
Java Source and Bytecode Formalizations in Isabelle: Bali

Gerwin Klein Tobias Nipkow David von Oheimb Leonor Prensa Nieto
Norbert Schirmer Martin Strecker

January 18, 2026

2

Contents

1 Overview 5

2 Basis 9
1 Definitions extending HOL as logical basis of Bali 9

3 Table 13
1 Abstract tables and their implementation as lists 13

4 Name 21
1 Java names . 21

5 Value 23
1 Java values . 23

6 Type 25
1 Java types . 25

7 Term 27
1 Java expressions and statements . 27

8 Decl 35
1 Field, method, interface, and class declarations, whole Java programs 35
2 Modifier . 35
3 Declaration (base "class" for member,interface and class declarations 37
4 Member (field or method) . 37
5 Field . 37
6 Method . 37
7 Interface . 39
8 Class . 40

9 TypeRel 47
1 The relations between Java types . 47

10 DeclConcepts 55
1 Advanced concepts on Java declarations like overriding, inheritance, dynamic

method lookup . 55
2 accessibility of types (cf. 6.6.1) . 55
3 accessibility of members . 56
4 imethds . 75
5 accimethd . 75
6 methd . 76
7 accmethd . 77
8 dynmethd . 77

3

4

9 dynlookup . 79
10 fields . 79
11 accfield . 80
12 is methd . 80

11 WellType 83
1 Well-typedness of Java programs . 83

12 DefiniteAssignment 95
1 Definite Assignment . 95
2 Very restricted calculation fallback calculation 97
3 Analysis of constant expressions . 98
4 Main analysis for boolean expressions . 99
5 Lifting set operations to range of tables (map to a set) 100

13 WellForm 109
1 Well-formedness of Java programs . 109
2 accessibility concerns . 125

14 State 129
1 State for evaluation of Java expressions and statements 129
2 access . 132
3 memory allocation . 133
4 initialization . 133
5 update . 133
6 update . 137

15 Eval 141
1 Operational evaluation (big-step) semantics of Java expressions and statements141

16 Example 157
1 Example Bali program . 157

17 Conform 171
1 Conformance notions for the type soundness proof for Java 171

18 DefiniteAssignmentCorrect 179
1 Correctness of Definite Assignment . 179

19 TypeSafe 187
1 The type soundness proof for Java . 187
2 accessibility . 194
3 Ideas for the future . 199

20 Evaln 201
1 Operational evaluation (big-step) semantics of Java expressions and statements201

21 Trans 209

22 AxSem 215
1 Axiomatic semantics of Java expressions and statements (see also Eval.thy) . 215
2 peek-and . 216
3 assn-supd . 216
4 supd-assn . 216

5

5 subst-res . 217

6 subst-Bool . 217

7 peek-res . 217

8 ign-res . 218

9 peek-st . 218

10 ign-res-eq . 218

11 RefVar . 219

12 allocation . 219

23 AxSound 231

1 Soundness proof for Axiomatic semantics of Java expressions and statements 231

24 AxCompl 235

1 Completeness proof for Axiomatic semantics of Java expressions and statements235

25 AxExample 243

1 Example of a proof based on the Bali axiomatic semantics 243

6

AxCompl AxExample

AxSem

AxSound

Basis

Conform

Decl

DeclConcepts

DefiniteAssignment

DefiniteAssignmentCorrect

Eval

Evaln

Example

Name

State

Table

Term

Trans

Type

TypeRel

TypeSafe

Value

WellForm

WellType

[HOL]

[Pure]

[Tools]

Chapter 1

Overview

These theories, called Bali, model and analyse different aspects of the JavaCard source language.
The basis is an abstract model of the JavaCard source language. On it, a type system, an operational
semantics and an axiomatic semantics (Hoare logic) are built. The execution of a wellformed program
(with respect to the type system) according to the operational semantics is proved to be typesafe.
The axiomatic semantics is proved to be sound and relative complete with respect to the operational
semantics.
We have modelled large parts of the original JavaCard source language. It models features such as:

• The basic “primitive types” of Java

• Classes and related concepts

• Class fields and methods

• Instance fields and methods

• Interfaces and related concepts

• Arrays

• Static initialisation

• Static overloading of fields and methods

• Inheritance, overriding and hiding of methods, dynamic binding

• All cases of abrupt termination

– Exception throwing and handling
– break, continue and return

• Packages

• Access Modifiers (private, protected, public)

• A “definite assignment” check

The following features are missing in Bali wrt. JavaCard:

• Some primitive types (byte, short)

• Syntactic variants of statements (do-loop, for-loop)

• Interface fields

7

8

• Inner Classes

In addition, features are missing that are not part of the JavaCard language, such as multithreading
and garbage collection. No attempt has been made to model peculiarities of JavaCard such as the
applet firewall or the transaction mechanism.
Overview of the theories:

Basis Some basic definitions and settings not specific to JavaCard but missing in HOL.

Table Definition and some properties of a lookup table to map various names (like class names or
method names) to some content (like classes or methods).

Name Definition of various names (class names, variable names, package names,...)

Value JavaCard expression values (Boolean, Integer, Addresses,...)

Type JavaCard types. Primitive types (Boolean, Integer,...) and reference types (Classes, Inter-
faces, Arrays,...)

Term JavaCard terms. Variables, expressions and statements.

Decl Class, interface and program declarations. Recursion operators for the class and the interface
hierarchy.

TypeRel Various relations on types like the subclass-, subinterface-, widening-, narrowing- and
casting-relation.

DeclConcepts Advanced concepts on the class and interface hierarchy like inheritance, overriding,
hiding, accessibility of types and members according to the access modifiers, method lookup.

WellType Typesystem on the JavaCard term level.

DefiniteAssignment The definite assignment analysis on the JavaCard term level.

WellForm Typesystem on the JavaCard class, interface and program level.

State The program state (like object store) for the execution of JavaCard. Abrupt completion
(exceptions, break, continue, return) is modelled as flag inside the state.

Eval Operational (big step) semantics for JavaCard.

Example An concrete example of a JavaCard program to validate the typesystem and the opera-
tional semantics.

Conform Conformance predicate for states. When does an execution state conform to the static
types of the program given by the typesystem.

DefiniteAssignmentCorrect Correctness of the definite assignment analysis. If the analysis re-
gards a variable as definitely assigned at a certain program point, the variable will actually be
assigned there during execution.

TypeSafe Typesafety proof of the execution of JavaCard. ”Welltyped programs don’t go wrong”
or more technical: The execution of a welltyped JavaCard program preserves the conformance
of execution states.

Evaln Copy of the operational semantics given in theory Eval expanded with an annotation for
the maximal recursive depth. The semantics is not altered. The annotation is needed for the
soundness proof of the axiomatic semantics.

9

Trans A smallstep operational semantics for JavaCard.

AxSem An axiomatic semantics (Hoare logic) for JavaCard.

AxSound The soundness proof of the axiomatic semantics with respect to the operational seman-
tics.

AxCompl The proof of (relative) completeness of the axiomatic semantics with respect to the
operational semantics.

AxExample An concrete example of the axiomatic semantics at work, applied to prove some
properties of the JavaCard example given in theory Example.

10

Chapter 2

Basis

1 Definitions extending HOL as logical basis of Bali
theory Basis
imports Main
begin

misc

〈ML〉

declare if-split-asm [split] option.split [split] option.split-asm [split]
〈ML〉
declare if-weak-cong [cong del] option.case-cong-weak [cong del]
declare length-Suc-conv [iff]

lemma Collect-split-eq: {p. P (case-prod f p)} = {(a,b). P (f a b)}
〈proof 〉

lemma subset-insertD: A ⊆ insert x B =⇒ A ⊆ B ∧ x /∈ A ∨ (∃B ′. A = insert x B ′ ∧ B ′ ⊆ B)
〈proof 〉

abbreviation nat3 :: nat (‹3 ›) where 3 ≡ Suc 2
abbreviation nat4 :: nat (‹4 ›) where 4 ≡ Suc 3

lemma irrefl-tranclI ′: r−1 ∩ r+ = {} =⇒ ∀ x. (x, x) /∈ r+

〈proof 〉

lemma trancl-rtrancl-trancl: [[(x, y) ∈ r+; (y, z) ∈ r∗]] =⇒ (x, z) ∈ r+

〈proof 〉

lemma rtrancl-into-trancl3 : [[(a, b) ∈ r∗; a 6= b]] =⇒ (a, b) ∈ r+

〈proof 〉

lemma rtrancl-into-rtrancl2 : [[(a, b) ∈ r ; (b, c) ∈ r∗]] =⇒ (a, c) ∈ r∗

〈proof 〉

lemma triangle-lemma:
assumes unique:

∧
a b c. [[(a,b)∈r ; (a,c)∈r]] =⇒ b = c

and ax: (a,x)∈r∗ and ay: (a,y)∈r∗

shows (x,y)∈r∗ ∨ (y,x)∈r∗

〈proof 〉

11

12

lemma rtrancl-cases:
assumes (a,b)∈r∗

obtains (Refl) a = b
| (Trancl) (a,b)∈r+

〈proof 〉

lemma Ball-weaken: [[Ball s P;
∧

x. P x−→Q x]]=⇒Ball s Q
〈proof 〉

lemma finite-SetCompr2 :
finite {f y x |x y. P y} if finite (Collect P)
∀ y. P y −→ finite (range (f y))

〈proof 〉

lemma list-all2-trans: ∀ a b c. P1 a b −→ P2 b c −→ P3 a c =⇒
∀ xs2 xs3 . list-all2 P1 xs1 xs2 −→ list-all2 P2 xs2 xs3 −→ list-all2 P3 xs1 xs3
〈proof 〉

pairs
lemma surjective-pairing5 :

p = (fst p, fst (snd p), fst (snd (snd p)), fst (snd (snd (snd p))),
snd (snd (snd (snd p))))
〈proof 〉

lemma fst-splitE [elim!]:
assumes fst s ′ = x ′

obtains x s where s ′ = (x,s) and x = x ′

〈proof 〉

lemma fst-in-set-lemma: (x, y) ∈ set l =⇒ x ∈ fst ‘ set l
〈proof 〉

quantifiers
lemma All-Ex-refl-eq2 [simp]: (∀ x. (∃ b. x = f b ∧ Q b) −→ P x) = (∀ b. Q b −→ P (f b))
〈proof 〉

lemma ex-ex-miniscope1 [simp]: (∃w v. P w v ∧ Q v) = (∃ v. (∃w. P w v) ∧ Q v)
〈proof 〉

lemma ex-miniscope2 [simp]: (∃ v. P v ∧ Q ∧ R v) = (Q ∧ (∃ v. P v ∧ R v))
〈proof 〉

lemma ex-reorder31 : (∃ z x y. P x y z) = (∃ x y z. P x y z)
〈proof 〉

lemma All-Ex-refl-eq1 [simp]: (∀ x. (∃ b. x = f b) −→ P x) = (∀ b. P (f b))
〈proof 〉

sums
notation case-sum (infixr ‹ ′(+ ′)› 80)

primrec the-Inl :: ′a + ′b ⇒ ′a
where the-Inl (Inl a) = a

primrec the-Inr :: ′a + ′b ⇒ ′b

Theory Basis 13

where the-Inr (Inr b) = b

datatype (′a, ′b, ′c) sum3 = In1 ′a | In2 ′b | In3 ′c

primrec the-In1 :: (′a, ′b, ′c) sum3 ⇒ ′a
where the-In1 (In1 a) = a

primrec the-In2 :: (′a, ′b, ′c) sum3 ⇒ ′b
where the-In2 (In2 b) = b

primrec the-In3 :: (′a, ′b, ′c) sum3 ⇒ ′c
where the-In3 (In3 c) = c

abbreviation In1l :: ′al ⇒ (′al + ′ar , ′b, ′c) sum3
where In1l e ≡ In1 (Inl e)

abbreviation In1r :: ′ar ⇒ (′al + ′ar , ′b, ′c) sum3
where In1r c ≡ In1 (Inr c)

abbreviation the-In1l :: (′al + ′ar , ′b, ′c) sum3 ⇒ ′al
where the-In1l ≡ the-Inl ◦ the-In1

abbreviation the-In1r :: (′al + ′ar , ′b, ′c) sum3 ⇒ ′ar
where the-In1r ≡ the-Inr ◦ the-In1

〈ML〉

quantifiers for option type
syntax

-Oall :: [pttrn, ′a option, bool] ⇒ bool (‹(3 ! -:-:/ -)› [0 ,0 ,10] 10)
-Oex :: [pttrn, ′a option, bool] ⇒ bool (‹(3? -:-:/ -)› [0 ,0 ,10] 10)

syntax (symbols)
-Oall :: [pttrn, ′a option, bool] ⇒ bool (‹(3∀ -∈-:/ -)› [0 ,0 ,10] 10)
-Oex :: [pttrn, ′a option, bool] ⇒ bool (‹(3∃ -∈-:/ -)› [0 ,0 ,10] 10)

syntax-consts
-Oall ⇀↽ Ball and
-Oex ⇀↽ Bex

translations
∀ x∈A: P ⇀↽ ∀ x∈CONST set-option A. P
∃ x∈A: P ⇀↽ ∃ x∈CONST set-option A. P

Special map update

Deemed too special for theory Map.
definition chg-map :: (′b ⇒ ′b) ⇒ ′a ⇒ (′a ⇀ ′b) ⇒ (′a ⇀ ′b)

where chg-map f a m = (case m a of None ⇒ m | Some b ⇒ m(a 7→f b))

lemma chg-map-new[simp]: m a = None =⇒ chg-map f a m = m
〈proof 〉

lemma chg-map-upd[simp]: m a = Some b =⇒ chg-map f a m = m(a 7→f b)
〈proof 〉

lemma chg-map-other [simp]: a 6= b =⇒ chg-map f a m b = m b
〈proof 〉

14

unique association lists
definition unique :: (′a × ′b) list ⇒ bool

where unique = distinct ◦ map fst

lemma uniqueD: unique l =⇒ (x, y) ∈ set l =⇒ (x ′, y ′) ∈ set l =⇒ x = x ′ =⇒ y = y ′

〈proof 〉

lemma unique-Nil [simp]: unique []
〈proof 〉

lemma unique-Cons [simp]: unique ((x,y)#l) = (unique l ∧ (∀ y. (x,y) /∈ set l))
〈proof 〉

lemma unique-ConsD: unique (x#xs) =⇒ unique xs
〈proof 〉

lemma unique-single [simp]:
∧

p. unique [p]
〈proof 〉

lemma unique-append [rule-format (no-asm)]: unique l ′ =⇒ unique l =⇒
(∀ (x,y)∈set l. ∀ (x ′,y ′)∈set l ′. x ′ 6= x) −→ unique (l @ l ′)
〈proof 〉

lemma unique-map-inj: unique l =⇒ inj f =⇒ unique (map (λ(k,x). (f k, g k x)) l)
〈proof 〉

lemma map-of-SomeI : unique l =⇒ (k, x) ∈ set l =⇒ map-of l k = Some x
〈proof 〉

list patterns
definition lsplit :: [[′a, ′a list] ⇒ ′b, ′a list] ⇒ ′b

where lsplit = (λf l. f (hd l) (tl l))

list patterns – extends pre-defined type "pttrn" used in abstractions
syntax

-lpttrn :: [pttrn, pttrn] ⇒ pttrn (‹-#/-› [901 ,900] 900)
syntax-consts

-lpttrn ⇀↽ lsplit
translations
λy # x # xs. b ⇀↽ CONST lsplit (λy x # xs. b)
λx # xs. b ⇀↽ CONST lsplit (λx xs. b)

lemma lsplit [simp]: lsplit c (x#xs) = c x xs
〈proof 〉

lemma lsplit2 [simp]: lsplit P (x#xs) y z = P x xs y z
〈proof 〉

end

Chapter 3

Table

1 Abstract tables and their implementation as lists
theory Table imports Basis begin

design issues:

• definition of table: infinite map vs. list vs. finite set list chosen, because:

+ a priori finite
+ lookup is more operational than for finite set
- not very abstract, but function table converts it to abstract mapping

• coding of lookup result: Some/None vs. value/arbitrary Some/None chosen, because:

++ makes definedness check possible (applies also to finite set), which is important for the
type standard, hiding/overriding, etc. (though it may perhaps be possible at least for
the operational semantics to treat programs as infinite, i.e. where classes, fields, methods
etc. of any name are considered to be defined)

- sometimes awkward case distinctions, alleviated by operator ’the’

type-synonym (′a, ′b) table — table with key type ’a and contents type ’b
= ′a ⇀ ′b

type-synonym (′a, ′b) tables — non-unique table with key ’a and contents ’b
= ′a ⇒ ′b set

map of / table of
abbreviation

table-of :: (′a × ′b) list ⇒ (′a, ′b) table — concrete table
where table-of ≡ map-of

translations
(type) (′a, ′b) table <= (type) ′a ⇀ ′b

lemma map-add-find-left[simp]: n k = None =⇒ (m ++ n) k = m k
〈proof 〉

Conditional Override
definition cond-override :: (′b ⇒ ′b ⇒ bool) ⇒ (′a, ′b)table ⇒ (′a, ′b)table ⇒ (′a, ′b) table where

— when merging tables old and new, only override an entry of table old when the condition cond holds

15

16

cond-override cond old new =
(λk.
(case new k of

None ⇒ old k
| Some new-val ⇒ (case old k of

None ⇒ Some new-val
| Some old-val ⇒ (if cond new-val old-val

then Some new-val
else Some old-val))))

lemma cond-override-empty1 [simp]: cond-override c Map.empty t = t
〈proof 〉

lemma cond-override-empty2 [simp]: cond-override c t Map.empty = t
〈proof 〉

lemma cond-override-None[simp]:
old k = None =⇒ (cond-override c old new) k = new k
〈proof 〉

lemma cond-override-override:
[[old k = Some ov;new k = Some nv; C nv ov]]
=⇒ (cond-override C old new) k = Some nv
〈proof 〉

lemma cond-override-noOverride:
[[old k = Some ov;new k = Some nv; ¬ (C nv ov)]]
=⇒ (cond-override C old new) k = Some ov
〈proof 〉

lemma dom-cond-override: dom (cond-override C s t) ⊆ dom s ∪ dom t
〈proof 〉

lemma finite-dom-cond-override:
[[finite (dom s); finite (dom t)]] =⇒ finite (dom (cond-override C s t))
〈proof 〉

Filter on Tables

definition filter-tab :: (′a ⇒ ′b ⇒ bool) ⇒ (′a, ′b) table ⇒ (′a, ′b) table
where

filter-tab c t = (λk. (case t k of
None ⇒ None
| Some x ⇒ if c k x then Some x else None))

lemma filter-tab-empty[simp]: filter-tab c Map.empty = Map.empty
〈proof 〉

lemma filter-tab-True[simp]: filter-tab (λx y. True) t = t
〈proof 〉

lemma filter-tab-False[simp]: filter-tab (λx y. False) t = Map.empty
〈proof 〉

lemma filter-tab-ran-subset: ran (filter-tab c t) ⊆ ran t
〈proof 〉

lemma filter-tab-range-subset: range (filter-tab c t) ⊆ range t ∪ {None}
〈proof 〉

Theory Table 17

lemma finite-range-filter-tab:
finite (range t) =⇒ finite (range (filter-tab c t))
〈proof 〉

lemma filter-tab-SomeD[dest!]:
filter-tab c t k = Some x =⇒ (t k = Some x) ∧ c k x
〈proof 〉

lemma filter-tab-SomeI : [[t k = Some x;C k x]] =⇒filter-tab C t k = Some x
〈proof 〉

lemma filter-tab-all-True:
∀ k y. t k = Some y −→ p k y =⇒filter-tab p t = t
〈proof 〉

lemma filter-tab-all-True-Some:
[[∀ k y. t k = Some y −→ p k y; t k = Some v]] =⇒ filter-tab p t k = Some v
〈proof 〉

lemma filter-tab-all-False:
∀ k y. t k = Some y −→ ¬ p k y =⇒filter-tab p t = Map.empty
〈proof 〉

lemma filter-tab-None: t k = None =⇒ filter-tab p t k = None
〈proof 〉

lemma filter-tab-dom-subset: dom (filter-tab C t) ⊆ dom t
〈proof 〉

lemma filter-tab-eq: [[a=b]] =⇒ filter-tab C a = filter-tab C b
〈proof 〉

lemma finite-dom-filter-tab:
finite (dom t) =⇒ finite (dom (filter-tab C t))
〈proof 〉

lemma filter-tab-weaken:
[[∀ a ∈ t k: ∃ b ∈ s k: P a b;∧

k x y. [[t k = Some x;s k = Some y]] =⇒ cond k x −→ cond k y
]] =⇒ ∀ a ∈ filter-tab cond t k: ∃ b ∈ filter-tab cond s k: P a b
〈proof 〉

lemma cond-override-filter :
[[
∧

k old new. [[s k = Some new; t k = Some old]]
=⇒ (¬ overC new old −→ ¬ filterC k new) ∧

(overC new old −→ filterC k old −→ filterC k new)
]] =⇒
cond-override overC (filter-tab filterC t) (filter-tab filterC s)
= filter-tab filterC (cond-override overC t s)

〈proof 〉

Misc

lemma Ball-set-table: (∀ (x,y)∈ set l. P x y) =⇒ ∀ x. ∀ y∈ map-of l x: P x y
〈proof 〉

lemma Ball-set-tableD:

18

[[(∀ (x,y)∈ set l. P x y); x ∈ set-option (table-of l xa)]] =⇒ P xa x
〈proof 〉

declare map-of-SomeD [elim]

lemma table-of-Some-in-set:
table-of l k = Some x =⇒ (k,x) ∈ set l
〈proof 〉

lemma set-get-eq:
unique l =⇒ (k, the (table-of l k)) ∈ set l = (table-of l k 6= None)
〈proof 〉

lemma inj-Pair-const2 : inj (λk. (k, C))
〈proof 〉

lemma table-of-mapconst-SomeI :
[[table-of t k = Some y ′; snd y=y ′; fst y=c]] =⇒

table-of (map (λ(k,x). (k,c,x)) t) k = Some y
〈proof 〉

lemma table-of-mapconst-NoneI :
[[table-of t k = None]] =⇒

table-of (map (λ(k,x). (k,c,x)) t) k = None
〈proof 〉

lemmas table-of-map2-SomeI = inj-Pair-const2 [THEN map-of-mapk-SomeI]

lemma table-of-map-SomeI : table-of t k = Some x =⇒
table-of (map (λ(k,x). (k, f x)) t) k = Some (f x)
〈proof 〉

lemma table-of-remap-SomeD:
table-of (map (λ((k,k ′),x). (k,(k ′,x))) t) k = Some (k ′,x) =⇒

table-of t (k, k ′) = Some x
〈proof 〉

lemma table-of-mapf-Some:
∀ x y. f x = f y −→ x = y =⇒

table-of (map (λ(k,x). (k,f x)) t) k = Some (f x) =⇒ table-of t k = Some x
〈proof 〉

lemma table-of-mapf-SomeD [dest!]:
table-of (map (λ(k,x). (k, f x)) t) k = Some z =⇒ (∃ y∈table-of t k: z=f y)
〈proof 〉

lemma table-of-mapf-NoneD [dest!]:
table-of (map (λ(k,x). (k, f x)) t) k = None =⇒ (table-of t k = None)
〈proof 〉

lemma table-of-mapkey-SomeD [dest!]:
table-of (map (λ(k,x). ((k,C),x)) t) (k,D) = Some x =⇒ C = D ∧ table-of t k = Some x
〈proof 〉

lemma table-of-mapkey-SomeD2 [dest!]:
table-of (map (λ(k,x). ((k,C),x)) t) ek = Some x =⇒

C = snd ek ∧ table-of t (fst ek) = Some x
〈proof 〉

Theory Table 19

lemma table-append-Some-iff : table-of (xs@ys) k = Some z =
(table-of xs k = Some z ∨ (table-of xs k = None ∧ table-of ys k = Some z))
〈proof 〉

lemma table-of-filter-unique-SomeD [rule-format (no-asm)]:
table-of (filter P xs) k = Some z =⇒ unique xs −→ table-of xs k = Some z
〈proof 〉

definition Un-tables :: (′a, ′b) tables set ⇒ (′a, ′b) tables
where Un-tables ts = (λk.

⋃
t∈ts. t k)

definition overrides-t :: (′a, ′b) tables ⇒ (′a, ′b) tables ⇒ (′a, ′b) tables
(infixl ‹⊕⊕› 100)

where s ⊕⊕ t = (λk. if t k = {} then s k else t k)

definition
hidings-entails :: (′a, ′b) tables ⇒ (′a, ′c) tables ⇒ (′b ⇒ ′c ⇒ bool) ⇒ bool
(‹- hidings - entails -› 20)

where (t hidings s entails R) = (∀ k. ∀ x∈t k. ∀ y∈s k. R x y)

definition
— variant for unique table:
hiding-entails :: (′a, ′b) table ⇒ (′a, ′c) table ⇒ (′b ⇒ ′c ⇒ bool) ⇒ bool
(‹- hiding - entails -› 20)

where (t hiding s entails R) = (∀ k. ∀ x∈t k: ∀ y∈s k: R x y)

definition
— variant for a unique table and conditional overriding:
cond-hiding-entails :: (′a, ′b) table ⇒ (′a, ′c) table

⇒ (′b ⇒ ′c ⇒ bool) ⇒ (′b ⇒ ′c ⇒ bool) ⇒ bool
(‹- hiding - under - entails -› 20)

where (t hiding s under C entails R) = (∀ k. ∀ x∈t k: ∀ y∈s k: C x y −→ R x y)

Untables
lemma Un-tablesI [intro]: t ∈ ts =⇒ x ∈ t k =⇒ x ∈ Un-tables ts k
〈proof 〉

lemma Un-tablesD [dest!]: x ∈ Un-tables ts k =⇒ ∃ t. t ∈ ts ∧ x ∈ t k
〈proof 〉

lemma Un-tables-empty [simp]: Un-tables {} = (λk. {})
〈proof 〉

overrides
lemma empty-overrides-t [simp]: (λk. {}) ⊕⊕ m = m
〈proof 〉

lemma overrides-empty-t [simp]: m ⊕⊕ (λk. {}) = m
〈proof 〉

lemma overrides-t-Some-iff :
(x ∈ (s ⊕⊕ t) k) = (x ∈ t k ∨ t k = {} ∧ x ∈ s k)
〈proof 〉

lemmas overrides-t-SomeD = overrides-t-Some-iff [THEN iffD1 , dest!]

20

lemma overrides-t-right-empty [simp]: n k = {} =⇒ (m ⊕⊕ n) k = m k
〈proof 〉

lemma overrides-t-find-right [simp]: n k 6= {} =⇒ (m ⊕⊕ n) k = n k
〈proof 〉

hiding entails
lemma hiding-entailsD:

t hiding s entails R =⇒ t k = Some x =⇒ s k = Some y =⇒ R x y
〈proof 〉

lemma empty-hiding-entails [simp]: Map.empty hiding s entails R
〈proof 〉

lemma hiding-empty-entails [simp]: t hiding Map.empty entails R
〈proof 〉

cond hiding entails
lemma cond-hiding-entailsD:
[[t hiding s under C entails R; t k = Some x; s k = Some y; C x y]] =⇒ R x y
〈proof 〉

lemma empty-cond-hiding-entails[simp]: Map.empty hiding s under C entails R
〈proof 〉

lemma cond-hiding-empty-entails[simp]: t hiding Map.empty under C entails R
〈proof 〉

lemma hidings-entailsD: [[t hidings s entails R; x ∈ t k; y ∈ s k]] =⇒ R x y
〈proof 〉

lemma hidings-empty-entails [intro!]: t hidings (λk. {}) entails R
〈proof 〉

lemma empty-hidings-entails [intro!]:
(λk. {}) hidings s entails R〈proof 〉

primrec atleast-free :: (′a ⇀ ′b) => nat => bool
where

atleast-free m 0 = True
| atleast-free-Suc: atleast-free m (Suc n) = (∃ a. m a = None ∧ (∀ b. atleast-free (m(a 7→b)) n))

lemma atleast-free-weaken [rule-format (no-asm)]:
∀m. atleast-free m (Suc n) −→ atleast-free m n
〈proof 〉

lemma atleast-free-SucI :
[| h a = None; ∀ obj. atleast-free (h(a|−>obj)) n |] ==> atleast-free h (Suc n)
〈proof 〉

declare fun-upd-apply [simp del]
lemma atleast-free-SucD-lemma [rule-format (no-asm)]:
∀m a. m a = None −→ (∀ c. atleast-free (m(a 7→c)) n) −→
(∀ b d. a 6= b −→ atleast-free (m(b 7→d)) n)
〈proof 〉

Theory Table 21

declare fun-upd-apply [simp]

lemma atleast-free-SucD: atleast-free h (Suc n) ==> atleast-free (h(a|−>b)) n
〈proof 〉

declare atleast-free-Suc [simp del]

end

22

Chapter 4

Name

1 Java names

theory Name imports Basis begin

typedecl tnam — ordinary type name, i.e. class or interface name
typedecl pname — package name
typedecl mname — method name
typedecl vname — variable or field name
typedecl label — label as destination of break or continue

datatype ename — expression name
= VNam vname
| Res — special name to model the return value of methods

datatype lname — names for local variables and the This pointer
= EName ename
| This

abbreviation VName :: vname ⇒ lname
where VName n == EName (VNam n)

abbreviation Result :: lname
where Result == EName Res

datatype xname — names of standard exceptions
= Throwable
| NullPointer | OutOfMemory | ClassCast
| NegArrSize | IndOutBound | ArrStore

lemma xn-cases:
xn = Throwable ∨ xn = NullPointer ∨

xn = OutOfMemory ∨ xn = ClassCast ∨
xn = NegArrSize ∨ xn = IndOutBound ∨ xn = ArrStore

〈proof 〉

datatype tname — type names for standard classes and other type names
= Object ′

| SXcpt ′ xname
| TName tnam

record qtname = — qualified tname cf. 6.5.3, 6.5.4
pid :: pname
tid :: tname

23

24

class has-pname =
fixes pname :: ′a ⇒ pname

instantiation pname :: has-pname
begin

definition
pname-pname-def : pname (p::pname) ≡ p

instance 〈proof 〉

end

class has-tname =
fixes tname :: ′a ⇒ tname

instantiation tname :: has-tname
begin

definition
tname-tname-def : tname (t::tname) = t

instance 〈proof 〉

end

definition
qtname-qtname-def : qtname (q:: ′a qtname-scheme) = q

translations
(type) qtname <= (type) (|pid::pname,tid::tname|)
(type) ′a qtname-scheme <= (type) (|pid::pname,tid::tname,. . .:: ′a|)

axiomatization java-lang::pname — package java.lang

definition
Object :: qtname
where Object = (|pid = java-lang, tid = Object ′|)

definition SXcpt :: xname ⇒ qtname
where SXcpt = (λx. (|pid = java-lang, tid = SXcpt ′ x|))

lemma Object-neq-SXcpt [simp]: Object 6= SXcpt xn
〈proof 〉

lemma SXcpt-inject [simp]: (SXcpt xn = SXcpt xm) = (xn = xm)
〈proof 〉

end

Chapter 5

Value

1 Java values

theory Value imports Type begin

typedecl loc — locations, i.e. abstract references on objects

datatype val
= Unit — dummy result value of void methods
| Bool bool — Boolean value
| Intg int — integer value
| Null — null reference
| Addr loc — addresses, i.e. locations of objects

primrec the-Bool :: val ⇒ bool
where the-Bool (Bool b) = b

primrec the-Intg :: val ⇒ int
where the-Intg (Intg i) = i

primrec the-Addr :: val ⇒ loc
where the-Addr (Addr a) = a

type-synonym dyn-ty = loc ⇒ ty option

primrec typeof :: dyn-ty ⇒ val ⇒ ty option
where

typeof dt Unit = Some (PrimT Void)
| typeof dt (Bool b) = Some (PrimT Boolean)
| typeof dt (Intg i) = Some (PrimT Integer)
| typeof dt Null = Some NT
| typeof dt (Addr a) = dt a

primrec defpval :: prim-ty ⇒ val — default value for primitive types
where

defpval Void = Unit
| defpval Boolean = Bool False
| defpval Integer = Intg 0

primrec default-val :: ty ⇒ val — default value for all types
where

default-val (PrimT pt) = defpval pt
| default-val (RefT r) = Null

25

26

end

Chapter 6

Type

1 Java types
theory Type imports Name begin

simplifications:

• only the most important primitive types

• the null type is regarded as reference type

datatype prim-ty — primitive type, cf. 4.2
= Void — result type of void methods
| Boolean
| Integer

datatype ref-ty — reference type, cf. 4.3
= NullT — null type, cf. 4.1
| IfaceT qtname — interface type
| ClassT qtname — class type
| ArrayT ty — array type

and ty — any type, cf. 4.1
= PrimT prim-ty — primitive type
| RefT ref-ty — reference type

abbreviation NT == RefT NullT
abbreviation Iface I == RefT (IfaceT I)
abbreviation Class C == RefT (ClassT C)
abbreviation Array :: ty ⇒ ty (‹-.[]› [90] 90)

where T .[] == RefT (ArrayT T)

definition
the-Class :: ty ⇒ qtname
where the-Class T = (SOME C . T = Class C)

lemma the-Class-eq [simp]: the-Class (Class C)= C
〈proof 〉

end

27

28

Chapter 7

Term

1 Java expressions and statements
theory Term imports Value Table begin

design issues:

• invocation frames for local variables could be reduced to special static objects (one per
method). This would reduce redundancy, but yield a rather non-standard execution model
more difficult to understand.

• method bodies separated from calls to handle assumptions in axiomat. semantics NB: Body
is intended to be in the environment of the called method.

• class initialization is regarded as (auxiliary) statement (required for AxSem)

• result expression of method return is handled by a special result variable result variable is
treated uniformly with local variables

+ welltypedness and existence of the result/return expression is ensured without extra efford

simplifications:

• expression statement allowed for any expression

• This is modeled as a special non-assignable local variable

• Super is modeled as a general expression with the same value as This

• access to field x in current class via This.x

• NewA creates only one-dimensional arrays; initialization of further subarrays may be simulated
with nested NewAs

• The ’Lit’ constructor is allowed to contain a reference value. But this is assumed to be
prohibited in the input language, which is enforced by the type-checking rules.

• a call of a static method via a type name may be simulated by a dummy variable

• no nested blocks with inner local variables

• no synchronized statements

• no secondary forms of if, while (e.g. no for) (may be easily simulated)

• no switch (may be simulated with if)

29

30

• the try-catch-finally statement is divided into the try-catch statement and a finally statement,
which may be considered as try..finally with empty catch

• the try-catch statement has exactly one catch clause; multiple ones can be simulated with
instanceof

• the compiler is supposed to add the annotations - during type-checking. This transformation
is left out as its result is checked by the type rules anyway

type-synonym locals = (lname, val) table — local variables

datatype jump
= Break label — break
| Cont label — continue
| Ret — return from method

datatype xcpt — exception
= Loc loc — location of allocated execption object
| Std xname — intermediate standard exception, see Eval.thy

datatype error
= AccessViolation — Access to a member that isn’t permitted
| CrossMethodJump — Method exits with a break or continue

datatype abrupt — abrupt completion
= Xcpt xcpt — exception
| Jump jump — break, continue, return
| Error error — runtime errors, we wan’t to detect and proof absent in welltyped programms

type-synonym
abopt = abrupt option

Local variable store and exception. Anticipation of State.thy used by smallstep semantics. For a
method call, we save the local variables of the caller in the term Callee to restore them after method
return. Also an exception must be restored after the finally statement
translations
(type) locals <= (type) (lname, val) table

datatype inv-mode — invocation mode for method calls
= Static — static
| SuperM — super
| IntVir — interface or virtual

record sig = — signature of a method, cf. 8.4.2
name ::mname — acutally belongs to Decl.thy
parTs::ty list

translations
(type) sig <= (type) (|name::mname,parTs::ty list|)
(type) sig <= (type) (|name::mname,parTs::ty list,. . .:: ′a|)

— function codes for unary operations
datatype unop = UPlus — + unary plus

| UMinus — - unary minus
| UBitNot — bitwise NOT
| UNot — ! logical complement

— function codes for binary operations

Theory Term 31

datatype binop = Mul — * multiplication
| Div — / division
| Mod — % remainder
| Plus — + addition
| Minus — - subtraction
| LShift — « left shift
| RShift — » signed right shift
| RShiftU — »> unsigned right shift
| Less — < less than
| Le — <= less than or equal
| Greater — > greater than
| Ge — >= greater than or equal
| Eq — == equal
| Neq — != not equal
| BitAnd — & bitwise AND
| And — & boolean AND
| BitXor — ˆ bitwise Xor
| Xor — ˆ boolean Xor
| BitOr — | bitwise Or
| Or — | boolean Or
| CondAnd — && conditional And
| CondOr — || conditional Or

The boolean operators & and | strictly evaluate both of their arguments. The conditional operators
&& and || only evaluate the second argument if the value of the whole expression isn’t allready
determined by the first argument. e.g.: false && e e is not evaluated; true || e e is not evaluated;

datatype var
= LVar lname — local variable (incl. parameters)
| FVar qtname qtname bool expr vname (‹{-,-,-}-..-›[10 ,10 ,10 ,85 ,99]90)

— class field
— {accC ,statDeclC ,stat}e..fn
— accC : accessing class (static class were
— the code is declared. Annotation only needed for
— evaluation to check accessibility)
— statDeclC : static declaration class of field
— stat: static or instance field?
— e: reference to object
— fn: field name

| AVar expr expr (‹-.[-]›[90 ,10]90)
— array component
— e1 .[e2]: e1 array reference; e2 index

| InsInitV stmt var
— insertion of initialization before evaluation
— of var (technical term for smallstep semantics.)

and expr
= NewC qtname — class instance creation
| NewA ty expr (‹New -[-]›[99 ,10]85)

— array creation
| Cast ty expr — type cast
| Inst expr ref-ty (‹- InstOf -›[85 ,99] 85)

— instanceof
| Lit val — literal value, references not allowed
| UnOp unop expr — unary operation
| BinOp binop expr expr — binary operation

| Super — special Super keyword
| Acc var — variable access

32

| Ass var expr (‹-:=-› [90 ,85]85)
— variable assign

| Cond expr expr expr (‹- ? - : -› [85 ,85 ,80]80) — conditional
| Call qtname ref-ty inv-mode expr mname (ty list) (expr list)

(‹{-,-,-}-·- ′({-}- ′)›[10 ,10 ,10 ,85 ,99 ,10 ,10]85)
— method call
— {accC ,statT ,mode}e·mn({pTs}args) "
— accC : accessing class (static class were
— the call code is declared. Annotation only needed for
— evaluation to check accessibility)
— statT : static declaration class/interface of
— method
— mode: invocation mode
— e: reference to object
— mn: field name
— pTs: types of parameters
— args: the actual parameters/arguments

| Methd qtname sig — (folded) method (see below)
| Body qtname stmt — (unfolded) method body
| InsInitE stmt expr

— insertion of initialization before
— evaluation of expr (technical term for smallstep sem.)

| Callee locals expr — save callers locals in callee-Frame
— (technical term for smallstep semantics)

and stmt
= Skip — empty statement
| Expr expr — expression statement
| Lab jump stmt (‹-· -› [99 ,66]66)

— labeled statement; handles break
| Comp stmt stmt (‹-;; -› [66 ,65]65)
| If ′ expr stmt stmt (‹If ′(- ′) - Else -› [80 ,79 ,79]70)
| Loop label expr stmt (‹-· While ′(- ′) -› [99 ,80 ,79]70)
| Jmp jump — break, continue, return
| Throw expr
| TryC stmt qtname vname stmt (‹Try - Catch ′(- - ′) -› [79 ,99 ,80 ,79]70)

— Try c1 Catch(C vn) c2
— c1 : block were exception may be thrown
— C : execption class to catch
— vn: local name for exception used in c2
— c2 : block to execute when exception is cateched

| Fin stmt stmt (‹- Finally -› [79 ,79]70)
| FinA abopt stmt — Save abruption of first statement

— technical term for smallstep sem.)
| Init qtname — class initialization

datatype-compat var expr stmt

The expressions Methd and Body are artificial program constructs, in the sense that they are not
used to define a concrete Bali program. In the operational semantic’s they are "generated on the
fly" to decompose the task to define the behaviour of the Call expression. They are crucial for the
axiomatic semantics to give a syntactic hook to insert some assertions (cf. AxSem.thy, Eval.thy).
The Init statement (to initialize a class on its first use) is inserted in various places by the semantics.
Callee, InsInitV, InsInitE,FinA are only needed as intermediate steps in the smallstep (transition)
semantics (cf. Trans.thy). Callee is used to save the local variables of the caller for method return.
So ve avoid modelling a frame stack. The InsInitV/E terms are only used by the smallstep semantics
to model the intermediate steps of class-initialisation.
type-synonym term = (expr+stmt,var ,expr list) sum3
translations

Theory Term 33

(type) sig <= (type) mname × ty list
(type) term <= (type) (expr+stmt,var ,expr list) sum3

abbreviation this :: expr
where this == Acc (LVar This)

abbreviation LAcc :: vname ⇒ expr (‹!!›)
where !!v == Acc (LVar (EName (VNam v)))

abbreviation
LAss :: vname ⇒ expr ⇒stmt (‹-:==-› [90 ,85] 85)
where v:==e == Expr (Ass (LVar (EName (VNam v))) e)

abbreviation
Return :: expr ⇒ stmt
where Return e == Expr (Ass (LVar (EName Res)) e);; Jmp Ret — Res := e;; Jmp Ret

abbreviation
StatRef :: ref-ty ⇒ expr
where StatRef rt == Cast (RefT rt) (Lit Null)

definition
is-stmt :: term ⇒ bool
where is-stmt t = (∃ c. t=In1r c)

〈ML〉

declare is-stmt-rews [simp]

Here is some syntactic stuff to handle the injections of statements, expressions, variables and ex-
pression lists into general terms.
abbreviation (input)

expr-inj-term :: expr ⇒ term (‹〈-〉e› 1000)
where 〈e〉e == In1l e

abbreviation (input)
stmt-inj-term :: stmt ⇒ term (‹〈-〉s› 1000)
where 〈c〉s == In1r c

abbreviation (input)
var-inj-term :: var ⇒ term (‹〈-〉v› 1000)
where 〈v〉v == In2 v

abbreviation (input)
lst-inj-term :: expr list ⇒ term (‹〈-〉l› 1000)
where 〈es〉l == In3 es

It seems to be more elegant to have an overloaded injection like the following.
class inj-term =

fixes inj-term:: ′a ⇒ term (‹〈-〉› 1000)

How this overloaded injections work can be seen in the theory DefiniteAssignment. Other big
inductive relations on terms defined in theories WellType, Eval, Evaln and AxSem don’t follow this
convention right now, but introduce subtle syntactic sugar in the relations themselves to make a
distinction on expressions, statements and so on. So unfortunately you will encounter a mixture
of dealing with these injections. The abbreviations above are used as bridge between the different
conventions.
instantiation stmt :: inj-term

34

begin

definition
stmt-inj-term-def : 〈c::stmt〉 = In1r c

instance 〈proof 〉

end

lemma stmt-inj-term-simp: 〈c::stmt〉 = In1r c
〈proof 〉

lemma stmt-inj-term [iff]: 〈x::stmt〉 = 〈y〉 ≡ x = y
〈proof 〉

instantiation expr :: inj-term
begin

definition
expr-inj-term-def : 〈e::expr〉 = In1l e

instance 〈proof 〉

end

lemma expr-inj-term-simp: 〈e::expr〉 = In1l e
〈proof 〉

lemma expr-inj-term [iff]: 〈x::expr〉 = 〈y〉 ≡ x = y
〈proof 〉

instantiation var :: inj-term
begin

definition
var-inj-term-def : 〈v::var〉 = In2 v

instance 〈proof 〉

end

lemma var-inj-term-simp: 〈v::var〉 = In2 v
〈proof 〉

lemma var-inj-term [iff]: 〈x::var〉 = 〈y〉 ≡ x = y
〈proof 〉

class expr-of =
fixes expr-of :: ′a ⇒ expr

instantiation expr :: expr-of
begin

definition
expr-of = (λ(e::expr). e)

instance 〈proof 〉

end

Theory Term 35

instantiation list :: (expr-of) inj-term
begin

definition
〈es:: ′a list〉 = In3 (map expr-of es)

instance 〈proof 〉

end

lemma expr-list-inj-term-def :
〈es::expr list〉 ≡ In3 es
〈proof 〉

lemma expr-list-inj-term-simp: 〈es::expr list〉 = In3 es
〈proof 〉

lemma expr-list-inj-term [iff]: 〈x::expr list〉 = 〈y〉 ≡ x = y
〈proof 〉

lemmas inj-term-simps = stmt-inj-term-simp expr-inj-term-simp var-inj-term-simp
expr-list-inj-term-simp

lemmas inj-term-sym-simps = stmt-inj-term-simp [THEN sym]
expr-inj-term-simp [THEN sym]
var-inj-term-simp [THEN sym]
expr-list-inj-term-simp [THEN sym]

lemma stmt-expr-inj-term [iff]: 〈t::stmt〉 6= 〈w::expr〉
〈proof 〉

lemma expr-stmt-inj-term [iff]: 〈t::expr〉 6= 〈w::stmt〉
〈proof 〉

lemma stmt-var-inj-term [iff]: 〈t::stmt〉 6= 〈w::var〉
〈proof 〉

lemma var-stmt-inj-term [iff]: 〈t::var〉 6= 〈w::stmt〉
〈proof 〉

lemma stmt-elist-inj-term [iff]: 〈t::stmt〉 6= 〈w::expr list〉
〈proof 〉

lemma elist-stmt-inj-term [iff]: 〈t::expr list〉 6= 〈w::stmt〉
〈proof 〉

lemma expr-var-inj-term [iff]: 〈t::expr〉 6= 〈w::var〉
〈proof 〉

lemma var-expr-inj-term [iff]: 〈t::var〉 6= 〈w::expr〉
〈proof 〉

lemma expr-elist-inj-term [iff]: 〈t::expr〉 6= 〈w::expr list〉
〈proof 〉

lemma elist-expr-inj-term [iff]: 〈t::expr list〉 6= 〈w::expr〉
〈proof 〉

lemma var-elist-inj-term [iff]: 〈t::var〉 6= 〈w::expr list〉
〈proof 〉

lemma elist-var-inj-term [iff]: 〈t::expr list〉 6= 〈w::var〉
〈proof 〉

lemma term-cases:
[[
∧

v. P 〈v〉v;
∧

e. P 〈e〉e;
∧

c. P 〈c〉s;
∧

l. P 〈l〉l]]
=⇒ P t
〈proof 〉

36

Evaluation of unary operations
primrec eval-unop :: unop ⇒ val ⇒ val
where

eval-unop UPlus v = Intg (the-Intg v)
| eval-unop UMinus v = Intg (− (the-Intg v))
| eval-unop UBitNot v = Intg 42 — FIXME: Not yet implemented
| eval-unop UNot v = Bool (¬ the-Bool v)

Evaluation of binary operations
primrec eval-binop :: binop ⇒ val ⇒ val ⇒ val
where

eval-binop Mul v1 v2 = Intg ((the-Intg v1) ∗ (the-Intg v2))
| eval-binop Div v1 v2 = Intg ((the-Intg v1) div (the-Intg v2))
| eval-binop Mod v1 v2 = Intg ((the-Intg v1) mod (the-Intg v2))
| eval-binop Plus v1 v2 = Intg ((the-Intg v1) + (the-Intg v2))
| eval-binop Minus v1 v2 = Intg ((the-Intg v1) − (the-Intg v2))

— Be aware of the explicit coercion of the shift distance to nat
| eval-binop LShift v1 v2 = Intg ((the-Intg v1) ∗ (2^(nat (the-Intg v2))))
| eval-binop RShift v1 v2 = Intg ((the-Intg v1) div (2^(nat (the-Intg v2))))
| eval-binop RShiftU v1 v2 = Intg 42 — FIXME: Not yet implemented

| eval-binop Less v1 v2 = Bool ((the-Intg v1) < (the-Intg v2))
| eval-binop Le v1 v2 = Bool ((the-Intg v1) ≤ (the-Intg v2))
| eval-binop Greater v1 v2 = Bool ((the-Intg v2) < (the-Intg v1))
| eval-binop Ge v1 v2 = Bool ((the-Intg v2) ≤ (the-Intg v1))

| eval-binop Eq v1 v2 = Bool (v1=v2)
| eval-binop Neq v1 v2 = Bool (v1 6=v2)
| eval-binop BitAnd v1 v2 = Intg 42 — FIXME: Not yet implemented
| eval-binop And v1 v2 = Bool ((the-Bool v1) ∧ (the-Bool v2))
| eval-binop BitXor v1 v2 = Intg 42 — FIXME: Not yet implemented
| eval-binop Xor v1 v2 = Bool ((the-Bool v1) 6= (the-Bool v2))
| eval-binop BitOr v1 v2 = Intg 42 — FIXME: Not yet implemented
| eval-binop Or v1 v2 = Bool ((the-Bool v1) ∨ (the-Bool v2))
| eval-binop CondAnd v1 v2 = Bool ((the-Bool v1) ∧ (the-Bool v2))
| eval-binop CondOr v1 v2 = Bool ((the-Bool v1) ∨ (the-Bool v2))

definition
need-second-arg :: binop ⇒ val ⇒ bool where
need-second-arg binop v1 = (¬ ((binop=CondAnd ∧ ¬ the-Bool v1) ∨

(binop=CondOr ∧ the-Bool v1)))

CondAnd and CondOr only evalulate the second argument if the value isn’t already determined by
the first argument
lemma need-second-arg-CondAnd [simp]: need-second-arg CondAnd (Bool b) = b
〈proof 〉

lemma need-second-arg-CondOr [simp]: need-second-arg CondOr (Bool b) = (¬ b)
〈proof 〉

lemma need-second-arg-strict[simp]:
[[binop 6=CondAnd; binop 6=CondOr]] =⇒ need-second-arg binop b
〈proof 〉
end

Chapter 8

Decl

1 Field, method, interface, and class declarations, whole Java programs
theory Decl
imports Term Table

begin

improvements:

• clarification and correction of some aspects of the package/access concept (Also submitted as
bug report to the Java Bug Database: Bug Id: 4485402 and Bug Id: 4493343 http://developer.
java.sun.com/developer/bugParade/index.jshtml)

simplifications:

• the only field and method modifiers are static and the access modifiers

• no constructors, which may be simulated by new + suitable methods

• there is just one global initializer per class, which can simulate all others

• no throws clause

• a void method is replaced by one that returns Unit (of dummy type Void)

• no interface fields

• every class has an explicit superclass (unused for Object)

• the (standard) methods of Object and of standard exceptions are not specified

• no main method

2 Modifier
Access modifier
datatype acc-modi

= Private | Package | Protected | Public

We can define a linear order for the access modifiers. With Private yielding the most restrictive
access and public the most liberal access policy: Private < Package < Protected < Public
instantiation acc-modi :: linorder
begin

37

http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/bugParade/index.jshtml

38

definition
less-acc-def : a < b
←→ (case a of

Private ⇒ (b=Package ∨ b=Protected ∨ b=Public)
| Package ⇒ (b=Protected ∨ b=Public)
| Protected ⇒ (b=Public)
| Public ⇒ False)

definition
le-acc-def : (a :: acc-modi) ≤ b ←→ a < b ∨ a = b

instance
〈proof 〉

end

lemma acc-modi-top [simp]: Public ≤ a =⇒ a = Public
〈proof 〉

lemma acc-modi-top1 [simp, intro!]: a ≤ Public
〈proof 〉

lemma acc-modi-le-Public:
a ≤ Public =⇒ a=Private ∨ a = Package ∨ a=Protected ∨ a=Public
〈proof 〉

lemma acc-modi-bottom: a ≤ Private =⇒ a = Private
〈proof 〉

lemma acc-modi-Private-le:
Private ≤ a =⇒ a=Private ∨ a = Package ∨ a=Protected ∨ a=Public
〈proof 〉

lemma acc-modi-Package-le:
Package ≤ a =⇒ a = Package ∨ a=Protected ∨ a=Public
〈proof 〉

lemma acc-modi-le-Package:
a ≤ Package =⇒ a=Private ∨ a = Package
〈proof 〉

lemma acc-modi-Protected-le:
Protected ≤ a =⇒ a=Protected ∨ a=Public
〈proof 〉

lemma acc-modi-le-Protected:
a ≤ Protected =⇒ a=Private ∨ a = Package ∨ a = Protected
〈proof 〉

lemmas acc-modi-le-Dests = acc-modi-top acc-modi-le-Public
acc-modi-Private-le acc-modi-bottom
acc-modi-Package-le acc-modi-le-Package
acc-modi-Protected-le acc-modi-le-Protected

lemma acc-modi-Package-le-cases:
assumes Package ≤ m
obtains (Package) m = Package

Theory Decl 39

| (Protected) m = Protected
| (Public) m = Public

〈proof 〉

Static Modifier
type-synonym stat-modi = bool

3 Declaration (base "class" for member,interface and class declarations
record decl =

access :: acc-modi

translations
(type) decl <= (type) (|access::acc-modi|)
(type) decl <= (type) (|access::acc-modi,. . .:: ′a|)

4 Member (field or method)
record member = decl +

static :: stat-modi

translations
(type) member <= (type) (|access::acc-modi,static::bool|)
(type) member <= (type) (|access::acc-modi,static::bool,. . .:: ′a|)

5 Field
record field = member +

type :: ty
translations
(type) field <= (type) (|access::acc-modi, static::bool, type::ty|)
(type) field <= (type) (|access::acc-modi, static::bool, type::ty,. . .:: ′a|)

type-synonym fdecl
= vname × field

translations
(type) fdecl <= (type) vname × field

6 Method
record mhead = member +

pars ::vname list
resT ::ty

record mbody =
lcls:: (vname × ty) list
stmt:: stmt

record methd = mhead +
mbody::mbody

type-synonym mdecl = sig × methd

translations
(type) mhead <= (type) (|access::acc-modi, static::bool,

pars::vname list, resT ::ty|)

40

(type) mhead <= (type) (|access::acc-modi, static::bool,
pars::vname list, resT ::ty,. . .:: ′a|)

(type) mbody <= (type) (|lcls::(vname × ty) list,stmt::stmt|)
(type) mbody <= (type) (|lcls::(vname × ty) list,stmt::stmt,. . .:: ′a|)
(type) methd <= (type) (|access::acc-modi, static::bool,

pars::vname list, resT ::ty,mbody::mbody|)
(type) methd <= (type) (|access::acc-modi, static::bool,

pars::vname list, resT ::ty,mbody::mbody,. . .:: ′a|)
(type) mdecl <= (type) sig × methd

definition
mhead :: methd ⇒ mhead
where mhead m = (|access=access m, static=static m, pars=pars m, resT=resT m|)

lemma access-mhead [simp]:access (mhead m) = access m
〈proof 〉

lemma static-mhead [simp]:static (mhead m) = static m
〈proof 〉

lemma pars-mhead [simp]:pars (mhead m) = pars m
〈proof 〉

lemma resT-mhead [simp]:resT (mhead m) = resT m
〈proof 〉

To be able to talk uniformaly about field and method declarations we introduce the notion of a
member declaration (e.g. useful to define accessiblity)
datatype memberdecl = fdecl fdecl | mdecl mdecl

datatype memberid = fid vname | mid sig

class has-memberid =
fixes memberid :: ′a ⇒ memberid

instantiation memberdecl :: has-memberid
begin

definition
memberdecl-memberid-def :

memberid m = (case m of
fdecl (vn,f) ⇒ fid vn
| mdecl (sig,m) ⇒ mid sig)

instance 〈proof 〉

end

lemma memberid-fdecl-simp[simp]: memberid (fdecl (vn,f)) = fid vn
〈proof 〉

lemma memberid-fdecl-simp1 : memberid (fdecl f) = fid (fst f)
〈proof 〉

lemma memberid-mdecl-simp[simp]: memberid (mdecl (sig,m)) = mid sig
〈proof 〉

lemma memberid-mdecl-simp1 : memberid (mdecl m) = mid (fst m)

Theory Decl 41

〈proof 〉

instantiation prod :: (type, has-memberid) has-memberid
begin

definition
pair-memberid-def :

memberid p = memberid (snd p)

instance 〈proof 〉

end

lemma memberid-pair-simp[simp]: memberid (c,m) = memberid m
〈proof 〉

lemma memberid-pair-simp1 : memberid p = memberid (snd p)
〈proof 〉

definition
is-field :: qtname × memberdecl ⇒ bool
where is-field m = (∃ declC f . m=(declC ,fdecl f))

lemma is-fieldD: is-field m =⇒ ∃ declC f . m=(declC ,fdecl f)
〈proof 〉

lemma is-fieldI : is-field (C ,fdecl f)
〈proof 〉

definition
is-method :: qtname × memberdecl ⇒ bool
where is-method membr = (∃ declC m. membr=(declC ,mdecl m))

lemma is-methodD: is-method membr =⇒ ∃ declC m. membr=(declC ,mdecl m)
〈proof 〉

lemma is-methodI : is-method (C ,mdecl m)
〈proof 〉

7 Interface
record ibody = decl + — interface body

imethods :: (sig × mhead) list — method heads

record iface = ibody + — interface
isuperIfs:: qtname list — superinterface list

type-synonym
idecl — interface declaration, cf. 9.1
= qtname × iface

translations
(type) ibody <= (type) (|access::acc-modi,imethods::(sig × mhead) list|)
(type) ibody <= (type) (|access::acc-modi,imethods::(sig × mhead) list,. . .:: ′a|)
(type) iface <= (type) (|access::acc-modi,imethods::(sig × mhead) list,

isuperIfs::qtname list|)
(type) iface <= (type) (|access::acc-modi,imethods::(sig × mhead) list,

isuperIfs::qtname list,. . .:: ′a|)
(type) idecl <= (type) qtname × iface

42

definition
ibody :: iface ⇒ ibody
where ibody i = (|access=access i,imethods=imethods i|)

lemma access-ibody [simp]: (access (ibody i)) = access i
〈proof 〉

lemma imethods-ibody [simp]: (imethods (ibody i)) = imethods i
〈proof 〉

8 Class
record cbody = decl + — class body

cfields:: fdecl list
methods:: mdecl list
init :: stmt — initializer

record class = cbody + — class
super :: qtname — superclass
superIfs:: qtname list — implemented interfaces

type-synonym
cdecl — class declaration, cf. 8.1
= qtname × class

translations
(type) cbody <= (type) (|access::acc-modi,cfields::fdecl list,

methods::mdecl list,init::stmt|)
(type) cbody <= (type) (|access::acc-modi,cfields::fdecl list,

methods::mdecl list,init::stmt,. . .:: ′a|)
(type) class <= (type) (|access::acc-modi,cfields::fdecl list,

methods::mdecl list,init::stmt,
super ::qtname,superIfs::qtname list|)

(type) class <= (type) (|access::acc-modi,cfields::fdecl list,
methods::mdecl list,init::stmt,
super ::qtname,superIfs::qtname list,. . .:: ′a|)

(type) cdecl <= (type) qtname × class

definition
cbody :: class ⇒ cbody
where cbody c = (|access=access c, cfields=cfields c,methods=methods c,init=init c|)

lemma access-cbody [simp]:access (cbody c) = access c
〈proof 〉

lemma cfields-cbody [simp]:cfields (cbody c) = cfields c
〈proof 〉

lemma methods-cbody [simp]:methods (cbody c) = methods c
〈proof 〉

lemma init-cbody [simp]:init (cbody c) = init c
〈proof 〉

standard classes
consts

Object-mdecls :: mdecl list — methods of Object
SXcpt-mdecls :: mdecl list — methods of SXcpts

Theory Decl 43

definition
ObjectC :: cdecl — declaration of root class where
ObjectC = (Object,(|access=Public,cfields=[],methods=Object-mdecls,

init=Skip,super=undefined,superIfs=[]|))

definition
SXcptC ::xname ⇒ cdecl — declarations of throwable classes where
SXcptC xn = (SXcpt xn,(|access=Public,cfields=[],methods=SXcpt-mdecls,

init=Skip,
super=if xn = Throwable then Object

else SXcpt Throwable,
superIfs=[]|))

lemma ObjectC-neq-SXcptC [simp]: ObjectC 6= SXcptC xn
〈proof 〉

lemma SXcptC-inject [simp]: (SXcptC xn = SXcptC xm) = (xn = xm)
〈proof 〉

definition
standard-classes :: cdecl list where
standard-classes = [ObjectC , SXcptC Throwable,

SXcptC NullPointer , SXcptC OutOfMemory, SXcptC ClassCast,
SXcptC NegArrSize , SXcptC IndOutBound, SXcptC ArrStore]

programs
record prog =

ifaces ::idecl list
classes::cdecl list

translations
(type) prog <= (type) (|ifaces::idecl list,classes::cdecl list|)
(type) prog <= (type) (|ifaces::idecl list,classes::cdecl list,. . .:: ′a|)

abbreviation
iface :: prog ⇒ (qtname, iface) table
where iface G I == table-of (ifaces G) I

abbreviation
class :: prog ⇒ (qtname, class) table
where class G C == table-of (classes G) C

abbreviation
is-iface :: prog ⇒ qtname ⇒ bool
where is-iface G I == iface G I 6= None

abbreviation
is-class :: prog ⇒ qtname ⇒ bool
where is-class G C == class G C 6= None

is type
primrec is-type :: prog ⇒ ty ⇒ bool

and isrtype :: prog ⇒ ref-ty ⇒ bool
where

is-type G (PrimT pt) = True
| is-type G (RefT rt) = isrtype G rt
| isrtype G (NullT) = True

44

| isrtype G (IfaceT tn) = is-iface G tn
| isrtype G (ClassT tn) = is-class G tn
| isrtype G (ArrayT T) = is-type G T

lemma type-is-iface: is-type G (Iface I) =⇒ is-iface G I
〈proof 〉

lemma type-is-class: is-type G (Class C) =⇒ is-class G C
〈proof 〉

subinterface and subclass relation, in anticipation of TypeRel.thy

definition
subint1 :: prog ⇒ (qtname × qtname) set — direct subinterface
where subint1 G = {(I ,J). ∃ i∈iface G I : J∈set (isuperIfs i)}

definition
subcls1 :: prog ⇒ (qtname × qtname) set — direct subclass
where subcls1 G = {(C ,D). C 6=Object ∧ (∃ c∈class G C : super c = D)}

abbreviation
subcls1-syntax :: prog => [qtname, qtname] => bool (‹-`-≺C1-› [71 ,71 ,71] 70)
where G`C ≺C1 D == (C ,D) ∈ subcls1 G

abbreviation
subclseq-syntax :: prog => [qtname, qtname] => bool (‹-`-�C -› [71 ,71 ,71] 70)
where G`C �C D == (C ,D) ∈(subcls1 G)∗

abbreviation
subcls-syntax :: prog => [qtname, qtname] => bool (‹-`-≺C -› [71 ,71 ,71] 70)
where G`C ≺C D == (C ,D) ∈(subcls1 G)+

notation (ASCII)
subcls1-syntax (‹-|−-<:C1-› [71 ,71 ,71] 70) and
subclseq-syntax (‹-|−-<=:C -›[71 ,71 ,71] 70) and
subcls-syntax (‹-|−-<:C -›[71 ,71 ,71] 70)

lemma subint1I : [[iface G I = Some i; J ∈ set (isuperIfs i)]]
=⇒ (I ,J) ∈ subint1 G

〈proof 〉

lemma subcls1I :[[class G C = Some c; C 6= Object]] =⇒ (C ,(super c)) ∈ subcls1 G
〈proof 〉

lemma subint1D: (I ,J)∈subint1 G=⇒ ∃ i∈iface G I : J∈set (isuperIfs i)
〈proof 〉

lemma subcls1D:
(C ,D)∈subcls1 G =⇒ C 6=Object ∧ (∃ c. class G C = Some c ∧ (super c = D))
〈proof 〉

lemma subint1-def2 :
subint1 G = (SIGMA I : {I . is-iface G I}. set (isuperIfs (the (iface G I))))
〈proof 〉

lemma subcls1-def2 :
subcls1 G =

(SIGMA C : {C . is-class G C}. {D. C 6=Object ∧ super (the(class G C))=D})

Theory Decl 45

〈proof 〉

lemma subcls-is-class:
[[G`C ≺C D]] =⇒ ∃ c. class G C = Some c
〈proof 〉

lemma no-subcls1-Object:G`Object≺C1 D =⇒ P
〈proof 〉

lemma no-subcls-Object: G`Object≺C D =⇒ P
〈proof 〉

well-structured programs
definition

ws-idecl :: prog ⇒ qtname ⇒ qtname list ⇒ bool
where ws-idecl G I si = (∀ J∈set si. is-iface G J ∧ (J ,I)/∈(subint1 G)+)

definition
ws-cdecl :: prog ⇒ qtname ⇒ qtname ⇒ bool
where ws-cdecl G C sc = (C 6=Object −→ is-class G sc ∧ (sc,C)/∈(subcls1 G)+)

definition
ws-prog :: prog ⇒ bool where
ws-prog G = ((∀ (I ,i)∈set (ifaces G). ws-idecl G I (isuperIfs i)) ∧

(∀ (C ,c)∈set (classes G). ws-cdecl G C (super c)))

lemma ws-progI :
[[∀ (I ,i)∈set (ifaces G). ∀ J∈set (isuperIfs i). is-iface G J ∧

(J ,I) /∈ (subint1 G)+;
∀ (C ,c)∈set (classes G). C 6=Object −→ is-class G (super c) ∧

((super c),C) /∈ (subcls1 G)+

]] =⇒ ws-prog G
〈proof 〉

lemma ws-prog-ideclD:
[[iface G I = Some i; J∈set (isuperIfs i); ws-prog G]] =⇒

is-iface G J ∧ (J ,I)/∈(subint1 G)+

〈proof 〉

lemma ws-prog-cdeclD:
[[class G C = Some c; C 6=Object; ws-prog G]] =⇒

is-class G (super c) ∧ (super c,C)/∈(subcls1 G)+

〈proof 〉

well-foundedness
lemma finite-is-iface: finite {I . is-iface G I}
〈proof 〉

lemma finite-is-class: finite {C . is-class G C}
〈proof 〉

lemma finite-subint1 : finite (subint1 G)
〈proof 〉

lemma finite-subcls1 : finite (subcls1 G)
〈proof 〉

46

lemma subint1-irrefl-lemma1 :
ws-prog G =⇒ (subint1 G)−1 ∩ (subint1 G)+ = {}
〈proof 〉

lemma subcls1-irrefl-lemma1 :
ws-prog G =⇒ (subcls1 G)−1 ∩ (subcls1 G)+ = {}
〈proof 〉

lemmas subint1-irrefl-lemma2 = subint1-irrefl-lemma1 [THEN irrefl-tranclI ′]
lemmas subcls1-irrefl-lemma2 = subcls1-irrefl-lemma1 [THEN irrefl-tranclI ′]

lemma subint1-irrefl: [[(x, y) ∈ subint1 G; ws-prog G]] =⇒ x 6= y
〈proof 〉

lemma subcls1-irrefl: [[(x, y) ∈ subcls1 G; ws-prog G]] =⇒ x 6= y
〈proof 〉

lemmas subint1-acyclic = subint1-irrefl-lemma2 [THEN acyclicI]
lemmas subcls1-acyclic = subcls1-irrefl-lemma2 [THEN acyclicI]

lemma wf-subint1 : ws-prog G =⇒ wf ((subint1 G)−1)
〈proof 〉

lemma wf-subcls1 : ws-prog G =⇒ wf ((subcls1 G)−1)
〈proof 〉

lemma subint1-induct:
[[ws-prog G;

∧
x. ∀ y. (x, y) ∈ subint1 G −→ P y =⇒ P x]] =⇒ P a

〈proof 〉

lemma subcls1-induct [consumes 1]:
[[ws-prog G;

∧
x. ∀ y. (x, y) ∈ subcls1 G −→ P y =⇒ P x]] =⇒ P a

〈proof 〉

lemma ws-subint1-induct:
[[is-iface G I ; ws-prog G;

∧
I i. [[iface G I = Some i ∧

(∀ J ∈ set (isuperIfs i). (I ,J)∈subint1 G ∧ P J ∧ is-iface G J)]] =⇒ P I
]] =⇒ P I
〈proof 〉

lemma ws-subcls1-induct: [[is-class G C ; ws-prog G;∧
C c. [[class G C = Some c;

(C 6= Object −→ (C ,(super c))∈subcls1 G ∧
P (super c) ∧ is-class G (super c))]] =⇒ P C

]] =⇒ P C
〈proof 〉

lemma ws-class-induct [consumes 2 , case-names Object Subcls]:
[[class G C = Some c; ws-prog G;∧

co. class G Object = Some co =⇒ P Object;∧
C c. [[class G C = Some c; C 6= Object; P (super c)]] =⇒ P C

]] =⇒ P C
〈proof 〉

lemma ws-class-induct ′ [consumes 2 , case-names Object Subcls]:

Theory Decl 47

[[is-class G C ; ws-prog G;∧
co. class G Object = Some co =⇒ P Object;∧
C c. [[class G C = Some c; C 6= Object; P (super c)]] =⇒ P C

]] =⇒ P C
〈proof 〉

lemma ws-class-induct ′′ [consumes 2 , case-names Object Subcls]:
[[class G C = Some c; ws-prog G;∧

co. class G Object = Some co =⇒ P Object co;∧
C c sc. [[class G C = Some c; class G (super c) = Some sc;

C 6= Object; P (super c) sc]] =⇒ P C c
]] =⇒ P C c
〈proof 〉

lemma ws-interface-induct [consumes 2 , case-names Step]:
assumes is-if-I : is-iface G I and

ws: ws-prog G and
hyp-sub:

∧
I i. [[iface G I = Some i;
∀ J ∈ set (isuperIfs i).

