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1 Factorial (semi)rings

theory Fuctorial-Ring
imports

Main

HOL— Library. Multiset
begin

unbundle multiset.lifting

1.1 Irreducible and prime elements

context comm-semiring-1
begin

definition irreducible :: 'a = bool where
irreducible p «— p # 0 AN —pdvd 1 AN (Vab.p=axb— advd1V bdvudl)

lemma not-irreducible-zero [simp|: —irreducible 0
by (simp add: irreducible-def)

lemma irreducible-not-unit: irreducible p =—> —p dvd 1
by (simp add: irreducible-def)

lemma not-irreducible-one [simp): —irreducible 1
by (simp add: irreducible-def)

lemma irreduciblel:
p# 0= —pdvd 1 = (Nab.p=a*xb= advd 1V bdvd1)= irreducible

p
by (simp add: irreducible-def)

lemma irreducibleD: irreducible p = p = ax b= a dvd 1 V b dvd 1
by (simp add: irreducible-def)

lemma érreducible-mono:
assumes irr: irreducible b and a dvd b —a dvd 1
shows irreducible a
proof (rule irreduciblel)
fix ¢ d assume a = ¢ * d
from assms obtain k where [simp]: b = a * k by auto
from <a = cx d> have b=cx d x k
by simp
hence ¢ dvd 1 V (d * k) dvd 1
using irreducibleD[OF irr, of ¢ d x k] by (auto simp: mult.assoc)
thus c dvd 1 V d dvd 1
by auto
qged (use assms in <auto simp: irreducible-def»)

lemma irreducible-multD:



assumes [: irreducible (axb)
shows a dvd 1 A irreducible b V b dvd 1 N irreducible a
proof—
have «: irreducible b if I: irreducible (axb) and a: a dvd 1 for a b :: 'a
proof (rule irreduciblel)
show —(b dvd 1)
proof
assume b dvd 1
hence a * b dvd 1 % 1
using <a dvd 1> by (intro mult-dvd-mono) auto
with [ show Fulse
by (auto simp: irreducible-def)
qed
next
fix z y assume b =z * y
have a x z dvd 1 V y dvd 1
using [ by (rule irreducibleD) (use <b = z x y» in <auto simp: mult-acy)
thus z dvd 1 V y dvd 1
by auto
qged (use | a in auto)

from irreducibleD[OF assms refl] have a dvd 1 V b dvd 1
by (auto simp: irreducible-def)
with «[of a b] *[of b a] | show ?thesis
by (auto simp: mult.commute)
qged

lemma irreducible-power-iff [simpl:
irreducible (p ~n) <— drreducible p A n = 1
proof
assume x*: irreducible (p " n)
have irreducible p
using * by (induction n) (auto dest!: irreducible-multD)
hence [simp]: —p dvd 1
using * by (auto simp: irreducible-def)

consider n=0|n=1|n>1
by linarith
thus irreducible p A n = 1
proof cases
assume n > 1
hence p "n=px*xp " (n— 1)
by (cases n) auto
with % <= p dvd 1) have p ~(n — 1) dvd 1
using irreducible-multD[of p p ~ (n — 1)] by auto
with <—p dvd 1> and <n > 1» have Fulse
by (meson dvd-power dvd-trans zero-less-diff)
thus ?thesis ..
qed (use x in auto)



qed auto

definition prime-elem :: 'a = bool where
prime-elem p «— p# 0 A —p dvd 1 AN (Vab. pdvd (a*b) — pdvdaV pdvud
b)

lemma not-prime-elem-zero [simp|: —prime-elem 0
by (simp add: prime-elem-def)

lemma prime-elem-not-unit: prime-elem p — —p dvd 1
by (simp add: prime-elem-def)

lemma prime-elemlI:
p# 0= —-pdvd 1 = (Nab. p dvd (a x b)) = p dvd a V p dvd b)) =
prime-elem p
by (simp add: prime-elem-def)

lemma prime-elem-dvd-multD:
prime-elem p => p dvd (a * b) = p dvd a V p dvd b
by (simp add: prime-elem-def)

lemma prime-elem-dvd-mult-iff
prime-elem p = p dvd (a * b) <— p dvd a V p dvd b
by (auto simp: prime-elem-def)

lemma not-prime-elem-one [simp]:
- prime-elem 1
by (auto dest: prime-elem-not-unit)

lemma prime-elem-not-zerol:
assumes prime-elem p
shows p # 0
using assms by (auto intro: ccontr)

lemma prime-elem-dvd-power:
prime-elem p = pdvd x " n = p dvd x
by (induction n) (auto dest: prime-elem-dvd-multD intro: dvd-trans|of - 1])

lemma prime-elem-dvd-power-iff:
prime-elem p = n > 0 = pdvdz " n<+— p dvd z
by (auto dest: prime-elem-dvd-power intro: dvd-trans)

lemma prime-elem-imp-nonzero [simp):
ASSUMPTION (prime-elem ©) = x # 0
unfolding ASSUMPTION-def by (rule prime-elem-not-zerol )

lemma prime-elem-imp-not-one [simpl:
ASSUMPTION (prime-elem ©) = z # 1



unfolding ASSUMPTION-def by auto

end

lemma (in normalization-semidom) irreducible-cong:
assumes normalize a = normalize b
shows irreducible a «+— irreducible b
proof (cases a = 0 V a dvd 1)
case True
hence —irreducible a by (auto simp: irreducible-def)
from True have normalize a = 0 V normalize a dvd 1
by auto
also note assms
finally have b = 0 V b dvd 1 by simp
hence —irreducible b by (auto simp: irreducible-def)
with <—irreducible a> show ?thesis by simp
next
case Fulse
hence b: b # 0 —is-unit b using assms
by (auto simp: is-unit-normalize[of b))
show ?thesis
proof
assume irreducible a
thus irreducible b
by (rule irreducible-mono) (use assms False b in <auto dest: associatedD2))
next
assume irreducible b
thus irreducible a
by (rule irreducible-mono) (use assms False b in <auto dest: associatedD1 )
qed
qed

lemma (in normalization-semidom) associatedFE1:
assumes normalize a = normalize b
obtains v where is-unit v a = u * b
proof (cases a = 0)
case [simp]: False
from assms have [simp]: b # 0 by auto
show ?thesis
proof (rule that)
show is-unit (unit-factor a div unit-factor b)
by auto
have unit-factor a div unit-factor b * b = unit-factor a * (b div unit-factor b)
using <b # 0> unit-div-commute unit-div-mult-swap unit-factor-is-unit by
metis
also have b div unit-factor b = normalize b by simp
finally show a = unit-factor a div unit-factor b x b
by (metis assms unit-factor-mult-normalize)



qed
next
case [simp]: True
hence [simp]: b = 0
using assms[symmetric] by auto
show ?thesis
by (intro that[of 1]) auto
qed

lemma (in normalization-semidom) associatedE2:
assumes normalize a = normalize b
obtains u where is-unit u b = u * a
proof —
from assms have normalize b = normalize a
by simp
then obtain u where is-unit u b = u * a
by (elim associatedE1)
thus ?thesis using that by blast
qed

lemma (in normalization-semidom) normalize-power-normalize:

normalize (normalize x ~ n) = normalize (z ~ n)
proof (induction n)

case (Suc n)

have normalize (normalize x ~ Suc n) = normalize (z * normalize (normalize x
~n))

by simp

also note Suc.IH

finally show ?case by simp
qed auto

context algebraic-semidom
begin

lemma prime-elem-imp-irreducible:

assumes prime-elem p

shows irreducible p
proof (rule irreduciblel)

fix a b

assume p-eq: p = a * b

with assms have nz: a # 0 b # 0 by auto

from p-eq have p dvd a * b by simp

with <prime-elem p> have p dvd a V p dvd b by (rule prime-elem-dvd-multD)

with <p = a % b» have a x b dvd 1 * bV a x b dvd a x 1 by auto

thus a dvd 1 V b dvd 1

by (simp only: dvd-times-left-cancel-iff [OF nz(1)] dvd-times-right-cancel-iff [ OF

n2(2)))
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qed (insert assms, simp-all add: prime-elem-def)

lemma (in algebraic-semidom) unit-imp-no-irreducible-divisors:
assumes is-unit x irreducible p
shows —p dvd x
proof (rule notl)
assume p dvd x
with <is-unit > have is-unit p
by (auto intro: dvd-trans)
with <irreducible py show Fulse
by (simp add: irreducible-not-unit)
qed

lemma unit-imp-no-prime-divisors:

assumes is-unit x prime-elem p

shows —p dvd =

using unit-imp-no-irreducible-divisors|OF assms(1) prime-elem-imp-irreducible] OF
assms(2)]] .

lemma prime-elem-mono:
assumes prime-elem p —q dvd 1 q dvd p
shows prime-elem q
proof —
from <q dvd p»> obtain r where r: p = ¢ x r by (elim dvdE)
hence p dvd q x r by simp
with «prime-elem p» have p dvd ¢ V p dvd r by (rule prime-elem-dvd-multD)
hence p dvd q
proof
assume p dvd r
then obtain s where s: 7 = p x s by (elim dvdE)
from r have p x 1 = p x (¢ x ) by (subst (asm) s) (simp add: mult-ac)
with <prime-elem py have q dvd 1
by (subst (asm) mult-cancel-left) auto
with <—q dvd 1) show ?thesis by contradiction
qed

show ?thesis

proof (rule prime-elemlI)
fix a b assume ¢ dvd (a x b)
with <p dvd ¢> have p dvd (a * b) by (rule dvd-trans)
with (prime-elem p» have p dvd a V p dvd b by (rule prime-elem-dvd-multD)
with «¢ dvd p» show ¢ dvd a V ¢ dvd b by (blast intro: dvd-trans)

qed (insert assms, auto)

qed

lemma irreducibleD’:
assumes irreducible a b dvd a
shows a dvd b V is-unit b
proof —

11



from assms obtain ¢ where ¢: a = b x ¢ by (elim dvdE)
from drreducibleD[OF assms(1) this] have is-unit b \V is-unit c .
thus ?thesis by (auto simp: ¢ mult-unit-dvd-iff)

qed

lemma irreduciblel :
assumes a # 0 —is-unit a Ab. b dvd a = a dvd b V is-unit b
shows irreducible a
proof (rule irreduciblel)
fix b c assume a-eq: a = b * ¢
hence a dvd b V is-unit b by (intro assms) simp-all
thus is-unit b V is-unit c
proof
assume a dvd b
hence b * ¢ dvd b x 1 by (simp add: a-eq)
moreover from <a # () a-eq have b # 0 by auto
ultimately show ?thesis by (subst (asm) dvd-times-left-cancel-iff) auto
qed blast
qed (simp-all add: assms(1,2))

lemma irreducible-altdef:
irreducible x «— x # 0 N —is-unit x A (Vb. b dvd x — z dvd b V is-unit b)
using irreduciblel '[of z] irreducibleD'[of x| irreducible-not-unit|of z] by auto

lemma prime-elem-multD:
assumes prime-elem (a * b)
shows is-unit a V is-unit b
proof —
from assms have a # 0 b # 0 by (auto dest!: prime-elem-not-zerol )
moreover from assms prime-elem-dvd-multD [of a * b] have a * b dvd a V a *
b dvd b
by auto
ultimately show ?thesis
using dvd-times-left-cancel-iff [of a b 1]
dvd-times-right-cancel-iff [of b a 1]
by auto
qed

lemma prime-elemD2:
assumes prime-elem p and a dvd p and — is-unit a
shows p dvd a
proof —
from <a dvd p> obtain b where p = a % b ..
with «prime-elem p» prime-elem-multD <— is-unit a> have is-unit b by auto
with <p = a * b> show ?thesis
by (auto simp add: mult-unit-dvd-iff)
qed

lemma prime-elem-dvd-prod-msetE:

12



assumes prime-elem p
assumes dvd: p dvd prod-mset A
obtains a where ¢ €# A and p dvd a
proof —
from dvd have Ja. a €# A N p dvd a
proof (induct A)
case empty then show ?case
using <prime-elem p> by (simp add: prime-elem-not-unit)
next
case (add a A)
then have p dvd a * prod-mset A by simp
with <prime-elem p»> consider (A) p dvd prod-mset A | (B) p dvd a
by (blast dest: prime-elem-dvd-multD)
then show ?case proof cases
case B then show ?thesis by auto
next
case A
with add.hyps obtain b where b €# A p dvd b
by auto
then show ?thesis by auto
qed
qed
with that show thesis by blast

qed

context
begin

lemma prime-elem-powerD:
assumes prime-elem (p ~ n)
shows prime-elem p A n = 1
proof (cases n)
case (Suc m)
note assms
also from Suc have p ~n = p x p~m by simp
finally have is-unit p V is-unit (p"m) by (rule prime-elem-multD)
moreover from assms have —is-unit p by (simp add: prime-elem-def is-unit-power-iff)
ultimately have is-unit (p ~ m) by simp
with <—is-unit p» have m = 0 by (simp add: is-unit-power-iff)
with Suc assms show ?thesis by simp
qed (insert assms, simp-all)

lemma prime-elem-power-iff:
prime-elem (p ~n) «— prime-elem p A n = 1

by (auto dest: prime-elem-powerD)

end

13



lemma irreducible-mult-unit-left:
is-unit @ = irreducible (a x p) +— irreducible p
by (auto simp: irreducible-altdef mult.commutelof a] is-unit-mult-iff
mult-unit-dvd-iff dvd-mult-unit-iff)

lemma prime-elem-mult-unit-left:
is-unit @ = prime-elem (a x p) <— prime-elem p
by (auto simp: prime-elem-def mult.commute|of a] is-unit-mult-iff mult-unit-dvd-iff)

lemma prime-elem-dvd-cases:
assumes pk: pxk dvd mxn and p: prime-elem p
shows (3z. k dvd zxn A m = pxz) V (Fy. k dvd mxy A n = pxy)
proof —
have p dvd mxn using dvd-mult-left pk by blast
then consider p dvd m | p dvd n
using p prime-elem-dvd-mult-iff by blast
then show ?thesis
proof cases
case ! then obtain a where m = p x a by (metis dvd-mult-div-cancel)
then have dz. kdvdx x n A m=p=xz
using p pk by (auto simp: mult.assoc)
then show ?thesis ..
next
case 2 then obtain b where n = p * b by (metis dvd-mult-div-cancel)
with p pk have Jy. k dvd mxy A n = pxy
by (metis dvd-mult-right dvd-times-left-cancel-iff mult.left-commute mult-zero-left)
then show ?thesis ..
qed
qed

lemma prime-elem-power-dvd-prod:
assumes pc: p_ ¢ dvd m*xn and p: prime-elem p
shows 3a b. a+b=c A p advdm A p~b dvdn
using pc
proof (induct ¢ arbitrary: m n)
case () show ?case by simp
next
case (Suc ¢)
consider z where p“¢ dvd xxn m = pxz | y where p ¢ dvd mxy n = pxy
using prime-elem-dvd-cases [of - p"¢, OF - p] Suc.prems by force
then show ?case
proof cases
case (I z)
with Suc.hyps[of x n] obtain a b where a + b=cAp “advdz Ap " b dvd
n by blast
with 7 have Suc a + b= Suc c A p ~ Suc a dvd m A p ~bdvdn
by (auto intro: mult-dvd-mono)
thus ?thesis by blast
next

14



case (2 y)
with Suc.hyps[of m y] obtain a b where a + b=cAp “advdm AN p " b
dvd y by blast
with 2 have a + Suc b = Suc ¢ A p “advdm A p ~ Suc b dvdn
by (auto intro: mult-dvd-mono)
with Suc.hyps [of m y] show Ja b. a + b= SuccAp “advdmAp " bdvd

by blast
qed
qed

lemma prime-elem-power-dvd-cases:
assumes p ¢ dvd m x n and a + b = Suc ¢ and prime-eclem p
shows p “advd m VvV p ~bdvdn
proof —
from assms obtain r s
where r +s=cAp “rdvdm A p sdvdn
by (blast dest: prime-elem-power-dvd-prod)
moreover with assms have
a < rVb< s by arith
ultimately show ?thesis by (auto intro: power-le-dvd)
qed

lemma prime-elem-not-unit’ [simp):
ASSUMPTION (prime-elem x) = —vis-unit ©
unfolding ASSUMPTION-def by (rule prime-elem-not-unit)

lemma prime-elem-dvd-power-iff:
assumes prime-elem p
shows p dvd a “n+— pdvda A n >0
using assms by (induct n) (auto dest: prime-elem-not-unit prime-elem-dvd-multD)

lemma prime-power-dvd-multD:
assumes prime-elem p
assumes p ndvd ax band n > 0 and - p dvd a
shows p “n dvd b
using <p " n dvd a x by and <n > 0»
proof (induct n arbitrary: b)
case 0 then show ?case by simp
next
case (Suc n) show Zcase
proof (cases n = 0)
case True with Suc «prime-elem p» <= p dvd a> show ?thesis
by (simp add: prime-elem-dvd-mult-iff)
next
case Fualse then have n > 0 by simp
from <prime-elem p> have p # 0 by auto
from Suc.prems have x: p x p " n dvd a * b
by simp

15



then have p dvd a * b
by (rule dvd-mult-left)

with Suc <prime-elem p> <— p dvd a» have p dvd b
by (simp add: prime-elem-dvd-mult-iff)

moreover define ¢ where ¢ = b div p

ultimately have b: b = p * ¢ by simp

with * have p x p “n dvd p * (a * ¢)
by (simp add: ac-simps)

with «p # 0> have p “n dvd a * ¢
by simp

with Suc.hyps <n > 0> have p " n dvd ¢
by blast

with <p # 0) show ?thesis
by (simp add: b)

qed
qed

end

1.2 Generalized primes: normalized prime elements

context normalization-semidom
begin

lemma irreducible-normalized-divisors:
assumes irreducible x y dvd x normalize y = y
shows y =1V y = normalize
proof —
from assms have is-unit y V © dvd y by (auto simp: irreducible-altdef)
thus ?thesis
proof (elim disjE)
assume s-unit y
hence normalize y = 1 by (simp add: is-unit-normalize)
with assms show ?thesis by simp
next
assume z dvd y
with <y dvd 2> have normalize y = normalize x by (rule associatedI)
with assms show ?thesis by simp
qed
qed

lemma irreducible-normalize-iff [simp]: irreducible (normalize x) = irreducible
using irreducible-mult-unit-left[of 1 div unit-factor x z]
by (cases x = 0) (simp-all add: unit-div-commute)

lemma prime-elem-normalize-iff [simp]: prime-elem (normalize ) = prime-elem
x

using prime-elem-mult-unit-left[of 1 div unit-factor = x|

by (cases x = 0) (simp-all add: unit-div-commute)
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lemma prime-elem-associated:
assumes prime-elem p and prime-elem q and q dvd p
shows normalize ¢ = normalize p
using <q dvd p» proof (rule associatedl)
from <prime-elem ¢» have — is-unit ¢q
by (auto simp add: prime-elem-not-unit)
with «prime-elem p» <q dvd p> show p dvd q
by (blast intro: prime-elemD2)
qed

definition prime :: ‘a = bool where
prime p <— prime-elem p N\ normalize p = p

lemma not-prime-0 [simp]: —prime 0 by (simp add: prime-def)

lemma not-prime-unit: is-unit xt = —prime z
using prime-elem-not-unit[of x| by (auto simp add: prime-def)

lemma not-prime-1 [simp]: —prime 1 by (simp add: not-prime-unit)

lemma primel: prime-elem © = normalize t = x = prime «
by (simp add: prime-def)

lemma prime-imp-prime-elem [dest]: prime p = prime-elem p
by (simp add: prime-def)

lemma normalize-prime: prime p => normalize p = p
by (simp add: prime-def)

lemma prime-normalize-iff [simp]: prime (normalize p) +— prime-elem p
by (auto simp add: prime-def)

lemma prime-power-iff:
prime (p ~ n) <— primep A n =1
by (auto simp: prime-def prime-elem-power-iff)

lemma prime-imp-nonzero [simp):
ASSUMPTION (prime x) = © # 0
unfolding ASSUMPTION-def prime-def by auto

lemma prime-imp-not-one [simp):
ASSUMPTION (prime z) = z # 1
unfolding ASSUMPTION-def by auto

lemma prime-not-unit’ [simp]:

ASSUMPTION (prime x) = —is-unit ©
unfolding ASSUMPTION-def prime-def by auto
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lemma prime-normalize’ [simp]: ASSUMPTION (prime x) = normalize © = x
unfolding ASSUMPTION-def prime-def by simp

lemma unit-factor-prime: prime r = unit-factor x = 1
using unit-factor-normalize|of ] unfolding prime-def by auto

lemma unit-factor-prime’ [simp]: ASSUMPTION (prime z) = unit-factor z =
1
unfolding ASSUMPTION-def by (rule unit-factor-prime)

lemma prime-imp-prime-elem’ [simp]: ASSUMPTION (prime x) = prime-elem
T

by (simp add: prime-def ASSUMPTION-def)

lemma prime-dvd-multD: prime p = p dvd a * b = p dvd a V p dvd b
by (intro prime-elem-dvd-multD) simp-all

lemma prime-dvd-mult-iff: prime p = p dvd a * b <— p dvd a V p dvd b
by (auto dest: prime-dvd-multD)

lemma prime-dvd-power:
primep = pdvdx " n = p duvd z
by (auto dest!: prime-elem-dvd-power simp: prime-def)

lemma prime-dvd-power-iff:
primep = n >0 = pdvdx " n<+— pdvdx
by (subst prime-elem-dvd-power-iff) simp-all

lemma prime-dvd-prod-mset-iff: prime p = p dvd prod-mset A <— (Jz. v €H#
A A p dvd x)

by (induction A) (simp-all add: prime-elem-dvd-mult-iff prime-imp-prime-elem,
blast+)

lemma prime-dvd-prod-iff: finite A = prime p = p dvd prod f A +— (Fz€A.
p dvd f x)
by (auto simp: prime-dvd-prod-mset-iff prod-unfold-prod-mset)

lemma primes-dvd-imp-eq:
assumes prime p prime q p dvd q
shows p = ¢
proof —
from assms have irreducible ¢ by (simp add: prime-elem-imp-irreducible prime-def)
from drreducibleD'|OF this <p dvd ¢»] assms have ¢ dvd p by simp
with <p dvd ¢» have normalize p = normalize q by (rule associatedI)
with assms show p = ¢ by simp
qed

lemma prime-dvd-prod-mset-primes-iff:
assumes prime p N\q. ¢ E# A = prime q
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shows p dvd prod-mset A «— p €# A
proof —
from assms(1) have p dvd prod-mset A <— (z. x €# A A p dvd z) by (rule
prime-dvd-prod-mset-iff )
also from assms have ... «— p €# A by (auto dest: primes-dvd-imp-eq)
finally show ?thesis .
qed

lemma prod-mset-primes-dvd-imp-subset:
assumes prod-mset A dvd prod-mset B \p. p €# A = prime p A\p. p €# B
—> prime p
shows A C# B
using assms
proof (induction A arbitrary: B)
case empty
thus “case by simp
next
case (add p A B)
hence p: prime p by simp
define B’ where B’ = B — {#p#}
from add.prems have p dvd prod-mset B by (simp add: dvd-mult-left)
with add.prems have p €e# B
by (subst (asm) (2) prime-dvd-prod-mset-primes-iff) simp-all
hence B: B = B’ + {#p+#} by (simp add: B’-def)
from add.prems p have A C# B’ by (intro add.IH) (simp-all add: B)
thus ?case by (simp add: B)
qged

lemma prod-mset-dvd-prod-mset-primes-iff:
assumes A\z. x €# A = prime x \z. x €# B = prime x
shows prod-mset A dvd prod-mset B «— A C# B
using assms by (auto intro: prod-mset-subset-imp-dvd prod-mset-primes-dvd-imp-subset)

lemma is-unit-prod-mset-primes-iff:
assumes \z. x €# A = prime z
shows is-unit (prod-mset A) +— A = {#}
by (auto simp add: is-unit-prod-mset-iff)
(meson all-not-in-conv assms not-prime-unit set-mset-eq-empty-iff)

lemma prod-mset-primes-irreducible-imp-prime:

assumes irred: irreducible (prod-mset A)

assumes A: A\z. ¢ €# A = prime z

assumes B: \z. © €# B = prime z

assumes C: \z. z €# C = prime x

assumes dvd: prod-mset A dvd prod-mset B x prod-mset C

shows prod-mset A dvd prod-mset B V prod-mset A dvd prod-mset C
proof —

from dvd have prod-mset A dvd prod-mset (B + C)

by simp
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with A B C have subset: A C# B+ C
by (subst (asm) prod-mset-dvd-prod-mset-primes-iff ) auto
define A7 and A2 where A1 = AN# Band A2 = A — Al
have A = A1 + A2 unfolding AI1-def A2-def
by (rule sym, intro subset-mset.add-diff-inverse) simp-all
from subset have A1 C# B A2 C# C
by (auto simp: Al-def A2-def Multiset.subset-eq-diff-conv Multiset.union-commute)
from <A = A1 + A2) have prod-mset A = prod-mset A1 % prod-mset A2 by
stmp
from irred and this have is-unit (prod-mset A1) V is-unit (prod-mset A2)
by (rule irreducibleD)
with A have A1 = {#} V A2 = {#} unfolding AI1-def A2-def
by (subst (asm) (1 2) is-unit-prod-mset-primes-iff) (auto dest: Multiset.in-diffD)
with dvd <A = A1 + A2) (A1 C# B) <A2 C# C» show ?thesis
by (auto intro: prod-mset-subset-imp-dvd)
qed

lemma prod-mset-primes-finite-divisor-powers:
assumes A: A\z. © €# A = prime x
assumes B: Az. © €# B = prime z
assumes A # {#}
shows finite {n. prod-mset A ™ n dvd prod-mset B}
proof —
from (A # {#}> obtain z where z: z €# A by blast
define m where m = count B x
have {n. prod-mset A " n dvd prod-mset B} C {..m}
proof safe
fix n assume dvd: prod-mset A ~ n dvd prod-mset B
from z have = " n dvd prod-mset A " n by (intro dvd-power-same dvd-prod-mset)
also note dvd
also have x " n = prod-mset (replicate-mset n x) by simp
finally have replicate-mset n x C# B
by (rule prod-mset-primes-dvd-imp-subset) (insert A B x, simp-all split:
if-splits)
thus n < m by (simp add: count-le-replicate-mset-subset-eq m-def)
qed
moreover have finite {..m} by simp
ultimately show ?thesis by (rule finite-subset)
qed

end

1.3 In a semiring with GCD, each irreducible element is a
prime element

context semiring-gcd
begin

lemma irreducible-imp-prime-elem-gcd:
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assumes irreducible

shows prime-elem z
proof (rule prime-elemlI)

fix a b assume z dvd a x b

from dvd-productE[OF this] obtain y z where yz: © = y * 2z y dvd a z dvd b .

from <irreducible r» and «x = y * 2> have is-unit y V is-unit z by (rule irre-
ducibleD)

with yz show z dvd a V x dvd b

by (auto simp: mult-unit-dvd-iff mult-unit-dvd-iff ')

qed (insert assms, auto simp: irreducible-not-unit)

lemma prime-elem-imp-coprime:
assumes prime-elem p —p dvd n
shows coprime p n
proof (rule coprimel)
fix d assume d dvd p d dvd n
show is-unit d
proof (rule ccontr)
assume —is-unit d
from <prime-elem p> and <«d dvd p> and this have p dvd d
by (rule prime-elemD2)
from this and «d dvd n» have p dvd n by (rule dvd-trans)
with <—p dvd n> show False by contradiction
qed
qed

lemma prime-imp-coprime:
assumes prime p —p dvd n
shows coprime p n
using assms by (simp add: prime-elem-imp-coprime)

lemma prime-elem-imp-power-coprime:
prime-elem p = — p dvd a = coprime a (p ~ m)
by (cases m > 0) (auto dest: prime-elem-imp-coprime simp add: ac-simps)

lemma prime-imp-power-coprime:
prime p = - p dvd a = coprime a (p ~ m)
by (rule prime-elem-imp-power-coprime) simp-all

lemma prime-elem-divprod-pow:
assumes p: prime-elem p and ab: coprime a b and pab: p n dvd a x b
shows p™ndvd aV p™n dvd b
using assms
proof —
from p have — is-unit p
by simp
with ab p have = p dvd a V = p dvd b
using not-coprimel by blast
with p have coprime (p " n) a V coprime (p " n) b
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by (auto dest: prime-elem-imp-power-coprime simp add: ac-simps)
with pab show ?thesis
by (auto simp add: coprime-dvd-mult-left-iff coprime-dvd-mult-right-iff)
qed

lemma primes-coprime:
prime p = prime ¢ = p # q => coprime p q
using prime-imp-coprime primes-dvd-imp-eq by blast

end

1.4 Factorial semirings: algebraic structures with unique prime
factorizations

class factorial-semiring = normalization-semidom +
assumes prime-factorization-ezists:
r# 0= 3A (Vz.z €¢# A — prime-elem x) A normalize (prod-mset A) =
normalize x

Alternative characterization

lemma (in normalization-semidom) factorial-semiring-altl-auz:
assumes finite-divisors: A\z. © # 0 = finite {y. y dvd x A normalize y = y}
assumes irreducible-imp-prime-elem: N\z. irreducible ¥ => prime-elem x
assumes z # 0
shows 3JA. (Vz. z €# A — prime-elem ) A normalize (prod-mset A) =
normalize x
using x # 0>
proof (induction card {b. b dvd x A normalize b = b} arbitrary:  rule: less-induct)
case (less a)
let ?fctrs = Aa. {b. b dvd a A normalize b = b}
show ?Zcase
proof (cases is-unit a)
case True
thus ?thesis by (intro exI[of - {#7}]) (auto simp: is-unit-normalize)
next
case Fulse
show ?thesis
proof (cases 3b. b dvd a A\ —is-unit b A —a dvd b)
case Fulse
with <—is-unit ay less.prems have irreducible a by (auto simp: irreducible-altdef)
hence prime-elem a by (rule irreducible-imp-prime-elem)
thus ?thesis by (intro exl[of - {#normalize a#}]) auto
next
case True
then obtain b where b: b dvd a — is-unit b = a dvd b by auto
from b have ?fctrs b C ?fctrs a by (auto intro: dvd-trans)
moreover from b have normalize a ¢ ?fctrs b normalize a € ?fctrs a by
stmp-all
hence ?fctrs b # ?fctrs a by blast
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ultimately have ?fctrs b C ?fctrs a by (subst subset-not-subset-eq) blast
with finite-divisors|OF <a # 0»] have card (?fctrs b) < card (?fctrs a)
by (rule psubset-card-mono)
moreover from <a # 0 b have b # 0 by auto
ultimately have 3 A. (V. © €# A — prime-elem x) A normalize (prod-mset
A) = normalize b
by (intro less) auto
then obtain 4 where A: (Vz. z €# A — prime-elem x) A normalize (][] 4
A) = normalize b
by auto

define ¢ where ¢ = a div b
from b have c: a = b * ¢ by (simp add: c-def)
from less.prems ¢ have ¢ # 0 by auto
from b ¢ have ?fctrs ¢ C ?fctrs a by (auto intro: dvd-trans)
moreover have normalize a ¢ ?fctrs ¢
proof safe
assume normalize a dvd ¢
hence b * ¢ dvd 1 * ¢ by (simp add: ¢)
hence b dvd 1 by (subst (asm) dvd-times-right-cancel-iff) fact+
with b show Fulse by simp
qed
with (normalize a € %fctrs a)» have ?fctrs a # ?fctrs ¢ by blast
ultimately have ?fcirs ¢ C ?fctrs a by (subst subset-not-subset-eq) blast
with finite-divisors|OF <a # 0»] have card (?fctrs ¢) < card (?fctrs a)
by (rule psubset-card-mono)
with <¢c # 0> have 3A. (Vz. © €# A — prime-elem x) N normalize
(prod-mset A) = normalize c
by (intro less) auto
then obtain B where B: (V. z €# B — prime-elem z) A normalize (][] 4
B) = normalize ¢
by auto

show ?thesis
proof (rule exl[of - A + BJ; safe)
have normalize (prod-mset (A + B)) =
normalize (normalize (prod-mset A) x normalize (prod-mset B))
by simp
also have ... = normalize (b * ¢)
by (simp only: A B) auto
also have b x c = a
using ¢ by simp
finally show normalize (prod-mset (A + B)) = normalize a .
next
ged (use A B in auto)
qed
qed
qed
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lemma factorial-semiring-altl:

assumes finite-divisors: N\z::'a. * # 0 = finite {y. y dvd = N\ normalize y =
y}

assumes irreducible-imp-prime: A\z::'a. irreducible x = prime-elem x

shows OFCLASS('a :: normalization-semidom, factorial-semiring-class)

by intro-classes (rule factorial-semiring-altl-auz[OF assms))

Properties

context factorial-semiring
begin

lemma prime-factorization-exists’”:
assumes z # 0
obtains A where A\z. z €# A = prime x normalize (prod-mset A) = normalize
x
proof —
from prime-factorization-exists|OF assms] obtain A
where A: A\z. © €# A = prime-elem x normalize (prod-mset A) = normalize
z by blast
define A’ where A’ = image-mset normalize A
have normalize (prod-mset A’) = normalize (prod-mset A)
by (simp add: A’-def normalize-prod-mset-normalize)
also note A(2)
finally have normalize (prod-mset A') = normalize x by simp
moreover from A(1) have Vz. x €# A’ — prime z by (auto simp: prime-def
A'-def)
ultimately show ?thesis by (intro that[of A’]) blast
qed

lemma irreducible-imp-prime-elem:
assumes irreducible
shows prime-elem x
proof (rule prime-eleml)
fix a b assume dvd: z dvd a * b
from assms have = # 0 by auto
show z dvd a V = dvd b
proof (cases a =0V b= 0)
case False
hence a # 0 b # 0 by blast+
note nz = <z # 0> this
from nz[THEN prime-factorization-exists’| obtain A B C
where ABC:
Nz. z €# A = prime z
normalize ([[# A) = normalize x
Nz. z €# B = prime z
normalize ([[# B) = normalize a
Nz. z €# C = prime z
normalize ([[# C) = normalize b
by this blast
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have irreducible (prod-mset A)
by (subst irreducible-cong|OF ABC(2)]) fact
moreover have normalize (prod-mset A) dvd
normalize (normalize (prod-mset B) x normalize (prod-mset C))
unfolding ABC using dvd by simp
hence prod-mset A dvd prod-mset B * prod-mset C
unfolding normalize-mult-normalize-left normalize-mult-normalize-right by
stmp
ultimately have prod-mset A dvd prod-mset B V prod-mset A dvd prod-mset
C
by (intro prod-mset-primes-irreducible-imp-prime) (use ABC in auto)
hence normalize (prod-mset A) dvd normalize (prod-mset B) V
normalize (prod-mset A) dvd normalize (prod-mset C) by simp
thus ?thesis unfolding ABC by simp
qed auto
qed (use assms in «simp-all add: irreducible-def>)

lemma finite-divisor-powers:
assumes y #* 0 —is-unit ©
shows finite {n. ¢ " n dvd y}
proof (cases x = 0)
case True
with assms have {n. z "~ n dvd y} = {0} by (auto simp: power-0-left)
thus ?thesis by simp
next
case Fulse
note nz = this <y # 0»
from nz[THEN prime-factorization-exists’| obtain A B
where AB:
Nz z €# A = prime z
normalize ([[# A) = normalize ©
Nz. z €#£ B = prime z
normalize ([[ 4 B) = normalize y
by this blast

from AB assms have A # {#} by (auto simp: normalize-1-iff)
from AB(2,4) prod-mset-primes-finite-divisor-powers [of A B, OF AB(1,3) this]
have finite {n. prod-mset A ~ n dvd prod-mset B} by simp
also have {n. prod-mset A ~ n dvd prod-mset B} =
{n. normalize (normalize (prod-mset A) ~ n) dvd normalize (prod-mset
B))

unfolding normalize-power-normalize by simp
also have ... = {n. ¢ " n dvd y}
unfolding AB unfolding normalize-power-normalize by simp
finally show ?thesis .
qed

lemma finite-prime-divisors:
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assumes z # 0
shows finite {p. prime p A p dvd =}
proof —
from prime-factorization-exists’|OF assms| obtain A
where A: A\z. z €# A = prime z normalize ([[ 4 A) = normalize x by this
blast
have {p. prime p A p dvd x} C set-mset A
proof safe
fix p assume p: prime p and dvd: p dvd z
from dvd have p dvd normalize x by simp
also from A have normalize x = normalize (prod-mset A) by simp
finally have p dvd prod-mset A
by simp
thus p €# A using p A
by (subst (asm) prime-dvd-prod-mset-primes-iff)
qged
moreover have finite (set-mset A) by simp
ultimately show ?thesis by (rule finite-subset)
qed

lemma infinite-unit-divisor-powers:
assumes y # 0
assumes is-unit T
shows infinite {n. z™n dvd y}
proof —
from <is-unit > have is-unit (z"n) for n
using is-unit-power-iff by auto
hence z™n dvd y for n
by auto
hence {n. z™n dvd y} = UNIV
by auto
thus ?thesis
by auto
qed

corollary is-unit-iff-infinite-divisor-powers:

assumes y # 0

shows is-unit = +— infinite {n. z7n dvd y}

using infinite-unit-divisor-powers finite-divisor-powers assms by auto

lemma prime-elem-iff-irreducible: prime-elem x +— irreducible
by (blast intro: irreducible-imp-prime-elem prime-elem-imp-irreducible)

lemma prime-divisor-exists:
assumes a # 0 —is-unit a
shows db. b dvd a A prime b
proof —
from prime-factorization-ezists'|OF assms(1)]
obtain A where A: A\z. z €# A = prime z normalize (][ A) = normalize a
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by this blast

with assms have A # {#} by auto

then obtain = where z €# A by blast

with A(1) have x: z dvd normalize (prod-mset A) prime x
by (auto simp: dvd-prod-mset)

hence z dvd a by (simp add: A(2))

with * show ¢thesis by blast

qed

lemma prime-divisors-induct [case-names zero unit factor):
assumes P 0 Az. is-unit t = P x \p z. prime p = Pz = P (p x 1)
shows Pz
proof (cases © = 0)
case Fulse
from prime-factorization-exists'|OF this
obtain A where A: A\z. z €# A = prime z normalize ([[ 4+ A) = normalize
by this blast
from A obtain u where u: is-unit u x = u * prod-mset A
by (elim associatedE2)

from A(1) have P (u x prod-mset A)
proof (induction A)
case (add p A)
from add.prems have prime p by simp
moreover from add.prems have P (u x prod-mset A) by (intro add.IH)
simp-all
ultimately have P (p * (u * prod-mset A)) by (rule assms(3))
thus ?case by (simp add: mult-ac)
qed (simp-all add: assms False u)
with A u show ?thesis by simp
qed (simp-all add: assms(1))

lemma no-prime-divisors-imp-unit:
assumes a # 0 Ab. b dvd a = normalize b = b = — prime-elem b
shows is-unit a
proof (rule ccontr)
assume —is-unit a
from prime-divisor-exists|OF assms(1) this] obtain b where b dvd a prime b
by auto
with assms(2)[of b] show False by (simp add: prime-def)
qed

lemma prime-divisorE:
assumes ¢ # 0 and - is-unit a
obtains p where prime p and p dvd a
using assms no-prime-divisors-imp-unit unfolding prime-def by blast

definition multiplicity :: 'a = 'a = nat where
multiplicity p © = (if finite {n. p " n dvd z} then Maz {n. p " n dvd z} else 0)
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lemma multiplicity-dvd: p ~ multiplicity p = dvd z
proof (cases finite {n. p " n dvd z})
case True
hence multiplicity p x = Maz {n. p "~ n dvd z}
by (simp add: multiplicity-def)
also have ... € {n. p " n duvd z}
by (rule Maz-in) (auto introl: True exlI[of - 0::nat])
finally show ?thesis by simp
qed (simp add: multiplicity-def)

lemma multiplicity-dvd”: n < multiplicity p x = p ~n dvd x
by (rule dvd-trans[OF le-imp-power-dvd multiplicity-dvd))

context

fixeszp:'a

assumes xp: © # 0 —is-unit p
begin

lemma multiplicity-eq-Max: multiplicity p x = Maz {n. p " n dvd z}
using finite-divisor-powers|OF zp] by (simp add: multiplicity-def)

lemma multiplicity-gel:
assumes p ~ n dvd z
shows multiplicity p x > n
proof —
from assms have n < Maz {n. p " n dvd z}
by (intro Max-ge finite-divisor-powers zp) simp-all
thus ?thesis by (subst multiplicity-eq-Mazx)
qed

lemma multiplicity-lessI:
assumes —p ~ n dvd z
shows multiplicity p x < n
proof (rule ccontr)
assume —(n > multiplicity p x)
hence p ~ n dvd x by (intro multiplicity-dvd’) simp
with assms show False by contradiction
qed

lemma power-dvd-iff-le-multiplicity:

p T ndvd x <— n < multiplicity p x

using multiplicity-gel[of n] multiplicity-lessI[of n] by (cases p ~ n dvd ) auto
lemma multiplicity-eq-zero-iff:

shows multiplicity p x = 0 +— —p dvd ¢

using power-dvd-iff-le-multiplicity[of 1] by auto

lemma multiplicity-gt-zero-iff:
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shows  multiplicity p x > 0 +— p dvd x
using power-dvd-iff-le-multiplicity[of 1] by auto

lemma multiplicity-decompose:
—p dvd (x div p = multiplicity p z)
proof
assume *: p dvd x div p ~ multiplicity p x
have z = z div p ~ multiplicity p x * (p ~ multiplicity p x)
using multiplicity-dvd|of p x| by simp
also from x have z div p ~ multiplicity p x = (z div p ~ multiplicity p = div p)
x p by simp
also have z div p = multiplicity p x div p * p x p ~ multiplicity p x =
x div p ~ multiplicity p x div p x p ~ Suc (multiplicity p z)
by (simp add: mult-assoc)
also have p ~ Suc (multiplicity p ) dvd ... by (rule dvd-triv-right)
finally show Fulse by (subst (asm) power-dvd-iff-le-multiplicity) simp
qed

lemma multiplicity-decompose’:
obtains y where z = p ~ multiplicity p x x y —p dvd y
using that[of © div p ~ multiplicity p x]
by (simp add: multiplicity-decompose multiplicity-dvd)

end

lemma multiplicity-zero [simpl: multiplicity p 0 = 0
by (simp add: multiplicity-def)

lemma prime-elem-multiplicity-eq-zero-iff :
prime-elem p = x # 0 = multiplicity p x = 0 <— —p dvd z
by (rule multiplicity-eq-zero-iff ) simp-all

lemma prime-multiplicity-other:
assumes prime p prime ¢ p % q
shows multiplicity p ¢ = 0
using assms by (subst prime-elem-multiplicity-eq-zero-iff ) (auto dest: primes-dvd-imp-eq)

lemma prime-multiplicity-gt-zero-iff :
prime-elem p => © # 0 = multiplicity p x > 0 +— p dvd z
by (rule multiplicity-gt-zero-iff ) simp-all

lemma multiplicity-unit-left: is-unit p = multiplicity p © = 0
by (simp add: multiplicity-def is-unit-power-iff unit-imp-dvd)

lemma multiplicity-unit-right:
assumes is-unit
shows multiplicity p v =
proof (cases is-unit p V . =
case Fulse

0
0)
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with multiplicity-lessI[of = p 1] this assms
show %thesis by (auto dest: dvd-unit-imp-unit)
qed (auto simp: multiplicity-unit-left)

lemma multiplicity-one [simp: multiplicity p 1 = 0
by (rule multiplicity-unit-right) simp-all

lemma multiplicity-eql:
assumes p ~n dvd x —p ~ Suc n dvd x
shows multiplicity p x = n
proof —
consider z = 0 | is-unit p | * # 0 —is-unit p by blast
thus ?thesis
proof cases
assume zp: x # 0 —is-unit p
from zp assms(1) have multiplicity p x > n by (intro multiplicity-gel)
moreover from assms(2) xzp have multiplicity p * < Suc n by (intro multi-
plicity-lessI)
ultimately show #?thesis by simp
next
assume s-unit p
hence is-unit (p ~ Suc n) by (simp add: is-unit-power-iff del: power-Suc)
hence p ~ Suc n dvd z by (rule unit-imp-dvd)
with (=p = Suc n dvd x> show ?thesis by contradiction
qged (insert assms, simp-all)
qged

context

fixeszp:: 'a

assumes zp: T # 0 —is-unit p
begin

lemma multiplicity-times-same:
assumes p # 0
shows multiplicity p (p * =) = Suc (multiplicity p )
proof (rule multiplicity-eql)
show p = Suc (multiplicity p z) dvd p * =
by (auto introl: mult-dvd-mono multiplicity-dvd)
from zp assms show — p = Suc (Suc (multiplicity p z)) dvd p * x
using power-dvd-iff-le-multiplicity| OF xp, of Suc (multiplicity p z)] by simp
qged

end
lemma multiplicity-same-power': multiplicity p (p " n) = (if p = 0 V is-unit p
then 0 else n)

proof —
consider p = 0 | is-unit p |p # 0 —is-unit p by blast
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thus ?thesis
proof cases
assume p # 0 —is-unit p
thus ?thesis by (induction n) (simp-all add: multiplicity-times-same)
qed (simp-all add: power-0-left multiplicity-unit-left)
qed

lemma multiplicity-same-power:
p # 0 = —is-unit p = multiplicity p (p " n) = n
by (simp add: multiplicity-same-power”)

lemma multiplicity-prime-elem-times-other:
assumes prime-elem p —p dvd q
shows multiplicity p (¢ * =) = multiplicity p x
proof (cases z = 0)
case Fulse
show ?thesis
proof (rule multiplicity-eqI)
have 1 * p = multiplicity p x dvd q * z
by (intro mult-dvd-mono multiplicity-dvd) simp-all
thus p = multiplicity p x dvd q * = by simp
next
define n where n = multiplicity p x
from assms have —is-unit p by simp
from multiplicity-decompose’|OF False this)
obtain y where y [folded n-def]: = p ~ multiplicity p x * y = p dvd y .
from y have p “Sucndvd gx x +—p " nxpdvdp " nx*(qg*y) by (simp
add: mult-ac)
also from assms have ... «<— p dvd q * y by simp
also have ... «— p dvud q V p dvd y by (rule prime-elem-dvd-mult-iff) fact+
also from assms y have ... «— Fualse by simp
finally show —(p ~ Suc n dvd q = x) by blast
qed
qed simp-all

lemma multiplicity-self:
assumes p # 0 —is-unit p
shows  multiplicity p p = 1
proof —
from assms have multiplicity p p = Maz {n. p ~ n dvd p}
by (simp add: multiplicity-eq-Maz)
also from assms have p " n dvd p <— n < 1 for n
using dvd-power-iff[of p n 1] by auto
hence {n. p ~n dvd p} = {..1} by auto

also have ... = {0,1} by auto
finally show ?thesis by simp
qed

lemma multiplicity-times-unit-left:
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assumes s-unit c
shows multiplicity (¢ x p) © = multiplicity p
proof —
from assms have {n. (¢ x p) "~ n dvd 2} = {n. p " n dvd z}
by (subst mult.commute) (simp add: mult-unit-dvd-iff power-mult-distrib is-unit-power-iff)
thus ?thesis by (simp add: multiplicity-def)
qed

lemma multiplicity-times-unit-right:
assumes is-unit c
shows multiplicity p (¢ x ) = multiplicity p =
proof —
from assms have {n. p “n dvd ¢ x z} = {n. p " n dvd =}
by (subst mult.commute) (simp add: dvd-mult-unit-iff)
thus ?thesis by (simp add: multiplicity-def)
qed

lemma multiplicity-normalize-left [simpl:
multiplicity (normalize p) & = multiplicity p =
proof (cases p = 0)
case [simp|: False
have normalize p = (1 div unit-factor p) * p
by (simp add: unit-div-commute is-unit-unit-factor)
also have multiplicity ... x = multiplicity p x
by (rule multiplicity-times-unit-left) (simp add: is-unit-unit-factor)
finally show ?thesis .
qed simp-all

lemma multiplicity-normalize-right [simp]:
multiplicity p (normalize ©) = multiplicity p x
proof (cases z = 0)
case [simp]: False
have normalize x = (1 div unit-factor x) x z
by (simp add: unit-div-commute is-unit-unit-factor)
also have multiplicity p ... = multiplicity p x
by (rule multiplicity-times-unit-right) (simp add: is-unit-unit-factor)
finally show ?thesis .
qed simp-all

lemma multiplicity-prime [simp]: prime-elem p = multiplicity p p = 1
by (rule multiplicity-self) auto

lemma multiplicity-prime-power [simpl: prime-elem p = multiplicity p (p
=n
by (subst multiplicity-same-power’) auto

lift-definition prime-factorization :: 'a = ’a multiset is

Az p. if prime p then multiplicity p = else 0
proof —
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fixz:'a
show finite {p. 0 < (if prime p then multiplicity p x else 0)} (is finite ?A)
proof (cases z = 0)
case Fualse
from False have ?A C {p. prime p A p dvd x}
by (auto simp: multiplicity-gt-zero-iff)
moreover from Fulse have finite {p. prime p A p dvd =}
by (rule finite-prime-divisors)
ultimately show ?thesis by (rule finite-subset)
qed simp-all
qged

abbreviation prime-factors :: ‘a = 'a set where
prime-factors a = set-mset (prime-factorization a)

lemma count-prime-factorization-nonprime:
—prime p = count (prime-factorization ) p = 0
by transfer simp

lemma count-prime-factorization-prime:
prime p = count (prime-factorization x) p = multiplicity p x
by transfer simp

lemma count-prime-factorization:
count (prime-factorization x) p = (if prime p then multiplicity p x else 0)
by transfer simp

lemma dvd-imp-multiplicity-le:

assumes a dvd b b # 0

shows multiplicity p a < multiplicity p b
proof (cases is-unit p)

case Fulse

with assms show ?thesis

by (intro multiplicity-gel ) (auto intro: dvd-trans|OF multiplicity-dvd’ assms(1)])
qed (insert assms, auto simp: multiplicity-unit-left)

lemma prime-power-ing:
assumes prime a a  m=a n
shows m =n
proof —
have multiplicity a (a ~ m) = multiplicity a (a ~ n) by (simp only: assms)
thus ?thesis using assms by (subst (asm) (1 2) multiplicity-prime-power) simp-all
qed

lemma prime-power-inj”:
assumes prime p prime q
assumes p m=q nm>0n>0
shows p=gm=n

proof —
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from assms have p ~ 1 dvd p = m by (intro le-imp-power-dvd) simp
also have p " m = ¢ ~ n by fact
finally have p dvd ¢ ~ n by simp
with assms have p dvd ¢ using prime-dvd-power|of p q] by simp
with assms show p = ¢ by (simp add: primes-dvd-imp-eq)
with assms show m = n by (simp add: prime-power-inj)

qed

lemma prime-power-eq-one-iff [simpl: prime p = p "n=1+—>n=10
using prime-power-injlof p n 0] by auto

lemma one-eg-prime-power-iff [simp|: prime p = 1 =p " n<+—>n=10
using prime-power-injlof p 0 n| by auto

lemma prime-power-inj’"
assumes prime p prime q
shows p " m=¢q¢ n—>(m=0An=0)V (p=gAm=n)
using assms
by (cases m = 0; cases n = 0)
(auto dest: prime-power-inj’'|OF assms])

lemma prime-factorization-0 [simp|: prime-factorization 0 = {#}
by (simp add: multiset-eq-iff count-prime-factorization)

lemma prime-factorization-empty-iff:
prime-factorization x = {#} +— x = 0 V is-unit ©
proof
assume x: prime-factorization v = {#}

{

assume z: ¢ # 0 —is-unit x
{
fix p assume p: prime p
have count (prime-factorization ) p = 0 by (simp add: *)
also from p have count (prime-factorization z) p = multiplicity p =
by (rule count-prime-factorization-prime)
also from z p have ... = 0 +— —p dvd z by (simp add: multiplic-
ity-egq-zero-iff )
finally have —p dvd = .

}

with prime-divisor-exists|OF z] have False by blast
}
thus z = 0 V is-unit x by blast
next
assume z = 0 V is-unit
thus prime-factorization © = {#}
proof
assume z: is-unit T

{

fix p assume p: prime p
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from p x have multiplicity p x = 0
by (subst multiplicity-eq-zero-iff)
(auto simp: multiplicity-eq-zero-iff dest: unit-imp-no-prime-divisors)
}
thus ?thesis by (simp add: multiset-eq-iff count-prime-factorization)
qed simp-all
qed

lemma prime-factorization-unit:
assumes is-unit T
shows prime-factorization © = {#}
proof (rule multiset-eql )
fix p:'a
show count (prime-factorization x) p = count {#} p
proof (cases prime p)
case True
with assms have multiplicity p x = 0
by (subst multiplicity-eq-zero-iff)
(auto simp: multiplicity-eq-zero-iff dest: unit-imp-no-prime-divisors)
with True show ?2thesis by (simp add: count-prime-factorization-prime)
qed (simp-all add: count-prime-factorization-nonprime)
qged

lemma prime-factorization-1 [simpl: prime-factorization 1 = {#}
by (simp add: prime-factorization-unit)

lemma prime-factorization-times-prime:
assumes z # 0 prime p
shows prime-factorization (p x z) = {#p#} + prime-factorization
proof (rule multiset-eql)
fixqg:'a
consider —prime q | p = q | prime ¢ p # q by blast
thus count (prime-factorization (p x x)) ¢ = count ({#p#} + prime-factorization
z) q
proof cases
assume q: prime ¢ p # q
with assms primes-dvd-imp-eq|of q p] have —q dvd p by auto
with ¢ assms show ?thesis
by (simp add: multiplicity-prime-elem-times-other count-prime-factorization)
qed (insert assms, auto simp: count-prime-factorization multiplicity-times-same)
qed

lemma prod-mset-prime-factorization-weak:
assumes z #
shows normalize (prod-mset (prime-factorization x)) = normalize
using assms
proof (induction x rule: prime-divisors-induct)
case (factor p x)
have normalize (prod-mset (prime-factorization (p * x))) =
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normalize (p x normalize (prod-mset (prime-factorization x)))
using factor.prems factor.hyps by (simp add: prime-factorization-times-prime)
also have normalize (prod-mset (prime-factorization x)) = normalize
by (rule factor.IH) (use factor in auto)
finally show ?case by simp
qed (auto simp: prime-factorization-unit is-unit-normalize)

lemma in-prime-factors-iff:
p € prime-factors © <— x # 0 N\ p dvd x N\ prime p
proof —
have p € prime-factors x <— count (prime-factorization z) p > 0 by simp
also have ... «— = # 0 A p dvd x N prime p
by (subst count-prime-factorization, cases x = 0)
(auto simp: multiplicity-eq-zero-iff multiplicity-gt-zero-iff)
finally show ?thesis .
qed

lemma in-prime-factors-imp-prime [intro]:
p € prime-factors x => prime p
by (simp add: in-prime-factors-iff)

lemma in-prime-factors-imp-dvd |dest]:
p € prime-factors t = p dvd x
by (simp add: in-prime-factors-iff)

lemma prime-factorsi:
x # 0 = prime p => p dvd x = p € prime-factors
by (auto simp: in-prime-factors-iff)

lemma prime-factors-dvd:
z # 0 = prime-factors = {p. prime p A p dvd z}
by (auto intro: prime-factorsl)

lemma prime-factors-multiplicity:
prime-factors n = {p. prime p A multiplicity p n > 0}
by (cases n = 0) (auto simp add: prime-factors-dvd prime-multiplicity-gt-zero-iff)

lemma prime-factorization-prime:

assumes prime p

shows prime-factorization p = {#p#}
proof (rule multiset-eql)

fix qg:'a

consider —prime q | ¢ = p | prime q ¢ # p by blast

thus count (prime-factorization p) q = count {#p#} q

by cases (insert assms, auto dest: primes-dvd-imp-eq
stmp: count-prime-factorization multiplicity-self multiplicity-eq-zero-iff)

qed

lemma prime-factorization-prod-mset-primes:
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assumes A\p. p €# A = prime p

shows prime-factorization (prod-mset A) = A

using assms
proof (induction A)

case (add p A)

from add.prems|of 0] have 0 ¢# A by auto

hence prod-mset A # 0 by auto

with add show ?case

by (simp-all add: mult-ac prime-factorization-times-prime Multiset.union-commute)
qed simp-all

lemma prime-factorization-cong:
normalize x = normalize y => prime-factorization x = prime-factorization y
by (simp add: multiset-eq-iff count-prime-factorization
multiplicity-normalize-right [of - x, symmetric]
multiplicity-normalize-right [of - y, symmetric]
del: multiplicity-normalize-right)

lemma prime-factorization-unique:
assumes z # 0y # 0
shows prime-factorization © = prime-factorization y <— normalize T = nor-
malize y
proof
assume prime-factorization © = prime-factorization y
hence prod-mset (prime-factorization x) = prod-mset (prime-factorization y) by
stmp
hence normalize (prod-mset (prime-factorization x)) =
normalize (prod-mset (prime-factorization y))
by (simp only: )
with assms show normalize x = normalize y
by (simp add: prod-mset-prime-factorization-weak)
qed (rule prime-factorization-cong)

lemma prime-factorization-normalize [simp):
prime-factorization (normalize x) = prime-factorization x
by (cases x = 0, simp, subst prime-factorization-unique) auto

lemma prime-factorization-eql-strong:
assumes A\p. p €# P = prime p prod-mset P = n
shows prime-factorization n = P
using prime-factorization-prod-mset-primes|[of P] assms by simp

lemma prime-factorization-eql:
assumes Ap. p €# P = prime p normalize (prod-mset P) = normalize n
shows prime-factorization n = P
proof —
have P = prime-factorization (normalize (prod-mset P))
using prime-factorization-prod-mset-primes[of P] assms(1) by simp
with assms(2) show ?thesis by simp
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qed

lemma prime-factorization-mult:
assumes z # 0y # 0
shows prime-factorization (z * y) = prime-factorization & + prime-factorization
Y
proof —
have normalize (prod-mset (prime-factorization x) % prod-mset (prime-factorization
y) =
normalize (normalize (prod-mset (prime-factorization x)) *
normalize (prod-mset (prime-factorization y)))
by (simp only: normalize-mult-normalize-left normalize-mult-normalize-right)
also have ... = normalize (z x y)
by (subst (1 2) prod-mset-prime-factorization-weak) (use assms in auto)
finally show ?thesis
by (intro prime-factorization-eql) auto
qed

lemma prime-factorization-prod:
assumes finite A \o. 1 € A = faz # 0
shows  prime-factorization (prod f A) = (> n€A. prime-factorization (f n))
using assms by (induction A rule: finite-induct)
(auto simp: Sup-multiset-empty prime-factorization-mult)

lemma prime-elem-multiplicity-mult-distrib:
assumes prime-elem p x # 0y # 0
shows  multiplicity p (z * y) = multiplicity p x + multiplicity p y
proof —
have multiplicity p (z * y) = count (prime-factorization (z * y)) (normalize p)
by (subst count-prime-factorization-prime) (simp-all add: assms)
also from assms
have prime-factorization (x * y) = prime-factorization x + prime-factorization

by (intro prime-factorization-mult)
also have count ... (normalize p) =
count (prime-factorization z) (normalize p) + count (prime-factorization y)
(normalize p)
by simp
also have ... = multiplicity p x + multiplicity p y
by (subst (1 2) count-prime-factorization-prime) (simp-all add: assms)
finally show ?thesis .
qged

lemma prime-elem-multiplicity-prod-mset-distrib:

assumes prime-elem p 0 ¢# A

shows  multiplicity p (prod-mset A) = sum-mset (image-mset (multiplicity p)
A)

using assms by (induction A) (auto simp: prime-elem-multiplicity-mult-distrib)
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lemma prime-elem-multiplicity-power-distrib:
assumes prime-elem p © # 0
shows multiplicity p (z ~ n) = n * multiplicity p
using assms prime-elem-multiplicity-prod-mset-distrib [of p replicate-mset n x)
by simp

lemma prime-elem-multiplicity-prod-distrib:
assumes prime-elem p 0 ¢ f “ A finite A
shows multiplicity p (prod f A) = (> x€A. multiplicity p (f ©))
proof —
have multiplicity p (prod f A) = (D x€#mset-set A. multiplicity p (f z))
using assms by (subst prod-unfold-prod-mset)
(simp-all add: prime-elem-multiplicity-prod-mset-distrib sum-unfold-sum-mset
multiset.map-comp o-def)
also from «finite A> have ... = (3 z€A. multiplicity p (f z))
by (induction A rule: finite-induct) simp-all
finally show ?thesis .
qed

lemma multiplicity-distinct-prime-power:
prime p = prime ¢ = p # q¢ = multiplicity p (¢ " n) = 0
by (subst prime-elem-multiplicity-power-distrib) (auto simp: prime-multiplicity-other)

lemma prime-factorization-prime-power:
prime p = prime-factorization (p ~ n) = replicate-mset n p
by (induction n)
(simp-all add: prime-factorization-mult prime-factorization-prime Multiset.union-commute)

lemma prime-factorization-subset-iff-duvd:
assumes [simp]: © £ 0y # 0
shows prime-factorization x C# prime-factorization y <— x dvd y
proof —
have z dvd y +—
normalize (prod-mset (prime-factorization z)) dvd normalize (prod-mset (prime-factorization
y))
using assms by (subst (1 2) prod-mset-prime-factorization-weak) auto
also have ... +— prime-factorization x C# prime-factorization y
by (auto intro!: prod-mset-primes-dvd-imp-subset prod-mset-subset-imp-dvd)
finally show ?thesis ..
qed

lemma prime-factorization-subset-imp-dvd:
x # 0 = (prime-factorization © CH# prime-factorization y) = z dvd y
by (cases y = 0) (simp-all add: prime-factorization-subset-iff-dvd)

lemma prime-factorization-divide:

assumes b dvd a

shows prime-factorization (a div b) = prime-factorization a — prime-factorization
b
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proof (cases a = 0)

case [simp|: False

from assms have [simp]: b # 0 by auto

have prime-factorization ((a div b) x b) = prime-factorization (a div b) +
prime-factorization b

by (intro prime-factorization-mult) (insert assms, auto elim!: dvdE)

with assms show ?thesis by simp

qed simp-all

lemma zero-not-in-prime-factors [simpl: 0 ¢ prime-factors x
by (auto dest: in-prime-factors-imp-prime)

lemma prime-prime-factors:
prime p = prime-factors p = {p}
by (drule prime-factorization-prime) simp

lemma prime-factors-product:
x # 0 = y # 0 = prime-factors (z * y) = prime-factors x U prime-factors y
by (simp add: prime-factorization-mult)

lemma dvd-prime-factors [intro]:
y £ 0 = x dvd y = prime-factors x C prime-factors y
by (intro set-mset-mono, subst prime-factorization-subset-iff-dvd) auto

lemma multiplicity-le-imp-dvd:

assumes z # 0 Ap. prime p = multiplicity p © < multiplicity p y

shows z dvd y
proof (cases y = 0)

case Fulse

from assms this have prime-factorization x C# prime-factorization y

by (intro mset-subset-eql) (auto simp: count-prime-factorization)

with assms False show ?thesis by (subst (asm) prime-factorization-subset-iff-dvd)

qed auto

lemma dvd-multiplicity-eq:
r# 0= y# 0= zdvdy «— (Vp. multiplicity p x < multiplicity p y)
by (auto intro: dvd-imp-multiplicity-le multiplicity-le-imp-dvd)

lemma multiplicity-eq-imp-eq:
assumes z #* 0y # 0
assumes Ap. prime p = multiplicity p x = multiplicity p y
shows normalize © = normalize y
using assms by (intro associated] multiplicity-le-imp-dvd) simp-all

lemma prime-factorization-unique’:

assumes Vp €# M. prime pVp €# N. prime p ([[i €# M. i) = ([ €# N.
i)

shows M =N
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proof —
have prime-factorization ([[¢ €# M. i) = prime-factorization ([[{ €# N. i)
by (simp only: assms)
also from assms have prime-factorization ([[i €# M. i) = M
by (subst prime-factorization-prod-mset-primes) simp-all
also from assms have prime-factorization ([[i €# N. i) = N
by (subst prime-factorization-prod-mset-primes) simp-all
finally show ?thesis .
qed

lemma prime-factorization-unique’”:

assumes Vp €# M. prime p Vp €# N. prime p normalize ([[i €# M. i) =
normalize ([[{ €# N. i)

shows M =N
proof —

have prime-factorization (normalize ([[i €# M. 7)) =

prime-factorization (normalize ([[i €# N. 1))
by (simp only: assms)

also from assms have prime-factorization (normalize ([[i €# M. i)) = M

by (subst prime-factorization-normalize, subst prime-factorization-prod-mset-primes)
simp-all

also from assms have prime-factorization (normalize ([[{ €# N. {)) = N

by (subst prime-factorization-normalize, subst prime-factorization-prod-mset-primes)
simp-all

finally show ?thesis .
qged

lemma multiplicity-cong:
(Ar.p " rdvd a +— p " rdvd b) = multiplicity p a = multiplicity p b
by (simp add: multiplicity-def)

lemma not-dvd-imp-multiplicity-0:
assumes —p dvd
shows multiplicity p x = 0

proof —
from assms have multiplicity p ¢ < 1

by (intro multiplicity-lessI) auto

thus ?thesis by simp

qed

lemma multiplicity-zero-left [simp): multiplicity 0 © = 0
by (cases x = 0) (auto intro: not-dvd-imp-multiplicity-0)

lemma inj-on-Prod-primes:
assumes APp. P€ A= p € P = prime p
assumes AP. P € A = finite P
shows inj-on Prod A
proof (rule inj-onl)
fix P Qassume PQ: P A Qe AJ[P=1]]Q
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with prime-factorization-unique’lof mset-set P mset-set Q] assms[of P] assms|of

Q]
have mset-set P = mset-set Q by (auto simp: prod-unfold-prod-mset)
with assms|[of P] assms[of Q] PQ show P = Q by simp

qed

lemma divides-primepow-weak:
assumes prime p and a dvd p " n
obtains m where m < n and normalize a = normalize (p ~ m)
proof —
from assms have a # 0
by auto
with assms
have normalize (prod-mset (prime-factorization a)) dvd
normalize (prod-mset (prime-factorization (p ~ n)))
by (subst (1 2) prod-mset-prime-factorization-weak) auto
then have prime-factorization a C# prime-factorization (p ~ n)
by (simp add: in-prime-factors-imp-prime prod-mset-dvd-prod-mset-primes-iff)
with assms have prime-factorization a C# replicate-mset n p
by (simp add: prime-factorization-prime-power)
then obtain m where m < n and prime-factorization a = replicate-mset m p
by (rule msubseteg-replicate-msetE)
then have *: normalize (prod-mset (prime-factorization a)) =
normalize (prod-mset (replicate-mset m p)) by metis
also have normalize (prod-mset (prime-factorization a)) = normalize a
using <a # 0> by (simp add: prod-mset-prime-factorization-weak)
also have prod-mset (replicate-mset m p) =p "~ m
by simp
finally show ?thesis using <m < m»
by (intro that[of m))
qed

lemma divide-out-primepow-ezx:
assumes n # 0 3 peprime-factors n. P p
obtains p k n’ where P p primep p dvdn —-pdvdn'k > 0n=p " kx*xn
proof —
from assms obtain p where p: P p prime p p dvd n
by auto
define k£ where k& = multiplicity p n
define n’ where n’ = n div p "k
have n. n=p "k xn’ —pdvd n'
using assms p multiplicity-decompose[of n p]
by (auto simp: n'-def k-def multiplicity-dvd)
from n’ p have k > 0 by (intro Nat.gr0I) auto
with n’ p that[of p n’ k] show ?thesis by auto
qed

!’

lemma divide-out-primepow:
assumes n # 0 —is-unit n
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obtains p k n’ where prime p p dvd n —=p dvdn’" k> 0n=p "k xn’
using divide-out-primepow-ex|OF assms(1), of A-. True] prime-divisor-ezists| OF
assms| assms
prime-factorsl by metis

1.5 GCD and LCM computation with unique factorizations

definition gcd-factorial a b = (if a = 0 then normalize b
else if b = 0 then normalize a
else normalize (prod-mset (prime-factorization a N# prime-factorization b)))

definition Icm-factorial a b = (if a = 0 V b = 0 then 0
else normalize (prod-mset (prime-factorization a U# prime-factorization b)))

definition Gcd-factorial A =
(if A C {0} then 0 else normalize (prod-mset (Inf (prime-factorization ¢ (A —

{oN)

definition Lem-factorial A =
(if A = {} then 1
else if 0 ¢ A N subset-mset.bdd-above (prime-factorization ‘ (A — {0})) then
normalize (prod-mset (Sup (prime-factorization © A)))
else
0)

lemma prime-factorization-gcd-factorial:
assumes [simp]: a # 0 b # 0

shows  prime-factorization (gcd-factorial a b) = prime-factorization a N#
prime-factorization b
proof —

have prime-factorization (gcd-factorial a b) =
prime-factorization (prod-mset (prime-factorization a N# prime-factorization
b))

by (simp add: gcd-factorial-def)
also have ... = prime-factorization a N# prime-factorization b
by (subst prime-factorization-prod-mset-primes) auto
finally show ?thesis .
qed

lemma prime-factorization-lecm-factorial:
assumes [simp]: a # 0 b # 0

shows  prime-factorization (lem-factorial a b) = prime-factorization a U4
prime-factorization b
proof —

have prime-factorization (lem-factorial a b) =
prime-factorization (prod-mset (prime-factorization a U# prime-factorization
b))

by (simp add: lem-factorial-def)
also have ... = prime-factorization a U# prime-factorization b
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by (subst prime-factorization-prod-mset-primes) auto
finally show ?thesis .
qed

lemma prime-factorization-Gcd-factorial:
assumes —4 C {0}
shows prime-factorization (Gcd-factorial A) = Inf (prime-factorization ‘ (A —
{0}))
proof —
from assms obtain z where z: x € A — {0} by auto
hence Inf (prime-factorization < (A — {0})) C# prime-factorization x
by (intro subset-mset.cInf-lower) simp-all
hence Vy. y €# Inf (prime-factorization ‘(A — {0})) — y € prime-factors x
by (auto dest: mset-subset-eqD)
with in-prime-factors-imp-prime[of - x
have Vp. p €# Inf (prime-factorization ‘ (A — {0})) — prime p by blast
with assms show ?thesis
by (simp add: Ged-factorial-def prime-factorization-prod-mset-primes)
qed

lemma prime-factorization-Lem-factorial:

assumes (0 ¢ A subset-mset.bdd-above (prime-factorization ¢ A)

shows prime-factorization (Lem-factorial A) = Sup (prime-factorization < A)
proof (cases A = {})

case True
hence prime-factorization * A = {} by auto
also have Sup ... = {#} by (simp add: Sup-multiset-empty)
finally show ?thesis by (simp add: Lem-factorial-def)
next
case Fulse

have Vy. y €# Sup (prime-factorization < A) — prime y
by (auto simp: in-Sup-multiset-iff assms)
with assms False show ?thesis
by (simp add: Lem-factorial-def prime-factorization-prod-mset-primes)
qed

lemma gcd-factorial-commute: ged-factorial a b = ged-factorial b a
by (simp add: gcd-factorial-def multiset-inter-commute)

lemma gcd-factorial-dvdl: ged-factorial a b dvd a
proof (cases a =0V b= 0)
case Fulse
hence ged-factorial a b # 0 by (auto simp: gcd-factorial-def)
with False show ?Zthesis
by (subst prime-factorization-subset-iff-dvd [symmetric])
(auto simp: prime-factorization-ged-factorial)
qed (auto simp: ged-factorial-def)

lemma gcd-factorial-dvd2: gcd-factorial a b dvd b
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by (subst ged-factorial-commute) (rule ged-factorial-dvdl)

lemma normalize-ged-factorial [simp]: normalize (ged-factorial a b) = ged-factorial
abd
by (simp add: gcd-factorial-def)

lemma normalize-lem-factorial [simp]: normalize (lem-factorial a b) = lem-factorial
ab
by (simp add: lem-factorial-def)

lemma gcd-factorial-greatest: ¢ dvd ged-factorial a b if ¢ dvd a ¢ dvd b for a b ¢
proof (casesa =0V b= 0)

case Fulse

with that have [simp]: ¢ # 0 by auto

let ?p = prime-factorization

from that False have ?p ¢ C# %pa %pc CH#H ?p b

by (simp-all add: prime-factorization-subset-iff-dvd)
hence prime-factorization ¢ C#
prime-factorization (prod-mset (prime-factorization a N# prime-factorization

b))

using Fualse by (subst prime-factorization-prod-mset-primes) auto
with False show ?Zthesis
by (auto simp: gcd-factorial-def prime-factorization-subset-iff-dvd [symmetric])
qed (auto simp: gcd-factorial-def that)

lemma lcm-factorial-gced-factorial:
lem-factorial a b = normalize (a * b div gcd-factorial a b) for a b
proof (casesa = 0V b= 0)
case Fulse
let ?p = prime-factorization
have 1: normalize x x normalize y dvd z +— x x y dvd z for z y z :: 'a
proof —
have normalize (normalize x x normalize y) dvd z +— z * y dvd z
unfolding normalize-mult-normalize-left normalize-mult-normalize-right by
stmp
thus ?thesis unfolding normalize-dvd-iff by simp
qged

have %p (a * b) = (?p a U# %p b) + (%p a NF# %p b)

using False by (subst prime-factorization-mult) (auto intro!: multiset-eql)
hence normalize (prod-mset (?p (a * b))) =

normalize (prod-mset ((p a U# 2p b) + (%p a N# ?p b)))

by (simp only:)

hence x: normalize (a * b) = normalize (lcm-factorial a b * ged-factorial a b)
using Fualse
by (subst (asm) prod-mset-prime-factorization-weak)
(auto simp: lem-factorial-def gcd-factorial-def)

have [simp]: gcd-factorial a b dvd a * b lem-factorial a b dvd a x b
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using associatedD2[OF | by auto
from False have [simp]: gcd-factorial a b # 0 lem-factorial a b # 0
by (auto simp: gcd-factorial-def lem-factorial-def)

show ?thesis
by (rule associated-eqI)
(use x in <auto simp: dvd-div-iff-mult div-dvd-iff-mult dest: associatedD1
associatedD2»)
qed (auto simp: lem-factorial-def)

lemma normalize-Ged-factorial:
normalize (Ged-factorial A) = Ged-factorial A
by (simp add: Ged-factorial-def)

lemma Ged-factorial-eq-0-iff
Ged-factorial A = 0 «— A C {0}
by (auto simp: Ged-factorial-def in-Inf-multiset-iff split: if-splits)

lemma Ged-factorial-dvd:
assumes z € A
shows Gecd-factorial A dvd x
proof (cases x = 0)
case Fulse
with assms have prime-factorization (Ged-factorial A) = Inf (prime-factorization
‘(A —{0}))
by (intro prime-factorization-Ged-factorial) auto
also from False assms have ... C# prime-factorization
by (intro subset-mset.cInf-lower) auto
finally show ?thesis
by (subst (asm) prime-factorization-subset-iff-dvd)
(insert assms False, auto simp: Gced-factorial-eq-0-iff)
qed simp-all

lemma Gcd-factorial-greatest:
assumes A\y. y € A = z dvd y
shows z dvd Gcd-factorial A
proof (cases A C {0})
case Fulse
from False obtain y where y € A y # 0 by auto
with assms[of y] have nz: x # 0 by auto
from nz assms have prime-factorization © C# prime-factorization y if y € A —
{0} for y
using that by (subst prime-factorization-subset-iff-dvd) auto
with False have prime-factorization x C# Inf (prime-factorization ‘(A — {0}))
by (intro subset-mset.cInf-greatest) auto
also from Fualse have ... = prime-factorization (Gcd-factorial A)
by (rule prime-factorization-Ged-factorial [symmetric))
finally show ?thesis
by (subst (asm) prime-factorization-subset-iff-dvd)
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(insert nz False, auto simp: Gced-factorial-eq-0-iff)
qed (simp-all add: Ged-factorial-def)

lemma normalize-Lem-factorial:
normalize (Lem-factorial A) = Lem-factorial A
by (simp add: Lem-factorial-def)

lemma Lem-factorial-eq-0-iff:

Lem-factorial A = 0 +— 0 € A V —subset-mset.bdd-above (prime-factorization
{A)

by (auto simp: Lem-factorial-def in-Sup-multiset-iff)

lemma dvd-Lem-factorial:
assumes z € A
shows z dvd Lem-factorial A
proof (cases 0 ¢ A A subset-mset.bdd-above (prime-factorization ¢ A))
case True
with assms have [simp]: 0 ¢ A x # 0 A # {} by auto
from assms True have prime-factorization © C# Sup (prime-factorization ¢ A)
by (intro subset-mset.cSup-upper) auto
also have ... = prime-factorization (Lem-factorial A)
by (rule prime-factorization-Lem-factorial [symmetric]) (insert True, simp-all)
finally show ?thesis
by (subst (asm) prime-factorization-subset-iff-dvd)
(insert True, auto simp: Lem-factorial-eq-0-iff)
qed (insert assms, auto simp: Lem-factorial-def)

lemma Lem-factorial-least:
assumes A\y. y € A = y dvd z
shows Lcem-factorial A dvd x
proof —
consider A={}|0cA|lz=0]|A#{}0¢ Azx+# 0 Dby blast
thus ?thesis
proof cases
assume x: A A {} 0 ¢ Az #0
hence nz: ¢ # 0 if © € A for z using that by auto
from x have bdd: subset-mset.bdd-above (prime-factorization ‘ A)
by (intro subset-mset.bdd-abovel [of - prime-factorization x])
(auto simp: prime-factorization-subset-iff-dvd nz dest: assms)
have prime-factorization (Lem-factorial A) = Sup (prime-factorization < A)
by (rule prime-factorization-Lem-factorial) fact+
also from * have ... C# prime-factorization x
by (intro subset-mset.cSup-least)
(auto simp: prime-factorization-subset-iff-dvd nz dest: assms)
finally show ?thesis
by (subst (asm) prime-factorization-subset-iff-dvd)
(insert * bdd, auto simp: Lem-factorial-eq-0-iff)
qged (auto simp: Lem-factorial-def dest: assms)
qed
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lemmas gcd-lem-factorial =
gcd-factorial-dvdl ged-factorial-dvd2 gcd-factorial-greatest
normalize-gcd-factorial lem-factorial-ged-factorial
normalize-Ged-factorial Ged-factorial-dvd Ged-factorial-greatest
normalize-Lem-factorial dvd-Lem-factorial Lem-factorial-least

end

class factorial-semiring-gcd = factorial-semiring + ged + Ged +
assumes gcd-eq-ged-factorial: ged a b = ged-factorial a b
and lem-eq-lem-factorial: lem a b = lem-factorial a b
and Ged-eq-Ged-factorial: Ged A = Ged-factorial A
and Lem-eg-Lem-factorial: Lem A = Lem-factorial A
begin

lemma prime-factorization-ged:

assumes [simp]: a # 0 b # 0

shows prime-factorization (ged a b) = prime-factorization a N# prime-factorization
b

by (simp add: gcd-eq-ged-factorial prime-factorization-gcd-factorial)

lemma prime-factorization-lem:
assumes [simp]: a # 0 b # 0
shows prime-factorization (lem a b) = prime-factorization a U# prime-factorization

b

by (simp add: lem-eg-lem-factorial prime-factorization-lem-factorial)

lemma prime-factorization-Ged:
assumes Ged A # 0
shows prime-factorization (Ged A) = Inf (prime-factorization < (A — {0}))
using assms
by (simp add: prime-factorization-Ged-factorial Ged-eq-Ged-factorial Ged-factorial-eq-0-iff)

lemma prime-factorization-Lcm:
assumes Lem A # 0
shows  prime-factorization (Lem A) = Sup (prime-factorization © A)
using assms
by (simp add: prime-factorization-Lem-factorial Lem-eq-Lem-factorial Lem-factorial-eq-0-iff)

lemma prime-factors-ged [simpl:
a# 0 = b+# 0 = prime-factors (ged a b) =
prime-factors a N prime-factors b
by (subst prime-factorization-gcd) auto

lemma prime-factors-lem [simp]:
a# 0 = b+# 0 = prime-factors (lem a b) =
prime-factors a U prime-factors b
by (subst prime-factorization-lem) auto
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subclass semiring-gcd
by (standard, unfold gcd-eq-ged-factorial lem-eg-lem-factorial)
(rule ged-lem-factorial; assumption)+

subclass semiring-Ged
by (standard, unfold Ged-eq-Ged-factorial Lem-eq-Lem-factorial)
(rule gcd-lem-factorial; assumption)+

lemma
assumes x # 0y # 0
shows gcd-eg-factorial’:
ged y = normalize ([[p € prime-factors N prime-factors y.
p ~ min (multiplicity p ) (multiplicity p y)) (is - = ?rhsl)
and Ilcm-eq-factorial”:
lem © y = normalize ([[p € prime-factors x U prime-factors y.
p ~ max (multiplicity p x) (multiplicity p y)) (is - = ?rhs2)

proof —
have gcd z y = ged-factorial z y by (rule ged-eq-ged-factorial)
also have ... = ?rhsi

by (auto simp: gcd-factorial-def assms prod-mset-multiplicity
count-prime-factorization-prime
introl: arg-cong[of - - normalize] dest: in-prime-factors-imp-prime introl:
prod.cong)
finally show gcd x y = ?rhsl .
have lem x y = lem-factorial x y by (rule lem-eg-lem-factorial)
also have ... = ?rhs2
by (auto simp: lem-factorial-def assms prod-mset-multiplicity
count-prime-factorization-prime introl: arg-congof - - normalize]
dest: in-prime-factors-imp-prime intro!: prod.cong)
finally show lecm z y = ?rhs2 .
qed

lemma
assumes z # 0 y # 0 prime p
shows  multiplicity-ged: multiplicity p (ged x y) = min (multiplicity p z)
(multiplicity p v)
and  multiplicity-lem: multiplicity p (lem z y) = max (multiplicity p x)
(multiplicity p v)

proof —

have gcd z y = ged-factorial x y by (rule ged-eq-ged-factorial)

also from assms have multiplicity p ... = min (multiplicity p ©) (multiplicity p
y)

by (simp add: count-prime-factorization-prime [symmetric] prime-factorization-gcd-factorial)
finally show multiplicity p (gcd z y) = min (multiplicity p x) (multiplicity p y) .

have lcm x y = lem-factorial z y by (rule lem-eg-lem-factorial)

also from assms have multiplicity p ... = maz (multiplicity p ) (multiplicity

pYy)
by (simp add: count-prime-factorization-prime [symmetric] prime-factorization-lem-factorial)
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finally show multiplicity p (lem x y) = maz (multiplicity p x) (multiplicity p y)
qed
lemma gcd-lem-distrib:
ged z (lem y z) = lem (ged x y) (ged z 2)
proof (casesz =0V y=0V z=0)
case True
thus ?thesis
by (auto simp: lem-proj1-if-dvd lem-proj2-if-dvd)
next
case Fulse
hence normalize (ged z (lem y z)) = normalize (lem (ged x y) (ged z z))
by (intro associatedl prime-factorization-subset-imp-dvd)
(auto simp: lcm-eq-0-iff prime-factorization-ged prime-factorization-lem
subset-mset.inf-sup-distrib1)

thus ?thesis by simp
qed

lemma lcm-gcd-distrib:
lem z (ged y 2) = ged (lem x y) (lem z 2)
proof (casesz =0V y=0V z=10)
case True
thus ?thesis
by (auto simp: lem-proj1-if-dvd lem-proj2-if-dvd)
next
case Fulse
hence normalize (lem x (ged y z)) = normalize (ged (lem z y) (lem z 2))
by (intro associatedl prime-factorization-subset-imp-dvd)
(auto simp: lem-eq-0-iff prime-factorization-gcd prime-factorization-lem
subset-mset.sup-inf-distrib1)
thus ?thesis by simp
qed

end

class factorial-ring-gcd = factorial-semiring-ged + idom
begin

subclass ring-gcd ..

subclass idom-divide ..

end

class factorial-semiring-multiplicative =

factorial-semiring + normalization-semidom-multiplicative
begin
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lemma normalize-prod-mset-primes:

(Ap. p €# A = prime p) = normalize (prod-mset A) = prod-mset A
proof (induction A)

case (add p A)

hence prime p by simp

hence normalize p = p by simp

with add show ?case by (simp add: normalize-mult)
qed simp-all

lemma prod-mset-prime-factorization:
assumes z # 0
shows prod-mset (prime-factorization ) = normalize
using assms
by (induction x rule: prime-divisors-induct)
(simp-all add: prime-factorization-unit prime-factorization-times-prime
is-unit-normalize normalize-mult)

lemma prime-decomposition: unit-factor x x prod-mset (prime-factorization x) =
x
by (cases x = 0) (simp-all add: prod-mset-prime-factorization)

lemma prod-prime-factors:
assumes z #
shows ([[p € prime-factors . p ~ multiplicity p x) = normalize x
proof —
have normalize © = prod-mset (prime-factorization x)
by (simp add: prod-mset-prime-factorization assms)

also have ... = ([[ p € prime-factors . p ~ count (prime-factorization z) p)
by (subst prod-mset-multiplicity) simp-all
also have ... = ([[p € prime-factors . p ~ multiplicity p x)

by (intro prod.cong)
(simp-all add: assms count-prime-factorization-prime in-prime-factors-imp-prime)
finally show ?thesis ..
qed

lemma prime-factorization-unique’”:
assumes S-eq: S = {p. 0 < f p}
and finite S
and S: VpeS. prime p normalize n = ([[p€S. p ~ fp)
shows S = prime-factors n A (¥ p. prime p — f p = multiplicity p n)
proof
define A where A = Abs-multiset f
from «finite S» S(1) have ([[p€S. p ~fp) # 0 by auto
with S(2) have nz: n # 0 by auto
from S-eq <finite S» have count-A: count A = f
unfolding A-def by (subst multiset. Abs-multiset-inverse) simp-all
from S-eq count-A have set-mset-A: set-mset A = S
by (simp only: set-mset-def)
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from S(2) have normalize n = (][ p€S. p " fp) .
also have ... = prod-mset A by (simp add: prod-mset-multiplicity S-eq set-mset-A
count-A)
also from nz have normalize n = prod-mset (prime-factorization n)
by (simp add: prod-mset-prime-factorization)
finally have prime-factorization (prod-mset A) =
prime-factorization (prod-mset (prime-factorization n)) by simp
also from S(1) have prime-factorization (prod-mset A) = A
by (intro prime-factorization-prod-mset-primes) (auto simp: set-mset-A)
also have prime-factorization (prod-mset (prime-factorization n)) = prime-factorization
n
by (intro prime-factorization-prod-mset-primes) auto
finally show S = prime-factors n by (simp add: set-mset-A [symmetric])

show (Vp. prime p — f p = multiplicity p n)
proof safe
fix p :: 'a assume p: prime p
have multiplicity p n = multiplicity p (normalize n) by simp
also have normalize n = prod-mset A
by (simp add: prod-mset-multiplicity S-eq set-mset-A count-A S)
also from p set-mset-A S(1)
have multiplicity p ... = sum-mset (image-mset (multiplicity p) A)
by (intro prime-elem-multiplicity-prod-mset-distrib) auto
also from S(1) p
have image-mset (multiplicity p) A = image-mset (\q. if p = q then 1 else 0)

A
by (intro image-mset-cong) (auto simp: set-mset-A multiplicity-self prime-multiplicity-other)
also have sum-mset ... = fp
by (simp add: semiring-1-class.sum-mset-delta’ count-A)
finally show f p = multiplicity p n ..
qed
qed

lemma divides-primepow:
assumes prime p and a dvd p " n
obtains m where m < n and normalize a = p ~m
using divides-primepow-weak|OF assms| that assms
by (auto simp add: normalize-power)

lemma Ez-other-prime-factor:
assumes n # 0 and —~(3 k. normalize n = p ~ k) prime p
shows dgeprime-factors n. ¢ # p
proof (rule ccontr)
assume x: —(3 gEprime-factors n. q £ p)
have normalize n = (][ p€prime-factors n. p ~ multiplicity p n)
using assms(1) by (intro prod-prime-factors [symmetric]) auto
also from * have ... = ([[p€{p}. p ~ multiplicity p n)
using assms(3) by (intro prod.mono-neutral-left) (auto simp: prime-factors-multiplicity)
finally have normalize n = p ~ multiplicity p n by auto
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with assms show Fualse by auto
qed

Now a string of results due to Maya Kdzioka

lemma multiplicity-dvd-iff-dvd:
assumes z # 0
shows p k dvd x <— p~k dvd p multiplicity p =
proof (cases is-unit p)
case True
then have is-unit (p7k)
using is-unit-power-iff by simp
hence p7% dvd z
by auto
moreover from <is-unit p> have p~k dvd p multiplicity p
using multiplicity-unit-left is-unit-power-iff by simp
ultimately show ?thesis by simp
next
case Fulse
show ?thesis
proof (cases p = 0)
case True
then have p multiplicity p © = 1
by simp
moreover have p k dvd x = k = 0
proof (rule ccontr)
assume p k dvd z and k # 0
with (p = 0> have p"k = 0 by auto
with «(p7k dvd x> have 0 dvd x by auto
hence z = 0 by auto
with <z # 0» show Fualse by auto
qed
ultimately show ?thesis
by (auto simp add: is-unit-power-iff «— is-unit p)
next
case Fulse
with <z # 0» = is-unit p» show ?thesis
by (simp add: power-dvd-iff-le-multiplicity dvd-power-iff multiplicity-same-power)
qed
qed

lemma multiplicity-decomposel :
assumes z = p k * 2’ and — p dvd 2’ and p # 0
shows multiplicity p t = k
using assms local.multiplicity-eql local.power-Suc2 by force

lemma multiplicity-sum-lt:

assumes multiplicity p a < multiplicity p b a # 0 b # 0
shows multiplicity p (a + b) = multiplicity p a

proof —
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let Zup = multiplicity p

have unit: — is-unit p

proof
assume is-unit p
then have ?vp a = 0 and ?vp b = 0 using multiplicity-unit-left by auto
with assms show False by auto

qged

from multiplicity-decompose’ obtain a’ where a”: a = p~%vp a * o’ — p dvd o’
using unit assms by metis

from multiplicity-decompose’ obtain b’ where b": b = p~?vp b x b’
using unit assms by metis

show %vp (a + b) = %vp a
proof (rule multiplicity-decomposel)
let 26 = %vp b — %vp a
from assms have k: ?k > 0 by simp
with b’ have b = p~%vp a * p~ %k * b’
by (simp flip: power-add)
with o’ show *: a + b= p " %vp a * (a’ + p~ %k x b’
by (simp add: ac-simps distrib-left)
moreover show — p dvd a’ + p~ % * b’
using o’ k dvd-add-left-iff by auto
show p # 0 using assms by auto
qed
qed

corollary multiplicity-sum-min:
assumes multiplicity p a # multiplicity p b a # 0 b # 0
shows multiplicity p (a + b) = min (multiplicity p a) (multiplicity p b)
proof —
let 2up = multiplicity p
from assms have 2vp a < Pup bV %vp a > %up b
by auto
then show ?thesis
by (metis assms multiplicity-sum-It min.commute add-commute min.strict-order-iff )

qed
end

lifting-update multiset.lifting
lifting-forget multiset.lifting

end

2 Abstract euclidean algorithm in euclidean (semi)rings

theory Fuclidean-Algorithm
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imports Factorial-Ring
begin

2.1 Generic construction of the (simple) euclidean algorithm

class normalization-euclidean-semiring = euclidean-semiring + normalization-semidom
begin

lemma euclidean-size-normalize [simpl:
euclidean-size (normalize a) = euclidean-size a
proof (cases a = 0)
case True
then show ?thesis
by simp
next
case [simp|: False
have euclidean-size (normalize a) < euclidean-size (normalize a * unit-factor a)
by (rule size-mult-mono) simp
moreover have cuclidean-size a < euclidean-size (a * (1 div unit-factor a))
by (rule size-mult-mono) simp
ultimately show ?thesis
by simp
qed

context
begin

qualified function gcd :: 'a = 'a = 'a
where ged a b = (if b = 0 then normalize a else ged b (a mod b))
by pat-completeness simp
termination
by (relation measure (euclidean-size o snd)) (simp-all add: mod-size-less)

declare gcd.simps [simp del)]

lemma eucl-induct [case-names zero mod]:
assumes H1: \b. P b 0
and H2: Nab. b# 0 = P b (a mod b) = Pabd
shows P a b
proof (induct a b rule: ged.induct)
case (1 ab)
show ?case
proof (cases b = 0)
case True then show P a b by simp (rule H1)
next
case Fulse
then have P b (a mod b)
by (rule 1.hyps)
with <b # 0> show P a b
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by (blast intro: H2)
qed
qed

qualified lemma gcd-0:
ged a 0 = normalize a
by (simp add: ged.simps [of a 0])

qualified lemma gcd-mod:
a# 0= ged a (b mod a) = ged b a
by (simp add: gcd.simps [of b 0] ged.simps [of b a])

qualified definition lcm :: ‘a = 'a = 'a
where lem a b = normalize (a * b div ged a )

qualified definition Lem :: ‘a set = 'a — Somewhat complicated definition of
Lem that has the advantage of working for infinite sets as well
where
[code del]: Lem A = (if 31.1# 0 A (Va€A. a dvd l) then
letl=SOMEIl.1# 0 N (Va€A. a dvd l) A euclidean-size | =
(LEAST n.31.1# 0 A (Va€A. a dvd 1) A euclidean-size | = n)
in normalize |
else 0)

qualified definition Gcd :: 'a set = 'a
where [code del]: Ged A = Lem {d. Va€A. d dvd a}

lemma semiring-gcd:
class.semiring-gecd one zero times ged lem
divide plus minus unit-factor normalize
proof
show gcd a b dvd a
and ged a b dvd b for a b
by (induct a b rule: eucl-induct)
(simp-all add: local.ged-0 local.ged-mod dvd-mod-iff)
next
show ¢ dvd a = ¢ dvd b = ¢ dvd gcd a b for a b ¢
proof (induct a b rule: eucl-induct)
case (zero a) from <c dvd a> show ?case
by (rule dvd-trans) (simp add: local.gcd-0)
next
case (mod a b)
then show ?case
by (simp add: local.gcd-mod dvd-mod-iff)
qed
next
show normalize (ged a b) = ged a b for a b
by (induct a b rule: eucl-induct)
(simp-all add: local.ged-0 local.ged-mod)
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next
show lecm a b = normalize (a * b div gcd a b) for a b
by (fact local.lem-def)
qed

interpretation semiring-gcd one zero times ged lem
divide plus minus unit-factor normalize
by (fact semiring-ged)

lemma semiring-Ged:
class.semiring-Ged one zero times ged lem Ged Lem
divide plus minus unit-factor normalize
proof —
show ?thesis
proof
have (VacA. a dvd Lem A) A (Vb. (VagA. a dvd b) — Lem A dvd b) for A
proof (cases Al. 1 # 0 A (Va€A. a dvd 1))
case Fulse
then have Lecm A = 0
by (auto simp add: local. Lem-def)
with Fulse show ?thesis
by auto
next
case True
then obtain [y where [y-props: Iy # 0 VY a€A. a dvd ly by blast
define n where n = (LEAST n. 31. 1 # 0 A (Va€A. a dvd 1) N euclidean-size
I =n)
define | where | = (SOME I. [ # 0 A (Va€A. a dvd l) A euclidean-size | =
n)
have 31. 1 # 0 N (Va€A. a dvd I) A euclidean-size | = n
apply (subst n-def)
apply (rule Leastl [of - euclidean-size ly])
apply (rule exI [of - lo])
apply (simp add: ly-props)
done
from somel-ex [OF this] have | # 0 and Va€A. a dvd |
and euclidean-size [ = n
unfolding [-def by simp-all
{
fix I’ assume VacA. a dvd I’
with «Va€A. a dvd I» have VacA. a dvd ged 11
by (auto intro: gcd-greatest)
moreover from </ # 0> have ged 11’ # 0
by simp
ultimately have 3b. b # 0 A (Va€A. a dvd b) A
euclidean-size b = euclidean-size (ged 1 1')
by (intro exl [of - ged 11'], auto)
then have euclidean-size (ged 11') > n
by (subst n-def) (rule Least-le)

o7



moreover have euclidean-size (ged 11') < n
proof —
have ged 11’ dvd |
by simp
then obtain ¢ where | = ged 11" * a ..
with <[ # 0> have a # 0
by auto
hence euclidean-size (ged 11') < euclidean-size (ged 11" * a)
by (rule size-mult-mono)
also have ged [ I’ * a = [ using <l = ged [ I’ x a> ..
also note (euclidean-size | = n»
finally show euclidean-size (ged 1) < n .
qged
ultimately have *: euclidean-size | = euclidean-size (ged 11"
by (intro le-antisym, simp-all add: <euclidean-size | = ny)
from <[ # 0> have [ dvd ged 11’
by (rule dvd-euclidean-size-eg-imp-dvd) (auto simp add: x)
hence [ dvd I’ by (rule dvd-trans [OF - gcd-dvd2])
}
with Va€A. a dvd I» and <] # 0>
have (Va€A. a dvd normalize l) A
(V1. (Va€A. a dvd l") — normalize | dvd 1)
by auto
also from True have normalize | = Lem A
by (simp add: local. Lem-def Let-def n-def I-def)
finally show ?thesis .
qed
then show dvd-Lem: o € A => a dvd Lem A
and Lem-least: (Na. a € A = a dvd b) = Lem A dvd b for A and a b
by auto
show @ € A = Ged A dvd o for A and a
by (auto simp add: local. Ged-def intro: Lem-least)
show (Aa. a € A = b dvd a) = b dvd Ged A for A and b
by (auto simp add: local. Ged-def intro: dvd-Lem)
show [simpl: normalize (Lem A) = Lem A for A
by (simp add: local. Lem-def)
show normalize (Ged A) = Ged A for A
by (simp add: local. Ged-def)
qed
qed

end

interpretation semiring-Gcd one zero times
Euclidean-Algorithm.gcd Fuclidean-Algorithm.lem Euclidean-Algorithm.Ged Eu-
clidean-Algorithm.Lcm
divide plus minus unit-factor normalize
by (fact semiring-Ged)
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subclass factorial-semiring
proof —
show class.factorial-semiring divide plus minus zero times one
unit-factor normalize
proof (standard, rule factorial-semiring-altl-aux) — FIXME rule
fix z assume z # 0
thus finite {p. p dvd = N\ normalize p = p}
proof (induction euclidean-size x arbitrary:  rule: less-induct)
case (less z)
show ?case
proof (cases 3y. y dvd z A —x dvd y N —is-unit y)
case Fulse
have {p. p dvd = A normalize p = p} C {1, normalize z}
proof
fix p assume p: p € {p. p dvd = A normalize p = p}
with False have is-unit p V = dvd p by blast
thus p € {1, normalize x}
proof (elim disjE)
assume is-unit p
hence normalize p = 1 by (simp add: is-unit-normalize)
with p show ?thesis by simp
next
assume z dvd p
with p have normalize p = normalize z by (intro associatedl) simp-all
with p show ?thesis by simp
ged
ged
moreover have finite ... by simp
ultimately show ?thesis by (rule finite-subset)
next
case True
then obtain y where y: y dvd © =z dvd y —is-unit y by blast
define z where z = z div y
let ?fctrs = Ax. {p. p dvd = A normalize p = p}
from y have z: © = y * z by (simp add: z-def)
with less.prems have y # 0 z # 0 by auto
have normalized-factors-product:
{p. p dvd a * b A\ normalize p = p} C
(Mz,y). normalize (z x y)) ‘ ({p. p dvd a A normalize p = p} X {p. p
dvd b A normalize p = p})
for a b
proof safe
fix p assume p: p dvd a * b normalize p = p
from p(1) obtain z y where zy: p = z * y z dvd a y dvd b
by (rule dvd-productE)
define z’ y’ where z’ = normalize x and y’ = normalize y
have p = normalize (z' * y’)
using p by (simp add: zy z'-def y’-def)
moreover have z’ dvd a A normalize z' = x’ and y' dvd b N\ normalize
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y' =1y’
using zy by (auto simp: z'-def y’-def)
ultimately show p € (A(z, y). normalize (z * y))
({p. p dvd a A normalize p = p} x {p. p dvd b A normalize p = p})

3

by fast
qged
from z y have —is-unit z by (auto simp: mult-unit-dvd-iff)
have ?fctrs x C (A(p,p’). normalize (p * p')) “ (?fctrs y x ?fctrs z)
by (subst z) (rule normalized-factors-product)
moreover have -y x zdvd y x 1 -y * zdvd 1 * 2
by (subst dvd-times-left-cancel-iff dvd-times-right-cancel-iff; fact)+
hence finite (A(p,p’). normalize (p x p')) ¢ (Pfctrs y x %fctrs z))
by (intro finite-imagel finite-cartesian-product less dvd-proper-imp-size-less)
(auto simp: x)
ultimately show ?thesis by (rule finite-subset)
qed
qed
next
fix p
assume irreducible p
then show prime-elem p
by (rule irreducible-imp-prime-elem-ged)
qed
qed

lemma Ged-eucl-set [code]:
Euclidean-Algorithm.Ged (set zs) = fold Fuclidean-Algorithm.ged xs 0
by (fact Ged-set-eq-fold)

lemma Lem-eucl-set [codel:
Euclidean-Algorithm.Lem (set xs) = fold Euclidean-Algorithm.lem xs 1
by (fact Lem-set-eq-fold)

end

lemma prime-elem-int-abs-iff [simp]:
fixes p :: int
shows prime-elem |p| +— prime-elem p
using prime-elem-normalize-iff [of p| by simp

lemma prime-elem-int-minus-iff [simpl:
fixes p :: int
shows prime-elem (— p) +— prime-elem p
using prime-elem-normalize-iff [of — p] by simp

lemma prime-int-iff:
fixes p :: int
shows prime p «<— p > 0 A prime-elem p
by (auto simp add: prime-def dest: prime-elem-not-zerol)
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2.2 The (simple) euclidean algorithm as gcd computation

class euclidean-semiring-ged = normalization-euclidean-semiring + ged + Ged +
assumes gcd-eucl: Euclidean-Algorithm.ged = GCD.gcd
and Ilcm-eucl: Euclidean-Algorithm.lem = GCD.lem
assumes Gcd-eucl: Euclidean-Algorithm.Ged = GCD.Ged
and Lem-eucl: Euclidean-Algorithm.Lem = GCD. Lem
begin

subclass semiring-gcd
unfolding ged-eucl [symmetric] lem-eucl [symmetric]
by (fact semiring-ged)

subclass semiring-Ged
unfolding gcd-eucl [symmetric] lem-eucl [symmetric]
Ged-eucl [symmetric] Lem-eucl [symmetric]
by (fact semiring-Ged)

subclass factorial-semiring-gcd
proof
show gcd a b = gcd-factorial a b for a b
apply (rule sym)
apply (rule gedI)
apply (fact gcd-lem-factorial)+
done
then show Ilcm a b = lem-factorial a b for a b
by (simp add: lem-factorial-gced-factorial lem-ged)
show Ged A = Ged-factorial A for A
apply (rule sym)
apply (rule Gedl)
apply (fact ged-lem-factorial)+
done
show Lem A = Lem-factorial A for A
apply (rule sym)
apply (rule Leml)
apply (fact ged-lem-factorial)+
done
qed

lemma ged-mod-right [simp):
a# 0 = gcd a (bmoda) =gcdab
unfolding ged.commute [of a b
by (simp add: gcd-eucl [symmetric] local.ged-mod)

lemma ged-mod-left [simp]:
b# 0= ged (a mod b) b=gedabd
by (drule ged-mod-right [of - a]) (simp add: ged.commute)

lemma euclidean-size-ged-lel [simp]:
assumes a # 0
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shows euclidean-size (ged a b) < euclidean-size a
proof —
from gcd-dvdl obtain ¢ where A: a = ged a b * ¢ ..
with assms have ¢ # 0
by auto
moreover from this
have euclidean-size (ged a b) < euclidean-size (ged a b * ¢)
by (rule size-mult-mono)
with A show ?thesis
by simp
qged

lemma euclidean-size-ged-le2 [simp]:
b # 0 = euclidean-size (ged a b) < euclidean-size b
by (subst ged.commute, rule euclidean-size-ged-lel)

lemma euclidean-size-gcd-less!:
assumes o # 0 and — a dvd b
shows euclidean-size (ged a b) < euclidean-size a
proof (rule ccontr)
assume —euclidean-size (ged a b) < euclidean-size a
with <a # 0> have A: euclidean-size (ged a b) = euclidean-size a
by (intro le-antisym, simp-all)
have a dvd gcd a b
by (rule dvd-euclidean-size-eg-imp-dvd) (simp-all add: assms A)
hence a dvd b using dvd-gcdD2 by blast
with <= a dvd by show Fulse by contradiction
qed

lemma euclidean-size-gcd-less2:
assumes b # 0 and = b dvd a
shows euclidean-size (ged a b) < euclidean-size b
using assms by (subst ged.commute, rule euclidean-size-ged-less!)

lemma euclidean-size-lcm-lel:
assumes ¢ # () and b # 0
shows euclidean-size a < euclidean-size (lem a b)
proof —
have a dvd lem a b by (rule dvd-lem1)
then obtain ¢ where A: lema b= a % c ..
with <o # 0> and b # 0> have ¢ # 0 by (auto simp: lem-eq-0-iff)
then show ?thesis by (subst A, intro size-mult-mono)
qed

lemma euclidean-size-lcm-le2:
a# 0 = b# 0 = euclidean-size b < euclidean-size (lcm a b)

using euclidean-size-lem-lel [of b a] by (simp add: ac-simps)

lemma cuclidean-size-lem-lessl:
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assumes b # 0 and — b dvd a
shows euclidean-size a < euclidean-size (lcm a b)
proof (rule ccontr)
from assms have a # 0 by auto
assume —euclidean-size a < euclidean-size (lem a b)
with <a # 0> and <b # 0» have euclidean-size (lcm a b) = euclidean-size a
by (intro le-antisym, simp, intro euclidean-size-lcm-lel)
with assms have lem a b dvd a
by (rule-tac dvd-euclidean-size-eq-imp-dvd) (auto simp: lem-eq-0-iff)
hence b dvd a by (rule lem-dvdD2)
with «=b dvd a» show Fualse by contradiction
qed

lemma euclidean-size-lcm-less2:
assumes a # () and — a dvd b
shows euclidean-size b < euclidean-size (lem a b)
using assms euclidean-size-lem-less1 [of a b] by (simp add: ac-simps)

end

lemma factorial-euclidean-semiring-gcdl:
OFCLASS ('a::{ factorial-semiring-gcd, normalization-euclidean-semiring}, euclidean-semiring-ged-class)
proof
interpret semiring-Ged 1 0 times
Euclidean-Algorithm.gcd Euclidean-Algorithm.lcm
Euclidean-Algorithm. Ged Euclidean-Algorithm.Lem
divide plus minus unit-factor normalize
rewrites dvd.dvd (x) = Rings.dvd
by (fact semiring-Ged) (simp add: dvd.dvd-def dvd-def fun-eq-iff)
show [simp]: Euclidean-Algorithm.ged = (ged =2 'a = -)
proof (rule ext)+
fixab:'a
show FEuclidean-Algorithm.ged a b = ged a b
proof (induct a b rule: eucl-induct)
case zero
then show ?case
by simp
next
case (mod a b)
moreover have ged b (a mod b) = ged b a
using GCD.gcd-add-mult [of b a div b a mod b, symmetric]
by (simp add: div-mult-mod-eq)
ultimately show ?Zcase
by (simp add: Euclidean-Algorithm.gcd-mod ac-simps)
qed
qed
show [simp]: Fuclidean-Algorithm.Lem = (Lem = 'a set = -)
by (auto intro!: Lem-eql GCD.dvd-Lem GCD.Lem-least)
show Euclidean-Algorithm.lem = (lem :: 'a = -)
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by (simp add: fun-eq-iff Euclidean-Algorithm.lem-def semiring-gcd-class.lem-ged)

show Euclidean-Algorithm.Ged = (Ged :: 'a set = -)

by (simp add: fun-eq-iff Euclidean-Algorithm.Ged-def semiring-Ged-class. Ged-Lem)
qed

2.3 The extended euclidean algorithm

class euclidean-ring-ged = euclidean-semiring-gcd + idom
begin

subclass euclidean-ring ..
subclass ring-gcd ..
subclass factorial-ring-ged ..
function euclid-ext-auz :: 'a = 'a = 'a = 'a = 'a = ‘a = ('a x 'a) x 'a
where euclid-ext-auz s’ st t r' r = (
if 1 = 0 then let ¢ = 1 div unit-factor v’ in ((s' * ¢, t’' x ¢), normalize r')
else let ¢ = ' div r
in euclid-ext-auzx s (s' — q* s) t (t' — ¢« t) v (r’ mod r))
by auto
termination

(simp-all add: mod-size-less)
abbreviation (input) euclid-ext :: 'a = 'a = ('a x 'a) x 'a
where euclid-ext = euclid-ext-auzx 1 0 0 1

lemma
assumes ged v’ v = ged a b
assumes s’ x a + t'x b=1r'
assumes s x g + t* b=r
assumes euclid-ext-auz s’ s t' t ' r = ((z, y), ¢)
shows euclid-ext-aux-eq-ged: ¢ = ged a b
and euclid-ext-auz-bezout: T x a + y x b = ged a b
proof —
have case euclid-ext-aux s' s t' t r' r of ((z, y), ¢) =
zxa+yxb=cAc=gedab(is ?P (euclid-ext-auz s’ s t' t r' r))
using assms(1—3)
proof (induction s’ s t' ¢t r' r rule: euclid-ext-aux.induct)
case (1 s'st'tr'r)
show ?Zcase
proof (cases r = 0)
case True
hence euclid-ext-auzx s" s t' t r' r =
((s" div unit-factor r', t' div unit-factor r'), normalize r')
by (subst euclid-ext-aux.simps) (simp add: Let-def)
also have ?P ...
proof safe
have s’ div unit-factor v’ * a + t’ div unit-factor r’ x b =
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(s"* a + t'* b) div unit-factor r'
by (cases v’ = 0) (simp-all add: unit-div-commute)
also have s’ x a + t' * b = r’ by fact
also have ... div unit-factor v’ = normalize r’ by simp
finally show s’ div unit-factor v’ x a + t' div unit-factor v’ x b = normalize

r
next
from 1.prems True show normalize r' = gcd a b
by simp
qed
finally show ?thesis .
next
case Fulse
hence euclid-ext-aux s’ s t' tr' r =
euclid-ext-auz s (8" — r' divr x s) t (t' — r' divr = t) r (r' mod r)
by (subst euclid-ext-aux.simps) (simp add: Let-def)
also from 1.prems Fualse have 7P ...
proof (intro 1.1H)
have (s’ — r'divrxs)xa+ (t'—r'divrxt)x b=
(s'"xa+t'xb)—r'divrx(s*a+tx*b) by (simp add: algebra-simps)
also have s’ * a + t' * b = r’ by fact
also have s x a + ¢t * b = r by fact
also have r' — r’ div r x v = v’ mod r using div-mult-mod-eq [of ' 7]
by (simp add: algebra-simps)
finally show (s’ — v/ divr x s) xa+ (' —r' divrxt)« b=r"modr.
qged (auto simp: algebra-simps minus-mod-eq-div-mult [symmetric] ged.commute)
finally show ?thesis .
qed
qed
with assms(4) show c = gcdabzxa+ yxb=gedabd
by simp-all
qed

declare euclid-ext-auz.simps [simp del]

definition bezout-coefficients :: 'a = ‘a = 'a x 'a
where [code]: bezout-coefficients a b = fst (euclid-ext a b)

lemma bezout-coefficients-0:
bezout-coefficients a 0 = (1 div unit-factor a, 0)
by (simp add: bezout-coefficients-def euclid-ext-auz.simps)

lemma bezout-coefficients-left-0:
bezout-coefficients 0 a = (0, 1 div unit-factor a)
by (simp add: bezout-coefficients-def euclid-ext-auz.simps)

lemma bezout-coefficients:

assumes bezout-coefficients a b = (z, y)
shows z xa + y*x b=gcdabd
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using assms by (simp add: bezout-coefficients-def
euclid-ext-auz-bezout [of a b a b 1 00 1 x y| prod-eq-iff)

lemma bezout-coefficients-fst-snd:
fst (bezout-coefficients a b) x a + snd (bezout-coefficients a b) * b = ged a b
by (rule bezout-coefficients) simp

lemma euclid-ext-eq [simp]:
euclid-ext a b = (bezout-coefficients a b, ged a b) (is ?p = %q)
proof
show fst ?p = fst ?q
by (simp add: bezout-coefficients-def)
have snd (euclid-ext-auz 1 0 0 1 a b) = ged a b
by (rule euclid-ext-auz-eq-ged [of a b a b 100 1])
(simp-all add: prod-eq-iff)
then show snd ?p = snd ?q
by simp
qed

declare euclid-ext-eq [symmetric, code-unfold)

end

class normalization-euclidean-semiring-multiplicative =
normalization-euclidean-semiring + normalization-semidom-multiplicative

begin

subclass factorial-semiring-multiplicative ..

end

class field-ged =

field + unique-euclidean-ring + euclidean-ring-gcd + normalization-semidom-multiplicative

begin

subclass normalization-euclidean-semiring-multiplicative ..

subclass normalization-euclidean-semiring ..

subclass semiring-gcd-mult-normalize ..

end

2.4 Typical instances

instance nat :: normalization-euclidean-semiring ..

instance nat :: euclidean-semiring-gcd
proof

66



interpret semiring-Ged 1 0 times
Euclidean-Algorithm.gcd Euclidean-Algorithm.lcm
Euclidean-Algorithm.Ged Fuclidean-Algorithm. Lem
divide plus minus unit-factor normalize
rewrites dvd.dvd () = Rings.dvd
by (fact semiring-Ged) (simp add: dvd.dvd-def dvd-def fun-eq-iff)
show [simp]: (Fuclidean-Algorithm.ged :: nat = -) = ged
proof (rule ext)+
fix m n :: nat
show FEuclidean-Algorithm.ged m n = ged m n
proof (induct m n rule: eucl-induct)
case zero
then show ?case
by simp
next
case (mod m n)
then have ged n (m mod n) = ged n m
using gcd-nat.simps [of m n] by (simp add: ac-simps)
with mod show ?case
by (simp add: Euclidean-Algorithm.gcd-mod ac-simps)
qed
qed
show [simp]: (Fuclidean-Algorithm.Lem =2 nat set = -) = Lem
by (auto introl: ext Lem-eql)
show (Euclidean-Algorithm.lem :: nat = -) = lem
by (simp add: fun-eq-iff Euclidean-Algorithm.lem-def semiring-ged-class.lem-ged)
show (Euclidean-Algorithm.Ged :: nat set = -) = Ged
by (simp add: fun-eq-iff Euclidean-Algorithm.Ged-def semiring-Ged-class. Ged-Lem)
qed

instance nat :: normalization-euclidean-semiring-multiplicative ..

lemma prime-factorization-Suc-0 [simp]: prime-factorization (Suc 0) = {#}
unfolding One-nat-def [symmetric] using prime-factorization-1 .

instance int :: normalization-euclidean-semiring ..

instance int :: euclidean-ring-gcd
proof
interpret semiring-Ged 1 0 times
Euclidean-Algorithm.gcd Euclidean-Algorithm.lcm
Euclidean-Algorithm. Ged Euclidean-Algorithm.Lem
divide plus minus unit-factor normalize
rewrites dvd.dvd (x) = Rings.dvd
by (fact semiring-Ged) (simp add: dvd.dvd-def dvd-def fun-eq-iff)
show [simp]: (Euclidean-Algorithm.ged :: int = -) = ged
proof (rule ext)+
fix k1 :: int
show Fuclidean-Algorithm.ged k | = ged k'l
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proof (induct k l rule: eucl-induct)
case zero
then show ?case
by simp
next
case (mod k I)
have ged | (k mod 1) = ged L k
proof (cases | 0::int rule: linorder-cases)
case less
then show ?thesis
using ged-non-0-int [of — | — k] by (simp add: ac-simps)
next
case equal
with mod show ?Zthesis
by simp
next
case greater
then show ?thesis
using ged-non-0-int [of | k] by (simp add: ac-simps)
qed
with mod show Zcase
by (simp add: Euclidean-Algorithm.gcd-mod ac-simps)
qed
qed
show [simp]: (Fuclidean-Algorithm.Lem :: int set = -) = Lem
by (auto intro!: ext Lem-eql)
show (Euclidean-Algorithm.lem :: int = -) = lem
by (simp add: fun-eq-iff Euclidean-Algorithm.lem-def semiring-gcd-class.lem-ged)
show (Euclidean-Algorithm.Ged :: int set = -) = Gecd
by (simp add: fun-eg-iff Euclidean-Algorithm.Ged-def semiring-Ged-class. Ged-Lem)
qed

instance int :: normalization-euclidean-semiring-multiplicative ..

lemma (in idom) prime-CHAR-semidom:
assumes CHAR('a) > 0
shows prime CHAR('a)
proof —
have False if ab: a # 1 b # 1 CHAR('a) = a x b for a b
proof —
from assms ab have a > 0b > 0
by (auto intro!: Nat.gr0I)
have of-nat (a x b) = (0 :: 'a)
using ab by (metis of-nat-CHAR)
also have of-nat (a x b) = (of-nat a :: 'a) * of-nat b
by simp
finally have of-nat a * of-nat b = (0 :: 'a) .
moreover have of-nat a x of-nat b # (0 :: 'a)
using ab <a > 0> <b > O»
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by (intro no-zero-divisors) (auto simp: of-nat-eg-0-iff-char-dvd)
ultimately show Fulse
by contradiction
qed
moreover have CHAR('a) > 1
using assms CHAR-not-1' by linarith
ultimately have prime-elem CHAR('a)
by (intro irreducible-imp-prime-elem) (auto simp: Factorial-Ring.irreducible-def)
thus ?thesis
by (auto simp: prime-def)
qed

end

3 Primes

theory Primes
imports Fuclidean-Algorithm
begin

3.1 Primes on nat and int

lemma Suc-0-not-prime-nat [simp]: = prime (Suc 0)
using not-prime-1 [where ?’a = nat] by simp

lemma prime-ge-2-nat:
p > 2 if prime p for p :: nat
proof —
from that have p # 0 and p # 1
by (auto dest: prime-elem-not-zerol prime-elem-not-unit)
then show ?thesis
by simp
qed

lemma prime-ge-2-int:
p > 2 if prime p for p :: int
proof —
from that have prime-elem p and |p| = p
by (auto dest: normalize-prime)
then have p # 0 and |p| # 1 and p > 0
by (auto dest: prime-elem-not-zerol prime-elem-not-unit)
then show ?thesis
by simp
qed

lemma prime-ge-0-int: prime p => p > (0::int)
using prime-ge-2-int [of p] by simp

lemma prime-gt-0-nat: prime p = p > (0::nat)
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using prime-ge-2-nat [of p| by simp

lemma prime-gt-0-int: prime p => p > (0::int)
using prime-ge-2-int [of p] by simp

lemma prime-ge-1-nat: prime p = p > (1::nat)
using prime-ge-2-nat [of p] by simp

lemma prime-ge-Suc-0-nat: prime p = p > Suc 0
using prime-ge-1-nat [of p| by simp

lemma prime-ge-1-int: prime p = p > (1::int)
using prime-ge-2-int [of p] by simp

lemma prime-gt-1-nat: prime p = p > (1::nat)
using prime-ge-2-nat [of p| by simp

lemma prime-gt-Suc-0-nat: prime p = p > Suc 0
using prime-gt-1-nat [of p] by simp

lemma prime-gt-1-int: prime p = p > (1::int)
using prime-ge-2-int [of p] by simp

lemma prime-natl:
prime p if p > 2 and Am n. p dvd m x n = p dvd m V p dvd n for p :: nat
using that by (auto introl: primel prime-elemlI)

lemma prime-intl:
prime p if p > 2 and Am n. p dvd m x n = p dvd m V p dvd n for p :: int
using that by (auto intro!: primel prime-elemlI)

lemma prime-elem-nat-iff [simp]:
prime-elem n <— prime n for n :: nat
by (simp add: prime-def)

lemma prime-elem-iff-prime-abs [simp]:
prime-elem k <— prime |k| for k :: int
by (auto intro: primel)

lemma prime-nat-int-transfer [simpl:

prime (int n) <— prime n (is P +— ?2Q)
proof

assume 7P

then have n > 2

by (auto dest: prime-ge-2-int)
then show 7@
proof (rule prime-natl)
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fix rs
assume n dvd r * s
with of-nat-dvd-iff [of n r * s] have int n dvd int r % int s
by simp
with <?P» have int n dvd int v V int n dvd int s
using prime-dvd-mult-iff [of int n int r int s
by simp
then show n dvd r V n dvd s
by simp
qged
next
assume ?()
then have int n > 2
by (auto dest: prime-ge-2-nat)
then show 7P
proof (rule prime-intI)
fix r s
assume int n dvd r * s
then have n dvd nat |r s
by simp
then have n dvd nat |r| * nat |s|
by (simp add: nat-abs-mult-distrid)
with «?Q» have n dvd nat |r| V n dvd nat |s]
using prime-dvd-mult-iff [of n nat |r| nat |s|]
by simp
then show int n dvd r V int n dvd s
by simp
qed
qed

lemma prime-nat-iff-prime [simp]:
prime (nat k) <— prime k
proof (cases k > 0)
case True
then show ?thesis
using prime-nat-int-transfer [of nat k] by simp
next
case Fulse
then show ?thesis
by (auto dest: prime-ge-2-int)
qed

lemma prime-int-nat-transfer:
prime k «— k > 0 A prime (nat k)
by (auto dest: prime-ge-2-int)

lemma prime-nat-naivel:

prime p if p > 2 and dvd: An. ndvdp = n=1V n=pforp:

proof (rule primel, rule prime-elemlI)
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fix m n :: nat

assume p dvd m * n

then obtain r s where p = r x s r duvd m s dvd n
by (blast dest: division-decomp)

moreover have r =1V r=p
using <r dvd m) <p = r x s» dvd [of r| by simp

ultimately show p dvd m V p dvd n
by auto

qed (use <p > 2> in simp-all)

lemma prime-int-naivel:
prime p if p > 2 and dvd: \k. k dvd p = |k| = 1 V |k| = p for p :: int
proof —
from <p > 2> have nat p > 2
by simp
then have prime (nat p)
proof (rule prime-nat-naivel )
fix n
assume n dvd nat p
with «p > 2> have n dvd nat |p|
by simp
then have int n dvd p
by simp
with dvd [of int n] show n =1V n = natp
by auto
qged
then show ?thesis
by simp
qed

lemma prime-nat-iff:
prime (n :: nat) +— (I <n A ¥m. mdvdn — m=1V m=n))
proof (safe intro!: prime-gt-1-nat)
assume prime n
then have x: prime-elem n
by simp
fix m assume m: m dvd n m # n
from * «<m dvd n> have n dvd m V is-unit m
by (intro irreducibleD’ prime-elem-imp-irreducible)
with m show m = 1 by (auto dest: dvd-antisym)
next
assume n > 1 Vm. mdvdn — m=1Vm=mn
then show prime n
using prime-nat-naivel [of n] by auto
qed

lemma prime-nat-iff :

prime (p :: nat) «— p > 1 A (Vn € {2..<p}. = n dvd p)
proof safe
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assume p > 1 and *: Vne{2..<p}. =-n dvd p

show prime p unfolding prime-nat-iff

proof (intro conjl alll impl)
fix m assume m dvd p
with <p > 1) have m # 0 by (intro notl) auto
hence m > 1 by simp
moreover from ¢m dvd p> and * have m ¢ {2..<p} by blast
with <m dvd p> and <p > 1) have m < 1 V m = p by (auto dest: dvd-imp-le)
ultimately show m = 1 V m = p by simp

qed fact+

qed (auto simp: prime-nat-iff)

lemma prime-int-iff:
prime (nzint) «— (I <nA(N¥Mm.m>0Amdvdn — m=1V m=n))
proof (intro iffI conjl alll impl; (elim conjE)?)
assume *: prime n
hence irred: irreducible n by (auto intro: prime-elem-imp-irreducible)
from x have n > 0n # 0n # 1
by (auto simp add: prime-ge-0-int)
thus n > 1 by presburger
fix m assume m dvd n <m > 0>
with irred have m dvd 1 V n dvd m by (auto simp: irreducible-altdef)
with <m dvd ny <m > 0> <n > 1y showm =1V m=n
using associated-iff-dvd[of m n] by auto
next
assume n: I < nVm. m>0Amdvdn — m=1Vm=n
hence nat n > 1 by simp
moreover have Vm. m dvd nat n — m = 1 V m = nat n
proof (intro alll impl)
fix m assume m dvd nat n
with «n > 1) have m dvd nat |n|
by simp
then have int m dvd n
by simp
with n(2) have int m = 1 V int m = n
using of-nat-0-le-iff by blast
thus m = 1 V m = nat n by auto
qed
ultimately show prime n
unfolding prime-int-nat-transfer prime-nat-iff by auto
qed

lemma prime-int-iff ":
prime (p = int) «— p > 1 A (Vn € {2.<p}. = ndvd p) (is 2P +— ?Q)
proof (cases p > 0)
case True
have ?P +— prime (nat p)
by simp
also have ... «— p > 1 A (Vne{2..<nat p}. = n dvd nat |p|)
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using True by (simp add: prime-nat-iff ')
also have {2..<nat p} = nat ‘ {2..<p}
using True int-eq-iff by fastforce
finally show ?P +— ?(Q by simp
next
case Fulse
then show ?thesis
by (auto simp add: prime-ge-0-int)
qed

lemma prime-nat-not-dvd:
assumes prime p p > nn # (1:nat)
shows —n dvd p
proof
assume n dvd p
from assms(1) have irreducible p by (simp add: prime-elem-imp-irreducible)
from irreducibleD’[OF this <n dvd p>] <n dvd p» <p > n) assms show False
by (cases n = 0) (auto dest!: dvd-imp-le)
qed

lemma prime-int-not-dvd:
assumes prime p p > nn > (1:int)
shows —n dvd p
proof
assume n dvd p
from assms(1) have irreducible p by (auto intro: prime-elem-imp-irreducible)
from drreducibleD'|OF this <n dvd p>] <n dvd p> <p > n> assms show False
by (auto dest!: zdvd-imp-le)
qed

lemma prime-odd-nat: prime p = p > (2::nat) = odd p
by (intro prime-nat-not-dvd) auto

lemma prime-odd-int: prime p = p > (2::int) = odd p
by (intro prime-int-not-dvd) auto

lemma prime-int-altdef:
primep = (1 < p A (Vmzint. m > 0 — m dvd p —
m=1V m=p))
unfolding prime-int-iff by blast

lemma not-prime-eq-prod-nat:
assumes m > 1 — prime (m::nat)
shows dnk n=mxkAIl <mAmM<nAIl<kANE<n
using assms irreducible-altdef[of m]
by (auto simp: prime-elem-iff-irreducible irreducible-altdef)

74



3.2 Make prime naively executable

lemma prime-int-numeral-eq [simp]:
prime (numeral m :: int) «— prime (numeral m :: nat)
by (simp add: prime-int-nat-transfer)

class check-prime-by-range = normalization-semidom + discrete-linordered-semidom
+

assumes prime-iff: <prime a «— 1 < a A (Vde{2..a div 2}. = d dvd a)»
begin

lemma two-is-prime [simpl:
<prime 2
by (simp add: prime-iff)

end

lemma divisor-less-eq-half-nat:
m < n div 2y if <m dvd ny <m < n> for m n :: nat
using that by (auto simp add: less-eq-div-iff-mult-less-eq)

instance nat :: check-prime-by-range
apply standard
apply (auto simp add: prime-nat-iff)
apply (rule ccontr)
apply (auto simp add: neg-iff)
apply (metis One-nat-def Suc-1 Suc-lel atLeastAtMost-iff divisor-less-eq-half-nat)
done

lemma two-is-prime-nat [simp):
<prime (2::nat)>
by (fact two-is-prime)

lemma divisor-less-eq-half-int:
k< ldiv2yif <kdvd > <k <l <l >0 <k>0 for k1l :: int
proof —
define m n where <m = nat |k «n = nat |I|>
with <[ > 0> <k > 0» have <k = int m» <l = int n»
by simp-all
with that show ?thesis
using divisor-less-eq-half-nat [of m n] by simp
qged

instance int :: check-prime-by-range
apply standard
apply (auto simp add: prime-int-iff)
apply (smt (verit) int-div-less-self)
apply (rule ccontr)
apply (auto simp add: neg-iff zdvd-not-zless)
apply (metis div-by-0 dvd-div-eq-0-iff less-le-not-le one-dvd order-le-less
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zdvd-not-zless)

apply (metis atLeastAtMost-iff divisor-less-eq-half-int dvd-div-eq-0-iff
int-one-le-iff-zero-less nle-le one-add-one pos-imp-zdiv-nonneg-iff zdiv-eq-0-iff
zless-imp-add1-zle)

done

lemma prime-nat-numeral-eq [simp]: — TODO Sieve Of Erathosthenes might
speed this up
prime (numeral m :: nat) «—
(1::nat) < numeral m A
(Vnunat € set [2..<Suc (numeral m div 2)]. = n dvd numeral m)
using prime-iff [of <(numeral m :: nat]
by (simp only: set-upt atLeastLessThanSuc-atLeastAtMost)

context check-prime-by-range
begin

definition check-divisors :: <'a = 'a = 'a = booly
where <check-divisors 1 v a «— (Vde{l..u}. = d dvd a)>

lemma check-divisors-rec [code]:
«check-divisors lu a <— u < IV (= Il dvd a N\ check-divisors (I + 1) u a)>
apply (auto simp add: check-divisors-def not-less)
apply (metis local.add-increasing?2 local.atLeast AtMost-iff local.linear local. order-eq-iff
local.zero-le-one)
subgoal for d
apply (cases <l + 1 < d»)
apply (auto simp add: not-le)
apply (metis local.dual-order.antisym local.less-eq-iff-succ-less)
done
done

lemma prime-eq-check-divisors [code]:
<prime a <— a > 1 A check-divisors 2 (a div 2) a
by (simp add: check-divisors-def prime-iff)

end

3.3 Largest exponent of a prime factor

lemma prime-factor-nat:
n # (1:nat) = Ip. prime p A p dvd n
using prime-divisor-exists|of n]
by (cases n = 0) (auto intro: exI[of - 2::nat))

lemma prime-factor-int:
fixes k :: int
assumes |k| # 1
obtains p where prime p p dvd k
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proof (cases k = 0)
case True
then have prime (2::int) and 2 dvd k
by simp-all
with that show thesis
by blast
next
case Fulse
with assms prime-divisor-exists [of k] obtain p where prime p p dvd k
by auto
with that show thesis
by blast
qed

Possibly duplicates other material, but avoid the complexities of multisets.

lemma prime-power-cancel-less:
assumes prime p and eq: m x (p k) = m’x (p " k') and less: k < k' and -
p dvd m
shows Fulse
proof —
obtain | where I: k' =k + land [ > 0
using less less-imp-add-positive by auto
have m = m * (p " k) div (p " k)
using <prime p» by simp
also have ... = m/'x (p " k') div (p " k)
using eq by simp
also have ... = m/x (p ") = (p " k) div (p " k)
by (simp add: | mult.commute mult.left-commute power-add)
also have ... = m’ x (p ")
using <prime p» by simp
finally have p dvd m
using </ > 0> by simp
with assms show Fualse
by simp
qed

lemma prime-power-cancel:
assumes prime p and eq: m *x (p " k) = m’ x (p k') and - p dvd m - p dvd

m/

shows k = k'
using prime-power-cancel-less [OF <prime ps] assms
by (metis linorder-neqE-nat)

lemma prime-power-cancel?:
assumes prime p m *x (p " k) =m'x (p " k') = p dvd m — p dvd m’
obtains m = m’ k =k’

using prime-power-cancel [OF assms| assms by auto

lemma prime-power-canonical:
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fixes m :: nat
assumes prime p m > 0
shows 3kn. - pdvdn Am=nx*xp k
using <m > 0
proof (induction m rule: less-induct)
case (less m)
show ?Zcase
proof (cases p dvd m)
case True
then obtain m’ where m”: m = p * m’
using dvdFE by blast
with <prime p> have 0 < m’ m’ < m
using less.prems prime-nat-iff by auto
with m’ less show ?thesis
by (metis power-Suc mult.left-commute)
next
case Fulse
then show ?thesis
by (metis mult.right-neutral power-0)
qed
qed

3.4 Infinitely many primes

lemma next-prime-bound: 3 p::nat. prime p A n < p A p < fact n + 1
proof—
have f1: fact n + 1 # (1::nat) using fact-ge-1 [of n, where ‘a=nat] by arith
from prime-factor-nat [OF f1]
obtain p :: nat where prime p and p dvd fact n + 1 by auto
then have p < fact n + 1 apply (intro dvd-imp-le) apply auto done
{ assume p < n
from <prime p> have p > 1
by (cases p, simp-all)
with <p <= n» have p dvd fact n
by (intro dvd-fact)
with <p dvd fact n + 1> have p dvd fact n + 1 — fact n
by (rule dvd-diff-nat)
then have p dvd 1 by simp
then have p <= 1 by auto
moreover from (prime p> have p > 1
using prime-nat-iff by blast
ultimately have Fulse by auto}
then have n < p by presburger
with (prime p» and «<p <= fact n + 1> show ?thesis by auto
qed

lemma bigger-prime: I p. prime p A p > (n::nat)
using next-prime-bound by auto
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lemma primes-infinite: — (finite {(p::nat). prime p})
proof
assume finite {(p::nat). prime p}
with Max-ge have (3b. (Vz € {(p::nat). prime p}. z < b))
by auto
then obtain b where V (z::nat). prime x — z < b
by auto
with bigger-prime [of b] show False
by auto
qed

3.5 Powers of Primes

Versions for type nat only

lemma prime-product:
fixes p::nat
assumes prime (p * q)
shows p =1V q¢g=1
proof —
from assms have
I <pxqgand P: Am. mdvdpxq=—= m=1Vm=p=xgq
unfolding prime-nat-iff by auto
from <1 < p x ¢ have p # 0 by (cases p) auto
then have Q: p = p x ¢ +— ¢ = 1 by auto
have p dvd p * q by simp
then have p = 1 V p = p % ¢ by (rule P)
then show %thesis by (simp add: Q)
qed

lemma prime-power-mult-nat:
fixes p :: nat
assumes p: prime pand zy: x x y = p _ k
shows dij.z=p " iANy=pj
using zy
proof (induct k arbitrary: z y)
case 0 thus ?case apply simp by (rule exl[where z=0], simp)
next
case (Suc k z y)
from Suc.prems have pzy: p dvd zxy by auto
from prime-dvd-multD [OF p pxy] have pzyc: p dvd z V p dvd y .
from p have p0: p # 0 by — (rule ccontr, simp)
{assume pz: p dvd z
then obtain d where d: x = pxd unfolding dvd-def by blast
from Suc.prems d have pxdxy = p Suc k by simp
hence th: dxy = p~k using p0 by simp
from Suc.hyps|OF th] obtain ¢ j where ij: d = p™i y = p"j by blast
with d have z = p~Suc i by simp
with 7j(2) have ?case by blast}
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moreover
{assume pz: p dvd y
then obtain d where d: y = pxd unfolding dvd-def by blast
from Suc.prems d have pxdxz = p~Suc k by (simp add: mult.commute)
hence th: dxx = p~k using p0 by simp
from Suc.hyps|OF th] obtain i j where ij: d = p™i x = p~j by blast
with d have y = p~Suc i by simp
with ¢j(2) have Zcase by blast}
ultimately show “case using pxyc by blast
qed

lemma prime-power-exp-nat:
fixes p::nat
assumes p: prime p and n: n # 0
and zn: x'n = p k shows Ji. z = pi
using n zn
proof (induct n arbitrary: k)
case 0 thus ?case by simp
next
case (Suc n k) hence th: xxz™n = p"k by simp
{assume n = 0 with Suc have ?case by simp (rule exl[where z=Fk|, simp)}
moreover
{assume n: n # 0
from prime-power-mult-nat[OF p th)
obtain i j where 7j: © = p7i 2" n = p jby blast
from Suc.hyps|OF n j(2)] have Zcase .}
ultimately show ?case by blast
qed

lemma divides-primepow-nat:
fixes p :: nat
assumes p: prime p
shows d dvd p "k +— (Fi<k. d =p ")
using assms divides-primepow [of p d k| by (auto intro: le-imp-power-dvd)

lemma gcd-prime-int:
assumes prime (p :: int)
shows ged p k = (if p dvd k then p else 1)
proof —
have p > 0
using assms prime-ge-0-int by auto
show ?thesis
proof (cases p dvd k)
case True
thus ?thesis using assms <p > 0y by auto
next
case Fulse
hence coprime p k
using assms by (simp add: prime-imp-coprime)
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with Fualse show ?thesis
by auto
qed
qed

3.6 Chinese Remainder Theorem Variants

lemma bezout-gcd-nat:
fixes a:nat shows dz y. axx —bxy=geda bV bxxz —axy=gedab
using bezout-nat[of a b]

by (metis bezout-nat diff-add-inverse ged-add-mult ged.commute
ged-nat.right-neutral mult-0)

lemma gcd-bezout-sum-nat:
fixes a::nat
assumes a x ¢ + bx y =d
shows gcd a b dvd d
proof—
let 29 = ged a b
have dv: ?g dvd axz ?g dvd b * y
by simp-all
from dvd-add[OF dv] assms
show ?thesis by auto
qed

A binary form of the Chinese Remainder Theorem.

lemma chinese-remainder:
fixes a::nat assumes ab: coprime a b and a: a # 0 and b: b # 0
shows dz ql ¢g2. x =u+ql xa ANz =v+ g2 xb
proof—
from bezout-add-strong-nat|OF a, of b] bezout-add-strong-nat|OF b, of a)
obtain dI z1 y! d2 z2 y2 where dxyl: dI dvd a d1 dvd b a x 1 = b * yl + d1
and dzy2: d2 dvd b d2 dvd a b x 22 = a * y2 + d2 by blast
then have d12: d1 = 1d2 =1
using ab coprime-common-divisor-nat [of a b] by blast+
let 0 = vxa*xxl + u*bx* 2
let 2q1 = v x xl + u * y2
let 992 = v x yl + u % x2
from dxy2(3)[simplified d12] dzyl(3)[simplified d12]
have % = u + %1 * a %z = v + 292 x b
by algebra+
thus “thesis by blast
qed

Primality

lemma coprime-bezout-strong:
fixes a::nat assumes coprime a b b # 1
shows dzy. axz=bx*xy + 1
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by (metis add.commute add.right-neutral assms(1) assms(2) chinese-remainder
coprime-1-left coprime-1-right coprime-crossproduct-nat mult.commute mult.right-neutral
mult-cancel-left)

lemma bezout-prime:
assumes p: prime p and pa: - p dvd a
shows Jz y. axz = Suc (pxy)
proof —
have ap: coprime a p
using coprime-commute p pa prime-imp-coprime by auto
moreover from p have p # 1 by auto
ultimately have Az y. a x x = p x y + 1
by (rule coprime-bezout-strong)
then show ?thesis by simp
qed

3.7 Multiplicity and primality for natural numbers and in-
tegers

lemma prime-factors-gt-0-nat:
p € prime-factors t => p > (0::nat)
by (simp add: in-prime-factors-imp-prime prime-gt-0-nat)

lemma prime-factors-gt-0-int:
p € prime-factors x = p > (0::int)
by (simp add: in-prime-factors-imp-prime prime-gt-0-int)

lemma prime-factors-ge-0-int [elim]:
fixes n :: int
shows p € prime-factors n = p > 0
by (drule prime-factors-gt-0-int) simp

lemma prod-mset-prime-factorization-int:
fixes n :: int
assumes n > (
shows prod-mset (prime-factorization n) = n
using assms by (simp add: prod-mset-prime-factorization)

lemma prime-factorization-exists-nat:
n> 0= (3IM. (Vp:nat € set-mset M. prime p) A n = ([[7 €# M. 7))
using prime-factorization-exists[of n] by auto

lemma prod-mset-prime-factorization-nat [simp]:
(n:nat) > 0 = prod-mset (prime-factorization n) = n
by (subst prod-mset-prime-factorization) simp-all

lemma prime-factorization-nat:

n > (0:nat) = n = ([[p € prime-factors n. p ~ multiplicity p n)
by (simp add: prod-prime-factors)
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lemma prime-factorization-int:
n > (0:zint) = n = ([[ p € prime-factors n. p ~ multiplicity p n)
by (simp add: prod-prime-factors)

lemma prime-factorization-unique-nat:
fixes f :: nat = -
assumes S-eq: S = {p. 0 < f p}
and finite S
and S: VpeS. prime pn = ([[p€S. p ~ [ p)
shows S = prime-factors n A (¥ p. prime p — f p = multiplicity p n)
using assms by (intro prime-factorization-unique'’) auto

lemma prime-factorization-unique-int:
fixes [ :: int = -
assumes S-eq: S = {p. 0 < fp}
and finite S
and S: VpeS. prime p abs n = ([[p€S. p ~ [ p)
shows S = prime-factors n A (¥ p. prime p — f p = multiplicity p n)
using assms by (intro prime-factorization-unique'’) auto

lemma prime-factors-characterization-nat:
S={p. 0<f (p:nat)} =
finite S = V peS. prime p = n = ([[ p€S. p ~ f p) = prime-factors n = S
by (rule prime-factorization-unique-nat [THEN conjunctl, symmetric])

lemma prime-factors-characterization’-nat:
finite {p. 0 < f (p::nat)} =
(Vp. 0 < fp— prime p) =
prime-factors ([[p | 0 < fp.p ~fp) ={p. 0 < fp}
by (rule prime-factors-characterization-nat) auto

lemma prime-factors-characterization-int:
S ={p. 0 < f (p:int)} = finite S =
vV peS. prime p => abs n = ([[p€S. p ~ f p) = prime-factors n = S
by (rule prime-factorization-unique-int [THEN conjunctl, symmetric])

lemma abs-prod: abs (prod f A :: 'a :: linordered-idom) = prod (Az. abs (fz)) A
by (cases finite A, induction A rule: finite-induct) (simp-all add: abs-mult)

lemma primes-characterization’-int [rule-format]:
finite {p. p > 0 N0 < f (p:int)} = Vp. 0 < fp— prime p =

prime-factors ([Ip | p > 0N 0 <fp.p "fp)={p.p>0AN0<fp}
by (rule prime-factors-characterization-int) (auto simp: abs-prod prime-ge-0-int)

lemma multiplicity-characterization-nat:

S ={p. 0 < [ (p:nat)} = finite S = V peS. prime p = prime p —>
n = ([1p€S. p ~f p) = multiplicity p n = f p
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by (frule prime-factorization-unique-nat [of S f n, THEN conjunct2, rule-format,
symmetric]) auto

lemma multiplicity-characterization’-nat: finite {p. 0 < f (p::nat)} —
(Vp. 0 < fp —> prime p) — prime p —>
multiplicity p ([[p | 0 < fp.p " fp)=1fp
by (intro impl, rule multiplicity-characterization-nat) auto

lemma multiplicity-characterization-int: S = {p. 0 < f (p::int)} =
finite S = VpeS. prime p = prime p = n = ([[p€S. p "~ fp) =
multiplicity pn = fp
by (frule prime-factorization-unique-int [of S f n, THEN conjunct2, rule-format,
symmetric])
(auto simp: abs-prod power-abs prime-ge-0-int introl: prod.cong)

lemma multiplicity-characterization’-int [rule-format]:
finite {p. p > 0 N 0 < f (puint)} =
(Vp. 0 < fp — prime p) = prime p =
multiplicity p ([Tp | p > 0N 0 < fp.p " fp)=1Ffp
by (rule multiplicity-characterization-int) (auto simp: prime-ge-0-int)

lemma multiplicity-one-nat [simpl: multiplicity p (Suc 0) = 0
unfolding One-nat-def [symmetric] by (rule multiplicity-one)

lemma multiplicity-eq-nat:
fixes = and y::nat
assumes z > 0y > 0 Ap. prime p = multiplicity p x = multiplicity p y
shows z = y
using multiplicity-eq-imp-eq[of x y] assms by simp

lemma multiplicity-eq-int:
fixes = y :: int
assumes z > 0y > 0 Ap. prime p = multiplicity p x = multiplicity p y
shows z = y
using multiplicity-eq-imp-eq|of = y] assms by simp

lemma multiplicity-prod-prime-powers:
assumes finite S A\z. x € S = prime x prime p
shows multiplicity p ([[p € S.p ~fp) = (if p € S then f p else 0)
proof —
define g where g = (\z. if z € S then f z else 0)
define A where A = Abs-multiset g
have {z. g x > 0} C S by (auto simp: g-def)
from finite-subset| OF this assms(1)] have [simp]: finite {z. 0 < g z}
by simp
from assms have count-A: count A © = g x for z unfolding A-def
by simp
have set-mset-A: set-mset A = {z€S. fz > 0}
unfolding set-mset-def count-A by (auto simp: g-def)
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with assms have prime: prime z if © €# A for z using that by auto
from set-mset-A assms have ([[p€ S.p " fp)=((]pe€ S.-p "¢gp)
by (intro prod.cong) (auto simp: g-def)
also from set-mset-A assms have ... = ([[p € set-mset A. p " g p)
by (intro prod.mono-neutral-right) (auto simp: g-def set-mset-A)
also have ... = prod-mset A
by (auto simp: prod-mset-multiplicity count-A set-mset-A introl: prod.cong)
also from assms have multiplicity p ... = sum-mset (image-mset (multiplicity
p) A)
by (subst prime-elem-multiplicity-prod-mset-distrib) (auto dest: prime)
also from assms have image-mset (multiplicity p) A = image-mset (Az. if © =
p then 1 else 0) A
by (intro image-mset-cong) (auto simp: prime-multiplicity-other dest: prime)
also have sum-mset ... = (if p € S then fp else 0) by (simp add: sum-mset-delta
count-A g-def)
finally show ?thesis .
qed

lemma prime-factorization-prod-mset:

assumes 0 ¢# A

shows prime-factorization (prod-mset A) = > 4 (image-mset prime-factorization
4)

using assms by (induct A) (auto simp add: prime-factorization-mult)

lemma prime-factors-prod:
assumes finite Aand 0 ¢ f ‘A
shows prime-factors (prod f A) = | ((prime-factors o f) ¢ A)
using assms by (simp add: prod-unfold-prod-mset prime-factorization-prod-mset)

lemma prime-factors-fact:
prime-factors (fact n) = {p € {2..n}. prime p} (is M = ?N)
proof (rule set-eql)
fix p
{ fix m :: nat
assume p € prime-factors m
then have prime p and p dvd m by auto
moreover assume m > (
ultimately have 2 < pand p < m
by (auto intro: prime-ge-2-nat dest: dvd-imp-le)
moreover assume m < n
ultimately have 2 < pand p < n
by (auto intro: order-trans)
} note x = this
show p € M +— p € ?N

by (auto simp add: fact-prod prime-factors-prod Suc-le-eq dest!: prime-prime-factors

intro: %)
qed

lemma prime-dvd-fact-iff:
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assumes prime p

shows p dvd fact n «— p < n

using assms

by (auto simp add: prime-factorization-subset-iff-dvd [symmetric]
prime-factorization-prime prime-factors-fact prime-ge-2-nat)

lemma dvd-choose-prime:
assumes kn: k < nand k: k # 0 and n: n # 0 and prime-n: prime n
shows n dvd (n choose k)
proof —
have n dvd (fact n) by (simp add: fact-num-eg-if n)
moreover have — n dvd (fact k x fact (n—k))
by (metis prime-dvd-fact-iff prime-dvd-mult-iff assms neq0-conv diff-less linorder-not-less)
moreover have (fact n::nat) = fact k = fact (n—k) * (n choose k)
using binomial-fact-lemma kn by auto
ultimately show ?thesis using prime-n
by (auto simp add: prime-dvd-mult-iff)
qed

lemma (in ring-1) minus-power-prime-CHAR:
assumes p = CHAR('a) prime p
shows (—z :: 'a) “p=—(z " p)
proof (cases p = 2)
case Fulse
have prime p
using assms by blast
hence odd p
using prime-imp-coprime assms False coprime-right-2-iff-odd gcd-nat.strict-iff-not
by blast
thus ?thesis
by simp
qged (use assms in <auto simp: uminus-CHAR-2))

3.8 Rings and fields with prime characteristic

We introduce some type classes for rings and fields with prime characteristic.

class semiring-prime-char = semiring-1 +
assumes prime-char-auz: In. prime n A of-nat n = (0 :: 'a)
begin

lemma CHAR-pos [intro, simp|]: CHAR('a) > 0
using local. CHA R-pos-iff local.prime-char-auz prime-gt-0-nat by blast

lemma CHAR-nonzero [simp]: CHAR('a) # 0
using CHAR-pos by auto

lemma CHAR-prime [intro, simp]: prime CHAR('a)

by (metis (mono-tags, lifting) ged-nat.order-iff-strict local.of-nat-1 local. of-nat-eq-0-iff-char-dvd
local.one-neq-zero local.prime-char-auz prime-nat-iff)
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end

lemma semiring-prime-charl [intro?):
prime CHAR('a :: semiring-1) => OFCLASS('a, semiring-prime-char-class)
by standard auto

lemma idom-prime-charl [intro?):
assumes CHAR('a :: idom) > 0
shows OFCLASS('a, semiring-prime-char-class)
proof
show prime CHAR('a)
using assms prime-CHAR-semidom by blast
qed

class comm-semiring-prime-char = comm-semiring-1 + semiring-prime-char
class comm-ring-prime-char = comm-ring-1 + semiring-prime-char

begin

subclass comm-semiring-prime-char ..

end

class idom-prime-char = idom + semiring-prime-char
begin

subclass comm-ring-prime-char ..

end

class field-prime-char = field +
assumes pos-char-exists: An>0. of-nat n = (0 :: 'a)
begin
subclass idom-prime-char
apply standard
using pos-char-exists local. CHAR-pos-iff local.of-nat-CHAR local.prime- CHAR-semidom
by blast
end

lemma field-prime-charl [intro?):
n> 0 = of-nat n = (0 :: 'a :: field) = OFCLASS('a, field-prime-char-class)
by standard auto

lemma field-prime-charl’ [intro?):
CHAR('a :: field) > 0 = OFCLASS('a, field-prime-char-class)
by standard auto

3.9 Finite fields

class finite-field = field-prime-char + finite
lemma finite-fieldl [intro?):

assumes finite (UNIV :: 'a = field set)
shows OFCLASS('a, finite-field-class)
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proof standard
show In>0. of-nat n = (0 :: 'a)
using assms prime-CHAR-semidom[where ?'a = 'a] finite-imp-CHAR-pos|OF
assms|
by (intro exI[of - CHAR('a)]) auto
qed fact+

On a finite field with n elements, taking the n-th power of an element is the
identity. This is an obvious consequence of the fact that the multiplicative
group of the field is a finite group of order n — 1, so x ' n = 1 for any
non-zero .

