
Java Source and Bytecode Formalizations in Isabelle: Bali

Gerwin Klein Tobias Nipkow David von Oheimb Leonor Prensa Nieto
Norbert Schirmer Martin Strecker

January 18, 2026

2

Contents

1 Overview 5

2 Basis 9
1 Definitions extending HOL as logical basis of Bali 9

3 Table 15
1 Abstract tables and their implementation as lists 15

4 Name 23
1 Java names . 23

5 Value 25
1 Java values . 25

6 Type 27
1 Java types . 27

7 Term 29
1 Java expressions and statements . 29

8 Decl 39
1 Field, method, interface, and class declarations, whole Java programs 39
2 Modifier . 39
3 Declaration (base "class" for member,interface and class declarations 41
4 Member (field or method) . 41
5 Field . 41
6 Method . 41
7 Interface . 43
8 Class . 44

9 TypeRel 53
1 The relations between Java types . 53

10 DeclConcepts 65
1 Advanced concepts on Java declarations like overriding, inheritance, dynamic

method lookup . 65
2 accessibility of types (cf. 6.6.1) . 65
3 accessibility of members . 66
4 imethds . 89
5 accimethd . 90
6 methd . 90
7 accmethd . 93
8 dynmethd . 93

3

4

9 dynlookup . 99
10 fields . 99
11 accfield . 101
12 is methd . 101

11 WellType 105
1 Well-typedness of Java programs . 105

12 DefiniteAssignment 117
1 Definite Assignment . 117
2 Very restricted calculation fallback calculation 119
3 Analysis of constant expressions . 120
4 Main analysis for boolean expressions . 121
5 Lifting set operations to range of tables (map to a set) 124

13 WellForm 147
1 Well-formedness of Java programs . 147
2 accessibility concerns . 185

14 State 195
1 State for evaluation of Java expressions and statements 195
2 access . 199
3 memory allocation . 199
4 initialization . 199
5 update . 200
6 update . 205

15 Eval 209
1 Operational evaluation (big-step) semantics of Java expressions and statements209

16 Example 229
1 Example Bali program . 229

17 Conform 253
1 Conformance notions for the type soundness proof for Java 253

18 DefiniteAssignmentCorrect 263
1 Correctness of Definite Assignment . 263

19 TypeSafe 337
1 The type soundness proof for Java . 337
2 accessibility . 352
3 Ideas for the future . 400

20 Evaln 405
1 Operational evaluation (big-step) semantics of Java expressions and statements405

21 Trans 421

22 AxSem 427
1 Axiomatic semantics of Java expressions and statements (see also Eval.thy) . 427
2 peek-and . 428
3 assn-supd . 429
4 supd-assn . 429

5

5 subst-res . 429

6 subst-Bool . 429

7 peek-res . 430

8 ign-res . 430

9 peek-st . 431

10 ign-res-eq . 432

11 RefVar . 432

12 allocation . 432

23 AxSound 447

1 Soundness proof for Axiomatic semantics of Java expressions and statements 447

24 AxCompl 493

1 Completeness proof for Axiomatic semantics of Java expressions and statements493

25 AxExample 519

1 Example of a proof based on the Bali axiomatic semantics 519

6

AxCompl AxExample

AxSem

AxSound

Basis

Conform

Decl

DeclConcepts

DefiniteAssignment

DefiniteAssignmentCorrect

Eval

Evaln

Example

Name

State

Table

Term

Trans

Type

TypeRel

TypeSafe

Value

WellForm

WellType

[HOL]

[Pure]

[Tools]

Chapter 1

Overview

These theories, called Bali, model and analyse different aspects of the JavaCard source language.
The basis is an abstract model of the JavaCard source language. On it, a type system, an operational
semantics and an axiomatic semantics (Hoare logic) are built. The execution of a wellformed program
(with respect to the type system) according to the operational semantics is proved to be typesafe.
The axiomatic semantics is proved to be sound and relative complete with respect to the operational
semantics.
We have modelled large parts of the original JavaCard source language. It models features such as:

• The basic “primitive types” of Java

• Classes and related concepts

• Class fields and methods

• Instance fields and methods

• Interfaces and related concepts

• Arrays

• Static initialisation

• Static overloading of fields and methods

• Inheritance, overriding and hiding of methods, dynamic binding

• All cases of abrupt termination

– Exception throwing and handling
– break, continue and return

• Packages

• Access Modifiers (private, protected, public)

• A “definite assignment” check

The following features are missing in Bali wrt. JavaCard:

• Some primitive types (byte, short)

• Syntactic variants of statements (do-loop, for-loop)

• Interface fields

7

8

• Inner Classes

In addition, features are missing that are not part of the JavaCard language, such as multithreading
and garbage collection. No attempt has been made to model peculiarities of JavaCard such as the
applet firewall or the transaction mechanism.
Overview of the theories:

Basis Some basic definitions and settings not specific to JavaCard but missing in HOL.

Table Definition and some properties of a lookup table to map various names (like class names or
method names) to some content (like classes or methods).

Name Definition of various names (class names, variable names, package names,...)

Value JavaCard expression values (Boolean, Integer, Addresses,...)

Type JavaCard types. Primitive types (Boolean, Integer,...) and reference types (Classes, Inter-
faces, Arrays,...)

Term JavaCard terms. Variables, expressions and statements.

Decl Class, interface and program declarations. Recursion operators for the class and the interface
hierarchy.

TypeRel Various relations on types like the subclass-, subinterface-, widening-, narrowing- and
casting-relation.

DeclConcepts Advanced concepts on the class and interface hierarchy like inheritance, overriding,
hiding, accessibility of types and members according to the access modifiers, method lookup.

WellType Typesystem on the JavaCard term level.

DefiniteAssignment The definite assignment analysis on the JavaCard term level.

WellForm Typesystem on the JavaCard class, interface and program level.

State The program state (like object store) for the execution of JavaCard. Abrupt completion
(exceptions, break, continue, return) is modelled as flag inside the state.

Eval Operational (big step) semantics for JavaCard.

Example An concrete example of a JavaCard program to validate the typesystem and the opera-
tional semantics.

Conform Conformance predicate for states. When does an execution state conform to the static
types of the program given by the typesystem.

DefiniteAssignmentCorrect Correctness of the definite assignment analysis. If the analysis re-
gards a variable as definitely assigned at a certain program point, the variable will actually be
assigned there during execution.

TypeSafe Typesafety proof of the execution of JavaCard. ”Welltyped programs don’t go wrong”
or more technical: The execution of a welltyped JavaCard program preserves the conformance
of execution states.

Evaln Copy of the operational semantics given in theory Eval expanded with an annotation for
the maximal recursive depth. The semantics is not altered. The annotation is needed for the
soundness proof of the axiomatic semantics.

9

Trans A smallstep operational semantics for JavaCard.

AxSem An axiomatic semantics (Hoare logic) for JavaCard.

AxSound The soundness proof of the axiomatic semantics with respect to the operational seman-
tics.

AxCompl The proof of (relative) completeness of the axiomatic semantics with respect to the
operational semantics.

AxExample An concrete example of the axiomatic semantics at work, applied to prove some
properties of the JavaCard example given in theory Example.

10

Chapter 2

Basis

1 Definitions extending HOL as logical basis of Bali
theory Basis
imports Main
begin

misc

ML ‹fun strip-tac ctxt i = REPEAT (resolve-tac ctxt [impI , allI] i)›

declare if-split-asm [split] option.split [split] option.split-asm [split]
setup ‹map-theory-simpset (fn ctxt => ctxt |> Simplifier .add-loop (split-all-tac, split-all-tac))›
declare if-weak-cong [cong del] option.case-cong-weak [cong del]
declare length-Suc-conv [iff]

lemma Collect-split-eq: {p. P (case-prod f p)} = {(a,b). P (f a b)}
by auto

lemma subset-insertD: A ⊆ insert x B =⇒ A ⊆ B ∧ x /∈ A ∨ (∃B ′. A = insert x B ′ ∧ B ′ ⊆ B)
apply (case-tac x ∈ A)
apply (rule disjI2)
apply (rule-tac x = A − {x} in exI)
apply fast+

done

abbreviation nat3 :: nat (‹3 ›) where 3 ≡ Suc 2
abbreviation nat4 :: nat (‹4 ›) where 4 ≡ Suc 3

lemma irrefl-tranclI ′: r−1 ∩ r+ = {} =⇒ ∀ x. (x, x) /∈ r+

by (blast elim: tranclE dest: trancl-into-rtrancl)

lemma trancl-rtrancl-trancl: [[(x, y) ∈ r+; (y, z) ∈ r∗]] =⇒ (x, z) ∈ r+

by (auto dest: tranclD rtrancl-trans rtrancl-into-trancl2)

lemma rtrancl-into-trancl3 : [[(a, b) ∈ r∗; a 6= b]] =⇒ (a, b) ∈ r+

apply (drule rtranclD)
apply auto
done

lemma rtrancl-into-rtrancl2 : [[(a, b) ∈ r ; (b, c) ∈ r∗]] =⇒ (a, c) ∈ r∗

by (auto intro: rtrancl-trans)

11

12

lemma triangle-lemma:
assumes unique:

∧
a b c. [[(a,b)∈r ; (a,c)∈r]] =⇒ b = c

and ax: (a,x)∈r∗ and ay: (a,y)∈r∗

shows (x,y)∈r∗ ∨ (y,x)∈r∗

using ax ay
proof (induct rule: converse-rtrancl-induct)

assume (x,y)∈r∗

then show ?thesis by blast
next

fix a v
assume a-v-r : (a, v) ∈ r

and v-x-rt: (v, x) ∈ r∗

and a-y-rt: (a, y) ∈ r∗

and hyp: (v, y) ∈ r∗ =⇒ (x, y) ∈ r∗ ∨ (y, x) ∈ r∗

from a-y-rt show (x, y) ∈ r∗ ∨ (y, x) ∈ r∗

proof (cases rule: converse-rtranclE)
assume a = y
with a-v-r v-x-rt have (y,x) ∈ r∗

by (auto intro: rtrancl-trans)
then show ?thesis by blast

next
fix w
assume a-w-r : (a, w) ∈ r

and w-y-rt: (w, y) ∈ r∗

from a-v-r a-w-r unique have v=w by auto
with w-y-rt hyp show ?thesis by blast

qed
qed

lemma rtrancl-cases:
assumes (a,b)∈r∗

obtains (Refl) a = b
| (Trancl) (a,b)∈r+

apply (rule rtranclE [OF assms])
apply (auto dest: rtrancl-into-trancl1)

done

lemma Ball-weaken: [[Ball s P;
∧

x. P x−→Q x]]=⇒Ball s Q
by auto

lemma finite-SetCompr2 :
finite {f y x |x y. P y} if finite (Collect P)
∀ y. P y −→ finite (range (f y))

proof −
have {f y x |x y. P y} = (

⋃
y∈Collect P. range (f y))

by auto
with that show ?thesis by simp

qed

lemma list-all2-trans: ∀ a b c. P1 a b −→ P2 b c −→ P3 a c =⇒
∀ xs2 xs3 . list-all2 P1 xs1 xs2 −→ list-all2 P2 xs2 xs3 −→ list-all2 P3 xs1 xs3

apply (induct-tac xs1)
apply simp

apply (rule allI)
apply (induct-tac xs2)
apply simp

apply (rule allI)
apply (induct-tac xs3)

Theory Basis 13

apply auto
done

pairs
lemma surjective-pairing5 :

p = (fst p, fst (snd p), fst (snd (snd p)), fst (snd (snd (snd p))),
snd (snd (snd (snd p))))

by auto

lemma fst-splitE [elim!]:
assumes fst s ′ = x ′

obtains x s where s ′ = (x,s) and x = x ′

using assms by (cases s ′) auto

lemma fst-in-set-lemma: (x, y) ∈ set l =⇒ x ∈ fst ‘ set l
by (induct l) auto

quantifiers
lemma All-Ex-refl-eq2 [simp]: (∀ x. (∃ b. x = f b ∧ Q b) −→ P x) = (∀ b. Q b −→ P (f b))

by auto

lemma ex-ex-miniscope1 [simp]: (∃w v. P w v ∧ Q v) = (∃ v. (∃w. P w v) ∧ Q v)
by auto

lemma ex-miniscope2 [simp]: (∃ v. P v ∧ Q ∧ R v) = (Q ∧ (∃ v. P v ∧ R v))
by auto

lemma ex-reorder31 : (∃ z x y. P x y z) = (∃ x y z. P x y z)
by auto

lemma All-Ex-refl-eq1 [simp]: (∀ x. (∃ b. x = f b) −→ P x) = (∀ b. P (f b))
by auto

sums
notation case-sum (infixr ‹ ′(+ ′)› 80)

primrec the-Inl :: ′a + ′b ⇒ ′a
where the-Inl (Inl a) = a

primrec the-Inr :: ′a + ′b ⇒ ′b
where the-Inr (Inr b) = b

datatype (′a, ′b, ′c) sum3 = In1 ′a | In2 ′b | In3 ′c

primrec the-In1 :: (′a, ′b, ′c) sum3 ⇒ ′a
where the-In1 (In1 a) = a

primrec the-In2 :: (′a, ′b, ′c) sum3 ⇒ ′b
where the-In2 (In2 b) = b

primrec the-In3 :: (′a, ′b, ′c) sum3 ⇒ ′c
where the-In3 (In3 c) = c

abbreviation In1l :: ′al ⇒ (′al + ′ar , ′b, ′c) sum3
where In1l e ≡ In1 (Inl e)

14

abbreviation In1r :: ′ar ⇒ (′al + ′ar , ′b, ′c) sum3
where In1r c ≡ In1 (Inr c)

abbreviation the-In1l :: (′al + ′ar , ′b, ′c) sum3 ⇒ ′al
where the-In1l ≡ the-Inl ◦ the-In1

abbreviation the-In1r :: (′al + ′ar , ′b, ′c) sum3 ⇒ ′ar
where the-In1r ≡ the-Inr ◦ the-In1

ML ‹
fun sum3-instantiate ctxt thm =

map (fn s =>
simplify (ctxt |> Simplifier .del-simps @{thms not-None-eq})
(Rule-Insts.read-instantiate ctxt [(((t, 0), Position.none), In ^ s ^ x)] [x] thm))

[1l,2,3,1r]
›

quantifiers for option type
syntax

-Oall :: [pttrn, ′a option, bool] ⇒ bool (‹(3 ! -:-:/ -)› [0 ,0 ,10] 10)
-Oex :: [pttrn, ′a option, bool] ⇒ bool (‹(3? -:-:/ -)› [0 ,0 ,10] 10)

syntax (symbols)
-Oall :: [pttrn, ′a option, bool] ⇒ bool (‹(3∀ -∈-:/ -)› [0 ,0 ,10] 10)
-Oex :: [pttrn, ′a option, bool] ⇒ bool (‹(3∃ -∈-:/ -)› [0 ,0 ,10] 10)

syntax-consts
-Oall ⇀↽ Ball and
-Oex ⇀↽ Bex

translations
∀ x∈A: P ⇀↽ ∀ x∈CONST set-option A. P
∃ x∈A: P ⇀↽ ∃ x∈CONST set-option A. P

Special map update

Deemed too special for theory Map.
definition chg-map :: (′b ⇒ ′b) ⇒ ′a ⇒ (′a ⇀ ′b) ⇒ (′a ⇀ ′b)

where chg-map f a m = (case m a of None ⇒ m | Some b ⇒ m(a 7→f b))

lemma chg-map-new[simp]: m a = None =⇒ chg-map f a m = m
unfolding chg-map-def by auto

lemma chg-map-upd[simp]: m a = Some b =⇒ chg-map f a m = m(a 7→f b)
unfolding chg-map-def by auto

lemma chg-map-other [simp]: a 6= b =⇒ chg-map f a m b = m b
by (auto simp: chg-map-def)

unique association lists
definition unique :: (′a × ′b) list ⇒ bool

where unique = distinct ◦ map fst

lemma uniqueD: unique l =⇒ (x, y) ∈ set l =⇒ (x ′, y ′) ∈ set l =⇒ x = x ′ =⇒ y = y ′

unfolding unique-def o-def
by (induct l) (auto dest: fst-in-set-lemma)

Theory Basis 15

lemma unique-Nil [simp]: unique []
by (simp add: unique-def)

lemma unique-Cons [simp]: unique ((x,y)#l) = (unique l ∧ (∀ y. (x,y) /∈ set l))
by (auto simp: unique-def dest: fst-in-set-lemma)

lemma unique-ConsD: unique (x#xs) =⇒ unique xs
by (simp add: unique-def)

lemma unique-single [simp]:
∧

p. unique [p]
by simp

lemma unique-append [rule-format (no-asm)]: unique l ′ =⇒ unique l =⇒
(∀ (x,y)∈set l. ∀ (x ′,y ′)∈set l ′. x ′ 6= x) −→ unique (l @ l ′)

by (induct l) (auto dest: fst-in-set-lemma)

lemma unique-map-inj: unique l =⇒ inj f =⇒ unique (map (λ(k,x). (f k, g k x)) l)
by (induct l) (auto dest: fst-in-set-lemma simp add: inj-eq)

lemma map-of-SomeI : unique l =⇒ (k, x) ∈ set l =⇒ map-of l k = Some x
by (induct l) auto

list patterns
definition lsplit :: [[′a, ′a list] ⇒ ′b, ′a list] ⇒ ′b

where lsplit = (λf l. f (hd l) (tl l))

list patterns – extends pre-defined type "pttrn" used in abstractions
syntax

-lpttrn :: [pttrn, pttrn] ⇒ pttrn (‹-#/-› [901 ,900] 900)
syntax-consts

-lpttrn ⇀↽ lsplit
translations
λy # x # xs. b ⇀↽ CONST lsplit (λy x # xs. b)
λx # xs. b ⇀↽ CONST lsplit (λx xs. b)

lemma lsplit [simp]: lsplit c (x#xs) = c x xs
by (simp add: lsplit-def)

lemma lsplit2 [simp]: lsplit P (x#xs) y z = P x xs y z
by (simp add: lsplit-def)

end

16

Chapter 3

Table

1 Abstract tables and their implementation as lists
theory Table imports Basis begin

design issues:

• definition of table: infinite map vs. list vs. finite set list chosen, because:

+ a priori finite
+ lookup is more operational than for finite set
- not very abstract, but function table converts it to abstract mapping

• coding of lookup result: Some/None vs. value/arbitrary Some/None chosen, because:

++ makes definedness check possible (applies also to finite set), which is important for the
type standard, hiding/overriding, etc. (though it may perhaps be possible at least for
the operational semantics to treat programs as infinite, i.e. where classes, fields, methods
etc. of any name are considered to be defined)

- sometimes awkward case distinctions, alleviated by operator ’the’

type-synonym (′a, ′b) table — table with key type ’a and contents type ’b
= ′a ⇀ ′b

type-synonym (′a, ′b) tables — non-unique table with key ’a and contents ’b
= ′a ⇒ ′b set

map of / table of
abbreviation

table-of :: (′a × ′b) list ⇒ (′a, ′b) table — concrete table
where table-of ≡ map-of

translations
(type) (′a, ′b) table <= (type) ′a ⇀ ′b

lemma map-add-find-left[simp]: n k = None =⇒ (m ++ n) k = m k
by (simp add: map-add-def)

Conditional Override
definition cond-override :: (′b ⇒ ′b ⇒ bool) ⇒ (′a, ′b)table ⇒ (′a, ′b)table ⇒ (′a, ′b) table where

— when merging tables old and new, only override an entry of table old when the condition cond holds

17

18

cond-override cond old new =
(λk.
(case new k of

None ⇒ old k
| Some new-val ⇒ (case old k of

None ⇒ Some new-val
| Some old-val ⇒ (if cond new-val old-val

then Some new-val
else Some old-val))))

lemma cond-override-empty1 [simp]: cond-override c Map.empty t = t
by (simp add: cond-override-def fun-eq-iff)

lemma cond-override-empty2 [simp]: cond-override c t Map.empty = t
by (simp add: cond-override-def fun-eq-iff)

lemma cond-override-None[simp]:
old k = None =⇒ (cond-override c old new) k = new k
by (simp add: cond-override-def)

lemma cond-override-override:
[[old k = Some ov;new k = Some nv; C nv ov]]
=⇒ (cond-override C old new) k = Some nv

by (auto simp add: cond-override-def)

lemma cond-override-noOverride:
[[old k = Some ov;new k = Some nv; ¬ (C nv ov)]]
=⇒ (cond-override C old new) k = Some ov

by (auto simp add: cond-override-def)

lemma dom-cond-override: dom (cond-override C s t) ⊆ dom s ∪ dom t
by (auto simp add: cond-override-def dom-def)

lemma finite-dom-cond-override:
[[finite (dom s); finite (dom t)]] =⇒ finite (dom (cond-override C s t))

apply (rule-tac B=dom s ∪ dom t in finite-subset)
apply (rule dom-cond-override)
by (rule finite-UnI)

Filter on Tables

definition filter-tab :: (′a ⇒ ′b ⇒ bool) ⇒ (′a, ′b) table ⇒ (′a, ′b) table
where

filter-tab c t = (λk. (case t k of
None ⇒ None
| Some x ⇒ if c k x then Some x else None))

lemma filter-tab-empty[simp]: filter-tab c Map.empty = Map.empty
by (simp add: filter-tab-def empty-def)

lemma filter-tab-True[simp]: filter-tab (λx y. True) t = t
by (simp add: fun-eq-iff filter-tab-def)

lemma filter-tab-False[simp]: filter-tab (λx y. False) t = Map.empty
by (simp add: fun-eq-iff filter-tab-def empty-def)

lemma filter-tab-ran-subset: ran (filter-tab c t) ⊆ ran t
by (auto simp add: filter-tab-def ran-def)

Theory Table 19

lemma filter-tab-range-subset: range (filter-tab c t) ⊆ range t ∪ {None}
apply (auto simp add: filter-tab-def)
apply (drule sym, blast)
done

lemma finite-range-filter-tab:
finite (range t) =⇒ finite (range (filter-tab c t))

apply (rule-tac B=range t ∪ {None} in finite-subset)
apply (rule filter-tab-range-subset)
apply (auto intro: finite-UnI)
done

lemma filter-tab-SomeD[dest!]:
filter-tab c t k = Some x =⇒ (t k = Some x) ∧ c k x
by (auto simp add: filter-tab-def)

lemma filter-tab-SomeI : [[t k = Some x;C k x]] =⇒filter-tab C t k = Some x
by (simp add: filter-tab-def)

lemma filter-tab-all-True:
∀ k y. t k = Some y −→ p k y =⇒filter-tab p t = t

apply (auto simp add: filter-tab-def fun-eq-iff)
done

lemma filter-tab-all-True-Some:
[[∀ k y. t k = Some y −→ p k y; t k = Some v]] =⇒ filter-tab p t k = Some v

by (auto simp add: filter-tab-def fun-eq-iff)

lemma filter-tab-all-False:
∀ k y. t k = Some y −→ ¬ p k y =⇒filter-tab p t = Map.empty

by (auto simp add: filter-tab-def fun-eq-iff)

lemma filter-tab-None: t k = None =⇒ filter-tab p t k = None
apply (simp add: filter-tab-def fun-eq-iff)
done

lemma filter-tab-dom-subset: dom (filter-tab C t) ⊆ dom t
by (auto simp add: filter-tab-def dom-def)

lemma filter-tab-eq: [[a=b]] =⇒ filter-tab C a = filter-tab C b
by (auto simp add: fun-eq-iff filter-tab-def)

lemma finite-dom-filter-tab:
finite (dom t) =⇒ finite (dom (filter-tab C t))
apply (rule-tac B=dom t in finite-subset)
by (rule filter-tab-dom-subset)

lemma filter-tab-weaken:
[[∀ a ∈ t k: ∃ b ∈ s k: P a b;∧

k x y. [[t k = Some x;s k = Some y]] =⇒ cond k x −→ cond k y
]] =⇒ ∀ a ∈ filter-tab cond t k: ∃ b ∈ filter-tab cond s k: P a b

by (force simp add: filter-tab-def)

lemma cond-override-filter :
[[
∧

k old new. [[s k = Some new; t k = Some old]]
=⇒ (¬ overC new old −→ ¬ filterC k new) ∧

(overC new old −→ filterC k old −→ filterC k new)
]] =⇒

20

cond-override overC (filter-tab filterC t) (filter-tab filterC s)
= filter-tab filterC (cond-override overC t s)

by (auto simp add: fun-eq-iff cond-override-def filter-tab-def)

Misc

lemma Ball-set-table: (∀ (x,y)∈ set l. P x y) =⇒ ∀ x. ∀ y∈ map-of l x: P x y
apply (erule rev-mp)
apply (induct l)
apply simp
apply (simp (no-asm))
apply auto
done

lemma Ball-set-tableD:
[[(∀ (x,y)∈ set l. P x y); x ∈ set-option (table-of l xa)]] =⇒ P xa x

apply (frule Ball-set-table)
by auto

declare map-of-SomeD [elim]

lemma table-of-Some-in-set:
table-of l k = Some x =⇒ (k,x) ∈ set l
by auto

lemma set-get-eq:
unique l =⇒ (k, the (table-of l k)) ∈ set l = (table-of l k 6= None)

by (auto dest!: weak-map-of-SomeI)

lemma inj-Pair-const2 : inj (λk. (k, C))
apply (rule inj-onI)
apply auto
done

lemma table-of-mapconst-SomeI :
[[table-of t k = Some y ′; snd y=y ′; fst y=c]] =⇒

table-of (map (λ(k,x). (k,c,x)) t) k = Some y
by (induct t) auto

lemma table-of-mapconst-NoneI :
[[table-of t k = None]] =⇒

table-of (map (λ(k,x). (k,c,x)) t) k = None
by (induct t) auto

lemmas table-of-map2-SomeI = inj-Pair-const2 [THEN map-of-mapk-SomeI]

lemma table-of-map-SomeI : table-of t k = Some x =⇒
table-of (map (λ(k,x). (k, f x)) t) k = Some (f x)

by (induct t) auto

lemma table-of-remap-SomeD:
table-of (map (λ((k,k ′),x). (k,(k ′,x))) t) k = Some (k ′,x) =⇒

table-of t (k, k ′) = Some x
by (induct t) auto

lemma table-of-mapf-Some:
∀ x y. f x = f y −→ x = y =⇒

table-of (map (λ(k,x). (k,f x)) t) k = Some (f x) =⇒ table-of t k = Some x
by (induct t) auto

Theory Table 21

lemma table-of-mapf-SomeD [dest!]:
table-of (map (λ(k,x). (k, f x)) t) k = Some z =⇒ (∃ y∈table-of t k: z=f y)
by (induct t) auto

lemma table-of-mapf-NoneD [dest!]:
table-of (map (λ(k,x). (k, f x)) t) k = None =⇒ (table-of t k = None)
by (induct t) auto

lemma table-of-mapkey-SomeD [dest!]:
table-of (map (λ(k,x). ((k,C),x)) t) (k,D) = Some x =⇒ C = D ∧ table-of t k = Some x
by (induct t) auto

lemma table-of-mapkey-SomeD2 [dest!]:
table-of (map (λ(k,x). ((k,C),x)) t) ek = Some x =⇒

C = snd ek ∧ table-of t (fst ek) = Some x
by (induct t) auto

lemma table-append-Some-iff : table-of (xs@ys) k = Some z =
(table-of xs k = Some z ∨ (table-of xs k = None ∧ table-of ys k = Some z))

apply (simp)
apply (rule map-add-Some-iff)
done

lemma table-of-filter-unique-SomeD [rule-format (no-asm)]:
table-of (filter P xs) k = Some z =⇒ unique xs −→ table-of xs k = Some z
by (induct xs) (auto del: map-of-SomeD intro!: map-of-SomeD)

definition Un-tables :: (′a, ′b) tables set ⇒ (′a, ′b) tables
where Un-tables ts = (λk.

⋃
t∈ts. t k)

definition overrides-t :: (′a, ′b) tables ⇒ (′a, ′b) tables ⇒ (′a, ′b) tables
(infixl ‹⊕⊕› 100)

where s ⊕⊕ t = (λk. if t k = {} then s k else t k)

definition
hidings-entails :: (′a, ′b) tables ⇒ (′a, ′c) tables ⇒ (′b ⇒ ′c ⇒ bool) ⇒ bool
(‹- hidings - entails -› 20)

where (t hidings s entails R) = (∀ k. ∀ x∈t k. ∀ y∈s k. R x y)

definition
— variant for unique table:
hiding-entails :: (′a, ′b) table ⇒ (′a, ′c) table ⇒ (′b ⇒ ′c ⇒ bool) ⇒ bool
(‹- hiding - entails -› 20)

where (t hiding s entails R) = (∀ k. ∀ x∈t k: ∀ y∈s k: R x y)

definition
— variant for a unique table and conditional overriding:
cond-hiding-entails :: (′a, ′b) table ⇒ (′a, ′c) table

⇒ (′b ⇒ ′c ⇒ bool) ⇒ (′b ⇒ ′c ⇒ bool) ⇒ bool
(‹- hiding - under - entails -› 20)

where (t hiding s under C entails R) = (∀ k. ∀ x∈t k: ∀ y∈s k: C x y −→ R x y)

Untables

lemma Un-tablesI [intro]: t ∈ ts =⇒ x ∈ t k =⇒ x ∈ Un-tables ts k
by (auto simp add: Un-tables-def)

22

lemma Un-tablesD [dest!]: x ∈ Un-tables ts k =⇒ ∃ t. t ∈ ts ∧ x ∈ t k
by (auto simp add: Un-tables-def)

lemma Un-tables-empty [simp]: Un-tables {} = (λk. {})
by (simp add: Un-tables-def)

overrides
lemma empty-overrides-t [simp]: (λk. {}) ⊕⊕ m = m

by (simp add: overrides-t-def)

lemma overrides-empty-t [simp]: m ⊕⊕ (λk. {}) = m
by (simp add: overrides-t-def)

lemma overrides-t-Some-iff :
(x ∈ (s ⊕⊕ t) k) = (x ∈ t k ∨ t k = {} ∧ x ∈ s k)
by (simp add: overrides-t-def)

lemmas overrides-t-SomeD = overrides-t-Some-iff [THEN iffD1 , dest!]

lemma overrides-t-right-empty [simp]: n k = {} =⇒ (m ⊕⊕ n) k = m k
by (simp add: overrides-t-def)

lemma overrides-t-find-right [simp]: n k 6= {} =⇒ (m ⊕⊕ n) k = n k
by (simp add: overrides-t-def)

hiding entails
lemma hiding-entailsD:

t hiding s entails R =⇒ t k = Some x =⇒ s k = Some y =⇒ R x y
by (simp add: hiding-entails-def)

lemma empty-hiding-entails [simp]: Map.empty hiding s entails R
by (simp add: hiding-entails-def)

lemma hiding-empty-entails [simp]: t hiding Map.empty entails R
by (simp add: hiding-entails-def)

cond hiding entails
lemma cond-hiding-entailsD:
[[t hiding s under C entails R; t k = Some x; s k = Some y; C x y]] =⇒ R x y
by (simp add: cond-hiding-entails-def)

lemma empty-cond-hiding-entails[simp]: Map.empty hiding s under C entails R
by (simp add: cond-hiding-entails-def)

lemma cond-hiding-empty-entails[simp]: t hiding Map.empty under C entails R
by (simp add: cond-hiding-entails-def)

lemma hidings-entailsD: [[t hidings s entails R; x ∈ t k; y ∈ s k]] =⇒ R x y
by (simp add: hidings-entails-def)

lemma hidings-empty-entails [intro!]: t hidings (λk. {}) entails R
apply (unfold hidings-entails-def)
apply (simp (no-asm))
done

lemma empty-hidings-entails [intro!]:

Theory Table 23

(λk. {}) hidings s entails Rapply (unfold hidings-entails-def)
by (simp (no-asm))

primrec atleast-free :: (′a ⇀ ′b) => nat => bool
where

atleast-free m 0 = True
| atleast-free-Suc: atleast-free m (Suc n) = (∃ a. m a = None ∧ (∀ b. atleast-free (m(a 7→b)) n))

lemma atleast-free-weaken [rule-format (no-asm)]:
∀m. atleast-free m (Suc n) −→ atleast-free m n

apply (induct-tac n)
apply (simp (no-asm))
apply clarify
apply (simp (no-asm))
apply (drule atleast-free-Suc [THEN iffD1])
apply fast
done

lemma atleast-free-SucI :
[| h a = None; ∀ obj. atleast-free (h(a|−>obj)) n |] ==> atleast-free h (Suc n)
by force

declare fun-upd-apply [simp del]
lemma atleast-free-SucD-lemma [rule-format (no-asm)]:
∀m a. m a = None −→ (∀ c. atleast-free (m(a 7→c)) n) −→
(∀ b d. a 6= b −→ atleast-free (m(b 7→d)) n)

apply (induct-tac n)
apply auto
apply (rule-tac x = a in exI)
apply (rule conjI)
apply (force simp add: fun-upd-apply)
apply (erule-tac V = m a = None in thin-rl)
apply clarify
apply (subst fun-upd-twist)
apply (erule not-sym)
apply (rename-tac ba)
apply (drule-tac x = ba in spec)
apply clarify
apply (tactic smp-tac context 2 1)
apply (erule (1) notE impE)
apply (case-tac aa = b)
apply fast+
done
declare fun-upd-apply [simp]

lemma atleast-free-SucD: atleast-free h (Suc n) ==> atleast-free (h(a|−>b)) n
apply auto
apply (case-tac aa = a)
apply auto
apply (erule atleast-free-SucD-lemma)
apply auto
done

declare atleast-free-Suc [simp del]

end

24

Chapter 4

Name

1 Java names

theory Name imports Basis begin

typedecl tnam — ordinary type name, i.e. class or interface name
typedecl pname — package name
typedecl mname — method name
typedecl vname — variable or field name
typedecl label — label as destination of break or continue

datatype ename — expression name
= VNam vname
| Res — special name to model the return value of methods

datatype lname — names for local variables and the This pointer
= EName ename
| This

abbreviation VName :: vname ⇒ lname
where VName n == EName (VNam n)

abbreviation Result :: lname
where Result == EName Res

datatype xname — names of standard exceptions
= Throwable
| NullPointer | OutOfMemory | ClassCast
| NegArrSize | IndOutBound | ArrStore

lemma xn-cases:
xn = Throwable ∨ xn = NullPointer ∨

xn = OutOfMemory ∨ xn = ClassCast ∨
xn = NegArrSize ∨ xn = IndOutBound ∨ xn = ArrStore

apply (induct xn)
apply auto
done

datatype tname — type names for standard classes and other type names
= Object ′

| SXcpt ′ xname
| TName tnam

record qtname = — qualified tname cf. 6.5.3, 6.5.4

25

26

pid :: pname
tid :: tname

class has-pname =
fixes pname :: ′a ⇒ pname

instantiation pname :: has-pname
begin

definition
pname-pname-def : pname (p::pname) ≡ p

instance ..

end

class has-tname =
fixes tname :: ′a ⇒ tname

instantiation tname :: has-tname
begin

definition
tname-tname-def : tname (t::tname) = t

instance ..

end

definition
qtname-qtname-def : qtname (q:: ′a qtname-scheme) = q

translations
(type) qtname <= (type) (|pid::pname,tid::tname|)
(type) ′a qtname-scheme <= (type) (|pid::pname,tid::tname,. . .:: ′a|)

axiomatization java-lang::pname — package java.lang

definition
Object :: qtname
where Object = (|pid = java-lang, tid = Object ′|)

definition SXcpt :: xname ⇒ qtname
where SXcpt = (λx. (|pid = java-lang, tid = SXcpt ′ x|))

lemma Object-neq-SXcpt [simp]: Object 6= SXcpt xn
by (simp add: Object-def SXcpt-def)

lemma SXcpt-inject [simp]: (SXcpt xn = SXcpt xm) = (xn = xm)
by (simp add: SXcpt-def)

end

Chapter 5

Value

1 Java values

theory Value imports Type begin

typedecl loc — locations, i.e. abstract references on objects

datatype val
= Unit — dummy result value of void methods
| Bool bool — Boolean value
| Intg int — integer value
| Null — null reference
| Addr loc — addresses, i.e. locations of objects

primrec the-Bool :: val ⇒ bool
where the-Bool (Bool b) = b

primrec the-Intg :: val ⇒ int
where the-Intg (Intg i) = i

primrec the-Addr :: val ⇒ loc
where the-Addr (Addr a) = a

type-synonym dyn-ty = loc ⇒ ty option

primrec typeof :: dyn-ty ⇒ val ⇒ ty option
where

typeof dt Unit = Some (PrimT Void)
| typeof dt (Bool b) = Some (PrimT Boolean)
| typeof dt (Intg i) = Some (PrimT Integer)
| typeof dt Null = Some NT
| typeof dt (Addr a) = dt a

primrec defpval :: prim-ty ⇒ val — default value for primitive types
where

defpval Void = Unit
| defpval Boolean = Bool False
| defpval Integer = Intg 0

primrec default-val :: ty ⇒ val — default value for all types
where

default-val (PrimT pt) = defpval pt
| default-val (RefT r) = Null

27

28

end

Chapter 6

Type

1 Java types
theory Type imports Name begin

simplifications:

• only the most important primitive types

• the null type is regarded as reference type

datatype prim-ty — primitive type, cf. 4.2
= Void — result type of void methods
| Boolean
| Integer

datatype ref-ty — reference type, cf. 4.3
= NullT — null type, cf. 4.1
| IfaceT qtname — interface type
| ClassT qtname — class type
| ArrayT ty — array type

and ty — any type, cf. 4.1
= PrimT prim-ty — primitive type
| RefT ref-ty — reference type

abbreviation NT == RefT NullT
abbreviation Iface I == RefT (IfaceT I)
abbreviation Class C == RefT (ClassT C)
abbreviation Array :: ty ⇒ ty (‹-.[]› [90] 90)

where T .[] == RefT (ArrayT T)

definition
the-Class :: ty ⇒ qtname
where the-Class T = (SOME C . T = Class C)

lemma the-Class-eq [simp]: the-Class (Class C)= C
by (auto simp add: the-Class-def)

end

29

30

Chapter 7

Term

1 Java expressions and statements
theory Term imports Value Table begin

design issues:

• invocation frames for local variables could be reduced to special static objects (one per
method). This would reduce redundancy, but yield a rather non-standard execution model
more difficult to understand.

• method bodies separated from calls to handle assumptions in axiomat. semantics NB: Body
is intended to be in the environment of the called method.

• class initialization is regarded as (auxiliary) statement (required for AxSem)

• result expression of method return is handled by a special result variable result variable is
treated uniformly with local variables

+ welltypedness and existence of the result/return expression is ensured without extra efford

simplifications:

• expression statement allowed for any expression

• This is modeled as a special non-assignable local variable

• Super is modeled as a general expression with the same value as This

• access to field x in current class via This.x

• NewA creates only one-dimensional arrays; initialization of further subarrays may be simulated
with nested NewAs

• The ’Lit’ constructor is allowed to contain a reference value. But this is assumed to be
prohibited in the input language, which is enforced by the type-checking rules.

• a call of a static method via a type name may be simulated by a dummy variable

• no nested blocks with inner local variables

• no synchronized statements

• no secondary forms of if, while (e.g. no for) (may be easily simulated)

• no switch (may be simulated with if)

31

32

• the try-catch-finally statement is divided into the try-catch statement and a finally statement,
which may be considered as try..finally with empty catch

• the try-catch statement has exactly one catch clause; multiple ones can be simulated with
instanceof

• the compiler is supposed to add the annotations - during type-checking. This transformation
is left out as its result is checked by the type rules anyway

type-synonym locals = (lname, val) table — local variables

datatype jump
= Break label — break
| Cont label — continue
| Ret — return from method

datatype xcpt — exception
= Loc loc — location of allocated execption object
| Std xname — intermediate standard exception, see Eval.thy

datatype error
= AccessViolation — Access to a member that isn’t permitted
| CrossMethodJump — Method exits with a break or continue

datatype abrupt — abrupt completion
= Xcpt xcpt — exception
| Jump jump — break, continue, return
| Error error — runtime errors, we wan’t to detect and proof absent in welltyped programms

type-synonym
abopt = abrupt option

Local variable store and exception. Anticipation of State.thy used by smallstep semantics. For a
method call, we save the local variables of the caller in the term Callee to restore them after method
return. Also an exception must be restored after the finally statement
translations
(type) locals <= (type) (lname, val) table

datatype inv-mode — invocation mode for method calls
= Static — static
| SuperM — super
| IntVir — interface or virtual

record sig = — signature of a method, cf. 8.4.2
name ::mname — acutally belongs to Decl.thy
parTs::ty list

translations
(type) sig <= (type) (|name::mname,parTs::ty list|)
(type) sig <= (type) (|name::mname,parTs::ty list,. . .:: ′a|)

— function codes for unary operations
datatype unop = UPlus — + unary plus

| UMinus — - unary minus
| UBitNot — bitwise NOT
| UNot — ! logical complement

— function codes for binary operations

Theory Term 33

datatype binop = Mul — * multiplication
| Div — / division
| Mod — % remainder
| Plus — + addition
| Minus — - subtraction
| LShift — « left shift
| RShift — » signed right shift
| RShiftU — »> unsigned right shift
| Less — < less than
| Le — <= less than or equal
| Greater — > greater than
| Ge — >= greater than or equal
| Eq — == equal
| Neq — != not equal
| BitAnd — & bitwise AND
| And — & boolean AND
| BitXor — ˆ bitwise Xor
| Xor — ˆ boolean Xor
| BitOr — | bitwise Or
| Or — | boolean Or
| CondAnd — && conditional And
| CondOr — || conditional Or

The boolean operators & and | strictly evaluate both of their arguments. The conditional operators
&& and || only evaluate the second argument if the value of the whole expression isn’t allready
determined by the first argument. e.g.: false && e e is not evaluated; true || e e is not evaluated;

datatype var
= LVar lname — local variable (incl. parameters)
| FVar qtname qtname bool expr vname (‹{-,-,-}-..-›[10 ,10 ,10 ,85 ,99]90)

— class field
— {accC ,statDeclC ,stat}e..fn
— accC : accessing class (static class were
— the code is declared. Annotation only needed for
— evaluation to check accessibility)
— statDeclC : static declaration class of field
— stat: static or instance field?
— e: reference to object
— fn: field name

| AVar expr expr (‹-.[-]›[90 ,10]90)
— array component
— e1 .[e2]: e1 array reference; e2 index

| InsInitV stmt var
— insertion of initialization before evaluation
— of var (technical term for smallstep semantics.)

and expr
= NewC qtname — class instance creation
| NewA ty expr (‹New -[-]›[99 ,10]85)

— array creation
| Cast ty expr — type cast
| Inst expr ref-ty (‹- InstOf -›[85 ,99] 85)

— instanceof
| Lit val — literal value, references not allowed
| UnOp unop expr — unary operation
| BinOp binop expr expr — binary operation

| Super — special Super keyword
| Acc var — variable access

34

| Ass var expr (‹-:=-› [90 ,85]85)
— variable assign

| Cond expr expr expr (‹- ? - : -› [85 ,85 ,80]80) — conditional
| Call qtname ref-ty inv-mode expr mname (ty list) (expr list)

(‹{-,-,-}-·- ′({-}- ′)›[10 ,10 ,10 ,85 ,99 ,10 ,10]85)
— method call
— {accC ,statT ,mode}e·mn({pTs}args) "
— accC : accessing class (static class were
— the call code is declared. Annotation only needed for
— evaluation to check accessibility)
— statT : static declaration class/interface of
— method
— mode: invocation mode
— e: reference to object
— mn: field name
— pTs: types of parameters
— args: the actual parameters/arguments

| Methd qtname sig — (folded) method (see below)
| Body qtname stmt — (unfolded) method body
| InsInitE stmt expr

— insertion of initialization before
— evaluation of expr (technical term for smallstep sem.)

| Callee locals expr — save callers locals in callee-Frame
— (technical term for smallstep semantics)

and stmt
= Skip — empty statement
| Expr expr — expression statement
| Lab jump stmt (‹-· -› [99 ,66]66)

— labeled statement; handles break
| Comp stmt stmt (‹-;; -› [66 ,65]65)
| If ′ expr stmt stmt (‹If ′(- ′) - Else -› [80 ,79 ,79]70)
| Loop label expr stmt (‹-· While ′(- ′) -› [99 ,80 ,79]70)
| Jmp jump — break, continue, return
| Throw expr
| TryC stmt qtname vname stmt (‹Try - Catch ′(- - ′) -› [79 ,99 ,80 ,79]70)

— Try c1 Catch(C vn) c2
— c1 : block were exception may be thrown
— C : execption class to catch
— vn: local name for exception used in c2
— c2 : block to execute when exception is cateched

| Fin stmt stmt (‹- Finally -› [79 ,79]70)
| FinA abopt stmt — Save abruption of first statement

— technical term for smallstep sem.)
| Init qtname — class initialization

datatype-compat var expr stmt

The expressions Methd and Body are artificial program constructs, in the sense that they are not
used to define a concrete Bali program. In the operational semantic’s they are "generated on the
fly" to decompose the task to define the behaviour of the Call expression. They are crucial for the
axiomatic semantics to give a syntactic hook to insert some assertions (cf. AxSem.thy, Eval.thy).
The Init statement (to initialize a class on its first use) is inserted in various places by the semantics.
Callee, InsInitV, InsInitE,FinA are only needed as intermediate steps in the smallstep (transition)
semantics (cf. Trans.thy). Callee is used to save the local variables of the caller for method return.
So ve avoid modelling a frame stack. The InsInitV/E terms are only used by the smallstep semantics
to model the intermediate steps of class-initialisation.
type-synonym term = (expr+stmt,var ,expr list) sum3
translations

Theory Term 35

(type) sig <= (type) mname × ty list
(type) term <= (type) (expr+stmt,var ,expr list) sum3

abbreviation this :: expr
where this == Acc (LVar This)

abbreviation LAcc :: vname ⇒ expr (‹!!›)
where !!v == Acc (LVar (EName (VNam v)))

abbreviation
LAss :: vname ⇒ expr ⇒stmt (‹-:==-› [90 ,85] 85)
where v:==e == Expr (Ass (LVar (EName (VNam v))) e)

abbreviation
Return :: expr ⇒ stmt
where Return e == Expr (Ass (LVar (EName Res)) e);; Jmp Ret — Res := e;; Jmp Ret

abbreviation
StatRef :: ref-ty ⇒ expr
where StatRef rt == Cast (RefT rt) (Lit Null)

definition
is-stmt :: term ⇒ bool
where is-stmt t = (∃ c. t=In1r c)

ML ‹ML-Thms.bind-thms (is-stmt-rews, sum3-instantiate context @{thm is-stmt-def })›

declare is-stmt-rews [simp]

Here is some syntactic stuff to handle the injections of statements, expressions, variables and ex-
pression lists into general terms.
abbreviation (input)

expr-inj-term :: expr ⇒ term (‹〈-〉e› 1000)
where 〈e〉e == In1l e

abbreviation (input)
stmt-inj-term :: stmt ⇒ term (‹〈-〉s› 1000)
where 〈c〉s == In1r c

abbreviation (input)
var-inj-term :: var ⇒ term (‹〈-〉v› 1000)
where 〈v〉v == In2 v

abbreviation (input)
lst-inj-term :: expr list ⇒ term (‹〈-〉l› 1000)
where 〈es〉l == In3 es

It seems to be more elegant to have an overloaded injection like the following.
class inj-term =

fixes inj-term:: ′a ⇒ term (‹〈-〉› 1000)

How this overloaded injections work can be seen in the theory DefiniteAssignment. Other big
inductive relations on terms defined in theories WellType, Eval, Evaln and AxSem don’t follow this
convention right now, but introduce subtle syntactic sugar in the relations themselves to make a
distinction on expressions, statements and so on. So unfortunately you will encounter a mixture
of dealing with these injections. The abbreviations above are used as bridge between the different
conventions.
instantiation stmt :: inj-term

36

begin

definition
stmt-inj-term-def : 〈c::stmt〉 = In1r c

instance ..

end

lemma stmt-inj-term-simp: 〈c::stmt〉 = In1r c
by (simp add: stmt-inj-term-def)

lemma stmt-inj-term [iff]: 〈x::stmt〉 = 〈y〉 ≡ x = y
by (simp add: stmt-inj-term-simp)

instantiation expr :: inj-term
begin

definition
expr-inj-term-def : 〈e::expr〉 = In1l e

instance ..

end

lemma expr-inj-term-simp: 〈e::expr〉 = In1l e
by (simp add: expr-inj-term-def)

lemma expr-inj-term [iff]: 〈x::expr〉 = 〈y〉 ≡ x = y
by (simp add: expr-inj-term-simp)

instantiation var :: inj-term
begin

definition
var-inj-term-def : 〈v::var〉 = In2 v

instance ..

end

lemma var-inj-term-simp: 〈v::var〉 = In2 v
by (simp add: var-inj-term-def)

lemma var-inj-term [iff]: 〈x::var〉 = 〈y〉 ≡ x = y
by (simp add: var-inj-term-simp)

class expr-of =
fixes expr-of :: ′a ⇒ expr

instantiation expr :: expr-of
begin

definition
expr-of = (λ(e::expr). e)

instance ..

end

Theory Term 37

instantiation list :: (expr-of) inj-term
begin

definition
〈es:: ′a list〉 = In3 (map expr-of es)

instance ..

end

lemma expr-list-inj-term-def :
〈es::expr list〉 ≡ In3 es
by (simp add: inj-term-list-def expr-of-expr-def)

lemma expr-list-inj-term-simp: 〈es::expr list〉 = In3 es
by (simp add: expr-list-inj-term-def)

lemma expr-list-inj-term [iff]: 〈x::expr list〉 = 〈y〉 ≡ x = y
by (simp add: expr-list-inj-term-simp)

lemmas inj-term-simps = stmt-inj-term-simp expr-inj-term-simp var-inj-term-simp
expr-list-inj-term-simp

lemmas inj-term-sym-simps = stmt-inj-term-simp [THEN sym]
expr-inj-term-simp [THEN sym]
var-inj-term-simp [THEN sym]
expr-list-inj-term-simp [THEN sym]

lemma stmt-expr-inj-term [iff]: 〈t::stmt〉 6= 〈w::expr〉
by (simp add: inj-term-simps)

lemma expr-stmt-inj-term [iff]: 〈t::expr〉 6= 〈w::stmt〉
by (simp add: inj-term-simps)

lemma stmt-var-inj-term [iff]: 〈t::stmt〉 6= 〈w::var〉
by (simp add: inj-term-simps)

lemma var-stmt-inj-term [iff]: 〈t::var〉 6= 〈w::stmt〉
by (simp add: inj-term-simps)

lemma stmt-elist-inj-term [iff]: 〈t::stmt〉 6= 〈w::expr list〉
by (simp add: inj-term-simps)

lemma elist-stmt-inj-term [iff]: 〈t::expr list〉 6= 〈w::stmt〉
by (simp add: inj-term-simps)

lemma expr-var-inj-term [iff]: 〈t::expr〉 6= 〈w::var〉
by (simp add: inj-term-simps)

lemma var-expr-inj-term [iff]: 〈t::var〉 6= 〈w::expr〉
by (simp add: inj-term-simps)

lemma expr-elist-inj-term [iff]: 〈t::expr〉 6= 〈w::expr list〉
by (simp add: inj-term-simps)

lemma elist-expr-inj-term [iff]: 〈t::expr list〉 6= 〈w::expr〉
by (simp add: inj-term-simps)

lemma var-elist-inj-term [iff]: 〈t::var〉 6= 〈w::expr list〉
by (simp add: inj-term-simps)

lemma elist-var-inj-term [iff]: 〈t::expr list〉 6= 〈w::var〉
by (simp add: inj-term-simps)

lemma term-cases:
[[
∧

v. P 〈v〉v;
∧

e. P 〈e〉e;
∧

c. P 〈c〉s;
∧

l. P 〈l〉l]]
=⇒ P t
apply (cases t)
apply (rename-tac a, case-tac a)
apply auto

38

done

Evaluation of unary operations
primrec eval-unop :: unop ⇒ val ⇒ val
where

eval-unop UPlus v = Intg (the-Intg v)
| eval-unop UMinus v = Intg (− (the-Intg v))
| eval-unop UBitNot v = Intg 42 — FIXME: Not yet implemented
| eval-unop UNot v = Bool (¬ the-Bool v)

Evaluation of binary operations
primrec eval-binop :: binop ⇒ val ⇒ val ⇒ val
where

eval-binop Mul v1 v2 = Intg ((the-Intg v1) ∗ (the-Intg v2))
| eval-binop Div v1 v2 = Intg ((the-Intg v1) div (the-Intg v2))
| eval-binop Mod v1 v2 = Intg ((the-Intg v1) mod (the-Intg v2))
| eval-binop Plus v1 v2 = Intg ((the-Intg v1) + (the-Intg v2))
| eval-binop Minus v1 v2 = Intg ((the-Intg v1) − (the-Intg v2))

— Be aware of the explicit coercion of the shift distance to nat
| eval-binop LShift v1 v2 = Intg ((the-Intg v1) ∗ (2^(nat (the-Intg v2))))
| eval-binop RShift v1 v2 = Intg ((the-Intg v1) div (2^(nat (the-Intg v2))))
| eval-binop RShiftU v1 v2 = Intg 42 — FIXME: Not yet implemented

| eval-binop Less v1 v2 = Bool ((the-Intg v1) < (the-Intg v2))
| eval-binop Le v1 v2 = Bool ((the-Intg v1) ≤ (the-Intg v2))
| eval-binop Greater v1 v2 = Bool ((the-Intg v2) < (the-Intg v1))
| eval-binop Ge v1 v2 = Bool ((the-Intg v2) ≤ (the-Intg v1))

| eval-binop Eq v1 v2 = Bool (v1=v2)
| eval-binop Neq v1 v2 = Bool (v1 6=v2)
| eval-binop BitAnd v1 v2 = Intg 42 — FIXME: Not yet implemented
| eval-binop And v1 v2 = Bool ((the-Bool v1) ∧ (the-Bool v2))
| eval-binop BitXor v1 v2 = Intg 42 — FIXME: Not yet implemented
| eval-binop Xor v1 v2 = Bool ((the-Bool v1) 6= (the-Bool v2))
| eval-binop BitOr v1 v2 = Intg 42 — FIXME: Not yet implemented
| eval-binop Or v1 v2 = Bool ((the-Bool v1) ∨ (the-Bool v2))
| eval-binop CondAnd v1 v2 = Bool ((the-Bool v1) ∧ (the-Bool v2))
| eval-binop CondOr v1 v2 = Bool ((the-Bool v1) ∨ (the-Bool v2))

definition
need-second-arg :: binop ⇒ val ⇒ bool where
need-second-arg binop v1 = (¬ ((binop=CondAnd ∧ ¬ the-Bool v1) ∨

(binop=CondOr ∧ the-Bool v1)))

CondAnd and CondOr only evalulate the second argument if the value isn’t already determined by
the first argument
lemma need-second-arg-CondAnd [simp]: need-second-arg CondAnd (Bool b) = b
by (simp add: need-second-arg-def)

lemma need-second-arg-CondOr [simp]: need-second-arg CondOr (Bool b) = (¬ b)
by (simp add: need-second-arg-def)

lemma need-second-arg-strict[simp]:
[[binop 6=CondAnd; binop 6=CondOr]] =⇒ need-second-arg binop b

by (cases binop)
(simp-all add: need-second-arg-def)

Theory Term 39

end

40

Chapter 8

Decl

1 Field, method, interface, and class declarations, whole Java programs
theory Decl
imports Term Table

begin

improvements:

• clarification and correction of some aspects of the package/access concept (Also submitted as
bug report to the Java Bug Database: Bug Id: 4485402 and Bug Id: 4493343 http://developer.
java.sun.com/developer/bugParade/index.jshtml)

simplifications:

• the only field and method modifiers are static and the access modifiers

• no constructors, which may be simulated by new + suitable methods

• there is just one global initializer per class, which can simulate all others

• no throws clause

• a void method is replaced by one that returns Unit (of dummy type Void)

• no interface fields

• every class has an explicit superclass (unused for Object)

• the (standard) methods of Object and of standard exceptions are not specified

• no main method

2 Modifier
Access modifier
datatype acc-modi

= Private | Package | Protected | Public

We can define a linear order for the access modifiers. With Private yielding the most restrictive
access and public the most liberal access policy: Private < Package < Protected < Public
instantiation acc-modi :: linorder
begin

41

http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/bugParade/index.jshtml

42

definition
less-acc-def : a < b
←→ (case a of

Private ⇒ (b=Package ∨ b=Protected ∨ b=Public)
| Package ⇒ (b=Protected ∨ b=Public)
| Protected ⇒ (b=Public)
| Public ⇒ False)

definition
le-acc-def : (a :: acc-modi) ≤ b ←→ a < b ∨ a = b

instance
proof

fix x y z::acc-modi
show x < y ←→ x ≤ y ∧ ¬ y ≤ x

by (auto simp add: le-acc-def less-acc-def split: acc-modi.split)
show x ≤ x — reflexivity

by (auto simp add: le-acc-def)
show x ≤ y =⇒ y ≤ z =⇒ x ≤ z — transitivity

by (auto simp add: le-acc-def less-acc-def split: acc-modi.split)
show x = y if x ≤ y y ≤ x — antisymmetry
proof −

have ∀ x y. x < (y::acc-modi) ∧ y < x −→ False
by (auto simp add: less-acc-def split: acc-modi.split)

with that show ?thesis by (unfold le-acc-def) iprover
qed
show x ≤ y ∨ y ≤ x

by (auto simp add: less-acc-def le-acc-def split: acc-modi.split)
qed

end

lemma acc-modi-top [simp]: Public ≤ a =⇒ a = Public
by (auto simp add: le-acc-def less-acc-def split: acc-modi.splits)

lemma acc-modi-top1 [simp, intro!]: a ≤ Public
by (auto simp add: le-acc-def less-acc-def split: acc-modi.splits)

lemma acc-modi-le-Public:
a ≤ Public =⇒ a=Private ∨ a = Package ∨ a=Protected ∨ a=Public
by (auto simp add: le-acc-def less-acc-def split: acc-modi.splits)

lemma acc-modi-bottom: a ≤ Private =⇒ a = Private
by (auto simp add: le-acc-def less-acc-def split: acc-modi.splits)

lemma acc-modi-Private-le:
Private ≤ a =⇒ a=Private ∨ a = Package ∨ a=Protected ∨ a=Public
by (auto simp add: le-acc-def less-acc-def split: acc-modi.splits)

lemma acc-modi-Package-le:
Package ≤ a =⇒ a = Package ∨ a=Protected ∨ a=Public

by (auto simp add: le-acc-def less-acc-def split: acc-modi.split)

lemma acc-modi-le-Package:
a ≤ Package =⇒ a=Private ∨ a = Package

by (auto simp add: le-acc-def less-acc-def split: acc-modi.splits)

lemma acc-modi-Protected-le:

Theory Decl 43

Protected ≤ a =⇒ a=Protected ∨ a=Public
by (auto simp add: le-acc-def less-acc-def split: acc-modi.splits)

lemma acc-modi-le-Protected:
a ≤ Protected =⇒ a=Private ∨ a = Package ∨ a = Protected

by (auto simp add: le-acc-def less-acc-def split: acc-modi.splits)

lemmas acc-modi-le-Dests = acc-modi-top acc-modi-le-Public
acc-modi-Private-le acc-modi-bottom
acc-modi-Package-le acc-modi-le-Package
acc-modi-Protected-le acc-modi-le-Protected

lemma acc-modi-Package-le-cases:
assumes Package ≤ m
obtains (Package) m = Package
| (Protected) m = Protected
| (Public) m = Public

using assms by (auto dest: acc-modi-Package-le)

Static Modifier
type-synonym stat-modi = bool

3 Declaration (base "class" for member,interface and class declarations
record decl =

access :: acc-modi

translations
(type) decl <= (type) (|access::acc-modi|)
(type) decl <= (type) (|access::acc-modi,. . .:: ′a|)