(I ,J)∈subint1 G ∧ P J ∧ is-iface G J]] =⇒ P I
shows P I
〈proof 〉

general recursion operators for the interface and class hiearchies

function iface-rec :: prog ⇒ qtname ⇒ (qtname ⇒ iface ⇒ ′a set ⇒ ′a) ⇒ ′a
where
[simp del]: iface-rec G I f =
(case iface G I of

None ⇒ undefined
| Some i ⇒ if ws-prog G

then f I i
((λJ . iface-rec G J f)‘set (isuperIfs i))

else undefined)
〈proof 〉
termination
〈proof 〉

lemma iface-rec:
[[iface G I = Some i; ws-prog G]] =⇒
iface-rec G I f = f I i ((λJ . iface-rec G J f)‘set (isuperIfs i))
〈proof 〉

function
class-rec :: prog ⇒ qtname ⇒ ′a ⇒ (qtname ⇒ class ⇒ ′a ⇒ ′a) ⇒ ′a

where
[simp del]: class-rec G C t f =
(case class G C of

None ⇒ undefined
| Some c ⇒ if ws-prog G

then f C c
(if C = Object then t

else class-rec G (super c) t f)
else undefined)

〈proof 〉
termination
〈proof 〉

48

lemma class-rec: [[class G C = Some c; ws-prog G]] =⇒
class-rec G C t f =

f C c (if C = Object then t else class-rec G (super c) t f)
〈proof 〉

definition
imethds :: prog ⇒ qtname ⇒ (sig,qtname × mhead) tables where
— methods of an interface, with overriding and inheritance, cf. 9.2
imethds G I = iface-rec G I

(λI i ts. (Un-tables ts) ⊕⊕
(set-option ◦ table-of (map (λ(s,m). (s,I ,m)) (imethods i))))

end

Chapter 9

TypeRel

1 The relations between Java types
theory TypeRel imports Decl begin

simplifications:

• subinterface, subclass and widening relation includes identity

improvements over Java Specification 1.0:

• narrowing reference conversion also in cases where the return types of a pair of methods
common to both types are in widening (rather identity) relation

• one could add similar constraints also for other cases

design issues:

• the type relations do not require is-type for their arguments

• the subint1 and subcls1 relations imply is-iface/is-class for their first arguments, which is
required for their finiteness

definition
implmt1 :: prog ⇒ (qtname × qtname) set — direct implementation
— direct implementation, cf. 8.1.3
where implmt1 G = {(C ,I). C 6=Object ∧ (∃ c∈class G C : I∈set (superIfs c))}

abbreviation
subint1-syntax :: prog => [qtname, qtname] => bool (‹-`-≺I1-› [71 ,71 ,71] 70)
where G`I ≺I1 J == (I ,J) ∈ subint1 G

abbreviation
subint-syntax :: prog => [qtname, qtname] => bool (‹-`-�I -› [71 ,71 ,71] 70)
where G`I �I J == (I ,J) ∈(subint1 G)∗ — cf. 9.1.3

abbreviation
implmt1-syntax :: prog => [qtname, qtname] => bool (‹-`-;1-› [71 ,71 ,71] 70)
where G`C ;1 I == (C ,I) ∈ implmt1 G

notation (ASCII)
subint1-syntax (‹-|−-<:I1-› [71 ,71 ,71] 70) and
subint-syntax (‹-|−-<=:I -›[71 ,71 ,71] 70) and
implmt1-syntax (‹-|−-∼>1-› [71 ,71 ,71] 70)

49

50

subclass and subinterface relations

lemmas subcls-direct = subcls1I [THEN r-into-rtrancl]

lemma subcls-direct1 :
[[class G C = Some c; C 6= Object;D=super c]] =⇒ G`C�C D
〈proof 〉

lemma subcls1I1 :
[[class G C = Some c; C 6= Object;D=super c]] =⇒ G`C≺C1 D
〈proof 〉

lemma subcls-direct2 :
[[class G C = Some c; C 6= Object;D=super c]] =⇒ G`C≺C D
〈proof 〉

lemma subclseq-trans: [[G`A �C B; G`B �C C]] =⇒ G`A �C C
〈proof 〉

lemma subcls-trans: [[G`A ≺C B; G`B ≺C C]] =⇒ G`A ≺C C
〈proof 〉

lemma SXcpt-subcls-Throwable-lemma:
[[class G (SXcpt xn) = Some xc;

super xc = (if xn = Throwable then Object else SXcpt Throwable)]]
=⇒ G`SXcpt xn�C SXcpt Throwable
〈proof 〉

lemma subcls-ObjectI : [[is-class G C ; ws-prog G]] =⇒ G`C�C Object
〈proof 〉

lemma subclseq-ObjectD [dest!]: G`Object�C C =⇒ C = Object
〈proof 〉

lemma subcls-ObjectD [dest!]: G`Object≺C C =⇒ False
〈proof 〉

lemma subcls-ObjectI1 [intro!]:
[[C 6= Object;is-class G C ;ws-prog G]] =⇒ G`C ≺C Object
〈proof 〉

lemma subcls-is-class: (C ,D) ∈ (subcls1 G)+ =⇒ is-class G C
〈proof 〉

lemma subcls-is-class2 [rule-format (no-asm)]:
G`C�C D =⇒ is-class G D −→ is-class G C
〈proof 〉

lemma single-inheritance:
[[G`A ≺C1 B; G`A ≺C1 C]] =⇒ B = C
〈proof 〉

lemma subcls-compareable:
[[G`A �C X ; G`A �C Y
]] =⇒ G`X �C Y ∨ G`Y �C X
〈proof 〉

lemma subcls1-irrefl: [[G`C ≺C1 D; ws-prog G]]
=⇒ C 6= D

Theory TypeRel 51

〈proof 〉

lemma no-subcls-Object: G`C ≺C D =⇒ C 6= Object
〈proof 〉

lemma subcls-acyclic: [[G`C ≺C D; ws-prog G]] =⇒ ¬ G`D ≺C C
〈proof 〉

lemma subclseq-cases:
assumes G`C �C D
obtains (Eq) C = D | (Subcls) G`C ≺C D
〈proof 〉

lemma subclseq-acyclic:
[[G`C �C D; G`D �C C ; ws-prog G]] =⇒ C=D
〈proof 〉

lemma subcls-irrefl: [[G`C ≺C D; ws-prog G]]
=⇒ C 6= D
〈proof 〉

lemma invert-subclseq:
[[G`C �C D; ws-prog G]]
=⇒ ¬ G`D ≺C C
〈proof 〉

lemma invert-subcls:
[[G`C ≺C D; ws-prog G]]
=⇒ ¬ G`D �C C
〈proof 〉

lemma subcls-superD:
[[G`C ≺C D; class G C = Some c]] =⇒ G`(super c) �C D
〈proof 〉

lemma subclseq-superD:
[[G`C �C D; C 6=D;class G C = Some c]] =⇒ G`(super c) �C D
〈proof 〉

implementation relation

lemma implmt1D: G`C;1I =⇒ C 6=Object ∧ (∃ c∈class G C : I∈set (superIfs c))
〈proof 〉

inductive — implementation, cf. 8.1.4
implmt :: prog ⇒ qtname ⇒ qtname ⇒ bool (‹-`-;-› [71 ,71 ,71] 70)
for G :: prog

where
direct: G`C;1J =⇒ G`C;J
| subint: G`C;1I =⇒ G`I�I J =⇒ G`C;J
| subcls1 : G`C≺C1D =⇒ G`D;J =⇒ G`C;J

lemma implmtD: G`C;J =⇒ (∃ I . G`C;1I ∧ G`I�I J) ∨ (∃D. G`C≺C1D ∧ G`D;J)
〈proof 〉

lemma implmt-ObjectE [elim!]: G`Object;I =⇒ R
〈proof 〉

52

lemma subcls-implmt [rule-format (no-asm)]: G`A�C B =⇒ G`B;K −→ G`A;K
〈proof 〉

lemma implmt-subint2 : [[G`A;J ; G`J�I K]] =⇒ G`A;K
〈proof 〉

lemma implmt-is-class: G`C;I =⇒ is-class G C
〈proof 〉

widening relation
inductive
— widening, viz. method invocation conversion, cf. 5.3 i.e. kind of syntactic subtyping
widen :: prog ⇒ ty ⇒ ty ⇒ bool (‹-`-�-› [71 ,71 ,71] 70)
for G :: prog

where
refl: G`T�T — identity conversion, cf. 5.1.1
| subint: G`I�I J =⇒ G`Iface I� Iface J — wid.ref.conv.,cf. 5.1.4
| int-obj: G`Iface I� Class Object
| subcls: G`C�C D =⇒ G`Class C� Class D
| implmt: G`C;I =⇒ G`Class C� Iface I
| null: G`NT� RefT R
| arr-obj: G`T .[]� Class Object
| array: G`RefT S�RefT T =⇒ G`RefT S .[]� RefT T .[]

declare widen.refl [intro!]
declare widen.intros [simp]

lemma widen-PrimT : G`PrimT x�T =⇒ (∃ y. T = PrimT y)
〈proof 〉

lemma widen-PrimT2 : G`S�PrimT x =⇒ ∃ y. S = PrimT y
〈proof 〉

These widening lemmata hold in Bali but are to strong for ordinary Java. They would not work for
real Java Integral Types, like short, long, int. These lemmata are just for documentation and are
not used.
lemma widen-PrimT-strong: G`PrimT x�T =⇒ T = PrimT x
〈proof 〉

lemma widen-PrimT2-strong: G`S�PrimT x =⇒ S = PrimT x
〈proof 〉

Specialized versions for booleans also would work for real Java
lemma widen-Boolean: G`PrimT Boolean�T =⇒ T = PrimT Boolean
〈proof 〉

lemma widen-Boolean2 : G`S�PrimT Boolean =⇒ S = PrimT Boolean
〈proof 〉

lemma widen-RefT : G`RefT R�T =⇒ ∃ t. T=RefT t
〈proof 〉

lemma widen-RefT2 : G`S�RefT R =⇒ ∃ t. S=RefT t
〈proof 〉

Theory TypeRel 53

lemma widen-Iface: G`Iface I�T =⇒ T=Class Object ∨ (∃ J . T=Iface J)
〈proof 〉

lemma widen-Iface2 : G`S� Iface J =⇒ S = NT ∨ (∃ I . S = Iface I) ∨ (∃D. S = Class D)
〈proof 〉

lemma widen-Iface-Iface: G`Iface I� Iface J =⇒ G`I�I J
〈proof 〉

lemma widen-Iface-Iface-eq [simp]: G`Iface I� Iface J = G`I�I J
〈proof 〉

lemma widen-Class: G`Class C�T =⇒ (∃D. T=Class D) ∨ (∃ I . T=Iface I)
〈proof 〉

lemma widen-Class2 : G`S� Class C =⇒ C = Object ∨ S = NT ∨ (∃D. S = Class D)
〈proof 〉

lemma widen-Class-Class: G`Class C� Class cm =⇒ G`C�C cm
〈proof 〉

lemma widen-Class-Class-eq [simp]: G`Class C� Class cm = G`C�C cm
〈proof 〉

lemma widen-Class-Iface: G`Class C� Iface I =⇒ G`C;I
〈proof 〉

lemma widen-Class-Iface-eq [simp]: G`Class C� Iface I = G`C;I
〈proof 〉

lemma widen-Array: G`S .[]�T =⇒ T=Class Object ∨ (∃T ′. T=T ′.[] ∧ G`S�T ′)
〈proof 〉

lemma widen-Array2 : G`S�T .[] =⇒ S = NT ∨ (∃S ′. S=S ′.[] ∧ G`S ′�T)
〈proof 〉

lemma widen-ArrayPrimT : G`PrimT t.[]�T =⇒ T=Class Object ∨ T=PrimT t.[]
〈proof 〉

lemma widen-ArrayRefT :
G`RefT t.[]�T =⇒ T=Class Object ∨ (∃ s. T=RefT s.[] ∧ G`RefT t�RefT s)
〈proof 〉

lemma widen-ArrayRefT-ArrayRefT-eq [simp]:
G`RefT T .[]�RefT T ′.[] = G`RefT T�RefT T ′

〈proof 〉

lemma widen-Array-Array: G`T .[]�T ′.[] =⇒ G`T�T ′

〈proof 〉

lemma widen-Array-Class: G`S .[] � Class C =⇒ C=Object
〈proof 〉

lemma widen-NT2 : G`S�NT =⇒ S = NT
〈proof 〉

lemma widen-Object:

54

assumes isrtype G T and ws-prog G
shows G`RefT T � Class Object
〈proof 〉

lemma widen-trans-lemma [rule-format (no-asm)]:
[[G`S�U ; ∀C . is-class G C −→ G`C�C Object]] =⇒ ∀T . G`U�T −→ G`S�T
〈proof 〉

lemma ws-widen-trans: [[G`S�U ; G`U�T ; ws-prog G]] =⇒ G`S�T
〈proof 〉

lemma widen-antisym-lemma [rule-format (no-asm)]: [[G`S�T ;
∀ I J . G`I�I J ∧ G`J�I I −→ I = J ;
∀C D. G`C�C D ∧ G`D�C C −→ C = D;
∀ I . G`Object;I −→ False]] =⇒ G`T�S −→ S = T
〈proof 〉

lemmas subint-antisym =
subint1-acyclic [THEN acyclic-impl-antisym-rtrancl]

lemmas subcls-antisym =
subcls1-acyclic [THEN acyclic-impl-antisym-rtrancl]

lemma widen-antisym: [[G`S�T ; G`T�S ; ws-prog G]] =⇒ S=T
〈proof 〉

lemma widen-ObjectD [dest!]: G`Class Object�T =⇒ T=Class Object
〈proof 〉

definition
widens :: prog ⇒ [ty list, ty list] ⇒ bool (‹-`-[�]-› [71 ,71 ,71] 70)
where G`Ts[�]Ts ′ = list-all2 (λT T ′. G`T�T ′) Ts Ts ′

lemma widens-Nil [simp]: G`[][�][]
〈proof 〉

lemma widens-Cons [simp]: G`(S#Ss)[�](T#Ts) = (G`S�T ∧ G`Ss[�]Ts)
〈proof 〉

narrowing relation

inductive — narrowing reference conversion, cf. 5.1.5
narrow :: prog ⇒ ty ⇒ ty ⇒ bool (‹-`-�-› [71 ,71 ,71] 70)
for G :: prog

where
subcls: G`C�C D =⇒ G` Class D�Class C
| implmt: ¬G`C;I =⇒ G` Class C�Iface I
| obj-arr : G`Class Object�T .[]
| int-cls: G` Iface I�Class C
| subint: imethds G I hidings imethds G J entails

(λ(md, mh) (md ′,mh ′). G`mrt mh�mrt mh ′) =⇒
¬G`I�I J =⇒ G` Iface I�Iface J

| array: G`RefT S�RefT T =⇒ G` RefT S .[]�RefT T .[]

lemma narrow-RefT : G`RefT R�T =⇒ ∃ t. T=RefT t
〈proof 〉

lemma narrow-RefT2 : G`S�RefT R =⇒ ∃ t. S=RefT t
〈proof 〉

Theory TypeRel 55

lemma narrow-PrimT : G`PrimT pt�T =⇒ ∃ t. T=PrimT t
〈proof 〉

lemma narrow-PrimT2 : G`S�PrimT pt =⇒
∃ t. S=PrimT t ∧ G`PrimT t�PrimT pt

〈proof 〉

These narrowing lemmata hold in Bali but are to strong for ordinary Java. They would not work
for real Java Integral Types, like short, long, int. These lemmata are just for documentation and
are not used.
lemma narrow-PrimT-strong: G`PrimT pt�T =⇒ T=PrimT pt
〈proof 〉

lemma narrow-PrimT2-strong: G`S�PrimT pt =⇒ S=PrimT pt
〈proof 〉

Specialized versions for booleans also would work for real Java
lemma narrow-Boolean: G`PrimT Boolean�T =⇒ T=PrimT Boolean
〈proof 〉

lemma narrow-Boolean2 : G`S�PrimT Boolean =⇒ S=PrimT Boolean
〈proof 〉

casting relation
inductive — casting conversion, cf. 5.5

cast :: prog ⇒ ty ⇒ ty ⇒ bool (‹-`-�? -› [71 ,71 ,71] 70)
for G :: prog

where
widen: G`S�T =⇒ G`S�? T
| narrow: G`S�T =⇒ G`S�? T

lemma cast-RefT : G`RefT R�? T =⇒ ∃ t. T=RefT t
〈proof 〉

lemma cast-RefT2 : G`S�? RefT R =⇒ ∃ t. S=RefT t
〈proof 〉

lemma cast-PrimT : G`PrimT pt�? T =⇒ ∃ t. T=PrimT t
〈proof 〉

lemma cast-PrimT2 : G`S�? PrimT pt =⇒ ∃ t. S=PrimT t ∧ G`PrimT t�PrimT pt
〈proof 〉

lemma cast-Boolean:
assumes bool-cast: G`PrimT Boolean�? T
shows T=PrimT Boolean
〈proof 〉

lemma cast-Boolean2 :
assumes bool-cast: G`S�? PrimT Boolean
shows S = PrimT Boolean
〈proof 〉

end

56

Chapter 10

DeclConcepts

1 Advanced concepts on Java declarations like overriding, inheritance, dynamic
method lookup

theory DeclConcepts imports TypeRel begin

access control (cf. 6.6), overriding and hiding (cf. 8.4.6.1)
definition is-public :: prog ⇒ qtname ⇒ bool where
is-public G qn = (case class G qn of

None ⇒ (case iface G qn of
None ⇒ False
| Some i ⇒ access i = Public)

| Some c ⇒ access c = Public)

2 accessibility of types (cf. 6.6.1)

Primitive types are always accessible, interfaces and classes are accessible in their package or if they
are defined public, an array type is accessible if its element type is accessible
primrec

accessible-in :: prog ⇒ ty ⇒ pname ⇒ bool (‹- ` - accessible ′-in -› [61 ,61 ,61] 60) and
rt-accessible-in :: prog ⇒ ref-ty ⇒ pname ⇒ bool (‹- ` - accessible ′-in ′′ -› [61 ,61 ,61] 60)

where
G`(PrimT p) accessible-in pack = True
| accessible-in-RefT-simp:

G`(RefT r) accessible-in pack = G`r accessible-in ′ pack
| G`(NullT) accessible-in ′ pack = True
| G`(IfaceT I) accessible-in ′ pack = ((pid I = pack) ∨ is-public G I)
| G`(ClassT C) accessible-in ′ pack = ((pid C = pack) ∨ is-public G C)
| G`(ArrayT ty) accessible-in ′ pack = G`ty accessible-in pack

declare accessible-in-RefT-simp [simp del]

definition
is-acc-class :: prog ⇒ pname ⇒ qtname ⇒ bool
where is-acc-class G P C = (is-class G C ∧ G`(Class C) accessible-in P)

definition
is-acc-iface :: prog ⇒ pname ⇒ qtname ⇒ bool
where is-acc-iface G P I = (is-iface G I ∧ G`(Iface I) accessible-in P)

definition
is-acc-type :: prog ⇒ pname ⇒ ty ⇒ bool
where is-acc-type G P T = (is-type G T ∧ G`T accessible-in P)

57

58

definition
is-acc-reftype :: prog ⇒ pname ⇒ ref-ty ⇒ bool
where is-acc-reftype G P T = (isrtype G T ∧ G`T accessible-in ′ P)

lemma is-acc-classD:
is-acc-class G P C =⇒ is-class G C ∧ G`(Class C) accessible-in P
〈proof 〉

lemma is-acc-class-is-class: is-acc-class G P C =⇒ is-class G C
〈proof 〉

lemma is-acc-ifaceD:
is-acc-iface G P I =⇒ is-iface G I ∧ G`(Iface I) accessible-in P
〈proof 〉

lemma is-acc-typeD:
is-acc-type G P T =⇒ is-type G T ∧ G`T accessible-in P
〈proof 〉

lemma is-acc-reftypeD:
is-acc-reftype G P T =⇒ isrtype G T ∧ G`T accessible-in ′ P
〈proof 〉

3 accessibility of members

The accessibility of members is more involved as the accessibility of types. We have to distinguish
several cases to model the different effects of accessibility during inheritance, overriding and ordinary
member access

Various technical conversion and selection functions

overloaded selector accmodi to select the access modifier out of various HOL types
class has-accmodi =

fixes accmodi:: ′a ⇒ acc-modi

instantiation acc-modi :: has-accmodi
begin

definition
acc-modi-accmodi-def : accmodi (a::acc-modi) = a

instance 〈proof 〉

end

lemma acc-modi-accmodi-simp[simp]: accmodi (a::acc-modi) = a
〈proof 〉

instantiation decl-ext :: (type) has-accmodi
begin

definition
decl-acc-modi-def : accmodi (d::(′a:: type) decl-scheme) = access d

instance 〈proof 〉

Theory DeclConcepts 59

end

lemma decl-acc-modi-simp[simp]: accmodi (d::(′a::type) decl-scheme) = access d
〈proof 〉

instantiation prod :: (type, has-accmodi) has-accmodi
begin

definition
pair-acc-modi-def : accmodi p = accmodi (snd p)

instance 〈proof 〉

end

lemma pair-acc-modi-simp[simp]: accmodi (x,a) = (accmodi a)
〈proof 〉

instantiation memberdecl :: has-accmodi
begin

definition
memberdecl-acc-modi-def : accmodi m = (case m of

fdecl f ⇒ accmodi f
| mdecl m ⇒ accmodi m)

instance 〈proof 〉

end

lemma memberdecl-fdecl-acc-modi-simp[simp]:
accmodi (fdecl m) = accmodi m
〈proof 〉

lemma memberdecl-mdecl-acc-modi-simp[simp]:
accmodi (mdecl m) = accmodi m
〈proof 〉

overloaded selector declclass to select the declaring class out of various HOL types
class has-declclass =

fixes declclass:: ′a ⇒ qtname

instantiation qtname-ext :: (type) has-declclass
begin

definition
declclass q = (| pid = pid q, tid = tid q |)

instance 〈proof 〉

end

lemma qtname-declclass-def :
declclass q ≡ (q::qtname)
〈proof 〉

lemma qtname-declclass-simp[simp]: declclass (q::qtname) = q
〈proof 〉

60

instantiation prod :: (has-declclass, type) has-declclass
begin

definition
pair-declclass-def : declclass p = declclass (fst p)

instance 〈proof 〉

end

lemma pair-declclass-simp[simp]: declclass (c,x) = declclass c
〈proof 〉

overloaded selector is-static to select the static modifier out of various HOL types
class has-static =

fixes is-static :: ′a ⇒ bool

instantiation decl-ext :: (has-static) has-static
begin

instance 〈proof 〉

end

instantiation member-ext :: (type) has-static
begin

instance 〈proof 〉

end

axiomatization where
static-field-type-is-static-def : is-static (m::(′a member-scheme)) ≡ static m

lemma member-is-static-simp: is-static (m:: ′a member-scheme) = static m
〈proof 〉

instantiation prod :: (type, has-static) has-static
begin

definition
pair-is-static-def : is-static p = is-static (snd p)

instance 〈proof 〉

end

lemma pair-is-static-simp [simp]: is-static (x,s) = is-static s
〈proof 〉

lemma pair-is-static-simp1 : is-static p = is-static (snd p)
〈proof 〉

instantiation memberdecl :: has-static
begin

definition
memberdecl-is-static-def :
is-static m = (case m of

Theory DeclConcepts 61

fdecl f ⇒ is-static f
| mdecl m ⇒ is-static m)

instance 〈proof 〉

end

lemma memberdecl-is-static-fdecl-simp[simp]:
is-static (fdecl f) = is-static f
〈proof 〉

lemma memberdecl-is-static-mdecl-simp[simp]:
is-static (mdecl m) = is-static m
〈proof 〉

lemma mhead-static-simp [simp]: is-static (mhead m) = is-static m
〈proof 〉

definition
decliface :: qtname × ′a decl-scheme ⇒ qtname where
decliface = fst — get the interface component

definition
mbr :: qtname × memberdecl ⇒ memberdecl where
mbr = snd — get the memberdecl component

definition
mthd :: ′b × ′a ⇒ ′a where
mthd = snd — get the method component

— also used for mdecl, mhead

definition
fld :: ′b × ′a decl-scheme ⇒ ′a decl-scheme where
fld = snd — get the field component

— also used for ((vname × qtname)× field)

— some mnemotic selectors for (vname × qtname)

definition
fname:: vname × ′a ⇒ vname
where fname = fst

— also used for fdecl

definition
declclassf :: (vname × qtname) ⇒ qtname
where declclassf = snd

lemma decliface-simp[simp]: decliface (I ,m) = I
〈proof 〉

lemma mbr-simp[simp]: mbr (C ,m) = m
〈proof 〉

lemma access-mbr-simp [simp]: (accmodi (mbr m)) = accmodi m
〈proof 〉

lemma mthd-simp[simp]: mthd (C ,m) = m
〈proof 〉

62

lemma fld-simp[simp]: fld (C ,f) = f
〈proof 〉

lemma accmodi-simp[simp]: accmodi (C ,m) = access m
〈proof 〉

lemma access-mthd-simp [simp]: (access (mthd m)) = accmodi m
〈proof 〉

lemma access-fld-simp [simp]: (access (fld f)) = accmodi f
〈proof 〉

lemma static-mthd-simp[simp]: static (mthd m) = is-static m
〈proof 〉

lemma mthd-is-static-simp [simp]: is-static (mthd m) = is-static m
〈proof 〉

lemma static-fld-simp[simp]: static (fld f) = is-static f
〈proof 〉

lemma ext-field-simp [simp]: (declclass f ,fld f) = f
〈proof 〉

lemma ext-method-simp [simp]: (declclass m,mthd m) = m
〈proof 〉

lemma ext-mbr-simp [simp]: (declclass m,mbr m) = m
〈proof 〉

lemma fname-simp[simp]:fname (n,c) = n
〈proof 〉

lemma declclassf-simp[simp]:declclassf (n,c) = c
〈proof 〉

definition
fldname :: vname × qtname ⇒ vname
where fldname = fst

definition
fldclass :: vname × qtname ⇒ qtname
where fldclass = snd

lemma fldname-simp[simp]: fldname (n,c) = n
〈proof 〉

lemma fldclass-simp[simp]: fldclass (n,c) = c
〈proof 〉

lemma ext-fieldname-simp[simp]: (fldname f ,fldclass f) = f
〈proof 〉

Convert a qualified method declaration (qualified with its declaring class) to a qualified member
declaration: methdMembr
definition

methdMembr :: qtname × mdecl ⇒ qtname × memberdecl
where methdMembr m = (fst m, mdecl (snd m))

Theory DeclConcepts 63

lemma methdMembr-simp[simp]: methdMembr (c,m) = (c,mdecl m)
〈proof 〉

lemma accmodi-methdMembr-simp[simp]: accmodi (methdMembr m) = accmodi m
〈proof 〉

lemma is-static-methdMembr-simp[simp]: is-static (methdMembr m) = is-static m
〈proof 〉

lemma declclass-methdMembr-simp[simp]: declclass (methdMembr m) = declclass m
〈proof 〉

Convert a qualified method (qualified with its declaring class) to a qualified member declaration:
method

definition
method :: sig ⇒ (qtname × methd) ⇒ (qtname × memberdecl)
where method sig m = (declclass m, mdecl (sig, mthd m))

lemma method-simp[simp]: method sig (C ,m) = (C ,mdecl (sig,m))
〈proof 〉

lemma accmodi-method-simp[simp]: accmodi (method sig m) = accmodi m
〈proof 〉

lemma declclass-method-simp[simp]: declclass (method sig m) = declclass m
〈proof 〉

lemma is-static-method-simp[simp]: is-static (method sig m) = is-static m
〈proof 〉

lemma mbr-method-simp[simp]: mbr (method sig m) = mdecl (sig,mthd m)
〈proof 〉

lemma memberid-method-simp[simp]: memberid (method sig m) = mid sig
〈proof 〉

definition
fieldm :: vname ⇒ (qtname × field) ⇒ (qtname × memberdecl)
where fieldm n f = (declclass f , fdecl (n, fld f))

lemma fieldm-simp[simp]: fieldm n (C ,f) = (C ,fdecl (n,f))
〈proof 〉

lemma accmodi-fieldm-simp[simp]: accmodi (fieldm n f) = accmodi f
〈proof 〉

lemma declclass-fieldm-simp[simp]: declclass (fieldm n f) = declclass f
〈proof 〉

lemma is-static-fieldm-simp[simp]: is-static (fieldm n f) = is-static f
〈proof 〉

lemma mbr-fieldm-simp[simp]: mbr (fieldm n f) = fdecl (n,fld f)
〈proof 〉

lemma memberid-fieldm-simp[simp]: memberid (fieldm n f) = fid n
〈proof 〉

64

Select the signature out of a qualified method declaration: msig
definition

msig :: (qtname × mdecl) ⇒ sig
where msig m = fst (snd m)

lemma msig-simp[simp]: msig (c,(s,m)) = s
〈proof 〉

Convert a qualified method (qualified with its declaring class) to a qualified method declaration:
qmdecl
definition

qmdecl :: sig ⇒ (qtname × methd) ⇒ (qtname × mdecl)
where qmdecl sig m = (declclass m, (sig,mthd m))

lemma qmdecl-simp[simp]: qmdecl sig (C ,m) = (C ,(sig,m))
〈proof 〉

lemma declclass-qmdecl-simp[simp]: declclass (qmdecl sig m) = declclass m
〈proof 〉

lemma accmodi-qmdecl-simp[simp]: accmodi (qmdecl sig m) = accmodi m
〈proof 〉

lemma is-static-qmdecl-simp[simp]: is-static (qmdecl sig m) = is-static m
〈proof 〉

lemma msig-qmdecl-simp[simp]: msig (qmdecl sig m) = sig
〈proof 〉

lemma mdecl-qmdecl-simp[simp]:
mdecl (mthd (qmdecl sig new)) = mdecl (sig, mthd new)
〈proof 〉

lemma methdMembr-qmdecl-simp [simp]:
methdMembr (qmdecl sig old) = method sig old
〈proof 〉

overloaded selector resTy to select the result type out of various HOL types
class has-resTy =

fixes resTy:: ′a ⇒ ty

instantiation decl-ext :: (has-resTy) has-resTy
begin

instance 〈proof 〉

end

instantiation member-ext :: (has-resTy) has-resTy
begin

instance 〈proof 〉

end

instantiation mhead-ext :: (type) has-resTy
begin

Theory DeclConcepts 65

instance 〈proof 〉

end

axiomatization where
mhead-ext-type-resTy-def : resTy (m::(′b mhead-scheme)) ≡ resT m

lemma mhead-resTy-simp: resTy (m:: ′a mhead-scheme) = resT m
〈proof 〉

lemma resTy-mhead [simp]:resTy (mhead m) = resTy m
〈proof 〉

instantiation prod :: (type, has-resTy) has-resTy
begin

definition
pair-resTy-def : resTy p = resTy (snd p)

instance 〈proof 〉

end

lemma pair-resTy-simp[simp]: resTy (x,m) = resTy m
〈proof 〉

lemma qmdecl-resTy-simp [simp]: resTy (qmdecl sig m) = resTy m
〈proof 〉

lemma resTy-mthd [simp]:resTy (mthd m) = resTy m
〈proof 〉

inheritable-in

G`m inheritable-in P: m can be inherited by classes in package P if:

• the declaration class of m is accessible in P and

• the member m is declared with protected or public access or if it is declared with default
(package) access, the package of the declaration class of m is also P. If the member m is
declared with private access it is not accessible for inheritance at all.

definition
inheritable-in :: prog ⇒ (qtname × memberdecl) ⇒ pname ⇒ bool (‹- ` - inheritable ′-in -› [61 ,61 ,61] 60)

where
G`membr inheritable-in pack =
(case (accmodi membr) of

Private ⇒ False
| Package ⇒ (pid (declclass membr)) = pack
| Protected ⇒ True
| Public ⇒ True)

abbreviation
Method-inheritable-in-syntax::
prog ⇒ (qtname × mdecl) ⇒ pname ⇒ bool

(‹- `Method - inheritable ′-in - › [61 ,61 ,61] 60)
where G`Method m inheritable-in p == G`methdMembr m inheritable-in p

abbreviation

66

Methd-inheritable-in::
prog ⇒ sig ⇒ (qtname × methd) ⇒ pname ⇒ bool

(‹- `Methd - - inheritable ′-in - › [61 ,61 ,61 ,61] 60)
where G`Methd s m inheritable-in p == G`(method s m) inheritable-in p

declared-in/undeclared-in
definition

cdeclaredmethd :: prog ⇒ qtname ⇒ (sig,methd) table where
cdeclaredmethd G C =
(case class G C of

None ⇒ λ sig. None
| Some c ⇒ table-of (methods c))

definition
cdeclaredfield :: prog ⇒ qtname ⇒ (vname,field) table where
cdeclaredfield G C =
(case class G C of

None ⇒ λ sig. None
| Some c ⇒ table-of (cfields c))

definition
declared-in :: prog ⇒ memberdecl ⇒ qtname ⇒ bool (‹-` - declared ′-in -› [61 ,61 ,61] 60)

where
G`m declared-in C = (case m of

fdecl (fn,f) ⇒ cdeclaredfield G C fn = Some f
| mdecl (sig,m) ⇒ cdeclaredmethd G C sig = Some m)

abbreviation
method-declared-in:: prog ⇒ (qtname × mdecl) ⇒ qtname ⇒ bool

(‹-`Method - declared ′-in -› [61 ,61 ,61] 60)
where G`Method m declared-in C == G`mdecl (mthd m) declared-in C

abbreviation
methd-declared-in:: prog ⇒ sig ⇒(qtname × methd) ⇒ qtname ⇒ bool

(‹-`Methd - - declared ′-in -› [61 ,61 ,61 ,61] 60)
where G`Methd s m declared-in C == G`mdecl (s,mthd m) declared-in C

lemma declared-in-classD:
G`m declared-in C =⇒ is-class G C
〈proof 〉

definition
undeclared-in :: prog ⇒ memberid ⇒ qtname ⇒ bool (‹-` - undeclared ′-in -› [61 ,61 ,61] 60)

where
G`m undeclared-in C = (case m of

fid fn ⇒ cdeclaredfield G C fn = None
| mid sig ⇒ cdeclaredmethd G C sig = None)

members
inductive

members :: prog ⇒ (qtname × memberdecl) ⇒ qtname ⇒ bool
(‹- ` - member ′-of -› [61 ,61 ,61] 60)

for G :: prog
where

Immediate: [[G`mbr m declared-in C ;declclass m = C]] =⇒ G`m member-of C
| Inherited: [[G`m inheritable-in (pid C); G`memberid m undeclared-in C ;

Theory DeclConcepts 67

G`C ≺C1 S ; G`(Class S) accessible-in (pid C);G`m member-of S
]] =⇒ G`m member-of C

Note that in the case of an inherited member only the members of the direct superclass are concerned.
If a member of a superclass of the direct superclass isn’t inherited in the direct superclass (not
member of the direct superclass) than it can’t be a member of the class. E.g. If a member of a class
A is defined with package access it isn’t member of a subclass S if S isn’t in the same package as A.
Any further subclasses of S will not inherit the member, regardless if they are in the same package
as A or not.
abbreviation
method-member-of :: prog ⇒ (qtname × mdecl) ⇒ qtname ⇒ bool

(‹- `Method - member ′-of -› [61 ,61 ,61] 60)
where G`Method m member-of C == G`(methdMembr m) member-of C

abbreviation
methd-member-of :: prog ⇒ sig ⇒ (qtname × methd) ⇒ qtname ⇒ bool

(‹- `Methd - - member ′-of -› [61 ,61 ,61 ,61] 60)
where G`Methd s m member-of C == G`(method s m) member-of C

abbreviation
fieldm-member-of :: prog ⇒ vname ⇒ (qtname × field) ⇒ qtname ⇒ bool

(‹- `Field - - member ′-of -› [61 ,61 ,61] 60)
where G`Field n f member-of C == G`fieldm n f member-of C

definition
inherits :: prog ⇒ qtname ⇒ (qtname × memberdecl) ⇒ bool (‹- ` - inherits -› [61 ,61 ,61] 60)

where
G`C inherits m =
(G`m inheritable-in (pid C) ∧ G`memberid m undeclared-in C ∧
(∃S . G`C ≺C1 S ∧ G`(Class S) accessible-in (pid C) ∧ G`m member-of S))

lemma inherits-member : G`C inherits m =⇒ G`m member-of C
〈proof 〉

definition
member-in :: prog ⇒ (qtname × memberdecl) ⇒ qtname ⇒ bool (‹- ` - member ′-in -› [61 ,61 ,61] 60)
where G`m member-in C = (∃ provC . G` C �C provC ∧ G ` m member-of provC)

A member is in a class if it is member of the class or a superclass. If a member is in a class we
can select this member. This additional notion is necessary since not all members are inherited to
subclasses. So such members are not member-of the subclass but member-in the subclass.
abbreviation
method-member-in:: prog ⇒ (qtname × mdecl) ⇒ qtname ⇒ bool

(‹- `Method - member ′-in -› [61 ,61 ,61] 60)
where G`Method m member-in C == G`(methdMembr m) member-in C

abbreviation
methd-member-in:: prog ⇒ sig ⇒ (qtname × methd) ⇒ qtname ⇒ bool

(‹- `Methd - - member ′-in -› [61 ,61 ,61 ,61] 60)
where G`Methd s m member-in C == G`(method s m) member-in C

lemma member-inD: G`m member-in C
=⇒ ∃ provC . G` C �C provC ∧ G ` m member-of provC
〈proof 〉

lemma member-inI : [[G ` m member-of provC ;G` C �C provC]] =⇒ G`m member-in C
〈proof 〉

68

lemma member-of-to-member-in: G ` m member-of C =⇒ G `m member-in C
〈proof 〉

overriding

Unfortunately the static notion of overriding (used during the typecheck of the compiler) and the
dynamic notion of overriding (used during execution in the JVM) are not exactly the same.

Static overriding (used during the typecheck of the compiler)

inductive
stat-overridesR :: prog ⇒ (qtname × mdecl) ⇒ (qtname × mdecl) ⇒ bool
(‹- ` - overridesS -› [61 ,61 ,61] 60)

for G :: prog
where

Direct: [[¬ is-static new; msig new = msig old;
G`Method new declared-in (declclass new);
G`Method old declared-in (declclass old);
G`Method old inheritable-in pid (declclass new);
G`(declclass new) ≺C1 superNew;
G `Method old member-of superNew
]] =⇒ G`new overridesS old

| Indirect: [[G`new overridesS intr ; G`intr overridesS old]]
=⇒ G`new overridesS old

Dynamic overriding (used during the typecheck of the compiler)

inductive
overridesR :: prog ⇒ (qtname × mdecl) ⇒ (qtname × mdecl) ⇒ bool
(‹- ` - overrides -› [61 ,61 ,61] 60)

for G :: prog
where

Direct: [[¬ is-static new; ¬ is-static old; accmodi new 6= Private;
msig new = msig old;
G`(declclass new) ≺C (declclass old);
G`Method new declared-in (declclass new);
G`Method old declared-in (declclass old);
G`Method old inheritable-in pid (declclass new);
G`resTy new � resTy old
]] =⇒ G`new overrides old

| Indirect: [[G`new overrides intr ; G`intr overrides old]]
=⇒ G`new overrides old

abbreviation (input)
sig-stat-overrides::
prog ⇒ sig ⇒ (qtname × methd) ⇒ (qtname × methd) ⇒ bool

(‹-,-` - overridesS -› [61 ,61 ,61 ,61] 60)
where G,s`new overridesS old == G`(qmdecl s new) overridesS (qmdecl s old)

abbreviation (input)
sig-overrides:: prog ⇒ sig ⇒ (qtname × methd) ⇒ (qtname × methd) ⇒ bool

(‹-,-` - overrides -› [61 ,61 ,61 ,61] 60)
where G,s`new overrides old == G`(qmdecl s new) overrides (qmdecl s old)

Theory DeclConcepts 69

Hiding

definition
hides :: prog ⇒ (qtname × mdecl) ⇒ (qtname × mdecl) ⇒ bool (‹-` - hides -› [61 ,61 ,61] 60)

where
G`new hides old =
(is-static new ∧ msig new = msig old ∧

G`(declclass new) ≺C (declclass old) ∧
G`Method new declared-in (declclass new) ∧
G`Method old declared-in (declclass old) ∧
G`Method old inheritable-in pid (declclass new))

abbreviation
sig-hides:: prog ⇒ sig ⇒ (qtname × methd) ⇒ (qtname × methd) ⇒ bool

(‹-,-` - hides -› [61 ,61 ,61 ,61] 60)
where G,s`new hides old == G`(qmdecl s new) hides (qmdecl s old)

lemma hidesI :
[[is-static new; msig new = msig old;

G`(declclass new) ≺C (declclass old);
G`Method new declared-in (declclass new);
G`Method old declared-in (declclass old);
G`Method old inheritable-in pid (declclass new)
]] =⇒ G`new hides old
〈proof 〉

lemma hidesD:
[[G`new hides old]] =⇒

declclass new 6= Object ∧ is-static new ∧ msig new = msig old ∧
G`(declclass new) ≺C (declclass old) ∧
G`Method new declared-in (declclass new) ∧
G`Method old declared-in (declclass old)
〈proof 〉

lemma overrides-commonD:
[[G`new overrides old]] =⇒

declclass new 6= Object ∧ ¬ is-static new ∧ ¬ is-static old ∧
accmodi new 6= Private ∧
msig new = msig old ∧
G`(declclass new) ≺C (declclass old) ∧
G`Method new declared-in (declclass new) ∧
G`Method old declared-in (declclass old)
〈proof 〉

lemma ws-overrides-commonD:
[[G`new overrides old;ws-prog G]] =⇒

declclass new 6= Object ∧ ¬ is-static new ∧ ¬ is-static old ∧
accmodi new 6= Private ∧ G`resTy new � resTy old ∧
msig new = msig old ∧
G`(declclass new) ≺C (declclass old) ∧
G`Method new declared-in (declclass new) ∧
G`Method old declared-in (declclass old)
〈proof 〉

lemma overrides-eq-sigD:
[[G`new overrides old]] =⇒ msig old=msig new
〈proof 〉

lemma hides-eq-sigD:

70

[[G`new hides old]] =⇒ msig old=msig new
〈proof 〉

permits access
definition

permits-acc :: prog ⇒ (qtname × memberdecl) ⇒ qtname ⇒ qtname ⇒ bool (‹- ` - in - permits ′-acc ′-from
-› [61 ,61 ,61 ,61] 60)
where

G`membr in cls permits-acc-from accclass =
(case (accmodi membr) of

Private ⇒ (declclass membr = accclass)
| Package ⇒ (pid (declclass membr) = pid accclass)
| Protected ⇒ (pid (declclass membr) = pid accclass)

∨
(G`accclass ≺C declclass membr
∧ (G`cls �C accclass ∨ is-static membr))

| Public ⇒ True)

The subcondition of the Protected case: G`accclass≺C declclass membr could also be relaxed to:
G`accclass�C declclass membr since in case both classes are the same the other condition pid
(declclass membr) = pid accclass holds anyway.

Like in case of overriding, the static and dynamic accessibility of members is not uniform.

• Statically the class/interface of the member must be accessible for the member to be accessible.
During runtime this is not necessary. For Example, if a class is accessible and we are allowed
to access a member of this class (statically) we expect that we can access this member in
an arbitrary subclass (during runtime). It’s not intended to restrict the access to accessible
subclasses during runtime.

• Statically the member we want to access must be "member of" the class. Dynamically it must
only be "member in" the class.

inductive
accessible-fromR :: prog ⇒ qtname ⇒ (qtname × memberdecl) ⇒ qtname ⇒ bool
and accessible-from :: prog ⇒ (qtname × memberdecl) ⇒ qtname ⇒ qtname ⇒ bool
(‹- ` - of - accessible ′-from -› [61 ,61 ,61 ,61] 60)

and method-accessible-from :: prog ⇒ (qtname × mdecl) ⇒ qtname ⇒ qtname ⇒ bool
(‹- `Method - of - accessible ′-from -› [61 ,61 ,61 ,61] 60)

for G :: prog and accclass :: qtname
where

G`membr of cls accessible-from accclass ≡ accessible-fromR G accclass membr cls

| G`Method m of cls accessible-from accclass ≡ accessible-fromR G accclass (methdMembr m) cls

| Immediate: !!membr class.
[[G`membr member-of class;
G`(Class class) accessible-in (pid accclass);
G`membr in class permits-acc-from accclass
]] =⇒ G`membr of class accessible-from accclass

| Overriding: !!membr class C new old supr .
[[G`membr member-of class;
G`(Class class) accessible-in (pid accclass);
membr=(C ,mdecl new);
G`(C ,new) overridesS old;
G`class ≺C supr ;
G`Method old of supr accessible-from accclass

Theory DeclConcepts 71

]]=⇒ G`membr of class accessible-from accclass

abbreviation
methd-accessible-from::
prog ⇒ sig ⇒ (qtname × methd) ⇒ qtname ⇒ qtname ⇒ bool

(‹- `Methd - - of - accessible ′-from -› [61 ,61 ,61 ,61 ,61] 60)
where
G`Methd s m of cls accessible-from accclass ==

G`(method s m) of cls accessible-from accclass

abbreviation
field-accessible-from::
prog ⇒ vname ⇒ (qtname × field) ⇒ qtname ⇒ qtname ⇒ bool

(‹- `Field - - of - accessible ′-from -› [61 ,61 ,61 ,61 ,61] 60)
where
G`Field fn f of C accessible-from accclass ==
G`(fieldm fn f) of C accessible-from accclass

inductive
dyn-accessible-fromR :: prog ⇒ qtname ⇒ (qtname × memberdecl) ⇒ qtname ⇒ bool
and dyn-accessible-from ′ :: prog ⇒ (qtname × memberdecl) ⇒ qtname ⇒ qtname ⇒ bool
(‹- ` - in - dyn ′-accessible ′-from -› [61 ,61 ,61 ,61] 60)

and method-dyn-accessible-from :: prog ⇒ (qtname × mdecl) ⇒ qtname ⇒ qtname ⇒ bool
(‹- `Method - in - dyn ′-accessible ′-from -› [61 ,61 ,61 ,61] 60)

for G :: prog and accclass :: qtname
where

G`membr in C dyn-accessible-from accC ≡ dyn-accessible-fromR G accC membr C

| G`Method m in C dyn-accessible-from accC ≡ dyn-accessible-fromR G accC (methdMembr m) C

| Immediate: !!class. [[G`membr member-in class;
G`membr in class permits-acc-from accclass
]] =⇒ G`membr in class dyn-accessible-from accclass

| Overriding: !!class. [[G`membr member-in class;
membr=(C ,mdecl new);
G`(C ,new) overrides old;
G`class ≺C supr ;
G`Method old in supr dyn-accessible-from accclass
]]=⇒ G`membr in class dyn-accessible-from accclass

abbreviation
methd-dyn-accessible-from::
prog ⇒ sig ⇒ (qtname × methd) ⇒ qtname ⇒ qtname ⇒ bool

(‹- `Methd - - in - dyn ′-accessible ′-from -› [61 ,61 ,61 ,61 ,61] 60)
where
G`Methd s m in C dyn-accessible-from accC ==
G`(method s m) in C dyn-accessible-from accC

abbreviation
field-dyn-accessible-from::
prog ⇒ vname ⇒ (qtname × field) ⇒ qtname ⇒ qtname ⇒ bool

(‹- `Field - - in - dyn ′-accessible ′-from -› [61 ,61 ,61 ,61 ,61] 60)
where
G`Field fn f in dynC dyn-accessible-from accC ==
G`(fieldm fn f) in dynC dyn-accessible-from accC

lemma accessible-from-commonD: G`m of C accessible-from S

72

=⇒ G`m member-of C ∧ G`(Class C) accessible-in (pid S)
〈proof 〉

lemma unique-declaration:
[[G`m declared-in C ; G`n declared-in C ; memberid m = memberid n]]
=⇒ m = n
〈proof 〉

lemma declared-not-undeclared:
G`m declared-in C =⇒ ¬ G` memberid m undeclared-in C
〈proof 〉

lemma undeclared-not-declared:
G` memberid m undeclared-in C =⇒ ¬ G` m declared-in C
〈proof 〉

lemma not-undeclared-declared:
¬ G` membr-id undeclared-in C =⇒ (∃ m. G`m declared-in C ∧

membr-id = memberid m)
〈proof 〉

lemma unique-declared-in:
[[G`m declared-in C ; G`n declared-in C ; memberid m = memberid n]]
=⇒ m = n
〈proof 〉

lemma unique-member-of :
assumes n: G`n member-of C and

m: G`m member-of C and
eqid: memberid n = memberid m

shows n=m
〈proof 〉

lemma member-of-is-classD: G`m member-of C =⇒ is-class G C
〈proof 〉

lemma member-of-declC :
G`m member-of C
=⇒ G`mbr m declared-in (declclass m)
〈proof 〉

lemma member-of-member-of-declC :
G`m member-of C
=⇒ G`m member-of (declclass m)
〈proof 〉

lemma member-of-class-relation:
G`m member-of C =⇒ G`C �C declclass m
〈proof 〉

lemma member-in-class-relation:
G`m member-in C =⇒ G`C �C declclass m
〈proof 〉

lemma stat-override-declclasses-relation:
[[G`(declclass new) ≺C1 superNew; G `Method old member-of superNew]]
=⇒ G`(declclass new) ≺C (declclass old)
〈proof 〉

Theory DeclConcepts 73

lemma stat-overrides-commonD:
[[G`new overridesS old]] =⇒

declclass new 6= Object ∧ ¬ is-static new ∧ msig new = msig old ∧
G`(declclass new) ≺C (declclass old) ∧
G`Method new declared-in (declclass new) ∧
G`Method old declared-in (declclass old)
〈proof 〉

lemma member-of-Package:
assumes G`m member-of C

and accmodi m = Package
shows pid (declclass m) = pid C
〈proof 〉

lemma member-in-declC : G`m member-in C=⇒ G`m member-in (declclass m)
〈proof 〉

lemma dyn-accessible-from-commonD: G`m in C dyn-accessible-from S
=⇒ G`m member-in C
〈proof 〉

lemma no-Private-stat-override:
[[G`new overridesS old]] =⇒ accmodi old 6= Private
〈proof 〉

lemma no-Private-override: [[G`new overrides old]] =⇒ accmodi old 6= Private
〈proof 〉

lemma permits-acc-inheritance:
[[G`m in statC permits-acc-from accC ; G`dynC �C statC
]] =⇒ G`m in dynC permits-acc-from accC
〈proof 〉

lemma permits-acc-static-declC :
[[G`m in C permits-acc-from accC ; G`m member-in C ; is-static m
]] =⇒ G`m in (declclass m) permits-acc-from accC
〈proof 〉

lemma dyn-accessible-from-static-declC :
assumes acc-C : G`m in C dyn-accessible-from accC and

static: is-static m
shows G`m in (declclass m) dyn-accessible-from accC
〈proof 〉

lemma field-accessible-fromD:
[[G`membr of C accessible-from accC ;is-field membr]]
=⇒ G`membr member-of C ∧

G`(Class C) accessible-in (pid accC) ∧
G`membr in C permits-acc-from accC

〈proof 〉

lemma field-accessible-from-permits-acc-inheritance:
[[G`membr of statC accessible-from accC ; is-field membr ; G ` dynC �C statC]]
=⇒ G`membr in dynC permits-acc-from accC
〈proof 〉

74

lemma accessible-fieldD:
[[G`membr of C accessible-from accC ; is-field membr]]
=⇒ G`membr member-of C ∧

G`(Class C) accessible-in (pid accC) ∧
G`membr in C permits-acc-from accC

〈proof 〉

lemma member-of-Private:
[[G`m member-of C ; accmodi m = Private]] =⇒ declclass m = C
〈proof 〉

lemma member-of-subclseq-declC :
G`m member-of C =⇒ G`C �C declclass m
〈proof 〉

lemma member-of-inheritance:
assumes m: G`m member-of D and

subclseq-D-C : G`D �C C and
subclseq-C-m: G`C �C declclass m and

ws: ws-prog G
shows G`m member-of C
〈proof 〉

lemma member-of-subcls:
assumes old: G`old member-of C and

new: G`new member-of D and
eqid: memberid new = memberid old and

subclseq-D-C : G`D �C C and
subcls-new-old: G`declclass new ≺C declclass old and

ws: ws-prog G
shows G`D ≺C C
〈proof 〉

corollary member-of-overrides-subcls:
[[G`Methd sig old member-of C ; G`Methd sig new member-of D;G`D �C C ;

G,sig`new overrides old; ws-prog G]]
=⇒ G`D ≺C C
〈proof 〉

corollary member-of-stat-overrides-subcls:
[[G`Methd sig old member-of C ; G`Methd sig new member-of D;G`D �C C ;

G,sig`new overridesS old; ws-prog G]]
=⇒ G`D ≺C C
〈proof 〉

lemma inherited-field-access:
assumes stat-acc: G`membr of statC accessible-from accC and

is-field: is-field membr and
subclseq: G ` dynC �C statC

shows G`membr in dynC dyn-accessible-from accC
〈proof 〉

lemma accessible-inheritance:
assumes stat-acc: G`m of statC accessible-from accC and

subclseq: G`dynC �C statC and

Theory DeclConcepts 75

member-dynC : G`m member-of dynC and
dynC-acc: G`(Class dynC) accessible-in (pid accC)

shows G`m of dynC accessible-from accC
〈proof 〉

fields and methods
type-synonym

fspec = vname × qtname

translations
(type) fspec <= (type) vname × qtname

definition
imethds :: prog ⇒ qtname ⇒ (sig,qtname × mhead) tables where
imethds G I =

iface-rec G I (λI i ts. (Un-tables ts) ⊕⊕
(set-option ◦ table-of (map (λ(s,m). (s,I ,m)) (imethods i))))

methods of an interface, with overriding and inheritance, cf. 9.2
definition

accimethds :: prog ⇒ pname ⇒ qtname ⇒ (sig,qtname × mhead) tables where
accimethds G pack I =
(if G`Iface I accessible-in pack
then imethds G I
else (λ k. {}))

only returns imethds if the interface is accessible
definition

methd :: prog ⇒ qtname ⇒ (sig,qtname × methd) table where
methd G C =

class-rec G C Map.empty
(λC c subcls-mthds.

filter-tab (λsig m. G`C inherits method sig m)
subcls-mthds

++
table-of (map (λ(s,m). (s,C ,m)) (methods c)))

methd G C : methods of a class C (statically visible from C), with inheritance and hiding cf. 8.4.6;
Overriding is captured by dynmethd. Every new method with the same signature coalesces the
method of a superclass.
definition

accmethd :: prog ⇒ qtname ⇒ qtname ⇒ (sig,qtname × methd) table where
accmethd G S C =

filter-tab (λsig m. G`method sig m of C accessible-from S) (methd G C)

accmethd G S C : only those methods of methd G C, accessible from S

Note the class component in the accessibility filter. The class where method m is declared (declC)
isn’t necessarily accessible from the current scope S. The method can be made accessible through
inheritance, too. So we must test accessibility of method m of class C (not declclass m)
definition

dynmethd :: prog ⇒ qtname ⇒ qtname ⇒ (sig,qtname × methd) table where
dynmethd G statC dynC =
(λsig.

