

Basic combinatorics in Isabelle/HOL (and the Archive of Formal Proofs)

January 18, 2026

Contents

1	Transposition function	1
2	Stirling numbers of first and second kind	5
2.1	Stirling numbers of the second kind	5
2.2	Stirling numbers of the first kind	6
2.2.1	Efficient code	9
3	Permutations, both general and specifically on finite sets.	11
3.1	Auxiliary	12
3.2	Basic definition and consequences	12
3.3	Group properties	17
3.4	Restricting a permutation to a subset	18
3.5	Mapping a permutation	19
3.6	The number of permutations on a finite set	25
3.7	Permutations of index set for iterated operations	28
3.8	Permutations as transposition sequences	28
3.9	Some closure properties of the set of permutations, with lengths	28
3.10	Various combinations of transpositions with 2, 1 and 0 common elements	30
3.11	The identity map only has even transposition sequences	30
3.12	Therefore we have a welldefined notion of parity	32
3.13	And it has the expected composition properties	33
3.14	A more abstract characterization of permutations	33
3.15	Relation to <i>permutes</i>	35
3.16	Sign of a permutation	36
3.17	An induction principle in terms of transpositions	36
3.18	More on the sign of permutations	40
3.19	Transpositions of adjacent elements	41
3.20	Transferring properties of permutations along bijections	43

3.21	Permuting a list	45
3.22	More lemmas about permutations	47
3.23	Sum over a set of permutations (could generalize to iteration)	56
3.24	Constructing permutations from association lists	57
4	Permuted Lists	60
4.1	An existing notion	60
4.2	Nontrivial conclusions	60
4.3	Trivial conclusions:	61
5	Permutations of a Multiset	63
5.1	Permutations of a multiset	64
5.2	Cardinality of permutations	66
5.3	Permutations of a set	69
5.4	Code generation	70
6	Cycles	74
6.1	Definitions	74
6.2	Basic Properties	74
6.3	Conjugation of cycles	76
6.4	When Cycles Commute	77
6.5	Cycles from Permutations	77
6.5.1	Exponentiation of permutations	77
6.5.2	Extraction of cycles from permutations	79
6.6	Decomposition on Cycles	80
6.6.1	Preliminaries	81
6.6.2	Decomposition	84
7	Permutations as abstract type	86
7.1	Abstract type of permutations	86
7.2	Identity, composition and inversion	88
7.3	Orbit and order of elements	91
7.4	Swaps	101
7.5	Permutations specified by cycles	102
7.6	Syntax	102
8	Permutation orbits	102
8.1	Orbits and cyclic permutations	102
8.2	Decomposition of arbitrary permutations	108
8.3	Function-power distance between values	111
9	Basic combinatorics in Isabelle/HOL (and the Archive of Formal Proofs)	115

1 Transposition function

```

theory Transposition
imports Main
begin

definition transpose ::  $\langle 'a \Rightarrow 'a \Rightarrow 'a \Rightarrow 'a \rangle$ 
  where  $\langle \text{transpose } a \ b \ c = (\text{if } c = a \text{ then } b \text{ else if } c = b \text{ then } a \text{ else } c) \rangle$ 

lemma transpose_apply_first [simp]:
   $\langle \text{transpose } a \ b \ a = b \rangle$ 
  by (simp add: transpose_def)

lemma transpose_apply_second [simp]:
   $\langle \text{transpose } a \ b \ b = a \rangle$ 
  by (simp add: transpose_def)

lemma transpose_apply_other [simp]:
   $\langle \text{transpose } a \ b \ c = c \rangle \text{ if } \langle c \neq a \wedge c \neq b \rangle$ 
  using that by (simp add: transpose_def)

lemma transpose_same [simp]:
   $\langle \text{transpose } a \ a = id \rangle$ 
  by (simp add: fun_eq_iff transpose_def)

lemma transpose_eq_iff:
   $\langle \text{transpose } a \ b \ c = d \longleftrightarrow (c \neq a \wedge c \neq b \wedge d = c) \vee (c = a \wedge d = b) \vee (c = b \wedge d = a) \rangle$ 
  by (auto simp add: transpose_def)

lemma transpose_eq_imp_eq:
   $\langle c = d \rangle \text{ if } \langle \text{transpose } a \ b \ c = \text{transpose } a \ b \ d \rangle$ 
  using that by (auto simp add: transpose_eq_iff)

lemma transpose_commute [ac_simps]:
   $\langle \text{transpose } b \ a = \text{transpose } a \ b \rangle$ 
  by (auto simp add: fun_eq_iff transpose_eq_iff)

lemma transpose_involutory [simp]:
   $\langle \text{transpose } a \ b \ (\text{transpose } a \ b \ c) = c \rangle$ 
  by (auto simp add: transpose_eq_iff)

lemma transpose_comp_involutory [simp]:
   $\langle \text{transpose } a \ b \circ \text{transpose } a \ b = id \rangle$ 
  by (rule ext) simp

lemma transpose_eq_id_iff: Transposition.transpose x y = id  $\longleftrightarrow x = y$ 
  by (auto simp: fun_eq_iff Transposition.transpose_def)

```

```

lemma transpose_triple:
  ‹transpose a b (transpose b c (transpose a b d)) = transpose a c d›
  if ‹a ≠ c› and ‹b ≠ c›
  using that by (simp add: transpose_def)

lemma transpose_comp_triple:
  ‹transpose a b ∘ transpose b c ∘ transpose a b = transpose a c›
  if ‹a ≠ c› and ‹b ≠ c›
  using that by (simp add: fun_eq_iff transpose_triple)

lemma transpose_image_eq [simp]:
  ‹transpose a b ‘ A = A› if ‹a ∈ A ↔ b ∈ A›
  using that by (auto simp add: transpose_def [abs_def])

lemma inj_on_transpose [simp]:
  ‹inj_on (transpose a b) A›
  by rule (drule transpose_eq_imp_eq)

lemma inj_transpose:
  ‹inj (transpose a b)›
  by (fact inj_on_transpose)

lemma surj_transpose:
  ‹surj (transpose a b)›
  by simp

lemma bij_betw_transpose_iff [simp]:
  ‹bij_betw (transpose a b) A A› if ‹a ∈ A ↔ b ∈ A›
  using that by (auto simp: bij_betw_def)

lemma bij_transpose [simp]:
  ‹bij (transpose a b)›
  by (rule bij_betw_transpose_iff) simp

lemma bijection_transpose:
  ‹bijection (transpose a b)›
  by standard (fact bij_transpose)

lemma inv_transpose_eq [simp]:
  ‹inv (transpose a b) = transpose a b›
  by (rule inv_unique_comp) simp_all

lemma transpose_apply_commute:
  ‹transpose a b (f c) = f (transpose (inv f a) (inv f b) c)›
  if ‹bij f›
proof -
  from that have ‹surj f›
  by (rule bij_is_surj)
  with that show ?thesis

```

```

  by (simp add: transpose_def bij_inv_eq_iff surj_f_inv_f)
qed

lemma transpose_comp_eq:
  ‹transpose a b ∘ f = f ∘ transpose (inv f a) (inv f b)›
  if ‹bij f›
  using that by (simp add: fun_eq_iff transpose_apply_commute)

lemma in_transpose_image_iff:
  ‹x ∈ transpose a b ` S ↔ transpose a b x ∈ S›
  by (auto intro!: image_eqI)

Legacy input alias

setup ‹Context.theory_map (Name_Space.map_naming (Name_Space.qualified_path
true binding ‹Fun›))›

abbreviation (input) swap :: ‹'a ⇒ 'a ⇒ ('a ⇒ 'b) ⇒ 'a ⇒ 'b›
  where ‹swap a b f ≡ f ∘ transpose a b›

lemma swap_def:
  ‹Fun.swap a b f = f (a := f b, b := f a)›
  by (simp add: fun_eq_iff)

setup ‹Context.theory_map (Name_Space.map_naming (Name_Space.parent_path))›

lemma swap_apply:
  Fun.swap a b f a = f b
  Fun.swap a b f b = f a
  c ≠ a ⟹ c ≠ b ⟹ Fun.swap a b f c = f c
  by simp_all

lemma swap_self: Fun.swap a a f = f
  by simp

lemma swap_commute: Fun.swap a b f = Fun.swap b a f
  by (simp add: ac_simps)

lemma swap_nilpotent: Fun.swap a b (Fun.swap a b f) = f
  by (simp add: comp_assoc)

lemma swap_comp_involutory: Fun.swap a b ∘ Fun.swap a b = id
  by (simp add: fun_eq_iff)

lemma swap_triple:
  assumes a ≠ c and b ≠ c
  shows Fun.swap a b (Fun.swap b c (Fun.swap a b f)) = Fun.swap a c f
  using assms transpose_comp_triple [of a c b]
  by (simp add: comp_assoc)

```

```

lemma comp_swap:  $f \circ \text{Fun.swap } a \ b \ g = \text{Fun.swap } a \ b \ (f \circ g)$ 
by (simp add: comp_assoc)

lemma swap_image_eq:
assumes  $a \in A \ b \in A$ 
shows  $\text{Fun.swap } a \ b \ f \ ' A = f \ ' A$ 
using assms by (metis image_comp transpose_image_eq)

lemma inj_on_imp_inj_on_swap:  $\text{inj\_on } f A \implies a \in A \implies b \in A \implies \text{inj\_on}$ 
 $(\text{Fun.swap } a \ b \ f) \ A$ 
by (simp add: comp_inj_on)

lemma inj_on_swap_iff:
assumes  $A: a \in A \ b \in A$ 
shows  $\text{inj\_on } (\text{Fun.swap } a \ b \ f) \ A \longleftrightarrow \text{inj\_on } f A$ 
using assms by (metis inj_on_imageI inj_on_imp_inj_on_swap transpose_image_eq)

lemma surj_imp_surj_swap:  $\text{surj } f \implies \text{surj } (\text{Fun.swap } a \ b \ f)$ 
by (meson comp_surj surj_transpose)

lemma surj_swap_iff:  $\text{surj } (\text{Fun.swap } a \ b \ f) \longleftrightarrow \text{surj } f$ 
by (metis fun.set_map surj_transpose)

lemma bij_betw_swap_iff:  $x \in A \implies y \in A \implies \text{bij\_betw } (\text{Fun.swap } x \ y \ f) \ A \ B$ 
 $\longleftrightarrow \text{bij\_betw } f \ A \ B$ 
by (meson bij_betw_comp_iff bij_betw_transpose_iff)

lemma bij_swap_iff:  $\text{bij } (\text{Fun.swap } a \ b \ f) \longleftrightarrow \text{bij } f$ 
by (simp add: bij_betw_swap_iff)

lemma swap_image:
 $\langle \text{Fun.swap } i \ j \ f \ ' A = f \ ' (A - \{i, j\})$ 
 $\cup (\text{if } i \in A \text{ then } \{j\} \text{ else } \{\}) \cup (\text{if } j \in A \text{ then } \{i\} \text{ else } \{\}) \rangle$ 
by (auto simp add: Fun.swap_def)

lemma inv_swap_id:  $\text{inv } (\text{Fun.swap } a \ b \ id) = \text{Fun.swap } a \ b \ id$ 
by simp

lemma bij_swap_comp:
assumes  $\text{bij } p$ 
shows  $\text{Fun.swap } a \ b \ id \circ p = \text{Fun.swap } (\text{inv } p \ a) \ (\text{inv } p \ b) \ p$ 
using assms by (simp add: transpose_comp_eq)

lemma swap_id_eq:  $\text{Fun.swap } a \ b \ id \ x = (\text{if } x = a \text{ then } b \text{ else if } x = b \text{ then } a \text{ else } x)$ 
by (simp add: Fun.swap_def)

lemma swap_unfold:
 $\langle \text{Fun.swap } a \ b \ p = p \circ \text{Fun.swap } a \ b \ id \rangle$ 

```

```

by simp

lemma swap_id_idempotent: Fun.swap a b id o Fun.swap a b id = id
  by simp

lemma bij_swap_compose_bij:
  <bij (Fun.swap a b id o p)> if <bij p>
  using that by (rule bij_comp) simp

end

```

2 Stirling numbers of first and second kind

```

theory Stirling
imports Main
begin

2.1 Stirling numbers of the second kind

fun Stirling :: nat ⇒ nat ⇒ nat
  where
    Stirling 0 0 = 1
  | Stirling 0 (Suc k) = 0
  | Stirling (Suc n) 0 = 0
  | Stirling (Suc n) (Suc k) = Suc k * Stirling n (Suc k) + Stirling n k

lemma Stirling_1 [simp]: Stirling (Suc n) (Suc 0) = 1
  by (induct n) simp_all

lemma Stirling_less [simp]: n < k ⇒ Stirling n k = 0
  by (induct n k rule: Stirling.induct) simp_all

lemma Stirling_same [simp]: Stirling n n = 1
  by (induct n) simp_all

lemma Stirling_2_2: Stirling (Suc (Suc n)) (Suc (Suc 0)) = 2 ^ Suc n - 1
proof (induct n)
  case 0
  then show ?case by simp
next
  case (Suc n)
  have Stirling (Suc (Suc (Suc n))) (Suc (Suc 0)) =
    2 * Stirling (Suc (Suc n)) (Suc (Suc 0)) + Stirling (Suc (Suc n)) (Suc 0)
  by simp
  also have ... = 2 * (2 ^ Suc n - 1) + 1
  by (simp only: Suc Stirling_1)
  also have ... = 2 ^ Suc (Suc n) - 1
  proof -
    have (2::nat) ^ Suc n - 1 > 0
  
```

```

  by (induct n) simp_all
  then have  $2 * ((2::nat) \wedge Suc n - 1) > 0$ 
    by simp
  then have  $2 \leq 2 * ((2::nat) \wedge Suc n)$ 
    by simp
  with add_diff_assoc2 [of  $2 2 * 2 \wedge Suc n 1$ ]
  have  $2 * 2 \wedge Suc n - 2 + (1::nat) = 2 * 2 \wedge Suc n + 1 - 2$  .
  then show ?thesis
    by (simp add: nat_distrib)
qed
finally show ?case by simp
qed

```

lemma *Stirling_2*: *Stirling* (*Suc n*) (*Suc* (*Suc 0*)) = $2 \wedge n - 1$
using *Stirling_2_2* **by** (cases *n*) *simp_all*

2.2 Stirling numbers of the first kind

```

fun stirling :: nat  $\Rightarrow$  nat  $\Rightarrow$  nat
  where
    stirling 0 0 = 1
  | stirling 0 (Suc k) = 0
  | stirling (Suc n) 0 = 0
  | stirling (Suc n) (Suc k) = n * stirling n (Suc k) + stirling n k

lemma stirling_0 [simp]: n > 0  $\Rightarrow$  stirling n 0 = 0
  by (cases n) simp_all

lemma stirling_less [simp]: n < k  $\Rightarrow$  stirling n k = 0
  by (induct n k rule: stirling.induct) simp_all

lemma stirling_same [simp]: stirling n n = 1
  by (induct n) simp_all

lemma stirling_Suc_n_1: stirling (Suc n) (Suc 0) = fact n
  by (induct n) auto

lemma stirling_Suc_n_n: stirling (Suc n) n = Suc n choose 2
  by (induct n) (auto simp add: numerals(2))

lemma stirling_Suc_n_2:
  assumes n  $\geq$  Suc 0
  shows stirling (Suc n) 2 =  $(\sum_{k=1..n} fact n \ div k)$ 
  using assms
  proof (induct n)
    case 0
    then show ?case by simp
  next
    case (Suc n)

```

```

show ?case
proof (cases n)
  case 0
  then show ?thesis
    by (simp add: numerals(2))
next
  case Suc
  then have geq1: Suc 0 ≤ n
    by simp
  have stirling (Suc (Suc n)) 2 = Suc n * stirling (Suc n) 2 + stirling (Suc n)
  (Suc 0)
    by (simp only: stirling.simps(4)[of Suc n] numerals(2))
  also have ... = Suc n * (∑ k=1..n. fact n div k) + fact n
    using Suc.hyps[OF geq1]
    by (simp only: stirling_Suc_n_1_of_nat_fact_of_nat_add_of_nat_mult)
  also have ... = Suc n * (∑ k=1..n. fact n div k) + Suc n * fact n div Suc n
    by (metis nat.distinct(1) nonzero_mult_div_cancel_left)
  also have ... = (∑ k=1..n. fact (Suc n) div k) + fact (Suc n) div Suc n
    by (simp add: sum_distrib_left div_mult_swap dvd_fact)
  also have ... = (∑ k=1..Suc n. fact (Suc n) div k)
    by simp
  finally show ?thesis .
qed
qed

lemma of_nat_stirling_Suc_n_2:
  assumes n ≥ Suc 0
  shows (of_nat (stirling (Suc n) 2)::'a::field_char_0) = fact n * (∑ k=1..n. (1
  / of_nat k))
  using assms
proof (induct n)
  case 0
  then show ?case by simp
next
  case (Suc n)
  show ?case
  proof (cases n)
    case 0
    then show ?thesis
      by (auto simp add: numerals(2))
  next
    case Suc
    then have geq1: Suc 0 ≤ n
      by simp
    have (of_nat (stirling (Suc (Suc n)) 2)::'a) =
      of_nat (Suc n * stirling (Suc n) 2 + stirling (Suc n) (Suc 0))
      by (simp only: stirling.simps(4)[of Suc n] numerals(2))
    also have ... = of_nat (Suc n) * (fact n * (∑ k = 1..n. 1 / of_nat k)) + fact
      n
  qed

```

```

using Suc.hyps[OF geq1]
by (simp only: stirling_Suc_n_1 of_nat_fact of_nat_add of_nat_mult)
also have ... = fact (Suc n) * (∑ k = 1..n. 1 / of_nat k) + fact (Suc n) *
(1 / of_nat (Suc n))
  using of_nat_neq_0 by auto
also have ... = fact (Suc n) * (∑ k = 1..Suc n. 1 / of_nat k)
  by (simp add: distrib_left)
finally show ?thesis .
qed
qed

lemma sum_stirling: (∑ k≤n. stirling n k) = fact n
proof (induct n)
  case 0
  then show ?case by simp
next
  case (Suc n)
  have (∑ k≤Suc n. stirling (Suc n) k) = stirling (Suc n) 0 + (∑ k≤n. stirling
(Suc n) (Suc k))
    by (simp only: sum.atMost_Suc_shift)
  also have ... = (∑ k≤n. stirling (Suc n) (Suc k))
    by simp
  also have ... = (∑ k≤n. n * stirling n (Suc k) + stirling n k)
    by simp
  also have ... = n * (∑ k≤n. stirling n (Suc k)) + (∑ k≤n. stirling n k)
    by (simp add: sum.distrib sum_distrib_left)
  also have ... = n * fact n + fact n
  proof -
    have n * (∑ k≤n. stirling n (Suc k)) = n * ((∑ k≤Suc n. stirling n k) −
stirling n 0)
      by (metis add_diff_cancel_left' sum.atMost_Suc_shift)
    also have ... = n * (∑ k≤n. stirling n k)
      by (cases n) simp_all
    also have ... = n * fact n
      using Suc.hyps by simp
    finally have n * (∑ k≤n. stirling n (Suc k)) = n * fact n .
    moreover have (∑ k≤n. stirling n k) = fact n
      using Suc.hyps .
    ultimately show ?thesis by simp
  qed
  also have ... = fact (Suc n) by simp
  finally show ?case .
qed

lemma stirling_pochhammer:
  (∑ k≤n. of_nat (stirling n k) * x ^ k) = (pochhammer x n :: 'a::comm_semiring_1)
proof (induct n)
  case 0
  then show ?case by simp

```

```

next
  case (Suc n)
    have of_nat (n * stirling n 0) = (0 :: 'a) by (cases n) simp_all
    then have ( $\sum k \leq \text{Suc } n. \text{of\_nat} (\text{stirling} (\text{Suc } n) k) * x^k$ ) =
      (of_nat (n * stirling n 0) *  $x^0$  +
      ( $\sum i \leq n. \text{of\_nat} (\text{stirling } n (\text{Suc } i)) * (x^{\text{Suc } i})$ ) +
      ( $\sum i \leq n. \text{of\_nat} (\text{stirling } n i) * (x^{\text{Suc } i})$ )
      by (subst sum.atMost_Suc_shift) (simp add: sum.distrib ring_distrib)
    also have ... = pochhammer x (Suc n)
      by (subst sum.atMost_Suc_shift [symmetric])
      (simp add: algebra_simps sum.distrib sum_distrib_left pochhammer_Suc_flip
      Suc)
    finally show ?case .
  qed

```

A row of the Stirling number triangle

```

definition stirling_row :: nat  $\Rightarrow$  nat list
  where stirling_row n = [stirling n k. k  $\leftarrow$   $[0..<\text{Suc } n]$ ]

```

```

lemma nth_stirling_row :: k  $\leq n \Rightarrow \text{stirling\_row } n ! k = \text{stirling } n k
  by (simp add: stirling_row_def del: upt_Suc)$ 
```

```

lemma length_stirling_row [simp] :: length (stirling_row n) = Suc n
  by (simp add: stirling_row_def)

```

```

lemma stirling_row_nonempty [simp] :: stirling_row n ≠ []
  using length_stirling_row[of n] by (auto simp del: length_stirling_row)

```

2.2.1 Efficient code

Naively using the defining equations of the Stirling numbers of the first kind to compute them leads to exponential run time due to repeated computations. We can use memoisation to compute them row by row without repeating computations, at the cost of computing a few unneeded values.

As a bonus, this is very efficient for applications where an entire row of Stirling numbers is needed.

```

definition zip_with_prev :: ('a  $\Rightarrow$  'a  $\Rightarrow$  'b)  $\Rightarrow$  'a list  $\Rightarrow$  'b list
  where zip_with_prev f x xs = map2 f (x # xs) xs

```

```

lemma zip_with_prev_altdef:
  zip_with_prev f x xs =
    (if xs = [] then [] else f x (hd xs) # [f (xs!i) (xs!(i+1)). i  $\leftarrow$  [0..<length xs - 1]])
  proof (cases xs)
    case Nil
    then show ?thesis
      by (simp add: zip_with_prev_def)
  next

```

```

case (Cons y ys)
then have zip_with_prev f x xs = f x (hd xs) # zip_with_prev f y ys
  by (simp add: zip_with_prev_def)
also have zip_with_prev f y ys = map (λi. f (xs ! i) (xs ! (i + 1))) [0..<length
xs - 1]
  unfolding Cons
  by (induct ys arbitrary: y)
    (simp_all add: zip_with_prev_def upt_conv_Cons flip: map_Suc_upt del:
upt_Suc)
  finally show ?thesis
  using Cons by simp
qed

primrec stirling_row_aux
where
  stirling_row_aux n y [] = [1]
  | stirling_row_aux n y (x#xs) = (y + n * x) # stirling_row_aux n x xs

lemma stirling_row_aux_correct:
  stirling_row_aux n y xs = zip_with_prev (λa b. a + n * b) y xs @ [1]
  by (induct xs arbitrary: y) (simp_all add: zip_with_prev_def)

lemma stirling_row_code [code]:
  stirling_row 0 = [1]
  stirling_row (Suc n) = stirling_row_aux n 0 (stirling_row n)
proof goal_cases
  case 1
  show ?case by (simp add: stirling_row_def)
next
  case 2
  have stirling_row (Suc n) =
    0 # [stirling_row n ! i + stirling_row n ! (i+1) * n. i ← [0..<n]] @ [1]
  proof (rule nth_equalityI, goal_cases length nth)
    case (nth i)
    from nth have i ≤ Suc n
      by simp
    then consider i = 0 ∨ i = Suc n ∣ i > 0 i ≤ n
      by linarith
    then show ?case
    proof cases
      case 1
      then show ?thesis
        by (auto simp: nth_stirling_row nth_append)
    next
      case 2
      then show ?thesis
        by (cases i) (simp_all add: nth_append nth_stirling_row)
qed

```

```

next
  case length
    then show ?case by simp
  qed
  also have 0 # [stirling_row n ! i + stirling_row n ! (i+1) * n. i ← [0..<n]] @
[1] =
  zip_with_prev (λa b. a + n * b) 0 (stirling_row n) @ [1]
  by (cases n) (auto simp add: zip_with_prev_altdef stirling_row_def hd_map
simp del: upt_Suc)
  also have ... = stirling_row_aux n 0 (stirling_row n)
  by (simp add: stirling_row_aux_correct)
  finally show ?case .
qed

lemma stirling_code [code]:
stirling n k =
  (if k = 0 then (if n = 0 then 1 else 0)
  else if k > n then 0
  else if k = n then 1
  else stirling_row n ! k)
by (simp add: nth_stirling_row)

end

```

3 Permutations, both general and specifically on finite sets.

```

theory Permutations
imports
  HOL-Library.Multiset
  HOL-Library.Disjoint_Sets
  Transposition
begin

```

3.1 Auxiliary

```

abbreviation (input) fixpoints :: ⟨('a ⇒ 'a) ⇒ 'a set⟩
  where ⟨fixpoints f⟩ ≡ {x. f x = x}

lemma inj_on_fixpoints:
  ⟨inj_on f (fixpoints f)⟩
  by (rule inj_onI) simp

lemma bij_betw_fixpoints:
  ⟨bij_betw f (fixpoints f) (fixpoints f)⟩
  using inj_on_fixpoints by (auto simp add: bij_betw_def)

```

3.2 Basic definition and consequences

```

definition permutes :: "('a ⇒ 'a) ⇒ 'a set ⇒ bool" (infixr `permutes` 41)
  where `p permutes S  $\longleftrightarrow$  (∀x. x ∉ S  $\longrightarrow$  p x = x) ∧ (∀y. ∃!x. p x = y)`

lemma bij_imp_permutes:
  `p permutes S` if `bij_betw p S S` and stable: `¬(x. x ∉ S  $\implies$  p x = x)`
proof -
  note `bij_betw p S S`
  moreover have `bij_betw p (S ∪ S) (S ∪ S)`
    by (auto simp add: stable intro!: bij_betw_imageI inj_onI)
  ultimately have `bij_betw p (S ∪ S) (S ∪ S)`
    by (rule bij_betw_combine) simp
  then have `∃!x. p x = y` for y
    by (simp add: bij_iff)
  with stable show ?thesis
    by (simp add: permutes_def)
qed

lemma inj_imp_permutes:
  assumes i: inj_on f S and fin: finite S
  and fS: ¬(x. x ∈ S  $\implies$  f x ∈ S)
  and f: ¬(i. i ∉ S  $\implies$  f i = i)
  shows f permutes S
  unfolding permutes_def
proof (intro conjI allI impI, rule f)
  fix y
  from endo_inj_surj[OF fin _ i] fS have fs: f ` S = S by auto
  show ∃!x. f x = y
  proof (cases y ∈ S)
    case False
    thus ?thesis by (intro exI[of _ y], insert fS f) force+
  next
    case True
    with fs obtain x where x: x ∈ S and fx: f x = y by force
    show ?thesis
    proof (rule exI, rule fx)
      fix x'
      assume fx': f x' = y
      with True f[of x'] have x' ∈ S by metis
      from inj_onD[OF i fx[folded fx'] x this]
      show x' = x by simp
    qed
  qed
  qed
qed

context
  fixes p :: "'a ⇒ 'a" and S :: "'a set"
  assumes perm: `p permutes S`
begin

```

```

lemma permutes_inj:
   $\langle \text{inj } p \rangle$ 
  using perm by (auto simp: permutes_def inj_on_def)

lemma permutes_image:
   $\langle p \text{ }' S = S \rangle$ 
  proof (rule set_eqI)
    fix x
    show  $\langle x \in p \text{ }' S \longleftrightarrow x \in S \rangle$ 
    proof
      assume  $\langle x \in p \text{ }' S \rangle$ 
      then obtain y where  $\langle y \in S \rangle \langle p y = x \rangle$ 
      by blast
      with perm show  $\langle x \in S \rangle$ 
      by (cases  $\langle y = x \rangle$ ) (auto simp add: permutes_def)
    next
      assume  $\langle x \in S \rangle$ 
      with perm obtain y where  $\langle y \in S \rangle \langle p y = x \rangle$ 
      by (metis permutes_def)
      then show  $\langle x \in p \text{ }' S \rangle$ 
      by blast
    qed
  qed

lemma permutes_not_in:
   $\langle x \notin S \implies p x = x \rangle$ 
  using perm by (auto simp: permutes_def)

lemma permutes_image_complement:
   $\langle p \text{ }' (- S) = - S \rangle$ 
  by (auto simp add: permutes_not_in)

lemma permutes_in_image:
   $\langle p x \in S \longleftrightarrow x \in S \rangle$ 
  using permutes_image permutes_inj by (auto dest: inj_image_mem_iff)

lemma permutes_surj:
   $\langle \text{surj } p \rangle$ 
  proof -
    have  $\langle p \text{ }' (S \cup - S) = p \text{ }' S \cup p \text{ }' (- S) \rangle$ 
    by (rule image_Union)
    then show ?thesis
    by (simp add: permutes_image permutes_image_complement)
  qed

lemma permutes_inv_o:
  shows  $p \circ \text{inv } p = \text{id}$ 
  and  $\text{inv } p \circ p = \text{id}$ 

```

```

using permutes_inj permutes_surj
unfolding inj_iff [symmetric] surj_iff [symmetric] by auto

lemma permutes_inverses:
  shows p (inv p x) = x
  and inv p (p x) = x
  using permutes_inv_o [unfolded fun_eq_iff o_def] by auto

lemma permutes_inv_eq:
  ‹inv p y = x ⟷ p x = y›
  by (auto simp add: permutes_inverses)

lemma permutes_inj_on:
  ‹inj_on p A›
  by (rule inj_on_subset [of _ UNIV]) (auto intro: permutes_inj)

lemma permutes_bij:
  ‹bij p›
  unfolding bij_def by (metis permutes_inj permutes_surj)

lemma permutes_imp_bij:
  ‹bij_betw p S S›
  by (simp add: bij_betw_def permutes_image permutes_inj_on)

lemma permutes_subset:
  ‹p permutes T› if ‹S ⊆ T›
  proof (rule bij_imp_permutes)
    define R where ‹R = T - S›
    with that have ‹T = R ∪ S› ‹R ∩ S = {}›
    by auto
    then have ‹p x = x› if ‹x ∈ R› for x
    using that by (auto intro: permutes_not_in)
    then have ‹p ` R = R›
    by simp
    with ‹T = R ∪ S› show ‹bij_betw p T T›
    by (simp add: bij_betw_def permutes_inj_on image_Un permutes_image)
    fix x
    assume ‹x ∉ T›
    with ‹T = R ∪ S› show ‹p x = x›
    by (simp add: permutes_not_in)
  qed

lemma permutes_imp_permutes_insert:
  ‹p permutes insert x S›
  by (rule permutes_subset) auto

end

lemma permutes_id [simp]:

```

```

⟨id permutes S⟩
by (auto intro: bij_imp_permutes)

lemma permutes_empty [simp]:
  ⟨p permutes {}⟩ ↔ p = id
proof
  assume ⟨p permutes {}⟩
  then show ⟨p = id⟩
    by (auto simp add: fun_eq_iff permutes_not_in)
next
  assume ⟨p = id⟩
  then show ⟨p permutes {}⟩
    by simp
qed

lemma permutes_sing [simp]:
  ⟨p permutes {a}⟩ ↔ p = id
proof
  assume perm: ⟨p permutes {a}⟩
  show ⟨p = id⟩
  proof
    fix x
    from perm have ⟨p ` {a} = {a}⟩
      by (rule permutes_image)
    with perm show ⟨p x = id x⟩
      by (cases ⟨x = a⟩) (auto simp add: permutes_not_in)
  qed
next
  assume ⟨p = id⟩
  then show ⟨p permutes {a}⟩
    by simp
qed

lemma permutes_univ: p permutes UNIV ↔ ( ∀ y. ∃!x. p x = y)
  by (simp add: permutes_def)

lemma permutes_swap_id: a ∈ S ⇒ b ∈ S ⇒ transpose a b permutes S
  by (rule bij_imp_permutes) (auto intro: transpose_apply_other)

lemma permutes_altdef: p permutes A ↔ bij_betw p A A ∧ {x. p x ≠ x} ⊆ A
  using permutes_not_in[of p A]
  by (auto simp: permutes_imp_bij_intro!: bij_imp_permutes)

lemma permutes_superset:
  ⟨p permutes T⟩ if ⟨p permutes S⟩ ⟨ ∀x. x ∈ S - T ⇒ p x = x⟩
proof -
  define R U where ⟨R = T ∩ S⟩ and ⟨U = S - T⟩
  then have ⟨T = R ∪ (T - S)⟩ ⟨S = R ∪ U⟩ ⟨R ∩ U = {}⟩
    by auto

```

```

from that  $\langle U = S - T \rangle$  have  $\langle p \cdot U = U \rangle$ 
  by simp
from  $\langle p \text{ permutes } S \rangle$  have  $\langle \text{bij\_betw } p (R \cup U) (R \cup U) \rangle$ 
  by (simp add: permutes_imp_bij  $\langle S = R \cup U \rangle$ )
moreover have  $\langle \text{bij\_betw } p U U \rangle$ 
  using that  $\langle U = S - T \rangle$  by (simp add: bij_betw_def permutes_inj_on)
ultimately have  $\langle \text{bij\_betw } p R R \rangle$ 
  using  $\langle R \cap U = \{\} \rangle$   $\langle R \cap U = \{\} \rangle$  by (rule bij_betw_partition)
then have  $\langle p \text{ permutes } R \rangle$ 
proof (rule bij_imp_permutes)
fix x
assume  $\langle x \notin R \rangle$ 
with  $\langle R = T \cap S \rangle$   $\langle p \text{ permutes } S \rangle$  show  $\langle p x = x \rangle$ 
  by (cases  $\langle x \in S \rangle$ ) (auto simp add: permutes_not_in that(2))
qed
then have  $\langle p \text{ permutes } R \cup (T - S) \rangle$ 
  by (rule permutes_subset) simp
with  $\langle T = R \cup (T - S) \rangle$  show ?thesis
  by simp
qed

lemma permutes_bij_inv_into:
fixes A :: 'a set
and B :: 'b set
assumes p permutes A
  and bij_betw f A B
shows  $(\lambda x. \text{if } x \in B \text{ then } f (p (\text{inv\_into } A f x)) \text{ else } x) \text{ permutes } B$ 
proof (rule bij_imp_permutes)
from assms have bij_betw p A A bij_betw f A B bij_betw (inv_into A f) B A
  by (auto simp add: permutes_imp_bij bij_betw_inv_into)
then have bij_betw  $(f \circ p \circ \text{inv\_into } A f) B B$ 
  by (simp add: bij_betw_trans)
then show bij_betw  $(\lambda x. \text{if } x \in B \text{ then } f (p (\text{inv\_into } A f x)) \text{ else } x) B B$ 
  by (subst bij_betw_cong[where g=f o p o inv_into A f]) auto
next
fix x
assume  $\langle x \notin B \rangle$ 
then show  $(\text{if } x \in B \text{ then } f (p (\text{inv\_into } A f x)) \text{ else } x) = x$  by auto
qed

lemma permutes_image_mset:
assumes p permutes A
shows image_mset p (mset_set A) = mset_set A
using assms by (metis image_mset_mset_set bij_betw_imp_inj_on permutes_imp_bij
permutes_image)

lemma permutes_implies_image_mset_eq:
assumes p permutes A  $\bigwedge x. x \in A \implies f x = f' (p x)$ 
shows image_mset f' (mset_set A) = image_mset f (mset_set A)

```

```

proof -
  have  $f x = f' (p x)$  if  $x \in \# mset\_set A$  for  $x$ 
    using assms(2)[of  $x$ ] that by (cases finite  $A$ ) auto
    with assms have  $image\_mset f (mset\_set A) = image\_mset (f' \circ p) (mset\_set A)$ 
      by (auto intro!: image_mset_cong)
    also have  $\dots = image\_mset f' (image\_mset p (mset\_set A))$ 
      by (simp add: image_mset_compositionality)
    also have  $\dots = image\_mset f' (mset\_set A)$ 
    proof -
      from assms permutes_image_mset have  $image\_mset p (mset\_set A) = mset\_set A$ 
        by blast
      then show ?thesis by simp
    qed
    finally show ?thesis ..
  qed

```

3.3 Group properties

```

lemma permutes_compose:  $p \text{ permutes } S \implies q \text{ permutes } S \implies q \circ p \text{ permutes } S$ 
  unfolding permutes_def o_def by metis

```

```

lemma permutes_inv:
  assumes  $p \text{ permutes } S$ 
  shows  $inv p \text{ permutes } S$ 
  using assms unfolding permutes_def permutes_inv_eq[OF assms] by metis

```

```

lemma permutes_inv_inv:
  assumes  $p \text{ permutes } S$ 
  shows  $inv (inv p) = p$ 
  unfolding fun_eq_iff permutes_inv_eq[OF assms] permutes_inv_eq[OF permutes_inv[OF assms]]
  by blast

```

```

lemma permutes_invI:
  assumes perm:  $p \text{ permutes } S$ 
  and inv:  $\bigwedge x. x \in S \implies p' (p x) = x$ 
  and outside:  $\bigwedge x. x \notin S \implies p' x = x$ 
  shows  $inv p = p'$ 
proof
  show  $inv p x = p' x$  for  $x$ 
  proof (cases  $x \in S$ )
    case True
    from assms have  $p' x = p' (p (inv p x))$ 
      by (simp add: permutes_inverses)
    also from permutes_inv[OF perm] True have  $\dots = inv p x$ 
      by (subst inv) (simp_all add: permutes_in_image)
    finally show ?thesis ..

```

```

next
  case False
  with permutes_inv[OF perm] show ?thesis
    by (simp_all add: outside permutes_not_in)
  qed
qed

lemma permutes_vimage: f permutes A  $\implies$  f  $-` A = A
  by (simp add: bij_vimage_eq_inv_image permutes_bij permutes_image[OF permutes_inv])

3.4 Restricting a permutation to a subset

definition restrict_id ::  $('a \Rightarrow 'a) \Rightarrow 'a \text{ set} \Rightarrow 'a \Rightarrow 'a$ 
  where restrict_id f A =  $(\lambda x. \text{if } x \in A \text{ then } f x \text{ else } x)$ 

lemma restrict_id_cong [cong]:
  assumes  $\bigwedge x. x \in A \implies f x = g x$ 
  shows restrict_id f A = restrict_id g B
  using assms unfolding restrict_id_def by auto

lemma restrict_id_cong':
  assumes  $x \in A \implies f x = g x$ 
  shows restrict_id f A x = restrict_id g B x
  using assms unfolding restrict_id_def by auto

lemma restrict_id.simps [simp]:
   $x \in A \implies \text{restrict\_id } f A x = f x$ 
   $x \notin A \implies \text{restrict\_id } f A x = x$ 
  by (auto simp: restrict_id_def)

lemma bij_betw_restrict_id:
  assumes bij_betw f A A  $A \subseteq B$ 
  shows bij_betw (restrict_id f A) B B
proof -
  have bij_betw (restrict_id f A) (A  $\cup$  (B - A))  $(A \cup (B - A))$ 
  unfolding restrict_id_def
  by (rule bij_betw_disjoint_Un) (use assms in auto intro: bij_betwI)
  also have  $A \cup (B - A) = B$ 
  using assms(2) by blast
  finally show ?thesis .
qed

lemma permutes_restrict_id:
  assumes bij_betw f A A
  shows restrict_id f A permutes A
  by (intro bij_imp_permutes bij_betw_restrict_id assms) auto$ 
```

3.5 Mapping a permutation

```

definition map_permutation :: 'a set  $\Rightarrow$  ('a  $\Rightarrow$  'b)  $\Rightarrow$  ('a  $\Rightarrow$  'a)  $\Rightarrow$  'b  $\Rightarrow$  'b where
  map_permutation A f p = restrict_id (f  $\circ$  p  $\circ$  inv_into A f) (f ' A)

lemma map_permutation_cong_strong:
  assumes A = B  $\wedge$  x  $\in$  A  $\Rightarrow$  f x = g x  $\wedge$  x  $\in$  A  $\Rightarrow$  p x = q x
  assumes p ' A  $\subseteq$  A inj_on f A
  shows map_permutation A f p = map_permutation B g q
proof -
  have fg: f x = g y if x  $\in$  A x = y for x y
  using assms(2) that by simp
  have pq: p x = q y if x  $\in$  A x = y for x y
  using assms(3) that by simp
  have p: p x  $\in$  A if x  $\in$  A for x
  using assms(4) that by blast
  have inv: inv_into A f x = inv_into B g y if x  $\in$  f ' A x = y for x y
proof -
  from that obtain u where u: u  $\in$  A x = f u
  by blast
  have inv_into A f (f u) = inv_into A g (f u)
  using inj_on f A u(1) by (metis assms(2) inj_on_cong inv_into_f_f)
  thus ?thesis
  using u `x = y` `A = B` by simp
qed

show ?thesis
  unfolding map_permutation_def o_def
  by (intro restrict_id_cong image_cong fg pq inv_into_into p inv) (auto simp:
  `A = B`)
qed

lemma map_permutation_cong:
  assumes inj_on f A p permutes A
  assumes A = B  $\wedge$  x  $\in$  A  $\Rightarrow$  f x = g x  $\wedge$  x  $\in$  A  $\Rightarrow$  p x = q x
  shows map_permutation A f p = map_permutation B g q
proof (intro map_permutation_cong_strong assms)
  show p ' A  $\subseteq$  A
  using `p permutes A` by (simp add: permutes_image)
qed auto

lemma inv_into_id [simp]: x  $\in$  A  $\Rightarrow$  inv_into A id x = x
  by (metis f_inv_into_f_id_apply image_eqI)

lemma inv_into_ident [simp]: x  $\in$  A  $\Rightarrow$  inv_into A ( $\lambda x. x$ ) x = x
  by (metis f_inv_into_f_image_eqI)

lemma map_permutation_id [simp]: p permutes A  $\Rightarrow$  map_permutation A id p
  = p
  by (auto simp: fun_eq_iff map_permutation_def restrict_id_def permutes_not_in)

```

```

lemma map_permutation_ident [simp]:  $p \text{ permutes } A \implies \text{map\_permutation } A$   

 $(\lambda x. x) p = p$   

by (auto simp: fun_eq_iff map_permutation_def restrict_id_def permutes_not_in)

lemma map_permutation_id': inj_on f A  $\implies \text{map\_permutation } A f id = id$   

unfolding map_permutation_def by (auto simp: restrict_id_def fun_eq_iff)

lemma map_permutation_ident': inj_on f A  $\implies \text{map\_permutation } A f (\lambda x. x)$   

 $= (\lambda x. x)$   

unfolding map_permutation_def by (auto simp: restrict_id_def fun_eq_iff)

lemma map_permutation_permutes:  

assumes bij_betw f A B p permutes A  

shows map_permutation A f p permutes B  

proof (rule bij_imp_permutes)  

have f_A:  $f ` A = B$   

using assms(1) by (auto simp: bij_betw_def)  

from assms(2) have bij_betw p A A  

by (simp add: permutes_imp_bij)  

show bij_betw (map_permutation A f p) B B  

unfolding map_permutation_def f_A  

by (rule bij_betw_restrict_id bij_betw_trans bij_betw_inv_into assms(1)  

permutes_imp_bij[OF assms(2)] order.refl)+  

show map_permutation A f p x = x if  $x \notin B$  for x  

using that unfolding map_permutation_def f_A by simp  

qed

lemma map_permutation_compose:  

fixes f :: 'a  $\Rightarrow$  'b and g :: 'b  $\Rightarrow$  'c  

assumes bij_betw f A B inj_on g B  

shows map_permutation B g (map_permutation A f p) = map_permutation  

A (g o f) p  

proof  

fix c :: 'c  

have bij_g: bij_betw g B (g ` B)  

using inj_on g B unfolding bij_betw_def by blast  

have [simp]:  $f x = f y \longleftrightarrow x = y$  if  $x \in A$   $y \in A$  for x y  

using assms(1) that by (auto simp: bij_betw_def inj_on_def)  

have [simp]:  $g x = g y \longleftrightarrow x = y$  if  $x \in B$   $y \in B$  for x y  

using assms(2) that by (auto simp: bij_betw_def inj_on_def)  

show map_permutation B g (map_permutation A f p) c = map_permutation A  

(g o f) p c  

proof (cases c  $\in$  g ` B)  

case c: True  

then obtain a where a:  $a \in A$   $c = g(f a)$   

using assms(1,2) unfolding bij_betw_def by auto  

have map_permutation B g (map_permutation A f p) c = g (f (p a))  

using a assms by (auto simp: map_permutation_def restrict_id_def bij_betw_def)

```

```

also have ... = map_permutation A (g ∘ f) p c
  using a bij_betw_inv_into_left[OF bij_betw_trans[OF assms(1) bij_g]]
  by (auto simp: map_permutation_def restrict_id_def bij_betw_def)
  finally show ?thesis .
next
  case c: False
  thus ?thesis using assms
    by (auto simp: map_permutation_def bij_betw_def restrict_id_def)
qed
qed

lemma map_permutation_compose_inv:
  assumes bij_betw f A B p permutes A ∧ x. x ∈ A ⇒ g (f x) = x
  shows map_permutation B g (map_permutation A f p) = p
proof -
  have inj_on g B
  proof
    fix x y assume x ∈ B y ∈ B g x = g y
    then obtain x' y' where *: x' ∈ A y': A x = f x' y = f y'
      using assms(1) unfolding bij_betw_def by blast
    thus x = y
      using assms(3)[of x] assms(3)[of y] `g x = g y` by simp
  qed
  have map_permutation B g (map_permutation A f p) = map_permutation A (g ∘ f) p
    by (rule map_permutation_compose) (use assms `inj_on g B` in auto)
  also have ... = map_permutation A id p
    by (intro map_permutation_cong assms comp_inj_on)
      (use `inj_on g B` assms(1,3) in `auto simp: bij_betw_def`)
  also have ... = p
    by (rule map_permutation_id) fact
  finally show ?thesis .
qed

lemma map_permutation_apply:
  assumes inj_on f A x ∈ A
  shows map_permutation A f h (f x) = f (h x)
  using assms by (auto simp: map_permutation_def inj_on_def)

lemma map_permutation_compose':
  fixes f :: 'a ⇒ 'b
  assumes inj_on f A q permutes A
  shows map_permutation A f (p ∘ q) = map_permutation A f p ∘ map_permutation A f q
proof
  fix y :: 'b
  show map_permutation A f (p ∘ q) y = (map_permutation A f p ∘ map_permutation A f q) y

```

```

proof (cases y ∈ f ` A)
  case True
  then obtain x where x: x ∈ A y = f x
    by blast
  have map_permutation A f (p ∘ q) y = f (p (q x))
    unfolding x(2) by (subst map_permutation_apply) (use assms x in auto)
  also have ... = (map_permutation A f p ∘ map_permutation A f q) y
    unfolding x o_apply using x(1) assms
    by (simp add: map_permutation_apply permutes_in_image)
  finally show ?thesis .
next
  case False
  thus ?thesis
    using False by (simp add: map_permutation_def)
qed
qed

lemma map_permutation_transpose:
  assumes inj_on f A a ∈ A b ∈ A
  shows map_permutation A f (Transposition.transpose a b) = Transposition.transpose
    (f a) (f b)
proof
  fix y :: 'b
  show map_permutation A f (Transposition.transpose a b) y = Transposition.transpose
    (f a) (f b) y
  proof (cases y ∈ f ` A)
    case False
    hence map_permutation A f (Transposition.transpose a b) y = y
      unfolding map_permutation_def by (intro restrict_id_simp)
    moreover have Transposition.transpose (f a) (f b) y = y
      using False assms by (intro transpose_apply_other) auto
    ultimately show ?thesis
    by simp
  next
    case True
    then obtain x where x: x ∈ A y = f x
      by blast
    have map_permutation A f (Transposition.transpose a b) y =
      f (Transposition.transpose a b x)
      unfolding x by (subst map_permutation_apply) (use x assms in auto)
    also have ... = Transposition.transpose (f a) (f b) y
      using assms(2,3) x
      by (auto simp: Transposition.transpose_def inj_on_eq_iff[OF assms(1)])
    finally show ?thesis .
  qed
qed

lemma map_permutation_permutes_iff:
  assumes bij_betw f A B p ` A ⊆ A ∧ x. x ∉ A ⇒ p x = x

```

```

shows  map_permutation A f p permutes B  $\longleftrightarrow$  p permutes A
proof
  assume p permutes A
  thus map_permutation A f p permutes B
    by (intro map_permutation_permutes assms)
next
  assume *: map_permutation A f p permutes B
  hence map_permutation B (inv_into A f) (map_permutation A f p) permutes
    A
    by (rule map_permutation_permutes[OF bij_betw_inv_into[OF assms(1)]])
  also have map_permutation B (inv_into A f) (map_permutation A f p) =
    map_permutation A (inv_into A f o f) p
    by (rule map_permutation_compose[OF _ inj_on_inv_into])
    (use assms in `auto simp: bij_betw_def`)
  also have ... = map_permutation A id p
  unfolding o_def id_def
  by (rule sym, intro map_permutation_cong_strong inv_into_f_f[symmetric]
    assms(2) bij_betw_imp_inj_on[OF assms(1)]) auto
  also have ... = p
  unfolding map_permutation_def using assms(3)
  by (auto simp: restrict_id_def fun_eq_iff split: if_splits)
  finally show p permutes A .
qed

lemma bij_betw_permutations:
  assumes bij_betw f A B
  shows bij_betw ( $\lambda\pi x. \text{if } x \in B \text{ then } f(\pi(\text{inv\_into } A f x)) \text{ else } x$ )
     $\{\pi. \pi \text{ permutes } A\} \{\pi. \pi \text{ permutes } B\}$  (is bij_betw ?f _ _)
proof -
  let ?g = ( $\lambda\pi x. \text{if } x \in A \text{ then } \text{inv\_into } A f (\pi(f x)) \text{ else } x$ )
  show ?thesis
  proof (rule bij_betw_byWitness [of _ ?g], goal_cases)
    case 3
    show ?case using permutes_bij_inv_into[OF _ assms] by auto
  next
    case 4
    have bij_inv: bij_betw (inv_into A f) B A by (intro bij_betw_inv_into assms)
    {
      fix  $\pi$  assume  $\pi \text{ permutes } B$ 
      from permutes_bij_inv_into[OF this bij_inv] and assms
        have ( $\lambda x. \text{if } x \in A \text{ then } \text{inv\_into } A f (\pi(f x)) \text{ else } x$ ) permutes A
          by (simp add: inv_into_inv_into_eq cong: if_cong)
    }
    from this show ?case by (auto simp: permutes_inv)
  next
    case 1
    thus ?case using assms
    by (auto simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_left
      dest: bij_betwE)

```

```

next
  case 2
    moreover have bij_betw (inv_into A f) B A
      by (intro bij_betw_inv_into assms)
    ultimately show ?case using assms
      by (auto simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_right
        dest: bij_betwE)
  qed
qed

lemma bij_betw_derangements:
  assumes bij_betw f A B
  shows bij_betw (λπ x. if x ∈ B then f (π (inv_into A f x)) else x)
    {π. π permutes A ∧ ( ∀ x ∈ A. π x ≠ x) } {π. π permutes B ∧ ( ∀ x ∈ B. π x
    ≠ x) }
    (is bij_betw ?f _ _)
proof –
  let ?g = (λπ x. if x ∈ A then inv_into A f (π (f x)) else x)
  show ?thesis
    proof (rule bij_betw_byWitness [of ?g], goal_cases)
      case 3
      have ?f π x ≠ x if π permutes A ∧ x ∈ A ⇒ π x ≠ x x ∈ B for π x
      using that and assms by (metis bij_betwE bij_betw_imp_inj_on bij_betw_imp_surj_on
        inv_into_f_f_inv_into_into permutes_imp_bij)
      with permutes_bij_inv_into[OF _ assms] show ?case by auto
next
  case 4
  have bij_inv: bij_betw (inv_into A f) B A by (intro bij_betw_inv_into assms)
  have ?g π permutes A if π permutes B for π
    using permutes_bij_inv_into[OF that bij_inv] and assms
    by (simp add: inv_into_inv_into_eq cong: if_cong)
  moreover have ?g π x ≠ x if π permutes B ∧ x ∈ B ⇒ π x ≠ x x ∈ A
  for π x
    using that and assms by (metis bij_betwE bij_betw_imp_surj_on f_inv_into_f
      permutes_imp_bij)
    ultimately show ?case by auto
next
  case 1
  thus ?case using assms
  by (force simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_left
    dest: bij_betwE)
next
  case 2
  moreover have bij_betw (inv_into A f) B A
    by (intro bij_betw_inv_into assms)
  ultimately show ?case using assms
  by (force simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_right

```

```
dest: bij_betwE)
qed
qed
```

3.6 The number of permutations on a finite set

```
lemma permutes_insert_lemma:
  assumes p permutes (insert a S)
  shows transpose a (p a) o p permutes S
  proof (rule permutes_superset[where S = insert a S])
    show Transposition.transpose a (p a) o p permutes insert a S
      by (meson assms insertI1 permutes_compose permutes_in_image permutes_swap_id)
  qed auto

lemma permutes_insert: {p. p permutes (insert a S)} =
  (λ(b, p). transpose a b o p) ` {(b, p). b ∈ insert a S ∧ p ∈ {p. p permutes S}}
  proof -
    have p permutes insert a S ↔
      (∃ b q. p = transpose a b o q ∧ b ∈ insert a S ∧ q permutes S) for p
    proof -
      have ∃ b q. p = transpose a b o q ∧ b ∈ insert a S ∧ q permutes S
        if p: p permutes insert a S
      proof -
        let ?b = p a
        let ?q = transpose a (p a) o p
        have *: p = transpose a ?b o ?q
          by (simp add: fun_eq_iff o_assoc)
        have **: ?b ∈ insert a S
          unfolding permutes_in_image[OF p] by simp
        from permutes_insert_lemma[OF p] * ** show ?thesis
          by blast
      qed
      moreover have p permutes insert a S
        if bq: p = transpose a b o q b ∈ insert a S q permutes S for b q
        proof -
          from permutes_subset[OF bq(3), of insert a S] have q: q permutes insert a S
            by auto
          have a: a ∈ insert a S
            by simp
          from bq(1) permutes_compose[OF q permutes_swap_id[OF a bq(2)]] show
            ?thesis
            by simp
        qed
        ultimately show ?thesis by blast
      qed
      then show ?thesis by auto
    qed
  qed

lemma card_permutations:
```

```

assumes card S = n
  and finite S
shows card {p. p permutes S} = fact n
  using assms(2,1)
proof (induct arbitrary: n)
  case empty
  then show ?case by simp
next
  case (insert x F)
  {
    fix n
    assume card_insert: card (insert x F) = n
    let ?xF = {p. p permutes insert x F}
    let ?pF = {p. p permutes F}
    let ?pF' = {(b, p). b ∈ insert x F ∧ p ∈ ?pF}
    let ?g = (λ(b, p). transpose x b ∘ p)
    have xfgpF': ?xF = ?g ` ?pF'
      by (rule permutes_insert[of x F])
    from ⟨x ∉ F⟩ ⟨finite F⟩ card_insert have Fs: card F = n - 1
      by auto
    from ⟨finite F⟩ insert.hyps Fs have pFs: card ?pF = fact (n - 1)
      by auto
    then have finite ?pF
      by (auto intro: card_ge_0_finite)
    with ⟨finite F⟩ card.insert_remove have pF'f: finite ?pF'
      by simp
    have ginj: inj_on ?g ?pF'
    proof -
      {
        fix b p c q
        assume bp: (b, p) ∈ ?pF'
        assume cq: (c, q) ∈ ?pF'
        assume eq: ?g (b, p) = ?g (c, q)
        from bp cq have pf: p permutes F and qf: q permutes F
          by auto
        from pf ⟨x ∉ F⟩ eq have b = ?g (b, p) x
          by (auto simp: permutes_def fun_upd_def fun_eq_iff)
        also from qf ⟨x ∉ F⟩ eq have ... = ?g (c, q) x
          by (auto simp: fun_upd_def fun_eq_iff)
        also from qf ⟨x ∉ F⟩ have ... = c
          by (auto simp: permutes_def fun_upd_def fun_eq_iff)
        finally have b = c .
        then have transpose x b = transpose x c
          by simp
        with eq have transpose x b ∘ p = transpose x b ∘ q
          by simp
        then have transpose x b ∘ (transpose x b ∘ p) = transpose x b ∘ (transpose
          x b ∘ q)
          by simp
      }
    qed
  }

```

```

then have  $p = q$ 
  by (simp add: o_assoc)
with  $\langle b = c \rangle$  have  $(b, p) = (c, q)$ 
  by simp
}
then show ?thesis
  unfolding inj_on_def by blast
qed
from  $\langle x \notin F \rangle \langle \text{finite } F \rangle$  card_insert have  $n \neq 0$ 
  by auto
then have  $\exists m. n = \text{Suc } m$ 
  by presburger
then obtain m where  $n: n = \text{Suc } m$ 
  by blast
from  $\text{pFs}$  card_insert have  $\text{card } ?xF = \text{fact } n$ 
  unfolding xfgpF' card_image[OF ginj]
  using  $\langle \text{finite } F \rangle \langle \text{finite } ?pF \rangle$ 
  by (simp only: Collect_case_prod Collect_mem_eq card_cartesian_product)
(simp add: n)
from finite_imageI[OF pF'f, of ?g] have xFf: finite ?xF
  by (simp add: xfgpF' n)
from * have card ?xF = fact n
  unfolding xFf by blast
}
with insert show ?case by simp
qed

lemma finite_permutations:
assumes finite S
shows finite {p. p permutes S}
using card_permutations[OF refl assms] by (auto intro: card_ge_0_finite)

lemma permutes_doubleton_iff:  $f \text{ permutes } \{a, b\} \longleftrightarrow f = \text{id} \vee f = \text{Transposition.transpose } a \ b$ 
proof (cases a = b)
case False
have {id, Transposition.transpose a b}  $\subseteq \{f. f \text{ permutes } \{a, b\}\}$ 
  by (auto simp: permutes_id permutes_swap_id)
moreover have id  $\neq \text{Transposition.transpose } a \ b$ 
  using False by (auto simp: fun_eq_iff Transposition.transpose_def)
hence card {id, Transposition.transpose a b} = card {f. f permutes {a, b}}
  using False by (simp add: card_permutations)
ultimately have {id, Transposition.transpose a b} = {f. f permutes {a, b}}
  by (intro card_subset_eq finite_permutations) auto
thus ?thesis by auto
qed auto

```

3.7 Permutations of index set for iterated operations

```

lemma (in comm_monoid_set) permute:
  assumes p permutes S
  shows F g S = F (g ∘ p) S
proof -
  from ‹p permutes S› have inj p
    by (rule permutes_inj)
  then have inj_on p S
    by (auto intro: inj_on_subset)
  then have F g (p ` S) = F (g ∘ p) S
    by (rule reindex)
  moreover from ‹p permutes S› have p ` S = S
    by (rule permutes_image)
  ultimately show ?thesis
    by simp
qed

```

3.8 Permutations as transposition sequences

```

inductive swapidseq :: nat ⇒ ('a ⇒ 'a) ⇒ bool
  where
    id[simp]: swapidseq 0 id
    | comp_Suc: swapidseq n p ⟹ a ≠ b ⟹ swapidseq (Suc n) (transpose a b ∘ p)

declare id[unfolded id_def, simp]

definition permutation p ⟷ (∃ n. swapidseq n p)

```

3.9 Some closure properties of the set of permutations, with lengths

```

lemma permutation_id[simp]: permutation id
  unfolding permutation_def by (rule exI[where x=0]) simp

declare permutation_id[unfolded id_def, simp]

lemma swapidseq_swap: swapidseq (if a = b then 0 else 1) (transpose a b)
  using swapidseq.simps by fastforce

lemma permutation_swap_id: permutation (transpose a b)
  by (meson permutation_def swapidseq_swap)

lemma swapidseq_comp_add: swapidseq n p ⟹ swapidseq m q ⟹ swapidseq (n + m) (p ∘ q)
proof (induct n p arbitrary: m q rule: swapidseq.induct)
  case (id m q)
  then show ?case by simp
next

