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1 Contour integration

theory Contour Integration
imports HOL— Analysis. Analysis
begin

1.1 Definition

definition has_contour_integral :: (complex = complex) = complex = (real =
complex) = bool
(infixr <has’_contour’_integral> 50)
where (f has__contour_integral ©) g =
((\x. f(g z) * vector_derivative g (at x within {0..1}))
has__integral 7) {0..1}

definition contour_integrable_on
(infixr <contour’_integrable’ _on» 50)
where f contour_integrable_on g = 3. (f has_contour_integral ©) g

definition contour_integral
where contour_integral g f = SOME i. (f has_contour_integral i) g V — f
contour__integrable_on g N\ i=0

1.2 Relation to subpath construction

1.3 Cauchy’s theorem where there’s a primitive

corollary Cauchy_ theorem__primitive:
assumes Az. x € S = (f has_field__derivative f' x) (at x within S)
and wvalid_path g path_image g C S pathfinish g = pathstart g
shows (f’ has__contour_integral 0) g

1.4 Reversing the order in a double path integral

proposition contour_integral _swap:
assumes fcon: continuous_on (path_image g X path_image h) (A(y1,y2). f yl
y2)
and vp:  walid_path g valid__path h
and guvcon: continuous_on {0..1} (At. vector_derivative g (at t))
and hvcon: continuous_on {0..1} (At. vector__derivative h (at t))
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shows contour_integral g (Aw. contour_integral h (f w)) =
contour_integral h (Az. contour _integral g (Aw. fw z))

1.5 Partial circle path

definition part_circlepath :: [complex, real, real, real, real] = complex
where part_circlepath z v s t = Ax. z + of _real r x exp (i * of _real (linepath s

tz))

proposition path__image_ part_circlepath:
assumes s < ¢
shows path_image (part_circlepath z v s t) = {z + r * exp(i * of real z) | z.
s<zAz<t}

corollary contour_integral bound__part__circlepath__strong:
assumes f contour__integrable _on part_circlepath z r s t
and finite kand 0 < B0 <rs<t
and Az. x € path_image(part_circlepath z v s t) — k = norm(f z) < B
shows cmod (contour_integral (part_circlepath zr st) f) < Bxr * (t — 8)

1.6 Special case of one complete circle

definition circlepath :: [complez, real, real] = complex
where circlepath z r = part_circlepath z r 0 (2xpi)

1.7 Uniform convergence of path integral

proposition contour _integral _uniform__limit:
assumes ev_fint: eventually (An::'a. (f n) contour _integrable_on ) F
and ul_f: uniform_limit (path_image ~) f 1 F
and noleB: At. t € {0..1} = norm (vector_derivative vy (at t)) < B
and y: valid_path v
and [simp]: — trivial_limit F
shows [ contour_integrable_on v ((An. contour _integral ~v (f n)) —— con-
tour_integral v 1) F

end

2 Complex Path Integrals and Cauchy’s Integral
Theorem

theory Cauchy Integral _Theorem
imports
HOL— Analysis. Analysis
Contour__Integration
begin
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proposition Cauchy theorem,__triangle interior:
assumes contf: continuous_on (convexr hull {a,b,c}) f
and holf: f holomorphic_on interior (convex hull {a,b,c})
shows (f has__contour_integral 0) (linepath a b +++ linepath b ¢ +++ linepath
ca)

2.1 Cauchy’s theorem for a convex set

corollary Cauchy_theorem__convex__simple:
assumes holf: f holomorphic_on S
and convex S valid__path g path__image g C S pathfinish g = pathstart g
shows (f has__contour_integral 0) g

2.2 Homotopy forms of Cauchy’s theorem

proposition Cauchy_theorem__homotopic_ paths:
assumes hom: homotopic_paths S g h
and open S and f: f holomorphic_on S
and wvpg: valid_path g and vph: valid__path h
shows contour_integral g f = contour__integral h f

proposition Cauchy theorem__homotopic_loops:
assumes hom: homotopic_loops S g h
and open S and f: f holomorphic_on S
and wvpg: valid _path g and vph: valid__path h
shows contour_integral g f = contour_integral h f

end

3 Winding numbers

theory Winding Numbers
imports Cauchy_ Integral _Theorem
begin

3.1 Definition

definition winding number_prop :: [real = complex, complez, real, real = com-
plex, complex] = bool where
winding_number_prop vy zep n =
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valid_path p A z ¢ path_image p A

