
Basic combinatorics in Isabelle/HOL (and the
Archive of Formal Proofs)

January 18, 2026

Contents
1 Transposition function 1

2 Stirling numbers of first and second kind 5
2.1 Stirling numbers of the second kind 5
2.2 Stirling numbers of the first kind 6

2.2.1 Efficient code . 9

3 Permutations, both general and specifically on finite sets. 11
3.1 Auxiliary . 12
3.2 Basic definition and consequences 12
3.3 Group properties . 17
3.4 Restricting a permutation to a subset 18
3.5 Mapping a permutation . 19
3.6 The number of permutations on a finite set 25
3.7 Permutations of index set for iterated operations 28
3.8 Permutations as transposition sequences 28
3.9 Some closure properties of the set of permutations, with lengths 28
3.10 Various combinations of transpositions with 2, 1 and 0 com-

mon elements . 30
3.11 The identity map only has even transposition sequences . . . 30
3.12 Therefore we have a welldefined notion of parity 32
3.13 And it has the expected composition properties 33
3.14 A more abstract characterization of permutations 33
3.15 Relation to permutes . 35
3.16 Sign of a permutation . 36
3.17 An induction principle in terms of transpositions 36
3.18 More on the sign of permutations 40
3.19 Transpositions of adjacent elements 41
3.20 Transferring properties of permutations along bijections . . . 43

1

3.21 Permuting a list . 45
3.22 More lemmas about permutations 47
3.23 Sum over a set of permutations (could generalize to iteration) 56
3.24 Constructing permutations from association lists 57

4 Permuted Lists 60
4.1 An existing notion . 60
4.2 Nontrivial conclusions . 60
4.3 Trivial conclusions: . 61

5 Permutations of a Multiset 63
5.1 Permutations of a multiset . 64
5.2 Cardinality of permutations 66
5.3 Permutations of a set . 69
5.4 Code generation . 70

6 Cycles 74
6.1 Definitions . 74
6.2 Basic Properties . 74
6.3 Conjugation of cycles . 76
6.4 When Cycles Commute . 77
6.5 Cycles from Permutations . 77

6.5.1 Exponentiation of permutations 77
6.5.2 Extraction of cycles from permutations 79

6.6 Decomposition on Cycles . 80
6.6.1 Preliminaries . 81
6.6.2 Decomposition . 84

7 Permutations as abstract type 86
7.1 Abstract type of permutations 86
7.2 Identity, composition and inversion 88
7.3 Orbit and order of elements 91
7.4 Swaps . 101
7.5 Permutations specified by cycles 102
7.6 Syntax . 102

8 Permutation orbits 102
8.1 Orbits and cyclic permutations 102
8.2 Decomposition of arbitrary permutations 108
8.3 Function-power distance between values 111

9 Basic combinatorics in Isabelle/HOL (and the Archive of
Formal Proofs) 115

2

1 Transposition function
theory Transposition

imports Main
begin

definition transpose :: ‹ ′a ⇒ ′a ⇒ ′a ⇒ ′a›
where ‹transpose a b c = (if c = a then b else if c = b then a else c)›

lemma transpose_apply_first [simp]:
‹transpose a b a = b›
by (simp add: transpose_def)

lemma transpose_apply_second [simp]:
‹transpose a b b = a›
by (simp add: transpose_def)

lemma transpose_apply_other [simp]:
‹transpose a b c = c› if ‹c 6= a› ‹c 6= b›
using that by (simp add: transpose_def)

lemma transpose_same [simp]:
‹transpose a a = id›
by (simp add: fun_eq_iff transpose_def)

lemma transpose_eq_iff :
‹transpose a b c = d ←→ (c 6= a ∧ c 6= b ∧ d = c) ∨ (c = a ∧ d = b) ∨ (c = b
∧ d = a)›

by (auto simp add: transpose_def)

lemma transpose_eq_imp_eq:
‹c = d› if ‹transpose a b c = transpose a b d›
using that by (auto simp add: transpose_eq_iff)

lemma transpose_commute [ac_simps]:
‹transpose b a = transpose a b›
by (auto simp add: fun_eq_iff transpose_eq_iff)

lemma transpose_involutory [simp]:
‹transpose a b (transpose a b c) = c›
by (auto simp add: transpose_eq_iff)

lemma transpose_comp_involutory [simp]:
‹transpose a b ◦ transpose a b = id›
by (rule ext) simp

lemma transpose_eq_id_iff : Transposition.transpose x y = id ←→ x = y
by (auto simp: fun_eq_iff Transposition.transpose_def)

3

lemma transpose_triple:
‹transpose a b (transpose b c (transpose a b d)) = transpose a c d›
if ‹a 6= c› and ‹b 6= c›
using that by (simp add: transpose_def)

lemma transpose_comp_triple:
‹transpose a b ◦ transpose b c ◦ transpose a b = transpose a c›
if ‹a 6= c› and ‹b 6= c›
using that by (simp add: fun_eq_iff transpose_triple)

lemma transpose_image_eq [simp]:
‹transpose a b ‘ A = A› if ‹a ∈ A ←→ b ∈ A›
using that by (auto simp add: transpose_def [abs_def])

lemma inj_on_transpose [simp]:
‹inj_on (transpose a b) A›
by rule (drule transpose_eq_imp_eq)

lemma inj_transpose:
‹inj (transpose a b)›
by (fact inj_on_transpose)

lemma surj_transpose:
‹surj (transpose a b)›
by simp

lemma bij_betw_transpose_iff [simp]:
‹bij_betw (transpose a b) A A› if ‹a ∈ A ←→ b ∈ A›
using that by (auto simp: bij_betw_def)

lemma bij_transpose [simp]:
‹bij (transpose a b)›
by (rule bij_betw_transpose_iff) simp

lemma bijection_transpose:
‹bijection (transpose a b)›
by standard (fact bij_transpose)

lemma inv_transpose_eq [simp]:
‹inv (transpose a b) = transpose a b›
by (rule inv_unique_comp) simp_all

lemma transpose_apply_commute:
‹transpose a b (f c) = f (transpose (inv f a) (inv f b) c)›
if ‹bij f ›

proof −
from that have ‹surj f ›

by (rule bij_is_surj)
with that show ?thesis

4

by (simp add: transpose_def bij_inv_eq_iff surj_f_inv_f)
qed

lemma transpose_comp_eq:
‹transpose a b ◦ f = f ◦ transpose (inv f a) (inv f b)›
if ‹bij f ›
using that by (simp add: fun_eq_iff transpose_apply_commute)

lemma in_transpose_image_iff :
‹x ∈ transpose a b ‘ S ←→ transpose a b x ∈ S›
by (auto intro!: image_eqI)

Legacy input alias
setup ‹Context.theory_map (Name_Space.map_naming (Name_Space.qualified_path
true binding ‹Fun›))›

abbreviation (input) swap :: ‹ ′a ⇒ ′a ⇒ (′a ⇒ ′b) ⇒ ′a ⇒ ′b›
where ‹swap a b f ≡ f ◦ transpose a b›

lemma swap_def :
‹Fun.swap a b f = f (a := f b, b:= f a)›
by (simp add: fun_eq_iff)

setup ‹Context.theory_map (Name_Space.map_naming (Name_Space.parent_path))›

lemma swap_apply:
Fun.swap a b f a = f b
Fun.swap a b f b = f a
c 6= a =⇒ c 6= b =⇒ Fun.swap a b f c = f c
by simp_all

lemma swap_self : Fun.swap a a f = f
by simp

lemma swap_commute: Fun.swap a b f = Fun.swap b a f
by (simp add: ac_simps)

lemma swap_nilpotent: Fun.swap a b (Fun.swap a b f) = f
by (simp add: comp_assoc)

lemma swap_comp_involutory: Fun.swap a b ◦ Fun.swap a b = id
by (simp add: fun_eq_iff)

lemma swap_triple:
assumes a 6= c and b 6= c
shows Fun.swap a b (Fun.swap b c (Fun.swap a b f)) = Fun.swap a c f
using assms transpose_comp_triple [of a c b]
by (simp add: comp_assoc)

5

lemma comp_swap: f ◦ Fun.swap a b g = Fun.swap a b (f ◦ g)
by (simp add: comp_assoc)

lemma swap_image_eq:
assumes a ∈ A b ∈ A
shows Fun.swap a b f ‘ A = f ‘ A
using assms by (metis image_comp transpose_image_eq)

lemma inj_on_imp_inj_on_swap: inj_on f A =⇒ a ∈ A =⇒ b ∈ A =⇒ inj_on
(Fun.swap a b f) A

by (simp add: comp_inj_on)

lemma inj_on_swap_iff :
assumes A: a ∈ A b ∈ A
shows inj_on (Fun.swap a b f) A ←→ inj_on f A
using assms by (metis inj_on_imageI inj_on_imp_inj_on_swap transpose_image_eq)

lemma surj_imp_surj_swap: surj f =⇒ surj (Fun.swap a b f)
by (meson comp_surj surj_transpose)

lemma surj_swap_iff : surj (Fun.swap a b f) ←→ surj f
by (metis fun.set_map surj_transpose)

lemma bij_betw_swap_iff : x ∈ A =⇒ y ∈ A =⇒ bij_betw (Fun.swap x y f) A B
←→ bij_betw f A B

by (meson bij_betw_comp_iff bij_betw_transpose_iff)

lemma bij_swap_iff : bij (Fun.swap a b f) ←→ bij f
by (simp add: bij_betw_swap_iff)

lemma swap_image:
‹Fun.swap i j f ‘ A = f ‘ (A − {i, j}
∪ (if i ∈ A then {j} else {}) ∪ (if j ∈ A then {i} else {}))›

by (auto simp add: Fun.swap_def)

lemma inv_swap_id: inv (Fun.swap a b id) = Fun.swap a b id
by simp

lemma bij_swap_comp:
assumes bij p
shows Fun.swap a b id ◦ p = Fun.swap (inv p a) (inv p b) p
using assms by (simp add: transpose_comp_eq)

lemma swap_id_eq: Fun.swap a b id x = (if x = a then b else if x = b then a else
x)

by (simp add: Fun.swap_def)

lemma swap_unfold:
‹Fun.swap a b p = p ◦ Fun.swap a b id›

6

by simp

lemma swap_id_idempotent: Fun.swap a b id ◦ Fun.swap a b id = id
by simp

lemma bij_swap_compose_bij:
‹bij (Fun.swap a b id ◦ p)› if ‹bij p›
using that by (rule bij_comp) simp

end

2 Stirling numbers of first and second kind
theory Stirling
imports Main
begin

2.1 Stirling numbers of the second kind
fun Stirling :: nat ⇒ nat ⇒ nat

where
Stirling 0 0 = 1
| Stirling 0 (Suc k) = 0
| Stirling (Suc n) 0 = 0
| Stirling (Suc n) (Suc k) = Suc k ∗ Stirling n (Suc k) + Stirling n k

lemma Stirling_1 [simp]: Stirling (Suc n) (Suc 0) = 1
by (induct n) simp_all

lemma Stirling_less [simp]: n < k =⇒ Stirling n k = 0
by (induct n k rule: Stirling.induct) simp_all

lemma Stirling_same [simp]: Stirling n n = 1
by (induct n) simp_all

lemma Stirling_2_2 : Stirling (Suc (Suc n)) (Suc (Suc 0)) = 2 ^ Suc n − 1
proof (induct n)

case 0
then show ?case by simp

next
case (Suc n)
have Stirling (Suc (Suc (Suc n))) (Suc (Suc 0)) =

2 ∗ Stirling (Suc (Suc n)) (Suc (Suc 0)) + Stirling (Suc (Suc n)) (Suc 0)
by simp

also have . . . = 2 ∗ (2 ^ Suc n − 1) + 1
by (simp only: Suc Stirling_1)

also have . . . = 2 ^ Suc (Suc n) − 1
proof −

have (2 ::nat) ^ Suc n − 1 > 0

7

by (induct n) simp_all
then have 2 ∗ ((2 ::nat) ^ Suc n − 1) > 0

by simp
then have 2 ≤ 2 ∗ ((2 ::nat) ^ Suc n)

by simp
with add_diff_assoc2 [of 2 2 ∗ 2 ^ Suc n 1]
have 2 ∗ 2 ^ Suc n − 2 + (1 ::nat) = 2 ∗ 2 ^ Suc n + 1 − 2 .
then show ?thesis

by (simp add: nat_distrib)
qed
finally show ?case by simp

qed

lemma Stirling_2 : Stirling (Suc n) (Suc (Suc 0)) = 2 ^ n − 1
using Stirling_2_2 by (cases n) simp_all

2.2 Stirling numbers of the first kind
fun stirling :: nat ⇒ nat ⇒ nat

where
stirling 0 0 = 1
| stirling 0 (Suc k) = 0
| stirling (Suc n) 0 = 0
| stirling (Suc n) (Suc k) = n ∗ stirling n (Suc k) + stirling n k

lemma stirling_0 [simp]: n > 0 =⇒ stirling n 0 = 0
by (cases n) simp_all

lemma stirling_less [simp]: n < k =⇒ stirling n k = 0
by (induct n k rule: stirling.induct) simp_all

lemma stirling_same [simp]: stirling n n = 1
by (induct n) simp_all

lemma stirling_Suc_n_1 : stirling (Suc n) (Suc 0) = fact n
by (induct n) auto

lemma stirling_Suc_n_n: stirling (Suc n) n = Suc n choose 2
by (induct n) (auto simp add: numerals(2))

lemma stirling_Suc_n_2 :
assumes n ≥ Suc 0
shows stirling (Suc n) 2 = (

∑
k=1 ..n. fact n div k)

using assms
proof (induct n)

case 0
then show ?case by simp

next
case (Suc n)

8

show ?case
proof (cases n)

case 0
then show ?thesis

by (simp add: numerals(2))
next

case Suc
then have geq1 : Suc 0 ≤ n

by simp
have stirling (Suc (Suc n)) 2 = Suc n ∗ stirling (Suc n) 2 + stirling (Suc n)

(Suc 0)
by (simp only: stirling.simps(4)[of Suc n] numerals(2))

also have . . . = Suc n ∗ (
∑

k=1 ..n. fact n div k) + fact n
using Suc.hyps[OF geq1]
by (simp only: stirling_Suc_n_1 of_nat_fact of_nat_add of_nat_mult)

also have . . . = Suc n ∗ (
∑

k=1 ..n. fact n div k) + Suc n ∗ fact n div Suc n
by (metis nat.distinct(1) nonzero_mult_div_cancel_left)

also have . . . = (
∑

k=1 ..n. fact (Suc n) div k) + fact (Suc n) div Suc n
by (simp add: sum_distrib_left div_mult_swap dvd_fact)

also have . . . = (
∑

k=1 ..Suc n. fact (Suc n) div k)
by simp

finally show ?thesis .
qed

qed

lemma of_nat_stirling_Suc_n_2 :
assumes n ≥ Suc 0
shows (of_nat (stirling (Suc n) 2):: ′a::field_char_0) = fact n ∗ (

∑
k=1 ..n. (1

/ of_nat k))
using assms

proof (induct n)
case 0
then show ?case by simp

next
case (Suc n)
show ?case
proof (cases n)

case 0
then show ?thesis

by (auto simp add: numerals(2))
next

case Suc
then have geq1 : Suc 0 ≤ n

by simp
have (of_nat (stirling (Suc (Suc n)) 2):: ′a) =

of_nat (Suc n ∗ stirling (Suc n) 2 + stirling (Suc n) (Suc 0))
by (simp only: stirling.simps(4)[of Suc n] numerals(2))

also have . . . = of_nat (Suc n) ∗ (fact n ∗ (
∑

k = 1 ..n. 1 / of_nat k)) + fact
n

9

using Suc.hyps[OF geq1]
by (simp only: stirling_Suc_n_1 of_nat_fact of_nat_add of_nat_mult)

also have . . . = fact (Suc n) ∗ (
∑

k = 1 ..n. 1 / of_nat k) + fact (Suc n) ∗
(1 / of_nat (Suc n))

using of_nat_neq_0 by auto
also have . . . = fact (Suc n) ∗ (

∑
k = 1 ..Suc n. 1 / of_nat k)

by (simp add: distrib_left)
finally show ?thesis .

qed
qed

lemma sum_stirling: (
∑

k≤n. stirling n k) = fact n
proof (induct n)

case 0
then show ?case by simp

next
case (Suc n)
have (

∑
k≤Suc n. stirling (Suc n) k) = stirling (Suc n) 0 + (

∑
k≤n. stirling

(Suc n) (Suc k))
by (simp only: sum.atMost_Suc_shift)

also have . . . = (
∑

k≤n. stirling (Suc n) (Suc k))
by simp

also have . . . = (
∑

k≤n. n ∗ stirling n (Suc k) + stirling n k)
by simp

also have . . . = n ∗ (
∑

k≤n. stirling n (Suc k)) + (
∑

k≤n. stirling n k)
by (simp add: sum.distrib sum_distrib_left)

also have . . . = n ∗ fact n + fact n
proof −

have n ∗ (
∑

k≤n. stirling n (Suc k)) = n ∗ ((
∑

k≤Suc n. stirling n k) −
stirling n 0)

by (metis add_diff_cancel_left ′ sum.atMost_Suc_shift)
also have . . . = n ∗ (

∑
k≤n. stirling n k)

by (cases n) simp_all
also have . . . = n ∗ fact n

using Suc.hyps by simp
finally have n ∗ (

∑
k≤n. stirling n (Suc k)) = n ∗ fact n .

moreover have (
∑

k≤n. stirling n k) = fact n
using Suc.hyps .

ultimately show ?thesis by simp
qed
also have . . . = fact (Suc n) by simp
finally show ?case .

qed

lemma stirling_pochhammer :
(
∑

k≤n. of_nat (stirling n k) ∗ x ^ k) = (pochhammer x n :: ′a::comm_semiring_1)
proof (induct n)

case 0
then show ?case by simp

10

next
case (Suc n)
have of_nat (n ∗ stirling n 0) = (0 :: ′a) by (cases n) simp_all
then have (

∑
k≤Suc n. of_nat (stirling (Suc n) k) ∗ x ^ k) =

(of_nat (n ∗ stirling n 0) ∗ x ^ 0 +
(
∑

i≤n. of_nat (n ∗ stirling n (Suc i)) ∗ (x ^ Suc i))) +
(
∑

i≤n. of_nat (stirling n i) ∗ (x ^ Suc i))
by (subst sum.atMost_Suc_shift) (simp add: sum.distrib ring_distribs)

also have . . . = pochhammer x (Suc n)
by (subst sum.atMost_Suc_shift [symmetric])
(simp add: algebra_simps sum.distrib sum_distrib_left pochhammer_Suc flip:

Suc)
finally show ?case .

qed

A row of the Stirling number triangle
definition stirling_row :: nat ⇒ nat list

where stirling_row n = [stirling n k. k ← [0 ..<Suc n]]

lemma nth_stirling_row: k ≤ n =⇒ stirling_row n ! k = stirling n k
by (simp add: stirling_row_def del: upt_Suc)

lemma length_stirling_row [simp]: length (stirling_row n) = Suc n
by (simp add: stirling_row_def)

lemma stirling_row_nonempty [simp]: stirling_row n 6= []
using length_stirling_row[of n] by (auto simp del: length_stirling_row)

2.2.1 Efficient code

Naively using the defining equations of the Stirling numbers of the first kind
to compute them leads to exponential run time due to repeated compu-
tations. We can use memoisation to compute them row by row without
repeating computations, at the cost of computing a few unneeded values.
As a bonus, this is very efficient for applications where an entire row of
Stirling numbers is needed.
definition zip_with_prev :: (′a ⇒ ′a ⇒ ′b) ⇒ ′a ⇒ ′a list ⇒ ′b list

where zip_with_prev f x xs = map2 f (x # xs) xs

lemma zip_with_prev_altdef :
zip_with_prev f x xs =
(if xs = [] then [] else f x (hd xs) # [f (xs!i) (xs!(i+1)). i ← [0 ..<length xs −

1]])
proof (cases xs)

case Nil
then show ?thesis

by (simp add: zip_with_prev_def)
next

11

case (Cons y ys)
then have zip_with_prev f x xs = f x (hd xs) # zip_with_prev f y ys

by (simp add: zip_with_prev_def)
also have zip_with_prev f y ys = map (λi. f (xs ! i) (xs ! (i + 1))) [0 ..<length

xs − 1]
unfolding Cons
by (induct ys arbitrary: y)

(simp_all add: zip_with_prev_def upt_conv_Cons flip: map_Suc_upt del:
upt_Suc)

finally show ?thesis
using Cons by simp

qed

primrec stirling_row_aux
where

stirling_row_aux n y [] = [1]
| stirling_row_aux n y (x#xs) = (y + n ∗ x) # stirling_row_aux n x xs

lemma stirling_row_aux_correct:
stirling_row_aux n y xs = zip_with_prev (λa b. a + n ∗ b) y xs @ [1]
by (induct xs arbitrary: y) (simp_all add: zip_with_prev_def)

lemma stirling_row_code [code]:
stirling_row 0 = [1]
stirling_row (Suc n) = stirling_row_aux n 0 (stirling_row n)

proof goal_cases
case 1
show ?case by (simp add: stirling_row_def)

next
case 2
have stirling_row (Suc n) =

0 # [stirling_row n ! i + stirling_row n ! (i+1) ∗ n. i ← [0 ..<n]] @ [1]
proof (rule nth_equalityI , goal_cases length nth)

case (nth i)
from nth have i ≤ Suc n

by simp
then consider i = 0 ∨ i = Suc n | i > 0 i ≤ n

by linarith
then show ?case
proof cases

case 1
then show ?thesis

by (auto simp: nth_stirling_row nth_append)
next

case 2
then show ?thesis

by (cases i) (simp_all add: nth_append nth_stirling_row)
qed

12

next
case length
then show ?case by simp

qed
also have 0 # [stirling_row n ! i + stirling_row n ! (i+1) ∗ n. i ← [0 ..<n]] @

[1] =
zip_with_prev (λa b. a + n ∗ b) 0 (stirling_row n) @ [1]

by (cases n) (auto simp add: zip_with_prev_altdef stirling_row_def hd_map
simp del: upt_Suc)

also have . . . = stirling_row_aux n 0 (stirling_row n)
by (simp add: stirling_row_aux_correct)

finally show ?case .
qed

lemma stirling_code [code]:
stirling n k =
(if k = 0 then (if n = 0 then 1 else 0)
else if k > n then 0
else if k = n then 1
else stirling_row n ! k)

by (simp add: nth_stirling_row)

end

3 Permutations, both general and specifically on
finite sets.

theory Permutations
imports

HOL−Library.Multiset
HOL−Library.Disjoint_Sets
Transposition

begin

3.1 Auxiliary
abbreviation (input) fixpoints :: ‹(′a ⇒ ′a) ⇒ ′a set›

where ‹fixpoints f ≡ {x. f x = x}›

lemma inj_on_fixpoints:
‹inj_on f (fixpoints f)›
by (rule inj_onI) simp

lemma bij_betw_fixpoints:
‹bij_betw f (fixpoints f) (fixpoints f)›
using inj_on_fixpoints by (auto simp add: bij_betw_def)

13

3.2 Basic definition and consequences
definition permutes :: ‹(′a ⇒ ′a) ⇒ ′a set ⇒ bool› (infixr ‹permutes› 41)

where ‹p permutes S ←→ (∀ x. x /∈ S −→ p x = x) ∧ (∀ y. ∃ !x. p x = y)›

lemma bij_imp_permutes:
‹p permutes S› if ‹bij_betw p S S› and stable: ‹

∧
x. x /∈ S =⇒ p x = x›

proof −
note ‹bij_betw p S S›
moreover have ‹bij_betw p (− S) (− S)›

by (auto simp add: stable intro!: bij_betw_imageI inj_onI)
ultimately have ‹bij_betw p (S ∪ − S) (S ∪ − S)›

by (rule bij_betw_combine) simp
then have ‹∃ !x. p x = y› for y

by (simp add: bij_iff)
with stable show ?thesis

by (simp add: permutes_def)
qed

lemma inj_imp_permutes:
assumes i: inj_on f S and fin: finite S
and fS :

∧
x. x ∈ S =⇒ f x ∈ S

and f :
∧

i. i /∈ S =⇒ f i = i
shows f permutes S
unfolding permutes_def

proof (intro conjI allI impI , rule f)
fix y
from endo_inj_surj[OF fin _ i] fS have fs: f ‘ S = S by auto
show ∃ !x. f x = y
proof (cases y ∈ S)

case False
thus ?thesis by (intro ex1I [of _ y], insert fS f) force+

next
case True
with fs obtain x where x: x ∈ S and fx: f x = y by force
show ?thesis
proof (rule ex1I , rule fx)

fix x ′

assume fx ′: f x ′ = y
with True f [of x ′] have x ′ ∈ S by metis
from inj_onD[OF i fx[folded fx ′] x this]
show x ′ = x by simp

qed
qed

qed

context
fixes p :: ‹ ′a ⇒ ′a› and S :: ‹ ′a set›
assumes perm: ‹p permutes S›

begin

14

lemma permutes_inj:
‹inj p›
using perm by (auto simp: permutes_def inj_on_def)

lemma permutes_image:
‹p ‘ S = S›

proof (rule set_eqI)
fix x
show ‹x ∈ p ‘ S ←→ x ∈ S›
proof

assume ‹x ∈ p ‘ S›
then obtain y where ‹y ∈ S› ‹p y = x›

by blast
with perm show ‹x ∈ S›

by (cases ‹y = x›) (auto simp add: permutes_def)
next

assume ‹x ∈ S›
with perm obtain y where ‹y ∈ S› ‹p y = x›

by (metis permutes_def)
then show ‹x ∈ p ‘ S›

by blast
qed

qed

lemma permutes_not_in:
‹x /∈ S =⇒ p x = x›
using perm by (auto simp: permutes_def)

lemma permutes_image_complement:
‹p ‘ (− S) = − S›
by (auto simp add: permutes_not_in)

lemma permutes_in_image:
‹p x ∈ S ←→ x ∈ S›
using permutes_image permutes_inj by (auto dest: inj_image_mem_iff)

lemma permutes_surj:
‹surj p›

proof −
have ‹p ‘ (S ∪ − S) = p ‘ S ∪ p ‘ (− S)›

by (rule image_Un)
then show ?thesis

by (simp add: permutes_image permutes_image_complement)
qed

lemma permutes_inv_o:
shows p ◦ inv p = id

and inv p ◦ p = id

15

using permutes_inj permutes_surj
unfolding inj_iff [symmetric] surj_iff [symmetric] by auto

lemma permutes_inverses:
shows p (inv p x) = x

and inv p (p x) = x
using permutes_inv_o [unfolded fun_eq_iff o_def] by auto

lemma permutes_inv_eq:
‹inv p y = x ←→ p x = y›
by (auto simp add: permutes_inverses)

lemma permutes_inj_on:
‹inj_on p A›
by (rule inj_on_subset [of _ UNIV]) (auto intro: permutes_inj)

lemma permutes_bij:
‹bij p›
unfolding bij_def by (metis permutes_inj permutes_surj)

lemma permutes_imp_bij:
‹bij_betw p S S›
by (simp add: bij_betw_def permutes_image permutes_inj_on)

lemma permutes_subset:
‹p permutes T › if ‹S ⊆ T ›

proof (rule bij_imp_permutes)
define R where ‹R = T − S›
with that have ‹T = R ∪ S› ‹R ∩ S = {}›

by auto
then have ‹p x = x› if ‹x ∈ R› for x

using that by (auto intro: permutes_not_in)
then have ‹p ‘ R = R›

by simp
with ‹T = R ∪ S› show ‹bij_betw p T T ›

by (simp add: bij_betw_def permutes_inj_on image_Un permutes_image)
fix x
assume ‹x /∈ T ›
with ‹T = R ∪ S› show ‹p x = x›

by (simp add: permutes_not_in)
qed

lemma permutes_imp_permutes_insert:
‹p permutes insert x S›
by (rule permutes_subset) auto

end

lemma permutes_id [simp]:

16

‹id permutes S›
by (auto intro: bij_imp_permutes)

lemma permutes_empty [simp]:
‹p permutes {} ←→ p = id›

proof
assume ‹p permutes {}›
then show ‹p = id›

by (auto simp add: fun_eq_iff permutes_not_in)
next

assume ‹p = id›
then show ‹p permutes {}›

by simp
qed

lemma permutes_sing [simp]:
‹p permutes {a} ←→ p = id›

proof
assume perm: ‹p permutes {a}›
show ‹p = id›
proof

fix x
from perm have ‹p ‘ {a} = {a}›

by (rule permutes_image)
with perm show ‹p x = id x›

by (cases ‹x = a›) (auto simp add: permutes_not_in)
qed

next
assume ‹p = id›
then show ‹p permutes {a}›

by simp
qed

lemma permutes_univ: p permutes UNIV ←→ (∀ y. ∃ !x. p x = y)
by (simp add: permutes_def)

lemma permutes_swap_id: a ∈ S =⇒ b ∈ S =⇒ transpose a b permutes S
by (rule bij_imp_permutes) (auto intro: transpose_apply_other)

lemma permutes_altdef : p permutes A ←→ bij_betw p A A ∧ {x. p x 6= x} ⊆ A
using permutes_not_in[of p A]
by (auto simp: permutes_imp_bij intro!: bij_imp_permutes)

lemma permutes_superset:
‹p permutes T › if ‹p permutes S› ‹

∧
x. x ∈ S − T =⇒ p x = x›

proof −
define R U where ‹R = T ∩ S› and ‹U = S − T ›
then have ‹T = R ∪ (T − S)› ‹S = R ∪ U › ‹R ∩ U = {}›

by auto

17

from that ‹U = S − T › have ‹p ‘ U = U ›
by simp

from ‹p permutes S› have ‹bij_betw p (R ∪ U) (R ∪ U)›
by (simp add: permutes_imp_bij ‹S = R ∪ U ›)

moreover have ‹bij_betw p U U ›
using that ‹U = S − T › by (simp add: bij_betw_def permutes_inj_on)

ultimately have ‹bij_betw p R R›
using ‹R ∩ U = {}› ‹R ∩ U = {}› by (rule bij_betw_partition)

then have ‹p permutes R›
proof (rule bij_imp_permutes)

fix x
assume ‹x /∈ R›
with ‹R = T ∩ S› ‹p permutes S› show ‹p x = x›

by (cases ‹x ∈ S›) (auto simp add: permutes_not_in that(2))
qed
then have ‹p permutes R ∪ (T − S)›

by (rule permutes_subset) simp
with ‹T = R ∪ (T − S)› show ?thesis

by simp
qed

lemma permutes_bij_inv_into:
fixes A :: ′a set

and B :: ′b set
assumes p permutes A

and bij_betw f A B
shows (λx. if x ∈ B then f (p (inv_into A f x)) else x) permutes B

proof (rule bij_imp_permutes)
from assms have bij_betw p A A bij_betw f A B bij_betw (inv_into A f) B A

by (auto simp add: permutes_imp_bij bij_betw_inv_into)
then have bij_betw (f ◦ p ◦ inv_into A f) B B

by (simp add: bij_betw_trans)
then show bij_betw (λx. if x ∈ B then f (p (inv_into A f x)) else x) B B

by (subst bij_betw_cong[where g=f ◦ p ◦ inv_into A f]) auto
next

fix x
assume x /∈ B
then show (if x ∈ B then f (p (inv_into A f x)) else x) = x by auto

qed

lemma permutes_image_mset:
assumes p permutes A
shows image_mset p (mset_set A) = mset_set A
using assms by (metis image_mset_mset_set bij_betw_imp_inj_on permutes_imp_bij

permutes_image)

lemma permutes_implies_image_mset_eq:
assumes p permutes A

∧
x. x ∈ A =⇒ f x = f ′ (p x)

shows image_mset f ′ (mset_set A) = image_mset f (mset_set A)

18

proof −
have f x = f ′ (p x) if x ∈# mset_set A for x

using assms(2)[of x] that by (cases finite A) auto
with assms have image_mset f (mset_set A) = image_mset (f ′ ◦ p) (mset_set

A)
by (auto intro!: image_mset_cong)

also have . . . = image_mset f ′ (image_mset p (mset_set A))
by (simp add: image_mset.compositionality)

also have . . . = image_mset f ′ (mset_set A)
proof −
from assms permutes_image_mset have image_mset p (mset_set A) = mset_set

A
by blast

then show ?thesis by simp
qed
finally show ?thesis ..

qed

3.3 Group properties
lemma permutes_compose: p permutes S =⇒ q permutes S =⇒ q ◦ p permutes S

unfolding permutes_def o_def by metis

lemma permutes_inv:
assumes p permutes S
shows inv p permutes S
using assms unfolding permutes_def permutes_inv_eq[OF assms] by metis

lemma permutes_inv_inv:
assumes p permutes S
shows inv (inv p) = p
unfolding fun_eq_iff permutes_inv_eq[OF assms] permutes_inv_eq[OF per-

mutes_inv[OF assms]]
by blast

lemma permutes_invI :
assumes perm: p permutes S

and inv:
∧

x. x ∈ S =⇒ p ′ (p x) = x
and outside:

∧
x. x /∈ S =⇒ p ′ x = x

shows inv p = p ′

proof
show inv p x = p ′ x for x
proof (cases x ∈ S)

case True
from assms have p ′ x = p ′ (p (inv p x))

by (simp add: permutes_inverses)
also from permutes_inv[OF perm] True have . . . = inv p x

by (subst inv) (simp_all add: permutes_in_image)
finally show ?thesis ..

19

next
case False
with permutes_inv[OF perm] show ?thesis

by (simp_all add: outside permutes_not_in)
qed

qed

lemma permutes_vimage: f permutes A =⇒ f −‘ A = A
by (simp add: bij_vimage_eq_inv_image permutes_bij permutes_image[OF per-

mutes_inv])

3.4 Restricting a permutation to a subset
definition restrict_id :: (′a ⇒ ′a) ⇒ ′a set ⇒ ′a ⇒ ′a

where restrict_id f A = (λx. if x ∈ A then f x else x)

lemma restrict_id_cong [cong]:
assumes

∧
x. x ∈ A =⇒ f x = g x A = B

shows restrict_id f A = restrict_id g B
using assms unfolding restrict_id_def by auto

lemma restrict_id_cong ′:
assumes x ∈ A =⇒ f x = g x A = B
shows restrict_id f A x = restrict_id g B x
using assms unfolding restrict_id_def by auto

lemma restrict_id_simps [simp]:
x ∈ A =⇒ restrict_id f A x = f x
x /∈ A =⇒ restrict_id f A x = x
by (auto simp: restrict_id_def)

lemma bij_betw_restrict_id:
assumes bij_betw f A A A ⊆ B
shows bij_betw (restrict_id f A) B B

proof −
have bij_betw (restrict_id f A) (A ∪ (B − A)) (A ∪ (B − A))

unfolding restrict_id_def
by (rule bij_betw_disjoint_Un) (use assms in ‹auto intro: bij_betwI ›)

also have A ∪ (B − A) = B
using assms(2) by blast

finally show ?thesis .
qed

lemma permutes_restrict_id:
assumes bij_betw f A A
shows restrict_id f A permutes A
by (intro bij_imp_permutes bij_betw_restrict_id assms) auto

20

3.5 Mapping a permutation
definition map_permutation :: ′a set ⇒ (′a ⇒ ′b) ⇒ (′a ⇒ ′a) ⇒ ′b ⇒ ′b where

map_permutation A f p = restrict_id (f ◦ p ◦ inv_into A f) (f ‘ A)

lemma map_permutation_cong_strong:
assumes A = B

∧
x. x ∈ A =⇒ f x = g x

∧
x. x ∈ A =⇒ p x = q x

assumes p ‘ A ⊆ A inj_on f A
shows map_permutation A f p = map_permutation B g q

proof −
have fg: f x = g y if x ∈ A x = y for x y

using assms(2) that by simp
have pq: p x = q y if x ∈ A x = y for x y

using assms(3) that by simp
have p: p x ∈ A if x ∈ A for x

using assms(4) that by blast
have inv: inv_into A f x = inv_into B g y if x ∈ f ‘ A x = y for x y
proof −

from that obtain u where u: u ∈ A x = f u
by blast

have inv_into A f (f u) = inv_into A g (f u)
using ‹inj_on f A› u(1) by (metis assms(2) inj_on_cong inv_into_f_f)

thus ?thesis
using u ‹x = y› ‹A = B› by simp

qed

show ?thesis
unfolding map_permutation_def o_def
by (intro restrict_id_cong image_cong fg pq inv_into_into p inv) (auto simp:

‹A = B›)
qed

lemma map_permutation_cong:
assumes inj_on f A p permutes A
assumes A = B

∧
x. x ∈ A =⇒ f x = g x

∧
x. x ∈ A =⇒ p x = q x

shows map_permutation A f p = map_permutation B g q
proof (intro map_permutation_cong_strong assms)

show p ‘ A ⊆ A
using ‹p permutes A› by (simp add: permutes_image)

qed auto

lemma inv_into_id [simp]: x ∈ A =⇒ inv_into A id x = x
by (metis f_inv_into_f id_apply image_eqI)

lemma inv_into_ident [simp]: x ∈ A =⇒ inv_into A (λx. x) x = x
by (metis f_inv_into_f image_eqI)

lemma map_permutation_id [simp]: p permutes A =⇒ map_permutation A id p
= p
by (auto simp: fun_eq_iff map_permutation_def restrict_id_def permutes_not_in)

21

lemma map_permutation_ident [simp]: p permutes A =⇒ map_permutation A
(λx. x) p = p
by (auto simp: fun_eq_iff map_permutation_def restrict_id_def permutes_not_in)

lemma map_permutation_id ′: inj_on f A =⇒ map_permutation A f id = id
unfolding map_permutation_def by (auto simp: restrict_id_def fun_eq_iff)

lemma map_permutation_ident ′: inj_on f A =⇒ map_permutation A f (λx. x)
= (λx. x)

unfolding map_permutation_def by (auto simp: restrict_id_def fun_eq_iff)

lemma map_permutation_permutes:
assumes bij_betw f A B p permutes A
shows map_permutation A f p permutes B

proof (rule bij_imp_permutes)
have f_A: f ‘ A = B

using assms(1) by (auto simp: bij_betw_def)
from assms(2) have bij_betw p A A

by (simp add: permutes_imp_bij)
show bij_betw (map_permutation A f p) B B

unfolding map_permutation_def f_A
by (rule bij_betw_restrict_id bij_betw_trans bij_betw_inv_into assms(1)

permutes_imp_bij[OF assms(2)] order .refl)+
show map_permutation A f p x = x if x /∈ B for x

using that unfolding map_permutation_def f_A by simp
qed

lemma map_permutation_compose:
fixes f :: ′a ⇒ ′b and g :: ′b ⇒ ′c
assumes bij_betw f A B inj_on g B
shows map_permutation B g (map_permutation A f p) = map_permutation

A (g ◦ f) p
proof

fix c :: ′c
have bij_g: bij_betw g B (g ‘ B)

using ‹inj_on g B› unfolding bij_betw_def by blast
have [simp]: f x = f y ←→ x = y if x ∈ A y ∈ A for x y

using assms(1) that by (auto simp: bij_betw_def inj_on_def)
have [simp]: g x = g y ←→ x = y if x ∈ B y ∈ B for x y

using assms(2) that by (auto simp: bij_betw_def inj_on_def)
show map_permutation B g (map_permutation A f p) c = map_permutation A

(g ◦ f) p c
proof (cases c ∈ g ‘ B)

case c: True
then obtain a where a: a ∈ A c = g (f a)

using assms(1 ,2) unfolding bij_betw_def by auto
have map_permutation B g (map_permutation A f p) c = g (f (p a))
using a assms by (auto simp: map_permutation_def restrict_id_def bij_betw_def)

22

also have . . . = map_permutation A (g ◦ f) p c
using a bij_betw_inv_into_left[OF bij_betw_trans[OF assms(1) bij_g]]
by (auto simp: map_permutation_def restrict_id_def bij_betw_def)

finally show ?thesis .
next

case c: False
thus ?thesis using assms

by (auto simp: map_permutation_def bij_betw_def restrict_id_def)
qed

qed

lemma map_permutation_compose_inv:
assumes bij_betw f A B p permutes A

∧
x. x ∈ A =⇒ g (f x) = x

shows map_permutation B g (map_permutation A f p) = p
proof −

have inj_on g B
proof

fix x y assume x ∈ B y ∈ B g x = g y
then obtain x ′ y ′ where ∗: x ′ ∈ A y ′ : A x = f x ′ y = f y ′

using assms(1) unfolding bij_betw_def by blast
thus x = y

using assms(3)[of x ′] assms(3)[of y ′] ‹g x = g y› by simp
qed

have map_permutation B g (map_permutation A f p) = map_permutation A (g
◦ f) p

by (rule map_permutation_compose) (use assms ‹inj_on g B› in auto)
also have . . . = map_permutation A id p

by (intro map_permutation_cong assms comp_inj_on)
(use ‹inj_on g B› assms(1 ,3) in ‹auto simp: bij_betw_def ›)

also have . . . = p
by (rule map_permutation_id) fact

finally show ?thesis .
qed

lemma map_permutation_apply:
assumes inj_on f A x ∈ A
shows map_permutation A f h (f x) = f (h x)
using assms by (auto simp: map_permutation_def inj_on_def)

lemma map_permutation_compose ′:
fixes f :: ′a ⇒ ′b
assumes inj_on f A q permutes A
shows map_permutation A f (p ◦ q) = map_permutation A f p ◦ map_permutation

A f q
proof

fix y :: ′b
show map_permutation A f (p ◦ q) y = (map_permutation A f p ◦ map_permutation

A f q) y

23

proof (cases y ∈ f ‘ A)
case True
then obtain x where x: x ∈ A y = f x

by blast
have map_permutation A f (p ◦ q) y = f (p (q x))

unfolding x(2) by (subst map_permutation_apply) (use assms x in auto)
also have . . . = (map_permutation A f p ◦ map_permutation A f q) y

unfolding x o_apply using x(1) assms
by (simp add: map_permutation_apply permutes_in_image)

finally show ?thesis .
next

case False
thus ?thesis

using False by (simp add: map_permutation_def)
qed

qed

lemma map_permutation_transpose:
assumes inj_on f A a ∈ A b ∈ A
shows map_permutation A f (Transposition.transpose a b) = Transposition.transpose

(f a) (f b)
proof

fix y :: ′b
show map_permutation A f (Transposition.transpose a b) y = Transposition.transpose

(f a) (f b) y
proof (cases y ∈ f ‘ A)

case False
hence map_permutation A f (Transposition.transpose a b) y = y

unfolding map_permutation_def by (intro restrict_id_simps)
moreover have Transposition.transpose (f a) (f b) y = y

using False assms by (intro transpose_apply_other) auto
ultimately show ?thesis

by simp
next

case True
then obtain x where x: x ∈ A y = f x

by blast
have map_permutation A f (Transposition.transpose a b) y =

f (Transposition.transpose a b x)
unfolding x by (subst map_permutation_apply) (use x assms in auto)

also have . . . = Transposition.transpose (f a) (f b) y
using assms(2 ,3) x
by (auto simp: Transposition.transpose_def inj_on_eq_iff [OF assms(1)])

finally show ?thesis .
qed

qed

lemma map_permutation_permutes_iff :
assumes bij_betw f A B p ‘ A ⊆ A

∧
x. x /∈ A =⇒ p x = x

24

shows map_permutation A f p permutes B ←→ p permutes A
proof

assume p permutes A
thus map_permutation A f p permutes B

by (intro map_permutation_permutes assms)
next

assume ∗: map_permutation A f p permutes B
hence map_permutation B (inv_into A f) (map_permutation A f p) permutes

A
by (rule map_permutation_permutes[OF bij_betw_inv_into[OF assms(1)]])

also have map_permutation B (inv_into A f) (map_permutation A f p) =
map_permutation A (inv_into A f ◦ f) p

by (rule map_permutation_compose[OF _ inj_on_inv_into])
(use assms in ‹auto simp: bij_betw_def ›)

also have . . . = map_permutation A id p
unfolding o_def id_def
by (rule sym, intro map_permutation_cong_strong inv_into_f_f [symmetric]

assms(2) bij_betw_imp_inj_on[OF assms(1)]) auto
also have . . . = p

unfolding map_permutation_def using assms(3)
by (auto simp: restrict_id_def fun_eq_iff split: if_splits)

finally show p permutes A .
qed

lemma bij_betw_permutations:
assumes bij_betw f A B
shows bij_betw (λπ x. if x ∈ B then f (π (inv_into A f x)) else x)

{π. π permutes A} {π. π permutes B} (is bij_betw ?f _ _)
proof −

let ?g = (λπ x. if x ∈ A then inv_into A f (π (f x)) else x)
show ?thesis
proof (rule bij_betw_byWitness [of _ ?g], goal_cases)

case 3
show ?case using permutes_bij_inv_into[OF _ assms] by auto

next
case 4
have bij_inv: bij_betw (inv_into A f) B A by (intro bij_betw_inv_into assms)
{

fix π assume π permutes B
from permutes_bij_inv_into[OF this bij_inv] and assms

have (λx. if x ∈ A then inv_into A f (π (f x)) else x) permutes A
by (simp add: inv_into_inv_into_eq cong: if_cong)

}
from this show ?case by (auto simp: permutes_inv)

next
case 1
thus ?case using assms
by (auto simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_left

dest: bij_betwE)

25

next
case 2
moreover have bij_betw (inv_into A f) B A

by (intro bij_betw_inv_into assms)
ultimately show ?case using assms
by (auto simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_right

dest: bij_betwE)
qed

qed

lemma bij_betw_derangements:
assumes bij_betw f A B
shows bij_betw (λπ x. if x ∈ B then f (π (inv_into A f x)) else x)

{π. π permutes A ∧ (∀ x∈A. π x 6= x)} {π. π permutes B ∧ (∀ x∈B. π x
6= x)}

(is bij_betw ?f _ _)
proof −

let ?g = (λπ x. if x ∈ A then inv_into A f (π (f x)) else x)
show ?thesis
proof (rule bij_betw_byWitness [of _ ?g], goal_cases)

case 3
have ?f π x 6= x if π permutes A

∧
x. x ∈ A =⇒ π x 6= x x ∈ B for π x

using that and assms by (metis bij_betwE bij_betw_imp_inj_on bij_betw_imp_surj_on
inv_into_f_f inv_into_into permutes_imp_bij)

with permutes_bij_inv_into[OF _ assms] show ?case by auto
next

case 4
have bij_inv: bij_betw (inv_into A f) B A by (intro bij_betw_inv_into assms)
have ?g π permutes A if π permutes B for π

using permutes_bij_inv_into[OF that bij_inv] and assms
by (simp add: inv_into_inv_into_eq cong: if_cong)

moreover have ?g π x 6= x if π permutes B
∧

x. x ∈ B =⇒ π x 6= x x ∈ A
for π x

using that and assms by (metis bij_betwE bij_betw_imp_surj_on f_inv_into_f
permutes_imp_bij)

ultimately show ?case by auto
next

case 1
thus ?case using assms
by (force simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_left

dest: bij_betwE)
next

case 2
moreover have bij_betw (inv_into A f) B A

by (intro bij_betw_inv_into assms)
ultimately show ?case using assms
by (force simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_right

26

dest: bij_betwE)
qed

qed

3.6 The number of permutations on a finite set
lemma permutes_insert_lemma:

assumes p permutes (insert a S)
shows transpose a (p a) ◦ p permutes S

proof (rule permutes_superset[where S = insert a S])
show Transposition.transpose a (p a) ◦ p permutes insert a S
by (meson assms insertI1 permutes_compose permutes_in_image permutes_swap_id)

qed auto

lemma permutes_insert: {p. p permutes (insert a S)} =
(λ(b, p). transpose a b ◦ p) ‘ {(b, p). b ∈ insert a S ∧ p ∈ {p. p permutes S}}

proof −
have p permutes insert a S ←→
(∃ b q. p = transpose a b ◦ q ∧ b ∈ insert a S ∧ q permutes S) for p

proof −
have ∃ b q. p = transpose a b ◦ q ∧ b ∈ insert a S ∧ q permutes S

if p: p permutes insert a S
proof −

let ?b = p a
let ?q = transpose a (p a) ◦ p
have ∗: p = transpose a ?b ◦ ?q

by (simp add: fun_eq_iff o_assoc)
have ∗∗: ?b ∈ insert a S

unfolding permutes_in_image[OF p] by simp
from permutes_insert_lemma[OF p] ∗ ∗∗ show ?thesis

by blast
qed
moreover have p permutes insert a S

if bq: p = transpose a b ◦ q b ∈ insert a S q permutes S for b q
proof −
from permutes_subset[OF bq(3), of insert a S] have q: q permutes insert a S

by auto
have a: a ∈ insert a S

by simp
from bq(1) permutes_compose[OF q permutes_swap_id[OF a bq(2)]] show

?thesis
by simp

qed
ultimately show ?thesis by blast

qed
then show ?thesis by auto

qed

lemma card_permutations:

27

assumes card S = n
and finite S

shows card {p. p permutes S} = fact n
using assms(2 ,1)

proof (induct arbitrary: n)
case empty
then show ?case by simp

next
case (insert x F)
{

fix n
assume card_insert: card (insert x F) = n
let ?xF = {p. p permutes insert x F}
let ?pF = {p. p permutes F}
let ?pF ′ = {(b, p). b ∈ insert x F ∧ p ∈ ?pF}
let ?g = (λ(b, p). transpose x b ◦ p)
have xfgpF ′: ?xF = ?g ‘ ?pF ′

by (rule permutes_insert[of x F])
from ‹x /∈ F› ‹finite F› card_insert have Fs: card F = n − 1

by auto
from ‹finite F› insert.hyps Fs have pFs: card ?pF = fact (n − 1)

by auto
then have finite ?pF

by (auto intro: card_ge_0_finite)
with ‹finite F› card.insert_remove have pF ′f : finite ?pF ′

by simp
have ginj: inj_on ?g ?pF ′

proof −
{

fix b p c q
assume bp: (b, p) ∈ ?pF ′

assume cq: (c, q) ∈ ?pF ′

assume eq: ?g (b, p) = ?g (c, q)
from bp cq have pF : p permutes F and qF : q permutes F

by auto
from pF ‹x /∈ F› eq have b = ?g (b, p) x

by (auto simp: permutes_def fun_upd_def fun_eq_iff)
also from qF ‹x /∈ F› eq have . . . = ?g (c, q) x

by (auto simp: fun_upd_def fun_eq_iff)
also from qF ‹x /∈ F› have . . . = c

by (auto simp: permutes_def fun_upd_def fun_eq_iff)
finally have b = c .
then have transpose x b = transpose x c

by simp
with eq have transpose x b ◦ p = transpose x b ◦ q

by simp
then have transpose x b ◦ (transpose x b ◦ p) = transpose x b ◦ (transpose

x b ◦ q)
by simp

28

then have p = q
by (simp add: o_assoc)

with ‹b = c› have (b, p) = (c, q)
by simp

}
then show ?thesis

unfolding inj_on_def by blast
qed
from ‹x /∈ F› ‹finite F› card_insert have n 6= 0

by auto
then have ∃m. n = Suc m

by presburger
then obtain m where n: n = Suc m

by blast
from pFs card_insert have ∗: card ?xF = fact n

unfolding xfgpF ′ card_image[OF ginj]
using ‹finite F› ‹finite ?pF›
by (simp only: Collect_case_prod Collect_mem_eq card_cartesian_product)

(simp add: n)
from finite_imageI [OF pF ′f , of ?g] have xFf : finite ?xF

by (simp add: xfgpF ′ n)
from ∗ have card ?xF = fact n

unfolding xFf by blast
}
with insert show ?case by simp

qed

lemma finite_permutations:
assumes finite S
shows finite {p. p permutes S}
using card_permutations[OF refl assms] by (auto intro: card_ge_0_finite)

lemma permutes_doubleton_iff : f permutes {a, b} ←→ f = id ∨ f = Transposi-
tion.transpose a b
proof (cases a = b)

case False
have {id, Transposition.transpose a b} ⊆ {f . f permutes {a, b}}

by (auto simp: permutes_id permutes_swap_id)
moreover have id 6= Transposition.transpose a b

using False by (auto simp: fun_eq_iff Transposition.transpose_def)
hence card {id, Transposition.transpose a b} = card {f . f permutes {a, b}}

using False by (simp add: card_permutations)
ultimately have {id, Transposition.transpose a b} = {f . f permutes {a, b}}

by (intro card_subset_eq finite_permutations) auto
thus ?thesis by auto

qed auto

29

3.7 Permutations of index set for iterated operations
lemma (in comm_monoid_set) permute:

assumes p permutes S
shows F g S = F (g ◦ p) S

proof −
from ‹p permutes S› have inj p

by (rule permutes_inj)
then have inj_on p S

by (auto intro: inj_on_subset)
then have F g (p ‘ S) = F (g ◦ p) S

by (rule reindex)
moreover from ‹p permutes S› have p ‘ S = S

by (rule permutes_image)
ultimately show ?thesis

by simp
qed

3.8 Permutations as transposition sequences
inductive swapidseq :: nat ⇒ (′a ⇒ ′a) ⇒ bool

where
id[simp]: swapidseq 0 id
| comp_Suc: swapidseq n p =⇒ a 6= b =⇒ swapidseq (Suc n) (transpose a b ◦ p)

declare id[unfolded id_def , simp]

definition permutation p ←→ (∃n. swapidseq n p)

3.9 Some closure properties of the set of permutations, with
lengths

lemma permutation_id[simp]: permutation id
unfolding permutation_def by (rule exI [where x=0]) simp

declare permutation_id[unfolded id_def , simp]

lemma swapidseq_swap: swapidseq (if a = b then 0 else 1) (transpose a b)
using swapidseq.simps by fastforce

lemma permutation_swap_id: permutation (transpose a b)
by (meson permutation_def swapidseq_swap)

lemma swapidseq_comp_add: swapidseq n p =⇒ swapidseq m q =⇒ swapidseq (n
+ m) (p ◦ q)
proof (induct n p arbitrary: m q rule: swapidseq.induct)

case (id m q)
then show ?case by simp

next

30

case (comp_Suc n p a b m q)
then show ?case

by (metis add_Suc comp_assoc swapidseq.comp_Suc)
qed

lemma permutation_compose: permutation p =⇒ permutation q =⇒ permutation
(p ◦ q)

unfolding permutation_def using swapidseq_comp_add[of _ p _ q] by metis

lemma swapidseq_endswap: swapidseq n p =⇒ a 6= b =⇒ swapidseq (Suc n) (p ◦
transpose a b)

by (induct n p rule: swapidseq.induct)
(use swapidseq_swap[of a b] in ‹auto simp add: comp_assoc intro: swapid-

seq.comp_Suc›)

lemma swapidseq_inverse_exists: swapidseq n p =⇒ ∃ q. swapidseq n q ∧ p ◦ q =
id ∧ q ◦ p = id
proof (induct n p rule: swapidseq.induct)

case id
then show ?case

by (rule exI [where x=id]) simp
next

case (comp_Suc n p a b)
from comp_Suc.hyps obtain q where q: swapidseq n q p ◦ q = id q ◦ p = id

by blast
let ?q = q ◦ transpose a b
note H = comp_Suc.hyps
from swapidseq_swap[of a b] H (3) have ∗: swapidseq 1 (transpose a b)

by simp
from swapidseq_comp_add[OF q(1) ∗] have ∗∗: swapidseq (Suc n) ?q

by simp
have transpose a b ◦ p ◦ ?q = transpose a b ◦ (p ◦ q) ◦ transpose a b

by (simp add: o_assoc)
also have . . . = id

by (simp add: q(2))
finally have ∗∗∗: transpose a b ◦ p ◦ ?q = id .
have ?q ◦ (transpose a b ◦ p) = q ◦ (transpose a b ◦ transpose a b) ◦ p

by (simp only: o_assoc)
then have ?q ◦ (transpose a b ◦ p) = id

by (simp add: q(3))
with ∗∗ ∗∗∗ show ?case

by blast
qed

lemma swapidseq_inverse:
assumes swapidseq n p
shows swapidseq n (inv p)
using swapidseq_inverse_exists[OF assms] inv_unique_comp[of p] by auto