```

```

case (comp_Suc n p a b m q)
then show ?case
  by (metis add_Suc comp_assoc swapidseq.comp_Suc)
qed

lemma permutation_compose: permutation p  $\Rightarrow$  permutation q  $\Rightarrow$  permutation (p  $\circ$  q)
  unfolding permutation_def using swapidseq_comp_add[of _ p _ q] by metis

lemma swapidseq_endswap: swapidseq n p  $\Rightarrow$  a  $\neq$  b  $\Rightarrow$  swapidseq (Suc n) (p  $\circ$  transpose a b)
  by (induct n p rule: swapidseq.induct)
  (use swapidseq_swap[of a b] in auto simp add: comp_assoc intro: swapidseq.comp_Suc)

lemma swapidseq_inverse_exists: swapidseq n p  $\Rightarrow$   $\exists$  q. swapidseq n q  $\wedge$  p  $\circ$  q = id  $\wedge$  q  $\circ$  p = id
proof (induct n p rule: swapidseq.induct)
  case id
  then show ?case
    by (rule exI[where x=id]) simp
next
  case (comp_Suc n p a b)
  from comp_Suc.hyps obtain q where q: swapidseq n q p  $\circ$  q = id q  $\circ$  p = id
    by blast
  let ?q = q  $\circ$  transpose a b
  note H = comp_Suc.hyps
  from swapidseq_swap[of a b] H(3) have *: swapidseq 1 (transpose a b)
    by simp
  from swapidseq_comp_add[OF q(1) *] have **: swapidseq (Suc n) ?q
    by simp
  have transpose a b  $\circ$  p  $\circ$  ?q = transpose a b  $\circ$  (p  $\circ$  q)  $\circ$  transpose a b
    by (simp add: o_assoc)
  also have ... = id
    by (simp add: q(2))
  finally have ***: transpose a b  $\circ$  p  $\circ$  ?q = id .
  have ?q  $\circ$  (transpose a b  $\circ$  p) = q  $\circ$  (transpose a b  $\circ$  transpose a b)  $\circ$  p
    by (simp only: o_assoc)
  then have ?q  $\circ$  (transpose a b  $\circ$  p) = id
    by (simp add: q(3))
  with ** *** show ?case
    by blast
qed

lemma swapidseq_inverse:
  assumes swapidseq n p
  shows swapidseq n (inv p)
  using swapidseq_inverse_exists[OF assms] inv_unique_comp[of p] by auto

```

```
lemma permutation_inverse: permutation p ==> permutation (inv p)
  using permutation_def swapidseq_inverse by blast
```

3.10 Various combinations of transpositions with 2, 1 and 0 common elements

```
lemma swap_id_common: a ≠ c ==> b ≠ c ==>
  transpose a b ∘ transpose a c = transpose b c ∘ transpose a b
  by (simp add: fun_eq_iff transpose_def)
```

```
lemma swap_id_common': a ≠ b ==> a ≠ c ==>
  transpose a c ∘ transpose b c = transpose b c ∘ transpose a b
  by (simp add: fun_eq_iff transpose_def)
```

```
lemma swap_id_independent: a ≠ c ==> a ≠ d ==> b ≠ c ==> b ≠ d ==>
  transpose a b ∘ transpose c d = transpose c d ∘ transpose a b
  by (simp add: fun_eq_iff transpose_def)
```

3.11 The identity map only has even transposition sequences

```
lemma symmetry_lemma:
  assumes ⋀ a b c d. P a b c d ==> P a b d c
  and ⋀ a b c d. a ≠ b ==> c ≠ d ==>
    a = c ∧ b = d ∨ a = c ∧ b ≠ d ∨ a ≠ c ∧ b = d ∨ a ≠ c ∧ a ≠ d ∧ b ≠ c
    ∧ b ≠ d ==>
    P a b c d
  shows ⋀ a b c d. a ≠ b —> c ≠ d —> P a b c d
  using assms by metis
```

```
lemma swap_general:
  assumes a ≠ b c ≠ d
  shows transpose a b ∘ transpose c d = id ∨
    (∃ x y z. x ≠ a ∧ y ≠ a ∧ z ≠ a ∧ x ≠ y ∧
      transpose a b ∘ transpose c d = transpose x y ∘ transpose a z)
  by (metis assms swap_id_common' swap_id_independent transpose_commute
    transpose_comp_involutory)
```

```
lemma swapidseq_id_iff[simp]: swapidseq 0 p ↔ p = id
  using swapidseq.cases[of 0 p p = id] by auto
```

```
lemma swapidseq_cases: swapidseq n p ↔
  n = 0 ∧ p = id ∨ (∃ a b q m. n = Suc m ∧ p = transpose a b ∘ q ∧ swapidseq
  m q ∧ a ≠ b)
  by (meson comp_Suc id swapidseq.cases)
```

```
lemma fixing_swapidseq_decrease:
  assumes swapidseq n p
  and a ≠ b
  and (transpose a b ∘ p) a = a
```

```

shows  $n \neq 0 \wedge \text{swapidseq}(n - 1) (\text{transpose } a \ b \circ p)$ 
using assms
proof (induct n arbitrary: p a b)
  case 0
  then show ?case
    by (auto simp add: fun_upd_def)
next
  case (Suc n p a b)
  from Suc.preds(1) swapidseq_cases[of Suc n p]
  obtain c d q m where
    cdqm:  $\text{Suc } n = \text{Suc } m \ p = \text{transpose } c \ d \circ q \ \text{swapidseq } m \ q \ c \neq d \ n = m$ 
    by auto
  consider transpose a b  $\circ$  transpose c d = id
    | x y z where  $x \neq a \ y \neq a \ z \neq a \ x \neq y$ 
      transpose a b  $\circ$  transpose c d = transpose x y  $\circ$  transpose a z
      using swap_general[OF Suc.preds(2) cdqm(4)] by metis
  then show ?case
  proof cases
    case 1
    then show ?thesis
      by (simp only: cdqm o_assoc) (simp add: cdqm)
  next
    case 2
    then have az:  $a \neq z$ 
      by simp
    from 2 have *:  $(\text{transpose } x \ y \circ h) \ a = a \longleftrightarrow h \ a = a$  for h
      by (simp add: transpose_def)
    from cdqm(2) have transpose a b  $\circ$  p = transpose a b  $\circ$  (transpose c d  $\circ$  q)
      by simp
    then have §:  $\text{transpose } a \ b \circ p = \text{transpose } x \ y \circ (\text{transpose } a \ z \circ q)$ 
      by (simp add: o_assoc 2)
    obtain **:  $\text{swapidseq}(n - 1) (\text{transpose } a \ z \circ q)$  and  $n \neq 0$ 
      by (metis * § Suc.hyps Suc.preds(3) az cdqm(3,5))
    then have Suc n - 1 = Suc (n - 1)
      by auto
    with 2 show ?thesis
      using ** § swapidseq.simps by blast
  qed
qed

lemma swapidseq_identity_even:
  assumes swapidseq n (id :: 'a  $\Rightarrow$  'a)
  shows even n
  using swapidseq n id
proof (induct n rule: nat_less_induct)
  case H: (1 n)
  consider n = 0
    | a b :: 'a and q m where  $n = \text{Suc } m \ id = \text{transpose } a \ b \circ q \ \text{swapidseq } m \ q \ a \neq b$ 

```

```

using H(2)[unfolded swapidseq_cases[of n id]] by auto
then show ?case
proof cases
  case 1
  then show ?thesis by presburger
next
  case h: 2
  from fixing_swapidseq_decrease[OF h(3,4), unfolded h(2)[symmetric]]
  have m: m ≠ 0 swapidseq (m - 1) (id :: 'a ⇒ 'a)
    by auto
  from h m have mn: m - 1 < n
    by arith
  from H(1)[rule_format, OF mn m(2)] h(1) m(1) show ?thesis
    by presburger
qed
qed

```

3.12 Therefore we have a welldefined notion of parity

definition evenperm p = even (SOME n. swapidseq n p)

```

lemma swapidseq_even_even:
  assumes m: swapidseq m p
  and n: swapidseq n p
  shows even m ↔ even n
proof -
  from swapidseq_inverse_exists[OF n] obtain q where q: swapidseq n q p ∘ q
  = id q ∘ p = id
    by blast
  from swapidseq_identity_even[OF swapidseq_comp_add[OF m q(1), unfolded q]] show ?thesis
    by arith
qed

```

```

lemma evenperm_unique:
  assumes swapidseq n p and even n = b
  shows evenperm p = b
  by (metis evenperm_def assms someI swapidseq_even_even)

```

3.13 And it has the expected composition properties

```

lemma evenperm_id[simp]: evenperm id = True
  by (rule evenperm_unique[where n = 0]) simp_all

```

```

lemma evenperm_identity [simp]:
  ⟨evenperm (λx. x)⟩
  using evenperm_id by (simp add: id_def [abs_def])

```

```

lemma evenperm_swap: evenperm (transpose a b) = (a = b)

```

```

by (rule evenperm_unique[where n=if a = b then 0 else 1]) (simp_all add:
swapidseq_swap)

lemma evenperm_comp:
assumes permutation p permutation q
shows evenperm (p ∘ q) ↔ evenperm p = evenperm q
proof -
from assms obtain n m where n: swapidseq n p and m: swapidseq m q
  unfolding permutation_def by blast
have even (n + m) ↔ (even n ↔ even m)
  by arith
from evenperm_unique[OF n refl] evenperm_unique[OF m refl]
  and evenperm_unique[OF swapidseq_comp_add[OF n m] this] show ?thesis
  by blast
qed

lemma evenperm_inv:
assumes permutation p
shows evenperm (inv p) = evenperm p
proof -
from assms obtain n where n: swapidseq n p
  unfolding permutation_def by blast
show ?thesis
  by (rule evenperm_unique[OF swapidseq_inverse[OF n] evenperm_unique[OF
n refl, symmetric]]))
qed

```

3.14 A more abstract characterization of permutations

```

lemma permutation_bijection:
assumes permutation p
shows bij p
by (meson assms o_bij permutation_def swapidseq_inverse_exists)

lemma permutation_finite_support:
assumes permutation p
shows finite {x. p x ≠ x}
proof -
from assms obtain n where swapidseq n p
  unfolding permutation_def by blast
then show ?thesis
proof (induct n p rule: swapidseq.induct)
  case id
  then show ?case by simp
next
  case (comp_Suc n p a b)
  let ?S = insert a (insert b {x. p x ≠ x})
  from comp_Suc.hyps(2) have *: finite ?S
    by simp

```

```

from ⟨a ≠ b⟩ have **: {x. (transpose a b ∘ p) x ≠ x} ⊆ ?S
  by auto
show ?case
  by (rule finite_subset[OF **])
qed
qed

lemma permutation_lemma:
  assumes finite S
  and bij p
  and ∀x. x ∉ S → p x = x
  shows permutation p
  using assms
proof (induct S arbitrary: p rule: finite_induct)
  case empty
  then show ?case
    by simp
next
  case (insert a F p)
  let ?r = transpose a (p a) ∘ p
  let ?q = transpose a (p a) ∘ ?r
  have *: ?r a = a
    by simp
  from insert * have **: ∀x. x ∉ F → ?r x = x
    by (metis bij_pointE comp_apply id_apply insert_iff swap_apply(3))
  have bij ?r
    using insert by (simp add: bij_comp)
  have permutation ?r
    by (rule insert(3)[OF ⟨bij ?r⟩ **])
  then have permutation ?q
    by (simp add: permutation_compose permutation_swap_id)
  then show ?case
    by (simp add: o_assoc)
qed

lemma permutation: permutation p ↔ bij p ∧ finite {x. p x ≠ x}
  using permutation_bijection permutation_finite_support permutation_lemma by
  auto

lemma permutation_inverse_works:
  assumes permutation p
  shows inv p ∘ p = id
  and p ∘ inv p = id
  using permutation_bijection [OF assms] by (auto simp: bij_def inj_iff surj_iff)

lemma permutation_inverse_compose:
  assumes p: permutation p
  and q: permutation q
  shows inv (p ∘ q) = inv q ∘ inv p

```

```
by (simp add: o_inv_distrib p permutation_bijection q)
```

3.15 Relation to permutes

```
lemma permutes_imp_permutation:
  ‹permutation p› if ‹finite S› ‹p permutes S›
proof -
  from ‹p permutes S› have ‹{x. p x ≠ x} ⊆ S›
    by (auto dest: permutes_not_in)
  then have ‹finite {x. p x ≠ x}›
    using ‹finite S› by (rule finite_subset)
  moreover from ‹p permutes S› have ‹bij p›
    by (auto dest: permutes_bij)
  ultimately show ?thesis
    by (simp add: permutation)
qed

lemma permutation_permutesE:
  assumes ‹permutation p›
  obtains S where ‹finite S› ‹p permutes S›
proof -
  from assms have fin: ‹finite {x. p x ≠ x}›
    by (simp add: permutation)
  from assms have ‹bij p›
    by (simp add: permutation)
  also have ‹UNIV = {x. p x ≠ x} ∪ {x. p x = x}›
    by auto
  finally have ‹bij_betw p {x. p x ≠ x} {x. p x ≠ x}›
    by (rule bij_betw_partition) (auto simp add: bij_betw_fixpoints)
  then have ‹p permutes {x. p x ≠ x}›
    by (auto intro: bij_imp_permutes)
  with fin show thesis ..
qed
```

```
lemma permutation_permutes: permutation p ↔ (∃ S. finite S ∧ p permutes S)
  by (auto elim: permutation_permutesE intro: permutes_imp_permutation)
```

3.16 Sign of a permutation

```
definition sign :: "('a ⇒ 'a) ⇒ int" — TODO: prefer less generic name
  where ‹sign p = (if evenperm p then 1 else - 1)›
```

```
lemma sign_cases [case_names even odd]:
  obtains ‹sign p = 1› | ‹sign p = - 1›
  by (cases ‹evenperm p›) (simp_all add: sign_def)

lemma sign_nz [simp]: sign p ≠ 0
  by (cases p rule: sign_cases) simp_all

lemma sign_id [simp]: sign id = 1
```

```

by (simp add: sign_def)

lemma sign_identity [simp]:
  ‹sign (λx. x) = 1›
by (simp add: sign_def)

lemma sign_inverse: permutation p ⟹ sign (inv p) = sign p
by (simp add: sign_def evenperm_inv)

lemma sign_compose: permutation p ⟹ permutation q ⟹ sign (p ∘ q) = sign
p * sign q
by (simp add: sign_def evenperm_comp)

lemma sign_swap_id: sign (transpose a b) = (if a = b then 1 else - 1)
by (simp add: sign_def evenperm_swap)

lemma sign_idempotent [simp]: sign p * sign p = 1
by (simp add: sign_def)

lemma sign_left_idempotent [simp]:
  ‹sign p * (sign p * sign q) = sign q›
by (simp add: sign_def)

lemma abs_sign [simp]: |sign p| = 1
by (simp add: sign_def)

```

3.17 An induction principle in terms of transpositions

```

definition apply_transps :: "('a × 'a) list ⇒ 'a ⇒ 'a where
  apply_transps xs = foldr (∘) (map (λ(a,b). Transposition.transpose a b) xs) id

lemma apply_transps_Nil [simp]: apply_transps [] = id
by (simp add: apply_transps_def)

lemma apply_transps_Cons [simp]:
  apply_transps (x # xs) = Transposition.transpose (fst x) (snd x) ∘ apply_transps
xs
by (simp add: apply_transps_def case_prod unfold)

lemma apply_transps_append [simp]:
  apply_transps (xs @ ys) = apply_transps xs ∘ apply_transps ys
by (induction xs) auto

lemma permutation_apply_transps [simp, intro]: permutation (apply_transps xs)
proof (induction xs)
  case (Cons x xs)
  thus ?case
    unfolding apply_transps_Cons by (intro permutation_compose permutation_swap_id)
qed auto

```

```

lemma permutes_apply_transps:
  assumes  $\forall (a,b) \in \text{set } xs. a \in A \wedge b \in A$ 
  shows  $\text{apply\_transps } xs \text{ permutes } A$ 
  using assms
proof (induction xs)
  case (Cons x xs)
  from Cons.prems show ?case
    unfolding apply_transps_Cons
    by (intro permutes_compose permutes_swap_id Cons) auto
qed (auto simp: permutes_id)

lemma permutes_induct [consumes 2, case_names id swap]:
  assumes  $p \text{ permutes } S \text{ finite } S$ 
  assumes  $P \text{ id}$ 
  assumes  $\bigwedge a b p. a \in S \implies b \in S \implies a \neq b \implies P p \implies p \text{ permutes } S$ 
          $\implies P (\text{Transposition.transpose } a b \circ p)$ 
  shows  $P p$ 
  using assms(2,1,4)
proof (induct S arbitrary: p rule: finite_induct)
  case empty
  then show ?case using assms by (auto simp: id_def)
next
  case (insert x F p)
  let ?r = Transposition.transpose x (p x)  $\circ$  p
  let ?q = Transposition.transpose x (p x)  $\circ$  ?r
  have qp: ?q = p
    by (simp add: o_assoc)
  have ?r permutes F
    using permutes_insert_lemma[OF insert.prems(1)] .
  have P ?r
    by (rule insert(3)[OF `?r permutes F`], rule insert(5)) (auto intro: permutes_subset)
    show ?case
  proof (cases x = p x)
    case False
    have p x  $\in$  F
      using permutes_in_image[OF `p permutes _`, of x] False by auto
    have P ?q
      by (rule insert(5))
        (use `P ?r` `p x  $\in$  F` `?r permutes F` False in (auto simp: o_def intro: permutes_subset))
    thus P p
      by (simp add: qp)
    qed (use `P ?r` in simp)
  qed
qed

lemma permutes_rev_induct[consumes 2, case_names id swap]:

```

```

assumes finite S p permutes S
assumes P id
assumes  $\bigwedge a b p. a \in S \implies b \in S \implies a \neq b \implies P p \implies p \text{ permutes } S$ 
 $\implies P (p \circ \text{Transposition.transpose } a b)$ 
shows P p
proof -
  have inv_into UNIV p permutes S
    using assms by (intro permutes_inv)
    from this and assms(1,2) show ?thesis
  proof (induction inv_into UNIV p arbitrary: p rule: permutes_induct)
    case id
    hence p = id
      by (metis inv_id permutes_inv)
    thus ?case using ‹P id› by (auto simp: id_def)
  next
    case (swap a b p p')
    have p = Transposition.transpose a b o (Transposition.transpose a b o p)
      by (simp add: o_assoc)
    also have ... = Transposition.transpose a b o inv_into UNIV p'
      by (subst swap.hyps) auto
    also have Transposition.transpose a b = inv_into UNIV (Transposition.transpose
      a b)
      by (simp add: inv_swap_id)
    also have ... o inv_into UNIV p' = inv_into UNIV (p' o Transposition.transpose
      a b)
      using swap ‹finite S›
      by (intro permutation_inverse_compose [symmetric] permutation_swap_id
        permutation_inverse)
        (auto simp: permutation_permutes)
    finally have p = inv (p' o Transposition.transpose a b) .
    moreover have p' o Transposition.transpose a b permutes S
      by (intro permutes_compose permutes_swap_id swap)
    ultimately have *: P (p' o Transposition.transpose a b)
      by (rule swap(4))
    have P (p' o Transposition.transpose a b o Transposition.transpose a b)
      by (rule assms; intro * swap permutes_compose permutes_swap_id)
    also have p' o Transposition.transpose a b o Transposition.transpose a b = p'
      by (simp flip: o_assoc)
    finally show ?case .
  qed
qed

lemma map_permutation_apply_transps:
  assumes f: inj_on f A and set ts ⊆ A × A
  shows map_permutation A f (apply_transps ts) = apply_transps (map (map_prod
    f f) ts)
  using assms(2)
proof (induction ts)
  case (Cons t ts)

```

```

obtain a b where [simp]:  $t = (a, b)$ 
  by (cases t)
have  $\text{map\_permutation } A f (\text{apply\_transps } (t \# ts)) =$ 
   $\text{map\_permutation } A f (\text{Transposition.transpose } a b \circ \text{apply\_transps } ts)$ 
  by simp
also have ... =  $\text{map\_permutation } A f (\text{Transposition.transpose } a b) \circ$ 
   $\text{map\_permutation } A f (\text{apply\_transps } ts)$ 
  by (subst  $\text{map\_permutation\_compose}'$ )
    (use f Cons.preds in ⟨auto intro!: permutes_apply_transps⟩)
also have  $\text{map\_permutation } A f (\text{Transposition.transpose } a b) =$ 
   $\text{Transposition.transpose } (f a) (f b)$ 
  by (intro map_permutation_transpose f) (use Cons.preds in auto)
also have  $\text{map\_permutation } A f (\text{apply\_transps } ts) = \text{apply\_transps } (\text{map } (\text{map\_prod } f f) ts)$ 
  by (intro Cons.IH) (use Cons.preds in auto)
also have  $\text{Transposition.transpose } (f a) (f b) \circ \text{apply\_transps } (\text{map } (\text{map\_prod } f f) ts) =$ 
   $\text{apply\_transps } (\text{map } (\text{map\_prod } f f) (t \# ts))$ 
  by simp
finally show ?case .
qed (use f in ⟨auto simp: map_permutation_id'⟩)

```

```

lemma permutes_from_transpositions:
  assumes p permutes A finite A
  shows  $\exists xs. (\forall (a,b) \in \text{set } xs. a \neq b \wedge a \in A \wedge b \in A) \wedge \text{apply\_transps } xs = p$ 
  using assms
proof (induction rule: permutes_induct)
  case id
  thus ?case by (intro exI[of _ []]) auto
  next
  case (swap a b p)
  from swap.IH obtain xs where
    xs:  $(\forall (a,b) \in \text{set } xs. a \neq b \wedge a \in A \wedge b \in A) \text{ apply\_transps } xs = p$ 
    by blast
  thus ?case
    using swap.hyps by (intro exI[of _ (a,b) # xs]) auto
qed

```

3.18 More on the sign of permutations

```

lemma evenperm_apply_transps_iff:
  assumes  $\forall (a,b) \in \text{set } xs. a \neq b$ 
  shows evenperm (apply_transps xs)  $\longleftrightarrow$  even (length xs)
  using assms
  by (induction xs)
    (simp_all add: case_prod_unfold evenperm_comp permutation_swap_id even-
    perm_swap)

```

```

lemma evenperm_map_permutation:
  assumes f: inj_on f A and p permutes A finite A
  shows evenperm (map_permutation A f p)  $\longleftrightarrow$  evenperm p
proof -
  note [simp] = inj_on_eq_iff[OF f]
  obtain ts where ts:  $\forall (a, b) \in \text{set ts}. a \neq b \wedge a \in A \wedge b \in A$  apply_transps ts =
  p
  using permutes_from_transpositions[OF assms(2,3)] by blast
  have evenperm p  $\longleftrightarrow$  even (length ts)
  by (subst ts(2) [symmetric], subst evenperm_apply_transps_iff) (use ts(1) in auto)
  also have ...  $\longleftrightarrow$  even (length (map (map_prod f f) ts))
  by simp
  also have ...  $\longleftrightarrow$  evenperm (apply_transps (map (map_prod f f) ts))
  by (subst evenperm_apply_transps_iff) (use ts(1) in auto)
  also have apply_transps (map (map_prod f f) ts) = map_permutation A f p
  unfolding ts(2)[symmetric]
  by (rule map_permutation_apply_transps [symmetric]) (use f ts(1) in auto)
  finally show ?thesis ..
qed

```

```

lemma sign_map_permutation:
  assumes inj_on f A p permutes A finite A
  shows sign (map_permutation A f p) = sign p
  unfolding sign_def by (subst evenperm_map_permutation) (use assms in auto)

```

Sometimes it can be useful to consider the sign of a function that is not a permutation in the Isabelle/HOL sense, but its restriction to some finite subset is.

```

definition sign_on :: 'a set  $\Rightarrow$  ('a  $\Rightarrow$  'a)  $\Rightarrow$  int
  where sign_on A f = sign (restrict_id f A)

```

```

lemma sign_on_cong [cong]:
  assumes A = B  $\wedge$  x  $\in$  A  $\implies$  f x = g x
  shows sign_on A f = sign_on B g
  unfolding sign_on_def using assms
  by (intro arg_cong[of __ sign] restrict_id_cong)

```

```

lemma sign_on_permutes:
  assumes f permutes A A  $\subseteq$  B
  shows sign_on B f = sign f
proof -
  have f: f permutes B
  using assms permutes_subset by blast
  have sign_on B f = sign (restrict_id f B)
  by (simp add: sign_on_def)
  also have restrict_id f B = f
  using f by (auto simp: fun_eq_iff permutes_not_in restrict_id_def)
  finally show ?thesis .

```

qed

```

lemma sign_on_id [simp]: sign_on A id = 1
  by (subst sign_on_permutes[of _ A]) auto

lemma sign_on_ident [simp]: sign_on A (λx. x) = 1
  using sign_on_id[of A] unfolding id_def by simp

lemma sign_on_transpose:
  assumes a ∈ A b ∈ A a ≠ b
  shows sign_on A (Transposition.transpose a b) = -1
  by (subst sign_on_permutes[of _ A])
    (use assms in auto simp: permutes_swap_id sign_swap_id)

lemma sign_on_compose:
  assumes bij_betw f A A bij_betw g A A finite A
  shows sign_on A (f ∘ g) = sign_on A f * sign_on A g
proof -
  define restr where restr = (λf. restrict_id f A)
  have sign_on A (f ∘ g) = sign (restr (f ∘ g))
    by (simp add: sign_on_def restr_def)
  also have restr (f ∘ g) = restr f ∘ restr g
  using assms(2) by (auto simp: restr_def fun_eq_iff bij_betw_def restrict_id_def)
  also have sign ... = sign (restr f) * sign (restr g) unfolding restr_def
    by (rule sign_compose) (auto intro!: permutes_imp_permutation[of A] permutes_restrict_id assms)
  also have ... = sign_on A f * sign_on A g
    by (simp add: sign_on_def restr_def)
  finally show ?thesis .
qed

```

3.19 Transpositions of adjacent elements

We have shown above that every permutation can be written as a product of transpositions. We will now furthermore show that any transposition of successive natural numbers $\{m, \dots, n\}$ can be written as a product of transpositions of *adjacent* elements, i.e. transpositions of the form $i \leftrightarrow i+1$.

```

function adj_transp_seq :: nat ⇒ nat ⇒ nat list where
  adj_transp_seq a b =
    (if a ≥ b then []
     else if b = a + 1 then [a]
     else a # adj_transp_seq (a+1) b @ [a])
  by auto
termination by (relation measure (λ(a,b). b - a)) auto

lemmas [simp del] = adj_transp_seq.simps

lemma length_adj_transp_seq:

```

```


$$a < b \implies \text{length}(\text{adj\_transp\_seq } a \ b) = 2 * (b - a) - 1$$

by (induction a b rule: adj_transp_seq.induct; subst adj_transp_seq.simps) auto

```

```

definition apply_adj_transps :: nat list  $\Rightarrow$  nat  $\Rightarrow$  nat
  where apply_adj_transps xs = foldl ( $\circ$ ) id (map ( $\lambda x$ . Transposition.transpose x (x+1)) xs)

lemma apply_adj_transps_aux:
   $f \circ \text{foldl } (\circ) g (\text{map } (\lambda x. \text{Transposition.transpose } x (\text{Suc } x)) \ xs) =$ 
   $\text{foldl } (\circ) (f \circ g) (\text{map } (\lambda x. \text{Transposition.transpose } x (\text{Suc } x)) \ xs)$ 
  by (induction xs arbitrary: f g) (auto simp: o_assoc)

lemma apply_adj_transps_Nil [simp]: apply_adj_transps [] = id
and apply_adj_transps_Cons [simp]:
  apply_adj_transps (x # xs) = Transposition.transpose x (x+1)  $\circ$  apply_adj_transps xs
and apply_adj_transps_snoc [simp]:
  apply_adj_transps (xs @ [x]) = apply_adj_transps xs  $\circ$  Transposition.transpose x (x+1)
  by (simp_all add: apply_adj_transps_def apply_adj_transps_aux)

lemma adj_transp_seq_correct:
  assumes a < b
  shows apply_adj_transps (adj_transp_seq a b) = Transposition.transpose a b
  using assms
  proof (induction a b rule: adj_transp_seq.induct)
    case (1 a b)
    show ?case
    proof (cases b = a + 1)
      case True
      thus ?thesis
        by (subst adj_transp_seq.simps) (auto simp: o_def Transposition.transpose_def
apply_adj_transps_def)
    next
      case False
      hence apply_adj_transps (adj_transp_seq a b) =
        Transposition.transpose a (Suc a)  $\circ$  Transposition.transpose (Suc a) b  $\circ$ 
        Transposition.transpose a (Suc a)
      using 1 by (subst adj_transp_seq.simps)
        (simp add: o_assoc swap_id_common swap_id_common' id_def
o_def)
      also have ... = Transposition.transpose a b
      using False 1 by (simp add: Transposition.transpose_def fun_eq_iff)
      finally show ?thesis .
    qed
  qed

lemma permutation_apply_adj_transps: permutation (apply_adj_transps xs)

```

```

proof (induction xs)
  case (Cons x xs)
    have permutation (Transposition.transpose x (Suc x) ∘ apply_adj_transps xs)
      by (intro permutation_compose permutation_swap_id Cons)
    thus ?case by (simp add: o_def)
  qed auto

lemma permutes_apply_adj_transps:
  assumes ∀x∈set xs. x ∈ A ∧ Suc x ∈ A
  shows apply_adj_transps xs permutes A
  using assms
  by (induction xs) (auto intro!: permutes_compose permutes_swap_id permutes_id)

lemma set_adj_transp_seq:
  a < b ⇒ set (adj_transp_seq a b) = {a..< b}
  by (induction a b rule: adj_transp_seq.induct, subst adj_transp_seq.simps) auto

```

3.20 Transferring properties of permutations along bijections

```

locale permutes_bij =
  fixes p :: 'a ⇒ 'a and A :: 'a set and B :: 'b set
  fixes f :: 'a ⇒ 'b and f' :: 'b ⇒ 'a
  fixes p' :: 'b ⇒ 'b
  defines p' ≡ (λx. if x ∈ B then f (p (f' x)) else x)
  assumes permutes_p: p permutes A
  assumes bij_f: bij_betw f A B
  assumes f'_f: x ∈ A ⇒ f' (f x) = x
begin

lemma bij_f': bij_betw f' B A
  using bij_f f'_f by (auto simp: bij_betw_def) (auto simp: inj_on_def image_image)

lemma f_f': x ∈ B ⇒ f (f' x) = x
  using f'_f bij_f by (auto simp: bij_betw_def)

lemma f_in_B: x ∈ A ⇒ f x ∈ B
  using bij_f by (auto simp: bij_betw_def)

lemma f'_in_A: x ∈ B ⇒ f' x ∈ A
  using bij_f' by (auto simp: bij_betw_def)

lemma permutes_p': p' permutes B
proof –
  have p': p' x = x if x ∉ B for x
  using that by (simp add: p'_def)
  have bij_p: bij_betw p A A
  using permutes_p by (simp add: permutes_imp_bij)
  have bij_betw (f ∘ p ∘ f') B B