pathstart p = pathstart v N

pathfinish p = pathfinish v A

(Vt e {0..1}. norm(yt —pt) <e) A
contour_integral p (Aw. 1/(w — z)) = 2 x pi xi % n

definition winding number:: [real = complex, complex] = complex where
winding _number v z = SOME n. ¥ e > 0. A p. winding_number_prop v zep n

proposition winding number_valid__path:
assumes valid_path v z ¢ path_image ~y
shows winding_number v z = 1 /(2xpixi) * contour_integral v (Aw. 1/(w — 2))

proposition has_contour_integral _winding number:
assumes 7: valid_path v z ¢ path__image v
shows ((Aw. 1/(w — 2)) has_contour_integral (2xpixixwinding _number v z))
~

3.2 The winding number is an integer

theorem integer winding number:
[path v; pathfinish v = pathstart v; z ¢ path__image v] = winding_number -y
z€Z

3.3 Continuity of winding number and invariance on con-
nected sets

theorem continuous at_winding number:
fixes z::complex
assumes v: path v and z: z ¢ path_image 7y
shows continuous (at z) (winding_number )

corollary continuous on_winding_number:
path v = continuous_on (— path_image ) (Aw. winding _number ~v w)

3.4 Winding number is zero "outside" a curve

proposition winding number_zero__in__outside:
assumes v: path v and loop: pathfinish v = pathstart v and z: z € outside
(path__image )
shows winding _number v z = 0

proposition winding number_part circlepath__pos_less:
assumes s < ¢t and no: norm(w — z) < r
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shows 0 < Re (winding_number(part_circlepath z r s t) w)

proposition winding number__circlepath:
assumes norm(w — z) < r shows winding_number(circlepath z r) w = 1

3.5 Winding number for a triangle

proposition winding number__triangle:
assumes z: z € interior(conver hull {a,b,c})
shows winding _number(linepath a b +++ linepath b ¢ +++ linepath ¢ a) z =
(if 0 < Im((b — a) * cnj (b — 2)) then 1 else —1)

3.6 Winding numbers for simple closed paths

proposition simple_ closed_path _winding number _inside:
assumes simple_path v
obtains Az. z € inside(path_image v) = winding_number v z = 1
| Az. z € inside(path__image v) = winding_number v z = —1

3.7 Winding number for rectangular paths

proposition winding number_rectpath:
assumes z € box al a3
shows winding _number (rectpath al a3) z = 1

proposition winding number__rectpath__outside:
assumes Re al < Re a8 Im al < Im a8
assumes z ¢ cboz al a3
shows winding _number (rectpath al a3) z = 0

end

4 Cauchy’s Integral Formula

theory Cauchy Integral Formula
imports Winding Numbers
begin

4.1 Proof

theorem Cauchy_integral_formula_ convexr__simple:
assumes convex S and holf: f holomorphic_on S and z € interior S valid_path
v path_image v C S — {z}
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pathfinish v = pathstart -
shows ((Aw. fw / (w—2)) has_contour_integral (2xpi * i * winding_number

v z* fz)y
theorem Cauchy_integral circlepath:

assumes contf: continuous_on (cball z v) f and holf: f holomorphic_on (ball z
r) and wz: norm(w—z) < r

shows ((Au. fu/(u—w)) has_contour_integral (2 = of real pi x i * f w))

(circlepath z 1)

4.2 Existence of all higher derivatives

proposition derivative is _holomorphic:
assumes open S
and fder: Nz. z € S = (f has_field_derivative ' z) (at z)
shows [’ holomorphic_on S

4.3 Morera’s theorem

proposition Morera__triangle:
[continuous_on S f; open S,
Aa b c. conver hull {a,b,c} C S
— contour_integral (linepath a b) [ +
contour_integral (linepath b ¢) f +
contour_integral (linepath ¢ a) f =
= fanalytic_on S

0]

4.4 Combining theorems for higher derivatives including Leib-
niz rule

proposition no_ isolated_singularity:
fixes z::complex
assumes f: continuous_on S f and holf: f holomorphic_on (S—K) and S: open
S and K: finite K
shows f holomorphic_on S

proposition Cauchy _integral formula_ convex:
assumes S: convex S and K: finite K and contf: continuous _on S f
and fed: (Az. © € interior S — K = f field_differentiable at x)
and z: z € interior S and vpg: valid__path ~
and pasz: path_image v C S — {z} and loop: pathfinish v = pathstart
shows ((Aw. fw / (w—2)) has_contour_integral (2%pi * i * winding_number =y

zx fz)y

corollary Cauchy_contour_integral_ circlepath:
assumes continuous_on (cball z v) f f holomorphic_on ball z 7w € ball z 1
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shows contour_integral(circlepath z r) (Au. f u/(u—w) (Suc k)) = (2 * pi * i)
x (deriv "7 k) fw / (fact k)