31

lemma permutation_inverse: permutation p =⇒ permutation (inv p)
using permutation_def swapidseq_inverse by blast

3.10 Various combinations of transpositions with 2, 1 and 0
common elements

lemma swap_id_common: a 6= c =⇒ b 6= c =⇒
transpose a b ◦ transpose a c = transpose b c ◦ transpose a b
by (simp add: fun_eq_iff transpose_def)

lemma swap_id_common ′: a 6= b =⇒ a 6= c =⇒
transpose a c ◦ transpose b c = transpose b c ◦ transpose a b
by (simp add: fun_eq_iff transpose_def)

lemma swap_id_independent: a 6= c =⇒ a 6= d =⇒ b 6= c =⇒ b 6= d =⇒
transpose a b ◦ transpose c d = transpose c d ◦ transpose a b
by (simp add: fun_eq_iff transpose_def)

3.11 The identity map only has even transposition sequences
lemma symmetry_lemma:

assumes
∧

a b c d. P a b c d =⇒ P a b d c
and

∧
a b c d. a 6= b =⇒ c 6= d =⇒

a = c ∧ b = d ∨ a = c ∧ b 6= d ∨ a 6= c ∧ b = d ∨ a 6= c ∧ a 6= d ∧ b 6= c
∧ b 6= d =⇒

P a b c d
shows

∧
a b c d. a 6= b −→ c 6= d −→ P a b c d

using assms by metis

lemma swap_general:
assumes a 6= b c 6= d
shows transpose a b ◦ transpose c d = id ∨
(∃ x y z. x 6= a ∧ y 6= a ∧ z 6= a ∧ x 6= y ∧

transpose a b ◦ transpose c d = transpose x y ◦ transpose a z)
by (metis assms swap_id_common ′ swap_id_independent transpose_commute

transpose_comp_involutory)

lemma swapidseq_id_iff [simp]: swapidseq 0 p ←→ p = id
using swapidseq.cases[of 0 p p = id] by auto

lemma swapidseq_cases: swapidseq n p ←→
n = 0 ∧ p = id ∨ (∃ a b q m. n = Suc m ∧ p = transpose a b ◦ q ∧ swapidseq

m q ∧ a 6= b)
by (meson comp_Suc id swapidseq.cases)

lemma fixing_swapidseq_decrease:
assumes swapidseq n p

and a 6= b
and (transpose a b ◦ p) a = a

32

shows n 6= 0 ∧ swapidseq (n − 1) (transpose a b ◦ p)
using assms

proof (induct n arbitrary: p a b)
case 0
then show ?case

by (auto simp add: fun_upd_def)
next

case (Suc n p a b)
from Suc.prems(1) swapidseq_cases[of Suc n p]
obtain c d q m where

cdqm: Suc n = Suc m p = transpose c d ◦ q swapidseq m q c 6= d n = m
by auto

consider transpose a b ◦ transpose c d = id
| x y z where x 6= a y 6= a z 6= a x 6= y

transpose a b ◦ transpose c d = transpose x y ◦ transpose a z
using swap_general[OF Suc.prems(2) cdqm(4)] by metis

then show ?case
proof cases

case 1
then show ?thesis

by (simp only: cdqm o_assoc) (simp add: cdqm)
next

case 2
then have az: a 6= z

by simp
from 2 have ∗: (transpose x y ◦ h) a = a ←→ h a = a for h

by (simp add: transpose_def)
from cdqm(2) have transpose a b ◦ p = transpose a b ◦ (transpose c d ◦ q)

by simp
then have §: transpose a b ◦ p = transpose x y ◦ (transpose a z ◦ q)

by (simp add: o_assoc 2)
obtain ∗∗: swapidseq (n − 1) (transpose a z ◦ q) and n 6=0

by (metis ∗ § Suc.hyps Suc.prems(3) az cdqm(3 ,5))
then have Suc n − 1 = Suc (n − 1)

by auto
with 2 show ?thesis

using ∗∗ § swapidseq.simps by blast
qed

qed

lemma swapidseq_identity_even:
assumes swapidseq n (id :: ′a ⇒ ′a)
shows even n
using ‹swapidseq n id›

proof (induct n rule: nat_less_induct)
case H : (1 n)
consider n = 0
| a b :: ′a and q m where n = Suc m id = transpose a b ◦ q swapidseq m q a

6= b

33

using H (2)[unfolded swapidseq_cases[of n id]] by auto
then show ?case
proof cases

case 1
then show ?thesis by presburger

next
case h: 2
from fixing_swapidseq_decrease[OF h(3 ,4), unfolded h(2)[symmetric]]
have m: m 6= 0 swapidseq (m − 1) (id :: ′a ⇒ ′a)

by auto
from h m have mn: m − 1 < n

by arith
from H (1)[rule_format, OF mn m(2)] h(1) m(1) show ?thesis

by presburger
qed

qed

3.12 Therefore we have a welldefined notion of parity
definition evenperm p = even (SOME n. swapidseq n p)

lemma swapidseq_even_even:
assumes m: swapidseq m p

and n: swapidseq n p
shows even m ←→ even n

proof −
from swapidseq_inverse_exists[OF n] obtain q where q: swapidseq n q p ◦ q

= id q ◦ p = id
by blast

from swapidseq_identity_even[OF swapidseq_comp_add[OF m q(1), unfolded
q]] show ?thesis

by arith
qed

lemma evenperm_unique:
assumes swapidseq n p andeven n = b
shows evenperm p = b
by (metis evenperm_def assms someI swapidseq_even_even)

3.13 And it has the expected composition properties
lemma evenperm_id[simp]: evenperm id = True

by (rule evenperm_unique[where n = 0]) simp_all

lemma evenperm_identity [simp]:
‹evenperm (λx. x)›
using evenperm_id by (simp add: id_def [abs_def])

lemma evenperm_swap: evenperm (transpose a b) = (a = b)

34

by (rule evenperm_unique[where n=if a = b then 0 else 1]) (simp_all add:
swapidseq_swap)

lemma evenperm_comp:
assumes permutation p permutation q
shows evenperm (p ◦ q) ←→ evenperm p = evenperm q

proof −
from assms obtain n m where n: swapidseq n p and m: swapidseq m q

unfolding permutation_def by blast
have even (n + m) ←→ (even n ←→ even m)

by arith
from evenperm_unique[OF n refl] evenperm_unique[OF m refl]

and evenperm_unique[OF swapidseq_comp_add[OF n m] this] show ?thesis
by blast

qed

lemma evenperm_inv:
assumes permutation p
shows evenperm (inv p) = evenperm p

proof −
from assms obtain n where n: swapidseq n p

unfolding permutation_def by blast
show ?thesis

by (rule evenperm_unique[OF swapidseq_inverse[OF n] evenperm_unique[OF
n refl, symmetric]])
qed

3.14 A more abstract characterization of permutations
lemma permutation_bijective:

assumes permutation p
shows bij p
by (meson assms o_bij permutation_def swapidseq_inverse_exists)

lemma permutation_finite_support:
assumes permutation p
shows finite {x. p x 6= x}

proof −
from assms obtain n where swapidseq n p

unfolding permutation_def by blast
then show ?thesis
proof (induct n p rule: swapidseq.induct)

case id
then show ?case by simp

next
case (comp_Suc n p a b)
let ?S = insert a (insert b {x. p x 6= x})
from comp_Suc.hyps(2) have ∗: finite ?S

by simp

35

from ‹a 6= b› have ∗∗: {x. (transpose a b ◦ p) x 6= x} ⊆ ?S
by auto

show ?case
by (rule finite_subset[OF ∗∗ ∗])

qed
qed

lemma permutation_lemma:
assumes finite S

and bij p
and ∀ x. x /∈ S −→ p x = x

shows permutation p
using assms

proof (induct S arbitrary: p rule: finite_induct)
case empty
then show ?case

by simp
next

case (insert a F p)
let ?r = transpose a (p a) ◦ p
let ?q = transpose a (p a) ◦ ?r
have ∗: ?r a = a

by simp
from insert ∗ have ∗∗: ∀ x. x /∈ F −→ ?r x = x

by (metis bij_pointE comp_apply id_apply insert_iff swap_apply(3))
have bij ?r

using insert by (simp add: bij_comp)
have permutation ?r

by (rule insert(3)[OF ‹bij ?r› ∗∗])
then have permutation ?q

by (simp add: permutation_compose permutation_swap_id)
then show ?case

by (simp add: o_assoc)
qed

lemma permutation: permutation p ←→ bij p ∧ finite {x. p x 6= x}
using permutation_bijective permutation_finite_support permutation_lemma by

auto

lemma permutation_inverse_works:
assumes permutation p
shows inv p ◦ p = id

and p ◦ inv p = id
using permutation_bijective [OF assms] by (auto simp: bij_def inj_iff surj_iff)

lemma permutation_inverse_compose:
assumes p: permutation p

and q: permutation q
shows inv (p ◦ q) = inv q ◦ inv p

36

by (simp add: o_inv_distrib p permutation_bijective q)

3.15 Relation to permutes
lemma permutes_imp_permutation:

‹permutation p› if ‹finite S› ‹p permutes S›
proof −

from ‹p permutes S› have ‹{x. p x 6= x} ⊆ S›
by (auto dest: permutes_not_in)

then have ‹finite {x. p x 6= x}›
using ‹finite S› by (rule finite_subset)

moreover from ‹p permutes S› have ‹bij p›
by (auto dest: permutes_bij)

ultimately show ?thesis
by (simp add: permutation)

qed

lemma permutation_permutesE :
assumes ‹permutation p›
obtains S where ‹finite S› ‹p permutes S›

proof −
from assms have fin: ‹finite {x. p x 6= x}›

by (simp add: permutation)
from assms have ‹bij p›

by (simp add: permutation)
also have ‹UNIV = {x. p x 6= x} ∪ {x. p x = x}›

by auto
finally have ‹bij_betw p {x. p x 6= x} {x. p x 6= x}›

by (rule bij_betw_partition) (auto simp add: bij_betw_fixpoints)
then have ‹p permutes {x. p x 6= x}›

by (auto intro: bij_imp_permutes)
with fin show thesis ..

qed

lemma permutation_permutes: permutation p ←→ (∃S . finite S ∧ p permutes S)
by (auto elim: permutation_permutesE intro: permutes_imp_permutation)

3.16 Sign of a permutation
definition sign :: ‹(′a ⇒ ′a) ⇒ int› — TODO: prefer less generic name

where ‹sign p = (if evenperm p then 1 else − 1)›

lemma sign_cases [case_names even odd]:
obtains ‹sign p = 1 › | ‹sign p = − 1 ›
by (cases ‹evenperm p›) (simp_all add: sign_def)

lemma sign_nz [simp]: sign p 6= 0
by (cases p rule: sign_cases) simp_all

lemma sign_id [simp]: sign id = 1

37

by (simp add: sign_def)

lemma sign_identity [simp]:
‹sign (λx. x) = 1 ›
by (simp add: sign_def)

lemma sign_inverse: permutation p =⇒ sign (inv p) = sign p
by (simp add: sign_def evenperm_inv)

lemma sign_compose: permutation p =⇒ permutation q =⇒ sign (p ◦ q) = sign
p ∗ sign q

by (simp add: sign_def evenperm_comp)

lemma sign_swap_id: sign (transpose a b) = (if a = b then 1 else − 1)
by (simp add: sign_def evenperm_swap)

lemma sign_idempotent [simp]: sign p ∗ sign p = 1
by (simp add: sign_def)

lemma sign_left_idempotent [simp]:
‹sign p ∗ (sign p ∗ sign q) = sign q›
by (simp add: sign_def)

lemma abs_sign [simp]: |sign p| = 1
by (simp add: sign_def)

3.17 An induction principle in terms of transpositions
definition apply_transps :: (′a × ′a) list ⇒ ′a ⇒ ′a where

apply_transps xs = foldr (◦) (map (λ(a,b). Transposition.transpose a b) xs) id

lemma apply_transps_Nil [simp]: apply_transps [] = id
by (simp add: apply_transps_def)

lemma apply_transps_Cons [simp]:
apply_transps (x # xs) = Transposition.transpose (fst x) (snd x) ◦ apply_transps

xs
by (simp add: apply_transps_def case_prod_unfold)

lemma apply_transps_append [simp]:
apply_transps (xs @ ys) = apply_transps xs ◦ apply_transps ys
by (induction xs) auto

lemma permutation_apply_transps [simp, intro]: permutation (apply_transps xs)
proof (induction xs)

case (Cons x xs)
thus ?case
unfolding apply_transps_Cons by (intro permutation_compose permutation_swap_id)

qed auto

38

lemma permutes_apply_transps:
assumes ∀ (a,b)∈set xs. a ∈ A ∧ b ∈ A
shows apply_transps xs permutes A
using assms

proof (induction xs)
case (Cons x xs)
from Cons.prems show ?case

unfolding apply_transps_Cons
by (intro permutes_compose permutes_swap_id Cons) auto

qed (auto simp: permutes_id)

lemma permutes_induct [consumes 2 , case_names id swap]:
assumes p permutes S finite S
assumes P id
assumes

∧
a b p. a ∈ S =⇒ b ∈ S =⇒ a 6= b =⇒ P p =⇒ p permutes S

=⇒ P (Transposition.transpose a b ◦ p)
shows P p
using assms(2 ,1 ,4)

proof (induct S arbitrary: p rule: finite_induct)
case empty
then show ?case using assms by (auto simp: id_def)

next
case (insert x F p)
let ?r = Transposition.transpose x (p x) ◦ p
let ?q = Transposition.transpose x (p x) ◦ ?r
have qp: ?q = p

by (simp add: o_assoc)
have ?r permutes F

using permutes_insert_lemma[OF insert.prems(1)] .
have P ?r

by (rule insert(3)[OF ‹?r permutes F›], rule insert(5)) (auto intro: per-
mutes_subset)

show ?case
proof (cases x = p x)

case False
have p x ∈ F

using permutes_in_image[OF ‹p permutes _›, of x] False by auto
have P ?q

by (rule insert(5))
(use ‹P ?r› ‹p x ∈ F› ‹?r permutes F› False in ‹auto simp: o_def intro:

permutes_subset›)
thus P p

by (simp add: qp)
qed (use ‹P ?r› in simp)

qed

lemma permutes_rev_induct[consumes 2 , case_names id swap]:

39

assumes finite S p permutes S
assumes P id
assumes

∧
a b p. a ∈ S =⇒ b ∈ S =⇒ a 6= b =⇒ P p =⇒ p permutes S

=⇒ P (p ◦ Transposition.transpose a b)
shows P p

proof −
have inv_into UNIV p permutes S

using assms by (intro permutes_inv)
from this and assms(1 ,2) show ?thesis
proof (induction inv_into UNIV p arbitrary: p rule: permutes_induct)

case id
hence p = id

by (metis inv_id permutes_inv_inv)
thus ?case using ‹P id› by (auto simp: id_def)

next
case (swap a b p p ′)
have p = Transposition.transpose a b ◦ (Transposition.transpose a b ◦ p)

by (simp add: o_assoc)
also have . . . = Transposition.transpose a b ◦ inv_into UNIV p ′

by (subst swap.hyps) auto
also have Transposition.transpose a b = inv_into UNIV (Transposition.transpose

a b)
by (simp add: inv_swap_id)

also have . . . ◦ inv_into UNIV p ′= inv_into UNIV (p ′ ◦ Transposition.transpose
a b)

using swap ‹finite S›
by (intro permutation_inverse_compose [symmetric] permutation_swap_id

permutation_inverse)
(auto simp: permutation_permutes)

finally have p = inv (p ′ ◦ Transposition.transpose a b) .
moreover have p ′ ◦ Transposition.transpose a b permutes S

by (intro permutes_compose permutes_swap_id swap)
ultimately have ∗: P (p ′ ◦ Transposition.transpose a b)

by (rule swap(4))
have P (p ′ ◦ Transposition.transpose a b ◦ Transposition.transpose a b)

by (rule assms; intro ∗ swap permutes_compose permutes_swap_id)
also have p ′ ◦ Transposition.transpose a b ◦ Transposition.transpose a b = p ′

by (simp flip: o_assoc)
finally show ?case .

qed
qed

lemma map_permutation_apply_transps:
assumes f : inj_on f A and set ts ⊆ A × A
shows map_permutation A f (apply_transps ts) = apply_transps (map (map_prod

f f) ts)
using assms(2)

proof (induction ts)
case (Cons t ts)

40

obtain a b where [simp]: t = (a, b)
by (cases t)

have map_permutation A f (apply_transps (t # ts)) =
map_permutation A f (Transposition.transpose a b ◦ apply_transps ts)

by simp
also have . . . = map_permutation A f (Transposition.transpose a b) ◦

map_permutation A f (apply_transps ts)
by (subst map_permutation_compose ′)

(use f Cons.prems in ‹auto intro!: permutes_apply_transps›)
also have map_permutation A f (Transposition.transpose a b) =

Transposition.transpose (f a) (f b)
by (intro map_permutation_transpose f) (use Cons.prems in auto)

also have map_permutation A f (apply_transps ts) = apply_transps (map
(map_prod f f) ts)

by (intro Cons.IH) (use Cons.prems in auto)
also have Transposition.transpose (f a) (f b) ◦ apply_transps (map (map_prod

f f) ts) =
apply_transps (map (map_prod f f) (t # ts))

by simp
finally show ?case .

qed (use f in ‹auto simp: map_permutation_id ′›)

lemma permutes_from_transpositions:
assumes p permutes A finite A
shows ∃ xs. (∀ (a,b)∈set xs. a 6= b ∧ a ∈ A ∧ b ∈ A) ∧ apply_transps xs = p
using assms

proof (induction rule: permutes_induct)
case id
thus ?case by (intro exI [of _ []]) auto

next
case (swap a b p)
from swap.IH obtain xs where

xs: (∀ (a,b)∈set xs. a 6= b ∧ a ∈ A ∧ b ∈ A) apply_transps xs = p
by blast

thus ?case
using swap.hyps by (intro exI [of _ (a,b) # xs]) auto

qed

3.18 More on the sign of permutations
lemma evenperm_apply_transps_iff :

assumes ∀ (a,b)∈set xs. a 6= b
shows evenperm (apply_transps xs) ←→ even (length xs)
using assms
by (induction xs)
(simp_all add: case_prod_unfold evenperm_comp permutation_swap_id even-

perm_swap)

41

lemma evenperm_map_permutation:
assumes f : inj_on f A and p permutes A finite A
shows evenperm (map_permutation A f p) ←→ evenperm p

proof −
note [simp] = inj_on_eq_iff [OF f]
obtain ts where ts: ∀ (a, b)∈set ts. a 6= b ∧ a ∈ A ∧ b ∈ A apply_transps ts =

p
using permutes_from_transpositions[OF assms(2 ,3)] by blast

have evenperm p ←→ even (length ts)
by (subst ts(2) [symmetric], subst evenperm_apply_transps_iff) (use ts(1) in

auto)
also have . . . ←→ even (length (map (map_prod f f) ts))

by simp
also have . . . ←→ evenperm (apply_transps (map (map_prod f f) ts))

by (subst evenperm_apply_transps_iff) (use ts(1) in auto)
also have apply_transps (map (map_prod f f) ts) = map_permutation A f p

unfolding ts(2)[symmetric]
by (rule map_permutation_apply_transps [symmetric]) (use f ts(1) in auto)

finally show ?thesis ..
qed

lemma sign_map_permutation:
assumes inj_on f A p permutes A finite A
shows sign (map_permutation A f p) = sign p
unfolding sign_def by (subst evenperm_map_permutation) (use assms in auto)

Sometimes it can be useful to consider the sign of a function that is not
a permutation in the Isabelle/HOL sense, but its restriction to some finite
subset is.
definition sign_on :: ′a set ⇒ (′a ⇒ ′a) ⇒ int

where sign_on A f = sign (restrict_id f A)

lemma sign_on_cong [cong]:
assumes A = B

∧
x. x ∈ A =⇒ f x = g x

shows sign_on A f = sign_on B g
unfolding sign_on_def using assms
by (intro arg_cong[of _ _ sign] restrict_id_cong)

lemma sign_on_permutes:
assumes f permutes A A ⊆ B
shows sign_on B f = sign f

proof −
have f : f permutes B

using assms permutes_subset by blast
have sign_on B f = sign (restrict_id f B)

by (simp add: sign_on_def)
also have restrict_id f B = f

using f by (auto simp: fun_eq_iff permutes_not_in restrict_id_def)
finally show ?thesis .

42

qed

lemma sign_on_id [simp]: sign_on A id = 1
by (subst sign_on_permutes[of _ A]) auto

lemma sign_on_ident [simp]: sign_on A (λx. x) = 1
using sign_on_id[of A] unfolding id_def by simp

lemma sign_on_transpose:
assumes a ∈ A b ∈ A a 6= b
shows sign_on A (Transposition.transpose a b) = −1
by (subst sign_on_permutes[of _ A])

(use assms in ‹auto simp: permutes_swap_id sign_swap_id›)

lemma sign_on_compose:
assumes bij_betw f A A bij_betw g A A finite A
shows sign_on A (f ◦ g) = sign_on A f ∗ sign_on A g

proof −
define restr where restr = (λf . restrict_id f A)
have sign_on A (f ◦ g) = sign (restr (f ◦ g))

by (simp add: sign_on_def restr_def)
also have restr (f ◦ g) = restr f ◦ restr g
using assms(2) by (auto simp: restr_def fun_eq_iff bij_betw_def restrict_id_def)

also have sign . . . = sign (restr f) ∗ sign (restr g) unfolding restr_def
by (rule sign_compose) (auto intro!: permutes_imp_permutation[of A] per-

mutes_restrict_id assms)
also have . . . = sign_on A f ∗ sign_on A g

by (simp add: sign_on_def restr_def)
finally show ?thesis .

qed

3.19 Transpositions of adjacent elements

We have shown above that every permutation can be written as a product
of transpositions. We will now furthermore show that any transposition
of successive natural numbers {m, . . . , n} can be written as a product of
transpositions of adjacent elements, i.e. transpositions of the form i↔ i+1.
function adj_transp_seq :: nat ⇒ nat ⇒ nat list where

adj_transp_seq a b =
(if a ≥ b then []
else if b = a + 1 then [a]
else a # adj_transp_seq (a+1) b @ [a])

by auto
termination by (relation measure (λ(a,b). b − a)) auto

lemmas [simp del] = adj_transp_seq.simps

lemma length_adj_transp_seq:

43

a < b =⇒ length (adj_transp_seq a b) = 2 ∗ (b − a) − 1
by (induction a b rule: adj_transp_seq.induct; subst adj_transp_seq.simps) auto

definition apply_adj_transps :: nat list ⇒ nat ⇒ nat
where apply_adj_transps xs = foldl (◦) id (map (λx. Transposition.transpose x

(x+1)) xs)

lemma apply_adj_transps_aux:
f ◦ foldl (◦) g (map (λx. Transposition.transpose x (Suc x)) xs) =
foldl (◦) (f ◦ g) (map (λx. Transposition.transpose x (Suc x)) xs)

by (induction xs arbitrary: f g) (auto simp: o_assoc)

lemma apply_adj_transps_Nil [simp]: apply_adj_transps [] = id
and apply_adj_transps_Cons [simp]:

apply_adj_transps (x # xs) = Transposition.transpose x (x+1) ◦ ap-
ply_adj_transps xs

and apply_adj_transps_snoc [simp]:
apply_adj_transps (xs @ [x]) = apply_adj_transps xs ◦ Transposition.transpose

x (x+1)
by (simp_all add: apply_adj_transps_def apply_adj_transps_aux)

lemma adj_transp_seq_correct:
assumes a < b
shows apply_adj_transps (adj_transp_seq a b) = Transposition.transpose a b
using assms

proof (induction a b rule: adj_transp_seq.induct)
case (1 a b)
show ?case
proof (cases b = a + 1)

case True
thus ?thesis
by (subst adj_transp_seq.simps) (auto simp: o_def Transposition.transpose_def

apply_adj_transps_def)
next

case False
hence apply_adj_transps (adj_transp_seq a b) =

Transposition.transpose a (Suc a) ◦ Transposition.transpose (Suc a) b ◦
Transposition.transpose a (Suc a)

using 1 by (subst adj_transp_seq.simps)
(simp add: o_assoc swap_id_common swap_id_common ′ id_def

o_def)
also have . . . = Transposition.transpose a b

using False 1 by (simp add: Transposition.transpose_def fun_eq_iff)
finally show ?thesis .

qed
qed

lemma permutation_apply_adj_transps: permutation (apply_adj_transps xs)

44

proof (induction xs)
case (Cons x xs)
have permutation (Transposition.transpose x (Suc x) ◦ apply_adj_transps xs)

by (intro permutation_compose permutation_swap_id Cons)
thus ?case by (simp add: o_def)

qed auto

lemma permutes_apply_adj_transps:
assumes ∀ x∈set xs. x ∈ A ∧ Suc x ∈ A
shows apply_adj_transps xs permutes A
using assms
by (induction xs) (auto intro!: permutes_compose permutes_swap_id permutes_id)

lemma set_adj_transp_seq:
a < b =⇒ set (adj_transp_seq a b) = {a..<b}
by (induction a b rule: adj_transp_seq.induct, subst adj_transp_seq.simps) auto

3.20 Transferring properties of permutations along bijections
locale permutes_bij =

fixes p :: ′a ⇒ ′a and A :: ′a set and B :: ′b set
fixes f :: ′a ⇒ ′b and f ′ :: ′b ⇒ ′a
fixes p ′ :: ′b ⇒ ′b
defines p ′ ≡ (λx. if x ∈ B then f (p (f ′ x)) else x)
assumes permutes_p: p permutes A
assumes bij_f : bij_betw f A B
assumes f ′_f : x ∈ A =⇒ f ′ (f x) = x

begin

lemma bij_f ′: bij_betw f ′ B A
using bij_f f ′_f by (auto simp: bij_betw_def) (auto simp: inj_on_def im-

age_image)

lemma f_f ′: x ∈ B =⇒ f (f ′ x) = x
using f ′_f bij_f by (auto simp: bij_betw_def)

lemma f_in_B: x ∈ A =⇒ f x ∈ B
using bij_f by (auto simp: bij_betw_def)

lemma f ′_in_A: x ∈ B =⇒ f ′ x ∈ A
using bij_f ′ by (auto simp: bij_betw_def)

lemma permutes_p ′: p ′ permutes B
proof −

have p ′: p ′ x = x if x /∈ B for x
using that by (simp add: p ′_def)

have bij_p: bij_betw p A A
using permutes_p by (simp add: permutes_imp_bij)

have bij_betw (f ◦ p ◦ f ′) B B

45

by (rule bij_betw_trans bij_f bij_f ′ bij_p)+
also have ?this ←→ bij_betw p ′ B B

by (intro bij_betw_cong) (auto simp: p ′_def)
finally show ?thesis

using p ′ by (rule bij_imp_permutes)
qed

lemma f_eq_iff [simp]: f x = f y ←→ x = y if x ∈ A y ∈ A for x y
using that bij_f by (auto simp: bij_betw_def inj_on_def)

lemma apply_transps_map_f_aux:
assumes ∀ (a,b)∈set xs. a ∈ A ∧ b ∈ A y ∈ B
shows apply_transps (map (map_prod f f) xs) y = f (apply_transps xs (f ′ y))
using assms

proof (induction xs arbitrary: y)
case Nil
thus ?case by (auto simp: f_f ′)

next
case (Cons x xs y)
from Cons.prems have apply_transps xs permutes A

by (intro permutes_apply_transps) auto
hence [simp]: apply_transps xs z ∈ A ←→ z ∈ A for z

by (simp add: permutes_in_image)
from Cons show ?case
by (auto simp: Transposition.transpose_def f_f ′ f ′_f case_prod_unfold f ′_in_A)

qed

lemma apply_transps_map_f :
assumes ∀ (a,b)∈set xs. a ∈ A ∧ b ∈ A
shows apply_transps (map (map_prod f f) xs) =

