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1 Contour integration
theory Contour_Integration

imports HOL−Analysis.Analysis
begin

1.1 Definition
definition has_contour_integral :: (complex ⇒ complex) ⇒ complex ⇒ (real ⇒
complex) ⇒ bool

(infixr ‹has ′_contour ′_integral› 50 )
where (f has_contour_integral i) g ≡

((λx. f (g x) ∗ vector_derivative g (at x within {0 ..1}))
has_integral i) {0 ..1}

definition contour_integrable_on
(infixr ‹contour ′_integrable ′_on› 50 )

where f contour_integrable_on g ≡ ∃ i. (f has_contour_integral i) g

definition contour_integral
where contour_integral g f ≡ SOME i. (f has_contour_integral i) g ∨ ¬ f

contour_integrable_on g ∧ i=0

1.2 Relation to subpath construction
1.3 Cauchy’s theorem where there’s a primitive

corollary Cauchy_theorem_primitive:
assumes

∧
x. x ∈ S =⇒ (f has_field_derivative f ′ x) (at x within S)

and valid_path g path_image g ⊆ S pathfinish g = pathstart g
shows (f ′ has_contour_integral 0 ) g

1.4 Reversing the order in a double path integral

proposition contour_integral_swap:
assumes fcon: continuous_on (path_image g × path_image h) (λ(y1 ,y2 ). f y1

y2 )
and vp: valid_path g valid_path h
and gvcon: continuous_on {0 ..1} (λt. vector_derivative g (at t))
and hvcon: continuous_on {0 ..1} (λt. vector_derivative h (at t))

Contour{_}{\kern 0pt}Integration.html
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shows contour_integral g (λw. contour_integral h (f w)) =
contour_integral h (λz. contour_integral g (λw. f w z))

1.5 Partial circle path
definition part_circlepath :: [complex, real, real, real, real] ⇒ complex

where part_circlepath z r s t ≡ λx. z + of_real r ∗ exp (i ∗ of_real (linepath s
t x))

proposition path_image_part_circlepath:
assumes s ≤ t

shows path_image (part_circlepath z r s t) = {z + r ∗ exp(i ∗ of_real x) | x.
s ≤ x ∧ x ≤ t}

corollary contour_integral_bound_part_circlepath_strong:
assumes f contour_integrable_on part_circlepath z r s t

and finite k and 0 ≤ B 0 < r s ≤ t
and

∧
x. x ∈ path_image(part_circlepath z r s t) − k =⇒ norm(f x) ≤ B

shows cmod (contour_integral (part_circlepath z r s t) f ) ≤ B ∗ r ∗ (t − s)

1.6 Special case of one complete circle
definition circlepath :: [complex, real, real] ⇒ complex

where circlepath z r ≡ part_circlepath z r 0 (2∗pi)

1.7 Uniform convergence of path integral
proposition contour_integral_uniform_limit:

assumes ev_fint: eventually (λn:: ′a. (f n) contour_integrable_on γ) F
and ul_f : uniform_limit (path_image γ) f l F
and noleB:

∧
t. t ∈ {0 ..1} =⇒ norm (vector_derivative γ (at t)) ≤ B

and γ: valid_path γ
and [simp]: ¬ trivial_limit F

shows l contour_integrable_on γ ((λn. contour_integral γ (f n)) −−−→ con-
tour_integral γ l) F

end

2 Complex Path Integrals and Cauchy’s Integral
Theorem

theory Cauchy_Integral_Theorem
imports

HOL−Analysis.Analysis
Contour_Integration

begin

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html
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proposition Cauchy_theorem_triangle_interior :
assumes contf : continuous_on (convex hull {a,b,c}) f

and holf : f holomorphic_on interior (convex hull {a,b,c})
shows (f has_contour_integral 0 ) (linepath a b +++ linepath b c +++ linepath

c a)

2.1 Cauchy’s theorem for a convex set

corollary Cauchy_theorem_convex_simple:
assumes holf : f holomorphic_on S

and convex S valid_path g path_image g ⊆ S pathfinish g = pathstart g
shows (f has_contour_integral 0 ) g

2.2 Homotopy forms of Cauchy’s theorem

proposition Cauchy_theorem_homotopic_paths:
assumes hom: homotopic_paths S g h

and open S and f : f holomorphic_on S
and vpg: valid_path g and vph: valid_path h

shows contour_integral g f = contour_integral h f

proposition Cauchy_theorem_homotopic_loops:
assumes hom: homotopic_loops S g h

and open S and f : f holomorphic_on S
and vpg: valid_path g and vph: valid_path h

shows contour_integral g f = contour_integral h f

end

3 Winding numbers
theory Winding_Numbers

imports Cauchy_Integral_Theorem
begin

3.1 Definition
definition winding_number_prop :: [real ⇒ complex, complex, real, real ⇒ com-
plex, complex] ⇒ bool where

winding_number_prop γ z e p n ≡

Winding{_}{\kern 0pt}Numbers.html
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valid_path p ∧ z /∈ path_image p ∧
pathstart p = pathstart γ ∧
pathfinish p = pathfinish γ ∧
(∀ t ∈ {0 ..1}. norm(γ t − p t) < e) ∧
contour_integral p (λw. 1/(w − z)) = 2 ∗ pi ∗ i ∗ n

