Basic combinatorics in Isabelle/HOL (and the

Archive of Formal Proofs)

January 18, 2026

Contents
1 Transposition function 1
2 Stirling numbers of first and second kind 5
2.1 Stirling numbers of the second kind 5
2.2 Stirling numbers of the first kind00 6
2.2.1 Efficient code 7
3 Permutations, both general and specifically on finite sets. 8
3.1 Auxiliary 8
3.2 Basic definition and consequences 8
3.3 Group properties o 11
3.4 Restricting a permutation to a subset 11
3.5 Mapping a permutation L. 12
3.6 The number of permutations on a finiteset 14
3.7 Permutations of index set for iterated operations 14
3.8 Permutations as transposition sequences 14
3.9 Some closure properties of the set of permutations, with lengths 14
3.10 Various combinations of transpositions with 2, 1 and 0 com-
mon elements 15
3.11 The identity map only has even transposition sequences . . . 16
3.12 Therefore we have a welldefined notion of parity 16
3.13 And it has the expected composition properties 17
3.14 A more abstract characterization of permutations 17
3.15 Relation to permutes 18
3.16 Sign of a permutation 18
3.17 An induction principle in terms of transpositions 19
3.18 More on the sign of permutations 20
3.19 Transpositions of adjacent elements 21
3.20 Transferring properties of permutations along bijections . . . 22

3.21 Permutingalist. L 0. 23

3.22 More lemmas about permutations. 25
3.23 Sum over a set of permutations (could generalize to iteration) 27
3.24 Constructing permutations from association lists 27
Permuted Lists 29
4.1 Anexisting notion L. 29
4.2 Nontrivial conclusions 30
4.3 Trivial conclusions:o oo 30
Permutations of a Multiset 32
5.1 Permutations of a multiset, 32
5.2 Cardinality of permutations 34
5.3 Permutationsofaset.00, 35
5.4 Code generation 36
Cycles 39
6.1 Definitions oo 39
6.2 Basic Properties o oo 39
6.3 Conjugationof cycles. oo 40
6.4 When Cycles Commute 40
6.5 Cpycles from Permutations 40

6.5.1 Exponentiation of permutations 40

6.5.2 Extraction of cycles from permutations 41
6.6 Decomposition on Cycles 41

6.6.1 Preliminaries, 41

6.6.2 Decomposition oL 42
Permutations as abstract type 42
7.1 Abstract type of permutations L. 43
7.2 Identity, composition and inversion 44
7.3 Orbit and order of elements 45
T4 SWaps o e e e e 49
7.5 Permutations specified by cycles 49
76 Syntax 50
Permutation orbits 50
8.1 Orbits and cyclic permutations 50
8.2 Decomposition of arbitrary permutations 54
8.3 Function-power distance between values 54

Basic combinatorics in Isabelle/HOL (and the Archive of
Formal Proofs) 56

1 Transposition function

theory Transposition
imports Main
begin

definition transpose :: <'a = 'a = 'a = ‘o
where <transpose a b ¢ = (if ¢ = a then b else if ¢ = b then a else ¢)»

lemma transpose__apply_ first [simp]:
<transpose a b a = by

(proof)

lemma transpose__apply_second [simp]:
<transpose a b b =)

{proof)

lemma transpose__apply__other [simp]:
<transpose a b ¢ = ¢ if <¢c # a> <¢c # b

{proof)

lemma transpose__same [simp]:
<transpose a a = id>
{proof)

lemma transpose_eq iff:

<transpose a bc=d+— (c£aNc#bANd=¢c)V(c=aAd=bV(c=Db
A d=a)

{proof)

lemma transpose__eq imp__eq:
<c = d» if «transpose a b ¢ = transpose a b d>
(proof)

lemma transpose__commute [ac__simps]:
<transpose b a = transpose a b»

{proof)

lemma transpose__involutory [simp]:
<transpose a b (transpose a b ¢) = ¢»

{proof)

lemma transpose__comp__involutory [simp):
<transpose a b o transpose a b = id)

{proof)

lemma transpose eq id_iff: Transposition.transpose Ty = id «— x =y
(proof)

lemma transpose_triple:
<transpose a b (transpose b ¢ (transpose a b d)) = transpose a ¢ d»
if <a # ¢ and b # o

{proof)

lemma transpose__comp__triple:
<transpose a b o transpose b ¢ o transpose a b = transpose a ¢
if <a # ¢ and b # o

{proof)

lemma transpose_image__eq [simp]:
<transpose a b ‘A = Ay if <a € A <+— b e A
(proof)

lemma inj_on_transpose [simp):
<ing_on (transpose a b) A»
(proof)

lemma inj transpose:
<ing (transpose a b)»
(proof)

lemma surj_transpose:
<surj (transpose a b)»

{proof)

lemma bij_betw_transpose_iff [simp]:
<bij_betw (transpose a b) A A if <a € A +— b e A
(proof)

lemma bij_transpose [simp]:
<bij (transpose a b))

{proof)

lemma bijection_ transpose:
<bijection (transpose a b)»

(proof)

lemma inv_transpose__eq [simp]:
<inv (transpose a b) = transpose a b
{proof)

lemma transpose__apply__commute:
<transpose a b (f ¢) = f (transpose (inv f a) (inv fb) c)»
if <bij >

(proof)

lemma transpose_comp_eq:
<transpose a b o f = f o transpose (inv f a) (inv f b)»

if <bij >
{proof)

lemma in_ transpose__image__iff:
<x € transpose a b * S <— transpose a b x € S»
(proof)

Legacy input alias

(ML)

abbreviation (input) swap :: <a = 'a = (‘la = 'b) = 'a = 'b
where <swap a b f = f o transpose a by

lemma swap_ def:
<Fun.swap a b f = f (a:= fb, bi= fa)
(proof)

(ML)

lemma swap__apply:
Fun.swap a b fa=fb
Fun.swap a b fb=fa
c#Fa= c# b= Fun.swapabfc=fc
(proof)

lemma swap _self: Fun.swap a a f = f
(proof)

lemma swap commute: Fun.swap a b f = Fun.swap b a f
(proof)

lemma swap_nilpotent: Fun.swap a b (Fun.swap a b f) = f
(proof)

lemma swap comp__involutory: Fun.swap a b o Fun.swap a b = id
(proof)

lemma swap__triple:
assumes a #* c and b # ¢
shows Fun.swap a b (Fun.swap b ¢ (Fun.swap a b f)) = Fun.swap a ¢ f

{proof)

lemma comp_swap: f o Fun.swap a b g = Fun.swap a b (f o g)

(proof)

lemma swap image eq:
assumes a € Abe A
shows Fun.swap a b f‘A=f‘A

{proof)

lemma inj on_imp_inj on_swap: inj onfA = a € A= be A= inj on
(Fun.swap a b f) A
(proof)

lemma inj on_swap_ iff:
assumes A:a € Abe A
shows inj_on (Fun.swap a b f) A <— inj_on f A
(proof)

lemma surj_imp_surj swap: surj f = surj (Fun.swap a b f)
(proof)

lemma surj_swap_iff: surj (Fun.swap a b f) +— surj f

(proof)

lemma bij betw swap iff: z € A = y € A = bij_betw (Fun.swap zy f) A B
<« bij_betw f A B
{proof)

lemma bij_swap_iff: bij (Fun.swap a b f) <— bij f
(proof)

lemma swap__image:
Pun.swap ijf“A=f* (4 - {4 j}
U (if i € A then {j} else {}) U (if j € A then {i} else {}))
(proof)

lemma inv_swap_id: inv (Fun.swap a b id) = Fun.swap a b id
(proof)

lemma bij swap_ comp:
assumes bij p
shows Fun.swap a b id o p = Fun.swap (inv p a) (inv p b) p

{proof)

lemma swap_id_eq: Fun.swap a b id x = (if © = a then b else if x = b then a else
z)
(proof)

lemma swap_unfold:
<Fun.swap a b p = p o Fun.swap a b id>

{proof)

lemma swap__id_idempotent: Fun.swap a b id o Fun.swap a b id = id
(proof)

lemma bij swap_ compose__bij:
<bij (Fun.swap a b id o p)y if <bij p»

{proof)

end

2 Stirling numbers of first and second kind

theory Stirling
imports Main
begin

2.1 Stirling numbers of the second kind

fun Stirling :: nat = nat = nat
where
Stirling 0 0 = 1
| Stirling 0 (Suc k) =
| Stirling (Suc n) 0 = 0
| Stirling (Suc n) (Suc k) = Suc k = Stirling n (Suc k) + Stirling n k

0

lemma Stirling 1 [simp]: Stirling (Suc n) (Suc 0) = 1
{proof)

lemma Stirling less [simp]: n < k => Stirling n k = 0
(proof)

lemma Stirling_same [simp]: Stirling n n = 1
(proof)

lemma Stirling 2 _2: Stirling (Suc (Suc n)) (Suc (Suc 0)) = 2 " Sucn — 1
(proof)

lemma Stirling 2: Stirling (Suc n) (Suc (Suc 0)) =2 " n — 1
{proof)

2.2 Stirling numbers of the first kind

fun stirling :: nat = nat = nat

where

stirling 0 0 = 1

| stirling 0 (Suc k) = 0

| stirling (Suc n) 0 = 0

| stirling (Suc n) (Suc k) = n * stirling n (Suc k) + stirling n k
lemma stirling_0 [simp]: n > 0 = stirling n 0 = 0

(proof)

lemma stirling_less [simp]: n < k = stirling n k = 0
(proof)

lemma stirling same [simp]: stirling n n = 1
{proof)

lemma stirling_Suc_n__1: stirling (Suc n) (Suc 0) = fact n
(proof)

lemma stirling Suc_n_n: stirling (Suc n) n = Suc n choose 2
(proof)

lemma stirling Suc_n_ 2:
assumes n > Suc 0
shows stirling (Suc n) 2 = (> k=1..n. fact n div k)

{proof)

lemma of nat_stirling Suc_n_2:

assumes n > Suc 0

shows (of _nat (stirling (Suc n) 2)::'a::field_char_0) = fact n x (3 k=1..n. (1
/ of nat k))

(proof)

lemma sum__stirling: (> k<n. stirling n k) = fact n

(proof)

lemma stirling pochhammer:
(3" k<n. of _nat (stirling n k) x x " k) = (pochhammer x n :: 'a::comm__semiring_ 1)

(proof)

A row of the Stirling number triangle

definition stirling row :: nat = nat list
where stirling _row n = [stirling n k. k < [0..<Suc n]]

lemma nth_ stirling _row: k < n = stirling_row n ! k = stirling n k
(proof)

lemma length_stirling _row [simp]: length (stirling _row n) = Suc n
(proof)

lemma stirling_row_nonempty [simp]: stirling _row n # ||
(proof)

2.2.1 Efficient code

Naively using the defining equations of the Stirling numbers of the first kind
to compute them leads to exponential run time due to repeated compu-
tations. We can use memoisation to compute them row by row without
repeating computations, at the cost of computing a few unneeded values.