4.5 A holomorphic function is analytic, i.e. has local power
series

theorem holomorphic__power _series:
assumes holf: f holomorphic_on ball z r
and w: w € ball z 1
shows ((An. (deriv "~ n) fz / (fact n) *x (w—2z)"n) sums f w)

4.6 The Liouville theorem and the Fundamental Theorem of
Algebra

proposition Liouville weak:
assumes f holomorphic_on UNIV and (f —— 1) at_infinity
shows fz =1

proposition Liouville _weak__inverse:
assumes | holomorphic_on UNIV and unbounded: \B. eventually (Az. norm
(fz) > B) at_infinity
obtains z where fz = 0
theorem fundamental theorem__of algebra:
fixes a :: nat = complex
assumes a 0 = 0V (3i € {l..n}. ai # 0)
obtains z where (3. i<n. ai* 27i) =0

4.7 Weierstrass convergence theorem

proposition has complez derivative uniform__limit:
fixes z::complex
assumes cont: eventually (An. continuous on (cball z v) (f n) A
(Vw € ball z r. ((f n) has_field_derivative (f' n w)) (at
w)) F
and ulim: uniform__limit (cball z7) fg F
and F: - trivial _limit F and 0 < r
obtains g’ where
continuous_on (cball z 1) g
Aw. w € ball zr = (g has_field_derivative (g’ w)) (at w) A (An. f' n w)
— g’ w) F

4.8 On analytic functions defined by a series

corollary holomorphic_iff power _series:
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f holomorphic_on ball z r +—
(Vw € ball zr. (An. (deriv """ n) fz / (fact n) x (w—z)"n) sums f w)

4.9 General, homology form of Cauchy’s theorem

theorem Cauchy_integral_formula__global:
assumes S: open S and holf: f holomorphic_on S
and z: z € S and vpg: valid__path ~
and pasz: path_image v C S — {2z} and loop: pathfinish v = pathstart
and zero: Aw. w ¢ S = winding_number v w = 0
shows ((A\w. fw / (w—2)) has_contour_integral (2%pi = i * winding number
v z*[f2)

theorem Cauchy_theorem__global:
assumes S: open S and holf: f holomorphic_on S
and wvpg: valid_path v and loop: pathfinish v = pathstart v
and pas: path__image v C S
and zero: Aw. w ¢ S = winding_number v w = 0
shows (f has__contour_integral 0) v

corollary Cauchy_theorem__global__outside:
assumes open S f holomorphic_on S valid__path v pathfinish v = pathstart
path__image v C S
Nw. w ¢ S = w € outside(path_image )
shows (f has__contour_integral 0)

4.10 Cauchy’s inequality and more versions of Liouville

theorem Liouville theorem:
assumes holf: f holomorphic_on UNIV

and bf: bounded (range f)

shows f constant_on UNIV

4.11 Complex functions and power series

definition fps_expansion :: (complex = complex) = complex = complexr fps
where
fos_expansion f 20 = Abs_fps (An. (deriv " n) f 20 / fact n)

end

5 Conformal Mappings and Consequences of Cauchy’s
Integral Theorem

theory Conformal Mappings
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imports Cauchy__Integral _Formula

begin

5.1 Analytic continuation

proposition isolated_ zeros:
assumes holf: f holomorphic_on S
and open S connected S E € SfE=08€ SfB#0
obtains r where 0 < r and ball £ r C S and

Neezeballér — {6 = fz#0

proposition analytic__continuation:
assumes holf: f holomorphic_on S
and open S and connected S
and UC Sand £ € §
and ¢ islimpt U
and fUO [simp]: Nz. z€ U= fz=10
and w € S
shows fw = 0

corollary analytic__continuation__open:
assumes open s and open s’ and s # {} and connected s’
and s C s’
assumes | holomorphic_on s’ and g holomorphic_on s’
and \z. z€s= fz=g2z2
assumes 2z € s’
shows fz=g¢z

corollary analytic_ continuation’:
assumes f holomorphic_on S open S connected S
and U C S &€ S € islimpt U
and [ constant_on U
shows f constant_on S