(if G`dynC �C statC
then (case methd G statC sig of

None ⇒ None

76

| Some statM
⇒ (class-rec G dynC Map.empty

(λC c subcls-mthds.
subcls-mthds
++
(filter-tab
(λ - dynM . G,sig`dynM overrides statM ∨ dynM=statM)
(methd G C)))

) sig
)

else None))

dynmethd G statC dynC : dynamic method lookup of a reference with dynamic class dynC and static
class statC

Note some kind of duality between methd and dynmethd in the class-rec arguments. Whereas methd
filters the subclass methods (to get only the inherited ones), dynmethd filters the new methods (to
get only those methods which actually override the methods of the static class)
definition

dynimethd :: prog ⇒ qtname ⇒ qtname ⇒ (sig,qtname × methd) table where
dynimethd G I dynC =
(λsig. if imethds G I sig 6= {}

then methd G dynC sig
else dynmethd G Object dynC sig)

dynimethd G I dynC : dynamic method lookup of a reference with dynamic class dynC and static
interface type I

When calling an interface method, we must distinguish if the method signature was defined in the
interface or if it must be an Object method in the other case. If it was an interface method we search
the class hierarchy starting at the dynamic class of the object up to Object to find the first matching
method (methd). Since all interface methods have public access the method can’t be coalesced due
to some odd visibility effects like in case of dynmethd. The method will be inherited or overridden
in all classes from the first class implementing the interface down to the actual dynamic class.
definition

dynlookup :: prog ⇒ ref-ty ⇒ qtname ⇒ (sig,qtname × methd) table where
dynlookup G statT dynC =
(case statT of

NullT ⇒ Map.empty
| IfaceT I ⇒ dynimethd G I dynC
| ClassT statC ⇒ dynmethd G statC dynC
| ArrayT ty ⇒ dynmethd G Object dynC)

dynlookup G statT dynC : dynamic lookup of a method within the static reference type statT and
the dynamic class dynC. In a wellformd context statT will not be NullT and in case statT is an
array type, dynC=Object
definition

fields :: prog ⇒ qtname ⇒ ((vname × qtname) × field) list where
fields G C =

class-rec G C [] (λC c ts. map (λ(n,t). ((n,C),t)) (cfields c) @ ts)

DeclConcepts.fields G C list of fields of a class, including all the fields of the superclasses (private,
inherited and hidden ones) not only the accessible ones (an instance of a object allocates all these
fields
definition

accfield :: prog ⇒ qtname ⇒ qtname ⇒ (vname, qtname × field) table where
accfield G S C =

Theory DeclConcepts 77

(let field-tab = table-of ((map (λ((n,d),f).(n,(d,f)))) (fields G C))
in filter-tab (λn (declC ,f). G` (declC ,fdecl (n,f)) of C accessible-from S)

field-tab)

accfield G C S : fields of a class C which are accessible from scope of class S with inheritance and
hiding, cf. 8.3

note the class component in the accessibility filter (see also methd). The class declaring field f
(declC) isn’t necessarily accessible from scope S. The field can be made visible through inheritance,
too. So we must test accessibility of field f of class C (not declclass f)
definition

is-methd :: prog ⇒ qtname ⇒ sig ⇒ bool
where is-methd G = (λC sig. is-class G C ∧ methd G C sig 6= None)

definition
efname :: ((vname × qtname) × field) ⇒ (vname × qtname)
where efname = fst

lemma efname-simp[simp]:efname (n,f) = n
〈proof 〉

4 imethds
lemma imethds-rec: [[iface G I = Some i; ws-prog G]] =⇒

imethds G I = Un-tables ((λJ . imethds G J)‘set (isuperIfs i)) ⊕⊕
(set-option ◦ table-of (map (λ(s,mh). (s,I ,mh)) (imethods i)))

〈proof 〉

lemma imethds-norec:
[[iface G md = Some i; ws-prog G; table-of (imethods i) sig = Some mh]] =⇒
(md, mh) ∈ imethds G md sig
〈proof 〉

lemma imethds-declI : [[m ∈ imethds G I sig; ws-prog G; is-iface G I]] =⇒
(∃ i. iface G (decliface m) = Some i ∧
table-of (imethods i) sig = Some (mthd m)) ∧
(I ,decliface m) ∈ (subint1 G)∗ ∧ m ∈ imethds G (decliface m) sig
〈proof 〉

lemma imethds-cases:
assumes im: im ∈ imethds G I sig

and ifI : iface G I = Some i
and ws: ws-prog G

obtains (NewMethod) table-of (map (λ(s, mh). (s, I , mh)) (imethods i)) sig = Some im
| (InheritedMethod) J where J ∈ set (isuperIfs i) and im ∈ imethds G J sig

〈proof 〉

5 accimethd
lemma accimethds-simp [simp]:
G`Iface I accessible-in pack =⇒ accimethds G pack I = imethds G I
〈proof 〉

lemma accimethdsD:
im ∈ accimethds G pack I sig
=⇒ im ∈ imethds G I sig ∧ G`Iface I accessible-in pack
〈proof 〉

78

lemma accimethdsI :
[[im ∈ imethds G I sig;G`Iface I accessible-in pack]]
=⇒ im ∈ accimethds G pack I sig
〈proof 〉

6 methd
lemma methd-rec: [[class G C = Some c; ws-prog G]] =⇒

methd G C
= (if C = Object

then Map.empty
else filter-tab (λsig m. G`C inherits method sig m)

(methd G (super c)))
++ table-of (map (λ(s,m). (s,C ,m)) (methods c))

〈proof 〉

lemma methd-norec:
[[class G declC = Some c; ws-prog G;table-of (methods c) sig = Some m]]
=⇒ methd G declC sig = Some (declC , m)
〈proof 〉

lemma methd-declC :
[[methd G C sig = Some m; ws-prog G;is-class G C]] =⇒
(∃ d. class G (declclass m)=Some d ∧ table-of (methods d) sig=Some (mthd m)) ∧
G`C �C (declclass m) ∧ methd G (declclass m) sig = Some m
〈proof 〉

lemma methd-inheritedD:
[[class G C = Some c; ws-prog G;methd G C sig = Some m]]
=⇒ (declclass m 6= C −→ G `C inherits method sig m)
〈proof 〉

lemma methd-diff-cls:
[[ws-prog G; is-class G C ; is-class G D;
methd G C sig = m; methd G D sig = n; m 6=n
]] =⇒ C 6=D
〈proof 〉

lemma method-declared-inI :
[[table-of (methods c) sig = Some m; class G C = Some c]]
=⇒ G`mdecl (sig,m) declared-in C
〈proof 〉

lemma methd-declared-in-declclass:
[[methd G C sig = Some m; ws-prog G;is-class G C]]
=⇒ G`Methd sig m declared-in (declclass m)
〈proof 〉

lemma member-methd:
assumes member-of : G`Methd sig m member-of C and

ws: ws-prog G
shows methd G C sig = Some m
〈proof 〉

lemma finite-methd:ws-prog G =⇒ finite {methd G C sig |sig C . is-class G C}

Theory DeclConcepts 79

〈proof 〉

lemma finite-dom-methd:
[[ws-prog G; is-class G C]] =⇒ finite (dom (methd G C))
〈proof 〉

7 accmethd
lemma accmethd-SomeD:
accmethd G S C sig = Some m
=⇒ methd G C sig = Some m ∧ G`method sig m of C accessible-from S
〈proof 〉

lemma accmethd-SomeI :
[[methd G C sig = Some m; G`method sig m of C accessible-from S]]
=⇒ accmethd G S C sig = Some m
〈proof 〉

lemma accmethd-declC :
[[accmethd G S C sig = Some m; ws-prog G; is-class G C]] =⇒
(∃ d. class G (declclass m)=Some d ∧
table-of (methods d) sig=Some (mthd m)) ∧

G`C �C (declclass m) ∧ methd G (declclass m) sig = Some m ∧
G`method sig m of C accessible-from S
〈proof 〉

lemma finite-dom-accmethd:
[[ws-prog G; is-class G C]] =⇒ finite (dom (accmethd G S C))
〈proof 〉

8 dynmethd
lemma dynmethd-rec:
[[class G dynC = Some c; ws-prog G]] =⇒
dynmethd G statC dynC sig
= (if G`dynC �C statC

then (case methd G statC sig of
None ⇒ None
| Some statM
⇒ (case methd G dynC sig of

None ⇒ dynmethd G statC (super c) sig
| Some dynM ⇒

(if G,sig` dynM overrides statM ∨ dynM = statM
then Some dynM
else (dynmethd G statC (super c) sig)

)))
else None)

(is - =⇒ - =⇒ ?Dynmethd-def dynC sig = ?Dynmethd-rec dynC c sig)
〈proof 〉

lemma dynmethd-C-C :[[is-class G C ; ws-prog G]]
=⇒ dynmethd G C C sig = methd G C sig
〈proof 〉

lemma dynmethdSomeD:
[[dynmethd G statC dynC sig = Some dynM ; is-class G dynC ; ws-prog G]]
=⇒ G`dynC �C statC ∧ (∃ statM . methd G statC sig = Some statM)
〈proof 〉

80

lemma dynmethd-Some-cases:
assumes dynM : dynmethd G statC dynC sig = Some dynM

and is-cls-dynC : is-class G dynC
and ws: ws-prog G

obtains (Static) methd G statC sig = Some dynM
| (Overrides) statM

where methd G statC sig = Some statM
and dynM 6= statM
and G,sig`dynM overrides statM

〈proof 〉

lemma no-override-in-Object:
assumes dynM : dynmethd G statC dynC sig = Some dynM and

is-cls-dynC : is-class G dynC and
ws: ws-prog G and

statM : methd G statC sig = Some statM and
neq-dynM-statM : dynM 6=statM

shows dynC 6= Object
〈proof 〉

lemma dynmethd-Some-rec-cases:
assumes dynM : dynmethd G statC dynC sig = Some dynM

and clsDynC : class G dynC = Some c
and ws: ws-prog G

obtains (Static) methd G statC sig = Some dynM
| (Override) statM where methd G statC sig = Some statM

and methd G dynC sig = Some dynM and statM 6= dynM
and G,sig` dynM overrides statM

| (Recursion) dynC 6= Object and dynmethd G statC (super c) sig = Some dynM
〈proof 〉

lemma dynmethd-declC :
[[dynmethd G statC dynC sig = Some m;

is-class G statC ;ws-prog G
]] =⇒
(∃ d. class G (declclass m)=Some d ∧ table-of (methods d) sig=Some (mthd m)) ∧
G`dynC �C (declclass m) ∧ methd G (declclass m) sig = Some m
〈proof 〉

lemma methd-Some-dynmethd-Some:
assumes statM : methd G statC sig = Some statM and

subclseq: G`dynC �C statC and
is-cls-statC : is-class G statC and

ws: ws-prog G
shows ∃ dynM . dynmethd G statC dynC sig = Some dynM
(is ?P dynC)

〈proof 〉

lemma dynmethd-cases:
assumes statM : methd G statC sig = Some statM

and subclseq: G`dynC �C statC
and is-cls-statC : is-class G statC
and ws: ws-prog G

obtains (Static) dynmethd G statC dynC sig = Some statM
| (Overrides) dynM where dynmethd G statC dynC sig = Some dynM

and dynM 6= statM and G,sig`dynM overrides statM
〈proof 〉

Theory DeclConcepts 81

lemma ws-dynmethd:
assumes statM : methd G statC sig = Some statM and

subclseq: G`dynC �C statC and
is-cls-statC : is-class G statC and

ws: ws-prog G
shows
∃ dynM . dynmethd G statC dynC sig = Some dynM ∧

is-static dynM = is-static statM ∧ G`resTy dynM�resTy statM
〈proof 〉

9 dynlookup
lemma dynlookup-cases:

assumes dynlookup G statT dynC sig = x
obtains (NullT) statT = NullT and Map.empty sig = x
| (IfaceT) I where statT = IfaceT I and dynimethd G I dynC sig = x
| (ClassT) statC where statT = ClassT statC and dynmethd G statC dynC sig = x
| (ArrayT) ty where statT = ArrayT ty and dynmethd G Object dynC sig = x

〈proof 〉

10 fields
lemma fields-rec: [[class G C = Some c; ws-prog G]] =⇒

fields G C = map (λ(fn,ft). ((fn,C),ft)) (cfields c) @
(if C = Object then [] else fields G (super c))
〈proof 〉

lemma fields-norec:
[[class G fd = Some c; ws-prog G; table-of (cfields c) fn = Some f]]
=⇒ table-of (fields G fd) (fn,fd) = Some f
〈proof 〉

lemma table-of-fieldsD:
table-of (map (λ(fn,ft). ((fn,C),ft)) (cfields c)) efn = Some f
=⇒ (declclassf efn) = C ∧ table-of (cfields c) (fname efn) = Some f
〈proof 〉

lemma fields-declC :
[[table-of (fields G C) efn = Some f ; ws-prog G; is-class G C]] =⇒
(∃ d. class G (declclassf efn) = Some d ∧

table-of (cfields d) (fname efn)=Some f) ∧
G`C �C (declclassf efn) ∧ table-of (fields G (declclassf efn)) efn = Some f
〈proof 〉

lemma fields-emptyI :
∧

y. [[ws-prog G; class G C = Some c;cfields c = [];
C 6= Object −→ class G (super c) = Some y ∧ fields G (super c) = []]] =⇒
fields G C = []
〈proof 〉

lemma fields-mono-lemma:
[[x ∈ set (fields G C); G`D �C C ; ws-prog G]]
=⇒ x ∈ set (fields G D)
〈proof 〉

82

lemma ws-unique-fields-lemma:
[[(efn,fd) ∈ set (fields G (super c)); fc ∈ set (cfields c); ws-prog G;

fname efn = fname fc; declclassf efn = C ;
class G C = Some c; C 6= Object; class G (super c) = Some d]] =⇒ R

〈proof 〉

lemma ws-unique-fields: [[is-class G C ; ws-prog G;∧
C c. [[class G C = Some c]] =⇒ unique (cfields c)]] =⇒

unique (fields G C)
〈proof 〉

11 accfield
lemma accfield-fields:
accfield G S C fn = Some f
=⇒ table-of (fields G C) (fn, declclass f) = Some (fld f)
〈proof 〉

lemma accfield-declC-is-class:
[[is-class G C ; accfield G S C en = Some (fd, f); ws-prog G]] =⇒

is-class G fd
〈proof 〉

lemma accfield-accessibleD:
accfield G S C fn = Some f =⇒ G`Field fn f of C accessible-from S
〈proof 〉

12 is methd
lemma is-methdI :
[[class G C = Some y; methd G C sig = Some b]] =⇒ is-methd G C sig
〈proof 〉

lemma is-methdD:
is-methd G C sig =⇒ class G C 6= None ∧ methd G C sig 6= None
〈proof 〉

lemma finite-is-methd:
ws-prog G =⇒ finite (Collect (case-prod (is-methd G)))
〈proof 〉

calculation of the superclasses of a class
definition

superclasses :: prog ⇒ qtname ⇒ qtname set where
superclasses G C = class-rec G C {}

(λ C c superclss. (if C=Object
then {}
else insert (super c) superclss))

lemma superclasses-rec: [[class G C = Some c; ws-prog G]] =⇒
superclasses G C
= (if (C=Object)

then {}
else insert (super c) (superclasses G (super c)))

〈proof 〉

lemma superclasses-mono:

Theory DeclConcepts 83

assumes clsrel: G`C≺C D
and ws: ws-prog G
and cls-C : class G C = Some c
and wf :

∧
C c. [[class G C = Some c; C 6= Object]]

=⇒ ∃ sc. class G (super c) = Some sc
and x: x∈superclasses G D
shows x∈superclasses G C 〈proof 〉

lemma subclsEval:
assumes clsrel: G`C≺C D
and ws: ws-prog G
and cls-C : class G C = Some c
and wf :

∧
C c. [[class G C = Some c; C 6= Object]]

=⇒ ∃ sc. class G (super c) = Some sc
shows D∈superclasses G C 〈proof 〉

end

84

Chapter 11

WellType

1 Well-typedness of Java programs
theory WellType
imports DeclConcepts
begin

improvements over Java Specification 1.0:

• methods of Object can be called upon references of interface or array type

simplifications:

• the type rules include all static checks on statements and expressions, e.g. definedness of
names (of parameters, locals, fields, methods)

design issues:

• unified type judgment for statements, variables, expressions, expression lists

• statements are typed like expressions with dummy type Void

• the typing rules take an extra argument that is capable of determining the dynamic type of
objects. Therefore, they can be used for both checking static types and determining runtime
types in transition semantics.

type-synonym lenv
= (lname, ty) table — local variables, including This and Result

record env =
prg:: prog — program
cls:: qtname — current package and class name
lcl:: lenv — local environment

translations
(type) lenv <= (type) (lname, ty) table
(type) lenv <= (type) lname ⇒ ty option
(type) env <= (type) (|prg::prog,cls::qtname,lcl::lenv|)
(type) env <= (type) (|prg::prog,cls::qtname,lcl::lenv,. . .:: ′a|)

abbreviation
pkg :: env ⇒ pname — select the current package from an environment
where pkg e == pid (cls e)

85

86

Static overloading: maximally specific methods

type-synonym
emhead = ref-ty × mhead

— Some mnemotic selectors for emhead
definition

declrefT :: emhead ⇒ ref-ty
where declrefT = fst

definition
mhd :: emhead ⇒ mhead
where mhd ≡ snd

lemma declrefT-simp[simp]:declrefT (r ,m) = r
〈proof 〉

lemma mhd-simp[simp]:mhd (r ,m) = m
〈proof 〉

lemma static-mhd-simp[simp]: static (mhd m) = is-static m
〈proof 〉

lemma mhd-resTy-simp [simp]: resTy (mhd m) = resTy m
〈proof 〉

lemma mhd-is-static-simp [simp]: is-static (mhd m) = is-static m
〈proof 〉

lemma mhd-accmodi-simp [simp]: accmodi (mhd m) = accmodi m
〈proof 〉

definition
cmheads :: prog ⇒ qtname ⇒ qtname ⇒ sig ⇒ emhead set
where cmheads G S C = (λsig. (λ(Cls,mthd). (ClassT Cls,(mhead mthd))) ‘ set-option (accmethd G S C

sig))

definition
Objectmheads :: prog ⇒ qtname ⇒ sig ⇒ emhead set where
Objectmheads G S =
(λsig. (λ(Cls,mthd). (ClassT Cls,(mhead mthd)))

‘ set-option (filter-tab (λsig m. accmodi m 6= Private) (accmethd G S Object) sig))

definition
accObjectmheads :: prog ⇒ qtname ⇒ ref-ty ⇒ sig ⇒ emhead set

where
accObjectmheads G S T =
(if G`RefT T accessible-in (pid S)
then Objectmheads G S
else (λsig. {}))

primrec mheads :: prog ⇒ qtname ⇒ ref-ty ⇒ sig ⇒ emhead set
where

mheads G S NullT = (λsig. {})
| mheads G S (IfaceT I) = (λsig. (λ(I ,h).(IfaceT I ,h))

‘ accimethds G (pid S) I sig ∪
accObjectmheads G S (IfaceT I) sig)

| mheads G S (ClassT C) = cmheads G S C
| mheads G S (ArrayT T) = accObjectmheads G S (ArrayT T)

Theory WellType 87

definition
— applicable methods, cf. 15.11.2.1
appl-methds :: prog ⇒ qtname ⇒ ref-ty ⇒ sig ⇒ (emhead × ty list) set where
appl-methds G S rt = (λ sig.
{(mh,pTs ′) |mh pTs ′. mh ∈ mheads G S rt (|name=name sig,parTs=pTs ′|) ∧

G`(parTs sig)[�]pTs ′})

definition
— more specific methods, cf. 15.11.2.2
more-spec :: prog ⇒ emhead × ty list ⇒ emhead × ty list ⇒ bool where
more-spec G = (λ(mh,pTs). λ(mh ′,pTs ′). G`pTs[�]pTs ′)

definition
— maximally specific methods, cf. 15.11.2.2
max-spec :: prog ⇒ qtname ⇒ ref-ty ⇒ sig ⇒ (emhead × ty list) set where
max-spec G S rt sig = {m. m ∈appl-methds G S rt sig ∧

(∀m ′∈appl-methds G S rt sig. more-spec G m ′ m −→ m ′=m)}

lemma max-spec2appl-meths:
x ∈ max-spec G S T sig =⇒ x ∈ appl-methds G S T sig
〈proof 〉

lemma appl-methsD: (mh,pTs ′)∈appl-methds G S T (|name=mn,parTs=pTs|) =⇒
mh ∈ mheads G S T (|name=mn,parTs=pTs ′|) ∧ G`pTs[�]pTs ′

〈proof 〉

lemma max-spec2mheads:
max-spec G S rt (|name=mn,parTs=pTs|) = insert (mh, pTs ′) A
=⇒ mh ∈ mheads G S rt (|name=mn,parTs=pTs ′|) ∧ G`pTs[�]pTs ′

〈proof 〉

definition
empty-dt :: dyn-ty
where empty-dt = (λa. None)

definition
invmode :: (′a::type)member-scheme ⇒ expr ⇒ inv-mode where
invmode m e = (if is-static m

then Static
else if e=Super then SuperM else IntVir)

lemma invmode-nonstatic [simp]:
invmode (|access=a,static=False,. . .=x|) (Acc (LVar e)) = IntVir
〈proof 〉

lemma invmode-Static-eq [simp]: (invmode m e = Static) = is-static m
〈proof 〉

lemma invmode-IntVir-eq: (invmode m e = IntVir) = (¬(is-static m) ∧ e 6=Super)
〈proof 〉

lemma Null-staticD:
a ′=Null −→ (is-static m) =⇒ invmode m e = IntVir −→ a ′ 6= Null

88

〈proof 〉

Typing for unary operations
primrec unop-type :: unop ⇒ prim-ty
where

unop-type UPlus = Integer
| unop-type UMinus = Integer
| unop-type UBitNot = Integer
| unop-type UNot = Boolean

primrec wt-unop :: unop ⇒ ty ⇒ bool
where

wt-unop UPlus t = (t = PrimT Integer)
| wt-unop UMinus t = (t = PrimT Integer)
| wt-unop UBitNot t = (t = PrimT Integer)
| wt-unop UNot t = (t = PrimT Boolean)

Typing for binary operations
primrec binop-type :: binop ⇒ prim-ty
where

binop-type Mul = Integer
| binop-type Div = Integer
| binop-type Mod = Integer
| binop-type Plus = Integer
| binop-type Minus = Integer
| binop-type LShift = Integer
| binop-type RShift = Integer
| binop-type RShiftU = Integer
| binop-type Less = Boolean
| binop-type Le = Boolean
| binop-type Greater = Boolean
| binop-type Ge = Boolean
| binop-type Eq = Boolean
| binop-type Neq = Boolean
| binop-type BitAnd = Integer
| binop-type And = Boolean
| binop-type BitXor = Integer
| binop-type Xor = Boolean
| binop-type BitOr = Integer
| binop-type Or = Boolean
| binop-type CondAnd = Boolean
| binop-type CondOr = Boolean

primrec wt-binop :: prog ⇒ binop ⇒ ty ⇒ ty ⇒ bool
where

wt-binop G Mul t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Div t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Mod t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Plus t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Minus t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G LShift t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G RShift t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G RShiftU t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Less t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Le t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Greater t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Ge t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))

Theory WellType 89

| wt-binop G Eq t1 t2 = (G`t1�t2 ∨ G`t2�t1)
| wt-binop G Neq t1 t2 = (G`t1�t2 ∨ G`t2�t1)
| wt-binop G BitAnd t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G And t1 t2 = ((t1 = PrimT Boolean) ∧ (t2 = PrimT Boolean))
| wt-binop G BitXor t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Xor t1 t2 = ((t1 = PrimT Boolean) ∧ (t2 = PrimT Boolean))
| wt-binop G BitOr t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Or t1 t2 = ((t1 = PrimT Boolean) ∧ (t2 = PrimT Boolean))
| wt-binop G CondAnd t1 t2 = ((t1 = PrimT Boolean) ∧ (t2 = PrimT Boolean))
| wt-binop G CondOr t1 t2 = ((t1 = PrimT Boolean) ∧ (t2 = PrimT Boolean))

Typing for terms

type-synonym tys = ty + ty list
translations
(type) tys <= (type) ty + ty list

inductive wt :: env ⇒ dyn-ty ⇒ [term,tys] ⇒ bool (‹-,-|=-::-› [51 ,51 ,51 ,51] 50)
and wt-stmt :: env ⇒ dyn-ty ⇒ stmt ⇒ bool (‹-,-|=-::

√
› [51 ,51 ,51] 50)

and ty-expr :: env ⇒ dyn-ty ⇒ [expr ,ty] ⇒ bool (‹-,-|=-::−-› [51 ,51 ,51 ,51] 50)
and ty-var :: env ⇒ dyn-ty ⇒ [var ,ty] ⇒ bool (‹-,-|=-::=-› [51 ,51 ,51 ,51] 50)
and ty-exprs :: env ⇒ dyn-ty ⇒ [expr list, ty list] ⇒ bool
(‹-,-|=-:: .=-› [51 ,51 ,51 ,51] 50)

where

E ,dt|=s::
√
≡ E ,dt|=In1r s::Inl (PrimT Void)

| E ,dt|=e::−T ≡ E ,dt|=In1l e::Inl T
| E ,dt|=e::=T ≡ E ,dt|=In2 e::Inl T
| E ,dt|=e:: .=T ≡ E ,dt|=In3 e::Inr T

— well-typed statements

| Skip: E ,dt|=Skip::
√

| Expr : [[E ,dt|=e::−T]] =⇒
E ,dt|=Expr e::

√

— cf. 14.6
| Lab: E ,dt|=c::

√
=⇒

E ,dt|=l· c::
√

| Comp: [[E ,dt|=c1 ::
√
;

E ,dt|=c2 ::
√
]] =⇒

E ,dt|=c1 ;; c2 ::
√

— cf. 14.8
| If : [[E ,dt|=e::−PrimT Boolean;

E ,dt|=c1 ::
√
;

E ,dt|=c2 ::
√
]] =⇒

E ,dt|=If (e) c1 Else c2 ::
√

— cf. 14.10
| Loop: [[E ,dt|=e::−PrimT Boolean;

E ,dt|=c::
√
]] =⇒

E ,dt|=l· While(e) c::
√

— cf. 14.13, 14.15, 14.16
| Jmp: E ,dt|=Jmp jump::

√

— cf. 14.16

90

| Throw: [[E ,dt|=e::−Class tn;
prg E`tn�C SXcpt Throwable]] =⇒

E ,dt|=Throw e::
√

— cf. 14.18
| Try: [[E ,dt|=c1 ::

√
; prg E`tn�C SXcpt Throwable;

lcl E (VName vn)=None; E (|lcl := (lcl E)(VName vn 7→Class tn)|),dt|=c2 ::
√
]]

=⇒
E ,dt|=Try c1 Catch(tn vn) c2 ::

√

— cf. 14.18
| Fin: [[E ,dt|=c1 ::

√
; E ,dt|=c2 ::

√
]] =⇒
E ,dt|=c1 Finally c2 ::

√

| Init: [[is-class (prg E) C]] =⇒
E ,dt|=Init C ::

√

— Init is created on the fly during evaluation (see Eval.thy). The class isn’t necessarily accessible from the
points Init is called. Therefor we only demand is-class and not is-acc-class here.

— well-typed expressions

— cf. 15.8
| NewC : [[is-acc-class (prg E) (pkg E) C]] =⇒

E ,dt|=NewC C ::−Class C
— cf. 15.9
| NewA: [[is-acc-type (prg E) (pkg E) T ;

E ,dt|=i::−PrimT Integer]] =⇒
E ,dt|=New T [i]::−T .[]

— cf. 15.15
| Cast: [[E ,dt|=e::−T ; is-acc-type (prg E) (pkg E) T ′;

prg E`T�? T ′]] =⇒
E ,dt|=Cast T ′ e::−T ′

— cf. 15.19.2
| Inst: [[E ,dt|=e::−RefT T ; is-acc-type (prg E) (pkg E) (RefT T ′);

prg E`RefT T�? RefT T ′]] =⇒
E ,dt|=e InstOf T ′::−PrimT Boolean

— cf. 15.7.1
| Lit: [[typeof dt x = Some T]] =⇒

E ,dt|=Lit x::−T

| UnOp: [[E ,dt|=e::−Te; wt-unop unop Te; T=PrimT (unop-type unop)]]
=⇒
E ,dt|=UnOp unop e::−T

| BinOp: [[E ,dt|=e1 ::−T1 ; E ,dt|=e2 ::−T2 ; wt-binop (prg E) binop T1 T2 ;
T=PrimT (binop-type binop)]]
=⇒
E ,dt|=BinOp binop e1 e2 ::−T

— cf. 15.10.2, 15.11.1
| Super : [[lcl E This = Some (Class C); C 6= Object;

class (prg E) C = Some c]] =⇒
E ,dt|=Super ::−Class (super c)

— cf. 15.13.1, 15.10.1, 15.12
| Acc: [[E ,dt|=va::=T]] =⇒

E ,dt|=Acc va::−T

Theory WellType 91

— cf. 15.25, 15.25.1
| Ass: [[E ,dt|=va::=T ; va 6= LVar This;

E ,dt|=v ::−T ′;
prg E`T ′�T]] =⇒

E ,dt|=va:=v::−T ′

— cf. 15.24
| Cond: [[E ,dt|=e0 ::−PrimT Boolean;

E ,dt|=e1 ::−T1 ; E ,dt|=e2 ::−T2 ;
prg E`T1�T2 ∧ T = T2 ∨ prg E`T2�T1 ∧ T = T1]] =⇒

E ,dt|=e0 ? e1 : e2 ::−T

— cf. 15.11.1, 15.11.2, 15.11.3
| Call: [[E ,dt|=e::−RefT statT ;

E ,dt|=ps:: .=pTs;
max-spec (prg E) (cls E) statT (|name=mn,parTs=pTs|)
= {((statDeclT ,m),pTs ′)}

]] =⇒
E ,dt|={cls E ,statT ,invmode m e}e·mn({pTs ′}ps)::−(resTy m)

| Methd: [[is-class (prg E) C ;
methd (prg E) C sig = Some m;
E ,dt|=Body (declclass m) (stmt (mbody (mthd m)))::−T]] =⇒

E ,dt|=Methd C sig::−T
— The class C is the dynamic class of the method call (cf. Eval.thy). It hasn’t got to be directly accessible

from the current package pkg E. Only the static class must be accessible (enshured indirectly by Call). Note
that l is just a dummy value. It is only used in the smallstep semantics. To proof typesafety directly for the
smallstep semantics we would have to assume conformance of l here!

| Body: [[is-class (prg E) D;
E ,dt|=blk::

√
;

(lcl E) Result = Some T ;
is-type (prg E) T]] =⇒

E ,dt|=Body D blk::−T
— The class D implementing the method must not directly be accessible from the current package pkg E,
but can also be indirectly accessible due to inheritance (enshured in Call) The result type hasn’t got to be
accessible in Java! (If it is not accessible you can only assign it to Object). For dummy value l see rule Methd.

— well-typed variables

— cf. 15.13.1
| LVar : [[lcl E vn = Some T ; is-acc-type (prg E) (pkg E) T]] =⇒

E ,dt|=LVar vn::=T
— cf. 15.10.1
| FVar : [[E ,dt|=e::−Class C ;

accfield (prg E) (cls E) C fn = Some (statDeclC ,f)]] =⇒
E ,dt|={cls E ,statDeclC ,is-static f }e..fn::=(type f)

— cf. 15.12
| AVar : [[E ,dt|=e::−T .[];

E ,dt|=i::−PrimT Integer]] =⇒
E ,dt|=e.[i]::=T

— well-typed expression lists

— cf. 15.11.???
| Nil: E ,dt|=[]::

.
=[]

92

— cf. 15.11.???
| Cons: [[E ,dt|=e ::−T ;

E ,dt|=es:: .=Ts]] =⇒
E ,dt|=e#es:: .=T#Ts

abbreviation
wt-syntax :: env ⇒ [term,tys] ⇒ bool (‹-`-::-› [51 ,51 ,51] 50)
where E`t::T == E ,empty-dt|=t:: T

abbreviation
wt-stmt-syntax :: env ⇒ stmt ⇒ bool (‹-`-::

√
› [51 ,51] 50)

where E`s::
√

== E`In1r s :: Inl (PrimT Void)

abbreviation
ty-expr-syntax :: env ⇒ [expr , ty] ⇒ bool (‹-`-::−-› [51 ,51 ,51] 50)
where E`e::−T == E`In1l e :: Inl T

abbreviation
ty-var-syntax :: env ⇒ [var , ty] ⇒ bool (‹-`-::=-› [51 ,51 ,51] 50)
where E`e::=T == E`In2 e :: Inl T

abbreviation
ty-exprs-syntax :: env ⇒ [expr list, ty list] ⇒ bool (‹-`-:: .=-› [51 ,51 ,51] 50)
where E`e:: .=T == E`In3 e :: Inr T

notation (ASCII)
wt-syntax (‹-|−-::-› [51 ,51 ,51] 50) and
wt-stmt-syntax (‹-|−-:<>› [51 ,51] 50) and
ty-expr-syntax (‹-|−-:−-› [51 ,51 ,51] 50) and
ty-var-syntax (‹-|−-:=-› [51 ,51 ,51] 50) and
ty-exprs-syntax (‹-|−-:#-› [51 ,51 ,51] 50)

declare not-None-eq [simp del]
declare if-split [split del] if-split-asm [split del]
declare split-paired-All [simp del] split-paired-Ex [simp del]
〈ML〉

inductive-cases wt-elim-cases [cases set]:
E ,dt|=In2 (LVar vn) ::T
E ,dt|=In2 ({accC ,statDeclC ,s}e..fn)::T
E ,dt|=In2 (e.[i]) ::T
E ,dt|=In1l (NewC C) ::T
E ,dt|=In1l (New T ′[i]) ::T
E ,dt|=In1l (Cast T ′ e) ::T
E ,dt|=In1l (e InstOf T ′) ::T
E ,dt|=In1l (Lit x) ::T
E ,dt|=In1l (UnOp unop e) ::T
E ,dt|=In1l (BinOp binop e1 e2) ::T
E ,dt|=In1l (Super) ::T
E ,dt|=In1l (Acc va) ::T
E ,dt|=In1l (Ass va v) ::T
E ,dt|=In1l (e0 ? e1 : e2) ::T
E ,dt|=In1l ({accC ,statT ,mode}e·mn({pT ′}p))::T
E ,dt|=In1l (Methd C sig) ::T
E ,dt|=In1l (Body D blk) ::T
E ,dt|=In3 ([]) ::Ts
E ,dt|=In3 (e#es) ::Ts

Theory WellType 93

E ,dt|=In1r Skip ::x
E ,dt|=In1r (Expr e) ::x
E ,dt|=In1r (c1 ;; c2) ::x
E ,dt|=In1r (l· c) ::x
E ,dt|=In1r (If (e) c1 Else c2) ::x
E ,dt|=In1r (l· While(e) c) ::x
E ,dt|=In1r (Jmp jump) ::x
E ,dt|=In1r (Throw e) ::x
E ,dt|=In1r (Try c1 Catch(tn vn) c2)::x
E ,dt|=In1r (c1 Finally c2) ::x
E ,dt|=In1r (Init C) ::x

declare not-None-eq [simp]
declare if-split [split] if-split-asm [split]
declare split-paired-All [simp] split-paired-Ex [simp]
〈ML〉

lemma is-acc-class-is-accessible:
is-acc-class G P C =⇒ G`(Class C) accessible-in P
〈proof 〉

lemma is-acc-iface-is-iface: is-acc-iface G P I =⇒ is-iface G I
〈proof 〉

lemma is-acc-iface-Iface-is-accessible:
is-acc-iface G P I =⇒ G`(Iface I) accessible-in P
〈proof 〉

lemma is-acc-type-is-type: is-acc-type G P T =⇒ is-type G T
〈proof 〉

lemma is-acc-iface-is-accessible:
is-acc-type G P T =⇒ G`T accessible-in P
〈proof 〉

lemma wt-Methd-is-methd:
E`In1l (Methd C sig)::T =⇒ is-methd (prg E) C sig
〈proof 〉

Special versions of some typing rules, better suited to pattern match the conclusion (no selectors in
the conclusion)
lemma wt-Call:
[[E ,dt|=e::−RefT statT ; E ,dt|=ps:: .=pTs;

max-spec (prg E) (cls E) statT (|name=mn,parTs=pTs|)
= {((statDeclC ,m),pTs ′)};rT=(resTy m);accC=cls E ;

mode = invmode m e]] =⇒ E ,dt|={accC ,statT ,mode}e·mn({pTs ′}ps)::−rT
〈proof 〉

lemma invocationTypeExpr-noClassD:
[[E`e::−RefT statT]]
=⇒ (∀ statC . statT 6= ClassT statC) −→ invmode m e 6= SuperM
〈proof 〉

lemma wt-Super :
[[lcl E This = Some (Class C); C 6= Object; class (prg E) C = Some c; D=super c]]
=⇒ E ,dt|=Super ::−Class D
〈proof 〉

lemma wt-FVar :

94

[[E ,dt|=e::−Class C ; accfield (prg E) (cls E) C fn = Some (statDeclC ,f);
sf=is-static f ; fT=(type f); accC=cls E]]

=⇒ E ,dt|={accC ,statDeclC ,sf }e..fn::=fT
〈proof 〉

lemma wt-init [iff]: E ,dt|=Init C ::
√

= is-class (prg E) C
〈proof 〉

declare wt.Skip [iff]

lemma wt-StatRef :
is-acc-type (prg E) (pkg E) (RefT rt) =⇒ E`StatRef rt::−RefT rt
〈proof 〉

lemma wt-Inj-elim:∧
E . E ,dt|=t::U =⇒ case t of

In1 ec ⇒ (case ec of
Inl e ⇒ ∃T . U=Inl T
| Inr s ⇒ U=Inl (PrimT Void))

| In2 e ⇒ (∃T . U=Inl T)
| In3 e ⇒ (∃T . U=Inr T)

〈proof 〉

lemma wt-expr-eq: E ,dt|=In1l t::U = (∃T . U=Inl T ∧ E ,dt|=t::−T)
〈proof 〉

lemma wt-var-eq: E ,dt|=In2 t::U = (∃T . U=Inl T ∧ E ,dt|=t::=T)
〈proof 〉

lemma wt-exprs-eq: E ,dt|=In3 t::U = (∃Ts. U=Inr Ts ∧ E ,dt|=t:: .=Ts)
〈proof 〉

lemma wt-stmt-eq: E ,dt|=In1r t::U = (U=Inl(PrimT Void)∧E ,dt|=t::
√
)

〈proof 〉

〈ML〉

lemma wt-elim-BinOp:
[[E ,dt|=In1l (BinOp binop e1 e2)::T ;∧

T1 T2 T3 .
[[E ,dt|=e1 ::−T1 ; E ,dt|=e2 ::−T2 ; wt-binop (prg E) binop T1 T2 ;

E ,dt|=(if b then In1l e2 else In1r Skip)::T3 ;
T = Inl (PrimT (binop-type binop))]]

=⇒ P]]
=⇒ P
〈proof 〉

lemma Inj-eq-lemma [simp]:
(∀T . (∃T ′. T = Inj T ′ ∧ P T ′) −→ Q T) = (∀T ′. P T ′ −→ Q (Inj T ′))
〈proof 〉

lemma single-valued-tys-lemma [rule-format (no-asm)]:
∀S T . G`S�T −→ G`T�S −→ S = T =⇒ E ,dt|=t::T =⇒

G = prg E −→ (∀T ′. E ,dt|=t::T ′ −→ T = T ′)
〈proof 〉

Theory WellType 95

lemma single-valued-tys:
ws-prog (prg E) =⇒ single-valued {(t,T). E ,dt|=t::T}
〈proof 〉

lemma typeof-empty-is-type: typeof (λa. None) v = Some T =⇒ is-type G T
〈proof 〉

lemma typeof-is-type: (∀ a. v 6= Addr a) =⇒ ∃T . typeof dt v = Some T ∧ is-type G T
〈proof 〉

end

96

Chapter 12

DefiniteAssignment

1 Definite Assignment
theory DefiniteAssignment imports WellType begin

Definite Assignment Analysis (cf. 16)
The definite assignment analysis approximates the sets of local variables that will be assigned at
a certain point of evaluation, and ensures that we will only read variables which previously were
assigned. It should conform to the following idea: If the evaluation of a term completes normally
(no abruption (exception, break, continue, return) appeared) , the set of local variables calculated
by the analysis is a subset of the variables that were actually assigned during evaluation.
To get more precise information about the sets of assigned variables the analysis includes the fol-
lowing optimisations:

• Inside of a while loop we also take care of the variables assigned before break statements, since
the break causes the while loop to continue normally.

• For conditional statements we take care of constant conditions to statically determine the path
of evaluation.

• Inside a distinct path of a conditional statements we know to which boolean value the condition
has evaluated to, and so can retrieve more information about the variables assigned during
evaluation of the boolean condition.

Since in our model of Java the return values of methods are stored in a local variable we also ensure
that every path of (normal) evaluation will assign the result variable, or in the sense of real Java
every path ends up in and return instruction.
Not covered yet:

• analysis of definite unassigned

• special treatment of final fields

Correct nesting of jump statements

For definite assignment it becomes crucial, that jumps (break, continue, return) are nested correctly
i.e. a continue jump is nested in a matching while statement, a break jump is nested in a proper
label statement, a class initialiser does not terminate abruptly with a return. With this we can for
example ensure that evaluation of an expression will never end up with a jump, since no breaks,
continues or returns are allowed in an expression.
primrec jumpNestingOkS :: jump set ⇒ stmt ⇒ bool

97

98

where
jumpNestingOkS jmps (Skip) = True
| jumpNestingOkS jmps (Expr e) = True
| jumpNestingOkS jmps (j· s) = jumpNestingOkS ({j} ∪ jmps) s
| jumpNestingOkS jmps (c1 ;;c2) = (jumpNestingOkS jmps c1 ∧

jumpNestingOkS jmps c2)
| jumpNestingOkS jmps (If (e) c1 Else c2) = (jumpNestingOkS jmps c1 ∧

jumpNestingOkS jmps c2)
| jumpNestingOkS jmps (l· While(e) c) = jumpNestingOkS ({Cont l} ∪ jmps) c
— The label of the while loop only handles continue jumps. Breaks are only handled by Lab
| jumpNestingOkS jmps (Jmp j) = (j ∈ jmps)
| jumpNestingOkS jmps (Throw e) = True
| jumpNestingOkS jmps (Try c1 Catch(C vn) c2) = (jumpNestingOkS jmps c1 ∧

jumpNestingOkS jmps c2)
| jumpNestingOkS jmps (c1 Finally c2) = (jumpNestingOkS jmps c1 ∧

jumpNestingOkS jmps c2)
| jumpNestingOkS jmps (Init C) = True
— wellformedness of the program must enshure that for all initializers jumpNestingOkS holds

— Dummy analysis for intermediate smallstep term FinA
| jumpNestingOkS jmps (FinA a c) = False

definition jumpNestingOk :: jump set ⇒ term ⇒ bool where
jumpNestingOk jmps t = (case t of

In1 se ⇒ (case se of
Inl e ⇒ True
| Inr s ⇒ jumpNestingOkS jmps s)

| In2 v ⇒ True
| In3 es ⇒ True)

lemma jumpNestingOk-expr-simp [simp]: jumpNestingOk jmps (In1l e) = True
〈proof 〉

lemma jumpNestingOk-expr-simp1 [simp]: jumpNestingOk jmps 〈e::expr〉 = True
〈proof 〉

lemma jumpNestingOk-stmt-simp [simp]:
jumpNestingOk jmps (In1r s) = jumpNestingOkS jmps s
〈proof 〉

lemma jumpNestingOk-stmt-simp1 [simp]:
jumpNestingOk jmps 〈s::stmt〉 = jumpNestingOkS jmps s

〈proof 〉

lemma jumpNestingOk-var-simp [simp]: jumpNestingOk jmps (In2 v) = True
〈proof 〉

lemma jumpNestingOk-var-simp1 [simp]: jumpNestingOk jmps 〈v::var〉 = True
〈proof 〉

lemma jumpNestingOk-expr-list-simp [simp]: jumpNestingOk jmps (In3 es) = True
〈proof 〉

lemma jumpNestingOk-expr-list-simp1 [simp]:
jumpNestingOk jmps 〈es::expr list〉 = True
〈proof 〉

Theory DefiniteAssignment 99

Calculation of assigned variables for boolean expressions

2 Very restricted calculation fallback calculation

primrec the-LVar-name :: var ⇒ lname
where the-LVar-name (LVar n) = n

primrec assignsE :: expr ⇒ lname set
and assignsV :: var ⇒ lname set
and assignsEs:: expr list ⇒ lname set

where
assignsE (NewC c) = {}
| assignsE (NewA t e) = assignsE e
| assignsE (Cast t e) = assignsE e
| assignsE (e InstOf r) = assignsE e
| assignsE (Lit val) = {}
| assignsE (UnOp unop e) = assignsE e
| assignsE (BinOp binop e1 e2) = (if binop=CondAnd ∨ binop=CondOr

then (assignsE e1)
else (assignsE e1) ∪ (assignsE e2))

| assignsE (Super) = {}
| assignsE (Acc v) = assignsV v
| assignsE (v:=e) = (assignsV v) ∪ (assignsE e) ∪

(if ∃ n. v=(LVar n) then {the-LVar-name v}
else {})

| assignsE (b? e1 : e2) = (assignsE b) ∪ ((assignsE e1) ∩ (assignsE e2))
| assignsE ({accC ,statT ,mode}objRef ·mn({pTs}args))

= (assignsE objRef) ∪ (assignsEs args)
— Only dummy analysis for intermediate expressions Methd, Body, InsInitE and Callee
| assignsE (Methd C sig) = {}
| assignsE (Body C s) = {}
| assignsE (InsInitE s e) = {}
| assignsE (Callee l e) = {}

| assignsV (LVar n) = {}
| assignsV ({accC ,statDeclC ,stat}objRef ..fn) = assignsE objRef
| assignsV (e1 .[e2]) = assignsE e1 ∪ assignsE e2

| assignsEs [] = {}
| assignsEs (e#es) = assignsE e ∪ assignsEs es

definition assigns :: term ⇒ lname set where
assigns t = (case t of

In1 se ⇒ (case se of
Inl e ⇒ assignsE e
| Inr s ⇒ {})

| In2 v ⇒ assignsV v
| In3 es ⇒ assignsEs es)

lemma assigns-expr-simp [simp]: assigns (In1l e) = assignsE e
〈proof 〉

lemma assigns-expr-simp1 [simp]: assigns (〈e〉) = assignsE e
〈proof 〉

lemma assigns-stmt-simp [simp]: assigns (In1r s) = {}
〈proof 〉

lemma assigns-stmt-simp1 [simp]: assigns (〈s::stmt〉) = {}

100

〈proof 〉

lemma assigns-var-simp [simp]: assigns (In2 v) = assignsV v
〈proof 〉

lemma assigns-var-simp1 [simp]: assigns (〈v〉) = assignsV v
〈proof 〉

lemma assigns-expr-list-simp [simp]: assigns (In3 es) = assignsEs es
〈proof 〉

lemma assigns-expr-list-simp1 [simp]: assigns (〈es〉) = assignsEs es
〈proof 〉

3 Analysis of constant expressions
primrec constVal :: expr ⇒ val option
where

constVal (NewC c) = None
| constVal (NewA t e) = None
| constVal (Cast t e) = None
| constVal (Inst e r) = None
| constVal (Lit val) = Some val
| constVal (UnOp unop e) = (case (constVal e) of

None ⇒ None
| Some v ⇒ Some (eval-unop unop v))

| constVal (BinOp binop e1 e2) = (case (constVal e1) of
None ⇒ None
| Some v1 ⇒ (case (constVal e2) of

None ⇒ None
| Some v2 ⇒ Some (eval-binop

binop v1 v2)))
| constVal (Super) = None
| constVal (Acc v) = None
| constVal (Ass v e) = None
| constVal (Cond b e1 e2) = (case (constVal b) of

None ⇒ None
| Some bv⇒ (case the-Bool bv of

True ⇒ (case (constVal e2) of
None ⇒ None
| Some v ⇒ constVal e1)

| False⇒ (case (constVal e1) of
None ⇒ None
| Some v ⇒ constVal e2)))

— Note that constVal (Cond b e1 e2) is stricter as it could be. It requires that all tree expressions are
constant even if we can decide which branch to choose, provided the constant value of b
| constVal (Call accC statT mode objRef mn pTs args) = None
| constVal (Methd C sig) = None
| constVal (Body C s) = None
| constVal (InsInitE s e) = None
| constVal (Callee l e) = None

lemma constVal-Some-induct [consumes 1 , case-names Lit UnOp BinOp CondL CondR]:
assumes const: constVal e = Some v and

hyp-Lit:
∧

v. P (Lit v) and
hyp-UnOp:

∧
unop e ′. P e ′ =⇒ P (UnOp unop e ′) and

hyp-BinOp:
∧

binop e1 e2 . [[P e1 ; P e2]] =⇒ P (BinOp binop e1 e2) and
hyp-CondL:

∧
b bv e1 e2 . [[constVal b = Some bv; the-Bool bv; P b; P e1]]

=⇒ P (b? e1 : e2) and

Theory DefiniteAssignment 101

hyp-CondR:
∧

b bv e1 e2 . [[constVal b = Some bv; ¬the-Bool bv; P b; P e2]]
=⇒ P (b? e1 : e2)

shows P e
〈proof 〉

lemma assignsE-const-simp: constVal e = Some v =⇒ assignsE e = {}
〈proof 〉

4 Main analysis for boolean expressions

Assigned local variables after evaluating the expression if it evaluates to a specific boolean value.
If the expression cannot evaluate to a Boolean value UNIV is returned. If we expect true/false the
opposite constant false/true will also lead to UNIV.
primrec assigns-if :: bool ⇒ expr ⇒ lname set
where

assigns-if b (NewC c) = UNIV — can never evaluate to Boolean
| assigns-if b (NewA t e) = UNIV — can never evaluate to Boolean
| assigns-if b (Cast t e) = assigns-if b e
| assigns-if b (Inst e r) = assignsE e — Inst has type Boolean but e is a reference type
| assigns-if b (Lit val) = (if val=Bool b then {} else UNIV)
| assigns-if b (UnOp unop e) = (case constVal (UnOp unop e) of

None ⇒ (if unop = UNot
then assigns-if (¬b) e
else UNIV)

| Some v ⇒ (if v=Bool b
then {}
else UNIV))

| assigns-if b (BinOp binop e1 e2)
= (case constVal (BinOp binop e1 e2) of

None ⇒ (if binop=CondAnd then
(case b of

True ⇒ assigns-if True e1 ∪ assigns-if True e2
| False ⇒ assigns-if False e1 ∩

(assigns-if True e1 ∪ assigns-if False e2))
else
(if binop=CondOr then

(case b of
True ⇒ assigns-if True e1 ∩

(assigns-if False e1 ∪ assigns-if True e2)
| False ⇒ assigns-if False e1 ∪ assigns-if False e2)

else assignsE e1 ∪ assignsE e2))
| Some v ⇒ (if v=Bool b then {} else UNIV))

| assigns-if b (Super) = UNIV — can never evaluate to Boolean
| assigns-if b (Acc v) = (assignsV v)
| assigns-if b (v := e) = (assignsE (Ass v e))
| assigns-if b (c? e1 : e2) = (assignsE c) ∪

(case (constVal c) of
None ⇒ (assigns-if b e1) ∩

(assigns-if b e2)
| Some bv ⇒ (case the-Bool bv of

True ⇒ assigns-if b e1
| False ⇒ assigns-if b e2))

| assigns-if b ({accC ,statT ,mode}objRef ·mn({pTs}args))
= assignsE ({accC ,statT ,mode}objRef ·mn({pTs}args))

— Only dummy analysis for intermediate expressions Methd, Body, InsInitE and Callee
| assigns-if b (Methd C sig) = {}
| assigns-if b (Body C s) = {}

102

| assigns-if b (InsInitE s e) = {}
| assigns-if b (Callee l e) = {}

lemma assigns-if-const-b-simp:
assumes boolConst: constVal e = Some (Bool b) (is ?Const b e)
shows assigns-if b e = {} (is ?Ass b e)
〈proof 〉

lemma assigns-if-const-not-b-simp:
assumes boolConst: constVal e = Some (Bool b) (is ?Const b e)
shows assigns-if (¬b) e = UNIV (is ?Ass b e)
〈proof 〉

5 Lifting set operations to range of tables (map to a set)
definition

union-ts :: (′a, ′b) tables ⇒ (′a, ′b) tables ⇒ (′a, ′b) tables (‹- ⇒∪ -› [67 ,67] 65)
where A ⇒∪ B = (λ k. A k ∪ B k)

definition
intersect-ts :: (′a, ′b) tables ⇒ (′a, ′b) tables ⇒ (′a, ′b) tables (‹- ⇒∩ -› [72 ,72] 71)
where A ⇒∩ B = (λk. A k ∩ B k)

definition
all-union-ts :: (′a, ′b) tables ⇒ ′b set ⇒ (′a, ′b) tables (infixl ‹⇒∪∀ › 40)
where (A ⇒∪∀ B) = (λ k. A k ∪ B)

Binary union of tables
lemma union-ts-iff [simp]: (c ∈ (A ⇒∪ B) k) = (c ∈ A k ∨ c ∈ B k)
〈proof 〉

lemma union-tsI1 [elim?]: c ∈ A k =⇒ c ∈ (A ⇒∪ B) k
〈proof 〉

lemma union-tsI2 [elim?]: c ∈ B k =⇒ c ∈ (A ⇒∪ B) k
〈proof 〉

lemma union-tsCI [intro!]: (c /∈ B k =⇒ c ∈ A k) =⇒ c ∈ (A ⇒∪ B) k
〈proof 〉

lemma union-tsE [elim!]:
[[c ∈ (A ⇒∪ B) k; (c ∈ A k =⇒ P); (c ∈ B k =⇒ P)]] =⇒ P
〈proof 〉

Binary intersection of tables
lemma intersect-ts-iff [simp]: c ∈ (A ⇒∩ B) k = (c ∈ A k ∧ c ∈ B k)
〈proof 〉

lemma intersect-tsI [intro!]: [[c ∈ A k; c ∈ B k]] =⇒ c ∈ (A ⇒∩ B) k
〈proof 〉

lemma intersect-tsD1 : c ∈ (A ⇒∩ B) k =⇒ c ∈ A k
〈proof 〉

lemma intersect-tsD2 : c ∈ (A ⇒∩ B) k =⇒ c ∈ B k
〈proof 〉

Theory DefiniteAssignment 103

lemma intersect-tsE [elim!]:
[[c ∈ (A ⇒∩ B) k; [[c ∈ A k; c ∈ B k]] =⇒ P]] =⇒ P
〈proof 〉

All-Union of tables and set
lemma all-union-ts-iff [simp]: (c ∈ (A ⇒∪∀ B) k) = (c ∈ A k ∨ c ∈ B)
〈proof 〉

lemma all-union-tsI1 [elim?]: c ∈ A k =⇒ c ∈ (A ⇒∪∀ B) k
〈proof 〉

lemma all-union-tsI2 [elim?]: c ∈ B =⇒ c ∈ (A ⇒∪∀ B) k
〈proof 〉

lemma all-union-tsCI [intro!]: (c /∈ B =⇒ c ∈ A k) =⇒ c ∈ (A ⇒∪∀ B) k
〈proof 〉

lemma all-union-tsE [elim!]:
[[c ∈ (A ⇒∪∀ B) k; (c ∈ A k =⇒ P); (c ∈ B =⇒ P)]] =⇒ P
〈proof 〉

The rules of definite assignment
type-synonym breakass = (label, lname) tables
— Mapping from a break label, to the set of variables that will be assigned if the evaluation terminates with
this break

record assigned =
nrm :: lname set — Definetly assigned variables for normal completion
brk :: breakass — Definetly assigned variables for abrupt completion with a break

definition
rmlab :: ′a ⇒ (′a, ′b) tables ⇒ (′a, ′b) tables
where rmlab k A = (λx. if x=k then UNIV else A x)

definition
range-inter-ts :: (′a, ′b) tables ⇒ ′b set (‹⇒

⋂
-› 80)

where ⇒
⋂

A = {x |x. ∀ k. x ∈ A k}

In E` B »t» A, B denotes the ”assigned” variables before evaluating term t, whereas A denotes the
”assigned” variables after evaluating term t. The environment E is only needed for the conditional -
? - : -. The definite assignment rules refer to the typing rules here to distinguish boolean and other
expressions.
inductive

da :: env ⇒ lname set ⇒ term ⇒ assigned ⇒ bool (‹-` - »-» -› [65 ,65 ,65 ,65] 71)
where

Skip: Env` B »〈Skip〉» (|nrm=B,brk=λ l. UNIV |)

| Expr : Env` B »〈e〉» A
=⇒
Env` B »〈Expr e〉» A

| Lab: [[Env` B »〈c〉» C ; nrm A = nrm C ∩ (brk C) l; brk A = rmlab l (brk C)]]
=⇒
Env` B »〈Break l· c〉» A

| Comp: [[Env` B »〈c1 〉» C1 ; Env` nrm C1 »〈c2 〉» C2 ;

104

nrm A = nrm C2 ; brk A = (brk C1) ⇒∩ (brk C2)]]
=⇒
Env` B »〈c1 ;; c2 〉» A

| If : [[Env` B »〈e〉» E ;
Env` (B ∪ assigns-if True e) »〈c1 〉» C1 ;
Env` (B ∪ assigns-if False e) »〈c2 〉» C2 ;
nrm A = nrm C1 ∩ nrm C2 ;
brk A = brk C1 ⇒∩ brk C2]]
=⇒
Env` B »〈If (e) c1 Else c2 〉» A

— Note that E is not further used, because we take the specialized sets that also consider if the expression
evaluates to true or false. Inside of e there is no break or finally, so the break map of E will be the trivial
one. So Env` B »〈e〉» E is just used to ensure the definite assignment in expression e. Notice the implicit
analysis of a constant boolean expression e in this rule. For example, if e is constantly True then assigns-if
False e = UNIV and therefor nrm C2 = UNIV. So finally nrm A = nrm C1. For the break maps this trick
workd too, because the trivial break map will map all labels to UNIV. In the example, if no break occurs
in c2 the break maps will trivially map to UNIV and if a break occurs it will map to UNIV too, because
assigns-if False e = UNIV. So in the intersection of the break maps the path c2 will have no contribution.

| Loop: [[Env` B »〈e〉» E ;
Env` (B ∪ assigns-if True e) »〈c〉» C ;
nrm A = nrm C ∩ (B ∪ assigns-if False e);
brk A = brk C]]
=⇒
Env` B »〈l· While(e) c〉» A

— The Loop rule resembles some of the ideas of the If rule. For the nrm A the set B ∪ assigns-if False e will
be UNIV if the condition is constantly true. To normally exit the while loop, we must consider the body c
to be completed normally (nrm C) or with a break. But in this model, the label l of the loop only handles
continue labels, not break labels. The break label will be handled by an enclosing Lab statement. So we don’t
have to handle the breaks specially.

| Jmp: [[jump=Ret −→ Result ∈ B;
nrm A = UNIV ;
brk A = (case jump of

Break l ⇒ λ k. if k=l then B else UNIV
| Cont l ⇒ λ k. UNIV
| Ret ⇒ λ k. UNIV)]]

=⇒
Env` B »〈Jmp jump〉» A

— In case of a break to label l the corresponding break set is all variables assigned before the break. The
assigned variables for normal completion of the Jmp is UNIV, because the statement will never complete
normally. For continue and return the break map is the trivial one. In case of a return we enshure that the
result value is assigned.

| Throw: [[Env` B »〈e〉» E ; nrm A = UNIV ; brk A = (λ l. UNIV)]]
=⇒ Env` B »〈Throw e〉» A

| Try: [[Env` B »〈c1 〉» C1 ;
Env(|lcl := (lcl Env)(VName vn 7→Class C)|)` (B ∪ {VName vn}) »〈c2 〉» C2 ;
nrm A = nrm C1 ∩ nrm C2 ;
brk A = brk C1 ⇒∩ brk C2]]
=⇒ Env` B »〈Try c1 Catch(C vn) c2 〉» A

| Fin: [[Env` B »〈c1 〉» C1 ;
Env` B »〈c2 〉» C2 ;
nrm A = nrm C1 ∪ nrm C2 ;
brk A = ((brk C1) ⇒∪∀ (nrm C2)) ⇒∩ (brk C2)]]

Theory DefiniteAssignment 105

=⇒
Env` B »〈c1 Finally c2 〉» A

— The set of assigned variables before execution c2 are the same as before execution c1, because c1 could
throw an exception and so we can’t guarantee that any variable will be assigned in c1. The Finally statement
completes normally if both c1 and c2 complete normally. If c1 completes abruptly with a break, then c2 also
will be executed and may terminate normally or with a break. The overall break map then is the intersection
of the maps of both paths. If c2 terminates normally we have to extend all break sets in brk C1 with nrm
C2 (⇒∪∀). If c2 exits with a break this break will appear in the overall result state. We don’t know if c1
completed normally or abruptly (maybe with an exception not only a break) so c1 has no contribution to
the break map following this path.

