Basic combinatorics in Isabelle/HOL (and the

Archive of Formal Proofs)

March 13, 2025

Contents
1 Transposition function 1
2 Stirling numbers of first and second kind 5
2.1 Stirling numbers of the second kind 5
2.2 Stirling numbers of the first kind00 6
2.2.1 Efficient code 9
3 Permutations, both general and specifically on finite sets. 11
3.1 Auxiliary 12
3.2 Basic definition and consequences 12
3.3 Group properties o 17
3.4 Mapping permutations with bijections 17
3.5 The number of permutations on a finite set 19
3.6 Hence a sort of induction principle composing by swaps . . . 22
3.7 Permutations of index set for iterated operations 23
3.8 Permutations as transposition sequences 23
3.9 Some closure properties of the set of permutations, with lengths 23
3.10 Various combinations of transpositions with 2, 1 and 0 com-
mon elements 25
3.11 The identity map only has even transposition sequences . . . 25
3.12 Therefore we have a welldefined notion of parity 27
3.13 And it has the expected composition properties 27
3.14 A more abstract characterization of permutations 28
3.15 Relation to permutes 30
3.16 Sign of a permutation as a real number 30
3.17 Permuting a listo oo 31
3.18 More lemmas about permutations. 33
3.19 Sum over a set of permutations (could generalize to iteration) 42
3.20 Constructing permutations from association lists 42

4 Permuted Lists 46

4.1 Anexisting notion 46
4.2 Nontrivial conclusionso 46
4.3 Trivial conclusions: 47

5 Permutations of a Multiset 49
5.1 Permutations of a multiset 50
5.2 Cardinality of permutations 52
5.3 Permutationsofaset. 000 54
5.4 Code generation 56

6 Cycles 60
6.1 Definitions 60
6.2 Basic Properties L . 60
6.3 Conjugation of cycles 62
6.4 When Cycles Commute 62
6.5 Cycles from Permutations 63
6.5.1 Exponentiation of permutations. 63

6.5.2 Extraction of cycles from permutations 65

6.6 Decomposition on Cycles 66
6.6.1 Preliminaries 66

6.6.2 Decomposition, 69

7 Permutations as abstract type 72
7.1 Abstract type of permutations 72
7.2 Identity, composition and inversion 74
7.3 Orbit and order of elements 76
T4 SWaps oo 87
7.5 Permutations specified by cycles 88
7.6 Syntax 88

8 Permutation orbits 88
8.1 Orbits and cyclic permutations 88
8.2 Decomposition of arbitrary permutations 94
8.3 Function-power distance between values 97

9 Basic combinatorics in Isabelle/HOL (and the Archive of
Formal Proofs) 100

1 Transposition function
theory Transposition

imports Main
begin

definition transpose :: <'a = 'a = 'a = 'a»
where <transpose a b ¢ = (if ¢ = a then b else if ¢ = b then a else c)»

lemma transpose__apply_ first [simp]:
<transpose a b a = b
by (simp add: transpose__def)

lemma transpose__apply_second [simp]:
<transpose a b b = a)
by (simp add: transpose__def)

lemma transpose__apply_other [simpl:
<transpose a b ¢ = ¢ if <¢c # a> <¢c # b
using that by (simp add: transpose__def)

lemma transpose__same [simp]:
<transpose a a = id>
by (simp add: fun_eq iff transpose__def)

lemma transpose__eq iff:

<transpose abc=d<+— (c£aAhc#bANd=c)V(c=aNd=Db)V(c=b
Ad=a)

by (auto simp add: transpose__def)

lemma transpose__eq imp__eq:
<c = dy if <transpose a b ¢ = transpose a b d»
using that by (auto simp add: transpose__eq _iff)

lemma transpose__commute [ac__simps]:
<transpose b a = transpose a b»
by (auto simp add: fun__eq iff transpose__eq_iff)

lemma transpose__involutory [simp]:
<transpose a b (transpose a b ¢) = ¢
by (auto simp add: transpose__eq__iff)

lemma transpose__comp__involutory [simp):
<transpose a b o transpose a b = id»
by (rule ext) simp

lemma transpose_triple:
<transpose a b (transpose b ¢ (transpose a b d)) = transpose a c d»
if <a # ¢ and b # o
using that by (simp add: transpose__def)

lemma transpose__comp__triple:
<transpose a b o transpose b ¢ o transpose a b = transpose a c»
if <a # o> and b # o
using that by (simp add: fun__eq iff transpose__triple)

lemma transpose_image__eq [simp]:
<transpose a b ‘A = Ay if <a € A +— b e A
using that by (auto simp add: transpose__def [abs_def])

lemma inj _on_ transpose [simp):
<ing_on (transpose a b) A»
by rule (drule transpose__eq imp __eq)

lemma inj transpose:
<ing (transpose a b))
by (fact inj_on_transpose)

lemma surj transpose:
<surj (transpose a b)»
by simp

lemma bij betw_transpose _iff [simp]:
<bij_betw (transpose a b) A A>if <a € A+—be A
using that by (auto simp: bij betw_def)

lemma bij transpose [simpl:
<bij (transpose a b))
by (rule bij betw _transpose_iff) simp

lemma bijection_ transpose:
<bijection (transpose a b))
by standard (fact bij_transpose)

lemma inv_transpose__eq [simp):
<inv (transpose a b) = transpose a by
by (rule inv_unique__comp) simp__all

lemma transpose__apply commute:
<transpose a b (f ¢) = f (transpose (inv f a) (inv f b) c)»
if «bij >
proof —
from that have <surj f»
by (rule bij is surj)
with that show ?thesis
by (simp add: transpose__def bij_inv_eq iff suri_f_inv_f)
qged

lemma transpose__comp__eq:
<transpose a b o f = f o transpose (inv f a) (inv f b)»
if «bij >
using that by (simp add: fun__eq iff transpose__apply _commute)

lemma in_ transpose_image_ iff:

<x € transpose a b S <— transpose a b x € S»
by (auto intro!: image__eql)

Legacy input alias

setup « Context.theory map (Name__Space.map_naming (Name__Space.qualified _path
true binding «(Fun)))»

abbreviation (input) swap :: 'a = 'a = ('a = 'b) = 'a = b
where <swap a b f = f o transpose a b»

lemma swap_def:
<Pun.swap a b f = f (a:=fb, b= fa)
by (simp add: fun__eq iff)

setup « Context.theory map (Name__Space.map_naming (Name__Space.parent _path))»

lemma swap__apply:
Fun.swap a b fa=fb
Fun.swap a b fb=fa
c#a= c# b= Fun.swap abfc=fc
by simp__all

lemma swap _self: Fun.swap a o f = f
by simp

lemma swap commute: Fun.swap a b f = Fun.swap b a f
by (simp add: ac__simps)

lemma swap_nilpotent: Fun.swap a b (Fun.swap a b f) = f
by (simp add: comp__assoc)

lemma swap__comp__involutory: Fun.swap a b o Fun.swap a b = id
by (simp add: fun__eq iff)

lemma swap_triple:
assumes a # cand b # ¢
shows Fun.swap a b (Fun.swap b ¢ (Fun.swap a b f)) = Fun.swap a ¢ f
using assms transpose__comp__triple [of a ¢ b]
by (simp add: comp__assoc)

lemma comp__swap: f o Fun.swap a b g = Fun.swap a b (f o g)
by (simp add: comp__assoc)

lemma swap _image_eq:
assumes o € A be A
shows Fun.swap abf‘A=f‘A
using assms by (metis image__comp transpose__image__eq)

lemma inj _on_imp_inj on_swap: inj on fA=— a€ A= be A= inj on

(Pun.swap a b f) A
by (simp add: comp__inj on)

lemma inj on_swap_ iff:
assumes A: a € Abe A
shows inj_on (Fun.swap a b f) A +— inj_on f A
using assms by (metis inj_on_imagel inj _on_imp_inj on_swap transpose_image__eq)

lemma surj _imp_surj swap: surj f = surj (Fun.swap a b f)
by (meson comp__surj surj_transpose)

lemma surj swap_iff: surj (Fun.swap a b f) «— surj f
by (metis fun.set_map surj_transpose)

lemma bij_betw_swap_iff: 1 € A = y € A = bij_betw (Fun.swap z y f) A B
> bij_betw f A B
by (meson bij betw__comp_iff bij betw_transpose_iff)

lemma bij swap_iff: bij (Fun.swap a b f) <— bij f
by (simp add: bij_betw__swap__iff)

lemma swap image:
Fun.swap ijf A= f‘(A—{i j}
U (if i € A then {j} else {}) U (if j € A then {i} else {}))
by (auto simp add: Fun.swap__def)

lemma inv_swap_id: inv (Fun.swap a b id) = Fun.swap a b id
by simp

lemma bij swap__comp:
assumes bij p
shows Fun.swap a b id o p = Fun.swap (inv p a) (inv p b) p
using assms by (simp add: transpose__comp__eq)

lemma swap_id_eq: Fun.swap a b id x = (if © = a then b else if x = b then a else

z)

by (simp add: Fun.swap__def)

lemma swap_ unfold:
<Fun.swap a b p = p o Fun.swap a b id>
by simp

lemma swap__id_idempotent: Fun.swap a b id o Fun.swap a b id = id
by simp

lemma bij swap__compose__bij:
<bij (Fun.swap a b id o p)» if <bij p»
using that by (rule bij_comp) simp

end

2 Stirling numbers of first and second kind

theory Stirling
imports Main
begin

2.1 Stirling numbers of the second kind

fun Stirling :: nat = nat = nat
where
Stirling 0 0 = 1
| Stirling 0 (Suc k) =
| Stirling (Suc n) 0 = 0
| Stirling (Suc n) (Suc k) = Suc k = Stirling n (Suc k) + Stirling n k

0

lemma Stirling 1 [simp]: Stirling (Suc n) (Suc 0) = 1
by (induct n) simp__all

lemma Stirling less [simp]: n < k = Stirling n k = 0
by (induct n k rule: Stirling.induct) simp__all

lemma Stirling _same [simp]: Stirling n n = 1
by (induct n) simp__all

lemma Stirling 2 2: Stirling (Suc (Suc n)) (Suc (Suc 0)) = 2 ~ Sucn — 1
proof (induct n)

case (

then show Zcase by simp
next

case (Suc n)

have Stirling (Suc (Suc (Suc n))) (Suc (Suc 0)) =

2 «x Stirling (Suc (Suc n)) (Suc (Suc 0)) + Stirling (Suc (Suc n)) (Suc 0)
by simp

alsohave ... = 2 % (2 " Sucn — 1) + 1
by (simp only: Suc Stirling 1)

also have ... = 2 7 Suc (Suc n) — 1

proof —

have (2::nat) "~ Sucn — 1 > 0
by (induct n) simp__all
then have 2 * ((2::nat) ~ Sucn — 1) > 0
by simp
then have 2 < 2 x ((2::nat) ~ Suc n)
by simp
with add_diff _assoc2 [of 2 2 x 2 ™ Suc n 1]
have 2 * 2 "Sucn — 2 + (I:nat) = 2% 2 " Sucn+ 1 — 2.
then show ?thesis
by (simp add: nat_ distrib)

qed
finally show ?Zcase by simp
qed

lemma Stirling _2: Stirling (Suc n) (Suc (Suc 0)) =2 "n — 1
using Stirling 22 by (cases n) simp__all

2.2 Stirling numbers of the first kind

fun stirling :: nat = nat = nat
where
stirling 0 0 = 1
| stirling 0 (Suc k) = 0
| stirling (Suc n) 0 = 0
| stirling (Suc n) (Suc k) = n x stirling n (Suc k) + stirling n k

lemma stirling 0 [simp]: n > 0 = stirlingn 0 = 0
by (cases n) simp__all

lemma stirling_less [simp]: n < k = stirling n k = 0
by (induct n k rule: stirling.induct) simp__all

lemma stirling_same [simp]: stirling n n = 1
by (induct n) simp__all

lemma stirling Suc_n_1: stirling (Suc n) (Suc 0) = fact n
by (induct n) auto

lemma stirling Suc_n_n: stirling (Suc n) n = Suc n choose 2
by (induct n) (auto simp add: numerals(2))

lemma stirling Suc_n_ 2:
assumes n > Suc 0
shows stirling (Suc n) 2 = (>_ k=1..n. fact n div k)
using assms
proof (induct n)
case ()
then show ?case by simp
next
case (Suc n)
show ?Zcase
proof (cases n)
case (
then show ?thesis
by (simp add: numerals(2))
next
case Suc
then have geql: Suc 0 < n
by simp

have stirling (Suc (Suc n)) 2 = Suc n * stirling (Suc n) 2 + stirling (Suc n)
(Suc 0)
by (simp only: stirling.simps(4)[of Suc n] numerals(2))
also have ... = Suc n * (> k=1..n. fact n div k) + fact n
using Suc.hyps[OF geq1]
by (simp only: stirling_Suc_n_1 of nat_fact of nat_add of nat_mult)

also have ... = Suc n * (> k=1..n. fact n div k) + Suc n * fact n div Suc n
by (metis nat.distinct(1) nonzero_mult__div__cancel_left)

also have ... = (3 k=1..n. fact (Suc n) div k) + fact (Suc n) div Suc n
by (simp add: sum__distrib_left div_mult_swap dvd__fact)

also have ... = (3 k=1..Suc n. fact (Suc n) div k)
by simp

finally show ?thesis .

qed
qed

lemma of nat_stirling Suc_n_2:
assumes n > Suc 0
shows (of nat (stirling (Suc n) 2):’a:field_char _0) = fact n x (3 k=1..n. (1
/ of _nat k))
using assms
proof (induct n)
case (
then show ?case by simp
next
case (Suc n)
show ?Zcase
proof (cases n)
case (
then show ?thesis
by (auto simp add: numerals(2))
next
case Suc
then have geql: Suc 0 < n
by simp
have (of _nat (stirling (Suc (Suc n)) 2)::'a) =
of _nat (Suc n x stirling (Suc n) 2 + stirling (Suc n) (Suc 0))
by (simp only: stirling.simps(4)[of Suc n] numerals(2))
also have ... = of nat (Suc n) * (factn « (O k= 1..n. 1 / of natk)) + fact
n
using Suc.hyps|OF geq1]
by (simp only: stirling_Suc_n_1 of nat_fact of nat_add of _nat_mult)
also have ... = fact (Suc n) x 3 k= 1..n. 1 / of_nat k) + fact (Suc n) *
(1 / of _nat (Suc n))
using of nat_neq 0 by auto
also have ... = fact (Suc n) * (O k= 1..Sucn. 1 / of_nat k)
by (simp add: distrib_left)
finally show ?thesis .
qed

qed

lemma sum__stirling: (> k<n. stirling n k) = fact n
proof (induct n)

case (

then show Zcase by simp
next

case (Suc n)

have (> k<Suc n. stirling (Suc n) k) = stirling (Suc n) 0 + (3 k<n. stirling
(Suc n) (Suc k))

by (simp only: sum.atMost_Suc__shift)

also have ... = (3 k<n. stirling (Suc n) (Suc k))
by simp

also have ... = (3 k<n. n * stirling n (Suc k) + stirling n k)
by simp

also have ... = n x (3 k<n. stirling n (Suc k)) + (3_ k<n. stirling n k)
by (simp add: sum.distrib sum__distrib_left)

also have ... = n x fact n + fact n

proof —

have n x (> k<n. stirling n (Suc k)) = n x ((3_ k<Suc n. stirling n k) —
stirling n 0)
by (metis add__diff _cancel _left’ sum.atMost_Suc__shift)

also have ... = n x (3 k<n. stirling n k)
by (cases n) simp__all
also have ... = n % fact n

using Suc.hyps by simp
finally have n x (3_ k<n. stirling n (Suc k)) = n * fact n .
moreover have (> k<n. stirling n k) = fact n

using Suc.hyps .
ultimately show ?thesis by simp

qed
also have ... = fact (Suc n) by simp
finally show ?Zcase .

qed

lemma stirling pochhammer:
(3" k<n. of _nat (stirling n k) x x " k) = (pochhammer x n :: 'a::comm__semiring_1)
proof (induct n)
case (
then show ?case by simp
next
case (Suc n)
have of nat (n x stirling n 0) = (0 :: 'a) by (cases n) simp__all
then have (>~ k<Suc n. of _nat (stirling (Suc n) k) x x " k) =
(of _nat (n * stirlingn 0) x © ~ 0 +
(3" i<n. of nat (n * stirling n (Suc 7)) * (z = Suc i))) +
(- i<n. of nat (stirling n i) * (z ~ Suc 7))
by (subst sum.atMost_Suc__shift) (simp add: sum.distrib ring_distribs)
also have ... = pochhammer z (Suc n)

10

by (subst sum.atMost_Suc__shift [symmetric])
(simp add: algebra__simps sum.distrib sum__distrib_left pochhammer__Suc flip:
Suc)
finally show ?case .
qed

A row of the Stirling number triangle

definition stirling row :: nat = nat list
where stirling _row n = [stirling n k. k < [0..<Suc n]]

lemma nth_ stirling _row: k < n = stirling _row n ! k = stirling n k
by (simp add: stirling _row__def del: upt_Suc)

lemma length_stirling_row [simp]: length (stirling_row n) = Suc n
by (simp add: stirling _row__def)

lemma stirling row_nonempty [simp]: stirling_row n # []
using length_stirling _row[of n] by (auto simp del: length__stirling _row)

2.2.1 Efficient code

Naively using the defining equations of the Stirling numbers of the first kind
to compute them leads to exponential run time due to repeated compu-
tations. We can use memoisation to compute them row by row without
repeating computations, at the cost of computing a few unneeded values.

As a bonus, this is very efficient for applications where an entire row of
Stirling numbers is needed.

definition zip with _prev :: ('a = 'a = 'b) = 'a = 'a list = 'b list
where zip_with_prev f x xs = map2 [(z # xs) xs

lemma zip with_prev_altdef:
zip__with_prev fx zs =
(if xs =[] then [] else fx (hd xzs) # [f (wsli) (ws!(i+1)). i < [0..<length zs —
1)
proof (cases xs)
case Nil
then show ?thesis
by (simp add: zip_with_prev_def)
next
case (Cons y ys)
then have zip_with_prev fz s = fx (hd xs) # zip_with_prev f y ys
by (simp add: zip_with_prev_def)
also have zip_ with_prev fy ys = map (Mi. f (zs!4) (zs! (i + 1))) [0..<length
xs — 1]
unfolding Cons
by (induct ys arbitrary: y)
(simp__all add: zip_ with_prev_def upt _conv_Cons flip: map_Suc_upt del:
upt__Suc)

11

finally show ?thesis
using Cons by simp
qed

primrec stirling row aux
where
stirling_row_auxz n vy [| = [1]
| stirling _row _auzx n y (z#xs) = (y + n * x) # stirling_row _aur n xs

lemma stirling_row__auz_correct:
stirling_row_aux n y xs = zip_with_prev (Aa b. a + n x b) y xs @ [1]
by (induct zs arbitrary: y) (simp__all add: zip_with_prev_def)

lemma stirling_row__code [code]:
stirling_row 0 = [1]
stirling_row (Suc n) = stirling_row_aux n 0 (stirling_row n)
proof goal cases
case I
show ?case by (simp add: stirling _row__def)
next
case 2
have stirling_row (Suc n) =
0 # [stirling_row n ! { + stirling_row n ! (i+1) * n. i + [0..<n]] Q [{]
proof (rule nth__equalityl, goal_cases length nth)
case (nth 1)
from nth have 7 < Suc n
by simp
then consider i = 0 Vi=Sucn|i>0i<n
by linarith
then show ?Zcase
proof cases
case I
then show ?thesis
by (auto simp: nth__stirling _row nth__append)
next
case 2
then show ?thesis
by (cases i) (simp__all add: nth__append nth__stirling _row)
qed
next
case length
then show Zcase by simp
qed
also have 0 # [stirling_row n ! i + stirling_row n ! (i+1) * n. { < [0..<n]] @
[1] =
zip_with_prev (Aa b. a + n x b) 0 (stirling_row n) @ [1]
by (cases n) (auto simp add: zip_ with_prev__altdef stirling_row__def hd_map
stmp del: upt_Suc)

12

also have ... = stirling_row_auz n 0 (stirling_row n)
by (simp add: stirling _row__aux_correct)
finally show ?Zcase .
qed

lemma stirling code [codel:
stirling n k =
(if k = 0 then (if n = 0 then 1 else 0)
else if k > n then 0
else if k = n then 1
else stirling_row n ! k)
by (simp add: nth__stirling _row)

end

3 Permutations, both general and specifically on
finite sets.

theory Permutations
imports
HOL- Library. Multiset
HOL— Library.Disjoint__Sets
Transposition
begin

3.1 Auxiliary

abbreviation (input) fizpoints :: «('a = ‘a) = 'a set)
where «fizpoints f = {z. fz =z}

lemma inj on_ fizpoints:

<ing_on [(fizpoints f)»
by (rule inj _onl) simp

lemma bij betw_fixpoints:

<bij_betw f (fizpoints f) (fixpoints f)»
using inj_on_ fixpoints by (auto simp add: bij _betw_def)

3.2 Basic definition and consequences

definition permutes :: <«('a = 'a) = 'a set = bool> (infixr <permutes> 41)
where <p permutes S +— Vz. 2 ¢ S — px=2z) AN (Vy. Ilz. pz=y)

lemma bij imp_ permutes:
<p permutes Sy if <bij_betw p S S» and stable: <N\z. 2 ¢ S = pax =1
proof —
note <bij_betw p S S»
moreover have <bij _betw p (— S) (— S)»
by (auto simp add: stable intro!: bij _betw imagel inj onl)

