdegrees
	Ring structure
	Shifting and slicing
	Metrizability
	The topology of formal power series
	Division
	Computing reciprocals via Hensel lifting
	Euclidean division
	Formal Derivatives
	Powers
	Finite and infinite products
	Integration
	Composition
	Rules from Herbert Wilf's Generatingfunctionology
	Rule 1
	Rule 2
	Rule 3
	Rule 5 — summation and ``division'' by 1 - X
	Rule 4 in its more general form

	Radicals
	Chain rule
	Compositional inverses
	Elementary series
	Exponential series
	Logarithmic series
	Binomial series
	Trigonometric functions

	Hypergeometric series

	Converting polynomials to formal power series
	A formalization of formal Laurent series
	The type of formal Laurent series
	Type definition
	Definition of basic Laurent series

	Subdegrees
	Shifting
	Shift definition
	Base factor

	Conversion between formal power and Laurent series
	Converting Laurent to power series
	Converting power to Laurent series

	Algebraic structures
	Addition
	Subtraction and negatives
	Multiplication
	Powers
	Inverses
	Division
	Units

	Composition
	Formal differentiation and integration
	Derivative
	Algebraic rules of the derivative
	Equality of derivatives
	Residues
	Integral definition and basic properties
	Algebraic rules of the integral
	Derivatives of integrals and vice versa

	Topology
	Notation

	The fraction field of any integral domain
	General fractions construction
	Construction of the type of fractions
	Representation and basic operations
	The field of rational numbers
	The ordered field of fractions over an ordered idom

	Fundamental Theorem of Algebra
	More lemmas about module of complex numbers
	Basic lemmas about polynomials
	Fundamental theorem of algebra
	Nullstellensatz, degrees and divisibility of polynomials

	n-th powers and roots of naturals
	The set of n-th powers
	The n-root of a natural number

	Polynomials, fractions and rings
	Lifting elements into the field of fractions
	Lifting polynomial coefficients to the field of fractions
	Fractional content
	Polynomials over a field are a Euclidean ring
	Primality and irreducibility in polynomial rings
	Prime factorisation of polynomials
	Typeclass instances
	Polynomial GCD

	Squarefreeness
	Pieces of computational Algebra
	Computation checks

