
Basic combinatorics in Isabelle/HOL (and the
Archive of Formal Proofs)

January 18, 2026

Contents
1 Transposition function 1

2 Stirling numbers of first and second kind 5
2.1 Stirling numbers of the second kind 5
2.2 Stirling numbers of the first kind 6

2.2.1 Efficient code . 7

3 Permutations, both general and specifically on finite sets. 8
3.1 Auxiliary . 8
3.2 Basic definition and consequences 8
3.3 Group properties . 11
3.4 Restricting a permutation to a subset 11
3.5 Mapping a permutation . 12
3.6 The number of permutations on a finite set 14
3.7 Permutations of index set for iterated operations 14
3.8 Permutations as transposition sequences 14
3.9 Some closure properties of the set of permutations, with lengths 14
3.10 Various combinations of transpositions with 2, 1 and 0 com-

mon elements . 15
3.11 The identity map only has even transposition sequences . . . 16
3.12 Therefore we have a welldefined notion of parity 16
3.13 And it has the expected composition properties 17
3.14 A more abstract characterization of permutations 17
3.15 Relation to permutes . 18
3.16 Sign of a permutation . 18
3.17 An induction principle in terms of transpositions 19
3.18 More on the sign of permutations 20
3.19 Transpositions of adjacent elements 21
3.20 Transferring properties of permutations along bijections . . . 22

1

3.21 Permuting a list . 23
3.22 More lemmas about permutations 25
3.23 Sum over a set of permutations (could generalize to iteration) 27
3.24 Constructing permutations from association lists 27

4 Permuted Lists 29
4.1 An existing notion . 29
4.2 Nontrivial conclusions . 30
4.3 Trivial conclusions: . 30

5 Permutations of a Multiset 32
5.1 Permutations of a multiset . 32
5.2 Cardinality of permutations 34
5.3 Permutations of a set . 35
5.4 Code generation . 36

6 Cycles 39
6.1 Definitions . 39
6.2 Basic Properties . 39
6.3 Conjugation of cycles . 40
6.4 When Cycles Commute . 40
6.5 Cycles from Permutations . 40

6.5.1 Exponentiation of permutations 40
6.5.2 Extraction of cycles from permutations 41

6.6 Decomposition on Cycles . 41
6.6.1 Preliminaries . 41
6.6.2 Decomposition . 42

7 Permutations as abstract type 42
7.1 Abstract type of permutations 43
7.2 Identity, composition and inversion 44
7.3 Orbit and order of elements 45
7.4 Swaps . 49
7.5 Permutations specified by cycles 49
7.6 Syntax . 50

8 Permutation orbits 50
8.1 Orbits and cyclic permutations 50
8.2 Decomposition of arbitrary permutations 54
8.3 Function-power distance between values 54

9 Basic combinatorics in Isabelle/HOL (and the Archive of
Formal Proofs) 56

2

1 Transposition function
theory Transposition

imports Main
begin

definition transpose :: ‹ ′a ⇒ ′a ⇒ ′a ⇒ ′a›
where ‹transpose a b c = (if c = a then b else if c = b then a else c)›

lemma transpose_apply_first [simp]:
‹transpose a b a = b›
〈proof 〉

lemma transpose_apply_second [simp]:
‹transpose a b b = a›
〈proof 〉

lemma transpose_apply_other [simp]:
‹transpose a b c = c› if ‹c 6= a› ‹c 6= b›
〈proof 〉

lemma transpose_same [simp]:
‹transpose a a = id›
〈proof 〉

lemma transpose_eq_iff :
‹transpose a b c = d ←→ (c 6= a ∧ c 6= b ∧ d = c) ∨ (c = a ∧ d = b) ∨ (c = b
∧ d = a)›
〈proof 〉

lemma transpose_eq_imp_eq:
‹c = d› if ‹transpose a b c = transpose a b d›
〈proof 〉

lemma transpose_commute [ac_simps]:
‹transpose b a = transpose a b›
〈proof 〉

lemma transpose_involutory [simp]:
‹transpose a b (transpose a b c) = c›
〈proof 〉

lemma transpose_comp_involutory [simp]:
‹transpose a b ◦ transpose a b = id›
〈proof 〉

lemma transpose_eq_id_iff : Transposition.transpose x y = id ←→ x = y
〈proof 〉

3

lemma transpose_triple:
‹transpose a b (transpose b c (transpose a b d)) = transpose a c d›
if ‹a 6= c› and ‹b 6= c›
〈proof 〉

lemma transpose_comp_triple:
‹transpose a b ◦ transpose b c ◦ transpose a b = transpose a c›
if ‹a 6= c› and ‹b 6= c›
〈proof 〉

lemma transpose_image_eq [simp]:
‹transpose a b ‘ A = A› if ‹a ∈ A ←→ b ∈ A›
〈proof 〉

lemma inj_on_transpose [simp]:
‹inj_on (transpose a b) A›
〈proof 〉

lemma inj_transpose:
‹inj (transpose a b)›
〈proof 〉

lemma surj_transpose:
‹surj (transpose a b)›
〈proof 〉

lemma bij_betw_transpose_iff [simp]:
‹bij_betw (transpose a b) A A› if ‹a ∈ A ←→ b ∈ A›
〈proof 〉

lemma bij_transpose [simp]:
‹bij (transpose a b)›
〈proof 〉

lemma bijection_transpose:
‹bijection (transpose a b)›
〈proof 〉

lemma inv_transpose_eq [simp]:
‹inv (transpose a b) = transpose a b›
〈proof 〉

lemma transpose_apply_commute:
‹transpose a b (f c) = f (transpose (inv f a) (inv f b) c)›
if ‹bij f ›
〈proof 〉

lemma transpose_comp_eq:
‹transpose a b ◦ f = f ◦ transpose (inv f a) (inv f b)›

4

if ‹bij f ›
〈proof 〉

lemma in_transpose_image_iff :
‹x ∈ transpose a b ‘ S ←→ transpose a b x ∈ S›
〈proof 〉

Legacy input alias
〈ML〉

abbreviation (input) swap :: ‹ ′a ⇒ ′a ⇒ (′a ⇒ ′b) ⇒ ′a ⇒ ′b›
where ‹swap a b f ≡ f ◦ transpose a b›

lemma swap_def :
‹Fun.swap a b f = f (a := f b, b:= f a)›
〈proof 〉

〈ML〉

lemma swap_apply:
Fun.swap a b f a = f b
Fun.swap a b f b = f a
c 6= a =⇒ c 6= b =⇒ Fun.swap a b f c = f c
〈proof 〉

lemma swap_self : Fun.swap a a f = f
〈proof 〉

lemma swap_commute: Fun.swap a b f = Fun.swap b a f
〈proof 〉

lemma swap_nilpotent: Fun.swap a b (Fun.swap a b f) = f
〈proof 〉

lemma swap_comp_involutory: Fun.swap a b ◦ Fun.swap a b = id
〈proof 〉

lemma swap_triple:
assumes a 6= c and b 6= c
shows Fun.swap a b (Fun.swap b c (Fun.swap a b f)) = Fun.swap a c f
〈proof 〉

lemma comp_swap: f ◦ Fun.swap a b g = Fun.swap a b (f ◦ g)
〈proof 〉

lemma swap_image_eq:
assumes a ∈ A b ∈ A
shows Fun.swap a b f ‘ A = f ‘ A
〈proof 〉

5

lemma inj_on_imp_inj_on_swap: inj_on f A =⇒ a ∈ A =⇒ b ∈ A =⇒ inj_on
(Fun.swap a b f) A
〈proof 〉

lemma inj_on_swap_iff :
assumes A: a ∈ A b ∈ A
shows inj_on (Fun.swap a b f) A ←→ inj_on f A
〈proof 〉

lemma surj_imp_surj_swap: surj f =⇒ surj (Fun.swap a b f)
〈proof 〉

lemma surj_swap_iff : surj (Fun.swap a b f) ←→ surj f
〈proof 〉

lemma bij_betw_swap_iff : x ∈ A =⇒ y ∈ A =⇒ bij_betw (Fun.swap x y f) A B
←→ bij_betw f A B
〈proof 〉

lemma bij_swap_iff : bij (Fun.swap a b f) ←→ bij f
〈proof 〉

lemma swap_image:
‹Fun.swap i j f ‘ A = f ‘ (A − {i, j}
∪ (if i ∈ A then {j} else {}) ∪ (if j ∈ A then {i} else {}))›
〈proof 〉

lemma inv_swap_id: inv (Fun.swap a b id) = Fun.swap a b id
〈proof 〉

lemma bij_swap_comp:
assumes bij p
shows Fun.swap a b id ◦ p = Fun.swap (inv p a) (inv p b) p
〈proof 〉

lemma swap_id_eq: Fun.swap a b id x = (if x = a then b else if x = b then a else
x)
〈proof 〉

lemma swap_unfold:
‹Fun.swap a b p = p ◦ Fun.swap a b id›
〈proof 〉

lemma swap_id_idempotent: Fun.swap a b id ◦ Fun.swap a b id = id
〈proof 〉

lemma bij_swap_compose_bij:
‹bij (Fun.swap a b id ◦ p)› if ‹bij p›

6

〈proof 〉

end

2 Stirling numbers of first and second kind
theory Stirling
imports Main
begin

2.1 Stirling numbers of the second kind
fun Stirling :: nat ⇒ nat ⇒ nat

where
Stirling 0 0 = 1
| Stirling 0 (Suc k) = 0
| Stirling (Suc n) 0 = 0
| Stirling (Suc n) (Suc k) = Suc k ∗ Stirling n (Suc k) + Stirling n k

lemma Stirling_1 [simp]: Stirling (Suc n) (Suc 0) = 1
〈proof 〉

lemma Stirling_less [simp]: n < k =⇒ Stirling n k = 0
〈proof 〉

lemma Stirling_same [simp]: Stirling n n = 1
〈proof 〉

lemma Stirling_2_2 : Stirling (Suc (Suc n)) (Suc (Suc 0)) = 2 ^ Suc n − 1
〈proof 〉

lemma Stirling_2 : Stirling (Suc n) (Suc (Suc 0)) = 2 ^ n − 1
〈proof 〉

2.2 Stirling numbers of the first kind
fun stirling :: nat ⇒ nat ⇒ nat

where
stirling 0 0 = 1
| stirling 0 (Suc k) = 0
| stirling (Suc n) 0 = 0
| stirling (Suc n) (Suc k) = n ∗ stirling n (Suc k) + stirling n k

lemma stirling_0 [simp]: n > 0 =⇒ stirling n 0 = 0
〈proof 〉

lemma stirling_less [simp]: n < k =⇒ stirling n k = 0
〈proof 〉

7

lemma stirling_same [simp]: stirling n n = 1
〈proof 〉

lemma stirling_Suc_n_1 : stirling (Suc n) (Suc 0) = fact n
〈proof 〉

lemma stirling_Suc_n_n: stirling (Suc n) n = Suc n choose 2
〈proof 〉

lemma stirling_Suc_n_2 :
assumes n ≥ Suc 0
shows stirling (Suc n) 2 = (

∑
k=1 ..n. fact n div k)

〈proof 〉

lemma of_nat_stirling_Suc_n_2 :
assumes n ≥ Suc 0
shows (of_nat (stirling (Suc n) 2):: ′a::field_char_0) = fact n ∗ (

∑
k=1 ..n. (1

/ of_nat k))
〈proof 〉

lemma sum_stirling: (
∑

k≤n. stirling n k) = fact n
〈proof 〉

lemma stirling_pochhammer :
(
∑

k≤n. of_nat (stirling n k) ∗ x ^ k) = (pochhammer x n :: ′a::comm_semiring_1)
〈proof 〉

A row of the Stirling number triangle
definition stirling_row :: nat ⇒ nat list

where stirling_row n = [stirling n k. k ← [0 ..<Suc n]]

lemma nth_stirling_row: k ≤ n =⇒ stirling_row n ! k = stirling n k
〈proof 〉

lemma length_stirling_row [simp]: length (stirling_row n) = Suc n
〈proof 〉

lemma stirling_row_nonempty [simp]: stirling_row n 6= []
〈proof 〉

2.2.1 Efficient code

Naively using the defining equations of the Stirling numbers of the first kind
to compute them leads to exponential run time due to repeated compu-
tations. We can use memoisation to compute them row by row without
repeating computations, at the cost of computing a few unneeded values.
As a bonus, this is very efficient for applications where an entire row of
Stirling numbers is needed.

