Basic combinatorics in Isabelle/HOL (and the

Archive of Formal Proofs)

January 18, 2026

Contents
1 Transposition function 1
2 Stirling numbers of first and second kind 5
2.1 Stirling numbers of the second kind 5
2.2 Stirling numbers of the first kind00 6
2.2.1 Efficient code 9
3 Permutations, both general and specifically on finite sets. 11
3.1 Auxiliary 12
3.2 Basic definition and consequences 12
3.3 Group properties o 17
3.4 Restricting a permutation to a subset 18
3.5 Mapping a permutation L. 19
3.6 The number of permutations on a finiteset 25
3.7 Permutations of index set for iterated operations 28
3.8 Permutations as transposition sequences 28
3.9 Some closure properties of the set of permutations, with lengths 28
3.10 Various combinations of transpositions with 2, 1 and 0 com-
mon elements 30
3.11 The identity map only has even transposition sequences . . . 30
3.12 Therefore we have a welldefined notion of parity 32
3.13 And it has the expected composition properties 33
3.14 A more abstract characterization of permutations 33
3.15 Relation to permutes 35
3.16 Sign of a permutation 36
3.17 An induction principle in terms of transpositions 36
3.18 More on the sign of permutations 40
3.19 Transpositions of adjacent elements 41
3.20 Transferring properties of permutations along bijections . . . 43

3.21 Permutingalist. L 0. 45

3.22 More lemmas about permutations. 47
3.23 Sum over a set of permutations (could generalize to iteration) 56
3.24 Constructing permutations from association lists o7
Permuted Lists 60
4.1 Anexisting notion L. 60
4.2 Nontrivial conclusions 60
4.3 Trivial conclusions:o oo 61
Permutations of a Multiset 63
5.1 Permutations of a multiset 64
5.2 Cardinality of permutations 66
5.3 Permutationsofaset.00, 69
5.4 Code generation 70
Cycles 74
6.1 Definitions oo 74
6.2 Basic Properties o oo 74
6.3 Conjugationof cycles. oo 76
6.4 When Cycles Commute 77
6.5 Cpycles from Permutations 7

6.5.1 Exponentiation of permutations 7

6.5.2 Extraction of cycles from permutations 79
6.6 Decomposition on Cycles 80

6.6.1 Preliminaries, 81

6.6.2 Decomposition oL 84
Permutations as abstract type 86
7.1 Abstract type of permutations L. 86
7.2 Identity, composition and inversion 88
7.3 Orbit and order of elements 91
T4 SWaps o e e e e 101
7.5 Permutations specified by cycles 102
76 Syntax 102
Permutation orbits 102
8.1 Orbits and cyclic permutations 102
8.2 Decomposition of arbitrary permutations 108
8.3 Function-power distance between values 111

Basic combinatorics in Isabelle/HOL (and the Archive of
Formal Proofs) 115

1 Transposition function

theory Transposition
imports Main
begin

definition transpose :: <'a = 'a = 'a = ‘o
where <transpose a b ¢ = (if ¢ = a then b else if ¢ = b then a else ¢)»

lemma transpose__apply_ first [simp]:
<transpose a b a = by
by (simp add: transpose__def)

lemma transpose__apply_second [simp]:
<transpose a b b =)
by (simp add: transpose__def)

lemma transpose__apply__other [simp]:
<transpose a b ¢ = ¢ if <¢c # a> <¢c # b
using that by (simp add: transpose__def)

lemma transpose__same [simp]:
<transpose a a = id>
by (simp add: fun__eq iff transpose__def)

lemma transpose__eq iff:

<transpose a bc=d+— (c£aNc#bAd=c)V(c=aANd=Db)V(
A d=a)

by (auto simp add: transpose__def)

lemma transpose_eq imp_ eq:
<c = d» if «transpose a b ¢ = transpose a b d>
using that by (auto simp add: transpose__eq_iff)

lemma transpose__commute [ac__simps]:
<transpose b a = transpose a b»
by (auto simp add: fun__eq iff transpose__eq iff)

lemma transpose__involutory [simp]:
<transpose a b (transpose a b ¢) = ¢»
by (auto simp add: transpose__eq_iff)

lemma transpose__comp__involutory [simp):
<transpose a b o transpose a b = id)
by (rule ext) simp

lemma transpose eq id_iff: Transposition.transpose Ty = id «— x =y
by (auto simp: fun__eq iff Transposition.transpose__def)

lemma transpose_triple:
<transpose a b (transpose b ¢ (transpose a b d)) = transpose a ¢ d»
if <a # ¢ and b # o
using that by (simp add: transpose__def)

lemma transpose__comp__triple:
<transpose a b o transpose b ¢ o transpose a b = transpose a ¢
if <a # ¢ and b # o
using that by (simp add: fun__eq iff transpose_triple)

lemma transpose_image__eq [simp]:
<transpose a b ‘A = Ay if <a € A <+— b e A
using that by (auto simp add: transpose__def [abs_def])

lemma inj_on_transpose [simp):
<ing_on (transpose a b) A»
by rule (drule transpose__eq _imp__eq)

lemma inj transpose:
<ing (transpose a b)»
by (fact inj_on_transpose)

lemma surj_transpose:
<surj (transpose a b)»
by simp

lemma bij_betw_transpose_iff [simp]:
<bij_betw (transpose a b) A A if <a € A +— b e A
using that by (auto simp: bij _betw_def)

lemma bij_transpose [simp]:
<bij (transpose a b))
by (rule bij betw _transpose_iff) simp

lemma bijection_ transpose:
<bijection (transpose a b)»
by standard (fact bij_transpose)

lemma inv_transpose__eq [simp]:
<inv (transpose a b) = transpose a b
by (rule inv_unique_comp) simp__all

lemma transpose__apply__commute:
<transpose a b (f ¢) = f (transpose (inv f a) (inv fb) c)»
if <bij >
proof —
from that have <surj f»
by (rule bij is surj)
with that show ?thesis

by (simp add: transpose__def bij_inv_eq iff surji_f inv_f)
qed

lemma transpose__comp__eq:
<transpose a b o f = f o transpose (inv f a) (inv f b)»
if «bij >
using that by (simp add: fun__eq iff transpose__apply _commute)

lemma in_ transpose__image_ iff:
<x € transpose a b © S +— transpose a b x € S»
by (auto intro!: image__eql)

Legacy input alias

setup « Context.theory map (Name__Space.map_naming (Name__Space.qualified _path
true binding <Fun»))»

abbreviation (input) swap :: <'a = ‘a = ('a = 'b) = 'a = b
where <swap a b f = f o transpose a by

lemma swap__def:
<Fun.swap a b f = f (a:= fb, bi= fa)
by (simp add: fun__eq iff)

setup «Context.theory map (Name__Space.map_naming (Name__Space.parent__path))»

lemma swap__apply:
Fun.swap a b fa=fb
Fun.swap a b fb=fa
c#Fa= c# b= Fun.swapabfc=fc
by simp_all

lemma swap _self: Fun.swap a a f = f
by simp

lemma swap commute: Fun.swap a b f = Fun.swap b a f
by (simp add: ac__simps)

lemma swap_nilpotent: Fun.swap a b (Fun.swap a b f) = f
by (simp add: comp__assoc)

lemma swap__comp__involutory: Fun.swap a b o Fun.swap a b = id

by (simp add: fun__eq iff)

lemma swap triple:
assumes a # c and b # ¢
shows Fun.swap a b (Fun.swap b ¢ (Fun.swap a b f)) = Fun.swap a ¢ f
using assms transpose__comp__triple [of a ¢ b
by (simp add: comp__assoc)

lemma comp__swap: f o Fun.swap a b g = Fun.swap a b (f o g)
by (simp add: comp__assoc)

lemma swap _image_eq:
assumes o € A be A
shows Fun.swap a bf‘A=f‘A
using assms by (metis image__comp transpose__image__eq)

lemma inj_on_imp_inj on_swap: inj on fA=— a€ A= be A= inj on
(FPun.swap a b f) A
by (simp add: comp__inj on)

lemma inj on_swap_iff:
assumes A:a € Abe A
shows inj _on (Fun.swap a b f) A <— inj _on f A
using assms by (metis inj_on_imagel inj _on__imp_inj on__swap transpose_image__eq)

lemma surj imp_surj swap: surj f = surj (Fun.swap a b f)
by (meson comp__surj surj_transpose)

lemma surj_swap_iff: surj (Fun.swap a b f) <— surj f
by (metis fun.set_map surj_transpose)

lemma bij betw swap iff: v € A = y € A = bij_betw (Fun.swap zy f) A B
+— bij betw f A B
by (meson bij_betw__comp__iff bij_betw_transpose__iff)

lemma bij _swap_iff: bij (Fun.swap a b f) +— bij f
by (simp add: bij _betw__swap__iff)

lemma swap__image:
Pun.swap ijf“A=f (4 - {ij}
U (if i € A then {j} else {}) U (if j € A then {i} else {}))
by (auto simp add: Fun.swap__def)

lemma inv_swap_id: inv (Fun.swap a b id) = Fun.swap a b id
by simp

lemma bij swap_comp:
assumes bij p
shows Fun.swap a b id o p = Fun.swap (inv p a) (inv p b) p
using assms by (simp add: transpose__comp__eq)

lemma swap_id_eq: Fun.swap a b id x = (if © = a then b else if x = b then a else

z)
by (simp add: Fun.swap__def)

lemma swap_unfold:
<Fun.swap a b p = p o Fun.swap a b id>

by simp

lemma swap__id_idempotent: Fun.swap a b id o Fun.swap a b id = id
by simp

lemma bij swap_compose__bij:
<bij (Fun.swap a b id o p)» if <bij p»
using that by (rule bij _comp) simp

end

2 Stirling numbers of first and second kind

theory Stirling
imports Main
begin

2.1 Stirling numbers of the second kind

fun Stirling :: nat = nat = nat
where
Stirling 0 0 = 1
| Stirling 0 (Suc k) =
| Stirling (Suc n) 0 = 0
| Stirling (Suc n) (Suc k) = Suc k = Stirling n (Suc k) + Stirling n k

0

lemma Stirling 1 [simp]: Stirling (Suc n) (Suc 0) = 1
by (induct n) simp__all

lemma Stirling_less [simp]: n < k = Stirling n k = 0
by (induct n k rule: Stirling.induct) simp__all

lemma Stirling _same [simp]: Stirling n n = 1
by (induct n) simp__all

lemma Stirling 2 _2: Stirling (Suc (Suc n)) (Suc (Suc 0)) = 2 ~ Sucn — 1
proof (induct n)

case (

then show ?case by simp
next

case (Suc n)

have Stirling (Suc (Suc (Suc n))) (Suc (Suc 0)) =

2 x Stirling (Suc (Suc n)) (Suc (Suc 0)) + Stirling (Suc (Suc n)) (Suc 0)
by simp

also have ... = 2 % (2 " Sucn — 1) + 1
by (simp only: Suc Stirling 1)

also have ... = 2 7 Suc (Suc n) — 1

proof —

have (2::nat) ~Sucn — 1 > 0

by (induct n) simp__all
then have 2 * ((2::nat) ~ Sucn — 1) > 0
by simp
then have 2 < 2 x ((2::nat) ~ Suc n)
by simp
with add_diff _assoc2 [of 2 2 x 2~ Suc n 1]
have 2 * 2 "Sucn — 2+ (I:nat) = 2% 2 " Sucn+ 1 — 2.
then show ?thesis
by (simp add: nat__distrib)
qged
finally show ?case by simp
qed

lemma Stirling 2: Stirling (Suc n) (Suc (Suc 0)) = 2 "n — 1
using Stirling_2_2 by (cases n) simp__all

2.2 Stirling numbers of the first kind

fun stirling :: nat = nat = nat
where
stirling 0 0 = 1
| stirling 0 (Suc k) = 0
| stirling (Suc n) 0 = 0
| stirling (Suc n) (Suc k) = n * stirling n (Suc k) + stirling n k

lemma stirling 0 [simp]: n > 0 = stirling n 0 = 0
by (cases n) simp__all

lemma stirling_less [simp]: n < k = stirling n k = 0
by (induct n k rule: stirling.induct) simp__all

lemma stirling same [simp]: stirling n n = 1
by (induct n) simp__all

lemma stirling Suc_n_ 1: stirling (Suc n) (Suc 0) = fact n
by (induct n) auto

lemma stirling Suc_n_n: stirling (Suc n) n = Suc n choose 2
by (induct n) (auto simp add: numerals(2))

lemma stirling Suc_n_ 2:
assumes n > Suc 0
shows stirling (Suc n) 2 = (3> k=1..n. fact n div k)
using assms
proof (induct n)
case (
then show ?case by simp
next
case (Suc n)

show ?Zcase
proof (cases n)
case (
then show ?thesis
by (simp add: numerals(2))
next
case Suc
then have geql: Suc 0 < n
by simp
have stirling (Suc (Suc n)) 2 = Suc n * stirling (Suc n) 2 + stirling (Suc n)
(Suc 0)
by (simp only: stirling.simps(4)[of Suc n] numerals(2))
also have ... = Suc n *x (D_k=1..n. fact n div k) + fact n
using Suc.hyps|OF geq1]
by (simp only: stirling_Suc_n_1 of nat_fact of nat_add of _nat_mult)

also have ... = Suc n * (3 k=1..n. fact n div k) + Suc n x fact n div Suc n
by (metis nat.distinct(1) nonzero_mult__div__cancel_left)

also have ... = (3 k=1..n. fact (Suc n) div k) + fact (Suc n) div Suc n
by (simp add: sum__distrib_left div_mull_swap dvd_ fact)

also have ... = (}_ k=1..Suc n. fact (Suc n) div k)
by simp

finally show ?%thesis .

qed
qed

lemma of nat_stirling Suc_n_2:
assumes n > Suc 0
shows (of _nat (stirling (Suc n) 2)::'a::field_char_0) = fact n x (3 k=1..n. (1
/ of nat k))
using assms
proof (induct n)
case 0
then show ?case by simp
next
case (Suc n)
show Zcase
proof (cases n)
case 0
then show ?thesis
by (auto simp add: numerals(2))
next
case Suc
then have geql: Suc 0 < n
by simp
have (of _nat (stirling (Suc (Suc n)) 2)::'a) =
of _nat (Suc n x stirling (Suc n) 2 + stirling (Suc n) (Suc 0))
by (simp only: stirling.simps(4)[of Suc n] numerals(2))
also have ... = of _nat (Suc n) * (factn x (O k= 1..n. 1 / of_natk)) + fact

using Suc.hyps[OF geql]
by (simp only: stirling_Suc_n_1 of nat_fact of nat_add of nat_mult)
also have ... = fact (Sucn) *x 3 k= 1..n. 1 / of_nat k) + fact (Suc n) *
(1 / of _nat (Suc n))
using of nat_neq 0 by auto
also have ... = fact (Sucn) x O k= 1..Sucn. 1 / of nat k)
by (simp add: distrib_left)
finally show ?thesis .
qed
qed

lemma sum__stirling: (> k<n. stirling n k) = fact n
proof (induct n)

case (

then show ?case by simp
next

case (Suc n)

have (3 k<Suc n. stirling (Suc n) k) = stirling (Suc n) 0 + (> k<n. stirling
(Suc n) (Suc k))

by (simp only: sum.atMost_Suc__shift)

also have ... = (3 k<n. stirling (Suc n) (Suc k))
by simp

also have ... = (3> k<n. n x stirling n (Suc k) + stirling n k)
by simp

also have ... = n x (3 k<n. stirling n (Suc k)) + (3_ k<n. stirling n k)
by (simp add: sum.distrib sum__distrib_left)

also have ... = n x fact n + fact n

proof —

have n x (> k<n. stirling n (Suc k)) = n * (O k<Suc n. stirling n k) —
stirling n 0)
by (metis add__diff _cancel left’ sum.atMost_Suc__shift)

also have ... = n * (3_ k<n. stirling n k)
by (cases n) simp__all
also have ... = n % fact n

using Suc.hyps by simp
finally have n x (3 k<n. stirling n (Suc k)) = n * fact n .
moreover have (> k<n. stirling n k) = fact n

using Suc.hyps .
ultimately show ¢thesis by simp

qed
also have ... = fact (Suc n) by simp
finally show ?case .

qed

lemma stirling pochhammer:

(3~ k<n. of _nat (stirling n k) x x " k) = (pochhammer x n :: 'a::comm__semiring_ 1)
proof (induct n)

case 0

then show ?case by simp

10

next
case (Suc n)
have of nat (n stirling n 0) = (0 :: 'a) by (cases n) simp__all
then have (> k<Suc n. of _nat (stirling (Suc n) k) x x k) =
(of _nat (n * stirlingn 0) x x — 0 +
(> i<n. of nat (n x stirling n (Suc 7)) * (z ~ Suc 7))) +
(>~ i<n. of _nat (stirling n i) * (x ~ Suc 7))
by (subst sum.atMost_Suc_shift) (simp add: sum.distrib ring_distribs)
also have ... = pochhammer z (Suc n)
by (subst sum.atMost_Suc__shift [symmetric])
(simp add: algebra__simps sum.distrib sum__distrib_left pochhammer__Suc flip:
Suc)
finally show ?Zcase .
qed

A row of the Stirling number triangle

definition stirling row :: nat = nat list
where stirling_row n = [stirling n k. k < [0..<Suc n]]

lemma nth_ stirling_row: k < n = stirling_row n ! k = stirling n k
by (simp add: stirling _row__def del: upt_Suc)

lemma length_stirling_row [simp]: length (stirling_row n) = Suc n
by (simp add: stirling_row__def)

lemma stirling row_nonempty [simp]: stirling_row n # [|
using length_ stirling _row[of n] by (auto simp del: length__stirling _row)

2.2.1 Efficient code

Naively using the defining equations of the Stirling numbers of the first kind
to compute them leads to exponential run time due to repeated compu-
tations. We can use memoisation to compute them row by row without
repeating computations, at the cost of computing a few unneeded values.

As a bonus, this is very efficient for applications where an entire row of
Stirling numbers is needed.

definition zip_with_prev :: ('a = 'a = 'b) = 'a = 'a list = 'b list
where zip_ with_prev f x xs = map2 f (x # xs) s

lemma zip_ with_prev_altdef:
zip__with_prev f x s =
(if zs =[] then [] else fz (hd zs) # [f (zsli) (ws!(i+1)). i < [0..<length zs —
1))
proof (cases xs)
case Nil
then show ?thesis
by (simp add: zip_with_prev_def)
next

11

case (Cons y ys)
then have zip_ with_prev fz s = fx (hd xs) # zip_with_prev f y ys
by (simp add: zip_with_prev_def)
also have zip_ with_prev fy ys = map (Mi. f (zs ! 4) (zs! (i + 1))) [0..<length
xzs — 1]
unfolding Cons
by (induct ys arbitrary: y)
(simp__all add: zip_ with_prev_def upt _conv_Cons flip: map_ Suc_upt del:
upt_Suc)
finally show ?thesis
using Cons by simp
qed

primrec stirling row aux
where
stirling_row_aux n y [| = [1]
| stirling_row_aux n y (x#xs) = (y + n x x) # stirling_row_auz n s

lemma stirling row __aux__correct:
stirling_row_auzx n y xs = zip_with_prev (Aa b. a + n * b) y zs @ [1]
by (induct zs arbitrary: y) (simp__all add: zip_with_prev_def)

lemma stirling_row__code [codel:
stirling_row 0 = [1]
stirling_row (Suc n) = stirling_row_aux n 0 (stirling_row n)
proof goal_cases
case [
show ?case by (simp add: stirling _row__def)
next
case 2
have stirling_row (Suc n) =
0 # [stirling_row n ! i 4+ stirling_row n! (i+1) x n. i + [0..<n]] @ [1]
proof (rule nth__equalityl, goal_cases length nth)
case (nth)
from nth have 7 < Suc n
by simp
then consider i = 0 Vi=Sucn|i>0i<n
by linarith
then show ?Zcase
proof cases
case I
then show ?thesis
by (auto simp: nth__stirling _row nth__append)
next
case 2
then show ?Zthesis
by (cases 1) (simp__all add: nth__append nth__stirling_row)
qed

12

next
case length
then show ?case by simp
qed
also have 0 # [stirling_row n ! i + stirling_row n ! (i+1) * n. { + [0..<n]] @
1] =
zip_with_prev (Aa b. a + n x b) 0 (stirling_row n) @ [1]
by (cases n) (auto simp add: zip_with_prev_altdef stirling _row__def hd_map
simp del: upt_Suc)
also have ... = stirling_row_auz n 0 (stirling_row n)
by (simp add: stirling _row__aux__correct)
finally show ?Zcase .
qed

lemma stirling_code [code]:
stirling n k =
(if k = 0 then (if n = 0 then 1 else 0)
else if k > n then 0
else if k = n then 1
else stirling_row n ! k)
by (simp add: nth__stirling_row)

end

3 Permutations, both general and specifically on
finite sets.

theory Permutations
imports
HOL— Library. Multiset
HOL— Library.Disjoint__Sets
Transposition
begin

3.1 Auxiliary
abbreviation (input) fizpoints :: «('a = 'a) = 'a set)

where <fizpoints f = {z. fz =z}

lemma inj on_ fizpoints:

<ing_on f (fizpoints f)»
by (rule inj _onl) simp

lemma bij betw _fixpoints:

<bif_betw f (fizpoints f) (fixpoints f)»
using inj_on_ fixpoints by (auto simp add: bij _betw__def)

13

3.2 Basic definition and consequences

definition permutes :: «('a = 'a) = 'a set = bool> (infixr <permutes> 41)
where <p permutes S +— Vz. 2 ¢ S — pzx=2) AN Vy. Fa. pz=y)

lemma bij imp_ permutes:
<p permutes Sy if <bij _betw p S S» and stable: <A\z. x ¢ S = pz =
proof —
note <bij_betw p S S»
moreover have <bij _betw p (— S) (— S)
by (auto simp add: stable intro: bij _betw_imagel inj onl)
ultimately have <bij betw p (S U — §) (S U —)
by (rule bij betw combine) simp
then have «3!z. p z = y» for y
by (simp add: bij_iff)
with stable show ?thesis
by (simp add: permutes_def)
qed

lemma inj imp_ permutes:
assumes i: inj_on f S and fin: finite S
and fS: A\z.z € S = fz e S
and f: Ni.i¢ S=fi=1
shows f permutes S
unfolding permutes def
proof (intro conjl alll impl, rule f)
fix y
from endo_inj surj|OF fin __ i] fS have fs: f ¢S = S by auto
show 3lz. fz =y
proof (cases y € §)
case False
thus ?thesis by (intro ex1I[of __ yl, insert fS f) force+
next
case True
with fs obtain z where z: z € S and fz: fx = y by force
show ?thesis
proof (rule ex1l, rule fr)
fix z’
assume fz”: fz' =y
with True f[of '] have z’ € S by metis
from inj _onD[OF i fx[folded fr'] = this]
show z/ = z by simp
qed
qed
qed

context
fixes p :: <a = 'a> and S :: ('a set»
assumes perm: (p permutes S»
begin

14

lemma permutes_inj:
ing p
using perm by (auto simp: permutes_def inj _on__def)

lemma permutes__image:

p 8 =5
proof (rule set_eql)
fix z
show «x € p ‘S +— 2z S
proof

assume <z € p ‘S
then obtain y where <y € S» <(py = >
by blast
with perm show «x € S)
by (cases <y = x») (auto simp add: permutes def)
next
assume <z € S»
with perm obtain y where <y € S) <(p y =
by (metis permutes_def)
then show <z € p * S»
by blast
qed
qed

lemma permutes not_in:
g S=pr=uv
using perm by (auto simp: permutes__def)

lemma permutes image complement:
p (=8 =-5
by (auto simp add: permutes_not_in)

lemma permutes in__image:
preS+—zes
using permutes__image permutes_inj by (auto dest: inj_image_mem__iff)

lemma permutes_suryj:
surj p»
proof —
have <p ‘(SU—-S)=p‘SUp ‘(=9
by (rule image_Un)
then show ?thesis
by (simp add: permutes_image permutes_image__complement)
qed

lemma permutes_inv_o:

shows p o inv p = id
and invp o p = id

15

using permutes_inj permutes_surj
unfolding inj iff [symmetric] suri_iff [symmetric] by auto

lemma permutes_inverses:
shows p (invp z) =z
and invp (pz) =2
using permutes_inv_o [unfolded fun_eq iff o_def] by auto

lemma permutes inv_eq:
U p Yy =2 > pxr =1y
by (auto simp add: permutes_inverses)

lemma permutes _inj on:
<inj_on p A»
by (rule inj _on__subset [of _ UNIV]) (auto intro: permutes_inj)

lemma permutes_ bij:
<bij p»
unfolding bij def by (metis permutes_inj permutes__suryj)

lemma permutes_imp_ bij:
<bij_betwp S S
by (simp add: bij_betw__def permutes image permutes_inj_on)

lemma permutes subset:
<p permutes T» if «S C T»
proof (rule bij _imp_permutes)
define R where <R =T — S»
with that have (T =R US> «kRN S ={}p
by auto
then have (p z = o if <z € R) for z
using that by (auto intro: permutes_not_in)
then have <p ‘R = R»
by simp
with «T = R U S) show «bij_betw p T T»
by (simp add: bij _betw_def permutes_inj_on image_Un permutes_image)
fix z
assume <z ¢ T)
with «<T = R U S) show (p z = o
by (simp add: permutes_not_in)
qed

lemma permutes imp _permutes insert:
<p permutes insert x S»
by (rule permutes _subset) auto

end

lemma permutes_id [simp]:

16

<id permutes S»
by (auto intro: bij imp_ permutes)

lemma permutes _empty [simp]:
<p permutes {} «— p = id>
proof
assume <p permutes {}
then show «p = id»
by (auto simp add: fun__eq iff permutes_not_in)
next
assume <p = id>
then show <p permutes {}»
by simp
qed

lemma permutes__sing [simp]:
<p permutes {a} <— p = id>

proof
assume perm: ¢p permutes {a}»
show <p = id»
proof
fix z

from perm have p ‘{a} = {a}
by (rule permutes_image)
with perm show «p x = id ©»
by (cases <x = a») (auto simp add: permutes_not_in)
qed
next
assume <p = id>
then show <p permutes {a}
by simp
qed

lemma permutes _univ: p permutes UNIV <— (Vy. 3lz. p x = y)
by (simp add: permutes_def)

lemma permutes _swap_id: a € S = b € S = transpose a b permutes S
by (rule bij _imp_ permutes) (auto intro: transpose__apply other)

lemma permutes_altdef: p permutes A «— bij_betwp A AN{z.px #z} C A
using permutes_not_inlof p A]
by (auto simp: permutes__imp__bij introl: bij_imp_permutes)

lemma permutes superset:
<p permutes T» if «p permutes S» <N\z. 2 € S — T = pz=n
proof —
define R U where <(R=T NS and <U =85 - T
then have <T = RU (T — Sp«S=RU U RN U ={h
by auto

17

from that <U =S — T)> have <p ‘ U = U>»

by simp
from «p permutes S» have «bij_betw p (R U U) (RU U)»

by (simp add: permutes_imp_bij «S = R U U»)
moreover have «bij betw p U U>»

using that «<U = S — T» by (simp add: bij_betw_def permutes_inj on)
ultimately have <bij betw p R R»

using <R N U = {}p «RN U = {}p by (rule bij betw_partition)
then have <p permutes R»
proof (rule bij_imp_permutes)

fix z

assume <z ¢ R»

with <R = T N S» <p permutes S»> show <p z = >

by (cases <z € S») (auto simp add: permutes _not_in that(2))

qed
then have «p permutes R U (T — S)»

by (rule permutes_subset) simp
with «T = R U (T — S)) show ?Zthesis

by simp

qed

lemma permutes_bij inv_into:
fixes A :: ‘a set
and B :: 'b set
assumes p permutes A
and bij betw f A B
shows (Az. if x € B then f (p (inv_into A f 1)) else x) permutes B
proof (rule bij _imp_permutes)
from assms have bij _betw p A A bij betw f A B bij _betw (inv_into A f) B A
by (auto simp add: permutes_imp_ bij bij _betw inv_into)
then have bij_betw (f o p o inv_into A f) B B
by (simp add: bij _betw_trans)
then show bij_betw (Az. if ¢ € B then f (p (inv_into A fz)) else z) B B
by (subst bij_betw _cong[where g=f o p o inv_into A f]) auto
next
fix =
assume z ¢ B
then show (if x € B then f (p (inv_into A f x)) else z) = x by auto
qed

lemma permutes image mset:

assumes p permutes A

shows image mset p (mset_set A) = mset_set A

using assms by (metis image _mset_mset_set bij _betw__imp__inj _on permutes _imp_ bij
permutes__image)

lemma permutes implies _image mset_eq:

assumes p permutes A Ax. v € A = fz=f" (px)
shows image_mset f' (mset_set A) = image_mset f (mset_set A)

18

proof —
have fz = [/ (p z) if x €# mset_set A for x
using assms(2)[of z] that by (cases finite A) auto
with assms have image_mset f (mset_set A) = image_mset (f' o p) (mset_set

A)
by (auto intro!: image_mset_cong)
also have ... = image_mset f’ (image_mset p (mset_set A))
by (simp add: image__mset.compositionality)
also have ... = image_mset f’ (mset_set A)
proof —

from assms permutes__image_mset have image_mset p (msetfset A) = mset__set
A
by blast
then show #?thesis by simp
qed
finally show ?thesis ..
qed

3.3 Group properties

lemma permutes_compose: p permutes S => q permutes S => q o p permutes S
unfolding permutes def o_def by metis

lemma permutes__inv:
assumes p permutes S
shows inv p permutes S
using assms unfolding permutes def permutes_inv_eq|OF assms] by metis

lemma permutes inv__inv:

assumes p permutes S

shows inv (inv p) = p

unfolding fun_eq iff permutes inv_eq[OF assms| permutes_inv_eq[OF per-
mutes__inv[OF assms]

by blast

lemma permutes invl:
assumes perm: p permutes S
and inv: N\z.x € S = p' (pz) =
and outside: N\z. 2 ¢ S = p' z
shows inv p = p’
proof
show inv p z = p’' z for z
proof (cases z € S)
case True
from assms have p’ z = p’ (p (inv p z))
by (simp add: permutes_inverses)
also from permutes inv[OF perm] True have ... = inv p
by (subst inv) (simp__all add: permutes_in__image)
finally show ?thesis ..

] 8

19

next
case Fualse
with permutes inv[OF perm] show ?thesis
by (simp__all add: outside permutes_not_in)
qed
qed

lemma permutes _vimage: f permutes A — f — A=A
by (simp add: bij _vimage__eq inv_image permutes__bij permutes_image| OF per-
mutes__inv))

3.4 Restricting a permutation to a subset

definition restrict _id :: ('a = ’a) = 'a set = 'a = 'a
where restrict_id f A = (Az. if © € A then f z else x)

lemma restrict_id__cong [cong]:
assumes \z. 2 € A = fe =gz A= DB
shows restrict_id f A = restrict_id g B
using assms unfolding restrict _id_def by auto

lemma restrict_id_cong”:
assumes rt € A = fr=9gz A=0D
shows restrict_id f A x = restrict_id g B x
using assms unfolding restrict id_def by auto

lemma restrict_id__simps [simp):
x € A= restrict_idfAxz=fz
x ¢ A= restrict idfAzr=z
by (auto simp: restrict_id__def)

lemma b7j betw restrict_id:
assumes bij betw fA A ACB
shows bij betw (restrict_id f A) B B
proof —
have bij_betw (restrict_id f A) (AU (B — A)) (AU (B — A))
unfolding restrict_id_def
by (rule bij _betw disjoint_Un) (use assms in <auto intro: bij betwl»)
also have AU (B— A) =B
using assms(2) by blast
finally show ?thesis .
qed

lemma permutes restrict_id:
assumes bij betw f A A
shows restrict_id f A permutes A
by (intro bij _imp_ permutes bij betw _restrict_id assms) auto

20

3.5 Mapping a permutation

definition map_permutation :: 'a set = ('a = 'b) = (‘a = 'a) = 'b = 'b where
map__permutation A fp = restrict_id (f o p o inv_into A f) (f ¢ A)

lemma map_ permutation__cong_ strong:
assumes A= BA\z.z € A= fz=gazN\z.z € A= pr=qz
assumes p ‘A C Ainj onfA
shows map_permutation A fp = map__permutation B g q
proof —
have fg: fr=gyifz € Az =yforzy
using assms(2) that by simp
have p¢: pr=quyifz € Az =yforzy
using assms(3) that by simp
have p: px € Aif x € A for z
using assms(4) that by blast
have inv: inv_into A fx = inv_into Bgyifx € f*Ax =y forxzy
proof —
from that obtain v where u: v € A x = fu
by blast
have inv_into A f (f u) = inv_into A g (f u)
using <inj_on f A> u(1) by (metis assms(2) inj_on__cong inv_into_f f)
thus ?thesis
using u <x = y (A = B> by simp
qed

show ?thesis
unfolding map permutation_ def o__def
by (intro restrict_id_cong image__cong fg pq inv_into_into p inv) (auto simp:
(A= B»)
qed

lemma map__permutation_ cong:
assumes inj on f A p permutes A
assumes A=BA\z.z € A= fz=gzN\e.z € A= pr=qz
shows map_ permutation A f p = map__permutation B g q
proof (z'ntro map__permutation__cong_ strong assms)
show p ‘A C A
using <p permutes Ay by (simp add: permutes_image)
qed auto

lemma inv_into_id [simp]: © € A = inv_into A idz =«
by (metis [_inv_into_fid_apply image eql)

lemma inv_into_ident [simp]: x € A = inv_into A (A\z. z) v =
by (metis f_inv_into_f image_eql)

lemma map__permutation_id [simp]: p permutes A = map__permutation A id p

=P
by (auto simp: fun__eq iff map_ permutation__ def restrict _id__def permutes_not_in)

21

lemma map_ permutation_ident [simp]: p permutes A = map_ permutation A

(Az.z)p=7p
by (auto simp: fun__eq iff map__permutation__def restrict_id__def permutes_not_in)

lemma map__permutation_id": inj_on f A = map__permutation A fid = id
unfolding map_ permutation__def by (auto simp: restrict_id_ def fun__eq iff)

lemma map_ permutation_ident”: inj_on f A = map__permutation A f (Az. x)
= (Az. z)
unfolding map_ permutation__def by (auto simp: restrict_id_ def fun__eq iff)

lemma map_ permutation__permutes:
assumes bij betw f A B p permutes A
shows map_permutation A fp permutes B
proof (rule bij _imp_permutes)
have f A: f‘A=DB
using assms(1) by (auto simp: bij_betw def)
from assms(2) have bij betw p A A
by (simp add: permutes_imp_ bij)
show bij betw (map_permutation A fp) B B
unfolding map_ permutation_def f A
by (rule bij betw_restrict_id bij betw trans bij betw_inv_into assms(1)
permutes__imp__bij|OF assms(2)] order.refl)+
show map_permutation A fpx =z if ¢ ¢ B for z
using that unfolding map_ permutation_def f A by simp
qged

lemma map_ permutation__compose:
fixes f::'a= 'band g :: 'b = 'c
assumes bij _betw f A Binj on g B
shows map_permutation B g (map__permutation A f p) = map_ permutation

A(gof)p
proof
fixc:'c

have bij_g: bij _betw g B (g * B)
using <inj _on g B> unfolding bij betw def by blast
have [simp]: fr = fy«— 2 =yifz € Ayc Aforzy
using assms(1) that by (auto simp: bij betw def inj _on__def)
have [simp]: gz = gy+— 2z =yifz € Bye Bforzy
using assms(2) that by (auto simp: bij_betw_def inj on__def)
show map__permutation B g (map__permutation A f p) ¢ = map_permutation A
(goflpc
proof (cases ¢ € g ‘ B)
case c: True
then obtain o« where a: ¢ € A ¢ =g (f a)
using assms(1,2) unfolding bij betw_def by auto
have map__permutation B g (map_permutation A fp) ¢ = g (f (p a))
using a assms by (auto simp: map__permutation__def restrict_id__def bij _betw__def)

22

also have ... = map_ permutation A (g o f) p ¢
using a bij_betw_inv_into_left[OF bij_betw_trans|OF assms(1) bij_g]]
by (auto simp: map__permutation__def restrict _id_def bij betw_def)
finally show ?thesis .
next
case c: Fulse
thus ?thesis using assms
by (auto simp: map__permutation__def bij betw def restrict_id_ def)
qed
qed

lemma map_ permutation__compose__inv:
assumes bij betw f A B p permutes A Nz. 2 € A = g (fz) ==z
shows map_permutation B g (map__permutation A fp) = p
proof —
have inj _on g B
proof
fixxryassumez € Bye Bgx =gy
then obtain z’ y’ where x: ' € Ay': Az =fa'y= [y’
using assms(1) unfolding bij _betw def by blast

thus z = y
using assms(3)[of x| assms(3)[of y'] <g x = g y» by simp
qed

have map_ permutation B g (map_permutation A fp) = map_permutation A (g
°of)p
by (rule map__permutation__compose) (use assms <inj_on g By in auto)
also have ... = map_ permutation A id p
by (intro map__permutation__cong assms comp_inj_on)
(use <inj_on g B> assms(1,3) in <auto simp: bij betw _def>)
also have ... = p
by (rule map__permutation_id) fact
finally show ?thesis .
qed

lemma map_ permutation__apply:
assumes inj on fAx € A
shows map_permutation A fh (fz) = f (h x)
using assms by (auto simp: map__permutation_def inj on_ def)

lemma map__permutation__compose’:
fixes f : 'a = 'b
assumes inj_on f A q permutes A
shows map_ permutation A f (p o q¢) = map__permutation A fp o map__permutation

Afq

proof
fix y = b
show map__permutation A f (p o q) y = (map__permutation A fp o map__permutation

Afqy

23

proof (cases y € f < A)
case True
then obtain z where z: z € A y = fx
by blast
have map__permutation A f (po q) y = f (p (¢ z))
unfolding z(2) by (subst map__permutation__apply) (use assms z in auto)
also have ... = (map_ permutation A fp o map_permutation A f q) y
unfolding z o__apply using x(1) assms
by (simp add: map__permutation__apply permutes_in__image)
finally show ?thesis .
next
case Fulse
thus ?thesis
using Fualse by (simp add: map__permutation__def)
qed
qed

lemma map_ permutation__transpose:
assumes inj_onfAac Abe A
shows map_ permutation A f (Transposition.transpose a b) = Transposition.transpose
(f a) (£ D)
proof
fix y:: b
show map__permutation A f (Transposition.transpose a b) y = Transposition.transpose
(fa) (F0) v
proof (cases y € f © A)
case Fulse
hence map__permutation A f (Transposition.transpose a b) y = y
unfolding map_ permutation__def by (intro restrict_id_simps)
moreover have Transposition.transpose (f a) (fb) y =y
using Fualse assms by (intro transpose__apply_other) auto
ultimately show ?thesis
by simp
next
case True
then obtain z where z: x € A y = fx
by blast
have map_permutation A f (Transposition.transpose a b) y =
f (Transposition.transpose a b x)
unfolding z by (subst map__permutation__apply) (use x assms in auto)
also have ... = Transposition.transpose (f a) (f b) y
using assms(2,3) «
by (auto simp: Transposition.transpose__def inj_on__eq iff[OF assms(1)])
finally show ?thesis .
qed
qed

lemma map__permutation__permutes_ iff:
assumes bij betw fABp ‘ACANz.2¢ A= pr==zx

24

shows map_ permutation A fp permutes B <— p permutes A
proof
assume p permutes A
thus map_permutation A f p permutes B
by (intro map_permutation_permutes assms)
next
assume *: map_ permutation A f p permutes B
hence map_permutation B (inv_into A f) (map_permutation A f p) permutes
A
by (rule map__permutation__permutes|OF bij _betw__inv_into[OF assms(1)]])
also have map_permutation B (inv_into A f) (map_permutation A fp) =
map__permutation A (inv_into A f o f) p
by (rule map__permutation__compose[OF __ inj on__inv_into))
(use assms in <auto simp: bij _betw _def)
also have ... = map_permutation A id p
unfolding o def id_ def
by (rule sym, intro map__permutation__cong_strong inv_into_f _f[symmetric]
assms(2) bij_betw_imp_inj on[OF assms(1)]) auto
also have ... = p
unfolding map_permutation__def using assms(3)
by (auto simp: restrict_id_def fun__eq iff split: if _splits)
finally show p permutes A .
qed

lemma bij betw permutations:
assumes bij betw f A B
shows bij betw (\r z. if x € B then f (7 (inv_into A fx)) else x)
{m. ™ permutes A} {m. ® permutes B} (is bij_betw ?f)
proof —
let 29 = (A\r z. if £ € A then inv_into A f (7 (f z)) else)
show ?thesis
proof (rule bij_betw_byWitness [of _ ?g], goal__cases)
case 3
show ?case using permutes_bij inv_into[OF __ assms| by auto
next
case 4
have bij_inv: bij_betw (inv_into A f) B A by (intro bij_betw__inv_into assms)
{
fix m assume 7 permutes B
from permutes_bij_inv_into[OF this bij inv] and assms
have (Az. if x € A then inv_into A f (7 (f z)) else z) permutes A
by (simp add: inv_into_inv_into__eq cong: if _cong)
}
from this show ?Zcase by (auto simp: permutes inv)
next
case |
thus ?case using assms
by (auto simp: fun__eq iff permutes_not_in permutes in__image bij_betw_inv_into_left
dest: bij_betwE)

25

next
case 2
moreover have bij betw (inv_into A f) B A
by (intro bij _betw inv_into assms)
ultimately show ?case using assms
by (auto simp: fun__eq iff permutes_not_in permutes_in__image bij _betw_inv_into_ right

dest: bij _betwE)
qed
qed

lemma bij betw derangements:
assumes bij betw f A B
shows bij betw (Am z. if ¢ € B then f (7 (inv_into A fx)) else x)
{m. m permutes A N (Vz€A. 7 © # z)} {m. m permutes B A (Vz€B. 7 &
)}

(is bij_betw 2f)
proof —
let ?2g = (A z. if v € A then inv_into A f (7 (fz)) else x)
show ?thesis
proof (rule bij_betw__byWitness [of _ ?g], goal__cases)
case 3
have ?f m © # x if ® permutes A N\o. 2 € A— nmzx # 2z € Bforrx
using that and assms by (metis bij _betwE bij _betw imp_inj on bij betw_imp_ surj on
inv_into_f_finv_into_into permutes_imp_ bij)
with permutes_bij_inv_into[OF __ assms] show ?Zcase by auto
next
case 4
have bij_inv: bij_betw (inv_into A f) B A by (intro bij_betw_inv_into assms)
have ?g © permutes A if m permutes B for w
using permutes _bij _inv_into[OF that bij _inv] and assms
by (simp add: inv_into_inv_into__eq cong: if _cong)
moreover have g m z # z if © permutes B N\t. x € B= nax#zz€ A
for 7 z
using that and assms by (metis bij _betwE bij _betw_imp_surj on f_inv_into_f
permutes__imp__bij)
ultimately show ?case by auto
next
case 1
thus ?case using assms
by (force simp: fun__eq iff permutes _not_in permutes_in_image bij betw inv_into_left
dest: bij_betwE)
next
case 2
moreover have bij betw (inv_into A f) B A
by (intro bij _betw_inv_into assms)
ultimately show ?case using assms
by (force simp: fun__eq iff permutes_not_in permutes_in_image bij betw _inv_into_right

26

dest: bij _betwE)
qed
qed

3.6 The number of permutations on a finite set

lemma permutes insert lemma:

assumes p permutes (insert a S)

shows transpose a (p a) o p permutes S
proof (rule permutes_superset[where S = insert a S))

show Transposition.transpose a (p a) o p permutes insert a S

by (meson assms insertll permutes__compose permutes__in__image permutes_swap__id)
qged auto

lemma permutes_insert: {p. p permutes (insert a S)} =
(A(b, p). transpose a b o p) ‘{(b, p). b € insert a S N\ p € {p. p permutes S}}
proof —
have p permutes insert a S +—
(3b q. p = transpose a b o q A b € insert a S A q permutes S) for p
proof —
have 3b q. p = transpose a b o ¢ A b € insert a S N q permutes S
if p: p permutes insert a S
proof —
let 2b=1pa
let ?q = transpose a (p a) o p
have *: p = transpose a ?b o ?q
by (simp add: fun__eq iff o__assoc)
have xx: ?b € insert a S
unfolding permutes_in__image[OF p| by simp
from permutes_insert_lemma|OF p| * xx show ?thesis
by blast
qed
moreover have p permutes insert a S
if bg: p = transpose a b o q b € insert a S q permutes S for b ¢
proof —
from permutes__subset|OF bq(8), of insert a S| have ¢: q permutes insert a S
by auto
have a: a € insert a S
by simp
from bq(1) permutes_compose[OF q permutes_swap_id[OF a bq(2)]] show
Zthesis
by simp
qed
ultimately show ?thesis by blast
qed
then show ?thesis by auto
qed

lemma card__permutations:

27

assumes card S = n
and finite S
shows card {p. p permutes S} = fact n
using assms(2,1)
proof (induct arbitrary: n)
case empty
then show ?case by simp
next
case (insert z F)
{
fix n
assume card_insert: card (insert t F) = n
let 22F = {p. p permutes insert = F'}
let ?pF = {p. p permutes F}
let ?pF' = {(b, p). b € insert x F A\ p € ?pF'}
let ?2g = (A\(b, p). transpose z b o p)
have zfgpF’: ?zF = %g * ?pF’
by (rule permutes_insert[of = F])
from <z ¢ F» «finite F» card_insert have Fs: card F = n — 1
by auto
from «finite F» insert.hyps Fs have pFs: card ?pF = fact (n — 1)
by auto
then have finite ?pF
by (auto intro: card_ge_0_ finite)
with «<finite F'> card.insert_remove have pF'f: finite ?pF"’
by simp
have ginj: inj _on ?g ?pF’
proof —
{
fix bpcyq
assume bp: (b, p) € ?pF’
assume cq: (¢, q) € ?pF’
assume eq: 29 (b, p) = %9 (¢, q)
from bp cq have pF: p permutes F and ¢F: q permutes F
by auto
from pF <z ¢ F» eqg have b = 29 (b, p)
by (auto simp: permutes_def fun_upd_def fun_eq iff)

also from ¢F <z ¢ F» eq have ... = %9 (¢, q) z
by (auto simp: fun_upd_ def fun__eq iff)
also from ¢F <z ¢ F» have ... = ¢

by (auto simp: permutes_def fun_upd_def fun_eq iff)
finally have b = ¢ .
then have transpose x b = transpose z ¢

by simp
with eq have transpose x b o p = transpose x b o ¢
by simp
then have transpose x b o (transpose z b o p) = transpose = b o (transpose
zboq)
by simp

28

then have p = ¢
by (simp add: o__assoc)
with <b = ¢ have (b, p) = (¢, q)
by simp
}
then show ?thesis
unfolding inj on_ def by blast

qed
from «x ¢ F) <finite F» card_insert have n # 0
by auto

then have 3m. n = Suc m
by presburger

then obtain m where n: n = Suc m
by blast

from pFs card_insert have x: card ?cF = fact n
unfolding zfgpF’ card__image[OF ginj]
using <finite F» <finite ?pF>
by (simp only: Collect_case_prod Collect _mem__eq card__cartesian__product)

(simp add: n)

from finite_imagel[OF pF'f, of ?g] have zFf: finite ?zF
by (simp add: zfgpF’' n)

from x have card ?zF = fact n
unfolding zFf by blast

}

with insert show ?case by simp
qged

lemma finite permutations:
assumes finite S
shows finite {p. p permutes S}
using card_permutations|OF refl assms] by (auto intro: card_ge_0_ finite)

lemma permutes_doubleton_iff: f permutes {a, b} +— f = id V f = Transposi-
tion.transpose a b
proof (cases a = b)
case Fulse
have {id, Transposition.transpose a b} C {f. f permutes {a, b}}
by (auto simp: permutes_id permutes swap_id)
moreover have id # Transposition.transpose a b
using False by (auto simp: fun__eq iff Transposition.transpose__def)
hence card {id, Transposition.transpose a b} = card {f. f permutes {a, b}}
using Fulse by (simp add: card_permutations)
ultimately have {id, Transposition.transpose a b} = {f. f permutes {a, b}}
by (intro card__subset__eq finite__permutations) auto
thus ?thesis by auto
qed auto

29

3.7 Permutations of index set for iterated operations

lemma (in comm_monoid_set) permute:
assumes p permutes S
shows FgS=F (gop) S
proof —
from «¢p permutes S» have inj p
by (rule permutes_inj)
then have inj onp S
by (auto intro: inj on__subset)
then have F g (p ‘S)=F (gop) S
by (rule reindex)
moreover from <«p permutes S> have p ‘S = S
by (rule permutes__image)
ultimately show “thesis
by simp
qed

3.8 Permutations as transposition sequences

inductive swapidseq :: nat = (‘a = 'a) = bool
where
id[simp]: swapidseq 0 id
| comp__Suc: swapidseq n p = a # b = swapidseq (Suc n) (transpose a b o p)

declare id[unfolded id_def, simp)

definition permutation p <— (3 n. swapidseq n p)

3.9 Some closure properties of the set of permutations, with
lengths

lemma permutation__id[simp]: permutation id
unfolding permutation__def by (rule exl[where z=0]) simp

declare permutation_id[unfolded id_def, simp]

lemma swapidseq swap: swapidseq (if a = b then 0 else 1) (transpose a b)
using swapidseq.simps by fastforce

lemma permutation_swap_id: permutation (transpose a b)
by (meson permutation__def swapidseq swap)

lemma swapidseq _comp__add: swapidseq n p => swapidseq m q => swapidseq (n
+m) (poq
proof (induct n p arbitrary: m q rule: swapidseq.induct)
case (id m q)
then show ?case by simp
next