13

ultimately have <bij _betw p (SU — S) (S U —)
by (rule bij betw_combine) simp

then have «3!z. p z = y» for y
by (simp add: bij_iff)

with stable show ?thesis
by (simp add: permutes_def)

qed
context
fixes p :: <a = 'a» and S :: ('a set»
assumes perm: (p permutes S»
begin

lemma permutes_inj:
ng p
using perm by (auto simp: permutes def inj _on__def)

lemma permutes_image:

p £ 8S=25
proof (rule set_eql)
fix z
show <z € p ‘S+—2€ 5
proof

assume <z € p ‘S
then obtain y where <y € S» <(p y = >
by blast
with perm show «x € S»
by (cases <y = x») (auto simp add: permutes _def)
next
assume <z € S
with perm obtain y where <y € S» <(p y =
by (metis permutes_def)
then show «z € p * S
by blast
qed
qed

lemma permutes not_in:
awgS=pr=un
using perm by (auto simp: permutes__def)

lemma permutes image__complement:
p (=8 =-95

by (auto simp add: permutes_not_in)
lemma permutes in__image:

ipr e S+—zxz e
using permutes_image permutes_inj by (auto dest: inj_image_mem,__iff)

14

lemma permutes_surj:
surj p»
proof —
have <p ‘(SU—-S)=p ‘SUp ‘(=9
by (rule image_Un)
then show ?thesis
by (simp add: permutes_image permutes_image__complement)
qed

lemma permutes inv_o:
shows p o inv p = id
and inv p o p = id
using permutes_inj permutes_surj
unfolding inj_iff [symmetric] suri_iff [symmetric] by auto

lemma permutes_inverses:
shows p (invp z) =z
and invp (pz) =2
using permutes_inv_o [unfolded fun__eq iff o_def] by auto

lemma permutes_inv_eq:
(MUDP Yy =T <—>pxT =1
by (auto simp add: permutes_inverses)

lemma permutes_inj on:
<inj_on p A»
by (rule inj _on__subset [of _ UNIV]) (auto intro: permutes_inj)

lemma permutes_ bij:
<bij p»
unfolding bij_def by (metis permutes_inj permutes__suryj)

lemma permutes_imp_ bij:
<bif_betwp S S»
by (simp add: bij _betw_def permutes image permutes_inj_on)

lemma permutes subset:
<p permutes T» if <S C T
proof (rule bij _imp_permutes)
define R where <R =T — S
with that have «<T = RU S» <RN S ={}p
by auto
then have (p z = » if <z € R) for z
using that by (auto intro: permutes_not_in)
then have <p ‘R = R»
by simp
with «T = R U S) show «bij_betw p T T»
by (simp add: bij_betw__def permutes inj _on image_Un permutes_image)
fix z

15

assume <z ¢ T
with «T'= R U S» show (p z =
by (simp add: permutes_not_in)
qed

lemma permutes imp_permutes insert:
<p permutes insert x S»
by (rule permutes _subset) auto

end

lemma permutes_id [simp):
<id permutes S»
by (auto intro: bij imp_ permutes)

lemma permutes__empty [simp]:
<p permutes {} +— p = id>
proof
assume <p permutes {}
then show «p = id»
by (auto simp add: fun__eq iff permutes_not_in)
next
assume (p = id>
then show <p permutes {}»
by simp
qged

lemma permutes_sing [simp]:
<p permutes {a} <— p = id>

proof
assume perm: <p permutes {a}»
show «p = id>
proof
fix x

from perm have <p ‘{a} = {a}
by (rule permutes_image)
with perm show «p z = id ©»
by (cases <x = @) (auto simp add: permutes _not_in)
qed
next
assume <p = id>
then show «p permutes {a}»
by simp
qed

lemma permutes_univ: p permutes UNIV <— (Vy. 3lz. p x = y)
by (simp add: permutes_def)

lemma permutes_swap_id: a € S = b € S = transpose a b permutes S

16

by (rule bij _imp_ permutes) (auto intro: transpose__apply other)

lemma permutes_superset:
<p permutes T if <p permutes S» <Nz. 2 € S — T = px =
proof —
define R U where <R=Tn S and «U =85 — 1T
then have <T = RU (T — Sp«S=RU U RN U ={h
by auto
from that <U =S — T)> have <p ‘ U = U>»
by simp
from <p permutes S» have <bij betw p (R U U) (RU U)»
by (simp add: permutes_imp_bij «S = R U U»)
moreover have <«bij betw p U U>»
using that «<U = S — T» by (simp add: bij_betw_def permutes_inj on)
ultimately have <bij betw p R R»
using <RN U = {}p «RN U = {}> by (rule bij_betw_partition)
then have <p permutes R»
proof (rule bij _imp_permutes)
fix z
assume <z ¢ R
with <R = T N Sy <p permutes S) show <p z = x)
by (cases <z € S») (auto simp add: permutes _not_in that(2))
qed
then have <p permutes R U (T — S)»
by (rule permutes subset) simp
with «T = RU (T — S)) show ?thesis
by simp
qed

lemma permutes bij _inv_into:
fixes A :: ‘a set
and B : b set
assumes p permutes A
and bij betw f A B
shows (Az. if x € B then f (p (inv_into A f 1)) else x) permutes B
proof (rule bij_imp_ permutes)
from assms have bij_betw p A A bij_betw f A B bij _betw (inv_into A f) B A
by (auto simp add: permutes_imp_ bij bij _betw_inv_into)
then have bij betw (f o p o inv_into A f) B B
by (simp add: bij _betw_ trans)
then show bij betw (Az. if x € B then f (p (inv_into A fx)) else z) B B
by (subst bij_betw_conglwhere g=f o p o inv_into A f]) auto
next
fix z
assume z ¢ B
then show (if x € B then f (p (inv_into A f x)) else x) = z by auto
qed

lemma permutes_image_mset:

17

assumes p permutes A

shows image mset p (mset_set A) = mset_set A

using assms by (metis image__mset_mset_set bij _betw__imp__inj _on permutes__imp_ bij
permutes__image)

lemma permutes_implies_image__mset__eq:
assumes p permutes A Nx. t € A = fz = f'(px)
shows image_mset ' (mset_set A) = image_mset f (mset_set A)
proof —
have fz = f' (p z) if x €# mset_set A for x
using assms(2)[of z] that by (cases finite A) auto
with assms have image_mset f (mset_set A) = image_mset (f' o p) (mset_set

A)
by (auto introl: image_mset_cong)
also have ... = image_mset f’ (image_mset p (mset_set A))
by (simp add: image__mset.compositionality)
also have ... = image_mset f’ (mset_set A)
proof —

from assms permutes_image__mset have image_mset p (msetfset A) = mset__set
A
by blast
then show ?thesis by simp
qed
finally show ?thesis ..
qed

3.3 Group properties

lemma permutes compose: p permutes S —> q permutes S = ¢q o p permutes S
unfolding permutes def o_def by metis

lemma permutes inv:
assumes p permutes S
shows inv p permutes S
using assms unfolding permutes__def permutes_iny__eq[OF assms] by metis

lemma permutes inv_inv:

assumes p permutes S

shows inv (inv p) = p

unfolding fun_eq iff permutes_inv_eq[OF assms] permutes_inv_eq[OF per-
mutes__inv[OF assms]

by blast

lemma permutes_invl:
assumes perm: p permutes S
and inv: N\e.z € S=p'(pz) ==
and outside: N\o. c ¢ S = p'z =1z
shows inv p = p’
proof

18

show inv pz = p’' z for z
proof (cases z € S)
case True
from assms have p’ z = p’ (p (inv p z))
by (simp add: permutes__inverses)
also from permutes inv[OF perm] True have ... = inv p
by (subst inv) (simp__all add: permutes_in__image)
finally show ?thesis ..
next
case Fulse
with permutes_inv[OF perm] show ?thesis
by (simp__all add: outside permutes _not_in)
qed
qed

lemma permutes_vimage: f permutes A — f — A = A
by (simp add: bij_vimage _eq inv_image permutes_bij permutes__image[OF per-
mutes__inv))

3.4 Mapping permutations with bijections

lemma bij betw permutations:
assumes bij betw f A B
shows bij _betw (Aw x. if & € B then f (7 (inv_into A fx)) else x)
{m. ™ permutes A} {m. ® permutes B} (is bij_betw ?f _)
proof —
let ?2g = (A . if v € A then inv_into A f (7w (fz)) else x)
show ?thesis
proof (rule bij_betw_byWitness [of _ ?g], goal__cases)
case 3
show ?case using permutes_bij inv_into[OF __ assms| by auto
next
case 4
have bij_inv: bij_betw (inv_into A f) B A by (intro bij_betw _inv_into assms)
{
fix m assume 7 permutes B
from permutes bij inv_into[OF this bij_inv] and assms
have (Az. if v € A then inv_into A f (7 (f z)) else) permutes A
by (simp add: inv_into_inv_into__eq cong: if _cong)
}
from this show ?Zcase by (auto simp: permutes inv)
next
case |
thus ?case using assms
by (auto simp: fun__eq_iff permutes_not_in permutes_in__image bij_betw_inv_into_ left
dest: bij _betwE)
next
case 2
moreover have bij betw (inv_into A f) B A

19

by (intro bij _betw__inv_into assms)
ultimately show ?case using assms
by (auto simp: fun__eq iff permutes_not_in permutes_in__image bij _betw_inv_into_ right

dest: bij _betwE)
qed
qed

lemma bij betw derangements:
assumes bij betw f A B
shows bij betw (\r z. if x € B then f (7 (inv_into A fx)) else x)
{m. ™ permutes A N (Vz€A. 7 v # z)} {m. ™ permutes B A (Vz€B. 7
£)}

(is bij_betw 2f _)
proof —
let 29 = (A x. if x € A then inv_into A f (w (f z)) else x)
show ?thesis
proof (rule bij _betw_byWitness [of __ ?q], goal cases)
case 3
have ?f m © # z if m permutes A N\o. 2 € A= nr#zx € Bformz
using that and assms by (metis bij _betwE bij _betw_imp_inj _on bij_betw_imp_ surj on
inv_into_f finv_into_into permutes imp_ bij)
with permutes bij inv_into[OF __ assms] show ?case by auto
next
case 4
have bij_inv: bij_betw (inv_into A f) B A by (intro bij_betw __inv_into assms)
have ?g m permutes A if ™ permutes B for =
using permutes_bij _inv_into[OF that bij_inv] and assms
by (simp add: inv_into_inv_into__eq cong: if _cong)
moreover have %9 7 © # z if m permutes B N\z. 2 € B=rax #zz€ A
for 7 x
using that and assms by (metis bij _betwE bij _betw_imp_surj _on f_inv_into_f
permutes__imp__bij)
ultimately show ¢case by auto
next
case 1
thus ?case using assms
by (force simp: fun__eq iff permutes_not_in permutes_in_image bij betw _inv_into_ left
dest: bij betwE)
next
case 2
moreover have bij_betw (inv_into A f) B A
by (intro bij betw__inv_into assms)
ultimately show ?case using assms
by (force simp: fun__eq iff permutes_not_in permutes_in_image bij betw inv_into_ right

dest: bij_betwE)

qged
qed

20

3.5 The number of permutations on a finite set

lemma permutes insert_lemma:

assumes p permutes (insert a S)

shows transpose a (p a) o p permutes S
proof (rule permutes_superset[where S = insert a S])

show Transposition.transpose a (p a) o p permutes insert a S

by (meson assms insertll permutes__compose permutes_in__image permutes__swap__id)
qed auto

lemma permutes_insert: {p. p permutes (insert a S)} =
(A(b, p). transpose a b o p) ‘{(b, p). b € insert a S N\ p € {p. p permutes S}}
proof —
have p permutes insert a S +—
(3b q. p = transpose a b o ¢ A b € insert a S A\ q permutes S) for p
proof —
have 3b q. p = transpose a b o q AN b € insert a S N\ q permutes S
if p: p permutes insert a S
proof —
let 2b=1pa
let ?g = transpose a (p a) o p
have x: p = transpose a ?b o ?q
by (simp add: fun__eq iff o__assoc)
have xx: 2b € insert a S
unfolding permutes_in_image[OF p| by simp
from permutes_insert_lemma|OF p] * xx show ?thesis
by blast
qed
moreover have p permutes insert a S
if bg: p = transpose a b o q b € insert a S q permutes S for b g
proof —
from permutes_subset[OF bq(3), of insert a S] have ¢: q permutes insert a S
by auto
have a: a € insert a S
by simp
from bq(1) permutes_compose|OF q permutes_swap_id[OF a bq(2)]] show
?thesis
by simp
qed
ultimately show ¢thesis by blast
qed
then show ?thesis by auto
qed

lemma card_permutations:
assumes card S = n
and finite S
shows card {p. p permutes S} = fact n
using assms(2,1)
proof (induct arbitrary: n)

21

case empty
then show ?case by simp
next
case (insert z F)
{
fix n
assume card_insert: card (insert ¢ F) = n
let ?zF = {p. p permutes insert z F}
let ?pF = {p. p permutes F}
let ?pF' = {(b, p). b € insert x F A p € ?pF}
let ?2g = (A\(b, p). transpose z b o p)
have zfgpF’: ?zF = ?q * ?pF’
by (rule permutes_insert[of = F])
from <z ¢ F» «finite F» card_insert have Fs: card F = n — 1
by auto
from «finite F» insert.hyps F's have pFs: card ?pF = fact (n — 1)
by auto
then have finite ?pF
by (auto intro: card_ge_0_ finite)
with «<finite F'> card.insert_remove have pF'f: finite ?pF"’
by simp
have ginj: inj _on ?g ?pF’
proof —
{
fix bpcyq
assume bp: (b, p) € ?pF’
assume cq: (¢, q) € ?pF’
assume eq: 29 (b, p) = %9 (¢, q)
from bp cq have pF: p permutes F' and qF: q permutes F
by auto
from pF <z ¢ F» eqg have b = 29 (b, p)
by (auto simp: permutes_def fun_upd_def fun__eq iff)

also from ¢F «x ¢ F» eq have ... = %g (¢, q) =
by (auto simp: fun_upd_ def fun__eq iff)
also from ¢F <z ¢ F» have ... = ¢

by (auto simp: permutes_def fun_upd_def fun_eq iff)
finally have b = ¢ .
then have transpose © b = transpose z ¢

by simp
with eq have transpose x b o p = transpose x b o ¢
by simp
then have transpose x b o (transpose z b o p) = transpose = b o (transpose
zboq)
by simp

then have p = ¢
by (simp add: o__assoc)

with b = ¢ have (b, p) = (¢, q)
by simp

}

22

then show ?thesis
unfolding inj on_ def by blast

qed
from «x ¢ F) <finite F» card_insert have n # 0
by auto

then have 3m. n = Suc m
by presburger

then obtain m where n: n = Suc m
by blast

from pFs card_insert have x: card ?zF = fact n
unfolding zfgpF’ card__image[OF ginj]
using <finite F'» «finite ?pF>
by (simp only: Collect_case_prod Collect _mem__eq card__cartesian__product)

(simp add: n)

from finite_imagel[OF pF'f, of ?g] have zFf: finite ?zF
by (simp add: zfgpF’ n)

from x have card ?zF = fact n
unfolding zFf by blast

}

with insert show ?case by simp
qed

lemma finite permutations:
assumes finite S
shows finite {p. p permutes S}
using card_permutations|OF refl assms] by (auto intro: card_ge 0 _ finite)

3.6 Hence a sort of induction principle composing by swaps

lemma permutes _induct [consumes 2, case_names id swap):
<P p if <p permutes S» «finite S»

and id: <P id)
and swap: <Nabp.a € S = b€ S = ppermutes S = P p = P (transpose
abop)

using «finite S» «p permutes S» swap proof (induction S arbitrary: p)
case empty
with id show ?case
by (simp only: permutes _empty)
next
case (insert z S p)
define ¢ where (¢ = transpose z (p z) o p
then have swap_ q: <transpose z (p) o ¢ = p»
by (simp add: o__assoc)
from <p permutes insert x Sy have «q permutes S»
by (simp add: q_def permutes_insert_lemma)
then have (g permutes insert x S»
by (simp add: permutes_imp__permutes__insert)
from <«q permutes S» have <P ¢
by (auto intro: insert.IH insert.prems(2) permutes_imp_ permutes_insert)

23

have <x € insert z S»
by simp
moreover from («p permutes insert S» have «p x € insert © S»
using permutes_in__image [of p <insert x S) z] by simp
ultimately have (P (transpose z (p z) o q)»
using <q permutes insert x S» <P ¢
by (rule insert.prems(2))
then show ?case
by (simp add: swap__q)
qed

lemma permutes_rev_induct [consumes 2, case__names id swap):
<P py if <p permutes S» «finite S»
and id": <P id»
and swap” <Nabp. a€ S = be S = ppermutes S = Pp=— P (po
transpose a b)»
using «p permutes S» «finite S» proof (induction rule: permutes induct)
case id
from id’ show ?case .
next
case (swap a b p)
then have «bij p»
using permutes_bij by blast
have <P (p o transpose (inv p a) (inv p b))»
by (rule swap’) (auto simp add: swap permutes_in__image permutes_inv)
also have «p o transpose (inv p a) (inv p b) = transpose a b o p
using <bij p» by (rule transpose__comp__eq [symmetric])
finally show ?Zcase .
qed

3.7 Permutations of index set for iterated operations

lemma (in comm_monoid_set) permute:
assumes p permutes S
shows FgS =F (gop) S
proof —
from <p permutes S» have inj p
by (rule permutes_inj)
then have inj onp S
by (auto intro: subset_inj on)
then have F g (p ‘S)=F (gop) S
by (rule reindex)
moreover from <p permutes S> have p ‘S = S
by (rule permutes__image)
ultimately show “thesis
by simp
qed

24

3.8 Permutations as transposition sequences

inductive swapidseq :: nat = (‘a = 'a) = bool
where
id[simp]: swapidseq 0 id
| comp__Suc: swapidseq n p = a # b = swapidseq (Suc n) (transpose a b o p)

declare id[unfolded id_def, simp)

definition permutation p <— (I n. swapidseq n p)

3.9 Some closure properties of the set of permutations, with
lengths

lemma permutation__id[simp]: permutation id
unfolding permutation_def by (rule exI[where x=0]) simp

declare permutation_id[unfolded id_def, simp]

lemma swapidseq swap: swapidseq (if a = b then 0 else 1) (transpose a b)
using swapidseq.simps by fastforce

lemma permutation_swap_id: permutation (transpose a b)
by (meson permutation_ def swapidseq swap)

lemma swapidseq _comp__add: swapidseq n p => swapidseq m ¢ = swapidseq (n
+m) (poq
proof (induct n p arbitrary: m q rule: swapidseq.induct)

case (id m q)

then show ?case by simp
next

case (comp_Sucnpabmq)

then show ?case

by (metis add__Suc comp__assoc swapidseq.comp__Suc)

qged

lemma permutation_compose: permutation p = permutation ¢ =—> permutation

(poq
unfolding permutation__def using swapidseq _comp__add[of _ p __ q] by metis

lemma swapidseq endswap: swapidseq n p = a # b = swapidseq (Suc n) (p o
transpose a b)
by (induct n p rule: swapidseq.induct)
(use swapidseq swaplof a b] in <auto simp add: comp__assoc intro: swapid-
seq.comp__Sucy)

lemma swapidseq inverse__exists: swapidseq n p =—> 3 q. swapidseqn q AN p o q =

id A\ qop=id
proof (induct n p rule: swapidseq.induct)

25

case id

then show ?case
by (rule exzl[where z=id]) simp

next

case (comp_Suc n p ab)

from comp_ Suc.hyps obtain ¢ where ¢: swapidseqn gp o q=1id qo p =id
by blast

let ?qg = q o transpose a b

note H = comp_ Suc.hyps

from swapidseq _swaplof a b] H(3) have *: swapidseq 1 (transpose a b)
by simp

from swapidseq _comp__add[OF q(1) %] have s*: swapidseq (Suc n) %q
by simp

have transpose a b o p o 2q = transpose a b o (p o q) o transpose a b
by (simp add: o__assoc)

also have ... = id
by (simp add: ¢(2))

finally have xx*x: transpose a b o p o ?q = id .

have ?q o (transpose a b o p) = q o (transpose a b o transpose a b) o p
by (simp only: o__assoc)

then have ?q o (transpose a b o p) = id
by (simp add: ¢(3))

with xx xxx show ?case
by blast

qed

lemma swapidseq inverse:
assumes swapidseq n p
shows swapidseq n (inv p)
using swapidseq inverse__exists|OF assms] inv_unique__comp|of p] by auto

lemma permutation_inverse: permutation p = permutation (inv p)
using permutation__def swapidseq inverse by blast

3.10 Various combinations of transpositions with 2, 1 and 0
common elements

lemma swap_id_common: a # ¢ = b # ¢ =
transpose a b o transpose a ¢ = transpose b ¢ o transpose a b
by (simp add: fun_eq iff transpose__def)

lemma swap_id_common’ a # b = a # ¢ =
transpose a ¢ o transpose b ¢ = transpose b ¢ o transpose a b
by (simp add: fun__eq iff transpose__def)

lemma swap_id_independent: a # c = a #d = b# ¢ = b #* d =

transpose a b o transpose ¢ d = transpose ¢ d o transpose a b
by (simp add: fun__eq iff transpose__def)

26

3.11 The identity map only has even transposition sequences

lemma symmetry lemma:
assumes Aabcd. Pabcd = Pabdc
and N\abcd a#b= c# d =
a=cAb=dVa=cAb#dVatcANb=dVa#tcNa#*dANb#*c
ANb#d=
Pabcd
shows Aabcd. a%b—c#d— Pabecd
using assms by metis

lemma swap__general:
assumes a # b c # d
shows transpose a b o transpose ¢ d = id V
BzyzzFahy#ahz£aNsF£yA
transpose a b o transpose ¢ d = transpose T y o transpose a z)
by (metis assms swap__id__common’ swap__id_independent transpose__commute
transpose__comp__involutory)

lemma swapidseq id_iff [simp]: swapidseq 0 p +— p = id
using swapidseq.cases[of 0 p p = id] by auto

lemma swapidseq cases: swapidseq n p <—
n=0Ap=idV (3abdbqgm.n= SucmA p= transpose a b o g N\ swapidseq
mqAa#b)
by (meson comp_Suc id swapidseq.cases)

lemma fizing swapidseq decrease:
assumes swapidseq n p
and a # b
and (transpose a b o p) a = a
shows n # 0 A swapidseq (n — 1) (transpose a b o p)
using assms
proof (induct n arbitrary: p a b)
case ()
then show ?case
by (auto simp add: fun_upd_def)
next
case (Suc n p a b)
from Suc.prems(1) swapidseq _cases[of Suc n p]
obtain ¢ d ¢ m where
cdgm: Suc n = Suc m p = transpose ¢ d o q swapidseq m qc #* dn =m
by auto
consider transpose a b o transpose ¢ d = id
|zyzwherez #ay#az#az#y
transpose a b o transpose ¢ d = transpose x y o transpose a z
using swap__general|OF Suc.prems(2) cdgm(4)] by metis
then show ?case
proof cases
case I