8

definition zip_with_prev :: (′a ⇒ ′a ⇒ ′b) ⇒ ′a ⇒ ′a list ⇒ ′b list
where zip_with_prev f x xs = map2 f (x # xs) xs

lemma zip_with_prev_altdef :
zip_with_prev f x xs =
(if xs = [] then [] else f x (hd xs) # [f (xs!i) (xs!(i+1)). i ← [0 ..<length xs −

1]])
〈proof 〉

primrec stirling_row_aux
where

stirling_row_aux n y [] = [1]
| stirling_row_aux n y (x#xs) = (y + n ∗ x) # stirling_row_aux n x xs

lemma stirling_row_aux_correct:
stirling_row_aux n y xs = zip_with_prev (λa b. a + n ∗ b) y xs @ [1]
〈proof 〉

lemma stirling_row_code [code]:
stirling_row 0 = [1]
stirling_row (Suc n) = stirling_row_aux n 0 (stirling_row n)
〈proof 〉

lemma stirling_code [code]:
stirling n k =
(if k = 0 then (if n = 0 then 1 else 0)
else if k > n then 0
else if k = n then 1
else stirling_row n ! k)

〈proof 〉

end

3 Permutations, both general and specifically on
finite sets.

theory Permutations
imports

HOL−Library.Multiset
HOL−Library.Disjoint_Sets
Transposition

begin

3.1 Auxiliary
abbreviation (input) fixpoints :: ‹(′a ⇒ ′a) ⇒ ′a set›

where ‹fixpoints f ≡ {x. f x = x}›

9

lemma inj_on_fixpoints:
‹inj_on f (fixpoints f)›
〈proof 〉

lemma bij_betw_fixpoints:
‹bij_betw f (fixpoints f) (fixpoints f)›
〈proof 〉

3.2 Basic definition and consequences
definition permutes :: ‹(′a ⇒ ′a) ⇒ ′a set ⇒ bool› (infixr ‹permutes› 41)

where ‹p permutes S ←→ (∀ x. x /∈ S −→ p x = x) ∧ (∀ y. ∃ !x. p x = y)›

lemma bij_imp_permutes:
‹p permutes S› if ‹bij_betw p S S› and stable: ‹

∧
x. x /∈ S =⇒ p x = x›

〈proof 〉

lemma inj_imp_permutes:
assumes i: inj_on f S and fin: finite S
and fS :

∧
x. x ∈ S =⇒ f x ∈ S

and f :
∧

i. i /∈ S =⇒ f i = i
shows f permutes S
〈proof 〉

context
fixes p :: ‹ ′a ⇒ ′a› and S :: ‹ ′a set›
assumes perm: ‹p permutes S›

begin

lemma permutes_inj:
‹inj p›
〈proof 〉

lemma permutes_image:
‹p ‘ S = S›
〈proof 〉

lemma permutes_not_in:
‹x /∈ S =⇒ p x = x›
〈proof 〉

lemma permutes_image_complement:
‹p ‘ (− S) = − S›
〈proof 〉

lemma permutes_in_image:
‹p x ∈ S ←→ x ∈ S›
〈proof 〉

10

lemma permutes_surj:
‹surj p›
〈proof 〉

lemma permutes_inv_o:
shows p ◦ inv p = id

and inv p ◦ p = id
〈proof 〉

lemma permutes_inverses:
shows p (inv p x) = x

and inv p (p x) = x
〈proof 〉

lemma permutes_inv_eq:
‹inv p y = x ←→ p x = y›
〈proof 〉

lemma permutes_inj_on:
‹inj_on p A›
〈proof 〉

lemma permutes_bij:
‹bij p›
〈proof 〉

lemma permutes_imp_bij:
‹bij_betw p S S›
〈proof 〉

lemma permutes_subset:
‹p permutes T › if ‹S ⊆ T ›
〈proof 〉

lemma permutes_imp_permutes_insert:
‹p permutes insert x S›
〈proof 〉

end

lemma permutes_id [simp]:
‹id permutes S›
〈proof 〉

lemma permutes_empty [simp]:
‹p permutes {} ←→ p = id›
〈proof 〉

11

lemma permutes_sing [simp]:
‹p permutes {a} ←→ p = id›
〈proof 〉

lemma permutes_univ: p permutes UNIV ←→ (∀ y. ∃ !x. p x = y)
〈proof 〉

lemma permutes_swap_id: a ∈ S =⇒ b ∈ S =⇒ transpose a b permutes S
〈proof 〉

lemma permutes_altdef : p permutes A ←→ bij_betw p A A ∧ {x. p x 6= x} ⊆ A
〈proof 〉

lemma permutes_superset:
‹p permutes T › if ‹p permutes S› ‹

∧
x. x ∈ S − T =⇒ p x = x›

〈proof 〉

lemma permutes_bij_inv_into:
fixes A :: ′a set

and B :: ′b set
assumes p permutes A

and bij_betw f A B
shows (λx. if x ∈ B then f (p (inv_into A f x)) else x) permutes B
〈proof 〉

lemma permutes_image_mset:
assumes p permutes A
shows image_mset p (mset_set A) = mset_set A
〈proof 〉

lemma permutes_implies_image_mset_eq:
assumes p permutes A

∧
x. x ∈ A =⇒ f x = f ′ (p x)

shows image_mset f ′ (mset_set A) = image_mset f (mset_set A)
〈proof 〉

3.3 Group properties
lemma permutes_compose: p permutes S =⇒ q permutes S =⇒ q ◦ p permutes S
〈proof 〉

lemma permutes_inv:
assumes p permutes S
shows inv p permutes S
〈proof 〉

lemma permutes_inv_inv:
assumes p permutes S
shows inv (inv p) = p
〈proof 〉

12

lemma permutes_invI :
assumes perm: p permutes S

and inv:
∧

x. x ∈ S =⇒ p ′ (p x) = x
and outside:

∧
x. x /∈ S =⇒ p ′ x = x

shows inv p = p ′

〈proof 〉

lemma permutes_vimage: f permutes A =⇒ f −‘ A = A
〈proof 〉

3.4 Restricting a permutation to a subset
definition restrict_id :: (′a ⇒ ′a) ⇒ ′a set ⇒ ′a ⇒ ′a

where restrict_id f A = (λx. if x ∈ A then f x else x)

lemma restrict_id_cong [cong]:
assumes

∧
x. x ∈ A =⇒ f x = g x A = B

shows restrict_id f A = restrict_id g B
〈proof 〉

lemma restrict_id_cong ′:
assumes x ∈ A =⇒ f x = g x A = B
shows restrict_id f A x = restrict_id g B x
〈proof 〉

lemma restrict_id_simps [simp]:
x ∈ A =⇒ restrict_id f A x = f x
x /∈ A =⇒ restrict_id f A x = x
〈proof 〉

lemma bij_betw_restrict_id:
assumes bij_betw f A A A ⊆ B
shows bij_betw (restrict_id f A) B B
〈proof 〉

lemma permutes_restrict_id:
assumes bij_betw f A A
shows restrict_id f A permutes A
〈proof 〉

3.5 Mapping a permutation
definition map_permutation :: ′a set ⇒ (′a ⇒ ′b) ⇒ (′a ⇒ ′a) ⇒ ′b ⇒ ′b where

map_permutation A f p = restrict_id (f ◦ p ◦ inv_into A f) (f ‘ A)

lemma map_permutation_cong_strong:
assumes A = B

∧
x. x ∈ A =⇒ f x = g x

∧
x. x ∈ A =⇒ p x = q x

assumes p ‘ A ⊆ A inj_on f A
shows map_permutation A f p = map_permutation B g q

13

〈proof 〉

lemma map_permutation_cong:
assumes inj_on f A p permutes A
assumes A = B

∧
x. x ∈ A =⇒ f x = g x

∧
x. x ∈ A =⇒ p x = q x

shows map_permutation A f p = map_permutation B g q
〈proof 〉

lemma inv_into_id [simp]: x ∈ A =⇒ inv_into A id x = x
〈proof 〉

lemma inv_into_ident [simp]: x ∈ A =⇒ inv_into A (λx. x) x = x
〈proof 〉

lemma map_permutation_id [simp]: p permutes A =⇒ map_permutation A id p
= p
〈proof 〉

lemma map_permutation_ident [simp]: p permutes A =⇒ map_permutation A
(λx. x) p = p
〈proof 〉

lemma map_permutation_id ′: inj_on f A =⇒ map_permutation A f id = id
〈proof 〉

lemma map_permutation_ident ′: inj_on f A =⇒ map_permutation A f (λx. x)
= (λx. x)
〈proof 〉

lemma map_permutation_permutes:
assumes bij_betw f A B p permutes A
shows map_permutation A f p permutes B
〈proof 〉

lemma map_permutation_compose:
fixes f :: ′a ⇒ ′b and g :: ′b ⇒ ′c
assumes bij_betw f A B inj_on g B
shows map_permutation B g (map_permutation A f p) = map_permutation

A (g ◦ f) p
〈proof 〉

lemma map_permutation_compose_inv:
assumes bij_betw f A B p permutes A

∧
x. x ∈ A =⇒ g (f x) = x

shows map_permutation B g (map_permutation A f p) = p
〈proof 〉

lemma map_permutation_apply:
assumes inj_on f A x ∈ A
shows map_permutation A f h (f x) = f (h x)

14

〈proof 〉

lemma map_permutation_compose ′:
fixes f :: ′a ⇒ ′b
assumes inj_on f A q permutes A
shows map_permutation A f (p ◦ q) = map_permutation A f p ◦ map_permutation

A f q
〈proof 〉

lemma map_permutation_transpose:
assumes inj_on f A a ∈ A b ∈ A
shows map_permutation A f (Transposition.transpose a b) = Transposition.transpose

(f a) (f b)
〈proof 〉

lemma map_permutation_permutes_iff :
assumes bij_betw f A B p ‘ A ⊆ A

∧
x. x /∈ A =⇒ p x = x

shows map_permutation A f p permutes B ←→ p permutes A
〈proof 〉

lemma bij_betw_permutations:
assumes bij_betw f A B
shows bij_betw (λπ x. if x ∈ B then f (π (inv_into A f x)) else x)

{π. π permutes A} {π. π permutes B} (is bij_betw ?f _ _)
〈proof 〉

lemma bij_betw_derangements:
assumes bij_betw f A B
shows bij_betw (λπ x. if x ∈ B then f (π (inv_into A f x)) else x)

{π. π permutes A ∧ (∀ x∈A. π x 6= x)} {π. π permutes B ∧ (∀ x∈B. π x
6= x)}

(is bij_betw ?f _ _)
〈proof 〉

3.6 The number of permutations on a finite set
lemma permutes_insert_lemma:

assumes p permutes (insert a S)
shows transpose a (p a) ◦ p permutes S
〈proof 〉

lemma permutes_insert: {p. p permutes (insert a S)} =
(λ(b, p). transpose a b ◦ p) ‘ {(b, p). b ∈ insert a S ∧ p ∈ {p. p permutes S}}
〈proof 〉

lemma card_permutations:
assumes card S = n

and finite S
shows card {p. p permutes S} = fact n

15

〈proof 〉

lemma finite_permutations:
assumes finite S
shows finite {p. p permutes S}
〈proof 〉

lemma permutes_doubleton_iff : f permutes {a, b} ←→ f = id ∨ f = Transposi-
tion.transpose a b
〈proof 〉