30

case (comp_Sucnpabmq)
then show ?case
by (metis add__Suc comp__assoc swapidseq.comp_ Suc)
qed

lemma permutation__compose: permutation p = permutation ¢ =—> permutation

(poq
unfolding permutation__def using swapidseq _comp__add[of _ p _ q] by metis

lemma swapidseq _endswap: swapidseq n p —> a # b = swapidseq (Suc n) (p o
transpose a b)
by (induct n p rule: swapidseq.induct)
(use swapidseq swaplof a b] in <auto simp add: comp__assoc intro: swapid-
seq.comp__Sucy)

lemma swapidseq inverse__exists: swapidseq n p =—> 3 q. swapidseqn q AN p o q =
idA\ qop=id
proof (induct n p rule: swapidseq.induct)
case id
then show ?case
by (rule exl[where z=id]) simp
next
case (comp_Suc np a b)
from comp_ Suc.hyps obtain ¢ where ¢: swapidseqn qp o q =1id qo p = 1id
by blast
let ?qg = q o transpose a b
note H = comp_ Suc.hyps
from swapidseq swaplof a b] H(3) have x: swapidseq 1 (transpose a b)
by simp
from swapidseq _comp__add[OF q(1) *] have xx: swapidseq (Suc n) ?q
by simp
have transpose a b o p o 2q = transpose a b o (p o q) o transpose a b
by (simp add: o__assoc)
also have ... = id
by (simp add: ¢(2))
finally have xxx: transpose a b o p o ¢ = id .
have ?q o (transpose a b o p) = q o (transpose a b o transpose a b) o p
by (simp only: o__assoc)
then have ?¢ o (transpose a b o p) = id
by (simp add: ¢(3))
with *x xxx show ?case
by blast
qged

lemma swapidseq inverse:
assumes swapidseq n p
shows swapidseq n (inv p)
using swapidseq inverse__exists|OF assms] inv_unique__comp|of p] by auto

31

lemma permutation_inverse: permutation p = permutation (inv p)
using permutation__def swapidseq inverse by blast

3.10 Various combinations of transpositions with 2, 1 and 0
common elements

lemma swap_id_common: a # ¢ = b # ¢ =
transpose a b o transpose a ¢ = transpose b ¢ o transpose a b
by (simp add: fun__eq iff transpose__def)

lemma swap_id _common’ a # b = a # ¢ =
transpose a ¢ o transpose b ¢ = transpose b ¢ o transpose a b
by (simp add: fun__eq iff transpose__def)

lemma swap_id_independent: a # c = a #*#d = b#* ¢c = b # d =
transpose a b o transpose ¢ d = transpose ¢ d o transpose a b
by (simp add: fun__eq iff transpose__def)

3.11 The identity map only has even transposition sequences

lemma symmetry lemma:
assumes Aabcd. Pabcd = Pabdc
and N\abcd a#b= c# d =
a=cAb=dVa=cAb#dVatcANb=dVa#tcNhNatdANb#c
ANb#d=
Pabcd
shows Aabcd. a%b—c#d— Pabecd
using assms by metis

lemma swap__general:
assumes a # b c # d
shows transpose a b o transpose ¢ d = id V
Bzyz.azFalNy#Fahz#aANz#yAN
transpose a b o transpose ¢ d = transpose x y o transpose a z)
by (metis assms swap__id__common’ swap__id_independent transpose__commute
transpose__comp__involutory)

lemma swapidseq id_iff [simp]: swapidseq 0 p +— p = id
using swapidseq.cases[of 0 p p = id] by auto

lemma swapidseq cases: swapidseq n p +—
n=0Ap=idV (3abdbgm.n= Sucm A p= transpose a b o g N\ swapidseq
mqAa#b)
by (meson comp__Suc id swapidseq.cases)

lemma fizing_swapidseq decrease:
assumes swapidseq n p
and a # b
and (transpose a b o p) a = a

32

shows n # 0 A swapidseq (n — 1) (transpose a b o p)
using assms
proof (induct n arbitrary: p a b)
case ()
then show ?case
by (auto simp add: fun_upd_def)
next
case (Suc n p a b)
from Suc.prems(1) swapidseq cases[of Suc n p]
obtain ¢ d ¢ m where
cdgm: Suc n = Suc m p = transpose ¢ d o q swapidseq m gc £ dn=m
by auto
consider transpose a b o transpose ¢ d = id
|zyzwherez #ayF#azF#az#y
transpose a b o transpose ¢ d = transpose x y o transpose a z
using swap__general|OF Suc.prems(2) cdgm(4)] by metis
then show ?case
proof cases
case I
then show ?thesis
by (simp only: cdgm o__assoc) (simp add: cdgm)
next
case 2
then have az: a # 2
by simp
from 2 have «: (transpose x y o h) a = a +— h a = a for h
by (simp add: transpose__def)
from cdgm(2) have transpose a b o p = transpose a b o (transpose ¢ d o q)
by simp
then have §: transpose a b o p = transpose x y o (transpose a z o q)
by (simp add: o__assoc 2)
obtain xx: swapidseq (n — 1) (transpose a z o ¢q) and n#0
by (metis *x § Suc.hyps Suc.prems(3) az cdgm(3,5))
then have Sucn — 1 = Suc (n — 1)
by auto
with 2 show ?thesis
using *x § swapidseq.simps by blast
qed
qed

lemma swapidseq identity_even:
assumes swapidseq n (id :: 'a = 'a)
shows even n
using <swapidseq n id»
proof (induct n rule: nat_less induct)
case H: (1 n)
consider n = 0
| @ b:: ’a and ¢ m where n = Suc m id = transpose a b o q swapidseq m q a

£

33

using H(2)[unfolded swapidseq cases|[of n id]] by auto
then show ?case
proof cases
case]
then show ?thesis by presburger
next
case h: 2
from fizing swapidseq decrease|OF h(3.4), unfolded h(2)[symmetric]]
have m: m # 0 swapidseq (m — 1) (id :: 'a = 'a)
by auto
from h m have mn: m — 1 <mn
by arith
from H(1)[rule_format, OF mn m(2)] h(1) m(1) show ?thesis
by presburger
qed
qed

3.12 Therefore we have a welldefined notion of parity

definition evenperm p = even (SOME n. swapidseq n p)

lemma swapidseq even__even:
assumes m: swapidseq m p
and n: swapidseq n p
shows even m +— even n

proof —
from swapidseq inverse _exists| OF n] obtain ¢ where ¢: swapidseq n q p o q
=idqop=1id
by blast

from swapidseq identity__even|OF swapidseq comp__add[OF m (1), unfolded
q]] show ?thesis
by arith
qed

lemma evenperm__unique:
assumes swapidseq n p andeven n = b
shows evenperm p = b
by (metis evenperm__def assms somel swapidseq even__even)

3.13 And it has the expected composition properties

lemma evenperm__id[simp|: evenperm id = True
by (rule evenperm__unique[where n = 0]) simp__all

lemma evenperm__identity [simp]:
cevenperm (Az. x)»

using evenperm__id by (simp add: id_def [abs_def])

lemma evenperm__swap: evenperm (transpose a b) = (a = b)

34

by (rule evenperm__unique[where n=if a = b then 0 else 1]) (simp_all add:
swapidseq _swap)

lemma evenperm__comp:
assumes permutation p permutation q
shows evenperm (p o q) «— evenperm p = evenperm q
proof —
from assms obtain n m where n: swapidseq n p and m: swapidseq m q
unfolding permutation_def by blast
have even (n + m) +— (even n +— even m)
by arith
from evenperm__unique| OF n refl] evenperm__unique[OF m refi]
and evenperm__unique|OF swapidseq comp__add[OF n m]| this] show ?thesis
by blast
qed

lemma evenperm__inv:
assumes permutation p
shows evenperm (inv p) = evenperm p
proof —
from assms obtain n where n: swapidseq n p
unfolding permutation_def by blast
show ?thesis
by (rule evenperm__unique[OF swapidseq inverse[OF n] evenperm__unique| OF
n refl, symmetric]|)
qged

3.14 A more abstract characterization of permutations

lemma permutation_ bijective:
assumes permutation p
shows bij p
by (meson assms o__bij permutation_def swapidseq inverse__exists)

lemma permutation_ finite_ support:
assumes permutation p
shows finite {z. p x # =}
proof —
from assms obtain n where swapidseq n p
unfolding permutation_def by blast
then show ?thesis
proof (induct n p rule: swapidseq.induct)
case id
then show ?case by simp
next
case (comp_Suc n p ab)
let 2S = insert a (insert b {z. p © # z})
from comp_Suc.hyps(2) have *: finite 25
by simp

35

from <a # by have xx: {z. (transpose a b o p) x # z} C ¢S
by auto
show “case
by (rule finite_subset[OF x x|)
qed
qed

lemma permutation__lemma:
assumes finite S
and bij p
andVz. 2 ¢S —pzr==z
shows permutation p
using assms
proof (induct S arbitrary: p rule: finite_induct)
case empty
then show ?case
by simp
next
case (insert a F p)
let ?r = transpose a (p a) o p
let ?q = transpose a (p a) o ?r
have x: ra =a
by simp
from insert « have xx: Vz.z ¢ F — %rz =z
by (metis bij_pointE comp__apply id__apply insert_iff swap__apply(3))
have bij 7r
using insert by (simp add: bij _comp)
have permutation ?r
by (rule insert(3)[OF <bij ?ry sx])
then have permutation ?q
by (simp add: permutation__compose permutation__swap__id)
then show ?case
by (simp add: o__assoc)
qed

lemma permautation: permutation p +— bij p A\ finite {z. p © # =}
using permutation__bijective permutation_ finite_support permutation_lemma by
auto

lemma permutation__inverse__works:
assumes permutation p
shows inv p o p = id
and p o invp = id
using permutation_bijective [OF assms| by (auto simp: bij _def inj _iff surj iff)

lemma permutation__inverse__compose:
assumes p: permutation p
and q: permutation q
shows inv (p o ¢) = inv g o inv p

36

by (simp add: o_inv_distrib p permutation_ bijective q)

3.15 Relation to permutes

lemma permutes imp_ permutation:
<permutation py if <finite S» «p permutes S»
proof —
from <p permutes S» have {z. p z # z} C S
by (auto dest: permutes_not_in)
then have «finite {z. p = # z}
using «finite S» by (rule finite_subset)
moreover from («p permutes S» have <bij p
by (auto dest: permutes_bij)
ultimately show ?thesis
by (simp add: permutation)
qed

lemma permutation__permutesk:
assumes <permutation p»
obtains S where «(finite S» <p permutes S»
proof —
from assms have fin: <finite {z. p x # =}
by (simp add: permutation)
from assms have «bij p»
by (simp add: permutation)
also have <UNIV = {z.pz # 2z} U {z. pz =z}
by auto
finally have <bij_betw p {z. p & # z} {z. p z # a}
by (rule bij _betw _partition) (auto simp add: bij betw _fizpoints)
then have <p permutes {z. p x # z}>
by (auto intro: bij imp_ permutes)
with fin show thesis ..
qed

lemma permutation_permutes: permutation p <— (3.S. finite S A p permutes S)
by (auto elim: permutation_permutesE intro: permutes_imp__permutation)

3.16 Sign of a permutation

definition sign :: <('a = ‘a) = int» — TODO: prefer less generic name
where <sign p = (if evenperm p then 1 else — 1)»

lemma sign__cases [case_names even odd):
obtains <sign p = 1> | <sign p = — 1»

by (cases <evenperm py) (simp__all add: sign__def)

lemma sign_nz [simp]: sign p # 0
by (cases p rule: sign__cases) simp__all

lemma sign_id [simp]: sign id = 1

37

by (simp add: sign__def)

lemma sign__identity [simp]:
<sign (Az. z) = 1»
by (simp add: sign__def)

lemma sign__inverse: permutation p = sign (inv p) = sign p
by (simp add: sign__def evenperm__inv)

lemma sign__compose: permutation p = permutation ¢ = sign (p o q) = sign
D * sign q
by (simp add: sign__def evenperm__comp)

lemma sign_ swap__id: sign (transpose a b) = (if a = b then 1 else — 1)
by (simp add: sign__ def evenperm__swap)

lemma sign__idempotent [simp): sign p x sign p = 1
by (simp add: sign__def)

lemma sign_left idempotent [simp):
<sign p * (sign p * sign q) = sign @
by (simp add: sign__def)

lemma abs_sign [simp]: |sign p| = 1
by (simp add: sign__def)

3.17 An induction principle in terms of transpositions

definition apply_transps :: (‘a x 'a) list = 'a = 'a where
apply_transps xs = foldr (o) (map (A(a,b). Transposition.transpose a b) xs) id

lemma apply transps Nil [simp]: apply_transps || = id
by (simp add: apply transps_def)

lemma apply_transps_Cons [simp]:

apply_transps (x # xs) = Transposition.transpose (fst) (snd) o apply_transps
xs

by (simp add: apply transps_def case__prod__unfold)

lemma apply_transps__append [simp]:
apply_transps (zs Q ys) = apply_transps zs o apply_transps ys
by (induction zs) auto

lemma permutation__apply_transps [simp, intro]: permutation (apply_transps xs)
proof (induction xs)

case (Cons z zs)

thus ?case

unfolding apply transps Cons by (intro permutation__compose permutation_swap__id)
qed auto

38

lemma permutes apply_transps:
assumes V (a,b)€set zs. a € ANbe A
shows apply_transps xs permutes A
using assms
proof (induction xs)
case (Cons z zs)
from Cons.prems show ?case
unfolding apply transps Cons
by (intro permutes compose permutes swap_id Cons) auto
qed (auto simp: permutes_id)

lemma permutes _induct [consumes 2, case_names id swap):
assumes p permutes S finite S
assumes P id
assumes A\abp.a€ S=be S = a#b= Pp= p permutes S
= P (Transposition.transpose a b o p)
shows Pp
using assms(2,1,4)
proof (induct S arbitrary: p rule: finite_induct)
case empty
then show ?case using assms by (auto simp: id_def)
next
case (insert z F p)
let ?r = Transposition.transpose x (p x) o p
let ?q = Transposition.transpose x (p x) o ?r
have qp: 2¢q = p
by (simp add: o__assoc)
have ?r permutes F
using permutes__insert_lemma[OF insert.prems(1)] .
have P 7r
by (rule insert(3)[OF <2r permutes F»], rule insert(5)) (auto intro: per-
mutes__subset)
show ?Zcase
proof (cases © = p)
case Fulse
have px € F
using permutes_in__image[OF <p permutes >, of x] False by auto
have P ?q
by (rule insert(5))
(use <P ?ry «<p x € F» «?r permutes F» False in <auto simp: o_ def intro:
permutes__subsety)
thus P p
by (simp add: qp)
qed (use <P ?ry in simp)
qed

lemma permutes_rev_induct[consumes 2, case_names id swap):

39

assumes finite S p permutes S
assumes P id
assumes Aabp. a€ S = be S = a#b= Pp= ppermutes S
= P (p o Transposition.transpose a b)
shows Pyp
proof —
have inv_into UNIV p permutes S
using assms by (intro permutes_inv)
from this and assms(1,2) show ?thesis
proof (induction inv_into UNIV p arbitrary: p rule: permutes_induct)
case id
hence p = id
by (metis inv_id permutes_inv_inv)
thus ?case using <P id> by (auto simp: id_def)
next
case (swap a b p p’)
have p = Transposition.transpose a b o (Transposition.transpose a b o p)
by (simp add: o_assoc)
also have ... = Transposition.transpose a b o inv_into UNIV p’
by (subst swap.hyps) auto
also have Transposition.transpose a b = inv_into UNIV (Transposition.transpose
ab)
by (simp add: inv_swap_id)
also have ... o inv_into UNIV p’ = inv_into UNIV (p’o Transposition.transpose
a b)
using swap <finite S»
by (intro permutation__inverse__compose [symmetric] permutation__swap__id
permutation__inverse)
(auto simp: permutation__permutes)
finally have p = inv (p’ o Transposition.transpose a b) .
moreover have p’ o Transposition.transpose a b permutes S
by (intro permutes__compose permutes_swap__id swap)
ultimately have x: P (p’ o Transposition.transpose a b)
by (rule swap(4))
have P (p’ o Transposition.transpose a b o Transposition.transpose a b)
by (rule assms; intro * swap permutes_compose permutes_swap__id)
also have p’ o Transposition.transpose a b o Transposition.transpose a b = p’
by (simp flip: o__assoc)
finally show ?case .
qed
qed

lemma map_ permutation__apply transps:

assumes f: inj on fAand set ts C A x A

shows map_ permutation A f (apply_transps ts) = apply_transps (map (map__prod
11) ts)

using assms(2)
proof (induction ts)

case (Cons t ts)

40

obtain a b where [simp]: t = (a, b)
by (cases t)
have map__permutation A [(apply_transps (t # ts)) =
map__permutation A f (Transposition.transpose a b o apply transps ts)
by simp
also have ... = map_permutation A f (Transposition.transpose a b) o
map__permutation A f (apply_transps ts)
by (subst map__permutation__compose’)
(use f Cons.prems in <auto introl: permutes _apply_transps»)
also have map_ permutation A f (Transposition.transpose a b) =
Transposition.transpose (f a) (f b)
by (intro map__permutation_transpose f) (use Cons.prems in auto)
also have map_permutation A f (apply_transps ts) = apply transps (map
(map_prod f f) ts)
by (intro Cons.IH) (use Cons.prems in auto)
also have Transposition.transpose (f a) (f b) o apply_transps (map (map__prod
11) ts) =
apply_transps (map (map_prod f f) (t # ts))
by simp
finally show ?case .
qed (use f in <auto simp: map__permutation_id’)

lemma permutes_from__transpositions:
assumes p permutes A finite A
shows Jus. (V(a,b)€set zs. a #b AN a€ ANbeE A) A apply_transps s = p
using assms
proof (induction rule: permutes induct)
case id
thus ?case by (intro exl[of _ []]) auto
next
case (swap a b p)
from swap.IH obtain zs where
zs: (V(a,b)€set xs. a # b AN a € AN b€ A) apply transps zs = p
by blast
thus ?Zcase
using swap.hyps by (intro exI[of __ (a,b) # xs]) auto
qged

3.18 More on the sign of permutations

lemma evenperm__apply transps_iff:
assumes V (a,b)€set xs. a # b
shows evenperm (apply_transps xs) +— even (length xs)
using assms
by (induction xs)
(simp__all add: case__prod_unfold evenperm__comp permutation__swap__id even-
perm,__swap)

41

lemma evenperm__map__permutation:
assumes f: inj _on f A and p permutes A finite A
shows evenperm (map_permutation A f p) +— evenperm p
proof —
note [simp] = inj_on_eq_iff[OF f]
obtain ts where ts: V (a, b)€set ts. a b AN a€ ANbeE A apply transps ts =
p
using permutes_from__transpositions|OF assms(2,3)] by blast
have evenperm p +— even (length ts)
by (subst ts(2) [symmetric], subst evenperm__apply transps_iff) (use ts(1) in
auto)
also have ... «— even (length (map (map_prod f f) ts))
by simp
also have ... «— evenperm (apply_transps (map (map_prod f f) ts))
by (subst evenperm__apply_transps_iff) (use ts(1) in auto)
also have apply_transps (map (map_prod f f) ts) = map__permutation A fp
unfolding ts(2)[symmetric]
by (rule map__permutation__apply_transps [symmetric]) (use fts(1) in auto)
finally show ?thesis ..
qed

lemma sign_map_permutation:
assumes inj _on f A p permutes A finite A
shows sign (map_permutation A f p) = sign p
unfolding sign_ def by (subst evenperm__map__permutation) (use assms in auto)

Sometimes it can be useful to consider the sign of a function that is not
a permutation in the Isabelle/HOL sense, but its restriction to some finite
subset is.

definition sign_on :: ‘a set = (‘a = 'a) = int
where sign_on A f = sign (restrict_id f A)

lemma sign_on__cong [cong]:
assumes A= BANr.z € A= fz=guz
shows sign_on A f = sign_on B g
unfolding sign__on__def using assms
by (intro arg_conglof __ __ sign] restrict_id_cong)

lemma sign__on__permutes:
assumes f permutes A A C B
shows sign_on B f = sign f
proof —
have f: f permutes B
using assms permutes_subset by blast
have sign_on B f = sign (restrict_id f B)
by (simp add: sign_on__def)
also have restrict_id f B = f
using f by (auto simp: fun__eq iff permutes_not_in restrict _id_def)
finally show ?thesis .

42

qed

lemma sign__on__id [simp]: sign_on A id = 1
by (subst sign__on_permutes[of _ A]) auto

lemma sign__on_ident [simp]: sign_on A (A\z. z) = 1
using sign_on_id[of A] unfolding id_ def by simp

lemma sign_on_ transpose:
assumes a € Abe Aa#b
shows sign_on A (Transposition.transpose a b) = —1
by (subst sign__on__permutes[of __ A])
(use assms in <auto simp: permutes_swap_id sign__swap_id»)

lemma sign__on__compose:
assumes bij_betw f A A bij_betw g A A finite A
shows sign_on A (f o g) = sign_on A f * sign_on A g
proof —
define restr where restr = (\f. restrict_id f A)
have sign_on A (f o g) = sign (restr (f o g))
by (simp add: sign__on__def restr__def)
also have restr (f o g) = restr f o restr g
using assms(2) by (auto simp: restr_def fun__eq_iff bij betw _def restrict_id_def)
also have sign ... = sign (restr f) * sign (restr g) unfolding restr_def
by (rule sign_compose) (auto introl: permutes_imp_permutation[of A] per-
mutes__restrict _id assms)
also have ... = sign_on A f % sign_on A g
by (simp add: sign__on__def restr__def)
finally show ?thesis .
qed

3.19 Transpositions of adjacent elements

We have shown above that every permutation can be written as a product
of transpositions. We will now furthermore show that any transposition
of successive natural numbers {m,...,n} can be written as a product of
transpositions of adjacent elements, i.e. transpositions of the form i < i+ 1.

function adj transp_seq :: nat = nat = nat list where
adj _transp_seq a b =
(if a > b then []
else if b = a + 1 then [d]
else a # adj_transp_seq (a+1) b Q [a])
by auto
termination by (relation measure (A(a,b). b — a)) auto

lemmas [simp del] = adj_transp__seq.simps

lemma length__adj transp_seq:

43

a < b = length (adj_transp_seq a b) = 2 x (b — a) — 1
by (induction a b rule: adj_transp__seq.induct; subst adj transp__seq.simps) auto

definition apply adj transps :: nat list = nat = nat
where apply adj transps xs = foldl (o) id (map (Az. Transposition.transpose
(z+1)) xs)

lemma apply_adj transps_auz:
f o foldl (o) g (map (Azx. Transposition.transpose x (Suc x)) zs) =
foldl (o) (f o g) (map (Az. Transposition.transpose z (Suc x)) xs
by (induction zs arbitrary: f g) (auto simp: o__assoc)

lemma apply adj_transps_Nil [simp]: apply_adj_transps || = id

and apply_adj_transps_Cons [simp]:

apply_adj_transps (x # xzs) = Transposition.transpose x (z+1) o ap-

ply__adj transps xs

and apply adj transps_snoc [simp]:

apply__adj_transps (zs Q [z]) = apply__adj_transps zs o Transposition.transpose

z (z+1)

by (simp__all add: apply__adj transps_def apply__adj_transps_aux)

lemma adj transp seq correct:
assumes a < b
shows apply_adj transps (adj_transp_seq a b) = Transposition.transpose a b
using assms
proof (induction a b rule: adj transp__seq.induct)
case (1 a b)
show ?Zcase
proof (cases b= a + 1)
case True
thus ?thesis
by (subst adj_transp__seq.simps) (auto simp: o__def Transposition.transpose__def
apply_adj_transps_def)
next
case False
hence apply adj transps (adj_transp_seq a b) =
Transposition.transpose a (Suc a) o Transposition.transpose (Suc a) b o
Transposition.transpose a (Suc a)
using 1 by (subst adj_transp__seq.simps)
(simp add: o_assoc swap__id__common swap__id_common' id_def
o__def)
also have ... = Transposition.transpose a b
using False 1 by (simp add: Transposition.transpose__def fun__eq iff)
finally show ?thesis .
qed
qed

lemma permutation__apply adj _transps: permutation (apply_adj transps xs)

44

proof (induction xs)
case (Cons z zs)
have permutation (Transposition.transpose z (Suc x) o apply_adj transps xs)
by (intro permutation__compose permutation__swap__id Cons)
thus ?case by (simp add: o__def)
qed auto

lemma permutes apply adj transps:
assumes Vzeset xs. v € AN Sucz € A
shows apply adj transps zs permutes A
using assms
by (induction xs) (auto intro!: permutes__compose permutes__swap__id permutes_id)

lemma set_adj transp_seq:
a < b= set (adj_transp_seq a b) = {a..<b}
by (induction a b rule: adj_transp__seq.induct, subst adj_transp__seq.simps) auto

3.20 Transferring properties of permutations along bijections

locale permutes_ bij =
fixes p:: ‘a = ‘a and A :: 'a set and B :: 'b set
fixes f::'a= 'band f':: b= "a
fixes p’:: b= 'b
defines p’' = (Az. if x € B then f (p (f' z)) else x)
assumes permutes_p: p permutes A
assumes bij f: bij betw f A B
assumes ' frx e A= f'(fz)=1=x
begin

lemma bij_f": bij betw f' B A
using bij _f f'_f by (auto simp: bij_betw_def) (auto simp: inj_on_ def im-
age__image)

lemma f f"zeB=f(f'z)=1
using f’_fbij _f by (auto simp: bij betw _def)

lemma f in B:x € A= fx € B
using bij_f by (auto simp: bij betw _def)

lemma [’ in Az e B=— f'z e A
using bij_f' by (auto simp: bij_betw_def)

lemma permutes p” p’ permutes B
proof —
have p: p'z =z ifx ¢ B for z
using that by (simp add: p’_def)
have by p: bij betwp A A
using permutes_p by (simp add: permutes_imp__bij)
have bij_betw (f o po f') BB