As a bonus, this is very efficient for applications where an entire row of
Stirling numbers is needed.

definition zip_with_prev :: ('a = 'a = 'b) = 'a = 'a list = 'b list
where zip_with_prev f x xs = map2 [(z # xs) zs

lemma zip_ with_prev_altdef:
zip__with_prev fx zs =
(if zs =[] then [] else fx (hd xs) # [f (zs'0) (xzs!(i+1)). i + [0..<length s —
1]))
(proof)

primrec stirling row_aux
where
stirling_row_auz n y [| = [1]
| stirling_row_auz n y (z#zs) = (y + n * x) # stirling_row_auz n x xs

lemma stirling_row__auz_ correct:
stirling_row_auz n y xs = zip_with_prev (Aa b. a + n % b) y zs @ [1]
{proof)

lemma stirling_row__code [code]:

stirling_row 0 = [1]

stirling_row (Suc n) = stirling_row__auz n 0 (stirling_row n)
(proof)

lemma stirling_code [code]:
stirling n k =
(if k = 0 then (if n = 0 then 1 else 0)
else if k > n then 0
else if k = n then 1
else stirling_row n ! k)

(proof)

end

3 Permutations, both general and specifically on
finite sets.

theory Permutations
imports
HOL— Library. Multiset
HOL- Library.Disjoint__Sets
Transposition
begin

3.1 Auxiliary

abbreviation (input) fizpoints :: «('a = 'a) = 'a set
where <fizpoints f = {z. fz =z}

lemma inj on_ fizpoints:
<ing_on [(fizpoints f)»
(proof)

lemma bij betw_fixpoints:
<bij_betw f (fizpoints f) (fixpoints f)»
(proof)

3.2 Basic definition and consequences

definition permutes :: «('a = 'a) = 'a set = bool> (infixr <permutes> 41)
where <p permutes S +— Vz. 2 ¢ S — px=2) AN Vy. Fla. pz=y)

lemma bij imp_ permutes:
<p permutes Sy if <bij_betw p S S» and stable: <A\z. 2 ¢ S = pz =

(proof)

lemma inj imp_permutes:
assumes i: inj_on f S and fin: finite S
and fS: A\z.z € S = fz e S
and f: Ni.i¢ S=fi=1
shows f permutes S
(proof)

context
fixes p :: <'a = 'a» and S :: (‘a set
assumes perm: <p permutes S
begin

lemma permutes_inj:

ing p»
(proof)

lemma permutes_image:
p ‘S =5

(proof)

lemma permutes_not_in:
g S=pr=uv

(proof)

lemma permutes image complement:
p (=8 =-5
(proof)

lemma permutes_in_image:
preS+—zes
(proof)

10

lemma permutes_surj:
<surj p

(proof)

lemma permutes inv_o:
shows p o inv p = id
and invpo p=id
(proof)

lemma permutes inverses:
shows p (invp z) =z
and invp (pz) ==z
{proof)

lemma permutes__inv__eq:
MU p Yy =T 4 pxr =1
{proof)

lemma permutes_inj on:
<ing_on p A»
(proof)

lemma permutes_ bij:
<bij p»
(proof)
lemma permutes imp_ bij:

<bij_betwp S S»
(proof)

lemma permutes subset:
<p permutes T» if «S C T»

(proof)

lemma permutes imp_permutes insert:
<p permutes insert x S»

{proof)

end

lemma permutes_id [simp:
<id permutes S»
(proof)

lemma permutes _empty [simp]:

<p permutes {} «— p = id>

(proof)

11

lemma permutes_sing [simp]:
<p permutes {a} <— p = id>

(proof)

lemma permutes_univ: p permutes UNIV <— (Vy. 3lz. p x = y)
(proof)

lemma permutes _swap_id: a € S = b € S = transpose a b permutes S

{proof)

lemma permutes__altdef: p permutes A <— bij_betwp A AN {z.px # 2} C A
(proof)

lemma permutes superset:
<p permutes T if <p permutes S» <Nv. 2 € S — T = pax =

(proof)

lemma permutes bij _inv_into:
fixes A :: ‘a set
and B :: b set
assumes p permutes A
and bij _betw f A B
shows (Az. if x € B then f (p (inv_into A f 1)) else) permutes B

(proof)

lemma permutes_image_mset:
assumes p permutes A
shows image mset p (mset_set A) = mset_set A

{proof)

lemma permutes implies _image mset_eq:

assumes p permutes A Ax. v € A = fz=f" (p x)

shows image _mset f' (mset_set A) = image_mset f (mset_set A)
(proo)

3.3 Group properties

lemma permutes_compose: p permutes S => q permutes S => q o p permutes S

{proof)

lemma permutes__inv:
assumes p permutes S
shows inv p permutes S

{proof)

lemma permutes inv_inv:
assumes p permutes S
shows inv (inv p) = p
(proof)

12

lemma permutes_invl:
assumes perm: p permutes S
and inv: Az. 2 € S = p’ (p z)
and outside: N\z. c ¢ S = p'z
shows inv p = p’
(proof)

|
8 8

lemma permutes_vimage: f permutes A = f —“ A=A
(proof)

3.4 Restricting a permutation to a subset

definition restrict_id :: (‘a = 'a) = 'a set = 'a = 'a
where restrict_id f A = (Az. if ¢ € A then f z else x)

lemma restrict_id__cong [cong]:
assumes \z. 2 € A = fez =gz A=DB
shows restrict_id f A = restrict_id g B
(proof)

lemma restrict_id_cong”:
assumes t € A = fr=gz2zA=B
shows restrict_id f A © = restrict_id g B x
(proof)

lemma restrict_id_simps [simp):
x € A= restrict_ idfAz=/fx
x ¢ A= restrict_ idfAz=z
(proof)

lemma b7j betw restrict_id:
assumes bijj betw fA A ACB
shows bij betw (restrict_id f A) B B
(proof)

lemma permutes_restrict_id:
assumes bij betw f A A
shows restrict_id f A permutes A

{proof)

3.5 Mapping a permutation

definition map_permutation :: 'a set = ('a = 'b) = (‘a = 'a) = 'b = 'b where
map__permutation A fp = restrict_id (f o p o inv_into A f) (f * A)

lemma map_ permutation__cong_ strong:
assumes A= BA\z.z € A= fz=gazN\z.z € A= pr=qz
assumes p ‘A C Ainj onfA
shows map_permutation A fp = map_permutation B g q

13

(proof)

lemma map_ permutation__cong:
assumes inj_on f A p permutes A
assumes A=BANr.c€e A= fz=gas Ne.c€e A= pr=qu
shows map_ permutation A fp = map__permutation B g q

(proof)

lemma inv_into_id [simp]: © € A = inv_into A idz =z
(proof)

lemma inv_into_ident [simp]: x € A = inv_into A (A\z. z) z =
{proof)

lemma map_ permutation_id [simp]: p permutes A = map__permutation A id p
=D

(proof)
lemma map_ permutation_ident [simp]: p permutes A = map_ permutation A
A.z)p=p

(proof)

lemma map__permutation_id": inj_on f A = map__permutation A fid = id
(proof)

lemma map_permutation_ident”: inj _on f A = map_ permutation A f (A\z. x)
= (\z. 1)
(proof)

lemma map_ permutation__permutes:
assumes bij betw f A B p permutes A
shows map_ permutation A fp permutes B

(proof)

lemma map__ permutation__compose:

fixes f:: 'a= band g :: 'b = 'c

assumes bij _betw f A B inj _on g B

shows map_permutation B g (map_permutation A f p) = map_ permutation
A(gof)p
(proof)

lemma map_permutation__compose__inv:
assumes bij _betw f A B p permutes A Nx. z € A = g (fz) ==«
shows map_permutation B g (map__permutation A fp) = p

(proof)
lemma map_ permutation__apply:

assumes inj on fAx € A
shows map_permutation A fh (fz) = f (h)

14

{proof)

lemma map__permutation__compose’:

fixes f : 'a = 'b

assumes inj_on f A q permutes A

shows map_ permutation A f (p o q¢) = map__permutation A fp o map__permutation
Afq
(proof)

lemma map_permutation__transpose:

assumes inj onfAa€ Abe A

shows map_permutation A f (Transposition.transpose a b) = Transposition.transpose
(fa) (f0)
(proof)

lemma map__permutation__permutes_ iff:
assumes bij betw fABp ‘ACANz.2¢ A= pr==zx
shows map permutation A fp permutes B <— p permutes A
(proof)

lemma bij betw permutations:
assumes bij_betw f A B
shows bij betw (Am z. if € B then f (7 (inv_into A f x)) else x)
{m. ™ permutes A} {m. m permutes B} (is bij_betw ?f _)

(proof)

lemma bij betw derangements:
assumes bij betw f A B
shows bij betw (Am z. if ¢ € B then f (7 (inv_into A f x)) else x)
{m. ™ permutes A N (Vz€A. m x # z)} {m. ® permutes B A (Vz€B. 7 x

)}
(proof)

(is bij_betw 2f)

3.6 The number of permutations on a finite set

lemma permutes insert lemma:
assumes p permutes (insert a S)
shows transpose a (p a) o p permutes S