definition winding_number :: [real ⇒ complex, complex] ⇒ complex where
winding_number γ z ≡ SOME n. ∀ e > 0 . ∃ p. winding_number_prop γ z e p n

proposition winding_number_valid_path:
assumes valid_path γ z /∈ path_image γ
shows winding_number γ z = 1/(2∗pi∗i) ∗ contour_integral γ (λw. 1/(w − z))

proposition has_contour_integral_winding_number :
assumes γ: valid_path γ z /∈ path_image γ

shows ((λw. 1/(w − z)) has_contour_integral (2∗pi∗i∗winding_number γ z))
γ

3.2 The winding number is an integer

theorem integer_winding_number :
[[path γ; pathfinish γ = pathstart γ; z /∈ path_image γ]] =⇒ winding_number γ

z ∈ �

3.3 Continuity of winding number and invariance on con-
nected sets

theorem continuous_at_winding_number :
fixes z::complex
assumes γ: path γ and z: z /∈ path_image γ
shows continuous (at z) (winding_number γ)

corollary continuous_on_winding_number :
path γ =⇒ continuous_on (− path_image γ) (λw. winding_number γ w)

3.4 Winding number is zero "outside" a curve
proposition winding_number_zero_in_outside:

assumes γ: path γ and loop: pathfinish γ = pathstart γ and z: z ∈ outside
(path_image γ)

shows winding_number γ z = 0

proposition winding_number_part_circlepath_pos_less:
assumes s < t and no: norm(w − z) < r

Winding{_}{\kern 0pt}Numbers.html
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shows 0 < Re (winding_number(part_circlepath z r s t) w)

proposition winding_number_circlepath:
assumes norm(w − z) < r shows winding_number(circlepath z r) w = 1

3.5 Winding number for a triangle

proposition winding_number_triangle:
assumes z: z ∈ interior(convex hull {a,b,c})

shows winding_number(linepath a b +++ linepath b c +++ linepath c a) z =
(if 0 < Im((b − a) ∗ cnj (b − z)) then 1 else −1 )

3.6 Winding numbers for simple closed paths

proposition simple_closed_path_winding_number_inside:
assumes simple_path γ
obtains

∧
z. z ∈ inside(path_image γ) =⇒ winding_number γ z = 1

|
∧

z. z ∈ inside(path_image γ) =⇒ winding_number γ z = −1

3.7 Winding number for rectangular paths
proposition winding_number_rectpath:

assumes z ∈ box a1 a3
shows winding_number (rectpath a1 a3 ) z = 1

proposition winding_number_rectpath_outside:
assumes Re a1 ≤ Re a3 Im a1 ≤ Im a3
assumes z /∈ cbox a1 a3
shows winding_number (rectpath a1 a3 ) z = 0

end

4 Cauchy’s Integral Formula
theory Cauchy_Integral_Formula

imports Winding_Numbers
begin

4.1 Proof

theorem Cauchy_integral_formula_convex_simple:
assumes convex S and holf : f holomorphic_on S and z ∈ interior S valid_path

γ path_image γ ⊆ S − {z}

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html
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pathfinish γ = pathstart γ
shows ((λw. f w / (w−z)) has_contour_integral (2∗pi ∗ i ∗ winding_number

γ z ∗ f z)) γ
theorem Cauchy_integral_circlepath:

assumes contf : continuous_on (cball z r) f and holf : f holomorphic_on (ball z
r) and wz: norm(w−z) < r

shows ((λu. f u/(u−w)) has_contour_integral (2 ∗ of_real pi ∗ i ∗ f w))
(circlepath z r)

4.2 Existence of all higher derivatives
proposition derivative_is_holomorphic:

assumes open S
and fder :

∧
z. z ∈ S =⇒ (f has_field_derivative f ′ z) (at z)

shows f ′ holomorphic_on S

4.3 Morera’s theorem

proposition Morera_triangle:
[[continuous_on S f ; open S ;∧

a b c. convex hull {a,b,c} ⊆ S
−→ contour_integral (linepath a b) f +

contour_integral (linepath b c) f +
contour_integral (linepath c a) f = 0 ]]

=⇒ f analytic_on S

4.4 Combining theorems for higher derivatives including Leib-
niz rule

proposition no_isolated_singularity:
fixes z::complex
assumes f : continuous_on S f and holf : f holomorphic_on (S−K ) and S : open

S and K : finite K
shows f holomorphic_on S

proposition Cauchy_integral_formula_convex:
assumes S : convex S and K : finite K and contf : continuous_on S f

and fcd: (
∧

x. x ∈ interior S − K =⇒ f field_differentiable at x)
and z: z ∈ interior S and vpg: valid_path γ
and pasz: path_image γ ⊆ S − {z} and loop: pathfinish γ = pathstart γ

shows ((λw. f w / (w−z)) has_contour_integral (2∗pi ∗ i ∗ winding_number γ
z ∗ f z)) γ

corollary Cauchy_contour_integral_circlepath:
assumes continuous_on (cball z r) f f holomorphic_on ball z r w ∈ ball z r