— Evaluation of expressions and the break sets of definite assignment: Thinking of a Java expression we
assume that we can never have a break statement inside of a expression. So for all expressions the break
sets could be set to the trivial one: λl. UNIV. But we can’t trivially proof, that evaluating an expression
will never result in a break, allthough Java expressions allready syntactically don’t allow nested stetements
in them. The reason are the nested class initialzation statements which are inserted by the evaluation rules.
So to proof the absence of a break we need to ensure, that the initialization statements will never end up
in a break. In a wellfromed initialization statement, of course, were breaks are nested correctly inside of
Lab or Loop statements evaluation of the whole initialization statement will never result in a break, because
this break will be handled inside of the statement. But for simplicity we haven’t added the analysis of the
correct nesting of breaks in the typing judgments right now. So we have decided to adjust the rules of definite
assignment to fit to these circumstances. If an initialization is involved during evaluation of the expression
(evaluation rules FVar, NewC and NewA

| Init: Env` B »〈Init C 〉» (|nrm=B,brk=λ l. UNIV |)
— Wellformedness of a program will ensure, that every static initialiser is definetly assigned and the jumps are
nested correctly. The case here for Init is just for convenience, to get a proper precondition for the induction
hypothesis in various proofs, so that we don’t have to expand the initialisation on every point where it is
triggerred by the evaluation rules.
| NewC : Env` B »〈NewC C 〉» (|nrm=B,brk=λ l. UNIV |)

| NewA: Env` B »〈e〉» A
=⇒
Env` B »〈New T [e]〉» A

| Cast: Env` B »〈e〉» A
=⇒
Env` B »〈Cast T e〉» A

| Inst: Env` B »〈e〉» A
=⇒
Env` B »〈e InstOf T 〉» A

| Lit: Env` B »〈Lit v〉» (|nrm=B,brk=λ l. UNIV |)

| UnOp: Env` B »〈e〉» A
=⇒
Env` B »〈UnOp unop e〉» A

| CondAnd: [[Env` B »〈e1 〉» E1 ; Env` (B ∪ assigns-if True e1) »〈e2 〉» E2 ;
nrm A = B ∪ (assigns-if True (BinOp CondAnd e1 e2) ∩

assigns-if False (BinOp CondAnd e1 e2));
brk A = (λ l. UNIV)]]
=⇒
Env` B »〈BinOp CondAnd e1 e2 〉» A

| CondOr : [[Env` B »〈e1 〉» E1 ; Env` (B ∪ assigns-if False e1) »〈e2 〉» E2 ;
nrm A = B ∪ (assigns-if True (BinOp CondOr e1 e2) ∩

assigns-if False (BinOp CondOr e1 e2));

106

brk A = (λ l. UNIV)]]
=⇒
Env` B »〈BinOp CondOr e1 e2 〉» A

| BinOp: [[Env` B »〈e1 〉» E1 ; Env` nrm E1 »〈e2 〉» A;
binop 6= CondAnd; binop 6= CondOr]]
=⇒
Env` B »〈BinOp binop e1 e2 〉» A

| Super : This ∈ B
=⇒
Env` B »〈Super〉» (|nrm=B,brk=λ l. UNIV |)

| AccLVar : [[vn ∈ B;
nrm A = B; brk A = (λ k. UNIV)]]
=⇒
Env` B »〈Acc (LVar vn)〉» A

— To properly access a local variable we have to test the definite assignment here. The variable must occur
in the set B

| Acc: [[∀ vn. v 6= LVar vn;
Env` B »〈v〉» A]]
=⇒
Env` B »〈Acc v〉» A

| AssLVar : [[Env` B »〈e〉» E ; nrm A = nrm E ∪ {vn}; brk A = brk E]]
=⇒
Env` B »〈(LVar vn) := e〉» A

| Ass: [[∀ vn. v 6= LVar vn; Env` B »〈v〉» V ; Env` nrm V »〈e〉» A]]
=⇒
Env` B »〈v := e〉» A

| CondBool: [[Env`(c ? e1 : e2)::−(PrimT Boolean);
Env` B »〈c〉» C ;
Env` (B ∪ assigns-if True c) »〈e1 〉» E1 ;
Env` (B ∪ assigns-if False c) »〈e2 〉» E2 ;
nrm A = B ∪ (assigns-if True (c ? e1 : e2) ∩

assigns-if False (c ? e1 : e2));
brk A = (λ l. UNIV)]]
=⇒
Env` B »〈c ? e1 : e2 〉» A

| Cond: [[¬ Env`(c ? e1 : e2)::−(PrimT Boolean);
Env` B »〈c〉» C ;
Env` (B ∪ assigns-if True c) »〈e1 〉» E1 ;
Env` (B ∪ assigns-if False c) »〈e2 〉» E2 ;
nrm A = nrm E1 ∩ nrm E2 ; brk A = (λ l. UNIV)]]
=⇒
Env` B »〈c ? e1 : e2 〉» A

| Call: [[Env` B »〈e〉» E ; Env` nrm E »〈args〉» A]]
=⇒
Env` B »〈{accC ,statT ,mode}e·mn({pTs}args)〉» A

— The interplay of Call, Methd and Body: Why rules for Methd and Body at all? Note that a Java source
program will not include bare Methd or Body terms. These terms are just introduced during evaluation. So
definite assignment of Call does not consider Methd or Body at all. So for definite assignment alone we could
omit the rules for Methd and Body. But since evaluation of the method invocation is split up into three rules

Theory DefiniteAssignment 107

we must ensure that we have enough information about the call even in the Body term to make sure that
we can proof type safety. Also we must be able transport this information from Call to Methd and then
further to Body during evaluation to establish the definite assignment of Methd during evaluation of Call,
and of Body during evaluation of Methd. This is necessary since definite assignment will be a precondition for
each induction hypothesis coming out of the evaluation rules, and therefor we have to establish the definite
assignment of the sub-evaluation during the type-safety proof. Note that well-typedness is also a precondition
for type-safety and so we can omit some assertion that are already ensured by well-typedness.
| Methd: [[methd (prg Env) D sig = Some m;

Env` B »〈Body (declclass m) (stmt (mbody (mthd m)))〉» A
]]
=⇒
Env` B »〈Methd D sig〉» A

| Body: [[Env` B »〈c〉» C ; jumpNestingOkS {Ret} c; Result ∈ nrm C ;
nrm A = B; brk A = (λ l. UNIV)]]
=⇒
Env` B »〈Body D c〉» A

— Note that A is not correlated to C. If the body statement returns abruptly with return, evaluation of Body
will absorb this return and complete normally. So we cannot trivially get the assigned variables of the body
statement since it has not completed normally or with a break. If the body completes normally we guarantee
that the result variable is set with this rule. But if the body completes abruptly with a return we can’t
guarantee that the result variable is set here, since definite assignment only talks about normal completion
and breaks. So for a return the Jump rule ensures that the result variable is set and then this information
must be carried over to the Body rule by the conformance predicate of the state.
| LVar : Env` B »〈LVar vn〉» (|nrm=B, brk=λ l. UNIV |)

| FVar : Env` B »〈e〉» A
=⇒
Env` B »〈{accC ,statDeclC ,stat}e..fn〉» A

| AVar : [[Env` B »〈e1 〉» E1 ; Env` nrm E1 »〈e2 〉» A]]
=⇒
Env` B »〈e1 .[e2]〉» A

| Nil: Env` B »〈[]::expr list〉» (|nrm=B, brk=λ l. UNIV |)

| Cons: [[Env` B »〈e::expr〉» E ; Env` nrm E »〈es〉» A]]
=⇒
Env` B »〈e#es〉» A

declare inj-term-sym-simps [simp]
declare assigns-if .simps [simp del]
declare split-paired-All [simp del] split-paired-Ex [simp del]
〈ML〉

inductive-cases da-elim-cases [cases set]:
Env` B »〈Skip〉» A
Env` B »In1r Skip» A
Env` B »〈Expr e〉» A
Env` B »In1r (Expr e)» A
Env` B »〈l· c〉» A
Env` B »In1r (l· c)» A
Env` B »〈c1 ;; c2 〉» A
Env` B »In1r (c1 ;; c2)» A
Env` B »〈If (e) c1 Else c2 〉» A
Env` B »In1r (If (e) c1 Else c2)» A
Env` B »〈l· While(e) c〉» A
Env` B »In1r (l· While(e) c)» A

108

Env` B »〈Jmp jump〉» A
Env` B »In1r (Jmp jump)» A
Env` B »〈Throw e〉» A
Env` B »In1r (Throw e)» A
Env` B »〈Try c1 Catch(C vn) c2 〉» A
Env` B »In1r (Try c1 Catch(C vn) c2)» A
Env` B »〈c1 Finally c2 〉» A
Env` B »In1r (c1 Finally c2)» A
Env` B »〈Init C 〉» A
Env` B »In1r (Init C)» A
Env` B »〈NewC C 〉» A
Env` B »In1l (NewC C)» A
Env` B »〈New T [e]〉» A
Env` B »In1l (New T [e])» A
Env` B »〈Cast T e〉» A
Env` B »In1l (Cast T e)» A
Env` B »〈e InstOf T 〉» A
Env` B »In1l (e InstOf T)» A
Env` B »〈Lit v〉» A
Env` B »In1l (Lit v)» A
Env` B »〈UnOp unop e〉» A
Env` B »In1l (UnOp unop e)» A
Env` B »〈BinOp binop e1 e2 〉» A
Env` B »In1l (BinOp binop e1 e2)» A
Env` B »〈Super〉» A
Env` B »In1l (Super)» A
Env` B »〈Acc v〉» A
Env` B »In1l (Acc v)» A
Env` B »〈v := e〉» A
Env` B »In1l (v := e)» A
Env` B »〈c ? e1 : e2 〉» A
Env` B »In1l (c ? e1 : e2)» A
Env` B »〈{accC ,statT ,mode}e·mn({pTs}args)〉» A
Env` B »In1l ({accC ,statT ,mode}e·mn({pTs}args))» A
Env` B »〈Methd C sig〉» A
Env` B »In1l (Methd C sig)» A
Env` B »〈Body D c〉» A
Env` B »In1l (Body D c)» A
Env` B »〈LVar vn〉» A
Env` B »In2 (LVar vn)» A
Env` B »〈{accC ,statDeclC ,stat}e..fn〉» A
Env` B »In2 ({accC ,statDeclC ,stat}e..fn)» A
Env` B »〈e1 .[e2]〉» A
Env` B »In2 (e1 .[e2])» A
Env` B »〈[]::expr list〉» A
Env` B »In3 ([]::expr list)» A
Env` B »〈e#es〉» A
Env` B »In3 (e#es)» A

declare inj-term-sym-simps [simp del]
declare assigns-if .simps [simp]
declare split-paired-All [simp] split-paired-Ex [simp]
〈ML〉

lemma da-Skip: A = (|nrm=B,brk=λ l. UNIV |) =⇒ Env` B »〈Skip〉» A
〈proof 〉

lemma da-NewC : A = (|nrm=B,brk=λ l. UNIV |) =⇒ Env` B »〈NewC C 〉» A

Theory DefiniteAssignment 109

〈proof 〉

lemma da-Lit: A = (|nrm=B,brk=λ l. UNIV |) =⇒ Env` B »〈Lit v〉» A
〈proof 〉

lemma da-Super : [[This ∈ B;A = (|nrm=B,brk=λ l. UNIV |)]] =⇒ Env` B »〈Super〉» A
〈proof 〉

lemma da-Init: A = (|nrm=B,brk=λ l. UNIV |) =⇒ Env` B »〈Init C 〉» A
〈proof 〉

lemma assignsE-subseteq-assigns-ifs:
assumes boolEx: E`e::−PrimT Boolean (is ?Boolean e)

shows assignsE e ⊆ assigns-if True e ∩ assigns-if False e (is ?Incl e)
〈proof 〉

lemma rmlab-same-label [simp]: (rmlab l A) l = UNIV
〈proof 〉

lemma rmlab-same-label1 [simp]: l=l ′ =⇒ (rmlab l A) l ′ = UNIV
〈proof 〉

lemma rmlab-other-label [simp]: l 6=l ′=⇒ (rmlab l A) l ′ = A l ′
〈proof 〉

lemma range-inter-ts-subseteq [intro]: ∀ k. A k ⊆ B k =⇒ ⇒
⋂

A ⊆ ⇒
⋂

B
〈proof 〉

lemma range-inter-ts-subseteq ′: ∀ k. A k ⊆ B k =⇒ x ∈ ⇒
⋂

A =⇒ x ∈ ⇒
⋂

B
〈proof 〉

lemma da-monotone:
assumes da: Env` B »t» A and

B ⊆ B ′ and
da ′: Env` B ′ »t» A ′

shows (nrm A ⊆ nrm A ′) ∧ (∀ l. (brk A l ⊆ brk A ′ l))
〈proof 〉

lemma da-weaken:
assumes da: Env` B »t» A and B ⊆ B ′

shows ∃ A ′. Env ` B ′ »t» A ′

〈proof 〉

corollary da-weakenE [consumes 2]:
assumes da: Env` B »t» A and

B ′: B ⊆ B ′ and
ex-mono:

∧
A ′. [[Env` B ′ »t» A ′; nrm A ⊆ nrm A ′;∧

l. brk A l ⊆ brk A ′ l]] =⇒ P
shows P
〈proof 〉

110

end

Chapter 13

WellForm

1 Well-formedness of Java programs
theory WellForm imports DefiniteAssignment begin

For static checks on expressions and statements, see WellType.thy
improvements over Java Specification 1.0 (cf. 8.4.6.3, 8.4.6.4, 9.4.1):

• a method implementing or overwriting another method may have a result type that widens to
the result type of the other method (instead of identical type)

• if a method hides another method (both methods have to be static!) there are no restrictions
to the result type since the methods have to be static and there is no dynamic binding of static
methods

• if an interface inherits more than one method with the same signature, the methods need not
have identical return types

simplifications:

• Object and standard exceptions are assumed to be declared like normal classes

well-formed field declarations

well-formed field declaration (common part for classes and interfaces), cf. 8.3 and (9.3)
definition

wf-fdecl :: prog ⇒ pname ⇒ fdecl ⇒ bool
where wf-fdecl G P = (λ(fn,f). is-acc-type G P (type f))

lemma wf-fdecl-def2 :
∧

fd. wf-fdecl G P fd = is-acc-type G P (type (snd fd))
〈proof 〉

well-formed method declarations

A method head is wellformed if:

• the signature and the method head agree in the number of parameters

• all types of the parameters are visible

• the result type is visible

• the parameter names are unique

111

112

definition
wf-mhead :: prog ⇒ pname ⇒ sig ⇒ mhead ⇒ bool where
wf-mhead G P = (λ sig mh. length (parTs sig) = length (pars mh) ∧

(∀T∈set (parTs sig). is-acc-type G P T) ∧
is-acc-type G P (resTy mh) ∧
distinct (pars mh))

A method declaration is wellformed if:

• the method head is wellformed

• the names of the local variables are unique

• the types of the local variables must be accessible

• the local variables don’t shadow the parameters

• the class of the method is defined

• the body statement is welltyped with respect to the modified environment of local names, were
the local variables, the parameters the special result variable (Res) and This are assoziated
with there types.

definition
callee-lcl :: qtname ⇒ sig ⇒ methd ⇒ lenv where
callee-lcl C sig m =
(λk. (case k of

EName e
⇒ (case e of

VNam v
⇒((table-of (lcls (mbody m)))(pars m [7→] parTs sig)) v
| Res ⇒ Some (resTy m))

| This ⇒ if is-static m then None else Some (Class C)))

definition
parameters :: methd ⇒ lname set where
parameters m = set (map (EName ◦ VNam) (pars m)) ∪ (if (static m) then {} else {This})

definition
wf-mdecl :: prog ⇒ qtname ⇒ mdecl ⇒ bool where
wf-mdecl G C =

(λ(sig,m).
wf-mhead G (pid C) sig (mhead m) ∧
unique (lcls (mbody m)) ∧
(∀ (vn,T)∈set (lcls (mbody m)). is-acc-type G (pid C) T) ∧
(∀ pn∈set (pars m). table-of (lcls (mbody m)) pn = None) ∧
jumpNestingOkS {Ret} (stmt (mbody m)) ∧
is-class G C ∧
(|prg=G,cls=C ,lcl=callee-lcl C sig m|)`(stmt (mbody m))::

√
∧

(∃ A. (|prg=G,cls=C ,lcl=callee-lcl C sig m|)
` parameters m »〈stmt (mbody m)〉» A
∧ Result ∈ nrm A))

lemma callee-lcl-VNam-simp [simp]:
callee-lcl C sig m (EName (VNam v))
= ((table-of (lcls (mbody m)))(pars m [7→] parTs sig)) v
〈proof 〉

lemma callee-lcl-Res-simp [simp]:

Theory WellForm 113

callee-lcl C sig m (EName Res) = Some (resTy m)
〈proof 〉

lemma callee-lcl-This-simp [simp]:
callee-lcl C sig m (This) = (if is-static m then None else Some (Class C))
〈proof 〉

lemma callee-lcl-This-static-simp:
is-static m =⇒ callee-lcl C sig m (This) = None
〈proof 〉

lemma callee-lcl-This-not-static-simp:
¬ is-static m =⇒ callee-lcl C sig m (This) = Some (Class C)
〈proof 〉

lemma wf-mheadI :
[[length (parTs sig) = length (pars m); ∀T∈set (parTs sig). is-acc-type G P T ;

is-acc-type G P (resTy m); distinct (pars m)]] =⇒
wf-mhead G P sig m
〈proof 〉

lemma wf-mdeclI : [[
wf-mhead G (pid C) sig (mhead m); unique (lcls (mbody m));
(∀ pn∈set (pars m). table-of (lcls (mbody m)) pn = None);
∀ (vn,T)∈set (lcls (mbody m)). is-acc-type G (pid C) T ;
jumpNestingOkS {Ret} (stmt (mbody m));
is-class G C ;
(|prg=G,cls=C ,lcl=callee-lcl C sig m|)`(stmt (mbody m))::

√
;

(∃ A. (|prg=G,cls=C ,lcl=callee-lcl C sig m|) ` parameters m »〈stmt (mbody m)〉» A
∧ Result ∈ nrm A)

]] =⇒
wf-mdecl G C (sig,m)
〈proof 〉

lemma wf-mdeclE [consumes 1]:
[[wf-mdecl G C (sig,m);
[[wf-mhead G (pid C) sig (mhead m); unique (lcls (mbody m));
∀ pn∈set (pars m). table-of (lcls (mbody m)) pn = None;
∀ (vn,T)∈set (lcls (mbody m)). is-acc-type G (pid C) T ;
jumpNestingOkS {Ret} (stmt (mbody m));
is-class G C ;
(|prg=G,cls=C ,lcl=callee-lcl C sig m|)`(stmt (mbody m))::

√
;

(∃ A. (|prg=G,cls=C ,lcl=callee-lcl C sig m|)` parameters m »〈stmt (mbody m)〉» A
∧ Result ∈ nrm A)

]] =⇒ P
]] =⇒ P
〈proof 〉

lemma wf-mdeclD1 :
wf-mdecl G C (sig,m) =⇒

wf-mhead G (pid C) sig (mhead m) ∧ unique (lcls (mbody m)) ∧
(∀ pn∈set (pars m). table-of (lcls (mbody m)) pn = None) ∧
(∀ (vn,T)∈set (lcls (mbody m)). is-acc-type G (pid C) T)
〈proof 〉

lemma wf-mdecl-bodyD:
wf-mdecl G C (sig,m) =⇒
(∃T . (|prg=G,cls=C ,lcl=callee-lcl C sig m|)`Body C (stmt (mbody m))::−T ∧

114

G`T�(resTy m))
〈proof 〉

lemma rT-is-acc-type:
wf-mhead G P sig m =⇒ is-acc-type G P (resTy m)
〈proof 〉

well-formed interface declarations

A interface declaration is wellformed if:

• the interface hierarchy is wellstructured

• there is no class with the same name

• the method heads are wellformed and not static and have Public access

• the methods are uniquely named

• all superinterfaces are accessible

• the result type of a method overriding a method of Object widens to the result type of the
overridden method. Shadowing static methods is forbidden.

• the result type of a method overriding a set of methods defined in the superinterfaces widens
to each of the corresponding result types

definition
wf-idecl :: prog ⇒ idecl ⇒ bool where

wf-idecl G =
(λ(I ,i).

ws-idecl G I (isuperIfs i) ∧
¬is-class G I ∧
(∀ (sig,mh)∈set (imethods i). wf-mhead G (pid I) sig mh ∧

¬is-static mh ∧
accmodi mh = Public) ∧

unique (imethods i) ∧
(∀ J∈set (isuperIfs i). is-acc-iface G (pid I) J) ∧
(table-of (imethods i)

hiding (methd G Object)
under (λ new old. accmodi old 6= Private)
entails (λnew old. G`resTy new�resTy old ∧

is-static new = is-static old)) ∧
(set-option ◦ table-of (imethods i)

hidings Un-tables((λJ .(imethds G J))‘set (isuperIfs i))
entails (λnew old. G`resTy new�resTy old)))

lemma wf-idecl-mhead: [[wf-idecl G (I ,i); (sig,mh)∈set (imethods i)]] =⇒
wf-mhead G (pid I) sig mh ∧ ¬is-static mh ∧ accmodi mh = Public
〈proof 〉

lemma wf-idecl-hidings:
wf-idecl G (I , i) =⇒
(λs. set-option (table-of (imethods i) s))
hidings Un-tables ((λJ . imethds G J) ‘ set (isuperIfs i))
entails λnew old. G`resTy new�resTy old

Theory WellForm 115

〈proof 〉

lemma wf-idecl-hiding:
wf-idecl G (I , i) =⇒
(table-of (imethods i)

hiding (methd G Object)
under (λ new old. accmodi old 6= Private)
entails (λnew old. G`resTy new�resTy old ∧

is-static new = is-static old))
〈proof 〉

lemma wf-idecl-supD:
[[wf-idecl G (I ,i); J ∈ set (isuperIfs i)]]
=⇒ is-acc-iface G (pid I) J ∧ (J , I) /∈ (subint1 G)+

〈proof 〉

well-formed class declarations

A class declaration is wellformed if:

• there is no interface with the same name

• all superinterfaces are accessible and for all methods implementing an interface method the
result type widens to the result type of the interface method, the method is not static and
offers at least as much access (this actually means that the method has Public access, since
all interface methods have public access)

• all field declarations are wellformed and the field names are unique

• all method declarations are wellformed and the method names are unique

• the initialization statement is welltyped

• the classhierarchy is wellstructured

• Unless the class is Object:

– the superclass is accessible
– for all methods overriding another method (of a superclass)the result type widens to the

result type of the overridden method, the access modifier of the new method provides at
least as much access as the overwritten one.

– for all methods hiding a method (of a superclass) the hidden method must be static
and offer at least as much access rights. Remark: In contrast to the Java Language
Specification we don’t restrict the result types of the method (as in case of overriding),
because there seems to be no reason, since there is no dynamic binding of static methods.
(cf. 8.4.6.3 vs. 15.12.1). Stricly speaking the restrictions on the access rights aren’t
necessary to, since the static type and the access rights together determine which method
is to be called statically. But if a class gains more then one static method with the same
signature due to inheritance, it is confusing when the method selection depends on the
access rights only: e.g. Class C declares static public method foo(). Class D is subclass
of C and declares static method foo() with default package access. D.foo() ? if this call
is in the same package as D then foo of class D is called, otherwise foo of class C.

definition
entails :: (′a, ′b) table ⇒ (′b ⇒ bool) ⇒ bool (‹- entails -› 20)
where (t entails P) = (∀ k. ∀ x ∈ t k: P x)

116

lemma entailsD:
[[t entails P; t k = Some x]] =⇒ P x
〈proof 〉

lemma empty-entails[simp]: Map.empty entails P
〈proof 〉

definition
wf-cdecl :: prog ⇒ cdecl ⇒ bool where
wf-cdecl G =

(λ(C ,c).
¬is-iface G C ∧
(∀ I∈set (superIfs c). is-acc-iface G (pid C) I ∧
(∀ s. ∀ im ∈ imethds G I s.

(∃ cm ∈ methd G C s: G`resTy cm�resTy im ∧
¬ is-static cm ∧
accmodi im ≤ accmodi cm))) ∧

(∀ f∈set (cfields c). wf-fdecl G (pid C) f) ∧ unique (cfields c) ∧
(∀m∈set (methods c). wf-mdecl G C m) ∧ unique (methods c) ∧
jumpNestingOkS {} (init c) ∧
(∃ A. (|prg=G,cls=C ,lcl=Map.empty|)` {} »〈init c〉» A) ∧
(|prg=G,cls=C ,lcl=Map.empty|)`(init c)::

√
∧ ws-cdecl G C (super c) ∧

(C 6= Object −→
(is-acc-class G (pid C) (super c) ∧
(table-of (map (λ (s,m). (s,C ,m)) (methods c))
entails (λ new. ∀ old sig.

(G,sig`new overridesS old
−→ (G`resTy new�resTy old ∧

accmodi old ≤ accmodi new ∧
¬is-static old)) ∧

(G,sig`new hides old
−→ (accmodi old ≤ accmodi new ∧

is-static old))))
)))

lemma wf-cdeclE [consumes 1]:
[[wf-cdecl G (C ,c);
[[¬is-iface G C ;
(∀ I∈set (superIfs c). is-acc-iface G (pid C) I ∧

(∀ s. ∀ im ∈ imethds G I s.
(∃ cm ∈ methd G C s: G`resTy cm�resTy im ∧

¬ is-static cm ∧
accmodi im ≤ accmodi cm)));

∀ f∈set (cfields c). wf-fdecl G (pid C) f ; unique (cfields c);
∀m∈set (methods c). wf-mdecl G C m; unique (methods c);
jumpNestingOkS {} (init c);
∃ A. (|prg=G,cls=C ,lcl=Map.empty|)` {} »〈init c〉» A;
(|prg=G,cls=C ,lcl=Map.empty|)`(init c)::

√
;

ws-cdecl G C (super c);
(C 6= Object −→

(is-acc-class G (pid C) (super c) ∧
(table-of (map (λ (s,m). (s,C ,m)) (methods c))
entails (λ new. ∀ old sig.

(G,sig`new overridesS old
−→ (G`resTy new�resTy old ∧

accmodi old ≤ accmodi new ∧
¬is-static old)) ∧

Theory WellForm 117

(G,sig`new hides old
−→ (accmodi old ≤ accmodi new ∧

is-static old))))
))]] =⇒ P

]] =⇒ P
〈proof 〉

lemma wf-cdecl-unique:
wf-cdecl G (C ,c) =⇒ unique (cfields c) ∧ unique (methods c)
〈proof 〉

lemma wf-cdecl-fdecl:
[[wf-cdecl G (C ,c); f∈set (cfields c)]] =⇒ wf-fdecl G (pid C) f
〈proof 〉

lemma wf-cdecl-mdecl:
[[wf-cdecl G (C ,c); m∈set (methods c)]] =⇒ wf-mdecl G C m
〈proof 〉

lemma wf-cdecl-impD:
[[wf-cdecl G (C ,c); I∈set (superIfs c)]]
=⇒ is-acc-iface G (pid C) I ∧

(∀ s. ∀ im ∈ imethds G I s.
(∃ cm ∈ methd G C s: G`resTy cm�resTy im ∧ ¬is-static cm ∧

accmodi im ≤ accmodi cm))
〈proof 〉

lemma wf-cdecl-supD:
[[wf-cdecl G (C ,c); C 6= Object]] =⇒

is-acc-class G (pid C) (super c) ∧ (super c,C) /∈ (subcls1 G)+ ∧
(table-of (map (λ (s,m). (s,C ,m)) (methods c))
entails (λ new. ∀ old sig.

(G,sig`new overridesS old
−→ (G`resTy new�resTy old ∧

accmodi old ≤ accmodi new ∧
¬is-static old)) ∧

(G,sig`new hides old
−→ (accmodi old ≤ accmodi new ∧

is-static old))))
〈proof 〉

lemma wf-cdecl-overrides-SomeD:
[[wf-cdecl G (C ,c); C 6= Object; table-of (methods c) sig = Some newM ;

G,sig`(C ,newM) overridesS old
]] =⇒ G`resTy newM�resTy old ∧

accmodi old ≤ accmodi newM ∧
¬ is-static old

〈proof 〉

lemma wf-cdecl-hides-SomeD:
[[wf-cdecl G (C ,c); C 6= Object; table-of (methods c) sig = Some newM ;

G,sig`(C ,newM) hides old
]] =⇒ accmodi old ≤ access newM ∧

is-static old
〈proof 〉

lemma wf-cdecl-wt-init:
wf-cdecl G (C , c) =⇒ (|prg=G,cls=C ,lcl=Map.empty|)`init c::

√

118

〈proof 〉

well-formed programs

A program declaration is wellformed if:

• the class ObjectC of Object is defined

• every method of Object has an access modifier distinct from Package. This is necessary since
every interface automatically inherits from Object. We must know, that every time a Object
method is "overriden" by an interface method this is also overriden by the class implementing
the the interface (see implement-dynmethd and class-mheadsD)

• all standard Exceptions are defined

• all defined interfaces are wellformed

• all defined classes are wellformed

definition
wf-prog :: prog ⇒ bool where

wf-prog G = (let is = ifaces G; cs = classes G in
ObjectC ∈ set cs ∧
(∀ m∈set Object-mdecls. accmodi m 6= Package) ∧
(∀ xn. SXcptC xn ∈ set cs) ∧
(∀ i∈set is. wf-idecl G i) ∧ unique is ∧
(∀ c∈set cs. wf-cdecl G c) ∧ unique cs)

lemma wf-prog-idecl: [[iface G I = Some i; wf-prog G]] =⇒ wf-idecl G (I ,i)
〈proof 〉

lemma wf-prog-cdecl: [[class G C = Some c; wf-prog G]] =⇒ wf-cdecl G (C ,c)
〈proof 〉

lemma wf-prog-Object-mdecls:
wf-prog G =⇒ (∀ m∈set Object-mdecls. accmodi m 6= Package)
〈proof 〉

lemma wf-prog-acc-superD:
[[wf-prog G; class G C = Some c; C 6= Object]]
=⇒ is-acc-class G (pid C) (super c)
〈proof 〉

lemma wf-ws-prog [elim!,simp]: wf-prog G =⇒ ws-prog G
〈proof 〉

lemma class-Object [simp]:
wf-prog G =⇒

class G Object = Some (|access=Public,cfields=[],methods=Object-mdecls,
init=Skip,super=undefined,superIfs=[]|)

〈proof 〉

lemma methd-Object[simp]: wf-prog G =⇒ methd G Object =
table-of (map (λ(s,m). (s, Object, m)) Object-mdecls)
〈proof 〉

lemma wf-prog-Object-methd:
[[wf-prog G; methd G Object sig = Some m]] =⇒ accmodi m 6= Package
〈proof 〉

Theory WellForm 119

lemma wf-prog-Object-is-public[intro]:
wf-prog G =⇒ is-public G Object
〈proof 〉

lemma class-SXcpt [simp]:
wf-prog G =⇒

class G (SXcpt xn) = Some (|access=Public,cfields=[],methods=SXcpt-mdecls,
init=Skip,
super=if xn = Throwable then Object

else SXcpt Throwable,
superIfs=[]|)

〈proof 〉

lemma wf-ObjectC [simp]:
wf-cdecl G ObjectC = (¬is-iface G Object ∧ Ball (set Object-mdecls)

(wf-mdecl G Object) ∧ unique Object-mdecls)
〈proof 〉

lemma Object-is-class [simp,elim!]: wf-prog G =⇒ is-class G Object
〈proof 〉

lemma Object-is-acc-class [simp,elim!]: wf-prog G =⇒ is-acc-class G S Object
〈proof 〉

lemma SXcpt-is-class [simp,elim!]: wf-prog G =⇒ is-class G (SXcpt xn)
〈proof 〉

lemma SXcpt-is-acc-class [simp,elim!]:
wf-prog G =⇒ is-acc-class G S (SXcpt xn)
〈proof 〉

lemma fields-Object [simp]: wf-prog G =⇒ DeclConcepts.fields G Object = []
〈proof 〉

lemma accfield-Object [simp]:
wf-prog G =⇒ accfield G S Object = Map.empty
〈proof 〉

lemma fields-Throwable [simp]:
wf-prog G =⇒ DeclConcepts.fields G (SXcpt Throwable) = []
〈proof 〉

lemma fields-SXcpt [simp]: wf-prog G =⇒ DeclConcepts.fields G (SXcpt xn) = []
〈proof 〉

lemmas widen-trans = ws-widen-trans [OF - - wf-ws-prog, elim]
lemma widen-trans2 [elim]: [[G`U�T ; G`S�U ; wf-prog G]] =⇒ G`S�T
〈proof 〉

lemma Xcpt-subcls-Throwable [simp]:
wf-prog G =⇒ G`SXcpt xn�C SXcpt Throwable
〈proof 〉

lemma unique-fields:
[[is-class G C ; wf-prog G]] =⇒ unique (DeclConcepts.fields G C)
〈proof 〉

lemma fields-mono:

120

[[table-of (DeclConcepts.fields G C) fn = Some f ; G`D�C C ;
is-class G D; wf-prog G]]
=⇒ table-of (DeclConcepts.fields G D) fn = Some f

〈proof 〉

lemma fields-is-type [elim]:
[[table-of (DeclConcepts.fields G C) m = Some f ; wf-prog G; is-class G C]] =⇒

is-type G (type f)
〈proof 〉

lemma imethds-wf-mhead [rule-format (no-asm)]:
[[m ∈ imethds G I sig; wf-prog G; is-iface G I]] =⇒

wf-mhead G (pid (decliface m)) sig (mthd m) ∧
¬ is-static m ∧ accmodi m = Public
〈proof 〉

lemma methd-wf-mdecl:
[[methd G C sig = Some m; wf-prog G; class G C = Some y]] =⇒
G`C�C (declclass m) ∧ is-class G (declclass m) ∧
wf-mdecl G (declclass m) (sig,(mthd m))
〈proof 〉

lemma methd-rT-is-type:
[[wf-prog G;methd G C sig = Some m;

class G C = Some y]]
=⇒ is-type G (resTy m)
〈proof 〉

lemma accmethd-rT-is-type:
[[wf-prog G;accmethd G S C sig = Some m;

class G C = Some y]]
=⇒ is-type G (resTy m)
〈proof 〉

lemma methd-Object-SomeD:
[[wf-prog G;methd G Object sig = Some m]]
=⇒ declclass m = Object
〈proof 〉

lemmas iface-rec-induct ′ = iface-rec.induct [of %x y z. P x y] for P

lemma wf-imethdsD:
[[im ∈ imethds G I sig;wf-prog G; is-iface G I]]
=⇒ ¬is-static im ∧ accmodi im = Public
〈proof 〉

lemma wf-prog-hidesD:
assumes hides: G `new hides old and wf : wf-prog G
shows
accmodi old ≤ accmodi new ∧
is-static old

〈proof 〉

Compare this lemma about static overriding G ` new overridesS old with the definition of dynamic
overriding G ` new overrides old. Conforming result types and restrictions on the access modifiers

Theory WellForm 121

of the old and the new method are not part of the predicate for static overriding. But they are
enshured in a wellfromed program. Dynamic overriding has no restrictions on the access modifiers
but enforces confrom result types as precondition. But with some efford we can guarantee the access
modifier restriction for dynamic overriding, too. See lemma wf-prog-dyn-override-prop.

lemma wf-prog-stat-overridesD:
assumes stat-override: G `new overridesS old and wf : wf-prog G
shows
G`resTy new�resTy old ∧
accmodi old ≤ accmodi new ∧
¬ is-static old

〈proof 〉

lemma static-to-dynamic-overriding:
assumes stat-override: G`new overridesS old and wf : wf-prog G
shows G`new overrides old
〈proof 〉

lemma non-Package-instance-method-inheritance:
assumes old-inheritable: G`Method old inheritable-in (pid C) and

accmodi-old: accmodi old 6= Package and
instance-method: ¬ is-static old and

subcls: G`C ≺C declclass old and
old-declared: G`Method old declared-in (declclass old) and

wf : wf-prog G
shows G`Method old member-of C ∨
(∃ new. G` new overridesS old ∧ G`Method new member-of C)

〈proof 〉

lemma non-Package-instance-method-inheritance-cases:
assumes old-inheritable: G`Method old inheritable-in (pid C) and

accmodi-old: accmodi old 6= Package and
instance-method: ¬ is-static old and

subcls: G`C ≺C declclass old and
old-declared: G`Method old declared-in (declclass old) and

wf : wf-prog G
obtains (Inheritance) G`Method old member-of C
| (Overriding) new where G` new overridesS old and G`Method new member-of C

〈proof 〉

lemma dynamic-to-static-overriding:
assumes dyn-override: G` new overrides old and

accmodi-old: accmodi old 6= Package and
wf : wf-prog G

shows G` new overridesS old
〈proof 〉

lemma wf-prog-dyn-override-prop:
assumes dyn-override: G ` new overrides old and

wf : wf-prog G
shows accmodi old ≤ accmodi new
〈proof 〉

lemma overrides-Package-old:
assumes dyn-override: G ` new overrides old and

accmodi-new: accmodi new = Package and
wf : wf-prog G

shows accmodi old = Package
〈proof 〉

122

lemma dyn-override-Package:
assumes dyn-override: G ` new overrides old and

accmodi-old: accmodi old = Package and
accmodi-new: accmodi new = Package and

wf : wf-prog G
shows pid (declclass old) = pid (declclass new)
〈proof 〉

lemma dyn-override-Package-escape:
assumes dyn-override: G ` new overrides old and

accmodi-old: accmodi old = Package and
outside-pack: pid (declclass old) 6= pid (declclass new) and

wf : wf-prog G
shows ∃ inter . G ` new overrides inter ∧ G ` inter overrides old ∧

pid (declclass old) = pid (declclass inter) ∧
Protected ≤ accmodi inter

〈proof 〉

lemmas class-rec-induct ′ = class-rec.induct [of %x y z w. P x y] for P

lemma declclass-widen[rule-format]:
wf-prog G
−→ (∀ c m. class G C = Some c −→ methd G C sig = Some m
−→ G`C �C declclass m) (is ?P G C)
〈proof 〉

lemma declclass-methd-Object:
[[wf-prog G; methd G Object sig = Some m]] =⇒ declclass m = Object
〈proof 〉

lemma methd-declaredD:
[[wf-prog G; is-class G C ;methd G C sig = Some m]]
=⇒ G`(mdecl (sig,mthd m)) declared-in (declclass m)
〈proof 〉

lemma methd-rec-Some-cases:
assumes methd-C : methd G C sig = Some m and

ws: ws-prog G and
clsC : class G C = Some c and

neq-C-Obj: C 6=Object
obtains (NewMethod) table-of (map (λ(s, m). (s, C , m)) (methods c)) sig = Some m
| (InheritedMethod) G`C inherits (method sig m) and methd G (super c) sig = Some m

〈proof 〉

lemma methd-member-of :
assumes wf : wf-prog G
shows
[[is-class G C ; methd G C sig = Some m]] =⇒ G`Methd sig m member-of C

(is ?Class C =⇒ ?Method C =⇒ ?MemberOf C)
〈proof 〉

lemma current-methd:
[[table-of (methods c) sig = Some new;

ws-prog G; class G C = Some c; C 6= Object;
methd G (super c) sig = Some old]]

=⇒ methd G C sig = Some (C ,new)
〈proof 〉

Theory WellForm 123

lemma wf-prog-staticD:
assumes wf : wf-prog G and

clsC : class G C = Some c and
neq-C-Obj: C 6= Object and

old: methd G (super c) sig = Some old and
accmodi-old: Protected ≤ accmodi old and

new: table-of (methods c) sig = Some new
shows is-static new = is-static old
〈proof 〉

lemma inheritable-instance-methd:
assumes subclseq-C-D: G`C �C D and

is-cls-D: is-class G D and
wf : wf-prog G and

old: methd G D sig = Some old and
accmodi-old: Protected ≤ accmodi old and

not-static-old: ¬ is-static old
shows
∃new. methd G C sig = Some new ∧

(new = old ∨ G,sig`new overridesS old)
(is (∃new. (?Constraint C new old)))
〈proof 〉

lemma inheritable-instance-methd-cases:
assumes subclseq-C-D: G`C �C D and

is-cls-D: is-class G D and
wf : wf-prog G and

old: methd G D sig = Some old and
accmodi-old: Protected ≤ accmodi old and

not-static-old: ¬ is-static old
obtains (Inheritance) methd G C sig = Some old
| (Overriding) new where methd G C sig = Some new and G,sig`new overridesS old

〈proof 〉

lemma inheritable-instance-methd-props:
assumes subclseq-C-D: G`C �C D and

is-cls-D: is-class G D and
wf : wf-prog G and

old: methd G D sig = Some old and
accmodi-old: Protected ≤ accmodi old and

not-static-old: ¬ is-static old
shows
∃new. methd G C sig = Some new ∧

¬ is-static new ∧ G`resTy new�resTy old ∧ accmodi old ≤accmodi new
(is (∃new. (?Constraint C new old)))
〈proof 〉

lemma bexI ′: x ∈ A =⇒ P x =⇒ ∃ x∈A. P x 〈proof 〉
lemma ballE ′: ∀ x∈A. P x =⇒ (x /∈ A =⇒ Q) =⇒ (P x =⇒ Q) =⇒ Q 〈proof 〉

lemma subint-widen-imethds:
assumes irel: G`I�I J
and wf : wf-prog G
and is-iface: is-iface G J
and jm: jm ∈ imethds G J sig
shows ∃ im ∈ imethds G I sig. is-static im = is-static jm ∧

accmodi im = accmodi jm ∧

124

G`resTy im�resTy jm
〈proof 〉

lemma implmt1-methd:∧
sig. [[G`C;1I ; wf-prog G; im ∈ imethds G I sig]] =⇒
∃ cm ∈methd G C sig: ¬ is-static cm ∧ ¬ is-static im ∧

G`resTy cm�resTy im ∧
accmodi im = Public ∧ accmodi cm = Public

〈proof 〉

lemma implmt-methd [rule-format (no-asm)]:
[[wf-prog G; G`C;I]] =⇒ is-iface G I −→
(∀ im ∈imethds G I sig.
∃ cm∈methd G C sig: ¬is-static cm ∧ ¬ is-static im ∧

G`resTy cm�resTy im ∧
accmodi im = Public ∧ accmodi cm = Public)

〈proof 〉

lemma mheadsD [rule-format (no-asm)]:
emh ∈ mheads G S t sig −→ wf-prog G −→
(∃C D m. t = ClassT C ∧ declrefT emh = ClassT D ∧

accmethd G S C sig = Some m ∧
(declclass m = D) ∧ mhead (mthd m) = (mhd emh)) ∨

(∃ I . t = IfaceT I ∧ ((∃ im. im ∈ accimethds G (pid S) I sig ∧
mthd im = mhd emh) ∨

(∃m. G`Iface I accessible-in (pid S) ∧ accmethd G S Object sig = Some m ∧
accmodi m 6= Private ∧
declrefT emh = ClassT Object ∧ mhead (mthd m) = mhd emh))) ∨

(∃T m. t = ArrayT T ∧ G`Array T accessible-in (pid S) ∧
accmethd G S Object sig = Some m ∧ accmodi m 6= Private ∧
declrefT emh = ClassT Object ∧ mhead (mthd m) = mhd emh)

〈proof 〉

lemma mheads-cases:
assumes emh ∈ mheads G S t sig and wf-prog G
obtains (Class-methd) C D m where

t = ClassT C declrefT emh = ClassT D accmethd G S C sig = Some m
declclass m = D mhead (mthd m) = mhd emh
| (Iface-methd) I im where t = IfaceT I

im ∈ accimethds G (pid S) I sig mthd im = mhd emh
| (Iface-Object-methd) I m where

t = IfaceT I G`Iface I accessible-in (pid S)
accmethd G S Object sig = Some m accmodi m 6= Private
declrefT emh = ClassT Object mhead (mthd m) = mhd emh

| (Array-Object-methd) T m where
t = ArrayT T G`Array T accessible-in (pid S)
accmethd G S Object sig = Some m accmodi m 6= Private
declrefT emh = ClassT Object mhead (mthd m) = mhd emh

〈proof 〉

lemma declclassD[rule-format]:
[[wf-prog G;class G C = Some c; methd G C sig = Some m;

Theory WellForm 125

class G (declclass m) = Some d]]
=⇒ table-of (methods d) sig = Some (mthd m)
〈proof 〉

lemma dynmethd-Object:
assumes statM : methd G Object sig = Some statM and

private: accmodi statM = Private and
is-cls-C : is-class G C and

wf : wf-prog G
shows dynmethd G Object C sig = Some statM
〈proof 〉

lemma wf-imethds-hiding-objmethdsD:
assumes old: methd G Object sig = Some old and

is-if-I : is-iface G I and
wf : wf-prog G and

not-private: accmodi old 6= Private and
new: new ∈ imethds G I sig

shows G`resTy new�resTy old ∧ is-static new = is-static old (is ?P new)
〈proof 〉

Which dynamic classes are valid to look up a member of a distinct static type? We have to distinct
class members (named static members in Java) from instance members. Class members are global
to all Objects of a class, instance members are local to a single Object instance. If a member is
equipped with the static modifier it is a class member, else it is an instance member. The following
table gives an overview of the current framework. We assume to have a reference with static type
statT and a dynamic class dynC. Between both of these types the widening relation holds G`Class
dynC�statT. Unfortunately this ordinary widening relation isn’t enough to describe the valid lookup
classes, since we must cope the special cases of arrays and interfaces,too. If we statically expect an
array or inteface we may lookup a field or a method in Object which isn’t covered in the widening
relation.
statT field instance method static (class) method ————————————————————————
NullT / / / Iface / dynC Object Class dynC dynC dynC Array / Object Object
In most cases we con lookup the member in the dynamic class. But as an interface can’t declare
new static methods, nor an array can define new methods at all, we have to lookup methods in the
base class Object.
The limitation to classes in the field column is artificial and comes out of the typing rule for the
field access (see rule FVar in the welltyping relation wt in theory WellType). I stems out of the fact,
that Object indeed has no non private fields. So interfaces and arrays can actually have no fields at
all and a field access would be senseless. (In Java interfaces are allowed to declare new fields but in
current Bali not!). So there is no principal reason why we should not allow Objects to declare non
private fields. Then we would get the following column:
statT field —————– NullT / Iface Object Class dynC Array Object

primrec valid-lookup-cls:: prog ⇒ ref-ty ⇒ qtname ⇒ bool ⇒ bool
(‹-,- ` - valid ′-lookup ′-cls ′-for -› [61 ,61 ,61 ,61] 60)

where
G,NullT ` dynC valid-lookup-cls-for static-membr = False
| G,IfaceT I ` dynC valid-lookup-cls-for static-membr

= (if static-membr
then dynC=Object
else G`Class dynC� Iface I)

| G,ClassT C ` dynC valid-lookup-cls-for static-membr = G`Class dynC� Class C
| G,ArrayT T ` dynC valid-lookup-cls-for static-membr = (dynC=Object)

lemma valid-lookup-cls-is-class:

126

assumes dynC : G,statT ` dynC valid-lookup-cls-for static-membr and
ty-statT : isrtype G statT and

wf : wf-prog G
shows is-class G dynC
〈proof 〉

declare split-paired-All [simp del] split-paired-Ex [simp del]
〈ML〉

lemma dynamic-mheadsD:
[[emh ∈ mheads G S statT sig;

G,statT ` dynC valid-lookup-cls-for (is-static emh);
isrtype G statT ; wf-prog G
]] =⇒ ∃m ∈ dynlookup G statT dynC sig:

is-static m=is-static emh ∧ G`resTy m�resTy emh
〈proof 〉
declare split-paired-All [simp] split-paired-Ex [simp]
〈ML〉

lemma methd-declclass:
[[class G C = Some c; wf-prog G; methd G C sig = Some m]]
=⇒ methd G (declclass m) sig = Some m
〈proof 〉

lemma dynmethd-declclass:
[[dynmethd G statC dynC sig = Some m;

wf-prog G; is-class G statC
]] =⇒ methd G (declclass m) sig = Some m
〈proof 〉

lemma dynlookup-declC :
[[dynlookup G statT dynC sig = Some m; wf-prog G;

is-class G dynC ;isrtype G statT
]] =⇒ G`dynC �C (declclass m) ∧ is-class G (declclass m)
〈proof 〉

lemma dynlookup-Array-declclassD [simp]:
[[dynlookup G (ArrayT T) Object sig = Some dm;wf-prog G]]
=⇒ declclass dm = Object
〈proof 〉

declare split-paired-All [simp del] split-paired-Ex [simp del]
〈ML〉

lemma wt-is-type: E ,dt|=v::T =⇒ wf-prog (prg E) −→
dt=empty-dt −→ (case T of

Inl T ⇒ is-type (prg E) T
| Inr Ts ⇒ Ball (set Ts) (is-type (prg E)))

〈proof 〉
declare split-paired-All [simp] split-paired-Ex [simp]
〈ML〉

lemma ty-expr-is-type:
[[E`e::−T ; wf-prog (prg E)]] =⇒ is-type (prg E) T

Theory WellForm 127

〈proof 〉
lemma ty-var-is-type:
[[E`v::=T ; wf-prog (prg E)]] =⇒ is-type (prg E) T
〈proof 〉
lemma ty-exprs-is-type:
[[E`es:: .=Ts; wf-prog (prg E)]] =⇒ Ball (set Ts) (is-type (prg E))
〈proof 〉

lemma static-mheadsD:
[[emh ∈ mheads G S t sig; wf-prog G; E`e::−RefT t; prg E=G ;

invmode (mhd emh) e 6= IntVir
]] =⇒ ∃m. ((∃ C . t = ClassT C ∧ accmethd G S C sig = Some m)

∨ (∀ C . t 6= ClassT C ∧ accmethd G S Object sig = Some m)) ∧
declrefT emh = ClassT (declclass m) ∧ mhead (mthd m) = (mhd emh)

〈proof 〉

lemma wt-MethdI :
[[methd G C sig = Some m; wf-prog G;

class G C = Some c]] =⇒
∃T . (|prg=G,cls=(declclass m),

lcl=callee-lcl (declclass m) sig (mthd m)|)` Methd C sig::−T ∧ G`T�resTy m
〈proof 〉

2 accessibility concerns
lemma mheads-type-accessible:
[[emh ∈ mheads G S T sig; wf-prog G]]
=⇒ G`RefT T accessible-in (pid S)
〈proof 〉

lemma static-to-dynamic-accessible-from-aux:
[[G`m of C accessible-from accC ;wf-prog G]]
=⇒ G`m in C dyn-accessible-from accC
〈proof 〉

lemma static-to-dynamic-accessible-from:
assumes stat-acc: G`m of statC accessible-from accC and

subclseq: G`dynC �C statC and
wf : wf-prog G

shows G`m in dynC dyn-accessible-from accC
〈proof 〉

lemma static-to-dynamic-accessible-from-static:
assumes stat-acc: G`m of statC accessible-from accC and

static: is-static m and
wf : wf-prog G

shows G`m in (declclass m) dyn-accessible-from accC
〈proof 〉

lemma dynmethd-member-in:
assumes m: dynmethd G statC dynC sig = Some m and
iscls-statC : is-class G statC and

wf : wf-prog G
shows G`Methd sig m member-in dynC
〈proof 〉

lemma dynmethd-access-prop:
assumes statM : methd G statC sig = Some statM and

128

stat-acc: G`Methd sig statM of statC accessible-from accC and
dynM : dynmethd G statC dynC sig = Some dynM and

wf : wf-prog G
shows G`Methd sig dynM in dynC dyn-accessible-from accC
〈proof 〉

lemma implmt-methd-access:
fixes accC ::qtname
assumes iface-methd: imethds G I sig 6= {} and

implements: G`dynC;I and
isif-I : is-iface G I and

wf : wf-prog G
shows ∃ dynM . methd G dynC sig = Some dynM ∧

G`Methd sig dynM in dynC dyn-accessible-from accC
〈proof 〉

corollary implmt-dynimethd-access:
fixes accC ::qtname
assumes iface-methd: imethds G I sig 6= {} and

implements: G`dynC;I and
isif-I : is-iface G I and

wf : wf-prog G
shows ∃ dynM . dynimethd G I dynC sig = Some dynM ∧

G`Methd sig dynM in dynC dyn-accessible-from accC
〈proof 〉

lemma dynlookup-access-prop:
assumes emh: emh ∈ mheads G accC statT sig and

dynM : dynlookup G statT dynC sig = Some dynM and
dynC-prop: G,statT ` dynC valid-lookup-cls-for is-static emh and
isT-statT : isrtype G statT and

wf : wf-prog G
shows G `Methd sig dynM in dynC dyn-accessible-from accC
〈proof 〉

lemma dynlookup-access:
assumes emh: emh ∈ mheads G accC statT sig and

dynC-prop: G,statT ` dynC valid-lookup-cls-for (is-static emh) and
isT-statT : isrtype G statT and

wf : wf-prog G
shows ∃ dynM . dynlookup G statT dynC sig = Some dynM ∧

G`Methd sig dynM in dynC dyn-accessible-from accC
〈proof 〉

lemma stat-overrides-Package-old:
assumes stat-override: G ` new overridesS old and

accmodi-new: accmodi new = Package and
wf : wf-prog G

shows accmodi old = Package
〈proof 〉

Properties of dynamic accessibility

lemma dyn-accessible-Private:
assumes dyn-acc: G ` m in C dyn-accessible-from accC and

priv: accmodi m = Private
shows accC = declclass m

〈proof 〉

Theory WellForm 129

dyn-accessible-Package only works with the wf-prog assumption. Without it. it is easy to leaf the
Package!
lemma dyn-accessible-Package:
[[G ` m in C dyn-accessible-from accC ; accmodi m = Package;

wf-prog G]]
=⇒ pid accC = pid (declclass m)
〈proof 〉

For fields we don’t need the wellformedness of the program, since there is no overriding
lemma dyn-accessible-field-Package:
assumes dyn-acc: G ` f in C dyn-accessible-from accC and

pack: accmodi f = Package and
field: is-field f

shows pid accC = pid (declclass f)
〈proof 〉

dyn-accessible-instance-field-Protected only works for fields since methods can break the package
bounds due to overriding
lemma dyn-accessible-instance-field-Protected:

assumes dyn-acc: G ` f in C dyn-accessible-from accC and
prot: accmodi f = Protected and

field: is-field f and
instance-field: ¬ is-static f and

outside: pid (declclass f) 6= pid accC
shows G` C �C accC
〈proof 〉

lemma dyn-accessible-static-field-Protected:
assumes dyn-acc: G ` f in C dyn-accessible-from accC and

prot: accmodi f = Protected and
field: is-field f and

static-field: is-static f and
outside: pid (declclass f) 6= pid accC

shows G` accC �C declclass f ∧ G`C �C declclass f
〈proof 〉

end

130

Chapter 14

State

1 State for evaluation of Java expressions and statements
theory State
imports DeclConcepts
begin

design issues:

• all kinds of objects (class instances, arrays, and class objects) are handeled via a general object
abstraction

• the heap and the map for class objects are combined into a single table (recall (loc, obj) table
× (qtname, obj) table ∼= (loc + qtname, obj) table)

objects
datatype obj-tag = — tag for generic object

CInst qtname — class instance
| Arr ty int — array with component type and length

— | CStat qtname the tag is irrelevant for a class object, i.e. the static fields of a class, since its type is
given already by the reference to it (see below)

type-synonym vn = fspec + int — variable name
record obj =

tag :: obj-tag — generalized object
values :: (vn, val) table

translations
(type) fspec <= (type) vname × qtname
(type) vn <= (type) fspec + int
(type) obj <= (type) (|tag::obj-tag, values::vn ⇒ val option|)
(type) obj <= (type) (|tag::obj-tag, values::vn ⇒ val option,. . .:: ′a|)

definition
the-Arr :: obj option ⇒ ty × int × (vn, val) table
where the-Arr obj = (SOME (T ,k,t). obj = Some (|tag=Arr T k,values=t|))

lemma the-Arr-Arr [simp]: the-Arr (Some (|tag=Arr T k,values=cs|)) = (T ,k,cs)
〈proof 〉

lemma the-Arr-Arr1 [simp,intro,dest]:
[[tag obj = Arr T k]] =⇒ the-Arr (Some obj) = (T ,k,values obj)
〈proof 〉

131

132

definition
upd-obj :: vn ⇒ val ⇒ obj ⇒ obj
where upd-obj n v = (λobj. obj (|values:=(values obj)(n 7→v)|))

lemma upd-obj-def2 [simp]:
upd-obj n v obj = obj (|values:=(values obj)(n 7→v)|)
〈proof 〉

definition
obj-ty :: obj ⇒ ty where
obj-ty obj = (case tag obj of

CInst C ⇒ Class C
| Arr T k ⇒ T .[])

lemma obj-ty-eq [intro!]: obj-ty (|tag=oi,values=x|) = obj-ty (|tag=oi,values=y|)
〈proof 〉

lemma obj-ty-eq1 [intro!,dest]:
tag obj = tag obj ′ =⇒ obj-ty obj = obj-ty obj ′
〈proof 〉

lemma obj-ty-cong [simp]:
obj-ty (obj (|values:=vs|)) = obj-ty obj
〈proof 〉

lemma obj-ty-CInst [simp]:
obj-ty (|tag=CInst C ,values=vs|) = Class C
〈proof 〉

lemma obj-ty-CInst1 [simp,intro!,dest]:
[[tag obj = CInst C]] =⇒ obj-ty obj = Class C
〈proof 〉

lemma obj-ty-Arr [simp]:
obj-ty (|tag=Arr T i,values=vs|) = T .[]
〈proof 〉

lemma obj-ty-Arr1 [simp,intro!,dest]:
[[tag obj = Arr T i]] =⇒ obj-ty obj = T .[]
〈proof 〉

lemma obj-ty-widenD:
G`obj-ty obj�RefT t =⇒ (∃C . tag obj = CInst C) ∨ (∃T k. tag obj = Arr T k)
〈proof 〉

definition
obj-class :: obj ⇒ qtname where
obj-class obj = (case tag obj of

CInst C ⇒ C
| Arr T k ⇒ Object)

lemma obj-class-CInst [simp]: obj-class (|tag=CInst C ,values=vs|) = C
〈proof 〉

lemma obj-class-CInst1 [simp,intro!,dest]:
tag obj = CInst C =⇒ obj-class obj = C

Theory State 133

〈proof 〉

lemma obj-class-Arr [simp]: obj-class (|tag=Arr T k,values=vs|) = Object
〈proof 〉

lemma obj-class-Arr1 [simp,intro!,dest]:
tag obj = Arr T k =⇒ obj-class obj = Object
〈proof 〉

lemma obj-ty-obj-class: G`obj-ty obj� Class statC = G`obj-class obj �C statC
〈proof 〉

object references

type-synonym oref = loc + qtname — generalized object reference

translations
(type) oref <= (type) loc + qtname

abbreviation (input)
Heap :: loc ⇒ oref where Heap ≡ Inl

abbreviation (input)
Stat :: qtname ⇒ oref where Stat ≡ Inr

definition
fields-table :: prog ⇒ qtname ⇒ (fspec ⇒ field ⇒ bool) ⇒ (fspec, ty) table where
fields-table G C P =

map-option type ◦ table-of (filter (case-prod P) (DeclConcepts.fields G C))

lemma fields-table-SomeI :
[[table-of (DeclConcepts.fields G C) n = Some f ; P n f]]
=⇒ fields-table G C P n = Some (type f)
〈proof 〉

lemma fields-table-SomeD ′: fields-table G C P fn = Some T =⇒
∃ f . (fn,f)∈set(DeclConcepts.fields G C) ∧ type f = T
〈proof 〉

lemma fields-table-SomeD:
[[fields-table G C P fn = Some T ; unique (DeclConcepts.fields G C)]] =⇒
∃ f . table-of (DeclConcepts.fields G C) fn = Some f ∧ type f = T
〈proof 〉

definition
in-bounds :: int ⇒ int ⇒ bool (‹(-/ in ′-bounds -)› [50 , 51] 50)
where i in-bounds k = (0 ≤ i ∧ i < k)

definition
arr-comps :: ′a ⇒ int ⇒ int ⇒ ′a option
where arr-comps T k = (λi. if i in-bounds k then Some T else None)

definition
var-tys :: prog ⇒ obj-tag ⇒ oref ⇒ (vn, ty) table where
var-tys G oi r =
(case r of

Heap a ⇒ (case oi of
CInst C ⇒ fields-table G C (λn f . ¬static f) (+) Map.empty
| Arr T k ⇒ Map.empty (+) arr-comps T k)

134

| Stat C ⇒ fields-table G C (λfn f . declclassf fn = C ∧ static f)
(+) Map.empty)

lemma var-tys-Some-eq:
var-tys G oi r n = Some T
= (case r of

Inl a ⇒ (case oi of
CInst C ⇒ (∃nt. n = Inl nt ∧ fields-table G C (λn f .