Note that this result is sharp in the sense that the multiplicative group of
a finite field is cyclic, i.e. it contains an element of order n — 1. (We don’t
prove this here.)

lemma finite-field-power-card-eq-same:
fixes x :: a :: finite-field
shows z ~card (UNIV :: 'a set) = x
proof (cases © = 0)
case Fulse
have z * ([[yeUNIV—{0}. z x y) = z *x & ~ (card (UNIV :: 'a set) — 1) %
[T(UNIV—{0})
by (simp add: prod.distrib mult-ac)
also have = *  ~ (card (UNIV :: 'a set) — 1) =z ~ Suc (card (UNIV :: 'a set)
- 1)
by (subst power-Suc) auto
also have Suc (card (UNIV :: 'a set) — 1) = card (UNIV :: 'a set)
using finite-UNIV-card-ge-O[where ?'a = 'a] by simp
also have ([[ye UNIV—{0}. = x y) = (][ y€ UNIV—{0}. y)
by (rule prod.reindex-bij-witness[of - Ay. y / © Ay. = * y]) (use False in auto)
finally show ?thesis
by simp
qed (use finite-UNIV-card-ge-0|where ?'a = 'a] in auto)

lemma finite-field-power-card-power-eq-same:
fixes z :: 'a :: finite-field
assumes m = card (UNIV :: 'a set) " n
shows =z " m=z
unfolding assms
by (induction n) (simp-all add: finite-field-power-card-eq-same power-mult)

class enum-finite-field = finite-field +

fixes enum-finite-field :: nat = 'a

assumes enum-finite-field: enum-finite-field ‘{..<card (UNIV :: 'a set)} = UNIV
begin

lemma inj-on-enum-finite-field: inj-on enum-finite-field {..<card (UNIV :: 'a set)}
using enum-finite-field by (simp add: eg-card-imp-inj-on)
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end

To get rid of the pending sort hypotheses, we prove that the field with 2
elements is indeed a finite field.

typedef ¢f2 = {0, 1 :: nat}
by auto

setup-lifting type-definition-gf2

instantiation gf2 :: field

begin

lift-definition zero-gf2 :: gf2 is 0 by auto

lift-definition one-gf2 :: gf2 is 1 by auto

lift-definition uminus-gf2 :: gf2 = gf2 is Az. = .

lift-definition plus-gf2 :: gf2 = gf2 = gf2 is Az y. if x = y then 0 else 1 by auto
lift-definition minus-gf2 :: gf2 = gf2 = gf2 is Az y. if x = y then 0 else 1 by
auto

lift-definition times-gf2 :: gf2 = gf2 = ¢f2 is Az y. = * y by auto
lift-definition inverse-gf2 :: gf2 = gf2 is \z. x .

lift-definition divide-gf2 :: gf2 = gf2 = gf2 is Az y. x * y by auto

instance
by standard (transfer; fastforce)—+

end

instance ¢f2 :: finite-field
proof
interpret type-definition Rep-gf2 Abs-gf2 {0, 1 :: nat}
by (rule type-definition-gf2)
show finite (UNIV :: gf2 set)
by (metis Abs-image finite.emptyl finite.insertl finite-imagel)
qed

3.10 The Freshman’s Dream in rings of prime characteristic

lemma (in comm-semiring-1) freshmans-dream:
fixes z y :: '/a and n :: nat
assumes prime CHAR('a)
assumes n-def: n = CHAR('a)
shows (r+vy) " n=2z "n+y n
proof —
interpret comm-semiring-prime-char
by standard (auto introl: exl[of - CHAR('a)] assms)
have n > 0
unfolding n-def by simp
have (z + y) " n = (3 k<n. of-nat (n choose k) x x "k xy ~ (n — k))
by (rule binomial-ring)
also have ... = (3 ke{0,n}. of-nat (n choose k) * x "k *y ~ (n — k))
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proof (intro sum.mono-neutral-right balll)
fix k assume k € {.n} — {0, n}
hence k: k> 0k <n
by auto
have CHAR('a) dvd (n choose k)
unfolding n-def
by (rule dvd-choose-prime) (use k in <auto simp: n-def>)
hence of-nat (n choose k) = (0 :: 'a)
using of-nat-eq-0-iff-char-dvd by blast
thus of-nat (n choose k) x z "kxy "~ (n— k) =10
by simp
qged auto
finally show ?thesis
using «n > 0> by (simp add: add-ac)
qed

lemma (in comm-semiring-1) freshmans-dream”:
assumes [simp]: prime CHAR('a) and m = CHAR('a) "~ n
shows (z+y:='a) "m=z " m+y m
unfolding assms(2)
proof (induction n)
case (Suc n)
have (z + y) ~(CHAR('a) ~n x CHAR('a)) = ((z + y) ~ (CHAR('a) " n)) ~
CHAR('a)
by (rule power-mult)
thus Zcase
by (simp add: Suc.IH freshmans-dream Groups.mult-ac flip: power-mult)
qed auto

lemma (in comm-semiring-1) freshmans-dream-sum:
fixes f : b= "a
assumes prime CHAR('a) and n = CHAR('a)
shows sum fA “n = sum (Ai. fi "n) A
using assms
by (induct A rule: infinite-finite-induct)
(auto simp add: power-0-left freshmans-dream)

lemma (in comm-semiring-1) freshmans-dream-sum’:
fixes f :: 'b = 'a
assumes prime CHAR('a) m = CHAR('a) " n
shows sum fA “m = sum (Mi. f{ " m) A
using assms
by (induction A rule: infinite-finite-induct)
(auto simp: freshmans-dream’ power-0-left)

lemmas prime-imp-coprime-nat = prime-imp-coprime[where ?'a = nat]
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lemmas prime-imp-coprime-int = prime-imp-coprime[where ?'a = int]
lemmas prime-dvd-mult-nat = prime-dvd-mult-iff[where ?'a = nat]

lemmas prime-dvd-mult-int = prime-dvd-mult-iff [ where ?'a = int]

lemmas prime-dvd-mult-eq-nat = prime-dvd-mult-iff[where ?'a = nat]

lemmas prime-dvd-mult-eq-int = prime-dvd-mult-iff [ where ?'a = int]

lemmas prime-dvd-power-nat = prime-dvd-power[where ?'a = nat]

lemmas prime-dvd-power-int = prime-dvd-power[where ?'a = ini]

lemmas prime-dvd-power-nat-iff = prime-dvd-power-iff [ where ?'a = nat]
lemmas prime-dvd-power-int-iff = prime-dvd-power-iff [ where ?'a = int]
lemmas prime-imp-power-coprime-nat = prime-imp-power-coprime[where ?'a =
nat]

lemmas prime-imp-power-coprime-int = prime-imp-power-coprime[where ?'a =
int]

lemmas primes-coprime-nat = primes-coprime|where ?'a = nat]

lemmas primes-coprime-int = primes-coprime[where ?'a = nat]

lemmas prime-divprod-pow-nat = prime-elem-divprod-pow[where ?'a = nat]
lemmas prime-exp = prime-elem-power-iff [where ?'a = nat]

end

4 Polynomials as type over a ring structure

theory Polynomial
imports
Complez-Main
HOL- Library.More-List
HOL— Library.Infinite-Set
Primes
begin

context semidom-modulo
begin

lemma not-dvd-imp-mod-neq-0:
<a mod b # 0> if <= b dvd a»
using that mod-0-imp-dvd [of a b] by blast

end

4.1 Auxiliary: operations for lists (later) representing coef-
ficients

definition cCons :: 'a::zero = 'a list = 'a list (infixr «##> 65)
where © ## zs = (if xzs =[] A © = 0 then [] else © # xs)

lemma cCons-0-Nil-eq [simp]: 0 #4# [ = []
by (simp add: cCons-def)

lemma cCons-Cons-eq [simp|: ¢ ## y # ys =z # y # ys
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by (simp add: cCons-def)

lemma cCons-append-Cons-eq [simp]: © ## xs Q y # ys = x # xs Q y # ys
by (simp add: cCons-def)

lemma cCons-not-0-eq [simp]: x # 0 = x ## xs = © # xs
by (simp add: cCons-def)

lemma strip-while-not-0-Cons-eq [simp]:
strip-while (Az. x = 0) (z # xs) = x #F# strip-while (A\zx. z = 0) xs
proof (cases x = 0)
case Fulse
then show ?thesis by simp
next
case True
show ?thesis
proof (induct xs rule: rev-induct)
case Nil
with True show ?case by simp
next
case (snoc y ys)
then show ?case
by (cases y = 0) (simp-all add: append-Cons [symmetric] del: append-Cons)
qed
qed

lemma ti-cCons [simp]: tl (x #4# xs) = xs
by (simp add: cCons-def)
4.2 Definition of type poly

typedef (overloaded) ‘a poly = {f :: nat = 'a::izero. Voo n. fn =0}
morphisms coeff Abs-poly
by (auto introl: ALL-MOST)

setup-lifting type-definition-poly

lemma poly-eq-iff: p = q¢ «— (V' n. coeff p n = coeff g n)
by (simp add: coeff-inject [symmetric] fun-eq-iff)

lemma poly-eql: (An. coeff p n = coeff g n) = p = ¢
by (simp add: poly-eq-iff)

lemma MOST-coeff-eq-0: ¥V oo n. coeff pn =0
using coeff [of p] by simp

lemma coeff-Abs-poly:

assumes N\i. i >n= fi=10
shows coeff (Abs-poly f) = f
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proof (rule Abs-poly-inverse, clarify)
have eventually (Ai. i > n) cofinite
by (auto simp: MOST-nat)
thus eventually (Mi. fi = 0) cofinite
by eventually-elim (use assms in auto)
qed

4.3 Degree of a polynomial

definition degree :: ‘a::zero poly = nat
where degree p = (LEAST n. Vi>n. coeff p i = 0)

lemma degree-cong:
assumes Ai. coeff pi = 0 «— coeff gi =0
shows degree p = degree q
proof —
have (An. Vi>n. poly.coeff p i = 0) = (An. Y i>n. poly.coeff ¢ i = 0)
using assms by (auto simp: fun-eq-iff)
thus ?thesis
by (simp only: degree-def)
qed

lemma coeff-Abs-poly-If-le:
coeff (Abs-poly (Ai. if i < n then fielse 0)) = (M. if i < n then fi else 0)
proof (rule Abs-poly-inverse, clarify)
have eventually (Ai. i > n) cofinite
by (auto simp: MOST-nat)
thus eventually (Ai. (if ¢ < n then fi else 0) = 0) cofinite
by eventually-elim auto
qed

lemma coeff-eq-0:
assumes degree p < n
shows coeff pn =0
proof —
have In. Vi>n. coeff p i = 0
using MOST-coeff-eq-0 by (simp add: MOST-nat)
then have V i>degree p. coeff p i = 0
unfolding degree-def by (rule Leastl-ex)
with assms show ?thesis by simp
qged

lemma le-degree: coeff p n # 0 = n < degree p
using coeff-eq-0 linorder-le-less-linear by blast

lemma degree-le: YV i>n. coeff p i = 0 = degree p < n
unfolding degree-def by (erule Least-le)

lemma less-degree-imp: n < degree p =—> Ji>n. coeff p i # 0
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unfolding degree-def by (drule not-less-Least, simp)

lemma poly-eql2:
assumes degree p = degree ¢ and \i. i < degree p = coeff p i = coeff q i
shows p = ¢
by (metis assms le-degree poly-eql)

4.4 The zero polynomial

instantiation poly :: (zero) zero
begin

lift-definition zero-poly :: 'a poly
is A\-. 0
by (rule MOST-I) simp

instance ..
end

lemma coeff-0 [simp]: coeff 0 n = 0
by transfer rule

lemma degree-0 [simp]: degree 0 = 0
by (rule order-antisym [OF degree-le le0]) simp

lemma leading-coeff-neq-0:
assumes p # 0
shows coeff p (degree p) # 0
proof (cases degree p)
case (
from «p # 0» obtain n where coeff p n # 0
by (auto simp add: poly-eq-iff)
then have n < degree p
by (rule le-degree)
with <coeff p n # 0> and <degree p = 0> show coeff p (degree p) # 0
by simp
next
case (Suc n)
from <degree p = Suc n> have n < degree p
by simp
then have Ji>n. coeff p i # 0
by (rule less-degree-imp)
then obtain ¢ where n < 7 and coeff p i # 0
by blast
from <degree p = Suc n> and «<n < 7> have degree p < i
by simp
also from «<coeff p i # 0> have i < degree p
by (rule le-degree)
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finally have degree p = i .
with <coeff p i # 0> show coeff p (degree p) # 0 by simp
qed

lemma leading-coeff-0-iff [simp]: coeff p (degree p) = 0 «— p =0
by (cases p = 0) (simp-all add: leading-coeff-neq-0)

lemma degree-lessI:
assumes p # 0V n > 0Vk>n. coeff pk =0
shows degree p < n
proof (cases p = 0)
case Fulse
show ?thesis
proof (rule ccontr)
assume *: —(degree p < n)
define d where d = degree p
from <p # 0> have coeff p d # 0
by (auto simp: d-def)
moreover have coeff p d = 0
using assms(2) * by (auto simp: not-less)
ultimately show Fulse by contradiction
qed
qed (use assms in auto)

lemma eg-zero-or-degree-less:
assumes degree p < n and coeff p n = 0
shows p = 0 V degree p < n
proof (cases n)
case ()
with <degree p < n» and <coeff p n = 0> have coeff p (degree p) = 0
by simp
then have p = 0 by simp
then show ?thesis ..
next
case (Suc m)
from <degree p < n> have Vi>n. coeff pi = 0
by (simp add: coeff-eq-0)
with <coeff p n = 0> have Vi>n. coeff pi = 0
by (simp add: le-less)
with <n = Suc m» have Vi>m. coeff pi = 0
by (simp add: less-eq-Suc-le)
then have degree p < m
by (rule degree-le)
with <n = Suc m> have degree p < n
by (simp add: less-Suc-eq-le)
then show ?thesis ..
qed

lemma coeff-0-degree-minus-1: coeff rrr dr = 0 = degree rrr < dr => degree
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rrr < dr — 1
using eq-zero-or-degree-less by fastforce

4.5 List-style constructor for polynomials

lift-definition pCons :: ‘a::zero = ’a poly = 'a poly
is Aa p. case-nat a (coeff p)
by (rule MOST-SucD) (simp add: MOST-coeff-eq-0)

lemmas coeff-pCons = pCons.rep-eq

lemma coeff-pCons”: poly.coeff (pCons ¢ p) n = (if n = 0 then c else poly.coeff p

(n — 1))

by transfer’(auto split: nat.splits)

lemma coeff-pCons-0 [simp]: coeff (pCons a p) 0 = a
by transfer simp

lemma coeff-pCons-Suc [simp]: coeff (pCons a p) (Suc n) = coeff p n
by (simp add: coeff-pCons)

lemma degree-pCons-le: degree (pCons a p) < Suc (degree p)
by (rule degree-le) (simp add: coeff-eq-0 coeff-pCons split: nat.split)

lemma degree-pCons-eq: p # 0 = degree (pCons a p) = Suc (degree p)
by (simp add: degree-pCons-le le-antisym le-degree)

lemma degree-pCons-0: degree (pCons a 0) = 0
proof —
have degree (pCons a 0) < Suc 0
by (metis (no-types) degree-0 degree-pCons-le)
then show ?thesis
by (metis coeff-0 coeff-pCons-Suc degree-0 eq-zero-or-degree-less less-SucQ)
qed

lemma degree-pCons-eq-if [simp]: degree (pCons a p) = (if p = 0 then 0 else Suc

(degree p))
by (simp add: degree-pCons-0 degree-pCons-eq)

lemma pCons-0-0 [simp]: pCons 0 0 = 0
by (rule poly-eql) (simp add: coeff-pCons split: nat.split)

lemma pCons-eq-iff [simp]: pCons a p = pCons b g +— a=bAp=gq
proof safe
assume pCons a p = pCons b g
then have coeff (pCons a p) 0 = coeff (pCons b q) 0
by simp
then show a = b
by simp
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next
assume pCons a p = pCons b q
then have coeff (pCons a p) (Suc n) = coeff (pCons b q) (Suc n) for n
by simp
then show p = ¢
by (simp add: poly-eq-iff)
qed

lemma pCons-eq-0-iff [simp]: pConsap=0+—a=0ANp=10
using pCons-eq-iff [of a p 0 0] by simp

lemma pCons-cases [cases type: poly]:

obtains (pCons) a ¢ where p = pCons a ¢
proof

show p = pCons (coeff p 0) (Abs-poly (An. coeff p (Suc n)))

by transfer
(simp-all add: MOST-injjwhere f=Suc and P=An. p n = 0 for p| fun-eq-iff
Abs-poly-inverse
split: nat.split)

qed

lemma pCons-induct [case-names 0 pCons, induct type: poly]:
assumes zero: P (0
assumes pCons: Nap. a# 0V p# 0 = P p = P (pCons a p)
shows P p
proof (induct p rule: measure-induct-rule [where f=degree])
case (less p)
obtain a ¢ where p = pCons a g by (rule pCons-cases)
have P q
proof (cases ¢ = 0)
case True
then show P ¢ by (simp add: zero)
next
case Fulse
then have degree (pCons a q) = Suc (degree q)
by (rule degree-pCons-eq)
with <p = pCons a ¢» have degree ¢ < degree p
by simp
then show P ¢
by (rule less.hyps)
qed
have P (pCons a q)
proof (cases a # 0V q # 0)
case True
with (P ¢» show ?thesis by (auto intro: pCons)
next
case Fulse
with zero show ?thesis by simp
qed
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with <p = pCons a ¢ show Zcase
by simp
qed

lemma degree-eq-zeroE:
fixes p :: ’a::zero poly
assumes degree p = 0
obtains a where p = pCons a 0
proof —
obtain a ¢ where p: p = pCons a q
by (cases p)
with assms have ¢ = 0
by (cases ¢ = 0) simp-all
with p have p = pCons a 0
by simp
then show thesis ..
qed

4.6 Quickcheck generator for polynomials

quickcheck-generator poly constructors: 0 :: - poly, pCons

4.7 List-style syntax for polynomials

syntax
-poly :: args = 'a poly («(<indent=2 notation=<mizfix polynomial enumera-
tionyy[:=:])»)

syntax-consts
-poly = pCons

translations
[:z, zs:] = CONST pCons z [:xs:]
[:z:] = CONST pCons x 0

lemma degree-0-id:
assumes degree p = 0
shows [: coeffp 0 :] = p
by (metis assms coeff-pCons-0 degree-eq-zeroE)

lemma degree0-coeffs: degree p = 0 = 3 a. p = [: a ]
by (meson degree-eq-zeroE)

lemma degreel-coeffs:
fixes p :: a::zero poly
assumes degree p = 1
obtains ¢ b where p = [: b, a:] a # 0
proof —
obtain b a ¢ where p = pCons b ¢ ¢ = pCons a 0
by (metis assms degree0-coeffs degree-0 degree-pCons-eq-if lessI less-one pCons-cases)
then show thesis
using assms that by force
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qed

lemma degree2-coeffs:
fixes p :: ’a::zero poly
assumes degree p = 2
obtains a b ¢ where p=[: ¢, b, a:] a # 0
proof —
obtain ¢ ¢ where p = pCons ¢ q degree q = 1
by (metis One-nat-def assms degree-0 degree-pCons-eq-if fact-0 fact-2 nat.inject
numeral-2-eq-2 pCons-cases)
then show thesis
by (metis degreel-coeffs that)
qed

4.8 Representation of polynomials by lists of coefficients

primrec Poly :: 'a::zero list = 'a poly
where
[code-post]: Poly [| = 0
| [code-post]: Poly (a # as) = pCons a (Poly as)

lemma Poly-replicate-0 [simp]: Poly (replicate n 0) = 0
by (induct n) simp-all

lemma Poly-eq-0: Poly as = 0 <— (In. as = replicate n 0)
by (induct as) (auto simp add: Cons-replicate-eq)

lemma Poly-append-replicate-zero [simp]: Poly (as @Q replicate n 0) = Poly as
by (induct as) simp-all

lemma Poly-snoc-zero [simp]: Poly (as @ [0]) = Poly as
using Poly-append-replicate-zero [of as 1] by simp

lemma Poly-cCons-eq-pCons-Poly [simp]: Poly (a ## p) = pCons a (Poly p)
by (simp add: cCons-def)

lemma Poly-on-rev-starting-with-0 [simp]: hd as = 0 = Poly (rev (tl as)) = Poly
(rev as)

by (cases as) simp-all

lemma degree-Poly: degree (Poly xzs) < length s
by (induct zs) simp-all

lemma coeff-Poly-eq [simp]: coeff (Poly xs) = nth-default 0 zs
by (induct xs) (simp-all add: fun-eq-iff coeff-pCons split: nat.splits)

definition coeffs :: 'a poly = 'a::zero list
where coeffs p = (if p = 0 then || else map (Ai. coeff p i) [0 ..< Suc (degree p)])
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lemma coeffs-eqg-Nil [simp]: coeffs p =[] «+— p = 0
by (simp add: coeffs-def)

lemma not-0-coeffs-not-Nil: p # 0 = coeffs p # ||
by simp

lemma coeffs-0-eq-Nil [simp]: coeffs 0 = ||
by simp

lemma coeffs-pCons-eq-cCons [simp]: coeffs (pCons a p) = a ## coeffs p
proof —
have *: Vmeset ms. m > 0 = map (case-nat z ) ms = map f (map (An. n —
1) ms)
for ms :: nat list and f :: nat = ‘a and z :: ‘a
by (induct ms) (auto split: nat.split)
show ?thesis
by (simp add: x coeffs-def upt-conv-Cons coeff-pCons map-decr-upt del: upt-Suc)
qed

lemma length-coeffs: p # 0 = length (coeffs p) = degree p + 1
by (simp add: coeffs-def)

lemma coeffs-nth: p # 0 = n < degree p = coeffs p ! n = coeff p n
by (auto simp: coeffs-def simp del: upt-Suc)

lemma coeff-in-coeffs: p # 0 = n < degree p => coeff p n € set (coeffs p)
using coeffs-nth [of p n, symmetric] by (simp add: length-coeffs)

lemma not-0-cCons-eq [simpl: p # 0 = a ## coeffs p = a # coeffs p
by (simp add: cCons-def)

lemma Poly-coeffs [simp, code abstype]: Poly (coeffs p) = p
by (induct p) auto

lemma coeffs-Poly [simp]: coeffs (Poly as) = strip-while (HOL.eq 0) as
proof (induct as)

case Nil

then show Zcase by simp
next

case (Cons a as)

from replicate-length-same [of as 0] have (V n. as # replicate n 0) +— (3 aEset
as. a # 0)

by (auto dest: sym [of - as])

with Cons show ?case by auto

qed

lemma no-trailing-coeffs [simp):

no-trailing (HOL.eq 0) (coeffs p)
by (induct p) auto
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lemma strip-while-coeffs [simp]:
strip-while (HOL.eq 0) (coeffs p) = coeffs p
by simp

lemma coeffs-eq-iff: p = q «— coeffs p = coeffs q
(is 7P +— ?Q)
proof
assume ?P
then show ?0Q) by simp
next
assume ?()
then have Poly (coeffs p) = Poly (coeffs q) by simp
then show ?P by simp
qed

lemma nth-default-coeffs-eq: nth-default 0 (coeffs p) = coeff p
by (metis Poly-coeffs coeff-Poly-eq)

lemma range-coeff: range (coeff p) = insert 0 (set (coeffs p))
by (metis nth-default-coeffs-eq range-nth-default)

lemma [code]: coeff p = nth-default 0 (coeffs p)
by (simp add: nth-default-coeffs-eq)

lemma coeffs-eql:
assumes coeff: An. coeff p n = nth-default 0 zs n
assumes zero: no-trailing (HOL.eq 0) xs
shows coeffs p = xs
proof —
from coeff have p = Poly xs
by (simp add: poly-eq-iff)
with zero show ?thesis by simp
qed

lemma degree-eq-length-coeffs [code]: degree p = length (coeffs p) — 1
by (simp add: coeffs-def)

lemma length-coeffs-degree: p # 0 = length (coeffs p) = Suc (degree p)
by (induct p) (auto simp: cCons-def)

lemma [code abstract]: coeffs 0 = []
by (fact coeffs-0-eq-Nil)

lemma [code abstract]: coeffs (pCons a p) = a #F# coeffs p
by (fact coeffs-pCons-eq-cCons)

lemma set-coeffs-subset-singleton-0-iff [simp]:
set (coeffs p) C {0} +— p=0
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by (auto simp add: coeffs-def intro: classical)

lemma set-coeffs-not-only-0 [simpl:

set (coeffs p) # {0}
by (auto simp add: set-eq-subset)

lemma forall-coeffs-conuv:
(Vn. P (coeff p n)) «— (V¢ € set (coeffs p). Pc)if PO
using that by (auto simp add: coeffs-def)
(metis atLeastLessThan-iff coeff-eq-0 not-less-iff-gr-or-eq zero-le)

instantiation poly :: ({zero, equal}) equal
begin

definition [code]: HOL.equal (p::'a poly) q «+— HOL.equal (coeffs p) (coeffs q)

instance
by standard (simp add: equal equal-poly-def coeffs-eq-iff)

end

lemma [code nbe]: HOL.equal (p :: - poly) p +— True
by (fact equal-refl)

definition is-zero :: 'a::zero poly = bool
where [code]: is-zero p +— List.null (coeffs p)

lemma is-zero-null [code-abbrev]: is-zero p <— p = 0

by (simp add: is-zero-def)

Reconstructing the polynomial from the list
definition poly-of-list :: 'a::comm-monoid-add list = 'a poly

where [simp]: poly-of-list = Poly

lemma poly-of-list-impl [code abstract]: coeffs (poly-of-list as) = strip-while (HOL.eq
0) as
by simp

4.9 Fold combinator for polynomials
definition fold-coeffs :: (‘a::zero = 'b = 'b) = 'a poly = b = 'b
where fold-coeffs f p = foldr f (coeffs p)

lemma fold-coeffs-0-eq [simp]: fold-coeffs f 0 = id
by (simp add: fold-coeffs-def)

lemma fold-coeffs-pCons-eq [simp]: f 0 = id = fold-coeffs f (pCons a p) = fa o

fold-coeffs f p
by (simp add: fold-coeffs-def cCons-def fun-eq-iff)
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lemma fold-coeffs-pCons-0-0-eq [simp]: fold-coeffs f (pCons 0 0) = id
by (simp add: fold-coeffs-def)

lemma fold-coeffs-pCons-coeff-not-0-eq [simp):
a # 0 = fold-coeffs f (pCons a p) = f a o fold-coeffs f p
by (simp add: fold-coeffs-def)

lemma fold-coeffs-pCons-not-0-0-eq [simp]:
p # 0 = fold-coeffs f (pCons a p) = f a o fold-coeffs f p
by (simp add: fold-coeffs-def)

4.10 Canonical morphism on polynomials — evaluation

definition poly :: <'a::comm-semiring-0 poly = 'a = 'a»
where <poly p a = horner-sum id a (coeffs p)»

lemma poly-eq-fold-coeffs:
<poly p = fold-coeffs (Ma fz. a + x x fz) p (Az. 0)
by (induction p) (auto simp add: fun-eq-iff poly-def)

lemma poly-0 [simp]: poly 0 x = 0
by (simp add: poly-def)

lemma poly-pCons [simp]: poly (pCons a p) x = a + = * poly p ©
by (cases p = 0 A a = 0) (auto simp add: poly-def)

lemma poly-altdef: poly p x = (3 i<degree p. coeff p i x x ~ 1)
for z :: 'a::{comm-semiring-0,semiring-1}
proof (induction p rule: pCons-induct)
case (
then show ?case
by simp
next
case (pCons a p)
show ?Zcase
proof (cases p = 0)
case True
then show ?thesis by simp
next
case Fulse
let ?p’ = pCons a p
note poly-pCons|of a p 1]
also note pCons.IH
also have a + z * (> i<degree p. coeff p i x © ~ i) =
coeff ?p’ 0 x 270 + (> i<degree p. coeff ?p’ (Suc i) x " Suc i)
by (simp add: field-simps sum-distrib-left coeff-pCons)
also note sum.atMost-Suc-shift[symmetric]
also note degree-pCons-eq(OF <p # 0, of a, symmetric]
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finally show ?thesis .
qed
qed

lemma poly-0-coeff-0: poly p 0 = coeff p 0
by (cases p) (auto simp: poly-altdef)

lemma poly-zero:
fixes p :: 'a :: comm-ring-1 poly
assumes z: poly p r = 0 shows p = 0 +— degree p = 0
proof
assume degp: degree p = 0
hence poly p x = coeff p (degree p) by(subst degree-0-id[OF degp,symmetric],
stmp)
hence coeff p (degree p) = 0 using x by auto
thus p = 0 by auto
qed auto

4.11 Monomials

lift-definition monom :: 'a = nat = ’a::zero poly
is Aa m n. if m = n then a else 0
by (simp add: MOST-iff-cofinite)

lemma coeff-monom [simp]: coeff (monom a m) n = (if m = n then a else 0)
by transfer rule

lemma monom-0: monom a 0 = [:a:]
by (rule poly-eql) (simp add: coeff-pCons split: nat.split)

lemma monom-Suc: monom a (Suc n) = pCons 0 (monom a n)
by (rule poly-eql) (simp add: coeff-pCons split: nat.split)

lemma monom-eq-0 [simp]: monom 0n = 0
by (rule poly-eql) simp

lemma monom-eq-0-iff [simp]: monom an =0 +— a =0
by (simp add: poly-eq-iff)

lemma monom-eq-iff [simp]: monom a n = monom bn <— a =0>
by (simp add: poly-eq-iff)

lemma degree-monom-le: degree (monom a n) < n
by (rule degree-le, simp)

lemma degree-monom-eq: a # 0 => degree (monom a n) = n
by (metis coeff-monom leading-coeff-0-iff)

lemma coeffs-monom [code abstract]:

104



coeffs (monom a n) = (if a = 0 then [] else replicate n 0 Q [a])

by (induct n) (simp-all add: monom-0 monom-Suc)
lemma fold-coeffs-monom [simp]: a # 0 = fold-coeffs f (monom an) =f0
nofa

by (simp add: fold-coeffs-def coeffs-monom fun-eq-iff)

lemma poly-monom: poly (monom an) x =a %z n
for a z :: 'a::comm-semiring-1
by (cases a = 0, simp-all) (induct n, simp-all add: mult.left-commute poly-eq-fold-coeffs)

lemma monom-eq-iff : monom ¢ n = monom dm +— c=dA (¢c=0Vn=
m)
by (auto simp: poly-eq-iff)

lemma monom-eq-const-iff: monom c¢n = [idi] +— c=d A (¢ =0V n=0)
using monom-eq-iff [of ¢ n d 0] by (simp add: monom-0)

4.12 Leading coefficient

abbreviation lead-coeff:: 'a::zero poly = 'a
where lead-coeff p = coeff p (degree p)

lemma lead-coeff-pCons|simp]:
p # 0 = lead-coeff (pCons a p) = lead-coeff p
p = 0 = lead-coeff (pCons a p) = a
by auto

lemma lead-coeff-monom [simp]: lead-coeff (monom ¢ n) = ¢
by (cases ¢ = 0) (simp-all add: degree-monom-eq)

lemma last-coeffs-eq-coeff-degree:
last (coeffs p) = lead-coeff p if p # 0
using that by (simp add: coeffs-def)

lemma lead-coeff-list-def:
lead-coeff p = (if coeffs p=|] then 0 else last (coeffs p))
by (simp add: last-coeffs-eq-coeff-degree)

4.13 Addition and subtraction

instantiation poly :: (comm-monoid-add) comm-monoid-add
begin

lift-definition plus-poly :: 'a poly = 'a poly = 'a poly
is Ap g n. coeff p n + coeff g n
proof —
fix g p :: 'a poly
show VY on. coeff p n + coeff gn = 0
using MOST-coeff-eq-0[of p] MOST-coeff-eq-0[of q] by eventually-elim simp
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qed

lemma coeff-add [simp]: coeff (p + q) n = coeff p n + coeff g n
by (simp add: plus-poly.rep-eq)

instance
proof
fix p gr:: ’a poly
show (p+q) +r=p+(¢+7)
by (simp add: poly-eq-iff add.assoc)
showp+qg=q+0p
by (simp add: poly-eq-iff add.commute)
show 0 +p=p
by (simp add: poly-eq-iff)
qed

end

instantiation poly :: (cancel-comm-monoid-add) cancel-comm-monoid-add
begin

lift-definition minus-poly :: 'a poly = 'a poly = 'a poly
is Ap ¢ n. coeff p n — coeff g n
proof —
fix ¢ p :: 'a poly
show V oon. coeff p n — coeff gmn = 0
using MOST-coeff-eq-0[of p] MOST-coeff-eq-0[of q] by eventually-elim simp
qed

lemma coeff-diff [simp]: coeff (p — q) n = coeff p n — coeff g n
by (simp add: minus-poly.rep-eq)

instance
proof
fix p gr:: 'a poly
showp +q¢—-p=g
by (simp add: poly-eq-iff)
showp —q—r=p—(qg+7)
by (simp add: poly-eq-iff diff-diff-eq)
qed

end

instantiation poly :: (ab-group-add) ab-group-add
begin

lift-definition uminus-poly :: 'a poly = 'a poly

isApn. — coeffpn
proof —
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fix p :: 'a poly
show V on. — coeff p n =0
using MOST-coeff-eq-0 by simp
qed

lemma coeff-minus [simp]: coeff (— p) n = — coeff p n
by (simp add: uminus-poly.rep-eq)

instance
proof
fix p ¢ :: 'a poly
show — p +p =10
by (simp add: poly-eq-iff)
showp —g=p+ — ¢
by (simp add: poly-eq-iff)
qed

end

lemma add-pCons [simp]: pCons a p + pCons b ¢ = pCons (a + b) (p + q)
by (rule poly-eql) (simp add: coeff-pCons split: nat.split)

lemma minus-pCons [simp]: — pCons a p = pCons (— a) (— p)
by (rule poly-eql) (simp add: coeff-pCons split: nat.split)

lemma diff-pCons [simp]: pCons a p — pCons b ¢ = pCons (a — b) (p — q)
by (rule poly-eql) (simp add: coeff-pCons split: nat.split)

lemma degree-add-le-mazx: degree (p + q) < maz (degree p) (degree q)
by (rule degree-le) (auto simp add: coeff-eq-0)

lemma degree-add-le: degree p < n = degree ¢ < n = degree (p + q) < n
by (auto intro: order-trans degree-add-le-max)

lemma degree-add-less: degree p < n = degree ¢ < n = degree (p + q) < n
by (auto intro: le-less-trans degree-add-le-mazx)

lemma degree-add-eq-right: assumes degree p < degree q shows degree (p + q)
= degree q
proof (cases ¢ = 0)
case Fulse
show ?thesis
proof (rule order-antisym,)
show degree (p + ¢) < degree q
by (simp add: assms degree-add-le order.strict-implies-order)
show degree q < degree (p + q)
by (simp add: False assms coeff-eq-0 le-degree)
qged
qed (use assms in auto)
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lemma degree-add-eg-left: degree q < degree p = degree (p + q) = degree p
using degree-add-eq-right [of q p] by (simp add: add.commute)

lemma degree-minus [simpl: degree (— p) = degree p
by (simp add: degree-def)

lemma lead-coeff-add-le: degree p < degree ¢ = lead-coeff (p + q) = lead-coeff q
by (metis coeff-add coeff-eq-0 monoid-add-class.add.left-neutral degree-add-eq-right)

lemma lead-coeff-minus: lead-coeff (— p) = — lead-coeff p
by (metis coeff-minus degree-minus)

lemma degree-diff-le-max: degree (p — q) < max (degree p) (degree q)
for p q :: 'a::ab-group-add poly
using degree-add-le [where p=p and ¢=—gq| by simp

lemma degree-diff-le: degree p < n = degree ¢ < n = degree (p — q) < n
for p q :: 'a::ab-group-add poly
using degree-add-le [of p n — q] by simp

lemma degree-diff-less: degree p < n => degree ¢ < n = degree (p — q) < n
for p q :: 'a::ab-group-add poly
using degree-add-less [of p n — q] by simp

lemma add-monom: monom a n + monom b n = monom (a + b) n
by (rule poly-eql) simp

lemma diff-monom: monom a n — monom b n = monom (a — b) n
by (rule poly-eql) simp

lemma minus-monom: — monom a n = monom (— a) n
by (rule poly-eql) simp

lemma coeff-sum: coeff (> z€A. px)i= (D xz€A. coeff (p z) 7)
by (induct A rule: infinite-finite-induct) simp-all

lemma monom-sum: monom (> xz€A. a ) n = (> z€A. monom (a x) n)
by (rule poly-eql) (simp add: coeff-sum)

fun plus-coeffs :: 'a::comm-monoid-add list = 'a list = 'a list
where
plus-coeffs xs [| = xs
| plus-coeffs [| ys = ys
| plus-coeffs (z # xs) (y # ys) = (z + y) ## plus-coeffs zs ys

lemma coeffs-plus-eq-plus-coeffs [code abstract]:

coeffs (p + q) = plus-coeffs (coeffs p) (coeffs q)
proof —
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have x: nth-default 0 (plus-coeffs xs ys) n = nth-default 0 zs n + nth-default 0
ys n
for zs ys :: 'a list and n
proof (induct zs ys arbitrary: n rule: plus-coeffs.induct)
case (3 z xsy ys n)
then show ?case
by (cases n) (auto simp add: cCons-def)
qed simp-all
have xx: no-trailing (HOL.eq 0) (plus-coeffs zs ys)
if no-trailing (HOL.eq 0) xs and no-trailing (HOL.eq 0) ys
for xs ys :: 'a list
using that by (induct xs ys rule: plus-coeffs.induct) (simp-all add: c¢Cons-def)
show ?thesis
by (rule coeffs-eql) (auto simp add: * nth-default-coeffs-eq intro: xx)
qed

lemma coeffs-uminus [code abstract]:

coeffs (— p) = map uminus (coeffs p)
proof —

have eq-0: HOL.eq 0 o uminus = HOL.eq (0::'a)

by (simp add: fun-eq-iff)

show ?thesis

by (rule coeffs-eql) (simp-all add: nth-default-map-eq nth-default-coeffs-eq no-trailing-map
eq-0)
qed

lemma [code]: p — g=p + — ¢
for p q :: 'a::ab-group-add poly
by (fact diff-conv-add-uminus)

lemma poly-add [simp]: poly (p + q) © = poly p x + poly q x
proof (induction p arbitrary: q)
case (pCons a p)
then show Zcase
by (cases q) (simp add: algebra-simps)
qed auto

lemma poly-minus [simp]: poly (— p) x = — poly p =
for z :: 'a::comm-ring
by (induct p) simp-all

lemma poly-diff [simp]: poly (p — q) x = poly p x — poly q x
for z :: 'a::comm-ring

using poly-add [of p — ¢ z] by simp

lemma poly-sum: poly (3 k€A. p k) z = (3 keA. poly (p k) )
by (induct A rule: infinite-finite-induct) simp-all

lemma poly-sum-list: poly (>  p+ps. p) y = (O p<ps. poly p y)
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by (induction ps) auto

lemma poly-sum-mset: poly (> xe€#A. p z) y = O z€#A. poly (p ) y)
by (induction A) auto

lemma degree-sum-le: finite S = (Ap. p € S = degree (f p) < n) = degree
(sum fS)<mn
proof (induct S rule: finite-induct)
case empty
then show ?case by simp
next
case (insert p S)
then have degree (sum fS) < n degree (fp) < n
by auto
then show ?case
unfolding sum.insert[OF insert(1—2)] by (metis degree-add-le)
qed

lemma degree-sum-less:
assumes A\z. x € A = degree (fz) <nn>0
shows degree (sum f A) < n
using assms by (induction rule: infinite-finite-induct) (auto intro!: degree-add-less)

lemma poly-as-sum-of-monoms':
assumes degree p < n
shows (> i<n. monom (coeff p i) i) = p
proof —
have eq: Ai. {.n} N {i} = (if i < n then {i} else {})
by auto
from assms show ?thesis
by (simp add: poly-eq-iff coeff-sum coeff-eq-0 sum.If-cases eq
if-distribjwhere f=Mz. z x a for a])
qed

lemma poly-as-sum-of-monoms: (> i<degree p. monom (coeff p ©) i) = p
by (intro poly-as-sum-of-monoms’ order-refl)

lemma Poly-snoc: Poly (zs @ [z]) = Poly xs + monom z (length zs)
by (induct xs) (simp-all add: monom-0 monom-Suc)

4.14 Multiplication by a constant, polynomial multiplication
and the unit polynomial

lift-definition smult :: 'a::comm-semiring-0 = 'a poly = 'a poly
is Aa p n. a x coeff pn
proof —
fix a :: 'a and p :: 'a poly
show Vo, i. a x coeff p i = 0
using MOST-coeff-eq-0|of p] by eventually-elim simp
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qed

lemma coeff-smult [simp]: coeff (smult a p) n = a * coeff p n
by (simp add: smult.rep-eq)

lemma degree-smult-le: degree (smult a p) < degree p
by (rule degree-le) (simp add: coeff-eq-0)

lemma smult-smult [simpl: smult a (smult b p) = smult (a * b) p
by (rule poly-eql) (simp add: mult.assoc)

lemma smult-0-right [simp]: smult a 0 = 0
by (rule poly-eql) simp

lemma smult-0-left [simp]: smult 0 p = 0
by (rule poly-eql) simp

lemma smult-1-left [simp]: smult (1::'a::comm-semiring-1) p = p
by (rule poly-eql) simp

lemma smult-add-right: smult a (p + q) = smult a p + smult a g
by (rule poly-eql) (simp add: algebra-simps)

lemma smult-add-left: smult (a + b) p = smult a p + smult b p
by (rule poly-eql) (simp add: algebra-simps)

lemma smult-minus-right [simp]: smult a (— p) = — smult a p
for a :: 'a::comm-ring
by (rule poly-eql) simp

lemma smult-minus-left [simp]: smult (— a) p = — smult a p
for a :: 'a::comm-ring
by (rule poly-eql) simp

lemma smult-diff-right: smult a (p — q) = smult a p — smult a q
for a :: 'a::comm-ring
by (rule poly-eql) (simp add: algebra-simps)

lemma smult-diff-left: smult (a — b) p = smult a p — smult b p
for a b :: 'a::comm-ring
by (rule poly-eql) (simp add: algebra-simps)

lemmas smult-distribs =
smult-add-left smult-add-right
smult-diff-left smult-diff-right

lemma smult-pCons [simp]: smult a (pCons b p) = pCons (a * b) (smult a p)
by (rule poly-eql) (simp add: coeff-pCons split: nat.split)
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lemma smult-monom: smult a (monom b n) = monom (a * b) n
by (induct n) (simp-all add: monom-0 monom-Suc)

lemma smult-Poly: smult ¢ (Poly xs) = Poly (map ((x) ¢) s)
by (auto simp: poly-eq-iff nth-default-def)

lemma degree-smult-eq [simp): degree (smult a p) = (if a = 0 then 0 else degree p)
for a :: 'a::{ comm-semiring-0,semiring-no-zero-divisors}
by (cases a = 0) (simp-all add: degree-def)

lemma smult-eqg-0-iff [simp]: smult a p =0 <— a=0V p=10
for a :: 'a::{comm-semiring-0,semiring-no-zero-divisors}
by (simp add: poly-eq-iff)

lemma coeffs-smult [code abstract):

coeffs (smult a p) = (if a = 0 then || else map (Groups.times a) (coeffs p))

for p :: 'a::{comm-semiring-0,semiring-no-zero-divisors} poly
proof —

have eq-0: HOL.eq 0 o times a = HOL.eq (0::'a) if a # 0

using that by (simp add: fun-eq-iff)

show ?thesis

by (rule coeffs-eql) (auto simp add: no-trailing-map nth-default-map-eq nth-default-coeffs-eq
eq-0)
qed

lemma smult-eq-iff:
fixes b :: 'a :: field
assumes b # 0
shows smult a p = smult b ¢ <— smult (a / b) p = ¢
(is ?lhs «+— ?rhs)
proof
assume ?lhs
also from assms have smult (inverse b) ... = ¢
by simp
finally show ?rhs
by (simp add: field-simps)
next
assume ?rhs
with assms show ?lhs by auto
qed

lemma smult-cancel:
fixes p::'a::idom poly
assumes c£0 and smult: smult ¢ p = smult ¢ q
shows p=¢q
proof —
have smult ¢ (p—q) = 0 using smult by (metis diff-self smult-diff-right)
thus ?thesis using <c£0» by auto
qed
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instantiation poly :: (comm-semiring-0) comm-semiring-0
begin

definition p x ¢ = fold-coeffs (Aa p. smult a ¢ + pCons 0 p) p 0

lemma mult-poly-0-left: (0::'a poly) x ¢ = 0
by (simp add: times-poly-def)

lemma mult-pCons-left [simp]: pCons a p * ¢ = smult a ¢ + pCons 0 (p * q)
by (cases p = 0 A a = 0) (auto simp add: times-poly-def)

lemma mult-poly-0-right: p x (0::'a poly) = 0
by (induct p) (simp-all add: mult-poly-0-left)

lemma mult-pCons-right [simp]: p x pCons a ¢ = smult a p + pCons 0 (p * q)
by (induct p) (simp-all add: mult-poly-0-left algebra-simps)

lemmas mult-poly-0 = mult-poly-0-left mult-poly-0-right

lemma mult-smult-left [simpl: smult a p * ¢ = smult a (p * q)
by (induct p) (simp-all add: mult-poly-0 smult-add-right)

lemma mult-smult-right [simp]: p * smult a ¢ = smult a (p * q)
by (induct q) (simp-all add: mult-poly-0 smult-add-right)

lemma mult-poly-add-left: (p + q) x T =p*xr + qg*r
for p q r :: 'a poly
by (induct r) (simp-all add: mult-poly-0 smult-distribs algebra-simps)

instance
proof
fix p gr::’a poly
show 0: 0 x p=10
by (rule mult-poly-0-left)
show px 0 = 0
by (rule mult-poly-0-right)
show (p + ¢)xr=p*xr+ qgx*r
by (rule mult-poly-add-left)
show (px q) *x r=px* (g x71)
by (induct p) (simp-all add: mult-poly-0 mult-poly-add-left)
show p*x ¢ =¢qx*p
by (induct p) (simp-all add: mult-poly-0)
qed

end

lemma coeff-mult-degree-sum:
coeff (p * q) (degree p + degree q) = coeff p (degree p) * coeff q (degree q)
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by (induct p) (simp-all add: coeff-eq-0)

instance poly :: ({ comm-semiring-0,semiring-no-zero-divisors}) semiring-no-zero-divisors
proof
fix p ¢ :: 'a poly
assume p # 0 and g # 0
have coeff (p * q) (degree p + degree q) = coeff p (degree p) * coeff q (degree q)
by (rule coeff-mult-degree-sum)
also from <p # 0» <q # 0> have coeff p (degree p) * coeff q (degree q) # 0
by simp
finally have 3n. coeff (p x q) n # 0 ..
then show p x ¢ # 0
by (simp add: poly-eq-iff)
qed

instance poly :: (comm-semiring-0-cancel) comm-semiring-0-cancel ..

lemma coeff-mult: coeff (p x q) n = (> i<n. coeff p i * coeff q¢ (n—17))
proof (induct p arbitrary: n)

case (

show ?Zcase by simp
next

case (pCons a p n)

then show ?case

by (cases n) (simp-all add: sum.atMost-Suc-shift del: sum.atMost-Suc)

qged

lemma coeff-mult-0: coeff (p * q) 0 = coeff p 0 x coeff q 0
by (simp add: coeff-mult)

lemma degree-mult-le: degree (p x q) < degree p + degree q
proof (rule degree-le)
show Vi>degree p + degree q. coeff (p x q) i = 0
by (induct p) (simp-all add: coeff-eq-0 coeff-pCons split: nat.split)
qed

lemma mult-monom: monom a m x monom b n = monom (a * b) (m + n)
by (induct m) (simp add: monom-0 smult-monom, simp add: monom-Suc)

instantiation poly :: (comm-semiring-1) comm-semiring-1
begin

lift-definition one-poly :: 'a poly
is An. of-bool (n = 0)
by (rule MOST-SucD) simp

lemma coeff-1 [simp]:

coeff 1 n = of-bool (n = 0)
by (simp add: one-poly.rep-eq)
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lemma one-pCons:
1 =11
by (simp add: poly-eq-iff coeff-pCons split: nat.splits)

lemma pCons-one:
[[1:] = 1
by (simp add: one-pCons)

instance
by standard (simp-all add: one-pCons)

end

lemma poly-1 [simp]:
poly 1z =1
by (simp add: one-pCons)

lemma one-poly-eq-simps [simp):
1 =[:1:] +— True
[(1:] = 1 +— True
by (simp-all add: one-pCons)

lemma degree-1 [simp]:
degree 1 = 0
by (simp add: one-pCons)

lemma coeffs-1-eq [simp, code abstract]:
coeffs 1 = [1]
by (simp add: one-pCons)

lemma smult-one [simp):
smult ¢ 1 = [:¢]
by (simp add: one-pCons)

lemma smult-sum: smult (> i€ S. fi)p= (D i€ S. smult (fi) p)
by (induct S rule: infinite-finite-induct, auto simp: smult-add-left)

lemma smult-power: (smult a p) ~n = smult (¢ ~n) (p " n)
by (induct n, auto simp: field-simps)

lemma monom-eq-1 [simpl:
monom 1 0 = 1
by (simp add: monom-0 one-pCons)

lemma monom-eq-1-iff:

monomcecn=1+—=c=1ANn=20
using monom-eq-const-iff [of ¢ n 1] by auto
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lemma monom-altdef:
monom ¢ n = smult ¢ ([:0, 1:] " n)
by (induct n) (simp-all add: monom-0 monom-Suc)

lemma degree-sum-list-le: (\ p . p € set ps = degree p < n)
= degree (sum-list ps) < n
proof (induct ps)
case (Cons p ps)
hence degree (sum-list ps) < n degree p < n by auto
thus ?case unfolding sum-list. Cons by (metis degree-add-le)
qed simp

lemma degree-prod-list-le: degree (prod-list ps) < sum-list (map degree ps)
proof (induct ps)
case (Cons p ps)
show ?case unfolding prod-list. Cons
by (rule order.trans|OF degree-mult-le], insert Cons, auto)
qed simp

instance poly :: ({comm-semiring-1,semiring-1-no-zero-divisors}) semiring-1-no-zero-divisors
instance poly :: (comm-ring) comm-ring ..
instance poly :: (comm-ring-1) comm-ring-1 ..

instance poly :: (comm-ring-1) comm-semiring-1-cancel ..

lemma prod-smult: (J[[z€A. smult (c z) (p x)) = smult (prod ¢ A) (prod p A)
by (induction A rule: infinite-finite-induct) (auto simp: mult-ac)

lemma degree-power-le: degree (p ~n) < degree p * n
by (induct n) (auto intro: order-trans degree-mult-le)

lemma coeff-0-power: coeff (p " n) 0 = coeff p 0 " n
by (induct n) (simp-all add: coeff-mult)

lemma poly-smult [simp]: poly (smult a p) x = a * poly p x
by (induct p) (simp-all add: algebra-simps)

lemma poly-mult [simp]: poly (p * q) © = poly p x % poly q
by (induct p) (simp-all add: algebra-simps)

lemma poly-power [simp]: poly (p ~n) z = polypz " n
for p :: 'a::comm-semiring-1 poly

by (induct n) simp-all

lemma poly-prod: poly ([ k€A. p k) x = (][] k€A. poly (p k) x)
by (induct A rule: infinite-finite-induct) simp-all

lemma poly-prod-list: poly (] p<ps. p) v = (I p<ps. poly p y)
by (induction ps) auto
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lemma poly-prod-mset: poly ([[z€#A. p x) y = ([[z€#A. poly (p z) y)
by (induction A) auto

lemma poly-const-pow: [: ¢:] “n=1[¢c " n

by (induction n) (auto simp: algebra-simps)

lemma monom-power: monom ¢ n ~ k = monom (¢ " k) (n x k)
by (induction k) (auto simp: mult-monom,)

lemma degree-prod-sum-le: finite S = degree (prod f S) < sum (degree o f) S
proof (induct S rule: finite-induct)
case empty
then show ?case by simp
next
case (insert a S)
show Zcase
unfolding prod.insert[OF insert(1—2)] sum.insert[OF insert(1—2)]
by (rule le-trans|OF degree-mult-le]) (use insert in auto)
qed

lemma coeff-0-prod-list: coeff (prod-list xs) 0 = prod-list (map (Ap. coeff p 0) xs)
by (induct zs) (simp-all add: coeff-mult)

lemma coeff-monom-mult: coeff (monom ¢ n x p) k = (if k < n then 0 else ¢ *

coeff p (k — n))
proof —
have coeff (monom ¢ n x p) k= (> i<k. (if n = i then c else 0) * coeff p (k —

i)
by (simp add: coeff-mult)

also have ... = (3] i<k. (if n = i then ¢ * coeff p (k — i) else 0))
by (intro sum.cong) simp-all
also have ... = (if k < n then 0 else ¢ * coeff p (k — n))
by simp
finally show ?thesis .
qed

lemma coeff-monom-Suc: coeff (monom a (Suc d) % p) (Suc i) = coeff (monom
adxp)i
by (simp add: monom-Suc)

lemma monom-1-dvd-iff = monom 1 n dvd p +— (Vk<n. coeff p k = 0)
proof
assume monom 1 n dvd p
then obtain » where p = monom 1 n x r
by (rule dvdFE)
then show Vk<n. coeff p k = 0
by (simp add: coeff-mult)
next
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assume zero: (Yk<n. coeff p k = 0)
define r where r = Abs-poly (Ak. coeff p (k + n))
have V k. coeff p (k +n) =0
by (subst cofinite-eq-sequentially, subst eventually-sequentially-seg,
subst cofinite-eq-sequentially [symmetric]) transfer
then have coeff-r [simp]: coeff r k = coeff p (k + n) for k
unfolding r-def by (subst poly.Abs-poly-inverse) simp-all
have p = monom 1 n x r
by (rule poly-eql, subst coeff-monom-mult) (simp-all add: zero)
then show monom 1 n dvd p by simp
qged

lemma coeff-sum-monom:
assumes n: n < d
shows coeff (3> i<d. monom (fi)i)n=fn (is 9l = -)
proof —
have ?l = (> i<d. coeff (monom (f i) i) n) (is - = sum Zcmf -)
using coeff-sum.
also have {..d} = insert n ({..d}—{n}) using n by auto
hence sum ?emf {..d} = sum Zcmf ... by auto
also have ... = sum ?emf ({..d}—{n}) + Zemf n by (subst sum.insert,auto)
also have sum cmf ({..d}—{n}) = 0 by (subst sum.neutral, auto)
finally show ?thesis by simp
qed

4.15 Mapping polynomials

definition map-poly :: (‘a :: zero = 'b :: zero) = 'a poly = 'b poly
where map-poly f p = Poly (map f (coeffs p))

lemma map-poly-0 [simp]: map-poly f 0 = 0
by (simp add: map-poly-def)

lemma map-poly-1: map-poly f 1 = [:f 1:]
by (simp add: map-poly-def)

lemma map-poly-1' [simp]: f 1 = 1 = map-poly f 1 = 1
by (simp add: map-poly-def one-pCons)

lemma coeff-map-poly:
assumes f 0 = 0
shows coeff (map-poly f p) n = f (coeff p n)
by (auto simp: assms map-poly-def nth-default-def coeffs-def not-less Suc-le-eq
coeff-eq-0
simp del: upt-Suc)

lemma lead-coeff-map-poly-nz:
assumes | (lead-coeff p) # 0f0 =0
shows lead-coeff (map-poly f p) = f (lead-coeff p)
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by (metis (no-types, lifting) antisym assms coeff-0 coeff-map-poly le-degree lead-
ing-coeff-0-iff)

lemma coeffs-map-poly [code abstract]:
coeffs (map-poly f p) = strip-while (=) 0) (map f (coeffs p))
by (simp add: map-poly-def)

lemma coeffs-map-poly’:
assumes A\z. 2 # 0 = fz # 0
shows coeffs (map-poly f p) = map [ (coeffs p)
using assms
by (auto simp add: coeffs-map-poly strip-while-idem-iff
last-coeffs-eq-coeff-degree no-trailing-unfold last-map)

lemma set-coeffs-map-poly:
(ANz. fz=0<+— x=0) = set (coeffs (map-poly fp)) = [ * set (coeffs p)
by (simp add: coeffs-map-poly’)

lemma degree-map-poly:
assumes A\z. 2 # 0 = fz # 0
shows degree (map-poly f p) = degree p
by (simp add: degree-eg-length-coeffs coeffs-map-poly’ assms)

lemma map-poly-eq-0-iff:
assumes f 0 = 0 N\z. x € set (coeffsp) = z# 0 = fz £ 0
shows map-poly fp=0++— p=10

proof —
have (coeff (map-poly fp) n = 0) = (coeff p n = 0) for n
proof —

have coeff (map-poly f p) n = f (coeff p n)
by (simp add: coeff-map-poly assms)

also have ... = 0 +— coeff pn =0
proof (cases n < length (coeffs p))
case True

then have coeff p n € set (coeffs p)
by (auto simp: coeffs-def simp del: upt-Suc)
with assms show f (coeff pn) = 0 «— coeff p n = 0
by auto
next
case Fulse
then show ?thesis
by (auto simp: assms length-coeffs nth-default-coeffs-eq [symmetric] nth-default-def)
qed
finally show ?thesis .
qed
then show %thesis by (auto simp: poly-eq-iff)
qed

lemma map-poly-smult:
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assumes f 0 = ONcz. f (cxx)=fcx fu
shows map-poly f (smult ¢ p) = smult (f ¢) (map-poly f p)
by (intro poly-eql) (simp-all add: assms coeff-map-poly)

lemma map-poly-pCons:
assumes f0 = 0

shows map-poly f (pCons ¢ p) = pCons (f ¢) (map-poly f p)
by (intro poly-eql) (simp-all add: assms coeff-map-poly coeff-pCons split: nat.splits)

lemma map-poly-map-poly:
assumes f0 =0¢g 0 =0
shows map-poly f (map-poly g p) = map-poly (f o g) p
by (intro poly-eql) (simp add: coeff-map-poly assms)

lemma map-poly-id [simp]: map-poly id p = p
by (simp add: map-poly-def)

lemma map-poly-id’ [simp]: map-poly (Az. z) p = p
by (simp add: map-poly-def)

lemma map-poly-cong:
assumes (A\z. z € set (coeffs p) = fz = g x)
shows map-poly f p = map-poly g p
proof —
from assms have map f (coeffs p) = map g (coeffs p)
by (intro map-cong) simp-all
then show ?thesis
by (simp only: coeffs-eq-iff coeffs-map-poly)
qed

lemma map-poly-monom: f 0 = 0 = map-poly f (monom ¢ n) = monom (f ¢) n
by (intro poly-eqI) (simp-all add: coeff-map-poly)

lemma map-poly-idl:
assumes Az. z € set (coeffs p) = fz ==
shows map-poly fp = p
using map-poly-cong[OF assms, of - id] by simp

lemma map-poly-idl "
assumes Az. z € set (coeffs p) = fz ==z
shows p = map-poly [ p
using map-poly-cong[OF assms, of - id] by simp

lemma smult-conv-map-poly: smult ¢ p = map-poly (Az. ¢ * x) p
by (intro poly-eql) (simp-all add: coeff-map-poly)

lemma poly-cnj: cnj (poly p z) = poly (map-poly cnj p) (cnj z)
by (simp add: poly-altdef degree-map-poly coeff-map-poly)
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lemma poly-cnj-real:
assumes An. poly.coeff pn € R
shows ¢nj (poly p z) = poly p (cnj 2)
proof —
from assms have map-poly cnjp = p
by (intro poly-eql) (auto simp: coeff-map-poly Reals-cnj-iff)
with poly-cnj[of p z] show ?thesis by simp
qed

lemma real-poly-cnj-root-iff:
assumes An. poly.coeff pn € R
shows poly p (enjz) =0 «— polyp z=10
proof —
have poly p (cnj z) = cnj (poly p 2)
by (simp add: poly-cnj-real assms)

also have ... = 0 +— poly p z = 0 by simp
finally show ?thesis .
qed

lemma sum-to-poly: (3 z€A. [:f :]) = [D_ x€A. f z]
by (induction A rule: infinite-finite-induct) auto

lemma diff-to-poly: [:c:] — [:d:] = [:c — di]
by (simp add: poly-eq-iff mult-ac)

lemma mult-to-poly: [:c:] * [:d:] = [ic * d]
by (simp add: poly-eq-iff mult-ac)

lemma prod-to-poly: ([ z€A. [:f z:]) = [:[[z€A. f z]
by (induction A rule: infinite-finite-induct) (auto simp: mult-to-poly mult-ac)

lemma poly-map-poly-cnj [simp]: poly (map-poly cnj p) x = cnj (poly p (enj x))
using complex-cnj-cnj poly-cnj by force

lemma map-poly-degree-eq:

assumes f (lead-coeff p) # 0

shows degree (map-poly f p) = degree p

using assms

unfolding map-poly-def degree-eq-length-coeffs coeffs-Poly lead-coeff-list-def

by (metis (full-types) last-conv-nth-default length-map no-trailing-unfold nth-default-coeffs-eq

nth-default-map-eq strip-while-idem)

lemma map-poly-degree-less:
assumes | (lead-coeff p) =0 degree p#0
shows degree (map-poly f p) < degree p
proof —
have length (coeffs p) >1
using <degree p£0» by (simp add: degree-eg-length-coeffs)
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then obtain zs © where zs-def:coeffs p=xsQ[z] length zs>0
by (metis One-nat-def add-0 append-Nil length-greater-0-conv list.size(4) nat-neg-iff
not-less-zero rev-exhaust)
have f z=0 using assms(1) by (simp add: lead-coeff-list-def xs-def(1))
have degree (map-poly f p) = length (strip-while (=) 0) (map f (zsQ[z]))) — 1
unfolding map-poly-def degree-eq-length-coeffs coeffs-Poly
by (subst zs-def ,auto)

also have ... = length (strip-while ((=) 0) (map f xs)) — 1
using <f z=0> by simp
also have ... < length zs —1

using length-strip-while-le by (metis diff-le-mono length-map)
also have ... < length (zsQ[z]) — 1
using zs-def(2) by auto
also have ... = degree p
unfolding degree-eq-length-coeffs rs-def by simp
finally show ?thesis .
qed

lemma map-poly-degree-leq:
shows degree (map-poly f p) < degree p
unfolding map-poly-def degree-eq-length-coeffs
by (metis coeffs-Poly diff-le-mono length-map length-strip-while-le)

4.16 Conversions

lemma of-nat-poly: of-nat n = [:of-nat n:]
by (induct n) (simp-all add: one-pCons)

lemma of-nat-monom: of-nat n = monom (of-nat n) 0
by (simp add: of-nat-poly monom-0)

lemma degree-of-nat [simp]: degree (of-nat n) = 0
by (simp add: of-nat-poly)

lemma lead-coeff-of-nat [simp]: lead-coeff (of-nat n) = of-nat n
by (simp add: of-nat-poly)

lemma of-int-poly: of-int k = [:of-int k:]
by (simp only: of-int-of-nat of-nat-poly) simp

lemma of-int-monom: of-int k = monom (of-int k) 0
by (simp add: of-int-poly monom-0)

lemma degree-of-int [simpl: degree (of-int k) = 0
by (simp add: of-int-poly)

lemma lead-coeff-of-int [simp]: lead-coeff (of-int k) = of-int k
by (simp add: of-int-poly)
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lemma poly-of-nat [simp]: poly (of-nat n) z = of-nat n
by (simp add: of-nat-poly)

lemma poly-of-int [simp]: poly (of-int n) z = of-int n
by (simp add: of-int-poly)

lemma poly-numeral [simp]: poly (numeral n) z = numeral n
by (metis of-nat-numeral poly-of-nat)

lemma numeral-poly: numeral n = [:numeral n:]
proof —
have numeral n = of-nat (numeral n)
by simp
also have ... = [:of-nat (numeral n):]

by (simp add: of-nat-poly)
finally show ?thesis
by simp
qed

lemma numeral-monom:
numeral n = monom (numeral n) 0
by (simp add: numeral-poly monom-0)

lemma degree-numeral [simp]:
degree (numeral n) = 0
by (simp add: numeral-poly)

lemma lead-coeff-numeral [simp]:
lead-coeff (numeral n) = numeral n
by (simp add: numeral-poly)

lemma coeff-linear-poly-power:
fixes ¢ :: 'a :: semiring-1
assumes i < n
shows coeff ([:a, b:] " n) i = of-nat (n choose i) x b " i xa ~(n — 1)
proof —
have [:a, b:] = monom b 1 + [:a!]
by (simp add: monom-altdef)
also have coeff (... "n) i = (O k<n. a(n—k) * of-nat (n choose k) x (if k =
i then b "k else 0))
by (subst binomial-ring) (simp add: coeff-sum of-nat-poly monom-power poly-const-pow
mult-ac)
also have ... = (3" ke{i}. a " (n — 0) x b ~ i % of-nat (n choose k))
using assms by (intro sum.mono-neutral-cong-right) (auto simp: mult-ac)
finally show *: ?thesis by (simp add: mult-ac)
qed
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4.17 Lemmas about divisibility

lemma dvd-smult:
assumes p dvd q
shows p dvd smult a q

proof —
from assms obtain k£ where ¢ = p x k ..
then have smult a ¢ = p * smult a k by simp
then show p dvd smult a q ..

qed

lemma dvd-smult-cancel: p dvd smult o ¢ = a # 0 = p dvd q
for a :: 'a::field
by (drule dvd-smult [where a=inverse a]) simp

lemma dvd-smult-iff: a # 0 = p dvd smult a g +— p dvd q
for a :: 'a::field
by (safe elim!: dvd-smult dvd-smult-cancel)

lemma smult-dvd-cancel:
assumes smult a p dvd q
shows p dvd q
proof —
from assms obtain k£ where ¢ = smult a p x k ..
then have ¢ = p * smult a k by simp
then show p dvd q ..
qed

lemma smult-dvd: p dvd ¢ = a # 0 = smult a p dvd q
for a :: 'a::field
by (rule smult-dvd-cancel [where a=inverse a]) simp

lemma smult-dvd-iff: smult a p dvd ¢ «— (if a = 0 then g = 0 else p dvd q)
for a :: 'a::field
by (auto elim: smult-dvd smult-dvd-cancel)

lemma is-unit-smult-iff: smult ¢ p dvd 1 +— ¢ dvd 1 A p dvd 1
proof —

have smult ¢ p = [:¢:] * p by simp
also have ... dvd 1 <— cdvd 1 A p dvd 1
proof safe

assume x*: [:c:] * p dvd 1
then show p dvd 1
by (rule dvd-mult-right)
from x obtain ¢ where ¢: 1 = [ic;] x p x ¢
by (rule dvdE)
have ¢ dvd ¢ = (coeff p 0 % coeff q 0)
by simp
also have ... = coeff ([:c:] * p * ¢q) 0
by (simp add: mult.assoc coeff-mult)

124



also note ¢ [symmetric]
finally have ¢ dvd coeff 1 0 .
then show ¢ dvd 1 by simp
next
assume c dvd 1 p dvd 1
from this(1) obtain d where I = ¢ % d
by (rule dvdE)
then have 1 = [:¢:] * [:d:]
by (simp add: one-pCons ac-simps)
then have [:¢:] dvd 1
by (rule dvdl)
from mult-dvd-mono|OF this <p dvd 1)] show [:c:] % p dvd 1
by simp
qed
finally show ?thesis .
qed

4.18 Polynomials form an integral domain

instance poly :: (idom) idom ..

instance poly :: ({ring-char-0, comm-ring-1}) ring-char-0
by standard (auto simp add: of-nat-poly intro: injl)

lemma semiring-char-poly [simp]: CHAR('a :: comm-semiring-1 poly) = CHAR('a)
by (rule CHAR-eql) (auto simp: of-nat-poly of-nat-eq-0-iff-char-dvd)

instance poly :: ({semiring-prime-char,comm-semiring-1}) semiring-prime-char
by (rule semiring-prime-charl) auto
instance poly :: ({ comm-semiring-prime-char,comm-semiring-1}) comm-semiring-prime-char
by standard
instance poly :: ({ comm-ring-prime-char,comm-semiring-1}) comm-ring-prime-char
by standard
instance poly :: ({idom-prime-char,comm-semiring-1}) idom-prime-char
by standard

lemma degree-mult-eq: p # 0 = q # 0 = degree (p x q) = degree p + degree q
for p q :: 'a::{comm-semiring-0,semiring-no-zero-divisors} poly
by (rule order-antisym [OF degree-mult-le le-degree]) (simp add: coeff-mult-degree-sum)

lemma degree-prod-sum-eq:
ANz.z€ A= fz #0) =
degree (prod f A :: 'a :: idom poly) = (> z€A. degree (f z))
by (induction A rule: infinite-finite-induct) (auto simp: degree-mult-eq)

lemma dvd-imp-degree:
<degree © < degree y» if «x dvd y» «x # 0> <y # 0>
for z y :: <‘a::{ comm-semiring-1,semiring-no-zero-divisors} poly»
proof —
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from «x dvd y> obtain z where <y = z * 2» .
with «x # 0> <y # 0> show ?thesis
by (simp add: degree-mult-eq)
qed

lemma degree-prod-eq-sum-degree:
fixes A :: ‘a set
and f :: 'a = 'b:idom poly
assumes f0: Vi€A. fi # 0
shows degree ([[i€A. (fi)) = (O] i€A. degree (f i))
using assms
by (induction A rule: infinite-finite-induct) (auto simp: degree-mult-eq)

lemma degree-mult-eq-0:

degree (pxq) =0+—p=0Vqg=0V (p#0Nqg#0Adegreep =20 A
degree ¢ = 0)

for p ¢ :: 'a::{comm-semiring-0,semiring-no-zero-divisors} poly

by (auto simp: degree-mult-eq)

lemma degree-power-eq: p # 0 = degree ((p :: 'a :: idom poly) ~n) = n * degree
p
by (induction n) (simp-all add: degree-mult-eq)

lemma degree-mult-right-le:
fixes p q :: 'a:{comm-semiring-0,semiring-no-zero-divisors} poly
assumes ¢q # 0
shows degree p < degree (p x q)
using assms by (cases p = 0) (simp-all add: degree-mult-eq)

lemma coeff-degree-mult: coeff (p * q) (degree (p x q)) = coeff q (degree q) * coeff
p (degree p)

for p q :: 'a::{comm-semiring-0,semiring-no-zero-divisors} poly

by (cases p = 0 V g = 0) (auto simp: degree-mult-eq coeff-mult-degree-sum
mult-ac)

lemma dvd-imp-degree-le: p dvd ¢ = q # 0 = degree p < degree q
for p q :: 'a::{comm-semiring-1,semiring-no-zero-divisors} poly
by (erule dvdE, hypsubst, subst degree-mult-eq) auto

lemma divides-degree:
fixes p q :: 'a ::{comm-semiring-1,semiring-no-zero-divisors} poly
assumes p dvd q
shows degree p < degree q V ¢ = 0
by (metis dvd-imp-degree-le assms)

lemma const-poly-dvd-iff:
fixes ¢ :: 'a::{comm-semiring-1,semiring-no-zero-divisors}
shows [:c:] dvd p +— (Vn. ¢ dvd coeff p n)

proof (cases c =0V p=0)
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case True
then show ?thesis
by (auto introl: poly-eql)
next
case Fulse
show ?thesis
proof
assume [:c:] dvd p
then show Vn. ¢ dvd coeff p n
by (auto simp: coeffs-def)
next
assume *: Vn. ¢ dvd coeff p n
define mydiv where mydivzy = (SOME z. z = y x z) for z y :: 'a
have mydiv: = y x mydiv x y if y dvd x for z y
using that unfolding mydiv-def dvd-def by (rule somel-ex)
define ¢ where ¢ = Poly (map (Aa. mydiv a ¢) (coeffs p))
from Fulse * have p = ¢ * [:¢]
by (intro poly-eql)
(auto simp: g-def nth-default-def not-less length-coeffs-degree coeffs-nth
introl: coeff-eq-0 mydiv)
then show [:¢:] dvd p
by (simp only: dvd-triv-right)
qed
qed

lemma const-poly-dvd-const-poly-iff [simp]: [:a:] dvd [:b:] +— a dvd b
for a b :: ‘a::{comm-semiring-1,semiring-no-zero-divisors}
by (subst const-poly-dvd-iff) (auto simp: coeff-pCons split: nat.splits)

lemma lead-coeff-mult: lead-coeff (p * q) = lead-coeff p * lead-coeff q
for p q :: 'a::{comm-semiring-0, semiring-no-zero-divisors} poly
by (cases p = 0 V q = 0) (auto simp: coeff-mult-degree-sum degree-mult-eq)

lemma lead-coeff-prod: lead-coeff (prod f A) = ([[z€A. lead-coeff (f z))
for f :: 'a = 'b::{comm-semiring-1, semiring-no-zero-divisors} poly
by (induction A rule: infinite-finite-induct) (auto simp: lead-coeff-mult)

lemma lead-coeff-smult: lead-coeff (smult ¢ p) = ¢ * lead-coeff p

for p :: 'a::{comm-semiring-0,semiring-no-zero-divisors} poly
proof —

have smult ¢ p = [:¢:] * p by simp

also have lead-coeff ... = ¢ * lead-coeff p

by (subst lead-coeff-mult) simp-all

finally show ?thesis .

qed

lemma lead-coeff-1 [simp]: lead-coeff 1 = 1
by simp
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lemma lead-coeff-power: lead-coeff (p ~ n) = lead-coeff p " n
for p :: ‘a::{comm-semiring-1,semiring-no-zero-divisors} poly
by (induct n) (simp-all add: lead-coeff-mult)

4.19 Polynomials form an ordered integral domain

definition pos-poly :: 'a::linordered-semidom poly = bool
where pos-poly p <— 0 < coeff p (degree p)

lemma pos-poly-pCons: pos-poly (pCons a p) +— pos-poly p V (p = 0 A 0 < a)
by (simp add: pos-poly-def)

lemma not-pos-poly-0 [simpl: = pos-poly 0
by (simp add: pos-poly-def)

lemma pos-poly-add: pos-poly p = pos-poly ¢ = pos-poly (p + q)
proof (induction p arbitrary: q)
case (pCons a p)
then show ?case
by (cases ¢; force simp add: pos-poly-pCons add-pos-pos)
qed auto

lemma pos-poly-mult: pos-poly p = pos-poly ¢ = pos-poly (p * q)
by (simp add: pos-poly-def coeff-degree-mult)

lemma pos-poly-total: p = 0 V pos-poly p V pos-poly (— p)
for p :: 'a::linordered-idom poly
by (induct p) (auto simp: pos-poly-pCons)

lemma pos-poly-coeffs [code]: pos-poly p «— (let as = coeffs p in as # [| A last as
> 0)
(is ?lhs «— ?rhs)
proof
assume ?rhs
then show ?lhs
by (auto simp add: pos-poly-def last-coeffs-eq-coeff-degree)
next
assume ?lhs
then have *: 0 < coeff p (degree p)
by (simp add: pos-poly-def)
then have p # 0
by auto
with * show ?rhs
by (simp add: last-coeffs-eq-coeff-degree)
qged

instantiation poly :: (linordered-idom) linordered-idom
begin
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definition z < y +— pos-poly (y — z)

definition = < y +— z = y V pos-poly (y — z)

definition |z::’a poly| = (if x < 0 then — x else x)

definition sgn (z::'a poly) = (if z = 0 then 0 else if 0 < x then 1 else — 1)

instance
proof
fix zyz:: 'apoly
showr < y+—z<yn-y<z
unfolding less-eq-poly-def less-poly-def
using pos-poly-add by force
thenshowr <y —=y<r=z=y
using less-eq-poly-def less-poly-def by force
show z < z
by (simp add: less-eq-poly-def)
showz <y = y< 2=z <z
using less-eq-poly-def pos-poly-add by fastforce
showr<y=z4+z2<2z+y
by (simp add: less-eq-poly-def)
show s < yVvy<z
unfolding less-eq-poly-def
using pos-poly-total [of z — ]
by auto
showzr < y=—=0<z=zxx<zx*xy
by (simp add: less-poly-def right-diff-distrib [symmetric] pos-poly-mult)
show |z| = (if z < 0 then — z else x)
by (rule abs-poly-def)
show sgn @ = (if x = 0 then 0 else if 0 < x then 1 else — 1)
by (rule sgn-poly-def)
qed

end

TODO: Simplification rules for comparisons

4.20 Synthetic division and polynomial roots
4.20.1 Synthetic division

Synthetic division is simply division by the linear polynomial x — c.

definition synthetic-divmod :: 'a::comm-semiring-0 poly = 'a = 'a poly X 'a
where synthetic-divmod p ¢ = fold-coeffs (Aa (g, 7). (pCons r q, a + ¢ x 1)) p
(0, 0)

definition synthetic-div :: 'a::comm-semiring-0 poly = 'a = 'a poly
where synthetic-div p ¢ = fst (synthetic-divmod p c)
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lemma synthetic-divmod-0 [simp]: synthetic-divmod 0 ¢ = (0, 0)
by (simp add: synthetic-divmod-def)

lemma synthetic-divmod-pCons [simp):

synthetic-divmod (pCons a p) ¢ = (A(q, r). (pCons 1 q, a + ¢ * 1)) (synthetic-divmod
pc)

by (cases p = 0 A a = 0) (auto simp add: synthetic-divmod-def)

lemma synthetic-div-0 [simp]: synthetic-div 0 ¢ = 0
by (simp add: synthetic-div-def)

lemma synthetic-div-unique-lemma: smult ¢ p = pCons a p = p = 0
by (induct p arbitrary: a) simp-all

lemma snd-synthetic-divmod: snd (synthetic-divmod p ¢) = poly p ¢
by (induct p) (simp-all add: split-def)

lemma synthetic-div-pCons [simp]:
synthetic-div (pCons a p) ¢ = pCons (poly p c) (synthetic-div p c)
by (simp add: synthetic-div-def split-def snd-synthetic-divmod)

lemma synthetic-div-eq-0-iff : synthetic-div p ¢ = 0 <— degree p = 0
proof (induct p)
case ()
then show ?case by simp
next
case (pCons a p)
then show ?case by (cases p) simp
qed

lemma degree-synthetic-div: degree (synthetic-div p ¢) = degree p — 1
by (induct p) (simp-all add: synthetic-div-eq-0-iff)

lemma synthetic-div-correct:
p + smult ¢ (synthetic-div p ¢) = pCons (poly p ¢) (synthetic-div p ¢)
by (induct p) simp-all

lemma synthetic-div-unique: p + smult ¢ ¢ = pCons r q = r = poly p c \ q¢ =
synthetic-div p c
proof (induction p arbitrary: q r)
case ()
then show ?case
using synthetic-div-unique-lemma by fastforce
next
case (pCons a p)
then show ?Zcase
by (cases gq; force)
qed

130



lemma synthetic-div-correct”: [:—c, 1:] * synthetic-div p ¢ + [:poly p ¢:] = p
for c :: 'a::comm-ring-1
using synthetic-div-correct [of p c] by (simp add: algebra-simps)

4.20.2 Polynomial roots

lemma poly-eq-0-iff-dvd: poly p ¢ = 0 +— [:— ¢, 1:] dvd p
(is ?lhs <— ?rhs)
for ¢ :: ‘a::comm-ring-1

proof
assume ?lhs
with synthetic-div-correct’ [of ¢ p| have p = [:—c¢, 1:] * synthetic-div p ¢ by simp
then show ?rhs ..

next
assume ?rhs
then obtain k¥ where p = [:—c¢, 1:] * k by (rule dvdE)
then show ?lhs by simp

qed

lemma dvd-iff-poly-eq-0: [:c, 1:] dvd p +— poly p (— ¢) = 0
for ¢ :: 'a::comm-ring-1

by (simp add: poly-eq-0-iff-dvd)

lemma poly-roots-finite: p # 0 = finite {z. poly p x = 0}
for p :: ‘a::{comm-ring-1,ring-no-zero-divisors} poly
proof (induct n = degree p arbitrary: p)
case ()
then obtain a where a # 0 and p = [:a]
by (cases p) (simp split: if-splits)
then show finite {z. poly p x = 0}
by simp
next
case (Suc n)
show finite {z. poly p z = 0}
proof (cases Jx. poly p x = 0)
case Fulse
then show finite {z. poly p t = 0} by simp
next
case True
then obtain a where poly p a = 0 ..
then have [:—a, 1:] dvd p
by (simp only: poly-eq-0-iff-dvd)
then obtain k where k: p = [i—a, 1:] x k ..
with «<p # 0> have k # 0
by auto
with k£ have degree p = Suc (degree k)
by (simp add: degree-mult-eq del: mult-pCons-left)
with <Suc n = degree p» have n = degree k
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by simp

from this <k # 0> have finite {z. poly k x = 0}
by (rule Suc.hyps)

then have finite (insert a {z. poly k © = 0})
by simp

then show finite {z. poly p x = 0}
by (simp add: k Collect-disj-eq del: mult-pCons-left)

qed
qed

lemma poly-eq-poly-eq-iff: poly p = poly ¢ <— p = ¢q
(is ?lhs «— ?rhs)
for p q :: 'a::{comm-ring-1,ring-no-zero-divisors,ring-char-0} poly
proof
assume ?rhs
then show ?lhs by simp
next
assume ?lhs
have poly p = poly 0 +— p = 0 for p :: 'a poly
proof (cases p = 0)
case Fulse
then show ?thesis
by (auto simp add: infinite-UNIV-char-0 dest: poly-roots-finite)
qged auto
from «?lhsy and this [of p — ¢] show ?rhs
by auto
qed

A nice extension rule for polynomials.

lemma poly-ext:
fixes p q :: 'a :: {ring-char-0, idom} poly
assumes Az. poly p z = poly q  shows p = ¢
unfolding poly-eq-poly-eq-iff [symmetric]
using assms by (rule ext)

Copied from non-negative variants.

lemma coeff-linear-power-neg[simpl:
fixes a :: 'a::comm-ring-1
shows coeff ([:a, —=1:] “n)n=(—-1)"n
proof (induct n)
case ()
then show ?Zcase by simp
next
case (Suc n)
then have degree ([:a, — 1:] "~ n) < Sucn
by (auto intro: le-less-trans degree-power-le)
with Suc show ?case
by (simp add: coeff-eq-0)
qed
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lemma degree-linear-power-neg[simpl:
fixes a :: ‘a::{idom,comm-ring-1}
shows degree ([:a, —1:] "n) =n
by (simp add: degree-power-eq)

lemma poly-all-0-iff-0: Vz. polypx = 0) «— p =0
for p :: ‘a::{ring-char-0,comm-ring-1 ,ring-no-zero-divisors} poly
by (auto simp add: poly-eq-poly-eq-iff [symmetric))

lemma card-poly-roots-bound:
fixes p :: ‘a::{comm-ring-1,ring-no-zero-divisors} poly
assumes p # 0
shows card {z. poly p x = 0} < degree p
using assms
proof (induction degree p arbitrary: p rule: less-induct)
case (less p)
show ?Zcase
proof (cases Jz. poly p v = 0)
case Fulse
hence {z. poly p x = 0} = {} by blast
thus ?thesis by simp
next
case True
then obtain z where z: poly p © = 0 by blast
hence [:—z, 1:] dvd p by (subst (asm) poly-eq-0-iff-dvd)
then obtain ¢ where ¢: p = [:—=z, 1:] * ¢ by (auto simp: dvd-def)
with <p # 0> have [simp]: ¢ # 0 by auto
have deg: degree p = Suc (degree q)
by (subst q, subst degree-mult-eq) auto
have card {z. poly p x = 0} < card (insert z {z. poly ¢ x = 0})
by (intro card-mono) (auto intro: poly-roots-finite simp: q)
also have ... < Suc (card {z. poly q x = 0})
by (rule card-insert-le-m1) auto
also from deg have card {z. poly q z = 0} < degree q
using <p # 0» and ¢ by (intro less) auto

also have Suc ... = degree p by (simp add: deg)
finally show ?thesis by — simp-all
qed
qed

lemma poly-eql-degree:
fixes p q :: 'a :: {comm-ring-1, ring-no-zero-divisors} poly
assumes Az. 2 € A = poly p x = poly q x
assumes card A > degree p card A > degree q
shows p = ¢
proof (rule ccontr)
assume neq: p # q
have degree (p — ¢q) < max (degree p) (degree q)
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by (rule degree-diff-le-mazx)
also from assms have ... < card A by linarith
also have ... < card {z. poly (p — q) z = 0}
using neq and assms by (intro card-mono poly-roots-finite) auto
finally have degree (p — q) < card {z. poly (p — q) z = 0} .
moreover have degree (p — ¢q) > card {z. poly (p — q) v = 0}
using neq by (intro card-poly-roots-bound) auto
ultimately show Fulse by linarith
qed

lemma poly-eql-degree-lead-coeff:
fixes p q :: 'a :: {comm-ring-1, ring-no-zero-divisors} poly
assumes poly.coeff p n = poly.coeff g n card A > n degree p < n degree ¢ < n
assumes A\z. z € A = poly p z = poly q z
shows p = ¢
proof (rule ccontr)
assume p # ¢

have n > 0
proof (rule ccontr)
assume —(n > 0)
thus Fulse
using assms <p # ¢ by (auto elim!: degree-eq-zeroE)
qed

have n < card A
by fact
also have card A < card {z. poly (p — q) © = 0}
by (intro card-mono poly-roots-finite) (use <p # ¢ assms in auto)
also have card {x. poly (p — q) z = 0} < degree (p — q)
by (rule card-poly-roots-bound) (use <p # ¢ in auto)
also have degree (p — ¢) < n
proof (intro degree-lessI alll impl)
fix k assume k > n
show poly.coeff (p — q) k=10
proof (cases k = n)
case Fulse
hence poly.coeff p k = 0 poly.coeff ¢ k = 0
using assms <k > ny by (auto simp: coeff-eq-0)
thus ?thesis
by simp
qged (use assms in auto)
qed (use <n > 0> in auto)
finally show Fulse
by simp
qed
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4.20.3 Order of polynomial roots

definition order :: ‘a::idom = 'a poly = nat
where order a p = (LEAST n. — [:—a, 1:] ~ Suc n dvd p)

lemma coeff-linear-power: coeff ([:a, 1:] “n) n =1
for a :: 'a::comm-semiring-1
proof (induct n)
case (Suc n)
have degree ([:a, 1:] "n) < 1 xn
by (metis One-nat-def degree-p Cons-eq-if degree-power-le one-neg-zero one-pCons)
then have coeff ([:a, 1:] ~n) (Sucn) =0
by (simp add: coeff-eq-0)
then show ?case
using Suc.hyps by fastforce
qed auto

lemma degree-linear-power: degree ([:a, 1:] "~ n) = n
for a :: 'a::comm-semiring-1
proof (rule order-antisym)
show degree ([:a, 1:] “n) < n
by (metis One-nat-def degree-pCons-eq-if degree-power-le mult.left-neutral one-neg-zero
one-pCons)
qed (simp add: coeff-linear-power le-degree)

lemma order-1: [:—a, 1:] ~order a p dvd p
proof (cases p = 0)
case Fulse
show ?thesis
proof (cases order a p)
case (Suc n)
then show “thesis
by (metis lessI not-less-Least order-def)
qed auto
qed auto

lemma order-2:
assumes p # 0
shows - [:—a, 1:] ~ Suc (order a p) dvd p
proof —
have False if [:— a, 1:] ~ Suc (degree p) dvd p
using dvd-imp-degree-le [OF that)]
by (metis Suc-n-not-le-n assms degree-linear-power)
then show ?thesis
unfolding order-def
by (metis (no-types, lifting) LeastI)
qed

lemma order: p # 0 = [:—a, 1:] ~order a p dvd p A = [:—a, 1:] ~ Suc (order a
p) dvd p
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by (rule conjl [OF order-1 order-2])

lemma order-degree:
assumes p: p # 0
shows order a p < degree p
proof —
have order a p = degree ([:—a, 1:] ~ order a p)
by (simp only: degree-linear-power)
also from order-1 p have ... < degree p
by (rule dvd-imp-degree-le)
finally show ?thesis .
qed

lemma order-root: poly p a = 0 <— p = 0V order a p # 0 (is ?lhs = ?rhs)
proof
show ?2lhs =—> ?rhs
by (metis One-nat-def order-2 poly-eq-0-iff-dvd power-one-right)
show ?rhs = ?lhs
by (meson dvd-power dvd-trans neq0-conv order-1 poly-0 poly-eq-0-iff-dvd)
qed

lemma order-01I: poly p a # 0 = order a p = 0
by (subst (asm) order-root) auto

lemma order-unique-lemma:
fixes p :: a::idom poly
assumes [:—a, 1] “ndvd p - [:—a, 1:] " Suc n dvd p
shows order a p =n
unfolding Polynomial.order-def
by (metis (mono-tags, lifting) Least-equality assms not-less-eq-eq power-le-dvd)

lemma order-mult:
assumes p x ¢ # 0 shows order a (p x q) = order a p + order a q
proof —
define ¢ where ¢ = order a p
define j where j = order a q
define ¢ where t = [:—aq, 1]
have t-dvd-iff: Nu. t dvd u <— poly u a = 0
by (simp add: t-def dvd-iff-poly-eq-0)
have dvd: ¢t “idvd pt " jdvd gand — ¢t " Suc i dvd p =t ~ Suc j dvd q
using assms i-def j-def order-1 order-2 t-def by auto
then have — t = Suc(i + j) dvd p * ¢
by (elim dvdE) (simp add: power-add t-dvd-iff)
moreover have t ~ (i + j) dvd p * ¢
using dvd by (simp add: mult-dvd-mono power-add)
ultimately show order a (p x q) =1 + j
using order-unique-lemma t-def by blast
qed
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lemma order-smult:

assumes ¢ # 0

shows order x (smult ¢ p) = order x p
proof (cases p = 0)

case True

then show ?thesis
by simp

next

case False

have smult ¢ p = [:¢:] * p by simp

also from assms False have order © ... = order x [:¢:] + order z p
by (subst order-mult) simp-all

also have order z [:c:] = 0

by (rule order-0I) (use assms in auto)
finally show ?thesis
by simp
qed

lemma order-gt-0-iff: p # 0 = order xp > 0 <— polyp x = 0
by (subst order-root) auto

lemma order-eq-0-iff: p # 0 = order z p = 0 <— poly p x # 0
by (subst order-root) auto

Next three lemmas contributed by Wenda Li

lemma order-1-eq-0 [simpl:order x 1 = 0
by (metis order-root poly-1 zero-neg-one)

lemma order-uminus[simp): order z (—p) = order x p
by (metis neg-equal-0-iff-equal order-smult smult-1-left smult-minus-left)

lemma order-power-n-n: order a ([:—a,1:] " n)=n
proof (induct n)
case (
then show ?case
by (metis order-root poly-1 power-0 zero-neg-one)
next
case (Suc n)
have order a ([:— a, 1:] ~ Suc n) = order a ([:— a, 1:] " n) + order a [:—a,1:]
by (metis (no-types, opaque-lifting) One-nat-def add-Suc-right monoid-add-class.add.right-neutral
one-neq-zero order-mult pCons-eq-0-iff power-add power-eq-0-iff power-one-right)
moreover have order a [:—a,1:] = 1
unfolding order-def
proof (rule Least-equality, rule notl)
assume [:— a, 1:] ~ Suc 1 dvd [:— a, 1]
then have degree ([:— a, 1:] ~ Suc 1) < degree ([:— a, 1:])
by (rule dvd-imp-degree-le) auto
then show Fulse
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by auto
next
fix y
assume *: - [:— a, 1:] ~ Suc y dvd [:— a, 1]
show 1 <y
proof (rule ccontr)
assume -~ [ < y
then have y = 0 by auto
then have [:— a, 1:] ~ Suc y dvd [:— a, 1:] by auto
with x show Fulse by auto
qed
qed
ultimately show ?case
using Suc by auto
qed

lemma order-0-monom [simp]: ¢ # 0 = order 0 (monom c n) = n
using order-power-n-n[of 0 n] by (simp add: monom-altdef order-smult)

lemma dvd-imp-order-le: ¢ # 0 = p dvd ¢ = Polynomial.order a p < Polyno-
mial.order a q
by (auto simp: order-mult)

Now justify the standard squarefree decomposition, i.e. f / ged f f.
lemma order-divides: [:—a, 1:] “ndvdp +— p =0V n < order ap

by (meson dvd-0-right not-less-eq-eq order-1 order-2 power-le-dvd)

lemma order-decomp:
assumes p # 0

shows 3¢. p=[— a, 1:] "orderap* ¢ A - [:— a, 1:] dvd q
proof —
from assms have *: [:— a, 1:] ~order a p dvd p

and #x: 0 [:— a, 1:] 7 Suc (order a p) dvd p
by (auto dest: order)

from * obtain ¢ where ¢: p = [:— a, 1:] " order ap * q ..

with *x have - [:— a, 1:] ~ Suc (order a p) dvd [:— a, 1:] " order a p * ¢
by simp

then have — [:— a, 1:] "order a p x [:— a, 1:] dvd [:— a, 1:] ~order a p x q
by simp

with idom-class.dvd-mult-cancel-left [of [:— a, 1:] ~order a p [:— a, 1:] ¢

have — [:— a, 1:] dvd ¢ by auto
with ¢ show ?thesis by blast
qed

lemma monom-1-dvd-iff: p # 0 = monom 1 n dvd p <— n < order 0 p
using order-divides[of 0 n p] by (simp add: monom-altdef)

lemma poly-root-order-induct [case-names 0 no-roots root]:
fixes p :: ‘a :: idom poly
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assumes P 0 Ap. (Az. polypxz # 0) = Pp
ANpzn.n>0= polypzr+# 0= Pp=— P ([—z, I:] “n=*p)
shows Pp
proof (induction degree p arbitrary: p rule: less-induct)
case (less p)
consider p =0 | p# 0 3z. polyp x = 0 | Az. poly p x # 0 by blast
thus ?case
proof cases
case 3
with assms(2)[of p] show ?thesis by simp
next
case 2
then obtain z where z: poly p x = 0 by auto
have [:—z, 1:] ~ order x p dvd p by (intro order-1)
then obtain ¢ where ¢: p = [:—z, 1:] ~order x p * ¢ by (auto simp: dvd-def)
with 2 have [simp]: ¢ # 0 by auto
have order-pos: order z p > 0
using <p # 0> and z by (auto simp: order-root)
have order x p = order x p + order x q
by (subst q, subst order-mult) (auto simp: order-power-n-n)
hence [simp|: order x ¢ = 0 by simp
have deg: degree p = order x p + degree q
by (subst q, subst degree-mult-eq) (auto simp: degree-power-eq)
with order-pos have degree ¢ < degree p by simp
hence P q by (rule less)
with order-pos have P ([:—z, 1:] ~ order x p x q)
by (intro assms(8)) (auto simp: order-root)
with ¢ show ?thesis by simp
qed (simp-all add: assms(1))
qed

context
includes multiset.lifting
begin

lift-definition proots :: (‘a :: idom) poly = ’a multiset is

A(p = 'a poly) (z :: 'a). if p = 0 then 0 else order x p
proof —

fix p :: a poly

show finite {z. 0 < (if p = 0 then 0 else order x p)}

by (cases p = 0)
(auto simp: order-gt-0-iff intro: finite-subset| OF - poly-roots-finite|of p]])

qed

lemma proots-0 [simp]: proots (0 :: 'a :: idom poly) = {#}
by transfer’ auto

lemma proots-1 [simp]: proots (1 :: 'a :: idom poly) = {#}
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by transfer’ auto

lemma proots-const [simp]: proots [: z ] = 0
by transfer’ (auto split: if-splits simp: fun-eq-iff order-eq-0-iff)

lemma proots-numeral [simp]: proots (numeral n) = 0
by (simp add: numeral-poly)

lemma count-proots [simp]:
p # 0 = count (proots p) a = order a p
by transfer’ auto

lemma set-count-proots [simp]:
p # 0 = set-mset (proots p) = {z. poly p z = 0}
by (auto simp: set-mset-def order-gt-0-iff)

lemma proots-uminus [simp]: proots (—p) = proots p
by (cases p = 0; rule multiset-eql) auto

lemma proots-smult [simp]: ¢ # 0 = proots (smult ¢ p) = proots p
by (cases p = 0; rule multiset-eqI) (auto simp: order-smult)

lemma proots-mult:
assumes p # 0 q # 0
shows proots (p * q) = proots p + proots q
using assms by (intro multiset-eql) (auto simp: order-mult)

lemma proots-prod:
assumes A\z. 2 € A = fz # 0
shows proots ([[z€A. fz) = (3] x€A. proots (f x))
using assms by (induction A rule: infinite-finite-induct) (auto simp: proots-mult)

lemma proots-prod-mset:
assumes 0 ¢# A

shows proots ([[ pe#A. p) = (O pe#A. proots p)
using assms by (induction A) (auto simp: proots-mult)

lemma proots-prod-list:
assumes 0 ¢ set ps

shows proots ([ p<ps. p) = (O p<ps. proots p)
using assms by (induction ps) (auto simp: proots-mult prod-list-zero-iff)

lemma proots-power: proots (p ~ n) = repeat-mset n (proots p)
proof (cases p = 0)
case Fulse
thus ?thesis
by (induction n) (auto simp: proots-mult)
qed (auto simp: power-0-left)

140



lemma proots-linear-factor [simp|: proots [:x, 1:] = {#—z#}
proof —
have order (—z) [z, 1:] > 0
by (subst order-gt-0-iff) auto
moreover have order (—z) [:z, 1:] < degree [:z, 1]
by (rule order-degree) auto
moreover have order y [:z, 1:] = 0 if y # —x for y
by (rule order-0I) (use that in <auto simp: add-eq-0-iff)
ultimately show ?thesis
by (intro multiset-eql) auto
qed

lemma size-proots-le: size (proots p) < degree p
proof (induction p rule: poly-root-order-induct)
case (no-roots p)
hence proots p = 0
by (simp add: multiset-eql order-root)
thus ?case by simp
next
case (root p x n)
have [simp]: p # 0
using root.hyps by auto
from root.IH show ?case
by (auto simp: proots-mult proots-power degree-mult-eq degree-power-eq)
qed auto

end

4.21 Additional induction rules on polynomials

An induction rule for induction over the roots of a polynomial with a certain
property. (e.g. all positive roots)

lemma poly-root-induct [case-names 0 no-roots root]:
fixes p :: 'a :: idom poly
assumes @ 0
and Ap. (Ae. Pa = polypa#0) = Qp
and Aap. Pa = Qp = Q ([:a, —1:] * p)
shows @ p
proof (induction degree p arbitrary: p rule: less-induct)
case (less p)
show ?Zcase
proof (cases p = 0)
case True
with assms(1) show ?thesis by simp
next
case Fulse
show ?thesis
proof (cases Fa. P a A poly p a = 0)
case Fulse
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then show ?thesis by (intro assms(2)) blast
next
case True
then obtain a where a: P a poly p a = 0
by blast
then have —[:—a, I:] dvd p
by (subst minus-dvd-iff) (simp add: poly-eq-0-iff-dvd)
then obtain ¢ where ¢: p = [:a, —1:] * ¢ by (elim dvdE) simp
with Fulse have ¢ # 0 by auto
have degree p = Suc (degree q)
by (subst q, subst degree-mult-eq) (simp-all add: <q # 0)
then have @ ¢ by (intro less) simp
with a(1) have Q ([:a, —1:] * q)
by (rule assms(3))
with ¢ show ?thesis by simp
qed
qed
qed

lemma drop While-replicate-append:
dropWhile ((=) a) (replicate n a Q ys) = drop While ((=) a) ys
by (induct n) simp-all

lemma Poly-append-replicate-0: Poly (xs @ replicate n 0) = Poly xs
by (subst coeffs-eq-iff ) (simp-all add: strip-while-def drop While-replicate-append)

An induction rule for simultaneous induction over two polynomials, prepend-
ing one coefficient in each step.

lemma poly-induct? [case-names 0 pCons]:
assumes P 00 Napbg Ppqg= P (pCons ap) (pCons b q)
shows P p q
proof —
define n where n = max (length (coeffs p)) (length (coeffs q))
define zs where zs = coeffs p @ (replicate (n — length (coeffs p)) 0)
define ys where ys = coeffs ¢ Q (replicate (n — length (coeffs q)) 0)
have length xs = length ys
by (simp add: xs-def ys-def n-def)
then have P (Poly xs) (Poly ys)
by (induct rule: list-induct2) (simp-all add: assms)
also have Poly xs = p
by (simp add: zs-def Poly-append-replicate-0)
also have Poly ys = q
by (simp add: ys-def Poly-append-replicate-0)
finally show ?thesis .
qed

4.22 Composition of polynomials

definition pcompose :: 'a::comm-semiring-0 poly = 'a poly = 'a poly
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where pcompose p q¢ = fold-coeffs (Aa c. [:a:] + ¢ x ¢) p 0
notation pcompose (infixl <o, 71)

lemma pcompose-0 [simp|: pcompose 0 ¢ = 0
by (simp add: pcompose-def)

lemma pcompose-pCons: pcompose (pCons a p) q = [:a:] + q * pcompose p q
by (cases p = 0 A a = 0) (auto simp add: pcompose-def)

lemma pcompose-altdef: pcompose p ¢ = poly (map-poly (Az. [:z:]) p) ¢
by (induction p) (simp-all add: map-poly-pCons pcompose-pCons)

lemma coeff-pcompose-0 [simp]:
coeff (pcompose p q) 0 = poly p (coeff q 0)
by (induction p) (simp-all add: coeff-mult-0 pcompose-pCons)

lemma pcompose-1: pcompose 1 p = 1
for p :: 'a::comm-semiring-1 poly
by (auto simp: one-pCons pcompose-pCons)

lemma poly-pcompose: poly (pcompose p q) x = poly p (poly q x)
by (induct p) (simp-all add: pcompose-pCons)

lemma degree-pcompose-le: degree (pcompose p q) < degree p * degree q
proof (induction p)
case (pCons a p)
then show ?case
proof (clarsimp simp add: pcompose-pCons)
assume degree (p o, q) < degree p x degree q p # 0
then have degree (¢ * p o, q) < degree q¢ + degree p * degree q
by (meson add-le-cancel-left degree-mult-le dual-order.trans pCons.IH)
then show degree ([:a:] + ¢ * p o, q) < degree q + degree p x degree q
by (simp add: degree-add-le)
qed
qed auto

lemma pcompose-add: pcompose (p + q) v = pcompose p T + pcompose q r

for p ¢ r :: 'a::{comm-semiring-0, ab-semigroup-add} poly
proof (induction p q rule: poly-induct2)

case ()

then show ?case by simp
next

case (pCons a p b q)

have pcompose (pCons a p + pCons b q) v = [:a + b:] + 7 * pcompose p r + T
% pcompose q T

by (simp-all add: pcompose-pCons pCons. IH algebra-simps)
also have [:a + b:] = [ta:] + [:b:] by simp
also have ... + r *x pcompose p r + r x pcompose q v = pcompose (pCons a p)
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r + pcompose (pCons b q) r
by (simp only: pcompose-pCons add-ac)
finally show ?Zcase .
qed

lemma pcompose-uminus: pcompose (—p) r = —pcompose p r
for p r :: 'a::comm-ring poly
by (induct p) (simp-all add: pcompose-pCons)

lemma pcompose-diff: pcompose (p — q) r = pcompose p r — pcompose q
for p ¢ r :: 'a::comm-ring poly
using pcompose-add|of p —q] by (simp add: pcompose-uminus)

lemma pcompose-smult: pcompose (smult a p) v = smult a (pcompose p )
for p r :: 'a::comm-semiring-0 poly
by (induct p) (simp-all add: pcompose-pCons pcompose-add smult-add-right)

lemma pcompose-mult: pcompose (p * q) r = pcompose p T * pcompose q T

for p ¢ r :: 'a::comm-semiring-0 poly

by (induct p arbitrary: q) (simp-all add: pcompose-add pcompose-smult pcom-
pose-pCons algebra-simps)

lemma pcompose-assoc: pcompose p (pcompose q r) = pcompose (pcompose p q) T
for p q r :: 'a::comm-semiring-0 poly
by (induct p arbitrary: q) (simp-all add: pcompose-pCons pcompose-add pcom-
pose-mult)

lemma pcompose-idR[simp|: pcompose p [: 0, 1 :] = p
for p :: 'a::comm-semiring-1 poly
by (induct p) (simp-all add: pcompose-pCons)

lemma pcompose-sum: pcompose (sum f A) p = sum (Xi. pcompose (f i) p) A
by (induct A rule: infinite-finite-induct) (simp-all add: pcompose-1 pcompose-add)

lemma pcompose-prod: pcompose (prod f A) p = prod (\i. pcompose (f i) p) A
by (induct A rule: infinite-finite-induct) (simp-all add: pcompose-1 pcompose-mult)

lemma pcompose-const [simp]: pcompose [:a:] ¢ = [:a:]
by (subst pcompose-pCons) simp

lemma pcompose-0": pcompose p 0 = [:coeff p 0]
by (induct p) (auto simp add: pcompose-pCons)

lemma pcompose-coeff-0:
coeff (pcompose p q) 0 = poly p (coeff q 0)
by (metis poly-0-coeff-0 poly-pcompose)
lemma pcompose-pCons-0: pcompose p [:a:] = [:poly p a:]

by (metis (no-types, lifting) coeff-pCons-0 pcompose-0' pcompose-assoc poly-0-coeff-0
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poly-pcompose)

lemma degree-pcompose: degree (pcompose p q) = degree p * degree q
for p q :: 'a::{comm-semiring-0,semiring-no-zero-divisors} poly
proof (induct p)
case (
then show ?case by auto
next
case (pCons a p)
consider degree (q * pcompose p q) = 0 | degree (q * pcompose p q) > 0
by blast
then show Zcase
proof cases
case prems: 1
show ?thesis
proof (cases p = 0)
case True
then show ?thesis by auto
next
case Fulse
from prems have degree ¢ = 0 V pcompose p q = 0
by (auto simp add: degree-mult-eq-0)
moreover have Fulse if pcompose p ¢ = 0 degree q # 0

proof —
from pCons.hyps(2) that have degree p = 0
by auto
then obtain a! where p = [:al]

by (metis degree-pCons-eq-if old.nat.distinct(2) pCons-cases)
with «(pcompose p ¢ = 0> <p # 0> show Fulse
by auto
qed
ultimately have degree (pCons a p) * degree ¢ = 0
by auto
moreover have degree (pcompose (pCons a p) q) = 0
proof —
from prems have 0 = maz (degree [:a:]) (degree (q x pcompose p q))
by simp
also have ... > degree ([:a:] + q * pcompose p q)
by (rule degree-add-le-maz)
finally show ?thesis
by (auto simp add: pcompose-pCons)
qed
ultimately show ¢thesis by simp
qed
next
case prems: 2
then have p £ 0 ¢ # 0 pcompose p q # 0
by auto
from prems degree-add-eg-right [of [:a:]]
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have degree (pcompose (pCons a p) q) = degree (q * pcompose p q)
by (auto simp: pcompose-pCons)
with pCons.hyps(2) degree-mult-eq[OF <q#£0» <pcompose p q#0>] show Zthesis
by auto
qed
qed

lemma pcompose-eq-0:
fixes p q :: 'a:{comm-semiring-0,semiring-no-zero-divisors} poly
assumes pcompose p ¢ = 0 degree q¢ > 0

shows p = 0
proof —
from assms degree-pcompose [of p q] have degree p = 0
by auto
then obtain a where p = [:a:]

by (metis degree-pCons-eq-if gr0-conv-Suc neq0-conv pCons-cases)
with assms(1) have a = 0
by auto
with «p = [:a:]> show ?Zthesis
by simp
qed

lemma pcompose-eq-0-iff:
fixes p q :: 'a:{comm-semiring-0,semiring-no-zero-divisors} poly
assumes degree ¢ > 0
shows pcompose p ¢ = 0 <— p =0
using pcompose-eq-0[OF - assms] by auto

lemma coeff-pcompose-linear:

coeff (pcompose p [:0, a :: 'a :: comm-semiring-1:]) i = a ~ i * coeff p i

by (induction p arbitrary: i) (auto simp: pcompose-pCons coeff-pCons mult-ac
split: nat.splits)

lemma lead-coeff-comp:
fixes p q :: 'a:{comm-semiring-1,semiring-no-zero-divisors} poly
assumes degree ¢ > 0
shows lead-coeff (pcompose p q) = lead-coeff p * lead-coeff q ~ (degree p)
proof (induct p)
case ()
then show ?case by auto
next
case (pCons a p)
consider degree (q * pcompose p q) = 0 | degree (q * pcompose p q) > 0
by blast
then show Zcase
proof cases
case prems: 1
then have pcompose p ¢ = 0
by (metis assms degree-0 degree-mult-eq-0 neq0-conv)

146



with pcompose-eq-0[OF - <degree ¢ > 0>] have p = 0
by simp

then show ?thesis
by auto

next

case prems: 2

then have degree [:a:] < degree (q x pcompose p q)
by simp

then have lead-coeff ([:a:] + q x p o, q) = lead-coeff (q = p o, q)
by (rule lead-coeff-add-le)

then have lead-coeff (pcompose (pCons a p) q) = lead-coeff (q * pcompose p

q)
by (simp add: pcompose-pCons)
also have ... = lead-coeff q * (lead-coeff p * lead-coeff q¢ ~ degree p)
using pCons.hyps(2) lead-coeff-mult[of q pcompose p q] by simp
also have ... = lead-coeff p x lead-coeff ¢ ~ (degree p + 1)
by (auto simp: mult-ac)
finally show ?thesis by auto
qed
qed

lemma coeff-pcompose-monom-linear [simp):
fixes p :: 'a :: comm-ring-1 poly
shows coeff (pcompose p (monom ¢ (Suc 0))) k= c "k x coeff p k
by (induction p arbitrary: k)
(auto simp: coeff-pCons coeff-monom-mult pcompose-pCons split: nat.splits)

lemma of-nat-mult-conv-smult: of-nat n x P = smult (of-nat n) P
by (simp add: monom-0 of-nat-monom)

lemma numeral-mult-conv-smult: numeral n x P = smult (numeral n) P
by (simp add: numeral-poly)

lemma sum-order-le-degree:
assumes p # 0
shows (>_z | poly p x = 0. order x p) < degree p
using assms
proof (induction degree p arbitrary: p rule: less-induct)
case (less p)
show ?case
proof (cases Jx. poly p x = 0)
case Fulse
thus ?thesis
by auto
next
case True
then obtain z where z: poly p v = 0
by auto
have [:—z, 1:] ~order x p dvd p
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by (simp add: order-1)
then obtain ¢ where ¢: p = [i—x, 1:] ~order z p * ¢
by (elim dvdFE)
have [simp]: ¢ # 0
using ¢ less.prems by auto
have order z p = order x p + order x q
by (subst q, subst order-mult) (auto simp: order-power-n-n)
hence order z ¢ = 0
by auto
hence [simp]: poly ¢ x # 0
by (simp add: order-root)
have deg-p: degree p = degree q + order z p
by (subst q, subst degree-mult-eq) (auto simp: degree-power-eq)
moreover have order zp > 0
using z less.prems by (simp add: order-root)
ultimately have degree ¢ < degree p
by linarith
hence (3" z | poly g x = 0. order z q) < degree q
by (intro less.hyps) auto
hence order x p + (3 z | poly ¢ x = 0. order x q) < degree p
by (simp add: deg-p)
also have {y. poly ¢y = 0} = {y. poly p y = 0} — {z}
by (subst q) auto
also have (> y € {y. poly p y = 0} — {z}. order y q) =
(v €{y. polypy =0} — {z}. order y p)
by (intro sum.cong refl, subst q)
(auto simp: order-mult order-power-n-n intro!: order-0I)
also have order zp + ... = (3 y € insert x ({y. poly p y = 0} — {z}). order
yp)
using «p # 0> by (subst sum.insert) (auto simp: poly-roots-finite)
also have insert  ({y. poly p y = 0} — {z}) = {y. polyp y = 0}
using <poly p © = 0> by auto
finally show ?thesis .
qed
qed

4.23 Closure properties of coefficients

context
fixes R :: 'a :: comm-semiring-1 set
assumes R-0: 0 € R
assumes R-plus: A\ty. r € R—y€ R=— 2+ y <R
assumes R-mult: Aoy t€e R— ye R— z*xy € R
begin

lemma coeff-mult-semiring-closed:
assumes Ai. coeff pi € R \i. coeff g¢ € R
shows coeff (px q) ¢ € R

proof —
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have R-sum: sum f A€ Rif A\x. 2 € A= fz € Rfor Aand f :: nat = 'a
using that by (induction A rule: infinite-finite-induct) (auto intro: R-0 R-plus)
show ?thesis
unfolding coeff-mult by (auto intro!: R-sum R-mult assms)
qed

lemma coeff-pcompose-semiring-closed:
assumes Ai. coeff pi € R \i. coeff gi € R
shows  coeff (pcompose p q) i € R
using assms(1)
proof (induction p arbitrary: i)
case (pCons a p i)
have [simp]: a € R
using pCons.prems|of 0] by auto
have coeff p i € R for i
using pCons.prems|of Suc i] by auto
hence coeff (p o, ¢q) i € R for ¢
using pCons.prems by (intro pCons.IH)
thus ?Zcase
by (auto simp: pcompose-pCons coeff-pCons split: nat.splits
introl: assms R-plus coeff-mult-semiring-closed)
qed auto

end

4.24 Shifting polynomials

definition poly-shift :: nat = 'a::zero poly = 'a poly
where poly-shift n p = Abs-poly (\i. coeff p (i + n))

lemma nth-default-drop: nth-default z (drop n xs) m = nth-default z zs (m + n)
by (auto simp add: nth-default-def add-ac)

lemma nth-default-take: nth-defoult z (take n xs) m = (if m < n then nth-default
x xs m else 1)
by (auto simp add: nth-default-def add-ac)

lemma coeff-poly-shift: coeff (poly-shift n p) i = coeff p (i + n)
proof —
from MOST-coeff-eq-0]of p] obtain m where Vk>m. coeff p k = 0
by (auto simp: MOST-nat)
then have Yk>m. coeff p (k + n) = 0
by auto
then have V k. coeff p (k + n) = 0
by (auto simp: MOST-nat)
then show ?thesis
by (simp add: poly-shift-def poly.Abs-poly-inverse)
qed
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lemma poly-shift-id [simp]: poly-shift 0 = (A\z. x)
by (simp add: poly-eq-iff fun-eq-iff coeff-poly-shift)

lemma poly-shift-0 [simpl: poly-shift n 0 = 0
by (simp add: poly-eq-iff coeff-poly-shift)

lemma poly-shift-1: poly-shift n 1 = (if n = 0 then 1 else 0)
by (simp add: poly-eq-iff coeff-poly-shift)

lemma poly-shift-monom: poly-shift n (monom ¢ m) = (if m > n then monom c
(m — n) else 0)
by (auto simp add: poly-eq-iff coeff-poly-shift)

lemma coeffs-shift-poly [code abstract]:

coeffs (poly-shift n p) = drop n (coeffs p)
proof (cases p = 0)

case True

then show ?thesis by simp
next

case Fulse

then show ?thesis

by (intro coeffs-eql)
(simp-all add: coeff-poly-shift nth-default-drop nth-default-coeffs-eq)

qed

4.25 Truncating polynomials

definition poly-cutoff
where poly-cutoff n p = Abs-poly (Ak. if k < n then coeff p k else 0)

lemma coeff-poly-cutoff: coeff (poly-cutoff n p) k = (if k < n then coeff p k else
0)

unfolding poly-cutoff-def

by (subst poly.Abs-poly-inverse) (auto simp: MOST-nat intro: exI[of - n])

lemma poly-cutoff-0 [simp]: poly-cutoff n 0 = 0
by (simp add: poly-eq-iff coeff-poly-cutoff)

lemma poly-cutoff-1 [simpl: poly-cutoff n 1 = (if n = 0 then 0 else 1)
by (simp add: poly-eq-iff coeff-poly-cutoff)

lemma coeffs-poly-cutoff [code abstract]:
coeffs (poly-cutoff n p) = strip-while ((=) 0) (take n (coeffs p))
proof (cases strip-while ((=) 0) (take n (coeffs p)) = [])
case True
then have coeff (poly-cutoff n p) k = 0 for k
unfolding coeff-poly-cutoff
by (auto simp: nth-default-coeffs-eq [symmetric] nth-default-def set-conv-nth)
then have poly-cutoff n p = 0
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by (simp add: poly-eq-iff)
then show ?thesis
by (subst True) simp-all
next
case Fulse
have no-trailing ((=) 0) (strip-while ((=) 0) (take n (coeffs p)))
by simp
with False have last (strip-while ((=) 0) (take n (coeffs p))) # 0
unfolding no-trailing-unfold by auto
then show ?thesis
by (intro coeffs-eql)
(simp-all add: coeff-poly-cutoff nth-default-take nth-default-coeffs-eq)
qed

4.26 Reflecting polynomials

definition reflect-poly :: 'a::zero poly = 'a poly
where reflect-poly p = Poly (rev (coeffs p))

lemma coeffs-reflect-poly [code abstract]:

coeffs (reflect-poly p) = rev (dropWhile ((=) 0) (coeffs p))
by (simp add: reflect-poly-def)

lemma reflect-poly-0 [simp]: reflect-poly 0 = 0
by (simp add: reflect-poly-def)

lemma reflect-poly-1 [simp): reflect-poly 1 = 1
by (simp add: reflect-poly-def one-pCons)

lemma coeff-refiect-poly:
coeff (reflect-poly p) n = (if n > degree p then 0 else coeff p (degree p — n))
by (cases p = 0)
(auto simp add: reflect-poly-def nth-default-def
rev-nth degree-eq-length-coeffs coeffs-nth not-less
dest: le-imp-less-Suc)

lemma coeff-0-reflect-poly-0-iff [simp]: coeff (reflect-poly p) 0 = 0 +— p = 0
by (simp add: coeff-reflect-poly)

lemma reflect-poly-at-0-eq-0-iff [simp]: poly (reflect-poly p) 0 = 0 +— p = 0
by (simp add: coeff-reflect-poly poly-0-coeff-0)

lemma reflect-poly-pCons’:
p # 0 = reflect-poly (pCons ¢ p) = reflect-poly p + monom ¢ (Suc (degree p))
by (intro poly-eql)
(auto simp: coeff-reflect-poly coeff-pCons not-less Suc-diff-le split: nat.split)

lemma reflect-poly-const [simp): reflect-poly [:a:] = [:a:]
by (cases a = 0) (simp-all add: reflect-poly-def)
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lemma poly-reflect-poly-nz:
z # 0 = poly (reflect-poly p) x = x ~ degree p * poly p (inverse x)
for z :: 'a::field
by (induct rule: pCons-induct) (simp-all add: field-simps reflect-poly-pCons’ poly-monom)

lemma coeff-0-reflect-poly [simp]: coeff (reflect-poly p) 0 = lead-coeff p
by (simp add: coeff-reflect-poly)

lemma poly-reflect-poly-0 [simp]: poly (reflect-poly p) 0 = lead-coeff p
by (simp add: poly-0-coeff-0)

lemma reflect-poly-reflect-poly [simp]: coeff p 0 # 0 = reflect-poly (reflect-poly
p)=7p
by (cases p rule: pCons-cases) (simp add: reflect-poly-def )

lemma degree-reflect-poly-le: degree (reflect-poly p) < degree p
by (simp add: degree-eq-length-coeffs coeffs-reflect-poly length-drop While-le diff-le-mono)

lemma reflect-poly-pCons: a # 0 = reflect-poly (pCons a p) = Poly (rev (a #

coeffs p))
by (subst coeffs-eq-iff) (simp add: coeffs-reflect-poly)

lemma degree-reflect-poly-eq [simp]: coeff p 0 # 0 = degree (reflect-poly p) =
degree p
by (cases p rule: pCons-cases) (simp add: reflect-poly-pCons degree-eq-length-coeffs)

lemma reflect-poly-eq-0-iff [simp]: reflect-poly p = 0 «— p = 0
using coeff-0-reflect-poly-0-iff by fastforce

lemma reflect-poly-mult: reflect-poly (p * q) = reflect-poly p * reflect-poly q
for p ¢ :: 'a::{comm-semiring-0,semiring-no-zero-divisors} poly
proof (casesp =0V ¢ = 0)
case Fulse
then have [simp]: p # 0 ¢ # 0 by auto
show ?thesis
proof (rule poly-eql)
show coeff (reflect-poly (p * q)) i = coeff (reflect-poly p * reflect-poly q) i for i
proof (cases i < degree (p * q))
case True
define A where 4 = {..i} N {i — degree q..degree p}
define B where B = {..degree p} N {degree p — i..degree (p*xq) — i}
let f = \j. degree p — j

from True have coeff (reflect-poly (p * q)) i = coeff (p * q) (degree (p * q)
— )
by (simp add: coeff-reflect-poly)
also have ... = (> j<degree (p * q) — i. coeff p j = coeff q (degree (p * q)
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—i—1j)
by (simp add: coeff-mult)
also have ... = (> j€B. coeff p j * coeff q (degree (p * q) — i — j))
by (intro sum.mono-neutral-right) (auto simp: B-def degree-mult-eq not-le
coeff-eq-0)
also from True have ... = (> jeA. coeff p (degree p — j) x coeff q (degree
q— (i —j)))
by (intro sum.reindez-bij-witness[of - ?f 2f])
(auto simp: A-def B-def degree-mult-eq add-ac)
also have ... =
(<.
if j € {i — degree q..degree p}
then coeff p (degree p — j) * coeff q (degree ¢ — (i — 7))

else 0)
by (subst sum.inter-restrict [symmetric]) (simp-all add: A-def)
also have ... = coeff (reflect-poly p x reflect-poly q) i

by (fastforce simp: coeff-mult coeff-reflect-poly intro!: sum.cong)
finally show ?thesis .
qged (auto simp: coeff-mult coeff-reflect-poly coeff-eq-0 degree-mult-eq intro!:
sum.neutral)
qged
qed auto

lemma reflect-poly-smult: reflect-poly (smult ¢ p) = smult ¢ (reflect-poly p)
for p :: ‘a::{comm-semiring-0,semiring-no-zero-divisors} poly
using reflect-poly-mult[of [:c:] p] by simp

lemma reflect-poly-power: reflect-poly (p ~ n) = reflect-poly p ~n
for p :: ‘a::{comm-semiring-1,semiring-no-zero-divisors} poly
by (induct n) (simp-all add: reflect-poly-mult)

lemma reflect-poly-prod: reflect-poly (prod f A) = prod (Ax. reflect-poly (f z)) A
for f :: - = -::{comm-semiring-0,semiring-no-zero-divisors} poly
by (induct A rule: infinite-finite-induct) (simp-all add: reflect-poly-mult)

lemma reflect-poly-prod-list: reflect-poly (prod-list xs) = prod-list (map reflect-poly
zs)

for xs :: -:{comm-semiring-0,semiring-no-zero-divisors} poly list

by (induct zs) (simp-all add: reflect-poly-mult)

lemma refilect-poly-Poly-nz:
no-trailing (HOL.eq 0) s = reflect-poly (Poly xs) = Poly (rev xs)
by (simp add: reflect-poly-def)

lemmas reflect-poly-simps =

reflect-poly-0 reflect-poly-1 refiect-poly-const reflect-poly-smult reflect-poly-mult
reflect-poly-power reflect-poly-prod reflect-poly-prod-list
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4.27 Derivatives

function pderiv :: ('a :: {comm-semiring-1,semiring-no-zero-divisors}) poly = 'a
poly

where pderiv (pCons a p) = (if p = 0 then 0 else p + pCons 0 (pderiv p))

by (auto intro: pCons-cases)

termination pderiv
by (relation measure degree) simp-all

declare pderiv.simps[simp del]

lemma pderiv-0 [simp]: pderiv 0 = 0
using pderiv.simps [of 0 0] by simp

lemma pderiv-pCons: pderiv (pCons a p) = p + pCons 0 (pderiv p)
by (simp add: pderiv.simps)

lemma pderiv-1 [simp]: pderiv 1 = 0
by (simp add: one-pCons pderiv-pCons)

lemma pderiv-of-nat [simp]: pderiv (of-nat n) = 0
and pderiv-numeral [simp]: pderiv (numeral m) = 0
by (simp-all add: of-nat-poly numeral-poly pderiv-pCons)

lemma coeff-pderiv: coeff (pderiv p) n = of-nat (Suc n) * coeff p (Suc n)
by (induct p arbitrary: n)
(auto simp add: pderiv-pCons coeff-pCons algebra-simps split: nat.split)

fun pderiv-coeffs-code :: 'a::{ comm-semiring-1,semiring-no-zero-divisors} = 'a list
= a list
where
pderiv-coeffs-code f (x # xs) = cCons (f * x) (pderiv-coeffs-code (f+1) xs)
| pderiv-coeffs-code f [| = []

definition pderiv-coeffs :: 'a::{ comm-semiring-1,semiring-no-zero-divisors} list =
‘a list
where pderiv-coeffs xs = pderiv-coeffs-code 1 (tl xs)

lemma pderiv-coeffs-code:

nth-default 0 (pderiv-coeffs-code f xs) n = (f + of-nat n) * nth-default 0 xs n
proof (induct xs arbitrary: f n)

case Nil

then show ?case by simp
next

case (Cons z xs)

show ?Zcase

proof (cases n)

case (
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then show ?thesis
by (cases pderiv-coeffs-code (f + 1) xs = [| A f * x = 0) (auto simp: cCons-def)
next
case n: (Suc m)
show ?thesis
proof (cases pderiv-coeffs-code (f + 1) zs =[] AN f * z = 0)
case Fulse
then have nth-default 0 (pderiv-coeffs-code f (z # xs)) n =
nth-default 0 (pderiv-coeffs-code (f + 1) xs) m
by (auto simp: cCons-def n)
also have ... = (f + of-nat n) * nth-default 0 xs m
by (simp add: Cons n add-ac)
finally show ?thesis
by (simp add: n)
next
case True
have empty: pderiv-coeffs-code g zs = [| = g + of-nat m = 0 V nth-default
0xsm =0 for g
proof (induct zs arbitrary: g m)
case Nil
then show ?case by simp
next
case (Cons z zs)
from Cons(2) have empty: pderiv-coeffs-code (g + 1) zs =[] and ¢: g =
OvVz=20
by (auto simp: cCons-def split: if-splits)
note IH = Cons(1)[OF empty]
from IH[of m| IH[of m — 1] g show ?case
by (cases m) (auto simp: field-simps)
qed
from True have nth-default 0 (pderiv-coeffs-code f (¢ # xs)) n = 0
by (auto simp: cCons-def n)
moreover from True have (f + of-nat n) x nth-default 0 (x # zs) n = 0
by (simp add: n) (use empty[of f+1] in <auto simp: field-simps»)
ultimately show ?thesis by simp
qed
qged
qged

lemma coeffs-pderiv-code [code abstract]: coeffs (pderiv p) = pderiv-coeffs (coeffs
p)

unfolding pderiv-coeffs-def
proof (rule coeffs-eql, unfold pderiv-coeffs-code coeff-pderiv, goal-cases)

case (1 n)
have id: coeff p (Suc n) = nth-default 0 (map (Mi. coeff p (Suc 7)) [0..<degree
pl) n

by (cases n < degree p) (auto simp: nth-default-def coeff-eq-0)
show ?Zcase
unfolding coeffs-def map-upt-Suc by (auto simp: id)
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next
case 2
obtain n :: ‘a and zs where defs: tl (coeffs p) = xs1 = n
by simp
from 2 show ?Zcase
unfolding defs by (induct xs arbitrary: n) (auto simp: cCons-def)
qed

lemma pderiv-eq-0-iff: pderiv p = 0 <— degree p = 0

for p :: ‘a::{comm-semiring-1,semiring-no-zero-divisors,semiring-char-0} poly
proof (cases degree p)

case ()

then show ?thesis

by (metis degree-eq-zeroE pderiv.simps)

next

case (Suc n)

then show ?thesis

using coeff-0 coeff-pderiv degree-0 leading-coeff-0-iff mult-eq-0-iff nat.distinct(1)
of-nat-eq-0-iff

by (metis coeff-0 coeff-pderiv degree-0 leading-coeff-0-iff mult-eq-0-iff nat.distinct(1)
of-nat-eq-0-iff)
qged

lemma degree-pderiv: degree (pderiv p) = degree p — 1
for p :: ‘a::{comm-semiring-1,semiring-no-zero-divisors,semiring-char-0} poly
proof —
have degree p — 1 < degree (pderiv p)
proof (cases degree p)
case (Suc n)
then show ?thesis
by (metis coeff-pderiv degree-0 diff-Suc-1 le-degree leading-coeff-0-iff mult-eq-0-iff
nat.distinct(1) of-nat-eq-0-iff)
qged auto
moreover have Vi>degree p — 1. coeff (pderiv p) i = 0
by (simp add: coeff-eq-0 coeff-pderiv)
ultimately show “thesis
using order-antisym [OF degree-le] by blast
qged

lemma not-dvd-pderiv:
fixes p :: ‘a::{comm-semiring-1,semiring-no-zero-divisors,semiring-char-0} poly
assumes degree p # 0
shows — p dvd pderiv p
proof
assume dvd: p dvd pderiv p
then obtain ¢ where p: pderivp = p x ¢
unfolding dvd-def by auto
from duvd have le: degree p < degree (pderiv p)
by (simp add: assms dvd-imp-degree-le pderiv-eq-0-iff)