3.7 Permutations of index set for iterated operations
lemma (in comm_monoid_set) permute:

assumes p permutes S
shows F g S = F (g ◦ p) S
〈proof 〉

3.8 Permutations as transposition sequences
inductive swapidseq :: nat ⇒ (′a ⇒ ′a) ⇒ bool

where
id[simp]: swapidseq 0 id
| comp_Suc: swapidseq n p =⇒ a 6= b =⇒ swapidseq (Suc n) (transpose a b ◦ p)

declare id[unfolded id_def , simp]

definition permutation p ←→ (∃n. swapidseq n p)

3.9 Some closure properties of the set of permutations, with
lengths

lemma permutation_id[simp]: permutation id
〈proof 〉

declare permutation_id[unfolded id_def , simp]

lemma swapidseq_swap: swapidseq (if a = b then 0 else 1) (transpose a b)
〈proof 〉

lemma permutation_swap_id: permutation (transpose a b)
〈proof 〉

lemma swapidseq_comp_add: swapidseq n p =⇒ swapidseq m q =⇒ swapidseq (n
+ m) (p ◦ q)
〈proof 〉

lemma permutation_compose: permutation p =⇒ permutation q =⇒ permutation
(p ◦ q)

16

〈proof 〉

lemma swapidseq_endswap: swapidseq n p =⇒ a 6= b =⇒ swapidseq (Suc n) (p ◦
transpose a b)
〈proof 〉

lemma swapidseq_inverse_exists: swapidseq n p =⇒ ∃ q. swapidseq n q ∧ p ◦ q =
id ∧ q ◦ p = id
〈proof 〉

lemma swapidseq_inverse:
assumes swapidseq n p
shows swapidseq n (inv p)
〈proof 〉

lemma permutation_inverse: permutation p =⇒ permutation (inv p)
〈proof 〉

3.10 Various combinations of transpositions with 2, 1 and 0
common elements

lemma swap_id_common: a 6= c =⇒ b 6= c =⇒
transpose a b ◦ transpose a c = transpose b c ◦ transpose a b
〈proof 〉

lemma swap_id_common ′: a 6= b =⇒ a 6= c =⇒
transpose a c ◦ transpose b c = transpose b c ◦ transpose a b
〈proof 〉

lemma swap_id_independent: a 6= c =⇒ a 6= d =⇒ b 6= c =⇒ b 6= d =⇒
transpose a b ◦ transpose c d = transpose c d ◦ transpose a b
〈proof 〉

3.11 The identity map only has even transposition sequences
lemma symmetry_lemma:

assumes
∧

a b c d. P a b c d =⇒ P a b d c
and

∧
a b c d. a 6= b =⇒ c 6= d =⇒

a = c ∧ b = d ∨ a = c ∧ b 6= d ∨ a 6= c ∧ b = d ∨ a 6= c ∧ a 6= d ∧ b 6= c
∧ b 6= d =⇒

P a b c d
shows

∧
a b c d. a 6= b −→ c 6= d −→ P a b c d

〈proof 〉

lemma swap_general:
assumes a 6= b c 6= d
shows transpose a b ◦ transpose c d = id ∨
(∃ x y z. x 6= a ∧ y 6= a ∧ z 6= a ∧ x 6= y ∧

transpose a b ◦ transpose c d = transpose x y ◦ transpose a z)

17

〈proof 〉

lemma swapidseq_id_iff [simp]: swapidseq 0 p ←→ p = id
〈proof 〉

lemma swapidseq_cases: swapidseq n p ←→
n = 0 ∧ p = id ∨ (∃ a b q m. n = Suc m ∧ p = transpose a b ◦ q ∧ swapidseq

m q ∧ a 6= b)
〈proof 〉

lemma fixing_swapidseq_decrease:
assumes swapidseq n p

and a 6= b
and (transpose a b ◦ p) a = a

shows n 6= 0 ∧ swapidseq (n − 1) (transpose a b ◦ p)
〈proof 〉

lemma swapidseq_identity_even:
assumes swapidseq n (id :: ′a ⇒ ′a)
shows even n
〈proof 〉

3.12 Therefore we have a welldefined notion of parity
definition evenperm p = even (SOME n. swapidseq n p)

lemma swapidseq_even_even:
assumes m: swapidseq m p

and n: swapidseq n p
shows even m ←→ even n
〈proof 〉

lemma evenperm_unique:
assumes swapidseq n p andeven n = b
shows evenperm p = b
〈proof 〉

3.13 And it has the expected composition properties
lemma evenperm_id[simp]: evenperm id = True
〈proof 〉

lemma evenperm_identity [simp]:
‹evenperm (λx. x)›
〈proof 〉

lemma evenperm_swap: evenperm (transpose a b) = (a = b)
〈proof 〉

lemma evenperm_comp:

18

assumes permutation p permutation q
shows evenperm (p ◦ q) ←→ evenperm p = evenperm q
〈proof 〉

lemma evenperm_inv:
assumes permutation p
shows evenperm (inv p) = evenperm p
〈proof 〉

3.14 A more abstract characterization of permutations
lemma permutation_bijective:

assumes permutation p
shows bij p
〈proof 〉

lemma permutation_finite_support:
assumes permutation p
shows finite {x. p x 6= x}
〈proof 〉

lemma permutation_lemma:
assumes finite S

and bij p
and ∀ x. x /∈ S −→ p x = x

shows permutation p
〈proof 〉

lemma permutation: permutation p ←→ bij p ∧ finite {x. p x 6= x}
〈proof 〉

lemma permutation_inverse_works:
assumes permutation p
shows inv p ◦ p = id

and p ◦ inv p = id
〈proof 〉

lemma permutation_inverse_compose:
assumes p: permutation p

and q: permutation q
shows inv (p ◦ q) = inv q ◦ inv p
〈proof 〉

3.15 Relation to permutes
lemma permutes_imp_permutation:

‹permutation p› if ‹finite S› ‹p permutes S›
〈proof 〉

lemma permutation_permutesE :

19

assumes ‹permutation p›
obtains S where ‹finite S› ‹p permutes S›
〈proof 〉

lemma permutation_permutes: permutation p ←→ (∃S . finite S ∧ p permutes S)
〈proof 〉

3.16 Sign of a permutation
definition sign :: ‹(′a ⇒ ′a) ⇒ int› — TODO: prefer less generic name

where ‹sign p = (if evenperm p then 1 else − 1)›

lemma sign_cases [case_names even odd]:
obtains ‹sign p = 1 › | ‹sign p = − 1 ›
〈proof 〉

lemma sign_nz [simp]: sign p 6= 0
〈proof 〉

lemma sign_id [simp]: sign id = 1
〈proof 〉

lemma sign_identity [simp]:
‹sign (λx. x) = 1 ›
〈proof 〉

lemma sign_inverse: permutation p =⇒ sign (inv p) = sign p
〈proof 〉

lemma sign_compose: permutation p =⇒ permutation q =⇒ sign (p ◦ q) = sign
p ∗ sign q
〈proof 〉

lemma sign_swap_id: sign (transpose a b) = (if a = b then 1 else − 1)
〈proof 〉

lemma sign_idempotent [simp]: sign p ∗ sign p = 1
〈proof 〉

lemma sign_left_idempotent [simp]:
‹sign p ∗ (sign p ∗ sign q) = sign q›
〈proof 〉

lemma abs_sign [simp]: |sign p| = 1
〈proof 〉

3.17 An induction principle in terms of transpositions
definition apply_transps :: (′a × ′a) list ⇒ ′a ⇒ ′a where

apply_transps xs = foldr (◦) (map (λ(a,b). Transposition.transpose a b) xs) id

20

lemma apply_transps_Nil [simp]: apply_transps [] = id
〈proof 〉

lemma apply_transps_Cons [simp]:
apply_transps (x # xs) = Transposition.transpose (fst x) (snd x) ◦ apply_transps

xs
〈proof 〉

lemma apply_transps_append [simp]:
apply_transps (xs @ ys) = apply_transps xs ◦ apply_transps ys
〈proof 〉

lemma permutation_apply_transps [simp, intro]: permutation (apply_transps xs)
〈proof 〉

lemma permutes_apply_transps:
assumes ∀ (a,b)∈set xs. a ∈ A ∧ b ∈ A
shows apply_transps xs permutes A
〈proof 〉

lemma permutes_induct [consumes 2 , case_names id swap]:
assumes p permutes S finite S
assumes P id
assumes

∧
a b p. a ∈ S =⇒ b ∈ S =⇒ a 6= b =⇒ P p =⇒ p permutes S

=⇒ P (Transposition.transpose a b ◦ p)
shows P p
〈proof 〉

lemma permutes_rev_induct[consumes 2 , case_names id swap]:
assumes finite S p permutes S
assumes P id
assumes

∧
a b p. a ∈ S =⇒ b ∈ S =⇒ a 6= b =⇒ P p =⇒ p permutes S

=⇒ P (p ◦ Transposition.transpose a b)
shows P p
〈proof 〉

lemma map_permutation_apply_transps:
assumes f : inj_on f A and set ts ⊆ A × A
shows map_permutation A f (apply_transps ts) = apply_transps (map (map_prod

f f) ts)
〈proof 〉

lemma permutes_from_transpositions:
assumes p permutes A finite A
shows ∃ xs. (∀ (a,b)∈set xs. a 6= b ∧ a ∈ A ∧ b ∈ A) ∧ apply_transps xs = p
〈proof 〉

21

3.18 More on the sign of permutations
lemma evenperm_apply_transps_iff :

assumes ∀ (a,b)∈set xs. a 6= b
shows evenperm (apply_transps xs) ←→ even (length xs)
〈proof 〉

lemma evenperm_map_permutation:
assumes f : inj_on f A and p permutes A finite A
shows evenperm (map_permutation A f p) ←→ evenperm p
〈proof 〉

lemma sign_map_permutation:
assumes inj_on f A p permutes A finite A
shows sign (map_permutation A f p) = sign p
〈proof 〉

Sometimes it can be useful to consider the sign of a function that is not
a permutation in the Isabelle/HOL sense, but its restriction to some finite
subset is.
definition sign_on :: ′a set ⇒ (′a ⇒ ′a) ⇒ int

where sign_on A f = sign (restrict_id f A)

lemma sign_on_cong [cong]:
assumes A = B

∧
x. x ∈ A =⇒ f x = g x

shows sign_on A f = sign_on B g
〈proof 〉

lemma sign_on_permutes:
assumes f permutes A A ⊆ B
shows sign_on B f = sign f
〈proof 〉

lemma sign_on_id [simp]: sign_on A id = 1
〈proof 〉

lemma sign_on_ident [simp]: sign_on A (λx. x) = 1
〈proof 〉

lemma sign_on_transpose:
assumes a ∈ A b ∈ A a 6= b
shows sign_on A (Transposition.transpose a b) = −1
〈proof 〉

lemma sign_on_compose:
assumes bij_betw f A A bij_betw g A A finite A
shows sign_on A (f ◦ g) = sign_on A f ∗ sign_on A g
〈proof 〉

22

3.19 Transpositions of adjacent elements

We have shown above that every permutation can be written as a product
of transpositions. We will now furthermore show that any transposition
of successive natural numbers {m, . . . , n} can be written as a product of
transpositions of adjacent elements, i.e. transpositions of the form i↔ i+1.
function adj_transp_seq :: nat ⇒ nat ⇒ nat list where

adj_transp_seq a b =
(if a ≥ b then []
else if b = a + 1 then [a]
else a # adj_transp_seq (a+1) b @ [a])