(λy. if y ∈ B then f (apply_transps xs (f ′ y)) else y)
proof

fix y
show apply_transps (map (map_prod f f) xs) y =

(if y ∈ B then f (apply_transps xs (f ′ y)) else y)
proof (cases y ∈ B)

case True
thus ?thesis

using apply_transps_map_f_aux[OF assms] by simp
next

case False
have apply_transps (map (map_prod f f) xs) permutes B
using assms by (intro permutes_apply_transps) (auto simp: case_prod_unfold

f_in_B)
with False have apply_transps (map (map_prod f f) xs) y = y

by (intro permutes_not_in)
with False show ?thesis

by simp
qed

46

qed

end

locale permutes_bij_finite = permutes_bij +
assumes finite_A: finite A

begin

lemma evenperm_p ′_iff : evenperm p ′←→ evenperm p
proof −

obtain xs where xs: ∀ (a,b)∈set xs. a ∈ A ∧ b ∈ A ∧ a 6= b apply_transps xs =
p

using permutes_from_transpositions[OF permutes_p finite_A] by blast
have evenperm p ←→ evenperm (apply_transps xs)

using xs by simp
also have . . . ←→ even (length xs)

using xs by (intro evenperm_apply_transps_iff) auto
also have . . . ←→ even (length (map (map_prod f f) xs))

by simp
also have . . . ←→ evenperm (apply_transps (map (map_prod f f) xs)) using xs
by (intro evenperm_apply_transps_iff [symmetric]) (auto simp: case_prod_unfold)

also have apply_transps (map (map_prod f f) xs) = p ′

using xs unfolding p ′_def by (subst apply_transps_map_f) auto
finally show ?thesis ..

qed

lemma sign_p ′: sign p ′ = sign p
by (auto simp: sign_def evenperm_p ′_iff)

end

3.21 Permuting a list

This function permutes a list by applying a permutation to the indices.
definition permute_list :: (nat ⇒ nat) ⇒ ′a list ⇒ ′a list

where permute_list f xs = map (λi. xs ! (f i)) [0 ..<length xs]

lemma permute_list_map:
assumes f permutes {..<length xs}
shows permute_list f (map g xs) = map g (permute_list f xs)
using permutes_in_image[OF assms] by (auto simp: permute_list_def)

lemma permute_list_nth:
assumes f permutes {..<length xs} i < length xs
shows permute_list f xs ! i = xs ! f i
using permutes_in_image[OF assms(1)] assms(2)
by (simp add: permute_list_def)

47

lemma permute_list_Nil [simp]: permute_list f [] = []
by (simp add: permute_list_def)

lemma length_permute_list [simp]: length (permute_list f xs) = length xs
by (simp add: permute_list_def)

lemma permute_list_compose:
assumes g permutes {..<length xs}
shows permute_list (f ◦ g) xs = permute_list g (permute_list f xs)
using assms[THEN permutes_in_image] by (auto simp add: permute_list_def)

lemma permute_list_ident [simp]: permute_list (λx. x) xs = xs
by (simp add: permute_list_def map_nth)

lemma permute_list_id [simp]: permute_list id xs = xs
by (simp add: id_def)

lemma mset_permute_list [simp]:
fixes xs :: ′a list
assumes f permutes {..<length xs}
shows mset (permute_list f xs) = mset xs

proof (rule multiset_eqI)
fix y :: ′a
from assms have [simp]: f x < length xs ←→ x < length xs for x

using permutes_in_image[OF assms] by auto
have count (mset (permute_list f xs)) y = card ((λi. xs ! f i) −‘ {y} ∩ {..<length

xs})
by (simp add: permute_list_def count_image_mset atLeast0LessThan)

also have (λi. xs ! f i) −‘ {y} ∩ {..<length xs} = f −‘ {i. i < length xs ∧ y =
xs ! i}

by auto
also from assms have card . . . = card {i. i < length xs ∧ y = xs ! i}

by (intro card_vimage_inj) (auto simp: permutes_inj permutes_surj)
also have . . . = count (mset xs) y
by (simp add: count_mset count_list_eq_length_filter length_filter_conv_card)

finally show count (mset (permute_list f xs)) y = count (mset xs) y
by simp

qed

lemma set_permute_list [simp]:
assumes f permutes {..<length xs}
shows set (permute_list f xs) = set xs
by (rule mset_eq_setD[OF mset_permute_list]) fact

lemma distinct_permute_list [simp]:
assumes f permutes {..<length xs}
shows distinct (permute_list f xs) = distinct xs
by (simp add: distinct_count_atmost_1 assms)

48

lemma permute_list_zip:
assumes f permutes A A = {..<length xs}
assumes [simp]: length xs = length ys
shows permute_list f (zip xs ys) = zip (permute_list f xs) (permute_list f ys)

proof −
from permutes_in_image[OF assms(1)] assms(2) have ∗: f i < length ys ←→

i < length ys for i
by simp

have permute_list f (zip xs ys) = map (λi. zip xs ys ! f i) [0 ..<length ys]
by (simp_all add: permute_list_def zip_map_map)

also have . . . = map (λ(x, y). (xs ! f x, ys ! f y)) (zip [0 ..<length ys] [0 ..<length
ys])

by (intro nth_equalityI) (simp_all add: ∗)
also have . . . = zip (permute_list f xs) (permute_list f ys)

by (simp_all add: permute_list_def zip_map_map)
finally show ?thesis .

qed

lemma map_of_permute:
assumes σ permutes fst ‘ set xs
shows map_of xs ◦ σ = map_of (map (λ(x,y). (inv σ x, y)) xs)
(is _ = map_of (map ?f _))

proof
from assms have inj σ surj σ

by (simp_all add: permutes_inj permutes_surj)
then show (map_of xs ◦ σ) x = map_of (map ?f xs) x for x

by (induct xs) (auto simp: inv_f_f surj_f_inv_f)
qed

lemma list_all2_permute_list_iff :
‹list_all2 P (permute_list p xs) (permute_list p ys) ←→ list_all2 P xs ys›
if ‹p permutes {..<length xs}›
using that by (auto simp add: list_all2_iff simp flip: permute_list_zip)

3.22 More lemmas about permutations
lemma permutes_in_funpow_image:

assumes f permutes S x ∈ S
shows (f ^^ n) x ∈ S
using assms by (induction n) (auto simp: permutes_in_image)

lemma permutation_self :
assumes ‹permutation p›
obtains n where ‹n > 0 › ‹(p ^^ n) x = x›

proof (cases ‹p x = x›)
case True
with that [of 1] show thesis by simp

next
case False

49

from ‹permutation p› have ‹inj p›
by (intro permutation_bijective bij_is_inj)

moreover from ‹p x 6= x› have ‹(p ^^ Suc n) x 6= (p ^^ n) x› for n
proof (induction n arbitrary: x)

case 0 then show ?case by simp
next

case (Suc n)
have p (p x) 6= p x
proof (rule notI)

assume p (p x) = p x
then show False using ‹p x 6= x› ‹inj p› by (simp add: inj_eq)

qed
have (p ^^ Suc (Suc n)) x = (p ^^ Suc n) (p x)

by (simp add: funpow_swap1)
also have . . . 6= (p ^^ n) (p x)

by (rule Suc) fact
also have (p ^^ n) (p x) = (p ^^ Suc n) x

by (simp add: funpow_swap1)
finally show ?case by simp

qed
then have {y. ∃n. y = (p ^^ n) x} ⊆ {x. p x 6= x}

by auto
then have finite {y. ∃n. y = (p ^^ n) x}

using permutation_finite_support[OF assms] by (rule finite_subset)
ultimately obtain n where ‹n > 0 › ‹(p ^^ n) x = x›

by (rule funpow_inj_finite)
with that [of n] show thesis by blast

qed

The following few lemmas were contributed by Lukas Bulwahn.
lemma count_image_mset_eq_card_vimage:

assumes finite A
shows count (image_mset f (mset_set A)) b = card {a ∈ A. f a = b}
using assms

proof (induct A)
case empty
show ?case by simp

next
case (insert x F)
show ?case
proof (cases f x = b)

case True
with insert.hyps
have count (image_mset f (mset_set (insert x F))) b = Suc (card {a ∈ F . f

a = f x})
by auto

also from insert.hyps(1 ,2) have . . . = card (insert x {a ∈ F . f a = f x})
by simp

also from ‹f x = b› have card (insert x {a ∈ F . f a = f x}) = card {a ∈ insert

50

x F . f a = b}
by (auto intro: arg_cong[where f=card])

finally show ?thesis
using insert by auto

next
case False
then have {a ∈ F . f a = b} = {a ∈ insert x F . f a = b}

by auto
with insert False show ?thesis

by simp
qed

qed

— Prove image_mset_eq_implies_permutes ...
lemma image_mset_eq_implies_permutes:

fixes f :: ′a ⇒ ′b
assumes finite A

and mset_eq: image_mset f (mset_set A) = image_mset f ′ (mset_set A)
obtains p where p permutes A and ∀ x∈A. f x = f ′ (p x)

proof −
from ‹finite A› have [simp]: finite {a ∈ A. f a = (b:: ′b)} for f b by auto
have f ‘ A = f ′ ‘ A
proof −

from ‹finite A› have f ‘ A = f ‘ (set_mset (mset_set A))
by simp

also have . . . = f ′ ‘ set_mset (mset_set A)
by (metis mset_eq multiset.set_map)

also from ‹finite A› have . . . = f ′ ‘ A
by simp

finally show ?thesis .
qed
have ∀ b∈(f ‘ A). ∃ p. bij_betw p {a ∈ A. f a = b} {a ∈ A. f ′ a = b}
proof

fix b
from mset_eq have count (image_mset f (mset_set A)) b = count (image_mset

f ′ (mset_set A)) b
by simp

with ‹finite A› have card {a ∈ A. f a = b} = card {a ∈ A. f ′ a = b}
by (simp add: count_image_mset_eq_card_vimage)

then show ∃ p. bij_betw p {a∈A. f a = b} {a ∈ A. f ′ a = b}
by (intro finite_same_card_bij) simp_all

qed
then have ∃ p. ∀ b∈f ‘ A. bij_betw (p b) {a ∈ A. f a = b} {a ∈ A. f ′ a = b}

by (rule bchoice)
then obtain p where p: ∀ b∈f ‘ A. bij_betw (p b) {a ∈ A. f a = b} {a ∈ A. f ′

a = b} ..
define p ′ where p ′ = (λa. if a ∈ A then p (f a) a else a)
have p ′ permutes A
proof (rule bij_imp_permutes)

51

have disjoint_family_on (λi. {a ∈ A. f ′ a = i}) (f ‘ A)
by (auto simp: disjoint_family_on_def)

moreover
have bij_betw (λa. p (f a) a) {a ∈ A. f a = b} {a ∈ A. f ′ a = b} if b ∈ f ‘ A

for b
using p that by (subst bij_betw_cong[where g=p b]) auto

ultimately
have bij_betw (λa. p (f a) a) (

⋃
b∈f ‘ A. {a ∈ A. f a = b}) (

⋃
b∈f ‘ A. {a ∈

A. f ′ a = b})
by (rule bij_betw_UNION_disjoint)

moreover have (
⋃

b∈f ‘ A. {a ∈ A. f a = b}) = A
by auto

moreover from ‹f ‘ A = f ′ ‘ A› have (
⋃

b∈f ‘ A. {a ∈ A. f ′ a = b}) = A
by auto

ultimately show bij_betw p ′ A A
unfolding p ′_def by (subst bij_betw_cong[where g=(λa. p (f a) a)]) auto

next
show

∧
x. x /∈ A =⇒ p ′ x = x

by (simp add: p ′_def)
qed
moreover from p have ∀ x∈A. f x = f ′ (p ′ x)

unfolding p ′_def using bij_betwE by fastforce
ultimately show ?thesis ..

qed

— ... and derive the existing property:
lemma mset_eq_permutation:

fixes xs ys :: ′a list
assumes mset_eq: mset xs = mset ys
obtains p where p permutes {..<length ys} permute_list p ys = xs

proof −
from mset_eq have length_eq: length xs = length ys

by (rule mset_eq_length)
have mset_set {..<length ys} = mset [0 ..<length ys]

by (rule mset_set_upto_eq_mset_upto)
with mset_eq length_eq have image_mset (λi. xs ! i) (mset_set {..<length ys})

=
image_mset (λi. ys ! i) (mset_set {..<length ys})
by (metis map_nth mset_map)

from image_mset_eq_implies_permutes[OF _ this]
obtain p where p: p permutes {..<length ys} and ∀ i∈{..<length ys}. xs ! i =

ys ! (p i)
by auto

with length_eq have permute_list p ys = xs
by (auto intro!: nth_equalityI simp: permute_list_nth)

with p show thesis ..
qed

lemma permutes_natset_le:

52

fixes S :: ′a::wellorder set
assumes p permutes S

and ∀ i ∈ S . p i ≤ i
shows p = id

proof −
have p n = n for n

using assms
proof (induct n arbitrary: S rule: less_induct)

case (less n)
show ?case
proof (cases n ∈ S)

case False
with less(2) show ?thesis

unfolding permutes_def by metis
next

case True
with less(3) have p n < n ∨ p n = n

by auto
then show ?thesis
proof

assume p n < n
with less have p (p n) = p n

by metis
with permutes_inj[OF less(2)] have p n = n

unfolding inj_def by blast
with ‹p n < n› have False

by simp
then show ?thesis ..

qed
qed

qed
then show ?thesis by (auto simp: fun_eq_iff)

qed

lemma permutes_natset_ge:
fixes S :: ′a::wellorder set
assumes p: p permutes S

and le: ∀ i ∈ S . p i ≥ i
shows p = id

proof −
have i ≥ inv p i if i ∈ S for i
proof −

from that permutes_in_image[OF permutes_inv[OF p]] have inv p i ∈ S
by simp

with le have p (inv p i) ≥ inv p i
by blast

with permutes_inverses[OF p] show ?thesis
by simp

qed

53

then have ∀ i∈S . inv p i ≤ i
by blast

from permutes_natset_le[OF permutes_inv[OF p] this] have inv p = inv id
by simp

then show ?thesis
using p permutes_inv_inv by fastforce

qed

lemma image_inverse_permutations: {inv p |p. p permutes S} = {p. p permutes
S}

using permutes_inv permutes_inv_inv by force

lemma image_compose_permutations_left:
assumes q permutes S
shows {q ◦ p |p. p permutes S} = {p. p permutes S}

proof −
have

∧
p. p permutes S =⇒ q ◦ p permutes S

by (simp add: assms permutes_compose)
moreover have

∧
x. x permutes S =⇒ ∃ p. x = q ◦ p ∧ p permutes S

by (metis assms id_comp o_assoc permutes_compose permutes_inv permutes_inv_o(1))
ultimately show ?thesis

by auto
qed

lemma image_compose_permutations_right:
assumes q permutes S
shows {p ◦ q | p. p permutes S} = {p . p permutes S}
by (metis (no_types, opaque_lifting) assms comp_id fun.map_comp permutes_compose

permutes_inv permutes_inv_o(2))

lemma permutes_in_seg: p permutes {1 ..n} =⇒ i ∈ {1 ..n} =⇒ 1 ≤ p i ∧ p i
≤ n

by (simp add: permutes_def) metis

lemma sum_permutations_inverse: sum f {p. p permutes S} = sum (λp. f (inv
p)) {p. p permutes S}
(is ?lhs = ?rhs)

proof −
let ?S = {p . p permutes S}
have ∗: inj_on inv ?S
proof (auto simp add: inj_on_def)

fix q r
assume q: q permutes S

and r : r permutes S
and qr : inv q = inv r

then have inv (inv q) = inv (inv r)
by simp

with permutes_inv_inv[OF q] permutes_inv_inv[OF r] show q = r
by metis

54

qed
have ∗∗: inv ‘ ?S = ?S

using image_inverse_permutations by blast
have ∗∗∗: ?rhs = sum (f ◦ inv) ?S

by (simp add: o_def)
from sum.reindex[OF ∗, of f] show ?thesis

by (simp only: ∗∗ ∗∗∗)
qed

lemma setum_permutations_compose_left:
assumes q: q permutes S
shows sum f {p. p permutes S} = sum (λp. f (q ◦ p)) {p. p permutes S}
(is ?lhs = ?rhs)

proof −
let ?S = {p. p permutes S}
have ∗: ?rhs = sum (f ◦ ((◦) q)) ?S

by (simp add: o_def)
have ∗∗: inj_on ((◦) q) ?S
proof (auto simp add: inj_on_def)

fix p r
assume p permutes S

and r : r permutes S
and rp: q ◦ p = q ◦ r

then have inv q ◦ q ◦ p = inv q ◦ q ◦ r
by (simp add: comp_assoc)

with permutes_inj[OF q, unfolded inj_iff] show p = r
by simp

qed
have ((◦) q) ‘ ?S = ?S

using image_compose_permutations_left[OF q] by auto
with ∗ sum.reindex[OF ∗∗, of f] show ?thesis

by (simp only:)
qed

lemma sum_permutations_compose_right:
assumes q: q permutes S
shows sum f {p. p permutes S} = sum (λp. f (p ◦ q)) {p. p permutes S}
(is ?lhs = ?rhs)

proof −
let ?S = {p. p permutes S}
have ∗: ?rhs = sum (f ◦ (λp. p ◦ q)) ?S

by (simp add: o_def)
have ∗∗: inj_on (λp. p ◦ q) ?S
proof (auto simp add: inj_on_def)

fix p r
assume p permutes S

and r : r permutes S
and rp: p ◦ q = r ◦ q

then have p ◦ (q ◦ inv q) = r ◦ (q ◦ inv q)

55

by (simp add: o_assoc)
with permutes_surj[OF q, unfolded surj_iff] show p = r

by simp
qed
from image_compose_permutations_right[OF q] have (λp. p ◦ q) ‘ ?S = ?S

by auto
with ∗ sum.reindex[OF ∗∗, of f] show ?thesis

by (simp only:)
qed

lemma inv_inj_on_permutes:
‹inj_on inv {p. p permutes S}›

proof (intro inj_onI , unfold mem_Collect_eq)
fix p q
assume p: p permutes S and q: q permutes S and eq: inv p = inv q
have inv (inv p) = inv (inv q) using eq by simp
thus p = q

using inv_inv_eq[OF permutes_bij] p q by metis
qed

lemma permutes_pair_eq:
‹{(p s, s) |s. s ∈ S} = {(s, inv p s) |s. s ∈ S}› (is ‹?L = ?R›) if ‹p permutes S›

proof
show ?L ⊆ ?R
proof

fix x assume x ∈ ?L
then obtain s where x: x = (p s, s) and s: s ∈ S by auto
note x
also have (p s, s) = (p s, Hilbert_Choice.inv p (p s))

using permutes_inj [OF that] inv_f_f by auto
also have ... ∈ ?R using s permutes_in_image[OF that] by auto
finally show x ∈ ?R.

qed
show ?R ⊆ ?L
proof

fix x assume x ∈ ?R
then obtain s

where x: x = (s, Hilbert_Choice.inv p s) (is _ = (s, ?ips))
and s: s ∈ S by auto

note x
also have (s, ?ips) = (p ?ips, ?ips)

using inv_f_f [OF permutes_inj[OF permutes_inv[OF that]]]
using inv_inv_eq[OF permutes_bij[OF that]] by auto

also have ... ∈ ?L
using s permutes_in_image[OF permutes_inv[OF that]] by auto

finally show x ∈ ?L.
qed

qed

56

context
fixes p and n i :: nat
assumes p: ‹p permutes {0 ..<n}› and i: ‹i < n›

begin

lemma permutes_nat_less:
‹p i < n›

proof −
have ‹?thesis ←→ p i ∈ {0 ..<n}›

by simp
also from p have ‹p i ∈ {0 ..<n} ←→ i ∈ {0 ..<n}›

by (rule permutes_in_image)
finally show ?thesis

using i by simp
qed

lemma permutes_nat_inv_less:
‹inv p i < n›

proof −
from p have ‹inv p permutes {0 ..<n}›

by (rule permutes_inv)
then show ?thesis

using i by (rule Permutations.permutes_nat_less)
qed

end

context comm_monoid_set
begin

lemma permutes_inv:
‹F (λs. g (p s) s) S = F (λs. g s (inv p s)) S› (is ‹?l = ?r›)
if ‹p permutes S›

proof −
let ?g = λ(x, y). g x y
let ?ps = λs. (p s, s)
let ?ips = λs. (s, inv p s)
have inj1 : inj_on ?ps S by (rule inj_onI) auto
have inj2 : inj_on ?ips S by (rule inj_onI) auto
have ?l = F ?g (?ps ‘ S)

using reindex [OF inj1 , of ?g] by simp
also have ?ps ‘ S = {(p s, s) |s. s ∈ S} by auto
also have ... = {(s, inv p s) |s. s ∈ S}

unfolding permutes_pair_eq [OF that] by simp
also have ... = ?ips ‘ S by auto
also have F ?g ... = ?r

using reindex [OF inj2 , of ?g] by simp
finally show ?thesis.

qed

57

end

3.23 Sum over a set of permutations (could generalize to
iteration)

lemma sum_over_permutations_insert:
assumes fS : finite S

and aS : a /∈ S
shows sum f {p. p permutes (insert a S)} =

sum (λb. sum (λq. f (transpose a b ◦ q)) {p. p permutes S}) (insert a S)
proof −

have ∗:
∧

f a b. (λ(b, p). f (transpose a b ◦ p)) = f ◦ (λ(b,p). transpose a b ◦ p)
by (simp add: fun_eq_iff)

have ∗∗:
∧

P Q. {(a, b). a ∈ P ∧ b ∈ Q} = P × Q
by blast

show ?thesis
unfolding ∗ ∗∗ sum.cartesian_product permutes_insert

proof (rule sum.reindex)
let ?f = (λ(b, y). transpose a b ◦ y)
let ?P = {p. p permutes S}
{

fix b c p q
assume b: b ∈ insert a S
assume c: c ∈ insert a S
assume p: p permutes S
assume q: q permutes S
assume eq: transpose a b ◦ p = transpose a c ◦ q
from p q aS have pa: p a = a and qa: q a = a

unfolding permutes_def by metis+
from eq have (transpose a b ◦ p) a = (transpose a c ◦ q) a

by simp
then have bc: b = c

by (simp add: permutes_def pa qa o_def fun_upd_def id_def
cong del: if_weak_cong split: if_split_asm)

from eq[unfolded bc] have (λp. transpose a c ◦ p) (transpose a c ◦ p) =
(λp. transpose a c ◦ p) (transpose a c ◦ q) by simp

then have p = q
unfolding o_assoc swap_id_idempotent by simp

with bc have b = c ∧ p = q
by blast

}
then show inj_on ?f (insert a S × ?P)

unfolding inj_on_def by clarify metis
qed

qed

58

3.24 Constructing permutations from association lists
definition list_permutes :: (′a × ′a) list ⇒ ′a set ⇒ bool

where list_permutes xs A ←→
set (map fst xs) ⊆ A ∧
set (map snd xs) = set (map fst xs) ∧
distinct (map fst xs) ∧
distinct (map snd xs)

lemma list_permutesI [simp]:
assumes set (map fst xs) ⊆ A set (map snd xs) = set (map fst xs) distinct (map

fst xs)
shows list_permutes xs A

proof −
from assms(2 ,3) have distinct (map snd xs)

by (intro card_distinct) (simp_all add: distinct_card del: set_map)
with assms show ?thesis

by (simp add: list_permutes_def)
qed

definition permutation_of_list :: (′a × ′a) list ⇒ ′a ⇒ ′a
where permutation_of_list xs x = (case map_of xs x of None ⇒ x | Some y ⇒

y)

lemma permutation_of_list_Cons:
permutation_of_list ((x, y) # xs) x ′ = (if x = x ′ then y else permutation_of_list

xs x ′)
by (simp add: permutation_of_list_def)

fun inverse_permutation_of_list :: (′a × ′a) list ⇒ ′a ⇒ ′a
where

inverse_permutation_of_list [] x = x
| inverse_permutation_of_list ((y, x ′) # xs) x =

(if x = x ′ then y else inverse_permutation_of_list xs x)

declare inverse_permutation_of_list.simps [simp del]

lemma inj_on_map_of :
assumes distinct (map snd xs)
shows inj_on (map_of xs) (set (map fst xs))

proof (rule inj_onI)
fix x y
assume xy: x ∈ set (map fst xs) y ∈ set (map fst xs)
assume eq: map_of xs x = map_of xs y
from xy obtain x ′ y ′ where x ′y ′: map_of xs x = Some x ′ map_of xs y = Some

y ′

by (cases map_of xs x; cases map_of xs y) (simp_all add: map_of_eq_None_iff)
moreover from x ′y ′ have ∗: (x, x ′) ∈ set xs (y, y ′) ∈ set xs

by (force dest: map_of_SomeD)+
moreover from ∗ eq x ′y ′ have x ′ = y ′

59

by simp
ultimately show x = y

using assms by (force simp: distinct_map dest: inj_onD[of _ _ (x,x ′) (y,y ′)])
qed

lemma inj_on_the: None /∈ A =⇒ inj_on the A
by (auto simp: inj_on_def option.the_def split: option.splits)

lemma inj_on_map_of ′:
assumes distinct (map snd xs)
shows inj_on (the ◦ map_of xs) (set (map fst xs))
by (intro comp_inj_on inj_on_map_of assms inj_on_the)
(force simp: eq_commute[of None] map_of_eq_None_iff)

lemma image_map_of :
assumes distinct (map fst xs)
shows map_of xs ‘ set (map fst xs) = Some ‘ set (map snd xs)
using assms by (auto simp: rev_image_eqI)

lemma the_Some_image [simp]: the ‘ Some ‘ A = A
by (subst image_image) simp

lemma image_map_of ′:
assumes distinct (map fst xs)
shows (the ◦ map_of xs) ‘ set (map fst xs) = set (map snd xs)
by (simp only: image_comp [symmetric] image_map_of assms the_Some_image)

lemma permutation_of_list_permutes [simp]:
assumes list_permutes xs A
shows permutation_of_list xs permutes A
(is ?f permutes _)

proof (rule permutes_subset[OF bij_imp_permutes])
from assms show set (map fst xs) ⊆ A

by (simp add: list_permutes_def)
from assms have inj_on (the ◦ map_of xs) (set (map fst xs)) (is ?P)

by (intro inj_on_map_of ′) (simp_all add: list_permutes_def)
also have ?P ←→ inj_on ?f (set (map fst xs))

by (intro inj_on_cong)
(auto simp: permutation_of_list_def map_of_eq_None_iff split: option.splits)

finally have bij_betw ?f (set (map fst xs)) (?f ‘ set (map fst xs))
by (rule inj_on_imp_bij_betw)

also from assms have ?f ‘ set (map fst xs) = (the ◦ map_of xs) ‘ set (map fst
xs)

by (intro image_cong refl)
(auto simp: permutation_of_list_def map_of_eq_None_iff split: option.splits)

also from assms have . . . = set (map fst xs)
by (subst image_map_of ′) (simp_all add: list_permutes_def)

finally show bij_betw ?f (set (map fst xs)) (set (map fst xs)) .
qed (force simp: permutation_of_list_def dest!: map_of_SomeD split: option.splits)+

60

lemma eval_permutation_of_list [simp]:
permutation_of_list [] x = x
x = x ′ =⇒ permutation_of_list ((x ′,y)#xs) x = y
x 6= x ′ =⇒ permutation_of_list ((x ′,y ′)#xs) x = permutation_of_list xs x
by (simp_all add: permutation_of_list_def)

lemma eval_inverse_permutation_of_list [simp]:
inverse_permutation_of_list [] x = x
x = x ′ =⇒ inverse_permutation_of_list ((y,x ′)#xs) x = y
x 6= x ′=⇒ inverse_permutation_of_list ((y ′,x ′)#xs) x = inverse_permutation_of_list

xs x
by (simp_all add: inverse_permutation_of_list.simps)

lemma permutation_of_list_id: x /∈ set (map fst xs) =⇒ permutation_of_list xs
x = x

by (induct xs) (auto simp: permutation_of_list_Cons)

lemma permutation_of_list_unique ′:
distinct (map fst xs) =⇒ (x, y) ∈ set xs =⇒ permutation_of_list xs x = y
by (induct xs) (force simp: permutation_of_list_Cons)+

lemma permutation_of_list_unique:
list_permutes xs A =⇒ (x, y) ∈ set xs =⇒ permutation_of_list xs x = y
by (intro permutation_of_list_unique ′) (simp_all add: list_permutes_def)

lemma inverse_permutation_of_list_id:
x /∈ set (map snd xs) =⇒ inverse_permutation_of_list xs x = x
by (induct xs) auto

lemma inverse_permutation_of_list_unique ′:
distinct (map snd xs) =⇒ (x, y) ∈ set xs =⇒ inverse_permutation_of_list xs y

= x
by (induct xs) (force simp: inverse_permutation_of_list.simps(2))+

lemma inverse_permutation_of_list_unique:
list_permutes xs A =⇒ (x,y) ∈ set xs =⇒ inverse_permutation_of_list xs y = x
by (intro inverse_permutation_of_list_unique ′) (simp_all add: list_permutes_def)

lemma inverse_permutation_of_list_correct:
fixes A :: ′a set
assumes list_permutes xs A
shows inverse_permutation_of_list xs = inv (permutation_of_list xs)

proof (rule ext, rule sym, subst permutes_inv_eq)
from assms show permutation_of_list xs permutes A

by simp
show permutation_of_list xs (inverse_permutation_of_list xs x) = x for x
proof (cases x ∈ set (map snd xs))

case True

61

then obtain y where (y, x) ∈ set xs by auto
with assms show ?thesis
by (simp add: inverse_permutation_of_list_unique permutation_of_list_unique)

next
case False
with assms show ?thesis

by (auto simp: list_permutes_def inverse_permutation_of_list_id permuta-
tion_of_list_id)

qed
qed

end

4 Permuted Lists
theory List_Permutation
imports Permutations
begin

Note that multisets already provide the notion of permutated list and hence
this theory mostly echoes material already logically present in theory Per-
mutations; it should be seldom needed.