156



from assms and this [unfolded degree-pderiv]
show Fulse by auto
qed

lemma dvd-pderiv-iff [simp]: p dvd pderiv p «— degree p = 0
for p :: 'a::{comm-semiring-1,semiring-no-zero-divisors,semiring-char-0} poly
using not-dvd-pderiv|of p] by (auto simp: pderiv-eq-0-iff [symmetric])

lemma pderiv-singleton [simp): pderiv [:a:] = 0
by (simp add: pderiv-pCons)

lemma pderiv-add: pderiv (p + q) = pderiv p + pderiv q

by (rule poly-eql) (simp add: coeff-pderiv algebra-simps)
lemma pderiv-minus: pderiv (— p :: 'a :: idom poly) = — pderiv p
by (rule poly-eql) (simp add: coeff-pderiv algebra-simps)

lemma pderiv-diff: pderiv ((p :: - :: idom poly) — q) = pderiv p — pderiv q
by (rule poly-eql) (simp add: coeff-pderiv algebra-simps)

lemma pderiv-smult: pderiv (smult a p) = smult a (pderiv p)
by (rule poly-eql) (simp add: coeff-pderiv algebra-simps)

lemma pderiv-mult: pderiv (p *x q) = p * pderiv ¢ + q * pderiv p

by (induct p) (auto simp: pderiv-add pderiv-smult pderiv-pCons algebra-simps)
lemma pderiv-power-Suc: pderiv (p ~ Suc n) = smult (of-nat (Suc n)) (p ~
pderiv p
proof (induction n)

case (Suc n)

then show ?case

by (simp add: pderiv-mult smult-add-left algebra-simps)

qed auto

n) *

lemma pderiv-power:
pderiv (p ~n) = smult (of-nat n) (p ~(n — 1) x pderiv p)
by (cases n) (simp-all add: pderiv-power-Suc del: power-Suc)

lemma pderiv-monom:
pderiv (monom ¢ n) = monom (of-nat n x ¢) (n — 1)
by (cases n)
(simp-all add: monom-altdef pderiv-power-Suc pderiv-smult pderiv-p Cons mult-ac
del: power-Suc)

lemma pderiv-pcompose: pderiv (pcompose p q) = pcompose (pderiv p) q * pderiv
q
by (induction p rule: pCons-induct)
(auto simp: pcompose-pCons pderiv-add pderiv-mult pderiv-pCons pcompose-add
algebra-simps)
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lemma pderiv-prod: pderiv (prod f (as)) = (D a€as. prod f (as — {a}) * pderiv
(f )
proof (induct as rule: infinite-finite-induct)
case (insert a as)
then have id: prod f (insert a as) = f a x prod f as
Ng. sum g (insert a as) = g a + sum g as
insert a as — {a} = as
by auto
have prod f (insert a as — {b}) = fa * prod f (as — {b}) if b € as for b
proof —
from <a ¢ as) that have x: insert a as — {b} = insert a (as — {b})
by auto
show ?thesis
unfolding * by (subst prod.insert) (use insert in auto)
qged
then show ?case
unfolding id pderiv-mult insert(8) sum-distrib-left
by (auto simp add: ac-simps introl: sum.cong)
qed auto

lemma coeff-higher-pderiv:
coeff ((pderiv =" m) f) n = pochhammer (of-nat (Suc n)) m x coeff f (n + m)
by (induction m arbitrary: n) (simp-all add: coeff-pderiv pochhammer-rec alge-
bra-simps)

lemma higher-pderiv-0 [simp]: (pderiv =" n) 0 = 0
by (induction n) simp-all

lemma higher-pderiv-add: (pderiv " n) (p + q) = (pderiv =" n) p + (pderiv =
n) q

by (induction n arbitrary: p q) (simp-all del: funpow.simps add: funpow-Suc-right
pderiv-add)

lemma higher-pderiv-smult: (pderiv =" n) (smult ¢ p) = smult ¢ ((pderiv ™" n) p)
by (induction n arbitrary: p) (simp-all del: funpow.simps add: funpow-Suc-right
pderiv-smult)

lemma higher-pderiv-monom:
m < n+ 1 = (pderiv =~ m) (monom c n) = monom (pochhammer (int n —
intm+ 1) mxc) (n— m)
proof (induction m arbitrary: ¢ n)
case (Suc m)
thus ?case
by (cases n)
(simp-all del: funpow.simps add: funpow-Suc-right pderiv-monom pochham-
mer-rec’ Suc. TH)
qed simp-all
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lemma higher-pderiv-monom-eq-zero:

m >n+ 1 = (pderiv =" m) (monom ¢ n) = 0
proof (induction m arbitrary: ¢ n)

case (Suc m)

thus Zcase

by (cases n)
(simp-all del: funpow.simps add: funpow-Suc-right pderiv-monom pochham-

mer-rec’ Suc.IH)
qed simp-all

lemma higher-pderiv-sum: (pderiv = n) (sum f A) = (O z€A. (pderiv ™" n) (f

z))

by (induction A rule: infinite-finite-induct) (simp-all add: higher-pderiv-add)

lemma higher-pderiv-sum-mset: (pderiv = n) (sum-mset A) = (> pe#A. (pderiv

T n)p)
by (induction A) (simp-all add: higher-pderiv-add)

lemma higher-pderiv-sum-list: (pderiv =" n) (sum-list ps) = (> p+ps. (pderiv ~

n) p)
by (induction ps) (simp-all add: higher-pderiv-add)

lemma degree-higher-pderiv: Polynomial.degree ((pderiv ~ " n) p) = Polynomial.degree
p—n

for p :: ‘a::{comm-semiring-1,semiring-no-zero-divisors,semiring-char-0} poly

by (induction n) (auto simp: degree-pderiv)

lemma DERIV-pow2: DERIV (Az. x ~ Suc n) z :> real (Suc n) * (z ~n)
by (rule DERIV-cong, rule DERIV-pow) simp
declare DERIV-pow2 [simp] DERIV-pow [simp]

lemma DERIV-add-const: DERIV fx :> D = DERIV (Az. a + fz :: 'a::real-normed-field)
x:>D
by (rule DERIV-cong, rule DERIV-add) auto

lemma poly-DERIV [simp]: DERIV (Ax. poly p ) x :> poly (pderiv p) x
by (induct p) (auto introl: derivative-eg-intros simp add: pderiv-pCons)

lemma poly-isCont[simp]:
fixes z::'a::real-normed-field
shows isCont (Az. poly p x)
by (rule poly-DERIV [THEN DERIV-isCont])

lemma tendsto-poly [tendsto-intros]: (f —— a) FF = ((Az. poly p (f z)) ——
poly p a) F

for f :: - = 'a:real-normed-field

by (rule isCont-tendsto-compose [OF poly-isCont])
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lemma continuous-within-poly: continuous (at z within s) (poly p)
for z :: 'a::{real-normed-field}
by (simp add: continuous-within tendsto-poly)

lemma continuous-poly [continuous-intros|: continuous F f = continuous F (Az.
poly p (f x))

for f :: - = 'a:real-normed-field

unfolding continuous-def by (rule tendsto-poly)

lemma continuous-on-poly [continuous-intros|:

fixes p :: ‘a :: {real-normed-field} poly

assumes continuous-on A f

shows continuous-on A (Az. poly p (f x))

by (metis DERIV-continuous-on assms continuous-on-compose2 poly-DERIV sub-
set-UNIV)

Consequences of the derivative theorem above.

lemma poly-differentiable[simp|: (Az. poly p x) differentiable (at x)
for x :: real
by (simp add: real-differentiable-def) (blast intro: poly-DERIV)

lemma poly-IVT-pos: a < b = polypa < 0 = 0 < polyp b= Jz. a < x A
< bApolypzxr=20

for a b :: real

using IVT [of poly p a 0 b] by (auto simp add: order-le-less)

lemma poly-IVT-neg: a < b = 0 < polypa = polyp b < 0 = Jz. a < x A
r<bApolypx=20

for a b :: real

using poly-IVT-pos [where p = — p] by simp

lemma poly-IVT: a < b= polypa x polyp b < 0 = Jx>a.x < b A polypz
=0

for p :: real poly

by (metis less-not-sym mult-less-0-iff poly-IVT-neg poly-IVT-pos)

lemma poly-MVT: a < b= Fz.a<z Az <bApolypb— polypa=(b-—
a) * poly (pderiv p) z

for a b :: real

by (simp add: MVT2)

lemma poly-MVT"

fixes a b :: real

assumes {min a b..maz a b} C A

shows Jz€A. poly p b — poly p a = (b — a) x poly (pderiv p)
proof (cases a b rule: linorder-cases)

case less

from poly-MVT[OF less, of p] obtain z

where a < x 2z < bpolyp b — poly p a = (b — a) x poly (pderiv p) x
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by auto
then show ?thesis by (intro bexlI[of - z]) (auto introl: subsetD[OF assms])
next
case greater
from poly-MVT|[OF greater, of p] obtain z
where b < 2z < a poly p a — poly p b = (a — b) * poly (pderiv p) = by auto
then show %thesis by (intro bexl[of - x]) (auto simp: algebra-simps introl: sub-
setD[OF assms))
qed (use assms in auto)

lemma poly-pinfty-gt-lc:
fixes p :: real poly
assumes lead-coeff p > 0
shows dn. V x > n. poly p x > lead-coeff p
using assms
proof (induct p)
case (
then show ?case by auto
next
case (pCons a p)
from this(1) consider a # 0 p = 0 | p # 0 by auto
then show ?case
proof cases
case I
then show %thesis by auto
next
case 2
with pCons obtain n1 where gte-lcoeff: Vz>nl. lead-coeff p < poly p x
by auto
from pCons(3) «p # 0> have gt-0: lead-coeff p > 0 by auto
define n where n = maz nl (1 + |a| / lead-coeff p)
have lead-coeff (pCons a p) < poly (pCons a p) x if n < x for z
proof —
from gte-lcoeff that have lead-coeff p < poly p x
by (auto simp: n-def)
with ¢t-0 have |a| / lead-coeff p > |a| / poly p x and poly p x > 0
by (auto intro: frac-le)
with «n < x[unfolded n-def] have © > 1 + |a|] / poly p =
by auto
with <lead-coeff p < poly p x> <poly p x > 0> <p # 0>
show lead-coeff (pCons a p) < poly (pCons a p) x
by (auto simp: field-simps)
qed
then show ¢thesis by blast
qed
qed

lemma dvd-monic:
fixes p ¢:: ‘a :: idom poly
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assumes monic:lead-coeff p=1 and p dvd (smult ¢ q) and c#£0
shows p dvd q using assms
proof (cases g=0 V degree p=0)
case True
thus ?thesis using assms
by (auto elim!: degree-eq-zeroE simp add: const-poly-dvd-iff)
next
case Fulse
hence ¢#0 and degree p#0 by auto
obtain k where k:smult ¢ ¢ = pxk using assms dvd-def by metis
hence k#£0 by (metis False assms(3) mult-zero-right smult-eq-0-iff)
hence deg-eq:degree g=degree p + degree k
by (metis False assms(3) degree-0 degree-mult-eq degree-smult-eq k)
have c-dvd:V n<degree k. ¢ dvd coeff k (degree k — n)
proof (rule,rule)
fix n assume n < degree k
thus ¢ dvd coeff k (degree k — n)
proof (induct n rule:nat-less-induct)
case (1 n)
define T where T=(\i. coeff p i * coeff k (degree p+degree k — n — 7))
have ¢ x coeff q (degree ¢ — n) = (> i<degree ¢ — n. coeff p i % coeff k
(degree ¢ — n — 1))
using coeff-multlof p k degree ¢ — n] k coeff-smult[of ¢ q degree ¢ —n| by
auto
also have ...=(>_ i<degree p+degree k — n. T 7)
using deg-eq unfolding T-def by auto
also have ...=(>"i€{0..<degree p}. T 7) + sum T {(degree p)}+
sum T {degree p + 1..degree p + degree k — n}
proof —
define C where C={{0..<degree p}, {degree p},{degree p+1..degree
p+degree k—n}}
have V AeC. finite A unfolding C-def by auto
moreover have VAcC.VBeC. A# B — AN B={}
unfolding C-def by auto
ultimately have sum T (U C) = sum (sum T) C
using sum.Union-disjoint by auto
moreover have |J C={..degree p + degree k — n}
using «n < degree k> unfolding C-def by auto
moreover have sum (sum T) C= sum T {0..<degree p} + sum T {(degree
P} +
sum T {degree p + 1..degree p + degree k — n}
proof —
have {0..<degree p}#{degree p}
by (metis atLeastOLessThan insertll lessThan-iff less-imp-not-eq)
moreover have {degree p}#{degree p + 1..degree p + degree k — n}
by (metis add.commute add-diff-cancel-right’ atLeastAtMost-singleton-iff
diff-self-eq-0 eq-imp-le not-one-le-zero)
moreover have {0..<degree p}#{degree p + 1..degree p + degree k — n}
using «degree k>n»> <degree p#£0> by fastforce
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ultimately show ?thesis unfolding C-def by auto
qged
ultimately show ?thesis by auto
qed
also have ...=(>"i€{0..<degree p}. T ©) + coeff k (degree k — n)
proof —
have Vxze{degree p + 1..degree p + degree k — n}. T z=0
using coeff-eq-0|of p] unfolding T-def by simp
hence sum T {degree p + 1..degree p + degree k — n}=0 by auto
moreover have T (degree p)=coeff k (degree k — n)
using monic by (simp add: T-def)
ultimately show ?thesis by auto
qed
finally have c-coeff: ¢ * coeff q (degree ¢ — n) = sum T {0..<degree p}
+ coeff k (degree k — n) .
moreover have n#0=-c dvd sum T {0..<degree p}
proof (rule dvd-sum)
fix 7 assume i:¢ € {0..<degree p} and n#0
hence (n+i—degree p)<degree k using <n < degree k> by auto
moreover have n + i — degree p <n using i «n#0) by auto
ultimately have ¢ dvd coeff k (degree k — (n+i—degree p))
using 1(1) by auto
hence ¢ dvd coeff k (degree p + degree k — n — 1)
by (metis add-diff-cancel-left’ deg-eq diff-diff-left dvd-0-right le-degree
le-diff-conv add.commute ordered-cancel-comm-monoid-diff-class. diff-diff-right)
thus ¢ dvd T i unfolding T-def by auto
qed
moreover have n=0 = %case
proof —
assume n=0
hence Vic{0..<degree p}. coeff k (degree p + degree k — n — i) =0
using coeff-eq-0[of k] by simp
hence ¢ * coeff q (degree ¢ — n) = coeff k (degree k — n)
using c-coeff unfolding T-def by auto
thus ?thesis by (metis dvdl)
qed
ultimately show ?case by (metis dvd-add-right-iff dvd-triv-left)
qed

qed
hence V n. ¢ dvd coeff k n

by (metis diff-diff-cancel dvd-0-right le-add2 le-add-diff-inverse le-degree)

then obtain f where f:Vn. ¢ * f n=coeff k n unfolding dvd-def by metis

have Vo n. fn=20

by (metis (mono-tags, lifting) MOST-coeff-eq-0 MOST-mono assms(3) f mult-eq-0-iff)
hence smult ¢ (Abs-poly )=k

using f smult.abs-eq[of ¢ Abs-poly f] Abs-poly-inverse|of f] coeff-inverse|of k|
by simp

hence ¢q=p* Abs-poly f using k «c£0> smult-cancel by auto
thus ?thesis unfolding dvd-def by auto
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qed

lemma lemma-order-pderivi :
pderiv (;— a, 1:] ~ Suc n * q)
= [i— a, 1:] 7 Suc n * pderiv ¢ + smult (of-nat (Suc n)) (¢ * [— a, 1:] " n)
unfolding pderiv-mult pderiv-power-Suc
by (simp del: power-Suc of-nat-Suc add: pderiv-pCons)

lemma order-pderiv:
fixes p::’a::{idom,semiring-char-0} poly
assumes p#£0 poly p x = 0
shows order x p = Suc (order z (pderiv p)) using assms
proof —
define zz op where zz=[:— z, 1:] and op = order x p
have op # 0 unfolding op-def using assms order-root by blast
obtain pp where pp:p = zx ~ op * pp — zx dvd pp
using order-decomp[OF <p=£0»,0f x,folded zz-def op-def] by auto
have p-der:pderiv p = smult (of-nat op) (zz(op —1)) * pp + zz op*pderiv pp
unfolding pp(1) by (auto simp:pderiv-mult pderiv-power xz-def algebra-simps
pderiv-pCons)
have zz(op —1) dvd (pderiv p)
unfolding p-der
by (metis <op # 0> dvd-add-left-iff dvd-mult2 dvd-refl dvd-smult dvd-triv-right
power-eq-if )
moreover have — zz"op dvd (pderiv p)
proof
assume zz  op dvd pderiv p
then have zz ~ op dvd smult (of-nat op) (zz(op —1) * pp)
unfolding p-der by (simp add: dvd-add-left-iff)
then have zz ~ op dvd (zx(op —1)) * pp
apply (elim dvd-monic[rotated))
using <op#£0» by (auto simp:lead-coeff-power zx-def)
then have zz ~ (op—1) * zx dvd (zz (op —1))
using <— zz dvd pp» by (simp add: <op # 0» mult.commute power-eq-if)
then have zz dvd 1
using assms(1) pp(1) by auto
then show Fulse unfolding zz-def by (meson assms(1) dvd-trans one-dvd
order-decomp)
qed
ultimately have op — 1 = order x (pderiv p)
using order-unique-lemmalof © op—1 pderiv p,folded zz-def] <op#0)»
by auto
then show ?thesis using (op#£0» unfolding op-def by auto
qed

lemma lemma-order-pderiv:
fixes p :: 'a :: field-char-0 poly
assumes n: 0 < n
and pd: pderivp # 0
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and pe: p=[—a, I:] "nxgq
and nd: = [:— a, 1:] dvd q
shows n = Suc (order a (pderiv p))
by (metis add.right-neutral gr0-conv-Suc n nat.case nd order-mult order-pderiv
order-power-n-n_ order-root pd pderiv-0 pe poly-eq-0-iff-dvd)

lemma poly-squarefree-decomp-order:
fixes p :: ‘a::field-char-0 poly
assumes pderiv p # 0
and p: p=g¢qx*xd
and p” pderivp = e x d
and d: d = r * p + s * pderiv p
shows order a ¢ = (if order a p = 0 then 0 else 1)
proof (rule classical)
assume 1: — ?thesis
from <pderiv p # 0> have p # 0 by auto
with p have order a p = order a q + order a d
by (simp add: order-mult)
with 7 have order a p # 0
by (auto split: if-splits)
from «pderiv p # 0> <pderiv p = e * d» have oapp: order a (pderiv p) = order
a e+ order a d
by (simp add: order-mult)
from <pderiv p # 0) <order a p # 0> have oap: order a p = Suc (order a (pderiv
p))
using <p # 0) order-pderiv order-root by blast
from <p # 0> <p = q * d> have d # 0
by simp
have [:— a, 1:] ~ order a (pderiv p) dvd r x p
by (metis dvd-trans dvd-triv-right oap order-1 power-Suc)
then have ([:—a, 1:] ~ (order a (pderiv p))) dvd d
by (simp add: d order-1)
with «d # 0> have order a (pderiv p) < order a d
by (simp add: order-divides)
show ?thesis
using <order a p = order a q + order a d»
and oapp oap
and <order a (pderiv p) < order a d»
by auto
qed

lemma poly-squarefree-decomp-order2:
pderivp # 0 = p=q*x d = pderivp = e x d =
d=r1%*p+ sx* pderivp = Va. order a ¢ = (if order a p = 0 then 0 else 1)
for p :: 'a:field-char-0 poly
by (blast intro: poly-squarefree-decomp-order)

lemma order-pderiv2:
pderiv p # 0 = order a p # 0 = order a (pderiv p) = n <— order a p = Suc
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n
for p :: 'a:field-char-0 poly
by (metis nat.inject order-pderiv order-root pderiv-0)

definition rsquarefree :: 'a::idom poly = bool
where rsquarefree p «— p # 0 N (Va. order ap =0V order ap = 1)

lemma pderiv-iszero: pderiv p = 0 = Fh. p = [:hi]
for p :: 'a::{semidom,semiring-char-0} poly
by (cases p) (auto simp: pderiv-eq-0-iff split: if-splits)

lemma rsquarefree-roots: rsquarefree p «— (Y a. = (poly p a = 0 A poly (pderiv
p) a=0))
for p :: 'a:field-char-0 poly
proof (cases p = 0)
case Fulse
show ?thesis
proof (cases pderiv p = 0)
case True
with <p # 0> pderiv-iszero show ?thesis
by (force simp add: order-0I rsquarefree-def)
next
case Fulse
with «p # 0> order-pderiv2 show ?thesis
by (force simp add: rsquarefree-def order-root)
qged
qed (simp add: rsquarefree-def)

lemma rsquarefree-root-order:
assumes rsquarefree p poly p z = 0p # 0
shows order zp =1

proof —
from assms have order z p € {0, 1} by (auto simp: rsquarefree-def)
moreover from assms have order z p > 0 by (auto simp: order-root)
ultimately show order z p = 1 by auto

qed

lemma poly-squarefree-decomp:
fixes p :: ‘a:field-char-0 poly
assumes pderiv p # 0
and p=gqgxd
and pderivp = e x d
and d =7 * p 4+ s * pderiv p
shows rsquarefree ¢ A (Va. poly g a = 0 <— poly p a = 0)
proof —
from <pderiv p # 0> have p # 0 by auto
with <p = ¢ * d> have ¢ # 0 by simp
from assms have V a. order a ¢ = (if order a p = 0 then 0 else 1)
by (rule poly-squarefree-decomp-order2)
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with «p # 0> <q¢ # 0> show ?thesis
by (simp add: rsquarefree-def order-root)
qed

lemma has-field-derivative-poly [derivative-intros|:
assumes (f has-field-derivative f') (at x within A)
shows ((Az. poly p (f z)) has-field-derivative

(f" * poly (pderiv p) (f x))) (at z within A)
using DERIV-chain[OF poly-DERIV assms, of p|] by (simp add: o-def mult-ac)

4.28 Algebraic numbers

lemma intpolyE:
assumes Ai. poly.coeff p i € Z
obtains ¢ where p = map-poly of-int q
proof —
have Vi€{.. Polynomial.degree p}. 3z. poly.coeff p i = of-int x
using assms by (auto simp: Ints-def)
from bchoice[OF this| obtain f
where f: A\i. i < Polynomial.degree p = poly.coeff p i = of-int (f i) by blast
define ¢ where ¢ = Poly (map f [0..<Suc (Polynomial.degree p)])
have p = map-poly of-int q
by (intro poly-eql)
(auto simp: coeff-map-poly q-def nth-default-def f coeff-eq-0 simp del: upt-Suc)
with that show ?thesis by blast
qed

lemma ratpolyFE:
assumes Ai. poly.coeff p i € Q
obtains ¢ where p = map-poly of-rat q
proof —
have Vi€{.. Polynomial.degree p}. Iz. poly.coeff p i = of-rat x
using assms by (auto simp: Rats-def)
from bchoice[OF this| obtain f
where f: Ai. i < Polynomial.degree p = poly.coeff p i = of-rat (f ©) by blast
define ¢ where ¢ = Poly (map f [0..<Suc (Polynomial.degree p)])
have p = map-poly of-rat q
by (intro poly-eql)
(auto simp: coeff-map-poly q-def nth-default-def f coeff-eq-0 simp del: upt-Suc)
with that show ?thesis by blast
qged

Algebraic numbers can be defined in two equivalent ways: all real num-
bers that are roots of rational polynomials or of integer polynomials. The
Algebraic-Numbers AFP entry uses the rational definition, but we need the
integer definition.

The equivalence is obvious since any rational polynomial can be multiplied
with the LCM of its coefficients, yielding an integer polynomial with the
same roots.
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definition algebraic :: 'a :: field-char-0 = bool
where algebraic © <+— (Ip. (Vi. coeff pi € Z) ANp# 0 A polypz = 0)

lemma algebraicl: (\i. coeff pi € Z) = p # 0 = poly p x = 0 = algebraic
x
unfolding algebraic-def by blast

lemma algebraick:
assumes algebraic x
obtains p where Ai. coeff pi € Z p # 0 polyp x = 0
using assms unfolding algebraic-def by blast

lemma algebraic-altdef: algebraic x «+— (3Ip. (Vi. coeff pi € Q) A p # 0 A poly
pz=20)
for p :: 'a:field-char-0 poly
proof safe
fix p
assume rat: Vi. coeff p i € Q and root: poly p x = 0 and nz: p # 0
define cs where cs = coeffs p
from rat have V cerange (coeff p). I¢’. ¢ = of-rat ¢’
unfolding Rats-def by blast
then obtain f where f: coeff p i = of-rat (f (coeff p i)) for i
by (subst (asm) bchoice-iff) blast
define cs’ where cs’ = map (quotient-of o f) (coeffs p)
define d where d = Lem (set (map snd cs’))
define p’ where p’ = smult (of-int d) p

have coeff p’ n € Z for n
proof (cases n < degree p)
case True
define ¢ where ¢ = coeff p n
define a where a = fst (quotient-of (f (coeff p n)))
define b where b = snd (quotient-of (f (coeff p n)))
have b-pos: b > 0
unfolding b-def using quotient-of-denom-pos’ by simp
have coeff p’ n = of-int d x coeff p n
by (simp add: p'-def)
also have coeff p n = of-rat (of-int a / of-int b)
unfolding a-def b-def
by (subst quotient-of-div [of f (coeff p n), symmetric]) (simp-all add: f
[symmetric])
also have of-int d * ... = of-rat (of-int (axd) / of-int b)
by (simp add: of-rat-mult of-rat-divide)
also from nz True have b € snd ‘ set cs’
by (force simp: cs’-def o-def b-def coeffs-def simp del: upt-Suc)
then have b dvd (a * d)
by (simp add: d-def)
then have of-int (a * d) / of-int b € (Z :: rat set)
by (rule of-int-divide-in-Ints)
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then have of-rat (of-int (a x d) / of-int b) € Z by (elim Ints-cases) auto
finally show ?thesis .
next
case Fualse
then show ?thesis
by (auto simp: p’-def not-le coeff-eq-0)
qed
moreover have set (map snd cs’) C {0<..}
unfolding cs’-def using quotient-of-denom-pos’ by (auto simp: coeffs-def simp
del: upt-Suc)
then have d # 0
unfolding d-def by (induct cs’) simp-all
with nz have p’ # 0 by (simp add: p’-def)
moreover from root have poly p’ z = 0
by (simp add: p’-def)
ultimately show algebraic
unfolding algebraic-def by blast
next
assume algebraic x
then obtain p where p: coeff pi € Z poly p x = 0 p # 0 for i
by (force simp: algebraic-def)
moreover have coeff p i € Z = coeff p i € Q for i
by (elim Ints-cases) simp
ultimately show 3p. (Vi. coeff pi € Q) A p # 0 A poly p z = 0 by auto
qed

lemma algebraicl”: (\i. coeff pi € Q) = p # 0 = poly p x = 0 = algebraic
x
unfolding algebraic-altdef by blast

lemma algebraicE’:
assumes algebraic (z :: 'a = field-char-0)
obtains p where p # 0 poly (map-poly of-int p) x = 0
proof —
from assms obtain ¢ where ¢: Ai. coeff qi € Z q # 0 poly gz = 0
by (erule algebraicE)
moreover from this(1) obtain ¢’ where ¢: ¢ = map-poly of-int ¢’ by (erule
intpolyFE)
moreover have ¢’ # 0
using ¢’ q¢ by auto
ultimately show ?thesis by (intro that[of q']) simp-all
qed

lemma algebraicE’-nonzero:
assumes algebraic (z :: 'a =2 field-char-0) © # 0
obtains p where p # 0 coeff p 0 # 0 poly (map-poly of-int p) x = 0
proof —
from assms(1) obtain p where p: p # 0 poly (map-poly of-int p) z = 0
by (erule algebraicE’)
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define n :: nat where n = order 0 p

have monom 1 n dvd p by (simp add: monom-1-dvd-iff p n-def)

then obtain ¢ where ¢: p = monom 1 n x ¢ by (erule dvdE)

have [simp]: map-poly of-int (monom 1 n x q) = monom (1 :: 'a) n * map-poly
of-int q

by (induction n) (auto simp: monom-0 monom-Suc map-poly-pCons)

from p have g # 0 poly (map-poly of-int q) x = 0 by (auto simp: q poly-monom
assms(2))

moreover from this have order 0 p = n + order 0 q by (simp add: q order-mult)

hence order 0 ¢ = 0 by (simp add: n-def)

with <q # 0> have poly ¢ 0 # 0 by (simp add: order-root)

ultimately show ?thesis using that[of g] by (auto simp: poly-0-coeff-0)
qed

lemma rat-imp-algebraic: x € Q = algebraic x
proof (rule algebraicl’)
show poly [:—xz, 1:] z = 0
by simp
qed (auto simp: coeff-pCons split: nat.splits)

lemma algebraic-0 [simp, intro]: algebraic 0
and algebraic-1 [simp, introl: algebraic 1
and algebraic-numeral [simp, introl: algebraic (numeral n)
and algebraic-of-nat [simp, intro|: algebraic (of-nat k)
and algebraic-of-int [simp, intro): algebraic (of-int m)
by (simp-all add: rat-imp-algebraic)

lemma algebraic-ii [simp, intro|: algebraic i
proof (rule algebraicl)
show poly [:1, 0, 1:]i= 0
by simp
qed (auto simp: coeff-pCons split: nat.splits)

lemma algebraic-minus [intro):
assumes algebraic x
shows algebraic (—x)
proof —
from assms obtain p where p: Vi. coeff pi € Z polypx =0p # 0
by (elim algebraicE) auto
define s where s = (if even (degree p) then 1 else —1 :: 'a)

define ¢ where ¢ = Polynomial.smult s (pcompose p [:0, —1:])
have poly ¢ (—z) = 0

using p by (auto simp: g-def poly-pcompose s-def)
moreover have ¢ # 0

using p by (auto simp: g-def s-def pcompose-eq-0-iff)

find-theorems pcompose - - = 0
moreover have coeff q i € Z for i
proof —
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have coeff (pcompose p [:0, —1:]) i € Z
using p by (intro coeff-pcompose-semiring-closed) (auto simp: coeff-pCons
split: nat.splits)
thus ?thesis by (simp add: g-def s-def)
qed
ultimately show %thesis
by (auto simp: algebraic-def)
qed

lemma algebraic-minus-iff [simp:
algebraic (—z) +— algebraic (z :: 'a :: field-char-0)
using algebraic-minus|of z| algebraic-minus[of —z] by auto

lemma algebraic-inverse [intro):
assumes algebraic x
shows algebraic (inverse x)
proof (cases z = 0)
case [simp|: False
from assms obtain p where p: Vi. coeff pi € Z polypx=0p # 0
by (elim algebraicE) auto
show ?thesis
proof (rule algebraicl)
show poly (reflect-poly p) (inverse ) = 0
using assms p by (simp add: poly-reflect-poly-nz)
qged (use assms p in <auto simp: coeff-reflect-poly»)
qged auto

lemma algebraic-root:
assumes algebraic y
and poly p x = y and V1. coeff p i € Z and lead-coeff p = 1 and degree p
> 0
shows algebraic z
proof —
from assms obtain ¢ where ¢: poly q y = 0 Vi. coeff qi € Z q # 0
by (elim algebraicE) auto
show ?thesis
proof (rule algebraicl)
from assms q show pcompose ¢ p # 0
by (auto simp: pcompose-eq-0-iff)
from assms q show coeff (pcompose q p) i € Z for i
by (intro alll coeff-pcompose-semiring-closed) auto
show poly (pcompose ¢ p) x = 0
using assms ¢ by (simp add: poly-pcompose)
qed
qed

lemma algebraic-abs-real [simp]:

algebraic |z :: real| <— algebraic x
by (auto simp: abs-if)
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lemma algebraic-nth-root-real [introl:
assumes algebraic x
shows algebraic (root n x)
proof (cases n = 0)
case Fulse
show ?thesis
proof (rule algebraic-root)
show poly (monom 1 n) (root n z) = (if even n then |z| else x)
using sgn-power-root|of n x] False
by (auto simp add: poly-monom sgn-if split: if-splits)
qed (use False assms in <auto simp: degree-monom-eq»)
qed auto

lemma algebraic-sqrt [intro|: algebraic & = algebraic (sqrt x)
by (auto simp: sqrt-def)

lemma algebraic-csqrt [intro]: algebraic * = algebraic (csqrt x)
by (rule algebraic-root|where p = monom 1 2])
(auto simp: poly-monom degree-monom-eq)

lemma algebraic-cnj [introl:
assumes algebraic x
shows algebraic (cnj x)
proof —
from assms obtain p where p: poly p z = 0 Vi. coeff pi € Z p # 0
by (elim algebraicE) auto
show ?thesis
proof (rule algebraicl)
show poly (map-poly cnj p) (cnj x) = 0
using p by simp
show map-poly cnj p # 0
using p by (auto simp: map-poly-eq-0-iff)
show coeff (map-poly cnj p) i € Z for i
using p by (auto simp: coeff-map-poly)
qed
qed

lemma algebraic-cnj-iff [simp|: algebraic (cnj x) +— algebraic x
using algebraic-cnj|of x| algebraic-cnj[of cnj x] by auto

lemma algebraic-of-real [intro]:

assumes algebraic x

shows algebraic (of-real x)
proof —

from assms obtain p where p: p # 0 poly (map-poly of-int p) x = 0 by (erule
algebraicE")

have 1: map-poly of-int p # (0 :: 'a poly)

using p by (metis coeff-0 coeff-map-poly leading-coeff-0-iff of-int-eq-0-iff)
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have poly (map-poly of-int p) (of-real x :: 'a) = of-real (poly (map-poly of-int p)

x)
by (simp add: poly-altdef degree-map-poly coeff-map-poly)
also note p(2)
finally have 2: poly (map-poly of-int p) (of-real z :: 'a) = 0
by simp

from 1 2 show algebraic (of-real z :: 'a)
by (intro algebraicI[of map-poly of-int p]) (auto simp: coeff-map-poly)
qged

lemma algebraic-of-real-iff [simp]:
algebraic (of-real z :: 'a :: {real-algebra-1,field-char-0}) <— algebraic x
proof
assume algebraic (of-real z :: 'a)
then obtain p where p: p # 0 poly (map-poly of-int p) (of-real z :: 'a) = 0
by (erule algebraicE’)
have 1: (map-poly of-int p :: real poly) # 0
using p by (metis coeff-0 coeff-map-poly leading-coeff-0-iff of-int-0 of-int-eq-iff)

note p(2)
also have poly (map-poly of-int p) (of-real x :: 'a) = of-real (poly (map-poly of-int
p) x)
by (simp add: poly-altdef degree-map-poly coeff-map-poly)
also have ... = 0 +— poly (map-poly of-int p) z = 0

using of-real-eq-0-iff by blast
finally have 2: poly (map-poly real-of-int p) x = 0 .

from 7 and 2 show algebraic
by (intro algebraicI[of map-poly of-int p]) (auto simp: coeff-map-poly)
qed auto

4.29 Algebraic integers

inductive algebraic-int :: 'a :: field = bool where
[lead-coeff p = 1; Vi. coeff p i € Z; poly p x = 0] = algebraic-int x

lemma algebraic-int-altdef-ipoly:

fixes z :: 'a :: field-char-0

shows algebraic-int z +— (I p. poly (map-poly of-int p) x = 0 A lead-coeff p =
1)
proof

assume algebraic-int x

then obtain p where p: lead-coeff p = 1 Vi. coeff p i € Z poly p x = 0

by (auto elim: algebraic-int.cases)

define the-int where the-int = (A\z::’a. THE r. z = of-int r)

define p’ where p’ = map-poly the-int p

have of-int-the-int: of-int (the-int z) = z if v € Z for x
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unfolding the-int-def by (rule sym, rule thel’) (insert that, auto simp: Ints-def)
have the-int-0-iff: the-int x = 0 «+— = 0 if z € Z for x
using of-int-the-int[ OF that] by auto
have [simp]: the-int 0 = 0
by (subst the-int-0-iff ) auto
have map-poly of-int p’ = map-poly (of-int o the-int) p
by (simp add: p’-def map-poly-map-poly)
also from p of-int-the-int have ... = p
by (subst poly-eq-iff) (auto simp: coeff-map-poly)
finally have p-p”: map-poly of-int p’ = p .

show (I p. poly (map-poly of-int p) x = 0 A lead-coeff p = 1)
proof (intro exI conjl notl)
from p show poly (map-poly of-int p’) x = 0 by (simp add: p-p’)
next
show lead-coeff p’ = 1
using p by (simp flip: p-p’ add: degree-map-poly coeff-map-poly)
qed
next
assume 3 p. poly (map-poly of-int p) x = 0 A lead-coeff p = 1
then obtain p where p: poly (map-poly of-int p) x = 0 lead-coeff p = 1
by auto
define p’ where p’ = (map-poly of-int p :: 'a poly)
from p have lead-coeff p’ = 1 poly p’ x = 0 Vi. coeff p' i € Z
by (auto simp: p’-def coeff-map-poly degree-map-poly)
thus algebraic-int x
by (intro algebraic-int.intros)
qed

theorem rational-algebraic-int-is-int:
assumes algebraic-int r and z € Q
shows z€Z
proof —
from assms(2) obtain a b where ab: b > 0 Rings.coprime a b and z-eq: © =
of-int a / of-int b
by (auto elim: Rats-cases’)
from <b > 0> have [simp]: b # 0
by auto
from assms(1) obtain p
where p: lead-coeff p = 1 Vi. coeff p i € Z poly p x = 0
by (auto simp: algebraic-int.simps)

define ¢ :: ‘a poly where ¢ = [:—of-int a, of-int b:]
have poly qx = 0 q # 0 Vi. coeff i € Z
by (auto simp: z-eq q-def coeff-pCons split: nat.splits)
define n where n = degree p
have n > 0
using p by (intro Nat.grOI) (auto simp: n-def elim!: degree-eg-zeroE)
have (3> i<n. coeff p i * of-int (a "ixb " (n—1i— 1)) €Z
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using p by auto
then obtain R where R: of-int R = (> i<n. coeff p i * of-int (a
—i— 1)
by (auto simp: Ints-def)
have [simp]: coeff p n = 1
using p by (auto simp: n-def)

have 0 = poly p x * of-int b " n
using p by simp

also have ... = (> i<n. coeff p i x & ~ i % of-int b " n)
by (simp add: poly-altdef n-def sum-distrib-right)
also have ... = (3" i<n. coeff p i * of-int (a "ixb " (n — 1))

by (intro sum.cong) (auto simp: z-eq field-simps simp flip: power-add)
also have {..n} = insert n {..<n}
using «n > 0» by auto
also have () i€.... coeff p i x of-int (a "i*x b " (n — 7)) =
coeff p n x of-int (a " n) + (O i<n. coeff p i x of-int (a "ixb " (n
)

by (subst sum.insert) auto
also have (> i<n. coeff p i x of-int (a "i*x b " (n — 1)) =
(> i<n. coeff pi* of-int (¢ "ixbxb " (n—1i—1)))
by (intro sum.cong) (auto simp flip: power-add power-Suc simp: Suc-diff-Suc)
also have ... = of-int (b * R)
by (simp add: R sum-distrib-left sum-distrib-right mult-ac)
finally have of-int (a ~n) = (—of-int (b * R) :: 'a)
by (auto simp: add-eq-0-iff)
hence a "n=-bx* R
by (simp flip: of-int-mult of-int-power of-int-minus)
hence b dvd a " n
by simp
with <Rings.coprime a b> have b dvd 1
by (meson coprime-power-left-iff dvd-refl not-coprimel)
with z-eq and b > 0> show ?thesis
by auto
qed

lemma algebraic-int-imp-algebraic [dest]: algebraic-int + = algebraic
by (auto simp: algebraic-int.simps algebraic-def)

lemma int-imp-algebraic-int:
assumes 2 € Z
shows algebraic-int x
proof
show Vi. coeff [—z, 1:] i € Z
using assms by (auto simp: coeff-pCons split: nat.splits)
qed auto

lemma algebraic-int-0 [simp, intro]: algebraic-int 0
and algebraic-int-1 [simp, introl: algebraic-int 1
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and algebraic-int-numeral [simp, intro: algebraic-int (numeral n)
and algebraic-int-of-nat [simp, intro]: algebraic-int (of-nat k)
and algebraic-int-of-int [simp, introl: algebraic-int (of-int m)

by (simp-all add: int-imp-algebraic-int)

lemma algebraic-int-ii [simp, intro]: algebraic-int i
proof
show poly [:1, 0, 1:]i= 0
by simp
qged (auto simp: coeff-pCons split: nat.splits)

lemma algebraic-int-minus [intro:
assumes algebraic-int x
shows algebraic-int (—x)
proof —
from assms obtain p where p: lead-coeff p = 1 Vi. coeff p i € Z poly p x = 0
by (auto simp: algebraic-int.simps)
define s where s = (if even (degree p) then 1 else —1 :: 'a)

define ¢ where ¢ = Polynomial.smult s (pcompose p [:0, —1:])
have lead-coeff ¢ = s * lead-coeff (pcompose p [:0, —1:])
by (simp add: g-def)
also have lead-coeff (pcompose p [:0, —1:]) = lead-coeff p x (— 1) ~ degree p
by (subst lead-coeff-comp) auto
finally have poly q (—z) = 0 and lead-coeff ¢ = 1
using p by (auto simp: g-def poly-pcompose s-def)
moreover have coeff q i € Z for i
proof —
have coeff (pcompose p [:0, —1:]) i € Z
using p by (intro coeff-pcompose-semiring-closed) (auto simp: coeff-pCons
split: nat.splits)
thus ?thesis by (simp add: g-def s-def)
qed
ultimately show ?thesis
by (auto simp: algebraic-int.simps)
qed

lemma algebraic-int-minus-iff [simp):
algebraic-int (—z) <— algebraic-int (z :: 'a :: field-char-0)
using algebraic-int-minus|of x| algebraic-int-minus[of —x] by auto

lemma algebraic-int-inverse [introl:
assumes poly p x = 0 and Vi. coeff p i € Z and coeff p 0 = 1
shows algebraic-int (inverse x)
proof
from assms have [simp]: z # 0
by (auto simp: poly-0-coeff-0)
show poly (reflect-poly p) (inverse z) = 0
using assms by (simp add: poly-reflect-poly-nz)
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qed (use assms in <auto simp: coeff-reflect-poly»)

lemma algebraic-int-root:
assumes algebraic-int y
and poly p z = y and Vi. coeff p i € Z and lead-coeff p = 1 and degree p
> 0
shows algebraic-int x
proof —
from assms obtain ¢ where ¢: poly q y = 0 Vi. coeff q i € Z lead-coeff q = 1
by (auto simp: algebraic-int.simps)
show ?thesis
proof
from assms q show lead-coeff (pcompose q p) = 1
by (subst lead-coeff-comp) auto
from assms q show Vi. coeff (pcompose q p) i € Z
by (intro alll coeff-pcompose-semiring-closed) auto
show poly (pcompose q¢ p) © = 0
using assms ¢ by (simp add: poly-pcompose)
qed
qed

lemma algebraic-int-abs-real [simp):
algebraic-int |x :: real| +— algebraic-int x
by (auto simp: abs-if)

lemma algebraic-int-nth-root-real [intro):
assumes algebraic-int ©
shows algebraic-int (root n x)
proof (cases n = 0)
case Fulse
show ?thesis
proof (rule algebraic-int-root)
show poly (monom 1 n) (root n z) = (if even n then |z| else x)
using sgn-power-root[of n z| False
by (auto simp add: poly-monom sgn-if split: if-splits)
qged (use False assms in <auto simp: degree-monom-eq>)
qed auto

lemma algebraic-int-sqrt [introl: algebraic-int x => algebraic-int (sqrt x)
by (auto simp: sqrt-def)

lemma algebraic-int-csqrt [intro]: algebraic-int x = algebraic-int (csqrt x)
by (rule algebraic-int-root[where p = monom 1 2])
(auto simp: poly-monom degree-monom-eq)

lemma algebraic-int-cnj [introl:
assumes algebraic-int x
shows algebraic-int (cnj x)
proof —
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from assms obtain p where p: lead-coeff p = 1 Vi. coeff p i € Z poly p x = 0
by (auto simp: algebraic-int.simps)
show ?thesis
proof
show poly (map-poly cnj p) (enj x) = 0
using p by simp
show lead-coeff (map-poly cnj p) = 1
using p by (simp add: coeff-map-poly degree-map-poly)
show Vi. coeff (map-poly cnjp) i € Z
using p by (auto simp: coeff-map-poly)
qed
qed

lemma algebraic-int-cnj-iff [simp): algebraic-int (cnj x) +— algebraic-int
using algebraic-int-cnjof z] algebraic-int-cnj|of cnj z] by auto

lemma algebraic-int-of-real [intro):
assumes algebraic-int x
shows algebraic-int (of-real x)
proof —
from assms obtain p where p: poly p x = 0 Vi. coeff p i € Z lead-coeff p = 1
by (auto simp: algebraic-int.simps)
show algebraic-int (of-real x :: 'a)
proof
have poly (map-poly of-real p) (of-real x) = (of-real (poly p z) :: 'a)
by (induction p) (auto simp: map-poly-pCons)
thus poly (map-poly of-real p) (of-real ) = (0 :: 'a)
using p by simp
qed (use p in <auto simp: coeff-map-poly degree-map-poly»)
qed

lemma algebraic-int-of-real-iff [simp]:
algebraic-int (of-real z :: 'a :: {field-char-0, real-algebra-1}) «— algebraic-int =
proof
assume algebraic-int (of-real z :: 'a)
then obtain p
where p: poly (map-poly of-int p) (of-real z :: 'a) = 0 lead-coeff p = 1
by (auto simp: algebraic-int-altdef-ipoly)
show algebraic-int x
unfolding algebraic-int-altdef-ipoly
proof (intro exI[of - p] conjl)
have of-real (poly (map-poly real-of-int p) x) = poly (map-poly of-int p) (of-real
z : 'a)
by (induction p) (auto simp: map-poly-pCons)
also note p(1)
finally show poly (map-poly real-of-int p) x = 0 by simp
qged (use p in auto)
qed auto
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4.30 Division of polynomials

4.30.1 Division in general

instantiation poly :: (idom-divide) idom-divide
begin

fun divide-poly-main :: 'a = 'a poly = 'a poly = 'a poly = nat = nat = 'a poly
where
divide-poly-main lc ¢ v d dr (Suc n) =
(let cr = coeff v dr; a = cr div lc; mon = monom a n in
if False V a % lc = cr then — Fualse V is only because of problem in
function-package
divide-poly-main
le
(q + mon)
(r — mon * d)
d (dr — 1) n else 0)
| divide-poly-main lc ¢ rd dr 0 = q

definition divide-poly :: 'a poly = 'a poly = 'a poly
where divide-poly f g =
(if g = 0 then 0
else
divide-poly-main (coeff g (degree g)) 0 f g (degree f)
(1 + length (coeffs f) — length (coeffs g)))

lemma divide-poly-main:
assumes d: d # 0 lc = coeff d (degree d)
and degree (d * r) < dr divide-poly-main lc g (d x r) d drn = ¢’
andn=1+dr —degreedVdr=0An=0ANdxr=20
shows ¢’ =g+ r
using assms(3—)
proof (induct n arbitrary: q r dr)
case (Suc n)
let rr =d *r
let ?a = coeff ?rr dr
let ?qq = %a div Ic
define b where [simp]: b = monom ?qq n
let ?rrr = d *x (r — b)
let 2qqg = ¢ + b
note res = Suc(3)
from Suc(4) have dr: dr = n + degree d by auto
from d have lc: lc # 0 by auto
have coeff (b * d) dr = coeff b n * coeff d (degree d)
proof (cases ?qq = 0)
case True
then show ?thesis by simp
next
case Fulse
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then have n: n = degree b
by (simp add: degree-monom-eq)
show ?thesis
unfolding n dr by (simp add: coeff-mult-degree-sum,)
qed
also have ... = lc x coeff b n
by (simp add: d)
finally have c2: coeff (b * d) dr = lc * coeff b n .
have rrr: ?rrr = % — b x d
by (simp add: field-simps)
have c1: coeff (d = r) dr = lc x coeff r n
proof (cases degree r = n)
case True
with Suc(2) show ?thesis
unfolding dr using coeff-mult-degree-sum[of d r] d by (auto simp: ac-simps)
next
case Fulse
from dr Suc(2) have degree r < n
by auto
(metis add.commute add-le-cancel-left d(1) degree-0 degree-mult-eq
diff-is-0-eq diff-zero le-cases)
with Fulse have rm-n: degree r < n
by auto
then have right: lc x coeff rn = 0
by (simp add: coeff-eq-0)
have coeff (d * r) dr = coeff (d * r) (degree d + n)
by (simp add: dr ac-simps)
also from 7-n have ... = 0
by (metis False Suc.prems(1) add.commute add-left-imp-eq coeff-degree-mult
coeff-eq-0
coeff-mult-degree-sum degree-mult-le dr le-eg-less-or-eq)
finally show ?thesis
by (simp only: right)
qed
have c0: coeff ?rrr dr = 0
and id: lc * (coeff (d * r) dr div lc) = coeff (d % r) dr
unfolding rrr coeff-diff c2
unfolding b-def coeff-monom coeff-smult c1 using lc by auto
from res[unfolded divide-poly-main.simps|of lc q] Let-def] id
have res: divide-poly-main lc 2qqq ?rrr d (dr — 1) n = ¢’
by (simp del: divide-poly-main.simps add: field-simps)
note IH = Suc(1)[OF - res]
from Suc(4) have dr: dr = n + degree d by auto
from Suc(2) have deg-rr: degree ?rr < dr by auto
have deg-bd: degree (b * d) < dr
unfolding dr b-def by (rule order.trans|OF degree-mult-le]) (auto simp: de-
gree-monom-le)
have degree ?rrr < dr
unfolding rrr by (rule degree-diff-lefOF deg-rr deg-bd)])
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with c0 have deg-rrr: degree ?rrr < (dr — 1)
by (rule coeff-0-degree-minus-1)
haven =14 (dr — 1) —degreedV dr — 1 =0 An=0AN %rrr =0
proof (cases dr)
case (
with Suc(4) have 0: dr = 0 n = 0 degree d = 0
by auto
with deg-rrr have degree ?rrr = 0
by simp
from degree-eq-zeroE[OF this] obtain a where rrr: ?rrr = [:a!]
by metis
show ?thesis
unfolding 0 using c0 unfolding rrr 0 by simp
next
case -: Suc
with Suc(4) show ?thesis by auto
qed
from [H[OF deg-rrr this] show ?case
by simp
next
case 0
show ?Zcase
proof (cases 7 = 0)
case True
with 0 show ?thesis by auto
next
case Fulse
from d Fualse have degree (d x r) = degree d + degree r
by (subst degree-mult-eq) auto
with 0 d show ?thesis by auto
qed
qed

lemma divide-poly-main-0: divide-poly-main 0 0 r d drn = 0
proof (induct n arbitrary: v d dr)
case ()
then show ?case by simp
next
case Suc
show ?Zcase
unfolding divide-poly-main.simps[of - - r] Let-def
by (simp add: Suc del: divide-poly-main.simps)
qed

lemma divide-poly:
assumes ¢: g # 0
shows (f x g) div g = (f == 'a poly)
proof —
have len: length (coeffs f) = Suc (degree f) if f # 0 for f :: 'a poly
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using that unfolding degree-eq-length-coeffs by auto
have divide-poly-main (coeff g (degree g)) 0 (g = f) g (degree (g * f))
(1 + length (coeffs (g * f)) — length (coeffs g)) = (f * g) div g
by (simp add: divide-poly-def Let-def ac-simps)
note main = divide-poly-main[OF g refl le-refl this]
have (f * g) divg=0 + f
proof (rule main, goal-cases)
case I
show ?case
proof (cases f = 0)
case True
with g show ?thesis
by (auto simp: degree-eq-length-coeffs)
next
case Fulse
with ¢ have fg: g x f # 0 by auto
show ?thesis
unfolding len[OF fg] len[OF g] by auto
qed
qed
then show ?thesis by simp
qged

lemma divide-poly-0: f div 0 = 0
for f :: 'a poly
by (simp add: divide-poly-def Let-def divide-poly-main-0)

instance
by standard (auto simp: divide-poly divide-poly-0)

end
instance poly :: (idom-divide) algebraic-semidom ..

lemma div-const-poly-conv-map-poly:

assumes [:c:] dvd p

shows p div [:¢:] = map-poly (Az. x div ¢) p
proof (cases ¢ = 0)

case True

then show ?thesis

by (auto introl: poly-eql simp: coeff-map-poly)

next

case Fulse

from assms obtain ¢ where p: p = [:¢:] * ¢ by (rule dvdE)

moreover {

have smult ¢ ¢ = [:¢:] * ¢
by simp
also have ... div [:c:] = ¢

by (rule nonzero-mult-div-cancel-left) (use False in auto)
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finally have smult ¢ g div [:¢:] = ¢ .
}
ultimately show ?thesis by (intro poly-eql) (auto simp: coeff-map-poly False)
qed

lemma is-unit-monom-0:
fixes a :: 'a:field
assumes a # 0
shows is-unit (monom a 0)
proof
from assms show 1 = monom a 0 * monom (inverse a) 0
by (simp add: mult-monom)
qed

lemma is-unit-triv: a # 0 = is-unit [:a:]
for a :: 'a::field

by (simp add: is-unit-monom-0 monom-0 [symmetric))

lemma is-unit-iff-degree:
fixes p :: ‘a::field poly
assumes p # 0
shows is-unit p «— degree p = 0
(is ?lhs «— 9rhs)
proof
assume ?rhs
then obtain a where p = [:a:]
by (rule degree-eq-zeroE)
with assms show ?lhs
by (simp add: is-unit-triv)
next
assume ?lhs
then obtain ¢ where ¢ # 0px q=1 ..
then have degree (p * q) = degree 1
by simp
with (p # 0» <¢ # 0> have degree p + degree ¢ = 0
by (simp add: degree-mult-eq)
then show ?rhs by simp
qged

lemma is-unit-pCons-iff : is-unit (pCons a p) «—p =0 A a # 0
for p :: 'a:field poly
by (cases p = 0) (auto simp: is-unit-triv is-unit-iff-degree)

lemma is-unit-monom-trivial: is-unit p = monom (coeff p (degree p)) 0 = p
for p :: 'a::field poly
by (cases p) (simp-all add: monom-0 is-unit-p Cons-iff)

lemma is-unit-const-poly-iff: [:c:] dvd 1 +— ¢ dvd 1

for ¢ :: 'a::{comm-semiring-1,semiring-no-zero-divisors}
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by (auto simp: one-pCons)

lemma is-unit-polyE:
fixes p :: ‘a :: {comm-semiring-1,semiring-no-zero-divisors} poly
assumes p dvd 1
obtains ¢ where p = [:¢] ¢ dvd 1
proof —
from assms obtain ¢ where 1 = p % ¢
by (rule dvdFE)
then have p # 0 and ¢ # 0
by auto
from <1 = p x ¢ have degree 1 = degree (p * q)
by simp
also from «p # 0» and <q # 0> have ... = degree p + degree q
by (simp add: degree-mult-eq)
finally have degree p = 0 by simp
with degree-eq-zeroE obtain ¢ where c: p = [:¢] .
with «p dvd 1) have ¢ dvd 1
by (simp add: is-unit-const-poly-iff)
with ¢ show thesis ..
qed

lemma is-unit-polyE":
fixes p :: ‘a::field poly
assumes is-unit p
obtains a where p = monom a 0 and a # 0
proof —
obtain a ¢ where p = pCons a g
by (cases p)
with assms have p = [:a:] and a # 0
by (simp-all add: is-unit-pCons-iff)
with that show thesis by (simp add: monom-0)
qed

lemma is-unit-poly-iff: p dvd 1 +— (Fc. p = [:c:] A ¢ dvd 1)
for p :: ‘a::{comm-semiring-1,semiring-no-zero-divisors} poly
by (auto elim: is-unit-polyE simp add: is-unit-const-poly-iff)

lemma coprime-poly-0:
poly px # 0V poly q x # 0 if coprime p q
for = :: 'a :: field
proof (rule ccontr)
assume — (polyp z # 0V poly gz # 0)
then have [:—z, I:] dvd p [:—z, 1:] dvd ¢
by (simp-all add: poly-eq-0-iff-dvd)
with that have is-unit [:—z, 1:]
by (rule coprime-common-divisor)
then show Fulse
by (auto simp add: is-unit-pCons-iff)
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qed

lemma root-imp-reducible-poly:
fixes z :: ‘a :: field
assumes poly p x = 0 and degree p > 1
shows —irreducible p
proof —
from assms have p # 0
by auto
define ¢ where ¢ = [:—z, 1]
have ¢ dvd p
using assms by (simp add: poly-eq-0-iff-dvd g-def)
then obtain r where p-eq: p = g x r
by (elim dvdE)
have [simp]: ¢ £ 0r # 0
using <p # 0» by (auto simp: p-eq)
have degree p = Suc (degree r)
unfolding p-eq by (subst degree-mult-eq) (auto simp: g-def)
with assms(2) have degree r > 0
by auto
hence —r dvd 1
by (auto simp: is-unit-poly-iff)
moreover have —q dvd 1
by (auto simp: is-unit-poly-iff g-def)
ultimately show ?thesis using p-eq
by (auto simp: irreducible-def)
qed

lemma reducible-polyl:
fixes p :: ‘a :: field poly
assumes p = q * r degree ¢ > 0 degree v > 0
shows —irreducible p
using assms unfolding irreducible-def
by (metis (no-types, opaque-lifting) is-unitE is-unit-iff-degree not-gr0)

4.30.2 Pseudo-Division

This part is by René Thiemann and Akihisa Yamada.

fun pseudo-divmod-main ::
‘a :: comm-ring-1 = 'a poly = 'a poly = 'a poly = nat = nat = 'a poly x 'a

poly
where
pseudo-divmod-main lc ¢ v d dr (Suc n) =
(let
rr = smult lc r;
qq = coeff r dr;

T = 1r — monom qq n x d;
qqq = smult lc ¢ + monom qq n
in pseudo-divmod-main lc qqq rrr d (dr — 1) n)
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| pseudo-divmod-main lc g v d dr 0 = (q,r)

definition pseudo-divmod :: 'a :: comm-ring-1 poly = 'a poly = 'a poly x 'a poly
where pseudo-divmod p q =
if ¢ = 0 then (0, p)
else
pseudo-divmod-main (coeff q (degree q)) 0 p q (degree p)
(1 + length (coeffs p) — length (coeffs q))

lemma pseudo-divmod-main:
assumes d: d # 0 lc = coeff d (degree d)
and degree r < dr pseudo-divmod-main lc q v d dr n = (¢’,r’)
andn=1+4+dr —degreedV dr=0An=0Ar=20
shows (r' = 0 V degree ' < degree d) A smult (Ic™n) (d«x q+ 1) =d=*q¢ + 71’
using assms(3—)
proof (induct n arbitrary: q r dr)
case (
then show ?case by auto
next
case (Suc n)
let ?rr = smult lc r
let ?qq = coeff r dr
define b where [simp]: b = monom fqq n
let %rrr = 2rr — b x d
let ?qqq = smult lc ¢ + b
note res = Suc(3)
from res[unfolded pseudo-divmod-main.simps|of lc q| Let-def]
have res: pseudo-divmod-main lc ?qqq ?rrr d (dr — 1) n = (¢',r)
by (simp del: pseudo-divmod-main.simps)
from Suc(4) have dr: dr = n + degree d by auto
have coeff (b * d) dr = coeff b n * coeff d (degree d)
proof (cases ?qq = 0)
case True
then show ?thesis by auto
next
case False
then have n: n = degree b
by (simp add: degree-monom-eq)
show ?thesis
unfolding n dr by (simp add: coeff-mult-degree-sum,)
qed
also have ... = lc x coeff b n by (simp add: d)
finally have coeff (b * d) dr = lc * coeff b n .
moreover have coeff ?rr dr = lc * coeff r dr
by simp
ultimately have c0: coeff ?rrr dr = 0
by auto
from Suc(4) have dr: dr = n + degree d by auto
have deg-rr: degree ?rr < dr
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using Suc(2) degree-smult-le dual-order.trans by blast
have deg-bd: degree (b x d) < dr

unfolding dr by (rule order.trans|OF degree-mult-le]) (auto simp: degree-monom-le)
have degree ?rrr < dr

using degree-diff-le[OF deg-rr deg-bd] by auto
with c0 have deg-rrr: degree ?rrr < (dr — 1)

by (rule coeff-0-degree-minus-1)
haven =14 (dr — 1) —degreedV dr — 1 =0 An=0AN %rrr =0
proof (cases dr)

case (

with Suc(4) have 0: dr = 0 n = 0 degree d = 0 by auto

with deg-rrr have degree ?rrr = 0 by simp

then have Ja. ?rrr = [:a:)

by (metis degree-pCons-eq-if old.nat.distinct(2) pCons-cases)
from this obtain a where rrr: ?rrr = [:a]

by auto

show ?thesis
unfolding 0 using c0 unfolding rrr 0 by simp
next
case -: Suc
with Suc(4) show ?thesis by auto
qed
note IH = Suc(1)[OF deg-rrr res this]
show ?Zcase
proof (intro conjl)
from IH show r' = 0 V degree r’ < degree d
by blast
show smult (lc “Sucn) (dxqg+r)=d=*q + 1’
unfolding IH[THEN conjunct2,symmetric]
by (simp add: field-simps smult-add-right)
qed
qed

lemma pseudo-divmod:
assumes ¢: g # 0
and *: pseudo-divmod f g = (gq,r)
shows smult (coeff g (degree g) ~ (Suc (degree f) — degree 9)) f = g ¢ + r (is
?4)
and r = 0 V degree r < degree g (is ?B)
proof —
from x[unfolded pseudo-divmod-def Let-def)
have pseudo-divmod-main (coeff g (degree g)) 0 f g (degree f)
(1 + length (coeffs f) — length (coeffs g)) = (q, r)
by (auto simp: g)
note main = pseudo-divmod-main|OF - - - this, OF g refl le-refi]
from g have 1 + length (coeffs f) — length (coeffs g) = 1 + degree f — degree
gV
degree f = 0 N 1 + length (coeffs f) — length (coeffs g) = 0 A f =0
by (cases f = 0; cases coeffs g) (auto simp: degree-eq-length-coeffs)
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note main’ = main[OF this]
then show r = 0 V degree r < degree g by auto
show smult (coeff g (degree g) ~ (Suc (degree f) — degree g)) f = g* q + r
by (subst main’ | THEN conjunct2, symmetric], simp add: degree-eq-length-coeffs,
cases [ = 0; cases coeffs g, use g in auto)
qed

definition pseudo-mod-main lc r d dr n = snd (pseudo-divmod-main lc 0 r d dr
n)

lemma snd-pseudo-divmod-main:

snd (pseudo-divmod-main lc q v d dr n) = snd (pseudo-divmod-main lc q' r d dr
n)

by (induct n arbitrary: q q’ lc r d dr) (simp-all add: Let-def)

definition pseudo-mod :: 'a::{ comm-ring-1,semiring-1-no-zero-divisors} poly = 'a
poly = 'a poly
where pseudo-mod f g = snd (pseudo-divmod f g)

lemma pseudo-mod:
fixes f g :: 'a::{comm-ring-1,semiring-1-no-zero-divisors} poly
defines r = pseudo-mod f g
assumes ¢g: g # 0
shows Ja q. a# 0N smultaf =g*q+ rr =0V degree r < degree g
proof —
let %cg = coeff g (degree g)
let ?cge = 2cqg ~ (Suc (degree f) — degree g)
define a where a = ?cge
from r-def[unfolded pseudo-mod-def] obtain ¢ where pdm: pseudo-divmod f g
= (q7 7")
by (cases pseudo-divmod f g) auto
from pseudo-divmod|OF g pdm] have id: smult a f = g ¢+ rand r = 0 V
degree r < degree g
by (auto simp: a-def)
show r = 0 V degree r < degree g by fact
from ¢ have a # 0
by (auto simp: a-def)
with id show Ja q. a# 0 Nsmultaf=g*q+r
by auto
qed

lemma fst-pseudo-divmod-main-as-divide-poly-main:

assumes d: d # 0

defines lc: lc = coeff d (degree d)

shows fst (pseudo-divmod-main lc q r d dr n) =

divide-poly-main lc (smult (lc™n) q) (smult (Ic™n) r) d drn

proof (induct n arbitrary: q r dr)

case (

then show ?case by simp
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next

case (Suc n)

note lc0 = leading-coeff-neq-0[OF d, folded Ic

then have pseudo-divmod-main lc ¢ v d dr (Suc n) =
pseudo-divmod-main lc (smult lc ¢ + monom (coeff r dr) n)

(smult lc 1 — monom (coeff r dr) n % d) d (dr — 1) n

by (simp add: Let-def ac-simps)

also have fst ... = divide-poly-main lc
(smult (Ic™n) (smult lc ¢ + monom (coeff r dr) n))
(smult (Ic™n) (smult lc r — monom (coeff r dr) n x d))

d(dr—1)n
by (simp only: Suc[unfolded divide-poly-main.simps Let-def])
also have ... = dwide-poly-main lc (smult (Ic = Suc n) q) (smult (lc ~ Suc n)

r) d dr (Suc n)
unfolding smult-monom smult-distribs mult-smult-left[symmetric]
using lc0 by (simp add: Let-def ac-simps)
finally show ?Zcase .
qed

4.30.3 Division in polynomials over fields

lemma pseudo-divmod-field:
fixes ¢ :: ‘a::field poly
assumes ¢: g # 0
and *: pseudo-divmod f g = (q,r)
defines ¢ = coeff g (degree g) ~ (Suc (degree f) — degree g)
shows f = g x smult (1/c) ¢ + smult (1/c) r
proof —
from leading-coeff-neq-0[OF g] have c0: ¢ # 0
by (auto simp: c-def)
from pseudo-divmod(1)[OF g *, folded c-def] have smult ¢ f = g x g+ r
by auto
also have smult (1 [/ ¢)... =g+ smult (1 / ¢) q+ smult (1 /¢c)r
by (simp add: smult-add-right)
finally show ?thesis
using c0 by auto
qed

lemma divide-poly-main-field:

fixes d :: 'a::field poly

assumes d: d # 0

defines lc: lc = coeff d (degree d)

shows divide-poly-main lc q r d dr n =

fst (pseudo-divmod-main lc (smult ((1 / lc)™n) q) (smult ((1 / lc)™n) r) d dr

n)

unfolding lc by (subst fst-pseudo-divmod-main-as-divide-poly-main) (auto simp:
d power-one-over)

lemma divide-poly-field:

189



fixes f g :: 'a::field poly
defines f/ = smult ((1 / coeff g (degree g)) ~ (Suc (degree f) — degree g)) f
shows f div g = fst (pseudo-divmod f' g)
proof (cases g = 0)
case True
show ?thesis
unfolding divide-poly-def pseudo-divmod-def Let-def f'-def True
by (simp add: divide-poly-main-0)
next
case Fulse
from leading-coeff-neq-0|OF False] have degree ' = degree f
by (auto simp: f’-def)
then show ?thesis
using length-coeffs-degree|of f] length-coeffs-degree|of f]
unfolding divide-poly-def pseudo-divmod-def Let-def
divide-poly-main-field|OF False]
length-coeffs-degree[ OF False]
f'-def
by force
qed

instantiation poly :: ({ semidom-divide-unit-factor,idom-divide}) normalization-semidom
begin

definition unit-factor-poly :: 'a poly = 'a poly
where unit-factor-poly p = [unit-factor (lead-coeff p):]

definition normalize-poly :: 'a poly = 'a poly
where normalize p = p div [:unit-factor (lead-coeff p):]

instance
proof
fix p :: 'a poly
show unit-factor p x normalize p = p
proof (cases p = 0)
case True
then show ?thesis
by (simp add: unit-factor-poly-def normalize-poly-def)
next
case Fulse
then have lead-coeff p # 0
by simp
then have *: unit-factor (lead-coeff p) # 0
using unit-factor-is-unit [of lead-coeff p] by auto
then have unit-factor (lead-coeff p) dvd 1
by (auto intro: unit-factor-is-unit)
then have *x: unit-factor (lead-coeff p) dvd ¢ for c
by (rule dvd-trans) simp
have xxx: unit-factor (lead-coeff p) * (¢ div unit-factor (lead-coeff p)) = ¢ for
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proof —
from *x obtain b where ¢ = unit-factor (lead-coeff p) * b ..
with Fualse x show ?thesis by simp
qed
have p div [:unit-factor (lead-coeff p):] =
map-poly (Ac. ¢ div unit-factor (lead-coeff p)) p
by (simp add: const-poly-dvd-iff div-const-poly-conv-map-poly *x)
then show ?thesis
by (simp add: normalize-poly-def unit-factor-poly-def
smult-conv-map-poly map-poly-map-poly o-def xxx)
qed
next
fix p :: 'a poly
assume is-unit p
then obtain ¢ where p: p = [:¢:] ¢ dvd 1
by (auto simp: is-unit-poly-iff)
then show unit-factor p = p
by (simp add: unit-factor-poly-def monom-0 is-unit-unit-factor)
next
fix p :: 'a poly
assume p # 0
then show is-unit (unit-factor p)
by (simp add: unit-factor-poly-def monom-0 is-unit-poly-iff unit-factor-is-unit)
next
fix a b :: 'a poly assume is-unit a
thus unit-factor (a * b) = a * unit-factor b
by (auto simp: unit-factor-poly-def lead-coeff-mult unit-factor-mult elim!: is-unit-polyE)
qed (simp-all add: normalize-poly-def unit-factor-poly-def monom-0 lead-coeff-mult
unit-factor-mult)

end

instance poly :: ({semidom-divide-unit-factor,idom-divide,normalization-semidom-multiplicative})
normalization-semidom-multiplicative
by intro-classes (auto simp: unit-factor-poly-def lead-coeff-mult unit-factor-mult)

lemma normalize-poly-eq-map-poly: normalize p = map-poly (Az. x div unit-factor
(lead-coeff p)) p
proof —
have [:unit-factor (lead-coeff p):] dvd p
by (metis unit-factor-poly-def unit-factor-self)
then show ?thesis
by (simp add: normalize-poly-def div-const-poly-conv-map-poly)
qed

lemma coeff-normalize [simp):

coeff (normalize p) n = coeff p n div unit-factor (lead-coeff p)
by (simp add: normalize-poly-eq-map-poly coeff-map-poly)
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class field-unit-factor = field + unit-factor +
assumes unit-factor-field [simp|: unit-factor = id
begin

subclass semidom-divide-unit-factor
proof

fix a

assume g # 0

then have I = a x inverse a by simp

then have a dvd 1 ..

then show unit-factor a dvd 1 by simp
qed simp-all

end

lemma unit-factor-pCons:
unit-factor (pCons a p) = (if p = 0 then [zunit-factor a:] else unit-factor p)
by (simp add: unit-factor-poly-def)

lemma normalize-monom [simp|: normalize (monom a n) = monom (normalize
a) n

by (cases a = 0) (simp-all add: map-poly-monom normalize-poly-eq-map-poly
degree-monom-eq)

lemma unit-factor-monom [simp): unit-factor (monom a n) = [:unit-factor a:]
by (cases a = 0) (simp-all add: unit-factor-poly-def degree-monom-eq)

lemma normalize-const-poly: normalize [:c:] = [:normalize c:
by (simp add: normalize-poly-eq-map-poly map-poly-pCons)

lemma normalize-smult:
fixes ¢ :: 'a :: {normalization-semidom-multiplicative, idom-divide}
shows normalize (smult ¢ p) = smult (normalize ¢) (normalize p)
proof —
have smult ¢ p = [:¢:] * p by simp
also have normalize ... = smult (normalize ¢) (normalize p)
by (subst normalize-mult) (simp add: normalize-const-poly)
finally show ?thesis .
qed

instantiation poly :: (field) idom-modulo
begin

definition modulo-poly :: 'a poly = 'a poly = 'a poly
where mod-poly-def: f mod g =
(if g = 0 then f else pseudo-mod (smult ((1 / lead-coeff g) ~ (Suc (degree f) —
degree g)) f) g)
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instance
proof
fix zy :: 'a poly
show z divy * y + zmod y = x
proof (cases y = 0)
case True
then show ?thesis
by (simp add: divide-poly-0 mod-poly-def)
next
case Fulse
then have pseudo-divmod (smult ((1 / lead-coeff y) ~ (Suc (degree x) — degree
y) x) y =
(z div y, © mod y)
by (simp add: divide-poly-field mod-poly-def pseudo-mod-def)
with False pseudo-divmod [OF False this| show ?thesis
by (simp add: power-mult-distrib [symmetric] ac-simps)
qed
qed

end

lemma pseudo-divmod-eq-div-mod:
<pseudo-divmod f g = (f div g, f mod g)» if <lead-coeff g = 1»
using that by (auto simp add: divide-poly-field mod-poly-def pseudo-mod-def)

lemma degree-mod-less-degree:
<degree (x mod y) < degree y» if <y # 0> <— y dvd x>
proof —
from pseudo-mod(2) [of y] <y # O»
have x: <pseudo-mod fy # 0 = degree (pseudo-mod f y) < degree y»> for f
by blast
from <= y dvd x> have <x mod y # 0>
by blast
with (y # 0> show ?thesis
by (auto simp add: mod-poly-def intro: *)
qed

instantiation poly :: (field) unique-euclidean-ring
begin

definition euclidean-size-poly :: 'a poly = nat
where euclidean-size-poly p = (if p = 0 then 0 else 2 ~ degree p)

definition division-segment-poly :: 'a poly = 'a poly
where [simp|: division-segment-poly p = 1

instance proof

show (¢ *xp+ 1) divp = ¢ if <p £ O
and <euclidean-size r < euclidean-size p> for q p r :: <'a poly
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proof (cases «r = 0»)
case True
with that show ?Zthesis
by simp
next
case Fulse
with «p # 0> <euclidean-size v < euclidean-size p»
have <degree r < degree p»
by (simp add: euclidean-size-poly-def)
with «r # 0> have = p dvd
by (auto dest: dvd-imp-degree)
have «(¢xp+r) divp=q A (g*xp+ r) mod p =1
proof (rule ccontr)
assume <~ ?thesis)
moreover have x: «((¢*xp+ 1) divp — q) x p=1r — (¢ *x p + ) mod p
by (simp add: algebra-simps)
ultimately have (¢ x p + r) divp # ¢ and «(q * p + r) mod p #
using <p # 0» by auto
from <— p dvd r» have — p dvd (¢ * p + )
by simp
with «p # 0» have «degree ((¢ * p + ) mod p) < degree p
by (rule degree-mod-less-degree)
with <degree r < degree p» <«(q *x p + r) mod p #
have <degree (r — (¢ * p + r) mod p) < degree p»
by (auto intro: degree-diff-less)
also have «degree p < degree ((¢ * p + r) div p — q) + degree p»

by simp

also from (¢ x p + r) divp # ¢ <p # 0>

have «... = degree ((¢ x p + r) divp — q) * p)»
by (simp add: degree-mult-eq)

also from * have «... = degree (r — (¢ * p + r) mod p)
by simp

finally have <degree (r — (¢ * p + r) mod p) < degree (r — (¢ * p + r) mod
p) -
then show Fulse
by simp
qged
then show (¢ x p + 1) divp = @ ..
qed
qed (auto simp: euclidean-size-poly-def degree-mult-eq power-add intro: degree-mod-less-degree)

end

lemma euclidean-relation-polyl [case-names by0 divides euclidean-relation)]:
((z div y, x mod y) = (¢, )
ifbyd: «y=0=—=q=0ANr=uo
and divides: <y # 0 = ydvdz = r=0ANx = q* 1
and euclidean-relation: <y # 0 = - y dvd x = degree r < degree y \ © = q
* Y+
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by (rule euclidean-relationI)
(use that in <simp-all add: euclidean-size-poly-def»)

lemma div-poly-eq-0-iff:
wdivy=0<+—x=0Vy=0YV degree x < degree y> for x y :: ('a::field poly>
by (simp add: unique-euclidean-semiring-class. div-eq-0-iff euclidean-size-poly-def)

lemma div-poly-less:
<x divy = 0y if «degree x < degree y» for x y :: 'a::field poly>
using that by (simp add: div-poly-eq-0-iff)

lemma mod-poly-less:
<x mod y = x> if <degree x < degree y»
using that by (simp add: mod-eg-self-iff-div-eq-0 div-poly-eq-0-iff)

lemma degree-div-less:
<degree (x div y) < degree x>
if <degree x > 0> <degree y > 0>
for = y :: <'a::field poly,
proof (cases «x divy = 0»)
case True
with <degree z > 0> show ?thesis
by simp
next
case Fulse
from that have «x # 0> <y # 0>
and *: «degree (z divy * y +  mod y) > 0»
by auto
show ?thesis
proof (cases <y dvd z»)
case True
then obtain z where <z = y *x 2> ..
then have <degree (z div y) < degree (z div y * y)»
using <y # 0 <x # 0> «degree y > 0> by (simp add: degree-mult-eq)
with <y dvd x> show ?thesis
by simp
next
case Fulse
with <y # 0> have «degree (z mod y) < degree y»
by (rule degree-mod-less-degree)
with «y # 0) «x div y # 0» have «degree (x mod y) < degree (z div y * y)»
by (simp add: degree-mult-eq)
then have <degree (z div y * y + x mod y) = degree (x div y * y)»
by (rule degree-add-eq-left)
with «y # 0» <z div y # 0> «degree y > 0> show ?thesis
by (simp add: degree-mult-eq)
qed
qed
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lemma degree-mod-less”: b # 0 = a mod b # 0 = degree (a mod b) < degree b
by (rule degree-mod-less-degree) auto

lemma degree-mod-less: y # 0 = z mod y = 0 V degree (z mod y) < degree y
using degree-mod-less’ by blast

lemma div-smult-left: <smult a = divy = smult o (z div y)> (is ?Q)
and mod-smult-left: <smult a x mod y = smult a (z mod y)» (is ?R)
for x y :: 'a:field poly>
proof —
have «(smult a = div y, smult a x mod y) = (smult a (z div y), smult a (x mod
)
proof (cases <a = 0»)
case True
then show ?thesis
by simp
next
case Fulse
show ?thesis
by (rule euclidean-relation-polyl)
(use False in «<simp-all add: dvd-smult-iff degree-mod-less-degree flip: smult-add-right)
qed
then show ?@Q) and ?R
by simp-all
qed

lemma poly-div-minus-left [simp]: (— z) divy = — (z div y)
for z y :: 'a:field poly
using div-smult-left [of — 1::'a] by simp

lemma poly-mod-minus-left [simp]: (— z) mod y = — (z mod y)
for z y :: 'a::field poly
using mod-smult-left [of — 1::'a] by simp

lemma poly-div-add-left: «(x + y) div z = z div z + y div 2> (is ?Q)
and poly-mod-add-left: «(x + y) mod z =  mod z + y mod 2> (is ?R)
for z y z :: 'a::field poly»

proof —
have «((z + y) div z, (x + y) mod z) = (x div z + y div z, £ mod z + y mod z)»
proof (induction rule: euclidean-relation-polyl)

case byl

then show ?case by simp

next

case divides

then obtain w where x + y = z *x w»
by blast

then have y: <y = 2z % w —
by (simp add: algebra-simps)

from <z # 0> show ?case
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using mod-mult-self [of z w «— ] div-mult-selfs [of z w <— x>
by (simp add: algebra-simps y)
next
case euclidean-relation
then have <degree (x mod z + y mod z) < degree z»
using degree-mod-less-degree [of z x| degree-mod-less-degree [of z y]
dvd-add-right-iff [of z x y] dvd-add-left-iff [of z y x|
by (cases <z dvd = V z dvd y») (auto intro: degree-add-less)
moreover have <z + y = (z div 2 + y div z) * z + (x mod z + y mod 2)
by (simp add: algebra-simps)
ultimately show Zcase
by simp
qed
then show ?Q and “R
by simp-all
qed

lemma poly-div-diff-left: (x — y) div z = z div z — y div z
for z y 2z :: a:field poly
by (simp only: diff-conv-add-uminus poly-div-add-left poly-div-minus-left)

lemma poly-mod-diff-left: (x — y) mod z = x mod z — y mod 2
for z y 2z :: 'a::field poly
by (simp only: diff-conv-add-uminus poly-mod-add-left poly-mod-minus-left)

lemma div-smult-right: <x div smult a y = smult (inverse a) (x div y)> (is ?Q)
and mod-smult-right: «x mod smult a y = (if a = 0 then z else x mod y)> (is ?R)
proof —
have «(z div smult a y, x mod smult a y) = (smult (inverse a) (x div y), (if a =
0 then z else x mod y))»
proof (induction rule: euclidean-relation-polyl)
case byl
then show ?case by auto
next
case divides
moreover define w where <w = z div y»
ultimately have <z = y * w»
by (simp add: smult-dvd-iff)
with divides show ?case
by simp
next
case euclidean-relation
then show ?case
by (simp add: smult-dvd-iff degree-mod-less-degree)
qed
then show ?Q and “R
by simp-all
qed
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lemma mod-mult-unit-eq:
<z mod (z x y) = x mod
if <is-unit 2
for z y z :: 'a::field poly»
proof (cases <y = 0)
case True
then show ?thesis
by simp
next
case Fulse
moreover have <z # 0
using that by auto
moreover define a where <a = lead-coeff 2>
ultimately have «z = [:a:]» <a # 0>
using that monom-0 [of a] by (simp-all add: is-unit-monom-trivial)
then show ?thesis
by (simp add: mod-smult-right)

qed
lemma poly-div-minus-right [simp]: z div (— y) = — (z div y)
for z y :: 'a::field poly
using div-smult-right [of - — 1::'a] by (simp add: nonzero-inverse-minus-eq)

lemma poly-mod-minus-right [simp]: © mod (— y) = z mod y
for z y :: 'a::field poly
using mod-smult-right [of - — 1::'a] by simp
lemma poly-div-mult-right: <x div (y x z) = (z div y) div 2> (is ?Q)
and poly-mod-mult-right: «x mod (y * z) = y * (z div y mod z) + x mod y» (is
?R)
for z y z :: 'a::field poly»
proof —
have «(z div (y * 2), x mod (y * z)) = ((z div y) div z, y * (z div y mod z) + =
mod y)»
proof (induction rule: euclidean-relation-polyl)
case byl
then show ?case by auto
next
case divides
then show ?case by auto
next
case euclidean-relation
then have <y # 0 <z # O
by simp-all
with = y % z dvd 2> have (degree (y * (z div y mod z) + = mod y) < degree
(y * 2)
using degree-mod-less-degree [of y ] degree-mod-less-degree [of z «x div y»]
degree-add-eq-left [of «x mod y» <y * (z div y mod z))]
by (cases <z dvd z div y»; cases <y dvd x»)
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(auto simp add: degree-mult-eq not-dvd-imp-mod-neq-0 dvd-div-iff-mult)
moreover have (x = x div y div z x (y * z) + (y * (x div y mod z) + = mod
y)
by (simp add: field-simps flip: distrib-left)
ultimately show ?case
by simp
qed
then show ?@Q) and 7R
by simp-all
qed

lemma dvd-pCons-imp-dvd-pCons-mod:
<y dvd pCons a (x mod y)» if <y dvd pCons a x>

proof —
have «pCons a © = pCons a (z div y * y + z mod y)»
by simp
also have «... = pCons 0 (z div y x y) + pCons a (z mod y)>
by simp

also have (pCons 0 (z div y * y) = (z div y * monom 1 (Suc 0)) *
by (simp add: monom-Suc)
finally show <y dvd pCons a (z mod y)»
using <y dvd pCons a z» by simp
qed

lemma degree-less-if-less-eql:
<degree x < degree y» if «degree x < degree y> <coeff x (degree y) = 0> <x # 0>
proof (cases «degree © = degree y»)
case True
with <coeff z (degree y) = 0> have <lead-coeff z = 0»
by simp
then have <z = 0»
by simp
with «x # 0> show ?thesis
by simp
next
case Fulse
with <degree © < degree y> show ?thesis
by simp
qed

lemma div-pCons-eq:
«pCons a p div ¢ = (if ¢ = 0 then 0 else pCons (coeff (pCons a (p mod q))
(degree q) | lead-coeff q) (p div q))» (is 2Q)
and mod-pCons-eq:
<pCons a p mod q = (if ¢ = 0 then pCons a p else pCons a (p mod q) — smult
(coeff (pCons a (p mod q)) (degree q) / lead-coeff q) q)» (is ?R)
for z y :: <'a::field poly»
proof —
have «?Q)» and <?R) if «¢ = O»
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using that by simp-all
moreover have «?()y and <?R» if «q # 0>
proof —
define b where b = coeff (pCons a (p mod q)) (degree q) / lead-coeff ¢»
have «(pCons a p div q, pCons a p mod q) =
(pCons b (p div q), (pCons a (p mod q) — smult b q))> (is - = (?q, ?r))
proof (induction rule: euclidean-relation-polyl)

case byl
with <q¢ # 0> show ?Zcase by simp
next

case divides
show ?case
proof (cases <pCons a (p mod q) = 0)
case True
then show ?thesis
by (auto simp add: b-def)
next
case Fulse
have <q dvd pCons a (p mod q)»
using «q dvd pCons a p» by (rule dvd-pCons-imp-dvd-pCons-mod)
then obtain s where x: <pCons a (p mod q) = q * s ..
with False have «s # 0
by auto
from <«g # 0> have «degree (pCons a (p mod q)) < degree ¢
by (auto simp add: Suc-le-eq intro: degree-mod-less-degree)
moreover from <s # ) have «degree ¢ < degree (pCons a (p mod q))»
by (simp add: degree-mult-right-le *)
ultimately have <degree (pCons a (p mod q)) = degree ¢
by (rule order.antisym)
with s # 0» <q¢ # 0> have <«degree s = 0>
by (simp add: * degree-mult-eq)
then obtain ¢ where «s = [:¢:]>
by (rule degree-eq-zeroE)
also have «¢c = b
using «q # 0> by (simp add: b-def * <s = [:¢:]»)
finally have <smult b ¢ = pCons a (p mod q)»
by (simp add: *)
then show ?thesis
by simp
qed
next
case euclidean-relation
then have <degree ¢ > 0>
using is-unit-iff-degree by blast
from <q # 0> have «degree (pCons a (p mod q)) < degree ¢
by (auto simp add: Suc-le-eq intro: degree-mod-less-degree)
moreover have (degree (smult b q) < degree ¢
by (rule degree-smult-le)
ultimately have <degree (pCons a (p mod q) — smult b q) < degree ¢
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by (rule degree-diff-le)
moreover have <coeff (pCons a (p mod q) — smult b q) (degree q) = 0»
using <degree ¢ > 0> by (auto simp add: b-def)
ultimately have «degree (pCons a (p mod q) — smult b q) < degree ¢
using <degree ¢ > 0>
by (cases <pCons a (p mod q) = smult b ¢»)
(auto intro: degree-less-if-less-eql)
then show ?case
by simp
qed
with «¢ # 0» show ?Q) and ?R
by (simp-all add: b-def)
qed
ultimately show ?Q and ?R
by simp-all
qed

lemma div-mod-fold-coeffs:
(p div q, p mod q) =
(if ¢ = 0 then (0, p)
else
fold-coeffs
(Ma (s, 7).
let b = coeff (pCons a ) (degree q) / coeff q (degree q)
in (pCons b s, pCons a r — smult b q)) p (0, 0))
by (rule sym, induct p) (auto simp: div-pCons-eq mod-pCons-eq Let-def)

lemma mod-pCons:
fixes a :: 'a:field
and z y :: 'a::field poly
assumes y: y # 0
defines b = coeff (pCons a (x mod y)) (degree y) / coeff y (degree y)
shows (pCons a ) mod y = pCons a (x mod y) — smult b y
unfolding b-def
by (simp add: mod-pCons-eq)

4.30.4 List-based versions for fast implementation

fun minus-poly-rev-list :: 'a :: group-add list = 'a list = 'a list
where
minus-poly-rev-list (z # xs) (y # ys) = (z — y) # (minus-poly-rev-list xs ys)
| minus-poly-rev-list xs [| = xs
| minus-poly-rev-list || (y # ys) = ||

fun pseudo-divmod-main-list ::
‘a::comm-ring-1 = 'a list = 'a list = 'a list = nat = ‘a list x 'a list
where
pseudo-divmod-main-list lc ¢ v d (Suc n) =
(let
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rr = map ((x) le) r;
a = hdr;
qqq = cCons a (map ((x) lc) q);
rrr = tl (if a = 0 then rr else minus-poly-rev-list rr (map ((x) a) d))
in pseudo-divmod-main-list lc qqq rrr d n)
| pseudo-divmod-main-list lc g v d 0 = (g, )

fun pseudo-mod-main-list :: 'a::comm-ring-1 = 'a list = 'a list = nat = 'a list
where
pseudo-mod-main-list lc v d (Suc n) =

(let
rr = map ((x) le) r;
a = hdr;

rrr = tl (if a = 0 then rr else minus-poly-rev-list rr (map ((x) a) d))
in pseudo-mod-main-list lc rrr d n)
| pseudo-mod-main-list lc rd 0 = r

fun divmod-poly-one-main-list ::
‘a::comm-ring-1 list = 'a list = 'a list = nat = ‘a list x 'a list
where
divmod-poly-one-main-list ¢ v d (Suc n) =
(let
a = hdr;
qqq = cCons a g;
rr = tl (if a = 0 then r else minus-poly-rev-list r (map ((%) a) d))
in divmod-poly-one-main-list qqq rr d n)
| divmod-poly-one-main-list ¢ v d 0 = (q, )

fun mod-poly-one-main-list :: 'a::comm-ring-1 list = 'a list = nat = 'a list
where
mod-poly-one-main-list v d (Suc n) =
(let
a = hdr;
rr = tl (if a = 0 then r else minus-poly-rev-list v (map ((%) a) d))
in mod-poly-one-main-list rr d n)
| mod-poly-one-main-list r d 0 = r

definition pseudo-divmod-list :: 'a::comm-ring-1 list = 'a list = 'a list x 'a list
where pseudo-divmod-list p q =

(if ¢ =[] then ([}, p)

else
(let rqg = rev g;
(qu,re) = pseudo-divmod-main-list (hd rq) [| (rev p) rq (1 + length p —
length q)
in (qu, rev re)))

definition pseudo-mod-list :: 'a::comm-ring-1 list = 'a list = 'a list
where pseudo-mod-list p ¢ =
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(if ¢ = [) then p

else

(let
rq = Tev ¢
re = pseudo-mod-main-list (hd rq) (rev p) rq (1 + length p — length q)
in rev re))

lemma minus-zero-does-nothing: minus-poly-rev-list z (map ((x) 0) y) = z
for z :: 'a::ring list
by (induct z y rule: minus-poly-rev-list.induct) auto

lemma length-minus-poly-rev-list [simp)]: length (minus-poly-rev-list xs ys) = length
xs
by (induct zs ys rule: minus-poly-rev-list.induct) auto

lemma if-0-minus-poly-rev-list:
(if a = 0 then z else minus-poly-rev-list z (map ((x) a) y)) =
minus-poly-rev-list z (map ((x) a) y)
for a :: 'a::ring
by(cases a = 0) (simp-all add: minus-zero-does-nothing)

lemma Poly-append: Poly (a @ b) = Poly a + monom 1 (length a) x Poly b
for a :: 'a::comm-semiring-1 list
by (induct a) (auto simp: monom-0 monom-Suc)

lemma minus-poly-rev-list: length p > length ¢ =
Poly (rev (minus-poly-rev-list (rev p) (rev q))) =
Poly p — monom 1 (length p — length q) x Poly q
for p q :: 'a :: comm-ring-1 list
proof (induct rev p rev q arbitrary: p q rule: minus-poly-rev-list.induct)
case (1 z xs y ys)
then have length (rev q) < length (rev p)
by simp
from this[folded 1(2,3)] have ys-zs: length ys < length xs
by simp
then have *: Poly (rev (minus-poly-rev-list zs ys)) =
Poly (rev zs) — monom 1 (length xs — length ys) x Poly (rev ys)
by (subst 1.hyps(1)[of rev zs rev ys, unfolded rev-rev-ident length-rev]) auto
have Poly p — monom 1 (length p — length q) * Poly ¢ =
Poly (rev (rev p)) — monom 1 (length (rev (rev p)) — length (rev (rev q))) *
Poly (rev (rev q))
by simp
also have ... =
Poly (rev (x # xzs)) — monom 1 (length (x # zs) — length (y # ys)) x Poly
(rev (y # ys))
unfolding 1(2,3) by simp
also from ys-zs have ... =
Poly (rev zs) + monom x (length xs) —
(monom 1 (length xs — length ys) = Poly (rev ys) + monom y (length xs))
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by (simp add: Poly-append distrib-left mult-monom smult-monom)
also have ... = Poly (rev (minus-poly-rev-list xs ys)) + monom (x — y) (length
xs)
unfolding * diff-monom[symmetric] by simp
finally show ?Zcase
by (simp add: 1(2,3)[symmetric] smult-monom Poly-append)
qed auto

lemma smult-monom-mult: smult a (monom b n * f) = monom (a * b) n * f
using smult-monom [of a - n] by (metis mult-smult-left)

lemma head-minus-poly-rev-list:
length d < length r = d # [| =
hd (minus-poly-rev-list (map ((x) (last d)) r) (map ((x) (hd 7)) (rev d))) = 0
for d r :: 'a::comm-ring list
proof (induct r)
case Nil
then show ?case by simp
next
case (Cons a rs)
then show ?Zcase by (cases rev d) (simp-all add: ac-simps)
qged

lemma Poly-map: Poly (map ((x) a) p) = smult a (Poly p)
proof (induct p)
case Nil
then show ?Zcase by simp
next
case (Cons z zs)
then show ?case by (cases Poly xs = 0) auto
qed

lemma last-coeff-is-hd: xs # [| = coeff (Poly xs) (length zs — 1) = hd (rev zs)
by (simp-all add: hd-conv-nth rev-nth nth-default-nth nth-append)

lemma pseudo-divmod-main-list-invar:
assumes leading-nonzero: last d # 0
and lc: last d = lc
and d # ||
and pseudo-divmod-main-list lc q (rev r) (rev d) n = (¢’, rev r’)
and n = 1 + length r — length d
shows pseudo-divmod-main lc (monom 1 n x Poly q) (Poly r) (Poly d) (length r
—1)n=
(Poly q', Poly 1)
using assms(4—)
proof (induct n arbitrary: r q)
case (Suc n)
from Suc.prems have x: = Suc (length ) < length d
by simp
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with <d # [» have r # [
using Suc-lel length-greater-0-conv list.size(3) by fastforce
let %a = (hd (rev 1))
let 2rr = map ((x) lc) (rev r)
let ?rrr = rev (tl (minus-poly-rev-list ?rr (map ((x) %a) (rev d))))
let 2qq = cCons ?a (map ((x) lc) q)
from * Suc(3) have n: n = (1 + length r — length d — 1)
by simp
from x have rr-val:(length ?rrr) = (length r — 1)
by auto
with «r # [ % have rr-smaller: (1 + length r — length d — 1) = (1 + length
2rrr — length d)
by auto
from * have id: Suc (length r) — length d = Suc (length r — length d)
by auto
from Suc.prems %
have pseudo-divmod-main-list lc 2qq (rev ?rrr) (rev d) (1 + length r — length d
— 1) = (¢!, rew )
by (simp add: Let-def if-0-minus-poly-rev-list id)
with n have v: pseudo-divmod-main-list lc ?qq (rev 2rrr) (rev d) n = (¢, rev r’)
by auto
from * have sucrr:Suc (length r) — length d = Suc (length r — length d)
using Suc-diff-le not-less-eq-eq by blast
from Suc(8) <r # []» have n-ok : n = 1 + (length ?rrr) — length d
by simp
have cong: Azl 22 3 x4 y1 y2 y3 y4. x1 = yl — 22 = y2 — 18 = y3 —
T4 = yj =
pseudo-divmod-main lc 1 2 x3 x4 n = pseudo-divmod-main lc y1 y2 y3 y4 n
by simp
have hd-rev: coeff (Poly r) (length r — Suc 0) = hd (rev r)
using last-coeff-is-hd[OF <r # [b] by simp
show Zcase
unfolding Suc.hyps(1)[OF v n-ok, symmetric] pseudo-divmod-main.simps Let-def
proof (rule cong[OF - - refl], goal-cases)
case ]
show ?Zcase
by (simp add: monom-Suc hd-rev[symmetric] smult-monom Poly-map)
next
case 2
show ?Zcase
proof (subst Poly-on-rev-starting-with-0, goal-cases)
show hd (minus-poly-rev-list (map ((%) lc) (rev r)) (map ((x) (hd (rev 1)))
(rev d))) = 0
by (fold lc, subst head-minus-poly-rev-list, insert * <«d # []>, auto)
from x have length d < length r
by simp
then show smult lc (Poly r) — monom (coeff (Poly r) (length r — 1)) n x
Poly d =
Poly (rev (minus-poly-rev-list (map ((x) le) (rev r)) (map ((x) (hd (rev
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r))) (rev d))))

by (fold rev-map) (auto simp add: n smult-monom-mult Poly-map hd-rev
[symmetric]
minus-poly-rev-list)
qed
qed simp
qed simp

lemma pseudo-divmod-impl [code]:
pseudo-divmod | g = map-prod poly-of-list poly-of-list (pseudo-divmod-list (coeffs
f) (coeffs g))
for f g :: 'a::comm-ring-1 poly
proof (cases g = 0)
case Fulse
then have last (coeffs g) # 0
and last (coeffs g) = lead-coeff g
and coeffs g # ||
by (simp-all add: last-coeffs-eq-coeff-degree)
moreover obtain ¢ r where ¢r: pseudo-divmod-main-list
(last (coeffs g)) (rev [])
(rev (coeffs f)) (rev (coeffs g))
(1 + length (coeffs ) —
length (coeffs g)) = (g, rev (rev r))
by force
ultimately have (Poly q, Poly (rev 1)) = pseudo-divmod-main (lead-coeff g) 0
[y
(length (coeffs f) — Suc 0) (Suc (length (coeffs f)) — length (coeffs g))
by (subst pseudo-divmod-main-list-invar [symmetric]) auto
moreover have pseudo-divmod-main-list

(hd (rev (coeffs g))) ||
(rev (coeffs f)) (rev (coeffs g))
(1 + length (coeffs ) —
length (coeffs g)) = (q, 7)
by (metis hd-rev qr rev.simps(1) rev-swap)
ultimately show ?thesis
by (simp add: degree-eq-length-coeffs pseudo-divmod-def pseudo-divmod-list-def)
next
case True
then show ?thesis
by (auto simp add: pseudo-divmod-def pseudo-divmod-list-def)
qed

lemma pseudo-mod-main-list:
snd (pseudo-divmod-main-list | q xs ys n) = pseudo-mod-main-list | s ys n
by (induct n arbitrary: 1 q xs ys) (auto simp: Let-def)

lemma pseudo-mod-impl[code]: pseudo-mod f g = poly-of-list (pseudo-mod-list (coeffs
f) (coeffs g))

proof —
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have snd-case: \f g p. snd (A (z,y). (fz, g y)) p) = g (snd p)
by auto
show ?thesis
unfolding pseudo-mod-def pseudo-divmod-impl pseudo-divmod-list-def
pseudo-mod-list-def Let-def
by (simp add: snd-case pseudo-mod-main-list)
qed

4.30.5 Improved Code-Equations for Polynomial (Pseudo) Divi-
sion

lemma pdivmod-via-pseudo-divmod:
«(f div g, f mod g) =
(if g = 0 then (0, f)
else
let
ile = inverse (lead-coeff g);
h = smult ilc g;
(q,7) = pseudo-divmod f h
in (smult ilc q, 7))
(is <2l = 9m)
proof (cases <g = 0»)
case True
then show ?thesis by simp
next
case Fulse
define ilc where <ilc = inverse (lead-coeff g)»
define h where <h = smult ilc ¢
from False have <lead-coeff h = 1»
and <ilc # 0>
by (auto simp: h-def ilc-def)
define ¢ r where (¢ = f div hy and <r = f mod h»
with <lead-coeff h = 1> have p: <pseudo-divmod f h = (q, r)»
by (simp add: pseudo-divmod-eq-div-mod)
from «ilc # 0> have «(f div g, f mod g) = (smult ilc q, r)»
by (auto simp: h-def div-smult-right mod-smult-right q-def r-def)
also have «(smult ilc q, r) = %r
using <g # 0» by (auto simp: Let-def p simp flip: h-def ilc-def)
finally show ?thesis .
qed

lemma pdivmod-via-pseudo-divmod-list:

(f div g, f mod g) =
(let cg = coeffs g in

if cg =[] then (0, f)
else
let

cf = coeffs f;

ile = inverse (last cg);

207



ch = map ((x) ilc) cg;
(g, ) = pseudo-divmod-main-list 1 [] (rev cf) (rev ch) (1 + length cf —
length cg)
in (poly-of-list (map ((x) ilc) q), poly-of-list (rev r)))
proof —
note d = pdivmod-via-pseudo-divmod pseudo-divmod-impl pseudo-divmod-list-def
show ?thesis
proof (cases g = 0)
case True
with d show “thesis by auto
next
case Fulse
define ilc where ilc = inverse (coeff g (degree g))
from Fulse have ilc: ilc # 0
by (auto simp: ilc-def)

with False have id: g = 0 <— False coeffs g = [] +— Fulse
last (coeffs g) = coeff g (degree g)
coeffs (smult ilc g) = [| +— False

by (auto simp: last-coeffs-eq-coeff-degree)
have id2: hd (rev (coeffs (smult ilc g))) = 1
by (subst hd-rev, insert id ilc, auto simp: coeffs-smult, subst last-map, auto
sitmp: id ilc-def)
have id3: length (coeffs (smult ilc g)) = length (coeffs g)
rev (coeffs (smult ilc g)) = rev (map ((x) ilc) (coeffs g))
unfolding coeffs-smult using ilc by auto
obtain ¢ r where pair:
pseudo-divmod-main-list 1 [] (rev (coeffs f)) (rev (map ((x) dlc) (coeffs g)))
(1 + length (coeffs f) — length (coeffs g)) = (¢, 7)
by force
show ?thesis
unfolding d Let-def id if-False ilc-def [symmetric] map-prod-def|symmetric]
id2
unfolding id3 pair map-prod-def split
by (auto simp: Poly-map)
qed
qed

lemma pseudo-divmod-main-list-1: pseudo-divmod-main-list 1 = divmod-poly-one-main-list
proof (intro ext, goal-cases)
case (1 grdn)
have *: map ((x) 1) zs = zs for xs :: 'a list
by (induct xs) auto
show ?Zcase
by (induct n arbitrary: q r d) (auto simp: * Let-def)
qed

fun divide-poly-main-list :: 'a::idom-divide = 'a list = 'a list = 'a list = nat =

‘a list
where
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divide-poly-main-list lc ¢ r d (Suc n) =

(let
cr=hdr
in if cr = 0 then divide-poly-main-list lc (cCons cr q) (tl r) d n else let
a = cr div lc;
qq = cCons a ¢
rr = minus-poly-rev-list v (map ((%) a) d)

in if hd rr = 0 then divide-poly-main-list lc qq (tl rr) d n else [])

| divide-poly-main-list lc ¢ rd 0 = q

lemma divide-poly-main-list-simp [simp]:
divide-poly-main-list lc ¢ v d (Suc n) =
(let
cr = hd r;
a = cr div lc;
qq = cCons a g;
rr = minus-poly-rev-list v (map ((x) a) d)
in if hd rr = 0 then divide-poly-main-list lc qq (tl rr) d n else [])
by (simp add: Let-def minus-zero-does-nothing)

declare divide-poly-main-list.simps(1)[simp del]

definition divide-poly-list :: 'a::idom-divide poly = 'a poly = 'a poly
where divide-poly-list f g =
(let cg = coeffs g in
if cg =[] then g
else
let
cf = coeffs f;
cgr = rev cg
in poly-of-list (divide-poly-main-list (hd cgr) || (rev cf) cgr (1 + length cf
— length cg)))

lemmas pdivmod-via-divmod-list = pdivmod-via-pseudo-divmod-list[unfolded pseudo-divmod-main-list-1]
lemma mod-poly-one-main-list: snd (divmod-poly-one-main-list g r d n) = mod-poly-one-main-list
rdn

by (induct n arbitrary: q r d) (auto simp: Let-def)

lemma mod-poly-code [code]:

fmod g =
(let cg = coeffs g in
if cg =[] then f
else
let
cf = coeffs f;

ile = inverse (last cg);
ch = map ((x) ilc) cg;
r = mod-poly-one-main-list (rev cf) (rev ch) (1 + length c¢f — length cg)
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in poly-of-list (rev 1))
(is - = %rhs)
proof —
have snd (f div g, f mod g) = ?rhs
unfolding pdivmod-via-divmod-list Let-def mod-poly-one-main-list [symmetric,
of - - - Nil
by (auto split: prod.splits)
then show ?thesis by simp
qed

definition div-field-poly-impl :: 'a :: field poly = 'a poly = 'a poly
where div-field-poly-impl f g =
(let cg = coeffs g in
if cg =[] then 0
else
let
cf = coeffs f;
ile = inverse (last cg);
ch = map ((*) ilc) cg;
q = fst (divmod-poly-one-main-list [| (rev cf) (rev ch) (1 + length c¢f —
length cg))
in poly-of-list ((map ((x) ilc) q)))

We do not declare the following lemma as code equation, since then poly-
nomial division on non-fields will no longer be executable. However, a code-
unfold is possible, since div-field-poly-impl is a bit more efficient than the
generic polynomial division.

lemma div-field-poly-impl|code-unfold): (div) = div-field-poly-impl
proof (intro ext)
fix fg:: 'a poly
have fst (f div g, f mod g) = div-field-poly-impl f g
unfolding div-field-poly-impl-def pdivmod-via-divmod-list Let-def
by (auto split: prod.splits)
then show f div g = div-field-poly-impl f g
by simp
qed

lemma divide-poly-main-list:
assumes [c0: lc # 0
and lc: last d = lc
and d: d # ||
and n = (1 + length r — length d)
shows Poly (divide-poly-main-list lc q (rev r) (rev d) n) =
divide-poly-main lc (monom 1 n % Poly q) (Poly r) (Poly d) (length r — 1) n
using assms(4—)
proof (induct n arbitrary: r q)
case (Suc n)
from Suc.prems have ifCond: — Suc (length r) < length d
by simp
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with d have r: r #£ [|
using Suc-lel length-greater-0-conv list.size(3) by fastforce
then obtain rr ler where r: r = rr @ [lcr]
by (cases r rule: rev-cases) auto
from d lc obtain dd where d: d = dd Q [I]
by (cases d rule: rev-cases) auto
from Suc(2) ifCond have n: n = 1 + length rr — length d
by (auto simp: )
from ifCond have len: length dd < length rr
by (simp add: r d)
show Zcase
proof (cases ler div le x le = ler)
case Fulse
with r d show ?thesis
unfolding Suc(2)[symmetric]
by (auto simp add: Let-def nth-default-append)
next
case True
with r d have id:
?thesis «—
Poly (divide-poly-main-list lc (¢cCons (ler div lc) q)
(rev (rev (minus-poly-rev-list (rev rr) (rev (map ((x) (ler div lc)) dd)))))
(rev d) n) =
divide-poly-main lc
(monom 1 (Suc n) * Poly ¢ + monom (ler div lc) n)
(Poly r — monom (ler div Ic) n % Poly d)
(Poly d) (length rr — 1) n
by (cases r rule: rev-cases; cases d rule: rev-cases)
(auto simp add: Let-def rev-map nth-default-append)
have cong: Azl 22 28 24 y1 y2 yS y4. vl = yl = 22 = y2 — 23 = y3 —
T4 = y4 =
divide-poly-main lc x1 z2 x8 x4 n = divide-poly-main lc yI y2 y3 y4 n
by simp
show ?thesis
unfolding id
proof (subst Suc(1), simp add: n,
subst minus-poly-rev-list, force simp: len, rule cong|OF - - refl], goal-cases)
case 2
have monom ler (length rr) = monom (ler div lc) (length rr — length dd) *
monom lc (length dd)
by (simp add: mult-monom len True)
then show ?case unfolding r d Poly-append n ring-distribs
by (auto simp: Poly-map smult-monom smult-monom-mult)
qed (auto simp: len monom-Suc smult-monom)
qed
qed simp

lemma divide-poly-list[code]: f div g = divide-poly-list f ¢
proof —
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note d = divide-poly-def divide-poly-list-def
show ?thesis
proof (cases g = 0)
case True
show ?thesis by (auto simp: d True)
next
case Fulse
then obtain cg leg where cg: coeffs g = cg Q [leg]
by (cases coeffs g rule: rev-cases) auto
with False have id: (¢ = 0) = False (cg Q [lcg] = []) = False
by auto
from cg False have lcg: coeff g (degree g) = lcg
using last-coeffs-eq-coeff-degree last-snoc by force
with False have lcg # 0 by auto
from cg Poly-coeffs [of g] have ltp: Poly (cg @ [lcg]) = g
by auto
show ?thesis
unfolding d cg Let-def id if-False poly-of-list-def
by (subst divide-poly-main-list, insert False cg <lcg # 0»)
(auto simp: leg ltp, simp add: degree-eq-length-coeffs)
qged
qed

lemma poly-mod:
poly (p mod q) © = poly p x if poly gz = 0
proof —
from that have poly (p mod q) x = poly (p div ¢ x q) z + poly (p mod q) x
by simp
also have ... = poly p z
by (simp only: poly-add [symmetric]) simp
finally show ?thesis .
qed

4.31 Primality and irreducibility in polynomial rings

lemma prod-mset-const-poly: ([[z€#A. [:f x:]) = [:prod-mset (image-mset f A):]
by (induct A) (simp-all add: ac-simps)

lemma irreducible-const-poly-iff:
fixes ¢ :: 'a 1 {comm-semiring-1,semiring-no-zero-divisors}
shows irreducible [:c:] «— irreducible c
proof
assume A: irreducible ¢
show drreducible [:c:]
proof (rule irreduciblel)
fix a b assume ab: [:c:] = a * b
hence degree [:c:] = degree (a * b) by (simp only: )
also from A ab have a # 0 b # 0 by auto
hence degree (a * b) = degree a + degree b by (simp add: degree-mult-eq)
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finally have degree a = 0 degree b = 0 by auto

then obtain a’ b’ where ab”: a = [:a”] b = [:b"] by (auto elim!: degree-eq-zeroE)
from ab have coeff [:c:] 0 = coeff (a * b) 0 by (simp only: )
hence ¢ = a’ x b’ by (simp add: ab’ mult-ac)
from A and this have a’ dvd 1 V b’ dvd 1 by (rule irreducibleD)
with ab’ show a dvd 1 V b dvd 1

by (auto simp add: is-unit-const-poly-iff)
qed (insert A, auto simp: irreducible-def is-unit-poly-iff)
next

assume A: irreducible [:c:]

then have ¢ # 0 and — ¢ dvd 1
by (auto simp add: irreducible-def is-unit-const-poly-iff)

then show irreducible ¢

proof (rule irreduciblel)
fix a b assume ab: c = a x b
hence [:c:] = [:a:] * [:b:] by (simp add: mult-ac)
from A and this have [:a:] dvd 1 V [:b:] dvd 1 by (rule irreducibleD)
then show a dvd 1 V b dvd 1

by (auto simp add: is-unit-const-poly-iff)
qed
qed

lemma [lift-prime-elem-poly:
assumes prime-elem (c :: 'a :: semidom)
shows prime-elem [:c:]
proof (rule prime-eleml)
fix a b assume *: [:¢c:] dvd a * b
from * have dvd: ¢ dvd coeff (a x b) n for n
by (subst (asm) const-poly-dvd-iff) blast
{
define m where m = (GREATEST m. —c¢ dvd coeff b m)
assume —[:c:] dvd b
hence A: 3i. —c¢ dvd coeff b i by (subst (asm) const-poly-dvd-iff) blast
have B: Ai. —¢ dvd coeff b i = i < degree b
by (auto intro: le-degree)
have coeff-m: —c¢ dvd coeff b m unfolding m-def by (rule Greatestl-ez-nat|OF
A B)
have i < m if —c dvd coeff b i for ¢
unfolding m-def by (metis (mono-tags, lifting) B Greatest-le-nat that)
hence dvd-b: ¢ dvd coeff b i if ¢ > m for i using that by force

have ¢ dvd coeff a i for i
proof (induction i rule: nat-descend-induct[of degree a])
case (base 1)
thus ?case by (simp add: coeff-eq-0)
next
case (descend 1)
let ?A = {..i+m} — {i}
have ¢ dvd coeff (a * b) (i + m) by (rule dvd)
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also have coeff (a * b) (i + m) = O_k<i + m. coeff a k * coeff b (i + m
— W)
by (simp add: coeff-mult)
also have {..i+m} = insert i ?A by auto
also have (> ke.... coeff a k x coeff b (i + m — k)) =
coeff a i * coeff b m + (> ke ?A. coeff a k x coeff b (i + m — k))
(is - = -+ 29)
by (subst sum.insert) simp-all
finally have eq: ¢ dvd coeff a i * coeff b m + 2S5 .
moreover have ¢ dvd 7S
proof (rule dvd-sum)
fix k assume k: k € {..i+m} — {i}
show ¢ dvd coeff a k * coeff b (i + m — k)
proof (cases k < 1)
case Fulse
with k have ¢ dvd coeff a k by (intro descend.IH) simp
thus ?thesis by simp
next
case True
hence ¢ dvd coeff b (i + m — k) by (intro dvd-b) simp
thus ?thesis by simp
qged
qed
ultimately have ¢ dvd coeff a i * coeff b m
by (simp add: dvd-add-left-iff)
with assms coeff-m show c¢ dvd coeff a i
by (simp add: prime-elem-dvd-mult-iff)
qed
hence [:c:] dvd a by (subst const-poly-dvd-iff) blast
}
then show [:¢:] dvd a V [:¢:] dvd b by blast
next
from assms show [:c:] # 0 and — [:¢:] dvd 1
by (simp-all add: prime-elem-def is-unit-const-poly-iff)
qed

lemma prime-elem-const-poly-iff:
fixes ¢ :: 'a :: semidom
shows prime-elem [:c:] «— prime-elem ¢
proof
assume A: prime-elem [:¢:]
show prime-elem c
proof (rule prime-elemlI)
fix a b assume c dvd a * b
hence [:c:] dvd [:a:] * [:b:] by (simp add: mult-ac)
from A and this have [:c¢:] dvd [:a:] V [:¢:] dvd [:b:] by (rule prime-elem-dvd-multD)
thus c dvd a V ¢ dvd b by simp
qed (insert A, auto simp: prime-elem-def is-unit-poly-iff)
qed (auto intro: lift-prime-elem-poly)
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4.32 Content and primitive part of a polynomial

definition content :: 'a::semiring-ged poly = 'a
where content p = ged-list (coeffs p)

lemma content-eq-fold-coeffs [code]: content p = fold-coeffs ged p 0
by (simp add: content-def Ged-fin.set-eq-fold fold-coeffs-def foldr-fold fun-eq-iff
ac-simps)

lemma content-0 [simp]: content 0 = 0
by (simp add: content-def)
lemma content-1 [simp]: content 1 = 1
by (simp add: content-def)
lemma content-const [simp]: content [:c:] = normalize c

by (simp add: content-def cCons-def)

lemma const-poly-dvd-iff-dvd-content: [:c:] dvd p +— ¢ dvd content p
for c :: 'a::semiring-gcd
proof (cases p = 0)
case True
then show ?thesis by simp
next
case Fulse
have [:¢:] dvd p +— (Vn. ¢ dvd coeff p n)
by (rule const-poly-dvd-iff)
also have ... <— (Y a€set (coeffs p). ¢ dvd a)
proof safe
fix n :: nat
assume Y a€set (coeffs p). ¢ dvd a
then show ¢ dvd coeff p n
by (cases n < degree p) (auto simp: coeff-eq-0 coeffs-def split: if-splits)
qed (auto simp: coeffs-def simp del: upt-Suc split: if-splits)
also have ... <— ¢ dvd content p
by (simp add: content-def dvd-Ged-fin-iff dvd-mult-unit-iff)
finally show ?thesis .
qed

lemma content-dvd [simp]: [:content p:] dvd p
by (subst const-poly-dvd-iff-dvd-content) simp-all

lemma content-dvd-coeff [simp]: content p dvd coeff p n
proof (cases p = 0)

case True

then show ?thesis

by simp

next

case Fulse

then show ?thesis
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by (cases n < degree p)
(auto simp add: content-def not-le coeff-eq-0 coeff-in-coeffs intro: Ged-fin-dvd)
qed

lemma content-dvd-coeffs: ¢ € set (coeffs p) = content p dvd c
by (simp add: content-def Gcd-fin-dvd)

lemma normalize-content [simp]: normalize (content p) = content p
by (simp add: content-def)

lemma is-unit-content-iff [simp]: is-unit (content p) <— content p = 1
proof
assume is-unit (content p)
then have normalize (content p) = 1 by (simp add: is-unit-normalize del: nor-
malize-content)
then show content p = 1 by simp
qed auto

lemma content-smult [simp]:
fixes ¢ :: 'a :: {normalization-semidom-multiplicative, semiring-gcd}
shows content (smult ¢ p) = normalize ¢ x content p
by (simp add: content-def coeffs-smult Ged-fin-mult normalize-mult)

lemma content-eg-zero-iff [simpl: content p = 0 «— p = 0
by (auto simp: content-def simp: poly-eq-iff coeffs-def)

definition primitive-part :: 'a :: semiring-gcd poly = 'a poly
where primitive-part p = map-poly (Az. z div content p) p

lemma primitive-part-0 [simp]: primitive-part 0 = 0
by (simp add: primitive-part-def)

lemma content-times-primitive-part [simp): smult (content p) (primitive-part p) =
p
for p :: 'a :: semiring-gcd poly
proof (cases p = 0)
case True
then show ?thesis by simp
next
case Fulse
then show ?thesis
unfolding primitive-part-def
by (auto simp: smult-conv-map-poly map-poly-map-poly o-def content-dvd-coeffs
intro: map-poly-idl)
qed

lemma primitive-part-eq-0-iff [simpl: primitive-part p = 0 +— p = 0

proof (cases p = 0)
case True
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then show ?thesis by simp
next
case Fulse
then have primitive-part p = map-poly (Az. = div content p) p
by (simp add: primitive-part-def)
also from False have ... = 0 +— p =0
by (intro map-poly-eq-0-iff) (auto simp: dvd-div-eq-0-iff content-dvd-coeffs)
finally show ?thesis
using Fulse by simp
qed

lemma content-primitive-part [simp):
fixes p :: ‘a :: {normalization-semidom-multiplicative, semiring-ged} poly
assumes p # 0
shows content (primitive-part p) = 1

proof —
have p = smult (content p) (primitive-part p)
by simp
also have content ... = content (primitive-part p) * content p

by (simp del: content-times-primitive-part add: ac-simps)
finally have 1 x content p = content (primitive-part p) * content p
by simp
then have 1 x content p div content p = content (primitive-part p) x content p
div content p
by simp
with assms show ?thesis
by simp
qed

lemma content-decompose:
obtains p’ :: ‘a :: {normalization-semidom-multiplicative, semiring-ged} poly
where p = smult (content p) p’ content p’' = 1
proof (cases p = 0)
case True
then have p = smult (content p) 1 content 1 = 1
by simp-all
then show ?thesis ..
next
case Fulse
then have p = smult (content p) (primitive-part p) content (primitive-part p) =
1
by simp-all
then show ?thesis ..
qed

lemma content-dvd-contentl [intro]: p dvd ¢ = content p dvd content q
using const-poly-dvd-iff-dvd-content content-dvd dvd-trans by blast

lemma primitive-part-const-poly [simp]: primitive-part [:x:] = [unil-factor z:]
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by (simp add: primitive-part-def map-poly-pCons)

lemma primitive-part-prim: content p = 1 = primitive-part p = p
by (auto simp: primitive-part-def)

lemma degree-primitive-part [simp|: degree (primitive-part p) = degree p
proof (cases p = 0)
case True
then show ?thesis by simp
next
case Fulse
have p = smult (content p) (primitive-part p)
by simp
also from Fulse have degree ... = degree (primitive-part p)
by (subst degree-smult-eq) simp-all
finally show ?thesis ..
qed

lemma smult-content-normalize-primitive-part [simp):

fixes p :: ‘a :: {normalization-semidom-multiplicative, semiring-gcd, idom-divide}
poly

shows smult (content p) (normalize (primitive-part p)) = normalize p
proof —

have smult (content p) (normalize (primitive-part p)) =

normalize ([:content p:] * primitive-part p)
by (subst normalize-mult) (simp-all add: normalize-const-poly)

also have [:content p:] x primitive-part p = p by simp

finally show ?thesis .
qed

context
begin

private

lemma content-1-mult:
fixes f g :: 'a i {semiring-gcd, factorial-semiring} poly
assumes content f = 1 content g = 1
shows content (f x g) = 1
proof (cases f x g = 0)
case Fulse
from assms have f # 0 g # 0 by auto

hence f x g # 0 by auto
assume —is-unit (content (f * g))
with False have 3 p. p dvd content (f * g) A prime p

by (intro prime-divisor-exists) simp-all
then obtain p where p dvd content (f * g) prime p by blast
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from <p dvd content (f * g)» have [:p:] dvd f = g
by (simp add: const-poly-dvd-iff-dvd-content)
moreover from (prime p> have prime-elem [:p:] by (simp add: lift-prime-elem-poly)
ultimately have [:p:] dvd f V [:p:] dvd ¢
by (simp add: prime-elem-dvd-mult-iff)
with assms have is-unit p by (simp add: const-poly-dvd-iff-dvd-content)
with <prime p> have Fualse by simp
}
hence is-unit (content (f * g)) by blast
hence normalize (content (f * g)) = 1 by (simp add: is-unit-normalize del:
normalize-content)
thus ?thesis by simp
qed (insert assms, auto)

lemma content-mult:
fixes p q :: 'a :: {factorial-semiring, semiring-gcd, normalization-semidom-multiplicative}
poly
shows content (p * q) = content p x content q
proof (cases p x ¢ = 0)
case Fulse
then have p # 0 and ¢ # 0
by simp-all
then have *: content (primitive-part p * primitive-part q) = 1
by (auto intro: content-1-mult)
have p x ¢ = smult (content p) (primitive-part p) x smult (content q) (primitive-part
q)
by simp
also have ... = smult (content p x content q) (primitive-part p * primitive-part
)
by (metis mult.commute mult-smult-right smult-smult)
with * show ?thesis
by (simp add: normalize-mult)
next
case True
then show ?thesis
by auto
qed

end

lemma primitive-part-mult:
fixes p q :: 'a iz {factorial-semiring, semiring-Ged, ring-ged, idom-divide,
normalization-semidom-multiplicative} poly
shows primitive-part (p x q) = primitive-part p x primitive-part q
proof —
have primitive-part (p x q) = p * q div [:content (p * q):]
by (simp add: primitive-part-def div-const-poly-conv-map-poly)
also have ... = (p div [:content p:]) * (¢ div [:content q:])
by (subst div-mult-div-if-dvd) (simp-all add: content-mult mult-ac)
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also have ... = primitive-part p * primitive-part q
by (simp add: primitive-part-def div-const-poly-conv-map-poly)
finally show ?thesis .
qed

lemma primitive-part-smult:

fixes p :: 'a :: {factorial-semiring, semiring-Ged, ring-ged, idom-divide,

normalization-semidom-multiplicative} poly

shows primitive-part (smult a p) = smult (unit-factor a) (primitive-part p)
proof —

have smult a p = [:a:] * p by simp

also have primitive-part ... = smult (unit-factor a) (primitive-part p)

by (subst primitive-part-mult) simp-all

finally show ?thesis .

qed

lemma primitive-part-dvd-primitive-partl [intro]:
fixes p q :: 'a :: {factorial-semiring, semiring-Gcd, ring-gcd, idom-divide,
normalization-semidom-multiplicative} poly
shows p dvd ¢ = primitive-part p dvd primitive-part q
by (auto elim!: dvdE simp: primitive-part-mult)

lemma content-prod-mset:
fixes A :: ‘a :: {factorial-semiring, semiring-Ged, normalization-semidom-multiplicative}
poly multiset
shows content (prod-mset A) = prod-mset (image-mset content A)
by (induction A) (simp-all add: content-mult mult-ac)

lemma content-prod-eq-1-iff:
fixes p q :: 'a :: {factorial-semiring, semiring-Ged, normalization-semidom-multiplicative}
poly
shows content (p x q¢) = 1 <— content p = 1 A content ¢ = 1
proof safe
assume A: content (p * q) = 1
{
fix p q :: 'a poly assume content p * content ¢ = 1
hence 1 = content p x content q by simp
hence content p dvd 1 by (rule dvdI)
hence content p = 1 by simp
} note B = this
from A Blof p q] B [of q p] show content p = 1 content ¢ = 1
by (simp-all add: content-mult mult-ac)
qed (auto simp: content-mult)

4.33 A typeclass for algebraically closed fields

Since the required sort constraints are not available inside the class, we
have to resort to a somewhat awkward way of writing the definition of
algebraically closed fields:
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class alg-closed-field = field +
assumes alg-closed: n > 0 = fn # 0 = Jz. O k<n. fhkxz " k)= 10

We can then however easily show the equivalence to the proper definition:

lemma alg-closed-imp-poly-has-root:
assumes degree (p :: 'a :: alg-closed-field poly) > 0
shows dz. polypx =10
proof —
have Jz. (3> k<degree p. coeff p k x x " k) = 0
using assms by (intro alg-closed) auto
thus ?thesis
by (simp add: poly-altdef)
qed

lemma alg-closedI [Pure.introl:
assumes Ap :: ‘a poly. degree p > 0 = lead-coeff p = 1 = Jz. poly pz = 0
shows OFCLASS('a :: field, alg-closed-field-class)
proof
fix n :: nat and f :: nat = 'a
assume n: n > 0 fn # 0
define p where p = Abs-poly (Ak. if k < n then [ k else 0)
have coeff-p: coeff p k = (if k < n then fk else 0) for k
proof —
have eventually (Ak. k > n) cofinite
by (auto simp: MOST-nat)
hence eventually (Ak. (if k < n then f k else 0) = 0) cofinite
by eventually-elim auto
thus ?thesis
unfolding p-def by (subst Abs-poly-inverse) auto
qed

from n have degree p > n
by (intro le-degree) (auto simp: coeff-p)
moreover have degree p < n
by (intro degree-le) (auto simp: coeff-p)
ultimately have deg-p: degree p = n
by linarith
from deg-p and n have [simpl]: p # 0
by auto

define p’ where p’ = smult (inverse (lead-coeff p)) p
have deg-p”: degree p’ = degree p

by (auto simp: p’-def)
have lead-coeff-p’ [simp]: lead-coeff p’ = 1

by (auto simp: p'-def)

from deg-p and deg-p’ and n have degree p’ > 0

by simp
from assms|OF this| obtain z where poly p’ z = 0
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by auto
hence poly p x = 0
by (simp add: p’-def)
also have poly p x = (D k<n. fk * z " k)
unfolding poly-altdef by (intro sum.cong) (auto simp: deg-p coeff-p)
finally show Jz. (3 k<n. fk*xaz "k)=0 ..
qed

lemma (in alg-closed-field) nth-root-exists:
assumes n > 0
shows Jy.y “n=(z: " a)
proof —
define f where f = (\i. if i = 0 then —z else if i = n then 1 else 0)
have 3z. (D k<n.fkxz " k)=10
by (rule alg-closed) (use assms in <auto simp: f-def>)
also have (Az. > k<n. fkxz k)= (Az. Y k€{O,n}. fkxz " k)
by (intro ext sum.mono-neutral-right) (auto simp: f-def)
finally show Jy. y " n =1z
using assms by (simp add: f-def)
qed

We can now prove by induction that every polynomial of degree n splits into
a product of n linear factors:

lemma alg-closed-imp-factorization:
fixes p :: ‘a :: alg-closed-field poly
assumes p # 0
shows J A. size A = degree p A p = smult (lead-coeff p) (] ze#A. [:—z, 1:])
using assms
proof (induction degree p arbitrary: p rule: less-induct)
case (less p)
show ?Zcase
proof (cases degree p = 0)
case True
thus ?thesis
by (intro exI[of - {#}]) (auto elim!: degree-eq-zeroE)
next
case Fulse
then obtain z where z: poly p x = 0
using alg-closed-imp-poly-has-root by blast
hence [:—z, 1:] dvd p
using poly-eq-0-iff-dvd by blast
then obtain ¢ where p-eq: p = [i—z, 1:] % ¢
by (elim dvdE)
have ¢ # 0
using less.prems p-eq by auto
moreover from this have deg: degree p = Suc (degree q)
unfolding p-eq by (subst degree-mult-eq) auto
ultimately obtain A where A: size A = degree q q = smult (lead-coeff q)

(ITze#A. [:—z, 13])
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using less.hyps[of ¢] by auto

have smult (lead-coeff p) (] ye#add-mset z A. [:— y, 1:]) =

[i— =z, 1:] x smult (lead-coeff q) ([T ye#A. [:— y, 13])

unfolding p-eq lead-coeff-mult by simp

also note A(2) [symmetric]

also note p-eq [symmetric]

finally show ?thesis using A(1)
by (intro exI[of - add-mset z A]) (auto simp: deg)

qed
qed

As an alternative characterisation of algebraic closure, one can also say that
any polynomial of degree at least 2 splits into non-constant factors:

lemma alg-closed-imp-reducible:
assumes degree (p :: 'a :: alg-closed-field poly) > 1
shows —irreducible p
proof —
have degree p > 0
using assms by auto
then obtain z where 2: poly p z = 0
using alg-closed-imp-poly-has-root|of p] by blast
then have dvd: [:—z, 1:] dvd p
by (subst dvd-iff-poly-eq-0) auto
then obtain ¢ where ¢: p = [i—2, 1] % ¢
by (erule dvdFE)
have [simp]: ¢ # 0
using assms q by auto

show ?thesis
proof (rule reducible-polyl)
show p = [i—z, 1:] * ¢
by fact
next
have degree p = degree ([:—z, 1:] % q)
by (simp only: q)
also have ... = degree ¢ + 1
by (subst degree-mult-eq) auto
finally show degree ¢ > 0
using assms by linarith
qged auto
qged

When proving algebraic closure through reducibility, we can assume w.l.o.g.
that the polynomial is monic and has a non-zero constant coeflicient:

lemma alg-closedI-reducible:
assumes Ap :: ‘a poly. degree p > 1 = lead-coeff p = 1 = coeff p 0 # 0 =
—irreducible p

shows OFCLASS('a :: field, alg-closed-field-class)
proof
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fix p :: ‘a poly assume p: degree p > 0 lead-coeff p = 1
show Jz. poly pz = 0
proof (cases coeff p 0 = 0)
case True
hence poly p 0 = 0
by (simp add: poly-0-coeff-0)
thus ?thesis by blast
next
case Fulse
from p and this show ?thesis
proof (induction degree p arbitrary: p rule: less-induct)
case (less p)
show ?case
proof (cases degree p = 1)
case True
then obtain a b where p: p = [:q, b]
by (cases p) (auto split: if-splits elim!: degree-eq-zeroF)
from True have [simp]: b # 0
by (auto simp: p)
have poly p (—a/b) = 0
by (auto simp: p)
thus ?thesis by blast
next
case Fulse
hence degree p > 1
using less.prems by auto
from assms[OF <degree p > 1) <lead-coeff p = 1> <coeff p 0 # 0]
have —irreducible p by auto
then obtain r s where rs: degree r > 0 degree s > O p =1 % s
using less.prems unfolding irreducible-def
by (metis is-unit-iff-degree mult-not-zero zero-less-iff-neq-zero)
hence coeff r 0 # 0
using <coeff p 0 # 0> by (auto simp: coeff-mult-0)

define r’ where r’ = smult (inverse (lead-coeff 1)) r
have [simp]: degree r' = degree r
by (simp add: r’'-def)
have lc: lead-coeff r' = 1
using rs by (auto simp: r'-def)
have nz: coeff r' 0 # 0
using <coeff r 0 # 0> by (auto simp: r’-def)

have degree r < degree r + degree s
using rs by linarith
also have ... = degree (1 * s)
using 7s(3) less.prems by (subst degree-mult-eq) auto
also have r x s = p
using rs(3) by simp
finally have 3z. poly v’ z = 0
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by (intro less) (use lc rs nz in auto)
thus ?thesis
using rs(3) by (auto simp: r’-def)
qed
qed
qed
qed

Using a clever Tschirnhausen transformation mentioned e.g. in the article
by Nowak [1], we can also assume w.l.o.g. that the coefficient a,,_; is zero.