¬static f) nt = Some T)
| Arr t k ⇒ (∃ i. n = Inr i ∧ i in-bounds k ∧ t = T))

| Inr C ⇒ (∃nt. n = Inl nt ∧
fields-table G C (λfn f . declclassf fn = C ∧ static f) nt
= Some T))

〈proof 〉

stores
type-synonym globs — global variables: heap and static variables

= (oref , obj) table
type-synonym heap

= (loc , obj) table

translations
(type) globs <= (type) (oref , obj) table
(type) heap <= (type) (loc , obj) table

datatype st =
st globs locals

2 access
definition

globs :: st ⇒ globs
where globs = case-st (λg l. g)

definition
locals :: st ⇒ locals
where locals = case-st (λg l. l)

definition heap :: st ⇒ heap where
heap s = globs s ◦ Heap

lemma globs-def2 [simp]: globs (st g l) = g
〈proof 〉

lemma locals-def2 [simp]: locals (st g l) = l
〈proof 〉

lemma heap-def2 [simp]: heap s a=globs s (Heap a)
〈proof 〉

abbreviation val-this :: st ⇒ val
where val-this s == the (locals s This)

abbreviation lookup-obj :: st ⇒ val ⇒ obj

Theory State 135

where lookup-obj s a ′ == the (heap s (the-Addr a ′))

3 memory allocation
definition

new-Addr :: heap ⇒ loc option where
new-Addr h = (if (∀ a. h a 6= None) then None else Some (SOME a. h a = None))

lemma new-AddrD: new-Addr h = Some a =⇒ h a = None
〈proof 〉

lemma new-AddrD2 : new-Addr h = Some a =⇒ ∀ b. h b 6= None −→ b 6= a
〈proof 〉

lemma new-Addr-SomeI : h a = None =⇒ ∃ b. new-Addr h = Some b ∧ h b = None
〈proof 〉

4 initialization
abbreviation init-vals :: (′a, ty) table ⇒ (′a, val) table

where init-vals vs == map-option default-val ◦ vs

lemma init-arr-comps-base [simp]: init-vals (arr-comps T 0) = Map.empty
〈proof 〉

lemma init-arr-comps-step [simp]:
0 < j =⇒ init-vals (arr-comps T j) =

(init-vals (arr-comps T (j − 1)))(j − 1 7→default-val T)
〈proof 〉

5 update
definition

gupd :: oref ⇒ obj ⇒ st ⇒ st (‹gupd ′(- 7→- ′)› [10 , 10] 1000)
where gupd r obj = case-st (λg l. st (g(r 7→obj)) l)

definition
lupd :: lname ⇒ val ⇒ st ⇒ st (‹lupd ′(-7→- ′)› [10 , 10] 1000)
where lupd vn v = case-st (λg l. st g (l(vn 7→v)))

definition
upd-gobj :: oref ⇒ vn ⇒ val ⇒ st ⇒ st
where upd-gobj r n v = case-st (λg l. st (chg-map (upd-obj n v) r g) l)

definition
set-locals :: locals ⇒ st ⇒ st
where set-locals l = case-st (λg l ′. st g l)

definition
init-obj :: prog ⇒ obj-tag ⇒ oref ⇒ st ⇒ st
where init-obj G oi r = gupd(r 7→(|tag=oi, values=init-vals (var-tys G oi r)|))

abbreviation
init-class-obj :: prog ⇒ qtname ⇒ st ⇒ st
where init-class-obj G C == init-obj G undefined (Inr C)

lemma gupd-def2 [simp]: gupd(r 7→obj) (st g l) = st (g(r 7→obj)) l
〈proof 〉

136

lemma lupd-def2 [simp]: lupd(vn 7→v) (st g l) = st g (l(vn 7→v))
〈proof 〉

lemma globs-gupd [simp]: globs (gupd(r 7→obj) s) = (globs s)(r 7→obj)
〈proof 〉

lemma globs-lupd [simp]: globs (lupd(vn 7→v) s) = globs s
〈proof 〉

lemma locals-gupd [simp]: locals (gupd(r 7→obj) s) = locals s
〈proof 〉

lemma locals-lupd [simp]: locals (lupd(vn 7→v) s) = (locals s)(vn 7→v)
〈proof 〉

lemma globs-upd-gobj-new [rule-format (no-asm), simp]:
globs s r = None −→ globs (upd-gobj r n v s) = globs s
〈proof 〉

lemma globs-upd-gobj-upd [rule-format (no-asm), simp]:
globs s r=Some obj−→ globs (upd-gobj r n v s) = (globs s)(r 7→upd-obj n v obj)
〈proof 〉

lemma locals-upd-gobj [simp]: locals (upd-gobj r n v s) = locals s
〈proof 〉

lemma globs-init-obj [simp]: globs (init-obj G oi r s) t =
(if t=r then Some (|tag=oi,values=init-vals (var-tys G oi r)|) else globs s t)
〈proof 〉

lemma locals-init-obj [simp]: locals (init-obj G oi r s) = locals s
〈proof 〉

lemma surjective-st [simp]: st (globs s) (locals s) = s
〈proof 〉

lemma surjective-st-init-obj:
st (globs (init-obj G oi r s)) (locals s) = init-obj G oi r s
〈proof 〉

lemma heap-heap-upd [simp]:
heap (st (g(Inl a 7→obj)) l) = (heap (st g l))(a 7→obj)
〈proof 〉
lemma heap-stat-upd [simp]: heap (st (g(Inr C 7→obj)) l) = heap (st g l)
〈proof 〉
lemma heap-local-upd [simp]: heap (st g (l(vn 7→v))) = heap (st g l)
〈proof 〉

lemma heap-gupd-Heap [simp]: heap (gupd(Heap a 7→obj) s) = (heap s)(a 7→obj)
〈proof 〉
lemma heap-gupd-Stat [simp]: heap (gupd(Stat C 7→obj) s) = heap s
〈proof 〉
lemma heap-lupd [simp]: heap (lupd(vn 7→v) s) = heap s
〈proof 〉

lemma heap-upd-gobj-Stat [simp]: heap (upd-gobj (Stat C) n v s) = heap s
〈proof 〉

Theory State 137

lemma set-locals-def2 [simp]: set-locals l (st g l ′) = st g l
〈proof 〉

lemma set-locals-id [simp]: set-locals (locals s) s = s
〈proof 〉

lemma set-set-locals [simp]: set-locals l (set-locals l ′ s) = set-locals l s
〈proof 〉

lemma locals-set-locals [simp]: locals (set-locals l s) = l
〈proof 〉

lemma globs-set-locals [simp]: globs (set-locals l s) = globs s
〈proof 〉

lemma heap-set-locals [simp]: heap (set-locals l s) = heap s
〈proof 〉

abrupt completion

primrec the-Xcpt :: abrupt ⇒ xcpt
where the-Xcpt (Xcpt x) = x

primrec the-Jump :: abrupt => jump
where the-Jump (Jump j) = j

primrec the-Loc :: xcpt ⇒ loc
where the-Loc (Loc a) = a

primrec the-Std :: xcpt ⇒ xname
where the-Std (Std x) = x

definition
abrupt-if :: bool ⇒ abopt ⇒ abopt ⇒ abopt
where abrupt-if c x ′ x = (if c ∧ (x = None) then x ′ else x)

lemma abrupt-if-True-None [simp]: abrupt-if True x None = x
〈proof 〉

lemma abrupt-if-True-not-None [simp]: x 6= None =⇒ abrupt-if True x y 6= None
〈proof 〉

lemma abrupt-if-False [simp]: abrupt-if False x y = y
〈proof 〉

lemma abrupt-if-Some [simp]: abrupt-if c x (Some y) = Some y
〈proof 〉

lemma abrupt-if-not-None [simp]: y 6= None =⇒ abrupt-if c x y = y
〈proof 〉

lemma split-abrupt-if :
P (abrupt-if c x ′ x) =

((c ∧ x = None −→ P x ′) ∧ (¬ (c ∧ x = None) −→ P x))
〈proof 〉

abbreviation raise-if :: bool ⇒ xname ⇒ abopt ⇒ abopt

138

where raise-if c xn == abrupt-if c (Some (Xcpt (Std xn)))

abbreviation np :: val ⇒ abopt ⇒ abopt
where np v == raise-if (v = Null) NullPointer

abbreviation check-neg :: val ⇒ abopt ⇒ abopt
where check-neg i ′ == raise-if (the-Intg i ′<0) NegArrSize

abbreviation error-if :: bool ⇒ error ⇒ abopt ⇒ abopt
where error-if c e == abrupt-if c (Some (Error e))

lemma raise-if-None [simp]: (raise-if c x y = None) = (¬c ∧ y = None)
〈proof 〉
declare raise-if-None [THEN iffD1 , dest!]

lemma if-raise-if-None [simp]:
((if b then y else raise-if c x y) = None) = ((c −→ b) ∧ y = None)
〈proof 〉

lemma raise-if-SomeD [dest!]:
raise-if c x y = Some z =⇒ c ∧ z=(Xcpt (Std x)) ∧ y=None ∨ (y=Some z)
〈proof 〉

lemma error-if-None [simp]: (error-if c e y = None) = (¬c ∧ y = None)
〈proof 〉
declare error-if-None [THEN iffD1 , dest!]

lemma if-error-if-None [simp]:
((if b then y else error-if c e y) = None) = ((c −→ b) ∧ y = None)
〈proof 〉

lemma error-if-SomeD [dest!]:
error-if c e y = Some z =⇒ c ∧ z=(Error e) ∧ y=None ∨ (y=Some z)
〈proof 〉

definition
absorb :: jump ⇒ abopt ⇒ abopt
where absorb j a = (if a=Some (Jump j) then None else a)

lemma absorb-SomeD [dest!]: absorb j a = Some x =⇒ a = Some x
〈proof 〉

lemma absorb-same [simp]: absorb j (Some (Jump j)) = None
〈proof 〉

lemma absorb-other [simp]: a 6= Some (Jump j) =⇒ absorb j a = a
〈proof 〉

lemma absorb-Some-NoneD: absorb j (Some abr) = None =⇒ abr = Jump j
〈proof 〉

lemma absorb-Some-JumpD: absorb j s = Some (Jump j ′) =⇒ j ′6=j
〈proof 〉

full program state

type-synonym
state = abopt × st — state including abruption information

Theory State 139

translations
(type) abopt <= (type) abrupt option
(type) state <= (type) abopt × st

abbreviation
Norm :: st ⇒ state
where Norm s == (None, s)

abbreviation (input)
abrupt :: state ⇒ abopt
where abrupt == fst

abbreviation (input)
store :: state ⇒ st
where store == snd

lemma single-stateE : ∀Z . Z = (s::state) =⇒ False
〈proof 〉

lemma state-not-single: All ((=) (x::state)) =⇒ R
〈proof 〉

definition
normal :: state ⇒ bool
where normal = (λs. abrupt s = None)

lemma normal-def2 [simp]: normal s = (abrupt s = None)
〈proof 〉

definition
heap-free :: nat ⇒ state ⇒ bool
where heap-free n = (λs. atleast-free (heap (store s)) n)

lemma heap-free-def2 [simp]: heap-free n s = atleast-free (heap (store s)) n
〈proof 〉

6 update
definition

abupd :: (abopt ⇒ abopt) ⇒ state ⇒ state
where abupd f = map-prod f id

definition
supd :: (st ⇒ st) ⇒ state ⇒ state
where supd = map-prod id

lemma abupd-def2 [simp]: abupd f (x,s) = (f x,s)
〈proof 〉

lemma abupd-abrupt-if-False [simp]:
∧

s. abupd (abrupt-if False xo) s = s
〈proof 〉

lemma supd-def2 [simp]: supd f (x,s) = (x,f s)
〈proof 〉

lemma supd-lupd [simp]:∧
s. supd (lupd vn v) s = (abrupt s,lupd vn v (store s))

〈proof 〉

140

lemma supd-gupd [simp]:∧
s. supd (gupd r obj) s = (abrupt s,gupd r obj (store s))

〈proof 〉

lemma supd-init-obj [simp]:
supd (init-obj G oi r) s = (abrupt s,init-obj G oi r (store s))
〈proof 〉

lemma abupd-store-invariant [simp]: store (abupd f s) = store s
〈proof 〉

lemma supd-abrupt-invariant [simp]: abrupt (supd f s) = abrupt s
〈proof 〉

abbreviation set-lvars :: locals ⇒ state ⇒ state
where set-lvars l == supd (set-locals l)

abbreviation restore-lvars :: state ⇒ state ⇒ state
where restore-lvars s ′ s == set-lvars (locals (store s ′)) s

lemma set-set-lvars [simp]:
∧

s. set-lvars l (set-lvars l ′ s) = set-lvars l s
〈proof 〉

lemma set-lvars-id [simp]:
∧

s. set-lvars (locals (store s)) s = s
〈proof 〉

initialisation test
definition

inited :: qtname ⇒ globs ⇒ bool
where inited C g = (g (Stat C) 6= None)

definition
initd :: qtname ⇒ state ⇒ bool
where initd C = inited C ◦ globs ◦ store

lemma not-inited-empty [simp]: ¬inited C Map.empty
〈proof 〉

lemma inited-gupdate [simp]: inited C (g(r 7→obj)) = (inited C g ∨ r = Stat C)
〈proof 〉

lemma inited-init-class-obj [intro!]: inited C (globs (init-class-obj G C s))
〈proof 〉

lemma not-initedD: ¬ inited C g =⇒ g (Stat C) = None
〈proof 〉

lemma initedD: inited C g =⇒ ∃ obj. g (Stat C) = Some obj
〈proof 〉

lemma initd-def2 [simp]: initd C s = inited C (globs (store s))
〈proof 〉

error-free

definition
error-free :: state ⇒ bool

Theory State 141

where error-free s = (¬ (∃ err . abrupt s = Some (Error err)))

lemma error-free-Norm [simp,intro]: error-free (Norm s)
〈proof 〉

lemma error-free-normal [simp,intro]: normal s =⇒ error-free s
〈proof 〉

lemma error-free-Xcpt [simp]: error-free (Some (Xcpt x),s)
〈proof 〉

lemma error-free-Jump [simp,intro]: error-free (Some (Jump j),s)
〈proof 〉

lemma error-free-Error [simp]: error-free (Some (Error e),s) = False
〈proof 〉

lemma error-free-Some [simp,intro]:
¬ (∃ err . x=Error err) =⇒ error-free ((Some x),s)
〈proof 〉

lemma error-free-abupd-absorb [simp,intro]:
error-free s =⇒ error-free (abupd (absorb j) s)
〈proof 〉

lemma error-free-absorb [simp,intro]:
error-free (a,s) =⇒ error-free (absorb j a, s)
〈proof 〉

lemma error-free-abrupt-if [simp,intro]:
[[error-free s; ¬ (∃ err . x=Error err)]]
=⇒ error-free (abupd (abrupt-if p (Some x)) s)
〈proof 〉

lemma error-free-abrupt-if1 [simp,intro]:
[[error-free (a,s); ¬ (∃ err . x=Error err)]]
=⇒ error-free (abrupt-if p (Some x) a, s)
〈proof 〉

lemma error-free-abrupt-if-Xcpt [simp,intro]:
error-free s
=⇒ error-free (abupd (abrupt-if p (Some (Xcpt x))) s)
〈proof 〉

lemma error-free-abrupt-if-Xcpt1 [simp,intro]:
error-free (a,s)
=⇒ error-free (abrupt-if p (Some (Xcpt x)) a, s)
〈proof 〉

lemma error-free-abrupt-if-Jump [simp,intro]:
error-free s
=⇒ error-free (abupd (abrupt-if p (Some (Jump j))) s)
〈proof 〉

lemma error-free-abrupt-if-Jump1 [simp,intro]:
error-free (a,s)
=⇒ error-free (abrupt-if p (Some (Jump j)) a, s)
〈proof 〉

142

lemma error-free-raise-if [simp,intro]:
error-free s =⇒ error-free (abupd (raise-if p x) s)
〈proof 〉

lemma error-free-raise-if1 [simp,intro]:
error-free (a,s) =⇒ error-free ((raise-if p x a), s)
〈proof 〉

lemma error-free-supd [simp,intro]:
error-free s =⇒ error-free (supd f s)
〈proof 〉

lemma error-free-supd1 [simp,intro]:
error-free (a,s) =⇒ error-free (a,f s)
〈proof 〉

lemma error-free-set-lvars [simp,intro]:
error-free s =⇒ error-free ((set-lvars l) s)
〈proof 〉

lemma error-free-set-locals [simp,intro]:
error-free (x, s)

=⇒ error-free (x, set-locals l s ′)
〈proof 〉

end

Chapter 15

Eval

1 Operational evaluation (big-step) semantics of Java expressions and state-
ments

theory Eval imports State DeclConcepts begin

improvements over Java Specification 1.0:

• dynamic method lookup does not need to consider the return type (cf.15.11.4.4)

• throw raises a NullPointer exception if a null reference is given, and each throw of a standard
exception yield a fresh exception object (was not specified)

• if there is not enough memory even to allocate an OutOfMemory exception, evaluation/exe-
cution fails, i.e. simply stops (was not specified)

• array assignment checks lhs (and may throw exceptions) before evaluating rhs

• fixed exact positions of class initializations (immediate at first active use)

design issues:

• evaluation vs. (single-step) transition semantics evaluation semantics chosen, because:

++ less verbose and therefore easier to read (and to handle in proofs)
+ more abstract
+ intermediate values (appearing in recursive rules) need not be stored explicitly, e.g. no

call body construct or stack of invocation frames containing local variables and return
addresses for method calls needed

+ convenient rule induction for subject reduction theorem
- no interleaving (for parallelism) can be described
- stating a property of infinite executions requires the meta-level argument that this prop-

erty holds for any finite prefixes of it (e.g. stopped using a counter that is decremented
to zero and then throwing an exception)

• unified evaluation for variables, expressions, expression lists, statements

• the value entry in statement rules is redundant

• the value entry in rules is irrelevant in case of exceptions, but its full inclusion helps to make
the rule structure independent of exception occurrence.

• as irrelevant value entries are ignored, it does not matter if they are unique. For simplicity,
(fixed) arbitrary values are preferred over "free" values.

143

144

• the rule format is such that the start state may contain an exception.

++ faciliates exception handling
+ symmetry

• the rules are defined carefully in order to be applicable even in not type-correct situations
(yielding undefined values), e.g. the-Addr (Val (Bool b)) = undefined.

++ fewer rules
- less readable because of auxiliary functions like the-Addr

Alternative: "defensive" evaluation throwing some InternalError exception in case of (impos-
sible, for correct programs) type mismatches

• there is exactly one rule per syntactic construct

+ no redundancy in case distinctions

• halloc fails iff there is no free heap address. When there is only one free heap address left, it
returns an OutOfMemory exception. In this way it is guaranteed that when an OutOfMemory
exception is thrown for the first time, there is a free location on the heap to allocate it.

• the allocation of objects that represent standard exceptions is deferred until execution of any
enclosing catch clause, which is transparent to the program.

- requires an auxiliary execution relation
++ avoids copies of allocation code and awkward case distinctions (whether there is enough

memory to allocate the exception) in evaluation rules

• unfortunately new-Addr is not directly executable because of Hilbert operator.

simplifications:

• local variables are initialized with default values (no definite assignment)

• garbage collection not considered, therefore also no finalizers

• stack overflow and memory overflow during class initialization not modelled

• exceptions in initializations not replaced by ExceptionInInitializerError

type-synonym vvar = val × (val ⇒ state ⇒ state)
type-synonym vals = (val, vvar , val list) sum3
translations
(type) vvar <= (type) val × (val ⇒ state ⇒ state)
(type) vals <= (type) (val, vvar , val list) sum3

To avoid redundancy and to reduce the number of rules, there is only one evaluation rule for each
syntactic term. This is also true for variables (e.g. see the rules below for LVar, FVar and AVar).
So evaluation of a variable must capture both possible further uses: read (rule Acc) or write (rule
Ass) to the variable. Therefor a variable evaluates to a special value vvar, which is a pair, consisting
of the current value (for later read access) and an update function (for later write access). Because
during assignment to an array variable an exception may occur if the types don’t match, the update
function is very generic: it transforms the full state. This generic update function causes some
technical trouble during some proofs (e.g. type safety, correctness of definite assignment). There
we need to prove some additional invariant on this update function to prove the assignment correct,
since the update function could potentially alter the whole state in an arbitrary manner. This

Theory Eval 145

invariant must be carried around through the whole induction. So for future approaches it may be
better not to take such a generic update function, but only to store the address and the kind of
variable (array (+ element type), local variable or field) for later assignment.

abbreviation
dummy-res :: vals (‹♦›)
where ♦ == In1 Unit

abbreviation (input)
val-inj-vals (‹b-ce› 1000)
where bece == In1 e

abbreviation (input)
var-inj-vals (‹b-cv› 1000)
where bvcv == In2 v

abbreviation (input)
lst-inj-vals (‹b-cl› 1000)
where bescl == In3 es

definition undefined3 :: (′al + ′ar , ′b, ′c) sum3 ⇒ vals where
undefined3 = case-sum3 (In1 ◦ case-sum (λx. undefined) (λx. Unit))

(λx. In2 undefined) (λx. In3 undefined)

lemma [simp]: undefined3 (In1l x) = In1 undefined
〈proof 〉

lemma [simp]: undefined3 (In1r x) = ♦
〈proof 〉

lemma [simp]: undefined3 (In2 x) = In2 undefined
〈proof 〉

lemma [simp]: undefined3 (In3 x) = In3 undefined
〈proof 〉

exception throwing and catching

definition
throw :: val ⇒ abopt ⇒ abopt where
throw a ′ x = abrupt-if True (Some (Xcpt (Loc (the-Addr a ′)))) (np a ′ x)

lemma throw-def2 :
throw a ′ x = abrupt-if True (Some (Xcpt (Loc (the-Addr a ′)))) (np a ′ x)
〈proof 〉

definition
fits :: prog ⇒ st ⇒ val ⇒ ty ⇒ bool (‹-,-`- fits -›[61 ,61 ,61 ,61]60)
where G,s`a ′ fits T = ((∃ rt. T=RefT rt) −→ a ′=Null ∨ G`obj-ty(lookup-obj s a ′)�T)

lemma fits-Null [simp]: G,s`Null fits T
〈proof 〉

lemma fits-Addr-RefT [simp]:
G,s`Addr a fits RefT t = G`obj-ty (the (heap s a))�RefT t
〈proof 〉

lemma fitsD:
∧

X . G,s`a ′ fits T =⇒ (∃ pt. T = PrimT pt) ∨

146

(∃ t. T = RefT t) ∧ a ′ = Null ∨
(∃ t. T = RefT t) ∧ a ′ 6= Null ∧ G`obj-ty (lookup-obj s a ′)�T
〈proof 〉

definition
catch :: prog ⇒ state ⇒ qtname ⇒ bool (‹-,-`catch -›[61 ,61 ,61]60) where
G,s`catch C = (∃ xc. abrupt s=Some (Xcpt xc) ∧

G,store s`Addr (the-Loc xc) fits Class C)

lemma catch-Norm [simp]: ¬G,Norm s`catch tn
〈proof 〉

lemma catch-XcptLoc [simp]:
G,(Some (Xcpt (Loc a)),s)`catch C = G,s`Addr a fits Class C
〈proof 〉

lemma catch-Jump [simp]: ¬G,(Some (Jump j),s)`catch tn
〈proof 〉

lemma catch-Error [simp]: ¬G,(Some (Error e),s)`catch tn
〈proof 〉

definition
new-xcpt-var :: vname ⇒ state ⇒ state where
new-xcpt-var vn = (λ(x,s). Norm (lupd(VName vn 7→Addr (the-Loc (the-Xcpt (the x)))) s))

lemma new-xcpt-var-def2 [simp]:
new-xcpt-var vn (x,s) =

Norm (lupd(VName vn 7→Addr (the-Loc (the-Xcpt (the x)))) s)
〈proof 〉

misc

definition
assign :: (′a ⇒ state ⇒ state) ⇒ ′a ⇒ state ⇒ state where

assign f v = (λ(x,s). let (x ′,s ′) = (if x = None then f v else id) (x,s)
in (x ′,if x ′ = None then s ′ else s))

lemma assign-Norm-Norm [simp]:
f v (Norm s) = Norm s ′ =⇒ assign f v (Norm s) = Norm s ′

〈proof 〉

lemma assign-Norm-Some [simp]:
[[abrupt (f v (Norm s)) = Some y]]
=⇒ assign f v (Norm s) = (Some y,s)

〈proof 〉

lemma assign-Some [simp]:
assign f v (Some x,s) = (Some x,s)
〈proof 〉

lemma assign-Some1 [simp]: ¬ normal s =⇒ assign f v s = s
〈proof 〉

Theory Eval 147

lemma assign-supd [simp]:
assign (λv. supd (f v)) v (x,s)
= (x, if x = None then f v s else s)
〈proof 〉

lemma assign-raise-if [simp]:
assign (λv (x,s). ((raise-if (b s v) xcpt) x, f v s)) v (x, s) =
(raise-if (b s v) xcpt x, if x=None ∧ ¬b s v then f v s else s)
〈proof 〉

definition
init-comp-ty :: ty ⇒ stmt
where init-comp-ty T = (if (∃C . T = Class C) then Init (the-Class T) else Skip)

lemma init-comp-ty-PrimT [simp]: init-comp-ty (PrimT pt) = Skip
〈proof 〉

definition
invocation-class :: inv-mode ⇒ st ⇒ val ⇒ ref-ty ⇒ qtname where

invocation-class m s a ′ statT =
(case m of

Static ⇒ if (∃ statC . statT = ClassT statC)
then the-Class (RefT statT)
else Object

| SuperM ⇒ the-Class (RefT statT)
| IntVir ⇒ obj-class (lookup-obj s a ′))

definition
invocation-declclass :: prog ⇒ inv-mode ⇒ st ⇒ val ⇒ ref-ty ⇒ sig ⇒ qtname where
invocation-declclass G m s a ′ statT sig =

declclass (the (dynlookup G statT
(invocation-class m s a ′ statT)
sig))

lemma invocation-class-IntVir [simp]:
invocation-class IntVir s a ′ statT = obj-class (lookup-obj s a ′)
〈proof 〉

lemma dynclass-SuperM [simp]:
invocation-class SuperM s a ′ statT = the-Class (RefT statT)
〈proof 〉

lemma invocation-class-Static [simp]:
invocation-class Static s a ′ statT = (if (∃ statC . statT = ClassT statC)

then the-Class (RefT statT)
else Object)

〈proof 〉

definition
init-lvars :: prog ⇒ qtname ⇒ sig ⇒ inv-mode ⇒ val ⇒ val list ⇒ state ⇒ state

where
init-lvars G C sig mode a ′ pvs =
(λ(x,s).

let m = mthd (the (methd G C sig));
l = λ k.

(case k of

148

EName e
⇒ (case e of

VNam v ⇒ (Map.empty ((pars m)[7→]pvs)) v
| Res ⇒ None)

| This
⇒ (if mode=Static then None else Some a ′))

in set-lvars l (if mode = Static then x else np a ′ x,s))

lemma init-lvars-def2 : — better suited for simplification
init-lvars G C sig mode a ′ pvs (x,s) =

set-lvars
(λ k.

(case k of
EName e
⇒ (case e of

VNam v
⇒ (Map.empty ((pars (mthd (the (methd G C sig))))[7→]pvs)) v

| Res ⇒ None)
| This
⇒ (if mode=Static then None else Some a ′)))

(if mode = Static then x else np a ′ x,s)
〈proof 〉

definition
body :: prog ⇒ qtname ⇒ sig ⇒ expr where

body G C sig =
(let m = the (methd G C sig)
in Body (declclass m) (stmt (mbody (mthd m))))

lemma body-def2 : — better suited for simplification
body G C sig = Body (declclass (the (methd G C sig)))

(stmt (mbody (mthd (the (methd G C sig)))))
〈proof 〉

variables

definition
lvar :: lname ⇒ st ⇒ vvar
where lvar vn s = (the (locals s vn), λv. supd (lupd(vn 7→v)))

definition
fvar :: qtname ⇒ bool ⇒ vname ⇒ val ⇒ state ⇒ vvar × state where

fvar C stat fn a ′ s =
(let (oref ,xf) = if stat then (Stat C ,id)

else (Heap (the-Addr a ′),np a ′);
n = Inl (fn,C);
f = (λv. supd (upd-gobj oref n v))

in ((the (values (the (globs (store s) oref)) n),f),abupd xf s))

definition
avar :: prog ⇒ val ⇒ val ⇒ state ⇒ vvar × state where
avar G i ′ a ′ s =
(let oref = Heap (the-Addr a ′);

i = the-Intg i ′;
n = Inr i;

(T ,k,cs) = the-Arr (globs (store s) oref);
f = (λv (x,s). (raise-if (¬G,s`v fits T)

Theory Eval 149

ArrStore x
,upd-gobj oref n v s))

in ((the (cs n),f),abupd (raise-if (¬i in-bounds k) IndOutBound ◦ np a ′) s))

lemma fvar-def2 : — better suited for simplification
fvar C stat fn a ′ s =
((the

(values
(the (globs (store s) (if stat then Stat C else Heap (the-Addr a ′))))
(Inl (fn,C)))

,(λv. supd (upd-gobj (if stat then Stat C else Heap (the-Addr a ′))
(Inl (fn,C))
v)))

,abupd (if stat then id else np a ′) s)

〈proof 〉

lemma avar-def2 : — better suited for simplification
avar G i ′ a ′ s =
((the ((snd(snd(the-Arr (globs (store s) (Heap (the-Addr a ′))))))

(Inr (the-Intg i ′)))
,(λv (x,s ′). (raise-if (¬G,s ′̀ v fits (fst(the-Arr (globs (store s)

(Heap (the-Addr a ′))))))
ArrStore x

,upd-gobj (Heap (the-Addr a ′))
(Inr (the-Intg i ′)) v s ′)))

,abupd (raise-if (¬(the-Intg i ′) in-bounds (fst(snd(the-Arr (globs (store s)
(Heap (the-Addr a ′))))))) IndOutBound ◦ np a ′)

s)
〈proof 〉

definition
check-field-access :: prog ⇒ qtname ⇒ qtname ⇒ vname ⇒ bool ⇒ val ⇒ state ⇒ state where
check-field-access G accC statDeclC fn stat a ′ s =
(let oref = if stat then Stat statDeclC

else Heap (the-Addr a ′);
dynC = case oref of

Heap a ⇒ obj-class (the (globs (store s) oref))
| Stat C ⇒ C ;

f = (the (table-of (DeclConcepts.fields G dynC) (fn,statDeclC)))
in abupd

(error-if (¬ G`Field fn (statDeclC ,f) in dynC dyn-accessible-from accC)
AccessViolation)

s)

definition
check-method-access :: prog ⇒ qtname ⇒ ref-ty ⇒ inv-mode ⇒ sig ⇒ val ⇒ state ⇒ state where
check-method-access G accC statT mode sig a ′ s =
(let invC = invocation-class mode (store s) a ′ statT ;

dynM = the (dynlookup G statT invC sig)
in abupd

(error-if (¬ G`Methd sig dynM in invC dyn-accessible-from accC)
AccessViolation)

s)

evaluation judgments

inductive
halloc :: [prog,state,obj-tag,loc,state]⇒bool (‹-`- −halloc -�-→ -›[61 ,61 ,61 ,61 ,61]60) for G::prog

150

where — allocating objects on the heap, cf. 12.5

Abrupt:
G`(Some x,s) −halloc oi�undefined→ (Some x,s)

| New: [[new-Addr (heap s) = Some a;
(x,oi ′) = (if atleast-free (heap s) (Suc (Suc 0)) then (None,oi)

else (Some (Xcpt (Loc a)),CInst (SXcpt OutOfMemory)))]]
=⇒
G`Norm s −halloc oi�a→ (x,init-obj G oi ′ (Heap a) s)

inductive sxalloc :: [prog,state,state]⇒bool (‹-`- −sxalloc→ -›[61 ,61 ,61]60) for G::prog
where — allocating exception objects for standard exceptions (other than OutOfMemory)

Norm: G` Norm s −sxalloc→ Norm s

| Jmp: G`(Some (Jump j), s) −sxalloc→ (Some (Jump j), s)

| Error : G`(Some (Error e), s) −sxalloc→ (Some (Error e), s)

| XcptL: G`(Some (Xcpt (Loc a)),s) −sxalloc→ (Some (Xcpt (Loc a)),s)

| SXcpt: [[G`Norm s0 −halloc (CInst (SXcpt xn))�a→ (x,s1)]] =⇒
G`(Some (Xcpt (Std xn)),s0) −sxalloc→ (Some (Xcpt (Loc a)),s1)

inductive
eval :: [prog,state,term,vals,state]⇒bool (‹-`- −-�→ ′(-, - ′)› [61 ,61 ,80 ,0 ,0]60)
and exec ::[prog,state,stmt ,state]⇒bool(‹-`- −-→ -› [61 ,61 ,65 , 61]60)
and evar ::[prog,state,var ,vvar ,state]⇒bool(‹-`- −-=�-→ -›[61 ,61 ,90 ,61 ,61]60)
and eval ′::[prog,state,expr ,val ,state]⇒bool(‹-`- −-−�-→ -›[61 ,61 ,80 ,61 ,61]60)
and evals::[prog,state,expr list ,

val list ,state]⇒bool(‹-`- −- .=�-→ -›[61 ,61 ,61 ,61 ,61]60)
for G::prog

where

G`s −c → s ′ ≡ G`s −In1r c�→ (♦, s ′)
| G`s −e−�v → s ′ ≡ G`s −In1l e�→ (In1 v, s ′)
| G`s −e=�vf→ s ′ ≡ G`s −In2 e�→ (In2 vf , s ′)
| G`s −e .

=�v → s ′ ≡ G`s −In3 e�→ (In3 v, s ′)

— propagation of abrupt completion

— cf. 14.1, 15.5
| Abrupt:

G`(Some xc,s) −t�→ (undefined3 t, (Some xc, s))

— execution of statements

— cf. 14.5
| Skip: G`Norm s −Skip→ Norm s

— cf. 14.7
| Expr : [[G`Norm s0 −e−�v→ s1]] =⇒

G`Norm s0 −Expr e→ s1

| Lab: [[G`Norm s0 −c → s1]] =⇒
G`Norm s0 −l· c→ abupd (absorb l) s1

Theory Eval 151

— cf. 14.2
| Comp: [[G`Norm s0 −c1 → s1 ;

G` s1 −c2 → s2]] =⇒
G`Norm s0 −c1 ;; c2→ s2

— cf. 14.8.2
| If : [[G`Norm s0 −e−�b→ s1 ;

G` s1−(if the-Bool b then c1 else c2)→ s2]] =⇒
G`Norm s0 −If (e) c1 Else c2 → s2

— cf. 14.10, 14.10.1

— A continue jump from the while body c is handled by this rule. If a continue jump with the proper
label was invoked inside c this label (Cont l) is deleted out of the abrupt component of the state before the
iterative evaluation of the while statement. A break jump is handled by the Lab Statement Lab l (while. . .).
| Loop: [[G`Norm s0 −e−�b→ s1 ;

if the-Bool b
then (G`s1 −c→ s2 ∧

G`(abupd (absorb (Cont l)) s2) −l· While(e) c→ s3)
else s3 = s1]] =⇒

G`Norm s0 −l· While(e) c→ s3

| Jmp: G`Norm s −Jmp j→ (Some (Jump j), s)

— cf. 14.16
| Throw: [[G`Norm s0 −e−�a ′→ s1]] =⇒

G`Norm s0 −Throw e→ abupd (throw a ′) s1

— cf. 14.18.1
| Try: [[G`Norm s0 −c1→ s1 ; G`s1 −sxalloc→ s2 ;

if G,s2`catch C then G`new-xcpt-var vn s2 −c2→ s3 else s3 = s2]] =⇒
G`Norm s0 −Try c1 Catch(C vn) c2→ s3

— cf. 14.18.2
| Fin: [[G`Norm s0 −c1→ (x1 ,s1);

G`Norm s1 −c2→ s2 ;
s3=(if (∃ err . x1=Some (Error err))

then (x1 ,s1)
else abupd (abrupt-if (x1 6=None) x1) s2)]]

=⇒
G`Norm s0 −c1 Finally c2→ s3

— cf. 12.4.2, 8.5
| Init: [[the (class G C) = c;

if inited C (globs s0) then s3 = Norm s0
else (G`Norm (init-class-obj G C s0)

−(if C = Object then Skip else Init (super c))→ s1 ∧
G`set-lvars Map.empty s1 −init c→ s2 ∧ s3 = restore-lvars s1 s2)]]
=⇒

G`Norm s0 −Init C→ s3
— This class initialisation rule is a little bit inaccurate. Look at the exact sequence: (1) The current

class object (the static fields) are initialised (init-class-obj), (2) the superclasses are initialised, (3) the static
initialiser of the current class is invoked. More precisely we should expect another ordering, namely 2 1 3.
But we can’t just naively toggle 1 and 2. By calling init-class-obj before initialising the superclasses, we
also implicitly record that we have started to initialise the current class (by setting an value for the class
object). This becomes crucial for the completeness proof of the axiomatic semantics AxCompl.thy. Static
initialisation requires an induction on the number of classes not yet initialised (or to be more precise, classes
were the initialisation has not yet begun). So we could first assign a dummy value to the class before superclass
initialisation and afterwards set the correct values. But as long as we don’t take memory overflow into account
when allocating class objects, we can leave things as they are for convenience.

152

— evaluation of expressions

— cf. 15.8.1, 12.4.1
| NewC : [[G`Norm s0 −Init C→ s1 ;

G` s1 −halloc (CInst C)�a→ s2]] =⇒
G`Norm s0 −NewC C−�Addr a→ s2

— cf. 15.9.1, 12.4.1
| NewA: [[G`Norm s0 −init-comp-ty T→ s1 ; G`s1 −e−�i ′→ s2 ;

G`abupd (check-neg i ′) s2 −halloc (Arr T (the-Intg i ′))�a→ s3]] =⇒
G`Norm s0 −New T [e]−�Addr a→ s3

— cf. 15.15
| Cast: [[G`Norm s0 −e−�v→ s1 ;

s2 = abupd (raise-if (¬G,store s1`v fits T) ClassCast) s1]] =⇒
G`Norm s0 −Cast T e−�v→ s2

— cf. 15.19.2
| Inst: [[G`Norm s0 −e−�v→ s1 ;

b = (v 6=Null ∧ G,store s1`v fits RefT T)]] =⇒
G`Norm s0 −e InstOf T−�Bool b→ s1

— cf. 15.7.1
| Lit: G`Norm s −Lit v−�v→ Norm s

| UnOp: [[G`Norm s0 −e−�v→ s1]]
=⇒ G`Norm s0 −UnOp unop e−�(eval-unop unop v)→ s1

| BinOp: [[G`Norm s0 −e1−�v1→ s1 ;
G`s1 −(if need-second-arg binop v1 then (In1l e2) else (In1r Skip))

�→ (In1 v2 , s2)
]]
=⇒ G`Norm s0 −BinOp binop e1 e2−�(eval-binop binop v1 v2)→ s2

— cf. 15.10.2
| Super : G`Norm s −Super−�val-this s→ Norm s

— cf. 15.2
| Acc: [[G`Norm s0 −va=�(v,f)→ s1]] =⇒

G`Norm s0 −Acc va−�v→ s1

— cf. 15.25.1
| Ass: [[G`Norm s0 −va=�(w,f)→ s1 ;

G` s1 −e−�v → s2]] =⇒
G`Norm s0 −va:=e−�v→ assign f v s2

— cf. 15.24
| Cond: [[G`Norm s0 −e0−�b→ s1 ;

G` s1 −(if the-Bool b then e1 else e2)−�v→ s2]] =⇒
G`Norm s0 −e0 ? e1 : e2−�v→ s2

— The interplay of Call, Methd and Body: Method invocation is split up into these three rules:

Call Calculates the target address and evaluates the arguments of the method, and then performs dynamic
or static lookup of the method, corresponding to the call mode. Then the Methd rule is evaluated on
the calculated declaration class of the method invocation.

Methd A syntactic bridge for the folded method body. It is used by the axiomatic semantics to add the proper
hypothesis for recursive calls of the method.

Theory Eval 153

Body An extra syntactic entity for the unfolded method body was introduced to properly trigger class ini-
tialisation. Without class initialisation we could just evaluate the body statement.

— cf. 15.11.4.1, 15.11.4.2, 15.11.4.4, 15.11.4.5
| Call:
[[G`Norm s0 −e−�a ′→ s1 ; G`s1 −args .

=�vs→ s2 ;
D = invocation-declclass G mode (store s2) a ′ statT (|name=mn,parTs=pTs|);
s3=init-lvars G D (|name=mn,parTs=pTs|) mode a ′ vs s2 ;
s3 ′ = check-method-access G accC statT mode (|name=mn,parTs=pTs|) a ′ s3 ;
G`s3 ′ −Methd D (|name=mn,parTs=pTs|)−�v→ s4]]
=⇒

G`Norm s0 −{accC ,statT ,mode}e·mn({pTs}args)−�v→ (restore-lvars s2 s4)
— The accessibility check is after init-lvars, to keep it simple. init-lvars already tests for the absence of a
null-pointer reference in case of an instance method invocation.

| Methd: [[G`Norm s0 −body G D sig−�v→ s1]] =⇒
G`Norm s0 −Methd D sig−�v→ s1

| Body: [[G`Norm s0 −Init D→ s1 ; G`s1 −c→ s2 ;
s3 = (if (∃ l. abrupt s2 = Some (Jump (Break l)) ∨

abrupt s2 = Some (Jump (Cont l)))
then abupd (λ x. Some (Error CrossMethodJump)) s2
else s2)]] =⇒

G`Norm s0 −Body D c−�the (locals (store s2) Result)
→abupd (absorb Ret) s3

— cf. 14.15, 12.4.1
— We filter out a break/continue in s2, so that we can proof definite assignment correct, without the need

of conformance of the state. By this the different parts of the typesafety proof can be disentangled a little.

— evaluation of variables

— cf. 15.13.1, 15.7.2
| LVar : G`Norm s −LVar vn=�lvar vn s→ Norm s

— cf. 15.10.1, 12.4.1
| FVar : [[G`Norm s0 −Init statDeclC→ s1 ; G`s1 −e−�a→ s2 ;

(v,s2 ′) = fvar statDeclC stat fn a s2 ;
s3 = check-field-access G accC statDeclC fn stat a s2 ′]] =⇒
G`Norm s0 −{accC ,statDeclC ,stat}e..fn=�v→ s3

— The accessibility check is after fvar, to keep it simple. fvar already tests for the absence of a null-pointer
reference in case of an instance field

— cf. 15.12.1, 15.25.1
| AVar : [[G` Norm s0 −e1−�a→ s1 ; G`s1 −e2−�i→ s2 ;

(v,s2 ′) = avar G i a s2]] =⇒
G`Norm s0 −e1 .[e2]=�v→ s2 ′

— evaluation of expression lists

— cf. 15.11.4.2
| Nil:

G`Norm s0 −[] .=�[]→ Norm s0

— cf. 15.6.4
| Cons: [[G`Norm s0 −e −� v → s1 ;

G` s1 −es .
=�vs→ s2]] =⇒

G`Norm s0 −e#es .
=�v#vs→ s2

154

〈ML〉

declare if-split [split del] if-split-asm [split del]
option.split [split del] option.split-asm [split del]

inductive-cases halloc-elim-cases:
G`(Some xc,s) −halloc oi�a→ s ′

G`(Norm s) −halloc oi�a→ s ′

inductive-cases sxalloc-elim-cases:
G` Norm s −sxalloc→ s ′

G`(Some (Jump j),s) −sxalloc→ s ′

G`(Some (Error e),s) −sxalloc→ s ′

G`(Some (Xcpt (Loc a)),s) −sxalloc→ s ′

G`(Some (Xcpt (Std xn)),s) −sxalloc→ s ′

inductive-cases sxalloc-cases: G`s −sxalloc→ s ′

lemma sxalloc-elim-cases2 : [[G`s −sxalloc→ s ′;∧
s. [[s ′ = Norm s]] =⇒ P;∧
j s. [[s ′ = (Some (Jump j),s)]] =⇒ P;∧
e s. [[s ′ = (Some (Error e),s)]] =⇒ P;∧
a s. [[s ′ = (Some (Xcpt (Loc a)),s)]] =⇒ P

]] =⇒ P
〈proof 〉

declare not-None-eq [simp del]
declare split-paired-All [simp del] split-paired-Ex [simp del]
〈ML〉

inductive-cases eval-cases: G`s −t�→ (v, s ′)

inductive-cases eval-elim-cases [cases set]:
G`(Some xc,s) −t �→ (v, s ′)
G`Norm s −In1r Skip �→ (x, s ′)
G`Norm s −In1r (Jmp j) �→ (x, s ′)
G`Norm s −In1r (l· c) �→ (x, s ′)
G`Norm s −In3 ([]) �→ (v, s ′)
G`Norm s −In3 (e#es) �→ (v, s ′)
G`Norm s −In1l (Lit w) �→ (v, s ′)
G`Norm s −In1l (UnOp unop e) �→ (v, s ′)
G`Norm s −In1l (BinOp binop e1 e2) �→ (v, s ′)
G`Norm s −In2 (LVar vn) �→ (v, s ′)
G`Norm s −In1l (Cast T e) �→ (v, s ′)
G`Norm s −In1l (e InstOf T) �→ (v, s ′)
G`Norm s −In1l (Super) �→ (v, s ′)
G`Norm s −In1l (Acc va) �→ (v, s ′)
G`Norm s −In1r (Expr e) �→ (x, s ′)
G`Norm s −In1r (c1 ;; c2) �→ (x, s ′)
G`Norm s −In1l (Methd C sig) �→ (x, s ′)
G`Norm s −In1l (Body D c) �→ (x, s ′)
G`Norm s −In1l (e0 ? e1 : e2) �→ (v, s ′)
G`Norm s −In1r (If (e) c1 Else c2) �→ (x, s ′)
G`Norm s −In1r (l· While(e) c) �→ (x, s ′)
G`Norm s −In1r (c1 Finally c2) �→ (x, s ′)
G`Norm s −In1r (Throw e) �→ (x, s ′)
G`Norm s −In1l (NewC C) �→ (v, s ′)

Theory Eval 155

G`Norm s −In1l (New T [e]) �→ (v, s ′)
G`Norm s −In1l (Ass va e) �→ (v, s ′)
G`Norm s −In1r (Try c1 Catch(tn vn) c2) �→ (x, s ′)
G`Norm s −In2 ({accC ,statDeclC ,stat}e..fn) �→ (v, s ′)
G`Norm s −In2 (e1 .[e2]) �→ (v, s ′)
G`Norm s −In1l ({accC ,statT ,mode}e·mn({pT}p)) �→ (v, s ′)
G`Norm s −In1r (Init C) �→ (x, s ′)

declare not-None-eq [simp]
declare split-paired-All [simp] split-paired-Ex [simp]
〈ML〉
declare if-split [split] if-split-asm [split]

option.split [split] option.split-asm [split]

lemma eval-Inj-elim:
G`s −t�→ (w,s ′)
=⇒ case t of

In1 ec ⇒ (case ec of
Inl e ⇒ (∃ v. w = In1 v)
| Inr c ⇒ w = ♦)

| In2 e ⇒ (∃ v. w = In2 v)
| In3 e ⇒ (∃ v. w = In3 v)

〈proof 〉

The following simplification procedures set up the proper injections of terms and their corresponding
values in the evaluation relation: E.g. an expression (injection In1l into terms) always evaluates to
ordinary values (injection In1 into generalised values vals).
lemma eval-expr-eq: G`s −In1l t�→ (w, s ′) = (∃ v. w=In1 v ∧ G`s −t−�v → s ′)
〈proof 〉

lemma eval-var-eq: G`s −In2 t�→ (w, s ′) = (∃ vf . w=In2 vf ∧ G`s −t=�vf→ s ′)
〈proof 〉

lemma eval-exprs-eq: G`s −In3 t�→ (w, s ′) = (∃ vs. w=In3 vs ∧ G`s −t .=�vs→ s ′)
〈proof 〉

lemma eval-stmt-eq: G`s −In1r t�→ (w, s ′) = (w=♦ ∧ G`s −t → s ′)
〈proof 〉

〈ML〉

declare halloc.Abrupt [intro!] eval.Abrupt [intro!] AbruptIs [intro!]

Callee,InsInitE, InsInitV, FinA are only used in smallstep semantics, not in the bigstep semantics.
So their is no valid evaluation of these terms
lemma eval-Callee: G`Norm s−Callee l e−�v→ s ′ = False
〈proof 〉

lemma eval-InsInitE : G`Norm s−InsInitE c e−�v→ s ′ = False
〈proof 〉

lemma eval-InsInitV : G`Norm s−InsInitV c w=�v→ s ′ = False
〈proof 〉

lemma eval-FinA: G`Norm s−FinA a c→ s ′ = False
〈proof 〉

lemma eval-no-abrupt-lemma:

156

∧
s s ′. G`s −t�→ (w,s ′) =⇒ normal s ′ −→ normal s

〈proof 〉

lemma eval-no-abrupt:
G`(x,s) −t�→ (w,Norm s ′) =

(x = None ∧ G`Norm s −t�→ (w,Norm s ′))
〈proof 〉

〈ML〉

lemma eval-abrupt-lemma:
G`s −t�→ (v,s ′) =⇒ abrupt s=Some xc −→ s ′= s ∧ v = undefined3 t
〈proof 〉

lemma eval-abrupt:
G`(Some xc,s) −t�→ (w,s ′) =

(s ′=(Some xc,s) ∧ w=undefined3 t ∧
G`(Some xc,s) −t�→ (undefined3 t,(Some xc,s)))

〈proof 〉

〈ML〉

lemma LitI : G`s −Lit v−�(if normal s then v else undefined)→ s
〈proof 〉

lemma SkipI [intro!]: G`s −Skip→ s
〈proof 〉

lemma ExprI : G`s −e−�v→ s ′ =⇒ G`s −Expr e→ s ′

〈proof 〉

lemma CompI : [[G`s −c1→ s1 ; G`s1 −c2→ s2]] =⇒ G`s −c1 ;; c2→ s2
〈proof 〉

lemma CondI :∧
s1 . [[G`s −e−�b→ s1 ; G`s1 −(if the-Bool b then e1 else e2)−�v→ s2]] =⇒

G`s −e ? e1 : e2−�(if normal s1 then v else undefined)→ s2
〈proof 〉

lemma IfI : [[G`s −e−�v→ s1 ; G`s1 −(if the-Bool v then c1 else c2)→ s2]]
=⇒ G`s −If (e) c1 Else c2→ s2

〈proof 〉

lemma MethdI : G`s −body G C sig−�v→ s ′

=⇒ G`s −Methd C sig−�v→ s ′

〈proof 〉

lemma eval-Call:
[[G`Norm s0 −e−�a ′→ s1 ; G`s1 −ps .

=�pvs→ s2 ;
D = invocation-declclass G mode (store s2) a ′ statT (|name=mn,parTs=pTs|);
s3 = init-lvars G D (|name=mn,parTs=pTs|) mode a ′ pvs s2 ;
s3 ′ = check-method-access G accC statT mode (|name=mn,parTs=pTs|) a ′ s3 ;
G`s3 ′−Methd D (|name=mn,parTs=pTs|)−� v→ s4 ;

s4 ′ = restore-lvars s2 s4]] =⇒
G`Norm s0 −{accC ,statT ,mode}e·mn({pTs}ps)−�v→ s4 ′

〈proof 〉

lemma eval-Init:

Theory Eval 157

[[if inited C (globs s0) then s3 = Norm s0
else G`Norm (init-class-obj G C s0)

−(if C = Object then Skip else Init (super (the (class G C))))→ s1 ∧
G`set-lvars Map.empty s1 −(init (the (class G C)))→ s2 ∧

s3 = restore-lvars s1 s2]] =⇒
G`Norm s0 −Init C→ s3
〈proof 〉

lemma init-done: initd C s =⇒ G`s −Init C→ s
〈proof 〉

lemma eval-StatRef :
G`s −StatRef rt−�(if abrupt s=None then Null else undefined)→ s
〈proof 〉

lemma SkipD [dest!]: G`s −Skip→ s ′ =⇒ s ′ = s
〈proof 〉

lemma Skip-eq [simp]: G`s −Skip→ s ′ = (s = s ′)
〈proof 〉

lemma init-retains-locals [rule-format (no-asm)]: G`s −t�→ (w,s ′) =⇒
(∀C . t=In1r (Init C) −→ locals (store s) = locals (store s ′))
〈proof 〉

lemma halloc-xcpt [dest!]:∧
s ′. G`(Some xc,s) −halloc oi�a→ s ′ =⇒ s ′=(Some xc,s)

〈proof 〉

lemma eval-Methd:
G`s −In1l(body G C sig)�→ (w,s ′)
=⇒ G`s −In1l(Methd C sig)�→ (w,s ′)

〈proof 〉

lemma eval-Body: [[G`Norm s0 −Init D→ s1 ; G`s1 −c→ s2 ;
res=the (locals (store s2) Result);
s3 = (if (∃ l. abrupt s2 = Some (Jump (Break l)) ∨

abrupt s2 = Some (Jump (Cont l)))
then abupd (λ x. Some (Error CrossMethodJump)) s2
else s2);
s4=abupd (absorb Ret) s3]] =⇒

G`Norm s0 −Body D c−�res→s4
〈proof 〉

lemma eval-binop-arg2-indep:
¬ need-second-arg binop v1 =⇒ eval-binop binop v1 x = eval-binop binop v1 y
〈proof 〉

lemma eval-BinOp-arg2-indepI :
assumes eval-e1 : G`Norm s0 −e1−�v1→ s1 and

no-need: ¬ need-second-arg binop v1
shows G`Norm s0 −BinOp binop e1 e2−�(eval-binop binop v1 v2)→ s1

(is ?EvalBinOp v2)
〈proof 〉

158

single valued
lemma unique-halloc [rule-format (no-asm)]:

G`s −halloc oi�a → s ′ =⇒ G`s −halloc oi�a ′→ s ′′ −→ a ′ = a ∧ s ′′ = s ′

〈proof 〉

lemma single-valued-halloc:
single-valued {((s,oi),(a,s ′)). G`s −halloc oi�a → s ′}
〈proof 〉

lemma unique-sxalloc [rule-format (no-asm)]:
G`s −sxalloc→ s ′ =⇒ G`s −sxalloc→ s ′′ −→ s ′′ = s ′

〈proof 〉

lemma single-valued-sxalloc: single-valued {(s,s ′). G`s −sxalloc→ s ′}
〈proof 〉

lemma split-pairD: (x,y) = p =⇒ x = fst p & y = snd p
〈proof 〉

lemma unique-eval [rule-format (no-asm)]:
G`s −t�→ (w, s ′) =⇒ (∀w ′ s ′′. G`s −t�→ (w ′, s ′′) −→ w ′ = w ∧ s ′′ = s ′)
〈proof 〉

lemma single-valued-eval:
single-valued {((s, t), (v, s ′)). G`s −t�→ (v, s ′)}
〈proof 〉

end

Chapter 16

Example

1 Example Bali program
theory Example
imports Eval WellForm
begin

The following example Bali program includes:

• class and interface declarations with inheritance, hiding of fields, overriding of methods (with
refined result type), array type,

• method call (with dynamic binding), parameter access, return expressions,

• expression statements, sequential composition, literal values, local assignment, local access,
field assignment, type cast,

• exception generation and propagation, try and catch statement, throw statement

• instance creation and (default) static initialization

package java_lang

public interface HasFoo {
public Base foo(Base z);

}

public class Base implements HasFoo {
static boolean arr[] = new boolean[2];
public HasFoo vee;
public Base foo(Base z) {

return z;
}

}

public class Ext extends Base {
public int vee;
public Ext foo(Base z) {

((Ext)z).vee = 1;
return null;

}
}

159

160

public class Main {
public static void main(String args[]) throws Throwable {

Base e = new Ext();
try {e.foo(null); }
catch(NullPointerException z) {

while(Ext.arr[2]) ;
}

}
}

declare widen.null [intro]

lemma wf-fdecl-def2 :
∧

fd. wf-fdecl G P fd = is-acc-type G P (type (snd fd))
〈proof 〉

declare wf-fdecl-def2 [iff]

type and expression names
datatype tnam ′ = HasFoo ′ | Base ′ | Ext ′ | Main ′

datatype vnam ′ = arr ′ | vee ′ | z ′ | e ′

datatype label ′ = lab1 ′

axiomatization
tnam ′ :: tnam ′ ⇒ tnam and
vnam ′ :: vnam ′ ⇒ vname and
label ′:: label ′⇒ label

where

inj-tnam ′ [simp]:
∧

x y. (tnam ′ x = tnam ′ y) = (x = y) and
inj-vnam ′ [simp]:

∧
x y. (vnam ′ x = vnam ′ y) = (x = y) and

inj-label ′ [simp]:
∧

x y. (label ′ x = label ′ y) = (x = y) and

surj-tnam ′:
∧

n. ∃m. n = tnam ′ m and
surj-vnam ′:

∧
n. ∃m. n = vnam ′ m and

surj-label ′:
∧

n. ∃m. n = label ′ m

abbreviation
HasFoo :: qtname where
HasFoo == (|pid=java-lang,tid=TName (tnam ′ HasFoo ′)|)

abbreviation
Base :: qtname where
Base == (|pid=java-lang,tid=TName (tnam ′ Base ′)|)

abbreviation
Ext :: qtname where
Ext == (|pid=java-lang,tid=TName (tnam ′ Ext ′)|)

abbreviation
Main :: qtname where
Main == (|pid=java-lang,tid=TName (tnam ′ Main ′)|)

abbreviation
arr :: vname where
arr == (vnam ′ arr ′)

Theory Example 161

abbreviation
vee :: vname where
vee == (vnam ′ vee ′)

abbreviation
z :: vname where
z == (vnam ′ z ′)

abbreviation
e :: vname where
e == (vnam ′ e ′)

abbreviation
lab1 :: label where
lab1 == label ′ lab1 ′

lemma neq-Base-Object [simp]: Base 6=Object
〈proof 〉

lemma neq-Ext-Object [simp]: Ext 6=Object
〈proof 〉

lemma neq-Main-Object [simp]: Main 6=Object
〈proof 〉

lemma neq-Base-SXcpt [simp]: Base 6=SXcpt xn
〈proof 〉

lemma neq-Ext-SXcpt [simp]: Ext 6=SXcpt xn
〈proof 〉

lemma neq-Main-SXcpt [simp]: Main 6=SXcpt xn
〈proof 〉

classes and interfaces

overloading
Object-mdecls ≡ Object-mdecls
SXcpt-mdecls ≡ SXcpt-mdecls

begin
definition Object-mdecls ≡ []
definition SXcpt-mdecls ≡ []

end

axiomatization
foo :: mname

definition
foo-sig :: sig
where foo-sig = (|name=foo,parTs=[Class Base]|)

definition
foo-mhead :: mhead
where foo-mhead = (|access=Public,static=False,pars=[z],resT=Class Base|)

definition
Base-foo :: mdecl
where Base-foo = (foo-sig, (|access=Public,static=False,pars=[z],resT=Class Base,

162

mbody=(|lcls=[],stmt=Return (!!z)|)|))

definition Ext-foo :: mdecl
where Ext-foo = (foo-sig,

(|access=Public,static=False,pars=[z],resT=Class Ext,
mbody=(|lcls=[]

,stmt=Expr({Ext,Ext,False}Cast (Class Ext) (!!z)..vee :=
Lit (Intg 1)) ;;

Return (Lit Null)|)
|))

definition
arr-viewed-from :: qtname ⇒ qtname ⇒ var
where arr-viewed-from accC C = {accC ,Base,True}StatRef (ClassT C)..arr

definition
BaseCl :: class where
BaseCl = (|access=Public,

cfields=[(arr , (|access=Public,static=True ,type=PrimT Boolean.[]|)),
(vee, (|access=Public,static=False,type=Iface HasFoo |))],

methods=[Base-foo],
init=Expr(arr-viewed-from Base Base

:=New (PrimT Boolean)[Lit (Intg 2)]),
super=Object,
superIfs=[HasFoo]|)

definition
ExtCl :: class where
ExtCl = (|access=Public,

cfields=[(vee, (|access=Public,static=False,type= PrimT Integer |))],
methods=[Ext-foo],
init=Skip,
super=Base,
superIfs=[]|)

definition
MainCl :: class where
MainCl = (|access=Public,

cfields=[],
methods=[],
init=Skip,
super=Object,
superIfs=[]|)

definition
HasFooInt :: iface
where HasFooInt = (|access=Public,imethods=[(foo-sig, foo-mhead)],isuperIfs=[]|)

definition
Ifaces ::idecl list
where Ifaces = [(HasFoo,HasFooInt)]

definition
Classes ::cdecl list
where Classes = [(Base,BaseCl),(Ext,ExtCl),(Main,MainCl)]@standard-classes

lemmas table-classes-defs =
Classes-def standard-classes-def ObjectC-def SXcptC-def

Theory Example 163

lemma table-ifaces [simp]: table-of Ifaces = Map.empty(HasFoo 7→HasFooInt)
〈proof 〉

lemma table-classes-Object [simp]:
table-of Classes Object = Some (|access=Public,cfields=[]

,methods=Object-mdecls
,init=Skip,super=undefined,superIfs=[]|)

〈proof 〉

lemma table-classes-SXcpt [simp]:
table-of Classes (SXcpt xn)
= Some (|access=Public,cfields=[],methods=SXcpt-mdecls,

init=Skip,
super=if xn = Throwable then Object else SXcpt Throwable,
superIfs=[]|)

〈proof 〉

lemma table-classes-HasFoo [simp]: table-of Classes HasFoo = None
〈proof 〉

lemma table-classes-Base [simp]: table-of Classes Base = Some BaseCl
〈proof 〉

lemma table-classes-Ext [simp]: table-of Classes Ext = Some ExtCl
〈proof 〉

lemma table-classes-Main [simp]: table-of Classes Main = Some MainCl
〈proof 〉

program
abbreviation

tprg :: prog where
tprg == (|ifaces=Ifaces,classes=Classes|)

definition
test :: (ty)list ⇒ stmt where
test pTs = (e:==NewC Ext;;

Try Expr({Main,ClassT Base,IntVir}!!e·foo({pTs}[Lit Null]))
Catch((SXcpt NullPointer) z)
(lab1 · While(Acc

(Acc (arr-viewed-from Main Ext).[Lit (Intg 2)])) Skip))

well-structuredness
lemma not-Object-subcls-any [elim!]: (Object, C) ∈ (subcls1 tprg)+ =⇒ R
〈proof 〉

lemma not-Throwable-subcls-SXcpt [elim!]:
(SXcpt Throwable, SXcpt xn) ∈ (subcls1 tprg)+ =⇒ R
〈proof 〉

lemma not-SXcpt-n-subcls-SXcpt-n [elim!]:
(SXcpt xn, SXcpt xn) ∈ (subcls1 tprg)+ =⇒ R
〈proof 〉

lemma not-Base-subcls-Ext [elim!]: (Base, Ext) ∈ (subcls1 tprg)+ =⇒ R
〈proof 〉

164

lemma not-TName-n-subcls-TName-n [rule-format (no-asm), elim!]:
((|pid=java-lang,tid=TName tn|), (|pid=java-lang,tid=TName tn|))
∈ (subcls1 tprg)+ −→ R

〈proof 〉

lemma ws-idecl-HasFoo: ws-idecl tprg HasFoo []
〈proof 〉

lemma ws-cdecl-Object: ws-cdecl tprg Object any
〈proof 〉

lemma ws-cdecl-Throwable: ws-cdecl tprg (SXcpt Throwable) Object
〈proof 〉

lemma ws-cdecl-SXcpt: ws-cdecl tprg (SXcpt xn) (SXcpt Throwable)
〈proof 〉

lemma ws-cdecl-Base: ws-cdecl tprg Base Object
〈proof 〉

lemma ws-cdecl-Ext: ws-cdecl tprg Ext Base
〈proof 〉

lemma ws-cdecl-Main: ws-cdecl tprg Main Object
〈proof 〉

lemmas ws-cdecls = ws-cdecl-SXcpt ws-cdecl-Object ws-cdecl-Throwable
ws-cdecl-Base ws-cdecl-Ext ws-cdecl-Main

declare not-Object-subcls-any [rule del]
not-Throwable-subcls-SXcpt [rule del]
not-SXcpt-n-subcls-SXcpt-n [rule del]
not-Base-subcls-Ext [rule del] not-TName-n-subcls-TName-n [rule del]

lemma ws-idecl-all:
G=tprg =⇒ (∀ (I ,i)∈set Ifaces. ws-idecl G I (isuperIfs i))
〈proof 〉

lemma ws-cdecl-all: G=tprg =⇒ (∀ (C ,c)∈set Classes. ws-cdecl G C (super c))
〈proof 〉

lemma ws-tprg: ws-prog tprg
〈proof 〉

misc program properties (independent of well-structuredness)

lemma single-iface [simp]: is-iface tprg I = (I = HasFoo)
〈proof 〉

lemma empty-subint1 [simp]: subint1 tprg = {}
〈proof 〉

lemma unique-ifaces: unique Ifaces
〈proof 〉

lemma unique-classes: unique Classes
〈proof 〉

Theory Example 165

lemma SXcpt-subcls-Throwable [simp]: tprg`SXcpt xn�C SXcpt Throwable
〈proof 〉

lemma Ext-subclseq-Base [simp]: tprg`Ext �C Base
〈proof 〉

lemma Ext-subcls-Base [simp]: tprg`Ext ≺C Base
〈proof 〉

fields and method lookup

lemma fields-tprg-Object [simp]: DeclConcepts.fields tprg Object = []
〈proof 〉

lemma fields-tprg-Throwable [simp]:
DeclConcepts.fields tprg (SXcpt Throwable) = []
〈proof 〉

lemma fields-tprg-SXcpt [simp]: DeclConcepts.fields tprg (SXcpt xn) = []
〈proof 〉

lemmas fields-rec ′ = fields-rec [OF - ws-tprg]

lemma fields-Base [simp]:
DeclConcepts.fields tprg Base
= [((arr ,Base), (|access=Public,static=True ,type=PrimT Boolean.[]|)),