〈proof 〉
termination 〈proof 〉

lemmas [simp del] = adj_transp_seq.simps

lemma length_adj_transp_seq:
a < b =⇒ length (adj_transp_seq a b) = 2 ∗ (b − a) − 1
〈proof 〉

definition apply_adj_transps :: nat list ⇒ nat ⇒ nat
where apply_adj_transps xs = foldl (◦) id (map (λx. Transposition.transpose x

(x+1)) xs)

lemma apply_adj_transps_aux:
f ◦ foldl (◦) g (map (λx. Transposition.transpose x (Suc x)) xs) =
foldl (◦) (f ◦ g) (map (λx. Transposition.transpose x (Suc x)) xs)
〈proof 〉

lemma apply_adj_transps_Nil [simp]: apply_adj_transps [] = id
and apply_adj_transps_Cons [simp]:

apply_adj_transps (x # xs) = Transposition.transpose x (x+1) ◦ ap-
ply_adj_transps xs

and apply_adj_transps_snoc [simp]:
apply_adj_transps (xs @ [x]) = apply_adj_transps xs ◦ Transposition.transpose

x (x+1)
〈proof 〉

lemma adj_transp_seq_correct:
assumes a < b
shows apply_adj_transps (adj_transp_seq a b) = Transposition.transpose a b
〈proof 〉

lemma permutation_apply_adj_transps: permutation (apply_adj_transps xs)
〈proof 〉

lemma permutes_apply_adj_transps:
assumes ∀ x∈set xs. x ∈ A ∧ Suc x ∈ A

23

shows apply_adj_transps xs permutes A
〈proof 〉

lemma set_adj_transp_seq:
a < b =⇒ set (adj_transp_seq a b) = {a..<b}
〈proof 〉

3.20 Transferring properties of permutations along bijections
locale permutes_bij =

fixes p :: ′a ⇒ ′a and A :: ′a set and B :: ′b set
fixes f :: ′a ⇒ ′b and f ′ :: ′b ⇒ ′a
fixes p ′ :: ′b ⇒ ′b
defines p ′ ≡ (λx. if x ∈ B then f (p (f ′ x)) else x)
assumes permutes_p: p permutes A
assumes bij_f : bij_betw f A B
assumes f ′_f : x ∈ A =⇒ f ′ (f x) = x

begin

lemma bij_f ′: bij_betw f ′ B A
〈proof 〉

lemma f_f ′: x ∈ B =⇒ f (f ′ x) = x
〈proof 〉

lemma f_in_B: x ∈ A =⇒ f x ∈ B
〈proof 〉

lemma f ′_in_A: x ∈ B =⇒ f ′ x ∈ A
〈proof 〉

lemma permutes_p ′: p ′ permutes B
〈proof 〉

lemma f_eq_iff [simp]: f x = f y ←→ x = y if x ∈ A y ∈ A for x y
〈proof 〉

lemma apply_transps_map_f_aux:
assumes ∀ (a,b)∈set xs. a ∈ A ∧ b ∈ A y ∈ B
shows apply_transps (map (map_prod f f) xs) y = f (apply_transps xs (f ′ y))
〈proof 〉

lemma apply_transps_map_f :
assumes ∀ (a,b)∈set xs. a ∈ A ∧ b ∈ A
shows apply_transps (map (map_prod f f) xs) =

(λy. if y ∈ B then f (apply_transps xs (f ′ y)) else y)
〈proof 〉

end

24

locale permutes_bij_finite = permutes_bij +
assumes finite_A: finite A

begin

lemma evenperm_p ′_iff : evenperm p ′←→ evenperm p
〈proof 〉

lemma sign_p ′: sign p ′ = sign p
〈proof 〉

end

3.21 Permuting a list

This function permutes a list by applying a permutation to the indices.
definition permute_list :: (nat ⇒ nat) ⇒ ′a list ⇒ ′a list

where permute_list f xs = map (λi. xs ! (f i)) [0 ..<length xs]

lemma permute_list_map:
assumes f permutes {..<length xs}
shows permute_list f (map g xs) = map g (permute_list f xs)
〈proof 〉

lemma permute_list_nth:
assumes f permutes {..<length xs} i < length xs
shows permute_list f xs ! i = xs ! f i
〈proof 〉

lemma permute_list_Nil [simp]: permute_list f [] = []
〈proof 〉

lemma length_permute_list [simp]: length (permute_list f xs) = length xs
〈proof 〉

lemma permute_list_compose:
assumes g permutes {..<length xs}
shows permute_list (f ◦ g) xs = permute_list g (permute_list f xs)
〈proof 〉

lemma permute_list_ident [simp]: permute_list (λx. x) xs = xs
〈proof 〉

lemma permute_list_id [simp]: permute_list id xs = xs
〈proof 〉

lemma mset_permute_list [simp]:
fixes xs :: ′a list

25

assumes f permutes {..<length xs}
shows mset (permute_list f xs) = mset xs
〈proof 〉

lemma set_permute_list [simp]:
assumes f permutes {..<length xs}
shows set (permute_list f xs) = set xs
〈proof 〉

lemma distinct_permute_list [simp]:
assumes f permutes {..<length xs}
shows distinct (permute_list f xs) = distinct xs
〈proof 〉

lemma permute_list_zip:
assumes f permutes A A = {..<length xs}
assumes [simp]: length xs = length ys
shows permute_list f (zip xs ys) = zip (permute_list f xs) (permute_list f ys)
〈proof 〉

lemma map_of_permute:
assumes σ permutes fst ‘ set xs
shows map_of xs ◦ σ = map_of (map (λ(x,y). (inv σ x, y)) xs)
(is _ = map_of (map ?f _))

〈proof 〉

lemma list_all2_permute_list_iff :
‹list_all2 P (permute_list p xs) (permute_list p ys) ←→ list_all2 P xs ys›
if ‹p permutes {..<length xs}›
〈proof 〉

3.22 More lemmas about permutations
lemma permutes_in_funpow_image:

assumes f permutes S x ∈ S
shows (f ^^ n) x ∈ S
〈proof 〉

lemma permutation_self :
assumes ‹permutation p›
obtains n where ‹n > 0 › ‹(p ^^ n) x = x›
〈proof 〉

The following few lemmas were contributed by Lukas Bulwahn.
lemma count_image_mset_eq_card_vimage:

assumes finite A
shows count (image_mset f (mset_set A)) b = card {a ∈ A. f a = b}
〈proof 〉

lemma image_mset_eq_implies_permutes:

26

fixes f :: ′a ⇒ ′b
assumes finite A

and mset_eq: image_mset f (mset_set A) = image_mset f ′ (mset_set A)
obtains p where p permutes A and ∀ x∈A. f x = f ′ (p x)
〈proof 〉
lemma mset_eq_permutation:

fixes xs ys :: ′a list
assumes mset_eq: mset xs = mset ys
obtains p where p permutes {..<length ys} permute_list p ys = xs
〈proof 〉

lemma permutes_natset_le:
fixes S :: ′a::wellorder set
assumes p permutes S

and ∀ i ∈ S . p i ≤ i
shows p = id
〈proof 〉

lemma permutes_natset_ge:
fixes S :: ′a::wellorder set
assumes p: p permutes S

and le: ∀ i ∈ S . p i ≥ i
shows p = id
〈proof 〉

lemma image_inverse_permutations: {inv p |p. p permutes S} = {p. p permutes
S}
〈proof 〉

lemma image_compose_permutations_left:
assumes q permutes S
shows {q ◦ p |p. p permutes S} = {p. p permutes S}
〈proof 〉

lemma image_compose_permutations_right:
assumes q permutes S
shows {p ◦ q | p. p permutes S} = {p . p permutes S}
〈proof 〉

lemma permutes_in_seg: p permutes {1 ..n} =⇒ i ∈ {1 ..n} =⇒ 1 ≤ p i ∧ p i
≤ n
〈proof 〉

lemma sum_permutations_inverse: sum f {p. p permutes S} = sum (λp. f (inv
p)) {p. p permutes S}
(is ?lhs = ?rhs)
〈proof 〉

lemma setum_permutations_compose_left:

27

assumes q: q permutes S
shows sum f {p. p permutes S} = sum (λp. f (q ◦ p)) {p. p permutes S}
(is ?lhs = ?rhs)
〈proof 〉

lemma sum_permutations_compose_right:
assumes q: q permutes S
shows sum f {p. p permutes S} = sum (λp. f (p ◦ q)) {p. p permutes S}
(is ?lhs = ?rhs)
〈proof 〉

lemma inv_inj_on_permutes:
‹inj_on inv {p. p permutes S}›
〈proof 〉

lemma permutes_pair_eq:
‹{(p s, s) |s. s ∈ S} = {(s, inv p s) |s. s ∈ S}› (is ‹?L = ?R›) if ‹p permutes S›
〈proof 〉

context
fixes p and n i :: nat
assumes p: ‹p permutes {0 ..<n}› and i: ‹i < n›

begin

lemma permutes_nat_less:
‹p i < n›
〈proof 〉

lemma permutes_nat_inv_less:
‹inv p i < n›
〈proof 〉

end

context comm_monoid_set
begin

lemma permutes_inv:
‹F (λs. g (p s) s) S = F (λs. g s (inv p s)) S› (is ‹?l = ?r›)
if ‹p permutes S›
〈proof 〉

end

3.23 Sum over a set of permutations (could generalize to
iteration)

lemma sum_over_permutations_insert:
assumes fS : finite S

28

and aS : a /∈ S
shows sum f {p. p permutes (insert a S)} =

sum (λb. sum (λq. f (transpose a b ◦ q)) {p. p permutes S}) (insert a S)
〈proof 〉

3.24 Constructing permutations from association lists
definition list_permutes :: (′a × ′a) list ⇒ ′a set ⇒ bool

where list_permutes xs A ←→
set (map fst xs) ⊆ A ∧
set (map snd xs) = set (map fst xs) ∧
distinct (map fst xs) ∧
distinct (map snd xs)

lemma list_permutesI [simp]:
assumes set (map fst xs) ⊆ A set (map snd xs) = set (map fst xs) distinct (map

fst xs)
shows list_permutes xs A
〈proof 〉

definition permutation_of_list :: (′a × ′a) list ⇒ ′a ⇒ ′a
where permutation_of_list xs x = (case map_of xs x of None ⇒ x | Some y ⇒

y)

lemma permutation_of_list_Cons:
permutation_of_list ((x, y) # xs) x ′ = (if x = x ′ then y else permutation_of_list

xs x ′)
〈proof 〉

fun inverse_permutation_of_list :: (′a × ′a) list ⇒ ′a ⇒ ′a
where

inverse_permutation_of_list [] x = x
| inverse_permutation_of_list ((y, x ′) # xs) x =

(if x = x ′ then y else inverse_permutation_of_list xs x)

declare inverse_permutation_of_list.simps [simp del]

lemma inj_on_map_of :
assumes distinct (map snd xs)
shows inj_on (map_of xs) (set (map fst xs))
〈proof 〉

lemma inj_on_the: None /∈ A =⇒ inj_on the A
〈proof 〉

lemma inj_on_map_of ′:
assumes distinct (map snd xs)
shows inj_on (the ◦ map_of xs) (set (map fst xs))
〈proof 〉

29

lemma image_map_of :
assumes distinct (map fst xs)
shows map_of xs ‘ set (map fst xs) = Some ‘ set (map snd xs)
〈proof 〉

lemma the_Some_image [simp]: the ‘ Some ‘ A = A
〈proof 〉

lemma image_map_of ′:
assumes distinct (map fst xs)
shows (the ◦ map_of xs) ‘ set (map fst xs) = set (map snd xs)
〈proof 〉

lemma permutation_of_list_permutes [simp]:
assumes list_permutes xs A
shows permutation_of_list xs permutes A
(is ?f permutes _)