lemma alg-closedl-reducible-coeff-deg-minus-one-eq-0:

assumes Ap :: 'a poly. degree p > 1 = lead-coeff p = 1 = coeff p (degree p
—-1)=0=

coeff p 0 # 0 = —irreducible p

shows OFCLASS('a :: field-char-0, alg-closed-field-class)
proof (rule alg-closedI-reducible, goal-cases)

case (1 p)

define n where [simp]: n = degree p

define a where a = coeff p (n — 1)

define r where r = [: —a / of-nat n, 1 |

define s where s = [: a / of-nat n, 1

define ¢ where ¢ = pcompose p r

have n > 0
using 1 by simp
have r-altdef: r = monom 1 1 + [:—a / of-nat n:]
by (simp add: r-def monom-altdef)
have deg-q: degree g = n
by (simp add: g-def r-def degree-pcompose)
have lc-q: lead-coeff ¢ = 1
unfolding ¢-def using I by (subst lead-coeff-comp) (simp-all add: r-def)
have ¢ # 0
using 1 deg-q by auto

have coeff ¢ (n — 1) =
(> i<n. Y k<i. coeff p i * (of-nat (i choose k)
((—a / of-natn) ~ (i — k) = (if k = n — 1 then 1 else 0))))
unfolding g¢-def pcompose-altdef poly-altdef r-altdef
by (simp-all add: degree-map-poly coeff-map-poly coeff-sum binomial-ring sum-distrib-left
poly-const-pow
sum-distrib-right mult-ac monom-power coeff-monom-mult of-nat-poly
cong: if-cong)
also have ... = (3 i<n. Y ke(if i > n — 1 then {n—1} else {}).
coeff p i * (of-nat (i choose k) * (—a / of-nat n) ~ (i — k)))
by (rule sum.cong [OF refl], rule sum.mono-neutral-cong-right) (auto split:
if-splits)
also have ... = (> ie{n—1,n}. D ke(if i > n — 1 then {n—1} else {}).
coeff p i * (of-nat (i choose k) x (—a / of-nat n) ~ (i — k)))
by (rule sum.mono-neutral-right) auto

225



also have ... = a — of-nat (n choose (n — 1)) * a / of-nat n
using 1 by (simp add: a-def)

also have n choose (n — 1) = n
using «n > 0> by (subst binomial-symmetric) auto

also have a — of-nat n x a / of-nat n = 0
using «n > 0» by simp

finally have coeff ¢ (n — 1) = 0 .

show ?Zcase
proof (cases coeff ¢ 0 = 0)
case True
hence poly p (— (a / of-nat (degree p))) = 0
by (auto simp: gq-def r-def)
thus ?thesis
by (rule root-imp-reducible-poly) (use 1 in auto)
next
case Fulse
hence —irreducible q
using assms|of ¢] and lc-q and 1 and <coeff g (n — 1) = O»
by (auto simp: deg-q)
then obtain u v where uv: degree v > 0 degree v > 0 ¢ = u * v
using <q # 0» 1 deg-q unfolding irreducible-def
by (metis degree-mult-eq-0 is-unit-iff-degree n-def neq0-conv not-one-less-zero)

have p = pcompose q s
by (simp add: g-def r-def s-def pcompose-pCons flip: pcompose-assoc)

also have ¢ = u * v
by fact

finally have p = pcompose u s * pcompose v s
by (simp add: pcompose-mult)

moreover have degree (pcompose u s) > 0 degree (pcompose v 8) > 0
using uv by (simp-all add: s-def degree-pcompose)

ultimately show —irreducible p
using 1 by (intro reducible-polyl)

qed
qed

As a consequence of the full factorisation lemma proven above, we can also
show that any polynomial with at least two different roots splits into two
non-constant coprime factors:

lemma alg-closed-imp-poly-splits-coprime:

assumes degree (p :: 'a :: {alg-closed-field} poly) > 1

assumes poly px = O0polypy=0x #y

obtains r s where degree v > 0 degree s > 0 coprime r s p =1 * s
proof —

define n where n = order z p

have n > 0

using assms by (metis degree-0 grOI n-def not-one-less-zero order-root)
have [:—z, 1:] “n dvd p
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unfolding n-def by (simp add: order-1)
then obtain ¢ where p-eq: p = [:—z, 1:] "nx ¢
by (elim dvdE)
from assms have [simp]: ¢ # 0
by (auto simp: p-eq)
have order x p = n + Polynomial.order z q
unfolding p-eq by (subst order-mult) (auto simp: order-power-n-n)
hence Polynomial.order x g = 0
by (simp add: n-def)
hence poly g x # 0
by (simp add: order-root)

show ?thesis
proof (rule that)
show coprime ([:—z, 1:] " n) ¢
proof (rule coprimel)
fix d
assume d: d dvd [:—z, 1:] " n d dvd q
have degree d = 0
proof (rule ccontr)
assume —(degree d = 0)
then obtain z where z: poly d z = 0
using alg-closed-imp-poly-has-root by blast
moreover from this and d(1) have poly ([;—z, 1:] “n) 2 =10
using dvd-trans poly-eq-0-iff-dvd by blast
ultimately have poly d x = 0
by auto
with d(2) have poly q z = 0
using dvd-trans poly-eq-0-iff-dvd by blast
with <poly ¢ x # 0> show Fulse by contradiction
qed
thus is-unit d using d
by (metis <q¢ # 0> dvd-0-left is-unit-iff-degree)
qed
next
have poly qy = 0
using «poly p y = 0> «x # v by (auto simp: p-eq)
with «q¢ # 0> show degree ¢ > 0
using order-degree order-gt-0-iff order-less-le-trans by blast
qed (use <n > 0) in «simp-all add: p-eq degree-power-eq»)
qed

4.34 Polynomials and limits

lemma filterlim-poly-at-infinity:

fixes p::'a::real-normed-field poly

assumes degree p>0

shows filterlim (poly p) at-infinity at-infinity
using assms
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proof (induct p)
case ()
then show ?case by auto
next
case (pCons a p)
have ?case when degree p=0
proof —
obtain ¢ where c-def:p=[:c:] using «degree p = 0» degree-eq-zeroE by blast
then have ¢#£0 using (0 < degree (pCons a p)> by auto
then show ?thesis unfolding c-def
apply (auto introl:tendsto-add-filterlim-at-infinity)
apply (subst mult.commute)
by (auto introl:tendsto-mult-filterlim-at-infinity filterlim-ident)
qed
moreover have ?case when degree p#£0
proof —
have filterlim (poly p) at-infinity at-infinity
using that by (auto intro:pCons)
then show ?thesis
by (auto introl:tendsto-add-filterlim-at-infinity filterlim-at-infinity-times filter-
lim-ident)
qed
ultimately show ?case by auto
qed

lemma poly-divide-tendsto-aux:
fixes p::'a::real-normed-field poly
shows ((Az. poly p z/x (degree p)) —— lead-coeff p) at-infinity
proof (induct p)
case ()
then show ?Zcase by (auto intro:tendsto-eg-intros)
next
case (pCons a p)
have ?case when p=0
using that by auto
moreover have ?case when p#0
proof —
define g where g=(Az. a/(zxz degree p))
define f where f=(\z. poly p x/x " degree p)
have V pz in at-infinity. poly (pCons a p) z /  ~ degree (pCons a p) = g = +
fx
proof (rule eventually-at-infinityl[of 1])
fix z::'a assume norm z>1
then have z#0 by auto
then show poly (pCons a p) z /  ~ degree (pCons ap) =gz + fz
using that unfolding g-def f-def by (auto simp add:field-simps)
qed
moreover have ((Az. g z+f ) —— lead-coeff (pCons a p)) at-infinity
proof —
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have (9 —— 0) at-infinity
unfolding g-def using filterlim-poly-at-infinity[of monom 1 (Suc (degree
p))l

apply (auto introl:tendsto-intros tendsto-divide-0 simp add: degree-monom-eq)
apply (subst filterlim-conglwhere g=poly (monom 1 (Suc (degree p)))])
by (auto simp add:poly-monom)
moreover have (f —— lead-coeff (pCons a p)) at-infinity
using pCons <p#0> unfolding f-def by auto
ultimately show ?thesis by (auto intro:tendsto-eg-intros)
qed
ultimately show ?thesis by (auto dest:tendsto-cong)
qed
ultimately show ?case by auto
qed

lemma filterlim-power-at-infinity:
assumes n#0
shows filterlim (A\z::'a::real-normed-field. ™n) at-infinity at-infinity
using filterlim-poly-at-infinity[of monom 1 n] assms
by (simp add: filterlim-ident filterlim-power-at-infinity)

lemma poly-divide-tendsto-0-at-infinity:
fixes p::'a::real-normed-field poly
assumes degree p > degree q
shows ((Az. poly ¢ z / poly p ) —— 0 ) at-infinity
proof —
define pp where pp = (Az. x (degree p) / poly p x)
define ¢q where gq = (Az. poly q z/x (degree q))
define dd where dd = (A\z::’a. 1 /2 (degree p — degree q))
have V pz in at-infinity. poly qx / poly p . = qqx * pp x * dd =
proof (rule eventually-at-infinityI[of 1])
fix z::'a assume norm r>1
then have z#0 by auto
then show poly gz / poly px = qqx * pp x * dd z
unfolding qq-def pp-def dd-def using assms
by (auto simp add:field-simps divide-simps power-diff)
qged
moreover have ((A\z. gq = x pp z *x dd ) —— 0) at-infinity
proof —
have (qq — lead-coeff q) at-infinity
unfolding qg¢-def using poly-divide-tendsto-auz|of q| .
moreover have (pp —— 1/lead-coeff p) at-infinity
proof —
have p#0 using assms by auto
then show ?thesis
unfolding pp-def using poly-divide-tendsto-auz|of p]
apply (drule-tac tendsto-inverse)
by (auto simp add:inverse-eq-divide)
qed
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moreover have (dd —— 0) at-infinity
unfolding dd-def
apply (rule tendsto-divide-0)
by (auto intro!: filterlim-power-at-infinity simp add:assms)
ultimately show ?thesis by (auto intro:tendsto-eq-intros)
qed
ultimately show ?thesis by (auto dest:tendsto-cong)
qed

lemma poly-eventually-not-zero:
fixes p::real poly
assumes p#(0
shows eventually (Az. poly p x # 0) at-infinity
proof (rule eventually-at-infinityI[of Maz (norm ‘{z. poly p z = 0}) + 1))
fix x::real assume §: Maz (norm ‘{z. poly p x = 0}) + 1 < norm z
have Fulse when poly p x = 0
proof —
define S where S=norm {z. poly p x = 0}
have norm z€S
using that unfolding S-def by auto
moreover have finite S
using <p#£0> poly-roots-finite unfolding S-def by blast
ultimately have norm x<Maz S
by simp
moreover have Maz S + 1 < norm z
using § unfolding S-def by simp
ultimately show Fulse by argo
qed
then show poly p z # 0 by auto
qed

no-notation cCons (infixr «##> 65)

end

5 A formalization of formal power series

theory Formal-Power-Series
imports
Complex-Main
Euclidean-Algorithm
Primes
HOL— Library. FuncSet
HOL— Library. Multiset
begin

5.1 The type of formal power series

typedef ‘a fps = {f :: nat = 'a. True}
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morphisms fps-nth Abs-fps
by simp

notation fps-nth (infixl <$» 75)

lemma expand-fps-eq: p = ¢ +— (Vn.p$Sn=q8$n)
by (simp add: fps-nth-inject [symmetric] fun-eq-iff)

lemmas fps-eq-iff = expand-fps-eq

lemma fps-ext: (An.p$Sn=q%$n) = p=g
by (simp add: expand-fps-eq)

lemma fps-nth-Abs-fps [simp]: Abs-fps f $n = fn
by (simp add: Abs-fps-inverse)

Definition of the basic elements 0 and 1 and the basic operations of addition,
negation and multiplication.

instantiation fps :: (zero) zero

begin
definition fps-zero-def: 0 = Abs-fps (An. 0)
instance ..

end

lemma fps-zero-nth [simpl: 0 $ n = 0
unfolding fps-zero-def by simp

lemma fps-nonzero-nth: f # 0 «— (I n. f $ n # 0)
by (simp add: expand-fps-eq)

lemma fps-nonzero-nth-minimal: f # 0 +— @Bn. f$nAO0AN(Vm<n f$m
=0))
(is ?lhs <— ?rhs)
proof
let on = LEAST n. f $n #0
show ?rhs if ?lhs
proof —
from that have dn. f $ n # 0
by (simp add: fps-nonzero-nth)
then have f § ?n # 0
by (rule Leastl-ex)
moreover have Vm<?n. f $ m = 0
by (auto dest: not-less-Least)
ultimately show ?thesis by metis
qed
qed (auto simp: expand-fps-eq)

lemma fps-nonzerol: f$n # 0 = f # 0
by auto
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instantiation fps :: ({one, zero}) one

begin
definition fps-one-def: 1 = Abs-fps (An. if n = 0 then 1 else 0)
instance ..

end

lemma fps-one-nth [simp]: 1 $ n = (if n = 0 then I else 0)
unfolding fps-one-def by simp

instantiation fps :: (plus) plus

begin
definition fps-plus-def: (+) = (\f g. Abs-fps (An. f $n+ g $ n))
instance ..

end

lemma fps-add-nth [simp]: (f + g9)$n=f8n+g%n
unfolding fps-plus-def by simp

instantiation fps :: (minus) minus

begin
definition fps-minus-def: (—) = (Af g. Abs-fps (An. f $n — g $ n))
instance ..

end

lemma fps-sub-nth [simp]: (f —¢g)$n=Ff%n—g$n
unfolding fps-minus-def by simp

instantiation fps :: (uminus) uminus

begin
definition fps-uminus-def: uminus = (Af. Abs-fps (An. — (f $ n)))
instance ..

end

lemma fps-neg-nth [simp]: (— f) $n=—(f $ n)
unfolding fps-uminus-def by simp

lemma fps-neg-0 [simp]: —(0::"a::group-add fps) = 0
by (rule iffD2, rule fps-eq-iff, auto)

instantiation fps :: ({comm-monoid-add, times}) times
begin
definition fps-times-def: (x) = (Af g. Abs-fps (An. > i=0..n. f $ixg$ (n —
)
instance ..
end

lemma fps-mult-nth: (f * g) $ n = (3. i=0..n. f$i * g¥(n — 7))
unfolding fps-times-def by simp
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lemma fps-mult-nth-0 [simp]: (f * g) $0=f$0xg$0
unfolding fps-times-def by simp

lemma fps-mult-nth-1: (f * g) $ 1 = f8$0 x g$1 + f$1 * g$0
by (simp add: fps-mult-nth)

lemma fps-mult-nth-1' [simpl: (f * g) $ Suc 0 = f$0 x g$Suc 0 + f$Suc 0 * ¢3$0
by (simp add: fps-mult-nth)

lemmas mult-nth-0 = fps-mult-nth-0
lemmas mult-nth-1 = fps-mult-nth-1

instance fps :: ({comm-monoid-add, mult-zero}) mult-zero
proof

fix a :: ‘a fps

show 0 x a = 0 by (simp add: fps-ext fps-mult-nth)

show a x 0 = 0 by (simp add: fps-ext fps-mult-nth)
qed

declare atLeastAtMost-iff [presburger]
declare Bez-def [presburger]
declare Ball-def [presburger]

lemma mult-delta-left:
fixes z y :: 'a::mult-zero
shows (if b then z else 0) x y = (if b then = * y else 0)
by simp

lemma mult-delta-right:
fixes z y :: ‘a::mult-zero
shows z * (if b then y else 0) = (if b then x x y else 0)
by simp

lemma fps-one-mult:
fixes f :: 'a::{comm-monoid-add, mult-zero, monoid-mult} fps
shows 1 x f = f
and fx1=f
by  (simp-all add: fps-ext fps-mult-nth mult-delta-left mult-delta-right)

5.2 Subdegrees

definition subdegree :: ('a::zero) fps = nat where
subdegree f = (if f = 0 then 0 else LEAST n. f$n # 0)

lemma subdegreel:
assumes f$d#Oand \i. i <d= f$i=0
shows subdegree f = d
by (smt (verit) Leastl-ex assms fps-zero-nth linorder-cases not-less-Least subde-
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gree-def)

lemma nth-subdegree-nonzero [simp,intro): f # 0 = [ $ subdegree f # 0
using fps-nonzero-nth-minimal subdegreel by blast

lemma nth-less-subdegree-zero [dest]: n < subdegree f = f $ n =0
by (metis fps-nonzero-nth-minimal fps-zero-nth subdegreel)

lemma subdegree-gel:
assumes f # 0 N\i.i<n= f$i =0
shows subdegree f > n
by (meson assms lel nth-subdegree-nonzero)

lemma subdegree-greaterl:
assumes f # 0 \i. i <n= f$i =10
shows subdegree f > n
by (meson assms lel nth-subdegree-nonzero)

lemma subdegree-lel:
f$n# 0= subdegree f < n
using linorder-not-less by blast

lemma subdegree-0 [simp]: subdegree 0 = 0
by (simp add: subdegree-def)

lemma subdegree-1 [simp]: subdegree 1 = 0
by (metis fps-one-nth nth-subdegree-nonzero subdegree-0)

lemma subdegree-eq-0-iff: subdegree f = 0 +— f =0V f$ 0 # 0
using nth-subdegree-nonzero subdegree-lel by fastforce

lemma subdegree-eq-0 [simp]: f $ 0 # 0 = subdegree f = 0
by (simp add: subdegree-eq-0-iff)

lemma nth-subdegree-zero-iff [simp]: f $ subdegree f = 0 +— f = 0
by (cases f = 0) auto

lemma fps-nonzero-subdegree-nonzerol: subdegree f > 0 = f # 0
by auto

lemma subdegree-uminus [simpl:

subdegree (—(f::(‘a::group-add) fps)) = subdegree f
proof (cases f=0)

case Fulse thus ?thesis by (force intro: subdegreel )
qed simp

lemma subdegree-minus-commute [simp:

fixes [ :: 'a::group-add fps
shows subdegree (f—g) = subdegree (g — f)
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proof (cases g—f=0)
case True then show ?thesis
by (metis fps-sub-nth nth-subdegree-nonzero right-minus-eq)
next
case Fualse show ?thesis
using nth-subdegree-nonzero[OF False] by (fastforce intro: subdegreel)
qed

lemma subdegree-add-ge’:
fixes fg :: ‘a::monoid-add fps
assumes f + g # 0
shows subdegree (f + g) > min (subdegree f) (subdegree g)
using assms
by (force intro: subdegree-gel)

lemma subdegree-add-ge:
assumes [ # —(g = (‘a :: group-add) fps)
shows subdegree (f + g) > min (subdegree f) (subdegree g)
proof (rule subdegree-add-ge’)
have f + g = 0 = Fulse
proof—
assume fg: f + g= 0
have An. f$n=—9g%n
by (metis add-eq-0-iff equation-minus-iff fg fps-add-nth fps-neg-nth fps-zero-nth)
with assms show Fualse by (auto intro: fps-ext)
qged
thus f + g # 0 by fast
qed

lemma subdegree-add-eq1:
assumes [ # 0
and  subdegree f < subdegree (g :: ‘a::monoid-add fps)
shows subdegree (f + g) = subdegree f
using assms by (auto intro: subdegreel simp: nth-less-subdegree-zero)

lemma subdegree-add-eq2:
assumes g # 0
and  subdegree g < subdegree (f :: 'a :: monoid-add fps)
shows subdegree (f + g) = subdegree g
using assms by (auto intro: subdegreel simp: nth-less-subdegree-zero)

lemma subdegree-diff-eq1:
assumes f # 0
and subdegree f < subdegree (g :: 'a :: group-add fps)
shows subdegree (f — g) = subdegree f
using assms by (auto intro: subdegreel simp: nth-less-subdegree-zero)

lemma subdegree-diff-eql-cancel:
assumes f # 0
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and  subdegree f < subdegree (g :: 'a :: cancel-comm-monoid-add fps)

shows subdegree (f — g) = subdegree f
using assms by (auto intro: subdegreel simp: nth-less-subdegree-zero)

lemma subdegree-diff-eq2:
assumes g # 0
and subdegree g < subdegree (f :: 'a :: group-add fps)
shows subdegree (f — g) = subdegree g
using assms by (auto intro: subdegreel simp: nth-less-subdegree-zero)

lemma subdegree-diff-ge [simp]:
assumes [ # (g :: 'a :: group-add fps)
shows subdegree (f — g) > min (subdegree f) (subdegree g)
proof—
have f # — (~ g)
using assms expand-fps-eq by fastforce
moreover have f + — g = f — g by (simp add: fps-ext)
ultimately show ?thesis
using subdegree-add-ge[of f —g] by simp
qed

lemma subdegree-diff-ge’:
fixes fg: 'a:: comm-monoid-diff fps
assumes f — g # 0
shows subdegree (f — g) > subdegree f
using assms by (auto intro: subdegree-gel simp: nth-less-subdegree-zero)

lemma nth-subdegree-mult-left [simp]:
fixes f g :: ('a :: {mult-zero,comm-monoid-add}) fps
shows (f x g) $ (subdegree f) = f $ subdegree f x ¢ $ 0
by  (cases subdegree f) (simp-all add: fps-mult-nth nth-less-subdegree-zero)

lemma nth-subdegree-mult-right [simp]:

fixes f g :: ('a :: {mult-zero,comm-monoid-add}) fps

shows (f * g) $ (subdegree g) = f $ 0 x g $ subdegree g

by (cases subdegree g) (simp-all add: fps-mult-nth nth-less-subdegree-zero
sum.atLeast-Suc-atMost)

lemma nth-subdegree-mult [simp]:
fixes f g :: ('a :: {mult-zero,comm-monoid-add}) fps
shows (f x g) $ (subdegree f + subdegree g) = f $ subdegree f * g $ subdegree g
proof—
let %n = subdegree f + subdegree g
have (f x ¢) $ ?n = (3] i=0..%n. f$i x ¢$(?n—1))
by (simp add: fps-mult-nth)
also have ... = (3 i=0..%n. if i = subdegree f then f$i x g3(?n—1i) else 0)
proof (intro sum.cong)
fix x assume z: x € {0..7n}
hence = = subdegree f V x < subdegree f V ?n — z < subdegree g by auto
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thus f $zx g8 (?n — x) = (if z = subdegree fthen f $ z x g § (?n — z) else
0)
by (elim disjE conjE) auto
qed auto
also have ... = [ $§ subdegree f * g $ subdegree g by simp
finally show ?thesis .
qed

lemma fps-mult-nth-eq0:
fixes f g :: 'a::{ comm-monoid-add,mult-zero} fps
assumes n < subdegree f + subdegree g
shows (f*xg) $n =20
proof—
have Ai. ie{0.n} = f$i % g$(n — i) =0
proof—
fix ¢ assume i: i€{0..n}
show f$i « g8(n — 4) = 0
proof (cases i < subdegree f V n — i < subdegree g)
case Fulse with assms i show ?thesis by auto
qged (auto simp: nth-less-subdegree-zero)
qged
thus (f * g) $ n = 0 by (simp add: fps-mult-nth)
qed

lemma fps-mult-subdegree-ge:
fixes fg :: 'a:{comm-monoid-add,mult-zero} fps
assumes fxg # 0
shows subdegree (fxg) > subdegree f + subdegree g
using assms fps-mult-nth-eq0
by (intro subdegree-gel) simp

lemma subdegree-mult’:
fixes fg :: ‘a::{comm-monoid-add,mult-zero} fps
assumes | $ subdegree f x g $ subdegree g # 0
shows subdegree (fxg) = subdegree f + subdegree g
proof—
from assms have (f % g) $ (subdegree f + subdegree g) # 0 by simp
hence fxg # 0 by fastforce
hence subdegree (fxg) > subdegree f + subdegree g using fps-mult-subdegree-ge
by fast
moreover from assms have subdegree (fxg) < subdegree f + subdegree g
by (intro subdegree-lel) simp
ultimately show ?thesis by simp
qed

lemma subdegree-mult [simp]:
fixes fg: 'a:: {semiring-no-zero-divisors} fps
assumes f # 0 g # 0
shows subdegree (f * g) = subdegree f + subdegree g
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using assms
by (intro subdegree-mult’) simp

lemma fps-mult-nth-conv-upto-subdegree-left:
fixes f g :: ('a :: {mult-zero,comm-monoid-add}) fps
shows (f x g) $ n = (O i=subdegree f.n. f $ixg$ (n— 1))
proof (cases subdegree f < n)
case True
hence {0..n} = {0..<subdegree f} U {subdegree f..n} by auto
moreover have {0..<subdegree f} N {subdegree f..n} = {} by auto
ultimately show %thesis
using nth-less-subdegree-zero|of - f]
by  (simp add: fps-mult-nth sum.union-disjoint)
qed (simp add: fps-mult-nth nth-less-subdegree-zero)

lemma fps-mult-nth-conv-upto-subdegree-right:
fixes f g :: ('a :: {mult-zero,comm-monoid-add}) fps
shows (f * g) $ n = (> i=0..n — subdegree g. f $ i * g $ (n — 7))
proof—
have {0..n} = {0..n — subdegree g} U {n — subdegree g<..n} by auto
moreover have {0..n — subdegree g} N {n — subdegree g<..n} = {} by auto
moreover have Vie{n — subdegree g<..n}. ¢ $ (n — i) = 0
using nth-less-subdegree-zerolof - g] by auto
ultimately show ?thesis by (simp add: fps-mult-nth sum.union-disjoint)
qed

lemma fps-mult-nth-conv-inside-subdegrees:
fixes f ¢ :: ('a :: {mult-zero,comm-monoid-add}) fps
shows (f x g) $ n = (3 i=subdegree f..n — subdegree g. f $ i % g $ (n — 7))
proof (cases subdegree f < n — subdegree g)
case True
hence {subdegree f..n} = {subdegree f..n — subdegree g} U {n — subdegree g<..n}
by auto
moreover have {subdegree f..n — subdegree g} N {n — subdegree g<..n} = {}
by auto
moreover have Vie{n — subdegree g<..n}. f $i*xg$ (n—14) =20
using nth-less-subdegree-zero|of - g] by auto
ultimately show %thesis
using fps-mult-nth-conv-upto-subdegree-left|of f g nl
by  (simp add: sum.union-disjoint)
next
case Fulse
hence 1: subdegree f > n — subdegree g by simp
show ?thesis
proof (cases fxg = 0)
case Fulse
with 1 have n < subdegree (f+g) using fps-mult-subdegree-ge|of f g] by simp
with 1 show #%thesis by auto
qed (simp add: 1)
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qed

lemma fps-mult-nth-outside-subdegrees:
fixes f g :: (‘a :: {mult-zero,comm-monoid-add}) fps
shows n < subdegree f = (f * g) $ n =0
and n < subdegree g = (f x g) $n=10
by  (auto simp: fps-mult-nth-conv-inside-subdegrees)

5.3 Ring structure

instance fps :: (semigroup-add) semigroup-add
proof
fix abc: ’afps
show a + b+ c=a+ (b+ ¢
by (simp add: fps-ext add.assoc)
qed

instance fps :: (ab-semigroup-add) ab-semigroup-add
proof
fix a b: 'a fps
show a + b=0+ a
by (simp add: fps-ext add.commute)

qed
instance fps :: (monoid-add) monoid-add
proof

fix a :: 'a fps

show 0 + a = a by (simp add: fps-ext)
show a + 0 = a by (simp add: fps-ext)

qed
instance fps :: (comm-monoid-add) comm-monoid-add
proof
fix a :: ‘a fps
show 0 + a = a by (simp add: fps-ext)
qed

instance fps :: (cancel-semigroup-add) cancel-semigroup-add
proof
fix abc: ’afps
show b=cifa+b=0a+ ¢
using that by (simp add: expand-fps-eq)
show b =cifb+a=c+a
using that by (simp add: expand-fps-eq)
qged

instance fps :: (cancel-ab-semigroup-add) cancel-ab-semigroup-add

proof
fixabc: 'afps
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showa +b—a=1>
by (simp add: expand-fps-eq)
showa —b—c=a—- (b+ ¢
by (simp add: expand-fps-eq diff-diff-eq)
qed

instance fps :: (cancel-comm-monoid-add) cancel-comm-monoid-add ..

instance fps :: (group-add) group-add

proof
fix a b :: 'a fps
show — a + a = 0 by (simp add: fps-ext)
show a + — b = a — b by (simp add: fps-ext)

qed
instance fps :: (ab-group-add) ab-group-add
proof

fix ab: 'afps

show — a + a = 0 by (simp add: fps-ext)
show a — b = a + — b by (simp add: fps-ext)
qed

instance fps :: (zero-neg-one) zero-neg-one
by standard (simp add: expand-fps-eq)

lemma fps-mult-assoc-lemma:
fixes k :: nat
and [ :: nat = nat = nat = 'a::comm-monoid-add
shows (3" j=0..k. > i=0.4. fi (j — i) (n — j)) =
>j=0.k. > i=0..k —j. fji(n—j—1)
by (induct k) (simp-all add: Suc-diff-le sum.distrib add.assoc)

instance fps :: (semiring-0) semiring-0
proof
fix abc: 'afps
show (e + b)x c=a*xc+ bxc
by (simp add: expand-fps-eq fps-mult-nth distrib-right sum.distrib)
show ax (b+c¢)=axb+axc
by (simp add: expand-fps-eq fps-mult-nth distrib-left sum.distrib)
show (a % b) x ¢ = a * (b * ¢)
proof (rule fps-ext)
fix n :: nat
have (3 j=0..n. > i=0..j. a$i x b3(j — ) * ¢$(n — j)) =
>j=0.n.% i=0..n — j. a$j * b$i x c$(n — j — 0))
by (rule fps-mult-assoc-lemma)
then show ((a x b) x ¢) $n=(ax* (bxc)) $n
by (simp add: fps-mult-nth sum-distrib-left sum-distrib-right mult.assoc)
qged
qed
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instance fps :: (semiring-0-cancel) semiring-0-cancel ..

lemma fps-mult-commute-lemma:
fixes n :: nat
and f :: nat = nat = 'a::comm-monoid-add
shows (3" i=0..n. fi (n — 1)) = (O i=0..n. f (n — i) 1)

by (rule sum.reindez-bij-witnessijwhere i=(—) n and j=(—) n]) auto

instance fps :: (comm-semiring-0) comm-semiring-0
proof
fix abc: 'afps
show a x b= b * a
proof (rule fps-ext)
fix n :: nat
have (> i=0..n. a$i x b$(n — 7)) = (O i=0..n. a$(n — ) * b$)
by (rule fps-mult-commaute-lemma)
then show (a * b)) $n= (bxa)$n
by (simp add: fps-mult-nth mult.commute)
qed
qed (simp add: distrib-right)

instance fps :: (comm-semiring-0-cancel) comm-semiring-0-cancel ..

instance fps :: (semiring-1) semiring-1
proof

fix a :: ‘a fps

show I x a = a a x 1 = a by (simp-all add: fps-one-mult)
qed

instance fps :: (comm-semiring-1) comm-semiring-1
by standard simp

instance fps :: (semiring-1-cancel) semiring-1-cancel ..

lemma fps-square-nth: (f2) $n= O k<n. f$kxf$(n—k)
by (simp add: power2-eg-square fps-mult-nth atLeastOAtMost)

lemma fps-sum-nth: sum f S $ n = sum (Ak. (fk) $n) S
proof (cases finite S)
case True
then show ?thesis by (induct set: finite) auto
next
case Fulse
then show ?thesis by simp
qed

definition fps-const ¢ = Abs-fps (An. if n = 0 then c else 0)
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lemma fps-nth-fps-const [simp]: fps-const ¢ $ n = (if n = 0 then c else 0)
unfolding fps-const-def by simp

lemma fps-const-0-eq-0 [simp]: fps-const 0 = 0
by (simp add: fps-ext)

lemma fps-const-nonzero-eq-nonzero: ¢ # 0 = fps-const ¢ # 0
using fps-nonzerol|of fps-const ¢ 0] by simp

lemma fps-const-eq-0-iff [simpl: fps-const ¢ = 0 <— ¢ = 0
by (auto simp: fps-eq-iff)

lemma fps-const-1-eq-1 [simp]: fps-const 1 = 1
by (simp add: fps-ext)

lemma fps-const-eq-1-iff [simp]: fps-const ¢ = 1 +— ¢ = 1
by (auto simp: fps-eq-iff)

lemma subdegree-fps-const [simp]: subdegree (fps-const ¢) = 0
by (cases ¢ = 0) (auto intro!: subdegreel)

lemma fps-const-neg [simp|: — (fps-const (c::'a::group-add)) = fps-const (— ¢)
by (simp add: fps-ext)

lemma fps-const-add [simp): fps-const (c::'a::monoid-add) + fps-const d = fps-const
(c + d)
by (simp add: fps-ext)

lemma fps-const-add-left: fps-const (c::'az:monoid-add) + f =
Abs-fps (An. if n = 0 then ¢ + f$0 else f3n)
by (simp add: fps-ext)

lemma fps-const-add-right: f + fps-const (c::’a::monoid-add) =
Abs-fps (An. if n = 0 then f$0 + c else f$n)
by (simp add: fps-ext)

lemma fps-const-sub [simp]: fps-const (c::’a::group-add) — fps-const d = fps-const
(c — d)
by (simp add: fps-ext)
lemmas fps-const-minus = fps-const-sub
lemma fps-const-mult[simp]:
fixes ¢ d :: 'a:{comm-monoid-add,mult-zero}
shows fps-const ¢ * fps-const d = fps-const (¢ * d)

by  (simp add: fps-eq-iff fps-mult-nth sum.neutral)

lemma fps-const-mult-left:
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fos-const (c::'a::{comm-monoid-add,mult-zero}) x f = Abs-fps (An. ¢ x f$n)
unfolding fps-eq-iff fps-mult-nth
by (simp add: fps-const-def mult-delta-left)

lemma fps-const-mult-right:
[ * fps-const (c::'a::{ comm-monoid-add,mult-zero}) = Abs-fps (An. f8n x ¢)
unfolding fps-eq-iff fps-mult-nth
by (simp add: fps-const-def mult-delta-right)

lemma fps-mult-left-const-nth [simp]:
(fps-const (c::'a::{ comm-monoid-add,mult-zero}) % f)$n = cx f$n
by (simp add: fps-mult-nth mult-delta-left)

lemma fps-mult-right-const-nth [simp]:
(f * fps-const (c::'a::{ comm-monoid-add,mult-zero}))$n = f$n *x ¢
by (simp add: fps-mult-nth mult-delta-right)

lemma fps-const-power [simpl: fps-const ¢ ~ n = fps-const (¢ "n)
by (induct n) auto

instance fps :: (ring) ring ..

instance fps :: (comm-ring) comm-ring ..
instance fps :: (ring-1) ring-1 ..

instance fps :: (comm-ring-1) comm-ring-1 ..

instance fps :: (semiring-no-zero-divisors) semiring-no-zero-divisors
proof

fix a b :: 'a fps

assume a # 0 and b # 0

hence (a * b) § (subdegree a + subdegree b) # 0 by simp

thus a x b # 0 using fps-nonzero-nth by fast
qed

instance fps :: (semiring-1-no-zero-divisors) semiring-1-no-zero-divisors ..

instance fps :: ({ cancel-semigroup-add,semiring-no-zero-divisors-cancel})
semiring-no-zero-divisors-cancel
proof
fix abc: ’'afps
show (ax c=bxc)=(c=0V a=0D)
proof
assume ab: a x ¢ = b * ¢
have c#£ 0 = a =10
proof (rule fps-ext)
fix n
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assume c: ¢ # 0
show a $n=08%n
proof (induct n rule: nat-less-induct)
case (1 n)
with ab ¢ show ?Zcase
using fps-mult-nth-conv-upto-subdegree-right|of a ¢ subdegree ¢ + n]
fps-mult-nth-conv-upto-subdegree-right[of b ¢ subdegree ¢ + n]
by (cases n) auto
qed
qed
thus ¢ = 0 V a = b by fast
qged auto
show (cxa=cxb)=(c=0V a=0D)
proof
assume ab: cx a =c* b
have c A0 = a =
proof (rule fps-ext)
fix n
assume c: ¢ # 0
show a $n=0%n
proof (induct n rule: nat-less-induct)
case (1 n)
moreover have Vie{Suc (subdegree c)..subdegree ¢ + n}. subdegree ¢ + n
— 1 < n by auto
ultimately show ?Zcase
using ab ¢ fps-mult-nth-conv-upto-subdegree-left[of ¢ a subdegree ¢ + n]
fps-mult-nth-conv-upto-subdegree-left|of ¢ b subdegree ¢ + n]
by  (simp add: sum.atLeast-Suc-atMost)
qed
qed
thus ¢ = 0 V a = b by fast
qed auto
qed

instance fps :: (ring-no-zero-divisors) ring-no-zero-divisors ..
instance fps :: (ring-1-no-zero-divisors) ring-1-no-zero-divisors ..
instance fps :: (idom) idom ..

lemma fps-of-nat: fps-const (of-nat ¢) = of-nat c

by (induction c) (simp-all add: fps-const-add [symmetric] del: fps-const-add)
lemma fps-of-int: fps-const (of-int ¢) = of-int ¢

by (induction c) (simp-all add: fps-const-minus [symmetric] fps-of-nat fps-const-neg
[symmetric]

del: fps-const-minus fps-const-neg)

lemma semiring-char-fps [simp|: CHAR('a :: comm-semiring-1 fps) = CHAR('a)
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by (rule CHAR-eql) (auto simp flip: fps-of-nat simp: of-nat-eq-0-iff-char-dvd)

instance fps :: ({semiring-prime-char,comm-semiring-1}) semiring-prime-char
by (rule semiring-prime-charl) auto
instance fps :: ({ comm-semiring-prime-char,comm-semiring-1}) comm-semiring-prime-char
by standard
instance fps :: ({ comm-ring-prime-char,comm-semiring-1}) comm-ring-prime-char
by standard
instance fps :: ({idom-prime-char,comm-semiring-1}) idom-prime-char
by standard

lemma fps-numeral-fps-const: numeral k = fps-const (numeral k)
by (induct k) (simp-all only: numeral.simps fps-const-1-eq-1 fps-const-add [symmetric])

lemmas numeral-fps-const = fps-numeral-fps-const

lemma neg-numeral-fps-const:
(— numeral k :: 'a :: ring-1 fps) = fps-const (— numeral k)
by (simp add: numeral-fps-const)

lemma fps-numeral-nth: numeral n $ ¢ = (if i = 0 then numeral n else 0)
by (simp add: numeral-fps-const)

lemma fps-numeral-nth-0 [simp]: numeral n $ 0 = numeral n
by (simp add: numeral-fps-const)

lemma subdegree-numeral [simpl: subdegree (numeral n) = 0
by (simp add: numeral-fps-const)

lemma fps-nth-of-nat [simp]:
(of-nat ¢) $ n = (if n=0 then of-nat c else 0)
by (simp add: fps-of-nat[symmetric])

lemma fps-nth-of-int [simp]:
(of-int ¢) $ n = (if n=0 then of-int c else 0)
by (simp add: fps-of-int[symmetric])

lemma fps-mult-of-nat-nth [simp):
shows (of-nat k * ) $ n = of-nat k * f¥n
and (f % of-natk ) $ n = f8n * of-nat k
by  (simp-all add: fps-of-nat[symmetric])

lemma fps-mult-of-int-nth [simp):
shows (of-int k = ) $ n = of-int k = f8n
and (f x of-int k) $ n = fSn * of-int k
by  (simp-all add: fps-of-int[symmetric])

lemma numeral-neg-fps-zero [simp]: (numeral f :: 'a :: field-char-0 fps) # 0
proof
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assume numeral f = (0 :: 'a fps)
from arg-conglof - - A\F. F'$ 0, OF this| show Fualse by simp
qed

instance fps :: (semiring-char-0) semiring-char-0
proof
show inj (of-nat :: nat = 'a fps)
proof
fix m n :: nat
assume of-nat m = (of-nat n :: 'a fps)
hence fps-nth (of-nat m) 0 = (fps-nth (of-nat n) 0 :: 'a)
by (simp only: )
thus m = n
by simp
qed
qed

lemma subdegree-power-ge:

n # 0 = subdegree (f™n) > n * subdegree f
proof (induct n)

case (Suc n) thus Zcase using fps-mult-subdegree-ge by fastforce
qed simp

lemma fps-pow-nth-below-subdegree:
k < n * subdegree f = (fn) $ k=0
proof (cases fn = 0)
case Fulse
assume k < n * subdegree f
with False have k < subdegree (f™n) using subdegree-power-gelof f n] by simp
thus (fn) $ k = 0 by auto
qed simp

lemma fps-pow-base [simpl:
(f " n) $ (n * subdegree f) = (f $ subdegree f) " n
proof (induct n)
case (Suc n)
show ?Zcase
proof (cases Suc n x subdegree f < subdegree f + subdegree (f™n))
case True with Suc show ?thesis
by (auto simp: fps-mult-nth-eq0 distrib-right)
next
case Fulse
hence Vie{Suc (subdegree f)..Suc n x subdegree f — subdegree (f ~n)}.
f 7 n$ (Suc n * subdegree f — i) = 0
by (auto simp: fps-pow-nth-below-subdegree)
with False Suc show ?thesis
using fps-mult-nth-conv-inside-subdegrees[of f f™n Suc n * subdegree f]
sum.atLeast-Suc-atMost|of
subdegree f
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Suc n x subdegree f — subdegree (f ~n)
M. f$ixf " n$ (Sucn x subdegree f — 1)
]
by simp
qed
qed simp

lemma subdegree-power-eql:
fixes f :: 'a::semiring-1 fps
shows (f $ subdegree f) ~n # 0 => subdegree (f ~n) = n * subdegree f
proof (induct n)
case (Suc n)
from Suc have 1: subdegree (f ~n) = n x subdegree f by fastforce
with Suc(2) have f $ subdegree f x f " n $ subdegree (f " n) # 0 by simp
with 1 show ?case using subdegree-mult’[of f f™n] by simp
qed simp

lemma subdegree-power [simp]:
subdegree ((f :: ('a :: semiring-1-no-zero-divisors) fps) ~ n) = n * subdegree f
by (cases f = 0; induction n) simp-all

lemma subdegree-prod:
fixes f :: 'a = 'b :: idom fps
assumes A\z. 2 € A = fz # 0

shows subdegree ([[z€A. fz) = (D x€A. subdegree (f x))
using assms by (induction A rule: infinite-finite-induct) auto

lemma minus-one-power-iff: (— (1::'a::ring-1)) ~n = (if even n then 1 else — 1)
by (induct n) auto

definition fps-X = Abs-fps (An. if n = 1 then 1 else 0)

lemma subdegree-fps-X [simp]: subdegree (fps-X :: (‘a :: zero-neg-one) fps) = 1
by (auto introl: subdegreel simp: fps-X-def)

lemma fps-X-mult-nth [simp]:
fixes [ :: 'a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows (fps-X * f) $ n= (if n = 0then Oelse f $ (n — 1))
proof (cases n)
case (Suc m)
moreover have (fps-X * f) $ Sucm = f § (Sucm — 1)
proof (cases m)
case 0 thus ?thesis using fps-mult-nth-1[of fps-X f] by (simp add: fps-X-def)
next
case (Suc k) thus ?thesis by (simp add: fps-mult-nth fps-X-def sum.atLeast-Suc-atMost)
qed
ultimately show %thesis by simp
qed (simp add: fps-X-def)
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lemma fps-X-mult-right-nth [simp]:
fixes a :: ‘a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows (a * fps-X) $n=(ifn=0thenOelsea$ (n — 1))
proof (cases n)
case (Suc m)
moreover have (a * fps-X) § Suc m = a $ (Suc m — 1)
proof (cases m)
case ( thus ?thesis using fps-mult-nth-1[of a fps-X] by (simp add: fps-X-def)
next
case (Suc k)
hence (a * fps-X) § Suc m = (3 i=0..k. a$i * fps-X$(Suc m — i)) + a$(Suc
B
by (simp add: fps-mult-nth fps-X-def)
moreover have Vie{0..k}. a$i * fps-X$(Suc m — i) = 0 by (auto simp: Suc
fps-X-def)
ultimately show ?thesis by (simp add: Suc)
qed
ultimately show ?thesis by simp
qed (simp add: fps-X-def)

lemma fps-mult-fps-X-commute:
fixes a :: 'a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows fps-X * a = a x fps-X
by (simp add: fps-eq-iff)

lemma fps-mult-fps-X-power-commute: fps-X ~k * a = a * fps-X "k
proof (induct k)
case (Suc k)
hence fps-X ~ Suc k x a = a * fps-X * fps-X "k
by (simp add: mult.assoc fps-mult-fps-X-commute[symmetric])
thus ?case by (simp add: mult.assoc)
qed simp

lemma fps-subdegree-mult-fps-X:
fixes f :: 'a:{comm-monoid-add,mult-zero,monoid-mult} fps
assumes [ # 0
shows subdegree (fps-X * f) = subdegree f + 1
and subdegree (f * fps-X) = subdegree f + 1
proof—
show subdegree (fps-X * f) = subdegree f + 1
proof (intro subdegreel)
fix 7 :: nat assume i: { < subdegree f + 1
show (fps-X x f) $i=10
proof (cases i=0)
case Fualse with i show %thesis by (simp add: nth-less-subdegree-zero)
next
case True thus ?thesis using fps-X-mult-nth|of f i] by simp
qed
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qed (simp add: assms)
thus subdegree (f * fps-X) = subdegree f + 1
by (simp add: fps-mult-fps-X-commute)
qed

lemma fps-mult-fps-X-nonzero:

fixes [ :: 'a::{comm-monoid-add,mult-zero,monoid-mult} fps

assumes f # 0

shows fps-X = f # 0

and f x fps-X £ 0

using assms fps-subdegree-mult-fps-X[of f]
fps-nonzero-subdegree-nonzerol[of fps-X * f]
fps-nonzero-subdegree-nonzerol[of f * fps-X]

by auto

lemma fps-mult-fps-X-power-nonzero:
assumes f # 0
shows fps-X “nx f#£0
and f x fps-X "n#£0
proof —
show fps-X “nx f# 0
by (induct n) (simp-all add: assms mult.assoc fps-mult-fps-X-nonzero(1))
thus [ * fps-X “n # 0
by (simp add: fps-mult-fps-X-power-commute)
qed

lemma fps-X-power-iff: fps-X ~n = Abs-fps (Am. if m = n then 1 else 0)
by (induction n) (auto simp: fps-eq-iff)

lemma fps-X-nth[simp]: fps-X$n = (if n = 1 then 1 else 0)
by (simp add: fps-X-def)

lemma fps-X-power-nth]simp|: (fps-X"k) $n = (if n = k then 1 else 0)
by (simp add: fps-X-power-iff)

lemma fps-X-power-subdegree: subdegree (fps-X"n) = n
by (auto intro: subdegreel)

lemma fps-X-power-mult-nth:
(fps-X "k = f) $ n=(ifn < kthen O else f § (n — k))
by (cases n<k)
(simp-all add: fps-mult-nth-conv-upto-subdegree-left fps-X-power-subdegree
sum.atLeast-Suc-atMost)

lemma fps-X-power-mult-right-nth;:
(f * fos-Xk) $n = (if n < k then O else f $ (n — k))
using fps-mult-fps-X-power-commute|of k f] fps-X-power-mult-nth|of k f] by simp

lemma fps-subdegree-mult-fps-X-power:
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assumes f # 0
shows subdegree (fps-X ~n * f) = subdegree f + n
and subdegree (f * fps-X ~n) = subdegree f + n
proof —
from assms show subdegree (fps-X ~n * f) = subdegree f + n
by (induct n)
(simp-all add: algebra-simps fps-subdegree-mult-fps-X (1) fps-mult-fps-X-power-nonzero(1))
thus subdegree (f * fps-X ~ n) = subdegree f + n
by (simp add: fps-mult-fps-X-power-commute)
qed

lemma fps-mult-fps-X-plus-1-nth:
((14fps-X)*a) $n = (if n = 0 then (a$n :: ‘a::semiring-1) else a$n + a$(n —
1)
proof (cases n)
case (
then show ?thesis
by (simp add: fps-mult-nth)
next
case (Suc m)
have ((1 + fps-X)*a) $ n = sum (Ni. (I + fps-X)$i*xa$ (n— 1)) {0..n}
by (simp add: fps-mult-nth)

also have ... = sum (Ai. (1+fps-X)$i x a$(n—1)) {0.. 1}
unfolding Suc by (rule sum.mono-neutral-right) auto
also have ... = (if n = 0 then a$n else a¥n + a$(n — 1))

by (simp add: Suc)
finally show ?thesis .
qed

lemma fps-mult-right-fps-X-plus-1-nth:
fixes a :: 'a :: semiring-1 fps
shows (ax(1+fps-X)) $ n = (if n = 0 then a$n else a$n + a$(n — 1))
using fps-mult-fps-X-plus-1-nth

by  (simp add: distrib-left fps-mult-fps-X-commute distrib-right)

lemma fps-X-neq-fps-const [simpl: (fps-X :: 'a :: zero-neg-one fps) # fps-const ¢
proof

assume (fps-X::'a fps) = fps-const (c::'a)

hence fps-X$1 = (fps-const (c::'a))$1 by (simp only:)

thus Fulse by auto
qed

lemma fps-X-neg-zero [simpl: (fps-X :: 'a :: zero-neg-one fps) # 0
by (simp only: fps-const-0-eq-0[symmetric| fps-X-neq-fps-const) simp

lemma fps-X-neg-one [simpl: (fps-X :: 'a :: zero-neg-one fps) # 1
by (simp only: fps-const-1-eq-1[symmetric] fps-X-neq-fps-const) simp

lemma fps-X-neg-numeral [simp: fps-X # numeral ¢
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by (simp only: numeral-fps-const fps-X-neg-fps-const) simp

lemma fps-X-pow-eq-fps-X-pow-iff [simp]: fps-X “m = fps-X "n+— m=n
proof

assume (fps-X :: ‘a fps) “m = fps-X " n

hence (fps-X :: 'a fps) “m $ m = fps-X " n $ m by (simp only:)

thus m = n by (simp split: if-split-asm)
qed simp-all

5.4 Shifting and slicing

definition fps-shift :: nat = 'a fps = 'a fps where
fps-shift n f = Abs-fps (Mi. f $ (i + n))

lemma fps-shift-nth [simp|: fps-shiftn f $i=f$ (i + n)
by (simp add: fps-shift-def)

lemma fps-shift-0 [simp]: fps-shift 0 f = f
by (intro fps-ext) (simp add: fps-shift-def)

lemma fps-shift-zero [simp]: fps-shift n 0 = 0
by (intro fps-ext) (simp add: fps-shift-def)

lemma fps-shift-one: fps-shift n 1 = (if n = 0 then 1 else 0)
by (intro fps-ext) (simp add: fps-shift-def)

lemma fps-shift-fps-const: fps-shift n (fps-const ¢) = (if n = 0 then fps-const c
else 0)
by (intro fps-ext) (simp add: fps-shift-def)

lemma fps-shift-numeral: fps-shift n (numeral ¢) = (if n = 0 then numeral c else
0)
by (simp add: numeral-fps-const fps-shift-fps-const)

lemma fps-shift-fps-X [simp]:
n > 1 = fps-shift n fps-X = (if n = 1 then 1 else 0)
by (intro fps-ext) (auto simp: fps-X-def)

lemma fps-shift-fps-X-power [simp]:
n < m = fps-shift n (fps-X "~ m) = fps-X " (m — n)
by (intro fps-ext) auto

lemma fps-shift-subdegree [simp]:
n < subdegree f = subdegree (fps-shift n f) = subdegree f — n
by (cases f=0) (auto intro: subdegreel simp: nth-less-subdegree-zero)

lemma fps-shift-fps-shift:

fos-shift (m + n) f = fps-shift m (fps-shift n f)
by (rule fps-ext) (simp add: add-ac)
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lemma fps-shift-fps-shift-reorder:

fps-shift m (fps-shift n f) = fps-shift n (fps-shift m f)

using fps-shift-fps-shift[of m n f| fps-shift-fps-shift[of n m f] by (simp add:
add.commute)

lemma fps-shift-rev-shift:
m < n = fps-shift n (Abs-fps (Ak. if k<m then 0 else f $ (k—m))) = fps-shift
(n—m) f
m > n = fps-shift n (Abs-fps (\k. if k<m then 0 else f $ (k—m))) =
Abs-fps (Ak. if k<m—n then 0 else f $ (k—(m—n)))
proof —
assume m < n
thus fps-shift n (Abs-fps (Mk. if k<m then 0 else f $ (k—m))) = fps-shift (n—m)
f
by (intro fps-ext) auto
next
assume mn: m > n
hence Ak. k > m—n = k+n—m = k — (m—n) by auto
thus
fps-shift n (Abs-fps (\k. if k<m then 0 else f $ (k—m))) =
Abs-fps (Ak. if k<m—mn then 0 else f $ (k—(m—n)))
by (intro fps-ext) auto
qed

lemma fps-shift-add:
fos-shift n (f + g) = fps-shift n f + fps-shift n g
by (simp add: fps-eq-iff)

lemma fps-shift-diff:

fos-shift n (f — g) = fps-shift n f — fps-shift n g
by (auto intro: fps-ext)

lemma fps-shift-uminus:

fos-shift n (—f) = — fps-shift n f
by (auto intro: fps-ext)

lemma fps-shift-mult:
assumes n < subdegree (g :: 'b :: {comm-monoid-add, mult-zero} fps)
shows fps-shift n (hxg) = h * fps-shift n g
proof—
have casel: Na b::'b fps. 1 < subdegree b = fps-shift 1 (axb) = a * fps-shift 1
b
proof (rule fps-ext)
fix ab:'bfps
and n :: nat
assume b: 1 < subdegree b
have \i. i <n=n+ 1 —i=(n—i) + 1
by (simp add: algebra-simps)
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with b show fps-shift 1 (axb) $ n = (a * fps-shift 1 b) $ n
by (simp add: fps-mult-nth nth-less-subdegree-zero)
qed
have n < subdegree ¢ = fps-shift n (hxg) = h * fps-shift n g
proof (induct n)
case (Suc n)
have fps-shift (Suc n) (hxg) = fps-shift 1 (fps-shift n (hxg))
by (simp add: fps-shift-fps-shift[symmetric])
also have ... = h x (fps-shift 1 (fps-shift n g))
using Suc casel by force
finally show Zcase by (simp add: fps-shift-fps-shift[symmetric])
qed simp
with assms show ?thesis by fast
qed

lemma fps-shift-mult-right-noncomm:
assumes n < subdegree (g :: 'b :: {comm-monoid-add, mult-zero} fps)
shows fps-shift n (gxh) = fps-shift n g x h
proof—
have casel: Na b::'b fps. 1 < subdegree a = fps-shift 1 (axb) = fps-shift 1 a *
b
proof (rule fps-ext)
fix a b:'b fps
and n :: nat
assume 1 < subdegree a
hence fps-shift 1 (axb) $ n = (> i=Suc 0..Suc n. a$i * b$(n+1—1i))
using sum.atLeast-Suc-atMost[of 0 n+1 Xi. a$i = b$(n+1—1)]
by  (simp add: fps-mult-nth nth-less-subdegree-zero)
thus fps-shift 1 (axb) $ n = (fps-shift 1 a x b) $ n
using sum.shift-bounds-cl-Suc-ivl[of Ni. a$i * b$(n+1—1) 0 n]
by  (simp add: fps-mult-nth)
qed
have n < subdegree ¢ => fps-shift n (gxh) = fps-shift n g x h
proof (induct n)
case (Suc n)
have fps-shift (Suc n) (gxh) = fps-shift 1 (fps-shift n (gxh))
by (simp add: fps-shift-fps-shift[symmetric])
also have ... = (fps-shift 1 (fps-shift n g)) * h
using Suc casel by force
finally show ?case by (simp add: fps-shift-fps-shift[symmetric])
qed simp
with assms show ?thesis by fast
qed

lemma fps-shift-mult-right:
assumes n < subdegree (g :: 'b :: comm-semiring-0 fps)
shows  fps-shift n (gxh) = h x fps-shift n g
by (simp add: assms fps-shift-mult-right-noncomm mult.commute)
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lemma fps-shift-mult-both:
fixes fg :: ‘a::{comm-monoid-add, mult-zero} fps
assumes m < subdegree f n < subdegree g
shows  fps-shift m f  fps-shift n g = fps-shift (m+n) (fxg)
using assms
by (simp add: fps-shift-mult fps-shift-mult-right-noncomm fps-shift-fps-shift)

lemma fps-shift-subdegree-zero-iff [simpl:
fps-shift (subdegree f) f = 0 «— f =0
by (subst (1) nth-subdegree-zero-iff [symmetric], cases f = 0)
(simp-all del: nth-subdegree-zero-iff)

lemma fps-shift-times-fps-X:
fixes f g :: 'a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows 1 < subdegree f = fps-shift 1 f = fps-X = f
by (intro fps-ext) (simp add: nth-less-subdegree-zero)

lemma fps-shift-times-fps-X' [simp]:
fixes f :: 'a::{ comm-monoid-add,mult-zero,monoid-mult} fps
shows fps-shift 1 (f = fps-X) = f
by (intro fps-ext) (simp add: nth-less-subdegree-zero)

lemma fps-shift-times-fps-X'"
fixes f :: 'a::{comm-monoid-add,mult-zero,monoid-mult} fps
shows 1 < n = fps-shift n (f * fps-X) = fps-shift (n — 1) f
by (intro fps-ext) (simp add: nth-less-subdegree-zero)

lemma fps-shift-times-fps-X-power:
n < subdegree f = fps-shift n f * fps-X " n=f
by (intro fps-ext) (simp add: fps-X-power-mult-right-nth nth-less-subdegree-zero)

lemma fps-shift-times-fps-X-power’ [simp]:
fos-shift n (f * fps-X"n) = f
by (intro fps-ext) (simp add: fps-X-power-mult-right-nth nth-less-subdegree-zero)

lemma fps-shift-times-fps-X-power’":
m < n = fps-shift n (f * fps-X"m) = fps-shift (n — m) f
by (intro fps-ext) (simp add: fps-X-power-mult-right-nth nth-less-subdegree-zero)

lemma fps-shift-times-fps-X-power’":
m > n = fps-shift n (f * fps-X"m) = f % fps-X"(m — n)
proof (cases f=0)
case Fulse
assume m: m>n
hence m = n + (m—n) by auto
with False m show ?thesis
using power-add|of fps-X::'a fps n m—n]
fps-shift-mult-right-noncomm[of n f * fps-X "n fps-X (m—n)]
by  (simp add: mult.assoc fps-subdegree-mult-fps-X-power(2))
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qed simp

lemma subdegree-decompose:
f = fps-shift (subdegree f) f * fps-X ~ subdegree f
by (rule fps-ext) (auto simp: fps-X-power-mult-right-nth)

lemma subdegree-decompose’:
n < subdegree f = f = fps-shift n f = fps-X"n
by (rule fps-ext) (auto simp: fps-X-power-mult-right-nth intro!: nth-less-subdegree-zero)

instantiation fps :: (zero) unit-factor

begin

definition fps-unit-factor-def [simp]:
unit-factor f = fps-shift (subdegree f) f

instance ..

end

lemma fps-unit-factor-zero-iff: unit-factor (f::'a::zero fps) = 0 +— f =0
by simp

lemma fps-unit-factor-nth-0: f # 0 = unit-factor f $ 0 # 0
by simp

lemma fps-X-unit-factor: unit-factor (fps-X :: 'a :: zero-neg-one fps) = 1
by (intro fps-ext) auto

lemma fps-X-power-unit-factor: unit-factor (fps-X ~n) = 1
proof—
define X :: ‘a fps where X = fps-X
hence unit-factor (X™n) = fps-shift n (X n)
by (simp add: fps-X-power-subdegree)
moreover have fps-shift n (X n) = 1
by (auto intro: fps-ext simp: fps-X-power-iff X-def)
ultimately show ?thesis by (simp add: X-def)
qed

lemma fps-unit-factor-decompose:
f = unit-factor f * fps-X ~ subdegree f
by (simp add: subdegree-decompose)

lemma fps-unit-factor-decompose’:

f = fps-X ~ subdegree f x unit-factor f

using fps-unit-factor-decompose by (simp add: fps-mult-fps-X-power-commute)
lemma fps-unit-factor-uminus:

unit-factor (—f) = — unit-factor (f::'a::group-add fps)

by  (simp add: fps-shift-uminus)

lemma fps-unit-factor-shift:
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assumes n < subdegree f
shows unit-factor (fps-shift n ) = unit-factor f
by (simp add: assms fps-shift-fps-shift[symmetric])

lemma fps-unit-factor-mult-fps-X:

fixes [ :: 'a::{comm-monoid-add,monoid-mult,mult-zero} fps

shows unit-factor (fps-X * f) = unit-factor f

and unit-factor (f * fps-X) = unit-factor f
proof —

show unit-factor (fps-X * f) = unit-factor f

by (cases f=0) (auto intro: fps-ext simp: fps-subdegree-mult-fps-X (1))

thus unit-factor (f x fps-X) = unit-factor f by (simp add: fps-mult-fps-X-commute)

qed

lemma fps-unit-factor-mult-fps- X-power:
shows unit-factor (fps-X ~ n * f) = unit-factor f
and unit-factor (f x fps-X ~n) = unit-factor f
proof —
show unit-factor (fps-X ~n x f) = unit-factor f
proof (induct n)
case (Suc m) thus ?case
using fps-unit-factor-mult-fps-X (1)[of fps-X ~m * f] by (simp add: mult.assoc)
qed simp
thus unit-factor (f * fps-X ~n) = unit-factor f
by (simp add: fps-mult-fps-X-power-commute)
qged

lemma fps-unit-factor-mult-unit-factor:
fixes f g :: 'a::{ comm-monoid-add,mult-zero} fps
shows unit-factor (f * unit-factor g) = unit-factor (f * g)
and unit-factor (unit-factor f x g) = unit-factor (f * g)
proof —
show unit-factor (f * unit-factor g) = unit-factor (f * g)
proof (cases fxg = 0)
case Fulse thus ?thesis
using fps-mult-subdegree-ge[of f g] fps-unit-factor-shift|of subdegree g fxg]
by  (simp add: fps-shift-mult)
next
case True
moreover have f x unit-factor g = fps-shift (subdegree g) (f*g)
by (simp add: fps-shift-mult)
ultimately show ¢thesis by simp
qed
show unit-factor (unit-factor f x g) = unit-factor (f * g)
proof (cases fxg = 0)
case Fulse thus ?thesis
using fps-mult-subdegree-ge[of f g] fps-unit-factor-shift|of subdegree f fx*g]
by  (simp add: fps-shift-mult-right-noncomm,)
next
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case True
moreover have unit-factor f x g = fps-shift (subdegree f) (f*g)
by (simp add: fps-shift-mult-right-noncomm,)
ultimately show ?thesis by simp
qed
qed

lemma fps-unit-factor-mult-both-unit-factor:
fixes f g :: 'a::{ comm-monoid-add,mult-zero} fps
shows unit-factor (unit-factor f * unit-factor g) = unit-factor (f * g)
using fps-unit-factor-mult-unit-factor(1)[of unit-factor f g|
fos-unit-factor-mult-unit-factor(2)[of f g
by  simp

lemma fps-unit-factor-mult’:
fixes fg :: 'a:{comm-monoid-add,mult-zero} fps
assumes | $ subdegree f * g $ subdegree g # 0
shows unit-factor (f x g) = unit-factor f * unit-factor g
using assms
by (simp add: subdegree-mult’ fps-shift-mult-both)

lemma fps-unit-factor-mult:
fixes f g :: 'a::semiring-no-zero-divisors fps
shows unit-factor (f * g) = unit-factor f * unit-factor g
using fps-unit-factor-mult’[of f ¢]
by  (cases f=0 V g=0) auto

definition fps-cutoff n f = Abs-fps (Ai. if i < n then f$i else 0)

lemma fps-cutoff-nth [simpl: fps-cutoff n f $ i = (if i < n then f$i else 0)
unfolding fps-cutoff-def by simp

lemma fps-cutoff-zero-iff: fps-cutoff n f = 0 «+— (f = 0 V n < subdegree f)
proof
assume A: fps-cutoff n f = 0
thus f = 0 vV n < subdegree f
proof (cases f = 0)
assume f # 0
with A have n < subdegree f
by (intro subdegree-gel) (simp-all add: fps-eq-iff split: if-split-asm)
thus ?thesis ..
qed simp
qed (auto simp: fps-eq-iff intro: nth-less-subdegree-zero)

lemma fps-cutoff-0 [simp]: fps-cutoff 0 f = 0
by (simp add: fps-eq-iff)

lemma fps-cutoff-zero [simp): fps-cutoff n 0 = 0
by (simp add: fps-eq-iff)
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lemma fps-cutoff-one: fps-cutoff n 1 = (if n = 0 then 0 else 1)
by (simp add: fps-eq-iff)

lemma fps-cutoff-fps-const: fps-cutoff n (fps-const ¢) = (if n = 0 then 0 else
fps-const ¢)
by (simp add: fps-eq-iff)

lemma fps-cutoff-numeral: fps-cutoff n (numeral ¢) = (if n = 0 then 0 else numeral

¢)

by (simp add: numeral-fps-const fps-cutoff-fps-const)

lemma fps-shift-cutoff:
fps-shift n f x fps-X"n + fps-cutoff n f = f
by (simp add: fps-eq-iff fps-X-power-mult-right-nth)

lemma fps-shift-cutoff "
fps-X"n * fps-shift n f + fps-cutoff n f = f
by (simp add: fps-eq-iff fps-X-power-mult-nth)

lemma fps-cutoff-left-mult-nth:
k< n= (fps-cutoff n f x g) $ k= (f xg) $ k
by (simp add: fps-mult-nth)

lemma fps-cutoff-add: fps-cutoff n (f + g :: 'a :: monoid-add fps) = fps-cutoff n f
+ fps-cutoff n g
by (auto simp: fps-eq-iff)

lemma fps-cutoff-diff: fps-cutoff n (f — g :: 'a :: group-add fps) = fps-cutoff n f
— fps-cutoff n g
by (auto simp: fps-eq-iff)

lemma fps-cutoff-uminus: fps-cutoff n (—f == 'a :: group-add fps) = —fps-cutoff n
f
by (auto simp: fps-eg-iff)

lemma fps-cutoff-right-mult-nth:
assumes k < n
shows (f * fps-cutoff ng) $ k= (f*xg) $ k
proof—
from assms have Vie{0..k}. fps-cutoff n ¢ $ (k — i) = ¢ $ (k — 4) by auto
thus ?thesis by (simp add: fps-mult-nth)
qged

lemma fps-cutoff-eq-fps-cutoff-iff:
fos-cutoff n f = fps-cutoff n g +— (Vk<n. fps-nth f k = fps-nth g k)
by (subst fps-eq-iff) auto

lemma fps-conv-fps-X-power-mult-fps-shift:
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assumes f = 0 V subdegree f > n
shows [ = fps-X " n x fps-shift n f
proof —
have f = fps-X ~ n * fps-shift n f + fps-cutoff n f
by (auto simp: fps-eq-iff fps-X-power-mult-nth)
also have fps-cutoff n f = 0
by (subst fps-cutoff-zero-iff) (use assms in auto)
finally show ?thesis by simp
qed

5.5 Metrizability

instantiation fps :: ({minus,zero}) dist
begin

definition
dist-fps-def: dist (a :: 'a fps) b = (if a = b then 0 else inverse (2 ~ subdegree (a
— b))

lemma dist-fps-ge0: dist (a :: 'a fps) b > 0
by (simp add: dist-fps-def)

instance ..
end

instantiation fps :: (group-add) metric-space
begin

definition uniformity-fps-def [code del]:
(uniformity :: ('a fps x 'a fps) filter) = (INF ee{0 <..}. principal {(z, y). dist
zy < e})

definition open-fps-def’ [code del]:
open (U :: 'a fps set) «— (VxeU. eventually (A(z', y). 2’ = 2 — y € U)
uniformity)

lemma dist-fps-sym: dist (a :: 'a fps) b = dist b a
by (simp add: dist-fps-def)

instance
proof
show th: dist a b= 0 < a=bfor ab:: 'a fps
by (simp add: dist-fps-def split: if-split-asm)
then have th'[simp]: dist a a = 0 for a :: 'a fps by simp

fix abc: 'afps

consider a =b|c=aVc=0b|la#ba# cb+# cby blast
then show dist a b < dist a ¢ + dist b ¢
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proof cases
case I
then show %thesis by (simp add: dist-fps-def)
next
case 2
then show ?thesis
by (cases ¢ = a) (simp-all add: th dist-fps-sym)
next
case neq: 3
have Fulse if dist a b > dist a ¢ + dist b ¢
proof —
let ?n = subdegree (a — b)
from neq have dist a b > 0 dist b ¢ > 0 and dist a ¢ > 0 by (simp-all add:
dist-fps-def)
with that have dist a b > dist a ¢ and dist a b > dist b ¢ by simp-all
with neq have ?n < subdegree (a — ¢) and ?n < subdegree (b — ¢)
by (simp-all add: dist-fps-def field-simps)
hence (a —¢)$ n=0and (b —¢)$ n=20
by (simp-all only: nth-less-subdegree-zero)
hence (a — b) $ ?n = 0 by simp
moreover from neq have (a — b) $§ ?n # 0 by (intro nth-subdegree-nonzero)
simp-all
ultimately show Fulse by contradiction
qed
thus ?thesis by (auto simp add: not-le[symmetric])
qged
qed (rule open-fps-def’ uniformity-fps-def )+

end
declare uniformity-Abort[where 'a='a :: group-add fps, code]

lemma open-fps-def: open (S :: 'a:group-add fps set) = (Va € S. Ir. r >0 A {y.
disty a <1} CS)
unfolding open-dist subset-eq by simp

Topology

5.6 The topology of formal power series

A set of formal power series is open iff for any power series f in it, there
exists some number n such that all power series that agree with f on the
first n components are also in it.
lemma open-fps-iff:

open A +— (YVFeA. In. {G. fps-cutoff n G = fps-cutoff n F} C A)
proof

assume open A
show V FeA. In. {G. fps-cutoff n G = fps-cutoff n F} C A
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proof
fix F :: 'a fps
assume F: F € A
with <open A) obtain e where e: e > 0 AG. dist G F <e—=— G € A
by (force simp: open-fps-def)
thm dist-fps-def
have filterlim (An. (1/2)7n :: real) (nhds 0) at-top
by (intro LIMSEQ-realpow-zero) auto
from order-tendstoD(2)[OF this e(1)] have eventually (An. 1 / 2 " n < e)
at-top
by (simp add: power-divide)
then obtain n where n: 1 / 2 "n <e
by (auto simp: eventually-sequentially)
show 3n. {G. fps-cutoff n G = fps-cutoff n F} C A
proof (rule exl[of - n], safe)
fix G assume x*: fps-cutoff n G = fps-cutoff n F
show G € A
proof (cases G = F)
case Fulse
hence dist G F = inverse (2 ~ subdegree (G — F))
by (auto simp: dist-fps-def)
also have subdegree (G — F) > n
proof (rule subdegree-gel)
fix ¢ assume ¢ < n
hence fps-nth (G — F) i = fps-nth (fps-cutoff n G — fps-cutoff n F) i
by (auto simp: fps-eq-iff)
also from * have ... = 0
by simp
finally show fps-nth (G — F)i= 0.
qed (use False in auto)
hence inverse (2 ~ subdegree (G — F) :: real) < inverse (2 ~ n)
by (intro le-imp-inverse-le power-increasing) auto
also have ... < e
using n by (simp add: field-simps)
finally show G € A
using e(2)[of G] by auto
qged (use <F € A in auto)
qed
qed
next
assume *: VFeA. In. {G. fps-cutoff n G = fps-cutoff n F} C A
show open A
unfolding open-fps-def
proof safe
fix F assume F: F € A
with * obtain n where n: AG. fps-cutoff n G = fps-cutoff n F — G € A
by blast
show 3r>0. {G. dist G F < r} C A
proof (rule exI[of - 1 / 2 ™ n], safe)
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fix G assume dist: dist GF <1 /2 " n
show G € A
proof (cases G = F)
case Fulse
hence dist G F = inverse (2 ~ subdegree (F — Q)
by (simp add: dist-fps-def)
with dist have n < subdegree (F' — G)
by (auto simp: field-simps)
hence fps-nth (FF — G) i = 0 if i < n for ¢
using that nth-less-subdegree-zero[of i F — G| by simp
hence fps-cutoff n G = fps-cutoff n F
by (auto simp: fps-eq-iff fps-cutoff-def)
thus G € A
by (rule n)
qged (use <F € A in auto)
qed auto
qed
qed

lemma open-fps-cutoff: open {H. fps-cutoff N H = fps-cutoff N G}

unfolding open-fps-iff
proof safe

fix F assume F: fps-cutoff N F = fps-cutoff N G

show In. {G. fps-cutoff n G = fps-cutoff n F}

C {H. fps-cutoff N H = fps-cutoff N G}
by (rule exI[of - N]) (use F in <auto simp: fps-eq-iff>)

qged

lemma eventually-fps-nth-eq-nhds-fps-strong:
eventually (Ag. Vk<n. fps-nth g k = fps-nth f k) (nhds f)
proof —
have eventually (Ag. g € {g. fps-cutoff (n+1) g = fps-cutoff (n+1) f}) (nhds

)
by (rule eventually-nhds-in-open, rule open-fps-cutoff) auto
thus ?thesis
by eventually-elim (auto simp: fps-cutoff-eq-fps-cutoff-iff)
qed

lemma eventually-fps-nth-eq-nhds-fps: eventually (M\g. fps-nth g k = fps-nth f k)
(nhds f)
using eventually-fps-nth-eqg-nhds-fps-strong[of k] by eventually-elim auto

A family of formal power series f, tends to a limit series ¢ at some filter
F iff for any N > 0, the set of x for which f, and G agree on the first N
coefficients is in F.

For a sequence (f;)n>0 this means that f; — G iff for any N > 0, f, and
G agree for all but finitely many .

lemma tendsto-fps-iff:
filterlim f (nhds (g :: 'a :: group-add fps)) F +—
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(Vn. eventually (Az. fps-nth (f x) n = fps-nth g n) F)
proof safe
assume lim: filterlim f (nhds (g :: 'a :: group-add fps)) F
show eventually (Az. fps-nth (f x) n = fps-nth g n) F for n
proof —
define S where S = {H. fps-cutoff (n+1) H = fps-cutoff (n+1) g}
have S: open S g € S
unfolding S-def using open-fps-cutoff[of n+1 g] by (auto simp: S-def)
from lim and S have eventually (A\z. fo € S) F
using topological-tendstoD by blast
thus eventually (Az. fps-nth (f x) n = fps-nth g n) F
by eventually-elim (auto simp: S-def fps-cutoff-eq-fps-cutoff-iff)
qed
next
assume x: Vn. eventually (Az. fps-nth (f x) n = fps-nth g n) F
show filterlim f (nhds (g :: 'a :: group-add fps)) F
proof (rule topological-tendstol)
fix S :: ‘a fps set
assume S: open S g € S
then obtain N where N: {H. fps-cutoff N H = fps-cutoff N g} C S
unfolding open-fps-iff by blast
have eventually (Az. Vne{..<N}. fps-nth (f ©) n = fps-nth g n) F
by (subst eventually-ball-finite-distrib) (use x in auto)
hence eventually (\z. fz € {H. fps-cutoff N H = fps-cutoff N g}) F
by eventually-elim (auto simp: fps-cutoff-eq-fps-cutoff-iff)
thus eventually (A\z. fz € S) F
by eventually-elim (use N in auto)
qed
qed

lemma tendsto-fpsI:
assumes An. eventually (Az. fps-nth (f ©) n = fps-nth G n) F
shows filterlim f (nhds (G :: 'a :: group-add fps)) F
unfolding tendsto-fps-iff using assms by blast

The infinite sums and justification of the notation in textbooks.

lemma reals-power-lt-ex:
fixes z y :: real
assumes zp: © > 0
and yl:y > 1
shows 3k>0. (1/y) k < x
proof —
have yp: y > 0
using yI by simp
from reals-Archimedean2[of maz 0 (— log y x) + 1]
obtain k :: nat where k: real k > maz 0 (— log y x) + 1
by blast
from k have kp: k > 0
by simp
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from k have real k > — log y «
by simp
then have In y x real k > — In x
unfolding log-def
using In-gt-zero-iff[OF yp] y1
by (simp add: minus-divide-left field-simps del: minus-divide-left[symmetric])
then have In y x real k + In x > 0
by simp
then have ezp (real k x In y + In z) > exp 0
by (simp add: ac-simps)
then have y "k *x 2 > 1
unfolding exp-zero exp-add exp-of-nat-mult exp-ln [OF zp| exp-ln [OF yp|
by simp
then have z > (1 / y) 'k using yp
by (simp add: field-simps)
then show ?thesis
using kp by blast
qed

lemma fps-sum-rep-nth: (sum (Ai. fps-const(a$i)*xfps-X"%) {0..m})$n = (if n <
m then a$n else 0)
by (simp add: fps-sum-nth if-distrib cong del: if-weak-cong)

lemma fps-notation: (An. sum (Ai. fps-const(a$i) * fps-X7%) {0..n}) —— a
(is 9s —— a)
proof —
have 3n0.Vn > n0. dist (?sn) a < rif r > 0 for r
proof —
obtain n0 where n0: (1/2) ™n0 < rn0 > 0
using reals-power-lt-ex[OF <r > 05, of 2] by auto
show %thesis
proof —
have dist (s n) a < r if nn0: n > n0 for n
proof —
from that have thnn0: (1/2) ™n < (1/2 :: real) n0
by (simp add: field-split-simps)
show %thesis
proof (cases ?s n = a)
case True
then show ?thesis
unfolding dist-eq-0-iff [of ?s n a, symmetric]
using «r > 0» by (simp del: dist-eq-0-iff)
next
case Fulse
from Fulse have dth: dist (?s n) a = (1/2) subdegree (?s n — a)
by (simp add: dist-fps-def field-simps)
from False have kn: subdegree (?sn — a) > n
by (intro subdegree-greaterl) (simp-all add: fps-sum-rep-nth)
then have dist (?sn) a < (1/2)™n
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by (simp add: field-simps dist-fps-def)
also have ... < (1/2)™n0
using nn0 by (simp add: field-split-simps)
also have ... < r
using n0 by simp
finally show ?%thesis .
qged
qed
then show ?thesis by blast
qed
qed
then show ?thesis
unfolding lim-sequentially by blast
qed

5.7 Division

declare sum.cong|fundef-cong]

fun fps-left-inverse-constructor ::
'a::{ comm-monoid-add,times,uminus} fps = 'a = nat = 'a
where
fos-left-inverse-constructor fa 0 = a
| fps-left-inverse-constructor f a (Suc n) =
— sum (Ai. fps-left-inverse-constructor f a i * f$(Suc n — 7)) {0..n} * a

— This will construct a left inverse for f in case that z « f $ 0 = 1
abbreviation fps-left-inverse = (Af z. Abs-fps (fps-left-inverse-constructor f x))

fun fps-right-inverse-constructor ::
'a::{ comm-monoid-add,times,uminus} fps = 'a = nat = 'a
where
fps-right-inverse-constructor f a 0 = a
| fps-right-inverse-constructor f a n =
— a x sum (Xi. f$i x fps-right-inverse-constructor f a (n — 1)) {1..n}

— This will construct a right inverse for f in case that f $ 0 *x y = 1
abbreviation fps-right-inverse = (Afy. Abs-fps (fps-right-inverse-constructor f y))

instantiation fps :: ({comm-monoid-add,inverse,times,uminus}) inverse
begin

— For backwards compatibility.
abbreviation natfun-inverse:: 'a fps = nat = 'a
where natfun-inverse f = fps-right-inverse-constructor f (inverse (f$0))

definition fps-inverse-def: inverse f = Abs-fps (natfun-inverse f)

— With scalars from a (possibly non-commutative) ring, this defines a right inverse.
Furthermore, if scalars are of class mult-zero and satisfy condition inverse 0 = 0,
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then this will evaluate to zero when the zeroth term is zero.

definition fps-divide-def: f div g = fps-shift (subdegree g) (f * inverse (unit-factor
9))

— If scalars are of class mult-zero and satisfy condition inverse 0 = 0, then div by
zero will equal zero.

instance ..
end

lemma fps-lr-inverse-0-iff:
(fps-left-inverse fz) $ 0 =
(fps-right-inverse fz) $ 0 = 0 +— z =0
by auto

lemma fps-inverse-0-iff : (inverse f) $ 0 = 0 +— inverse (f $ 0) = 0
by (simp add: fps-inverse-def fps-lr-inverse-0-iff (2))

lemma fps-inverse-0-iff [simp]: (inverse f) $ 0 = (0::'a::division-ring) +— f $ 0
=0
by (simp add: fps-inverse-0-iff )

lemma fps-lr-inverse-nth-0:
(fps-left-inverse f x) $ 0 = x (fps-right-inverse fz) $ 0 = z
by auto

lemma fps-inverse-nth-0 [simp]: (inverse f) $ 0 = inverse (f $ 0)
by (simp add: fps-inverse-def)

lemma fps-lr-inverse-starting0:
fixes f :: 'a::{ comm-monoid-add,mult-zero,uminus} fps
and g :: 'b:{ab-group-add,mult-zero} fps
shows fps-left-inverse f 0 = 0
and fps-right-inverse g 0 = 0
proof—
show fps-left-inverse f 0 = 0
proof (rule fps-ext)
fix n show fps-left-inverse fO $n=09%n
by (cases n) (simp-all add: fps-inverse-def)
qed
show fps-right-inverse g 0 = 0
proof (rule fps-ext)
fix n show fps-right-inverse g 0 $n=0$ n
by (cases n) (simp-all add: fps-inverse-def)
qed
qed

lemma fps-lr-inverse-eq0-imp-starting0:
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fps-left-inverse fo = 0 = =0
fps-right-inverse fz = 0 = =z = 0
proof—
assume A: fps-left-inverse fx = 0
have 0 = fps-left-inverse f x $ 0 by (subst A) simp
thus z = 0 by simp
next
assume A: fps-right-inverse f x = 0
have 0 = fps-right-inverse f x $ 0 by (subst A) simp
thus z = 0 by simp
qged

lemma fps-lr-inverse-eq-0-iff:
fixes z :: ‘a::{comm-monoid-add,mult-zero,uminus}
and y :: 'b:{ab-group-add,mult-zero}
shows fps-left-inverse fx = 0 «— z =0
and fps-right-inverse gy = 0 +— y = 0
using fps-lr-inverse-starting0 fps-lr-inverse-eq0-imp-starting0
by auto

lemma fps-inverse-eq-0-iff :
fixes [ :: 'a::{ab-group-add,inverse,mult-zero} fps
shows inverse f = 0 +— inverse (f $ 0) = 0
by  (simp add: fps-inverse-def fps-lr-inverse-eq-0-iff (2))

lemma fps-inverse-eq-0-iff [simp]: inverse f = (0:: ('a::division-ring) fps) «— f $
0=20
using fps-inverse-eq-0-iff '[of f] by simp

lemmas fps-inverse-eq-0' = iff D2|OF fps-inverse-eq-0-iff ]
lemmas fps-inverse-eq-0 = iffD2[OF fps-inverse-eq-0-iff)

lemma fps-const-lr-inverse:
fixes a :: ‘a::{ab-group-add,mult-zero}
and b :: 'b::{ comm-monoid-add,mult-zero,uminus}
shows fps-left-inverse (fps-const a) x = fps-const x
and fps-right-inverse (fps-const b) y = fps-const y
proof—
show fps-left-inverse (fps-const a) x = fps-const
proof (rule fps-ext)
fix n show fps-left-inverse (fps-const a) x $ n = fps-const z § n
by (cases n) auto
qed
show fps-right-inverse (fps-const b) y = fps-const y
proof (rule fps-ext)
fix n show fps-right-inverse (fps-const b) y $ n = fps-const y $ n
by (cases n) auto
qged
qed
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lemma fps-const-inverse:
fixes  a :: 'a:{comm-monoid-add,inverse, mult-zero,uminus}
shows  inverse (fps-const a) = fps-const (inverse a)
unfolding fps-inverse-def
by (simp add: fps-const-lr-inverse(2))

lemma fps-lr-inverse-zero:
fixes z :: ‘a::{ab-group-add,mult-zero}
and y :: 'bu{comm-monoid-add,mult-zero,uminus}
shows fps-left-inverse 0 x = fps-const z
and fps-right-inverse 0 y = fps-const y
using fps-const-lr-inverse[of 0]
by  simp-all

lemma fps-inverse-zero-conv-fps-const:

inverse (0::'a::{ comm-monoid-add,mult-zero,uminus,inverse} fps) = fps-const (inverse
0)

using fps-lr-inverse-zero(2)[of inverse (0::'a)] by (simp add: fps-inverse-def)

lemma fps-inverse-zero:
assumes inverse (0::'a::{ comm-monoid-add,inverse,mult-zero,uminus}) = 0
shows inverse (0::'a fps) = 0
by (simp add: assms fps-inverse-zero-conv-fps-const)

lemma fps-inverse-zero [simp]:
inverse (0::'a::division-ring fps) = 0
by (rule fps-inverse-zero’|OF inverse-zerol)

lemma fps-lr-inverse-one:
fixes z :: ‘a::{ab-group-add,mult-zero,one}
and y :: 'b:{comm-monoid-add,mult-zero,uminus,one}
shows fps-left-inverse 1 x = fps-const z
and fps-right-inverse 1 y = fps-const y
using fps-const-lr-inverselof 1]
by  simp-all

lemma fps-lr-inverse-one-one:
fos-left-inverse 1 1 = (1::'a::{ab-group-add,mult-zero,one} fps)
fps-right-inverse 1 1 = (1::'b::{ comm-monoid-add,mult-zero,uminus,one} fps)
by (simp-all add: fps-lr-inverse-one)

lemma fps-inverse-one':
assumes inverse (1::'a::{comm-monoid-add,inverse,mult-zero,uminus,one}) = 1
shows inverse (1 :: 'a fps) = 1
using assms fps-lr-inverse-one-one(2)
by (simp add: fps-inverse-def)

lemma fps-inverse-one [simp]: inverse (1 :: 'a :: division-ring fps) = 1
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by (rule fps-inverse-one’|OF inverse-1])

lemma fps-lr-inverse-minus:
fixes f :: 'a:ring-1 fps

shows fps-left-inverse (—f) (—xz) = — fps-left-inverse f x
and fps-right-inverse (—f) (—z) = — fps-right-inverse f x
proof—
show fps-left-inverse (—f) (—x) = — fps-left-inverse f x
proof (intro fps-ext)
fix n show fps-left-inverse (—f) (—xz) $ n = — fps-left-inverse f x $ n

proof (induct n rule: nat-less-induct)
case (1 n) thus ?case by (cases n) (simp-all add: sum-negf algebra-simps)
qed

qed
show fps-right-inverse (—f) (—x) = — fps-right-inverse f x
proof (intro fps-ext)
fix n show fps-right-inverse (—f) (—z) $ n = — fps-right-inverse fz $ n

proof (induct n rule: nat-less-induct)
case (1 n) show ?case
proof (cases n)
case (Suc m)
with 7 have
Vie{1..Suc m}. fps-right-inverse (—f) (—z) $ (Suc m — @) =
— fps-right-inverse fx $ (Suc m — 1)

by auto
with Suc show ?thesis by (simp add: sum-negf algebra-simps)
qed simp
qed
qed
qed
lemma fps-inverse-minus [simp|: inverse (—f) = —inverse (f :: ‘a :: division-ring
fps)

by (simp add: fps-inverse-def fps-lr-inverse-minus(2))

lemma fps-left-inverse:

fixes f :: ‘a:ring-1 fps

assumes f0: z * f$0 = 1

shows fps-left-inverse fx x f = 1
proof (rule fps-ext)

fix n show (fps-left-inverse fz x f) $n=18%n

by (cases n) (simp-all add: f0 fps-mult-nth mult.assoc)

qed

lemma fps-right-inverse:
fixes f :: ‘anring-1 fps
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assumes f0: f$0 x y = 1
shows f * fps-right-inverse fy = 1
proof (rule fps-ext)
fix n
show (f * fps-right-inverse fy) $n=18%n
proof (cases n)
case (Suc k)
moreover from Suc have fps-right-inverse fy $ n =
— y * sum (Xi. f$i x fps-right-inverse-constructor fy (n — 7)) {1..n}
by simp
hence
(f = fps-right-inverse fy) $ n =
— 1 * sum (Ai. f$i x fps-right-inverse-constructor fy (n — 7)) {1..n} +
sum (Ai. f8i * (fps-right-inverse-constructor fy (n — ))) {1..n}
by (simp add: fps-mult-nth sum.atLeast-Suc-atMost mult.assoc f0[symmetric])
thus (f * fps-right-inverse fy) $ n = 1 $ n by (simp add: Suc)
qed (simp add: f0 fps-inverse-def)
qed

It is possible in a ring for an element to have a left inverse but not a right
inverse, or vice versa. But when an element has both, they must be the
same.

lemma fps-left-inverse-eq-fps-right-inverse:
fixes f :: ‘a:ring-1 fps
assumes f0: x x f$0 =180 xy=1
— These assumptions imply that = equals y, but no need to assume that.
shows fps-left-inverse f x = fps-right-inverse fy
proof—
from f0(2) have f x fps-right-inverse fy = 1
by (simp add: fps-right-inverse)
hence fps-left-inverse f x = f * fps-right-inverse f y = fps-left-inverse f x
by (simp add: mult.assoc)
moreover from f0(1) have
fos-left-inverse f x = f * fps-right-inverse f y = fps-right-inverse fy
by (simp add: fps-left-inverse)
ultimately show ?thesis by simp
qed

lemma fps-left-inverse-eq-fps-right-inverse-comm:
fixes f :: ‘a::comm-ring-1 fps
assumes f0: z * f$0 = 1
shows fps-left-inverse f x = fps-right-inverse f
using assms fps-left-inverse-eq-fps-right-inverselof z f x]
by (simp add: mult.commute)

lemma fps-left-inverse”:
fixes f :: ‘anring-1 fps
assumes z * f$0 = 1 f$0 x y = 1
— These assumptions imply x equals y, but no need to assume that.
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shows fps-right-inverse fy « f = 1
using assms fps-left-inverse-eq-fps-right-inverselof x f y| fps-left-inverse|of z f]
by stmp

lemma fps-right-inverse”:
fixes f :: ‘anring-1 fps
assumes z x f$0 = 1 f$0 x y = 1
— These assumptions imply x equals y, but no need to assume that.
shows f x fps-left-inverse fx = 1
using assms fps-left-inverse-eq-fps-right-inverse[of x f y] fps-right-inverse[of f y]
by Stmp

lemma inverse-mult-eq-1 [introl:
assumes f$0 # (0::'a::division-ring)
shows inverse f x f = 1
using  fps-left-inverse’[of inverse (f$0)]
by (simp add: assms fps-inverse-def)

lemma inverse-mult-eq-1":
assumes f$0 # (0::'a::division-ring)
shows f * inverse f = 1
using assms fps-right-inverse
by (force simp: fps-inverse-def)

lemma fps-mult-left-inverse-unit-factor:
fixes f :: ‘a:ring-1 fps
assumes z * f $ subdegree f = 1
shows fps-left-inverse (unit-factor f) = x f = fps-X ~ subdegree f
proof—
have
fps-left-inverse (unit-factor f) x = f =
fps-left-inverse (unit-factor f) x = unit-factor f x fps-X ~ subdegree f
using fps-unit-factor-decompose|of f] by (simp add: mult.assoc)
with assms show ?thesis by (simp add: fps-left-inverse)
qed

lemma fps-mult-right-inverse-unit-factor:
fixes f :: ‘anring-1 fps
assumes | $ subdegree f x y = 1
shows f x fps-right-inverse (unit-factor f) y = fps-X ~ subdegree f
proof—
have
f * fps-right-inverse (unit-factor f) y =
fps-X ~ subdegree f = (unit-factor f = fps-right-inverse (unit-factor f) y)
using fps-unit-factor-decompose’[of f] by (simp add: mult.assoc[symmetric))
with assms show ?thesis by (simp add: fps-right-inverse)
qed

lemma fps-mult-right-inverse-unit-factor-divring:
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(f =2 'as:division-ring fps) # 0 = f * inverse (unit-factor f) = fps-X ~ subdegree
f

using  fps-mult-right-inverse-unit-factor|of f]

by (simp add: fps-inverse-def)

lemma fps-left-inverse-idempotent-ring1 :
fixes [ :: 'a:ring-1 fps
assumes z x f$0 = 1y *x z = 1
— These assumptions imply y equals f$0, but no need to assume that.
shows fps-left-inverse (fps-left-inverse fz) y = f
proof—
from assms(1) have
fps-left-inverse (fps-left-inverse f x) y * fps-left-inverse fx * f =
fos-left-inverse (fps-left-inverse f ) y
by (simp add: fps-left-inverse mult.assoc)
moreover from assms(2) have
fps-left-inverse (fps-left-inverse f x) y * fps-left-inverse fx = 1
by (simp add: fps-left-inverse)
ultimately show ?thesis by simp
qed

lemma fps-left-inverse-idempotent-comm-ring1 :
fixes [ :: 'a::comm-ring-1 fps
assumes 7 * f$0 = 1
shows fps-left-inverse (fps-left-inverse f z) (f$0) = f
using assms fps-left-inverse-idempotent-ring1 [of © f f$0]
by (simp add: mult.commute)

lemma fps-right-inverse-idempotent-ring1:
fixes f :: ‘a:ring-1 fps
assumes f$0 s x = 1z * y = 1
— These assumptions imply y equals f$0, but no need to assume that.
shows fps-right-inverse (fps-right-inverse fz) y = f
proof—
from assms(1) have f x (fps-right-inverse f x x fps-right-inverse (fps-right-inverse
fa)y) =
fps-right-inverse (fps-right-inverse f x) y
by (simp add: fps-right-inverse mult.assoc[symmetric])
moreover from assms(2) have
fps-right-inverse f x x fps-right-inverse (fps-right-inverse f z) y = 1
by (simp add: fps-right-inverse)
ultimately show “thesis by simp
qged

lemma fps-right-inverse-idempotent-comm-ringl :
fixes [ :: ‘a::comm-ring-1 fps
assumes [$0 x z = 1
shows  fps-right-inverse (fps-right-inverse f z) (f$0) = f
using assms fps-right-inverse-idempotent-ringl[of f z f$0]
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by (simp add: mult.commute)

lemma fps-inverse-idempotent[intro, simp:
f$0 # (0::'a::division-ring) = inverse (inverse f) = f
using fps-right-inverse-idempotent-ring1 [of f]
by  (simp add: fps-inverse-def)

lemma fps-lr-inverse-unique-ringl:
fixes fg: 'a:: ring-1 fps
assumes fg: f x g = 1 ¢$0 * f$0 = 1
shows fps-left-inverse g (f$0) = f
and  fps-right-inverse f (¢$0) = g
proof—

show fps-left-inverse g (f$0) = f
proof (intro fps-ext)
fix n show fps-left-inverse g (f$0) $n=f % n
proof (induct n rule: nat-less-induct)
case (1 n) show ?case
proof (cases n)
case (Suc k)
hence Vi€{0..k}. fps-left-inverse g (f$0) $ i = f $ 7 using 1 by simp
hence fps-left-inverse g (f$0) $ Suck =f % Suck — 1 $ Suc k * f$0
by (simp add: fps-mult-nth fg(1)[symmetric] distrib-right mult.assoc fg(2))
with Suc show ?thesis by simp
qed simp
qed
qed

show fps-right-inverse f (¢$0) = g
proof (intro fps-ext)
fix n show fps-right-inverse f (¢g80) $ n =g 3% n
proof (induct n rule: nat-less-induct)
case (1 n) show Zcase
proof (cases n)
case (Suc k)
hence Vie{1..Suc k}. fps-right-inverse f (¢$0) $ (Suc k — i) = g § (Suc k
— )
using 1 by auto
hence
fps-right-inverse f (g80) $ Suck =1 % g $ Suck — g$0 x 1 $ Suc k
by (simp add: fps-mult-nth fg(1)[symmetric] algebra-simps fg(2)[symmetric]
sum.atLeast-Suc-atMost)
with Suc show ?Zthesis by simp
qed simp
qed
qed

qed
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lemma fps-lr-inverse-unique-divring:
fixes fg : 'a ::division-ring fps
assumes fg: f x g = 1
shows fps-left-inverse g (f$0) = f
and  fps-right-inverse f (¢$0) = g
proof—
from fg have f$0 x ¢$0 = 1 using fps-mult-nth-0[of f g] by simp
hence ¢$0 * f$0 = 1 using inverse-unique|of f$0] left-inverse[of f$0] by force
thus fps-left-inverse g (f$0) = f fps-right-inverse f (¢$0) = g
using fg fps-lr-inverse-unique-ringl by auto
qed

lemma fps-inverse-unique:
fixes fg: 'a:: division-ring fps
assumes fg: f x g = 1
shows inverse f = g
proof —
from fg have if0: inverse (f$0) = ¢$0 f$0 # 0
using inverse-uniquelof f$0] fps-mult-nth-0[of f g] by auto
with fg have fps-right-inverse f (¢$30) = ¢
using left-inverse|of f$0] by (intro fps-lr-inverse-unique-ring1 (2)) simp-all
with if0(1) show ?thesis by (simp add: fps-inverse-def)
qed

lemma inverse-fps-numeral:
inverse (numeral n :: ('a :: field-char-0) fps) = fps-const (inverse (numeral n))
by (intro fps-inverse-unique fps-ext) (simp-all add: fps-numeral-nth)

lemma inverse-fps-of-nat:
inverse (of-nat n :: 'a :: {semiring-1,times,uminus,inverse} fps) =
fps-const (inverse (of-nat n))
by (simp add: fps-of-nat fps-const-inverse[symmetric])

lemma fps-lr-inverse-mult-ring1:
fixes fg:: ‘auring-1 fps
assumes z: z * f$0 = 1 f$0 x z = 1
and y:yx g$0 = 1 g%0 x y = 1
shows fps-left-inverse (f x g) (yxx) = fps-left-inverse g y x fps-left-inverse f x
and  fps-right-inverse (f = g) (yxx) = fps-right-inverse g y * fps-right-inverse
fx
proof —
define h where h = fps-left-inverse g y * fps-left-inverse f x
hence h0: h$0 = yxz by simp
have fps-left-inverse (fxg) (h$0) = h
proof (intro fps-lr-inverse-unique-ring1 (1))
from h-def
have h x (f x g) = fps-left-inverse g y * (fps-left-inverse fz * f) x g
by  (simp add: mult.assoc)
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thus h x (f * g) = 1
using fps-left-inverse|OF z(1)] fps-left-inverse[OF y(1)] by simp
from h-def have (f*g)$0 * h$0 = f$0 x 1 x z
by (simp add: mult.assoc y(2)[symmetric])
with 2(2) show (f x g) $ 0 * h $ 0 = 1 by simp
qed
with h-def
show fps-left-inverse (f x g) (yxx) = fps-left-inverse g y * fps-left-inverse f x
by  simp
next
define h where h = fps-right-inverse g y * fps-right-inverse f x
hence h0: h$0 = yxz by simp
have fps-right-inverse (fxg) (h$0) = h
proof (intro fps-lr-inverse-unique-ring1(2))
from h-def
have [ x g* h = f x (g x fps-right-inverse g y) * fps-right-inverse f x
by  (simp add: mult.assoc)
thus f x g« h =1
using fps-right-inverse|OF x(2)] fps-right-inverse[OF y(2)] by simp
from h-def have h$0 * (fxg)$0 = y = 1 * ¢$0
by (simp add: mult.assoc z(1)[symmetric])
with y(1) show h$0 x (fxg)$0 = 1 by simp
qed
with h-def
show fps-right-inverse (f * g) (yxx) = fps-right-inverse g y * fps-right-inverse
fx
by  simp
qed

lemma fps-lr-inverse-mult-divring:
fixes f g :: 'a::division-ring fps
shows fps-left-inverse (f x g) (inverse ((fxg)$0)) =
fps-left-inverse g (inverse (g$0)) * fps-left-inverse f (inverse (f$0))
and fps-right-inverse (f x g) (inverse ((fxg)$0)) =
fps-right-inverse g (inverse (g$0)) * fps-right-inverse f (inverse (f$0))
proof—
show fps-left-inverse (f * g) (inverse ((fxg)$0)) =
fps-left-inverse g (inverse (g$0)) * fps-left-inverse f (inverse (f$0))
proof (cases f$0 = 0 V ¢$0 = 0)
case True
hence fps-left-inverse (f * g) (inverse ((f*xg)$0)) = 0
by (simp add: fps-lr-inverse-eq-0-iff (1))
moreover from True have
fps-left-inverse g (inverse (¢$0)) * fps-left-inverse f (inverse (f$0)) = 0
by (auto simp: fps-lr-inverse-eq-0-iff (1))
ultimately show ?thesis by simp
next
case Fulse
hence fps-left-inverse (f * g) (inverse (g$0) x inverse (f$0)) =
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fps-left-inverse g (inverse (¢$0)) * fps-left-inverse f (inverse (f$0))
by (intro fps-lr-inverse-mult-ringl (1)) simp-all
with Fualse show ?thesis by (simp add: nonzero-inverse-mult-distrib)
qed
show fps-right-inverse (f = g) (inverse ((fx9)$0)) =
fps-right-inverse g (inverse (¢$0)) * fps-right-inverse f (inverse (f$0))
proof (cases f$0 = 0 V ¢$0 = 0)
case True
from True have fps-right-inverse (f x g) (inverse ((f+x9)$0)) = 0
by (simp add: fps-lr-inverse-eq-0-iff (2))
moreover from True have
fps-right-inverse g (inverse (¢$0)) * fps-right-inverse f (inverse (f$0)) = 0
by (auto simp: fps-lr-inverse-eq-0-iff (2))
ultimately show ?thesis by simp
next
case Fulse
hence fps-right-inverse (f * g) (inverse (g$0) * inverse (f$0)) =
fps-right-inverse g (inverse (¢$0)) * fps-right-inverse f (inverse (f$0))
by (intro fps-lr-inverse-mult-ring1 (2)) simp-all
with False show ?thesis by (simp add: nonzero-inverse-mult-distrib)
qged
qged

lemma fps-inverse-mult-divring:
inverse (f * g) = inverse g x inverse (f :: 'a::division-ring fps)
using fps-lr-inverse-mult-divring(2) by (simp add: fps-inverse-def)

lemma fps-inverse-mult: inverse (f x g :: 'a::field fps) = inverse f * inverse g
by (simp add: fps-inverse-mult-divring)

lemma inverse-prod-fps: inverse (prod f A) = ([[z€A. inverse (f x) :: 'a :: field

fps)

by (induction A rule: infinite-finite-induct) (auto simp: fps-inverse-mult)

lemma fps-lr-inverse-gp-ring1:
fixes ones ones-inv :: 'a :: ring-1 fps
defines ones = Abs-fps (An. 1)
and ones-inv = Abs-fps (An. if n=0 then 1 else if n=1 then — 1 else 0)
shows fps-left-inverse ones 1 = ones-inv
and fps-right-inverse ones 1 = ones-inv
proof—
show fps-left-inverse ones 1 = ones-inv
proof (rule fps-ext)
fix n
show fps-left-inverse ones 1 $ n = ones-inv $ n
proof (induct n rule: nat-less-induct)
case (1 n) show ?case
proof (cases n)
case (Suc m)
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have m: n = Suc m by fact
moreover have fps-left-inverse ones 1 $ Suc m = ones-inv $ Suc m
proof (cases m)
case (Suc k) thus %thesis
using Suc m 1 by (simp add: ones-def ones-inv-def sum.atLeast-Suc-atMost)
qed (simp add: ones-def ones-inv-def)
ultimately show ?thesis by simp
qged (simp add: ones-inv-def)
qed
qged
moreover have fps-right-inverse ones 1 = fps-left-inverse ones 1
by (auto intro: fps-left-inverse-eq-fps-right-inverse[symmetric|] simp: ones-def)
ultimately show fps-right-inverse ones 1 = ones-inv by simp
qed

lemma fps-lr-inverse-gp-ringl
fixes ones :: 'a :: ring-1 fps
defines ones = Abs-fps (An. 1)
shows fps-left-inverse ones 1 = 1 — fps-X
and  fps-right-inverse ones 1 = 1 — fps-X
proof—
define ones-inv :: 'a :: ring-1 fps
where ones-inv = Abs-fps (An. if n=0 then 1 else if n=1 then — 1 else 0)
hence fps-left-inverse ones 1 = ones-inv
and fps-right-inverse ones 1 = ones-inv
using ones-def fps-lr-inverse-gp-ringl by auto
thus fps-left-inverse ones 1 = 1 — fps-X
and fps-right-inverse ones 1 = 1 — fps-X
by (auto intro: fps-ext simp: ones-inv-def)
qed

lemma fps-inverse-gp:
inverse (Abs-fps(An. (1::'a::division-ring))) =
Abs-fps (An. if n= 0 then 1 else if n=1 then — 1 else 0)
using fps-lr-inverse-gp-ring1 (2) by (simp add: fps-inverse-def)

lemma fps-inverse-gp”: inverse (Abs-fps (An. 1::'a::division-ring)) = 1 — fps-X
by (simp add: fps-inverse-def fps-lr-inverse-gp-ringl'(2))

lemma fps-lr-inverse-one-minus-fps-X:
fixes ones :: 'a :: ring-1 fps
defines ones = Abs-fps (An. 1)
shows fps-left-inverse (1 — fps-X) 1 = ones
and fps-right-inverse (1 — fps-X) 1 = ones
proof—
have fps-left-inverse ones 1 = 1 — fps-X
using fps-lr-inverse-gp-ringl'(1) by (simp add: ones-def)
thus fps-left-inverse (1 — fps-X) 1 = ones
using fps-left-inverse-idempotent-ring1 [of 1 ones 1] by (simp add: ones-def)
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have fps-right-inverse ones 1 = 1 — fps-X
using fps-lr-inverse-gp-ringl '(2) by (simp add: ones-def)
thus fps-right-inverse (1 — fps-X) 1 = ones
using fps-right-inverse-idempotent-ringl [of ones 1 1] by (simp add: ones-def)
qed

lemma fps-inverse-one-minus-fps-X:
fixes ones :: 'a :: division-ring fps
defines ones = Abs-fps (An. 1)
shows inverse (1 — fps-X) = ones

by (simp add: fps-inverse-def assms fps-lr-inverse-one-minus-fps-X(2))

lemma fps-lr-one-over-one-minus-fps-X-squared:
shows  fps-left-inverse ((1 — fps-X)72) (1::'a::ring-1) = Abs-fps (An. of-nat
(n+1))
fps-right-inverse ((1 — fps-X)"2) (1::'a) = Abs-fps (An. of-nat (n+1))
proof—
define finvf2 :: 'a fps
where [ = (1 — fps-X)
and inuf2 = Abs-fps (An. of-nat (n+1))

have f2-nth-simps:
281 =—ofnat2f2%82=1An.n>2= f2%n=20
by (simp-all add: power2-eq-square f-def fps-mult-nth sum.atLeast-Suc-atMost)

show fps-left-inverse (f72) 1 = inuf2
proof (intro fps-ext)
fix n show fps-left-inverse (f72) 1 $ n = inuyf2 $ n
proof (induct n rule: nat-less-induct)
case (1 t)
hence induct-assm:
Am. m < t = fps-left-inverse (f*) 1 $ m = invf2 $§ m
by fast
show ?case
proof (cases t)
case (Suc m)
have m: t = Suc m by fact
moreover have fps-left-inverse (f2) 1 $ Suc m = invf2 $§ Suc m
proof (cases m)
case 0 thus ?thesis using f2-nth-simps(1) by (simp add: invf2-def)
next
case (Suc l)
have [: m = Suc [ by fact
moreover have fps-left-inverse (f72) 1 $ Suc (Suc ) = invf2 $ Suc (Suc

proof (cases ()
case 0 thus ?thesis using f2-nth-simps(1,2) by (simp add: Suc-1[symmetric|
invf2-def)

next
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case (Suc k)
from Suc I m
have A: fps-left-inverse (f2) 1 $ Suc (Suc k) = invf2 $ Suc (Suc k)
and B: fps-left-inverse (f?) 1 $ Suc k = invf2 $ Suc k
using induct-assm[of Suc k] induct-assm[of Suc (Suc k)]
by auto
have times2: Na:nat. 2xa = a + a by simp
have Vie{0..k}. (f2)$(Suc (Suc (Suc k)) — i) = 0
using f2-nth-simps(3) by auto
hence
fos-left-inverse (f72) 1 $ Suc (Suc (Suc k)) =
fps-left-inverse (f2) 1 $ Suc (Suc k) * of-nat 2 —
fos-left-inverse (f?) 1 $ Suc k
using sum.ub-add-nat f2-nth-simps(1,2) by simp

n PR

also have ... = of-nat (2 * Suc (Suc (Suc k))) — of-nat (Suc (Suc k))
by (subst A, subst B) (simp add: invf2-def mult.commute)
also have ... = of-nat (Suc (Suc (Suc k)) + 1)

by (subst times2[of Suc (Suc (Suc k))]) simp
finally have
fps-left-inverse (f72) 1 $ Suc (Suc (Suc k)) = invf2 $ Suc (Suc (Suc

by (simp add: invf2-def)
with Suc show %thesis by simp

qed
ultimately show ?thesis by simp

qged

ultimately show ?thesis by simp

qged (simp add: invf2-def)
qed
qed

moreover have fps-right-inverse (f2) 1 = fps-left-inverse (f72) 1
by (auto
intro: fps-left-inverse-eq-fps-right-inverse|symmetric|
simp: f-def power2-eq-square

ultimately show fps-right-inverse (f"2) 1 = invf2
by simp

qed

lemma fps-one-over-one-minus-fps-X-squared’:
assumes inverse (1::'a:{ring-1 inverse}) = 1
shows inverse ((1 — fps-X)72 = 'a fps) = Abs-fps (An. of-nat (n+1))
using assms fps-lr-one-over-one-minus-fps-X-squared(2)
by (simp add: fps-inverse-def power2-eq-square)

lemma fps-one-over-one-minus-fps-X-squared:
inverse ((1 — fps-X)72 == 'a :: division-ring fps) = Abs-fps (An. of-nat (n+1))
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by (rule fps-one-over-one-minus-fps-X-squared'| OF inverse-1])

lemma fps-lr-inverse-fps-X-plus1:
fos-left-inverse (1 + fps-X) (1::'a:ring-1) = Abs-fps (An. (—1)"n)
fos-right-inverse (1 + fps-X) (1::'a) = Abs-fps (An. (—1)"n)
proof—

show fps-left-inverse (1 + fps-X) (1::'a) = Abs-fps (An. (—1)"n)
proof (rule fps-ext)
fix n show fps-left-inverse (1 + fps-X) (1::'a) $ n = Abs-fps (An. (—1)"n) $
n
proof (induct n rule: nat-less-induct)
case (1 n) show Zcase
proof (cases n)
case (Suc m)
have m: n = Suc m by fact
from Suc 1 have
A: fps-left-inverse (1 + fps-X) (1:'a) $ n =
- >Zi=0..m. (— 1) * (1 + fps-X) $ (Suc m — 7))
by simp
show ?thesis
proof (cases m)
case (Suc )
have Vie{0..1}. ((1::'a fps) + fps-X) $ (Suc (Suc l) — i) = 0 by auto
with Suc A m show ?thesis by simp
qed (simp add: m A)
qed simp
qed
qed

moreover have
fps-right-inverse (1 + fps-X) (1::'a) = fps-left-inverse (1 + fps-X) 1
by (intro fps-left-inverse-eq-fps-right-inverse[symmetric]) simp-all
ultimately show fps-right-inverse (1 + fps-X) (1::’a) = Abs-fps (An. (—1)"n)
by simp

qed

lemma fps-inverse-fps-X-plusl "
assumes inverse (1::'a:{ring-1 inverse}) = 1
shows inverse (I + fps-X) = Abs-fps (An. (— (1::'a)) ~n)
using assms fps-lr-inverse-fps-X-plus1 (2)
by (simp add: fps-inverse-def)

lemma fps-inverse-fps-X-plusi:
inverse (1 + fps-X) = Abs-fps (An. (— (1::'a::division-ring)) ~ n)
by (rule fps-inverse-fps-X-plus1 '[OF inverse-1])

lemma subdegree-lr-inverse:
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fixes z :: ‘a::{ comm-monoid-add,mult-zero,uminus}
and y :: 'b:{ab-group-add,mult-zero}
shows subdegree (fps-left-inverse fz) = 0
and subdegree (fps-right-inverse g y) = 0
proof—
show subdegree (fps-left-inverse fz) = 0
using fps-lr-inverse-eq-0-iff (1) subdegree-eq-0-iff by fastforce
show subdegree (fps-right-inverse g y) = 0
using fps-lr-inverse-eq-0-iff (2) subdegree-eq-0-iff by fastforce
qged

lemma subdegree-inverse [simpl:
fixes f :: 'a::{ab-group-add,inverse,mult-zero} fps
shows subdegree (inverse f) = 0
using subdegree-lr-inverse(2)
by (simp add: fps-inverse-def)

lemma fps-right-inverse-constructor-rec:
n > 0 = fps-right-inverse-constructor f a n =
—a *x sum (M. fps-nth f i % fps-right-inverse-constructor f a (n — 1))
{1..n}

by (cases n) auto

lemma fps-right-inverse-constructor-cong:
assumes A\k. k < n = fps-nth fk = fps-nth g k
shows  fps-right-inverse-constructor f ¢ n = fps-right-inverse-constructor g ¢ n
using assms
proof (induction n rule: less-induct)
case (less n)
show ?Zcase
proof (cases n > 0)
case n: True
have fps-right-inverse-constructor f ¢ n =
—c x sum (Ai. fps-nth f i % fps-right-inverse-constructor f ¢ (n — 1))
{1..n}

by (subst fps-right-inverse-constructor-rec) (use n in auto)
also have sum (\i. fps-nth f i * fps-right-inverse-constructor f ¢ (n — 4)) {1..n}

sum (\i. fps-nth g i x fps-right-inverse-constructor g ¢ (n — 7)) {1..n}
by (intro sum.cong refl arg-cong2[of - - - - (x)] less) (use assms in auto)
also have —c x ... = fps-right-inverse-constructor g ¢ n
by (subst (2) fps-right-inverse-constructor-rec) (use n in auto)
finally show ?%thesis .
qged auto
qed

lemma fps-cutoff-inverse:

fixes [ :: 'a :: field fps
assumes fps-nth f 0 # 0
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shows  fps-cutoff n (inverse (fps-cutoff n f)) = fps-cutoff n (inverse f)
proof (cases n = 0)
case True
show ?thesis
by (simp add: True)
next
case Fulse
show ?thesis
proof (subst fps-cutoff-eq-fps-cutoff-iff, safe)
fix k assume k < n
have fps-nth (inverse (fps-cutoff n f)) k =
fps-right-inverse-constructor (fps-cutoff n f) (inverse (fps-nth f 0)) k
using False by (simp add: fps-inverse-def)

also have ... = fps-right-inverse-constructor f (inverse (fps-nth f 0)) k
by (rule fps-right-inverse-constructor-cong) (use <k < n» in auto)
also have ... = fps-nth (inverse f) k

using False by (simp add: fps-inverse-def)
finally show fps-nth (inverse (fps-cutoff n f)) k = fps-nth (inverse f) k .
qed
qed

lemma tendsto-inverse-fps-auz:
fixes f :: 'a :: field fps
assumes fps-nth f 0 # 0
shows ((\f. inverse f) —— inverse f) (at f)
unfolding tendsto-fps-iff
proof
fix n :: nat
have eventually (Ag. Vk<n. fps-nth g k = fps-nth f k) (nhds f)
by (rule eventually-fps-nth-eq-nhds-fps-strong)
hence eventually (Ag. Vk<n. fps-nth g k = fps-nth f k) (at f)
using eventually-nhds-conv-at by blast
thus eventually (Ag. fps-nth (inverse g) n = fps-nth (inverse f) n) (at f)
proof eventually-elim
case (elim g)
from elim have fps-nth g 0 = fps-nth f 0
by auto
with assms have [simp]: fps-nth g 0 # 0
by simp
have fps-cutoff (n+1) (inverse f) = fps-cutoff (n+1) (inverse (fps-cutoff (n+1)

)

by (rule fps-cutoff-inverse [symmetric]) fact

also have fps-cutoff (n+1) f = fps-cutoff (n+1) g
by (subst fps-cutoff-eq-fps-cutoff-iff) (use elim in auto)

also have fps-cutoff (n+1) (inverse ...) = fps-cutoff (n+1) (inverse g)
by (rule fps-cutoff-inverse) auto

finally show ?case
by (subst (asm) fps-cutoff-eq-fps-cutoff-iff) auto

qed
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qed

lemma tendsto-inverse-fps [tendsto-intros|:
fixes g :: 'a :: field fps
assumes (f — g) F
assumes fps-nth g 0 # 0
shows ((Az. inverse (f z)) — inverse g) F
by (rule tendsto-compose[ OF tendsto-inverse-fps-auz assms(1)]) fact

lemma fps-div-zero [simp]:
0 div (g :: 'a :: {comm-monoid-add,inverse,mult-zero,uminus} fps) = 0
by (simp add: fps-divide-def)

lemma fps-div-by-zero’:
fixes ¢ :: ‘a::{comm-monoid-add,inverse,mult-zero,uminus} fps
assumes inverse (0::'a) = 0
shows g div 0 =0
by (simp add: fps-divide-def assms fps-inverse-zero')

lemma fps-div-by-zero [simp]: (g::'a::division-ring fps) div 0 = 0
by  (rule fps-div-by-zero’|OF inverse-zerol)

lemma fps-divide-unit’: subdegree ¢ = 0 = f div g = [ * inverse g
by (simp add: fps-divide-def)

lemma fps-divide-unit: ¢80 # 0 = [ div g = [ * inverse g
by (intro fps-divide-unit’) (simp add: subdegree-eq-0-iff)

lemma fps-divide-nth-0":
subdegree (g::'a::division-ring fps) = 0 = (fdivg) $ 0 =f$0/ (g% 0)
by (simp add: fps-divide-unit’ divide-inverse)

lemma fps-divide-nth-0 [simp]:
g80#0= (fdivg) $0=F$0/ (g% 0 : -: division-ring)
by (simp add: fps-divide-nth-0")

lemma fps-divide-nth-below:
fixes f g :: 'a::{comm-monoid-add,uminus,mult-zero,inverse} fps
shows n < subdegree f — subdegree ¢ = (f div g) $ n =0
by  (simp add: fps-divide-def fps-mult-nth-eq0)

lemma fps-divide-nth-base:

fixes fg :: 'a::division-ring fps

assumes subdegree g < subdegree f

shows (f div g) $ (subdegree f — subdegree g) = f $ subdegree [ * inverse (g $
subdegree g)

by (simp add: assms fps-divide-def fps-divide-unit’)

lemma fps-divide-subdegree-ge:
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fixes fg :: ‘a::{comm-monoid-add,uminus,mult-zero,inverse} fps
assumes f / g # 0

shows subdegree (f / g) > subdegree f — subdegree g

by (intro subdegree-gel) (simp-all add: assms fps-divide-nth-below)

lemma fps-divide-subdegree:

fixes [ g :: 'a::division-ring fps

assumes f # 0 g # 0 subdegree g < subdegree f

shows subdegree (f | g) = subdegree f — subdegree g
proof (intro antisym)

from assms have 1: (f div g) $ (subdegree f — subdegree g) # 0

using fps-divide-nth-baselof g f] by simp

thus subdegree (f / g) < subdegree f — subdegree g by (intro subdegree-lel) simp

from 1 have f / g # 0 by (auto intro: fps-nonzerol)

thus subdegree f — subdegree g < subdegree (f / g) by (rule fps-divide-subdegree-ge)
qed

lemma fps-divide-shift-numer:
fixes fg :: 'a:{inverse,comm-monoid-add,uminus,mult-zero} fps
assumes n < subdegree f
shows fps-shift n f | g = fps-shift n (f/g)
using  assms fps-shift-mult-right-noncomm[of n f inverse (unit-factor g)]
fps-shift-fps-shift-reorder|of subdegree g n f x inverse (unit-factor g))
by (simp add: fps-divide-def)

lemma fps-divide-shift-denom:
fixes fg :: 'a:{inverse,comm-monoid-add,uminus,mult-zero} fps
assumes n < subdegree g subdegree g < subdegree f
shows f / fps-shift n g = Abs-fps (k. if k<n then 0 else (f/g) $ (k—n))
proof (intro fps-ext)
fix k
from assms(1) have LHS:
(f / fps-shift n g) $ k = (f * inverse (unit-factor g)) $ (k + (subdegree g — n))
using fps-unit-factor-shift[of n g]
by  (simp add: fps-divide-def)
show (f / fps-shift n g) $ k = Abs-fps (Ak. if k<n then 0 else (f/g) $ (k—n)) $ k
proof (cases k<n)
case True with assms LHS show ?thesis using fps-mult-nth-eq0[of - f] by
stmp
next
case Fulse
hence (f/g) $ (k—n) = (f * inverse (unit-factor g)) $ ((k—n) + subdegree g)
by (simp add: fps-divide-def)
with False LHS assms(1) show ?thesis by auto
qed
qed

lemma fps-divide-unit-factor-numer:
fixes fg :: ‘a::{inverse,comm-monoid-add,uminus,mult-zero} fps
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shows unit-factor f | g = fps-shift (subdegree f) (f/g)
by (simp add: fps-divide-shift-numer)

lemma fps-divide-unit-factor-denom:
fixes fg :: 'a:{inverse,comm-monoid-add,uminus,mult-zero} fps
assumes subdegree g < subdegree f
shows
f /] unit-factor g = Abs-fps (k. if k<subdegree g then 0 else (f/g) $ (k—subdegree

9))
by (simp add: assms fps-divide-shift-denom)

lemma fps-divide-unit-factor-both’:
fixes fg :: 'a:{inverse,comm-monoid-add,uminus,mult-zero} fps
assumes subdegree g < subdegree f
shows unit-factor f | unit-factor g = fps-shift (subdegree f — subdegree g) (f /
9)
using assms fps-divide-unit-factor-numer|of f unit-factor g|
fps-divide-unit-factor-denom[of g f]
fps-shift-rev-shift(1)[of subdegree g subdegree f f/g]
by stmp

lemma fps-divide-unit-factor-both:
fixes [ g :: 'a::division-ring fps
assumes subdegree g < subdegree f
shows unit-factor f / unit-factor g = unit-factor (f / g)
using assms fps-divide-unit-factor-both’[of g f] fps-divide-subdegree|of f g]
by (cases f=0 V g=0) auto

lemma fps-divide-self:
(f::'a::division-ring fps) # 0 = f | f =1
using  fps-mult-right-inverse-unit-factor-divring[of f]
by (simp add: fps-divide-def)

lemma fps-divide-add:
fixes f g h :: 'a::{semiring-0,inverse,uminus} fps
shows (f +¢9) /h=f/h+g/h
by  (simp add: fps-divide-def algebra-simps fps-shift-add)

lemma fps-divide-diff:
fixes f g h :: 'a::{ring,inverse} fps

shows (f —g) /h=f/h—g/h
by  (simp add: fps-divide-def algebra-simps fps-shift-diff)

lemma fps-divide-uminus:
fixes f g h :: 'a::{ring,inverse} fps
shows (— f) / g=—(f/9)
by  (simp add: fps-divide-def algebra-simps fps-shift-uminus)

lemma fps-divide-uminus”:
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fixes f g h :: 'a::division-ring fps

shows f / (— g) = — (f / 9)
by (simp add: fps-divide-def fps-unit-factor-uminus fps-shift-uminus)

lemma fps-divide-times:
fixes fgh :: 'a:{semiring-0,inverse,uminus} fps
assumes subdegree h < subdegree g
shows (f«g) /h=[fx(g/h)
using assms fps-mult-subdegree-ge[of g inverse (unit-factor h)]
fps-shift-mult[of subdegree h g * inverse (unit-factor h) f]
by (fastforce simp add: fps-divide-def mult.assoc)

lemma fps-divide-times2:
fixes fgh : ‘a:{comm-semiring-0,inverse,uminus} fps
assumes subdegree h < subdegree f
shows (fxg) /h=(f/h)*g
using assms fps-divide-times[of h f g]
by (simp add: mult.commute)

lemma fps-times-divide-eq:
fixes fg: 'a:field fps
assumes g # 0 and subdegree f > subdegree g
shows fdivgx*xg=f
using assms fps-divide-times2[of g [ g]
by (simp add: fps-divide-times fps-divide-self)

lemma fps-divide-times-eq:
(g :: 'a:division-ring fps) # 0 = (f * g) divg = f
by (simp add: fps-divide-times fps-divide-self)

lemma fps-divide-by-mult':
fixes fgh: 'a:: division-ring fps
assumes subdegree h < subdegree f
shows [ /(g+h) =f/h/g
proof (cases f=0V g=0 V h=0)
case Fulse with assms show ?thesis
using fps-unit-factor-mult[of g h]
by (auto simp:
fps-divide-def fps-shift-fps-shift fps-inverse-mult-divring mult.assoc
fps-shift-mult-right-noncomm

)

qged auto

lemma fps-divide-by-mult:
fixes fgh: 'a:: field fps
assumes subdegree g < subdegree f

shows f/(g«xh)=f/g/h
proof—

have f / (¢ x h) = f / (h x g) by (simp add: mult.commute)
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also have ... = f / g / h using fps-divide-by-mult'|OF assms] by simp
finally show ?thesis by simp
qed

lemma fps-divide-cancel:
fixes fgh: 'a:: division-ring fps
shows h # 0 = (f * h) div (g x h) = fdiv g
by (cases f=0)
(auto simp: fps-divide-by-mult’ fps-divide-times-eq)

lemma fps-divide-1"

fixes a :: 'a:{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult}
Ips

assumes inverse (1:'a) = 1

shows a/1=a

using assms fps-inverse-one’ fps-one-mult(2)[of a]

by (force simp: fps-divide-def)

lemma fps-divide-1 [simp]: (a :: 'a::division-ring fps) /| 1 = a
by (rule fps-divide-1'[OF inverse-1])

lemma fps-divide-X"

fixes f:: 'a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult}
fps

assumes inverse (1:'a) = 1

shows [/ fps-X = fps-shift 1 f

using assms fps-one-mult(2)[of f]

by (simp add: fps-divide-def fps-X-unit-factor fps-inverse-one’)

lemma fps-divide-X [simp]: a / fps-X = fps-shift 1 (a::'a::division-ring fps)
by (rule fps-divide-X'|OF inverse-1])

lemma fps-divide-X-power’:
fixes f :: 'an:{semiring-1,inverse,uminus} fps
assumes inverse (1:'a) = 1
shows f / (fps-X " n) = fps-shift n f
using  fps-inverse-one’|OF assms] fps-one-mult(2)[of f]
by (simp add: fps-divide-def fps-X-power-subdegree)

lemma fps-divide-X-power [simpl: a / (fps-X ~n) = fps-shift n (a::'a::division-ring

fps)
by (rule fps-divide-X-power'[OF inverse-1])

lemma fps-divide-shift-denom-conv-times-fps-X-power:

fixes fyg :: ‘an:{semiring-1,inverse,uminus} fps

assumes n < subdegree g subdegree g < subdegree f

shows f / fps-shiftng=1f/ g« fps-X "n

using assms

by  (intro fps-ext) (simp-all add: fps-divide-shift-denom fps-X-power-mult-right-nth)
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lemma fps-divide-unit-factor-denom-conv-times-fps-X-power:
fixes fg :: 'a:{semiring-1,inverse,uminus} fps
assumes subdegree g < subdegree f
shows f / unit-factor g = f / g % fps-X ~ subdegree g
by (simp add: assms fps-divide-shift-denom-conv-times-fps-X-power)

lemma fps-shift-altdef":
fixes f :: 'a:{semiring-1,inverse,uminus} fps
assumes inverse (1::'a) = 1
shows fps-shift n f = f div fps-X"n
using assms
by (simp add:
fps-divide-def fps-X-power-subdegree fps-X-power-unit-factor fps-inverse-one’

)

lemma fps-shift-altdef:
fps-shift n f = (f :: 'a :: division-ring fps) div fps-X"n
by (rule fps-shift-altdef'|OF inverse-1])

lemma fps-div-fps-X-power-nth':
fixes f :: ‘a::{semiring-1,inverse,uminus} fps
assumes inverse (1::'a) = 1
shows (fdiv fps-Xn)$k=f8(k+ n)
using assms
by (simp add: fps-shift-altdef’ [symmetric])

lemma fps-div-fps-X-power-nth: ((f :: 'a :: division-ring fps) div fps-X"n) $ k = f
$(k+n)
by (rule fps-div-fps-X-power-nth'|OF inverse-1])

lemma fps-div-fps-X-nth’:
fixes f :: 'a::{semiring-1,inverse,uminus} fps
assumes inverse (1::'a) = 1
shows (f div fps-X) $ k=f8$ Suck
using assms fps-div-fps-X-power-nth'[of f 1]
by simp

lemma fps-div-fps-X-nth: ((f :: 'a :: division-ring fps) div fps-X) $ k= f $ Suc k
by (rule fps-div-fps-X-nth'|OF inverse-1])

lemma divide-fps-const”:
fixes ¢ :: 'a :: {inverse,comm-monoid-add,uminus,mult-zero}
shows f / fps-const ¢ = f x fps-const (inverse c)
by (simp add: fps-divide-def fps-const-inverse)

lemma divide-fps-const [simp]:

fixes ¢ :: ‘a1 {comm-semiring-0,inverse,uminus}
shows [ / fps-const ¢ = fps-const (inverse c) x f
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by  (simp add: divide-fps-const’ mult.commute)

lemma fps-const-divide: fps-const (x :: - :: division-ring) / fps-const y = fps-const

(z /y)

by (simp add: fps-divide-def fps-const-inverse divide-inverse)

lemma fps-numeral-divide-divide:
z / numeral b / numeral ¢ = (z / numeral (b * ¢) :: 'a :: field fps)
by (simp add: fps-divide-by-mult[symmetric])

lemma fps-numeral-mult-divide:
numeral b x x / numeral ¢ = (numeral b / numeral ¢ x z :: 'a :: field fps)
by (simp add: fps-divide-times2)

lemmas fps-numeral-simps =
fps-numeral-divide-divide fps-numeral-mult-divide inverse-fps-numeral neg-numeral-fps-const

lemma fps-is-left-unit-iff-zeroth-is-left-unit:
fixes f :: 'a :: ring-1 fps
shows (3g. 1 = fxg) +— (Fk. 1 = f$0 = k)
proof
assume dg. 1 = f *x g
then obtain g where I = f x g by fast
hence 1 = f$0 x ¢g$0 using fps-mult-nth-0[of f g] by simp
thus 3k. 1 = f$0 x k by auto
next
assume 3k. 1 = f$0 x k
then obtain k where 1 = f$0 x k by fast
hence 1 = [ * fps-right-inverse f k
using fps-right-inverse by simp
thus 3g. 1 = f x g by fast
qed

lemma fps-is-right-unit-iff-zeroth-is-right-unit:
fixes f :: 'a :: ring-1 fps
shows (3g. I = g* f) +— (Fk. 1 =k x f$0)
proof
assume dg. 1 =g x f
then obtain g where I = g * f by fast
hence 1 = ¢$0 * f$0 using fps-mult-nth-0[of g f] by simp
thus 3k. 1 = k * f$0 by auto
next
assume 3k. 1 =k * f$0
then obtain k£ where 1 = k % f$0 by fast
hence 1 = fps-left-inverse f k = f
using fps-left-inverse by simp
thus 3g. 1 = g * f by fast
qed
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lemma fps-is-unit-iff [simp]: (f :: 'a :: field fps) dvd 1 +— f$ 0 # 0
proof

assume f dvd 1

then obtain g where 1 = f % g by (elim dvdE)

from this[symmetric] have (fxg) $ 0 = 1 by simp

thus f § 0 # 0 by auto
next

assume A: f $ 0 # 0

thus f dvd 1 by (simp add: inverse-mult-eq-1[OF A, symmetric])
qed

lemma subdegree-eq-0-left:
fixes [ :: ‘a:{comm-monoid-add,zero-neq-one,mult-zero} fps
assumes dg. 1 = f *x g
shows subdegree f = 0

proof (intro subdegree-eq-0)
from assms obtain g where 1 = f % g by fast
hence f$0 x ¢80 = 1 using fps-mult-nth-0[of f g] by simp
thus f$0 # 0 by auto

qed

lemma subdegree-eq-0-right:
fixes f :: 'a::{comm-monoid-add,zero-neq-one,mult-zero} fps
assumes dg. 1 =g x f
shows subdegree f = 0

proof (intro subdegree-eq-0)
from assms obtain g where 1 = g * f by fast
hence ¢$0 * f$0 = 1 using fps-mult-nth-0[of g f] by simp
thus f$0 # 0 by auto

qed

lemma subdegree-eq-0' [simp]: (f :: 'a :: field fps) dvd 1 = subdegree f = 0
by simp

lemma fps-dvd1-left-trivial-unit-factor:
fixes f :: 'a:{comm-monoid-add, zero-neg-one, mult-zero} fps
assumes J3g. 1 = f *x g
shows wunit-factor f = f
using assms subdegree-eq-0-left
by fastforce

lemma fps-dvd1-right-trivial-unit-factor:
fixes f :: 'a:{comm-monoid-add, zero-neg-one, mult-zero} fps
assumes 3g. 1 =g x f
shows unit-factor f = f
using assms subdegree-eq-0-right
by fastforce

lemma fps-dvd1-trivial-unit-factor:
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(f = 'a::comm-semiring-1 fps) dvd 1 = unit-factor f = f
unfolding dvd-def by (rule fps-dvd1-left-trivial-unit-factor) simp

lemma fps-unit-dvd-left:
fixes [ ::'a :: division-ring fps
assumes f $ 0 # 0
shows dg. 1 =fxg
using assms fps-is-left-unit-iff-zeroth-is-left-unit right-inverse
by fastforce

lemma fps-unit-dvd-right:
fixes [ ::'a :: division-ring fps
assumes f $ 0 # 0
shows dg. 1 =gxf
using assms fps-is-right-unit-iff-zeroth-is-right-unit left-inverse
by fastforce

lemma fps-unit-dvd [simp]: (f $ 0 :: 'a :: field) # 0 = fdvd ¢
using fps-unit-dvd-left dvd-trans|of f 1] by simp

lemma dvd-left-imp-subdegree-le:
fixes fg : ‘a::{comm-monoid-add,mult-zero} fps
assumes 3k. g=fxkg#0
shows subdegree f < subdegree g
using assms fps-mult-subdegree-ge
by fastforce

lemma dvd-right-imp-subdegree-le:
fixes fg :: 'a:{comm-monoid-add,mult-zero} fps
assumes 3k. g=kx fg# 0
shows subdegree f < subdegree g
using assms fps-mult-subdegree-ge
by fastforce

lemma dvd-imp-subdegree-le:
fdvd g = g # 0 = subdegree f < subdegree g
using dvd-left-imp-subdegree-le by fast

lemma subdegree-le-imp-dvd-left-ring1:
fixes fg: 'a:: ring-1 fps
assumes Jy. [ $ subdegree f * y = 1 subdegree f < subdegree g
shows Jdk. g=fxk

proof—
define h :: ‘a fps where h = fps-X ~ (subdegree g — subdegree f)
from assms(1) obtain y where f $ subdegree f * y = 1 by fast
hence unit-factor f $ 0 x y = 1 by simp
from this obtain k where 1 = unit-factor f * k

using fps-is-left-unit-iff-zeroth-is-left-unit[of unit-factor f] by auto

hence fps-X ~ subdegree f = fps-X ~ subdegree f x unit-factor f x k
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by (simp add: mult.assoc)

moreover have fps-X ~ subdegree f * unit-factor f = f
by (rule fps-unit-factor-decompose’|symmetric))

ultimately have
fps-X ” (subdegree f + (subdegree g — subdegree f)) = f x k x h
by (simp add: power-add h-def)

hence g = f * (k * h * unit-factor g)
using fps-unit-factor-decompose’[of g]
by  (simp add: assms(2) mult.assoc)

thus %thesis by fast

qged

lemma subdegree-le-imp-dvd-left-divring:

fixes fg: 'a:: division-ring fps

assumes [ # 0 subdegree f < subdegree g

shows 3Jk.g=f=xk
proof (intro subdegree-le-imp-dvd-left-ring1)

from assms(1) have f $ subdegree f # 0 by simp

thus Jy. f $ subdegree f * y = 1 using right-inverse by blast
qed (rule assms(2))

lemma subdegree-le-imp-dvd-right-ring1 :
fixes fg: 'a:: ring-1 fps
assumes Jz. z * [ $ subdegree f = 1 subdegree f < subdegree g
shows 3Jk. g=Fk = f
proof—
define h :: ‘a fps where h = fps-X ~ (subdegree g — subdegree f)
from assms(1) obtain z where z * f $ subdegree f = 1 by fast
hence z * unit-factor f $ 0 = 1 by simp
from this obtain k where 1 = k * unit-factor f
using fps-is-right-unit-iff-zeroth-is-right-unit|of unit-factor f] by auto
hence fps-X ~ subdegree f = k * (unit-factor f * fps-X ~ subdegree f)
by (simp add: mult.assoc[symmetric])
moreover have unit-factor [ x fps-X ~ subdegree f = f
by (rule fps-unit-factor-decompose|symmetric|)
ultimately have fps-X ~ (subdegree g — subdegree f + subdegree f) = h * k * f
by (simp add: power-add h-def mult.assoc)
hence g = unit-factor g x h x k x f
using fps-unit-factor-decompose|of ¢
by  (simp add: assms(2) mult.assoc)
thus ?thesis by fast
qged

lemma subdegree-le-imp-dvd-right-divring:
fixes fg: 'a:: division-ring fps
assumes f # 0 subdegree f < subdegree g
shows k. g=Fk=xf
proof (intro subdegree-le-imp-dvd-right-ringl)
from assms(1) have f $ subdegree f # 0 by simp
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thus 3xz. z x [ § subdegree f = 1 using left-inverse by blast
qed (rule assms(2))

lemma fps-dvd-iff:
assumes (f :: 'a :: field fps) # 0g # 0
shows f dvd g <— subdegree f < subdegree g
proof
assume subdegree f < subdegree g
with assms show f dvd g
using subdegree-le-imp-dvd-left-divring
by  (auto intro: dvdl)
qed (simp add: assms dvd-imp-subdegree-le)

lemma subdegree-div’”:
fixes p q :: 'a:division-ring fps
assumes Jk. p =k x ¢
shows subdegree (p div q) = subdegree p — subdegree q
proof (cases p = 0)
case Fulse
from assms(1) obtain k where k: p = k % ¢ by blast
with False have subdegree (p div q) = subdegree k by (simp add: fps-divide-times-eq)
moreover have k $§ subdegree k x q $ subdegree q # 0
proof
assume k $ subdegree k x q $ subdegree g = 0
hence k $ subdegree k x q $ subdegree q * inverse (¢ $ subdegree q) = 0 by
stmp
with Fualse k show Fulse by (simp add: mult.assoc)
qed
ultimately show ?thesis by (simp add: k subdegree-mult’)
qed simp

lemma subdegree-div:
fixes pq::'a:: field fps
assumes ¢ dvd p
shows subdegree (p div q) = subdegree p — subdegree q

using assms
unfolding dvd-def
by (auto intro: subdegree-div’)

lemma subdegree-div-unit”:
fixes p q:: 'a:: {ab-group-add,mult-zero,inverse} fps
assumes ¢ $ 0 # 0 p $ subdegree p x inverse (¢ $ 0) # 0
shows subdegree (p div q) = subdegree p
using assms subdegree-mult’[of p inverse ¢
by (auto simp add: fps-divide-unit)

lemma subdegree-div-unit’”:

fixes p q:: 'a:: {ring-no-zero-divisors,inverse} fps
assumes ¢ $ 0 # 0 inverse (¢ $ 0) # 0
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shows subdegree (p div q) = subdegree p
by (cases p = 0) (auto intro: subdegree-div-unit’ simp: assms)

lemma subdegree-div-unit:
fixes p q:: 'a:: division-ring fps
assumes ¢ $ 0 # 0
shows subdegree (p div q) = subdegree p
by (intro subdegree-div-unit'’) (simp-all add: assms)

instantiation fps :: ({comm-semiring-1,inverse,uminus}) modulo
begin

definition fps-mod-def:
fmod g = (if g = 0 then f else
let h = unit-factor g in fps-cutoff (subdegree g) (f * inverse h) x h)

instance ..
end

lemma fps-mod-zero [simp]:
(f::'a::{ comm-semiring-1 inverse,uminus} fps) mod 0 = f
by (simp add: fps-mod-def)

lemma fps-mod-eq-zero:
assumes g # 0 and subdegree f > subdegree g
shows fmod g= 0
proof (cases f * inverse (unit-factor g) = 0)
case Fulse
have fps-cutoff (subdegree g) (f * inverse (unit-factor g)) = 0
using Fualse assms(2) fps-mult-subdegree-ge fps-cutoff-zero-iff by force
with assms(1) show %thesis by (simp add: fps-mod-def Let-def)
qed (simp add: assms fps-mod-def)

lemma fps-mod-unit [simp]: ¢80 # 0 = fmod g = 0
by (intro fps-mod-eq-zero) auto

lemma subdegree-mod:

assumes subdegree (f::'a::field fps) < subdegree g

shows subdegree (f mod g) = subdegree f
proof (cases f = 0)

case Fulse

with assms show ?thesis

by (intro subdegreel)
(auto simp: inverse-mult-eq-1 fps-mod-def Let-def fps-cutoff-left-mult-nth

mult.assoc)
qed (simp add: fps-mod-def)

instance fps :: (field) idom-modulo
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proof

fix fg: 'afps

define n where n = subdegree g
define h where h = [ x inverse (unit-factor g)

show fdivg* g+ fmodg=f
proof (cases g = 0)
case Fulse
with n-def h-def have
fdivgx g+ fmodg= (fps-shift n h x fps-X " n + fps-cutoff n h) * unit-factor
g
by (simp add: fps-divide-def fps-mod-def Let-def subdegree-decompose alge-
bra-simps)
with False show ?thesis
by (simp add: fps-shift-cutoff h-def inverse-mult-eq-1)
qged auto

qed (rule fps-divide-times-eq, simp-all add: fps-divide-def)

instantiation fps :: (field) normalization-semidom-multiplicative
begin

definition fps-normalize-def [simp):
normalize f = (if f = 0 then 0 else fps-X ~ subdegree f)

instance proof
fix fg: 'afps
assume is-unit f
thus unit-factor (f = g) = f * unit-factor g
using fps-unit-factor-multof f g] by simp
next
fix fg:: 'afps
show unit-factor f « normalize f = f
by (simp add: fps-shift-times-fps-X-power)
next
fix fg:: 'afps
show unit-factor (f * g) = unit-factor f x unit-factor g
using fps-unit-factor-mult|of f g] by simp
qed (simp-all add: fps-divide-def Let-def)

end

5.8 Computing reciprocals via Hensel lifting

lemma inverse-fps-hensel-lifting:
fixes F G :: 'a :: field fps and n :: nat
assumes G-eq: fps-cutoff n G = fps-cutoff n (inverse F)
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assumes unit: fps-nth F 0 # 0
shows fps-cutoff (2xn) (inverse F') = fps-cutoff (2%n) (G % (2 — F x G))
proof —
define R where R = inverse F — G
have eq: G = inverse F — R
by (simp add: R-def)
from assms have fps-cutoff n R = 0
by (simp add: R-def fps-cutoff-diff)
hence R: R = 0 V subdegree R > n
by (simp add: fps-cutoff-zero-iff)

have G * (2 — F x G) — inverse F =
inverse F + F % inverse F x Rx 2 — F x R> — R % 2 — F % inverse F x
inverse F
by (simp add: eq algebra-simps power2-eg-square)
also have F x inverse F = 1
using unit by (simp add: inverse-mult-eq-1")
also have inverse F + 1 *x R+ 2 — F « R> — Rx 2 — 1 x inverse F = —F x
R2
by (simp add: algebra-simps)
finally have fps-cutoff (2xn) (G * (2 — F x G) — inverse F) = fps-cutoff (2xn)
(—F x R?)
by (rule arg-cong)

also have ... = 0
proof (cases —F x R? = 0)
case Fulse

have 2 * n < subdegree (—F * R?)
using Fulse R unit by simp
thus ?thesis
by (simp add: fps-cutoff-zero-iff)
qed auto
finally show ?thesis
by (simp add: fps-cutoff-diff)
qed

lemma inverse-fps-hensel-lifting":
fixes F G :: 'a :: field fps and n :: nat
assumes G-eq: fps-cutoff n G = fps-cutoff n (inverse F)
assumes unit: fps-nth F 0 # 0
defines P = fps-shift n (F' « G — 1)
shows fps-cutoff (2xn) (inverse F) = fps-cutoff (2xn) (G * (1 — fps-X " n *
P))
proof —
define R where R = inverse F — G
have eq: G = inverse F' — R
by (simp add: R-def)
from assms have fps-cutoff n R = 0
by (simp add: R-def fps-cutoff-diff)
hence R: R = 0 V subdegree R > n