5.2 Open mapping theorem

theorem open_mapping thm:
assumes holf: f holomorphic_on S
and S: open S and connected S
and open U and U C S
and frne: = f constant_on S
shows open (f ‘ U)

5.3 Maximum modulus principle

proposition maximum__ modulus _principle:
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assumes holf: f holomorphic_on S
and S: open S and connected S
and open Uand U C Sand £ € U
and no: N\z. z € U = norm(f z) < norm(f &)
shows f constant_on S

proposition mazximum__modulus__frontier:
assumes holf: f holomorphic_on (interior S)
and contf: continuous_on (closure S) f
and bos: bounded S
and leB: Nz. z € frontier S = norm(f z) < B
and £ € S
shows norm(f £) < B

5.4 Relating invertibility and nonvanishing of derivative

proposition holomorphic__has_inverse:
assumes holf: f holomorphic_on S
and open S and injf: inj_on f S
obtains g where g holomorphic_on (f ¢ S)
Nz. 2z € S = derivfzxderivg (fz) =1
Nz.z€ 8= g(fz) ==z

5.5 The Schwarz Lemma

proposition Schwarz_Lemma:
assumes holf: f holomorphic_on (ball 0 1) and [simp]: f 0 = 0
and no: Az. norm z < 1 = norm (fz) < 1
and &: norm & < 1
shows norm (f €) < norm £ and norm(deriv f 0) < 1
and ((Fz. norm z < 1 A z # 0 A norm(f z) = norm z)
V norm(deriv f 0) = 1)
= Ja. Vz.normz< 1 — fz=ax* z) A norm a = 1
(is 2P = 2Q))

corollary Schwarz Lemma’:
assumes holf: f holomorphic_on (ball 0 1) and [simp]: f 0 = 0
and no: Az. norm z < 1 = norm (f z) < 1
shows ((V&. norm £ < 1 — norm (f &) < norm &)

A norm(deriv f 0) < 1)

A (((Bz normz < 1 ANz#0Anorm(fz) = norm z)
V norm(deriv f 0) = 1)
— (Fa. Vz.normz< 1 — fz=ax*z) AN norma = 1))
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5.6 The Schwarz reflection principle

proposition Schwarz_reflection:
assumes open S and cnjs: ¢cnj S C S
and holf: f holomorphic_on (S N {z. 0 < Im z})
and contf: continuous_on (SN {z. 0 < Imz}) f
and f: N\z. [z € S;2€e Rl = (f2) € R
shows (Az. if 0 < Im z then f z else cnj(f(cnj z))) holomorphic_on S

5.7 Bloch’s theorem

proposition Bloch_unit:
assumes holf: f holomorphic_on ball a 1 and [simp]: deriv f a = 1
obtains b r where 1/12 < rand ball br C f*(ball a 1)

theorem Bloch:
assumes holf: f holomorphic_on ball a r and 0 < r
and 7" r’ < r * norm (deriv fa) / 12
obtains b where ball b ' C f “ (ball a 1)

corollary Bloch__general:
assumes holf: f holomorphic_on S and a € §
and tle: N\z. z € frontier S = t < dist a z
and rle: v < t x norm(deriv fa) / 12
obtains b where ball br C f ‘S

end

6 The Great Picard Theorem and its Applications

theory Great Picard
imports Conformal_Mappings
begin

6.1 Schottky’s theorem

theorem Schottky:
assumes holf: f holomorphic_on cball 0 1
and nof0: norm(f 0) < r


Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 16

and not01: Nz. z € cball 01 = =(fz=0V fz=1)
and 0 < tt< Inormz <t
shows norm(f z) < exp(pi * exp(pi x (2 + 2 xr 4+ 12 xt /(1 — t))))

6.2 The Little Picard Theorem

theorem Landau_Picard:
obtains R
where Az. 0 < R z
NS [f holomorphic_on cball 0 (R(f 0));
Nz.norm z < R(f0) = fz# 0 A fz # 1] = norm(deriv f 0)
< 1

theorem [ittle  Picard:
assumes holf: f holomorphic_on UNIV
and a # b range f N {a,b} = {}
obtains ¢ where f = (\z. ¢)