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html
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shows contour_integral(circlepath z r) (λu. f u/(u−w)^(Suc k)) = (2 ∗ pi ∗ i)
∗ (deriv ^^ k) f w / (fact k)

4.5 A holomorphic function is analytic, i.e. has local power
series

theorem holomorphic_power_series:
assumes holf : f holomorphic_on ball z r

and w: w ∈ ball z r
shows ((λn. (deriv ^^ n) f z / (fact n) ∗ (w−z)^n) sums f w)

4.6 The Liouville theorem and the Fundamental Theorem of
Algebra

proposition Liouville_weak:
assumes f holomorphic_on UNIV and (f −−−→ l) at_infinity

shows f z = l

proposition Liouville_weak_inverse:
assumes f holomorphic_on UNIV and unbounded:

∧
B. eventually (λx. norm

(f x) ≥ B) at_infinity
obtains z where f z = 0

theorem fundamental_theorem_of_algebra:
fixes a :: nat ⇒ complex

assumes a 0 = 0 ∨ (∃ i ∈ {1 ..n}. a i 6= 0 )
obtains z where (

∑
i≤n. a i ∗ z^i) = 0

4.7 Weierstrass convergence theorem
proposition has_complex_derivative_uniform_limit:

fixes z::complex
assumes cont: eventually (λn. continuous_on (cball z r) (f n) ∧

(∀w ∈ ball z r . ((f n) has_field_derivative (f ′ n w)) (at
w))) F

and ulim: uniform_limit (cball z r) f g F
and F : ¬ trivial_limit F and 0 < r

obtains g ′ where
continuous_on (cball z r) g∧

w. w ∈ ball z r =⇒ (g has_field_derivative (g ′ w)) (at w) ∧ ((λn. f ′ n w)
−−−→ g ′ w) F

4.8 On analytic functions defined by a series

corollary holomorphic_iff_power_series:

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html
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f holomorphic_on ball z r ←→
(∀w ∈ ball z r . (λn. (deriv ^^ n) f z / (fact n) ∗ (w−z)^n) sums f w)

4.9 General, homology form of Cauchy’s theorem

theorem Cauchy_integral_formula_global:
assumes S : open S and holf : f holomorphic_on S

and z: z ∈ S and vpg: valid_path γ
and pasz: path_image γ ⊆ S − {z} and loop: pathfinish γ = pathstart γ
and zero:

∧
w. w /∈ S =⇒ winding_number γ w = 0

shows ((λw. f w / (w−z)) has_contour_integral (2∗pi ∗ i ∗ winding_number
γ z ∗ f z)) γ

theorem Cauchy_theorem_global:
assumes S : open S and holf : f holomorphic_on S

and vpg: valid_path γ and loop: pathfinish γ = pathstart γ
and pas: path_image γ ⊆ S
and zero:

∧
w. w /∈ S =⇒ winding_number γ w = 0

shows (f has_contour_integral 0 ) γ

corollary Cauchy_theorem_global_outside:
assumes open S f holomorphic_on S valid_path γ pathfinish γ = pathstart γ

path_image γ ⊆ S∧
w. w /∈ S =⇒ w ∈ outside(path_image γ)

shows (f has_contour_integral 0 ) γ

4.10 Cauchy’s inequality and more versions of Liouville
theorem Liouville_theorem:

assumes holf : f holomorphic_on UNIV
and bf : bounded (range f )

shows f constant_on UNIV

4.11 Complex functions and power series
definition fps_expansion :: (complex ⇒ complex) ⇒ complex ⇒ complex fps
where

fps_expansion f z0 = Abs_fps (λn. (deriv ^^ n) f z0 / fact n)

end

5 Conformal Mappings and Consequences of Cauchy’s
Integral Theorem

theory Conformal_Mappings

Conformal{_}{\kern 0pt}Mappings.html
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imports Cauchy_Integral_Formula

begin

5.1 Analytic continuation
proposition isolated_zeros:

assumes holf : f holomorphic_on S
and open S connected S ξ ∈ S f ξ = 0 β ∈ S f β 6= 0

obtains r where 0 < r and ball ξ r ⊆ S and∧
z. z ∈ ball ξ r − {ξ} =⇒ f z 6= 0

proposition analytic_continuation:
assumes holf : f holomorphic_on S

and open S and connected S
and U ⊆ S and ξ ∈ S
and ξ islimpt U
and fU0 [simp]:

∧
z. z ∈ U =⇒ f z = 0

and w ∈ S
shows f w = 0

corollary analytic_continuation_open:
assumes open s and open s ′ and s 6= {} and connected s ′

and s ⊆ s ′

assumes f holomorphic_on s ′ and g holomorphic_on s ′

and
∧

z. z ∈ s =⇒ f z = g z
assumes z ∈ s ′

shows f z = g z

corollary analytic_continuation ′:
assumes f holomorphic_on S open S connected S

and U ⊆ S ξ ∈ S ξ islimpt U
and f constant_on U

shows f constant_on S

5.2 Open mapping theorem

theorem open_mapping_thm:
assumes holf : f holomorphic_on S

and S : open S and connected S
and open U and U ⊆ S
and fne: ¬ f constant_on S

shows open (f ‘ U )