4 Member (field or method)
record member = decl +

static :: stat-modi

translations
(type) member <= (type) (|access::acc-modi,static::bool|)
(type) member <= (type) (|access::acc-modi,static::bool,. . .:: ′a|)

5 Field
record field = member +

type :: ty
translations
(type) field <= (type) (|access::acc-modi, static::bool, type::ty|)
(type) field <= (type) (|access::acc-modi, static::bool, type::ty,. . .:: ′a|)

type-synonym fdecl
= vname × field

translations
(type) fdecl <= (type) vname × field

6 Method
record mhead = member +

44

pars ::vname list
resT ::ty

record mbody =
lcls:: (vname × ty) list
stmt:: stmt

record methd = mhead +
mbody::mbody

type-synonym mdecl = sig × methd

translations
(type) mhead <= (type) (|access::acc-modi, static::bool,

pars::vname list, resT ::ty|)
(type) mhead <= (type) (|access::acc-modi, static::bool,

pars::vname list, resT ::ty,. . .:: ′a|)
(type) mbody <= (type) (|lcls::(vname × ty) list,stmt::stmt|)
(type) mbody <= (type) (|lcls::(vname × ty) list,stmt::stmt,. . .:: ′a|)
(type) methd <= (type) (|access::acc-modi, static::bool,

pars::vname list, resT ::ty,mbody::mbody|)
(type) methd <= (type) (|access::acc-modi, static::bool,

pars::vname list, resT ::ty,mbody::mbody,. . .:: ′a|)
(type) mdecl <= (type) sig × methd

definition
mhead :: methd ⇒ mhead
where mhead m = (|access=access m, static=static m, pars=pars m, resT=resT m|)

lemma access-mhead [simp]:access (mhead m) = access m
by (simp add: mhead-def)

lemma static-mhead [simp]:static (mhead m) = static m
by (simp add: mhead-def)

lemma pars-mhead [simp]:pars (mhead m) = pars m
by (simp add: mhead-def)

lemma resT-mhead [simp]:resT (mhead m) = resT m
by (simp add: mhead-def)

To be able to talk uniformaly about field and method declarations we introduce the notion of a
member declaration (e.g. useful to define accessiblity)
datatype memberdecl = fdecl fdecl | mdecl mdecl

datatype memberid = fid vname | mid sig

class has-memberid =
fixes memberid :: ′a ⇒ memberid

instantiation memberdecl :: has-memberid
begin

definition
memberdecl-memberid-def :

memberid m = (case m of
fdecl (vn,f) ⇒ fid vn

Theory Decl 45

| mdecl (sig,m) ⇒ mid sig)

instance ..

end

lemma memberid-fdecl-simp[simp]: memberid (fdecl (vn,f)) = fid vn
by (simp add: memberdecl-memberid-def)

lemma memberid-fdecl-simp1 : memberid (fdecl f) = fid (fst f)
by (cases f) (simp add: memberdecl-memberid-def)

lemma memberid-mdecl-simp[simp]: memberid (mdecl (sig,m)) = mid sig
by (simp add: memberdecl-memberid-def)

lemma memberid-mdecl-simp1 : memberid (mdecl m) = mid (fst m)
by (cases m) (simp add: memberdecl-memberid-def)

instantiation prod :: (type, has-memberid) has-memberid
begin

definition
pair-memberid-def :

memberid p = memberid (snd p)

instance ..

end

lemma memberid-pair-simp[simp]: memberid (c,m) = memberid m
by (simp add: pair-memberid-def)

lemma memberid-pair-simp1 : memberid p = memberid (snd p)
by (simp add: pair-memberid-def)

definition
is-field :: qtname × memberdecl ⇒ bool
where is-field m = (∃ declC f . m=(declC ,fdecl f))

lemma is-fieldD: is-field m =⇒ ∃ declC f . m=(declC ,fdecl f)
by (simp add: is-field-def)

lemma is-fieldI : is-field (C ,fdecl f)
by (simp add: is-field-def)

definition
is-method :: qtname × memberdecl ⇒ bool
where is-method membr = (∃ declC m. membr=(declC ,mdecl m))

lemma is-methodD: is-method membr =⇒ ∃ declC m. membr=(declC ,mdecl m)
by (simp add: is-method-def)

lemma is-methodI : is-method (C ,mdecl m)
by (simp add: is-method-def)

7 Interface
record ibody = decl + — interface body

imethods :: (sig × mhead) list — method heads

46

record iface = ibody + — interface
isuperIfs:: qtname list — superinterface list

type-synonym
idecl — interface declaration, cf. 9.1
= qtname × iface

translations
(type) ibody <= (type) (|access::acc-modi,imethods::(sig × mhead) list|)
(type) ibody <= (type) (|access::acc-modi,imethods::(sig × mhead) list,. . .:: ′a|)
(type) iface <= (type) (|access::acc-modi,imethods::(sig × mhead) list,

isuperIfs::qtname list|)
(type) iface <= (type) (|access::acc-modi,imethods::(sig × mhead) list,

isuperIfs::qtname list,. . .:: ′a|)
(type) idecl <= (type) qtname × iface

definition
ibody :: iface ⇒ ibody
where ibody i = (|access=access i,imethods=imethods i|)

lemma access-ibody [simp]: (access (ibody i)) = access i
by (simp add: ibody-def)

lemma imethods-ibody [simp]: (imethods (ibody i)) = imethods i
by (simp add: ibody-def)

8 Class
record cbody = decl + — class body

cfields:: fdecl list
methods:: mdecl list
init :: stmt — initializer

record class = cbody + — class
super :: qtname — superclass
superIfs:: qtname list — implemented interfaces

type-synonym
cdecl — class declaration, cf. 8.1
= qtname × class

translations
(type) cbody <= (type) (|access::acc-modi,cfields::fdecl list,

methods::mdecl list,init::stmt|)
(type) cbody <= (type) (|access::acc-modi,cfields::fdecl list,

methods::mdecl list,init::stmt,. . .:: ′a|)
(type) class <= (type) (|access::acc-modi,cfields::fdecl list,

methods::mdecl list,init::stmt,
super ::qtname,superIfs::qtname list|)

(type) class <= (type) (|access::acc-modi,cfields::fdecl list,
methods::mdecl list,init::stmt,
super ::qtname,superIfs::qtname list,. . .:: ′a|)

(type) cdecl <= (type) qtname × class

definition
cbody :: class ⇒ cbody
where cbody c = (|access=access c, cfields=cfields c,methods=methods c,init=init c|)

lemma access-cbody [simp]:access (cbody c) = access c
by (simp add: cbody-def)

Theory Decl 47

lemma cfields-cbody [simp]:cfields (cbody c) = cfields c
by (simp add: cbody-def)

lemma methods-cbody [simp]:methods (cbody c) = methods c
by (simp add: cbody-def)

lemma init-cbody [simp]:init (cbody c) = init c
by (simp add: cbody-def)

standard classes
consts

Object-mdecls :: mdecl list — methods of Object
SXcpt-mdecls :: mdecl list — methods of SXcpts

definition
ObjectC :: cdecl — declaration of root class where
ObjectC = (Object,(|access=Public,cfields=[],methods=Object-mdecls,

init=Skip,super=undefined,superIfs=[]|))

definition
SXcptC ::xname ⇒ cdecl — declarations of throwable classes where
SXcptC xn = (SXcpt xn,(|access=Public,cfields=[],methods=SXcpt-mdecls,

init=Skip,
super=if xn = Throwable then Object

else SXcpt Throwable,
superIfs=[]|))

lemma ObjectC-neq-SXcptC [simp]: ObjectC 6= SXcptC xn
by (simp add: ObjectC-def SXcptC-def Object-def SXcpt-def)

lemma SXcptC-inject [simp]: (SXcptC xn = SXcptC xm) = (xn = xm)
by (simp add: SXcptC-def)

definition
standard-classes :: cdecl list where
standard-classes = [ObjectC , SXcptC Throwable,

SXcptC NullPointer , SXcptC OutOfMemory, SXcptC ClassCast,
SXcptC NegArrSize , SXcptC IndOutBound, SXcptC ArrStore]

programs
record prog =

ifaces ::idecl list
classes::cdecl list

translations
(type) prog <= (type) (|ifaces::idecl list,classes::cdecl list|)
(type) prog <= (type) (|ifaces::idecl list,classes::cdecl list,. . .:: ′a|)

abbreviation
iface :: prog ⇒ (qtname, iface) table
where iface G I == table-of (ifaces G) I

abbreviation
class :: prog ⇒ (qtname, class) table
where class G C == table-of (classes G) C

48

abbreviation
is-iface :: prog ⇒ qtname ⇒ bool
where is-iface G I == iface G I 6= None

abbreviation
is-class :: prog ⇒ qtname ⇒ bool
where is-class G C == class G C 6= None

is type
primrec is-type :: prog ⇒ ty ⇒ bool

and isrtype :: prog ⇒ ref-ty ⇒ bool
where

is-type G (PrimT pt) = True
| is-type G (RefT rt) = isrtype G rt
| isrtype G (NullT) = True
| isrtype G (IfaceT tn) = is-iface G tn
| isrtype G (ClassT tn) = is-class G tn
| isrtype G (ArrayT T) = is-type G T

lemma type-is-iface: is-type G (Iface I) =⇒ is-iface G I
by auto

lemma type-is-class: is-type G (Class C) =⇒ is-class G C
by auto

subinterface and subclass relation, in anticipation of TypeRel.thy
definition

subint1 :: prog ⇒ (qtname × qtname) set — direct subinterface
where subint1 G = {(I ,J). ∃ i∈iface G I : J∈set (isuperIfs i)}

definition
subcls1 :: prog ⇒ (qtname × qtname) set — direct subclass
where subcls1 G = {(C ,D). C 6=Object ∧ (∃ c∈class G C : super c = D)}

abbreviation
subcls1-syntax :: prog => [qtname, qtname] => bool (‹-`-≺C1-› [71 ,71 ,71] 70)
where G`C ≺C1 D == (C ,D) ∈ subcls1 G

abbreviation
subclseq-syntax :: prog => [qtname, qtname] => bool (‹-`-�C -› [71 ,71 ,71] 70)
where G`C �C D == (C ,D) ∈(subcls1 G)∗

abbreviation
subcls-syntax :: prog => [qtname, qtname] => bool (‹-`-≺C -› [71 ,71 ,71] 70)
where G`C ≺C D == (C ,D) ∈(subcls1 G)+

notation (ASCII)
subcls1-syntax (‹-|−-<:C1-› [71 ,71 ,71] 70) and
subclseq-syntax (‹-|−-<=:C -›[71 ,71 ,71] 70) and
subcls-syntax (‹-|−-<:C -›[71 ,71 ,71] 70)

lemma subint1I : [[iface G I = Some i; J ∈ set (isuperIfs i)]]
=⇒ (I ,J) ∈ subint1 G

apply (simp add: subint1-def)
done

lemma subcls1I :[[class G C = Some c; C 6= Object]] =⇒ (C ,(super c)) ∈ subcls1 G

Theory Decl 49

apply (simp add: subcls1-def)
done

lemma subint1D: (I ,J)∈subint1 G=⇒ ∃ i∈iface G I : J∈set (isuperIfs i)
by (simp add: subint1-def)

lemma subcls1D:
(C ,D)∈subcls1 G =⇒ C 6=Object ∧ (∃ c. class G C = Some c ∧ (super c = D))

apply (simp add: subcls1-def)
apply auto
done

lemma subint1-def2 :
subint1 G = (SIGMA I : {I . is-iface G I}. set (isuperIfs (the (iface G I))))

apply (unfold subint1-def)
apply auto
done

lemma subcls1-def2 :
subcls1 G =

(SIGMA C : {C . is-class G C}. {D. C 6=Object ∧ super (the(class G C))=D})
apply (unfold subcls1-def)
apply auto
done

lemma subcls-is-class:
[[G`C ≺C D]] =⇒ ∃ c. class G C = Some c
by (auto simp add: subcls1-def dest: tranclD)

lemma no-subcls1-Object:G`Object≺C1 D =⇒ P
by (auto simp add: subcls1-def)

lemma no-subcls-Object: G`Object≺C D =⇒ P
apply (erule trancl-induct)
apply (auto intro: no-subcls1-Object)
done

well-structured programs

definition
ws-idecl :: prog ⇒ qtname ⇒ qtname list ⇒ bool
where ws-idecl G I si = (∀ J∈set si. is-iface G J ∧ (J ,I)/∈(subint1 G)+)

definition
ws-cdecl :: prog ⇒ qtname ⇒ qtname ⇒ bool
where ws-cdecl G C sc = (C 6=Object −→ is-class G sc ∧ (sc,C)/∈(subcls1 G)+)

definition
ws-prog :: prog ⇒ bool where
ws-prog G = ((∀ (I ,i)∈set (ifaces G). ws-idecl G I (isuperIfs i)) ∧

(∀ (C ,c)∈set (classes G). ws-cdecl G C (super c)))

lemma ws-progI :
[[∀ (I ,i)∈set (ifaces G). ∀ J∈set (isuperIfs i). is-iface G J ∧

(J ,I) /∈ (subint1 G)+;
∀ (C ,c)∈set (classes G). C 6=Object −→ is-class G (super c) ∧

((super c),C) /∈ (subcls1 G)+

50

]] =⇒ ws-prog G
apply (unfold ws-prog-def ws-idecl-def ws-cdecl-def)
apply (erule-tac conjI)
apply blast
done

lemma ws-prog-ideclD:
[[iface G I = Some i; J∈set (isuperIfs i); ws-prog G]] =⇒

is-iface G J ∧ (J ,I)/∈(subint1 G)+

apply (unfold ws-prog-def ws-idecl-def)
apply clarify
apply (drule-tac map-of-SomeD)
apply auto
done

lemma ws-prog-cdeclD:
[[class G C = Some c; C 6=Object; ws-prog G]] =⇒

is-class G (super c) ∧ (super c,C)/∈(subcls1 G)+

apply (unfold ws-prog-def ws-cdecl-def)
apply clarify
apply (drule-tac map-of-SomeD)
apply auto
done

well-foundedness

lemma finite-is-iface: finite {I . is-iface G I}
apply (fold dom-def)
apply (rule-tac finite-dom-map-of)
done

lemma finite-is-class: finite {C . is-class G C}
apply (fold dom-def)
apply (rule-tac finite-dom-map-of)
done

lemma finite-subint1 : finite (subint1 G)
apply (subst subint1-def2)
apply (rule finite-SigmaI)
apply (rule finite-is-iface)
apply (simp (no-asm))
done

lemma finite-subcls1 : finite (subcls1 G)
apply (subst subcls1-def2)
apply (rule finite-SigmaI)
apply (rule finite-is-class)
apply (rule-tac B = {super (the (class G C))} in finite-subset)
apply auto
done

lemma subint1-irrefl-lemma1 :
ws-prog G =⇒ (subint1 G)−1 ∩ (subint1 G)+ = {}

apply (force dest: subint1D ws-prog-ideclD conjunct2)
done

lemma subcls1-irrefl-lemma1 :
ws-prog G =⇒ (subcls1 G)−1 ∩ (subcls1 G)+ = {}

apply (force dest: subcls1D ws-prog-cdeclD conjunct2)

Theory Decl 51

done

lemmas subint1-irrefl-lemma2 = subint1-irrefl-lemma1 [THEN irrefl-tranclI ′]
lemmas subcls1-irrefl-lemma2 = subcls1-irrefl-lemma1 [THEN irrefl-tranclI ′]

lemma subint1-irrefl: [[(x, y) ∈ subint1 G; ws-prog G]] =⇒ x 6= y
apply (rule irrefl-trancl-rD)
apply (rule subint1-irrefl-lemma2)
apply auto
done

lemma subcls1-irrefl: [[(x, y) ∈ subcls1 G; ws-prog G]] =⇒ x 6= y
apply (rule irrefl-trancl-rD)
apply (rule subcls1-irrefl-lemma2)
apply auto
done

lemmas subint1-acyclic = subint1-irrefl-lemma2 [THEN acyclicI]
lemmas subcls1-acyclic = subcls1-irrefl-lemma2 [THEN acyclicI]

lemma wf-subint1 : ws-prog G =⇒ wf ((subint1 G)−1)
by (auto intro: finite-acyclic-wf-converse finite-subint1 subint1-acyclic)

lemma wf-subcls1 : ws-prog G =⇒ wf ((subcls1 G)−1)
by (auto intro: finite-acyclic-wf-converse finite-subcls1 subcls1-acyclic)

lemma subint1-induct:
[[ws-prog G;

∧
x. ∀ y. (x, y) ∈ subint1 G −→ P y =⇒ P x]] =⇒ P a

apply (frule wf-subint1)
apply (erule wf-induct)
apply (simp (no-asm-use) only: converse-iff)
apply blast
done

lemma subcls1-induct [consumes 1]:
[[ws-prog G;

∧
x. ∀ y. (x, y) ∈ subcls1 G −→ P y =⇒ P x]] =⇒ P a

apply (frule wf-subcls1)
apply (erule wf-induct)
apply (simp (no-asm-use) only: converse-iff)
apply blast
done

lemma ws-subint1-induct:
[[is-iface G I ; ws-prog G;

∧
I i. [[iface G I = Some i ∧

(∀ J ∈ set (isuperIfs i). (I ,J)∈subint1 G ∧ P J ∧ is-iface G J)]] =⇒ P I
]] =⇒ P I

apply (erule rev-mp)
apply (rule subint1-induct)
apply assumption
apply (simp (no-asm))
apply safe
apply (blast dest: subint1I ws-prog-ideclD)
done

lemma ws-subcls1-induct: [[is-class G C ; ws-prog G;∧
C c. [[class G C = Some c;

52

(C 6= Object −→ (C ,(super c))∈subcls1 G ∧
P (super c) ∧ is-class G (super c))]] =⇒ P C

]] =⇒ P C
apply (erule rev-mp)
apply (rule subcls1-induct)
apply assumption
apply (simp (no-asm))
apply safe
apply (fast dest: subcls1I ws-prog-cdeclD)
done

lemma ws-class-induct [consumes 2 , case-names Object Subcls]:
[[class G C = Some c; ws-prog G;∧

co. class G Object = Some co =⇒ P Object;∧
C c. [[class G C = Some c; C 6= Object; P (super c)]] =⇒ P C

]] =⇒ P C
proof −

assume clsC : class G C = Some c
and init:

∧
co. class G Object = Some co =⇒ P Object

and step:
∧

C c. [[class G C = Some c; C 6= Object; P (super c)]] =⇒ P C
assume ws: ws-prog G
then have is-class G C =⇒ P C
proof (induct rule: subcls1-induct)

fix C
assume hyp:∀ S . G`C ≺C1 S −→ is-class G S −→ P S

and iscls:is-class G C
show P C
proof (cases C=Object)

case True with iscls init show P C by auto
next

case False with ws step hyp iscls
show P C by (auto dest: subcls1I ws-prog-cdeclD)

qed
qed
with clsC show ?thesis by simp

qed

lemma ws-class-induct ′ [consumes 2 , case-names Object Subcls]:
[[is-class G C ; ws-prog G;∧

co. class G Object = Some co =⇒ P Object;∧
C c. [[class G C = Some c; C 6= Object; P (super c)]] =⇒ P C

]] =⇒ P C
by (auto intro: ws-class-induct)

lemma ws-class-induct ′′ [consumes 2 , case-names Object Subcls]:
[[class G C = Some c; ws-prog G;∧

co. class G Object = Some co =⇒ P Object co;∧
C c sc. [[class G C = Some c; class G (super c) = Some sc;

C 6= Object; P (super c) sc]] =⇒ P C c
]] =⇒ P C c

proof −
assume clsC : class G C = Some c
and init:

∧
co. class G Object = Some co =⇒ P Object co

and step:
∧

C c sc . [[class G C = Some c; class G (super c) = Some sc;
C 6= Object; P (super c) sc]] =⇒ P C c

assume ws: ws-prog G
then have

∧
c. class G C = Some c=⇒ P C c

proof (induct rule: subcls1-induct)
fix C c

Theory Decl 53

assume hyp:∀ S . G`C ≺C1 S −→ (∀ s. class G S = Some s −→ P S s)
and iscls:class G C = Some c

show P C c
proof (cases C=Object)

case True with iscls init show P C c by auto
next

case False
with ws iscls obtain sc where

sc: class G (super c) = Some sc
by (auto dest: ws-prog-cdeclD)

from iscls False have G`C ≺C1 (super c) by (rule subcls1I)
with False ws step hyp iscls sc
show P C c

by (auto)
qed

qed
with clsC show P C c by auto

qed

lemma ws-interface-induct [consumes 2 , case-names Step]:
assumes is-if-I : is-iface G I and

ws: ws-prog G and
hyp-sub:

∧
I i. [[iface G I = Some i;
∀ J ∈ set (isuperIfs i).

(I ,J)∈subint1 G ∧ P J ∧ is-iface G J]] =⇒ P I
shows P I

proof −
from is-if-I ws
show P I
proof (rule ws-subint1-induct)

fix I i
assume hyp: iface G I = Some i ∧

(∀ J∈set (isuperIfs i). (I ,J) ∈subint1 G ∧ P J ∧ is-iface G J)
then have if-I : iface G I = Some i

by blast
show P I
proof (cases isuperIfs i)

case Nil
with if-I hyp-sub
show P I

by auto
next

case (Cons hd tl)
with hyp if-I hyp-sub
show P I

by auto
qed

qed
qed

general recursion operators for the interface and class hiearchies

function iface-rec :: prog ⇒ qtname ⇒ (qtname ⇒ iface ⇒ ′a set ⇒ ′a) ⇒ ′a
where
[simp del]: iface-rec G I f =
(case iface G I of

None ⇒ undefined
| Some i ⇒ if ws-prog G

then f I i

54

((λJ . iface-rec G J f)‘set (isuperIfs i))
else undefined)

by auto
termination
by (relation inv-image (same-fst ws-prog (λG. (subint1 G)−1)) (%(x,y,z). (x,y)))
(auto simp: wf-subint1 subint1I wf-same-fst)

lemma iface-rec:
[[iface G I = Some i; ws-prog G]] =⇒
iface-rec G I f = f I i ((λJ . iface-rec G J f)‘set (isuperIfs i))

apply (subst iface-rec.simps)
apply simp
done

function
class-rec :: prog ⇒ qtname ⇒ ′a ⇒ (qtname ⇒ class ⇒ ′a ⇒ ′a) ⇒ ′a

where
[simp del]: class-rec G C t f =
(case class G C of

None ⇒ undefined
| Some c ⇒ if ws-prog G

then f C c
(if C = Object then t

else class-rec G (super c) t f)
else undefined)

by auto
termination
by (relation inv-image (same-fst ws-prog (λG. (subcls1 G)−1)) (%(x,y,z,w). (x,y)))
(auto simp: wf-subcls1 subcls1I wf-same-fst)

lemma class-rec: [[class G C = Some c; ws-prog G]] =⇒
class-rec G C t f =

f C c (if C = Object then t else class-rec G (super c) t f)
apply (subst class-rec.simps)
apply simp
done

definition
imethds :: prog ⇒ qtname ⇒ (sig,qtname × mhead) tables where
— methods of an interface, with overriding and inheritance, cf. 9.2
imethds G I = iface-rec G I

(λI i ts. (Un-tables ts) ⊕⊕
(set-option ◦ table-of (map (λ(s,m). (s,I ,m)) (imethods i))))

end

Chapter 9

TypeRel

1 The relations between Java types
theory TypeRel imports Decl begin

simplifications:

• subinterface, subclass and widening relation includes identity

improvements over Java Specification 1.0:

• narrowing reference conversion also in cases where the return types of a pair of methods
common to both types are in widening (rather identity) relation

• one could add similar constraints also for other cases

design issues:

• the type relations do not require is-type for their arguments

• the subint1 and subcls1 relations imply is-iface/is-class for their first arguments, which is
required for their finiteness

definition
implmt1 :: prog ⇒ (qtname × qtname) set — direct implementation
— direct implementation, cf. 8.1.3
where implmt1 G = {(C ,I). C 6=Object ∧ (∃ c∈class G C : I∈set (superIfs c))}

abbreviation
subint1-syntax :: prog => [qtname, qtname] => bool (‹-`-≺I1-› [71 ,71 ,71] 70)
where G`I ≺I1 J == (I ,J) ∈ subint1 G

abbreviation
subint-syntax :: prog => [qtname, qtname] => bool (‹-`-�I -› [71 ,71 ,71] 70)
where G`I �I J == (I ,J) ∈(subint1 G)∗ — cf. 9.1.3

abbreviation
implmt1-syntax :: prog => [qtname, qtname] => bool (‹-`-;1-› [71 ,71 ,71] 70)
where G`C ;1 I == (C ,I) ∈ implmt1 G

notation (ASCII)
subint1-syntax (‹-|−-<:I1-› [71 ,71 ,71] 70) and
subint-syntax (‹-|−-<=:I -›[71 ,71 ,71] 70) and
implmt1-syntax (‹-|−-∼>1-› [71 ,71 ,71] 70)

55

56

subclass and subinterface relations

lemmas subcls-direct = subcls1I [THEN r-into-rtrancl]

lemma subcls-direct1 :
[[class G C = Some c; C 6= Object;D=super c]] =⇒ G`C�C D

apply (auto dest: subcls-direct)
done

lemma subcls1I1 :
[[class G C = Some c; C 6= Object;D=super c]] =⇒ G`C≺C1 D

apply (auto dest: subcls1I)
done

lemma subcls-direct2 :
[[class G C = Some c; C 6= Object;D=super c]] =⇒ G`C≺C D

apply (auto dest: subcls1I1)
done

lemma subclseq-trans: [[G`A �C B; G`B �C C]] =⇒ G`A �C C
by (blast intro: rtrancl-trans)

lemma subcls-trans: [[G`A ≺C B; G`B ≺C C]] =⇒ G`A ≺C C
by (blast intro: trancl-trans)

lemma SXcpt-subcls-Throwable-lemma:
[[class G (SXcpt xn) = Some xc;

super xc = (if xn = Throwable then Object else SXcpt Throwable)]]
=⇒ G`SXcpt xn�C SXcpt Throwable
apply (case-tac xn = Throwable)
apply simp-all
apply (drule subcls-direct)
apply (auto dest: sym)
done

lemma subcls-ObjectI : [[is-class G C ; ws-prog G]] =⇒ G`C�C Object
apply (erule ws-subcls1-induct)
apply clarsimp
apply (case-tac C = Object)
apply (fast intro: r-into-rtrancl [THEN rtrancl-trans])+
done

lemma subclseq-ObjectD [dest!]: G`Object�C C =⇒ C = Object
apply (erule rtrancl-induct)
apply (auto dest: subcls1D)
done

lemma subcls-ObjectD [dest!]: G`Object≺C C =⇒ False
apply (erule trancl-induct)
apply (auto dest: subcls1D)
done

lemma subcls-ObjectI1 [intro!]:
[[C 6= Object;is-class G C ;ws-prog G]] =⇒ G`C ≺C Object

apply (drule (1) subcls-ObjectI)
apply (auto intro: rtrancl-into-trancl3)
done

lemma subcls-is-class: (C ,D) ∈ (subcls1 G)+ =⇒ is-class G C

Theory TypeRel 57

apply (erule trancl-trans-induct)
apply (auto dest!: subcls1D)
done

lemma subcls-is-class2 [rule-format (no-asm)]:
G`C�C D =⇒ is-class G D −→ is-class G C

apply (erule rtrancl-induct)
apply (drule-tac [2] subcls1D)
apply auto
done

lemma single-inheritance:
[[G`A ≺C1 B; G`A ≺C1 C]] =⇒ B = C
by (auto simp add: subcls1-def)

lemma subcls-compareable:
[[G`A �C X ; G`A �C Y
]] =⇒ G`X �C Y ∨ G`Y �C X

by (rule triangle-lemma) (auto intro: single-inheritance)

lemma subcls1-irrefl: [[G`C ≺C1 D; ws-prog G]]
=⇒ C 6= D

proof
assume ws: ws-prog G and

subcls1 : G`C ≺C1 D and
eq-C-D: C=D

from subcls1 obtain c
where

neq-C-Object: C 6=Object and
clsC : class G C = Some c and

super-c: super c = D
by (auto simp add: subcls1-def)

with super-c subcls1 eq-C-D
have subcls-super-c-C : G`super c ≺C C

by auto
from ws clsC neq-C-Object
have ¬ G`super c ≺C C

by (auto dest: ws-prog-cdeclD)
from this subcls-super-c-C
show False

by (rule notE)
qed

lemma no-subcls-Object: G`C ≺C D =⇒ C 6= Object
by (erule converse-trancl-induct) (auto dest: subcls1D)

lemma subcls-acyclic: [[G`C ≺C D; ws-prog G]] =⇒ ¬ G`D ≺C C
proof −

assume ws: ws-prog G
assume subcls-C-D: G`C ≺C D
then show ?thesis
proof (induct rule: converse-trancl-induct)

fix C
assume subcls1-C-D: G`C ≺C1 D
then obtain c where

C 6=Object and
class G C = Some c and
super c = D

by (auto simp add: subcls1-def)

58

with ws
show ¬ G`D ≺C C

by (auto dest: ws-prog-cdeclD)
next

fix C Z
assume subcls1-C-Z : G`C ≺C1 Z and

subcls-Z-D: G`Z ≺C D and
nsubcls-D-Z : ¬ G`D ≺C Z

show ¬ G`D ≺C C
proof

assume subcls-D-C : G`D ≺C C
show False
proof −

from subcls-D-C subcls1-C-Z
have G`D ≺C Z

by (auto dest: r-into-trancl trancl-trans)
with nsubcls-D-Z
show ?thesis

by (rule notE)
qed

qed
qed

qed

lemma subclseq-cases:
assumes G`C �C D
obtains (Eq) C = D | (Subcls) G`C ≺C D

using assms by (blast intro: rtrancl-cases)

lemma subclseq-acyclic:
[[G`C �C D; G`D �C C ; ws-prog G]] =⇒ C=D

by (auto elim: subclseq-cases dest: subcls-acyclic)

lemma subcls-irrefl: [[G`C ≺C D; ws-prog G]]
=⇒ C 6= D

proof −
assume ws: ws-prog G
assume subcls: G`C ≺C D
then show ?thesis
proof (induct rule: converse-trancl-induct)

fix C
assume G`C ≺C1 D
with ws
show C 6=D

by (blast dest: subcls1-irrefl)
next

fix C Z
assume subcls1-C-Z : G`C ≺C1 Z and

subcls-Z-D: G`Z ≺C D and
neq-Z-D: Z 6= D

show C 6=D
proof

assume eq-C-D: C=D
show False
proof (rule notE)

from subcls1-C-Z eq-C-D
show G`D ≺C Z

by (auto)
also

Theory TypeRel 59

from subcls-Z-D ws
show ¬ G`D ≺C Z

by (rule subcls-acyclic)
qed

qed
qed

qed

lemma invert-subclseq:
[[G`C �C D; ws-prog G]]
=⇒ ¬ G`D ≺C C

proof −
assume ws: ws-prog G and

subclseq-C-D: G`C �C D
show ?thesis
proof (cases D=C)

case True
with ws
show ?thesis

by (auto dest: subcls-irrefl)
next

case False
with subclseq-C-D
have G`C ≺C D

by (blast intro: rtrancl-into-trancl3)
with ws
show ?thesis

by (blast dest: subcls-acyclic)
qed

qed

lemma invert-subcls:
[[G`C ≺C D; ws-prog G]]
=⇒ ¬ G`D �C C

proof −
assume ws: ws-prog G and

subcls-C-D: G`C ≺C D
then
have nsubcls-D-C : ¬ G`D ≺C C

by (blast dest: subcls-acyclic)
show ?thesis
proof

assume G`D �C C
then show False
proof (cases rule: subclseq-cases)

case Eq
with ws subcls-C-D
show ?thesis

by (auto dest: subcls-irrefl)
next

case Subcls
with nsubcls-D-C
show ?thesis

by blast
qed

qed
qed

lemma subcls-superD:

60

[[G`C ≺C D; class G C = Some c]] =⇒ G`(super c) �C D
proof −

assume clsC : class G C = Some c
assume subcls-C-C : G`C ≺C D
then obtain S where

G`C ≺C1 S and
subclseq-S-D: G`S �C D
by (blast dest: tranclD)

with clsC
have S=super c

by (auto dest: subcls1D)
with subclseq-S-D show ?thesis by simp

qed

lemma subclseq-superD:
[[G`C �C D; C 6=D;class G C = Some c]] =⇒ G`(super c) �C D

proof −
assume neq-C-D: C 6=D
assume clsC : class G C = Some c
assume subclseq-C-D: G`C �C D
then show ?thesis
proof (cases rule: subclseq-cases)

case Eq with neq-C-D show ?thesis by contradiction
next

case Subcls
with clsC show ?thesis by (blast dest: subcls-superD)

qed
qed

implementation relation

lemma implmt1D: G`C;1I =⇒ C 6=Object ∧ (∃ c∈class G C : I∈set (superIfs c))
apply (unfold implmt1-def)
apply auto
done

inductive — implementation, cf. 8.1.4
implmt :: prog ⇒ qtname ⇒ qtname ⇒ bool (‹-`-;-› [71 ,71 ,71] 70)
for G :: prog

where
direct: G`C;1J =⇒ G`C;J
| subint: G`C;1I =⇒ G`I�I J =⇒ G`C;J
| subcls1 : G`C≺C1D =⇒ G`D;J =⇒ G`C;J

lemma implmtD: G`C;J =⇒ (∃ I . G`C;1I ∧ G`I�I J) ∨ (∃D. G`C≺C1D ∧ G`D;J)
apply (erule implmt.induct)
apply fast+
done

lemma implmt-ObjectE [elim!]: G`Object;I =⇒ R
by (auto dest!: implmtD implmt1D subcls1D)

lemma subcls-implmt [rule-format (no-asm)]: G`A�C B =⇒ G`B;K −→ G`A;K
apply (erule rtrancl-induct)
apply (auto intro: implmt.subcls1)
done

lemma implmt-subint2 : [[G`A;J ; G`J�I K]] =⇒ G`A;K

Theory TypeRel 61

apply (erule rev-mp, erule implmt.induct)
apply (auto dest: implmt.subint rtrancl-trans implmt.subcls1)
done

lemma implmt-is-class: G`C;I =⇒ is-class G C
apply (erule implmt.induct)
apply (auto dest: implmt1D subcls1D)
done

widening relation
inductive
— widening, viz. method invocation conversion, cf. 5.3 i.e. kind of syntactic subtyping
widen :: prog ⇒ ty ⇒ ty ⇒ bool (‹-`-�-› [71 ,71 ,71] 70)
for G :: prog

where
refl: G`T�T — identity conversion, cf. 5.1.1
| subint: G`I�I J =⇒ G`Iface I� Iface J — wid.ref.conv.,cf. 5.1.4
| int-obj: G`Iface I� Class Object
| subcls: G`C�C D =⇒ G`Class C� Class D
| implmt: G`C;I =⇒ G`Class C� Iface I
| null: G`NT� RefT R
| arr-obj: G`T .[]� Class Object
| array: G`RefT S�RefT T =⇒ G`RefT S .[]� RefT T .[]

declare widen.refl [intro!]
declare widen.intros [simp]

lemma widen-PrimT : G`PrimT x�T =⇒ (∃ y. T = PrimT y)
apply (ind-cases G`PrimT x�T)
by auto

lemma widen-PrimT2 : G`S�PrimT x =⇒ ∃ y. S = PrimT y
apply (ind-cases G`S�PrimT x)
by auto

These widening lemmata hold in Bali but are to strong for ordinary Java. They would not work for
real Java Integral Types, like short, long, int. These lemmata are just for documentation and are
not used.
lemma widen-PrimT-strong: G`PrimT x�T =⇒ T = PrimT x
by (ind-cases G`PrimT x�T) simp-all

lemma widen-PrimT2-strong: G`S�PrimT x =⇒ S = PrimT x
by (ind-cases G`S�PrimT x) simp-all

Specialized versions for booleans also would work for real Java
lemma widen-Boolean: G`PrimT Boolean�T =⇒ T = PrimT Boolean
by (ind-cases G`PrimT Boolean�T) simp-all

lemma widen-Boolean2 : G`S�PrimT Boolean =⇒ S = PrimT Boolean
by (ind-cases G`S�PrimT Boolean) simp-all

lemma widen-RefT : G`RefT R�T =⇒ ∃ t. T=RefT t
apply (ind-cases G`RefT R�T)
by auto

62

lemma widen-RefT2 : G`S�RefT R =⇒ ∃ t. S=RefT t
apply (ind-cases G`S�RefT R)
by auto

lemma widen-Iface: G`Iface I�T =⇒ T=Class Object ∨ (∃ J . T=Iface J)
apply (ind-cases G`Iface I�T)
by auto

lemma widen-Iface2 : G`S� Iface J =⇒ S = NT ∨ (∃ I . S = Iface I) ∨ (∃D. S = Class D)
apply (ind-cases G`S� Iface J)
by auto

lemma widen-Iface-Iface: G`Iface I� Iface J =⇒ G`I�I J
apply (ind-cases G`Iface I� Iface J)
by auto

lemma widen-Iface-Iface-eq [simp]: G`Iface I� Iface J = G`I�I J
apply (rule iffI)
apply (erule widen-Iface-Iface)
apply (erule widen.subint)
done

lemma widen-Class: G`Class C�T =⇒ (∃D. T=Class D) ∨ (∃ I . T=Iface I)
apply (ind-cases G`Class C�T)
by auto

lemma widen-Class2 : G`S� Class C =⇒ C = Object ∨ S = NT ∨ (∃D. S = Class D)
apply (ind-cases G`S� Class C)
by auto

lemma widen-Class-Class: G`Class C� Class cm =⇒ G`C�C cm
apply (ind-cases G`Class C� Class cm)
by auto

lemma widen-Class-Class-eq [simp]: G`Class C� Class cm = G`C�C cm
apply (rule iffI)
apply (erule widen-Class-Class)
apply (erule widen.subcls)
done

lemma widen-Class-Iface: G`Class C� Iface I =⇒ G`C;I
apply (ind-cases G`Class C� Iface I)
by auto

lemma widen-Class-Iface-eq [simp]: G`Class C� Iface I = G`C;I
apply (rule iffI)
apply (erule widen-Class-Iface)
apply (erule widen.implmt)
done

lemma widen-Array: G`S .[]�T =⇒ T=Class Object ∨ (∃T ′. T=T ′.[] ∧ G`S�T ′)
apply (ind-cases G`S .[]�T)
by auto

lemma widen-Array2 : G`S�T .[] =⇒ S = NT ∨ (∃S ′. S=S ′.[] ∧ G`S ′�T)
apply (ind-cases G`S�T .[])
by auto

Theory TypeRel 63

lemma widen-ArrayPrimT : G`PrimT t.[]�T =⇒ T=Class Object ∨ T=PrimT t.[]
apply (ind-cases G`PrimT t.[]�T)
by auto

lemma widen-ArrayRefT :
G`RefT t.[]�T =⇒ T=Class Object ∨ (∃ s. T=RefT s.[] ∧ G`RefT t�RefT s)

apply (ind-cases G`RefT t.[]�T)
by auto

lemma widen-ArrayRefT-ArrayRefT-eq [simp]:
G`RefT T .[]�RefT T ′.[] = G`RefT T�RefT T ′

apply (rule iffI)
apply (drule widen-ArrayRefT)
apply simp
apply (erule widen.array)
done

lemma widen-Array-Array: G`T .[]�T ′.[] =⇒ G`T�T ′

apply (drule widen-Array)
apply auto
done

lemma widen-Array-Class: G`S .[] � Class C =⇒ C=Object
by (auto dest: widen-Array)

lemma widen-NT2 : G`S�NT =⇒ S = NT
apply (ind-cases G`S�NT)
by auto

lemma widen-Object:
assumes isrtype G T and ws-prog G
shows G`RefT T � Class Object

proof (cases T)
case (ClassT C) with assms have G`C�C Object by (auto intro: subcls-ObjectI)
with ClassT show ?thesis by auto

qed simp-all

lemma widen-trans-lemma [rule-format (no-asm)]:
[[G`S�U ; ∀C . is-class G C −→ G`C�C Object]] =⇒ ∀T . G`U�T −→ G`S�T

apply (erule widen.induct)
apply safe
prefer 5 apply (drule widen-RefT) apply clarsimp
apply (frule-tac [1] widen-Iface)
apply (frule-tac [2] widen-Class)
apply (frule-tac [3] widen-Class)
apply (frule-tac [4] widen-Iface)
apply (frule-tac [5] widen-Class)
apply (frule-tac [6] widen-Array)
apply safe
apply (rule widen.int-obj)
prefer 6 apply (drule implmt-is-class) apply simp
apply (erule-tac [!] thin-rl)
prefer 6 apply simp
apply (rule-tac [9] widen.arr-obj)
apply (rotate-tac [9] −1)
apply (frule-tac [9] widen-RefT)
apply (auto elim!: rtrancl-trans subcls-implmt implmt-subint2)
done

64

lemma ws-widen-trans: [[G`S�U ; G`U�T ; ws-prog G]] =⇒ G`S�T
by (auto intro: widen-trans-lemma subcls-ObjectI)

lemma widen-antisym-lemma [rule-format (no-asm)]: [[G`S�T ;
∀ I J . G`I�I J ∧ G`J�I I −→ I = J ;
∀C D. G`C�C D ∧ G`D�C C −→ C = D;
∀ I . G`Object;I −→ False]] =⇒ G`T�S −→ S = T

apply (erule widen.induct)
apply (auto dest: widen-Iface widen-NT2 widen-Class)
done

lemmas subint-antisym =
subint1-acyclic [THEN acyclic-impl-antisym-rtrancl]

lemmas subcls-antisym =
subcls1-acyclic [THEN acyclic-impl-antisym-rtrancl]

lemma widen-antisym: [[G`S�T ; G`T�S ; ws-prog G]] =⇒ S=T
by (fast elim: widen-antisym-lemma subint-antisym [THEN antisymD]

subcls-antisym [THEN antisymD])

lemma widen-ObjectD [dest!]: G`Class Object�T =⇒ T=Class Object
apply (frule widen-Class)
apply (fast dest: widen-Class-Class widen-Class-Iface)
done

definition
widens :: prog ⇒ [ty list, ty list] ⇒ bool (‹-`-[�]-› [71 ,71 ,71] 70)
where G`Ts[�]Ts ′ = list-all2 (λT T ′. G`T�T ′) Ts Ts ′

lemma widens-Nil [simp]: G`[][�][]
apply (unfold widens-def)
apply auto
done

lemma widens-Cons [simp]: G`(S#Ss)[�](T#Ts) = (G`S�T ∧ G`Ss[�]Ts)
apply (unfold widens-def)
apply auto
done

narrowing relation

inductive — narrowing reference conversion, cf. 5.1.5
narrow :: prog ⇒ ty ⇒ ty ⇒ bool (‹-`-�-› [71 ,71 ,71] 70)
for G :: prog

where
subcls: G`C�C D =⇒ G` Class D�Class C
| implmt: ¬G`C;I =⇒ G` Class C�Iface I
| obj-arr : G`Class Object�T .[]
| int-cls: G` Iface I�Class C
| subint: imethds G I hidings imethds G J entails

(λ(md, mh) (md ′,mh ′). G`mrt mh�mrt mh ′) =⇒
¬G`I�I J =⇒ G` Iface I�Iface J

| array: G`RefT S�RefT T =⇒ G` RefT S .[]�RefT T .[]

lemma narrow-RefT : G`RefT R�T =⇒ ∃ t. T=RefT t
apply (ind-cases G`RefT R�T)
by auto

Theory TypeRel 65

lemma narrow-RefT2 : G`S�RefT R =⇒ ∃ t. S=RefT t
apply (ind-cases G`S�RefT R)
by auto

lemma narrow-PrimT : G`PrimT pt�T =⇒ ∃ t. T=PrimT t
by (ind-cases G`PrimT pt�T)

lemma narrow-PrimT2 : G`S�PrimT pt =⇒
∃ t. S=PrimT t ∧ G`PrimT t�PrimT pt

by (ind-cases G`S�PrimT pt)

These narrowing lemmata hold in Bali but are to strong for ordinary Java. They would not work
for real Java Integral Types, like short, long, int. These lemmata are just for documentation and
are not used.
lemma narrow-PrimT-strong: G`PrimT pt�T =⇒ T=PrimT pt
by (ind-cases G`PrimT pt�T)

lemma narrow-PrimT2-strong: G`S�PrimT pt =⇒ S=PrimT pt
by (ind-cases G`S�PrimT pt)

Specialized versions for booleans also would work for real Java
lemma narrow-Boolean: G`PrimT Boolean�T =⇒ T=PrimT Boolean
by (ind-cases G`PrimT Boolean�T)

lemma narrow-Boolean2 : G`S�PrimT Boolean =⇒ S=PrimT Boolean
by (ind-cases G`S�PrimT Boolean)

casting relation
inductive — casting conversion, cf. 5.5

cast :: prog ⇒ ty ⇒ ty ⇒ bool (‹-`-�? -› [71 ,71 ,71] 70)
for G :: prog

where
widen: G`S�T =⇒ G`S�? T
| narrow: G`S�T =⇒ G`S�? T

lemma cast-RefT : G`RefT R�? T =⇒ ∃ t. T=RefT t
apply (ind-cases G`RefT R�? T)
by (auto dest: widen-RefT narrow-RefT)

lemma cast-RefT2 : G`S�? RefT R =⇒ ∃ t. S=RefT t
apply (ind-cases G`S�? RefT R)
by (auto dest: widen-RefT2 narrow-RefT2)

lemma cast-PrimT : G`PrimT pt�? T =⇒ ∃ t. T=PrimT t
apply (ind-cases G`PrimT pt�? T)
by (auto dest: widen-PrimT narrow-PrimT)

lemma cast-PrimT2 : G`S�? PrimT pt =⇒ ∃ t. S=PrimT t ∧ G`PrimT t�PrimT pt
apply (ind-cases G`S�? PrimT pt)
by (auto dest: widen-PrimT2 narrow-PrimT2)

lemma cast-Boolean:
assumes bool-cast: G`PrimT Boolean�? T

66

shows T=PrimT Boolean
using bool-cast
proof (cases)

case widen
hence G`PrimT Boolean� T

by simp
thus ?thesis by (rule widen-Boolean)

next
case narrow
hence G`PrimT Boolean�T

by simp
thus ?thesis by (rule narrow-Boolean)

qed

lemma cast-Boolean2 :
assumes bool-cast: G`S�? PrimT Boolean
shows S = PrimT Boolean

using bool-cast
proof (cases)

case widen
hence G`S� PrimT Boolean

by simp
thus ?thesis by (rule widen-Boolean2)

next
case narrow
hence G`S�PrimT Boolean

by simp
thus ?thesis by (rule narrow-Boolean2)

qed

end

Chapter 10

DeclConcepts

1 Advanced concepts on Java declarations like overriding, inheritance, dynamic
method lookup

theory DeclConcepts imports TypeRel begin

access control (cf. 6.6), overriding and hiding (cf. 8.4.6.1)
definition is-public :: prog ⇒ qtname ⇒ bool where
is-public G qn = (case class G qn of

None ⇒ (case iface G qn of
None ⇒ False
| Some i ⇒ access i = Public)

| Some c ⇒ access c = Public)

2 accessibility of types (cf. 6.6.1)

Primitive types are always accessible, interfaces and classes are accessible in their package or if they
are defined public, an array type is accessible if its element type is accessible
primrec

accessible-in :: prog ⇒ ty ⇒ pname ⇒ bool (‹- ` - accessible ′-in -› [61 ,61 ,61] 60) and
rt-accessible-in :: prog ⇒ ref-ty ⇒ pname ⇒ bool (‹- ` - accessible ′-in ′′ -› [61 ,61 ,61] 60)

where
G`(PrimT p) accessible-in pack = True
| accessible-in-RefT-simp:

G`(RefT r) accessible-in pack = G`r accessible-in ′ pack
| G`(NullT) accessible-in ′ pack = True
| G`(IfaceT I) accessible-in ′ pack = ((pid I = pack) ∨ is-public G I)
| G`(ClassT C) accessible-in ′ pack = ((pid C = pack) ∨ is-public G C)
| G`(ArrayT ty) accessible-in ′ pack = G`ty accessible-in pack

declare accessible-in-RefT-simp [simp del]

definition
is-acc-class :: prog ⇒ pname ⇒ qtname ⇒ bool
where is-acc-class G P C = (is-class G C ∧ G`(Class C) accessible-in P)

definition
is-acc-iface :: prog ⇒ pname ⇒ qtname ⇒ bool
where is-acc-iface G P I = (is-iface G I ∧ G`(Iface I) accessible-in P)

definition
is-acc-type :: prog ⇒ pname ⇒ ty ⇒ bool
where is-acc-type G P T = (is-type G T ∧ G`T accessible-in P)

67

68

definition
is-acc-reftype :: prog ⇒ pname ⇒ ref-ty ⇒ bool
where is-acc-reftype G P T = (isrtype G T ∧ G`T accessible-in ′ P)

lemma is-acc-classD:
is-acc-class G P C =⇒ is-class G C ∧ G`(Class C) accessible-in P

by (simp add: is-acc-class-def)

lemma is-acc-class-is-class: is-acc-class G P C =⇒ is-class G C
by (auto simp add: is-acc-class-def)

lemma is-acc-ifaceD:
is-acc-iface G P I =⇒ is-iface G I ∧ G`(Iface I) accessible-in P

by (simp add: is-acc-iface-def)

lemma is-acc-typeD:
is-acc-type G P T =⇒ is-type G T ∧ G`T accessible-in P

by (simp add: is-acc-type-def)

lemma is-acc-reftypeD:
is-acc-reftype G P T =⇒ isrtype G T ∧ G`T accessible-in ′ P
by (simp add: is-acc-reftype-def)

3 accessibility of members

The accessibility of members is more involved as the accessibility of types. We have to distinguish
several cases to model the different effects of accessibility during inheritance, overriding and ordinary
member access

Various technical conversion and selection functions

overloaded selector accmodi to select the access modifier out of various HOL types
class has-accmodi =

fixes accmodi:: ′a ⇒ acc-modi

instantiation acc-modi :: has-accmodi
begin

definition
acc-modi-accmodi-def : accmodi (a::acc-modi) = a

instance ..

end

lemma acc-modi-accmodi-simp[simp]: accmodi (a::acc-modi) = a
by (simp add: acc-modi-accmodi-def)

instantiation decl-ext :: (type) has-accmodi
begin

definition
decl-acc-modi-def : accmodi (d::(′a:: type) decl-scheme) = access d

instance ..

Theory DeclConcepts 69

end

lemma decl-acc-modi-simp[simp]: accmodi (d::(′a::type) decl-scheme) = access d
by (simp add: decl-acc-modi-def)

instantiation prod :: (type, has-accmodi) has-accmodi
begin

definition
pair-acc-modi-def : accmodi p = accmodi (snd p)

instance ..

end

lemma pair-acc-modi-simp[simp]: accmodi (x,a) = (accmodi a)
by (simp add: pair-acc-modi-def)

instantiation memberdecl :: has-accmodi
begin

definition
memberdecl-acc-modi-def : accmodi m = (case m of

fdecl f ⇒ accmodi f
| mdecl m ⇒ accmodi m)

instance ..

end

lemma memberdecl-fdecl-acc-modi-simp[simp]:
accmodi (fdecl m) = accmodi m

by (simp add: memberdecl-acc-modi-def)

lemma memberdecl-mdecl-acc-modi-simp[simp]:
accmodi (mdecl m) = accmodi m

by (simp add: memberdecl-acc-modi-def)

overloaded selector declclass to select the declaring class out of various HOL types
class has-declclass =

fixes declclass:: ′a ⇒ qtname

instantiation qtname-ext :: (type) has-declclass
begin

definition
declclass q = (| pid = pid q, tid = tid q |)

instance ..

end

lemma qtname-declclass-def :
declclass q ≡ (q::qtname)
by (induct q) (simp add: declclass-qtname-ext-def)

lemma qtname-declclass-simp[simp]: declclass (q::qtname) = q
by (simp add: qtname-declclass-def)

70

instantiation prod :: (has-declclass, type) has-declclass
begin

definition
pair-declclass-def : declclass p = declclass (fst p)

instance ..

end

lemma pair-declclass-simp[simp]: declclass (c,x) = declclass c
by (simp add: pair-declclass-def)

overloaded selector is-static to select the static modifier out of various HOL types
class has-static =

fixes is-static :: ′a ⇒ bool

instantiation decl-ext :: (has-static) has-static
begin

instance ..

end

instantiation member-ext :: (type) has-static
begin

instance ..

end

axiomatization where
static-field-type-is-static-def : is-static (m::(′a member-scheme)) ≡ static m

lemma member-is-static-simp: is-static (m:: ′a member-scheme) = static m
by (simp add: static-field-type-is-static-def)

instantiation prod :: (type, has-static) has-static
begin

definition
pair-is-static-def : is-static p = is-static (snd p)

instance ..

end

lemma pair-is-static-simp [simp]: is-static (x,s) = is-static s
by (simp add: pair-is-static-def)

lemma pair-is-static-simp1 : is-static p = is-static (snd p)
by (simp add: pair-is-static-def)

instantiation memberdecl :: has-static
begin

definition
memberdecl-is-static-def :
is-static m = (case m of

Theory DeclConcepts 71

fdecl f ⇒ is-static f
| mdecl m ⇒ is-static m)

instance ..

end

lemma memberdecl-is-static-fdecl-simp[simp]:
is-static (fdecl f) = is-static f

by (simp add: memberdecl-is-static-def)

lemma memberdecl-is-static-mdecl-simp[simp]:
is-static (mdecl m) = is-static m

by (simp add: memberdecl-is-static-def)

lemma mhead-static-simp [simp]: is-static (mhead m) = is-static m
by (cases m) (simp add: mhead-def member-is-static-simp)

— some mnemotic selectors for various pairs

definition
decliface :: qtname × ′a decl-scheme ⇒ qtname where
decliface = fst — get the interface component

definition
mbr :: qtname × memberdecl ⇒ memberdecl where
mbr = snd — get the memberdecl component

definition
mthd :: ′b × ′a ⇒ ′a where
mthd = snd — get the method component

— also used for mdecl, mhead

definition
fld :: ′b × ′a decl-scheme ⇒ ′a decl-scheme where
fld = snd — get the field component

— also used for ((vname × qtname)× field)

— some mnemotic selectors for (vname × qtname)

definition
fname:: vname × ′a ⇒ vname
where fname = fst

— also used for fdecl

definition
declclassf :: (vname × qtname) ⇒ qtname
where declclassf = snd

lemma decliface-simp[simp]: decliface (I ,m) = I
by (simp add: decliface-def)

lemma mbr-simp[simp]: mbr (C ,m) = m
by (simp add: mbr-def)

lemma access-mbr-simp [simp]: (accmodi (mbr m)) = accmodi m
by (cases m) (simp add: mbr-def)

72

lemma mthd-simp[simp]: mthd (C ,m) = m
by (simp add: mthd-def)

lemma fld-simp[simp]: fld (C ,f) = f
by (simp add: fld-def)

lemma accmodi-simp[simp]: accmodi (C ,m) = access m
by (simp)

lemma access-mthd-simp [simp]: (access (mthd m)) = accmodi m
by (cases m) (simp add: mthd-def)

lemma access-fld-simp [simp]: (access (fld f)) = accmodi f
by (cases f) (simp add: fld-def)

lemma static-mthd-simp[simp]: static (mthd m) = is-static m
by (cases m) (simp add: mthd-def member-is-static-simp)

lemma mthd-is-static-simp [simp]: is-static (mthd m) = is-static m
by (cases m) simp

lemma static-fld-simp[simp]: static (fld f) = is-static f
by (cases f) (simp add: fld-def member-is-static-simp)

lemma ext-field-simp [simp]: (declclass f ,fld f) = f
by (cases f) (simp add: fld-def)

lemma ext-method-simp [simp]: (declclass m,mthd m) = m
by (cases m) (simp add: mthd-def)

lemma ext-mbr-simp [simp]: (declclass m,mbr m) = m
by (cases m) (simp add: mbr-def)

lemma fname-simp[simp]:fname (n,c) = n
by (simp add: fname-def)

lemma declclassf-simp[simp]:declclassf (n,c) = c
by (simp add: declclassf-def)

— some mnemotic selectors for (vname × qtname)

definition
fldname :: vname × qtname ⇒ vname
where fldname = fst

definition
fldclass :: vname × qtname ⇒ qtname
where fldclass = snd

lemma fldname-simp[simp]: fldname (n,c) = n
by (simp add: fldname-def)

lemma fldclass-simp[simp]: fldclass (n,c) = c
by (simp add: fldclass-def)

lemma ext-fieldname-simp[simp]: (fldname f ,fldclass f) = f
by (simp add: fldname-def fldclass-def)

Convert a qualified method declaration (qualified with its declaring class) to a qualified member

Theory DeclConcepts 73

declaration: methdMembr

definition
methdMembr :: qtname × mdecl ⇒ qtname × memberdecl
where methdMembr m = (fst m, mdecl (snd m))

lemma methdMembr-simp[simp]: methdMembr (c,m) = (c,mdecl m)
by (simp add: methdMembr-def)

lemma accmodi-methdMembr-simp[simp]: accmodi (methdMembr m) = accmodi m
by (cases m) (simp add: methdMembr-def)

lemma is-static-methdMembr-simp[simp]: is-static (methdMembr m) = is-static m
by (cases m) (simp add: methdMembr-def)

lemma declclass-methdMembr-simp[simp]: declclass (methdMembr m) = declclass m
by (cases m) (simp add: methdMembr-def)

Convert a qualified method (qualified with its declaring class) to a qualified member declaration:
method

definition
method :: sig ⇒ (qtname × methd) ⇒ (qtname × memberdecl)
where method sig m = (declclass m, mdecl (sig, mthd m))

lemma method-simp[simp]: method sig (C ,m) = (C ,mdecl (sig,m))
by (simp add: method-def)

lemma accmodi-method-simp[simp]: accmodi (method sig m) = accmodi m
by (simp add: method-def)

lemma declclass-method-simp[simp]: declclass (method sig m) = declclass m
by (simp add: method-def)

lemma is-static-method-simp[simp]: is-static (method sig m) = is-static m
by (cases m) (simp add: method-def)

lemma mbr-method-simp[simp]: mbr (method sig m) = mdecl (sig,mthd m)
by (simp add: mbr-def method-def)

lemma memberid-method-simp[simp]: memberid (method sig m) = mid sig
by (simp add: method-def)

definition
fieldm :: vname ⇒ (qtname × field) ⇒ (qtname × memberdecl)
where fieldm n f = (declclass f , fdecl (n, fld f))

lemma fieldm-simp[simp]: fieldm n (C ,f) = (C ,fdecl (n,f))
by (simp add: fieldm-def)

lemma accmodi-fieldm-simp[simp]: accmodi (fieldm n f) = accmodi f
by (simp add: fieldm-def)

lemma declclass-fieldm-simp[simp]: declclass (fieldm n f) = declclass f
by (simp add: fieldm-def)

lemma is-static-fieldm-simp[simp]: is-static (fieldm n f) = is-static f
by (cases f) (simp add: fieldm-def)

lemma mbr-fieldm-simp[simp]: mbr (fieldm n f) = fdecl (n,fld f)

74

by (simp add: mbr-def fieldm-def)

lemma memberid-fieldm-simp[simp]: memberid (fieldm n f) = fid n
by (simp add: fieldm-def)

Select the signature out of a qualified method declaration: msig
definition

msig :: (qtname × mdecl) ⇒ sig
where msig m = fst (snd m)

lemma msig-simp[simp]: msig (c,(s,m)) = s
by (simp add: msig-def)

Convert a qualified method (qualified with its declaring class) to a qualified method declaration:
qmdecl
definition

qmdecl :: sig ⇒ (qtname × methd) ⇒ (qtname × mdecl)
where qmdecl sig m = (declclass m, (sig,mthd m))

lemma qmdecl-simp[simp]: qmdecl sig (C ,m) = (C ,(sig,m))
by (simp add: qmdecl-def)

lemma declclass-qmdecl-simp[simp]: declclass (qmdecl sig m) = declclass m
by (simp add: qmdecl-def)

lemma accmodi-qmdecl-simp[simp]: accmodi (qmdecl sig m) = accmodi m
by (simp add: qmdecl-def)

lemma is-static-qmdecl-simp[simp]: is-static (qmdecl sig m) = is-static m
by (cases m) (simp add: qmdecl-def)

lemma msig-qmdecl-simp[simp]: msig (qmdecl sig m) = sig
by (simp add: qmdecl-def)

lemma mdecl-qmdecl-simp[simp]:
mdecl (mthd (qmdecl sig new)) = mdecl (sig, mthd new)

by (simp add: qmdecl-def)

lemma methdMembr-qmdecl-simp [simp]:
methdMembr (qmdecl sig old) = method sig old

by (simp add: methdMembr-def qmdecl-def method-def)

overloaded selector resTy to select the result type out of various HOL types
class has-resTy =

fixes resTy:: ′a ⇒ ty

instantiation decl-ext :: (has-resTy) has-resTy
begin

instance ..

end

instantiation member-ext :: (has-resTy) has-resTy
begin

instance ..