45

by (rule bij _betw_trans bij_f bij f' bij _p)+
also have ?this < bij betw p’ B B
by (intro bij _betw_cong) (auto simp: p’_def)
finally show ?thesis
using p’ by (rule bij_imp_ permutes)
qed

lemma [eq iff [simp]: fr=fy+—z=yifz e Ayec Aforzy
using that bij_f by (auto simp: bij_betw_def inj on__def)

lemma apply transps_map_f auzx:
assumes V (a,b)€set zs. a € ANbeE Ay e B
shows apply_transps (map (map_prod f f) zs) y = f (apply_transps zs (' y))
using assms
proof (induction zs arbitrary: y)
case Nil
thus ?case by (auto simp: f_f')
next
case (Cons z s y)
from Cons.prems have apply_transps xs permutes A
by (intro permutes__apply_transps) auto
hence [simp]: apply_transps zs z € A +— z € A for 2
by (simp add: permutes_in__image)
from Cons show ?case
by (auto simp: Transposition.transpose_def f_f'f'_fcase_prod_unfold f'_in_A)
qged

lemma apply_transps _map_ f:
assumes V (a,b)eset xs. a € ANb € A
shows apply_transps (map (map_prod f f) zs) =
(Ay. if y € B then f (apply_transps xs (f' y)) else y)
proof
fix y
show apply_transps (map (map_prod f f) zs) y =
(if y € B then f (apply_transps zs (f' y)) else y)
proof (cases y € B)
case True
thus ?thesis
using apply transps _map_ [auz[OF assms| by simp
next
case Fulse
have apply__transps (map (map_prod f f) zs) permutes B
using assms by (intro permutes__apply_transps) (auto simp: case__prod__unfold
f_in_B)
with Fualse have apply_transps (map (map_prod f f) zs) y = y
by (intro permutes_not_in)
with Fualse show ?thesis
by simp
qed

46

qed

end

locale permutes_bij finite = permutes_bij +
assumes finite_A: finite A
begin

lemma evenperm_p’ iff: evenperm p’ <— evenperm p
proof —
obtain xzs where zs: V(a,b)€set xs. a € ANbE AN a+#bapply transps xs =
p
using permutes_from__transpositions|OF permutes_p finite_A] by blast
have evenperm p +— evenperm (apply_transps xs)
using zs by simp
also have ... «— cven (length zs)
using zs by (intro evenperm__apply transps iff) auto
also have ... «— even (length (map (map_prod f f) zs))
by simp
also have ... «— evenperm (apply_transps (map (map_prod f f) xs)) using zs
by (intro evenperm__apply_transps__iff [symmetric]) (auto simp: case__prod__unfold)
also have apply_transps (map (map_prod f f) zs) = p’
using zs unfolding p’_def by (subst apply_transps_map_f) auto
finally show ?thesis ..
qged

lemma sign_p': sign p’ = sign p
by (auto simp: sign__def evenperm_p’_iff)

end

3.21 Permuting a list

This function permutes a list by applying a permutation to the indices.

definition permute_list :: (nat = nat) = 'a list = 'a list
where permute_list f s = map (Mi. zs ! (f 7)) [0..<length xs]

lemma permute_list_map:
assumes | permutes {..<length zs}
shows permute_list f (map g xs) = map g (permute_list f xs)
using permutes_in__image[OF assms| by (auto simp: permute_list_def)

lemma permute_ list_nth:
assumes | permutes {..<length zs} i < length zs
shows permute list fxs! i = xs! fi
using permutes_in__image[OF assms(1)] assms(2)
by (simp add: permute_list_def)

47

lemma permute_list_Nil [simp]: permute_list f [| = ||
by (simp add: permute_list _def)

lemma length _permute_list [simp]: length (permute_list f xs) = length s
by (simp add: permute_list_def)

lemma permute_list__compose:
assumes g permutes {..<length zs}
shows permute_list (f o g) zs = permute_list g (permute_list f xs)
using assms| THEN permutes_in__image] by (auto simp add: permute_list_def)

lemma permute_list _ident [simp]: permute_list (A\x. z) zs = s
by (simp add: permute_list _def map_nth)

lemma permute_list_id [simp]: permute_list id s = xs
by (simp add: id_ def)

lemma mset_permute_list [simp]:
fixes zs :: ‘a list
assumes f permutes {..<length xs}
shows mset (permute_list f xs) = mset s
proof (rule multiset _eqI)
fix y:: 'a
from assms have [simp|: f z < length s +— x < length zs for z
using permutes_in__image[OF assms| by auto
have count (mset (permute_list f xs)) y = card ((Mi. zs ! fi) —*{y} N {..<length
as})
by (simp add: permute_list _def count image mset atLeastOLessThan)
also have (Ai. zs ! fi) —{y} N {.<length xs} = f —{i. i < length xs \ y =

xs ! i}
by auto
also from assms have card ... = card {i. i < length zs N y = zs ! i}
by (intro card_vimage__inj) (auto simp: permutes_inj permutes__surj)
also have ... = count (mset zs) y

by (simp add: count_mset count_list _eq length_ filter length_ filter _conv__card)
finally show count (mset (permute_list f xs)) y = count (mset zs) y
by simp
qged

lemma set_permute_list [simp]:
assumes f permutes {..<length xs}
shows set (permute_list f xs) = set s
by (rule mset_eq_setD[OF mset_permute_list]) fact

lemma distinct_permute_list [simp]:
assumes | permutes {..<length zs}
shows distinct (permute_list f xs) = distinct s
by (simp add: distinct__count__atmost_1 assms)

48

lemma permute_list_ zip:
assumes f permutes A A = {..<length zs}
assumes [simp|: length zs = length ys

shows permute_list f (zip xs ys) = zip (permute_list f xs) (permute_list f ys)
proof —

from permutes in_image[OF assms(1)] assms(2) have x: f i < length ys +—
i < length ys for i
by simp

have permute_list f (zip xs ys) = map (Ni. zip xs ys | f 1) [0..<length ys]
by (simp__all add: permute_list_def zip__map_map)
ys])

also have ... = map (A(z, y). (zs! fz, ys ! fy)) (zip [0..<length ys] [0..<length
by (intro nth__equalityl) (simp__all add: *)
also have ..

= zip (permute_list f xs) (permute_list f ys)
by (simp__all add: permute_list_def zip_map_map)
finally show ?thesis

qed

lemma map_of permute:

assumes o permutes fst ¢ set xs

shows map_of zs o 0 = map_of (map (A(z,y). (inv o z, y)) ws)
(is _ = map_of (map ?f_))
proof

from assms have inj o surj o
by (simp__all add: permutes_inj permutes__surj)

then show (map_of zs o o) © = map_of (map ?f zs) = for z
by (induct zs) (auto simp: inv_f [surj f inv_f)
qed

lemma list_all2 _permute list iff:

list_all2 P (permute_list p xs) (permute_list p ys) «— list_all2 P xs ys»
if <p permutes {..<length xs}»

using that by (auto simp add: list_all2_iff simp flip: permute_list_zip)

3.22 More lemmas about permutations

lemma permutes in_ funpow image:
assumes f permutes Sz € §
shows (f T n)z e S

using assms by (induction n) (auto simp: permutes_in__image)
lemma permutation__ self:

assumes <permutation p»

obtains n where (n > 0> «(p

Tn)z =
proof (cases <p & = x)
case True

next

with that [of 1] show thesis by simp
case Fulse

49

from (permutation p> have «inj p
by (intro permutation_ bijective bij is_inj)
moreover from p z # > have «(p " Sucn) z # (p ~ n) o for n
proof (induction n arbitrary: x)
case 0 then show ?case by simp
next
case (Suc n)
have p (p z) # p o
proof (rule notl)
assume p (px) =px
then show Fulse using <p z # 2 «inj p» by (simp add: inj _eq)
qed
have (p 7~ Suc (Suc n)) z = (p = Suc n) (p)
by (simp add: funpow_swapl)
also have ... # (p 7" n) (p z)
by (rule Suc) fact
also have (p " n) (pz) =(p " Sucn) z
by (simp add: funpow swapl)
finally show ?case by simp
qed
then have {y. 3n. y = (p " n) 2} C{z. pz # z}
by auto
then have finite {y. In. y = (p ~ n) z}
using permutation_ finite_ support| OF assms] by (rule finite_subset)
ultimately obtain n where «n > 0> «(p " " n) z = o
by (rule funpow_inj_finite)
with that [of n] show thesis by blast
qed

The following few lemmas were contributed by Lukas Bulwahn.

lemma count_image mset__eq card_vimage:
assumes finite A
shows count (image__mset f (mset_set A)) b = card {a € A. fa = b}
using assms
proof (induct A)
case empty
show ?case by simp
next
case (insert « F)
show ?case
proof (cases fz = b)
case True
with insert.hyps
have count (image_mset f (mset_set (insert x F))) b = Suc (card {a € F. f
a=fz})
by auto
also from insert.hyps(1,2) have ... = card (insert x {a € F. fa = fz})
by simp
also from «f z = b have card (insert © {a € F. fa = fz}) = card {a € insert

50

z F. fa=0b}
by (auto intro: arg_cong[where f=card])
finally show ?thesis
using insert by auto
next
case Fulse
then have {a € F. fa = b} = {a € insert x F. f a = b}
by auto
with insert False show ?thesis
by simp
qed
qed

— Prove image__mset__eq implies _permutes ...
lemma image__mset_eq implies permutes:
fixes f : 'a = 'b
assumes finite A
and mset_eq: image__mset f (mset_set A) = image_mset f' (mset_set A)
obtains p where p permutes A and VzeA. fz = f' (p z)
proof —
from «<finite A> have [simp]: finite {a € A. fa = (b::'d)} for f b by auto
have f “A=f"‘A

proof —
from <finite A> have f ‘ A = f ¢ (set_mset (mset_set A))
by simp
also have ... = f’ ‘ set_mset (mset_set A)
by (metis mset__eq multiset.set_map)
also from «finite A> have ... = ' ‘ A
by simp
finally show ?thesis .
qed
have Vbe(f “ A). p. bij betwp {a € A. fa=10b} {a € A. f'a =10}
proof
fix b

from mset__eq have count (image_mset f (mset_set A)) b = count (image_mset
I’ (mset_set A)) b
by simp
with <finite A> have card {a € A. fa = b} = card {a € A. f' a = b}
by (simp add: count_image mset eq card_vimage)
then show Jp. bij_betw p {a€A. fa=1b} {a € A. ' a =0}
by (intro finite_same__card_bij) simp__all
qed
then have Jp. Vbef A. bij_betw (p b) {a € A. fa=10b} {a € A. f'a =0}
by (rule bchoice)
then obtain p where p: Vbef * A. bij_betw (p b) {a € A. fa=10b} {a € A. [’
a=b} ..
define p’ where p’ = (Ma. if a € A then p (f a) a else a)
have p’ permutes A
proof (rule bij _imp_permutes)

o1

have disjoint_family_on (Mi. {a € A. f"a =1}) (f © 4)
by (auto simp: disjoint_family _on_ def)
moreover
have bij_betw (Aa. p (fa) a) {a € A. fa=0b}{ac€ A. ffa=0b}ifbef A
for b
using p that by (subst bij_betw conglwhere g=p b]) auto
ultimately
have bij_betw (Aa. p (fa) a) (Jbef ‘A {a€ A fa=10}) (Jbef ‘A {ac
A f"a=0b})
by (rule bij_betw UNION__disjoint)
moreover have (|Jbef ‘A. {a€ A. fa=0b})=A
by auto
moreover from «f ‘A = f'“ A have (Ubef ‘A. {ac A fla=1b})=A
by auto
ultimately show bij betw p’ A A
unfolding p’_def by (subst bij_betw__conglwhere g=(\a. p (f a) a)]) auto
next
show A\z. 2 ¢ A= p'z =12
by (simp add: p’_def)
qed
moreover from p have VzeA. fz = f' (p’ z)
unfolding p’_def using bij betwE by fastforce
ultimately show ¢thesis ..
qed

— ... and derive the existing property:
lemma mset__eq permutation:
fixes zs ys :: 'a list
assumes mset__eq: mset xs = mset ys
obtains p where p permutes {..<length ys} permute_list p ys = xs
proof —
from mset_eq have length__eq: length xs = length ys
by (rule mset_eq_length)
have mset_set {..<length ys} = mset [0..<length ys]
by (rule mset_set_upto__eq mset_upto)
with mset_eq length__eq have image_mset (A\i. xs ! i) (mset_set {..<length ys})

image_mset (Ai. ys ! i) (mset_set {..<length ys})
by (metis map_ nth mset_map)
from image_mset_eq implies _permutes|OF __ this]
obtain p where p: p permutes {..<length ys} and Vie{..<length ys}. zs ! i =
ys ! (p i)
by auto
with length_eq have permute list p ys = zs
by (auto introl: nth__equalityl simp: permute_list_nth)
with p show thesis ..
qed

lemma permutes natset_le:

52

fixes S :: ‘a::wellorder set
assumes p permutes S
andVie S . pi<i
shows p = id
proof —
have p n = n for n
using assms
proof (induct n arbitrary: S rule: less_induct)
case (less n)
show ?Zcase
proof (cases n € 5)
case Fulse
with less(2) show %thesis
unfolding permutes def by metis
next
case True
with less(3) have pn <nVpn=n
by auto
then show ?thesis
proof
assume pn < n
with less have p (pn) =pn
by metis
with permutes inj|OF less(2)] have p n = n
unfolding inj def by blast
with <p n < n» have Fulse
by simp
then show ?thesis ..
qed
qed
qed
then show %thesis by (auto simp: fun__eq iff)
qed

lemma permutes natset_ ge:
fixes S :: ‘a::wellorder set
assumes p: p permutes S
and le:Vie S.pi >
shows p = id
proof —
have | > invp i if i € S for ¢
proof —
from that permutes__in_image| OF permutes_inv[OF p]] have inv p i € S
by simp
with le have p (inv p i) > invp i
by blast
with permutes_inverses|OF p| show %thesis
by simp
qed

93

then have VieS. invp i <1
by blast
from permutes natset le[OF permutes_inv[OF p| this] have inv p = inv id
by simp
then show ?%thesis
using p permutes_inv_inv by fastforce
qed

lemma image_inverse_permutations: {inv p |p. p permutes S} = {p. p permutes
S}

using permutes inv permutes_inv_inv by force

lemma image compose__permutations _left:
assumes ¢ permutes S
shows {q o p |p. p permutes S} = {p. p permutes S}
proof —
have Ap. p permutes S = q o p permutes S
by (simp add: assms permutes__compose)
moreover have A\z. z permutes S = Ip. £ = q o p A p permutes S
by (metz’s assms id__comp o__assoc permutes__compose permutes_inv permutesfinvfo(]))
ultimately show ?thesis
by auto
qed

lemma image_compose__permutations right:

assumes ¢ permutes S

shows {p o ¢ | p. p permutes S} = {p . p permutes S}

by (metis (no__types, opaque__lifting) assms comp__id fun.map__comp permutes__compose
permutes_inv permutes_iny_o(2))

lemma permutes_in_seg: p permutes {1 .n} = i€ {l.n} = 1 <piApi
<n
by (simp add: permutes_def) metis

lemma sum_ permutations_inverse: sum f {p. p permutes S} = sum (Ap. f(inv
p)) {p. p permutes S}
(is ?lhs = %rhs)
proof —
let 2S5 = {p . p permutes S}
have x: inj_on inv 7S
proof (auto simp add: inj on__def)
fix gr
assume q: q permutes S
and r: r permutes S
and ¢r: inv q = inv T
then have inv (inv q) = inv (inv r)
by simp
with permutes_inv_inv[OF q] permutes_inv_inv[OF r] show ¢ = r
by metis

54

qed

have xx: inv < 25 = ¢S
using image_inverse__permutations by blast

have xxx: ?rhs = sum (f o inv) 2S5
by (simp add: o_def)

from sum.reindex[OF *, of f] show ?thesis
by (simp only: xx *xx)

qed

lemma setum__permutations _compose__left:
assumes ¢: q permutes S
shows sum f {p. p permutes S} = sum (Ap. f(q o p)) {p. p permutes S}
(is ?lhs = %rhs)
proof —
let 25 = {p. p permutes S}
have *: ?rhs = sum (f o ((0) q)) %S
by (simp add: o_def)
have sx: inj_on ((o) q) ¢S
proof (auto simp add: inj_on_ def)
fix pr
assume p permutes S
and r: r permutes S
and mp: gop=gqor
then have inv gogop=invqgoqor
by (simp add: comp__assoc)
with permutes_inj[OF q, unfolded inj_iff] show p = r
by simp
qed
have ((0) q) < 95 = 25
using image__compose__permutations_left[OF ¢| by auto
with x sum.reindex|OF xx, of f] show ?thesis
by (simp only:)
qed

lemma sum__permutations__compose__right:
assumes ¢: q permutes S
shows sum f {p. p permutes S} = sum (Ap. f(p o q)) {p. p permutes S}
(is ?lhs = %rhs)
proof —
let S = {p. p permutes S}
have *: ?rhs = sum (f o (Ap. p o q)) 25
by (simp add: o__def)
have *x: inj_on (Ap. p o q) 25
proof (auto simp add: inj _on_ def)
fix pr
assume p permutes S
and r: r permutes S
and mp: pog=1ro0g(q
then have p o (¢ o inv ¢) = r o (g o inv q)

95

by (simp add: o__assoc)
with permutes surj[OF q, unfolded surj_iff] show p = r
by simp
qed
from image__compose__permutations_right[OF q] have (Ap. p o q) © 25 = ¢S
by auto
with * sum.reindex[OF xx, of f] show ?thesis
by (simp only:)
qed

lemma inv_inj on_ permutes:
<ing_on inv {p. p permutes S}
proof (intro inj _onl, unfold mem__Collect_eq)
fixpgq
assume p: p permutes S and ¢: ¢ permutes S and eq: inv p = inv q
have inv (inv p) = inv (inv q) using eq by simp

thus p = ¢
using inv_inv_eq[OF permutes_bij] p q by metis
qed

lemma permutes_pair_eq:
{(ps,s)ls.seSt={(s,invps)|s. s€ S} (is <?L = ?R)) if «p permutes S»
proof
show 7L C ?R
proof
fix z assume z € 7L
then obtain s where z: z = (p s,) and s: s € S by auto
note z
also have (p s, s) = (p s, Hilbert_ Choice.inv p (p s))
using permutes _inj [OF that] inv_f _f by auto
also have ... € ?R using s permutes_in__image[OF that] by auto
finally show z € ?R.
qed
show ?R C ?L
proof
fix z assume z € ?R
then obtain s

where z: © = (s, Hilbert_ Choice.inv p s) (is __ = (s, %ips))
and s: s € S by auto
note z

also have (s, ?ips) = (p %ips, ?ips)
using inv_f_f[OF permutes_inj[OF permutes_inv|[OF that]]]
using inv_iny__eq[OF permutes__bij|OF that]] by auto

also have ... € 7L
using s permutes_in__image[OF permutes inv|OF that]] by auto

finally show z € ?L.

qed
qed

o6

context

fixes p and n i :: nat

assumes p: <p permutes {0..<n}> and i: i <
begin

lemma permutes nat_less:
p i< m
proof —
have «?thesis +— p i € {0..<n}
by simp
also from p have <p i € {0..<n} +— i € {0..<n}p
by (rule permutes_in_image)
finally show ?thesis
using ¢ by simp
qed

lemma permutes mnat_inv_less:
inu p 1 < m)
proof —
from p have <inv p permutes {0..<n}»
by (rule permutes__inv)
then show ?thesis
using i by (rule Permutations.permutes_nat_less)
qed

end

context comm__monoid_set
begin

lemma permutes inv:
(F(As.g(ps)s)S=F(Xs.gs(invps)) S (is«?2 =)
if <p permutes S»
proof —
let 29 = Az, y). gz y
let ?ps = As. (p s, $)
let %ips = As. (s, inv p s)
have inj1: inj _on ?ps S by (rule inj_onl) auto
have inj2: inj _on %ips S by (rule inj_onl) auto
have 7l = F %9 (?ps © S)
using reindex [OF inj1, of ?g] by simp
also have %ps ‘S ={(p s, s) |s. s € S} by auto
also have ... = {(s, inv p s) |s. s € S}
unfolding permutes pair_eq [OF that] by simp
also have ... = %ips * S by auto
also have F 7g ... = ?r
using reindex [OF inj2, of ?g] by simp
finally show ?thesis.
qed

o7

end

3.23 Sum over a set of permutations (could generalize to
iteration)

lemma sum__ over_permutations_insert:
assumes [S: finite S
and aS: a ¢ S
shows sum f {p. p permutes (insert a S)} =
sum (Ab. sum (Aq. f (transpose a b o q)) {p. p permutes S}) (insert a S)
proof —
have x: Af a b. (\(b, p). f (transpose a b o p)) = f o (A(b,p). transpose a b o p)
by (simp add: fun_eq iff)
have *x: AP Q. {(a,). a € PANbe Q} =P x Q
by blast
show ?thesis
unfolding x xx sum.cartesian_ product permutes insert
proof (rule sum.reindex)
let ?f = (A(b, y). transpose a b o y)
let ?P = {p. p permutes S}
{
fixbcpyq
assume b: b € insert a S
assume c: ¢ € insert a S
assume p: p permutes S
assume q: g permutes S
assume eq: transpose a b o p = transpose a ¢ o q
from p q aS have pa: p a = a and qa: ga = a
unfolding permutes def by metis+
from eq have (transpose a b o p) a = (transpose a ¢ o q) a
by simp
then have bc: b = ¢
by (simp add: permutes_def pa ga o_def fun_upd_ def id_def
cong del: if _weak__cong split: if split_asm)
from eg[unfolded bc] have (Ap. transpose a ¢ o p) (transpose a ¢ o p) =
(Ap. transpose a ¢ o p) (transpose a ¢ o q) by simp
then have p = ¢
unfolding o assoc swap__id_idempotent by simp
with bc have b = c A p = ¢
by blast
}

then show inj_on ?f (insert a S x ¢P)
unfolding inj on_ def by clarify metis
qed
qed

o8

3.24 Constructing permutations from association lists

definition list_permutes :: (a x 'a) list = 'a set = bool
where list _permutes xs A +—
set (map fst xs) C A N
set (map snd xs) = set (map fst zs) A
distinct (map fst zs) A
distinct (map snd zs)

lemma list_permutesl [simp]:
assumes set (map fst xs) C A set (map snd xs) = set (map fst xs) distinct (map
fst xs)
shows list__permutes zs A
proof —
from assms(2,8) have distinct (map snd xs)
by (intro card__distinct) (simp__all add: distinct_card del: set_map)
with assms show ?thesis
by (simp add: list_permutes_def)
qed

definition permutation_of list :: ('a X 'a) list = 'a = 'a
where permutation_of list xs x = (case map__of xs x of None = z | Some y =
y)

lemma permutation_of list_Cons:

permutation__of list ((z, y) # xs) x' = (if x = x’ then y else permutation__of list
xs ')

by (simp add: permutation_of list_def)

fun inverse_permutation_of list :: ('a x 'a) list = 'a = 'a
where
inverse__permutation_of list [| x = z
| inverse__permutation_of list ((y, z') # xs) © =
(if x = 2’ then y else inverse_permutation__of list xs x)

declare inverse_permutation__of list.simps [simp del)

lemma inj on_map_of:
assumes distinct (map snd xs)
shows inj_on (map_of xs) (set (map fst xs))
proof (rule inj_onl)
fix zy
assume zy: T € set (map fst xs) y € set (map fst zs)
assume eq: map_of xs x = map_of xs y
from zy obtain z’ y’ where z'y": map_ of s x = Some ' map_ of zs y = Some

/

Y
by (cases map__of xs z; cases map__of xs y) (simp__all add: map__of _eq None__iff)
moreover from z'y’ have x: (z, z') € set zs (y, y') € set s
by (force dest: map_ of SomeD)+
moreover from * eq z'y’ have z’/ = v’