((vee,Base), (|access=Public,static=False,type=Iface HasFoo |))]
〈proof 〉

lemma fields-Ext [simp]:
DeclConcepts.fields tprg Ext
= [((vee,Ext), (|access=Public,static=False,type= PrimT Integer |))]
@ DeclConcepts.fields tprg Base

〈proof 〉

lemmas imethds-rec ′ = imethds-rec [OF - ws-tprg]
lemmas methd-rec ′ = methd-rec [OF - ws-tprg]

lemma imethds-HasFoo [simp]:
imethds tprg HasFoo = set-option ◦ Map.empty(foo-sig 7→(HasFoo, foo-mhead))
〈proof 〉

lemma methd-tprg-Object [simp]: methd tprg Object = Map.empty
〈proof 〉

lemma methd-Base [simp]:
methd tprg Base = table-of [(λ(s,m). (s, Base, m)) Base-foo]
〈proof 〉

lemma memberid-Base-foo-simp [simp]:
memberid (mdecl Base-foo) = mid foo-sig
〈proof 〉

lemma memberid-Ext-foo-simp [simp]:
memberid (mdecl Ext-foo) = mid foo-sig
〈proof 〉

lemma Base-declares-foo:

166

tprg`mdecl Base-foo declared-in Base
〈proof 〉

lemma foo-sig-not-undeclared-in-Base:
¬ tprg`mid foo-sig undeclared-in Base
〈proof 〉

lemma Ext-declares-foo:
tprg`mdecl Ext-foo declared-in Ext
〈proof 〉

lemma foo-sig-not-undeclared-in-Ext:
¬ tprg`mid foo-sig undeclared-in Ext
〈proof 〉

lemma Base-foo-not-inherited-in-Ext:
¬ tprg ` Ext inherits (Base,mdecl Base-foo)
〈proof 〉

lemma Ext-method-inheritance:
filter-tab (λsig m. tprg ` Ext inherits method sig m)

(Map.empty(fst ((λ(s, m). (s, Base, m)) Base-foo)7→
snd ((λ(s, m). (s, Base, m)) Base-foo)))

= Map.empty
〈proof 〉

lemma methd-Ext [simp]: methd tprg Ext =
table-of [(λ(s,m). (s, Ext, m)) Ext-foo]
〈proof 〉

accessibility

lemma classesDefined:
[[class tprg C = Some c; C 6=Object]] =⇒ ∃ sc. class tprg (super c) = Some sc
〈proof 〉

lemma superclassesBase [simp]: superclasses tprg Base={Object}
〈proof 〉

lemma superclassesExt [simp]: superclasses tprg Ext={Base,Object}
〈proof 〉

lemma superclassesMain [simp]: superclasses tprg Main={Object}
〈proof 〉

lemma HasFoo-accessible[simp]:tprg`(Iface HasFoo) accessible-in P
〈proof 〉

lemma HasFoo-is-acc-iface[simp]: is-acc-iface tprg P HasFoo
〈proof 〉

lemma HasFoo-is-acc-type[simp]: is-acc-type tprg P (Iface HasFoo)
〈proof 〉

lemma Base-accessible[simp]:tprg`(Class Base) accessible-in P
〈proof 〉

lemma Base-is-acc-class[simp]: is-acc-class tprg P Base

Theory Example 167

〈proof 〉

lemma Base-is-acc-type[simp]: is-acc-type tprg P (Class Base)
〈proof 〉

lemma Ext-accessible[simp]:tprg`(Class Ext) accessible-in P
〈proof 〉

lemma Ext-is-acc-class[simp]: is-acc-class tprg P Ext
〈proof 〉

lemma Ext-is-acc-type[simp]: is-acc-type tprg P (Class Ext)
〈proof 〉

lemma accmethd-tprg-Object [simp]: accmethd tprg S Object = Map.empty
〈proof 〉

lemma snd-special-simp: snd ((λ(s, m). (s, a, m)) x) = (a,snd x)
〈proof 〉

lemma fst-special-simp: fst ((λ(s, m). (s, a, m)) x) = fst x
〈proof 〉

lemma foo-sig-undeclared-in-Object:
tprg`mid foo-sig undeclared-in Object
〈proof 〉

lemma unique-sig-Base-foo:
tprg` mdecl (sig, snd Base-foo) declared-in Base =⇒ sig=foo-sig
〈proof 〉

lemma Base-foo-no-override:
tprg,sig`(Base,(snd Base-foo)) overrides old =⇒ P
〈proof 〉

lemma Base-foo-no-stat-override:
tprg,sig`(Base,(snd Base-foo)) overridesS old =⇒ P
〈proof 〉

lemma Base-foo-no-hide:
tprg,sig`(Base,(snd Base-foo)) hides old =⇒ P
〈proof 〉

lemma Ext-foo-no-hide:
tprg,sig`(Ext,(snd Ext-foo)) hides old =⇒ P
〈proof 〉

lemma unique-sig-Ext-foo:
tprg` mdecl (sig, snd Ext-foo) declared-in Ext =⇒ sig=foo-sig
〈proof 〉

lemma Ext-foo-override:
tprg,sig`(Ext,(snd Ext-foo)) overrides old
=⇒ old = (Base,(snd Base-foo))
〈proof 〉

lemma Ext-foo-stat-override:
tprg,sig`(Ext,(snd Ext-foo)) overridesS old

168

=⇒ old = (Base,(snd Base-foo))
〈proof 〉

lemma Base-foo-member-of-Base:
tprg`(Base,mdecl Base-foo) member-of Base
〈proof 〉

lemma Base-foo-member-in-Base:
tprg`(Base,mdecl Base-foo) member-in Base
〈proof 〉

lemma Ext-foo-member-of-Ext:
tprg`(Ext,mdecl Ext-foo) member-of Ext
〈proof 〉

lemma Ext-foo-member-in-Ext:
tprg`(Ext,mdecl Ext-foo) member-in Ext
〈proof 〉

lemma Base-foo-permits-acc:
tprg ` (Base, mdecl Base-foo) in Base permits-acc-from S
〈proof 〉

lemma Base-foo-accessible [simp]:
tprg`(Base,mdecl Base-foo) of Base accessible-from S
〈proof 〉

lemma Base-foo-dyn-accessible [simp]:
tprg`(Base,mdecl Base-foo) in Base dyn-accessible-from S
〈proof 〉

lemma accmethd-Base [simp]:
accmethd tprg S Base = methd tprg Base
〈proof 〉

lemma Ext-foo-permits-acc:
tprg ` (Ext, mdecl Ext-foo) in Ext permits-acc-from S
〈proof 〉

lemma Ext-foo-accessible [simp]:
tprg`(Ext,mdecl Ext-foo) of Ext accessible-from S
〈proof 〉

lemma Ext-foo-dyn-accessible [simp]:
tprg`(Ext,mdecl Ext-foo) in Ext dyn-accessible-from S
〈proof 〉

lemma Ext-foo-overrides-Base-foo:
tprg`(Ext,Ext-foo) overrides (Base,Base-foo)
〈proof 〉

lemma accmethd-Ext [simp]:
accmethd tprg S Ext = methd tprg Ext
〈proof 〉

lemma cls-Ext: class tprg Ext = Some ExtCl
〈proof 〉
lemma dynmethd-Ext-foo:
dynmethd tprg Base Ext (|name = foo, parTs = [Class Base]|)

Theory Example 169

= Some (Ext,snd Ext-foo)
〈proof 〉

lemma Base-fields-accessible[simp]:
accfield tprg S Base
= table-of ((map (λ((n,d),f).(n,(d,f)))) (DeclConcepts.fields tprg Base))
〈proof 〉

lemma arr-member-of-Base:
tprg`(Base, fdecl (arr ,

(|access = Public, static = True, type = PrimT Boolean.[]|)))
member-of Base

〈proof 〉

lemma arr-member-in-Base:
tprg`(Base, fdecl (arr ,

(|access = Public, static = True, type = PrimT Boolean.[]|)))
member-in Base

〈proof 〉

lemma arr-member-of-Ext:
tprg`(Base, fdecl (arr ,

(|access = Public, static = True, type = PrimT Boolean.[]|)))
member-of Ext

〈proof 〉

lemma arr-member-in-Ext:
tprg`(Base, fdecl (arr ,

(|access = Public, static = True, type = PrimT Boolean.[]|)))
member-in Ext

〈proof 〉

lemma Ext-fields-accessible[simp]:
accfield tprg S Ext
= table-of ((map (λ((n,d),f).(n,(d,f)))) (DeclConcepts.fields tprg Ext))
〈proof 〉

lemma arr-Base-dyn-accessible [simp]:
tprg`(Base, fdecl (arr , (|access=Public,static=True ,type=PrimT Boolean.[]|)))

in Base dyn-accessible-from S
〈proof 〉

lemma arr-Ext-dyn-accessible[simp]:
tprg`(Base, fdecl (arr , (|access=Public,static=True ,type=PrimT Boolean.[]|)))

in Ext dyn-accessible-from S
〈proof 〉

lemma array-of-PrimT-acc [simp]:
is-acc-type tprg java-lang (PrimT t.[])
〈proof 〉

lemma PrimT-acc [simp]:
is-acc-type tprg java-lang (PrimT t)
〈proof 〉

lemma Object-acc [simp]:
is-acc-class tprg java-lang Object
〈proof 〉

170

well-formedness

lemma wf-HasFoo: wf-idecl tprg (HasFoo, HasFooInt)
〈proof 〉

declare member-is-static-simp [simp]
declare wt.Skip [rule del] wt.Init [rule del]
〈ML〉
lemmas wtIs = wt-Call wt-Super wt-FVar wt-StatRef wt-intros
lemmas daIs = assigned.select-convs da-Skip da-NewC da-Lit da-Super da.intros

lemmas Base-foo-defs = Base-foo-def foo-sig-def foo-mhead-def
lemmas Ext-foo-defs = Ext-foo-def foo-sig-def

lemma wf-Base-foo: wf-mdecl tprg Base Base-foo
〈proof 〉

lemma wf-Ext-foo: wf-mdecl tprg Ext Ext-foo
〈proof 〉

declare mhead-resTy-simp [simp add]

lemma wf-BaseC : wf-cdecl tprg (Base,BaseCl)
〈proof 〉

lemma wf-ExtC : wf-cdecl tprg (Ext,ExtCl)
〈proof 〉

lemma wf-MainC : wf-cdecl tprg (Main,MainCl)
〈proof 〉

lemma wf-idecl-all: p=tprg =⇒ Ball (set Ifaces) (wf-idecl p)
〈proof 〉

lemma wf-cdecl-all-standard-classes:
Ball (set standard-classes) (wf-cdecl tprg)
〈proof 〉

lemma wf-cdecl-all: p=tprg =⇒ Ball (set Classes) (wf-cdecl p)
〈proof 〉

theorem wf-tprg: wf-prog tprg
〈proof 〉

max spec

lemma appl-methds-Base-foo:
appl-methds tprg S (ClassT Base) (|name=foo, parTs=[NT]|) =
{((ClassT Base, (|access=Public,static=False,pars=[z],resT=Class Base|))
,[Class Base])}

〈proof 〉

lemma max-spec-Base-foo: max-spec tprg S (ClassT Base) (|name=foo,parTs=[NT]|) =

Theory Example 171

{((ClassT Base, (|access=Public,static=False,pars=[z],resT=Class Base|))
, [Class Base])}

〈proof 〉

well-typedness
schematic-goal wt-test: (|prg=tprg,cls=Main,lcl=Map.empty(VName e 7→Class Base)|)`test ?pTs::

√

〈proof 〉

definite assignment
schematic-goal da-test: (|prg=tprg,cls=Main,lcl=Map.empty(VName e 7→Class Base)|)

`{} »〈test ?pTs〉» (|nrm={VName e},brk=λ l. UNIV |)
〈proof 〉

execution
lemma alloc-one:

∧
a obj. [[the (new-Addr h) = a; atleast-free h (Suc n)]] =⇒

new-Addr h = Some a ∧ atleast-free (h(a 7→obj)) n
〈proof 〉

declare fvar-def2 [simp] avar-def2 [simp] init-lvars-def2 [simp]
declare init-obj-def [simp] var-tys-def [simp] fields-table-def [simp]
declare BaseCl-def [simp] ExtCl-def [simp] Ext-foo-def [simp]

Base-foo-defs [simp]

〈ML〉
lemmas eval-Is = eval-Init eval-StatRef AbruptIs eval-intros

axiomatization
a :: loc and
b :: loc and
c :: loc

abbreviation one == Suc 0
abbreviation two == Suc one
abbreviation three == Suc two
abbreviation four == Suc three

abbreviation
obj-a == (|tag=Arr (PrimT Boolean) 2

,values= Map.empty(Inr 0 7→Bool False, Inr 1 7→Bool False)|)

abbreviation
obj-b == (|tag=CInst Ext

,values=(Map.empty(Inl (vee, Base) 7→Null, Inl (vee, Ext)7→Intg 0))|)

abbreviation
obj-c == (|tag=CInst (SXcpt NullPointer),values=CONST Map.empty|)

abbreviation arr-N == Map.empty(Inl (arr , Base) 7→Null)
abbreviation arr-a == Map.empty(Inl (arr , Base) 7→Addr a)

abbreviation
globs1 == Map.empty(Inr Ext 7→(|tag=undefined, values=Map.empty|),

Inr Base 7→(|tag=undefined, values=arr-N |),
Inr Object 7→(|tag=undefined, values=Map.empty|))

abbreviation

172

globs2 == Map.empty(Inr Ext 7→(|tag=undefined, values=Map.empty|),
Inr Object 7→(|tag=undefined, values=Map.empty|),
Inl a 7→obj-a,
Inr Base 7→(|tag=undefined, values=arr-a|))

abbreviation globs3 == globs2 (Inl b 7→obj-b)
abbreviation globs8 == globs3 (Inl c 7→obj-c)
abbreviation locs3 == Map.empty(VName e 7→Addr b)
abbreviation locs8 == locs3 (VName z 7→Addr c)

abbreviation s0 == st Map.empty Map.empty
abbreviation s0 ′ == Norm s0
abbreviation s1 == st globs1 Map.empty
abbreviation s1 ′ == Norm s1
abbreviation s2 == st globs2 Map.empty
abbreviation s2 ′ == Norm s2
abbreviation s3 == st globs3 locs3
abbreviation s3 ′ == Norm s3
abbreviation s7 ′ == (Some (Xcpt (Std NullPointer)), s3)
abbreviation s8 == st globs8 locs8
abbreviation s8 ′ == Norm s8
abbreviation s9 ′ == (Some (Xcpt (Std IndOutBound)), s8)

declare prod.inject [simp del]
schematic-goal exec-test:
[[the (new-Addr (heap s1)) = a;

the (new-Addr (heap ?s2)) = b;
the (new-Addr (heap ?s3)) = c]] =⇒
atleast-free (heap s0) four =⇒
tprg`s0 ′ −test [Class Base]→ ?s9 ′

〈proof 〉
declare prod.inject [simp]

end

Chapter 17

Conform

1 Conformance notions for the type soundness proof for Java
theory Conform imports State begin

design issues:

• lconf allows for (arbitrary) inaccessible values

• ”conforms” does not directly imply that the dynamic types of all objects on the heap are
indeed existing classes. Yet this can be inferred for all referenced objs.

type-synonym env ′ = prog × (lname, ty) table

extension of global store
definition gext :: st ⇒ st ⇒ bool (‹-≤|-› [71 ,71] 70) where

s≤|s ′ ≡ ∀ r . ∀ obj∈globs s r : ∃ obj ′∈globs s ′ r : tag obj ′= tag obj

For the the proof of type soundness we will need the property that during execution, objects are not
lost and moreover retain the values of their tags. So the object store grows conservatively. Note that
if we considered garbage collection, we would have to restrict this property to accessible objects.
lemma gext-objD:
[[s≤|s ′; globs s r = Some obj]]
=⇒ ∃ obj ′. globs s ′ r = Some obj ′ ∧ tag obj ′ = tag obj
〈proof 〉

lemma rev-gext-objD:
[[globs s r = Some obj; s≤|s ′]]
=⇒ ∃ obj ′. globs s ′ r = Some obj ′ ∧ tag obj ′ = tag obj
〈proof 〉

lemma init-class-obj-inited:
init-class-obj G C s1≤|s2 =⇒ inited C (globs s2)

〈proof 〉

lemma gext-refl [intro!, simp]: s≤|s
〈proof 〉

lemma gext-gupd [simp, elim!]:
∧

s. globs s r = None =⇒ s≤|gupd(r 7→x)s
〈proof 〉

lemma gext-new [simp, elim!]:
∧

s. globs s r = None =⇒ s≤|init-obj G oi r s
〈proof 〉

173

174

lemma gext-trans [elim]:
∧

X . [[s≤|s ′; s ′≤|s ′′]] =⇒ s≤|s ′′

〈proof 〉

lemma gext-upd-gobj [intro!]: s≤|upd-gobj r n v s
〈proof 〉

lemma gext-cong1 [simp]: set-locals l s1≤|s2 = s1≤|s2
〈proof 〉

lemma gext-cong2 [simp]: s1≤|set-locals l s2 = s1≤|s2
〈proof 〉

lemma gext-lupd1 [simp]: lupd(vn 7→v)s1≤|s2 = s1≤|s2
〈proof 〉

lemma gext-lupd2 [simp]: s1≤|lupd(vn 7→v)s2 = s1≤|s2
〈proof 〉

lemma inited-gext: [[inited C (globs s); s≤|s ′]] =⇒ inited C (globs s ′)
〈proof 〉

value conformance

definition conf :: prog ⇒ st ⇒ val ⇒ ty ⇒ bool (‹-,-`-::�-› [71 ,71 ,71 ,71] 70)
where G,s`v::�T = (∃T ′∈typeof (λa. map-option obj-ty (heap s a)) v:G`T ′�T)

lemma conf-cong [simp]: G,set-locals l s`v::�T = G,s`v::�T
〈proof 〉

lemma conf-lupd [simp]: G,lupd(vn 7→va)s`v::�T = G,s`v::�T
〈proof 〉

lemma conf-PrimT [simp]: ∀ dt. typeof dt v = Some (PrimT t) =⇒ G,s`v::�PrimT t
〈proof 〉

lemma conf-Boolean: G,s`v::�PrimT Boolean =⇒ ∃ b. v=Bool b
〈proof 〉

lemma conf-litval [rule-format (no-asm)]:
typeof (λa. None) v = Some T −→ G,s`v::�T
〈proof 〉

lemma conf-Null [simp]: G,s`Null::�T = G`NT�T
〈proof 〉

lemma conf-Addr :
G,s`Addr a::�T = (∃ obj. heap s a = Some obj ∧ G`obj-ty obj�T)
〈proof 〉

lemma conf-AddrI :[[heap s a = Some obj; G`obj-ty obj�T]] =⇒ G,s`Addr a::�T
〈proof 〉

lemma defval-conf [rule-format (no-asm), elim]:
is-type G T −→ G,s`default-val T ::�T
〈proof 〉

Theory Conform 175

lemma conf-widen [rule-format (no-asm), elim]:
G`T�T ′ =⇒ G,s`x::�T −→ ws-prog G −→ G,s`x::�T ′

〈proof 〉

lemma conf-gext [rule-format (no-asm), elim]:
G,s`v::�T −→ s≤|s ′ −→ G,s ′̀ v::�T
〈proof 〉

lemma conf-list-widen [rule-format (no-asm)]:
ws-prog G =⇒
∀Ts Ts ′. list-all2 (conf G s) vs Ts

−→ G`Ts[�] Ts ′ −→ list-all2 (conf G s) vs Ts ′

〈proof 〉

lemma conf-RefTD [rule-format (no-asm)]:
G,s`a ′::�RefT T
−→ a ′ = Null ∨ (∃ a obj T ′. a ′ = Addr a ∧ heap s a = Some obj ∧

obj-ty obj = T ′ ∧ G`T ′�RefT T)
〈proof 〉

value list conformance

definition
lconf :: prog ⇒ st ⇒ (′a, val) table ⇒ (′a, ty) table ⇒ bool (‹-,-`-[::�]-› [71 ,71 ,71 ,71] 70)
where G,s`vs[::�]Ts = (∀n. ∀T∈Ts n: ∃ v∈vs n: G,s`v::�T)

lemma lconfD: [[G,s`vs[::�]Ts; Ts n = Some T]] =⇒ G,s`(the (vs n))::�T
〈proof 〉

lemma lconf-cong [simp]:
∧

s. G,set-locals x s`l[::�]L = G,s`l[::�]L
〈proof 〉

lemma lconf-lupd [simp]: G,lupd(vn 7→v)s`l[::�]L = G,s`l[::�]L
〈proof 〉

lemma lconf-new: [[L vn = None; G,s`l[::�]L]] =⇒ G,s`l(vn 7→v)[::�]L
〈proof 〉

lemma lconf-upd: [[G,s`l[::�]L; G,s`v::�T ; L vn = Some T]] =⇒
G,s`l(vn 7→v)[::�]L
〈proof 〉

lemma lconf-ext: [[G,s`l[::�]L; G,s`v::�T]] =⇒ G,s`l(vn 7→v)[::�]L(vn 7→T)
〈proof 〉

lemma lconf-map-sum [simp]:
G,s`l1 (+) l2 [::�]L1 (+) L2 = (G,s`l1 [::�]L1 ∧ G,s`l2 [::�]L2)
〈proof 〉

lemma lconf-ext-list [rule-format (no-asm)]:∧
X . [[G,s`l[::�]L]] =⇒
∀ vs Ts. distinct vns −→ length Ts = length vns
−→ list-all2 (conf G s) vs Ts −→ G,s`l(vns[7→]vs)[::�]L(vns[7→]Ts)

〈proof 〉

176

lemma lconf-deallocL: [[G,s`l[::�]L(vn 7→T); L vn = None]] =⇒ G,s`l[::�]L
〈proof 〉

lemma lconf-gext [elim]: [[G,s`l[::�]L; s≤|s ′]] =⇒ G,s ′̀ l[::�]L
〈proof 〉

lemma lconf-empty [simp, intro!]: G,s`vs[::�]Map.empty
〈proof 〉

lemma lconf-init-vals [intro!]:
∀n. ∀T∈fs n:is-type G T =⇒ G,s`init-vals fs[::�]fs

〈proof 〉

weak value list conformance

Only if the value is defined it has to conform to its type. This is the contribution of the definite
assignment analysis to the notion of conformance. The definite assignment analysis ensures that the
program only attempts to access local variables that actually have a defined value in the state. So
conformance must only ensure that the defined values are of the right type, and not also that the
value is defined.
definition

wlconf :: prog ⇒ st ⇒ (′a, val) table ⇒ (′a, ty) table ⇒ bool (‹-,-`-[∼::�]-› [71 ,71 ,71 ,71] 70)
where G,s`vs[∼::�]Ts = (∀n. ∀T∈Ts n: ∀ v∈vs n: G,s`v::�T)

lemma wlconfD: [[G,s`vs[∼::�]Ts; Ts n = Some T ; vs n = Some v]] =⇒ G,s`v::�T
〈proof 〉

lemma wlconf-cong [simp]:
∧

s. G,set-locals x s`l[∼::�]L = G,s`l[∼::�]L
〈proof 〉

lemma wlconf-lupd [simp]: G,lupd(vn 7→v)s`l[∼::�]L = G,s`l[∼::�]L
〈proof 〉

lemma wlconf-upd: [[G,s`l[∼::�]L; G,s`v::�T ; L vn = Some T]] =⇒
G,s`l(vn 7→v)[∼::�]L
〈proof 〉

lemma wlconf-ext: [[G,s`l[∼::�]L; G,s`v::�T]] =⇒ G,s`l(vn 7→v)[∼::�]L(vn 7→T)
〈proof 〉

lemma wlconf-map-sum [simp]:
G,s`l1 (+) l2 [∼::�]L1 (+) L2 = (G,s`l1 [∼::�]L1 ∧ G,s`l2 [∼::�]L2)
〈proof 〉

lemma wlconf-ext-list [rule-format (no-asm)]:∧
X . [[G,s`l[∼::�]L]] =⇒
∀ vs Ts. distinct vns −→ length Ts = length vns
−→ list-all2 (conf G s) vs Ts −→ G,s`l(vns[7→]vs)[∼::�]L(vns[7→]Ts)

〈proof 〉

lemma wlconf-deallocL: [[G,s`l[∼::�]L(vn 7→T); L vn = None]] =⇒ G,s`l[∼::�]L
〈proof 〉

Theory Conform 177

lemma wlconf-gext [elim]: [[G,s`l[∼::�]L; s≤|s ′]] =⇒ G,s ′̀ l[∼::�]L
〈proof 〉

lemma wlconf-empty [simp, intro!]: G,s`vs[∼::�]Map.empty
〈proof 〉

lemma wlconf-empty-vals: G,s`Map.empty[∼::�]ts
〈proof 〉

lemma wlconf-init-vals [intro!]:
∀n. ∀T∈fs n:is-type G T =⇒ G,s`init-vals fs[∼::�]fs

〈proof 〉

lemma lconf-wlconf :
G,s`l[::�]L =⇒ G,s`l[∼::�]L
〈proof 〉

object conformance

definition
oconf :: prog ⇒ st ⇒ obj ⇒ oref ⇒ bool (‹-,-`-::�

√
-› [71 ,71 ,71 ,71] 70) where

(G,s`obj::�
√

r) = (G,s`values obj[::�]var-tys G (tag obj) r ∧
(case r of

Heap a ⇒ is-type G (obj-ty obj)
| Stat C ⇒ True))

lemma oconf-is-type: G,s`obj::�
√

Heap a =⇒ is-type G (obj-ty obj)
〈proof 〉

lemma oconf-lconf : G,s`obj::�
√

r =⇒ G,s`values obj[::�]var-tys G (tag obj) r
〈proof 〉

lemma oconf-cong [simp]: G,set-locals l s`obj::�
√

r = G,s`obj::�
√

r
〈proof 〉

lemma oconf-init-obj-lemma:
[[
∧

C c. class G C = Some c =⇒ unique (DeclConcepts.fields G C);∧
C c f fld. [[class G C = Some c;

table-of (DeclConcepts.fields G C) f = Some fld]]
=⇒ is-type G (type fld);

(case r of
Heap a ⇒ is-type G (obj-ty obj)

| Stat C ⇒ is-class G C)
]] =⇒ G,s`obj (|values:=init-vals (var-tys G (tag obj) r)|)::�

√
r

〈proof 〉

state conformance

definition
conforms :: state ⇒ env ′⇒ bool (‹-::�-› [71 ,71] 70) where
xs::�E =

(let (G, L) = E ; s = snd xs; l = locals s in
(∀ r . ∀ obj∈globs s r : G,s`obj ::�

√
r) ∧ G,s`l [∼::�]L ∧

(∀ a. fst xs=Some(Xcpt (Loc a)) −→ G,s`Addr a::� Class (SXcpt Throwable)) ∧
(fst xs=Some(Jump Ret) −→ l Result 6= None))

178

conforms

lemma conforms-globsD:
[[(x, s)::�(G, L); globs s r = Some obj]] =⇒ G,s`obj::�

√
r

〈proof 〉

lemma conforms-localD: (x, s)::�(G, L) =⇒ G,s`locals s[∼::�]L
〈proof 〉

lemma conforms-XcptLocD: [[(x, s)::�(G, L); x = Some (Xcpt (Loc a))]] =⇒
G,s`Addr a::� Class (SXcpt Throwable)

〈proof 〉

lemma conforms-RetD: [[(x, s)::�(G, L); x = Some (Jump Ret)]] =⇒
(locals s) Result 6= None

〈proof 〉

lemma conforms-RefTD:
[[G,s`a ′::�RefT t; a ′ 6= Null; (x,s) ::�(G, L)]] =⇒
∃ a obj. a ′ = Addr a ∧ globs s (Inl a) = Some obj ∧
G`obj-ty obj�RefT t ∧ is-type G (obj-ty obj)

〈proof 〉

lemma conforms-Jump [iff]:
j=Ret −→ locals s Result 6= None
=⇒ ((Some (Jump j), s)::�(G, L)) = (Norm s::�(G, L))

〈proof 〉

lemma conforms-StdXcpt [iff]:
((Some (Xcpt (Std xn)), s)::�(G, L)) = (Norm s::�(G, L))
〈proof 〉

lemma conforms-Err [iff]:
((Some (Error e), s)::�(G, L)) = (Norm s::�(G, L))
〈proof 〉

lemma conforms-raise-if [iff]:
((raise-if c xn x, s)::�(G, L)) = ((x, s)::�(G, L))
〈proof 〉

lemma conforms-error-if [iff]:
((error-if c err x, s)::�(G, L)) = ((x, s)::�(G, L))
〈proof 〉

lemma conforms-NormI : (x, s)::�(G, L) =⇒ Norm s::�(G, L)
〈proof 〉

lemma conforms-absorb [rule-format]:
(a, b)::�(G, L) −→ (absorb j a, b)::�(G, L)
〈proof 〉

lemma conformsI : [[∀ r . ∀ obj∈globs s r : G,s`obj::�
√

r ;
G,s`locals s[∼::�]L;
∀ a. x = Some (Xcpt (Loc a)) −→ G,s`Addr a::� Class (SXcpt Throwable);
x = Some (Jump Ret)−→ locals s Result 6= None]] =⇒

(x, s)::�(G, L)
〈proof 〉

lemma conforms-xconf : [[(x, s)::�(G,L);

Theory Conform 179

∀ a. x ′ = Some (Xcpt (Loc a)) −→ G,s`Addr a::� Class (SXcpt Throwable);
x ′ = Some (Jump Ret) −→ locals s Result 6= None]] =⇒

(x ′,s)::�(G,L)
〈proof 〉

lemma conforms-lupd:
[[(x, s)::�(G, L); L vn = Some T ; G,s`v::�T]] =⇒ (x, lupd(vn 7→v)s)::�(G, L)
〈proof 〉

lemmas conforms-allocL-aux = conforms-localD [THEN wlconf-ext]

lemma conforms-allocL:
[[(x, s)::�(G, L); G,s`v::�T]] =⇒ (x, lupd(vn 7→v)s)::�(G, L(vn 7→T))
〈proof 〉

lemmas conforms-deallocL-aux = conforms-localD [THEN wlconf-deallocL]

lemma conforms-deallocL:
∧

s.[[s::�(G, L(vn 7→T)); L vn = None]] =⇒ s::�(G,L)
〈proof 〉

lemma conforms-gext: [[(x, s)::�(G,L); s≤|s ′;
∀ r . ∀ obj∈globs s ′ r : G,s ′̀ obj::�

√
r ;

locals s ′=locals s]] =⇒ (x,s ′)::�(G,L)
〈proof 〉

lemma conforms-xgext:
[[(x ,s)::�(G,L); (x ′, s ′)::�(G, L); s ′≤|s;dom (locals s ′) ⊆ dom (locals s)]]
=⇒ (x ′,s)::�(G,L)

〈proof 〉

lemma conforms-gupd:
∧

obj. [[(x, s)::�(G, L); G,s`obj::�
√

r ; s≤|gupd(r 7→obj)s]]
=⇒ (x, gupd(r 7→obj)s)::�(G, L)
〈proof 〉

lemma conforms-upd-gobj: [[(x,s)::�(G, L); globs s r = Some obj;
var-tys G (tag obj) r n = Some T ; G,s`v::�T]] =⇒ (x,upd-gobj r n v s)::�(G,L)
〈proof 〉

lemma conforms-set-locals:
[[(x,s)::�(G, L ′); G,s`l[∼::�]L; x=Some (Jump Ret) −→ l Result 6= None]]
=⇒ (x,set-locals l s)::�(G,L)

〈proof 〉

lemma conforms-locals:
[[(a,b)::�(G, L); L x = Some T ;locals b x 6=None]]
=⇒ G,b`the (locals b x)::�T

〈proof 〉

lemma conforms-return:∧
s ′. [[(x,s)::�(G, L); (x ′,s ′)::�(G, L ′); s≤|s ′;x ′6=Some (Jump Ret)]] =⇒
(x ′,set-locals (locals s) s ′)::�(G, L)
〈proof 〉

end

180

Chapter 18

DefiniteAssignmentCorrect

1 Correctness of Definite Assignment

theory DefiniteAssignmentCorrect imports WellForm Eval begin

declare [[simproc del: wt-expr wt-var wt-exprs wt-stmt]]

lemma sxalloc-no-jump:
assumes sxalloc: G`s0 −sxalloc→ s1 and

no-jmp: abrupt s0 6= Some (Jump j)
shows abrupt s1 6= Some (Jump j)

〈proof 〉

lemma sxalloc-no-jump ′:
assumes sxalloc: G`s0 −sxalloc→ s1 and

jump: abrupt s1 = Some (Jump j)
shows abrupt s0 = Some (Jump j)
〈proof 〉

lemma halloc-no-jump:
assumes halloc: G`s0 −halloc oi�a→ s1 and

no-jmp: abrupt s0 6= Some (Jump j)
shows abrupt s1 6= Some (Jump j)

〈proof 〉

lemma halloc-no-jump ′:
assumes halloc: G`s0 −halloc oi�a→ s1 and

jump: abrupt s1 = Some (Jump j)
shows abrupt s0 = Some (Jump j)
〈proof 〉

lemma Body-no-jump:
assumes eval: G`s0 −Body D c−�v→s1 and

jump: abrupt s0 6= Some (Jump j)
shows abrupt s1 6= Some (Jump j)

〈proof 〉

lemma Methd-no-jump:
assumes eval: G`s0 −Methd D sig−�v→ s1 and

jump: abrupt s0 6= Some (Jump j)
shows abrupt s1 6= Some (Jump j)

〈proof 〉

lemma jumpNestingOkS-mono:
assumes jumpNestingOk-l ′: jumpNestingOkS jmps ′ c

181

182

and subset: jmps ′ ⊆ jmps
shows jumpNestingOkS jmps c
〈proof 〉

corollary jumpNestingOk-mono:
assumes jmpOk: jumpNestingOk jmps ′ t

and subset: jmps ′ ⊆ jmps
shows jumpNestingOk jmps t
〈proof 〉

lemma assign-abrupt-propagation:
assumes f-ok: abrupt (f n s) 6= x

and ass: abrupt (assign f n s) = x
shows abrupt s = x
〈proof 〉

lemma wt-init-comp-ty ′:
is-acc-type (prg Env) (pid (cls Env)) T =⇒ Env`init-comp-ty T ::

√

〈proof 〉

lemma fvar-upd-no-jump:
assumes upd: upd = snd (fst (fvar statDeclC stat fn a s ′))

and noJmp: abrupt s 6= Some (Jump j)
shows abrupt (upd val s) 6= Some (Jump j)

〈proof 〉

lemma avar-state-no-jump:
assumes jmp: abrupt (snd (avar G i a s)) = Some (Jump j)
shows abrupt s = Some (Jump j)
〈proof 〉

lemma avar-upd-no-jump:
assumes upd: upd = snd (fst (avar G i a s ′))

and noJmp: abrupt s 6= Some (Jump j)
shows abrupt (upd val s) 6= Some (Jump j)

〈proof 〉

The next theorem expresses: If jumps (breaks, continues, returns) are nested correctly, we won’t
find an unexpected jump in the result state of the evaluation. For exeample, a break can’t leave its
enclosing loop, an return cant leave its enclosing method. To proove this, the method call is critical.
Allthough the wellformedness of the whole program guarantees that the jumps (breaks,continues
and returns) are nested correctly in all method bodies, the call rule alone does not guarantee that I
will call a method or even a class that is part of the program due to dynamic binding! To be able to
enshure this we need a kind of conformance of the state, like in the typesafety proof. But then we
will redo the typesafty proof here. It would be nice if we could find an easy precondition that will
guarantee that all calls will actually call classes and methods of the current program, which can be
instantiated in the typesafty proof later on. To fix this problem, I have instrumented the semantic
definition of a call to filter out any breaks in the state and to throw an error instead.
To get an induction hypothesis which is strong enough to perform the proof, we can’t just assume
jumpNestingOk for the empty set and conlcude, that no jump at all will be in the resulting state,
because the set is altered by the statements Lab and While.
The wellformedness of the program is used to enshure that for all classinitialisations and methods
the nesting of jumps is wellformed, too.

theorem jumpNestingOk-eval:
assumes eval: G` s0 −t�→ (v,s1)

Theory DefiniteAssignmentCorrect 183

and jmpOk: jumpNestingOk jmps t
and wt: Env`t::T
and wf : wf-prog G
and G: prg Env = G
and no-jmp: ∀ j. abrupt s0 = Some (Jump j) −→ j ∈ jmps

(is ?Jmp jmps s0)
shows (∀ j. fst s1 = Some (Jump j) −→ j ∈ jmps) ∧

(normal s1 −→
(∀ w upd. v=In2 (w,upd)
−→ (∀ s j val.

abrupt s 6= Some (Jump j) −→
abrupt (upd val s) 6= Some (Jump j))))

(is ?Jmp jmps s1 ∧ ?Upd v s1)
〈proof 〉

lemmas jumpNestingOk-evalE = jumpNestingOk-eval [THEN conjE ,rule-format]

lemma jumpNestingOk-eval-no-jump:
assumes eval: prg Env` s0 −t�→ (v,s1) and

jmpOk: jumpNestingOk {} t and
no-jmp: abrupt s0 6= Some (Jump j) and

wt: Env`t::T and
wf : wf-prog (prg Env)

shows abrupt s1 6= Some (Jump j) ∧
(normal s1 −→ v=In2 (w,upd)
−→ abrupt s 6= Some (Jump j ′)
−→ abrupt (upd val s) 6= Some (Jump j ′))

〈proof 〉

lemmas jumpNestingOk-eval-no-jumpE
= jumpNestingOk-eval-no-jump [THEN conjE ,rule-format]

corollary eval-expression-no-jump:
assumes eval: prg Env`s0 −e−�v→ s1 and

no-jmp: abrupt s0 6= Some (Jump j) and
wt: Env`e::−T and
wf : wf-prog (prg Env)

shows abrupt s1 6= Some (Jump j)
〈proof 〉

corollary eval-var-no-jump:
assumes eval: prg Env`s0 −var=�(w,upd)→ s1 and

no-jmp: abrupt s0 6= Some (Jump j) and
wt: Env`var ::=T and
wf : wf-prog (prg Env)

shows abrupt s1 6= Some (Jump j) ∧
(normal s1 −→
(abrupt s 6= Some (Jump j ′)
−→ abrupt (upd val s) 6= Some (Jump j ′)))

〈proof 〉

lemmas eval-var-no-jumpE = eval-var-no-jump [THEN conjE ,rule-format]

corollary eval-statement-no-jump:
assumes eval: prg Env`s0 −c→ s1 and

jmpOk: jumpNestingOkS {} c and
no-jmp: abrupt s0 6= Some (Jump j) and
wt: Env`c::

√
and

184

wf : wf-prog (prg Env)
shows abrupt s1 6= Some (Jump j)
〈proof 〉

corollary eval-expression-list-no-jump:
assumes eval: prg Env`s0 −es .

=�v→ s1 and
no-jmp: abrupt s0 6= Some (Jump j) and
wt: Env`es:: .=T and
wf : wf-prog (prg Env)

shows abrupt s1 6= Some (Jump j)
〈proof 〉

lemma union-subseteq-elim [elim]: [[A ∪ B ⊆ C ; [[A ⊆ C ; B ⊆ C]] =⇒ P]] =⇒ P
〈proof 〉

lemma dom-locals-halloc-mono:
assumes halloc: G`s0−halloc oi�a→s1
shows dom (locals (store s0)) ⊆ dom (locals (store s1))
〈proof 〉

lemma dom-locals-sxalloc-mono:
assumes sxalloc: G`s0−sxalloc→s1
shows dom (locals (store s0)) ⊆ dom (locals (store s1))
〈proof 〉

lemma dom-locals-assign-mono:
assumes f-ok: dom (locals (store s)) ⊆ dom (locals (store (f n s)))

shows dom (locals (store s)) ⊆ dom (locals (store (assign f n s)))
〈proof 〉

lemma dom-locals-lvar-mono:
dom (locals (store s)) ⊆ dom (locals (store (snd (lvar vn s ′) val s)))
〈proof 〉

lemma dom-locals-fvar-vvar-mono:
dom (locals (store s))
⊆ dom (locals (store (snd (fst (fvar statDeclC stat fn a s ′)) val s)))
〈proof 〉

lemma dom-locals-fvar-mono:
dom (locals (store s))
⊆ dom (locals (store (snd (fvar statDeclC stat fn a s))))
〈proof 〉

lemma dom-locals-avar-vvar-mono:
dom (locals (store s))
⊆ dom (locals (store (snd (fst (avar G i a s ′)) val s)))
〈proof 〉

lemma dom-locals-avar-mono:
dom (locals (store s))
⊆ dom (locals (store (snd (avar G i a s))))
〈proof 〉

Theory DefiniteAssignmentCorrect 185

Since assignments are modelled as functions from states to states, we must take into account these
functions. They appear only in the assignment rule and as result from evaluating a variable. Thats
why we need the complicated second part of the conjunction in the goal. The reason for the very
generic way to treat assignments was the aim to omit redundancy. There is only one evaluation rule
for each kind of variable (locals, fields, arrays). These rules are used for both accessing variables
and updating variables. Thats why the evaluation rules for variables result in a pair consisting of
a value and an update function. Of course we could also think of a pair of a value and a reference
in the store, instead of the generic update function. But as only array updates can cause a special
exception (if the types mismatch) and not array reads we then have to introduce two different rules
to handle array reads and updates

lemma dom-locals-eval-mono:
assumes eval: G` s0 −t�→ (v,s1)
shows dom (locals (store s0)) ⊆ dom (locals (store s1)) ∧

(∀ vv. v=In2 vv ∧ normal s1
−→ (∀ s val. dom (locals (store s))

⊆ dom (locals (store ((snd vv) val s)))))
〈proof 〉

lemma dom-locals-eval-mono-elim:
assumes eval: G` s0 −t�→ (v,s1)
obtains dom (locals (store s0)) ⊆ dom (locals (store s1)) and∧

vv s val. [[v=In2 vv; normal s1]]
=⇒ dom (locals (store s))
⊆ dom (locals (store ((snd vv) val s)))

〈proof 〉

lemma halloc-no-abrupt:
assumes halloc: G`s0−halloc oi�a→s1 and

normal: normal s1
shows normal s0
〈proof 〉

lemma sxalloc-mono-no-abrupt:
assumes sxalloc: G`s0−sxalloc→s1 and

normal: normal s1
shows normal s0
〈proof 〉

lemma union-subseteqI : [[A ∪ B ⊆ C ; A ′ ⊆ A; B ′ ⊆ B]] =⇒ A ′ ∪ B ′ ⊆ C
〈proof 〉

lemma union-subseteqIl: [[A ∪ B ⊆ C ; A ′ ⊆ A]] =⇒ A ′ ∪ B ⊆ C
〈proof 〉

lemma union-subseteqIr : [[A ∪ B ⊆ C ; B ′ ⊆ B]] =⇒ A ∪ B ′ ⊆ C
〈proof 〉

lemma subseteq-union-transl [trans]: [[A ⊆ B; B ∪ C ⊆ D]] =⇒ A ∪ C ⊆ D
〈proof 〉

lemma subseteq-union-transr [trans]: [[A ⊆ B; C ∪ B ⊆ D]] =⇒ A ∪ C ⊆ D
〈proof 〉

lemma union-subseteq-weaken: [[A ∪ B ⊆ C ; [[A ⊆ C ; B ⊆ C]] =⇒ P]] =⇒ P
〈proof 〉

lemma assigns-good-approx:

186

assumes
eval: G` s0 −t�→ (v,s1) and

normal: normal s1
shows assigns t ⊆ dom (locals (store s1))
〈proof 〉

corollary assignsE-good-approx:
assumes

eval: prg Env` s0 −e−�v→ s1 and
normal: normal s1

shows assignsE e ⊆ dom (locals (store s1))
〈proof 〉

corollary assignsV-good-approx:
assumes

eval: prg Env` s0 −v=�vf→ s1 and
normal: normal s1

shows assignsV v ⊆ dom (locals (store s1))
〈proof 〉

corollary assignsEs-good-approx:
assumes

eval: prg Env` s0 −es .
=�vs→ s1 and

normal: normal s1
shows assignsEs es ⊆ dom (locals (store s1))
〈proof 〉

lemma constVal-eval:
assumes const: constVal e = Some c and

eval: G`Norm s0 −e−�v→ s
shows v = c ∧ normal s
〈proof 〉

lemmas constVal-eval-elim = constVal-eval [THEN conjE]

lemma eval-unop-type:
typeof dt (eval-unop unop v) = Some (PrimT (unop-type unop))
〈proof 〉

lemma eval-binop-type:
typeof dt (eval-binop binop v1 v2) = Some (PrimT (binop-type binop))
〈proof 〉

lemma constVal-Boolean:
assumes const: constVal e = Some c and

wt: Env`e::−PrimT Boolean
shows typeof empty-dt c = Some (PrimT Boolean)
〈proof 〉

lemma assigns-if-good-approx:
assumes

eval: prg Env` s0 −e−�b→ s1 and
normal: normal s1 and

bool: Env` e::−PrimT Boolean
shows assigns-if (the-Bool b) e ⊆ dom (locals (store s1))
〈proof 〉

lemma assigns-if-good-approx ′:
assumes eval: G`s0 −e−�b→ s1

Theory DefiniteAssignmentCorrect 187

and normal: normal s1
and bool: (|prg=G,cls=C ,lcl=L|)`e::− (PrimT Boolean)

shows assigns-if (the-Bool b) e ⊆ dom (locals (store s1))
〈proof 〉

lemma subset-Intl: A ⊆ C =⇒ A ∩ B ⊆ C
〈proof 〉

lemma subset-Intr : B ⊆ C =⇒ A ∩ B ⊆ C
〈proof 〉

lemma da-good-approx:
assumes eval: prg Env`s0 −t�→ (v,s1) and

wt: Env`t::T (is ?Wt Env t T) and
da: Env` dom (locals (store s0)) »t» A (is ?Da Env s0 t A) and
wf : wf-prog (prg Env)

shows (normal s1 −→ (nrm A ⊆ dom (locals (store s1)))) ∧
(∀ l. abrupt s1 = Some (Jump (Break l)) ∧ normal s0

−→ (brk A l ⊆ dom (locals (store s1)))) ∧
(abrupt s1 = Some (Jump Ret) ∧ normal s0

−→ Result ∈ dom (locals (store s1)))
(is ?NormalAssigned s1 A ∧ ?BreakAssigned s0 s1 A ∧ ?ResAssigned s0 s1)

〈proof 〉

lemma da-good-approxE :
assumes

prg Env`s0 −t�→ (v, s1) and Env`t::T and
Env` dom (locals (store s0)) »t» A and wf-prog (prg Env)

obtains
normal s1 =⇒ nrm A ⊆ dom (locals (store s1)) and∧

l. [[abrupt s1 = Some (Jump (Break l)); normal s0]]
=⇒ brk A l ⊆ dom (locals (store s1)) and

[[abrupt s1 = Some (Jump Ret);normal s0]]=⇒Result ∈ dom (locals (store s1))
〈proof 〉

lemma da-good-approxE ′:
assumes eval: G`s0 −t�→ (v, s1)

and wt: (|prg=G,cls=C ,lcl=L|)`t::T
and da: (|prg=G,cls=C ,lcl=L|)` dom (locals (store s0)) »t» A
and wf : wf-prog G

obtains normal s1 =⇒ nrm A ⊆ dom (locals (store s1)) and∧
l. [[abrupt s1 = Some (Jump (Break l)); normal s0]]

=⇒ brk A l ⊆ dom (locals (store s1)) and
[[abrupt s1 = Some (Jump Ret);normal s0]]

=⇒ Result ∈ dom (locals (store s1))
〈proof 〉

declare [[simproc add: wt-expr wt-var wt-exprs wt-stmt]]

end

188

Chapter 19

TypeSafe

1 The type soundness proof for Java
theory TypeSafe
imports DefiniteAssignmentCorrect Conform
begin

error free

lemma error-free-halloc:
assumes halloc: G`s0 −halloc oi�a→ s1 and

error-free-s0 : error-free s0
shows error-free s1
〈proof 〉

lemma error-free-sxalloc:
assumes sxalloc: G`s0 −sxalloc→ s1 and error-free-s0 : error-free s0
shows error-free s1
〈proof 〉

lemma error-free-check-field-access-eq:
error-free (check-field-access G accC statDeclC fn stat a s)
=⇒ (check-field-access G accC statDeclC fn stat a s) = s
〈proof 〉

lemma error-free-check-method-access-eq:
error-free (check-method-access G accC statT mode sig a ′ s)
=⇒ (check-method-access G accC statT mode sig a ′ s) = s
〈proof 〉

lemma error-free-FVar-lemma:
error-free s
=⇒ error-free (abupd (if stat then id else np a) s)

〈proof 〉

lemma error-free-init-lvars [simp,intro]:
error-free s =⇒

error-free (init-lvars G C sig mode a pvs s)
〈proof 〉

lemma error-free-LVar-lemma:
error-free s =⇒ error-free (assign (λv. supd lupd(vn 7→v)) w s)
〈proof 〉

lemma error-free-throw [simp,intro]:

189

190

error-free s =⇒ error-free (abupd (throw x) s)
〈proof 〉

result conformance
definition

assign-conforms :: st ⇒ (val ⇒ state ⇒ state) ⇒ ty ⇒ env ′⇒ bool (‹-≤|-�-::�-› [71 ,71 ,71 ,71] 70)
where

s≤|f�T ::�E =
((∀ s ′ w. Norm s ′::�E −→ fst E ,s ′̀ w::�T −→ s≤|s ′ −→ assign f w (Norm s ′)::�E) ∧
(∀ s ′ w. error-free s ′ −→ (error-free (assign f w s ′))))

definition
rconf :: prog ⇒ lenv ⇒ st ⇒ term ⇒ vals ⇒ tys ⇒ bool (‹-,-,-`-�-::�-› [71 ,71 ,71 ,71 ,71 ,71] 70)

where
G,L,s`t�v::�T =
(case T of

Inl T ⇒ if (∃ var . t=In2 var)
then (∀ n. (the-In2 t) = LVar n

−→ (fst (the-In2 v) = the (locals s n)) ∧
(locals s n 6= None −→ G,s`fst (the-In2 v)::�T)) ∧

(¬ (∃ n. the-In2 t=LVar n) −→ (G,s`fst (the-In2 v)::�T))∧
(s≤|snd (the-In2 v)�T ::�(G,L))

else G,s`the-In1 v::�T
| Inr Ts ⇒ list-all2 (conf G s) (the-In3 v) Ts)

With rconf we describe the conformance of the result value of a term. This definition gets rather
complicated because of the relations between the injections of the different terms, types and values.
The main case distinction is between single values and value lists. In case of value lists, every value
has to conform to its type. For single values we have to do a further case distinction, between
values of variables ∃ var . t = In2 var and ordinary values. Values of variables are modelled as
pairs consisting of the current value and an update function which will perform an assignment to
the variable. This stems form the decision, that we only have one evaluation rule for each kind of
variable. The decision if we read or write to the variable is made by syntactic enclosing rules. So
conformance of variable-values must ensure that both the current value and an update will conform
to the type. With the introduction of definite assignment of local variables we have to do another
case distinction. For the notion of conformance local variables are allowed to be None, since the
definedness is not ensured by conformance but by definite assignment. Field and array variables
must contain a value.
lemma rconf-In1 [simp]:
G,L,s`In1 ec�In1 v ::�Inl T = G,s`v::�T
〈proof 〉

lemma rconf-In2-no-LVar [simp]:
∀ n. va 6=LVar n =⇒

G,L,s`In2 va�In2 vf ::�Inl T = (G,s`fst vf ::�T ∧ s≤|snd vf�T ::�(G,L))
〈proof 〉

lemma rconf-In2-LVar [simp]:
va=LVar n =⇒

G,L,s`In2 va�In2 vf ::�Inl T
= ((fst vf = the (locals s n)) ∧

(locals s n 6= None −→ G,s`fst vf ::�T) ∧ s≤|snd vf�T ::�(G,L))
〈proof 〉

lemma rconf-In3 [simp]:

Theory TypeSafe 191

G,L,s`In3 es�In3 vs::�Inr Ts = list-all2 (λv T . G,s`v::�T) vs Ts
〈proof 〉

fits and conf
lemma conf-fits: G,s`v::�T =⇒ G,s`v fits T
〈proof 〉

lemma fits-conf :
[[G,s`v::�T ; G`T�? T ′; G,s`v fits T ′; ws-prog G]] =⇒ G,s`v::�T ′

〈proof 〉

lemma fits-Array:
[[G,s`v::�T ; G`T ′.[]�T .[]; G,s`v fits T ′; ws-prog G]] =⇒ G,s`v::�T ′

〈proof 〉

gext
lemma halloc-gext:

∧
s1 s2 . G`s1 −halloc oi�a→ s2 =⇒ snd s1≤|snd s2

〈proof 〉

lemma sxalloc-gext:
∧

s1 s2 . G`s1 −sxalloc→ s2 =⇒ snd s1≤|snd s2
〈proof 〉

lemma eval-gext-lemma [rule-format (no-asm)]:
G`s −t�→ (w,s ′) =⇒ snd s≤|snd s ′ ∧ (case w of

In1 v ⇒ True
| In2 vf ⇒ normal s −→ (∀ v x s. s≤|snd (assign (snd vf) v (x,s)))
| In3 vs ⇒ True)
〈proof 〉

lemma evar-gext-f :
G`Norm s1 −e=�vf → s2 =⇒ s≤|snd (assign (snd vf) v (x,s))
〈proof 〉

lemmas eval-gext = eval-gext-lemma [THEN conjunct1]

lemma eval-gext ′: G`(x1 ,s1) −t�→ (w,(x2 ,s2)) =⇒ s1≤|s2
〈proof 〉

lemma init-yields-initd: G`Norm s1 −Init C→ s2 =⇒ initd C s2
〈proof 〉

Lemmas
lemma obj-ty-obj-class1 :
[[wf-prog G; is-type G (obj-ty obj)]] =⇒ is-class G (obj-class obj)
〈proof 〉

lemma oconf-init-obj:
[[wf-prog G;
(case r of Heap a ⇒ is-type G (obj-ty obj) | Stat C ⇒ is-class G C)
]] =⇒ G,s`obj (|values:=init-vals (var-tys G (tag obj) r)|)::�

√
r

〈proof 〉

lemma conforms-newG: [[globs s oref = None; (x, s)::�(G,L);
wf-prog G; case oref of Heap a ⇒ is-type G (obj-ty (|tag=oi,values=vs|))

| Stat C ⇒ is-class G C]] =⇒
(x, init-obj G oi oref s)::�(G, L)

192

〈proof 〉

lemma conforms-init-class-obj:
[[(x,s)::�(G, L); wf-prog G; class G C=Some y; ¬ inited C (globs s)]] =⇒
(x,init-class-obj G C s)::�(G, L)
〈proof 〉

lemma fst-init-lvars[simp]:
fst (init-lvars G C sig (invmode m e) a ′ pvs (x,s)) =
(if is-static m then x else (np a ′) x)
〈proof 〉

lemma halloc-conforms:
∧

s1 . [[G`s1 −halloc oi�a→ s2 ; wf-prog G; s1 ::�(G, L);
is-type G (obj-ty (|tag=oi,values=fs|))]] =⇒ s2 ::�(G, L)
〈proof 〉

lemma halloc-type-sound:∧
s1 . [[G`s1 −halloc oi�a→ (x,s); wf-prog G; s1 ::�(G, L);
T = obj-ty (|tag=oi,values=fs|); is-type G T]] =⇒
(x,s)::�(G, L) ∧ (x = None −→ G,s`Addr a::�T)
〈proof 〉

lemma sxalloc-type-sound:∧
s1 s2 . [[G`s1 −sxalloc→ s2 ; wf-prog G]] =⇒

case fst s1 of
None ⇒ s2 = s1
| Some abr ⇒ (case abr of

Xcpt x ⇒ (∃ a. fst s2 = Some(Xcpt (Loc a)) ∧
(∀L. s1 ::�(G,L) −→ s2 ::�(G,L)))

| Jump j ⇒ s2 = s1
| Error e ⇒ s2 = s1)

〈proof 〉

lemma wt-init-comp-ty:
is-acc-type G (pid C) T =⇒ (|prg=G,cls=C ,lcl=L|)`init-comp-ty T ::

√

〈proof 〉

declare fun-upd-same [simp]

declare fun-upd-apply [simp del]

definition
DynT-prop :: [prog,inv-mode,qtname,ref-ty] ⇒ bool (‹-`-→-�-›[71 ,71 ,71 ,71]70)

where
G`mode→D�t = (mode = IntVir −→ is-class G D ∧

(if (∃T . t=ArrayT T) then D=Object else G`Class D�RefT t))

lemma DynT-propI :
[[(x,s)::�(G, L); G,s`a ′::�RefT statT ; wf-prog G; mode = IntVir −→ a ′ 6= Null]]
=⇒ G`mode→invocation-class mode s a ′ statT�statT
〈proof 〉

lemma invocation-methd:
[[wf-prog G; statT 6= NullT ;
(∀ statC . statT = ClassT statC −→ is-class G statC);
(∀ I . statT = IfaceT I −→ is-iface G I ∧ mode 6= SuperM);

Theory TypeSafe 193

(∀ T . statT = ArrayT T −→ mode 6= SuperM);
G`mode→invocation-class mode s a ′ statT�statT ;
dynlookup G statT (invocation-class mode s a ′ statT) sig = Some m]]
=⇒ methd G (invocation-declclass G mode s a ′ statT sig) sig = Some m
〈proof 〉

lemma DynT-mheadsD:
[[G`invmode sm e→invC�statT ;

wf-prog G; (|prg=G,cls=C ,lcl=L|)`e::−RefT statT ;
(statDeclT ,sm) ∈ mheads G C statT sig;
invC = invocation-class (invmode sm e) s a ′ statT ;
declC =invocation-declclass G (invmode sm e) s a ′ statT sig
]] =⇒
∃ dm.
methd G declC sig = Some dm ∧ dynlookup G statT invC sig = Some dm ∧
G`resTy (mthd dm)�resTy sm ∧
wf-mdecl G declC (sig, mthd dm) ∧
declC = declclass dm ∧
is-static dm = is-static sm ∧
is-class G invC ∧ is-class G declC ∧ G`invC�C declC ∧
(if invmode sm e = IntVir

then (∀ statC . statT=ClassT statC −→ G`invC �C statC)
else ((∃ statC . statT=ClassT statC ∧ G`statC�C declC)

∨ (∀ statC . statT 6=ClassT statC ∧ declC=Object)) ∧
statDeclT = ClassT (declclass dm))

〈proof 〉

corollary DynT-mheadsE [consumes 7]:
— Same as DynT-mheadsD but better suited for application in typesafety proof
assumes invC-compatible: G`mode→invC�statT

and wf : wf-prog G
and wt-e: (|prg=G,cls=C ,lcl=L|)`e::−RefT statT
and mheads: (statDeclT ,sm) ∈ mheads G C statT sig
and mode: mode=invmode sm e
and invC : invC = invocation-class mode s a ′ statT
and declC : declC =invocation-declclass G mode s a ′ statT sig
and dm:

∧
dm. [[methd G declC sig = Some dm;

dynlookup G statT invC sig = Some dm;
G`resTy (mthd dm)�resTy sm;
wf-mdecl G declC (sig, mthd dm);
declC = declclass dm;
is-static dm = is-static sm;
is-class G invC ; is-class G declC ; G`invC�C declC ;
(if invmode sm e = IntVir
then (∀ statC . statT=ClassT statC −→ G`invC �C statC)
else ((∃ statC . statT=ClassT statC ∧ G`statC�C declC)

∨ (∀ statC . statT 6=ClassT statC ∧ declC=Object)) ∧
statDeclT = ClassT (declclass dm))]] =⇒ P

shows P
〈proof 〉

lemma DynT-conf : [[G`invocation-class mode s a ′ statT �C declC ; wf-prog G;
isrtype G (statT);
G,s`a ′::�RefT statT ; mode = IntVir −→ a ′ 6= Null;
mode 6= IntVir −→ (∃ statC . statT=ClassT statC ∧ G`statC�C declC)

∨ (∀ statC . statT 6=ClassT statC ∧ declC=Object)]]
=⇒G,s`a ′::� Class declC
〈proof 〉

194

lemma Ass-lemma:
[[G`Norm s0 −var=�(w, f)→ Norm s1 ; G`Norm s1 −e−�v→ Norm s2 ;

G,s2`v::�eT ;s1≤|s2 −→ assign f v (Norm s2)::�(G, L)]]
=⇒ assign f v (Norm s2)::�(G, L) ∧

(normal (assign f v (Norm s2)) −→ G,store (assign f v (Norm s2))`v::�eT)
〈proof 〉

lemma Throw-lemma: [[G`tn�C SXcpt Throwable; wf-prog G; (x1 ,s1)::�(G, L);
x1 = None −→ G,s1`a ′::� Class tn]] =⇒ (throw a ′ x1 , s1)::�(G, L)

〈proof 〉

lemma Try-lemma: [[G`obj-ty (the (globs s1 ′ (Heap a)))� Class tn;
(Some (Xcpt (Loc a)), s1 ′)::�(G, L); wf-prog G]]
=⇒ Norm (lupd(vn 7→Addr a) s1 ′)::�(G, L(vn 7→Class tn))
〈proof 〉

lemma Fin-lemma:
[[G`Norm s1 −c2→ (x2 ,s2); wf-prog G; (Some a, s1)::�(G, L); (x2 ,s2)::�(G, L);

dom (locals s1) ⊆ dom (locals s2)]]
=⇒ (abrupt-if True (Some a) x2 , s2)::�(G, L)
〈proof 〉

lemma FVar-lemma1 :
[[table-of (DeclConcepts.fields G statC) (fn, statDeclC) = Some f ;

x2 = None −→ G,s2`a::� Class statC ; wf-prog G; G`statC�C statDeclC ;
statDeclC 6= Object;
class G statDeclC = Some y; (x2 ,s2)::�(G, L); s1≤|s2 ;
inited statDeclC (globs s1);
(if static f then id else np a) x2 = None]]
=⇒
∃ obj. globs s2 (if static f then Inr statDeclC else Inl (the-Addr a))

= Some obj ∧
var-tys G (tag obj) (if static f then Inr statDeclC else Inl(the-Addr a))

(Inl(fn,statDeclC)) = Some (type f)
〈proof 〉

lemma FVar-lemma2 : error-free state
=⇒ error-free

(assign
(λv. supd

(upd-gobj
(if static field then Inr statDeclC
else Inl (the-Addr a))
(Inl (fn, statDeclC)) v))

w state)
〈proof 〉

declare split-paired-All [simp del] split-paired-Ex [simp del]
declare if-split [split del] if-split-asm [split del]

option.split [split del] option.split-asm [split del]
〈ML〉

lemma FVar-lemma:
[[((v, f), Norm s2 ′) = fvar statDeclC (static field) fn a (x2 , s2);

G`statC�C statDeclC ;
table-of (DeclConcepts.fields G statC) (fn, statDeclC) = Some field;
wf-prog G;
x2 = None −→ G,s2`a::�Class statC ;

Theory TypeSafe 195

statDeclC 6= Object; class G statDeclC = Some y;
(x2 , s2)::�(G, L); s1≤|s2 ; inited statDeclC (globs s1)]] =⇒
G,s2 ′̀ v::�type field ∧ s2 ′≤|f�type field::�(G, L)
〈proof 〉
declare split-paired-All [simp] split-paired-Ex [simp]
declare if-split [split] if-split-asm [split]

option.split [split] option.split-asm [split]
〈ML〉

lemma AVar-lemma1 : [[globs s (Inl a) = Some obj;tag obj=Arr ty i;
the-Intg i ′ in-bounds i; wf-prog G; G`ty.[]�Tb.[]; Norm s::�(G, L)
]] =⇒ G,s`the ((values obj) (Inr (the-Intg i ′)))::�Tb
〈proof 〉

lemma obj-split: ∃ t vs. obj = (|tag=t,values=vs|)
〈proof 〉

lemma AVar-lemma2 : error-free state
=⇒ error-free

(assign
(λv (x, s ′).