5.3 Maximum modulus principle
proposition maximum_modulus_principle:

Conformal{_}{\kern 0pt}Mappings.html


Conformal_Mappings.thy 14

assumes holf : f holomorphic_on S
and S : open S and connected S
and open U and U ⊆ S and ξ ∈ U
and no:

∧
z. z ∈ U =⇒ norm(f z) ≤ norm(f ξ)

shows f constant_on S

proposition maximum_modulus_frontier :
assumes holf : f holomorphic_on (interior S)

and contf : continuous_on (closure S) f
and bos: bounded S
and leB:

∧
z. z ∈ frontier S =⇒ norm(f z) ≤ B

and ξ ∈ S
shows norm(f ξ) ≤ B

5.4 Relating invertibility and nonvanishing of derivative

proposition holomorphic_has_inverse:
assumes holf : f holomorphic_on S

and open S and injf : inj_on f S
obtains g where g holomorphic_on (f ‘ S)∧

z. z ∈ S =⇒ deriv f z ∗ deriv g (f z) = 1∧
z. z ∈ S =⇒ g(f z) = z

5.5 The Schwarz Lemma

proposition Schwarz_Lemma:
assumes holf : f holomorphic_on (ball 0 1 ) and [simp]: f 0 = 0

and no:
∧

z. norm z < 1 =⇒ norm (f z) < 1
and ξ: norm ξ < 1

shows norm (f ξ) ≤ norm ξ and norm(deriv f 0 ) ≤ 1
and ((∃ z. norm z < 1 ∧ z 6= 0 ∧ norm(f z) = norm z)

∨ norm(deriv f 0 ) = 1 )
=⇒ ∃α. (∀ z. norm z < 1 −→ f z = α ∗ z) ∧ norm α = 1

(is ?P =⇒ ?Q)

corollary Schwarz_Lemma ′:
assumes holf : f holomorphic_on (ball 0 1 ) and [simp]: f 0 = 0

and no:
∧

z. norm z < 1 =⇒ norm (f z) < 1
shows ((∀ ξ. norm ξ < 1 −→ norm (f ξ) ≤ norm ξ)

∧ norm(deriv f 0 ) ≤ 1 )
∧ (((∃ z. norm z < 1 ∧ z 6= 0 ∧ norm(f z) = norm z)
∨ norm(deriv f 0 ) = 1 )
−→ (∃α. (∀ z. norm z < 1 −→ f z = α ∗ z) ∧ norm α = 1 ))

Conformal{_}{\kern 0pt}Mappings.html
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5.6 The Schwarz reflection principle

proposition Schwarz_reflection:
assumes open S and cnjs: cnj ‘ S ⊆ S

and holf : f holomorphic_on (S ∩ {z. 0 < Im z})
and contf : continuous_on (S ∩ {z. 0 ≤ Im z}) f
and f :

∧
z. [[z ∈ S ; z ∈ �]] =⇒ (f z) ∈ �

shows (λz. if 0 ≤ Im z then f z else cnj(f (cnj z))) holomorphic_on S

5.7 Bloch’s theorem

proposition Bloch_unit:
assumes holf : f holomorphic_on ball a 1 and [simp]: deriv f a = 1
obtains b r where 1/12 < r and ball b r ⊆ f ‘ (ball a 1 )

theorem Bloch:
assumes holf : f holomorphic_on ball a r and 0 < r

and r ′: r ′ ≤ r ∗ norm (deriv f a) / 12
obtains b where ball b r ′ ⊆ f ‘ (ball a r)

corollary Bloch_general:
assumes holf : f holomorphic_on S and a ∈ S

and tle:
∧

z. z ∈ frontier S =⇒ t ≤ dist a z
and rle: r ≤ t ∗ norm(deriv f a) / 12

obtains b where ball b r ⊆ f ‘ S

end

6 The Great Picard Theorem and its Applications
theory Great_Picard

imports Conformal_Mappings
begin

6.1 Schottky’s theorem

theorem Schottky:
assumes holf : f holomorphic_on cball 0 1

and nof0 : norm(f 0 ) ≤ r
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and not01 :
∧

z. z ∈ cball 0 1 =⇒ ¬(f z = 0 ∨ f z = 1 )
and 0 < t t < 1 norm z ≤ t

shows norm(f z) ≤ exp(pi ∗ exp(pi ∗ (2 + 2 ∗ r + 12 ∗ t / (1 − t))))

6.2 The Little Picard Theorem
theorem Landau_Picard:

obtains R
where

∧
z. 0 < R z∧

f . [[f holomorphic_on cball 0 (R(f 0 ));∧
z. norm z ≤ R(f 0 ) =⇒ f z 6= 0 ∧ f z 6= 1 ]] =⇒ norm(deriv f 0 )

< 1

theorem little_Picard:
assumes holf : f holomorphic_on UNIV

and a 6= b range f ∩ {a,b} = {}
obtains c where f = (λx. c)