99

by simp
ultimately show z = y
using assms by (force simp: distinct_map dest: inj_onDlof _ _ (x,z") (y,y")])
qed

lemma inj _on_the: None ¢ A = inj_on the A
by (auto simp: inj_on__def option.the _def split: option.splits)

lemma inj _on_map_of":
assumes distinct (map snd xs)
shows inj_on (the o map_of xs) (set (map fst xs))
by (intro comp_inj _on inj_on_map_ of assms inj_on__the)
(force simp: eq_commute[of None] map__of eq None_iff)

lemma image_map_ of:
assumes distinct (map fst zs)
shows map__of zs “ set (map fst xs) = Some * set (map snd zs)
using assms by (auto simp: rev_image__eql)

lemma the Some_image [simp]: the ‘ Some ‘A = A
by (subst image__image) simp

lemma image_map_of "
assumes distinct (map fst s)
shows (the o map_of zs) * set (map fst xs) = set (map snd zs)
by (simp only: image__comp [symmetric] image_map_of assms the_Some__image)

lemma permutation_of list _permutes [simpl:
assumes list__permutes xs A
shows permutation_of list xs permutes A
(is ?f permutes _)
proof (rule permutes__subset| OF bij__imp__permutes])
from assms show set (map fst zs) C A
by (simp add: list_permutes_def)
from assms have inj _on (the o map_of xs) (set (map fst xs)) (is ?P)
by (intro inj _on_map_of’) (simp_all add: list_permutes__def)
also have 7P «— inj on ?f (set (map fst zs))
by (intro inj_on__cong)
(auto simp: permutation_of list_def map_of eq None__iff split: option.splits)
finally have bij betw ?f (set (map fst xs)) (?f ‘ set (map fst zs))
by (rule inj _on_imp_bij betw)
also from assms have ?f ‘ set (map fst xs) = (the o map_of zs) * set (map fst
xs)
by (intro image__cong refl)
(auto simp: permutation_of list_def map_of eq None__iff split: option.splits)
also from assms have ... = set (map fst xs)
by (subst image_map_of") (simp__all add: list_permutes_def)
finally show bij_betw ?f (set (map fst xs)) (set (map fst zs)) .
qed (force simp: permutation__of list_def dest!: map__of SomeD split: option.splits)+

60

lemma eval permutation_of list [simp]:
permutation_of list [| z = x
z =z’ = permutation_of list ((z',y)#xs) x =y
z # ¢’ = permutation_of _list ((z',y")#xs) © = permutation_of list xs x
by (simp__all add: permutation_of list_def)

lemma eval inverse permutation_of list [simp]:

inverse__permutation_of list [| © = x

z = ¢/ = inverse_permutation_of list ((y,x')#xs) x =y

x # ' = inverse__permutation_of list ((y',x’)#xs) © = inverse_permutation_of list
5 T

by (simp__all add: inverse _permutation__of list.simps)

lemma permutation_of list_id: © ¢ set (map fst xs) = permutation__of list xs
T =2z
by (induct xs) (auto simp: permutation_of list_Cons)

lemma permutation_of list_unique”:
distinct (map fst zs) = (z, y) € set s => permutation_of list xsx = y
by (induct xs) (force simp: permutation__of _list_Cons)+

lemma permutation_ of list__unique:
list_permutes zs A = (x, y) € set s => permutation_of list xs z = y
by (intro permutation_of list _unique’) (simp__all add: list_permutes def)

lemma inverse_permutation__of list_id:
z ¢ set (map snd xs) = inverse_permutation_of list xs © = x
by (induct zs) auto

lemma inverse_permutation_of list_unique’:

distinct (map snd xs) = (z, y) € set xs = inverse__permutation__of _list zs y
=z

by (induct xs) (force simp: inverse_permutation_of list.simps(2))+

lemma inverse_permutation__of list _unique:
list_permutes zs A = (z,y) € set xs = inverse_permutation_of list zsy = x
by (intro inverse__permutation_of list_unique’) (simp__all add: list_permutes__def)

lemma inverse_permutation__of list_correct:
fixes A :: 'a set
assumes list _permutes xs A
shows inverse_permutation_of list xs = inv (permutation_of list xs)
proof (rule ext, rule sym, subst permutes_inv__eq)
from assms show permutation_of list xs permutes A
by simp
show permutation_of list xs (z'm)ersefpermutationiofilist s a:) = g for z
proof (cases © € set (map snd xs))
case True

61

then obtain y where (y, z) € set zs by auto
with assms show ?thesis

by (simp add: inverse__permutation_of list _unique permutation_of list _unique)

next
case Fulse
with assms show ?thesis
by (auto simp: list_permutes__def inverse_permutation_of list _id permuta-
tion__of list_id)
qed
qed

end

4 Permuted Lists

theory List Permutation
imports Permutations
begin

Note that multisets already provide the notion of permutated list and hence
this theory mostly echoes material already logically present in theory Per-
mutations; it should be seldom needed.

4.1 An existing notion

abbreviation (input) perm :: <'a list = 'a list = bool> (infixr «<~~>) 50)
where (xs <~~> ys = mset xs = mset ys)

4.2 Nontrivial conclusions

proposition perm__swap:
casli = as 1 j, j:=as 1 i] <¥7> as
if <i < length xs» <j < length zs»
using that by (simp add: mset_swap)

proposition mset_le_perm__append: mset xs C#H mset ys «— (Jzs. zs Q zs
<> ys)
by (auto simp add: mset_subset_eq exists _conv ex_mset dest: sym)

proposition perm_set eq: zs <~~> ys = set xs = set ys
by (rule mset_eq setD) simp

proposition perm__ distinct_iff: zs <~~> ys = distinct xs <— distinct ys
by (rule mset_eq imp_ distinct_iff) simp

theorem eq set perm_ remdups: set xs = set ys = remdups zs <™~ > remdups

ys
by (simp add: set_eq iff mset_remdups_eq)

62

proposition perm_remdups iff eq set: remdups x <™~ > remdups y «— set x
= set y
by (simp add: set_eq iff mset_remdups_eq)

theorem permutation_ Fx bij:
assumes zs <~7> ys
shows 3 f. bij betw f {..<length zs} {..<length ys} N (Vi<length zs. xs ! i = ys
(1))
proof —
from assms have (mset xs = mset ys) <length xs = length ys»
by (auto simp add: dest: mset_eq length)
from «mset xs = mset ys» obtain p where <p permutes {..<length ys}> «per-
mute__list p ys = xs)
by (rule mset__eq permutation)
then have <bij_betw p {..<length xzs} {..<length ys}»
by (simp add: <length xs = length ys> permutes_imp__ bij)
moreover have Vi<length zs. zs ! i = ys ! (p i)
using <permute_list p ys = xs» <length xs = length ys» «(p permutes {..<length
ys}> permute_list_nth
by auto
ultimately show ?thesis
by blast
qed

proposition perm_ finite: finite {B. B <~~> A}
using mset_eq _finite by auto
4.3 Trivial conclusions:
proposition perm__empty_imp: [| <77> ys = ys = |]
by simp
This more general theorem is easier to understand!
proposition perm__length: zs <~~> ys = length xs = length ys
by (rule mset__eq_length) simp
proposition perm_sym: s <~V> ys => ys <> xs
by simp

We can insert the head anywhere in the list.

proposition perm__append__Cons: a # xs Q ys <~~> x5 Q a # ys
by simp

proposition perm__append_swap: xs Q ys <~~> ys Q zs
by simp

proposition perm__append__single: a # xs <~~> zs Q [a]
by simp

63

proposition perm_ rev: rev xs <~~> s
by simp

proposition perm__appendl: xs <~~> ys => 1 Q s <~~> [Q ys
by simp

proposition perm__append2: xs <~~> ys = s Q [<> ys @ [
by simp

proposition perm__empty [iff]: [| <~~> zs +— x5 = ||
by simp

proposition perm__empty2 [iff]: xs <~~> [| «— zs =[]
by simp

proposition perm__sing_imp: ys <~~> xs = s = [y] = ys = [y]
by simp

proposition perm__sing_eq [iff]: ys <~~> [y] +— ys = [y]
by simp

proposition perm__sing_eq2 [iff]: [y] <~~> ys +— ys = [y]
by simp

proposition perm__remove: x € set ys = ys <~~> z # removel x ys

by simp

Congruence rule

proposition perm_ remove__perm: xs <~~> ys = removel z rs <™~ > removel
z yYs
by simp

proposition remove__hd [simp]: removel z (z # xs) = xs
by simp

proposition cons _perm_imp_ perm: z # xs <VV> z # ys = xs <7> ys
by simp

proposition cons_perm__eq [simp]: z#xs <~V> z#ys «— xs <V> ys
by simp

proposition append_perm__imp_perm: zs Q xs <~~> zs Q ys = xs <> ys
by simp

proposition perm__appendl__eq [iff]: zs Q@ zs <~> 28 @Q ys «— xs <~V> ys
by simp

proposition perm__append?2_eq [iff]: zs Q@ zs <™~> ys @ zs +— x5 <~7> ys
by simp

64

end

5 Permutations of a Multiset

theory Multiset Permutations
imports

Complex__Main

Permutations
begin

lemma mset_tl: zs # [| = mset (tl xs) = mset zs — {#hd zs#}
by (cases xs) simp__all

lemma mset_set_image_inj:

assumes inj _on f A

shows mset_set (f © A) = image_mset f (mset_set A)
proof (cases finite A)

case True

from this and assms show ?thesis by (induction A) auto
qed (insert assms, simp add: finite _image_iff)

lemma multiset_remove_induct [case_names empty remove]:
assumes P {#} NA. A # {#} = (\z. z €e# A = P (A — {#z#})) = P
A
shows P A
proof (induction A rule: full_multiset induct)
case (less A)
hence [H: P B if B C# A for B using that by blast
show ?case
proof (cases A = {#})
case True
thus %thesis by (simp add: assms)
next
case Fulse
hence P (A — {#a#}) if x €# A for z
using that by (intro IH) (simp add: mset__subset__diff _self)
from Fualse and this show P A by (rule assms)
qed
qed

lemma map_ list_bind: map g (List.bind zs f) = List.bind zs (map g o f)
by (simp add: List.bind__def map__concat)

lemma mset_eq mset_set_imp__distinct:

finite A = mset_set A = mset xs = distinct s
proof (induction xs arbitrary: A)

case (Cons z zs A)

65

from Cons.prems(2) have z €# mset_set A by simp

with Cons.prems(1) have [simp]: z € A by simp

from Cons.prems have z ¢# mset_set (A — {z}) by simp

also from Cons.prems have mset_set (A — {z}) = mset_set A — {#a#}
by (subst mset_set_ Diff) simp__all

also have mset_set A = mset (z#xs) by (simp add: Cons.prems)

also have ... — {#z#} = mset zs by simp
finally have [simp]: © ¢ set xs by (simp add: in_multiset_in__set)
from Cons.prems show ?case by (auto introl: Cons.IH[of A — {x}] simp:

mset__set_ Diff)
qed simp_all

5.1 Permutations of a multiset

definition permutations_of multiset :: 'a multiset = 'a list set where
permutations_of multiset A = {xs. mset xzs = A}

lemma permutations of multisetl: mset s = A = s € permutations_of multiset
A
by (simp add: permutations_of multiset_def)

lemma permutations of multisetD: xs € permutations of multiset A = mset
zs = A
by (simp add: permutations_of multiset_def)

lemma permutations of multiset_Cons__iff:
T # xs € permutations_of multiset A <— x €# A N\ xs € permutations__of multiset
(A — {#z#})

by (auto simp: permutations_of multiset_def)

lemma permutations of multiset__empty [simpl: permutations of multiset {#}

= {r

unfolding permutations of multiset def by simp

lemma permutations of multiset _nonempty:
assumes nonempty: A # {#}
shows permutations of multiset A =
(Uzeset_mset A. ((#) z) ¢ permutations_of multiset (A — {#z#}))
(is _ = ?rhs)
proof safe
fix zs assume s € permutations_of _multiset A
hence mset_xs: mset s = A by (simp add: permutations_of multiset _def)
hence zs # [| by (auto simp: nonempty)
then obtain z zs’ where zs: xs = x # xs’ by (cases zs) simp__all
with mset_zs have z € set_mset A xs’' € permutations_of multiset (A —
{#2#})
by (auto simp: permutations_of multiset def)
with zs show zs € ?rhs by auto
qed (auto simp: permutations _of multiset_def)

66

lemma permutations _of multiset _singleton [simp|: permutations_of multiset {#x#}

= {[=]}

by (simp add: permutations__of multiset_nonempty)

lemma permutations_of multiset doubleton:

permutations__of _multiset {#z,y#} = {[=,y], [y,z]}
by (simp add: permutations_of multiset _nonempty insert__commute)

lemma rey_permutations_of _multiset [simp]:
rev ‘ permutations__of _multiset A = permutations_of multiset A
proof
have rev ‘ rev ¢ permutations _of multiset A C rev ¢ permutations of multiset
A
unfolding permutations of multiset def by auto
also have rev ‘ rev ¢ permutations_of multiset A = permutations_of multiset
A
by (simp add: image__image)
finally show permutations of multiset A C rev ‘ permutations of multiset A

next
show rev ¢ permutations of _multiset A C permutations__of multiset A
unfolding permutations of multiset def by auto
qed

lemma length_finite__permutations_of multiset:
xs € permutations_of multiset A = length xs = size A
by (auto simp: permutations_of multiset _def)

lemma permutations _of multiset lists: permutations_of multiset A C lists (set_mset
A)
by (auto simp: permutations_of multiset _def)

lemma finite _permutations of multiset [simp]: finite (permutations of multiset
)
proof (rule finite__subset)
show permutations_of multiset A C {xs. set s C set_mset A A length xs =
size A}
by (auto simp: permutations _of multiset def)
show finite {zs. set xs C set_mset A A length zs = size A}
by (rule finite_lists length_eq) simp_all
qged

lemma permutations_of multiset_not_empty [simpl: permutations of multiset
A4}
proof —
from ex_mset[of A] obtain xs where mset zs = A ..
thus ?thesis by (auto simp: permutations_of _multiset_def)
qed

67

lemma permutations of multiset_image:
permutations__of _multiset (image__mset f A) = map f ‘ permutations__of multiset
A
proof safe
fix zs assume A: zs € permutations of multiset (image_mset f A)
from ex_mset[of A] obtain ys where ys: mset ys = A ..
with A have mset zs = mset (map f ys)
by (simp add: permutations__of multiset_def)
then obtain o where o: o permutes {..<length (map f ys)} permute_list o
(map fys) = s
by (rule mset__eq permutation)
with ys have zs = map [(permute_list o ys)
by (simp add: permute_list _map)
moreover from o ys have permute list o ys € permutations_of multiset A
by (simp add: permutations_of multiset_def)
ultimately show zs € map f ‘ permutations_of multiset A by blast
qed (auto simp: permutations _of multiset_def)

5.2 Cardinality of permutations

In this section, we prove some basic facts about the number of permutations
of a multiset.

context
begin

private lemma multiset _prod_fact_insert:
(ITyeset_mset (A+{#z#}). fact (count (A+{#z#}) vy)) =
(count A + 1) = (J]yeset_mset A. fact (count A y))
proof —
have ([] yeset_mset (A+{#z#1}). fact (count (A+{#z#}) v)) =
(ITyeset_mset (A+{#az#}). (if y = x then count A © + 1 else 1) * fact
(count A y))
by (intro prod.cong) simp__all
also have ... = (count A © + 1) x ([[y€set_mset (A+{#a#}). fact (count A
y))
by (simp add: prod.distrib)
also have ([[yeset_mset (A+{#x#}). fact (count A y)) = ([yEset_mset A.
fact (count A y))
by (intro prod.mono_neutral_right) (auto simp: not_in_iff)
finally show ?thesis .
qed

private lemma multiset _prod_fact_remove:
z €# A = ([Jyeset_mset A. fact (count A y)) =
count A x = ([] yeset_mset (A—{#z#?}). fact (count (A—{#az#})
y))

using multiset_prod_ fact_insertjof A — {#z#} z] by simp

68

lemma card permutations of multiset _aux:
card (permutations_of multiset A) x (][x€set_mset A. fact (count A z)) = fact
(size A)
proof (induction A rule: multiset_remove__induct)
case (remove A)
have card (permutations_of multiset A) =
card (\Jzeset_mset A. (#) x ‘ permutations_of multiset (A — {#x#}))
by (simp add: permutations_of multiset _nonempty remove.hyps)
also have ... = (> z€set_mset A. card (permutations_of multiset (A — {#z#})))
by (subst card _UN__disjoint) (auto simp: card_image)
also have ... x ([[z€set_mset A. fact (count A z)) =
(5" zeset_mset A. card (permutations _of multiset (A — {#x#})) *
(JTyeset_mset A. fact (count A y)))
by (subst sum__distrib_right) simp__all
also have ... = () zeset_mset A. count A z fact (size A — 1))
proof (intro sum.cong refl)
fix r assume z: z €# A
have card (permutations of multiset (A — {#ax#})) * (][yEset_mset A. fact
(count A y)) =
count A x * (card (permutations_of multiset (A — {#a#})) =
(ITyeset_mset (A — {#z#}). fact (count (A — {#x#}) y))) (is ?lhs

by (subst multiset_prod_ fact _remove| OF z]) simp__all
also note remove. IH[OF z]
also from z have size (A — {#a#}) = size A — 1 by (simp add: size_ Diff _submset)
finally show ?lhs = count A z * fact (size A — 1) .
qed
also have (> z€set_mset A. count A z * fact (size A — 1)) =
size A x fact (size A — 1)
by (simp add: sum__distrib_right size_multiset__overloaded__eq)
also from remove.hyps have ... = fact (size A)
by (cases size A) auto
finally show ?Zcase .
qed simp_all

theorem card permutations of multiset:

card (permutations_of multiset A) = fact (size A) div (J[] z€set_mset A. fact
(count A x))

([Tz€set_mset A. fact (count A z) :: nat) dvd fact (size A)
by (simp__all flip: card__permutations__of multiset_auz|of A])

lemma card_permutations of multiset_insert_auz:
card (permutations__of _multiset (A + {#ax#})) * (count A z + 1) =
(size A + 1) * card (permutations_of multiset A)
proof —
note card_permutations_of _multiset _auz[of A + {#a#}]
also have fact (size (A + {#z#})) = (size A + 1) x fact (size A) by simp
also note multiset_prod_fact_insert[of A x]
also note card_permutations of multiset _auz[of A, symmetric]

69

finally have card (permutations of multiset (A + {#z#})) x (count A z + 1)
*
(ITyeset_mset A. fact (count A y)) =
(size A + 1) * card (permutations_of _multiset A) x*
(] z€set_mset A. fact (count A z)) by (simp only: mult_ac)
thus ?thesis by (subst (asm) mult_right _cancel) simp__all
qed

lemma card_permutations of multiset__remove__aux:
assumes r €# A
shows card (permutations_of multiset A) * count A = =
size A x card (permutations of multiset (A — {#z#}))
proof —
from assms have A: A — {#a#} + {#z#} = A by simp
from assms have B: size A = size (A — {#z#}) + 1
by (subst A [symmetric], subst size__union) simp
show ?thesis
using card_permutations__of multiset _insert _auz[of A — {#a#} z, unfolded
A] assms
by (simp add: B)
qed

lemma real_card__permutations of multiset _remowve:
assumes z €# A
shows real (card (permutations_of multiset (A — {#a#}))) =
real (card (permutations__of multiset A) * count A x) / real (size A)
using assms by (subst card__permutations__of _multiset_remove__auz[OF assms))
auto

lemma real card_permutations_of multiset_remove”:
assumes r €# A
shows real (card (permutations of multiset A)) =
real (size A x card (permutations of multiset (A — {#z#}))) / real
(count A x)
using assms by (subst card__permutations_of multiset_remove__auz[OF assms,
symmetric]) simp

end

5.3 Permutations of a set

definition permutations_of set :: 'a set = 'a list set where
permutations_of set A = {zs. set zs = A N distinct xs}

lemma permutations of set_altdef:
finite A => permutations_of set A = permutations_of multiset (mset_set A)

by (auto simp add: permutations of set_def permutations _of multiset _def mset_set_set

in_multiset _in_ set [symmetm’c] mset_eq _mset_set_imp__distinct)

70

lemma permutations_of setl [intro]:
assumes set xs = A distinct s
shows s € permutations of set A
using assms unfolding permutations of set def by simp

lemma permutations of setD:
assumes xs € permutations_of set A
shows set s = A distinct xs
using assms unfolding permutations of set def by simp__all

lemma permutations of set lists: permutations of set A C lists A
unfolding permutations of set def by auto

lemma permutations_of _set_empty [simp]: permutations_of _set {} = {[|}
by (auto simp: permutations_of set_def)

lemma UN__set_permutations of set [simp]:
finite A = (| xzs€permutations_of set A. set xs) = A
using finite_ distinct_list by (auto simp: permutations of set_def)

lemma permutations of set_infinite:
—finite A = permutations_of set A = {}
by (auto simp: permutations_of set_def)

lemma permutations of set__nonempty:
A # {} = permutations_of _set A =
(UzeA. (Azs. x # xs) ¢ permutations_of set (A — {z}))
by (cases finite A)
(simp__all add: permutations_of multiset_nonempty mset__set__empty_iff mset_set_ Diff

permutations _of _set_altdef permutations_of _set_infinite)

lemma permutations_of set_singleton [simp|: permutations_of set {z} = {[z]}
by (subst permutations_of set_nonempty) auto

lemma permutations of set doubleton:
z # y = permutations_of _set {z,y} = {[z,y], [y,2]}
by (subst permutations of set nonempty)
(simp__all add: insert_Diff if insert_commute)

lemma rev_permutations_of _set [simp]:
rev ‘ permutations_of set A = permutations_of set A
by (cases finite A) (simp__all add: permutations of set_altdef permutations _of set_infinite)

lemma length_finite _permutations of _set:

xs € permutations of set A = length xs = card A
by (auto simp: permutations_of set_def distinct _card)

71

lemma finite_permutations_of set [simp]: finite (permutations_of set A)
by (cases finite A) (simp__all add: permutations of _set_infinite permutations_of set_ altdef)

lemma permutations_of _set_empty_iff [simp]:
permutations__of _set A = {} «— —finite A
unfolding permutations of set def using finite distinct_list[of A] by auto

lemma card_permutations of _set [simp]:

finite A = card (permutations of set A) = fact (card A)

by (simp add: permutations_of _set_altdef card_permutations_of multiset del:
One_nat__def)

lemma permutations of set_image_ inj:
assumes inj: inj_on f A
shows permutations_of _set (f * A) = map f * permutations_of _set A
by (cases finite A)
(simp__all add: permutations_of set_infinite permutations of _set altdef
permutations__of multiset__image mset_set image_inj inj
finite__image__iff)

lemma permutations of set_image_permutes:
o permutes A = map o ‘ permutations_of set A = permutations_of set A
by (subst permutations_of set_image_inj [symmetric])
(simp__all add: permutes_inj _on permutes_image)

5.4 Code generation

First, we give code an implementation for permutations of lists.

declare length__removel [termination__simp]

fun permutations _of list_impl where
permutations__of _list_impl s = (if xs = [] then [[]] else
List.bind (remdups zs) (Az. map ((#)) (permutations_of list_impl (removel

z 5))))

fun permutations of list_impl auxr where
permutations__of _list_impl_auzx acc xs = (if xs = [] then [acc] else
List.bind (remdups xs) (A\z. permutations_of list_impl_auz (z#acc) (removel

2 25))

declare permutations_of list_impl_auzx.simps [simp del]
declare permutations_of _list_impl.simps [simp del]

lemma permutations_of list _impl Nil [simp]:
permutations_of list_impl [| = [[]]

by (simp add: permutations_of list_impl.simps)

lemma permutations_of list _impl_nonempty:
xs # [| = permutations_of list_impl xs =

72

List.bind (remdups xs) (Az. map ((#) z) (permutations_of list_impl (removel

2 15))

by (subst permutations_of list_impl.simps) simp__all

lemma set__permutations_of list_impl:
set (permutations of list _impl xs) = permutations _of multiset (mset xs)
by (induction xs rule: permutations_of list_impl.induct)
(subst permutations of list_impl.simps,
simp__all add: permutations__of _multiset_nonempty set_list_bind)

lemma distinct__permutations_of list_impl:
distinct (permutations_of _list_impl xs)
by (induction zs rule: permutations_of list_impl.induct,
subst permutations__of list _impl.simps)
(auto introl: distinct_list_bind simp: distinct_map o__def disjoint_family_on__def)

lemma permutations of list_impl_auz_correct’:
permutations__of list_impl _aux acc rs =
map (Azs. rev s Q acc) (permutations of list_impl xs)
by (induction acc xs rule: permutations_of list _impl auz.induct,
subst permutations__of _list_impl_aux.simps, subst permutations__of _list_impl.simps)
(auto simp: map_list_bind introl: list_bind__cong)

lemma permutations of list_impl aux_correct:
permutations__of list_impl_auz [s = map rev (permutations_of list_impl xs)
by (simp add: permutations_of list _impl auz_correct’)

lemma distinct__permutations_of list _impl _auz:
distinct (permutations_of list_impl_auz acc zs)
by (simp add: permutations of list _impl_auz_ correct’ distinct_map
distinct_permutations__of _list_impl inj_on__def)

lemma set_permutations of list _impl auz:
set (permutations_of list _impl _auz [| xs) = permutations of multiset (mset
xs)
by (simp add: permutations_of _list_impl_aux_correct set_permutations_of list_impl)

declare set_permutations_of _list_impl_aux [symmetric, code]

value [code] permutations_of multiset {#1,2,3,/:int#}

Now we turn to permutations of sets. We define an auxiliary version with
an accumulator to avoid having to map over the results.

function permutations_of set_auz where
permutations _of set_auxr acc A =
(if —finite A then {} else if A = {} then {acc} else
(U z€A. permutations _of set_aux (x#acc) (A — {z})))
by auto
termination by (relation Wellfounded.measure (card o snd)) (simp__all add: card__gt_ 0 _iff)