Theory DeclConcepts 75

end

instantiation mhead-ext :: (type) has-resTy
begin

instance ..

end

axiomatization where
mhead-ext-type-resTy-def : resTy (m::(′b mhead-scheme)) ≡ resT m

lemma mhead-resTy-simp: resTy (m:: ′a mhead-scheme) = resT m
by (simp add: mhead-ext-type-resTy-def)

lemma resTy-mhead [simp]:resTy (mhead m) = resTy m
by (simp add: mhead-def mhead-resTy-simp)

instantiation prod :: (type, has-resTy) has-resTy
begin

definition
pair-resTy-def : resTy p = resTy (snd p)

instance ..

end

lemma pair-resTy-simp[simp]: resTy (x,m) = resTy m
by (simp add: pair-resTy-def)

lemma qmdecl-resTy-simp [simp]: resTy (qmdecl sig m) = resTy m
by (cases m) (simp)

lemma resTy-mthd [simp]:resTy (mthd m) = resTy m
by (cases m) (simp add: mthd-def)

inheritable-in

G`m inheritable-in P: m can be inherited by classes in package P if:

• the declaration class of m is accessible in P and

• the member m is declared with protected or public access or if it is declared with default
(package) access, the package of the declaration class of m is also P. If the member m is
declared with private access it is not accessible for inheritance at all.

definition
inheritable-in :: prog ⇒ (qtname × memberdecl) ⇒ pname ⇒ bool (‹- ` - inheritable ′-in -› [61 ,61 ,61] 60)

where
G`membr inheritable-in pack =
(case (accmodi membr) of

Private ⇒ False
| Package ⇒ (pid (declclass membr)) = pack
| Protected ⇒ True
| Public ⇒ True)

abbreviation
Method-inheritable-in-syntax::

76

prog ⇒ (qtname × mdecl) ⇒ pname ⇒ bool
(‹- `Method - inheritable ′-in - › [61 ,61 ,61] 60)

where G`Method m inheritable-in p == G`methdMembr m inheritable-in p

abbreviation
Methd-inheritable-in::
prog ⇒ sig ⇒ (qtname × methd) ⇒ pname ⇒ bool

(‹- `Methd - - inheritable ′-in - › [61 ,61 ,61 ,61] 60)
where G`Methd s m inheritable-in p == G`(method s m) inheritable-in p

declared-in/undeclared-in
definition

cdeclaredmethd :: prog ⇒ qtname ⇒ (sig,methd) table where
cdeclaredmethd G C =
(case class G C of

None ⇒ λ sig. None
| Some c ⇒ table-of (methods c))

definition
cdeclaredfield :: prog ⇒ qtname ⇒ (vname,field) table where
cdeclaredfield G C =
(case class G C of

None ⇒ λ sig. None
| Some c ⇒ table-of (cfields c))

definition
declared-in :: prog ⇒ memberdecl ⇒ qtname ⇒ bool (‹-` - declared ′-in -› [61 ,61 ,61] 60)

where
G`m declared-in C = (case m of

fdecl (fn,f) ⇒ cdeclaredfield G C fn = Some f
| mdecl (sig,m) ⇒ cdeclaredmethd G C sig = Some m)

abbreviation
method-declared-in:: prog ⇒ (qtname × mdecl) ⇒ qtname ⇒ bool

(‹-`Method - declared ′-in -› [61 ,61 ,61] 60)
where G`Method m declared-in C == G`mdecl (mthd m) declared-in C

abbreviation
methd-declared-in:: prog ⇒ sig ⇒(qtname × methd) ⇒ qtname ⇒ bool

(‹-`Methd - - declared ′-in -› [61 ,61 ,61 ,61] 60)
where G`Methd s m declared-in C == G`mdecl (s,mthd m) declared-in C

lemma declared-in-classD:
G`m declared-in C =⇒ is-class G C

by (cases m)
(auto simp add: declared-in-def cdeclaredmethd-def cdeclaredfield-def)

definition
undeclared-in :: prog ⇒ memberid ⇒ qtname ⇒ bool (‹-` - undeclared ′-in -› [61 ,61 ,61] 60)

where
G`m undeclared-in C = (case m of

fid fn ⇒ cdeclaredfield G C fn = None
| mid sig ⇒ cdeclaredmethd G C sig = None)

members
inductive

members :: prog ⇒ (qtname × memberdecl) ⇒ qtname ⇒ bool

Theory DeclConcepts 77

(‹- ` - member ′-of -› [61 ,61 ,61] 60)
for G :: prog

where

Immediate: [[G`mbr m declared-in C ;declclass m = C]] =⇒ G`m member-of C
| Inherited: [[G`m inheritable-in (pid C); G`memberid m undeclared-in C ;

G`C ≺C1 S ; G`(Class S) accessible-in (pid C);G`m member-of S
]] =⇒ G`m member-of C

Note that in the case of an inherited member only the members of the direct superclass are concerned.
If a member of a superclass of the direct superclass isn’t inherited in the direct superclass (not
member of the direct superclass) than it can’t be a member of the class. E.g. If a member of a class
A is defined with package access it isn’t member of a subclass S if S isn’t in the same package as A.
Any further subclasses of S will not inherit the member, regardless if they are in the same package
as A or not.
abbreviation
method-member-of :: prog ⇒ (qtname × mdecl) ⇒ qtname ⇒ bool

(‹- `Method - member ′-of -› [61 ,61 ,61] 60)
where G`Method m member-of C == G`(methdMembr m) member-of C

abbreviation
methd-member-of :: prog ⇒ sig ⇒ (qtname × methd) ⇒ qtname ⇒ bool

(‹- `Methd - - member ′-of -› [61 ,61 ,61 ,61] 60)
where G`Methd s m member-of C == G`(method s m) member-of C

abbreviation
fieldm-member-of :: prog ⇒ vname ⇒ (qtname × field) ⇒ qtname ⇒ bool

(‹- `Field - - member ′-of -› [61 ,61 ,61] 60)
where G`Field n f member-of C == G`fieldm n f member-of C

definition
inherits :: prog ⇒ qtname ⇒ (qtname × memberdecl) ⇒ bool (‹- ` - inherits -› [61 ,61 ,61] 60)

where
G`C inherits m =
(G`m inheritable-in (pid C) ∧ G`memberid m undeclared-in C ∧
(∃S . G`C ≺C1 S ∧ G`(Class S) accessible-in (pid C) ∧ G`m member-of S))

lemma inherits-member : G`C inherits m =⇒ G`m member-of C
by (auto simp add: inherits-def intro: members.Inherited)

definition
member-in :: prog ⇒ (qtname × memberdecl) ⇒ qtname ⇒ bool (‹- ` - member ′-in -› [61 ,61 ,61] 60)
where G`m member-in C = (∃ provC . G` C �C provC ∧ G ` m member-of provC)

A member is in a class if it is member of the class or a superclass. If a member is in a class we
can select this member. This additional notion is necessary since not all members are inherited to
subclasses. So such members are not member-of the subclass but member-in the subclass.
abbreviation
method-member-in:: prog ⇒ (qtname × mdecl) ⇒ qtname ⇒ bool

(‹- `Method - member ′-in -› [61 ,61 ,61] 60)
where G`Method m member-in C == G`(methdMembr m) member-in C

abbreviation
methd-member-in:: prog ⇒ sig ⇒ (qtname × methd) ⇒ qtname ⇒ bool

(‹- `Methd - - member ′-in -› [61 ,61 ,61 ,61] 60)
where G`Methd s m member-in C == G`(method s m) member-in C

78

lemma member-inD: G`m member-in C
=⇒ ∃ provC . G` C �C provC ∧ G ` m member-of provC

by (auto simp add: member-in-def)

lemma member-inI : [[G ` m member-of provC ;G` C �C provC]] =⇒ G`m member-in C
by (auto simp add: member-in-def)

lemma member-of-to-member-in: G ` m member-of C =⇒ G `m member-in C
by (auto intro: member-inI)

overriding

Unfortunately the static notion of overriding (used during the typecheck of the compiler) and the
dynamic notion of overriding (used during execution in the JVM) are not exactly the same.

Static overriding (used during the typecheck of the compiler)
inductive

stat-overridesR :: prog ⇒ (qtname × mdecl) ⇒ (qtname × mdecl) ⇒ bool
(‹- ` - overridesS -› [61 ,61 ,61] 60)

for G :: prog
where

Direct: [[¬ is-static new; msig new = msig old;
G`Method new declared-in (declclass new);
G`Method old declared-in (declclass old);
G`Method old inheritable-in pid (declclass new);
G`(declclass new) ≺C1 superNew;
G `Method old member-of superNew
]] =⇒ G`new overridesS old

| Indirect: [[G`new overridesS intr ; G`intr overridesS old]]
=⇒ G`new overridesS old

Dynamic overriding (used during the typecheck of the compiler)
inductive

overridesR :: prog ⇒ (qtname × mdecl) ⇒ (qtname × mdecl) ⇒ bool
(‹- ` - overrides -› [61 ,61 ,61] 60)

for G :: prog
where

Direct: [[¬ is-static new; ¬ is-static old; accmodi new 6= Private;
msig new = msig old;
G`(declclass new) ≺C (declclass old);
G`Method new declared-in (declclass new);
G`Method old declared-in (declclass old);
G`Method old inheritable-in pid (declclass new);
G`resTy new � resTy old
]] =⇒ G`new overrides old

| Indirect: [[G`new overrides intr ; G`intr overrides old]]
=⇒ G`new overrides old

abbreviation (input)
sig-stat-overrides::
prog ⇒ sig ⇒ (qtname × methd) ⇒ (qtname × methd) ⇒ bool

(‹-,-` - overridesS -› [61 ,61 ,61 ,61] 60)
where G,s`new overridesS old == G`(qmdecl s new) overridesS (qmdecl s old)

Theory DeclConcepts 79

abbreviation (input)
sig-overrides:: prog ⇒ sig ⇒ (qtname × methd) ⇒ (qtname × methd) ⇒ bool

(‹-,-` - overrides -› [61 ,61 ,61 ,61] 60)
where G,s`new overrides old == G`(qmdecl s new) overrides (qmdecl s old)

Hiding

definition
hides :: prog ⇒ (qtname × mdecl) ⇒ (qtname × mdecl) ⇒ bool (‹-` - hides -› [61 ,61 ,61] 60)

where
G`new hides old =
(is-static new ∧ msig new = msig old ∧

G`(declclass new) ≺C (declclass old) ∧
G`Method new declared-in (declclass new) ∧
G`Method old declared-in (declclass old) ∧
G`Method old inheritable-in pid (declclass new))

abbreviation
sig-hides:: prog ⇒ sig ⇒ (qtname × methd) ⇒ (qtname × methd) ⇒ bool

(‹-,-` - hides -› [61 ,61 ,61 ,61] 60)
where G,s`new hides old == G`(qmdecl s new) hides (qmdecl s old)

lemma hidesI :
[[is-static new; msig new = msig old;

G`(declclass new) ≺C (declclass old);
G`Method new declared-in (declclass new);
G`Method old declared-in (declclass old);
G`Method old inheritable-in pid (declclass new)
]] =⇒ G`new hides old

by (auto simp add: hides-def)

lemma hidesD:
[[G`new hides old]] =⇒

declclass new 6= Object ∧ is-static new ∧ msig new = msig old ∧
G`(declclass new) ≺C (declclass old) ∧
G`Method new declared-in (declclass new) ∧
G`Method old declared-in (declclass old)

by (auto simp add: hides-def)

lemma overrides-commonD:
[[G`new overrides old]] =⇒

declclass new 6= Object ∧ ¬ is-static new ∧ ¬ is-static old ∧
accmodi new 6= Private ∧
msig new = msig old ∧
G`(declclass new) ≺C (declclass old) ∧
G`Method new declared-in (declclass new) ∧
G`Method old declared-in (declclass old)

by (induct set: overridesR) (auto intro: trancl-trans)

lemma ws-overrides-commonD:
[[G`new overrides old;ws-prog G]] =⇒

declclass new 6= Object ∧ ¬ is-static new ∧ ¬ is-static old ∧
accmodi new 6= Private ∧ G`resTy new � resTy old ∧
msig new = msig old ∧
G`(declclass new) ≺C (declclass old) ∧
G`Method new declared-in (declclass new) ∧
G`Method old declared-in (declclass old)

by (induct set: overridesR) (auto intro: trancl-trans ws-widen-trans)

80

lemma overrides-eq-sigD:
[[G`new overrides old]] =⇒ msig old=msig new

by (auto dest: overrides-commonD)

lemma hides-eq-sigD:
[[G`new hides old]] =⇒ msig old=msig new

by (auto simp add: hides-def)

permits access
definition

permits-acc :: prog ⇒ (qtname × memberdecl) ⇒ qtname ⇒ qtname ⇒ bool (‹- ` - in - permits ′-acc ′-from
-› [61 ,61 ,61 ,61] 60)
where

G`membr in cls permits-acc-from accclass =
(case (accmodi membr) of

Private ⇒ (declclass membr = accclass)
| Package ⇒ (pid (declclass membr) = pid accclass)
| Protected ⇒ (pid (declclass membr) = pid accclass)

∨
(G`accclass ≺C declclass membr
∧ (G`cls �C accclass ∨ is-static membr))

| Public ⇒ True)

The subcondition of the Protected case: G`accclass≺C declclass membr could also be relaxed to:
G`accclass�C declclass membr since in case both classes are the same the other condition pid
(declclass membr) = pid accclass holds anyway.

Like in case of overriding, the static and dynamic accessibility of members is not uniform.

• Statically the class/interface of the member must be accessible for the member to be accessible.
During runtime this is not necessary. For Example, if a class is accessible and we are allowed
to access a member of this class (statically) we expect that we can access this member in
an arbitrary subclass (during runtime). It’s not intended to restrict the access to accessible
subclasses during runtime.

• Statically the member we want to access must be "member of" the class. Dynamically it must
only be "member in" the class.

inductive
accessible-fromR :: prog ⇒ qtname ⇒ (qtname × memberdecl) ⇒ qtname ⇒ bool
and accessible-from :: prog ⇒ (qtname × memberdecl) ⇒ qtname ⇒ qtname ⇒ bool
(‹- ` - of - accessible ′-from -› [61 ,61 ,61 ,61] 60)

and method-accessible-from :: prog ⇒ (qtname × mdecl) ⇒ qtname ⇒ qtname ⇒ bool
(‹- `Method - of - accessible ′-from -› [61 ,61 ,61 ,61] 60)

for G :: prog and accclass :: qtname
where

G`membr of cls accessible-from accclass ≡ accessible-fromR G accclass membr cls

| G`Method m of cls accessible-from accclass ≡ accessible-fromR G accclass (methdMembr m) cls

| Immediate: !!membr class.
[[G`membr member-of class;
G`(Class class) accessible-in (pid accclass);
G`membr in class permits-acc-from accclass
]] =⇒ G`membr of class accessible-from accclass

| Overriding: !!membr class C new old supr .
[[G`membr member-of class;

Theory DeclConcepts 81

G`(Class class) accessible-in (pid accclass);
membr=(C ,mdecl new);
G`(C ,new) overridesS old;
G`class ≺C supr ;
G`Method old of supr accessible-from accclass
]]=⇒ G`membr of class accessible-from accclass

abbreviation
methd-accessible-from::
prog ⇒ sig ⇒ (qtname × methd) ⇒ qtname ⇒ qtname ⇒ bool

(‹- `Methd - - of - accessible ′-from -› [61 ,61 ,61 ,61 ,61] 60)
where
G`Methd s m of cls accessible-from accclass ==

G`(method s m) of cls accessible-from accclass

abbreviation
field-accessible-from::
prog ⇒ vname ⇒ (qtname × field) ⇒ qtname ⇒ qtname ⇒ bool

(‹- `Field - - of - accessible ′-from -› [61 ,61 ,61 ,61 ,61] 60)
where
G`Field fn f of C accessible-from accclass ==
G`(fieldm fn f) of C accessible-from accclass

inductive
dyn-accessible-fromR :: prog ⇒ qtname ⇒ (qtname × memberdecl) ⇒ qtname ⇒ bool
and dyn-accessible-from ′ :: prog ⇒ (qtname × memberdecl) ⇒ qtname ⇒ qtname ⇒ bool
(‹- ` - in - dyn ′-accessible ′-from -› [61 ,61 ,61 ,61] 60)

and method-dyn-accessible-from :: prog ⇒ (qtname × mdecl) ⇒ qtname ⇒ qtname ⇒ bool
(‹- `Method - in - dyn ′-accessible ′-from -› [61 ,61 ,61 ,61] 60)

for G :: prog and accclass :: qtname
where

G`membr in C dyn-accessible-from accC ≡ dyn-accessible-fromR G accC membr C

| G`Method m in C dyn-accessible-from accC ≡ dyn-accessible-fromR G accC (methdMembr m) C

| Immediate: !!class. [[G`membr member-in class;
G`membr in class permits-acc-from accclass
]] =⇒ G`membr in class dyn-accessible-from accclass

| Overriding: !!class. [[G`membr member-in class;
membr=(C ,mdecl new);
G`(C ,new) overrides old;
G`class ≺C supr ;
G`Method old in supr dyn-accessible-from accclass
]]=⇒ G`membr in class dyn-accessible-from accclass

abbreviation
methd-dyn-accessible-from::
prog ⇒ sig ⇒ (qtname × methd) ⇒ qtname ⇒ qtname ⇒ bool

(‹- `Methd - - in - dyn ′-accessible ′-from -› [61 ,61 ,61 ,61 ,61] 60)
where
G`Methd s m in C dyn-accessible-from accC ==
G`(method s m) in C dyn-accessible-from accC

abbreviation
field-dyn-accessible-from::
prog ⇒ vname ⇒ (qtname × field) ⇒ qtname ⇒ qtname ⇒ bool

(‹- `Field - - in - dyn ′-accessible ′-from -› [61 ,61 ,61 ,61 ,61] 60)
where

82

G`Field fn f in dynC dyn-accessible-from accC ==
G`(fieldm fn f) in dynC dyn-accessible-from accC

lemma accessible-from-commonD: G`m of C accessible-from S
=⇒ G`m member-of C ∧ G`(Class C) accessible-in (pid S)

by (auto elim: accessible-fromR.induct)

lemma unique-declaration:
[[G`m declared-in C ; G`n declared-in C ; memberid m = memberid n]]
=⇒ m = n

apply (cases m)
apply (cases n,

auto simp add: declared-in-def cdeclaredmethd-def cdeclaredfield-def)+
done

lemma declared-not-undeclared:
G`m declared-in C =⇒ ¬ G` memberid m undeclared-in C

by (cases m) (auto simp add: declared-in-def undeclared-in-def)

lemma undeclared-not-declared:
G` memberid m undeclared-in C =⇒ ¬ G` m declared-in C

by (cases m) (auto simp add: declared-in-def undeclared-in-def)

lemma not-undeclared-declared:
¬ G` membr-id undeclared-in C =⇒ (∃ m. G`m declared-in C ∧

membr-id = memberid m)
proof −

assume not-undecl:¬ G` membr-id undeclared-in C
show ?thesis (is ?P membr-id)
proof (cases membr-id)

case (fid vname)
with not-undecl
obtain fld where

G`fdecl (vname,fld) declared-in C
by (auto simp add: undeclared-in-def declared-in-def

cdeclaredfield-def)
with fid show ?thesis

by auto
next

case (mid sig)
with not-undecl
obtain mthd where

G`mdecl (sig,mthd) declared-in C
by (auto simp add: undeclared-in-def declared-in-def

cdeclaredmethd-def)
with mid show ?thesis

by auto
qed

qed

lemma unique-declared-in:
[[G`m declared-in C ; G`n declared-in C ; memberid m = memberid n]]
=⇒ m = n

by (auto simp add: declared-in-def cdeclaredmethd-def cdeclaredfield-def
split: memberdecl.splits)

lemma unique-member-of :
assumes n: G`n member-of C and

Theory DeclConcepts 83

m: G`m member-of C and
eqid: memberid n = memberid m

shows n=m
proof −

from n m eqid
show n=m
proof (induct)

case (Immediate n C)
assume member-n: G` mbr n declared-in C declclass n = C
assume eqid: memberid n = memberid m
assume G ` m member-of C
then show n=m
proof (cases)

case Immediate
with eqid member-n
show ?thesis

by (cases n, cases m)
(auto simp add: declared-in-def

cdeclaredmethd-def cdeclaredfield-def
split: memberdecl.splits)

next
case Inherited
with eqid member-n
show ?thesis

by (cases n) (auto dest: declared-not-undeclared)
qed

next
case (Inherited n C S)
assume undecl: G` memberid n undeclared-in C
assume super : G`C≺C1S
assume hyp: [[G ` m member-of S ; memberid n = memberid m]] =⇒ n = m
assume eqid: memberid n = memberid m
assume G ` m member-of C
then show n=m
proof (cases)

case Immediate
then have G` mbr m declared-in C by simp
with eqid undecl
show ?thesis

by (cases m) (auto dest: declared-not-undeclared)
next

case Inherited
with super have G ` m member-of S

by (auto dest!: subcls1D)
with eqid hyp
show ?thesis

by blast
qed

qed
qed

lemma member-of-is-classD: G`m member-of C =⇒ is-class G C
proof (induct set: members)

case (Immediate m C)
assume G` mbr m declared-in C
then show is-class G C

by (cases mbr m)
(auto simp add: declared-in-def cdeclaredmethd-def cdeclaredfield-def)

next

84

case (Inherited m C S)
show is-class G C if G`C≺C1S and is-class G S

by (rule subcls-is-class2) (use that in auto)
qed

lemma member-of-declC :
G`m member-of C
=⇒ G`mbr m declared-in (declclass m)

by (induct set: members) auto

lemma member-of-member-of-declC :
G`m member-of C
=⇒ G`m member-of (declclass m)

by (auto dest: member-of-declC intro: members.Immediate)

lemma member-of-class-relation:
G`m member-of C =⇒ G`C �C declclass m

proof (induct set: members)
case (Immediate m C)
then show G`C �C declclass m by simp

next
case (Inherited m C S)
then show G`C �C declclass m

by (auto dest: r-into-rtrancl intro: rtrancl-trans)
qed

lemma member-in-class-relation:
G`m member-in C =⇒ G`C �C declclass m

by (auto dest: member-inD member-of-class-relation
intro: rtrancl-trans)

lemma stat-override-declclasses-relation:
[[G`(declclass new) ≺C1 superNew; G `Method old member-of superNew]]
=⇒ G`(declclass new) ≺C (declclass old)
apply (rule trancl-rtrancl-trancl)
apply (erule r-into-trancl)
apply (cases old)
apply (auto dest: member-of-class-relation)
done

lemma stat-overrides-commonD:
[[G`new overridesS old]] =⇒

declclass new 6= Object ∧ ¬ is-static new ∧ msig new = msig old ∧
G`(declclass new) ≺C (declclass old) ∧
G`Method new declared-in (declclass new) ∧
G`Method old declared-in (declclass old)

apply (induct set: stat-overridesR)
apply (frule (1) stat-override-declclasses-relation)
apply (auto intro: trancl-trans)
done

lemma member-of-Package:
assumes G`m member-of C

and accmodi m = Package
shows pid (declclass m) = pid C
using assms

proof induct
case Immediate
then show ?case by simp

Theory DeclConcepts 85

next
case Inherited
then show ?case by (auto simp add: inheritable-in-def)

qed

lemma member-in-declC : G`m member-in C=⇒ G`m member-in (declclass m)
proof −

assume member-in-C : G`m member-in C
from member-in-C
obtain provC where

subclseq-C-provC : G` C �C provC and
member-of-provC : G ` m member-of provC

by (auto simp add: member-in-def)
from member-of-provC
have G ` m member-of declclass m

by (rule member-of-member-of-declC)
moreover
from member-in-C
have G`C �C declclass m

by (rule member-in-class-relation)
ultimately
show ?thesis

by (auto simp add: member-in-def)
qed

lemma dyn-accessible-from-commonD: G`m in C dyn-accessible-from S
=⇒ G`m member-in C

by (auto elim: dyn-accessible-fromR.induct)

lemma no-Private-stat-override:
[[G`new overridesS old]] =⇒ accmodi old 6= Private

by (induct set: stat-overridesR) (auto simp add: inheritable-in-def)

lemma no-Private-override: [[G`new overrides old]] =⇒ accmodi old 6= Private
by (induct set: overridesR) (auto simp add: inheritable-in-def)

lemma permits-acc-inheritance:
[[G`m in statC permits-acc-from accC ; G`dynC �C statC
]] =⇒ G`m in dynC permits-acc-from accC

by (cases accmodi m)
(auto simp add: permits-acc-def

intro: subclseq-trans)

lemma permits-acc-static-declC :
[[G`m in C permits-acc-from accC ; G`m member-in C ; is-static m
]] =⇒ G`m in (declclass m) permits-acc-from accC

by (cases accmodi m) (auto simp add: permits-acc-def)

lemma dyn-accessible-from-static-declC :
assumes acc-C : G`m in C dyn-accessible-from accC and

static: is-static m
shows G`m in (declclass m) dyn-accessible-from accC

proof −
from acc-C static
show G`m in (declclass m) dyn-accessible-from accC
proof (induct)

case (Immediate m C)
then show ?case

by (auto intro!: dyn-accessible-fromR.Immediate

86

dest: member-in-declC permits-acc-static-declC)
next

case (Overriding m C declCNew new old sup)
then have ¬ is-static m

by (auto dest: overrides-commonD)
moreover
assume is-static m
ultimately show ?case

by contradiction
qed

qed

lemma field-accessible-fromD:
[[G`membr of C accessible-from accC ;is-field membr]]
=⇒ G`membr member-of C ∧

G`(Class C) accessible-in (pid accC) ∧
G`membr in C permits-acc-from accC

by (cases set: accessible-fromR)
(auto simp add: is-field-def split: memberdecl.splits)

lemma field-accessible-from-permits-acc-inheritance:
[[G`membr of statC accessible-from accC ; is-field membr ; G ` dynC �C statC]]
=⇒ G`membr in dynC permits-acc-from accC
by (auto dest: field-accessible-fromD intro: permits-acc-inheritance)

lemma accessible-fieldD:
[[G`membr of C accessible-from accC ; is-field membr]]
=⇒ G`membr member-of C ∧

G`(Class C) accessible-in (pid accC) ∧
G`membr in C permits-acc-from accC

by (induct rule: accessible-fromR.induct) (auto dest: is-fieldD)

lemma member-of-Private:
[[G`m member-of C ; accmodi m = Private]] =⇒ declclass m = C
by (induct set: members) (auto simp add: inheritable-in-def)

lemma member-of-subclseq-declC :
G`m member-of C =⇒ G`C �C declclass m

by (induct set: members) (auto dest: r-into-rtrancl intro: rtrancl-trans)

lemma member-of-inheritance:
assumes m: G`m member-of D and

subclseq-D-C : G`D �C C and
subclseq-C-m: G`C �C declclass m and

ws: ws-prog G
shows G`m member-of C

proof −
from m subclseq-D-C subclseq-C-m
show ?thesis
proof (induct)

case (Immediate m D)
assume declclass m = D and

G`D�C C and G`C�C declclass m
with ws have D=C

Theory DeclConcepts 87

by (auto intro: subclseq-acyclic)
with Immediate
show G`m member-of C

by (auto intro: members.Immediate)
next

case (Inherited m D S)
assume member-of-D-props:

G ` m inheritable-in pid D
G` memberid m undeclared-in D
G ` Class S accessible-in pid D
G ` m member-of S

assume super : G`D≺C1S
assume hyp: [[G`S�C C ; G`C�C declclass m]] =⇒ G ` m member-of C
assume subclseq-C-m: G`C�C declclass m
assume G`D�C C
then show G`m member-of C
proof (cases rule: subclseq-cases)

case Eq
assume D=C
with super member-of-D-props
show ?thesis

by (auto intro: members.Inherited)
next

case Subcls
assume G`D≺C C
with super
have G`S�C C

by (auto dest: subcls1D subcls-superD)
with subclseq-C-m hyp show ?thesis

by blast
qed

qed
qed

lemma member-of-subcls:
assumes old: G`old member-of C and

new: G`new member-of D and
eqid: memberid new = memberid old and

subclseq-D-C : G`D �C C and
subcls-new-old: G`declclass new ≺C declclass old and

ws: ws-prog G
shows G`D ≺C C

proof −
from old
have subclseq-C-old: G`C �C declclass old

by (auto dest: member-of-subclseq-declC)
from new
have subclseq-D-new: G`D �C declclass new

by (auto dest: member-of-subclseq-declC)
from subcls-new-old ws
have neq-new-old: new 6=old

by (cases new,cases old) (auto dest: subcls-irrefl)
from subclseq-D-new subclseq-D-C
have G`(declclass new) �C C ∨ G`C �C (declclass new)

by (rule subcls-compareable)
then have G`(declclass new) �C C
proof

assume G`declclass new�C C then show ?thesis .
next

88

assume G`C �C (declclass new)
with new subclseq-D-C ws
have G`new member-of C

by (blast intro: member-of-inheritance)
with eqid old
have new=old

by (blast intro: unique-member-of)
with neq-new-old
show ?thesis

by contradiction
qed
then show ?thesis
proof (cases rule: subclseq-cases)

case Eq
assume declclass new = C
with new have G`new member-of C

by (auto dest: member-of-member-of-declC)
with eqid old
have new=old

by (blast intro: unique-member-of)
with neq-new-old
show ?thesis

by contradiction
next

case Subcls
assume G`declclass new≺C C
with subclseq-D-new
show G`D≺C C

by (rule rtrancl-trancl-trancl)
qed

qed

corollary member-of-overrides-subcls:
[[G`Methd sig old member-of C ; G`Methd sig new member-of D;G`D �C C ;

G,sig`new overrides old; ws-prog G]]
=⇒ G`D ≺C C

by (drule overrides-commonD) (auto intro: member-of-subcls)

corollary member-of-stat-overrides-subcls:
[[G`Methd sig old member-of C ; G`Methd sig new member-of D;G`D �C C ;

G,sig`new overridesS old; ws-prog G]]
=⇒ G`D ≺C C

by (drule stat-overrides-commonD) (auto intro: member-of-subcls)

lemma inherited-field-access:
assumes stat-acc: G`membr of statC accessible-from accC and

is-field: is-field membr and
subclseq: G ` dynC �C statC

shows G`membr in dynC dyn-accessible-from accC
proof −

from stat-acc is-field subclseq
show ?thesis

by (auto dest: accessible-fieldD
intro: dyn-accessible-fromR.Immediate

member-inI
permits-acc-inheritance)

qed

Theory DeclConcepts 89

lemma accessible-inheritance:
assumes stat-acc: G`m of statC accessible-from accC and

subclseq: G`dynC �C statC and
member-dynC : G`m member-of dynC and

dynC-acc: G`(Class dynC) accessible-in (pid accC)
shows G`m of dynC accessible-from accC

proof −
from stat-acc
have member-statC : G`m member-of statC

by (auto dest: accessible-from-commonD)
from stat-acc
show ?thesis
proof (cases)

case Immediate
with member-dynC member-statC subclseq dynC-acc
show ?thesis

by (auto intro: accessible-fromR.Immediate permits-acc-inheritance)
next

case Overriding
with member-dynC subclseq dynC-acc
show ?thesis

by (auto intro: accessible-fromR.Overriding rtrancl-trancl-trancl)
qed

qed

fields and methods
type-synonym

fspec = vname × qtname

translations
(type) fspec <= (type) vname × qtname

definition
imethds :: prog ⇒ qtname ⇒ (sig,qtname × mhead) tables where
imethds G I =

iface-rec G I (λI i ts. (Un-tables ts) ⊕⊕
(set-option ◦ table-of (map (λ(s,m). (s,I ,m)) (imethods i))))

methods of an interface, with overriding and inheritance, cf. 9.2
definition

accimethds :: prog ⇒ pname ⇒ qtname ⇒ (sig,qtname × mhead) tables where
accimethds G pack I =
(if G`Iface I accessible-in pack
then imethds G I
else (λ k. {}))

only returns imethds if the interface is accessible
definition

methd :: prog ⇒ qtname ⇒ (sig,qtname × methd) table where
methd G C =

class-rec G C Map.empty
(λC c subcls-mthds.

filter-tab (λsig m. G`C inherits method sig m)
subcls-mthds

++
table-of (map (λ(s,m). (s,C ,m)) (methods c)))

90

methd G C : methods of a class C (statically visible from C), with inheritance and hiding cf. 8.4.6;
Overriding is captured by dynmethd. Every new method with the same signature coalesces the
method of a superclass.
definition

accmethd :: prog ⇒ qtname ⇒ qtname ⇒ (sig,qtname × methd) table where
accmethd G S C =

filter-tab (λsig m. G`method sig m of C accessible-from S) (methd G C)

accmethd G S C : only those methods of methd G C, accessible from S

Note the class component in the accessibility filter. The class where method m is declared (declC)
isn’t necessarily accessible from the current scope S. The method can be made accessible through
inheritance, too. So we must test accessibility of method m of class C (not declclass m)
definition

dynmethd :: prog ⇒ qtname ⇒ qtname ⇒ (sig,qtname × methd) table where
dynmethd G statC dynC =
(λsig.

(if G`dynC �C statC
then (case methd G statC sig of

None ⇒ None
| Some statM
⇒ (class-rec G dynC Map.empty

(λC c subcls-mthds.
subcls-mthds
++
(filter-tab
(λ - dynM . G,sig`dynM overrides statM ∨ dynM=statM)
(methd G C)))

) sig
)

else None))

dynmethd G statC dynC : dynamic method lookup of a reference with dynamic class dynC and static
class statC

Note some kind of duality between methd and dynmethd in the class-rec arguments. Whereas methd
filters the subclass methods (to get only the inherited ones), dynmethd filters the new methods (to
get only those methods which actually override the methods of the static class)
definition

dynimethd :: prog ⇒ qtname ⇒ qtname ⇒ (sig,qtname × methd) table where
dynimethd G I dynC =
(λsig. if imethds G I sig 6= {}

then methd G dynC sig
else dynmethd G Object dynC sig)

dynimethd G I dynC : dynamic method lookup of a reference with dynamic class dynC and static
interface type I

When calling an interface method, we must distinguish if the method signature was defined in the
interface or if it must be an Object method in the other case. If it was an interface method we search
the class hierarchy starting at the dynamic class of the object up to Object to find the first matching
method (methd). Since all interface methods have public access the method can’t be coalesced due
to some odd visibility effects like in case of dynmethd. The method will be inherited or overridden
in all classes from the first class implementing the interface down to the actual dynamic class.
definition

dynlookup :: prog ⇒ ref-ty ⇒ qtname ⇒ (sig,qtname × methd) table where
dynlookup G statT dynC =

Theory DeclConcepts 91

(case statT of
NullT ⇒ Map.empty
| IfaceT I ⇒ dynimethd G I dynC
| ClassT statC ⇒ dynmethd G statC dynC
| ArrayT ty ⇒ dynmethd G Object dynC)

dynlookup G statT dynC : dynamic lookup of a method within the static reference type statT and
the dynamic class dynC. In a wellformd context statT will not be NullT and in case statT is an
array type, dynC=Object
definition

fields :: prog ⇒ qtname ⇒ ((vname × qtname) × field) list where
fields G C =

class-rec G C [] (λC c ts. map (λ(n,t). ((n,C),t)) (cfields c) @ ts)

DeclConcepts.fields G C list of fields of a class, including all the fields of the superclasses (private,
inherited and hidden ones) not only the accessible ones (an instance of a object allocates all these
fields
definition

accfield :: prog ⇒ qtname ⇒ qtname ⇒ (vname, qtname × field) table where
accfield G S C =
(let field-tab = table-of ((map (λ((n,d),f).(n,(d,f)))) (fields G C))

in filter-tab (λn (declC ,f). G` (declC ,fdecl (n,f)) of C accessible-from S)
field-tab)

accfield G C S : fields of a class C which are accessible from scope of class S with inheritance and
hiding, cf. 8.3

note the class component in the accessibility filter (see also methd). The class declaring field f
(declC) isn’t necessarily accessible from scope S. The field can be made visible through inheritance,
too. So we must test accessibility of field f of class C (not declclass f)
definition

is-methd :: prog ⇒ qtname ⇒ sig ⇒ bool
where is-methd G = (λC sig. is-class G C ∧ methd G C sig 6= None)

definition
efname :: ((vname × qtname) × field) ⇒ (vname × qtname)
where efname = fst

lemma efname-simp[simp]:efname (n,f) = n
by (simp add: efname-def)

4 imethds
lemma imethds-rec: [[iface G I = Some i; ws-prog G]] =⇒

imethds G I = Un-tables ((λJ . imethds G J)‘set (isuperIfs i)) ⊕⊕
(set-option ◦ table-of (map (λ(s,mh). (s,I ,mh)) (imethods i)))

apply (unfold imethds-def)
apply (rule iface-rec [THEN trans])
apply auto
done

lemma imethds-norec:
[[iface G md = Some i; ws-prog G; table-of (imethods i) sig = Some mh]] =⇒
(md, mh) ∈ imethds G md sig

apply (subst imethds-rec)
apply assumption+

92

apply (rule iffD2)
apply (rule overrides-t-Some-iff)
apply (rule disjI1)
apply (auto elim: table-of-map-SomeI)
done

lemma imethds-declI : [[m ∈ imethds G I sig; ws-prog G; is-iface G I]] =⇒
(∃ i. iface G (decliface m) = Some i ∧
table-of (imethods i) sig = Some (mthd m)) ∧
(I ,decliface m) ∈ (subint1 G)∗ ∧ m ∈ imethds G (decliface m) sig

apply (erule rev-mp)
apply (rule ws-subint1-induct, assumption, assumption)
apply (subst imethds-rec, erule conjunct1 , assumption)
apply (force elim: imethds-norec intro: rtrancl-into-rtrancl2)
done

lemma imethds-cases:
assumes im: im ∈ imethds G I sig

and ifI : iface G I = Some i
and ws: ws-prog G

obtains (NewMethod) table-of (map (λ(s, mh). (s, I , mh)) (imethods i)) sig = Some im
| (InheritedMethod) J where J ∈ set (isuperIfs i) and im ∈ imethds G J sig

using assms by (auto simp add: imethds-rec)

5 accimethd
lemma accimethds-simp [simp]:
G`Iface I accessible-in pack =⇒ accimethds G pack I = imethds G I
by (simp add: accimethds-def)

lemma accimethdsD:
im ∈ accimethds G pack I sig
=⇒ im ∈ imethds G I sig ∧ G`Iface I accessible-in pack

by (auto simp add: accimethds-def)

lemma accimethdsI :
[[im ∈ imethds G I sig;G`Iface I accessible-in pack]]
=⇒ im ∈ accimethds G pack I sig

by simp

6 methd
lemma methd-rec: [[class G C = Some c; ws-prog G]] =⇒

methd G C
= (if C = Object

then Map.empty
else filter-tab (λsig m. G`C inherits method sig m)

(methd G (super c)))
++ table-of (map (λ(s,m). (s,C ,m)) (methods c))

apply (unfold methd-def)
apply (erule class-rec [THEN trans], assumption)
apply (simp)
done

lemma methd-norec:
[[class G declC = Some c; ws-prog G;table-of (methods c) sig = Some m]]
=⇒ methd G declC sig = Some (declC , m)

apply (simp only: methd-rec)

Theory DeclConcepts 93

apply (rule disjI1 [THEN map-add-Some-iff [THEN iffD2]])
apply (auto elim: table-of-map-SomeI)
done

lemma methd-declC :
[[methd G C sig = Some m; ws-prog G;is-class G C]] =⇒
(∃ d. class G (declclass m)=Some d ∧ table-of (methods d) sig=Some (mthd m)) ∧
G`C �C (declclass m) ∧ methd G (declclass m) sig = Some m

apply (erule rev-mp)
apply (rule ws-subcls1-induct, assumption, assumption)
apply (subst methd-rec, assumption)
apply (case-tac Ca=Object)
apply (force elim: methd-norec)

apply simp
apply (case-tac table-of (map (λ(s, m). (s, Ca, m)) (methods c)) sig)
apply (force intro: rtrancl-into-rtrancl2)

apply (auto intro: methd-norec)
done

lemma methd-inheritedD:
[[class G C = Some c; ws-prog G;methd G C sig = Some m]]
=⇒ (declclass m 6= C −→ G `C inherits method sig m)

by (auto simp add: methd-rec)

lemma methd-diff-cls:
[[ws-prog G; is-class G C ; is-class G D;
methd G C sig = m; methd G D sig = n; m 6=n
]] =⇒ C 6=D
by (auto simp add: methd-rec)

lemma method-declared-inI :
[[table-of (methods c) sig = Some m; class G C = Some c]]
=⇒ G`mdecl (sig,m) declared-in C

by (auto simp add: cdeclaredmethd-def declared-in-def)

lemma methd-declared-in-declclass:
[[methd G C sig = Some m; ws-prog G;is-class G C]]
=⇒ G`Methd sig m declared-in (declclass m)

by (auto dest: methd-declC method-declared-inI)

lemma member-methd:
assumes member-of : G`Methd sig m member-of C and

ws: ws-prog G
shows methd G C sig = Some m

proof −
from member-of
have iscls-C : is-class G C

by (rule member-of-is-classD)
from iscls-C ws member-of
show ?thesis (is ?Methd C)
proof (induct rule: ws-class-induct ′)

case (Object co)
assume G `Methd sig m member-of Object
then have G`Methd sig m declared-in Object ∧ declclass m = Object

by (cases set: members) (cases m, auto dest: subcls1D)
with ws Object

94

show ?Methd Object
by (cases m)

(auto simp add: declared-in-def cdeclaredmethd-def methd-rec
intro: table-of-mapconst-SomeI)

next
case (Subcls C c)
assume clsC : class G C = Some c and

neq-C-Obj: C 6= Object and
hyp: G `Methd sig m member-of super c =⇒ ?Methd (super c) and

member-of : G `Methd sig m member-of C
from member-of
show ?Methd C
proof (cases)

case Immediate
with clsC
have table-of (map (λ(s, m). (s, C , m)) (methods c)) sig = Some m

by (cases m)
(auto simp add: declared-in-def cdeclaredmethd-def

intro: table-of-mapconst-SomeI)
with clsC neq-C-Obj ws
show ?thesis

by (simp add: methd-rec)
next

case (Inherited S)
with clsC
have undecl: G`mid sig undeclared-in C and

super : G `Methd sig m member-of (super c)
by (auto dest: subcls1D)

from clsC undecl
have table-of (map (λ(s, m). (s, C , m)) (methods c)) sig = None

by (auto simp add: undeclared-in-def cdeclaredmethd-def
intro: table-of-mapconst-NoneI)

moreover
from Inherited have G ` C inherits (method sig m)

by (auto simp add: inherits-def)
moreover
note clsC neq-C-Obj ws super hyp
ultimately
show ?thesis

by (auto simp add: methd-rec intro: filter-tab-SomeI)
qed

qed
qed

lemma finite-methd:ws-prog G =⇒ finite {methd G C sig |sig C . is-class G C}
apply (rule finite-is-class [THEN finite-SetCompr2])
apply (intro strip)
apply (erule-tac ws-subcls1-induct, assumption)
apply (subst methd-rec)
apply (assumption)
apply (auto intro!: finite-range-map-of finite-range-filter-tab finite-range-map-of-map-add)
done

lemma finite-dom-methd:
[[ws-prog G; is-class G C]] =⇒ finite (dom (methd G C))

apply (erule-tac ws-subcls1-induct)
apply assumption
apply (subst methd-rec)

Theory DeclConcepts 95

apply (assumption)
apply (auto intro!: finite-dom-map-of finite-dom-filter-tab)
done

7 accmethd
lemma accmethd-SomeD:
accmethd G S C sig = Some m
=⇒ methd G C sig = Some m ∧ G`method sig m of C accessible-from S

by (auto simp add: accmethd-def)

lemma accmethd-SomeI :
[[methd G C sig = Some m; G`method sig m of C accessible-from S]]
=⇒ accmethd G S C sig = Some m

by (auto simp add: accmethd-def intro: filter-tab-SomeI)

lemma accmethd-declC :
[[accmethd G S C sig = Some m; ws-prog G; is-class G C]] =⇒
(∃ d. class G (declclass m)=Some d ∧
table-of (methods d) sig=Some (mthd m)) ∧

G`C �C (declclass m) ∧ methd G (declclass m) sig = Some m ∧
G`method sig m of C accessible-from S

by (auto dest: accmethd-SomeD methd-declC accmethd-SomeI)

lemma finite-dom-accmethd:
[[ws-prog G; is-class G C]] =⇒ finite (dom (accmethd G S C))

by (auto simp add: accmethd-def intro: finite-dom-filter-tab finite-dom-methd)

8 dynmethd
lemma dynmethd-rec:
[[class G dynC = Some c; ws-prog G]] =⇒
dynmethd G statC dynC sig
= (if G`dynC �C statC

then (case methd G statC sig of
None ⇒ None
| Some statM
⇒ (case methd G dynC sig of

None ⇒ dynmethd G statC (super c) sig
| Some dynM ⇒

(if G,sig` dynM overrides statM ∨ dynM = statM
then Some dynM
else (dynmethd G statC (super c) sig)

)))
else None)

(is - =⇒ - =⇒ ?Dynmethd-def dynC sig = ?Dynmethd-rec dynC c sig)
proof −

assume clsDynC : class G dynC = Some c and
ws: ws-prog G

then show ?Dynmethd-def dynC sig = ?Dynmethd-rec dynC c sig
proof (induct rule: ws-class-induct ′′)

case (Object co)
show ?Dynmethd-def Object sig = ?Dynmethd-rec Object co sig
proof (cases G`Object �C statC)

case False
then show ?thesis by (simp add: dynmethd-def)

next
case True

96

then have eq-statC-Obj: statC = Object ..
show ?thesis
proof (cases methd G statC sig)

case None then show ?thesis by (simp add: dynmethd-def)
next

case Some
with True Object ws eq-statC-Obj
show ?thesis

by (auto simp add: dynmethd-def class-rec
intro: filter-tab-SomeI)

qed
qed

next
case (Subcls dynC c sc)
show ?Dynmethd-def dynC sig = ?Dynmethd-rec dynC c sig
proof (cases G`dynC �C statC)

case False
then show ?thesis by (simp add: dynmethd-def)

next
case True
note subclseq-dynC-statC = True
show ?thesis
proof (cases methd G statC sig)

case None then show ?thesis by (simp add: dynmethd-def)
next

case (Some statM)
note statM = Some
let ?filter =

λC . filter-tab
(λ- dynM . G,sig ` dynM overrides statM ∨ dynM = statM)
(methd G C)

let ?class-rec =
λC . class-rec G C Map.empty

(λC c subcls-mthds. subcls-mthds ++ (?filter C))
from statM Subcls ws subclseq-dynC-statC
have dynmethd-dynC-def :

?Dynmethd-def dynC sig =
((?class-rec (super c))
++
(?filter dynC)) sig

by (simp (no-asm-simp) only: dynmethd-def class-rec)
auto

show ?thesis
proof (cases dynC = statC)

case True
with subclseq-dynC-statC statM dynmethd-dynC-def
have ?Dynmethd-def dynC sig = Some statM

by (auto intro: map-add-find-right filter-tab-SomeI)
with subclseq-dynC-statC True Some
show ?thesis

by auto
next

case False
with subclseq-dynC-statC Subcls
have subclseq-super-statC : G`(super c) �C statC

by (blast dest: subclseq-superD)
show ?thesis
proof (cases methd G dynC sig)

case None

Theory DeclConcepts 97

then have ?filter dynC sig = None
by (rule filter-tab-None)

then have ?Dynmethd-def dynC sig=?class-rec (super c) sig
by (simp add: dynmethd-dynC-def)

with subclseq-super-statC statM None
have ?Dynmethd-def dynC sig = ?Dynmethd-def (super c) sig

by (auto simp add: empty-def dynmethd-def)
with None subclseq-dynC-statC statM
show ?thesis

by simp
next

case (Some dynM)
note dynM = Some
let ?Termination = G ` qmdecl sig dynM overrides qmdecl sig statM ∨

dynM = statM
show ?thesis
proof (cases ?filter dynC sig)

case None
with dynM
have no-termination: ¬ ?Termination

by (simp add: filter-tab-def)
from None
have ?Dynmethd-def dynC sig=?class-rec (super c) sig

by (simp add: dynmethd-dynC-def)
with subclseq-super-statC statM dynM no-termination
show ?thesis

by (auto simp add: empty-def dynmethd-def)
next

case Some
with dynM
have termination: ?Termination

by (auto)
with Some dynM
have ?Dynmethd-def dynC sig=Some dynM
by (auto simp add: dynmethd-dynC-def)

with subclseq-super-statC statM dynM termination
show ?thesis

by (auto simp add: dynmethd-def)
qed

qed
qed

qed
qed

qed
qed

lemma dynmethd-C-C :[[is-class G C ; ws-prog G]]
=⇒ dynmethd G C C sig = methd G C sig
apply (auto simp add: dynmethd-rec)
done

lemma dynmethdSomeD:
[[dynmethd G statC dynC sig = Some dynM ; is-class G dynC ; ws-prog G]]
=⇒ G`dynC �C statC ∧ (∃ statM . methd G statC sig = Some statM)

by (auto simp add: dynmethd-rec)

lemma dynmethd-Some-cases:
assumes dynM : dynmethd G statC dynC sig = Some dynM

and is-cls-dynC : is-class G dynC

98

and ws: ws-prog G
obtains (Static) methd G statC sig = Some dynM
| (Overrides) statM

where methd G statC sig = Some statM
and dynM 6= statM
and G,sig`dynM overrides statM

proof −
from is-cls-dynC obtain dc where clsDynC : class G dynC = Some dc by blast
from clsDynC ws dynM Static Overrides
show ?thesis
proof (induct rule: ws-class-induct)

case (Object co)
with ws have statC = Object

by (auto simp add: dynmethd-rec)
with ws Object show ?thesis by (auto simp add: dynmethd-C-C)

next
case (Subcls C c)
with ws show ?thesis

by (auto simp add: dynmethd-rec)
qed

qed

lemma no-override-in-Object:
assumes dynM : dynmethd G statC dynC sig = Some dynM and

is-cls-dynC : is-class G dynC and
ws: ws-prog G and

statM : methd G statC sig = Some statM and
neq-dynM-statM : dynM 6=statM

shows dynC 6= Object
proof −

from is-cls-dynC obtain dc where clsDynC : class G dynC = Some dc by blast
from clsDynC ws dynM statM neq-dynM-statM
show ?thesis (is ?P dynC)
proof (induct rule: ws-class-induct)

case (Object co)
with ws have statC = Object

by (auto simp add: dynmethd-rec)
with ws Object show ?P Object by (auto simp add: dynmethd-C-C)

next
case (Subcls dynC c)
with ws show ?P dynC

by (auto simp add: dynmethd-rec)
qed

qed

lemma dynmethd-Some-rec-cases:
assumes dynM : dynmethd G statC dynC sig = Some dynM

and clsDynC : class G dynC = Some c
and ws: ws-prog G

obtains (Static) methd G statC sig = Some dynM
| (Override) statM where methd G statC sig = Some statM

and methd G dynC sig = Some dynM and statM 6= dynM
and G,sig` dynM overrides statM

| (Recursion) dynC 6= Object and dynmethd G statC (super c) sig = Some dynM
proof −

from clsDynC have ∗: is-class G dynC by simp
from ws clsDynC dynM Static Override Recursion
show ?thesis

Theory DeclConcepts 99

by (auto simp add: dynmethd-rec dest: no-override-in-Object [OF dynM ∗ ws])
qed

lemma dynmethd-declC :
[[dynmethd G statC dynC sig = Some m;

is-class G statC ;ws-prog G
]] =⇒
(∃ d. class G (declclass m)=Some d ∧ table-of (methods d) sig=Some (mthd m)) ∧
G`dynC �C (declclass m) ∧ methd G (declclass m) sig = Some m

proof −
assume is-cls-statC : is-class G statC
assume ws: ws-prog G
assume m: dynmethd G statC dynC sig = Some m
from m
have G`dynC �C statC by (auto simp add: dynmethd-def)
from this is-cls-statC
have is-cls-dynC : is-class G dynC by (rule subcls-is-class2)
from is-cls-dynC ws m
show ?thesis (is ?P dynC)
proof (induct rule: ws-class-induct ′)

case (Object co)
with ws have statC=Object by (auto simp add: dynmethd-rec)
with ws Object
show ?P Object

by (auto simp add: dynmethd-C-C dest: methd-declC)
next

case (Subcls dynC c)
assume hyp: dynmethd G statC (super c) sig = Some m =⇒ ?P (super c) and

clsDynC : class G dynC = Some c and
m ′: dynmethd G statC dynC sig = Some m and

neq-dynC-Obj: dynC 6= Object
from ws this obtain statM where

subclseq-dynC-statC : G`dynC �C statC and
statM : methd G statC sig = Some statM

by (blast dest: dynmethdSomeD)
from clsDynC neq-dynC-Obj
have subclseq-dynC-super : G`dynC �C (super c)

by (auto intro: subcls1I)
from m ′ clsDynC ws
show ?P dynC
proof (cases rule: dynmethd-Some-rec-cases)

case Static
with is-cls-statC ws subclseq-dynC-statC
show ?thesis

by (auto intro: rtrancl-trans dest: methd-declC)
next

case Override
with clsDynC ws
show ?thesis

by (auto dest: methd-declC)
next

case Recursion
with hyp subclseq-dynC-super
show ?thesis

by (auto intro: rtrancl-trans)
qed

qed
qed

100

lemma methd-Some-dynmethd-Some:
assumes statM : methd G statC sig = Some statM and

subclseq: G`dynC �C statC and
is-cls-statC : is-class G statC and

ws: ws-prog G
shows ∃ dynM . dynmethd G statC dynC sig = Some dynM
(is ?P dynC)

proof −
from subclseq is-cls-statC
have is-cls-dynC : is-class G dynC by (rule subcls-is-class2)
then obtain dc where

clsDynC : class G dynC = Some dc by blast
from clsDynC ws subclseq
show ?thesis
proof (induct rule: ws-class-induct)

case (Object co)
with ws have statC = Object

by (auto)
with ws Object statM
show ?P Object

by (auto simp add: dynmethd-C-C)
next

case (Subcls dynC dc)
assume clsDynC ′: class G dynC = Some dc
assume neq-dynC-Obj: dynC 6= Object
assume hyp: G`super dc�C statC =⇒ ?P (super dc)
assume subclseq ′: G`dynC�C statC
then
show ?P dynC
proof (cases rule: subclseq-cases)

case Eq
with ws statM clsDynC ′

show ?thesis
by (auto simp add: dynmethd-rec)

next
case Subcls
assume G`dynC≺C statC
from this clsDynC ′

have G`super dc�C statC by (rule subcls-superD)
with hyp ws clsDynC ′ subclseq ′ statM
show ?thesis

by (auto simp add: dynmethd-rec)
qed

qed
qed

lemma dynmethd-cases:
assumes statM : methd G statC sig = Some statM

and subclseq: G`dynC �C statC
and is-cls-statC : is-class G statC
and ws: ws-prog G

obtains (Static) dynmethd G statC dynC sig = Some statM
| (Overrides) dynM where dynmethd G statC dynC sig = Some dynM

and dynM 6= statM and G,sig`dynM overrides statM
proof −

note hyp-static = Static and hyp-override = Overrides
from subclseq is-cls-statC
have is-cls-dynC : is-class G dynC by (rule subcls-is-class2)
then obtain dc where

Theory DeclConcepts 101

clsDynC : class G dynC = Some dc by blast
from statM subclseq is-cls-statC ws
obtain dynM where dynM : dynmethd G statC dynC sig = Some dynM

by (blast dest: methd-Some-dynmethd-Some)
from dynM is-cls-dynC ws
show ?thesis
proof (cases rule: dynmethd-Some-cases)

case Static
with hyp-static dynM statM show ?thesis by simp

next
case Overrides
with hyp-override dynM statM show ?thesis by simp

qed
qed

lemma ws-dynmethd:
assumes statM : methd G statC sig = Some statM and

subclseq: G`dynC �C statC and
is-cls-statC : is-class G statC and

ws: ws-prog G
shows
∃ dynM . dynmethd G statC dynC sig = Some dynM ∧

is-static dynM = is-static statM ∧ G`resTy dynM�resTy statM
proof −

from statM subclseq is-cls-statC ws
show ?thesis
proof (cases rule: dynmethd-cases)

case Static
with statM
show ?thesis

by simp
next

case Overrides
with ws
show ?thesis

by (auto dest: ws-overrides-commonD)
qed

qed

9 dynlookup
lemma dynlookup-cases:

assumes dynlookup G statT dynC sig = x
obtains (NullT) statT = NullT and Map.empty sig = x
| (IfaceT) I where statT = IfaceT I and dynimethd G I dynC sig = x
| (ClassT) statC where statT = ClassT statC and dynmethd G statC dynC sig = x
| (ArrayT) ty where statT = ArrayT ty and dynmethd G Object dynC sig = x

using assms by (cases statT) (auto simp add: dynlookup-def)

10 fields
lemma fields-rec: [[class G C = Some c; ws-prog G]] =⇒

fields G C = map (λ(fn,ft). ((fn,C),ft)) (cfields c) @
(if C = Object then [] else fields G (super c))

apply (simp only: fields-def)
apply (erule class-rec [THEN trans])
apply assumption
apply clarsimp
done

102

lemma fields-norec:
[[class G fd = Some c; ws-prog G; table-of (cfields c) fn = Some f]]
=⇒ table-of (fields G fd) (fn,fd) = Some f

apply (subst fields-rec)
apply assumption+
apply (subst map-of-append)
apply (rule disjI1 [THEN map-add-Some-iff [THEN iffD2]])
apply (auto elim: table-of-map2-SomeI)
done

lemma table-of-fieldsD:
table-of (map (λ(fn,ft). ((fn,C),ft)) (cfields c)) efn = Some f
=⇒ (declclassf efn) = C ∧ table-of (cfields c) (fname efn) = Some f
apply (case-tac efn)
by auto

lemma fields-declC :
[[table-of (fields G C) efn = Some f ; ws-prog G; is-class G C]] =⇒
(∃ d. class G (declclassf efn) = Some d ∧

table-of (cfields d) (fname efn)=Some f) ∧
G`C �C (declclassf efn) ∧ table-of (fields G (declclassf efn)) efn = Some f

apply (erule rev-mp)
apply (rule ws-subcls1-induct, assumption, assumption)
apply (subst fields-rec, assumption)
apply clarify
apply (simp only: map-of-append)
apply (case-tac table-of (map (case-prod (λfn. Pair (fn, Ca))) (cfields c)) efn)
apply (force intro:rtrancl-into-rtrancl2 simp add: map-add-def)

apply (frule-tac fd=Ca in fields-norec)
apply assumption
apply blast
apply (frule table-of-fieldsD)
apply (frule-tac n=table-of (map (case-prod (λfn. Pair (fn, Ca))) (cfields c))

and m=table-of (if Ca = Object then [] else fields G (super c))
in map-add-find-right)

apply (case-tac efn)
apply (simp)
done

lemma fields-emptyI :
∧

y. [[ws-prog G; class G C = Some c;cfields c = [];
C 6= Object −→ class G (super c) = Some y ∧ fields G (super c) = []]] =⇒
fields G C = []

apply (subst fields-rec)
apply assumption
apply auto
done

lemma fields-mono-lemma:
[[x ∈ set (fields G C); G`D �C C ; ws-prog G]]
=⇒ x ∈ set (fields G D)

apply (erule rev-mp)
apply (erule converse-rtrancl-induct)
apply fast
apply (drule subcls1D)