6.3 The Arzelà–Ascoli theorem

theorem Arzela_Ascoli:
fixes F :: [nat, ′a::euclidean_space] ⇒ ′b::{real_normed_vector ,heine_borel}
assumes compact S

and M :
∧

n x. x ∈ S =⇒ norm(F n x) ≤ M
and equicont:∧

x e. [[x ∈ S ; 0 < e]]
=⇒ ∃ d. 0 < d ∧ (∀n y. y ∈ S ∧ norm(x − y) < d −→ norm(F n

x − F n y) < e)
obtains g k where continuous_on S g strict_mono (k :: nat ⇒ nat)∧

e. 0 < e =⇒ ∃N . ∀n x. n ≥ N ∧ x ∈ S −→ norm(F(k n) x −
g x) < e

6.3.1 Montel’s theorem
theorem Montel:

fixes F :: [nat,complex] ⇒ complex
assumes open S

and H:
∧

h. h ∈ H =⇒ h holomorphic_on S
and bounded:

∧
K . [[compact K ; K ⊆ S ]] =⇒ ∃B. ∀ h ∈ H. ∀ z ∈ K . norm(h

z) ≤ B
and rng_f : range F ⊆ H

obtains g r
where g holomorphic_on S strict_mono (r :: nat ⇒ nat)
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∧
x. x ∈ S =⇒ ((λn. F (r n) x) −−−→ g x) sequentially∧
K . [[compact K ; K ⊆ S ]] =⇒ uniform_limit K (F ◦ r) g sequentially

6.4 Some simple but useful cases of Hurwitz’s theorem
proposition Hurwitz_no_zeros:

assumes S : open S connected S
and holf :

∧
n::nat. F n holomorphic_on S

and holg: g holomorphic_on S
and ul_g:

∧
K . [[compact K ; K ⊆ S ]] =⇒ uniform_limit K F g sequentially

and nonconst: ¬ g constant_on S
and nz:

∧
n z. z ∈ S =⇒ F n z 6= 0

and z0 ∈ S
shows g z0 6= 0

corollary Hurwitz_injective:
assumes S : open S connected S

and holf :
∧

n::nat. F n holomorphic_on S
and holg: g holomorphic_on S
and ul_g:

∧
K . [[compact K ; K ⊆ S ]] =⇒ uniform_limit K F g sequentially

and nonconst: ¬ g constant_on S
and inj:

∧
n. inj_on (F n) S

shows inj_on g S

6.5 The Great Picard theorem

theorem great_Picard:
assumes open M z ∈ M a 6= b and holf : f holomorphic_on (M − {z})

and fab:
∧

w. w ∈ M − {z} =⇒ f w 6= a ∧ f w 6= b
obtains l where (f −−−→ l) (at z) ∨ ((inverse ◦ f ) −−−→ l) (at z)

corollary great_Picard_alt:
assumes M : open M z ∈ M and holf : f holomorphic_on (M − {z})

and non:
∧

l. ¬ (f −−−→ l) (at z)
∧

l. ¬ ((inverse ◦ f ) −−−→ l) (at z)
obtains a where − {a} ⊆ f ‘ (M − {z})

corollary great_Picard_infinite:
assumes M : open M z ∈ M and holf : f holomorphic_on (M − {z})

and non:
∧

l. ¬ (f −−−→ l) (at z)
∧

l. ¬ ((inverse ◦ f ) −−−→ l) (at z)
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obtains a where
∧

w. w 6= a =⇒ infinite {x. x ∈ M − {z} ∧ f x = w}

theorem Casorati_Weierstrass:
assumes open M z ∈ M f holomorphic_on (M − {z})

and
∧

l. ¬ (f −−−→ l) (at z)
∧

l. ¬ ((inverse ◦ f ) −−−→ l) (at z)
shows closure(f ‘ (M − {z})) = UNIV

end

7 Moebius functions, Equivalents of Simply Con-
nected Sets, Riemann Mapping Theorem

theory Riemann_Mapping
imports Great_Picard
begin

7.1 Moebius functions are biholomorphisms of the unit disc
definition Moebius_function :: [real,complex,complex] ⇒ complex where

Moebius_function ≡ λt w z. exp(i ∗ of_real t) ∗ (z − w) / (1 − cnj w ∗ z)

7.2 A big chain of equivalents of simple connectedness for
an open set

proposition
assumes open S
shows simply_connected_eq_winding_number_zero:

simply_connected S ←→
connected S ∧
(∀ g z. path g ∧ path_image g ⊆ S ∧

pathfinish g = pathstart g ∧ (z /∈ S)
−→ winding_number g z = 0 ) (is ?wn0 )

and simply_connected_eq_contour_integral_zero:
simply_connected S ←→

connected S ∧
(∀ g f . valid_path g ∧ path_image g ⊆ S ∧

pathfinish g = pathstart g ∧ f holomorphic_on S
−→ (f has_contour_integral 0 ) g) (is ?ci0 )

and simply_connected_eq_global_primitive:
simply_connected S ←→

connected S ∧
(∀ f . f holomorphic_on S −→

(∃ h. ∀ z. z ∈ S −→ (h has_field_derivative f z) (at z))) (is ?gp)
and simply_connected_eq_holomorphic_log:

simply_connected S ←→
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connected S ∧
(∀ f . f holomorphic_on S ∧ (∀ z ∈ S . f z 6= 0 )
−→ (∃ g. g holomorphic_on S ∧ (∀ z ∈ S . f z = exp(g z)))) (is ?log)