(proof)

lemma permutes_insert: {p. p permutes (insert a S)} =
(A(b, p). transpose a b o p) ‘{(b, p). b € insert a S N\ p € {p. p permutes S}}

(proof)

lemma card_permutations:
assumes card S = n
and finite S
shows card {p. p permutes S} = fact n

15

{proof)

lemma finite permutations:
assumes finite S
shows finite {p. p permutes S}

{proof)

lemma permutes doubleton__iff: f permutes {a, b} +— f = id V f = Transposi-
tion.transpose a b

{(proof)

3.7 Permutations of index set for iterated operations

lemma (in comm_monoid__set) permute:
assumes p permutes S
shows FgS=F (gop) S

(proof)

3.8 Permutations as transposition sequences

inductive swapidseq :: nat = (‘a = 'a) = bool
where
id[simp]: swapidseq 0 id
| comp__Suc: swapidseq n p = a # b = swapidseq (Suc n) (transpose a b o p)

declare id[unfolded id_def, simp)

definition permutation p <— (3 n. swapidseq n p)

3.9 Some closure properties of the set of permutations, with
lengths

lemma permutation_id[simp|: permutation id
(proof)

declare permutation__id[unfolded id_def, simp]

lemma swapidseq swap: swapidseq (if a = b then 0 else 1) (transpose a b)
(proof)

lemma permutation_swap_id: permutation (transpose a b)
(proof)

lemma swapidseq _comp__add: swapidseq n p = swapidseq m ¢ = swapidseq (n
+m) (poq)
(proof)

lemma permutation__compose: permutation p = permutation ¢ = permutation
(poq

16

{proof)

lemma swapidseq endswap: swapidseq n p = a # b = swapidseq (Suc n) (p o
transpose a b)

(proof)

lemma swapidseq inverse _exists: swapidseq n p => 3 q. swapidseqn ¢ A po q =
idNqgop=id
(proof)

lemma swapidseq inverse:
assumes swapidseq n p
shows swapidseq n (inv p)
(proof)

lemma permutation_inverse: permutation p = permutation (inv p)
(proof)

3.10 Various combinations of transpositions with 2, 1 and 0
common elements

lemma swap_id_common: a # ¢ = b # ¢ =
transpose a b o transpose a ¢ = transpose b ¢ o transpose a b

{proof)

lemma swap_id_common” a # b = a # ¢ =
transpose a ¢ o transpose b ¢ = transpose b ¢ o transpose a b

{proof)

lemma swap_id_independent: a # c = a #d = b# ¢ = b # d =
transpose a b o transpose ¢ d = transpose ¢ d o transpose a b

{proof)

3.11 The identity map only has even transposition sequences

lemma symmetry lemma:
assumes Aabcd. Pabcd = Pabdc
and N\abcd a# b= c# d =
a=cANb=dVa=cANbFdVa#tcANb=dVa#cNa#*dANb#c
ANb#d=
Pabced
shows Aabcd. a#b—c#d— Pabecd

{proof)

lemma swap__general:
assumes a # b ¢ # d
shows transpose a b o transpose ¢ d = id V
BzyzazFaNy#ahz#aNz#yAN
transpose a b o transpose ¢ d = transpose x y o transpose a z)

17

{proof)

lemma swapidseq id_iff [simp]: swapidseq 0 p +— p = id
(proof)

lemma swapidseq cases: swapidseq n p <—
n=0Ap=idV (3abdbqgm.n= Sucm A p= transpose a b o g N\ swapidseq
mq A a#b)
(proof)

lemma fizing swapidseq decrease:
assumes swapidseq n p
and a # b
and (transpose a b o p) a = a
shows n # 0 A swapidseq (n — 1) (transpose a b o p)
(proof)

lemma swapidseq identity_even:
assumes swapidseq n (id :: 'a = 'a)
shows even n
(proof)

3.12 Therefore we have a welldefined notion of parity

definition evenperm p = even (SOME n. swapidseq n p)

lemma swapidseq even__even:
assumes m: swapidseq m p
and n: swapidseq n p
shows even m <— even n
(proof)

lemma evenperm__ unique:
assumes swapidseq n p andeven n = b
shows evenperm p = b

{proof)

3.13 And it has the expected composition properties

lemma evenperm__id[simp|: evenperm id = True
(proof)

lemma evenperm__identity [simp]:
cevenperm (Az. x)»
(proof)

lemma evenperm__swap: evenperm (transpose a b) = (a = b)
(proof)

lemma evenperm__comp:

18

assumes permutation p permutation q
shows evenperm (p o q) «— evenperm p = evenperm q

(proof)

lemma evenperm__inv:
assumes permutation p
shows evenperm (inv p) = evenperm p

(proof)

3.14 A more abstract characterization of permutations

lemma permutation_ bijective:
assumes permutation p
shows bij p

{proof)

lemma permutation_ finite_ support:
assumes permutation p
shows finite {z. p x # =}

(proof)

lemma permutation_lemma:
assumes finite S
and bij p
andVz. 2 ¢S —pr=uz
shows permutation p
(proof)

lemma permutation: permutation p <— bij p A finite {z. p x # z}
(proof)

lemma permutation__inverse__works:
assumes permutation p
shows v p o p = id
and p o inv p = id
(proof)

lemma permutation__inverse__compose:
assumes p: permutation p
and q: permutation q
shows inv (p o ¢) = inv g o inv p
(proof)

3.15 Relation to permutes

lemma permutes imp_permutation:
<permutation py if <finite S» «p permutes S»

(proof)

lemma permutation__permutesk:

19

assumes <permutation p»
obtains S where «(finite Sy <p permutes S»

(proof)

lemma permutation_permutes: permutation p <— (3 5. finite S A p permutes S)
(proof)

3.16 Sign of a permutation

definition sign :: <('a = 'a) = int» — TODO: prefer less generic name
where <sign p = (if evenperm p then 1 else — 1)

lemma sign__cases [case__names even odd):
obtains <sign p = 1> | <sign p = — 1»
(proof)

lemma sign_nz [simpl: sign p # 0
(proof)

lemma sign_id [simp]: sign id = 1
(proof)

lemma sign__identity [simp]:
sign (Ax. x) = 1>
{proof)

lemma sign__inverse: permutation p = sign (inv p) = sign p
(proof)

lemma sign__compose: permutation p = permutation ¢ => sign (p o q) = sign
p * Sign q
(proof)

lemma sign__swap__id: sign (transpose a b) = (if a = b then 1 else — 1)
(proof)

lemma sign__idempotent [simp|: sign p * sign p = 1
(proof)

lemma sign_left _idempotent [simp]:
<sign p x (sign p * sign q) = sign ¢
(proof)

lemma abs_sign [simp]: |sign p| = 1
(proof)

3.17 An induction principle in terms of transpositions

definition apply_transps :: (‘a x 'a) list = 'a = 'a where
apply__transps xs = foldr (o) (map (A(a,b). Transposition.transpose a b) xs) id

20

lemma apply transps Nil [simp]: apply_transps || = id
(proof)

lemma apply_transps_Cons [simp]:
apply_transps (x # xs) = Transposition.transpose (fst) (snd) o apply__transps
s

{proof)

lemma apply_transps__append [simp]:
apply_transps (zs Q ys) = apply_transps zs o apply_transps ys
(proof)

lemma permutation__apply_transps [simp, intro]: permutation (apply_transps xs)

(proof)

lemma permutes _apply transps:
assumes V (a,b)€set xs. a € ANb € A
shows apply_transps xs permutes A

{proof)

lemma permutes_induct [consumes 2, case_names id swap|:
assumes p permutes S finite S
assumes P id
assumes Aabp.a€ S = b€ S = a#b=— Pp= p permutes S
= P (Transposition.transpose a b o p)
shows Pp

{proof)

lemma permutes_rev_induct[consumes 2, case_names id swap):
assumes finite S p permutes S
assumes P id
assumes A\abp.a€ S=be S = a#b=— Pp=> p permutes S
= P (p o Transposition.transpose a b)
shows Pp

(proof)

lemma map_ permutation__apply transps:

assumes f: inj on f A and setts C A x A

shows map_ permutation A f (apply_transps ts) = apply_transps (map (map__prod
f1) ts)

(proof)

lemma permutes_from__transpositions:
assumes p permutes A finite A
shows Jus. (V(a,b)€setxs. a £bANac ANbe A) A apply transps s = p

{proof)

21

3.18 More on the sign of permutations

lemma evenperm__apply_transps_iff:
assumes V (a,b)Eset zs. a # b
shows evenperm (apply_transps xs) «— even (length xs)

{proof)

lemma evenperm__map__permutation:
assumes f: inj _on f A and p permutes A finite A
shows evenperm (map_permutation A f p) «— evenperm p

(proof)

lemma sign_map__permutation:
assumes inj_on f A p permutes A finite A
shows sign (map__permutation A fp) = sign p
(proof)

Sometimes it can be useful to consider the sign of a function that is not
a permutation in the Isabelle/HOL sense, but its restriction to some finite
subset is.

definition sign_on :: 'a set = (‘a = 'a) = int
where sign_on A f = sign (restrict_id f A)

lemma sign__on__cong [cong]:
assumes A=BANr.c € A= fr=guz
shows sign_on A f = sign_on B g
(proof)

lemma sign__on__permutes:
assumes f permutes A A C B
shows sign_on B f = sign f

(proof)

lemma sign__on__id [simp]: sign_on A id = 1
(proof)

lemma sign_on_ident [simp]: sign_on A (A\z. z) = 1
{proof)

lemma sign_on_ transpose:
assumes a € Abe Aa#b
shows sign_on A (Transposition.transpose a b) = —1

{proof)

lemma sign_ on__compose:

assumes bij betw f A A bij _betw g A A finite A

shows sign_on A (f o g) = sign_on A f * sign_on A g
(proof)

22

3.19 Transpositions of adjacent elements

We have shown above that every permutation can be written as a product
of transpositions. We will now furthermore show that any transposition
of successive natural numbers {m,...,n} can be written as a product of
transpositions of adjacent elements, i.e. transpositions of the form i <> i+ 1.