((raise-if (¬ G,s ′̀ v fits T) ArrStore) x,
upd-gobj (Inl a) (Inr (the-Intg i)) v s ′))

w state)
〈proof 〉

lemma AVar-lemma: [[wf-prog G; G`(x1 , s1) −e2−�i→ (x2 , s2);
((v,f), Norm s2 ′) = avar G i a (x2 , s2); x1 = None −→ G,s1`a::�Ta.[];
(x2 , s2)::�(G, L); s1≤|s2]] =⇒ G,s2 ′̀ v::�Ta ∧ s2 ′≤|f�Ta::�(G, L)
〈proof 〉

Call

lemma conforms-init-lvars-lemma: [[wf-prog G;
wf-mhead G P sig mh;
list-all2 (conf G s) pvs pTsa; G`pTsa[�](parTs sig)]] =⇒
G,s`Map.empty (pars mh[7→]pvs)

[∼::�](table-of lvars)(pars mh[7→]parTs sig)
〈proof 〉

lemma lconf-map-lname [simp]:
G,s`(case-lname l1 l2)[::�](case-lname L1 L2)
=
(G,s`l1 [::�]L1 ∧ G,s`(λx::unit . l2)[::�](λx::unit. L2))
〈proof 〉

lemma wlconf-map-lname [simp]:
G,s`(case-lname l1 l2)[∼::�](case-lname L1 L2)
=
(G,s`l1 [∼::�]L1 ∧ G,s`(λx::unit . l2)[∼::�](λx::unit. L2))
〈proof 〉

lemma lconf-map-ename [simp]:
G,s`(case-ename l1 l2)[::�](case-ename L1 L2)
=
(G,s`l1 [::�]L1 ∧ G,s`(λx::unit. l2)[::�](λx::unit. L2))
〈proof 〉

196

lemma wlconf-map-ename [simp]:
G,s`(case-ename l1 l2)[∼::�](case-ename L1 L2)
=
(G,s`l1 [∼::�]L1 ∧ G,s`(λx::unit. l2)[∼::�](λx::unit. L2))
〈proof 〉

lemma defval-conf1 [rule-format (no-asm), elim]:
is-type G T −→ (∃ v∈Some (default-val T): G,s`v::�T)
〈proof 〉

lemma np-no-jump: x 6=Some (Jump j) =⇒ (np a ′) x 6= Some (Jump j)
〈proof 〉

declare split-paired-All [simp del] split-paired-Ex [simp del]
declare if-split [split del] if-split-asm [split del]

option.split [split del] option.split-asm [split del]
〈ML〉

lemma conforms-init-lvars:
[[wf-mhead G (pid declC) sig (mhead (mthd dm)); wf-prog G;

list-all2 (conf G s) pvs pTsa; G`pTsa[�](parTs sig);
(x, s)::�(G, L);
methd G declC sig = Some dm;
isrtype G statT ;
G`invC�C declC ;
G,s`a ′::�RefT statT ;
invmode (mhd sm) e = IntVir −→ a ′ 6= Null;
invmode (mhd sm) e 6= IntVir −→

(∃ statC . statT=ClassT statC ∧ G`statC�C declC)
∨ (∀ statC . statT 6=ClassT statC ∧ declC=Object);

invC = invocation-class (invmode (mhd sm) e) s a ′ statT ;
declC = invocation-declclass G (invmode (mhd sm) e) s a ′ statT sig;
x 6=Some (Jump Ret)
]] =⇒
init-lvars G declC sig (invmode (mhd sm) e) a ′

pvs (x,s)::�(G,λ k.
(case k of

EName e ⇒ (case e of
VNam v
⇒ ((table-of (lcls (mbody (mthd dm))))

(pars (mthd dm)[7→]parTs sig)) v
| Res ⇒ Some (resTy (mthd dm)))

| This ⇒ if (is-static (mthd sm))
then None else Some (Class declC)))

〈proof 〉
declare split-paired-All [simp] split-paired-Ex [simp]
declare if-split [split] if-split-asm [split]

option.split [split] option.split-asm [split]
〈ML〉

2 accessibility
theorem dynamic-field-access-ok:

assumes wf : wf-prog G and
not-Null: ¬ stat −→ a 6=Null and

conform-a: G,(store s)`a::� Class statC and

Theory TypeSafe 197

conform-s: s::�(G, L) and
normal-s: normal s and

wt-e: (|prg=G,cls=accC ,lcl=L|)`e::−Class statC and
f : accfield G accC statC fn = Some f and

dynC : if stat then dynC=declclass f
else dynC=obj-class (lookup-obj (store s) a) and

stat: if stat then (is-static f) else (¬ is-static f)
shows table-of (DeclConcepts.fields G dynC) (fn,declclass f) = Some (fld f)∧

G`Field fn f in dynC dyn-accessible-from accC
〈proof 〉

lemma error-free-field-access:
assumes accfield: accfield G accC statC fn = Some (statDeclC , f) and

wt-e: (|prg = G, cls = accC , lcl = L|)`e::−Class statC and
eval-init: G`Norm s0 −Init statDeclC→ s1 and

eval-e: G`s1 −e−�a→ s2 and
conf-s2 : s2 ::�(G, L) and
conf-a: normal s2 =⇒ G, store s2`a::�Class statC and

fvar : (v,s2 ′)=fvar statDeclC (is-static f) fn a s2 and
wf : wf-prog G

shows check-field-access G accC statDeclC fn (is-static f) a s2 ′ = s2 ′

〈proof 〉

lemma call-access-ok:
assumes invC-prop: G`invmode statM e→invC�statT

and wf : wf-prog G
and wt-e: (|prg=G,cls=C ,lcl=L|)`e::−RefT statT
and statM : (statDeclT ,statM) ∈ mheads G accC statT sig
and invC : invC = invocation-class (invmode statM e) s a statT

shows ∃ dynM . dynlookup G statT invC sig = Some dynM ∧
G`Methd sig dynM in invC dyn-accessible-from accC
〈proof 〉

lemma error-free-call-access:
assumes
eval-args: G`s1 −args .

=�vs→ s2 and
wt-e: (|prg = G, cls = accC , lcl = L|)`e::−(RefT statT) and

statM : max-spec G accC statT (|name = mn, parTs = pTs|)
= {((statDeclT , statM), pTs ′)} and

conf-s2 : s2 ::�(G, L) and
conf-a: normal s1 =⇒ G, store s1`a::�RefT statT and

invProp: normal s3 =⇒
G`invmode statM e→invC�statT and

s3 : s3=init-lvars G invDeclC (|name = mn, parTs = pTs ′|)
(invmode statM e) a vs s2 and

invC : invC = invocation-class (invmode statM e) (store s2) a statTand
invDeclC : invDeclC = invocation-declclass G (invmode statM e) (store s2)

a statT (|name = mn, parTs = pTs ′|) and
wf : wf-prog G

shows check-method-access G accC statT (invmode statM e) (|name=mn,parTs=pTs ′|) a s3
= s3

〈proof 〉

lemma map-upds-eq-length-append-simp:∧
tab qs. length ps = length qs =⇒ tab(ps[7→]qs@zs) = tab(ps[7→]qs)

〈proof 〉

lemma map-upds-upd-eq-length-simp:∧
tab qs x y. length ps = length qs

198

=⇒ tab(ps[7→]qs, x 7→y) = tab(ps@[x][7→]qs@[y])
〈proof 〉

lemma map-upd-cong: tab=tab ′=⇒ tab(x 7→y) = tab ′(x 7→y)
〈proof 〉

lemma map-upd-cong-ext: tab z=tab ′ z=⇒ (tab(x 7→y)) z = (tab ′(x 7→y)) z
〈proof 〉

lemma map-upds-cong: tab=tab ′=⇒ tab(xs[7→]ys) = tab ′(xs[7→]ys)
〈proof 〉

lemma map-upds-cong-ext:∧
tab tab ′ ys. tab z=tab ′ z =⇒ (tab(xs[7→]ys)) z = (tab ′(xs[7→]ys)) z

〈proof 〉

lemma map-upd-override: (tab(x 7→y)) x = (tab ′(x 7→y)) x
〈proof 〉

lemma map-upds-eq-length-suffix:
∧

tab qs.
length ps = length qs =⇒ tab(ps@xs[7→]qs) = tab(ps[7→]qs, xs[7→][])

〈proof 〉

lemma map-upds-upds-eq-length-prefix-simp:∧
tab qs. length ps = length qs

=⇒ tab(ps[7→]qs, xs[7→]ys) = tab(ps@xs[7→]qs@ys)
〈proof 〉

lemma map-upd-cut-irrelevant:
[[(tab(x 7→y)) vn = Some el; (tab ′(x 7→y)) vn = None]]

=⇒ tab vn = Some el
〈proof 〉

lemma map-upd-Some-expand:
[[tab vn = Some z]]

=⇒ ∃ z. (tab(x 7→y)) vn = Some z
〈proof 〉

lemma map-upds-Some-expand:∧
tab ys z. [[tab vn = Some z]]
=⇒ ∃ z. (tab(xs[7→]ys)) vn = Some z

〈proof 〉

lemma map-upd-Some-swap:
(tab(r 7→w, u 7→v)) vn = Some z =⇒ ∃ z. (tab(u 7→v, r 7→w)) vn = Some z
〈proof 〉

lemma map-upd-None-swap:
(tab(r 7→w, u 7→v)) vn = None =⇒ (tab(u 7→v, r 7→w)) vn = None
〈proof 〉

lemma map-eq-upd-eq: tab vn = tab ′ vn =⇒ (tab(x 7→y)) vn = (tab ′(x 7→y)) vn
〈proof 〉

lemma map-upd-in-expansion-map-swap:

Theory TypeSafe 199

[[(tab(x 7→y)) vn = Some z;tab vn 6= Some z]]
=⇒ (tab ′(x 7→y)) vn = Some z

〈proof 〉

lemma map-upds-in-expansion-map-swap:∧
tab tab ′ ys z. [[(tab(xs[7→]ys)) vn = Some z;tab vn 6= Some z]]

=⇒ (tab ′(xs[7→]ys)) vn = Some z
〈proof 〉

lemma map-upds-Some-swap:
assumes r-u: (tab(r 7→w, u 7→v, xs[7→]ys)) vn = Some z

shows ∃ z. (tab(u 7→v, r 7→w, xs[7→]ys)) vn = Some z
〈proof 〉

lemma map-upds-Some-insert:
assumes z: (tab(xs[7→]ys)) vn = Some z

shows ∃ z. (tab(u 7→v, xs[7→]ys)) vn = Some z
〈proof 〉

lemma map-upds-None-cut:
assumes expand-None: (tab(xs[7→]ys)) vn = None

shows tab vn = None
〈proof 〉

lemma map-upds-cut-irrelevant:∧
tab tab ′ ys. [[(tab(xs[7→]ys)) vn = Some el; (tab ′(xs[7→]ys)) vn = None]]

=⇒ tab vn = Some el
〈proof 〉

lemma dom-vname-split:
dom (case-lname (case-ename (tab(x 7→y, xs[7→]ys)) a) b)
= dom (case-lname (case-ename (tab(x 7→y)) a) b) ∪

dom (case-lname (case-ename (tab(xs[7→]ys)) a) b)
(is ?List x xs y ys = ?Hd x y ∪ ?Tl xs ys)
〈proof 〉

lemma dom-map-upd:
∧

tab. dom (tab(x 7→y)) = dom tab ∪ {x}
〈proof 〉

lemma dom-map-upds:
∧

tab ys. length xs = length ys
=⇒ dom (tab(xs[7→]ys)) = dom tab ∪ set xs
〈proof 〉

lemma dom-case-ename-None-simp:
dom (case-ename vname-tab None) = VNam ‘ (dom vname-tab)
〈proof 〉

lemma dom-case-ename-Some-simp:
dom (case-ename vname-tab (Some a)) = VNam ‘ (dom vname-tab) ∪ {Res}
〈proof 〉

lemma dom-case-lname-None-simp:
dom (case-lname ename-tab None) = EName ‘ (dom ename-tab)
〈proof 〉

lemma dom-case-lname-Some-simp:
dom (case-lname ename-tab (Some a)) = EName ‘ (dom ename-tab) ∪ {This}

200

〈proof 〉

lemmas dom-lname-case-ename-simps =
dom-case-ename-None-simp dom-case-ename-Some-simp
dom-case-lname-None-simp dom-case-lname-Some-simp

lemma image-comp:
f ‘ g ‘ A = (f ◦ g) ‘ A
〈proof 〉

lemma dom-locals-init-lvars:
assumes m: m=(mthd (the (methd G C sig)))
assumes len: length (pars m) = length pvs
shows dom (locals (store (init-lvars G C sig (invmode m e) a pvs s)))

= parameters m
〈proof 〉

lemma da-e2-BinOp:
assumes da: (|prg=G,cls=accC ,lcl=L|)

`dom (locals (store s0)) »〈BinOp binop e1 e2 〉e» A
and wt-e1 : (|prg=G,cls=accC ,lcl=L|)`e1 ::−e1T
and wt-e2 : (|prg=G,cls=accC ,lcl=L|)`e2 ::−e2T
and wt-binop: wt-binop G binop e1T e2T
and conf-s0 : s0 ::�(G,L)
and normal-s1 : normal s1
and eval-e1 : G`s0 −e1−�v1→ s1
and conf-v1 : G,store s1`v1 ::�e1T
and wf : wf-prog G

shows ∃ E2 . (|prg=G,cls=accC ,lcl=L|)` dom (locals (store s1))
»(if need-second-arg binop v1 then 〈e2 〉e else 〈Skip〉s)» E2

〈proof 〉

main proof of type safety
lemma eval-type-sound:

assumes eval: G`s0 −t�→ (v,s1)
and wt: (|prg=G,cls=accC ,lcl=L|)`t::T
and da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»t»A
and wf : wf-prog G
and conf-s0 : s0 ::�(G,L)

shows s1 ::�(G,L) ∧ (normal s1 −→ G,L,store s1`t�v::�T) ∧
(error-free s0 = error-free s1)

〈proof 〉

corollary eval-type-soundE [consumes 5]:
assumes eval: G`s0 −t�→ (v, s1)
and conf : s0 ::�(G, L)
and wt: (|prg = G, cls = accC , lcl = L|)`t::T
and da: (|prg = G, cls = accC , lcl = L|)` dom (locals (snd s0)) »t» A
and wf : wf-prog G
and elim: [[s1 ::�(G, L); normal s1 =⇒ G,L,snd s1`t�v::�T ;

error-free s0 = error-free s1]] =⇒ P
shows P
〈proof 〉

corollary eval-ts:

Theory TypeSafe 201

[[G`s −e−�v → s ′; wf-prog G; s::�(G,L); (|prg=G,cls=C ,lcl=L|)`e::−T ;
(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»In1l e»A]]

=⇒ s ′::�(G,L) ∧ (normal s ′ −→ G,store s ′̀ v::�T) ∧
(error-free s = error-free s ′)

〈proof 〉

corollary evals-ts:
[[G`s −es .

=�vs→ s ′; wf-prog G; s::�(G,L); (|prg=G,cls=C ,lcl=L|)`es:: .=Ts;
(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»In3 es»A]]

=⇒ s ′::�(G,L) ∧ (normal s ′ −→ list-all2 (conf G (store s ′)) vs Ts) ∧
(error-free s = error-free s ′)

〈proof 〉

corollary evar-ts:
[[G`s −v=�vf→ s ′; wf-prog G; s::�(G,L); (|prg=G,cls=C ,lcl=L|)`v::=T ;
(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»In2 v»A]] =⇒
s ′::�(G,L) ∧ (normal s ′ −→ G,L,(store s ′)`In2 v�In2 vf ::�Inl T) ∧
(error-free s = error-free s ′)
〈proof 〉

theorem exec-ts:
[[G`s −c→ s ′; wf-prog G; s::�(G,L); (|prg=G,cls=C ,lcl=L|)`c::

√
;

(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»In1r c»A]]
=⇒ s ′::�(G,L) ∧ (error-free s −→ error-free s ′)
〈proof 〉

lemma wf-eval-Fin:
assumes wf : wf-prog G

and wt-c1 : (|prg = G, cls = C , lcl = L|)`In1r c1 ::Inl (PrimT Void)
and da-c1 : (|prg=G,cls=C ,lcl=L|)`dom (locals (store (Norm s0)))»In1r c1»A
and conf-s0 : Norm s0 ::�(G, L)
and eval-c1 : G`Norm s0 −c1→ (x1 ,s1)
and eval-c2 : G`Norm s1 −c2→ s2
and s3 : s3=abupd (abrupt-if (x1 6=None) x1) s2

shows G`Norm s0 −c1 Finally c2→ s3
〈proof 〉

3 Ideas for the future

In the type soundness proof and the correctness proof of definite assignment we perform induction
on the evaluation relation with the further preconditions that the term is welltyped and definitely
assigned. During the proofs we have to establish the welltypedness and definite assignment of the
subterms to be able to apply the induction hypothesis. So large parts of both proofs are the same
work in propagating welltypedness and definite assignment. So we can derive a new induction rule
for induction on the evaluation of a wellformed term, were these propagations is already done, once
and forever. Then we can do the proofs with this rule and can enjoy the time we have saved. Here
is a first and incomplete sketch of such a rule.

theorem wellformed-eval-induct [consumes 4 , case-names Abrupt Skip Expr Lab
Comp If]:

assumes eval: G`s0 −t�→ (v,s1)
and wt: (|prg=G,cls=accC ,lcl=L|)`t::T
and da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»t»A
and wf : wf-prog G
and abrupt:

∧
s t abr L accC T A.

[[(|prg=G,cls=accC ,lcl=L|)`t::T ;
(|prg=G,cls=accC ,lcl=L|)`dom (locals (store (Some abr ,s)))»t»A
]] =⇒ P L accC (Some abr , s) t (undefined3 t) (Some abr , s)

202

and skip:
∧

s L accC . P L accC (Norm s) 〈Skip〉s ♦ (Norm s)
and expr :

∧
e s0 s1 v L accC eT E .

[[(|prg=G,cls=accC ,lcl=L|)`e::−eT ;
(|prg=G,cls=accC ,lcl=L|)
`dom (locals (store ((Norm s0)::state)))»〈e〉e»E ;

P L accC (Norm s0) 〈e〉e bvce s1]]
=⇒ P L accC (Norm s0) 〈Expr e〉s ♦ s1

and lab:
∧

c l s0 s1 L accC C .
[[(|prg=G,cls=accC ,lcl=L|)`c::

√
;

(|prg=G,cls=accC , lcl=L|)
`dom (locals (store ((Norm s0)::state)))»〈c〉s»C ;

P L accC (Norm s0) 〈c〉s ♦ s1]]
=⇒ P L accC (Norm s0) 〈l· c〉s ♦ (abupd (absorb l) s1)

and comp:
∧

c1 c2 s0 s1 s2 L accC C1 .
[[G`Norm s0 −c1 → s1 ;G`s1 −c2 → s2 ;
(|prg=G,cls=accC ,lcl=L|)`c1 ::

√
;

(|prg=G,cls=accC ,lcl=L|)`c2 ::
√
;

(|prg=G,cls=accC ,lcl=L|)`
dom (locals (store ((Norm s0)::state))) »〈c1 〉s» C1 ;

P L accC (Norm s0) 〈c1 〉s ♦ s1 ;∧
Q. [[normal s1 ;∧

C2 .[[(|prg=G,cls=accC ,lcl=L|)
`dom (locals (store s1)) »〈c2 〉s» C2 ;

P L accC s1 〈c2 〉s ♦ s2]] =⇒ Q
]] =⇒ Q

]]=⇒ P L accC (Norm s0) 〈c1 ;; c2 〉s ♦ s2
and if :

∧
b c1 c2 e s0 s1 s2 L accC E .

[[G`Norm s0 −e−�b→ s1 ;
G`s1 −(if the-Bool b then c1 else c2)→ s2 ;
(|prg=G,cls=accC ,lcl=L|)`e::−PrimT Boolean;
(|prg=G, cls=accC , lcl=L|)`(if the-Bool b then c1 else c2)::

√
;

(|prg=G,cls=accC ,lcl=L|)`
dom (locals (store ((Norm s0)::state))) »〈e〉e» E ;

P L accC (Norm s0) 〈e〉e bbce s1 ;∧
Q. [[normal s1 ;∧

C . [[(|prg=G,cls=accC ,lcl=L|)` (dom (locals (store s1)))
»〈if the-Bool b then c1 else c2 〉s» C ;

P L accC s1 〈if the-Bool b then c1 else c2 〉s ♦ s2
]] =⇒ Q

]] =⇒ Q
]] =⇒ P L accC (Norm s0) 〈If (e) c1 Else c2 〉s ♦ s2

shows P L accC s0 t v s1
〈proof 〉

end

Chapter 20

Evaln

1 Operational evaluation (big-step) semantics of Java expressions and state-
ments

theory Evaln imports TypeSafe begin

Variant of eval relation with counter for bounded recursive depth. In principal evaln could replace
eval.
Validity of the axiomatic semantics builds on evaln. For recursive method calls the axiomatic
semantics rule assumes the method ok to derive a proof for the body. To prove the method rule
sound we need to perform induction on the recursion depth. For the completeness proof of the
axiomatic semantics the notion of the most general formula is used. The most general formula right
now builds on the ordinary evaluation relation eval. So sometimes we have to switch between evaln
and eval and vice versa. To make this switch easy evaln also does all the technical accessibility tests
check-field-access and check-method-access like eval. If it would omit them evaln and eval would
only be equivalent for welltyped, and definitely assigned terms.

inductive
evaln :: [prog, state, term, nat, vals, state] ⇒ bool
(‹-`- −-�−-→ ′(-, - ′)› [61 ,61 ,80 ,61 ,0 ,0] 60)

and evarn :: [prog, state, var , vvar , nat, state] ⇒ bool
(‹-`- −-=�-−-→ -› [61 ,61 ,90 ,61 ,61 ,61] 60)

and eval-n:: [prog, state, expr , val, nat, state] ⇒ bool
(‹-`- −-−�-−-→ -› [61 ,61 ,80 ,61 ,61 ,61] 60)

and evalsn :: [prog, state, expr list, val list, nat, state] ⇒ bool
(‹-`- −- .=�-−-→ -› [61 ,61 ,61 ,61 ,61 ,61] 60)

and execn :: [prog, state, stmt, nat, state] ⇒ bool
(‹-`- −-−-→ -› [61 ,61 ,65 , 61 ,61] 60)

for G :: prog
where

G`s −c −n→ s ′ ≡ G`s −In1r c�−n→ (♦ , s ′)
| G`s −e−�v −n→ s ′ ≡ G`s −In1l e�−n→ (In1 v , s ′)
| G`s −e=�vf −n→ s ′ ≡ G`s −In2 e�−n→ (In2 vf , s ′)
| G`s −e .

=�v −n→ s ′ ≡ G`s −In3 e�−n→ (In3 v , s ′)

— propagation of abrupt completion

| Abrupt: G`(Some xc,s) −t�−n→ (undefined3 t,(Some xc,s))

— evaluation of variables

| LVar : G`Norm s −LVar vn=�lvar vn s−n→ Norm s

203

204

| FVar : [[G`Norm s0 −Init statDeclC−n→ s1 ; G`s1 −e−�a−n→ s2 ;
(v,s2 ′) = fvar statDeclC stat fn a s2 ;
s3 = check-field-access G accC statDeclC fn stat a s2 ′]] =⇒
G`Norm s0 −{accC ,statDeclC ,stat}e..fn=�v−n→ s3

| AVar : [[G` Norm s0 −e1−�a−n→ s1 ; G`s1 −e2−�i−n→ s2 ;
(v,s2 ′) = avar G i a s2]] =⇒

G`Norm s0 −e1 .[e2]=�v−n→ s2 ′

— evaluation of expressions

| NewC : [[G`Norm s0 −Init C−n→ s1 ;
G` s1 −halloc (CInst C)�a→ s2]] =⇒

G`Norm s0 −NewC C−�Addr a−n→ s2

| NewA: [[G`Norm s0 −init-comp-ty T−n→ s1 ; G`s1 −e−�i ′−n→ s2 ;
G`abupd (check-neg i ′) s2 −halloc (Arr T (the-Intg i ′))�a→ s3]] =⇒

G`Norm s0 −New T [e]−�Addr a−n→ s3

| Cast: [[G`Norm s0 −e−�v−n→ s1 ;
s2 = abupd (raise-if (¬G,snd s1`v fits T) ClassCast) s1]] =⇒

G`Norm s0 −Cast T e−�v−n→ s2

| Inst: [[G`Norm s0 −e−�v−n→ s1 ;
b = (v 6=Null ∧ G,store s1`v fits RefT T)]] =⇒

G`Norm s0 −e InstOf T−�Bool b−n→ s1

| Lit: G`Norm s −Lit v−�v−n→ Norm s

| UnOp: [[G`Norm s0 −e−�v−n→ s1]]
=⇒ G`Norm s0 −UnOp unop e−�(eval-unop unop v)−n→ s1

| BinOp: [[G`Norm s0 −e1−�v1−n→ s1 ;
G`s1 −(if need-second-arg binop v1 then (In1l e2) else (In1r Skip))
�−n→ (In1 v2 ,s2)]]

=⇒ G`Norm s0 −BinOp binop e1 e2−�(eval-binop binop v1 v2)−n→ s2

| Super : G`Norm s −Super−�val-this s−n→ Norm s

| Acc: [[G`Norm s0 −va=�(v,f)−n→ s1]] =⇒
G`Norm s0 −Acc va−�v−n→ s1

| Ass: [[G`Norm s0 −va=�(w,f)−n→ s1 ;
G` s1 −e−�v −n→ s2]] =⇒

G`Norm s0 −va:=e−�v−n→ assign f v s2

| Cond: [[G`Norm s0 −e0−�b−n→ s1 ;
G` s1 −(if the-Bool b then e1 else e2)−�v−n→ s2]] =⇒

G`Norm s0 −e0 ? e1 : e2−�v−n→ s2

| Call:
[[G`Norm s0 −e−�a ′−n→ s1 ; G`s1 −args .

=�vs−n→ s2 ;
D = invocation-declclass G mode (store s2) a ′ statT (|name=mn,parTs=pTs|);
s3=init-lvars G D (|name=mn,parTs=pTs|) mode a ′ vs s2 ;
s3 ′ = check-method-access G accC statT mode (|name=mn,parTs=pTs|) a ′ s3 ;

Theory Evaln 205

G`s3 ′−Methd D (|name=mn,parTs=pTs|)−�v−n→ s4
]]
=⇒
G`Norm s0 −{accC ,statT ,mode}e·mn({pTs}args)−�v−n→ (restore-lvars s2 s4)

| Methd:[[G`Norm s0 −body G D sig−�v−n→ s1]] =⇒
G`Norm s0 −Methd D sig−�v−Suc n→ s1

| Body: [[G`Norm s0−Init D−n→ s1 ; G`s1 −c−n→ s2 ;
s3 = (if (∃ l. abrupt s2 = Some (Jump (Break l)) ∨

abrupt s2 = Some (Jump (Cont l)))
then abupd (λ x. Some (Error CrossMethodJump)) s2
else s2)]]=⇒

G`Norm s0 −Body D c
−�the (locals (store s2) Result)−n→abupd (absorb Ret) s3

— evaluation of expression lists

| Nil:
G`Norm s0 −[] .=�[]−n→ Norm s0

| Cons: [[G`Norm s0 −e −� v −n→ s1 ;
G` s1 −es .

=�vs−n→ s2]] =⇒
G`Norm s0 −e#es .

=�v#vs−n→ s2

— execution of statements

| Skip: G`Norm s −Skip−n→ Norm s

| Expr : [[G`Norm s0 −e−�v−n→ s1]] =⇒
G`Norm s0 −Expr e−n→ s1

| Lab: [[G`Norm s0 −c −n→ s1]] =⇒
G`Norm s0 −l· c−n→ abupd (absorb l) s1

| Comp: [[G`Norm s0 −c1 −n→ s1 ;
G` s1 −c2 −n→ s2]] =⇒

G`Norm s0 −c1 ;; c2−n→ s2

| If : [[G`Norm s0 −e−�b−n→ s1 ;
G` s1−(if the-Bool b then c1 else c2)−n→ s2]] =⇒

G`Norm s0 −If (e) c1 Else c2 −n→ s2

| Loop: [[G`Norm s0 −e−�b−n→ s1 ;
if the-Bool b

then (G`s1 −c−n→ s2 ∧
G`(abupd (absorb (Cont l)) s2) −l· While(e) c−n→ s3)

else s3 = s1]] =⇒
G`Norm s0 −l· While(e) c−n→ s3

| Jmp: G`Norm s −Jmp j−n→ (Some (Jump j), s)

| Throw:[[G`Norm s0 −e−�a ′−n→ s1]] =⇒
G`Norm s0 −Throw e−n→ abupd (throw a ′) s1

| Try: [[G`Norm s0 −c1−n→ s1 ; G`s1 −sxalloc→ s2 ;
if G,s2`catch tn then G`new-xcpt-var vn s2 −c2−n→ s3 else s3 = s2]]
=⇒

206

G`Norm s0 −Try c1 Catch(tn vn) c2−n→ s3

| Fin: [[G`Norm s0 −c1−n→ (x1 ,s1);
G`Norm s1 −c2−n→ s2 ;
s3=(if (∃ err . x1=Some (Error err))

then (x1 ,s1)
else abupd (abrupt-if (x1 6=None) x1) s2)]] =⇒
G`Norm s0 −c1 Finally c2−n→ s3

| Init: [[the (class G C) = c;
if inited C (globs s0) then s3 = Norm s0
else (G`Norm (init-class-obj G C s0)

−(if C = Object then Skip else Init (super c))−n→ s1 ∧
G`set-lvars Map.empty s1 −init c−n→ s2 ∧
s3 = restore-lvars s1 s2)]]

=⇒
G`Norm s0 −Init C−n→ s3

monos
if-bool-eq-conj

declare if-split [split del] if-split-asm [split del]
option.split [split del] option.split-asm [split del]
not-None-eq [simp del]
split-paired-All [simp del] split-paired-Ex [simp del]

〈ML〉

inductive-cases evaln-cases: G`s −t�−n→ (v, s ′)

inductive-cases evaln-elim-cases:
G`(Some xc, s) −t �−n→ (v, s ′)
G`Norm s −In1r Skip �−n→ (x, s ′)
G`Norm s −In1r (Jmp j) �−n→ (x, s ′)
G`Norm s −In1r (l· c) �−n→ (x, s ′)
G`Norm s −In3 ([]) �−n→ (v, s ′)
G`Norm s −In3 (e#es) �−n→ (v, s ′)
G`Norm s −In1l (Lit w) �−n→ (v, s ′)
G`Norm s −In1l (UnOp unop e) �−n→ (v, s ′)
G`Norm s −In1l (BinOp binop e1 e2) �−n→ (v, s ′)
G`Norm s −In2 (LVar vn) �−n→ (v, s ′)
G`Norm s −In1l (Cast T e) �−n→ (v, s ′)
G`Norm s −In1l (e InstOf T) �−n→ (v, s ′)
G`Norm s −In1l (Super) �−n→ (v, s ′)
G`Norm s −In1l (Acc va) �−n→ (v, s ′)
G`Norm s −In1r (Expr e) �−n→ (x, s ′)
G`Norm s −In1r (c1 ;; c2) �−n→ (x, s ′)
G`Norm s −In1l (Methd C sig) �−n→ (x, s ′)
G`Norm s −In1l (Body D c) �−n→ (x, s ′)
G`Norm s −In1l (e0 ? e1 : e2) �−n→ (v, s ′)
G`Norm s −In1r (If (e) c1 Else c2) �−n→ (x, s ′)
G`Norm s −In1r (l· While(e) c) �−n→ (x, s ′)
G`Norm s −In1r (c1 Finally c2) �−n→ (x, s ′)
G`Norm s −In1r (Throw e) �−n→ (x, s ′)
G`Norm s −In1l (NewC C) �−n→ (v, s ′)
G`Norm s −In1l (New T [e]) �−n→ (v, s ′)
G`Norm s −In1l (Ass va e) �−n→ (v, s ′)
G`Norm s −In1r (Try c1 Catch(tn vn) c2) �−n→ (x, s ′)
G`Norm s −In2 ({accC ,statDeclC ,stat}e..fn) �−n→ (v, s ′)
G`Norm s −In2 (e1 .[e2]) �−n→ (v, s ′)

Theory Evaln 207

G`Norm s −In1l ({accC ,statT ,mode}e·mn({pT}p)) �−n→ (v, s ′)
G`Norm s −In1r (Init C) �−n→ (x, s ′)

declare if-split [split] if-split-asm [split]
option.split [split] option.split-asm [split]
not-None-eq [simp]
split-paired-All [simp] split-paired-Ex [simp]

〈ML〉

lemma evaln-Inj-elim: G`s −t�−n→ (w,s ′) =⇒ case t of In1 ec ⇒
(case ec of Inl e ⇒ (∃ v. w = In1 v) | Inr c ⇒ w = ♦)
| In2 e ⇒ (∃ v. w = In2 v) | In3 e ⇒ (∃ v. w = In3 v)
〈proof 〉

The following simplification procedures set up the proper injections of terms and their corresponding
values in the evaluation relation: E.g. an expression (injection In1l into terms) always evaluates to
ordinary values (injection In1 into generalised values vals).

lemma evaln-expr-eq: G`s −In1l t�−n→ (w, s ′) = (∃ v. w=In1 v ∧ G`s −t−�v −n→ s ′)
〈proof 〉

lemma evaln-var-eq: G`s −In2 t�−n→ (w, s ′) = (∃ vf . w=In2 vf ∧ G`s −t=�vf−n→ s ′)
〈proof 〉

lemma evaln-exprs-eq: G`s −In3 t�−n→ (w, s ′) = (∃ vs. w=In3 vs ∧ G`s −t .=�vs−n→ s ′)
〈proof 〉

lemma evaln-stmt-eq: G`s −In1r t�−n→ (w, s ′) = (w=♦ ∧ G`s −t −n→ s ′)
〈proof 〉

〈ML〉
declare evaln-AbruptIs [intro!]

lemma evaln-Callee: G`Norm s−In1l (Callee l e)�−n→ (v,s ′) = False
〈proof 〉

lemma evaln-InsInitE : G`Norm s−In1l (InsInitE c e)�−n→ (v,s ′) = False
〈proof 〉

lemma evaln-InsInitV : G`Norm s−In2 (InsInitV c w)�−n→ (v,s ′) = False
〈proof 〉

lemma evaln-FinA: G`Norm s−In1r (FinA a c)�−n→ (v,s ′) = False
〈proof 〉

lemma evaln-abrupt-lemma: G`s −e�−n→ (v,s ′) =⇒
fst s = Some xc −→ s ′ = s ∧ v = undefined3 e
〈proof 〉

lemma evaln-abrupt:∧
s ′. G`(Some xc,s) −e�−n→ (w,s ′) = (s ′ = (Some xc,s) ∧

w=undefined3 e ∧ G`(Some xc,s) −e�−n→ (undefined3 e,(Some xc,s)))
〈proof 〉

〈ML〉

lemma evaln-LitI : G`s −Lit v−�(if normal s then v else undefined)−n→ s
〈proof 〉

208

lemma CondI :∧
s1 . [[G`s −e−�b−n→ s1 ; G`s1 −(if the-Bool b then e1 else e2)−�v−n→ s2]] =⇒

G`s −e ? e1 : e2−�(if normal s1 then v else undefined)−n→ s2
〈proof 〉

lemma evaln-SkipI [intro!]: G`s −Skip−n→ s
〈proof 〉

lemma evaln-ExprI : G`s −e−�v−n→ s ′ =⇒ G`s −Expr e−n→ s ′

〈proof 〉

lemma evaln-CompI : [[G`s −c1−n→ s1 ; G`s1 −c2−n→ s2]] =⇒ G`s −c1 ;; c2−n→ s2
〈proof 〉

lemma evaln-IfI :
[[G`s −e−�v−n→ s1 ; G`s1 −(if the-Bool v then c1 else c2)−n→ s2]] =⇒
G`s −If (e) c1 Else c2−n→ s2
〈proof 〉

lemma evaln-SkipD [dest!]: G`s −Skip−n→ s ′ =⇒ s ′ = s
〈proof 〉

lemma evaln-Skip-eq [simp]: G`s −Skip−n→ s ′ = (s = s ′)
〈proof 〉

evaln implies eval

lemma evaln-eval:
assumes evaln: G`s0 −t�−n→ (v,s1)
shows G`s0 −t�→ (v,s1)
〈proof 〉

lemma Suc-le-D-lemma: [[Suc n <= m ′; (
∧

m. n <= m =⇒ P (Suc m))]] =⇒ P m ′

〈proof 〉

lemma evaln-nonstrict [rule-format (no-asm), elim]:
G`s −t�−n→ (w, s ′) =⇒ ∀m. n≤m −→ G`s −t�−m→ (w, s ′)
〈proof 〉

lemmas evaln-nonstrict-Suc = evaln-nonstrict [OF - le-refl [THEN le-SucI]]

lemma evaln-max2 : [[G`s1 −t1�−n1→ (w1 , s1 ′); G`s2 −t2�−n2→ (w2 , s2 ′)]] =⇒
G`s1 −t1�−max n1 n2→ (w1 , s1 ′) ∧ G`s2 −t2�−max n1 n2→ (w2 , s2 ′)

〈proof 〉

corollary evaln-max2E [consumes 2]:
[[G`s1 −t1�−n1→ (w1 , s1 ′); G`s2 −t2�−n2→ (w2 , s2 ′);
[[G`s1 −t1�−max n1 n2→ (w1 , s1 ′);G`s2 −t2�−max n1 n2→ (w2 , s2 ′)]] =⇒ P]] =⇒ P

〈proof 〉

lemma evaln-max3 :
[[G`s1 −t1�−n1→ (w1 , s1 ′); G`s2 −t2�−n2→ (w2 , s2 ′); G`s3 −t3�−n3→ (w3 , s3 ′)]] =⇒
G`s1 −t1�−max (max n1 n2) n3→ (w1 , s1 ′) ∧
G`s2 −t2�−max (max n1 n2) n3→ (w2 , s2 ′) ∧
G`s3 −t3�−max (max n1 n2) n3→ (w3 , s3 ′)
〈proof 〉

corollary evaln-max3E :

Theory Evaln 209

[[G`s1 −t1�−n1→ (w1 , s1 ′); G`s2 −t2�−n2→ (w2 , s2 ′); G`s3 −t3�−n3→ (w3 , s3 ′);
[[G`s1 −t1�−max (max n1 n2) n3→ (w1 , s1 ′);
G`s2 −t2�−max (max n1 n2) n3→ (w2 , s2 ′);
G`s3 −t3�−max (max n1 n2) n3→ (w3 , s3 ′)
]] =⇒ P
]] =⇒ P
〈proof 〉

lemma le-max3I1 : (n2 ::nat) ≤ max n1 (max n2 n3)
〈proof 〉

lemma le-max3I2 : (n3 ::nat) ≤ max n1 (max n2 n3)
〈proof 〉

declare [[simproc del: wt-expr wt-var wt-exprs wt-stmt]]

eval implies evaln
lemma eval-evaln:

assumes eval: G`s0 −t�→ (v,s1)
shows ∃n. G`s0 −t�−n→ (v,s1)
〈proof 〉

end

210

Chapter 21

Trans

theory Trans imports Evaln begin

definition
groundVar :: var ⇒ bool where
groundVar v ←→ (case v of

LVar ln ⇒ True
| {accC ,statDeclC ,stat}e..fn ⇒ ∃ a. e=Lit a
| e1 .[e2] ⇒ ∃ a i. e1= Lit a ∧ e2 = Lit i
| InsInitV c v ⇒ False)

lemma groundVar-cases:
assumes ground: groundVar v
obtains (LVar) ln where v=LVar ln
| (FVar) accC statDeclC stat a fn where v={accC ,statDeclC ,stat}(Lit a)..fn
| (AVar) a i where v=(Lit a).[Lit i]
〈proof 〉

definition
groundExprs :: expr list ⇒ bool
where groundExprs es ←→ (∀ e ∈ set es. ∃ v. e = Lit v)

primrec the-val:: expr ⇒ val
where the-val (Lit v) = v

primrec the-var :: prog ⇒ state ⇒ var ⇒ (vvar × state) where
the-var G s (LVar ln) = (lvar ln (store s),s)
| the-var-FVar-def : the-var G s ({accC ,statDeclC ,stat}a..fn) =fvar statDeclC stat fn (the-val a) s
| the-var-AVar-def : the-var G s(a.[i]) =avar G (the-val i) (the-val a) s

lemma the-var-FVar-simp[simp]:
the-var G s ({accC ,statDeclC ,stat}(Lit a)..fn) = fvar statDeclC stat fn a s
〈proof 〉
declare the-var-FVar-def [simp del]

lemma the-var-AVar-simp:
the-var G s ((Lit a).[Lit i]) = avar G i a s
〈proof 〉
declare the-var-AVar-def [simp del]

abbreviation
Ref :: loc ⇒ expr
where Ref a == Lit (Addr a)

211

212

abbreviation
SKIP :: expr
where SKIP == Lit Unit

inductive
step :: [prog,term × state,term × state] ⇒ bool (‹-`- 7→1 -›[61 ,82 ,82] 81)
for G :: prog

where

Abrupt: [[∀ v. t 6= 〈Lit v〉;
∀ t. t 6= 〈l· Skip〉;
∀ C vn c. t 6= 〈Try Skip Catch(C vn) c〉;
∀ x c. t 6= 〈Skip Finally c〉 ∧ xc 6= Xcpt x;
∀ a c. t 6= 〈FinA a c〉]]

=⇒
G`(t,Some xc,s) 7→1 (〈Lit undefined〉,Some xc,s)

| InsInitE : [[G`(〈c〉,Norm s) 7→1 (〈c ′〉, s ′)]]
=⇒
G`(〈InsInitE c e〉,Norm s) 7→1 (〈InsInitE c ′ e〉, s ′)

| NewC : G`(〈NewC C 〉,Norm s) 7→1 (〈InsInitE (Init C) (NewC C)〉, Norm s)
| NewCInited: [[G` Norm s −halloc (CInst C)�a→ s ′]]

=⇒
G`(〈InsInitE Skip (NewC C)〉,Norm s) 7→1 (〈Ref a〉, s ′)

| NewA:
G`(〈New T [e]〉,Norm s) 7→1 (〈InsInitE (init-comp-ty T) (New T [e])〉,Norm s)

| InsInitNewAIdx:
[[G`(〈e〉,Norm s) 7→1 (〈e ′〉, s ′)]]
=⇒
G`(〈InsInitE Skip (New T [e])〉,Norm s) 7→1 (〈InsInitE Skip (New T [e ′])〉,s ′)

| InsInitNewA:
[[G`abupd (check-neg i) (Norm s) −halloc (Arr T (the-Intg i))�a→ s ′]]
=⇒
G`(〈InsInitE Skip (New T [Lit i])〉,Norm s) 7→1 (〈Ref a〉,s ′)

| CastE :
[[G`(〈e〉,Norm s) 7→1 (〈e ′〉,s ′)]]
=⇒
G`(〈Cast T e〉,None,s) 7→1 (〈Cast T e ′〉,s ′)

| Cast:
[[s ′ = abupd (raise-if (¬G,s`v fits T) ClassCast) (Norm s)]]
=⇒
G`(〈Cast T (Lit v)〉,Norm s) 7→1 (〈Lit v〉,s ′)

Theory Trans 213

| InstE : [[G`(〈e〉,Norm s) 7→1 (〈e ′::expr〉,s ′)]]
=⇒
G`(〈e InstOf T 〉,Norm s) 7→1 (〈e ′〉,s ′)

| Inst: [[b = (v 6=Null ∧ G,s`v fits RefT T)]]
=⇒
G`(〈(Lit v) InstOf T 〉,Norm s) 7→1 (〈Lit (Bool b)〉,s ′)

| UnOpE : [[G`(〈e〉,Norm s) 7→1 (〈e ′〉,s ′)]]
=⇒
G`(〈UnOp unop e〉,Norm s) 7→1 (〈UnOp unop e ′〉,s ′)

| UnOp: G`(〈UnOp unop (Lit v)〉,Norm s) 7→1 (〈Lit (eval-unop unop v)〉,Norm s)

| BinOpE1 : [[G`(〈e1 〉,Norm s) 7→1 (〈e1 ′〉,s ′)]]
=⇒
G`(〈BinOp binop e1 e2 〉,Norm s) 7→1 (〈BinOp binop e1 ′ e2 〉,s ′)

| BinOpE2 : [[need-second-arg binop v1 ; G`(〈e2 〉,Norm s) 7→1 (〈e2 ′〉,s ′)]]
=⇒
G`(〈BinOp binop (Lit v1) e2 〉,Norm s)
7→1 (〈BinOp binop (Lit v1) e2 ′〉,s ′)

| BinOpTerm: [[¬ need-second-arg binop v1]]
=⇒
G`(〈BinOp binop (Lit v1) e2 〉,Norm s)
7→1 (〈Lit v1 〉,Norm s)

| BinOp: G`(〈BinOp binop (Lit v1) (Lit v2)〉,Norm s)
7→1 (〈Lit (eval-binop binop v1 v2)〉,Norm s)

| Super : G`(〈Super〉,Norm s) 7→1 (〈Lit (val-this s)〉,Norm s)

| AccVA: [[G`(〈va〉,Norm s) 7→1 (〈va ′〉,s ′)]]
=⇒
G`(〈Acc va〉,Norm s) 7→1 (〈Acc va ′〉,s ′)

| Acc: [[groundVar va; ((v,vf),s ′) = the-var G (Norm s) va]]
=⇒
G`(〈Acc va〉,Norm s) 7→1 (〈Lit v〉,s ′)

| AssVA: [[G`(〈va〉,Norm s) 7→1 (〈va ′〉,s ′)]]
=⇒
G`(〈va:=e〉,Norm s) 7→1 (〈va ′:=e〉,s ′)

| AssE : [[groundVar va; G`(〈e〉,Norm s) 7→1 (〈e ′〉,s ′)]]
=⇒
G`(〈va:=e〉,Norm s) 7→1 (〈va:=e ′〉,s ′)

| Ass: [[groundVar va; ((w,f),s ′) = the-var G (Norm s) va]]
=⇒
G`(〈va:=(Lit v)〉,Norm s) 7→1 (〈Lit v〉,assign f v s ′)

| CondC : [[G`(〈e0 〉,Norm s) 7→1 (〈e0 ′〉,s ′)]]
=⇒
G`(〈e0? e1 :e2 〉,Norm s) 7→1 (〈e0 ′? e1 :e2 〉,s ′)

| Cond: G`(〈Lit b? e1 :e2 〉,Norm s) 7→1 (〈if the-Bool b then e1 else e2 〉,Norm s)

| CallTarget: [[G`(〈e〉,Norm s) 7→1 (〈e ′〉,s ′)]]
=⇒

214

G`(〈{accC ,statT ,mode}e·mn({pTs}args)〉,Norm s)
7→1 (〈{accC ,statT ,mode}e ′·mn({pTs}args)〉,s ′)

| CallArgs: [[G`(〈args〉,Norm s) 7→1 (〈args ′〉,s ′)]]
=⇒
G`(〈{accC ,statT ,mode}Lit a·mn({pTs}args)〉,Norm s)
7→1 (〈{accC ,statT ,mode}Lit a·mn({pTs}args ′)〉,s ′)

| Call: [[groundExprs args; vs = map the-val args;
D = invocation-declclass G mode s a statT (|name=mn,parTs=pTs|);
s ′=init-lvars G D (|name=mn,parTs=pTs|) mode a ′ vs (Norm s)]]
=⇒
G`(〈{accC ,statT ,mode}Lit a·mn({pTs}args)〉,Norm s)
7→1 (〈Callee (locals s) (Methd D (|name=mn,parTs=pTs|))〉,s ′)

| Callee: [[G`(〈e〉,Norm s) 7→1 (〈e ′::expr〉,s ′)]]
=⇒
G`(〈Callee lcls-caller e〉,Norm s) 7→1 (〈e ′〉,s ′)

| CalleeRet: G`(〈Callee lcls-caller (Lit v)〉,Norm s)
7→1 (〈Lit v〉,(set-lvars lcls-caller (Norm s)))

| Methd: G`(〈Methd D sig〉,Norm s) 7→1 (〈body G D sig〉,Norm s)

| Body: G`(〈Body D c〉,Norm s) 7→1 (〈InsInitE (Init D) (Body D c)〉,Norm s)

| InsInitBody:
[[G`(〈c〉,Norm s) 7→1 (〈c ′〉,s ′)]]
=⇒
G`(〈InsInitE Skip (Body D c)〉,Norm s) 7→1 (〈InsInitE Skip (Body D c ′)〉,s ′)

| InsInitBodyRet:
G`(〈InsInitE Skip (Body D Skip)〉,Norm s)
7→1 (〈Lit (the ((locals s) Result))〉,abupd (absorb Ret) (Norm s))

| FVar : [[¬ inited statDeclC (globs s)]]
=⇒
G`(〈{accC ,statDeclC ,stat}e..fn〉,Norm s)
7→1 (〈InsInitV (Init statDeclC) ({accC ,statDeclC ,stat}e..fn)〉,Norm s)

| InsInitFVarE :
[[G`(〈e〉,Norm s) 7→1 (〈e ′〉,s ′)]]
=⇒
G`(〈InsInitV Skip ({accC ,statDeclC ,stat}e..fn)〉,Norm s)
7→1 (〈InsInitV Skip ({accC ,statDeclC ,stat}e ′..fn)〉,s ′)

| InsInitFVar :
G`(〈InsInitV Skip ({accC ,statDeclC ,stat}Lit a..fn)〉,Norm s)
7→1 (〈{accC ,statDeclC ,stat}Lit a..fn〉,Norm s)

— Notice, that we do not have literal values for vars. The rules for accessing variables (Acc) and assigning to
variables (Ass), test this with the predicate groundVar. After initialisation is done and the FVar is evaluated,
we can’t just throw away the InsInitFVar term and return a literal value, as in the cases of New or NewC.
Instead we just return the evaluated FVar and test for initialisation in the rule FVar.

| AVarE1 : [[G`(〈e1 〉,Norm s) 7→1 (〈e1 ′〉,s ′)]]
=⇒
G`(〈e1 .[e2]〉,Norm s) 7→1 (〈e1 ′.[e2]〉,s ′)

| AVarE2 : G`(〈e2 〉,Norm s) 7→1 (〈e2 ′〉,s ′)
=⇒
G`(〈Lit a.[e2]〉,Norm s) 7→1 (〈Lit a.[e2 ′]〉,s ′)

Theory Trans 215

— Nil is fully evaluated

| ConsHd: [[G`(〈e::expr〉,Norm s) 7→1 (〈e ′::expr〉,s ′)]]
=⇒
G`(〈e#es〉,Norm s) 7→1 (〈e ′#es〉,s ′)

| ConsTl: [[G`(〈es〉,Norm s) 7→1 (〈es ′〉,s ′)]]
=⇒
G`(〈(Lit v)#es〉,Norm s) 7→1 (〈(Lit v)#es ′〉,s ′)

| Skip: G`(〈Skip〉,Norm s) 7→1 (〈SKIP〉,Norm s)

| ExprE : [[G`(〈e〉,Norm s) 7→1 (〈e ′〉,s ′)]]
=⇒
G`(〈Expr e〉,Norm s) 7→1 (〈Expr e ′〉,s ′)

| Expr : G`(〈Expr (Lit v)〉,Norm s) 7→1 (〈Skip〉,Norm s)

| LabC : [[G`(〈c〉,Norm s) 7→1 (〈c ′〉,s ′)]]
=⇒
G`(〈l· c〉,Norm s) 7→1 (〈l· c ′〉,s ′)

| Lab: G`(〈l· Skip〉,s) 7→1 (〈Skip〉, abupd (absorb l) s)

| CompC1 : [[G`(〈c1 〉,Norm s) 7→1 (〈c1 ′〉,s ′)]]
=⇒
G`(〈c1 ;; c2 〉,Norm s) 7→1 (〈c1 ′;; c2 〉,s ′)

| Comp: G`(〈Skip;; c2 〉,Norm s) 7→1 (〈c2 〉,Norm s)

| IfE : [[G`(〈e〉 ,Norm s) 7→1 (〈e ′〉,s ′)]]
=⇒
G`(〈If (e) s1 Else s2 〉,Norm s) 7→1 (〈If (e ′) s1 Else s2 〉,s ′)

| If : G`(〈If (Lit v) s1 Else s2 〉,Norm s)
7→1 (〈if the-Bool v then s1 else s2 〉,Norm s)

| Loop: G`(〈l· While(e) c〉,Norm s)
7→1 (〈If (e) (Cont l·c;; l· While(e) c) Else Skip〉,Norm s)

| Jmp: G`(〈Jmp j〉,Norm s) 7→1 (〈Skip〉,(Some (Jump j), s))

| ThrowE : [[G`(〈e〉,Norm s) 7→1 (〈e ′〉,s ′)]]
=⇒
G`(〈Throw e〉,Norm s) 7→1 (〈Throw e ′〉,s ′)

| Throw: G`(〈Throw (Lit a)〉,Norm s) 7→1 (〈Skip〉,abupd (throw a) (Norm s))

| TryC1 : [[G`(〈c1 〉,Norm s) 7→1 (〈c1 ′〉,s ′)]]
=⇒
G`(〈Try c1 Catch(C vn) c2 〉, Norm s) 7→1 (〈Try c1 ′ Catch(C vn) c2 〉,s ′)

216

| Try: [[G`s −sxalloc→ s ′]]
=⇒
G`(〈Try Skip Catch(C vn) c2 〉, s)
7→1 (if G,s ′̀ catch C then (〈c2 〉,new-xcpt-var vn s ′)

else (〈Skip〉,s ′))

| FinC1 : [[G`(〈c1 〉,Norm s) 7→1 (〈c1 ′〉,s ′)]]
=⇒
G`(〈c1 Finally c2 〉,Norm s) 7→1 (〈c1 ′ Finally c2 〉,s ′)

| Fin: G`(〈Skip Finally c2 〉,(a,s)) 7→1 (〈FinA a c2 〉,Norm s)

| FinAC : [[G`(〈c〉,s) 7→1 (〈c ′〉,s ′)]]
=⇒
G`(〈FinA a c〉,s) 7→1 (〈FinA a c ′〉,s ′)

| FinA: G`(〈FinA a Skip〉,s) 7→1 (〈Skip〉,abupd (abrupt-if (a 6=None) a) s)

| Init1 : [[inited C (globs s)]]
=⇒
G`(〈Init C 〉,Norm s) 7→1 (〈Skip〉,Norm s)

| Init: [[the (class G C)=c; ¬ inited C (globs s)]]
=⇒
G`(〈Init C 〉,Norm s)
7→1 (〈(if C = Object then Skip else (Init (super c)));;

Expr (Callee (locals s) (InsInitE (init c) SKIP))〉
,Norm (init-class-obj G C s))

— InsInitE is just used as trick to embed the statement init c into an expression
| InsInitESKIP:

G`(〈InsInitE Skip SKIP〉,Norm s) 7→1 (〈SKIP〉,Norm s)

abbreviation
stepn:: [prog, term × state,nat,term × state] ⇒ bool (‹-`- 7→- -›[61 ,82 ,82] 81)
where G`p 7→n p ′ ≡ (p,p ′) ∈ {(x, y). step G x y}^^n

abbreviation
steptr :: [prog,term × state,term × state] ⇒ bool (‹-`- 7→∗ -›[61 ,82 ,82] 81)
where G`p 7→∗ p ′ ≡ (p,p ′) ∈ {(x, y). step G x y}∗

end

Chapter 22

AxSem

1 Axiomatic semantics of Java expressions and statements (see also Eval.thy)
theory AxSem imports Evaln TypeSafe begin

design issues:

• a strong version of validity for triples with premises, namely one that takes the recursive depth
needed to complete execution, enables correctness proof

• auxiliary variables are handled first-class (-> Thomas Kleymann)

• expressions not flattened to elementary assignments (as usual for axiomatic semantics) but
treated first-class => explicit result value handling

• intermediate values not on triple, but on assertion level (with result entry)

• multiple results with semantical substitution mechnism not requiring a stack

• because of dynamic method binding, terms need to be dependent on state. this is also useful
for conditional expressions and statements

• result values in triples exactly as in eval relation (also for xcpt states)

• validity: additional assumption of state conformance and well-typedness, which is required for
soundness and thus rule hazard required of completeness

restrictions:

• all triples in a derivation are of the same type (due to weak polymorphism)

type-synonym res = vals — result entry

abbreviation (input)
Val where Val x == In1 x

abbreviation (input)
Var where Var x == In2 x

abbreviation (input)
Vals where Vals x == In3 x

syntax
-Val :: [pttrn] => pttrn (‹Val:-› [951] 950)
-Var :: [pttrn] => pttrn (‹Var :-› [951] 950)

217

218

-Vals :: [pttrn] => pttrn (‹Vals:-› [951] 950)

translations
λVal:v . b == (λv. b) ◦ CONST the-In1
λVar :v . b == (λv. b) ◦ CONST the-In2
λVals:v. b == (λv. b) ◦ CONST the-In3

— relation on result values, state and auxiliary variables
type-synonym ′a assn = res ⇒ state ⇒ ′a ⇒ bool
translations
(type) ′a assn <= (type) vals ⇒ state ⇒ ′a ⇒ bool

definition
assn-imp :: ′a assn ⇒ ′a assn ⇒ bool (infixr ‹⇒› 25)
where (P ⇒ Q) = (∀Y s Z . P Y s Z −→ Q Y s Z)

lemma assn-imp-def2 [iff]: (P ⇒ Q) = (∀Y s Z . P Y s Z −→ Q Y s Z)
〈proof 〉

assertion transformers

2 peek-and
definition

peek-and :: ′a assn ⇒ (state ⇒ bool) ⇒ ′a assn (infixl ‹∧.› 13)
where (P ∧. p) = (λY s Z . P Y s Z ∧ p s)

lemma peek-and-def2 [simp]: peek-and P p Y s = (λZ . (P Y s Z ∧ p s))
〈proof 〉

lemma peek-and-Not [simp]: (P ∧. (λs. ¬ f s)) = (P ∧. Not ◦ f)
〈proof 〉

lemma peek-and-and [simp]: peek-and (peek-and P p) p = peek-and P p
〈proof 〉

lemma peek-and-commut: (P ∧. p ∧. q) = (P ∧. q ∧. p)
〈proof 〉

abbreviation
Normal :: ′a assn ⇒ ′a assn
where Normal P == P ∧. normal

lemma peek-and-Normal [simp]: peek-and (Normal P) p = Normal (peek-and P p)
〈proof 〉

3 assn-supd
definition

assn-supd :: ′a assn ⇒ (state ⇒ state) ⇒ ′a assn (infixl ‹;.› 13)
where (P ;. f) = (λY s ′ Z . ∃ s. P Y s Z ∧ s ′ = f s)

lemma assn-supd-def2 [simp]: assn-supd P f Y s ′ Z = (∃ s. P Y s Z ∧ s ′ = f s)
〈proof 〉

4 supd-assn
definition

supd-assn :: (state ⇒ state) ⇒ ′a assn ⇒ ′a assn (infixr ‹.;› 13)
where (f .; P) = (λY s. P Y (f s))

Theory AxSem 219

lemma supd-assn-def2 [simp]: (f .; P) Y s = P Y (f s)
〈proof 〉

lemma supd-assn-supdD [elim]: ((f .; Q) ;. f) Y s Z =⇒ Q Y s Z
〈proof 〉

lemma supd-assn-supdI [elim]: Q Y s Z =⇒ (f .; (Q ;. f)) Y s Z
〈proof 〉

5 subst-res
definition

subst-res :: ′a assn ⇒ res ⇒ ′a assn (‹-←-› [60 ,61] 60)
where P←w = (λY . P w)

lemma subst-res-def2 [simp]: (P←w) Y = P w
〈proof 〉

lemma subst-subst-res [simp]: P←w←v = P←w
〈proof 〉

lemma peek-and-subst-res [simp]: (P ∧. p)←w = (P←w ∧. p)
〈proof 〉

6 subst-Bool
definition

subst-Bool :: ′a assn ⇒ bool ⇒ ′a assn (‹-←=-› [60 ,61] 60)
where P←=b = (λY s Z . ∃ v. P (Val v) s Z ∧ (normal s −→ the-Bool v=b))

lemma subst-Bool-def2 [simp]:
(P←=b) Y s Z = (∃ v. P (Val v) s Z ∧ (normal s −→ the-Bool v=b))
〈proof 〉

lemma subst-Bool-the-BoolI : P (Val b) s Z =⇒ (P←=the-Bool b) Y s Z
〈proof 〉

7 peek-res
definition

peek-res :: (res ⇒ ′a assn) ⇒ ′a assn
where peek-res Pf = (λY . Pf Y Y)

syntax
-peek-res :: pttrn ⇒ ′a assn ⇒ ′a assn (‹λ-:. -› [0 ,3] 3)

syntax-consts
-peek-res == peek-res

translations
λw:. P == CONST peek-res (λw. P)

lemma peek-res-def2 [simp]: peek-res P Y = P Y Y
〈proof 〉

lemma peek-res-subst-res [simp]: peek-res P←w = P w←w
〈proof 〉

220

lemma peek-subst-res-allI :
(
∧

a. T a (P (f a)←f a)) =⇒ ∀ a. T a (peek-res P←f a)
〈proof 〉

8 ign-res
definition

ign-res :: ′a assn ⇒ ′a assn (‹-↓› [1000] 1000)
where P↓ = (λY s Z . ∃Y . P Y s Z)

lemma ign-res-def2 [simp]: P↓ Y s Z = (∃Y . P Y s Z)
〈proof 〉

lemma ign-ign-res [simp]: P↓↓ = P↓
〈proof 〉

lemma ign-subst-res [simp]: P↓←w = P↓
〈proof 〉

lemma peek-and-ign-res [simp]: (P ∧. p)↓ = (P↓ ∧. p)
〈proof 〉

9 peek-st
definition

peek-st :: (st ⇒ ′a assn) ⇒ ′a assn
where peek-st P = (λY s. P (store s) Y s)

syntax
-peek-st :: pttrn ⇒ ′a assn ⇒ ′a assn (‹λ-.. -› [0 ,3] 3)

syntax-consts
-peek-st == peek-st

translations
λs.. P == CONST peek-st (λs. P)

lemma peek-st-def2 [simp]: (λs.. Pf s) Y s = Pf (store s) Y s
〈proof 〉

lemma peek-st-triv [simp]: (λs.. P) = P
〈proof 〉

lemma peek-st-st [simp]: (λs.. λs ′.. P s s ′) = (λs.. P s s)
〈proof 〉

lemma peek-st-split [simp]: (λs.. λY s ′. P s Y s ′) = (λY s. P (store s) Y s)
〈proof 〉

lemma peek-st-subst-res [simp]: (λs.. P s)←w = (λs.. P s←w)
〈proof 〉

lemma peek-st-Normal [simp]: (λs..(Normal (P s))) = Normal (λs.. P s)
〈proof 〉

10 ign-res-eq
definition

ign-res-eq :: ′a assn ⇒ res ⇒ ′a assn (‹-↓=-› [60 ,61] 60)
where P↓=w ≡ (λY :. P↓ ∧. (λs. Y=w))

Theory AxSem 221

lemma ign-res-eq-def2 [simp]: (P↓=w) Y s Z = ((∃Y . P Y s Z) ∧ Y=w)
〈proof 〉

lemma ign-ign-res-eq [simp]: (P↓=w)↓ = P↓
〈proof 〉

lemma ign-res-eq-subst-res: P↓=w←w = P↓
〈proof 〉

lemma subst-Bool-ign-res-eq: ((P←=b)↓=x) Y s Z = ((P←=b) Y s Z ∧ Y=x)
〈proof 〉

11 RefVar
definition

RefVar :: (state ⇒ vvar × state) ⇒ ′a assn ⇒ ′a assn (infixr ‹..;› 13)
where (vf ..; P) = (λY s. let (v,s ′) = vf s in P (Var v) s ′)

lemma RefVar-def2 [simp]: (vf ..; P) Y s =
P (Var (fst (vf s))) (snd (vf s))
〈proof 〉

12 allocation
definition

Alloc :: prog ⇒ obj-tag ⇒ ′a assn ⇒ ′a assn
where Alloc G otag P = (λY s Z . ∀ s ′ a. G`s −halloc otag�a→ s ′−→ P (Val (Addr a)) s ′ Z)

definition
SXAlloc :: prog ⇒ ′a assn ⇒ ′a assn
where SXAlloc G P = (λY s Z . ∀ s ′. G`s −sxalloc→ s ′ −→ P Y s ′ Z)

lemma Alloc-def2 [simp]: Alloc G otag P Y s Z =
(∀ s ′ a. G`s −halloc otag�a→ s ′−→ P (Val (Addr a)) s ′ Z)

〈proof 〉

lemma SXAlloc-def2 [simp]:
SXAlloc G P Y s Z = (∀ s ′. G`s −sxalloc→ s ′ −→ P Y s ′ Z)
〈proof 〉

validity
definition

type-ok :: prog ⇒ term ⇒ state ⇒ bool where
type-ok G t s =
(∃L T C A. (normal s −→ (|prg=G,cls=C ,lcl=L|)`t::T ∧

(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»t»A)
∧ s::�(G,L))

datatype ′a triple = triple (′a assn) term (′a assn)
(‹{(1-)}/ -�/ {(1-)}› [3 ,65 ,3] 75)

type-synonym ′a triples = ′a triple set

abbreviation
var-triple :: [′a assn, var , ′a assn] ⇒ ′a triple

(‹{(1-)}/ -=�/ {(1-)}› [3 ,80 ,3] 75)

222

where {P} e=� {Q} == {P} In2 e� {Q}

abbreviation
expr-triple :: [′a assn, expr , ′a assn] ⇒ ′a triple

(‹{(1-)}/ -−�/ {(1-)}› [3 ,80 ,3] 75)
where {P} e−� {Q} == {P} In1l e� {Q}

abbreviation
exprs-triple :: [′a assn, expr list , ′a assn] ⇒ ′a triple

(‹{(1-)}/ - .=�/ {(1-)}› [3 ,65 ,3] 75)
where {P} e .