and simply_connected_eq_holomorphic_sqrt:
simply_connected S ←→

connected S ∧
(∀ f . f holomorphic_on S ∧ (∀ z ∈ S . f z 6= 0 )
−→ (∃ g. g holomorphic_on S ∧ (∀ z ∈ S . f z = (g z)2))) (is ?sqrt)

and simply_connected_eq_biholomorphic_to_disc:
simply_connected S ←→

S = {} ∨ S = UNIV ∨
(∃ f g. f holomorphic_on S ∧ g holomorphic_on ball 0 1 ∧

(∀ z ∈ S . f z ∈ ball 0 1 ∧ g(f z) = z) ∧
(∀ z ∈ ball 0 1 . g z ∈ S ∧ f (g z) = z)) (is ?bih)

and simply_connected_eq_homeomorphic_to_disc:
simply_connected S ←→ S = {} ∨ S homeomorphic ball (0 ::complex) 1

(is ?disc)

corollary contractible_eq_simply_connected_2d:
fixes S :: complex set
assumes open S
shows contractible S ←→ simply_connected S

7.3 A further chain of equivalences about components of the
complement of a simply connected set

proposition
fixes S :: complex set
assumes open S
shows simply_connected_eq_frontier_properties:

simply_connected S ←→
connected S ∧

(if bounded S then connected(frontier S)
else (∀C ∈ components(frontier S). ¬bounded C )) (is ?fp)

and simply_connected_eq_unbounded_complement_components:
simply_connected S ←→
connected S ∧ (∀C ∈ components(− S). ¬bounded C ) (is ?ucc)

and simply_connected_eq_empty_inside:
simply_connected S ←→
connected S ∧ inside S = {} (is ?ei)

7.4 Further equivalences based on continuous logs and sqrts

proposition
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fixes S :: complex set
assumes open S
shows simply_connected_eq_continuous_log:

simply_connected S ←→
connected S ∧
(∀ f ::complex⇒complex. continuous_on S f ∧ (∀ z ∈ S . f z 6= 0 )
−→ (∃ g. continuous_on S g ∧ (∀ z ∈ S . f z = exp (g z)))) (is ?log)

and simply_connected_eq_continuous_sqrt:
simply_connected S ←→
connected S ∧
(∀ f ::complex⇒complex. continuous_on S f ∧ (∀ z ∈ S . f z 6= 0 )
−→ (∃ g. continuous_on S g ∧ (∀ z ∈ S . f z = (g z)2))) (is ?sqrt)

7.5 Finally, the Riemann Mapping Theorem
theorem Riemann_mapping_theorem:

open S ∧ simply_connected S ←→
S = {} ∨ S = UNIV ∨
(∃ f g. f holomorphic_on S ∧ g holomorphic_on ball 0 1 ∧

(∀ z ∈ S . f z ∈ ball 0 1 ∧ g(f z) = z) ∧
(∀ z ∈ ball 0 1 . g z ∈ S ∧ f (g z) = z))

(is _ = ?rhs)

7.6 Applications to Winding Numbers
7.7 Winding number equality is the same as path/loop ho-

motopy in C - 0

proposition winding_number_homotopic_paths_eq:
assumes path p and ζp: ζ /∈ path_image p

and path q and ζq: ζ /∈ path_image q
and qp: pathstart q = pathstart p pathfinish q = pathfinish p
shows winding_number p ζ = winding_number q ζ ←→ homotopic_paths

(−{ζ}) p q
(is ?lhs = ?rhs)

end
theory Complex_Singularities

imports Conformal_Mappings
begin

7.8 Non-essential singular points

definition
is_pole :: ( ′a::topological_space ⇒ ′b::real_normed_vector) ⇒ ′a ⇒ bool
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where is_pole f a = (LIM x (at a). f x :> at_infinity)

7.9 Isolated singularities
7.10 The order of non-essential singularities (i.e. removable

singularities or poles)
definition zorder :: (complex ⇒ complex) ⇒ complex ⇒ int where

zorder f z = (THE n. (∃ h r . r>0 ∧ h holomorphic_on cball z r ∧ h z 6=0
∧ (∀w∈cball z r − {z}. f w = h w ∗ (w−z) powi n
∧ h w 6=0 )))

definition zor_poly
:: [complex ⇒ complex, complex] ⇒ complex ⇒ complex where

zor_poly f z = (SOME h. ∃ r . r > 0 ∧ h holomorphic_on cball z r ∧ h z 6= 0
∧ (∀w∈cball z r − {z}. f w = h w ∗ (w−z) powi (zorder f z)
∧ h w 6=0 ))

7.11 Isolated points
7.12 Isolated zeros

end
theory Complex_Residues

imports Complex_Singularities
begin

7.13 Definition of residues
definition residue :: (complex ⇒ complex) ⇒ complex ⇒ complex where

residue f z = (SOME int. ∃ e>0 . ∀ ε>0 . ε<e
−→ (f has_contour_integral 2∗pi∗ i ∗int) (circlepath z ε))

theorem residue_fps_expansion_over_power_at_0 :
assumes f has_fps_expansion F
shows residue (λz. f z / z ^ Suc n) 0 = fps_nth F n