27

then show ?thesis

by (simp only: cdgm o__assoc) (simp add: cdgm)
next

case 2

then have az: a # 2
by simp

from 2 have x: (transpose x y o h) a = a +— h a = a for h
by (simp add: transpose__def)

from cdgm(2) have transpose a b o p = transpose a b o (transpose ¢ d o q)
by simp

then have §: transpose a b o p = transpose x y o (transpose a z o q)
by (simp add: o_assoc 2)

obtain xx: swapidseq (n — 1) (transpose a z o ¢q) and n#0
by (metis * § Suc.hyps Suc.prems(3) az cdgm(3,5))

then have Sucn — 1 = Suc (n — 1)
by auto

with 2 show %thesis
using xx § swapidseq.simps by blast

qed
qed

lemma swapidseq identity_even:
assumes swapidseq n (id :: 'a = 'a)
shows even n
using <swapidseq n id>
proof (induct n rule: nat_less_induct)
case H: (1 n)
consider n = 0
| @ b::'aand ¢ m where n = Suc m id = transpose a b o q swapidseq m q a
#£b
using H(2)[unfolded swapidseq cases|of n id]] by auto
then show ?case
proof cases
case I
then show ?thesis by presburger
next
case h: 2
from fizing _swapidseq decrease[OF h(3,4), unfolded h(2)[symmetric]]
have m: m # 0 swapidseq (m — 1) (id :: 'a = 'a)
by auto
from h m have mn: m — 1 <n
by arith
from H(1)[rule_format, OF mn m(2)] h(1) m(1) show ?thesis
by presburger
qed
qed

28

3.12 Therefore we have a welldefined notion of parity

definition evenperm p = even (SOME n. swapidseq n p)

lemma swapidseq even__even:
assumes m: swapidseq m p
and n: swapidseq n p
shows even m +— even n

proof —
from swapidseq inverse__exists|OF n] obtain ¢ where ¢: swapidseq n ¢ p o ¢
=idqop=id
by blast

from swapidseq identity even[OF swapidseq comp__add[OF m q(1), unfolded
q]] show ?thesis
by arith
qed

lemma evenperm_ unique:
assumes swapidseq n p andeven n = b
shows evenperm p = b
by (metis evenperm__def assms somel swapidseq even__even)

3.13 And it has the expected composition properties

lemma evenperm__id[simpl: evenperm id = True
by (rule evenperm_unique[where n = 0]) simp__all

lemma evenperm__identity [simp):
cevenperm (Az.)
using evenperm__id by (simp add: id_def [abs_def])

lemma evenperm__swap: evenperm (transpose a b) = (a = b)
by (rule evenperm_unique[where n=if a = b then 0 else 1]) (simp_all add:
swapidseq _swap)

lemma evenperm__comp:
assumes permutation p permutation q
shows evenperm (p o q) «— evenperm p = evenperm q
proof —
from assms obtain n m where n: swapidseq n p and m: swapidseq m q
unfolding permutation_def by blast
have even (n + m) +— (even n «— even m)
by arith
from evenperm_ unique[OF n refl] evenperm_unique| OF m refi]
and evenperm__unique| OF swapidseq _comp__add[OF n m] this| show ?thesis
by blast
qged

lemma evenperm__inv:
assumes permutation p

29

shows evenperm (inv p) = evenperm p
proof —
from assms obtain n where n: swapidseq n p
unfolding permutation_def by blast
show ?thesis
by (rule evenperm__unique| OF swapidseq inverse[OF n| evenperm__unique| OF
n refl, symmetric]])
qed

3.14 A more abstract characterization of permutations

lemma permutation_ bijective:
assumes permutation p
shows bij p
by (meson assms o__bij permutation_ def swapidseq inverse__exists)

lemma permutation_finite_ support:
assumes permutation p
shows finite {z. p © # z}
proof —
from assms obtain n where swapidseq n p
unfolding permutation_def by blast
then show ?thesis
proof (induct n p rule: swapidseq.induct)
case id
then show Zcase by simp
next
case (comp_Suc n p a b)
let 2S5 = insert a (insert b {z. p z # z})
from comp_Suc.hyps(2) have x: finite 25
by simp
from <a # by have *xx: {z. (transpose a b o p) x # z} C ¢S
by auto
show ?Zcase
by (rule finite_subset[OF x x|)
qed
qed

lemma permutation__lemma:
assumes finite S
and bij p
andVz. 2 ¢ S —pr==z
shows permutation p
using assms
proof (induct S arbitrary: p rule: finite_induct)
case empty
then show ?case
by simp
next

30

case (insert a F p)
let 9r = transpose a (p a) o p
let ?q = transpose a (p a) o ?r
have x: ?2ra = a
by simp
from insert « have xx: V. z ¢ F — %rz =z
by (metis bij_pointE comp__apply id__apply insert iff swap__apply(3))
have bij 7r
using insert by (simp add: bij _comp)
have permutation ?r
by (rule insert(3)[OF <bij ?ry *x])
then have permutation ?q
by (simp add: permutation__compose permutation_swap _id)
then show ?case
by (simp add: o__assoc)
qed

lemma permutation: permutation p «— bij p A finite {z. p x # z}
using permutation__bijective permutation__ finite_support permutation_lemma by
auto

lemma permutation__inverse__works:
assumes permutation p
shows inv p o p = id
and p o inv p = id
using permutation__bijective [OF assms] by (auto simp: bij_def inj iff suri_iff)

lemma permutation__inverse__compose:
assumes p: permutation p
and ¢: permutation q
shows inv (p o q) = inv q o inv p
by (simp add: o_inv_distrib p permutation_ bijective q)

3.15 Relation to permutes

lemma permutes imp_permutation:
<permutation py if <finite S» «p permutes S»
proof —
from «p permutes S> have {x. pz # z} C S
by (auto dest: permutes_not_in)
then have «finite {z. p z # z}»
using «finite S» by (rule finite_subset)
moreover from <«p permutes S» have <bij p
by (auto dest: permutes_bij)
ultimately show “thesis
by (simp add: permutation)
qed

lemma permutation__permutesk:

31

assumes <permutation p»
obtains S where «(finite Sy <p permutes S»
proof —
from assms have fin: <finite {z. p x # =}
by (simp add: permutation)
from assms have «bij p»
by (simp add: permutation)
also have <UNIV = {z.pz # 2z} U {z. pz =z}
by auto
finally have <bij_betw p {z. p x # z} {z. p z # a}
by (rule bij _betw_partition) (auto simp add: bij betw _fizpoints)
then have <p permutes {z. p x # =}
by (auto intro: bij imp_ permutes)
with fin show thesis ..
qed

lemma permutation_permutes: permutation p <— (3S. finite S A p permutes S)
by (auto elim: permutation_permutesE intro: permutes_imp__permutation)

3.16 Sign of a permutation as a real number

definition sign :: <('a = 'a) = int» — TODO: prefer less generic name
where <sign p = (if evenperm p then 1 else — 1)»

lemma sign__cases [case__names even odd):
obtains <sign p = 1> | <sign p = — 1»
by (cases <evenperm py) (simp__all add: sign__def)

lemma sign_nz [simpl: sign p # 0
by (cases p rule: sign__cases) simp__all

lemma sign_id [simp]: sign id = 1
by (simp add: sign__def)

lemma sign__identity [simp]:
sign (A\z. z) = 1>
by (simp add: sign__def)

lemma sign__inverse: permutation p = sign (inv p) = sign p
by (simp add: sign__def evenperm__inv)

lemma sign__compose: permutation p = permutation ¢ = sign (p o q) = sign
p * sign q
by (simp add: sign__def evenperm__comp)

lemma sign_swap__id: sign (transpose a b) = (if a = b then 1 else — 1)
by (simp add: sign__def evenperm__swap)

lemma sign__idempotent [simp|: sign p * sign p = 1

32

by (simp add: sign__def)

lemma sign_left _idempotent [simp):

sign p x (sign p * sign q) = sign ¢
by (simp add: sign__def)

term (bij, bij betw, permutation)

3.17 Permuting a list

This function permutes a list by applying a permutation to the indices.

definition permute_list :: (nat = nat) = ‘a list = 'a list
where permute_list f zs = map (Mi. zs | (f 1)) [0..<length xs]

lemma permute_list_map:
assumes | permutes {..<length zs}
shows permute_list f (map g zs) = map g (permute_list f s)
using permutes_in_image|OF assms] by (auto simp: permute_list _def)

lemma permute_list_nth:
assumes | permutes {..<length zs} i < length zs
shows permute list fxs! i = xs! fi
using permutes_in_image[OF assms(1)] assms(2)
by (simp add: permute_list _def)

lemma permute_list_ Nil [simp]: permute_list f [] = |]
by (simp add: permute_list_def)

lemma length _permute_list [simp]: length (permute_list f xs) = length s
by (simp add: permute_list_def)

lemma permute_list__compose:
assumes ¢ permutes {..<length zs}
shows permute_list (f o g) xs = permute_list g (permute_list f xs)
using assms| THEN permutes_in_image] by (auto simp add: permute_list__def)

lemma permute_list_ident [simp]: permute_list (Az.) zs = xs
by (simp add: permute_list_def map_nth)

lemma permaute_list_id [simp]: permute_list id zs = xs
by (simp add: id_def)

lemma mset_permute_list [simp]:
fixes xs :: ‘a list
assumes | permutes {..<length zs}
shows mset (permute_list f xs) = mset s
proof (rule multiset_eql)
fix y:: 'a
from assms have [simp]: [z < length xs +— z < length zs for z

33

using permutes_in__image[OF assms] by auto
have count (mset (permute_list f xs)) y = card ((Mi. zs | f7) —{y} N {..<length
as})
by (simp add: permute_list_def count_image_mset atLeastOLessThan)
also have (\i. zs ! fi) —“{y} N {.<length xs} = f —*{i. i < length xs \ y =

xs | i}
by auto
also from assms have card ... = card {i. i < length zs N y = xs ! i}
by (intro card_vimage_inj) (auto simp: permutes_inj permutes__suryj)
also have ... = count (mset zs) y

by (simp add: count_mset length_filter _conv__card)
finally show count (mset (permute_list f zs)) y = count (mset zs) y
by simp
qed

lemma set_permute_list [simp]:
assumes | permutes {..<length xs}
shows set (permute_list f xs) = set xs
by (rule mset_eq setD|OF mset_permute_list]) fact

lemma distinct__permute_list [simp]:
assumes f permutes {..<length zs}
shows distinct (permute_list f xs) = distinct xs
by (simp add: distinct__count _atmost_1 assms)

lemma permute_list_ zip:
assumes f permutes A A = {..<length s}
assumes [simp]: length xs = length ys
shows permute_list [(zip xs ys) = zip (permute_list f xs) (permute_list f ys)
proof —
from permutes_in_image[OF assms(1)] assms(2) have *: fi < length ys +—
i < length ys for i
by simp
have permute_list f (zip zs ys) = map (Ai. zip zs ys | f 1) [0..<length ys]
by (simp__all add: permute_list _def zip_map_map)

also have ... = map (A(z, y). (zs! fz, ys! fy)) (zip [0..<length ys] [0..<length
ys])
by (intro nth__equalityl) (simp__all add: x)
also have ... = zip (permute_list f xs) (permute_list f ys)

by (simp__all add: permute_list _def zip_map_map)
finally show ?thesis .
qged

lemma map_of permute:
assumes o permutes fst ¢ set xs
shows map_ of zs o 0 = map__of (map (A(z,y). (inv o z, y)) xs)
(is _ = map_of (map ?f_))
proof
from assms have inj o surj o

34

by (simp__all add: permutes_inj permutes__surj)
then show (map_of xs o o) © = map_of (map ?f zs) z for z
by (induct zs) (auto simp: inv_f _f surj [inv_f)
qed

lemma list_all2 permute list iff:
<list_all2 P (permute_list p xs) (permute_list p ys) «— list_all2 P xs ys»
if «p permutes {..<length xs}
using that by (auto simp add: list_all2_iff simp flip: permute_list_zip)

3.18 More lemmas about permutations

lemma permutes_in_ funpow_image:
assumes f permutes Sz € §
shows (f “"n)z e S
using assms by (induction n) (auto simp: permutes_in_image)

lemma permutation_ self:
assumes <permutation p»
obtains n where <n > 0) «(p " n) z =
proof (cases <p x =)
case True
with that [of 1] show thesis by simp
next
case Fulse
from <permutation p> have <inj p»
by (intro permutation_ bijective bij is_inj)
moreover from «p z # x> have «(p 7 Sucn) z # (p " n) 2 for n
proof (induction n arbitrary: x)
case () then show ?case by simp
next
case (Suc n)
have p (p z) # p o
proof (rule notl)
assume p (pz) =px
then show Fulse using <p z # x» «inj p> by (simp add: inj _eq)
qed
have (p 7 Suc (Suc n)) z = (p = Suc n) (p)
by (simp add: funpow_swapl)
also have ... # (p 7" n) (p z)
by (rule Suc) fact
also have (p 7" n) (pz) =(p ~ Sucn) x
by (simp add: funpow swapl)
finally show ?case by simp
qed
then have {y. 3n. y = (p " n) 2} C{z. pz # z}
by auto
then have finite {y. In. y = (p ~ n) =}
using permutation_ finite_support| OF assms] by (rule finite__subset)

35

ultimately obtain n where <n > 0> «(p " " n) z = o
by (rule funpow_inj _finite)
with that [of n] show thesis by blast
qed

The following few lemmas were contributed by Lukas Bulwahn.

lemma count image mset__eq card_vimage:
assumes finite A
shows count (image_mset f (mset_set A)) b = card {a € A. fa = b}
using assms

proof (induct A)

case empty
show ?case by simp
next

case (insert z F)
show ?case
proof (cases fx = b)
case True
with insert.hyps
have count (image_mset [(mset_set (insert x F))) b = Suc (card {a € F. f
a=fa))
by auto
also from insert.hyps(1,2) have ... = card (insert x {a € F. fa = fz})
by simp
also from «f x = b» have card (insert x {a € F. fa = fz}) = card {a € insert
z F. fa=0b}
by (auto intro: arg_conglwhere f=card))
finally show ?thesis
using insert by auto
next
case Fulse
then have {a € F. fa = b} = {a € insert x F. fa = b}
by auto
with insert False show ?thesis
by simp
qed
qed

— Prove image_mset__eq implies _permutes ...
lemma image mset _eq implies_permutes:
fixes f :: 'a = b
assumes finite A
and mset_eq: image__mset f (mset_set A) = image__mset f' (mset_set A)
obtains p where p permutes A and Vz€A. fz = f' (p z)
proof —
from <finite A> have [simp]: finite {a € A. fa = (b::'b)} for f b by auto
have f‘A=f'‘A
proof —
from «(finite A> have f * A = f * (set_mset (mset_set A))

36

by simp
also have ... = [’ ‘ set_mset (mset_set A)
by (metis mset__eq multiset.set_map)
also from «(finite A> have ... = f' ‘ A
by simp
finally show ?%thesis .
qed
have Vbe(f < A). Ip. bij_betwp {a € A. fa=10b} {a € A. f'a =01}
proof
fix b
from mset__eq have count (image_mset f (mset_set A)) b = count (image__mset
f' (mset_set A)) b
by simp
with <finite A> have card {a € A. fa = b} = card {a € A. f' a = b}
by (simp add: count_image_mset_eq card_vimage)
then show Jp. bij_betw p {a€A. fa = b} {a € A. f' a = b}
by (intro finite_same__card_bij) simp__all
qed
then have Ip. Vbef ‘ A. bij betw (p b) {a € A. fa =10} {a € A. f'a = b}
by (rule bchoice)
then obtain p where p: Vbef ‘ A. bij_betw (p b) {a € A. fa =10} {a € A. [’
a=b}..
define p’ where p’ = (Aa. if a € A then p (f a) a else a)
have p’ permutes A
proof (rule bij _imp_permutes)
have disjoint_family_on (Mi. {a € A. f' a =14}) (f * 4)
by (auto simp: disjoint_family _on_ def)
moreover
have bij_betw (Ma. p (fa) a) {a € A. fa=0b}{a€ A fla=0b}ifbef A
for b
using p that by (subst bij _betw_cong[where g=p b]) auto
ultimately
have bij_betw (Aa. p (fa) a) (Jbef ‘A. {a € A. fa=0b}) (Ubef ‘A. {a €
A f"a=1b})
by (rule bij betw UNION__disjoint)
moreover have (|Jbef ‘A. {a€ A. fa=0b})=A
by auto
moreover from «f ‘A = f" ‘A have (Jbef ‘A . {a€c A ffa=0b})=A
by auto
ultimately show bij betw p’ A A
unfolding p’_def by (subst bij_betw_conglwhere g=(Xa. p (f a) a)]) auto
next
show A\e. 2 ¢ A= p'z =12
by (simp add: p’_def)
qed
moreover from p have VzeA. fz = [/ (p’ z)
unfolding p’ def using bij betwE by fastforce
ultimately show ?thesis ..
qed

37

— ... and derive the existing property:
lemma mset__eq permutation:
fixes xs ys :: 'a list
assumes mset__eq: mset rs = mset ys
obtains p where p permutes {..<length ys} permute_list p ys = xs
proof —
from mset_eq have length__eq: length xs = length ys
by (rule mset_eq length)
have mset_set {..<length ys} = mset [0..<length ys]
by (rule mset_set_upto__eq mset_upto)
with mset_eq length _eq have image _mset (\i. zs ! i) (mset_set {..<length ys})

image_mset (A\i. ys ! i) (mset_set {..<length ys})
by (metis map__nth mset_map)
from image_mset_eq_implies_permutes|OF __ this]
obtain p where p: p permutes {..<length ys} and Vie{..<length ys}. zs ! i =
ys ! (p 9)
by auto
with length eq have permute_list p ys = xs
by (auto introl: nth__equalityl simp: permute_list_nth)
with p show thesis ..
qed

lemma permutes natset_le:
fixes S :: ‘a::wellorder set
assumes p permutes S
andVie S.pi<i
shows p = id
proof —
have p n = n for n
using assms
proof (induct n arbitrary: S rule: less_induct)
case (less n)
show ?case
proof (cases n € §)
case Fulse
with less(2) show %thesis
unfolding permutes def by metis
next
case True
with less(3) have pn < nV pn=n
by auto
then show ?thesis
proof
assume p n < n
with less have p (p n) = pn
by metis
with permutes_inj[OF less(2)] have p n = n

38

unfolding inj def by blast
with <p n < n» have Fulse
by simp
then show ?thesis ..
qed
qed
qed
then show %thesis by (auto simp: fun__eq iff)
qed

lemma permutes_natset_ge:
fixes S :: ‘a::wellorder set
assumes p: p permutes S
and le:Vie S.pi >
shows p = id
proof —
have i > invp i if i € S for ¢
proof —
from that permutes_in_image| OF permutes_inv[OF p]] have invp i € S
by simp
with le have p (inv p i) > inv p i
by blast
with permutes_inverses|OF p| show ?thesis
by simp
qed
then have VieS. invp i <1
by blast
from permutes_natset_le[OF permutes_inv[OF p] this] have inv p = inv id
by simp
then show ?thesis
using p permutes_inv_inv by fastforce
qed

lemma image inverse_permutations: {inv p |p. p permutes S} = {p. p permutes
S}

using permutes inv permutes_inv_inv by force

lemma image compose__permutations left:
assumes q permutes S
shows {q o p |p. p permutes S} = {p. p permutes S}
proof —
have Ap. p permutes S = q o p permutes S
by (simp add: assms permutes__compose)
moreover have Az. z permutes S = Ip. £ = q o p A p permutes S
by (metis assms id__comp o__assoc permutes__compose permutes__inv permutes__inv_o(1))
ultimately show ?thesis
by auto
qed

39

lemma image compose_permutations right:

assumes ¢ permutes S

shows {p o q | p. p permutes S} = {p . p permutes S}

by (metis (no__types, opaque_lifting) assms comp__id fun.map__comp permutes__compose
permutes__inv permutes__iny_o(2))

lemma permutes in_seg: p permutes {1 .n} = i € {l.n} = 1 <piApi
<n
by (simp add: permutes_def) metis

lemma sum__permutations_inverse: sum f {p. p permutes S} = sum (Ap. f(inv
p)) {p. p permutes S}
(is ?lhs = %rhs)
proof —
let 25 = {p . p permutes S}
have x: inj_on inv 25
proof (auto simp add: inj _on__def)
fix qr
assume ¢: q permutes S
and r: r permutes S
and qr: inv ¢ = inv T
then have inv (inv q) = inv (inv r)
by simp
with permutes_inv_inv[OF q] permutes_inv_inv[OF r] show ¢ = r
by metis
qged
have xx: inv ¢ 25 = 25
using image__inverse__permutations by blast
have xxx: ?rhs = sum (f o inv) 25
by (simp add: o_ def)
from sum.reindez[OF x, of f] show ?thesis
by (simp only: ** xxx)
qed

lemma setum__permutations _compose__left:
assumes ¢: q permutes S
shows sum f {p. p permutes S} = sum (Ap. f(q o p)) {p. p permutes S}
(is ?lhs = %rhs)
proof —
let S = {p. p permutes S}
have *: ?rhs = sum (f o ((0) q)) ?S
by (simp add: o__def)
have *x: inj_on ((o) q) 2S
proof (auto simp add: inj _on_ def)
fix pr
assume p permutes S
and r: r permutes S
and mp: gop=gqor
then have inv go gop=invgoqor