296



by (simp add: fps-cutoff-zero-iff)

have FG-eq: FF x G =1 + fps-X "n* P
proof (cases F x G — 1 = 0)
case False
have e¢: F x G — 1 = F % (G — inverse F)
using unit by (simp add: inverse-mult-eq-1" ring-distribs)
have subdegree (F' x (G — inverse F)) > n
proof —
have fps-cutoff n (G — inverse F') = 0
using G-eq by (simp add: fps-cutoff-diff)
hence n < subdegree (G — inverse F)
using False unfolding eq by (simp add: fps-cutoff-zero-iff)
also have subdegree (G — inverse F) = subdegree (F * (G — inverse F))
by (subst subdegree-mult) (use unit False in <auto simp: eq»)
finally have n < subdegree (F * (G — inverse F)) .
thus ?thesis
by blast
qed
hence F' x G — 1 = fps-X "nx P
unfolding eq P-def by (intro fps-conv-fps-X-power-mult-fps-shift) auto
thus ?thesis
by (simp add: algebra-simps)
qed (auto simp: P-def)

have G * (1 — fps-X " n* P) — inverse F = G x (2 — F x G) — inverse F
by (auto simp: FG-eq)
also have G % (2 — F x G) — inverse F =
inverse F + F % inverse F x Rx 2 — F x R> — R % 2 — F % inverse F x
inverse F
by (simp add: eq algebra-simps power2-eq-square)
also have F x inverse F = 1
using unit by (simp add: inverse-mult-eq-1")
also have inverse F + 1 *x R+ 2 — F « R> — Rx 2 — 1 x inverse F = —F «
R2
by (simp add: algebra-simps)
finally have fps-cutoff (2xn) (G x (1 — fps-X ~n x P) — inverse F') = fps-cutoff
(2xn) (—F % R?)
by (rule arg-cong)

also have ... = 0
proof (cases —F x R? = 0)
case Fulse

have 2 * n < subdegree (—F * R?)
using Fulse R unit by simp
thus ?thesis
by (simp add: fps-cutoff-zero-iff)
qed auto
finally show ?thesis

by (simp add: fps-cutoff-diff)
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qed

5.9 Euclidean division

instantiation fps :: (field) euclidean-ring-cancel
begin

definition fps-euclidean-size-def:
euclidean-size f = (if f = 0 then 0 else 2 ~ subdegree f)

instance proof
fix f g :: 'a fps assume [simp]: g # 0
show euclidean-size f < euclidean-size (f * g)
by (cases f = 0) (simp-all add: fps-euclidean-size-def)
show euclidean-size (f mod g) < euclidean-size g
proof (cases f = 0)
case True
then show ?thesis
by (simp add: fps-euclidean-size-def)
next
case Fulse
then show ?thesis
using le-less-linear[of subdegree g subdegree f]
by (force simp add: fps-mod-eq-zero fps-euclidean-size-def subdegree-mod)
qed
next
fix fg h :: 'a fps assume [simp|: h # 0
show (h * f) div (h % g) = fdiv g
by (simp add: fps-divide-cancel mult.commute)
show (f + g* h) divh =g+ fdivh
by (simp add: fps-divide-add fps-divide-times-eq)
qed (simp add: fps-euclidean-size-def)

end
instance fps :: (field) normalization-euclidean-semiring ..

instantiation fps :: (field) euclidean-ring-gcd

begin

definition fps-ged-def: (ged :: 'a fps = -) = Euclidean-Algorithm.ged

definition fps-lem-def: (lem :: 'a fps = -) = FEuclidean-Algorithm.lem

definition fps-Ged-def: (Ged :: 'a fps set = -) = Euclidean-Algorithm.Ged
definition fps-Lem-def: (Lem :: 'a fps set = -) = Euclidean-Algorithm. Lem
instance by standard (simp-all add: fps-ged-def fps-lem-def fps-Ged-def fps-Lem-def)
end

lemma fps-gcd:

assumes [simp|: f # 0g # 0
shows gcd f g = fps-X ~ min (subdegree f) (subdegree g)
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proof —
let 9m = min (subdegree f) (subdegree g)
show gcd f g = fps-X ~ ?m
proof (rule sym, rule gedl)
fix d assume d dvd f d dvd g
thus d dvd fps-X ~ ?m by (cases d = 0) (simp-all add: fps-dvd-iff)
qed (simp-all add: fps-dvd-iff)
qed

lemma fps-ged-altdef: ged f g =
(if f =0 N g = 0 then 0 else
if f = 0 then fps-X ~ subdegree g else
if g = 0 then fps-X ~ subdegree f else
fos-X ~ min (subdegree f) (subdegree g))
by (simp add: fps-ged)

lemma fps-lcm:
assumes [simpl: f # 0g # 0
shows lem fg = fps-X ~ maz (subdegree f) (subdegree g)
proof —
let m = max (subdegree f) (subdegree g)
show lem fg = fps-X ~ ?m
proof (rule sym, rule lemlI)
fix d assume f dvd d g dvd d
thus fps-X = ?m dvd d by (cases d = 0) (simp-all add: fps-dvd-iff)
qed (simp-all add: fps-dvd-iff)
qged

lemma fps-lecm-altdef: lem f g =
(if f = 0 V g = 0 then 0 else fps-X ~ maz (subdegree f) (subdegree g))
by (simp add: fps-lem)

lemma fps-Ged:
assumes A — {0} # {}
shows Gecd A = fps-X 7 (INF feA—{0}. subdegree f)
proof (rule sym, rule Gedl)
fix f assume f € A
thus fps-X ~ (INF fe A — {0}. subdegree f) dvd f
by (cases f = 0) (auto simp: fps-dvd-iff intro!: cINF-lower)
next
fix d assume d: \f. f € A = d dvd f
from assms obtain f where f € A — {0} by auto
with d[of f] have [simp]: d # 0 by auto
from d assms have subdegree d < (INF fe A—{0}. subdegree f)
by (intro cINF-greatest) (simp-all add: fps-dvd-iff[symmetric])
with d assms show d dvd fps-X ~ (INF fe A—{0}. subdegree f) by (simp add:
fps-dvd-iff)
qed simp-all
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lemma fps-Ged-altdef: Ged A =
(if A C {0} then 0 else fps-X ~ (INF fe A—{0}. subdegree f))
using fps-Ged by auto

lemma fps-Lem:
assumes A # {} 0 ¢ A bdd-above (subdegree‘A)
shows Lecm A = fps-X ~— (SUP feA. subdegree f)
proof (rule sym, rule Leml)
fix f assume f € A
moreover from assms(3) have bdd-above (subdegree * A) by auto
ultimately show f dvd fps-X ~ (SUP f€A. subdegree f) using assms(2)
by (cases f = 0) (auto simp: fps-dvd-iff intro!: c¢SUP-upper)
next
fix d assume d: \f. f € A = fdvd d
from assms obtain f where f: f € A f # 0 by auto
show fps-X ~ (SUP feA. subdegree f) dvd d
proof (cases d = 0)
assume d # 0
moreover from d have A\f. f € A = [ # 0 = [ dvd d by blast
ultimately have subdegree d > (SUP feA. subdegree f) using assms
by (intro ¢cSUP-least) (auto simp: fps-dvd-iff)
with <d # 0» show ?thesis by (simp add: fps-dvd-iff)
qed simp-all
qed simp-all

lemma fps-Lem-altdef:
Lem A =
(if 0 € AV —bdd-above (subdegree‘A) then 0 else
if A ={} then 1 else fps-X ~ (SUP feA. subdegree f))
proof (cases bdd-above (subdegree‘A))
assume unbounded: —bdd-above (subdegree‘A)
have Lem A = 0
proof (rule ccontr)
assume Lem A # 0
from unbounded obtain f where f: f € A subdegree (Lcm A) < subdegree f
unfolding bdd-above-def by (auto simp: not-le)
moreover from f and <Lem A # 0> have subdegree f < subdegree (Lem A)
by (intro dvd-imp-subdegree-le dvd-Lem) simp-all
ultimately show Fulse by simp
qed
with unbounded show ?thesis by simp
qed (simp-all add: fps-Lem Lem-eq-0-I)

5.10 Formal Derivatives

definition fps-deriv f = Abs-fps (An. of-nat (n + 1) = f $ (n + 1))

lemma fps-deriv-nth[simp]: fps-deriv f $ n = of-nat (n + 1) x f $ (n + 1)
by (simp add: fps-deriv-def)
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lemma fps-0th-higher-deriv:
(fps-deriv " " n) f $ 0 = factn x f $ n
by (induction n arbitrary: f)
(simp-all add: funpow-Suc-right mult-of-nat-commute algebra-simps del: fun-
pow.simps)

lemma fps-deriv-mult]simp):

fos-deriv (f * g) = f * fps-deriv g + fps-deriv f * g
proof (intro fps-ext)

fix n

have LHS: fps-deriv (f * g) $ n = (3 i=0..Suc n. of-nat (n+1) % f$i x g$(Suc
n— 1))

by (simp add: fps-mult-nth sum-distrib-left algebra-simps)

have Vie{l.n}. n — (i — 1) =n — { + 1 by auto
moreover have
(> i=0..n. of-nat (i+1) * f$(i+1) * g8(n — i) =
(> i=1..Suc n. of-nat i x f$i x g8(n — (1 — 1)))
by (intro sum.reindez-bij-witnessijwhere i=Az. z—1 and j=Az. 2+1]) auto
ultimately have
(f = fps-deriv g + fps-deriv f x g) $ n =
of-nat (Suc n) * f$0 x g$(Suc n) +
SCi=1..n. (of-nat (n —i+ 1)+ ofnat i)« fSixg$(n—1i+1))+
of-nat (Suc n) * f$(Suc n) * g$0
by (simp add: fps-mult-nth algebra-simps mult-of-nat-commute sum.atLeast-Suc-atMost
sum. distrib)
moreover have
Vie{l..n}.
(of-nat (n — i+ 1)+ of-nati) x fSixg$(n—7i+1)=
of-nat (n + 1)« f $i% g% (Sucn — 1)
proof
fix 7 assume i: 7 € {I..n}
from ¢ have of-nat (n — i + 1) + (of-nat i :: 'a) = of-nat (n + 1)
using of-nat-add|of n—i+1 i,symmetric] by simp
moreover from i have Sucn — i =n — i + 1 by auto
ultimately show (of-nat (n — i+ 1) + of-nati) x f$ixg$(n—i+ 1) =
of-nat (n + 1)« f $i% g8 (Sucn — 1)
by simp
qed
ultimately have
(f = fps-deriv g + fps-deriv f * g) $ n =
(>-i=0..Suc n. of-nat (Suc n) * f $ i
by (simp add: sum.atLeast-Suc-atMost)
with LHS show fps-deriv (f x g) $ n = (f * fps-deriv g + fps-deriv f x g) $ n
by simp
qed

x g % (Sucn — i)

lemma fps-deriv-fps-X[simpl: fps-deriv fps-X = 1

301



by (simp add: fps-deriv-def fps-X-def fps-eq-iff)

lemma fps-deriv-neg[simpl:

fos-deriv (— (f:: 'a::ring-1 fps)) = — (fps-deriv f)
by (simp add: fps-eq-iff fps-deriv-def)

lemma fps-deriv-add[simp]: fps-deriv (f + g) = fps-deriv f + fps-deriv g
by (auto intro: fps-ext simp: algebra-simps)

lemma fps-deriv-sub[simp]:
fos-deriv ((f:: 'a::ring-1 fps) — g) = fps-deriv f — fps-deriv g
using fps-deriv-add [of f — g] by simp

lemma fps-deriv-const[simp]: fps-deriv (fps-const ¢) = 0
by (simp add: fps-ext fps-deriv-def fps-const-def)

lemma fps-deriv-of-nat [simp]: fps-deriv (of-nat n) = 0
by (simp add: fps-of-nat [symmetric])

lemma fps-deriv-of-int [simpl: fps-deriv (of-int n) = 0
by (simp add: fps-of-int [symmetric])

lemma fps-deriv-numeral [simp|: fps-deriv (numeral n) = 0
by (simp add: numeral-fps-const)

lemma fps-deriv-mult-const-left[simp]:
fos-deriv (fps-const ¢ x f) = fps-const ¢ * fps-deriv f
by simp

lemma fps-deriv-linear(simp):
fps-deriv (fps-const a * f + fps-const b x g) =
fps-const a x fps-deriv f + fps-const b * fps-deriv g
by simp

lemma fps-deriv-0[simp|: fps-deriv 0 = 0
by (simp add: fps-deriv-def fps-eq-iff)

lemma fps-deriv-1[simp|: fps-deriv 1 = 0
by (simp add: fps-deriv-def fps-eq-iff)

lemma fps-deriv-mult-const-right|simp]:
fos-deriv (f = fps-const ¢) = fps-deriv f * fps-const c
by simp

lemma fps-deriv-sum:

fps-deriv (sum fS) = sum (Xi. fps-deriv (fi)) S
proof (cases finite S)

case Fulse

then show ?thesis by simp
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next

case True
show ?thesis by (induct rule: finite-induct [OF True]) simp-all
qed

lemma fps-deriv-eq-0-iff [simp]:
fos-deriv f = 0 <+— f = fps-const (f$0 :: 'a::{semiring-no-zero-divisors,semiring-char-0})
proof
assume f: fps-deriv f = 0
show f = fps-const (f$0)
proof (intro fps-ext)
fix n show f $§ n = fps-const (f$0) $ n
proof (cases n)
case (Suc m)
have (of-nat (Suc m) :: 'a) # 0 by (rule of-nat-neq-0)
with f Suc show ?thesis using fps-deriv-nth|of f] by auto
qed simp
qed
next
show [ = fps-const (f$0) = fps-deriv f = 0 using fps-deriv-const[of f$0] by
stmp
qged

lemma fps-deriv-eq-iff:
fixes f g :: 'a::{ring-1-no-zero-divisors,semiring-char-0} fps
shows fps-deriv f = fps-deriv g +— (f = fps-const(f$0 — ¢$0) + g)
proof —
have fps-deriv f = fps-deriv g «— fps-deriv (f — g) = 0
using fps-deriv-sublof f ¢
by simp
also have ... «— f — g = fps-const ((f — g) $ 0)
unfolding fps-deriv-eq-0-iff ..
finally show ?thesis
by (simp add: field-simps)
qed

lemma fps-deriv-eq-iff-ex:
fixes f g :: 'a::{ring-1-no-zero-divisors,semiring-char-0} fps
shows (fps-deriv f = fps-deriv g) +— (Jc. f = fps-const ¢ + g)
by (auto simp: fps-deriv-eq-iff)

fun fps-nth-deriv :: nat = 'a::semiring-1 fps = 'a fps
where

fps-nth-deriv 0 f = f
| fps-nth-deriv (Suc n) f = fps-nth-deriv n (fps-deriv f)

lemma fps-nth-deriv-commute: fps-nth-deriv (Suc n) f = fps-deriv (fps-nth-deriv
n f)
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by (induct n arbitrary: f) auto

lemma fps-nth-deriv-linear|simp):
fps-nth-deriv n (fps-const a * f + fps-const b * g) =
fps-const a % fps-nth-deriv n f + fps-const b x fps-nth-deriv n g
by (induct n arbitrary: f g) auto

lemma fps-nth-deriv-neg[simp):
fos-nth-deriv n (— (f :: 'azring-1 fps)) = — (fps-nth-deriv n f)
by (induct n arbitrary: f) simp-all

lemma fps-nth-deriv-add]simp]:
fos-nth-deriv n ((f = 'a::ring-1 fps) + g) = fps-nth-deriv n f + fps-nth-deriv n g
using fps-nth-deriv-linear[of n 1 f 1 g] by simp

lemma fps-nth-deriv-sub|simp]:
fos-nth-deriv n ((f :: 'az:ring-1 fps) — g) = fps-nth-deriv n f — fps-nth-deriv n g
using fps-nth-deriv-add [of n f — ¢] by simp

lemma fps-nth-deriv-0[simp): fps-nth-deriv n 0 = 0
by (induct n) simp-all

lemma fps-nth-deriv-1[simp|: fps-nth-deriv n 1 = (if n = 0 then 1 else 0)
by (induct n) simp-all

lemma fps-nth-deriv-const[simp):
fos-nth-deriv n (fps-const ¢) = (if n = 0 then fps-const ¢ else 0)
by (cases n) simp-all

lemma fps-nth-deriv-mult-const-left[simp):
fos-nth-deriv n (fps-const ¢ * f) = fps-const ¢ * fps-nth-deriv n f
using fps-nth-deriv-linear[of n ¢ f 0 0 ] by simp

lemma fps-nth-deriv-mult-const-right[simp]:
fos-nth-deriv n (f * fps-const ¢) = fps-nth-deriv n f * fps-const c
by (induct n arbitrary: f) auto

lemma fps-nth-deriv-sum:
fos-nth-deriv n (sum fS) = sum (Xi. fps-nth-deriv n (f i :: ‘a:ring-1 fps)) S
proof (cases finite S)
case True
show ?thesis by (induct rule: finite-induct [OF True]) simp-all
next
case Fulse
then show ?thesis by simp
qed

lemma fps-deriv-maclauren-0:
(fps-nth-deriv k (f :: 'a::comm-semiring-1 fps)) $ 0 = of-nat (fact k) = f $ k
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by (induct k arbitrary: f) (simp-all add: field-simps)

lemma fps-deriv-lr-inverse:
fixes 1y :: 'anring-1
assumes z * f$0 = 1 f$0 x y = 1
— These assumptions imply x equals y, but no need to assume that.
shows fps-deriv (fps-left-inverse f x) =
— fps-left-inverse f x = fps-deriv f * fps-left-inverse f x
and  fps-deriv (fps-right-inverse f y) =
— fps-right-inverse f y x fps-deriv f = fps-right-inverse f y
proof—

define L where L = fps-left-inverse f x
hence fps-deriv (L * f) = 0 using fps-left-inverse[OF assms(1)] by simp
with assms show fps-deriv L = — L x fps-deriv f x L

using fps-right-inverse’|OF assms]

by  (simp add: minus-unique mult.assoc L-def)

define R where R = fps-right-inverse fy
hence fps-deriv (f * R) = 0 using fps-right-inverse[OF assms(2)] by simp
hence 1: f x fps-deriv R + fps-deriv f * R = 0 by simp
have R x f x fps-deriv R = — R x fps-deriv f * R

using iff D2[|OF eg-neg-iff-add-eq-0, OF 1] by (simp add: mult.assoc)
thus fps-deriv R = — R x fps-deriv f x R

using fps-left-inverse’|OF assms] by (simp add: R-def)

qged
lemma fps-deriv-lr-inverse-comm:

fixes 1z :: 'a::comm-ring-1
assumes 7 * f$0 = 1

shows fps-deriv (fps-left-inverse f x) = — fps-deriv f * (fps-left-inverse f x)?
and  fps-deriv (fps-right-inverse f x) = — fps-deriv f * (fps-right-inverse f x)>
using assms fps-deriv-lr-inverse[of x f x]

by (simp-all add: mult.commute power2-eq-square)

lemma fps-inverse-deriv-divring:
fixes a :: 'a::division-ring fps
assumes a$0 # 0
shows fps-deriv (inverse a) = — inverse a * fps-deriv a x inverse a
using assms fps-deriv-lr-inverse(2)[of inverse (a$0) a inverse (a$0)]
by (simp add: fps-inverse-def)

lemma fps-inverse-deriv:
fixes a :: 'a::field fps
assumes a$0 # 0
shows fps-deriv (inverse a) = — fps-deriv a * (inverse a)?
using assms fps-deriv-lr-inverse-comm(2)[of inverse (a$0) a]
by (simp add: fps-inverse-def)
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lemma fps-inverse-deriv’”:
fixes a :: 'a:field fps
assumes a0: a $ 0 # 0
shows fps-deriv (inverse a) = — fps-deriv a |/ a*
using fps-inverse-deriv[OF a0] a0
by (simp add: fps-divide-unit power2-eq-square fps-inverse-mult)

lemma fps-divide-deriv:
assumes b dvd (a :: 'a :: field fps)
shows fps-deriv (a / b) = (fps-deriv a x b — a x fps-deriv b) / b2
proof —
have eg-divide-imp: ¢ # 0 = a *x c = b= a = b div c for a b c :: 'a :: field
fps
by (drule sym) (simp add: mult.assoc)
from assms have a = a / b x b by simp
also have fps-deriv (a / b * b) = fps-deriv (a / b) * b+ a / b * fps-deriv b by
stmp
finally have fps-deriv (a / b) * b72 = fps-deriv a * b — a * fps-deriv b using
assms
by (simp add: power2-eq-square algebra-simps)
thus ?thesis by (cases b = 0) (simp-all add: eq-divide-imp)
qed

lemma fps-nth-deriv-fps-X[simp|: fps-nth-deriv n fps-X = (if n = 0 then fps-X else
if n=1 then 1 else 0)
by (cases n) simp-all

5.11 Powers

lemma fps-power-zeroth: (a™n) $ 0 = (a$0)™n
by (induct n) auto

lemma fps-power-zeroth-eq-one: a$0 = 1 = a n $ 0 = 1
by (simp add: fps-power-zeroth)

lemma fps-power-first:
fixes a :: 'a::comm-semiring-1 fps
shows (a™n) $ 1 = of-nat n x (a$0) (n—1) x a$1
proof (cases n)
case (Suc m)
have (a = Suc m) $ 1 = of-nat (Suc m) * (a$0) (Suc m — 1) % a$1
proof (induct m)
case (Suc k)
hence (a ~ Suc (Suc k)) $ 1 =
a$0 = of-nat (Suc k) * (a $ 0)7k x a$1 + a$1 * ((a$0) (Suc k))
using fps-mult-nth-1[of o] by (simp add: fps-power-zeroth|symmetric] mult.assoc)
thus ?case by (simp add: algebra-simps)
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qed simp
with Suc show ?Zthesis by simp
qed simp

lemma fps-power-first-eq: a $ 0 = 1 = a n $ 1 = of-nat n * a$1
proof (induct n)
case (Suc n)
show ?case unfolding power-Suc fps-mult-nth
using Suc.hyps|OF <a$0 = 1>] <a$0 = 1 fps-power-zeroth-eq-one[OF <a$0=1)]
by (simp add: algebra-simps)
qed simp

lemma fps-power-first-eq”:
assumes a $ 1 = 1
shows a™n $ I = of-nat n * (a$0) (n—1)
proof (cases n)
case (Suc m)
from assms have (a = Suc m) $ 1 = of-nat (Suc m) * (a$0) (Suc m — 1)
using fps-mult-nth-1|of a]
by  (induct m)
(simp-all add: algebra-simps mult-of-nat-commute fps-power-zeroth)
with Suc show ?thesis by simp
qed simp

lemmas startsby-one-power = fps-power-zeroth-eq-one

lemma startsby-zero-power: a $ 0 = 0 = n > 0 = a n $0 = 0
by (simp add: fps-power-zeroth zero-power)

lemma startsby-power: a $0 = v = a n $0 = v'n
by (simp add: fps-power-zeroth)

lemma startsby-nonzero-power:
fixes a :: 'a::semiring-1-no-zero-divisors fps
shows a $ 0 #0 = an$0#0
by  (simp add: startsby-power)

lemma startsby-zero-power-iff [simpl:
a"n $0 = (0::'a::semiring-1-no-zero-divisors) <— n # 0 A a$0 = 0
proof
showa " n$0=0=n#0ANa$0=20
proof
assume a: a n$ 0 =20
thus a $ 0 = 0 using startsby-nonzero-power by auto
have n = 0 = a™n $ 0 = 1 by simp
with a show n # 0 by fastforce
qed
shown#0ANa$30=0=a n$0=0
by (cases n) auto
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qed

lemma startsby-zero-power-prefix:
assumes a0: a $ 0 = 0
shows Vn <k.a "k$Sn=20
proof (induct k rule: nat-less-induct, clarify)
case (1k)
fix j :: nat assume j: j < k
show a "k$j=0
proof (cases k)
case 0 with j show ?thesis by simp
next
case (Suc 17)
with 1 j have Vme{0<..j}. a ~i $ (j — m) = 0 by auto
with Suc a0 show ?thesis by (simp add: fps-mult-nth sum.atLeast-Suc-atMost)
qged
qed

lemma startsby-zero-sum-depends:
assumes a0: a $0 = 0
and kn: n > k
shows sum (A\i. (a ~0)$k) {0 .. n} = sum (Ai. (a ~49)$k) {0 .. k}
proof (intro strip sum.mono-neutral-right)
show Ai. i € {0.n} —{0.k} = a "iS k=0
by (simp add: a0 startsby-zero-power-prefix)
qed (use kn in auto)

lemma startsby-zero-power-nth-same:
assumes a0: a$0 = 0
shows a™m$n=(a$1) "n
proof (induct n)
case (Suc n)
have Vie{Suc 1..Sucn}. a "n $ (Sucn — i) =0
using a0 startsby-zero-power-prefiz[of a n] by auto
thus ?case
using a0 Suc sum.atLeast-Suc-atMost[of 0 Sucn Xi. a $i*a ~n$ (Sucn —

i)l
sum.atLeast-Suc-atMost[of 1 Sucn Ai. a $ i % a " n$ (Sucn — i)
by  (simp add: fps-mult-nth)
qed simp

lemma fps-lr-inverse-power:
fixes a :: ‘a::ring-1 fps
assumes z * a$0 = 1 a$0 x z = 1
shows fps-left-inverse (a"n) (z™n) = fps-left-inverse a x "~ n
and fps-right-inverse (a"n) (xz7n) = fps-right-inverse a x ~ n
proof—

from assms have zn: An. 2 n* (an$0)=1 An. (¢ n$0)*xzn=1
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by (simp-all add: left-right-inverse-power fps-power-zeroth)

show fps-left-inverse (a™n) (z7n) = fps-left-inverse a x "~ n
proof (induct n)
case (
then show ?case by (simp add: fps-lr-inverse-one-one(1))
next
case (Suc n)
with assms show ?Zcase
using zn fps-lr-inverse-mult-ringl (1)[of © a x™n a™n]
by  (simp add: power-Suc2[symmetric])
qed

moreover have fps-right-inverse (a"n) (z7n) = fps-left-inverse (a™n) (z7n)
using zn by (intro fps-left-inverse-eq-fps-right-inverse[symmetric])
moreover have fps-right-inverse a © = fps-left-inverse a x
using assms by (intro fps-left-inverse-eq-fps-right-inverse[symmetric])
ultimately show fps-right-inverse (a™n) (x7n) = fps-right-inverse a x ~ n
by simp

qed

lemma fps-inverse-power:
fixes a :: 'a::division-ring fps
shows inverse (a"n) = inverse a ~n
proof (cases n=0 a$0 = 0 rule: case-split[case-product case-split))
case Fualse-True
hence LHS: inverse (a"n) = 0 and RHS: inverse a "~ n = 0
by (simp-all add: startsby-zero-power)
show ?thesis using trans-sym[OF LHS RHS] by fast
next
case Fulse-Fulse
from Fulse-False(2) show ?thesis
by (simp add:
fps-inverse-def fps-power-zeroth power-inverse fps-lr-inverse-power(2)[symmetric|

)

qed auto

lemma fps-deriv-power”:
fixes a :: 'a::comm-semiring-1 fps
shows fps-deriv (a ~ n) = (of-nat n) * fps-deriva x a ~(n — 1)
proof (cases n)
case (Suc m)
moreover have fps-deriv (a"Suc m) = of-nat (Suc m) * fps-deriv a * a”m
by (induct m) (simp-all add: algebra-simps)
ultimately show ?thesis by simp
qed simp

lemma fps-deriv-power:
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fixes a :: 'a::comm-semiring-1 fps
shows fps-deriv (a ~ n) = fps-const (of-nat n) x fps-deriv a x a ~(n — 1)
by (simp add: fps-deriv-power’ fps-of-nat)

5.12 Finite and infinite products

lemma fps-prod-nth’:
assumes finite A
shows fps-nth ([[z€A. fz) n = (O Xemultisets-of-size A n. [[z€A. fps-nth
(f ) (count X x))
using assms
proof (induction A arbitrary: n rule: finite-induct)
case (insert a A n)
note [simp] = <a ¢ A»
note [intro, simp|] = «finite A»
have () Xemultisets-of-size (insert a A) n. [[ z€insert a A. fps-nth (f z) (count
X z)) =
> (m,X)e(SIGMA m:{0..n}. multisets-of-size A (n—m)).
[1z€insert a A. fps-nth (f x) (count (X + replicate-mset m a) x))
by (subst sum.reindex-bij-betw[ OF bij-betw-multisets-of-size-insert, symmetric])
(simp-all add: case-prod-unfold)
also have ... = (3. m=0..n. > Xemultisets-of-size A (n—m).
[1z€insert a A. fps-nth (f z) (count (X + replicate-mset m a) z))
by (rule sum.Sigma [symmetric]) auto

also have ... = (3> m=0..n. fps-nth (f a) m * fps-nth ([[z€A. fz) (n — m))
proof (rule sum.cong)
fix m

assume m: m € {0..n}
have (3 Xemultisets-of-size A (n—m).
[T z€insert a A. fps-nth (f x) (count (X + replicate-mset m a) x)) =
(3" Xemultisets-of-size A (n—m). fps-nth (f a) (count X a + m)
(ITz€A. fps-nth (f z) (count (X + replicate-mset m a) z)))
by simp
also have ... = (> Xemultisets-of-size A (n—m). fps-nth (f a) m *
(ITz€A. fps-nth (f z) (count (X + replicate-mset m a) z)))
by (intro sum.cong arg-cong2[of - - - - (x)] arg-cong2[of - - - - fps-nth] refl)
(auto simp: multisets-of-size-def simp flip: not-in-iff)
also have ... = fps-nth (f a) m * (> X€multisets-of-size A (n—m).
(ITz€A. fps-nth (f z) (count (X + replicate-mset m a) z)))
by (simp add: sum-distrib-left)
also have (> Xemultisets-of-size A (n—m). [[z€A. fps-nth (f ) (count (X
+ replicate-mset m a) z)) =
(>° Xemultisets-of-size A (n—m). [[z€A. fps-nth (f z) (count X z))
by (intro sum.cong prod.cong) auto
also have ... = fps-nth ([[z€A. fz) (n — m)
by (rule insert.IH [symmetric])
finally show (> Xemultisets-of-size A (n—m). [[ xE€insert a A. fps-nth (f z)
(count (X + replicate-mset m a) x)) =
fos-nth (f a) m * fps-nth ([[z€A. fz) (n — m) .
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qged auto
also have ... = fps-nth ([[z€insert a A. fz) n
by (simp add: fps-mult-nth)
finally show ?case ..
qed auto

theorem tendsto-prod-fps:
fixes f :: nat = ‘a :: {idom, t2-space} fps
assumes [simp|: Nk. fk # 0
assumes g: An k. k > g n = subdegree (fk — 1) > n
defines P = Abs-fps (An. (3 Xemultisets-of-size {..g n} n. [[i<g n. fps-nth (f
1) (count X 17)))
shows (An. [[k<n. fk) —— P
proof (rule tendsto-fpsI)
fix n :: nat
show eventually (AN. fps-nth (prod f {.N}) n = fps-nth P n) at-top
using eventually-ge-at-top[of g n|
proof eventually-elim
case (elim N)
have fps-nth (prod f {.N}) n = (3 Xe€multisets-of-size {.N} n. []z<N.
fos-nth (f ) (count X x))
by (subst fps-prod-nth’) auto
also have ... = (3° X | X € multisets-of-size {..N} n A (Ya<N. fps-nth (f z)
(count X z) # 0).

[T2<N. fps-nth (f z) (count X z))
by (intro sum.mono-neutral-right) auto

also have {X. X € multisets-of-size {..N} n A (Vx<N. fps-nth (f z) (count X
z) # 0)} =

z) # 0)}
(is ?lhs = ?rhs)
proof (intro equalityl subsetl)
fix X assume X € ?rhs
thus X € ?2lhs using elim multisets-of-size-mono[of {..g n} {..N}] by auto
next
fix X assume X € ?lhs

hence X: set-mset X C {.N} size X =n Az. x < N = fps-nth (f z) (count
Xz)#0

by (auto simp: multisets-of-size-def)
have set-mset X C {..g n}
proof
fix r assume *: ¢ € set-mset X
show z € {..g n}
proof (rule ccontr)
assume z ¢ {..g n}
hence z: x > gnz < N
using X (1) * by auto
have count Xz < n

{X. X € multisets-of-size {..g n} n A (Vz<N. fps-nth (f z) (count X

311



using X z count-le-size[of X z] by (auto simp: Pi-def)
also have n < subdegree (fz — 1)
by (rule g) (use z in auto)
finally have fps-nth (fz — 1) (count X ) = 0
by blast
hence fps-nth (f ) (count X z) = 0
using *x by simp
moreover have fps-nth (f z) (count X z) # 0
by (intro X(3)) (use z in auto)
ultimately show Fulse by contradiction
ged
qed
thus X € ?rhs using X
by (auto simp: multisets-of-size-def)
qed

also have (3" X | X € multisets-of-size {..g n} n A (Vz<N. fps-nth (f z) (count
X z) # 0).
[T2z<N. fps-nth (f z) (count X z)) =
(> X | X € multisets-of-size {..g n} n A (Vz<N. fps-nth (f z) (count
X z) # 0).
[1i<g n. fps-nth (f ©) (count X 7))
proof (intro sum.cong prod.mono-neutral-right balll)
fix X3
assume i: i € {..N} — {.g n}
assume X € {X. X € multisets-of-size {..g n} n A Va<N. fps-nth (f z)
(count X z) # 0)}
hence h: X € multisets-of-size {..g n} n Az. + < N = fps-nth (f z) (count
Xz)#0
by blast+
have i ¢# X
using 7 h unfolding multisets-of-size-def by auto
have n < subdegree (fi — 1)
by (intro g) (use i in auto)
moreover have count X i < n
using <i ¢# X» by (simp add: not-in-iff)
ultimately have fps-nth (fi — 1) (count X i) = 0
by (intro nth-less-subdegree-zero) auto
thus fps-nth (f i) (count X i) = 1
using h(2) i «i ¢# X> by (auto split: if-splits)
ged (use elim in auto)

also have (3 X | X € multisets-of-size {..g n} n A (Yz<N. fps-nth (f z) (count
X z) # 0).
[1i<g n. fps-nth (f i) (count X i)) =
(3" X € multisets-of-size {..g n} n. [[i<g n. fps-nth (f ©) (count X 7))
proof (intro sum.mono-neutral-left balll)
fix X assume X € multisets-of-size {..g n} n —
{X emultisets-of-size {..g n} n. Yx<N. fps-nth (f z) (count X z)
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# 0}
then obtain i
where h: X € multisets-of-size {..g n} n
and i: ¢ < N fps-nth (f ©) (count X i) = 0
by blast
have —(i > g n)
proof
assume i i > gn
hence count X i = 0
using h by (auto simp: multisets-of-size-def simp flip: not-in-iff)
have subdegree (fi — 1) > n
by (intro g) (use i’ in auto)
hence subdegree (fi — 1) > 0
by simp
hence fps-nth (fi — 1) 0 =0
by blast
hence fps-nth (f i) (count X i) = 1
using <count X i = 0» by simp
thus Fualse using i by simp
qed
thus ([[z<g n. fps-nth (f ) (count X z)) = 0
using 7 by auto
qed auto

also have ... = fps-nth P n
by (simp add: P-def)
finally show fps-nth ([[k<N. fk) n = fps-nth P n .
qed
qed

5.13 Integration

definition fps-integral :: 'a::{semiring-1 inverse} fps = 'a = 'a fps
where fps-integral a a0 =
Abs-fps (An. if n=0 then a0 else inverse (of-nat n) x a$(n — 1))

abbreviation fps-integral0 a = fps-integral a 0

lemma fps-integral-nth-0-Suc [simp):
fixes a :: ‘a::{semiring-1,inverse} fps
shows fps-integral a a0 $ 0 = a0
and fps-integral a a0 $ Suc n = inverse (of-nat (Suc n)) * a § n
by (auto simp: fps-integral-def)

lemma fps-integral-conv-plus-const:
fps-integral a a0 = fps-integral a 0 + fps-const a0
unfolding fps-integral-def by (intro fps-ext) simp

lemma fps-deriv-fps-integral:

313



fixes a :: 'a::{division-ring,ring-char-0} fps
shows fps-deriv (fps-integral a a0) = a
proof (intro fps-ext)
fix n
have (of-nat (Suc n) :: 'a) # 0 by (rule of-nat-neq-0)
hence of-nat (Suc n) * inverse (of-nat (Suc n) :: ‘a) = 1 by simp
moreover have
fps-deriv (fps-integral a a0) $ n = of-nat (Suc n) * inverse (of-nat (Suc n)) *
a$n
by (simp add: mult.assoc)
ultimately show fps-deriv (fps-integral a a0) $ n = a $ n by simp
qed

lemma fps-integral0-deriv:
fixes a :: ‘a::{division-ring,ring-char-0} fps
shows fps-integral0 (fps-deriv a) = a — fps-const (a$0)
proof (intro fps-ext)
fix n
show fps-integral0 (fps-deriv a) $ n = (a — fps-const (a$0)) $ n
proof (cases n)
case (Suc m)
have (of-nat (Suc m) :: 'a) # 0 by (rule of-nat-neg-0)
hence inverse (of-nat (Suc m) :: 'a) * of-nat (Suc m) = 1 by simp
moreover have
fps-integral0 (fps-deriv a) $ Suc m =
inverse (of-nat (Suc m)) * of-nat (Suc m) x a $ (Suc m)
by (simp add: mult.assoc)
ultimately show ?thesis using Suc by simp
qed simp
qed

lemma fps-integral-deriv:
fixes a :: 'a::{division-ring,ring-char-0} fps
shows fps-integral (fps-deriv a) (a$0) = a
using fps-integral-conv-plus-const|of fps-deriv a a$0]
by  (simp add: fps-integral0-deriv)

lemma fps-integral0-zero:
fos-integral0 (0::'a::{semiring-1 inverse} fps) = 0
by (intro fps-ext) (simp add: fps-integral-def)

lemma fps-integral0-fps-const’:
fixes ¢ :: ‘a::{semiring-1,inverse}
assumes inverse (1::'a) = 1
shows  fps-integral0 (fps-const ¢) = fps-const ¢ * fps-X
proof (intro fps-ext)
fix n
show fps-integral0 (fps-const ¢) $ n = (fps-const ¢ x fps-X) $ n
by (cases n) (simp-all add: assms mult-delta-right)
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qed

lemma fps-integral0-fps-const:
fixes c :: 'a::division-ring
shows fps-integral0 (fps-const ¢) = fps-const ¢ * fps-X
by  (rule fps-integral0-fps-const’|OF inverse-1])

lemma fps-integral0-one’:
assumes inverse (1::'a::{semiring-1,inverse}) = 1
shows fps-integral0 (1::'a fps) = fps-X
using assms fps-integral0-fps-const’[of 1::'a]
by simp

lemma fps-integral0-one:
fps-integral0 (1::'a::division-ring fps) = fps-X
by (rule fps-integral0-one’|OF inverse-1])

lemma fps-integral0-fps-const-mult-left:
fixes a :: 'a::division-ring fps
shows fps-integral0 (fps-const ¢ * a) = fps-const ¢ x fps-integral0 a
proof (intro fps-ext)
fix n
show fps-integral0 (fps-const ¢ x a) $ n = (fps-const ¢ x fps-integral0 a) $ n
using mult-inverse-of-nat-commute[of n ¢, symmetric]
mult.assoc|of inverse (of-nat n) ¢ a$(n—1)]
mult.assoc[of ¢ inverse (of-nat n) a$(n—1)]
by  (simp add: fps-integral-def)
qed

lemma fps-integral0-fps-const-mult-right:
fixes a :: ‘a::{semiring-1,inverse} fps
shows fps-integral0 (a * fps-const ¢) = fps-integral0 a * fps-const ¢
by  (intro fps-ext) (simp add: fps-integral-def algebra-simps)

lemma fps-integral0-neg:
fixes a :: ‘a::{ring-1,inverse} fps
shows fps-integral0 (—a) = — fps-integral0 a
using fps-integral0-fps-const-mult-right[of a —1]
by  (simp add: fps-const-neg[symmetric])

lemma fps-integral0-add:
fps-integral0 (a+b) = fps-integral0 a + fps-integral0 b
by (intro fps-ext) (simp add: fps-integral-def algebra-simps)

lemma fps-integral0-linear:
fixes a b :: 'a::division-ring
shows fps-integral0 (fps-const a = f + fps-const b x g) =
fps-const a x fps-integral0 f + fps-const b x fps-integral0 g
by  (simp add: fps-integral0-add fps-integral0-fps-const-mult-left)
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lemma fps-integral0-linear2:
fps-integral0 (f = fps-const a + g * fps-const b) =
fps-integral0 [ * fps-const a + fps-integral0 g * fps-const b
by (simp add: fps-integral0-add fps-integral0-fps-const-mult-right)

lemma fps-integral-linear:
fixes a b a0 b0 :: 'a::division-ring
shows
fps-integral (fps-const a * f + fps-const b * g) (axa0 + bxb0) =
fps-const a = fps-integral f a0 + fps-const b x fps-integral g b0
using fps-integral-conv-plus-const|of
fps-const a x f + fps-const b x g
axal + bxb0
]
fps-integral-conv-plus-const[of f a0] fps-integral-conv-plus-const[of g b0]
by  (simp add: fps-integralO-linear algebra-simps)

lemma fps-integral0-sub:
fixes a b :: ‘a::{ring-1,inverse} fps
shows fps-integral0 (a—b) = fps-integral0 a — fps-integral0 b
using fps-integral0-linear2[of a 1 b —1]
by  (simp add: fps-const-neg[symmetric])

lemma fps-integral0-of-nat:
fps-integral0 (of-nat n :: 'a::division-ring fps) = of-nat n * fps-X
using fps-integral0-fps-const[of of-nat n :: 'a] by (simp add: fps-of-nat)

lemma fps-integral0-sum:
fps-integral0 (sum fS) = sum (\i. fps-integral0 (f 7)) S
proof (cases finite S)
case True show ?thesis
by (induct rule: finite-induct [OF True])
(simp-all add: fps-integral0-zero fps-integral0-add)
qed (simp add: fps-integral0-zero)

lemma fps-integral0-by-parts:
fixes a b :: 'a::{division-ring,ring-char-0} fps
shows
fps-integral0 (a % b) =
a * fps-integral0 b — fps-integral0 (fps-deriv a * fps-integral( b)
proof—
have fps-integral0 (fps-deriv (a = fps-integral0 b)) = a * fps-integral0 b
using fps-integralO-deriviof (a * fps-integral0 b)] by simp
moreover have
fps-integral0 (a * b) =
fps-integral0 (fps-deriv (a * fps-integral0 b)) —
fps-integral0 (fps-deriv a x fps-integral0 b)
by (auto simp: fps-deriv-fps-integral fps-integral0-sub[symmetric])
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ultimately show ?thesis by simp
qed

lemma fps-integral0-fps-X:
fps-integral0 (fps-X::'a::{semiring-1,inverse} fps) =
fps-const (inverse (of-nat 2)) * fps-X2
by (intro fps-ext) (auto simp: fps-integral-def)

lemma fps-integral0-fps-X-power:
fos-integral0 ((fps-X::'a::{semiring-1,inverse} fps) ~n) =
fps-const (inverse (of-nat (Suc n))) * fps-X ~ Suc n
proof (intro fps-ext)
fix k£ show
fps-integral0 ((fps-X::'a fps) " n) $ k =
(fps-const (inverse (of-nat (Suc n))) x fps-X ~ Suc n) $ k
by (cases k) simp-all
qed

5.14 Composition

definition fps-compose :: 'a::semiring-1 fps = 'a fps = 'a fps (infixl (00> 55)
where a 00 b = Abs-fps (An. sum (Xi. a$i = (b7i%n)) {0..n})

lemma fps-compose-nth: (a oo b)$n = sum (\i. a$i * (b7i%n)) {0..n}
by (simp add: fps-compose-def)

lemma fps-compose-nth-0 [simpl: (foo g) $ 0 =f% 0
by (simp add: fps-compose-nth)

lemma fps-compose-fps-X[simp|: a oo fps-X = (a :: ‘a::comm-ring-1 fps)
by (simp add: fps-ext fps-compose-def mult-delta-right)

lemma fps-const-compose[simp]: fps-const (a::'a::comm-ring-1) oo b = fps-const a
by (simp add: fps-eq-iff fps-compose-nth mult-delta-left)

lemma numeral-compose[simp|: (numeral k :: 'a::comm-ring-1 fps) oo b = numeral
k
unfolding numeral-fps-const by simp

lemma neg-numeral-compose[simpl: (— numeral k :: 'a::comm-ring-1 fps) oo b =
— numeral k
unfolding neg-numeral-fps-const by simp

lemma fps-X-fps-compose-startby0[simpl: a30 = 0 => fps-X 0o a = (a :: 'a::comm-ring-1

fps)
by (simp add: fps-eq-iff fps-compose-def mult-delta-left not-le)
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5.15 Rules from Herbert Wilf’s Generatingfunctionology
5.15.1 Rule 1

lemma fps-power-mult-eq-shift:
fps-X"Suc k * Abs-fps (An. a (n + Suc k)) =
Abs-fps a — sum (Ni. fps-const (a i :: 'a::comm-ring-1) * fps-X"0) {0 .. k}
(is ?lhs = %rhs)
proof —
have ?lhs $ n = %rhs $ n for n :: nat
proof —
have ?lhs $ n = (if n < Suc k then 0 else a n)
unfolding fps-X-power-mult-nth by auto
also have ... = ?rhs $ n
proof (induct k)
case (
then show ?case
by (simp add: fps-sum-nth)
next
case (Suc k)
have (Abs-fps a — sum (A\i. fps-const (a i :: 'a) * fps-X7%) {0 .. Suc k})$n =
(Abs-fps a — sum (Xi. fps-const (a i :: 'a) x fps-X7%) {0 .. k} —
fos-const (a (Suc k)) * fps-X" Suc k) $ n
by (simp add: field-simps)
also have ... = (if n < Suc k then 0 else a n) — (fps-const (a (Suc k)) *
fps-X~ Suc k)$n
using Suc.hyps[symmetric] unfolding fps-sub-nth by simp
also have ... = (if n < Suc (Suc k) then 0 else a n)
unfolding fps-X-power-mult-right-nth
by (simp add: not-less le-less-Suc-eq)
finally show ?Zcase
by simp
qed
finally show ?thesis .
qged
then show ?thesis
by (simp add: fps-eq-iff)
qed

5.15.2 Rule 2
definition fps-XD = (x) fps-X o fps-deriv

lemma fps-XD-add[simp|:fps-XD (a + b) = fps-XD a + fps-XD (b :: 'a::comm-ring-1

fps)
by (simp add: fps-XD-def field-simps)

lemma fps-XD-mult-const|[simp:fps-XD (fps-const (c::'a::comm-ring-1) * a) =

fps-const ¢ * fps-XD a
by (simp add: fps-XD-def field-simps)
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lemma fps-XD-linear|simp|: fps-XD (fps-const ¢ x a + fps-const d * b) =
fps-const ¢ x fps-XD a + fps-const d = fps-XD (b :: ‘a::comm-ring-1 fps)
by simp

lemma fps-XDN-linear:

(fps-XD ~"n) (fps-const ¢ * a + fps-const d x b) =

fps-const ¢ x (fps-XD """ n) a + fps-const d * (fps-XD " n) (b :: ‘a::comm-ring-1
fps)

by (induct n) simp-all

lemma fps-mult-fps-X-deriv-shift: fps-Xx* fps-deriv a = Abs-fps (An. of-nat nx a$n)
by (simp add: fps-eq-iff)

lemma fps-mult-fps-XD-shift:
(fps-XD "7 k) (a :: 'a::comm-ring-1 fps) = Abs-fps (An. (of-nat n ~ k) x a$n)
by (induct k arbitrary: a) (simp-all add: fps-XD-def fps-eq-iff field-simps del:
One-nat-def)

5.15.3 Rule 3

Rule 3 is trivial and is given by fps_times_def.

5.15.4 Rule 5 — summation and “division” by 1 — X

lemma fps-divide-fps-X-minusi-sum-lemma:
a = ((1:'anring-1 fps) — fps-X) x Abs-fps (An. sum (Ai. a $ ) {0..n})
proof (rule fps-ext)
define f g :: 'a fps
where f = 1 — fps-X
and g = Abs-fps (An. sum (Mi. a $ ©) {0..n})
fix n show a $ n=(f x g) $ n
proof (cases n)
case (Suc m)
hence (f * g) $n=¢g$% Sucm — g% m
using fps-mult-nth[of [ g Suc m]
sum.atLeast-Suc-atMost[of 0 Suc m \i. f
sum.atLeast-Suc-atMost[of 1 Suc m \i. f
by  (simp add: f-def)
with Suc show ?thesis by (simp add: g-def)
qed (simp add: f-def g-def)
qed

xg$
ix g8 (Sucm — 7]

©°hH P
~

lemma fps-divide-fps-X-minus1-sum-ring1:
assumes inverse 1 = (1::'a::{ring-1,inverse})
shows a /((1::'a fps) — fps-X) = Abs-fps (An. sum (Ai. a $ i) {0..n})
proof—
from assms have a /((1::'a fps) — fps-X) = a % Abs-fps (An. 1)
by (simp add: fps-divide-def fps-inverse-def fps-lr-inverse-one-minus-fps-X(2))
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thus ?thesis by (auto intro: fps-ext simp: fps-mult-nth)
qed

lemma fps-divide-fps-X-minus1-sum:
a [((1: a::division-ring fps) — fps-X) = Abs-fps (An. sum (Ai. a $ ) {0..n})
using fps-divide-fps-X-minusl-sum-ringl[of a] by simp

5.15.5 Rule 4 in its more general form

This generalizes Rule 3 for an arbitrary finite product of FPS, also the
relevant instance of powers of a FPS.

definition natpermute n k = {l :: nat list. length | = k A sum-list | = n}

lemma natlist-trivial-1: natpermute n 1 = {[n]}
proof —
have [length xs = 1; n = sum-list zs] = xs = [sum-list zs] for zs
by (cases xs) auto
then show ?thesis
by (auto simp add: natpermute-def)
qged

lemma natlist-trivial-Suc0 [simp: natpermute n (Suc 0) = {[n]}
using natlist-trivial-1 by force

lemma append-natpermute-less-eq:
assumes zs @ ys € natpermute n k
shows sum-list s < n
and sum-list ys < n
proof —
from assms have sum-list (zs Q ys) = n
by (simp add: natpermute-def)
then have sum-list zs + sum-list ys = n
by simp
then show sum-list s < n and sum-list ys < n
by simp-all
qed

lemma natpermute-split:
assumes h < k
shows natpermute n k =
(Um €{0..n}. {l1 @ 12 ]i112. 11 € natpermute m h A 12 € natpermute (n —
m) (k - h)})
(is 2L = ?Ris - = (Um €{0..n}. 2S m))
proof
show ?R C ?L
proof
fix [
assume [: [ € 7R
from [ obtain m zs ys where h: m € {0..n}
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and zs: xs € natpermute m h
and ys: ys € natpermute (n — m) (k — h)
and leq: | = zsQys by blast
from zs have zs”: sum-list s = m
by (simp add: natpermute-def)
from ys have ys”: sum-list ys = n — m
by (simp add: natpermute-def)
show | € ?L using leq xs ys h
using assms by (force simp add: natpermute-def)
qged
show ?L C 2R
proof
fix [
assume [: [ € natpermute n k
let %xs = take h'l
let ?ys = drop hl
let ?m = sum-list ?xs
from [ have Is: sum-list (?zs @ %ys) = n
by (simp add: natpermute-def)
have zs: %zs € natpermute ?m h using [ assms
by (simp add: natpermute-def)
have [-take-drop: sum-list | = sum-list (take h | @ drop hI)
by simp
then have ys: ?ys € natpermute (n — ¢m) (k — h)
using [ assms Is by (auto simp add: natpermute-def simp del: append-take-drop-id)
from Is have m: ?m € {0..n}
by (simp add: I-take-drop del: append-take-drop-id)
have sum-list (take h 1) < sum-list
using [-take-drop ls m by presburger
with xs ys Is | show [ € 7R
by simp (metis append-take-drop-id m)
qed
qed

lemma natpermute-0: natpermute n 0 = (if n = 0 then {[|} else {})
by (auto simp add: natpermute-def)

lemma natpermute-0'[simp|: natpermute 0 k = (if k = 0 then {[]} else {replicate
kO0})
by (auto simp add: set-replicate-conv-if natpermute-def replicate-length-same)

lemma natpermute-finite: finite (natpermute n k)
proof (induct k arbitrary: n)

case (

then show ?case

by (simp add: natpermute-0)

next

case (Suc k)

then show ?case
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using natpermute-split [of k Suc k] finite-UN-I by simp
qed

lemma natpermute-contain-maximal:
{zs € natpermute n (k + 1). n € set zs} = (Ji€{0 .. k}. {(replicate (k + 1) 0)
[i:=n]})

(is A = ?B)
proof
show ?A C ?B
proof
fix zs

assume zs € 74
then have H: zs € natpermute n (k + 1) and n: n € set xs
by blast+
then obtain ¢ where i: ¢ € {0.. k} zsli = n
unfolding in-set-conv-nth by (auto simp add: less-Suc-eg-le natpermute-def)
have egs: ({0..k} — {i}) U {i} = {0..k}
using 7 by auto
have f: finite({0..k} — {i}) finite {i}
by auto
have d: ({0..k} — {i}) n {i} = {}
using ¢ by auto
from H have n = sum (nth zs) {0..k}
by (auto simp add: natpermute-def atLeastLess ThanSuc-atLeastAtMost sum-list-sum-nth)
also have ... = n + sum (nth xzs) ({0..k} — {i})
unfolding sum.union-disjoint| OF f d, unfolded eqs] using i by simp
finally have zzs: V je {0..k} — {i}. zslj = 0
by auto
from H have zsl: length xs = k+1
by (simp add: natpermute-def)
from ¢ have i" i < length (replicate (k+1) 0) i < k+1
unfolding length-replicate by presburger—+
have zs = (replicate (k+1) 0) [i := n]
proof (rule nth-equalityl)
show length xs = length ((replicate (k + 1) 0)[i := n])
by (metis length-list-update length-replicate zsl)
show xs | j = (replicate (k 4+ 1) 0)[¢ :== n] ! j if j < length zs for j
proof (cases j = i)
case True
then show ?thesis
by (metis i'(1) i(2) nth-list-update)
next
case Fulse
with that show ?thesis
by (simp add: zsl zzs del: replicate.simps split: nat.split)
qed
qed
then show zs € ?B using i by blast
qed
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show ?B C 24
proof
fix xs
assume zs € 7B
then obtain ¢ where i: ¢ € {0..k} and zs: xs = (replicate (k + 1) 0) [i:=n]
by auto
have nzs: n € set xs
unfolding zs using set-update-meml i
by (metis Suc-eq-plus1 atLeastOAtMost atMost-iff le-simps(2) length-replicate)
have zsl: length zs = k + 1
by (simp only: xs length-replicate length-list-update)
have sum-list xs = sum (nth xs) {0..<k+1}
unfolding sum-list-sum-nth zsl ..

also have ... = sum (A\j. if j = i then n else 0) {0..< k+1}
by (rule sum.cong) (simp-all add: xzs del: replicate.simps)
also have ... = n using i by simp

finally have zs € natpermute n (k + 1)
using zsl unfolding natpermute-def mem-Collect-eq by blast
then show zs € 74
using nzs by blast
qged
qged

The general form.

lemma fps-prod-nth:
fixes m :: nat
and a :: nat = 'a::comm-ring-1 fps
shows (prod a {0 .. m}) $ n =
sum (Av. prod (A\j. (a j) $ (v!§)) {0..m}) (natpermute n (m+1))
(is 2P m n)
proof (induct m arbitrary: n rule: nat-less-induct)
fix m n assume H: Vm’' < m.Vn. 2P m'n
show ?P m n
proof (cases m)
case (
then show ?thesis
by simp
next
case (Suc k)
then have km: k < m by arith
have u0: {0 .. k} U {m} = {0..m}
using Suc by (simp add: set-eq-iff) presburger
have f0: finite {0 .. k} finite {m} by auto
have d0: {0 .. k} N {m} = {} using Suc by auto
have (prod a {0 .. m}) $ n = (prod a {0 .. k} x am) $ n
unfolding prod.union-disjoint|OF f0 d0, unfolded u0] by simp
also have ... = (3¢ = 0..n. (3 venatpermute i (k + 1).
(li=0.k aj$Sv!j)*xam$ (n— 1))
unfolding fps-mult-nth H|[rule-format, OF km| sum-distrib-right ..
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also have ... = (> i = 0..n.
dwe(ANll. i1 @ [n — i]) ‘ natpermute i (Suc k).
(J[i=0.k aj$v!j)*a(Suck)$v! Suck)
by (intro sum.cong [OF refl sym] sum.reindex-cong) (auto simp: inj-on-def
natpermute-def nth-append Suc)
also have ... = (> ve(Jze{0..n}. {i1 @ [n — 2] |l1. I € natpermute x (Suc

1)
(Tli=0.k aj$Sv!j)*a(Suck)$v! Suck)
by (subst sum.UNION-disjoint) (auto simp add: natpermute-finite setcompr-eg-image)
also have ... = () venatpermute n (m + 1). [[je{0..m}. aj$ v!7)
using natpermute-splitfof m m + 1] by (simp add: Suc)
finally show ?thesis .
qed
qed

The special form for powers.

lemma fps-power-nth-Suc:
fixes m :: nat
and a :: 'a::comm-ring-1 fps
shows (a = Suc m)$n = sum (Av. prod (Nj. a $ (vj)) {0..m}) (natpermute n
(m1))
proof —
have th0: a"Suc m = prod (\i. a) {0..m}
by (simp add: prod-constant)
show ?thesis unfolding th0 fps-prod-nth ..
qed

lemma fps-power-nith:
fixes m :: nat
and a :: ‘a::comm-ring-1 fps
shows (¢ “m)$n =
(if m=0 then 1$n else sum (Av. prod (Aj. a $ (vlj)) {0..m — 1}) (natpermute
n m))
by (cases m) (simp-all add: fps-power-nth-Suc del: power-Suc)

lemmas fps-nth-power-0 = fps-power-zeroth

lemma natpermute-max-card:
assumes n0: n # 0
shows card {zs € natpermute n (k + 1). n € set s} =k + 1
unfolding natpermute-contain-mazximal
proof —
let ?A = Xi. {(replicate (k + 1) 0)[i := n|}
let ?K = {0 ..k}
have fK: finite ?K
by simp
have fAK: Vic?K. finite (A i)
by auto
have d: Vie ?K. Vje ?K. i # j —
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{(replicate (k 4+ 1) 0)[i := n]} N {(replicate (k + 1) 0)[j := n]} = {}
proof clarify
fix ¢ j
assume i: 1 € YK and j: j € YK and 4j: ¢ # j
have Fulse if eq: (replicate (k+1) 0)[i:=n] = (replicate (k+1) 0)[j:= n]
proof —
have (replicate (k+1) 0) [ir==n] ! i =n
using ¢ by (simp del: replicate.simps)
moreover
have (replicate (k+1) 0) [ji==n] ! i =0
using i ij by (simp del: replicate.simps)
ultimately show ?thesis
using eq n0 by (simp del: replicate.simps)
qed
then show {(replicate (k + 1) 0)[i :== n]} N {(replicate (k + 1) 0)[j := n]} =

{}
by auto
qed
from card-UN-disjoint[OF K fAK d|
show card (|Ji€{0..k}. {(replicate (k + 1) 0)[i :=n]}) =k + 1
by simp
qged

lemma fps-power-Suc-nth:
fixes f :: 'a :: comm-ring-1 fps
assumes k: k > 0
shows (f ~Sucm) $ k =
of-nat (Sucm) = (f$ k= (f$0) “m)+
(>- ve{venatpermute k (m+1). k & set v}. [[j=0..m. f$v!j)
proof —
define A B
where A = {venatpermute k (m+1). k € set v}
and B = {venatpermute k (m+1). k ¢ set v}
have [simp]: finite A finite B A N B = {} by (auto simp: A-def B-def natper-
mute-finite)

from natpermute-max-card[of k m| k have card-A: card A = m + 1 by (simp
add: A-def)
{
fix v assume v: v € A
from v have [simp]: length v = Suc m by (simp add: A-def natpermute-def)
from v have 3j. j < mAv!j=k
by (auto simp: set-conv-nth A-def natpermute-def less-Suc-eq-le)
then obtain j where j: j < m v ! j = k by auto

from v have k = sum-list v by (simp add: A-def natpermute-def)

also have ... = (> i=0..m. v ! )

by (simp add: sum-list-sum-nth atLeastLess ThanSuc-atLeastAtMost del: sum.op-ivl-Suc)
also from j have {0..m} = insert j ({0..m}—{j}) by auto
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also from j have (> ic.... v ! i) =k + (O ie{0.m}—{j}. v ! 1)
by (subst sum.insert) simp-all

finally have (> i€{0..m}—{j}. v!4) = 0 by simp

hence zero: v! i = 0 if i € {0..m}—{j} for i using that
by (subst (asm) sum-eq-0-iff) auto

from j have {0..m} = insert j ({0..m} — {j}) by auto
also from j have ([Ji€.... f$ (v! ) =f8 k= (J[ic{0.m} — {j}. f$ (v!

i)
by (subst prod.insert) auto
also have ([[i€{0..m} — {j}. [ $ (v! i) = ([[ie{0..m} — {j}. f $ 0)
by (intro prod.cong) (simp-all add: zero)
also from j have ... = (f $ 0) ~ m by (subst prod-constant) simp-all
finally have ([[j=0..m. f$(v!j)=f3kx(f$0) "~m.
} note A = this

have (f = Suc m) $ k = (3 venatpermute k (m + 1). [[j=0..m. f $ v !}j)
by (rule fps-power-nth-Suc)
also have natpermute k (m+1) = A U B unfolding A-def B-def by blast
also have > ve.... [[i=0..m. f $ (v!j)) =
QCveA I[j=0.m. f$ (v!j)+ Q- veB. [[j=0.m.f$ (v!})))
by (intro sum.union-disjoint) simp-all
also have (> veA. [[j=0..m. f$ (v!])) = of-nat (Sucm) *x (f$ k= (f$0)
~m)
by (simp add: A card-A)
finally show ?thesis by (simp add: B-def)
qged

lemma fps-power-Suc-eqD:
fixes f g :: 'a :: {idom,semiring-char-0} fps
assumes [ " Sucm =g Sucmf$0=9g8$0f$0#0
shows f=yg
proof (rule fps-ext)
fix k :: nat
show f$ k=9 %k
proof (induction k rule: less-induct)
case (less k)
show ?case
proof (cases k = 0)

case Fulse
let ?h = Af. Qv | v € natpermute k (m + 1) ANk ¢ setv. [[j=0..m. f$
01 )

from Fualse fps-power-Suc-nthlof k f m] fps-power-Suc-nth[of k g m]
have f $ k * (of-nat (Sucm) = (f$ 0) “m) + ?h f =
g $ k= (of-nat (Suc m) = (f $ 0) "~ m) + ?h g using assms
by (simp add: mult-ac del: power-Suc of-nat-Suc)
also have v ! i < k if v € {venatpermute k (m+1). k ¢ set v} i < m for v i
using that elem-le-sum-list[of i v] unfolding natpermute-def
by (auto simp: set-conv-nth dest!: spec|of - i])
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hence ?h f = %h g
by (intro sum.cong refl prod.cong less lessl) (simp add: natpermute-def)
finally have f $ k * (of-nat (Suc m) * (f $ 0) “m) = g $ k x (of-nat (Suc
m) x (f $ 0) ~m)
by simp
with assms show f $ k=g $ &
by (subst (asm) mult-right-cancel) (auto simp del: of-nat-Suc)
qed (simp-all add: assms)
qed
qed

lemma fps-power-Suc-eqD”:
fixes f g :: 'a :: {idom,semiring-char-0} fps
assumes [~ Sucm = g ~ Suc m f $ subdegree f = g $ subdegree g
shows f=g
proof (cases f = 0)
case Fulse
have Suc m * subdegree f = subdegree (f ~ Suc m)
by (rule subdegree-power [symmetric))
also have f = Suc m = g ~ Suc m by fact
also have subdegree ... = Suc m * subdegree g by (rule subdegree-power)
finally have [simp]: subdegree f = subdegree ¢
by (subst (asm) Suc-mult-cancell)
have fps-shift (subdegree f) f * fps-X ~ subdegree f = f
by (rule subdegree-decompose [symmetric])
also have ... ~ Suc m = g ~ Suc m by fact
also have g = fps-shift (subdegree g) g * fps-X ~ subdegree g
by (rule subdegree-decompose)
also have subdegree f = subdegree g by fact
finally have fps-shift (subdegree g) f ~ Suc m = fps-shift (subdegree g) g ~ Suc
m
by (simp add: algebra-simps power-mult-distrib del: power-Suc)
hence fps-shift (subdegree g) f = fps-shift (subdegree g) g
by (rule fps-power-Suc-eqD) (insert assms False, auto)
with subdegree-decompose|of f] subdegree-decompose[of g] show ?thesis by simp
qed (insert assms, simp-all)

lemma fps-power-eqD":
fixes f g :: 'a :: {idom,semiring-char-0} fps
assumes f “m =g ~m [ $ subdegree f = g $ subdegree g m > 0
shows f=yg
using fps-power-Suc-eqD’[of f m—1 g] assms by simp

lemma fps-power-eqD:
fixes f g :: 'a :: {idom,semiring-char-0} fps
assumes f " m=¢9g mf$0=9g8$0f$0#£0m>0
shows f=g
by (rule fps-power-eqD'[of f m g]) (insert assms, simp-all)
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lemma fps-compose-inj-right:
assumes a0: a$0 = (0::'a::idom)
and al: a$1 # 0
shows (b ooa=cooa)+— b=c
(is ?lhs «— ?rhs)
proof
show ?lhs if ?rhs using that by simp
show ?rhs if ?lhs
proof —
have b$n = c$n for n
proof (induct n rule: nat-less-induct)
fix n
assume H: Vm<n. b$m = c$m
show 08n = c$n
proof (cases n)
case (
from «?lhsy have (b 0o a)$n = (c 0o a)$n
by simp
then show ?thesis
using 0 by (simp add: fps-compose-nth)
next
case (Suc nl)
have f: finite {0 .. n1} finite {n} by simp-all
have eq: {0 .. n1} U {n} = {0 .. n} using Suc by auto
have d: {0 .. n1} N {n} = {} using Suc by auto
have seq: (3 i=0.n1. b8 ixa " i$n)=0Oi=0.nl.c$ixa " i$

n)
using H Suc by auto
have th0: (booa)$n= (> i=0.nl.c$i*xa " i$n)+ b¥n=* (a$1)™n
unfolding fps-compose-nth sum.union-disjoint[OF f d, unfolded eq] seq
using startsby-zero-power-nth-same[ OF a0)]
by simp
have thi: (cooa) $n=(>i=0.nl.c$i*xa " i$n)+ cbn=* (a$1)™n
unfolding fps-compose-nth sum.union-disjoint|OF f d, unfolded eq]
using startsby-zero-power-nth-same[ OF a0)]
by simp
from <« ?lhsy[unfolded fps-eq-iff, rule-format, of n] th0 thi al
show ?thesis by auto
qed
qed
then show ?rhs by (simp add: fps-eq-iff)
qed
qed

5.16 Radicals
declare prod.cong [fundef-cong]

function radical :: (nat = 'a = ’a) = nat = 'a::field fps = nat = 'a
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where
radical v 0 a 0 = 1
| radical r 0 a (Suc n) = 0
| radical v (Suc k) a 0 = r (Suc k) (a$0)
| radical r (Suc k) a (Suc n) =
(a$ Suc n — sum (Azs. prod (Aj. radical v (Suc k) a (zs ! 7)) {0..k})
{zs. xs € natpermute (Suc n) (Suc k) A Suc n & set zs}) /
(of-nat (Suc k) * (radical r (Suc k) a 0)7k)
by pat-completeness auto

termination radical
proof
let ?R = measure (A(r, k, a, n). n)

{

show wf ?R by auto

next
fix r::nat = 'a="a
and a :: 'a fps

and kn xs ¢
assume zs: xs € {zs € natpermute (Suc n) (Suc k). Suc n ¢ set xs} and i: i
€ {0..k}
have Fualse if ¢: Sucn < zs! 3
proof —
from zs i have xs i # Suc n
by (simp add: in-set-conv-nth natpermute-def)
with ¢ have ¢’ Suc n < zsli by arith
have fths: finite {0 ..< i} finite {i} finite {i+1..<Suc k}
by simp-all
have d: {0 .< i} N ({i} U {i+1 ..< Suc k}) = {} {i} N {i+1..< Suc k} =
{}
by auto
have egs: {0..<Suc k} = {0 ..< i} U ({5} U {i+1 ..< Suc k})
using i by auto
from zs have Suc n = sum-list xs
by (simp add: natpermute-def)

also have ... = sum (nth zs) {0..<Suc k} using xs
by (simp add: natpermute-def sum-list-sum-nth)
also have ... = zsli + sum (nth zs) {0..<i} + sum (nth zs) {i+1..<Suc k}

unfolding egs sum.union-disjoint] OF fths(1) finite-UnI[OF fths(2,3)] d(1)]
unfolding sum.union-disjoint[OF fths(2) fths(3) d(2)]
by simp

finally show ?thesis using ¢’ by simp

qed
then show ((r, Suc k, a, zs'i), r, Suc k, a, Suc n) € ?R
using not-less by auto
next
fix r s nat = ‘a = 'a
and a :: 'a fps
and kn
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show ((r, Suc k, a, 0), r, Suc k, a, Suc n) € R by simp

}
qed

definition fps-radical r n a = Abs-fps (radical r n a)

lemma radical-0 [simp]: An. 0 < n = radical r 0 a n = 0
using radical.elims by blast

lemma fps-radical0[simp]: fps-radical r 0 a = 1
by (auto simp add: fps-eq-iff fps-radical-def)

lemma fps-radical-nth-0[simp): fps-radical T n a $ 0 = (if n = 0 then 1 else r n
(a$0))
by (cases n) (simp-all add: fps-radical-def)

lemma fps-radical-power-nth|simp]:
assumes 7: (7 k (a$0)) "k = a$0
shows fps-radical Tk a "k $ 0 = (if k = 0 then 1 else a$0)
proof (cases k)
case (
then show ?thesis by simp
next
case (Suc h)
have eql: fps-radical r k a k' $ 0 = ([[j€{0..h}. fps-radical v k a $ (replicate

k0)!7)
unfolding fps-power-nth Suc by simp
also have ... = ([[j€{0..h}. 7 k (a$0))

proof (rule prod.cong [OF refl])
show fps-radical v k a $ replicate k 0! j=rk (a $ 0) if j € {0..h} for j
proof —
have j < Suc h
using that by presburger
then show ?thesis
by (metis Suc fps-radical-nth-0 nth-replicate old.nat.distinct(2))
qed
qged
also have ... = a$0
using r Suc by simp
finally show ?thesis
using Suc by simp
qged

lemma power-radical:
fixes a:: 'a:field-char-0 fps
assumes a0: a$0 # 0
shows (r (Suc k) (a$0)) ~ Suc k = a$0 «— (fps-radical v (Suc k) a) ~ (Suc k)
=a
(is ?lhs <— ?2rhs)
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proof
let ?r = fps-radical v (Suc k) a
show ?rhs if r0: ?lhs
proof —
from a0 r0 have r00: r (Suc k) (a$30) # 0 by auto
have ?r " Suc k $ z = a$z for 2
proof (induct z rule: nat-less-induct)
fix n
assume H: Vm<n. 2r = Suc k $ m = a$m
show 21 ~Suck $n=a $n
proof (cases n)
case ()
then show ?thesis
using fps-radical-power-nth[of r Suc k a, OF r0] by simp
next
case (Suc nl)
then have n # 0 by simp
let ?Pnk = natpermute n (k + 1)
let ?Pnkn = {xs € ?Pnk. n € set xs}
let ?Pnknn = {zs € ?Pnk. n ¢ set xs}
have eq: ?Pnkn U ?Pnknn = ?Pnk by blast
have d: ?Pnkn N ?Pnknn = {} by blast
have f: finite ?Pnkn finite ?Pnknn
using finite-Un[of ?Pnkn ?Pnknn, unfolded eq|
by (metis natpermute-finite)+
let 2f = Av. [[je{0..k}. 2r$ vl
have sum ?f ?Pnkn = sum (Av. 2r $ n x r (Suc k) (a $ 0) " k) ?Pnkn
proof (rule sum.cong)
fix v assume v: v € {zs € natpermute n (k + 1). n € set zs}
let ?ths = ([[j€{0..k}. fps-radical v (Suc k) a $ v ! j) =
fps-radical v (Suc k) a $ nx 1 (Suck) (a$0) "k
from v obtain ¢ where i: i € {0..k} v = (replicate (k+1) 0) [i:= n]
unfolding natpermute-contain-mazrimal by auto
have ([[j€{0..k}. fps-radical v (Suc k) a $ v! j) =
(I17€{0..k}. if j = i then fps-radical v (Suc k) a $ n else r (Suc k)
(a$0))
using i 70 by (auto simp del: replicate.simps intro: prod.cong)
also have ... = (fps-radical r (Suc k) a $ n) * r (Suc k) (a$0) "k
using i 70 by (simp add: prod-gen-delta)
finally show ?ths .
qed rule
then have sum ?f ?Pnkn = of-nat (k+1) % 2r $nx r (Suck) (a $ 0) "k
by (simp add: natpermute-maz-card[OF «n # 05, simplified])
also have ... = a$n — sum ?f ?Pnknn
unfolding Suc using r00 a0 by (simp add: field-simps fps-radical-def del:
of-nat-Suc)
finally have fn: sum ?f ?Pnkn = a$n — sum ?f ?Pnknn .
have (?r = Suc k)$n = sum ?f ?Pnkn + sum ?f ?Pnknn
unfolding fps-power-nth-Suc sum.union-disjoint[OF f d, unfolded eq] ..
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also have ... = a$n unfolding fn by simp
finally show ?thesis .
qed
qed
then show ?thesis using r0 by (simp add: fps-eq-iff)
qed
show ?lhs if ?rhs
proof —
from that have ((fps-radical v (Suc k) a) ~ (Suc k))$0 = a$0
by simp
then show ?thesis
unfolding fps-power-nth-Suc
by (simp add: prod-constant del: replicate.simps)
qed
qed

lemma radical-unique:
assumes r0: (r (Suc k) (b$0)) ~ Suc k = b$0
and a0: r (Suc k) (080 :'a::field-char-0) = a$0
and b0: b0 # 0
shows a (Suc k) = b +— a = fps-radical v (Suc k) b
(is ?lhs <— ?rhsis - «— a = ?r)
proof
show ?lhs if ?rhs
using that using power-radical|OF b0, of r k, unfolded r0] by simp
show ?rhs if ?lhs
proof —
have r00: r (Suc k) (b$0) # 0 using b0 r0 by auto
have ceq: card {0..k} = Suc k by simp
from a0 have a0r0: a$0 = ?r$0 by simp
have a $ n= 2r $ n for n
proof (induct n rule: nat-less-induct)
fix n
assume h: Vm<n. a¥m = ?r §m
show a$n = ?r $ n
proof (cases n)
case 0
then show ?thesis using a0 by simp
next
case (Suc nl)
have fK: finite {0..k} by simp
have nz: n # 0 using Suc by simp
let ?Pnk = natpermute n (Suc k)
let ?Pnkn = {xs € ?Pnk. n € set zs}
let ?Pnknn = {xs € ¢Pnk. n ¢ set zs}
have eq: ?Pnkn U ?Pnknn = ?Pnk by blast
have d: ?Pnkn N ?Pnknn = {} by blast
have f: finite ?Pnkn finite ?Pnknn
using finite-Unlof ?Pnkn ?Pnknn, unfolded eq]
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by (metis natpermute-finite)+
let 2f = Av. []je{0..k}. 2r$ vl
let 29 = \v. [[je{0..k}. aSv!j
have sum ?g ?Pnkn = sum (Av. a $ n = (2r$0)7k) ?Pnkn
proof (rule sum.cong)
fix v
assume v: v € {zs € natpermute n (Suc k). n € set zs}
let ?ths = (J[je{0..k}. a3 v!j) =a$ n=(2r80)7k
from v obtain ¢ where i: ¢ € {0..k} v = (replicate (k+1) 0) [i:= n]
unfolding Suc-eq-plusl natpermute-contain-mazximal
by (auto simp del: replicate.simps)
have ([[je{0..k}. a $ v!j) = ([[7€{0..k}. if j = i then a $ n else r (Suc

k) (b$0))

k) =

using 7 a0 by (auto simp del: replicate.simps intro: prod.cong)
alsohave ... = a$n = (2r$ 0)7k
using i by (simp add: prod-gen-delta)
finally show ?ths .
qed rule
then have th0: sum ?g ?Pnkn = of-nat (k+1) «x a $n* (2r$ 0)7k
by (simp add: natpermute-maz-card|OF nz, simplified])
have th1: sum ?g ?Pnknn = sum ?f ?Pnknn
proof (rule sum.cong, rule refl, rule prod.cong, simp)
fix zs i
assume zs: s € ?Pnknn and i: ¢ € {0..k}
have False if c: n < zs ! 4
proof —
from zs i have zs ! i # n
by (simp add: in-set-conv-nth natpermute-def)
with ¢ have ¢”: n < xs!i by arith
have fths: finite {0 ..< i} finite {i} finite {i+1..<Suc k}
by simp-all
have d: {0 ..< i} N ({i} U {i+1 ..< Suc k}) = {} {i} N {i+1..< Suc

{

by auto

have egs: {0..<Suc k} = {0 .< i} U ({7} U {i+1 ..< Suc k})
using ¢ by auto

from zs have n = sum-list s
by (simp add: natpermute-def)

also have ... = sum (nth zs) {0..<Suc k}
using zs by (simp add: natpermute-def sum-list-sum-nith)
also have ... = zsli + sum (nth zs) {0..<i} + sum (nth xs) {i+1..<Suc

unfolding egqs sum.union-disjoint|OF fths(1) finite-UnI[OF fths(2,3)]

unfolding sum.union-disjoint| OF fths(2) fths(3) d(2)]
by simp
finally show ?thesis using ¢’ by simp
qed
then have thn: xzs!i < n by presburger
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from h[rule-format, OF thn] show a$(zs i) = 7r$(zsli) .

qged

have th00: Nz::'a. of-nat (Suc k) * (x * inverse (of-nat (Suc k))) = =
by (simp add: field-simps del: of-nat-Suc)

from «?lhsy have b$n = a " Suc k $ n
by (simp add: fps-eq-iff)

also have a ~ Suc k$n = sum ?g ?Pnkn + sum ?g ?Pnknn
unfolding fps-power-nth-Suc
using sum.union-disjoint[OF f d, unfolded Suc-eg-plusl|[symmetric],

unfolded eq, of ?g] by simp

also have ... = of-nat (k+1) x a $n* (?r$ 0)"k + sum ?f ?Pnknn
unfolding th0 thi ..

finally have §: of-nat (k+1) x a$n* (2r$ 0) "k = b$n — sum ?f ?Pnknn
by simp

have a$n = (b8$n — sum 2f ?Pnknn) / (of-nat (k+1) * (?r $ 0)7k)
apply (rule eq-divide-imp)
using 700 § by (simp-all add: ac-simps del: of-nat-Suc)

then show ?thesis
unfolding fps-radical-def Suc
by (simp del: of-nat-Suc)

qed
qed
then show ?rhs by (simp add: fps-eg-iff)
qed
qed

lemma radical-power:
assumes 7r0: r (Suc k) ((a$0) ~ Suc k) = a$0
and a0: (a$0 :: 'a::field-char-0) # 0
shows (fps-radical v (Suc k) (a ~ Suc k)) = a
proof —
let %ak = a~ Suc k
have ak0: %ak $ 0 = (a$0) ~ Suc k
by (simp add: fps-nth-power-0 del: power-Suc)
from 70 have th0: r (Suc k) (a ~Suck $ 0) ~Suck =a " Suck $ 0
using ak0 by auto
from r0 ak0 have thl: r (Suck) (a " Suck$0)=a$ 0
by auto
from ak0 a0 have ak00: ?ak $ 0 #0
by auto
from radical-uniquelof r k ?ak a, OF th0 th1 ak00] show ?Zthesis
by metis
qed

lemma fps-deriv-radical”:
fixes a :: ‘a::field-char-0 fps
assumes r0: (r (Suc k) (a$0)) ~ Suc k = a$0
and a0: a$0 # 0
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shows fps-deriv (fps-radical v (Suc k) a) =
fos-deriv a / ((of-nat (Suc k)) * (fps-radical r (Suc k) a) ~ k)
proof —
let ?r = fps-radical v (Suc k) a
let w = (of-nat (Suc k)) x ?r "k
from a0 r0 have r0" r (Suc k) (a$0) # 0
by auto
from 70’ have w0: 2w $ 0 # 0
by (simp del: of-nat-Suc)
note th0 = inverse-mult-eq-1[OF w0]
let %iw = inverse 2w
from iffD1[OF power-radical[of a r], OF a0 r0)
have fps-deriv (?r = Suc k) = fps-deriv a
by simp
then have fps-deriv ?r x 2w = fps-deriv a
by (simp add: fps-deriv-power’ ac-simps del: power-Suc)
then have %iw x fps-deriv ?r x 2w = Ziw * fps-deriv a
by simp
with a0 r0 have fps-deriv ?r x (%iw x ?w) = fps-deriv a | ?w
by (subst fps-divide-unit) (auto simp del: of-nat-Suc)
then show ?thesis unfolding th0 by simp
qged

lemma fps-deriv-radical:
fixes a :: ’a::field-char-0 fps
assumes r0: (r (Suc k) (a$0)) ~ Suc k = a$0
and a0: a$0 # 0
shows fps-deriv (fps-radical v (Suc k) a) =
fos-deriv a | (fps-const (of-nat (Suc k)) * (fps-radical v (Suc k) a) ~ k)
using fps-deriv-radical’[of v k a, OF r0 a0)
by (simp add: fps-of-nat[symmetric])

lemma radical-mult-distrib:
fixes a :: ‘a:field-char-0 fps
assumes k: k > 0

and ra0: rk (a$0) "k=a$0
and 700: rk (b$0) "k=08%0
and a0: a $ 0 # 0
and b0: b$ 0 #£ 0

shows 7k ((ax0)$30)=rk(a$30)xrk(b$0)+—
fps-radical r k (a x b) = fps-radical r k a * fps-radical v k b
(is 2lhs <— ?rhs)

proof
show ?rhs if r0’": ?lhs
proof —

from 70’ have r0: (rk ((a x b) $0)) "k=(a*xb)$0
by (simp add: fps-mult-nth ra0 rb0 power-mult-distrid)

show ?thesis

proof (cases k)
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case (
then show ?thesis using 70’ by simp
next
case (Suc h)
let ?ra = fps-radical v (Suc h) a
let 2rb = fps-radical v (Suc h) b
have th0: r (Suc h) ((a *x b) $ 0) = (fps-radical r (Suc h) a * fps-radical r
(Suc h) b) $ 0
using 70’ Suc by (simp add: fps-mult-nth)
have ab0: (axb) $ 0 # 0
using a0 b0 by (simp add: fps-mult-nth)
from radical-unique[of r h axb fps-radical v (Suc h) a * fps-radical v (Suc h)
b, OF r0[unfolded Suc] th0 ab0, symmetric]
iff D1[OF power-radical[of - r], OF a0 ra0[unfolded Suc]] iffD1[OF power-radical[of
- r], OF b0 rb0[unfolded Suc]] Suc r0’
show ?thesis
by (auto simp add: power-mult-distrib simp del: power-Suc)
qed
qed
show ?lhs if ?rhs
proof —
from that have (fps-radical v k (a x b)) $ 0 = (fps-radical v k a * fps-radical r
kb)$ 0
by simp
then show ?thesis
using k by (simp add: fps-mult-nth)
qed
qed

lemma radical-divide:
fixes a :: ‘a:field-char-0 fps
assumes kp: k > 0
and ra0: (rk (a $0)) "k
and 700: (rk (b $ 0)) "k
and a0: a$0 # 0
and b0: b$0 # 0
shows 7k ((a $ 0) / (b80)) =1k (a$0) / 7k (b $ 0) +—
fps-radical r k (a/b) = fps-radical 7 k a / fps-radical v k b
(is ?lhs = ?rhs)
proof
let 9r = fps-radical v k
from kp obtain h where k: k = Suc h
by (cases k) auto
have ra0" r k (a$0) # 0 using a0 ra0 k by auto
have 00" r k (b$0) # 0 using b0 rb0 k by auto

a$0
b$ 0

show ?lhs if 2rhs
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proof —
from that have ?r (a/b) $ 0 = (?ra / ?r b)$0
by simp
then show ?thesis
using k a0 b0 rb0' by (simp add: fps-divide-unit fps-mult-nth fps-inverse-def
divide-inverse)
qed
show ?rhs if ?lhs
proof —
from a0 b0 have ab0[simpl: (a/b)$0 = a$0 / b$0
by (simp add: fps-divide-def fps-mult-nth divide-inverse fps-inverse-def)
have th0: vk ((a/b)$0) "k = (a/b)$0
by (simp add: «?lhs) power-divide a0 rb0)
from a0 b0 a0’ b0’ kp «?lhs»
have thi: rk ((a / b) $ 0) = (fps-radical v k a / fps-radical 7k b) $ 0
by (simp add: fps-divide-unit fps-mult-nth fps-inverse-def divide-inverse)
from a0 b0 ra0’ b0’ kp have ab0": (a / b) $ 0 # 0
by (simp add: fps-divide-unit fps-mult-nth fps-inverse-def nonzero-imp-inverse-nonzero)
note tha[simp| = iff D1[OF power-radicall[where r=r and k=h], OF a0 ra0[unfolded
k], unfolded k[symmetric]]
note thb[simp] = iffD1[OF power-radical[where r=r and k=h], OF b0 rb0[unfolded
k], unfolded k[symmetric]]
from b0 b0’ have th2: (?ra / ?rb) "k = a/b
by (simp add: fps-divide-unit power-mult-distrib fps-inverse-power|[symmetric])

from iffD1[OF radical-unique[where r=r and a=%r a / ?r b and b=a/b and
k=h], symmetric, unfolded k[symmetric|, OF th0 th1 ab0’ th2]
show ?thesis .
qed
qed

lemma radical-inverse:
fixes a :: ‘a:field-char-0 fps
assumes k: k > 0
and ra0: rk (¢ $0) "k=a$0
and r1: (rk 1)k =1
and a0: a$0 # 0
shows r k (inverse (a $ 0))=rk1 / (rk(a$ 0)) +—
fps-radical r k (inverse a) = fps-radical v k 1 / fps-radical v k a
using radical-divide[where k=Fk and r=r and a=1 and b=a, OF k| ra0 71 a0
by (simp add: divide-inverse fps-divide-def)

5.17 Chain rule

lemma fps-compose-deriv:

fixes a :: ‘a::idom fps

assumes b0: b$0 = 0

shows fps-deriv (a oo b) = ((fps-deriv a) oo b) x fps-deriv b
proof —
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have (fps-deriv (a 0o b))$n = (((fps-deriv a) oo b) x (fps-deriv b)) $n for n
proof —
have (fps-deriv (a 0o b))$n = sum (Xi. a $ ¢ * (fps-deriv (b7%))$n) {0.. Suc n}
by (simp add: fps-compose-def field-simps sum-distrib-left del: of-nat-Suc)
also have ... = sum (Ai. a$i * ((fps-const (of-nat 7)) * (fps-deriv b x (b7(i —
1))))$n) {0.. Suc n}
by (simp add: field-simps fps-deriv-power del: fps-mult-left-const-nth of-nat-Suc)

also have ... = sum (\i. of-nat i * a$i * (((b7(¢ — 1)) * fps-deriv b))$n) {0..
Suc n}
unfolding fps-mult-left-const-nth by (simp add: field-simps)
also have ... = sum (Ai. of-nat i * a$i x (sum (A\j. (b~ (¢ — 1))$j * (fps-deriv

b)$(n — j)) {0..n})) {0.. Suc n}
unfolding fps-mult-nth ..

also have ... = sum (\i. of-nat i * a$i * (sum (Nj. (b (i — 1))$j * (fps-deriv
b)$(n — 5)) {0..n})) {1.. Suc n}
by (intro sum.mono-neutral-right) (auto simp add: mult-delta-left not-le)
also have ... = sum (Ai. of-nat (i + 1) * a$(i+1) * (sum (Aj. (b~ 0)$j *
of-nat (n —j + 1) x b$(n — j + 1)) {0..n})) {0.. n}
unfolding fps-deriv-nth
by (rule sum.reindex-cong [of Suc]) (simp-all add: mult.assoc)
finally have th0: (fps-deriv (a oo b))$n =
sum (Ai. of-nat (i + 1) x a$(i+1) * (sum (Aj. (b7 ©)$j * of-nat (n — j + 1)
* b8(n —j+ 1)) {0..n})) {0.. n} .

have (((fps-deriv a) oo b) * (fps-deriv b))$n = sum (Ai. (fps-deriv b)$ (n — 1)
* ((fps-deriv a) oo b)$i) {0..n}
unfolding fps-mult-nth by (simp add: ac-simps)
also have ... = sum (Ai. sum (Aj. of-nat (n — ¢ +1) *x b$(n — ¢ + 1) * of-nat
(G + 1) * a$(j+1) * (b75)$i) {0..n}) {0..n}
unfolding fps-deriv-nth fps-compose-nth sum-distrib-left mult.assoc
by (auto simp: subset-eq b0 startsby-zero-power-prefix sum.mono-neutral-left
intro: sum.cong)
also have ... = sum (Ai. of-nat (i + 1) * a$(i+1) * (sum (Aj. (b~ 0)$j *
of-nat (n —j + 1) x b$(n — j + 1)) {0..n})) {0.. n}
unfolding sum-distrib-left
by (subst sum.swap) (force intro: sum.cong)
finally show ?thesis
unfolding th0 by simp
qed
then show %thesis by (simp add: fps-eq-iff)
qed

lemma fps-poly-sum-fps-X:
assumes Vi > n. a$i = 0
shows a = sum (\i. fps-const (a$i) * fps-X7%0) {0..n} (is a = ?r)
proof —
have a$i = ?r$i for i
unfolding fps-sum-nth fps-mult-left-const-nth fps-X-power-nth
by (simp add: mult-delta-right assms)
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then show ?thesis
unfolding fps-eq-iff by blast
qed

5.18 Compositional inverses

fun compinv :: 'a fps = nat = 'a::field
where
compinv a 0 = fps-X$0
| compinv a (Suc n) =
(fps-X$ Suc n — sum (Ai. (compinv a i) x (a7%)$Suc n) {0 .. n}) / (a$1) ~
Suc n

definition fps-inv a = Abs-fps (compinv a)

lemma fps-inv:
assumes a0: a$0 = 0
and al: a$1 # 0
shows fps-inv a 00 a = fps-X
proof —
let ?i = fps-inv a 00 a
have ?i $n = fps-X$n for n
proof (induct n rule: nat-less-induct)
fix n
assume h: Vm<n. ?i$m = fps-X$m
show % $ n = fps-X$n
proof (cases n)
case (
then show ?thesis using a0
by (simp add: fps-compose-nth fps-inv-def)
next
case (Suc nl)
have % $ n = sum (Ai. (fps-inv a $ @) * (a7%)$n) {0 .. n1} + fps-inv a $
Sucnl * (a$ 1)” Suc ni
by (simp only: fps-compose-nth) (simp add: Suc startsby-zero-power-nth-same
[OF a0] del: power-Suc)
also have ... = sum (A\i. (fps-inv a $ ©) * (a79)$n) {0 .. n1} +
(fps-X$ Suc n1 — sum (Ni. (fps-inv a $ i) * (a7%)$n) {0 .. n1})
using a0 al Suc by (simp add: fps-inv-def)

also have ... = fps-X$n using Suc by simp
finally show ?thesis .
qed
qed

then show ?Zthesis

by (simp add: fps-eq-iff)
qed

fun gcompinv :: 'a fps = 'a fps = nat = 'a::field

339



where
gcompinv b a 0 = b$0
| gcompinv b a (Suc n) =
(b$ Suc n — sum (Ni. (gcompinv b a i) * (a7)$Suc n) {0 .. n}) / (a$1) ~ Suc
n

definition fps-ginv b a = Abs-fps (gcompinv b a)

lemma fps-ginv:
assumes a0: a$0 = 0
and al: a$1 # 0
shows fps-ginv b a 00 a = b
proof —
let 2 = fps-ginv b a 00 a
have 7 $n = b$n for n
proof (induct n rule: nat-less-induct)
fix n
assume h: Vm<n. %i$m = b$m
show % § n = b¥n
proof (cases n)
case (
then show ?thesis using a0
by (simp add: fps-compose-nth fps-ginv-def)
next
case (Suc nl)
have 7 § n = sum (A\i. (fps-ginv b a $ ) * (a™9)$n) {0 .. n1} + fps-ginv b
a$ Sucnl x(a$ 1) Sucnt
by (simp only: fps-compose-nth) (simp add: Suc startsby-zero-power-nth-same
[OF a0] del: power-Suc)
also have ... = sum (\i. (fps-ginv b a $ i) * (a7%)$n
(b$ Suc n1 — sum (Mi. (fps-ginv b a $ i) * (a7%)$n)
using a0 al Suc by (simp add: fps-ginv-def)

{0 ..n1} +
0

)
{0 .. n1})

also have ... = b$n using Suc by simp
finally show ?thesis .
qed
qed

then show ?thesis

by (simp add: fps-eq-iff)
qed

lemma fps-inv-ginv: fps-inv = fps-ginv fps-X
proof —
have compinv z n = gcompinv fps-X z n for n and = :: ’a fps
proof (induction n rule: nat-less-induct)
case (1 n)
then show ?case
by (cases n) auto
qged
then show ?thesis
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by (auto simp add: fun-eq-iff fps-eq-iff fps-inv-def fps-ginv-def)
qed

lemma fps-compose-1[simp]: 1 oo a = 1
by (simp add: fps-eq-iff fps-compose-nth mult-delta-left)

lemma fps-compose-0[simp]: 0 oo a = 0
by (simp add: fps-eq-iff fps-compose-nth)

lemma fps-compose-0-right[simp]: a oo 0 = fps-const (a $ 0)
by (simp add: fps-eq-iff fps-compose-nth power-0-left sum.neutral)

lemma fps-compose-add-distrib: (a + b) oo ¢ = (a 0o ¢) + (b oo c)
by (simp add: fps-eq-iff fps-compose-nth field-simps sum.distrib)

lemma fps-compose-sum-distrib: (sum fS) oo a = sum (Xi. fi o0 a) S
proof (cases finite S)
case True
show ?thesis
proof (rule finite-induct[OF True])
show sum f {} oo a = (3 i€{}. fi 00 a)
by simp
next
fix 2 F
assume fF: finite F
and zF: ¢ ¢ F
and h: sum f F oo a = sum (\i. fi o0 a) F
show sum f (insert x F') oo a = sum (Ai. fi oo a) (insert z F)
using fF zF h by (simp add: fps-compose-add-distrib)
qed
next
case Fulse
then show ?thesis by simp
qed

lemma convolution-eq:
sum (M. a (i nat) x b (n — 1)) {0 .. n} =
sum (A(i,j)- aixbj) {(ij)- i<nAj<nAi+j=n}
by (rule sum.reindex-bij-witnessjwhere i=fst and j=M\i. (i, n — 7)]) auto

lemma product-composition-lemma:
assumes c0: ¢$0 = (0::'a::idom)
and d0: d$0 = 0
shows ((a 00 ¢) * (b oo d))$n =
sum (A(k,m). a8k * bSm * (¢ k * d"m) $ n) {(k;m). k + m < n} (is 2l = 7r)
proof —
let 25 = {(k:nat, m:nat). kK + m < n}
have s: 25 C {0..n} x {0..n} by (simp add: subset-eq)
have f: finite {(k::nat, m::nat). kK + m < n}
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by (auto intro: finite-subset[OF s])
have ?r = > (k,m) e {(k,m). k+m<n}. > j=0na$kxbSmx(c”
kESjxd " m$ (n—j))
by (simp add: fps-mult-nth sum-distrib-left)
also have ... = (3> i = 0..n. Y (kkm)e{(k;m). k+m <n}. a$ kxc "k $ ix
bSm=*d " m$ (n—1))
unfolding sum.swap [where A = {0..n}] by (auto simp add: field-simps intro:
sum.cong)
also have ... = (3} i = 0..n.

>g=0.40.>j=0n—4ia%qgxc qgSix(bSjxd " j$(n
— 1))

apply (rule sum.cong [OF refi])
apply (simp add: sum.cartesian-product mult.assoc)
apply (rule sum.mono-neutral-right| OF f], force)
by clarsimp (meson c0 d0 lel startsby-zero-power-prefix)
also have ... = 7]
by (simp add: fps-mult-nth fps-compose-nth sum-product)
finally show ?thesis by simp
qed

lemma sum-pair-less-iff:
sum (A((k:nat);m). a k « bmx c (k+ m)) {(ksm). k + m < n} =
sum (As. sum (M. aixb (s — i) xcs){0.s}) {0.n}
(is 2l = ?r)
proof —
have th0: {(k, m). k + m < n} = (Jse{0..n}. Uie{0..s}. {(7, s — 9)})
by auto
show 2] = 2r
unfolding th0
by (simp add: sum.UNION-disjoint eq-diff-iff disjoint-iff)
qed

lemma fps-compose-mult-distrib-lemma:

assumes c0: ¢80 = (0::'a::idom)

shows ((a 00 ¢) * (b oo ¢))$n = sum (As. sum (Ai. a$i = b$(s — ©) * (¢7s) $ n)
{0..s}) {0..n}

unfolding product-composition-lemma|OF c0 c¢0] power-add[symmetric]

unfolding sum-pair-less-iff[where a = Ak. a$k and b=Am. b$m and c=As. (¢
“s)$n and n = n] ..

lemma fps-compose-mult-distrib:
assumes c0: ¢ $ 0 = (0::'a::idom)
shows (a * b) 00 ¢ = (a 0o ¢) * (b 00 ¢)
proof (clarsimp simp add: fps-eq-iff fps-compose-mult-distrib-lemma [OF c0])
show (axbooc)$§n=0>s=0n>i=0.5.a3ixb$(s—4)*xc " s$
n) for n
by (simp add: fps-compose-nth fps-mult-nth sum-distrib-right)
qed
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lemma fps-compose-prod-distrib:

assumes c0: ¢80 = (0::'a::idom)

shows prod a S 0o ¢ = prod (M\k. a k oo ¢) S
proof (induct S rule: infinite-finite-induct)
next

case (insert)

then show ?case

by (simp add: fps-compose-mult-distrib| OF c0])

qed auto

lemma fps-compose-divide:

assumes [simp]: g dvd fh $ 0 = 0

shows  fps-compose f h = fps-compose (f | g = 'a :: field fps) h x fps-compose
gh
proof —

have f = (f / g) * g by simp

also have fps-compose ... h = fps-compose (f | g) h * fps-compose g h

by (subst fps-compose-mult-distrib) simp-all

finally show ?thesis .

qed

lemma fps-compose-divide-distrib:

assumes g dvd fh $ 0 = 0 fps-compose g h # 0

shows  fps-compose (f / g : 'a :: field fps) h = fps-compose f h /| fps-compose
gh

using fps-compose-divide[OF assms(1,2)] assms(3) by simp

lemma fps-compose-power:
assumes c0: ¢80 = (0::'a::idom)
shows (a 0o ¢)™n = a"n oo ¢
proof (cases n)
case (
then show ?thesis by simp
next
case (Suc m)
have ([[n = 0..m. a) oo ¢ = ([[n = 0..m. a 00 ¢)
using c0 fps-compose-prod-distrib by blast
moreover have th0: a"n = prod (Ak. a) {0..m} (a 00 ¢) ~n = prod (Ak. a oo
c) {0..m}
by (simp-all add: prod-constant Suc)
ultimately show “thesis
by presburger
qed

lemma fps-compose-uminus: — (a::'a::ring-1 fps) oo ¢ = — (a 0o ¢)
by (simp add: fps-eq-iff fps-compose-nth field-simps sum-negf[symmetric])

lemma fps-compose-sub-distrib: (a — b) oo (c::’a:ring-1 fps) = (a 0o ¢) — (b oo
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¢)

using fps-compose-add-distrib [of a — b c] by (simp add: fps-compose-uminus)

lemma fps-X-fps-compose: fps-X oo a = Abs-fps (An. if n = 0 then (0::'a::comm-ring-1)
else a$n)
by (simp add: fps-eq-iff fps-compose-nth mult-delta-left)

lemma fps-compose-eq-0-iff:
fixes F' G :: 'a :: idom fps
assumes fps-nth G 0 = 0
shows fps-compose F G =0 +— F =0V (G=0A fps-nth F 0 = 0)
proof safe
assume *: fps-compose F G = 0 F # 0
have fps-nth (fps-compose F G) 0 = fps-nth F 0
by simp
also have fps-compose FF G = 0
by (simp add: *)
finally show fps-nth F' 0 = 0
by simp
show G = 0
proof (rule ccontr)
assume G # 0
hence subdegree G > 0 using assms
using subdegree-eq-0-iff by blast
define N where N = subdegree F * subdegree G
have fps-nth (fps-compose F G) N = (>_i = 0..N. fps-nth F i % fps-nth (G ~

i) N)
unfolding fps-compose-def by (simp add: N-def)
also have ... = (> i€{subdegree F}. fps-nth F i * fps-nth (G ~ %) N)

proof (intro sum.mono-neutral-right balll)
fix ¢ assume i: ¢ € {0..N} — {subdegree F}
show fps-nth F i = fps-nth (G ~i) N = 0
proof (cases i subdegree F rule: linorder-cases)
assume i > subdegree F
hence fps-nth (G " i) N =0
using 7 (subdegree G > 0 by (intro fps-pow-nth-below-subdegree) (auto
simp: N-def)
thus ?thesis by simp
ged (use ¢ in <auto simp: N-def)
qed (use (subdegree G > 0 in <auto simp: N-def»)
also have ... = fps-nth F (subdegree F) x fps-nth (G ~ subdegree F) N
by simp
also have ... # 0
using <G # 0> <F # 0> by (auto simp: N-def)
finally show Fulse using * by auto
qed
qed auto

lemma subdegree-fps-compose [simp]:
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fixes F' G :: 'a :: idom fps
assumes [simp]: fps-nth G 0 = 0
shows subdegree (fps-compose F' G) = subdegree F' * subdegree G
proof (cases G = 0; cases F = 0)
assume [simp]: G # 0 F # 0
define m where m = subdegree F
define F’ where F' = fps-shift m F
have F-eq: F = F' % fps-X " m
unfolding F'-def by (simp add: fps-shift-times-fps-X-power m-def)
have [simp]: F' # 0
using «F' # () unfolding F-eq by auto
have subdegree (fps-compose F' G) = subdegree (fps-compose F' G) + m * sub-
degree G
by (simp add: F-eq fps-compose-mult-distrib fps-compose-eq-0-iff flip: fps-compose-power)
also have subdegree (fps-compose F' G) = 0
by (intro subdegree-eq-0) (auto simp: F'-def m-def)
finally show ?thesis by (simp add: m-def)
qed auto

lemma fps-inverse-compose:

assumes b0: (b$0 :: 'az:field) = 0

and a0: a$0 # 0

shows inverse a oo b = inverse (a 0o b)
proof —

let %ia = inverse a

let 2ab = a 00 b

let ?iab = inverse ?ab

from a0 have ia0: %ia $ 0 # 0 by simp
from a0 have ab0: ?ab $ 0 # 0 by (simp add: fps-compose-def)
have (%ia 0o b) * (a 00 b) = 1
unfolding fps-compose-mult-distrib OF b0, symmetric]
unfolding inverse-mult-eq-1[OF a0)
fps-compose-1 ..

then have (%ia 00 b) * (a 0o b) x Ziab = 1 * ?iab by simp

then have (?%ia oo b) * (%iab * (a oo b)) = %iab by simp

then show ?thesis unfolding inverse-mult-eq-1[OF ab0] by simp
qed

lemma fps-divide-compose:
assumes c0: (c30 :: 'a::field) = 0
and b0: b30 # 0
shows (a/b) 0o ¢ = (a oo ¢) / (b oo ¢)
using b0 c0 by (simp add: fps-divide-unit fps-inverse-compose fps-compose-mult-distrib)

lemma gp:

assumes a0: a$0 = (0:a::field)
shows (Abs-fps (An. 1)) oo a = 1/(1 — a)
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(is 2one oo a = -)
proof —
have 00: ?one $ 0 # 0 by simp
have th0: (1 — fps-X) $ 0 # (0::'a) by simp
from fps-inverse-gp[where ?a = d]
have inverse 2one = 1 — fps-X by (simp add: fps-eq-iff)
then have inverse (inverse ?one) = inverse (1 — fps-X) by simp
then have th: ?one = 1/(1 — fps-X) unfolding fps-inverse-idempotent[OF 00]
by (simp add: fps-divide-def)
show ?thesis
unfolding th
unfolding fps-divide-compose[OF a0 th0]
fps-compose-1 fps-compose-sub-distrib fps-X-fps-compose-startby0[OF a0] ..
qed

lemma fps-compose-radical:
assumes b0: b30 = (0::'a::field-char-0)
and ra0: r (Suc k) (a$0) ~ Suc k = a$0
and a0: a$0 # 0
shows fps-radical r (Suc k) a oo b = fps-radical v (Suc k) (a oo b)
proof —
let ?r = fps-radical v (Suc k)
let ?ab = a 00 b
have ab0: %ab $ 0 = a$0
by (simp add: fps-compose-def)
from ab0 a0 ra0 have rab0: 2ab$ 0 # 0 r (Suc k) (?ab$ 0) "~ Suck = %ab $ 0
by simp-all
have th00: r (Suc k) ((a 00 b) $ 0) = (fps-radical v (Suc k) a 0o b) $ 0
by (simp add: ab0 fps-compose-def)
have th0: (?r a oo b) ~ (Suc k) = a o0 b
unfolding fps-compose-power| OF b0]
unfolding iffD1[OF power-radical[of a r k], OF a0 ra0]
from iffD1[OF radical-unique[where r=r and k=Fk and b= %ab and a = ?r a
00 b, OF rab0(2) th00 1ab0(1)], OF th0]
show ?thesis .
qed

lemma fps-const-mult-apply-left: fps-const ¢ x (a 0o b) = (fps-const ¢ x a) 0o b
by (simp add: fps-eq-iff fps-compose-nth sum-distrib-left mult.assoc)

lemma fps-const-mult-apply-right:
(a 00 b) * fps-const (c::'a::comm-semiring-1) = (fps-const ¢ * a) 0o b
by (simp add: fps-const-mult-apply-left mult.commute)

lemma fps-compose-assoc:
assumes c0: ¢80 = (0::'a::idom)
and b0: 530 = 0
shows a 0o (b oo ¢) = a 00 b oo c (is 21 = ?r)
proof —
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have ?1$n = 2r$n for n
proof —
have ?1$n = (sum (Ai. (fps-const (a$7) * b7%) oo ¢) {0..n})$n
by (simp add: fps-compose-nth fps-compose-power|OF c0] fps-const-mult-apply-left
sum-distrib-left mult.assoc fps-sum-nth)

also have ... = ((sum (\i. fps-const (a$i) * b7%) {0..n}) oo ¢)$n
by (simp add: fps-compose-sum-distrib)
alsohave ... = 3 i=0.n.>j=0.n.a$i*x (b " j$ixc i3 n)

by (simp add: fps-compose-nth fps-sum-nth sum-distrib-right mult.assoc)
alsohave ... = Y i=0.n.>j=0..i.a8j* (b "j8i*xc " i$n)
by (intro sum.cong [OF refl] sum.mono-neutral-right; simp add: b0 startsby-zero-power-prefix)
also have ... = ?r$n
by (simp add: fps-compose-nth sum-distrib-right mult.assoc)
finally show ?thesis .
qed
then show ?thesis
by (simp add: fps-eq-iff)
qed

lemma fps-X-power-compose:
assumes a0: a$0=0
shows fps-X"k oo a = (a::'a::idom fps) k
(is 2l = ?r)
proof (cases k)
case (
then show ?thesis by simp
next
case (Suc h)
have 71 $ n = ?r $n for n
proof —
consider k > n | k < n by arith
then show ?thesis
proof cases
case [
then show ?Zthesis
using a0 startsby-zero-power-prefix| OF a0] Suc
by (simp add: fps-compose-nth del: power-Suc)
next
case 2
then show ?Zthesis
by (simp add: fps-compose-nth mult-delta-left)
qed
qed
then show ?thesis
unfolding fps-eq-iff by blast
qed

lemma fps-inv-right:
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assumes a0: a$0 = 0
and al: a$1 # 0
shows a oo fps-inv a = fps-X
proof —
let %ia = fps-inv a
let %iaa = a oo fps-inv a
have th0: %ia $ 0 = 0
by (simp add: fps-inv-def)
have thi: %iaa $ 0 = 0
using a0 al by (simp add: fps-inv-def fps-compose-nth)
have th2: fps-X$0 = 0
by simp
from fps-inv[OF a0 al] have a oo (fps-inv a 0o a) = a oo fps-X
by simp
then have (a 0o fps-inv a) oo a = fps-X oo a
by (simp add: fps-compose-assoc[OF a0 th0] fps-X-fps-compose-startby0[OF
a0])
with fps-compose-inj-right|OF a0 al] show %thesis
by simp
qed

lemma fps-inv-deriv:
assumes a0: a$0 = (0::'a::field)
and al: a$1 # 0
shows fps-deriv (fps-inv a) = inverse (fps-deriv a oo fps-inv a)
proof —
let %ia = fps-inv a
let ?d = fps-deriv a oo %ia
let ?dia = fps-deriv %ia
have ia0: %ia$0 = 0
by (simp add: fps-inv-def)
have th0: 7d$0 # 0
using al by (simp add: fps-compose-nth)
from fps-inv-right|OF a0 a1] have 2d x ?dia = 1
by (simp add: fps-compose-deriv|OF ia0, of a, symmetric] )
then have inverse ?d * ?d x ?dia = inverse ?d * 1
by simp
with inverse-mult-eq-1 [OF th0] show ?dia = inverse ?d
by simp
qed

lemma fps-inv-idempotent:
assumes a0: a$0 = 0
and al: a$1 # 0
shows fps-inv (fps-inv a) = a
proof —
let 2r = fps-inv
have ra0: ?ra $ 0 = 0
by (simp add: fps-inv-def)
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from al have ral: ?ra$ 1 # 0
by (simp add: fps-inv-def field-simps)
have fps-X0: fps-X$0 = 0
by simp
from fps-inv[OF ra0 ral] have r (?r a) oo ?r a = fps-X .
then have ?r (?r a) oo ?r a oo a = fps-X oo a
by simp
then have %r (9r a) oo (%r a 00 a) = a
unfolding fps-X-fps-compose-startby0|OF a0]
unfolding fps-compose-assoc[OF a0 ra0, symmetric| .
then show ?thesis
unfolding fps-inv[OF a0 al] by simp
qed

lemma fps-ginv-ginv:
assumes a0: a$0 = 0
and al: a$1 # 0
and c0: ¢$0 = 0
and cl: ¢$1 # 0
shows fps-ginv b (fps-ginv ¢ a) = b 00 a oo fps-inv c
proof —
let ?r = fps-ginv
from c0 have rca0: 7r c a $0 = 0
by (simp add: fps-ginv-def)
from al c1 have rcal: ?rca$ 1 # 0
by (simp add: fps-ginv-def field-simps)
from fps-ginv[OF rca0 rcal]
have ?rb (rca) oo rca=1%.
then have %r b (%r c a) oo %r c a 0o a =b oo a
by simp
then have 2r b (?r c a) oo (?rca 0o a) =b oo a
by (simp add: a0 fps-compose-assoc rcal)
then have 9r b (?r ca) oo ¢ = b oo a
unfolding fps-ginv|OF a0 al] .
then have 9r b (?r ¢ a) oo ¢ oo fps-inv ¢c= b 00 a oo fps-inv ¢
by simp
then have r b (%r ¢ a) oo (¢ oo fps-inv ¢) = b 00 a oo fps-inv ¢
by (metis c0 c1 fps-compose-assoc fps-compose-nth-0 fps-inv fps-inv-right)
then show ?thesis
unfolding fps-inv-right[OF c0 c1] by simp
qed

lemma fps-ginv-deriv:
assumes a0:a$0 = (0::'a::field)
and al: a$1 # 0
shows fps-deriv (fps-ginv b a) = (fps-deriv b / fps-deriv a) oo fps-ginv fps-X a
proof —
let %ia = fps-ginv b a
let ?ifps-Xa = fps-ginv fps-X a
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let ?d = fps-deriv

let ?dia = ?d %ia

have ifps-Xa0: %ifps-Xa $ 0 = 0
by (simp add: fps-ginv-def)

have da0: ?da $ 0 # 0
using al by simp

from fps-ginv[OF a0 al, of b] have ?d (%ia oo a) = fps-deriv b
by simp

then have (2d %ia 00 a) * ?d a = ?d b
unfolding fps-compose-deriv]| OF a0] .

then have (2d %ia oo a) * ?d a * inverse (?d a) = 2d b * inverse (?d a)
by simp

with al have (?d %ia oo a) * (inverse (?d a) x ?d a) = 2d b/ 9d a
by (simp add: fps-divide-unit)

then have (2d ?ia 00 a) oo ?ifps-Xa = (2d b/ ?d a) oo ?ifps-Xa
unfolding inverse-mult-eq-1[OF da0] by simp

then have 2d %ia oo (a oo ?ifps-Xa) = (2d b/ ?d a) oo ?ifps-Xa
unfolding fps-compose-assoc|OF ifps-Xa0 a0] .

then show ?thesis unfolding fps-inv-ginv[symmetric]
unfolding fps-inv-right[OF a0 al] by simp

qed

lemma fps-compose-linear:
fps-compose (f :: 'a :: comm-ring-1 fps) (fps-const ¢ x fps-X) = Abs-fps (An. ¢’™n
« f§n)
by (simp add: fps-eq-iff fps-compose-def power-mult-distrib
if-distrib cong: if-cong)

lemma fps-compose-uminus’”:
fos-compose f (—fps-X :: 'a :: comm-ring-1 fps) = Abs-fps (An. (—1)"n x f $ n)
using fps-compose-linear|of f —1]
by (simp only: fps-const-neg [symmetric] fps-const-1-eq-1) simp
lemma fps-nth-compose-linear [simp):
fixes f :: 'a :: comm-ring-1 fps
shows fps-nth (fps-compose f (fps-const ¢ x fps-X)) n = c ~n * fps-nth fn
proof —
have fps-nth (fps-compose f (fps-const ¢ x fps-X)) n =
(>-ie{n}. fps-nth f i = fps-nth ((fps-const ¢ x fps-X) ~ i) n)
unfolding fps-compose-nth
by (intro sum.mono-neutral-cong-right) (auto simp: power-mult-distrib)
also have ... = ¢ " n * fps-nth fn
by (simp add: power-mult-distrib)
finally show ?thesis .
qed

5.19 Elementary series

5.19.1 Exponential series

definition fps-exp © = Abs-fps (An. z7n / of-nat (fact n))
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lemma fps-exp-deriv[simp|: fps-deriv (fps-exp a) = fps-const (a::'a:field-char-0) *
fps-exp a
(is 21 = ?r)
proof —
have ?I$n = ?r $ n for n
using of-nat-neq-0 by (auto simp add: fps-exp-def divide-simps)
then show ?thesis
by (simp add: fps-eq-iff)
qed

lemma fps-exp-unique-ODE:
fps-deriv a = fps-const ¢ * a +— a = fps-const (a$0) * fps-exp (c::'a::field-char-0)
(is ?lhs «— ?rhs)
proof
show ?2rhs if ?lhs
proof —
from that have th: An. a $ Suc n = ¢ x a$n / of-nat (Suc n)
by (simp add: fps-deriv-def fps-eq-iff field-simps del: of-nat-Suc)
have th”: a$n = a$0 * ¢ " n/ (fact n) for n
proof (induct n)
case (
then show ?Zcase by simp
next
case Suc
then show ?case
by (simp add: th divide-simps)
qed
show ?thesis
by (auto simp add: fps-eq-iff fps-const-mult-left fps-exp-def intro: th')
qed
show ?lhs if ?rhs
using that by (metis fps-exp-deriv fps-deriv-mult-const-left mult.left-commute)
qed

lemma fps-exp-add-mult: fps-exp (a + b) = fps-exp (a::'a::field-char-0) * fps-exp
b (is 21 = ?2r)
proof —
have fps-deriv 9r = fps-const (a + b) * or
by (simp add: fps-const-add[symmetric] field-simps del: fps-const-add)
then have 9r = 7]
by (simp only: fps-exp-unique-ODE) (simp add: fps-mult-nth fps-exp-def)
then show ?thesis ..
qed

lemma fps-exp-nth[simp): fps-exp a $ n = a™n / of-nat (fact n)
by (simp add: fps-exp-def)

lemma fps-exp-0[simp|: fps-exp (0::'a:field) = 1
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by (simp add: fps-eq-iff power-0-left)

lemma fps-exp-neg: fps-exp (— a) = inverse (fps-exp (a::'a::field-char-0))
proof —
from fps-exp-add-mult[of o — a] have th0: fps-exp a % fps-exp (— a) = 1 by
stmp
from fps-inverse-unique| OF th0] show ?thesis by simp
qed

lemma fps-exp-nth-deriv[simp]:
fos-nth-deriv n (fps-exp (a::'a:field-char-0)) = (fps-const a) n = (fps-exp a)
by (induct n) auto

lemma fps-X-compose-fps-exp[simpl: fps-X oo fps-exp (a::’a::field) = fps-exp a —
1
by (simp add: fps-eq-iff fps-X-fps-compose)

lemma fps-inv-fps-exp-compose:
assumes a: a # 0
shows fps-inv (fps-exp a — 1) oo (fps-exp a — 1) = fps-X
and (fps-exp a — 1) oo fps-inv (fps-exp a — 1) = fps-X
proof —
let 2b = fps-exp a — 1
have 00: 0 $ 0 = 0
by simp
have b1: 76 $ 1 # 0
by (simp add: a)
from fps-inv[OF b0 b1] show fps-inv (fps-exp a — 1) oo (fps-exp a — 1) = fps-X

from fps-inv-right[OF b0 b1] show (fps-exp a — 1) oo fps-inv (fps-exp a — 1)
= fps-X .
qed

lemma fps-exp-power-mult: (fps-exp (c::'a::field-char-0))"n = fps-exp (of-nat n *

c)
by (induct n) (simp-all add: field-simps fps-exp-add-mult)

lemma radical-fps-exp:

assumes 7r: 1 (Suc k) 1 = 1

shows fps-radical r (Suc k) (fps-exp (c::'a::field-char-0)) = fps-exp (¢ | of-nat
(Suc k))
proof —

let ?ck = (¢ / of-nat (Suc k))

let ?r = fps-radical v (Suc k)

have eq0[simp]: ?ck * of-nat (Suc k) = ¢ of-nat (Suc k) * ?ck = ¢

by (simp-all del: of-nat-Suc)
have th0: fps-exp ?ck ~ (Suc k) = fps-exp ¢ unfolding fps-exp-power-mult eql

have th: r (Suc k) (fps-exp ¢ $0) ~ Suc k = fps-exp ¢ $ 0
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r (Suc k) (fps-exp ¢ $ 0) = fps-exp ?ck $ 0 fps-exp ¢ $ 0 # 0 using r by
simp-all
from tho radical-unique[where r=r and k=*k, OF th] show ?Zthesis
by auto
qed

lemma fps-exp-compose-linear [simp):
fps-exp (d::'a::field-char-0) oo (fps-const ¢ x fps-X) = fps-exp (¢ * d)
by (simp add: fps-compose-linear fps-exp-def fps-eq-iff power-mult-distrib)

lemma fps-fps-exp-compose-minus [simpl:
fos-compose (fps-exp ¢) (—fps-X) = fps-exp (—c :: 'a :: field-char-0)
using fps-exp-compose-linear|of ¢ —1 :: 'a]
unfolding fps-const-neg [symmetric] fps-const-1-eq-1 by simp

lemma fps-exp-eq-iff [simp]: fps-exp ¢ = fps-exp d «+— ¢ = (d :: 'a :: field-char-0)
proof

assume fps-exp ¢ = fps-exp d

from arg-cong[of - - AF. F' $ 1, OF this] show ¢ = d by simp
qed simp-all

lemma fps-exp-eq-fps-const-iff [simp]:
fos-exp (c :: 'a = field-char-0) = fps-const ¢/ +— ¢ =0 N ¢’ =1
proof
assume c = 0 A ¢’ = 1
thus fps-exp ¢ = fps-const ¢’ by (simp add: fps-eq-iff)
next
assume fps-exp ¢ = fps-const c’
from arg-conglof - - A\F. F § 1, OF this| arg-cong[of - - \F. F'$ 0, OF this]
show ¢ = 0 A ¢/ = 1 by simp-all
qed

lemma fps-exp-neq-0 [simp]: —fps-exp (¢ :: 'a :: field-char-0) = 0
unfolding fps-const-0-eq-0 [symmetric| fps-exp-eq-fps-const-iff by simp

lemma fps-exp-eq-1-iff [simp]: fps-exp (¢ :: 'a =i field-char-0) = 1 +— ¢ =0
unfolding fps-const-1-eq-1 [symmetric] fps-exp-eq-fps-const-iff by simp

lemma fps-exp-neg-numeral-iff [simpl:
fps-exp (¢ = 'a :: field-char-0) = numeral n +— ¢ = 0 A n = Num.One
unfolding numeral-fps-const fps-exp-eq-fps-const-iff by simp

5.19.2 Logarithmic series

lemma Abs-fps-if-0:
Abs-fps (An. if n = 0 then (v::'a::ring-1) else fn) =
fos-const v + fps-X x Abs-fps (An. f (Suc n))
by (simp add: fps-eq-iff)
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definition fps-ln :: 'a:field-char-0 = 'a fps
where fps-ln ¢ = fps-const (1/c) * Abs-fps (An. if n = 0 then 0 else (— 1) ~(n
— 1) / of-nat n)

lemma fps-In-deriv: fps-deriv (fps-In ¢) = fps-const (1/c) x inverse (1 + fps-X)
unfolding fps-inverse-fps-X-plus1
by (simp add: fps-ln-def fps-eq-iff del: of-nat-Suc)

lemma fps-In-nth: fps-ln ¢ $ n = (if n = 0 then O else 1/cx ((— 1) “(n—1)/
of-nat n))
by (simp add: fps-In-def field-simps)

lemma fps-In-0 [simp]: fps-In ¢ $ 0 = 0 by (simp add: fps-In-def)

lemma fps-in-fps-exp-inv:
fixes a :: ‘a:field-char-0
assumes a: a # 0
shows fps-ln a = fps-inv (fps-exp a — 1) (is 2l = ?r)
proof —
let ?b = fps-exp a — 1
have 00: 0 $ 0 = 0 by simp
have b1: 90 $ 1 # 0 by (simp add: a)
have fps-deriv (fps-exp a — 1) oo fps-inv (fps-exp a — 1) =
(fps-const a * (fps-exp a — 1) + fps-const a) oo fps-inv (fps-exp a — 1)
by (simp add: field-simps)
also have ... = fps-const a * (fps-X + 1)
by (simp add: fps-compose-add-distrib fps-inv-right{OF b0 b1] distrib-left flip:
fps-const-mult-apply-left)
finally have eq: fps-deriv (fps-exp a — 1) oo fps-inv (fps-exp a — 1) = fps-const
ax* (fps-X +1).
from fps-inv-deriv[OF b0 b1, unfolded eq
have fps-deriv (fps-inv 2b) = fps-const (inverse a) / (fps-X + 1)
using a by (simp add: fps-const-inverse eq fps-divide-def fps-inverse-mult)
then have fps-deriv 2] = fps-deriv ?r
by (simp add: fps-In-deriv add.commute fps-divide-def divide-inverse)
then show “thesis unfolding fps-deriv-eq-iff
by (simp add: fps-In-nth fps-inv-def)
qged

lemma fps-in-mult-add:
assumes c0: c#£0
and d0: d#0
shows fps-ln ¢ + fps-In d = fps-const (c+d) * fps-in (cxd)
(is 2r = 9I)
proof—
from c0 d0 have eq: 1/c + 1/d = (c+d)/(cxd) by (simp add: field-simps)
have fps-deriv ?r = fps-const (1/c + 1/d) * inverse (I + fps-X)
by (simp add: fps-In-deriv fps-const-add[symmetric] algebra-simps del: fps-const-add)
also have ... = fps-deriv ?I
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by (simp add: eq fps-In-deriv)
finally show ?thesis
unfolding fps-deriv-eq-iff by simp
qed

lemma fps-X-dvd-fps-In [simp]: fps-X dvd fps-In c
proof —
have fps-in ¢ = fps-X x Abs-fps (An. (—=1) ~n / (of-nat (Suc n) * c))
by (intro fps-ext) (simp add: fps-In-def of-nat-diff)
thus %thesis by simp
qged

5.19.3 Binomial series

definition fps-binomial a = Abs-fps (An. a gchoose n)

lemma fps-binomial-nth[simpl: fps-binomial a $ n = a gchoose n
by (simp add: fps-binomial-def)

lemma fps-binomial-ODE-unique:

fixes c :: 'a::field-char-0

shows fps-deriv a = (fps-const ¢ x a) / (1 + fps-X) +— a = fps-const (a$0) *
fps-binomial ¢

(is ?lhs «— ?rhs)
proof

let ?da = fps-deriv a

let 2z1 = (1 + fps-X):: 'a fps

let 9l = 2z1 % ?da

let ?r = fps-const ¢ * a

have eq: 72l = ?r «— ?lhs
proof —
have z10: %21 $ 0 # 0 by simp
have ?] = ?r «— inverse 2zl * ?] = inverse 2zl * ?r by simp
also have ... +— ?da = (fps-const ¢ x a) | %zl
unfolding fps-divide-def mult.assoc[symmetric] inverse-mult-eq-1[OF x10)]
by (simp add: field-simps)
finally show ?thesis .
qed

show ?rhs if ?lhs
proof —
from eq that have h: 2] = ?r ..
have th0: a$ Suc n = ((¢ — of-nat n) / of-nat (Suc n)) * a $n for n
proof —
from h have 71 $ n = ?r $ n by simp
then show Zthesis
by (simp add: field-simps del: of-nat-Suc split: if-split-asm)
qed
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have th1: a $ n = (¢ gchoose n) *x a $ 0 for n
proof (induct n)
case (
then show ?Zcase by simp
next
case (Suc m)
have (¢ — of-nat m) x (¢ gchoose m) = (¢ gchoose Suc m) x of-nat (Suc m)
by (metis gbinomial-absorb-comp gbinomial-absorption mult.commute)
with Suc show Zcase
unfolding th0
by (simp add: divide-simps del: of-nat-Suc)
qed
show ?thesis

by (metis expand-fps-eq fps-binomial-nth fps-mult-right-const-nth mult.commaute
thi)

qged

show ?lhs if ?rhs
proof —
have th00: z x (a $ 0 xy) =a$ 0 * (z x y) for z y
by (simp add: mult.commute)
have 7l = (1 + fps-X) * fps-deriv (fps-const (a $ 0) * fps-binomial c)
using that by auto
also have ... = fps-const ¢ * (fps-const (a $ 0) * fps-binomial c)
proof (clarsimp simp add: fps-eq-iff algebra-simps)
show a $ 0 * (¢ gchoose Suc n) + (of-nat n * ((c gchoose n) * a $ 0) +
of-nat n * (a $ 0 * (c gchoose Suc n)))
= ¢ * ((c gchoose n) x a $ 0) for n
unfolding mult.assoc[symmetric]
by (simp add: field-simps gbinomial-mult-1)
qed
also have ... = 7r
using that by auto
finally have 2] = 2r .
with eq show ?thesis ..
qed
qed

lemma fps-binomial-ODE-unique’:
(fps-deriv a = fps-const ¢ x a |/ (1 + fps-X) A a$ 0 =1) +— (a = fps-binomial
c)

by (subst fps-binomial-ODE-unique) auto

lemma fps-binomial-deriv: fps-deriv (fps-binomial ¢) = fps-const ¢ * fps-binomial
¢/ (1 + fps-X)
proof —

let ?a = fps-binomial ¢

have th0: ?a = fps-const (2a$0) * 2a by (simp)

from iffD2[OF fps-binomial-ODE-unique, OF th0] show ?thesis .
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qed

lemma fps-binomial-add-mult: fps-binomial (c+d) = fps-binomial ¢ x fps-binomial
d (is 2l = or)
proof —

let 2P = 2r — 2]

let ?b = fps-binomial

let ?db = Az. fps-deriv (% x)

have fps-deriv 2P = 2db c * ?b d + ?b ¢ x 2db d — 2db (¢ + d) by simp

also have ... = inverse (1 + fps-X) *
(fps-const ¢ * 2b ¢ x 2b d + fps-const d * ?b ¢ x 2b d — fps-const (c+d) x 2b
(¢ + d))

unfolding fps-binomial-deriv
by (simp add: fps-divide-def field-simps)
also have ... = (fps-const (¢ + d)/ (1 + fps-X)) * ?P
by (simp add: field-simps fps-divide-unit fps-const-add[symmetric] del: fps-const-add)
finally have th0: fps-deriv ?P = fps-const (c+d) * ¢P / (1 + fps-X)
by (simp add: fps-divide-def)
have ?P = fps-const (?P$0) = ?b (¢ + d)
unfolding fps-binomial-ODE-unique[symmetric]
using th0 by simp
then have 7P = 0 by (simp add: fps-mult-nth)
then show ?thesis by simp
qed

lemma fps-binomial-minus-one: fps-binomial (— 1) = inverse (1 + fps-X)
(is 71 = inverse ?r)
proof—
have th: r$0 # 0 by simp
have th': fps-deriv (inverse ?r) = fps-const (— 1) * inverse ?r / (1 + fps-X)
by (simp add: fps-inverse-deriv[|OF th] fps-divide-def
power2-eq-square mult.commute fps-const-neg[symmetric] del: fps-const-neg)
have eq: inverse r $ 0 = 1
by (simp add: fps-inverse-def)
from iffD1[OF fps-binomial-ODE-unique|of inverse (1 + fps-X) — 1] th] eq
show ?thesis by (simp add: fps-inverse-def)
qed

lemma fps-binomial-of-nat: fps-binomial (of-nat n) = (1 + fps-X :: 'a :: field-char-0
fps) " n
proof (cases n = 0)

case [simp]: True

have fps-deriv ((1 + fps-X) " n :: 'a fps) = 0 by simp

also have ... = fps-const (of-nat n) x (1 + fps-X) “n / (1 + fps-X) by (simp
add: fps-binomial-def)

finally show ?thesis by (subst sym, subst fps-binomial-ODE-unique’ [symmetric])
stmp-all
next

case Fulse
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have fps-deriv ((1 + fps-X) ~n == 'a fps) = fps-const (of-nat n) = (1 + fps-X)
~(n - 1)
by (simp add: fps-deriv-power)
also have (1 + fps-X :: 'a fps) $ 0 # 0 by simp
hence (1 + fps-X :: 'a fps) # 0 by (intro notl) (simp only: , simp)
with False have (1 + fps-X = 'a fps) " (n — 1) = (1 + fps-X) “n /(1 +
fps-X)
by (cases n) (simp-all )
also have fps-const (of-nat n :: 'a) * (1 + fps-X) "n / (1 + fps-X)) =
fps-const (of-nat n) * (1 + fps-X) "n /(1 + fps-X)
by (simp add: unit-div-mult-swap)
finally show ?thesis
by (subst sym, subst fps-binomial-ODE-unique’ [symmetric|) (simp-all add:
fps-power-nth)
qed

lemma fps-binomial-0 [simp]: fps-binomial 0 = 1
using fps-binomial-of-nat[of 0] by simp

lemma fps-binomial-power: fps-binomial a ~n = fps-binomial (of-nat n * a)
by (induction n) (simp-all add: fps-binomial-add-mult ring-distribs)

lemma fps-binomial-1: fps-binomial 1 = 1 + fps-X
using fps-binomial-of-nat[of 1] by simp

lemma fps-binomial-minus-of-nat:
fos-binomial (— of-nat n) = inverse ((1 + fps-X :: 'a :: field-char-0 fps) ~n)
by (rule sym, rule fps-inverse-unique)
(simp add: fps-binomial-of-nat [symmetric] fps-binomial-add-mult [symmetric))

lemma one-minus-const-fps-X-power:
¢ # 0 = (1 — fps-const ¢ * fps-X) " n =
fps-compose (fps-binomial (of-nat n)) (—fps-const ¢ * fps-X)
by (subst fps-binomial-of-nat)
(simp add: fps-compose-power [symmetric] fps-compose-add-distrib fps-const-neg
[symmetric]
del: fps-const-neg)

lemma one-minus-fps-X-const-neg-power:

inverse ((1 — fps-const ¢ x fps-X) ~n) =

fps-compose (fps-binomial (—of-nat n)) (—fps-const ¢ * fps-X)

proof (cases ¢ = 0)

case Fulse

thus ?thesis

by (subst fps-binomial-minus-of-nat)