4.1 An existing notion
abbreviation (input) perm :: ‹ ′a list ⇒ ′a list ⇒ bool› (infixr ‹<∼∼>› 50)

where ‹xs <∼∼> ys ≡ mset xs = mset ys›

4.2 Nontrivial conclusions
proposition perm_swap:

‹xs[i := xs ! j, j := xs ! i] <∼∼> xs›
if ‹i < length xs› ‹j < length xs›
using that by (simp add: mset_swap)

proposition mset_le_perm_append: mset xs ⊆# mset ys ←→ (∃ zs. xs @ zs
<∼∼> ys)

by (auto simp add: mset_subset_eq_exists_conv ex_mset dest: sym)

proposition perm_set_eq: xs <∼∼> ys =⇒ set xs = set ys
by (rule mset_eq_setD) simp

proposition perm_distinct_iff : xs <∼∼> ys =⇒ distinct xs ←→ distinct ys
by (rule mset_eq_imp_distinct_iff) simp

theorem eq_set_perm_remdups: set xs = set ys =⇒ remdups xs <∼∼> remdups
ys

by (simp add: set_eq_iff_mset_remdups_eq)

62

proposition perm_remdups_iff_eq_set: remdups x <∼∼> remdups y ←→ set x
= set y

by (simp add: set_eq_iff_mset_remdups_eq)

theorem permutation_Ex_bij:
assumes xs <∼∼> ys
shows ∃ f . bij_betw f {..<length xs} {..<length ys} ∧ (∀ i<length xs. xs ! i = ys

! (f i))
proof −

from assms have ‹mset xs = mset ys› ‹length xs = length ys›
by (auto simp add: dest: mset_eq_length)

from ‹mset xs = mset ys› obtain p where ‹p permutes {..<length ys}› ‹per-
mute_list p ys = xs›

by (rule mset_eq_permutation)
then have ‹bij_betw p {..<length xs} {..<length ys}›

by (simp add: ‹length xs = length ys› permutes_imp_bij)
moreover have ‹∀ i<length xs. xs ! i = ys ! (p i)›

using ‹permute_list p ys = xs› ‹length xs = length ys› ‹p permutes {..<length
ys}› permute_list_nth

by auto
ultimately show ?thesis

by blast
qed

proposition perm_finite: finite {B. B <∼∼> A}
using mset_eq_finite by auto

4.3 Trivial conclusions:
proposition perm_empty_imp: [] <∼∼> ys =⇒ ys = []

by simp

This more general theorem is easier to understand!
proposition perm_length: xs <∼∼> ys =⇒ length xs = length ys

by (rule mset_eq_length) simp

proposition perm_sym: xs <∼∼> ys =⇒ ys <∼∼> xs
by simp

We can insert the head anywhere in the list.
proposition perm_append_Cons: a # xs @ ys <∼∼> xs @ a # ys

by simp

proposition perm_append_swap: xs @ ys <∼∼> ys @ xs
by simp

proposition perm_append_single: a # xs <∼∼> xs @ [a]
by simp

63

proposition perm_rev: rev xs <∼∼> xs
by simp

proposition perm_append1 : xs <∼∼> ys =⇒ l @ xs <∼∼> l @ ys
by simp

proposition perm_append2 : xs <∼∼> ys =⇒ xs @ l <∼∼> ys @ l
by simp

proposition perm_empty [iff]: [] <∼∼> xs ←→ xs = []
by simp

proposition perm_empty2 [iff]: xs <∼∼> [] ←→ xs = []
by simp

proposition perm_sing_imp: ys <∼∼> xs =⇒ xs = [y] =⇒ ys = [y]
by simp

proposition perm_sing_eq [iff]: ys <∼∼> [y] ←→ ys = [y]
by simp

proposition perm_sing_eq2 [iff]: [y] <∼∼> ys ←→ ys = [y]
by simp

proposition perm_remove: x ∈ set ys =⇒ ys <∼∼> x # remove1 x ys
by simp

Congruence rule
proposition perm_remove_perm: xs <∼∼> ys =⇒ remove1 z xs <∼∼> remove1
z ys

by simp

proposition remove_hd [simp]: remove1 z (z # xs) = xs
by simp

proposition cons_perm_imp_perm: z # xs <∼∼> z # ys =⇒ xs <∼∼> ys
by simp

proposition cons_perm_eq [simp]: z#xs <∼∼> z#ys ←→ xs <∼∼> ys
by simp

proposition append_perm_imp_perm: zs @ xs <∼∼> zs @ ys =⇒ xs <∼∼> ys
by simp

proposition perm_append1_eq [iff]: zs @ xs <∼∼> zs @ ys ←→ xs <∼∼> ys
by simp

proposition perm_append2_eq [iff]: xs @ zs <∼∼> ys @ zs ←→ xs <∼∼> ys
by simp

64

end

5 Permutations of a Multiset
theory Multiset_Permutations
imports

Complex_Main
Permutations

begin

lemma mset_tl: xs 6= [] =⇒ mset (tl xs) = mset xs − {#hd xs#}
by (cases xs) simp_all

lemma mset_set_image_inj:
assumes inj_on f A
shows mset_set (f ‘ A) = image_mset f (mset_set A)

proof (cases finite A)
case True
from this and assms show ?thesis by (induction A) auto

qed (insert assms, simp add: finite_image_iff)

lemma multiset_remove_induct [case_names empty remove]:
assumes P {#}

∧
A. A 6= {#} =⇒ (

∧
x. x ∈# A =⇒ P (A − {#x#})) =⇒ P

A
shows P A

proof (induction A rule: full_multiset_induct)
case (less A)
hence IH : P B if B ⊂# A for B using that by blast
show ?case
proof (cases A = {#})

case True
thus ?thesis by (simp add: assms)

next
case False
hence P (A − {#x#}) if x ∈# A for x

using that by (intro IH) (simp add: mset_subset_diff_self)
from False and this show P A by (rule assms)

qed
qed

lemma map_list_bind: map g (List.bind xs f) = List.bind xs (map g ◦ f)
by (simp add: List.bind_def map_concat)

lemma mset_eq_mset_set_imp_distinct:
finite A =⇒ mset_set A = mset xs =⇒ distinct xs

proof (induction xs arbitrary: A)
case (Cons x xs A)

65

from Cons.prems(2) have x ∈# mset_set A by simp
with Cons.prems(1) have [simp]: x ∈ A by simp
from Cons.prems have x /∈# mset_set (A − {x}) by simp
also from Cons.prems have mset_set (A − {x}) = mset_set A − {#x#}

by (subst mset_set_Diff) simp_all
also have mset_set A = mset (x#xs) by (simp add: Cons.prems)
also have . . . − {#x#} = mset xs by simp
finally have [simp]: x /∈ set xs by (simp add: in_multiset_in_set)
from Cons.prems show ?case by (auto intro!: Cons.IH [of A − {x}] simp:

mset_set_Diff)
qed simp_all

5.1 Permutations of a multiset
definition permutations_of_multiset :: ′a multiset ⇒ ′a list set where

permutations_of_multiset A = {xs. mset xs = A}

lemma permutations_of_multisetI : mset xs = A =⇒ xs ∈ permutations_of_multiset
A

by (simp add: permutations_of_multiset_def)

lemma permutations_of_multisetD: xs ∈ permutations_of_multiset A =⇒ mset
xs = A

by (simp add: permutations_of_multiset_def)

lemma permutations_of_multiset_Cons_iff :
x # xs ∈ permutations_of_multiset A←→ x ∈# A ∧ xs ∈ permutations_of_multiset

(A − {#x#})
by (auto simp: permutations_of_multiset_def)

lemma permutations_of_multiset_empty [simp]: permutations_of_multiset {#}
= {[]}

unfolding permutations_of_multiset_def by simp

lemma permutations_of_multiset_nonempty:
assumes nonempty: A 6= {#}
shows permutations_of_multiset A =

(
⋃

x∈set_mset A. ((#) x) ‘ permutations_of_multiset (A − {#x#}))
(is _ = ?rhs)
proof safe

fix xs assume xs ∈ permutations_of_multiset A
hence mset_xs: mset xs = A by (simp add: permutations_of_multiset_def)
hence xs 6= [] by (auto simp: nonempty)
then obtain x xs ′ where xs: xs = x # xs ′ by (cases xs) simp_all
with mset_xs have x ∈ set_mset A xs ′ ∈ permutations_of_multiset (A −

{#x#})
by (auto simp: permutations_of_multiset_def)

with xs show xs ∈ ?rhs by auto
qed (auto simp: permutations_of_multiset_def)

66

lemma permutations_of_multiset_singleton [simp]: permutations_of_multiset {#x#}
= {[x]}

by (simp add: permutations_of_multiset_nonempty)

lemma permutations_of_multiset_doubleton:
permutations_of_multiset {#x,y#} = {[x,y], [y,x]}
by (simp add: permutations_of_multiset_nonempty insert_commute)

lemma rev_permutations_of_multiset [simp]:
rev ‘ permutations_of_multiset A = permutations_of_multiset A

proof
have rev ‘ rev ‘ permutations_of_multiset A ⊆ rev ‘ permutations_of_multiset

A
unfolding permutations_of_multiset_def by auto

also have rev ‘ rev ‘ permutations_of_multiset A = permutations_of_multiset
A

by (simp add: image_image)
finally show permutations_of_multiset A ⊆ rev ‘ permutations_of_multiset A

.
next

show rev ‘ permutations_of_multiset A ⊆ permutations_of_multiset A
unfolding permutations_of_multiset_def by auto

qed

lemma length_finite_permutations_of_multiset:
xs ∈ permutations_of_multiset A =⇒ length xs = size A
by (auto simp: permutations_of_multiset_def)

lemma permutations_of_multiset_lists: permutations_of_multiset A ⊆ lists (set_mset
A)

by (auto simp: permutations_of_multiset_def)

lemma finite_permutations_of_multiset [simp]: finite (permutations_of_multiset
A)
proof (rule finite_subset)

show permutations_of_multiset A ⊆ {xs. set xs ⊆ set_mset A ∧ length xs =
size A}

by (auto simp: permutations_of_multiset_def)
show finite {xs. set xs ⊆ set_mset A ∧ length xs = size A}

by (rule finite_lists_length_eq) simp_all
qed

lemma permutations_of_multiset_not_empty [simp]: permutations_of_multiset
A 6= {}
proof −

from ex_mset[of A] obtain xs where mset xs = A ..
thus ?thesis by (auto simp: permutations_of_multiset_def)

qed

67

lemma permutations_of_multiset_image:
permutations_of_multiset (image_mset f A) = map f ‘ permutations_of_multiset

A
proof safe

fix xs assume A: xs ∈ permutations_of_multiset (image_mset f A)
from ex_mset[of A] obtain ys where ys: mset ys = A ..
with A have mset xs = mset (map f ys)

by (simp add: permutations_of_multiset_def)
then obtain σ where σ: σ permutes {..<length (map f ys)} permute_list σ

(map f ys) = xs
by (rule mset_eq_permutation)

with ys have xs = map f (permute_list σ ys)
by (simp add: permute_list_map)

moreover from σ ys have permute_list σ ys ∈ permutations_of_multiset A
by (simp add: permutations_of_multiset_def)

ultimately show xs ∈ map f ‘ permutations_of_multiset A by blast
qed (auto simp: permutations_of_multiset_def)

5.2 Cardinality of permutations

In this section, we prove some basic facts about the number of permutations
of a multiset.
context
begin

private lemma multiset_prod_fact_insert:
(
∏

y∈set_mset (A+{#x#}). fact (count (A+{#x#}) y)) =
(count A x + 1) ∗ (

∏
y∈set_mset A. fact (count A y))

proof −
have (

∏
y∈set_mset (A+{#x#}). fact (count (A+{#x#}) y)) =

(
∏

y∈set_mset (A+{#x#}). (if y = x then count A x + 1 else 1) ∗ fact
(count A y))

by (intro prod.cong) simp_all
also have . . . = (count A x + 1) ∗ (

∏
y∈set_mset (A+{#x#}). fact (count A

y))
by (simp add: prod.distrib)

also have (
∏

y∈set_mset (A+{#x#}). fact (count A y)) = (
∏

y∈set_mset A.
fact (count A y))

by (intro prod.mono_neutral_right) (auto simp: not_in_iff)
finally show ?thesis .

qed

private lemma multiset_prod_fact_remove:
x ∈# A =⇒ (

∏
y∈set_mset A. fact (count A y)) =

count A x ∗ (
∏

y∈set_mset (A−{#x#}). fact (count (A−{#x#})
y))

using multiset_prod_fact_insert[of A − {#x#} x] by simp

68

lemma card_permutations_of_multiset_aux:
card (permutations_of_multiset A) ∗ (

∏
x∈set_mset A. fact (count A x)) = fact

(size A)
proof (induction A rule: multiset_remove_induct)

case (remove A)
have card (permutations_of_multiset A) =

card (
⋃

x∈set_mset A. (#) x ‘ permutations_of_multiset (A − {#x#}))
by (simp add: permutations_of_multiset_nonempty remove.hyps)

also have . . . = (
∑

x∈set_mset A. card (permutations_of_multiset (A − {#x#})))
by (subst card_UN_disjoint) (auto simp: card_image)

also have . . . ∗ (
∏

x∈set_mset A. fact (count A x)) =
(
∑

x∈set_mset A. card (permutations_of_multiset (A − {#x#})) ∗
(
∏

y∈set_mset A. fact (count A y)))
by (subst sum_distrib_right) simp_all

also have . . . = (
∑

x∈set_mset A. count A x ∗ fact (size A − 1))
proof (intro sum.cong refl)

fix x assume x: x ∈# A
have card (permutations_of_multiset (A − {#x#})) ∗ (

∏
y∈set_mset A. fact

(count A y)) =
count A x ∗ (card (permutations_of_multiset (A − {#x#})) ∗
(
∏

y∈set_mset (A − {#x#}). fact (count (A − {#x#}) y))) (is ?lhs
= _)

by (subst multiset_prod_fact_remove[OF x]) simp_all
also note remove.IH [OF x]

also from x have size (A − {#x#}) = size A − 1 by (simp add: size_Diff_submset)
finally show ?lhs = count A x ∗ fact (size A − 1) .

qed
also have (

∑
x∈set_mset A. count A x ∗ fact (size A − 1)) =

size A ∗ fact (size A − 1)
by (simp add: sum_distrib_right size_multiset_overloaded_eq)

also from remove.hyps have . . . = fact (size A)
by (cases size A) auto

finally show ?case .
qed simp_all

theorem card_permutations_of_multiset:
card (permutations_of_multiset A) = fact (size A) div (

∏
x∈set_mset A. fact

(count A x))
(
∏

x∈set_mset A. fact (count A x) :: nat) dvd fact (size A)
by (simp_all flip: card_permutations_of_multiset_aux[of A])

lemma card_permutations_of_multiset_insert_aux:
card (permutations_of_multiset (A + {#x#})) ∗ (count A x + 1) =

(size A + 1) ∗ card (permutations_of_multiset A)
proof −

note card_permutations_of_multiset_aux[of A + {#x#}]
also have fact (size (A + {#x#})) = (size A + 1) ∗ fact (size A) by simp
also note multiset_prod_fact_insert[of A x]
also note card_permutations_of_multiset_aux[of A, symmetric]

69

finally have card (permutations_of_multiset (A + {#x#})) ∗ (count A x + 1)
∗

(
∏

y∈set_mset A. fact (count A y)) =
(size A + 1) ∗ card (permutations_of_multiset A) ∗

(
∏

x∈set_mset A. fact (count A x)) by (simp only: mult_ac)
thus ?thesis by (subst (asm) mult_right_cancel) simp_all

qed

lemma card_permutations_of_multiset_remove_aux:
assumes x ∈# A
shows card (permutations_of_multiset A) ∗ count A x =

size A ∗ card (permutations_of_multiset (A − {#x#}))
proof −

from assms have A: A − {#x#} + {#x#} = A by simp
from assms have B: size A = size (A − {#x#}) + 1

by (subst A [symmetric], subst size_union) simp
show ?thesis

using card_permutations_of_multiset_insert_aux[of A − {#x#} x, unfolded
A] assms

by (simp add: B)
qed

lemma real_card_permutations_of_multiset_remove:
assumes x ∈# A
shows real (card (permutations_of_multiset (A − {#x#}))) =

real (card (permutations_of_multiset A) ∗ count A x) / real (size A)
using assms by (subst card_permutations_of_multiset_remove_aux[OF assms])

auto

lemma real_card_permutations_of_multiset_remove ′:
assumes x ∈# A
shows real (card (permutations_of_multiset A)) =

real (size A ∗ card (permutations_of_multiset (A − {#x#}))) / real
(count A x)

using assms by (subst card_permutations_of_multiset_remove_aux[OF assms,
symmetric]) simp

end

5.3 Permutations of a set
definition permutations_of_set :: ′a set ⇒ ′a list set where

permutations_of_set A = {xs. set xs = A ∧ distinct xs}

lemma permutations_of_set_altdef :
finite A =⇒ permutations_of_set A = permutations_of_multiset (mset_set A)
by (auto simp add: permutations_of_set_def permutations_of_multiset_def mset_set_set

in_multiset_in_set [symmetric] mset_eq_mset_set_imp_distinct)

70

lemma permutations_of_setI [intro]:
assumes set xs = A distinct xs
shows xs ∈ permutations_of_set A
using assms unfolding permutations_of_set_def by simp

lemma permutations_of_setD:
assumes xs ∈ permutations_of_set A
shows set xs = A distinct xs
using assms unfolding permutations_of_set_def by simp_all

lemma permutations_of_set_lists: permutations_of_set A ⊆ lists A
unfolding permutations_of_set_def by auto

lemma permutations_of_set_empty [simp]: permutations_of_set {} = {[]}
by (auto simp: permutations_of_set_def)

lemma UN_set_permutations_of_set [simp]:
finite A =⇒ (

⋃
xs∈permutations_of_set A. set xs) = A

using finite_distinct_list by (auto simp: permutations_of_set_def)

lemma permutations_of_set_infinite:
¬finite A =⇒ permutations_of_set A = {}
by (auto simp: permutations_of_set_def)

lemma permutations_of_set_nonempty:
A 6= {} =⇒ permutations_of_set A =

(
⋃

x∈A. (λxs. x # xs) ‘ permutations_of_set (A − {x}))
by (cases finite A)
(simp_all add: permutations_of_multiset_nonempty mset_set_empty_iff mset_set_Diff

permutations_of_set_altdef permutations_of_set_infinite)

lemma permutations_of_set_singleton [simp]: permutations_of_set {x} = {[x]}
by (subst permutations_of_set_nonempty) auto

lemma permutations_of_set_doubleton:
x 6= y =⇒ permutations_of_set {x,y} = {[x,y], [y,x]}
by (subst permutations_of_set_nonempty)

(simp_all add: insert_Diff_if insert_commute)

lemma rev_permutations_of_set [simp]:
rev ‘ permutations_of_set A = permutations_of_set A
by (cases finite A) (simp_all add: permutations_of_set_altdef permutations_of_set_infinite)

lemma length_finite_permutations_of_set:
xs ∈ permutations_of_set A =⇒ length xs = card A
by (auto simp: permutations_of_set_def distinct_card)

71

lemma finite_permutations_of_set [simp]: finite (permutations_of_set A)
by (cases finite A) (simp_all add: permutations_of_set_infinite permutations_of_set_altdef)

lemma permutations_of_set_empty_iff [simp]:
permutations_of_set A = {} ←→ ¬finite A
unfolding permutations_of_set_def using finite_distinct_list[of A] by auto

lemma card_permutations_of_set [simp]:
finite A =⇒ card (permutations_of_set A) = fact (card A)
by (simp add: permutations_of_set_altdef card_permutations_of_multiset del:

One_nat_def)

lemma permutations_of_set_image_inj:
assumes inj: inj_on f A
shows permutations_of_set (f ‘ A) = map f ‘ permutations_of_set A
by (cases finite A)

(simp_all add: permutations_of_set_infinite permutations_of_set_altdef
permutations_of_multiset_image mset_set_image_inj inj

finite_image_iff)

lemma permutations_of_set_image_permutes:
σ permutes A =⇒ map σ ‘ permutations_of_set A = permutations_of_set A
by (subst permutations_of_set_image_inj [symmetric])

(simp_all add: permutes_inj_on permutes_image)

5.4 Code generation

First, we give code an implementation for permutations of lists.
declare length_remove1 [termination_simp]

fun permutations_of_list_impl where
permutations_of_list_impl xs = (if xs = [] then [[]] else

List.bind (remdups xs) (λx. map ((#) x) (permutations_of_list_impl (remove1
x xs))))

fun permutations_of_list_impl_aux where
permutations_of_list_impl_aux acc xs = (if xs = [] then [acc] else

List.bind (remdups xs) (λx. permutations_of_list_impl_aux (x#acc) (remove1
x xs)))

declare permutations_of_list_impl_aux.simps [simp del]
declare permutations_of_list_impl.simps [simp del]

lemma permutations_of_list_impl_Nil [simp]:
permutations_of_list_impl [] = [[]]
by (simp add: permutations_of_list_impl.simps)

lemma permutations_of_list_impl_nonempty:
xs 6= [] =⇒ permutations_of_list_impl xs =

72

List.bind (remdups xs) (λx. map ((#) x) (permutations_of_list_impl (remove1
x xs)))

by (subst permutations_of_list_impl.simps) simp_all

lemma set_permutations_of_list_impl:
set (permutations_of_list_impl xs) = permutations_of_multiset (mset xs)
by (induction xs rule: permutations_of_list_impl.induct)

(subst permutations_of_list_impl.simps,
simp_all add: permutations_of_multiset_nonempty set_list_bind)

lemma distinct_permutations_of_list_impl:
distinct (permutations_of_list_impl xs)
by (induction xs rule: permutations_of_list_impl.induct,

subst permutations_of_list_impl.simps)
(auto intro!: distinct_list_bind simp: distinct_map o_def disjoint_family_on_def)

lemma permutations_of_list_impl_aux_correct ′:
permutations_of_list_impl_aux acc xs =

map (λxs. rev xs @ acc) (permutations_of_list_impl xs)
by (induction acc xs rule: permutations_of_list_impl_aux.induct,

subst permutations_of_list_impl_aux.simps, subst permutations_of_list_impl.simps)
(auto simp: map_list_bind intro!: list_bind_cong)

lemma permutations_of_list_impl_aux_correct:
permutations_of_list_impl_aux [] xs = map rev (permutations_of_list_impl xs)
by (simp add: permutations_of_list_impl_aux_correct ′)

lemma distinct_permutations_of_list_impl_aux:
distinct (permutations_of_list_impl_aux acc xs)
by (simp add: permutations_of_list_impl_aux_correct ′ distinct_map

distinct_permutations_of_list_impl inj_on_def)

lemma set_permutations_of_list_impl_aux:
set (permutations_of_list_impl_aux [] xs) = permutations_of_multiset (mset

xs)
by (simp add: permutations_of_list_impl_aux_correct set_permutations_of_list_impl)

declare set_permutations_of_list_impl_aux [symmetric, code]

value [code] permutations_of_multiset {#1 ,2 ,3 ,4 ::int#}

Now we turn to permutations of sets. We define an auxiliary version with
an accumulator to avoid having to map over the results.
function permutations_of_set_aux where

permutations_of_set_aux acc A =
(if ¬finite A then {} else if A = {} then {acc} else

(
⋃

x∈A. permutations_of_set_aux (x#acc) (A − {x})))
by auto
termination by (relation Wellfounded.measure (card ◦ snd)) (simp_all add: card_gt_0_iff)

73

lemma permutations_of_set_aux_altdef :
permutations_of_set_aux acc A = (λxs. rev xs @ acc) ‘ permutations_of_set A

proof (cases finite A)
assume finite A
thus ?thesis
proof (induction A arbitrary: acc rule: finite_psubset_induct)

case (psubset A acc)
show ?case
proof (cases A = {})

case False
note [simp del] = permutations_of_set_aux.simps
from psubset.hyps False

have permutations_of_set_aux acc A =
(
⋃

y∈A. permutations_of_set_aux (y#acc) (A − {y}))
by (subst permutations_of_set_aux.simps) simp_all
also have . . . = (