40

by (simp add: comp__assoc)
with permutes inj{OF q, unfolded inj_iff] show p = r
by simp
qed
have ((o) ¢q) “ 95 = 28
using image__compose__permutations_left[OF q] by auto
with * sum.reindex[OF xx, of f] show ?thesis
by (simp only:)
qed

lemma sum__permutations_compose_ right:
assumes ¢: q permutes S
shows sum f {p. p permutes S} = sum (Ap. f(p o q)) {p. p permutes S}
(is ?lhs = %rhs)
proof —
let 25 = {p. p permutes S}
have x: ?rhs = sum (f o (Ap. p o q)) %5
by (simp add: o_def)
have xx: inj_on (Ap. p o q) %S
proof (auto simp add: inj on__def)
fix pr
assume p permutes S
and r: r permutes S
and rp: poqg=rogq
then have p o (¢ o inv ¢) = 7 o (g o inv q)
by (simp add: o__assoc)
with permutes_surj[OF q, unfolded surj_iff] show p = r
by simp
qed
from image__compose__permutations_right[OF q] have (Ap. p o q) “ 25 = ¢S
by auto
with x sum.reindex|OF xx, of f] show ?thesis
by (simp only:)
qed

lemma inv_inj on_ permutes:
<ing_on inv {p. p permutes S}
proof (intro inj _onl, unfold mem__Collect_eq)
fix pgq
assume p: p permutes S and ¢: ¢ permutes S and eq: inv p = inv q
have inv (inv p) = inv (inv q) using eq by simp

thus p = ¢
using inv_iny__eq[OF permutes_bij] p q by metis
qed

lemma permutes pair_eq:

{(ps,s)|s.se€ St ={(s,invps)|s.s€ShH (is «<?L = ?R») if <p permutes S»
proof

show ?L C 2R

41

proof
fix z assume z € ?L
then obtain s where z: 2 = (p s, s) and s: s € S by auto
note z
also have (p s, s) = (p s, Hilbert_Choice.inv p (p s))
using permutes_inj [OF that] inv_f_f by auto
also have ... € YR using s permutes_in__image[OF that] by auto
finally show z € ?R.
qed
show ?R C ?L
proof
fix r assume z € ?R
then obtain s

where z: © = (s, Hilbert_ Choice.inv p s) (is _ = (s, %ips))
and s: s € S by auto
note

also have (s, %ips) = (p %ips, ?ips)
using inv_f_f[OF permutes_inj[OF permutes_inv[OF that]]]
using inv_inv_eq[OF permutes_bij|OF that]] by auto

also have ... € 7L
using s permutes_in__image| OF permutes_inv[OF that]] by auto

finally show z € ?L.

qed
qed

context

fixes p and n 7 :: nat

assumes p: <p permutes {0..<n}> and i: i < n
begin

lemma permutes nat_less:
p i< m
proof —
have ¢ ?thesis +— p i € {0..<n}
by simp
also from p have «p i € {0..<n} «— i € {0..<n}
by (rule permutes_in_image)
finally show ?thesis
using i by simp
qed

lemma permutes mnat_inv_less:
nu p 1 <
proof —
from p have <inv p permutes {0..<n}»
by (rule permutes__inv)
then show ?thesis
using i by (rule Permutations.permutes_nat_less)
qed

42

end

context comm__monoid_set
begin

lemma permutes_inv:
F'(As.g(ps)s)S=F(As.gs (invps)) S (is <2 =)
if <p permutes S»
proof —
let 29 = Mz, y). gz y
let %ps = Xs. (p s,)
let Zips = As. (s, inv p s)
have inj1: inj _on ?ps S by (rule inj_onl) auto
have nj2: inj _on %ips S by (rule inj_onl) auto
have 2l = F ?g (%ps * 5)
using reindex [OF injl, of 9] by simp
also have %ps ‘S ={(p s, s) |s. s € S} by auto
also have ... = {(s, inv p s) |s. s € S}
unfolding permutes_pair_eq [OF that] by simp
also have ... = %ips * S by auto
also have F %g ... = ?r
using reindex [OF inj2, of 9] by simp
finally show ?thesis.
qed

end

3.19 Sum over a set of permutations (could generalize to
iteration)

lemma sum_ over permutations_insert:
assumes fS: finite S
and aS: a ¢ S
shows sum f {p. p permutes (insert a S)} =
sum (Ab. sum (Aq. f (transpose a b o q)) {p. p permutes S}) (insert a S)
proof —
have x: Afa b. (A(b, p). f (transpose a b o p)) = f o (A(b,p). transpose a b o p)
by (simp add: fun__eq iff)
have xx: AP Q. {(a, b). a € PAbeE Q} =P x Q
by blast
show ?thesis
unfolding x xx sum.cartesian_ product permutes insert
proof (rule sum.reindex)
let 2f = (A(b, y). transpose a b o y)
let ?P = {p. p permutes S}
{
fixbecpyq
assume b: b € insert a S

43

assume c: ¢ € insert a S

assume p: p permutes S

assume ¢: ¢ permutes S

assume eq: transpose a b o p = transpose a ¢ o q

from p ¢ aS have pa: p a = a and qa: ¢ a = a
unfolding permutes def by metis+

from eq have (transpose a b o p) a = (transpose a ¢ o q) a
by simp

then have bc: b = ¢
by (simp add: permutes_def pa qa o__def fun_upd_def id_def

cong del: if _weak__cong split: if _split_asm)

from eg[unfolded bc] have (Ap. transpose a ¢ o p) (transpose a ¢ o p) =
(Ap. transpose a ¢ o p) (transpose a ¢ o q) by simp

then have p = ¢
unfolding o_ assoc swap__id_idempotent by simp

with bc have b = ¢ A p = ¢
by blast

}

then show inj on ?f (insert a S x ?P)
unfolding inj on_ def by clarify metis
qged
qged

3.20 Constructing permutations from association lists

definition list _permutes :: ('a x 'a) list = 'a set = bool
where list _permutes xs A «—
set (map fst zs) C A A
set (map snd xs) = set (map fst xs) A
distinct (map fst xs) A
distinct (map snd xs)

lemma list_permutesl [simp]:
assumes set (map fst zs) C A set (map snd xs) = set (map fst xs) distinct (map
fst xs)
shows list_permutes xs A
proof —
from assms(2,3) have distinct (map snd xs)
by (intro card_distinct) (simp__all add: distinct_card del: set_map)
with assms show ?thesis
by (simp add: list_permutes_def)
qed

definition permutation_of list :: ('a x 'a) list = 'a = 'a
where permutation__of list xs © = (case map__of xs x of None = z | Some y =

Y)

lemma permutation_of list_Cons:
permutation_of list ((z, y) # xs) x' = (if x = x’ then y else permutation__of list

44

xs z')
by (simp add: permutation_of list_def)

fun inverse_permutation_of list :: ('a x 'a) list = 'a = 'a
where
inverse__permutation_of list [| x =
| inverse__permutation_of list ((y, z') # xs) z =
(if x = 2’ then y else inverse_permutation__of list xs x)

declare inverse_permutation__of _list.simps [simp del]

lemma inj on_map_of:
assumes distinct (map snd xs)
shows inj_on (map_of xs) (set (map fst xs))
proof (rule inj_onlI)
fix zy
assume zy: x € set (map fst xs) y € set (map fst xs)
assume eq: map_of xs x = map_of xs y
from zy obtain z’ y’ where z'y": map_ of s x = Some ' map_ of zs y = Some

/

)
by (cases map__of zs z; cases map__of xs y) (simp__all add: map__of _eq_None__iff)
moreover from z'y’ have x: (z, 2') € set zs (y, y') € set s
by (force dest: map_of SomeD)+
moreover from * eq 'y’ have z’/ = v’
by simp
ultimately show z = y
using assms by (force simp: distinct_map dest: inj_onDlof _ __ (z,z") (y,y")])
qed

lemma inj _on_the: None ¢ A = inj_on the A
by (auto simp: inj_on__def option.the_def split: option.splits)

lemma inj_on_map_of":
assumes distinct (map snd xs)
shows inj_on (the o map_of xs) (set (map fst xs))
by (intro comp_inj _on inj_on_map_ of assms injionithe)
(force simp: eq_commutelof None] map_of _eq None__iff)

lemma image _map_of:
assumes distinct (map fst s)
shows map__of xs set (map fst xs) = Some * set (map snd zs)
using assms by (auto simp: rev_image__eql)

lemma the Some_image [simp]: the ‘ Some ‘A = A
by (subst image_image) simp

lemma image _map_of":

assumes distinct (map fst zs)
shows (the o map_of zs) ‘ set (map fst xs) = set (map snd xs)

45

by (simp only: image__comp [symmetric| image__map__ of assms the_Some__image)

lemma permutation_of list_permutes [simp]:
assumes list__permutes zs A
shows permutation_of list xs permutes A
(is 2f permutes _)
proof (rule permutes_subset[OF bij _imp_ permutes))
from assms show set (map fst zs) C A
by (simp add: list_permutes_def)
from assms have inj_on (the o map_of zs) (set (map fst xs)) (is 2P)
by (intro inj_on_map_of") (simp__all add: list_permutes_def)
also have ?P <— inj _on ?f (set (map fst zs))
by (intro inj_on__cong)
(auto simp: permutation__of list_def map_of eq None__iff split: option.splits)
finally have bij_betw ?f (set (map fst xs)) (?f ¢ set (map fst xs))
by (rule inj _on__imp_bij betw)
also from assms have ?f ‘ set (map fst xs) = (the o map_of zs) ‘ set (map fst
xs)
by (intro image__cong refl)
(auto simp: permutation_of list_def map__of eq None_iff split: option.splits)
also from assms have ... = set (map fst s)
by (subst image_map_ of ') (simp__all add: list_permutes_def)
finally show bij betw ?f (set (map fst xs)) (set (map fst zs)) .
qed (force simp: permutation__of list_def dest!: map__of SomeD split: option.splits)+

lemma eval permutation_of list [simp]:
permutation_of list [| x = «
z = ¢’ = permutation_of list ((z',y)#xs) z =y
z # z' = permutation_of list ((z',y")#xs) © = permutation_of list zs x
by (simp__all add: permutation_of list_def)

lemma eval _inverse__permutation__of _list [simp]:

inverse__permutation_of list [| x =

z = 2/ = inverse_permutation_of list ((y,x")#xzs) x =y

x # 1/ = inverse__permutation_of list ((y’,z")#xs) x = inverse_permutation__of list
8 T

by (simp__all add: inverse__permutation__of _list.simps)

lemma permutation_of list id: x ¢ set (map fst xs) = permutation_of list xs
T ==z
by (induct xs) (auto simp: permutation_of list_Cons)

lemma permutation_of list_unique”:
distinct (map fst xs) = (z, y) € set xs => permutation_of list s © = y
by (induct zs) (force simp: permutation_of list Cons)+

lemma permutation_of list_unique:

list_permutes xs A = (z, y) € set xs = permutation_of list zs . = y
by (intro permutation__of list_unique’) (simp__all add: list _permutes def)

46

lemma inverse__permutation_of list_id:
T §§ set (map snd xs) = inverse__permutation_of list s z = x
by (induct zs) auto

lemma inverse_permutation__of list_unique’:

distinct (map snd xs) = (z, y) € set s = inverse_permutation_ of list xs y
==z

by (induct xs) (force simp: inverse_permutation__of list.simps(2))+

lemma inverse_permutation__of list _unique:
list_permutes xs A = (z,y) € set xs = inverse_permutation_of list zsy = x
by (intro inverse__permutation__of list_unique’) (simp__all add: list_permutes__def)

lemma inverse_permutation__of list_correct:
fixes A :: 'a set
assumes list__permutes zs A
shows inverse_permutation_of list xs = inv (permutation_of list xs)
proof (rule ext, rule sym, subst permutes_inv__eq)
from assms show permutation_of list xs permutes A
by simp
show permutation_of list zs (inverse_permutation_of list xs) = x for x
proof (cases © € set (map snd xs))
case True
then obtain y where (y, z) € set zs by auto
with assms show ?thesis
by (simp add: inverse__permutation__of list_unique permutation_of list _unique)
next
case Fualse
with assms show ¢thesis
by (auto simp: list_permutes__def inverse_permutation__of list_id permuta-
tion__of list_id)
qed
qed

end

4 Permuted Lists

theory List_Permutation
imports Permutations
begin

Note that multisets already provide the notion of permutated list and hence
this theory mostly echoes material already logically present in theory Per-
mutations; it should be seldom needed.

47

4.1 An existing notion

abbreviation (input) perm :: 'a list = 'a list = booly (infixr «<~~>) 50)
where <xs <~~> ys = mset xs = mset ys»

4.2 Nontrivial conclusions

proposition perm__ swap:
st = as 1 j, j:=axs)i <7V> z)
if i < length zsy <j < length xs»
using that by (simp add: mset_swap)

proposition mset_le_perm__append: mset xs CH# mset ys «— (Jzs. zs Q zs
<> ys)
by (auto simp add: mset_subset_eq exists _conv ex_mset dest: sym)

proposition perm__set_eq: s <~~> ys = set rs = set ys
by (rule mset_eq setD) simp

proposition perm_ distinct iff: xs <~~> ys = distinct xs <— distinct ys
by (rule mset__eq imp_ distinct_iff) simp

theorem eq set perm_remdups: set xs = set ys = remdups xs <~~> remdups
ys
by (simp add: set_eq iff mset_remdups_eq)

proposition perm_remdups_iff eq set: remdups x <~~> remdups y <— set x
= set y
by (simp add: set_eq iff mset_remdups_eq)

theorem permutation_Ex_ bij:
assumes zs <~7> ys
shows 3f. bij_betw f {..<length zs} {..<length ys} N (Vi<length zs. xs! i = ys
' (f)
proof —
from assms have (mset zs = mset ys» «length xs = length ys»
by (auto simp add: dest: mset_eq length)
from ¢mset zs = mset ys) obtain p where <p permutes {..<length ys}» <per-
mute__list p ys = xs)
by (rule mset__eq permutation)
then have <bij betw p {..<length zs} {..<length ys}»
by (simp add: <length xs = length ys)> permutes_imp__ bij)
moreover have (Vi<length zs. zs | i = ys ! (p i)
using «permute_list p ys = xzs» length xs = length ys» «p permutes {..<length
ysh permute_list_nth
by auto
ultimately show ?thesis
by blast
qed

48

proposition perm__ finite: finite {B. B <~~> A}
using mset_eq finite by auto
4.3 Trivial conclusions:
proposition perm__empty _imp: [| <~V> ys = ys = ||
by simp
This more general theorem is easier to understand!
proposition perm_ length: xs <~~> ys = length xs = length ys
by (rule mset_eq length) simp
proposition perm_sym: xs <~~> ys = ys <~V> xs

by simp

We can insert the head anywhere in the list.

proposition perm__append_Cons: a # xs Q ys <~~> 25 Q a # ys
by simp

proposition perm__append__swap: xs Q ys <~~> ys Q zs
by simp

proposition perm__append__single: a # xs <~~> xs Q [q]
by simp

proposition perm_ rev: rev xs <~~> xs
by simp

proposition perm__appendl: xs <~~> ys = 1 Q zs <~~V> 1 Q ys
by simp

proposition perm__append2: xs <~~> ys = zs Q [<~~> ys Q [
by simp

proposition perm__empty [iff]: [| <~~> zs +— x5 = ||
by simp

proposition perm__empty2 [iff]: xs <~~> [| «— zs =[]
by simp

proposition perm__sing_imp: ys <~~> xs = xs = [y] = ys = [y]
by simp

proposition perm__sing_eq [iff]: ys <~~> [y] +— ys = [y]
by simp

proposition perm__sing_eq2 [iff]: [y] <~~> ys +— ys = [y]
by simp

49

proposition perm_remove: x € set ys = ys <> © # removel x ys
by simp

Congruence rule

proposition perm__remove__perm: xs <~~> ys => removel z xs <~ > removel
zYs
by simp

proposition remove__hd [simp|: removel z (z # xs) = xs
by simp

proposition cons_perm__imp_perm: z # xs <VV> z # ys = x5 <> ys
by simp

proposition cons_perm__eq [simp]: z#xs <~V> z#ys «— 18 <7V> ys
by simp

proposition append__perm__imp__perm: zs Q zs <~~> zs Q ys = xs <~V > ys
by simp

proposition perm__appendl__eq [iff]: zs Q@ zs <~> 25 @ ys «— x5 <~V> ys
by simp

proposition perm__append2_eq [iff]: xs Q@ zs <~~> ys @ zs +— x5 <77> ys
by simp

end

5 Permutations of a Multiset

theory Multiset Permutations
imports

Complex__Main

Permutations
begin

lemma mset_tl: xs # [| = mset (tl xs) = mset xs — {#hd zs#}
by (cases xs) simp__all

lemma mset_set _image_inj:

assumes inj _on f A

shows mset_set (f * A) = image_mset f (mset_set A)
proof (cases finite A)

case True

from this and assms show ?thesis by (induction A) auto
qed (insert assms, simp add: finite _image_ iff)

50

lemma multiset _remove__induct [case__names empty remove]:
assumes P {#} NA. A #{#} = (N\z. v €e# A = P (A — {#z#})) = P
A
shows P A
proof (induction A rule: full _multiset_induct)
case (less A)
hence [H: P B if B C# A for B using that by blast
show ?Zcase
proof (cases A = {#})
case True
thus ?thesis by (simp add: assms)
next
case Fulse
hence P (A — {#a#}) if z €# A for z
using that by (intro IH) (simp add: mset_subset_diff _self)
from Fualse and this show P A by (rule assms)
qed
qed

lemma map_list_bind: map g (List.bind zs f) = List.bind zs (map g o f)
by (simp add: List.bind__def map__concat)

lemma mset_eq mset_set_imp_ distinct:
finite A = mset_set A = mset xs => distinct zs
proof (induction zs arbitrary: A)
case (Cons z xs A)
from Cons.prems(2) have z €# mset_set A by simp
with Cons.prems(1) have [simp]: z € A by simp
from Cons.prems have z ¢# mset_set (A — {z}) by simp
also from Cons.prems have mset_set (A — {z}) = mset_set A — {#z#}
by (subst mset_set_ Diff) simp__all
also have mset_set A = mset (z#xs) by (simp add: Cons.prems)

also have ... — {#z#} = mset zs by simp
finally have [simp]: x ¢ set zs by (simp add: in_multiset_in_ set)
from Cons.prems show ?case by (auto introl: Cons.IH[of A — {x}] simp:

mset__set_ Diff)
qed simp__all
5.1 Permutations of a multiset

definition permutations_of multiset :: 'a multiset = 'a list set where
permutations_of multiset A = {xs. mset xzs = A}

lemma permutations of multisetl: mset s = A = xs € permutations_of multiset
A
by (simp add: permutations_of multiset_def)

lemma permutations of multisetD: xs € permutations_of multiset A = mset
xs = A

o1

by (simp add: permutations_of multiset_def)

lemma permutations of multiset_Cons__iff:
T # xs € permutations_of multiset A +— x €# A N xs € permutations of multiset
(A — {#a#})

by (auto simp: permutations_of multiset _def)

lemma permutations of multiset__empty [simp]: permutations of multiset {#}

= {0}

unfolding permutations of multiset def by simp

lemma permutations of multiset__nonempty:
assumes nonempty: A # {#}
shows permutations of multiset A =
(Uzeset_mset A. ((#) x) ¢ permutations_of _multiset (A — {#z#}))
(is _ = ?rhs)
proof safe
fix zs assume s € permutations_of multiset A
hence mset_xs: mset s = A by (simp add: permutations_of multiset _def)
hence xs # [| by (auto simp: nonempty)
then obtain z zs’ where zs: zs = = # xs’ by (cases xs) simp__all
with mset_zs have x € set_mset A xs’' € permutations_of multiset (A —
(##)
by (auto simp: permutations_of multiset def)
with zs show zs € ?rhs by auto
qed (auto simp: permutations_of _multiset _def)

lemma permutations_of multiset _singleton [simp]: permutations _of multiset {#x#}

= {l=]}

by (simp add: permutations _of multiset _nonempty)

lemma permutations_of multiset doubleton:

permutations__of _multiset {#z,y#} = {[=,y], [y,z]}
by (simp add: permutations_of multiset _nonempty insert__commute)

lemma rev_permutations_of _multiset [simp):
rev ‘ permutations_of multiset A = permutations of multiset A
proof
have rev ‘ rev ¢ permutations of multiset A C rev ¢ permutations of multiset
A
unfolding permutations of multiset def by auto
also have rev ‘ rev ‘ permutations of multiset A = permutations of multiset
A
by (simp add: image__image)
finally show permutations of multiset A C rev ‘ permutations of multiset A

next

show rev ¢ permutations of multiset A C permutations__of multiset A
unfolding permutations of multiset def by auto

52

qed

lemma length_finite_permutations of multiset:
xs € permutations_of multiset A = length xs = size A
by (auto simp: permutations__of _multiset_def)

lemma permutations _of multiset lists: permutations _of multiset A C lists (set_mset
A)

by (auto simp: permutations_of multiset_def)

lemma finite_permutations__of _multiset [simp]: finite (permutations__of _multiset
4)
proof (rule finite_subset)
show permutations_of multiset A C {zs. set zs C set_mset A A length xs =
size A}
by (auto simp: permutations_of multiset_def)
show finite {zs. set xs C set_mset A A length zs = size A}
by (rule finite_lists_length__eq) simp__all
qed

lemma permutations_of _multiset_not_empty [simpl: permutations_of _multiset
A#{}
proof —
from ex_mset[of A] obtain xs where mset zs = A ..
thus ?thesis by (auto simp: permutations_of multiset_def)
qged

lemma permutations of multiset_image:
permutations__of _multiset (image__mset f A) = map f ¢ permutations__of multiset
A
proof safe
fix zs assume A: zs € permutations of multiset (image_mset f A)
from ex_mset[of A] obtain ys where ys: mset ys = A ..
with A have mset zs = mset (map f ys)
by (simp add: permutations_of multiset_def)
then obtain o where o: o permutes {..<length (map f ys)} permute_list o
(map fys) = s
by (rule mset__eq permutation)
with ys have zs = map [(permute_list o ys)
by (simp add: permute_list _map)
moreover from o ys have permute_list o ys € permutations_of multiset A
by (simp add: permutations__of multiset_def)
ultimately show zs € map f ‘ permutations_of multiset A by blast
qed (auto simp: permutations _of multiset_def)

5.2 Cardinality of permutations

In this section, we prove some basic facts about the number of permutations
of a multiset.