6.3 The Arzela—Ascoli theorem

theorem Arzela Ascoli:
fixes F :: [nat,’a::euclidean__space] = 'b::{real_normed_vector,heine__borel}
assumes compact S
and M: Anz.z € § = norm(F nz) < M
and equicont:
Nze [res; 0<e€
= 3d. 0 <dAN¥ny. yeSAnorm(z —y) <d— norm(F n
z—Fny) <e)
obtains g k where continuous_on S g strict_mono (k :: nat = nat)
Ne.0 <e=3IN.Vnz.n>NAzeS— norm(F(kn)z —
gz) <e

6.3.1 Montel’s theorem

theorem Montel:
fixes F :: [nat,complex] = complex
assumes open S
and H: Ah. h € H = h holomorphic_on S
and bounded: AK. [compact K; K C S| = 3B.YVhe H.V z € K. norm(h
z) < B
and ™™g _f: range F C H
obtains g r
where g holomorphic_on S strict_mono (r :: nat = nat)
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Nz.z € § = (An. F (rn) ©) —— g ) sequentially
AK. [compact K; K C S] = uniform_limit K (F o r) g sequentially

6.4 Some simple but useful cases of Hurwitz’s theorem

proposition Hurwitz no_ zeros:
assumes S: open S connected S

and holf: An:nat. F n holomorphic_on S
and holg: g holomorphic_on S
and ul_g: AK. [compact K; K C S| = uniform_limit K F g sequentially
and nonconst: = g constant_on S
and nz: Anz. z€S=Fnz#0
and 20 € S
shows ¢ 20 # 0

corollary Hurwitz injective:
assumes S: open S connected S
and holf: An:nat. F n holomorphic_on S
and holg: g holomorphic_on S
and ul_g: AK. [compact K; K C S| = uniform_limit K F g sequentially
and nonconst: = g constant_on S
and inj: An. inj_on (F n) S
shows inj _on g S

6.5 The Great Picard theorem

theorem great Picard:
assumes open M z € M a # b and holf: f holomorphic_on (M — {z})
and fab: A\w.we M —{z} = fu#aAfw#b
obtains [ where (f —— ) (at z) V ((inverse o f) —— 1) (at 2)

corollary great Picard_ alt:
assumes M: open M z € M and holf: f holomorphic_on (M — {z})
and non: Al. = (f —— 1) (at 2) Al. = ((inverse o f) —— 1) (at z)
obtains a where — {a} C f ‘(M — {z})

corollary great Picard_infinite:
assumes M: open M z € M and holf: f holomorphic_on (M — {z})
and non: Al. = (f —— 1) (at 2) Al. = ((inverse o f) —— 1) (at 2)
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obtains ¢ where A\w. w # a = infinite {z. t € M — {2z} A fz = w}

theorem Casorati Weierstrass:
assumes open M z € M f holomorphic_on (M — {z})
and Al - (f —— 1) (at 2) Al. = ((inverse o f) —— 1) (at 2)
shows closure(f * (M — {z})) = UNIV

end

7 Moebius functions, Equivalents of Simply Con-
nected Sets, Riemann Mapping Theorem

theory Riemann_Mapping
imports Great Picard
begin

7.1 Moebius functions are biholomorphisms of the unit disc

definition Moebius function :: [real,complex,complex] = complex where
Moebius _function = At w z. exp(i * of real t) x (z — w) / (I — enj w * 2)

7.2 A big chain of equivalents of simple connectedness for
an open set

proposition
assumes open S
shows simply connected__eq winding number__zero:
simply__connected S +—
connected S N
(Vg z. path g A path_image g C S A
pathfinish g = pathstart g A\ (z ¢ S)
— winding_number g z = 0) (is ?wn0)
and simply_connected__eq contour _integral_zero:
simply__connected S +—
connected S N
(Vg f. valid_path g A path_image g C S A
pathfinish g = pathstart g A f holomorphic_on S
— (f has__contour__integral 0) g) (is ?ci0)
and simply_connected__eq global _primitive:
simply__connected S +—
connected S N
(Vf. f holomorphic_on S —
(3h.Vz. z€ S — (h has_field derivative f z) (at 2))) (is ?gp)
and simply__connected__eq holomorphic_log:
simply__connected S +—
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connected S N\
(Vf. f holomorphic_on S A (Vz € S. fz # 0)
— (3g. g holomorphic_on S AN Vz € S. fz = exp(g 2)))) (is ?log)
and simply_connected__eq holomorphic__sqrt:
simply__connected S +—
connected S N
(Vf. f holomorphic_on S AN (NVz € S. fz# 0)
— (3g. g holomorphic_on S A (Vz € S. fz=(g2)?)) (is ?sqrt)
and simply_connected__eq biholomorphic_to_ disc:
simply__connected S +—
S={}vS=UNIVV
(3f g. f holomorphic_on S A g holomorphic_on ball 0 1 A
(VzeS. fzeball01 N g(fz)=2) A
(Vzeball01.gz€ SN f(g2z)=2)) (is ?bih)
and simply_connected__eq homeomorphic_to_ disc:
simply__connected S «— S = {} V S homeomorphic ball (0::complex) 1
(is ?disc)