Theory DeclConcepts 103

apply clarsimp
apply (subst fields-rec)
apply auto
done

lemma ws-unique-fields-lemma:
[[(efn,fd) ∈ set (fields G (super c)); fc ∈ set (cfields c); ws-prog G;

fname efn = fname fc; declclassf efn = C ;
class G C = Some c; C 6= Object; class G (super c) = Some d]] =⇒ R

apply (frule-tac ws-prog-cdeclD [THEN conjunct2], assumption, assumption)
apply (drule-tac weak-map-of-SomeI)
apply (frule-tac subcls1I [THEN subcls1-irrefl], assumption, assumption)
apply (auto dest: fields-declC [THEN conjunct2 [THEN conjunct1 [THEN rtranclD]]])
done

lemma ws-unique-fields: [[is-class G C ; ws-prog G;∧
C c. [[class G C = Some c]] =⇒ unique (cfields c)]] =⇒

unique (fields G C)
apply (rule ws-subcls1-induct, assumption, assumption)
apply (subst fields-rec, assumption)
apply (auto intro!: unique-map-inj inj-onI

elim!: unique-append ws-unique-fields-lemma fields-norec)
done

11 accfield
lemma accfield-fields:
accfield G S C fn = Some f
=⇒ table-of (fields G C) (fn, declclass f) = Some (fld f)

apply (simp only: accfield-def Let-def)
apply (rule table-of-remap-SomeD)
apply auto
done

lemma accfield-declC-is-class:
[[is-class G C ; accfield G S C en = Some (fd, f); ws-prog G]] =⇒

is-class G fd
apply (drule accfield-fields)
apply (drule fields-declC [THEN conjunct1], assumption)
apply auto
done

lemma accfield-accessibleD:
accfield G S C fn = Some f =⇒ G`Field fn f of C accessible-from S

by (auto simp add: accfield-def Let-def)

12 is methd
lemma is-methdI :
[[class G C = Some y; methd G C sig = Some b]] =⇒ is-methd G C sig
apply (unfold is-methd-def)
apply auto
done

lemma is-methdD:
is-methd G C sig =⇒ class G C 6= None ∧ methd G C sig 6= None
apply (unfold is-methd-def)

104

apply auto
done

lemma finite-is-methd:
ws-prog G =⇒ finite (Collect (case-prod (is-methd G)))

apply (unfold is-methd-def)
apply (subst Collect-case-prod-Sigma)
apply (rule finite-is-class [THEN finite-SigmaI])
apply (simp only: mem-Collect-eq)
apply (fold dom-def)
apply (erule finite-dom-methd)
apply assumption
done

calculation of the superclasses of a class

definition
superclasses :: prog ⇒ qtname ⇒ qtname set where

superclasses G C = class-rec G C {}
(λ C c superclss. (if C=Object

then {}
else insert (super c) superclss))

lemma superclasses-rec: [[class G C = Some c; ws-prog G]] =⇒
superclasses G C
= (if (C=Object)

then {}
else insert (super c) (superclasses G (super c)))

apply (unfold superclasses-def)
apply (erule class-rec [THEN trans], assumption)
apply (simp)
done

lemma superclasses-mono:
assumes clsrel: G`C≺C D
and ws: ws-prog G
and cls-C : class G C = Some c
and wf :

∧
C c. [[class G C = Some c; C 6= Object]]

=⇒ ∃ sc. class G (super c) = Some sc
and x: x∈superclasses G D
shows x∈superclasses G C using clsrel cls-C x

proof (induct arbitrary: c rule: converse-trancl-induct)
case (base C)
with wf ws show ?case

by (auto intro: no-subcls1-Object
simp add: superclasses-rec subcls1-def)

next
case (step C S)
moreover note wf ws
moreover from calculation
have x∈superclasses G S

by (force intro: no-subcls1-Object simp add: subcls1-def)
moreover from calculation
have super c = S

by (auto intro: no-subcls1-Object simp add: subcls1-def)
ultimately show ?case

by (auto intro: no-subcls1-Object simp add: superclasses-rec)
qed

Theory DeclConcepts 105

lemma subclsEval:
assumes clsrel: G`C≺C D
and ws: ws-prog G
and cls-C : class G C = Some c
and wf :

∧
C c. [[class G C = Some c; C 6= Object]]

=⇒ ∃ sc. class G (super c) = Some sc
shows D∈superclasses G C using clsrel cls-C

proof (induct arbitrary: c rule: converse-trancl-induct)
case (base C)
show ?case

by (use ws wf base in ‹auto intro: no-subcls1-Object simp add: superclasses-rec subcls1-def ›)
next

case (step C S)
show ?case

by (rule superclasses-mono)
(use ws wf step in ‹auto dest: no-subcls1-Object simp add: subcls1-def ›)

qed

end

106

Chapter 11

WellType

1 Well-typedness of Java programs
theory WellType
imports DeclConcepts
begin

improvements over Java Specification 1.0:

• methods of Object can be called upon references of interface or array type

simplifications:

• the type rules include all static checks on statements and expressions, e.g. definedness of
names (of parameters, locals, fields, methods)

design issues:

• unified type judgment for statements, variables, expressions, expression lists

• statements are typed like expressions with dummy type Void

• the typing rules take an extra argument that is capable of determining the dynamic type of
objects. Therefore, they can be used for both checking static types and determining runtime
types in transition semantics.

type-synonym lenv
= (lname, ty) table — local variables, including This and Result

record env =
prg:: prog — program
cls:: qtname — current package and class name
lcl:: lenv — local environment

translations
(type) lenv <= (type) (lname, ty) table
(type) lenv <= (type) lname ⇒ ty option
(type) env <= (type) (|prg::prog,cls::qtname,lcl::lenv|)
(type) env <= (type) (|prg::prog,cls::qtname,lcl::lenv,. . .:: ′a|)

abbreviation
pkg :: env ⇒ pname — select the current package from an environment
where pkg e == pid (cls e)

107

108

Static overloading: maximally specific methods

type-synonym
emhead = ref-ty × mhead

— Some mnemotic selectors for emhead
definition

declrefT :: emhead ⇒ ref-ty
where declrefT = fst

definition
mhd :: emhead ⇒ mhead
where mhd ≡ snd

lemma declrefT-simp[simp]:declrefT (r ,m) = r
by (simp add: declrefT-def)

lemma mhd-simp[simp]:mhd (r ,m) = m
by (simp add: mhd-def)

lemma static-mhd-simp[simp]: static (mhd m) = is-static m
by (cases m) (simp add: member-is-static-simp mhd-def)

lemma mhd-resTy-simp [simp]: resTy (mhd m) = resTy m
by (cases m) simp

lemma mhd-is-static-simp [simp]: is-static (mhd m) = is-static m
by (cases m) simp

lemma mhd-accmodi-simp [simp]: accmodi (mhd m) = accmodi m
by (cases m) simp

definition
cmheads :: prog ⇒ qtname ⇒ qtname ⇒ sig ⇒ emhead set
where cmheads G S C = (λsig. (λ(Cls,mthd). (ClassT Cls,(mhead mthd))) ‘ set-option (accmethd G S C

sig))

definition
Objectmheads :: prog ⇒ qtname ⇒ sig ⇒ emhead set where
Objectmheads G S =
(λsig. (λ(Cls,mthd). (ClassT Cls,(mhead mthd)))

‘ set-option (filter-tab (λsig m. accmodi m 6= Private) (accmethd G S Object) sig))

definition
accObjectmheads :: prog ⇒ qtname ⇒ ref-ty ⇒ sig ⇒ emhead set

where
accObjectmheads G S T =
(if G`RefT T accessible-in (pid S)
then Objectmheads G S
else (λsig. {}))

primrec mheads :: prog ⇒ qtname ⇒ ref-ty ⇒ sig ⇒ emhead set
where

mheads G S NullT = (λsig. {})
| mheads G S (IfaceT I) = (λsig. (λ(I ,h).(IfaceT I ,h))

‘ accimethds G (pid S) I sig ∪
accObjectmheads G S (IfaceT I) sig)

| mheads G S (ClassT C) = cmheads G S C
| mheads G S (ArrayT T) = accObjectmheads G S (ArrayT T)

Theory WellType 109

definition
— applicable methods, cf. 15.11.2.1
appl-methds :: prog ⇒ qtname ⇒ ref-ty ⇒ sig ⇒ (emhead × ty list) set where
appl-methds G S rt = (λ sig.
{(mh,pTs ′) |mh pTs ′. mh ∈ mheads G S rt (|name=name sig,parTs=pTs ′|) ∧

G`(parTs sig)[�]pTs ′})

definition
— more specific methods, cf. 15.11.2.2
more-spec :: prog ⇒ emhead × ty list ⇒ emhead × ty list ⇒ bool where
more-spec G = (λ(mh,pTs). λ(mh ′,pTs ′). G`pTs[�]pTs ′)

definition
— maximally specific methods, cf. 15.11.2.2
max-spec :: prog ⇒ qtname ⇒ ref-ty ⇒ sig ⇒ (emhead × ty list) set where
max-spec G S rt sig = {m. m ∈appl-methds G S rt sig ∧

(∀m ′∈appl-methds G S rt sig. more-spec G m ′ m −→ m ′=m)}

lemma max-spec2appl-meths:
x ∈ max-spec G S T sig =⇒ x ∈ appl-methds G S T sig

by (auto simp: max-spec-def)

lemma appl-methsD: (mh,pTs ′)∈appl-methds G S T (|name=mn,parTs=pTs|) =⇒
mh ∈ mheads G S T (|name=mn,parTs=pTs ′|) ∧ G`pTs[�]pTs ′

by (auto simp: appl-methds-def)

lemma max-spec2mheads:
max-spec G S rt (|name=mn,parTs=pTs|) = insert (mh, pTs ′) A
=⇒ mh ∈ mheads G S rt (|name=mn,parTs=pTs ′|) ∧ G`pTs[�]pTs ′

apply (auto dest: equalityD2 subsetD max-spec2appl-meths appl-methsD)
done

definition
empty-dt :: dyn-ty
where empty-dt = (λa. None)

definition
invmode :: (′a::type)member-scheme ⇒ expr ⇒ inv-mode where
invmode m e = (if is-static m

then Static
else if e=Super then SuperM else IntVir)

lemma invmode-nonstatic [simp]:
invmode (|access=a,static=False,. . .=x|) (Acc (LVar e)) = IntVir

apply (unfold invmode-def)
apply (simp (no-asm) add: member-is-static-simp)
done

lemma invmode-Static-eq [simp]: (invmode m e = Static) = is-static m
apply (unfold invmode-def)
apply (simp (no-asm))
done

110

lemma invmode-IntVir-eq: (invmode m e = IntVir) = (¬(is-static m) ∧ e 6=Super)
apply (unfold invmode-def)
apply (simp (no-asm))
done

lemma Null-staticD:
a ′=Null −→ (is-static m) =⇒ invmode m e = IntVir −→ a ′ 6= Null

apply (clarsimp simp add: invmode-IntVir-eq)
done

Typing for unary operations
primrec unop-type :: unop ⇒ prim-ty
where

unop-type UPlus = Integer
| unop-type UMinus = Integer
| unop-type UBitNot = Integer
| unop-type UNot = Boolean

primrec wt-unop :: unop ⇒ ty ⇒ bool
where

wt-unop UPlus t = (t = PrimT Integer)
| wt-unop UMinus t = (t = PrimT Integer)
| wt-unop UBitNot t = (t = PrimT Integer)
| wt-unop UNot t = (t = PrimT Boolean)

Typing for binary operations
primrec binop-type :: binop ⇒ prim-ty
where

binop-type Mul = Integer
| binop-type Div = Integer
| binop-type Mod = Integer
| binop-type Plus = Integer
| binop-type Minus = Integer
| binop-type LShift = Integer
| binop-type RShift = Integer
| binop-type RShiftU = Integer
| binop-type Less = Boolean
| binop-type Le = Boolean
| binop-type Greater = Boolean
| binop-type Ge = Boolean
| binop-type Eq = Boolean
| binop-type Neq = Boolean
| binop-type BitAnd = Integer
| binop-type And = Boolean
| binop-type BitXor = Integer
| binop-type Xor = Boolean
| binop-type BitOr = Integer
| binop-type Or = Boolean
| binop-type CondAnd = Boolean
| binop-type CondOr = Boolean

primrec wt-binop :: prog ⇒ binop ⇒ ty ⇒ ty ⇒ bool
where

wt-binop G Mul t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Div t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Mod t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Plus t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))

Theory WellType 111

| wt-binop G Minus t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G LShift t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G RShift t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G RShiftU t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Less t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Le t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Greater t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Ge t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Eq t1 t2 = (G`t1�t2 ∨ G`t2�t1)
| wt-binop G Neq t1 t2 = (G`t1�t2 ∨ G`t2�t1)
| wt-binop G BitAnd t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G And t1 t2 = ((t1 = PrimT Boolean) ∧ (t2 = PrimT Boolean))
| wt-binop G BitXor t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Xor t1 t2 = ((t1 = PrimT Boolean) ∧ (t2 = PrimT Boolean))
| wt-binop G BitOr t1 t2 = ((t1 = PrimT Integer) ∧ (t2 = PrimT Integer))
| wt-binop G Or t1 t2 = ((t1 = PrimT Boolean) ∧ (t2 = PrimT Boolean))
| wt-binop G CondAnd t1 t2 = ((t1 = PrimT Boolean) ∧ (t2 = PrimT Boolean))
| wt-binop G CondOr t1 t2 = ((t1 = PrimT Boolean) ∧ (t2 = PrimT Boolean))

Typing for terms

type-synonym tys = ty + ty list
translations
(type) tys <= (type) ty + ty list

inductive wt :: env ⇒ dyn-ty ⇒ [term,tys] ⇒ bool (‹-,-|=-::-› [51 ,51 ,51 ,51] 50)
and wt-stmt :: env ⇒ dyn-ty ⇒ stmt ⇒ bool (‹-,-|=-::

√
› [51 ,51 ,51] 50)

and ty-expr :: env ⇒ dyn-ty ⇒ [expr ,ty] ⇒ bool (‹-,-|=-::−-› [51 ,51 ,51 ,51] 50)
and ty-var :: env ⇒ dyn-ty ⇒ [var ,ty] ⇒ bool (‹-,-|=-::=-› [51 ,51 ,51 ,51] 50)
and ty-exprs :: env ⇒ dyn-ty ⇒ [expr list, ty list] ⇒ bool
(‹-,-|=-:: .=-› [51 ,51 ,51 ,51] 50)

where

E ,dt|=s::
√
≡ E ,dt|=In1r s::Inl (PrimT Void)

| E ,dt|=e::−T ≡ E ,dt|=In1l e::Inl T
| E ,dt|=e::=T ≡ E ,dt|=In2 e::Inl T
| E ,dt|=e:: .=T ≡ E ,dt|=In3 e::Inr T

— well-typed statements

| Skip: E ,dt|=Skip::
√

| Expr : [[E ,dt|=e::−T]] =⇒
E ,dt|=Expr e::

√

— cf. 14.6
| Lab: E ,dt|=c::

√
=⇒

E ,dt|=l· c::
√

| Comp: [[E ,dt|=c1 ::
√
;

E ,dt|=c2 ::
√
]] =⇒

E ,dt|=c1 ;; c2 ::
√

— cf. 14.8
| If : [[E ,dt|=e::−PrimT Boolean;

E ,dt|=c1 ::
√
;

E ,dt|=c2 ::
√
]] =⇒

E ,dt|=If (e) c1 Else c2 ::
√

112

— cf. 14.10
| Loop: [[E ,dt|=e::−PrimT Boolean;

E ,dt|=c::
√
]] =⇒

E ,dt|=l· While(e) c::
√

— cf. 14.13, 14.15, 14.16
| Jmp: E ,dt|=Jmp jump::

√

— cf. 14.16
| Throw: [[E ,dt|=e::−Class tn;

prg E`tn�C SXcpt Throwable]] =⇒
E ,dt|=Throw e::

√

— cf. 14.18
| Try: [[E ,dt|=c1 ::

√
; prg E`tn�C SXcpt Throwable;

lcl E (VName vn)=None; E (|lcl := (lcl E)(VName vn 7→Class tn)|),dt|=c2 ::
√
]]

=⇒
E ,dt|=Try c1 Catch(tn vn) c2 ::

√

— cf. 14.18
| Fin: [[E ,dt|=c1 ::

√
; E ,dt|=c2 ::

√
]] =⇒
E ,dt|=c1 Finally c2 ::

√

| Init: [[is-class (prg E) C]] =⇒
E ,dt|=Init C ::

√

— Init is created on the fly during evaluation (see Eval.thy). The class isn’t necessarily accessible from the
points Init is called. Therefor we only demand is-class and not is-acc-class here.

— well-typed expressions

— cf. 15.8
| NewC : [[is-acc-class (prg E) (pkg E) C]] =⇒

E ,dt|=NewC C ::−Class C
— cf. 15.9
| NewA: [[is-acc-type (prg E) (pkg E) T ;

E ,dt|=i::−PrimT Integer]] =⇒
E ,dt|=New T [i]::−T .[]

— cf. 15.15
| Cast: [[E ,dt|=e::−T ; is-acc-type (prg E) (pkg E) T ′;

prg E`T�? T ′]] =⇒
E ,dt|=Cast T ′ e::−T ′

— cf. 15.19.2
| Inst: [[E ,dt|=e::−RefT T ; is-acc-type (prg E) (pkg E) (RefT T ′);

prg E`RefT T�? RefT T ′]] =⇒
E ,dt|=e InstOf T ′::−PrimT Boolean

— cf. 15.7.1
| Lit: [[typeof dt x = Some T]] =⇒

E ,dt|=Lit x::−T

| UnOp: [[E ,dt|=e::−Te; wt-unop unop Te; T=PrimT (unop-type unop)]]
=⇒
E ,dt|=UnOp unop e::−T

| BinOp: [[E ,dt|=e1 ::−T1 ; E ,dt|=e2 ::−T2 ; wt-binop (prg E) binop T1 T2 ;
T=PrimT (binop-type binop)]]
=⇒
E ,dt|=BinOp binop e1 e2 ::−T

Theory WellType 113

— cf. 15.10.2, 15.11.1
| Super : [[lcl E This = Some (Class C); C 6= Object;

class (prg E) C = Some c]] =⇒
E ,dt|=Super ::−Class (super c)

— cf. 15.13.1, 15.10.1, 15.12
| Acc: [[E ,dt|=va::=T]] =⇒

E ,dt|=Acc va::−T

— cf. 15.25, 15.25.1
| Ass: [[E ,dt|=va::=T ; va 6= LVar This;

E ,dt|=v ::−T ′;
prg E`T ′�T]] =⇒

E ,dt|=va:=v::−T ′

— cf. 15.24
| Cond: [[E ,dt|=e0 ::−PrimT Boolean;

E ,dt|=e1 ::−T1 ; E ,dt|=e2 ::−T2 ;
prg E`T1�T2 ∧ T = T2 ∨ prg E`T2�T1 ∧ T = T1]] =⇒

E ,dt|=e0 ? e1 : e2 ::−T

— cf. 15.11.1, 15.11.2, 15.11.3
| Call: [[E ,dt|=e::−RefT statT ;

E ,dt|=ps:: .=pTs;
max-spec (prg E) (cls E) statT (|name=mn,parTs=pTs|)
= {((statDeclT ,m),pTs ′)}

]] =⇒
E ,dt|={cls E ,statT ,invmode m e}e·mn({pTs ′}ps)::−(resTy m)

| Methd: [[is-class (prg E) C ;
methd (prg E) C sig = Some m;
E ,dt|=Body (declclass m) (stmt (mbody (mthd m)))::−T]] =⇒

E ,dt|=Methd C sig::−T
— The class C is the dynamic class of the method call (cf. Eval.thy). It hasn’t got to be directly accessible

from the current package pkg E. Only the static class must be accessible (enshured indirectly by Call). Note
that l is just a dummy value. It is only used in the smallstep semantics. To proof typesafety directly for the
smallstep semantics we would have to assume conformance of l here!

| Body: [[is-class (prg E) D;
E ,dt|=blk::

√
;

(lcl E) Result = Some T ;
is-type (prg E) T]] =⇒

E ,dt|=Body D blk::−T
— The class D implementing the method must not directly be accessible from the current package pkg E,
but can also be indirectly accessible due to inheritance (enshured in Call) The result type hasn’t got to be
accessible in Java! (If it is not accessible you can only assign it to Object). For dummy value l see rule Methd.

— well-typed variables

— cf. 15.13.1
| LVar : [[lcl E vn = Some T ; is-acc-type (prg E) (pkg E) T]] =⇒

E ,dt|=LVar vn::=T
— cf. 15.10.1
| FVar : [[E ,dt|=e::−Class C ;

accfield (prg E) (cls E) C fn = Some (statDeclC ,f)]] =⇒
E ,dt|={cls E ,statDeclC ,is-static f }e..fn::=(type f)

— cf. 15.12
| AVar : [[E ,dt|=e::−T .[];

E ,dt|=i::−PrimT Integer]] =⇒

114

E ,dt|=e.[i]::=T

— well-typed expression lists

— cf. 15.11.???
| Nil: E ,dt|=[]::

.
=[]

— cf. 15.11.???
| Cons: [[E ,dt|=e ::−T ;

E ,dt|=es:: .=Ts]] =⇒
E ,dt|=e#es:: .=T#Ts

abbreviation
wt-syntax :: env ⇒ [term,tys] ⇒ bool (‹-`-::-› [51 ,51 ,51] 50)
where E`t::T == E ,empty-dt|=t:: T

abbreviation
wt-stmt-syntax :: env ⇒ stmt ⇒ bool (‹-`-::

√
› [51 ,51] 50)

where E`s::
√

== E`In1r s :: Inl (PrimT Void)

abbreviation
ty-expr-syntax :: env ⇒ [expr , ty] ⇒ bool (‹-`-::−-› [51 ,51 ,51] 50)
where E`e::−T == E`In1l e :: Inl T

abbreviation
ty-var-syntax :: env ⇒ [var , ty] ⇒ bool (‹-`-::=-› [51 ,51 ,51] 50)
where E`e::=T == E`In2 e :: Inl T

abbreviation
ty-exprs-syntax :: env ⇒ [expr list, ty list] ⇒ bool (‹-`-:: .=-› [51 ,51 ,51] 50)
where E`e:: .=T == E`In3 e :: Inr T

notation (ASCII)
wt-syntax (‹-|−-::-› [51 ,51 ,51] 50) and
wt-stmt-syntax (‹-|−-:<>› [51 ,51] 50) and
ty-expr-syntax (‹-|−-:−-› [51 ,51 ,51] 50) and
ty-var-syntax (‹-|−-:=-› [51 ,51 ,51] 50) and
ty-exprs-syntax (‹-|−-:#-› [51 ,51 ,51] 50)

declare not-None-eq [simp del]
declare if-split [split del] if-split-asm [split del]
declare split-paired-All [simp del] split-paired-Ex [simp del]
setup ‹map-theory-simpset (fn ctxt => ctxt |> Simplifier .del-loop split-all-tac)›

inductive-cases wt-elim-cases [cases set]:
E ,dt|=In2 (LVar vn) ::T
E ,dt|=In2 ({accC ,statDeclC ,s}e..fn)::T
E ,dt|=In2 (e.[i]) ::T
E ,dt|=In1l (NewC C) ::T
E ,dt|=In1l (New T ′[i]) ::T
E ,dt|=In1l (Cast T ′ e) ::T
E ,dt|=In1l (e InstOf T ′) ::T
E ,dt|=In1l (Lit x) ::T
E ,dt|=In1l (UnOp unop e) ::T
E ,dt|=In1l (BinOp binop e1 e2) ::T
E ,dt|=In1l (Super) ::T

Theory WellType 115

E ,dt|=In1l (Acc va) ::T
E ,dt|=In1l (Ass va v) ::T
E ,dt|=In1l (e0 ? e1 : e2) ::T
E ,dt|=In1l ({accC ,statT ,mode}e·mn({pT ′}p))::T
E ,dt|=In1l (Methd C sig) ::T
E ,dt|=In1l (Body D blk) ::T
E ,dt|=In3 ([]) ::Ts
E ,dt|=In3 (e#es) ::Ts
E ,dt|=In1r Skip ::x
E ,dt|=In1r (Expr e) ::x
E ,dt|=In1r (c1 ;; c2) ::x
E ,dt|=In1r (l· c) ::x
E ,dt|=In1r (If (e) c1 Else c2) ::x
E ,dt|=In1r (l· While(e) c) ::x
E ,dt|=In1r (Jmp jump) ::x
E ,dt|=In1r (Throw e) ::x
E ,dt|=In1r (Try c1 Catch(tn vn) c2)::x
E ,dt|=In1r (c1 Finally c2) ::x
E ,dt|=In1r (Init C) ::x

declare not-None-eq [simp]
declare if-split [split] if-split-asm [split]
declare split-paired-All [simp] split-paired-Ex [simp]
setup ‹map-theory-simpset (fn ctxt => ctxt |> Simplifier .add-loop (split-all-tac, split-all-tac))›

lemma is-acc-class-is-accessible:
is-acc-class G P C =⇒ G`(Class C) accessible-in P

by (auto simp add: is-acc-class-def)

lemma is-acc-iface-is-iface: is-acc-iface G P I =⇒ is-iface G I
by (auto simp add: is-acc-iface-def)

lemma is-acc-iface-Iface-is-accessible:
is-acc-iface G P I =⇒ G`(Iface I) accessible-in P

by (auto simp add: is-acc-iface-def)

lemma is-acc-type-is-type: is-acc-type G P T =⇒ is-type G T
by (auto simp add: is-acc-type-def)

lemma is-acc-iface-is-accessible:
is-acc-type G P T =⇒ G`T accessible-in P

by (auto simp add: is-acc-type-def)

lemma wt-Methd-is-methd:
E`In1l (Methd C sig)::T =⇒ is-methd (prg E) C sig

apply (erule-tac wt-elim-cases)
apply clarsimp
apply (erule is-methdI , assumption)
done

Special versions of some typing rules, better suited to pattern match the conclusion (no selectors in
the conclusion)
lemma wt-Call:
[[E ,dt|=e::−RefT statT ; E ,dt|=ps:: .=pTs;

max-spec (prg E) (cls E) statT (|name=mn,parTs=pTs|)
= {((statDeclC ,m),pTs ′)};rT=(resTy m);accC=cls E ;

mode = invmode m e]] =⇒ E ,dt|={accC ,statT ,mode}e·mn({pTs ′}ps)::−rT
by (auto elim: wt.Call)

116

lemma invocationTypeExpr-noClassD:
[[E`e::−RefT statT]]
=⇒ (∀ statC . statT 6= ClassT statC) −→ invmode m e 6= SuperM

proof −
assume wt: E`e::−RefT statT
show ?thesis
proof (cases e=Super)

case True
with wt obtain C where statT = ClassT C by (blast elim: wt-elim-cases)
then show ?thesis by blast

next
case False then show ?thesis

by (auto simp add: invmode-def)
qed

qed

lemma wt-Super :
[[lcl E This = Some (Class C); C 6= Object; class (prg E) C = Some c; D=super c]]
=⇒ E ,dt|=Super ::−Class D
by (auto elim: wt.Super)

lemma wt-FVar :
[[E ,dt|=e::−Class C ; accfield (prg E) (cls E) C fn = Some (statDeclC ,f);

sf=is-static f ; fT=(type f); accC=cls E]]
=⇒ E ,dt|={accC ,statDeclC ,sf }e..fn::=fT
by (auto dest: wt.FVar)

lemma wt-init [iff]: E ,dt|=Init C ::
√

= is-class (prg E) C
by (auto elim: wt-elim-cases intro: wt.Init)

declare wt.Skip [iff]

lemma wt-StatRef :
is-acc-type (prg E) (pkg E) (RefT rt) =⇒ E`StatRef rt::−RefT rt

apply (rule wt.Cast)
apply (rule wt.Lit)
apply (simp (no-asm))
apply (simp (no-asm-simp))
apply (rule cast.widen)
apply (simp (no-asm))
done

lemma wt-Inj-elim:∧
E . E ,dt|=t::U =⇒ case t of

In1 ec ⇒ (case ec of
Inl e ⇒ ∃T . U=Inl T
| Inr s ⇒ U=Inl (PrimT Void))

| In2 e ⇒ (∃T . U=Inl T)
| In3 e ⇒ (∃T . U=Inr T)

apply (erule wt.induct)
apply auto
done

— In the special syntax to distinguish the typing judgements for expressions, statements, variables and
expression lists the kind of term corresponds to the kind of type in the end e.g. An statement (injection
In3 into terms, always has type void (injection Inl into the generalised types. The following simplification
procedures establish these kinds of correlation.

Theory WellType 117

lemma wt-expr-eq: E ,dt|=In1l t::U = (∃T . U=Inl T ∧ E ,dt|=t::−T)
by (auto, frule wt-Inj-elim, auto)

lemma wt-var-eq: E ,dt|=In2 t::U = (∃T . U=Inl T ∧ E ,dt|=t::=T)
by (auto, frule wt-Inj-elim, auto)

lemma wt-exprs-eq: E ,dt|=In3 t::U = (∃Ts. U=Inr Ts ∧ E ,dt|=t:: .=Ts)
by (auto, frule wt-Inj-elim, auto)

lemma wt-stmt-eq: E ,dt|=In1r t::U = (U=Inl(PrimT Void)∧E ,dt|=t::
√
)

by (auto, frule wt-Inj-elim, auto, frule wt-Inj-elim, auto)

simproc-setup wt-expr (E ,dt|=In1l t::U) = ‹
K (K (fn ct =>
(case Thm.term-of ct of
(- $ - $ - $ - $ (Const - $ -)) => NONE
| - => SOME (mk-meta-eq @{thm wt-expr-eq}))))›

simproc-setup wt-var (E ,dt|=In2 t::U) = ‹
K (K (fn ct =>
(case Thm.term-of ct of
(- $ - $ - $ - $ (Const - $ -)) => NONE
| - => SOME (mk-meta-eq @{thm wt-var-eq}))))›

simproc-setup wt-exprs (E ,dt|=In3 t::U) = ‹
K (K (fn ct =>
(case Thm.term-of ct of
(- $ - $ - $ - $ (Const - $ -)) => NONE
| - => SOME (mk-meta-eq @{thm wt-exprs-eq}))))›

simproc-setup wt-stmt (E ,dt|=In1r t::U) = ‹
K (K (fn ct =>
(case Thm.term-of ct of
(- $ - $ - $ - $ (Const - $ -)) => NONE
| - => SOME (mk-meta-eq @{thm wt-stmt-eq}))))›

lemma wt-elim-BinOp:
[[E ,dt|=In1l (BinOp binop e1 e2)::T ;∧

T1 T2 T3 .
[[E ,dt|=e1 ::−T1 ; E ,dt|=e2 ::−T2 ; wt-binop (prg E) binop T1 T2 ;

E ,dt|=(if b then In1l e2 else In1r Skip)::T3 ;
T = Inl (PrimT (binop-type binop))]]

=⇒ P]]
=⇒ P
apply (erule wt-elim-cases)
apply (cases b)
apply auto
done

lemma Inj-eq-lemma [simp]:
(∀T . (∃T ′. T = Inj T ′ ∧ P T ′) −→ Q T) = (∀T ′. P T ′ −→ Q (Inj T ′))

by auto

lemma single-valued-tys-lemma [rule-format (no-asm)]:
∀S T . G`S�T −→ G`T�S −→ S = T =⇒ E ,dt|=t::T =⇒

G = prg E −→ (∀T ′. E ,dt|=t::T ′ −→ T = T ′)
apply (cases E , erule wt.induct)
apply (safe del: disjE)

118

apply (simp-all (no-asm-use) split del: if-split-asm)
apply (safe del: disjE)

apply (tactic ‹ALLGOALS (fn i =>
if i = 11 then EVERY ′

[Rule-Insts.thin-tac context E ,dt|=e0 ::−PrimT Boolean [(binding ‹E›, NONE , NoSyn)],
Rule-Insts.thin-tac context E ,dt|=e1 ::−T1 [(binding ‹E›, NONE , NoSyn), (binding ‹T1 ›, NONE ,

NoSyn)],
Rule-Insts.thin-tac context E ,dt|=e2 ::−T2 [(binding ‹E›, NONE , NoSyn), (binding ‹T2 ›, NONE ,

NoSyn)]] i
else Rule-Insts.thin-tac context All P [(binding ‹P›, NONE , NoSyn)] i)›)

apply (tactic ‹ALLGOALS (eresolve-tac context @{thms wt-elim-cases})›)
apply (simp-all (no-asm-use) split del: if-split-asm)
apply (erule-tac [12] V = All P for P in thin-rl)
apply (blast del: equalityCE dest: sym [THEN trans])+
done

lemma single-valued-tys:
ws-prog (prg E) =⇒ single-valued {(t,T). E ,dt|=t::T}
apply (unfold single-valued-def)
apply clarsimp
apply (rule single-valued-tys-lemma)
apply (auto intro!: widen-antisym)
done

lemma typeof-empty-is-type: typeof (λa. None) v = Some T =⇒ is-type G T
by (induct v) auto

lemma typeof-is-type: (∀ a. v 6= Addr a) =⇒ ∃T . typeof dt v = Some T ∧ is-type G T
by (induct v) auto

end

Chapter 12

DefiniteAssignment

1 Definite Assignment
theory DefiniteAssignment imports WellType begin

Definite Assignment Analysis (cf. 16)
The definite assignment analysis approximates the sets of local variables that will be assigned at
a certain point of evaluation, and ensures that we will only read variables which previously were
assigned. It should conform to the following idea: If the evaluation of a term completes normally
(no abruption (exception, break, continue, return) appeared) , the set of local variables calculated
by the analysis is a subset of the variables that were actually assigned during evaluation.
To get more precise information about the sets of assigned variables the analysis includes the fol-
lowing optimisations:

• Inside of a while loop we also take care of the variables assigned before break statements, since
the break causes the while loop to continue normally.

• For conditional statements we take care of constant conditions to statically determine the path
of evaluation.

• Inside a distinct path of a conditional statements we know to which boolean value the condition
has evaluated to, and so can retrieve more information about the variables assigned during
evaluation of the boolean condition.

Since in our model of Java the return values of methods are stored in a local variable we also ensure
that every path of (normal) evaluation will assign the result variable, or in the sense of real Java
every path ends up in and return instruction.
Not covered yet:

• analysis of definite unassigned

• special treatment of final fields

Correct nesting of jump statements

For definite assignment it becomes crucial, that jumps (break, continue, return) are nested correctly
i.e. a continue jump is nested in a matching while statement, a break jump is nested in a proper
label statement, a class initialiser does not terminate abruptly with a return. With this we can for
example ensure that evaluation of an expression will never end up with a jump, since no breaks,
continues or returns are allowed in an expression.
primrec jumpNestingOkS :: jump set ⇒ stmt ⇒ bool

119

120

where
jumpNestingOkS jmps (Skip) = True
| jumpNestingOkS jmps (Expr e) = True
| jumpNestingOkS jmps (j· s) = jumpNestingOkS ({j} ∪ jmps) s
| jumpNestingOkS jmps (c1 ;;c2) = (jumpNestingOkS jmps c1 ∧

jumpNestingOkS jmps c2)
| jumpNestingOkS jmps (If (e) c1 Else c2) = (jumpNestingOkS jmps c1 ∧

jumpNestingOkS jmps c2)
| jumpNestingOkS jmps (l· While(e) c) = jumpNestingOkS ({Cont l} ∪ jmps) c
— The label of the while loop only handles continue jumps. Breaks are only handled by Lab
| jumpNestingOkS jmps (Jmp j) = (j ∈ jmps)
| jumpNestingOkS jmps (Throw e) = True
| jumpNestingOkS jmps (Try c1 Catch(C vn) c2) = (jumpNestingOkS jmps c1 ∧

jumpNestingOkS jmps c2)
| jumpNestingOkS jmps (c1 Finally c2) = (jumpNestingOkS jmps c1 ∧

jumpNestingOkS jmps c2)
| jumpNestingOkS jmps (Init C) = True
— wellformedness of the program must enshure that for all initializers jumpNestingOkS holds

— Dummy analysis for intermediate smallstep term FinA
| jumpNestingOkS jmps (FinA a c) = False

definition jumpNestingOk :: jump set ⇒ term ⇒ bool where
jumpNestingOk jmps t = (case t of

In1 se ⇒ (case se of
Inl e ⇒ True
| Inr s ⇒ jumpNestingOkS jmps s)

| In2 v ⇒ True
| In3 es ⇒ True)

lemma jumpNestingOk-expr-simp [simp]: jumpNestingOk jmps (In1l e) = True
by (simp add: jumpNestingOk-def)

lemma jumpNestingOk-expr-simp1 [simp]: jumpNestingOk jmps 〈e::expr〉 = True
by (simp add: inj-term-simps)

lemma jumpNestingOk-stmt-simp [simp]:
jumpNestingOk jmps (In1r s) = jumpNestingOkS jmps s

by (simp add: jumpNestingOk-def)

lemma jumpNestingOk-stmt-simp1 [simp]:
jumpNestingOk jmps 〈s::stmt〉 = jumpNestingOkS jmps s

by (simp add: inj-term-simps)

lemma jumpNestingOk-var-simp [simp]: jumpNestingOk jmps (In2 v) = True
by (simp add: jumpNestingOk-def)

lemma jumpNestingOk-var-simp1 [simp]: jumpNestingOk jmps 〈v::var〉 = True
by (simp add: inj-term-simps)

lemma jumpNestingOk-expr-list-simp [simp]: jumpNestingOk jmps (In3 es) = True
by (simp add: jumpNestingOk-def)

lemma jumpNestingOk-expr-list-simp1 [simp]:
jumpNestingOk jmps 〈es::expr list〉 = True

by (simp add: inj-term-simps)

Theory DefiniteAssignment 121

Calculation of assigned variables for boolean expressions

2 Very restricted calculation fallback calculation

primrec the-LVar-name :: var ⇒ lname
where the-LVar-name (LVar n) = n

primrec assignsE :: expr ⇒ lname set
and assignsV :: var ⇒ lname set
and assignsEs:: expr list ⇒ lname set

where
assignsE (NewC c) = {}
| assignsE (NewA t e) = assignsE e
| assignsE (Cast t e) = assignsE e
| assignsE (e InstOf r) = assignsE e
| assignsE (Lit val) = {}
| assignsE (UnOp unop e) = assignsE e
| assignsE (BinOp binop e1 e2) = (if binop=CondAnd ∨ binop=CondOr

then (assignsE e1)
else (assignsE e1) ∪ (assignsE e2))

| assignsE (Super) = {}
| assignsE (Acc v) = assignsV v
| assignsE (v:=e) = (assignsV v) ∪ (assignsE e) ∪

(if ∃ n. v=(LVar n) then {the-LVar-name v}
else {})

| assignsE (b? e1 : e2) = (assignsE b) ∪ ((assignsE e1) ∩ (assignsE e2))
| assignsE ({accC ,statT ,mode}objRef ·mn({pTs}args))

= (assignsE objRef) ∪ (assignsEs args)
— Only dummy analysis for intermediate expressions Methd, Body, InsInitE and Callee
| assignsE (Methd C sig) = {}
| assignsE (Body C s) = {}
| assignsE (InsInitE s e) = {}
| assignsE (Callee l e) = {}

| assignsV (LVar n) = {}
| assignsV ({accC ,statDeclC ,stat}objRef ..fn) = assignsE objRef
| assignsV (e1 .[e2]) = assignsE e1 ∪ assignsE e2

| assignsEs [] = {}
| assignsEs (e#es) = assignsE e ∪ assignsEs es

definition assigns :: term ⇒ lname set where
assigns t = (case t of

In1 se ⇒ (case se of
Inl e ⇒ assignsE e
| Inr s ⇒ {})

| In2 v ⇒ assignsV v
| In3 es ⇒ assignsEs es)

lemma assigns-expr-simp [simp]: assigns (In1l e) = assignsE e
by (simp add: assigns-def)

lemma assigns-expr-simp1 [simp]: assigns (〈e〉) = assignsE e
by (simp add: inj-term-simps)

lemma assigns-stmt-simp [simp]: assigns (In1r s) = {}
by (simp add: assigns-def)

lemma assigns-stmt-simp1 [simp]: assigns (〈s::stmt〉) = {}

122

by (simp add: inj-term-simps)

lemma assigns-var-simp [simp]: assigns (In2 v) = assignsV v
by (simp add: assigns-def)

lemma assigns-var-simp1 [simp]: assigns (〈v〉) = assignsV v
by (simp add: inj-term-simps)

lemma assigns-expr-list-simp [simp]: assigns (In3 es) = assignsEs es
by (simp add: assigns-def)

lemma assigns-expr-list-simp1 [simp]: assigns (〈es〉) = assignsEs es
by (simp add: inj-term-simps)

3 Analysis of constant expressions
primrec constVal :: expr ⇒ val option
where

constVal (NewC c) = None
| constVal (NewA t e) = None
| constVal (Cast t e) = None
| constVal (Inst e r) = None
| constVal (Lit val) = Some val
| constVal (UnOp unop e) = (case (constVal e) of

None ⇒ None
| Some v ⇒ Some (eval-unop unop v))

| constVal (BinOp binop e1 e2) = (case (constVal e1) of
None ⇒ None
| Some v1 ⇒ (case (constVal e2) of

None ⇒ None
| Some v2 ⇒ Some (eval-binop

binop v1 v2)))
| constVal (Super) = None
| constVal (Acc v) = None
| constVal (Ass v e) = None
| constVal (Cond b e1 e2) = (case (constVal b) of

None ⇒ None
| Some bv⇒ (case the-Bool bv of

True ⇒ (case (constVal e2) of
None ⇒ None
| Some v ⇒ constVal e1)

| False⇒ (case (constVal e1) of
None ⇒ None
| Some v ⇒ constVal e2)))

— Note that constVal (Cond b e1 e2) is stricter as it could be. It requires that all tree expressions are
constant even if we can decide which branch to choose, provided the constant value of b
| constVal (Call accC statT mode objRef mn pTs args) = None
| constVal (Methd C sig) = None
| constVal (Body C s) = None
| constVal (InsInitE s e) = None
| constVal (Callee l e) = None

lemma constVal-Some-induct [consumes 1 , case-names Lit UnOp BinOp CondL CondR]:
assumes const: constVal e = Some v and

hyp-Lit:
∧

v. P (Lit v) and
hyp-UnOp:

∧
unop e ′. P e ′ =⇒ P (UnOp unop e ′) and

hyp-BinOp:
∧

binop e1 e2 . [[P e1 ; P e2]] =⇒ P (BinOp binop e1 e2) and
hyp-CondL:

∧
b bv e1 e2 . [[constVal b = Some bv; the-Bool bv; P b; P e1]]

=⇒ P (b? e1 : e2) and

Theory DefiniteAssignment 123

hyp-CondR:
∧

b bv e1 e2 . [[constVal b = Some bv; ¬the-Bool bv; P b; P e2]]
=⇒ P (b? e1 : e2)

shows P e
proof −

have
∧

v. constVal e = Some v =⇒ P e
proof (induct e)

case Lit
show ?case by (rule hyp-Lit)

next
case UnOp
thus ?case

by (auto intro: hyp-UnOp)
next

case BinOp
thus ?case

by (auto intro: hyp-BinOp)
next

case (Cond b e1 e2)
then obtain v where v: constVal (b ? e1 : e2) = Some v

by blast
then obtain bv where bv: constVal b = Some bv

by simp
show ?case
proof (cases the-Bool bv)

case True
with Cond show ?thesis using v bv

by (auto intro: hyp-CondL)
next

case False
with Cond show ?thesis using v bv

by (auto intro: hyp-CondR)
qed

qed (simp-all add: hyp-Lit)
with const
show ?thesis

by blast
qed

lemma assignsE-const-simp: constVal e = Some v =⇒ assignsE e = {}
by (induct rule: constVal-Some-induct) simp-all

4 Main analysis for boolean expressions

Assigned local variables after evaluating the expression if it evaluates to a specific boolean value.
If the expression cannot evaluate to a Boolean value UNIV is returned. If we expect true/false the
opposite constant false/true will also lead to UNIV.
primrec assigns-if :: bool ⇒ expr ⇒ lname set
where

assigns-if b (NewC c) = UNIV — can never evaluate to Boolean
| assigns-if b (NewA t e) = UNIV — can never evaluate to Boolean
| assigns-if b (Cast t e) = assigns-if b e
| assigns-if b (Inst e r) = assignsE e — Inst has type Boolean but e is a reference type
| assigns-if b (Lit val) = (if val=Bool b then {} else UNIV)
| assigns-if b (UnOp unop e) = (case constVal (UnOp unop e) of

None ⇒ (if unop = UNot
then assigns-if (¬b) e
else UNIV)

| Some v ⇒ (if v=Bool b

124

then {}
else UNIV))

| assigns-if b (BinOp binop e1 e2)
= (case constVal (BinOp binop e1 e2) of

None ⇒ (if binop=CondAnd then
(case b of

True ⇒ assigns-if True e1 ∪ assigns-if True e2
| False ⇒ assigns-if False e1 ∩

(assigns-if True e1 ∪ assigns-if False e2))
else
(if binop=CondOr then

(case b of
True ⇒ assigns-if True e1 ∩

(assigns-if False e1 ∪ assigns-if True e2)
| False ⇒ assigns-if False e1 ∪ assigns-if False e2)

else assignsE e1 ∪ assignsE e2))
| Some v ⇒ (if v=Bool b then {} else UNIV))

| assigns-if b (Super) = UNIV — can never evaluate to Boolean
| assigns-if b (Acc v) = (assignsV v)
| assigns-if b (v := e) = (assignsE (Ass v e))
| assigns-if b (c? e1 : e2) = (assignsE c) ∪

(case (constVal c) of
None ⇒ (assigns-if b e1) ∩

(assigns-if b e2)
| Some bv ⇒ (case the-Bool bv of

True ⇒ assigns-if b e1
| False ⇒ assigns-if b e2))

| assigns-if b ({accC ,statT ,mode}objRef ·mn({pTs}args))
= assignsE ({accC ,statT ,mode}objRef ·mn({pTs}args))

— Only dummy analysis for intermediate expressions Methd, Body, InsInitE and Callee
| assigns-if b (Methd C sig) = {}
| assigns-if b (Body C s) = {}
| assigns-if b (InsInitE s e) = {}
| assigns-if b (Callee l e) = {}

lemma assigns-if-const-b-simp:
assumes boolConst: constVal e = Some (Bool b) (is ?Const b e)
shows assigns-if b e = {} (is ?Ass b e)

proof −
have

∧
b. ?Const b e =⇒ ?Ass b e

proof (induct e)
case Lit
thus ?case by simp

next
case UnOp
thus ?case by simp

next
case (BinOp binop)
thus ?case

by (cases binop) (simp-all)
next

case (Cond c e1 e2 b)
note hyp-c = ‹

∧
b. ?Const b c =⇒ ?Ass b c›

note hyp-e1 = ‹
∧

b. ?Const b e1 =⇒ ?Ass b e1 ›
note hyp-e2 = ‹

∧
b. ?Const b e2 =⇒ ?Ass b e2 ›

note const = ‹constVal (c ? e1 : e2) = Some (Bool b)›
then obtain bv where bv: constVal c = Some bv

by simp

Theory DefiniteAssignment 125

hence emptyC : assignsE c = {} by (rule assignsE-const-simp)
show ?case
proof (cases the-Bool bv)

case True
with const bv
have ?Const b e1 by simp
hence ?Ass b e1 by (rule hyp-e1)
with emptyC bv True
show ?thesis

by simp
next

case False
with const bv
have ?Const b e2 by simp
hence ?Ass b e2 by (rule hyp-e2)
with emptyC bv False
show ?thesis

by simp
qed

qed (simp-all)
with boolConst
show ?thesis

by blast
qed

lemma assigns-if-const-not-b-simp:
assumes boolConst: constVal e = Some (Bool b) (is ?Const b e)
shows assigns-if (¬b) e = UNIV (is ?Ass b e)

proof −
have

∧
b. ?Const b e =⇒ ?Ass b e

proof (induct e)
case Lit
thus ?case by simp

next
case UnOp
thus ?case by simp

next
case (BinOp binop)
thus ?case

by (cases binop) (simp-all)
next

case (Cond c e1 e2 b)
note hyp-c = ‹

∧
b. ?Const b c =⇒ ?Ass b c›

note hyp-e1 = ‹
∧

b. ?Const b e1 =⇒ ?Ass b e1 ›
note hyp-e2 = ‹

∧
b. ?Const b e2 =⇒ ?Ass b e2 ›

note const = ‹constVal (c ? e1 : e2) = Some (Bool b)›
then obtain bv where bv: constVal c = Some bv

by simp
show ?case
proof (cases the-Bool bv)

case True
with const bv
have ?Const b e1 by simp
hence ?Ass b e1 by (rule hyp-e1)
with bv True
show ?thesis

by simp
next

case False

126

with const bv
have ?Const b e2 by simp
hence ?Ass b e2 by (rule hyp-e2)
with bv False
show ?thesis

by simp
qed

qed (simp-all)
with boolConst
show ?thesis

by blast
qed

5 Lifting set operations to range of tables (map to a set)
definition

union-ts :: (′a, ′b) tables ⇒ (′a, ′b) tables ⇒ (′a, ′b) tables (‹- ⇒∪ -› [67 ,67] 65)
where A ⇒∪ B = (λ k. A k ∪ B k)

definition
intersect-ts :: (′a, ′b) tables ⇒ (′a, ′b) tables ⇒ (′a, ′b) tables (‹- ⇒∩ -› [72 ,72] 71)
where A ⇒∩ B = (λk. A k ∩ B k)

definition
all-union-ts :: (′a, ′b) tables ⇒ ′b set ⇒ (′a, ′b) tables (infixl ‹⇒∪∀ › 40)
where (A ⇒∪∀ B) = (λ k. A k ∪ B)

Binary union of tables
lemma union-ts-iff [simp]: (c ∈ (A ⇒∪ B) k) = (c ∈ A k ∨ c ∈ B k)

by (unfold union-ts-def) blast

lemma union-tsI1 [elim?]: c ∈ A k =⇒ c ∈ (A ⇒∪ B) k
by simp

lemma union-tsI2 [elim?]: c ∈ B k =⇒ c ∈ (A ⇒∪ B) k
by simp

lemma union-tsCI [intro!]: (c /∈ B k =⇒ c ∈ A k) =⇒ c ∈ (A ⇒∪ B) k
by auto

lemma union-tsE [elim!]:
[[c ∈ (A ⇒∪ B) k; (c ∈ A k =⇒ P); (c ∈ B k =⇒ P)]] =⇒ P
by (unfold union-ts-def) blast

Binary intersection of tables
lemma intersect-ts-iff [simp]: c ∈ (A ⇒∩ B) k = (c ∈ A k ∧ c ∈ B k)

by (unfold intersect-ts-def) blast

lemma intersect-tsI [intro!]: [[c ∈ A k; c ∈ B k]] =⇒ c ∈ (A ⇒∩ B) k
by simp

lemma intersect-tsD1 : c ∈ (A ⇒∩ B) k =⇒ c ∈ A k
by simp

lemma intersect-tsD2 : c ∈ (A ⇒∩ B) k =⇒ c ∈ B k
by simp

Theory DefiniteAssignment 127

lemma intersect-tsE [elim!]:
[[c ∈ (A ⇒∩ B) k; [[c ∈ A k; c ∈ B k]] =⇒ P]] =⇒ P

by simp

All-Union of tables and set
lemma all-union-ts-iff [simp]: (c ∈ (A ⇒∪∀ B) k) = (c ∈ A k ∨ c ∈ B)

by (unfold all-union-ts-def) blast

lemma all-union-tsI1 [elim?]: c ∈ A k =⇒ c ∈ (A ⇒∪∀ B) k
by simp

lemma all-union-tsI2 [elim?]: c ∈ B =⇒ c ∈ (A ⇒∪∀ B) k
by simp

lemma all-union-tsCI [intro!]: (c /∈ B =⇒ c ∈ A k) =⇒ c ∈ (A ⇒∪∀ B) k
by auto

lemma all-union-tsE [elim!]:
[[c ∈ (A ⇒∪∀ B) k; (c ∈ A k =⇒ P); (c ∈ B =⇒ P)]] =⇒ P
by (unfold all-union-ts-def) blast

The rules of definite assignment
type-synonym breakass = (label, lname) tables
— Mapping from a break label, to the set of variables that will be assigned if the evaluation terminates with
this break

record assigned =
nrm :: lname set — Definetly assigned variables for normal completion
brk :: breakass — Definetly assigned variables for abrupt completion with a break

definition
rmlab :: ′a ⇒ (′a, ′b) tables ⇒ (′a, ′b) tables
where rmlab k A = (λx. if x=k then UNIV else A x)

definition
range-inter-ts :: (′a, ′b) tables ⇒ ′b set (‹⇒

⋂
-› 80)

where ⇒
⋂

A = {x |x. ∀ k. x ∈ A k}

In E` B »t» A, B denotes the ”assigned” variables before evaluating term t, whereas A denotes the
”assigned” variables after evaluating term t. The environment E is only needed for the conditional -
? - : -. The definite assignment rules refer to the typing rules here to distinguish boolean and other
expressions.
inductive

da :: env ⇒ lname set ⇒ term ⇒ assigned ⇒ bool (‹-` - »-» -› [65 ,65 ,65 ,65] 71)
where

Skip: Env` B »〈Skip〉» (|nrm=B,brk=λ l. UNIV |)

| Expr : Env` B »〈e〉» A
=⇒
Env` B »〈Expr e〉» A

| Lab: [[Env` B »〈c〉» C ; nrm A = nrm C ∩ (brk C) l; brk A = rmlab l (brk C)]]
=⇒
Env` B »〈Break l· c〉» A

| Comp: [[Env` B »〈c1 〉» C1 ; Env` nrm C1 »〈c2 〉» C2 ;

128

nrm A = nrm C2 ; brk A = (brk C1) ⇒∩ (brk C2)]]
=⇒
Env` B »〈c1 ;; c2 〉» A

| If : [[Env` B »〈e〉» E ;
Env` (B ∪ assigns-if True e) »〈c1 〉» C1 ;
Env` (B ∪ assigns-if False e) »〈c2 〉» C2 ;
nrm A = nrm C1 ∩ nrm C2 ;
brk A = brk C1 ⇒∩ brk C2]]
=⇒
Env` B »〈If (e) c1 Else c2 〉» A

— Note that E is not further used, because we take the specialized sets that also consider if the expression
evaluates to true or false. Inside of e there is no break or finally, so the break map of E will be the trivial
one. So Env` B »〈e〉» E is just used to ensure the definite assignment in expression e. Notice the implicit
analysis of a constant boolean expression e in this rule. For example, if e is constantly True then assigns-if
False e = UNIV and therefor nrm C2 = UNIV. So finally nrm A = nrm C1. For the break maps this trick
workd too, because the trivial break map will map all labels to UNIV. In the example, if no break occurs
in c2 the break maps will trivially map to UNIV and if a break occurs it will map to UNIV too, because
assigns-if False e = UNIV. So in the intersection of the break maps the path c2 will have no contribution.

| Loop: [[Env` B »〈e〉» E ;
Env` (B ∪ assigns-if True e) »〈c〉» C ;
nrm A = nrm C ∩ (B ∪ assigns-if False e);
brk A = brk C]]
=⇒
Env` B »〈l· While(e) c〉» A

— The Loop rule resembles some of the ideas of the If rule. For the nrm A the set B ∪ assigns-if False e will
be UNIV if the condition is constantly true. To normally exit the while loop, we must consider the body c
to be completed normally (nrm C) or with a break. But in this model, the label l of the loop only handles
continue labels, not break labels. The break label will be handled by an enclosing Lab statement. So we don’t
have to handle the breaks specially.

| Jmp: [[jump=Ret −→ Result ∈ B;
nrm A = UNIV ;
brk A = (case jump of

Break l ⇒ λ k. if k=l then B else UNIV
| Cont l ⇒ λ k. UNIV
| Ret ⇒ λ k. UNIV)]]

=⇒
Env` B »〈Jmp jump〉» A

— In case of a break to label l the corresponding break set is all variables assigned before the break. The
assigned variables for normal completion of the Jmp is UNIV, because the statement will never complete
normally. For continue and return the break map is the trivial one. In case of a return we enshure that the
result value is assigned.

| Throw: [[Env` B »〈e〉» E ; nrm A = UNIV ; brk A = (λ l. UNIV)]]
=⇒ Env` B »〈Throw e〉» A

| Try: [[Env` B »〈c1 〉» C1 ;
Env(|lcl := (lcl Env)(VName vn 7→Class C)|)` (B ∪ {VName vn}) »〈c2 〉» C2 ;
nrm A = nrm C1 ∩ nrm C2 ;
brk A = brk C1 ⇒∩ brk C2]]
=⇒ Env` B »〈Try c1 Catch(C vn) c2 〉» A

| Fin: [[Env` B »〈c1 〉» C1 ;
Env` B »〈c2 〉» C2 ;
nrm A = nrm C1 ∪ nrm C2 ;
brk A = ((brk C1) ⇒∪∀ (nrm C2)) ⇒∩ (brk C2)]]

Theory DefiniteAssignment 129

=⇒
Env` B »〈c1 Finally c2 〉» A

— The set of assigned variables before execution c2 are the same as before execution c1, because c1 could
throw an exception and so we can’t guarantee that any variable will be assigned in c1. The Finally statement
completes normally if both c1 and c2 complete normally. If c1 completes abruptly with a break, then c2 also
will be executed and may terminate normally or with a break. The overall break map then is the intersection
of the maps of both paths. If c2 terminates normally we have to extend all break sets in brk C1 with nrm
C2 (⇒∪∀). If c2 exits with a break this break will appear in the overall result state. We don’t know if c1
completed normally or abruptly (maybe with an exception not only a break) so c1 has no contribution to
the break map following this path.