93

context
begin

private lemma multiset _prod_ fact_insert:
(T yeset_mset (A+{#z#1}). fact (count (A+{#z#}) y)) =
(count A x + 1) x ([]yeset_mset A. fact (count A y))
proof —
have ([[yeset_mset (A+{#z#}). fact (count (A+{#z#}) y)) =
(ITyeset_mset (A+{#z#}). (if y = x then count A © + 1 else 1) x fact
(count A y))
by (intro prod.cong) simp__all
also have ... = (count A z + 1) * (] y€set_mset (A+{#z#}). fact (count A
Y)
by (simp add: prod.distrib)
also have ([yeset_mset (A+{#x#}). fact (count A y)) = (] yEset_mset A.
fact (count A y))
by (intro prod.mono_neutral _right) (auto simp: not_in_iff)
finally show ?thesis .
qed

private lemma multiset _prod_fact_remove:
x €# A = (J] yeset_mset A. fact (count A y)) =
count A x = ([] yeset_mset (A—{#x#1}). fact (count (A—{F#z#})
y))

using multiset_prod_fact _insert[of A — {#a#} x| by simp

lemma card permutations of multiset__auz:
card (permutations_of multiset A) x ([x€set_mset A. fact (count A z)) = fact
(size A)
proof (induction A rule: multiset_remove__induct)
case (remove A)
have card (permutations_of multiset A) =
card (\Jzeset_mset A. (#) x ‘ permutations_of multiset (A — {#x#}))
by (simp add: permutations_of multiset _nonempty remove.hyps)
also have ... = (> z€set_mset A. card (permutations_of multiset (A — {#x#})))
by (subst card _UN__disjoint) (auto simp: card_image)
also have ... x ([[ze€set_mset A. fact (count A z)) =
(3" zeset_mset A. card (permutations__of _multiset (A — {#x#})) *
(ITyeset_mset A. fact (count A y)))
by (subst sum__distrib_right) simp__all
also have ... = ()" zeset_mset A. count A z x fact (size A — 1))
proof (intro sum.cong refl)
fix z assume z: © €# A
have card (permutations of multiset (A — {#x#})) = (] yEset_mset A. fact
(count A y)) =
count A x * (card (permutations_of multiset (A — {#a#})) =
(ITyeset_mset (A — {#z#}). fact (count (A — {#z#}) vy))) (is ?lhs
=_)

by (subst multiset_prod_ fact_remove| OF x]) simp__all

54

also note remove. IH[OF z]
also from z have size (A — {#a#}) = size A — 1 by (simp add: size_ Diff submset)
finally show %lhs = count A z * fact (size A — 1) .
qed
also have ()" z€set_mset A. count A x * fact (size A — 1)) =
size A x fact (size A — 1)
by (simp add: sum__distrib__right size_multiset__overloaded__eq)
also from remove.hyps have ... = fact (size A)
by (cases size A) auto
finally show “case .
qed simp_all

theorem card permutations of multiset:

card (permutations_of multiset A) = fact (size A) div ([z€set_mset A. fact
(count A x))

([T z€set_mset A. fact (count A z) :: nat) dvd fact (size A)

by (simp__all flip: card _permutations of multiset__auz[of A])

lemma card_permutations of multiset_insert_auz:
card (permutations_of multiset (A + {#a#})) * (count A z + 1) =
(size A + 1) % card (permutations_of _multiset A)
proof —
note card_permutations _of multiset_auz[of A + {#z#}]
also have fact (size (A + {#2#})) = (size A + 1) * fact (size A) by simp
also note multiset _prod_fact_insert[of A x]
also note card_permutations_of _multiset_auz[of A, symmetric]
finally have card (permutations_of multiset (A + {#z#})) * (count A x + 1)

(JTyeset_mset A. fact (count A y)) =
(size A + 1) x card (permutations_of multiset A)
(] z€set_mset A. fact (count A z)) by (simp only: mult_ac)
thus ?thesis by (subst (asm) mult_right cancel) simp__all
qed

lemma card permutations of multiset__remove _aux:
assumes r €# A
shows card (permutations of multiset A) * count A © =
size A x card (permutations of multiset (A — {#x#}))
proof —
from assms have A: A — {#a#} + {#z#} = A by simp
from assms have B: size A = size (A — {#a#}) + 1
by (subst A [symmetric], subst size__union) simp
show ?thesis
using card_permutations__of multiset _insert _auz[of A — {#a#} z, unfolded
A] assms
by (simp add: B)
qed

lemma real card_permutations of multiset _remove:

95

assumes r €# A
shows real (card (permutations_of multiset (A — {#z#}))) =
real (card (permutations_of multiset A) * count A x) / real (size A)
using assms by (subst card__permutations__of _multiset_remove__auz|OF assms))
auto

lemma real card permutations of multiset__remove’:
assumes z €# A
shows real (card (permutations_of multiset A)) =
real (size A x card (permutations_of multiset (A — {#a#}))) / real
(count A x)
using assms by (subst card__permutations_of multiset _remove__auz[OF assms,
symmetric]) simp

end

5.3 Permutations of a set

definition permutations of set :: 'a set = 'a list set where
permutations_of set A = {zs. set zs = A A distinct zs}

lemma permutations of set_altdef:
finite A = permutations_of _set A = permutations_of multiset (mset_set A)
by (auto simp add: permutations__of _set_def permutations _of _multiset_def mset__set__set

in_multiset_in_set [symmetric] mset_eq mset_set_imp_ distinct)

lemma permutations_of _setl [intro):
assumes set s = A distinct zs
shows s € permutations of set A
using assms unfolding permutations of set def by simp

lemma permutations of setD:
assumes zs € permutations_of set A
shows set xs = A distinct zs
using assms unfolding permutations of set def by simp__all

lemma permutations of set_lists: permutations of set A C lists A
unfolding permutations of set def by auto

lemma permutations_of _set_empty [simp]: permutations_of _set {} = {[|}
by (auto simp: permutations_of set_def)

lemma UN__set_permutations of _set [simp):
finite A = (|J zs€permutations_of _set A. set zs) = A

using finite_distinct_list by (auto simp: permutations_of set_ def)

lemma permutations of set_infinite:
—finite A = permutations_of set A = {}

o6

by (auto simp: permutations_of set_def)

lemma permutations of set__nonempty:
A # {} = permutations_of set A =
(UzeA. (Azs. x # xs) ¢ permutations_of _set (A — {x}))
by (cases finite A)
(simp__all add: permutations__of multiset _nonempty mset__set__empty_iff mset_set_ Diff

permutations_of _set_altdef permutations_of set_infinite)

lemma permutations_of _set_singleton [simp|: permutations_of _set {z} = {[z]}
by (subst permutations_of set_nonempty) auto

lemma permutations of set doubleton:
z # y = permutations_of _set {z,y} = {[z,y], [y,2]}
by (subst permutations_of set_nonempty)
(simp__all add: insert_Diff _if insert__commute)

lemma rev_permutations_of _set [simp]:
rev ¢ permutations_of set A = permutations of set A
by (cases finite A) (simp__all add: permutations_of _set_altdef permutations_of _set_infinite)

lemma length_finite__permutations of set:
xs € permutations_of set A = length xs = card A
by (auto simp: permutations_of set_def distinct_card)

lemma finite__permutations_of _set [simp]: finite (permutations of set A)
by (cases finite A) (simp__all add: permutations of _set_infinite permutations_of _set_ altdef)

lemma permutations_of _set_empty_iff [simp]:
permutations_of _set A = {} +— —finite A
unfolding permutations__of _set_def using finite_distinct_list[of A] by auto

lemma card_permutations of set [simp]:

finite A = card (permutations_of set A) = fact (card A)

by (simp add: permutations_of _set_altdef card_permutations of multiset del:
One_nat__def)

lemma permutations of set image_ inj:
assumes inj: inj_on f A
shows permutations_of set (f * A) = map f * permutations_of _set A
by (cases finite A)
(simp__all add: permutations_of set_infinite permutations of _set altdef
permutations__of multiset__image mset_set_image_inj inj
finite__image__iff)

lemma permutations of set_image_permutes:

o permutes A = map o ¢ permutations_of set A = permutations_of set A
by (subst permutations_of set_image_inj [symmetric])

o7

(simp__all add: permutes_inj _on permutes__image)

5.4 Code generation

First, we give code an implementation for permutations of lists.

declare length _removel [termination__simp]

fun permutations of list_impl where
permutations__of _list_impl s = (if xs = [] then [[]] else
List.bind (remdups xs) (Az. map ((#) z) (permutations_of list_impl (removel

z 5))))

fun permutations of list_impl aux where
permutations__of _list_impl_auzx acc xs = (if xs = [] then [acc] else
List.bind (remdups xs) (Ax. permutations_of list_impl_auz (z#acc) (removel

x z8)))

declare permutations of list_impl_aux.simps [simp del]
declare permutations_of list_impl.simps [simp del)]

lemma permutations__of _list_impl_Nil [simp]:
permutations_of list_impl [| = [[]]
by (simp add: permutations_of list _impl.simps)

lemma permutations of list_impl_nonempty:
zs # [| = permutations_of _list_impl zs =
List.bind (remdups xs) (Az. map ((#) =) (permutations _of list_impl (removel

x z8)))

by (subst permutations_of list_impl.simps) simp__all

lemma set_permutations of list _impl:
set (permutations of list_impl xs) = permutations _of multiset (mset xs)
by (induction xs rule: permutations_of list_impl.induct)
(subst permutations of list_impl.simps,
stmp__all add: permutations_of multiset_nonempty set_list_bind)

lemma distinct__permutations_of list_impl:
distinct (permutations_of list_impl xs)
by (induction zs rule: permutations_of list_impl.induct,
subst permutations__of list _impl.simps)
(auto introl: distinct_list_bind simp: distinct_map o__def disjoint_family _on__def)

lemma permutations_of list_impl_auz_ correct’”:
permutations_of list_impl _aux acc s =
map (Axs. rev s Q acc) (permutations of list_impl xs)
by (induction acc xs rule: permutations_of list _impl auz.induct,
subst permutations__of _list_impl_aux.simps, subst permutations__of _list_impl.simps)
(auto simp: map_list_bind introl: list_bind__cong)

o8

lemma permutations of list_impl _auz_correct:
permutations_of list _impl _auz [| xs = map rev (permutations_of list_impl xs)
by (simp add: permutations_of list _impl_auz_ correct’)

lemma distinct__permutations_of list_impl_auz:
distinct (permutations_of list_impl _auz acc xs)
by (simp add: permutations_of list _impl _auz_correct’ distinct_map
distinct__permutations__of list_impl inj _on_ def)

lemma set_permutations of list _impl_auz:
set (permutations_of _list_impl_aux [] xs) = permutations_of _multiset (mset
xs)
by (simp add: permutations of list _impl _aux_correct sel_permutations_of list_impl)

declare set_permutations_of _list_impl_aux [symmetric, code]
value [code] permutations _of multiset {#1,2,3,4::int#}

Now we turn to permutations of sets. We define an auxiliary version with
an accumulator to avoid having to map over the results.

function permutations of set_auzr where
permutations_of _set_auzx acc A =
(if —finite A then {} else if A = {} then {acc} else
(UzeA. permutations of set aux (z#acc) (A — {z})))
by auto
termination by (relation Wellfounded.measure (card o snd)) (simp__all add: card__gt_0_iff)

lemma permutations of set aux altdef:
permutations_of _set _aux acc A = (Axs. rev s @ acc) ‘ permutations _of set A
proof (cases finite A)
assume finite A
thus ?thesis
proof (induction A arbitrary: acc rule: finite _psubset_induct)
case (psubset A acc)
show “case
proof (cases A = {})
case Fulse
note [simp del] = permutations_of _set_auz.simps
from psubset.hyps False
have permutations of set aux acc A =
(U yeA. permutations of set_aux (y#acc) (A — {y}))
by (subst permutations_of _set_auzx.simps) simp__all

also have ... = (JyeA. (\zs. rev xs Q acc) © (Azs. y # xs) ‘ permuta-
tions_of _set (A — {y}))
apply (rule arg_cong [of _ __ Union], rule image__cong)

apply (simp__all add: image_image)
apply (subst psubset)

apply auto

done

99

also from Fulse have ... = (Azs. rev s @ acc) ¢ permutations_of set A
by (subst (2) permutations of set _nonempty) (simp__all add: image_ UN)
finally show ?thesis .
qed simp__all
qged
qed (simp__all add: permutations _of _set_infinite)

declare permutations of set _auz.simps [simp del]

lemma permutations of set_aux_correct:
permutations__of _set__auzx [] A = permutations_of _set A
by (simp add: permutations_of set aux_altdef)

In another refinement step, we define a version on lists.

declare length__removel [termination__simp]

fun permutations_of set_auz list where
permutations_of set_aux_list acc xs =
(if xs =[] then [acc] else
List.bind zs (Ax. permutations_of set_aux_list (z#acc) (List.removel x
zs)))

definition permutations of set list where
permutations_of _set_list zs = permutations_of _set_aux_list | xs

declare permutations_of set _aux_list.simps [simp del]

lemma permutations of set aux_list _refine:
assumes distinct xs
shows set (permutationsfofisetiaua;;list acc :r:s) = permutations of set_auzx
acc (set xs)
using assms
by (induction acc xs rule: permutations of set auz_list.induct)
(subst permutations of set_aux_list.simps,
subst permutations of set aux.simps,
simp__all add: set_list_bind)

The permutation lists contain no duplicates if the inputs contain no dupli-
cates. Therefore, these functions can easily be used when working with a
representation of sets by distinct lists. The same approach should generalise
to any kind of set implementation that supports a monadic bind operation,
and since the results are disjoint, merging should be cheap.
lemma distinct__permutations of set aux list:
distinct s = distinct (permutations_of set_aux_list acc xs)
by (induction acc xs rule: permutations of set aux_list.induct)
(subst permutations of set__aux_list.simps,
auto introl: distinct_list _bind simp: disjoint_family on__def
permutations_of set_aux_list _refine permutations of set auz_altdef)

60

lemma distinct__permutations_of set_list:
distinct s = distinct (permutations_of set_list xs)
by (simp add: permutations_of set list_def distinct__permutations_of set_aux_list)

lemma permutations_of list:
permutations_of _set (set xs) = set (permutations_of set list (remdups xs))
by (simp add: permutations_of set _auzx_correct [symmetric]
permutations_of _set__auz_list_refine permutations_of set_list_def)

lemma permutations_of _list_code [code]:
permutations_of _set (set xs) = set (permutations_of set_list (remdups xs))
permutations_of _set (List.coset zs) =
Code.abort (STR "'Permutation of set complement not supported’’)
(A__. permutations_of _set (List.coset xs))
by (simp__all add: permutations of list)

value [code] permutations of set (set "abed’’)

end

theory Cycles
imports
HOL- Library. FuncSet
Permutations
begin

6 Cycles
6.1 Definitions

abbreviation cycle :: 'a list = bool

where cycle cs = distinct cs

fun cycle_of list :: 'a list = 'a = 'a
where
cycle_of list (i # j # cs) = transpose i j o cycle_of list (j # cs)
| cycle_of list cs = id

6.2 Basic Properties

We start proving that the function derived from a cycle rotates its support
list.

lemma id_ outside__supp:
assumes z ¢ set cs shows (cycle_of list ¢s) z = x
using assms by (induct cs rule: cycle_of list.induct) (simp__all)

lemma permutation_of cycle: permutation (cycle_of list cs)

61

proof (induct cs rule: cycle_of list.induct)

case I thus ?case

using permutation__compose| OF permutation__swap_id] unfolding comp__apply
by simp
qed simp__all

lemma cycle_permutes: (cycle of list cs) permutes (set cs)

using permutation_bijective| OF permutation_of _cycle] id__outside supplof _
cs]

by (simp add: bij iff permutes_def)

theorem cyclic_rotation:
assumes cycle cs shows map ((cycle_of list ¢cs) = n) cs = rotate n cs
proof —
{ have map (cycle_of list cs) cs = rotatel cs using assms(1)
proof (induction cs rule: cycle_of list.induct)
case (1] cs)
then have i ¢ set cs» j ¢ set ¢s»
by auto
then have <map (Transposition.transpose i j) ¢s = cs»
by (auto intro: map__idI simp add: transpose__eq_iff)
show ?case
proof (cases)
assume cs = Nil thus ?thesis by simp
next
assume cs # Nil hence ge_two: length (j # cs) > 2
using not_less by auto
have map (cycle_of list (i # j # ¢s)) (i # j # cs) =
map (transpose i j) (map (cycle_of list (j # cs)) (i # j # cs)) by

simp
also have ... = map (transpose i j) (i # (rotatel (j # cs)))
by (metis 1.IH 1.prems distinct.simps(2) id_outside__supp list.simps(9))
also have ... = map (transpose i j) (i # (cs Q [f])) by simp
also have ... = j # (map (transpose i j) cs) @Q [i] by simp
also have ... =j # c¢s Q [{]
using «map (Transposition.transpose i j) cs = cs» by simp
also have ... = rotatel (i # j # cs) by simp
finally show ?thesis .
qed

qed simp_all }
note cyclic_rotation’ = this

show ?thesis

using cyclic_rotation’ by (induct n) (auto, metis map__map rotatel__rotate__swap
rotate__map)
qed

corollary cycle is surj:
assumes cycle cs shows (cycle_of list cs) ‘ (set cs) = (set cs)

62

using cyclic_rotation[OF assms, of Suc 0] by (simp add: image__set)

corollary cycle is id_root:
assumes cycle cs shows (cycle_of list cs) = (length c¢s) = id
proof —
have map ((cycle_of list cs) = (length cs)) cs = cs
unfolding cyclic_rotation[OF assms| by simp
hence ((cycle_of list ¢s) = (length ¢s)) i = i if i € set ¢s for ¢
using that map__eq conv by fastforce
moreover have ((cycle_of list ¢cs) "~ n) i =i if i ¢ set c¢s for i n
using id_outside__supp[OF that] by (induct n) (simp__all)
ultimately show ?thesis
by fastforce
qed

corollary cycle_ of list_rotate_independent:
assumes cycle cs shows (cycle_of list cs) = (cycle_of list (rotate n cs))
proof —
{ fix c¢s :: ‘a list assume cs: cycle cs
have (cycle_of list cs) = (cycle_of list (rotatel cs))
proof —
from cs have rotatel cs: cycle (rotatel cs) by simp
hence map (cycle_of list (rotatel cs)) (rotatel cs) = (rotate 2 cs)
using cyclic_rotation|OF rotatel _cs, of 1] by (simp add: numeral_2_eq 2)
moreover have map (cycle_of list cs) (rotatel cs) = (rotate 2 cs)
using cyclic_rotation|OF cs]
by (metis One_nat_def Suc_1 funpow.simps(2) id__apply map__map rotatel
rotate__Suc)
ultimately have (cycle_of list ¢s) i = (cycle_of list (rotatel cs)) i if i €
set cs for ¢
using that map__eq _conv unfolding sym[OF set_rotatel[of cs]] by fastforce

moreover have (cycle of list ¢s) i = (cycle_of list (rotatel cs)) i if i ¢
set cs for i
using that by (simp add: id_outside__supp)
ultimately show (cycle_of list cs) = (cycle_of _list (rotatel cs))
by blast
qged } note rotatel_lemma = this

show ?thesis
using rotatel_lemmalof rotate n cs] by (induct n) (auto, metis assms dis-
tinct__rotate rotatel _lemma)
qed

6.3 Conjugation of cycles

lemma conjugation_of cycle:
assumes cycle ¢s and bij p
shows p o (cycle_of list cs) o (inv p) = cycle_of list (map p cs)

63

using assms
proof (induction cs rule: cycle of list.induct)
case (117 cs)
have p o cycle_of list (i # j # cs) o invp =
(p o (transpose i j) o inv p) o (p o cycle_of list (j # cs) o inv p)
by (simp add: assms(2) bij_is_inj fun.map_ comp)
also have ... = (transpose (p i) (p j)) o (p o cycle_of list (j # cs) o inv p)
using 1.prems(2) by (simp add: bij _inv_eq iff transpose__apply commute
fun__eq_iff bij _betw__inv_into_left)
finally have p o cycle of list (i # j # ¢s) o invp =
(transpose (p @) (p j)) o (cycle_of list (map p (j # cs)))
using 1.IH 1.prems(1) assms(2) by fastforce
thus ?case by (simp add: fun_eq iff)
next
case 2 1 thus “case
by (metis bij_is_surj comp_id cycle_of list.simps(2) list.simps(8) surj_iff)
next
case 22 thus ?case
by (metis bij_is_surj comp__id cycle_of list.simps(3) list.simps(8) list.simps(9)
suri_iff)
qed