7.14 Poles and residues of some well-known functions

end
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8 The Residue Theorem, the Argument Principle
and Rouché’s Theorem

theory Residue_Theorem
imports Complex_Residues HOL−Library.Landau_Symbols

begin

8.1 Cauchy’s residue theorem

theorem Residue_theorem:
fixes S pts::complex set and f ::complex ⇒ complex

and g::real ⇒ complex
assumes open S connected S finite pts and

holo:f holomorphic_on S−pts and
valid_path g and
loop:pathfinish g = pathstart g and
path_image g ⊆ S−pts and
homo:∀ z. (z /∈ S) −→ winding_number g z = 0

shows contour_integral g f = 2 ∗ pi ∗ i ∗(
∑

p∈pts. winding_number g p ∗
residue f p)

8.2 The argument principle
theorem argument_principle:

fixes f ::complex ⇒ complex and poles S :: complex set
defines pz ≡ {w∈S . f w = 0 ∨ w ∈ poles} — pz is the set of poles and zeros
assumes open S connected S and

f_holo:f holomorphic_on S−poles and
h_holo:h holomorphic_on S and
valid_path g and
loop:pathfinish g = pathstart g and
path_img:path_image g ⊆ S − pz and
homo:∀ z. (z /∈ S) −→ winding_number g z = 0 and
finite:finite pz and
poles:∀ p∈S∩poles. is_pole f p

shows contour_integral g (λx. deriv f x ∗ h x / f x) = 2 ∗ pi ∗ i ∗
(
∑

p∈pz. winding_number g p ∗ h p ∗ zorder f p)
(is ?L=?R)

8.3 Coefficient asymptotics for generating functions
theorem

fixes f :: complex ⇒ complex and n :: nat and r :: real
defines g ≡ (λw. f w / w ^ Suc n) and γ ≡ circlepath 0 r
assumes open A connected A cball 0 r ⊆ A r > 0
assumes f holomorphic_on A − S S ⊆ ball 0 r finite S 0 /∈ S
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shows fps_coeff_conv_residues:
(deriv ^^ n) f 0 / fact n =

contour_integral γ g / (2 ∗ pi ∗ i) − (
∑

z∈S . residue g z) (is ?thesis1 )
and fps_coeff_residues_bound:

(
∧

z. norm z = r =⇒ z /∈ k =⇒ norm (f z) ≤ C ) =⇒ C ≥ 0 =⇒ finite
k =⇒

norm ((deriv ^^ n) f 0 / fact n + (
∑

z∈S . residue g z)) ≤ C / r ^ n
corollary fps_coeff_residues_bigo:

fixes f :: complex ⇒ complex and r :: real
assumes open A connected A cball 0 r ⊆ A r > 0
assumes f holomorphic_on A − S S ⊆ ball 0 r finite S 0 /∈ S
assumes g: eventually (λn. g n = −(

∑
z∈S . residue (λz. f z / z ^ Suc n) z))

sequentially
(is eventually (λn. _ = −?g ′ n) _)

shows (λn. (deriv ^^ n) f 0 / fact n − g n) ∈ O(λn. 1 / r ^ n) (is (λn. ?c n
− _) ∈ O(_))

corollary fps_coeff_residues_bigo ′:
fixes f :: complex ⇒ complex and r :: real
assumes exp: f has_fps_expansion F
assumes open A connected A cball 0 r ⊆ A r > 0
assumes f holomorphic_on A − S S ⊆ ball 0 r finite S 0 /∈ S
assumes eventually (λn. g n = −(

∑
z∈S . residue (λz. f z / z ^ Suc n) z))

sequentially
(is eventually (λn. _ = −?g ′ n) _)

shows (λn. fps_nth F n − g n) ∈ O(λn. 1 / r ^ n) (is (λn. ?c n − _) ∈
O(_))

8.4 Rouche’s theorem
theorem Rouche_theorem:

fixes f g::complex ⇒ complex and s:: complex set
defines fg≡(λp. f p + g p)
defines zeros_fg≡{p∈s. fg p = 0} and zeros_f≡{p∈s. f p = 0}
assumes

open s and connected s and
finite zeros_fg and
finite zeros_f and
f_holo:f holomorphic_on s and
g_holo:g holomorphic_on s and
valid_path γ and
loop:pathfinish γ = pathstart γ and
path_img:path_image γ ⊆ s and
path_less:∀ z∈path_image γ. cmod(f z) > cmod(g z) and
homo:∀ z. (z /∈ s) −→ winding_number γ z = 0

shows (
∑

p∈zeros_fg. winding_number γ p ∗ zorder fg p)
= (

∑
p∈zeros_f . winding_number γ p ∗ zorder f p)
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end
theory Laurent_Convergence
imports HOL−Computational_Algebra.Formal_Laurent_Series HOL−Library.Landau_Symbols