function adj transp_seq :: nat = nat = nat list where
adj_transp__seq a b =
(if a > b then []
else if b = a + 1 then [a]
else a # adj_transp_seq (a+1) b Q [a])

{proof)
termination (proof)

lemmas [simp del] = adj_transp__seq.simps

lemma length__adj transp_seq:
a < b= length (adj transp_seqa b) = 2 = (b — a) — 1
(proof)

definition apply adj_transps :: nat list = nat = nat
where apply _adj_transps s = foldl (o) id (map (Az. Transposition.transpose x
(z+1)) xs)

lemma apply_adj transps auz:
f o foldl (o) g (map (Ax. Transposition.transpose x (Suc x)) zs) =
foldl (o) (f o g) (map (A\z. Transposition.transpose x (Suc)) xs)

(proof)

lemma apply adj transps_Nil [simp]: apply _adj transps [| = id

and apply adj transps_Cons [simp]:

apply_adj_transps (z # xs) = Transposition.transpose x (x+1) o ap-

ply__adj_transps xs

and apply__adj_transps__snoc [simp):

apply__adj _transps (zs Q [z]) = apply__adj_transps xs o Transposition.transpose

z (z+1)

(proof)

lemma adj transp_seq correct:
assumes a < b
shows apply_adj transps (adj_transp_seq a b) = Transposition.transpose a b

{proof)

lemma permutation__apply_adj transps: permutation (apply_adj_transps xs)

(proof)

lemma permutes apply adj transps:
assumes Vz€set xs. t € AN Sucz € A

23

shows apply adj transps rs permutes A
(proof)

lemma set_adj transp_seq:
a < b= set (adj transp_seq a b) = {a..<b}
(proof)

3.20 Transferring properties of permutations along bijections

locale permutes bij =
fixes p:: ‘a = ‘a and A :: 'a set and B :: 'b set
fixes f:: 'a= band f':: b= 'a
fixes p’:: 'b = b
defines p’ = (A\z. if x € B then f (p (f' x)) else x)
assumes permutes_p: p permutes A
assumes bij_f: bij _betw f A B
assumes ' frx e A= f'(fz)=1=z
begin

lemma bij_f": bij _betw f' B A
{proof)

lemma f f"zeB=f(f'z) =1
{proof)

lemma f in B:x € A= fx € B
(proof)

lemma f' in Aixe B=— f'z e A
(proof)

lemma permutes p” p’ permutes B
(proof)

lemma f _eq iff [simp]: fr=fy+—ac=yifz e Ayec Aforzy
(proof)

lemma apply transps_map_ [auzx:
assumes V(a,b)Eset 2s. a € ANbeE Ay € B
shows apply__transps (map (map_prod f f) zs) y = f (apply_transps xs (f' y))
(proof)

lemma apply transps_map_ f:
assumes V (a,b)€set zs. a € ANbeE A
shows apply_transps (map (map_prod f f) zs) =
(My. if y € B then [(apply_transps zs (f' y)) else y)
(proof)

end

24

locale permutes bij _finite = permutes bij +
assumes finite_A: finite A
begin

lemma evenperm_p’_iff: evenperm p’ <— evenperm p
(proof)

lemma sign_p’: sign p’ = sign p
(proof)

end

3.21 Permuting a list

This function permutes a list by applying a permutation to the indices.

definition permute_list :: (nat = nat) = ‘a list = 'a list
where permute_list f s = map (Mi. zs ! (f 7)) [0..<length xs]

lemma permute_list_map:
assumes | permutes {..<length xs}
shows permute_list f (map g zs) = map g (permute_list f xs)

{proof)

lemma permute_list_nth:
assumes f permutes {..<length zs} i < length zs
shows permute list fxzs! i = xs! fi
(proof)

lemma permute_list_ Nil [simp]: permute_list f [] = |]
{proof)

lemma length permute_list [simp]: length (permute_list f xs) = length xs
(proof)

lemma permute_list _compose:
assumes ¢ permutes {..<length zs}
shows permute_list (f o g) xs = permute_list g (permute_list f xs)
(proof)

lemma permute_list_ident [simp]: permute_list (Az.) zs = xs
(proof)

lemma permute_list_id [simp]: permute_list id zs = xs
(proof)

lemma mset__permute_list [simp]:
fixes zs :: 'a list

25

assumes | permutes {..<length xs}

shows mset (permute_list f xs) = mset zs
(proof)

lemma set_permute_list [simp]:

assumes | permutes {..<length zs}
shows set (permute_list f xs) = set xs

{proof)

lemma distinct_permute_list [simp]:
assumes f permutes {..<length xs}

shows distinct (permute_list f xs) = distinct xs
{proof)

lemma permute_list_ zip:
assumes f permutes A A = {..<length s}
assumes [simp]: length xs = length ys
shows permute_list f (zip xs ys) = zip (permute_list f xs) (permute_list f ys)
(proof)
lemma map_ of permute:

assumes o permutes fst ¢ set xs

shows map_ of zs o 0 = map__of (map (A(z,y). (inv o z, y)) xs)
(is _ = map_of (map ?f_))
(proof)

lemma list_all2 permute list iff:

list_all2 P (permute_list p xs) (permute_list p ys) «+— list_all2 P xs ys»
if <p permutes {..<length zs}»
(proof)

3.22 More lemmas about permutations

lemma permutes_in_ funpow_image:
assumes f permutes Sz € §

shows (f T n)z e S
(proof)

lemma permutation_self:
assumes <permutation p»
obtains n where n > 0» «(p

(proof)

n) =1

The following few lemmas were contributed by Lukas Bulwahn.

lemma count_image mset_eq card_vimage:
assumes finite A

shows count (image__mset f (mset_set A)) b = card {a € A. fa = b}
{proof)

lemma image mset _eq implies permutes:

26

fixes f :: 'a = b
assumes finite A
and mset_eq: image__mset f (mset_set A) = image__mset f' (mset_set A)
obtains p where p permutes A and Vz€A. fz = f' (p z)
(proof)
lemma mset__eq permutation:
fixes zs ys :: 'a list
assumes mset__eq: mset s = mset ys
obtains p where p permutes {..<length ys} permute_list p ys = xs

{(proof)

lemma permutes natset_le:
fixes S :: 'az:wellorder set
assumes p permutes S
andVie S. pi<i
shows p = id

(proof)

lemma permutes natset_ ge:
fixes S :: 'ai:wellorder set
assumes p: p permutes S
and le:Vie S.pi >
shows p = id
(proof)

lemma image_inverse_permutations: {inv p |p. p permutes S} = {p. p permutes
S}
(proof)

lemma image compose__permutations__left:
assumes ¢ permutes S
shows {¢q o p |p. p permutes S} = {p. p permutes S}

(proof)

lemma image_compose__permutations right:
assumes ¢ permutes S
shows {p o ¢ | p. p permutes S} = {p . p permutes S}

{proof)

lemma permutes _in_seg: p permutes {1 .n} = i€ {l.n} = 1 <piApi
<n

(proof)

lemma sum_ permutations_inverse: sum f {p. p permutes S} = sum (Ap. f(inv

p)) {p. p permutes S}
(is ?lhs = %rhs)

{(proof)

lemma setum__permutations__compose__left:

27

assumes ¢: g permutes S
shows sum f {p. p permutes S} = sum (Ap. f(q o p)) {p. p permutes S}
(is ?lhs = %rhs)

(proof)

lemma sum__permutations_compose_ right:
assumes ¢: g permutes S
shows sum f {p. p permutes S} = sum (Ap. f(p o q)) {p. p permutes S}
(is ?lhs = %rhs)

{(proof)

lemma inv_inj on_ permutes:
<ing_on inv {p. p permutes S}»
(proof)

lemma permutes pair_eq:
{(ps,s)ls.seSt={(s,invps)|s.s€ Sh (is <?L = ?R») if <p permutes S»
(proof)

context

fixes p and n i :: nat

assumes p: <p permutes {0..<n}> and i: i < n
begin

lemma permutes nat_less:
p i< m

(proof)

lemma permutes nat_inv_less:
dnup it < n

{(proof)

end

context comm__monoid_set
begin

lemma permutes_inv:
(F(As.g(ps)s)S=F(As.gs(invps)) S (is«?2 =)
if <p permutes S»

(proof)

end

3.23 Sum over a set of permutations (could generalize to
iteration)

lemma sum_ over permutations_insert:
assumes fS: finite S

28

and aS: a ¢ S
shows sum f {p. p permutes (insert a S)} =
sum (Ab. sum (Ag. f (transpose a b o q)) {p. p permutes S}) (insert a S)

(proof)

3.24 Constructing permutations from association lists

definition list _permutes :: ('a x 'a) list = 'a set = bool
where list _permutes xs A <—
set (map fst xs) C A A
set (map snd zs) = set (map fst zs) A
distinct (map fst xs) A
distinct (map snd xs)

lemma list _permutesl [simp]:

assumes set (map fst xs) C A set (map snd xs) = set (map fst xs) distinct (map
fst xs)

shows list _permutes zs A

(proof)

definition permutation_of list :: ('a x 'a) list = 'a = 'a
where permutation_of list xs x = (case map__of zs x of None = z | Some y =
y)

lemma permutation_of list_ Cons:

permutation_of list ((z, y) # zs) ' = (if x = z’ then y else permutation_of list
zs z’)

(proof)

fun inverse permutation_of list :: ('a x 'a) list = 'a = 'a
where
inverse__permutation_of list [| x = z
| inverse_permutation_of list ((y, ') # xs) = =
(if x = z’ then y else inverse_permutation__of list xs x)

declare inverse_permutation_of list.simps [simp del]

lemma inj on_map_of:
assumes distinct (map snd zs)
shows inj_on (map_of zs) (set (map fst xs))

(proof)

lemma inj _on_the: None ¢ A = inj_on the A
(proof)

lemma inj on_map_of":
assumes distinct (map snd xs)
shows inj_on (the o map_of xs) (set (map fst xs))
{proof)

29

lemma image map_of:
assumes distinct (map fst s)
shows map__of xs set (map fst xs) = Some * set (map snd xs)