```

```

by (rule bij_betw_trans bij_f bij_f' bij_p)+
also have ?this  $\longleftrightarrow$  bij_betw p' B B
  by (intro bij_betw_cong) (auto simp: p'_def)
  finally show ?thesis
    using p' by (rule bij_imp_permutes)
qed

lemma f_eq_iff [simp]:  $f x = f y \longleftrightarrow x = y$  if  $x \in A$   $y \in A$  for  $x y$ 
  using that bij_f by (auto simp: bij_betw_def inj_on_def)

lemma apply_transps_map_f_aux:
  assumes  $\forall (a,b) \in \text{set } xs. a \in A \wedge b \in A$ 
  shows  $\text{apply\_transps}(\text{map}(\text{map\_prod } f f) xs) y = f(\text{apply\_transps} xs (f' y))$ 
  using assms
proof (induction xs arbitrary: y)
  case Nil
  thus ?case by (auto simp: f_f')
next
  case (Cons x xs y)
  from Cons.prems have apply_transps_xs_permutes A
    by (intro permutes_apply_transps) auto
  hence [simp]:  $\text{apply\_transps} xs z \in A \longleftrightarrow z \in A$  for z
    by (simp add: permutes_in_image)
  from Cons show ?case
    by (auto simp: Transposition.transpose_def f_f'_f_case_prod_unfold f'_in_A)
qed

lemma apply_transps_map_f:
  assumes  $\forall (a,b) \in \text{set } xs. a \in A \wedge b \in A$ 
  shows  $\text{apply\_transps}(\text{map}(\text{map\_prod } f f) xs) = (\lambda y. \text{if } y \in B \text{ then } f(\text{apply\_transps} xs (f' y)) \text{ else } y)$ 
proof
  fix y
  show  $\text{apply\_transps}(\text{map}(\text{map\_prod } f f) xs) y = (\text{if } y \in B \text{ then } f(\text{apply\_transps} xs (f' y)) \text{ else } y)$ 
  proof (cases y ∈ B)
    case True
    thus ?thesis
      using apply_transps_map_f_aux[OF assms] by simp
  next
    case False
    have apply_transps_map_prod_xs_permutes B
      using assms by (intro permutes_apply_transps) (auto simp: case_prod_unfold f_in_B)
    with False have apply_transps_map_prod_xs y = y
      by (intro permutes_not_in)
    with False show ?thesis
      by simp
  qed

```

```

qed

end

locale permutes_bij_finite = permutes_bij +
  assumes finite_A: finite A
begin

lemma evenperm_p'_iff: evenperm p'  $\longleftrightarrow$  evenperm p
proof -
  obtain xs where xs:  $\forall (a,b) \in \text{set } xs. a \in A \wedge b \in A \wedge a \neq b$  apply_transps xs =
  p
    using permutes_from_transpositions[OF permutes_p finite_A] by blast
  have evenperm p  $\longleftrightarrow$  evenperm (apply_transps xs)
    using xs by simp
  also have ...  $\longleftrightarrow$  even (length xs)
    using xs by (intro evenperm_apply_transps_iff) auto
  also have ...  $\longleftrightarrow$  even (length (map (map_prod f f) xs))
    by simp
  also have ...  $\longleftrightarrow$  evenperm (apply_transps (map (map_prod f f) xs)) using xs
    by (intro evenperm_apply_transps_iff [symmetric]) (auto simp: case_prod unfold)
  also have apply_transps (map (map_prod f f) xs) = p'
    using xs unfolding p'_def by (subst apply_transps_map_f) auto
  finally show ?thesis ..
qed

lemma sign_p': sign p' = sign p
  by (auto simp: sign_def evenperm_p'_iff)

end

```

3.21 Permuting a list

This function permutes a list by applying a permutation to the indices.

```

definition permute_list :: (nat  $\Rightarrow$  nat)  $\Rightarrow$  'a list  $\Rightarrow$  'a list
  where permute_list f xs = map (λi. xs ! (f i)) [0.. $\text{length } xs$ ]

lemma permute_list_map:
  assumes f permutes {.. $\text{length } xs$ }
  shows permute_list f (map g xs) = map g (permute_list f xs)
  using permutes_in_image[OF assms] by (auto simp: permute_list_def)

lemma permute_list_nth:
  assumes f permutes {.. $\text{length } xs$ } i  $<$  length xs
  shows permute_list f xs ! i = xs ! f i
  using permutes_in_image[OF assms(1)] assms(2)
  by (simp add: permute_list_def)

```

```

lemma permute_list_Nil [simp]: permute_list f [] = []
  by (simp add: permute_list_def)

lemma length_permute_list [simp]: length (permute_list f xs) = length xs
  by (simp add: permute_list_def)

lemma permute_list_compose:
  assumes g permutes {.. $\text{length } xs$ }
  shows permute_list (f  $\circ$  g) xs = permute_list g (permute_list f xs)
  using assms[THEN permutes_in_image] by (auto simp add: permute_list_def)

lemma permute_list_ident [simp]: permute_list ( $\lambda x. x$ ) xs = xs
  by (simp add: permute_list_def map_nth)

lemma permute_list_id [simp]: permute_list id xs = xs
  by (simp add: id_def)

lemma mset_permute_list [simp]:
  fixes xs :: 'a list
  assumes f permutes {.. $\text{length } xs$ }
  shows mset (permute_list f xs) = mset xs
  proof (rule multiset_eqI)
    fix y :: 'a
    from assms have [simp]:  $f x < \text{length } xs \longleftrightarrow x < \text{length } xs$  for x
    using permutes_in_image[OF assms] by auto
    have count (mset (permute_list f xs)) y = card (( $\lambda i. xs ! f i$ ) - {y}  $\cap$  {.. $\text{length } xs$ })
      by (simp add: permute_list_def count_image_mset atLeast0LessThan)
    also have ( $\lambda i. xs ! f i$ ) - {y}  $\cap$  {.. $\text{length } xs$ } = f - {i. i < \text{length } xs \wedge y = xs ! i}
      by auto
    also from assms have card ... = card {i. i < \text{length } xs \wedge y = xs ! i}
      by (intro card_vimage_inj) (auto simp: permutes_inj permutes_surj)
    also have ... = count (mset xs) y
      by (simp add: count_mset count_list_eq_length_filter length_filter_conv_card)
    finally show count (mset (permute_list f xs)) y = count (mset xs) y
      by simp
  qed

lemma set_permute_list [simp]:
  assumes f permutes {.. $\text{length } xs$ }
  shows set (permute_list f xs) = set xs
  by (rule mset_eq_setD[OF mset_permute_list]) fact

lemma distinct_permute_list [simp]:
  assumes f permutes {.. $\text{length } xs$ }
  shows distinct (permute_list f xs) = distinct xs
  by (simp add: distinct_count_atmost_1 assms)

```

```

lemma permute_list_zip:
  assumes f permutes A A = {..<length xs}
  assumes [simp]: length xs = length ys
  shows permute_list f (zip xs ys) = zip (permute_list f xs) (permute_list f ys)
proof -
  from permutes_in_image[OF assms(1)] assms(2) have *: f i < length ys  $\longleftrightarrow$ 
  i < length ys for i
  by simp
  have permute_list f (zip xs ys) = map (λi. zip xs ys ! f i) [0..<length ys]
  by (simp_all add: permute_list_def zip_map_map)
  also have ... = map (λ(x, y). (xs ! f x, ys ! f y)) (zip [0..<length ys] [0..<length ys])
  by (intro nth_equalityI) (simp_all add: *)
  also have ... = zip (permute_list f xs) (permute_list f ys)
  by (simp_all add: permute_list_def zip_map_map)
  finally show ?thesis .
qed

lemma map_of_permute:
  assumes σ permutes fst ` set xs
  shows map_of xs o σ = map_of (map (λ(x,y). (inv σ x, y)) xs)
  (is _ = map_of (map ?f _))
proof
  from assms have inj σ surj σ
  by (simp_all add: permutes_inj permutes_surj)
  then show (map_of xs o σ) x = map_of (map ?f xs) x for x
  by (induct xs) (auto simp: inv_f_f surj_f_inv_f)
qed

lemma list_all2_permute_list_iff:
  ⟨list_all2 P (permute_list p xs) (permute_list p ys)  $\longleftrightarrow$  list_all2 P xs ys⟩
  if ⟨p permutes {..<length xs}⟩
  using that by (auto simp add: list_all2_iff simp flip: permute_list_zip)

```

3.22 More lemmas about permutations

```

lemma permutes_in_funpow_image:
  assumes f permutes S x ∈ S
  shows (f ^ n) x ∈ S
  using assms by (induction n) (auto simp: permutes_in_image)

lemma permutation_self:
  assumes ⟨permutation p⟩
  obtains n where ⟨n > 0⟩ ⟨(p ^ n) x = x⟩
proof (cases ⟨p x = x⟩)
  case True
  with that [of 1] show thesis by simp
next
  case False

```

```

from `permutation p` have `inj p`
  by (intro permutation_bijection bij_is_inj)
moreover from `p x ≠ x` have `⟨(p ∘ Suc n) x ≠ (p ∘ n) x⟩` for n
proof (induction n arbitrary: x)
  case 0 then show ?case by simp
next
  case (Suc n)
  have `p (p x) ≠ p x`
  proof (rule notI)
    assume `p (p x) = p x`
    then show False using `p x ≠ x` `inj p` by (simp add: inj_eq)
  qed
  have `⟨(p ∘ Suc (Suc n)) x = (p ∘ Suc n) (p x)⟩`
    by (simp add: funpow_swap1)
  also have ... ≠ `⟨(p ∘ n) (p x)⟩`
    by (rule Suc) fact
  also have `⟨(p ∘ n) (p x) = (p ∘ Suc n) x⟩`
    by (simp add: funpow_swap1)
  finally show ?case by simp
qed
then have `⟨y. ∃ n. y = (p ∘ n) x⟩ ⊆ ⟨x. p x ≠ x⟩`
  by auto
then have finite `⟨y. ∃ n. y = (p ∘ n) x⟩`
  using permutation_finite_support[OF assms] by (rule finite_subset)
ultimately obtain n where `⟨n > 0⟩` `⟨(p ∘ n) x = x⟩`
  by (rule funpow_inj_finite)
with that [of n] show thesis by blast
qed

```

The following few lemmas were contributed by Lukas Bulwahn.

```

lemma count_image_mset_eq_card_vimage:
  assumes finite A
  shows count (image_mset f (mset_set A)) b = card {a ∈ A. f a = b}
  using assms
proof (induct A)
  case empty
  show ?case by simp
next
  case (insert x F)
  show ?case
  proof (cases f x = b)
    case True
    with insert.hyps
    have `⟨count (image_mset f (mset_set (insert x F))) b = Suc (card {a ∈ F. f a = f x})⟩`
      by auto
    also from insert.hyps(1,2) have ... = card (insert x {a ∈ F. f a = f x})
      by simp
    also from `⟨f x = b⟩` have `card (insert x {a ∈ F. f a = f x}) = card {a ∈ insert x {a ∈ F. f a = f x}}` by simp
    finally show ?case by simp
  qed
qed

```

```

 $x F. f a = b\}$ 
  by (auto intro: arg_cong[where  $f=card$ ])
  finally show ?thesis
    using insert by auto
next
  case False
  then have  $\{a \in F. f a = b\} = \{a \in \text{insert } x F. f a = b\}$ 
    by auto
  with insert False show ?thesis
    by simp
qed
qed

— Prove image_mset_eq_implies_permutes ...
lemma image_mset_eq_implies_permutes:
  fixes  $f :: 'a \Rightarrow 'b$ 
  assumes finite  $A$ 
  and mset_eq:  $\text{image\_mset } f (\text{mset\_set } A) = \text{image\_mset } f' (\text{mset\_set } A)$ 
  obtains  $p$  where  $p \text{ permutes } A$  and  $\forall x \in A. f x = f' (p x)$ 
proof –
  from ⟨finite  $A$ ⟩ have [simp]: finite  $\{a \in A. f a = (b::'b)\}$  for  $f b$  by auto
  have  $f' A = f' A$ 
  proof –
    from ⟨finite  $A$ ⟩ have  $f' A = f' (\text{set\_mset } (\text{mset\_set } A))$ 
      by simp
    also have  $\dots = f' (\text{set\_mset } (\text{mset\_set } A))$ 
      by (metis mset_eq multiset.set_map)
    also from ⟨finite  $A$ ⟩ have  $\dots = f' A$ 
      by simp
    finally show ?thesis .
  qed
  have  $\forall b \in (f' A). \exists p. \text{bij\_betw } p \{a \in A. f a = b\} \{a \in A. f' a = b\}$ 
  proof
    fix  $b$ 
    from mset_eq have count (image_mset  $f (\text{mset\_set } A)$ )  $b = \text{count } (\text{image\_mset } f' (\text{mset\_set } A)) b$ 
      by simp
    with ⟨finite  $A$ ⟩ have card  $\{a \in A. f a = b\} = \text{card } \{a \in A. f' a = b\}$ 
      by (simp add: count_image_mset_eq_card_vimage)
    then show  $\exists p. \text{bij\_betw } p \{a \in A. f a = b\} \{a \in A. f' a = b\}$ 
      by (intro finite_same_card_bij) simp_all
  qed
  then have  $\exists p. \forall b \in f' A. \text{bij\_betw } (p b) \{a \in A. f a = b\} \{a \in A. f' a = b\}$ 
    by (rule bchoice)
  then obtain  $p$  where  $p: \forall b \in f' A. \text{bij\_betw } (p b) \{a \in A. f a = b\} \{a \in A. f' a = b\} ..$ 
  define  $p'$  where  $p' = (\lambda a. \text{if } a \in A \text{ then } p (f a) \text{ else } a)$ 
  have  $p' \text{ permutes } A$ 
  proof (rule bij_imp_permutes)

```

```

have disjoint_family_on (λi. {a ∈ A. f' a = i}) (f ` A)
  by (auto simp: disjoint_family_on_def)
moreover
  have bij_betw (λa. p (f a) a) {a ∈ A. f a = b} {a ∈ A. f' a = b} if b ∈ f ` A
  for b
    using p that by (subst bij_betw_cong[where g=p b]) auto
  ultimately
    have bij_betw (λa. p (f a) a) (⋃ b∈f ` A. {a ∈ A. f a = b}) (⋃ b∈f ` A. {a ∈ A. f' a = b})
      by (rule bij_betw_UNION_disjoint)
    moreover have (⋃ b∈f ` A. {a ∈ A. f a = b}) = A
      by auto
    moreover from `f ` A = f' ` A` have (⋃ b∈f ` A. {a ∈ A. f' a = b}) = A
      by auto
    ultimately show bij_betw p' A A
    unfolding p'_def by (subst bij_betw_cong[where g=(λa. p (f a) a)]) auto
  next
    show ∀x. x ∉ A ⇒ p' x = x
      by (simp add: p'_def)
  qed
  moreover from p have ∀x∈A. f x = f' (p' x)
    unfolding p'_def using bij_betwE by fastforce
  ultimately show ?thesis ..
  qed

```

— ... and derive the existing property:

```

lemma mset_eq_permutation:
  fixes xs ys :: 'a list
  assumes mset_eq: mset xs = mset ys
  obtains p where p permutes {..

```

```

lemma permutes_natset_le:

```

```

fixes S :: 'a::wellorder set
assumes p permutes S
  and  $\forall i \in S. p i \leq i$ 
  shows p = id
proof -
  have p n = n for n
  using assms
  proof (induct n arbitrary: S rule: less_induct)
    case (less n)
    show ?case
    proof (cases n ∈ S)
      case False
      with less(2) show ?thesis
      unfolding permutes_def by metis
    next
      case True
      with less(3) have p n < n ∨ p n = n
      by auto
      then show ?thesis
      proof
        assume p n < n
        with less have p (p n) = p n
        by metis
        with permutes_inj[OF less(2)] have p n = n
        unfolding inj_def by blast
        with p n < n have False
        by simp
        then show ?thesis ..
      qed
    qed
  qed
  then show ?thesis by (auto simp: fun_eq_iff)
qed

lemma permutes_natset_ge:
fixes S :: 'a::wellorder set
assumes p: p permutes S
  and le:  $\forall i \in S. p i \geq i$ 
  shows p = id
proof -
  have i ≥ inv p i if i ∈ S for i
  proof -
    from that permutes_in_image[OF permutes_inv[OF p]] have inv p i ∈ S
    by simp
    with le have p (inv p i) ≥ inv p i
    by blast
    with permutes_inverses[OF p] show ?thesis
    by simp
  qed

```

```

then have  $\forall i \in S. \text{inv } p \ i \leq i$ 
  by blast
from permutes_natset_le[OF permutes_inv[OF p] this] have  $\text{inv } p = \text{inv id}$ 
  by simp
then show ?thesis
  using p permutes_inv_inv by fastforce
qed

lemma image_inverse_permutations:  $\{\text{inv } p \mid p. p \text{ permutes } S\} = \{p. p \text{ permutes } S\}$ 
  using permutes_inv permutes_inv_inv by force

lemma image_compose_permutations_left:
  assumes q permutes S
  shows  $\{q \circ p \mid p. p \text{ permutes } S\} = \{p. p \text{ permutes } S\}$ 
proof –
  have  $\bigwedge p. p \text{ permutes } S \implies q \circ p \text{ permutes } S$ 
  by (simp add: assms permutes_compose)
  moreover have  $\bigwedge x. x \text{ permutes } S \implies \exists p. x = q \circ p \wedge p \text{ permutes } S$ 
  by (metis assms id_comp_o_assoc permutes_compose permutes_inv permutes_inv_o(1))
  ultimately show ?thesis
  by auto
qed

lemma image_compose_permutations_right:
  assumes q permutes S
  shows  $\{p \circ q \mid p. p \text{ permutes } S\} = \{p. p \text{ permutes } S\}$ 
  by (metis (no_types, opaque_lifting) assms comp_id fun.map_comp permutes_compose
permutes_inv permutes_inv_o(2))

lemma permutes_in_seg:  $p \text{ permutes } \{1 \dots n\} \implies i \in \{1 \dots n\} \implies 1 \leq p \ i \wedge p \ i \leq n$ 
  by (simp add: permutes_def) metis

lemma sum_permutations_inverse:  $\text{sum } f \ \{p. p \text{ permutes } S\} = \text{sum } (\lambda p. f(\text{inv } p)) \ \{p. p \text{ permutes } S\}$ 
  (is ?lhs = ?rhs)
proof –
  let ?S =  $\{p. p \text{ permutes } S\}$ 
  have *: inj_on inv ?S
  proof (auto simp add: inj_on_def)
    fix q r
    assume q:  $q \text{ permutes } S$ 
    and r:  $r \text{ permutes } S$ 
    and qr:  $\text{inv } q = \text{inv } r$ 
    then have  $\text{inv } (\text{inv } q) = \text{inv } (\text{inv } r)$ 
    by simp
    with permutes_inv_inv[OF q] permutes_inv_inv[OF r] show  $q = r$ 
    by metis
  
```

```

qed
have **:  $\text{inv} \circ ?S = ?S$ 
  using image_inverse_permutations by blast
have ***:  $?rhs = \text{sum} (f \circ \text{inv}) ?S$ 
  by (simp add: o_def)
from sum.reindex[OF *, of f] show ?thesis
  by (simp only: ** ***)
qed

lemma setum_permutations_compose_left:
  assumes  $q: q \text{ permutes } S$ 
  shows  $\text{sum } f \{p. p \text{ permutes } S\} = \text{sum} (\lambda p. f(q \circ p)) \{p. p \text{ permutes } S\}$ 
  (is ?lhs = ?rhs)
proof -
  let ?S =  $\{p. p \text{ permutes } S\}$ 
  have *:  $?rhs = \text{sum} (f \circ ((\circ) q)) ?S$ 
    by (simp add: o_def)
  have **:  $\text{inj\_on} ((\circ) q) ?S$ 
  proof (auto simp add: inj_on_def)
    fix p r
    assume  $p \text{ permutes } S$ 
    and  $r: r \text{ permutes } S$ 
    and  $rp: q \circ p = q \circ r$ 
    then have  $\text{inv } q \circ q \circ p = \text{inv } q \circ q \circ r$ 
      by (simp add: comp_assoc)
    with permutes_inj[OF q, unfolded inj_iff] show  $p = r$ 
      by simp
  qed
  have  $((\circ) q) \circ ?S = ?S$ 
    using image_compose_permutations_left[OF q] by auto
  with * sum.reindex[OF **, of f] show ?thesis
    by (simp only:)
qed

lemma sum_permutations_compose_right:
  assumes  $q: q \text{ permutes } S$ 
  shows  $\text{sum } f \{p. p \text{ permutes } S\} = \text{sum} (\lambda p. f(p \circ q)) \{p. p \text{ permutes } S\}$ 
  (is ?lhs = ?rhs)
proof -
  let ?S =  $\{p. p \text{ permutes } S\}$ 
  have *:  $?rhs = \text{sum} (f \circ (\lambda p. p \circ q)) ?S$ 
    by (simp add: o_def)
  have **:  $\text{inj\_on} (\lambda p. p \circ q) ?S$ 
  proof (auto simp add: inj_on_def)
    fix p r
    assume  $p \text{ permutes } S$ 
    and  $r: r \text{ permutes } S$ 
    and  $rp: p \circ q = r \circ q$ 
    then have  $p \circ (q \circ \text{inv } q) = r \circ (q \circ \text{inv } q)$ 
      by (simp only: comp_assoc)
  qed

```

```

  by (simp add: o_assoc)
  with permutes_surj[OF q, unfolded surj_iff] show p = r
    by simp
qed
from image_compose_permutations_right[OF q] have  $(\lambda p. p \circ q) \circ ?S = ?S$ 
  by auto
with * sum.reindex[OF **, of f] show ?thesis
  by (simp only:)
qed

lemma inv_inj_on_permutes:
  ‹inj_on inv {p. p permutes S}›
proof (intro inj_onI, unfold mem_Collect_eq)
  fix p q
  assume p: p permutes S and q: q permutes S and eq: inv p = inv q
  have inv (inv p) = inv (inv q) using eq by simp
  thus p = q
    using inv_inv_eq[OF permutes_bij] p q by metis
qed

lemma permutes_pair_eq:
  ‹{(p s, s) | s. s ∈ S} = {(s, inv p s) | s. s ∈ S}› (is ‹?L = ?R›) if ‹p permutes S›
proof
  show ?L ⊆ ?R
  proof
    fix x assume x ∈ ?L
    then obtain s where x: x = (p s, s) and s: s ∈ S by auto
    note x
    also have (p s, s) = (p s, Hilbert_Choice.inv p (p s))
      using permutes_inj [OF that] inv_f_f by auto
    also have ... ∈ ?R using s permutes_in_image[OF that] by auto
    finally show x ∈ ?R.
  qed
  show ?R ⊆ ?L
  proof
    fix x assume x ∈ ?R
    then obtain s
      where x: x = (s, Hilbert_Choice.inv p s) (is _ = (s, ?ips))
        and s: s ∈ S by auto
    note x
    also have (s, ?ips) = (p ?ips, ?ips)
      using inv_f_f[OF permutes_inj[OF permutes_inv[OF that]]]
        using inv_inv_eq[OF permutes_bij[OF that]] by auto
    also have ... ∈ ?L
      using s permutes_in_image[OF permutes_inv[OF that]] by auto
    finally show x ∈ ?L.
  qed
qed

```

```

context
  fixes p and n i :: nat
  assumes p: ‹p permutes {0..}› and i: ‹i < n›
begin

lemma permutes_nat_less:
  ‹p i < n›
proof –
  have ‹?thesis ↔ p i ∈ {0..}›
    by simp
  also from p have ‹p i ∈ {0..} ↔ i ∈ {0..}›
    by (rule permutes_in_image)
  finally show ?thesis
    using i by simp
qed

lemma permutes_nat_inv_less:
  ‹inv p i < n›
proof –
  from p have ‹inv p permutes {0..}›
    by (rule permutes_inv)
  then show ?thesis
    using i by (rule Permutations.permutes_nat_less)
qed

end

context comm_monoid_set
begin

lemma permutes_inv:
  ‹F (λs. g (p s) s) S = F (λs. g s (inv p s)) S› (is ‹?l = ?r›)
  if ‹p permutes S›
proof –
  let ?g = λ(x, y). g x y
  let ?ps = λs. (p s, s)
  let ?ips = λs. (s, inv p s)
  have inj1: inj_on ?ps S by (rule inj_onI) auto
  have inj2: inj_on ?ips S by (rule inj_onI) auto
  have ?l = F ?g (?ps ` S)
    using reindex [OF inj1, of ?g] by simp
  also have ?ps ` S = {(p s, s) | s. s ∈ S} by auto
  also have ... = {(s, inv p s) | s. s ∈ S}
    unfolding permutes_pair_eq [OF that] by simp
  also have ... = ?ips ` S by auto
  also have F ?g ... = ?r
    using reindex [OF inj2, of ?g] by simp
  finally show ?thesis.
qed

```

end

3.23 Sum over a set of permutations (could generalize to iteration)

```
lemma sum_over_permutations_insert:
  assumes fS: finite S
  and aS: a ∉ S
  shows sum f {p. p permutes (insert a S)} =
    sum (λb. sum (λq. f (transpose a b ∘ q)) {p. p permutes S}) (insert a S)
proof -
  have *: ∀f a b. (λ(b, p). f (transpose a b ∘ p)) = f ∘ (λ(b, p). transpose a b ∘ p)
    by (simp add: fun_eq_iff)
  have **: ∀P Q. {(a, b). a ∈ P ∧ b ∈ Q} = P × Q
    by blast
  show ?thesis
    unfolding * ** sum.cartesian_product permutes_insert
  proof (rule sum.reindex)
    let ?f = (λ(b, y). transpose a b ∘ y)
    let ?P = {p. p permutes S}
    {
      fix b c p q
      assume b: b ∈ insert a S
      assume c: c ∈ insert a S
      assume p: p permutes S
      assume q: q permutes S
      assume eq: transpose a b ∘ p = transpose a c ∘ q
      from p q aS have pa: p a = a and qa: q a = a
        unfolding permutes_def by metis+
      from eq have (transpose a b ∘ p) a = (transpose a c ∘ q) a
        by simp
      then have bc: b = c
        by (simp add: permutes_def pa qa o_def fun_upd_def id_def
          cong del: if_weak_cong split: if_split_asm)
      from eq[unfolded bc] have (λp. transpose a c ∘ p) (transpose a c ∘ p) =
        (λp. transpose a c ∘ p) (transpose a c ∘ q) by simp
      then have p = q
        unfolding o_assoc swap_id_idempotent by simp
      with bc have b = c ∧ p = q
        by blast
    }
    then show inj_on ?f (insert a S × ?P)
      unfolding inj_on_def by clarify metis
  qed
qed
```

3.24 Constructing permutations from association lists

```

definition list_permutes :: ('a × 'a) list ⇒ 'a set ⇒ bool
  where list_permutes xs A ↔
    set (map fst xs) ⊆ A ∧
    set (map snd xs) = set (map fst xs) ∧
    distinct (map fst xs) ∧
    distinct (map snd xs)

lemma list_permutesI [simp]:
  assumes set (map fst xs) ⊆ A set (map snd xs) = set (map fst xs) distinct (map
  fst xs)
  shows list_permutes xs A
proof -
  from assms(2,3) have distinct (map snd xs)
    by (intro card_distinct) (simp_all add: distinct_card del: set_map)
  with assms show ?thesis
    by (simp add: list_permutes_def)
qed

definition permutation_of_list :: ('a × 'a) list ⇒ 'a ⇒ 'a
  where permutation_of_list xs x = (case map_of xs x of None ⇒ x | Some y ⇒
  y)

lemma permutation_of_list_Cons:
  permutation_of_list ((x, y) # xs) x' = (if x = x' then y else permutation_of_list
  xs x')
  by (simp add: permutation_of_list_def)

fun inverse_permutation_of_list :: ('a × 'a) list ⇒ 'a ⇒ 'a
  where
    inverse_permutation_of_list [] x = x
    | inverse_permutation_of_list ((y, x') # xs) x =
      (if x = x' then y else inverse_permutation_of_list xs x)

declare inverse_permutation_of_list.simps [simp del]

lemma inj_on_map_of:
  assumes distinct (map snd xs)
  shows inj_on (map_of xs) (set (map fst xs))
proof (rule inj_onI)
  fix x y
  assume xy: x ∈ set (map fst xs) y ∈ set (map fst xs)
  assume eq: map_of xs x = map_of xs y
  from xy obtain x' y' where x'y': map_of xs x = Some x' map_of xs y = Some
  y'
    by (cases map_of xs x; cases map_of xs y) (simp_all add: map_of_eq_None_iff)
  moreover from x'y' have *: (x, x') ∈ set xs (y, y') ∈ set xs
    by (force dest: map_of_SomeD)+
  moreover from * eq x'y' have x' = y'
    by (force dest: map_of_SomeD)+