— Evaluation of expressions and the break sets of definite assignment: Thinking of a Java expression we
assume that we can never have a break statement inside of a expression. So for all expressions the break
sets could be set to the trivial one: λl. UNIV. But we can’t trivially proof, that evaluating an expression
will never result in a break, allthough Java expressions allready syntactically don’t allow nested stetements
in them. The reason are the nested class initialzation statements which are inserted by the evaluation rules.
So to proof the absence of a break we need to ensure, that the initialization statements will never end up
in a break. In a wellfromed initialization statement, of course, were breaks are nested correctly inside of
Lab or Loop statements evaluation of the whole initialization statement will never result in a break, because
this break will be handled inside of the statement. But for simplicity we haven’t added the analysis of the
correct nesting of breaks in the typing judgments right now. So we have decided to adjust the rules of definite
assignment to fit to these circumstances. If an initialization is involved during evaluation of the expression
(evaluation rules FVar, NewC and NewA

| Init: Env` B »〈Init C 〉» (|nrm=B,brk=λ l. UNIV |)
— Wellformedness of a program will ensure, that every static initialiser is definetly assigned and the jumps are
nested correctly. The case here for Init is just for convenience, to get a proper precondition for the induction
hypothesis in various proofs, so that we don’t have to expand the initialisation on every point where it is
triggerred by the evaluation rules.
| NewC : Env` B »〈NewC C 〉» (|nrm=B,brk=λ l. UNIV |)

| NewA: Env` B »〈e〉» A
=⇒
Env` B »〈New T [e]〉» A

| Cast: Env` B »〈e〉» A
=⇒
Env` B »〈Cast T e〉» A

| Inst: Env` B »〈e〉» A
=⇒
Env` B »〈e InstOf T 〉» A

| Lit: Env` B »〈Lit v〉» (|nrm=B,brk=λ l. UNIV |)

| UnOp: Env` B »〈e〉» A
=⇒
Env` B »〈UnOp unop e〉» A

| CondAnd: [[Env` B »〈e1 〉» E1 ; Env` (B ∪ assigns-if True e1) »〈e2 〉» E2 ;
nrm A = B ∪ (assigns-if True (BinOp CondAnd e1 e2) ∩

assigns-if False (BinOp CondAnd e1 e2));
brk A = (λ l. UNIV)]]
=⇒
Env` B »〈BinOp CondAnd e1 e2 〉» A

| CondOr : [[Env` B »〈e1 〉» E1 ; Env` (B ∪ assigns-if False e1) »〈e2 〉» E2 ;
nrm A = B ∪ (assigns-if True (BinOp CondOr e1 e2) ∩

assigns-if False (BinOp CondOr e1 e2));

130

brk A = (λ l. UNIV)]]
=⇒
Env` B »〈BinOp CondOr e1 e2 〉» A

| BinOp: [[Env` B »〈e1 〉» E1 ; Env` nrm E1 »〈e2 〉» A;
binop 6= CondAnd; binop 6= CondOr]]
=⇒
Env` B »〈BinOp binop e1 e2 〉» A

| Super : This ∈ B
=⇒
Env` B »〈Super〉» (|nrm=B,brk=λ l. UNIV |)

| AccLVar : [[vn ∈ B;
nrm A = B; brk A = (λ k. UNIV)]]
=⇒
Env` B »〈Acc (LVar vn)〉» A

— To properly access a local variable we have to test the definite assignment here. The variable must occur
in the set B

| Acc: [[∀ vn. v 6= LVar vn;
Env` B »〈v〉» A]]
=⇒
Env` B »〈Acc v〉» A

| AssLVar : [[Env` B »〈e〉» E ; nrm A = nrm E ∪ {vn}; brk A = brk E]]
=⇒
Env` B »〈(LVar vn) := e〉» A

| Ass: [[∀ vn. v 6= LVar vn; Env` B »〈v〉» V ; Env` nrm V »〈e〉» A]]
=⇒
Env` B »〈v := e〉» A

| CondBool: [[Env`(c ? e1 : e2)::−(PrimT Boolean);
Env` B »〈c〉» C ;
Env` (B ∪ assigns-if True c) »〈e1 〉» E1 ;
Env` (B ∪ assigns-if False c) »〈e2 〉» E2 ;
nrm A = B ∪ (assigns-if True (c ? e1 : e2) ∩

assigns-if False (c ? e1 : e2));
brk A = (λ l. UNIV)]]
=⇒
Env` B »〈c ? e1 : e2 〉» A

| Cond: [[¬ Env`(c ? e1 : e2)::−(PrimT Boolean);
Env` B »〈c〉» C ;
Env` (B ∪ assigns-if True c) »〈e1 〉» E1 ;
Env` (B ∪ assigns-if False c) »〈e2 〉» E2 ;
nrm A = nrm E1 ∩ nrm E2 ; brk A = (λ l. UNIV)]]
=⇒
Env` B »〈c ? e1 : e2 〉» A

| Call: [[Env` B »〈e〉» E ; Env` nrm E »〈args〉» A]]
=⇒
Env` B »〈{accC ,statT ,mode}e·mn({pTs}args)〉» A

— The interplay of Call, Methd and Body: Why rules for Methd and Body at all? Note that a Java source
program will not include bare Methd or Body terms. These terms are just introduced during evaluation. So
definite assignment of Call does not consider Methd or Body at all. So for definite assignment alone we could
omit the rules for Methd and Body. But since evaluation of the method invocation is split up into three rules

Theory DefiniteAssignment 131

we must ensure that we have enough information about the call even in the Body term to make sure that
we can proof type safety. Also we must be able transport this information from Call to Methd and then
further to Body during evaluation to establish the definite assignment of Methd during evaluation of Call,
and of Body during evaluation of Methd. This is necessary since definite assignment will be a precondition for
each induction hypothesis coming out of the evaluation rules, and therefor we have to establish the definite
assignment of the sub-evaluation during the type-safety proof. Note that well-typedness is also a precondition
for type-safety and so we can omit some assertion that are already ensured by well-typedness.
| Methd: [[methd (prg Env) D sig = Some m;

Env` B »〈Body (declclass m) (stmt (mbody (mthd m)))〉» A
]]
=⇒
Env` B »〈Methd D sig〉» A

| Body: [[Env` B »〈c〉» C ; jumpNestingOkS {Ret} c; Result ∈ nrm C ;
nrm A = B; brk A = (λ l. UNIV)]]
=⇒
Env` B »〈Body D c〉» A

— Note that A is not correlated to C. If the body statement returns abruptly with return, evaluation of Body
will absorb this return and complete normally. So we cannot trivially get the assigned variables of the body
statement since it has not completed normally or with a break. If the body completes normally we guarantee
that the result variable is set with this rule. But if the body completes abruptly with a return we can’t
guarantee that the result variable is set here, since definite assignment only talks about normal completion
and breaks. So for a return the Jump rule ensures that the result variable is set and then this information
must be carried over to the Body rule by the conformance predicate of the state.
| LVar : Env` B »〈LVar vn〉» (|nrm=B, brk=λ l. UNIV |)

| FVar : Env` B »〈e〉» A
=⇒
Env` B »〈{accC ,statDeclC ,stat}e..fn〉» A

| AVar : [[Env` B »〈e1 〉» E1 ; Env` nrm E1 »〈e2 〉» A]]
=⇒
Env` B »〈e1 .[e2]〉» A

| Nil: Env` B »〈[]::expr list〉» (|nrm=B, brk=λ l. UNIV |)

| Cons: [[Env` B »〈e::expr〉» E ; Env` nrm E »〈es〉» A]]
=⇒
Env` B »〈e#es〉» A

declare inj-term-sym-simps [simp]
declare assigns-if .simps [simp del]
declare split-paired-All [simp del] split-paired-Ex [simp del]
setup ‹map-theory-simpset (fn ctxt => ctxt |> Simplifier .del-loop split-all-tac)›

inductive-cases da-elim-cases [cases set]:
Env` B »〈Skip〉» A
Env` B »In1r Skip» A
Env` B »〈Expr e〉» A
Env` B »In1r (Expr e)» A
Env` B »〈l· c〉» A
Env` B »In1r (l· c)» A
Env` B »〈c1 ;; c2 〉» A
Env` B »In1r (c1 ;; c2)» A
Env` B »〈If (e) c1 Else c2 〉» A
Env` B »In1r (If (e) c1 Else c2)» A
Env` B »〈l· While(e) c〉» A
Env` B »In1r (l· While(e) c)» A

132

Env` B »〈Jmp jump〉» A
Env` B »In1r (Jmp jump)» A
Env` B »〈Throw e〉» A
Env` B »In1r (Throw e)» A
Env` B »〈Try c1 Catch(C vn) c2 〉» A
Env` B »In1r (Try c1 Catch(C vn) c2)» A
Env` B »〈c1 Finally c2 〉» A
Env` B »In1r (c1 Finally c2)» A
Env` B »〈Init C 〉» A
Env` B »In1r (Init C)» A
Env` B »〈NewC C 〉» A
Env` B »In1l (NewC C)» A
Env` B »〈New T [e]〉» A
Env` B »In1l (New T [e])» A
Env` B »〈Cast T e〉» A
Env` B »In1l (Cast T e)» A
Env` B »〈e InstOf T 〉» A
Env` B »In1l (e InstOf T)» A
Env` B »〈Lit v〉» A
Env` B »In1l (Lit v)» A
Env` B »〈UnOp unop e〉» A
Env` B »In1l (UnOp unop e)» A
Env` B »〈BinOp binop e1 e2 〉» A
Env` B »In1l (BinOp binop e1 e2)» A
Env` B »〈Super〉» A
Env` B »In1l (Super)» A
Env` B »〈Acc v〉» A
Env` B »In1l (Acc v)» A
Env` B »〈v := e〉» A
Env` B »In1l (v := e)» A
Env` B »〈c ? e1 : e2 〉» A
Env` B »In1l (c ? e1 : e2)» A
Env` B »〈{accC ,statT ,mode}e·mn({pTs}args)〉» A
Env` B »In1l ({accC ,statT ,mode}e·mn({pTs}args))» A
Env` B »〈Methd C sig〉» A
Env` B »In1l (Methd C sig)» A
Env` B »〈Body D c〉» A
Env` B »In1l (Body D c)» A
Env` B »〈LVar vn〉» A
Env` B »In2 (LVar vn)» A
Env` B »〈{accC ,statDeclC ,stat}e..fn〉» A
Env` B »In2 ({accC ,statDeclC ,stat}e..fn)» A
Env` B »〈e1 .[e2]〉» A
Env` B »In2 (e1 .[e2])» A
Env` B »〈[]::expr list〉» A
Env` B »In3 ([]::expr list)» A
Env` B »〈e#es〉» A
Env` B »In3 (e#es)» A

declare inj-term-sym-simps [simp del]
declare assigns-if .simps [simp]
declare split-paired-All [simp] split-paired-Ex [simp]
setup ‹map-theory-simpset (fn ctxt => ctxt |> Simplifier .add-loop (split-all-tac, split-all-tac))›

lemma da-Skip: A = (|nrm=B,brk=λ l. UNIV |) =⇒ Env` B »〈Skip〉» A
by (auto intro: da.Skip)

lemma da-NewC : A = (|nrm=B,brk=λ l. UNIV |) =⇒ Env` B »〈NewC C 〉» A

Theory DefiniteAssignment 133

by (auto intro: da.NewC)

lemma da-Lit: A = (|nrm=B,brk=λ l. UNIV |) =⇒ Env` B »〈Lit v〉» A
by (auto intro: da.Lit)

lemma da-Super : [[This ∈ B;A = (|nrm=B,brk=λ l. UNIV |)]] =⇒ Env` B »〈Super〉» A
by (auto intro: da.Super)

lemma da-Init: A = (|nrm=B,brk=λ l. UNIV |) =⇒ Env` B »〈Init C 〉» A
by (auto intro: da.Init)

lemma assignsE-subseteq-assigns-ifs:
assumes boolEx: E`e::−PrimT Boolean (is ?Boolean e)

shows assignsE e ⊆ assigns-if True e ∩ assigns-if False e (is ?Incl e)
proof −

obtain vv where ex-lit: E`Lit vv::− PrimT Boolean
using typeof .simps(2) wt.Lit by blast

have ?Boolean e =⇒ ?Incl e
proof (induct e)

case (Cast T e)
have E`e::− (PrimT Boolean)
proof −

from ‹E`(Cast T e)::− (PrimT Boolean)›
obtain Te where E`e::−Te

prg E`Te�? PrimT Boolean
by cases simp

thus ?thesis
by − (drule cast-Boolean2 ,simp)

qed
with Cast.hyps
show ?case

by simp
next

case (Lit val)
thus ?case

by − (erule wt-elim-cases, cases val, auto simp add: empty-dt-def)
next

case (UnOp unop e)
thus ?case

by − (erule wt-elim-cases,cases unop,
(fastforce simp add: assignsE-const-simp)+)

next
case (BinOp binop e1 e2)
from BinOp.prems obtain e1T e2T

where E`e1 ::−e1T and E`e2 ::−e2T and wt-binop (prg E) binop e1T e2T
and (binop-type binop) = Boolean

by (elim wt-elim-cases) simp
with BinOp.hyps
show ?case

by (cases binop) (auto simp add: assignsE-const-simp)
next

case (Cond c e1 e2)
note hyp-c = ‹?Boolean c =⇒ ?Incl c›
note hyp-e1 = ‹?Boolean e1 =⇒ ?Incl e1 ›
note hyp-e2 = ‹?Boolean e2 =⇒ ?Incl e2 ›
note wt = ‹E`(c ? e1 : e2)::−PrimT Boolean›

134

then obtain
boolean-c: E`c::−PrimT Boolean and
boolean-e1 : E`e1 ::−PrimT Boolean and
boolean-e2 : E`e2 ::−PrimT Boolean
by (elim wt-elim-cases) (auto dest: widen-Boolean2)

show ?case
proof (cases constVal c)

case None
with boolean-e1 boolean-e2
show ?thesis

using hyp-e1 hyp-e2
by (auto)

next
case (Some bv)
show ?thesis
proof (cases the-Bool bv)

case True
with Some show ?thesis using hyp-e1 boolean-e1 by auto

next
case False
with Some show ?thesis using hyp-e2 boolean-e2 by auto

qed
qed

next
show

∧
x. E`Lit vv::−PrimT Boolean

by (rule ex-lit)
qed (simp-all add: ex-lit)
with boolEx
show ?thesis

by blast
qed

lemma rmlab-same-label [simp]: (rmlab l A) l = UNIV
by (simp add: rmlab-def)

lemma rmlab-same-label1 [simp]: l=l ′ =⇒ (rmlab l A) l ′ = UNIV
by (simp add: rmlab-def)

lemma rmlab-other-label [simp]: l 6=l ′=⇒ (rmlab l A) l ′ = A l ′
by (auto simp add: rmlab-def)

lemma range-inter-ts-subseteq [intro]: ∀ k. A k ⊆ B k =⇒ ⇒
⋂

A ⊆ ⇒
⋂

B
by (auto simp add: range-inter-ts-def)

lemma range-inter-ts-subseteq ′: ∀ k. A k ⊆ B k =⇒ x ∈ ⇒
⋂

A =⇒ x ∈ ⇒
⋂

B
by (auto simp add: range-inter-ts-def)

lemma da-monotone:
assumes da: Env` B »t» A and

B ⊆ B ′ and
da ′: Env` B ′ »t» A ′

shows (nrm A ⊆ nrm A ′) ∧ (∀ l. (brk A l ⊆ brk A ′ l))
proof −

from da
have

∧
B ′ A ′. [[Env` B ′ »t» A ′; B ⊆ B ′]]

=⇒ (nrm A ⊆ nrm A ′) ∧ (∀ l. (brk A l ⊆ brk A ′ l))

Theory DefiniteAssignment 135

(is PROP ?Hyp Env B t A)
proof (induct)

case Skip
then show ?case by cases simp

next
case Expr
from Expr .prems Expr .hyps
show ?case by cases simp

next
case (Lab Env B c C A l B ′ A ′)
note A = ‹nrm A = nrm C ∩ brk C l› ‹brk A = rmlab l (brk C)›
note ‹PROP ?Hyp Env B 〈c〉 C ›
moreover
note ‹B ⊆ B ′›
moreover
obtain C ′

where Env` B ′ »〈c〉» C ′

and A ′: nrm A ′ = nrm C ′ ∩ brk C ′ l brk A ′ = rmlab l (brk C ′)
using Lab.prems
by cases simp

ultimately
have nrm C ⊆ nrm C ′ and hyp-brk: (∀ l. brk C l ⊆ brk C ′ l) by auto
then
have nrm C ∩ brk C l ⊆ nrm C ′ ∩ brk C ′ l by auto
moreover
from hyp-brk
have rmlab l (brk C) l ′ ⊆ rmlab l (brk C ′) l ′ for l ′

by (cases l=l ′) simp-all
moreover note A A ′

ultimately show ?case
by simp

next
case (Comp Env B c1 C1 c2 C2 A B ′ A ′)
note A = ‹nrm A = nrm C2 › ‹brk A = brk C1 ⇒∩ brk C2 ›
from ‹Env` B ′ »〈c1 ;; c2 〉» A ′›
obtain C1 ′ C2 ′

where da-c1 : Env` B ′ »〈c1 〉» C1 ′ and
da-c2 : Env` nrm C1 ′ »〈c2 〉» C2 ′ and
A ′: nrm A ′ = nrm C2 ′ brk A ′ = brk C1 ′⇒∩ brk C2 ′

by cases auto
note ‹PROP ?Hyp Env B 〈c1 〉 C1 ›
moreover note ‹B ⊆ B ′›
moreover note da-c1
ultimately have C1 ′: nrm C1 ⊆ nrm C1 ′ (∀ l. brk C1 l ⊆ brk C1 ′ l)

by auto
note ‹PROP ?Hyp Env (nrm C1) 〈c2 〉 C2 ›
with da-c2 C1 ′

have C2 ′: nrm C2 ⊆ nrm C2 ′ (∀ l. brk C2 l ⊆ brk C2 ′ l)
by auto

with A A ′ C1 ′

show ?case
by auto

next
case (If Env B e E c1 C1 c2 C2 A B ′ A ′)
note A = ‹nrm A = nrm C1 ∩ nrm C2 › ‹brk A = brk C1 ⇒∩ brk C2 ›
from ‹Env` B ′ »〈If (e) c1 Else c2 〉» A ′›
obtain C1 ′ C2 ′

where da-c1 : Env` B ′ ∪ assigns-if True e »〈c1 〉» C1 ′ and
da-c2 : Env` B ′ ∪ assigns-if False e »〈c2 〉» C2 ′ and

136

A ′: nrm A ′ = nrm C1 ′ ∩ nrm C2 ′ brk A ′ = brk C1 ′⇒∩ brk C2 ′

by cases auto
note ‹PROP ?Hyp Env (B ∪ assigns-if True e) 〈c1 〉 C1 ›
moreover note B ′ = ‹B ⊆ B ′›
moreover note da-c1
ultimately obtain C1 ′: nrm C1 ⊆ nrm C1 ′ (∀ l. brk C1 l ⊆ brk C1 ′ l)

by blast
note ‹PROP ?Hyp Env (B ∪ assigns-if False e) 〈c2 〉 C2 ›
with da-c2 B ′

obtain C2 ′: nrm C2 ⊆ nrm C2 ′ (∀ l. brk C2 l ⊆ brk C2 ′ l)
by blast

with A A ′ C1 ′

show ?case
by auto

next
case (Loop Env B e E c C A l B ′ A ′)
note A = ‹nrm A = nrm C ∩ (B ∪ assigns-if False e)› ‹brk A = brk C ›
from ‹Env` B ′ »〈l· While(e) c〉» A ′›
obtain C ′

where
da-c ′: Env` B ′ ∪ assigns-if True e »〈c〉» C ′ and

A ′: nrm A ′ = nrm C ′ ∩ (B ′ ∪ assigns-if False e)
brk A ′ = brk C ′

by cases auto
note ‹PROP ?Hyp Env (B ∪ assigns-if True e) 〈c〉 C ›
moreover note B ′ = ‹B ⊆ B ′›
moreover note da-c ′

ultimately obtain C ′: nrm C ⊆ nrm C ′ (∀ l. brk C l ⊆ brk C ′ l)
by blast

with A A ′ B ′

have nrm A ⊆ nrm A ′

by blast
moreover
have brk A l ′ ⊆ brk A ′ l ′ for l ′
proof (cases constVal e)

case None
with A A ′ C ′

show ?thesis
by (cases l=l ′) auto

next
case (Some bv)
with A A ′ C ′

show ?thesis
by (cases the-Bool bv, cases l=l ′) auto

qed
ultimately show ?case

by auto
next

case (Jmp jump B A Env B ′ A ′)
thus ?case by (elim da-elim-cases) (auto split: jump.splits)

next
case Throw thus ?case by (elim da-elim-cases) auto

next
case (Try Env B c1 C1 vn C c2 C2 A B ′ A ′)
note A = ‹nrm A = nrm C1 ∩ nrm C2 › ‹brk A = brk C1 ⇒∩ brk C2 ›
from ‹Env` B ′ »〈Try c1 Catch(C vn) c2 〉» A ′›
obtain C1 ′ C2 ′

where da-c1 ′: Env` B ′ »〈c1 〉» C1 ′ and
da-c2 ′: Env(|lcl := (lcl Env)(VName vn 7→Class C)|)` B ′ ∪ {VName vn}

Theory DefiniteAssignment 137

»〈c2 〉» C2 ′ and
A ′: nrm A ′ = nrm C1 ′ ∩ nrm C2 ′

brk A ′ = brk C1 ′⇒∩ brk C2 ′

by cases auto
note ‹PROP ?Hyp Env B 〈c1 〉 C1 ›
moreover note B ′ = ‹B ⊆ B ′›
moreover note da-c1 ′

ultimately obtain C1 ′: nrm C1 ⊆ nrm C1 ′ (∀ l. brk C1 l ⊆ brk C1 ′ l)
by blast

note ‹PROP ?Hyp (Env(|lcl := (lcl Env)(VName vn 7→Class C)|))
(B ∪ {VName vn}) 〈c2 〉 C2 ›

with B ′ da-c2 ′

obtain nrm C2 ⊆ nrm C2 ′ (∀ l. brk C2 l ⊆ brk C2 ′ l)
by blast

with C1 ′ A A ′

show ?case
by auto

next
case (Fin Env B c1 C1 c2 C2 A B ′ A ′)
note A = ‹nrm A = nrm C1 ∪ nrm C2 ›

‹brk A = (brk C1 ⇒∪∀ nrm C2) ⇒∩ (brk C2)›
from ‹Env` B ′ »〈c1 Finally c2 〉» A ′›
obtain C1 ′ C2 ′

where da-c1 ′: Env` B ′ »〈c1 〉» C1 ′ and
da-c2 ′: Env` B ′ »〈c2 〉» C2 ′ and
A ′: nrm A ′ = nrm C1 ′ ∪ nrm C2 ′

brk A ′ = (brk C1 ′⇒∪∀ nrm C2 ′) ⇒∩ (brk C2 ′)
by cases auto

note ‹PROP ?Hyp Env B 〈c1 〉 C1 ›
moreover note B ′ = ‹B ⊆ B ′›
moreover note da-c1 ′

ultimately obtain C1 ′: nrm C1 ⊆ nrm C1 ′ (∀ l. brk C1 l ⊆ brk C1 ′ l)
by blast

note hyp-c2 = ‹PROP ?Hyp Env B 〈c2 〉 C2 ›
from da-c2 ′ B ′

obtain nrm C2 ⊆ nrm C2 ′ (∀ l. brk C2 l ⊆ brk C2 ′ l)
by − (drule hyp-c2 ,auto)

with A A ′ C1 ′

show ?case
by auto

next
case Init thus ?case by (elim da-elim-cases) auto

next
case NewC thus ?case by (elim da-elim-cases) auto

next
case NewA thus ?case by (elim da-elim-cases) auto

next
case Cast thus ?case by (elim da-elim-cases) auto

next
case Inst thus ?case by (elim da-elim-cases) auto

next
case Lit thus ?case by (elim da-elim-cases) auto

next
case UnOp thus ?case by (elim da-elim-cases) auto

next
case (CondAnd Env B e1 E1 e2 E2 A B ′ A ′)
note A = ‹nrm A = B ∪

assigns-if True (BinOp CondAnd e1 e2) ∩
assigns-if False (BinOp CondAnd e1 e2)›

138

‹brk A = (λl. UNIV)›
from ‹Env` B ′ »〈BinOp CondAnd e1 e2 〉» A ′›
obtain A ′: nrm A ′ = B ′ ∪

assigns-if True (BinOp CondAnd e1 e2) ∩
assigns-if False (BinOp CondAnd e1 e2)

brk A ′ = (λl. UNIV)
by cases auto

note B ′ = ‹B ⊆ B ′›
with A A ′ show ?case

by auto
next

case CondOr thus ?case by (elim da-elim-cases) auto
next

case BinOp thus ?case by (elim da-elim-cases) auto
next

case Super thus ?case by (elim da-elim-cases) auto
next

case AccLVar thus ?case by (elim da-elim-cases) auto
next

case Acc thus ?case by (elim da-elim-cases) auto
next

case AssLVar thus ?case by (elim da-elim-cases) auto
next

case Ass thus ?case by (elim da-elim-cases) auto
next

case (CondBool Env c e1 e2 B C E1 E2 A B ′ A ′)
note A = ‹nrm A = B ∪

assigns-if True (c ? e1 : e2) ∩
assigns-if False (c ? e1 : e2)›

‹brk A = (λl. UNIV)›
note ‹Env` (c ? e1 : e2)::− (PrimT Boolean)›
moreover
note ‹Env` B ′ »〈c ? e1 : e2 〉» A ′›
ultimately
obtain A ′: nrm A ′ = B ′ ∪

assigns-if True (c ? e1 : e2) ∩
assigns-if False (c ? e1 : e2)

brk A ′ = (λl. UNIV)
by (elim da-elim-cases) (auto simp add: inj-term-simps)

note B ′ = ‹B ⊆ B ′›
with A A ′ show ?case

by auto
next

case (Cond Env c e1 e2 B C E1 E2 A B ′ A ′)
note A = ‹nrm A = nrm E1 ∩ nrm E2 › ‹brk A = (λl. UNIV)›
note not-bool = ‹¬ Env` (c ? e1 : e2)::− (PrimT Boolean)›
from ‹Env` B ′ »〈c ? e1 : e2 〉» A ′›
obtain E1 ′ E2 ′

where da-e1 ′: Env` B ′ ∪ assigns-if True c »〈e1 〉» E1 ′ and
da-e2 ′: Env` B ′ ∪ assigns-if False c »〈e2 〉» E2 ′ and

A ′: nrm A ′ = nrm E1 ′ ∩ nrm E2 ′

brk A ′ = (λl. UNIV)
using not-bool
by (elim da-elim-cases) (auto simp add: inj-term-simps)

note ‹PROP ?Hyp Env (B ∪ assigns-if True c) 〈e1 〉 E1 ›
moreover note B ′ = ‹B ⊆ B ′›
moreover note da-e1 ′

Theory DefiniteAssignment 139

ultimately obtain E1 ′: nrm E1 ⊆ nrm E1 ′ (∀ l. brk E1 l ⊆ brk E1 ′ l)
by blast

note ‹PROP ?Hyp Env (B ∪ assigns-if False c) 〈e2 〉 E2 ›
with B ′ da-e2 ′

obtain nrm E2 ⊆ nrm E2 ′ (∀ l. brk E2 l ⊆ brk E2 ′ l)
by blast

with E1 ′ A A ′

show ?case
by auto

next
case Call
from Call.prems and Call.hyps
show ?case by cases auto

next
case Methd thus ?case by (elim da-elim-cases) auto

next
case Body thus ?case by (elim da-elim-cases) auto

next
case LVar thus ?case by (elim da-elim-cases) auto

next
case FVar thus ?case by (elim da-elim-cases) auto

next
case AVar thus ?case by (elim da-elim-cases) auto

next
case Nil thus ?case by (elim da-elim-cases) auto

next
case Cons thus ?case by (elim da-elim-cases) auto

qed
from this [OF da ′ ‹B ⊆ B ′›] show ?thesis .

qed

lemma da-weaken:
assumes da: Env` B »t» A and B ⊆ B ′

shows ∃ A ′. Env ` B ′ »t» A ′

proof −
note assigned.select-convs [Pure.intro]
from da
have

∧
B ′. B ⊆ B ′ =⇒ ∃ A ′. Env` B ′ »t» A ′ (is PROP ?Hyp Env B t)

proof (induct)
case Skip thus ?case by (iprover intro: da.Skip)

next
case Expr thus ?case by (iprover intro: da.Expr)

next
case (Lab Env B c C A l B ′)
note ‹PROP ?Hyp Env B 〈c〉›
moreover
note B ′ = ‹B ⊆ B ′›
ultimately obtain C ′ where Env` B ′ »〈c〉» C ′

by iprover
then obtain A ′ where Env` B ′ »〈Break l· c〉» A ′

by (iprover intro: da.Lab)
thus ?case ..

next
case (Comp Env B c1 C1 c2 C2 A B ′)
note da-c1 = ‹Env` B »〈c1 〉» C1 ›
note ‹PROP ?Hyp Env B 〈c1 〉›
moreover
note B ′ = ‹B ⊆ B ′›
ultimately obtain C1 ′ where da-c1 ′: Env` B ′ »〈c1 〉» C1 ′

140

by iprover
with da-c1 B ′

have
nrm C1 ⊆ nrm C1 ′

by (rule da-monotone [elim-format]) simp
moreover
note ‹PROP ?Hyp Env (nrm C1) 〈c2 〉›
ultimately obtain C2 ′ where Env` nrm C1 ′ »〈c2 〉» C2 ′

by iprover
with da-c1 ′ obtain A ′ where Env` B ′ »〈c1 ;; c2 〉» A ′

by (iprover intro: da.Comp)
thus ?case ..

next
case (If Env B e E c1 C1 c2 C2 A B ′)
note B ′ = ‹B ⊆ B ′›
obtain E ′ where Env` B ′ »〈e〉» E ′

proof −
have PROP ?Hyp Env B 〈e〉 by (rule If .hyps)
with B ′

show ?thesis using that by iprover
qed
moreover
obtain C1 ′ where Env` (B ′ ∪ assigns-if True e) »〈c1 〉» C1 ′

proof −
from B ′

have (B ∪ assigns-if True e) ⊆ (B ′ ∪ assigns-if True e)
by blast

moreover
have PROP ?Hyp Env (B ∪ assigns-if True e) 〈c1 〉 by (rule If .hyps)
ultimately
show ?thesis using that by iprover

qed
moreover
obtain C2 ′ where Env` (B ′ ∪ assigns-if False e) »〈c2 〉» C2 ′

proof −
from B ′ have (B ∪ assigns-if False e) ⊆ (B ′ ∪ assigns-if False e)

by blast
moreover
have PROP ?Hyp Env (B ∪ assigns-if False e) 〈c2 〉 by (rule If .hyps)
ultimately
show ?thesis using that by iprover

qed
ultimately
obtain A ′ where Env` B ′ »〈If (e) c1 Else c2 〉» A ′

by (iprover intro: da.If)
thus ?case ..

next
case (Loop Env B e E c C A l B ′)
note B ′ = ‹B ⊆ B ′›
obtain E ′ where Env` B ′ »〈e〉» E ′

proof −
have PROP ?Hyp Env B 〈e〉 by (rule Loop.hyps)
with B ′

show ?thesis using that by iprover
qed
moreover
obtain C ′ where Env` (B ′ ∪ assigns-if True e) »〈c〉» C ′

proof −
from B ′

Theory DefiniteAssignment 141

have (B ∪ assigns-if True e) ⊆ (B ′ ∪ assigns-if True e)
by blast

moreover
have PROP ?Hyp Env (B ∪ assigns-if True e) 〈c〉 by (rule Loop.hyps)
ultimately
show ?thesis using that by iprover

qed
ultimately
obtain A ′ where Env` B ′ »〈l· While(e) c〉» A ′

by (iprover intro: da.Loop)
thus ?case ..

next
case (Jmp jump B A Env B ′)
note B ′ = ‹B ⊆ B ′›
with Jmp.hyps have jump = Ret −→ Result ∈ B ′

by auto
moreover
obtain A ′::assigned

where nrm A ′ = UNIV
brk A ′ = (case jump of

Break l ⇒ λk. if k = l then B ′ else UNIV
| Cont l ⇒ λk. UNIV
| Ret ⇒ λk. UNIV)

by iprover
ultimately have Env` B ′ »〈Jmp jump〉» A ′

by (rule da.Jmp)
thus ?case ..

next
case Throw thus ?case by (iprover intro: da.Throw)

next
case (Try Env B c1 C1 vn C c2 C2 A B ′)
note B ′ = ‹B ⊆ B ′›
obtain C1 ′ where Env` B ′ »〈c1 〉» C1 ′

proof −
have PROP ?Hyp Env B 〈c1 〉 by (rule Try.hyps)
with B ′

show ?thesis using that by iprover
qed
moreover
obtain C2 ′ where

Env(|lcl := (lcl Env)(VName vn 7→Class C)|)` B ′ ∪ {VName vn} »〈c2 〉» C2 ′

proof −
from B ′ have B ∪ {VName vn} ⊆ B ′ ∪ {VName vn} by blast
moreover
have PROP ?Hyp (Env(|lcl := (lcl Env)(VName vn 7→Class C)|))

(B ∪ {VName vn}) 〈c2 〉
by (rule Try.hyps)

ultimately
show ?thesis using that by iprover

qed
ultimately
obtain A ′ where Env` B ′ »〈Try c1 Catch(C vn) c2 〉» A ′

by (iprover intro: da.Try)
thus ?case ..

next
case (Fin Env B c1 C1 c2 C2 A B ′)
note B ′ = ‹B ⊆ B ′›
obtain C1 ′ where C1 ′: Env` B ′ »〈c1 〉» C1 ′

142

proof −
have PROP ?Hyp Env B 〈c1 〉 by (rule Fin.hyps)
with B ′

show ?thesis using that by iprover
qed
moreover
obtain C2 ′ where Env` B ′ »〈c2 〉» C2 ′

proof −
have PROP ?Hyp Env B 〈c2 〉 by (rule Fin.hyps)
with B ′

show ?thesis using that by iprover
qed
ultimately
obtain A ′ where Env` B ′ »〈c1 Finally c2 〉» A ′

by (iprover intro: da.Fin)
thus ?case ..

next
case Init thus ?case by (iprover intro: da.Init)

next
case NewC thus ?case by (iprover intro: da.NewC)

next
case NewA thus ?case by (iprover intro: da.NewA)

next
case Cast thus ?case by (iprover intro: da.Cast)

next
case Inst thus ?case by (iprover intro: da.Inst)

next
case Lit thus ?case by (iprover intro: da.Lit)

next
case UnOp thus ?case by (iprover intro: da.UnOp)

next
case (CondAnd Env B e1 E1 e2 E2 A B ′)
note B ′ = ‹B ⊆ B ′›
obtain E1 ′ where Env` B ′ »〈e1 〉» E1 ′

proof −
have PROP ?Hyp Env B 〈e1 〉 by (rule CondAnd.hyps)
with B ′

show ?thesis using that by iprover
qed
moreover
obtain E2 ′ where Env` B ′ ∪ assigns-if True e1 »〈e2 〉» E2 ′

proof −
from B ′ have B ∪ assigns-if True e1 ⊆ B ′ ∪ assigns-if True e1

by blast
moreover
have PROP ?Hyp Env (B ∪ assigns-if True e1) 〈e2 〉 by (rule CondAnd.hyps)
ultimately show ?thesis using that by iprover

qed
ultimately
obtain A ′ where Env` B ′ »〈BinOp CondAnd e1 e2 〉» A ′

by (iprover intro: da.CondAnd)
thus ?case ..

next
case (CondOr Env B e1 E1 e2 E2 A B ′)
note B ′ = ‹B ⊆ B ′›
obtain E1 ′ where Env` B ′ »〈e1 〉» E1 ′

proof −
have PROP ?Hyp Env B 〈e1 〉 by (rule CondOr .hyps)
with B ′

Theory DefiniteAssignment 143

show ?thesis using that by iprover
qed
moreover
obtain E2 ′ where Env` B ′ ∪ assigns-if False e1 »〈e2 〉» E2 ′

proof −
from B ′ have B ∪ assigns-if False e1 ⊆ B ′ ∪ assigns-if False e1

by blast
moreover
have PROP ?Hyp Env (B ∪ assigns-if False e1) 〈e2 〉 by (rule CondOr .hyps)
ultimately show ?thesis using that by iprover

qed
ultimately
obtain A ′ where Env` B ′ »〈BinOp CondOr e1 e2 〉» A ′

by (iprover intro: da.CondOr)
thus ?case ..

next
case (BinOp Env B e1 E1 e2 A binop B ′)
note B ′ = ‹B ⊆ B ′›
obtain E1 ′ where E1 ′: Env` B ′ »〈e1 〉» E1 ′

proof −
have PROP ?Hyp Env B 〈e1 〉 by (rule BinOp.hyps)
with B ′

show ?thesis using that by iprover
qed
moreover
obtain A ′ where Env` nrm E1 ′ »〈e2 〉» A ′

proof −
have Env` B »〈e1 〉» E1 by (rule BinOp.hyps)
from this B ′ E1 ′

have nrm E1 ⊆ nrm E1 ′

by (rule da-monotone [THEN conjE])
moreover
have PROP ?Hyp Env (nrm E1) 〈e2 〉 by (rule BinOp.hyps)
ultimately show ?thesis using that by iprover

qed
ultimately
have Env` B ′ »〈BinOp binop e1 e2 〉» A ′

using BinOp.hyps by (iprover intro: da.BinOp)
thus ?case ..

next
case (Super B Env B ′)
note B ′ = ‹B ⊆ B ′›
with Super .hyps have This ∈ B ′

by auto
thus ?case by (iprover intro: da.Super)

next
case (AccLVar vn B A Env B ′)
note ‹vn ∈ B›
moreover
note ‹B ⊆ B ′›
ultimately have vn ∈ B ′ by auto
thus ?case by (iprover intro: da.AccLVar)

next
case Acc thus ?case by (iprover intro: da.Acc)

next
case (AssLVar Env B e E A vn B ′)
note B ′ = ‹B ⊆ B ′›
then obtain E ′ where Env` B ′ »〈e〉» E ′

by (rule AssLVar .hyps [elim-format]) iprover

144

then obtain A ′ where
Env` B ′ »〈LVar vn:=e〉» A ′

by (iprover intro: da.AssLVar)
thus ?case ..

next
case (Ass v Env B V e A B ′)
note B ′ = ‹B ⊆ B ′›
note ‹∀ vn. v 6= LVar vn›
moreover
obtain V ′ where V ′: Env` B ′ »〈v〉» V ′

proof −
have PROP ?Hyp Env B 〈v〉 by (rule Ass.hyps)
with B ′

show ?thesis using that by iprover
qed
moreover
obtain A ′ where Env` nrm V ′ »〈e〉» A ′

proof −
have Env` B »〈v〉» V by (rule Ass.hyps)
from this B ′ V ′

have nrm V ⊆ nrm V ′

by (rule da-monotone [THEN conjE])
moreover
have PROP ?Hyp Env (nrm V) 〈e〉 by (rule Ass.hyps)
ultimately show ?thesis using that by iprover

qed
ultimately
have Env` B ′ »〈v := e〉» A ′

by (iprover intro: da.Ass)
thus ?case ..

next
case (CondBool Env c e1 e2 B C E1 E2 A B ′)
note B ′ = ‹B ⊆ B ′›
note ‹Env`(c ? e1 : e2)::−(PrimT Boolean)›
moreover obtain C ′ where C ′: Env` B ′ »〈c〉» C ′

proof −
have PROP ?Hyp Env B 〈c〉 by (rule CondBool.hyps)
with B ′

show ?thesis using that by iprover
qed
moreover
obtain E1 ′ where Env` B ′ ∪ assigns-if True c »〈e1 〉» E1 ′

proof −
from B ′

have (B ∪ assigns-if True c) ⊆ (B ′ ∪ assigns-if True c)
by blast

moreover
have PROP ?Hyp Env (B ∪ assigns-if True c) 〈e1 〉 by (rule CondBool.hyps)
ultimately
show ?thesis using that by iprover

qed
moreover
obtain E2 ′ where Env` B ′ ∪ assigns-if False c »〈e2 〉» E2 ′

proof −
from B ′

have (B ∪ assigns-if False c) ⊆ (B ′ ∪ assigns-if False c)
by blast

moreover
have PROP ?Hyp Env (B ∪ assigns-if False c) 〈e2 〉 by(rule CondBool.hyps)

Theory DefiniteAssignment 145

ultimately
show ?thesis using that by iprover

qed
ultimately
obtain A ′ where Env` B ′ »〈c ? e1 : e2 〉» A ′

by (iprover intro: da.CondBool)
thus ?case ..

next
case (Cond Env c e1 e2 B C E1 E2 A B ′)
note B ′ = ‹B ⊆ B ′›
note ‹¬ Env`(c ? e1 : e2)::−(PrimT Boolean)›
moreover obtain C ′ where C ′: Env` B ′ »〈c〉» C ′

proof −
have PROP ?Hyp Env B 〈c〉 by (rule Cond.hyps)
with B ′

show ?thesis using that by iprover
qed
moreover
obtain E1 ′ where Env` B ′ ∪ assigns-if True c »〈e1 〉» E1 ′

proof −
from B ′

have (B ∪ assigns-if True c) ⊆ (B ′ ∪ assigns-if True c)
by blast

moreover
have PROP ?Hyp Env (B ∪ assigns-if True c) 〈e1 〉 by (rule Cond.hyps)
ultimately
show ?thesis using that by iprover

qed
moreover
obtain E2 ′ where Env` B ′ ∪ assigns-if False c »〈e2 〉» E2 ′

proof −
from B ′

have (B ∪ assigns-if False c) ⊆ (B ′ ∪ assigns-if False c)
by blast

moreover
have PROP ?Hyp Env (B ∪ assigns-if False c) 〈e2 〉 by (rule Cond.hyps)
ultimately
show ?thesis using that by iprover

qed
ultimately
obtain A ′ where Env` B ′ »〈c ? e1 : e2 〉» A ′

by (iprover intro: da.Cond)
thus ?case ..

next
case (Call Env B e E args A accC statT mode mn pTs B ′)
note B ′ = ‹B ⊆ B ′›
obtain E ′ where E ′: Env` B ′ »〈e〉» E ′

proof −
have PROP ?Hyp Env B 〈e〉 by (rule Call.hyps)
with B ′

show ?thesis using that by iprover
qed
moreover
obtain A ′ where Env` nrm E ′ »〈args〉» A ′

proof −
have Env` B »〈e〉» E by (rule Call.hyps)
from this B ′ E ′

have nrm E ⊆ nrm E ′

by (rule da-monotone [THEN conjE])

146

moreover
have PROP ?Hyp Env (nrm E) 〈args〉 by (rule Call.hyps)
ultimately show ?thesis using that by iprover

qed
ultimately
have Env` B ′ »〈{accC ,statT ,mode}e·mn({pTs}args)〉» A ′

by (iprover intro: da.Call)
thus ?case ..

next
case Methd thus ?case by (iprover intro: da.Methd)

next
case (Body Env B c C A D B ′)
note B ′ = ‹B ⊆ B ′›
obtain C ′ where C ′: Env` B ′ »〈c〉» C ′ and nrm-C ′: nrm C ⊆ nrm C ′

proof −
have Env` B »〈c〉» C by (rule Body.hyps)
moreover note B ′

moreover
from B ′ obtain C ′ where da-c: Env` B ′ »〈c〉» C ′

by (rule Body.hyps [elim-format]) blast
ultimately
have nrm C ⊆ nrm C ′

by (rule da-monotone [THEN conjE])
with da-c that show ?thesis by iprover

qed
moreover
note ‹Result ∈ nrm C ›
with nrm-C ′ have Result ∈ nrm C ′

by blast
moreover note ‹jumpNestingOkS {Ret} c›
ultimately obtain A ′ where

Env` B ′ »〈Body D c〉» A ′

by (iprover intro: da.Body)
thus ?case ..

next
case LVar thus ?case by (iprover intro: da.LVar)

next
case FVar thus ?case by (iprover intro: da.FVar)

next
case (AVar Env B e1 E1 e2 A B ′)
note B ′ = ‹B ⊆ B ′›
obtain E1 ′ where E1 ′: Env` B ′ »〈e1 〉» E1 ′

proof −
have PROP ?Hyp Env B 〈e1 〉 by (rule AVar .hyps)
with B ′

show ?thesis using that by iprover
qed
moreover
obtain A ′ where Env` nrm E1 ′ »〈e2 〉» A ′

proof −
have Env` B »〈e1 〉» E1 by (rule AVar .hyps)
from this B ′ E1 ′

have nrm E1 ⊆ nrm E1 ′

by (rule da-monotone [THEN conjE])
moreover
have PROP ?Hyp Env (nrm E1) 〈e2 〉 by (rule AVar .hyps)
ultimately show ?thesis using that by iprover

qed
ultimately

Theory DefiniteAssignment 147

have Env` B ′ »〈e1 .[e2]〉» A ′

by (iprover intro: da.AVar)
thus ?case ..

next
case Nil thus ?case by (iprover intro: da.Nil)

next
case (Cons Env B e E es A B ′)
note B ′ = ‹B ⊆ B ′›
obtain E ′ where E ′: Env` B ′ »〈e〉» E ′

proof −
have PROP ?Hyp Env B 〈e〉 by (rule Cons.hyps)
with B ′

show ?thesis using that by iprover
qed
moreover
obtain A ′ where Env` nrm E ′ »〈es〉» A ′

proof −
have Env` B »〈e〉» E by (rule Cons.hyps)
from this B ′ E ′

have nrm E ⊆ nrm E ′

by (rule da-monotone [THEN conjE])
moreover
have PROP ?Hyp Env (nrm E) 〈es〉 by (rule Cons.hyps)
ultimately show ?thesis using that by iprover

qed
ultimately
have Env` B ′ »〈e # es〉» A ′

by (iprover intro: da.Cons)
thus ?case ..

qed
from this [OF ‹B ⊆ B ′›] show ?thesis .

qed

corollary da-weakenE [consumes 2]:
assumes da: Env` B »t» A and

B ′: B ⊆ B ′ and
ex-mono:

∧
A ′. [[Env` B ′ »t» A ′; nrm A ⊆ nrm A ′;∧

l. brk A l ⊆ brk A ′ l]] =⇒ P
shows P

proof −
from da B ′

obtain A ′ where A ′: Env` B ′ »t» A ′

by (rule da-weaken [elim-format]) iprover
with da B ′

have nrm A ⊆ nrm A ′ ∧ (∀ l. brk A l ⊆ brk A ′ l)
by (rule da-monotone)

with A ′ ex-mono
show ?thesis

by iprover
qed

end

148

Chapter 13

WellForm

1 Well-formedness of Java programs
theory WellForm imports DefiniteAssignment begin

For static checks on expressions and statements, see WellType.thy
improvements over Java Specification 1.0 (cf. 8.4.6.3, 8.4.6.4, 9.4.1):

• a method implementing or overwriting another method may have a result type that widens to
the result type of the other method (instead of identical type)

• if a method hides another method (both methods have to be static!) there are no restrictions
to the result type since the methods have to be static and there is no dynamic binding of static
methods

• if an interface inherits more than one method with the same signature, the methods need not
have identical return types

simplifications:

• Object and standard exceptions are assumed to be declared like normal classes

well-formed field declarations

well-formed field declaration (common part for classes and interfaces), cf. 8.3 and (9.3)
definition

wf-fdecl :: prog ⇒ pname ⇒ fdecl ⇒ bool
where wf-fdecl G P = (λ(fn,f). is-acc-type G P (type f))

lemma wf-fdecl-def2 :
∧

fd. wf-fdecl G P fd = is-acc-type G P (type (snd fd))
apply (unfold wf-fdecl-def)
apply simp
done

well-formed method declarations

A method head is wellformed if:

• the signature and the method head agree in the number of parameters

• all types of the parameters are visible

• the result type is visible

149

150

• the parameter names are unique

definition
wf-mhead :: prog ⇒ pname ⇒ sig ⇒ mhead ⇒ bool where
wf-mhead G P = (λ sig mh. length (parTs sig) = length (pars mh) ∧

(∀T∈set (parTs sig). is-acc-type G P T) ∧
is-acc-type G P (resTy mh) ∧
distinct (pars mh))

A method declaration is wellformed if:

• the method head is wellformed

• the names of the local variables are unique

• the types of the local variables must be accessible

• the local variables don’t shadow the parameters

• the class of the method is defined

• the body statement is welltyped with respect to the modified environment of local names, were
the local variables, the parameters the special result variable (Res) and This are assoziated
with there types.

definition
callee-lcl :: qtname ⇒ sig ⇒ methd ⇒ lenv where
callee-lcl C sig m =
(λk. (case k of

EName e
⇒ (case e of

VNam v
⇒((table-of (lcls (mbody m)))(pars m [7→] parTs sig)) v
| Res ⇒ Some (resTy m))

| This ⇒ if is-static m then None else Some (Class C)))

definition
parameters :: methd ⇒ lname set where
parameters m = set (map (EName ◦ VNam) (pars m)) ∪ (if (static m) then {} else {This})

definition
wf-mdecl :: prog ⇒ qtname ⇒ mdecl ⇒ bool where
wf-mdecl G C =

(λ(sig,m).
wf-mhead G (pid C) sig (mhead m) ∧
unique (lcls (mbody m)) ∧
(∀ (vn,T)∈set (lcls (mbody m)). is-acc-type G (pid C) T) ∧
(∀ pn∈set (pars m). table-of (lcls (mbody m)) pn = None) ∧
jumpNestingOkS {Ret} (stmt (mbody m)) ∧
is-class G C ∧
(|prg=G,cls=C ,lcl=callee-lcl C sig m|)`(stmt (mbody m))::

√
∧

(∃ A. (|prg=G,cls=C ,lcl=callee-lcl C sig m|)
` parameters m »〈stmt (mbody m)〉» A
∧ Result ∈ nrm A))

lemma callee-lcl-VNam-simp [simp]:
callee-lcl C sig m (EName (VNam v))
= ((table-of (lcls (mbody m)))(pars m [7→] parTs sig)) v

by (simp add: callee-lcl-def)

Theory WellForm 151

lemma callee-lcl-Res-simp [simp]:
callee-lcl C sig m (EName Res) = Some (resTy m)
by (simp add: callee-lcl-def)

lemma callee-lcl-This-simp [simp]:
callee-lcl C sig m (This) = (if is-static m then None else Some (Class C))
by (simp add: callee-lcl-def)

lemma callee-lcl-This-static-simp:
is-static m =⇒ callee-lcl C sig m (This) = None
by simp

lemma callee-lcl-This-not-static-simp:
¬ is-static m =⇒ callee-lcl C sig m (This) = Some (Class C)
by simp

lemma wf-mheadI :
[[length (parTs sig) = length (pars m); ∀T∈set (parTs sig). is-acc-type G P T ;

is-acc-type G P (resTy m); distinct (pars m)]] =⇒
wf-mhead G P sig m

apply (unfold wf-mhead-def)
apply (simp (no-asm-simp))
done

lemma wf-mdeclI : [[
wf-mhead G (pid C) sig (mhead m); unique (lcls (mbody m));
(∀ pn∈set (pars m). table-of (lcls (mbody m)) pn = None);
∀ (vn,T)∈set (lcls (mbody m)). is-acc-type G (pid C) T ;
jumpNestingOkS {Ret} (stmt (mbody m));
is-class G C ;
(|prg=G,cls=C ,lcl=callee-lcl C sig m|)`(stmt (mbody m))::

√
;

(∃ A. (|prg=G,cls=C ,lcl=callee-lcl C sig m|) ` parameters m »〈stmt (mbody m)〉» A
∧ Result ∈ nrm A)

]] =⇒
wf-mdecl G C (sig,m)

apply (unfold wf-mdecl-def)
apply simp
done

lemma wf-mdeclE [consumes 1]:
[[wf-mdecl G C (sig,m);
[[wf-mhead G (pid C) sig (mhead m); unique (lcls (mbody m));
∀ pn∈set (pars m). table-of (lcls (mbody m)) pn = None;
∀ (vn,T)∈set (lcls (mbody m)). is-acc-type G (pid C) T ;
jumpNestingOkS {Ret} (stmt (mbody m));
is-class G C ;
(|prg=G,cls=C ,lcl=callee-lcl C sig m|)`(stmt (mbody m))::

√
;

(∃ A. (|prg=G,cls=C ,lcl=callee-lcl C sig m|)` parameters m »〈stmt (mbody m)〉» A
∧ Result ∈ nrm A)

]] =⇒ P
]] =⇒ P

by (unfold wf-mdecl-def) simp

lemma wf-mdeclD1 :
wf-mdecl G C (sig,m) =⇒

wf-mhead G (pid C) sig (mhead m) ∧ unique (lcls (mbody m)) ∧
(∀ pn∈set (pars m). table-of (lcls (mbody m)) pn = None) ∧

152

(∀ (vn,T)∈set (lcls (mbody m)). is-acc-type G (pid C) T)
apply (unfold wf-mdecl-def)
apply simp
done

lemma wf-mdecl-bodyD:
wf-mdecl G C (sig,m) =⇒
(∃T . (|prg=G,cls=C ,lcl=callee-lcl C sig m|)`Body C (stmt (mbody m))::−T ∧

G`T�(resTy m))
apply (unfold wf-mdecl-def)
apply clarify
apply (rule-tac x=(resTy m) in exI)
apply (unfold wf-mhead-def)
apply (auto simp add: wf-mhead-def is-acc-type-def intro: wt.Body)
done

lemma rT-is-acc-type:
wf-mhead G P sig m =⇒ is-acc-type G P (resTy m)

apply (unfold wf-mhead-def)
apply auto
done

well-formed interface declarations

A interface declaration is wellformed if:

• the interface hierarchy is wellstructured

• there is no class with the same name

• the method heads are wellformed and not static and have Public access

• the methods are uniquely named

• all superinterfaces are accessible

• the result type of a method overriding a method of Object widens to the result type of the
overridden method. Shadowing static methods is forbidden.

• the result type of a method overriding a set of methods defined in the superinterfaces widens
to each of the corresponding result types

definition
wf-idecl :: prog ⇒ idecl ⇒ bool where

wf-idecl G =
(λ(I ,i).

ws-idecl G I (isuperIfs i) ∧
¬is-class G I ∧
(∀ (sig,mh)∈set (imethods i). wf-mhead G (pid I) sig mh ∧

¬is-static mh ∧
accmodi mh = Public) ∧

unique (imethods i) ∧
(∀ J∈set (isuperIfs i). is-acc-iface G (pid I) J) ∧
(table-of (imethods i)

hiding (methd G Object)
under (λ new old. accmodi old 6= Private)

Theory WellForm 153

entails (λnew old. G`resTy new�resTy old ∧
is-static new = is-static old)) ∧

(set-option ◦ table-of (imethods i)
hidings Un-tables((λJ .(imethds G J))‘set (isuperIfs i))
entails (λnew old. G`resTy new�resTy old)))

lemma wf-idecl-mhead: [[wf-idecl G (I ,i); (sig,mh)∈set (imethods i)]] =⇒
wf-mhead G (pid I) sig mh ∧ ¬is-static mh ∧ accmodi mh = Public

apply (unfold wf-idecl-def)
apply auto
done

lemma wf-idecl-hidings:
wf-idecl G (I , i) =⇒
(λs. set-option (table-of (imethods i) s))
hidings Un-tables ((λJ . imethds G J) ‘ set (isuperIfs i))
entails λnew old. G`resTy new�resTy old

apply (unfold wf-idecl-def o-def)
apply simp
done

lemma wf-idecl-hiding:
wf-idecl G (I , i) =⇒
(table-of (imethods i)

hiding (methd G Object)
under (λ new old. accmodi old 6= Private)
entails (λnew old. G`resTy new�resTy old ∧

is-static new = is-static old))
apply (unfold wf-idecl-def)
apply simp
done

lemma wf-idecl-supD:
[[wf-idecl G (I ,i); J ∈ set (isuperIfs i)]]
=⇒ is-acc-iface G (pid I) J ∧ (J , I) /∈ (subint1 G)+

apply (unfold wf-idecl-def ws-idecl-def)
apply auto
done

well-formed class declarations

A class declaration is wellformed if:

• there is no interface with the same name

• all superinterfaces are accessible and for all methods implementing an interface method the
result type widens to the result type of the interface method, the method is not static and
offers at least as much access (this actually means that the method has Public access, since
all interface methods have public access)

• all field declarations are wellformed and the field names are unique

• all method declarations are wellformed and the method names are unique

• the initialization statement is welltyped

• the classhierarchy is wellstructured

• Unless the class is Object:

154

– the superclass is accessible
– for all methods overriding another method (of a superclass)the result type widens to the

result type of the overridden method, the access modifier of the new method provides at
least as much access as the overwritten one.

– for all methods hiding a method (of a superclass) the hidden method must be static
and offer at least as much access rights. Remark: In contrast to the Java Language
Specification we don’t restrict the result types of the method (as in case of overriding),
because there seems to be no reason, since there is no dynamic binding of static methods.
(cf. 8.4.6.3 vs. 15.12.1). Stricly speaking the restrictions on the access rights aren’t
necessary to, since the static type and the access rights together determine which method
is to be called statically. But if a class gains more then one static method with the same
signature due to inheritance, it is confusing when the method selection depends on the
access rights only: e.g. Class C declares static public method foo(). Class D is subclass
of C and declares static method foo() with default package access. D.foo() ? if this call
is in the same package as D then foo of class D is called, otherwise foo of class C.

definition
entails :: (′a, ′b) table ⇒ (′b ⇒ bool) ⇒ bool (‹- entails -› 20)
where (t entails P) = (∀ k. ∀ x ∈ t k: P x)

lemma entailsD:
[[t entails P; t k = Some x]] =⇒ P x

by (simp add: entails-def)

lemma empty-entails[simp]: Map.empty entails P
by (simp add: entails-def)

definition
wf-cdecl :: prog ⇒ cdecl ⇒ bool where
wf-cdecl G =

(λ(C ,c).
¬is-iface G C ∧
(∀ I∈set (superIfs c). is-acc-iface G (pid C) I ∧
(∀ s. ∀ im ∈ imethds G I s.

(∃ cm ∈ methd G C s: G`resTy cm�resTy im ∧
¬ is-static cm ∧
accmodi im ≤ accmodi cm))) ∧

(∀ f∈set (cfields c). wf-fdecl G (pid C) f) ∧ unique (cfields c) ∧
(∀m∈set (methods c). wf-mdecl G C m) ∧ unique (methods c) ∧
jumpNestingOkS {} (init c) ∧
(∃ A. (|prg=G,cls=C ,lcl=Map.empty|)` {} »〈init c〉» A) ∧
(|prg=G,cls=C ,lcl=Map.empty|)`(init c)::

√
∧ ws-cdecl G C (super c) ∧

(C 6= Object −→
(is-acc-class G (pid C) (super c) ∧
(table-of (map (λ (s,m). (s,C ,m)) (methods c))
entails (λ new. ∀ old sig.

(G,sig`new overridesS old
−→ (G`resTy new�resTy old ∧

accmodi old ≤ accmodi new ∧
¬is-static old)) ∧

(G,sig`new hides old
−→ (accmodi old ≤ accmodi new ∧

is-static old))))
)))

Theory WellForm 155

lemma wf-cdeclE [consumes 1]:
[[wf-cdecl G (C ,c);
[[¬is-iface G C ;
(∀ I∈set (superIfs c). is-acc-iface G (pid C) I ∧

(∀ s. ∀ im ∈ imethds G I s.
(∃ cm ∈ methd G C s: G`resTy cm�resTy im ∧

¬ is-static cm ∧
accmodi im ≤ accmodi cm)));

∀ f∈set (cfields c). wf-fdecl G (pid C) f ; unique (cfields c);
∀m∈set (methods c). wf-mdecl G C m; unique (methods c);
jumpNestingOkS {} (init c);
∃ A. (|prg=G,cls=C ,lcl=Map.empty|)` {} »〈init c〉» A;
(|prg=G,cls=C ,lcl=Map.empty|)`(init c)::

√
;

ws-cdecl G C (super c);
(C 6= Object −→

(is-acc-class G (pid C) (super c) ∧
(table-of (map (λ (s,m). (s,C ,m)) (methods c))
entails (λ new. ∀ old sig.

(G,sig`new overridesS old
−→ (G`resTy new�resTy old ∧

accmodi old ≤ accmodi new ∧
¬is-static old)) ∧

(G,sig`new hides old
−→ (accmodi old ≤ accmodi new ∧

is-static old))))
))]] =⇒ P

]] =⇒ P
by (unfold wf-cdecl-def) simp

lemma wf-cdecl-unique:
wf-cdecl G (C ,c) =⇒ unique (cfields c) ∧ unique (methods c)
apply (unfold wf-cdecl-def)
apply auto
done

lemma wf-cdecl-fdecl:
[[wf-cdecl G (C ,c); f∈set (cfields c)]] =⇒ wf-fdecl G (pid C) f
apply (unfold wf-cdecl-def)
apply auto
done

lemma wf-cdecl-mdecl:
[[wf-cdecl G (C ,c); m∈set (methods c)]] =⇒ wf-mdecl G C m
apply (unfold wf-cdecl-def)
apply auto
done

lemma wf-cdecl-impD:
[[wf-cdecl G (C ,c); I∈set (superIfs c)]]
=⇒ is-acc-iface G (pid C) I ∧

(∀ s. ∀ im ∈ imethds G I s.
(∃ cm ∈ methd G C s: G`resTy cm�resTy im ∧ ¬is-static cm ∧

accmodi im ≤ accmodi cm))
apply (unfold wf-cdecl-def)
apply auto
done

lemma wf-cdecl-supD:

156

[[wf-cdecl G (C ,c); C 6= Object]] =⇒
is-acc-class G (pid C) (super c) ∧ (super c,C) /∈ (subcls1 G)+ ∧
(table-of (map (λ (s,m). (s,C ,m)) (methods c))
entails (λ new. ∀ old sig.