73

lemma permutations of set auzx_altdef:
permutations_of _set _auzx acc A = (Axs. rev xs Q acc) ‘ permutations of set A
proof (cases finite A)
assume finite A
thus ?thesis
proof (induction A arbitrary: acc rule: finite_psubset _induct)
case (psubset A acc)
show “case
proof (cases A = {})
case Fulse
note [simp del] = permutations_of set _aux.simps
from psubset.hyps False
have permutations of set _aux acc A =
(U yeA. permutations _of _set_auz (y#tacc) (A — {y}))
by (subst permutations_of set_aux.simps) simp__all

also have ... = (JyeA. (\zs. rev xs Q acc) © (A\zs. y # xs) ‘ permuta-
tions_of set (A — {y}))
apply (rule arg_cong [of _ __ Union], rule image__cong)

apply (simp__all add: image__image)
apply (subst psubset)
apply auto
done
also from Fualse have ... = (Axs. rev s Q acc) ‘ permutations of set A
by (subst (2) permutations of set_nonempty) (simp__all add: image_UN)
finally show ?thesis .
qed simp__all
qed
qed (simp__all add: permutations _of set_infinite)

declare permutations of set_aux.simps [simp del]

lemma permutations of set aux_correct:
permutations__of set__aux [] A = permutations_of set A
by (simp add: permutations_of set auz_altdef)

In another refinement step, we define a version on lists.

declare length__removel [termination__simp]

fun permutations_of set_auz_list where
permutations _of set__aux_list acc xs =
(if zs = [] then [acc] else
List.bind zs (Az. permutations_of set auz_list (z#acc) (List.removel x
zs)))

definition permutations of set list where
permutations_of _set_list xs = permutations_of set_aux_list || xs

declare permutations of set aux_list.simps [simp del]

74

lemma permutations of set aux list refine:
assumes distinct xs
shows set (permutationsfofisetiaua;lz'st acc 378) = permutations_of _set_auzx
acc (set xs)
using assms
by (induction acc xs rule: permutations of set aux_list.induct)
(subst permutations of set_aux_list.simps,
subst permutations_of set aux.simps,
simp__all add: set_list_bind)

The permutation lists contain no duplicates if the inputs contain no dupli-
cates. Therefore, these functions can easily be used when working with a
representation of sets by distinct lists. The same approach should generalise
to any kind of set implementation that supports a monadic bind operation,
and since the results are disjoint, merging should be cheap.

lemma distinct _permutations of set_aux_list:
distinct xs = distinct (permutations of set__aux_list acc xs)
by (induction acc xs rule: permutations of set auz_list.induct)
(subst permutations of set_aux_list.simps,
auto introl: distinct_list _bind simp: disjoint_family on__ def
permutations_of _set_aux_list_refine permutations of set auz_altdef)

lemma distinct_permutations_of set_list:
distinct s = distinct (permutations_of set_list xs)
by (simp add: permutations _of set list_def distinct__permutations_of set_aux_list)

lemma permutations of list:
permutations__of _set (set xs) = set (permutations_of _set_list (remdups xs))
by (simp add: permutations_of _set_aux__correct [symmetric]
permutations_of set _aux_list _refine permutations of set_list_def)

lemma permutations_of list_code [code]:
permutations__of _set (set xs) = set (permutations_of set list (remdups xs))
permutations__of _set (List.coset zs) =
Code.abort (STR ' Permutation of set complement not supported’’)
(_. permutations_of set (List.coset xs))
by (simp__all add: permutations of list)

value [code] permutations_of _set (set ""abed”)
end
theory Cycles
imports
HOL— Library. FuncSet

Permutations
begin

75

6 Cycles

6.1 Definitions

abbreviation cycle :: 'a list = bool
where cycle cs = distinct cs

fun cycle_of list :: 'a list = 'a = 'a
where
cycle_of list (i # j # cs) = transpose i j o cycle_of list (j # cs)
| cycle_of list cs = id

6.2 Basic Properties

We start proving that the function derived from a cycle rotates its support
list.

lemma id_ outside__supp:
assumes z ¢ set cs shows (cycle_of list ¢s) z = x
using assms by (induct cs rule: cycle of list.induct) (simp__all)

lemma permutation_of _cycle: permutation (cycle_of list cs)
proof (induct cs rule: cycle_of list.induct)
case I thus ?case
using permutation__compose[OF permutation swap_id] unfolding comp__apply
by simp
qed simp__all

lemma cycle permutes: (cycle of list cs) permutes (set cs)

using permutation_ bijective] OF permutation_of cycle] id_outside supp[of __
cs]

by (simp add: bij _iff permutes__def)

theorem cyclic_rotation:
assumes cycle cs shows map ((cycle _of list ¢cs) ~ " n) cs = rotate n cs
proof —
{ have map (cycle_of list cs) cs = rotatel cs using assms(1)
proof (induction cs rule: cycle_of list.induct)
case (11ijcs)
then have <i ¢ set cs» <j ¢ set cs»
by auto
then have <map (Transposition.transpose i j) cs = cs»
by (auto intro: map__idI simp add: transpose__eq iff)
show ?case
proof (cases)
assume cs = Nil thus ?thesis by simp
next
assume cs # Nil hence ge_two: length (j # cs) > 2
using not_less by auto
have map (cycle_of list (i # j # ¢s)) (i # j # cs) =

76

map (transpose i j) (map (cycle _of list (j # c¢s)) (i # j # cs)) by

simp
also have ... = map (transpose i j) (i # (rotatel (j # cs)))
by (metis 1.IH 1.prems distinct.simps(2) id_outside__supp list.simps(9))
also have ... = map (transpose i j) (i # (cs Q [f])) by simp
also have ... = j # (map (transpose i j) cs) @Q [i] by simp
also have ... =j # ¢s Q [i]
using <map (Transposition.transpose i j) cs = cs» by simp
also have ... = rotatel (i # j # cs) by simp
finally show ?thesis .
qed

qed simp_all }
note cyclic_rotation’ = this

show ?thesis

using cyclic_rotation’ by (induct n) (auto, metis map__map rotatel__rotate__swap
rotate__map)
qed

corollary cycle is surj:
assumes cycle cs shows (cycle_of list cs) ‘ (set cs) = (set cs)
using cyclic_rotation[OF assms, of Suc 0] by (simp add: image__set)

corollary cycle is id_root:
assumes cycle cs shows (cycle_of list ¢s) = (length c¢s) = id
proof —
have map ((cycle_of list cs) = (length cs)) cs = cs
unfolding cyclic_rotation[OF assms| by simp
hence ((cycle_of list ¢s) = (length ¢s)) i = i if i € set ¢s for ¢
using that map__eq conv by fastforce
moreover have ((cycle_of list cs) "~ n) i =1iif i ¢ set c¢s for i n
using id_outside__supp[OF that] by (induct n) (simp__all)
ultimately show ?thesis
by fastforce
qed

corollary cycle of list rotate independent:
assumes cycle cs shows (cycle_of list cs) = (cycle_of list (rotate n cs))
proof —
{ fix cs :: ‘a list assume cs: cycle cs
have (cycle_of list ¢s) = (cycle_of list (rotatel cs))
proof —
from cs have rotatel_cs: cycle (rotatel cs) by simp
hence map (cycle_of list (rotatel cs)) (rotatel cs) = (rotate 2 cs)
using cyclic_rotation|OF rotatel _cs, of 1] by (simp add: numeral 2 _eq 2)
moreover have map (cycle_of list cs) (rotatel cs) = (rotate 2 cs)
using cyclic_rotation|OF cs)
by (metis One_nat_def Suc__1 funpow.simps(2) id__apply map__map rotatel
rotate__Suc)

77

ultimately have (cycle of list ¢s) i = (cycle_of list (rotatel cs)) i if i €
set c¢s for @
using that map__eq _conv unfolding sym[OF set_rotatel[of cs]] by fastforce

moreover have (cycle_of list cs) i = (cycle_of _list (rotatel cs)) @ if i ¢
set cs for i
using that by (simp add: id_outside__supp)
ultimately show (cycle of list c¢s) = (cycle_of list (rotatel cs))
by blast
ged } note rotatel lemma = this

show ?thesis
using rotatel lemmalof rotate n cs] by (induct n) (auto, metis assms dis-
tinct__rotate rotatel lemma)
qed

6.3 Conjugation of cycles

lemma conjugation_of cycle:
assumes cycle ¢s and bij p
shows p o (cycle_of list cs) o (inv p) = cycle_of list (map p cs)
using assms
proof (induction cs rule: cycle_of _list.induct)
case (17 cs)
have p o cycle _of list (i # j # ¢s) o invp =
(p o (transpose i j) o inv p) o (p o cycle_of list (j # cs) o inv p)
by (simp add: assms(2) bij_is_inj fun.map__comp)
also have ... = (transpose (p i) (p j)) o (p o cycle_of list (j # cs) o inv p)
using 1.prems(2) by (simp add: bij _inv_eq iff transpose__apply commute
fun__eq iff bij _betw__inv_into_left)
finally have p o cycle _of list (i # j # ¢s) o invp =
(transpose (p 1) (p)) © (cycle_of list (map p (] # c5)))
using 1.7H 1.prems(1) assms(2) by fastforce
thus ?case by (simp add: fun__eq iff)
next
case 2 1 thus ?case
by (metis bij_is_surj comp_id cycle_of list.simps(2) list.simps(8) surj_iff)
next
case 22 thus “case
by (metis bij_is_surj comp__id cycle_of list.simps(3) list.simps(8) list.simps(9)
surj_iff)
qed

6.4 When Cycles Commute

lemma cycles commute:
assumes cycle p cycle ¢ and set p N set ¢ = {}
shows (cycle_of list p) o (cycle_of list q) = (cycle_of list q) o (cycle_of list

p)
proof

78

/

{ fix p:: 'a list and ¢ :: 'a list and 7 :: 'a
assume A: cycle p cycle g set p N set ¢ ={} i € set pi & set q
have ((cycle_of list p) o (cycle_of list q)) i =
((cycle_of _list q) o (cycle_of list p)) @
proof —
have ((cycle_of list p) o (cycle_of list q)) i = (cycle_of list p) i
using id_outside supp[OF A(5)] by simp
also have ... = ((cycle_of list q) o (cycle_of list p)) i
using id_outside__supplof (cycle_of list p) i] cycle_is_surj[OF A(1)]
A(3,4) by fastforce
finally show ?thesis .
qed } note aui_lemma = this

fix i consider { € setpi ¢ set q| i ¢ setpi € set q| i ¢ setpi ¢ setq
using «set p N set ¢ = {}> by blast
thus ((cycle_of list p) o (cycle_of list q)) i = ((cycle_of list q) o (cycle_of list
p)) i
proof cases
case [thus %thesis
using aui_lemma]OF assms] by simp
next
case 2 thus ?thesis
using aui_lemma]OF assms(2,1)] assms(3) by (simp add: ac__simps)
next
case 3 thus %thesis
by (simp add: id_outside__supp)
qed
qed

6.5 Cycles from Permutations

6.5.1 Exponentiation of permutations

Some important properties of permutations before defining how to extract
its cycles.

lemma permutation_funpow:
assumes permutation p shows permutation (p = n)
using assms by (induct n) (simp__all add: permutation__compose)

lemma permutes funpow:

assumes p permutes S shows (p ~ n) permutes S

using assms by (induct n) (simp add: permutes_def, metis funpow_Suc_right
permutes__compose)

lemma funpow _diff:
assumes inj p and { < j (p
proof —
have (p i) ((p (G —9)a)=(p i) a
using assms(2—38) by (metis (no_types) add_diff inverse_nat funpow _add

A~ A~

i)a=(p "j) ashows (p " (j— 1) a=a

79

not_le o__def)
thus %thesis
unfolding inj eq[OF inj_fn[OF assms(1)], of i] .
qed

lemma permutation__is_mnilpotent:
assumes permutation p obtains n where (p ~ n) = id and n > 0
proof —
obtain S where finite S and p permutes S
using assms unfolding permutation_permutes by blast
hence 3n. (p " n)=idAn>0
proof (induct S arbitrary: p)
case empty thus ?case
using id_ funpow|of 1] unfolding permutes empty by blast
next
case (insert s S)
have (An. (p 7" n) s) * UNIV C (insert s S)
using permutes_in__image[OF permutes_funpow[OF insert(4)], of _ s|] by
auto
hence — inj_on (An. (p "~ n) s) UNIV
using insert(1) infinite_iff _countable__subset unfolding sym[OF finite__insert,
of S s| by metis
then obtain ¢ j where 4j: { < j (p ~ i) s = (p
unfolding inj on_ def by (metis nat_neq_iff)
hence (p ~~(j — i) s=s
using funpow_diff[OF permutes_inj|OF insert(4)]] le_eq less _or_eq by

o~ .

j) s

blast
hence p 7 (j — i) permutes S
using permutes__superset| OF permutes_funpow[OF insert(4), of j — |, of 5]
by auto
then obtain n where n: ((p ~ " (j —¢)) " n)=idn >0
using insert(3) by blast
thus ?case
using (1) nat_0_less _mult_iff zero_less diff unfolding funpow mult by
metis
qed
thus thesis
using that by blast
qed

lemma permutation_is nilpotent’:
assumes permutation p obtains n where (p = n) = id and n > m
proof —
obtain n where (p = n) = id and n > 0
using permutation_is_nilpotent|OF assms| by blast
then obtain £ where n x k > m
by (metis dividend_less_times_div mult_Suc__right)
from «(p " n) =id> have p T (n x k) = id
by (induct k) (simp, metis funpow__mult id_funpow)

80

with «<n * k£ > m) show thesis
using that by blast
qed

6.5.2 Extraction of cycles from permutations

definition least_power :: (‘a = 'a) = 'a = nat
where least _power fo = (LEAST n. (f ~ " n)z =2 A n> 0)

abbreviation support :: ('a = 'a) = 'a = ‘a list
where support p x = map (\i. (p ~ i) z) [0..< (least_power p z)]

lemma least_powerl:
assumes (f " n)z=zand n > 0
shows (f 7 (least_power f x)) x = x and least_power fz > 0
using assms unfolding least _power _def by (metis (mono__tags, lifting) Leastl)+

lemma least_power le:
assumes (f 7" n) z = z and n > 0 shows least_power fx < n
using assms unfolding least power _def by (simp add: Least_le)

lemma least _power of permutation:

assumes permutation p shows (p ~ (least_power p a)) a = a and least__power
pa>20

using permutation_is_nilpotent| OF assms] least_powerl by (metis id__apply)+

lemma least_power gt one:
assumes permutation p and p a # a shows least _power p a > Suc 0
using least_power_of permutation[OF assms(1)] assms(2)
by (metis Suc__lessI funpow.simps(2) funpow__simps_right(1) o_id)

lemma least_power minimal:

assumes (p ~ n) a = a shows (least_power p a) dvd n
proof (cases n = 0, simp)

let ?lpow = least_power p

assume n # (then have n > 0 by simp
hence (p 7 (?lpow a)) a = a and least_power p a > 0
using assms unfolding least _power _def by (metis (mono__tags, lifting) Leastl)+
hence auz_lemma: (p = ((?lpow a) * k)) a = a for k :: nat
by (induct k) (simp__all add: funpow__add)

have (p ™ (n mod ?lpow a)) ((p = (n — (n mod ?lpow a))) a) = (p ~ " n) a
by (metis add__diff inverse_nat funpow_add mod_less eq dividend not_less
o_apply)
with «(p 7" n) a = @ have (p 7 (n mod ?lpow a)) a = a
using aux_lemma by (simp add: minus _mod__eq mult_ div)
hence ?lpow a < n mod ?lpow a if n mod ?lpow a > 0

81

using least_power le[OF __ that, of p a] by simp
with <least _power p a > 0> show (least_power p a) dvd n
using mod_less _divisor not_le by blast
qed

lemma least _power dvd:
assumes permutation p shows (least_power p a) dvd n «— (p
proof
show (p "~ n) a = a = (least_power p a) dvd n
using least_power_minimal[of _ p] by simp
next
have (p 7 ((least_power p a) * k)) a = a for k :: nat
using least_power of permutation(1)[OF assms(1)] by (induct k) (simp__all
add: funpow _add)
thus (least_power p a) dvd n = (p = n) a = a by blast
qed

theorem cycle of permutation:
assumes permutation p shows cycle (support p a)
proof —
have (least_power p a) dvd (j —) if i < jj < least_power p a and (p "~ 4) a
—(p ~j) aforij
using funpow_diff[OF bij_is_inj that(1,3)] assms by (simp add: permutation
least__power__dvd)
moreover have i = j if i < jj < least_power p a and (least_power p a) dvd
(j — i) for i j
using that le_eq less or_eq nat_dvd_mnot_less by auto
ultimately have inj on (Ai. (p 7 %) a) {..< (least_power p a)}
unfolding inj on_ def by (metis le_cases lessThan__iff)
thus ?thesis
by (simp add: atLeast_upt distinct_map)
qed

6.6 Decomposition on Cycles

We show that a permutation can be decomposed on cycles

6.6.1 Preliminaries

lemma support_set:
assumes permutation p shows set (support p a) = range (Ai. (p " i) a)
proof
show set (support p a) C range (Mi. (p ~ i) a)
by auto
next
show range (Mi. (p 7" i) a) C set (support p a)
proof (auto)
fix ¢

82

have (p 7" i) a = (p = (i mod (least_power p a))) ((p = (i — (¢ mod
(least_power p a)))) a)
by (metis add_diff inverse_nat funpow__add mod_less eq dividend not_le
o_apply)
also have ... = (p 7 (i mod (least_power p a))) a
using least_power__dvd[OF assms] by (metis dvd_minus_mod)
also have ... € (M. (p 7" 1) a) ‘{0..< (least_power p a)}
using least_power _of permutation(2)[OF assms] by fastforce
finally show (p "~ i) a € (Ai. (p 7" %) a) ‘{0..< (least_power p a)} .
qged
qged

lemma disjoint__support:
assumes permutation p shows disjoint (range (Aa. set (support p a))) (is disjoint
24)
proof (rule disjointl)
{fixijabd
assume set (support p a) N set (support p b) # {} have set (support p a) C
set (support p b)
unfolding support_set[OF assms)
proof (auto)
from <set (support p a) N set (support p b) £ {}
obtain ¢ j where ij: (p " i) a=(p " j) b
by auto

fix k
have (p 7" k) a = (p ~ (k + (least_power p a) * 1)) a for |
using least_power _dvd[OF assms| by (induct) (simp, metis dvd__triv_left
Junpow__add o__def)
then obtain m where m > iand (p = " m)a=(p " k) a
using least_power_of permutation(2)[OF assms]
by (metis dividend_less times_div le_eq less _or _eq mult_Suc_right
trans_less _add2)
hence (p ~m) a = (p ™ (m — 1) (b i) a)
by (metis Nat.le_imp_diff is _add funpow _add o__apply)
with «(p 7" m)a=(p " k)ae have (p " k)a=(p " (m—19)+j)b
unfolding ¢ by (simp add: funpow__add)
thus (p "7 k) a € range (A\i. (p " %) b)
by blast
qged } note auz_lemma = this

fix supp a supp b
assume supp_a € ?A and supp b € ?A
then obtain a b where a: supp _a = set (support p a) and b: supp b = set
(support p b)
by auto
assume supp_a # supp_b thus supp_a N supp_b = {}
using aux_lemma unfolding a b by blast
qed

83

lemma disjoint_support:
assumes permutation p
shows set (support p a) N set (support p b) = {} +— a ¢ set (support p b)
proof —
have a € set (support p a)
using least_power _of permutation(2)[OF assms| by force
show ?thesis
proof
assume set (support p a) N set (support p b) = {}
with <a € set (support p a)» show a ¢ set (support p b)
by blast
next
assume a ¢ set (support p b) show set (support p a) N set (support p b) = {}
proof (rule ccontr)
assume set (support p a) N set (support p b) # {}
hence set (support p a) = set (support p b)
using disjoint__support[OF assms| by (meson UNIV_I disjoint_def im-

age__iff)
with (a € set (support p a)» and <a ¢ set (support p b)) show False
by simp
qed
qed
qed

lemma support_coverture:
assumes permutation p shows |J { set (supportpa) | a.pa#a}t ={a.pa
#a}
proof
show { a. pa#a} C { set (supportp a) | a. pa # a}
proof
fix a assume a € { a. pa #a}
have a € set (support p a)
using least_power_of permutation(2)[OF assms, of a] by force
with <a € { a. pa # a }» show a € | { set (support p a) | a. pa # a }
by blast
qged
next
show J { set (supportpa)|a.pa#a} C{apa#a}
proof
fix b assume b € |J { set (support p a) | a.pa # a}
then obtain ¢ i where pa # aand (p " i) a = b
by auto
havepa=aif (p i) a=(p " Suci)a
using funpow_diff [OF bij_is_inj _ that] assms unfolding permutation by
stmp
with «pa# o and «(p i) a=hshowbe{a.pa#a}
by auto
qed

84

qed

theorem cycle restrict:

assumes permutation p and b € set (support p a) shows p b = (cycle_of list
(support p a)) b
proof —

note least_power _props [simp] = least_power _of permutation]OF assms(1)]

have map (cycle_of list (support p a)) (support p a) = rotatel (support p a)
using cyclic_rotation| OF cycle__of _permutation|OF assms(1)], of 1 a] by simp
hence map (cycle_of _list (support p a)) (support p a) = tl (support p a) Q [a |
by (simp add: hd_map rotatel _hd_tl)
also have ... = map p (support p a)
proof (rule nth__equalityl, auto)
fix { assume ¢ < least_power p a show (tl (support p a) @ [a]) ! i =p ((p
i) a)
proof (cases)
assume i: i = least_power p a — 1
hence (t (supportp a) @[a])!i=a
by (metis (no_types, lifting) diff _zero length_map length_tl length _upt
nth__append__length)
also have ...=p ((p ") a)
by (metis (mono__tags, opaque_lifting) least power _props i Suc_diff 1
funpow__simps_right(2) funpow__swapl o__apply)
finally show ?Zthesis .
next
assume i # least_power p a — 1
with i < least _power p a» have i < least _power p a — 1
by simp
hence (¢l (support p a) @ [a])!i=(p = (Suci)) a
by (metis One_nat_def Suc__eq_plusl add.commute length_map length__upt
map__tl nth__append nth_map_upt tl_upt)
thus ?thesis
by simp
qed
qed
finally have map (cycle_of list (support p a)) (support p a) = map p (support
pa) .
thus ?thesis
using assms(2) by auto
qed

~~

6.6.2 Decomposition

inductive cycle_decomp :: 'a set = ('a = 'a) = bool
where
empty: cycle__decomp {} id
| comp: [cycle_decomp I p; cycle cs; set ecsN I ={}] =
cycle__decomp (set ¢s U I) ((cycle_of list cs) o p)

85

lemma semidecomposition:
assumes p permutes S and finite S
shows (Ay. if y € (S — set (support p a)) then p y else y) permutes (S — set
(support p a))
proof (rule bij _imp_permutes)
show (if b € (S — set (support p a)) then p b else b) = bif b ¢ S — set (support
p a) for b
using that by auto
next
have is_permutation: permutation p
using assms unfolding permutation__permutes by blast

let 2g = \y. if y € (S — set (support p a)) then p y else y
show bij betw ?q (S — set (support p a)) (S — set (support p a))
proof (rule bij_betw_imagel)
show inj _on ?q (S — set (support p a))
using permutes _inj|OF assms(1)] unfolding inj on_def by auto
next
have auz_lemma: set (support p s) C (S — set (support p a)) if s € S — set
(support p a) for s
proof —
have (p 7" 4) s € S for ¢
using that unfolding permutes_in_image[OF permutes_funpow[OF assms(1)]]
by simp
thus ?thesis
using that disjoint__support’|OF is_permutation, of s a] by auto
qed
have (p 77 1) s € set (support p s) for s
unfolding support_set[OF is__permutation] by blast
hence p s € set (support p s) for s
by simp
hence p ‘(S — set (support p a)) C S — set (support p a)
using aux_lemma by blast
moreover have (p ~ ((least_power p s) — 1)) s € set (support p s) for s
unfolding support_set[OF is_permutation] by blast
hence 3’ € set (support p s). p s’ = s for s
using least _power _of permutation| OF is_permutation] by (metis Suc_ diff 1
Junpow.simps(2) o__apply)
hence S — set (support p a) C p ‘(S — set (support p a))
using auzx_lemma
by (clarsimp simp add: image__iff) (metis image__subset_iff)
ultimately show ?q ‘ (S — set (support p a)) = (S — set (support p a))
by auto
qed
qed

theorem cycle _decomposition:

86

assumes p permutes S and finite S shows cycle decomp S p
using assms
proof (induct card S arbitrary: S p rule: less_induct)
case less show ?case
proof (cases)
assume S = {} thus ?thesis
using empty less(2) by auto
next
have is_permutation: permutation p
using less(2—3) unfolding permutation__permutes by blast

assume S # {} then obtain s where s € S
by blast
define ¢ where ¢ = (A\y. if y € (S — set (support p s)) then p y else y)
have (cycle_of list (support p s) o q) = p
proof
fix a
consider a € S — set (support p s) | a € set (support p s) | a ¢ S a ¢ set
(support p s)
by blast
thus ((cycle_of _list (support p s) o q)) a =p a
proof cases
case 1
have (p 7" 1) a € set (support p a)
unfolding support_set|OF is_permutation] by blast
with <o € S — set (support p s)> have p a ¢ set (support p s)
using disjoint__support’|OF is_permutation, of a s| by auto
with <a € § — set (support p s)> show ?Zthesis
using id_ outside supplof _ support p s] unfolding ¢ def by simp
next
case 2 thus ?thesis
using cycle_restrict[OF is__permutation] unfolding ¢ def by simp
next
case 3 thus ?thesis
using id_outside_supp[OF 3(2)] less(2) permutes not_in unfolding
q_def by fastforce
qed
qed

moreover from «s € 5> have (p " i) s € S for ¢

unfolding permutes_in_image| OF permutes_funpow|OF less(2)]] .
hence set (support p s) U (S — set (support p s)) = S

by auto

moreover have s € set (support p s)
using least__power _of permutation|OF is_permutation] by force
with «s € S) have card (S — set (support p s)) < card S

using less(3) by (metis Diff E card_seteq linorder _not_le subsetl)
hence cycle _decomp (S — set (support p s)) q

87

using less(1)[OF __ semidecomposition| OF less(2—3)], of s] less(3) unfolding
q_def by blast

moreover show ?thesis
using comp[OF calculation(3) cycle_of _permutation|OF is_permutation], of
]
unfolding calculation(1—2) by blast
qed
qed

end

7 Permutations as abstract type

theory Perm
imports
Transposition
begin

This theory introduces basics about permutations, i.e. almost everywhere
fix bijections. But it is by no means complete. Grieviously missing are cycles
since these would require more elaboration, e.g. the concept of distinct lists
equivalent under rotation, which maybe would also deserve its own theory.
But see theory src/ HOL/ex/Perm__Fragments.thy for fragments on that.