〈proof 〉

lemma eval_permutation_of_list [simp]:
permutation_of_list [] x = x
x = x ′ =⇒ permutation_of_list ((x ′,y)#xs) x = y
x 6= x ′ =⇒ permutation_of_list ((x ′,y ′)#xs) x = permutation_of_list xs x
〈proof 〉

lemma eval_inverse_permutation_of_list [simp]:
inverse_permutation_of_list [] x = x
x = x ′ =⇒ inverse_permutation_of_list ((y,x ′)#xs) x = y
x 6= x ′=⇒ inverse_permutation_of_list ((y ′,x ′)#xs) x = inverse_permutation_of_list

xs x
〈proof 〉

lemma permutation_of_list_id: x /∈ set (map fst xs) =⇒ permutation_of_list xs
x = x
〈proof 〉

lemma permutation_of_list_unique ′:
distinct (map fst xs) =⇒ (x, y) ∈ set xs =⇒ permutation_of_list xs x = y
〈proof 〉

lemma permutation_of_list_unique:
list_permutes xs A =⇒ (x, y) ∈ set xs =⇒ permutation_of_list xs x = y
〈proof 〉

lemma inverse_permutation_of_list_id:
x /∈ set (map snd xs) =⇒ inverse_permutation_of_list xs x = x
〈proof 〉

30

lemma inverse_permutation_of_list_unique ′:
distinct (map snd xs) =⇒ (x, y) ∈ set xs =⇒ inverse_permutation_of_list xs y

= x
〈proof 〉

lemma inverse_permutation_of_list_unique:
list_permutes xs A =⇒ (x,y) ∈ set xs =⇒ inverse_permutation_of_list xs y = x
〈proof 〉

lemma inverse_permutation_of_list_correct:
fixes A :: ′a set
assumes list_permutes xs A
shows inverse_permutation_of_list xs = inv (permutation_of_list xs)
〈proof 〉

end

4 Permuted Lists
theory List_Permutation
imports Permutations
begin

Note that multisets already provide the notion of permutated list and hence
this theory mostly echoes material already logically present in theory Per-
mutations; it should be seldom needed.

4.1 An existing notion
abbreviation (input) perm :: ‹ ′a list ⇒ ′a list ⇒ bool› (infixr ‹<∼∼>› 50)

where ‹xs <∼∼> ys ≡ mset xs = mset ys›

4.2 Nontrivial conclusions
proposition perm_swap:

‹xs[i := xs ! j, j := xs ! i] <∼∼> xs›
if ‹i < length xs› ‹j < length xs›
〈proof 〉

proposition mset_le_perm_append: mset xs ⊆# mset ys ←→ (∃ zs. xs @ zs
<∼∼> ys)
〈proof 〉

proposition perm_set_eq: xs <∼∼> ys =⇒ set xs = set ys
〈proof 〉

proposition perm_distinct_iff : xs <∼∼> ys =⇒ distinct xs ←→ distinct ys
〈proof 〉

31

theorem eq_set_perm_remdups: set xs = set ys =⇒ remdups xs <∼∼> remdups
ys
〈proof 〉

proposition perm_remdups_iff_eq_set: remdups x <∼∼> remdups y ←→ set x
= set y
〈proof 〉

theorem permutation_Ex_bij:
assumes xs <∼∼> ys
shows ∃ f . bij_betw f {..<length xs} {..<length ys} ∧ (∀ i<length xs. xs ! i = ys

! (f i))
〈proof 〉

proposition perm_finite: finite {B. B <∼∼> A}
〈proof 〉

4.3 Trivial conclusions:
proposition perm_empty_imp: [] <∼∼> ys =⇒ ys = []
〈proof 〉

This more general theorem is easier to understand!
proposition perm_length: xs <∼∼> ys =⇒ length xs = length ys
〈proof 〉

proposition perm_sym: xs <∼∼> ys =⇒ ys <∼∼> xs
〈proof 〉

We can insert the head anywhere in the list.
proposition perm_append_Cons: a # xs @ ys <∼∼> xs @ a # ys
〈proof 〉

proposition perm_append_swap: xs @ ys <∼∼> ys @ xs
〈proof 〉

proposition perm_append_single: a # xs <∼∼> xs @ [a]
〈proof 〉

proposition perm_rev: rev xs <∼∼> xs
〈proof 〉

proposition perm_append1 : xs <∼∼> ys =⇒ l @ xs <∼∼> l @ ys
〈proof 〉

proposition perm_append2 : xs <∼∼> ys =⇒ xs @ l <∼∼> ys @ l
〈proof 〉

proposition perm_empty [iff]: [] <∼∼> xs ←→ xs = []

32

〈proof 〉

proposition perm_empty2 [iff]: xs <∼∼> [] ←→ xs = []
〈proof 〉

proposition perm_sing_imp: ys <∼∼> xs =⇒ xs = [y] =⇒ ys = [y]
〈proof 〉

proposition perm_sing_eq [iff]: ys <∼∼> [y] ←→ ys = [y]
〈proof 〉

proposition perm_sing_eq2 [iff]: [y] <∼∼> ys ←→ ys = [y]
〈proof 〉

proposition perm_remove: x ∈ set ys =⇒ ys <∼∼> x # remove1 x ys
〈proof 〉

Congruence rule
proposition perm_remove_perm: xs <∼∼> ys =⇒ remove1 z xs <∼∼> remove1
z ys
〈proof 〉

proposition remove_hd [simp]: remove1 z (z # xs) = xs
〈proof 〉

proposition cons_perm_imp_perm: z # xs <∼∼> z # ys =⇒ xs <∼∼> ys
〈proof 〉

proposition cons_perm_eq [simp]: z#xs <∼∼> z#ys ←→ xs <∼∼> ys
〈proof 〉

proposition append_perm_imp_perm: zs @ xs <∼∼> zs @ ys =⇒ xs <∼∼> ys
〈proof 〉

proposition perm_append1_eq [iff]: zs @ xs <∼∼> zs @ ys ←→ xs <∼∼> ys
〈proof 〉

proposition perm_append2_eq [iff]: xs @ zs <∼∼> ys @ zs ←→ xs <∼∼> ys
〈proof 〉

end

5 Permutations of a Multiset
theory Multiset_Permutations
imports

Complex_Main
Permutations

33

begin

lemma mset_tl: xs 6= [] =⇒ mset (tl xs) = mset xs − {#hd xs#}
〈proof 〉

lemma mset_set_image_inj:
assumes inj_on f A
shows mset_set (f ‘ A) = image_mset f (mset_set A)
〈proof 〉

lemma multiset_remove_induct [case_names empty remove]:
assumes P {#}

∧
A. A 6= {#} =⇒ (

∧
x. x ∈# A =⇒ P (A − {#x#})) =⇒ P

A
shows P A
〈proof 〉

lemma map_list_bind: map g (List.bind xs f) = List.bind xs (map g ◦ f)
〈proof 〉

lemma mset_eq_mset_set_imp_distinct:
finite A =⇒ mset_set A = mset xs =⇒ distinct xs
〈proof 〉

5.1 Permutations of a multiset
definition permutations_of_multiset :: ′a multiset ⇒ ′a list set where

permutations_of_multiset A = {xs. mset xs = A}

lemma permutations_of_multisetI : mset xs = A =⇒ xs ∈ permutations_of_multiset
A
〈proof 〉

lemma permutations_of_multisetD: xs ∈ permutations_of_multiset A =⇒ mset
xs = A
〈proof 〉

lemma permutations_of_multiset_Cons_iff :
x # xs ∈ permutations_of_multiset A←→ x ∈# A ∧ xs ∈ permutations_of_multiset

(A − {#x#})
〈proof 〉

lemma permutations_of_multiset_empty [simp]: permutations_of_multiset {#}
= {[]}
〈proof 〉

lemma permutations_of_multiset_nonempty:
assumes nonempty: A 6= {#}
shows permutations_of_multiset A =

34

(
⋃

x∈set_mset A. ((#) x) ‘ permutations_of_multiset (A − {#x#}))
(is _ = ?rhs)
〈proof 〉

lemma permutations_of_multiset_singleton [simp]: permutations_of_multiset {#x#}
= {[x]}
〈proof 〉

lemma permutations_of_multiset_doubleton:
permutations_of_multiset {#x,y#} = {[x,y], [y,x]}
〈proof 〉

lemma rev_permutations_of_multiset [simp]:
rev ‘ permutations_of_multiset A = permutations_of_multiset A
〈proof 〉

lemma length_finite_permutations_of_multiset:
xs ∈ permutations_of_multiset A =⇒ length xs = size A
〈proof 〉

lemma permutations_of_multiset_lists: permutations_of_multiset A ⊆ lists (set_mset
A)
〈proof 〉

lemma finite_permutations_of_multiset [simp]: finite (permutations_of_multiset
A)
〈proof 〉

lemma permutations_of_multiset_not_empty [simp]: permutations_of_multiset
A 6= {}
〈proof 〉

lemma permutations_of_multiset_image:
permutations_of_multiset (image_mset f A) = map f ‘ permutations_of_multiset

A
〈proof 〉

5.2 Cardinality of permutations

In this section, we prove some basic facts about the number of permutations
of a multiset.
context
begin

private lemma multiset_prod_fact_insert:
(
∏

y∈set_mset (A+{#x#}). fact (count (A+{#x#}) y)) =
(count A x + 1) ∗ (

∏
y∈set_mset A. fact (count A y))

〈proof 〉 lemma multiset_prod_fact_remove:
x ∈# A =⇒ (

∏
y∈set_mset A. fact (count A y)) =

35

count A x ∗ (
∏

y∈set_mset (A−{#x#}). fact (count (A−{#x#})
y))
〈proof 〉

lemma card_permutations_of_multiset_aux:
card (permutations_of_multiset A) ∗ (

∏
x∈set_mset A. fact (count A x)) = fact

(size A)
〈proof 〉

theorem card_permutations_of_multiset:
card (permutations_of_multiset A) = fact (size A) div (

∏
x∈set_mset A. fact

(count A x))
(
∏

x∈set_mset A. fact (count A x) :: nat) dvd fact (size A)
〈proof 〉

lemma card_permutations_of_multiset_insert_aux:
card (permutations_of_multiset (A + {#x#})) ∗ (count A x + 1) =

(size A + 1) ∗ card (permutations_of_multiset A)
〈proof 〉

lemma card_permutations_of_multiset_remove_aux:
assumes x ∈# A
shows card (permutations_of_multiset A) ∗ count A x =

size A ∗ card (permutations_of_multiset (A − {#x#}))
〈proof 〉

lemma real_card_permutations_of_multiset_remove:
assumes x ∈# A
shows real (card (permutations_of_multiset (A − {#x#}))) =

real (card (permutations_of_multiset A) ∗ count A x) / real (size A)
〈proof 〉

lemma real_card_permutations_of_multiset_remove ′:
assumes x ∈# A
shows real (card (permutations_of_multiset A)) =

real (size A ∗ card (permutations_of_multiset (A − {#x#}))) / real
(count A x)
〈proof 〉

end

5.3 Permutations of a set
definition permutations_of_set :: ′a set ⇒ ′a list set where

permutations_of_set A = {xs. set xs = A ∧ distinct xs}

lemma permutations_of_set_altdef :
finite A =⇒ permutations_of_set A = permutations_of_multiset (mset_set A)
〈proof 〉