(G,sig`new overridesS old
−→ (G`resTy new�resTy old ∧

accmodi old ≤ accmodi new ∧
¬is-static old)) ∧

(G,sig`new hides old
−→ (accmodi old ≤ accmodi new ∧

is-static old))))
apply (unfold wf-cdecl-def ws-cdecl-def)
apply auto
done

lemma wf-cdecl-overrides-SomeD:
[[wf-cdecl G (C ,c); C 6= Object; table-of (methods c) sig = Some newM ;

G,sig`(C ,newM) overridesS old
]] =⇒ G`resTy newM�resTy old ∧

accmodi old ≤ accmodi newM ∧
¬ is-static old

apply (drule (1) wf-cdecl-supD)
apply (clarify)
apply (drule entailsD)
apply (blast intro: table-of-map-SomeI)
apply (drule-tac x=old in spec)
apply (auto dest: overrides-eq-sigD simp add: msig-def)
done

lemma wf-cdecl-hides-SomeD:
[[wf-cdecl G (C ,c); C 6= Object; table-of (methods c) sig = Some newM ;

G,sig`(C ,newM) hides old
]] =⇒ accmodi old ≤ access newM ∧

is-static old
apply (drule (1) wf-cdecl-supD)
apply (clarify)
apply (drule entailsD)
apply (blast intro: table-of-map-SomeI)
apply (drule-tac x=old in spec)
apply (auto dest: hides-eq-sigD simp add: msig-def)
done

lemma wf-cdecl-wt-init:
wf-cdecl G (C , c) =⇒ (|prg=G,cls=C ,lcl=Map.empty|)`init c::

√

apply (unfold wf-cdecl-def)
apply auto
done

well-formed programs

A program declaration is wellformed if:

• the class ObjectC of Object is defined

• every method of Object has an access modifier distinct from Package. This is necessary since
every interface automatically inherits from Object. We must know, that every time a Object
method is "overriden" by an interface method this is also overriden by the class implementing
the the interface (see implement-dynmethd and class-mheadsD)

Theory WellForm 157

• all standard Exceptions are defined

• all defined interfaces are wellformed

• all defined classes are wellformed

definition
wf-prog :: prog ⇒ bool where

wf-prog G = (let is = ifaces G; cs = classes G in
ObjectC ∈ set cs ∧
(∀ m∈set Object-mdecls. accmodi m 6= Package) ∧
(∀ xn. SXcptC xn ∈ set cs) ∧
(∀ i∈set is. wf-idecl G i) ∧ unique is ∧
(∀ c∈set cs. wf-cdecl G c) ∧ unique cs)

lemma wf-prog-idecl: [[iface G I = Some i; wf-prog G]] =⇒ wf-idecl G (I ,i)
apply (unfold wf-prog-def Let-def)
apply simp
apply (fast dest: map-of-SomeD)
done

lemma wf-prog-cdecl: [[class G C = Some c; wf-prog G]] =⇒ wf-cdecl G (C ,c)
apply (unfold wf-prog-def Let-def)
apply simp
apply (fast dest: map-of-SomeD)
done

lemma wf-prog-Object-mdecls:
wf-prog G =⇒ (∀ m∈set Object-mdecls. accmodi m 6= Package)
apply (unfold wf-prog-def Let-def)
apply simp
done

lemma wf-prog-acc-superD:
[[wf-prog G; class G C = Some c; C 6= Object]]
=⇒ is-acc-class G (pid C) (super c)

by (auto dest: wf-prog-cdecl wf-cdecl-supD)

lemma wf-ws-prog [elim!,simp]: wf-prog G =⇒ ws-prog G
apply (unfold wf-prog-def Let-def)
apply (rule ws-progI)
apply (simp-all (no-asm))
apply (auto simp add: is-acc-class-def is-acc-iface-def

dest!: wf-idecl-supD wf-cdecl-supD)+
done

lemma class-Object [simp]:
wf-prog G =⇒

class G Object = Some (|access=Public,cfields=[],methods=Object-mdecls,
init=Skip,super=undefined,superIfs=[]|)

apply (unfold wf-prog-def Let-def ObjectC-def)
apply (fast dest!: map-of-SomeI)
done

lemma methd-Object[simp]: wf-prog G =⇒ methd G Object =
table-of (map (λ(s,m). (s, Object, m)) Object-mdecls)

apply (subst methd-rec)
apply (auto simp add: Let-def)
done

158

lemma wf-prog-Object-methd:
[[wf-prog G; methd G Object sig = Some m]] =⇒ accmodi m 6= Package
by (auto dest!: wf-prog-Object-mdecls) (auto dest!: map-of-SomeD)

lemma wf-prog-Object-is-public[intro]:
wf-prog G =⇒ is-public G Object

by (auto simp add: is-public-def dest: class-Object)

lemma class-SXcpt [simp]:
wf-prog G =⇒

class G (SXcpt xn) = Some (|access=Public,cfields=[],methods=SXcpt-mdecls,
init=Skip,
super=if xn = Throwable then Object

else SXcpt Throwable,
superIfs=[]|)

apply (unfold wf-prog-def Let-def SXcptC-def)
apply (fast dest!: map-of-SomeI)
done

lemma wf-ObjectC [simp]:
wf-cdecl G ObjectC = (¬is-iface G Object ∧ Ball (set Object-mdecls)

(wf-mdecl G Object) ∧ unique Object-mdecls)
apply (unfold wf-cdecl-def ws-cdecl-def ObjectC-def)
apply (auto intro: da.Skip)
done

lemma Object-is-class [simp,elim!]: wf-prog G =⇒ is-class G Object
apply (simp (no-asm-simp))
done

lemma Object-is-acc-class [simp,elim!]: wf-prog G =⇒ is-acc-class G S Object
apply (simp (no-asm-simp) add: is-acc-class-def is-public-def

accessible-in-RefT-simp)
done

lemma SXcpt-is-class [simp,elim!]: wf-prog G =⇒ is-class G (SXcpt xn)
apply (simp (no-asm-simp))
done

lemma SXcpt-is-acc-class [simp,elim!]:
wf-prog G =⇒ is-acc-class G S (SXcpt xn)
apply (simp (no-asm-simp) add: is-acc-class-def is-public-def

accessible-in-RefT-simp)
done

lemma fields-Object [simp]: wf-prog G =⇒ DeclConcepts.fields G Object = []
by (force intro: fields-emptyI)

lemma accfield-Object [simp]:
wf-prog G =⇒ accfield G S Object = Map.empty

apply (unfold accfield-def)
apply (simp (no-asm-simp) add: Let-def)
done

lemma fields-Throwable [simp]:
wf-prog G =⇒ DeclConcepts.fields G (SXcpt Throwable) = []

by (force intro: fields-emptyI)

Theory WellForm 159

lemma fields-SXcpt [simp]: wf-prog G =⇒ DeclConcepts.fields G (SXcpt xn) = []
apply (case-tac xn = Throwable)
apply (simp (no-asm-simp))
by (force intro: fields-emptyI)

lemmas widen-trans = ws-widen-trans [OF - - wf-ws-prog, elim]
lemma widen-trans2 [elim]: [[G`U�T ; G`S�U ; wf-prog G]] =⇒ G`S�T
apply (erule (2) widen-trans)
done

lemma Xcpt-subcls-Throwable [simp]:
wf-prog G =⇒ G`SXcpt xn�C SXcpt Throwable
apply (rule SXcpt-subcls-Throwable-lemma)
apply auto
done

lemma unique-fields:
[[is-class G C ; wf-prog G]] =⇒ unique (DeclConcepts.fields G C)

apply (erule ws-unique-fields)
apply (erule wf-ws-prog)
apply (erule (1) wf-prog-cdecl [THEN wf-cdecl-unique [THEN conjunct1]])
done

lemma fields-mono:
[[table-of (DeclConcepts.fields G C) fn = Some f ; G`D�C C ;

is-class G D; wf-prog G]]
=⇒ table-of (DeclConcepts.fields G D) fn = Some f

apply (rule map-of-SomeI)
apply (erule (1) unique-fields)
apply (erule (1) map-of-SomeD [THEN fields-mono-lemma])
apply (erule wf-ws-prog)
done

lemma fields-is-type [elim]:
[[table-of (DeclConcepts.fields G C) m = Some f ; wf-prog G; is-class G C]] =⇒

is-type G (type f)
apply (frule wf-ws-prog)
apply (force dest: fields-declC [THEN conjunct1]

wf-prog-cdecl [THEN wf-cdecl-fdecl]
simp add: wf-fdecl-def2 is-acc-type-def)

done

lemma imethds-wf-mhead [rule-format (no-asm)]:
[[m ∈ imethds G I sig; wf-prog G; is-iface G I]] =⇒

wf-mhead G (pid (decliface m)) sig (mthd m) ∧
¬ is-static m ∧ accmodi m = Public

apply (frule wf-ws-prog)
apply (drule (2) imethds-declI [THEN conjunct1])
apply clarify
apply (frule-tac I=(decliface m) in wf-prog-idecl,assumption)
apply (drule wf-idecl-mhead)
apply (erule map-of-SomeD)
apply (cases m, simp)
done

lemma methd-wf-mdecl:
[[methd G C sig = Some m; wf-prog G; class G C = Some y]] =⇒
G`C�C (declclass m) ∧ is-class G (declclass m) ∧

160

wf-mdecl G (declclass m) (sig,(mthd m))
apply (frule wf-ws-prog)
apply (drule (1) methd-declC)
apply fast
apply clarsimp
apply (frule (1) wf-prog-cdecl, erule wf-cdecl-mdecl, erule map-of-SomeD)
done

lemma methd-rT-is-type:
[[wf-prog G;methd G C sig = Some m;

class G C = Some y]]
=⇒ is-type G (resTy m)
apply (drule (2) methd-wf-mdecl)
apply clarify
apply (drule wf-mdeclD1)
apply clarify
apply (drule rT-is-acc-type)
apply (cases m, simp add: is-acc-type-def)
done

lemma accmethd-rT-is-type:
[[wf-prog G;accmethd G S C sig = Some m;

class G C = Some y]]
=⇒ is-type G (resTy m)
by (auto simp add: accmethd-def

intro: methd-rT-is-type)

lemma methd-Object-SomeD:
[[wf-prog G;methd G Object sig = Some m]]
=⇒ declclass m = Object

by (auto dest: class-Object simp add: methd-rec)

lemmas iface-rec-induct ′ = iface-rec.induct [of %x y z. P x y] for P

lemma wf-imethdsD:
[[im ∈ imethds G I sig;wf-prog G; is-iface G I]]
=⇒ ¬is-static im ∧ accmodi im = Public

proof −
assume asm: wf-prog G is-iface G I im ∈ imethds G I sig

have wf-prog G −→
(∀ i im. iface G I = Some i −→ im ∈ imethds G I sig

−→ ¬is-static im ∧ accmodi im = Public) (is ?P G I)
proof (induct G I rule: iface-rec-induct ′, intro allI impI)

fix G I i im
assume hyp:

∧
i J . iface G I = Some i =⇒ ws-prog G =⇒ J ∈ set (isuperIfs i)

=⇒ ?P G J
assume wf : wf-prog G and if-I : iface G I = Some i and

im: im ∈ imethds G I sig
show ¬is-static im ∧ accmodi im = Public
proof −

let ?inherited = Un-tables (imethds G ‘ set (isuperIfs i))
let ?new = (set-option ◦ table-of (map (λ(s, mh). (s, I , mh)) (imethods i)))
from if-I wf im have imethds:im ∈ (?inherited ⊕⊕ ?new) sig

by (simp add: imethds-rec)
from wf if-I have

Theory WellForm 161

wf-supI : ∀ J . J ∈ set (isuperIfs i) −→ (∃ j. iface G J = Some j)
by (blast dest: wf-prog-idecl wf-idecl-supD is-acc-ifaceD)

from wf if-I have
∀ im ∈ set (imethods i). ¬ is-static im ∧ accmodi im = Public
by (auto dest!: wf-prog-idecl wf-idecl-mhead)

then have new-ok: ∀ im. table-of (imethods i) sig = Some im
−→ ¬ is-static im ∧ accmodi im = Public

by (auto dest!: table-of-Some-in-set)
show ?thesis

proof (cases ?new sig = {})
case True
from True wf wf-supI if-I imethds hyp
show ?thesis by (auto simp del: split-paired-All)

next
case False
from False wf wf-supI if-I imethds new-ok hyp
show ?thesis by (auto dest: wf-idecl-hidings hidings-entailsD)

qed
qed

qed
with asm show ?thesis by (auto simp del: split-paired-All)

qed

lemma wf-prog-hidesD:
assumes hides: G `new hides old and wf : wf-prog G
shows
accmodi old ≤ accmodi new ∧
is-static old

proof −
from hides
obtain c where

clsNew: class G (declclass new) = Some c and
neqObj: declclass new 6= Object
by (auto dest: hidesD declared-in-classD)

with hides obtain newM oldM where
newM : table-of (methods c) (msig new) = Some newM and
new: new = (declclass new,(msig new),newM) and
old: old = (declclass old,(msig old),oldM) and

msig new = msig old
by (cases new,cases old)

(auto dest: hidesD
simp add: cdeclaredmethd-def declared-in-def)

with hides
have hides ′:

G,(msig new)`(declclass new,newM) hides (declclass old,oldM)
by auto

from clsNew wf
have wf-cdecl G (declclass new,c) by (blast intro: wf-prog-cdecl)
note wf-cdecl-hides-SomeD [OF this neqObj newM hides ′]
with new old
show ?thesis

by (cases new, cases old) auto
qed

Compare this lemma about static overriding G ` new overridesS old with the definition of dynamic
overriding G ` new overrides old. Conforming result types and restrictions on the access modifiers
of the old and the new method are not part of the predicate for static overriding. But they are
enshured in a wellfromed program. Dynamic overriding has no restrictions on the access modifiers
but enforces confrom result types as precondition. But with some efford we can guarantee the access

162

modifier restriction for dynamic overriding, too. See lemma wf-prog-dyn-override-prop.

lemma wf-prog-stat-overridesD:
assumes stat-override: G `new overridesS old and wf : wf-prog G
shows
G`resTy new�resTy old ∧
accmodi old ≤ accmodi new ∧
¬ is-static old

proof −
from stat-override
obtain c where

clsNew: class G (declclass new) = Some c and
neqObj: declclass new 6= Object
by (auto dest: stat-overrides-commonD declared-in-classD)

with stat-override obtain newM oldM where
newM : table-of (methods c) (msig new) = Some newM and
new: new = (declclass new,(msig new),newM) and
old: old = (declclass old,(msig old),oldM) and

msig new = msig old
by (cases new,cases old)

(auto dest: stat-overrides-commonD
simp add: cdeclaredmethd-def declared-in-def)

with stat-override
have stat-override ′:

G,(msig new)`(declclass new,newM) overridesS (declclass old,oldM)
by auto

from clsNew wf
have wf-cdecl G (declclass new,c) by (blast intro: wf-prog-cdecl)
note wf-cdecl-overrides-SomeD [OF this neqObj newM stat-override ′]
with new old
show ?thesis

by (cases new, cases old) auto
qed

lemma static-to-dynamic-overriding:
assumes stat-override: G`new overridesS old and wf : wf-prog G
shows G`new overrides old

proof −
from stat-override
show ?thesis (is ?Overrides new old)
proof (induct)

case (Direct new old superNew)
then have stat-override:G`new overridesS old

by (rule stat-overridesR.Direct)
from stat-override wf
have resTy-widen: G`resTy new�resTy old and

not-static-old: ¬ is-static old
by (auto dest: wf-prog-stat-overridesD)

have not-private-new: accmodi new 6= Private
proof −

from stat-override
have accmodi old 6= Private

by (rule no-Private-stat-override)
moreover
from stat-override wf
have accmodi old ≤ accmodi new

by (auto dest: wf-prog-stat-overridesD)
ultimately
show ?thesis

Theory WellForm 163

by (auto dest: acc-modi-bottom)
qed
with Direct resTy-widen not-static-old
show ?Overrides new old

by (auto intro: overridesR.Direct stat-override-declclasses-relation)
next

case (Indirect new inter old)
then show ?Overrides new old

by (blast intro: overridesR.Indirect)
qed

qed

lemma non-Package-instance-method-inheritance:
assumes old-inheritable: G`Method old inheritable-in (pid C) and

accmodi-old: accmodi old 6= Package and
instance-method: ¬ is-static old and

subcls: G`C ≺C declclass old and
old-declared: G`Method old declared-in (declclass old) and

wf : wf-prog G
shows G`Method old member-of C ∨
(∃ new. G` new overridesS old ∧ G`Method new member-of C)

proof −
from wf have ws: ws-prog G by auto
from old-declared have iscls-declC-old: is-class G (declclass old)

by (auto simp add: declared-in-def cdeclaredmethd-def)
from subcls have iscls-C : is-class G C

by (blast dest: subcls-is-class)
from iscls-C ws old-inheritable subcls
show ?thesis (is ?P C old)
proof (induct rule: ws-class-induct ′)

case Object
assume G`Object≺C declclass old
then show ?P Object old

by blast
next

case (Subcls C c)
assume cls-C : class G C = Some c and

neq-C-Obj: C 6= Object and
hyp: [[G `Method old inheritable-in pid (super c);

G`super c≺C declclass old]] =⇒ ?P (super c) old and
inheritable: G `Method old inheritable-in pid C and

subclsC : G`C≺C declclass old
from cls-C neq-C-Obj
have super : G`C ≺C1 super c

by (rule subcls1I)
from wf cls-C neq-C-Obj
have accessible-super : G`(Class (super c)) accessible-in (pid C)

by (auto dest: wf-prog-cdecl wf-cdecl-supD is-acc-classD)
have hyp-member-super : ?P C old

if member-super : G`Method old member-of (super c)
and inheritable: G `Method old inheritable-in pid C
and instance-method: ¬ is-static old

for old
proof −

from member-super
have old-declared: G`Method old declared-in (declclass old)
by (cases old) (auto dest: member-of-declC)

show ?thesis
proof (cases G`mid (msig old) undeclared-in C)

164

case True
with inheritable super accessible-super member-super
have G`Method old member-of C

by (cases old) (auto intro: members.Inherited)
then show ?thesis

by auto
next

case False
then obtain new-member where

G`new-member declared-in C and
mid (msig old) = memberid new-member

by (auto dest: not-undeclared-declared)
then obtain new where

new: G`Method new declared-in C and
eq-sig: msig old = msig new and

declC-new: declclass new = C
by (cases new-member) auto

then have member-new: G`Method new member-of C
by (cases new) (auto intro: members.Immediate)

from declC-new super member-super
have subcls-new-old: G`declclass new ≺C declclass old

by (auto dest!: member-of-subclseq-declC
dest: r-into-trancl intro: trancl-rtrancl-trancl)

show ?thesis
proof (cases is-static new)

case False
with eq-sig declC-new new old-declared inheritable

super member-super subcls-new-old
have G`new overridesS old

by (auto intro!: stat-overridesR.Direct)
with member-new show ?thesis

by blast
next

case True
with eq-sig declC-new subcls-new-old new old-declared inheritable
have G`new hides old

by (auto intro: hidesI)
with wf
have is-static old

by (blast dest: wf-prog-hidesD)
with instance-method
show ?thesis

by (contradiction)
qed

qed
qed
from subclsC cls-C
have G`(super c)�C declclass old

by (rule subcls-superD)
then
show ?P C old
proof (cases rule: subclseq-cases)

case Eq
assume super c = declclass old
with old-declared
have G`Method old member-of (super c)

by (cases old) (auto intro: members.Immediate)
with inheritable instance-method
show ?thesis

Theory WellForm 165

by (blast dest: hyp-member-super)
next

case Subcls
assume G`super c≺C declclass old
moreover
from inheritable accmodi-old
have G `Method old inheritable-in pid (super c)

by (cases accmodi old) (auto simp add: inheritable-in-def)
ultimately
have ?P (super c) old

by (blast dest: hyp)
then show ?thesis
proof

assume G `Method old member-of super c
with inheritable instance-method
show ?thesis

by (blast dest: hyp-member-super)
next

assume ∃new. G ` new overridesS old ∧ G `Method new member-of super c
then obtain super-new where

super-new-override: G ` super-new overridesS old and
super-new-member : G `Method super-new member-of super c

by blast
from super-new-override wf
have accmodi old ≤ accmodi super-new

by (auto dest: wf-prog-stat-overridesD)
with inheritable accmodi-old
have G `Method super-new inheritable-in pid C

by (auto simp add: inheritable-in-def
split: acc-modi.splits
dest: acc-modi-le-Dests)

moreover
from super-new-override
have ¬ is-static super-new

by (auto dest: stat-overrides-commonD)
moreover
note super-new-member
ultimately have ?P C super-new

by (auto dest: hyp-member-super)
then show ?thesis
proof

assume G `Method super-new member-of C
with super-new-override
show ?thesis

by blast
next

assume ∃new. G ` new overridesS super-new ∧
G `Method new member-of C

with super-new-override show ?thesis
by (blast intro: stat-overridesR.Indirect)

qed
qed

qed
qed

qed

lemma non-Package-instance-method-inheritance-cases:
assumes old-inheritable: G`Method old inheritable-in (pid C) and

accmodi-old: accmodi old 6= Package and

166

instance-method: ¬ is-static old and
subcls: G`C ≺C declclass old and

old-declared: G`Method old declared-in (declclass old) and
wf : wf-prog G

obtains (Inheritance) G`Method old member-of C
| (Overriding) new where G` new overridesS old and G`Method new member-of C

proof −
from old-inheritable accmodi-old instance-method subcls old-declared wf

Inheritance Overriding
show thesis

by (auto dest: non-Package-instance-method-inheritance)
qed

lemma dynamic-to-static-overriding:
assumes dyn-override: G` new overrides old and

accmodi-old: accmodi old 6= Package and
wf : wf-prog G

shows G` new overridesS old
proof −

from dyn-override accmodi-old
show ?thesis (is ?Overrides new old)
proof (induct rule: overridesR.induct)

case (Direct new old)
assume new-declared: G`Method new declared-in declclass new
assume eq-sig-new-old: msig new = msig old
assume subcls-new-old: G`declclass new ≺C declclass old
assume G `Method old inheritable-in pid (declclass new) and

accmodi old 6= Package and
¬ is-static old and
G`declclass new≺C declclass old and
G`Method old declared-in declclass old

from this wf
show ?Overrides new old
proof (cases rule: non-Package-instance-method-inheritance-cases)

case Inheritance
assume G `Method old member-of declclass new
then have G`mid (msig old) undeclared-in declclass new
proof cases

case Immediate
with subcls-new-old wf show ?thesis

by (auto dest: subcls-irrefl)
next

case Inherited
then show ?thesis

by (cases old) auto
qed
with eq-sig-new-old new-declared
show ?thesis

by (cases old,cases new) (auto dest!: declared-not-undeclared)
next

case (Overriding new ′)
assume stat-override-new ′: G ` new ′ overridesS old
then have msig new ′ = msig old

by (auto dest: stat-overrides-commonD)
with eq-sig-new-old have eq-sig-new-new ′: msig new=msig new ′

by simp
assume G `Method new ′ member-of declclass new
then show ?thesis
proof (cases)

Theory WellForm 167

case Immediate
then have declC-new: declclass new ′ = declclass new

by auto
from Immediate
have G`Method new ′ declared-in declclass new

by (cases new ′) auto
with new-declared eq-sig-new-new ′ declC-new
have new=new ′

by (cases new, cases new ′) (auto dest: unique-declared-in)
with stat-override-new ′

show ?thesis
by simp

next
case Inherited
then have G`mid (msig new ′) undeclared-in declclass new

by (cases new ′) (auto)
with eq-sig-new-new ′ new-declared
show ?thesis

by (cases new,cases new ′) (auto dest!: declared-not-undeclared)
qed

qed
next

case (Indirect new inter old)
assume accmodi-old: accmodi old 6= Package
assume accmodi old 6= Package =⇒ G ` inter overridesS old
with accmodi-old
have stat-override-inter-old: G ` inter overridesS old

by blast
moreover
assume hyp-inter : accmodi inter 6= Package =⇒ G ` new overridesS inter
moreover
have accmodi inter 6= Package
proof −

from stat-override-inter-old wf
have accmodi old ≤ accmodi inter

by (auto dest: wf-prog-stat-overridesD)
with stat-override-inter-old accmodi-old
show ?thesis

by (auto dest!: no-Private-stat-override
split: acc-modi.splits
dest: acc-modi-le-Dests)

qed
ultimately show ?Overrides new old

by (blast intro: stat-overridesR.Indirect)
qed

qed

lemma wf-prog-dyn-override-prop:
assumes dyn-override: G ` new overrides old and

wf : wf-prog G
shows accmodi old ≤ accmodi new

proof (cases accmodi old = Package)
case True
note old-Package = this
show ?thesis
proof (cases accmodi old ≤ accmodi new)

case True then show ?thesis .
next

case False

168

with old-Package
have accmodi new = Private

by (cases accmodi new) (auto simp add: le-acc-def less-acc-def)
with dyn-override
show ?thesis

by (auto dest: overrides-commonD)
qed

next
case False
with dyn-override wf
have G ` new overridesS old

by (blast intro: dynamic-to-static-overriding)
with wf
show ?thesis
by (blast dest: wf-prog-stat-overridesD)

qed

lemma overrides-Package-old:
assumes dyn-override: G ` new overrides old and

accmodi-new: accmodi new = Package and
wf : wf-prog G

shows accmodi old = Package
proof (cases accmodi old)

case Private
with dyn-override show ?thesis

by (simp add: no-Private-override)
next

case Package
then show ?thesis .

next
case Protected
with dyn-override wf
have G ` new overridesS old

by (auto intro: dynamic-to-static-overriding)
with wf
have accmodi old ≤ accmodi new

by (auto dest: wf-prog-stat-overridesD)
with Protected accmodi-new
show ?thesis

by (simp add: less-acc-def le-acc-def)
next

case Public
with dyn-override wf
have G ` new overridesS old

by (auto intro: dynamic-to-static-overriding)
with wf
have accmodi old ≤ accmodi new

by (auto dest: wf-prog-stat-overridesD)
with Public accmodi-new
show ?thesis

by (simp add: less-acc-def le-acc-def)
qed

lemma dyn-override-Package:
assumes dyn-override: G ` new overrides old and

accmodi-old: accmodi old = Package and
accmodi-new: accmodi new = Package and

wf : wf-prog G
shows pid (declclass old) = pid (declclass new)

Theory WellForm 169

proof −
from dyn-override accmodi-old accmodi-new
show ?thesis (is ?EqPid old new)
proof (induct rule: overridesR.induct)

case (Direct new old)
assume accmodi old = Package

G `Method old inheritable-in pid (declclass new)
then show pid (declclass old) = pid (declclass new)

by (auto simp add: inheritable-in-def)
next

case (Indirect new inter old)
assume accmodi-old: accmodi old = Package and

accmodi-new: accmodi new = Package
assume G ` new overrides inter
with accmodi-new wf
have accmodi inter = Package

by (auto intro: overrides-Package-old)
with Indirect
show pid (declclass old) = pid (declclass new)

by auto
qed

qed

lemma dyn-override-Package-escape:
assumes dyn-override: G ` new overrides old and

accmodi-old: accmodi old = Package and
outside-pack: pid (declclass old) 6= pid (declclass new) and

wf : wf-prog G
shows ∃ inter . G ` new overrides inter ∧ G ` inter overrides old ∧

pid (declclass old) = pid (declclass inter) ∧
Protected ≤ accmodi inter

proof −
from dyn-override accmodi-old outside-pack
show ?thesis (is ?P new old)
proof (induct rule: overridesR.induct)

case (Direct new old)
assume accmodi-old: accmodi old = Package
assume outside-pack: pid (declclass old) 6= pid (declclass new)
assume G `Method old inheritable-in pid (declclass new)
with accmodi-old
have pid (declclass old) = pid (declclass new)

by (simp add: inheritable-in-def)
with outside-pack
show ?P new old

by (contradiction)
next

case (Indirect new inter old)
assume accmodi-old: accmodi old = Package
assume outside-pack: pid (declclass old) 6= pid (declclass new)
assume override-new-inter : G ` new overrides inter
assume override-inter-old: G ` inter overrides old
assume hyp-new-inter : [[accmodi inter = Package;

pid (declclass inter) 6= pid (declclass new)]]
=⇒ ?P new inter

assume hyp-inter-old: [[accmodi old = Package;
pid (declclass old) 6= pid (declclass inter)]]
=⇒ ?P inter old

show ?P new old
proof (cases pid (declclass old) = pid (declclass inter))

170

case True
note same-pack-old-inter = this
show ?thesis
proof (cases pid (declclass inter) = pid (declclass new))

case True
with same-pack-old-inter outside-pack
show ?thesis

by auto
next

case False
note diff-pack-inter-new = this
show ?thesis
proof (cases accmodi inter = Package)

case True
with diff-pack-inter-new hyp-new-inter
obtain newinter where

over-new-newinter : G ` new overrides newinter and
over-newinter-inter : G ` newinter overrides inter and
eq-pid: pid (declclass inter) = pid (declclass newinter) and
accmodi-newinter : Protected ≤ accmodi newinter
by auto

from over-newinter-inter override-inter-old
have G`newinter overrides old

by (rule overridesR.Indirect)
moreover
from eq-pid same-pack-old-inter
have pid (declclass old) = pid (declclass newinter)

by simp
moreover
note over-new-newinter accmodi-newinter
ultimately show ?thesis

by blast
next

case False
with override-new-inter
have Protected ≤ accmodi inter

by (cases accmodi inter) (auto dest: no-Private-override)
with override-new-inter override-inter-old same-pack-old-inter
show ?thesis

by blast
qed

qed
next

case False
with accmodi-old hyp-inter-old
obtain newinter where

over-inter-newinter : G ` inter overrides newinter and
over-newinter-old: G ` newinter overrides old and

eq-pid: pid (declclass old) = pid (declclass newinter) and
accmodi-newinter : Protected ≤ accmodi newinter
by auto

from override-new-inter over-inter-newinter
have G ` new overrides newinter

by (rule overridesR.Indirect)
with eq-pid over-newinter-old accmodi-newinter
show ?thesis

by blast
qed

qed

Theory WellForm 171

qed

lemmas class-rec-induct ′ = class-rec.induct [of %x y z w. P x y] for P

lemma declclass-widen[rule-format]:
wf-prog G
−→ (∀ c m. class G C = Some c −→ methd G C sig = Some m
−→ G`C �C declclass m) (is ?P G C)

proof (induct G C rule: class-rec-induct ′, intro allI impI)
fix G C c m
assume Hyp:

∧
c. class G C = Some c =⇒ ws-prog G =⇒ C 6= Object

=⇒ ?P G (super c)
assume wf : wf-prog G and cls-C : class G C = Some c and

m: methd G C sig = Some m
show G`C�C declclass m
proof (cases C=Object)

case True
with wf m show ?thesis by (simp add: methd-Object-SomeD)

next
let ?filter=filter-tab (λsig m. G`C inherits method sig m)
let ?table = table-of (map (λ(s, m). (s, C , m)) (methods c))
case False
with cls-C wf m
have methd-C : (?filter (methd G (super c)) ++ ?table) sig = Some m

by (simp add: methd-rec)
show ?thesis
proof (cases ?table sig)

case None
from this methd-C have ?filter (methd G (super c)) sig = Some m

by simp
moreover
from wf cls-C False obtain sup where class G (super c) = Some sup

by (blast dest: wf-prog-cdecl wf-cdecl-supD is-acc-class-is-class)
moreover note wf False cls-C
ultimately have G`super c �C declclass m

by (auto intro: Hyp [rule-format])
moreover from cls-C False have G`C ≺C1 super c by (rule subcls1I)
ultimately show ?thesis by − (rule rtrancl-into-rtrancl2)

next
case Some
from this wf False cls-C methd-C show ?thesis by auto

qed
qed

qed

lemma declclass-methd-Object:
[[wf-prog G; methd G Object sig = Some m]] =⇒ declclass m = Object

by auto

lemma methd-declaredD:
[[wf-prog G; is-class G C ;methd G C sig = Some m]]
=⇒ G`(mdecl (sig,mthd m)) declared-in (declclass m)

proof −
assume wf : wf-prog G
then have ws: ws-prog G ..
assume clsC : is-class G C
from clsC ws
show methd G C sig = Some m

=⇒ G`(mdecl (sig,mthd m)) declared-in (declclass m)

172

proof (induct C rule: ws-class-induct ′)
case Object
show ?thesis if methd G Object sig = Some m

by (rule method-declared-inI) (use wf that in auto)
next

case Subcls
fix C c
assume clsC : class G C = Some c
and m: methd G C sig = Some m
and hyp: methd G (super c) sig = Some m =⇒ ?thesis
let ?newMethods = table-of (map (λ(s, m). (s, C , m)) (methods c))
show ?thesis
proof (cases ?newMethods sig)

case None
from None ws clsC m hyp
show ?thesis by (auto intro: method-declared-inI simp add: methd-rec)

next
case Some
from Some ws clsC m
show ?thesis by (auto intro: method-declared-inI simp add: methd-rec)

qed
qed

qed

lemma methd-rec-Some-cases:
assumes methd-C : methd G C sig = Some m and

ws: ws-prog G and
clsC : class G C = Some c and

neq-C-Obj: C 6=Object
obtains (NewMethod) table-of (map (λ(s, m). (s, C , m)) (methods c)) sig = Some m
| (InheritedMethod) G`C inherits (method sig m) and methd G (super c) sig = Some m

proof −
let ?inherited = filter-tab (λsig m. G`C inherits method sig m)

(methd G (super c))
let ?new = table-of (map (λ(s, m). (s, C , m)) (methods c))
from ws clsC neq-C-Obj methd-C
have methd-unfold: (?inherited ++ ?new) sig = Some m

by (simp add: methd-rec)
show thesis
proof (cases ?new sig)

case None
with methd-unfold have ?inherited sig = Some m

by (auto)
with InheritedMethod show ?thesis by blast

next
case Some
with methd-unfold have ?new sig = Some m

by auto
with NewMethod show ?thesis by blast

qed
qed

lemma methd-member-of :
assumes wf : wf-prog G
shows
[[is-class G C ; methd G C sig = Some m]] =⇒ G`Methd sig m member-of C

(is ?Class C =⇒ ?Method C =⇒ ?MemberOf C)
proof −

Theory WellForm 173

from wf have ws: ws-prog G ..
assume defC : is-class G C
from defC ws
show ?Class C =⇒ ?Method C =⇒ ?MemberOf C
proof (induct rule: ws-class-induct ′)

case Object
with wf have declC : Object = declclass m

by (simp add: declclass-methd-Object)
from Object wf have G`Methd sig m declared-in Object

by (auto intro: methd-declaredD simp add: declC)
with declC
show ?MemberOf Object

by (auto intro!: members.Immediate
simp del: methd-Object)

next
case (Subcls C c)
assume clsC : class G C = Some c and

neq-C-Obj: C 6= Object
assume methd: ?Method C
from methd ws clsC neq-C-Obj
show ?MemberOf C
proof (cases rule: methd-rec-Some-cases)

case NewMethod
with clsC show ?thesis

by (auto dest: method-declared-inI intro!: members.Immediate)
next

case InheritedMethod
then show ?thesis

by (blast dest: inherits-member)
qed

qed
qed

lemma current-methd:
[[table-of (methods c) sig = Some new;

ws-prog G; class G C = Some c; C 6= Object;
methd G (super c) sig = Some old]]

=⇒ methd G C sig = Some (C ,new)
by (auto simp add: methd-rec

intro: filter-tab-SomeI map-add-find-right table-of-map-SomeI)

lemma wf-prog-staticD:
assumes wf : wf-prog G and

clsC : class G C = Some c and
neq-C-Obj: C 6= Object and

old: methd G (super c) sig = Some old and
accmodi-old: Protected ≤ accmodi old and

new: table-of (methods c) sig = Some new
shows is-static new = is-static old

proof −
from clsC wf
have wf-cdecl: wf-cdecl G (C ,c) by (rule wf-prog-cdecl)
from wf clsC neq-C-Obj
have is-cls-super : is-class G (super c)

by (blast dest: wf-prog-acc-superD is-acc-classD)
from wf is-cls-super old
have old-member-of : G`Methd sig old member-of (super c)

by (rule methd-member-of)
from old wf is-cls-super

174

have old-declared: G`Methd sig old declared-in (declclass old)
by (auto dest: methd-declared-in-declclass)

from new clsC
have new-declared: G`Methd sig (C ,new) declared-in C

by (auto intro: method-declared-inI)
note trancl-rtrancl-tranc = trancl-rtrancl-trancl [trans]
from clsC neq-C-Obj
have subcls1-C-super : G`C ≺C1 super c

by (rule subcls1I)
then have G`C ≺C super c ..
also from old wf is-cls-super
have G`super c �C (declclass old) by (auto dest: methd-declC)
finally have subcls-C-old: G`C ≺C (declclass old) .
from accmodi-old
have inheritable: G`Methd sig old inheritable-in pid C

by (auto simp add: inheritable-in-def
dest: acc-modi-le-Dests)

show ?thesis
proof (cases is-static new)

case True
with subcls-C-old new-declared old-declared inheritable
have G,sig`(C ,new) hides old

by (auto intro: hidesI)
with True wf-cdecl neq-C-Obj new
show ?thesis

by (auto dest: wf-cdecl-hides-SomeD)
next

case False
with subcls-C-old new-declared old-declared inheritable subcls1-C-super

old-member-of
have G,sig`(C ,new) overridesS old

by (auto intro: stat-overridesR.Direct)
with False wf-cdecl neq-C-Obj new
show ?thesis

by (auto dest: wf-cdecl-overrides-SomeD)
qed

qed

lemma inheritable-instance-methd:
assumes subclseq-C-D: G`C �C D and

is-cls-D: is-class G D and
wf : wf-prog G and

old: methd G D sig = Some old and
accmodi-old: Protected ≤ accmodi old and

not-static-old: ¬ is-static old
shows
∃new. methd G C sig = Some new ∧

(new = old ∨ G,sig`new overridesS old)
(is (∃new. (?Constraint C new old)))

proof −
from subclseq-C-D is-cls-D
have is-cls-C : is-class G C by (rule subcls-is-class2)
from wf
have ws: ws-prog G ..
from is-cls-C ws subclseq-C-D
show ∃new. ?Constraint C new old
proof (induct rule: ws-class-induct ′)

case (Object co)
then have eq-D-Obj: D=Object by auto

Theory WellForm 175

with old
have ?Constraint Object old old

by auto
with eq-D-Obj
show ∃ new. ?Constraint Object new old by auto

next
case (Subcls C c)
assume hyp: G`super c�C D =⇒ ∃new. ?Constraint (super c) new old
assume clsC : class G C = Some c
assume neq-C-Obj: C 6=Object
from clsC wf
have wf-cdecl: wf-cdecl G (C ,c)

by (rule wf-prog-cdecl)
from ws clsC neq-C-Obj
have is-cls-super : is-class G (super c)

by (auto dest: ws-prog-cdeclD)
from clsC wf neq-C-Obj
have superAccessible: G`(Class (super c)) accessible-in (pid C) and

subcls1-C-super : G`C ≺C1 super c
by (auto dest: wf-prog-cdecl wf-cdecl-supD is-acc-classD

intro: subcls1I)
show ∃new. ?Constraint C new old
proof (cases G`super c�C D)

case False
from False Subcls
have eq-C-D: C=D

by (auto dest: subclseq-superD)
with old
have ?Constraint C old old

by auto
with eq-C-D
show ∃ new. ?Constraint C new old by auto

next
case True
with hyp obtain super-method

where super : ?Constraint (super c) super-method old by blast
from super not-static-old
have not-static-super : ¬ is-static super-method

by (auto dest!: stat-overrides-commonD)
from super old wf accmodi-old
have accmodi-super-method: Protected ≤ accmodi super-method

by (auto dest!: wf-prog-stat-overridesD)
from super accmodi-old wf
have inheritable: G`Methd sig super-method inheritable-in (pid C)

by (auto dest!: wf-prog-stat-overridesD
acc-modi-le-Dests

simp add: inheritable-in-def)
from super wf is-cls-super
have member : G`Methd sig super-method member-of (super c)

by (auto intro: methd-member-of)
from member
have decl-super-method:

G`Methd sig super-method declared-in (declclass super-method)
by (auto dest: member-of-declC)

from super subcls1-C-super ws is-cls-super
have subcls-C-super : G`C ≺C (declclass super-method)

by (auto intro: rtrancl-into-trancl2 dest: methd-declC)
show ∃ new. ?Constraint C new old
proof (cases methd G C sig)

176

case None
have methd G (super c) sig = None
proof −

from clsC ws None
have no-new: table-of (methods c) sig = None

by (auto simp add: methd-rec)
with clsC
have undeclared: G`mid sig undeclared-in C

by (auto simp add: undeclared-in-def cdeclaredmethd-def)
with inheritable member superAccessible subcls1-C-super
have inherits: G`C inherits (method sig super-method)

by (auto simp add: inherits-def)
with clsC ws no-new super neq-C-Obj
have methd G C sig = Some super-method

by (auto simp add: methd-rec map-add-def intro: filter-tab-SomeI)
with None show ?thesis

by simp
qed
with super show ?thesis by auto

next
case (Some new)
from this ws clsC neq-C-Obj
show ?thesis
proof (cases rule: methd-rec-Some-cases)

case InheritedMethod
with super Some show ?thesis

by auto
next

case NewMethod
assume new: table-of (map (λ(s, m). (s, C , m)) (methods c)) sig

= Some new
from new
have declcls-new: declclass new = C

by auto
from wf clsC neq-C-Obj super new not-static-super accmodi-super-method
have not-static-new: ¬ is-static new

by (auto dest: wf-prog-staticD)
from clsC new
have decl-new: G`Methd sig new declared-in C

by (auto simp add: declared-in-def cdeclaredmethd-def)
from not-static-new decl-new decl-super-method

member subcls1-C-super inheritable declcls-new subcls-C-super
have G,sig` new overridesS super-method

by (auto intro: stat-overridesR.Direct)
with super Some
show ?thesis

by (auto intro: stat-overridesR.Indirect)
qed

qed
qed

qed
qed

lemma inheritable-instance-methd-cases:
assumes subclseq-C-D: G`C �C D and

is-cls-D: is-class G D and
wf : wf-prog G and

old: methd G D sig = Some old and
accmodi-old: Protected ≤ accmodi old and

Theory WellForm 177

not-static-old: ¬ is-static old
obtains (Inheritance) methd G C sig = Some old
| (Overriding) new where methd G C sig = Some new and G,sig`new overridesS old

proof −
from subclseq-C-D is-cls-D wf old accmodi-old not-static-old
show ?thesis

by (auto dest: inheritable-instance-methd intro: Inheritance Overriding)
qed

lemma inheritable-instance-methd-props:
assumes subclseq-C-D: G`C �C D and

is-cls-D: is-class G D and
wf : wf-prog G and

old: methd G D sig = Some old and
accmodi-old: Protected ≤ accmodi old and

not-static-old: ¬ is-static old
shows
∃new. methd G C sig = Some new ∧

¬ is-static new ∧ G`resTy new�resTy old ∧ accmodi old ≤accmodi new
(is (∃new. (?Constraint C new old)))

proof −
from subclseq-C-D is-cls-D wf old accmodi-old not-static-old
show ?thesis
proof (cases rule: inheritable-instance-methd-cases)

case Inheritance
with not-static-old accmodi-old show ?thesis by auto

next
case (Overriding new)
then have ¬ is-static new by (auto dest: stat-overrides-commonD)
with Overriding not-static-old accmodi-old wf
show ?thesis

by (auto dest!: wf-prog-stat-overridesD)
qed

qed

lemma bexI ′: x ∈ A =⇒ P x =⇒ ∃ x∈A. P x by blast
lemma ballE ′: ∀ x∈A. P x =⇒ (x /∈ A =⇒ Q) =⇒ (P x =⇒ Q) =⇒ Q by blast

lemma subint-widen-imethds:
assumes irel: G`I�I J
and wf : wf-prog G
and is-iface: is-iface G J
and jm: jm ∈ imethds G J sig
shows ∃ im ∈ imethds G I sig. is-static im = is-static jm ∧

accmodi im = accmodi jm ∧
G`resTy im�resTy jm

using irel jm
proof (induct rule: converse-rtrancl-induct)

case base
then show ?case by (blast elim: bexI ′)

next
case (step I SI)
from ‹G`I ≺I1 SI ›
obtain i where

ifI : iface G I = Some i and
SI : SI ∈ set (isuperIfs i)

by (blast dest: subint1D)

178

let ?newMethods
= (set-option ◦ table-of (map (λ(sig, mh). (sig, I , mh)) (imethods i)))

show ?case
proof (cases ?newMethods sig = {})

case True
with ifI SI step wf
show ?thesis

by (auto simp add: imethds-rec)
next

case False
from ifI wf False
have imethds: imethds G I sig = ?newMethods sig

by (simp add: imethds-rec)
from False
obtain im where

imdef : im ∈ ?newMethods sig
by (blast)

with imethds
have im: im ∈ imethds G I sig

by (blast)
with im wf ifI
obtain

imStatic: ¬ is-static im and
imPublic: accmodi im = Public

by (auto dest!: imethds-wf-mhead)
from ifI wf
have wf-I : wf-idecl G (I ,i)

by (rule wf-prog-idecl)
with SI wf
obtain si where

ifSI : iface G SI = Some si and
wf-SI : wf-idecl G (SI ,si)
by (auto dest!: wf-idecl-supD is-acc-ifaceD

dest: wf-prog-idecl)
from step
obtain sim::qtname × mhead where

sim: sim ∈ imethds G SI sig and
eq-static-sim-jm: is-static sim = is-static jm and
eq-access-sim-jm: accmodi sim = accmodi jm and

resTy-widen-sim-jm: G`resTy sim�resTy jm
by blast

with wf-I SI imdef sim
have G`resTy im�resTy sim

by (auto dest!: wf-idecl-hidings hidings-entailsD)
with wf resTy-widen-sim-jm
have resTy-widen-im-jm: G`resTy im�resTy jm

by (blast intro: widen-trans)
from sim wf ifSI
obtain

simStatic: ¬ is-static sim and
simPublic: accmodi sim = Public
by (auto dest!: imethds-wf-mhead)

from im
imStatic simStatic eq-static-sim-jm
imPublic simPublic eq-access-sim-jm
resTy-widen-im-jm

show ?thesis
by auto

qed

Theory WellForm 179

qed

lemma implmt1-methd:∧
sig. [[G`C;1I ; wf-prog G; im ∈ imethds G I sig]] =⇒
∃ cm ∈methd G C sig: ¬ is-static cm ∧ ¬ is-static im ∧

G`resTy cm�resTy im ∧
accmodi im = Public ∧ accmodi cm = Public

apply (drule implmt1D)
apply clarify
apply (drule (2) wf-prog-cdecl [THEN wf-cdecl-impD])
apply (frule (1) imethds-wf-mhead)
apply (simp add: is-acc-iface-def)
apply (force)
done

lemma implmt-methd [rule-format (no-asm)]:
[[wf-prog G; G`C;I]] =⇒ is-iface G I −→
(∀ im ∈imethds G I sig.
∃ cm∈methd G C sig: ¬is-static cm ∧ ¬ is-static im ∧

G`resTy cm�resTy im ∧
accmodi im = Public ∧ accmodi cm = Public)

apply (frule implmt-is-class)
apply (erule implmt.induct)
apply safe
apply (drule (2) implmt1-methd)
apply fast
apply (drule (1) subint-widen-imethds)
apply simp
apply assumption
apply clarify
apply (drule (2) implmt1-methd)
apply (force)
apply (frule subcls1D)
apply (drule (1) bspec)
apply clarify
apply (drule (3) r-into-rtrancl [THEN inheritable-instance-methd-props,

OF - implmt-is-class])
apply auto
done

lemma mheadsD [rule-format (no-asm)]:
emh ∈ mheads G S t sig −→ wf-prog G −→
(∃C D m. t = ClassT C ∧ declrefT emh = ClassT D ∧

accmethd G S C sig = Some m ∧
(declclass m = D) ∧ mhead (mthd m) = (mhd emh)) ∨

(∃ I . t = IfaceT I ∧ ((∃ im. im ∈ accimethds G (pid S) I sig ∧
mthd im = mhd emh) ∨

(∃m. G`Iface I accessible-in (pid S) ∧ accmethd G S Object sig = Some m ∧
accmodi m 6= Private ∧
declrefT emh = ClassT Object ∧ mhead (mthd m) = mhd emh))) ∨

(∃T m. t = ArrayT T ∧ G`Array T accessible-in (pid S) ∧
accmethd G S Object sig = Some m ∧ accmodi m 6= Private ∧

180

declrefT emh = ClassT Object ∧ mhead (mthd m) = mhd emh)
apply (rule-tac ref-ty1=t in ref-ty-ty.induct [THEN conjunct1])
apply auto
apply (auto simp add: cmheads-def accObjectmheads-def Objectmheads-def)
apply (auto dest!: accmethd-SomeD)
done

lemma mheads-cases:
assumes emh ∈ mheads G S t sig and wf-prog G
obtains (Class-methd) C D m where

t = ClassT C declrefT emh = ClassT D accmethd G S C sig = Some m
declclass m = D mhead (mthd m) = mhd emh
| (Iface-methd) I im where t = IfaceT I

im ∈ accimethds G (pid S) I sig mthd im = mhd emh
| (Iface-Object-methd) I m where

t = IfaceT I G`Iface I accessible-in (pid S)
accmethd G S Object sig = Some m accmodi m 6= Private
declrefT emh = ClassT Object mhead (mthd m) = mhd emh

| (Array-Object-methd) T m where
t = ArrayT T G`Array T accessible-in (pid S)
accmethd G S Object sig = Some m accmodi m 6= Private
declrefT emh = ClassT Object mhead (mthd m) = mhd emh

using assms by (blast dest!: mheadsD)

lemma declclassD[rule-format]:
[[wf-prog G;class G C = Some c; methd G C sig = Some m;

class G (declclass m) = Some d]]
=⇒ table-of (methods d) sig = Some (mthd m)

proof −
assume wf : wf-prog G
then have ws: ws-prog G ..
assume clsC : class G C = Some c
from clsC ws
show

∧
m d. [[methd G C sig = Some m; class G (declclass m) = Some d]]

=⇒ table-of (methods d) sig = Some (mthd m)
proof (induct rule: ws-class-induct)

case Object
with wf show ?thesis m d by auto

next
case (Subcls C c)
let ?newMethods = table-of (map (λ(s, m). (s, C , m)) (methods c)) sig
show ?thesis m d
proof (cases ?newMethods)

case None
from None ws Subcls
show ?thesis by (auto simp add: methd-rec) (rule Subcls)

next
case Some
from Some ws Subcls
show ?thesis

by (auto simp add: methd-rec
dest: wf-prog-cdecl wf-cdecl-supD is-acc-class-is-class)

qed
qed

qed

lemma dynmethd-Object:
assumes statM : methd G Object sig = Some statM and

private: accmodi statM = Private and

Theory WellForm 181

is-cls-C : is-class G C and
wf : wf-prog G

shows dynmethd G Object C sig = Some statM
proof −

from is-cls-C wf
have subclseq: G`C �C Object

by (auto intro: subcls-ObjectI)
from wf have ws: ws-prog G

by simp
from wf
have is-cls-Obj: is-class G Object

by simp
from statM subclseq is-cls-Obj ws private
show ?thesis
proof (cases rule: dynmethd-cases)

case Static then show ?thesis .
next

case Overrides
with private show ?thesis

by (auto dest: no-Private-override)
qed

qed

lemma wf-imethds-hiding-objmethdsD:
assumes old: methd G Object sig = Some old and

is-if-I : is-iface G I and
wf : wf-prog G and

not-private: accmodi old 6= Private and
new: new ∈ imethds G I sig

shows G`resTy new�resTy old ∧ is-static new = is-static old (is ?P new)
proof −

from wf have ws: ws-prog G by simp
have hyp-newmethod: ?P (I ,new)

if ifI : iface G I = Some i
and new: table-of (imethods i) sig = Some new
for I i new
using ifI new not-private wf old

by (auto dest!: wf-prog-idecl wf-idecl-hiding cond-hiding-entailsD
simp del: methd-Object)

from is-if-I ws new
show ?thesis
proof (induct rule: ws-interface-induct)

case (Step I i)
assume ifI : iface G I = Some i
assume new: new ∈ imethds G I sig
from Step
have hyp: ∀ J ∈ set (isuperIfs i). (new ∈ imethds G J sig −→ ?P new)

by auto
from new ifI ws
show ?P new
proof (cases rule: imethds-cases)

case NewMethod
with ifI hyp-newmethod
show ?thesis

by auto
next

case (InheritedMethod J)
assume J ∈ set (isuperIfs i)

new ∈ imethds G J sig

182

with hyp
show ?thesis

by auto
qed

qed
qed

Which dynamic classes are valid to look up a member of a distinct static type? We have to distinct
class members (named static members in Java) from instance members. Class members are global
to all Objects of a class, instance members are local to a single Object instance. If a member is
equipped with the static modifier it is a class member, else it is an instance member. The following
table gives an overview of the current framework. We assume to have a reference with static type
statT and a dynamic class dynC. Between both of these types the widening relation holds G`Class
dynC�statT. Unfortunately this ordinary widening relation isn’t enough to describe the valid lookup
classes, since we must cope the special cases of arrays and interfaces,too. If we statically expect an
array or inteface we may lookup a field or a method in Object which isn’t covered in the widening
relation.
statT field instance method static (class) method ————————————————————————
NullT / / / Iface / dynC Object Class dynC dynC dynC Array / Object Object
In most cases we con lookup the member in the dynamic class. But as an interface can’t declare
new static methods, nor an array can define new methods at all, we have to lookup methods in the
base class Object.
The limitation to classes in the field column is artificial and comes out of the typing rule for the
field access (see rule FVar in the welltyping relation wt in theory WellType). I stems out of the fact,
that Object indeed has no non private fields. So interfaces and arrays can actually have no fields at
all and a field access would be senseless. (In Java interfaces are allowed to declare new fields but in
current Bali not!). So there is no principal reason why we should not allow Objects to declare non
private fields. Then we would get the following column:
statT field —————– NullT / Iface Object Class dynC Array Object

primrec valid-lookup-cls:: prog ⇒ ref-ty ⇒ qtname ⇒ bool ⇒ bool
(‹-,- ` - valid ′-lookup ′-cls ′-for -› [61 ,61 ,61 ,61] 60)

where
G,NullT ` dynC valid-lookup-cls-for static-membr = False
| G,IfaceT I ` dynC valid-lookup-cls-for static-membr

= (if static-membr
then dynC=Object
else G`Class dynC� Iface I)

| G,ClassT C ` dynC valid-lookup-cls-for static-membr = G`Class dynC� Class C
| G,ArrayT T ` dynC valid-lookup-cls-for static-membr = (dynC=Object)

lemma valid-lookup-cls-is-class:
assumes dynC : G,statT ` dynC valid-lookup-cls-for static-membr and

ty-statT : isrtype G statT and
wf : wf-prog G

shows is-class G dynC
proof (cases statT)

case NullT
with dynC ty-statT show ?thesis

by (auto dest: widen-NT2)
next

case (IfaceT I)
with dynC wf show ?thesis

by (auto dest: implmt-is-class)
next

case (ClassT C)

Theory WellForm 183

with dynC ty-statT show ?thesis
by (auto dest: subcls-is-class2)

next
case (ArrayT T)
with dynC wf show ?thesis

by (auto)
qed

declare split-paired-All [simp del] split-paired-Ex [simp del]
setup ‹map-theory-simpset (fn ctxt => ctxt |> Simplifier .del-loop split-all-tac)›
setup ‹map-theory-claset (fn ctxt => ctxt delSWrapper split-all-tac)›

lemma dynamic-mheadsD:
[[emh ∈ mheads G S statT sig;

G,statT ` dynC valid-lookup-cls-for (is-static emh);
isrtype G statT ; wf-prog G
]] =⇒ ∃m ∈ dynlookup G statT dynC sig:

is-static m=is-static emh ∧ G`resTy m�resTy emh
proof −

assume emh: emh ∈ mheads G S statT sig
and wf : wf-prog G
and dynC-Prop: G,statT ` dynC valid-lookup-cls-for (is-static emh)
and istype: isrtype G statT
from dynC-Prop istype wf
obtain y where

dynC : class G dynC = Some y
by (auto dest: valid-lookup-cls-is-class)

from emh wf show ?thesis
proof (cases rule: mheads-cases)

case Class-methd
fix statC statDeclC sm
assume statC : statT = ClassT statC
assume accmethd G S statC sig = Some sm
then have sm: methd G statC sig = Some sm

by (blast dest: accmethd-SomeD)
assume eq-mheads: mhead (mthd sm) = mhd emh
from statC
have dynlookup: dynlookup G statT dynC sig = dynmethd G statC dynC sig

by (simp add: dynlookup-def)
from wf statC istype dynC-Prop sm
obtain dm where

dynmethd G statC dynC sig = Some dm
is-static dm = is-static sm
G`resTy dm�resTy sm
by (force dest!: ws-dynmethd accmethd-SomeD)

with dynlookup eq-mheads
show ?thesis

by (cases emh type: prod) (auto)
next

case Iface-methd
fix I im
assume statI : statT = IfaceT I and

eq-mheads: mthd im = mhd emh and
im ∈ accimethds G (pid S) I sig

then have im: im ∈ imethds G I sig
by (blast dest: accimethdsD)

with istype statI eq-mheads wf
have not-static-emh: ¬ is-static emh

by (cases emh) (auto dest: wf-prog-idecl imethds-wf-mhead)

184

from statI im
have dynlookup: dynlookup G statT dynC sig = methd G dynC sig

by (auto simp add: dynlookup-def dynimethd-def)
from wf dynC-Prop statI istype im not-static-emh
obtain dm where

methd G dynC sig = Some dm
is-static dm = is-static im
G`resTy (mthd dm)�resTy (mthd im)
by (force dest: implmt-methd)

with dynlookup eq-mheads
show ?thesis

by (cases emh type: prod) (auto)
next

case Iface-Object-methd
fix I sm
assume statI : statT = IfaceT I and

sm: accmethd G S Object sig = Some sm and
eq-mheads: mhead (mthd sm) = mhd emh and

nPriv: accmodi sm 6= Private
show ?thesis
proof (cases imethds G I sig = {})

case True
with statI
have dynlookup: dynlookup G statT dynC sig = dynmethd G Object dynC sig

by (simp add: dynlookup-def dynimethd-def)
from wf dynC
have subclsObj: G`dynC �C Object

by (auto intro: subcls-ObjectI)
from wf dynC dynC-Prop istype sm subclsObj
obtain dm where

dynmethd G Object dynC sig = Some dm
is-static dm = is-static sm
G`resTy (mthd dm)�resTy (mthd sm)
by (auto dest!: ws-dynmethd accmethd-SomeD

intro: class-Object [OF wf] intro: that)
with dynlookup eq-mheads
show ?thesis

by (cases emh type: prod) (auto)
next

case False
with statI
have dynlookup: dynlookup G statT dynC sig = methd G dynC sig

by (simp add: dynlookup-def dynimethd-def)
from istype statI
have is-iface G I

by auto
with wf sm nPriv False
obtain im where

im: im ∈ imethds G I sig and
eq-stat: is-static im = is-static sm and
resProp: G`resTy (mthd im)�resTy (mthd sm)
by (auto dest: wf-imethds-hiding-objmethdsD accmethd-SomeD)

from im wf statI istype eq-stat eq-mheads
have not-static-sm: ¬ is-static emh

by (cases emh) (auto dest: wf-prog-idecl imethds-wf-mhead)
from im wf dynC-Prop dynC istype statI not-static-sm
obtain dm where

methd G dynC sig = Some dm
is-static dm = is-static im

Theory WellForm 185

G`resTy (mthd dm)�resTy (mthd im)
by (auto dest: implmt-methd)

with wf eq-stat resProp dynlookup eq-mheads
show ?thesis

by (cases emh type: prod) (auto intro: widen-trans)
qed

next
case Array-Object-methd
fix T sm
assume statArr : statT = ArrayT T and

sm: accmethd G S Object sig = Some sm and
eq-mheads: mhead (mthd sm) = mhd emh

from statArr dynC-Prop wf
have dynlookup: dynlookup G statT dynC sig = methd G Object sig

by (auto simp add: dynlookup-def dynmethd-C-C)
with sm eq-mheads sm
show ?thesis

by (cases emh type: prod) (auto dest: accmethd-SomeD)
qed

qed
declare split-paired-All [simp] split-paired-Ex [simp]
setup ‹map-theory-claset (fn ctxt => ctxt addSbefore (split-all-tac, split-all-tac))›
setup ‹map-theory-simpset (fn ctxt => ctxt |> Simplifier .add-loop (split-all-tac, split-all-tac))›

lemma methd-declclass:
[[class G C = Some c; wf-prog G; methd G C sig = Some m]]
=⇒ methd G (declclass m) sig = Some m

proof −
assume asm: class G C = Some c wf-prog G methd G C sig = Some m
have wf-prog G −→