```

```

    by simp
ultimately show x = y
  using assms by (force simp: distinct_map dest: inj_onD[of __ (x,x') (y,y')])
qed

lemma inj_on_the: None ∉ A ⇒ inj_on the A
  by (auto simp: inj_on_def option.the_def split: option.splits)

lemma inj_on_map_of':
  assumes distinct (map snd xs)
  shows inj_on (the ∘ map_of xs) (set (map fst xs))
  by (intro comp_inj_on inj_on_map_of assms inj_on_the)
    (force simp: eq_commute[of None] map_of_eq_None_iff)

lemma image_map_of:
  assumes distinct (map fst xs)
  shows map_of xs ` set (map fst xs) = Some ` set (map snd xs)
  using assms by (auto simp: rev_image_eqI)

lemma the_Some_image [simp]: the ` Some ` A = A
  by (subst image_image) simp

lemma image_map_of':
  assumes distinct (map fst xs)
  shows (the ∘ map_of xs) ` set (map fst xs) = set (map snd xs)
  by (simp only: image_comp [symmetric] image_map_of assms the_Some_image)

lemma permutation_of_list_permutes [simp]:
  assumes list_permutes xs A
  shows permutation_of_list xs permutes A
  (is ?f permutes _)
proof (rule permutes_subset[OF bij_imp_permutes])
  from assms show set (map fst xs) ⊆ A
    by (simp add: list_permutes_def)
  from assms have inj_on (the ∘ map_of xs) (set (map fst xs)) (is ?P)
    by (intro inj_on_map_of') (simp_all add: list_permutes_def)
  also have ?P ↔ inj_on ?f (set (map fst xs))
    by (intro inj_on_cong)
      (auto simp: permutation_of_list_def map_of_eq_None_iff split: option.splits)
  finally have bij_betw ?f (set (map fst xs)) (?f ` set (map fst xs))
    by (rule inj_on_imp_bij_betw)
  also from assms have ?f ` set (map fst xs) = (the ∘ map_of xs) ` set (map fst xs)
    by (intro image_cong refl)
      (auto simp: permutation_of_list_def map_of_eq_None_iff split: option.splits)
  also from assms have ... = set (map fst xs)
    by (subst image_map_of') (simp_all add: list_permutes_def)
  finally show bij_betw ?f (set (map fst xs)) (set (map fst xs)) .
qed (force simp: permutation_of_list_def dest!: map_of_SomeD split: option.splits) +

```

```

lemma eval_permutation_of_list [simp]:
  permutation_of_list [] x = x
  x = x'  $\Rightarrow$  permutation_of_list ((x',y)#xs) x = y
  x  $\neq$  x'  $\Rightarrow$  permutation_of_list ((x',y')#xs) x = permutation_of_list xs x
  by (simp_all add: permutation_of_list_def)

lemma eval_inverse_permutation_of_list [simp]:
  inverse_permutation_of_list [] x = x
  x = x'  $\Rightarrow$  inverse_permutation_of_list ((y,x')#xs) x = y
  x  $\neq$  x'  $\Rightarrow$  inverse_permutation_of_list ((y',x')#xs) x = inverse_permutation_of_list
  xs x
  by (simp_all add: inverse_permutation_of_list.simps)

lemma permutation_of_list_id: x  $\notin$  set (map fst xs)  $\Rightarrow$  permutation_of_list xs
x = x
  by (induct xs) (auto simp: permutation_of_list_Cons)

lemma permutation_of_list_unique':
  distinct (map fst xs)  $\Rightarrow$  (x, y)  $\in$  set xs  $\Rightarrow$  permutation_of_list xs x = y
  by (induct xs) (force simp: permutation_of_list_Cons)+

lemma permutation_of_list_unique:
  list_permutes xs A  $\Rightarrow$  (x, y)  $\in$  set xs  $\Rightarrow$  permutation_of_list xs x = y
  by (intro permutation_of_list_unique') (simp_all add: list_permutes_def)

lemma inverse_permutation_of_list_id:
  x  $\notin$  set (map snd xs)  $\Rightarrow$  inverse_permutation_of_list xs x = x
  by (induct xs) auto

lemma inverse_permutation_of_list_unique':
  distinct (map snd xs)  $\Rightarrow$  (x, y)  $\in$  set xs  $\Rightarrow$  inverse_permutation_of_list xs y
  = x
  by (induct xs) (force simp: inverse_permutation_of_list.simps(2))+

lemma inverse_permutation_of_list_unique:
  list_permutes xs A  $\Rightarrow$  (x,y)  $\in$  set xs  $\Rightarrow$  inverse_permutation_of_list xs y = x
  by (intro inverse_permutation_of_list_unique') (simp_all add: list_permutes_def)

lemma inverse_permutation_of_list_correct:
  fixes A :: 'a set
  assumes list_permutes xs A
  shows inverse_permutation_of_list xs = inv (permutation_of_list xs)
proof (rule ext, rule sym, subst permutes_inv_eq)
  from assms show permutation_of_list xs permutes A
    by simp
  show permutation_of_list xs (inverse_permutation_of_list xs x) = x for x
  proof (cases x  $\in$  set (map snd xs))
    case True

```

```

then obtain y where (y, x) ∈ set xs by auto
with assms show ?thesis
  by (simp add: inverse_permutation_of_list_unique permutation_of_list_unique)
next
  case False
  with assms show ?thesis
    by (auto simp: list_permutes_def inverse_permutation_of_list_id permutation_of_list_id)
  qed
qed
qed

end

```

4 Permutated Lists

```

theory List_Permutation
imports Permutations
begin

```

Note that multisets already provide the notion of permuted list and hence this theory mostly echoes material already logically present in theory *Permutations*; it should be seldom needed.

4.1 An existing notion

```

abbreviation (input) perm :: "'a list ⇒ 'a list ⇒ bool" (infixr <~~> 50)
  where <xs <~~> ys ≡ mset xs = mset ys

```

4.2 Nontrivial conclusions

```

proposition perm_swap:
  <xs[i := xs ! j, j := xs ! i] <~~> xs>
  if <i < length xs> <j < length xs>
  using that by (simp add: mset_swap)

proposition mset_le_perm_append: mset xs ⊆# mset ys ↔ (∃ zs. xs @ zs <~~> ys)
  by (auto simp add: mset_subset_eq_exists_conv ex_mset dest: sym)

proposition perm_set_eq: xs <~~> ys ⇒ set xs = set ys
  by (rule mset_eq_setD) simp

proposition perm_distinct_iff: xs <~~> ys ⇒ distinct xs ↔ distinct ys
  by (rule mset_eq_imp_distinct_iff) simp

theorem eq_set_perm_remdups: set xs = set ys ⇒ remdups xs <~~> remdups ys
  by (simp add: set_eq_iff_mset_remdups_eq)

```

```

proposition perm_remdups_iff_eq_set: remdups x  $\sim\sim$  remdups y  $\longleftrightarrow$  set x
= set y
by (simp add: set_eq_iff_mset_remdups_eq)

theorem permutation_Ex_bij:
assumes xs  $\sim\sim$  ys
shows  $\exists f. \text{bij\_betw } f \{.. <\text{length } xs\} \{.. <\text{length } ys\} \wedge (\forall i < \text{length } xs. xs ! i = ys ! (f i))$ 
proof -
  from assms have ⟨mset xs = mset ys⟩ ⟨length xs = length ys⟩
  by (auto simp add: dest: mset_eq_length)
  from ⟨mset xs = mset ys⟩ obtain p where ⟨p permutes {.. <length ys}⟩ ⟨permute_list p ys = xs⟩
  by (rule mset_eq_permutation)
  then have ⟨bij_betw p {.. <length xs} {.. <length ys}⟩
  by (simp add: length_xs = length_ys permutes_imp_bij)
  moreover have ⟨ $\forall i < \text{length } xs. xs ! i = ys ! (p i)using ⟨permute_list p ys = xs⟩ ⟨length xs = length ys⟩ ⟨p permutes {.. <length ys}⟩ permute_list_nth
  by auto
  ultimately show ?thesis
  by blast
qed$ 
```

```

proposition perm_finite: finite {B. B  $\sim\sim$  A}
using mset_eq_finite by auto

```

4.3 Trivial conclusions:

```

proposition perm_empty_imp: []  $\sim\sim$  ys  $\implies$  ys = []
by simp

```

This more general theorem is easier to understand!

```

proposition perm_length: xs  $\sim\sim$  ys  $\implies$  length xs = length ys
by (rule mset_eq_length) simp

```

```

proposition perm_sym: xs  $\sim\sim$  ys  $\implies$  ys  $\sim\sim$  xs
by simp

```

We can insert the head anywhere in the list.

```

proposition perm_append_Cons: a # xs @ ys  $\sim\sim$  xs @ a # ys
by simp

```

```

proposition perm_append_swap: xs @ ys  $\sim\sim$  ys @ xs
by simp

```

```

proposition perm_append_single: a # xs  $\sim\sim$  xs @ [a]
by simp

```

```

proposition perm_rev: rev xs <~~> xs
  by simp

proposition perm_append1: xs <~~> ys  $\implies$  l @ xs <~~> l @ ys
  by simp

proposition perm_append2: xs <~~> ys  $\implies$  xs @ l <~~> ys @ l
  by simp

proposition perm_empty [iff]: [] <~~> xs  $\longleftrightarrow$  xs = []
  by simp

proposition perm_empty2 [iff]: xs <~~> []  $\longleftrightarrow$  xs = []
  by simp

proposition perm_sing_imp: ys <~~> xs  $\implies$  xs = [y]  $\implies$  ys = [y]
  by simp

proposition perm_sing_eq [iff]: ys <~~> [y]  $\longleftrightarrow$  ys = [y]
  by simp

proposition perm_sing_eq2 [iff]: [y] <~~> ys  $\longleftrightarrow$  ys = [y]
  by simp

proposition perm_remove: x  $\in$  set ys  $\implies$  ys <~~> x # remove1 x ys
  by simp

```

Congruence rule

```

proposition perm_remove_perm: xs <~~> ys  $\implies$  remove1 z xs <~~> remove1 z ys
  by simp

proposition remove_hd [simp]: remove1 z (z # xs) = xs
  by simp

proposition cons_perm_imp_perm: z # xs <~~> z # ys  $\implies$  xs <~~> ys
  by simp

proposition cons_perm_eq [simp]: z#xs <~~> z#ys  $\longleftrightarrow$  xs <~~> ys
  by simp

proposition append_perm_imp_perm: zs @ xs <~~> zs @ ys  $\implies$  xs <~~> ys
  by simp

proposition perm_append1_eq [iff]: zs @ xs <~~> zs @ ys  $\longleftrightarrow$  xs <~~> ys
  by simp

proposition perm_append2_eq [iff]: xs @ zs <~~> ys @ zs  $\longleftrightarrow$  xs <~~> ys
  by simp

```

```
end
```

5 Permutations of a Multiset

```
theory Multiset_Permutations
imports
  Complex_Main
  Permutations
begin

lemma mset_tl:  $xs \neq [] \Rightarrow mset (tl xs) = mset xs - \{\#hd xs\}$ 
  by (cases xs) simp_all

lemma mset_set_image_inj:
  assumes inj_on f A
  shows mset_set (f ` A) = image_mset f (mset_set A)
proof (cases finite A)
  case True
  from this and assms show ?thesis by (induction A) auto
qed (insert assms, simp add: finite_image_iff)

lemma multiset_remove_induct [case_names empty remove]:
  assumes P {} A ≠ {} ⇒ (A x. x ∈ A ⇒ P (A - {#x})) ⇒ P A
  shows P A
proof (induction A rule: full_multiset_induct)
  case (less A)
  hence IH: P B if B ⊂ A for B using that by blast
  show ?case
  proof (cases A = {})
    case True
    thus ?thesis by (simp add: assms)
  next
    case False
    hence P (A - {#x}) if x ∈ A for x
      using that by (intro IH) (simp add: mset_subset_diff_self)
      from False and this show P A by (rule assms)
  qed
qed

lemma map_list_bind: map g (List.bind xs f) = List.bind xs (map g ∘ f)
  by (simp add: List.bind_def map_concat)

lemma mset_eq_mset_set_imp_distinct:
  finite A ⇒ mset_set A = mset xs ⇒ distinct xs
proof (induction xs arbitrary: A)
  case (Cons x xs A)
```

```

from Cons.prems(2) have x ∈# mset_set A by simp
with Cons.prems(1) have [simp]: x ∈ A by simp
from Cons.prems have x ∉# mset_set (A - {x}) by simp
also from Cons.prems have mset_set (A - {x}) = mset_set A - {#x#}
  by (subst mset_set_Diff) simp_all
also have mset_set A = mset (x#xs) by (simp add: Cons.prems)
also have ... - {#x#} = mset xs by simp
finally have [simp]: x ∉ set xs by (simp add: in_multiset_in_set)
  from Cons.prems show ?case by (auto intro!: Cons.IH[of A - {x}] simp:
  mset_set_Diff)
qed simp_all

```

5.1 Permutations of a multiset

```

definition permutations_of_multiset :: 'a multiset ⇒ 'a list set where
  permutations_of_multiset A = {xs. mset xs = A}

lemma permutations_of_multisetI: mset xs = A ⇒ xs ∈ permutations_of_multiset A
  by (simp add: permutations_of_multiset_def)

lemma permutations_of_multisetD: xs ∈ permutations_of_multiset A ⇒ mset xs = A
  by (simp add: permutations_of_multiset_def)

lemma permutations_of_multiset_Cons_iff:
  x # xs ∈ permutations_of_multiset A ↔ x ∈# A ∧ xs ∈ permutations_of_multiset (A - {#x#})
  by (auto simp: permutations_of_multiset_def)

lemma permutations_of_multiset_empty [simp]: permutations_of_multiset {#} = {}
  unfolding permutations_of_multiset_def by simp

lemma permutations_of_multiset_nonempty:
  assumes nonempty: A ≠ {}
  shows permutations_of_multiset A =
    (⋃ x ∈ set_mset A. ((#) x) ` permutations_of_multiset (A - {#x#}))
  (is _ = ?rhs)
  proof safe
    fix xs assume xs ∈ permutations_of_multiset A
    hence mset_xs: mset xs = A by (simp add: permutations_of_multiset_def)
    hence xs ≠ [] by (auto simp: nonempty)
    then obtain x xs' where xs: xs = x # xs' by (cases xs) simp_all
    with mset_xs have x ∈ set_mset A xs' ∈ permutations_of_multiset (A - {#x#})
      by (auto simp: permutations_of_multiset_def)
    with xs show xs ∈ ?rhs by auto
  qed (auto simp: permutations_of_multiset_def)

```

```

lemma permutations_of_multiset_singleton [simp]: permutations_of_multiset {#x#}
= {[x]}
by (simp add: permutations_of_multiset_nonempty)

lemma permutations_of_multiset_doubleton:
permutations_of_multiset {[#x,y#]} = {[x,y], [y,x]}
by (simp add: permutations_of_multiset_nonempty insert_commute)

lemma rev_permutations_of_multiset [simp]:
rev ` permutations_of_multiset A = permutations_of_multiset A
proof
have rev ` rev ` permutations_of_multiset A ⊆ rev ` permutations_of_multiset A
unfold permutations_of_multiset_def by auto
also have rev ` rev ` permutations_of_multiset A = permutations_of_multiset A
by (simp add: image_image)
finally show permutations_of_multiset A ⊆ rev ` permutations_of_multiset A
.
next
show rev ` permutations_of_multiset A ⊆ permutations_of_multiset A
unfold permutations_of_multiset_def by auto
qed

lemma length_finite_permutations_of_multiset:
xs ∈ permutations_of_multiset A ⇒ length xs = size A
by (auto simp: permutations_of_multiset_def)

lemma permutations_of_multiset_lists: permutations_of_multiset A ⊆ lists (set_mset A)
by (auto simp: permutations_of_multiset_def)

lemma finite_permutations_of_multiset [simp]: finite (permutations_of_multiset A)
proof (rule finite_subset)
show permutations_of_multiset A ⊆ {xs. set xs ⊆ set_mset A ∧ length xs = size A}
by (auto simp: permutations_of_multiset_def)
show finite {xs. set xs ⊆ set_mset A ∧ length xs = size A}
by (rule finite_lists_length_eq) simp_all
qed

lemma permutations_of_multiset_not_empty [simp]: permutations_of_multiset A ≠ {}
proof -
from ex_mset[of A] obtain xs where mset xs = A ..
thus ?thesis by (auto simp: permutations_of_multiset_def)
qed

```

```

lemma permutations_of_multiset_image:
  permutations_of_multiset (image_mset f A) = map f ` permutations_of_multiset
  A
proof safe
  fix xs assume A: xs ∈ permutations_of_multiset (image_mset f A)
  from ex_mset[of A] obtain ys where ys: mset ys = A ..
  with A have mset xs = mset (map f ys)
  by (simp add: permutations_of_multiset_def)
  then obtain σ where σ: σ permutes {..by (rule mset_eq_permutation)
  with ys have xs = map f (permute_list σ ys)
  by (simp add: permute_list_map)
  moreover from σ ys have permute_list σ ys ∈ permutations_of_multiset A
  by (simp add: permutations_of_multiset_def)
  ultimately show xs ∈ map f ` permutations_of_multiset A by blast
qed (auto simp: permutations_of_multiset_def)

```

5.2 Cardinality of permutations

In this section, we prove some basic facts about the number of permutations of a multiset.

```

context
begin

```

```

private lemma multiset_prod_fact_insert:
  ( $\prod_{y \in \text{set\_mset } (A + \{\#x\})} \text{fact} (\text{count } (A + \{\#x\}) y)$ ) =
  ( $\text{count } A x + 1$ ) * ( $\prod_{y \in \text{set\_mset } A} \text{fact} (\text{count } A y)$ )
proof -
  have ( $\prod_{y \in \text{set\_mset } (A + \{\#x\})} \text{fact} (\text{count } (A + \{\#x\}) y)$ ) =
  ( $\prod_{y \in \text{set\_mset } (A + \{\#x\})} (\text{if } y = x \text{ then } \text{count } A x + 1 \text{ else } 1) * \text{fact} (\text{count } A y)$ )
  by (intro prod.cong) simp_all
  also have ... = ( $\text{count } A x + 1$ ) * ( $\prod_{y \in \text{set\_mset } (A + \{\#x\})} \text{fact} (\text{count } A y)$ )
  by (simp add: prod.distrib)
  also have ( $\prod_{y \in \text{set\_mset } (A + \{\#x\})} \text{fact} (\text{count } A y)$ ) = ( $\prod_{y \in \text{set\_mset } A} \text{fact} (\text{count } A y)$ )
  by (intro prod.mono_neutral_right) (auto simp: not_in_if)
  finally show ?thesis .
qed

```

```

private lemma multiset_prod_fact_remove:
   $x \in \# A \implies (\prod_{y \in \text{set\_mset } A} \text{fact} (\text{count } A y)) =$ 
   $\text{count } A x * (\prod_{y \in \text{set\_mset } (A - \{\#x\})} \text{fact} (\text{count } (A - \{\#x\}) y))$ 
  using multiset_prod_fact_insert[of A - {#x#} x] by simp

```

```

lemma card_permutations_of_multiset_aux:
  card (permutations_of_multiset A) * (Π x∈set_mset A. fact (count A x)) = fact
  (size A)
proof (induction A rule: multiset_remove_induct)
  case (remove A)
  have card (permutations_of_multiset A) =
    card (UN x∈set_mset A. permutations_of_multiset (A - {#x#}))
    by (simp add: permutations_of_multiset_nonempty_remove.hyps)
  also have ... = (Σ x∈set_mset A. card (permutations_of_multiset (A - {#x#})))
    by (subst card_UN_disjoint) (auto simp: card_image)
  also have ... * (Π x∈set_mset A. fact (count A x)) =
    (Σ x∈set_mset A. card (permutations_of_multiset (A - {#x#}))) *
    (Π y∈set_mset A. fact (count A y))
    by (subst sum_distrib_right) simp_all
  also have ... = (Σ x∈set_mset A. count A x * fact (size A - 1))
  proof (intro sum.cong refl)
    fix x assume x: x ∈# A
    have card (permutations_of_multiset (A - {#x#})) * (Π y∈set_mset A. fact
    (count A y)) =
      count A x * (card (permutations_of_multiset (A - {#x#}))) *
      (Π y∈set_mset (A - {#x#}). fact (count (A - {#x#}) y)) (is ?lhs
    = _)
      by (subst multiset_prod_fact_remove[OF x]) simp_all
      also note remove.IH[OF x]
      also from x have size (A - {#x#}) = size A - 1 by (simp add: size_Diff_submset)
      finally show ?lhs = count A x * fact (size A - 1) .
  qed
  also have (Σ x∈set_mset A. count A x * fact (size A - 1)) =
    size A * fact (size A - 1)
    by (simp add: sum_distrib_right size_multiset_overloaded_eq)
  also from remove.hyps have ... = fact (size A)
    by (cases size A) auto
    finally show ?case .
qed simp_all

theorem card_permutations_of_multiset:
  card (permutations_of_multiset A) = fact (size A) div (Π x∈set_mset A. fact
  (count A x))
  (Π x∈set_mset A. fact (count A x) :: nat) dvd fact (size A)
  by (simp_all flip: card_permutations_of_multiset_aux[of A])

lemma card_permutations_of_multiset_insert_aux:
  card (permutations_of_multiset (A + {#x#})) * (count A x + 1) =
  (size A + 1) * card (permutations_of_multiset A)
proof -
  note card_permutations_of_multiset_aux[of A + {#x#}]
  also have fact (size (A + {#x#})) = (size A + 1) * fact (size A) by simp
  also note multiset_prod_fact_insert[of A x]
  also note card_permutations_of_multiset_aux[of A, symmetric]

```

```

finally have card (permutations_of_multiset (A + {#x#})) * (count A x + 1)
*
  
$$(\prod y \in \text{set\_mset } A. \text{fact} (\text{count } A \ y)) =$$

  
$$(\text{size } A + 1) * \text{card} (\text{permutations\_of\_multiset } A) *$$

  
$$(\prod x \in \text{set\_mset } A. \text{fact} (\text{count } A \ x)) \text{ by } (\text{simp only: mult\_ac})$$

thus ?thesis by (subst (asm) mult_right_cancel) simp_all
qed

lemma card_permutations_of_multiset_remove_aux:
assumes x ∈# A
shows card (permutations_of_multiset A) * count A x =
  size A * card (permutations_of_multiset (A - {#x#}))
proof -
  from assms have A: A - {#x#} + {#x#} = A by simp
  from assms have B: size A = size (A - {#x#}) + 1
  by (subst A [symmetric], subst size_union) simp
  show ?thesis
  using card_permutations_of_multiset_insert_aux[of A - {#x#} x, unfolded
A] assms
  by (simp add: B)
qed

lemma real_card_permutations_of_multiset_remove:
assumes x ∈# A
shows real (card (permutations_of_multiset (A - {#x#}))) =
  real (card (permutations_of_multiset A) * count A x) / real (size A)
using assms by (subst card_permutations_of_multiset_remove_aux[OF assms])
auto

lemma real_card_permutations_of_multiset_remove':
assumes x ∈# A
shows real (card (permutations_of_multiset A)) =
  real (size A * card (permutations_of_multiset (A - {#x#}))) / real
(count A x)
using assms by (subst card_permutations_of_multiset_remove_aux[OF assms,
symmetric]) simp

end

```

5.3 Permutations of a set

```

definition permutations_of_set :: 'a set ⇒ 'a list set where
  permutations_of_set A = {xs. set xs = A ∧ distinct xs}

lemma permutations_of_set_altdef:
  finite A ⇒ permutations_of_set A = permutations_of_multiset (mset_set A)
by (auto simp add: permutations_of_set_def permutations_of_multiset_def mset_set_set
in_multiset_in_set [symmetric] mset_eq_mset_set_imp_distinct)

```

```

lemma permutations_of_setI [intro]:
  assumes set xs = A distinct xs
  shows xs ∈ permutations_of_set A
  using assms unfolding permutations_of_set_def by simp

lemma permutations_of_setD:
  assumes xs ∈ permutations_of_set A
  shows set xs = A distinct xs
  using assms unfolding permutations_of_set_def by simp_all

lemma permutations_of_set_lists: permutations_of_set A ⊆ lists A
  unfolding permutations_of_set_def by auto

lemma permutations_of_set_empty [simp]: permutations_of_set {} = {}
  by (auto simp: permutations_of_set_def)

lemma UN_set_permutations_of_set [simp]:
  finite A  $\implies$  ( $\bigcup_{xs \in \text{permutations\_of\_set } A}$  set xs) = A
  using finite_distinct_list by (auto simp: permutations_of_set_def)

lemma permutations_of_set_infinite:
   $\neg$ finite A  $\implies$  permutations_of_set A = {}
  by (auto simp: permutations_of_set_def)

lemma permutations_of_set_nonempty:
  A  $\neq$  {}  $\implies$  permutations_of_set A =
  ( $\bigcup_{x \in A}$  (λxs. x # xs) ` permutations_of_set (A - {x}))
  by (cases finite A)
  (simp_all add: permutations_of_multiset_nonempty mset_set_empty_iff mset_set_Diff
  permutations_of_set_altdef permutations_of_set_infinite)

lemma permutations_of_set_singleton [simp]: permutations_of_set {x} = {[x]}
  by (subst permutations_of_set_nonempty) auto

lemma permutations_of_set_doubleton:
  x  $\neq$  y  $\implies$  permutations_of_set {x,y} = {[x,y], [y,x]}
  by (subst permutations_of_set_nonempty)
  (simp_all add: insert_Diff_if insert_commute)

lemma rev_permutations_of_set [simp]:
  rev ` permutations_of_set A = permutations_of_set A
  by (cases finite A) (simp_all add: permutations_of_set_altdef permutations_of_set_infinite)

lemma length_finite_permutations_of_set:
  xs ∈ permutations_of_set A  $\implies$  length xs = card A
  by (auto simp: permutations_of_set_def distinct_card)

```

```

lemma finite_permutations_of_set [simp]: finite (permutations_of_set A)
  by (cases finite A) (simp_all add: permutations_of_set_infinite permutations_of_set_altdef)

lemma permutations_of_set_empty_iff [simp]:
  permutations_of_set A = {}  $\longleftrightarrow$   $\neg$ finite A
  unfolding permutations_of_set_def using finite_distinct_list[of A] by auto

lemma card_permutations_of_set [simp]:
  finite A  $\implies$  card (permutations_of_set A) = fact (card A)
  by (simp add: permutations_of_set_altdef card_permutations_of_multiset del:
  One_nat_def)

lemma permutations_of_set_image_inj:
  assumes inj: inj_on f A
  shows permutations_of_set (f ` A) = map f ` permutations_of_set A
  by (cases finite A)
    (simp_all add: permutations_of_set_infinite permutations_of_set_altdef
    permutations_of_multiset_image mset_set_image_inj inj
    finite_image_iff)

lemma permutations_of_set_image_permutes:
   $\sigma$  permutes A  $\implies$  map  $\sigma$  ` permutations_of_set A = permutations_of_set A
  by (subst permutations_of_set_image_inj [symmetric])
    (simp_all add: permutes_inj_on permutes_image)

```

5.4 Code generation

First, we give code an implementation for permutations of lists.

```

declare length_remove1 [termination_simp]

fun permutations_of_listImpl where
  permutations_of_listImpl xs = (if xs = [] then [] else
    List.bind (remdups xs) (λx. map ((#) x) (permutations_of_listImpl (remove1
    x xs)))))

fun permutations_of_listImplAux where
  permutations_of_listImplAux acc xs = (if xs = [] then [acc] else
    List.bind (remdups xs) (λx. permutations_of_listImplAux (x#acc) (remove1
    x xs)))

declare permutations_of_listImplAux.simps [simp del]
declare permutations_of_listImpl.simps [simp del]

lemma permutations_of_listImpl_Nil [simp]:
  permutations_of_listImpl [] = []
  by (simp add: permutations_of_listImpl.simps)

lemma permutations_of_listImpl_nonempty:
  xs ≠ []  $\implies$  permutations_of_listImpl xs =

```

```

List.bind (remdups xs) (λx. map ((#) x) (permutations_of_listImpl (remove1
x xs)))
by (subst permutations_of_listImpl.simps) simp_all

lemma set_permutations_of_listImpl:
set (permutations_of_listImpl xs) = permutations_of_multiset (mset xs)
by (induction xs rule: permutations_of_listImpl.induct)
  (subst permutations_of_listImpl.simps,
  simp_all add: permutations_of_multiset_nonempty set_list_bind)

lemma distinct_permutations_of_listImpl:
distinct (permutations_of_listImpl xs)
by (induction xs rule: permutations_of_listImpl.induct,
  subst permutations_of_listImpl.simps)
  (auto intro!: distinct_list_bind simp: distinct_map o_def disjoint_family_on_def)

lemma permutations_of_listImpl_aux_correct':
permutations_of_listImpl_aux acc xs =
  map (λxs. rev xs @ acc) (permutations_of_listImpl xs)
by (induction acc xs rule: permutations_of_listImpl_aux.induct,
  subst permutations_of_listImpl_aux.simps, subst permutations_of_listImpl.simps)
  (auto simp: map_list_bind intro!: list_bind_cong)

lemma permutations_of_listImpl_aux_correct:
permutations_of_listImpl_aux [] xs = map rev (permutations_of_listImpl xs)
by (simp add: permutations_of_listImpl_aux_correct')

lemma distinct_permutations_of_listImpl_aux:
distinct (permutations_of_listImpl_aux acc xs)
by (simp add: permutations_of_listImpl_aux_correct' distinct_map
  distinct_permutations_of_listImpl_inj_on_def)

lemma set_permutations_of_listImpl_aux:
set (permutations_of_listImpl_aux [] xs) = permutations_of_multiset (mset
xs)
by (simp add: permutations_of_listImpl_aux_correct set_permutations_of_listImpl)

declare set_permutations_of_listImpl_aux [symmetric, code]

value [code] permutations_of_multiset {#1,2,3,4::int#}

```

Now we turn to permutations of sets. We define an auxiliary version with an accumulator to avoid having to map over the results.

```

function permutations_of_setAux where
  permutations_of_setAux acc A =
    (if ¬finite A then {} else if A = {} then {acc} else
     (Union x∈A. permutations_of_setAux (x#acc) (A - {x})))
  by auto
termination by (relation Wellfounded.measure (card o snd)) (simp_all add: card_gt_0_iff)

```

```

lemma permutations_of_set_aux_altdef:
  permutations_of_set_aux acc A = (λxs. rev xs @ acc) ` permutations_of_set A
proof (cases finite A)
  assume finite A
  thus ?thesis
  proof (induction A arbitrary: acc rule: finite_psubset_induct)
    case (psubset A acc)
    show ?case
    proof (cases A = {})
      case False
      note [simp del] = permutations_of_set_aux.simps
      from psubset.hyps False
      have permutations_of_set_aux acc A =
        (⋃ y∈A. permutations_of_set_aux (y#acc) (A - {y}))
      by (subst permutations_of_set_aux.simps) simp_all
      also have ... = (⋃ y∈A. (λxs. rev xs @ acc) ` (λxs. y # xs) ` permutations_of_set (A - {y}))
      apply (rule arg_cong [of __ Union], rule image_cong)
      apply (simp_all add: image_image)
      apply (subst psubset)
      apply auto
      done
      also from False have ... = (λxs. rev xs @ acc) ` permutations_of_set A
      by (subst (2) permutations_of_set_nonempty) (simp_all add: image_UN)
      finally show ?thesis .
    qed simp_all
  qed
  qed (simp_all add: permutations_of_set_infinite)

declare permutations_of_set_aux.simps [simp del]