36

lemma permutations_of_setI [intro]:
assumes set xs = A distinct xs
shows xs ∈ permutations_of_set A
〈proof 〉

lemma permutations_of_setD:
assumes xs ∈ permutations_of_set A
shows set xs = A distinct xs
〈proof 〉

lemma permutations_of_set_lists: permutations_of_set A ⊆ lists A
〈proof 〉

lemma permutations_of_set_empty [simp]: permutations_of_set {} = {[]}
〈proof 〉

lemma UN_set_permutations_of_set [simp]:
finite A =⇒ (

⋃
xs∈permutations_of_set A. set xs) = A

〈proof 〉

lemma permutations_of_set_infinite:
¬finite A =⇒ permutations_of_set A = {}
〈proof 〉

lemma permutations_of_set_nonempty:
A 6= {} =⇒ permutations_of_set A =

(
⋃

x∈A. (λxs. x # xs) ‘ permutations_of_set (A − {x}))
〈proof 〉

lemma permutations_of_set_singleton [simp]: permutations_of_set {x} = {[x]}
〈proof 〉

lemma permutations_of_set_doubleton:
x 6= y =⇒ permutations_of_set {x,y} = {[x,y], [y,x]}
〈proof 〉

lemma rev_permutations_of_set [simp]:
rev ‘ permutations_of_set A = permutations_of_set A
〈proof 〉

lemma length_finite_permutations_of_set:
xs ∈ permutations_of_set A =⇒ length xs = card A
〈proof 〉

lemma finite_permutations_of_set [simp]: finite (permutations_of_set A)
〈proof 〉

lemma permutations_of_set_empty_iff [simp]:

37

permutations_of_set A = {} ←→ ¬finite A
〈proof 〉

lemma card_permutations_of_set [simp]:
finite A =⇒ card (permutations_of_set A) = fact (card A)
〈proof 〉

lemma permutations_of_set_image_inj:
assumes inj: inj_on f A
shows permutations_of_set (f ‘ A) = map f ‘ permutations_of_set A
〈proof 〉

lemma permutations_of_set_image_permutes:
σ permutes A =⇒ map σ ‘ permutations_of_set A = permutations_of_set A
〈proof 〉

5.4 Code generation

First, we give code an implementation for permutations of lists.
declare length_remove1 [termination_simp]

fun permutations_of_list_impl where
permutations_of_list_impl xs = (if xs = [] then [[]] else

List.bind (remdups xs) (λx. map ((#) x) (permutations_of_list_impl (remove1
x xs))))

fun permutations_of_list_impl_aux where
permutations_of_list_impl_aux acc xs = (if xs = [] then [acc] else

List.bind (remdups xs) (λx. permutations_of_list_impl_aux (x#acc) (remove1
x xs)))

declare permutations_of_list_impl_aux.simps [simp del]
declare permutations_of_list_impl.simps [simp del]

lemma permutations_of_list_impl_Nil [simp]:
permutations_of_list_impl [] = [[]]
〈proof 〉

lemma permutations_of_list_impl_nonempty:
xs 6= [] =⇒ permutations_of_list_impl xs =

List.bind (remdups xs) (λx. map ((#) x) (permutations_of_list_impl (remove1
x xs)))
〈proof 〉

lemma set_permutations_of_list_impl:
set (permutations_of_list_impl xs) = permutations_of_multiset (mset xs)
〈proof 〉

lemma distinct_permutations_of_list_impl:

38

distinct (permutations_of_list_impl xs)
〈proof 〉

lemma permutations_of_list_impl_aux_correct ′:
permutations_of_list_impl_aux acc xs =

map (λxs. rev xs @ acc) (permutations_of_list_impl xs)
〈proof 〉

lemma permutations_of_list_impl_aux_correct:
permutations_of_list_impl_aux [] xs = map rev (permutations_of_list_impl xs)
〈proof 〉

lemma distinct_permutations_of_list_impl_aux:
distinct (permutations_of_list_impl_aux acc xs)
〈proof 〉

lemma set_permutations_of_list_impl_aux:
set (permutations_of_list_impl_aux [] xs) = permutations_of_multiset (mset

xs)
〈proof 〉

declare set_permutations_of_list_impl_aux [symmetric, code]

value [code] permutations_of_multiset {#1 ,2 ,3 ,4 ::int#}

Now we turn to permutations of sets. We define an auxiliary version with
an accumulator to avoid having to map over the results.
function permutations_of_set_aux where

permutations_of_set_aux acc A =
(if ¬finite A then {} else if A = {} then {acc} else

(
⋃

x∈A. permutations_of_set_aux (x#acc) (A − {x})))
〈proof 〉
termination 〈proof 〉

lemma permutations_of_set_aux_altdef :
permutations_of_set_aux acc A = (λxs. rev xs @ acc) ‘ permutations_of_set A
〈proof 〉

declare permutations_of_set_aux.simps [simp del]

lemma permutations_of_set_aux_correct:
permutations_of_set_aux [] A = permutations_of_set A
〈proof 〉

In another refinement step, we define a version on lists.
declare length_remove1 [termination_simp]

fun permutations_of_set_aux_list where
permutations_of_set_aux_list acc xs =

39

(if xs = [] then [acc] else
List.bind xs (λx. permutations_of_set_aux_list (x#acc) (List.remove1 x

xs)))

definition permutations_of_set_list where
permutations_of_set_list xs = permutations_of_set_aux_list [] xs

declare permutations_of_set_aux_list.simps [simp del]

lemma permutations_of_set_aux_list_refine:
assumes distinct xs
shows set (permutations_of_set_aux_list acc xs) = permutations_of_set_aux

acc (set xs)
〈proof 〉

The permutation lists contain no duplicates if the inputs contain no dupli-
cates. Therefore, these functions can easily be used when working with a
representation of sets by distinct lists. The same approach should generalise
to any kind of set implementation that supports a monadic bind operation,
and since the results are disjoint, merging should be cheap.
lemma distinct_permutations_of_set_aux_list:

distinct xs =⇒ distinct (permutations_of_set_aux_list acc xs)
〈proof 〉

lemma distinct_permutations_of_set_list:
distinct xs =⇒ distinct (permutations_of_set_list xs)
〈proof 〉

lemma permutations_of_list:
permutations_of_set (set xs) = set (permutations_of_set_list (remdups xs))
〈proof 〉

lemma permutations_of_list_code [code]:
permutations_of_set (set xs) = set (permutations_of_set_list (remdups xs))
permutations_of_set (List.coset xs) =

Code.abort (STR ′′Permutation of set complement not supported ′′)
(λ_. permutations_of_set (List.coset xs))

〈proof 〉

value [code] permutations_of_set (set ′′abcd ′′)

end

theory Cycles
imports

HOL−Library.FuncSet
Permutations
begin

40

6 Cycles
6.1 Definitions
abbreviation cycle :: ′a list ⇒ bool

where cycle cs ≡ distinct cs

fun cycle_of_list :: ′a list ⇒ ′a ⇒ ′a
where

cycle_of_list (i # j # cs) = transpose i j ◦ cycle_of_list (j # cs)
| cycle_of_list cs = id

6.2 Basic Properties

We start proving that the function derived from a cycle rotates its support
list.
lemma id_outside_supp:

assumes x /∈ set cs shows (cycle_of_list cs) x = x
〈proof 〉

lemma permutation_of_cycle: permutation (cycle_of_list cs)
〈proof 〉

lemma cycle_permutes: (cycle_of_list cs) permutes (set cs)
〈proof 〉

theorem cyclic_rotation:
assumes cycle cs shows map ((cycle_of_list cs) ^^ n) cs = rotate n cs
〈proof 〉

corollary cycle_is_surj:
assumes cycle cs shows (cycle_of_list cs) ‘ (set cs) = (set cs)
〈proof 〉

corollary cycle_is_id_root:
assumes cycle cs shows (cycle_of_list cs) ^^ (length cs) = id
〈proof 〉

corollary cycle_of_list_rotate_independent:
assumes cycle cs shows (cycle_of_list cs) = (cycle_of_list (rotate n cs))
〈proof 〉

6.3 Conjugation of cycles
lemma conjugation_of_cycle:

assumes cycle cs and bij p
shows p ◦ (cycle_of_list cs) ◦ (inv p) = cycle_of_list (map p cs)
〈proof 〉

41

6.4 When Cycles Commute
lemma cycles_commute:

assumes cycle p cycle q and set p ∩ set q = {}
shows (cycle_of_list p) ◦ (cycle_of_list q) = (cycle_of_list q) ◦ (cycle_of_list

p)
〈proof 〉

6.5 Cycles from Permutations
6.5.1 Exponentiation of permutations

Some important properties of permutations before defining how to extract
its cycles.
lemma permutation_funpow:

assumes permutation p shows permutation (p ^^ n)
〈proof 〉

lemma permutes_funpow:
assumes p permutes S shows (p ^^ n) permutes S
〈proof 〉

lemma funpow_diff :
assumes inj p and i ≤ j (p ^^ i) a = (p ^^ j) a shows (p ^^ (j − i)) a = a
〈proof 〉

lemma permutation_is_nilpotent:
assumes permutation p obtains n where (p ^^ n) = id and n > 0
〈proof 〉

lemma permutation_is_nilpotent ′:
assumes permutation p obtains n where (p ^^ n) = id and n > m
〈proof 〉

6.5.2 Extraction of cycles from permutations
definition least_power :: (′a ⇒ ′a) ⇒ ′a ⇒ nat

where least_power f x = (LEAST n. (f ^^ n) x = x ∧ n > 0)

abbreviation support :: (′a ⇒ ′a) ⇒ ′a ⇒ ′a list
where support p x ≡ map (λi. (p ^^ i) x) [0 ..< (least_power p x)]

lemma least_powerI :
assumes (f ^^ n) x = x and n > 0
shows (f ^^ (least_power f x)) x = x and least_power f x > 0
〈proof 〉

lemma least_power_le:
assumes (f ^^ n) x = x and n > 0 shows least_power f x ≤ n

42

〈proof 〉

lemma least_power_of_permutation:
assumes permutation p shows (p ^^ (least_power p a)) a = a and least_power

p a > 0
〈proof 〉

lemma least_power_gt_one:
assumes permutation p and p a 6= a shows least_power p a > Suc 0
〈proof 〉

lemma least_power_minimal:
assumes (p ^^ n) a = a shows (least_power p a) dvd n
〈proof 〉

lemma least_power_dvd:
assumes permutation p shows (least_power p a) dvd n ←→ (p ^^ n) a = a
〈proof 〉

theorem cycle_of_permutation:
assumes permutation p shows cycle (support p a)
〈proof 〉

6.6 Decomposition on Cycles

We show that a permutation can be decomposed on cycles

6.6.1 Preliminaries
lemma support_set:

assumes permutation p shows set (support p a) = range (λi. (p ^^ i) a)
〈proof 〉

lemma disjoint_support:
assumes permutation p shows disjoint (range (λa. set (support p a))) (is disjoint

?A)
〈proof 〉

lemma disjoint_support ′:
assumes permutation p
shows set (support p a) ∩ set (support p b) = {} ←→ a /∈ set (support p b)
〈proof 〉

lemma support_coverture:
assumes permutation p shows

⋃
{ set (support p a) | a. p a 6= a } = { a. p a

6= a }
〈proof 〉

theorem cycle_restrict:

43

assumes permutation p and b ∈ set (support p a) shows p b = (cycle_of_list
(support p a)) b
〈proof 〉

6.6.2 Decomposition
inductive cycle_decomp :: ′a set ⇒ (′a ⇒ ′a) ⇒ bool

where
empty: cycle_decomp {} id
| comp: [[cycle_decomp I p; cycle cs; set cs ∩ I = {}]] =⇒

cycle_decomp (set cs ∪ I) ((cycle_of_list cs) ◦ p)

lemma semidecomposition:
assumes p permutes S and finite S
shows (λy. if y ∈ (S − set (support p a)) then p y else y) permutes (S − set

(support p a))
〈proof 〉

theorem cycle_decomposition:
assumes p permutes S and finite S shows cycle_decomp S p
〈proof 〉

end

7 Permutations as abstract type
theory Perm

imports
Transposition

begin

This theory introduces basics about permutations, i.e. almost everywhere
fix bijections. But it is by no means complete. Grieviously missing are cycles
since these would require more elaboration, e.g. the concept of distinct lists
equivalent under rotation, which maybe would also deserve its own theory.
But see theory src/HOL/ex/Perm_Fragments.thy for fragments on that.