(proof)

lemma the Some_image [simp]: the ‘ Some ‘A = A
{proof)

lemma image_map_of":
assumes distinct (map fst zs)
shows (the o map_ of xs) set (map fst xs) = set (map snd xs)
(proof)

lemma permutation_of list_permutes [simp]:
assumes list__permutes zs A
shows permutation of list xs permutes A
(is ?f permutes _)
(proof)

lemma eval _permutation__of _list [simp]:
permutation_of list [| = x
z = ¢’ = permutation_of list ((z',y)#xs) z =y
z # x' = permutation_of list ((z',y")#xs) © = permutation_of list zs x
(proof)

lemma eval inverse__permutation__of list [simp]:

inverse__permutation_of list [| x =

z = 2/ = inverse_permutation_of list ((y,x')#zs) x =y

x # 1/ = inverse__permutation_of list ((y’,xz')#1xs) x = inverse_permutation__of list
xS T

(proof)

lemma permutation_of list id: x ¢ set (map fst xs) = permutation_of list xs
T ==z
(proof)

lemma permutation_of list_unique”:
distinct (map fst xs) = (z, y) € set xs = permutation_of list zs © = y
(proof)

lemma permutation_of list_unique:
list_permutes zs A = (x, y) € set s => permutation_of list xs z = y

{proof)

lemma inverse_permutation__of list_id:
z ¢ set (map snd ©s) = inverse__permutation_of list zs © = x

(proof)

30

lemma inverse__permutation__of list_unique’:

distinct (map snd zs) = (x, y) € set xs = inverse_permutation_of list xs y
==z

(proof)

lemma inverse_permutation_of list _unique:
list_permutes xs A = (z,y) € set xs = inverse_permutation_of list zsy = x

{proof)

lemma inverse_permutation__of list_correct:
fixes A :: 'a set
assumes list__permutes zs A
shows inverse_permutation_of list xs = inv (permutation_of list xs)

(proof)

end

4 Permuted Lists

theory List Permutation
imports Permutations
begin

Note that multisets already provide the notion of permutated list and hence
this theory mostly echoes material already logically present in theory Per-
mutations; it should be seldom needed.

4.1 An existing notion

abbreviation (input) perm :: ‘a list = 'a list = booly (infixr «<~~>) 50)
where <xs <~~> ys = mset xs = mset ys»

4.2 Nontrivial conclusions

proposition perm_ swap:

xs[i = as 1§, ji=xs i <~V> a9

if i < length zsy <j < length xs»

(proof)
proposition mset_le_perm__append: mset s C#H mset ys «— (Jzs. zs Q zs
<> ys)

(proof)

proposition perm__set_eq: zs <~~> ys = set rs = set ys
(proof)

proposition perm__ distinct_iff: xs <~~> ys = distinct xs «— distinct ys
(proof)

31

theorem eq set perm__remdups: set xs = set ys = remdups s <~~~ > remdups
ys
(proof)

proposition perm__remdups iff eq set: remdups x <™~ > remdups y «— set x
= set y
(proof)

theorem permutation_ Ex bij:
assumes s <7 > ys
shows 3 f. bij_betw f {..<length zs} {..<length ys} N (Vi<length zs. xs! i = ys

L(fi))
(proof)

proposition perm__ finite: finite {B. B <~~> A}
(proof)

4.3 'Trivial conclusions:

proposition perm__empty_imp: [| <7V> ys = ys = ||

{proof)

This more general theorem is easier to understand!
proposition perm__length: xs <~~> ys => length xs = length ys
(proof)
proposition perm__sym: s <~V> ys => ys <> xs
(proof)

We can insert the head anywhere in the list.

proposition perm__append_Cons: a # xs Q ys <~~> x5 Q a # ys
(proof)

proposition perm__append_swap: xs Q ys <~~> ys Q zs
(proof)

proposition perm__append__single: a # xs <~~> zs Q [a]
(proof)

proposition perm_ rev: rev xs <~~> s
(proof)

proposition perm__appendl: xs <~~> ys = 1 Q xzs <~~> [Q ys
(proof)

proposition perm__append2: xs <~~> ys = s Q [<~VV> ys @Q [
(proof)

proposition perm__empty [iff]: [| <~~> xs +— x5 = |

32

{proof)

proposition perm__empty2 [iff]: xs <~~> [| «— zs =[]
{proof)

proposition perm__sing_imp: ys <~~> xs = xs = [y] = ys = [y]
(proof)

proposition perm__sing_eq [iff]: ys <~> [y] +— ys = [y]
(proof)

proposition perm__sing_eq2 [iff]: [y] <~~> ys +— ys = [y]
(proof)

proposition perm_remove: x € set ys => ys <~~> x # removel x ys
(proof)

Congruence rule

proposition perm__remove__perm: xs <~~> ys => removel z xs <~~> removel
Zys
(proof)

proposition remove__hd [simp]: removel z (z # xs) = xs
(proof)

proposition cons_perm__imp_perm: z # xs <VV> z # ys = x5 <7~> ys
(proof)

proposition cons_perm__eq [simp]: z#xs <~> z#ys «— xs <7V> ys
(proof)

proposition append_perm__imp__perm: zs Q zs <~V> zs @ ys = xs <~~> ys
(proof)

proposition perm__appendl__eq [iff]: zs @ zs <™~> 25 @ ys +— xs <77> ys
(proof)

proposition perm__append2_eq [iff]: zs @ zs <™> ys Q z5 +— x5 <~V> ys
(proof)

end

5 Permutations of a Multiset

theory Multiset Permutations
imports

Complex_Main

Permutations

33

begin

lemma mset_tl: xs # [| = mset (tl xs) = mset xs — {#hd zs#}
(proof)

lemma mset_set _image_inj:
assumes inj _on f A
shows mset_set (f * A) = image_mset f (mset_set A)

{(proof)

lemma multiset _remove__induct [case__names empty remove]:

assumes P {#} NA. A #{#} = (N\z. v €e# A = P (A — {#z#})) = P
A

shows P A

(proof)

lemma map_ list_bind: map g (List.bind zs f) = List.bind zs (map g o f)
{proof)

lemma mset_eq mset_set_imp_distinct:
finite A = mset_set A = mset xs = distinct zs
(proof)

5.1 Permutations of a multiset

definition permutations of multiset :: 'a multiset = 'a list set where
permutations__of _multiset A = {xs. mset xs = A}

lemma permutations_of multiset]: mset s = A = xs € permutations__of _multiset

A
{proof)

lemma permutations of multisetD: xs € permutations of multiset A = mset
s = A
(proof)

lemma permutations of multiset Cons__iff:
T # xs € permutations_of multiset A «— x €# A N xs € permutations of multiset

(A — {#=z#})
(proof)

lemma permutations of multiset__empty [simpl: permutations of multiset {#}

={l}

(proof)
lemma permutations of multiset__nonempty:

assumes nonempty: A # {#}
shows permutations of multiset A =

34

(Uzeset_mset A. ((#) x) ‘ permutations_of multiset (A — {#z#}))
(is _ = ?rhs)
(proof)

lemma permutations__of _multiset__singleton [simp]: permutations__of _multiset {# x4}
= {[z]}
(proof)

lemma permutations of multiset _doubleton:
permutations__of _multiset {#z,y#} = {[z,y], [v,z]}
(proof)

lemma rev_permutations of multiset [simp]:
rev ¢ permutations_of multiset A = permutations of multiset A

(proof)

lemma length_ finite__permutations of multiset:
xs € permutations_of multiset A = length xs = size A

{proof)

lemma permutations_of multiset lists: permutations_of multiset A C lists (set_mset
A)
(proof)

lemma finite_permutations_of multiset [simp]: finite (permutations_of _multiset
4)
(proof)

lemma permutations _of multiset_not_empty [simpl|: permutations of multiset

A#{}
{(proof)

lemma permutations of multiset _image:
permutations__of _multiset (image__mset f A) = map f ¢ permutations__of multiset

A
(proof)

5.2 Cardinality of permutations

In this section, we prove some basic facts about the number of permutations
of a multiset.

context
begin

private lemma multiset _prod_fact_insert:

(T yeset_mset (A+{#z#1}). fact (count (A+{#z#}) y)) =
(count A x + 1) x ([]yeset_mset A. fact (count A y))
(proof) lemma multiset _prod_ fact remove:
z €# A = ([[yeset_mset A. fact (count A y)) =

35

: count A © = (] yeset_mset (A—{#z#1}). fact (count (A—{F#z#})
Y
{proof)

lemma card_permutations of multiset__auz:

card (permutations_of multiset A) x ([x€set_mset A. fact (count A z)) = fact
(size A)
(proof)

theorem card permutations of multiset:

card (permutations_of multiset A) = fact (size A) div ([] z€set_mset A. fact
(count A x))

([T xeset_mset A. fact (count A x) :: nat) dvd fact (size A)

{proof)

lemma card_permutations of multiset_insert_auz:
card (permutations _of multiset (A + {#z#})) * (count A z + 1) =
(size A + 1) * card (permutations_of multiset A)

(proof)

lemma card_permutations of multiset__remove__aux:
assumes ¥ €# A
shows card (permutations_of multiset A) * count A = =
size A x card (permutations_of multiset (A — {#ax#}))

(proof)

lemma real card_permutations of multiset _remove:
assumes r €# A
shows real (card (permutations_of multiset (A — {#z#}))) =
real (card (permutations_of multiset A) x count A x) / real (size A)

(proof)

lemma real card_permutations_of _multiset_remove’:
assumes r €# A
shows real (card (permutations_of multiset A)) =
real (size A x card (permutations of multiset (A — {#xz#}))) / real
(count A x)

(proof)
end

5.3 Permutations of a set

definition permutations_of set :: 'a set = 'a list set where
permutations_of _set A = {zs. set xs = A A distinct zs}

lemma permutations of set_altdef:
finite A = permutations_of set A = permutations_of multiset (mset_set A)

{proof)

36

lemma permutations_of setl [intro]:
assumes set s = A distinct zs
shows s € permutations of set A