```

```

lemma permutations_of_set_aux_correct:
  permutations_of_set_aux [] A = permutations_of_set A
  by (simp add: permutations_of_set_aux_altdef)

```

In another refinement step, we define a version on lists.

```

declare length_remove1 [termination_simp]

fun permutations_of_set_aux_list where
  permutations_of_set_aux_list acc xs =
    (if xs = [] then [acc] else
     List.bind xs (λx. permutations_of_set_aux_list (x#acc) (List.remove1 x
     xs)))

definition permutations_of_set_list where
  permutations_of_set_list xs = permutations_of_set_aux_list [] xs

declare permutations_of_set_aux_list.simps [simp del]

```

```

lemma permutations_of_set_aux_list_refine:
  assumes distinct xs
  shows set (permutations_of_set_aux_list acc xs) = permutations_of_set_aux
  acc (set xs)
  using assms
  by (induction acc xs rule: permutations_of_set_aux_list.induct)
    (subst permutations_of_set_aux_list.simps,
     subst permutations_of_set_aux.simps,
     simp_all add: set_list_bind)

The permutation lists contain no duplicates if the inputs contain no duplicates. Therefore, these functions can easily be used when working with a representation of sets by distinct lists. The same approach should generalise to any kind of set implementation that supports a monadic bind operation, and since the results are disjoint, merging should be cheap.

lemma distinct_permutations_of_set_aux_list:
  distinct xs  $\implies$  distinct (permutations_of_set_aux_list acc xs)
  by (induction acc xs rule: permutations_of_set_aux_list.induct)
    (subst permutations_of_set_aux_list.simps,
     auto intro!: distinct_list_bind simp: disjoint_family_on_def
     permutations_of_set_aux_list_refine permutations_of_set_aux_altdef)

lemma distinct_permutations_of_set_list:
  distinct xs  $\implies$  distinct (permutations_of_set_list xs)
  by (simp add: permutations_of_set_list_def distinct_permutations_of_set_aux_list)

lemma permutations_of_list:
  permutations_of_set (set xs) = set (permutations_of_set_list (remdups xs))
  by (simp add: permutations_of_set_aux_correct [symmetric]
  permutations_of_set_aux_list_refine permutations_of_set_list_def)

lemma permutations_of_list_code [code]:
  permutations_of_set (set xs) = set (permutations_of_set_list (remdups xs))
  permutations_of_set (List.coset xs) =
    Code.abort (STR "Permutation of set complement not supported")
    ( $\lambda$ _. permutations_of_set (List.coset xs))
  by (simp_all add: permutations_of_list)

value [code] permutations_of_set (set "abcd")

end

theory Cycles
imports
  HOL-Library.FuncSet
  Permutations
begin

```

6 Cycles

6.1 Definitions

```
abbreviation cycle :: 'a list ⇒ bool
  where cycle cs ≡ distinct cs

fun cycle_of_list :: 'a list ⇒ 'a ⇒ 'a
  where
    cycle_of_list (i # j # cs) = transpose i j ∘ cycle_of_list (j # cs)
    | cycle_of_list cs = id
```

6.2 Basic Properties

We start proving that the function derived from a cycle rotates its support list.

```
lemma id_outside_supp:
  assumes x ∉ set cs shows (cycle_of_list cs) x = x
  using assms by (induct cs rule: cycle_of_list.induct) (simp_all)

lemma permutation_of_cycle: permutation (cycle_of_list cs)
proof (induct cs rule: cycle_of_list.induct)
  case 1 thus ?case
    using permutation_compose[OF permutation_swap_id] unfolding comp_apply
    by simp
  qed simp_all

lemma cycle_permutes: (cycle_of_list cs) permutes (set cs)
  using permutation_bijection[OF permutation_of_cycle] id_outside_supp[of _ cs]
  by (simp add: bij_iff permutes_def)

theorem cyclic_rotation:
  assumes cycle cs shows map ((cycle_of_list cs) ^ n) cs = rotate n cs
proof -
  { have map (cycle_of_list cs) cs = rotate1 cs using assms(1)
    proof (induction cs rule: cycle_of_list.induct)
      case (1 i j cs)
      then have ⟨i ∉ set cs, j ∉ set cs⟩
        by auto
      then have ⟨map (Transposition.transpose i j) cs = cs⟩
        by (auto intro: map_idI simp add: transpose_eq_iff)
      show ?case
    proof (cases)
      assume cs = Nil thus ?thesis by simp
    next
      assume cs ≠ Nil hence ge_two: length (j # cs) ≥ 2
        using not_less by auto
      have map (cycle_of_list (i # j # cs)) (i # j # cs) =
```

```

map (transpose i j) (map (cycle_of_list (j # cs)) (i # j # cs)) by
simp
also have ... = map (transpose i j) (i # (rotate1 (j # cs)))
  by (metis 1.IH 1.prems distinct.simps(2) id_outside_supp list.simps(9))
also have ... = map (transpose i j) (i # (cs @ [j])) by simp
also have ... = j # (map (transpose i j) cs) @ [i] by simp
also have ... = j # cs @ [i]
  using `map (Transposition.transpose i j) cs = cs` by simp
also have ... = rotate1 (i # j # cs) by simp
finally show ?thesis .
qed
qed simp_all }
note cyclic_rotation' = this

show ?thesis
using cyclic_rotation' by (induct n) (auto, metis map_map rotate1_rotate_swap
rotate_map)
qed

corollary cycle_is_surj:
assumes cycle cs shows (cycle_of_list cs) ` (set cs) = (set cs)
using cyclic_rotation[OF assms, of Suc 0] by (simp add: image_set)

corollary cycle_is_id_root:
assumes cycle cs shows (cycle_of_list cs) ∼ (length cs) = id
proof -
have map ((cycle_of_list cs) ∼ (length cs)) cs = cs
  unfolding cyclic_rotation[OF assms] by simp
hence ((cycle_of_list cs) ∼ (length cs)) i = i if i ∈ set cs for i
  using that map_eq_conv by fastforce
moreover have ((cycle_of_list cs) ∼ n) i = i if i ∉ set cs for i n
  using id_outside_supp[OF that] by (induct n) (simp_all)
ultimately show ?thesis
  by fastforce
qed

corollary cycle_of_list_rotate_independent:
assumes cycle cs shows (cycle_of_list cs) = (cycle_of_list (rotate n cs))
proof -
{ fix cs :: 'a list assume cs: cycle cs
  have (cycle_of_list cs) = (cycle_of_list (rotate1 cs))
  proof -
    from cs have rotate1_cs: cycle (rotate1 cs) by simp
    hence map (cycle_of_list (rotate1 cs)) (rotate1 cs) = (rotate 2 cs)
      using cyclic_rotation[OF rotate1_cs, of 1] by (simp add: numeral_2_eq_2)
    moreover have map (cycle_of_list cs) (rotate1 cs) = (rotate 2 cs)
      using cyclic_rotation[OF cs]
    by (metis One_nat_def Suc_1 funpow.simps(2) id_apply map_map rotate0
rotate_Suc)
  qed
}

```

```

ultimately have (cycle_of_list cs) i = (cycle_of_list (rotate1 cs)) i if i ∈
set cs for i
  using that map_eq_conv unfolding sym[OF set_rotate1[of cs]] by fastforce

moreover have (cycle_of_list cs) i = (cycle_of_list (rotate1 cs)) i if i ∉
set cs for i
  using that by (simp add: id_outside_supp)
ultimately show (cycle_of_list cs) = (cycle_of_list (rotate1 cs))
  by blast
qed } note rotate1_lemma = this

show ?thesis
  using rotate1_lemma[of rotate n cs] by (induct n) (auto, metis assms dis-
tinct_rotate_rotate1_lemma)
qed

```

6.3 Conjugation of cycles

```

lemma conjugation_of_cycle:
  assumes cycle cs and bij p
  shows p ∘ (cycle_of_list cs) ∘ (inv p) = cycle_of_list (map p cs)
  using assms
proof (induction cs rule: cycle_of_list.induct)
  case (1 i j cs)
  have p ∘ cycle_of_list (i # j # cs) ∘ inv p =
    (p ∘ (transpose i j) ∘ inv p) ∘ (p ∘ cycle_of_list (j # cs) ∘ inv p)
    by (simp add: assms(2) bij_is_inj fun.map_comp)
  also have ... = (transpose (p i) (p j)) ∘ (p ∘ cycle_of_list (j # cs) ∘ inv p)
    using 1.prems(2) by (simp add: bij_inv_eq_iff transpose_apply_commute
    fun_eq_iff bij_betw_inv_into_left)
  finally have p ∘ cycle_of_list (i # j # cs) ∘ inv p =
    (transpose (p i) (p j)) ∘ (cycle_of_list (map p (j # cs)))
    using 1.IH 1.prems(1) assms(2) by fastforce
  thus ?case by (simp add: fun_eq_iff)
next
  case 2_1 thus ?case
    by (metis bij_is_surj comp_id cycle_of_list.simps(2) list.simps(8) surj_iff)
next
  case 2_2 thus ?case
    by (metis bij_is_surj comp_id cycle_of_list.simps(3) list.simps(8) list.simps(9)
    surj_iff)
qed

```

6.4 When Cycles Commute

```

lemma cycles_commute:
  assumes cycle p cycle q and set p ∩ set q = {}
  shows (cycle_of_list p) ∘ (cycle_of_list q) = (cycle_of_list q) ∘ (cycle_of_list
p)
proof

```

```

{ fix p :: 'a list and q :: 'a list and i :: 'a
  assume A: cycle p cycle q set p ∩ set q = {} i ∈ set p i ∉ set q
  have ((cycle_of_list p) ∘ (cycle_of_list q)) i =
    ((cycle_of_list q) ∘ (cycle_of_list p)) i
  proof -
    have ((cycle_of_list p) ∘ (cycle_of_list q)) i = (cycle_of_list p) i
    using id_outside_supp[OF A(5)] by simp
    also have ... = ((cycle_of_list q) ∘ (cycle_of_list p)) i
    using id_outside_supp[of (cycle_of_list p) i] cycle_is_surj[OF A(1)]
  A(3,4) by fastforce
  finally show ?thesis .
  qed } note aui_lemma = this

fix i consider i ∈ set p i ∉ set q | i ∈ set q i ∉ set p i ∉ set q
  using `set p ∩ set q = {}` by blast
  thus ((cycle_of_list p) ∘ (cycle_of_list q)) i = ((cycle_of_list q) ∘ (cycle_of_list p)) i
  proof cases
    case 1 thus ?thesis
      using aui_lemma[OF assms] by simp
    next
    case 2 thus ?thesis
      using aui_lemma[OF assms(2,1)] assms(3) by (simp add: ac_simps)
    next
    case 3 thus ?thesis
      by (simp add: id_outside_supp)
  qed
qed

```

6.5 Cycles from Permutations

6.5.1 Exponentiation of permutations

Some important properties of permutations before defining how to extract its cycles.

```

lemma permutation_funpow:
  assumes permutation p shows permutation (p ^ n)
  using assms by (induct n) (simp_all add: permutation_compose)

lemma permutes_funpow:
  assumes p permutes S shows (p ^ n) permutes S
  using assms by (induct n) (simp add: permutes_def, metis funpow_Suc_right
  permutes_compose)

lemma funpow_diff:
  assumes inj p and i ≤ j (p ^ i) a = (p ^ j) a shows (p ^ (j - i)) a = a
  proof -
    have (p ^ i) ((p ^ (j - i)) a) = (p ^ i) a
    using assms(2-3) by (metis (no_types) add_diff_inverse_nat funpow_add

```

```

not_le o_def)
  thus ?thesis
    unfolding inj_eq[OF inj_fn[OF assms(1)], of i] .
qed

lemma permutation_is_nilpotent:
  assumes permutation p obtains n where (p ^ n) = id and n > 0
proof -
  obtain S where finite S and p permutes S
    using assms unfolding permutation_permutes by blast
  hence ∃ n. (p ^ n) = id ∧ n > 0
  proof (induct S arbitrary: p)
    case empty thus ?case
      using id_funpow[of 1] unfolding permutes_empty by blast
    next
      case (insert s S)
      have (λ n. (p ^ n) s) ` UNIV ⊆ (insert s S)
        using permutes_in_image[OF permutes_funpow[OF insert(4)], of _ s] by
      auto
      hence ¬ inj_on (λ n. (p ^ n) s) UNIV
        using insert(1) infinite_iff_countable_subset unfolding sym[OF finite_insert,
      of S s] by metis
      then obtain i j where ij: i < j (p ^ i) s = (p ^ j) s
        unfolding inj_on_def by (metis nat_neq_iff)
      hence (p ^ (j - i)) s = s
        using funpow_diff[OF permutes_inj[OF insert(4)]] le_eq_less_or_eq by
      blast
      hence p ^ (j - i) permutes S
        using permutes_superset[OF permutes_funpow[OF insert(4), of j - i], of S]
      by auto
      then obtain n where n: ((p ^ (j - i)) ^ n) = id n > 0
        using insert(3) by blast
      thus ?case
        using ij(1) nat_0_less_mult_iff_zero_less_diff unfolding funpow_mult by
      metis
      qed
      thus thesis
        using that by blast
  qed

lemma permutation_is_nilpotent':
  assumes permutation p obtains n where (p ^ n) = id and n > m
proof -
  obtain n where (p ^ n) = id and n > 0
    using permutation_is_nilpotent[OF assms] by blast
  then obtain k where n * k > m
    by (metis dividend_less_times_div_multSuc_right)
  from ⟨(p ^ n) = id⟩ have p ^ (n * k) = id
    by (induct k) (simp, metis funpow_mult id_funpow)

```

```

with ⟨n * k > m⟩ show thesis
  using that by blast
qed

```

6.5.2 Extraction of cycles from permutations

```

definition least_power :: ('a ⇒ 'a) ⇒ 'a ⇒ nat
  where least_power f x = (LEAST n. (f ^ n) x = x ∧ n > 0)

```

```

abbreviation support :: ('a ⇒ 'a) ⇒ 'a ⇒ 'a list
  where support p x ≡ map (λi. (p ^ i) x) [0..< (least_power p x)]

```

```

lemma least_powerI:
  assumes (f ^ n) x = x and n > 0
  shows (f ^ (least_power f x)) x = x and least_power f x > 0
  using assms unfolding least_power_def by (metis (mono_tags, lifting) LeastI)+

```

```

lemma least_power_le:
  assumes (f ^ n) x = x and n > 0 shows least_power f x ≤ n
  using assms unfolding least_power_def by (simp add: Least_le)

```

```

lemma least_power_of_permutation:
  assumes permutation p shows (p ^ (least_power p a)) a = a and least_power
  p a > 0
  using permutation_is_nilpotent[OF assms] least_powerI by (metis id_apply)+

```

```

lemma least_power_gt_one:
  assumes permutation p and p a ≠ a shows least_power p a > Suc 0
  using least_power_of_permutation[OF assms(1)] assms(2)
  by (metis Suc_lessI funpow.simps(2) funpow_simps_right(1) o_id)

```

```

lemma least_power_minimal:
  assumes (p ^ n) a = a shows (least_power p a) dvd n
  proof (cases n = 0, simp)
    let ?lpow = least_power p

    assume n ≠ 0 then have n > 0 by simp
    hence (p ^ (?lpow a)) a = a and least_power p a > 0
    using assms unfolding least_power_def by (metis (mono_tags, lifting) LeastI)+
    hence aux_lemma: (p ^ ((?lpow a) * k)) a = a for k :: nat
    by (induct k) (simp_all add: funpow_add)
  
```

```

have (p ^ (n mod ?lpow a)) ((p ^ (n - (n mod ?lpow a))) a) = (p ^ n) a
  by (metis add_diff_inverse_nat funpow_add mod_less_eq_dividend not_less
  o_apply)
  with ⟨(p ^ n) a = a⟩ have (p ^ (n mod ?lpow a)) a = a
  using aux_lemma by (simp add: minus_mod_eq_mult_div)
  hence ?lpow a ≤ n mod ?lpow a if n mod ?lpow a > 0

```

```

using least_power_le[OF _ that, of p a] by simp
with ‹least_power p a > 0› show (least_power p a) dvd n
  using mod_less_divisor not_le by blast
qed

lemma least_power_dvd:
  assumes permutation p shows (least_power p a) dvd n  $\longleftrightarrow$  (p  $\wedge\wedge$  n) a = a
proof
  show (p  $\wedge\wedge$  n) a = a  $\Longrightarrow$  (least_power p a) dvd n
    using least_power_minimal[of _ p] by simp
next
  have (p  $\wedge\wedge$  ((least_power p a) * k)) a = a for k :: nat
    using least_power_of_permutation(1)[OF assms(1)] by (induct k) (simp_all
add: funpow_add)
    thus (least_power p a) dvd n  $\Longrightarrow$  (p  $\wedge\wedge$  n) a = a by blast
qed

theorem cycle_of_permutation:
  assumes permutation p shows cycle (support p a)
proof -
  have (least_power p a) dvd (j - i) if i ≤ j j < least_power p a and (p  $\wedge\wedge$  i) a
  = (p  $\wedge\wedge$  j) a for i j
    using funpow_diff[OF bij_is_inj that(1,3)] assms by (simp add: permutation
least_power_dvd)
  moreover have i = j if i ≤ j j < least_power p a and (least_power p a) dvd
  (j - i) for i j
    using that le_eq_less_or_eq_nat_dvd_not_less by auto
  ultimately have inj_on (λi. (p  $\wedge\wedge$  i) a) {.. < (least_power p a)}
    unfolding inj_on_def by (metis le_cases lessThan_iff)
  thus ?thesis
    by (simp add: atLeast_up_to_distinct_map)
qed

```

6.6 Decomposition on Cycles

We show that a permutation can be decomposed on cycles

6.6.1 Preliminaries

```

lemma support_set:
  assumes permutation p shows set (support p a) = range (λi. (p  $\wedge\wedge$  i) a)
proof
  show set (support p a) ⊆ range (λi. (p  $\wedge\wedge$  i) a)
    by auto
next
  show range (λi. (p  $\wedge\wedge$  i) a) ⊆ set (support p a)
  proof (auto)
    fix i

```

```

  have  $(p \wedge i) a = (p \wedge (i \bmod (\text{least\_power } p a))) ((p \wedge (i - (i \bmod (\text{least\_power } p a)))) a)$ 
    by (metis add_diff_inverse_nat funpow_add mod_less_eq_dividend not_le o_apply)
  also have ... =  $(p \wedge (i \bmod (\text{least\_power } p a))) a$ 
    using least_power_dvd[OF assms] by (metis dvd_minus_mod)
  also have ...  $\in (\lambda i. (p \wedge i) a) ' \{0..< (\text{least\_power } p a)\}$ 
    using least_power_of_permutation(2)[OF assms] by fastforce
  finally show  $(p \wedge i) a \in (\lambda i. (p \wedge i) a) ' \{0..< (\text{least\_power } p a)\}$  .
qed
qed

lemma disjoint_support:
  assumes permutation p shows disjoint (range (λa. set (support p a))) (is disjoint ?A)
  proof (rule disjointI)
    { fix i j a b
      assume set (support p a) ∩ set (support p b) ≠ {} have set (support p a) ⊆ set (support p b)
        unfolding support_set[OF assms]
      proof (auto)
        from ⟨set (support p a) ∩ set (support p b) ≠ {}⟩
        obtain i j where ij:  $(p \wedge i) a = (p \wedge j) b$ 
          by auto
      fix k
      have  $(p \wedge k) a = (p \wedge (k + (\text{least\_power } p a) * l)) a$  for l
        using least_power_dvd[OF assms] by (induct l) (simp, metis dvd_triv_left funpow_add o_def)
      then obtain m where m ≥ i and  $(p \wedge m) a = (p \wedge k) a$ 
        using least_power_of_permutation(2)[OF assms]
        by (metis dividend_less_times_div le_eq_less_or_eq mult_Suc_right trans_less_add2)
      hence  $(p \wedge m) a = (p \wedge (m - i)) ((p \wedge i) a)$ 
        by (metis Nat.le_imp_diff_is_add funpow_add o_apply)
      with ⟨ $(p \wedge m) a = (p \wedge k) a$ ⟩ have  $(p \wedge k) a = (p \wedge ((m - i) + j)) b$ 
        unfolding ij by (simp add: funpow_add)
      thus  $(p \wedge k) a \in \text{range } (\lambda i. (p \wedge i) b)$ 
        by blast
    qed } note aux_lemma = this

fix supp_a supp_b
assume supp_a ∈ ?A and supp_b ∈ ?A
then obtain a b where a: supp_a = set (support p a) and b: supp_b = set (support p b)
  by auto
assume supp_a ≠ supp_b thus supp_a ∩ supp_b = {}
  using aux_lemma unfolding a b by blast
qed

```

```

lemma disjoint_support':
  assumes permutation p
  shows set (support p a) ∩ set (support p b) = {} ⟷ a ∉ set (support p b)
proof -
  have a ∈ set (support p a)
  using least_power_of_permutation(2)[OF assms] by force
  show ?thesis
  proof
    assume set (support p a) ∩ set (support p b) = {}
    with ‹a ∈ set (support p a)› show a ∉ set (support p b)
    by blast
  next
    assume a ∉ set (support p b) show set (support p a) ∩ set (support p b) = {}
    proof (rule ccontr)
      assume set (support p a) ∩ set (support p b) ≠ {}
      hence set (support p a) = set (support p b)
      using disjoint_support[OF assms] by (meson UNIV_I disjoint_def image_iff)
      with ‹a ∈ set (support p a)› and ‹a ∉ set (support p b)› show False
      by simp
    qed
    qed
  qed

lemma support_coverage:
  assumes permutation p shows ∪ { set (support p a) | a. p a ≠ a } = { a. p a ≠ a }
proof
  show { a. p a ≠ a } ⊆ ∪ { set (support p a) | a. p a ≠ a }
  proof
    fix a assume a ∈ { a. p a ≠ a }
    have a ∈ set (support p a)
    using least_power_of_permutation(2)[OF assms, of a] by force
    with ‹a ∈ { a. p a ≠ a }› show a ∈ ∪ { set (support p a) | a. p a ≠ a }
    by blast
  qed
  next
  show ∪ { set (support p a) | a. p a ≠ a } ⊆ { a. p a ≠ a }
  proof
    fix b assume b ∈ ∪ { set (support p a) | a. p a ≠ a }
    then obtain a i where p a ≠ a and (p ^ i) a = b
    by auto
    have p a = a if (p ^ i) a = (p ^ Suc i) a
    using funpow_diff[OF bij_is_inj _ that] assms unfolding permutation by
    simp
    with ‹p a ≠ a› and ‹(p ^ i) a = b› show b ∈ { a. p a ≠ a }
    by auto
  qed

```

qed

theorem *cycle_restrict*:

assumes *permutation* p and $b \in \text{set}(\text{support } p \ a)$ shows $p \ b = (\text{cycle_of_list}(\text{support } p \ a)) \ b$

proof –

note *least_power_props* [simp] = *least_power_of_permutation*[OF *assms*(1)]

have *map* (*cycle_of_list* (*support* $p \ a$)) (*support* $p \ a$) = *rotate1* (*support* $p \ a$)

using *cyclic_rotation*[OF *cycle_of_permutation*[OF *assms*(1)], of 1 a] by *simp*
 hence *map* (*cycle_of_list* (*support* $p \ a$)) (*support* $p \ a$) = *tl* (*support* $p \ a$) @ [a]

by (simp add: *hd_map rotate1_hd_tl*)

also have ... = *map* p (*support* $p \ a$)

proof (rule *nth_equalityI*, *auto*)

fix i assume $i < \text{least_power } p \ a$ show (*tl* (*support* $p \ a$) @ [a]) ! $i = p \ ((p \ ^\wedge i) \ a)$

proof (cases)

assume $i: i = \text{least_power } p \ a - 1$

hence (*tl* (*support* $p \ a$) @ [a]) ! $i = a$

by (metis (no_types, lifting) *diff_zero length_map length_tl length_up nth_append_length*)

also have ... = $p \ ((p \ ^\wedge i) \ a)$

by (metis (mono_tags, opaque_lifting) *least_power_props i Suc_diff_1 funpow.simps_right(2) funpow_swap1 o_apply*)

finally show ?thesis .

next

assume $i \neq \text{least_power } p \ a - 1$

with $\langle i < \text{least_power } p \ a \rangle$ have $i < \text{least_power } p \ a - 1$

by *simp*

hence (*tl* (*support* $p \ a$) @ [a]) ! $i = (p \ ^\wedge (\text{Suc } i)) \ a$

by (metis *One_nat_def Suc_eq_plus1 add.commute length_map length_up map_tl nth_append nth_map_up tl_up*)

thus ?thesis

by *simp*

qed

qed

finally have *map* (*cycle_of_list* (*support* $p \ a$)) (*support* $p \ a$) = *map* p (*support* $p \ a$) .

thus ?thesis

using *assms*(2) by *auto*

qed

6.6.2 Decomposition

inductive *cycle_decomp* :: ' a set \Rightarrow (' $a \Rightarrow$ ' a) \Rightarrow bool

where

empty: *cycle_decomp* {} *id*

| *comp*: $\llbracket \text{cycle_decomp } I \ p; \text{cycle } cs; \text{set } cs \cap I = \{\} \rrbracket \Rightarrow$
 $\text{cycle_decomp } (\text{set } cs \cup I) ((\text{cycle_of_list } cs) \circ p)$

```

lemma semidecomposition:
  assumes  $p$  permutes  $S$  and finite  $S$ 
  shows  $(\lambda y. \text{if } y \in (S - \text{set}(\text{support } p a)) \text{ then } p y \text{ else } y)$  permutes  $(S - \text{set}(\text{support } p a))$ 
  proof (rule bij_imp_permutes)
    show  $(\text{if } b \in (S - \text{set}(\text{support } p a)) \text{ then } p b \text{ else } b) = b$  if  $b \notin S - \text{set}(\text{support } p a)$  for  $b$ 
      using that by auto
  next
    have is_permutation: permutation  $p$ 
    using assms unfolding permutation_permutes by blast

    let  $?q = \lambda y. \text{if } y \in (S - \text{set}(\text{support } p a)) \text{ then } p y \text{ else } y$ 
    show bij_betw  $?q (S - \text{set}(\text{support } p a)) (S - \text{set}(\text{support } p a))$ 
    proof (rule bij_betw_imageI)
      show inj_on  $?q (S - \text{set}(\text{support } p a))$ 
      using permutes_inj[OF assms(1)] unfolding inj_on_def by auto
  next
    have aux_lemma:  $\text{set}(\text{support } p s) \subseteq (S - \text{set}(\text{support } p a))$  if  $s \in S - \text{set}(\text{support } p a)$  for  $s$ 
    proof -
      have  $(p \wedge i) s \in S$  for  $i$ 
      using that unfolding permutes_in_image[OF permutes_funpow[OF assms(1)]]
    by simp
      thus ?thesis
      using that disjoint_support'[OF is_permutation, of s a] by auto
    qed
    have  $(p \wedge 1) s \in \text{set}(\text{support } p s)$  for  $s$ 
    unfolding support_set[OF is_permutation] by blast
    hence  $p s \in \text{set}(\text{support } p s)$  for  $s$ 
    by simp
    hence  $p' (S - \text{set}(\text{support } p a)) \subseteq S - \text{set}(\text{support } p a)$ 
    using aux_lemma by blast
    moreover have  $(p \wedge ((\text{least\_power } p s) - 1)) s \in \text{set}(\text{support } p s)$  for  $s$ 
    unfolding support_set[OF is_permutation] by blast
    hence  $\exists s' \in \text{set}(\text{support } p s). p s' = s$  for  $s$ 
    using least_power_of_permutation[OF is_permutation] by (metis Suc_diff_1 funpow.simps(2) o_apply)
    hence  $S - \text{set}(\text{support } p a) \subseteq p' (S - \text{set}(\text{support } p a))$ 
    using aux_lemma
    by (clarify simp add: image_iff) (metis image_subset_iff)
    ultimately show  $?q' (S - \text{set}(\text{support } p a)) = (S - \text{set}(\text{support } p a))$ 
    by auto
  qed
  qed

```

theorem cycle_decomposition:

```

assumes p permutes S and finite S shows cycle_decomp S p
using assms
proof(induct card S arbitrary: S p rule: less_induct)
  case less show ?case
    proof (cases)
      assume S = {} thus ?thesis
      using empty less(2) by auto
    next
      have is_permutation: permutation p
      using less(2-3) unfolding permutation_permutes by blast

      assume S ≠ {} then obtain s where s ∈ S
      by blast
      define q where q = (λy. if y ∈ (S – set (support p s)) then p y else y)
      have (cycle_of_list (support p s) ∘ q) = p
      proof
        fix a
        consider a ∈ S – set (support p s) ∣ a ∈ set (support p s) ∣ a ∉ S a ∉ set
        (support p s)
        by blast
        thus ((cycle_of_list (support p s) ∘ q)) a = p a
      proof cases
        case 1
        have (p ∘ 1) a ∈ set (support p a)
        unfolding support_set[OF is_permutation] by blast
        with ⟨a ∈ S – set (support p s)⟩ have p a ∉ set (support p s)
        using disjoint_support'[OF is_permutation, of a s] by auto
        with ⟨a ∈ S – set (support p s)⟩ show ?thesis
        using id_outside_supp[of _ support p s] unfolding q_def by simp
      next
        case 2 thus ?thesis
        using cycle_restrict[OF is_permutation] unfolding q_def by simp
      next
        case 3 thus ?thesis
        using id_outside_supp[OF 3(2)] less(2) permutes_not_in unfolding
        q_def by fastforce
      qed
    qed
  moreover from ⟨s ∈ S⟩ have (p ∘ i) s ∈ S for i
  unfolding permutes_in_image[OF permutes_funpow[OF less(2)]] .
  hence set (support p s) ∪ (S – set (support p s)) = S
  by auto

  moreover have s ∈ set (support p s)
  using least_power_of_permutation[OF is_permutation] by force
  with ⟨s ∈ S⟩ have card (S – set (support p s)) < card S
  using less(3) by (metis DiffE card_seteq linorder_not_le_subsetI)
  hence cycle_decomp (S – set (support p s)) q

```

```

  using less(1)[OF _ semidecomposition[OF less(2-3)], of s] less(3) unfolding
q_def by blast

  moreover show ?thesis
    using comp[OF calculation(3) cycle_of_permutation[OF is_permutation], of
s]
      unfolding calculation(1-2) by blast
    qed
  qed

end

```

7 Permutations as abstract type

```

theory Perm
imports
  Transposition
begin

```

This theory introduces basics about permutations, i.e. almost everywhere fix bijections. But it is by no means complete. Grievously missing are cycles since these would require more elaboration, e.g. the concept of distinct lists equivalent under rotation, which maybe would also deserve its own theory. But see theory *src/HOL/ex/Perm_Fragments.thy* for fragments on that.