6.4 When Cycles Commute

lemma cycles _commute:
assumes cycle p cycle ¢ and set p N set ¢ = {}
shows (cycle_of list p) o (cycle_of list q) = (cycle_of list q) o (cycle_of list
p)
proof
{ fix p::'alistand q :: 'a list and 7 :: 'a
assume A: cycle p cycle g set p N set g ={} i € set pi & set q
have ((cycle_of list p) o (cycle_of list q)) i =
((eycle_of list q) o (cycle_of list p)) i
proof —
have ((cycle_of list p) o (cycle_of list q)) i = (cycle_of list p) i
using id_outside supp[OF A(5)] by simp
also have ... = ((cycle_of list q) o (cycle_of list p)) i
using id_outside_supplof (cycle_of list p) i] cycle_is_surj[OF A(1)]
A(3,4) by fastforce
finally show ?thesis .
qged } note aui_lemma = this

fix i consider i € set pi ¢ set q | i ¢ setpi € set q|i ¢ setpi¢ setq
using «set p N set ¢ = {}> by blast
thus ((cycle_of list p) o (cycle_of list q)) i = ((cycle_of list q) o (cycle_of _list
p)) i
proof cases
case 1 thus ?thesis
using aui_lemma|OF assms] by simp

64

next
case 2 thus ?thesis
using aui_lemma|OF assms(2,1)] assms(3) by (simp add: ac_simps)
next
case 3 thus %thesis
by (simp add: id_outside _supp)
qed
qed

6.5 Cycles from Permutations

6.5.1 Exponentiation of permutations

Some important properties of permutations before defining how to extract
its cycles.

lemma permutation_funpow:
assumes permutation p shows permutation (p ~ n)
using assms by (induct n) (simp__all add: permutation__compose)

lemma permutes funpow:

assumes p permutes S shows (p ~ n) permutes S

using assms by (induct n) (simp add: permutes_def, metis funpow_Suc_right
permutes__compose)

lemma funpow diff:
assumes inj p and i < j (p
proof —
have (p "7d) ((p — (j—4))a)=(p i) a
using assms(2—38) by (metis (no_types) add_diff inverse_nat funpow _add
not_le o__def)
thus ?thesis
unfolding inj_eq[OF inj_fn[OF assms(1)], of 1] .
qed

~~ A~

i) a=(p "j) ashows (p (- i) a=a

lemma permutation_is_nilpotent:
assumes permutation p obtains n where (p ~ n) = id and n > 0
proof —
obtain S where finite S and p permutes S
using assms unfolding permutation__permutes by blast
hence 3n. (p " n)=id An>0
proof (induct S arbitrary: p)
case empty thus ?case
using id_ funpow|of 1] unfolding permutes empty by blast
next
case (insert s S)
have (An. (p " n) s) * UNIV C (insert s S)
using permutes_in_image| OF permutes_funpow|[OF insert(4)], of _ s| by
auto
hence — inj_on (An. (p "~ n) s) UNIV

65

using insert(1) infinite_iff countable subset unfolding sym|[OF finite insert,
of S s| by metis
then obtain ¢ j where 4j: { < j (p ~ %) s= (p
unfolding inj_on_def by (metis nat_neq iff)
hence (p 7" (j — 1)) s=s
using funpow_diff[OF permutes inj[OF insert(4)]] le_eq less _or_eq by
blast
hence p 7 (j — 1) permutes S
using permutes_superset| OF permutes_funpow|OF insert(4), of j —], of S]
by auto
then obtain n where n: ((p "~ (j —4)) ~n)=4ddn >0
using insert(3) by blast
thus ?case
using (1) nat_0_less _mult_iff zero_less diff unfolding funpow mult by
metis
qged
thus thesis
using that by blast
qed

~~ .

j) s

lemma permutation is_nilpotent”
assumes permutation p obtains n where (p ~ n) = id and n > m
proof —
obtain n where (p ~ " n) = id and n > 0
using permutation__is_nilpotent| OF assms] by blast
then obtain k where n x k > m
by (metis dividend_less_times _div mult_Suc_right)
from «(p " n) = id> have p "~ (n x k) = id
by (induct k) (simp, metis funpow__mult id_funpow)
with <n * k£ > m) show thesis
using that by blast
qed

6.5.2 Extraction of cycles from permutations

definition least_power :: (‘a = 'a) = 'a = nat
where least_power fx = (LEAST n. (f " n)z =2z An>0)

abbreviation support :: ('a = ‘a) = 'a = 'a list
where support p . = map (Mi. (p 7 i) z) [0..< (least_power p)]

lemma least powerl:
assumes (f ~ n)z=zand n > 0
shows (f 7 (least_power f x)) x = x and least_power fz > 0
using assms unfolding least _power__def by (metis (mono__tags, lifting) Leastl)+

lemma least_power le:
assumes (f 7" n) z = z and n > 0 shows least_power fz < n

66

using assms unfolding least power _def by (simp add: Least_le)

lemma least _power _of permutation:

assumes permutation p shows (p ~ (least_power p a)) a = a and least_power
pa>20

using permutation_is_nilpotent[OF assms| least _powerl by (metis id__apply)+

lemma least_power gt one:
assumes permutation p and p a # a shows least _power p a > Suc 0
using least_power_of permutation[OF assms(1)] assms(2)
by (metis Suc_lessI funpow.simps(2) funpow__simps_right(1) o_id)

lemma least_power _minimal:

assumes (p ~ n) a = a shows (least_power p a) dvd n
proof (cases n = 0, simp)

let ?lpow = least_power p

assume n # (then have n > 0 by simp
hence (p 7 (?lpow a)) a = a and least_power p a > 0
using assms unfolding least _power__def by (metis (mono__tags, lifting) Leastl)+
hence auz_lemma: (p = ((?lpow a) * k)) a = a for k :: nat
by (induct k) (simp__all add: funpow__add)

have (p ™ (n mod ?lpow a)) ((p = (n — (n mod ?lpow a))) a) = (p " " n) a
by (metis add_diff _inverse_nat funpow_add mod_less_eq dividend not_less
o__apply)
with <«(p 7" n) a = @ have (p = (n mod ?lpow a)) a = a
using aux_lemma by (simp add: minus _mod__eq mult_ div)
hence ?lpow a < n mod ?lpow a if n mod ?lpow a > 0
using least_power_le[OF __ that, of p a] by simp
with <least_power p a > 0> show (least_power p a) dvd n
using mod_less divisor not_le by blast
qed

lemma least_power _dvd:
assumes permutation p shows (least_power p a) dvd n +— (p
proof
show (p 7" n) a = a = (least_power p a) dvd n
using least_power _minimal[of _ p] by simp
next
have (p 7 ((least_power p a) x k)) a = a for k :: nat
using least_power _of permutation(1)[OF assms(1)] by (induct k) (simp__all
add: funpow__add)
thus (least_power p a) dvd n = (p = n) a = a by blast
qed

theorem cycle of permutation:

assumes permutation p shows cycle (support p a)
proof —

67

have (least_power p a) dvd (j —) if i < jj < least_power p a and (p ~ " 4) a
= (p ~"j) aforij
using funpow_ diff [OF bij_is_inj that(1,3)] assms by (simp add: permutation
least_power_dvd)
moreover have i = j if i < jj < least_power p a and (least_power p a) dvd
(j — i) for ij
using that le_eq less or _eq nat_dvd_not_less by auto
ultimately have inj_on (Ai. (p 7 4) a) {..< (least_power p a)}
unfolding inj_on_ def by (metis le_cases lessThan__iff)
thus %thesis
by (simp add: atLeast _upt distinct_map)
qed

6.6 Decomposition on Cycles

We show that a permutation can be decomposed on cycles

6.6.1 Preliminaries

lemma support_set:
assumes permutation p shows set (support p a) = range (\i. (p ~ i) a)
proof
show set (support p a) C range (Mi. (p ~ i) a)
by auto
next
show range (Mi. (p 7" i) a) C set (support p a)
proof (auto)
fix i
have (p 7" i) a = (p = (i mod (least_power p a))) ((p " (i — (i mod
(least_power p a)))) a)
by (metis add__diff _inverse_nat funpow__add mod_less eq dividend not_le
o__apply)
also have ... = (p 7 (i mod (least_power p a))) a
using least_power _dvd[OF assms| by (metis dvd_minus_mod)
also have ... € (Mi. (p 77 i) a) ‘{0..< (least_power p a)}
using least_power_of permutation(2)[OF assms] by fastforce
finally show (p "~ ¢) a € (Ai. (p " 1) a) ‘{0..< (least_power p a)} .
qed
qed

lemma disjoint__support:
assumes permutation p shows disjoint (range (Aa. set (support p a))) (is disjoint
?4)
proof (rule disjointl)
{fixijab
assume set (support p a) N set (support p b) # {} have set (support p a) C
set (support p b)
unfolding support_set|OF assms]
proof (auto)

68

from «set (support p a) N set (support p b) # {p
obtain ¢ j where ij: (p " i) a=(p " j) b
by auto

fix k
have (p 7" k) a = (p ~ (k + (least_power p a) * 1)) a for |
using least_power _dvd[OF assms| by (induct) (simp, metis dvd__triv_left
Junpow__add o__def)
then obtain m where m > iand (p = " m)a=(p ~ k) a
using least_power_of permutation(2)[OF assms]
by (metis dividend less times_div le_eq less or _eq mult_Suc_right
trans_less _add2)
hence (p ~m) o = (p ™ (m — i) ((p "4 o)
by (metis Nat.le_imp_diff is _add funpow _add o__apply)
with «(p 7" m)a=(p " k)ae have (p T k)a=(p " (m—19)+j)b
unfolding j by (simp add: funpow _add)
thus (p 7" k) a € range (Mi. (p " Q) b)
by blast
ged } note auz_lemma = this

fix supp a supp_b
assume supp_a € ?A and supp_b € ?A
then obtain a b where a: supp _a = set (support p a) and b: supp b = set
(support p b)
by auto
assume supp__a # supp_b thus supp_a N supp_b = {}
using auz_lemma unfolding a b by blast
qed

lemma disjoint__support’:
assumes permutation p
shows set (support p a) N set (support p b) = {} «— a ¢ set (support p b)
proof —
have a € set (support p a)
using least_power _of permutation(2)[OF assms] by force
show ?thesis
proof
assume set (support p a) N set (support p b) = {}
with <a € set (support p a)» show a ¢ set (support p b)
by blast
next
assume a ¢ set (support p b) show set (support p a) N set (support p b) = {}
proof (rule ccontr)
assume set (support p a) N set (support p b) # {}
hence set (support p a) = set (support p b)
using disjoint__support|OF assms] by (meson UNIV_I disjoint_def im-
age__iff)
with (a € set (support p a)» and <a ¢ set (support p b)) show False
by simp

69

qed
qed
qed

lemma support_coverture:
assumes permutation p shows | { set (support pa) |a.pa#a}t={a pa
#a}
proof
show { a. pa#a} CU { set (supportp a) | a. pa # a}
proof
fix a assume a € { a. pa #a}
have a € set (support p a)
using least_power_of permutation(2)[OF assms, of a] by force
with <a € { a. pa # a }» show a € | { set (support p a) | a. pa # a }

by blast
qged
next
show J { set (supportpa)|a.pa#a} C{apa#a}
proof
fix b assume b € |J { set (support p a) | a. pa # a}
then obtain ¢ i where pa 2 aand (p ~ i) a=b

by auto
have pa=aif (p i) a=(p ~ Suci)a
using funpow_diff [OF bij_is_inj _ that] assms unfolding permutation by
stmp
with <p a # a» and «(p " i) a=b showbe{a. pa+#a}
by auto
qed
qed

theorem cycle restrict:

assumes permutation p and b € set (support p a) shows p b = (cycle_of list
(support p a)) b
proof —

note least_power_props [simp] = least_power_of _permutation|OF assms(1)]

have map (cycle_of list (support p a)) (support p a) = rotatel (support p a)
using cyclic_rotation|OF cycle_of _permutation|OF assms(1)], of 1 a] by simp
hence map (cycle _of list (support p a)) (support p a) = tl (support p a) Q [a |
by (simp add: hd_map rotatel hd_tl)
also have ... = map p (support p a)
proof (rule nth__equalityl, auto)
fix { assume ¢ < least_power p a show (tl (support p a) @ [a]) ! i =p ((p
i) a)
proof (cases)
assume i: ¢ = least_power p a — 1
hence (t (supportp a) @[a])!i=a
by (metis (no_types, lifting) diff zero length_map length_tl length _upt
nth__append__length)

A~

70

also have ... =p ((p " 1) a)
by (metis (mono__tags, opaque_lifting) least power props i Suc_diff 1
Junpow__simps_right(2) funpow _swapl o__apply)
finally show ?thesis .
next
assume i # least_power p a — 1
with i < least _power p a» have i < least _power p a — 1
by simp
hence (tl (support p a) @[a])!i= (p ™ (Suci)) a
by (metis One_nat_def Suc_eq plusl add.commute length__map length_upt
map__tl nth__append nth_map__upt tl_upt)
thus ?thesis
by simp
qed
qed
finally have map (cycle _of list (support p a)) (support p a) = map p (support
pa.
thus ?thesis
using assms(2) by auto
qed

6.6.2 Decomposition

inductive cycle_decomp :: 'a set = ('a = 'a) = bool
where
empty: cycle__decomp {} id
| comp: [cycle_decomp I p; cycle cs; set ecsN I ={}] =
cycle__decomp (set c¢s U I) ((cycle_of list cs) o p)

lemma semidecomposition:
assumes p permutes S and finite S
shows (\y. if y € (S — set (support p a)) then p y else y) permutes (S — set
(support p a))
proof (rule bij_imp_ permutes)
show (if b € (S — set (support p a)) then p b else b) = bif b ¢ S — set (support
p a) for b
using that by auto
next
have is_permutation: permutation p
using assms unfolding permutation_permutes by blast

let 2¢ = \y. if y € (S — set (support p a)) then p y else y
show bij_betw ?q (S — set (support p a)) (S — set (support p a))
proof (rule bij betw_imagel)
show inj_on ?q (S — set (support p a))
using permutes__inj|OF assms(1)] unfolding inj on_def by auto
next
have auz_lemma: set (support p s) C (S — set (support p a)) if s € S — set

71

(support p a) for s
proof —
have (p 7" 4) s € S for ¢
using that unfolding permutes_in_image[OF permutes_funpow[OF assms(1)]]
by simp
thus ?thesis
using that disjoint__support’|OF is_permutation, of s a] by auto
qed
have (p "7 1) s € set (support p s) for s
unfolding support_set[OF is_permutation] by blast
hence p s € set (support p s) for s
by simp
hence p ‘(S — set (support p a)) C S — set (support p a)
using aux_lemma by blast
moreover have (p ~ ((least_power p s) — 1)) s € set (support p s) for s
unfolding support_set[OF is_permutation] by blast
hence 3’ € set (support p s). p s’ = s for s
using least_power _of permutation| OF is_permutation]| by (metis Suc__ diff 1
Junpow.simps(2) o__apply)
hence S — set (support p a) C p ‘(S — set (support p a))
using auzx_lemma
by (clarsimp simp add: image__iff) (metis image__subset_iff)
ultimately show ?q ‘ (S — set (support p a)) = (S — set (support p a))
by auto
qed
qged

theorem cycle decomposition:
assumes p permutes S and finite S shows cycle decomp S p
using assms
proof (induct card S arbitrary: S p rule: less_induct)
case less show ?case
proof (cases)
assume S = {} thus ?thesis
using empty less(2) by auto
next
have is permutation: permutation p
using less(2—3) unfolding permutation permutes by blast

assume S # {} then obtain s where s € S
by blast
define ¢ where ¢ = (A\y. if y € (S — set (support p s)) then p y else y)
have (cycle _of list (support p s) o q¢) = p
proof
fix a
consider a € S — set (support p s) | a € set (support p s) | a ¢ S a ¢ set
(support p s)
by blast
thus ((cycle_of list (support p s) o q)) a =p a

72

proof cases
case [
have (p 7" 1) a € set (support p a)
unfolding support_set[OF is_permutation] by blast
with <o € S — set (support p s)> have p a ¢ set (support p s)
using disjoint__support’|OF is_permutation, of a s| by auto
with <a € S — set (support p s)> show ?Zthesis
using id_ outside__supplof __ support p s| unfolding ¢ def by simp
next
case 2 thus ?thesis
using cycle_restrict[OF is__permutation] unfolding ¢ def by simp
next
case 3 thus ?thesis
using id_ outside__supp[OF 3(2)] less(2) permutes_not_in unfolding
q_def by fastforce
qed
qed

moreover from «s € 5> have (p " i) s € S for ¢

unfolding permutes_in_image| OF permutes_funpow[OF less(2)]] .
hence set (support p s) U (S — set (support p s)) = S

by auto

moreover have s € set (support p s)
using least__power _of permutation|OF is_permutation] by force
with «s € S) have card (S — set (support p s)) < card S
using less(3) by (metis Diff E card__seteq linorder _not_le subsetl)
hence cycle _decomp (S — set (support p s)) q
using less(1)[OF __ semidecomposition| OF less(2—3)], of s] less(3) unfolding
q_def by blast

moreover show ?thesis
using comp[OF calculation(3) cycle_of _permutation|OF is_permutation], of
s]
unfolding calculation(1—2) by blast
qed
qed

end

7 Permutations as abstract type

theory Perm
imports
Transposition
begin

This theory introduces basics about permutations, i.e. almost everywhere
fix bijections. But it is by no means complete. Grieviously missing are cycles

73

since these would require more elaboration, e.g. the concept of distinct lists
equivalent under rotation, which maybe would also deserve its own theory.
But see theory src/ HOL/ex/Perm__Fragments.thy for fragments on that.

7.1 Abstract type of permutations

typedef ‘a perm = {f :: 'a = 'a. bij f A finite {a. f a # a}}
morphisms apply Perm

proof
show id € ?perm by simp

qed

setup__lifting type_ definition_perm
notation apply (infixl «($)» 999)

lemma bij _apply [simp]:
bij (apply f)
using apply [of f] by simp

lemma perm__eql:
assumes Aa. f ($) a = ¢ ($) a
shows f = ¢
using assms by transfer (simp add: fun__eq iff)

lemma perm__eq iff:

f=9+— (Va. f(8) a=yg(5) a)
by (auto intro: perm__eql)

lemma apply_inj:
f@®a=f@ b a=0
by (rule inj _eq) (rule bij_is_inj, simp)

lift__definition affected :: ‘a perm = 'a set

is A\f. {a. fa # a} .

lemma in_ affected:
a € affected f +— f ($) a # a

by transfer simp

lemma finite_ affected [simp]:

finite (affected f)
by transfer simp

lemma apply_affected [simp]:
I ($) a € affected f +— a € affected f
proof transfer
fix f:'a= 'aand a :: 'a
assume bij f A finite {b. f b # b}

74

then have bij f by simp
interpret bijection f by standard (rule <bij f»)
have fa € {a. fa=a} +— a € {a. fa=a} (is 7P +— ?7Q)
by auto
then show fa € {a. fa # a} «— a € {a. fa # a}
by simp
qed

lemma card_affected _not_one:
card (affected f) # 1
proof
interpret bijection apply f
by standard (rule bij _apply)
assume card (affected) = 1
then obtain a where *: affected f = {a}
by (rule card_1_singletonF)
then have *x: f ($) a # a
by (simp flip: in__affected)
with « have f ($) a ¢ affected f
by simp
then have f ($) (f ($) a) = f ($)
by (simp add: in__affected)
then have inv (apply f) (f ($) (f (8) a)) = inv (apply f) (f ($) a)
by simp
with xx show Fulse by simp
qed

S

7.2 Identity, composition and inversion

instantiation Perm.perm :: (type) {monoid_mult, inverse}
begin

lift_ definition one_perm :: ‘a perm
is id
by simp

lemma apply one [simp]:
apply 1 = id
by (fact one__perm.rep__eq)

lemma affected_one [simp]:
affected 1 = {}
by transfer simp

lemma affected_empty_iff [simp]:
affected f = {} +— [=1

by transfer auto

lift__definition times_perm :: 'a perm = 'a perm = 'a perm

75

is comp
proof
fix fg:'a="a
assume bij f A finite {a. fa # a}
bij g Afinite {a. g a # a}
then have finite ({a. fa # a} U {a. g a # a})
by simp
moreover have {a. (f o g) a # a} C{a. fa # a} U {a. ga # a}
by auto
ultimately show finite {a. (f o g) a # a}
by (auto intro: finite_subset)
qed (auto intro: bij _comp)

lemma apply_ times:

apply (f = g) = apply f o apply g
by (fact times_perm.rep__eq)

lemma apply sequence:

f(3) (g (3) a) = apply (f * g) a
by (simp add: apply_times)

lemma affected times [simp]:
affected (f = g) C affected f U affected g
by transfer auto

lift_ definition inverse_perm :: ‘a perm = 'a perm
is inv
proof transfer
fix f::'a= 'aand a
assume bij f A finite {b. f b # b}
then have bij f and fin: finite {b. f b # b}
by auto
interpret bijection f by standard (rule <bij f»)
from fin show bij (inv f) A finite {a. inv f a # a}
by (simp add: bij _inv)
qed

instance
by standard (transfer; simp add: comp__assoc)+

end
lemma apply inverse:
apply (inverse) = inv (apply f)
by (fact inverse__perm.rep__eq)
lemma affected_inverse [simp]:

affected (inverse f) = affected f
proof transfer

76

fix f::'a= 'aand a
assume bij f A finite {b. f b # b}
then have bij f by simp
interpret bijection f by standard (rule <bij f>)
show {a. inv fa # a} = {a. fa # a}
by simp
qed

global__interpretation perm: group times 1::'a perm inverse
proof
fix f :: 'a perm
show 1 x f=f
by transfer simp
show inverse f « f = 1
proof transfer
fix f::'a= 'aand a
assume bij f A finite {b. f b # b}
then have bij f by simp
interpret bijection f by standard (rule <bij f»)
show inv f o f = id
by simp
qed
qed

declare perm.inverse__distrib__swap [simp]

lemma perm__mult _commute:
assumes affected f N affected g = {}
shows g« f = fxg¢g
proof (rule perm__eql)
fix a
from assms have *: a € affected f => a ¢ affected g
a € affected g = a ¢ affected f for a
by auto
consider a € affected f N a ¢ affected g
A f(8) a € affected f
| a ¢ affected f A a € affected g
A f(8$) a ¢ affected f
| a & affected f N\ a ¢ affected g
using assms by auto
then show (g« f) (8) a = (f x ¢) ($) a
proof cases
case I
with * have f ($) a ¢ affected g
by auto
with 1 show %thesis by (simp add: in_affected apply_times)
next
case 2
with x have g ($) a ¢ affected f