(∀ c m. class G C = Some c −→ methd G C sig = Some m
−→ methd G (declclass m) sig = Some m) (is ?P G C)

proof (induct G C rule: class-rec-induct ′, intro allI impI)
fix G C c m
assume hyp:

∧
c. class G C = Some c =⇒ ws-prog G =⇒ C 6= Object =⇒

?P G (super c)
assume wf : wf-prog G and cls-C : class G C = Some c and

m: methd G C sig = Some m
show methd G (declclass m) sig = Some m
proof (cases C=Object)

case True
with wf m show ?thesis by (auto intro: table-of-map-SomeI)

next
let ?filter=filter-tab (λsig m. G`C inherits method sig m)
let ?table = table-of (map (λ(s, m). (s, C , m)) (methods c))
case False
with cls-C wf m
have methd-C : (?filter (methd G (super c)) ++ ?table) sig = Some m

by (simp add: methd-rec)
show ?thesis
proof (cases ?table sig)

case None
from this methd-C have ?filter (methd G (super c)) sig = Some m

by simp
moreover

186

from wf cls-C False obtain sup where class G (super c) = Some sup
by (blast dest: wf-prog-cdecl wf-cdecl-supD is-acc-class-is-class)

moreover note wf False cls-C
ultimately show ?thesis by (auto intro: hyp [rule-format])

next
case Some
from this methd-C m show ?thesis by auto

qed
qed

qed
with asm show ?thesis by auto

qed

lemma dynmethd-declclass:
[[dynmethd G statC dynC sig = Some m;

wf-prog G; is-class G statC
]] =⇒ methd G (declclass m) sig = Some m

by (auto dest: dynmethd-declC)

lemma dynlookup-declC :
[[dynlookup G statT dynC sig = Some m; wf-prog G;

is-class G dynC ;isrtype G statT
]] =⇒ G`dynC �C (declclass m) ∧ is-class G (declclass m)

by (cases statT)
(auto simp add: dynlookup-def dynimethd-def

dest: methd-declC dynmethd-declC)

lemma dynlookup-Array-declclassD [simp]:
[[dynlookup G (ArrayT T) Object sig = Some dm;wf-prog G]]
=⇒ declclass dm = Object

proof −
assume dynL: dynlookup G (ArrayT T) Object sig = Some dm
assume wf : wf-prog G
from wf have ws: ws-prog G by auto
from wf have is-cls-Obj: is-class G Object by auto
from dynL wf
show ?thesis

by (auto simp add: dynlookup-def dynmethd-C-C [OF is-cls-Obj ws]
dest: methd-Object-SomeD)

qed

declare split-paired-All [simp del] split-paired-Ex [simp del]
setup ‹map-theory-simpset (fn ctxt => ctxt |> Simplifier .del-loop split-all-tac)›
setup ‹map-theory-claset (fn ctxt => ctxt delSWrapper split-all-tac)›

lemma wt-is-type: E ,dt|=v::T =⇒ wf-prog (prg E) −→
dt=empty-dt −→ (case T of

Inl T ⇒ is-type (prg E) T
| Inr Ts ⇒ Ball (set Ts) (is-type (prg E)))

apply (unfold empty-dt-def)
apply (erule wt.induct)
apply (auto split del: if-split-asm simp del: snd-conv

simp add: is-acc-class-def is-acc-type-def)
apply (erule typeof-empty-is-type)
apply (frule (1) wf-prog-cdecl [THEN wf-cdecl-supD],

force simp del: snd-conv, clarsimp simp add: is-acc-class-def)
apply (drule (1) max-spec2mheads [THEN conjunct1 , THEN mheadsD])
apply (drule-tac [2] accfield-fields)

Theory WellForm 187

apply (frule class-Object)
apply (auto dest: accmethd-rT-is-type

imethds-wf-mhead [THEN conjunct1 , THEN rT-is-acc-type]
dest!:accimethdsD
simp del: class-Object
simp add: is-acc-type-def

)
done
declare split-paired-All [simp] split-paired-Ex [simp]
setup ‹map-theory-claset (fn ctxt => ctxt addSbefore (split-all-tac, split-all-tac))›
setup ‹map-theory-simpset (fn ctxt => ctxt |> Simplifier .add-loop (split-all-tac, split-all-tac))›

lemma ty-expr-is-type:
[[E`e::−T ; wf-prog (prg E)]] =⇒ is-type (prg E) T
by (auto dest!: wt-is-type)
lemma ty-var-is-type:
[[E`v::=T ; wf-prog (prg E)]] =⇒ is-type (prg E) T
by (auto dest!: wt-is-type)
lemma ty-exprs-is-type:
[[E`es:: .=Ts; wf-prog (prg E)]] =⇒ Ball (set Ts) (is-type (prg E))
by (auto dest!: wt-is-type)

lemma static-mheadsD:
[[emh ∈ mheads G S t sig; wf-prog G; E`e::−RefT t; prg E=G ;

invmode (mhd emh) e 6= IntVir
]] =⇒ ∃m. ((∃ C . t = ClassT C ∧ accmethd G S C sig = Some m)

∨ (∀ C . t 6= ClassT C ∧ accmethd G S Object sig = Some m)) ∧
declrefT emh = ClassT (declclass m) ∧ mhead (mthd m) = (mhd emh)

apply (subgoal-tac is-static emh ∨ e = Super)
defer apply (force simp add: invmode-def)
apply (frule ty-expr-is-type)
apply simp
apply (case-tac is-static emh)
apply (frule (1) mheadsD)
apply clarsimp
apply safe
apply blast
apply (auto dest!: imethds-wf-mhead

accmethd-SomeD
accimethdsD

simp add: accObjectmheads-def Objectmheads-def)

apply (erule wt-elim-cases)
apply (force simp add: cmheads-def)
done

lemma wt-MethdI :
[[methd G C sig = Some m; wf-prog G;

class G C = Some c]] =⇒
∃T . (|prg=G,cls=(declclass m),

lcl=callee-lcl (declclass m) sig (mthd m)|)` Methd C sig::−T ∧ G`T�resTy m
apply (frule (2) methd-wf-mdecl, clarify)
apply (force dest!: wf-mdecl-bodyD intro!: wt.Methd)
done

2 accessibility concerns
lemma mheads-type-accessible:

188

[[emh ∈ mheads G S T sig; wf-prog G]]
=⇒ G`RefT T accessible-in (pid S)

by (erule mheads-cases)
(auto dest: accmethd-SomeD accessible-from-commonD accimethdsD)

lemma static-to-dynamic-accessible-from-aux:
[[G`m of C accessible-from accC ;wf-prog G]]
=⇒ G`m in C dyn-accessible-from accC

proof (induct rule: accessible-fromR.induct)
qed (auto intro: dyn-accessible-fromR.intros

member-of-to-member-in
static-to-dynamic-overriding)

lemma static-to-dynamic-accessible-from:
assumes stat-acc: G`m of statC accessible-from accC and

subclseq: G`dynC �C statC and
wf : wf-prog G

shows G`m in dynC dyn-accessible-from accC
proof −

from stat-acc subclseq
show ?thesis (is ?Dyn-accessible m)
proof (induct rule: accessible-fromR.induct)

case (Immediate m statC)
then show ?Dyn-accessible m

by (blast intro: dyn-accessible-fromR.Immediate
member-inI
permits-acc-inheritance)

next
case (Overriding m - -)
with wf show ?Dyn-accessible m

by (blast intro: dyn-accessible-fromR.Overriding
member-inI
static-to-dynamic-overriding
rtrancl-trancl-trancl
static-to-dynamic-accessible-from-aux)

qed
qed

lemma static-to-dynamic-accessible-from-static:
assumes stat-acc: G`m of statC accessible-from accC and

static: is-static m and
wf : wf-prog G

shows G`m in (declclass m) dyn-accessible-from accC
proof −

from stat-acc wf
have G`m in statC dyn-accessible-from accC

by (auto intro: static-to-dynamic-accessible-from)
from this static
show ?thesis

by (rule dyn-accessible-from-static-declC)
qed

lemma dynmethd-member-in:
assumes m: dynmethd G statC dynC sig = Some m and
iscls-statC : is-class G statC and

wf : wf-prog G
shows G`Methd sig m member-in dynC

proof −
from m

Theory WellForm 189

have subclseq: G`dynC �C statC
by (auto simp add: dynmethd-def)

from subclseq iscls-statC
have iscls-dynC : is-class G dynC

by (rule subcls-is-class2)
from iscls-dynC iscls-statC wf m
have G`dynC �C (declclass m) ∧ is-class G (declclass m) ∧

methd G (declclass m) sig = Some m
by − (drule dynmethd-declC , auto)

with wf
show ?thesis

by (auto intro: member-inI dest: methd-member-of)
qed

lemma dynmethd-access-prop:
assumes statM : methd G statC sig = Some statM and

stat-acc: G`Methd sig statM of statC accessible-from accC and
dynM : dynmethd G statC dynC sig = Some dynM and

wf : wf-prog G
shows G`Methd sig dynM in dynC dyn-accessible-from accC

proof −
from wf have ws: ws-prog G ..
from dynM
have subclseq: G`dynC �C statC

by (auto simp add: dynmethd-def)
from stat-acc
have is-cls-statC : is-class G statC

by (auto dest: accessible-from-commonD member-of-is-classD)
with subclseq
have is-cls-dynC : is-class G dynC

by (rule subcls-is-class2)
from is-cls-statC statM wf
have member-statC : G`Methd sig statM member-of statC

by (auto intro: methd-member-of)
from stat-acc
have statC-acc: G`Class statC accessible-in (pid accC)

by (auto dest: accessible-from-commonD)
from statM subclseq is-cls-statC ws
show ?thesis
proof (cases rule: dynmethd-cases)

case Static
assume dynmethd: dynmethd G statC dynC sig = Some statM
with dynM have eq-dynM-statM : dynM=statM

by simp
with stat-acc subclseq wf
show ?thesis

by (auto intro: static-to-dynamic-accessible-from)
next

case (Overrides newM)
assume dynmethd: dynmethd G statC dynC sig = Some newM
assume override: G,sig`newM overrides statM
assume neq: newM 6=statM
from dynmethd dynM
have eq-dynM-newM : dynM=newM

by simp
from dynmethd eq-dynM-newM wf is-cls-statC
have G`Methd sig dynM member-in dynC

by (auto intro: dynmethd-member-in)
moreover

190

from subclseq
have G`dynC≺C statC
proof (cases rule: subclseq-cases)

case Eq
assume dynC=statC
moreover
from is-cls-statC obtain c

where class G statC = Some c
by auto

moreover
note statM ws dynmethd
ultimately
have newM=statM

by (auto simp add: dynmethd-C-C)
with neq show ?thesis

by (contradiction)
next

case Subcls then show ?thesis .
qed
moreover
from stat-acc wf
have G`Methd sig statM in statC dyn-accessible-from accC

by (blast intro: static-to-dynamic-accessible-from)
moreover
note override eq-dynM-newM
ultimately show ?thesis

by (cases dynM ,cases statM) (auto intro: dyn-accessible-fromR.Overriding)
qed

qed

lemma implmt-methd-access:
fixes accC ::qtname
assumes iface-methd: imethds G I sig 6= {} and

implements: G`dynC;I and
isif-I : is-iface G I and

wf : wf-prog G
shows ∃ dynM . methd G dynC sig = Some dynM ∧

G`Methd sig dynM in dynC dyn-accessible-from accC
proof −

from implements
have iscls-dynC : is-class G dynC by (rule implmt-is-class)
from iface-methd
obtain im

where im ∈ imethds G I sig
by auto

with wf implements isif-I
obtain dynM

where dynM : methd G dynC sig = Some dynM and
pub: accmodi dynM = Public

by (blast dest: implmt-methd)
with iscls-dynC wf
have G`Methd sig dynM in dynC dyn-accessible-from accC

by (auto intro!: dyn-accessible-fromR.Immediate
intro: methd-member-of member-of-to-member-in

simp add: permits-acc-def)
with dynM
show ?thesis

by blast
qed

Theory WellForm 191

corollary implmt-dynimethd-access:
fixes accC ::qtname
assumes iface-methd: imethds G I sig 6= {} and

implements: G`dynC;I and
isif-I : is-iface G I and

wf : wf-prog G
shows ∃ dynM . dynimethd G I dynC sig = Some dynM ∧

G`Methd sig dynM in dynC dyn-accessible-from accC
proof −

from iface-methd
have dynimethd G I dynC sig = methd G dynC sig

by (simp add: dynimethd-def)
with iface-methd implements isif-I wf
show ?thesis

by (simp only:)
(blast intro: implmt-methd-access)

qed

lemma dynlookup-access-prop:
assumes emh: emh ∈ mheads G accC statT sig and

dynM : dynlookup G statT dynC sig = Some dynM and
dynC-prop: G,statT ` dynC valid-lookup-cls-for is-static emh and
isT-statT : isrtype G statT and

wf : wf-prog G
shows G `Methd sig dynM in dynC dyn-accessible-from accC

proof −
from emh wf
have statT-acc: G`RefT statT accessible-in (pid accC)

by (rule mheads-type-accessible)
from dynC-prop isT-statT wf
have iscls-dynC : is-class G dynC

by (rule valid-lookup-cls-is-class)
from emh dynC-prop isT-statT wf dynM
have eq-static: is-static emh = is-static dynM

by (auto dest: dynamic-mheadsD)
from emh wf show ?thesis
proof (cases rule: mheads-cases)

case (Class-methd statC - statM)
assume statT : statT = ClassT statC
assume accmethd G accC statC sig = Some statM
then have statM : methd G statC sig = Some statM and

stat-acc: G`Methd sig statM of statC accessible-from accC
by (auto dest: accmethd-SomeD)

from dynM statT
have dynM ′: dynmethd G statC dynC sig = Some dynM

by (simp add: dynlookup-def)
from statM stat-acc wf dynM ′

show ?thesis
by (auto dest!: dynmethd-access-prop)

next
case (Iface-methd I im)
then have iface-methd: imethds G I sig 6= {} and

statT-acc: G`RefT statT accessible-in (pid accC)
by (auto dest: accimethdsD)

assume statT : statT = IfaceT I
assume im: im ∈ accimethds G (pid accC) I sig
assume eq-mhds: mthd im = mhd emh
from dynM statT

192

have dynM ′: dynimethd G I dynC sig = Some dynM
by (simp add: dynlookup-def)

from isT-statT statT
have isif-I : is-iface G I

by simp
show ?thesis
proof (cases is-static emh)

case False
with statT dynC-prop
have widen-dynC : G`Class dynC � RefT statT

by simp
from statT widen-dynC
have implmnt: G`dynC;I

by auto
from eq-static False
have not-static-dynM : ¬ is-static dynM

by simp
from iface-methd implmnt isif-I wf dynM ′

show ?thesis
by − (drule implmt-dynimethd-access, auto)

next
case True
assume is-static emh
moreover
from wf isT-statT statT im
have ¬ is-static im

by (auto dest: accimethdsD wf-prog-idecl imethds-wf-mhead)
moreover note eq-mhds
ultimately show ?thesis

by (cases emh) auto
qed

next
case (Iface-Object-methd I statM)
assume statT : statT = IfaceT I
assume accmethd G accC Object sig = Some statM
then have statM : methd G Object sig = Some statM and

stat-acc: G`Methd sig statM of Object accessible-from accC
by (auto dest: accmethd-SomeD)

assume not-Private-statM : accmodi statM 6= Private
assume eq-mhds: mhead (mthd statM) = mhd emh
from iscls-dynC wf
have widen-dynC-Obj: G`dynC �C Object

by (auto intro: subcls-ObjectI)
show ?thesis
proof (cases imethds G I sig = {})

case True
from dynM statT True
have dynM ′: dynmethd G Object dynC sig = Some dynM

by (simp add: dynlookup-def dynimethd-def)
from statT
have G`RefT statT �Class Object

by auto
with statM statT-acc stat-acc widen-dynC-Obj statT isT-statT

wf dynM ′ eq-static dynC-prop
show ?thesis

by − (drule dynmethd-access-prop,force+)
next

case False
then obtain im where

Theory WellForm 193

im: im ∈ imethds G I sig
by auto

have not-static-emh: ¬ is-static emh
proof −

from im statM statT isT-statT wf not-Private-statM
have is-static im = is-static statM

by (fastforce dest: wf-imethds-hiding-objmethdsD)
with wf isT-statT statT im
have ¬ is-static statM

by (auto dest: wf-prog-idecl imethds-wf-mhead)
with eq-mhds
show ?thesis

by (cases emh) auto
qed
with statT dynC-prop
have implmnt: G`dynC;I

by simp
with isT-statT statT
have isif-I : is-iface G I

by simp
from dynM statT
have dynM ′: dynimethd G I dynC sig = Some dynM

by (simp add: dynlookup-def)
from False implmnt isif-I wf dynM ′

show ?thesis
by − (drule implmt-dynimethd-access, auto)

qed
next

case (Array-Object-methd T statM)
assume statT : statT = ArrayT T
assume accmethd G accC Object sig = Some statM
then have statM : methd G Object sig = Some statM and

stat-acc: G`Methd sig statM of Object accessible-from accC
by (auto dest: accmethd-SomeD)

from statT dynC-prop
have dynC-Obj: dynC = Object

by simp
then
have widen-dynC-Obj: G`Class dynC � Class Object

by simp
from dynM statT
have dynM ′: dynmethd G Object dynC sig = Some dynM

by (simp add: dynlookup-def)
from statM statT-acc stat-acc dynM ′ wf widen-dynC-Obj

statT isT-statT
show ?thesis

by − (drule dynmethd-access-prop, simp+)
qed

qed

lemma dynlookup-access:
assumes emh: emh ∈ mheads G accC statT sig and

dynC-prop: G,statT ` dynC valid-lookup-cls-for (is-static emh) and
isT-statT : isrtype G statT and

wf : wf-prog G
shows ∃ dynM . dynlookup G statT dynC sig = Some dynM ∧

G`Methd sig dynM in dynC dyn-accessible-from accC
proof −

from dynC-prop isT-statT wf

194

have is-cls-dynC : is-class G dynC
by (auto dest: valid-lookup-cls-is-class)

with emh wf dynC-prop isT-statT
obtain dynM where

dynlookup G statT dynC sig = Some dynM
by − (drule dynamic-mheadsD,auto)

with emh dynC-prop isT-statT wf
show ?thesis

by (blast intro: dynlookup-access-prop)
qed

lemma stat-overrides-Package-old:
assumes stat-override: G ` new overridesS old and

accmodi-new: accmodi new = Package and
wf : wf-prog G

shows accmodi old = Package
proof −

from stat-override wf
have accmodi old ≤ accmodi new

by (auto dest: wf-prog-stat-overridesD)
with stat-override accmodi-new show ?thesis

by (cases accmodi old) (auto dest: no-Private-stat-override
dest: acc-modi-le-Dests)

qed

Properties of dynamic accessibility
lemma dyn-accessible-Private:
assumes dyn-acc: G ` m in C dyn-accessible-from accC and

priv: accmodi m = Private
shows accC = declclass m

proof −
from dyn-acc priv
show ?thesis
proof (induct)

case (Immediate m C)
from ‹G ` m in C permits-acc-from accC › and ‹accmodi m = Private›
show ?case

by (simp add: permits-acc-def)
next

case Overriding
then show ?case

by (auto dest!: overrides-commonD)
qed

qed

dyn-accessible-Package only works with the wf-prog assumption. Without it. it is easy to leaf the
Package!
lemma dyn-accessible-Package:
[[G ` m in C dyn-accessible-from accC ; accmodi m = Package;

wf-prog G]]
=⇒ pid accC = pid (declclass m)

proof −
assume wf : wf-prog G
assume accessible: G ` m in C dyn-accessible-from accC
then show accmodi m = Package

=⇒ pid accC = pid (declclass m)
(is ?Pack m =⇒ ?P m)

proof (induct rule: dyn-accessible-fromR.induct)

Theory WellForm 195

case (Immediate m C)
assume G`m member-in C

G ` m in C permits-acc-from accC
accmodi m = Package

then show ?P m
by (auto simp add: permits-acc-def)

next
case (Overriding new declC newm old Sup C)
assume member-new: G ` new member-in C and

new: new = (declC , mdecl newm) and
override: G ` (declC , newm) overrides old and

subcls-C-Sup: G`C ≺C Sup and
acc-old: G ` methdMembr old in Sup dyn-accessible-from accC and

hyp: ?Pack (methdMembr old) =⇒ ?P (methdMembr old) and
accmodi-new: accmodi new = Package

from override accmodi-new new wf
have accmodi-old: accmodi old = Package

by (auto dest: overrides-Package-old)
with hyp
have P-sup: ?P (methdMembr old)

by (simp)
from wf override new accmodi-old accmodi-new
have eq-pid-new-old: pid (declclass new) = pid (declclass old)

by (auto dest: dyn-override-Package)
with eq-pid-new-old P-sup show ?P new

by auto
qed

qed

For fields we don’t need the wellformedness of the program, since there is no overriding
lemma dyn-accessible-field-Package:
assumes dyn-acc: G ` f in C dyn-accessible-from accC and

pack: accmodi f = Package and
field: is-field f

shows pid accC = pid (declclass f)
proof −

from dyn-acc pack field
show ?thesis
proof (induct)

case (Immediate f C)
from ‹G ` f in C permits-acc-from accC › and ‹accmodi f = Package›
show ?case

by (simp add: permits-acc-def)
next

case Overriding
then show ?case by (simp add: is-field-def)

qed
qed

dyn-accessible-instance-field-Protected only works for fields since methods can break the package
bounds due to overriding
lemma dyn-accessible-instance-field-Protected:

assumes dyn-acc: G ` f in C dyn-accessible-from accC and
prot: accmodi f = Protected and

field: is-field f and
instance-field: ¬ is-static f and

outside: pid (declclass f) 6= pid accC
shows G` C �C accC

196

proof −
from dyn-acc prot field instance-field outside
show ?thesis
proof (induct)

case (Immediate f C)
note ‹G ` f in C permits-acc-from accC ›
moreover
assume accmodi f = Protected and is-field f and ¬ is-static f and

pid (declclass f) 6= pid accC
ultimately
show G` C �C accC

by (auto simp add: permits-acc-def)
next

case Overriding
then show ?case by (simp add: is-field-def)

qed
qed

lemma dyn-accessible-static-field-Protected:
assumes dyn-acc: G ` f in C dyn-accessible-from accC and

prot: accmodi f = Protected and
field: is-field f and

static-field: is-static f and
outside: pid (declclass f) 6= pid accC

shows G` accC �C declclass f ∧ G`C �C declclass f
proof −

from dyn-acc prot field static-field outside
show ?thesis
proof (induct)

case (Immediate f C)
assume accmodi f = Protected and is-field f and is-static f and

pid (declclass f) 6= pid accC
moreover
note ‹G ` f in C permits-acc-from accC ›
ultimately
have G` accC �C declclass f

by (auto simp add: permits-acc-def)
moreover
from ‹G ` f member-in C ›
have G`C �C declclass f

by (rule member-in-class-relation)
ultimately show ?case

by blast
next

case Overriding
then show ?case by (simp add: is-field-def)

qed
qed

end

Chapter 14

State

1 State for evaluation of Java expressions and statements
theory State
imports DeclConcepts
begin

design issues:

• all kinds of objects (class instances, arrays, and class objects) are handeled via a general object
abstraction

• the heap and the map for class objects are combined into a single table (recall (loc, obj) table
× (qtname, obj) table ∼= (loc + qtname, obj) table)

objects
datatype obj-tag = — tag for generic object

CInst qtname — class instance
| Arr ty int — array with component type and length

— | CStat qtname the tag is irrelevant for a class object, i.e. the static fields of a class, since its type is
given already by the reference to it (see below)

type-synonym vn = fspec + int — variable name
record obj =

tag :: obj-tag — generalized object
values :: (vn, val) table

translations
(type) fspec <= (type) vname × qtname
(type) vn <= (type) fspec + int
(type) obj <= (type) (|tag::obj-tag, values::vn ⇒ val option|)
(type) obj <= (type) (|tag::obj-tag, values::vn ⇒ val option,. . .:: ′a|)

definition
the-Arr :: obj option ⇒ ty × int × (vn, val) table
where the-Arr obj = (SOME (T ,k,t). obj = Some (|tag=Arr T k,values=t|))

lemma the-Arr-Arr [simp]: the-Arr (Some (|tag=Arr T k,values=cs|)) = (T ,k,cs)
apply (auto simp: the-Arr-def)
done

lemma the-Arr-Arr1 [simp,intro,dest]:
[[tag obj = Arr T k]] =⇒ the-Arr (Some obj) = (T ,k,values obj)

197

198

apply (auto simp add: the-Arr-def)
done

definition
upd-obj :: vn ⇒ val ⇒ obj ⇒ obj
where upd-obj n v = (λobj. obj (|values:=(values obj)(n 7→v)|))

lemma upd-obj-def2 [simp]:
upd-obj n v obj = obj (|values:=(values obj)(n 7→v)|)

apply (auto simp: upd-obj-def)
done

definition
obj-ty :: obj ⇒ ty where
obj-ty obj = (case tag obj of

CInst C ⇒ Class C
| Arr T k ⇒ T .[])

lemma obj-ty-eq [intro!]: obj-ty (|tag=oi,values=x|) = obj-ty (|tag=oi,values=y|)
by (simp add: obj-ty-def)

lemma obj-ty-eq1 [intro!,dest]:
tag obj = tag obj ′ =⇒ obj-ty obj = obj-ty obj ′

by (simp add: obj-ty-def)

lemma obj-ty-cong [simp]:
obj-ty (obj (|values:=vs|)) = obj-ty obj

by auto

lemma obj-ty-CInst [simp]:
obj-ty (|tag=CInst C ,values=vs|) = Class C

by (simp add: obj-ty-def)

lemma obj-ty-CInst1 [simp,intro!,dest]:
[[tag obj = CInst C]] =⇒ obj-ty obj = Class C

by (simp add: obj-ty-def)

lemma obj-ty-Arr [simp]:
obj-ty (|tag=Arr T i,values=vs|) = T .[]

by (simp add: obj-ty-def)

lemma obj-ty-Arr1 [simp,intro!,dest]:
[[tag obj = Arr T i]] =⇒ obj-ty obj = T .[]

by (simp add: obj-ty-def)

lemma obj-ty-widenD:
G`obj-ty obj�RefT t =⇒ (∃C . tag obj = CInst C) ∨ (∃T k. tag obj = Arr T k)

apply (unfold obj-ty-def)
apply (auto split: obj-tag.split-asm)
done

definition
obj-class :: obj ⇒ qtname where
obj-class obj = (case tag obj of

CInst C ⇒ C
| Arr T k ⇒ Object)

Theory State 199

lemma obj-class-CInst [simp]: obj-class (|tag=CInst C ,values=vs|) = C
by (auto simp: obj-class-def)

lemma obj-class-CInst1 [simp,intro!,dest]:
tag obj = CInst C =⇒ obj-class obj = C

by (auto simp: obj-class-def)

lemma obj-class-Arr [simp]: obj-class (|tag=Arr T k,values=vs|) = Object
by (auto simp: obj-class-def)

lemma obj-class-Arr1 [simp,intro!,dest]:
tag obj = Arr T k =⇒ obj-class obj = Object

by (auto simp: obj-class-def)

lemma obj-ty-obj-class: G`obj-ty obj� Class statC = G`obj-class obj �C statC
apply (case-tac tag obj)
apply (auto simp add: obj-ty-def obj-class-def)
apply (case-tac statC = Object)
apply (auto dest: widen-Array-Class)
done

object references

type-synonym oref = loc + qtname — generalized object reference

translations
(type) oref <= (type) loc + qtname

abbreviation (input)
Heap :: loc ⇒ oref where Heap ≡ Inl

abbreviation (input)
Stat :: qtname ⇒ oref where Stat ≡ Inr

definition
fields-table :: prog ⇒ qtname ⇒ (fspec ⇒ field ⇒ bool) ⇒ (fspec, ty) table where
fields-table G C P =

map-option type ◦ table-of (filter (case-prod P) (DeclConcepts.fields G C))

lemma fields-table-SomeI :
[[table-of (DeclConcepts.fields G C) n = Some f ; P n f]]
=⇒ fields-table G C P n = Some (type f)

apply (unfold fields-table-def)
apply clarsimp
apply (rule exI)
apply (rule conjI)
apply (erule map-of-filter-in)
apply assumption
apply simp
done

lemma fields-table-SomeD ′: fields-table G C P fn = Some T =⇒
∃ f . (fn,f)∈set(DeclConcepts.fields G C) ∧ type f = T

apply (unfold fields-table-def)
apply clarsimp
apply (drule map-of-SomeD)
apply auto
done

200

lemma fields-table-SomeD:
[[fields-table G C P fn = Some T ; unique (DeclConcepts.fields G C)]] =⇒
∃ f . table-of (DeclConcepts.fields G C) fn = Some f ∧ type f = T

apply (unfold fields-table-def)
apply clarsimp
apply (rule exI)
apply (rule conjI)
apply (erule table-of-filter-unique-SomeD)
apply assumption
apply simp
done

definition
in-bounds :: int ⇒ int ⇒ bool (‹(-/ in ′-bounds -)› [50 , 51] 50)
where i in-bounds k = (0 ≤ i ∧ i < k)

definition
arr-comps :: ′a ⇒ int ⇒ int ⇒ ′a option
where arr-comps T k = (λi. if i in-bounds k then Some T else None)

definition
var-tys :: prog ⇒ obj-tag ⇒ oref ⇒ (vn, ty) table where
var-tys G oi r =
(case r of

Heap a ⇒ (case oi of
CInst C ⇒ fields-table G C (λn f . ¬static f) (+) Map.empty
| Arr T k ⇒ Map.empty (+) arr-comps T k)

| Stat C ⇒ fields-table G C (λfn f . declclassf fn = C ∧ static f)
(+) Map.empty)

lemma var-tys-Some-eq:
var-tys G oi r n = Some T
= (case r of

Inl a ⇒ (case oi of
CInst C ⇒ (∃nt. n = Inl nt ∧ fields-table G C (λn f .

¬static f) nt = Some T)
| Arr t k ⇒ (∃ i. n = Inr i ∧ i in-bounds k ∧ t = T))

| Inr C ⇒ (∃nt. n = Inl nt ∧
fields-table G C (λfn f . declclassf fn = C ∧ static f) nt
= Some T))

apply (unfold var-tys-def arr-comps-def)
apply (force split: sum.split-asm sum.split obj-tag.split)
done

stores

type-synonym globs — global variables: heap and static variables
= (oref , obj) table

type-synonym heap
= (loc , obj) table

translations
(type) globs <= (type) (oref , obj) table
(type) heap <= (type) (loc , obj) table

datatype st =
st globs locals

Theory State 201

2 access
definition

globs :: st ⇒ globs
where globs = case-st (λg l. g)

definition
locals :: st ⇒ locals
where locals = case-st (λg l. l)

definition heap :: st ⇒ heap where
heap s = globs s ◦ Heap

lemma globs-def2 [simp]: globs (st g l) = g
by (simp add: globs-def)

lemma locals-def2 [simp]: locals (st g l) = l
by (simp add: locals-def)

lemma heap-def2 [simp]: heap s a=globs s (Heap a)
by (simp add: heap-def)

abbreviation val-this :: st ⇒ val
where val-this s == the (locals s This)

abbreviation lookup-obj :: st ⇒ val ⇒ obj
where lookup-obj s a ′ == the (heap s (the-Addr a ′))

3 memory allocation
definition

new-Addr :: heap ⇒ loc option where
new-Addr h = (if (∀ a. h a 6= None) then None else Some (SOME a. h a = None))

lemma new-AddrD: new-Addr h = Some a =⇒ h a = None
apply (auto simp add: new-Addr-def)
apply (erule someI)
done

lemma new-AddrD2 : new-Addr h = Some a =⇒ ∀ b. h b 6= None −→ b 6= a
apply (drule new-AddrD)
apply auto
done

lemma new-Addr-SomeI : h a = None =⇒ ∃ b. new-Addr h = Some b ∧ h b = None
apply (simp add: new-Addr-def)
apply (fast intro: someI2)
done

4 initialization
abbreviation init-vals :: (′a, ty) table ⇒ (′a, val) table

where init-vals vs == map-option default-val ◦ vs

lemma init-arr-comps-base [simp]: init-vals (arr-comps T 0) = Map.empty
apply (unfold arr-comps-def in-bounds-def)
apply (rule ext)
apply auto

202

done

lemma init-arr-comps-step [simp]:
0 < j =⇒ init-vals (arr-comps T j) =

(init-vals (arr-comps T (j − 1)))(j − 1 7→default-val T)
apply (unfold arr-comps-def in-bounds-def)
apply (rule ext)
apply auto
done

5 update
definition

gupd :: oref ⇒ obj ⇒ st ⇒ st (‹gupd ′(-7→- ′)› [10 , 10] 1000)
where gupd r obj = case-st (λg l. st (g(r 7→obj)) l)

definition
lupd :: lname ⇒ val ⇒ st ⇒ st (‹lupd ′(- 7→- ′)› [10 , 10] 1000)
where lupd vn v = case-st (λg l. st g (l(vn 7→v)))

definition
upd-gobj :: oref ⇒ vn ⇒ val ⇒ st ⇒ st
where upd-gobj r n v = case-st (λg l. st (chg-map (upd-obj n v) r g) l)

definition
set-locals :: locals ⇒ st ⇒ st
where set-locals l = case-st (λg l ′. st g l)

definition
init-obj :: prog ⇒ obj-tag ⇒ oref ⇒ st ⇒ st
where init-obj G oi r = gupd(r 7→(|tag=oi, values=init-vals (var-tys G oi r)|))

abbreviation
init-class-obj :: prog ⇒ qtname ⇒ st ⇒ st
where init-class-obj G C == init-obj G undefined (Inr C)

lemma gupd-def2 [simp]: gupd(r 7→obj) (st g l) = st (g(r 7→obj)) l
apply (unfold gupd-def)
apply (simp (no-asm))
done

lemma lupd-def2 [simp]: lupd(vn 7→v) (st g l) = st g (l(vn 7→v))
apply (unfold lupd-def)
apply (simp (no-asm))
done

lemma globs-gupd [simp]: globs (gupd(r 7→obj) s) = (globs s)(r 7→obj)
apply (induct s)
by (simp add: gupd-def)

lemma globs-lupd [simp]: globs (lupd(vn 7→v) s) = globs s
apply (induct s)
by (simp add: lupd-def)

lemma locals-gupd [simp]: locals (gupd(r 7→obj) s) = locals s
apply (induct s)
by (simp add: gupd-def)

lemma locals-lupd [simp]: locals (lupd(vn 7→v) s) = (locals s)(vn 7→v)

Theory State 203

apply (induct s)
by (simp add: lupd-def)

lemma globs-upd-gobj-new [rule-format (no-asm), simp]:
globs s r = None −→ globs (upd-gobj r n v s) = globs s

apply (unfold upd-gobj-def)
apply (induct s)
apply auto
done

lemma globs-upd-gobj-upd [rule-format (no-asm), simp]:
globs s r=Some obj−→ globs (upd-gobj r n v s) = (globs s)(r 7→upd-obj n v obj)
apply (unfold upd-gobj-def)
apply (induct s)
apply auto
done

lemma locals-upd-gobj [simp]: locals (upd-gobj r n v s) = locals s
apply (induct s)
by (simp add: upd-gobj-def)

lemma globs-init-obj [simp]: globs (init-obj G oi r s) t =
(if t=r then Some (|tag=oi,values=init-vals (var-tys G oi r)|) else globs s t)

apply (unfold init-obj-def)
apply (simp (no-asm))
done

lemma locals-init-obj [simp]: locals (init-obj G oi r s) = locals s
by (simp add: init-obj-def)

lemma surjective-st [simp]: st (globs s) (locals s) = s
apply (induct s)
by auto

lemma surjective-st-init-obj:
st (globs (init-obj G oi r s)) (locals s) = init-obj G oi r s

apply (subst locals-init-obj [THEN sym])
apply (rule surjective-st)
done

lemma heap-heap-upd [simp]:
heap (st (g(Inl a 7→obj)) l) = (heap (st g l))(a 7→obj)

apply (rule ext)
apply (simp (no-asm))
done
lemma heap-stat-upd [simp]: heap (st (g(Inr C 7→obj)) l) = heap (st g l)
apply (rule ext)
apply (simp (no-asm))
done
lemma heap-local-upd [simp]: heap (st g (l(vn 7→v))) = heap (st g l)
apply (rule ext)
apply (simp (no-asm))
done

lemma heap-gupd-Heap [simp]: heap (gupd(Heap a 7→obj) s) = (heap s)(a 7→obj)
apply (rule ext)
apply (simp (no-asm))
done

204

lemma heap-gupd-Stat [simp]: heap (gupd(Stat C 7→obj) s) = heap s
apply (rule ext)
apply (simp (no-asm))
done
lemma heap-lupd [simp]: heap (lupd(vn 7→v) s) = heap s
apply (rule ext)
apply (simp (no-asm))
done

lemma heap-upd-gobj-Stat [simp]: heap (upd-gobj (Stat C) n v s) = heap s
apply (rule ext)
apply (simp (no-asm))
apply (case-tac globs s (Stat C))
apply auto
done

lemma set-locals-def2 [simp]: set-locals l (st g l ′) = st g l
apply (unfold set-locals-def)
apply (simp (no-asm))
done

lemma set-locals-id [simp]: set-locals (locals s) s = s
apply (unfold set-locals-def)
apply (induct-tac s)
apply (simp (no-asm))
done

lemma set-set-locals [simp]: set-locals l (set-locals l ′ s) = set-locals l s
apply (unfold set-locals-def)
apply (induct-tac s)
apply (simp (no-asm))
done

lemma locals-set-locals [simp]: locals (set-locals l s) = l
apply (unfold set-locals-def)
apply (induct-tac s)
apply (simp (no-asm))
done

lemma globs-set-locals [simp]: globs (set-locals l s) = globs s
apply (unfold set-locals-def)
apply (induct-tac s)
apply (simp (no-asm))
done

lemma heap-set-locals [simp]: heap (set-locals l s) = heap s
apply (unfold heap-def)
apply (induct-tac s)
apply (simp (no-asm))
done

abrupt completion

primrec the-Xcpt :: abrupt ⇒ xcpt
where the-Xcpt (Xcpt x) = x

primrec the-Jump :: abrupt => jump
where the-Jump (Jump j) = j

Theory State 205

primrec the-Loc :: xcpt ⇒ loc
where the-Loc (Loc a) = a

primrec the-Std :: xcpt ⇒ xname
where the-Std (Std x) = x

definition
abrupt-if :: bool ⇒ abopt ⇒ abopt ⇒ abopt
where abrupt-if c x ′ x = (if c ∧ (x = None) then x ′ else x)

lemma abrupt-if-True-None [simp]: abrupt-if True x None = x
by (simp add: abrupt-if-def)

lemma abrupt-if-True-not-None [simp]: x 6= None =⇒ abrupt-if True x y 6= None
by (simp add: abrupt-if-def)

lemma abrupt-if-False [simp]: abrupt-if False x y = y
by (simp add: abrupt-if-def)

lemma abrupt-if-Some [simp]: abrupt-if c x (Some y) = Some y
by (simp add: abrupt-if-def)

lemma abrupt-if-not-None [simp]: y 6= None =⇒ abrupt-if c x y = y
apply (simp add: abrupt-if-def)
by auto

lemma split-abrupt-if :
P (abrupt-if c x ′ x) =

((c ∧ x = None −→ P x ′) ∧ (¬ (c ∧ x = None) −→ P x))
apply (unfold abrupt-if-def)
apply (split if-split)
apply auto
done

abbreviation raise-if :: bool ⇒ xname ⇒ abopt ⇒ abopt
where raise-if c xn == abrupt-if c (Some (Xcpt (Std xn)))

abbreviation np :: val ⇒ abopt ⇒ abopt
where np v == raise-if (v = Null) NullPointer

abbreviation check-neg :: val ⇒ abopt ⇒ abopt
where check-neg i ′ == raise-if (the-Intg i ′<0) NegArrSize

abbreviation error-if :: bool ⇒ error ⇒ abopt ⇒ abopt
where error-if c e == abrupt-if c (Some (Error e))

lemma raise-if-None [simp]: (raise-if c x y = None) = (¬c ∧ y = None)
apply (simp add: abrupt-if-def)
by auto
declare raise-if-None [THEN iffD1 , dest!]

lemma if-raise-if-None [simp]:
((if b then y else raise-if c x y) = None) = ((c −→ b) ∧ y = None)

apply (simp add: abrupt-if-def)
apply auto
done

206

lemma raise-if-SomeD [dest!]:
raise-if c x y = Some z =⇒ c ∧ z=(Xcpt (Std x)) ∧ y=None ∨ (y=Some z)

apply (case-tac y)
apply (case-tac c)
apply (simp add: abrupt-if-def)
apply (simp add: abrupt-if-def)
apply auto
done

lemma error-if-None [simp]: (error-if c e y = None) = (¬c ∧ y = None)
apply (simp add: abrupt-if-def)
by auto
declare error-if-None [THEN iffD1 , dest!]

lemma if-error-if-None [simp]:
((if b then y else error-if c e y) = None) = ((c −→ b) ∧ y = None)

apply (simp add: abrupt-if-def)
apply auto
done

lemma error-if-SomeD [dest!]:
error-if c e y = Some z =⇒ c ∧ z=(Error e) ∧ y=None ∨ (y=Some z)

apply (case-tac y)
apply (case-tac c)
apply (simp add: abrupt-if-def)
apply (simp add: abrupt-if-def)
apply auto
done

definition
absorb :: jump ⇒ abopt ⇒ abopt
where absorb j a = (if a=Some (Jump j) then None else a)

lemma absorb-SomeD [dest!]: absorb j a = Some x =⇒ a = Some x
by (auto simp add: absorb-def)

lemma absorb-same [simp]: absorb j (Some (Jump j)) = None
by (auto simp add: absorb-def)

lemma absorb-other [simp]: a 6= Some (Jump j) =⇒ absorb j a = a
by (auto simp add: absorb-def)

lemma absorb-Some-NoneD: absorb j (Some abr) = None =⇒ abr = Jump j
by (simp add: absorb-def)

lemma absorb-Some-JumpD: absorb j s = Some (Jump j ′) =⇒ j ′6=j
by (simp add: absorb-def)

full program state

type-synonym
state = abopt × st — state including abruption information

translations
(type) abopt <= (type) abrupt option
(type) state <= (type) abopt × st

abbreviation
Norm :: st ⇒ state

Theory State 207

where Norm s == (None, s)

abbreviation (input)
abrupt :: state ⇒ abopt
where abrupt == fst

abbreviation (input)
store :: state ⇒ st
where store == snd

lemma single-stateE : ∀Z . Z = (s::state) =⇒ False
apply (erule-tac x = (Some k,y) for k y in all-dupE)
apply (erule-tac x = (None,y) for y in allE)
apply clarify
done

lemma state-not-single: All ((=) (x::state)) =⇒ R
apply (drule-tac x = (if abrupt x = None then Some x ′ else None, y) for x ′ y in spec)
apply clarsimp
done

definition
normal :: state ⇒ bool
where normal = (λs. abrupt s = None)

lemma normal-def2 [simp]: normal s = (abrupt s = None)
apply (unfold normal-def)
apply (simp (no-asm))
done

definition
heap-free :: nat ⇒ state ⇒ bool
where heap-free n = (λs. atleast-free (heap (store s)) n)

lemma heap-free-def2 [simp]: heap-free n s = atleast-free (heap (store s)) n
apply (unfold heap-free-def)
apply simp
done

6 update
definition

abupd :: (abopt ⇒ abopt) ⇒ state ⇒ state
where abupd f = map-prod f id

definition
supd :: (st ⇒ st) ⇒ state ⇒ state
where supd = map-prod id

lemma abupd-def2 [simp]: abupd f (x,s) = (f x,s)
by (simp add: abupd-def)

lemma abupd-abrupt-if-False [simp]:
∧

s. abupd (abrupt-if False xo) s = s
by simp

lemma supd-def2 [simp]: supd f (x,s) = (x,f s)
by (simp add: supd-def)

lemma supd-lupd [simp]:

208

∧
s. supd (lupd vn v) s = (abrupt s,lupd vn v (store s))

apply (simp (no-asm-simp) only: split-tupled-all)
apply (simp (no-asm))
done

lemma supd-gupd [simp]:∧
s. supd (gupd r obj) s = (abrupt s,gupd r obj (store s))

apply (simp (no-asm-simp) only: split-tupled-all)
apply (simp (no-asm))
done

lemma supd-init-obj [simp]:
supd (init-obj G oi r) s = (abrupt s,init-obj G oi r (store s))

apply (unfold init-obj-def)
apply (simp (no-asm))
done

lemma abupd-store-invariant [simp]: store (abupd f s) = store s
by (cases s) simp

lemma supd-abrupt-invariant [simp]: abrupt (supd f s) = abrupt s
by (cases s) simp

abbreviation set-lvars :: locals ⇒ state ⇒ state
where set-lvars l == supd (set-locals l)

abbreviation restore-lvars :: state ⇒ state ⇒ state
where restore-lvars s ′ s == set-lvars (locals (store s ′)) s

lemma set-set-lvars [simp]:
∧

s. set-lvars l (set-lvars l ′ s) = set-lvars l s
apply (simp (no-asm-simp) only: split-tupled-all)
apply (simp (no-asm))
done

lemma set-lvars-id [simp]:
∧

s. set-lvars (locals (store s)) s = s
apply (simp (no-asm-simp) only: split-tupled-all)
apply (simp (no-asm))
done

initialisation test

definition
inited :: qtname ⇒ globs ⇒ bool
where inited C g = (g (Stat C) 6= None)

definition
initd :: qtname ⇒ state ⇒ bool
where initd C = inited C ◦ globs ◦ store

lemma not-inited-empty [simp]: ¬inited C Map.empty
apply (unfold inited-def)
apply (simp (no-asm))
done

lemma inited-gupdate [simp]: inited C (g(r 7→obj)) = (inited C g ∨ r = Stat C)
apply (unfold inited-def)
apply (auto split: st.split)
done

Theory State 209

lemma inited-init-class-obj [intro!]: inited C (globs (init-class-obj G C s))
apply (unfold inited-def)
apply (simp (no-asm))
done

lemma not-initedD: ¬ inited C g =⇒ g (Stat C) = None
apply (unfold inited-def)
apply (erule notnotD)
done

lemma initedD: inited C g =⇒ ∃ obj. g (Stat C) = Some obj
apply (unfold inited-def)
apply auto
done

lemma initd-def2 [simp]: initd C s = inited C (globs (store s))
apply (unfold initd-def)
apply (simp (no-asm))
done

error-free

definition
error-free :: state ⇒ bool
where error-free s = (¬ (∃ err . abrupt s = Some (Error err)))

lemma error-free-Norm [simp,intro]: error-free (Norm s)
by (simp add: error-free-def)

lemma error-free-normal [simp,intro]: normal s =⇒ error-free s
by (simp add: error-free-def)

lemma error-free-Xcpt [simp]: error-free (Some (Xcpt x),s)
by (simp add: error-free-def)

lemma error-free-Jump [simp,intro]: error-free (Some (Jump j),s)
by (simp add: error-free-def)

lemma error-free-Error [simp]: error-free (Some (Error e),s) = False
by (simp add: error-free-def)

lemma error-free-Some [simp,intro]:
¬ (∃ err . x=Error err) =⇒ error-free ((Some x),s)

by (auto simp add: error-free-def)

lemma error-free-abupd-absorb [simp,intro]:
error-free s =⇒ error-free (abupd (absorb j) s)

by (cases s)
(auto simp add: error-free-def absorb-def

split: if-split-asm)

lemma error-free-absorb [simp,intro]:
error-free (a,s) =⇒ error-free (absorb j a, s)

by (auto simp add: error-free-def absorb-def
split: if-split-asm)

lemma error-free-abrupt-if [simp,intro]:
[[error-free s; ¬ (∃ err . x=Error err)]]

210

=⇒ error-free (abupd (abrupt-if p (Some x)) s)
by (cases s)

(auto simp add: abrupt-if-def
split: if-split)

lemma error-free-abrupt-if1 [simp,intro]:
[[error-free (a,s); ¬ (∃ err . x=Error err)]]
=⇒ error-free (abrupt-if p (Some x) a, s)

by (auto simp add: abrupt-if-def
split: if-split)

lemma error-free-abrupt-if-Xcpt [simp,intro]:
error-free s
=⇒ error-free (abupd (abrupt-if p (Some (Xcpt x))) s)

by simp

lemma error-free-abrupt-if-Xcpt1 [simp,intro]:
error-free (a,s)
=⇒ error-free (abrupt-if p (Some (Xcpt x)) a, s)

by simp

lemma error-free-abrupt-if-Jump [simp,intro]:
error-free s
=⇒ error-free (abupd (abrupt-if p (Some (Jump j))) s)

by simp

lemma error-free-abrupt-if-Jump1 [simp,intro]:
error-free (a,s)
=⇒ error-free (abrupt-if p (Some (Jump j)) a, s)

by simp

lemma error-free-raise-if [simp,intro]:
error-free s =⇒ error-free (abupd (raise-if p x) s)

by simp

lemma error-free-raise-if1 [simp,intro]:
error-free (a,s) =⇒ error-free ((raise-if p x a), s)

by simp

lemma error-free-supd [simp,intro]:
error-free s =⇒ error-free (supd f s)

by (cases s) (simp add: error-free-def)

lemma error-free-supd1 [simp,intro]:
error-free (a,s) =⇒ error-free (a,f s)

by (simp add: error-free-def)

lemma error-free-set-lvars [simp,intro]:
error-free s =⇒ error-free ((set-lvars l) s)
by (cases s) simp

lemma error-free-set-locals [simp,intro]:
error-free (x, s)

=⇒ error-free (x, set-locals l s ′)
by (simp add: error-free-def)

end

Chapter 15

Eval

1 Operational evaluation (big-step) semantics of Java expressions and state-
ments

theory Eval imports State DeclConcepts begin

improvements over Java Specification 1.0:

• dynamic method lookup does not need to consider the return type (cf.15.11.4.4)

• throw raises a NullPointer exception if a null reference is given, and each throw of a standard
exception yield a fresh exception object (was not specified)

• if there is not enough memory even to allocate an OutOfMemory exception, evaluation/exe-
cution fails, i.e. simply stops (was not specified)

• array assignment checks lhs (and may throw exceptions) before evaluating rhs

• fixed exact positions of class initializations (immediate at first active use)

design issues:

• evaluation vs. (single-step) transition semantics evaluation semantics chosen, because:

++ less verbose and therefore easier to read (and to handle in proofs)
+ more abstract
+ intermediate values (appearing in recursive rules) need not be stored explicitly, e.g. no

call body construct or stack of invocation frames containing local variables and return
addresses for method calls needed

+ convenient rule induction for subject reduction theorem
- no interleaving (for parallelism) can be described
- stating a property of infinite executions requires the meta-level argument that this prop-

erty holds for any finite prefixes of it (e.g. stopped using a counter that is decremented
to zero and then throwing an exception)

• unified evaluation for variables, expressions, expression lists, statements

• the value entry in statement rules is redundant

• the value entry in rules is irrelevant in case of exceptions, but its full inclusion helps to make
the rule structure independent of exception occurrence.

• as irrelevant value entries are ignored, it does not matter if they are unique. For simplicity,
(fixed) arbitrary values are preferred over "free" values.

211

212

• the rule format is such that the start state may contain an exception.

++ faciliates exception handling
+ symmetry

• the rules are defined carefully in order to be applicable even in not type-correct situations
(yielding undefined values), e.g. the-Addr (Val (Bool b)) = undefined.

++ fewer rules
- less readable because of auxiliary functions like the-Addr

Alternative: "defensive" evaluation throwing some InternalError exception in case of (impos-
sible, for correct programs) type mismatches

• there is exactly one rule per syntactic construct

+ no redundancy in case distinctions

• halloc fails iff there is no free heap address. When there is only one free heap address left, it
returns an OutOfMemory exception. In this way it is guaranteed that when an OutOfMemory
exception is thrown for the first time, there is a free location on the heap to allocate it.

• the allocation of objects that represent standard exceptions is deferred until execution of any
enclosing catch clause, which is transparent to the program.

- requires an auxiliary execution relation
++ avoids copies of allocation code and awkward case distinctions (whether there is enough

memory to allocate the exception) in evaluation rules

• unfortunately new-Addr is not directly executable because of Hilbert operator.

simplifications:

• local variables are initialized with default values (no definite assignment)

• garbage collection not considered, therefore also no finalizers

• stack overflow and memory overflow during class initialization not modelled

• exceptions in initializations not replaced by ExceptionInInitializerError

type-synonym vvar = val × (val ⇒ state ⇒ state)
type-synonym vals = (val, vvar , val list) sum3
translations
(type) vvar <= (type) val × (val ⇒ state ⇒ state)
(type) vals <= (type) (val, vvar , val list) sum3

To avoid redundancy and to reduce the number of rules, there is only one evaluation rule for each
syntactic term. This is also true for variables (e.g. see the rules below for LVar, FVar and AVar).
So evaluation of a variable must capture both possible further uses: read (rule Acc) or write (rule
Ass) to the variable. Therefor a variable evaluates to a special value vvar, which is a pair, consisting
of the current value (for later read access) and an update function (for later write access). Because
during assignment to an array variable an exception may occur if the types don’t match, the update
function is very generic: it transforms the full state. This generic update function causes some
technical trouble during some proofs (e.g. type safety, correctness of definite assignment). There
we need to prove some additional invariant on this update function to prove the assignment correct,
since the update function could potentially alter the whole state in an arbitrary manner. This

Theory Eval 213

invariant must be carried around through the whole induction. So for future approaches it may be
better not to take such a generic update function, but only to store the address and the kind of
variable (array (+ element type), local variable or field) for later assignment.

abbreviation
dummy-res :: vals (‹♦›)
where ♦ == In1 Unit

abbreviation (input)
val-inj-vals (‹b-ce› 1000)
where bece == In1 e

abbreviation (input)
var-inj-vals (‹b-cv› 1000)
where bvcv == In2 v

abbreviation (input)
lst-inj-vals (‹b-cl› 1000)
where bescl == In3 es

definition undefined3 :: (′al + ′ar , ′b, ′c) sum3 ⇒ vals where
undefined3 = case-sum3 (In1 ◦ case-sum (λx. undefined) (λx. Unit))

(λx. In2 undefined) (λx. In3 undefined)

lemma [simp]: undefined3 (In1l x) = In1 undefined
by (simp add: undefined3-def)

lemma [simp]: undefined3 (In1r x) = ♦
by (simp add: undefined3-def)

lemma [simp]: undefined3 (In2 x) = In2 undefined
by (simp add: undefined3-def)

lemma [simp]: undefined3 (In3 x) = In3 undefined
by (simp add: undefined3-def)

exception throwing and catching

definition
throw :: val ⇒ abopt ⇒ abopt where
throw a ′ x = abrupt-if True (Some (Xcpt (Loc (the-Addr a ′)))) (np a ′ x)

lemma throw-def2 :
throw a ′ x = abrupt-if True (Some (Xcpt (Loc (the-Addr a ′)))) (np a ′ x)

apply (unfold throw-def)
apply (simp (no-asm))
done

definition
fits :: prog ⇒ st ⇒ val ⇒ ty ⇒ bool (‹-,-`- fits -›[61 ,61 ,61 ,61]60)
where G,s`a ′ fits T = ((∃ rt. T=RefT rt) −→ a ′=Null ∨ G`obj-ty(lookup-obj s a ′)�T)

lemma fits-Null [simp]: G,s`Null fits T
by (simp add: fits-def)

lemma fits-Addr-RefT [simp]:
G,s`Addr a fits RefT t = G`obj-ty (the (heap s a))�RefT t

by (simp add: fits-def)

214

lemma fitsD:
∧

X . G,s`a ′ fits T =⇒ (∃ pt. T = PrimT pt) ∨
(∃ t. T = RefT t) ∧ a ′ = Null ∨
(∃ t. T = RefT t) ∧ a ′ 6= Null ∧ G`obj-ty (lookup-obj s a ′)�T

apply (unfold fits-def)
apply (case-tac ∃ pt. T = PrimT pt)
apply simp-all
apply (case-tac T)
defer
apply (case-tac a ′ = Null)
apply simp-all
done

definition
catch :: prog ⇒ state ⇒ qtname ⇒ bool (‹-,-`catch -›[61 ,61 ,61]60) where
G,s`catch C = (∃ xc. abrupt s=Some (Xcpt xc) ∧

G,store s`Addr (the-Loc xc) fits Class C)

lemma catch-Norm [simp]: ¬G,Norm s`catch tn
apply (unfold catch-def)
apply (simp (no-asm))
done

lemma catch-XcptLoc [simp]:
G,(Some (Xcpt (Loc a)),s)`catch C = G,s`Addr a fits Class C

apply (unfold catch-def)
apply (simp (no-asm))
done

lemma catch-Jump [simp]: ¬G,(Some (Jump j),s)`catch tn
apply (unfold catch-def)
apply (simp (no-asm))
done

lemma catch-Error [simp]: ¬G,(Some (Error e),s)`catch tn
apply (unfold catch-def)
apply (simp (no-asm))
done

definition
new-xcpt-var :: vname ⇒ state ⇒ state where
new-xcpt-var vn = (λ(x,s). Norm (lupd(VName vn 7→Addr (the-Loc (the-Xcpt (the x)))) s))

lemma new-xcpt-var-def2 [simp]:
new-xcpt-var vn (x,s) =

Norm (lupd(VName vn 7→Addr (the-Loc (the-Xcpt (the x)))) s)
apply (unfold new-xcpt-var-def)
apply (simp (no-asm))
done

misc

definition
assign :: (′a ⇒ state ⇒ state) ⇒ ′a ⇒ state ⇒ state where

assign f v = (λ(x,s). let (x ′,s ′) = (if x = None then f v else id) (x,s)
in (x ′,if x ′ = None then s ′ else s))

Theory Eval 215

lemma assign-Norm-Norm [simp]:
f v (Norm s) = Norm s ′ =⇒ assign f v (Norm s) = Norm s ′

by (simp add: assign-def Let-def)

lemma assign-Norm-Some [simp]:
[[abrupt (f v (Norm s)) = Some y]]
=⇒ assign f v (Norm s) = (Some y,s)

by (simp add: assign-def Let-def split-beta)

lemma assign-Some [simp]:
assign f v (Some x ,s) = (Some x,s)
by (simp add: assign-def Let-def split-beta)

lemma assign-Some1 [simp]: ¬ normal s =⇒ assign f v s = s
by (auto simp add: assign-def Let-def split-beta)

lemma assign-supd [simp]:
assign (λv. supd (f v)) v (x,s)
= (x, if x = None then f v s else s)

apply auto
done

lemma assign-raise-if [simp]:
assign (λv (x,s). ((raise-if (b s v) xcpt) x, f v s)) v (x, s) =
(raise-if (b s v) xcpt x, if x=None ∧ ¬b s v then f v s else s)

apply (case-tac x = None)
apply auto
done

definition
init-comp-ty :: ty ⇒ stmt
where init-comp-ty T = (if (∃C . T = Class C) then Init (the-Class T) else Skip)

lemma init-comp-ty-PrimT [simp]: init-comp-ty (PrimT pt) = Skip
apply (unfold init-comp-ty-def)
apply (simp (no-asm))
done

definition
invocation-class :: inv-mode ⇒ st ⇒ val ⇒ ref-ty ⇒ qtname where

invocation-class m s a ′ statT =
(case m of

Static ⇒ if (∃ statC . statT = ClassT statC)
then the-Class (RefT statT)
else Object

| SuperM ⇒ the-Class (RefT statT)
| IntVir ⇒ obj-class (lookup-obj s a ′))

definition
invocation-declclass :: prog ⇒ inv-mode ⇒ st ⇒ val ⇒ ref-ty ⇒ sig ⇒ qtname where
invocation-declclass G m s a ′ statT sig =

declclass (the (dynlookup G statT
(invocation-class m s a ′ statT)

216

sig))

lemma invocation-class-IntVir [simp]:
invocation-class IntVir s a ′ statT = obj-class (lookup-obj s a ′)
by (simp add: invocation-class-def)

lemma dynclass-SuperM [simp]:
invocation-class SuperM s a ′ statT = the-Class (RefT statT)

by (simp add: invocation-class-def)

lemma invocation-class-Static [simp]:
invocation-class Static s a ′ statT = (if (∃ statC . statT = ClassT statC)

then the-Class (RefT statT)
else Object)

by (simp add: invocation-class-def)

definition
init-lvars :: prog ⇒ qtname ⇒ sig ⇒ inv-mode ⇒ val ⇒ val list ⇒ state ⇒ state

where
init-lvars G C sig mode a ′ pvs =
(λ(x,s).

let m = mthd (the (methd G C sig));
l = λ k.