Residue_Theorem

begin

definition fls_conv_radius :: complex fls ⇒ ereal where
fls_conv_radius f = fps_conv_radius (fls_regpart f )

definition eval_fls :: complex fls ⇒ complex ⇒ complex where
eval_fls F z = eval_fps (fls_base_factor_to_fps F) z ∗ z powi fls_subdegree F

definition
has_laurent_expansion :: (complex ⇒ complex) ⇒ complex fls ⇒ bool
(infixl ‹has ′_laurent ′_expansion› 60 )
where (f has_laurent_expansion F) ←→

fls_conv_radius F > 0 ∧ eventually (λz. eval_fls F z = f z) (at 0 )

theorem sums_eval_fls:
fixes f
defines n ≡ fls_subdegree f
assumes norm z < fls_conv_radius f and z 6= 0 ∨ n ≥ 0
shows (λk. fls_nth f (int k + n) ∗ z powi (int k + n)) sums eval_fls f z

theorem not_essential_has_laurent_expansion_0 :
assumes isolated_singularity_at f 0 not_essential f 0
shows f has_laurent_expansion laurent_expansion f 0

8.5 More Laurent expansions
8.6 Formal convergence versus analytic convergence
proposition uniform_limit_imp_fps_expansion_eq:

fixes f :: ′a ⇒ complex fps
assumes lim1 : (f −−−→ h) F
assumes lim2 : uniform_limit A (λx z. f ′ x z) g ′ F
assumes expansions: eventually (λx. f ′ x has_fps_expansion f x) F g ′ has_fps_expansion

g
assumes holo: eventually (λx. f ′ x holomorphic_on A) F
assumes A: open A 0 ∈ A
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assumes nontriv [simp]: F 6= bot
shows g = h

end

theory Meromorphic imports
Laurent_Convergence
Cauchy_Integral_Formula
HOL−Analysis.Sparse_In

begin

8.7 Remove singular points
definition remove_sings :: (complex ⇒ complex) ⇒ complex ⇒ complex where

remove_sings f z = (if ∃ c. f −z→ c then Lim (at z) f else 0 )

8.8 Meromorphicity
definition meromorphic_on :: (complex ⇒ complex) ⇒ complex set ⇒ bool
(infixl ‹(meromorphic ′_on)› 50 ) where
f meromorphic_on A ←→ (∀ z∈A. ∃F . (λw. f (z + w)) has_laurent_expansion

F)

8.9 Nice meromorphicity
8.10 Closure properties and proofs for individual functions
8.11 Meromorphic functions and zorder

8.12 More on poles and zeros

end

9 The Weierstraß Factorisation Theorem
theory Weierstrass_Factorization

imports Meromorphic
begin
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9.1 The elementary factors
9.2 Infinite products of elementary factors
9.3 Writing a quotient as an exponential
9.4 Constructing the sequence of zeros

9.5 The factorisation theorem for holomorphic functions
theorem weierstrass_factorization:

assumes g holomorphic_on A open A connected A
assumes

∧
z. z ∈ frontier A =⇒ ¬z islimpt {w∈A. g w = 0}

obtains h f where
h holomorphic_on A f holomorphic_on UNIV
∀ z. f z = 0 ←→ (∀ z∈A. g z = 0 ) ∨ (z ∈ A ∧ g z = 0 )
∀ z∈A. zorder f z = zorder g z
∀ z∈A. h z 6= 0
∀ z∈A. g z = h z ∗ f z

theorem weierstrass_factorization_UNIV :
assumes g holomorphic_on UNIV
obtains h f where

h holomorphic_on UNIV f holomorphic_on UNIV
∀ z. f z = 0 ←→ g z = 0
∀ z. zorder f z = zorder g z
∀ z. h z 6= 0
∀ z. g z = h z ∗ f z

9.6 The factorisation theorem for meromorphic functions
theorem weierstrass_factorization_meromorphic:

assumes mero: g nicely_meromorphic_on A and A: open A connected A
assumes no_limpt:

∧
z. z ∈ frontier A =⇒ ¬z islimpt {w∈A. g w = 0 ∨ is_pole

g w}
obtains h f1 f2 where

h holomorphic_on A f1 holomorphic_on UNIV f2 holomorphic_on UNIV
∀ z∈A. f1 z = 0 ←→ ¬is_pole g z ∧ g z = 0
∀ z∈A. f2 z = 0 ←→ is_pole g z
∀ z∈A. ¬is_pole g z −→ zorder f1 z = zorder g z
∀ z∈A. is_pole g z −→ zorder f2 z = −zorder g z
∀ z∈A. h z 6= 0
∀ z∈A. g z = h z ∗ f1 z / f2 z

theorem weierstrass_factorization_meromorphic_UNIV :
assumes g nicely_meromorphic_on UNIV
obtains h f1 f2 where

h holomorphic_on UNIV f1 holomorphic_on UNIV f2 holomorphic_on UNIV
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∀ z. f1 z = 0 ←→ ¬is_pole g z ∧ g z = 0
∀ z. f2 z = 0 ←→ is_pole g z
∀ z. ¬is_pole g z −→ zorder f1 z = zorder g z
∀ z. is_pole g z −→ zorder f2 z = −zorder g z
∀ z. h z 6= 0
∀ z. g z = h z ∗ f1 z / f2 z

end
theory Complex_Analysis

imports
Riemann_Mapping
Residue_Theorem
Weierstrass_Factorization

begin

end
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