7.1 Abstract type of permutations

```

typedef 'a perm = {f :: 'a ⇒ 'a. bij f ∧ finite {a. f a ≠ a}}
  morphisms apply Perm
proof
  show id ∈ ?perm by simp
qed

setup_lifting type_definition_perm

notation apply (infixl `⟨` _ `⟩` 999)

lemma bij_apply [simp]:
  bij (apply f)
  using apply [of f] by simp

lemma perm_eqI:
  assumes ∀a. f ⟨\$⟩ a = g ⟨\$⟩ a
  shows f = g
  using assms by transfer (simp add: fun_eq_iff)

lemma perm_eq_iff:
  f = g ⟷ (∀a. f ⟨\$⟩ a = g ⟨\$⟩ a)

```

```

by (auto intro: perm_eqI)

lemma apply_inj:
  f ($) a = f ($) b  $\longleftrightarrow$  a = b
  by (rule inj_eq) (rule bij_is_inj, simp)

lift_definition affected :: 'a perm  $\Rightarrow$  'a set
  is  $\lambda f. \{a. f a \neq a\}$  .

lemma in_affected:
  a  $\in$  affected f  $\longleftrightarrow$  f ($) a  $\neq$  a
  by transfer simp

lemma finite_affected [simp]:
  finite (affected f)
  by transfer simp

lemma apply_affected [simp]:
  f ($) a  $\in$  affected f  $\longleftrightarrow$  a  $\in$  affected f
proof transfer
  fix f :: 'a  $\Rightarrow$  'a and a :: 'a
  assume bij f  $\wedge$  finite {b. f b  $\neq$  b}
  then have bij f by simp
  interpret bijection f by standard (rule bij f)
  have f a  $\in$  {a. f a = a}  $\longleftrightarrow$  a  $\in$  {a. f a = a} (is ?P  $\longleftrightarrow$  ?Q)
    by auto
  then show f a  $\in$  {a. f a  $\neq$  a}  $\longleftrightarrow$  a  $\in$  {a. f a  $\neq$  a}
    by simp
qed

lemma card_affected_not_one:
  card (affected f)  $\neq$  1
proof
  interpret bijection apply f
    by standard (rule bij_apply)
  assume card (affected f) = 1
  then obtain a where *: affected f = {a}
    by (rule card_1_singletonE)
  then have **: f ($) a  $\neq$  a
    by (simp flip: in_affected)
  with * have f ($) a  $\notin$  affected f
    by simp
  then have f ($) (f ($) a) = f ($) a
    by (simp add: in_affected)
  then have inv (apply f) (f ($) (f ($) a)) = inv (apply f) (f ($) a)
    by simp
  with ** show False by simp
qed

```

7.2 Identity, composition and inversion

```

instantiation Perm.perm :: (type) {monoid_mult, inverse}
begin

lift_definition one_perm :: 'a perm
  is id
  by simp

lemma apply_one [simp]:
  apply 1 = id
  by (fact one_perm.rep_eq)

lemma affected_one [simp]:
  affected 1 = {}
  by transfer simp

lemma affected_empty_iff [simp]:
  affected f = {}  $\longleftrightarrow$  f = 1
  by transfer auto

lift_definition times_perm :: 'a perm  $\Rightarrow$  'a perm  $\Rightarrow$  'a perm
  is comp
proof
  fix f g :: 'a  $\Rightarrow$  'a
  assume bij f  $\wedge$  finite {a. f a  $\neq$  a}
  bij g  $\wedge$  finite {a. g a  $\neq$  a}
  then have finite ({a. f a  $\neq$  a}  $\cup$  {a. g a  $\neq$  a})
    by simp
  moreover have {a. (f  $\circ$  g) a  $\neq$  a}  $\subseteq$  {a. f a  $\neq$  a}  $\cup$  {a. g a  $\neq$  a}
    by auto
  ultimately show finite {a. (f  $\circ$  g) a  $\neq$  a}
    by (auto intro: finite_subset)
qed (auto intro: bij_comp)

lemma apply_times:
  apply (f * g) = apply f  $\circ$  apply g
  by (fact times_perm.rep_eq)

lemma apply_sequence:
  f ($) (g ($) a) = apply (f * g) a
  by (simp add: apply_times)

lemma affected_times [simp]:
  affected (f * g)  $\subseteq$  affected f  $\cup$  affected g
  by transfer auto

lift_definition inverse_perm :: 'a perm  $\Rightarrow$  'a perm
  is inv
proof transfer

```

```

fix f :: 'a ⇒ 'a and a
assume bij f ∧ finite {b. f b ≠ b}
then have bij f and fin: finite {b. f b ≠ b}
  by auto
interpret bijection f by standard (rule ‹bij f›)
from fin show bij (inv f) ∧ finite {a. inv f a ≠ a}
  by (simp add: bij_inv)
qed

instance
  by standard (transfer; simp add: comp_assoc) +
end

lemma apply_inverse:
  apply (inverse f) = inv (apply f)
  by (fact inverse_perm.rep_eq)

lemma affected_inverse [simp]:
  affected (inverse f) = affected f
proof transfer
  fix f :: 'a ⇒ 'a and a
  assume bij f ∧ finite {b. f b ≠ b}
  then have bij f by simp
  interpret bijection f by standard (rule ‹bij f›)
  show {a. inv f a ≠ a} = {a. f a ≠ a}
    by simp
qed

global_interpretation perm: group times 1::'a perm inverse
proof
  fix f :: 'a perm
  show 1 * f = f
    by transfer simp
  show inverse f * f = 1
  proof transfer
    fix f :: 'a ⇒ 'a and a
    assume bij f ∧ finite {b. f b ≠ b}
    then have bij f by simp
    interpret bijection f by standard (rule ‹bij f›)
    show inv f ∘ f = id
      by simp
  qed
qed

declare perm.inverse_distrib_swap [simp]

lemma perm_mult_commute:
  assumes affected f ∩ affected g = {}

```

```

shows  $g * f = f * g$ 
proof (rule perm_eqI)
fix  $a$ 
from assms have  $*: a \in \text{affected } f \implies a \notin \text{affected } g$ 
 $a \in \text{affected } g \implies a \notin \text{affected } f$  for  $a$ 
by auto
consider  $a \in \text{affected } f \wedge a \notin \text{affected } g$ 
 $\wedge f \langle \$ \rangle a \in \text{affected } f$ 
 $| a \notin \text{affected } f \wedge a \in \text{affected } g$ 
 $\wedge f \langle \$ \rangle a \notin \text{affected } f$ 
 $| a \notin \text{affected } f \wedge a \notin \text{affected } g$ 
using assms by auto
then show  $(g * f) \langle \$ \rangle a = (f * g) \langle \$ \rangle a$ 
proof cases
case 1
with * have  $f \langle \$ \rangle a \notin \text{affected } g$ 
by auto
with 1 show ?thesis by (simp add: in_affected apply_times)
next
case 2
with * have  $g \langle \$ \rangle a \notin \text{affected } f$ 
by auto
with 2 show ?thesis by (simp add: in_affected apply_times)
next
case 3
then show ?thesis by (simp add: in_affected apply_times)
qed
qed

```

```

lemma apply_power:
apply  $(f \wedge n) = \text{apply } f \wedge n$ 
by (induct n) (simp_all add: apply_times)

```

```

lemma perm_power_inverse:
inverse  $f \wedge n = \text{inverse } ((f :: 'a \text{ perm}) \wedge n)$ 
proof (induct n)
case 0 then show ?case by simp
next
case (Suc n)
then show ?case
unfolding power_Suc2 [of f] by simp
qed

```

7.3 Orbit and order of elements

```

definition orbit :: 'a \text{ perm}  $\Rightarrow$  'a  $\Rightarrow$  'a set
where
orbit  $f a = \text{range } (\lambda n. (f \wedge n) \langle \$ \rangle a)$ 

```

```

lemma in_orbitI:
  assumes (f  $\wedge$  n)  $\langle \$ \rangle$  a = b
  shows b  $\in$  orbit f a
  using assms by (auto simp add: orbit_def)

lemma apply_power_self_in_orbit [simp]:
  (f  $\wedge$  n)  $\langle \$ \rangle$  a  $\in$  orbit f a
  by (rule in_orbitI) rule

lemma in_orbit_self [simp]:
  a  $\in$  orbit f a
  using apply_power_self_in_orbit [of _ 0] by simp

lemma apply_self_in_orbit [simp]:
  f  $\langle \$ \rangle$  a  $\in$  orbit f a
  using apply_power_self_in_orbit [of _ 1] by simp

lemma orbit_not_empty [simp]:
  orbit f a  $\neq$  {}
  using in_orbit_self [of a f] by blast

lemma not_in_affected_iff_orbit_eq_singleton:
  a  $\notin$  affected f  $\longleftrightarrow$  orbit f a = {a} (is ?P  $\longleftrightarrow$  ?Q)
proof
  assume ?P
  then have f  $\langle \$ \rangle$  a = a
  by (simp add: in_affected)
  then have (f  $\wedge$  n)  $\langle \$ \rangle$  a = a for n
  by (induct n) (simp_all add: apply_times)
  then show ?Q
  by (auto simp add: orbit_def)
next
  assume ?Q
  then show ?P
  by (auto simp add: orbit_def in_affected dest: range_eq_singletonD [of _ _ 1])
qed

definition order :: 'a perm  $\Rightarrow$  'a  $\Rightarrow$  nat
where
  order f = card  $\circ$  orbit f

lemma orbit_subset_eq_affected:
  assumes a  $\in$  affected f
  shows orbit f a  $\subseteq$  affected f
proof (rule ccontr)
  assume  $\neg$  orbit f a  $\subseteq$  affected f
  then obtain b where b  $\in$  orbit f a and b  $\notin$  affected f
  by auto

```

```

then have  $b \in \text{range } (\lambda n. (f^n) \langle \$ \rangle a)$ 
  by (simp add: orbit_def)
then obtain  $n$  where  $b = (f^n) \langle \$ \rangle a$ 
  by blast
with  $\langle b \notin \text{affected } f \rangle$ 
have  $(f^n) \langle \$ \rangle a \notin \text{affected } f$ 
  by simp
then have  $f \langle \$ \rangle a \notin \text{affected } f$ 
  by (induct n) (simp_all add: apply_times)
with assms show False
  by simp
qed

lemma finite_orbit [simp]:
  finite (orbit f a)
proof (cases a ∈ affected f)
  case False then show ?thesis
    by (simp add: not_in_affected_iff_orbit_eq_singleton)
next
  case True then have orbit f a ⊆ affected f
    by (rule orbit_subset_eq_affected)
  then show ?thesis using finite_affected
    by (rule finite_subset)
qed

lemma orbit_1 [simp]:
  orbit 1 a = {a}
  by (auto simp add: orbit_def)

lemma order_1 [simp]:
  order 1 a = 1
  unfolding order_def by simp

lemma card_orbit_eq [simp]:
  card (orbit f a) = order f a
  by (simp add: order_def)

lemma order_greater_zero [simp]:
  order f a > 0
  by (simp only: card_gt_0_iff_order_def comp_def) simp

lemma order_eq_one_iff:
  order f a = Suc 0  $\longleftrightarrow$  a ∉ affected f (is ?P  $\longleftrightarrow$  ?Q)
proof
  assume ?P then have card (orbit f a) = 1
    by simp
  then obtain b where orbit f a = {b}
    by (rule card_1_singletonE)
  with in_orbit_self [of a f]

```

```

have  $b = a$  by simp
with  $\langle \text{orbit } f a = \{b\} \rangle$  show ?Q
  by (simp add: not_in_affected_iff_orbit_eq_singleton)
next
  assume ?Q
  then have  $\text{orbit } f a = \{a\}$ 
    by (simp add: not_in_affected_iff_orbit_eq_singleton)
  then have  $\text{card}(\text{orbit } f a) = 1$ 
    by simp
  then show ?P
    by simp
qed

lemma order_greater_eq_two_iff:
   $\text{order } f a \geq 2 \longleftrightarrow a \in \text{affected } f$ 
  using order_eq_one_iff [of  $f a$ ]
  apply (auto simp add: neq_iff)
  using order_greater_zero [of  $f a$ ]
  apply simp
  done

lemma order_less_eq_affected:
  assumes  $f \neq 1$ 
  shows  $\text{order } f a \leq \text{card}(\text{affected } f)$ 
proof (cases  $a \in \text{affected } f$ )
  from assms have  $\text{affected } f \neq \{\}$ 
    by simp
  then obtain  $B b$  where  $\text{affected } f = \text{insert } b B$ 
    by blast
  with finite_affected [of  $f$ ] have  $\text{card}(\text{affected } f) \geq 1$ 
    by (simp add: card.insert_remove)
  case False then have  $\text{order } f a = 1$ 
    by (simp add: order_eq_one_iff)
  with  $\langle \text{card}(\text{affected } f) \geq 1 \rangle$  show ?thesis
    by simp
next
  case True
  have  $\text{card}(\text{orbit } f a) \leq \text{card}(\text{affected } f)$ 
    by (rule card_mono) (simp_all add: True orbit_subset_eq_affected card_mono)
  then show ?thesis
    by simp
qed

lemma affected_order_greater_eq_two:
  assumes  $a \in \text{affected } f$ 
  shows  $\text{order } f a \geq 2$ 
proof (rule ccontr)
  assume  $\neg 2 \leq \text{order } f a$ 
  then have  $\text{order } f a < 2$ 

```

```

by (simp add: not_le)
with order_greater_zero [of f a] have order f a = 1
  by arith
with assms show False
  by (simp add: order_eq_one_iff)
qed

lemma order_witness_unfold:
assumes n > 0 and (f ^ n) ` a = a
shows order f a = card ((λm. (f ^ m) ` a) ` {0..)
proof -
  have orbit f a = (λm. (f ^ m) ` a) ` {0..} (is _ = ?B)
  proof (rule set_eqI, rule)
    fix b
    assume b ∈ orbit f a
    then obtain m where (f ^ m) ` a = b
      by (auto simp add: orbit_def)
    then have b = (f ^ (m mod n + n * (m div n))) ` a
      by simp
    also have ... = (f ^ (m mod n)) ` ((f ^ (n * (m div n))) ` a)
      by (simp only: power_add_apply_times) simp
    also have (f ^ (n * q)) ` a = a for q
      by (induct q)
        (simp_all add: power_add_apply_times assms)
    finally have b = (f ^ (m mod n)) ` a .
  moreover from ‹n > 0›
  have m mod n < n
    by simp
  ultimately show b ∈ ?B
    by auto
next
  fix b
  assume b ∈ ?B
  then obtain m where (f ^ m) ` a = b
    by blast
  then show b ∈ orbit f a
    by (rule in_orbitI)
qed
then have card (orbit f a) = card ?B
  by (simp only:)
then show ?thesis
  by simp
qed

lemma inj_on_apply_range:
inj_on (λm. (f ^ m) ` a) {..}
    if n ≤ order f a for n
      by (simp add: order_eq_one_iff)
  then show ?thesis
    by (rule inj_onI)
  qed
qed

```

```

using that proof (induct n)
  case 0 then show ?case by simp
next
  case (Suc n)
    then have prem:  $n < \text{order } f a$ 
      by simp
    with Suc.hyps have hyp: inj_on ( $\lambda m. (f \wedge m) \langle \$ \rangle a$ )  $\{.. < n\}$ 
      by simp
    have  $(f \wedge n) \langle \$ \rangle a \notin (\lambda m. (f \wedge m) \langle \$ \rangle a) \{.. < n\}$ 
    proof
      assume  $(f \wedge n) \langle \$ \rangle a \in (\lambda m. (f \wedge m) \langle \$ \rangle a) \{.. < n\}$ 
      then obtain m where *:  $(f \wedge m) \langle \$ \rangle a = (f \wedge n) \langle \$ \rangle a$  and  $m < n$ 
        by auto
      interpret bijection apply  $(f \wedge m)$ 
        by standard simp
      from  $\langle m < n \rangle$  have  $n = m + (n - m)$ 
        and  $nm: 0 < n - m$   $n - m \leq n$ 
        by arith+
      with * have  $(f \wedge m) \langle \$ \rangle a = (f \wedge (m + (n - m))) \langle \$ \rangle a$ 
        by simp
      then have  $(f \wedge m) \langle \$ \rangle a = (f \wedge m) \langle \$ \rangle ((f \wedge (n - m)) \langle \$ \rangle a)$ 
        by (simp add: power_add apply_times)
      then have  $(f \wedge (n - m)) \langle \$ \rangle a = a$ 
        by simp
      with  $\langle n - m > 0 \rangle$ 
      have order f a = card  $((\lambda m. (f \wedge m) \langle \$ \rangle a) \{0.. < n - m\})$ 
        by (rule order_witness_unfold)
      also have card  $((\lambda m. (f \wedge m) \langle \$ \rangle a) \{0.. < n - m\}) \leq \text{card } \{0.. < n - m\}$ 
        by (rule card_image_le) simp
      finally have order f a  $\leq n - m$ 
        by simp
      with prem show False by simp
qed
with hyp show ?case
  by (simp add: lessThan_Suc)
qed
then show ?thesis by simp
qed

lemma orbit_unfold_image:
  orbit f a =  $(\lambda n. (f \wedge n) \langle \$ \rangle a) \{.. < \text{order } f a\}$  (is _ = ?A)
proof (rule sym, rule card_subset_eq)
  show finite (orbit f a)
    by simp
  show ?A  $\subseteq$  orbit f a
    by (auto simp add: orbit_def)
  from inj_on_apply_range [of f a]
  have card ?A = order f a
    by (auto simp add: card_image)

```

```

then show card ?A = card (orbit f a)
  by simp
qed

lemma in_orbitE:
  assumes b ∈ orbit f a
  obtains n where b = (f ^ n) ⟨\$⟩ a and n < order f a
  using assms unfolding orbit_unfold_image by blast

lemma apply_power_order [simp]:
  (f ^ order f a) ⟨\$⟩ a = a
proof –
  have (f ^ order f a) ⟨\$⟩ a ∈ orbit f a
    by simp
  then obtain n where
    *: (f ^ order f a) ⟨\$⟩ a = (f ^ n) ⟨\$⟩ a
    and n < order f a
    by (rule in_orbitE)
  show ?thesis
  proof (cases n)
    case 0 with * show ?thesis by simp
  next
    case (Suc m)
    from order_greater_zero [of f a]
    have Suc (order f a - 1) = order f a
    by arith
    from Suc ⟨n < order f a⟩
    have m < order f a
    by simp
    with Suc *
    have (inverse f) ⟨\$⟩ ((f ^ Suc (order f a - 1)) ⟨\$⟩ a) =
      (inverse f) ⟨\$⟩ ((f ^ Suc m) ⟨\$⟩ a)
    by simp
    then have (f ^ (order f a - 1)) ⟨\$⟩ a =
      (f ^ m) ⟨\$⟩ a
    by (simp only: power_Suc apply_times)
      (simp add: apply_sequence mult.assoc [symmetric])
    with inj_on_apply_range
    have order f a - 1 = m
    by (rule inj_onD)
      (simp_all add: ⟨m < order f a⟩)
    with Suc have n = order f a
    by auto
    with ⟨n < order f a⟩
    show ?thesis by simp
  qed
qed

lemma apply_power_left_mult_order [simp]:

```

```

(f ^ (n * order f a)) ⟨\$⟩ a = a
by (induct n) (simp_all add: power_add apply_times)

lemma apply_power_right_mult_order [simp]:
(f ^ (order f a * n)) ⟨\$⟩ a = a
by (simp add: ac_simps)

lemma apply_power_mod_order_eq [simp]:
(f ^ (n mod order f a)) ⟨\$⟩ a = (f ^ n) ⟨\$⟩ a
proof –
  have (f ^ n) ⟨\$⟩ a = (f ^ (n mod order f a + order f a * (n div order f a))) ⟨\$⟩ a
    by simp
  also have ... = (f ^ (n mod order f a) * f ^ (order f a * (n div order f a))) ⟨\$⟩ a
    by (simp flip: power_add)
  finally show ?thesis
    by (simp add: apply_times)
qed

lemma apply_power_eq_iff:
(f ^ m) ⟨\$⟩ a = (f ^ n) ⟨\$⟩ a  $\longleftrightarrow$  m mod order f a = n mod order f a (is ?P
 $\longleftrightarrow$  ?Q)
proof
  assume ?Q
  then have (f ^ (m mod order f a)) ⟨\$⟩ a = (f ^ (n mod order f a)) ⟨\$⟩ a
    by simp
  then show ?P
    by simp
next
  assume ?P
  then have (f ^ (m mod order f a)) ⟨\$⟩ a = (f ^ (n mod order f a)) ⟨\$⟩ a
    by simp
  with inj_on_apply_range
  show ?Q
    by (rule inj_onD) simp_all
qed

lemma apply_inverse_eq_apply_power_order_minus_one:
(inverse f) ⟨\$⟩ a = (f ^ (order f a - 1)) ⟨\$⟩ a
proof (cases order f a)
  case 0 with order_greater_zero [of f a] show ?thesis
    by simp
next
  case (Suc n)
  moreover have (f ^ order f a) ⟨\$⟩ a = a
    by simp
  then have *: (inverse f) ⟨\$⟩ ((f ^ order f a) ⟨\$⟩ a) = (inverse f) ⟨\$⟩ a
    by simp
  ultimately show ?thesis
    by (simp add: apply_sequence_mult_assoc [symmetric])

```

qed

```
lemma apply_inverse_self_in_orbit [simp]:
  (inverse f) ($) a ∈ orbit f a
  using apply_inverse_eq_apply_power_order_minus_one [symmetric]
  by (rule in_orbitI)

lemma apply_inverse_power_eq:
  (inverse (f ^ n)) ($) a = (f ^ (order f a - n mod order f a)) ($) a
proof (induct n)
  case 0 then show ?case by simp
next
  case (Suc n)
  define m where m = order f a - n mod order f a - 1
  moreover have order f a - n mod order f a > 0
    by simp
  ultimately have *: order f a - n mod order f a = Suc m
    by arith
  moreover from * have m2: order f a - Suc n mod order f a = (if m = 0 then
    order f a else m)
    by (auto simp add: mod_Suc)
  ultimately show ?case
    using Suc
    by (simp_all add: apply_times power_Suc2 [of n] power_Suc [of m] del:
      power_Suc)
      (simp add: apply_sequence mult.assoc [symmetric])
qed

lemma apply_power_eq_self_iff:
  (f ^ n) ($) a = a ↔ order f a dvd n
  using apply_power_eq_iff [of f n a 0]
  by (simp add: mod_eq_0_iff_dvd)

lemma orbit_equiv:
  assumes b ∈ orbit f a
  shows orbit f b = orbit f a (is ?B = ?A)
proof
  from assms obtain n where n < order f a and b: b = (f ^ n) ($) a
    by (rule in_orbitE)
  then show ?B ⊆ ?A
    by (auto simp add: apply_sequence power_add [symmetric] intro: in_orbitI
      elim!: in_orbitE)
  from b have (inverse (f ^ n)) ($) b = (inverse (f ^ n)) ($) ((f ^ n) ($) a)
    by simp
  then have a: a = (inverse (f ^ n)) ($) b
    by (simp add: apply_sequence)
  then show ?A ⊆ ?B
    apply (auto simp add: apply_sequence power_add [symmetric] intro: in_orbitI
      elim!: in_orbitE)
```

```

unfolding apply_times comp_def apply_inverse_power_eq
unfolding apply_sequence power_add [symmetric]
apply (rule in_orbitI) apply rule
done
qed

lemma orbit_apply [simp]:
  orbit f (f ⟨\$⟩ a) = orbit f a
  by (rule orbit_equiv) simp

lemma order_apply [simp]:
  order f (f ⟨\$⟩ a) = order f a
  by (simp only: order_def comp_def orbit_apply)

lemma orbit_apply_inverse [simp]:
  orbit f (inverse f ⟨\$⟩ a) = orbit f a
  by (rule orbit_equiv) simp

lemma order_apply_inverse [simp]:
  order f (inverse f ⟨\$⟩ a) = order f a
  by (simp only: order_def comp_def orbit_apply_inverse)

lemma orbit_apply_power [simp]:
  orbit f ((f ^ n) ⟨\$⟩ a) = orbit f a
  by (rule orbit_equiv) simp

lemma order_apply_power [simp]:
  order f ((f ^ n) ⟨\$⟩ a) = order f a
  by (simp only: order_def comp_def orbit_apply_power)

lemma orbit_inverse [simp]:
  orbit (inverse f) = orbit f
proof (rule ext, rule set_eqI, rule)
  fix b a
  assume b ∈ orbit f a
  then obtain n where b: b = (f ^ n) ⟨\$⟩ a n < order f a
  by (rule in_orbitE)
  then have b = apply (inverse (inverse f) ^ n) a
  by simp
  then have b = apply (inverse (inverse f ^ n)) a
  by (simp add: perm_power_inverse)
  then have b = apply (inverse f ^ (n * (order (inverse f ^ n) a - 1))) a
  by (simp add: apply_inverse_eq_apply_power_order_minus_one_power_mult)
  then show b ∈ orbit (inverse f) a
  by simp
next
  fix b a
  assume b ∈ orbit (inverse f) a
  then show b ∈ orbit f a

```

```

by (rule in_orbITE)
  (simp add: apply_inverse_eq_apply_power_order_minus_one
  perm_power_inverse power_mult [symmetric])
qed

lemma order_inverse [simp]:
  order (inverse f) = order f
  by (simp add: order_def)

lemma orbit_disjoint:
  assumes orbit f a ≠ orbit f b
  shows orbit f a ∩ orbit f b = {}
proof (rule ccontr)
  assume orbit f a ∩ orbit f b ≠ {}
  then obtain c where c ∈ orbit f a ∩ orbit f b
  by blast
  then have c ∈ orbit f a and c ∈ orbit f b
  by auto
  then obtain m n where c = (f ^ m) ⟨\$⟩ a
  and c = apply (f ^ n) b by (blast elim!: in_orbITE)
  then have (f ^ m) ⟨\$⟩ a = apply (f ^ n) b
  by simp
  then have apply (inverse f ^ m) ((f ^ m) ⟨\$⟩ a) =
  apply (inverse f ^ m) (apply (f ^ n) b)
  by simp
  then have *: apply (inverse f ^ m * f ^ n) b = a
  by (simp add: apply_sequence perm_power_inverse)
  have a ∈ orbit f b
  proof (cases n m rule: linorder_cases)
    case equal with * show ?thesis
    by (simp add: perm_power_inverse)
  next
    case less
    moreover define q where q = m - n
    ultimately have m = q + n by arith
    with * have apply (inverse f ^ q) b = a
    by (simp add: power_add mult.assoc perm_power_inverse)
    then have a ∈ orbit (inverse f) b
    by (rule in_orbitI)
    then show ?thesis
    by simp
  next
    case greater
    moreover define q where q = n - m
    ultimately have n = m + q by arith
    with * have apply (f ^ q) b = a
    by (simp add: power_add mult.assoc [symmetric] perm_power_inverse)
    then show ?thesis
    by (rule in_orbitI)
  
```

```

qed
with assms show False
  by (auto dest: orbit_equiv)
qed

7.4 Swaps

lift_definition swap :: "'a ⇒ 'a ⇒ 'a perm ((⟨_ ↔ _⟩))" is λa b. transpose a b
proof
  fix a b :: 'a
  have {c. transpose a b c ≠ c} ⊆ {a, b}
    by (auto simp add: transpose_def)
  then show finite {c. transpose a b c ≠ c}
    by (rule finite_subset) simp
qed simp

lemma apply_swap_simp [simp]:
  ⟨a ↔ b⟩ ⟨\$⟩ a = b
  ⟨a ↔ b⟩ ⟨\$⟩ b = a
  by (transfer; simp) +
lemma apply_swap_same [simp]:
  c ≠ a ⟹ c ≠ b ⟹ ⟨a ↔ b⟩ ⟨\$⟩ c = c
  by transfer simp

lemma apply_swap_eq_iff [simp]:
  ⟨a ↔ b⟩ ⟨\$⟩ c = a ⟷ c = b
  ⟨a ↔ b⟩ ⟨\$⟩ c = b ⟷ c = a
  by (transfer; auto simp add: transpose_def) +
lemma swap_1 [simp]:
  ⟨a ↔ a⟩ = 1
  by transfer simp

lemma swap_sym:
  ⟨b ↔ a⟩ = ⟨a ↔ b⟩
  by (transfer; auto simp add: transpose_def) +
lemma swap_self [simp]:
  ⟨a ↔ b⟩ * ⟨a ↔ b⟩ = 1
  by transfer simp

lemma affected_swap:
  a ≠ b ⟹ affected ⟨a ↔ b⟩ = {a, b}
  by transfer (auto simp add: transpose_def)

lemma inverse_swap [simp]:
  inverse ⟨a ↔ b⟩ = ⟨a ↔ b⟩

```

```
by transfer (auto intro: inv_equality)
```

7.5 Permutations specified by cycles

```
fun cycle :: 'a list ⇒ 'a perm (⟨⟨_⟩⟩)
where
  ⟨[]⟩ = 1
  | ⟨[a]⟩ = 1
  | ⟨a # b # as⟩ = ⟨a # as⟩ * ⟨a↔b⟩
```

We do not continue and restrict ourselves to syntax from here. See also introductory note.