(simp add: fps-compose-power [symmetric| fps-inverse-compose fps-compose-add-distrib
fps-const-neg [symmetric] del: fps-const-neg)

qed simp
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lemma fps-X-plus-const-power:
¢ # 0 = (fps-X + fps-const ¢) " n =
fps-const (¢"n) * fps-compose (fps-binomial (of-nat n)) (fps-const (inverse c)
* fps-X)
by (subst fps-binomial-of-nat)
(simp add: fps-compose-power [symmetric] fps-binomial-of-nat fps-compose-add-distrib
fps-const-power [symmetric] power-mult-distrib [symmetric]
algebra-simps inverse-mult-eq-1" del: fps-const-power)

lemma fps-X-plus-const-neg-power:
¢ # 0 = inverse ((fps-X + fps-const ¢) "~ n) =
fps-const (inverse c¢"n) * fps-compose (fps-binomial (—of-nat n)) (fps-const
(inverse c) * fps-X)
by (subst fps-binomial-minus-of-nat)
(simp add: fps-compose-power [symmetric] fps-binomial-of-nat fps-compose-add-distrib
fps-const-power [symmetric] power-mult-distrib [symmetric] fps-inverse-compose

algebra-simps fps-const-inverse [symmetric] fps-inverse-mult [symmetric]
fps-inverse-power [symmetric| inverse-mult-eq-1'
del: fps-const-power)

lemma one-minus-const-fps-X-neg-power’:
fixes c :: 'a :: field-char-0
assumes n > 0
shows inverse ((1 — fps-const ¢ x fps-X) ~n) = Abs-fps (Ak. of-nat ((n + k —
1) choose k) * ¢k)
proof —
have §: Aj. Abs-fps (Ana. (— ¢) " na * fps-binomial (— of-nat n) $ na) $ j =
Abs-fps (Ak. of-nat (n + k — 1 choose k) x ¢ k) $j
using assms
by (simp add: gbinomial-minus binomial-gbinomial of-nat-diff flip: power-mult-distrib
mult.assoc)
show ?thesis
apply (rule fps-ext)
using §
by (metis (no-types, lifting) one-minus-fps-X-const-neg-power fps-const-neg
fps-compose-linear fps-nth-Abs-fps)
qed

Vandermonde’s Identity as a consequence.

lemma gbinomial- Vandermonde:

sum (Ak. (a gchoose k) = (b gchoose (n — k))) {0..n} = (a + b) gchoose n
proof —

let ?ba = fps-binomial a

let 2bb = fps-binomial b

let %bab = fps-binomial (a + b)

from fps-binomial-add-mult[of a b] have ?bab $ n = (?ba * ?bb)$n by simp

then show ?thesis by (simp add: fps-mult-nth)
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qed

lemma binomial- Vandermonde:
sum (Ak. (a choose k) * (b choose (n — k))) {0..n} = (a + b) choose n
using gbinomial-Vandermonde[of (of-nat a) of-nat b n]
by (simp only: binomial-gbinomial[symmetric] of-nat-mult[symmetric]
of-nat-sum[symmetric| of-nat-add[symmetric] of-nat-eq-iff)

lemma binomial-Vandermonde-same: sum (Mk. (n choose k)?) {0..n} = (2 x n)
choose n

using binomial-Vandermondelof n n n, symmetric]

unfolding mult-2

by (metis atMost-atLeast0 choose-square-sum mult-2)

lemma Vandermonde-pochhammer-lemma:
fixes a :: ‘a:field-char-0
assumes b: \j. j<n = b # of-nat j
shows sum (Ak. (pochhammer (— a) k x pochhammer (— (of-nat n)) k) /
(of-nat (fact k) * pochhammer (b — of-nat n + 1) k)) {0..n} =
pochhammer (— (a + b)) n / pochhammer (— b) n
(is 21 = ?7r)
proof —
let 9m1 =Am. (— 1 ::'a) " m
let f = Am. of-nat (fact m)
let ?p = A(z::'a). pochhammer (— z)
from b have bn0: ?p bn # 0
unfolding pochhammer-eq-0-iff by simp
have th00:
b gchoose (n — k) =
(fm1nx ?p bnx* ?mlk=* ?p (of-nat n) k) / (?f n x pochhammer (b —
of-nat n + 1) k)
(is ?gchoose)
pochhammer (1 + b — of-natn) k # 0
(is ?pochhammer)
if kn: k € {0..n} for k
proof —
from kn have k < n by simp
have nz: pochhammer (1 + b — of-nat n) n # 0
proof
assume pochhammer (1 + b — of-nat n) n = 0
then have c: pochhammer (b — of-natn + 1) n = 0
by (simp add: algebra-simps)
then obtain j where j: j < n b — of-nat n + 1 = — of-nat j
unfolding pochhammer-eq-0-iff by blast
from j have b = of-nat n — of-nat j — of-nat 1
by (simp add: algebra-simps)
then show Fulse
using j < > j b
by (metis bn0 ¢ mult-cancel-right2 pochhammer-minus)
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qed

from nz kn [simplified] have nz’. pochhammer (1 + b — of-nat n) k # 0
by (rule pochhammer-neq-0-mono)

consider k =0V n=0|k#£0n+#0
by blast
then have b gchoose (n — k) =
(Pm1n = 2pbnx* ?mlkx ?p (of-nat n) k) / (?f n x pochhammer (b — of-nat
n+ 1)k)
proof cases
case I
then show ?thesis
using kn by (cases k = 0) (simp-all add: gbinomial-pochhammer)
next
case neq: 2
then obtain m where m: n = Suc m
by (cases n) auto
from neq(1) obtain h where h: k = Suc h
by (cases k) auto
show ?thesis
proof (cases k = n)
case True
with pochhammer-minus’[where k=Fk and b=>b] bn0 show ?thesis
by (simp add: pochhammer-same)
next
case Fulse
with kn have kn”: k < n
by simp
have h < m
using <k < n> h m by blast
have mink: ?m1 n = prod (Ai. — 1) {..m} ?m1 k = prod (\i. — 1) {0..h}
by (simp-all add: m h)
have bnz0: pochhammer (b — of-nat n + 1) k # 0
using bn0 kn
unfolding pochhammer-eq-0-iff
by (metis add.commute add-diff-eq nz" pochhammer-eq-0-iff)
have eql: prod (M\k. (1::'a) + of-nat m — of-nat k) {..h} =
prod of-nat {Suc (m — h) .. Suc m}
using kn’ h m
by (intro prod.reindez-bij-witness[where i=\k. Suc m — k and j=Ak. Suc
m — k)
(auto simp: of-nat-diff)
have ([[¢ = 0..<k. 1 + of-nat n — of-nat k + of-nat i) = ([[z = n —
k.<n. (1:'a) + of-nat )
using <k < n»
using prod.atLeastLess Than-shift-bounds [where ?'a = 'a, of \i. 1 +
of-nat i 0 n — k k|
by (auto simp add: of-nat-diff field-simps)
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then have fact (n — k) x pochhammer ((1::'a) + of-nat n — of-nat k) k =
fact n
using <k < n»
by (auto simp add: fact-split [of k n] pochhammer-prod field-simps)
then have thi: (?m1 k * ?p (of-natn) k) / ?fn =1 / of-nat(fact (n — k))
by (simp add: pochhammer-minus field-simps)
have ¢mi n x %p b n = pochhammer (b — of-nat m) (Suc m)
by (simp add: pochhammer-minus field-simps m)
also have ... = ([[i = 0..m. b — of-nat i)
by (auto simp add: pochhammer-prod-rev of-nat-diff prod.atLeast-Suc-atMost-Suc-shift
simp del: prod.cl-ivl-Suc)
finally have th20: 9mi n x %p b n = prod (\i. b — of-nat i) {0..m} .
have ([[z = 0..h. b — of-nat m + of-nat (h — z)) = ([[¢ =m — h.m. b
— of-nat 1)
using <h < m» prod.atLeastAtMost-shift-0 [of m — h m, where ?'a = d]
by (auto simp add: of-nat-diff field-simps)
then have th21:pochhammer (b — of-nat n + 1) k = prod (Ai. b — of-nat
H{n—F%k.n—1}
using kn by (simp add: pochhammer-prod-rev m h prod.atLeast-Suc-atMost-Suc-shift
del: prod.op-ivl-Suc del: prod.cl-ivl-Suc)
have ?min* ?pbn =
prod (Mi. b — of-nat i) {0.. n — k — 1} % pochhammer (b — of-nat n +
1)k
using kn’ m h unfolding th20 th21
by (auto simp flip: prod.union-disjoint intro: prod.cong)
then have th2: (m1 n x ?p b n)/pochhammer (b — of-nat n + 1) k =
prod (Ai. b — of-nat i) {0..n — k — 1}
using nz’ by (simp add: field-simps)
have (Ym1n* ?p bn x ?ml k x ?p (of-nat n) k) / (?f n x pochhammer (b
— of-natn + 1) k) =
((?m1 k = ?p (of-nat n) k) / 2fn) * ((¢m1 n x 2p b n)/pochhammer (b —
of-nat n + 1) k)
using bnz0
by (simp add: field-simps)
also have ... = b gchoose (n — k)
unfolding th1 th2
using kn’ m h
by (auto simp: field-simps gbinomial-mult-fact intro: prod.cong)
finally show ?thesis by simp
qed
qed
then show ?gchoose and ?pochhammer
using nz’ by force+
qed
have ?r = ((a + b) gchoose n) * (of-nat (fact n) / (?m1 n x pochhammer (— b)
")
unfolding gbinomial-pochhammer
using bn0 by (auto simp add: field-simps)
also have ... = 7]
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using bn0
unfolding gbinomial- Vandermonde[symmetric]
apply (simp add: th00)
by (simp add: gbinomial-pochhammer sum-distrib-right sum-distrib-left field-simps)
finally show ?thesis by simp
qed

lemma Vandermonde-pochhammer:
fixes a :: 'a::field-char-0
assumes c: Vi € {0..< n}. ¢ # — of-nat i
shows sum (k. (pochhammer a k x pochhammer (— (of-nat n)) k) /
(of-nat (fact k) * pochhammer c k)) {0..n} = pochhammer (¢ — a) n / pochham-
mer ¢ n
proof —
let 0 = — a
let ?b = ¢ + of-natn — 1
have h: 2b # of-nat j if j < n for j
proof —
have ¢ # — of-nat (n — j — 1)
using c that by (auto simp: dest!: bspec [where z = n—j—1])
with that show ?Zthesis
by (auto simp add: algebra-simps of-nat-diff)
qed
have th0: pochhammer (— (?a + b)) n = (— 1) "n * pochhammer (¢ — a) n
unfolding pochhammer-minus
by (simp add: algebra-simps)
have th1: pochhammer (— 2b) n = (— 1) n * pochhammer ¢ n
unfolding pochhammer-minus
by simp
have nz: pochhammer ¢ n # 0 using c
by (simp add: pochhammer-eq-0-iff)
from Vandermonde-pochhammer-lemmalwhere a = ?a and b=?b and n=n, OF
h, unfolded th0 th1]
show ?thesis
using nz by (simp add: field-simps sum-distrib-left)
qed

5.19.4 Trigonometric functions

definition fps-sin (c::’a::field-char-0) =
Abs-fps (An. if even n then 0 else (— 1) ((n — 1) div 2) * ¢"n /(of-nat (fact
n)))

definition fps-cos (c::'a::field-char-0) =
Abs-fps (An. if even n then (— 1) ~(n div 2) * ¢"n / (of-nat (fact n)) else 0)

lemma fps-sin-0 [simp]: fps-sin 0 = 0
by (intro fps-ext) (auto simp: fps-sin-def elim!: oddFE)

363



lemma fps-cos-0 [simp]: fps-cos 0 = 1
by (intro fps-ext) (simp add: fps-cos-def)

lemma fps-sin-deriv:
fps-deriv (fps-sin ¢) = fps-const ¢ * fps-cos ¢
(is ?lhs = %rhs)
proof (rule fps-ext)
fix n :: nat
show ?lhs $ n = 2rhs $ n
proof (cases even n)

case True
have ?lhs$n = of-nat (n+1) * (fps-sin ¢ $ (n+1)) by simp
also have ... = of-nat (n+1) * ((— 1) (n div 2) * ¢ Suc n / of-nat (fact
(Suc n)))
using True by (simp add: fps-sin-def)
also have ... = (— 1) (n div 2) x ¢"Suc n * (of-nat (n+1) / (of-nat (Suc n)

* of-nat (fact n)))
unfolding fact-Suc of-nat-mult

by (simp add: field-simps del: of-nat-add of-nat-Suc)
also have ... = (— 1) (n div 2) * ¢ Suc n / of-nat (fact n)
by (simp add: field-simps del: of-nat-add of-nat-Suc)
finally show ?thesis
using True by (simp add: fps-cos-def field-simps)
next
case Fulse
then show ?thesis
by (simp-all add: fps-deriv-def fps-sin-def fps-cos-def)
qed
qed

lemma fps-cos-deriv: fps-deriv (fps-cos ¢) = fps-const (— ¢)* (fps-sin c)
(is ?lhs = %rhs)
proof (rule fps-ext)
have th0: — ((— 1::'a) " n) = (— 1) Suc n for n
by simp
show ?lhs $ n = ?rhs $ n for n
proof (cases even n)
case False
then have n0: n # 0 by presburger
from Fulse have th1: Suc ((n — 1) div 2) = Suc n div 2
by (cases n) simp-all
have ?lhs$n = of-nat (n+1) x (fps-cos ¢ $ (n+1)) by simp
also have ... = of-nat (n+1) x ((— 1) ((n + 1) div 2) * ¢ Suc n / of-nat
(fact (Suc n)))
using False by (simp add: fps-cos-def)
also have ... = (— 1) ((n + 1) div 2) % ¢ Suc n * (of-nat (n+1) / (of-nat
(Suc n) = of-nat (fact n)))
unfolding fact-Suc of-nat-mult
by (simp add: field-simps del: of-nat-add of-nat-Suc)
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also have ... = (— 1) ((n + 1) div 2) x ¢"Suc n / of-nat (fact n)
by (simp add: field-simps del: of-nat-add of-nat-Suc)

also have ... = (— ((— 1) ((n — 1) div 2))) * ¢ Suc n / of-nat (fact n)
unfolding th0 unfolding th! by simp

finally show ?thesis
using False by (simp add: fps-sin-def field-simps)

next

case True

then show ?thesis
by (simp-all add: fps-deriv-def fps-sin-def fps-cos-def)

qed

qed

lemma fps-sin-cos-sum-of-squares: (fps-cos ¢)? + (fps-sin ¢)? = 1
(is ?lhs = -)

proof —

have fps-deriv ?lhs = 0
by (simp add: fps-deriv-power fps-sin-deriv fps-cos-deriv field-simps flip: fps-const-neg)
then have ?lhs = fps-const (?lhs $ 0)
unfolding fps-deriv-eq-0-iff .
also have ... = 1
by (simp add: fps-eq-iff numeral-2-eq-2 fps-mult-nth fps-cos-def fps-sin-def)
finally show ?thesis .
qed

lemma fps-sin-nth-0 [simp]: fps-sin ¢ $ 0 = 0
unfolding fps-sin-def by simp

lemma fps-sin-nth-1 [simp]: fps-sin ¢ $ Suc 0 = ¢
unfolding fps-sin-def by simp

lemma fps-sin-nth-add-2:
fos-sinc$ (n+ 2) = — (c* c* fps-sinc$n/ (of-nat (n + 1) * of-nat (n +
2)))
proof (cases n)
case (Suc n')
then show ?thesis
unfolding fps-sin-def by (simp add: field-simps)
qed (auto simp: fps-sin-def)

lemma fps-cos-nth-0 [simp]: fps-cos ¢ $ 0 = 1
unfolding fps-cos-def by simp

lemma fps-cos-nth-1 [simp]: fps-cos ¢ $ Suc 0 = 0
unfolding fps-cos-def by simp

lemma fps-cos-nth-add-2:
fps-cos ¢ $ (n+ 2) = — (¢ * ¢ * fps-cos ¢ $ n / (of-nat (n + 1) * of-nat (n +
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2)))

proof (cases n)
case (Suc n')
then show ?thesis
unfolding fps-cos-def by (simp add: field-simps)
qed (auto simp: fps-cos-def)

lemma nat-add-1-add-1: (n:nat) + 1 + 1 =n + 2
by simp

lemma eq-fps-sin:
assumes a0: a $ 0 = 0
and al: a$ 1 =c¢
and a2: fps-deriv (fps-deriv a) = — (fps-const ¢ * fps-const ¢ * a)
shows fps-sin ¢ = a
proof (rule fps-ext)
fix n
show fps-sin c$n=a%n
proof (induction n rule: nat-induct?)
case (step n)
then have of-nat (n + 1) % (of-nat (n + 2) *x a $ (n + 2)) =
— (¢ * ¢ * fps-sin ¢ $ n)
using a2
by (metis fps-const-mult fps-deriv-nth fps-mult-left-const-nth fps-neg-nth nat-add-1-add-1)
with step show ?case
by (metis (no-types, lifting) a0 add.commute add.inverse-inverse fps-sin-nth-0
fps-sin-nth-add-2 mult-divide-mult-cancel-left-if mult-minus-right nonzero-mult-div-cancel-left
not-less-zero of-nat-eq-0-iff plus-1-eq-Suc zero-less-Suc)
qed (use assms in auto)
qed

lemma eg-fps-cos:
assumes a0: a $ 0 = 1
and al: a$ 1 =0
and a2: fps-deriv (fps-deriv a) = — (fps-const ¢ * fps-const ¢ x a)
shows fps-cos ¢ = a
proof (rule fps-ext)
fix n
show fps-cosc$n=a8$n
proof (induction n rule: nat-induct?)
case (step n)
then have of-nat (n + 1) % (of-nat (n + 2) x a $ (n + 2)) =
— (¢ * ¢ * fps-cos ¢ $ n)
using a2
by (metis fps-const-mult fps-deriv-nth fps-mult-left-const-nth fps-neg-nth nat-add-1-add-1)
with step show ?case
by (metis (no-types, lifting) a0 add.commute add.inverse-inverse fps-cos-nth-0
fps-cos-nth-add-2 mult-divide-mult-cancel-left-if mult-minus-right nonzero-mult-div-cancel-left
not-less-zero of-nat-eq-0-iff plus-1-eq-Suc zero-less-Suc)
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qed (use assms in auto)
qed

lemma fps-sin-add: fps-sin (a + b) = fps-sin a * fps-cos b + fps-cos a * fps-sin b
proof —
have fps-deriv (fps-deriv (fps-sin a * fps-cos b + fps-cos a x fps-sin b)) =
— (fps-const (a + b) * fps-const (a + b) * (fps-sin a x fps-cos b + fps-cos
a * fps-sin b))
by (simp flip: fps-const-neg fps-const-add fps-const-mult
add: fps-sin-deriv fps-cos-deriv algebra-simps)
then show ?thesis
by (auto intro: eq-fps-sin)
qed

lemma fps-cos-add: fps-cos (a + b) = fps-cos a x fps-cos b — fps-sin a * fps-sin b
proof —
have fps-deriv
(fps-deriv (fps-cos a * fps-cos b — fps-sin a * fps-sin b)) =
— (fps-const (a + b) * fps-const (a + b) *
(fps-cos a x fps-cos b — fps-sin a x fps-sin b))
by (simp flip: fps-const-neg fps-const-add fps-const-mult
add: fps-sin-deriv fps-cos-deriv algebra-simps)
then show ?thesis
by (auto intro: eq-fps-cos)
qged

lemma fps-sin-even: fps-sin (— ¢) = — fps-sin ¢

by (simp add: fps-eq-iff fps-sin-def)

lemma fps-cos-odd: fps-cos (— ¢) = fps-cos c
by (simp add: fps-eq-iff fps-cos-def)

definition fps-tan ¢ = fps-sin ¢ / fps-cos ¢

lemma fps-tan-0 [simp]: fps-tan 0 = 0
by (simp add: fps-tan-def)

lemma fps-tan-deriv: fps-deriv (fps-tan c) = fps-const ¢ | (fps-cos c)?
proof —

have th0: fps-cos ¢ $ 0 # 0 by (simp add: fps-cos-def)

from this have fps-cos ¢ # 0 by (intro notl) simp

hence fps-deriv (fps-tan ¢) =

fps-const ¢ x (fps-cos ¢"2 + fps-sin ¢ 2) / (fps-cos ¢"2)
by (simp add: fps-tan-def fps-divide-deriv power2-eq-square algebra-simps
fps-sin-deriv fps-cos-deriv fps-const-neg[symmetric] div-mult-swap
del: fps-const-neg)
also note fps-sin-cos-sum-of-squares
finally show ?thesis by simp
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qed

Connection to fps-exp over the complex numbers — Euler and de Moivre.

lemma fps-exp-ii-sin-cos: fps-exp (i * ¢) = fps-cos ¢ + fps-const i x fps-sin ¢
(is 21l = ?r)
proof —
have 21 $ n = ?r $ n for n
proof (cases even n)
case True
then obtain m where m: n = 2 x m ..
show ?thesis
by (simp add: m fps-sin-def fps-cos-def power-mult-distrib power-mult power-minus
lof ¢~ 2))
next
case Fulse
then obtain m where m: n =2 «xm + 1 ..
show ?thesis
by (simp add: m fps-sin-def fps-cos-def power-mult-distrib
power-mult power-minus [of ¢ ~ 2])
qed
then show ?thesis
by (simp add: fps-eq-iff)
qged

lemma fps-exp-minus-ii-sin-cos: fps-exp (— (1 * ¢)) = fps-cos ¢ — fps-const 1 x
fps-sin ¢
unfolding minus-mult-right fps-exp-ii-sin-cos by (simp add: fps-sin-even fps-cos-odd)

lemma fps-cos-fps-exp-ii: fps-cos ¢ = (fps-exp (i * ¢) + fps-exp (— 1 * ¢)) /
fps-const 2
proof —
have th: fps-cos ¢ + fps-cos ¢ = fps-cos ¢ x fps-const 2
by (simp add: numeral-fps-const)
show ?thesis
unfolding fps-exp-ii-sin-cos minus-mult-commute
by (simp add: fps-sin-even fps-cos-odd numeral-fps-const fps-divide-unit fps-const-inverse
th)
qed

lemma fps-sin-fps-exp-ii: fps-sin ¢ = (fps-exp (i x ¢) — fps-exp (—1ix* ¢)) / fps-const
(2xi)
proof —
have th: fps-const i x fps-sin ¢ + fps-const i x fps-sin ¢ = fps-sin ¢ x fps-const
(2 1)
by (simp add: fps-eq-iff numeral-fps-const)
show ?thesis
unfolding fps-exp-ii-sin-cos minus-mult-commute
by (simp add: fps-sin-even fps-cos-odd fps-divide-unit fps-const-inverse th)
qed
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lemma fps-tan-fps-exp-ii:
fos-tan ¢ = (fps-exp (i * ¢) — fps-exp (—1ix* ¢)) /
(fps-const 1 * (fps-exp (i * ¢) + fps-exp (— i * ¢)))
unfolding fps-tan-def fps-sin-fps-exp-ii fps-cos-fps-exp-ii
by (simp add: fps-divide-unit fps-inverse-mult fps-const-inverse)

lemma fps-demoivre:
(fps-cos a + fps-const i x fps-sin a) n =
fps-cos (of-nat n * a) + fps-const i x fps-sin (of-nat n * a)
unfolding fps-exp-ii-sin-cos[symmetric] fps-exp-power-mult
by (simp add: ac-simps)

5.20 Hypergeometric series

definition fps-hypergeo as bs (c::'a::field-char-0) =
Abs-fps (An. (foldl (Ar a. r* pochhammer a n) 1 as x ¢™n) /
(foldl (Ar b. v % pochhammer b n) 1 bs x of-nat (fact n)))

lemma fps-hypergeo-nth[simp]|: fps-hypergeo as bs ¢ $ n =
(foldl (Ar a. r+ pochhammer a n) 1 as *x ¢ n) /
(foldl (A1 b. 7 % pochhammer b n) 1 bs * of-nat (fact n))
by (simp add: fps-hypergeo-def)

lemma foldl-mult-start:
fixes v :: ‘a::comm-ring-1
shows foldl (A\r z. r x fz) vas* x = foldl (Arz. rx fz) (v*2z) as
by (induct as arbitrary: x v) (auto simp add: algebra-simps)

lemma foldr-mult-foldl:
fixes v :: ‘a::comm-ring-1
shows foldr (Az r. v * fz) as v = foldl (Arz. r x fz) v as
by (induct as arbitrary: v) (simp-all add: foldl-mult-start)

lemma fps-hypergeo-nth-alt:
fps-hypergeo as bs ¢ $ n = foldr (Aa r. r * pochhammer a n) as (¢ ~n) /
foldr (Ab r. r x pochhammer b n) bs (of-nat (fact n))
by (simp add: foldl-mult-start foldr-mult-foldl)

lemma fps-hypergeo-fps-exp[simp): fps-hypergeo || || ¢ = fps-exp ¢
by (simp add: fps-eq-iff)

lemma fps-hypergeo-1-0|[simp)|: fps-hypergeo [1] [| ¢ = 1/(1 — fps-const ¢ x fps-X)
proof —
let ?a = (Abs-fps (An. 1)) oo (fps-const ¢ * fps-X)
have th0: (fps-const ¢ * fps-X) $ 0 = 0 by simp
show ?thesis unfolding gp[OF th0, symmetric]
by (simp add: fps-eq-iff pochhammer-fact|symmetric]
fps-compose-nth power-mult-distrib if-distrib cong del: if-weak-cong)
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qed

lemma fps-hypergeo-B[simp]: fps-hypergeo [—a] [] (— 1) = fps-binomial a
by (simp add: fps-eq-iff gbinomial-pochhammer algebra-simps)

lemma fps-hypergeo-0[simp]: fps-hypergeo as bs ¢ $ 0 = 1
proof —
have foldl (\(r::’a) (a::'a). ) 1 as = 1 for as
by (induction as) auto
then show ?thesis
by auto
qed

lemma foldl-prod-prod:
foldl (A(r::'b::comm-ring-1) (z::'a::comm-ring-1). r * fx) v as * foldl (A\r z. r *
gz) was =
foldl Arz.rx fzxgx) (v w)as
by (induct as arbitrary: v w) (simp-all add: algebra-simps)

lemma fps-hypergeo-rec:
fps-hypergeo as bs ¢ $ Suc n = ((foldl (A\r a. r= (a + of-nat n)) c as) /
(foldl (A b. 7 % (b + of-nat n)) (of-nat (Suc n)) bs)) * fps-hypergeo as bs ¢ $
n
apply (simp add: foldl-mult-start del: of-nat-Suc of-nat-add fact-Suc)
unfolding foldl-prod-prod[unfolded foldl-mult-start] pochhammer-Suc
by (simp add: algebra-simps)

lemma fps-XD-nth[simp|: fps-XD a $ n = of-nat n * a$n
by (simp add: fps-XD-def)

lemma fps-XD-0th[simp|: fps-XD a $ 0 = 0
by simp

lemma fps-XD-Suc[simp]: fps-XD a $ Suc n = of-nat (Suc n) * a $ Suc n
by simp

definition fps-XDp ¢ a = fps-XD a + fps-const ¢ * a

lemma fps-XDp-nth[simp]: fps-XDp ¢ a $ n = (¢ + of-nat n) * a$n
by (simp add: fps-XDp-def algebra-simps)

lemma fps-XDp-commute: fps-XDp b o fps-XDp (c::'a::comm-ring-1) = fps-XDp
co fps-XDp b
by (simp add: fps-XDp-def fun-eq-iff fps-eq-iff algebra-simps)

lemma fps-XDp0 [simp]: fps-XDp 0 = fps-XD
by (simp add: fun-eq-iff fps-eq-iff)

lemma fps-XDp-fps-integral [simp]:
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fixes a :: ‘a::{division-ring,ring-char-0} fps
shows fps-XDp 0 (fps-integral a ¢) = fps-X * a
using fps-deriv-fps-integral[of a c]

by  (simp add: fps-XD-def)

lemma fps-hypergeo-minus-nat:
fps-hypergeo [— of-nat n] [— of-nat (n + m)] (c::'a::field-char-0) $ k =
(if k < n then
pochhammer (— of-nat n) k * ¢ "k / (pochhammer (— of-nat (n + m)) k *
of-nat (fact k))
else 0)
fps-hypergeo [— of-nat m] [— of-nat (m + n)] (c:'a:field-char-0) $ k =
(if K < m then
pochhammer (— of-nat m) k x ¢ ~ k / (pochhammer (— of-nat (m + n)) k =
of-nat (fact k))
else 0)
by (simp-all add: pochhammer-eq-0-iff)

lemma pochhammer-rec-if: pochhammer a n = (if n = 0 then 1 else a x pochham-
mer (a + 1) (n — 1))
by (cases n) (simp-all add: pochhammer-rec)

lemma fps-XDp-foldr-nth [simp]: foldr (Ac r. fps-XDp ¢ o 1) ¢s (Ae. fps-XDp ¢ a)
c0$n=
foldr (Ac r. (¢ + of-nat n) * r) cs (c0 + of-nat n) x a$n
by (induct cs arbitrary: c0) (simp-all add: algebra-simps)

lemma genric-fps-XDp-foldr-nth:
assumes f:Vnca. fca$n=(ofnatn+ kc)* adn
shows foldr (Ac¢r. fcor)cs(Ae.gca) c0$n=
foldr (Ac r. (k¢ + of-nat n) * r) cs (g c0a $ n)
by (induct cs arbitrary: c0) (simp-all add: algebra-simps f)

lemma dist-less-imp-nth-equal:
assumes dist f g < inverse (2 " i)
andj < ¢
shows f$j=9g8%j
proof (rule ccontr)
assume f $j#£g$j
hence f # g by auto
with assms have ¢ < subdegree (f — g)
by (simp add: if-split-asm dist-fps-def)
also have ... <j
using <f $ j # ¢ $ j» by (intro subdegree-lel) simp-all
finally show Fulse using <j < 9> by simp
qed

lemma nth-equal-imp-dist-less:
assumes \j. j<i= f$j=¢98%j
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shows dist f g < inverse (2 ~ i)
proof (cases f = g)
case True
then show ?thesis by simp
next
case Fulse
with assms have dist f g = inverse (2 ~ subdegree (f — g))
by (simp add: if-split-asm dist-fps-def)
moreover
from assms and False have i < subdegree (f — g)
by (intro subdegree-greaterl) simp-all
ultimately show ?thesis by simp
qed

lemma dist-less-eq-nth-equal: dist f g < inverse (2 " i) «— Vj<i. f$ij=9g$
7)

using dist-less-imp-nth-equal nth-equal-imp-dist-less by blast

instance fps :: (comm-ring-1) complete-space
proof
fix fps-X :: nat = 'a fps
assume Cauchy fps-X
obtain M where M:Vi.Vm > Mi. Vj<i fps-X (Mi)$j=fps-Xm$j
proof —
have IM.Vm > M. Vj<i. fps-X M $ j = fps-X m $ j for i
proof —
have 0 < inverse ((2::real) i) by simp
from metric-CauchyD[OF <Cauchy fps-X> this] dist-less-imp-nth-equal
show ?thesis by blast
qed
then show %thesis using that by metis
qed

show convergent fps-X
proof (rule convergentl)
show fps-X ——— Abs-fps (\i. fps-X (M i) $ i)
unfolding tendsto-iff
proof safe
fix e::real assume e: 0 < e
have (An. inverse (2 " n) :: real) —— 0 by (rule LIMSEQ-inverse-realpow-zero)
stmp-all
from this and e have eventually (Ai. inverse (2 ~ i) < e) sequentially
by (rule order-tendstoD)
then obtain ¢ where inverse (2 i) < e
by (auto simp: eventually-sequentially)
have eventually (Az. M i < z) sequentially
by (auto simp: eventually-sequentially)
then show eventually (Az. dist (fps-X x) (Abs-fps (\i. fps-X (M i) $ i) <
e) sequentially
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proof eventually-elim
fix z
assume z: M i < z
have fps-X (M) $j = fps-X (Mj)$jifj <iforj
using M that by (metis nat-le-linear)
with z have dist (fps-X z) (Abs-fps (Aj. fps-X (M §) $ j)) < inverse (2 ~ i)
using M by (force simp: dist-less-eq-nth-equal)
also note «inverse (2 " i) < e
finally show dist (fps-X z) (Abs-fps (\j. fps-X (M) $j)) <e.
qed
qed
qed
qed

bundle fps-syntax

begin

notation fps-nth (infixl <$» 75)
end

unbundle no fps-syntax

end

6 Converting polynomials to formal power series

theory Polynomial-FPS
imports Polynomial Formal-Power-Series
begin

context
includes fps-syntax
begin

definition fps-of-poly where
fos-of-poly p = Abs-fps (coeff p)

lemma fps-of-poly-eq-iff: fps-of-poly p = fps-of-poly ¢ <— p = ¢q
by (simp add: fps-of-poly-def poly-eq-iff fps-eq-iff)

lemma fps-of-poly-nth [simp]: fps-of-poly p $ n = coeff p n
by (simp add: fps-of-poly-def)

lemma fps-of-poly-const: fps-of-poly [:c:] = fps-const ¢
proof (subst fps-eq-iff, clarify)
fix n :: nat show fps-of-poly [:c:] $ n = fps-const ¢ $ n
by (cases n) (auto simp: fps-of-poly-def)
qed
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lemma fps-of-poly-0 [simp]: fps-of-poly 0 = 0
by (subst fps-const-0-eq-0 [symmetric], subst fps-of-poly-const [symmetric]) simp

lemma fps-of-poly-1 [simp]: fps-of-poly 1 = 1
by (simp add: fps-eq-iff)

lemma fps-of-poly-1' [simp]: fps-of-poly [:1:] = 1
by (subst fps-const-1-eq-1 [symmetric], subst fps-of-poly-const [symmetric])
(simp add: one-poly-def)

lemma fps-of-poly-numeral [simp]: fps-of-poly (numeral n) = numeral n
by (simp add: numeral-fps-const fps-of-poly-const [symmetric] numeral-poly)

lemma fps-of-poly-numeral’ [simp): fps-of-poly [:numeral n:] = numeral n
by (simp add: numeral-fps-const fps-of-poly-const [symmetric] numeral-poly)

lemma fps-of-poly-fps-X [simp]: fps-of-poly [:0, 1:] = fps-X
by (auto simp add: fps-of-poly-def fps-eq-iff coeff-pCons split: nat.split)

lemma fps-of-poly-add: fps-of-poly (p + q) = fps-of-poly p + fps-of-poly q
by (simp add: fps-of-poly-def plus-poly.rep-eq fps-plus-def)

lemma fps-of-poly-diff: fps-of-poly (p — q) = fps-of-poly p — fps-of-poly ¢
by (simp add: fps-of-poly-def minus-poly.rep-eq fps-minus-def)

lemma fps-of-poly-uminus: fps-of-poly (—p) = —fps-of-poly p
by (simp add: fps-of-poly-def uminus-poly.rep-eq fps-uminus-def)

lemma fps-of-poly-mult: fps-of-poly (p * q) = fps-of-poly p * fps-of-poly q
by (simp add: fps-of-poly-def fps-times-def fps-eq-iff coeff-mult atLeast0AtMost)

lemma fps-of-poly-smult:
fos-of-poly (smult ¢ p) = fps-const ¢ = fps-of-poly p
using fps-of-poly-mult[of [:c:] p| by (simp add: fps-of-poly-mult fps-of-poly-const)

lemma fps-of-poly-sum: fps-of-poly (sum f A) = sum (Az. fps-of-poly (f x)) A
by (cases finite A, induction rule: finite-induct) (simp-all add: fps-of-poly-add)

lemma fps-of-poly-sum-list: fps-of-poly (sum-list xs) = sum-list (map fps-of-poly
xs)
by (induction xs) (simp-all add: fps-of-poly-add)

lemma fps-of-poly-prod: fps-of-poly (prod f A) = prod (A\z. fps-of-poly (f z)) A
by (cases finite A, induction rule: finite-induct) (simp-all add: fps-of-poly-mult)

lemma fps-of-poly-prod-list: fps-of-poly (prod-list xs) = prod-list (map fps-of-poly

zs)
by (induction zs) (simp-all add: fps-of-poly-mult)
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lemma fps-of-poly-pCons:
fps-of-poly (pCons (c :: 'a :: semiring-1) p) = fps-const ¢ + fps-of-poly p x fps-X
by (subst fps-mult-fps-X-commute [symmetric], intro fps-ext)

(auto simp: fps-of-poly-def coeff-pCons split: nat.split)

lemma fps-of-poly-pderiv: fps-of-poly (pderiv p) = fps-deriv (fps-of-poly p)
by (intro fps-ext) (simp add: fps-of-poly-nth coeff-pderiv)

lemma fps-of-poly-power: fps-of-poly (p ~n) = fps-of-poly p " n
by (induction n) (simp-all add: fps-of-poly-mult)

lemma fps-of-poly-monom: fps-of-poly (monom (¢ :: 'a :: comm-ring-1) n) =
fps-const ¢ x fps-X " n

by (intro fps-ext) simp-all
lemma fps-of-poly-monom': fps-of-poly (monom (1 :: 'a :: comm-ring-1) n) =
frs-X T n

by (simp add: fps-of-poly-monom,)

lemma fps-of-poly-div:
assumes (¢ :: 'a :: field poly) dvd p
shows  fps-of-poly (p div q) = fps-of-poly p | fps-of-poly q
proof (cases ¢ = 0)
case Fulse
from False fps-of-poly-eq-iff [of ¢ 0] have nz: fps-of-poly ¢ # 0 by simp
from assms have p = (p div q) * ¢ by simp
also have fps-of-poly ... = fps-of-poly (p div q) * fps-of-poly q
by (simp add: fps-of-poly-mult)
also from nz have ... / fps-of-poly q = fps-of-poly (p div q)
by (intro nonzero-mult-div-cancel-right) (auto simp: fps-of-poly-0)
finally show ?thesis ..
qed simp

lemma fps-of-poly-divide-numeral:
fps-of-poly (smult (inverse (numeral ¢ :: 'a :: field)) p) = fps-of-poly p / numeral
c

proof —
have smult (inverse (numeral ¢)) p = [:inverse (numeral ¢):] * p by simp
also have fps-of-poly ... = fps-of-poly p / numeral c

by (subst fps-of-poly-mult) (simp add: numeral-fps-const fps-of-poly-pCons)
finally show ?thesis by simp
qged

lemma subdegree-fps-of-poly:
assumes p # 0
defines n = Polynomial.order 0 p
shows  subdegree (fps-of-poly p) = n
proof (rule subdegreel)
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from assms have monom 1 n dvd p by (simp add: monom-1-dvd-iff)
thus zero: fps-of-poly p $ i = 0 if i < n for i
using that by (simp add: monom-1-dvd-iff )

from assms have —monom 1 (Suc n) dvd p
by (auto simp: monom-1-dvd-iff simp del: power-Suc)
then obtain k£ where k: k < n fps-of-poly p $ k # 0
by (auto simp: monom-1-dvd-iff ' less-Suc-eq-le)
with zero[of k] have k = n by linarith
with k show fps-of-poly p $ n # 0 by simp
qged

lemma fps-of-poly-duvd:
assumes p dvd ¢
shows  fps-of-poly (p :: 'a :: field poly) dvd fps-of-poly q
proof (cases p =0V ¢ = 0)
case Fulse
with assms fps-of-poly-eq-iff[of p 0] fps-of-poly-eq-iff [of ¢ 0] show ?thesis
by (auto simp: fps-dvd-iff subdegree-fps-of-poly dvd-imp-order-le)
qed (insert assms, auto)

lemmas fps-of-poly-simps =
fps-of-poly-0 fps-of-poly-1 fps-of-poly-numeral fps-of-poly-const fps-of-poly-fps-X
fps-of-poly-add fps-of-poly-diff fps-of-poly-uminus fps-of-poly-mult fps-of-poly-smult
fps-of-poly-sum fps-of-poly-sum-list fps-of-poly-prod fps-of-poly-prod-list
fps-of-poly-pCons fps-of-poly-pderiv fps-of-poly-power fps-of-poly-monom
fps-of-poly-divide-numeral

lemma fps-of-poly-pcompose:
assumes coeff ¢ 0 = (0 :: 'a :: idom)
shows  fps-of-poly (pcompose p q) = fps-compose (fps-of-poly p) (fps-of-poly q)
using assms by (induction p rule: pCons-induct)
(auto simp: pcompose-pCons fps-of-poly-simps fps-of-poly-pCons
fps-compose-add-distrib fps-compose-mult-distrib)

!/

lemmas reify-fps-atom =
Jps-of-poly-0 fps-of-poly-1" fps-of-poly-numeral’ fps-of-poly-const fps-of-poly-fps-X

The following simproc can reduce the equality of two polynomial FPSs
two equality of the respective polynomials. A polynomial FPS is one that
only has finitely many non-zero coefficients and can therefore be written as
fps-of-poly p for some polynomial p.

This may sound trivial, but it covers a number of annoying side conditions
like 1 + fps-X # 0 that would otherwise not be solved automatically.

ML «

(x TODO: Support for division *)
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signature POLY-FPS = sig
val reify-conv : conv
val eq-conv : conv

val eq-simproc : cterm —> thm option

end

structure Poly-Fps = struct

fun const-binop-conv s conv ct =
case Thm.term-of ct of
(Const (s',-)$ -8 -) =>

if s = s’ then
Conv.binop-conv conv ct
else

raise CTERM (const-binop-conv, [ct])
| - => raise CTERM (const-binop-conv, [ct])

fun reify-conv ct =
let
val rewr = Conv.rewrs-conv o map (fn thm => thm RS Q{thm eq-reflection})
val un = Conv.arg-conv reify-conv
val bin = Conv.binop-conv reify-conv
m
case Thm.term-of ct of
(Const (const-name fps-of-polyy, -) $ -) => ct |> Conv.all-conv
| (Const (const-name < Groups.plus), -) $ - $ -) => ct |> (
bin then-conv rewr Q{thms fps-of-poly-add [symmetric]})
| (Const (const-name < Groups.uminus), -) $ -) => ct |> (
un then-conv rewr Q{thms fps-of-poly-uminus [symmetric]})
| (Const (const-name < Groups.minus), -) $ - $ -) => ct |> (
bin then-conv rewr Q{thms fps-of-poly-diff [symmetric|})
| (Const (const-name < Groups.timesy, -) $ - $ -) => ¢t |> (
bin then-conv rewr Q{thms fps-of-poly-mult [symmetric]})

| (Const (const-name «Rings.divide>, -) $ - $ (Const (const-name «Num.numeraly,

-) )
=> ct |> (Conv.fun-conv (Conv.arg-conv reify-conv)
then-conv rewr @{thms fps-of-poly-divide-numeral [symmetric]})
| (Const (const-name «Power.powery, -) $ Const (const-name (fps-X»,-) $ -)
=> ct |> (
rewr Q{thms fps-of-poly-monom’ [symmetric|})
| (Const (const-name < Power.powers, -) $ - $ -) => ct |> (
Conv. fun-conv (Conv.arg-conv reify-conuv)
then-conv rewr @Q{thms fps-of-poly-power [symmetric]})
=> ct |> (
rewr Q{thms reify-fps-atom [symmetric|})

end
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fun eg-conv ct =
case Thm.term-of ct of
(Const (const-name<HOL.eqs, -) $ - $ -) => ct |> (
Conv.binop-conv reify-conv
then-conv Conv.rewr-conv @Q{thm fps-of-poly-eq-iff THEN eg-reflection]})
| - => raise CTERM (poly-fps-eq-conv, [ct])

val eq-simproc = try eq-conv

end
)

simproc-setup poly-fps-eq ((f :: 'a fps) = g) = <K (K Poly-Fps.eq-simproc))

lemma fps-of-poly-linear: fps-of-poly [:a,1 :: 'a :: field:] = fps-X + fps-const a
by simp

lemma fps-of-poly-linear”. fps-of-poly [:1,a :: 'a :: field:] = 1 + fps-const a * fps-X
by simp

lemma fps-of-poly-cutoff [simp]:
fps-of-poly (poly-cutoff n p) = fps-cutoff n (fps-of-poly p)
by (simp add: fps-eq-iff coeff-poly-cutoff)

lemma fps-of-poly-shift [simp]: fps-of-poly (poly-shift n p) = fps-shift n (fps-of-poly
p)
by (simp add: fps-eq-iff coeff-poly-shift)

definition poly-subdegree :: 'a::zero poly = nat where
poly-subdegree p = subdegree (fps-of-poly p)

lemma coeff-less-poly-subdegree:

k < poly-subdegree p = coeff p k = 0

unfolding poly-subdegree-def using nth-less-subdegree-zerolof k fps-of-poly p] by
stmp

definition prefiz-length :: (‘a = bool) = ’a list = nat where
prefiz-length P xs = length (take While P xs)

primrec prefiz-length-auz :: ('a = bool) = nat = 'a list = nat where
prefiz-length-auz P acc [| = acc

| prefiz-length-aux P acc (z#xs) = (if P x then prefiz-length-auz P (Suc acc) zs

else acc)

lemma prefiz-length-aux-correct: prefiz-length-auxr P acc xs = prefiz-length P xs +
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acc
by (induction zs arbitrary: acc) (simp-all add: prefiz-length-def)

lemma prefiz-length-code [code]: prefiz-length P xs = prefiz-length-auz P 0 xs
by (simp add: prefiz-length-aux-correct)

lemma prefix-length-le-length: prefiz-length P xs < length xs
by (induction xs) (simp-all add: prefiz-length-def)

lemma prefiz-length-less-length: (3 x€set xs. =P x) = prefiz-length P xs < length
xs
by (induction xs) (simp-all add: prefiz-length-def)

lemma nth-prefiz-length:
(Jzeset xs. =P x) = =P (xs ! prefiz-length P xs)
by (induction xs) (simp-all add: prefiz-length-def)

lemma nth-less-prefiz-length:
n < prefiz-length P xs = P (zs ! n)
by (induction xs arbitrary: n)
(auto simp: prefiz-length-def nth-Cons split: if-splits nat.splits)

lemma poly-subdegree-code [code]: poly-subdegree p = prefiz-length ((=) 0) (coeffs
p)
proof (cases p = 0)
case Fulse
note [simp] = this
define n where n = prefiz-length ((=) 0) (coeffs p)
from False have 3k. coeff p k # 0 by (auto simp: poly-eq-iff)
hence ex: Jz€set (coeffs p). © # 0 by (auto simp: coeffs-def)
hence n-less: n < length (coeffs p) and nonzero: coeffs p ! n # 0
unfolding n-def by (auto intro!: prefiz-length-less-length nth-prefiz-length)
show ?thesis unfolding poly-subdegree-def
proof (intro subdegreel)
from n-less have fps-of-poly p $ n = coeffs p ! n
by (subst coeffs-nth) (simp-all add: degree-eq-length-coeffs)
with nonzero show fps-of-poly p $ prefiz-length ((=) 0) (coeffs p) # 0
unfolding n-def by simp
next
fix k assume A: k < prefiz-length ((=) 0) (coeffs p)
also have ... < length (coeffs p) by (rule prefiz-length-le-length)
finally show fps-of-poly p $ k = 0
using nth-less-prefiz-length[OF A]
by (simp add: coeffs-nth degree-eq-length-coeffs)
qed
qed (simp-all add: poly-subdegree-def prefiz-length-def)

end
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Truncation of formal power series: all monomials cz* with k& > n are re-
moved; the remainder is a polynomial of degree at most n — 1.

lift-definition truncate-fps :: nat = 'a fps = ’a :: zero poly is
An F k. if k > n then 0 else fps-nth F k
proof goal-cases
case (I n F)
have eventually (Ak. (if n < k then 0 else fps-nth F k) = 0) at-top
using eventually-ge-at-toplof n| by eventually-elim auto
thus ?Zcase
by (simp add: cofinite-eq-sequentially)
qed

lemma coeff-truncate-fps’ [simp]:
k > n = coeff (truncate-fps n F) k
k < n = coeff (truncate-fps n F) k
by (transfer; simp; fail)+

0
= fps-nth F k

lemma coeff-truncate-fps: coeff (truncate-fps n F) k = (if k < n then fps-nth F k
else 0)
by auto

lemma truncate-0-fps [simpl: truncate-fps 0 F = 0
by (rule poly-eql) auto

lemma degree-truncate-fps: n > 0 = degree (truncate-fps n F) < n
by (rule degree-lessI) auto

lemma truncate-fps-0 [simpl: truncate-fps n 0 = 0
by (rule poly-eql) (auto simp: coeff-truncate-fps)

lemma truncate-fps-add: truncate-fps n (f + g) = truncate-fps n f + truncate-fps
nl!)]y (rule poly-eql) (auto simp: coeff-truncate-fps)
lemma truncate-fps-diff: truncate-fps n (f — g) = truncate-fps n f — truncate-fps
ngy (rule poly-eql) (auto simp: coeff-truncate-fps)

lemma truncate-fps-uminus: truncate-fps n (—f) = —truncate-fps n f
by (rule poly-eql) (auto simp: coeff-truncate-fps)

lemma fps-of-poly-truncate [simpl: fps-of-poly (truncate-fps n f) = fps-cutoff n f
by (rule fps-ext) auto

end
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7 A formalization of formal Laurent series

theory Formal-Laurent-Series
imports

Polynomial-FPS
begin

7.1 The type of formal Laurent series

7.1.1 Type definition

typedef (overloaded) ‘a fls = {f::int = ‘a::zero. V o nunat. f (— int n) = 0}
morphisms fis-nth Abs-fls
proof
show (Az. 0) € {f:int = 'at:zero. ¥ o nunat. f (— int n) = 0}
by simp
qed

setup-lifting type-definition-fis

unbundle fps-syntaz
notation fls-nth (infixl «$$> 75)

lemmas fis-eql = iffD1][OF fls-nth-inject, OF iffD2, OF fun-eq-iff, OF alll]

lemma fls-eq-iff: f = g +— (Vn. f $$ n = g $$ n)
by (simp add: fls-nth-inject[symmetric| fun-eq-iff)

lemma nth-Abs-fls [simp]: ¥V oon. f (— int n) = 0 = Abs-fils f $$ n=fn
by (simp add: Abs-fls-inverse[OF CollectI))

lemmas nth-Abs-fls-finite-nonzero-neg-nth = nth-Abs-fls|OF iffD2, OF eventu-
ally-cofinite]

lemmas nth-Abs-fls-ex-nat-lower-bound = nth-Abs-fls|OF iffD2, OF MOST-nat]
lemmas nth-Abs-fls-nat-lower-bound = nth-Abs-fls-ex-nat-lower-bound[ OF ezl

lemma nth-Abs-fls-ezx-lower-bound:
assumes IN.Vn<N. fn =0
shows Abs-flsf$8n=fn
proof (intro nth-Abs-fls-ex-nat-lower-bound)
from assms obtain N::int where Vn<N. fn = 0 by fast
hence Vn > (if N < 0 then nat (—N) else 0). f (—int n) = 0 by auto
thus IM. Vn>M. f (— int n) = 0 by fast
qed

lemmas nth-Abs-fls-lower-bound = nth-Abs-fls-ez-lower-bound|[OF ex|

lemmas MOST-fls-neg-nth-eq-0 [simp] = CollectD[OF fls-nith)
lemmas fls-finite-nonzero-neg-nth = iff D1[OF eventually-cofinite MOST-fls-neg-nth-eq-0]
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lemma fis-nth-vanishes-below-natk:
fixes [ :: 'a::zero fls
obtains N :: nat
where Vn>N. f$$(—int n) = 0
using iffD1[OF MOST-nat MOST-fls-neg-nth-eq-0)
by blast

lemma fis-nth-vanishes-belowE:
fixes [ :: ‘a:zero fls
obtains N :: int
where Vn<N. f$$n =0
proof—
obtain K :: nat where K:V n>K. f$$(—int n) = 0 by (elim fls-nth-vanishes-below-natE)
have Vn < —int K. f$$n = 0
proof clarify
fix n assume n: n < —int K
define m where m = nat (—n)
with n have m > K by simp
moreover from n m-def have f$$n = f $3 (—int m) by simp
ultimately show f $$ n = 0 using K by simp
qged
thus (AN. Vn<N. f $8 n = 0 = thesis) = thesis by fast
qed

7.1.2 Definition of basic Laurent series

instantiation fls :: (zero) zero

begin
lift-definition zero-fls :: 'a fls is A-. 0 by simp
instance ..

end

lemma fls-zero-nth [simp]: 0 $$ n = 0
by (simp add: zero-fls-def)

lemma fls-zero-eql: (An. f$$n =0) = f =0
by (fastforce intro: fls-eql)

lemma fls-nonzerol: f$$n # 0 = f # 0
by auto

lemma fls-nonzero-nth: f # 0 +— (3 n. f $$ n £ 0)
using fis-zero-eql by fastforce

lemma fls-trivial-delta-eq-zero [simpl: b = 0 = Abs-fls (An. if n=a then b else
0) =0
by (intro fls-zero-eql) simp

lemma fls-delta-nth [simp]:
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Abs-fls (An. if n=a then b else 0) $8 n = (if n=a then b else 0)
using nth-Abs-fls-lower-bound[of a An. if n=a then b else 0] by simp

instantiation fls :: ({zero,one}) one
begin
lift-definition one-fis :: ‘a fls is M\k. if k = 0 then 1 else 0
by (simp add: eventually-cofinite)
instance ..
end

lemma fis-one-nth [simp]:
1 3% n=(if n=0then 1 else 0)
by (simp add: one-fls-def eventually-cofinite)

instance fls :: (zero-neg-one) zero-neg-one

proof (standard, standard)
assume (0::'a fls) = (1::'a fls)
hence (0::'a fls) $$ 0 = (1::'a fls) $$ 0 by simp
thus Fulse by simp

qed

definition fls-const :: ‘a::zero = ‘a fls
where fls-const ¢ = Abs-fls (An. if n = 0 then c else 0)

lemma fls-const-nth [simp]: fls-const ¢ $$ n = (if n = 0 then c else 0)
by (simp add: fls-const-def eventually-cofinite)

lemma fls-const-0 [simp]: fls-const 0 = 0
unfolding fls-const-def using fls-trivial-delta-eq-zero by fast

lemma fis-const-nonzero: ¢ # 0 = fls-const ¢ # 0
using fls-nonzerol[of fls-const ¢ 0] by simp

lemma fls-const-eq-0-iff [simp]: fls-const ¢ = 0 +— ¢ =0
by (auto simp: fls-eq-iff)

lemma fls-const-1 [simp)|: fls-const 1 = 1
unfolding fis-const-def one-fis-def ..

lemma fls-const-eq-1-iff [simp]: fls-const ¢ = 1 +— ¢ = 1
by (auto simp: fls-eq-iff)

lift-definition fls-X :: ‘a::{zero,one} fis
is An. if n = 1 then 1 else 0
by simp

lemma fls-X-nth [simp]:

fis-X $8 n = (if n = 1 then 1 else 0)
by (simp add: fls-X-def)
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lemma fls-X-nonzero [simp]: (fIs-X :: 'a :: zero-neg-one fls) # 0
by (intro fls-nonzerol) simp

lift-definition fls-X-inv :: ‘a::{zero,one} fls
is An. if n = —1 then 1 else 0
by (simp add: eventually-cofinite)

lemma fls-X-inv-nth [simp]:
fis-X-inv $$ n = (if n = —1 then 1 else 0)
by (simp add: fls-X-inv-def eventually-cofinite)

lemma fls-X-inv-nonzero [simp]: (fls-X-inv :: 'a :: zero-neg-one fls) # 0
by (intro fls-nonzerol) simp

7.2 Subdegrees

lemma unique-fis-subdegree:
assumes f # 0
shows 3Jln. f$$n £ 0 A (Vm. f88m # 0 — n < m)
proof—
obtain N::nat where N:Vn>N. f$$(—int n) = 0 by (elim fls-nth-vanishes-below-natE)
define M where M = —int N
have M: Am. f$¢m # 0 —= M < m
proof—
fix m assume m: f$$m # 0
show M < m
proof (cases m<0)
case True with m N M-def show ?thesis
using allE[OF N, of nat (—m) Fulse] by force
qed (simp add: M-def)

qed

have — (Vk:nat. f$$(M + int k) = 0)

proof
assume abovel: YV k::nat. f$$(M + int k) = 0
have f=0

proof (rule fls-zero-eql)
fix n show f$$n = 0
proof (cases M < n)
case True
define k where k = nat (n — M)
from True have n = M + int k by (simp add: k-def)
with abovel show ?Zthesis by simp
next
case Fulse with M show #?thesis by auto
qed
qed
with assms show Fulse by fast
qed
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hence ez-k: Ak::nat. f$$(M + int k) # 0 by fast
define k where k = (LEAST k::nat. f$$(M + int k) # 0)
define n where n = M + int k
from k-def n-def have fn: f$3n # 0 using Leastl-ex[OF ex-k| by simp
moreover have Vm. f$8m £ 0 — n < m
proof (clarify)

fix m assume m: f$$m # 0

with M have M < m by fast

define | where | = nat (m — M)

from «M < m» have I: m = M + int | by (simp add: I-def)

with n-def m k-def | show n < m

using Least-le[of Mk. f$$(M + int k) # 0] by auto

qed
moreover have An’. f$$n’' # 0 = (Vm. f$$m £ 0 — n’' < m) = n'=n
proof—

fix n’:: int

assume n”: f$$n’ £ 0 Vm. f8m £ 0 — n' < m

from n'(1) M have M < n’ by fast

define | where [ = nat (n’ — M)

from «M < n» have I: n’ = M + int | by (simp add: I-def)

with n-def k-def n’ fn show n’ = n

using Least-le[of k. f$$(M + int k) # 0 1] by force

qed
ultimately show ?thesis

using ezll[of An. f$$n # 0 A (Ym. f$$m # 0 — n < m) n| by blast

qged

definition fis-subdegree :: (‘a::zero) fls = int
where fls-subdegree f = (if f = 0 then 0 else LEAST n::int. f$$n # 0)

lemma fls-zero-subdegree [simp): fls-subdegree 0 = 0
by (simp add: fls-subdegree-def)

lemma nth-fls-subdegree-nonzero [simp|: f # 0 = f $$ fls-subdegree f # 0
using Least1I[OF unique-fls-subdegree] by (simp add: fls-subdegree-def)

lemma nth-fis-subdegree-zero-iff: (f $3 fls-subdegree f = 0) +— (f = 0)
using nth-fis-subdegree-nonzero by auto

lemma fls-subdegree-lel: f $$ n # 0 = fls-subdegree f < n
using Least1-le[OF unique-fls-subdegree)
by  (auto simp: fls-subdegree-def)

lemma fls-subdegree-lel”: | $$ n # 0 = n < m = fls-subdegree f < m
using fls-subdegree-lel by fastforce

lemma fls-eq0-below-subdegree [simpl: n < fls-subdegree f = f $$ n = 0
using fis-subdegree-lel by fastforce
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lemma fls-subdegree-gel: f # 0 = (Nk. k < n = f$$ k =0) = n <
fls-subdegree f
using nth-fls-subdegree-nonzero by force

lemma fls-subdegree-ge0I: (Nk. k < 0 = f $$ k = 0) = 0 < fis-subdegree f
using fls-subdegree-gel[of f 0] by (cases f=0) auto

lemma fis-subdegree-greaterl:
assumes f # 0 N\k. k<n= f$$ k=0
shows n < fls-subdegree f
using assms(1) assms(2)[of fls-subdegree f] nth-fls-subdegree-nonzero|of f]
by force

lemma fls-subdegree-eql: f $$ n # 0 = (Nk.-. k < n = [ 88 k = 0) =
fls-subdegree f = n

using fls-subdegree-lel fls-subdegree-gel|of f]

by  fastforce

lemma fls-delta-subdegree [simp):
b # 0 = fls-subdegree (Abs-fls (An. if n=a then b else 0)) = a
by (intro fls-subdegree-eql) simp-all

lemma fls-delta0-subdegree: fls-subdegree (Abs-fls (An. if n=0 then a else 0)) = 0
by (cases a=0) simp-all

lemma fls-one-subdegree [simp): fls-subdegree 1 = 0
by (auto intro: fls-delta0-subdegree simp: one-fls-def)

lemma fls-const-subdegree [simp]: fls-subdegree (fls-const ¢) = 0
by (cases ¢=0) (auto intro: fls-subdegree-eql)

lemma fis-X-subdegree [simp]: fls-subdegree (fls-X::'a::{zero-neg-one} fls) = 1
by (intro fls-subdegree-eql) simp-all

lemma fls-X-inv-subdegree [simp]: fls-subdegree (fls-X-inv::’a::{zero-neq-one} fls)
= —1
by (intro fls-subdegree-eql) simp-all

lemma fis-eq-above-subdegreel:
assumes N < fis-subdegree f N < fls-subdegree g Vk>N. f $$ k = g $$ k
shows f=g¢g

proof (rule fls-eql)
fix n from assms show f $$ n = g $8 n by (cases n < N) auto

qed

7.3 Shifting
7.3.1 Shift definition

definition fis-shift :: int = (‘a::zero) fls = ‘a fls
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where fls-shift n f = Abs-fls (\k. f $$ (k+n))
— Since the index set is unbounded in both directions, we can shift in either
direction.

lemma fls-shift-nth [simp): fls-shift m f $$ n = f $$ (n+m)
unfolding fls-shift-def
proof (rule nth-Abs-fls-ex-lower-bound)
obtain K::int where K: Vn<K. f$$n = 0 by (elim fls-nth-vanishes-belowF)
hence Vn<K—m. f$$(n+m) = 0 by auto
thus IN. Vn<N. f 88 (n + m) = 0 by fast
qged

lemma fls-shift-eq-iff: (fls-shift m f = fis-shift m g) «— (f = g)
proof (rule iffI, rule fls-eql)
fix k
assume 1: fis-shift m f = fis-shift m g
have f $$ &k = fis-shift m g $$ (k — m) by (simp add: 1[symmetric))
thus f $$ £ = ¢ $$ k by simp
qed (intro fls-eql, simp)

lemma fls-shift-0 [simp]: fls-shift 0 f = f
by (intro fls-eql) simp

lemma fls-shift-subdegree [simp):
f # 0 = fls-subdegree (fls-shift n f) = fls-subdegree f — n
by (intro fls-subdegree-eql) simp-all

lemma fls-shift-fls-shift [simpl: fls-shift m (fls-shift k f) = fls-shift (k+m) f
by (intro fls-eql) (simp add: algebra-simps)

lemma fis-shift-fis-shift-reorder:

fls-shift m (fls-shift k f) = fls-shift k (fls-shift m f)
using fls-shift-fls-shift[of m k f] fls-shift-fls-shift[of k m f] by (simp add: add.commute)

lemma fls-shift-zero [simp): fls-shift m 0 = 0
by (intro fls-zero-eql) simp

lemma fis-shift-eq0-iff: fls-shift m f = 0 <— f = 0
using fls-shift-eq-iff [of m f 0] by simp

lemma fls-shift-eq-1-iff: fls-shift n f = 1 +— f = fls-shift (—n) 1
by (metis add-minus-cancel fls-shift-eq-iff fls-shift-fls-shift)

lemma fis-shift-nonneg-subdegree: m < fls-subdegree f = fls-subdegree (fls-shift
mf)=0
by (cases f=0) (auto intro: fls-subdegree-gel)

lemma fis-shift-delta:
fls-shift m (Abs-fls (An. if n=a then b else 0)) = Abs-fls (An. if n=a—m then b
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else 0)
by (intro fls-eql) simp

lemma fis-shift-const:
fls-shift m (fls-const ¢) = Abs-fls (An. if n=—m then c else 0)
by (intro fls-eql) simp

lemma fis-shift-const-nth:
fis-shift m (fls-const ¢) $8 n = (if n=—m then c else 0)
by (simp add: fls-shift-const)

lemma fls-X-conv-shift-1: fls-X = fls-shift (—1) 1
by (intro fls-eql) simp

lemma fls-X-shift-to-one [simp]: fls-shift 1 fls-X = 1
using fls-shift-fls-shiftof —1 1 1] by (simp add: fis-X-conv-shift-1)

lemma fls-X-inv-conv-shift-1: fls-X-inv = fls-shift 1 1
by (intro fls-eql) simp

lemma fls-X-inv-shift-to-one [simp]: fls-shift (—1) fls-X-inv = 1
using fls-shift-fls-shift[of 1 —1 1] by (simp add: fls-X-inv-conv-shift-1)

lemma fis-X-fls- X-inv-conv:
fls-X = fls-shift (—2) fis-X-inv fls-X-inv = fls-shift 2 fls-X
by (simp-all add: fls-X-conv-shift-1 fls-X-inv-conv-shift-1)

7.3.2 Base factor

Similarly to the unit-factor for formal power series, we can decompose a
formal Laurent series as a power of the implied variable times a series of
subdegree 0. (See lemma fls-base-factor-X-power-decompose.) But we will
call this something other unit-factor because it will not satisfy assumption
is-unit-unit-factor of semidom-divide-unit-factor.
definition fls-base-factor :: (‘a::zero) fls = 'a fls

where fls-base-factor-def[simp|: fls-base-factor f = fls-shift (fls-subdegree f) f

lemma fls-base-factor-nth: fls-base-factor f $8 n = f $% (n + fls-subdegree f)
by simp

lemma fls-base-factor-nonzero [simp]: f # 0 = fls-base-factor f # 0
using fls-nonzerol [of fls-base-factor f 0] by simp

lemma fls-base-factor-subdegree [simpl: fls-subdegree (fls-base-factor f) = 0
by (cases f=0) auto

lemma fls-base-factor-base [simp]:
fis-base-factor [ $$ fls-subdegree (fls-base-factor f) = f $$ fls-subdegree f
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using fls-base-factor-subdegree|of f] by simp

lemma fis-conv-base-factor-shift-subdegree:

f = fls-shift (—fis-subdegree f) (fls-base-factor f)
by simp

lemma fis-base-factor-idem:
fls-base-factor (fls-base-factor (f::'a::zero fls)) = fls-base-factor f
using fls-base-factor-subdegree|of f] by simp

lemma fis-base-factor-zero: fls-base-factor (0::'a::zero fls) = 0
by simp

lemma fls-base-factor-zero-iff: fls-base-factor (f::'a::zero fls) = 0 +— f =0
proof
have fls-shift (—fls-subdegree f) (fls-shift (fls-subdegree f) f) = f by simp
thus fis-base-factor f = 0 = f=0 by simp
qed simp

lemma fls-base-factor-nth-0: f # 0 = fls-base-factor f $$ 0 # 0
by simp

lemma fls-base-factor-one: fls-base-factor (1::'a::{zero,one} fls) = 1
by simp

lemma fls-base-factor-const: fls-base-factor (fls-const ¢) = fls-const ¢
by simp

lemma fis-base-factor-delta:
fls-base-factor (Abs-fls (An. if n=a then c else 0)) = fls-const ¢
by (cases ¢=0) (auto intro: fls-eql)

lemma fls-base-factor-X: fls-base-factor (fls-X::'a::{zero-neq-one} fls) = 1
by simp

lemma fis-base-factor-X-inv: fls-base-factor (fls-X-inv::'a::{zero-neg-one} fls) = 1
by simp

lemma fls-base-factor-shift [simp|: fls-base-factor (fls-shift n f) = fls-base-factor f
by (cases f=0) simp-all

7.4 Conversion between formal power and Laurent series

7.4.1 Converting Laurent to power series

We can truncate a Laurent series at index 0 to create a power series, called
the regular part.

lift-definition fls-regpart :: (‘a::zero) fls = 'a fps
is \f. Abs-fps (An. [ (int n))

389



lemma fls-regpart-nth [simpl: fls-regpart f $ n = f $$ (int n)
by (simp add: fls-regpart-def)

lemma fls-regpart-zero [simpl: fls-regpart 0 = 0
by (intro fps-ext) simp

lemma fls-regpart-one [simpl: fls-regpart 1 = 1
by (intro fps-ext) simp

lemma fls-regpart-Abs-fls:
Veon. F (— int n) = 0 = fls-regpart (Abs-fls F) = Abs-fps (An. F (int n))
by (intro fps-ext) auto

lemma fis-regpart-delta:
fls-regpart (Abs-fls (An. if n=a then b else 0)) =
(if a < 0 then 0 else Abs-fps (An. if n=nat a then b else 0))
by (rule fps-ext, auto)

lemma fls-regpart-const [simp]: fls-regpart (fls-const ¢) = fps-const ¢
by (intro fps-ext) simp

lemma fls-regpart-fls-X [simp|: fls-regpart fls-X = fps-X
by (intro fps-ext) simp

lemma fis-regpart-fis-X-inv [simp]: fls-regpart fls-X-inv = 0
by (intro fps-ext) simp

lemma fis-regpart-eq0-imp-nonpos-subdegree:
assumes fis-regpart f = 0
shows fls-subdegree f < 0
proof (cases f=0)
case Fulse
have fls-subdegree f > 0 = [ $$ fls-subdegree f = 0
proof—
assume fls-subdegree f > 0
hence [ $3$ (fls-subdegree ) = (fls-regpart ) $ (nat (fls-subdegree f)) by simp
with assms show [ $3$ (fls-subdegree f) = 0 by simp
qed
with False show ?thesis by fastforce
qed simp

lemma fis-subdegree-lt-fis-regpart-subdegree:
fls-subdegree [ < int (subdegree (fls-regpart f))
using fls-subdegree-lel nth-subdegree-nonzero|of fls-regpart f]
by  (cases (fls-regpart f) = 0)
(simp-all add: fls-regpart-eq0-imp-nonpos-subdegree)
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lemma fis-regpart-subdegree-conv:
assumes fis-subdegree f > 0
shows  subdegree (fls-regpart f) = nat (fls-subdegree f)
— This is the best we can do since if the subdegree is negative, we might still have
the bad luck that the term at index 0 is equal to 0.
proof (cases f=0)
case Fulse with assms show ?thesis by (intro subdegreel) simp-all
qed simp

lemma fis-eq-conv-fps-eql:
assumes 0 < fls-subdegree f 0 < fls-subdegree g fls-regpart f = fis-regpart g
shows f =g
proof (rule fls-eq-above-subdegreel, rule assms(1), rule assms(2), clarify)
fix k::int assume 0 < k
with assms(3) show f $$ k = ¢ $$ k
using fls-regpart-nth[of f nat k] fls-regpart-nth[of g] by simp
qed

lemma fis-regpart-shift-conv-fps-shift:
m > 0 = fls-regpart (fls-shift m f) = fps-shift (nat m) (fls-regpart f)
by (intro fps-ext) simp-all

lemma fps-shift-fls-regpart-conv-fls-shift:

fos-shift m (fls-regpart ) = fls-regpart (fls-shift m f)
by (intro fps-ext) simp-all

lemma fps-unit-factor-fls-regpart:
fls-subdegree f > 0 = unit-factor (fls-regpart f) = fls-regpart (fls-base-factor f)
by (auto intro: fps-ext simp: fls-regpart-subdegree-conv)

The terms below the zeroth form a polynomial in the inverse of the implied
variable, called the principle part.

lift-definition fis-prpart :: (‘a::zero) fls = 'a poly
is Af. Abs-poly (An. if n = 0 then 0 else f (— int n))

lemma fls-prpart-coeff [simpl: coeff (fls-prpart f) n = (if n = 0 then 0 else f $$
(— int n))
proof—
have {z. (if z = 0 then O else f $% — int z) # 0} C {x. f 88 — int z # 0}
by auto
hence finite {x. (if £ = 0 then 0 else f $$ — int ) # 0}
using fls-finite-nonzero-neg-nthlof f] by (simp add: rev-finite-subset)
hence coeff (fls-prpart f) = (An. if n = 0 then 0 else f $$ (— int n))
using Abs-poly-inverse[OF Collectl, OF iffD2, OF eventually-cofinite]
by (simp add: fls-prpart-def)
thus ?thesis by simp
qged
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lemma fls-prpart-eq0-iff: (fls-prpart f = 0) +— (fls-subdegree f > 0)
proof
assume 1: fis-prpart f = 0
show fis-subdegree f > 0
proof (intro fls-subdegree-geOI)
fix k::int assume k£ < 0
with 1 show f 8% k = 0 using fls-prpart-coeff|of f nat (—k)] by simp
qed
qed (intro poly-eql, simp)

lemma fls-prpart0 [simp): fls-prpart 0 = 0
by (simp add: fls-prpart-eq0-iff)

lemma fls-prpart-one [simpl: fls-prpart 1 = 0
by (simp add: fls-prpart-eq0-iff)

lemma fis-prpart-delta:
fls-prpart (Abs-fls (An. if n=a then b else 0)) =
(if a<0 then Poly (replicate (nat (—a)) 0 @ [b]) else 0)
by (intro poly-eql) (auto simp: nth-default-def nth-append)

lemma fls-prpart-const [simpl: fls-prpart (fls-const ¢) = 0
by (simp add: fls-prpart-eq0-iff)

lemma fls-prpart-X [simp): fls-prpart fls-X = 0
by (intro poly-eql) simp

lemma fls-prpart-X-inv: fls-prpart fls-X-inv = [:0,1:]
proof (intro poly-eql)
fix n show coeff (fls-prpart fls-X-inv) n = coeff [:0,1:] n
proof (cases n)
case (Suc i) thus ?thesis by (cases i) simp-all
qed simp
qed

lemma degree-fls-prpart [simp]:
degree (fls-prpart f) = nat (—fls-subdegree f)
proof (cases f=0)
case Fulse show ?thesis unfolding degree-def
proof (intro Least-equality)
fix N assume N: Vi>N. coeff (fls-prpart f) i = 0
have Vi < —int N. f $$ i = 0
proof clarify
fix { assume i: | < —int N
hence nat (—i) > N by simp
with N i show f $$ ¢ = 0 using fls-prpart-coeff[of f nat (—17)] by auto
qed
with Fulse have fls-subdegree f > —int N using fls-subdegree-gel by auto
thus nat (— fls-subdegree f) < N by simp
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qged auto
qed simp

lemma fis-prpart-shift:
assumes m < (
shows  fls-prpart (fls-shift m f) = pCons 0 (poly-shift (Suc (nat (—m)))
(fis-prpart 1)
proof (intro poly-eql)
fix n
define LHS RHS
where LHS = fls-prpart (fls-shift m f)
and RHS = pCons 0 (poly-shift (Suc (nat (—m))) (fls-prpart f))
show coeff LHS n = coeff RHS n
proof (cases n)
case (Suc k)
from assms have 1: —int (Suc k + nat (—m)) = —int (Suc k) + m by simp
have coeff RHS n = f $3% (—int (Suc k) + m)
using arg-cong[OF 1, of ($%) f] by (simp add: Suc RHS-def coeff-poly-shift)
with Suc show ?thesis by (simp add: LHS-def)
qed (simp add: LHS-def RHS-def)
qed

lemma fls-prpart-base-factor: fls-prpart (fls-base-factor f) = 0
using fls-base-factor-subdegree|of f] by (simp add: fls-prpart-eq0-iff)

The essential data of a formal Laurant series resides from the subdegree up.

abbreviation fls-base-factor-to-fps :: ('a::zero) fls = ‘a fps
where fis-base-factor-to-fps f = fls-regpart (fls-base-factor f)

lemma fis-base-factor-to-fps-conv-fps-shift:
assumes fis-subdegree f > 0
shows fls-base-factor-to-fps f = fps-shift (nat (fls-subdegree f)) (fls-regpart f)
by (simp add: assms fls-regpart-shift-conv-fps-shift)

lemma fis-base-factor-to-fps-nth:
fls-base-factor-to-fps f $ n = f 3% (fls-subdegree f + int n)
by (simp add: algebra-simps)

lemma fls-base-factor-to-fps-base: f # 0 = fls-base-factor-to-fps f $ 0 # 0
by simp

lemma fis-base-factor-to-fps-nonzero: f # 0 = fis-base-factor-to-fps f # 0
using fps-nonzerol|of fls-base-factor-to-fps f 0] fls-base-factor-to-fps-base by simp

lemma fis-base-factor-to-fps-subdegree [simp]: subdegree (fls-base-factor-to-fps f) =
0
by (cases f=0) auto

lemma fis-base-factor-to-fps-trivial:
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fls-subdegree f = 0 = fls-base-factor-to-fps f = fls-regpart f
by simp

lemma fis-base-factor-to-fps-zero: fls-base-factor-to-fps 0 = 0
by simp

lemma fis-base-factor-to-fps-one: fls-base-factor-to-fps 1 = 1
by simp

lemma fis-base-factor-to-fps-delta:
fls-base-factor-to-fps (Abs-fls (An. if n=a then c else 0)) = fps-const ¢
using fls-base-factor-delta[of a c] by simp

lemma fis-base-factor-to-fps-const:
fls-base-factor-to-fps (fls-const ¢) = fps-const ¢
by simp

lemma fis-base-factor-to-fps-X:
fls-base-factor-to-fps (fls-X::'a::{zero-neq-one} fls) = 1
by simp

lemma fis-base-factor-to-fps-X-inv:
fls-base-factor-to-fps (fls-X-inv::'a::{zero-neg-one} fls) = 1
by simp

lemma fis-base-factor-to-fps-shift:
fls-base-factor-to-fps (fls-shift m f) = fls-base-factor-to-fps f
using fls-base-factor-shift[of m f] by simp

lemma fis-base-factor-to-fps-base-factor:
fls-base-factor-to-fps (fls-base-factor f) = fls-base-factor-to-fps f
using fis-base-factor-to-fps-shift by simp

lemma fps-unit-factor-fis-base-factor:
unit-factor (fls-base-factor-to-fps f) = fls-base-factor-to-fps f
using fls-base-factor-to-fps-subdegree[of f] by simp

7.4.2 Converting power to Laurent series

We can extend a power series by Os below to create a Laurent series.

definition fps-to-fls :: (‘a::zero) fps = 'a fls
where fps-to-fls f = Abs-fls (Mk::int. if k<0 then 0 else f $ (nat k))

lemma fps-to-fls-nth [simp]:
(fps-to-fls f) $8 n = (if n < 0 then 0 else f$(nat n))
using  nth-Abs-fls-lower-bound[of 0 (Ak::int. if k<O then 0 else f $ (nat k))]
unfolding fps-to-fis-def
by stmp
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lemma fps-to-fis-eq-imp-fps-eq:
assumes fps-to-fls f = fps-to-fls g

shows f=g¢g
proof (intro fps-ext)
fix n

have f $ n = fps-to-fls g $$ int n by (simp add: assms[symmetric])
thus f $ n =g $ n by simp
qed

lemma fps-to-fis-eq-iff [simp): fps-to-fls f = fps-to-fls g +— f =g
using fps-to-fis-eq-imp-fps-eq by blast

lemma fps-zero-to-fls [simp]: fps-to-fls 0 = 0
by (intro fls-zero-eql) simp

lemma fps-to-fls-nonzerol: f # 0 = fps-to-fis f # 0
using fps-to-fls-eq-imp-fps-eqof f 0] by auto

lemma fps-one-to-fls [simp]: fps-to-fls 1 = 1
by (intro fls-eql) simp

lemma fps-to-fis-Abs-fps:
fos-to-fls (Abs-fps F) = Abs-fls (An. if n<0 then 0 else F' (nat n))
using nth-Abs-fls-lower-bound[of 0 (An::int. if n<0 then 0 else F (nat n))]
by  (intro fls-eql) simp

lemma fps-delta-to-fis:

fps-to-fls (Abs-fps (An. if n=a then b else 0)) = Abs-fls (An. if n=int a then b
else 0)

using fls-eqI[of - Abs-fls (An. if n=int a then b else 0)] by force

lemma fps-const-to-fis [simp]: fps-to-fls (fps-const ¢) = fls-const ¢
by (intro fls-eql) simp

lemma fps-X-to-fls [simp]: fps-to-fls fps-X = fls-X
by (fastforce intro: fls-eql)

lemma fps-to-fls-eq-0-iff [simp]: (fps-to-fls f = 0) <— (f=0)
using fps-to-fls-nonzerol by auto

lemma fps-to-fis-eq-1-iff [simpl: fps-to-flsf =1 +— f =1
using fps-to-fis-eq-iff by fastforce

lemma fls-subdegree-fls-to-fps-gt0: fls-subdegree (fps-to-fls f) > 0
proof (cases f=0)
case Fulse show ?Zthesis
proof (rule fls-subdegree-gel, rule fls-nonzerol)
from Fualse show fps-to-fls f $$ int (subdegree f) # 0
by simp

395



qed simp
qed simp

lemma fls-subdegree-fis-to-fps: fls-subdegree (fps-to-fls f) = int (subdegree f)
proof (cases f=0)
case Fulse
have subdegree f = nat (fls-subdegree (fps-to-fls f))
proof (rule subdegreel)
from False show f $ (nat (fls-subdegree (fps-to-fls f))) # 0
using fls-subdegree-fis-to-fps-gt0[of f] nth-fls-subdegree-nonzero|of fps-to-fis f]
fps-to-fis-nonzerol|of f]
by  simp
next
fix k assume k: k < nat (fls-subdegree (fps-to-fls f))
thus f$ k=0
using fls-eq0-below-subdegree|of int k fps-to-fls f] by simp
qed
thus ?thesis by (simp add: fls-subdegree-fls-to-fps-gt0)
qed simp

lemma fps-shift-to-fls [simp]:

n < subdegree f = fps-to-fls (fps-shift n f) = fls-shift (int n) (fps-to-fls f)
by (auto intro: fls-eql simp: nat-add-distrib nth-less-subdegree-zero)

lemma fls-base-factor-fps-to-fls: fls-base-factor (fps-to-fls f) = fps-to-fls (unit-factor
f)

using nth-less-subdegree-zero|of - f]
by  (auto intro: fls-eql simp: fls-subdegree-fls-to-fps nat-add-distrib)

lemma fls-regpart-to-fls-trivial [simp):
fis-subdegree f > 0 = fps-to-fls (fls-regpart f) = f
by (intro fls-eql) simp

lemma fls-regpart-fps-trivial [simpl: fls-regpart (fps-to-fls f) = f
by (intro fps-ext) simp

lemma fps-to-fis-base-factor-to-fps:

fos-to-fls (fls-base-factor-to-fps f) = fls-base-factor f
by (intro fls-eql) simp

lemma fis-conv-base-factor-to-fps-shift-subdegree:
f = fis-shift (—fis-subdegree f) (fps-to-fls (fls-base-factor-to-fps f))
using fps-to-fls-base-factor-to-fps|of f] fps-to-fls-base-factor-to-fps|of f] by simp

lemma fls-base-factor-to-fps-to-fls:
fls-base-factor-to-fps (fps-to-fls f) = unit-factor f
using fls-base-factor-fps-to-fis|of f] fls-regpart-fps-trivial[of unit-factor f)
by  simp
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lemma fis-as-fps:
fixes f :: 'a :: zero fls and n :: int
assumes n: n > —fls-subdegree f
obtains f’ where f = fls-shift n (fps-to-fls )
proof —
have fls-subdegree (fls-shift (— n) f) > 0
by (rule fls-shift-nonneg-subdegree) (use n in simp)
hence [ = fls-shift n (fps-to-fls (fls-regpart (fls-shift (—n) [)))
by (subst fls-regpart-to-fls-trivial) simp-all
thus ?thesis
by (rule that)
qed

lemma fls-as-fps”:
fixes [ :: 'a :: zero fls and n :: int
assumes n: n > —fis-subdegree f
shows 3f. f = fls-shift n (fps-to-fls f)
using fls-as-fps[OF assms| by metis

abbreviation
fis-regpart-as-fls f = fps-to-fls (fls-regpart f)
abbreviation
fls-prpart-as-fis f =
fls-shift (—fls-subdegree f) (fps-to-fls (fps-of-poly (reflect-poly (fls-prpart f))))

lemma fis-regpart-as-fls-nth:
fls-regpart-as-fls f $8 n = (if n < 0 then 0 else f $$ n)
by simp

lemma fis-regpart-idem:

fis-regpart (fls-regpart-as-fis f) = fls-regpart f
by simp

lemma fis-prpart-as-fls-nth:
fls-prpart-as-fls f $8 n = (if n < 0 then f $$ n else 0)
proof (cases n < fls-subdegree f n < 0 rule: case-split[case-product case-split))
case Fulse-True
hence nat (—fls-subdegree f) — nat (n — fls-subdegree f) = nat (—n) by auto
with False-True show ?thesis
using coeff-reflect-poly|of fls-prpart f nat (n — fls-subdegree )] by auto
next
case Fulse-Fulse thus ?thesis
using coeff-reflect-poly|of fis-prpart f nat (n — fls-subdegree f)] by auto
qed simp-all

lemma fls-prpart-idem [simp): fls-prpart (fls-prpart-as-fls f) = fls-prpart f
using fls-prpart-as-fis-nth[of f] by (intro poly-eqI) simp

lemma fls-regpart-prpart: fls-regpart (fls-prpart-as-fls f) = 0
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using fls-prpart-as-fls-nthlof f] by (intro fps-ext) simp

lemma fls-prpart-regpart: fls-prpart (fls-regpart-as-fls f) = 0
by (intro poly-eql) simp

7.5 Algebraic structures
7.5.1 Addition

instantiation fls :: (monoid-add) plus
begin
lift-definition plus-fis :: 'a fls = 'a fls = 'a flsis \Mfgn. fn+ gn
proof—
fix ff/:int = 'a
assume Voon. f (— intn) = 0 Voon. f' (— int n) = 0
from this obtain N N’ where Vn>N. f (—int n) = 0 Vn>N'. f' (—int n) =

0
by (auto simp: MOST-nat)
hence Vn > max N N'. f (—int n) + f (—int n) = 0 by auto
hence 3K. Vn>K. f (—int n) + f' (—i L‘n) = 0 by fast
thus Von. f (= int n) + f' (—int n) = 0 by (simp add: MOST-nat)
qged
instance ..
end

lemma fls-plus-nth [simp]: (f + g) S n=F%8n+ g$$n
by transfer simp

lemma fls-plus-const: fls-const x + fls-const y = fls-const (x+y)
by (intro fls-eql) simp

lemma fis-plus-subdegree:
f+ g # 0 = fls-subdegree (f + g) > min (fls-subdegree f) (fls-subdegree g)
by (auto intro: fls-subdegree-gel)

lemma fls-shift-plus [simp]:

flis-shift m (f + g) = (fls-shift m f) + (fls-shift m g)
by (intro fls-eql) simp

lemma fls-regpart-plus [simp]: fls-regpart (f + g) = fls-regpart f + fls-regpart g
by (intro fps-ext) simp

lemma fls-prpart-plus [simp] : fls-prpart (f + g) = fls-prpart f + fls-prpart g
by (intro poly-eqI) simp

lemma fls-decompose-reg-pr-parts:
fixes [ ::’a :: monoid-add fls
defines R = fls-regpart-as-fis f
and P = fls-prpart-as-fis f
shows f=P+ R

398



and f=R+ P

using  fls-prpart-as-fls-nth[of f]
by (auto intro: fls-eql simp add: assms)

lemma fps-to-fls-plus [simp): fps-to-fls (f + g) = fps-to-fls f + fps-to-fls g
by (intro fls-eql) simp

instance fls :: (monoid-add) monoid-add
proof
fixabc: 'afls
show a + b + ¢ = a + (b + ¢) by transfer (simp add: add.assoc)
show 0 + a = a by transfer simp
show a + 0 = a by transfer simp
qed

instance fls :: (comm-monoid-add) comm-monoid-add
by (standard, transfer, auto simp: add.commute)

lemma fls-nth-sum: fls-nth (> z€A. fz) n = (D z€A. fls-nth (fz) n)
by (induction A rule: infinite-finite-induct) auto

7.5.2 Subtraction and negatives

instantiation fls :: (group-add) minus
begin
lift-definition minus-fls :: 'a fls = 'a fls = ’'a flsis A\fgn. fn —gn
proof—
fix ff':int = 'a
assume Voon. f (— int n) = 0 Voon. f' (— int n) = 0
from this obtain N N’ where Vn>N. f (—int n) = 0 Vn>N'. f' (—int n) =

0
by (auto simp: MOST-nat)
hence Vn > max N N'. f (—int n) — f’' (—int n) = 0 by auto
hence 3K.Vn>K. f (—int n) — f' (—int n) = 0 by fast
thus Von. f (= int n) — f' (—int n) = 0 by (simp add: MOST-nat)
qed
instance ..
end

lemma fls-minus-nth [simp]: (f — ) $$n=,%%n — g$$ n
by transfer simp

lemma fls-minus-const: fls-const x — fls-const y = fls-const (z—y)
by (intro fls-eql) simp

lemma fis-subdegree-minus:

f — g # 0 = fls-subdegree (f — g) > min (fls-subdegree f) (fls-subdegree g)
by (intro fls-subdegree-gel) simp-all
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lemma fls-shift-minus [simp]: fls-shift m (f — g) = (fls-shift m f) — (fls-shift m
9)
by (auto intro: fls-eql)

lemma fls-regpart-minus [simpl: fls-regpart (f — g) = fls-regpart f — fls-regpart g
by (intro fps-ext) simp

lemma fls-prpart-minus [simp] : fls-prpart (f — g) = fls-prpart f — fls-prpart g
by (intro poly-eql) simp

lemma fps-to-fls-minus [simp]: fps-to-fls (f — g) = fps-to-fls f — fps-to-fls g
by (intro fls-eql) simp

instantiation fls :: (group-add) uminus
begin
lift-definition uminus-fls :: ‘a fls = 'a flsis A\f n. — fn
proof—
fix f ::int = 'a assume Von. f (— int n) = 0
from this obtain N where Vn>N. f (—int n) = 0
by (auto simp: MOST-nat)
hence Vn>N. — f (—int n) = 0 by auto
hence 3K. Vn>K. — f (—int n) = 0 by fast
thus Von. — f (— int n) = 0 by (simp add: MOST-nat)
qed
instance ..
end

lemma fls-uminus-nth [simp]: (—f) $$ n = — (f $$ n)
by transfer simp

lemma fls-const-uminus[simp): fls-const (—z) = —fls-const x
by (intro fls-eql) simp

lemma fls-shift-uminus [simp]: fls-shift m (— f) = — (fls-shift m f)
by (auto intro: fls-eql)

lemma fls-regpart-uminus [simp|: fls-regpart (— f) = — fls-regpart f
by (intro fps-ext) simp

lemma fls-prpart-uminus [simp)] : fls-prpart (— f) = — fls-prpart f
by (intro poly-eql) simp

lemma fps-to-fls-uminus [simpl: fps-to-fls (— f) = — fps-to-fls f
by (intro fls-eql) simp

instance fls :: (group-add) group-add
proof

fix ab: 'afls

show — a 4+ a = 0 by transfer simp
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show a + — b = a — b by transfer simp

qed
instance fls :: (ab-group-add) ab-group-add
proof

fix ab: 'afls

show — a 4+ a = 0 by transfer simp
show a — b = a + — b by transfer simp
qed

lemma fls-uminus-subdegree [simp)]: fls-subdegree (—f) = fls-subdegree f
by (cases f=0) (auto intro: fls-subdegree-eql)

lemma fls-subdegree-minus-sym: fls-subdegree (g9 — f) = fls-subdegree (f — g)
using fls-uminus-subdegreeof g—f] by (simp add: algebra-simps)

lemma fls-regpart-sub-prpart: fls-regpart (f — fls-prpart-as-fls f) = fls-regpart f
using fls-decompose-reg-pr-parts(2)|of f]
add-diff-cancel|of fls-regpart-as-fls f fls-prpart-as-fls f)
by  simp

lemma fls-prpart-sub-regpart: fls-prpart (f — fls-regpart-as-fls f) = fls-prpart f
using fls-decompose-reg-pr-parts(1)[of f]
add-diff-cancel|of fls-prpart-as-fls f fls-regpart-as-fls f)
by  simp

7.5.3 Multiplication

instantiation fls :: ({comm-monoid-add, times}) times
begin
definition fis-times-def:
() = (\f g
fls-shift
(= (fls-subdegree f + fls-subdegree g))
(fps-to-fls (fls-base-factor-to-fps f * fls-base-factor-to-fps g))

instance ..
end

lemma fls-times-nth-eq0: n < fls-subdegree f + fls-subdegree g = (f * g) $% n =
0
by (simp add: fls-times-def)

lemma fis-times-nth:
fixes fdf gdg
defines df = fls-subdegree f and dg = fls-subdegree g
shows (f x g) $$ n = (O i=df + dg..n. f $$ (i — dg) * g $$ (dg + n — 7))
and (f*x¢9) 88 n=_"i=df.n—dg. f$%ix g8 (n—1))
and (fxg) 88 n=_ i=dg.n—df. f$$ (df + i — dg) * g $$ (dg + n —
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df — 1))
')z)md (f*g) 33 n=>"it=0.n— (df + dg). f$3 (df + ©) x g 8% (n — df —

proof—
define dfg where dfg = df + dg

show 4: (f x g) $$ n= (3 i=0..n — dfg. f $$ (df + ) * g $$ (n — df — 0))
proof (cases n < dfg)
case Fulse
from Fulse assms have
(f*g) 88 n=
>-i= 0..nat (n — dfg). f $$ (df + int i) x g 88 (dg + int (nat (n — dfg)
— )
using fps-mult-nth[of fls-base-factor-to-fps f fls-base-factor-to-fps g|
fls-base-factor-to-fps-nth[of f]
fls-base-factor-to-fps-nth|of g]
by  (simp add: dfg-def fls-times-def algebra-simps)
moreover from Fulse have indez:
Ni. i € {0..nat (n — dfg)} = dg + int (nat (n — dfg) — i) =n — df — int

by (auto simp: dfg-def)
ultimately have

(f*x9) 88 n=__1i=0..nat (n — dfg). f $$ (df + int i) * g $$ (n — df — int

by (simp del: of-nat-diff)
moreover have
(> i=0..nat (n — dfg). f 3% (df + int i) x ¢ $8 (n — df — int i) =
O-i=0..n — dfg. f 83 (df + ¢) * ¢ 88 (n — df — 1))
proof (intro sum.reindex-cong)
show inj-on nat {0..n — dfg} by standard auto
show {0..nat (n — dfg)} = nat *{0..n — dfg}
proof
show {0..nat (n — dfg)} C nat ‘{0..n — dfg}
proof
fix ¢ assume i € {0..nat (n — dfg)}
hence i: i > 01 < nat (n — dfg) by auto
with Fulse have int i > 0 int i < n — dfg by auto
hence int i € {0..n — dfg} by simp
moreover from (1) have i = nat (int i) by simp
ultimately show i € nat ‘ {0..n — dfg} by fast
qged
qed (auto simp: False)
qed (simp add: False)
ultimately show (f x g) $$ n = O i=0..n — dfg. f $$ (df + i) * ¢ $% (n —
daf — i)
by simp
qed (simp add: fls-times-nth-eq0 assms dfg-def)
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have

(> i=dfg..n. f$$ (i — dg) * g $$ (dg + n — i) =

Ooi=0..n — dfg. f 88 (df +4) *x g %% (n — df — 0))

proof (intro sum.reindex-cong)

define T where T = \i. i + dfg

show inj-on T {0..n — dfg} by standard (simp add: T-def)
qed (simp-all add: dfg-def algebra-simps)
with / show 1: (f * g) $$ n = (3. i=dfg..n. f $$ (i — dg) * ¢ $$ (dg + n —

i)

by simp

have
O i=dfg.n. f$8 (1 — dg) x ¢8% (dg+n — i) = (O i=df.n —dg. f$$ ¢ =
988 (n — 1))
proof (intro sum.reindex-cong)
define T where T = \i. i + dg
show inj-on T {df..n — dg} by standard (simp add: T-def)
qed (auto simp: dfg-def)
with 7 show (f * g) $$ n = O i=df.n — dg. f $$ i x g $$ (n — 1))
by simp

have

(> i=dfg..n. f$$ (i — dg) * g $$ (dg + n — i) =

(> i=dg.n — df. £ $$ (df + i — dg) * ¢ $% (dg + n — df — 7))

proof (intro sum.reindex-cong)

define T where T = \i. i + df

show inj-on T {dg..n — df} by standard (simp add: T-def)
qed (simp-all add: dfg-def algebra-simps)
with 7 show (f * ¢g) $$ n = O_i=dg.n — df. f $$ (df + i — dg) * g $$ (dg

+n—df — 1))
by simp
qed

lemma fls-times-base [simp]:
(f * g) 88 (fls-subdegree f + fls-subdegree g) =
(f $3 fls-subdegree f) * (g $$ fls-subdegree g)
by (simp add: fls-times-nth(1))

instance fls :: ({comm-monoid-add, mult-zero}) mult-zero

proof
fix a :: 'a fls
have
(0::'a fls) * a =

fls-shift (fls-subdegree a) (fps-to-fls ( (0::'a fps)*(fls-base-factor-to-fps a) ))
by (simp add: fls-times-def)
moreover have
ax (0:'a fls) =
fls-shift (fls-subdegree a) (fps-to-fls ( (fls-base-factor-to-fps a)+(0::'a fps) ))
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by (simp add: fls-times-def)
ultimately show 0 x a = (0::'a fls) a * 0 = (0::'a fis)
by auto
qed

lemma fis-mult-one:
fixes [ :: 'a::{comm-monoid-add, mult-zero, monoid-mult} fls
shows 1 x f = f
and fx1=Ff
using fls-conv-base-factor-to-fps-shift-subdegree[of f]
by  (simp-all add: fls-times-def fps-one-mult)

lemma fls-mult-const-nth [simp]:
fixes f :: 'a::{comm-monoid-add, mult-zero} fls
shows (fls-const © * f) $$ n = = * f$$n
and (f * fls-const x ) $$ n = f$%n * z
proof—
show (fls-const z * f) $8 n = z * f$$n
proof (cases n<fls-subdegree f)
case Fulse
hence {fls-subdegree f..n} = insert (fls-subdegree f) {fls-subdegree f+1..n} by
auto
thus ?thesis by (simp add: fls-times-nth(1))
qed (simp add: fls-times-nth-eq0)
show (f * fls-const z ) $$ n = f$$n * =
proof (cases n<fls-subdegree f)
case Fulse
hence {fls-subdegree f..n} = insert n {fls-subdegree f.n—1} by auto
thus ?thesis by (simp add: fls-times-nth(1))
qed (simp add: fls-times-nth-eq0)
qed

lemma fls-const-mult-const[simp]:
fixes = y :: 'a::{comm-monoid-add, mult-zero}
shows fls-const © * fls-const y = fls-const (zxy)
by  (intro fls-eqI) simp

lemma fis-subdegree-add-eq1:
assumes [ # 0 fls-subdegree f < fls-subdegree g
shows  fls-subdegree (f + g) = fls-subdegree f
proof (intro antisym)
from assms have x: fls-nth (f + g) (fls-subdegree f) # 0
by auto
from * show fls-subdegree (f + g) < fls-subdegree f
by (rule fls-subdegree-lel)
from x have f + g # 0
using fis-nonzerol by blast
thus fls-subdegree f < fls-subdegree (f + g)
using assms(2) fls-plus-subdegree by force
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qed

lemma fis-subdegree-add-eq2:
assumes ¢ # 0 fls-subdegree g < fis-subdegree f
shows fls-subdegree (f + g) = fls-subdegree g
proof (intro antisym)
from assms have x: fls-nth (f + g) (fls-subdegree g) # 0
by auto
from * show fls-subdegree (f + g) < fls-subdegree g
by (rule fls-subdegree-lel)
from x have f + g # 0
using fis-nonzerol by blast
thus fls-subdegree g < fls-subdegree (f + g)
using assms(2) fls-plus-subdegree by force
qed

lemma fis-subdegree-diff-eq1:
assumes [ # 0 fls-subdegree f < fls-subdegree g
shows  fls-subdegree (f — g) = fls-subdegree f
using fls-subdegree-add-eql [of f —g] assms by simp

lemma fis-subdegree-diff-eq2:
assumes g # 0 fls-subdegree g < fis-subdegree f
shows fls-subdegree (f — g) = fls-subdegree ¢
using fls-subdegree-add-eq2[of —g f] assms by simp

lemma nat-minus-fls-subdegree-plus-const-eq:
nat (—fls-subdegree (F + fls-const ¢)) = nat (—fls-subdegree F)
proof (cases fls-subdegree F < 0)
case True
hence fls-subdegree (F + fls-const ¢) = fls-subdegree F
by (intro fls-subdegree-add-eql) auto
thus ?thesis
by simp
next
case Fulse
thus ?thesis
by (auto simp: fls-subdegree-geOI)
qed

lemma fis-mult-subdegree-ge:
fixes fg:: 'a:{comm-monoid-add,mult-zero} fls
assumes fxg # 0
shows fls-subdegree (fxg) > fls-subdegree f + fls-subdegree g
by (auto intro: fls-subdegree-gel simp: assms fls-times-nth-eq0)

lemma fis-mult-subdegree-ge-0:

fixes fg : 'a:{comm-monoid-add,mult-zero} fls
assumes fis-subdegree f > 0 fls-subdegree g > 0
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shows fls-subdegree (fxg) > 0
using assms fls-mult-subdegree-ge[of f g]
by fastforce

lemma fis-mult-nonzero-base-subdegree-eq:
fixes fg : ‘a::{comm-monoid-add,mult-zero} fls
assumes [ $$ (fls-subdegree f) * g $3 (fls-subdegree g) # 0
shows fls-subdegree (fxg) = fls-subdegree f + fls-subdegree g
proof—
from assms have fls-subdegree (f*g) > fls-subdegree f + fls-subdegree g
using fls-nonzerol[of fxg fls-subdegree f + fls-subdegree g]
fls-mult-subdegree-ge[of f g
by  simp
moreover from assms have fls-subdegree (f+g) < fls-subdegree f + fls-subdegree
g
by (intro fls-subdegree-lel) simp
ultimately show ¢thesis by simp
qed

lemma fls-subdegree-mult [simp):
fixes [ g :: 'a:semiring-no-zero-divisors fls
assumes f # 0 g # 0
shows fls-subdegree (f * g) = fls-subdegree f + fls-subdegree g
using assms
by (auto intro: fls-subdegree-eql simp: fls-times-nth-eq0)

lemma fis-shifted-times-simps:
fixes f g :: 'a::{comm-monoid-add, mult-zero} fls
shows [ x (fls-shift n g) = fls-shift n (fxg) (fls-shift n f) x g = fls-shift n (fxg)

proof—

show f * (fls-shift n g) = fls-shift n (fxg)
proof (cases g=0)
case Fulse
hence
[« (fis-shift n g) =
fis-shift (— (fls-subdegree f + (fls-subdegree g — n)))
(fps-to-fls (fls-base-factor-to-fps f * fls-base-factor-to-fps g))
unfolding fls-times-def by (simp add: fls-base-factor-to-fps-shift)
thus f * (fls-shift n g) = fls-shift n (f*g)
by (simp add: algebra-simps fls-times-def)
qed auto

show (fls-shift n f)xg = fls-shift n (f*g)
proof (cases f=0)
case Fulse
hence
(fls-shift n f)xg =
fls-shift (— ((fls-subdegree f — n) + fls-subdegree g))
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(fps-to-fls (fls-base-factor-to-fps f * fls-base-factor-to-fps g))
unfolding fis-times-def by (simp add: fls-base-factor-to-fps-shift)
thus (fls-shift n f) x g = fls-shift n (f*g)
by (simp add: algebra-simps fls-times-def)
ged auto

qed

lemma fis-shifted-times-transfer:
fixes f g :: 'a::{comm-monoid-add, mult-zero} fls
shows fis-shift n f x g = f x fls-shift n g
using fls-shifted-times-simps(1)[of f n g] fls-shifted-times-simps(2)[of n f g]
by  simp

lemma fis-times-both-shifted-simp:
fixes f g :: 'a::{comm-monoid-add, mult-zero} fls
shows (fls-shift m f) = (fls-shift n g) = fls-shift (m+n) (f*g)
by  (simp add: fls-shifted-times-simps)

lemma fis-base-factor-mult-base-factor:
fixes f g :: 'a::{comm-monoid-add, mult-zero} fls
shows fls-base-factor (f = fls-base-factor g) = fls-base-factor (f * g)
and fls-base-factor (fls-base-factor f * g) = fls-base-factor (f * g)
using fls-base-factor-shift[of fls-subdegree g fxg]
fls-base-factor-shift[of fls-subdegree f fxg]
by  (simp-all add: fis-shifted-times-simps)

lemma fis-base-factor-mult-both-base-factor:
fixes f g :: 'a::{comm-monoid-add,mult-zero} fls
shows fls-base-factor (fls-base-factor f x fls-base-factor g) = fls-base-factor (f *
9)
using fls-base-factor-mult-base-factor(1)[of fls-base-factor f g
fls-base-factor-mult-base-factor(2)[of f g
by  simp

lemma fis-base-factor-mult:
fixes f g :: 'a::semiring-no-zero-divisors fls
shows fls-base-factor (f = g) = fls-base-factor f * fls-base-factor g
by  (cases f£0 N g#0)
(auto simp: fls-times-both-shifted-simp)

lemma fis-times-conv-base-factor-times:
fixes f g :: 'a::{comm-monoid-add, mult-zero} fls
shows
fxg=
fls-shift (—(fls-subdegree f + fls-subdegree g)) (fls-base-factor f * fls-base-factor
9)
by (simp add: fls-times-both-shifted-simp)
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lemma fis-times-base-factor-conv-shifted-times:
— Convenience form of lemma fis-times-both-shifted-simp.
fixes f g :: 'a::{comm-monoid-add, mult-zero} fls
shows
fls-base-factor f * fls-base-factor g = fls-shift (fls-subdegree f + fls-subdegree g)
(f *9)
by (simp add: fls-times-both-shifted-simp)

lemma fis-times-conv-regpart:

fixes fg :: 'a:{comm-monoid-add,mult-zero} fls

assumes fis-subdegree f > 0 fls-subdegree g > 0

shows fls-regpart (f * g) = fls-regpart f * fls-regpart g
proof—

from assms have 1:

frg=
fls-shift (— (fls-subdegree f + fls-subdegree g)) (
fs-tofis (
fps-shift (nat (fls-subdegree ) + nat (fls-subdegree g)) (
fls-regpart f * fls-regpart g

)
)
by (simp add:
fls-times-def fls-base-factor-to-fps-conv-fps-shift[symmetric]
fls-regpart-subdegree-conv fps-shift-mult-both[symmetric|
)
show ?thesis
proof (cases fls-regpart f * fls-regpart g = 0)
case Fulse
with assms have
subdegree (fls-regpart f = fls-regpart g) >
nat (fls-subdegree f) + nat (fls-subdegree g)
by (simp add: fps-mult-subdegree-ge fls-regpart-subdegree-conv|symmetric])
with 1 assms show ?thesis by simp
qed (simp add: 1)
qed

lemma fis-base-factor-to-fps-mult-conv-unit-factor:
fixes f g :: 'a::{comm-monoid-add,mult-zero} fls
shows
fls-base-factor-to-fps (f = g) =
unit-factor (fls-base-factor-to-fps f  fls-base-factor-to-fps g)
using fls-base-factor-mult-both-base-factor|of f g
fos-unit-factor-fls-regpart|of fls-base-factor f * fls-base-factor g
fls-base-factor-subdegree|of f] fls-base-factor-subdegree|of g
fls-mult-subdegree-ge-0|of fls-base-factor f fls-base-factor g|
fls-times-conv-regpart|of fls-base-factor f fls-base-factor g
by  simp
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lemma fls-base-factor-to-fps-mult’:
fixes fyg :: ‘ai:{comm-monoid-add,mult-zero} fls
assumes (f $$ fls-subdegree f) * (g $$ fls-subdegree g) # 0
shows fls-base-factor-to-fps (f * g) = fls-base-factor-to-fps f * fls-base-factor-to-fps
g
using assms fls-mult-nonzero-base-subdegree-eq[of f g]
fls-times-base-factor-conv-shifted-times|of f g
fls-times-conv-regpart|of fls-base-factor f fls-base-factor g]
fls-base-factor-subdegree|of f] fls-base-factor-subdegree|of g
by fastforce

lemma fis-base-factor-to-fps-mult:

fixes f g :: 'a::semiring-no-zero-divisors fls

shows fls-base-factor-to-fps (f * g) = fls-base-factor-to-fps f * fls-base-factor-to-fps
g

using fls-base-factor-to-fps-mult’[of f g]

by (cases f=0 V g=0) auto

lemma fis-times-conv-fps-times:
fixes fg :: 'a:{comm-monoid-add,mult-zero} fls
assumes fis-subdegree f > 0 fls-subdegree g > 0
shows f % g = fps-to-fls (fls-regpart f = fls-regpart g)
using assms fls-mult-subdegree-ge[of f g]
by (cases f * g = 0) (simp-all add: fls-times-conv-regpart[symmetric])

lemma fps-times-conv-fls-times:
fixes fg :: 'a:{comm-monoid-add,mult-zero} fps
shows f x g = fls-regpart (fps-to-fls f x fps-to-fls g)
using  fls-subdegree-fls-to-fps-gt0 fls-times-conv-regpart[symmetric]
by fastforce

lemma fis-times-fps-to-fis:
fixes f g :: 'a::{comm-monoid-add,mult-zero} fps
shows fps-to-fls (f * g) = fps-to-fls f * fps-to-fls g
proof (intro fls-eq-conv-fps-eql, rule fls-subdegree-fls-to-fps-gt0)
show fis-subdegree (fps-to-fls f * fps-to-fls g) > 0
proof (cases fps-to-fls f x fps-to-fls g = 0)
case Fualse thus ?thesis
using fls-mult-subdegree-ge fls-subdegree-fls-to-fps-gt0[of f]
fls-subdegree-fls-to-fps-gt0|of g
by  fastforce
qed simp
qed (simp add: fps-times-conv-fls-times)

lemma fis-X-times-conv-shift:
fixes f :: 'a::{ comm-monoid-add,mult-zero,monoid-mult} fls
shows fls-X = f = fls-shift (—1) ff % fls-X = fls-shift (—1) f
by  (simp-all add: fls-X-conv-shift-1 fls-mult-one fls-shifted-times-simps)
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lemmas fls-X-times-comm = trans-sym[OF fls-X-times-conv-shift]

lemma fis-subdegree-mult-fls-X:
fixes [ :: 'a:{comm-monoid-add,mult-zero,monoid-mult} fls
assumes [ # 0
shows fls-subdegree (fls-X x f) = fls-subdegree f + 1
and fls-subdegree (f * fls-X) = fls-subdegree f + 1
by (auto simp: fls-X-times-conv-shift assms)

lemma fis-mult-fls-X-nonzero:
fixes f :: 'a:{comm-monoid-add,mult-zero,monoid-mult} fls
assumes [ # 0
shows fls-X x f # 0
and f x fls-X # 0
by (auto simp: fls-X-times-conv-shift fls-shift-eqO0-iff assms)

lemma fis-base-factor-mult-fis-X:
fixes f :: 'a::{ comm-monoid-add,monoid-mult, mult-zero} fls
shows fls-base-factor (fls-X * f) = fls-base-factor f
and fls-base-factor (f = fls-X) = fls-base-factor f
using fls-base-factor-shift[of —1 f]
by  (auto simp: fls-X-times-conv-shift)

lemma fis-X-inv-times-conv-shift:
fixes f :: 'a::{comm-monoid-add,mult-zero,monoid-mult} fls
shows fis-X-inv x f = fls-shift 1 f f x fls-X-inv = fls-shift 1 f

by  (simp-all add: fls-X-inv-conv-shift-1 fls-mult-one fls-shifted-times-simps)

lemmas fls-X-inv-times-comm = trans-sym[OF fls-X-inv-times-conv-shift|

lemma fis-subdegree-mult-fls-X-inv:
fixes f :: 'a:{comm-monoid-add,mult-zero,monoid-mult} fls
assumes f # 0
shows  fls-subdegree (fls-X-inv x f) = fls-subdegree f — 1
and  fis-subdegree (f * fls-X-inv) = fls-subdegree f — 1
by (auto simp: fls-X-inv-times-conv-shift assms)

lemma fis-mult-fls-X-inv-nonzero:
fixes f :: 'a::{comm-monoid-add,mult-zero,monoid-mult} fls
assumes f # 0
shows fls-X-inv x f # 0
and  f x fis-X-inv # 0
by (auto simp: fls-X-inv-times-conv-shift fls-shift-eq0-iff assms)

lemma fis-base-factor-mult-fls-X-inv:
fixes f :: 'a::{ comm-monoid-add,monoid-mult, mult-zero} fls
shows fls-base-factor (fls-X-inv % f) = fls-base-factor f
and fls-base-factor (f * fls-X-inv) = fls-base-factor f
using fls-base-factor-shift[of 1 f]
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by (auto simp: fls-X-inv-times-conv-shift)

lemma fis-mult-assoc-subdegree-ge-0:
fixes fgh : 'a:semiring-0 fls
assumes fis-subdegree f > 0 fls-subdegree g > 0 fls-subdegree h > 0
shows fxgx*xh=/fx(gxh)
using assms
by (simp add: fls-times-conv-fps-times fls-subdegree-fls-to-fps-gt0 mult.assoc)

lemma fis-mult-assoc-base-factor:
fixes a b c :: 'a::semiring-0 fls
shows
fls-base-factor a * fls-base-factor b * fls-base-factor ¢ =
fls-base-factor a * (fls-base-factor b = fls-base-factor c)
by  (simp add: fls-mult-assoc-subdegree-ge-0 del: fls-base-factor-def)

lemma fls-mult-distrib-subdegree-ge-0:
fixes fgh :: 'a:semiring-0 fls
assumes fis-subdegree f > 0 fls-subdegree g > 0 fis-subdegree h > 0
shows (f+g)xh=fxh+g=xh
and hx(f+g ) =hxf4+hxgyg
proof—
have fls-subdegree (f+g) > 0
proof (cases f+g = 0)
case Fulse
with assms(1,2) show ?thesis
using fls-plus-subdegree by fastforce
qed simp
with assms show (f + g) x h=fxh+gxhhx(f+g)=hxf+h=xg
using distrib-right|of fls-regpart f] distrib-left|of fls-regpart h]
by  (simp-all add: fls-times-conv-fps-times)
qed

lemma fls-mult-distrib-base-factor:
fixes a b ¢ :: a::semiring-0 fls
shows
fls-base-factor a * (fls-base-factor b + fls-base-factor c¢) =
fls-base-factor a * fls-base-factor b + fls-base-factor a * fls-base-factor ¢
by  (simp add: fls-mult-distrib-subdegree-ge-0 del: fls-base-factor-def)

instance fls :: (semiring-0) semiring-0
proof

fixabc:'afls
have
axbxc=
fls-shift (— (fls-subdegree a + fls-subdegree b + fls-subdegree c))
(fls-base-factor a * fls-base-factor b x fls-base-factor c)
by (simp add: fls-times-both-shifted-simp)
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moreover have
ax(bx*c)=
fls-shift (— (fls-subdegree a + fls-subdegree b + fls-subdegree c))
(fls-base-factor a * fls-base-factor b x fls-base-factor c)
using fls-mult-assoc-base-factor[of a b c] by (simp add: fls-times-both-shifted-simp)
ultimately show a x b * ¢ = a * (b * ¢) by simp

have ab:
fls-subdegree (fls-shift (min (fls-subdegree a) (fls-subdegree b)) a) > 0
fls-subdegree (fls-shift (min (fls-subdegree a) (fls-subdegree b)) b) > 0
by (simp-all add: fls-shift-nonneg-subdegree)
have
(@ +0b)xc=
fls-shift (— (min (fls-subdegree a) (fls-subdegree b) + fls-subdegree c)) (

fls-shift (min (fls-subdegree a) (fls-subdegree b)) a +
fls-shift (min (fls-subdegree a) (fls-subdegree b)) b
) * fls-base-factor c)
using fls-times-both-shifted-simp|of
—min (fls-subdegree a) (fls-subdegree b)
fls-shift (min (fls-subdegree a) (fls-subdegree b)) a
fls-shift (min (fls-subdegree a) (fls-subdegree b)) b
—fls-subdegree c fls-base-factor c
]
by  simp
also have

+

fls-shift (—(min (fls-subdegree a) (fls-subdegree b) + fls-subdegree c))
(fls-shift (min (fls-subdegree a) (fls-subdegree b)) a * fls-base-factor c)
_l’_
fls-shift (—(min (fls-subdegree a) (fls-subdegree b) + fls-subdegree c))
(fls-shift (min (fls-subdegree a) (fls-subdegree b)) b * fls-base-factor c)
using ab
by  (simp add: fls-mult-distrib-subdegree-ge-0(1) del: fls-base-factor-def)
finally show (a + b) * ¢ = a % ¢ + b * ¢ by (simp add: fls-times-both-shifted-simp)

have bc:
fls-subdegree (fls-shift (min (fls-subdegree b) (fls-subdegree c)) b) > 0
fls-subdegree (fls-shift (min (fls-subdegree b) (fls-subdegree c)) ¢) > 0
by (simp-all add: fis-shift-nonneg-subdegree)
have
ax(b+c¢) =
fls-shift (— (fls-subdegree a + min (fls-subdegree b) (fls-subdegree c))) (
fls-base-factor a x (
fls-shift (min (fls-subdegree b) (fls-subdegree c)) b +
fls-shift (min (fls-subdegree b) (fls-subdegree c)) c
)
)
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using fls-times-both-shifted-simp[of
—fls-subdegree a fls-base-factor a
—min (fls-subdegree b) (fls-subdegree c)
fls-shift (min (fls-subdegree b) (fls-subdegree c)) b +
fls-shift (min (fls-subdegree b) (fls-subdegree ¢)) ¢

]
by simp
also have

fls-shift (—(fls-subdegree a + min (fls-subdegree b) (fls-subdegree c)))
(fls-base-factor a * fls-shift (min (fls-subdegree b) (fls-subdegree c¢)) b)

Jr
fls-shift (—(fls-subdegree a + min (fls-subdegree b) (fls-subdegree c)))
(fls-base-factor a x fls-shift (min (fls-subdegree b) (fls-subdegree ¢)) c)

using bc
by  (simp add: fls-mult-distrib-subdegree-ge-0(2) del: fls-base-factor-def)
finally show a * (b4 ¢) = a * b+ a* ¢ by (simp add: fls-times-both-shifted-simp)

qed

lemma fis-mult-commute-subdegree-ge-0:
fixes fg :: 'a::comm-semiring-0 fls
assumes fis-subdegree f > 0 fls-subdegree g > 0
shows fxg=g=xf
using assms
by (simp add: fls-times-conv-fps-times mult.commute)

lemma fls-mult-commute-base-factor:
fixes a b ¢ :: ‘a::comm-semiring-0 fls
shows fis-base-factor a * fls-base-factor b = fls-base-factor b * fis-base-factor a
by  (simp add: fls-mult-commute-subdegree-ge-0 del: fls-base-factor-def)

instance fls :: (comm-semiring-0) comm-semiring-0
proof
fixabc: 'afls
show a x b =10 x% a
using fls-times-conv-base-factor-times|of a b] fls-times-conv-base-factor-times|of
b a)
fls-mult-commute-base-factor|of a b]
by (simp add: add.commute)
qed (simp add: distrib-right)

instance fls :: (semiring-1) semiring-1
by (standard, simp-all add: fls-mult-one)

lemma fls-of-nat: (of-nat n :: ‘a::semiring-1 fls) = fls-const (of-nat n)
by (induct n) (auto intro: fls-eql)

413



lemma fis-of-nat-nth: of-nat n $% k = (if k=0 then of-nat n else 0)
by (simp add: fls-of-nat)

lemma fls-mult-of-nat-nth [simpl:
shows (of-nat k * f) $$ n = of-nat k x f$$n
and (f * of-nat k) $$ n = f$$n * of-nat k
by  (simp-all add: fls-of-nat)

lemma fls-subdegree-of-nat [simpl: fls-subdegree (of-nat n) = 0
by (simp add: fls-of-nat)

lemma fis-shift-of-nat-nth:
fls-shift k (of-nat a) $3 n = (if n=—Fk then of-nat a else 0)
by (simp add: fls-of-nat fls-shift-const-nth)

lemma fls-base-factor-of-nat [simp):
fls-base-factor (of-nat n :: 'a::semiring-1 fls) = (of-nat n :: 'a fls)
by (simp add: fls-of-nat)

lemma fis-regpart-of-nat [simpl: fls-regpart (of-nat n) = (of-nat n :: 'a::semiring-1

fps)
by (simp add: fls-of-nat fps-of-nat)

lemma fls-prpart-of-nat [simp]: fls-prpart (of-nat n) = 0
by (simp add: fls-prpart-eq0-iff)

lemma fis-base-factor-to-fps-of-nat:
fls-base-factor-to-fps (of-nat n) = (of-nat n :: 'a::semiring-1 fps)
by simp

lemma fps-to-fls-of-nat:
fos-to-fls (of-nat n) = (of-nat n :: 'a::semiring-1 fls)
proof —
have fps-to-fls (of-nat n) = fps-to-fls (fps-const (of-nat n))
by (simp add: fps-of-nat)
thus ?thesis by (simp add: fls-of-nat)
qed

lemma fps-to-fls-numeral [simp]: fps-to-fls (numeral n) = numeral n
by (metis fps-to-fls-of-nat of-nat-numeral)

lemma fls-const-power: fls-const (a ~b) = fls-const a ~ b
by (induction b) (auto simp flip: fls-const-mult-const)

lemma fls-const-numeral [simp]: fls-const (numeral n) = numeral n
by (metis fls-of-nat of-nat-numeral)

lemma fls-mult-of-numeral-nth [simp]:
shows (numeral k * f) $8 n = numeral k x f $$ n
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and (f * numeral k) $8 n = f $8 n * numeral k
by (metis fls-const-numeral fls-mult-const-nth)+

lemma fls-nth-numeral’ [simp):
numeral n $8 0 = numeral n k # 0 = numeral n $$ k = 0
by (metis fls-const-nth fls-const-numeral)+

instance fls :: (comm-semiring-1) comm-semiring-1
by standard simp

instance fls :: (ring) ring ..
instance fls :: (comm-ring) comm-ring ..
instance fls :: (ring-1) ring-1 ..

lemma fls-of-int-nonneg: (of-int (int n) :: ‘a:ring-1 fls) = fls-const (of-int (int

n))

by (induct n) (auto intro: fls-eql)

lemma fis-of-int: (of-int i :: 'a::ring-1 fls) = fls-const (of-int i)
proof (induct i)
case (neg )
have of-int (int (Suc 7)) = fls-const (of-int (int (Suc ©)) :: 'a)
using fls-of-int-nonneg|of Suc 7| by simp
hence — of-int (int (Suc 7)) = — fls-const (of-int (int (Suc 7)) :: 'a)
by simp
thus ?case by (simp add: fls-const-uminus[symmetric])
qed (rule fls-of-int-nonneg)

lemma fls-of-int-nth: of-int n $% k = (if k=0 then of-int n else 0)
by (simp add: fls-of-int)

lemma fls-mult-of-int-nth [simp]:
shows (of-int k x f) $$ n = of-int k * f$$n
and (f % of-int k) $$ n = f$8n * of-int k
by  (simp-all add: fis-of-int)

lemma fls-subdegree-of-int [simp]: fls-subdegree (of-int i) = 0
by (simp add: fls-of-int)

lemma fis-shift-of-int-nth:
fls-shift k (of-int ©) $8 n = (if n=—Fk then of-int i else 0)
by (simp add: fls-of-int-nth)

lemma fls-base-factor-of-int [simpl:

fls-base-factor (of-int i :: 'a::ring-1 fls) = (of-int i :: 'a fls)
by (simp add: fls-of-int)
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lemma fls-regpart-of-int [simp]:
fls-regpart (of-int i) = (of-int i :: 'a::ring-1 fps)
by (simp add: fls-of-int fps-of-int)

lemma fls-prpart-of-int [simp): fls-prpart (of-int n) = 0
by (simp add: fls-prpart-eq0-iff)

lemma fis-base-factor-to-fps-of-int:
fls-base-factor-to-fps (of-int i) = (of-int  :: ‘a::ring-1 fps)
by simp

lemma fps-to-fis-of-int:
fps-to-fls (of-int i) = (of-int i :: 'a::ring-1 fls)
proof —
have fps-to-fls (of-int i) = fps-to-fls (fps-const (of-int 7))
by (simp add: fps-of-int)
thus ?thesis by (simp add: fls-of-int)
qed

instance fls :: (comm-ring-1) comm-ring-1 ..

instance fls :: (semiring-no-zero-divisors) semiring-no-zero-divisors
proof
fixab: 'afls
assume a # 0 and b # 0
hence (a * b) $$ (fls-subdegree a + fls-subdegree b) # 0 by simp
thus a * b # 0 using fls-nonzerol by fast
qed

instance fls :: (semiring-1-no-zero-divisors) semiring-1-no-zero-divisors ..
instance fls :: (ring-no-zero-divisors) ring-no-zero-divisors ..

instance fls :: (ring-1-no-zero-divisors) ring-1-no-zero-divisors ..
instance fis :: (idom) idom ..

lemma semiring-char-fis [simp]: CHAR('a :: comm-semiring-1 fls) = CHAR('a)
by (rule CHAR-eqI) (auto simp: fls-of-nat of-nat-eq-0-iff-char-dvd fls-const-nonzero)

instance fls :: ({semiring-prime-char,comm-semiring-1}) semiring-prime-char
by (rule semiring-prime-charl) auto
instance fis :: ({ comm-semiring-prime-char,comm-semiring-1}) comm-semiring-prime-char
by standard
instance fls :: ({ comm-ring-prime-char,comm-semiring-1}) comm-ring-prime-char
by standard
instance fis :: ({idom-prime-char,comm-semiring-1}) idom-prime-char
by standard
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lemma fls-subdegree-numeral [simp): fls-subdegree (numeral n) = 0
by (metis fls-subdegree-of-nat of-nat-numeral)

lemma fls-regpart-numeral [simp): fls-regpart (numeral n) = numeral n
by (metis fls-regpart-of-nat of-nat-numeral)

7.5.4 Powers

lemma fis-subdegree-prod:
fixes F :: 'a = 'b :: field-char-0 fls
assumes A\z. z € [ = Fz # 0
shows fls-subdegree ([[z€l. F z) = (> z€l. fls-subdegree (F x))
using assms by (induction I rule: infinite-finite-induct) auto

lemma fls-subdegree-prod”:

fixes F' :: ‘a = 'b :: field-char-0 fls

assumes A\z. x € [ = fls-subdegree (F z) # 0

shows fls-subdegree ([[z€l. F z) = (> z€l. fls-subdegree (F 1))
proof (intro fls-subdegree-prod)

show F oz # 0ifx € I for z

using assms[OF that] by auto

qed

lemma fis-pow-subdegree-ge:
fn #£ 0 = fls-subdegree (f"n) > n x fls-subdegree f
proof (induct n)
case (Suc n) thus Zcase
using fls-mult-subdegree-ge[of f f™n] by (fastforce simp: algebra-simps)
qed simp

lemma fis-pow-nth-below-subdegree:
k < n x fls-subdegree f = (fn) $$ k = 0
using fls-pow-subdegree-ge[of f n| by (cases f™n = 0) auto

lemma fls-pow-base [simp]:
(f "n) $$ (n * fls-subdegree f) = (f $$ fls-subdegree f) " n
proof (induct n)
case (Suc n)
show ?Zcase
proof (cases Suc n * fls-subdegree f < fls-subdegree f + fls-subdegree (f™n))
case True with Suc show ?thesis
by (simp-all add: fls-times-nth-eq0 distrib-right)
next
case Fulse
from Fulse have
{0..int n * fls-subdegree f — fls-subdegree (f ~n)} =
insert 0 {1..int n % fls-subdegree f — fls-subdegree (f ~n)}
by (auto simp: algebra-simps)
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with False Suc show ?thesis
by (simp add: algebra-simps fls-times-nth(4) fls-pow-nth-below-subdegree)
qed
qed simp

lemma fis-pow-subdegree-eql:
(f 88 fls-subdegree f) ~n # 0 = fls-subdegree (f"n) = n x fls-subdegree f
using fls-pow-nth-below-subdegree by (fastforce intro: fls-subdegree-eql)

lemma fis-unit-base-subdegree-power:
x * f 8% fls-subdegree f = 1 = fls-subdegree (f ~n) = n * fls-subdegree f
f 88 fls-subdegree f x+ y = 1 = fls-subdegree (f ~n) = n * fls-subdegree f
proof—
show x x f $$ fls-subdegree f = 1 = fls-subdegree (f ~n) = n * fls-subdegree f
using left-right-inverse-power|of « f $$ fls-subdegree f n]
by  (auto intro: fls-pow-subdegree-eql)
show f 3% fls-subdegree f x y = 1 = fls-subdegree (f ~n) = n * fls-subdegree f
using left-right-inverse-power|of f $3 fls-subdegree fy n|
by  (auto intro: fls-pow-subdegree-eql)
qed

lemma fis-base-dvd1-subdegree-power:
[ 88 fls-subdegree f dvd 1 = fls-subdegree (f ~n) = n * fls-subdegree f
using fls-unit-base-subdegree-power unfolding dvd-def by auto

lemma fis-pow-subdegree-ge0:
assumes fis-subdegree f > 0
shows fls-subdegree (f™n) > 0
proof (cases fn = 0)
case Fulse
moreover from assms have int n x fls-subdegree f > 0 by simp
ultimately show ¢thesis using fls-pow-subdegree-ge by fastforce
qed simp

lemma fis-subdegree-pow:

fixes [ :: 'a::semiring-1-no-zero-divisors fls

shows fls-subdegree (f ~n) = n x fls-subdegree f
proof (cases f=0)

case Fulse thus ?thesis by (induct n) (simp-all add: algebra-simps)
qed (cases n=0, auto simp: zero-power)

lemma fis-shifted-pow:

(flis-shift m f) ~n = fls-shift (nxm) (f " n)
by (induct n) (simp-all add: fls-times-both-shifted-simp algebra-simps)

lemma fis-pow-conv-fps-pow:
assumes fis-subdegree f > 0

shows f 7 n = fps-to-fls ( (fls-regpart f) "~ n)
proof (induct n)
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case (Suc n) with assms show ?case
using fls-pow-subdegree-ge0|of f n|
by (simp add: fls-times-conv-fps-times)
qed simp

lemma fps-to-fls-power: fps-to-fls (f ~n) = fps-to-fls f " n
by (simp add: fls-pow-conv-fps-pow fls-subdegree-fls-to-fps-gt0)

lemma fls-pow-conv-regpart:
fis-subdegree f > 0 = fls-regpart (f ~n) = (fls-regpart f) " n
by (simp add: fls-pow-conv-fps-pow)

These two lemmas show that shifting 1 is equivalent to powers of the implied
variable.

lemma fls-X-power-conv-shift-1: fls-X ~n = fls-shift (—n) 1
by (simp add: fls-X-conv-shift-1 fls-shifted-pow)

lemma fls- X-inv-power-conv-shift-1: fls-X-inv ~ n = fls-shift n 1
by (simp add: fls-X-inv-conv-shift-1 fls-shifted-pow)

abbreviation fls-X-intpow = (\i. fls-shift (—i) 1)

— Unifies fls-X and fls-X-inv so that fls-X-intpow returns the equivalent of the
implied variable raised to the supplied integer argument of fis-X-intpow, whether
positive or negative.