corollary contractible_eq simply_connected_2d:
fixes S :: complex set
assumes open S
shows contractible S <— simply__connected S

7.3 A further chain of equivalences about components of the
complement of a simply connected set

proposition
fixes S :: complex set
assumes open S
shows simply connected__eq frontier _properties:
simply__connected S +—
connected S N
(if bounded S then connected(frontier S)
else (VY C € components(frontier S). =bounded C)) (is ?fp)
and simply__connected__eq unbounded__complement__components:
simply__connected S +—
connected S N (W C € components(— S). ~bounded C) (is Zucc)
and simply__connected__eq empty_ inside:
simply__connected S +—
connected S N inside S = {} (is %ei)

7.4 Further equivalences based on continuous logs and sqrts

proposition
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fixes S :: complex set
assumes open S
shows simply_connected__eq continuous__log:
simply__connected S +—
connected S A
(V f::complex=>complex. continuous_on Sf AN Nze S. fz#0)
— (3 g. continuous _on SgA (Vz € S. fz=exp (g2)))) (is ?log)
and simply_connected__eq continuous sqrt:
simply__connected S +—
connected S N
(V f::complex=>complex. continuous_on Sf AN Nze S. fz#0)
— (3g. continuous_on S g A (Vz € S. fz=(g2)%)) (is ?sqrt)

7.5 Finally, the Riemann Mapping Theorem

theorem Riemann_mapping theorem:
open S A simply_connected S +—
S={}vS=UNIVV
(3f g. f holomorphic_on S A g holomorphic_on ball 0 1 A
(Vze S . fzeball01 N g(fz)=2) A
(Vzebal01.gz€ S A f(gz) =2)
(is _ = ?rhs)

7.6 Applications to Winding Numbers

7.7 Winding number equality is the same as path/loop ho-
motopy in C - 0

proposition winding number _homotopic__paths eq:
assumes path p and (p: ¢ ¢ path_image p
and path ¢ and (q: ¢ ¢ path__image g
and gp: pathstart ¢ = pathstart p pathfinish ¢ = pathfinish p
shows winding number p ( = winding number q¢ ( <— homotopic__paths

(—{¢H pyq
(is ?lhs = ?rhs)

end

theory Complex_ Singularities
imports Conformal Mappings

begin

7.8 Non-essential singular points

definition
is_pole :: ('a::topological _space = 'b::real_normed_vector) = 'a = bool
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where is_pole fa = (LIM z (at a). f x :> at_infinity)

7.9 Isolated singularities

7.10 The order of non-essential singularities (i.e. removable
singularities or poles)

definition zorder :: (complex = compler) = complex = int where
zorder f z = (THE n. (3h r. r>0 A h holomorphic_on cball z v N h 2#£0
AN (Vwecball zr — {z}. fw= hwx* (w—2) powi n

A hw #0)))

definition zor_poly
i [complex = complex, compler] = complex = complex where
zor_poly f z = (SOME h. 3r. r > 0 A h holomorphic_on cball zr N h z # 0
A (Ywecball zr — {z}. fw= hwx* (w—2) powi (zorder f z)
A hw #0))

7.11 Isolated points
7.12 Isolated zeros

end

theory Complex_Residues
imports Complex_Singularities

begin

7.13 Definition of residues

definition residue :: (complex = complex) = complex = complex where
residue f z = (SOME int. 3e>0.Ve>0. e<e
— (f has__contour_integral 2xpix i xint) (circlepath z €))

theorem residue_fps expansion_over power _at_0:
assumes f has_fps_expansion F
shows residue (Az. fz / z = Sucn) 0 = fps_nth F'n

7.14 Poles and residues of some well-known functions

end
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8 The Residue Theorem, the Argument Principle
and Rouché’s Theorem

theory Residue Theorem
imports Complexr Residues HOL— Library. Landau__Symbols
begin