7.6 Syntax

```
bundle permutation_syntax
begin
  notation swap (⟨⟨_↔_⟩⟩)
  notation cycle (⟨⟨_⟩⟩)
  notation apply (infixl ⟨⟨$⟩⟩ 999)
end

unbundle no permutation_syntax
end
```

8 Permutation orbits

```
theory Orbit
imports
  HOL-Library.FuncSet
  HOL-Combinatorics.Permutations
begin
```

8.1 Orbits and cyclic permutations

```
inductive_set orbit :: ('a ⇒ 'a) ⇒ 'a ⇒ 'a set for f x where
  base: f x ∈ orbit f x |
  step: y ∈ orbit f x ⇒ f y ∈ orbit f x

definition cyclic_on :: ('a ⇒ 'a) ⇒ 'a set ⇒ bool where
  cyclic_on f S ↔ (exists s ∈ S. S = orbit f s)

lemma orbit_altdef: orbit f x = {(f ^ n) x | n. 0 < n} (is ?L = ?R)
proof (intro set_eqI iffI)
  fix y assume y ∈ ?L then show y ∈ ?R
    by (induct rule: orbit.induct) (auto simp: exI[where x=1] exI[where x=Suc n for n])
next
```

```

fix y assume y ∈ ?R
then obtain n where y = (f ∘ n) x 0 < n by blast
then show y ∈ ?L
proof (induction n arbitrary: y)
  case (Suc n) then show ?case by (cases n = 0) (auto intro: orbit.intros)
qed simp
qed

lemma orbit_trans:
assumes s ∈ orbit f t t ∈ orbit f u shows s ∈ orbit f u
using assms by induct (auto intro: orbit.intros)

lemma orbit_subset:
assumes s ∈ orbit f (f t) shows s ∈ orbit f t
using assms by (induct) (auto intro: orbit.intros)

lemma orbit_sim_step:
assumes s ∈ orbit f t shows f s ∈ orbit f (f t)
using assms by induct (auto intro: orbit.intros)

lemma orbit_step:
assumes y ∈ orbit f x f x ≠ y shows y ∈ orbit f (f x)
using assms
proof induction
  case (step y) then show ?case by (cases x = y) (auto intro: orbit.intros)
qed simp

lemma self_in_orbit_trans:
assumes s ∈ orbit f s t ∈ orbit f s shows t ∈ orbit f t
using assms(2,1) by induct (auto intro: orbit_sim_step)

lemma orbit_swap:
assumes s ∈ orbit f s t ∈ orbit f s shows s ∈ orbit f t
using assms(2,1)
proof induction
  case base then show ?case by (cases f s = s) (auto intro: orbit_step)
next
  case (step x) then show ?case by (cases f x = s) (auto intro: orbit_step)
qed

lemma permutation_self_in_orbit:
assumes permutation f shows s ∈ orbit f s
unfolding orbit_altdef using permutation_self[OF assms, of s] by simp metis

lemma orbit_altdef_self_in:
assumes s ∈ orbit f s shows orbit f s = {(f ∘ n) s | n. True}
proof (intro set_eqI iffI)
  fix x assume x ∈ {(f ∘ n) s | n. True}
  then obtain n where x = (f ∘ n) s by auto

```

```

then show  $x \in \text{orbit } f s$  using assms by (cases  $n = 0$ ) (auto simp: orbit_altdef)
qed (auto simp: orbit_altdef)

lemma orbit_altdef_permutation:
  assumes permutation f shows  $\text{orbit } f s = \{(f \wedge n) s \mid n. \text{True}\}$ 
  using assms by (intro orbit_altdef_self_in_permutation_self_in_orbit)

lemma orbit_altdef_bounded:
  assumes  $(f \wedge n) s = s \ 0 < n$  shows  $\text{orbit } f s = \{(f \wedge m) s \mid m. m < n\}$ 
proof -
  from assms have  $s \in \text{orbit } f s$ 
    by (auto simp add: orbit_altdef) metis
  then have  $\text{orbit } f s = \{(f \wedge m) s \mid m. \text{True}\}$  by (rule orbit_altdef_self_in)
  also have ... =  $\{(f \wedge m) s \mid m. m < n\}$ 
    using assms
    by (auto simp: funpow_mod_eq intro: exI[where x=m mod n for m])
  finally show ?thesis .
qed

lemma funpow_in_orbit:
  assumes  $s \in \text{orbit } f t$  shows  $(f \wedge n) s \in \text{orbit } f t$ 
  using assms by (induct n) (auto intro: orbit.intros)

lemma finite_orbit:
  assumes  $s \in \text{orbit } f s$  shows  $\text{finite } (\text{orbit } f s)$ 
proof -
  from assms obtain  $n$  where  $0 < n (f \wedge n) s = s$ 
    by (auto simp: orbit_altdef)
  then show ?thesis by (auto simp: orbit_altdef_bounded)
qed

lemma self_in_orbit_step:
  assumes  $s \in \text{orbit } f s$  shows  $\text{orbit } f (f s) = \text{orbit } f s$ 
proof (intro set_eqI iffI)
  fix  $t$  assume  $t \in \text{orbit } f s$  then show  $t \in \text{orbit } f (f s)$ 
    using assms by (auto intro: orbit_step orbit_sim_step)
qed (auto intro: orbit_subset)

lemma permutation_orbit_step:
  assumes permutation f shows  $\text{orbit } f (f s) = \text{orbit } f s$ 
  using assms by (intro self_in_orbit_step permutation_self_in_orbit)

lemma orbit_nonempty:
   $\text{orbit } f s \neq \{\}$ 
  using orbit.base by fastforce

lemma orbit_inv_eq:
  assumes permutation f
  shows  $\text{orbit } (\text{inv } f) x = \text{orbit } f x$  (is ?L = ?R)

```

```

proof -
{ fix g y assume A: permutation g y  $\in$  orbit (inv g) x
  have y  $\in$  orbit g x
  proof -
    have inv_g:  $\bigwedge y. x = g y \implies \text{inv } g x = y \wedge y. \text{inv } g (g y) = y$ 
    by (metis A(1) bij_inv_eq_iff permutation_bijection)+

  { fix y assume y  $\in$  orbit g x
    then have inv_g y  $\in$  orbit g x
    by (cases) (simp_all add: inv_g A(1) permutation_self_in_orbit)
  } note inv_g_in_orb = this

  from A(2) show ?thesis
  by induct (simp_all add: inv_g_in_orb A permutation_self_in_orbit)
  qed
} note orb_inv_ss = this

have inv (inv f) = f
  by (simp add: assms inv_inv_eq permutation_bijection)
then show ?thesis
  using orb_inv_ss[OF assms] orb_inv_ss[OF permutation_inverse[OF assms]]
  by auto
  qed

lemma cyclic_on_alldef:
  cyclic_on f S  $\longleftrightarrow$  S  $\neq \{\}$   $\wedge$  ( $\forall s \in S. S = \text{orbit } f s$ )
  unfolding cyclic_on_def by (auto intro: orbit.step orbit_swap orbit_trans)

lemma cyclic_on_funpow_in:
  assumes cyclic_on f S s  $\in$  S shows (f^n) s  $\in$  S
  using assms unfolding cyclic_on_def by (auto intro: funpow_in_orbit)

lemma finite_cyclic_on:
  assumes cyclic_on f S shows finite S
  using assms by (auto simp: cyclic_on_def finite_orbit)

lemma cyclic_on_singleI:
  assumes s  $\in$  S S = orbit f s shows cyclic_on f S
  using assms unfolding cyclic_on_def by blast

lemma cyclic_on_inI:
  assumes cyclic_on f S s  $\in$  S shows f s  $\in$  S
  using assms by (auto simp: cyclic_on_def intro: orbit.intros)

lemma orbit_inverse:
  assumes self: a  $\in$  orbit g a
  and eq:  $\bigwedge x. x \in \text{orbit } g a \implies g' (f x) = f (g x)$ 
  shows f ` orbit g a = orbit g' (f a) (is ?L = ?R)
  proof (intro set_eqI iffI)

```

```

fix x assume x ∈ ?L
then obtain x0 where x0 ∈ orbit g a x = fx0 by auto
then show x ∈ ?R
proof (induct arbitrary: x)
  case base then show ?case by (auto simp: self orbit.base eq[symmetric])
next
  case step then show ?case by cases (auto simp: eq[symmetric] orbit.intros)
qed
next
fix x assume x ∈ ?R
then show x ∈ ?L
proof (induct arbitrary: )
  case base then show ?case by (auto simp: self orbit.base eq)
next
  case step then show ?case by cases (auto simp: eq orbit.intros)
qed
qed

lemma cyclic_on_image:
assumes cyclic_on f S
assumes ∀x. x ∈ S ⇒ g (h x) = h (f x)
shows cyclic_on g (h ` S)
using assms by (auto simp: cyclic_on_def) (meson orbit_inverse)

lemma cyclic_on_f_in:
assumes f permutes S cyclic_on f A fx ∈ A
shows x ∈ A
proof –
  from assms have fx_in_orb: fx ∈ orbit f (fx) by (auto simp: cyclic_on_alldef)
  from assms have A = orbit f (fx) by (auto simp: cyclic_on_alldef)
  moreover
  then have ... = orbit fx using ⟨fx ∈ A⟩ by (auto intro: orbit_step orbit_subset)
  ultimately
  show ?thesis by (metis (no_types) orbit.simps permutes_inverses(2)[OF assms(1)])
qed

lemma orbit_cong0:
assumes x ∈ A f ∈ A → A ∧ y. y ∈ A ⇒ fy = gy shows orbit f x = orbit g x
proof –
  { fix n have (f ∘ n) x = (g ∘ n) x ∧ (f ∘ n) x ∈ A
    by (induct n rule: nat.induct) (insert assms, auto)
  } then show ?thesis by (auto simp: orbit_altdef)
qed

lemma orbit_cong:
assumes self_in: t ∈ orbit f t and eq: ∀s. s ∈ orbit f t ⇒ gs = fs
shows orbit g t = orbit f t
using assms(1) _ assms(2) by (rule orbit_cong0) (auto simp: orbit.step eq)

```

```

lemma cyclic_cong:
  assumes  $\bigwedge s. s \in S \implies f s = g s$  shows cyclic_on f S = cyclic_on g S
proof -
  have  $(\exists s \in S. \text{orbit } f s = \text{orbit } g s) \implies \text{cyclic\_on } f S = \text{cyclic\_on } g S$ 
  by (metis cyclic_on_alldef cyclic_on_def)
  then show ?thesis by (metis assms orbit_cong cyclic_on_def)
qed

lemma permutes_comp_preserves_cyclic1:
  assumes g permutes B cyclic_on f C
  assumes  $A \cap B = \{\}$   $C \subseteq A$ 
  shows cyclic_on (f o g) C
proof -
  have *:  $\bigwedge c. c \in C \implies f(g c) = f c$ 
  using assms by (subst permutes_not_in [of g]) auto
  with assms(2) show ?thesis by (simp cong: cyclic_cong)
qed

lemma permutes_comp_preserves_cyclic2:
  assumes f permutes A cyclic_on g C
  assumes  $A \cap B = \{\}$   $C \subseteq B$ 
  shows cyclic_on (f o g) C
proof -
  obtain c where c:  $c \in C$   $C = \text{orbit } g c$   $c \in \text{orbit } g c$ 
  using ⟨cyclic_on g C⟩ by (auto simp: cyclic_on_def)
  then have  $\bigwedge c. c \in C \implies f(g c) = g c$ 
  using assms c by (subst permutes_not_in [of f]) (auto intro: orbit.intros)
  with assms(2) show ?thesis by (simp cong: cyclic_cong)
qed

lemma permutes_orbit_subset:
  assumes f permutes S  $x \in S$  shows orbit f x  $\subseteq S$ 
proof
  fix y assume y:  $y \in \text{orbit } f x$ 
  then show y:  $y \in S$  by induct (auto simp: permutes_in_image assms)
qed

lemma cyclic_on_orbit':
  assumes permutation f shows cyclic_on f (orbit f x)
  unfolding cyclic_on_alldef using orbit_nonempty[of f x]
  by (auto intro: assms orbit_swap orbit_trans permutation_self_in_orbit)

lemma cyclic_on_orbit:
  assumes f permutes S finite S shows cyclic_on f (orbit f x)
  using assms by (intro cyclic_on_orbit') (auto simp: permutation_permutes)

lemma orbit_cyclic_eq3:
  assumes cyclic_on f S  $y \in S$  shows orbit f y = S

```

```

using assms unfolding cyclic_on_alldef by simp

lemma orbit_eq_singleton_iff: orbit f x = {x}  $\longleftrightarrow$  f x = x (is ?L  $\longleftrightarrow$  ?R)
proof
  assume A: ?R
  { fix y assume y ∈ orbit f x then have y = x
    by induct (auto simp: A)
  } then show ?L by (metis orbit_nonempty_singletonI subsetI subset_singletonD)
next
  assume A: ?L
  then have  $\bigwedge y. y \in \text{orbit } f x \implies f x = y$ 
    by – (erule orbit.cases, simp_all)
  then show ?R using A by blast
qed

lemma eq_on_cyclic_on_iff1:
  assumes cyclic_on f S x ∈ S
  obtains f x ∈ S f x = x  $\longleftrightarrow$  card S = 1
proof
  from assms show f x ∈ S by (auto simp: cyclic_on_def intro: orbit.intros)
  from assms have S = orbit f x by (auto simp: cyclic_on_alldef)
  then have f x = x  $\longleftrightarrow$  S = {x} by (metis orbit_eq_singleton_iff)
  then show f x = x  $\longleftrightarrow$  card S = 1 using ⟨x ∈ S⟩ by (auto simp: card_Suc_eq)
qed

lemma orbit_eqI:
  y = f x  $\implies$  y ∈ orbit f x
  z = f y  $\implies$  y ∈ orbit f x  $\implies$  z ∈ orbit f x
  by (metis orbit.base) (metis orbit.step)

```

8.2 Decomposition of arbitrary permutations

```

definition perm_restrict :: ('a  $\Rightarrow$  'a)  $\Rightarrow$  'a set  $\Rightarrow$  ('a  $\Rightarrow$  'a) where
  perm_restrict f S x ≡ if x ∈ S then f x else x

lemma perm_restrict_comp:
  assumes A ∩ B = {} cyclic_on f B
  shows perm_restrict f A o perm_restrict f B = perm_restrict f (A ∪ B)
proof –
  have  $\bigwedge x. x \in B \implies f x \in B$  using ⟨cyclic_on f B⟩ by (rule cyclic_on_inI)
  with assms show ?thesis by (auto simp: perm_restrict_def fun_eq_iff)
qed

lemma perm_restrict_simp:
  x ∈ S  $\implies$  perm_restrict f S x = f x
  x ∉ S  $\implies$  perm_restrict f S x = x
  by (auto simp: perm_restrict_def)

lemma perm_restrict_perm_restrict:

```

```

perm_restrict (perm_restrict f A) B = perm_restrict f (A ∩ B)
by (auto simp: perm_restrict_def)

lemma perm_restrict_union:
  assumes perm_restrict f A permutes A perm_restrict f B permutes B A ∩ B =
  {}
  shows perm_restrict f A o perm_restrict f B = perm_restrict f (A ∪ B)
  using assms by (auto simp: fun_eq_iff perm_restrict_def permutes_def) (metis
  Diff_iff Diff_triv)

lemma perm_restrict_id[simp]:
  assumes f permutes S shows perm_restrict f S = f
  using assms by (auto simp: permutes_def perm_restrict_def)

lemma cyclic_on_perm_restrict:
  cyclic_on (perm_restrict f S) S  $\longleftrightarrow$  cyclic_on f S
  by (simp add: perm_restrict_def cong: cyclic_cong)

lemma perm_restrict_diff_cyclic:
  assumes f permutes S cyclic_on f A
  shows perm_restrict f (S - A) permutes (S - A)
proof -
  { fix y
    have  $\exists x. \text{perm\_restrict } f (S - A) x = y$ 
    proof cases
      assume A:  $y \in S - A$ 
      with ‹f permutes S› obtain x where  $f x = y$   $x \in S$ 
        unfolding permutes_def by auto metis
      moreover
      with A have  $x \notin A$  by (metis Diff_iff assms(2) cyclic_on_inI)
      ultimately
      have perm_restrict f (S - A) x = y by (simp add: perm_restrict_simps)
      then show ?thesis ..
    qed
  } note X = this

  { fix x y assume perm_restrict f (S - A) x = perm_restrict f (S - A) y
    with assms have x = y
      by (auto simp: perm_restrict_def permutes_def split: if_splits intro: cyclic_on_f_in)
  } note Y = this

  show ?thesis by (auto simp: permutes_def perm_restrict_simps X intro: Y)
qed

lemma permutes_decompose:

```

```

assumes f permutes S finite S
shows ∃ C. (∀ c ∈ C. cyclic_on f c) ∧ ∪ C = S ∧ (∀ c1 ∈ C. ∀ c2 ∈ C. c1 ≠
c2 → c1 ∩ c2 = {})
using assms(2,1)
proof (induction arbitrary: f rule: finite_psubset_induct)
case (psubset S)

show ?case
proof (cases S = {})
  case True then show ?thesis by (intro exI[where x={}]) auto
next
  case False
  then obtain s where s ∈ S by auto
  with ⟨f permutes S⟩ have orbit f s ⊆ S
    by (rule permutes_orbit_subset)
  have cyclic_orbit: cyclic_on f (orbit f s)
    using ⟨f permutes S⟩ ⟨finite S⟩ by (rule cyclic_on_orbit)

let ?f' = perm_restrict f (S - orbit f s)

have f s ∈ S using ⟨f permutes S⟩ ⟨s ∈ S⟩ by (auto simp: permutes_in_image)
then have S - orbit f s ⊂ S using orbit.base[of f s] ⟨s ∈ S⟩ by blast
moreover
have ?f' permutes (S - orbit f s)
  using ⟨f permutes S⟩ cyclic_orbit by (rule perm_restrict_diff_cyclic)
ultimately
obtain C where C: ∀ c ∈ C. c ∈ C ⇒ cyclic_on ?f' c ∪ C = S - orbit f s
  ∀ c1 ∈ C. ∀ c2 ∈ C. c1 ≠ c2 → c1 ∩ c2 = {}
  using psubset.IH by metis

{ fix c assume c ∈ C
  then have *: ∀ x. x ∈ c ⇒ perm_restrict f (S - orbit f s) x = f x
    using C(2) ⟨f permutes S⟩ by (auto simp add: perm_restrict_def)
  then have cyclic_on f c using C(1)[OF ⟨c ∈ C⟩] by (simp cong: cyclic_cong
add: *)
  } note in_C_cyclic = this

have Un_ins: ∪ (insert (orbit f s) C) = S
  using ⟨∪ C = _⟩ ⟨orbit f s ⊆ S⟩ by blast

have Disj_ins: (∀ c1 ∈ insert (orbit f s) C. ∀ c2 ∈ insert (orbit f s) C. c1 ≠
c2 → c1 ∩ c2 = {})
  using C by auto

show ?thesis
  by (intro conjI Un_ins Disj_ins exI[where x=insert (orbit f s) C])
    (auto simp: cyclic_orbit in_C_cyclic)
qed
qed

```

8.3 Function-power distance between values

```

definition funpow_dist :: ('a ⇒ 'a) ⇒ 'a ⇒ 'a ⇒ nat where
  funpow_dist f x y ≡ LEAST n. (f ^ n) x = y

abbreviation funpow_dist1 :: ('a ⇒ 'a) ⇒ 'a ⇒ 'a ⇒ nat where
  funpow_dist1 f x y ≡ Suc (funpow_dist f (f x) y)

lemma funpow_dist_0:
  assumes x = y shows funpow_dist f x y = 0
  using assms unfolding funpow_dist_def by (intro Least_eq_0) simp

lemma funpow_dist_least:
  assumes n < funpow_dist f x y shows (f ^ n) x ≠ y
  proof (rule notI)
    assume (f ^ n) x = y
    then have funpow_dist f x y ≤ n unfolding funpow_dist_def by (rule Least_le)
    with assms show False by linarith
  qed

lemma funpow_dist1_least:
  assumes 0 < n n < funpow_dist1 f x y shows (f ^ n) x ≠ y
  proof (rule notI)
    assume (f ^ n) x = y
    then have (f ^ (n - 1)) (f x) = y
    using <0 < n> by (cases n) (simp_all add: funpow_swap1)
    then have funpow_dist f (f x) y ≤ n - 1 unfolding funpow_dist_def by (rule Least_le)
    with assms show False by simp
  qed

lemma funpow_dist_prop:
  y ∈ orbit f x  $\implies$  (f ^ funpow_dist f x y) x = y
  unfolding funpow_dist_def by (rule LeastI_ex) (auto simp: orbit_altdef)

lemma funpow_dist_0_eq:
  assumes y ∈ orbit f x shows funpow_dist f x y = 0  $\longleftrightarrow$  x = y
  using assms by (auto simp: funpow_dist_0 dest: funpow_dist_prop)

lemma funpow_dist_step:
  assumes x ≠ y y ∈ orbit f x shows funpow_dist f x y = Suc (funpow_dist f (x) y)
  proof –
    from <y ∈ _> obtain n where (f ^ n) x = y by (auto simp: orbit_altdef)
    with <x ≠ y> obtain n' where [simp]: n = Suc n' by (cases n) auto

    show ?thesis
      unfolding funpow_dist_def
      proof (rule Least_Suc2)
        show (f ^ n) x = y by fact
  
```

```

then show ( $f^{\sim n'}(f x) = y$ ) by (simp add: funpow_swap1)
show ( $f^{\sim 0} x \neq y$ ) using  $\langle x \neq y \rangle$  by simp
show  $\forall k. ((f^{\sim Suc k}) x = y) = ((f^{\sim k}) (f x) = y)$ 
by (simp add: funpow_swap1)
qed
qed

lemma funpow_dist1_prop:
assumes  $y \in \text{orbit } f x$  shows ( $f^{\sim \text{funpow\_dist1}} f x y = y$ )
by (metis assms funpow_dist_prop funpow_dist_step funpow_simps_right(2)
o_apply self_in_orbit_step)

lemma funpow_neq_less_funpow_dist:
assumes  $y \in \text{orbit } f x$   $m \leq \text{funpow\_dist } f x y$   $n \leq \text{funpow\_dist } f x y$   $m \neq n$ 
shows ( $f^{\sim m} x \neq (f^{\sim n}) x$ )
proof (rule notI)
assume  $A: (f^{\sim m}) x = (f^{\sim n}) x$ 

define  $m' n'$  where  $m' = \min m n$  and  $n' = \max m n$ 
with  $A$  assms have  $A': m' < n' (f^{\sim m'}) x = (f^{\sim n'}) x \leq \text{funpow\_dist } f x$ 
 $y$ 
by (auto simp: min_def max_def)

have  $y = (f^{\sim \text{funpow\_dist } f x y}) x$ 
using  $\langle y \in \_ \rangle$  by (simp only: funpow_dist_prop)
also have  $\dots = (f^{\sim ((\text{funpow\_dist } f x y - n') + n'))} x$ 
using  $\langle n' \leq \_ \rangle$  by simp
also have  $\dots = (f^{\sim ((\text{funpow\_dist } f x y - n') + m'))} x$ 
by (simp add: funpow_add  $\langle (f^{\sim m'}) x = \_ \rangle$ )
also have  $(f^{\sim ((\text{funpow\_dist } f x y - n') + m'))} x \neq y$ 
using  $A'$  by (intro funpow_dist_least) linarith
finally show False by simp
qed

lemma funpow_neq_less_funpow_dist1:
assumes  $y \in \text{orbit } f x$   $m < \text{funpow\_dist1 } f x y$   $n < \text{funpow\_dist1 } f x y$   $m \neq n$ 
shows ( $f^{\sim m} x \neq (f^{\sim n}) x$ )
proof (rule notI)
assume  $A: (f^{\sim m}) x = (f^{\sim n}) x$ 

define  $m' n'$  where  $m' = \min m n$  and  $n' = \max m n$ 
with  $A$  assms have  $A': m' < n' (f^{\sim m'}) x = (f^{\sim n'}) x \leq \text{funpow\_dist1 } f$ 
 $x y$ 
by (auto simp: min_def max_def)

have  $y = (f^{\sim \text{funpow\_dist1 } f x y}) x$ 
using  $\langle y \in \_ \rangle$  by (simp only: funpow_dist1_prop)

```

```

also have ... =  $(f^{\wedge}((funpow\_dist1 f x y - n') + n')) x$ 
  using  $\langle n' < \_ \rangle$  by simp
also have ... =  $(f^{\wedge}((funpow\_dist1 f x y - n') + m')) x$ 
  by (simp add: funpow_add  $\langle f^{\wedge} m' x = \_ \rangle$ )
also have  $(f^{\wedge}((funpow\_dist1 f x y - n') + m')) x \neq y$ 
  using A' by (intro funpow_dist1_least) linarith+
finally show False by simp
qed

lemma inj_on_funpow_dist:
  assumes  $y \in \text{orbit } f x$  shows inj_on  $(\lambda n. (f^{\wedge} n) x) \{0..funpow\_dist f x y\}$ 
  using funpow_neq_less_funpow_dist[OF assms] by (intro inj_onI) auto

lemma inj_on_funpow_dist1:
  assumes  $y \in \text{orbit } f x$  shows inj_on  $(\lambda n. (f^{\wedge} n) x) \{0..<funpow\_dist1 f x y\}$ 
  using funpow_neq_less_funpow_dist1[OF assms] by (intro inj_onI) auto

lemma orbit_conv_funpow_dist1:
  assumes  $x \in \text{orbit } f x$ 
  shows  $\text{orbit } f x = (\lambda n. (f^{\wedge} n) x) \{0..<funpow\_dist1 f x x\}$  (is ?L = ?R)
  using funpow_dist1_prop[OF assms]
  by (auto simp: orbit_altdef_bounded[where n=funpow_dist1 f x x])

lemma funpow_dist1_prop1:
  assumes  $(f^{\wedge} n) x = y 0 < n$  shows  $(f^{\wedge} funpow\_dist1 f x y) x = y$ 
proof -
  from assms have  $y \in \text{orbit } f x$  by (auto simp: orbit_altdef)
  then show ?thesis by (rule funpow_dist1_prop)
qed

lemma funpow_dist1_dist:
  assumes  $funpow\_dist1 f x y < funpow\_dist1 f x z$ 
  assumes  $\{y,z\} \subseteq \text{orbit } f x$ 
  shows  $funpow\_dist1 f x z = funpow\_dist1 f x y + funpow\_dist1 f y z$  (is ?L = ?R)
proof -
  define n where  $\langle n = funpow\_dist1 f x z - funpow\_dist1 f x y - 1 \rangle$ 
  with assms have  $*: funpow\_dist1 f x z = Suc (funpow\_dist1 f x y + n)$ 
  by simp
  have x_z:  $(f^{\wedge} funpow\_dist1 f x z) x = z$  using assms by (blast intro: funpow_dist1_prop)
  have x_y:  $(f^{\wedge} funpow\_dist1 f x y) x = y$  using assms by (blast intro: funpow_dist1_prop)

  have  $(f^{\wedge} (funpow\_dist1 f x z - funpow\_dist1 f x y)) y$ 
    =  $(f^{\wedge} (funpow\_dist1 f x z - funpow\_dist1 f x y)) ((f^{\wedge} funpow\_dist1 f x y) x)$ 
    using x_y by simp
  also have ... = z

```

```

  using assms x_z by (simp add: * funpow_add ac_simps funpow_swap1)
  finally have y_z_diff:  $(f^{\wedge\wedge} (funpow_{dist1} f x z - funpow_{dist1} f x y)) y = z$  .
  then have  $(f^{\wedge\wedge} funpow_{dist1} f y z) y = z$ 
    using assms by (intro funpow_dist1_prop1) auto
  then have  $(f^{\wedge\wedge} funpow_{dist1} f y z) ((f^{\wedge\wedge} funpow_{dist1} f x y) x) = z$ 
    using x_y by simp
  then have  $(f^{\wedge\wedge} (funpow_{dist1} f y z + funpow_{dist1} f x y)) x = z$ 
    by (simp add: * funpow_add funpow_swap1)
  show ?thesis
  proof (rule antisym)
    from y_z_diff have  $(f^{\wedge\wedge} funpow_{dist1} f y z) y = z$ 
      using assms by (intro funpow_dist1_prop1) auto
    then have  $(f^{\wedge\wedge} funpow_{dist1} f y z) ((f^{\wedge\wedge} funpow_{dist1} f x y) x) = z$ 
      using x_y by simp
    then have  $(f^{\wedge\wedge} (funpow_{dist1} f y z + funpow_{dist1} f x y)) x = z$ 
      by (simp add: * funpow_add funpow_swap1)
    then have  $funpow_{dist1} f x z \leq funpow_{dist1} f y z + funpow_{dist1} f x y$ 
      using funpow_dist1_least not_less by fastforce
    then show ?L  $\leq$  ?R by presburger
  next
    have  $funpow_{dist1} f y z \leq funpow_{dist1} f x z - funpow_{dist1} f x y$ 
      using y_z_diff assms(1) by (metis not_less zero_less_diff funpow_dist1_least)
    then show ?R  $\leq$  ?L by linarith
  qed
qed

lemma funpow_dist1_le_self:
  assumes  $(f^{\wedge\wedge} m) x = x$   $0 < m$   $y \in orbit f x$ 
  shows  $funpow_{dist1} f x y \leq m$ 
proof (cases x = y)
  case True with assms show ?thesis by (auto dest!: funpow_dist1_least)
next
  case False
  have  $(f^{\wedge\wedge} funpow_{dist1} f x y) x = (f^{\wedge\wedge} (funpow_{dist1} f x y mod m)) x$ 
    using assms by (simp add: funpow_mod_eq)
  with False  $\langle y \in orbit f x \rangle$  have  $funpow_{dist1} f x y \leq funpow_{dist1} f x y mod m$ 
    by auto (metis  $\langle f^{\wedge\wedge} funpow_{dist1} f x y \rangle x = (f^{\wedge\wedge} (funpow_{dist1} f x y mod m)) x$  funpow_dist1_prop funpow_dist_least funpow_dist_step leI)
  with  $\langle m > 0 \rangle$  show ?thesis
    by (auto intro: order_trans)
qed

end

```

9 Basic combinatorics in Isabelle/HOL (and the Archive of Formal Proofs)

theory *Combinatorics*

```
imports
  Transposition
  Stirling
  Permutations
  List_Permutation
  Multiset_Permutations
  Cycles
  Perm
  Orbits
begin
end
```