=� {Q} == {P} In3 e� {Q}

abbreviation
stmt-triple :: [′a assn, stmt, ′a assn] ⇒ ′a triple

(‹{(1-)}/ .-./ {(1-)}› [3 ,65 ,3] 75)
where {P} .c. {Q} == {P} In1r c� {Q}

notation (ASCII)
triple (‹{(1-)}/ ->/ {(1-)}› [3 ,65 ,3]75) and
var-triple (‹{(1-)}/ -=>/ {(1-)}› [3 ,80 ,3] 75) and
expr-triple (‹{(1-)}/ -−>/ {(1-)}› [3 ,80 ,3] 75) and
exprs-triple (‹{(1-)}/ -#>/ {(1-)}› [3 ,65 ,3] 75)

lemma inj-triple: inj (λ(P,t,Q). {P} t� {Q})
〈proof 〉

lemma triple-inj-eq: ({P} t� {Q} = {P ′} t ′� {Q ′}) = (P=P ′ ∧ t=t ′ ∧ Q=Q ′)
〈proof 〉

definition mtriples :: (′c ⇒ ′sig ⇒ ′a assn) ⇒ (′c ⇒ ′sig ⇒ expr) ⇒
(′c ⇒ ′sig ⇒ ′a assn) ⇒ (′c × ′sig) set ⇒ ′a triples (‹{{(1-)}/ -−�/ {(1-)} | -}›[3 ,65 ,3 ,65]75)

where
{{P} tf−� {Q} | ms} = (λ(C ,sig). {Normal(P C sig)} tf C sig−� {Q C sig})‘ms

definition
triple-valid :: prog ⇒ nat ⇒ ′a triple ⇒ bool (‹-|=-:-› [61 ,0 , 58] 57)
where

G|=n:t =
(case t of {P} t� {Q} ⇒
∀Y s Z . P Y s Z −→ type-ok G t s −→
(∀Y ′ s ′. G`s −t�−n→ (Y ′,s ′) −→ Q Y ′ s ′ Z))

abbreviation
triples-valid:: prog ⇒ nat ⇒ ′a triples ⇒ bool (‹-||=-:-› [61 ,0 , 58] 57)
where G||=n:ts == Ball ts (triple-valid G n)

notation (ASCII)
triples-valid (‹-||=-:-› [61 ,0 , 58] 57)

definition
ax-valids :: prog ⇒ ′b triples ⇒ ′a triples ⇒ bool (‹-,-||=-› [61 ,58 ,58] 57)
where (G,A||=ts) = (∀n. G||=n:A −→ G||=n:ts)

abbreviation
ax-valid :: prog ⇒ ′b triples ⇒ ′a triple ⇒ bool (‹-,-|=-› [61 ,58 ,58] 57)
where G,A |=t == G,A||={t}

notation (ASCII)

Theory AxSem 223

ax-valid (‹-,-|=-› [61 ,58 ,58] 57)

lemma triple-valid-def2 : G|=n:{P} t� {Q} =
(∀Y s Z . P Y s Z
−→ (∃L. (normal s −→ (∃ C T A. (|prg=G,cls=C ,lcl=L|)`t::T ∧

(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»t»A)) ∧
s::�(G,L))

−→ (∀Y ′ s ′. G`s −t�−n→ (Y ′,s ′)−→ Q Y ′ s ′ Z))
〈proof 〉

declare split-paired-All [simp del] split-paired-Ex [simp del]
declare if-split [split del] if-split-asm [split del]

option.split [split del] option.split-asm [split del]
〈ML〉

inductive
ax-derivs :: prog ⇒ ′a triples ⇒ ′a triples ⇒ bool (‹-,-|`-› [61 ,58 ,58] 57)
and ax-deriv :: prog ⇒ ′a triples ⇒ ′a triple ⇒ bool (‹-,-`-› [61 ,58 ,58] 57)
for G :: prog

where

G,A `t ≡ G,A|`{t}

| empty: G,A|`{}
| insert:[[G,A`t; G,A|`ts]] =⇒

G,A|`insert t ts

| asm: ts⊆A =⇒ G,A|`ts

| weaken:[[G,A|`ts ′; ts ⊆ ts ′]] =⇒ G,A|`ts

| conseq:∀Y s Z . P Y s Z −→ (∃P ′ Q ′. G,A`{P ′} t� {Q ′} ∧ (∀Y ′ s ′.
(∀Y Z ′. P ′ Y s Z ′ −→ Q ′ Y ′ s ′ Z ′) −→

Q Y ′ s ′ Z))
=⇒ G,A`{P } t� {Q }

| hazard:G,A`{P ∧. Not ◦ type-ok G t} t� {Q}

| Abrupt: G,A`{P←(undefined3 t) ∧. Not ◦ normal} t� {P}

— variables
| LVar : G,A`{Normal (λs.. P←Var (lvar vn s))} LVar vn=� {P}

| FVar : [[G,A`{Normal P} .Init C . {Q};
G,A`{Q} e−� {λVal:a:. fvar C stat fn a ..; R}]] =⇒

G,A`{Normal P} {accC ,C ,stat}e..fn=� {R}

| AVar : [[G,A`{Normal P} e1−� {Q};
∀ a. G,A`{Q←Val a} e2−� {λVal:i:. avar G i a ..; R}]] =⇒

G,A`{Normal P} e1 .[e2]=� {R}
— expressions

| NewC : [[G,A`{Normal P} .Init C . {Alloc G (CInst C) Q}]] =⇒
G,A`{Normal P} NewC C−� {Q}

| NewA: [[G,A`{Normal P} .init-comp-ty T . {Q}; G,A`{Q} e−�

224

{λVal:i:. abupd (check-neg i) .; Alloc G (Arr T (the-Intg i)) R}]] =⇒
G,A`{Normal P} New T [e]−� {R}

| Cast: [[G,A`{Normal P} e−� {λVal:v:. λs..
abupd (raise-if (¬G,s`v fits T) ClassCast) .; Q←Val v}]] =⇒

G,A`{Normal P} Cast T e−� {Q}

| Inst: [[G,A`{Normal P} e−� {λVal:v:. λs..
Q←Val (Bool (v 6=Null ∧ G,s`v fits RefT T))}]] =⇒

G,A`{Normal P} e InstOf T−� {Q}

| Lit: G,A`{Normal (P←Val v)} Lit v−� {P}

| UnOp: [[G,A`{Normal P} e−� {λVal:v:. Q←Val (eval-unop unop v)}]]
=⇒
G,A`{Normal P} UnOp unop e−� {Q}

| BinOp:
[[G,A`{Normal P} e1−� {Q};
∀ v1 . G,A`{Q←Val v1}

(if need-second-arg binop v1 then (In1l e2) else (In1r Skip))�
{λVal:v2 :. R←Val (eval-binop binop v1 v2)}]]

=⇒
G,A`{Normal P} BinOp binop e1 e2−� {R}

| Super : G,A`{Normal (λs.. P←Val (val-this s))} Super−� {P}

| Acc: [[G,A`{Normal P} va=� {λVar :(v,f):. Q←Val v}]] =⇒
G,A`{Normal P} Acc va−� {Q}

| Ass: [[G,A`{Normal P} va=� {Q};
∀ vf . G,A`{Q←Var vf } e−� {λVal:v:. assign (snd vf) v .; R}]] =⇒

G,A`{Normal P} va:=e−� {R}

| Cond: [[G,A `{Normal P} e0−� {P ′};
∀ b. G,A`{P ′←=b} (if b then e1 else e2)−� {Q}]] =⇒

G,A`{Normal P} e0 ? e1 : e2−� {Q}

| Call:
[[G,A`{Normal P} e−� {Q}; ∀ a. G,A`{Q←Val a} args .

=� {R a};
∀ a vs invC declC l. G,A`{(R a←Vals vs ∧.
(λs. declC=invocation-declclass G mode (store s) a statT (|name=mn,parTs=pTs|) ∧

invC = invocation-class mode (store s) a statT ∧
l = locals (store s)) ;.

init-lvars G declC (|name=mn,parTs=pTs|) mode a vs) ∧.
(λs. normal s −→ G`mode→invC�statT)}

Methd declC (|name=mn,parTs=pTs|)−� {set-lvars l .; S}]] =⇒
G,A`{Normal P} {accC ,statT ,mode}e·mn({pTs}args)−� {S}

| Methd:[[G,A∪ {{P} Methd−� {Q} | ms} |` {{P} body G−� {Q} | ms}]] =⇒
G,A|`{{P} Methd−� {Q} | ms}

| Body: [[G,A`{Normal P} .Init D. {Q};
G,A`{Q} .c. {λs.. abupd (absorb Ret) .; R←(In1 (the (locals s Result)))}]]
=⇒

G,A`{Normal P} Body D c−� {R}

— expression lists

Theory AxSem 225

| Nil: G,A`{Normal (P←Vals [])} [] .=� {P}

| Cons: [[G,A`{Normal P} e−� {Q};
∀ v. G,A`{Q←Val v} es .

=� {λVals:vs:. R←Vals (v#vs)}]] =⇒
G,A`{Normal P} e#es .

=� {R}

— statements

| Skip: G,A`{Normal (P←♦)} .Skip. {P}

| Expr : [[G,A`{Normal P} e−� {Q←♦}]] =⇒
G,A`{Normal P} .Expr e. {Q}

| Lab: [[G,A`{Normal P} .c. {abupd (absorb l) .; Q}]] =⇒
G,A`{Normal P} .l· c. {Q}

| Comp: [[G,A`{Normal P} .c1 . {Q};
G,A`{Q} .c2 . {R}]] =⇒

G,A`{Normal P} .c1 ;;c2 . {R}

| If : [[G,A `{Normal P} e−� {P ′};
∀ b. G,A`{P ′←=b} .(if b then c1 else c2). {Q}]] =⇒

G,A`{Normal P} .If (e) c1 Else c2 . {Q}

| Loop: [[G,A`{P} e−� {P ′};
G,A`{Normal (P ′←=True)} .c. {abupd (absorb (Cont l)) .; P}]] =⇒

G,A`{P} .l· While(e) c. {(P ′←=False)↓=♦}

| Jmp: G,A`{Normal (abupd (λa. (Some (Jump j))) .; P←♦)} .Jmp j. {P}

| Throw:[[G,A`{Normal P} e−� {λVal:a:. abupd (throw a) .; Q←♦}]] =⇒
G,A`{Normal P} .Throw e. {Q}

| Try: [[G,A`{Normal P} .c1 . {SXAlloc G Q};
G,A`{Q ∧. (λs. G,s`catch C) ;. new-xcpt-var vn} .c2 . {R};

(Q ∧. (λs. ¬G,s`catch C)) ⇒ R]] =⇒
G,A`{Normal P} .Try c1 Catch(C vn) c2 . {R}

| Fin: [[G,A`{Normal P} .c1 . {Q};
∀ x. G,A`{Q ∧. (λs. x = fst s) ;. abupd (λx. None)}

.c2 . {abupd (abrupt-if (x 6=None) x) .; R}]] =⇒
G,A`{Normal P} .c1 Finally c2 . {R}

| Done: G,A`{Normal (P←♦ ∧. initd C)} .Init C . {P}

| Init: [[the (class G C) = c;
G,A`{Normal ((P ∧. Not ◦ initd C) ;. supd (init-class-obj G C))}

.(if C = Object then Skip else Init (super c)). {Q};
∀ l. G,A`{Q ∧. (λs. l = locals (store s)) ;. set-lvars Map.empty}

.init c. {set-lvars l .; R}]] =⇒
G,A`{Normal (P ∧. Not ◦ initd C)} .Init C . {R}

— Some dummy rules for the intermediate terms Callee, InsInitE, InsInitV, FinA only used by the smallstep
semantics.
| InsInitV : G,A`{Normal P} InsInitV c v=� {Q}
| InsInitE : G,A`{Normal P} InsInitE c e−� {Q}
| Callee: G,A`{Normal P} Callee l e−� {Q}
| FinA: G,A`{Normal P} .FinA a c. {Q}

226

definition
adapt-pre :: ′a assn ⇒ ′a assn ⇒ ′a assn ⇒ ′a assn
where adapt-pre P Q Q ′ = (λY s Z . ∀Y ′ s ′. ∃Z ′. P Y s Z ′ ∧ (Q Y ′ s ′ Z ′ −→ Q ′ Y ′ s ′ Z))

rules derived by induction
lemma cut-valid: [[G,A ′||=ts; G,A||=A ′]] =⇒ G,A||=ts
〈proof 〉

lemma ax-thin [rule-format (no-asm)]:
G,(A ′:: ′a triple set)|`(ts:: ′a triple set) =⇒ ∀A. A ′ ⊆ A −→ G,A|`ts
〈proof 〉

lemma ax-thin-insert: G,(A:: ′a triple set)`(t:: ′a triple) =⇒ G,insert x A`t
〈proof 〉

lemma subset-mtriples-iff :
ts ⊆ {{P} mb−� {Q} | ms} = (∃ms ′. ms ′⊆ms ∧ ts = {{P} mb−� {Q} | ms ′})
〈proof 〉

lemma weaken:
G,(A:: ′a triple set)|`(ts ′:: ′a triple set) =⇒ ∀ ts. ts ⊆ ts ′ −→ G,A|`ts
〈proof 〉

rules derived from conseq

In the following rules we often have to give some type annotations like: G,A`{P} t� {Q}. Given
only the term above without annotations, Isabelle would infer a more general type were we could
have different types of auxiliary variables in the assumption set (A) and in the triple itself (P and
Q). But ax-derivs.Methd enforces the same type in the inductive definition of the derivation. So we
have to restrict the types to be able to apply the rules.
lemma conseq12 : [[G,(A:: ′a triple set)`{P ′:: ′a assn} t� {Q ′};
∀Y s Z . P Y s Z −→ (∀Y ′ s ′. (∀Y Z ′. P ′ Y s Z ′ −→ Q ′ Y ′ s ′ Z ′) −→
Q Y ′ s ′ Z)]]
=⇒ G,A`{P :: ′a assn} t� {Q }
〈proof 〉
lemma conseq12 ′: [[G,(A:: ′a triple set)`{P ′:: ′a assn} t� {Q ′}; ∀ s Y ′ s ′.

(∀Y Z . P ′ Y s Z −→ Q ′ Y ′ s ′ Z) −→
(∀Y Z . P Y s Z −→ Q Y ′ s ′ Z)]]

=⇒ G,A`{P:: ′a assn } t� {Q }
〈proof 〉

lemma conseq12-from-conseq12 ′: [[G,(A:: ′a triple set)`{P ′:: ′a assn} t� {Q ′};
∀Y s Z . P Y s Z −→ (∀Y ′ s ′. (∀Y Z ′. P ′ Y s Z ′ −→ Q ′ Y ′ s ′ Z ′) −→
Q Y ′ s ′ Z)]]
=⇒ G,A`{P:: ′a assn} t� {Q }
〈proof 〉

lemma conseq1 : [[G,(A:: ′a triple set)`{P ′:: ′a assn} t� {Q}; P ⇒ P ′]]
=⇒ G,A`{P:: ′a assn} t� {Q}
〈proof 〉

lemma conseq2 : [[G,(A:: ′a triple set)`{P:: ′a assn} t� {Q ′}; Q ′⇒ Q]]
=⇒ G,A`{P:: ′a assn} t� {Q}
〈proof 〉

Theory AxSem 227

lemma ax-escape:
[[∀Y s Z . P Y s Z
−→ G,(A:: ′a triple set)`{λY ′ s ′ (Z ′:: ′a). (Y ′,s ′) = (Y ,s)}

t�
{λY s Z ′. Q Y s Z}

]] =⇒ G,A`{P:: ′a assn} t� {Q:: ′a assn}
〈proof 〉

lemma ax-constant: [[C =⇒ G,(A:: ′a triple set)`{P:: ′a assn} t� {Q}]]
=⇒ G,A`{λY s Z . C ∧ P Y s Z} t� {Q}
〈proof 〉

lemma ax-impossible [intro]:
G,(A:: ′a triple set)`{λY s Z . False} t� {Q:: ′a assn}
〈proof 〉

lemma ax-nochange-lemma: [[P Y s; All ((=) w)]] =⇒ P w s
〈proof 〉

lemma ax-nochange:
G,(A::(res × state) triple set)`{λY s Z . (Y ,s)=Z} t� {λY s Z . (Y ,s)=Z}
=⇒ G,A`{P::(res × state) assn} t� {P}
〈proof 〉

lemma ax-trivial: G,(A:: ′a triple set)`{P:: ′a assn} t� {λY s Z . True}
〈proof 〉

lemma ax-disj:
[[G,(A:: ′a triple set)`{P1 :: ′a assn} t� {Q1}; G,A`{P2 :: ′a assn} t� {Q2}]]
=⇒ G,A`{λY s Z . P1 Y s Z ∨ P2 Y s Z} t� {λY s Z . Q1 Y s Z ∨ Q2 Y s Z}
〈proof 〉

lemma ax-supd-shuffle:
(∃Q. G,(A:: ′a triple set)`{P:: ′a assn} .c1 . {Q} ∧ G,A`{Q ;. f } .c2 . {R}) =

(∃Q ′. G,A`{P} .c1 . {f .; Q ′} ∧ G,A`{Q ′} .c2 . {R})
〈proof 〉

lemma ax-cases:
[[G,(A:: ′a triple set)`{P ∧. C} t� {Q:: ′a assn};

G,A`{P ∧. Not ◦ C} t� {Q}]] =⇒ G,A`{P} t� {Q}
〈proof 〉

lemma ax-adapt: G,(A:: ′a triple set)`{P:: ′a assn} t� {Q}
=⇒ G,A`{adapt-pre P Q Q ′} t� {Q ′}
〈proof 〉

lemma adapt-pre-adapts: G,(A:: ′a triple set)|={P:: ′a assn} t� {Q}
−→ G,A|={adapt-pre P Q Q ′} t� {Q ′}
〈proof 〉

228

lemma adapt-pre-weakest:
∀G (A:: ′a triple set) t. G,A|={P} t� {Q} −→ G,A|={P ′} t� {Q ′} =⇒

P ′⇒ adapt-pre P Q (Q ′:: ′a assn)
〈proof 〉

lemma peek-and-forget1-Normal:
G,(A:: ′a triple set)`{Normal P} t� {Q:: ′a assn}
=⇒ G,A`{Normal (P ∧. p)} t� {Q}
〈proof 〉

lemma peek-and-forget1 :
G,(A:: ′a triple set)`{P:: ′a assn} t� {Q}
=⇒ G,A`{P ∧. p} t� {Q}
〈proof 〉

lemmas ax-NormalD = peek-and-forget1 [of - - - - - normal]

lemma peek-and-forget2 :
G,(A:: ′a triple set)`{P:: ′a assn} t� {Q ∧. p}
=⇒ G,A`{P} t� {Q}
〈proof 〉

lemma ax-subst-Val-allI :
∀ v. G,(A:: ′a triple set)`{(P ′ v)←Val v} t� {(Q v):: ′a assn}
=⇒ ∀ v. G,A`{(λw:. P ′ (the-In1 w))←Val v} t� {Q v}
〈proof 〉

lemma ax-subst-Var-allI :
∀ v. G,(A:: ′a triple set)`{(P ′ v)←Var v} t� {(Q v):: ′a assn}
=⇒ ∀ v. G,A`{(λw:. P ′ (the-In2 w))←Var v} t� {Q v}
〈proof 〉

lemma ax-subst-Vals-allI :
(∀ v. G,(A:: ′a triple set)`{(P ′ v)←Vals v} t� {(Q v):: ′a assn})
=⇒ ∀ v. G,A`{(λw:. P ′ (the-In3 w))←Vals v} t� {Q v}
〈proof 〉

alternative axioms

lemma ax-Lit2 :
G,(A:: ′a triple set)`{Normal P:: ′a assn} Lit v−� {Normal (P↓=Val v)}
〈proof 〉
lemma ax-Lit2-test-complete:

G,(A:: ′a triple set)`{Normal (P←Val v):: ′a assn} Lit v−� {P}
〈proof 〉

lemma ax-LVar2 : G,(A:: ′a triple set)`{Normal P:: ′a assn} LVar vn=� {Normal (λs.. P↓=Var (lvar vn s))}
〈proof 〉

lemma ax-Super2 : G,(A:: ′a triple set)`
{Normal P:: ′a assn} Super−� {Normal (λs.. P↓=Val (val-this s))}
〈proof 〉

lemma ax-Nil2 :
G,(A:: ′a triple set)`{Normal P:: ′a assn} [] .=� {Normal (P↓=Vals [])}
〈proof 〉

Theory AxSem 229

misc derived structural rules

lemma ax-finite-mtriples-lemma: [[F ⊆ ms; finite ms; ∀ (C ,sig)∈ms.
G,(A:: ′a triple set)`{Normal (P C sig):: ′a assn} mb C sig−� {Q C sig}]] =⇒

G,A|`{{P} mb−� {Q} | F}
〈proof 〉
lemmas ax-finite-mtriples = ax-finite-mtriples-lemma [OF subset-refl]

lemma ax-derivs-insertD:
G,(A:: ′a triple set)|`insert (t:: ′a triple) ts =⇒ G,A`t ∧ G,A|`ts
〈proof 〉

lemma ax-methods-spec:
[[G,(A:: ′a triple set)|`case-prod f ‘ ms; (C ,sig) ∈ ms]]=⇒ G,A`((f C sig):: ′a triple)
〈proof 〉

lemma ax-finite-pointwise-lemma [rule-format]: [[F ⊆ ms; finite ms]] =⇒
((∀ (C ,sig)∈F . G,(A:: ′a triple set)`(f C sig:: ′a triple)) −→ (∀ (C ,sig)∈ms. G,A`(g C sig:: ′a triple))) −→

G,A|`case-prod f ‘ F −→ G,A|`case-prod g ‘ F
〈proof 〉
lemmas ax-finite-pointwise = ax-finite-pointwise-lemma [OF subset-refl]

lemma ax-no-hazard:
G,(A:: ′a triple set)`{P ∧. type-ok G t} t� {Q:: ′a assn} =⇒ G,A`{P} t� {Q}
〈proof 〉

lemma ax-free-wt:
(∃T L C . (|prg=G,cls=C ,lcl=L|)`t::T)
−→ G,(A:: ′a triple set)`{Normal P} t� {Q:: ′a assn} =⇒
G,A`{Normal P} t� {Q}
〈proof 〉

〈ML〉
declare ax-Abrupts [intro!]

lemmas ax-Normal-cases = ax-cases [of - - - normal]

lemma ax-Skip [intro!]: G,(A:: ′a triple set)`{P←♦} .Skip. {P:: ′a assn}
〈proof 〉
lemmas ax-SkipI = ax-Skip [THEN conseq1]

derived rules for methd call

lemma ax-Call-known-DynT :
[[G`IntVir→C�statT ;
∀ a vs l. G,A`{(R a←Vals vs ∧. (λs. l = locals (store s)) ;.
init-lvars G C (|name=mn,parTs=pTs|) IntVir a vs)}

Methd C (|name=mn,parTs=pTs|)−� {set-lvars l .; S};
∀ a. G,A`{Q←Val a} args .

=�
{R a ∧. (λs. C = obj-class (the (heap (store s) (the-Addr a))) ∧

C = invocation-declclass
G IntVir (store s) a statT (|name=mn,parTs=pTs|))};

G,(A:: ′a triple set)`{Normal P} e−� {Q:: ′a assn}]]
=⇒ G,A`{Normal P} {accC ,statT ,IntVir}e·mn({pTs}args)−� {S}

〈proof 〉

lemma ax-Call-Static:

230

[[∀ a vs l. G,A`{R a←Vals vs ∧. (λs. l = locals (store s)) ;.
init-lvars G C (|name=mn,parTs=pTs|) Static any-Addr vs}

Methd C (|name=mn,parTs=pTs|)−� {set-lvars l .; S};
G,A`{Normal P} e−� {Q};
∀ a. G,(A:: ′a triple set)`{Q←Val a} args .

=� {(R::val ⇒ ′a assn) a
∧. (λ s. C=invocation-declclass

G Static (store s) a statT (|name=mn,parTs=pTs|))}
]] =⇒ G,A`{Normal P} {accC ,statT ,Static}e·mn({pTs}args)−� {S}
〈proof 〉

lemma ax-Methd1 :
[[G,A∪{{P} Methd−� {Q} | ms}|` {{P} body G−� {Q} | ms}; (C ,sig)∈ ms]] =⇒

G,A`{Normal (P C sig)} Methd C sig−� {Q C sig}
〈proof 〉

lemma ax-MethdN :
G,insert({Normal P} Methd C sig−� {Q}) A`

{Normal P} body G C sig−� {Q} =⇒
G,A`{Normal P} Methd C sig−� {Q}

〈proof 〉

lemma ax-StatRef :
G,(A:: ′a triple set)`{Normal (P←Val Null)} StatRef rt−� {P:: ′a assn}
〈proof 〉

rules derived from Init and Done
lemma ax-InitS : [[the (class G C) = c; C 6= Object;
∀ l. G,A`{Q ∧. (λs. l = locals (store s)) ;. set-lvars Map.empty}

.init c. {set-lvars l .; R};
G,A`{Normal ((P ∧. Not ◦ initd C) ;. supd (init-class-obj G C))}

.Init (super c). {Q}]] =⇒
G,(A:: ′a triple set)`{Normal (P ∧. Not ◦ initd C)} .Init C . {R:: ′a assn}
〈proof 〉

lemma ax-Init-Skip-lemma:
∀ l. G,(A:: ′a triple set)`{P←♦ ∧. (λs. l = locals (store s)) ;. set-lvars l ′}
.Skip. {(set-lvars l .; P):: ′a assn}
〈proof 〉

lemma ax-triv-InitS : [[the (class G C) = c;init c = Skip; C 6= Object;
P←♦ ⇒ (supd (init-class-obj G C) .; P);
G,A`{Normal (P ∧. initd C)} .Init (super c). {(P ∧. initd C)←♦}]] =⇒
G,(A:: ′a triple set)`{Normal P←♦} .Init C . {(P ∧. initd C):: ′a assn}

〈proof 〉

lemma ax-Init-Object: wf-prog G =⇒ G,(A:: ′a triple set)`
{Normal ((supd (init-class-obj G Object) .; P←♦) ∧. Not ◦ initd Object)}

.Init Object. {(P ∧. initd Object):: ′a assn}
〈proof 〉

lemma ax-triv-Init-Object: [[wf-prog G;
(P:: ′a assn) ⇒ (supd (init-class-obj G Object) .; P)]] =⇒

G,(A:: ′a triple set)`{Normal P←♦} .Init Object. {P ∧. initd Object}
〈proof 〉

introduction rules for Alloc and SXAlloc
lemma ax-SXAlloc-Normal:

Theory AxSem 231

G,(A:: ′a triple set)`{P:: ′a assn} .c. {Normal Q}
=⇒ G,A`{P} .c. {SXAlloc G Q}
〈proof 〉

lemma ax-Alloc:
G,(A:: ′a triple set)`{P:: ′a assn} t�
{Normal (λY (x,s) Z . (∀ a. new-Addr (heap s) = Some a −→
Q (Val (Addr a)) (Norm(init-obj G (CInst C) (Heap a) s)) Z)) ∧.
heap-free (Suc (Suc 0))}

=⇒ G,A`{P} t� {Alloc G (CInst C) Q}
〈proof 〉

lemma ax-Alloc-Arr :
G,(A:: ′a triple set)`{P:: ′a assn} t�
{λVal:i:. Normal (λY (x,s) Z . ¬the-Intg i<0 ∧
(∀ a. new-Addr (heap s) = Some a −→
Q (Val (Addr a)) (Norm (init-obj G (Arr T (the-Intg i)) (Heap a) s)) Z)) ∧.
heap-free (Suc (Suc 0))}

=⇒
G,A`{P} t� {λVal:i:. abupd (check-neg i) .; Alloc G (Arr T (the-Intg i)) Q}
〈proof 〉

lemma ax-SXAlloc-catch-SXcpt:
[[G,(A:: ′a triple set)`{P:: ′a assn} t�
{(λY (x,s) Z . x=Some (Xcpt (Std xn)) ∧
(∀ a. new-Addr (heap s) = Some a −→
Q Y (Some (Xcpt (Loc a)),init-obj G (CInst (SXcpt xn)) (Heap a) s) Z))
∧. heap-free (Suc (Suc 0))}]]

=⇒
G,A`{P} t� {SXAlloc G (λY s Z . Q Y s Z ∧ G,s`catch SXcpt xn)}
〈proof 〉

end

232

Chapter 23

AxSound

1 Soundness proof for Axiomatic semantics of Java expressions and statements
theory AxSound imports AxSem begin

validity
definition

triple-valid2 :: prog ⇒ nat ⇒ ′a triple ⇒ bool (‹-|=-::-›[61 ,0 , 58] 57)
where

G|=n::t =
(case t of {P} t� {Q} ⇒
∀Y s Z . P Y s Z −→ (∀L. s::�(G,L)
−→ (∀T C A. (normal s −→ ((|prg=G,cls=C ,lcl=L|)`t::T ∧
(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»t»A)) −→
(∀Y ′ s ′. G`s −t�−n→ (Y ′,s ′) −→ Q Y ′ s ′ Z ∧ s ′::�(G,L)))))

This definition differs from the ordinary triple-valid-def manly in the conclusion: We also ensures
conformance of the result state. So we don’t have to apply the type soundness lemma all the
time during induction. This definition is only introduced for the soundness proof of the axiomatic
semantics, in the end we will conclude to the ordinary definition.
definition

ax-valids2 :: prog ⇒ ′a triples ⇒ ′a triples ⇒ bool (‹-,-||=::-› [61 ,58 ,58] 57)
where G,A||=::ts = (∀n. (∀ t∈A. G|=n::t) −→ (∀ t∈ts. G|=n::t))

lemma triple-valid2-def2 : G|=n::{P} t� {Q} =
(∀Y s Z . P Y s Z −→ (∀Y ′ s ′. G`s −t�−n→ (Y ′,s ′)−→
(∀L. s::�(G,L) −→ (∀T C A. (normal s −→ ((|prg=G,cls=C ,lcl=L|)`t::T ∧

(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»t»A)) −→
Q Y ′ s ′ Z ∧ s ′::�(G,L)))))
〈proof 〉

lemma triple-valid2-eq [rule-format (no-asm)]:
wf-prog G ==> triple-valid2 G = triple-valid G
〈proof 〉

lemma ax-valids2-eq: wf-prog G =⇒ G,A||=::ts = G,A||=ts
〈proof 〉

lemma triple-valid2-Suc [rule-format (no-asm)]: G|=Suc n::t −→ G|=n::t
〈proof 〉

lemma Methd-triple-valid2-0 : G|=0 ::{Normal P} Methd C sig−� {Q}
〈proof 〉

233

234

lemma Methd-triple-valid2-SucI :
[[G|=n::{Normal P} body G C sig−�{Q}]]
=⇒ G|=Suc n::{Normal P} Methd C sig−� {Q}
〈proof 〉

lemma triples-valid2-Suc:
Ball ts (triple-valid2 G (Suc n)) =⇒ Ball ts (triple-valid2 G n)
〈proof 〉

lemma G||=n:insert t A = (G|=n:t ∧ G||=n:A)
〈proof 〉

soundness

lemma Methd-sound:
assumes recursive: G,A∪ {{P} Methd−� {Q} | ms}||=::{{P} body G−� {Q} | ms}
shows G,A||=::{{P} Methd−� {Q} | ms}
〈proof 〉

lemma valids2-inductI : ∀ s t n Y ′ s ′. G`s−t�−n→ (Y ′,s ′) −→ t = c −→
Ball A (triple-valid2 G n) −→ (∀Y Z . P Y s Z −→
(∀L. s::�(G,L) −→
(∀T C A. (normal s −→ ((|prg=G,cls=C ,lcl=L|)`t::T) ∧

(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»t»A) −→
Q Y ′ s ′ Z ∧ s ′::�(G, L)))) =⇒

G,A||=::{ {P} c� {Q}}
〈proof 〉

lemma da-good-approx-evalnE [consumes 4]:
assumes evaln: G`s0 −t�−n→ (v, s1)

and wt: (|prg=G,cls=C ,lcl=L|)`t::T
and da: (|prg=G,cls=C ,lcl=L|)` dom (locals (store s0)) »t» A
and wf : wf-prog G
and elim: [[normal s1 =⇒ nrm A ⊆ dom (locals (store s1));∧

l. [[abrupt s1 = Some (Jump (Break l)); normal s0]]
=⇒ brk A l ⊆ dom (locals (store s1));

[[abrupt s1 = Some (Jump Ret);normal s0]]
=⇒Result ∈ dom (locals (store s1))
]] =⇒ P

shows P
〈proof 〉

lemma validI :
assumes I :

∧
n s0 L accC T C v s1 Y Z .

[[∀ t∈A. G|=n::t; s0 ::�(G,L);
normal s0 =⇒ (|prg=G,cls=accC ,lcl=L|)`t::T ;
normal s0 =⇒ (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»t»C ;
G`s0 −t�−n→ (v,s1); P Y s0 Z]] =⇒ Q v s1 Z ∧ s1 ::�(G,L)

shows G,A||=::{ {P} t� {Q} }
〈proof 〉

declare [[simproc add: wt-expr wt-var wt-exprs wt-stmt]]

lemma valid-stmtI :
assumes I :

∧
n s0 L accC C s1 Y Z .

[[∀ t∈A. G|=n::t; s0 ::�(G,L);

Theory AxSound 235

normal s0=⇒ (|prg=G,cls=accC ,lcl=L|)`c::
√
;

normal s0=⇒(|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»〈c〉s»C ;
G`s0 −c−n→ s1 ; P Y s0 Z]] =⇒ Q ♦ s1 Z ∧ s1 ::�(G,L)

shows G,A||=::{ {P} 〈c〉s� {Q} }
〈proof 〉

lemma valid-stmt-NormalI :
assumes I :

∧
n s0 L accC C s1 Y Z .

[[∀ t∈A. G|=n::t; s0 ::�(G,L); normal s0 ; (|prg=G,cls=accC ,lcl=L|)`c::
√
;

(|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»〈c〉s»C ;
G`s0 −c−n→ s1 ; (Normal P) Y s0 Z]] =⇒ Q ♦ s1 Z ∧ s1 ::�(G,L)

shows G,A||=::{ {Normal P} 〈c〉s� {Q} }
〈proof 〉

lemma valid-var-NormalI :
assumes I :

∧
n s0 L accC T C vf s1 Y Z .

[[∀ t∈A. G|=n::t; s0 ::�(G,L); normal s0 ;
(|prg=G,cls=accC ,lcl=L|)`t::=T ;
(|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»〈t〉v»C ;
G`s0 −t=�vf−n→ s1 ; (Normal P) Y s0 Z]]
=⇒ Q (In2 vf) s1 Z ∧ s1 ::�(G,L)

shows G,A||=::{ {Normal P} 〈t〉v� {Q} }
〈proof 〉

lemma valid-expr-NormalI :
assumes I :

∧
n s0 L accC T C v s1 Y Z .

[[∀ t∈A. G|=n::t; s0 ::�(G,L); normal s0 ;
(|prg=G,cls=accC ,lcl=L|)`t::−T ;
(|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»〈t〉e»C ;
G`s0 −t−�v−n→ s1 ; (Normal P) Y s0 Z]]
=⇒ Q (In1 v) s1 Z ∧ s1 ::�(G,L)

shows G,A||=::{ {Normal P} 〈t〉e� {Q} }
〈proof 〉

lemma valid-expr-list-NormalI :
assumes I :

∧
n s0 L accC T C vs s1 Y Z .

[[∀ t∈A. G|=n::t; s0 ::�(G,L); normal s0 ;
(|prg=G,cls=accC ,lcl=L|)`t:: .=T ;
(|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»〈t〉l»C ;
G`s0 −t .=�vs−n→ s1 ; (Normal P) Y s0 Z]]
=⇒ Q (In3 vs) s1 Z ∧ s1 ::�(G,L)

shows G,A||=::{ {Normal P} 〈t〉l� {Q} }
〈proof 〉

lemma validE [consumes 5]:
assumes valid: G,A||=::{ {P} t� {Q} }
and P: P Y s0 Z
and valid-A: ∀ t∈A. G|=n::t
and conf : s0 ::�(G,L)
and eval: G`s0 −t�−n→ (v,s1)
and wt: normal s0 =⇒ (|prg=G,cls=accC ,lcl=L|)`t::T
and da: normal s0 =⇒ (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»t»C
and elim: [[Q v s1 Z ; s1 ::�(G,L)]] =⇒ concl

shows concl
〈proof 〉

lemma all-empty: (∀ x. P) = P
〈proof 〉

236

corollary evaln-type-sound:
assumes evaln: G`s0 −t�−n→ (v,s1) and

wt: (|prg=G,cls=accC ,lcl=L|)`t::T and
da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0)) »t» A and

conf-s0 : s0 ::�(G,L) and
wf : wf-prog G

shows s1 ::�(G,L) ∧ (normal s1 −→ G,L,store s1`t�v::�T) ∧
(error-free s0 = error-free s1)

〈proof 〉

corollary dom-locals-evaln-mono-elim [consumes 1]:
assumes
evaln: G` s0 −t�−n→ (v,s1) and

hyps: [[dom (locals (store s0)) ⊆ dom (locals (store s1));∧
vv s val. [[v=In2 vv; normal s1]]

=⇒ dom (locals (store s))
⊆ dom (locals (store ((snd vv) val s)))]] =⇒ P

shows P
〈proof 〉

lemma evaln-no-abrupt:∧
s s ′. [[G`s −t�−n→ (w,s ′); normal s ′]] =⇒ normal s

〈proof 〉

declare inj-term-simps [simp]
lemma ax-sound2 :

assumes wf : wf-prog G
and deriv: G,A|`ts

shows G,A||=::ts
〈proof 〉
declare inj-term-simps [simp del]

theorem ax-sound:
wf-prog G =⇒ G,(A:: ′a triple set)|`(ts:: ′a triple set) =⇒ G,A||=ts
〈proof 〉

lemma sound-valid2-lemma:
[[∀ v n. Ball A (triple-valid2 G n) −→ P v n; Ball A (triple-valid2 G n)]]
=⇒P v n
〈proof 〉

end

Chapter 24

AxCompl

1 Completeness proof for Axiomatic semantics of Java expressions and state-
ments

theory AxCompl imports AxSem begin

design issues:

• proof structured by Most General Formulas (-> Thomas Kleymann)

set of not yet initialzed classes
definition

nyinitcls :: prog ⇒ state ⇒ qtname set
where nyinitcls G s = {C . is-class G C ∧ ¬ initd C s}

lemma nyinitcls-subset-class: nyinitcls G s ⊆ {C . is-class G C}
〈proof 〉

lemmas finite-nyinitcls [simp] =
finite-is-class [THEN nyinitcls-subset-class [THEN finite-subset]]

lemma card-nyinitcls-bound: card (nyinitcls G s) ≤ card {C . is-class G C}
〈proof 〉

lemma nyinitcls-set-locals-cong [simp]:
nyinitcls G (x,set-locals l s) = nyinitcls G (x,s)
〈proof 〉

lemma nyinitcls-abrupt-cong [simp]: nyinitcls G (f x, y) = nyinitcls G (x, y)
〈proof 〉

lemma nyinitcls-abupd-cong [simp]: nyinitcls G (abupd f s) = nyinitcls G s
〈proof 〉

lemma card-nyinitcls-abrupt-congE [elim!]:
card (nyinitcls G (x, s)) ≤ n =⇒ card (nyinitcls G (y, s)) ≤ n
〈proof 〉

lemma nyinitcls-new-xcpt-var [simp]:
nyinitcls G (new-xcpt-var vn s) = nyinitcls G s
〈proof 〉

lemma nyinitcls-init-lvars [simp]:

237

238

nyinitcls G ((init-lvars G C sig mode a ′ pvs) s) = nyinitcls G s
〈proof 〉

lemma nyinitcls-emptyD: [[nyinitcls G s = {}; is-class G C]] =⇒ initd C s
〈proof 〉

lemma card-Suc-lemma:
[[card (insert a A) ≤ Suc n; a /∈A; finite A]] =⇒ card A ≤ n
〈proof 〉

lemma nyinitcls-le-SucD:
[[card (nyinitcls G (x,s)) ≤ Suc n; ¬inited C (globs s); class G C=Some y]] =⇒

card (nyinitcls G (x,init-class-obj G C s)) ≤ n
〈proof 〉

lemma inited-gext ′: [[s≤|s ′;inited C (globs s)]] =⇒ inited C (globs s ′)
〈proof 〉

lemma nyinitcls-gext: snd s≤|snd s ′ =⇒ nyinitcls G s ′ ⊆ nyinitcls G s
〈proof 〉

lemma card-nyinitcls-gext:
[[snd s≤|snd s ′; card (nyinitcls G s) ≤ n]]=⇒ card (nyinitcls G s ′) ≤ n
〈proof 〉

init-le
definition

init-le :: prog ⇒ nat ⇒ state ⇒ bool (‹-`init≤-› [51 ,51] 50)
where G`init≤n = (λs. card (nyinitcls G s) ≤ n)

lemma init-le-def2 [simp]: (G`init≤n) s = (card (nyinitcls G s)≤n)
〈proof 〉

lemma All-init-leD:
∀n::nat. G,(A:: ′a triple set)`{P ∧. G`init≤n} t� {Q:: ′a assn}
=⇒ G,A`{P} t� {Q}
〈proof 〉

Most General Triples and Formulas
definition

remember-init-state :: state assn (‹ .=›)
where .

= ≡ λY s Z . s = Z

lemma remember-init-state-def2 [simp]: .
= Y = (=)

〈proof 〉

definition
MGF ::[state assn, term, prog] ⇒ state triple (‹{-} -� {-→}›[3 ,65 ,3]62)
where {P} t� {G→} = {P} t� {λY s ′ s. G`s −t�→ (Y ,s ′)}

definition
MGFn :: [nat, term, prog] ⇒ state triple (‹{=:-} -� {-→}›[3 ,65 ,3]62)
where {=:n} t� {G→} = { .= ∧. G`init≤n} t� {G→}

lemma MGF-valid: wf-prog G =⇒ G,{}|={ .=} t� {G→}
〈proof 〉

Theory AxCompl 239

lemma MGF-res-eq-lemma [simp]:
(∀Y ′ Y s. Y = Y ′ ∧ P s −→ Q s) = (∀ s. P s −→ Q s)
〈proof 〉

lemma MGFn-def2 :
G,A`{=:n} t� {G→} = G,A`{ .= ∧. G`init≤n}

t� {λY s ′ s. G`s −t�→ (Y ,s ′)}
〈proof 〉

lemma MGF-MGFn-iff :
G,(A::state triple set)`{ .=} t� {G→} = (∀n. G,A`{=:n} t� {G→})
〈proof 〉

lemma MGFnD:
G,(A::state triple set)`{=:n} t� {G→} =⇒
G,A`{(λY ′ s ′ s. s ′ = s ∧ P s) ∧. G`init≤n}
t� {(λY ′ s ′ s. G`s−t�→(Y ′,s ′) ∧ P s) ∧. G`init≤n}
〈proof 〉
lemmas MGFnD ′ = MGFnD [of - - - - λx. True]

To derive the most general formula, we can always assume a normal state in the precondition, since
abrupt cases can be handled uniformally by the abrupt rule.
lemma MGFNormalI : G,A`{Normal .

=} t� {G→} =⇒
G,(A::state triple set)`{ .=::state assn} t� {G→}
〈proof 〉

lemma MGFNormalD:
G,(A::state triple set)`{ .=} t� {G→} =⇒ G,A`{Normal .

=} t� {G→}
〈proof 〉

Additionally to MGFNormalI, we also expand the definition of the most general formula here
lemma MGFn-NormalI :
G,(A::state triple set)`{Normal((λY ′ s ′ s. s ′=s ∧ normal s) ∧. G`init≤n)}t�
{λY s ′ s. G`s −t�→ (Y ,s ′)} =⇒ G,A`{=:n}t�{G→}
〈proof 〉

To derive the most general formula, we can restrict ourselves to welltyped terms, since all others
can be uniformally handled by the hazard rule.
lemma MGFn-free-wt:
(∃T L C . (|prg=G,cls=C ,lcl=L|)`t::T)
−→ G,(A::state triple set)`{=:n} t� {G→}
=⇒ G,A`{=:n} t� {G→}

〈proof 〉

To derive the most general formula, we can restrict ourselves to welltyped terms and assume that
the state in the precondition conforms to the environment. All type violations can be uniformally
handled by the hazard rule.
lemma MGFn-free-wt-NormalConformI :
(∀ T L C . (|prg=G,cls=C ,lcl=L|)`t::T
−→ G,(A::state triple set)
`{Normal((λY ′ s ′ s. s ′=s ∧ normal s) ∧. G`init≤n) ∧. (λ s. s::�(G, L))}
t�
{λY s ′ s. G`s −t�→ (Y ,s ′)})

=⇒ G,A`{=:n}t�{G→}
〈proof 〉

240

To derive the most general formula, we can restrict ourselves to welltyped terms and assume that
the state in the precondition conforms to the environment and that the term is definetly assigned
with respect to this state. All type violations can be uniformally handled by the hazard rule.
lemma MGFn-free-wt-da-NormalConformI :
(∀ T L C B. (|prg=G,cls=C ,lcl=L|)`t::T
−→ G,(A::state triple set)
`{Normal((λY ′ s ′ s. s ′=s ∧ normal s) ∧. G`init≤n) ∧. (λ s. s::�(G, L))
∧. (λ s. (|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»t»B)}

t�
{λY s ′ s. G`s −t�→ (Y ,s ′)})

=⇒ G,A`{=:n}t�{G→}
〈proof 〉

main lemmas
lemma MGFn-Init:
assumes mgf-hyp: ∀m. Suc m≤n −→ (∀ t. G,A`{=:m} t� {G→})
shows G,(A::state triple set)`{=:n} 〈Init C 〉s� {G→}
〈proof 〉
lemmas MGFn-InitD = MGFn-Init [THEN MGFnD, THEN ax-NormalD]

lemma MGFn-Call:
assumes mgf-methds:

∀C sig. G,(A::state triple set)`{=:n} 〈(Methd C sig)〉e� {G→}
and mgf-e: G,A`{=:n} 〈e〉e� {G→}
and mgf-ps: G,A`{=:n} 〈ps〉l� {G→}
and wf : wf-prog G
shows G,A`{=:n} 〈{accC ,statT ,mode}e·mn({pTs ′}ps)〉e� {G→}
〈proof 〉

lemma eval-expression-no-jump ′:
assumes eval: G`s0 −e−�v→ s1
and no-jmp: abrupt s0 6= Some (Jump j)
and wt: (|prg=G, cls=C ,lcl=L|)`e::−T
and wf : wf-prog G

shows abrupt s1 6= Some (Jump j)
〈proof 〉

To derive the most general formula for the loop statement, we need to come up with a proper loop
invariant, which intuitively states that we are currently inside the evaluation of the loop. To define
such an invariant, we unroll the loop in iterated evaluations of the expression and evaluations of the
loop body.
definition

unroll :: prog ⇒ label ⇒ expr ⇒ stmt ⇒ (state × state) set where
unroll G l e c = {(s,t). ∃ v s1 s2 .

G`s −e−�v→ s1 ∧ the-Bool v ∧ normal s1 ∧
G`s1 −c→ s2 ∧ t=(abupd (absorb (Cont l)) s2)}

lemma unroll-while:
assumes unroll: (s, t) ∈ (unroll G l e c)∗
and eval-e: G`t −e−�v→ s ′

and normal-termination: normal s ′ −→ ¬ the-Bool v
and wt: (|prg=G,cls=C ,lcl=L|)`e::−T
and wf : wf-prog G
shows G`s −l· While(e) c→ s ′

〈proof 〉

Theory AxCompl 241

lemma MGFn-Loop:
assumes mfg-e: G,(A::state triple set)`{=:n} 〈e〉e� {G→}
and mfg-c: G,A`{=:n} 〈c〉s� {G→}
and wf : wf-prog G

shows G,A`{=:n} 〈l· While(e) c〉s� {G→}
〈proof 〉

lemma MGFn-FVar :
fixes A :: state triple set

assumes mgf-init: G,A`{=:n} 〈Init statDeclC 〉s� {G→}
and mgf-e: G,A`{=:n} 〈e〉e� {G→}
and wf : wf-prog G
shows G,A`{=:n} 〈{accC ,statDeclC ,stat}e..fn〉v� {G→}
〈proof 〉

lemma MGFn-Fin:
assumes wf : wf-prog G
and mgf-c1 : G,A`{=:n} 〈c1 〉s� {G→}
and mgf-c2 : G,A`{=:n} 〈c2 〉s� {G→}
shows G,(A::state triple set)`{=:n} 〈c1 Finally c2 〉s� {G→}
〈proof 〉

lemma Body-no-break:
assumes eval-init: G`Norm s0 −Init D→ s1

and eval-c: G`s1 −c→ s2
and jmpOk: jumpNestingOkS {Ret} c
and wt-c: (|prg=G, cls=C , lcl=L|)`c::

√

and clsD: class G D=Some d
and wf : wf-prog G

shows ∀ l. abrupt s2 6= Some (Jump (Break l)) ∧
abrupt s2 6= Some (Jump (Cont l))

〈proof 〉

lemma MGFn-Body:
assumes wf : wf-prog G
and mgf-init: G,A`{=:n} 〈Init D〉s� {G→}
and mgf-c: G,A`{=:n} 〈c〉s� {G→}
shows G,(A::state triple set)`{=:n} 〈Body D c〉e� {G→}
〈proof 〉

lemma MGFn-lemma:
assumes mgf-methds:∧

n. ∀ C sig. G,(A::state triple set)`{=:n} 〈Methd C sig〉e� {G→}
and wf : wf-prog G
shows

∧
t. G,A`{=:n} t� {G→}

〈proof 〉

lemma MGF-asm:
[[∀C sig. is-methd G C sig −→ G,A`{ .=} In1l (Methd C sig)� {G→}; wf-prog G]]
=⇒ G,(A::state triple set)`{ .=} t� {G→}
〈proof 〉

nested version

lemma nesting-lemma ′ [rule-format (no-asm)]:
assumes ax-derivs-asm:

∧
A ts. ts ⊆ A =⇒ P A ts

and MGF-nested-Methd:
∧

A pn. ∀ b∈bdy pn. P (insert (mgf-call pn) A) {mgf b}
=⇒ P A {mgf-call pn}

242

and MGF-asm:
∧

A t. ∀ pn∈U . P A {mgf-call pn} =⇒ P A {mgf t}
and finU : finite U
and uA: uA = mgf-call‘U
shows ∀A. A ⊆ uA −→ n ≤ card uA −→ card A = card uA − n

−→ (∀ t. P A {mgf t})
〈proof 〉

lemma nesting-lemma [rule-format (no-asm)]:
assumes ax-derivs-asm:

∧
A ts. ts ⊆ A =⇒ P A ts

and MGF-nested-Methd:
∧

A pn. ∀ b∈bdy pn. P (insert (mgf (f pn)) A) {mgf b}
=⇒ P A {mgf (f pn)}

and MGF-asm:
∧

A t. ∀ pn∈U . P A {mgf (f pn)} =⇒ P A {mgf t}
and finU : finite U

shows P {} {mgf t}
〈proof 〉

lemma MGF-nested-Methd: [[
G,insert ({Normal .

=} 〈Methd C sig〉e �{G→}) A
`{Normal .

=} 〈body G C sig〉e �{G→}
]] =⇒ G,A`{Normal .

=} 〈Methd C sig〉e �{G→}
〈proof 〉

lemma MGF-deriv: wf-prog G =⇒ G,({}::state triple set)`{ .=} t� {G→}
〈proof 〉

simultaneous version
lemma MGF-simult-Methd-lemma: finite ms =⇒

G,A ∪ (λ(C ,sig). {Normal .
=} 〈Methd C sig〉e� {G→}) ‘ ms

|`(λ(C ,sig). {Normal .
=} 〈body G C sig〉e� {G→}) ‘ ms =⇒

G,A|`(λ(C ,sig). {Normal .
=} 〈Methd C sig〉e� {G→}) ‘ ms

〈proof 〉

lemma MGF-simult-Methd: wf-prog G =⇒
G,({}::state triple set)|`(λ(C ,sig). {Normal .

=} 〈Methd C sig〉e� {G→})
‘ Collect (case-prod (is-methd G))

〈proof 〉

corollaries
lemma eval-to-evaln: [[G`s −t�→ (Y ′, s ′);type-ok G t s; wf-prog G]]
=⇒ ∃n. G`s −t�−n→ (Y ′, s ′)
〈proof 〉

lemma MGF-complete:
assumes valid: G,{}|={P} t� {Q}
and mgf : G,({}::state triple set)`{ .=} t� {G→}
and wf : wf-prog G
shows G,({}::state triple set)`{P::state assn} t� {Q}
〈proof 〉

theorem ax-complete:
assumes wf : wf-prog G
and valid: G,{}|={P::state assn} t� {Q}
shows G,({}::state triple set)`{P} t� {Q}
〈proof 〉

Theory AxCompl 243

end

244

Chapter 25

AxExample

1 Example of a proof based on the Bali axiomatic semantics

theory AxExample
imports AxSem Example
begin

definition
arr-inv :: st ⇒ bool where

arr-inv = (λs. ∃ obj a T el. globs s (Stat Base) = Some obj ∧
values obj (Inl (arr , Base)) = Some (Addr a) ∧
heap s a = Some (|tag=Arr T 2 ,values=el|))

lemma arr-inv-new-obj:∧
a. [[arr-inv s; new-Addr (heap s)=Some a]] =⇒ arr-inv (gupd(Inl a 7→x) s)
〈proof 〉

lemma arr-inv-set-locals [simp]: arr-inv (set-locals l s) = arr-inv s
〈proof 〉

lemma arr-inv-gupd-Stat [simp]:
Base 6= C =⇒ arr-inv (gupd(Stat C 7→obj) s) = arr-inv s
〈proof 〉

lemma ax-inv-lupd [simp]: arr-inv (lupd(x 7→y) s) = arr-inv s
〈proof 〉

declare if-split-asm [split del]
declare lvar-def [simp]

〈ML〉

theorem ax-test: tprg,({}:: ′a triple set)`
{Normal (λY s Z :: ′a. heap-free four s ∧ ¬initd Base s ∧ ¬ initd Ext s)}
.test [Class Base].
{λY s Z . abrupt s = Some (Xcpt (Std IndOutBound))}
〈proof 〉

lemma Loop-Xcpt-benchmark:
Q = (λY (x,s) Z . x 6= None −→ the-Bool (the (locals s i))) =⇒
G,({}:: ′a triple set)`{Normal (λY s Z :: ′a. True)}
.lab1 · While(Lit (Bool True)) (If (Acc (LVar i)) (Throw (Acc (LVar xcpt))) Else

245

246

(Expr (Ass (LVar i) (Acc (LVar j))))). {Q}
〈proof 〉

end

	Overview
	Basis
	Definitions extending HOL as logical basis of Bali

	Table
	Abstract tables and their implementation as lists

	Name
	Java names

	Value
	Java values

	Type
	Java types

	Term
	Java expressions and statements

	Decl
	Field, method, interface, and class declarations, whole Java programs
	Modifier
	Declaration (base "class" for member,interface and class declarations
	Member (field or method)
	Field
	Method
	Interface
	Class

	TypeRel
	The relations between Java types

	DeclConcepts
	Advanced concepts on Java declarations like overriding, inheritance, dynamic method lookup
	accessibility of types (cf. 6.6.1)
	accessibility of members
	imethds
	accimethd
	methd
	accmethd
	dynmethd
	dynlookup
	fields
	accfield
	is methd

	WellType
	Well-typedness of Java programs

	DefiniteAssignment
	Definite Assignment
	Very restricted calculation fallback calculation
	Analysis of constant expressions
	Main analysis for boolean expressions
	Lifting set operations to range of tables (map to a set)

	WellForm
	Well-formedness of Java programs
	accessibility concerns

	State
	State for evaluation of Java expressions and statements
	access
	memory allocation
	initialization
	update
	update

	Eval
	Operational evaluation (big-step) semantics of Java expressions and statements

	Example
	Example Bali program

	Conform
	Conformance notions for the type soundness proof for Java

	DefiniteAssignmentCorrect
	Correctness of Definite Assignment

	TypeSafe
	The type soundness proof for Java
	accessibility
	Ideas for the future

	Evaln
	Operational evaluation (big-step) semantics of Java expressions and statements

	Trans
	AxSem
	Axiomatic semantics of Java expressions and statements (see also Eval.thy)
	peek-and
	assn-supd
	supd-assn
	subst-res
	subst-Bool
	peek-res
	ign-res
	peek-st
	ign-res-eq
	RefVar
	allocation

	AxSound
	Soundness proof for Axiomatic semantics of Java expressions and statements

	AxCompl
	Completeness proof for Axiomatic semantics of Java expressions and statements

	AxExample
	Example of a proof based on the Bali axiomatic semantics