(proof)

lemma permutations of setD:
assumes xs € permutations_of set A
shows set s = A distinct xs

(proof)

lemma permutations of set lists: permutations of set A C lists A
(proof)

lemma permutations_of _set_empty [simp]: permutations_of _set {} = {[|}
{proof)

lemma UN__set_permutations of set [simp]:
finite A = (| xzs€permutations_of set A. set xs) = A
(proof)

lemma permutations of set_infinite:
—finite A = permutations_of set A = {}
(proof)

lemma permutations of set__nonempty:
A # {} = permutations_of _set A =
(UzeA. (Azs. x # xs) ¢ permutations_of set (A — {z}))
(proof)

lemma permutations_of _set_singleton [simp]: permutations_of _set {x} = {[z]}
{proof)

lemma permutations of set_doubleton:
z # y = permutations_of _set {z,y} = {[z,v], [y,z]}
(proof)

lemma rev_permutations_of _set [simp]:
rev ¢ permutations of set A = permutations of set A
(proof)

lemma length_ finite _permutations of _set:
xs € permutations_of set A = length xs = card A

{proof)

lemma finite_permutations of set [simp]: finite (permutations of set A)

(proof)

lemma permutations_of set_empty_iff [simp]:

37

permutations_of set A = {} +— —finite A
(proof)

lemma card_permutations of _set [simp]:
finite A = card (permutations_of set A) = fact (card A)

{proof)

lemma permutations of set_image_ inj:
assumes inj: inj_on f A
shows permutations_of _set (f ¢ A) = map f * permutations_of _set A
(proof)

lemma permutations of set_image_permutes:
o permutes A = map o ‘ permutations_of set A = permutations_of set A

(proof)

5.4 Code generation

First, we give code an implementation for permutations of lists.

declare length__removel [termination__simp]

fun permutations of list _impl where
permutations_of list_impl xs = (if xs = [] then [[]] else
List.bind (remdups zs) (Az. map ((#) z) (permutations_of list_impl (removel

z 5))))

fun permutations_of list_impl aux where
permutations_of list_impl_auzx acc xs = (if xs = || then [acc] else
List.bind (remdups zs) (A\z. permutations_of list_impl_auz (z#acc) (removel

2 15))

declare permutations_of list_impl_auz.simps [simp del]
declare permutations of list _impl.simps [simp del]

lemma permutations_of _list_impl_Nil [simp]:
permutations__of _list_impl [| = [[]]
(proof)

lemma permutations of list_impl_nonempty:
zs # [| = permutations_of list_impl zs =
List.bind (remdups xs) (Az. map ((#) z) (permutations of list_impl (removel

z 5)))

{proof)

lemma set_permutations of list_impl:
set (permutations_of list_impl xs) = permutations_of _multiset (mset xs)

(proof)

lemma distinct__permutations of list_impl:

38

distinct (permutations_of _list_impl xs)
(proof)

lemma permutations of list _impl_auz_ correct”:
permutations__of _list_impl _aux acc rs =
map (Axs. rev zs Q acc) (permutations of list_impl s)
(proof)

lemma permutations of list_impl aux_correct:
permutations__of _list_impl_auz [xs = map rev (permutations_of _list_impl xs)
(proof)

lemma distinct__permutations of list_impl_auz:
distinct (permutations_of _list_impl _aux acc xs)

(proof)

lemma set_permutations of list _impl auz:

set (permutations_of list _impl _auz || xs) = permutations of multiset (mset
xs)

(proof)

declare set_permutations_of list_impl_aux [symmetric, code]

value [code] permutations_of multiset {#1,2,3,/ :int#}

Now we turn to permutations of sets. We define an auxiliary version with
an accumulator to avoid having to map over the results.

function permutations of set_aur where
permutations__of set_auxr acc A =
(if —finite A then {} else if A = {} then {acc} else
(UzeA. permutations_of set_aux (z#acc) (A — {z})))

(proof)
termination (proof)

lemma permutations_of set_aux_altdef:
permutations_of set_aux acc A = (Axs. rev s @ acc) ‘ permutations _of set A

(proof)

declare permutations of set _aux.simps [simp del]

lemma permutations_of set_aux_correct:
permutations_of _set__aux [] A = permutations_of set A

(proof)
In another refinement step, we define a version on lists.

declare length__removel [termination__simp]

fun permutations of set_auz_list where
permutations of set aux_list acc xs =

39

(if zs =[] then [acc] else
List.bind zs (Az. permutations_of set auz_list (x#acc) (List.removel x
zs)))

definition permutations_of set_list where
permutations_of _set_list xs = permutations_of set_aux_list || xs

declare permutations of set auz_list.simps [simp del]

lemma permutations of set auzx_list _refine:

assumes distinct xs

shows set (permutations_of set auz_list acc xs) = permutations_of set_aux
acc (set zs)

{proof)

The permutation lists contain no duplicates if the inputs contain no dupli-
cates. Therefore, these functions can easily be used when working with a
representation of sets by distinct lists. The same approach should generalise
to any kind of set implementation that supports a monadic bind operation,
and since the results are disjoint, merging should be cheap.

lemma distinct__permutations of set aux list:
distinct s = distinct (permutations_of set_aux_list acc xs)

(proof)

lemma distinct_permutations_of set_list:
distinct s = distinct (permutations_of set_list xs)

{proof)

lemma permutations of list:
permutations_of _set (set xs) = set (permutations_of set list (remdups xs))
(proof)

lemma permutations_of list_code [code]:
permutations__of _set (set xs) = set (permutations_of set list (remdups xs))
permutations__of _set (List.coset zs) =
Code.abort (STR ' Permutation of set complement not supported’’)
(_. permutations_of set (List.coset xs))

{proof)
value [code] permutations_of _set (set ""abed”)

end

theory Cycles
imports
HOL— Library. FuncSet
Permutations
begin

40

6 Cycles

6.1 Definitions

abbreviation cycle :: 'a list = bool
where cycle cs = distinct cs

fun cycle_of list :: 'a list = 'a = 'a
where
cycle_of list (i # j # cs) = transpose i j o cycle_of list (j # cs)
| cycle_of list cs = id

6.2 Basic Properties

We start proving that the function derived from a cycle rotates its support
list.

lemma id_ outside__supp:
assumes z ¢ set cs shows (cycle_of list ¢s) z = x

{proof)

lemma permutation_of _cycle: permutation (cycle_of list cs)

(proof)

lemma cycle_permutes: (cycle of list cs) permutes (set cs)
(proof)

theorem cyclic_rotation:
assumes cycle cs shows map ((cycle_of list ¢cs) ~ " n) cs = rotate n cs

(proof)

corollary cycle is surj:
assumes cycle cs shows (cycle_of list cs) ‘ (set cs) = (set ¢s)
(proof)

corollary cycle is id_root:
assumes cycle cs shows (cycle_of list cs) ~ (length cs) = id

(proof)

corollary cycle_ of list_rotate independent:
assumes cycle cs shows (cycle_of list cs) = (cycle_of list (rotate n cs))

(proof)

6.3 Conjugation of cycles

lemma conjugation_of cycle:
assumes cycle cs and bij p
shows p o (cycle_of list ¢s) o (inv p) = cycle_of list (map p cs)
(proof)

41

6.4 When Cycles Commute

lemma cycles commute:

assumes cycle p cycle ¢ and set p N set ¢ = {}

shows (cycle_of list p) o (cycle_of _list q) = (cycle_of _list q) o (cycle_of _list
p)
(proof)

6.5 Cycles from Permutations

6.5.1 Exponentiation of permutations

Some important properties of permutations before defining how to extract
its cycles.

lemma permutation_ funpow:
assumes permutation p shows permutation (p ~ n)

{proof)

lemma permutes_funpow:
assumes p permutes S shows (p 7 n) permutes S

{proof)

lemma funpow diff:
assumes inj p and i < j (p

(proof)

A~~~

i)a=(p "j)ashows (p " (j—i)a=a

lemma permutation_ is_nilpotent:
assumes permutation p obtains n where (p = n) = id and n > 0

(proof)

lemma permutation is nilpotent”:
assumes permutation p obtains n where (p ~ n) = id and n > m
(proof)

6.5.2 Extraction of cycles from permutations

definition least_power :: ('a = 'a) = 'a = nat
where least_power fx = (LEAST n. (f ~ " n)z =2 A n > 0)

abbreviation support :: (‘a = ’a) = ‘a = 'a list
where support p £ = map (Mi. (p 7 i) z) [0..< (least_power p x))

lemma least_powerl:
assumes (f " n)z=zand n > 0
shows (f 7 (least_power f z)) © = z and least_power fz > 0

{proof)

lemma least_power le:
assumes (f 7" n) z = z and n > 0 shows least_power fx < n

42

{proof)

lemma least _power _of permutation:
assumes permutation p shows (p ~ (least_power p a)) a = a and least_power
pa>20

{proof)

lemma least_power gt one:
assumes permutation p and p a # a shows least _power p a > Suc 0

(proof)

lemma least_power minimal:
assumes (p ~ n) a = a shows (least_power p a) dvd n

(proof)

lemma least_power dvd:
assumes permutation p shows (least_power p a) dvd n «— (p

(proof)

theorem cycle of permutation:
assumes permutation p shows cycle (support p a)

(proof)

6.6 Decomposition on Cycles

We show that a permutation can be decomposed on cycles

6.6.1 Preliminaries

lemma support_set:
assumes permutation p shows set (support p a) = range (\i. (p ~ i) a)

(proof)

lemma disjoint__support:

assumes permutation p shows disjoint (range (Aa. set (support p a))) (is disjoint
?A)

(proof)

lemma disjoint__support:

assumes permutation p

shows set (support p a) N set (support p b) = {} «— a ¢ set (support p b)
(proof)

lemma support_coverture:
assumes permutation p shows |J { set (supportpa) | a.pa#a}t ={a. pa

£a)
(proof)

theorem cycle_restrict:

43

assumes permutation p and b € set (support p a) shows p b = (cycle_of list
(support p a)) b
(proof)

6.6.2 Decomposition

inductive cycle_decomp :: 'a set = ('a = 'a) = bool
where
empty: cycle__decomp {} id
| comp: [cycle_decomp I p; cycle cs; set csN I ={}] =
cycle__decomp (set cs U I) ((cycle_of list cs) o p)

lemma semidecomposition:
assumes p permutes S and finite S
shows (\y. if y € (S — set (support p a)) then p y else y) permutes (S — set

(support p a))
{proof)

theorem cycle decomposition:
assumes p permutes S and finite S shows cycle decomp S p

{proof)

end

7 Permutations as abstract type

theory Perm
imports
Transposition
begin

This theory introduces basics about permutations, i.e. almost everywhere
fix bijections. But it is by no means complete. Grieviously missing are cycles
since these would require more elaboration, e.g. the concept of distinct lists
equivalent under rotation, which maybe would also deserve its own theory.
But see theory src/HOL/ex/ Perm__Fragments.thy for fragments on that.