7.1 Abstract type of permutations
typedef ′a perm = {f :: ′a ⇒ ′a. bij f ∧ finite {a. f a 6= a}}

morphisms apply Perm
〈proof 〉

setup_lifting type_definition_perm

notation apply (infixl ‹〈$〉› 999)

44

lemma bij_apply [simp]:
bij (apply f)
〈proof 〉

lemma perm_eqI :
assumes

∧
a. f 〈$〉 a = g 〈$〉 a

shows f = g
〈proof 〉

lemma perm_eq_iff :
f = g ←→ (∀ a. f 〈$〉 a = g 〈$〉 a)
〈proof 〉

lemma apply_inj:
f 〈$〉 a = f 〈$〉 b ←→ a = b
〈proof 〉

lift_definition affected :: ′a perm ⇒ ′a set
is λf . {a. f a 6= a} 〈proof 〉

lemma in_affected:
a ∈ affected f ←→ f 〈$〉 a 6= a
〈proof 〉

lemma finite_affected [simp]:
finite (affected f)
〈proof 〉

lemma apply_affected [simp]:
f 〈$〉 a ∈ affected f ←→ a ∈ affected f
〈proof 〉

lemma card_affected_not_one:
card (affected f) 6= 1
〈proof 〉

7.2 Identity, composition and inversion
instantiation Perm.perm :: (type) {monoid_mult, inverse}
begin

lift_definition one_perm :: ′a perm
is id
〈proof 〉

lemma apply_one [simp]:
apply 1 = id
〈proof 〉

45

lemma affected_one [simp]:
affected 1 = {}
〈proof 〉

lemma affected_empty_iff [simp]:
affected f = {} ←→ f = 1
〈proof 〉

lift_definition times_perm :: ′a perm ⇒ ′a perm ⇒ ′a perm
is comp
〈proof 〉

lemma apply_times:
apply (f ∗ g) = apply f ◦ apply g
〈proof 〉

lemma apply_sequence:
f 〈$〉 (g 〈$〉 a) = apply (f ∗ g) a
〈proof 〉

lemma affected_times [simp]:
affected (f ∗ g) ⊆ affected f ∪ affected g
〈proof 〉

lift_definition inverse_perm :: ′a perm ⇒ ′a perm
is inv
〈proof 〉

instance
〈proof 〉

end

lemma apply_inverse:
apply (inverse f) = inv (apply f)
〈proof 〉

lemma affected_inverse [simp]:
affected (inverse f) = affected f
〈proof 〉

global_interpretation perm: group times 1 :: ′a perm inverse
〈proof 〉

declare perm.inverse_distrib_swap [simp]

lemma perm_mult_commute:
assumes affected f ∩ affected g = {}
shows g ∗ f = f ∗ g

46

〈proof 〉

lemma apply_power :
apply (f ^ n) = apply f ^^ n
〈proof 〉

lemma perm_power_inverse:
inverse f ^ n = inverse ((f :: ′a perm) ^ n)
〈proof 〉

7.3 Orbit and order of elements
definition orbit :: ′a perm ⇒ ′a ⇒ ′a set
where

orbit f a = range (λn. (f ^ n) 〈$〉 a)

lemma in_orbitI :
assumes (f ^ n) 〈$〉 a = b
shows b ∈ orbit f a
〈proof 〉

lemma apply_power_self_in_orbit [simp]:
(f ^ n) 〈$〉 a ∈ orbit f a
〈proof 〉

lemma in_orbit_self [simp]:
a ∈ orbit f a
〈proof 〉

lemma apply_self_in_orbit [simp]:
f 〈$〉 a ∈ orbit f a
〈proof 〉

lemma orbit_not_empty [simp]:
orbit f a 6= {}
〈proof 〉

lemma not_in_affected_iff_orbit_eq_singleton:
a /∈ affected f ←→ orbit f a = {a} (is ?P ←→ ?Q)
〈proof 〉

definition order :: ′a perm ⇒ ′a ⇒ nat
where

order f = card ◦ orbit f

lemma orbit_subset_eq_affected:
assumes a ∈ affected f
shows orbit f a ⊆ affected f
〈proof 〉

47

lemma finite_orbit [simp]:
finite (orbit f a)
〈proof 〉

lemma orbit_1 [simp]:
orbit 1 a = {a}
〈proof 〉

lemma order_1 [simp]:
order 1 a = 1
〈proof 〉

lemma card_orbit_eq [simp]:
card (orbit f a) = order f a
〈proof 〉

lemma order_greater_zero [simp]:
order f a > 0
〈proof 〉

lemma order_eq_one_iff :
order f a = Suc 0 ←→ a /∈ affected f (is ?P ←→ ?Q)
〈proof 〉

lemma order_greater_eq_two_iff :
order f a ≥ 2 ←→ a ∈ affected f
〈proof 〉

lemma order_less_eq_affected:
assumes f 6= 1
shows order f a ≤ card (affected f)
〈proof 〉

lemma affected_order_greater_eq_two:
assumes a ∈ affected f
shows order f a ≥ 2
〈proof 〉

lemma order_witness_unfold:
assumes n > 0 and (f ^ n) 〈$〉 a = a
shows order f a = card ((λm. (f ^ m) 〈$〉 a) ‘ {0 ..<n})
〈proof 〉

lemma inj_on_apply_range:
inj_on (λm. (f ^ m) 〈$〉 a) {..<order f a}
〈proof 〉

lemma orbit_unfold_image:

48

orbit f a = (λn. (f ^ n) 〈$〉 a) ‘ {..<order f a} (is _ = ?A)
〈proof 〉

lemma in_orbitE :
assumes b ∈ orbit f a
obtains n where b = (f ^ n) 〈$〉 a and n < order f a
〈proof 〉

lemma apply_power_order [simp]:
(f ^ order f a) 〈$〉 a = a
〈proof 〉

lemma apply_power_left_mult_order [simp]:
(f ^ (n ∗ order f a)) 〈$〉 a = a
〈proof 〉

lemma apply_power_right_mult_order [simp]:
(f ^ (order f a ∗ n)) 〈$〉 a = a
〈proof 〉

lemma apply_power_mod_order_eq [simp]:
(f ^ (n mod order f a)) 〈$〉 a = (f ^ n) 〈$〉 a
〈proof 〉

lemma apply_power_eq_iff :
(f ^ m) 〈$〉 a = (f ^ n) 〈$〉 a ←→ m mod order f a = n mod order f a (is ?P
←→ ?Q)
〈proof 〉

lemma apply_inverse_eq_apply_power_order_minus_one:
(inverse f) 〈$〉 a = (f ^ (order f a − 1)) 〈$〉 a
〈proof 〉

lemma apply_inverse_self_in_orbit [simp]:
(inverse f) 〈$〉 a ∈ orbit f a
〈proof 〉

lemma apply_inverse_power_eq:
(inverse (f ^ n)) 〈$〉 a = (f ^ (order f a − n mod order f a)) 〈$〉 a
〈proof 〉

lemma apply_power_eq_self_iff :
(f ^ n) 〈$〉 a = a ←→ order f a dvd n
〈proof 〉

lemma orbit_equiv:
assumes b ∈ orbit f a
shows orbit f b = orbit f a (is ?B = ?A)
〈proof 〉

49

lemma orbit_apply [simp]:
orbit f (f 〈$〉 a) = orbit f a
〈proof 〉

lemma order_apply [simp]:
order f (f 〈$〉 a) = order f a
〈proof 〉

lemma orbit_apply_inverse [simp]:
orbit f (inverse f 〈$〉 a) = orbit f a
〈proof 〉

lemma order_apply_inverse [simp]:
order f (inverse f 〈$〉 a) = order f a
〈proof 〉

lemma orbit_apply_power [simp]:
orbit f ((f ^ n) 〈$〉 a) = orbit f a
〈proof 〉

lemma order_apply_power [simp]:
order f ((f ^ n) 〈$〉 a) = order f a
〈proof 〉

lemma orbit_inverse [simp]:
orbit (inverse f) = orbit f
〈proof 〉

lemma order_inverse [simp]:
order (inverse f) = order f
〈proof 〉

lemma orbit_disjoint:
assumes orbit f a 6= orbit f b
shows orbit f a ∩ orbit f b = {}
〈proof 〉

7.4 Swaps
lift_definition swap :: ′a ⇒ ′a ⇒ ′a perm (‹〈_ ↔ _〉›)

is λa b. transpose a b
〈proof 〉

lemma apply_swap_simp [simp]:
〈a ↔ b〉 〈$〉 a = b
〈a ↔ b〉 〈$〉 b = a
〈proof 〉

50

lemma apply_swap_same [simp]:
c 6= a =⇒ c 6= b =⇒ 〈a ↔ b〉 〈$〉 c = c
〈proof 〉

lemma apply_swap_eq_iff [simp]:
〈a ↔ b〉 〈$〉 c = a ←→ c = b
〈a ↔ b〉 〈$〉 c = b ←→ c = a
〈proof 〉

lemma swap_1 [simp]:
〈a ↔ a〉 = 1
〈proof 〉

lemma swap_sym:
〈b ↔ a〉 = 〈a ↔ b〉
〈proof 〉

lemma swap_self [simp]:
〈a ↔ b〉 ∗ 〈a ↔ b〉 = 1
〈proof 〉

lemma affected_swap:
a 6= b =⇒ affected 〈a ↔ b〉 = {a, b}
〈proof 〉

lemma inverse_swap [simp]:
inverse 〈a ↔ b〉 = 〈a ↔ b〉
〈proof 〉

7.5 Permutations specified by cycles
fun cycle :: ′a list ⇒ ′a perm (‹〈_〉›)
where
〈[]〉 = 1
| 〈[a]〉 = 1
| 〈a # b # as〉 = 〈a # as〉 ∗ 〈a↔b〉

We do not continue and restrict ourselves to syntax from here. See also
introductory note.