⋃
y∈A. (λxs. rev xs @ acc) ‘ (λxs. y # xs) ‘ permuta-

tions_of_set (A − {y}))
apply (rule arg_cong [of _ _ Union], rule image_cong)
apply (simp_all add: image_image)

apply (subst psubset)
apply auto

done
also from False have . . . = (λxs. rev xs @ acc) ‘ permutations_of_set A
by (subst (2) permutations_of_set_nonempty) (simp_all add: image_UN)

finally show ?thesis .
qed simp_all

qed
qed (simp_all add: permutations_of_set_infinite)

declare permutations_of_set_aux.simps [simp del]

lemma permutations_of_set_aux_correct:
permutations_of_set_aux [] A = permutations_of_set A
by (simp add: permutations_of_set_aux_altdef)

In another refinement step, we define a version on lists.
declare length_remove1 [termination_simp]

fun permutations_of_set_aux_list where
permutations_of_set_aux_list acc xs =

(if xs = [] then [acc] else
List.bind xs (λx. permutations_of_set_aux_list (x#acc) (List.remove1 x

xs)))

definition permutations_of_set_list where
permutations_of_set_list xs = permutations_of_set_aux_list [] xs

declare permutations_of_set_aux_list.simps [simp del]

74

lemma permutations_of_set_aux_list_refine:
assumes distinct xs
shows set (permutations_of_set_aux_list acc xs) = permutations_of_set_aux

acc (set xs)
using assms
by (induction acc xs rule: permutations_of_set_aux_list.induct)

(subst permutations_of_set_aux_list.simps,
subst permutations_of_set_aux.simps,
simp_all add: set_list_bind)

The permutation lists contain no duplicates if the inputs contain no dupli-
cates. Therefore, these functions can easily be used when working with a
representation of sets by distinct lists. The same approach should generalise
to any kind of set implementation that supports a monadic bind operation,
and since the results are disjoint, merging should be cheap.
lemma distinct_permutations_of_set_aux_list:

distinct xs =⇒ distinct (permutations_of_set_aux_list acc xs)
by (induction acc xs rule: permutations_of_set_aux_list.induct)

(subst permutations_of_set_aux_list.simps,
auto intro!: distinct_list_bind simp: disjoint_family_on_def

permutations_of_set_aux_list_refine permutations_of_set_aux_altdef)

lemma distinct_permutations_of_set_list:
distinct xs =⇒ distinct (permutations_of_set_list xs)

by (simp add: permutations_of_set_list_def distinct_permutations_of_set_aux_list)

lemma permutations_of_list:
permutations_of_set (set xs) = set (permutations_of_set_list (remdups xs))

by (simp add: permutations_of_set_aux_correct [symmetric]
permutations_of_set_aux_list_refine permutations_of_set_list_def)

lemma permutations_of_list_code [code]:
permutations_of_set (set xs) = set (permutations_of_set_list (remdups xs))
permutations_of_set (List.coset xs) =

Code.abort (STR ′′Permutation of set complement not supported ′′)
(λ_. permutations_of_set (List.coset xs))

by (simp_all add: permutations_of_list)

value [code] permutations_of_set (set ′′abcd ′′)

end

theory Cycles
imports

HOL−Library.FuncSet
Permutations
begin

75

6 Cycles
6.1 Definitions
abbreviation cycle :: ′a list ⇒ bool

where cycle cs ≡ distinct cs

fun cycle_of_list :: ′a list ⇒ ′a ⇒ ′a
where

cycle_of_list (i # j # cs) = transpose i j ◦ cycle_of_list (j # cs)
| cycle_of_list cs = id

6.2 Basic Properties

We start proving that the function derived from a cycle rotates its support
list.
lemma id_outside_supp:

assumes x /∈ set cs shows (cycle_of_list cs) x = x
using assms by (induct cs rule: cycle_of_list.induct) (simp_all)

lemma permutation_of_cycle: permutation (cycle_of_list cs)
proof (induct cs rule: cycle_of_list.induct)

case 1 thus ?case
using permutation_compose[OF permutation_swap_id] unfolding comp_apply

by simp
qed simp_all

lemma cycle_permutes: (cycle_of_list cs) permutes (set cs)
using permutation_bijective[OF permutation_of_cycle] id_outside_supp[of _

cs]
by (simp add: bij_iff permutes_def)

theorem cyclic_rotation:
assumes cycle cs shows map ((cycle_of_list cs) ^^ n) cs = rotate n cs

proof −
{ have map (cycle_of_list cs) cs = rotate1 cs using assms(1)

proof (induction cs rule: cycle_of_list.induct)
case (1 i j cs)
then have ‹i /∈ set cs› ‹j /∈ set cs›

by auto
then have ‹map (Transposition.transpose i j) cs = cs›

by (auto intro: map_idI simp add: transpose_eq_iff)
show ?case
proof (cases)

assume cs = Nil thus ?thesis by simp
next

assume cs 6= Nil hence ge_two: length (j # cs) ≥ 2
using not_less by auto

have map (cycle_of_list (i # j # cs)) (i # j # cs) =

76

map (transpose i j) (map (cycle_of_list (j # cs)) (i # j # cs)) by
simp

also have ... = map (transpose i j) (i # (rotate1 (j # cs)))
by (metis 1 .IH 1 .prems distinct.simps(2) id_outside_supp list.simps(9))

also have ... = map (transpose i j) (i # (cs @ [j])) by simp
also have ... = j # (map (transpose i j) cs) @ [i] by simp
also have ... = j # cs @ [i]

using ‹map (Transposition.transpose i j) cs = cs› by simp
also have ... = rotate1 (i # j # cs) by simp
finally show ?thesis .

qed
qed simp_all }

note cyclic_rotation ′ = this

show ?thesis
using cyclic_rotation ′ by (induct n) (auto, metis map_map rotate1_rotate_swap

rotate_map)
qed

corollary cycle_is_surj:
assumes cycle cs shows (cycle_of_list cs) ‘ (set cs) = (set cs)
using cyclic_rotation[OF assms, of Suc 0] by (simp add: image_set)

corollary cycle_is_id_root:
assumes cycle cs shows (cycle_of_list cs) ^^ (length cs) = id

proof −
have map ((cycle_of_list cs) ^^ (length cs)) cs = cs

unfolding cyclic_rotation[OF assms] by simp
hence ((cycle_of_list cs) ^^ (length cs)) i = i if i ∈ set cs for i

using that map_eq_conv by fastforce
moreover have ((cycle_of_list cs) ^^ n) i = i if i /∈ set cs for i n

using id_outside_supp[OF that] by (induct n) (simp_all)
ultimately show ?thesis

by fastforce
qed

corollary cycle_of_list_rotate_independent:
assumes cycle cs shows (cycle_of_list cs) = (cycle_of_list (rotate n cs))

proof −
{ fix cs :: ′a list assume cs: cycle cs

have (cycle_of_list cs) = (cycle_of_list (rotate1 cs))
proof −

from cs have rotate1_cs: cycle (rotate1 cs) by simp
hence map (cycle_of_list (rotate1 cs)) (rotate1 cs) = (rotate 2 cs)
using cyclic_rotation[OF rotate1_cs, of 1] by (simp add: numeral_2_eq_2)
moreover have map (cycle_of_list cs) (rotate1 cs) = (rotate 2 cs)

using cyclic_rotation[OF cs]
by (metis One_nat_def Suc_1 funpow.simps(2) id_apply map_map rotate0

rotate_Suc)

77

ultimately have (cycle_of_list cs) i = (cycle_of_list (rotate1 cs)) i if i ∈
set cs for i

using that map_eq_conv unfolding sym[OF set_rotate1 [of cs]] by fastforce

moreover have (cycle_of_list cs) i = (cycle_of_list (rotate1 cs)) i if i /∈
set cs for i

using that by (simp add: id_outside_supp)
ultimately show (cycle_of_list cs) = (cycle_of_list (rotate1 cs))

by blast
qed } note rotate1_lemma = this

show ?thesis
using rotate1_lemma[of rotate n cs] by (induct n) (auto, metis assms dis-

tinct_rotate rotate1_lemma)
qed

6.3 Conjugation of cycles
lemma conjugation_of_cycle:

assumes cycle cs and bij p
shows p ◦ (cycle_of_list cs) ◦ (inv p) = cycle_of_list (map p cs)
using assms

proof (induction cs rule: cycle_of_list.induct)
case (1 i j cs)
have p ◦ cycle_of_list (i # j # cs) ◦ inv p =

(p ◦ (transpose i j) ◦ inv p) ◦ (p ◦ cycle_of_list (j # cs) ◦ inv p)
by (simp add: assms(2) bij_is_inj fun.map_comp)

also have ... = (transpose (p i) (p j)) ◦ (p ◦ cycle_of_list (j # cs) ◦ inv p)
using 1 .prems(2) by (simp add: bij_inv_eq_iff transpose_apply_commute

fun_eq_iff bij_betw_inv_into_left)
finally have p ◦ cycle_of_list (i # j # cs) ◦ inv p =

(transpose (p i) (p j)) ◦ (cycle_of_list (map p (j # cs)))
using 1 .IH 1 .prems(1) assms(2) by fastforce

thus ?case by (simp add: fun_eq_iff)
next

case 2_1 thus ?case
by (metis bij_is_surj comp_id cycle_of_list.simps(2) list.simps(8) surj_iff)

next
case 2_2 thus ?case
by (metis bij_is_surj comp_id cycle_of_list.simps(3) list.simps(8) list.simps(9)

surj_iff)
qed

6.4 When Cycles Commute
lemma cycles_commute:

assumes cycle p cycle q and set p ∩ set q = {}
shows (cycle_of_list p) ◦ (cycle_of_list q) = (cycle_of_list q) ◦ (cycle_of_list

p)
proof

78

{ fix p :: ′a list and q :: ′a list and i :: ′a
assume A: cycle p cycle q set p ∩ set q = {} i ∈ set p i /∈ set q
have ((cycle_of_list p) ◦ (cycle_of_list q)) i =

((cycle_of_list q) ◦ (cycle_of_list p)) i
proof −

have ((cycle_of_list p) ◦ (cycle_of_list q)) i = (cycle_of_list p) i
using id_outside_supp[OF A(5)] by simp

also have ... = ((cycle_of_list q) ◦ (cycle_of_list p)) i
using id_outside_supp[of (cycle_of_list p) i] cycle_is_surj[OF A(1)]

A(3 ,4) by fastforce
finally show ?thesis .

qed } note aui_lemma = this

fix i consider i ∈ set p i /∈ set q | i /∈ set p i ∈ set q | i /∈ set p i /∈ set q
using ‹set p ∩ set q = {}› by blast

thus ((cycle_of_list p) ◦ (cycle_of_list q)) i = ((cycle_of_list q) ◦ (cycle_of_list
p)) i

proof cases
case 1 thus ?thesis

using aui_lemma[OF assms] by simp
next

case 2 thus ?thesis
using aui_lemma[OF assms(2 ,1)] assms(3) by (simp add: ac_simps)

next
case 3 thus ?thesis

by (simp add: id_outside_supp)
qed

qed

6.5 Cycles from Permutations
6.5.1 Exponentiation of permutations

Some important properties of permutations before defining how to extract
its cycles.
lemma permutation_funpow:

assumes permutation p shows permutation (p ^^ n)
using assms by (induct n) (simp_all add: permutation_compose)

lemma permutes_funpow:
assumes p permutes S shows (p ^^ n) permutes S
using assms by (induct n) (simp add: permutes_def , metis funpow_Suc_right

permutes_compose)

lemma funpow_diff :
assumes inj p and i ≤ j (p ^^ i) a = (p ^^ j) a shows (p ^^ (j − i)) a = a

proof −
have (p ^^ i) ((p ^^ (j − i)) a) = (p ^^ i) a

using assms(2−3) by (metis (no_types) add_diff_inverse_nat funpow_add

79

not_le o_def)
thus ?thesis

unfolding inj_eq[OF inj_fn[OF assms(1)], of i] .
qed

lemma permutation_is_nilpotent:
assumes permutation p obtains n where (p ^^ n) = id and n > 0

proof −
obtain S where finite S and p permutes S

using assms unfolding permutation_permutes by blast
hence ∃n. (p ^^ n) = id ∧ n > 0
proof (induct S arbitrary: p)

case empty thus ?case
using id_funpow[of 1] unfolding permutes_empty by blast

next
case (insert s S)
have (λn. (p ^^ n) s) ‘ UNIV ⊆ (insert s S)

using permutes_in_image[OF permutes_funpow[OF insert(4)], of _ s] by
auto

hence ¬ inj_on (λn. (p ^^ n) s) UNIV
using insert(1) infinite_iff_countable_subset unfolding sym[OF finite_insert,

of S s] by metis
then obtain i j where ij: i < j (p ^^ i) s = (p ^^ j) s

unfolding inj_on_def by (metis nat_neq_iff)
hence (p ^^ (j − i)) s = s

using funpow_diff [OF permutes_inj[OF insert(4)]] le_eq_less_or_eq by
blast

hence p ^^ (j − i) permutes S
using permutes_superset[OF permutes_funpow[OF insert(4), of j − i], of S]

by auto
then obtain n where n: ((p ^^ (j − i)) ^^ n) = id n > 0

using insert(3) by blast
thus ?case
using ij(1) nat_0_less_mult_iff zero_less_diff unfolding funpow_mult by

metis
qed
thus thesis

using that by blast
qed

lemma permutation_is_nilpotent ′:
assumes permutation p obtains n where (p ^^ n) = id and n > m

proof −
obtain n where (p ^^ n) = id and n > 0

using permutation_is_nilpotent[OF assms] by blast
then obtain k where n ∗ k > m

by (metis dividend_less_times_div mult_Suc_right)
from ‹(p ^^ n) = id› have p ^^ (n ∗ k) = id

by (induct k) (simp, metis funpow_mult id_funpow)

80

with ‹n ∗ k > m› show thesis
using that by blast

qed

6.5.2 Extraction of cycles from permutations
definition least_power :: (′a ⇒ ′a) ⇒ ′a ⇒ nat

where least_power f x = (LEAST n. (f ^^ n) x = x ∧ n > 0)

abbreviation support :: (′a ⇒ ′a) ⇒ ′a ⇒ ′a list
where support p x ≡ map (λi. (p ^^ i) x) [0 ..< (least_power p x)]

lemma least_powerI :
assumes (f ^^ n) x = x and n > 0
shows (f ^^ (least_power f x)) x = x and least_power f x > 0
using assms unfolding least_power_def by (metis (mono_tags, lifting) LeastI)+

lemma least_power_le:
assumes (f ^^ n) x = x and n > 0 shows least_power f x ≤ n
using assms unfolding least_power_def by (simp add: Least_le)

lemma least_power_of_permutation:
assumes permutation p shows (p ^^ (least_power p a)) a = a and least_power

p a > 0
using permutation_is_nilpotent[OF assms] least_powerI by (metis id_apply)+

lemma least_power_gt_one:
assumes permutation p and p a 6= a shows least_power p a > Suc 0
using least_power_of_permutation[OF assms(1)] assms(2)
by (metis Suc_lessI funpow.simps(2) funpow_simps_right(1) o_id)

lemma least_power_minimal:
assumes (p ^^ n) a = a shows (least_power p a) dvd n

proof (cases n = 0 , simp)
let ?lpow = least_power p

assume n 6= 0 then have n > 0 by simp
hence (p ^^ (?lpow a)) a = a and least_power p a > 0
using assms unfolding least_power_def by (metis (mono_tags, lifting) LeastI)+

hence aux_lemma: (p ^^ ((?lpow a) ∗ k)) a = a for k :: nat
by (induct k) (simp_all add: funpow_add)

have (p ^^ (n mod ?lpow a)) ((p ^^ (n − (n mod ?lpow a))) a) = (p ^^ n) a
by (metis add_diff_inverse_nat funpow_add mod_less_eq_dividend not_less

o_apply)
with ‹(p ^^ n) a = a› have (p ^^ (n mod ?lpow a)) a = a

using aux_lemma by (simp add: minus_mod_eq_mult_div)
hence ?lpow a ≤ n mod ?lpow a if n mod ?lpow a > 0

81

using least_power_le[OF _ that, of p a] by simp
with ‹least_power p a > 0 › show (least_power p a) dvd n

using mod_less_divisor not_le by blast
qed

lemma least_power_dvd:
assumes permutation p shows (least_power p a) dvd n ←→ (p ^^ n) a = a

proof
show (p ^^ n) a = a =⇒ (least_power p a) dvd n

using least_power_minimal[of _ p] by simp
next

have (p ^^ ((least_power p a) ∗ k)) a = a for k :: nat
using least_power_of_permutation(1)[OF assms(1)] by (induct k) (simp_all

add: funpow_add)
thus (least_power p a) dvd n =⇒ (p ^^ n) a = a by blast

qed

theorem cycle_of_permutation:
assumes permutation p shows cycle (support p a)

proof −
have (least_power p a) dvd (j − i) if i ≤ j j < least_power p a and (p ^^ i) a

= (p ^^ j) a for i j
using funpow_diff [OF bij_is_inj that(1 ,3)] assms by (simp add: permutation

least_power_dvd)
moreover have i = j if i ≤ j j < least_power p a and (least_power p a) dvd

(j − i) for i j
using that le_eq_less_or_eq nat_dvd_not_less by auto

ultimately have inj_on (λi. (p ^^ i) a) {..< (least_power p a)}
unfolding inj_on_def by (metis le_cases lessThan_iff)

thus ?thesis
by (simp add: atLeast_upt distinct_map)

qed

6.6 Decomposition on Cycles

We show that a permutation can be decomposed on cycles

6.6.1 Preliminaries
lemma support_set:

assumes permutation p shows set (support p a) = range (λi. (p ^^ i) a)
proof

show set (support p a) ⊆ range (λi. (p ^^ i) a)
by auto

next
show range (λi. (p ^^ i) a) ⊆ set (support p a)
proof (auto)

fix i

82

have (p ^^ i) a = (p ^^ (i mod (least_power p a))) ((p ^^ (i − (i mod
(least_power p a)))) a)

by (metis add_diff_inverse_nat funpow_add mod_less_eq_dividend not_le
o_apply)

also have ... = (p ^^ (i mod (least_power p a))) a
using least_power_dvd[OF assms] by (metis dvd_minus_mod)

also have ... ∈ (λi. (p ^^ i) a) ‘ {0 ..< (least_power p a)}
using least_power_of_permutation(2)[OF assms] by fastforce

finally show (p ^^ i) a ∈ (λi. (p ^^ i) a) ‘ {0 ..< (least_power p a)} .
qed

qed

lemma disjoint_support:
assumes permutation p shows disjoint (range (λa. set (support p a))) (is disjoint

?A)
proof (rule disjointI)

{ fix i j a b
assume set (support p a) ∩ set (support p b) 6= {} have set (support p a) ⊆

set (support p b)
unfolding support_set[OF assms]

proof (auto)
from ‹set (support p a) ∩ set (support p b) 6= {}›
obtain i j where ij: (p ^^ i) a = (p ^^ j) b

by auto

fix k
have (p ^^ k) a = (p ^^ (k + (least_power p a) ∗ l)) a for l
using least_power_dvd[OF assms] by (induct l) (simp, metis dvd_triv_left

funpow_add o_def)
then obtain m where m ≥ i and (p ^^ m) a = (p ^^ k) a

using least_power_of_permutation(2)[OF assms]
by (metis dividend_less_times_div le_eq_less_or_eq mult_Suc_right

trans_less_add2)
hence (p ^^ m) a = (p ^^ (m − i)) ((p ^^ i) a)

by (metis Nat.le_imp_diff_is_add funpow_add o_apply)
with ‹(p ^^ m) a = (p ^^ k) a› have (p ^^ k) a = (p ^^ ((m − i) + j)) b

unfolding ij by (simp add: funpow_add)
thus (p ^^ k) a ∈ range (λi. (p ^^ i) b)

by blast
qed } note aux_lemma = this

fix supp_a supp_b
assume supp_a ∈ ?A and supp_b ∈ ?A
then obtain a b where a: supp_a = set (support p a) and b: supp_b = set

(support p b)
by auto

assume supp_a 6= supp_b thus supp_a ∩ supp_b = {}
using aux_lemma unfolding a b by blast

qed

83

lemma disjoint_support ′:
assumes permutation p
shows set (support p a) ∩ set (support p b) = {} ←→ a /∈ set (support p b)

proof −
have a ∈ set (support p a)

using least_power_of_permutation(2)[OF assms] by force
show ?thesis
proof

assume set (support p a) ∩ set (support p b) = {}
with ‹a ∈ set (support p a)› show a /∈ set (support p b)

by blast
next

assume a /∈ set (support p b) show set (support p a) ∩ set (support p b) = {}
proof (rule ccontr)

assume set (support p a) ∩ set (support p b) 6= {}
hence set (support p a) = set (support p b)

using disjoint_support[OF assms] by (meson UNIV_I disjoint_def im-
age_iff)

with ‹a ∈ set (support p a)› and ‹a /∈ set (support p b)› show False
by simp

qed
qed

qed

lemma support_coverture:
assumes permutation p shows

⋃
{ set (support p a) | a. p a 6= a } = { a. p a

6= a }
proof

show { a. p a 6= a } ⊆
⋃
{ set (support p a) | a. p a 6= a }

proof
fix a assume a ∈ { a. p a 6= a }
have a ∈ set (support p a)

using least_power_of_permutation(2)[OF assms, of a] by force
with ‹a ∈ { a. p a 6= a }› show a ∈

⋃
{ set (support p a) | a. p a 6= a }

by blast
qed

next
show

⋃
{ set (support p a) | a. p a 6= a } ⊆ { a. p a 6= a }

proof
fix b assume b ∈

⋃
{ set (support p a) | a. p a 6= a }

then obtain a i where p a 6= a and (p ^^ i) a = b
by auto

have p a = a if (p ^^ i) a = (p ^^ Suc i) a
using funpow_diff [OF bij_is_inj _ that] assms unfolding permutation by

simp
with ‹p a 6= a› and ‹(p ^^ i) a = b› show b ∈ { a. p a 6= a }

by auto
qed

84

qed

theorem cycle_restrict:
assumes permutation p and b ∈ set (support p a) shows p b = (cycle_of_list

(support p a)) b
proof −

note least_power_props [simp] = least_power_of_permutation[OF assms(1)]

have map (cycle_of_list (support p a)) (support p a) = rotate1 (support p a)
using cyclic_rotation[OF cycle_of_permutation[OF assms(1)], of 1 a] by simp

hence map (cycle_of_list (support p a)) (support p a) = tl (support p a) @ [a]
by (simp add: hd_map rotate1_hd_tl)

also have ... = map p (support p a)
proof (rule nth_equalityI , auto)

fix i assume i < least_power p a show (tl (support p a) @ [a]) ! i = p ((p ^^
i) a)

proof (cases)
assume i: i = least_power p a − 1
hence (tl (support p a) @ [a]) ! i = a

by (metis (no_types, lifting) diff_zero length_map length_tl length_upt
nth_append_length)

also have ... = p ((p ^^ i) a)
by (metis (mono_tags, opaque_lifting) least_power_props i Suc_diff_1

funpow_simps_right(2) funpow_swap1 o_apply)
finally show ?thesis .

next
assume i 6= least_power p a − 1
with ‹i < least_power p a› have i < least_power p a − 1

by simp
hence (tl (support p a) @ [a]) ! i = (p ^^ (Suc i)) a
by (metis One_nat_def Suc_eq_plus1 add.commute length_map length_upt

map_tl nth_append nth_map_upt tl_upt)
thus ?thesis

by simp
qed

qed
finally have map (cycle_of_list (support p a)) (support p a) = map p (support

p a) .
thus ?thesis

using assms(2) by auto
qed

6.6.2 Decomposition
inductive cycle_decomp :: ′a set ⇒ (′a ⇒ ′a) ⇒ bool

where
empty: cycle_decomp {} id
| comp: [[cycle_decomp I p; cycle cs; set cs ∩ I = {}]] =⇒

cycle_decomp (set cs ∪ I) ((cycle_of_list cs) ◦ p)

85

lemma semidecomposition:
assumes p permutes S and finite S
shows (λy. if y ∈ (S − set (support p a)) then p y else y) permutes (S − set

(support p a))
proof (rule bij_imp_permutes)

show (if b ∈ (S − set (support p a)) then p b else b) = b if b /∈ S − set (support
p a) for b

using that by auto
next

have is_permutation: permutation p
using assms unfolding permutation_permutes by blast

let ?q = λy. if y ∈ (S − set (support p a)) then p y else y
show bij_betw ?q (S − set (support p a)) (S − set (support p a))
proof (rule bij_betw_imageI)

show inj_on ?q (S − set (support p a))
using permutes_inj[OF assms(1)] unfolding inj_on_def by auto

next
have aux_lemma: set (support p s) ⊆ (S − set (support p a)) if s ∈ S − set

(support p a) for s
proof −

have (p ^^ i) s ∈ S for i
using that unfolding permutes_in_image[OF permutes_funpow[OF assms(1)]]

by simp
thus ?thesis

using that disjoint_support ′[OF is_permutation, of s a] by auto
qed
have (p ^^ 1) s ∈ set (support p s) for s

unfolding support_set[OF is_permutation] by blast
hence p s ∈ set (support p s) for s

by simp
hence p ‘ (S − set (support p a)) ⊆ S − set (support p a)

using aux_lemma by blast
moreover have (p ^^ ((least_power p s) − 1)) s ∈ set (support p s) for s

unfolding support_set[OF is_permutation] by blast
hence ∃ s ′ ∈ set (support p s). p s ′ = s for s
using least_power_of_permutation[OF is_permutation] by (metis Suc_diff_1

funpow.simps(2) o_apply)
hence S − set (support p a) ⊆ p ‘ (S − set (support p a))

using aux_lemma
by (clarsimp simp add: image_iff) (metis image_subset_iff)

ultimately show ?q ‘ (S − set (support p a)) = (S − set (support p a))
by auto

qed
qed

theorem cycle_decomposition:

86

assumes p permutes S and finite S shows cycle_decomp S p
using assms

proof(induct card S arbitrary: S p rule: less_induct)
case less show ?case
proof (cases)

assume S = {} thus ?thesis
using empty less(2) by auto

next
have is_permutation: permutation p

using less(2−3) unfolding permutation_permutes by blast

assume S 6= {} then obtain s where s ∈ S
by blast

define q where q = (λy. if y ∈ (S − set (support p s)) then p y else y)
have (cycle_of_list (support p s) ◦ q) = p
proof

fix a
consider a ∈ S − set (support p s) | a ∈ set (support p s) | a /∈ S a /∈ set

(support p s)
by blast

thus ((cycle_of_list (support p s) ◦ q)) a = p a
proof cases

case 1
have (p ^^ 1) a ∈ set (support p a)

unfolding support_set[OF is_permutation] by blast
with ‹a ∈ S − set (support p s)› have p a /∈ set (support p s)

using disjoint_support ′[OF is_permutation, of a s] by auto
with ‹a ∈ S − set (support p s)› show ?thesis

using id_outside_supp[of _ support p s] unfolding q_def by simp
next

case 2 thus ?thesis
using cycle_restrict[OF is_permutation] unfolding q_def by simp

next
case 3 thus ?thesis

using id_outside_supp[OF 3 (2)] less(2) permutes_not_in unfolding
q_def by fastforce

qed
qed

moreover from ‹s ∈ S› have (p ^^ i) s ∈ S for i
unfolding permutes_in_image[OF permutes_funpow[OF less(2)]] .

hence set (support p s) ∪ (S − set (support p s)) = S
by auto

moreover have s ∈ set (support p s)
using least_power_of_permutation[OF is_permutation] by force

with ‹s ∈ S› have card (S − set (support p s)) < card S
using less(3) by (metis DiffE card_seteq linorder_not_le subsetI)

hence cycle_decomp (S − set (support p s)) q

87

using less(1)[OF _ semidecomposition[OF less(2−3)], of s] less(3) unfolding
q_def by blast

moreover show ?thesis
using comp[OF calculation(3) cycle_of_permutation[OF is_permutation], of

s]
unfolding calculation(1−2) by blast

qed
qed

end

7 Permutations as abstract type
theory Perm

imports
Transposition

begin

This theory introduces basics about permutations, i.e. almost everywhere
fix bijections. But it is by no means complete. Grieviously missing are cycles
since these would require more elaboration, e.g. the concept of distinct lists
equivalent under rotation, which maybe would also deserve its own theory.
But see theory src/HOL/ex/Perm_Fragments.thy for fragments on that.