7.1 Abstract type of permutations

typedef ‘a perm = {f :: 'a = ‘a. bij f A finite {a. fa # a}}
morphisms apply Perm

(proof)

setup__lifting type_ definition_perm

notation apply (infixl ($)» 999)

44

lemma bij _apply [simp]:
bij (apply f)
(proof)

lemma perm__eql:
assumes Aa. f ($) a =g (§) a
shows f = ¢
(proof)

lemma perm__eq iff:
f=g+— (Va f($) a=g($) a)
(proof)

lemma apply_inj:
f@®a=f@b+—a=0b
(proof)

lift__definition affected :: ‘a perm = 'a set

is Af. {a. f a # a} (proof)

lemma in__ affected:
a € affected f «— f ($) a # a
(proof)

lemma finite_ affected [simp]:
finite (affected f)
(proof)

lemma apply affected [simp]:
I ($) a € affected f +— a € affected f
{proof)

lemma card_affected not_one:

card (affected f) # 1
(proof)

7.2 Identity, composition and inversion

instantiation Perm.perm :: (type) {monoid_mult, inverse}
begin

lift_ definition one_perm :: ‘a perm

is id
(proof)
lemma apply_one [simp):
apply 1 = id
(proof)

45

lemma affected one [simp]:
affected 1 = {}

{proof)

lemma affected__empty__iff [simp]:
affected f = {} +— f =1
(proof)

lift_ definition times_perm :: 'a perm = 'a perm = 'a perm
is comp

(proof)

lemma apply_ times:
apply (f = g) = apply f o apply g
(proof)

lemma apply sequence:
f(8) (9 ($) a) = apply (f * g) a
(proof)

lemma affected_times [simp]:
affected (f = g) C affected f U affected g
(proof)

lift_ definition inverse_perm :: 'a perm = 'a perm
is inv

(proof)

instance
(proof)

end

lemma apply_inverse:
apply (inverse f) = inv (apply f)
(proof)

lemma affected_inverse [simp]:
affected (inverse f) = affected f
(proof)

global__interpretation perm: group times 1::'a perm inverse

(proof)

declare perm.inverse__distrib__swap [simp]
lemma perm__mult _commute:

assumes affected f N affected g = {}
shows g« f=fxg

46

(proof)

lemma apply_power:
apply (f ~n) = apply f """ n
(proof)

lemma perm_ power_inverse:
inverse f ~ n = inverse ((f :: 'a perm) " n)
(proof)

7.3 Orbit and order of elements

definition orbit :: 'a perm = 'a = 'a set
where
orbit f a = range (An. (f ~n) ($) a)

lemma in_ orbitl:
assumes (f "n) ($) a =0
shows b € orbit f a

{proof)

lemma apply power_self in_orbit [simp]:
(f "n)($) a€orbitfa
(proof)

lemma in_ orbit_self [simp]:
a € orbit fa
{proof)

lemma apply_self in__orbit [simp]:
f($) acorbitfa
(proof)

lemma orbit_not_empty [simp]:
orbit fa # {}
(proof)

lemma not_in_affected_iff orbit_eq singleton:
a ¢ affected f +— orbit fa = {a} (is 7P +— ?Q)
(proof)

definition order :: ‘a perm = 'a = nat
where
order f = card o orbit f

lemma orbit_subset_eq affected:
assumes a € affected f
shows orbit f a C affected f

(proof)

47

lemma finite_orbit [simp]:
finite (orbit f a)
(proof)

lemma orbit_1 [simp]:
orbit 1 a = {a}
{proof)

lemma order_1 [simp]:
order 1 a =1

{proof)

lemma card_orbit_eq [simp]:
card (orbit f a) = order f a
(proof)

lemma order_greater zero [simp]:
order fa > 0

{proof)

lemma order_eq one_ iff:
order f a = Suc 0 +— a ¢ affected f (is ?P +— ?Q)
(proof)

lemma order_greater _eq two__iff:
order fa > 2 «— a € affected f
(proof)

lemma order_less eq affected:
assumes f # 1
shows order f a < card (affected f)

(proof)

lemma affected_order_greater _eq two:
assumes a € affected f
shows order fa > 2

(proof)

lemma order_witness _unfold:
assumes n > 0 and (f "n) (3) a = a
shows order f a = card (Am. (f “m) ($) a) ‘{0..<n})

(proof)
lemma inj on__apply range:

ing_on (Am. (f “m) (8) a) {..<order f a}
{(proof)

lemma orbit_unfold_image:

48

orbit fa = (An. (f "n) ($) a) ‘{.<order fa} (is _ = ?A)
(proof)

lemma in_ orbitE:
assumes b € orbit fa
obtains n where b = (f " n) ($) a and n < order f a
(proof)

lemma apply power_order [simpl:
(f Torder fa) ($) a=a
(proof)

lemma apply power_left _mult_order [simp]:
(f " (n x order fa)) ($) a =a
(proof)

lemma apply power _right_mult_order [simp]:
(f " (order fa*xn)) ($) a=a
(proof)

lemma apply _power_mod__order_eq [simp]

(f " (n mod order fa)) ($) a = (f " n <$>.a
(proof)

lemma apply power__eq iff:
(f "m) ($) a=(f "n)(3) a «— m mod order f a = n mod order f a (is ?P
— 2Q)

(proof)

lemma apply_inverse_eq apply power _order _minus__one:
(inverse f) ($) a = (f "~ (order fa — 1)) ($) a
(proof)

lemma apply inverse self in_orbit [simp]:
(inverse f) ($) a € orbit f a
(proof)

lemma apply inverse_power _eq:
(inverse (f ~n)) ($) a = (f " (order f a — n mod order f a)) ($) a
(proof)

lemma apply power__eq self iff:
(f "n)($) a=a<— order fadvdn
(proof)

lemma orbit_equiv:

assumes b € orbit fa

shows orbit f b = orbit fa (is B = ?A)
(proof)

49

lemma orbit_apply [simp]:
orbit f (f ($) a) = orbit fa
(proof)

lemma order__apply [simp]:
order f (f ($) a) = order f a
(proof)

lemma orbit_apply_inverse [simp]:
orbit f (inverse f (8) a) = orbit f a
(proof)

lemma order_apply_inverse [simpl:
order f (inverse f ($) a) = order f a
(proof)

lemma orbit_apply _power [simp]:
orbit f ((f “n) ($) a) = orbit fa
(proof)

lemma order__apply power [simp]:
order f ((f " n) ($) a) = order fa
(proof)

lemma orbit_inverse [simp):
orbit (inverse f) = orbit f

(proof)

lemma order_inverse [simp]:
order (inverse f) = order f

(proof)

lemma orbit_disjoint:
assumes orbit f a # orbit f b
shows orbit fa N orbit fb = {}

(proof)

7.4 Swaps

lift_ definition swap :: ‘a = 'a = 'a perm (<{_

is Aa b. transpose a b
(proof)

lemma apply _swap__simp [simp]:
(a0 (B a=1b
(a<>b) () b=a
(proof)

50

lemma apply swap _same [simp]:
cFa=c#b=(a+ b $) c=c
(proof)

lemma apply_swap__eq_iff [simp]:
(a0 ($)c=a+—c=b
(a0 ($)c=bs—c=a
(proof)

lemma swap_1 [simp]:
(a < a)y =1
{proof)

lemma swap__sym:
(b a)=(a+ D)
(proof)

lemma swap_ self [simp]:
(a <> b) x (a < b) =1
(proof)

lemma affected_swap:
a # b = affected (a <> b) = {a, b}
(proof)

lemma inverse_swap [simp]:
inverse {(a <> b) = {(a <> b)
{proof)

7.5 Permutations specified by cycles

fun cycle :: 'a list = 'a perm (<{_)»)
where
(0 = 1
[{la]) = 1
| (a # b # as) = (a # as) * {a<>Dd)

We do not continue and restrict ourselves to syntax from here. See also
introductory note.