7.6 Syntax
bundle permutation_syntax
begin
notation swap (‹〈_ ↔ _〉›)
notation cycle (‹〈_〉›)
notation apply (infixl ‹〈$〉› 999)
end

51

unbundle no permutation_syntax

end

8 Permutation orbits
theory Orbits
imports

HOL−Library.FuncSet
HOL−Combinatorics.Permutations

begin

8.1 Orbits and cyclic permutations
inductive_set orbit :: (′a ⇒ ′a) ⇒ ′a ⇒ ′a set for f x where

base: f x ∈ orbit f x |
step: y ∈ orbit f x =⇒ f y ∈ orbit f x

definition cyclic_on :: (′a ⇒ ′a) ⇒ ′a set ⇒ bool where
cyclic_on f S ←→ (∃ s∈S . S = orbit f s)

lemma orbit_altdef : orbit f x = {(f ^^ n) x | n. 0 < n} (is ?L = ?R)
〈proof 〉

lemma orbit_trans:
assumes s ∈ orbit f t t ∈ orbit f u shows s ∈ orbit f u
〈proof 〉

lemma orbit_subset:
assumes s ∈ orbit f (f t) shows s ∈ orbit f t
〈proof 〉

lemma orbit_sim_step:
assumes s ∈ orbit f t shows f s ∈ orbit f (f t)
〈proof 〉

lemma orbit_step:
assumes y ∈ orbit f x f x 6= y shows y ∈ orbit f (f x)
〈proof 〉

lemma self_in_orbit_trans:
assumes s ∈ orbit f s t ∈ orbit f s shows t ∈ orbit f t
〈proof 〉

lemma orbit_swap:
assumes s ∈ orbit f s t ∈ orbit f s shows s ∈ orbit f t
〈proof 〉

lemma permutation_self_in_orbit:

52

assumes permutation f shows s ∈ orbit f s
〈proof 〉

lemma orbit_altdef_self_in:
assumes s ∈ orbit f s shows orbit f s = {(f ^^ n) s | n. True}
〈proof 〉

lemma orbit_altdef_permutation:
assumes permutation f shows orbit f s = {(f ^^ n) s | n. True}
〈proof 〉

lemma orbit_altdef_bounded:
assumes (f ^^ n) s = s 0 < n shows orbit f s = {(f ^^ m) s| m. m < n}
〈proof 〉

lemma funpow_in_orbit:
assumes s ∈ orbit f t shows (f ^^ n) s ∈ orbit f t
〈proof 〉

lemma finite_orbit:
assumes s ∈ orbit f s shows finite (orbit f s)
〈proof 〉

lemma self_in_orbit_step:
assumes s ∈ orbit f s shows orbit f (f s) = orbit f s
〈proof 〉

lemma permutation_orbit_step:
assumes permutation f shows orbit f (f s) = orbit f s
〈proof 〉

lemma orbit_nonempty:
orbit f s 6= {}
〈proof 〉

lemma orbit_inv_eq:
assumes permutation f
shows orbit (inv f) x = orbit f x (is ?L = ?R)
〈proof 〉

lemma cyclic_on_alldef :
cyclic_on f S ←→ S 6= {} ∧ (∀ s∈S . S = orbit f s)
〈proof 〉

lemma cyclic_on_funpow_in:
assumes cyclic_on f S s ∈ S shows (f^^n) s ∈ S
〈proof 〉

lemma finite_cyclic_on:

53

assumes cyclic_on f S shows finite S
〈proof 〉

lemma cyclic_on_singleI :
assumes s ∈ S S = orbit f s shows cyclic_on f S
〈proof 〉

lemma cyclic_on_inI :
assumes cyclic_on f S s ∈ S shows f s ∈ S
〈proof 〉

lemma orbit_inverse:
assumes self : a ∈ orbit g a

and eq:
∧

x. x ∈ orbit g a =⇒ g ′ (f x) = f (g x)
shows f ‘ orbit g a = orbit g ′ (f a) (is ?L = ?R)
〈proof 〉

lemma cyclic_on_image:
assumes cyclic_on f S
assumes

∧
x. x ∈ S =⇒ g (h x) = h (f x)

shows cyclic_on g (h ‘ S)
〈proof 〉

lemma cyclic_on_f_in:
assumes f permutes S cyclic_on f A f x ∈ A
shows x ∈ A
〈proof 〉

lemma orbit_cong0 :
assumes x ∈ A f ∈ A → A

∧
y. y ∈ A =⇒ f y = g y shows orbit f x = orbit g

x
〈proof 〉

lemma orbit_cong:
assumes self_in: t ∈ orbit f t and eq:

∧
s. s ∈ orbit f t =⇒ g s = f s

shows orbit g t = orbit f t
〈proof 〉

lemma cyclic_cong:
assumes

∧
s. s ∈ S =⇒ f s = g s shows cyclic_on f S = cyclic_on g S

〈proof 〉

lemma permutes_comp_preserves_cyclic1 :
assumes g permutes B cyclic_on f C
assumes A ∩ B = {} C ⊆ A
shows cyclic_on (f o g) C
〈proof 〉

lemma permutes_comp_preserves_cyclic2 :

54

assumes f permutes A cyclic_on g C
assumes A ∩ B = {} C ⊆ B
shows cyclic_on (f o g) C
〈proof 〉

lemma permutes_orbit_subset:
assumes f permutes S x ∈ S shows orbit f x ⊆ S
〈proof 〉

lemma cyclic_on_orbit ′:
assumes permutation f shows cyclic_on f (orbit f x)
〈proof 〉

lemma cyclic_on_orbit:
assumes f permutes S finite S shows cyclic_on f (orbit f x)
〈proof 〉

lemma orbit_cyclic_eq3 :
assumes cyclic_on f S y ∈ S shows orbit f y = S
〈proof 〉

lemma orbit_eq_singleton_iff : orbit f x = {x} ←→ f x = x (is ?L ←→ ?R)
〈proof 〉

lemma eq_on_cyclic_on_iff1 :
assumes cyclic_on f S x ∈ S
obtains f x ∈ S f x = x ←→ card S = 1
〈proof 〉

lemma orbit_eqI :
y = f x =⇒ y ∈ orbit f x
z = f y =⇒y ∈ orbit f x =⇒z ∈ orbit f x
〈proof 〉

8.2 Decomposition of arbitrary permutations
definition perm_restrict :: (′a ⇒ ′a) ⇒ ′a set ⇒ (′a ⇒ ′a) where

perm_restrict f S x ≡ if x ∈ S then f x else x

lemma perm_restrict_comp:
assumes A ∩ B = {} cyclic_on f B
shows perm_restrict f A o perm_restrict f B = perm_restrict f (A ∪ B)
〈proof 〉

lemma perm_restrict_simps:
x ∈ S =⇒ perm_restrict f S x = f x
x /∈ S =⇒ perm_restrict f S x = x
〈proof 〉

55

lemma perm_restrict_perm_restrict:
perm_restrict (perm_restrict f A) B = perm_restrict f (A ∩ B)
〈proof 〉

lemma perm_restrict_union:
assumes perm_restrict f A permutes A perm_restrict f B permutes B A ∩ B =
{}

shows perm_restrict f A o perm_restrict f B = perm_restrict f (A ∪ B)
〈proof 〉

lemma perm_restrict_id[simp]:
assumes f permutes S shows perm_restrict f S = f
〈proof 〉

lemma cyclic_on_perm_restrict:
cyclic_on (perm_restrict f S) S ←→ cyclic_on f S
〈proof 〉

lemma perm_restrict_diff_cyclic:
assumes f permutes S cyclic_on f A
shows perm_restrict f (S − A) permutes (S − A)
〈proof 〉

lemma permutes_decompose:
assumes f permutes S finite S
shows ∃C . (∀ c ∈ C . cyclic_on f c) ∧

⋃
C = S ∧ (∀ c1 ∈ C . ∀ c2 ∈ C . c1 6=

c2 −→ c1 ∩ c2 = {})
〈proof 〉

8.3 Function-power distance between values
definition funpow_dist :: (′a ⇒ ′a) ⇒ ′a ⇒ ′a ⇒ nat where

funpow_dist f x y ≡ LEAST n. (f ^^ n) x = y

abbreviation funpow_dist1 :: (′a ⇒ ′a) ⇒ ′a ⇒ ′a ⇒ nat where
funpow_dist1 f x y ≡ Suc (funpow_dist f (f x) y)

lemma funpow_dist_0 :
assumes x = y shows funpow_dist f x y = 0
〈proof 〉

lemma funpow_dist_least:
assumes n < funpow_dist f x y shows (f ^^ n) x 6= y
〈proof 〉

lemma funpow_dist1_least:
assumes 0 < n n < funpow_dist1 f x y shows (f ^^ n) x 6= y
〈proof 〉

56

lemma funpow_dist_prop:
y ∈ orbit f x =⇒ (f ^^ funpow_dist f x y) x = y
〈proof 〉

lemma funpow_dist_0_eq:
assumes y ∈ orbit f x shows funpow_dist f x y = 0 ←→ x = y
〈proof 〉

lemma funpow_dist_step:
assumes x 6= y y ∈ orbit f x shows funpow_dist f x y = Suc (funpow_dist f (f

x) y)
〈proof 〉

lemma funpow_dist1_prop:
assumes y ∈ orbit f x shows (f ^^ funpow_dist1 f x y) x = y
〈proof 〉

lemma funpow_neq_less_funpow_dist:
assumes y ∈ orbit f x m ≤ funpow_dist f x y n ≤ funpow_dist f x y m 6= n
shows (f ^^ m) x 6= (f ^^ n) x
〈proof 〉

lemma funpow_neq_less_funpow_dist1 :
assumes y ∈ orbit f x m < funpow_dist1 f x y n < funpow_dist1 f x y m 6= n
shows (f ^^ m) x 6= (f ^^ n) x
〈proof 〉

lemma inj_on_funpow_dist:
assumes y ∈ orbit f x shows inj_on (λn. (f ^^ n) x) {0 ..funpow_dist f x y}
〈proof 〉

lemma inj_on_funpow_dist1 :
assumes y ∈ orbit f x shows inj_on (λn. (f ^^ n) x) {0 ..<funpow_dist1 f x y}
〈proof 〉

lemma orbit_conv_funpow_dist1 :
assumes x ∈ orbit f x
shows orbit f x = (λn. (f ^^ n) x) ‘ {0 ..<funpow_dist1 f x x} (is ?L = ?R)
〈proof 〉

lemma funpow_dist1_prop1 :
assumes (f ^^ n) x = y 0 < n shows (f ^^ funpow_dist1 f x y) x = y
〈proof 〉

lemma funpow_dist1_dist:
assumes funpow_dist1 f x y < funpow_dist1 f x z
assumes {y,z} ⊆ orbit f x

57

shows funpow_dist1 f x z = funpow_dist1 f x y + funpow_dist1 f y z (is ?L =
?R)
〈proof 〉

lemma funpow_dist1_le_self :
assumes (f ^^ m) x = x 0 < m y ∈ orbit f x
shows funpow_dist1 f x y ≤ m
〈proof 〉

end

9 Basic combinatorics in Isabelle/HOL (and the
Archive of Formal Proofs)

theory Combinatorics
imports

Transposition
Stirling
Permutations
List_Permutation
Multiset_Permutations
Cycles
Perm
Orbits

begin

end

58

	Transposition function
	Stirling numbers of first and second kind
	Stirling numbers of the second kind
	Stirling numbers of the first kind
	Efficient code

	Permutations, both general and specifically on finite sets.
	Auxiliary
	Basic definition and consequences
	Group properties
	Restricting a permutation to a subset
	Mapping a permutation
	The number of permutations on a finite set
	Permutations of index set for iterated operations
	Permutations as transposition sequences
	Some closure properties of the set of permutations, with lengths
	Various combinations of transpositions with 2, 1 and 0 common elements
	The identity map only has even transposition sequences
	Therefore we have a welldefined notion of parity
	And it has the expected composition properties
	A more abstract characterization of permutations
	Relation to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 permutes
	Sign of a permutation
	An induction principle in terms of transpositions
	More on the sign of permutations
	Transpositions of adjacent elements
	Transferring properties of permutations along bijections
	Permuting a list
	More lemmas about permutations
	Sum over a set of permutations (could generalize to iteration)
	Constructing permutations from association lists

	Permuted Lists
	An existing notion
	Nontrivial conclusions
	Trivial conclusions:

	Permutations of a Multiset
	Permutations of a multiset
	Cardinality of permutations
	Permutations of a set
	Code generation

	Cycles
	Definitions
	Basic Properties
	Conjugation of cycles
	When Cycles Commute
	Cycles from Permutations
	Exponentiation of permutations
	Extraction of cycles from permutations

	Decomposition on Cycles
	Preliminaries
	Decomposition

	Permutations as abstract type
	Abstract type of permutations
	Identity, composition and inversion
	Orbit and order of elements
	Swaps
	Permutations specified by cycles
	Syntax

	Permutation orbits
	Orbits and cyclic permutations
	Decomposition of arbitrary permutations
	Function-power distance between values

	Basic combinatorics in Isabelle/HOL (and the Archive of Formal Proofs)