77

by auto
with 2 show %thesis by (simp add: in__affected apply_times)
next
case 3
then show %thesis by (simp add: in__affected apply_times)
qed
qed

lemma apply_power:

apply (f ~n) = apply f " n
by (induct n) (simp__all add: apply__times)

lemma perm_ power__inverse:

inverse f ~n = inverse ((f :: 'a perm) " n)
proof (induct n)

case 0 then show ?case by simp
next

case (Suc n)

then show ?case

unfolding power_Suc2 [of f] by simp

qed

7.3 Orbit and order of elements

definition orbit :: 'a perm = 'a = 'a set
where
orbit f a = range (An. (f " n) ($) a)

lemma in_orbitl:
assumes (f "n) ($) a = b
shows b € orbit f a
using assms by (auto simp add: orbit_def)

lemma apply _power_self in_orbit [simp]:
(f "n)($) a € orbit fa
by (rule in__orbitl) rule

lemma in_orbit_self [simp]:
a € orbit fa
using apply_power_self in__orbit [of __ 0] by simp

lemma apply_self in_orbit [simp]:
f($) acorbitfa
using apply_power_self in_orbit [of _ 1] by simp

lemma orbit_not__empty [simp]:

orbit fa # {}
using in_orbit_self [of a f] by blast

78

lemma not_in_affected_iff orbit_eq singleton:
a ¢ affected f <— orbit fa = {a} (is 2P +— ?2Q)
proof
assume ?P
then have f ($) a = a
by (simp add: in__affected)
then have (f "n) ($) a = a for n
by (induct n) (simp__all add: apply_times)
then show 7@
by (auto simp add: orbit_def)
next
assume ?()
then show ?P
by (auto simp add: orbit_def in__affected dest: range__eq singletonD [of _ __

1))
qed

definition order :: ‘a perm = ’a = nat
where
order f = card o orbit f

lemma orbit_subset_eq affected:
assumes a € affected f
shows orbit f a C affected f
proof (rule ccontr)
assume - orbit f a C affected f
then obtain b where b € orbit fa and b ¢ affected f
by auto
then have b € range (An. (f ~n) ($) a)
by (simp add: orbit__def)
then obtain n where b = (f "n) ($) a
by blast
with <b ¢ affected f>
have (f " n) (3) a ¢ affected f
by simp
then have f (3) a ¢ affected f
by (induct n) (simp__all add: apply_times)
with assms show Fulse
by simp
qed

lemma finite_orbit [simp):
finite (orbit f a)
proof (cases a € affected f)
case Fulse then show ?thesis
by (simp add: not_in__affected iff orbit _eq singleton)
next
case True then have orbit f a C affected f
by (rule orbit_subset eq affected)

79

then show ?thesis using finite affected
by (rule finite_subset)
qed

lemma orbit_1 [simp]:
orbit 1 a = {a}
by (auto simp add: orbit_def)

lemma order_1 [simp]:
order 1 a = 1
unfolding order_def by simp

lemma card_orbit_eq [simp]:
card (orbit f a) = order f a
by (simp add: order_def)

lemma order_greater _zero [simp):
order fa > 0
by (simp only: card_gt_0_iff order_ _def comp__def) simp

lemma order_eq one__iff:
order f a = Suc 0 +— a ¢ affected f (is ?P +— ?Q)
proof
assume ?P then have card (orbit f a) = 1
by simp
then obtain b where orbit f a = {b}
by (rule card__1_singletonF)
with in_orbit_self [of a f]
have b = a by simp
with <orbit f a = {b}» show ?Q
by (simp add: not_in__affected_iff _orbit_eq singleton)
next
assume ?()
then have orbit f a = {a}
by (simp add: not_in__affected iff orbit _eq singleton)
then have card (orbit f a) = 1
by simp
then show ?P
by simp
qed

lemma order_greater _eq two__iff:
order fa > 2 «— a € affected f
using order_eq _one_iff [of f a
apply (auto simp add: neq_iff)
using order__greater_zero [of f a]
apply simp
done

80

lemma order_less eq affected:
assumes f # 1
shows order f a < card (affected f)
proof (cases a € affected f)
from assms have affected f # {}
by simp
then obtain B b where affected f = insert b B
by blast
with finite_affected [of f] have card (affected f) > 1
by (simp add: card.insert_remove)
case Fulse then have order fa = 1
by (simp add: order_ _eq one_iff)
with <card (affected f) > 1> show ?thesis
by simp
next
case True
have card (orbit f a) < card (affected f)
by (rule card_mono) (simp__all add: True orbit_subset__eq affected card_mono)
then show ?thesis
by simp
qed

lemma affected_order greater eq two:
assumes a € affected f
shows order fa > 2
proof (rule ccontr)
assume - 2 < order fa
then have order fa < 2
by (simp add: not_le)
with order_greater_zero [of f a] have order fa = 1
by arith
with assms show Fulse
by (simp add: order_ _eq _one_iff)
qed

lemma order_witness _unfold:
assumes n > 0 and (f "n) (3) a = a
shows order f a = card (Am. (f “m) ($) a) ‘{0..<n})
proof —
have orbit fa = (Am. (f “m) ($) a) ‘{0..<n} (is _ = ?B)
proof (rule set_eql, rule)
fix b
assume b € orbit f a
then obtain m where (f “m) ($) a = b
by (auto simp add: orbit_def)
then have b = (f = (m mod n + n * (m div n))) ($) a
by simp
also have ... = (f 7 (m mod n)) ($) ((f " (n * (m div n))) ($) a)
by (simp only: power _add apply times) simp

81

also have (f ~(n * q)) (3) a = a for ¢
by (induct q)

(simp__all add: power__add apply_times assms)
finally have b = (f ~ (m mod n)) ($) a .
moreover from n > 0»
have m mod n < n

by simp
ultimately show b € ?B
by auto
next
fix b
assume b € ?B
then obtain m where (f “m) ($) a = b
by blast
then show b € orbit fa
by (rule in__orbitl)
qed
then have card (orbit f a) = card ?B
by (simp only:)
then show ?thesis
by simp
qed

lemma inj _on__apply range:
ing_on (Am. (f “m) (8) a) {..<order f a}
proof —
have inj_on (Am. (f “m) ($) a) {..<n}
if n < order f a for n
using that proof (induct n)
case (then show ?case by simp
next
case (Suc n)
then have prem: n < order f a

by simp

with Suc.hyps have hyp: inj_on (Am. (f ~m) ($) a) {..<n}
by simp

have (f “n) ($) a ¢ (Am. (f “m) (8) a) ‘{..<n}

proof

assume (f “n) ($) a € (Am. (f “m) ($) a) ‘ {.<n}
then obtain m where *: (f “m) ($) a = (f "n) (§) aand m < n
by auto
interpret bijection apply (f ~m)
by standard simp
from «<m < n» have n = m + (n — m)
and nm: 0 <n—mn—m<n
by arith+
with « have (f “m) ($) a = (f “(m + (n — m))) ($) a
by simp
then have (f ~m) (8) a = (f ~m) (8) ((f " (n — m)) ($) a)

82

by (simp add: power__add apply_times)
then have (f “(n — m)) ($) a =a
by simp
with <n — m > O»
have order f a = card (Am. (f “m) ($) a) ‘{0..<n — m})
by (rule order _witness _unfold)
also have card ((Am. (f “m) ($) a) ‘{0..<n — m}) < card {0..<n — m}
by (rule card_image_le) simp
finally have order fa < n — m
by simp
with prem show Fulse by simp
qed
with hyp show ?case
by (simp add: lessThan__Suc)
qed
then show ?thesis by simp
qed

lemma orbit_unfold_image:
orbit fa = (An. (f "n) (8) a) ‘{.<order fa} (is __ = ?4)
proof (rule sym, rule card__subset__eq)
show finite (orbit f a)
by simp
show 74 C orbit f a
by (auto simp add: orbit_def)
from inj_on__apply_range [of f a
have card ?A = order f a
by (auto simp add: card_image)
then show card ?A = card (orbit f a)
by simp
qed

lemma in_orbitE:
assumes b € orbit f a
obtains n where b = (f " n) ($) a and n < order f a
using assms unfolding orbit_unfold image by blast

lemma apply_power_order [simp]:
(f “order fa) ($) a=a
proof —
have (f ~order fa) ($) a € orbit fa
by simp
then obtain n where
w: (f Torder fa) ($) a=(f "n) ($) a
and n < order f a
by (rule in_orbitE)
show ?thesis
proof (cases n)
case () with * show ?thesis by simp

83

next

case (Suc m)

from order_greater_zero [of f d]
have Suc (order fa — 1) = order f a
by arith

from Suc «n < order f a>
have m < order f a
by simp

with Suc *

have (inverse f) (8) ((f = Suc (order fa — 1)) ($) a) =
(inverse f) ($) ((f ~ Suc m) ($) a)
by simp

then have (f " (order fa — 1)) ($) a =
(F ~m) (8) a
by (simp only: power_Suc apply_times)

(simp add: apply__sequence mult.assoc [symmetric])

with inj _on_ apply range

have order fa — 1 =m
by (rule inj _onD)

(simp__all add: «<m < order f a))

with Suc have n = order f a
by auto

with «n < order f a»

show ?thesis by simp

qed
qged

lemma apply power_left _mult _order [simp]:
(f “(nx*orderfa)) ($) a =a
by (induct n) (simp__all add: power_add apply_times)

lemma apply _power_right_mult_order [simp]:
(f " (order fa*n)) ($) a=a
by (simp add: ac__simps)
lemma apply _power_mod_order_eq [simp:
(f = (n mod order f a)) ($) a = (f "n) ($) a
proof —
have (f " n) ($3) a = (f ~ (n mod order f a + order f a x (n div order f a))) ($) a
by simp
also have ... = (f 7 (n mod order f a) x f ~ (order f a x (n div order f a))) ($) a
by (simp flip: power_add)
finally show ?thesis
by (simp add: apply times)
qed

lemma apply power__eq iff:

(f "m) ($) a=(f "n) ($) a «+— m mod order f a = n mod order f a (is ?P
— 2Q)

84

proof
assume ?()
then have (f = (m mod order f a)) ($3) a = (f ~ (n mod order f a)) (3) a
by simp
then show ?P
by simp
next
assume ?P
then have (f = (m mod order f a)) (3) a = (f ~ (n mod order f a)) (3) a
by simp
with inj_on_ apply range
show ?7Q)
by (rule inj _onD) simp_all
qed

lemma apply inverse__eq apply_power _order _minus_one:
(inverse) ($) a = (f " (order fa — 1)) ($) a
proof (cases order f a)
case () with order_greater_zero [of f a] show ?thesis
by simp
next
case (Suc n)
moreover have (f ~order fa) (3) a = a
by simp
then have *: (inverse f) (8) ((f ~order f a) ($) a) = (inverse f) ($) a
by simp
ultimately show %thesis
by (simp add: apply sequence mult.assoc [symmetric))
qed

lemma apply_inverse_self in_orbit [simp]:
(inverse f) ($) a € orbit fa
using apply inverse_eq apply_power order _minus_one [symmetric]
by (rule in__orbitl)

lemma apply_inverse_power _eq:
(inverse (f " n)) ($) a = (f " (order f a — n mod order f a)) ($) a
proof (induct n)
case 0 then show ?case by simp
next
case (Suc n)
define m where m = order f a — n mod order fa — 1
moreover have order f a — n mod order fa > 0
by simp
ultimately have *: order f a — n mod order f a = Suc m
by arith
moreover from x have m2: order f a — Suc n mod order f a = (if m = 0 then
order f a else m)
by (auto simp add: mod__Suc)

85

ultimately show ?case
using Suc
by (simp__all add: apply_times power__Suc2 [of _ n] power_Suc [of __ m] del:
power_Suc)
(simp add: apply__sequence mult.assoc [symmetric])
qed

lemma apply power _eq self iff:
(f "n)($) a=a<+— order fa dvdn
using apply_power_eq_iff [of f n a 0]
by (simp add: mod__eq 0 _iff dvd)

lemma orbit_equiv:
assumes b € orbit f a
shows orbit f b = orbit fa (is ?B = ?4)
proof
from assms obtain n where n < order fa and b: b= (f " n) ($) a
by (rule in__orbitE)
then show 7B C 24
by (auto simp add: apply_sequence power_add [symmetric] intro: in__orbit]
elim!: in__orbitE)
from b have (inverse (f ~n)) ($) b = (inverse (f ~n)) ($) ((f " n) (3) a)
by simp
then have a: a = (inverse (f ~n)) (§) b
by (simp add: apply sequence)
then show ?4 C ?B
apply (auto simp add: apply_sequence power_add [symmetric] intro: in__orbit]
elim!: in_orbitEF)
unfolding apply times comp__def apply_inverse power _eq
unfolding apply_sequence power__add [symmetric]
apply (rule in_orbitl) apply rule
done
qed

lemma orbit_apply [simp]:
orbit f (f ($) a) = orbit fa

by (rule orbit_equiv) simp

lemma order _apply [simp]:
order f (f ($) a) = order fa
by (simp only: order__def comp__def orbit__apply)

lemma orbit__apply_inverse [simp]:
orbit f (inverse f (8) a) = orbit f a
by (rule orbit _equiv) simp

lemma order_apply_inverse [simpl:

order f (inverse f ($) a) = order f a
by (simp only: order__def comp__def orbit__apply_inverse)

86

lemma orbit_apply _power [simp]:
orbit f ((f “n) ($) a) = orbit fa

by (rule orbit_equiv) simp

lemma order _apply power [simp]:
order f ((f " n) ($) a) = order fa
by (simp only: order__def comp__def orbit_apply_power)

lemma orbit_inverse [simp):
orbit (inverse f) = orbit f
proof (rule ext, rule set_eql, rule)
fix ba
assume b € orbit f a
then obtain n where b: b = (f "n) ($) a n < order fa
by (rule in__orbitE)
then have b = apply (inverse (inverse f) ~n) a
by simp
then have b = apply (inverse (inverse f ~n)) a
by (simp add: perm__power_inverse)
then have b = apply (inverse f ~ (n * (order (inverse f “n) a — 1))) a
by (simp add: apply_inverse _eq apply power _order _minus__one power__mult)
then show b € orbit (inverse f) a
by simp
next
fix ba
assume b € orbit (inverse f) a
then show b € orbit f a
by (rule in__orbitE)
(simp add: apply_inverse__eq apply power _order _minus_one
perm__power_inverse power_mult [symmetric])
qed

lemma order_inverse [simp):
order (inverse f) = order f
by (simp add: order_def)

lemma orbit_ disjoint:
assumes orbit f a # orbit f b
shows orbit fa N orbit fb = {}
proof (rule ccontr)
assume orbit f a N orbit f b # {}
then obtain ¢ where ¢ € orbit fa N orbit fb
by blast
then have ¢ € orbit fa and ¢ € orbit f b
by auto
then obtain m n where ¢ = (f “m) ($) a
and ¢ = apply (f ~n) b by (blast elim!: in__orbitE)
then have (f “m) ($3) a = apply (f "n) b

87

by simp
then have apply (inverse f ~m) ((f “m) ($) a) =
apply (inverse f ~m) (apply (f ~n) b)
by simp
then have *: apply (inverse f “m x f " n) b=a
by (simp add: apply sequence perm__power _inverse)
have a € orbit fb
proof (cases n m rule: linorder _cases)
case equal with x show ?thesis
by (simp add: perm__power_inverse)
next
case less
moreover define ¢ where ¢ = m — n
ultimately have m = ¢ + n by arith
with x have apply (inverse f ~q) b= a
by (simp add: power__add mult.assoc perm__power _inverse)
then have a € orbit (inverse f) b
by (rule in__orbitl)
then show #thesis
by simp
next
case greater
moreover define ¢ where ¢ = n — m
ultimately have n = m + ¢ by arith
with x have apply (f "¢q) b=a
by (simp add: power_add mult.assoc [symmetric] perm__power_inverse)
then show ?thesis
by (rule in__orbitl)
qed
with assms show Fualse
by (auto dest: orbit__equiv)
qed

7.4 Swaps

lift__definition swap :: 'a = 'a = 'a perm («({_ < _))
is Aa b. transpose a b
proof
fixab:'a
have {c. transpose a b ¢ # ¢} C {a, b}
by (auto simp add: transpose__def)
then show finite {c. transpose a b ¢ # ¢}
by (rule finite _subset) simp
qed simp

lemma apply_swap__simp [simp]:
(a<>b) (3 a=1b
(a<>b) () b=a
by (transfer; simp)+

88

lemma apply swap _same [simp]:
cFa=c#b=(a+b) $) c=c
by transfer simp

lemma apply swap__eq iff [simp]:
(a>b) () c=a+—c=1b
(acb) $)c=b+—c=a
by (transfer; auto simp add: transpose__def)+

lemma swap 1 [simp]:
(a < a)y =1
by transfer simp

lemma swap__sym:
(b a)={(a<+ D)
by (transfer; auto simp add: transpose__def)+

lemma swap_self [simp]:
(a4 b)x (a+b) =1
by transfer simp

lemma affected_swap:
a # b = affected (a <> b) = {a, b}
by transfer (auto simp add: transpose__def)

lemma inverse_swap [simp]:
inverse (a <> b) = {(a <> b)
by transfer (auto intro: inv__equality)

7.5 Permutations specified by cycles

fun cycle :: 'a list = 'a perm (<(_)»)
where
(0 = 1
| (la]) = 1
| (a # b # as) = (a # as) * {(a+>b)

We do not continue and restrict ourselves to syntax from here. See also
introductory note.

7.6 Syntax

bundle permutation__syntax
begin

notation swap (<(_ < _))
notation cycle (<(_)»)
notation apply (infixl ¢($)» 999)
end

89

unbundle no permutation_ syntax

end

8 Permutation orbits

theory Orbits
imports

HOL- Library. FuncSet

HOL— Combinatorics. Permutations
begin

8.1 Orbits and cyclic permutations

inductive__set orbit :: (‘a = ‘a) = 'a = 'a set for f x where
base: fx € orbit f x|
step: y € orbit fx = fy € orbit fx

definition cyclic_on :: ('a = ’a) = 'a set = bool where
cyclic_on f S <— (Fs€S. S = orbit fs)

lemma orbit_altdef: orbit fz = {(f " n) z | n. 0 < n} (is ?L = ?R)
proof (intro set__eql iffI)
fix y assume y € ?L then show y € 7R
by (induct rule: orbit.induct) (auto simp: exl[where z=1] exI[where z==Suc
n for n))
next
fix y assume y € ?R
then obtain n where y = (f 7" n) z 0 < n by blast
then show y € 7L
proof (induction n arbitrary: y)
case (Suc n) then show ?case by (cases n = 0) (auto intro: orbit.intros)
qed simp
qed

lemma orbit_trans:
assumes s € orbit ftt € orbit f u shows s € orbit f u
using assms by induct (auto intro: orbit.intros)

lemma orbit_subset:
assumes s € orbit f (f t) shows s € orbit f ¢
using assms by (induct) (auto intro: orbit.intros)
lemma orbit_sim__step:
assumes s € orbit f t shows fs € orbit f (f t)

using assms by induct (auto intro: orbit.intros)

lemma orbit_step:

90

assumes y € orbit fz fx # y shows y € orbit f (f x)

using assms
proof induction

case (step y) then show ?case by (cases © = y) (auto intro: orbit.intros)
qed simp

lemma self in_orbit_trans:
assumes s € orbit f st € orbit f s shows t € orbit ft
using assms(2,1) by induct (auto intro: orbit_sim__step)

lemma orbit_swap:

assumes s € orbit f st € orbit f s shows s € orbit ft

using assms(2,1)
proof induction

case base then show ?case by (cases f s = s) (auto intro: orbit_step)
next

case (step z) then show ?case by (cases f x = s) (auto intro: orbit_step)
qed

lemma permutation_self in__orbit:
assumes permutation f shows s € orbit f s
unfolding orbit_altdef using permutation_self[OF assms, of s| by simp metis

lemma orbit_altdef self in:

assumes s € orbit f s shows orbit fs = {(f " n) s | n. True}
proof (intro set_eql iffT)

fix z assume z € {(f " n) s | n. True}

then obtain n where z = (f 7" n) s by auto

then show z € orbit f s using assms by (cases n = 0) (auto simp: orbit_altdef)
qed (auto simp: orbit_altdef)

lemma orbit_altdef permutation:
assumes permutation f shows orbit fs = {(f " n) s | n. True}
using assms by (intro orbit_altdef self in permutation__self in_orbit)

lemma orbit_altdef bounded:
assumes (f 7" n) s = s 0 < nshows orbit fs = {(f "~ m) s| m. m < n}
proof —
from assms have s € orbit f s
by (auto simp add: orbit_altdef) metis
then have orbit f s = {(f =" m) s|m. True} by (rule orbit_altdef self in)
also have ... = {(f 7" m) s| m. m < n}
using assms
by (auto simp: funpow_mod__eq intro: exI[where z=m mod n for m])
finally show ?thesis .
qed

lemma funpow_in_ orbit:
assumes s € orbit ft shows (f " n) s € orbit ft

91

using assms by (induct n) (auto intro: orbit.intros)

lemma finite_ orbit:
assumes s € orbit f s shows finite (orbit f s)
proof —
from assms obtain n where n: 0 < n (f " n) s=s
by (auto simp: orbit_altdef)
then show %thesis by (auto simp: orbit_altdef bounded)
qed

lemma self in_ orbit_ step:
assumes s € orbit f s shows orbit f (f s) = orbit f s
proof (intro set_eql iffI)
fix ¢t assume ¢ € orbit f s then show t € orbit f (f s)
using assms by (auto intro: orbit_step orbit_sim__step)
qed (auto intro: orbit_subset)

lemma permutation__orbit_step:
assumes permutation f shows orbit f (f s) = orbit f s
using assms by (intro self _in_orbit_step permutation__self in__ orbit)

lemma orbit_nonempty:

orbit f s # {}

using orbit.base by fastforce

lemma orbit_inv_eq:
assumes permutation f
shows orbit (inv f) x = orbit fz (is ?L = ?R)
proof —
{ fix g y assume A: permutation g y € orbit (inv g) x
have y € orbit g z
proof —
have inv_g: N\y. 2 =gy = inwgz =y Ay. invg (gy) =y
by (metis A(1) bij_inv_eq iff permutation_bijective)+