lemma fls-X-intpow-nonzero[simp]: (fls-X-intpow i :: 'a::zero-neg-one fls) # 0
by (simp add: fls-shift-eq0-iff)

lemma fls-X-intpow-power: (fls-X-intpow i) ~n = fls-X-intpow (n * 7)
by (simp add: fls-shifted-pow)

lemma fls-X-power-nth [simp]: fls-X ~n $$ k = (if k=n then 1 else 0)
by (simp add: fls-X-power-conv-shift-1)

lemma fls-X-inv-power-nth [simp]: fls-X-inv " n 33 k = (if k=—n then 1 else 0)
by (simp add: fls-X-inv-power-conv-shift-1)

lemma fls-X-pow-nonzero[simp|: (fls-X ~n :: 'a :: semiring-1 fls) # 0
proof

assume (fls-X “n x'a fls) = 0

hence (fls-X " n :: 'a fls) $% n = 0 by simp

thus False by simp
qed

lemma fls-X-inv-pow-nonzero[simp|: (fls-X-inv "~ n :: 'a :: semiring-1 fls) # 0
proof

assume (fls-X-inv " n :: 'a fls) = 0

hence (fls-X-inv " n :: ‘a fls) $$ —n = 0 by simp

thus Fulse by simp
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qed

lemma fls-subdegree-fls-X-pow [simp): fls-subdegree (fls-X ~n) = n
by (intro fls-subdegree-eql) (simp-all add: fls-X-power-conv-shift-1)

lemma fls-subdegree-fls-X-inv-pow [simp): fls-subdegree (fls-X-inv " n) = —n
by (intro fls-subdegree-eql) (simp-all add: fls-X-inv-power-conv-shift-1)

lemma fls-subdegree-fls-X-intpow [simp]:
fis-subdegree ((fls-X-intpow @) :: 'a::zero-neg-one fls) = i
by simp

lemma fls-X-pow-conv-fps-X-pow: fls-regpart (fls-X ~n) = fps-X " n
by (simp add: fls-pow-conv-regpart)

lemma fls-X-inv-pow-regpart: n > 0 = fls-regpart (fls-X-inv " n) = 0
by (auto intro: fps-ext simp: fls-X-inv-power-conv-shift-1)

lemma fis-X-intpow-regpart:
fis-regpart (fls-X-intpow i) = (if i>0 then fps-X ~ nat i else 0)
using fls-X-pow-conv-fps-X-pow|of nat 1]
fls-regpart-shift-conv-fps-shift[of —i 1]
by  (auto simp: fls-X-power-conv-shift-1 fps-shift-one)

lemma fis-X-power-times-conv-shift:
fis-X T n x f = fls-shift (—int n) ff x fls-X T n = fls-shift (—int n) f
using fls-times-both-shifted-simp[of —int n 1 0 f]
fls-times-both-shifted-simplof 0 f —int n 1]
by  (simp-all add: fls-X-power-conv-shift-1)

lemma fis- X-inv-power-times-conv-shift:
fls-X-inv " n x f = fls-shift (int n) f [ * fls-X-inv ~ n = fls-shift (int n) f
using fls-times-both-shifted-simp[of int n 1 0 f]
fls-times-both-shifted-simp[of 0 f int n 1]
by  (simp-all add: fls-X-inv-power-conv-shift-1)

lemma fis- X-intpow-times-conv-shift:
fixes [ :: 'a::semiring-1 fls
shows fls-X-intpow i x f = fls-shift (—i) ff x fls-X-intpow i = fls-shift (—1) f
by  (simp-all add: fis-shifted-times-simps)

lemmas fls-X-power-times-comm = trans-sym[OF fls-X-power-times-conv-shift]
lemmas fis-X-inv-power-times-comm = trans-sym|OF fls-X-inv-power-times-conv-shift]

lemma fis-X-intpow-times-comm:
fixes f :: 'a::semiring-1 fls
shows fis-X-intpow i x f = f *x fls-X-intpow i
by  (simp add: fls-X-intpow-times-conv-shift)
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lemma fis- X-intpow-times-fis- X-intpow:
(fls-X-intpow i :: 'a::semiring-1 fls) x fls-X-intpow j = fls-X-intpow (i+j)
by (simp add: fls-times-both-shifted-simp)

lemma fis- X-intpow-diff-conv-times:
fls-X-intpow (i—j) = (fls-X-intpow i :: 'a::semiring-1 fls) * fls-X-intpow (—j)
using fls-X-intpow-times-fls-X-intpow|of i —j,symmetric] by simp

lemma fis-mult-fls- X-power-nonzero:
assumes [ # 0
shows fls-X "nxf#0fx fls-X "n#0
by (auto simp: fls-X-power-times-conv-shift fls-shift-eq0-iff assms)

lemma fis-mult-fls- X-inv-power-nonzero:
assumes [ # 0
shows fls-X-inv "n x f # 0f x fls-X-inv "n # 0
by (auto simp: fls-X-inv-power-times-conv-shift fls-shift-eq0-iff assms)

lemma fis-mult-fls- X-intpow-nonzero:
fixes f :: 'a::semiring-1 fls
assumes [ # 0
shows fls-X-intpow i x f # 0 f * fls-X-intpow i # 0
by (auto simp: fls-X-intpow-times-conv-shift fls-shift-eqO-iff assms)

lemma fis-subdegree-mult-fls- X-power:
assumes [ # 0
shows fls-subdegree (fls-X " n x f) = fls-subdegree f + n
and  fls-subdegree (f * fls-X ~ n) = fls-subdegree f + n
by (auto simp: fls-X-power-times-conv-shift assms)

lemma fis-subdegree-mult-fls- X-inv-power:
assumes f # 0
shows fls-subdegree (fls-X-inv " n x f) = fls-subdegree f — n
and  fls-subdegree (f * fls-X-inv ~ n) = fls-subdegree f — n
by (auto simp: fls-X-inv-power-times-conv-shift assms)

lemma fis-subdegree-mult-fls- X-intpow:
fixes [ :: ‘a:semiring-1 fls
assumes f # 0
shows  fls-subdegree (fls-X-intpow i x f) = fls-subdegree f + i
and  fls-subdegree (f * fls-X-intpow i) = fls-subdegree f + i
by (auto simp: fls-X-intpow-times-conv-shift assms)

lemma fis- X-shift:
fls-shift (—int n) fls-X = fls-X ~ Sucn
fis-shift (int (Suc n)) fls-X = fls-X-inv " n
using fls-X-power-conv-shift-1[of Suc n, symmetric]
by  (simp-all add: fls-X-conv-shift-1 fls-X-inv-power-conv-shift-1)
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lemma fis-X-inv-shift:
fls-shift (int n) fls-X-inv = fls-X-inv ~ Suc n
fls-shift (— int (Suc n)) fls-X-inv = fls-X " n
using fls-X-inv-power-conv-shift-1[of Suc n, symmetric]
by  (simp-all add: fls-X-inv-conv-shift-1 fls-X-power-conv-shift-1)

lemma fls-X-power-base-factor: fls-base-factor (fls-X ~n) = 1
by (simp add: fls-X-power-conv-shift-1)

lemma fls-X-inv-power-base-factor: fls-base-factor (fls-X-inv ~n) = 1
by (simp add: fls-X-inv-power-conv-shift-1)

lemma fls-X-intpow-base-factor: fls-base-factor (fls-X-intpow i) = 1
using fls-base-factor-shift[of —i 1] by simp

lemma fis-base-factor-mult-fls- X-power:
shows fls-base-factor (fls-X ~n x f) = fls-base-factor f
and fls-base-factor (f * fls-X ~n) = fls-base-factor f
using fls-base-factor-shift[of —int n f]
by  (auto simp: fls-X-power-times-conv-shift)

lemma fis-base-factor-mult-fls-X-inv-power:
shows fls-base-factor (fls-X-inv ~ n * f) = fls-base-factor f
and fls-base-factor (f * fls-X-inv ~n) = fls-base-factor f
using fls-base-factor-shift|of int n f]
by  (auto simp: fls-X-inv-power-times-conv-shift)

lemma fis-base-factor-mult-fis- X-intpow:
fixes f :: 'a::semiring-1 fls
shows fls-base-factor (fls-X-intpow i x f) = fls-base-factor f
and fls-base-factor (f = fls-X-intpow i) = fls-base-factor f
using fls-base-factor-shift[of —i f]
by (auto simp: fls-X-intpow-times-conv-shift)

lemma fls-X-power-base-factor-to-fps: fls-base-factor-to-fps (fls-X ~n) = 1
proof—
define X where X = fls-X :: 'a::semiring-1 fls
hence fls-base-factor (X ~n) = 1 using fls-X-power-base-factor by simp
thus fls-base-factor-to-fps (X n) = 1 by simp
qed

lemma fis-X-inv-power-base-factor-to-fps: fls-base-factor-to-fps (fls-X-inv ~ n) =
1
proof—
define X where iX = fls-X-inv :: 'a::semiring-1 fls
hence fls-base-factor (iX ~n) = 1 using fls-X-inv-power-base-factor by simp
thus fls-base-factor-to-fps (iX n) = 1 by simp
qed
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lemma fls-X-intpow-base-factor-to-fps: fls-base-factor-to-fps (fls-X-intpow i) = 1
proof—
define f :: ‘a fls where [ = fls-X-intpow i
moreover have fls-base-factor (fls-X-intpow i) = 1 by (rule fls-X-intpow-base-factor)
ultimately have fls-base-factor f = 1 by simp
thus fis-base-factor-to-fps f = 1 by simp
qed

lemma fis-base-factor-X-power-decompose:
fixes f :: 'a::semiring-1 fls
shows [ = fls-base-factor f x fls-X-intpow (fls-subdegree f)
and f = fls-X-intpow (fls-subdegree f) x fls-base-factor f
by  (simp-all add: fls-times-both-shifted-simp)

lemma fis-normalized-product-of-inverses:
assumes f x g = 1
shows fis-base-factor f = fls-base-factor g =
fls-X 7 (nat (—(fls-subdegree f+fls-subdegree g)))
and  fis-base-factor f = fls-base-factor g =
fls-X-intpow (—(fls-subdegree f+fls-subdegree g))
using  fls-mult-subdegree-ge[of f g]
fls-times-base-factor-conv-shifted-times|of f g
by (simp-all add: assms fls-X-power-conv-shift-1 algebra-simps)

lemma fis-fps-normalized-product-of-inverses:
assumes f x g = 1
shows fis-base-factor-to-fps f * fls-base-factor-to-fps g =
fps-X " (nat (—(fls-subdegree f+fls-subdegree g)))

using fls-times-conv-regpart|of fls-base-factor f fls-base-factor g
fls-base-factor-subdegree|of f] fls-base-factor-subdegree|of g]
fls-normalized-product-of-inverses(1)[OF assms]

by  (force simp: fls-X-pow-conv-fps-X-pow)

7.5.5 Inverses

abbreviation fis-left-inverse ::
'a::{ comm-monoid-add,uminus,times} fls = 'a = 'a fis
where
fls-left-inverse [z =
fls-shift (fls-subdegree f) (fps-to-fls (fps-left-inverse (fls-base-factor-to-fps f) z))

abbreviation fis-right-inverse ::
‘a::{ comm-monoid-add,uminus,times} fls = 'a = 'a fls
where
fls-right-inverse f y =
fls-shift (fls-subdegree f) (fps-to-fls (fps-right-inverse (fls-base-factor-to-fps f)
y))

instantiation fls :: ({comm-monoid-add,uminus,times,inverse}) inverse
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begin
definition fis-divide-def:
fdivg=
fls-shift (fls-subdegree g — fls-subdegree f) (
fos-to-fls ((fls-base-factor-to-fps f) div (fls-base-factor-to-fps g))
)

definition fls-inverse-def:
inverse f = fls-shift (fls-subdegree f) (fps-to-fls (inverse (fls-base-factor-to-fps
N)
instance ..
end

lemma fls-inverse-def":
inverse f = fls-right-inverse f (inverse (f $% fls-subdegree f))
by (simp add: fls-inverse-def fps-inverse-def)

lemma fis-Ir-inverse-base:
fls-left-inverse f x $$ (—fls-subdegree ) = z
fis-right-inverse f y $$ (—fls-subdegree f) = y
by auto

lemma fis-inverse-base:
[ # 0 = inverse [ $$ (—fls-subdegree f) = inverse (f $$ fls-subdegree f)
by (simp add: fls-inverse-def”)

lemma fis-lr-inverse-starting0:
fixes [ :: 'a::{comm-monoid-add,mult-zero,uminus} fls
and g :: 'b::{ab-group-add,mult-zero} fls
shows fis-left-inverse f 0 = 0
and fis-right-inverse g 0 = 0
by  (simp-all add: fps-lr-inverse-starting0)

lemma fis-lr-inverse-eq0-imp-starting0:
fis-left-inverse fr = 0 = = = 0
fls-right-inverse fx = 0 = = = 0
by (metis fls-lr-inverse-base fls-nonzerol )+

lemma fis-lr-inverse-eq-0-iff:
fixes z :: ‘a::{comm-monoid-add,mult-zero,uminus}
and y :: 'b:{ab-group-add,mult-zero}
shows fis-left-inverse fo = 0 +— = =0
and fis-right-inverse gy = 0 <— y = 0
using fis-lr-inverse-starting0 fls-lr-inverse-eq0-imp-starting0
by auto

lemma fls-inverse-eq-0-iff .

fixes f :: 'a::{ab-group-add,inverse,mult-zero} fls
shows inverse f = 0 +— (inverse (f $$ fls-subdegree ) = 0)
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using fls-lr-inverse-eq-0-iff (2)[of [ inverse (f $$ fls-subdegree f)]
by (simp add: fls-inverse-def")

lemma fls-inverse-eq-0-iff [simp]:
inverse f = (0:: (‘a::division-ring) fls) «— f 3% fls-subdegree f = 0
using fls-inverse-eq-0-iff [of f] by (cases f=0) auto

lemmas fls-inverse-eq-0' = iffD2[OF fls-inverse-eq-0-iff ']
lemmas fls-inverse-eq-0 = iff D2[OF fls-inverse-eq-0-iff]

lemma fis-lr-inverse-const:
fixes a :: ‘a::{ab-group-add,mult-zero}
and b :: 'b::{comm-monoid-add,mult-zero,uminus}
shows fls-left-inverse (fls-const a) x = fls-const x
and fls-right-inverse (fls-const b) y = fls-const y
by  (simp-all add: fps-const-lr-inverse)

lemma fls-inverse-const:
fixes a :: ‘a::{comm-monoid-add,inverse,mult-zero,uminus}
shows inverse (fls-const a) = fls-const (inverse a)
using fls-lr-inverse-const(2)
by (auto simp: fls-inverse-def’)

lemma fis-lr-inverse-of-nat:
fixes z :: ‘a::{ring-1,mult-zero}
and y :: 'bu{semiring-1,uminus}
shows fls-left-inverse (of-nat n) z = fls-const ©
and fls-right-inverse (of-nat n) y = fls-const y
using fls-lr-inverse-const
by (auto simp: fls-of-nat)

lemma fis-inverse-of-nat:

inverse (of-nat n :: 'a :: {semiring-1,inverse,uminus} fls) = fls-const (inverse
(of-nat n))

by (simp add: fls-inverse-const fls-of-nat)

lemma fis-lr-inverse-of-int:

fixes z :: ‘a::{ring-1,mult-zero}

shows fls-left-inverse (of-int n) z = fls-const

and fls-right-inverse (of-int n) = = fls-const

using fls-lr-inverse-const

by  (auto simp: fls-of-int)
lemma fis-inverse-of-int:

inverse (of-int n :: 'a :: {ring-1,inverse,uminus} fls) = fls-const (inverse (of-int
n))

by (simp add: fls-inverse-const fls-of-int)

lemma fis-lr-inverse-zero:

425



fixes z :: ‘a::{ab-group-add,mult-zero}

and y :: 'b:{comm-monoid-add,mult-zero,uminus}
shows fis-left-inverse 0 x = fls-const z

and fis-right-inverse 0 y = fls-const y

using fls-lr-inverse-const[of 0]

by auto

lemma fis-inverse-zero-conv-fls-const:

inverse (0::'a::{ comm-monoid-add,mult-zero,uminus,inverse} fls) = fls-const (inverse
0)

using fls-lr-inverse-zero(2)[of inverse (0::'a)] by (simp add: fls-inverse-def)

lemma fls-inverse-zero”:
assumes inverse (0::'a::{comm-monoid-add,inverse,mult-zero,uminus}) = 0
shows inverse (0::'a fls) = 0
by (simp add: fls-inverse-zero-conv-fls-const assms)

lemma fls-inverse-zero [simp|: inverse (0::'a::diwvision-ring fls) = 0
by (rule fls-inverse-zero'|OF inverse-zero))

lemma fis-inverse-base2:
fixes [ :: 'a::{ comm-monoid-add,mult-zero,uminus,inverse} fls
shows inverse f $$ (—fls-subdegree f) = inverse (f $$ fls-subdegree f)
by  (cases f=0) (simp-all add: fls-inverse-zero-conv-fls-const fls-inverse-def ")

lemma fis-lr-inverse-one:
fixes z :: ‘a::{ab-group-add,mult-zero,one}
and vy :: 'b::{comm-monoid-add,mult-zero,uminus,one}
shows fls-left-inverse 1 © = fls-const x
and fis-right-inverse 1 y = fls-const y
using fls-lr-inverse-const[of 1]
by auto

lemma fis-lr-inverse-one-one:
fls-left-inverse 1 1 =
(1:'a::{ab-group-add,mult-zero,one} fls)
fls-right-inverse 1 1 =
(1::"b::{ comm-monoid-add,mult-zero,uminus,one} fls)
using fls-lr-inverse-one[of 1] by auto

lemma fls-inverse-one:
assumes inverse (1::'a::{comm-monoid-add,inverse,mult-zero,uminus,one}) = 1
shows inverse (1::'a fls) = 1
using assms fls-lr-inverse-one-one(2)
by (simp add: fls-inverse-def”)

lemma fis-left-inverse-delta:

fixes b :: ‘a:{ab-group-add,mult-zero}
assumes b # 0
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shows fls-left-inverse (Abs-fls (An. if n=a then b else 0)) © =
Abs-fls (An. if n=—a then z else 0)
proof (intro fls-eql)
fix n from assms show
fls-left-inverse (Abs-fls (An. if n=a then b else 0)) = $$ n
= Abs-fls (An. if n = — a then z else 0) $$ n
using fls-base-factor-to-fps-delta[of a b]
fls-lr-inverse-const(1)[of b]
fls-shift-const
by  simp
qged

lemma fis-right-inverse-delta;:
fixes b :: ‘a:{comm-monoid-add,mult-zero,uminus}
assumes b # 0
shows fls-right-inverse (Abs-fls (An. if n=a then b else 0)) x =
Abs-fls (An. if n=—a then x else 0)
proof (intro fls-eql)
fix n from assms show
fls-right-inverse (Abs-fls (An. if n=a then b else 0)) = $$ n
= Abs-fls (An. if n = — a then x else 0) $$ n
using fls-base-factor-to-fps-delta[of a b]
fls-lr-inverse-const(2)[of b]
fls-shift-const
by  simp
qged

lemma fis-inverse-delta-nonzero:
fixes b :: ‘a:{comm-monoid-add,inverse,mult-zero,uminus}
assumes b # 0
shows inverse (Abs-fls (An. if n=a then b else 0)) =
Abs-fls (An. if n=—a then inverse b else 0)
using assms fls-nonzerol[of Abs-fls (An. if n=a then b else 0) a]
by (simp add: fls-inverse-def’ fls-right-inverse-delta[symmetric])

lemma fis-inverse-delta:
fixes b :: ‘a::division-ring
shows inverse (Abs-fls (An. if n=a then b else 0)) =
Abs-fls (An. if n=—a then inverse b else 0)
by (cases b=0) (simp-all add: fls-inverse-delta-nonzero)

lemma fis-lr-inverse-X:
fixes z :: ‘a::{ab-group-add, mult-zero,zero-neq-one}
and vy :: 'b::{comm-monoid-add,uminus,mult-zero,zero-neq-one}
shows fls-left-inverse fls-X x = fls-shift 1 (fls-const x)
and fls-right-inverse fls-X y = fls-shift 1 (fls-const y)
using fls-lr-inverse-one(1)[of x] fls-lr-inverse-one(2)[of y]
by auto
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lemma fls-Ir-inverse-X "
fixes z :: ‘a::{ab-group-add,mult-zero,zero-neq-one,monoid-mult}
and y :: 'bu{comm-monoid-add,uminus,mult-zero,zero-neq-one,monoid-mult }
shows fis-left-inverse fls-X x = fis-const © * fls-X-inv
and fis-right-inverse fls-X y = fls-const y * fls-X-inv
using fls-lr-inverse-X (1)[of z] fls-lr-inverse-X(2)[of y]
by  (simp-all add: fls-X-inv-times-conv-shift(2))

lemma fls-inverse-X"

assumes inverse I = (1::'a:{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one})
shows inverse (fls-X::'a fls) = fls-X-inv

using assms fls-lr-inverse-X(2)[of 1::'a]

by (simp add: fls-inverse-def’ fls-X-inv-conv-shift-1)

lemma fls-inverse-X: inverse (fls-X::'a::division-ring fls) = fls-X-inv
by (simp add: fls-inverse-X")

lemma fls-lr-inverse-X-inv:
fixes z :: ‘a::{ab-group-add, mult-zero,zero-neq-one}
and y :: 'bu{comm-monoid-add,uminus,mult-zero,zero-neq-one}
shows fls-left-inverse fls-X-inv © = fls-shift (—1) (fls-const x)
and fls-right-inverse fls-X-inv y = fls-shift (—1) (fls-const y)
using fls-lr-inverse-one(1)[of z] fls-lr-inverse-one(2)[of y]
by auto

lemma fls-lr-inverse-X-inv’:
fixes z :: ‘a::{ab-group-add,mult-zero,zero-neq-one,monoid-mult}
and vy :: 'b::{comm-monoid-add,uminus,mult-zero,zero-neq-one,monoid-mult }
shows fls-left-inverse fls-X-inv x = fls-const © * fls-X
and fis-right-inverse fls-X-inv y = fls-const y x fls-X
using fls-lr-inverse-X-inv(1)[of z] fls-lr-inverse-X-inv(2)[of y]
by  (simp-all add: fls-X-times-conv-shift(2))

lemma fls-inverse-X-inv":

assumes inverse 1 = (1::'a:{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one})
shows inverse (fls-X-inv::'a fls) = fls-X

using assms fls-lr-inverse-X-inv(2)[of 1::'a]

by (simp add: fls-inverse-def’ fls-X-conv-shift-1)

lemma fls-inverse-X-inv: inverse (fls-X-inv::’a::division-ring fls) = fls-X
by (simp add: fls-inverse-X-inv’)

lemma fis-lr-inverse-subdegree:
assumes z #

shows  fls-subdegree (fls-left-inverse f x) = — fls-subdegree f
and  fis-subdegree (fls-right-inverse f x) = — fls-subdegree f
by (auto intro: fls-subdegree-eql simp: assms)

lemma fls-inverse-subdegree’:
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inverse (f 8% fls-subdegree ) # 0 = fls-subdegree (inverse f) = — fls-subdegree
f

using fls-lr-inverse-subdegree(2)|of inverse (f $% fls-subdegree f)]

by (simp add: fls-inverse-def”)

lemma fls-inverse-subdegree [simp]:
fixes f :: 'a::division-ring fls
shows fls-subdegree (inverse f) = — fls-subdegree f
by (cases f=0)
(auto intro: fls-inverse-subdegree’ simp: nonzero-imp-inverse-nonzero)

lemma fis-inverse-subdegree-base-nonzero:
assumes [ # 0 inverse (f $$ fls-subdegree f) # 0
shows inverse f $$ (fls-subdegree (inverse f)) = inverse (f $3 fls-subdegree f)
using assms fls-inverse-subdegree’[of f] fls-inverse-base[of f]
by simp

lemma fils-inverse-subdegree-base:
fixes f :: 'a::{ab-group-add,inverse,mult-zero} fls
shows inverse f $$ (fls-subdegree (inverse f)) = inverse (f $$ fls-subdegree f)
using fls-inverse-eq-0-iff '[of f] fls-inverse-subdegree-base-nonzero|of f]
by (cases f=0 V inverse (f $3 fls-subdegree f) = 0)
(auto simp: fls-inverse-zero-conv-fls-const)

lemma fis-lr-inverse-subdegree-0:
assumes fis-subdegree f = 0
shows  fls-subdegree (fls-left-inverse f ) > 0
and  fis-subdegree (fls-right-inverse f x) > 0
using  fls-subdegree-ge0l|of fls-left-inverse f z]
fls-subdegree-geOI|of fls-right-inverse f z]
by (auto simp: assms)

lemma fis-inverse-subdegree-0:
fls-subdegree f = 0 = fls-subdegree (inverse f) > 0
using fls-lr-inverse-subdegree-0(2)[of f] by (simp add: fls-inverse-def")

lemma fis-lr-inverse-shift-nonzero:
fixes f :: ‘a::{comm-monoid-add,mult-zero,uminus} fls
assumes f # 0
shows fls-left-inverse (fls-shift m f) x = fls-shift (—m) (fls-left-inverse f x)
and  fis-right-inverse (fls-shift m f) © = fls-shift (—m) (fls-right-inverse f )
using assms fls-base-factor-to-fps-shift[of m f] fls-shift-subdegree
by auto

lemma fls-inverse-shift-nonzero:
fixes [ :: 'a:{comm-monoid-add,inverse,mult-zero,uminus} fls
assumes [ # 0
shows inverse (fls-shift m f) = fls-shift (—m) (inverse f)
using assms fls-lr-inverse-shift-nonzero(2)[of f m inverse (f $$ fls-subdegree f)]
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by (simp add: fls-inverse-def")

lemma fis-inverse-shift:
fixes f :: 'a:division-ring fls
shows inverse (fls-shift m f) = fls-shift (—m) (inverse f)
using fis-inverse-shift-nonzero
by (cases f=0) simp-all

lemma fis-left-inverse-base-factor:
fixes x :: ‘a::{ab-group-add,mult-zero}
assumes z # 0
shows fls-left-inverse (fls-base-factor f) © = fls-base-factor (fls-left-inverse f x)
using assms fls-lr-inverse-zero(1)[of x| fls-lr-inverse-subdegree(1)[of ]
by (cases f=0) auto

lemma fis-right-inverse-base-factor:

fixes vy :: 'a::{comm-monoid-add,mult-zero,uminus}

assumes y # 0

shows fls-right-inverse (fis-base-factor f) y = fls-base-factor (fls-right-inverse
fy)

using assms fls-lr-inverse-zero(2)[of y| fls-lr-inverse-subdegree(2)[of y]

by (cases f=0) auto

lemma fls-inverse-base-factor’:
fixes [ :: 'a:{comm-monoid-add,inverse,mult-zero,uminus} fls
assumes inverse (f $$ fls-subdegree f) # 0
shows inverse (fls-base-factor f) = fls-base-factor (inverse f)
by (cases f=0)
(simp-all add:
assms fls-inverse-shift-nonzero fls-inverse-subdegree’
fls-inverse-zero-conv-fls-const

)

lemma fis-inverse-base-factor:
fixes f :: 'a::{ab-group-add,inverse,mult-zero} fls
shows inverse (fls-base-factor f) = fls-base-factor (inverse f)
using fls-base-factor-base[of f] fls-inverse-eq-0-iff '[of f]
fis-inverse-eq-0-iff '[of fls-base-factor f] fls-inverse-base-factor’[of f]
by  (cases inverse (f $$ fls-subdegree f) = 0) simp-all

lemma fis-lr-inverse-regpart:
assumes fis-subdegree f = 0
shows fls-regpart (fls-left-inverse f x) = fps-left-inverse (fls-regpart f) x
and  fis-regpart (fls-right-inverse f y) = fps-right-inverse (fls-regpart f) y
using assms
by auto

lemma fis-inverse-regpart:
assumes fis-subdegree f = 0
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shows fls-regpart (inverse f) = inverse (fls-regpart f)
by (simp add: assms fls-inverse-def)

lemma fis-base-factor-to-fps-left-inverse:
fixes x :: ‘a::{ab-group-add,mult-zero}
shows  fls-base-factor-to-fps (fls-left-inverse f ) =
fps-left-inverse (fls-base-factor-to-fps f) x
using  fls-left-inverse-base-factor|of x f] fls-base-factor-subdegree|of f]
by  (cases z=0) (simp-all add: fls-lr-inverse-starting0(1) fps-lr-inverse-starting0(1))

lemma fis-base-factor-to-fps-right-inverse-nonzero:
fixes vy :: 'a::{comm-monoid-add,mult-zero,uminus}
assumes y # 0
shows  fls-base-factor-to-fps (fls-right-inverse f y) =

fps-right-inverse (fls-base-factor-to-fps f) y
using assms fls-right-inverse-base-factor|of y f]
fls-base-factor-subdegree|of f]

by simp

lemma fis-base-factor-to-fps-right-inverse:
fixes y :: ‘a::{ab-group-add,mult-zero}
shows  fls-base-factor-to-fps (fls-right-inverse fy) =
fps-right-inverse (fls-base-factor-to-fps f) y
using  fls-base-factor-to-fps-right-inverse-nonzerolof y f]
by  (cases y=0) (simp-all add: fls-lr-inverse-starting0(2) fps-lr-inverse-starting0(2))

lemma fis-base-factor-to-fps-inverse-nonzero:
fixes f :: 'a::{comm-monoid-add,inverse,mult-zero,uminus} fls
assumes inverse (f $$ fls-subdegree f) # 0
shows fls-base-factor-to-fps (inverse f) = inverse (fls-base-factor-to-fps f)
using assms fis-base-factor-to-fps-right-inverse-nonzero
by (simp add: fls-inverse-def’ fps-inverse-def)

lemma fis-base-factor-to-fps-inverse:
fixes f :: 'a::{ab-group-add,inverse,mult-zero} fls
shows fls-base-factor-to-fps (inverse f) = inverse (fls-base-factor-to-fps f)
using fis-base-factor-to-fps-right-inverse
by (simp add: fls-inverse-def’ fps-inverse-def)

lemma fis-Ir-inverse-fps-to-fls:
assumes subdegree f = 0
shows fls-left-inverse (fps-to-fls ) © = fps-to-fis (fps-left-inverse f x)
and  fls-right-inverse (fps-to-fls f) = = fps-to-fls (fps-right-inverse f x)
using assms fls-base-factor-to-fps-to-fis[of f]
by (simp-all add: fls-subdegree-fls-to-fps)

lemma fis-inverse-fps-to-fis:

subdegree f = 0 = inverse (fps-to-fls f) = fps-to-fls (inverse f)
using nth-subdegree-nonzero|of f]
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by (cases f=0)
(auto simp add:
fps-to-fls-nonzerol fls-inverse-def’ fls-subdegree-fls-to-fps fps-inverse-def
fls-lr-inverse-fps-to-fis(2)
)

lemma fis-lr-inverse-X-power:
fixes z :: ‘a::ring-1
and y :: 'bu{semiring-1,uminus}
shows fls-left-inverse (fls-X ~n) x = fls-shift n (fls-const z)
and fls-right-inverse (fls-X ~n) y = fls-shift n (fls-const y)
using fls-lr-inverse-one(1)[of z] fls-lr-inverse-one(2)[of y]
by  (simp-all add: fls-X-power-conv-shift-1)

lemma fls-Ir-inverse-X-power":
fixes z :: ‘a::ring-1
and vy :: 'bu:{semiring-1,uminus}
shows fis-left-inverse (fls-X ~n) x = fls-const z x fls-X-inv " n
and fls-right-inverse (fls-X ~n) y = fls-const y x fls-X-inv " n
using fls-lr-inverse-X-power(1)[of n ] fls-lr-inverse-X-power(2)[of n y]
by  (simp-all add: fls-X-inv-power-times-conv-shift(2))

lemma fls-inverse-X-power':
assumes inverse 1 = (1::'a::{semiring-1,uminus,inverse})
shows inverse ((fls-X ~n)::'a fls) = fls-X-inv " n
using  fls-lr-inverse-X-power’(2)[of n 1]
by (simp add: fls-inverse-def’ assms )

lemma fis-inverse-X-power:
inverse ((fls-X::'a::division-ring fls) ~n) = fls-X-inv " n
by (simp add: fls-inverse-X-power’)

lemma fis-lr-inverse-X-inv-power:
fixes = :: 'a::ring-1
and y :: 'bu{semiring-1,uminus}
shows fls-left-inverse (fls-X-inv ™ n) z = fls-shift (—n) (fls-const z)
and fls-right-inverse (fls-X-inv " n) y = fls-shift (—n) (fls-const y)
using fls-lr-inverse-one(1)[of z] fls-lr-inverse-one(2)[of y]
by  (simp-all add: fls-X-inv-power-conv-shift-1)

lemma fls-lr-inverse-X-inv-power’:
fixes z :: 'a::ring-1
and y 2 ‘b::{semiring-1,uminus}
shows fis-left-inverse (fls-X-inv " n) x = fls-const x x fls-X " n
and fls-right-inverse (fls-X-inv ~n) y = fls-const y x fls-X " n
using fls-lr-inverse-X-inv-power(1)[of n x| fls-lr-inverse-X-inv-power(2)[of n y]
by  (simp-all add: fls-X-power-times-conv-shift(2))

lemma fls-inverse-X-inv-power":
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assumes inverse 1 = (1::’a::{semiring-1,uminus,inverse})
shows inverse ((fls-X-inv " n)::'a fls) = fils-X " n
using  fls-lr-inverse-X-inv-power’(2)[of n 1]

by (simp add: fls-inverse-def’ assms)

lemma fis-inverse-X-inv-power:
inverse ((fls-X-inv::'a::division-ring fls) ~n) = fls-X " n
by (simp add: fls-inverse-X-inv-power’)

lemma fis-lr-inverse-X-intpow:
fixes z :: 'a::ring-1
and vy :: 'bu:{semiring-1,uminus}
shows fis-left-inverse (fls-X-intpow ©) = = fls-shift i (fls-const x)
and fls-right-inverse (fls-X-intpow ) y = fls-shift i (fls-const y)
using fls-lr-inverse-one(1)[of x] fls-lr-inverse-one(2)[of y]
by auto

lemma fls-Ir-inverse-X-intpow":
fixes z :: ‘a::ring-1
and y :: 'bu{semiring-1,uminus}
shows fls-left-inverse (fls-X-intpow i) © = fls-const z x fls-X-intpow (—1)
and fls-right-inverse (fls-X-intpow i) y = fls-const y * fls-X-intpow (—1)
using fls-lr-inverse-X-intpow(1)[of i x] fls-lr-inverse-X-intpow(2)[of i y]
by  (simp-all add: fis-shifted-times-simps(1))

lemma fls-inverse-X-intpow':
assumes inverse 1 = (1::'a::{semiring-1,uminus,inverse})
shows inverse (fls-X-intpow i :: 'a fls) = fls-X-intpow (—1)
using  fls-lr-inverse-X-intpow’(2)[of i 1]
by (simp add: fls-inverse-def’ assms)

lemma fis-inverse-X-intpow:
inverse (fls-X-intpow i :: 'a::division-ring fls) = fls-X-intpow (—1)
by (simp add: fls-inverse-X-intpow’)

lemma fis-left-inverse:
fixes f :: ‘auring-1 fls
assumes z * f $$ fls-subdegree f = 1
shows fis-left-inverse fx x f = 1
proof—
from assms have = # 0 x * (fls-base-factor-to-fps f$0) = 1 by auto
thus ?thesis
using fls-base-factor-to-fps-left-inverse|of f z]
fls-lr-inverse-subdegree(1)[of x] fps-left-inverse
by  (fastforce simp: fls-times-def)
qed

lemma fis-right-inverse:
fixes f :: ‘anring-1 fls
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assumes [ $$ fls-subdegree f x y = 1
shows f * fls-right-inverse fy = 1
proof—
from assms have y # 0 (fls-base-factor-to-fps f$0) x y = 1 by auto
thus ?thesis
using fls-base-factor-to-fps-right-inverse|of f y]
fls-lr-inverse-subdegree(2)[of y] fps-right-inverse
by  (fastforce simp: fls-times-def)
qed

— It is possible in a ring for an element to have a left inverse but not a right inverse,
or vice versa. But when an element has both, they must be the same.
lemma fis-left-inverse-eq-fls-right-inverse:

fixes [ :: ‘a:ring-1 fls

assumes z * f $$ fls-subdegree f = 1 f $$ fls-subdegree f * y = 1

— These assumptions imply x equals y, but no need to assume that.

shows fis-left-inverse f x = fls-right-inverse f y

using assms

by (simp add: fps-left-inverse-eq-fps-right-inverse)

lemma fis-left-inverse-eq-inverse:
fixes [ :: 'a::division-ring fls
shows fls-left-inverse f (inverse (f $3 fls-subdegree f)) = inverse f
proof (cases f=0)
case True
hence fls-left-inverse f (inverse (f $$ fls-subdegree f)) = fls-const (0::'a)
by (simp add: fls-lr-inverse-zero(1)[symmetric])
with True show ?thesis by simp
next
case Fulse thus ?thesis
using fls-left-inverse-eq-fls-right-inverse[of inverse (f $$ fls-subdegree f)]
by (auto simp add: fls-inverse-def”)
qed

lemma fis-right-inverse-eq-inverse:

fixes f :: 'a:division-ring fls

shows fls-right-inverse f (inverse (f $$ fls-subdegree f)) = inverse f
proof (cases f=0)

case True

hence fls-right-inverse f (inverse (f $$ fls-subdegree f)) = fls-const (0::'a)

by (simp add: fls-lr-inverse-zero(2)[symmetric])

with True show ?thesis by simp

qed (simp add: fls-inverse-def”)

lemma fis-left-inverse-eq-fls-right-inverse-comm:
fixes [ :: ‘a::comm-ring-1 fls
assumes z * [ $$ fls-subdegree f = 1
shows fis-left-inverse f x = fls-right-inverse f
using assms fls-left-inverse-eq-fis-right-inverse|of z f x
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by (simp add: mult.commute)

lemma fls-left-inverse’:
fixes [ :: ‘a:ring-1 fls
assumes z * f $$ fls-subdegree f = 1 f $$ fls-subdegree f * y = 1
— These assumptions imply x equals y, but no need to assume that.
shows fis-right-inverse fy x f = 1
using assms fls-left-inverse-eq-fls-right-inverse|of = f y| fls-left-inverse|of z f]
by stmp

lemma fls-right-inverse”:
fixes [ :: 'a:ring-1 fls
assumes z * [ $$ fls-subdegree f = 1 f $3$ fls-subdegree f x y = 1
— These assumptions imply x equals y, but no need to assume that.
shows f x fis-left-inverse fz = 1
using assms fls-left-inverse-eq-fls-right-inverse[of x f y| fls-right-inverse[of f y]
by simp

lemma fis-mult-left-inverse-base-factor:

fixes [ :: ‘a:ring-1 fls

assumes z x (f $$ fls-subdegree f) = 1

shows fls-left-inverse (fls-base-factor f) x x f = fls-X-intpow (fls-subdegree f)

using assms fls-base-factor-to-fps-base-factor|of f] fls-base-factor-subdegree|of f]
fls-shifted-times-simps(2)[of —fls-subdegree f fls-left-inverse f z f]
fls-left-inverse|of x f]

by simp

lemma fis-mult-right-inverse-base-factor:

fixes [ :: ‘a:ring-1 fls

assumes (f $3$ fls-subdegree f) x y = 1

shows [« fls-right-inverse (fls-base-factor f) y = fls-X-intpow (fls-subdegree f)

using assms fls-base-factor-to-fps-base-factor|of f] fls-base-factor-subdegree|of f]
fls-shifted-times-simps(1)[of [ —fls-subdegree f fls-right-inverse f y]
fls-right-inverse|of [ y]

by stmp

lemma fls-mult-inverse-base-factor:
fixes [ :: 'a::division-ring fls
assumes f # 0
shows f x inverse (fls-base-factor f) = fls-X-intpow (fls-subdegree f)
using  fls-mult-right-inverse-base-factor|of f inverse (f $$ fls-subdegree f)]
fls-base-factor-base[of f]
by (simp add: assms fls-right-inverse-eq-inverse[symmetric|)

lemma fis-left-inverse-idempotent-ring1:

fixes [ :: ‘a:ring-1 fls

assumes z * f $$ fls-subdegree f = 1 y x z = 1

— These assumptions imply y equals f $$ fls-subdegree f, but no need to assume
that.
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shows fls-left-inverse (fls-left-inverse fx) y = f
proof—
from assms(1) have
fls-left-inverse (fls-left-inverse f x) y x fls-left-inverse f x = f =
fls-left-inverse (fls-left-inverse f x) y
using fls-left-inverse[of x f]
by  (simp add: mult.assoc)
moreover have
fls-left-inverse (fls-left-inverse f x) y * fls-left-inverse fx = 1
using assms fls-lr-inverse-subdegree(1)[of  f] fls-lr-inverse-base(1)[of f ]
by  (fastforce intro: fls-left-inverse)
ultimately show ?thesis by simp
qed

lemma fis-left-inverse-idempotent-comm-ring1
fixes [ :: ‘a::comm-ring-1 fls
assumes z * [ $$ fls-subdegree f = 1
shows  fls-left-inverse (fls-left-inverse f x) (f $$ fls-subdegree f) = f
using assms fls-left-inverse-idempotent-ringl [of = [ f $% fls-subdegree f]
by (simp add: mult.commute)

lemma fis-right-inverse-idempotent-ring1:
fixes [ :: 'a:ring-1 fls
assumes [ $$ fls-subdegree f x x = 1z x y = 1
— These assumptions imply y equals f $$ fls-subdegree f, but no need to assume
that.
shows  fls-right-inverse (fls-right-inverse f ) y = f
proof—
from assms(1) have
f * (fls-right-inverse f x * fls-right-inverse (fls-right-inverse f z) y) =
fls-right-inverse (fls-right-inverse f x) y
using fls-right-inverse [of f]
by (simp add: mult.assoc[symmetric])
moreover have
fls-right-inverse f x % fls-right-inverse (fls-right-inverse f z) y = 1
using assms fls-lr-inverse-subdegree(2)[of « f] fls-lr-inverse-base(2)[of f ]
by  (fastforce intro: fls-right-inverse)
ultimately show ?thesis by simp
qed

lemma fis-right-inverse-idempotent-comm-ring1:
fixes [ :: ‘a::comm-ring-1 fls
assumes [ $$ fls-subdegree f x © = 1
shows  fls-right-inverse (fls-right-inverse f x) (f $$ fls-subdegree f) = f
using assms fls-right-inverse-idempotent-ring1 [of f x [ $3 fls-subdegree f]
by (simp add: mult.commute)

lemma fis-lr-inverse-unique-ring1:
fixes fg: 'a: ring-1 fls
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assumes fg: f * g = 1 g $3 fls-subdegree g * f $$ fls-subdegree f = 1
shows fls-left-inverse g (f $$ fls-subdegree ) = f
and  fls-right-inverse (g $$ fls-subdegree g) = g

proof—

have f $$ fls-subdegree f * g $$ fls-subdegree g # 0

proof
assume [ $$ fls-subdegree f * g $$ fls-subdegree g = 0
hence f 33 fls-subdegree f * (g $$ fls-subdegree g * f $$ fls-subdegree f) = 0

by (simp add: mult.assoc[symmetric))

with fg(2) show Fulse by simp

qed

with fg(1) have subdeg-sum: fls-subdegree f + fls-subdegree g = 0
using fls-mult-nonzero-base-subdegree-eq[of f g] by simp

hence subdeg-sum’:
fls-subdegree f = —fls-subdegree g fls-subdegree g = — fls-subdegree f
by auto

from fg(1) have f-ne-0: f#0 by auto
moreover have
fps-left-inverse (fls-base-factor-to-fps g) (fls-regpart (fls-shift (—fls-subdegree g)
f)$0)
= fls-regpart (fls-shift (—fls-subdegree g) f)
proof (intro fps-lr-inverse-unique-ring1 (1))
from fg(1) show
fls-regpart (fls-shift (—fls-subdegree g) f) * fls-base-factor-to-fps g = 1
using f-ne-0 fls-times-conv-regpart|of fls-shift (—fls-subdegree g) f fls-base-factor
9]
fls-base-factor-subdegree|of g
by  (simp add: fls-times-both-shifted-simp subdeg-sum)
from fg(2) show
fls-base-factor-to-fps g $ 0 * fls-regpart (fis-shift (—fls-subdegree g) f) $ 0 = 1
by (simp add: subdeg-sum’(2))
qed
ultimately show fis-left-inverse g (f $$ fls-subdegree f) = f
by (simp add: subdeg-sum’(2))

from fg(1) have g-ne-0: g#0 by auto
moreover have
fps-right-inverse (fls-base-factor-to-fps f) (fls-regpart (fls-shift (—fls-subdegree
f) 9)%0)
= fls-regpart (fls-shift (—fls-subdegree f) g)
proof (intro fps-lr-inverse-unique-ring1(2))
from fg(1) show
fls-base-factor-to-fps f * fls-regpart (fls-shift (—fls-subdegree f) g) = 1
using g-ne-0 fls-times-conv-regpart|of fls-base-factor f fls-shift (—fls-subdegree
) 4l
fls-base-factor-subdegree|of f]
by  (simp add: fls-times-both-shifted-simp subdeg-sum add.commute)
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from fg(2) show
fls-regpart (fls-shift (—fls-subdegree f) g) $ 0 x fls-base-factor-to-fps f $ 0 = 1
by (simp add: subdeg-sum’(1))
qed
ultimately show fls-right-inverse f (g $3 fls-subdegree g) = ¢
by (simp add: subdeg-sum’(2))

qed

lemma fis-lr-inverse-unique-divring:
fixes fg :: 'a ::division-ring fls
assumes fg: f x g = 1
shows fls-left-inverse g (f $$ fls-subdegree ) = f
and  fls-right-inverse f (g $$ fls-subdegree g) = g
proof—
from fg have f #0 g # 0 by auto
with fg have fls-subdegree f + fls-subdegree ¢ = 0 using fls-subdegree-mult by
force
with fg have f $$ fls-subdegree f * g $$ fls-subdegree g = 1
using fls-times-base[of f g] by simp
hence g $$ fls-subdegree g * f $$ fls-subdegree f = 1
using inverse-uniquelof [ $$ fls-subdegree f| left-inverselof f $$ fls-subdegree f]
by  force
thus
fls-left-inverse g (f $$ fls-subdegree f) = f
fls-right-inverse f (g $% fls-subdegree g) = ¢
using fg fis-lr-inverse-unique-ring1
by auto
qed

lemma fis-lr-inverse-minus:
fixes [ :: 'a:ring-1 fls
shows fis-left-inverse (—f) (—x) = — fls-left-inverse f x
and fls-right-inverse (—f) (—z) = — fls-right-inverse f x
by (simp-all add: fps-lr-inverse-minus)

lemma fls-inverse-minus [simp]: inverse (—f) = —inverse (f :: 'a :: division-ring

fls)
using fls-lr-inverse-minus(2)[of f] by (simp add: fls-inverse-def")

lemma fis-lr-inverse-mult-ring1 :
fixes fg: ‘azring-1 fls
assumes z: z * f $$ fls-subdegree f = 1 f $$ fls-subdegree f x z = 1
and y: y * g $$ fls-subdegree g = 1 g $$ fls-subdegree g x y = 1
shows fls-left-inverse (f * g) (yxx) = fls-left-inverse g y x fls-left-inverse f x
and  fls-right-inverse (f % g) (yxx) = fls-right-inverse g y * fls-right-inverse f
x
proof—
from z(1) y(2) have = x (f $3 fls-subdegree f * g $$ fls-subdegree g) * y = 1
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by (simp add: mult.assoc)
hence base-prod: [ $3 fls-subdegree [ x g $$ fls-subdegree g # 0 by auto
hence subdegrees: fls-subdegree (f+g) = fls-subdegree f + fls-subdegree g
using fls-mult-nonzero-base-subdegree-eq[of f g] by simp

have norm:
fls-base-factor-to-fps (f = g) = fls-base-factor-to-fps f x fls-base-factor-to-fps ¢
using base-prod fls-base-factor-to-fps-mult’[of f g] by simp

have
fls-left-inverse (f = g) (yxx) =
fls-shift (fls-subdegree (f * g)) (
os-to-fis (
fps-left-inverse (fls-base-factor-to-fps f * fls-base-factor-to-fps g) (yx*x)
)
)

using norm
by  simp
thus fis-left-inverse (f * g) (yxx) = fls-left-inverse g y x fls-left-inverse f x
using z y
fps-lr-inverse-mult-ring1 (1)[of
z fls-base-factor-to-fps f y fis-base-factor-to-fps g
]
by  (simp add:
fls-times-both-shifted-simp fis-times-fps-to-fls subdegrees algebra-simps

)

have
fls-right-inverse (f * g) (yxz) =
fls-shift (fls-subdegree (f * g)) (
fps-to-fis (
)fps—right—inverse (fls-base-factor-to-fps f * fls-base-factor-to-fps g) (y*x)
)

using norm
by  simp
thus fls-right-inverse (f * g) (yxx) = fls-right-inverse g y x fls-right-inverse f
using z y
fps-lr-inverse-mult-ring1 (2)[of
z fls-base-factor-to-fps f y fis-base-factor-to-fps g
]
by  (simp add:
fls-times-both-shifted-simp fis-times-fps-to-fls subdegrees algebra-simps

)

qged
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lemma fis-lr-inverse-power-ring1:
fixes [ :: 'a:ring-1 fls
assumes z: z * [ $$ fls-subdegree f = 1 f $$ fls-subdegree f * © = 1
shows fls-left-inverse (f ~n) (x ~n) = (fls-left-inverse f ) " n
fls-right-inverse (f ~n) (z ~ n) = (fls-right-inverse f x) " n
proof—

show fls-left-inverse (f ~n) (x ~ n) = (fls-left-inverse fx) "~ n
proof (induct n)
case 0 show ?case using fls-lr-inverse-one(1)[of 1] by simp
next
case (Suc n) with assms show ?case
using fls-lr-inverse-mult-ring1 (1)[of z f ™n fn]
by (simp add:
power-Suc2[symmetric] fls-unit-base-subdegree-power(1) left-right-inverse-power
)
qed

show fls-right-inverse (f ~n) (x ~ n) = (fls-right-inverse f z) " n
proof (induct n)
case (0 show ?case using fls-lr-inverse-one(2)[of 1] by simp
next
case (Suc n) with assms show ?case
using fls-lr-inverse-mult-ring1 (2)[of = f x™n fn]
by (simp add:
power-Suc2[symmetric] fls-unit-base-subdegree-power(1) left-right-inverse-power

qed
qed

lemma fis-divide-convert-times-inverse:

fixes fg :: ‘a::{comm-monoid-add,inverse,mult-zero,uminus} fls

shows f /g =f x inverse g

using fls-base-factor-to-fps-subdegree|of g] fps-to-fls-base-factor-to-fps|of f]

fls-times-both-shifted-simp|of —fls-subdegree f fls-base-factor f]

by  (simp add:
fls-divide-def fps-divide-unit’ fls-times-fps-to-fls
fls-conv-base-factor-shift-subdegree fls-inverse-def

)

instance fis :: (division-ring) division-ring
proof
fix ab: 'afls
show a # 0 = inverse a x a = 1
using fls-left-inverse’[of inverse (a $3 fls-subdegree a) a]
by  (simp add: fls-inverse-def”)
show a # 0 = a * inverse a = 1
using fls-right-inverse[of al
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by  (simp add: fls-inverse-def’)
show a / b = a * inverse b using fls-divide-convert-times-inverse by fast
show inverse (0::'a fls) = 0 by simp
qed

lemma fis-lr-inverse-mult-divring:
fixes fg :: 'a:division-ring fls
and df dg :: int
defines df = fls-subdegree f
and dg = fis-subdegree g
shows fls-left-inverse (fxg) (inverse ((f*g)$$(df+dg))) =
fls-left-inverse g (inverse (¢33dg)) * fis-left-inverse f (inverse (f$$df))
and  fls-right-inverse (fxg) (inverse ((f*g)$$(df+dg))) =
fls-right-inverse g (inverse (¢$8dg)) * fls-right-inverse f (inverse (f$3df))
proof —
show
fls-left-inverse (f*g) (inverse ((f+g)$$(df+dg))) =
fls-left-inverse g (inverse (g$$dg)) * fls-left-inverse f (inverse (f$$df))
proof (cases f=0 V g=0)
case True thus ?thesis
using fls-lr-inverse-zero(1)[of inverse (0::'a)] by (auto simp add: assms)
next
case Fulse thus ?thesis
using fls-left-inverse-eq-inverse|of fxg] nonzero-inverse-mult-distrib[of f g]
fls-left-inverse-eq-inverse[of g] fls-left-inverse-eg-inverse|of f]
by (simp add: assms)
qed
show
fls-right-inverse (fxg) (inverse ((fxg)$$(df+dg))) =
fls-right-inverse g (inverse (¢$$dg)) = fls-right-inverse f (inverse (f$$df))
proof (cases f=0 V g=0)
case True thus ?thesis
using fls-lr-inverse-zero(2)[of inverse (0::'a)] by (auto simp add: assms)
next
case Fulse thus ?thesis
using fls-inverse-def'[of fxg] nonzero-inverse-mult-distrib|of f g]
fls-inverse-def'[of g] fls-inverse-def'[of f]
by  (simp add: assms)
qed
qed

lemma fis-lr-inverse-power-divring:
fis-left-inverse (f ~n) ((inverse (f $$ fls-subdegree f)) ~n) =
(fls-left-inverse f (inverse (f $$ fls-subdegree f))) ~n (is ?2P)
and fls-right-inverse (f ~n) ((inverse (f $$ fls-subdegree f)) ~n) =
(fls-right-inverse f (inverse (f $$ fls-subdegree f))) ~n (is 7Q)
for f :: 'a::division-ring fls
proof —
note fls-left-inverse-eq-inverse [of f] fls-right-inverse-eq-inverse[of f]
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moreover have
fls-right-inverse (f ~n) ((inverse (f $$ fls-subdegree f)) ~n) =
inverse f " n
using fls-right-inverse-eq-inverse [of f ~ n]
by (simp add: fls-subdegree-pow power-inverse)
moreover have
fls-left-inverse (f ~ n) ((inverse (f $$ fls-subdegree f)) ~n) =
inverse f T n
using fls-left-inverse-eg-inverse [of f ~ n]
by (simp add: fls-subdegree-pow power-inverse)
ultimately show ?P and ?7Q)
by simp-all
qed

lemma one-plus-fis- X-powi-eq:
(1 + fls-X) powi n = fps-to-fls (fps-binomial (of-int n :: 'a :: field-char-0))
proof (cases n > 0)
case True
thus ?thesis
using fps-binomial-of-nat|of nat n, where ?'a = 'a
by (simp add: power-int-def fps-to-fls-power)
next
case Fulse
thus ?thesis
using fps-binomial-minus-of-nat|of nat (—n), where ?'a = 'a)
by (simp add: power-int-def fps-to-fls-power fps-inverse-power flip: fls-inverse-fps-to-fls)
qged

instance fls :: (field) field
by (standard, simp-all add: field-simps)

instance fis :: ({field-prime-char,comm-semiring-1}) field-prime-char
by (rule field-prime-charl’) auto

instance fls :: (semiring-char-0) semiring-char-0
proof
show inj (of-nat :: nat = 'a fls)
by (metis fls-regpart-of-nat injl of-nat-eq-iff)
qed

instance fls :: (field-char-0) field-char-0 ..
lemma fls-subdegree-power-int [simp):
fixes F ::'a : field fls

shows fls-subdegree (F powi n) = n * fls-subdegree F'
by (auto simp: power-int-def fls-subdegree-pow)
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7.5.6 Division

lemma fis-divide-nth-below:
fixes f g :: 'a::{comm-monoid-add,uminus,times,inverse} fls
shows n < fls-subdegree f — fls-subdegree g = (f div g) $$ n = 0
by (simp add: fls-divide-def)

lemma fis-divide-nth-base:
fixes f g :: 'a::division-ring fls
shows
(f div g) $$ (fls-subdegree f — fls-subdegree g) =
I 88 fis-subdegree f | g $3 fls-subdegree g
using fps-divide-nth-0'[of fls-base-factor-to-fps g fls-base-factor-to-fps f]
fls-base-factor-to-fps-subdegree| of g
by  (simp add: fls-divide-def)

lemma fls-div-zero [simp]:
0 div (g :: 'a :: {comm-monoid-add,inverse,mult-zero,uminus} fls) = 0
by (simp add: fls-divide-def)

lemma fis-div-by-zero:
fixes g :: 'a::{comm-monoid-add,inverse,mult-zero,uminus} fls
assumes inverse (0::'a) = 0
shows g div0 =0
by (simp add: fls-divide-def assms fps-div-by-zero')

lemma fls-divide-times:
fixes f g :: 'a::{semiring-0,inverse,uminus} fls
shows (f x g) / h =[x (g/h)
by (simp add: fls-divide-convert-times-inverse mult.assoc)

lemma fis-divide-times2:
fixes f g :: 'a::{comm-semiring-0,inverse,uminus} fls
shows (f % g) / h=(f / ) * g
using fls-divide-times|of g f h]
by  (simp add: mult.commute)

lemma fis-divide-subdegree-ge:
fixes fyg :: ‘ai:{comm-monoid-add,uminus,times,inverse} fls
assumes f / g # 0
shows fls-subdegree (f / g) > fls-subdegree f — fls-subdegree g
using assms fis-divide-nth-below
by (intro fls-subdegree-gel) simp

lemma fis-divide-subdegree:
fixes fg :: 'a::division-ring fls
assumes f # 0 g # 0
shows fls-subdegree (f / g) = fls-subdegree f — fls-subdegree g
proof (intro antisym)
from assms have f $$ fis-subdegree f / g $3 fls-subdegree g # 0 by (simp add:
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field-simps)
thus fls-subdegree (f/g) < fls-subdegree f — fls-subdegree g
using fls-divide-nth-base|of f g] by (intro fls-subdegree-lel) simp
from assms have f / g # 0 by (simp add: field-simps)
thus fls-subdegree (f/g) > fls-subdegree f — fls-subdegree g
using fis-divide-subdegree-ge by fast
qed

lemma fis-divide-shift-numer-nonzero:
fixes fg: 'a:: {comm-monoid-add,inverse,times,uminus} fls
assumes [ # 0
shows fls-shift m f |/ g = fls-shift m (f/g)
using assms fls-base-factor-to-fps-shiftlof m f|
by (simp add: fls-divide-def algebra-simps)

lemma fis-divide-shift-numer:
fixes f g :: 'a :: {comm-monoid-add,inverse,mult-zero,uminus} fls
shows fls-shift m f | g = fls-shift m (f/g)
using fls-divide-shift-numer-nonzero
by (cases f=0) auto

lemma fis-divide-shift-denom-nonzero:
fixes fg: 'a:: {comm-monoid-add,inverse,times,uminus} fls
assumes g # 0
shows f / fls-shift m g = fls-shift (—m) (f/g)
using assms fls-base-factor-to-fps-shift[of m g]
by (simp add: fls-divide-def algebra-simps)

lemma fis-divide-shift-denom;:
fixes fg: 'a:: division-ring fls
shows f / fls-shift m g = fls-shift (—m) (f/g)
using fls-divide-shift-denom-nonzero
by (cases g=0) auto

lemma fis-divide-shift-both-nonzero:
fixes fg: 'a:: {comm-monoid-add,inverse,times,uminus} fls
assumes f # 0 g # 0
shows fls-shift n f / fls-shift m g = fls-shift (n—m) (f/g)

by  (simp add: assms fls-divide-shift-numer-nonzero fls-divide-shift-denom-nonzero)

lemma fls-divide-shift-both [simp]:
fixes fg: 'a:: division-ring fls

shows fls-shift n f / fls-shift m g = fis-shift (n—m) (f/g)
using fls-divide-shift-both-nonzero
by (cases f=0 V ¢g=0) auto

lemma fis-divide-base-factor-numer:

fis-base-factor f | g = fls-shift (fls-subdegree f) (f/g)
using fls-base-factor-to-fps-base-factor|of f]
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fls-base-factor-subdegree|of f]
by  (simp add: fls-divide-def algebra-simps)

lemma fis-divide-base-factor-denom:
f/ fis-base-factor g = fis-shift (—fis-subdegree g) (f/g)
using fls-base-factor-to-fps-base-factor|of g
fls-base-factor-subdegree|of ¢
by (simp add: fls-divide-def)

lemma fls-divide-base-factor’:
fls-base-factor f | fls-base-factor g = fls-shift (fls-subdegree f — fls-subdegree g)
(f/9)
using fls-divide-base-factor-numer|of f fls-base-factor g
fls-divide-base-factor-denom|of f g
by  simp

lemma fis-divide-base-factor:
fixes f g :: 'a :: division-ring fls
shows fls-base-factor f | fls-base-factor g = fls-base-factor (f/g)
using fls-divide-subdegree[of f g] fls-divide-base-factor’
by  fastforce

lemma fis-divide-regpart:
fixes fg :: 'a:{inverse,comm-monoid-add,uminus,mult-zero} fls
assumes fis-subdegree f > 0 fls-subdegree g > 0
shows  fls-regpart (f / g) = fls-regpart f |/ fls-regpart g
proof —
have deg0:
Ng. fls-subdegree g = 0 —
fls-regpart (f / g) = fls-regpart f | fls-regpart g
by (simp add:
assms(1) fls-divide-convert-times-inverse fls-inverse-subdegree-0
fls-times-conv-regpart fls-inverse-regpart fls-regpart-subdegree-conv fps-divide-unit’
)
show ?thesis
proof (cases fls-subdegree g = 0)
case Fulse
hence fls-base-factor g # 0 using fls-base-factor-nonzero[of g] by force
with assms(2) show ?thesis
using fls-divide-shift-denom-nonzero|of fls-base-factor g f —fls-subdegree g]
fps-shift-fls-regpart-conv-fls-shift[of
nat (fls-subdegree g) f / fls-base-factor g
]
fls-base-factor-subdegree|of g] deg0
fls-regpart-subdegree-conv|of g] fps-unit-factor-fls-regpart]of g
by (simp add:
fls-conv-base-factor-shift-subdegree fls-regpart-subdegree-conv fps-divide-def
)
qed (rule deg0)
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qed

lemma fls-divide-fls-base-factor-to-fps’:
fixes f g :: 'a::{comm-monoid-add,uminus,inverse,mult-zero} fls
shows
fls-base-factor-to-fps f /| fls-base-factor-to-fps g =
fls-regpart (fls-shift (fls-subdegree f — fls-subdegree g) (f / g))
using fls-base-factor-subdegree|of f] fls-base-factor-subdegree|of g
fls-divide-regpart|of fls-base-factor f fls-base-factor g]
fls-divide-base-factor'[of f g]
by simp

lemma fis-divide-fls-base-factor-to-fps:

fixes f g :: 'a::division-ring fls

shows fls-base-factor-to-fps f | fls-base-factor-to-fps g = fls-base-factor-to-fps (f
/9)

using fls-divide-fls-base-factor-to-fps’ fls-divide-subdegree[of f g

by  fastforce

lemma fis-divide-fps-to-fis:
fixes f g :: 'a::{inverse,ab-group-add, mult-zero} fps
assumes subdegree f > subdegree g
shows fps-to-fls [ | fps-to-fls g = fps-to-fis (f/g)
proof—
have 1:
fos-to-fis f | fps-to-fls g =
fls-shift (int (subdegree g)) (fps-to-fls (f = inverse (unit-factor g)))
using fls-base-factor-to-fps-to-fis|of f] fls-base-factor-to-fps-to-fis[of g]
fls-subdegree-fls-to-fps|of f] fls-subdegree-fis-to-fps[of g|
fps-divide-def|of unit-factor f unit-factor g
fls-times-fps-to-fls|of unit-factor f inverse (unit-factor g))
fls-shifted-times-simps(2)[of —int (subdegree f) fps-to-fls (unit-factor f)]
fls-times-fps-to-fis[of f inverse (unit-factor g)]
by  (simp add: fls-divide-def)
with assms show ?thesis
using fps-mult-subdegree-ge[of f inverse (unit-factor g)]
fps-shift-to-fls|of subdegree g f x inverse (unit-factor g)]
by  (cases f * inverse (unit-factor g) = 0) (simp-all add: fps-divide-def)
qed

lemma fls-divide-1":

fixes f::'a:{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult }
fls

assumes inverse (1::'a) = 1

shows f/1=f

using assms fls-conv-base-factor-to-fps-shift-subdegree|of f]

by (simp add: fls-divide-def fps-divide-1")

lemma fls-divide-1 [simp]: a / 1 = (a:'a::division-ring fls)
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by (rule fls-divide-1'[OF inverse-1])

lemma fis-const-divide-const:
fixes z y :: 'a::division-ring
shows fls-const z / fls-const y = fls-const (z/y)
by  (simp add: fls-divide-def fls-base-factor-to-fps-const fps-const-divide)

lemma fls-divide-X":
fixes f::'a:{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult }
fls
assumes inverse (1::'a) = 1
shows f / fls-X = fls-shift 1 f
proof—
from assms have
F/ fisX =
fls-shift 1 (fls-shift (—fls-subdegree f) (fps-to-fls (fls-base-factor-to-fps [)))
by (simp add: fls-divide-def fps-divide-1")
also have ... = fls-shift 1 f
using fls-conv-base-factor-to-fps-shift-subdegree[of f]
by simp
finally show ?thesis by simp
qged

lemma fls-divide-X [simp]:
fixes f :: 'a:division-ring fls
shows f / fls-X = fls-shift 1 f
by  (rule fis-divide-X'[OF inverse-1])

lemma fls-divide-X-power":
fixes [ :: ‘a:x{semiring-1 inverse,uminus} fls
assumes inverse (1::'a) = 1
shows f / (fls-X " n) = fls-shift n f
proof—
have fls-base-factor-to-fps ((fls-X::'a fls) ~n) = 1 by (rule fls-X-power-base-factor-to-fps)
with assms have
[/ (fisX "n) =
fls-shift n (fls-shift (—fls-subdegree f) (fps-to-fls (fls-base-factor-to-fps f)))
by (simp add: fls-divide-def fps-divide-1")
also have ... = fis-shift n f
using fls-conv-base-factor-to-fps-shift-subdegree|of f] by simp
finally show ?thesis by simp
qged

lemma fls-divide-X-power [simp]:
fixes f :: 'a::division-ring fls
shows [ / (fls-X " n) = fls-shift n f
by  (rule fis-divide-X-power'|OF inverse-1])

lemma fls-divide-X-inv":
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fixes f::'a::{comm-monoid-add,inverse,mult-zero,uminus,zero-neq-one,monoid-mult}
fls
assumes inverse (1:'a) = 1
shows [/ fls-X-inv = fls-shift (—1) f
proof—
from assms have
/] fis-X-inv =
fls-shift (—1) (fls-shift (—fls-subdegree f) (fps-to-fis (fls-base-factor-to-fps f)))
by (simp add: fls-divide-def fps-divide-1' algebra-simps)
also have ... = fls-shift (—1) f
using fls-conv-base-factor-to-fps-shift-subdegree[of f]
by simp
finally show ?thesis by simp
qed

lemma fls-divide-X-inv [simp]:
fixes [ :: 'a:division-ring fls
shows [ / fls-X-inv = fls-shift (—1) f
by  (rule fls-divide-X-inv'|OF inverse-1])

lemma fls-divide- X-inv-power’:
fixes f :: 'a::{semiring-1 inverse,uminus} fls
assumes inverse (1::'a) = 1
shows f / (fls-X-inv " n) = fls-shift (—int n) f
proof—
have fis-base-factor-to-fps ((fls-X-inv::’a fls) "~ n) = 1
by (rule fls-X-inv-power-base-factor-to-fps)
with assms have
f/ (fils-X-inv " n) =
fls-shift (—int n + —fls-subdegree f) (fps-to-fls (fls-base-factor-to-fps f))
by (simp add: fls-divide-def fps-divide-1")
also have
... = fls-shift (—int n) (fls-shift (—fls-subdegree f) (fps-to-fls (fls-base-factor-to-fps
)
by (simp add: add.commute)
also have ... = fls-shift (—int n) f
using fls-conv-base-factor-to-fps-shift-subdegree|of f] by simp
finally show ?thesis by simp
qed

lemma fls-divide- X-inv-power [simp]:
fixes f :: 'a:division-ring fls
shows [ / (fls-X-inv ~ n) = fls-shift (—int n) f
by  (rule fls-divide-X-inv-power'|OF inverse-1])

lemma fls-divide-X-intpow":
fixes [ :: ‘ax{semiring-1 inverse,uminus} fls
assumes inverse (1::'a) = 1
shows f / (fls-X-intpow i) = fls-shift i f
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using assms
by (simp add: fls-divide-shift-denom-nonzero fls-divide-1")

lemma fls-divide- X-intpow-conv-times':
fixes [ :: ‘ax{semiring-1 inverse,uminus} fls
assumes inverse (1:'a) = 1
shows [ / (fls-X-intpow ©) = [ x fls-X-intpow (—1)
using assms fls-X-intpow-times-conv-shift(2)[of f —1i]
by (simp add: fls-divide-X-intpow")

lemma fis-divide- X-intpow:
fixes f :: 'a::division-ring fls
shows [ / (fls-X-intpow i) = fls-shift i f
by  (rule fls-divide-X-intpow'|OF inverse-1])

lemma fis-divide- X-intpow-conv-times:
fixes [ :: 'a:division-ring fls
shows [ / (fls-X-intpow ) = f * fls-X-intpow (—1)
by  (rule fls-divide-X-intpow-conv-times’| OF inverse-1])

lemma fis- X-intpow-div-fis- X-intpow-semiring1 :
assumes inverse (1::'a::{semiring-1 inverse,uminus}) = 1
shows (fls-X-intpow 7 :: 'a fls) / fls-X-intpow j = fls-X-intpow (i—j)
by (simp add: assms fls-divide-shift-both-nonzero fls-divide-1")

lemma fis- X-intpow-div-fis- X-intpow:
(fis-X-intpow @ :: 'a::division-ring fls) |/ fls-X-intpow j = fls-X-intpow (i—j)
by (rule fls-X-intpow-div-fls-X-intpow-semiringl [OF inverse-1])

lemma fis-divide-add:
fixes fgh :: ‘a:{semiring-0,inverse,uminus} fls
shows (f+g)/h=f/h+g/h

by (simp add: fls-divide-convert-times-inverse algebra-simps)

lemma fis-divide-diff:
fixes f g h :: 'a::{ring,inverse} fls
shows (f —g) /h=f/h—g/h

by  (simp add: fls-divide-convert-times-inverse algebra-simps)

lemma fis-divide-uminus:
fixes f g h :: 'a::{ring,inverse} fls
shows (= f) [ g=—(f/9)

by  (simp add: fls-divide-convert-times-inverse)

lemma fls-divide-uminus’”:
fixes f g h :: 'a::division-ring fls

shows f / (= g) =~ (f/ 9)

by  (simp add: fls-divide-convert-times-inverse)
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7.5.7 Units

lemma fis-is-left-unit-iff-base-is-left-unit:
fixes f :: 'a :: ring-1-no-zero-divisors fls
shows (3g. 1 = f % g) «— (k. 1 = [ 3% fls-subdegree f * k)
proof
assume dg. I = f x g
then obtain ¢ where 1 = f x g by fast
hence 1 = (f $$ fis-subdegree f) x (g $$ fls-subdegree g)
using fls-subdegree-mult|of f g] fls-times-baselof f g] by fastforce
thus 3k. 1 = f 8% fls-subdegree f x k by fast
next
assume k. 1 = f $$ fls-subdegree f * k
then obtain k where 1 = f $$ fls-subdegree f * k by fast
hence 1 = f * fls-right-inverse f k
using fls-right-inverse by simp
thus dg. 1 = f % g by fast
qed

lemma fis-is-right-unit-iff-base-is-right-unit:
fixes f :: 'a :: ring-1-no-zero-divisors fls
shows (3g. 1 = g« f) «— (k. 1 =k * [ $$ fls-subdegree f)
proof
assume dg. 1 =g x f
then obtain ¢ where 1 = g x f by fast
hence 1 = (g $$ fis-subdegree g) * (f $$ fls-subdegree f)
using fls-subdegree-mult|of g f] fls-times-baselof g f] by fastforce
thus 3k. 1 =k * f $3 fls-subdegree [ by fast
next
assume 3k. 1 = k * f $$ fls-subdegree f
then obtain k£ where 1 = k * f $3$ fls-subdegree f by fast
hence 1 = fis-left-inverse f k * f
using fis-left-inverse by simp
thus dg. 1 = g x f by fast
qed

7.6 Composition

/

definition fls-compose-fps :: 'a :: field fls = 'a fps = 'a fls where

fls-compose-fps F G =

fps-to-fls (fps-compose (fls-base-factor-to-fps F) G) x fps-to-fls G powi fls-subdegree

F
lemma fps-compose-of-nat [simp): fps-compose (of-nat n :: 'a :: comm-ring-1 fps)
H = of-nat n

and fps-compose-of-int [simp]: fps-compose (of-int i) H = of-int i

unfolding fps-of-nat [symmetric] fps-of-int [symmetric] numeral-fps-const

by (rule fps-const-compose)+

lemmas [simp] = fps-to-fls-of-nat fps-to-fls-of-int
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lemma fls-compose-fps-0 [simp]: fls-compose-fps 0 H = 0
and fls-compose-fps-1 [simp]: fls-compose-fps 1 H = 1
and fls-compose-fps-const [simp]: fls-compose-fps (fls-const ¢) H = fls-const c
and fls-compose-fps-of-nat [simpl: fls-compose-fps (of-nat n) H = of-nat n
and fls-compose-fps-of-int [simp]: fls-compose-fps (of-int i) H = of-int i
and fls-compose-fps-X [simp]: fls-compose-fps fls-X F = fps-to-fls F
by (simp-all add: fls-compose-fps-def)

lemma fis-compose-fps-0-right:
fls-compose-fps F 0 = (if 0 < fls-subdegree F then fls-const (F $$ 0) else 0)
by (cases fls-subdegree F = 0) (simp-all add: fls-compose-fps-def)

lemma fis-compose-fps-shift:

assumes H # 0

shows  fls-compose-fps (fls-shift n F) H = fls-compose-fps F H * fps-to-fls H
powi (—n)
proof (cases F = 0)

case Fulse

thus ?thesis

using assms by (simp add: fls-compose-fps-def power-int-diff power-int-minus

field-simps)
qged auto

lemma fls-compose-fps-to-fls [simp]:
assumes [simp]: G # 0 fps-nth G 0 = 0
shows  fls-compose-fps (fps-to-fls F) G = fps-to-fls (fps-compose F Q)
proof (cases F = 0)
case Fulse
define n where n = subdegree F
define F’' where F' = fps-shift n F
have [simp]: F' # 0 subdegree F' = 0
using Fualse by (auto simp: F'-def n-def)
have F-eq: F' = F' % fps-X " n
unfolding F’-def n-def using subdegree-decompose by blast
have fls-compose-fps (fps-to-fls F) G =
fos-to-fls (fps-shift n (fls-regpart (fps-to-fls F' x fls-X-intpow (int n))) oo
G) * fps-to-fls (G " n)
unfolding F-eq fls-compose-fps-def
by (simp add: fls-times-fps-to-fls fls-X-power-conv-shift-1 power-int-add
fls-subdegree-fis-to-fps fps-to-fls-power fls-regpart-shift-conv-fps-shift
flip: fls-times-both-shifted-simp)
also have fps-to-fls F' x fls-X-intpow (int n) = fps-to-fls F
by (simp add: F-eq fls-times-fps-to-fls fps-to-fls-power fls-X-power-conv-shift-1)
also have fps-to-fls (fps-shift n (fls-regpart (fps-to-fls F)) oo G) x fps-to-fls (G

n) =
fos-to-fls ((fps-shift n (fls-regpart (fps-to-fls F)) * fps-X " n) oo G)

by (simp add: fls-times-fps-to-fis flip: fps-compose-power add: fps-compose-mult-distrib)
also have fps-shift n (fls-regpart (fps-to-fls F)) x fps-X "n = F
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by (simp add: F-eq)
finally show ?thesis .
qed (auto simp: fls-compose-fps-def)

lemma fis-compose-fps-mult:
assumes [simp|: H # 0 fps-nth H 0 = 0
shows  fls-compose-fps (F x G) H = fls-compose-fps F' H * fls-compose-fps G
H
using assms
proof (cases F x G = 0)
case Fulse
hence [simp]: F # 0 G # 0
by auto
define n m where n = fis-subdegree F' ' m = fls-subdegree G
define F' where F' = fls-regpart (fls-shift n F)
define G’ where G’ = fls-regpart (fls-shift m G)
have F-eq: F = fls-shift (—n) (fps-to-fils F') and G-eq: G = fls-shift (—m)
(fps-to-fis G
by (simp-all add: F'-def G'-def n-m-def)
have fls-compose-fps (F x G) H = fls-compose-fps (fls-shift (—(n + m)) (fps-to-fls
(F'+ G)) H
by (simp add: fls-times-fps-to-fls F-eq G-eq fls-shifted-times-simps)

also have ... = fps-to-fls ((F’ oo H) * (G' oo H)) * fps-to-fls H powi (m + n)
by (simp add: fls-compose-fps-shift fps-compose-mult-distrib)
also have ... = fis-compose-fps F H * fls-compose-fps G H

by (simp add: F-eq G-eq fls-compose-fps-shift fls-times-fps-to-fls power-int-add)
finally show ?thesis .
qed auto

lemma fis-compose-fps-power:
assumes [simp]: G # 0 fps-nth G 0 = 0
shows fls-compose-fps (F " n) G = fls-compose-fps F G " n
by (induction n) (auto simp: fls-compose-fps-mult)

lemma fis-compose-fps-add:
assumes [simp|: H # 0 fps-nth H 0 = 0
shows fls-compose-fps (F + G) H = fls-compose-fps F H + fls-compose-fps G
H
proof (cases F =0V G = 0)
case Fulse
hence [simp]: F # 0 G # 0
by auto
define n where n = min (fls-subdegree F) (fls-subdegree G)
define '/ where F' = fis-regpart (fls-shift n F')
define G’ where G’ = fls-regpart (fls-shift n G)
have F-eq: F = fls-shift (—n) (fps-to-fls F') and G-eq: G = fls-shift (—n)
(fps-to-fls G')
unfolding n-def by (simp-all add: F'-def G'-def n-def)
have F + G = fis-shift (—n) (fps-to-fls (F' + G'))
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by (simp add: F-eq G-eq)
also have fls-compose-fps ... H = fls-compose-fps (fps-to-fls (F' + G')) H x
fos-to-fls H powi n
by (subst fls-compose-fps-shift) auto

also have ... = fps-to-fls (fps-compose (F' + G') H) * fps-to-fls H powi n
by (subst fls-compose-fps-to-fls) auto
also have ... = fis-compose-fps F H + fls-compose-fps G H

by (simp add: F-eq G-eq fls-compose-fps-shift fps-compose-add-distrib alge-
bra-simps)
finally show ?thesis .
qged auto

lemma fls-compose-fps-uminus [simpl: fls-compose-fps (—F) H = —fls-compose-fps
FH

by (simp add: fls-compose-fps-def fps-compose-uminus)

lemma fis-compose-fps-diff:

assumes [simp|: H # 0 fps-nth H 0 = 0

shows fls-compose-fps (F — G) H = fls-compose-fps F H — fls-compose-fps G
H

using fls-compose-fps-add[of H F — G| by simp

lemma fis-compose-fps-eq-0-iff:
assumes H # 0 fps-nth H 0 = 0
shows fis-compose-fps F H = 0 +— F = 0
using assms fls-base-factor-to-fps-nonzero|of F)
by (cases F = 0) (auto simp: fls-compose-fps-def fps-compose-eq-0-iff)

lemma fls-compose-fps-inverse:
assumes [simp|: H # 0 fps-nth H 0 = 0
shows  fls-compose-fps (inverse F) H = inverse (fls-compose-fps F H)
proof (cases F = 0)
case Fulse
have fls-compose-fps (inverse F') H x fls-compose-fps F H =
fls-compose-fps (inverse F « F') H
by (subst fls-compose-fps-mult) auto
also have inverse F = F = 1
using False by simp
finally show ?thesis
using False by (simp add: field-simps fls-compose-fps-eq-0-iff)
qed auto

lemma fis-compose-fps-divide:
assumes [simp|: H # 0 fps-nth H 0 = 0
shows  fls-compose-fps (F' /| G) H = fls-compose-fps F' H | fls-compose-fps G
H
using fls-compose-fps-mult[of H F inverse G| fls-compose-fps-inverse[of H G|
by (simp add: field-simps)
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lemma fis-compose-fps-powi:
assumes [simp|: H # 0 fps-nth H 0 = 0
shows  fls-compose-fps (F powi n) H = fls-compose-fps F H powi n
by (simp add: power-int-def fls-compose-fps-power fls-compose-fps-inverse)

lemma fis-compose-fps-assoc:

assumes [simp]: G # 0 fps-nth G 0 = 0 H # 0 fps-nth H 0 = 0

shows fls-compose-fps (fls-compose-fps F G) H = fls-compose-fps F (fps-compose
G H)
proof (cases F = 0)

case [simp]: False

define n where n = fis-subdegree F

define F’' where F' = fls-regpart (fls-shift n F)

have F-eq: F = fls-shift (—n) (fps-to-fls F)

by (simp add: F'-def n-def)
show ?thesis
by (simp add: F-eq fls-compose-fps-shift fls-compose-fps-mult fls-compose-fps-powi
fps-compose-eq-0-iff fps-compose-assoc)

qed auto

lemma subdegree-pos-iff: subdegree F' > 0 <— F # 0 A fps-nth F 0 = 0
using subdegree-eq-0-iff[of F] by auto

lemma fls-X-power-int [simp]: fls-X powi n = (fls-X-intpow n :: 'a :: division-ring
fis)
by (auto simp: power-int-def fls-X-power-conv-shift-1 fls-inverse-X fls-inverse-shift
simp flip: fls-inverse-X-power)

lemma fls-const-power-int: fls-const (¢ powi n) = fls-const (¢ :: 'a :: division-ring)
powi n
by (auto simp: power-int-def fls-const-power fls-inverse-const)

lemma fis-nth-fls-compose-fps-linear:
fixes ¢ :: 'a :: field
assumes [simp]: ¢ # 0
shows fls-compose-fps F (fps-const ¢ x fps-X) $$ n = F $$ n x ¢ powi n
proof —
{
assume *: n > fls-subdegree F
hence ¢ " nat (n — fls-subdegree F') = ¢ powi int (nat (n — fls-subdegree F'))
by (simp add: power-int-def)
also have ... x ¢ powi fls-subdegree F = ¢ powi (int (nat (n — fls-subdegree
F)) + fis-subdegree F)
using * by (subst power-int-add) auto
also have ... = ¢ powi n
using * by simp
finally have ¢ ~nat (n — fls-subdegree F') x ¢ powi fls-subdegree F = ¢ powi n
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thus ?thesis
by (simp add: fls-compose-fps-def fps-compose-linear fls-times-fps-to-fls power-int-mult-distrib
fls-shifted-times-simps
flip: fls-const-power-int)
qed

lemma fls-const-transfer [transfer-rule]:
rel-fun (=) (per-fls (=))
(Ae n. if n = 0 then c else 0) fls-const
by (auto simp: fls-const-def rel-fun-def per-fls-def OO-def cr-fls-def)

lemma fls-shift-transfer [transfer-rule]:
vel-fun' (=) (rel-fun (per-fis (=) (per-fis (=)))
(An fk. f (k+n)) fls-shift
by (auto simp: fls-const-def rel-fun-def per-fls-def OO-def cr-fls-def)

lift-definition fls-compose-power :: 'a :: zero fls = nat = 'a fls is
Mdn.ifd > 0 A int d dvd n then f (n div int d) else 0
proof —
fix f :: int = ‘a and d :: nat
assume x: eventually (An. f (—int n) = 0) cofinite
show eventually (An. (if d > 0 A int d dvd —int n then f (—int n div int d) else
0) = 0) cofinite
proof (cases d = 0)
case Fulse
from x have eventually (An. f (—int n) = 0) at-top
by (simp add: cofinite-eq-sequentially)
hence eventually (An. f (—int (n div d)) = 0) at-top
by (rule eventually-compose-filterlim[OF - filterlim-at-top-div-const-nat]) (use
False in auto)
hence eventually (An. (if d > 0 A int d dvd —int n then f (—int n div int d)
else 0) = 0) at-top
by eventually-elim (auto simp: zdiv-int dvd-neg-div)
thus ?thesis
by (simp add: cofinite-eq-sequentially)
qed auto
qed

lemma fis-nth-compose-power:

assumes d > 0

shows fls-compose-power f d $$ n = (if int d dvd n then f $% (n div int d) else
0)

by (simp add: assms fls-compose-power.rep-eq)

lemma fls-compose-power-0-left [simp]: fls-compose-power 0 d = 0
by transfer auto

lemma fls-compose-power-1-left [simp]: d > 0 = fls-compose-power 1 d = 1
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by transfer (auto simp: fun-eq-iff)

lemma fls-compose-power-const-left [simp]:
d > 0 = fls-compose-power (fls-const ¢) d = fls-const c
by transfer (auto simp: fun-eq-iff)

lemma fls-compose-power-shift [simpl:
d > 0 = fls-compose-power (fls-shift n f) d = fls-shift (d = n) (fls-compose-power
fd)

by transfer (auto simp: fun-eq-iff add-ac mult-ac)

lemma fls-compose-power-X-intpow [simp]:
d > 0 = fls-compose-power (fls-X-intpow n) d = fls-X-intpow (int d * n)
by simp

lemma fls-compose-power-X [simp]:
d > 0 = fls-compose-power fls-X d = fls-X-intpow (int d)
by transfer (auto simp: fun-eq-iff)

lemma fls-compose-power-X-inv [simp]:
d > 0 = fls-compose-power fls-X-inv d = fls-X-intpow (—int d)
by (simp add: fls-X-inv-conv-shift-1)

lemma fls-compose-power-0-right [simp]: fls-compose-power f 0 = 0
by transfer auto

lemma fls-compose-power-add [simp]:
fls-compose-power (f + g) d = fls-compose-power f d + fls-compose-power g d
by transfer auto

lemma fls-compose-power-diff [simp]:
fls-compose-power (f — g) d = fls-compose-power f d — fls-compose-power g d
by transfer auto

lemma fls-compose-power-uminus [simp]:
fls-compose-power (—f) d = —fls-compose-power f d
by transfer auto

lemma fps-nth-compose-X-power:
fos-nth (f oo (fps-X ~d)) n = (if d dvd n then fps-nth f (n div d) else 0)
proof —
have fps-nth (f oo (fps-X “d)) n=O_i=0.n. f$ix* (fps-X " (d 1)) $n)
unfolding fps-compose-def by (simp add: power-mult)
also have ... = (>_i€(if d dvd n then {n div d} else {}). f $ i % (fps-X ~ (d %
) $ n)
by (intro sum.mono-neutral-right) auto
also have ... = (if d dvd n then fps-nth f (n div d) else 0)
by auto
finally show ?thesis .
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qed

lemma fis-compose-power-fps-to-fls:

assumes d > 0

shows  fls-compose-power (fps-to-fls f) d = fps-to-fls (fps-compose f (fps-X ~
d))

using assms

by (intro fls-eql) (auto simp: fls-nth-compose-power fps-nth-compose-X-power

pos-imp-zdiv-neg-iff div-neg-pos-lessO nat-div-distrib
simp flip: int-dvd-int-iff)

lemma fls-compose-power-mult [simp]:
fls-compose-power (f * g :: 'a :: idom fls) d = fls-compose-power f d * fls-compose-power
gd
proof (cases d > 0)
case True
define n where n = nat (maz 0 (maz (— fls-subdegree f) (— fls-subdegree g)))
have n-ge: —fls-subdegree f < int n —fls-subdegree g < int n
unfolding n-def by auto
obtain f’ where f": f = fls-shift n (fps-to-fls f')
using fls-as-fps|OF n-ge(1)] by (auto simp: n-def)
obtain ¢’ where ¢" g = fls-shift n (fps-to-fls g’)
using fls-as-fps|OF n-ge(2)] by (auto simp: n-def)
show ?thesis using «d > 0>
by (simp add: f' g’ fls-shifted-times-simps mult-ac fls-compose-power-fps-to-fls
fps-compose-mult-distrib flip: fls-times-fps-to-fis)
qged auto

lemma fls-compose-power-power [simp]:

assumes d > 0V n > 0

shows fls-compose-power (f ~n = 'a i idom fls) d = fls-compose-power fd " n
proof (cases d > 0)

case True

thus ?thesis by (induction n) auto
qed (use assms in auto)

lemma fls-nth-compose-power’ [simpl:
d =0V —ddvd n = fls-compose-power f d $$ int n = 0
ddvd n = d > 0 = fls-compose-power f d $$ int n = f 8% int (n div d)
by (transfer; force; fail)+

lemma subdegree-fls-compose-fps [simp):

fixes G :: 'a :: field fps

assumes [simp]: fps-nth G 0 = 0

shows fls-subdegree (fls-compose-fps F G) = fls-subdegree F' x subdegree G
proof (cases F' = 0; cases G = 0)

assume [simp]: G # 0 F # 0

have nz1: fis-base-factor-to-fps F # 0

using «F # 0» fis-base-factor-to-fps-nonzero by blast
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show ?thesis
unfolding fls-compose-fps-def using nzl
by (subst fls-subdegree-mult) (simp-all add: fps-compose-eq-0-iff fls-subdegree-fls-to-fps)
qed (auto simp: fls-compose-fps-0-right)

7.7 Formal differentiation and integration
7.7.1 Derivative
definition fls-deriv f = Abs-fls (An. of-int (n+1) = f$$(n+1))

lemma fls-deriv-nth|[simp]: fls-deriv f $$ n = of-int (n+1) x f$$(n+1)
proof—

obtain N where Vn<N. f$$n = 0 by (elim fls-nth-vanishes-belowE)

hence Vn<N—1. of-int (n+1) * f$8(n+1) = 0 by auto

thus “thesis using nth-Abs-fis-lower-bound unfolding fls-deriv-def by simp
qed

lemma fls-deriv-residue: fls-deriv f $8 —1 = 0
by simp

lemma fls-deriv-const[simp]: fls-deriv (fls-const ) = 0
proof (intro fls-eql)
fix n show fls-deriv (fls-const z) $$ n = 0%%n
by (cases n+1=0) auto
qed

lemma fls-deriv-of-nat]simp: fls-deriv (of-nat n) = 0
by (simp add: fls-of-nat)

lemma fls-deriv-of-int[simp]: fls-deriv (of-int i) = 0
by (simp add: fls-of-int)

lemma fls-deriv-zero[simp]: fls-deriv 0 = 0
using fls-deriv-const[of 0] by simp

lemma fls-deriv-one[simp): fls-deriv 1 = 0
using fls-deriv-const[of 1] by simp

lemma fls-deriv-numeral [simp|: fls-deriv (numeral n) = 0
by (metis fls-deriv-of-int of-int-numeral)

lemma fls-deriv-subdegree’:
assumes of-int (fls-subdegree f) x [ $$ fls-subdegree f # 0
shows  fls-subdegree (fls-deriv f) = fls-subdegree f — 1
by (auto intro: fls-subdegree-eql simp: assms)

lemma fis-deriv-subdegree(:

assumes fils-subdegree f = 0
shows fls-subdegree (fls-deriv f) > 0
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proof (cases fls-deriv f = 0)
case Fulse
show ?thesis
proof (intro fls-subdegree-gel, rule False)
fix k :: int assume k < 0
with assms show fls-deriv f $$ k = 0 by (cases k=—1) auto
qed
qed simp

lemma fls-subdegree-deriv’:
fixes [ :: 'a:ring-1-no-zero-divisors fls
assumes (of-int (fls-subdegree f) :: 'a) # 0
shows  fls-subdegree (fls-deriv ) = fls-subdegree f — 1
using assms nth-fls-subdegree-zero-iff [of f]
by (auto intro: fls-deriv-subdegree’)

lemma fis-subdegree-deriv:
fixes f :: 'a::{ring-1-no-zero-divisors,ring-char-0} fls
assumes fis-subdegree f # 0
shows  fls-subdegree (fls-deriv f) = fls-subdegree f — 1
by (auto intro: fls-subdegree-deriv’ simp: assms)

lemma fps-deriv-fls-regpart: fps-deriv (fls-regpart F') = fls-regpart (fis-deriv F)
by (intro fps-ext) (auto simp: add-ac)

Shifting is like multiplying by a power of the implied variable, and so satisfies
a product-like rule.

lemma fls-deriv-shift:
fls-deriv (fls-shift n ) = of-int (—n) * fls-shift (n+1) f + fls-shift n (fls-deriv f)
by (intro fls-eql) (simp flip: fls-shift-fls-shift add: algebra-simps)

lemma fls-deriv-X [simp]: fls-deriv fls-X = 1
by (intro fls-eql) simp

lemma fis-deriv-X-inv [simp]: fls-deriv fls-X-inv = — (fls-X-inv?)
proof—
have fis-deriv fls-X-inv = — (fls-shift 2 1)
by (simp add: fls-X-inv-conv-shift-1 fls-deriv-shift)
thus ?thesis by (simp add: fls-X-inv-power-conv-shift-1)
qed

lemma fis-deriv-delta:
fls-deriv (Abs-fls (An. if n=m then c else 0)) =
Abs-fls (An. if n=m—1 then of-int m * c else 0)
proof—
have
fls-deriv (Abs-fls (An. if n=m then c else 0)) = fls-shift (1—m) (fls-const (of-int
m x c))
using fls-deriv-shiftjof —m fls-const c]
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by (simp
add: fls-shift-const fls-of-int fls-shifted-times-simps(1)[symmetric]
fls-const-mult-const[symmetric]
del: fls-const-mult-const
)
thus ?thesis by (simp add: fls-shift-const)
qed

lemma fis-deriv-base-factor:
flis-deriv (fls-base-factor f) =
of-int (—fls-subdegree f) = fls-shift (fls-subdegree f + 1) f +
fls-shift (fls-subdegree f) (fls-deriv f)
by (simp add: fls-deriv-shift)

lemma fls-regpart-deriv: fls-regpart (fls-deriv ) = fps-deriv (fls-regpart f)
proof (intro fps-ext)

fix n

have 1: (of-natn :: ’'a) + 1 = of-nat (n+1)

and 2:intn+ 1 =int (n+ 1)

by auto

show fis-regpart (fls-deriv f) $ n = fps-deriv (fis-regpart f) $ n by (simp add: 1
2)
qed

lemma fis-prpart-deriv:
fixes f :: 'a :: {comm-ring-1,ring-no-zero-divisors} fls
— Commutivity and no zero divisors are required by the definition of pderiv.
shows fls-prpart (fls-deriv f) = — pCons 0 (pCons 0 (pderiv (fls-prpart f)))
proof (intro poly-eql)
fix n
show
coeff (fls-prpart (fls-deriv f)) n =
coeff (— pCons 0 (pCons 0 (pderiv (fls-prpart f)))) n
proof (cases n)
case (Suc m)
hence n: n = Suc m by fast
show ?thesis
proof (cases m)
case (Suc k)
with n have
coeff (— pCons 0 (pCons 0 (pderiv (fls-prpart f)))) n =
— coeff (pderiv (fls-prpart f)) k
by (simp flip: coeff-minus)
with Suc n show ?thesis by (simp add: coeff-pderiv algebra-simps)
qed (simp add: n)
qed simp
qed

lemma pderiv-fis-prpart:
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pderiv (fls-prpart f) = — poly-shift 2 (fls-prpart (fls-deriv f))
by (intro poly-eql) (simp add: coeff-pderiv coeff-poly-shift algebra-simps)

lemma fls-deriv-fps-to-fls: fls-deriv (fps-to-fls f) = fps-to-fls (fps-deriv f)
proof (intro fls-eql)
fix n
show fls-deriv (fps-to-fls ) $8 n = fps-to-fls (fps-deriv f) $$ n
proof (cases n>0)
case True
from True have 1: nat (n + 1) = nat n + 1 by simp
from True have 2: (of-int (n + 1) :: 'a) = of-nat (nat (n+1)) by simp
from True show ?thesis using arg-cong[OF 2, of Az. = x f $ (nat n+1)] by
(simp add: 1)
next
case Fulse thus ?thesis by (cases n=—1) auto
qged
qed

7.7.2 Algebraic rules of the derivative

lemma fis-deriv-add [simp]: fls-deriv (f+g) = fls-deriv f + fls-deriv g
by (auto intro: fls-eql simp: algebra-simps)

lemma fls-deriv-sub [simp]: fls-deriv (f—g) = fls-deriv f — fls-deriv g
by (auto intro: fls-eql simp: algebra-simps)

lemma fls-deriv-neg [simp]: fls-deriv (—f) = — fls-deriv f
using fls-deriv-sublof 0 f] by simp

lemma fls-deriv-mult [simp):
fls-deriv (fxg) = f * fls-deriv g + fls-deriv f x g
proof—
define df dg :: int
where df = fls-subdegree f
and dg = fls-subdegree g
define uf ug :: 'a fis
where uf = fls-base-factor f
and ug = fls-base-factor g
have
f * fls-deriv g =
of-int dg = fls-shift (1 — dg) (f * ug) + fls-shift (—dg) (f * fls-deriv ug)
fls-deriv f x g =
of-int df * fls-shift (1 — df) (uf = g) + fls-shift (—df) (fls-deriv uf x g)
using fls-deriv-shift[of —df uf] fls-deriv-shift]of —dg ug]
mult-of-int-commute[of dg f]
mult.assoc[of of-int dg f]
fls-shifted-times-simps(1)[of f 1 — dg ug]
fls-shifted-times-simps(1)[of f —dg fls-deriv ug]
fls-shifted-times-simps(2)[of 1 — df uf ¢
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fls-shifted-times-simps(2)[of —df fls-deriv uf g]
by (auto simp add: algebra-simps df-def dg-def uf-def ug-def)
moreover have
fls-deriv (fxg) =
( of-int dg * fis-shift (1 — dg) (f * ug) + fis-shift (—dg) (f * fls-deriv ug) ) +
( of-int df * fls-shift (1 — df) (uf * g) + fls-shift (—df) (fls-deriv uf * g) )

using fls-deriv-shift[of
— (df + dg) fps-to-fls (fls-base-factor-to-fps f * fls-base-factor-to-fps g)
]
fls-deriv-fps-to-fis|of fls-base-factor-to-fps f * fls-base-factor-to-fps g|
fps-deriv-mult[of fls-base-factor-to-fps f fls-base-factor-to-fps g
distrib-right[of
of-int df of-int dg
fis-shift (1 — (df + dg) (
fps-to-fls (fls-base-factor-to-fps f = fls-base-factor-to-fps g)

]
fls-times-conv-fps-times|of uf ug]
fls-base-factor-subdegree|of f] fls-base-factor-subdegree|of g
fls-regpart-deriv]of ug]
fls-times-conv-fps-times|of uf fls-deriv ug]
fls-deriv-subdegree0|of ug]
fls-regpart-deriv]of uf]
fls-times-conv-fps-times|of fls-deriv uf ug]
fls-deriv-subdegree0|of uf]
fls-shifted-times-simps(1)[of uf —dg ug]
fls-shifted-times-simps(1)[of fls-deriv uf —dg ug]
fls-shifted-times-simps(2)[of —df uf ug]
fls-shifted-times-simps(2)[of —df uf fls-deriv ug)
by (simp add: fls-times-def algebra-simps df-def dg-def uf-def ug-def)
ultimately show %thesis by simp
qed

lemma fis-deriv-mult-const-left:
fis-deriv (fls-const ¢ * f) = fls-const ¢ x fls-deriv f
by simp

lemma fis-deriv-linear:
fls-deriv (fls-const a = f + fls-const b * g) =
fls-const a * fls-deriv f + fls-const b x fls-deriv g
by simp

lemma fis-deriv-mult-const-right:
fls-deriv (f = fls-const ¢) = fls-deriv f  fls-const c
by simp

lemma fis-deriv-linear2:

fls-deriv (f * fls-const a + g * fls-const b) =
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fls-deriv f x fls-const a + fls-deriv g * fls-const b
by simp

lemma fis-deriv-sum:
fis-deriv (sum fS) = sum (Ai. fls-deriv (fi)) S
proof (cases finite S)
case True show ?thesis
by (induct rule: finite-induct [OF True]) simp-all
qed simp

lemma fis-deriv-power:

fixes f :: 'a::comm-ring-1 fls

shows fls-deriv (f™n) = of-nat n * f(n—1) x fls-deriv f
proof (cases n)

case (Suc m)

have fls-deriv (f"Suc m) = of-nat (Suc m) * f"m * fls-deriv f

by (induct m) (simp-all add: algebra-simps)

with Suc show ?Zthesis by simp

qed simp

lemma fis-deriv-X-power:
fls-deriv (fls-X ~n) = of-nat n x fls-X ~ (n—1)
proof (cases n)
case (Suc m)
have fis-deriv (fls-X"Suc m) = of-nat (Suc m) * fls-X"m
by (induct m) (simp-all add: mult-of-nat-commute algebra-simps)
with Suc show ?thesis by simp
qed simp

lemma fis-deriv-X-inv-power:
fis-deriv (fls-X-inv " n) = — of-nat n x fls-X-inv ~ (Suc n)
proof (cases n)
case (Suc m)
define X :: ‘a fls where iX = fls-X-inv
have fis-deriv (iX = Suc m) = — of-nat (Suc m) * iX ~ (Suc (Suc m))
proof (induct m)
case (Suc m)
have — of-nat (Suc m + 1) * iX = Suc (Suc (Suc m)) =
iX x (—of-nat (Suc m) x iX ~ Suc (Suc m)) +
— (iX 7 2 % iX " Suc m)
using distrib-right[of —of-nat (Suc m) —(1::'a fls) fls-X-inv ~ Suc (Suc (Suc
m))]
by (simp add: algebra-simps mult-of-nat-commute power2-eq-square Suc iX-def)
thus ?case using Suc by (simp add: iX-def)
qed (simp add: numeral-2-eq-2 iX-def)
with Suc show ?thesis by (simp add: iX-def)
qed simp

lemma fls-deriv-X-intpow:
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fls-deriv (fls-X-intpow i) = of-int i * fls-X-intpow (i—1)
by (simp add: fls-deriv-shift)

lemma fis-deriv-lr-inverse:
assumes z * f $$ fls-subdegree f = 1 f $$ fls-subdegree f * y = 1
— These assumptions imply x equals y, but no need to assume that.
shows fls-deriv (fls-left-inverse f x) =
— fls-left-inverse f x * fls-deriv f * fls-left-inverse f x
and  fis-deriv (fls-right-inverse f y) =
— fls-right-inverse f y % fls-deriv f * fls-right-inverse fy
proof—

define L where L = fis-left-inverse f x
hence fls-deriv (L = ) = 0 using fls-left-inverse|OF assms(1)] by simp
with assms show fis-deriv L = — L * fis-deriv f * L

using fls-right-inverse’|OF assms]

by  (simp add: minus-unique mult.assoc L-def)

define R where R = fis-right-inverse f y
hence fls-deriv (f * R) = 0 using fls-right-inverse[OF assms(2)] by simp
hence 1: f x fls-deriv R + fls-deriv f * R = 0 by simp
have R « f x fls-deriv R = — R * fls-deriv f x R

using iff D2[|OF eg-neg-iff-add-eq-0, OF 1] by (simp add: mult.assoc)
thus fis-deriv R = — R * fis-deriv f x R

using fls-left-inverse’|OF assms| by (simp add: R-def)

qged

lemma fis-deriv-lr-inverse-comm:
fixes zy: 'a:comm-ring-1
assumes z * [ $$ fls-subdegree f = 1
shows fis-deriv (fls-left-inverse f x) = — fls-deriv f * (fls-left-inverse f x)?
and  fls-deriv (fls-right-inverse f z) = — fls-deriv f * (fls-right-inverse f x)?
using assms fls-deriv-lr-inverse|of = f ]
by (simp-all add: mult.commute power2-eq-square)

lemma fis-inverse-deriv-divring:
fixes a :: 'a::division-ring fls
shows fls-deriv (inverse a) = — inverse a * fls-deriv a * inverse a
proof (cases a=0)
case Fulse thus ?thesis
using fls-deriv-lr-inverse(2)[of
inverse (a $% fls-subdegree a) a inverse (a $$ fls-subdegree a)
]
by  (auto simp add: fls-inverse-def’)
qed simp

lemma fis-inverse-deriv:
fixes a :: ‘a:field fls
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shows fls-deriv (inverse a) = — fls-deriv a * (inverse a)?

by  (simp add: fls-inverse-deriv-divring power2-eq-square)

lemma fls-inverse-deriv”:
fixes a :: ‘a:field fls
shows fls-deriv (inverse a) = — fls-deriv a / a?
using fls-inverse-deriv|of a]
by  (simp add: field-simps)

7.7.3 Equality of derivatives

lemma fis-deriv-eq-0-iff:
fls-deriv f = 0 +— f = fls-const (f$$0 :: 'a::{ring-1-no-zero-divisors,ring-char-0})
proof
assume f: fls-deriv f = 0
show f = fls-const (f$$0)
proof (intro fls-eql)
fix n
from f have of-int n x f$$ n = 0 using fls-deriv-nth[of f n—1] by simp
thus f$$n = fls-const (f$30) $$ n by (cases n=0) auto
qed
next
show [ = fls-const (f$$0) = fls-deriv f = 0 using fls-deriv-const|of f$30] by
stmp
qed

lemma fls-deriv-eq-iff:
fixes f g :: 'a::{ring-1-no-zero-divisors,ring-char-0} fls
shows fis-deriv f = fls-deriv g +— (f = fls-const(f$$0 — ¢$$0) + g)
proof —
have fis-deriv f = fls-deriv g +— fls-deriv (f — g) = 0
by simp
also have ... «— f — g = fis-const ((f — g) $$ 0)
unfolding fis-deriv-eq-0-iff ..
finally show ?thesis
by (simp add: field-simps)
qed

lemma fis-deriv-eq-iff-ex:
fixes f g :: 'a::{ring-1-no-zero-divisors,ring-char-0} fls
shows (fls-deriv f = fls-deriv g) +— (F¢. f = fls-const ¢ + g)
by  (auto simp: fls-deriv-eq-iff)

7.7.4 Residues

definition fls-residue-def[simp): fls-residue f = f $$ —1

lemma fls-residue-deriv: fls-residue (fls-deriv ) = 0
by simp
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lemma fls-residue-add: fls-residue (f+g) = fls-residue f + fls-residue g
by simp

lemma fis-residue-times-deriv:
fis-residue (fls-deriv f x g) = — fls-residue (f * fls-deriv g)
using fls-residue-deriv]of fxg] minus-uniquelof fls-residue (f x fls-deriv g))
by  simp

lemma fis-residue-power-series: fis-subdegree f > 0 = fils-residue f = 0
by simp

lemma fis-residue-fis-X-intpow:
fis-residue (fls-X-intpow i) = (if i=—1 then 1 else 0)
by simp

lemma fis-residue-shift-nth:
fixes [ :: 'a::semiring-1 fls
shows f$$n = fls-residue (fls-X-intpow (—n—1) * f)
by  (simp add: fls-shifted-times-transfer)

lemma fis-residue-fis-const-times:
fixes [ :: 'a::{comm-monoid-add, mult-zero} fls
shows fls-residue (fls-const ¢ x f) = ¢ * fls-residue f
and fls-residue (f * fls-const ¢) = fls-residue f * ¢
by  simp-all

lemma fis-residue-of-int-times:
fixes f :: 'a::ring-1 fls
shows fls-residue (of-int i x f) = of-int © * fls-residue f
and fls-residue (f * of-int ¢) = fls-residue f * of-int i
by  (simp-all add: fis-residue-fls-const-times fls-of-int)

lemma fis-residue-deriv-times-lr-inverse-eq-subdegree:
fixes fg:: 'anring-1 fls
assumes y x (f $$ fls-subdegree f) = 1 (f $$ fls-subdegree f) x y = 1
shows fls-residue (fls-deriv f * fls-right-inverse fy) = of-int (fls-subdegree f)
and  fls-residue (fls-deriv f * fls-left-inverse fy) = of-int (fls-subdegree f)
and  fls-residue (fls-left-inverse fy * fls-deriv f) = of-int (fls-subdegree f)
and  fis-residue (fls-right-inverse f y * fls-deriv f) = of-int (fls-subdegree f)
proof—
define df :: int where df = fis-subdegree f
define B X :: 'a fls
where B = fls-base-factor f
and X = (fls-X-intpow df :: 'a fls)
define D L R :: 'a fls
where D = fls-deriv B
and L = fls-left-inverse B y
and R = fls-right-inverse B y
have intpow-diff: fls-X-intpow (df — 1) = X * fls-X-inv
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using fls- X-intpow-diff-conv-times|of df 1] by (simp add: X-def fls-X-inv-conv-shift-1)

show fis-residue (fls-deriv f * fls-right-inverse f y) = of-int df
proof—
have subdegree-DR: fls-subdegree (D * R) > 0
using fls-base-factor-subdegree|of f] fls-base-factor-subdegree|of fls-right-inverse

fyl

R

assms(1) fls-right-inverse-base-factor|of y f] fls-mult-subdegree-ge-0[of D

by  (force simp: fls-deriv-subdegree0 D-def R-def B-def)
have decomp: f = X « B
unfolding X-def B-def df-def by (rule fls-base-factor-X-power-decompose(2)|of
)
hence fis-deriv f = X * D 4+ of-int df * X * fls-X-inv x B
using intpow-diff fls-deriv-mult[of X B]
by  (simp add: fls-deriv-X-intpow X-def B-def D-def mult.assoc)
moreover from assms have fls-right-inverse (X * B) y = R * fls-right-inverse
X1
using fls-base-factor-base[of f] fls-lr-inverse-mult-ring1 (2)[of 1 X]
by (simp add: X-def B-def R-def)
ultimately have
fls-deriv f x fls-right-inverse f y =
(D + of-int df * fls-X-inv * B) * R % (X * fls-right-inverse X 1)
by (simp add: decomp algebra-simps X-def fls-X-intpow-times-comm)
also have ... = D x R + of-int df * fis-X-inv
using fls-right-inverse[of X 1]
assms fls-base-factor-base|of f] fls-right-inverse[of B y]
by  (simp add: X-def distrib-right mult.assoc B-def R-def)
finally show ?thesis using subdegree-DR by simp
qed

with assms show fls-residue (fls-deriv f * fls-left-inverse fy) = of-int df
using fls-left-inverse-eq-fls-right-inverse[of y f] by simp

show fis-residue (fls-left-inverse fy * fls-deriv f) = of-int df
proof—
have subdegree-LD: fls-subdegree (L * D) > 0
using fls-base-factor-subdegree[of f] fls-base-factor-subdegree|of fls-left-inverse

fyl

D]

assms(1) fls-left-inverse-base-factor|of y f] fls-mult-subdegree-ge-0[of L

by  (force simp: fls-deriv-subdegree0 D-def L-def B-def)
have decomp: f = B x X
unfolding X-def B-def df-def by (rule fls-base-factor-X-power-decompose(1)[of
)
hence fls-deriv f = D * X + B x of-int df * X * fls-X-inv
using intpow-diff fls-deriv-mult[of B X]
by  (simp add: fls-deriv-X-intpow X-def D-def B-def mult.assoc)
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moreover from assms have fls-left-inverse (B x X) y = fls-left-inverse X 1 =

L
using fls-base-factor-base|of f] fls-lr-inverse-mult-ring1 (1)[of - - 1 X]
by  (simp add: X-def B-def L-def)
ultimately have
fis-left-inverse fy * fls-deriv f =
fls-left-inverse X 1 * X = L * (D + B * (of-int df * fls-X-inv))
by (simp add: decomp algebra-simps X-def fls-X-intpow-times-comm)
also have ... = L x D + of-int df * fls-X-inv
using assms fls-left-inverse[of 1 X] fls-base-factor-base[of f] fls-left-inverse[of
y B]
by (simp add: X-def distrib-left mult.assoc[symmetric] L-def B-def)
finally show ?thesis using subdegree-LD by simp
qed

with assms show fls-residue (fls-right-inverse f y x fls-deriv ) = of-int df
using fls-left-inverse-eq-fls-right-inverse[of y f] by simp

qed

lemma fis-residue-deriv-times-inverse-eq-subdegree:
fixes f g :: 'a::division-ring fls
shows fls-residue (fls-deriv f * inverse f) = of-int (fls-subdegree f)
and fls-residue (inverse f x fls-deriv f) = of-int (fls-subdegree f)
proof—
show fis-residue (fls-deriv f = inverse f) = of-int (fls-subdegree f)
using fls-residue-deriv-times-lr-inverse-eg-subdegree(1)[of - f]
by  (cases f=0) (auto simp: fls-inverse-def’)
show fls-residue (inverse [ x fls-deriv f) = of-int (fls-subdegree f)
using fls-residue-deriv-times-lr-inverse-eq-subdegree(4)[of - f]
by  (cases f=0) (auto simp: fls-inverse-def’)
qed

7.7.5 Integral definition and basic properties

definition fls-integral :: 'a::{ring-1,inverse} fls = 'a fis
where fls-integral a = Abs-fls (An. if n=0 then 0 else inverse (of-int n) = a$$(n

- 1))

lemma fls-integral-nth [simp):
fis-integral a $$ n = (if n=0 then 0 else inverse (of-int n) * a$$(n—1))
proof—
define F' where F = (An. if n=0 then 0 else inverse (of-int n) x a$$(n — 1))
obtain N where Vn<N. a$$n = 0 by (elim fis-nth-vanishes-belowFE)
hence Vn<N. F n = 0 by (auto simp add: F-def)
thus ?thesis using nth-Abs-fls-lower-bound[of N F| unfolding fls-integral-def
F-def by simp
qged
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lemma fis-integral-conv-fps-zeroth-integral:
assumes fis-subdegree a > 0
shows fls-integral a = fps-to-fls (fps-integral0 (fls-regpart a))
proof (rule fls-eql)
fix n
show fls-integral a $% n = fps-to-fls (fps-integral0 (fls-regpart a)) $$ n
proof (cases n>0)
case Fulse with assms show ?thesis by simp
next
case True
hence int ((nat n) — 1) = n — 1 by simp
with True show ?thesis by (simp add: fps-integral-def)
qed
qed

lemma fis-integral-zero [simp]: fls-integral 0 = 0
by (intro fls-eql) simp

lemma fls-integral-const:
fixes x : ‘a::{ring-1,inverse}
assumes inverse (1:'a) = 1
shows fls-integral (fls-const z) = fls-const x * fls-X
by (intro fls-eqI) (simp add: assms)

lemma fis-integral-const:
fixes z :: 'a::division-ring
shows fls-integral (fls-const x) = fls-const x * fls-X
by  (rule fls-integral-const'|OF inverse-1])

lemma fls-integral-of-nat”:
assumes inverse (1::'a:{ring-1,inverse}) = 1
shows fls-integral (of-nat n :: 'a fls) = of-nat n * fls-X
by (simp add: assms fls-integral-const’ fls-of-nat)

lemma fis-integral-of-nat:
fis-integral (of-nat n :: 'a::division-ring fls) = of-nat n * fls-X
by (rule fls-integral-of-nat'|OF inverse-1])

lemma fls-integral-of-int':
assumes inverse (1::'a:{ring-1 inverse}) = 1
shows fls-integral (of-int i :: 'a fls) = of-int i * fls-X
by (simp add: assms fls-integral-const’ fls-of-int)

lemma fis-integral-of-int:
fls-integral (of-int i :: 'a::division-ring fls) = of-int i * fls-X
by (rule fls-integral-of-int'|OF inverse-1])

lemma fls-integral-one’:

assumes inverse (1::'a:{ring-1 inverse}) = 1
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shows fls-integral (1::'a fls) = fls-X
using  fls-integral-const’[of 1]
by (force simp: assms)

lemma fls-integral-one: fls-integral (1::'a::division-ring fls) = fls-X
by (rule fls-integral-one’|OF inverse-1])

lemma fis-subdegree-integral-ge:
fls-integral f # 0 = fls-subdegree (fls-integral f) > fls-subdegree f + 1
by (intro fls-subdegree-gel) simp-all

lemma fis-subdegree-integral:
fixes [ :: 'a:{division-ring,ring-char-0} fls
assumes [ # 0 fls-subdegree f # —1
shows  fls-subdegree (fls-integral f) = fls-subdegree f + 1
using assms of-int-0-eq-iff [of fls-subdegree f + 1] fls-subdegree-integral-ge
by (intro fls-subdegree-eql) simp-all

lemma fls-integral-X [simp):
fis-integral (fls-X::'a::{ring-1,inverse} fls) =
fls-const (inverse (of-int 2)) * fls-X?
proof (intro fls-eql)
fix n
show fls-integral (fls-X::'a fls) $$ n = (fls-const (inverse (of-int 2)) x fls-X?) $$
n
using arg-cong[OF fls-X-power-nth, of Ax. inverse (of-int 2) % z, of 2 n,
symmetric]
by (auto simp add: )
qed

lemma fis-integral-X-power:
fis-integral (fls-X ~ n :'a :: {ring-1,inverse} fls) =
fls-const (inverse (of-nat (Suc n))) * fls-X ~ Suc n
proof (intro fls-eql)
fix k
have (fis-X :: 'a fls) ~ Suc n 33 k = (if k=Suc n then 1 else 0)
by (rule fls-X-power-nth)
thus
fls-integral ((fls-X::'a fls) " n) $$ k =
(fls-const (inverse (of-nat (Suc n))) * (fls-X::'a fls) ~ Suc n) $$ k
by simp
qged

lemma fis-integral-X-power-char0:
fls-integral (fls-X ~n :: 'a 2 {ring-char-0,inverse} fls) =
inverse (of-nat (Suc n)) * fls-X = Suc n
proof —
have (of-nat (Suc n) :: 'a) # 0 by (rule of-nat-neq-0)
hence fls-const (inverse (of-nat (Suc n) :: 'a)) = inverse (fls-const (of-nat (Suc
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"))
by (simp add: fls-inverse-const)
moreover have
fls-integral ((fls-X::'a fls) " n) = fls-const (inverse (of-nat (Suc n))) * fls-X ~
Suc n
by (rule fls-integral-X-power)
ultimately show ?thesis by (simp add: fls-of-nat)
qed

lemma fls-integral-X-inv [simp]: fls-integral (fls-X-inv::'a::{ring-1 inverse} fls) =
0
by (intro fls-eql) simp

lemma fis-integral-X-inv-power:
assumes n > 2
shows
fls-integral (fls-X-inv " n = 'a :: {ring-1inverse} fls) =
fls-const (inverse (of-int (1 — int n))) * fls-X-inv ~ (n—1)
proof (rule fls-eql)
fix k show
fls-integral (fls-X-inv " n 2 'a fls) $$ k=
(fls-const (inverse (of-int (1 — int n))) * fls-X-inv ~ (n—1)) $$ k
proof (cases k=0)
case True with assms show ?thesis by simp
next
case False
from assms have int (n—1) = int n — 1 by simp
hence
(fls-const (inverse (of-int (1 — int n))) * (fls-X-inv:: ‘a fls) ~(n—1)) $$ k =
(if k = 1 — int n then inverse (of-int k) else 0)
by (simp add: fls-X-inv-power-times-conv-shift(2))
with Fulse show ?thesis by (simp add: algebra-simps)
qed
qed

lemma fis-integral- X-inv-power-char0:
assumes n > 2
shows
fls-integral (fls-X-inv " n :: 'a i {ring-char-0,inverse} fls) =
inverse (of-int (1 — int n)) * fls-X-inv ~ (n—1)

proof—
from assms have (of-int (I — int n) :: ‘a) # 0 by simp
hence
fls-const (inverse (of-int (1 — int n) == 'a)) = inverse (fls-const (of-int (1 —

by (simp add: fls-inverse-const)
moreover have
fls-integral (fls-X-inv " n = 'a fls) =
fls-const (inverse (of-int (1 — int n))) * fls-X-inv ~ (n—1)
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using assms by (rule fls-integral-X-inv-power)
ultimately show ?thesis by (simp add: fls-of-int)
qed

lemma fls-integral-X-inv-power’:
assumes n > I
shows
fls-integral (fls-X-inv " n :: 'a :: division-ring fls) =
— fls-const (inverse (of-nat (n—1))) * fls-X-inv ~ (n—1)
proof (casesn = 1)
case Fulse
with assms have n: n > 2 by simp
hence
fls-integral (fls-X-inv " n :: 'a fls) =
fls-const (inverse (— of-nat (nat (int n — 1)))) * fls-X-inv ~ (n—1)
by (simp add: fls-integral-X-inv-power)
moreover from n have nat (int n — 1) = n — 1 by simp
ultimately show ?thesis
using inverse-minus-eq|of of-nat (n—1) :: 'a] by simp
qed simp

lemma fls-integral-X-inv-power-char0’:
assumes n > I
shows
fls-integral (fls-X-inv ~ n :: 'a i {division-ring,ring-char-0} fls) =
— inverse (of-nat (n—1)) * fls-X-inv = (n—1)
proof (cases n=1)
case Fualse with assms show ?thesis
by (simp add: fls-integral-X-inv-power’ fls-inverse-const fls-of-nat)
qed simp

lemma fis-integral-delta:
assumes m # —1
shows
fls-integral (Abs-fls (An. if n=m then c else 0)) =
Abs-fls (An. if n=m~+1 then inverse (of-int (m+1)) x c else 0)
using assms
by (intro fls-eqI) auto

lemma fis-regpart-integral:
fls-regpart (fls-integral f) = fps-integral0 (fls-regpart f)
proof (rule fps-ext)
fix n
show fls-regpart (fls-integral f) $ n = fps-integral0 (fls-regpart ) $ n
by (cases n) (simp-all add: fps-integral-def)
qed

lemma fis-integral-fps-to-fis:
fls-integral (fps-to-fls f) = fps-to-fls (fps-integral0 f)
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proof (intro fls-eql)
fix n ::int
show fls-integral (fps-to-fls f) $$ n = fps-to-fls (fps-integral0 f) $$ n
proof (cases n<1)
case True thus ?thesis by simp
next
case Fulse
hence nat (n—1) = nat n — 1 by simp
with False show ?thesis by (cases nat n) auto
qged
qged

7.7.6 Algebraic rules of the integral

lemma fls-integral-add [simp]: fls-integral (f+g) = fls-integral f + fls-integral g
by (intro fls-eql) (simp add: algebra-simps)

lemma fls-integral-sub [simp]: fls-integral (f—g) = fls-integral f — fls-integral g
by (intro fls-eql) (simp add: algebra-simps)

lemma fis-integral-neg [simp]: fls-integral (—f) = — fls-integral f
using fls-integral-sublof 0 f] by simp

lemma fis-integral-mult-const-left:
fls-integral (fls-const ¢ x f) = fls-const ¢ = fis-integral (f :: 'a::division-ring fls)
by (intro fls-eql) (simp add: mult.assoc mult-inverse-of-int-commute)

lemma fis-integral-mult-const-left-comm:
fixes f :: 'a::{comm-ring-1 jinverse} fls
shows fls-integral (fls-const ¢ x f) = fls-const ¢ x fls-integral f
by (intro fls-eql) (simp add: mult.assoc mult.commute)

lemma fis-integral-linear:
fixes f g :: 'a::division-ring fls
shows
fls-integral (fls-const a x f + fls-const b x g) =
fls-const a * fls-integral f + fls-const b x fis-integral g
by  (simp add: fls-integral-mult-const-left)

lemma fis-integral-linear-comm:
fixes f g :: 'a::{comm-ring-1 jinverse} fls
shows
fls-integral (fls-const a x f + fls-const b * g) =
fls-const a * fis-integral f + fls-const b * fls-integral g
by  (simp add: fls-integral-mult-const-left-comm)

lemma fis-integral-mult-const-right:

fls-integral (f = fls-const ¢) = fls-integral f * fls-const ¢
by (intro fls-eql) (simp add: mult.assoc)
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lemma fis-integral-linear2:
fls-integral (f * fls-const a + g * fls-const b) =
fls-integral f * fls-const a + fls-integral g * fls-const b
by  (simp add: fls-integral-mult-const-right)

lemma fis-integral-sum:
fis-integral (sum f S) = sum (\i. fls-integral (f 7)) S
proof (cases finite S)
case True show ?thesis
by (induct rule: finite-induct [OF True]) simp-all
qed simp

7.7.7 Derivatives of integrals and vice versa

lemma fis-integral-fis-deriv:
fixes a :: 'a::{division-ring,ring-char-0} fls
shows fls-integral (fls-deriv a) + fls-const (a$$0) = a
by  (intro fls-eql) (simp add: mult.assoc[symmetric]

lemma fis-deriv-fis-integral:
fixes a :: 'a::{division-ring,ring-char-0} fls
assumes fls-residue a = 0
shows fls-deriv (fls-integral a) = a
proof (intro fls-eql)
fix n ::int
show fls-deriv (fls-integral a) $$ n = a $$ n
proof (cases n=—1)
case True with assms show ?thesis by simp
next
case False
hence (of-int (n+1) :: 'a) # 0 using of-int-eq-0-iff [of n+1] by simp
hence (of-int (n+1) :: 'a) * inverse (of-int (n+1) :: 'a) = (1::'a)
using of-int-eq-0-iff [of n+1] by simp
moreover have
fis-deriv (fls-integral a) $$ n =
(if n=—1 then 0 else of-int (n+1) x inverse (of-int (n+1)) * a$$n)
by (simp add: mult.assoc)
ultimately show ¢thesis
by (simp add: False)
qed
qed

Series with zero residue are precisely the derivatives.

lemma fis-residue-nonzero-ex-antiderivative:
fixes f :: 'az:{division-ring,ring-char-0} fls
assumes fis-residue f = 0
shows 3F. fis-deriv F = f
using assms fis-deriv-fis-integral
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by auto

lemma fis-ex-antiderivative-residue-nonzero:
assumes 3 F. fls-deriv F = f
shows fis-residue f = 0
using assms fis-residue-deriv
by auto

lemma fis-residue-nonzero-ex-anitderivative-iff:
fixes f :: 'a::{division-ring,ring-char-0} fls
shows fls-residue f = 0 «— (I F. fls-deriv F = f)
using fis-residue-nonzero-ex-antiderivative fis-ex-antiderivative-residue-nonzero
by  fast

7.8 Topology

instantiation fls :: (group-add) metric-space
begin

definition
dist-fls-def:
dist (a :: 'a fls) b =
(ifa=0>
then 0
else if fls-subdegree (a—b) > 0
then inverse (2 ~ nat (fls-subdegree (a—b)))
else 2 " nat (—fls-subdegree (a—b))
)

lemma dist-fls-ge0: dist (a :: 'a fls) b > 0
by (simp add: dist-fls-def)

definition uniformity-fis-def [code del]:
(uniformity :: ("a fls x 'a fls) filter) = (INF e € {0 <..}. principal {(z, y). dist
Ty < e})

definition open-fis-def’ [code del]:
open (U = 'a fls set) «— (VzeU. eventually (M\(z', y). 2’ =z — y € U)
uniformity)

lemma dist-fls-sym: dist (a :: 'a fls) b = dist b a
by (cases a#b, cases fls-subdegree (a—b) > 0)
(simp-all add: fls-subdegree-minus-sym dist-fls-def)

context
begin

private lemma instance-helper:
fixes abc: 'afls
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assumes neq: a£b a#tc
and dist-ineq: dist a b > dist a ¢
shows  fls-subdegree (a — b) < fls-subdegree (a — ¢)
proof (
cases fls-subdegree (a—b) > 0 fls-subdegree (a—c) > 0
rule: case-split]|case-product case-split)
)
case True-True with neq dist-ineq show ?thesis by (simp add: dist-fls-def)
next
case Fulse-True with dist-ineq show ?thesis by (simp add: dist-fls-def)
next
case Fulse-False with neq dist-ineq show ?thesis by (simp add: dist-fls-def)
next
case True-Fulse
with neq
have (1::real) > 2 ~ (nat (fls-subdegree (a—0b)) + nat (—fis-subdegree (a—c)))
and nat (fls-subdegree (a—b)) + nat (—fls-subdegree (a—c)) =
nat (fls-subdegree (a—b) — fls-subdegree (a—c))
using dist-ineq
by  (simp-all add: dist-fls-def field-simps power-add)
hence — (1:real) < 2 7 (nat (fls-subdegree (a—b) — fls-subdegree (a—c))) by
stmp
hence — (0 < nat (fls-subdegree (a — b) — fls-subdegree (a — ¢))) by auto
hence fls-subdegree (a — b) < fls-subdegree (a — ¢) by simp
with True-False show ?thesis by simp
qged

instance
proof
show th: dist a b= 0 <— a=>bfor ab: 'afls
by (simp add: dist-fls-def split: if-split-asm)
then have th'[simp]: dist a a = 0 for a :: 'a fls by simp

fixabc:'afls
consider a =b|c=aVc=0b|la#ba# cb+# cby blast
then show dist a b < dist a ¢ + dist b ¢
proof cases
case I
then show ?%thesis by (simp add: dist-fls-def)
next
case 2
then show ?thesis
by (cases ¢ = a) (simp-all add: th dist-fls-sym)
next
case neq: 3
have Fulse if dist a b > dist a ¢ + dist b ¢
proof —
from neq have dist a b > 0 dist b ¢ > 0 dist a ¢ > 0 by (simp-all add:
dist-fls-def)
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with that have dist-ineq: dist a b > dist a ¢ dist a b > dist b ¢ by simp-all
have fis-subdegree (a — b) < fis-subdegree (a — c)
and fls-subdegree (a — b) < fls-subdegree (b — c)
using instance-helper|of a b c| instance-helper[of b a c] neq dist-ineq
by  (simp-all add: dist-fls-sym fls-subdegree-minus-sym,)
hence (a — ¢) $$ fis-subdegree (a — b) = 0 and (b — ¢) $$ fls-subdegree (a
b =0
by (simp-all only: fls-eq0-below-subdegree)
hence (a — b) $$ fls-subdegree (a — b) = 0 by simp
moreover from neq have (a — b) $$ fls-subdegree (a — b) # 0
by (intro nth-fls-subdegree-nonzero) simp
ultimately show Fulse by contradiction
qed
thus ?thesis by (auto simp: not-le[symmetric))
qed
qed (rule open-fls-def’ uniformity-fls-def )+

end
end

declare uniformity-Abortlwhere ‘a=’a :: group-add fls, code]

lemma open-fis-def:
open (S :: 'a::group-add fls set) = Va € S. Ar.r >0 A {y. distya < r} C9)
unfolding open-dist subset-eq by simp

7.9 Notation

bundle fps-syntax

begin

notation fls-nth (infixl <$$» 75)
end

unbundle no fps-syntax

end

8 The fraction field of any integral domain

theory Fraction-Field

imports Main

begin

8.1 General fractions construction

8.1.1 Construction of the type of fractions

context idom begin
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definition fractrel :: ‘a X 'a = 'a x 'a = bool where
fractrel = Az y. sndx # 0 AN sndy # 0 A fst x x sndy = fst y x snd x)

lemma fractrel-iff [simp]:
fractrel x y <— sndx # 0 N sndy # 0 N fstx * snd y = fst y x snd z
by (simp add: fractrel-def)

lemma symp-fractrel: symp fractrel
by (simp add: symp-def)

lemma transp-fractrel: transp fractrel
proof (rule transpl, unfold split-paired-all)
fixaba b a”b":"
assume A: fractrel (a, b) (a’, b’)
assume B: fractrel (a’, ') (a", b"')
have b' * (a x ") = b % (a * b') by (simp add: ac-simps)
also from A have a * b’ = a’ * b by auto
also have b x (a’ * b) = b * (a’ x b"") by (simp add: ac-simps)
also from B have o’ * b’ = o'’ * b’ by auto
also have b x (a" * b') = b' * (a’’ * b) by (simp add: ac-simps)
finally have b’ % (a * ") = b' % (a’ % b) .
moreover from B have b’ # 0 by auto
ultimately have a * b’ = a’’ x b by simp
with A B show fractrel (a, b) (a”, b") by auto
qed

lemma part-equivp-fractrel: part-equivp fractrel
using - symp-fractrel transp-fractrel
by (rule part-equivpl)(rule exl[where z=(0, 1)]; simp)

end

quotient-type (overloaded) ‘a fract = 'a :: idom x ‘a / partial: fractrel
by (rule part-equivp-fractrel)

8.1.2 Representation and basic operations
lift-definition Fract :: 'a :: idom = 'a = 'a fract

is Aa b. if b = 0 then (0, 1) else (a, b)
by simp

lemma Fract-cases [cases type: fract):
obtains (Fract) a b where ¢ = Fract a b b # 0
by transfer simp

lemma Fract-induct [case-names Fract, induct type: fract]:

(ANab.b# 0= P (Fract a b)) = P q
by (cases q) simp
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lemma eq-fract:
shows Aabcd. b# 0= d+# 0 = Fractab= Fractcd+— axd=cx b
and Aa. Fract a 0 = Fract 0 1
and Aa c. Fract 0 a = Fract 0 c
by (transfer; simp)+

instantiation fract :: (idom) comm-ring-1
begin

lift-definition zero-fract :: ‘a fract is (0, 1) by simp

lemma Zero-fract-def: 0 = Fract 0 1
by transfer simp

lift-definition one-fract :: ’a fract is (1, 1) by simp

lemma One-fract-def: 1 = Fract 1 1
by transfer simp

lift-definition plus-fract :: 'a fract = 'a fract = 'a fract
is Aqgr. (fst g % sndr + fstr = snd q, snd g * snd r)
by (auto simp add: algebra-simps)

lemma add-fract [simp]:
[b#0;d+# 0] = Fract a b+ Fract ¢ d = Fract (a x d + ¢ * D) (b * d)
by transfer simp

lift-definition uminus-fract :: ‘a fract = ’a fract
is \z. (— fst z, snd )
by simp

lemma minus-fract [simp]:

fixes a b :: 'a::idom

shows — Fract a b = Fract (— a) b
by transfer simp

lemma minus-fract-cancel [simp]: Fract (— a) (— b) = Fract a b
by (cases b = 0) (simp-all add: eq-fract)

definition diff-fract-def: ¢ — r = q¢ + — (r::'a fract)

lemma diff-fract [simp]:
[b#0;,d+# 0] = Fract a b — Fract ¢ d = Fract (a x d — ¢ % b) (b x d)
by (simp add: diff-fract-def)

lift-definition times-fract :: 'a fract = 'a fract = 'a fract

is Ag r. (fst g % fst r, snd g * snd r)
by (simp add: algebra-simps)
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lemma mult-fract [simp): Fract (a::'a::idom) b x Fract ¢ d = Fract (a * ¢) (b * d)
by transfer simp

lemma mult-fract-cancel:
¢ # 0 = Fract (¢ x a) (¢ x b) = Fract a b
by transfer simp

instance
proof
fix ¢grs:a fract
show (g x 1) x s = q* (1 % 5)
by (cases q, cases r, cases s) (simp add: eg-fract algebra-simps)
show ¢ x r =1 % ¢
by (cases q, cases r) (simp add: eg-fract algebra-simps)
show 1 x g = ¢
by (cases q) (simp add: One-fract-def eq-fract)
show (¢ + )+ s=qg+ (r+ 9)
by (cases q, cases r, cases s) (simp add: eg-fract algebra-simps)
show ¢+ r=1r+ ¢
by (cases q, cases r) (simp add: eg-fract algebra-simps)
show 0 + ¢ = ¢
by (cases q) (simp add: Zero-fract-def eq-fract)
show — ¢+ ¢=10
by (cases q) (simp add: Zero-fract-def eq-fract)
show ¢ —r=q+ —r
by (cases q, cases r) (simp add: eg-fract)
show (¢ + r)xs=qg*s+rxs
by (cases q, cases r, cases s) (simp add: eg-fract algebra-simps)
show (0::'a fract) # 1
by (simp add: Zero-fract-def One-fract-def eg-fract)
qed

end

lemma of-nat-fract: of-nat k = Fract (of-nat k) 1
by (induct k) (simp-all add: Zero-fract-def One-fract-def)

lemma Fract-of-nat-eq: Fract (of-nat k) 1 = of-nat k
by (rule of-nat-fract [symmetric])

lemma fract-collapse:

Fract 0k = 0
Fract 11 = 1
Fractk 0 = 0

by (transfer; simp)+
lemma fract-expand:

0 = Fract 0 1
1 = Fract 11
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by (simp-all add: fract-collapse)

lemma Fract-cases-nonzero:
obtains (Fract) a b where ¢ = Fract a band b # 0 and a # 0

1(0) g =0
proof (cases ¢ = 0)
case True
then show thesis using 0 by auto
next
case Fulse

then obtain a b where ¢ = Fract a b and b # 0 by (cases ¢) auto
with False have 0 # Fract a b by simp
with <b # 0> have a # 0 by (simp add: Zero-fract-def eq-fract)
with Fract <¢ = Fract a b> <b # 0> show thesis by auto

qed

8.1.3 The field of rational numbers

context idom
begin

subclass ring-no-zero-divisors ..
end

instantiation fract :: (idom) field
begin

lift-definition inverse-fract :: 'a fract = 'a fract
is Az. if fst = 0 then (0, 1) else (snd z, fst x)
by (auto simp add: algebra-simps)

lemma inverse-fract [simpl: inverse (Fract a b) = Fract (b::'a::idom) a
by transfer simp

definition divide-fract-def: q div r = q * inverse (r:: 'a fract)

lemma divide-fract [simp]: Fract a b div Fract ¢ d = Fract (a * d) (b * ¢)
by (simp add: divide-fract-def)

instance
proof

fix ¢ :: 'a fract

assume q # 0

then show inverse ¢ x q = 1

by (cases q rule: Fract-cases-nonzero)
(simp-all add: fract-expand eq-fract mult.commute)

next

fix g r:: 'a fract
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show ¢ div r = q * inverse r by (simp add: divide-fract-def)
next
show inverse 0 = (0:: 'a fract)
by (simp add: fract-expand) (simp add: fract-collapse)
qed

end

8.1.4 The ordered field of fractions over an ordered idom

instantiation fract :: (linordered-idom) linorder
begin

lemma less-eq-fract-respect:
fixesaba b cdc' d ::'a
assumes neq: b# 0 b'# 0 d#0 d' # 0
assumes eql: a x b’ =a’ x b
assumes eq2: c x d' = ¢’ * d
shows ((a x d) *x (b* d) < (¢ *b) x (bxd)) +— ((a’*d’) (b d) < (¢’ *
b)) * (b’ % d'))
proof —
let ?Zle=Xabcd. ((a*xd)*(bxd) <(cx*b)x*(bxd))
{
fixabcdz::'a
assume z: T # 0
have ?2leabcd= %le (axxz) (bxz)cd
proof —
from z have 0 < z x =
by (auto simp add: zero-less-mult-iff)
then have %lea b c d =
((axd)*(bxd)x(xxxz)<(cxb)x(bxd)x*(zxuzx))
by (simp add: mult-le-cancel-right)
also have ... = %le (a x z) (bxz) ¢ d
by (simp add: ac-simps)
finally show ?Zthesis .
qed
} note le-factor = this

let ?D = bx* dand 2D’ = b’ % d’

from neq have D: ?D # 0 by simp

from neq have ?D’ # 0 by simp

then have ?le a b ¢ d = %le (a x ?D’) (b x ?D’) ¢ d
by (rule le-factor)

also have ... = ((a * b") * ?D x ?D' x d x d' < (¢ x d’) * 2D % 2D’ % b x b’
by (simp add: ac-simps)

also have ... = ((a’ * b) * 2D x 2D'x d x d' < (¢’ *x d) * 2D * 2D’ % b * b’)
by (simp only: eql eq2)

also have ... = ?le (a’ x ?D) (b’ x ?D) ¢’ d’
by (simp add: ac-simps)
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also from D have ... = ?le a’ b’ ¢’ d’
by (rule le-factor [symmetric])
finally show ?le a bcd = ?lea’ b’ ¢’ d’.
qed

lift-definition less-eq-fract :: 'a fract = 'a fract = bool
isAgr. (fst g x sndr)* (snd g x sndr) < (fstr*sndq)* (snd ¢ x snd r)
by (clarsimp simp add: less-eq-fract-respect)

definition less-fract-def: z < (w::'a fract) +— z < w A = w < 2z

lemma le-fract [simp]:

[6#£0;d# 0] = Fractab < Fract cd +— (a* d) * (b*x d) < (¢ * b) * (b
* d)

by transfer simp

lemma less-fract [simp]:

[b#£0;d# 0] = Fractab < Fract cd +— (a* d) * (b*x d) < (¢ * b) * (b
* d)

by (simp add: less-fract-def less-le-not-le ac-simps)

instance
proof
fix ¢grs:afract
assume ¢ < rand r < s
then show ¢ < s
proof (induct q, induct r, induct s)
fixabcdef:'a
assume neq: b # 0d # 0f # 0
assume I: Fract a b < Fract ¢ d
assume 2: Fract ¢ d < Fract e f
show Fract a b < Fract e f
proof —
from neq obtain bb: 0 < bx band dd: 0 < d x dand ff: 0 < f x f
by (auto simp add: zero-less-mult-iff linorder-neg-iff)
have (a x d) x (bx d) * (f *x f) < (c*b) * (bxd) * (f x[)

proof —
from neq 1 have (a * d) x (bx d) < (c* b) * (b * d)
by simp
with ff show ?thesis by (simp add: mult-le-cancel-right)
qed

also have ... = (¢ * f) x (d * f) * (b % b)
by (simp only: ac-simps)
also have ... < (e x d) x (d = f) x (b * b)
proof —
from neg 2 have (¢ x f) x (d x f) < (e x d) % (d * f)
by simp
with bb show ?thesis by (simp add: mult-le-cancel-right)
qed
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finally have (a x f) * (bx f) x (d x d) < exbx (bxf)* (dx* d)
by (simp only: ac-simps)
with dd have (a * f) * (b f) < (e x b) = (b * [)
by (simp add: mult-le-cancel-right)
with neq show ?Zthesis by simp
qed
qed
next
fix g r:: 'a fract
assume ¢ < rand r < ¢
then show ¢ = r
proof (induct g, induct r)
fixabced:'a
assume neq: b # 0d # 0
assume I: Fract a b < Fract ¢ d
assume 2: Fract ¢ d < Fract a b
show Fract a b = Fract ¢ d
proof —
from neg 1 have (a x d) * (b x d) < (¢ * b) x (b * d)
by simp
also have ... < (a x d) * (b * d)
proof —
from neq 2 have (¢ x b) * (d * b) < (a * d) * (d * b)
by simp
then show ?thesis by (simp only: ac-simps)
qed
finally have (a * d) * (b * d) = (¢ x b) % (b* d) .
moreover from neq have b x d # 0 by simp
ultimately have a * d = ¢ * b by simp
with neq show ?thesis by (simp add: eq-fract)

qed
qed
next
fix g r :: 'a fract
show ¢ < ¢

by (induct q) simp
show (¢ <r)=(¢<rA-r<ygq)
by (simp only: less-fract-def)
show ¢ < rvr<yg
by (induct g, induct )
(simp add: mult.commute, rule linorder-linear)
qed

end

instantiation fract :: (linordered-idom) linordered-field
begin

definition abs-fract-def2:
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lq| = (if ¢ < 0 then —q else (¢::'a fract))

definition sgn-fract-def:
sgn (g::'a fract) = (if ¢ = 0 then 0 else if 0 < q then 1 else — 1)

theorem abs-fract [simp]: |Fract a b| = Fract |a| ||
unfolding abs-fract-def2 not-le [symmetric]
by transfer (auto simp add: zero-less-mult-iff le-less)

instance proof
fix ¢grs::a fract
assume g < r
then show s + ¢ < s+ r
proof (induct q, induct r, induct s)
fixabcdef:'a
assume neq: b #= 0d £ 0f # 0
assume le: Fract a b < Fract ¢ d
show Fract e f + Fract a b < Fract e f + Fract ¢ d
proof —
let 2F = f % f from neq have F: 0 < ?F
by (auto simp add: zero-less-mult-iff)
from neq le have (a x d) * (b * d) < (c * b) * (b x d)
by simp
with F have (a x d) % (b* d) x 2F « ¢F < (¢ * b) % (b« d) * ?F x ?F
by (simp add: mult-le-cancel-right)
with neq show ?thesis by (simp add: field-simps)
qed
qed
next
fix ¢grs:afract
assume ¢ < rand 0 < s
then show s x ¢ < s x r
proof (induct q, induct r, induct s)
fixabcdef:'a
assume neq: b# 0d # 0f # 0
assume le: Fract a b < Fract ¢ d
assume gt: 0 < Fract e f
show Fract e f * Fract a b < Fract e f * Fract ¢ d
proof —
let 2FE =cx fand ?F = f x f
from neq gt have 0 < ?F
by (auto simp add: Zero-fract-def order-less-le eq-fract)
moreover from neq have 0 < ?F
by (auto simp add: zero-less-mult-iff)
moreover from neq le have (a x d) * (b x d) < (¢ x b) * (b *x d)
by simp
ultimately have (a * d) * (b x d) x ?E % ?F < (¢ * b) x (b d) * ?FE % 2F
by (simp add: mult-less-cancel-right)
with neq show Zthesis
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by (simp add: ac-simps)
qed
qed
qed (fact sgn-fract-def abs-fract-def2)+

end

instantiation fract :: (linordered-idom) distrib-lattice
begin

definition inf-fract-def:
(inf == 'a fract = 'a fract = 'a fract) = min

definition sup-fract-def:
(sup :: 'a fract = 'a fract = 'a fract) = maz

instance
by standard (simp-all add: inf-fract-def sup-fract-def maz-min-distrib2)

end

lemma fract-induct-pos [case-names Fract]:
fixes P :: 'a::linordered-idom fract = bool
assumes step: Aa b. 0 < b = P (Fract a b)
shows P ¢
proof (cases q)
case (Fract a b)
{
fixab:'a
assume b: b < 0
have P (Fract a b)
proof —
from b have 0 < — b by simp
then have P (Fract (— a) (— b))
by (rule step)
then show P (Fract a b)
by (simp add: order-less-imp-not-eq [OF b])
qed
}
with Fract show P q
by (auto simp add: linorder-neq-iff step)
qged

lemma zero-less-Fract-iff: 0 < b = 0 < Fract a b +— 0 < a
by (auto simp add: Zero-fract-def zero-less-mult-iff)

lemma Fract-less-zero-iff: 0 < b = Fract a b < 0 +— a < 0
by (auto simp add: Zero-fract-def mult-less-0-iff)
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lemma zero-le-Fract-iff: 0 < b = 0 < Fracta b +— 0 < a
by (auto simp add: Zero-fract-def zero-le-mult-iff)

lemma Fract-le-zero-iff: 0 < b = Fract a b < 0 +— a < 0
by (auto simp add: Zero-fract-def mult-le-0-iff)

lemma one-less-Fract-iff: 0 < b = 1 < Fract a b +— b < a
by (auto simp add: One-fract-def mult-less-cancel-right-disj)

lemma Fract-less-one-iff: 0 < b= Fractab < 1 ¢+— a <b
by (auto simp add: One-fract-def mult-less-cancel-right-disj)

lemma one-le-Fract-iff: 0 < b = 1 < Fract a b +— b < a
by (auto simp add: One-fract-def mult-le-cancel-right)

lemma Fract-le-one-iff: 0 < b = Fract a b < 1 +— a < b
by (auto simp add: One-fract-def mult-le-cancel-right)

end

9 Fundamental Theorem of Algebra

theory Fundamental-Theorem-Algebra
imports Polynomial Complez-Main
begin

9.1 More lemmas about module of complex numbers

The triangle inequality for cmod

lemma complex-mod-triangle-sub: cmod w < emod (w + z) + norm z
by (metis add-diff-cancel norm-triangle-ineq/ )

9.2 Basic lemmas about polynomials

lemma poly-bound-exists:
fixes p :: ‘a::{comm-semiring-0,real-normed-div-algebra} poly
shows 3m. m > 0 A (Vz. norm z < r — norm (poly p z) < m)
proof (induct p)
case (
then show ?Zcase by (rule exl[where z=1]) simp
next
case (pCons c cs)
from pCons.hyps obtain m where m: Vz. norm z < r — norm (poly cs z) <
m
by blast
let %k = 1 4 norm ¢ + |r x m|
have kp: %k > 0
using abs-ge-zero|of r+m] norm-ge-zero|of c] by arith
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have norm (poly (pCons ¢ ¢s) z) < 2k if H: norm z < r for z
proof —
from m H have th: norm (poly cs z) < m
by blast
from H have rp: r > 0
using norm-ge-zerolof z| by arith
have norm (poly (pCons ¢ ¢s) z) < norm ¢ + norm (z * poly cs z)
using norm-triangle-ineq|of ¢ zx poly cs 2] by simp
also have ... < %
using mult-mono[OF H th rp norm-ge-zero|of poly cs z]]
by (simp add: norm-mult)
finally show ?thesis .
qed
with kp show ?case by blast
qed

Offsetting the variable in a polynomial gives another of same degree

definition offset-poly :: 'a::comm-semiring-0 poly = 'a = 'a poly
where offset-poly p h = fold-coeffs (Aa q. smult h ¢ + pCons a q) p 0

lemma offset-poly-0: offset-poly 0 h = 0
by (simp add: offset-poly-def)

lemma offset-poly-pCons:
offset-poly (pCons a p) h =
smult b (offset-poly p h) + pCons a (offset-poly p h)
by (cases p = 0 A a = 0) (auto simp add: offset-poly-def)

lemma offset-poly-single [simp]: offset-poly [:a:] h = [:a:]
by (simp add: offset-poly-pCons offset-poly-0)

lemma poly-offset-poly: poly (offset-poly p h) x = poly p (h + x)
by (induct p) (auto simp add: offset-poly-0 offset-poly-pCons algebra-simps)

lemma offset-poly-eq-0-lemma: smult ¢ p + pCons ap =0 = p =0
by (induct p arbitrary: a) (simp, force)

lemma offset-poly-eq-0-iff [simp]: offset-polyp h = 0 +— p =0
proof
show offset-poly p h = 0 = p =0
proof (induction p)
case 0
then show ?case by blast
next
case (pCons a p)
then show ?case
by (metis offset-poly-eq-0-lemma offset-poly-pCons offset-poly-single)
qed
qed (simp add: offset-poly-0)
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lemma degree-offset-poly [simp]: degree (offset-poly p h) = degree p
proof (induction p)
case ()
then show ?case
by (simp add: offset-poly-0)
next
case (pCons a p)
have p # 0 = degree (offset-poly (pCons a p) h) = Suc (degree p)
by (metis degree-add-eq-right degree-pCons-eq degree-smult-le le-imp-less-Suc
offset-poly-eq-0-iff offset-poly-pCons pCons.IH)
then show ?case
by simp
qed

definition psize p = (if p = 0 then 0 else Suc (degree p))

lemma psize-eq-0-iff [simp]: psizep = 0 <— p =0
unfolding psize-def by simp

lemma poly-offset:
fixes p :: ‘a::comm-ring-1 poly
shows 3 ¢. psize ¢ = psize p A (V. poly ¢ x = poly p (a + x))
by (metis degree-offset-poly offset-poly-eq-0-iff poly-offset-poly psize-def)

An alternative useful formulation of completeness of the reals

lemma real-sup-exists:
assumes ex: 3z. Pz
and bz: 3z. V. Pr — < 2
shows Js:ireal. Vy. (Jz. Pz Ay <z)+— y <s
proof
from bz have bdd-above (Collect P)
by (force intro: less-imp-le)
then show Vy. (3z. Pz Ay < z) «— y < Sup (Collect P)
using ex bz by (subst less-cSup-iff) auto
qed

9.3 Fundamental theorem of algebra

lemma unimodular-reduce-norm:
assumes md: cmod z = 1
shows c¢cmod (z + 1) < 1V emod (z — 1) < 1 V cmod (z + 1) < 1 V cmod (z
—i) < 1
proof —
obtain z y where 2: z = Complexr x y
by (cases z) auto
from md z have zy: 22 + y% = 1
by (simp add: cmod-def)
have Fualse if cmod (z + 1) > 1 ¢cmod (z — 1) > 1 emod (z + 1) > 1 emod (z
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—i)>1
proof —
from that zazy have x: 2 x z < 12+ > —-12xy<12xy>—1
by (simp-all add: ecmod-def power2-eq-square algebra-simps)
then have |2 « z| < 1 |2 xy| < I
by simp-all
then have |2 * z|? < 12 |2 % y|? < 1?
by (metis abs-square-le-1 one-power2 power2-abs)+
with zy * show ?Zthesis
by (smt (verit, best) four-z-squared square-le-1)
qed
then show ?thesis
by force
qed

Hence we can always reduce modulus of I + b z™n if nonzero

lemma reduce-poly-simple:
assumes b: b # 0
and n: n # 0
shows 3 2. emod (1 + b x 27 n) < 1
using n
proof (induct n rule: nat-less-induct)
fix n
assume IH: Vm<n. m # 0 — (3z. ecmod (1 + bxz " m) < 1)
assume n: n # 0
let P = Azn. cmod (1 +b*xz " n) <1
show Jz. PPz n
proof cases
assume even n
then obtain m where m: n =2 x mand m # 0 m < n
using n by auto
with IH obtain z where z: 7P zm
by blast
from z have ?P (csqrt z) n
by (simp add: m power-mult)
then show %thesis ..
next
assume odd n
then have Im. n = Suc (2 x m)
by presburger+
then obtain m where m: n = Suc (2 * m)
by blast
have 0: cmod (complex-of-real (cmod b) / b) = 1
using b by (simp add: norm-divide)
have Jv. cmod (complex-of-real (¢cmod b) / b + v™n) < 1
proof (cases cmod (complex-of-real (cmod b) / b+ 1) < 1)
case True
then show ?thesis
by (metis power-one)
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next
case F1: False
show ?thesis
proof (cases cmod (complex-of-real (cmod b) / b — 1) < 1)
case True
with <odd n> show ?thesis
by (metis add-uminus-conv-diff neg-one-odd-power)
next
case F2: False
show ?thesis
proof (cases cmod (complez-of-real (cmod b) / b+ 1) < 1)
case T1: True
show ?thesis
proof (cases even m)
case True
with T1 show ?thesis
by (rule-tac z=i in exl) (simp add: m power-mult)
next
case Fulse
with 71 show ?thesis
by (rule-tac z=— 1 in exl) (simp add: m power-mult)
qed
next
case Fulse
then have lt1: cmod (of-real (cmod b) / b — 1) < 1
using 0 F1 F2 unimodular-reduce-norm by blast
show ?thesis
proof (cases even m)

case True
with m [t1 show ?thesis
by (rule-tac z=— i in exl) (simp add: power-mult)
next
case Fulse

with m [t1 show ?thesis
by (rule-tac z=i in ezxl) (simp add: power-mult)
qed
qged
qed
qed
then obtain v where v: cmod (complex-of-real (¢cmod b) / b+ v™n) < 1
by blast
let w = v / complez-of-real (root n (cmod b))
from odd-real-root-pow|OF <odd n», of cmod b]
have 1: 2w “n = v"n / complex-of-real (¢cmod b)
by (simp add: power-divide of-real-power|[symmetric])
have 2:cmod (complez-of-real (¢cmod b) / b) = 1
using b by (simp add: norm-divide)
then have 3: cmod (complez-of-real (cmod b) / b) > 0
by simp
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have 4: cmod (complex-of-real (¢cmod b) / b) x
cmod (1 + b x (v " n / complex-of-real (cmod b))) <
ecmod (complez-of-real (cmod b) / b) * 1
apply (simp only: norm-mult[symmetric] distrib-left)
using b v
apply (simp add: 2)
done
show ?thesis
by (metis 1 mult-left-less-imp-less|OF 4 3])
qged
qged

Bolzano-Weierstrass type property for closed disc in complex plane.

lemma metric-bound-lemma: cmod (z — y) < |Re z — Re y| + [Im z — Im y|
using real-sqrt-sum-squares-triangle-ineq[of Re x — Re y 0 0 Im x — Im y|
unfolding cmod-def by simp

lemma Bolzano- Weierstrass-complex-disc:
assumes r: Vn. cmod (s n) < r
shows 3f z. strict-mono (f :: nat = nat) A (Ve >0. IN.Yn > N. cmod (s (f
n) —z) < e)
proof —
from seqg-monosublof Re o
obtain f where f: strict-mono f monoseq (An. Re (s (f n)))
unfolding o-def by blast
from seg-monosublof Im o s o f]
obtain g where g: strict-mono g monoseq (An. Im (s (f (g n))))
unfolding o-def by blast
let 2h=foyg
have r > 0
by (meson norm-ge-zero order-trans r)
have Vn. r + 1 > |Re (s n)|
by (smt (verit, ccfv-threshold) abs-Re-le-cmod )
then have convi: convergent (An. Re (s (f n)))
by (metis Bseg-monoseg-convergent f(2) Bseql’ real-norm-def)
have Vn. r + 1 > |Im (s n)]
by (smt (verit) abs-Im-le-cmod 1)
then have conv2: convergent (An. Im (s (f (g n))))
by (metis Bseq-monoseg-convergent g(2) Bseql’ real-norm-def)

obtain z where z: Vr>0. 3n0.Vn>n0. |Re (s (fn)) —z| <r
using convl [unfolded convergent-def] LIMSEQ-iff real-norm-def by metis
obtain y where y: Vr>0.3n0.Vn>n0. [Im (s (f (gn))) —yl <r
using conv2[unfolded convergent-def] LIMSEQ-iff real-norm-def by metis
let ?w = Complex z y
from f(1) g(1) have hs: strict-mono ?h
unfolding strict-mono-def by auto
have IN. Vn>N. cmod (s (?h n) — %w) < eif e > 0 for e
proof —
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from that have e2: ¢/2 > 0
by simp
from z y e2
obtain N1 N2 where N1:Vn>NI.|Re (s (fn)) —z|<e/ 2
and N2: Vn>N2. [Im (s (f (gn)) —yl<e/ 2
by blast
have cmod (s (?hn) — ?w) < eif n > N1 + N2 for n
proof —
from that have nNI1: g n > NI and nN2: n > N2
using seg-suble[OF ¢(1), of n] by arith+
show ?thesis
using metric-bound-lemmalof s (f (g n)) %w] NI N2 nN1 nN2 by fastforce
qed
then show ?thesis by blast
qed
with hs show ?thesis by blast
qed

Polynomial is continuous.

lemma poly-cont:
fixes p :: ‘a::{ comm-semiring-0,real-normed-div-algebra} poly
assumes ep: e > ()
shows 3d >0.Vw. 0 < norm (w — z) A norm (w — z) < d — norm (poly p
w— polyp z) < e
proof —
obtain ¢ where degree ¢ = degree p and ¢: Aw. poly p w = poly q (w — 2)
by (metis add.commute degree-offset-poly diff-add-cancel poly-offset-poly)
show ?thesis unfolding ¢
proof (induct q)
case 0
then show ?case
using ep by auto
next
case (pCons ¢ cs)
obtain m where m: m > 0 norm z < 1 = norm (poly cs z) < m for 2z
using poly-bound-exists[of 1 cs] by blast
with ep have em0: e/m > 0
by (simp add: field-simps)
obtain d where d: d > 0d < 1d<e/m
by (meson em0 field-lbound-gt-zero zero-less-one)
then have Aw. norm (w — z) < d = norm (w — z) * norm (poly cs (w —
z)) <e
by (smt (verit, del-insts) m mult-left-mono norm-ge-zero pos-less-divide-eq)
with d show ?case
by (force simp add: norm-mult)
qed
qed

Hence a polynomial attains minimum on a closed disc in the complex plane.