8.1 Cauchy’s residue theorem

theorem Residue theorem:
fixes S pts::complex set and f::complex = complex
and g::real = complex
assumes open S connected S finite pts and
holo:f holomorphic__on S—pts and
valid__path g and
loop:pathfinish g = pathstart g and
path__image g C S—pts and
homoV z. (z ¢ S) — winding_number g z = 0
shows contour_integral g f = 2 x pi = i *()_ pEpts. winding_number g p *
residue f p)

8.2 The argument principle

theorem argument_principle:

fixes f::complex = complex and poles S:: complex set

defines pz = {weS. fw = 0 V w € poles} — pz is the set of poles and zeros

assumes open S connected S and
f_holo:f holomorphic_on S—poles and
h__holo:h holomorphic_on S and
valid__path g and
loop:pathfinish g = pathstart g and
path__img:path__image g C S — pz and
homoVN z. (z ¢ S) — winding_number g z = 0 and
finite: finite pz and
poles:¥ peSNpoles. is_pole f p

shows contour_integral g (Az. deriv fx « hax [/ fz) = 2 % pi x 1 %
(> pepz. winding_number g p * h p * zorder f p)

(is PL=7R)

8.3 Coefficient asymptotics for generating functions

theorem
fixes [ :: compler = complex and n :: nat and r :: real
defines g = (Aw. fw / w ~ Suc n) and v = circlepath 0 r
assumes open A connected A cball 0 r C A r > 0
assumes | holomorphic_on A — S S C ball 0 r finite S 0 ¢ S
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shows fps_coeff conv_residues:
(deriv "~ n) f0 / fact n =
contour_integral v g / (2 * pi x 1) — (D 2€S. residue g z) (is ?thesis!)
and fps_coeff residues bound:
(Nz. normz=r = z¢ k= norm (fz) < C) = C > 0 = finite
k=
norm ((deriv =" n) f0 / fact n + (3 2€S. residue g z)) < C / r " n
corollary fps_coeff residues bigo:
fixes [ :: complexr = complex and r :: real
assumes open A connected A cball 0 r C Ar > 0
assumes [ holomorphic_on A — S S C ball 0 r finite S 0 ¢ S
assumes g: eventually (An. g n = — (> z€S. residue (A\z. fz / 2z~ Suc n) z))
sequentially
(is eventually (An. _ = —%g' n) _)
shows (An. (deriv "~ n) f0 / factn —gn) € O(An. 1 /r " n) (is (An. 2cn
-_)e0())

corollary fps coeff residues bigo”:
fixes f :: complex = complex and r :: real
assumes exp: f has_fps expansion F
assumes open A connected A cball 0 r C A r > 0
assumes | holomorphic_on A — S S C ball 0 r finite S 0 ¢ S

assumes eventually (An. g n = — (> z€S. residue (A\z. fz / 2 = Suc n) z))
sequentially
(is eventually (An. _ = —%g' n) _)

shows (An. fps_ nth Fn —gn) € OAn. 1 /r " n)(is(An. %cn— _) €

0()

8.4 Rouche’s theorem

theorem Rouche_theorem:
fixes f g::complex = complex and s:: complex set
defines fg=(\p. fp + g p)

defines zeros_fg={p<s. fg p = 0} and zeros_f={p€s. fp = 0}
assumes

open s and connected s and
finite zeros_fg and
finite zeros_f and
f_holo:f holomorphic_on s and
g__holo:g holomorphic_on s and
valid__path v and
loop:pathfinish v = pathstart v and
path__img:path__image v C s and
path_less:V z€path__image . cmod(f z) > cmod(g z) and
homoVN z. (z ¢ s) — winding_number v z = 0
shows (> pezeros_fg. winding_number v p x zorder fg p)
= (D). pezeros_f. winding number vy p x zorder f p)
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end
theory Laurent Convergence
imports HOL— Computational _Algebra.Formal Laurent_Series HOL— Library. Landau__Symbols
Residue_Theorem

begin

definition fis conv_radius :: complez fls = ereal where
fls_conv_radius f = fps_conv_radius (fls_regpart f)

definition eval fis :: complex fls = complex = complexr where
eval_fls F z = eval_fps (fls_base_factor_to_fps F) z * z powi fls_subdegree F'

definition
has__laurent__expansion :: (complex = complex) = complex fls = bool
(infix]l <has’_laurent’ _expansiony 60)
where (f has_laurent__expansion F) <—
fls_conv_radius F > 0 A eventually (Az. eval _fls F z = f z) (at 0)

theorem sums_eval fis:
fixes f
defines n = fis subdegree f
assumes norm z < fls_conv_radius f and z # 0 V n > 0
shows (Ak. fls_nth f (int k + n) * z powi (int k + n)) sums eval_fls f z

theorem not_essential _has_laurent__expansion_ 0:
assumes isolated__singularity__at f 0 not__essential f 0
shows f has_laurent_expansion laurent _expansion f 0