7.6 Syntax

bundle permutation_ syntax
begin

notation swap (<{_ < _))
notation cycle («(_))
notation apply (infixl «($)> 999)
end

o1

unbundle no permutation_ syntax

end

8 Permutation orbits

theory Orbits
imports

HOL- Library. FuncSet

HOL—- Combinatorics. Permutations
begin

8.1 Orbits and cyclic permutations

inductive__set orbit :: (a = 'a) = 'a = 'a set for f 1z where
base: fx € orbit f x|
step: y € orbit fr = fy € orbit fx

definition cyclic_on :: ('a = 'a) = 'a set = bool where
cyclic_on f S +— (Fs€S. S = orbit f s)

lemma orbit_altdef: orbit fz = {(f " n) z | n. 0 < n} (is ?L = ?R)
(proof)

lemma orbit_trans:
assumes s € orbit ftt € orbit f u shows s € orbit fu

{proof)

lemma orbit_subset:
assumes s € orbit f (f t) shows s € orbit f

(proof)

lemma orbit_sim__step:
assumes s € orbit f t shows f s € orbit f (ft)
(proof)

lemma orbit_step:
assumes y € orbit fz fx # y shows y € orbit f (f x)

(proof)

lemma self in_ orbit_trans:
assumes s € orbit f st € orbit f s shows t € orbit ft

{proof)

lemma orbit_swap:
assumes s € orbit fst € orbit fs shows s € orbit ft

{proof)

lemma permutation_self in__orbit:

52

assumes permutation f shows s € orbit f s
{proof)

lemma orbit_altdef self in:
assumes s € orbit f s shows orbit fs = {(f " n) s | n. True}

(proof)

lemma orbit_altdef permutation:
assumes permutation f shows orbit fs = {(f " n) s | n. True}

(proof)

lemma orbit_altdef bounded:
assumes (f = n) s = s 0 < nshows orbit fs = {(f " m) s| m. m < n}
(proof)

lemma funpow_in_ orbit:
assumes s € orbit f t shows (f "~ n) s € orbit ft
(proof)

lemma finite_orbit:
assumes s € orbit f s shows finite (orbit f s)

(proof)

lemma self in_orbit_step:
assumes s € orbit f s shows orbit f (f s) = orbit f s

(proof)

lemma permutation__orbit_step:
assumes permutation f shows orbit f (f s) = orbit f s

{proof)

lemma orbit__nonempty:

orbit f s # {}
{proof)

lemma orbit_inv_eq:

assumes permutation f

shows orbit (inv) x = orbit fz (is ?L = ?R)
(proof)

lemma cyclic_on__alldef:
cyclic_on fS +— S # {} A (Vs€S. S = orbit f s)
(proof)

lemma cyclic_on_ funpow__in:
assumes cyclic_on fS s € S shows (f"™n) se S

(proof)

lemma finite_cyclic_on:

93

assumes cyclic_on f S shows finite S
{proof)

lemma cyclic_on__singlel:
assumes s € S S = orbit f s shows cyclic_on f S
(proof)

lemma cyclic_on__inl:
assumes cyclic_on fS s € S shows fs e S
(proof)

lemma orbit_inverse:
assumes self: a € orbit g a
and eq: Az. z € orbit ga = g’ (fz) = f (g x)
shows f “ orbit g a = orbit g’ (f a) (is ?L = ?R)
(proof)

lemma cyclic_on__image:
assumes cyclic_on f S
assumes A\z. € S =g (hz) =h (fz)
shows cyclic_on g (h *9)
(proof)

lemma cyclic_on_f in:
assumes f permutes S cyclic_on fA fz e A
shows z € A

(proof)

lemma orbit_cong0:
assumes z € Af € A= ANy ye€ A= fy= gy shows orbit fz = orbit g
x

(proof)

lemma orbit_cong:
assumes self in: t € orbit ft and eq: \s. s € orbit ft = gs=fs
shows orbit g t = orbit f t
(proof)

lemma cyclic_cong:
assumes As. s € S = fs = g s shows cyclic_on fS = cyclic_on g S
(proof)

lemma permutes_comp_preserves_cyclicl:
assumes g permutes B cyclic_on f C
assumes AN B={} CCA
shows cyclic_on (fo g) C

(proof)

lemma permutes_comp_preserves cyclic2:

54

assumes f permutes A cyclic_on g C
assumes AN B={} CCB
shows cyclic_on (fo g) C

(proof)

lemma permutes orbit_subset:
assumes f permutes S x € S shows orbit fz C S

(proof)

lemma cyclic_on__orbit”
assumes permutation f shows cyclic_on f (orbit f x)
(proof)

lemma cyclic_on__orbit:
assumes f permutes S finite S shows cyclic_on f (orbit f x)

(proof)

lemma orbit_cyclic_eq3:
assumes cyclic_on f Sy € S shows orbit fy =S
(proof)

lemma orbit_eq singleton_iff: orbit fz = {z} +— fz =z (is ?L +— ¢R)
(proof)

lemma eq on_ cyclic_on__iff1:
assumes cyclic_ onfSx € S
obtains fr € Sfex =2 ¢+— card S = 1

(proof)

lemma orbit_eql:
y=fr= yecorbitfz
z=fy=ycorbit fo =2z2¢c orbitfz

{proof)

8.2 Decomposition of arbitrary permutations

definition perm_ restrict :: ('a = 'a) = 'a set = (‘a = 'a) where
perm,__restrict f S = if x € S then f x else x

lemma perm, _restrict__comp:
assumes A N B = {} cyclic_on f B
shows perm__restrict f A o perm__restrict f B = perm__restrict f (A U B)

(proof)

lemma perm,__restrict__simps:
x €8 = perm_restrict fSx = fx
x ¢ S = perm_restrict f Sz =z
(proof)

95

lemma perm,__restrict__perm__restrict:
perm__restrict (perm__restrict f A) B = perm__restrict f (A N B)
(proof)

lemma perm,_restrict_union:
assumes perm,__restrict f A permutes A perm__restrict f B permutes B AN B =

{

shows perm__restrict f A o perm__restrict f B = perm__restrict f (A U B)
(proof)

lemma perm__restrict_id[simp]:
assumes f permutes S shows perm_ restrict f S = f
(proof)

lemma cyclic_on__perm__restrict:
cyclic_on (perm__restrict f S) S <+— cyclic_on f S
(proof)

lemma perm,_ restrict_ diff _cyclic:

assumes | permutes S cyclic_on f A

shows perm__restrict f (S — A) permutes (S — A)
(proof)

lemma permutes decompose:

assumes | permutes S finite S

shows 3C. (Ve € C. cyclic_onfe) ANJC =S A NVel € C.Ve2 e C.cl #
c2 — cl Ne2 ={})

(proof)

8.3 Function-power distance between values

definition funpow_dist :: ('a = ’'a) = '‘a = 'a = nat where
funpow_dist fxy= LEAST n. (f ~ n)z =1y

abbreviation funpow_dist! :: (‘a = 'a) = 'a = 'a = nat where
funpow_distl fzy = Suc (funpow_dist f (f z) y)

lemma funpow dist_0:
assumes z = y shows funpow dist fzy = 0
(proof)

lemma funpow dist_least:
assumes n < funpow_dist fx y shows (f ~ " n) z £ y
(proof)

lemma funpow distl_least:
assumes 0 < nn < funpow_distl fz yshows (f " " n) z #y

(proof)

o6

lemma funpow dist_prop:
y € orbit fo = (f 7 funpow_dist fzxy) z =y
(proof)

lemma funpow dist 0 _eq:
assumes y € orbit f x shows funpow _dist fxry=0<+— =1y
(proof)

lemma funpow dist_step:

assumes z # y y € orbit f © shows funpow_dist f z y = Suc (funpow__dist f (f
z) y)
(proof)

lemma funpow distl prop:
assumes y € orbit f © shows (f ™ funpow_distl fzy) x =y
(proof)

lemma funpow neq less funpow dist:
assumes y € orbit fz m < funpow_dist fx yn < funpow_dist frx y m # n
shows (f 7" m)z # (f " n)x

(proof)

lemma funpow neq less funpow distl:
assumes y € orbit fx m < funpow_distl fx yn < funpow distl fxym # n
shows (f " m)z # (f " n)x

(proof)

lemma inj on_ funpow dist:
assumes y € orbit f z shows inj_on (An. (f 7" n) z) {0..funpow_dist f x y}
(proof)

lemma inj on_ funpow dist1:
assumes y € orbit f x shows inj_on (An. (f
(proof)

~~

n) z) {0..<funpow_distl fz y}

lemma orbit_conv_funpow_ distl:
assumes x € orbit fx
shows orbit fo = (An. (f ~ " n) z) ‘{0..<funpow_dist] fx z} (is ?L = ?R)
(proof)

lemma funpow distl__propl:
assumes (f 7" n) =y 0 < n shows (f 7 funpow_distl fzy) z =y
(proof)

lemma funpow distl dist:

assumes funpow_distl fx y < funpow distl fx z
assumes {y,z} C orbit fz

o7

shows funpow_distl fx z = funpow_ dist] fx y + funpow distl fy z (is ?L =
?R)
(proof)

lemma funpow_ distl_le_self:
assumes (f ~ m)z =20 < my € orbit fz
shows funpow distl fxy < m

(proof)

end

9 Basic combinatorics in Isabelle/HOL (and the
Archive of Formal Proofs)

theory Combinatorics
imports
Transposition
Stirling
Permutations
List_Permutation
Multiset_ Permutations
Cycles
Perm
Orbits
begin

end

o8

	Transposition function
	Stirling numbers of first and second kind
	Stirling numbers of the second kind
	Stirling numbers of the first kind
	Efficient code

	Permutations, both general and specifically on finite sets.
	Auxiliary
	Basic definition and consequences
	Group properties
	Restricting a permutation to a subset
	Mapping a permutation
	The number of permutations on a finite set
	Permutations of index set for iterated operations
	Permutations as transposition sequences
	Some closure properties of the set of permutations, with lengths
	Various combinations of transpositions with 2, 1 and 0 common elements
	The identity map only has even transposition sequences
	Therefore we have a welldefined notion of parity
	And it has the expected composition properties
	A more abstract characterization of permutations
	Relation to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 permutes
	Sign of a permutation
	An induction principle in terms of transpositions
	More on the sign of permutations
	Transpositions of adjacent elements
	Transferring properties of permutations along bijections
	Permuting a list
	More lemmas about permutations
	Sum over a set of permutations (could generalize to iteration)
	Constructing permutations from association lists

	Permuted Lists
	An existing notion
	Nontrivial conclusions
	Trivial conclusions:

	Permutations of a Multiset
	Permutations of a multiset
	Cardinality of permutations
	Permutations of a set
	Code generation

	Cycles
	Definitions
	Basic Properties
	Conjugation of cycles
	When Cycles Commute
	Cycles from Permutations
	Exponentiation of permutations
	Extraction of cycles from permutations

	Decomposition on Cycles
	Preliminaries
	Decomposition

	Permutations as abstract type
	Abstract type of permutations
	Identity, composition and inversion
	Orbit and order of elements
	Swaps
	Permutations specified by cycles
	Syntax

	Permutation orbits
	Orbits and cyclic permutations
	Decomposition of arbitrary permutations
	Function-power distance between values

	Basic combinatorics in Isabelle/HOL (and the Archive of Formal Proofs)