7.1 Abstract type of permutations

typedef ‘a perm = {f :: 'a = 'a. bij f A finite {a. fa # a}}
morphisms apply Perm

proof
show id € ?perm by simp

qed

setup__lifting type_ definition_perm
notation apply (infixl «($)» 999)
lemma bij_apply [simp]:
bij (apply f)
using apply [of f] by simp
lemma perm,__eql:
assumes Aa. f ($) a =¢ (3) a
shows f = ¢
using assms by transfer (simp add: fun__eq iff)
lemma perm__eq iff:

f=g9= Va f(8) a=yg(3)a)

88

by (auto intro: perm__eql)

lemma apply_inj:
f@a=f@)bs—a=1b
by (rule inj_eq) (rule bij_is_inj, simp)

lift_ definition affected :: 'a perm = 'a set

is \f. {a. fa # a} .

lemma in__ affected:
a € affected f «— f ($) a # a

by transfer simp

lemma finite_ affected [simp]:

finite (affected f)

by transfer simp

lemma apply affected [simp]:
I ($) a € affected f +— a € affected f
proof transfer
fixf:'a= 'aand a :: a
assume bij f A finite {b. f b # b}
then have bij f by simp
interpret bijection f by standard (rule <bij f»)
have fa € {a. fa=a} +— a € {a. fa=a} (is 7P +— ?7Q)
by auto
then show fa € {a. fa # a} «— a € {a. fa # a}
by simp
qed

lemma card_affected _not_one:
card (affected f) # 1
proof
interpret bijection apply f
by standard (rule bij _apply)
assume card (affected) = 1
then obtain a where x: affected f = {a}
by (rule card__1_singletonFE)
then have *x: f ($) a # a
by (simp flip: in__affected)
with x have f ($) a ¢ affected f
by simp
then have f ($) (f ($) a) = f ($) a
by (simp add: in__affected)
then have inv (apply f) (f ($) (f ($) a)) = inv (apply f) (f ($) a)
by simp
with xx show Fulse by simp
qed

89

7.2 Identity, composition and inversion

instantiation Perm.perm :: (type) {monoid_mult, inverse}
begin

lift_ definition one_perm :: ‘a perm
is id
by simp

lemma apply_one [simp):
apply 1 = id
by (fact one__perm.rep__eq)

lemma affected_one [simp]:
affected 1 = {}
by transfer simp

lemma affected _empty iff [simp]:
affected f = {} +— f =1
by transfer auto

lift_ definition times_perm :: 'a perm = 'a perm = 'a perm
is comp
proof
fix fg:'a="a
assume bij f A finite {a. fa # a}
bij g Afinite {a. g a # a}
then have finite ({a. fa # a} U {a. g a # a})
by simp
moreover have {a. (f o g) a # a} C{a. fa # a} U {a. ga # a}
by auto
ultimately show finite {a. (f o g) a # a}
by (auto intro: finite subset)
qed (auto intro: bij _comp)

lemma apply_ times:

apply (f = g) = apply f o apply g
by (fact times_perm.rep__eq)

lemma apply_sequence:

f(8) (g (8) a) = apply (f * g) a
by (simp add: apply_times)

lemma affected times [simp]:
affected (f * g) C affected f U affected g
by transfer auto

lift_ definition inverse_perm :: ‘a perm = 'a perm
is inv
proof transfer

90

fix f::'a= 'aand a

assume bij f A finite {b. f b # b}

then have bij f and fin: finite {b. f b # b}
by auto

interpret bijection f by standard (rule <bij f»)

from fin show bij (inv f) A finite {a. inv f a # a}
by (simp add: bij_inv)

qed

instance
by standard (transfer; simp add: comp__assoc)+

end

lemma apply_inverse:

apply (inverse) = inv (apply f)
by (fact inverse__perm.rep__eq)

lemma affected_inverse [simp]:
affected (inverse f) = affected f
proof transfer
fix f::'a= 'aand a
assume bij f A finite {b. f b # b}
then have bij f by simp
interpret bijection f by standard (rule <bij f»)
show {a. inv fa # a} = {a. fa # a}
by simp
qed

global__interpretation perm: group times 1::'a perm inverse

proof

fix f :: 'a perm

show 1 x f = f
by transfer simp

show inverse f « f = 1

proof transfer
fix f:: 'a= 'aand a
assume bij f A finite {b. f b # b}
then have bij f by simp
interpret bijection f by standard (rule <bij f»)
show inv f o f = id

by simp
qed
qed

declare perm.inverse_ distrib__swap [simp]

lemma perm__mult _commute:
assumes affected f N affected g = {}

91

shows g« f=fxg
proof (rule perm__eqI)

fix a
from assms have x: a € affected f = a ¢ affected g

a € affected g = a ¢ affected f for a

by auto
consider a € affected f N a ¢ affected g

A f(8) a € affected f
| a ¢ affected f A a € affected g
A f(8$) a ¢ affected f

| a & affected f N a ¢ affected g

using assms by auto
then show (g * f) (§) a = (f * g) (§) a
proof cases

case I

with x have f ($) a ¢ affected g

by auto

with 1 show %thesis by (simp add: in__affected apply_times)
next

case 2

with x have g ($) a ¢ affected f

by auto

with 2 show %thesis by (simp add: in__affected apply_times)
next

case 3

then show ?thesis by (simp add: in__affected apply_times)
qed

qed

lemma apply_power:

apply (f ~n) = apply f " n
by (induct n) (simp__all add: apply_times)

lemma perm__power__inverse:

inverse f ~ n = inverse ((f :: 'a perm) " n)
proof (induct n)

case () then show ?case by simp
next

case (Suc n)

then show ?case

unfolding power_Suc2 [of f] by simp

qged

7.3 Orbit and order of elements

definition orbit :: 'a perm = 'a = 'a set
where
orbit f a = range (An. (f ~n) ($) a)

92

lemma in_ orbitl:
assumes (f " n) ($) a =10
shows b € orbit f a
using assms by (auto simp add: orbit_def)

lemma apply power_self in__orbit [simp]:
(f "n)($) a € orbit fa
by (rule in__orbitl) rule

lemma in_orbit_self [simp]:
a € orbit fa
using apply power_self in__orbit [of _ 0] by simp

lemma apply_self in_orbit [simp):
f(8) acorbitfa
using apply_power_self _in__orbit [of __ 1] by simp

lemma orbit_not_empty [simp]:

orbit f a # {}
using in_orbit_self [of a f] by blast

lemma not_in_affected_iff orbit_eq singleton:
a ¢ affected f «— orbit fa = {a} (is P +— ?2Q)
proof
assume ?P
then have f (3) a = a
by (simp add: in__affected)
then have (f "n) ($) a = a for n
by (induct n) (simp__all add: apply_times)
then show 2@
by (auto simp add: orbit_def)
next
assume ?()
then show ?P

by (auto simp add: orbit_def in__affected dest: range__eq singletonD [of _ __

1)

qed

definition order :: ‘a perm = 'a = nat
where
order f = card o orbit f

lemma orbit_subset_eq affected:
assumes a € affected f
shows orbit f a C affected f
proof (rule ccontr)
assume - orbit f a C affected f
then obtain b where b € orbit f a and b ¢ affected f
by auto

93

then have b € range (An. (f ~n) ($) a)
by (simp add: orbit__def)

then obtain n where b = (f " n) ($) a
by blast

with «b ¢ affected f»

have (f " n) ($) a ¢ affected f
by simp

then have f (3) a ¢ affected f
by (induct n) (simp__all add: apply_times)

with assms show Fulse
by simp

qed

lemma finite_orbit [simp):
finite (orbit f a)
proof (cases a € affected f)
case False then show ?thesis
by (simp add: not_in__affected iff orbit_eq singleton)
next
case True then have orbit f a C affected f
by (rule orbit_subset_eq affected)
then show ?thesis using finite_affected
by (rule finite_subset)
qed

lemma orbit_1 [simp]:
orbit 1 a = {a}
by (auto simp add: orbit_def)

lemma order_1 [simp]:
order 1 a =1
unfolding order_def by simp

lemma card_orbit_eq [simp]:
card (orbit f a) = order f a
by (simp add: order_def)

lemma order_greater_zero [simp]:
order fa > 0
by (simp only: card_gt_0_iff order_def comp _def) simp

lemma order_eq one__iff:
order f a = Suc 0 +— a ¢ affected f (is ?P +— ?Q)
proof
assume ?P then have card (orbit f a) = 1
by simp
then obtain b where orbit f a = {b}
by (rule card__1_singletonF)
with in_orbit_self [of a f]

94

have b = a by simp
with <orbit f a = {b}» show ?20Q)
by (simp add: not_in__affected iff orbit _eq singleton)
next
assume 7@
then have orbit f a = {a}
by (simp add: not_in__affected iff orbit_eq singleton)
then have card (orbit fa) = 1
by simp
then show ?P
by simp
qed

lemma order_greater _eq two__iff:
order fa > 2 «— a € affected f
using order_eq_one_iff [of f a
apply (auto simp add: neq_iff)
using order_greater_zero [of f a]
apply simp
done

lemma order_less _eq affected:
assumes f # 1
shows order f a < card (affected f)
proof (cases a € affected f)
from assms have affected f # {}
by simp
then obtain B b where affected f = insert b B
by blast
with finite_affected [of f] have card (affected f) > 1
by (simp add: card.insert_remove)
case Fulse then have order fa = 1
by (simp add: order_ _eq _one_iff)
with <card (affected f) > 1> show ?thesis
by simp
next
case True
have card (orbit f a) < card (affected f)
by (rule card_mono) (simp__all add: True orbit_subset__eq affected card_mono)
then show ?thesis
by simp
qged

lemma affected_order greater _eq two:
assumes a € affected f
shows order fa > 2
proof (rule ccontr)
assume - 2 < order f a
then have order fa < 2

95

by (simp add: not_le)
with order_greater zero [of [a] have order fa = 1
by arith
with assms show Fulse
by (simp add: order_eq _one_iff)
qed

lemma order_witness _unfold:

assumes n > 0 and (f "n) (3) a = a

shows order f a = card ((Am. (f “m) ($) a) ‘{0..<n})
proof —

have orbit fa = (Am. (f “m) (8) a) ‘{0..<n} (is _ = ?B)
proof (rule set_eql, rule)
fix b

assume b € orbit fa
then obtain m where (f “m) ($) a = b
by (auto simp add: orbit_def)
then have b = (f = (m mod n + n * (m div n))) ($) a
by simp
also have ... = (f 7 (m mod n)) ($3) ((f " (n * (m div n))) (3) a)
by (simp only: power_add apply__times) simp
also have (f ~(n * q)) (3) a = a for ¢
by (induct q)

(simp__all add: power__add apply_times assms)
finally have b = (f ~ (m mod n)) ($) a .
moreover from n > 0»
have m mod n < n

by simp
ultimately show b € ?B
by auto
next
fix b
assume b € ?B
then obtain m where (f “m) ($) a = b
by blast
then show b € orbit f a
by (rule in__orbitl)
qed
then have card (orbit f a) = card ?B
by (simp only:)
then show ?thesis
by simp
qed

lemma inj on__apply range:
ing_on (Am. (f “m) (8) a) {..<order f a}
proof —
have inj_on (Am. (f “m) ($) a) {..<n}
if n < order f a for n

96

using that proof (induct n)

case (then show ?case by simp
next

case (Suc n)

then have prem: n < order f a

by simp

with Suc.hyps have hyp: inj_on (Am. (f ~m) ($) a) {..<n}
by simp

have (f “n) ($) a ¢ (Am. (f “m) (8) a) ‘{..<n}

proof

assume (f "n) ($) a € (Am. (f “m) ($) a) ‘ {.<n}

then obtain m where x: (f “m) () a = (f "n) (§) aand m < n
by auto

interpret bijection apply (f ~m)
by standard simp

from <m < n) have n = m + (n — m)
and nm: 0 <n—mn—m<n
by arith+

with « have (f “m) ($) a = (f “(m + (n — m))) ($) a
by simp

then have (f “m) (8) a = (f " m) (3) ((f " (n — m)) ($) a)
by (simp add: power__add apply_times)

then have (f “(n — m)) ($) a =a
by simp

with <n — m > O»

have order f a = card (Am. (f “m) ($) a) ‘{0..<n — m})
by (rule order _witness _unfold)

also have card ((Am. (f “m) ($) a) ‘{0..<n — m}) < card {0..<n — m}
by (rule card_image_le) simp

finally have order fa < n — m
by simp

with prem show Fulse by simp

qed
with hyp show ?case
by (simp add: lessThan_ Suc)
qed
then show ?thesis by simp
qged

lemma orbit_unfold_image:
orbit fa = (An. (f "n) (8) a) ‘{.<order fa} (is = ?4)
proof (rule sym, rule card_subset__eq)
show finite (orbit f a)
by simp
show 74 C orbit f a
by (auto simp add: orbit_def)
from inj_on__apply_range [of f a
have card ?A = order f a
by (auto simp add: card_image)

97

then show card ?A = card (orbit f a)
by simp
qed

lemma in_orbitE:
assumes b € orbit f a
obtains n where b = (f " n) (§) a and n < order f a
using assms unfolding orbit_unfold image by blast

lemma apply _power_order [simp]:
(f Torder fa) ($) a=a
proof —
have (f ~order fa) ($) a € orbit fa
by simp
then obtain n where
w: (f Torder fa) ($) a=(f "n) ($) a
and n < order fa
by (rule in__orbitE)
show ?thesis
proof (cases n)
case 0 with x show ?thesis by simp
next
case (Suc m)
from order__greater_zero [of f a]
have Suc (order fa — 1) = order f a
by arith
from Suc «<n < order f a»
have m < order f a
by simp
with Suc *
have (inverse f) (8) ((f ~ Suc (order fa — 1)) ($) a) =
(inverse f) ($) ((f ~ Suc m) ($) a)
by simp
then have (f ~(order fa — 1)) ($) a =
(f ~m) (8) a
by (simp only: power_Suc apply_times)
(simp add: apply_sequence mult.assoc [symmetric])
with inj_on_ apply range
have order fa — 1 =m
by (rule inj _onD)
(simp__all add: «<m < order f a»)
with Suc have n = order f a
by auto
with «n < order f a»
show ?thesis by simp
qed
qed

lemma apply power_left _mult_order [simp]:

98

(f “(nx*order fa)) ($) a =a
by (induct n) (simp__all add: power _add apply times)

lemma apply power_right _mult_order [simp):
(f " (order faxn)) ($) a=a
by (simp add: ac__simps)

lemma apply power_mod__order _eq [simp]:
(f 7 (n mod order f a)) (§) a = (f " n) (3) a
proof —
have (f " n) ($3) a = (f ~ (n mod order f a + order f a x (n div order f a))) ($) a
by simp
also have ... = (f 7 (n mod order f a) * f ~ (order f a x (n div order f a))) ($) a
by (simp flip: power_add)
finally show ?thesis
by (simp add: apply times)
qed

lemma apply power__eq iff:
(f "m) ($) a=(f "n)(3) a «— m mod order f a = n mod order f a (is ?P
— 7Q)
proof
assume ?()
then have (f = (m mod order f a)) ($3) a = (f ~ (n mod order f a)) (3) a
by simp
then show ?P
by simp
next
assume ?P
then have (f = (m mod order f a)) (3) a = (f ~ (n mod order f a)) (3) a
by simp
with inj_on_ apply range
show ?7()
by (rule inj _onD) simp_all
qed

lemma apply inverse__eq apply power order minus _one:
(inverse f) ($) a = (f " (order fa — 1)) ($) a
proof (cases order f a)
case () with order_greater_zero [of f a] show ?thesis
by simp
next
case (Suc n)
moreover have (f ~order fa) (3) a = a
by simp
then have *: (inverse f) (8) ((f ~order f a) ($) a) = (inverse f) ($) a
by simp
ultimately show ?thesis
by (simp add: apply sequence mult.assoc [symmetric))

99

qed

lemma apply inverse_self in_orbit [simp]:
(inverse f) ($) a € orbit f a
using apply_inverse__eq__apply__power_order_minus_one [symmetric]|
by (rule in__orbitl)

lemma apply_inverse_power _eq:
(inverse (f ~n)) (3) a = (f ~ (order f a — n mod order f a)) ($) a
proof (induct n)
case () then show ?case by simp
next
case (Suc n)
define m where m = order f a — n mod order fa — 1
moreover have order f a — n mod order fa > 0
by simp
ultimately have *: order f a — n mod order f a = Suc m
by arith
moreover from * have m2: order f a — Suc n mod order f a = (if m = 0 then
order f a else m)
by (auto simp add: mod_Suc)
ultimately show Zcase
using Suc
by (simp__all add: apply_times power__Suc2 [of _ n] power_Suc [of _ m] del:
power_Suc)
(simp add: apply_sequence mult.assoc [symmetric])
qged

lemma apply power _eq self iff:
(f "n)($) a=a<+— order fa dvdn
using apply_power_eq_iff [of f n a 0]
by (simp add: mod__eq 0 _iff dvd)

lemma orbit_equiv:
assumes b € orbit f a
shows orbit f b = orbit fa (is ?B = ?4)
proof
from assms obtain n where n < order fa and b: b= (f " n) ($) a
by (rule in__orbitE)
then show 7B C 24
by (auto simp add: apply_sequence power _add [symmetric] intro: in__orbit]
elim!: in__orbitE)
from b have (inverse (f ~n)) (3) b = (inverse (f ~n)) ($) (f " n) ($) a)
by simp
then have a: a = (inverse (f " n)) (§) b
by (simp add: apply sequence)
then show ?4 C ¢B
apply (auto simp add: apply_sequence power_add [symmetric] intro: in__orbit]
elim!: in__orbitE)

100

unfolding apply times comp__def apply_inverse_power _eq
unfolding apply sequence power _add [symmetric]
apply (rule in_orbitl) apply rule
done
qed

lemma orbit_apply [simp]:
orbit f (f ($) a) = orbit fa

by (rule orbit_equiv) simp

lemma order_apply [simp]:
order f (f ($) a) = order f a
by (simp only: order__def comp__def orbit__apply)

lemma orbit_apply_inverse [simp]:
orbit f (inverse f ($) a) = orbit f a

by (rule orbit_equiv) simp

lemma order_apply_inverse [simpl:
order f (inverse f ($) a) = order f a
by (simp only: order__def comp__def orbit_apply_inverse)

lemma orbit_apply _power [simp]:
orbit f ((f " n) ($) a) = orbit fa

by (rule orbit_equiv) simp

lemma order_apply _power [simp]:
order f ((f " n) ($) a) = order fa
by (simp only: order _def comp__def orbit_apply_power)

lemma orbit_inverse [simp):
orbit (inverse f) = orbit f
proof (rule ext, rule set_eql, rule)
fix ba
assume b € orbit fa
then obtain n where b: b = (f "n) ($) a n < order fa
by (rule in__orbitE)
then have b = apply (inverse (inverse f) ~n) a
by simp
then have b = apply (inverse (inverse f ~n)) a
by (simp add: perm__power _inverse)
then have b = apply (inverse f ~ (n * (order (inverse f “n) a — 1))) a
by (simp add: apply_inverse _eq apply power _order _minus_one power _mult)
then show b € orbit (inverse f) a
by simp
next
fix ba
assume b € orbit (inverse f) a
then show b € orbit f a

101

by (rule in__orbitE)
(simp add: apply_inverse__eq apply power _order _minus_one
perm__power_inverse power_mult [symmetric])
qed

lemma order_inverse [simp):
order (inverse f) = order f
by (simp add: order__def)

lemma orbit_ disjoint:
assumes orbit f a # orbit f b
shows orbit fa N orbit fb = {}
proof (rule ccontr)
assume orbit f a N orbit f b # {}
then obtain ¢ where ¢ € orbit fa N orbit fb
by blast
then have c € orbit fa and c € orbit fb
by auto
then obtain m n where ¢ = (f “m) ($) a
and ¢ = apply (f ~n) b by (blast elim!: in__orbitE)
then have (f ~m) ($) a = apply (f "n) b
by simp
then have apply (inverse f “m) ((f “m) ($) a) =
apply (inverse f ~m) (apply (f ~n) b)
by simp
then have x: apply (inverse f “m * f "n) b=a
by (simp add: apply sequence perm__power _inverse)
have a € orbit fb
proof (cases n m rule: linorder _cases)
case equal with x show ?thesis
by (simp add: perm__power_inverse)
next
case less
moreover define ¢ where ¢ = m — n
ultimately have m = ¢ + n by arith
with x have apply (inverse f ~q) b= a
by (simp add: power_add mult.assoc perm__power_inverse)
then have a € orbit (inverse f) b
by (rule in__orbitl)
then show ?thesis
by simp
next
case greater
moreover define ¢ where ¢ = n — m
ultimately have n = m + ¢ by arith
with x have apply (f " q) b=a
by (simp add: power_add mult.assoc [symmetric] perm__power_inverse)
then show ?thesis
by (rule in__orbitl)

102

qed
with assms show Fulse
by (auto dest: orbit_equiv)
qed

7.4 Swaps

lift__definition swap :: 'a = ‘a = 'a perm («({_ + _))
is Aa b. transpose a b
proof
fixab:'a
have {c. transpose a b ¢ # ¢} C {a, b}
by (auto simp add: transpose_def)
then show finite {c. transpose a b ¢ # c}
by (rule finite _subset) simp
qed simp

lemma apply_swap__simp [simp]:
(a0 (B a=10
(a0 () b=a
by (transfer; simp)-+

lemma apply swap__same [simp]:
cta=c#b={a+b) $)c=c
by transfer simp

lemma apply swap__eq iff [simp]:
(acb) $)c=a+—c=0b
(acb) $)c=bs+—c=a
by (transfer; auto simp add: transpose__def)+

lemma swap_ 1 [simp]:
(a+a) =1
by transfer simp

lemma swap__sym:
(b + a) = (a < b)
by (transfer; auto simp add: transpose__def)+

lemma swap__self [simp]:
(a < b) x (a + b) =1
by transfer simp

lemma affected_swap:
a # b = affected (a < b) = {a, b}
by transfer (auto simp add: transpose__def)

lemma inverse__swap [simp]:
inverse {a <> b) = (a < b)

103

by transfer (auto intro: inv__equality)

7.5 Permutations specified by cycles

fun cycle :: 'a list = 'a perm (<{_)»)
where
() =1
| ([a]) = 1
| (a # b # as) = (a # as) * {a<>D)

We do not continue and restrict ourselves to syntax from here. See also
introductory note.