8.5 More Laurent expansions

8.6 Formal convergence versus analytic convergence

proposition uniform_ limit_imp_ fps expansion_eq:

fixes [ :: 'a = complex fps

assumes liml: (f —— h) F

assumes [im2: uniform_limit A Az 2. f' 2 2) g F

assumes expansions: eventually (Az. 'z has_fps_expansion fz) F g’ has_fps__expansion
g

assumes holo: eventually (Az. f’ x holomorphic_on A) F

assumes A: open A 0 € A
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assumes nontriv [simp|: F # bot
shows g = h

end

theory Meromorphic imports
Laurent__Convergence
Cauchy__Integral_Formula
HOL— Analysis.Sparse__In

begin

8.7 Remove singular points

definition remove_sings :: (complex = complex) = complex = complex where
remove_sings f z = (if ¢. f —z— ¢ then Lim (at z) f else 0)

8.8 Meromorphicity

definition meromorphic_on :: (complex = complex) = complex set = bool
(infix] <(meromorphic’ _on)> 50) where
f meromorphic_on A «— (Vz€A. IF. (Aw. f (z + w)) has_laurent__expansion
F)

8.9 Nice meromorphicity
8.10 Closure properties and proofs for individual functions

8.11 Meromorphic functions and zorder

8.12 More on poles and zeros

end

9 The Weierstrafl Factorisation Theorem

theory Weierstrass Factorization
imports Meromorphic
begin
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9.1 The elementary factors
9.2 Infinite products of elementary factors
9.3 Writing a quotient as an exponential

9.4 Constructing the sequence of zeros

9.5 The factorisation theorem for holomorphic functions

theorem weierstrass factorization:
assumes ¢ holomorphic_on A open A connected A
assumes Az. z € frontier A = -z islimpt {weA. g w = 0}
obtains & f where
h holomorphic_on A f holomorphic_on UNIV
Vz.fz=0+— Vz€A. gz=0)V (z€ ANgz=10)
YV z€A. zorder f z = zorder g z
VzeA. hz# 0
V2€A.gz=hzx [z
theorem weierstrass_factorization_ UNIV:
assumes ¢ holomorphic_on UNIV
obtains & f where
h holomorphic_on UNIV f holomorphic_on UNIV
Vz.fz2=0++—gz=10
V z. zorder f z = zorder g z
Vz.hz# 0
Vz.gz=hzx fz

9.6 The factorisation theorem for meromorphic functions

theorem weierstrass_factorization__meromorphic:
assumes mero: g nicely _meromorphic_on A and A: open A connected A
assumes no_limpt: N\z. z € frontier A = —z islimpt {weA. g w = 0 V is_pole
g w}
obtains & fI f2 where
h holomorphic_on A f1 holomorphic_on UNIV f2 holomorphic_on UNIV
V2€A. fl z=0 <— —is_polegz Ngz=10
V2€A. f22 =0 <— is_pole g z
Vz€A. —is_pole g z — zorder f1 z = zorder g z
Vz€A. is_pole g z — zorder f2 z = —zorder g z
VzeA. hz# 0
Vz€A.gz=hzxflz/ f2z2
theorem weierstrass_factorization__meromorphic_ UNIV:
assumes ¢ nicely__meromorphic_on UNIV
obtains & fI f2 where
h holomorphic_on UNIV f1 holomorphic_on UNIV f2 holomorphic_on UNIV
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Vz.fl z=0 +— —is_polegz N gz=10
Vz. f22=0 <+— is_pole g z
V z. —is_pole g z — zorder f1 z = zorder g z

Vz. is_pole g z — zorder f2 z = —zorder g z
Vz.hz+#0
V2.gz=hzxflz/f2z
end
theory Complex_Analysis
imports

Riemann_ Mapping

Residue__Theorem

Weierstrass Factorization
begin

end
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