7.1 Abstract type of permutations
typedef ′a perm = {f :: ′a ⇒ ′a. bij f ∧ finite {a. f a 6= a}}

morphisms apply Perm
proof

show id ∈ ?perm by simp
qed

setup_lifting type_definition_perm

notation apply (infixl ‹〈$〉› 999)

lemma bij_apply [simp]:
bij (apply f)
using apply [of f] by simp

lemma perm_eqI :
assumes

∧
a. f 〈$〉 a = g 〈$〉 a

shows f = g
using assms by transfer (simp add: fun_eq_iff)

lemma perm_eq_iff :
f = g ←→ (∀ a. f 〈$〉 a = g 〈$〉 a)

88

by (auto intro: perm_eqI)

lemma apply_inj:
f 〈$〉 a = f 〈$〉 b ←→ a = b
by (rule inj_eq) (rule bij_is_inj, simp)

lift_definition affected :: ′a perm ⇒ ′a set
is λf . {a. f a 6= a} .

lemma in_affected:
a ∈ affected f ←→ f 〈$〉 a 6= a
by transfer simp

lemma finite_affected [simp]:
finite (affected f)
by transfer simp

lemma apply_affected [simp]:
f 〈$〉 a ∈ affected f ←→ a ∈ affected f

proof transfer
fix f :: ′a ⇒ ′a and a :: ′a
assume bij f ∧ finite {b. f b 6= b}
then have bij f by simp
interpret bijection f by standard (rule ‹bij f ›)
have f a ∈ {a. f a = a} ←→ a ∈ {a. f a = a} (is ?P ←→ ?Q)

by auto
then show f a ∈ {a. f a 6= a} ←→ a ∈ {a. f a 6= a}

by simp
qed

lemma card_affected_not_one:
card (affected f) 6= 1

proof
interpret bijection apply f

by standard (rule bij_apply)
assume card (affected f) = 1
then obtain a where ∗: affected f = {a}

by (rule card_1_singletonE)
then have ∗∗: f 〈$〉 a 6= a

by (simp flip: in_affected)
with ∗ have f 〈$〉 a /∈ affected f

by simp
then have f 〈$〉 (f 〈$〉 a) = f 〈$〉 a

by (simp add: in_affected)
then have inv (apply f) (f 〈$〉 (f 〈$〉 a)) = inv (apply f) (f 〈$〉 a)

by simp
with ∗∗ show False by simp

qed

89

7.2 Identity, composition and inversion
instantiation Perm.perm :: (type) {monoid_mult, inverse}
begin

lift_definition one_perm :: ′a perm
is id
by simp

lemma apply_one [simp]:
apply 1 = id
by (fact one_perm.rep_eq)

lemma affected_one [simp]:
affected 1 = {}
by transfer simp

lemma affected_empty_iff [simp]:
affected f = {} ←→ f = 1
by transfer auto

lift_definition times_perm :: ′a perm ⇒ ′a perm ⇒ ′a perm
is comp

proof
fix f g :: ′a ⇒ ′a
assume bij f ∧ finite {a. f a 6= a}

bij g ∧finite {a. g a 6= a}
then have finite ({a. f a 6= a} ∪ {a. g a 6= a})

by simp
moreover have {a. (f ◦ g) a 6= a} ⊆ {a. f a 6= a} ∪ {a. g a 6= a}

by auto
ultimately show finite {a. (f ◦ g) a 6= a}

by (auto intro: finite_subset)
qed (auto intro: bij_comp)

lemma apply_times:
apply (f ∗ g) = apply f ◦ apply g
by (fact times_perm.rep_eq)

lemma apply_sequence:
f 〈$〉 (g 〈$〉 a) = apply (f ∗ g) a
by (simp add: apply_times)

lemma affected_times [simp]:
affected (f ∗ g) ⊆ affected f ∪ affected g
by transfer auto

lift_definition inverse_perm :: ′a perm ⇒ ′a perm
is inv

proof transfer

90

fix f :: ′a ⇒ ′a and a
assume bij f ∧ finite {b. f b 6= b}
then have bij f and fin: finite {b. f b 6= b}

by auto
interpret bijection f by standard (rule ‹bij f ›)
from fin show bij (inv f) ∧ finite {a. inv f a 6= a}

by (simp add: bij_inv)
qed

instance
by standard (transfer ; simp add: comp_assoc)+

end

lemma apply_inverse:
apply (inverse f) = inv (apply f)
by (fact inverse_perm.rep_eq)

lemma affected_inverse [simp]:
affected (inverse f) = affected f

proof transfer
fix f :: ′a ⇒ ′a and a
assume bij f ∧ finite {b. f b 6= b}
then have bij f by simp
interpret bijection f by standard (rule ‹bij f ›)
show {a. inv f a 6= a} = {a. f a 6= a}

by simp
qed

global_interpretation perm: group times 1 :: ′a perm inverse
proof

fix f :: ′a perm
show 1 ∗ f = f

by transfer simp
show inverse f ∗ f = 1
proof transfer

fix f :: ′a ⇒ ′a and a
assume bij f ∧ finite {b. f b 6= b}
then have bij f by simp
interpret bijection f by standard (rule ‹bij f ›)
show inv f ◦ f = id

by simp
qed

qed

declare perm.inverse_distrib_swap [simp]

lemma perm_mult_commute:
assumes affected f ∩ affected g = {}

91

shows g ∗ f = f ∗ g
proof (rule perm_eqI)

fix a
from assms have ∗: a ∈ affected f =⇒ a /∈ affected g

a ∈ affected g =⇒ a /∈ affected f for a
by auto

consider a ∈ affected f ∧ a /∈ affected g
∧ f 〈$〉 a ∈ affected f

| a /∈ affected f ∧ a ∈ affected g
∧ f 〈$〉 a /∈ affected f

| a /∈ affected f ∧ a /∈ affected g
using assms by auto

then show (g ∗ f) 〈$〉 a = (f ∗ g) 〈$〉 a
proof cases

case 1
with ∗ have f 〈$〉 a /∈ affected g

by auto
with 1 show ?thesis by (simp add: in_affected apply_times)

next
case 2
with ∗ have g 〈$〉 a /∈ affected f

by auto
with 2 show ?thesis by (simp add: in_affected apply_times)

next
case 3
then show ?thesis by (simp add: in_affected apply_times)

qed
qed

lemma apply_power :
apply (f ^ n) = apply f ^^ n
by (induct n) (simp_all add: apply_times)

lemma perm_power_inverse:
inverse f ^ n = inverse ((f :: ′a perm) ^ n)

proof (induct n)
case 0 then show ?case by simp

next
case (Suc n)
then show ?case

unfolding power_Suc2 [of f] by simp
qed

7.3 Orbit and order of elements
definition orbit :: ′a perm ⇒ ′a ⇒ ′a set
where

orbit f a = range (λn. (f ^ n) 〈$〉 a)

92

lemma in_orbitI :
assumes (f ^ n) 〈$〉 a = b
shows b ∈ orbit f a
using assms by (auto simp add: orbit_def)

lemma apply_power_self_in_orbit [simp]:
(f ^ n) 〈$〉 a ∈ orbit f a
by (rule in_orbitI) rule

lemma in_orbit_self [simp]:
a ∈ orbit f a
using apply_power_self_in_orbit [of _ 0] by simp

lemma apply_self_in_orbit [simp]:
f 〈$〉 a ∈ orbit f a
using apply_power_self_in_orbit [of _ 1] by simp

lemma orbit_not_empty [simp]:
orbit f a 6= {}
using in_orbit_self [of a f] by blast

lemma not_in_affected_iff_orbit_eq_singleton:
a /∈ affected f ←→ orbit f a = {a} (is ?P ←→ ?Q)

proof
assume ?P
then have f 〈$〉 a = a

by (simp add: in_affected)
then have (f ^ n) 〈$〉 a = a for n

by (induct n) (simp_all add: apply_times)
then show ?Q

by (auto simp add: orbit_def)
next

assume ?Q
then show ?P

by (auto simp add: orbit_def in_affected dest: range_eq_singletonD [of _ _
1])
qed

definition order :: ′a perm ⇒ ′a ⇒ nat
where

order f = card ◦ orbit f

lemma orbit_subset_eq_affected:
assumes a ∈ affected f
shows orbit f a ⊆ affected f

proof (rule ccontr)
assume ¬ orbit f a ⊆ affected f
then obtain b where b ∈ orbit f a and b /∈ affected f

by auto

93

then have b ∈ range (λn. (f ^ n) 〈$〉 a)
by (simp add: orbit_def)

then obtain n where b = (f ^ n) 〈$〉 a
by blast

with ‹b /∈ affected f ›
have (f ^ n) 〈$〉 a /∈ affected f

by simp
then have f 〈$〉 a /∈ affected f

by (induct n) (simp_all add: apply_times)
with assms show False

by simp
qed

lemma finite_orbit [simp]:
finite (orbit f a)

proof (cases a ∈ affected f)
case False then show ?thesis

by (simp add: not_in_affected_iff_orbit_eq_singleton)
next

case True then have orbit f a ⊆ affected f
by (rule orbit_subset_eq_affected)

then show ?thesis using finite_affected
by (rule finite_subset)

qed

lemma orbit_1 [simp]:
orbit 1 a = {a}
by (auto simp add: orbit_def)

lemma order_1 [simp]:
order 1 a = 1
unfolding order_def by simp

lemma card_orbit_eq [simp]:
card (orbit f a) = order f a
by (simp add: order_def)

lemma order_greater_zero [simp]:
order f a > 0
by (simp only: card_gt_0_iff order_def comp_def) simp

lemma order_eq_one_iff :
order f a = Suc 0 ←→ a /∈ affected f (is ?P ←→ ?Q)

proof
assume ?P then have card (orbit f a) = 1

by simp
then obtain b where orbit f a = {b}

by (rule card_1_singletonE)
with in_orbit_self [of a f]

94

have b = a by simp
with ‹orbit f a = {b}› show ?Q

by (simp add: not_in_affected_iff_orbit_eq_singleton)
next

assume ?Q
then have orbit f a = {a}

by (simp add: not_in_affected_iff_orbit_eq_singleton)
then have card (orbit f a) = 1

by simp
then show ?P

by simp
qed

lemma order_greater_eq_two_iff :
order f a ≥ 2 ←→ a ∈ affected f
using order_eq_one_iff [of f a]
apply (auto simp add: neq_iff)
using order_greater_zero [of f a]
apply simp
done

lemma order_less_eq_affected:
assumes f 6= 1
shows order f a ≤ card (affected f)

proof (cases a ∈ affected f)
from assms have affected f 6= {}

by simp
then obtain B b where affected f = insert b B

by blast
with finite_affected [of f] have card (affected f) ≥ 1

by (simp add: card.insert_remove)
case False then have order f a = 1

by (simp add: order_eq_one_iff)
with ‹card (affected f) ≥ 1 › show ?thesis

by simp
next

case True
have card (orbit f a) ≤ card (affected f)
by (rule card_mono) (simp_all add: True orbit_subset_eq_affected card_mono)

then show ?thesis
by simp

qed

lemma affected_order_greater_eq_two:
assumes a ∈ affected f
shows order f a ≥ 2

proof (rule ccontr)
assume ¬ 2 ≤ order f a
then have order f a < 2

95

by (simp add: not_le)
with order_greater_zero [of f a] have order f a = 1

by arith
with assms show False

by (simp add: order_eq_one_iff)
qed

lemma order_witness_unfold:
assumes n > 0 and (f ^ n) 〈$〉 a = a
shows order f a = card ((λm. (f ^ m) 〈$〉 a) ‘ {0 ..<n})

proof −
have orbit f a = (λm. (f ^ m) 〈$〉 a) ‘ {0 ..<n} (is _ = ?B)
proof (rule set_eqI , rule)

fix b
assume b ∈ orbit f a
then obtain m where (f ^ m) 〈$〉 a = b

by (auto simp add: orbit_def)
then have b = (f ^ (m mod n + n ∗ (m div n))) 〈$〉 a

by simp
also have . . . = (f ^ (m mod n)) 〈$〉 ((f ^ (n ∗ (m div n))) 〈$〉 a)

by (simp only: power_add apply_times) simp
also have (f ^ (n ∗ q)) 〈$〉 a = a for q

by (induct q)
(simp_all add: power_add apply_times assms)

finally have b = (f ^ (m mod n)) 〈$〉 a .
moreover from ‹n > 0 ›
have m mod n < n

by simp
ultimately show b ∈ ?B

by auto
next

fix b
assume b ∈ ?B
then obtain m where (f ^ m) 〈$〉 a = b

by blast
then show b ∈ orbit f a

by (rule in_orbitI)
qed
then have card (orbit f a) = card ?B

by (simp only:)
then show ?thesis

by simp
qed

lemma inj_on_apply_range:
inj_on (λm. (f ^ m) 〈$〉 a) {..<order f a}

proof −
have inj_on (λm. (f ^ m) 〈$〉 a) {..<n}

if n ≤ order f a for n

96

using that proof (induct n)
case 0 then show ?case by simp

next
case (Suc n)
then have prem: n < order f a

by simp
with Suc.hyps have hyp: inj_on (λm. (f ^ m) 〈$〉 a) {..<n}

by simp
have (f ^ n) 〈$〉 a /∈ (λm. (f ^ m) 〈$〉 a) ‘ {..<n}
proof

assume (f ^ n) 〈$〉 a ∈ (λm. (f ^ m) 〈$〉 a) ‘ {..<n}
then obtain m where ∗: (f ^ m) 〈$〉 a = (f ^ n) 〈$〉 a and m < n

by auto
interpret bijection apply (f ^ m)

by standard simp
from ‹m < n› have n = m + (n − m)

and nm: 0 < n − m n − m ≤ n
by arith+

with ∗ have (f ^ m) 〈$〉 a = (f ^ (m + (n − m))) 〈$〉 a
by simp

then have (f ^ m) 〈$〉 a = (f ^ m) 〈$〉 ((f ^ (n − m)) 〈$〉 a)
by (simp add: power_add apply_times)

then have (f ^ (n − m)) 〈$〉 a = a
by simp

with ‹n − m > 0 ›
have order f a = card ((λm. (f ^ m) 〈$〉 a) ‘ {0 ..<n − m})

by (rule order_witness_unfold)
also have card ((λm. (f ^ m) 〈$〉 a) ‘ {0 ..<n − m}) ≤ card {0 ..<n − m}

by (rule card_image_le) simp
finally have order f a ≤ n − m

by simp
with prem show False by simp

qed
with hyp show ?case

by (simp add: lessThan_Suc)
qed
then show ?thesis by simp

qed

lemma orbit_unfold_image:
orbit f a = (λn. (f ^ n) 〈$〉 a) ‘ {..<order f a} (is _ = ?A)

proof (rule sym, rule card_subset_eq)
show finite (orbit f a)

by simp
show ?A ⊆ orbit f a

by (auto simp add: orbit_def)
from inj_on_apply_range [of f a]
have card ?A = order f a

by (auto simp add: card_image)

97

then show card ?A = card (orbit f a)
by simp

qed

lemma in_orbitE :
assumes b ∈ orbit f a
obtains n where b = (f ^ n) 〈$〉 a and n < order f a
using assms unfolding orbit_unfold_image by blast

lemma apply_power_order [simp]:
(f ^ order f a) 〈$〉 a = a

proof −
have (f ^ order f a) 〈$〉 a ∈ orbit f a

by simp
then obtain n where
∗: (f ^ order f a) 〈$〉 a = (f ^ n) 〈$〉 a
and n < order f a
by (rule in_orbitE)

show ?thesis
proof (cases n)

case 0 with ∗ show ?thesis by simp
next

case (Suc m)
from order_greater_zero [of f a]

have Suc (order f a − 1) = order f a
by arith

from Suc ‹n < order f a›
have m < order f a
by simp

with Suc ∗
have (inverse f) 〈$〉 ((f ^ Suc (order f a − 1)) 〈$〉 a) =
(inverse f) 〈$〉 ((f ^ Suc m) 〈$〉 a)
by simp

then have (f ^ (order f a − 1)) 〈$〉 a =
(f ^ m) 〈$〉 a
by (simp only: power_Suc apply_times)
(simp add: apply_sequence mult.assoc [symmetric])

with inj_on_apply_range
have order f a − 1 = m

by (rule inj_onD)
(simp_all add: ‹m < order f a›)

with Suc have n = order f a
by auto

with ‹n < order f a›
show ?thesis by simp

qed
qed

lemma apply_power_left_mult_order [simp]:

98

(f ^ (n ∗ order f a)) 〈$〉 a = a
by (induct n) (simp_all add: power_add apply_times)

lemma apply_power_right_mult_order [simp]:
(f ^ (order f a ∗ n)) 〈$〉 a = a
by (simp add: ac_simps)

lemma apply_power_mod_order_eq [simp]:
(f ^ (n mod order f a)) 〈$〉 a = (f ^ n) 〈$〉 a

proof −
have (f ^ n) 〈$〉 a = (f ^ (n mod order f a + order f a ∗ (n div order f a))) 〈$〉 a

by simp
also have . . . = (f ^ (n mod order f a) ∗ f ^ (order f a ∗ (n div order f a))) 〈$〉 a

by (simp flip: power_add)
finally show ?thesis

by (simp add: apply_times)
qed

lemma apply_power_eq_iff :
(f ^ m) 〈$〉 a = (f ^ n) 〈$〉 a ←→ m mod order f a = n mod order f a (is ?P
←→ ?Q)
proof

assume ?Q
then have (f ^ (m mod order f a)) 〈$〉 a = (f ^ (n mod order f a)) 〈$〉 a

by simp
then show ?P

by simp
next

assume ?P
then have (f ^ (m mod order f a)) 〈$〉 a = (f ^ (n mod order f a)) 〈$〉 a

by simp
with inj_on_apply_range
show ?Q

by (rule inj_onD) simp_all
qed

lemma apply_inverse_eq_apply_power_order_minus_one:
(inverse f) 〈$〉 a = (f ^ (order f a − 1)) 〈$〉 a

proof (cases order f a)
case 0 with order_greater_zero [of f a] show ?thesis

by simp
next

case (Suc n)
moreover have (f ^ order f a) 〈$〉 a = a

by simp
then have ∗: (inverse f) 〈$〉 ((f ^ order f a) 〈$〉 a) = (inverse f) 〈$〉 a

by simp
ultimately show ?thesis

by (simp add: apply_sequence mult.assoc [symmetric])

99

qed

lemma apply_inverse_self_in_orbit [simp]:
(inverse f) 〈$〉 a ∈ orbit f a
using apply_inverse_eq_apply_power_order_minus_one [symmetric]
by (rule in_orbitI)

lemma apply_inverse_power_eq:
(inverse (f ^ n)) 〈$〉 a = (f ^ (order f a − n mod order f a)) 〈$〉 a

proof (induct n)
case 0 then show ?case by simp

next
case (Suc n)
define m where m = order f a − n mod order f a − 1
moreover have order f a − n mod order f a > 0

by simp
ultimately have ∗: order f a − n mod order f a = Suc m

by arith
moreover from ∗ have m2 : order f a − Suc n mod order f a = (if m = 0 then

order f a else m)
by (auto simp add: mod_Suc)

ultimately show ?case
using Suc
by (simp_all add: apply_times power_Suc2 [of _ n] power_Suc [of _ m] del:

power_Suc)
(simp add: apply_sequence mult.assoc [symmetric])

qed

lemma apply_power_eq_self_iff :
(f ^ n) 〈$〉 a = a ←→ order f a dvd n
using apply_power_eq_iff [of f n a 0]

by (simp add: mod_eq_0_iff_dvd)

lemma orbit_equiv:
assumes b ∈ orbit f a
shows orbit f b = orbit f a (is ?B = ?A)

proof
from assms obtain n where n < order f a and b: b = (f ^ n) 〈$〉 a

by (rule in_orbitE)
then show ?B ⊆ ?A

by (auto simp add: apply_sequence power_add [symmetric] intro: in_orbitI
elim!: in_orbitE)

from b have (inverse (f ^ n)) 〈$〉 b = (inverse (f ^ n)) 〈$〉 ((f ^ n) 〈$〉 a)
by simp

then have a: a = (inverse (f ^ n)) 〈$〉 b
by (simp add: apply_sequence)

then show ?A ⊆ ?B
apply (auto simp add: apply_sequence power_add [symmetric] intro: in_orbitI

elim!: in_orbitE)

100

unfolding apply_times comp_def apply_inverse_power_eq
unfolding apply_sequence power_add [symmetric]
apply (rule in_orbitI) apply rule
done

qed

lemma orbit_apply [simp]:
orbit f (f 〈$〉 a) = orbit f a
by (rule orbit_equiv) simp

lemma order_apply [simp]:
order f (f 〈$〉 a) = order f a
by (simp only: order_def comp_def orbit_apply)

lemma orbit_apply_inverse [simp]:
orbit f (inverse f 〈$〉 a) = orbit f a
by (rule orbit_equiv) simp

lemma order_apply_inverse [simp]:
order f (inverse f 〈$〉 a) = order f a
by (simp only: order_def comp_def orbit_apply_inverse)

lemma orbit_apply_power [simp]:
orbit f ((f ^ n) 〈$〉 a) = orbit f a
by (rule orbit_equiv) simp

lemma order_apply_power [simp]:
order f ((f ^ n) 〈$〉 a) = order f a
by (simp only: order_def comp_def orbit_apply_power)

lemma orbit_inverse [simp]:
orbit (inverse f) = orbit f

proof (rule ext, rule set_eqI , rule)
fix b a
assume b ∈ orbit f a
then obtain n where b: b = (f ^ n) 〈$〉 a n < order f a

by (rule in_orbitE)
then have b = apply (inverse (inverse f) ^ n) a

by simp
then have b = apply (inverse (inverse f ^ n)) a

by (simp add: perm_power_inverse)
then have b = apply (inverse f ^ (n ∗ (order (inverse f ^ n) a − 1))) a
by (simp add: apply_inverse_eq_apply_power_order_minus_one power_mult)

then show b ∈ orbit (inverse f) a
by simp

next
fix b a
assume b ∈ orbit (inverse f) a
then show b ∈ orbit f a

101

by (rule in_orbitE)
(simp add: apply_inverse_eq_apply_power_order_minus_one
perm_power_inverse power_mult [symmetric])

qed

lemma order_inverse [simp]:
order (inverse f) = order f
by (simp add: order_def)

lemma orbit_disjoint:
assumes orbit f a 6= orbit f b
shows orbit f a ∩ orbit f b = {}

proof (rule ccontr)
assume orbit f a ∩ orbit f b 6= {}
then obtain c where c ∈ orbit f a ∩ orbit f b

by blast
then have c ∈ orbit f a and c ∈ orbit f b

by auto
then obtain m n where c = (f ^ m) 〈$〉 a

and c = apply (f ^ n) b by (blast elim!: in_orbitE)
then have (f ^ m) 〈$〉 a = apply (f ^ n) b

by simp
then have apply (inverse f ^ m) ((f ^ m) 〈$〉 a) =

apply (inverse f ^ m) (apply (f ^ n) b)
by simp

then have ∗: apply (inverse f ^ m ∗ f ^ n) b = a
by (simp add: apply_sequence perm_power_inverse)

have a ∈ orbit f b
proof (cases n m rule: linorder_cases)

case equal with ∗ show ?thesis
by (simp add: perm_power_inverse)

next
case less
moreover define q where q = m − n
ultimately have m = q + n by arith
with ∗ have apply (inverse f ^ q) b = a

by (simp add: power_add mult.assoc perm_power_inverse)
then have a ∈ orbit (inverse f) b

by (rule in_orbitI)
then show ?thesis

by simp
next

case greater
moreover define q where q = n − m
ultimately have n = m + q by arith
with ∗ have apply (f ^ q) b = a

by (simp add: power_add mult.assoc [symmetric] perm_power_inverse)
then show ?thesis

by (rule in_orbitI)

102

qed
with assms show False

by (auto dest: orbit_equiv)
qed

7.4 Swaps
lift_definition swap :: ′a ⇒ ′a ⇒ ′a perm (‹〈_ ↔ _〉›)

is λa b. transpose a b
proof

fix a b :: ′a
have {c. transpose a b c 6= c} ⊆ {a, b}

by (auto simp add: transpose_def)
then show finite {c. transpose a b c 6= c}

by (rule finite_subset) simp
qed simp

lemma apply_swap_simp [simp]:
〈a ↔ b〉 〈$〉 a = b
〈a ↔ b〉 〈$〉 b = a
by (transfer ; simp)+

lemma apply_swap_same [simp]:
c 6= a =⇒ c 6= b =⇒ 〈a ↔ b〉 〈$〉 c = c
by transfer simp

lemma apply_swap_eq_iff [simp]:
〈a ↔ b〉 〈$〉 c = a ←→ c = b
〈a ↔ b〉 〈$〉 c = b ←→ c = a
by (transfer ; auto simp add: transpose_def)+

lemma swap_1 [simp]:
〈a ↔ a〉 = 1
by transfer simp

lemma swap_sym:
〈b ↔ a〉 = 〈a ↔ b〉
by (transfer ; auto simp add: transpose_def)+

lemma swap_self [simp]:
〈a ↔ b〉 ∗ 〈a ↔ b〉 = 1
by transfer simp

lemma affected_swap:
a 6= b =⇒ affected 〈a ↔ b〉 = {a, b}
by transfer (auto simp add: transpose_def)

lemma inverse_swap [simp]:
inverse 〈a ↔ b〉 = 〈a ↔ b〉

103

by transfer (auto intro: inv_equality)

7.5 Permutations specified by cycles
fun cycle :: ′a list ⇒ ′a perm (‹〈_〉›)
where
〈[]〉 = 1
| 〈[a]〉 = 1
| 〈a # b # as〉 = 〈a # as〉 ∗ 〈a↔b〉

We do not continue and restrict ourselves to syntax from here. See also
introductory note.