7.6 Syntax

bundle permutation_ syntax
begin

notation swap («(_ < _))
notation cycle (<(_))
notation apply (infixl «($)> 999)
end

unbundle no permutation_syntax

end

8 Permutation orbits

theory Orbits
imports

HOL- Library. FuncSet

HOL— Combinatorics. Permutations
begin

8.1 Orbits and cyclic permutations

inductive__set orbit :: (a = 'a) = 'a = 'a set for f 1z where
base: fx € orbit f x|
step: y € orbit fx = fy € orbit fx

definition cyclic_on :: ('a = 'a) = ’a set = bool where
cyclic_on f S +— (Fs€S. S = orbit fs)

lemma orbit_altdef: orbit fz = {(f " n) z | n. 0 < n} (is ?L = ?R)
proof (intro set_eql iffT)
fix y assume y € ?L then show y € ?R
by (induct rule: orbit.induct) (auto simp: exl[where z=1] exl[where z=Suc
n for n])
next

104

fix y assume y € ?R
then obtain n where y = (f 7" n) z 0 < n by blast
then show y € 7L
proof (induction n arbitrary: y)
case (Suc n) then show ?case by (cases n = 0) (auto intro: orbit.intros)
qed simp
qed

lemma orbit_trans:
assumes s € orbit ftt € orbit f u shows s € orbit f u
using assms by induct (auto intro: orbit.intros)

lemma orbit subset:
assumes s € orbit f (ft) shows s € orbit f ¢
using assms by (induct) (auto intro: orbit.intros)

lemma orbit_sim__step:
assumes s € orbit f t shows fs € orbit f (f t)
using assms by induct (auto intro: orbit.intros)

lemma orbit_step:

assumes y € orbit fz fx # y shows y € orbit f (f x)

using assms
proof induction

case (step y) then show ?case by (cases © = y) (auto intro: orbit.intros)
qed simp

lemma self in_orbit_trans:
assumes s € orbit f st € orbit f s shows t € orbit ft
using assms(2,1) by induct (auto intro: orbit_sim__step)

lemma orbit_swap:

assumes s € orbit fst € orbit fs shows s € orbit ft

using assms(2,1)
proof induction

case base then show ?case by (cases f s = s) (auto intro: orbit_step)
next

case (step z) then show ?case by (cases f x = s) (auto intro: orbit_step)
qed

lemma permutation_self in_ orbit:
assumes permutation f shows s € orbit f s
unfolding orbit_altdef using permutation__self[OF assms, of s| by simp metis

lemma orbit_altdef self in:

assumes s € orbit f s shows orbit fs = {(f "~ n) s | n. True}
proof (intro set_eql iffT)

fix z assume z € {(f " n) s | n. True}

then obtain n where z = (f 7" n) s by auto

105

then show z € orbit f s using assms by (cases n = 0) (auto simp: orbit_altdef)
qed (auto simp: orbit_altdef)

lemma orbit_altdef permutation:
assumes permutation f shows orbit fs = {(f "~ n) s | n. True}
using assms by (intro orbit__altdef self in permutation__self in__orbit)

lemma orbit_altdef bounded:
assumes (f 7" n) s = s 0 < n shows orbit fs = {(f " m) s| m. m < n}
proof —
from assms have s € orbit f s
by (auto simp add: orbit_altdef) metis
then have orbit f s = {(f =~ m) s|m. True} by (rule orbit_altdef self in)
also have ... = {(f 7" m) s| m. m < n}
using assms
by (auto simp: funpow_mod__eq intro: exI[where x=m mod n for m])
finally show ?thesis .
qed

lemma funpow in_ orbit:
assumes s € orbit ft shows (f " n) s € orbit ft
using assms by (induct n) (auto intro: orbit.intros)

lemma finite_orbit:
assumes s € orbit f s shows finite (orbit f s)
proof —
from assms obtain n where n: 0 < n (f
by (auto simp: orbit_altdef)
then show %thesis by (auto simp: orbit_altdef bounded)
qed

A~

n)s=s

lemma self in_ orbit_step:
assumes s € orbit f s shows orbit f (f s) = orbit f s
proof (intro set_eql iffI)
fix ¢ assume ¢ € orbit f s then show ¢ € orbit f (f s)
using assms by (auto intro: orbit_step orbit_sim__step)
qged (auto intro: orbit_subset)

lemma permutation__orbit_step:
assumes permutation f shows orbit f (f s) = orbit f s
using assms by (intro self _in_orbit_step permutation_self in_ orbit)

lemma orbit_nonempty:

orbit fs # {}
using orbit.base by fastforce

lemma orbit_inv_eq:

assumes permutation f
shows orbit (inv f) x = orbit fz (is L = ?R)

106

proof —
{ fix g y assume A: permutation g y € orbit (inv g) =
have y € orbit g z
proof —
have inv_g: N\y. e =gy = invgez =y Ay. invg (gy) =y
by (metis A(1) bij_inv_eq iff permutation_ bijective)+

{ fix y assume y € orbit g =
then have inv g y € orbit g x
by (cases) (simp_all add: inv_g A(1) permutation__self in__orbit)
} note inv_g_in_orb = this

from A(2) show ?thesis
by induct (simp__all add: inv_g_in_orb A permutation_self in_orbit)
qed
} note orb__inv_ss = this

have inv (inv f) = f
by (simp add: assms inv_inv__eq permutation_ bijective)
then show ?thesis
using orb__inv_ss[OF assms] orb_inv__ss|OF permutation__inverse|OF assmsl]
by auto
qed

lemma cyclic_on__alldef:
cyclic_on fS +— S # {} A (Vs€S. S = orbit fs)
unfolding cyclic_on__def by (auto intro: orbit.step orbit_swap orbit_trans)

lemma cyclic_on_ funpow__in:
assumes cyclic_on fS s € S shows (f"n) se€ S
using assms unfolding cyclic_on__def by (auto intro: funpow_in__ orbit)

lemma finite_ cyclic_on:
assumes cyclic_on f S shows finite S
using assms by (auto simp: cyclic_on__def finite_orbit)

lemma cyclic_on__singlel:
assumes s € S S = orbit f s shows cyclic_on f S
using assms unfolding cyclic _on_def by blast

lemma cyclic_on_inl:
assumes cyclic_on fSs € S shows fse S
using assms by (auto simp: cyclic_on__def intro: orbit.intros)

lemma orbit_inverse:
assumes self: a € orbit g a
and eq: Az. z € orbit ga = ¢’ (fz) = f (g x)
shows [“ orbit g a = orbit ¢’ (f a) (is ?L = ?R)
proof (intro set_eql iff)

107

fix z assume z € ?L
then obtain z0 where z0 € orbit g a z = f 20 by auto
then show z € 7R
proof (induct arbitrary: x)
case base then show ?case by (auto simp: self orbit.base eq[symmetric])
next
case step then show ?Zcase by cases (auto simp: eq[symmetric] orbit.intros)
qed
next
fix © assume z € ?R
then show z € ?L
proof (induct arbitrary:)
case base then show ?case by (auto simp: self orbit.base eq)
next
case step then show ?case by cases (auto simp: eq orbit.intros)
qged
qed

lemma cyclic_on__image:
assumes cyclic_on f S
assumes A\z. 2 € S = g (hz) =h (fz)
shows cyclic_on g (h ©9)
using assms by (auto simp: cyclic_on__def) (meson orbit_inverse)

lemma cyclic_on_f in:
assumes f permutes S cyclic_on fA fz € A
shows z € A
proof —
from assms have fr_in_orb: fx € orbit f (f z) by (auto simp: cyclic_on__alldef)
from assms have A = orbit f (f z) by (auto simp: cyclic_on__alldef)
moreover
then have ... = orbit fx using fz € A> by (auto intro: orbit_step orbit_subset)
ultimately
show ?thesis by (metis (no__types) orbit.simps permutes_inverses(2)[OF assms(1)])
qed

lemma orbit_cong0:

assumes t € A f € A= ANy.y€ A= fy= gy shows orbit f z = orbit g
T
proof —

{fixnhave (f " n)z=(g " n)zA(f "nzeAl

by (induct n rule: nat.induct) (insert assms, auto)

} then show ?thesis by (auto simp: orbit_altdef)

qed

lemma orbit_cong:
assumes self _in: t € orbit ft and eq: N\s. s € orbit ft = gs=fs
shows orbit g t = orbit f t
using assms(1) __ assms(2) by (rule orbit_cong0) (auto simp: orbit.step eq)

108

lemma cyclic_cong:
assumes A\s. s € S = fs = g s shows cyclic_on S = cyclic_on g S
proof —
have (3s€S. orbit f s = orbit g s) = cyclic_on S = cyclic_on g S
by (metis cyclic_on__alldef cyclic_on__def)
then show %thesis by (metis assms orbit__cong cyclic_on__def)
qed

lemma permutes_comp preserves_cyclicl:
assumes g permutes B cyclic_on f C
assumes AN B={} CCA
shows cyclic_on (fo g) C
proof —
have x: A\c. ce C = f (gc¢)=fc
using assms by (subst permutes_not_in [of g]) auto
with assms(2) show %thesis by (simp cong: cyclic__cong)
qed

lemma permutes _comp_ preserves__cyclic2:
assumes | permutes A cyclic_on g C
assumes AN B={} CCB
shows cyclic_on (fo g) C
proof —
obtain ¢ where ¢: c € C C = orbit g c ¢ € orbit g c
using <cyclic_on g C» by (auto simp: cyclic_on__def)
then have Ac. c€ C = f(g¢)=gc¢
using assms ¢ by (subst permutes_not_in [of f]) (auto intro: orbit.intros)
with assms(2) show %thesis by (simp cong: cyclic_cong)
qed

lemma permutes orbit_subset:

assumes f permutes S x € S shows orbit fz C S
proof

fix y assume y € orbit fz

then show y € S by induct (auto simp: permutes_in_image assms)
qed

lemma cyclic _on_ orbit”:
assumes permutation f shows cyclic_on f (orbit f x)
unfolding cyclic_on__alldef using orbit_nonempty|of f z]
by (auto intro: assms orbit_swap orbit_trans permutationfselfiiniorbit)

lemma cyclic_on__orbit:
assumes | permutes S finite S shows cyclic_on f (orbit f z)

using assms by (intro cyclic_on_orbit’) (auto simp: permutation__permutes)

lemma orbit_ cyclic_eq3:
assumes cyclic_on f Sy € S shows orbit fy =S

109

using assms unfolding cyclic_on__alldef by simp

lemma orbit_eq_singleton_iff: orbit fx = {a} +— fz = x (is ?L +— ?R)
proof

assume A: R

{ fix y assume y € orbit f z then have y = z

by induct (auto simp: A)

} then show ?L by (metis orbit_nonempty singletonl subsetl subset__singletonD)
next

assume A: 7L

then have Ay. y € orbit fo = fz =y

by — (erule orbit.cases, simp__all)

then show ?R using A by blast

qed

lemma eq on_ cyclic_on__iff1:
assumes cyclic_on fSz € S
obtains fr € Sfx =2z +— card S = 1
proof
from assms show fz € S by (auto simp: cyclic_on__def intro: orbit.intros)
from assms have S = orbit f z by (auto simp: cyclic_on__alldef)
then have fz = 2 «— S = {z} by (metis orbit_eq_singleton__iff)
then show fz = 2 +— card S = 1 using <z € S» by (auto simp: card_Suc__eq)
qed

lemma orbit_eql:
y=frz= yecorbitfz
z=fy=y € orbit fxr =2 € orbit fz
by (metis orbit.base) (metis orbit.step)

8.2 Decomposition of arbitrary permutations

definition perm_ restrict :: ('a = 'a) = 'a set = (‘a = 'a) where
perm__restrict f S = if x € S then fx else x

lemma perm, _restrict_comp:

assumes A N B = {} cyclic_on f B

shows perm__restrict f A o perm__restrict f B = perm__restrict f (A U B)
proof —

have Az. © € B = fx € B using «cyclic_on f B> by (rule cyclic_on__inI)

with assms show ?thesis by (auto simp: perm__restrict _def fun__eq iff)
qed

lemma perm,__restrict__simps:
x €8 = perm_restrict fSx = fx
x & S = perm_restrict f Sz =
by (auto simp: perm__restrict _def)

lemma perm,__restrict__perm_ restrict:

110

perm,__restrict (perm__restrict f A) B = perm__restrict f (A N B)
by (auto simp: perm__restrict _def)

lemma perm,__restrict_union:
assumes perm,__restrict f A permutes A perm__restrict f B permutes B AN B =
{}
shows perm__restrict f A o perm__restrict f B = perm__restrict f (A U B)
using assms by (auto simp: fun__eq iff perm__restrict _def permutes_def) (metis

Diff _iff Diff _triv)

lemma perm__restrict_id[simp]:
assumes f permutes S shows perm_ restrict f S = f
using assms by (auto simp: permutes__def perm__restrict _def)

lemma cyclic_on__perm__restrict:
cyclic_on (perm__restrict f S) S <+— cyclic_on f S
by (simp add: perm__restrict_def cong: cyclic_cong)

lemma perm,_ restrict_ diff _cyclic:
assumes | permutes S cyclic_on f A
shows perm__restrict f (S — A) permutes (S — A)
proof —
{fix y
have Jz. perm_restrict f (S — A) z =y
proof cases
assume A: ye § — A
with «f permutes S» obtain z where fzr =yz € S
unfolding permutes def by auto metis
moreover
with A have z ¢ A by (metis Diff _iff assms(2) cyclic_on_inl)
ultimately
have perm__restrict f (S — A) z = y by (simp add: perm__restrict_simps)
then show ?thesis ..
next
assume y ¢ S — A
then have perm_ restrict f (S — A) y = y by (simp add: perm__restrict_simps)
then show ?thesis ..
qed
} note X = this

{ fix z y assume perm__restrict f (S — A) z = perm_restrict f (S — A) y

with assms have z = y

by (auto simp: perm__restrict _def permutes__def split: if _splits intro: cyclic_on_f in)
} note Y = this

show ?thesis by (auto simp: permutes_def perm__restrict_simps X intro: Y)
qed

lemma permutes_decompose:

111

assumes f permutes S finite S

shows 3C. (Ve € C. cyclic._onfc) ANUC =8N NVel € C.Vce2 e C.cl #
2 — cl Ne2={})

using assms(2,1)
proof (induction arbitrary: f rule: finite__psubset_induct)

case (psubset S)

show ?Zcase
proof (cases S = {})
case True then show ?thesis by (intro exI[where z={}]) auto
next
case Fulse
then obtain s where s € S by auto
with <f permutes S» have orbit fs C S
by (rule permutes_orbit_subset)
have cyclic_orbit: cyclic_on f (orbit f s)
using «f permutes S <finite S» by (rule cyclic_on__orbit)

let ?f' = perm__restrict f (S — orbit f s)

have fs € S using «f permutes S» «s € S» by (auto simp: permutes__in__image)
then have S — orbit f s C S using orbit.base[of f s] <s € S» by blast
moreover
have ?f' permutes (S — orbit f s)

using «f permutes S» cyclic_orbit by (rule perm__restrict _diff _cyclic)
ultimately
obtain C' where C: Ac. c € C = cyclic_on ?2f' c|JC =S — orbit f s

Vel € C.Ve2 € Cocl #¢2 —clne2={}
using psubset.IH by metis

{ fix ¢ assume ¢ € C
then have x: Az. © € ¢ = perm__restrict f (S — orbit fs) z = fz
using C(2) «f permutes S» by (auto simp add: perm__restrict_def)
then have cyclic_on f ¢ using C(1)[OF <c € C)] by (simp cong: cyclic__cong
add: *)
} note in_ C_cyclic = this

have Un__ins: | (insert (orbit fs) C) = S
using <\ JC = _» <orbit f s C S» by blast

have Disj ins: (Vcl € insert (orbit f s) C.Vc2 € insert (orbit fs) C. cl #
c2 — cl Ne2 ={})
using C by auto

show ?thesis
by (intro conjl Un_ins Disj_ins exl[where z=insert (orbit f s) C])
(auto simp: cyclic__orbit in__C_cyclic)
qged
qed

112

8.3 Function-power distance between values

definition funpow dist :: ('a = ’'a) = 'a = 'a = nat where
funpow_dist foxy = LEAST n. (f " n)z =1y

abbreviation funpow_dist! :: (‘a = 'a) = 'a = 'a = nat where
funpow_distl fz y = Suc (funpow_dist f (f z) y)

lemma funpow dist_0:
assumes z = y shows funpow dist fzy = 0
using assms unfolding funpow_ dist_def by (intro Least _eq 0) simp

lemma funpow dist_least:
assumes n < funpow_dist fx y shows (f " " n) z # y
proof (rule notl)
assume (f “n)xz =y
then have funpow_dist f z y < n unfolding funpow_ dist_def by (rule Least_le)
with assms show Fualse by linarith
qed

lemma funpow distl_least:
assumes 0 < nn < funpow_distl fz yshows (f ~ " n) z #y
proof (rule notl)
assume (f " n)z =y
then have (f 7 (n — 1)) (fz) =y
using <0 < n» by (cases n) (simp__all add: funpow_swapl)
then have funpow_dist f (fz) y < n — 1 unfolding funpow dist def by (rule

Least_le)
with assms show Fualse by simp
qed

lemma funpow_ dist_prop:
y € orbit fo = (f 7 funpow_dist fzy) z =y
unfolding funpow dist_def by (rule Leastl ex) (auto simp: orbit_altdef)

lemma funpow dist 0 _eq:
assumes y € orbit f x shows funpow _dist fxry=0+— z =1y
using assms by (auto simp: funpow__dist_0 dest: funpow _dist_prop)

lemma funpow dist_step:
assumes z # y y € orbit f © shows funpow_dist f z y = Suc (funpow__dist f (f
z) y)
proof —
from (y €) obtain n where (f ~ " n) x = y by (auto simp: orbit_altdef)
with <z # y» obtain n’ where [simp]: n = Suc n’ by (cases n) auto

show ?thesis
unfolding funpow__dist_def
proof (rule Least_Suc2)
show (f 7" n) z = y by fact

113

then show (f "~ n’) (fz) = y by (simp add: funpow_swapl)
show (f 7~ 0) z # y using «xz # y» by simp
show V. ((f ~ Suc k) z = y) = ((f ~K) (f2) = 1)
by (simp add: funpow_swapl)
qed
qed

lemma funpow distl prop:

assumes y € orbit f z shows (f ™ funpow_distl fzy) x =y

by (metis assms funpow__dist_prop funpow_dist_step funpow__simps_right(2)
o__apply self _in__orbit_step)

lemma funpow neq less funpow dist:
assumes y € orbit fz m < funpow_dist fx yn < funpow_dist fx y m # n
shows (f " m)z # (f T n)x

proof (rule notl)
assume A: (f " m)z=(f """ n)z

define m’ n’ where m’ = min m n and n’ = maz m n
with A assms have A= m' < n' (f 7 m")yxz = (f 7" n') zn’ < funpow_dist f x
)
by (auto simp: min__def maz_def)

have y = (f 7 funpow_dist fx y)
using «y € _» by (simp only: funpow__dist_prop)

also have ... = (f 7 ((funpow_dist fry — n') + n') =
using «(n’ < _» by simp
also have ... = (f 7 ((funpow__dist f x y —ny+ m')z
by (simp add: funpow_add «(f 7~ m’) x = _)
1A

also have (f 7 ((funpow_dist fx y — n) m')) z#y
using A’ by (intro funpow_dist_least) linarith
finally show Fulse by simp
qed

lemma funpow neq less funpow distl:
assumes y € orbit fz m < funpow_dist] fx yn < funpow_distl fxym # n
shows (f " m)z # (f " n)x

proof (rule notl)
assume A: (f " m)z=(f " n)z

define m’ n’ where m’ = min m n and n’ = maz m n
with A assms have A" m’ < n' (f 7 m')z = (f " n') zn’ < funpow_distl f
zy
by (auto simp: min__def maz_def)

have y = (f 7 funpow_distl fx y) z
using <y € _» by (simp only: funpow_distl_prop)

114

also have ... = (f 7 ((funpow_distl fzy — n') + n')) z
using «n’ < _) by simp

also have ... = (f 7 ((funpow_distl fzy — n') + m’)) z
by (simp add: funpow_add «(f ~~m’) x = _)

also have (f 7~ ((funpow_distl fxy — n') + m')) x £y
using A’ by (intro funpow_dist1_least) linarith+

finally show Fulse by simp

qed

lemma inj on_ funpow dist:
assumes y € orbit f z shows inj_on (An. (f 7" n) z) {0..funpow_dist f x y}
using funpow_neq less funpow dist|OF assms] by (intro inj_onl) auto

lemma inj on_ funpow dist1:
assumes y € orbit f x shows inj_on (An. (f 7" n) x) {0..<funpow__distl f z y}
using funpow_neq_less_funpow _dist1 [OF assms] by (intro inj_onl) auto

lemma orbit_conv_funpow dist1:
assumes z € orbit fz
shows orbit fo = (An. (f 7" n) z) ‘{0..<funpow_distl f x z} (is ?L = ?R)
using funpow__distl__prop[OF assms]
by (auto simp: orbit_altdef bounded[where n=funpow distl f z z])

lemma funpow distl _propl:

assumes (f "~ n) z = y 0 < n shows (f 7 funpow_distl fxy) z =1y
proof —

from assms have y € orbit f z by (auto simp: orbit_altdef)

then show %thesis by (rule funpow dist1_prop)
qed

lemma funpow distl dist:

assumes funpow_distl fx y < funpow distl fx z

assumes {y,z} C orbit fz

shows funpow_distl fx z = funpow_distl fx y + funpow_distl fy z (is 7L =
?R)
proof —

define n where «n = funpow_distl fx z — funpow distl fzy — 1>

with assms have x: <funpow_distl fz z = Suc (funpow_distl fx y + n)»

by simp

have z_z: (f 7 funpow_distl f x z) © = z using assms by (blast intro: fun-
pow__distl_prop)

have z_y: (f 7 funpow_distl f x y) © = y using assms by (blast intro: fun-
pow__distl _prop)

have (f 7~ (funpow_distl fx z — funpow_distl fz y)) y
= (f 7 (funpow_distl fx z — funpow_distl fz y)) ((f = funpow_distl f x

y))
using z_y by simp
also have ... = 2

115

using assms x_z by (simp add: * funpow__add ac__simps funpow__swapl)
finally have y_z diff: (f 7~ (funpow_dist! fx z — funpow_distl fzy)) y= 2.
then have (f 7 funpow_distl fyz) y =z
using assms by (intro funpow_distl _propl) auto
then have (f ™ funpow_distl fy z) (f ™ funpow_distl fzy) z) = z
using z_y by simp
then have (f 7 (funpow_distl fy z + funpow_distl fzy)) x = 2
by (simp add: * funpow__add funpow swapl)
show ?thesis
proof (rule antisym)
from y_z diff have (f 7 funpow distl fy 2) y = z
using assms by (intro funpow_distl _propl) auto
then have (f 7 funpow_distl fy z) ((f = funpow_distl fzy) z) = 2
using z_y by simp
then have (f 7 (funpow_distl fy z + funpow_distl fz y)) © = z
by (simp add: * funpow__add funpow swapl)
then have funpow distl fx z < funpow_distl fy z + funpow_distl fz y
using funpow_dist1_least not_less by fastforce
then show ?L < ?R by presburger
next
have funpow distl fy z < funpow_distl f v z — funpow_distl fx y
using y 2z diff assms(1) by (metis not_less zero__less _diff funpow__dist1 least)
then show ?R < ?L by linarith
qed
qed

lemma funpow_distl le_self:
assumes (f " m)x=z0 < my € orbit fz
shows funpow_ distl fzy < m
proof (cases z = y)
case True with assms show ?thesis by (auto dest!: funpow_distl_least)
next
case Fulse
have (f ™ funpow_distl fz y) x = (f ~ (funpow_distl f x y mod m)) x
using assms by (simp add: funpow mod__eq)
with False <y € orbit f x> have funpow distl fz y < funpow_distl fx y mod m
by auto (metis «(f 7 funpow_distl fx y) x = (f 7 (funpow_dist! f x y mod
m)) x funpow _distl_prop funpow dist_least funpow dist_step lel)
with <m > 0) show ?thesis
by (auto intro: order_trans)
qed

end

9 Basic combinatorics in Isabelle/HOL (and the
Archive of Formal Proofs)

theory Combinatorics

116

imports
Transposition
Stirling
Permutations
List_Permutation
Multiset_ Permutations
Cycles
Perm
Orbits

begin

end

117

	Transposition function
	Stirling numbers of first and second kind
	Stirling numbers of the second kind
	Stirling numbers of the first kind
	Efficient code

	Permutations, both general and specifically on finite sets.
	Auxiliary
	Basic definition and consequences
	Group properties
	Restricting a permutation to a subset
	Mapping a permutation
	The number of permutations on a finite set
	Permutations of index set for iterated operations
	Permutations as transposition sequences
	Some closure properties of the set of permutations, with lengths
	Various combinations of transpositions with 2, 1 and 0 common elements
	The identity map only has even transposition sequences
	Therefore we have a welldefined notion of parity
	And it has the expected composition properties
	A more abstract characterization of permutations
	Relation to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 permutes
	Sign of a permutation
	An induction principle in terms of transpositions
	More on the sign of permutations
	Transpositions of adjacent elements
	Transferring properties of permutations along bijections
	Permuting a list
	More lemmas about permutations
	Sum over a set of permutations (could generalize to iteration)
	Constructing permutations from association lists

	Permuted Lists
	An existing notion
	Nontrivial conclusions
	Trivial conclusions:

	Permutations of a Multiset
	Permutations of a multiset
	Cardinality of permutations
	Permutations of a set
	Code generation

	Cycles
	Definitions
	Basic Properties
	Conjugation of cycles
	When Cycles Commute
	Cycles from Permutations
	Exponentiation of permutations
	Extraction of cycles from permutations

	Decomposition on Cycles
	Preliminaries
	Decomposition

	Permutations as abstract type
	Abstract type of permutations
	Identity, composition and inversion
	Orbit and order of elements
	Swaps
	Permutations specified by cycles
	Syntax

	Permutation orbits
	Orbits and cyclic permutations
	Decomposition of arbitrary permutations
	Function-power distance between values

	Basic combinatorics in Isabelle/HOL (and the Archive of Formal Proofs)