{ fix y assume y € orbit g ©
then have inv g y € orbit g z
by (cases) (simp__all add: inv_g A(1) permutation_self in_ orbit)
} note inv_g_in_orb = this

from A(2) show ?thesis
by induct (simp__all add: inv_g_in_orb A permutation__self in__orbit)
qed
} note orb_inv_ss = this

have inv (inv f) = f
by (simp add: assms inv_inv__eq permutation__bijective)
then show ?thesis
using orb__inv_ss[OF assms] orb_inv__ss|OF permutation__inverse|OF assms]

92

by auto
qed

lemma cyclic_on__alldef:
cyclic_on fS +— S # {} A (Vs€S. S = orbit fs)
unfolding cyclic_on_def by (auto intro: orbit.step orbit_swap orbit_trans)

lemma cyclic_on_ funpow__in:
assumes cyclic_on f S s € S shows (f"n) s € S
using assms unfolding cyclic_on__def by (auto intro: funpow_in__ orbit)

lemma finite_cyclic__on:
assumes cyclic_on f S shows finite S
using assms by (auto simp: cyclic_on__def finite_orbit)

lemma cyclic_on__singlel:
assumes s € S S = orbit f s shows cyclic_on f S
using assms unfolding cyclic _on__def by blast

lemma cyclic_on_inl:
assumes cyclic_on fS s € S shows fse S
using assms by (auto simp: cyclic_on__def intro: orbit.intros)

lemma orbit _inverse:
assumes self: a € orbit g a
and eq: Az. z € orbit ga = ¢’ (fz) =f (g x)
shows [“ orbit g a = orbit ¢’ (f a) (is ?L = ?R)
proof (intro set_eql iffI)
fix z assume z € ?L
then obtain z0 where 20 € orbit g a z = f 20 by auto
then show z € 7R
proof (induct arbitrary: x)
case base then show ?case by (auto simp: self orbit.base eq[symmetric])
next
case step then show ?case by cases (auto simp: eq[symmetric] orbit.intros)
qed
next
fix © assume = € ?R
then show z € 7L
proof (induct arbitrary:)
case base then show ?case by (auto simp: self orbit.base eq)
next
case step then show ?Zcase by cases (auto simp: eq orbit.intros)
qed
qed

lemma cyclic_on__image:

assumes cyclic_on f S
assumes A\z. z € S =g (hz) =h (fz)

93

shows cyclic_on g (h * S)
using assms by (auto simp: cyclic_on__def) (meson orbit_inverse)

lemma cyclic_on_f in:
assumes f permutes S cyclic_on fA fxz € A
shows z € A
proof —
from assms have fr_in_orb: fx € orbit f (fz) by (auto simp: cyclic_on__alldef)
from assms have A = orbit f (f) by (auto simp: cyclic_on__alldef)
moreover
then have ... = orbit fx using fz € A> by (auto intro: orbit_step orbit__subset)
ultimately
show ?thesis by (metis (no__types) orbit.simps permutes_inverses(2)[OF assms(1)])
qed

lemma orbit_cong0:

assumes z € A f € A= ANy y€ A= fy= gy shows orbit fz = orbit g
T
proof —

{fixnhave (f " n)z=(g "n)axA(f "TnazecA

by (induct n rule: nat.induct) (insert assms, auto)

} then show Zthesis by (auto simp: orbit_altdef)

qed

lemma orbit_cong:
assumes self _in: t € orbit ft and eq: N\s. s € orbit ft = gs=fs
shows orbit g t = orbit f t
using assms(1) __ assms(2) by (rule orbit_cong0) (auto simp: orbit.step eq)

lemma cyclic_cong:
assumes As. s € S = fs = g s shows cyclic_on f S = cyclic_on g S
proof —
have (3s€S. orbit f s = orbit g s) = cyclic_on S = cyclic_on g S
by (metis cyclic_on__alldef cyclic_on__def)
then show %thesis by (metis assms orbit__cong cyclic_on__def)
qed

lemma permutes_comp__preserves__cyclicl:
assumes g permutes B cyclic_on f C
assumes AN B={} CCA
shows cyclic_on (fo g) C
proof —
have x: A\c. ce C = f (gc¢)=fc
using assms by (subst permutes_not_in [of g]) auto
with assms(2) show %thesis by (simp cong: cyclic_cong)
qed

lemma permutes_comp__preserves__cyclic2:
assumes f permutes A cyclic_on g C

94

assumes AN B={} C C
shows cyclic_on (fo g) C
proof —
obtain ¢ where ¢: c € C C = orbit g c ¢ € orbit g c
using <cyclic_on g C» by (auto simp: cyclic_on__def)
then have Ac. ce C = f(gc¢)=gc
using assms ¢ by (subst permutes_not_in [of f]) (auto intro: orbit.intros)
with assms(2) show %thesis by (simp cong: cyclic__cong)
qed

B

lemma permutes orbit_subset:

assumes f permutes S x € S shows orbit fo C S
proof

fix y assume y € orbit fz

then show y € S by induct (auto simp: permutes_in_image assms)
qed

lemma cyclic_on__orbit"
assumes permutation f shows cyclic_on f (orbit f x)
unfolding cyclic_on__alldef using orbit_nonempty|of f z]
by (auto intro: assms orbit_swap orbit_trans permutation_ self in__orbit)

lemma cyclic_on__orbit:
assumes | permutes S finite S shows cyclic_on f (orbit f z)
using assms by (intro cyclic_on__orbit’) (auto simp: permutation__permutes)

lemma orbit_ cyclic_eq3:
assumes cyclic_on f Sy € S shows orbit fy =S5
using assms unfolding cyclic_on__alldef by simp

lemma orbit_eq_singleton_iff: orbit fx = {2} +— fz = x (is ?L +— ?R)
proof

assume A: 7R

{ fix y assume y € orbit f z then have y = z

by induct (auto simp: A)

} then show ?L by (metis orbit_nonempty singletonl subsetl subset__singletonD)
next

assume A: ?L

then have Ay. y € orbit fo = fz =y

by — (erule orbit.cases, simp__all)

then show ?R using A by blast

qged

lemma eq on_ cyclic_on_iff1:
assumes cyclic_onfSz € S
obtains frz € Sfex =2z — card S = 1
proof
from assms show fz € S by (auto simp: cyclic_on__def intro: orbit.intros)
from assms have S = orbit f x by (auto simp: cyclic_on__alldef)

95

then have fz = z <— S = {z} by (metis orbit_eq_singleton__iff)
then show fz = 2 +— card S = 1 using <z € S» by (auto simp: card_Suc__eq)
qed

lemma orbit_eql:
y=fz= yecorbitfz
z=fy=y € orbit fxr =2 ¢€ orbit fz
by (metis orbit.base) (metis orbit.step)

8.2 Decomposition of arbitrary permutations

definition perm_ restrict :: ('la = 'a) = 'a set = ('a = 'a) where
perm__restrict f S = if x € S then fx else x

lemma perm, _restrict__comp:

assumes A N B = {} cyclic_on f B

shows perm__restrict f A o perm__restrict f B = perm__restrict f (A U B)
proof —

have Az. © € B = fx € B using «cyclic_on f B> by (rule cyclic_on__inI)

with assms show ?thesis by (auto simp: perm__restrict _def fun__eq iff)
qed

lemma perm,__restrict_simps:
x €8 = perm_restrict fSx = fx
x & S = perm_restrict f Sz =
by (auto simp: perm__restrict _def)

lemma perm,__restrict__perm__ restrict:
perm__restrict (perm__restrict f A) B = perm__restrict f (A N B)
by (auto simp: perm__restrict _def)

lemma perm,_restrict_union:
assumes perm_ restrict f A permutes A perm_ restrict f B permutes B AN B =
{}
shows perm__restrict f A o perm__restrict f B = perm__restrict f (A U B)
using assms by (auto simp: fun__eq iff perm__restrict _def permutes_def) (metis

Diff iff Diff _triv)

lemma perm__restrict_id[simp]:
assumes f permutes S shows perm__restrict f S = f
using assms by (auto simp: permutes__def perm__restrict _def)

lemma cyclic_on__perm__restrict:
cyclic_on (perm_restrict f S) S +— cyclic_on f S
by (simp add: perm__restrict_def cong: cyclic__cong)

lemma perm,__restrict__diff cyclic:

assumes | permutes S cyclic_on f A
shows perm_ restrict f (S — A) permutes (S — A)

96

proof —
{fixy
have Jz. perm_restrict f (S — A) z =y
proof cases
assume A: y € S — A
with «f permutes S» obtain z where fzr =yz € S
unfolding permutes def by auto metis
moreover
with A have z ¢ A by (metis Diff _iff assms(2) cyclic_on_inI)
ultimately
have perm_restrict f (S — A) z = y by (simp add: perm__restrict_simps)
then show ?thesis ..
next
assume y ¢ S — A
then have perm_ restrict f (S — A) y = y by (simp add: perm__restrict_simps)
then show ?thesis ..
qed
} note X = this

{ fix z y assume perm__restrict f (S — A) x = perm_restrict f (S — A) y

with assms have z = y

by (auto simp: perm__restrict__def permutes__def split: if _splits intro: cyclic_on_f in)
} note Y = this

show ?thesis by (auto simp: permutes_def perm__restrict_simps X intro: Y)
qged

lemma permutes decompose:

assumes f permutes S finite S

shows 3C. (Vc e C. cyclic_ onfc) ANUC =8 AN Vel € C.Ve2 e C.cl #
c2 — cl Ne2={})

using assms(2,1)
proof (induction arbitrary: f rule: finite_psubset induct)

case (psubset S)

show ?case
proof (cases S = {})
case True then show ?thesis by (intro exI[where z={}]) auto
next
case Fulse
then obtain s where s € S by auto
with <f permutes S» have orbit fs C S
by (rule permutes_orbit__subset)
have cyclic_orbit: cyclic_on f (orbit f s)
using «f permutes S <finite S» by (rule cyclic_on__orbit)

let ?f' = perm__restrict f (S — orbit f s)

have fs € S using «f permutes S» «s € S» by (auto simp: permutes__in_image)

97

then have S — orbit f s C S using orbit.base[of f s] <s € S» by blast
moreover
have ?f' permutes (S — orbit f s)

using «f permutes S» cyclic_orbit by (rule perm__restrict_diff _cyclic)
ultimately
obtain C where C: Ac. ¢ € C = cyclic_on ' c|JC =S — orbit f s

Vel € C.Ve2 € Cocl #¢2 —clnNe2={}
using psubset.IH by metis

{ fix c assume c € C
then have *: Az. © € ¢ = perm__restrict f (S — orbit fs) z = fz
using C(2) «f permutes S» by (auto simp add: perm__restrict_def)
then have cyclic_on f ¢ using C(1)[OF <c € C)] by (simp cong: cyclic__cong
add: x)
} note in__C_cyclic = this

have Un__ins: | (insert (orbit fs) C) =S
using <\ JC = _» <orbit f s C S» by blast

have Disj_ins: (Vcl € insert (orbit fs) C.Vc2 € insert (orbit fs) C. cl #
c2 — cl Ne2 ={})
using C by auto

show ?thesis
by (intro conjl Un_ins Disj_ins exl[where z=insert (orbit f s) C])
(auto simp: cyclic_orbit in_ C_cyclic)
qed
qed

8.3 Function-power distance between values

definition funpow_dist :: ('a = ’'a) = '‘a = 'a = nat where
funpow_dist fxy= LEAST n. (f ~ n)z =1y

abbreviation funpow_dist! :: (‘a = 'a) = 'a = 'a = nat where
funpow_distl fzy = Suc (funpow_dist f (f z) y)

lemma funpow dist_0:
assumes z = y shows funpow dist fzy = 0
using assms unfolding funpow_ dist_def by (intro Least_eq 0) simp

lemma funpow dist_least:
assumes n < funpow_dist fx y shows (f ~ " n) z £ y
proof (rule notl)
assume (f “n)x =y
then have funpow_ dist f x y < n unfolding funpow_ dist_def by (rule Least_le)
with assms show Fualse by linarith
qed

98

lemma funpow distl least:
assumes (0 < nn < funpow_distl fz yshows (f " n)z #y
proof (rule notl)
assume (f 7 n)x =y
then have (f 7 (n — 1)) (fz) =y
using <0 < n» by (cases n) (simp__all add: funpow_swapl)
then have funpow_dist f (fz) y < n — 1 unfolding funpow dist def by (rule

Least_le)
with assms show Fualse by simp
qed

lemma funpow dist_prop:
y € orbit fo = (f 7 funpow_dist fzy) z =y
unfolding funpow_ dist_def by (rule Leastl ex) (auto simp: orbit_altdef)

lemma funpow dist 0 _eq:
assumes y € orbit f z shows funpow_dist fry=0<+—z =1y
using assms by (auto simp: funpow_dist_0 dest: funpow dist_prop)

lemma funpow dist_step:
assumes z # y y € orbit f x shows funpow_dist f z y = Suc (funpow__dist f (f
z) y)
proof —
from (y €) obtain n where (f ~ " n) z = y by (auto simp: orbit_altdef)
with «z # y» obtain n’ where [simp]: n = Suc n’ by (cases n) auto

show ?thesis
unfolding funpow dist_def

proof (rule Least Suc2)
show (f 7" n) z = y by fact
then show (f 7" n’) (fz) = y by (simp add: funpow__swapl)
show (f 7~ 0) = # y using «x # y» by simp
show Yk ((f ~ Suc k) v = y) = (f —K) (f2) = 9)

by (simp add: funpow swapl)
qed
qed

lemma funpow_distl _prop:

assumes y € orbit f z shows (f ™ funpow_distl fzy) x =y

by (metis assms funpow_dist_prop funpow_ dist_step funpow_simps_right(2)
o__apply self _in__orbit_step)

lemma funpow neq less funpow dist:
assumes y € orbit fz m < funpow dist fx yn < funpow dist frxym # n
shows (f " m)z#(f " n)z

proof (rule notl)

assume A: (f " m)z=(f T n)z

99

define m’ n’ where m’ = min m n and n’ = maz m n
with A assms have A= m’' < n' (f 7" m’)x = (f " n') zn’ < funpow_dist f z

)
by (auto simp: min_def maz__def)

have y = (f 7 funpow_dist fz y) x
using <y € _» by (simp only: funpow__dist_prop)

also have ... = (f 7 ((funpow_dist fz y — n') + n')) =
using «n’ < _) by simp
also have ... = (f 77 ((funpow__dist f y —ny 4+ m)z
by (simp add: funpow add <«(f ~"m') z = _))
A

also have (f 7~ ((funpow_dist fxy — n) m’)) xz#y
using A’ by (intro funpow_ dist_least) linarith

finally show Fulse by simp
qed

lemma funpow neq less funpow dist1:
assumes y € orbit fz m < funpow_dist] fx yn < funpow_distl fxym # n
shows (f 7 m)z# (f n)x

proof (rule notl)
assume A: (f " m)z=(f " n)z

define m’ n’ where m’ = min m n and n’ = maz m n
with A assms have A" m' < n’ (f 7 m") 2 = (f 7" n') 2 n’ < funpow_dist1 f
Ty
by (auto simp: min__def maz__def)

have y = (f 7 funpow_distl fz y)
using <y € _» by (simp only: funpow_distl_prop)

also have ... = (f 77 ((funpow_distl fzy — n') + n')) x
using «n’ < _) by simp
also have ... = (f 7~ ((funpow_distl fzy — n') + m’))

by (simp add: funpow add <«(f ~~m') z = _))
also have (f = ((funpow_distl fzy —n') + m') z # y
using A’ by (intro funpow_ dist1_least) linarith+
finally show Fulse by simp
qged

lemma inj on_ funpow dist:
assumes y € orbit f z shows inj_on (An. (f 7" n) z) {0..funpow_dist f x y}
using funpow_neq_less funpow dist[OF assms] by (intro inj_onl) auto

lemma inj on_ funpow dist1:
assumes y € orbit f x shows inj_on (An. (f ~ " n) z) {0..<funpow_distl f z y}
using funpow_neq less funpow dist1 [OF assms] by (intro inj_onl) auto

lemma orbit_conv_funpow_ distl:
assumes z € orbit fz

100

shows orbit fz = (An. (f ~ " n) z) ‘{0..<funpow_dist] fx z} (is ?L = ?R)
using funpow_distl_prop[OF assms]
by (auto simp: orbit_altdef bounded[where n=funpow_dist! f z z])

lemma funpow distl__propl:

assumes (f 7" n) z =y 0 < n shows (f 7 funpow_distl fzy) z =y
proof —

from assms have y € orbit f x by (auto simp: orbit_altdef)

then show ?thesis by (rule funpow_ dist1__prop)
qed

lemma funpow distl dist:

assumes funpow_distl fx y < funpow distl fx z

assumes {y,z} C orbit fz

shows funpow_distl fx z = funpow_distl fz y + funpow_distl fy z (is 7L =
?R)
proof —

define n where «n = funpow_dist! fx z — funpow_ distl fxy — 1>

with assms have x: <funpow_distl f x z = Suc (funpow_distl fx y + n)»

by simp

have z_z: (f 7 funpow_distl f x z) © = z using assms by (blast intro: fun-
pow__distl _prop)

have z_y: (f = funpow_distl f x y) x = y using assms by (blast intro: fun-
pow__distl_prop)

have (f 7~ (funpow__distl f x z — funpow_distl fz y)) y
= (f 77 (funpow_distl fx z — funpow_distl fz y)) ((f " funpow_distl f

y))
using z_y by simp
also have ... = 2

using assms x_z by (simp add: x funpow__add ac__simps funpow__swapl)
finally have y_ 2 diff: (f =~ (funpow_distl fx z — funpow_distl fzy)) y =z .
then have (f 7 funpow_distl fy z) y = 2
using assms by (intro funpow distl_propl) auto
then have (f 7 funpow_distl fy z) ((f = funpow_distl fzy) z) = 2
using z_y by simp
then have (f 7~ (funpow_distl fy z + funpow_distl fz y)) © = 2
by (simp add: * funpow__add funpow swapl)
show ?thesis
proof (rule antisym)
from y_z diff have (f 7 funpow_distl fy z) y =z
using assms by (intro funpow distl _propl) auto
then have (f 7 funpow_distl fy z) ((f = funpow_distl fzy) z) = 2
using z_y by simp
then have (f 7~ (funpow_distl fy z + funpow_distl fz y)) x = 2
by (simp add: % funpow_add funpow swapl)
then have funpow distl fz z < funpow_distl fy z + funpow distl fzy
using funpow_dist1_least not_less by fastforce
then show ?L < ?R by presburger

101

next
have funpow distl fy z < funpow distl fx z — funpow_ distl fx y
using y 2z diff assms(1) by (metis not_less zero__less__diff funpow__dist1_least)
then show ?R < ?L by linarith
qed
qed

lemma funpow distl le_self:
assumes (f " m)z =20 < my € orbit fz
shows funpow_ distl fzy < m
proof (cases x = y)
case True with assms show ?thesis by (auto dest!: funpow distl least)
next
case Fulse
have (f ™ funpow_distl fzy) x = (f = (funpow__distl f x y mod m)) x
using assms by (simp add: funpow mod__eq)
with Fulse <y € orbit f x> have funpow distl fz y < funpow__distl fx y mod m
by auto (metis <(f 7 funpow_distl fxy) x = (f ~ (funpow_dist! f x y mod
m)) © funpow _distl_prop funpow dist_least funpow dist_step lel)
with <m > 0» show ?thesis
by (auto intro: order_trans)
qed

end

9 Basic combinatorics in Isabelle/HOL (and the
Archive of Formal Proofs)

theory Combinatorics
imports
Transposition
Stirling
Permutations
List Permutation
Multiset Permutations
Cycles
Perm
Orbits
begin

end

102

	Transposition function
	Stirling numbers of first and second kind
	Stirling numbers of the second kind
	Stirling numbers of the first kind
	Efficient code

	Permutations, both general and specifically on finite sets.
	Auxiliary
	Basic definition and consequences
	Group properties
	Mapping permutations with bijections
	The number of permutations on a finite set
	Hence a sort of induction principle composing by swaps
	Permutations of index set for iterated operations
	Permutations as transposition sequences
	Some closure properties of the set of permutations, with lengths
	Various combinations of transpositions with 2, 1 and 0 common elements
	The identity map only has even transposition sequences
	Therefore we have a welldefined notion of parity
	And it has the expected composition properties
	A more abstract characterization of permutations
	Relation to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 permutes
	Sign of a permutation as a real number
	Permuting a list
	More lemmas about permutations
	Sum over a set of permutations (could generalize to iteration)
	Constructing permutations from association lists

	Permuted Lists
	An existing notion
	Nontrivial conclusions
	Trivial conclusions:

	Permutations of a Multiset
	Permutations of a multiset
	Cardinality of permutations
	Permutations of a set
	Code generation

	Cycles
	Definitions
	Basic Properties
	Conjugation of cycles
	When Cycles Commute
	Cycles from Permutations
	Exponentiation of permutations
	Extraction of cycles from permutations

	Decomposition on Cycles
	Preliminaries
	Decomposition

	Permutations as abstract type
	Abstract type of permutations
	Identity, composition and inversion
	Orbit and order of elements
	Swaps
	Permutations specified by cycles
	Syntax

	Permutation orbits
	Orbits and cyclic permutations
	Decomposition of arbitrary permutations
	Function-power distance between values

	Basic combinatorics in Isabelle/HOL (and the Archive of Formal Proofs)