493



lemma poly-minimum-modulus-disc: 3z. Y w. cmod w < r — cmod (poly p z) <
cmod (poly p w)
proof —
show ?thesis
proof (cases r > 0)
case Fulse
then show ?thesis
by (metis norm-ge-zero order.trans)

next
case True
then have mth1: 3z 2. cmod z < r A cmod (poly p z) = — z
by (metis add.inverse-inverse norm-zero)
obtain s where s: Vy. (z. (2. ecmod z < r A emod (poly p z) = — ) Ny

<z)—y<s
by (smt (verit, del-insts) real-sup-exists| OF mth1] norm-zero zero-less-norm-iff)

let 2m = — s
have s1: (3z. emod z < r A — (— cmod (poly p z)) < y) «— ?m < y for y
by (metis add.inverse-inverse minus-less-iff s)
then have sim: Az. emod z < r = cmod (poly p z) > ?m
by force
have Jz. ¢cmod z < r A emod (poly p z) < — s + 1 / real (Suc n) for n
using s1[of Ym + 1/real (Suc n)] by simp
then obtain g where g: Vn. cmod (g n) < rVn. cmod (poly p (g n)) <?m +
1 /real(Suc n)
by metis
from Bolzano- Weierstrass-complex-disc|OF g(1)]
obtain f::nat = nat and z where fz: strict-mono f Ve>0. 3N.Vn>N. cmod
(g(fm)—2) < e
by blast
{
fix w
assume wr: cmod w < r
let %e = |ecmod (poly p z) — ?m)|
{
assume e: e > (0
then have e2: %¢/2 > 0
by simp
with poly-cont obtain d
where d > 0 and d: Aw. 0<cmod (w — 2)A cmod(w — 2) < d —
cmod(poly p w — poly p z) < ?e/2
by blast
have 1: emod(poly p w — poly p 2) < %e / 2 if w: cmod (w — 2) < d for w
using d[of w] w e by (cases w = z) simp-all
from fz(2) <d > 0> obtain NI where N1:Vn>NI. cmod (g (fn) — 2) <

by blast

from reals-Archimedean2 obtain N2 :: nat where N2: 2/%e < real N2
by blast
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have 2: ¢mod (poly p (g (f (NI + N2))) — poly p z) < %e/2
using N1 I by auto
have 0: a < e2 = |b — m| < e2 = 2 *x e2 < |b — m| + a = False
for a b e2 m :: real
by arith
from seq-suble[OF fz(1), of NI + N2]
have 00: ?m + 1 / real (Suc (f (NI + N2))) < ?m + 1 / real (Suc (N1
+ N2))
by (simp add: frac-le)
from N2 e2 less-imp-inverse-lessof 2/ ?e real (Suc (N1 + N2))]
have ?e¢/2 > 1/ real (Suc (N1 + N2))
by (simp add: inverse-eq-divide)
with order-less-le-trans|OF - 00]
have 1: |cmod (poly p (g (f (NI + N2)))) — ?m| < ?¢/2
using g sI by (smt (verit))
with 0[OF 2] have False
by (smt (verit) field-sum-of-halves norm-triangle-ineq3)
}
then have %e = 0
by auto
with sIm[OF wr] have cmod (poly p z) < emod (poly p w)
by simp
}

then show ?thesis by blast
qed
qged

Nongzero polynomial in z goes to infinity as z does.

lemma poly-infinity:
fixes p:: 'a::{comm-semiring-0,real-normed-div-algebra} poly
assumes ezx: p # 0
shows 3r. Vz. r < norm z — d < norm (poly (pCons a p) z)
using ex
proof (induct p arbitrary: a d)
case (
then show ?case by simp
next
case (pCons c cs a d)
show ?case
proof (cases cs = 0)
case Fulse
with pCons.hyps obtain r where r: V2. r < norm z — d + norm a < norm
(poly (pCons c cs) z)
by blast
let or = 1 + |r|
have d < norm (poly (pCons a (pCons c cs)) z) if 1 + |r| < norm z for z
proof —
have d < norm(z * poly (pCons ¢ cs) z) — norm a
by (smt (verit, best) norm-ge-zero mult-less-cancel-right2 norm-mult r that)
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with norm-diff-ineq add.commute
show ?thesis
by (metis order.trans poly-pCons)
qed
then show ?thesis by blast
next
case True
have d < norm (poly (pCons a (pCons ¢ cs)) z)
if (|d| + norm a) / norm ¢ < norm z for z :: 'a
proof —
have |d| + norm a < norm (z * c)
by (metis that True norm-mult pCons.hyps(1) pos-divide-le-eq zero-less-norm-iff)
also have ... < norm (a + z * ¢) + norm a
by (simp add: add.commute norm-add-leD)
finally show ?thesis
using True by auto
qed
then show ?thesis by blast
qed
qed

Hence polynomial’s modulus attains its minimum somewhere.

lemma poly-minimum-modulus: 3 z.¥ w. cmod (poly p z) < ecmod (poly p w)
proof (induct p)
case (
then show ?case by simp
next
case (pCons c cs)
show Zcase
proof (cases cs = 0)
case Fulse
from poly-infinity| OF False, of cmod (poly (pCons ¢ cs) 0) ]
obtain r where 7: ¢cmod (poly (pCons ¢ ¢s) 0) < cmod (poly (pCons ¢ ¢s) z)
if r < cmod z for z
by blast
from poly-minimum-modulus-disclof |r| pCons ¢ cs] show ?thesis
by (smt (verit, del-insts) order.trans linorder-linear r)
qged (use pCons.hyps in auto)
qged

Constant function (non-syntactic characterization).

definition constant f +— Nz y. fz = fy)

lemma nonconstant-length: — constant (poly p) = psize p > 2
by (induct p) (auto simp: constant-def psize-def)

lemma poly-replicate-append: poly (monom 1 n *x p) (x::'a::comm-ring-1) = z™n

* poly p x
by (simp add: poly-monom)
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Decomposition of polynomial, skipping zero coefficients after the first.

lemma poly-decompose-lemma:
assumes nz: - (Vz. z # 0 — poly p z = (0::'az:idom))
shows 3k a q. a # 0 A Suc (psize ¢ + k) = psize p A (VY z. poly p z = 27k * poly
(pCons a q) z)
unfolding psize-def
using nz
proof (induct p)
case ()
then show ?case by simp
next
case (pCons c cs)
show ?Zcase
proof (cases ¢ = 0)
case True
from pCons.hyps pCons.prems True show ?thesis
apply auto
apply (rule-tac z=k+1 in ezl)
apply (rule-tac z=a in exl)
apply clarsimp
apply (rule-tac z=q in exI)
apply auto
done
qged force
qed

lemma poly-decompose:
fixes p :: ‘a::idom poly
assumes nc: - constant (poly p)
shows 3kaq.a# 0Nk#0N
psize ¢ + k + 1 = psize p A
(Vz. poly p z = poly p 0 + 27k * poly (pCons a q) 2)
using nc
proof (induct p)
case ()
then show ?case
by (simp add: constant-def)
next
case (pCons c cs)
have = (V2. 2 # 0 — poly cs z = 0)
by (smt (verit) constant-def mult-eq-0-iff pCons.prems poly-pCons)
from poly-decompose-lemma[OF this]
obtain k a ¢ where x: a # 0 A
Suc (psize ¢ + k) = psize cs A (V2. poly cs z = z "k * poly (pCons a q) z)
by blast
then have psize ¢ + k + 2 = psize (pCons ¢ cs)
by (auto simp add: psize-def split: if-splits)
then show ?case
using *x by force
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qed

Fundamental theorem of algebra

theorem fundamental-theorem-of-algebra:
assumes nc: - constant (poly p)
shows Jz::complex. poly p z = 0
using nc

proof (induct psize p arbitrary: p rule: less-induct)
case less
let ?p = poly p
let ?ths =3z %p 2= 10

from nonconstant-length| OF less(2)] have n2: psize p > 2 .
from poly-minimum-modulus obtain ¢ where ¢: Vw. cmod (?p ¢) < cmod (%p
w)
by blast

show ?2ths
proof (cases ?p ¢ = 0)
case True
then show ?thesis by blast
next
case Fulse
obtain ¢ where ¢: psize ¢ = psize p V. poly g x = ?p (¢ + x)
using poly-offset[of p c| by blast
then have gnc: — constant (poly q)
by (metis (no-types, opaque-lifting) add.commute constant-def diff-add-cancel
less.prems)
from ¢(2) have pgc0: ?p ¢ = poly q 0
by simp
from ¢ pgcO have cq0: ¥V w. ecmod (poly q 0) < cmod (%p w)
by simp
let ?a0 = poly q 0
from False pgcO have a00: ?a0 # 0
by simp
from a00 have qr: V z. poly q z = poly (smult (inverse 2a0) q) z * 2a0
by simp
let ?r = smult (inverse ?a0) q
have lgqr: psize q = psize ?r
by (simp add: a00 psize-def)
have rnc: — constant (poly ?r)
using constant-def gnc qr by fastforce
have r01: poly %r 0 = 1
by (simp add: a00)
have mrmg-eq: cmod (poly ?r w) < 1 +— cmod (poly g w) < cmod ?a0 for w
by (smt (verit, del-insts) a00 mult-less-cancel-right2 norm-mult qr zero-less-norm-iff)
from poly-decompose[OF rnc] obtain k a s where
kas: a # 0k # 0 psize s + k + 1 = psize r
YV z. poly ?r z = poly ?r 0 + 2z k* poly (pCons a s) z by blast
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have Jw. cmod (poly ?r w) < 1
proof (cases psize p =k + 1)
case True
with kas ¢ have s0: s = 0
by (simp add: lggr)
with reduce-poly-simple kas show ?thesis
by (metis mult.commute mult.right-neutral poly-1 poly-smult r01 smult-one)
next
case Fualse note kn = this
from kn kas(3) q(1) lggr have kin: k + 1 < psize p
by simp
have 01: = constant (poly (pCons 1 (monom a (k — 1))))
unfolding constant-def poly-pCons poly-monom
by (metis add-cancel-left-right kas(1) mult.commute mult-cancel-right2
power-one)
have 02: k + 1 = psize (pCons 1 (monom a (k — 1)))
using kas by (simp add: psize-def degree-monom-eq)
from less(1) [OF - 01] kin 02
obtain w where w: 1 + wk * a =0
by (metis kas(2) mult.commute mult.left-commute poly-monom poly-pCons
power-eq-if )
from poly-bound-ezists[of cmod w s] obtain m where
m: m > 0 Vz emod z < cmod w — e¢mod (poly s z) < m by blast

have w # 0
using kas(2) w by (auto simp add: power-0-left)
from w have wmlI: wk x a = — 1

by (simp add: add-eq-0-iff)
have inv0: 0 < inverse (cmod w ~ (k + 1) * m)
by (simp add: <w # 0> m(1))
with field-lbound-gt-zero|OF zero-less-one] obtain ¢t where
t:t >0t <1t < inverse (cmod w ~ (k + 1) * m) by blast
let ?ct = complex-of-real t
let 2w = %ct x w
have 1 + %wk x (a + %w x poly s Yw) = 1 + etk * (wk * a) + 2w’k *
2w x poly s 2w
using kas(1) by (simp add: algebra-simps power-mult-distrib)
also have ... = complez-of-real (1 — t7k) + 2wk * 2w = poly s %w
unfolding wm1 by simp
finally have cmod (1 + 2w’k * (a + %w * poly s ?w)) =
cmod (complex-of-real (1 — t7k) + %wk * 2w x poly s %w)
by metis
with norm-triangle-ineg[of complez-of-real (1 — t7k) 2w™k % 2w = poly s 7w
have 11: ¢cmod (1 + 2w’k * (a + 2w x poly s ?w)) < |1 — t7k| + cmod
(Pw7k x 2w x poly s fw)
unfolding norm-of-real by simp
have ath: Az treal. 0 <z =z <t=1t<1= |1 —t|+z< I
by arith
have tw: emod 2w < cmod w
by (smt (verit) mult-le-cancel-right2 norm-ge-zero norm-mult norm-of-real
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0
have t x (cmod w ~(k + 1) * m) < 1
by (smt (verit, best) inv0 inverse-positive-iff-positive left-inverse mult-strict-right-mono
t(3))
with zero-less-power|OF t(1), of k] have 30: t7k * (tx (cmod w ~ (k + 1) *
m)) <tk
by simp
have cmod (?w”k % %w * poly s Yw) = t 7k * (tx (cmod w ~ (k + 1) * cmod
(poly s 7w)))
using <w # 0> t(1) by (simp add: algebra-simps norm-power norm-mult)
with 30 have 120: cmod (?w™k x ?w * poly s ?w) < ¢tk
by (smt (verit, ccfo-SIG) m(2) mult-left-mono norm-ge-zero t(1) tw
zero-le-power)
from power-strict-mono[OF t(2), of k] (1) kas(2) have 121: t7k < 1
by auto
from ath[OF norm-ge-zerolof ?w™k x ?w * poly s ?w] 120 121]
show ?thesis
by (smt (verit) 11 kas(4) poly-pCons r01)
qed
with cq0 ¢(2) show ?thesis
by (smt (verit) mrmg-eq)
qed
qed

Alternative version with a syntactic notion of constant polynomial.

lemma fundamental-theorem-of-algebra-alt:
assumes nc: - (Jal.a£0AN1L=0Ap=pConsal)
shows Jz. poly p z = (0::complex)
proof (rule ccontr)
assume N: Bz polyp 2 = 0
then have — constant (poly p)
unfolding constant-def
by (metis (no-types, opaque-lifting) nc poly-pcompose pcompose-0' pcompose-const
poly-0-coeff-0
poly-all-0-iff-0 poly-diff right-minus-eq)
then show Fulse
using N fundamental-theorem-of-algebra by blast
qed

9.4 Nullstellensatz, degrees and divisibility of polynomials

lemma nullstellensatz-lemma:
fixes p :: complex poly
assumes Vz. poly pz = 0 — poly q x = 0
and degree p = n
and n # 0
shows p dvd (¢ " n)
using assms
proof (induct n arbitrary: p q rule: nat-less-induct)
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fix n :: nat
fix p q :: complex poly
assume [H: Vm<n. Vp q.
(Vz. poly p x = (0::complex) — poly gz = 0) —
degree p =m — m # 0 — p dvd (¢ ~ m)
and pqg0: V. poly pz = 0 — poly qx = 0
and dpn: degree p = n
and n0: n # 0
from dpn n0 have pne: p # 0 by auto
show p dvd (¢ " n)
proof (cases Ja. poly p a = 0)
case True
then obtain a where a: poly p a = 0 ..
have ?thesis if oa: order a p # 0
proof —
let 2op = order a p
from pne have ap: ([:— a, 1:] ~ %op) dvd p = [:— a, 1:] ~ (Suc ?op) dvd p
using order by blast+
note oop = order-degree| OF pne, unfolded dpn)
show ?thesis
proof (cases ¢ = 0)

case True

with n0 show ?thesis by (simp add: power-0-left)
next

case Fulse

from pq0[rule-format, OF a, unfolded poly-eq-0-iff-dvd)

obtain r where r: ¢ = [:— a, 1:] * r by (rule dvdE)

from ap(1) obtain s where s: p = [:— a, 1:] ~ %0p * s

by (rule dvdE)
have sne: s # 0
using s pne by auto
show ?thesis
proof (cases degree s = 0)
case True
then obtain k where kpn: s = [:k{]
by (cases s) (auto split: if-splits)
from sne kpn have k: k # 0 by simp
let 2w = ([:1/k:] x ([—a,1:] " (n — %op))) * (r " n)

have ¢ n=1[—a, I:] “nxr " n
using power-mult-distrib r by blast
also have ... = [i— a, I:] Torder a p x [:k:] = ({1 / k] * [— a, 1:] " (n

— order a p) x r " n)

using k oop [of a] by (simp flip: power-add)

also have ... = p x 7w
by (metis s kpn)

finally show ?thesis
unfolding dvd-def by blast

next
case Fulse
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with sne dpn s oa have dsn: degree s < n
by (metis add-diff-cancel-right’ degree-0 degree-linear-power degree-mult-eq
grOI zero-less-diff)
have poly r z = 0 if h: poly s © = 0 for z
proof —
have z # a
by (metis ap(2) dvd-refl mult-dvd-mono poly-eq-0-iff-dvd power-Suc
power-commutes s that)
moreover have poly p x = 0
by (metis (no-types) mult-eq-0-iff poly-mult s that)
ultimately show ?Zthesis
using pq0 r by auto
qed
with False IH dsn obtain u where u: r ~ (degree s) = s * u
by blast
then have u”: Az. poly s z x poly uw x = poly r x ~ degree s
by (simp only: poly-mult[symmetric] poly-power|[symmetric])

have ¢ n=1[—a, 1] “nxr " n
using power-mult-distrib r by blast
also have ... = [:— a, 1:] "order a p x (s * u * (:— a, 1:] ~ (n — order

ap)xr " (n— degree s)))
by (smt (verit, del-insts) s u mult-ac power-add add-diff-cancel-right’
degree-linear-power degree-mult-eq dpn mult-zero-left)
also have ... = p x (u * ([:—a,1:] "~ (n — %op))) * (r = (n — degree s))
using s by force
finally show ?thesis
unfolding dvd-def by auto
qed
qed
qed
then show ?thesis
using a order-root pne by blast
next
case Fulse
then show ?thesis
using dpn n0 fundamental-theorem-of-algebra-alt[of p]
by fastforce
qed
qed

lemma nullstellensatz-univariate:
(V. poly p x = (0::complex) — poly q z = 0) +—
p dvd (q ~ (degree p)) V (p = 0 A q = 0)
proof —
consider p = 0 | p # 0 degree p = 0 | n where p # 0 degree p = Suc n
by (cases degree p) auto
then show ?thesis
proof cases
case p: 1
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then have (Vz. poly p x = (0::complex) — poly gz = 0) «— g =0
by (auto simp add: poly-all-0-iff-0)
with p show ?thesis
by force
next
case dp: 2
then show ?thesis
by (meson dvd-trans is-unit-iff-degree poly-eq-0-iff-dvd unit-imp-dvd)
next
case dp: 3
have Fulse if p dvd (¢ ~ (Suc n)) poly p x = 0 poly q = # 0 for z
by (metis dvd-trans poly-eq-0-iff-dvd poly-power power-eq-0-iff that)
with dp nullstellensatz-lemmalof p q degree p| show ?thesis
by auto
qed
qed

Useful lemma

lemma constant-degree:
fixes p :: ‘a::{idom,ring-char-0} poly
shows constant (poly p) «— degree p = 0 (is ?lhs = ?rhs)
proof
show ?rhs if ?lhs
proof —
from that[unfolded constant-def, rule-format, of - 0]
have poly p = poly [:poly p 0]
by auto
then show ?thesis
by (metis degree-pCons-0 poly-eq-poly-eq-iff)
qed
show ?lhs if ?rhs
unfolding constant-def
by (metis degree-eq-zeroE pcompose-const poly-0 poly-pcompose that)
qed

lemma complex-poly-decompose:
smult (lead-coeff p) (I] z|poly p z = 0. [:—2, 1:] ~order z p) = (p :: complex poly)
proof (induction p rule: poly-root-order-induct)
case (no-roots p)
show ?Zcase
proof (cases degree p = 0)
case Fulse
hence —constant (poly p) by (subst constant-degree)
with fundamental-theorem-of-algebra and no-roots show ?thesis by blast
qed (auto elim!: degree-eq-zeroF)
next
case (root p x n)
from root have *: {z. poly (;— z, 1:] “n* p) z= 0} = insert x {z. poly p z =

0}
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by auto
have smult (lead-coeff ([:—z, 1:] ~n * p))
(IT zlpoly ([:—z,1:] “n xp) z = 0. [:—z, 1:] ~order z ((— =, 1:] " n *

[— @, 1:] "order z (;— z, 1:] " n * p) *
smult (lead-coeff p) (I] 2€{z. poly p z = 0}. [:— 2z, 1:] ~order z ([:— =, 1]
~n s p))
by (subst *, subst prod.insert)
(insert root, auto intro: poly-roots-finite simp: mult-ac lead-coeff-mult lead-coeff-power)
also have order x ([(— z, 1:] “n*xp) =n
using root by (subst order-mult) (auto simp: order-power-n-n order-0I)
also have ([[z€{z. poly p z = 0}. [:— 2z, 1] ~order z (:— z, 1:] " n * p)) =
(ITz€{z. poly p z = 0}. [:— 2, 1:] ~ order z p)
proof (intro prod.cong refl, goal-cases)
case (1 y)
with root have order y ([:—z,1:] ~n) = 0 by (intro order-0I) auto
thus ?case using root by (subst order-mult) auto
qed
also note root.IH
finally show ?case .
qed simp-all

instance complex :: alg-closed-field
by standard (use fundamental-theorem-of-algebra constant-degree neq0-conv in
blast)

lemma size-proots-complex: size (proots (p :: complex poly)) = degree p
proof (cases p = 0)
case [simp|: False
show size (proots p) = degree p
by (subst (1 2) complex-poly-decompose [symmetric])
(simp add: proots-prod proots-power degree-prod-sum-eq degree-power-eq)
qed auto

lemma complex-poly-decompose-multiset:
smult (lead-coeff p) (] x€#proots p. :—z, 1:]) = (p :: complex poly)
proof (cases p = 0)
case Fulse
hence ([[z€#proots p. [i—z, 1:]) = ([[z | poly p x = 0. [:—x, 1:] ~ order z p)
by (subst image-prod-mset-multiplicity) simp-all
also have smult (lead-coeff p) ... = p
by (rule complez-poly-decompose)
finally show ?thesis .
qed auto

lemma complez-poly-decompose’:

obtains root where smult (lead-coeff p) ([]i<degree p. [:—root i, 1:]) = (p =
complex poly)
proof —
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obtain roots where roots: mset roots = proots p
using ez-mset by blast

have p = smult (lead-coeff p) (] x€#proots p. [:—z, 1:])
by (rule complez-poly-decompose-multiset [symmetric])
also have ([[ z€#proots p. [:—z, 1:]) = ([[x<roots. [:—x, 1:])
by (subst prod-mset-prod-list [symmetric]) (simp add: roots)
also have ... = ([ i<length roots. [:—roots | i, 1:])
by (subst prod.list-conv-set-nth) (auto simp: atLeastOLessThan)
finally have eq: p = smult (lead-coeff p) (][] i<length roots. [:—roots ! i, 1]) .
also have [simp]: degree p = length roots
using roots by (subst eq) (auto simp: degree-prod-sum-eq)
finally show ?thesis by (intro that[of Ai. roots ! i]) auto
qed

lemma complex-poly-decompose-rsquarefree:
assumes rsquarefree p
shows smult (lead-coeff p) (I z|poly p z = 0. [:—%, 1:]) = (p = complez poly)
proof (cases p = 0)
case Fulse
have ([[z|poly p 2 = 0. [:—2, 1:]) = ([[ 2|poly p 2 = 0. [:—=z, 1:] ~ order z p)
using assms False by (intro prod.cong) (auto simp: rsquarefree-root-order)
also have smult (lead-coeff p) ... = p
by (rule complez-poly-decompose)
finally show ?thesis .
qged auto

Arithmetic operations on multivariate polynomials.

lemma mpoly-base-conv:
fixes x :: 'a::comm-ring-1
shows 0 = poly 0 x ¢ = poly [:¢:] z z = poly [:0,1:] =
by simp-all

lemma mpoly-norm-conv:
fixes z :: 'a::comm-ring-1
shows poly [:0:] z = poly 0 x poly [:poly 0 y:] = poly 0 x
by simp-all

lemma mpoly-sub-conv:
fixes z :: ‘a::comm-ring-1
shows poly p x — poly q x = poly p x + —1 * poly q x
by simp

lemma poly-pad-rule: poly p x = 0 = poly (pCons 0 p) x = 0
by simp

lemma poly-cancel-eq-conv:

fixes z :: 'a::field
shows 1 =0 = a# 0= y=0+—axy—bxz=20
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by auto

lemma poly-divides-pad-rule:
fixes p:: ('a::comm-ring-1) poly
assumes pq: p dvd g
shows p dvd (pCons 0 q)
by (metis add-0 dvd-def mult-pCons-right pq smult-0-left)

lemma poly-divides-conv0:
fixes p:: ‘a:field poly
assumes lgpq: degree q < degree p and lq: p # 0
shows p dvd ¢ «— ¢ =0
using lgpg mod-poly-less by fastforce

lemma poly-divides-convl :
fixes p :: ‘a::field poly
assumes a0: a # 0
and pp”: p dvd p’
and qrp”: smulta g — p' =1
shows p dvd q <— p dvd r
by (metis a0 diff-add-cancel dvd-add-left-iff dvd-smult-iff pp’ qrp’)

lemma basic-cqe-convl:
(3z. poly pz =0 A poly 0z # 0) «— False
Jz. poly 0 x # 0) <— False
Ja. poly [:e:] x # 0) +— ¢c#£ 0
Fz. poly 0 x = 0) +— True
Jz. poly [(e:] z=0) «— c=10
by simp-all

(
(
(
(

lemma basic-cqe-conv2:
assumes [: p # 0
shows Jz. poly (pCons a (pCons b p)) x = (0::complex)
by (meson fundamental-theorem-of-algebra-alt | pCons-eq-0-iff pCons-eq-iff)

lemma basic-cge-conv-2b: (3z. poly p © # (0::complex)) «— p # 0
by (metis poly-all-0-iff-0)

lemma basic-cqe-convs:

fixes p q :: complex poly

assumes I: p # 0

shows (Fz. poly (pCons a p) x = 0 A poly qx # 0) «— — (pCons a p) dvd (q
~ psize p)

by (metis degree-pCons-eq-if | nullstellensatz-univariate pCons-eq-0-iff psize-def)

lemma basic-cqe-convy:
fixes p q :: complex poly
assumes h: Az. poly (¢ ~n) x = poly r
shows p dvd (¢ " n) «— p dvd r
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by (metis (no-types) basic-cqe-conv-2b h poly-diff right-minus-eq)

lemma poly-const-conv:
fixes z :: 'a::comm-ring-1
shows poly [c]z=y+— c=y
by simp

end

theory Group-Closure
imports

Main
begin

context ab-group-add
begin

inductive-set group-closure :: 'a set = 'a set for S
where base: s € insert 0 S => s € group-closure S
| diff: s € group-closure S = t € group-closure S = s — t € group-closure S

lemma zero-in-group-closure [simpl:
0 € group-closure S
using group-closure.base [of 0 S] by simp

lemma group-closure-minus-iff [simp]:
— s € group-closure S <— s € group-closure S
using group-closure.diff [of 0 S s] group-closure.diff [of 0 S — s] by auto

lemma group-closure-add:
s 4+ t € group-closure S if s € group-closure S and t € group-closure S
using that group-closure.diff [of s S — t] by auto

lemma group-closure-empty [simp]:
group-closure {} = {0}
by (rule ccontr) (auto elim: group-closure.induct)
lemma group-closure-insert-zero [simp):
group-closure (insert 0 S) = group-closure S
by (auto elim: group-closure.induct intro: group-closure.intros)

end

context comm-ring-1
begin

lemma group-closure-scalar-mult-left:
of-nat n x s € group-closure S if s € group-closure S
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using that by (induction n) (auto simp add: algebra-simps intro: group-closure-add)

lemma group-closure-scalar-mult-right:
s * of-nat n € group-closure S if s € group-closure S
using that group-closure-scalar-mult-left [of s S n] by (simp add: ac-simps)

end

lemma group-closure-abs-iff [simpl:
|s| € group-closure S «— s € group-closure S for s :: int
by (simp add: abs-if)

lemma group-closure-mult-left:
s * t € group-closure S if s € group-closure S for s t :: int
proof —
from that group-closure-scalar-mult-right [of s S nat |t]]
have s % int (nat |t|) € group-closure S
by (simp only:)
then show ?thesis
by (cases t > 0) simp-all
qed

lemma group-closure-mult-right:
s * t € group-closure S if t € group-closure S for st :: int
using that group-closure-mult-left [of t S s] by (simp add: ac-simps)

context idom
begin

lemma group-closure-mult-all-eq:
group-closure (times k *S) = times k ¢ group-closure S
proof (rule; rule)
fix s
have x: kx a + kx b=k * (a + b)
kxa—kxb=kx(a—0b) forabd
by (simp-all add: algebra-simps)
assume s € group-closure (times k < S)
then show s € times k ‘ group-closure S
by induction (auto simp add: * image-iff intro: group-closure.base group-closure. diff
bexl [of - 0))
next
fix s
assume s € times k ‘ group-closure S
then obtain r» where r: r € group-closure S and s: s =k * r
by auto
from r have k * r € group-closure (times k © S)
by (induction arbitrary: s) (auto simp add: algebra-simps intro: group-closure.intros)
with s show s € group-closure (times k ¢ S)
by simp
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qed
end

lemma Ged-group-closure-eq-Ged:
Gcd (group-closure S) = Ged S for S :: int set
proof (rule associated-eqI)
have Ged S dud s if s € group-closure S for s
using that by induction auto
then show Ged S dvd Ged (group-closure S)
by auto
have Ged (group-closure S) dvd s if s € S for s
proof —
from that have s € group-closure S
by (simp add: group-closure.base)
then show ?thesis
by (rule Ged-dvd)
qed
then show Ged (group-closure S) dvd Ged S
by auto
qed simp-all

lemma group-closure-sum:
fixes S :: int set
assumes X: finite X X £ {} X C S
shows (> z€X. a x * x) € group-closure S
using X by (induction X rule: finite-ne-induct)
(auto intro: group-closure-mult-right group-closure.base group-closure-add)

lemma Gecd-group-closure-in-group-closure:
Ged (group-closure S) € group-closure S for S :: int set
proof (cases S C {0})
case True
then have S = {} v § = {0}
by auto
then show ?thesis
by auto
next
case Fulse
then obtain s where s: s # 0s € S
by auto
then have s” |s| # 0 |s| € group-closure S
by (auto intro: group-closure.base)
define m where m = (LEAST n. n > 0 A int n € group-closure S)
have m > 0 A int m € group-closure S
unfolding m-def
apply (rule Least] [of - nat |s|])
using s’
by simp
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then have m: int m € group-closure S and 0 < m
by auto

have Ged (group-closure S) = int m
proof (rule associated-eql)
from m show Gcd (group-closure S) dvd int m
by (rule Ged-dvd)
show int m dvd Ged (group-closure S)
proof (rule Ged-greatest)
fix s
assume s: s € group-closure S
show int m dvd s
proof (rule ccontr)
assume - int m dvd s
then have x: 0 < s mod int m
using <0 < m» le-less by fastforce
have m < nat (s mod int m)
proof (subst m-def, rule Least-le, rule)
from * show 0 < nat (s mod int m)
by simp
from minus-div-mult-eg-mod [symmetric, of s int m]
have s mod int m = s — s div int m * int m
by auto
also have s — s div int m * int m € group-closure S
by (auto intro: group-closure.diff s group-closure-mult-right m)
finally show int (nat (s mod int m)) € group-closure S
by simp
qed
with * have int m < s mod int m
by simp
moreover have s mod int m < int m
using <0 < m» by simp
ultimately show Fulse
by auto
qed
qed
qed simp-all
with m show ?thesis
by simp
qed

lemma Ged-in-group-closure:
Ged S € group-closure S for S :: int set
using Ged-group-closure-in-group-closure [of S]
by (simp add: Ged-group-closure-eq-Ged)

lemma group-closure-eq:

group-closure S = range (times (Ged S)) for S :: int set
proof (auto intro: Ged-in-group-closure group-closure-mult-left)
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fix s
assume s € group-closure S
then show s € range (times (Ged S))
proof induction
case (base s)
then have Gcd S dud s
by (auto intro: Ged-dvd)
then obtain ¢t where s = Ged S * t ..
then show ?case
by auto
next
case (diff s t)
moreover have Ged S x a — Ged S b= Ged S * (a — b) for a b
by (simp add: algebra-simps)
ultimately show “case
by auto
qed
qed

end

theory Normalized-Fraction
imports
Main
FEuclidean-Algorithm
Fraction-Field
begin

lemma unit-factor-1-imp-normalized: unit-factor ¥ = 1 = normalize x = z
using unit-factor-mult-normalize [of z] by simp

definition quot-to-fract :: ‘a x 'a = 'a :: idom fract where
quot-to-fract = (A(a,b). Fraction-Field.Fract a b)

definition normalize-quot :: 'a :: {ring-ged,idom-divide,semiring-gcd-mult-normalize}
x 'a = 'a x 'a where
normalize-quot =
(A(a,b). if b = 0 then (0,1) else let d = ged a b * unit-factor b in (a div d, b
div d))

lemma normalize-quot-zero [simp):
normalize-quot (a, 0) = (0, 1)
by (simp add: normalize-quot-def)

lemma normalize-quot-proj:
fst (normalize-quot (a, b)) = a div (ged a b * unit-factor b)
snd (normalize-quot (a, b)) = normalize b div ged a b if b # 0
using that by (simp-all add: normalize-quot-def Let-def mult.commute [of -
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unit-factor b] dvd-div-mult2-eq mult-unit-dvd-iff )

definition normalized-fracts :: ('a :: {ring-gcd,idom-divide} x ’a) set where
normalized-fracts = {(a,b). coprime a b A unit-factor b = 1}

lemma not-normalized-fracts-0-denom [simpl: (a, 0) ¢ normalized-fracts
by (auto simp: normalized-fracts-def)

lemma unit-factor-snd-normalize-quot [simp):
unit-factor (snd (normalize-quot x)) = 1
by (simp add: normalize-quot-def case-prod-unfold Let-def dvd-unit-factor-div
mult-unit-dvd-iff unit-factor-mult unit-factor-ged)

lemma snd-normalize-quot-nonzero [simpl: snd (normalize-quot x) # 0
using unit-factor-snd-normalize-quot|of z]
by (auto simp del: unit-factor-snd-normalize-quot)

lemma normalize-quot-aux:
fixes a b
assumes b # 0
defines d = ged a b * unit-factor b
shows a = fst (normalize-quot (a,b)) * d b = snd (normalize-quot (a,b)) * d
d dvd a d dvd b d # 0
proof —
from assms show d dvd a d dvd b
by (simp-all add: d-def mult-unit-dvd-iff)
thus a = fst (normalize-quot (a,b)) * d b = snd (normalize-quot (a,b)) * d d #
0
by (auto simp: normalize-quot-def Let-def d-def <b # 0»)
qed

lemma normalize-quotE:
assumes b # 0
obtains d where a = fst (normalize-quot (a,b)) x d b = snd (normalize-quot
(a,b)) * d
ddvd addvdbd#0
using that|OF normalize-quot-aux| OF assms]] .

lemma normalize-quotE’:
assumes snd x # 0
obtains d where fst = fst (normalize-quot x) * d snd x = snd (normalize-quot
z) x d
d dvd fst x d dvd snd x d # 0
proof —
from normalize-quotE[OF assms, of fst z] obtain d where
fst x = fst (normalize-quot (fst x, snd z)) * d
snd x = snd (normalize-quot (fst z, snd x)) * d
d dvd fst x
d dvd snd z
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d# 0.
then show %thesis unfolding prod.collapse by (intro that|of d])
qed

lemma coprime-normalize-quot:
coprime (fst (normalize-quot x)) (snd (normalize-quot x))
by (simp add: normalize-quot-def case-prod-unfold div-mult-unit2)
(metis coprime-mult-self-right-iff div-gcd-coprime unit-div-mult-self unit-factor-is-unit)

lemma normalize-quot-in-normalized-fracts [simp]: normalize-quot T € normal-
ized-fracts
by (simp add: normalized-fracts-def coprime-normalize-quot case-prod-unfold)

lemma normalize-quot-eq-iff:
assumes b # 0 d # 0
shows normalize-quot (a,b) = normalize-quot (¢,d) +— a *x d = b * ¢
proof —
define z y where = = normalize-quot (a,b) and y = normalize-quot (c¢,d)
from normalize-quotE[OF assms(1), of a] normalize-quotE[OF assms(2), of ]
obtain di d2
where a = fstx x dl b=sndz +x dl c= fsty*d2d=sndy* d2dl # 0
a2 # 0
unfolding z-def y-def by metis
hence a x d = b x ¢c < fst x x snd y = snd z x fst y by simp
also have ... +— fstz = fst y AN snd x = snd y
by (intro coprime-crossproduct’) (simp-all add: z-def y-def coprime-normalize-quot)
also have ... +— z = y using prod-eql by blast
finally show z = y+— axd=0bx*c ..
qed

lemma normalize-quot-eq-iff .
assumes snd x # 0 snd y # 0
shows normalize-quot © = normalize-quot y <— fst x x snd y = snd x * fst y
using assms by (cases z, cases y, hypsubst) (subst normalize-quot-eq-iff, simp-all)

lemma normalize-quot-id: © € normalized-fracts = normalize-quot © = x
by (auto simp: normalized-fracts-def normalize-quot-def case-prod-unfold)

lemma normalize-quot-idem [simp|: normalize-quot (normalize-quot x) = normal-
ize-quot T
by (rule normalize-quot-id) simp-all

lemma fractrel-iff-normalize-quot-eq:
fractrel x y <— normalize-quot © = normalize-quot y A snd x # 0 N snd y # 0
by (cases x, cases y) (auto simp: fractrel-def normalize-quot-eq-iff)

lemma fractrel-normalize-quot-left:

assumes snd x # 0
shows fractrel (normalize-quot z) y +— fractrel x y
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using assms by (subst (1 2) fractrel-iff-normalize-quot-eq) auto

lemma fractrel-normalize-quot-right:
assumes snd x #* 0
shows fractrel y (normalize-quot x) <— fractrel y x
using assms by (subst (1 2) fractrel-iff-normalize-quot-eq) auto

lift-definition quot-of-fract ::
‘a :: {ring-gcd,idom-divide,semiring-ged-mult-normalize} fract = 'a X 'a
is normalize-quot
by (subst (asm) fractrel-iff-normalize-quot-eq) simp-all

lemma quot-to-fract-quot-of-fract [simpl: quot-to-fract (quot-of-fract z) = z
unfolding quot-to-fract-def
proof transfer
fix z :: ‘a x 'a assume rel: fractrel © x
define z’ where z’ = normalize-quot
obtain a b where [simp|: © = (a, b) by (cases x)
from rel have b # 0 by simp
from normalize-quotE[OF this, of a] obtain d
where
a = fst (normalize-quot (a, b)) * d
b = snd (normalize-quot (a, b)) % d
d dvd a
d dvd b
d=# 0.
hence a = fst 2’ * d b= snd z’ x d d # 0 snd =’ # 0 by (simp-all add: z’-def)
thus fractrel (case ' of (a, b) = if b = 0 then (0, 1) else (a, b)) x
by (auto simp add: case-prod-unfold)
qed

lemma quot-of-fract-quot-to-fract: quot-of-fract (quot-to-fract x) = normalize-quot
x
proof (cases snd x = 0)

case True

thus ?thesis unfolding quot-to-fract-def

by transfer (simp add: case-prod-unfold normalize-quot-def)

next

case Fulse

thus ?thesis unfolding quot-to-fract-def by transfer (simp add: case-prod-unfold)
qged

lemma quot-of-fract-quot-to-fract’:
x € normalized-fracts = quot-of-fract (quot-to-fract ) = x

unfolding quot-to-fract-def by transfer (auto simp: normalize-quot-id)

lemma quot-of-fract-in-normalized-fracts [simp]: quot-of-fract x € normalized-fracts
by transfer simp
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lemma normalize-quotl:
assumes ¢ * d = b x ¢ b # 0 (¢, d) € normalized-fracts
shows normalize-quot (a, b) = (¢, d)
proof —
from assms have normalize-quot (a, b) = normalize-quot (¢, d)
by (subst normalize-quot-eq-iff) auto

also have ... = (¢, d) by (intro normalize-quot-id) fact
finally show ?thesis .
qged

lemma td-normalized-fract:
type-definition quot-of-fract quot-to-fract normalized-fracts
by standard (simp-all add: quot-of-fract-quot-to-fract’)

lemma quot-of-fract-add-auz:
assumes snd x # 0 sndy # 0
shows  (fst z x snd y + fst y * snd z) * (snd (normalize-quot x) * snd
(normalize-quot y)) =
snd z * snd y * (fst (normalize-quot ) * snd (normalize-quot y) +
snd (normalize-quot ©) * fst (normalize-quot y))
proof —
from normalize-quotE'[OF assms(1)] obtain d
where d:
fst x = fst (normalize-quot ) * d
snd z = snd (normalize-quot x) * d
d dvd fst x
d dvd snd z
d#0.
from normalize-quotE'|OF assms(2)] obtain e
where e:
fst y = fst (normalize-quot y) * e
snd y = snd (normalize-quot y) x e
e dvd fst y
e dvd snd y
e# 0.
show ?thesis by (simp-all add: d e algebra-simps)
qged

locale fract-as-normalized-quot
begin

setup-lifting td-normalized-fract
end

lemma quot-of-fract-add:
quot-of-fract (x + y) =
(let (a,b) = quot-of-fract x; (¢,d) = quot-of-fract y
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in normalize-quot (a x d + b x ¢, b x d))
by transfer (insert quot-of-fract-add-aux,
stmp-all add: Let-def case-prod-unfold normalize-quot-eq-iff)

lemma quot-of-fract-uminus:

quot-of-fract (—x) = (let (a,b) = quot-of-fract z in (—a, b))

by transfer (auto simp: case-prod-unfold Let-def normalize-quot-def dvd-neg-div
mult-unit-dvd-iff)

lemma quot-of-fract-diff:
quot-of-fract (x — y) =
(let (a,b) = quot-of-fract x; (¢,d) = quot-of-fract y

in normalize-quot (a x d — b * ¢, b x d)) (is - = ?rhs)
proof —
have z — y = ¢z + —y by simp
also have quot-of-fract ... = ?rhs

by (simp only: quot-of-fract-add quot-of-fract-uminus Let-def case-prod-unfold)
simp-all
finally show ?thesis .
qed

lemma normalize-quot-mult-coprime:
assumes coprime a b coprime ¢ d unit-factor b = 1 unit-factor d = 1
defines e = fst (normalize-quot (a, d)) and f = snd (normalize-quot (a, d))
and ¢ = fst (normalize-quot (¢, b)) and h = snd (normalize-quot (c, b))
shows normalize-quot (a * ¢, b x d) = (e x g, f * h)
proof (rule normalize-quotl)
from assms have gecd a b= 1gcd cd =1
by simp-all
from assms have b # 0 d # 0 by auto
with assms have normalize b = b normalize d = d
by (auto intro: normalize-unit-factor-eql )
from normalize-quotE [OF <b # 05, of c] obtain k
where
¢ = fst (normalize-quot (c, b)) * k
b = snd (normalize-quot (¢, b)) * k
kdvdckdvdbk # 0.
note k = this [folded «gcd a b = 1> <ged ¢ d = 1> assms(3) assms(4)]
from normalize-quotE [OF <d # 0>, of a] obtain [
where a = fst (normalize-quot (a, d)) * [
d = snd (normalize-quot (a, d)) * 1
ldvdaldvddl # 0.
note [ = this [folded <gcd a b = 1> <ged ¢ d = 1> assms(3) assms(4)]
from k[ show a * c* (f * h) = b *x d *x (e * g)
by (metis e-def f-def g-def h-def mult.commute mult.left-commute)
from assms have [simp]: unit-factor f = 1 unit-factor h = 1
by simp-all
from assms have coprime e f coprime g h by (simp-all add: coprime-normalize-quot)
with k [ assms(1,2) <b # 0> «d # 0) <unit-factor b = 1) <unit-factor d = 1»
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<normalize b = by <normalize d = d»
show (e * g, f * h) € normalized-fracts
by (simp add: normalized-fracts-def unit-factor-mult e-def f-def g-def h-def
coprime-normalize-quot dvd-unit-factor-div unit-factor-ged)
(metis coprime-mult-left-iff coprime-mult-right-iff)
qed (insert assms(8,4), auto)

lemma normalize-quot-mult:
assumes snd x # 0 snd y # 0
shows normalize-quot (fst x * fst y, snd x x snd y) = normalize-quot
(fst (normalize-quot x) * fst (normalize-quot y),
snd (normalize-quot =) * snd (normalize-quot y))
proof —
from normalize-quotE'|OF assms(1)] obtain d where d:
fst x = fst (normalize-quot ) * d
snd z = snd (normalize-quot x) * d
d dvd fst x
d dvd snd z
d#0.
from normalize-quotE'|OF assms(2)] obtain e where e:
fst y = fst (normalize-quot y) * e
snd y = snd (normalize-quot y) * e
e dvd fst y
e dvd snd y
e# 0.
show ?thesis by (simp-all add: d e algebra-simps normalize-quot-eq-iff)
qged

lemma quot-of-fract-mult:
quot-of-fract (z * y) =
(let (a,b) = quot-of-fract z; (¢,d) = quot-of-fract y;
(e,f) = normalize-quot (a,d); (g,h) = normalize-quot (c,b)
in (exg, fxh))
by transfer
(simp add: split-def Let-def coprime-normalize-quot normalize-quot-mult nor-
malize-quot-mult-coprime)

lemma normalize-quot-0 [simp]:
normalize-quot (0, ) = (0, 1) normalize-quot (z, 0) = (0, 1)
by (simp-all add: normalize-quot-def)

lemma normalize-quot-eq-0-iff [simpl: fst (normalize-quot ) = 0 +— fst x = 0
Vsndz =0
by (auto simp: normalize-quot-def case-prod-unfold Let-def div-mult-unit2 dvd-div-eq-0-iff)

lemma fst-quot-of-fract-0-imp: fst (quot-of-fract ©) = 0 = snd (quot-of-fract z)

=1
by transfer auto
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lemma normalize-quot-swap:
assumes a # 0 b # 0
defines o’ = fst (normalize-quot (a, b)) and b’ = snd (normalize-quot (a, b))
shows normalize-quot (b, a) = (b’ div unit-factor a’, a’ div unit-factor a’)
proof (rule normalize-quotl)
from normalize-quotE[OF assms(2), of a] obtain d where
a = fst (normalize-quot (a, b)) * d
b = snd (normalize-quot (a, b)) * d
ddvdaddvdbd+# 0.
note d = this [folded assms(3,4)]
show b x (a’ div unit-factor a’) = a * (b' div unit-factor a’)
using assms(1,2) d
by (simp add: div-unit-factor [symmetric] unit-div-mult-swap mult-ac del:
div-unit-factor)
have coprime o’ b’ by (simp add: a’-def b’-def coprime-normalize-quot)
thus (b’ div unit-factor a’, a’ div unit-factor a’) € normalized-fracts
using assms(1,2) d
by (auto simp add: normalized-fracts-def ac-simps dvd-div-unit-iff elim: co-
prime-imp-coprime)
ged fact+

lemma quot-of-fract-inverse:
quot-of-fract (inverse x) =
(let (a,b) = quot-of-fract x; d = unit-factor a
in if d = 0 then (0, 1) else (b div d, a div d))
proof (transfer, goal-cases)
case (I x)
from normalize-quot-swaplof fst x snd x] show Zcase
by (auto simp: Let-def case-prod-unfold)
qed

lemma normalize-quot-div-unit-left:
fixes z y u
assumes is-unit u
defines z’ = fst (normalize-quot (z, y)) and y’ = snd (normalize-quot (z, y))
shows normalize-quot (x div u, y) = (z' div u, y’)
proof (cases y = 0)
case Fulse
define v where v = 1 div u
with <is-unit v have is-unit v and u: Aa. a divu = a * v
by simp-all
from <is-unit v» have coprime v = top
by (simp add: fun-eq-iff is-unit-left-imp-coprime)
from normalize-quotE[OF False, of z] obtain d where
z = fst (normalize-quot (z, y)) * d
y = snd (normalize-quot (z, y)) * d
ddvdxzddvdyd#0.
note d = this[folded assms(2,3)]
from assms have coprime x’ y' unit-factor y' = 1
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by (simp-all add: coprime-normalize-quot)
with d <coprime v = top> have normalize-quot (z * v, y) = (z' * v, y’)
by (auto simp: normalized-fracts-def intro: normalize-quotl)
then show ?thesis
by (simp add: u)
qed (simp-all add: assms)

lemma normalize-quot-div-unit-right:
fixes z y u
assumes is-unit u
defines z' = fst (normalize-quot (z, y)) and y’' = snd (normalize-quot (z, y))
shows normalize-quot (z, y div u) = (z' * u, y')
proof (cases y = 0)
case Fulse
from normalize-quotE[OF this, of z]
obtain d where d:
z = fst (normalize-quot (z, y)) * d
y = snd (normalize-quot (z, y)) * d
ddvdxddvdyd+# 0.
note d = this[folded assms(2,3)]
from assms have coprime x’ y' unit-factor y' = 1 by (simp-all add: coprime-normalize-quot)
with d <is-unit u» show ?thesis
by (auto simp add: normalized-fracts-def is-unit-left-imp-coprime unit-div-eq-0-iff
intro: normalize-quotl)
qed (simp-all add: assms)

lemma normalize-quot-normalize-left:
fixes z y u
defines z’ = fst (normalize-quot (z, y)) and y’ = snd (normalize-quot (z, y))
shows normalize-quot (normalize x, y) = (x’ div unit-factor z, y’)
using normalize-quot-div-unit-left|of unit-factor x x y]
by (cases x = 0) (simp-all add: assms)

lemma normalize-quot-normalize-right:
fixes x y u
defines =’ = fst (normalize-quot (z, y)) and y’ = snd (normalize-quot (z, y))
shows normalize-quot (z, normalize y) = (x’ * unit-factor y, y')
using normalize-quot-div-unit-right[of unit-factor y z y]
by (cases y = 0) (simp-all add: assms)

lemma quot-of-fract-0 [simp): quot-of-fract 0 = (0, 1)
by transfer auto

lemma quot-of-fract-1 [simp]: quot-of-fract 1 = (1, 1)
by transfer (rule normalize-quotl, simp-all add: normalized-fracts-def)

lemma quot-of-fract-divide:

quot-of-fract (z / y) = (if y = 0 then (0, 1) else
(let (a,b) = quot-of-fract x; (¢,d) = quot-of-fract y;
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(e,f) = normalize-quot (a,c); (g,h) = normalize-quot (d,b)
in (ex g, f«h)) (is - = %rhs)
proof (cases y = 0)
case Fulse
hence A: fst (quot-of-fract y) # 0 by transfer auto
have z / y = z * inverse y by (simp add: divide-inverse)
also from Fualse A have quot-of-fract ... = ?rhs
by (simp only: quot-of-fract-mult quot-of-fract-inverse)
(simp-all add: Let-def case-prod-unfold fst-quot-of-fract-0-imp
normalize-quot-div-unit-left normalize-quot-div-unit-right
normalize-quot-normalize-right normalize-quot-normalize-left)
finally show ?thesis .
qed simp-all

lemma snd-quot-of-fract-nonzero [simpl: snd (quot-of-fract x) # 0
by transfer simp

lemma Fract-quot-of-fract [simp|: Fract (fst (quot-of-fract )) (snd (quot-of-fract
z)) ==z
by transfer (simp del: fractrel-iff, subst fractrel-normalize-quot-left, simp)

lemma snd-quot-of-fract-Fract-whole:
assumes y dvd x
shows snd (quot-of-fract (Fract © y)) = 1
using assms by transfer (auto simp: normalize-quot-def Let-def ged-proj2-if-dvd)

lemma fst-quot-of-fract-eq-0-iff [simp]: fst (quot-of-fract x) = 0 +— = = 0
by transfer simp

lemma coprime-quot-of-fract:
coprime (fst (quot-of-fract x)) (snd (quot-of-fract x))
by transfer (simp add: coprime-normalize-quot)

lemma unit-factor-snd-quot-of-fract: unit-factor (snd (quot-of-fract z)) = 1

using quot-of-fract-in-normalized-fracts|of x]

by (simp add: normalized-fracts-def case-prod-unfold)
lemma normalize-snd-quot-of-fract: normalize (snd (quot-of-fract x)) = snd (quot-of-fract
)

by (intro unit-factor-1-imp-normalized unit-factor-snd-quot-of-fract)

end

10 n-th powers and roots of naturals
theory Nth-Powers

imports Primes
begin
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10.1 The set of n-th powers

definition is-nth-power :: nat = ’a :: monoid-mult = bool where
is-nth-power n z +— (Jy. . = y " n)

lemma is-nth-power-nth-power [simp, intro|: is-nth-power n (z ~ n)
by (auto simp add: is-nth-power-def)

lemma is-nth-powerl [intro?: x = y ~n = is-nth-power n
by (auto simp: is-nth-power-def)

lemma is-nth-powerE: is-nth-power n t = (\y. x =y ~n=— P) = P
by (auto simp: is-nth-power-def)

abbreviation is-square where is-square = is-nth-power 2

lemma is-zeroth-power [simp|: is-nth-power 0 © +— x = 1
by (simp add: is-nth-power-def)

lemma is-first-power [simp]: is-nth-power 1
by (simp add: is-nth-power-def)

lemma is-first-power’ [simp]: is-nth-power (Suc 0) x
by (simp add: is-nth-power-def)

lemma is-nth-power-0 [simp]: n > 0 = is-nth-power n (0 :: 'a :: semiring-1)
by (auto simp: is-nth-power-def power-0-left intro: exI[of - 0])

lemma is-nth-power-0-iff [simp]: is-nth-power n (0 :: 'a :: semiring-1) +— n > 0
by (cases n) auto

lemma is-nth-power-1 [simp]: is-nth-power n 1
by (auto simp: is-nth-power-def introl: exl[of - 1])

lemma is-nth-power-Suc-0 [simp): is-nth-power n (Suc 0)
by (metis One-nat-def is-nth-power-1)

lemma is-nth-power-conv-multiplicity:
fixes z :: ‘a :: {factorial-semiring, normalization-semidom-multiplicative}
assumes n > 0
shows is-nth-power n (normalize x) «— (V p. prime p — n dvd multiplicity
p )
proof (cases z = 0)
case Fulse
show ?thesis
proof (safe introl: is-nth-powerl elim!: is-nth-powerE)
fix y p :: 'a assume *: normalize T = y ~ n prime p
with assms and False have [simp]: y # 0 by (auto simp: power-0-left)
have multiplicity p x = multiplicity p (y ~ n)
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by (metis x(1) multiplicity-normalize-right)
with False and * and assms show n dvd multiplicity p x
by (auto simp: prime-elem-multiplicity-power-distrib)
next
assume *: Vp. prime p — n dvd multiplicity p =
have multiplicity p (][ p€prime-factors x. p ~ (multiplicity p x div n)) ~n) =
multiplicity p x if prime p for p
proof —
from that and * have n dvd multiplicity p by blast
have multiplicity p x = 0 if p ¢ prime-factors
using that and «prime p> by (simp add: prime-factors-multiplicity)
with that and * and assms show ?thesis unfolding prod-power-distrib
power-mult [symmetric]
by (subst multiplicity-prod-prime-powers) (auto simp: in-prime-factors-imp-prime)
qed
with assms False
have normalize © = normalize (([] p€prime-factors z. p ~ (multiplicity p x
div n)) " n)
by (intro multiplicity-eq-imp-eq) (auto simp: multiplicity-prod-prime-powers)
thus normalize © = normalize ([] p€prime-factors . p ~ (multiplicity p x div
n)) " n
by (simp add: normalize-power)
qed
qed (insert assms, auto)

lemma is-nth-power-conv-multiplicity-nat:
assumes n > 0
shows is-nth-power n (z :: nat) +— (Vp. prime p — n dvd multiplicity p x)
using is-nth-power-conv-multiplicity] OF assms, of z] by simp

lemma is-nth-power-mult:
assumes is-nth-power n a is-nth-power n b
shows is-nth-power n (a x b :: 'a :: comm-monoid-mult)
by (metis assms is-nth-power-def power-mult-distrib)

lemma is-nth-power-mult-coprime-natD:
fixes a b :: nat
assumes coprime a b is-nth-power n (a * b) a > 0b > 0
shows is-nth-power n a is-nth-power n b
proof —
have A: is-nth-power n a if coprime a b is-nth-power n (a * b) a = 0b # 0n >
0
for a b :: nat unfolding is-nth-power-conv-multiplicity-nat|OF «n > 0]
proof safe
fix p :: nat assume p: prime p
from <coprime a b> have —=(p dvd a A\ p dvd b)
using coprime-common-divisor-nat[of a b p] p by auto
moreover from that and p
have n dvd multiplicity p a + multiplicity p b
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by (auto simp: is-nth-power-conv-multiplicity-nat prime-elem-multiplicity-mult-distrib)
ultimately show n dvd multiplicity p a
by (auto simp: not-dvd-imp-multiplicity-0)

qed

from A [of a b] assms show is-nth-power n a
by (cases n = 0) simp-all

from A [of b a] assms show is-nth-power n b
by (cases n = 0) (simp-all add: ac-simps)

qed

lemma is-nth-power-mult-coprime-nat-iff:

fixes a b :: nat

assumes coprime a b

shows is-nth-power n (a * b) «— is-nth-power n a Ais-nth-power n b

using assms

by (cases a = 0; cases b = 0)

(auto intro: is-nth-power-mult dest: is-nth-power-mult-coprime-natD[of a b n]

simp del: One-nat-def)

lemma is-nth-power-prime-power-nat-iff :
fixes p :: nat assumes prime p
shows is-nth-power n (p ~ k) <— n dvd k
using assms
by (cases n > 0)
(auto simp: is-nth-power-conv-multiplicity-nat prime-elem-multiplicity-power-distrib)

lemma is-nth-power-nth-power”:
assumes n dvd n’
shows is-nth-power n (m ~n’)
by (metis assms dvd-div-mult-self is-nth-power-def power-mult)

definition is-nth-power-nat :: nat = nat = bool
where [code-abbrev]: is-nth-power-nat = is-nth-power

lemma is-nth-power-nat-code [codel:
is-nth-power-nat n m =
(if n = 0 then m = 1
else if m = 0 then n > 0
else if n = 1 then True
else (Jke{l..m}. k " n =m))
by (auto simp: is-nth-power-nat-def is-nth-power-def power-eq-iff-eq-base self-le-power)

lemma is-nth-power-mult-cancel-left:

fixes a b :: 'a :: semiring-ged

assumes is-nth-power n a a # 0

shows is-nth-power n (a * b) «— is-nth-power n b
proof (cases n > 0)

case True

show ?thesis
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proof
assume is-nth-power n (a * b)
then obtain z where z: a x b=z " n
by (elim is-nth-powerE)
obtain y where y: a =y " n
using assms by (elim is-nth-powerE)
have y “ndvdx " n
by (simp flip: = y)
hence y dvd z
using «n > 0> by simp
then obtain z where z: v = y * 2
by (elim dvdFE)
with <a # 0» show is-nth-power n b
by (metis is-nth-powerl mult-left-cancel power-mult-distrib = y)
qged (use assms in <auto intro: is-nth-power-mult))
qged (use assms in auto)

lemma is-nth-power-mult-cancel-right:
fixes a b :: 'a :: semiring-gcd
assumes is-nth-power n b b # 0
shows is-nth-power n (a * b) «— is-nth-power n a
by (metis assms is-nth-power-mult-cancel-left mult.commute)

10.2 The n-root of a natural number

definition nth-root-nat :: nat = nat = nat where
nth-root-nat k n = (if k = 0 then 0 else Maz {m. m ~k < n})

lemma zeroth-root-nat [simp|: nth-root-nat 0 n = 0
by (simp add: nth-root-nat-def)

lemma nth-root-nat-auzi:
assumes k£ > 0
shows {m:nat. m "~k < n} C {.n}
proof safe
fix massume m "k < n
show m < n
proof (cases m = 0)
case Fulse
with assms have m ~ 1 < m "k by (intro power-increasing) simp-all
also note <m "k < m
finally show ?thesis by simp
qed simp-all
qed

lemma nth-root-nat-auz2:

assumes k > 0

shows finite {m:nat. m ~k < n} {munat. m "k < n} # {}
proof —
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from assms have {m. m ~k < n} C {..n} by (rule nth-root-nat-auz1)
moreover have finite {..n} by simp
ultimately show finite {m::nat. m ~k < n} by (rule finite-subset)
next
from assms show {m::nat. m ~k < n} # {} by (auto introl: exI[of - 0] simp:
power-0-left)
qed

lemma
assumes k > 0
shows nth-root-nat-power-le: nth-root-natkn "~k < n
and nth-root-nat-ge: £ ~ k < n = z < nth-root-nat k n
using Maz-in[OF nth-root-nat-auz2[OF assms], of n]
Maz-ge[ OF nth-root-nat-auz2(1)[OF assms|, of x n] assms
by (auto simp: nth-root-nat-def)

lemma nth-root-nat-less:
assumes k> 0x "k >n
shows nth-root-nat kn < z
by (meson assms nth-root-nat-power-le order.strict-trans1 power-less-imp-less-base
zero-le)

lemma nth-root-nat-unique:
assumes m k<n(m+ 1) " k>n
shows nth-root-nat kn = m
proof (cases k > 0)
case True
from nth-root-nat-less|OF <k > 0» assms(2)]
have nth-root-nat k n < m by simp
moreover from <k > 0) and assms(!) have nth-root-nat k n > m
by (intro nth-root-nat-ge)
ultimately show ?thesis by (rule antisym)
qed (insert assms, auto)

lemma nth-root-nat-0 [simp): nth-root-nat k 0 = 0
by (simp add: nth-root-nat-def)

lemma nth-root-nat-1 [simp|: k > 0 = nth-root-nat k 1 = 1
by (rule nth-root-nat-unique) (auto simp del: One-nat-def)

lemma nth-root-nat-Suc-0 [simp]: k > 0 = nth-root-nat k (Suc 0) = Suc 0
using One-nat-def is-nth-power-nat-def nth-root-nat-1

by presburger

lemma first-root-nat [simpl: nth-root-nat 1 n = n
by (intro nth-root-nat-unique) auto

lemma first-root-nat’ [simp]: nth-root-nat (Suc 0) n = n
by (intro nth-root-nat-unique) auto
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lemma nth-root-nat-code-naive”:
nth-root-nat k n = (if k = 0 then 0 else Maz (Set.filter (Am. m ~k < n) {..n}))
proof (cases k > 0)
case True
then have {m. m "k < n}
then have Set.filter (Am. m
by (auto simp:)
with True show ?thesis
by (simp add: nth-root-nat-def)
qed simp

C {..n} by (rule nth-root-nat-auzl)
“k<n){.n}={m m " k<n}

function nth-root-nat-auzr :: nat = nat = nat = nat = nat where
nth-root-nat-aur m k acc n =
(let acc’ = (k+ 1) ~m
in if k> nV acc’ > n then k else nth-root-nat-aux m (k+1) acc’ n)
by auto
termination by (relation measure (A(-,k,-,n). n — k), goal-cases) auto

lemma nth-root-nat-auz-le:
assumes k " m < nm >0
shows nth-root-nat-aux m k (k "m) n " m <n
using assms
by (induction m k' k ~ m n rule: nth-root-nat-aux.induct) (auto simp: Let-def)

lemma nth-root-nat-auz-gt:
assumes m > 0
shows (nth-root-nat-auz m k (k “m) n+ 1) “m>n
using assms

proof (induction m k k ~ m n rule: nth-root-nat-aux.induct)
case (1 mkn)
have n < Suck "mifn <k

proof —
note that
also have k < Suc k ~ 1 by simp
also from (m > 0> have ... < Suck "~ m

by (intro power-increasing) simp-all
finally show ?%thesis .
qed
with 7 show Zcase by (auto simp: Let-def)
qed

lemma nth-root-nat-auz-correct:
assumes k " m < nm >0
shows nth-root-nat-auz m k (k ~ m) n = nth-root-nat m n
by (metis assms nth-root-nat-auz-gt nth-root-nat-auz-le nth-root-nat-unique)

lemma nth-root-nat-naive-code [code]:
nth-root-nat mn = (if m = 0 V n = 0 then O else if m = 1 V n = 1 then n else
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nth-root-nat-aux m 1 1 n)
using nth-root-nat-auz-correct[of 1 m n] by auto

lemma nth-root-nat-nth-power [simp]: k > 0 = nth-root-nat k (n " k) = n
by (intro nth-root-nat-unique order.refl power-strict-mono) simp-all

lemma nth-root-nat-nth-power’:
assumes k > 0 k dvd m
shows nth-root-nat k (n "~ m) = n = (m div k)
by (metis assms dvd-div-mult-self nth-root-nat-nth-power power-mult)

lemma nth-root-nat-mono:
assumes m < n
shows nth-root-nat k m < nth-root-nat k n
proof (cases k = 0)
case Fulse
with assms show ?thesis unfolding nth-root-nat-def
using nth-root-nat-auz2|of k m] nth-root-nat-auz2[of k n]
by (auto intro!: Max-mono)
qed auto

end

11 Polynomials, fractions and rings

theory Polynomial-Factorial
imports
Complex-Main
Polynomial
Normalized-Fraction
begin

11.1 Lifting elements into the field of fractions

definition to-fract :: 'a :: idom = 'a fract
where to-fract x = Fract z 1
— FIXME: more idiomatic name, abbreviation

lemma to-fract-0 [simp]: to-fract 0 = 0
by (simp add: to-fract-def eq-fract Zero-fract-def)

lemma to-fract-1 [simp]: to-fract 1 = 1
by (simp add: to-fract-def eq-fract One-fract-def)

lemma to-fract-add [simp]: to-fract (z + y) = to-fract © + to-fract y
by (simp add: to-fract-def)

lemma to-fract-diff [simpl: to-fract (x — y) = to-fract © — to-fract y
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by (simp add: to-fract-def)

lemma to-fract-uminus [simpl: to-fract (—z) = —to-fract
by (simp add: to-fract-def)

lemma to-fract-mult [simp]: to-fract (z * y) = to-fract x x to-fract y
by (simp add: to-fract-def)

lemma to-fract-eq-iff [simp): to-fract © = to-fract y +— = =y
by (simp add: to-fract-def eq-fract)

lemma to-fract-eq-0-iff [simp]: to-fract z = 0 +— =z = 0
by (simp add: to-fract-def Zero-fract-def eg-fract)

lemma to-fract-quot-of-fract:
assumes snd (quot-of-fract ) = 1
shows to-fract (fst (quot-of-fract z)) = x
proof —
have z = Fract (fst (quot-of-fract x)) (snd (quot-of-fract x)) by simp
also note assms
finally show ?thesis by (simp add: to-fract-def)
qged

lemma Fract-conv-to-fract: Fract a b = to-fract a | to-fract b
by (simp add: to-fract-def)

lemma quot-of-fract-to-fract [simp|: quot-of-fract (to-fract z) = (z, 1)
unfolding to-fract-def by transfer (simp add: normalize-quot-def)

lemma snd-quot-of-fract-to-fract [simp]: snd (quot-of-fract (to-fract z)) = 1
unfolding to-fract-def by (rule snd-quot-of-fract-Fract-whole) simp-all

11.2 Lifting polynomial coefficients to the field of fractions

abbreviation (input) fract-poly :: <’a::idom poly = 'a fract poly»

where fract-poly = map-poly to-fract

abbreviation (input) unfract-poly :: <'a::{ring-gcd,semiring-gcd-mult-normalize,idom-divide}
fract poly = 'a poly
where unfract-poly = map-poly (fst o quot-of-fract)

lemma fract-poly-smult [simp)]: fract-poly (smult ¢ p) = smult (to-fract ¢) (fract-poly
p)
by (simp add: smult-conv-map-poly map-poly-map-poly o-def)

lemma fract-poly-0 [simp]: fract-poly 0 = 0
by (simp add: poly-eql coeff-map-poly)

lemma fract-poly-1 [simp]: fract-poly 1 = 1
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by (simp add: map-poly-pCons)

lemma fract-poly-add [simpl:

fract-poly (p + q) = fract-poly p + fract-poly q
by (intro poly-eql) (simp-all add: coeff-map-poly)

lemma fract-poly-diff [simp]:

fract-poly (p — q) = fract-poly p — fract-poly q
by (intro poly-eql) (simp-all add: coeff-map-poly)

lemma to-fract-sum [simp]: to-fract (sum f A) = sum (Ax. to-fract (fz)) A
by (cases finite A, induction A rule: finite-induct) simp-all

lemma fract-poly-mult [simp]:
fract-poly (p * q) = fract-poly p * fract-poly q
by (intro poly-eql) (simp-all add: coeff-map-poly coeff-mult)

lemma fract-poly-eq-iff [simp]: fract-poly p = fract-poly ¢ +— p = ¢
by (auto simp: poly-eq-iff coeff-map-poly)

lemma fract-poly-eq-0-iff [simp): fract-poly p = 0 +— p =0
using fract-poly-eq-iff[of p 0] by (simp del: fract-poly-eq-iff)

lemma fract-poly-dvd: p dvd ¢ = fract-poly p dvd fract-poly q
by auto

lemma prod-mset-fract-poly:
(JTze#A. map-poly to-fract (f x)) = fract-poly (prod-mset (image-mset f A))
by (induct A) (simp-all add: ac-simps)

lemma is-unit-fract-poly-iff:
p dvd 1 <— fract-poly p dvd 1 N content p = 1
proof safe
assume A: p dvd 1
with fract-poly-dvd [of p 1] show is-unit (fract-poly p)
by simp
from A show content p = 1
by (auto simp: is-unit-poly-iff normalize-1-iff)
next
assume A: fract-poly p dvd 1 and B: content p = 1
from A obtain ¢ where c: fract-poly p = [:¢:] by (auto simp: is-unit-poly-iff)
{
fix n :: nat assume n > 0
have to-fract (coeff p n) = coeff (fract-poly p) n by (simp add: coeff-map-poly)
also note ¢
also from «n > 0> have coeff [:c:] n = 0 by (simp add: coeff-pCons split:
nat.splits)
finally have coeff p n = 0 by simp

}
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hence degree p < 0 by (intro degree-le) simp-all

with B show p dvd 1 by (auto simp: is-unit-poly-iff normalize-1-iff elim!: de-
gree-eq-zeroE)
qed

lemma fract-poly-is-unit: p dvd 1 = fract-poly p dvd 1
using fract-poly-dvd[of p 1] by simp

lemma fract-poly-smult-eqF:
fixes ¢ :: 'a :: {idom-divide,ring-gcd,semiring-gcd-mult-normalize} fract
assumes fract-poly p = smult ¢ (fract-poly q)
obtains a b
where ¢ = to-fract b / to-fract a smult a p = smult b q coprime a b normalize
a=a
proof —
define a b where a = fst (quot-of-fract ¢) and b = snd (quot-of-fract c)
have smult (to-fract a) (fract-poly q) = smult (to-fract b) (fract-poly p)
by (subst smult-eg-iff ) (simp-all add: a-def b-def Fract-conv-to-fract [symmetric]
assms)
hence fract-poly (smult a q) = fract-poly (smult b p) by (simp del: fract-poly-eq-iff)
hence smult b p = smult a q by (simp only: fract-poly-eq-iff)
moreover have ¢ = to-fract a / to-fract b coprime b a normalize b = b
by (simp-all add: a-def b-def coprime-quot-of-fract [of c] ac-simps
normalize-snd-quot-of-fract Fract-conv-to-fract [symmetric])
ultimately show ?thesis by (intro that[of a b])
qged

11.3 Fractional content

abbreviation (input) Lem-coeff-denoms
o {semiring-Ged,idom-divide,ring-ged, semiring-ged-mult-normalize} fract
poly = 'a
where Lem-coeff-denoms p = Lem (snd ¢ quot-of-fract © set (coeffs p))

definition fract-content :
‘a :: { factorial-semiring,semiring- Ged,ring-gcd,idom-divide, semiring-gcd-mult-normalize }
fract poly = 'a fract where
fract-content p =
(let d = Lem-coeff-denoms p in Fract (content (unfract-poly (smult (to-fract

d) p))) d)

definition primitive-part-fract ::
‘a :: { factorial-semiring,semiring- Ged,ring-gced idom-divide,semiring-gcd-mult-normalize}
fract poly = 'a poly where
primitive-part-fract p =
primitive-part (unfract-poly (smult (to-fract (Lem-coeff-denoms p)) p))

lemma primitive-part-fract-0 [simp|: primitive-part-fract 0 = 0
by (simp add: primitive-part-fract-def)
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lemma fract-content-eq-0-iff [simp]:
fract-content p = 0 <— p =0
unfolding fract-content-def Let-def Zero-fract-def
by (subst eg-fract) (auto simp: Lem-0-iff map-poly-eq-0-iff)

lemma content-primitive-part-fract [simp):
fixes p :: ‘a :: {semiring-ged-mult-normalize,
factorial-semiring, ring-ged, semiring-Ged,idom-divide} fract poly
shows p # 0 = content (primitive-part-fract p) = 1
unfolding primitive-part-fract-def
by (rule content-primitive-part)
(auto simp: primitive-part-fract-def map-poly-eq-0-iff Lem-0-iff)

lemma content-times-primitive-part-fract:
smult (fract-content p) (fract-poly (primitive-part-fract p)) = p
proof —
define p’ where p’ = unfract-poly (smult (to-fract (Lem-coeff-denoms p)) p)
have fract-poly p’ =
map-poly (to-fract o fst o quot-of-fract) (smult (to-fract (Lem-coeff-denoms
p)) p)
unfolding primitive-part-fract-def p’-def
by (subst map-poly-map-poly) (simp-all add: o-assoc)
also have ... = smult (to-fract (Lem-coeff-denoms p)) p
proof (intro map-poly-idl, unfold o-apply)
fix ¢ assume ¢ € set (coeffs (smult (to-fract (Lem-coeff-denoms p)) p))
then obtain ¢’ where c: ¢’ € set (coeffs p) ¢ = to-fract (Lem-coeff-denoms p)
* ¢’
by (auto simp add: Lem-0-iff coeffs-smult split: if-splits)
note ¢(2)
also have ¢’ = Fract (fst (quot-of-fract ¢’)) (snd (quot-of-fract ¢’))
by simp
also have to-fract (Lecm-coeff-denoms p) * ... =
Fract (Lem-coeff-denoms p x fst (quot-of-fract ¢')) (snd (quot-of-fract
)
unfolding to-fract-def by (subst mult-fract) simp-all
also have snd (quot-of-fract ...) = 1
by (intro snd-quot-of-fract-Fract-whole dvd-mult2 dvd-Lem) (insert ¢(1), auto)
finally show to-fract (fst (quot-of-fract ¢)) = ¢
by (rule to-fract-quot-of-fract)
qed
also have p’ = smult (content p’) (primitive-part p’)
by (rule content-times-primitive-part [symmetric])
also have primitive-part p’ = primitive-part-fract p
by (simp add: primitive-part-fract-def p’-def)
also have fract-poly (smult (content p') (primitive-part-fract p)) =
smult (to-fract (content p’)) (fract-poly (primitive-part-fract p)) by
stmp
finally have smult (to-fract (content p')) (fract-poly (primitive-part-fract p)) =
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smult (to-fract (Lem-coeff-denoms p)) p .
thus ?thesis
by (subst (asm) smult-eg-iff)
(auto simp add: Let-def p'-def Fract-conv-to-fract field-simps Lem-0-iff
fract-content-def)
qed

lemma fract-content-fract-poly [simpl: fract-content (fract-poly p) = to-fract (content
p)
proof —
have Lcm-coeff-denoms (fract-poly p) = 1
by (auto simp: set-coeffs-map-poly)
hence fract-content (fract-poly p) =
to-fract (content (map-poly (fst o quot-of-fract o to-fract) p))
by (simp add: fract-content-def to-fract-def fract-collapse map-poly-map-poly
del: Lem-1-iff)
also have map-poly (fst o quot-of-fract o to-fract) p = p
by (intro map-poly-idI) simp-all
finally show ?thesis .
qed

lemma content-decompose-fract:

fixes p :: 'a :: {factorial-semiring,semiring-Ged,ring-gcd,idom-divide,

semiring-ged-mult-normalize} fract poly

obtains ¢ p’ where p = smult ¢ (map-poly to-fract p’) content p’ = 1
proof (cases p = 0)

case True

hence p = smult 0 (map-poly to-fract 1) content 1 = 1 by simp-all

thus ?thesis ..
next

case Fulse

thus ?thesis

by (rule that[OF content-times-primitive-part-fract [symmetric] content-primitive-part-fract])
qed

lemma fract-poly-dvdD:

fixes p :: ‘a :: {factorial-semiring,semiring-Ged,ring-ged,idom-divide,

semiring-ged-mult-normalize} poly

assumes fract-poly p dvd fract-poly q content p = 1

shows p dvd q
proof —

from assms(1) obtain r where r: fract-poly ¢ = fract-poly p * r by (erule
dvdE)

from content-decompose-fract|of r]

obtain ¢ r’ where r’: r = smult ¢ (map-poly to-fract r’) content r’' = 1 .

from r r’ have eq: fract-poly ¢ = smult ¢ (fract-poly (p * r')) by simp

from fract-poly-smult-eqFE[OF this] obtain a b

where ab:
¢ = to-fract b / to-fract a
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smult a ¢ = smult b (p * 1)
coprime a b
normalize a = a .
have content (smult a q) = content (smult b (p * r')) by (simp only: ab(2))
hence eq”: normalize b = a * content ¢ by (simp add: assms content-mult r'
ab(4))
have I = ged a (normalize b) by (simp add: ab)
also note eq’
also have ged a (a * content q) = a by (simp add: ged-projl-if-dvd ab(4))
finally have [simp]: a = 1 by simp
from eq ab have ¢ = p x ([:b:] * /) by simp
thus ?thesis by (rule dvdl)
qed

11.4 Polynomials over a field are a Euclidean ring

context
begin

interpretation field-poly:
normalization-euclidean-semiring-multiplicative where zero = 0 :: 'a :: field poly
and one = 1 and plus = plus and minus = minus
and times = times
and normalize = A\p. smult (inverse (lead-coeff p)) p
and unit-factor = Ap. [:lead-coeff p:]
and euclidean-size = Ap. if p = 0 then 0 else 2 ~ degree p
and divide = divide and modulo = modulo
rewrites dvd.dvd (times :: 'a poly = -) = Rings.dvd
and comm-monoid-mult.prod-mset times 1 = prod-mset
and comm-semiring-1.irreducible times 1 0 = irreducible
and comm-semiring-1.prime-elem times 1 0 = prime-elem
proof —
show dvd.dvd (times :: 'a poly = -) = Rings.dvd
by (simp add: dvd-dict)
show comm-monoid-mult.prod-mset times 1 = prod-mset
by (simp add: prod-mset-dict)
show comm-semiring-1.irreducible times 1 0 = irreducible
by (simp add: irreducible-dict)
show comm-semiring-1.prime-elem times 1 0 = prime-elem
by (simp add: prime-elem-dict)
show class.normalization-euclidean-semiring-multiplicative divide plus minus (0
it 'a poly) times 1
modulo (Ap. if p = 0 then 0 else 2 ~ degree p)
(Ap. [:lead-coeff p:]) (Ap. smult (inverse (lead-coeff p)) p)
proof (standard, fold dvd-dict)
fix p :: 'a poly
show [:lead-coeff p:] * smult (inverse (lead-coeff p)) p = p
by (cases p = 0) simp-all
next
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fix p :: ‘a poly assume is-unit p
then show [:lead-coeff p:] = p
by (elim is-unit-polyE) (auto simp: monom-0 one-poly-def field-simps)
next
fix p :: 'a poly assume p # 0
then show is-unit [:lead-coeff p:]
by (simp add: is-unit-pCons-iff)
next
fix a b :: 'a poly assume is-unit a
thus [:lead-coeff (a * b):] = a * [:lead-coeff b:]
by (auto elim!: is-unit-polyE)
qged (auto simp: lead-coeff-mult Rings.div-mult-mod-eq introl: degree-mod-less’
degree-mult-right-le)
qed

lemma field-poly-irreducible-imp-prime:
prime-elem p if irreducible p for p :: 'a :: field poly
using that by (fact field-poly.irreducible-imp-prime-elem)

lemma field-poly-prod-mset-prime-factorization:
prod-mset (field-poly.prime-factorization p) = smult (inverse (lead-coeff p)) p
if p # 0 for p :: 'a :: field poly
using that by (fact field-poly.prod-mset-prime-factorization)

lemma field-poly-in-prime-factorization-imp-prime:
prime-elem p if p €# field-poly.prime-factorization x
for p :: 'a :: field poly
by (rule field-poly.prime-imp-prime-elem, rule field-poly.in-prime-factors-imp-prime)
(fact that)

11.5 Primality and irreducibility in polynomial rings

lemma nonconst-poly-irreducible-iff:

fixes p :: ‘a :: {factorial-semiring,semiring-Ged,ring-gcd,idom-divide,semiring-gcd-mult-normalize}
poly

assumes degree p # 0

shows irreducible p «— irreducible (fract-poly p) A content p = 1
proof safe

assume p: irreducible p

from content-decomposelof p] obtain p’ where p” p = smult (content p) p’
content p’ = 1 .
hence p = [:content p:] * p’ by simp
from p this have [:content p:] dvd 1 V p’ dvd 1 by (rule irreducibleD)
moreover have —p’ dvd 1
proof
assume p’ dvd 1
hence degree p = 0 by (subst p’) (auto simp: is-unit-poly-iff)
with assms show Fualse by contradiction
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qed
ultimately show [simp]: content p = 1 by (simp add: is-unit-const-poly-iff)

show drreducible (map-poly to-fract p)
proof (rule irreduciblel)
have fract-poly p = 0 <— p = 0 by (intro map-poly-eq-0-iff) auto
with assms show map-poly to-fract p # 0 by auto
next
show —is-unit (fract-poly p)
proof
assume is-unit (map-poly to-fract p)
hence degree (map-poly to-fract p) = 0
by (auto simp: is-unit-poly-iff)
hence degree p = 0 by (simp add: degree-map-poly)
with assms show False by contradiction
qed
next
fix ¢ r assume gr: fract-poly p = q * r
from content-decompose-fract|of q]
obtain cg ¢’ where ¢: ¢ = smult cg (map-poly to-fract q’) content ¢/ = 1 .
from content-decompose-fract|of r]
obtain cr r’ where r: r = smult cr (map-poly to-fract r') content v’ = 1 .
from q¢r q r p have nz: ¢g # 0 cr # 0 by auto
from ¢r have eq: fract-poly p = smult (cr % ¢g) (fract-poly (q’ * r'))
by (simp add: ¢ r)
from fract-poly-smult-eqE[OF this] obtain a b
where ab: cr x c¢g = to-fract b / to-fract a
smult a p = smult b (¢' * ') coprime a b normalize a = a .
hence content (smult a p) = content (smult b (¢’ * r')) by (simp only:)
with ab(4) have a: a = normalize b by (simp add: content-mult q r)
then have normalize b = ged a b
by simp
with <coprime a b> have normalize b = 1
by simp
then have a = 1 is-unit b
by (simp-all add: a normalize-1-iff)

note eq
also from ab(1) <a = 1» have cr x cg = to-fract b by simp
also have smult ... (fract-poly (q' * r')) = fract-poly (smult b (¢’ * r')) by
stmp
finally have p = ([:b:] * ¢’) * v’/ by (simp del: fract-poly-smult)
from p and this have ([:b:] x ¢’) dvd 1 V 1’ dvd 1 by (rule irreducibleD)
hence ¢’ dvd 1 V r’ dvd 1 by (auto dest: dvd-mult-right simp del: mult-pCons-left)
hence fract-poly ¢’ dvd 1 V fract-poly v’ dvd 1 by (auto simp: fract-poly-is-unit)
with ¢ r show is-unit q V is-unit r
by (auto simp add: is-unit-smult-iff dvd-field-iff nz)
qged
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next

assume irred: irreducible (fract-poly p) and primitive: content p = 1
show irreducible p
proof (rule irreduciblel)
from irred show p # 0 by auto
next
from irred show —p dvd 1
by (auto simp: irreducible-def dest: fract-poly-is-unit)
next
fix g r assume qr: p = q *x r
hence fract-poly p = fract-poly q * fract-poly r by simp
from irred and this have fract-poly q dvd 1 V fract-poly r dvd 1
by (rule irreducibleD)
with primitive qr show ¢ dvd 1 V r dvd 1
by (auto simp: content-prod-eq-1-iff is-unit-fract-poly-iff)
qed
qed

lemma irreducible-imp-prime-poly:
fixes p :: ‘a :: {factorial-semiring,semiring-Ged,ring-gcd,idom-divide,semiring-gcd-mult-normalize}
poly
assumes irreducible p
shows prime-elem p
proof (cases degree p = 0)
case True
with assms show ?thesis
by (auto simp: prime-elem-const-poly-iff irreducible-const-poly-iff
introl: irreducible-imp-prime-elem elim!: degree-eq-zeroE)
next
case Fulse
from assms False have irred: irreducible (fract-poly p) and primitive: content p
=1
by (simp-all add: nonconst-poly-irreducible-iff)
from irred have prime: prime-elem (fract-poly p) by (rule field-poly-irreducible-imp-prime)
show ?thesis
proof (rule prime-eleml)
fix ¢ r assume p dvd q * r
hence fract-poly p dvd fract-poly (q * r) by (rule fract-poly-dvd)
hence fract-poly p dvd fract-poly q * fract-poly r by simp
from prime and this have fract-poly p dvd fract-poly q V fract-poly p dvd
fract-poly r
by (rule prime-elem-dvd-multD)
with primitive show p dvd ¢ V p dvd r by (auto dest: fract-poly-dvdD)
qed (insert assms, auto simp: irreducible-def)
qed

lemma degree-primitive-part-fract [simp):
degree (primitive-part-fract p) = degree p
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proof —
have p = smult (fract-content p) (fract-poly (primitive-part-fract p))
by (simp add: content-times-primitive-part-fract)
also have degree ... = degree (primitive-part-fract p)
by (auto simp: degree-map-poly)
finally show ?thesis ..
qed

lemma irreducible-primitive-part-fract:

fixes p :: ‘a :: {idom-divide, ring-gcd, factorial-semiring, semiring-Ged,semiring-ged-mult-normalize}
fract poly

assumes irreducible p

shows irreducible (primitive-part-fract p)
proof —

from assms have deg: degree (primitive-part-fract p) # 0

by (intro notl)
(auto elim!: degree-eq-zeroE simp: irreducible-def is-unit-poly-iff dvd-field-iff)
hence [simp]: p # 0 by auto

note <irreducible p»

also have p = [:fract-content p:] * fract-poly (primitive-part-fract p)
by (simp add: content-times-primitive-part-fract)

also have irreducible ... +— irreducible (fract-poly (primitive-part-fract p))
by (intro irreducible-mult-unit-left) (simp-all add: is-unit-poly-iff dvd-field-iff)

finally show ?thesis using deg
by (simp add: nonconst-poly-irreducible-iff)

qged

lemma prime-elem-primitive-part-fract:

fixes p :: ‘a :: {idom-divide, ring-gcd, factorial-semiring, semiring-Ged,semiring-ged-mult-normalize}
fract poly

shows irreducible p = prime-elem (primitive-part-fract p)

by (intro irreducible-imp-prime-poly irreducible-primitive-part-fract)

lemma irreducible-linear-field-poly:
fixes a b :: 'a::field
assumes b # 0
shows irreducible [:a,b:]
proof (rule irreduciblel)
fix p ¢ assume pq: [:a,b:] = p * ¢
also from pq assms have degree ... = degree p + degree q
by (intro degree-mult-eq) auto
finally have degree p = 0 V degree ¢ = 0 using assms by auto
with assms pq show is-unit p V is-unit q
by (auto simp: is-unit-const-poly-iff dvd-field-iff elim!: degree-eq-zeroFE)
qed (insert assms, auto simp: is-unit-poly-iff)

lemma prime-elem-linear-field-poly:
(b ::'a:: field) # 0 = prime-elem [:a,b:]
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by (rule field-poly-irreducible-imp-prime, rule irreducible-linear-field-poly)

lemma irreducible-linear-poly:
fixes a b :: 'a::{idom-divide,ring-ged, factorial-semiring, semiring- Ged, semiring-ged-mult-normalize}
shows b # 0 = coprime a b = irreducible [:a,b:]
by (auto intro!: irreducible-linear-field-poly
simp:  nonconst-poly-irreducible-iff content-def map-poly-pCons)

lemma prime-elem-linear-poly:
fixes a b :: ‘a::{idom-divide,ring-gcd, factorial-semiring,semiring- Ged, semiring-ged-mult-normalize}
shows b # 0 = coprime a b = prime-elem [:a,b:]
by (rule irreducible-imp-prime-poly, rule irreducible-linear-poly)

11.6 Prime factorisation of polynomials

lemma poly-prime-factorization-exists-content-1:
fixes p :: ‘a :: {factorial-semiring,semiring-Ged,ring-ged,idom-divide,semiring-gcd-mult-normalize}
poly
assumes p # 0 content p = 1
shows 3JA. (Vp. p €e# A — prime-elem p) A prod-mset A = normalize p
proof —
let P = field-poly.prime-factorization (fract-poly p)
define ¢ where ¢ = prod-mset (image-mset fract-content ?P)
define ¢’ where ¢’ = ¢ x to-fract (lead-coeff p)
define e where e = prod-mset (image-mset primitive-part-fract ?P)
define A where A = image-mset (normalize o primitive-part-fract) ¢P
have content e = ([[ z€#field-poly.prime-factorization (map-poly to-fract p).
content (primitive-part-fract z))
by (simp add: e-def content-prod-mset multiset.map-comp o-def)
also have image-mset (Az. content (primitive-part-fract x)) ¢P = image-mset
(M. 1) ¢P
by (intro image-mset-cong content-primitive-part-fract) auto
finally have content-e: content e = 1
by simp

from «p # 0) have fract-poly p = [:lead-coeff (fract-poly p):] *
smult (inverse (lead-coeff (fract-poly p))) (fract-poly p)
by simp
also have [:lead-coeff (fract-poly p):] = [:to-fract (lead-coeff p):]
by (simp add: monom-0 degree-map-poly coeff-map-poly)
also from assms have smult (inverse (lead-coeff (fract-poly p))) (fract-poly p)
= prod-mset ?P
by (subst field-poly-prod-mset-prime-factorization) simp-all
also have ... = prod-mset (image-mset id ?P) by simp
also have image-mset id 7P =
image-mset (Az. [:fract-content x:] x fract-poly (primitive-part-fract z))
P
by (intro image-mset-cong) (auto simp: content-times-primitive-part-fract)
also have prod-mset ... = smult ¢ (fract-poly e)
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by (subst prod-mset.distrib) (simp-all add: prod-mset-fract-poly prod-mset-const-poly
c-def e-def)
also have [:to-fract (lead-coeff p):] * ... = smult ¢’ (fract-poly €)
by (simp add: c’-def)
finally have eq: fract-poly p = smult ¢’ (fract-poly e) .
also obtain b where b: ¢’ = to-fract b is-unit b
proof —
from fract-poly-smult-eqE[OF eq]
obtain a b where ab:
¢’ = to-fract b /| to-fract a
smult a p = smult b e
coprime a b
normalize a = a .
from ab(2) have content (smult a p) = content (smult b e) by (simp only: )
with assms content-e have a = normalize b by (simp add: ab(4))
with ab have ab”: a = 1 is-unit b
by (simp-all add: normalize-1-iff)
with ab ab’ have ¢’ = to-fract b by auto
from this and <is-unit by show ?Zthesis by (rule that)
qed
hence smult ¢’ (fract-poly e) = fract-poly (smult b e) by simp
finally have p = smult b e by (simp only: fract-poly-eq-iff)
hence p = [:b:] * e by simp
with b have normalize p = normalize e
by (simp only: normalize-mult) (simp add: is-unit-normalize is-unit-poly-iff)
also have normalize e = prod-mset A
by (simp add: multiset.map-comp e-def A-def normalize-prod-mset)
finally have prod-mset A = normalize p ..

have prime-elem p if p €# A for p
using that by (auto simp: A-def prime-elem-primitive-part-fract prime-elem-imp-irreducible

dest!: field-poly-in-prime-factorization-imp-prime )
from this and <prod-mset A = normalize p> show ?thesis
by (intro exI[of - A]) blast
qed

lemma poly-prime-factorization-exists:
fixes p :: a :: {factorial-semiring,semiring-Ged,ring-gcd,idom-divide,semiring-gcd-mult-normalize }
poly
assumes p #
shows JA.
normalize p
proof —
define B where B = image-mset (Az. [:x:]) (prime-factorization (content p))
have 3 A. (Vp. p €# A — prime-elem p) A prod-mset A = normalize (primitive-part
p)

0
(Vp. p €# A — prime-elem p) A normalize (prod-mset A) =

by (rule poly-prime-factorization-exists-content-1) (insert assms, simp-all)
then obtain A where A: Vp. p €¢# A — prime-elem p [[ 4 A = normalize
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(primitive-part p)
by blast
have normalize (prod-mset (A + B)) = normalize (prod-mset A x normalize
(prod-mset B))
by simp
also from assms have normalize (prod-mset B) = normalize [:content p:
by (simp add: prod-mset-const-poly normalize-const-poly prod-mset-prime-factorization-weak
B-def)
also have prod-mset A = normalize (primitive-part p)
using A by simp
finally have normalize (prod-mset (A + B)) = normalize (primitive-part p =
[:content p:])
by simp
moreover have Vp. p €# B — prime-elem p
by (auto simp: B-def introl: lift-prime-elem-poly dest: in-prime-factors-imp-prime)
ultimately show ?thesis using A by (intro exI[of - A + B]) (auto)
qed

end

11.7 Typeclass instances

instance poly :: ({factorial-ring-gcd,semiring-ged-mult-normalize}) factorial-semiring
by standard (rule poly-prime-factorization-exists)

instantiation poly :: ({factorial-ring-ged, semiring-ged-mult-normalize}) factorial-ring-ged
begin

definition gcd-poly :: 'a poly = 'a poly = 'a poly where
[code del]: ged-poly = ged-factorial

definition Icm-poly :: 'a poly = 'a poly = 'a poly where
[code del]: lem-poly = lem-factorial

definition Gcd-poly :: 'a poly set = 'a poly where
[code del]: Ged-poly = Ged-factorial

definition Lem-poly 2 'a poly set = 'a poly where
[code del]: Lem-poly = Lem-factorial

instance by standard (simp-all add: ged-poly-def lem-poly-def Ged-poly-def Lem-poly-def)
end
instance poly :: ({factorial-ring-gcd, semiring-ged-mult-normalize}) semiring-ged-mult-normalize

instance poly :: ({field,factorial-ring-gcd,semiring-gcd-mult-normalize})
normalization-euclidean-semiring ..
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instance poly :: ({field, normalization-euclidean-semiring, factorial-ring-gcd,
semiring-ged-mult-normalize}) euclidean-ring-ged

by (rule euclidean-ring-gcd-class.intro, rule factorial-euclidean-semiring-gedl) stan-

dard

instance poly :: ({field, normalization-euclidean-semiring, factorial-ring-gcd,
semiring-ged-mult-normalize}) factorial-semiring-multiplicative ..

11.8 Polynomial GCD

lemma gcd-poly-decompose:
fixes p q :: 'a i {factorial-ring-gcd,semiring-ged-mult-normalize} poly
shows gcd p ¢ =
smult (ged (content p) (content q)) (ged (primitive-part p) (primitive-part
9))

proof (rule sym, rule gedl)
have [:gcd (content p) (content q):] * ged (primitive-part p) (primitive-part q)
dvd
[:content p:] * primitive-part p by (intro mult-dvd-mono) simp-all
thus smult (ged (content p) (content q)) (ged (primitive-part p) (primitive-part
q)) dvd p
by simp
next
have [:gcd (content p) (content q):] x ged (primitive-part p) (primitive-part q)
dvd
[:content ¢:] * primitive-part q by (intro mult-dvd-mono) simp-all
thus smult (ged (content p) (content q)) (ged (primitive-part p) (primitive-part
q)) dvd q
by simp
next
fix d assume d dvd p d dvd q
hence [:content d:] x primitive-part d dvd
[:gcd (content p) (content q):] x ged (primitive-part p) (primitive-part q)
by (intro mult-dvd-mono) auto
thus d dvd smult (ged (content p) (content q)) (ged (primitive-part p) (primitive-part
9))
by simp
qed (auto simp: normalize-smult)

lemma gcd-poly-pseudo-mod:
fixes p q :: 'a :: {factorial-ring-gcd,semiring-ged-mult-normalize} poly
assumes nz: ¢ # 0 and prim: content p = 1 content q = 1
shows ged p ¢ = ged q (primitive-part (pseudo-mod p q))
proof —
define r s where r = fst (pseudo-divmod p ¢) and s = snd (pseudo-divmod p

q)
define a where a = [:coeff q (degree q) ~ (Suc (degree p) — degree q):]
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have [simp]: primitive-part a = unit-factor a
by (simp add: a-def unit-factor-poly-def unit-factor-power monom-0)
from nz have [simp]: a # 0 by (auto simp: a-def)

have rs: pseudo-divmod p ¢ = (r, s) by (simp add: r-def s-def)
have ged (¢ 7+ 8) g =ged g s

using ged-add-mult[of q r s] by (simp add: gcd.commute add-ac mult-ac)
with pseudo-divmod(1)[OF nz rs]

have gcd (p * a) g = ged q s by (simp add: a-def)
also from prim have ged (p * a) ¢ = ged p g

by (subst ged-poly-decompose)

(auto simp: primitive-part-mult ged-mult-unitl primitive-part-prim
stmp del: mult-pCons-right )

also from prim have ged q s = ged q (primitive-part s)

by (subst ged-poly-decompose) (simp-all add: primitive-part-prim)
also have s = pseudo-mod p q by (simp add: s-def pseudo-mod-def)
finally show ?thesis .

qed

lemma degree-pseudo-mod-less:
assumes ¢ # 0 pseudo-mod p q¢ # 0
shows degree (pseudo-mod p q) < degree q
using pseudo-mod(2)[of q p] assms by auto

‘a :: factorial-ring-gcd poly = 'a poly = 'a poly

function gcd-poly-code-auz ::
where
gcd-poly-code-aux p q =
(if ¢ = 0 then normalize p else ged-poly-code-auz q (primitive-part (pseudo-mod
P q)))
by auto
termination
by (relation measure ((Ap. if p = 0 then 0 else Suc (degree p)) o snd))
(auto simp: degree-pseudo-mod-less)

declare gcd-poly-code-auz.simps [simp del]

lemma gcd-poly-code-auz-correct:
assumes content p = 1 ¢ = 0 V content ¢ = 1
shows gcd-poly-code-auz p q = ged p q
using assms
proof (induction p q rule: ged-poly-code-auz.induct)
case (1 p q)
show ?Zcase
proof (cases ¢ = 0)
case True
thus %thesis by (subst gcd-poly-code-auz.simps) auto
next
case Fulse
hence gcd-poly-code-aux p ¢ = ged-poly-code-aux q (primitive-part (pseudo-mod
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P q))
by (subst ged-poly-code-auzx.simps) simp-all
also from 1.prems Fulse
have primitive-part (pseudo-mod p q) = 0 V
content (primitive-part (pseudo-mod p q)) = 1
by (cases pseudo-mod p q = 0) auto
with 1.prems False
have gcd-poly-code-auz q (primitive-part (pseudo-mod p q)) =
ged q (primitive-part (pseudo-mod p q))
by (intro 1) simp-all
also from I.prems Fulse

have ... = ged p ¢ by (intro ged-poly-pseudo-mod [symmetric]) auto
finally show ?thesis .
qed

qed

definition gcd-poly-code
2 'a = factorial-ring-ged poly = 'a poly = 'a poly
where gcd-poly-code p q =
(if p = 0 then normalize q else if ¢ = 0 then normalize p else
smult (ged (content p) (content q))
(ged-poly-code-aux (primitive-part p) (primitive-part q)))

lemma ged-poly-code [code]: ged p q = ged-poly-code p q
by (simp add: ged-poly-code-def ged-poly-code-aux-correct ged-poly-decompose [symmetric))

lemma lem-poly-code [code]:
fixes p q :: 'a :: {factorial-ring-gcd,semiring-gcd-mult-normalize} poly
shows lem p g = normalize (p * ¢ div ged p q)
by (fact lem-ged)

lemmas Gcd-poly-set-eq-fold [code] =

Gcd-set-eq-fold [where ?'a = 'a :: {factorial-ring-ged,semiring-ged-mult-normalize }
poly]
lemmas Lem-poly-set-eq-fold [code] =

Lem-set-eq-fold [where ?'a = 'a :: {factorial-ring-ged, semiring-ged-mult-normalize }
poly]

end

12 Squarefreeness

theory Squarefree
imports Primes
begin

definition squarefree :: 'a :: comm-monoid-mult = bool where

543



squarefree n «— (Vz. z = 2 dvd n — x dvd 1)

lemma squarefreel: (Az. z = 2 dvd n = z dvd 1) = squarefree n
by (auto simp: squarefree-def)

lemma squarefreeD: squarefree n = x ~ 2 dvd n = z dvd 1
by (auto simp: squarefree-def)

lemma not-squarefreel: x ~ 2 dvd n = —x dvd 1 = —squarefree n
by (auto simp: squarefree-def)

lemma not-squarefreeE [case-names square-dvd):
—squarefree n = (A\z. 2 ~ 2 dvd n = -~z dvd 1 = P) = P
by (auto simp: squarefree-def)

lemma not-squarefree-0 [simp): —squarefree (0 :: 'a :: comm-semiring-1)
by (rule not-squarefreel[of 0]) auto

lemma squarefree-factorial-semiring:
assumes n # 0
shows squarefree (n :: 'a :: factorial-semiring) <— (¥ p. prime p — —p ~ 2
dvd n)
unfolding squarefree-def
proof safe
assume *: Vp. prime p — —p ~ 2 dvd n
fix z :: ‘a assume z: z ~ 2 dvd n
{
assume —is-unit
moreover from assms and z have z # 0 by auto
ultimately obtain p where p dvd = prime p
using prime-divisor-exists by blast
with * have —p ~ 2 dvd n by blast
moreover from <p dvd 2> have p ~ 2 dvd = ~ 2 by (rule dvd-power-same)
ultimately have —z ~ 2 dvd n by (blast dest: dvd-trans)
with = have Fulse by contradiction
}
thus is-unit x by blast
qed auto

lemma squarefree-factorial-semiring’:
assumes n # 0
shows squarefree (n :: 'a :: factorial-semiring) <—
(Y peprime-factors n. multiplicity p n = 1)
proof (subst squarefree-factorial-semiring [OF assms], safe)
fix p assume V pe#prime-factorization n. multiplicity p n = 1 prime p p~2 dvd
n
with assms show Fulse
by (cases p dvd n)
(auto simp: prime-factors-dvd power-dvd-iff-le-multiplicity not-dvd-imp-multiplicity-0)
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qed (auto intro!: multiplicity-eql simp: power2-eq-square [symmetric])

lemma squarefree-factorial-semiring’”:
assumes n # 0
shows squarefree (n :: 'a :: factorial-semiring) <—
(Y p. prime p — multiplicity p n < 1)
by (subst squarefree-factorial-semiring’|OF assms]) (auto simp: prime-factors-multiplicity)

lemma squarefree-unit [simp): is-unit n => squarefree n
proof (rule squarefreel)

fix z assume z72 dvd n n dvd 1

hence is-unit (z72) by (rule dvd-unit-imp-unit)

thus is-unit x by (simp add: is-unit-power-iff)
qed
lemma squarefree-1 [simp]: squarefree (1 :: '
by simp

a :: algebraic-semidom,)

lemma squarefree-minus [simp|: squarefree (—n :: 'a :: comm-ring-1) +— square-

free n
by (simp add: squarefree-def)

lemma squarefree-mono: a dvd b = squarefree b = squarefree a
by (auto simp: squarefree-def intro: dvd-trans)

lemma squarefree-multD:
assumes squarefree (a * b)
shows squarefree a squarefree b
by (rule squarefree-mono[OF - assms|, simp)+

lemma squarefree-prime-elem:
assumes prime-elem (p :: 'a :: factorial-semiring)
shows squarefree p
proof —
from assms have p # 0 by auto
show ?thesis
proof (subst squarefree-factorial-semiring [OF «p # 0»]; safe)
fix ¢ assume *: prime ¢ ¢~ 2 dvd p
with assms have multiplicity ¢ p > 2 by (intro multiplicity-gel) auto
thus False using assms <prime ¢ prime-multiplicity-other|[of q normalize p]
by (cases ¢ = normalize p) simp-all
qed
qged

lemma squarefree-prime:
assumes prime (p :: 'a :: factorial-semiring)
shows squarefree p
using assms by (intro squarefree-prime-elem) auto
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lemma squarefree-mult-coprime:
fixes a b :: 'a :: factorial-semiring-gcd
assumes coprime a b squarefree a squarefree b
shows squarefree (a * b)
proof —
from assms have nz: a x b # 0 by auto
show ?thesis unfolding squarefree-factorial-semiring’| OF nz]
proof
fix p assume p: p € prime-factors (a x b)
with nz have prime p
by (simp add: prime-factors-dvd)
have = (p dvd a A p dvd b)
proof
assume p dvd a A\ p dvd b
with (coprime a b> have is-unit p
by (auto intro: coprime-common-divisor)
with <prime p» show Fulse
by simp
qed
moreover from p have p dvd a V p dvd b using nz
by (auto simp: prime-factors-dvd prime-dvd-mult-iff)
ultimately show multiplicity p (a * b) = 1 using nz p assms(2,3)
by (auto simp: prime-elem-multiplicity-mult-distrib prime-factors-multiplicity
not-dvd-imp-multiplicity-0 squarefree-factorial-semiring’)
qed
qged

lemma squarefree-prod-coprime:
fixes [ :: 'a = 'b :: factorial-semiring-gcd
assumes Aab. a € A = b€ A= a# b= coprime (f a) (fb)
assumes Aa. a € A = squarefree (f a)
shows squarefree (prod f A)
using assms
by (induction A rule: infinite-finite-induct)
(auto intro!: squarefree-mult-coprime prod-coprime-right)

lemma squarefree-powerD: m > 0 => squarefree (n ~ m) = squarefree n
by (cases m) (auto dest: squarefree-multD)

lemma squarefree-power-iff:
squarefree (n " m) +— m = 0 V is-unit n V (squarefree n A m = 1)
proof safe
assume squarefree (n ~m) m > 0 —is-unit n
show m = 1
proof (rule ccontr)
assume m # 1
with «<m > 0> have n = 2 dvd n = m by (intro le-imp-power-dvd) auto
from this and <—is-unit ny have —squarefree (n ~ m) by (rule not-squarefreel)
with «squarefree (n ~ m)> show False by contradiction
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qed
qed (auto simp: is-unit-power-iff dest: squarefree-powerD)

definition squarefree-nat :: nat = bool where
[code-abbrev]: squarefree-nat = squarefree

lemma squarefree-nat-code-naive [code]:
squarefree-nat n <— n # 0 A (Vke{2..n}. =k ~ 2 dvd n)
proof safe
assume x: Vk€{2..n}. = k* dvd n and n: n > 0
show squarefree-nat n unfolding squarefree-nat-def
proof (rule squarefreel)
fix k assume k: k£~ 2 dvd n
have k dvd n by (rule dvd-trans|OF - k]) auto
with n have k < n by (intro dvd-imp-le)
with bspec|OF x, of k| k have =k > 1 by (intro notl) auto
moreover from k and n have k # 0 by (intro notl) auto
ultimately have k£ = 1 by presburger
thus is-unit k by simp
qed
qed (auto simp: squarefree-nat-def squarefree-def intro!: Nat.groOl)

definition square-part :: 'a :: factorial-semiring = 'a where
square-part n = (if n = 0 then 0 else
normalize ([ p€prime-factors n. p ~ (multiplicity p n div 2)))

lemma square-part-nonzero:

n # 0 = square-part n = normalize (]| pEprime-factors n. p ~ (multiplicity p
n div 2))

by (simp add: square-part-def)

lemma square-part-0 [simp]: square-part 0 = 0
by (simp add: square-part-def)

lemma square-part-unit [simp]: is-unit ¥ = square-part © = 1
by (auto simp: square-part-def prime-factorization-unit)

lemma square-part-1 [simpl: square-part 1 = 1
by simp

lemma square-part-0-iff [simpl: square-part n = 0 <— n = 0
by (simp add: square-part-def)

lemma normalize-uminus [simp]:

normalize (—z :: 'a :: {normalization-semidom, comm-ring-1}) = normalize ©
by (rule associatedl) auto
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lemma multiplicity-uminus-right [simpl:
multiplicity (z :: 'a :: {factorial-semiring, comm-ring-1}) (—y) = multiplicity x y
proof —
have multiplicity = (—y) = multiplicity x (normalize (—y))
by (rule multiplicity-normalize-right [symmetric])

also have ... = multiplicity x y by simp
finally show ?thesis .
qed

lemma multiplicity-uminus-left [simp]:
multiplicity (—z =2 'a 2 {factorial-semiring, comm-ring-1}) y = multiplicity = y
proof —
have multiplicity (—z) y = multiplicity (normalize (—z)) y
by (rule multiplicity-normalize-left [symmetric])

also have ... = multiplicity x y by simp
finally show ?thesis .
qed

lemma prime-factorization-uminus [simp]:

prime-factorization (—x :: 'a :: {factorial-semiring, comm-ring-1}) = prime-factorization
T

by (rule prime-factorization-cong) simp-all

lemma square-part-uminus [simp):
square-part (—z :: 'a :: {factorial-semiring, comm-ring-1}) = square-part x
by (simp add: square-part-def)

lemma prime-multiplicity-square-part:
assumes prime p
shows multiplicity p (square-part n) = multiplicity p n div 2
proof (cases n = 0)
case Fulse
thus ?thesis unfolding square-part-nonzero| OF False] multiplicity-normalize-right
using finite-prime-divisors[of n| assms
by (subst multiplicity-prod-prime-powers)
(auto simp: not-dvd-imp-multiplicity-0 prime-factors-dvd multiplicity-prod-prime-powers)
qed auto

lemma square-part-square-dvd [simp, intro|: square-part n ~ 2 dvd n
proof (cases n = 0)
case Fulse
thus ?thesis
by (intro multiplicity-le-imp-dvd)
(auto simp: prime-multiplicity-square-part prime-elem-multiplicity-power-distrib)
qed auto

lemma prime-multiplicity-le-imp-dvd:

assumes z # 0y # 0
shows 1z dvd y +— (Vp. prime p — multiplicity p x < multiplicity p y)
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using assms by (auto intro: multiplicity-le-imp-dvd dvd-imp-multiplicity-le)

lemma dvd-square-part-iff: x dvd square-part n +— x — 2 dvd n
proof (cases & = 0; cases n = 0)
assume nz: t # 0n # 0
thus ?thesis
by (subst (1 2) prime-multiplicity-le-imp-dvd)
(auto simp: prime-multiplicity-square-part prime-elem-multiplicity-power-distrib)
qed auto

definition squarefree-part :: 'a :: factorial-semiring = 'a where
squarefree-part n = (if n = 0 then 1 else n div square-part n ~ 2)

lemma squarefree-part-0 [simp]: squarefree-part 0 = 1
by (simp add: squarefree-part-def)

lemma squarefree-part-unit [simpl: is-unit n = squarefree-part n = n
by (auto simp add: squarefree-part-def)

lemma squarefree-part-1 [simp]: squarefree-part 1 = 1
by simp

lemma squarefree-decompose: n = squarefree-part n x square-part n ~ 2
by (simp add: squarefree-part-def)

lemma squarefree-part-uminus [simp:
assumes z #

shows squarefree-part (—z :: 'a :: {factorial-semiring, comm-ring-1}) = —squarefree-part
x
proof —
have —(squarefree-part x x square-part x ~ 2) = —x
by (subst squarefree-decompose [symmetric]) auto
also have ... = squarefree-part (—x) * square-part (—z) ~— 2 by (rule square-

free-decompose)
finally have (— squarefree-part x) * square-part x ~ 2 =
squarefree-part (—x) * square-part © ~ 2 by simp
thus ?thesis using assms by (subst (asm) mult-right-cancel) auto
qed

lemma squarefree-part-nonzero [simp|: squarefree-part n # 0
using squarefree-decompose[of n] by (cases n # 0) auto

lemma prime-multiplicity-squarefree-part:

assumes prime p

shows  multiplicity p (squarefree-part n) = multiplicity p n mod 2
proof (cases n = 0)

case Fulse

hence n: n # 0 by auto
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have multiplicity p n mod 2 + 2 x (multiplicity p n div 2) = multiplicity p n by
stmp
also have ... = multiplicity p (squarefree-part n * square-part n — 2)
by (subst squarefree-decompose[of n]) simp
also from assms n have ... = multiplicity p (squarefree-part n) + 2 x (multiplicity
pn div 2)
by (subst prime-elem-multiplicity-mult-distrib)
(auto simp: prime-elem-multiplicity-power-distrib prime-multiplicity-square-part)
finally show ?thesis by (subst (asm) add-right-cancel) simp
qged auto

lemma prime-multiplicity-squarefree-part-le-Suc-0 [intro:
assumes prime p
shows multiplicity p (squarefree-part n) < Suc 0
by (simp add: assms prime-multiplicity-squarefree-part)

lemma squarefree-squarefree-part [simp, introl: squarefree (squarefree-part n)
by (subst squarefree-factorial-semiring’’)
(auto simp: prime-multiplicity-squarefree-part-le-Suc-0)

lemma squarefree-decomposition-unique:
assumes square-part m = square-part n
assumes squarefree-part m = squarefree-part n
shows m =n
by (subst (1 2) squarefree-decompose) (simp-all add: assms)

lemma normalize-square-part [simp]: normalize (square-part ) = square-part ©
by (simp add: square-part-def)

lemma square-part-even-power’: square-part (z ~ (2 * n)) = normalize (z ~ n)
proof (cases z = 0)
case Fulse
have normalize (square-part (z ~ (2 % n))) = normalize (z ~ n) using False
by (intro multiplicity-eq-imp-eq)
(auto simp: prime-multiplicity-square-part prime-elem-multiplicity-power-distrib)
thus ?thesis by simp
qed (auto simp: power-0-left)

lemma square-part-even-power: even n = square-part (r ~ n) = normalize (z ~
(n div 2))
by (subst square-part-even-power’ [symmetric]) auto

lemma square-part-odd-power”: square-part (x = (Suc (2 * n))) = normalize (z ~
n * square-part x)
proof (cases © = 0)

case Fulse

have normalize (square-part (z = (Suc (2 * n)))) = normalize (square-part T
x " n)

proof (rule multiplicity-eq-imp-eq, goal-cases)
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case (3 p)
hence multiplicity p (square-part (z ~ Suc (2 * n))) =
(2 % (n % multiplicity p ) + multiplicity p =) div 2
by (subst prime-multiplicity-square-part)
(auto simp: False prime-elem-multiplicity-power-distrib algebra-simps simp
del: power-Suc)
also from & False have ... = multiplicity p (square-part x * x ~ n)
by (subst div-mult-self4) (auto simp: prime-multiplicity-square-part
prime-elem-multiplicity-mult-distrib prime-elem-multiplicity-power-distrib)
finally show ?case .
qed (insert False, auto)
thus ?thesis by (simp add: mult-ac)
qed auto

lemma square-part-odd-power:
odd n = square-part (x ~ n) = normalize (z ~ (n div 2) * square-part x)
by (subst square-part-odd-power’ [symmetric]) auto

end

13 Pieces of computational Algebra

theory Computational-Algebra
imports
Euclidean-Algorithm
Factorial-Ring
Formal-Laurent-Series
Fraction-Field
Fundamental-Theorem-Algebra
Group-Closure
Normalized-Fraction
Nth-Powers
Polynomial-FPS
Polynomial
Polynomial-Factorial
Primes
Squarefree
begin

end

theory Field-as-Ring

imports
Complex-Main
Euclidean-Algorithm

begin

context field
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begin
subclass idom-divide ..

definition normalize-field :: 'a = 'a

where [simp|: normalize-field x = (if x = 0 then 0 else 1)
definition unit-factor-field :: 'a = 'a

where [simp]: unit-factor-field x = z
definition euclidean-size-field :: 'a = nat

where [simp]: euclidean-size-field x = (if x = 0 then 0 else 1)
definition mod-field :: 'a = 'a = 'a

where [simp|: mod-field x y = (if y = 0 then x else 0)

end

instantiation real ::
{unique-euclidean-ring, normalization-euclidean-semiring, normalization-semidom-multiplicative}
begin

definition [simp]: normalize-real = (normalize-field :: real = -)
definition [simp]: unit-factor-real = (unit-factor-field :: real = -)

[simpl:
[simp]:
definition [simp]: modulo-real = (mod-field :: real = -)
[simp]:
[simpl:

definition [simp]: euclidean-size-real = (euclidean-size-field :: real = -)
definition [simp]: division-segment (z :: real) = 1
instance

by standard
(simp-all add: dvd-field-iff field-split-simps split: if-splits)

end

instantiation real :: euclidean-ring-gcd
begin

definition gcd-real :: real = real = real where
gcd-real = Fuclidean-Algorithm.gcd

definition lcm-real :: real = real = real where
lem-real = FEuclidean-Algorithm.lcm

definition Gcd-real :: real set = real where
Ged-real = Euclidean-Algorithm.Ged

definition Lcm-real :: real set = real where
Lem-real = Euclidean-Algorithm.Lem

instance by standard (simp-all add: gcd-real-def lem-real-def Ged-real-def Lem-real-def)
end

instance real :: field-ged ..
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instantiation rat :
{unique-euclidean-ring, normalization-euclidean-semiring, normalization-semidom-multiplicative}
begin

simp

definition | |: normalize-rat = (normalize-field :: rat = -)

definition [simp]: unit-factor-rat = (unit-factor-field :: rat = -)

definition [simp]: modulo-rat = (mod-field :: rat = -)
[simp]:
[simpl:

definition [simp]: euclidean-size-rat = (euclidean-size-field :: rat = -)
definition [simp]: division-segment (z :: rat) = 1
instance

by standard
(simp-all add: dvd-field-iff field-split-simps split: if-splits)

end

instantiation rat :: euclidean-ring-gcd
begin

definition gcd-rat :: rat = rat = rat where
ged-rat = Euclidean-Algorithm.ged
definition lcm-rat :: rat = rat = rat where
lem-rat = Buclidean-Algorithm.lcm
definition Gced-rat :: rat set = rat where
Gced-rat = FEuclidean-Algorithm.Ged
definition Lcm-rat :: rat set = rat where
Lem-rat = Euclidean-Algorithm. Lem

instance by standard (simp-all add: gcd-rat-def lem-rat-def Ged-rat-def Lem-rat-def)
end

instance rat :: field-gcd ..

instantiation complex ::
{unique-euclidean-ring, normalization-euclidean-semiring, normalization-semidom-multiplicative }
begin

definition [simp]: normalize-complex = (normalize-field :: complex = -)
definition [simp]: unit-factor-complex = (unit-factor-field :: complex = -)

[simp]:
[simp]:
definition [simp|: modulo-complex = (mod-field :: complex = -)
[simp)
[simp]

definition [simp]: euclidean-size-complex = (euclidean-size-field :: complexr = -)
definition [simp]: division-segment (z :: complex) = 1
instance

by standard
(simp-all add: dvd-field-iff field-split-simps split: if-splits)
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end

instantiation complex :: euclidean-ring-gcd
begin

definition gcd-complex :: compler = complex = complex where
ged-complex = Euclidean-Algorithm. ged

definition lem-complex :: compler = complex = compler where
lem-complex = FEuclidean-Algorithm.lcm

definition Gcd-complex :: complex set = complex where
Ged-complex = Fuclidean-Algorithm.Ged

definition Lem-complex :: complex set = complex where
Lem-complex = Euclidean-Algorithm. Lem

instance by standard (simp-all add: gcd-complex-def lem-complex-def Ged-complex-def
Lem-complez-def)

end
instance complez :: field-gcd ..

end

14 Computation checks

theory Computation-Checks
imports Primes Polynomial-Factorial HOL— Library. Discrete- Functions HOL— Library. Code- Target-Numeral
begin

floor-sqrt 16476148165462159 = 128359449

prime 97

prime 97

prime 9973

prime 9973

Ged {[:1, 2, 33, [:2, 3, 4:]} = 1

Lem {[:1, 2, 3, [:2, 3, 41} = (12, b7, (1163, (17, 129

end
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