7.6 Syntax
bundle permutation_syntax
begin
notation swap (‹〈_ ↔ _〉›)
notation cycle (‹〈_〉›)
notation apply (infixl ‹〈$〉› 999)
end

unbundle no permutation_syntax

end

8 Permutation orbits
theory Orbits
imports

HOL−Library.FuncSet
HOL−Combinatorics.Permutations

begin

8.1 Orbits and cyclic permutations
inductive_set orbit :: (′a ⇒ ′a) ⇒ ′a ⇒ ′a set for f x where

base: f x ∈ orbit f x |
step: y ∈ orbit f x =⇒ f y ∈ orbit f x

definition cyclic_on :: (′a ⇒ ′a) ⇒ ′a set ⇒ bool where
cyclic_on f S ←→ (∃ s∈S . S = orbit f s)

lemma orbit_altdef : orbit f x = {(f ^^ n) x | n. 0 < n} (is ?L = ?R)
proof (intro set_eqI iffI)

fix y assume y ∈ ?L then show y ∈ ?R
by (induct rule: orbit.induct) (auto simp: exI [where x=1] exI [where x=Suc

n for n])
next

104

fix y assume y ∈ ?R
then obtain n where y = (f ^^ n) x 0 < n by blast
then show y ∈ ?L
proof (induction n arbitrary: y)

case (Suc n) then show ?case by (cases n = 0) (auto intro: orbit.intros)
qed simp

qed

lemma orbit_trans:
assumes s ∈ orbit f t t ∈ orbit f u shows s ∈ orbit f u
using assms by induct (auto intro: orbit.intros)

lemma orbit_subset:
assumes s ∈ orbit f (f t) shows s ∈ orbit f t
using assms by (induct) (auto intro: orbit.intros)

lemma orbit_sim_step:
assumes s ∈ orbit f t shows f s ∈ orbit f (f t)
using assms by induct (auto intro: orbit.intros)

lemma orbit_step:
assumes y ∈ orbit f x f x 6= y shows y ∈ orbit f (f x)
using assms

proof induction
case (step y) then show ?case by (cases x = y) (auto intro: orbit.intros)

qed simp

lemma self_in_orbit_trans:
assumes s ∈ orbit f s t ∈ orbit f s shows t ∈ orbit f t
using assms(2 ,1) by induct (auto intro: orbit_sim_step)

lemma orbit_swap:
assumes s ∈ orbit f s t ∈ orbit f s shows s ∈ orbit f t
using assms(2 ,1)

proof induction
case base then show ?case by (cases f s = s) (auto intro: orbit_step)

next
case (step x) then show ?case by (cases f x = s) (auto intro: orbit_step)

qed

lemma permutation_self_in_orbit:
assumes permutation f shows s ∈ orbit f s
unfolding orbit_altdef using permutation_self [OF assms, of s] by simp metis

lemma orbit_altdef_self_in:
assumes s ∈ orbit f s shows orbit f s = {(f ^^ n) s | n. True}

proof (intro set_eqI iffI)
fix x assume x ∈ {(f ^^ n) s | n. True}
then obtain n where x = (f ^^ n) s by auto

105

then show x ∈ orbit f s using assms by (cases n = 0) (auto simp: orbit_altdef)
qed (auto simp: orbit_altdef)

lemma orbit_altdef_permutation:
assumes permutation f shows orbit f s = {(f ^^ n) s | n. True}
using assms by (intro orbit_altdef_self_in permutation_self_in_orbit)

lemma orbit_altdef_bounded:
assumes (f ^^ n) s = s 0 < n shows orbit f s = {(f ^^ m) s| m. m < n}

proof −
from assms have s ∈ orbit f s

by (auto simp add: orbit_altdef) metis
then have orbit f s = {(f ^^ m) s|m. True} by (rule orbit_altdef_self_in)
also have . . . = {(f ^^ m) s| m. m < n}

using assms
by (auto simp: funpow_mod_eq intro: exI [where x=m mod n for m])

finally show ?thesis .
qed

lemma funpow_in_orbit:
assumes s ∈ orbit f t shows (f ^^ n) s ∈ orbit f t
using assms by (induct n) (auto intro: orbit.intros)

lemma finite_orbit:
assumes s ∈ orbit f s shows finite (orbit f s)

proof −
from assms obtain n where n: 0 < n (f ^^ n) s = s

by (auto simp: orbit_altdef)
then show ?thesis by (auto simp: orbit_altdef_bounded)

qed

lemma self_in_orbit_step:
assumes s ∈ orbit f s shows orbit f (f s) = orbit f s

proof (intro set_eqI iffI)
fix t assume t ∈ orbit f s then show t ∈ orbit f (f s)

using assms by (auto intro: orbit_step orbit_sim_step)
qed (auto intro: orbit_subset)

lemma permutation_orbit_step:
assumes permutation f shows orbit f (f s) = orbit f s
using assms by (intro self_in_orbit_step permutation_self_in_orbit)

lemma orbit_nonempty:
orbit f s 6= {}
using orbit.base by fastforce

lemma orbit_inv_eq:
assumes permutation f
shows orbit (inv f) x = orbit f x (is ?L = ?R)

106

proof −
{ fix g y assume A: permutation g y ∈ orbit (inv g) x

have y ∈ orbit g x
proof −

have inv_g:
∧

y. x = g y =⇒ inv g x = y
∧

y. inv g (g y) = y
by (metis A(1) bij_inv_eq_iff permutation_bijective)+

{ fix y assume y ∈ orbit g x
then have inv g y ∈ orbit g x

by (cases) (simp_all add: inv_g A(1) permutation_self_in_orbit)
} note inv_g_in_orb = this

from A(2) show ?thesis
by induct (simp_all add: inv_g_in_orb A permutation_self_in_orbit)

qed
} note orb_inv_ss = this

have inv (inv f) = f
by (simp add: assms inv_inv_eq permutation_bijective)

then show ?thesis
using orb_inv_ss[OF assms] orb_inv_ss[OF permutation_inverse[OF assms]]

by auto
qed

lemma cyclic_on_alldef :
cyclic_on f S ←→ S 6= {} ∧ (∀ s∈S . S = orbit f s)
unfolding cyclic_on_def by (auto intro: orbit.step orbit_swap orbit_trans)

lemma cyclic_on_funpow_in:
assumes cyclic_on f S s ∈ S shows (f^^n) s ∈ S
using assms unfolding cyclic_on_def by (auto intro: funpow_in_orbit)

lemma finite_cyclic_on:
assumes cyclic_on f S shows finite S
using assms by (auto simp: cyclic_on_def finite_orbit)

lemma cyclic_on_singleI :
assumes s ∈ S S = orbit f s shows cyclic_on f S
using assms unfolding cyclic_on_def by blast

lemma cyclic_on_inI :
assumes cyclic_on f S s ∈ S shows f s ∈ S
using assms by (auto simp: cyclic_on_def intro: orbit.intros)

lemma orbit_inverse:
assumes self : a ∈ orbit g a

and eq:
∧

x. x ∈ orbit g a =⇒ g ′ (f x) = f (g x)
shows f ‘ orbit g a = orbit g ′ (f a) (is ?L = ?R)

proof (intro set_eqI iffI)

107

fix x assume x ∈ ?L
then obtain x0 where x0 ∈ orbit g a x = f x0 by auto
then show x ∈ ?R
proof (induct arbitrary: x)

case base then show ?case by (auto simp: self orbit.base eq[symmetric])
next

case step then show ?case by cases (auto simp: eq[symmetric] orbit.intros)
qed

next
fix x assume x ∈ ?R
then show x ∈ ?L
proof (induct arbitrary:)

case base then show ?case by (auto simp: self orbit.base eq)
next

case step then show ?case by cases (auto simp: eq orbit.intros)
qed

qed

lemma cyclic_on_image:
assumes cyclic_on f S
assumes

∧
x. x ∈ S =⇒ g (h x) = h (f x)

shows cyclic_on g (h ‘ S)
using assms by (auto simp: cyclic_on_def) (meson orbit_inverse)

lemma cyclic_on_f_in:
assumes f permutes S cyclic_on f A f x ∈ A
shows x ∈ A

proof −
from assms have fx_in_orb: f x ∈ orbit f (f x) by (auto simp: cyclic_on_alldef)
from assms have A = orbit f (f x) by (auto simp: cyclic_on_alldef)
moreover
then have . . . = orbit f x using ‹f x ∈ A› by (auto intro: orbit_step orbit_subset)
ultimately
show ?thesis by (metis (no_types) orbit.simps permutes_inverses(2)[OF assms(1)])

qed

lemma orbit_cong0 :
assumes x ∈ A f ∈ A → A

∧
y. y ∈ A =⇒ f y = g y shows orbit f x = orbit g

x
proof −

{ fix n have (f ^^ n) x = (g ^^ n) x ∧ (f ^^ n) x ∈ A
by (induct n rule: nat.induct) (insert assms, auto)

} then show ?thesis by (auto simp: orbit_altdef)
qed

lemma orbit_cong:
assumes self_in: t ∈ orbit f t and eq:

∧
s. s ∈ orbit f t =⇒ g s = f s

shows orbit g t = orbit f t
using assms(1) _ assms(2) by (rule orbit_cong0) (auto simp: orbit.step eq)

108

lemma cyclic_cong:
assumes

∧
s. s ∈ S =⇒ f s = g s shows cyclic_on f S = cyclic_on g S

proof −
have (∃ s∈S . orbit f s = orbit g s) =⇒ cyclic_on f S = cyclic_on g S

by (metis cyclic_on_alldef cyclic_on_def)
then show ?thesis by (metis assms orbit_cong cyclic_on_def)

qed

lemma permutes_comp_preserves_cyclic1 :
assumes g permutes B cyclic_on f C
assumes A ∩ B = {} C ⊆ A
shows cyclic_on (f o g) C

proof −
have ∗:

∧
c. c ∈ C =⇒ f (g c) = f c

using assms by (subst permutes_not_in [of g]) auto
with assms(2) show ?thesis by (simp cong: cyclic_cong)

qed

lemma permutes_comp_preserves_cyclic2 :
assumes f permutes A cyclic_on g C
assumes A ∩ B = {} C ⊆ B
shows cyclic_on (f o g) C

proof −
obtain c where c: c ∈ C C = orbit g c c ∈ orbit g c

using ‹cyclic_on g C › by (auto simp: cyclic_on_def)
then have

∧
c. c ∈ C =⇒ f (g c) = g c

using assms c by (subst permutes_not_in [of f]) (auto intro: orbit.intros)
with assms(2) show ?thesis by (simp cong: cyclic_cong)

qed

lemma permutes_orbit_subset:
assumes f permutes S x ∈ S shows orbit f x ⊆ S

proof
fix y assume y ∈ orbit f x
then show y ∈ S by induct (auto simp: permutes_in_image assms)

qed

lemma cyclic_on_orbit ′:
assumes permutation f shows cyclic_on f (orbit f x)
unfolding cyclic_on_alldef using orbit_nonempty[of f x]
by (auto intro: assms orbit_swap orbit_trans permutation_self_in_orbit)

lemma cyclic_on_orbit:
assumes f permutes S finite S shows cyclic_on f (orbit f x)
using assms by (intro cyclic_on_orbit ′) (auto simp: permutation_permutes)

lemma orbit_cyclic_eq3 :
assumes cyclic_on f S y ∈ S shows orbit f y = S

109

using assms unfolding cyclic_on_alldef by simp

lemma orbit_eq_singleton_iff : orbit f x = {x} ←→ f x = x (is ?L ←→ ?R)
proof

assume A: ?R
{ fix y assume y ∈ orbit f x then have y = x

by induct (auto simp: A)
} then show ?L by (metis orbit_nonempty singletonI subsetI subset_singletonD)

next
assume A: ?L
then have

∧
y. y ∈ orbit f x =⇒ f x = y

by − (erule orbit.cases, simp_all)
then show ?R using A by blast

qed

lemma eq_on_cyclic_on_iff1 :
assumes cyclic_on f S x ∈ S
obtains f x ∈ S f x = x ←→ card S = 1

proof
from assms show f x ∈ S by (auto simp: cyclic_on_def intro: orbit.intros)
from assms have S = orbit f x by (auto simp: cyclic_on_alldef)
then have f x = x ←→ S = {x} by (metis orbit_eq_singleton_iff)
then show f x = x ←→ card S = 1 using ‹x ∈ S› by (auto simp: card_Suc_eq)

qed

lemma orbit_eqI :
y = f x =⇒ y ∈ orbit f x
z = f y =⇒y ∈ orbit f x =⇒z ∈ orbit f x
by (metis orbit.base) (metis orbit.step)

8.2 Decomposition of arbitrary permutations
definition perm_restrict :: (′a ⇒ ′a) ⇒ ′a set ⇒ (′a ⇒ ′a) where

perm_restrict f S x ≡ if x ∈ S then f x else x

lemma perm_restrict_comp:
assumes A ∩ B = {} cyclic_on f B
shows perm_restrict f A o perm_restrict f B = perm_restrict f (A ∪ B)

proof −
have

∧
x. x ∈ B =⇒ f x ∈ B using ‹cyclic_on f B› by (rule cyclic_on_inI)

with assms show ?thesis by (auto simp: perm_restrict_def fun_eq_iff)
qed

lemma perm_restrict_simps:
x ∈ S =⇒ perm_restrict f S x = f x
x /∈ S =⇒ perm_restrict f S x = x
by (auto simp: perm_restrict_def)

lemma perm_restrict_perm_restrict:

110

perm_restrict (perm_restrict f A) B = perm_restrict f (A ∩ B)
by (auto simp: perm_restrict_def)

lemma perm_restrict_union:
assumes perm_restrict f A permutes A perm_restrict f B permutes B A ∩ B =
{}

shows perm_restrict f A o perm_restrict f B = perm_restrict f (A ∪ B)
using assms by (auto simp: fun_eq_iff perm_restrict_def permutes_def) (metis

Diff_iff Diff_triv)

lemma perm_restrict_id[simp]:
assumes f permutes S shows perm_restrict f S = f
using assms by (auto simp: permutes_def perm_restrict_def)

lemma cyclic_on_perm_restrict:
cyclic_on (perm_restrict f S) S ←→ cyclic_on f S
by (simp add: perm_restrict_def cong: cyclic_cong)

lemma perm_restrict_diff_cyclic:
assumes f permutes S cyclic_on f A
shows perm_restrict f (S − A) permutes (S − A)

proof −
{ fix y

have ∃ x. perm_restrict f (S − A) x = y
proof cases

assume A: y ∈ S − A
with ‹f permutes S› obtain x where f x = y x ∈ S

unfolding permutes_def by auto metis
moreover
with A have x /∈ A by (metis Diff_iff assms(2) cyclic_on_inI)
ultimately
have perm_restrict f (S − A) x = y by (simp add: perm_restrict_simps)
then show ?thesis ..

next
assume y /∈ S − A

then have perm_restrict f (S − A) y = y by (simp add: perm_restrict_simps)
then show ?thesis ..

qed
} note X = this

{ fix x y assume perm_restrict f (S − A) x = perm_restrict f (S − A) y
with assms have x = y
by (auto simp: perm_restrict_def permutes_def split: if_splits intro: cyclic_on_f_in)

} note Y = this

show ?thesis by (auto simp: permutes_def perm_restrict_simps X intro: Y)
qed

lemma permutes_decompose:

111

assumes f permutes S finite S
shows ∃C . (∀ c ∈ C . cyclic_on f c) ∧

⋃
C = S ∧ (∀ c1 ∈ C . ∀ c2 ∈ C . c1 6=

c2 −→ c1 ∩ c2 = {})
using assms(2 ,1)

proof (induction arbitrary: f rule: finite_psubset_induct)
case (psubset S)

show ?case
proof (cases S = {})

case True then show ?thesis by (intro exI [where x={}]) auto
next

case False
then obtain s where s ∈ S by auto
with ‹f permutes S› have orbit f s ⊆ S

by (rule permutes_orbit_subset)
have cyclic_orbit: cyclic_on f (orbit f s)

using ‹f permutes S› ‹finite S› by (rule cyclic_on_orbit)

let ?f ′ = perm_restrict f (S − orbit f s)

have f s ∈ S using ‹f permutes S› ‹s ∈ S› by (auto simp: permutes_in_image)
then have S − orbit f s ⊂ S using orbit.base[of f s] ‹s ∈ S› by blast
moreover
have ?f ′ permutes (S − orbit f s)

using ‹f permutes S› cyclic_orbit by (rule perm_restrict_diff_cyclic)
ultimately
obtain C where C :

∧
c. c ∈ C =⇒ cyclic_on ?f ′ c

⋃
C = S − orbit f s

∀ c1 ∈ C . ∀ c2 ∈ C . c1 6= c2 −→ c1 ∩ c2 = {}
using psubset.IH by metis

{ fix c assume c ∈ C
then have ∗:

∧
x. x ∈ c =⇒ perm_restrict f (S − orbit f s) x = f x

using C (2) ‹f permutes S› by (auto simp add: perm_restrict_def)
then have cyclic_on f c using C (1)[OF ‹c ∈ C ›] by (simp cong: cyclic_cong

add: ∗)
} note in_C_cyclic = this

have Un_ins:
⋃
(insert (orbit f s) C) = S

using ‹
⋃

C = _› ‹orbit f s ⊆ S› by blast

have Disj_ins: (∀ c1 ∈ insert (orbit f s) C . ∀ c2 ∈ insert (orbit f s) C . c1 6=
c2 −→ c1 ∩ c2 = {})

using C by auto

show ?thesis
by (intro conjI Un_ins Disj_ins exI [where x=insert (orbit f s) C])
(auto simp: cyclic_orbit in_C_cyclic)

qed
qed

112

8.3 Function-power distance between values
definition funpow_dist :: (′a ⇒ ′a) ⇒ ′a ⇒ ′a ⇒ nat where

funpow_dist f x y ≡ LEAST n. (f ^^ n) x = y

abbreviation funpow_dist1 :: (′a ⇒ ′a) ⇒ ′a ⇒ ′a ⇒ nat where
funpow_dist1 f x y ≡ Suc (funpow_dist f (f x) y)

lemma funpow_dist_0 :
assumes x = y shows funpow_dist f x y = 0
using assms unfolding funpow_dist_def by (intro Least_eq_0) simp

lemma funpow_dist_least:
assumes n < funpow_dist f x y shows (f ^^ n) x 6= y

proof (rule notI)
assume (f ^^ n) x = y
then have funpow_dist f x y ≤ n unfolding funpow_dist_def by (rule Least_le)
with assms show False by linarith

qed

lemma funpow_dist1_least:
assumes 0 < n n < funpow_dist1 f x y shows (f ^^ n) x 6= y

proof (rule notI)
assume (f ^^ n) x = y
then have (f ^^ (n − 1)) (f x) = y

using ‹0 < n› by (cases n) (simp_all add: funpow_swap1)
then have funpow_dist f (f x) y ≤ n − 1 unfolding funpow_dist_def by (rule

Least_le)
with assms show False by simp

qed

lemma funpow_dist_prop:
y ∈ orbit f x =⇒ (f ^^ funpow_dist f x y) x = y
unfolding funpow_dist_def by (rule LeastI_ex) (auto simp: orbit_altdef)

lemma funpow_dist_0_eq:
assumes y ∈ orbit f x shows funpow_dist f x y = 0 ←→ x = y
using assms by (auto simp: funpow_dist_0 dest: funpow_dist_prop)

lemma funpow_dist_step:
assumes x 6= y y ∈ orbit f x shows funpow_dist f x y = Suc (funpow_dist f (f

x) y)
proof −

from ‹y ∈ _› obtain n where (f ^^ n) x = y by (auto simp: orbit_altdef)
with ‹x 6= y› obtain n ′ where [simp]: n = Suc n ′ by (cases n) auto

show ?thesis
unfolding funpow_dist_def

proof (rule Least_Suc2)
show (f ^^ n) x = y by fact

113

then show (f ^^ n ′) (f x) = y by (simp add: funpow_swap1)
show (f ^^ 0) x 6= y using ‹x 6= y› by simp
show ∀ k. ((f ^^ Suc k) x = y) = ((f ^^ k) (f x) = y)

by (simp add: funpow_swap1)
qed

qed

lemma funpow_dist1_prop:
assumes y ∈ orbit f x shows (f ^^ funpow_dist1 f x y) x = y
by (metis assms funpow_dist_prop funpow_dist_step funpow_simps_right(2)

o_apply self_in_orbit_step)

lemma funpow_neq_less_funpow_dist:
assumes y ∈ orbit f x m ≤ funpow_dist f x y n ≤ funpow_dist f x y m 6= n
shows (f ^^ m) x 6= (f ^^ n) x

proof (rule notI)
assume A: (f ^^ m) x = (f ^^ n) x

define m ′ n ′ where m ′ = min m n and n ′ = max m n
with A assms have A ′: m ′ < n ′ (f ^^ m ′) x = (f ^^ n ′) x n ′ ≤ funpow_dist f x

y
by (auto simp: min_def max_def)

have y = (f ^^ funpow_dist f x y) x
using ‹y ∈ _› by (simp only: funpow_dist_prop)

also have . . . = (f ^^ ((funpow_dist f x y − n ′) + n ′)) x
using ‹n ′ ≤ _› by simp

also have . . . = (f ^^ ((funpow_dist f x y − n ′) + m ′)) x
by (simp add: funpow_add ‹(f ^^ m ′) x = _›)

also have (f ^^ ((funpow_dist f x y − n ′) + m ′)) x 6= y
using A ′ by (intro funpow_dist_least) linarith

finally show False by simp
qed

lemma funpow_neq_less_funpow_dist1 :
assumes y ∈ orbit f x m < funpow_dist1 f x y n < funpow_dist1 f x y m 6= n
shows (f ^^ m) x 6= (f ^^ n) x

proof (rule notI)
assume A: (f ^^ m) x = (f ^^ n) x

define m ′ n ′ where m ′ = min m n and n ′ = max m n
with A assms have A ′: m ′ < n ′ (f ^^ m ′) x = (f ^^ n ′) x n ′ < funpow_dist1 f

x y
by (auto simp: min_def max_def)

have y = (f ^^ funpow_dist1 f x y) x
using ‹y ∈ _› by (simp only: funpow_dist1_prop)

114

also have . . . = (f ^^ ((funpow_dist1 f x y − n ′) + n ′)) x
using ‹n ′ < _› by simp

also have . . . = (f ^^ ((funpow_dist1 f x y − n ′) + m ′)) x
by (simp add: funpow_add ‹(f ^^ m ′) x = _›)

also have (f ^^ ((funpow_dist1 f x y − n ′) + m ′)) x 6= y
using A ′ by (intro funpow_dist1_least) linarith+

finally show False by simp
qed

lemma inj_on_funpow_dist:
assumes y ∈ orbit f x shows inj_on (λn. (f ^^ n) x) {0 ..funpow_dist f x y}
using funpow_neq_less_funpow_dist[OF assms] by (intro inj_onI) auto

lemma inj_on_funpow_dist1 :
assumes y ∈ orbit f x shows inj_on (λn. (f ^^ n) x) {0 ..<funpow_dist1 f x y}
using funpow_neq_less_funpow_dist1 [OF assms] by (intro inj_onI) auto

lemma orbit_conv_funpow_dist1 :
assumes x ∈ orbit f x
shows orbit f x = (λn. (f ^^ n) x) ‘ {0 ..<funpow_dist1 f x x} (is ?L = ?R)
using funpow_dist1_prop[OF assms]
by (auto simp: orbit_altdef_bounded[where n=funpow_dist1 f x x])

lemma funpow_dist1_prop1 :
assumes (f ^^ n) x = y 0 < n shows (f ^^ funpow_dist1 f x y) x = y

proof −
from assms have y ∈ orbit f x by (auto simp: orbit_altdef)
then show ?thesis by (rule funpow_dist1_prop)

qed

lemma funpow_dist1_dist:
assumes funpow_dist1 f x y < funpow_dist1 f x z
assumes {y,z} ⊆ orbit f x
shows funpow_dist1 f x z = funpow_dist1 f x y + funpow_dist1 f y z (is ?L =

?R)
proof −

define n where ‹n = funpow_dist1 f x z − funpow_dist1 f x y − 1 ›
with assms have ∗: ‹funpow_dist1 f x z = Suc (funpow_dist1 f x y + n)›

by simp
have x_z: (f ^^ funpow_dist1 f x z) x = z using assms by (blast intro: fun-

pow_dist1_prop)
have x_y: (f ^^ funpow_dist1 f x y) x = y using assms by (blast intro: fun-

pow_dist1_prop)

have (f ^^ (funpow_dist1 f x z − funpow_dist1 f x y)) y
= (f ^^ (funpow_dist1 f x z − funpow_dist1 f x y)) ((f ^^ funpow_dist1 f x

y) x)
using x_y by simp

also have . . . = z

115

using assms x_z by (simp add: ∗ funpow_add ac_simps funpow_swap1)
finally have y_z_diff : (f ^^ (funpow_dist1 f x z − funpow_dist1 f x y)) y = z .
then have (f ^^ funpow_dist1 f y z) y = z

using assms by (intro funpow_dist1_prop1) auto
then have (f ^^ funpow_dist1 f y z) ((f ^^ funpow_dist1 f x y) x) = z

using x_y by simp
then have (f ^^ (funpow_dist1 f y z + funpow_dist1 f x y)) x = z

by (simp add: ∗ funpow_add funpow_swap1)
show ?thesis
proof (rule antisym)

from y_z_diff have (f ^^ funpow_dist1 f y z) y = z
using assms by (intro funpow_dist1_prop1) auto

then have (f ^^ funpow_dist1 f y z) ((f ^^ funpow_dist1 f x y) x) = z
using x_y by simp

then have (f ^^ (funpow_dist1 f y z + funpow_dist1 f x y)) x = z
by (simp add: ∗ funpow_add funpow_swap1)

then have funpow_dist1 f x z ≤ funpow_dist1 f y z + funpow_dist1 f x y
using funpow_dist1_least not_less by fastforce

then show ?L ≤ ?R by presburger
next

have funpow_dist1 f y z ≤ funpow_dist1 f x z − funpow_dist1 f x y
using y_z_diff assms(1) by (metis not_less zero_less_diff funpow_dist1_least)
then show ?R ≤ ?L by linarith

qed
qed

lemma funpow_dist1_le_self :
assumes (f ^^ m) x = x 0 < m y ∈ orbit f x
shows funpow_dist1 f x y ≤ m

proof (cases x = y)
case True with assms show ?thesis by (auto dest!: funpow_dist1_least)

next
case False
have (f ^^ funpow_dist1 f x y) x = (f ^^ (funpow_dist1 f x y mod m)) x

using assms by (simp add: funpow_mod_eq)
with False ‹y ∈ orbit f x› have funpow_dist1 f x y ≤ funpow_dist1 f x y mod m

by auto (metis ‹(f ^^ funpow_dist1 f x y) x = (f ^^ (funpow_dist1 f x y mod
m)) x› funpow_dist1_prop funpow_dist_least funpow_dist_step leI)

with ‹m > 0 › show ?thesis
by (auto intro: order_trans)

qed

end

9 Basic combinatorics in Isabelle/HOL (and the
Archive of Formal Proofs)

theory Combinatorics

116

imports
Transposition
Stirling
Permutations
List_Permutation
Multiset_Permutations
Cycles
Perm
Orbits

begin

end

117

	Transposition function
	Stirling numbers of first and second kind
	Stirling numbers of the second kind
	Stirling numbers of the first kind
	Efficient code

	Permutations, both general and specifically on finite sets.
	Auxiliary
	Basic definition and consequences
	Group properties
	Restricting a permutation to a subset
	Mapping a permutation
	The number of permutations on a finite set
	Permutations of index set for iterated operations
	Permutations as transposition sequences
	Some closure properties of the set of permutations, with lengths
	Various combinations of transpositions with 2, 1 and 0 common elements
	The identity map only has even transposition sequences
	Therefore we have a welldefined notion of parity
	And it has the expected composition properties
	A more abstract characterization of permutations
	Relation to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 permutes
	Sign of a permutation
	An induction principle in terms of transpositions
	More on the sign of permutations
	Transpositions of adjacent elements
	Transferring properties of permutations along bijections
	Permuting a list
	More lemmas about permutations
	Sum over a set of permutations (could generalize to iteration)
	Constructing permutations from association lists

	Permuted Lists
	An existing notion
	Nontrivial conclusions
	Trivial conclusions:

	Permutations of a Multiset
	Permutations of a multiset
	Cardinality of permutations
	Permutations of a set
	Code generation

	Cycles
	Definitions
	Basic Properties
	Conjugation of cycles
	When Cycles Commute
	Cycles from Permutations
	Exponentiation of permutations
	Extraction of cycles from permutations

	Decomposition on Cycles
	Preliminaries
	Decomposition

	Permutations as abstract type
	Abstract type of permutations
	Identity, composition and inversion
	Orbit and order of elements
	Swaps
	Permutations specified by cycles
	Syntax

	Permutation orbits
	Orbits and cyclic permutations
	Decomposition of arbitrary permutations
	Function-power distance between values

	Basic combinatorics in Isabelle/HOL (and the Archive of Formal Proofs)