(case k of
EName e
⇒ (case e of

VNam v ⇒ (Map.empty ((pars m)[7→]pvs)) v
| Res ⇒ None)

| This
⇒ (if mode=Static then None else Some a ′))

in set-lvars l (if mode = Static then x else np a ′ x,s))

lemma init-lvars-def2 : — better suited for simplification
init-lvars G C sig mode a ′ pvs (x,s) =

set-lvars
(λ k.

(case k of
EName e
⇒ (case e of

VNam v
⇒ (Map.empty ((pars (mthd (the (methd G C sig))))[7→]pvs)) v

| Res ⇒ None)
| This
⇒ (if mode=Static then None else Some a ′)))

(if mode = Static then x else np a ′ x,s)
apply (unfold init-lvars-def)
apply (simp (no-asm) add: Let-def)
done

definition
body :: prog ⇒ qtname ⇒ sig ⇒ expr where

body G C sig =
(let m = the (methd G C sig)
in Body (declclass m) (stmt (mbody (mthd m))))

lemma body-def2 : — better suited for simplification
body G C sig = Body (declclass (the (methd G C sig)))

Theory Eval 217

(stmt (mbody (mthd (the (methd G C sig)))))
apply (unfold body-def Let-def)
apply auto
done

variables

definition
lvar :: lname ⇒ st ⇒ vvar
where lvar vn s = (the (locals s vn), λv. supd (lupd(vn 7→v)))

definition
fvar :: qtname ⇒ bool ⇒ vname ⇒ val ⇒ state ⇒ vvar × state where

fvar C stat fn a ′ s =
(let (oref ,xf) = if stat then (Stat C ,id)

else (Heap (the-Addr a ′),np a ′);
n = Inl (fn,C);
f = (λv. supd (upd-gobj oref n v))

in ((the (values (the (globs (store s) oref)) n),f),abupd xf s))

definition
avar :: prog ⇒ val ⇒ val ⇒ state ⇒ vvar × state where
avar G i ′ a ′ s =
(let oref = Heap (the-Addr a ′);

i = the-Intg i ′;
n = Inr i;

(T ,k,cs) = the-Arr (globs (store s) oref);
f = (λv (x,s). (raise-if (¬G,s`v fits T)

ArrStore x
,upd-gobj oref n v s))

in ((the (cs n),f),abupd (raise-if (¬i in-bounds k) IndOutBound ◦ np a ′) s))

lemma fvar-def2 : — better suited for simplification
fvar C stat fn a ′ s =
((the

(values
(the (globs (store s) (if stat then Stat C else Heap (the-Addr a ′))))
(Inl (fn,C)))

,(λv. supd (upd-gobj (if stat then Stat C else Heap (the-Addr a ′))
(Inl (fn,C))
v)))

,abupd (if stat then id else np a ′) s)

apply (unfold fvar-def)
apply (simp (no-asm) add: Let-def split-beta)
done

lemma avar-def2 : — better suited for simplification
avar G i ′ a ′ s =
((the ((snd(snd(the-Arr (globs (store s) (Heap (the-Addr a ′))))))

(Inr (the-Intg i ′)))
,(λv (x,s ′). (raise-if (¬G,s ′̀ v fits (fst(the-Arr (globs (store s)

(Heap (the-Addr a ′))))))
ArrStore x

,upd-gobj (Heap (the-Addr a ′))
(Inr (the-Intg i ′)) v s ′)))

,abupd (raise-if (¬(the-Intg i ′) in-bounds (fst(snd(the-Arr (globs (store s)
(Heap (the-Addr a ′))))))) IndOutBound ◦ np a ′)

s)

218

apply (unfold avar-def)
apply (simp (no-asm) add: Let-def split-beta)
done

definition
check-field-access :: prog ⇒ qtname ⇒ qtname ⇒ vname ⇒ bool ⇒ val ⇒ state ⇒ state where
check-field-access G accC statDeclC fn stat a ′ s =
(let oref = if stat then Stat statDeclC

else Heap (the-Addr a ′);
dynC = case oref of

Heap a ⇒ obj-class (the (globs (store s) oref))
| Stat C ⇒ C ;

f = (the (table-of (DeclConcepts.fields G dynC) (fn,statDeclC)))
in abupd

(error-if (¬ G`Field fn (statDeclC ,f) in dynC dyn-accessible-from accC)
AccessViolation)

s)

definition
check-method-access :: prog ⇒ qtname ⇒ ref-ty ⇒ inv-mode ⇒ sig ⇒ val ⇒ state ⇒ state where
check-method-access G accC statT mode sig a ′ s =
(let invC = invocation-class mode (store s) a ′ statT ;

dynM = the (dynlookup G statT invC sig)
in abupd

(error-if (¬ G`Methd sig dynM in invC dyn-accessible-from accC)
AccessViolation)

s)

evaluation judgments

inductive
halloc :: [prog,state,obj-tag,loc,state]⇒bool (‹-`- −halloc -�-→ -›[61 ,61 ,61 ,61 ,61]60) for G::prog

where — allocating objects on the heap, cf. 12.5

Abrupt:
G`(Some x,s) −halloc oi�undefined→ (Some x,s)

| New: [[new-Addr (heap s) = Some a;
(x,oi ′) = (if atleast-free (heap s) (Suc (Suc 0)) then (None,oi)

else (Some (Xcpt (Loc a)),CInst (SXcpt OutOfMemory)))]]
=⇒
G`Norm s −halloc oi�a→ (x,init-obj G oi ′ (Heap a) s)

inductive sxalloc :: [prog,state,state]⇒bool (‹-`- −sxalloc→ -›[61 ,61 ,61]60) for G::prog
where — allocating exception objects for standard exceptions (other than OutOfMemory)

Norm: G` Norm s −sxalloc→ Norm s

| Jmp: G`(Some (Jump j), s) −sxalloc→ (Some (Jump j), s)

| Error : G`(Some (Error e), s) −sxalloc→ (Some (Error e), s)

| XcptL: G`(Some (Xcpt (Loc a)),s) −sxalloc→ (Some (Xcpt (Loc a)),s)

| SXcpt: [[G`Norm s0 −halloc (CInst (SXcpt xn))�a→ (x,s1)]] =⇒
G`(Some (Xcpt (Std xn)),s0) −sxalloc→ (Some (Xcpt (Loc a)),s1)

inductive

Theory Eval 219

eval :: [prog,state,term,vals,state]⇒bool (‹-`- −-�→ ′(-, - ′)› [61 ,61 ,80 ,0 ,0]60)
and exec ::[prog,state,stmt ,state]⇒bool(‹-`- −-→ -› [61 ,61 ,65 , 61]60)
and evar ::[prog,state,var ,vvar ,state]⇒bool(‹-`- −-=�-→ -›[61 ,61 ,90 ,61 ,61]60)
and eval ′::[prog,state,expr ,val ,state]⇒bool(‹-`- −-−�-→ -›[61 ,61 ,80 ,61 ,61]60)
and evals::[prog,state,expr list ,

val list ,state]⇒bool(‹-`- −- .=�-→ -›[61 ,61 ,61 ,61 ,61]60)
for G::prog

where

G`s −c → s ′ ≡ G`s −In1r c�→ (♦, s ′)
| G`s −e−�v → s ′ ≡ G`s −In1l e�→ (In1 v, s ′)
| G`s −e=�vf→ s ′ ≡ G`s −In2 e�→ (In2 vf , s ′)
| G`s −e .

=�v → s ′ ≡ G`s −In3 e�→ (In3 v, s ′)

— propagation of abrupt completion

— cf. 14.1, 15.5
| Abrupt:

G`(Some xc,s) −t�→ (undefined3 t, (Some xc, s))

— execution of statements

— cf. 14.5
| Skip: G`Norm s −Skip→ Norm s

— cf. 14.7
| Expr : [[G`Norm s0 −e−�v→ s1]] =⇒

G`Norm s0 −Expr e→ s1

| Lab: [[G`Norm s0 −c → s1]] =⇒
G`Norm s0 −l· c→ abupd (absorb l) s1

— cf. 14.2
| Comp: [[G`Norm s0 −c1 → s1 ;

G` s1 −c2 → s2]] =⇒
G`Norm s0 −c1 ;; c2→ s2

— cf. 14.8.2
| If : [[G`Norm s0 −e−�b→ s1 ;

G` s1−(if the-Bool b then c1 else c2)→ s2]] =⇒
G`Norm s0 −If (e) c1 Else c2 → s2

— cf. 14.10, 14.10.1

— A continue jump from the while body c is handled by this rule. If a continue jump with the proper
label was invoked inside c this label (Cont l) is deleted out of the abrupt component of the state before the
iterative evaluation of the while statement. A break jump is handled by the Lab Statement Lab l (while. . .).
| Loop: [[G`Norm s0 −e−�b→ s1 ;

if the-Bool b
then (G`s1 −c→ s2 ∧

G`(abupd (absorb (Cont l)) s2) −l· While(e) c→ s3)
else s3 = s1]] =⇒

G`Norm s0 −l· While(e) c→ s3

| Jmp: G`Norm s −Jmp j→ (Some (Jump j), s)

— cf. 14.16
| Throw: [[G`Norm s0 −e−�a ′→ s1]] =⇒

G`Norm s0 −Throw e→ abupd (throw a ′) s1

220

— cf. 14.18.1
| Try: [[G`Norm s0 −c1→ s1 ; G`s1 −sxalloc→ s2 ;

if G,s2`catch C then G`new-xcpt-var vn s2 −c2→ s3 else s3 = s2]] =⇒
G`Norm s0 −Try c1 Catch(C vn) c2→ s3

— cf. 14.18.2
| Fin: [[G`Norm s0 −c1→ (x1 ,s1);

G`Norm s1 −c2→ s2 ;
s3=(if (∃ err . x1=Some (Error err))

then (x1 ,s1)
else abupd (abrupt-if (x1 6=None) x1) s2)]]

=⇒
G`Norm s0 −c1 Finally c2→ s3

— cf. 12.4.2, 8.5
| Init: [[the (class G C) = c;

if inited C (globs s0) then s3 = Norm s0
else (G`Norm (init-class-obj G C s0)

−(if C = Object then Skip else Init (super c))→ s1 ∧
G`set-lvars Map.empty s1 −init c→ s2 ∧ s3 = restore-lvars s1 s2)]]
=⇒

G`Norm s0 −Init C→ s3
— This class initialisation rule is a little bit inaccurate. Look at the exact sequence: (1) The current

class object (the static fields) are initialised (init-class-obj), (2) the superclasses are initialised, (3) the static
initialiser of the current class is invoked. More precisely we should expect another ordering, namely 2 1 3.
But we can’t just naively toggle 1 and 2. By calling init-class-obj before initialising the superclasses, we
also implicitly record that we have started to initialise the current class (by setting an value for the class
object). This becomes crucial for the completeness proof of the axiomatic semantics AxCompl.thy. Static
initialisation requires an induction on the number of classes not yet initialised (or to be more precise, classes
were the initialisation has not yet begun). So we could first assign a dummy value to the class before superclass
initialisation and afterwards set the correct values. But as long as we don’t take memory overflow into account
when allocating class objects, we can leave things as they are for convenience.
— evaluation of expressions

— cf. 15.8.1, 12.4.1
| NewC : [[G`Norm s0 −Init C→ s1 ;

G` s1 −halloc (CInst C)�a→ s2]] =⇒
G`Norm s0 −NewC C−�Addr a→ s2

— cf. 15.9.1, 12.4.1
| NewA: [[G`Norm s0 −init-comp-ty T→ s1 ; G`s1 −e−�i ′→ s2 ;

G`abupd (check-neg i ′) s2 −halloc (Arr T (the-Intg i ′))�a→ s3]] =⇒
G`Norm s0 −New T [e]−�Addr a→ s3

— cf. 15.15
| Cast: [[G`Norm s0 −e−�v→ s1 ;

s2 = abupd (raise-if (¬G,store s1`v fits T) ClassCast) s1]] =⇒
G`Norm s0 −Cast T e−�v→ s2

— cf. 15.19.2
| Inst: [[G`Norm s0 −e−�v→ s1 ;

b = (v 6=Null ∧ G,store s1`v fits RefT T)]] =⇒
G`Norm s0 −e InstOf T−�Bool b→ s1

— cf. 15.7.1
| Lit: G`Norm s −Lit v−�v→ Norm s

| UnOp: [[G`Norm s0 −e−�v→ s1]]
=⇒ G`Norm s0 −UnOp unop e−�(eval-unop unop v)→ s1

Theory Eval 221

| BinOp: [[G`Norm s0 −e1−�v1→ s1 ;
G`s1 −(if need-second-arg binop v1 then (In1l e2) else (In1r Skip))

�→ (In1 v2 , s2)
]]
=⇒ G`Norm s0 −BinOp binop e1 e2−�(eval-binop binop v1 v2)→ s2

— cf. 15.10.2
| Super : G`Norm s −Super−�val-this s→ Norm s

— cf. 15.2
| Acc: [[G`Norm s0 −va=�(v,f)→ s1]] =⇒

G`Norm s0 −Acc va−�v→ s1

— cf. 15.25.1
| Ass: [[G`Norm s0 −va=�(w,f)→ s1 ;

G` s1 −e−�v → s2]] =⇒
G`Norm s0 −va:=e−�v→ assign f v s2

— cf. 15.24
| Cond: [[G`Norm s0 −e0−�b→ s1 ;

G` s1 −(if the-Bool b then e1 else e2)−�v→ s2]] =⇒
G`Norm s0 −e0 ? e1 : e2−�v→ s2

— The interplay of Call, Methd and Body: Method invocation is split up into these three rules:

Call Calculates the target address and evaluates the arguments of the method, and then performs dynamic
or static lookup of the method, corresponding to the call mode. Then the Methd rule is evaluated on
the calculated declaration class of the method invocation.

Methd A syntactic bridge for the folded method body. It is used by the axiomatic semantics to add the proper
hypothesis for recursive calls of the method.

Body An extra syntactic entity for the unfolded method body was introduced to properly trigger class ini-
tialisation. Without class initialisation we could just evaluate the body statement.

— cf. 15.11.4.1, 15.11.4.2, 15.11.4.4, 15.11.4.5
| Call:
[[G`Norm s0 −e−�a ′→ s1 ; G`s1 −args .

=�vs→ s2 ;
D = invocation-declclass G mode (store s2) a ′ statT (|name=mn,parTs=pTs|);
s3=init-lvars G D (|name=mn,parTs=pTs|) mode a ′ vs s2 ;
s3 ′ = check-method-access G accC statT mode (|name=mn,parTs=pTs|) a ′ s3 ;
G`s3 ′ −Methd D (|name=mn,parTs=pTs|)−�v→ s4]]
=⇒

G`Norm s0 −{accC ,statT ,mode}e·mn({pTs}args)−�v→ (restore-lvars s2 s4)
— The accessibility check is after init-lvars, to keep it simple. init-lvars already tests for the absence of a
null-pointer reference in case of an instance method invocation.

| Methd: [[G`Norm s0 −body G D sig−�v→ s1]] =⇒
G`Norm s0 −Methd D sig−�v→ s1

| Body: [[G`Norm s0 −Init D→ s1 ; G`s1 −c→ s2 ;
s3 = (if (∃ l. abrupt s2 = Some (Jump (Break l)) ∨

abrupt s2 = Some (Jump (Cont l)))
then abupd (λ x. Some (Error CrossMethodJump)) s2
else s2)]] =⇒

G`Norm s0 −Body D c−�the (locals (store s2) Result)
→abupd (absorb Ret) s3

— cf. 14.15, 12.4.1

222

— We filter out a break/continue in s2, so that we can proof definite assignment correct, without the need
of conformance of the state. By this the different parts of the typesafety proof can be disentangled a little.

— evaluation of variables

— cf. 15.13.1, 15.7.2
| LVar : G`Norm s −LVar vn=�lvar vn s→ Norm s

— cf. 15.10.1, 12.4.1
| FVar : [[G`Norm s0 −Init statDeclC→ s1 ; G`s1 −e−�a→ s2 ;

(v,s2 ′) = fvar statDeclC stat fn a s2 ;
s3 = check-field-access G accC statDeclC fn stat a s2 ′]] =⇒
G`Norm s0 −{accC ,statDeclC ,stat}e..fn=�v→ s3

— The accessibility check is after fvar, to keep it simple. fvar already tests for the absence of a null-pointer
reference in case of an instance field

— cf. 15.12.1, 15.25.1
| AVar : [[G` Norm s0 −e1−�a→ s1 ; G`s1 −e2−�i→ s2 ;

(v,s2 ′) = avar G i a s2]] =⇒
G`Norm s0 −e1 .[e2]=�v→ s2 ′

— evaluation of expression lists

— cf. 15.11.4.2
| Nil:

G`Norm s0 −[] .=�[]→ Norm s0

— cf. 15.6.4
| Cons: [[G`Norm s0 −e −� v → s1 ;

G` s1 −es .
=�vs→ s2]] =⇒

G`Norm s0 −e#es .
=�v#vs→ s2

ML ‹
ML-Thms.bind-thm (eval-induct, rearrange-prems
[0 ,1 ,2 ,8 ,4 ,30 ,31 ,27 ,15 ,16 ,
17 ,18 ,19 ,20 ,21 ,3 ,5 ,25 ,26 ,23 ,6 ,
7 ,11 ,9 ,13 ,14 ,12 ,22 ,10 ,28 ,
29 ,24] @{thm eval.induct})

›

declare if-split [split del] if-split-asm [split del]
option.split [split del] option.split-asm [split del]

inductive-cases halloc-elim-cases:
G`(Some xc,s) −halloc oi�a→ s ′

G`(Norm s) −halloc oi�a→ s ′

inductive-cases sxalloc-elim-cases:
G` Norm s −sxalloc→ s ′

G`(Some (Jump j),s) −sxalloc→ s ′

G`(Some (Error e),s) −sxalloc→ s ′

G`(Some (Xcpt (Loc a)),s) −sxalloc→ s ′

G`(Some (Xcpt (Std xn)),s) −sxalloc→ s ′

inductive-cases sxalloc-cases: G`s −sxalloc→ s ′

lemma sxalloc-elim-cases2 : [[G`s −sxalloc→ s ′;

Theory Eval 223

∧
s. [[s ′ = Norm s]] =⇒ P;∧
j s. [[s ′ = (Some (Jump j),s)]] =⇒ P;∧
e s. [[s ′ = (Some (Error e),s)]] =⇒ P;∧
a s. [[s ′ = (Some (Xcpt (Loc a)),s)]] =⇒ P

]] =⇒ P
apply cut-tac
apply (erule sxalloc-cases)
apply blast+
done

declare not-None-eq [simp del]
declare split-paired-All [simp del] split-paired-Ex [simp del]
setup ‹map-theory-simpset (fn ctxt => ctxt |> Simplifier .del-loop split-all-tac)›

inductive-cases eval-cases: G`s −t�→ (v, s ′)

inductive-cases eval-elim-cases [cases set]:
G`(Some xc,s) −t �→ (v, s ′)
G`Norm s −In1r Skip �→ (x, s ′)
G`Norm s −In1r (Jmp j) �→ (x, s ′)
G`Norm s −In1r (l· c) �→ (x, s ′)
G`Norm s −In3 ([]) �→ (v, s ′)
G`Norm s −In3 (e#es) �→ (v, s ′)
G`Norm s −In1l (Lit w) �→ (v, s ′)
G`Norm s −In1l (UnOp unop e) �→ (v, s ′)
G`Norm s −In1l (BinOp binop e1 e2) �→ (v, s ′)
G`Norm s −In2 (LVar vn) �→ (v, s ′)
G`Norm s −In1l (Cast T e) �→ (v, s ′)
G`Norm s −In1l (e InstOf T) �→ (v, s ′)
G`Norm s −In1l (Super) �→ (v, s ′)
G`Norm s −In1l (Acc va) �→ (v, s ′)
G`Norm s −In1r (Expr e) �→ (x, s ′)
G`Norm s −In1r (c1 ;; c2) �→ (x, s ′)
G`Norm s −In1l (Methd C sig) �→ (x, s ′)
G`Norm s −In1l (Body D c) �→ (x, s ′)
G`Norm s −In1l (e0 ? e1 : e2) �→ (v, s ′)
G`Norm s −In1r (If (e) c1 Else c2) �→ (x, s ′)
G`Norm s −In1r (l· While(e) c) �→ (x, s ′)
G`Norm s −In1r (c1 Finally c2) �→ (x, s ′)
G`Norm s −In1r (Throw e) �→ (x, s ′)
G`Norm s −In1l (NewC C) �→ (v, s ′)
G`Norm s −In1l (New T [e]) �→ (v, s ′)
G`Norm s −In1l (Ass va e) �→ (v, s ′)
G`Norm s −In1r (Try c1 Catch(tn vn) c2) �→ (x, s ′)
G`Norm s −In2 ({accC ,statDeclC ,stat}e..fn) �→ (v, s ′)
G`Norm s −In2 (e1 .[e2]) �→ (v, s ′)
G`Norm s −In1l ({accC ,statT ,mode}e·mn({pT}p)) �→ (v, s ′)
G`Norm s −In1r (Init C) �→ (x, s ′)

declare not-None-eq [simp]
declare split-paired-All [simp] split-paired-Ex [simp]
declaration ‹K (Simplifier .map-ss (fn ss => ss |> Simplifier .add-loop (split-all-tac, split-all-tac)))›
declare if-split [split] if-split-asm [split]

option.split [split] option.split-asm [split]

lemma eval-Inj-elim:
G`s −t�→ (w,s ′)
=⇒ case t of

In1 ec ⇒ (case ec of
Inl e ⇒ (∃ v. w = In1 v)

224

| Inr c ⇒ w = ♦)
| In2 e ⇒ (∃ v. w = In2 v)
| In3 e ⇒ (∃ v. w = In3 v)

apply (erule eval-cases)
apply auto
apply (induct-tac t)
apply (rename-tac a, induct-tac a)
apply auto
done

The following simplification procedures set up the proper injections of terms and their corresponding
values in the evaluation relation: E.g. an expression (injection In1l into terms) always evaluates to
ordinary values (injection In1 into generalised values vals).
lemma eval-expr-eq: G`s −In1l t�→ (w, s ′) = (∃ v. w=In1 v ∧ G`s −t−�v → s ′)

by (auto, frule eval-Inj-elim, auto)

lemma eval-var-eq: G`s −In2 t�→ (w, s ′) = (∃ vf . w=In2 vf ∧ G`s −t=�vf→ s ′)
by (auto, frule eval-Inj-elim, auto)

lemma eval-exprs-eq: G`s −In3 t�→ (w, s ′) = (∃ vs. w=In3 vs ∧ G`s −t .=�vs→ s ′)
by (auto, frule eval-Inj-elim, auto)

lemma eval-stmt-eq: G`s −In1r t�→ (w, s ′) = (w=♦ ∧ G`s −t → s ′)
by (auto, frule eval-Inj-elim, auto, frule eval-Inj-elim, auto)

simproc-setup eval-expr (G`s −In1l t�→ (w, s ′)) = ‹
K (K (fn ct =>
(case Thm.term-of ct of
(- $ - $ - $ - $ (Const - $ -) $ -) => NONE
| - => SOME (mk-meta-eq @{thm eval-expr-eq}))))›

simproc-setup eval-var (G`s −In2 t�→ (w, s ′)) = ‹
K (K (fn ct =>
(case Thm.term-of ct of
(- $ - $ - $ - $ (Const - $ -) $ -) => NONE
| - => SOME (mk-meta-eq @{thm eval-var-eq}))))›

simproc-setup eval-exprs (G`s −In3 t�→ (w, s ′)) = ‹
K (K (fn ct =>
(case Thm.term-of ct of
(- $ - $ - $ - $ (Const - $ -) $ -) => NONE
| - => SOME (mk-meta-eq @{thm eval-exprs-eq}))))›

simproc-setup eval-stmt (G`s −In1r t�→ (w, s ′)) = ‹
K (K (fn ct =>
(case Thm.term-of ct of
(- $ - $ - $ - $ (Const - $ -) $ -) => NONE
| - => SOME (mk-meta-eq @{thm eval-stmt-eq}))))›

ML ‹
ML-Thms.bind-thms (AbruptIs, sum3-instantiate context @{thm eval.Abrupt})
›

declare halloc.Abrupt [intro!] eval.Abrupt [intro!] AbruptIs [intro!]

Callee,InsInitE, InsInitV, FinA are only used in smallstep semantics, not in the bigstep semantics.
So their is no valid evaluation of these terms
lemma eval-Callee: G`Norm s−Callee l e−�v→ s ′ = False

Theory Eval 225

proof −
have False

if eval: G`s −t�→ (v,s ′)
and normal: normal s
and callee: t=In1l (Callee l e)
for s t v s ′

using that by induct auto
then show ?thesis

by (cases s ′) fastforce
qed

lemma eval-InsInitE : G`Norm s−InsInitE c e−�v→ s ′ = False
proof −

have False
if eval: G`s −t�→ (v,s ′)
and normal: normal s
and callee: t=In1l (InsInitE c e)
for s t v s ′

using that by induct auto
then show ?thesis

by (cases s ′) fastforce
qed

lemma eval-InsInitV : G`Norm s−InsInitV c w=�v→ s ′ = False
proof −

have False
if eval: G`s −t�→ (v,s ′)
and normal: normal s
and callee: t=In2 (InsInitV c w)
for s t v s ′

using that by induct auto
then show ?thesis

by (cases s ′) fastforce
qed

lemma eval-FinA: G`Norm s−FinA a c→ s ′ = False
proof −

have False
if eval: G`s −t�→ (v,s ′)
and normal: normal s
and callee: t=In1r (FinA a c)
for s t v s ′

using that by induct auto
then show ?thesis

by (cases s ′) fastforce
qed

lemma eval-no-abrupt-lemma:∧
s s ′. G`s −t�→ (w,s ′) =⇒ normal s ′ −→ normal s

by (erule eval-cases, auto)

lemma eval-no-abrupt:
G`(x,s) −t�→ (w,Norm s ′) =

(x = None ∧ G`Norm s −t�→ (w,Norm s ′))
apply auto
apply (frule eval-no-abrupt-lemma, auto)+
done

226

simproc-setup eval-no-abrupt (G`(x,s) −e�→ (w,Norm s ′)) = ‹
K (K (fn ct =>
(case Thm.term-of ct of
(- $ - $ (Const (const-name ‹Pair›, -) $ (Const (const-name ‹None›, -)) $ -) $ - $ - $ -) => NONE
| - => SOME (mk-meta-eq @{thm eval-no-abrupt}))))

›

lemma eval-abrupt-lemma:
G`s −t�→ (v,s ′) =⇒ abrupt s=Some xc −→ s ′= s ∧ v = undefined3 t

by (erule eval-cases, auto)

lemma eval-abrupt:
G`(Some xc,s) −t�→ (w,s ′) =

(s ′=(Some xc,s) ∧ w=undefined3 t ∧
G`(Some xc,s) −t�→ (undefined3 t,(Some xc,s)))

apply auto
apply (frule eval-abrupt-lemma, auto)+
done

simproc-setup eval-abrupt (G`(Some xc,s) −e�→ (w,s ′)) = ‹
K (K (fn ct =>
(case Thm.term-of ct of

(- $ - $ - $ - $ - $ (Const (const-name ‹Pair›, -) $ (Const (const-name ‹Some›, -) $ -)$ -)) =>
NONE
| - => SOME (mk-meta-eq @{thm eval-abrupt}))))

›

lemma LitI : G`s −Lit v−�(if normal s then v else undefined)→ s
apply (case-tac s, case-tac a = None)
by (auto intro!: eval.Lit)

lemma SkipI [intro!]: G`s −Skip→ s
apply (case-tac s, case-tac a = None)
by (auto intro!: eval.Skip)

lemma ExprI : G`s −e−�v→ s ′ =⇒ G`s −Expr e→ s ′

apply (case-tac s, case-tac a = None)
by (auto intro!: eval.Expr)

lemma CompI : [[G`s −c1→ s1 ; G`s1 −c2→ s2]] =⇒ G`s −c1 ;; c2→ s2
apply (case-tac s, case-tac a = None)
by (auto intro!: eval.Comp)

lemma CondI :∧
s1 . [[G`s −e−�b→ s1 ; G`s1 −(if the-Bool b then e1 else e2)−�v→ s2]] =⇒

G`s −e ? e1 : e2−�(if normal s1 then v else undefined)→ s2
apply (case-tac s, case-tac a = None)
by (auto intro!: eval.Cond)

lemma IfI : [[G`s −e−�v→ s1 ; G`s1 −(if the-Bool v then c1 else c2)→ s2]]
=⇒ G`s −If (e) c1 Else c2→ s2

apply (case-tac s, case-tac a = None)
by (auto intro!: eval.If)

lemma MethdI : G`s −body G C sig−�v→ s ′

=⇒ G`s −Methd C sig−�v→ s ′

apply (case-tac s, case-tac a = None)
by (auto intro!: eval.Methd)

Theory Eval 227

lemma eval-Call:
[[G`Norm s0 −e−�a ′→ s1 ; G`s1 −ps .

=�pvs→ s2 ;
D = invocation-declclass G mode (store s2) a ′ statT (|name=mn,parTs=pTs|);
s3 = init-lvars G D (|name=mn,parTs=pTs|) mode a ′ pvs s2 ;
s3 ′ = check-method-access G accC statT mode (|name=mn,parTs=pTs|) a ′ s3 ;
G`s3 ′−Methd D (|name=mn,parTs=pTs|)−� v→ s4 ;

s4 ′ = restore-lvars s2 s4]] =⇒
G`Norm s0 −{accC ,statT ,mode}e·mn({pTs}ps)−�v→ s4 ′

apply (drule eval.Call, assumption)
apply (rule HOL.refl)
apply simp+
done

lemma eval-Init:
[[if inited C (globs s0) then s3 = Norm s0

else G`Norm (init-class-obj G C s0)
−(if C = Object then Skip else Init (super (the (class G C))))→ s1 ∧

G`set-lvars Map.empty s1 −(init (the (class G C)))→ s2 ∧
s3 = restore-lvars s1 s2]] =⇒

G`Norm s0 −Init C→ s3
apply (rule eval.Init)
apply auto
done

lemma init-done: initd C s =⇒ G`s −Init C→ s
apply (case-tac s, simp)
apply (case-tac a)
apply safe
apply (rule eval-Init)
apply auto
done

lemma eval-StatRef :
G`s −StatRef rt−�(if abrupt s=None then Null else undefined)→ s
apply (case-tac s, simp)
apply (case-tac a = None)
apply (auto del: eval.Abrupt intro!: eval.intros)
done

lemma SkipD [dest!]: G`s −Skip→ s ′ =⇒ s ′ = s
apply (erule eval-cases)
by auto

lemma Skip-eq [simp]: G`s −Skip→ s ′ = (s = s ′)
by auto

lemma init-retains-locals [rule-format (no-asm)]: G`s −t�→ (w,s ′) =⇒
(∀C . t=In1r (Init C) −→ locals (store s) = locals (store s ′))

apply (erule eval.induct)
apply (simp (no-asm-use) split del: if-split-asm option.split-asm)+
apply auto
done

lemma halloc-xcpt [dest!]:∧
s ′. G`(Some xc,s) −halloc oi�a→ s ′ =⇒ s ′=(Some xc,s)

apply (erule-tac halloc-elim-cases)

228

by auto

lemma eval-Methd:
G`s −In1l(body G C sig)�→ (w,s ′)
=⇒ G`s −In1l(Methd C sig)�→ (w,s ′)

apply (case-tac s)
apply (case-tac a)
apply clarsimp+
apply (erule eval.Methd)
apply (drule eval-abrupt-lemma)
apply force
done

lemma eval-Body: [[G`Norm s0 −Init D→ s1 ; G`s1 −c→ s2 ;
res=the (locals (store s2) Result);
s3 = (if (∃ l. abrupt s2 = Some (Jump (Break l)) ∨

abrupt s2 = Some (Jump (Cont l)))
then abupd (λ x. Some (Error CrossMethodJump)) s2
else s2);
s4=abupd (absorb Ret) s3]] =⇒

G`Norm s0 −Body D c−�res→s4
by (auto elim: eval.Body)

lemma eval-binop-arg2-indep:
¬ need-second-arg binop v1 =⇒ eval-binop binop v1 x = eval-binop binop v1 y
by (cases binop)

(simp-all add: need-second-arg-def)

lemma eval-BinOp-arg2-indepI :
assumes eval-e1 : G`Norm s0 −e1−�v1→ s1 and

no-need: ¬ need-second-arg binop v1
shows G`Norm s0 −BinOp binop e1 e2−�(eval-binop binop v1 v2)→ s1

(is ?EvalBinOp v2)
proof −

from eval-e1
have ?EvalBinOp Unit

by (rule eval.BinOp)
(simp add: no-need)

moreover
from no-need
have eval-binop binop v1 Unit = eval-binop binop v1 v2

by (simp add: eval-binop-arg2-indep)
ultimately
show ?thesis

by simp
qed

single valued

lemma unique-halloc [rule-format (no-asm)]:
G`s −halloc oi�a → s ′ =⇒ G`s −halloc oi�a ′→ s ′′ −→ a ′ = a ∧ s ′′ = s ′

apply (erule halloc.induct)
apply (auto elim!: halloc-elim-cases split del: if-split if-split-asm)
apply (drule trans [THEN sym], erule sym)
defer
apply (drule trans [THEN sym], erule sym)

Theory Eval 229

apply auto
done

lemma single-valued-halloc:
single-valued {((s,oi),(a,s ′)). G`s −halloc oi�a → s ′}

apply (unfold single-valued-def)
by (clarsimp, drule (1) unique-halloc, auto)

lemma unique-sxalloc [rule-format (no-asm)]:
G`s −sxalloc→ s ′ =⇒ G`s −sxalloc→ s ′′ −→ s ′′ = s ′

apply (erule sxalloc.induct)
apply (auto dest: unique-halloc elim!: sxalloc-elim-cases

split del: if-split if-split-asm)
done

lemma single-valued-sxalloc: single-valued {(s,s ′). G`s −sxalloc→ s ′}
apply (unfold single-valued-def)
apply (blast dest: unique-sxalloc)
done

lemma split-pairD: (x,y) = p =⇒ x = fst p & y = snd p
by auto

lemma unique-eval [rule-format (no-asm)]:
G`s −t�→ (w, s ′) =⇒ (∀w ′ s ′′. G`s −t�→ (w ′, s ′′) −→ w ′ = w ∧ s ′′ = s ′)

apply (erule eval-induct)
apply (tactic ‹ALLGOALS (EVERY ′

[strip-tac context , rotate-tac ∼1 , eresolve-tac context @{thms eval-elim-cases}])›)

prefer 28
apply (simp (no-asm-use) only: split: if-split-asm)

prefer 30
apply (case-tac inited C (globs s0), (simp only: if-True if-False simp-thms)+)
prefer 26
apply (simp (no-asm-use) only: split: if-split-asm, blast)

apply (blast dest: unique-sxalloc unique-halloc split-pairD)+
done

lemma single-valued-eval:
single-valued {((s, t), (v, s ′)). G`s −t�→ (v, s ′)}

apply (unfold single-valued-def)
by (clarify, drule (1) unique-eval, auto)

end

230

Chapter 16

Example

1 Example Bali program
theory Example
imports Eval WellForm
begin

The following example Bali program includes:

• class and interface declarations with inheritance, hiding of fields, overriding of methods (with
refined result type), array type,

• method call (with dynamic binding), parameter access, return expressions,

• expression statements, sequential composition, literal values, local assignment, local access,
field assignment, type cast,

• exception generation and propagation, try and catch statement, throw statement

• instance creation and (default) static initialization

package java_lang

public interface HasFoo {
public Base foo(Base z);

}

public class Base implements HasFoo {
static boolean arr[] = new boolean[2];
public HasFoo vee;
public Base foo(Base z) {

return z;
}

}

public class Ext extends Base {
public int vee;
public Ext foo(Base z) {

((Ext)z).vee = 1;
return null;

}
}

231

232

public class Main {
public static void main(String args[]) throws Throwable {

Base e = new Ext();
try {e.foo(null); }
catch(NullPointerException z) {

while(Ext.arr[2]) ;
}

}
}

declare widen.null [intro]

lemma wf-fdecl-def2 :
∧

fd. wf-fdecl G P fd = is-acc-type G P (type (snd fd))
apply (unfold wf-fdecl-def)
apply (simp (no-asm))
done

declare wf-fdecl-def2 [iff]

type and expression names
datatype tnam ′ = HasFoo ′ | Base ′ | Ext ′ | Main ′

datatype vnam ′ = arr ′ | vee ′ | z ′ | e ′

datatype label ′ = lab1 ′

axiomatization
tnam ′ :: tnam ′ ⇒ tnam and
vnam ′ :: vnam ′ ⇒ vname and
label ′:: label ′⇒ label

where

inj-tnam ′ [simp]:
∧

x y. (tnam ′ x = tnam ′ y) = (x = y) and
inj-vnam ′ [simp]:

∧
x y. (vnam ′ x = vnam ′ y) = (x = y) and

inj-label ′ [simp]:
∧

x y. (label ′ x = label ′ y) = (x = y) and

surj-tnam ′:
∧

n. ∃m. n = tnam ′ m and
surj-vnam ′:

∧
n. ∃m. n = vnam ′ m and

surj-label ′:
∧

n. ∃m. n = label ′ m

abbreviation
HasFoo :: qtname where
HasFoo == (|pid=java-lang,tid=TName (tnam ′ HasFoo ′)|)

abbreviation
Base :: qtname where
Base == (|pid=java-lang,tid=TName (tnam ′ Base ′)|)

abbreviation
Ext :: qtname where
Ext == (|pid=java-lang,tid=TName (tnam ′ Ext ′)|)

abbreviation
Main :: qtname where
Main == (|pid=java-lang,tid=TName (tnam ′ Main ′)|)

abbreviation
arr :: vname where

Theory Example 233

arr == (vnam ′ arr ′)

abbreviation
vee :: vname where
vee == (vnam ′ vee ′)

abbreviation
z :: vname where
z == (vnam ′ z ′)

abbreviation
e :: vname where
e == (vnam ′ e ′)

abbreviation
lab1 :: label where
lab1 == label ′ lab1 ′

lemma neq-Base-Object [simp]: Base 6=Object
by (simp add: Object-def)

lemma neq-Ext-Object [simp]: Ext 6=Object
by (simp add: Object-def)

lemma neq-Main-Object [simp]: Main 6=Object
by (simp add: Object-def)

lemma neq-Base-SXcpt [simp]: Base 6=SXcpt xn
by (simp add: SXcpt-def)

lemma neq-Ext-SXcpt [simp]: Ext 6=SXcpt xn
by (simp add: SXcpt-def)

lemma neq-Main-SXcpt [simp]: Main 6=SXcpt xn
by (simp add: SXcpt-def)

classes and interfaces

overloading
Object-mdecls ≡ Object-mdecls
SXcpt-mdecls ≡ SXcpt-mdecls

begin
definition Object-mdecls ≡ []
definition SXcpt-mdecls ≡ []

end

axiomatization
foo :: mname

definition
foo-sig :: sig
where foo-sig = (|name=foo,parTs=[Class Base]|)

definition
foo-mhead :: mhead
where foo-mhead = (|access=Public,static=False,pars=[z],resT=Class Base|)

definition

234

Base-foo :: mdecl
where Base-foo = (foo-sig, (|access=Public,static=False,pars=[z],resT=Class Base,

mbody=(|lcls=[],stmt=Return (!!z)|)|))

definition Ext-foo :: mdecl
where Ext-foo = (foo-sig,

(|access=Public,static=False,pars=[z],resT=Class Ext,
mbody=(|lcls=[]

,stmt=Expr({Ext,Ext,False}Cast (Class Ext) (!!z)..vee :=
Lit (Intg 1)) ;;

Return (Lit Null)|)
|))

definition
arr-viewed-from :: qtname ⇒ qtname ⇒ var
where arr-viewed-from accC C = {accC ,Base,True}StatRef (ClassT C)..arr

definition
BaseCl :: class where
BaseCl = (|access=Public,

cfields=[(arr , (|access=Public,static=True ,type=PrimT Boolean.[]|)),
(vee, (|access=Public,static=False,type=Iface HasFoo |))],

methods=[Base-foo],
init=Expr(arr-viewed-from Base Base

:=New (PrimT Boolean)[Lit (Intg 2)]),
super=Object,
superIfs=[HasFoo]|)

definition
ExtCl :: class where
ExtCl = (|access=Public,

cfields=[(vee, (|access=Public,static=False,type= PrimT Integer |))],
methods=[Ext-foo],
init=Skip,
super=Base,
superIfs=[]|)

definition
MainCl :: class where
MainCl = (|access=Public,

cfields=[],
methods=[],
init=Skip,
super=Object,
superIfs=[]|)

definition
HasFooInt :: iface
where HasFooInt = (|access=Public,imethods=[(foo-sig, foo-mhead)],isuperIfs=[]|)

definition
Ifaces ::idecl list
where Ifaces = [(HasFoo,HasFooInt)]

definition
Classes ::cdecl list
where Classes = [(Base,BaseCl),(Ext,ExtCl),(Main,MainCl)]@standard-classes

Theory Example 235

lemmas table-classes-defs =
Classes-def standard-classes-def ObjectC-def SXcptC-def

lemma table-ifaces [simp]: table-of Ifaces = Map.empty(HasFoo 7→HasFooInt)
apply (unfold Ifaces-def)
apply (simp (no-asm))
done

lemma table-classes-Object [simp]:
table-of Classes Object = Some (|access=Public,cfields=[]

,methods=Object-mdecls
,init=Skip,super=undefined,superIfs=[]|)

apply (unfold table-classes-defs)
apply (simp (no-asm) add:Object-def)
done

lemma table-classes-SXcpt [simp]:
table-of Classes (SXcpt xn)
= Some (|access=Public,cfields=[],methods=SXcpt-mdecls,

init=Skip,
super=if xn = Throwable then Object else SXcpt Throwable,
superIfs=[]|)

apply (unfold table-classes-defs)
apply (induct-tac xn)
apply (simp add: Object-def SXcpt-def)+
done

lemma table-classes-HasFoo [simp]: table-of Classes HasFoo = None
apply (unfold table-classes-defs)
apply (simp (no-asm) add: Object-def SXcpt-def)
done

lemma table-classes-Base [simp]: table-of Classes Base = Some BaseCl
apply (unfold table-classes-defs)
apply (simp (no-asm) add: Object-def SXcpt-def)
done

lemma table-classes-Ext [simp]: table-of Classes Ext = Some ExtCl
apply (unfold table-classes-defs)
apply (simp (no-asm) add: Object-def SXcpt-def)
done

lemma table-classes-Main [simp]: table-of Classes Main = Some MainCl
apply (unfold table-classes-defs)
apply (simp (no-asm) add: Object-def SXcpt-def)
done

program

abbreviation
tprg :: prog where
tprg == (|ifaces=Ifaces,classes=Classes|)

definition
test :: (ty)list ⇒ stmt where
test pTs = (e:==NewC Ext;;

Try Expr({Main,ClassT Base,IntVir}!!e·foo({pTs}[Lit Null]))
Catch((SXcpt NullPointer) z)
(lab1 · While(Acc

236

(Acc (arr-viewed-from Main Ext).[Lit (Intg 2)])) Skip))

well-structuredness

lemma not-Object-subcls-any [elim!]: (Object, C) ∈ (subcls1 tprg)+ =⇒ R
apply (auto dest!: tranclD subcls1D)
done

lemma not-Throwable-subcls-SXcpt [elim!]:
(SXcpt Throwable, SXcpt xn) ∈ (subcls1 tprg)+ =⇒ R

apply (auto dest!: tranclD subcls1D)
apply (simp add: Object-def SXcpt-def)
done

lemma not-SXcpt-n-subcls-SXcpt-n [elim!]:
(SXcpt xn, SXcpt xn) ∈ (subcls1 tprg)+ =⇒ R

apply (auto dest!: tranclD subcls1D)
apply (drule rtranclD)
apply auto
done

lemma not-Base-subcls-Ext [elim!]: (Base, Ext) ∈ (subcls1 tprg)+ =⇒ R
apply (auto dest!: tranclD subcls1D simp add: BaseCl-def)
done

lemma not-TName-n-subcls-TName-n [rule-format (no-asm), elim!]:
((|pid=java-lang,tid=TName tn|), (|pid=java-lang,tid=TName tn|))
∈ (subcls1 tprg)+ −→ R

apply (rule-tac n1 = tn in surj-tnam ′ [THEN exE])
apply (erule ssubst)
apply (rule tnam ′.induct)
apply safe
apply (auto dest!: tranclD subcls1D simp add: BaseCl-def ExtCl-def MainCl-def)
apply (drule rtranclD)
apply auto
done

lemma ws-idecl-HasFoo: ws-idecl tprg HasFoo []
apply (unfold ws-idecl-def)
apply (simp (no-asm))
done

lemma ws-cdecl-Object: ws-cdecl tprg Object any
apply (unfold ws-cdecl-def)
apply auto
done

lemma ws-cdecl-Throwable: ws-cdecl tprg (SXcpt Throwable) Object
apply (unfold ws-cdecl-def)
apply auto
done

lemma ws-cdecl-SXcpt: ws-cdecl tprg (SXcpt xn) (SXcpt Throwable)
apply (unfold ws-cdecl-def)
apply auto
done

lemma ws-cdecl-Base: ws-cdecl tprg Base Object

Theory Example 237

apply (unfold ws-cdecl-def)
apply auto
done

lemma ws-cdecl-Ext: ws-cdecl tprg Ext Base
apply (unfold ws-cdecl-def)
apply auto
done

lemma ws-cdecl-Main: ws-cdecl tprg Main Object
apply (unfold ws-cdecl-def)
apply auto
done

lemmas ws-cdecls = ws-cdecl-SXcpt ws-cdecl-Object ws-cdecl-Throwable
ws-cdecl-Base ws-cdecl-Ext ws-cdecl-Main

declare not-Object-subcls-any [rule del]
not-Throwable-subcls-SXcpt [rule del]
not-SXcpt-n-subcls-SXcpt-n [rule del]
not-Base-subcls-Ext [rule del] not-TName-n-subcls-TName-n [rule del]

lemma ws-idecl-all:
G=tprg =⇒ (∀ (I ,i)∈set Ifaces. ws-idecl G I (isuperIfs i))

apply (simp (no-asm) add: Ifaces-def HasFooInt-def)
apply (auto intro!: ws-idecl-HasFoo)
done

lemma ws-cdecl-all: G=tprg =⇒ (∀ (C ,c)∈set Classes. ws-cdecl G C (super c))
apply (simp (no-asm) add: Classes-def BaseCl-def ExtCl-def MainCl-def)
apply (auto intro!: ws-cdecls simp add: standard-classes-def ObjectC-def

SXcptC-def)
done

lemma ws-tprg: ws-prog tprg
apply (unfold ws-prog-def)
apply (auto intro!: ws-idecl-all ws-cdecl-all)
done

misc program properties (independent of well-structuredness)

lemma single-iface [simp]: is-iface tprg I = (I = HasFoo)
apply (unfold Ifaces-def)
apply (simp (no-asm))
done

lemma empty-subint1 [simp]: subint1 tprg = {}
apply (unfold subint1-def Ifaces-def HasFooInt-def)
apply auto
done

lemma unique-ifaces: unique Ifaces
apply (unfold Ifaces-def)
apply (simp (no-asm))
done

lemma unique-classes: unique Classes
apply (unfold table-classes-defs)
apply (simp)

238

done

lemma SXcpt-subcls-Throwable [simp]: tprg`SXcpt xn�C SXcpt Throwable
apply (rule SXcpt-subcls-Throwable-lemma)
apply auto
done

lemma Ext-subclseq-Base [simp]: tprg`Ext �C Base
apply (rule subcls-direct1)
apply (simp (no-asm) add: ExtCl-def)
apply (simp add: Object-def)
apply (simp (no-asm))
done

lemma Ext-subcls-Base [simp]: tprg`Ext ≺C Base
apply (rule subcls-direct2)
apply (simp (no-asm) add: ExtCl-def)
apply (simp add: Object-def)
apply (simp (no-asm))
done

fields and method lookup

lemma fields-tprg-Object [simp]: DeclConcepts.fields tprg Object = []
by (rule ws-tprg [THEN fields-emptyI], force+)

lemma fields-tprg-Throwable [simp]:
DeclConcepts.fields tprg (SXcpt Throwable) = []

by (rule ws-tprg [THEN fields-emptyI], force+)

lemma fields-tprg-SXcpt [simp]: DeclConcepts.fields tprg (SXcpt xn) = []
apply (case-tac xn = Throwable)
apply (simp (no-asm-simp))
by (rule ws-tprg [THEN fields-emptyI], force+)

lemmas fields-rec ′ = fields-rec [OF - ws-tprg]

lemma fields-Base [simp]:
DeclConcepts.fields tprg Base
= [((arr ,Base), (|access=Public,static=True ,type=PrimT Boolean.[]|)),

((vee,Base), (|access=Public,static=False,type=Iface HasFoo |))]
apply (subst fields-rec ′)
apply (auto simp add: BaseCl-def)
done

lemma fields-Ext [simp]:
DeclConcepts.fields tprg Ext
= [((vee,Ext), (|access=Public,static=False,type= PrimT Integer |))]
@ DeclConcepts.fields tprg Base

apply (rule trans)
apply (rule fields-rec ′)
apply (auto simp add: ExtCl-def Object-def)
done

lemmas imethds-rec ′ = imethds-rec [OF - ws-tprg]
lemmas methd-rec ′ = methd-rec [OF - ws-tprg]

lemma imethds-HasFoo [simp]:
imethds tprg HasFoo = set-option ◦ Map.empty(foo-sig 7→(HasFoo, foo-mhead))

Theory Example 239

apply (rule trans)
apply (rule imethds-rec ′)
apply (auto simp add: HasFooInt-def)
done

lemma methd-tprg-Object [simp]: methd tprg Object = Map.empty
apply (subst methd-rec ′)
apply (auto simp add: Object-mdecls-def)
done

lemma methd-Base [simp]:
methd tprg Base = table-of [(λ(s,m). (s, Base, m)) Base-foo]

apply (rule trans)
apply (rule methd-rec ′)
apply (auto simp add: BaseCl-def)
done

lemma memberid-Base-foo-simp [simp]:
memberid (mdecl Base-foo) = mid foo-sig

by (simp add: Base-foo-def)

lemma memberid-Ext-foo-simp [simp]:
memberid (mdecl Ext-foo) = mid foo-sig

by (simp add: Ext-foo-def)

lemma Base-declares-foo:
tprg`mdecl Base-foo declared-in Base

by (auto simp add: declared-in-def cdeclaredmethd-def BaseCl-def Base-foo-def)

lemma foo-sig-not-undeclared-in-Base:
¬ tprg`mid foo-sig undeclared-in Base

proof −
from Base-declares-foo
show ?thesis

by (auto dest!: declared-not-undeclared)
qed

lemma Ext-declares-foo:
tprg`mdecl Ext-foo declared-in Ext

by (auto simp add: declared-in-def cdeclaredmethd-def ExtCl-def Ext-foo-def)

lemma foo-sig-not-undeclared-in-Ext:
¬ tprg`mid foo-sig undeclared-in Ext

proof −
from Ext-declares-foo
show ?thesis

by (auto dest!: declared-not-undeclared)
qed

lemma Base-foo-not-inherited-in-Ext:
¬ tprg ` Ext inherits (Base,mdecl Base-foo)

by (auto simp add: inherits-def foo-sig-not-undeclared-in-Ext)

lemma Ext-method-inheritance:
filter-tab (λsig m. tprg ` Ext inherits method sig m)

(Map.empty(fst ((λ(s, m). (s, Base, m)) Base-foo)7→
snd ((λ(s, m). (s, Base, m)) Base-foo)))

= Map.empty
proof −

240

from Base-foo-not-inherited-in-Ext
show ?thesis

by (auto intro: filter-tab-all-False simp add: Base-foo-def)
qed

lemma methd-Ext [simp]: methd tprg Ext =
table-of [(λ(s,m). (s, Ext, m)) Ext-foo]

apply (rule trans)
apply (rule methd-rec ′)
apply (auto simp add: ExtCl-def Object-def Ext-method-inheritance)
done

accessibility

lemma classesDefined:
[[class tprg C = Some c; C 6=Object]] =⇒ ∃ sc. class tprg (super c) = Some sc

apply (auto simp add: Classes-def standard-classes-def
BaseCl-def ExtCl-def MainCl-def
SXcptC-def ObjectC-def)

done

lemma superclassesBase [simp]: superclasses tprg Base={Object}
proof −

have ws: ws-prog tprg by (rule ws-tprg)
then show ?thesis

by (auto simp add: superclasses-rec BaseCl-def)
qed

lemma superclassesExt [simp]: superclasses tprg Ext={Base,Object}
proof −

have ws: ws-prog tprg by (rule ws-tprg)
then show ?thesis

by (auto simp add: superclasses-rec ExtCl-def BaseCl-def)
qed

lemma superclassesMain [simp]: superclasses tprg Main={Object}
proof −

have ws: ws-prog tprg by (rule ws-tprg)
then show ?thesis

by (auto simp add: superclasses-rec MainCl-def)
qed

lemma HasFoo-accessible[simp]:tprg`(Iface HasFoo) accessible-in P
by (simp add: accessible-in-RefT-simp is-public-def HasFooInt-def)

lemma HasFoo-is-acc-iface[simp]: is-acc-iface tprg P HasFoo
by (simp add: is-acc-iface-def)

lemma HasFoo-is-acc-type[simp]: is-acc-type tprg P (Iface HasFoo)
by (simp add: is-acc-type-def)

lemma Base-accessible[simp]:tprg`(Class Base) accessible-in P
by (simp add: accessible-in-RefT-simp is-public-def BaseCl-def)

lemma Base-is-acc-class[simp]: is-acc-class tprg P Base
by (simp add: is-acc-class-def)

lemma Base-is-acc-type[simp]: is-acc-type tprg P (Class Base)

Theory Example 241

by (simp add: is-acc-type-def)

lemma Ext-accessible[simp]:tprg`(Class Ext) accessible-in P
by (simp add: accessible-in-RefT-simp is-public-def ExtCl-def)

lemma Ext-is-acc-class[simp]: is-acc-class tprg P Ext
by (simp add: is-acc-class-def)

lemma Ext-is-acc-type[simp]: is-acc-type tprg P (Class Ext)
by (simp add: is-acc-type-def)

lemma accmethd-tprg-Object [simp]: accmethd tprg S Object = Map.empty
apply (unfold accmethd-def)
apply (simp)
done

lemma snd-special-simp: snd ((λ(s, m). (s, a, m)) x) = (a,snd x)
by (cases x) (auto)

lemma fst-special-simp: fst ((λ(s, m). (s, a, m)) x) = fst x
by (cases x) (auto)

lemma foo-sig-undeclared-in-Object:
tprg`mid foo-sig undeclared-in Object

by (auto simp add: undeclared-in-def cdeclaredmethd-def Object-mdecls-def)

lemma unique-sig-Base-foo:
tprg` mdecl (sig, snd Base-foo) declared-in Base =⇒ sig=foo-sig

by (auto simp add: declared-in-def cdeclaredmethd-def
Base-foo-def BaseCl-def)

lemma Base-foo-no-override:
tprg,sig`(Base,(snd Base-foo)) overrides old =⇒ P

apply (drule overrides-commonD)
apply (clarsimp)
apply (frule subclsEval)
apply (rule ws-tprg)
apply (simp)
apply (rule classesDefined)
apply assumption+
apply (frule unique-sig-Base-foo)
apply (auto dest!: declared-not-undeclared intro: foo-sig-undeclared-in-Object

dest: unique-sig-Base-foo)
done

lemma Base-foo-no-stat-override:
tprg,sig`(Base,(snd Base-foo)) overridesS old =⇒ P

apply (drule stat-overrides-commonD)
apply (clarsimp)
apply (frule subclsEval)
apply (rule ws-tprg)
apply (simp)
apply (rule classesDefined)
apply assumption+
apply (frule unique-sig-Base-foo)
apply (auto dest!: declared-not-undeclared intro: foo-sig-undeclared-in-Object

dest: unique-sig-Base-foo)
done

242

lemma Base-foo-no-hide:
tprg,sig`(Base,(snd Base-foo)) hides old =⇒ P

by (auto dest: hidesD simp add: Base-foo-def member-is-static-simp)

lemma Ext-foo-no-hide:
tprg,sig`(Ext,(snd Ext-foo)) hides old =⇒ P

by (auto dest: hidesD simp add: Ext-foo-def member-is-static-simp)

lemma unique-sig-Ext-foo:
tprg` mdecl (sig, snd Ext-foo) declared-in Ext =⇒ sig=foo-sig

by (auto simp add: declared-in-def cdeclaredmethd-def
Ext-foo-def ExtCl-def)

lemma Ext-foo-override:
tprg,sig`(Ext,(snd Ext-foo)) overrides old
=⇒ old = (Base,(snd Base-foo))

apply (drule overrides-commonD)
apply (clarsimp)
apply (frule subclsEval)
apply (rule ws-tprg)
apply (simp)
apply (rule classesDefined)
apply assumption+
apply (frule unique-sig-Ext-foo)
apply (case-tac old)
apply (insert Base-declares-foo foo-sig-undeclared-in-Object)
apply (auto simp add: ExtCl-def Ext-foo-def

BaseCl-def Base-foo-def Object-mdecls-def
split-paired-all
member-is-static-simp

dest: declared-not-undeclared unique-declaration)
done

lemma Ext-foo-stat-override:
tprg,sig`(Ext,(snd Ext-foo)) overridesS old
=⇒ old = (Base,(snd Base-foo))

apply (drule stat-overrides-commonD)
apply (clarsimp)
apply (frule subclsEval)
apply (rule ws-tprg)
apply (simp)
apply (rule classesDefined)
apply assumption+
apply (frule unique-sig-Ext-foo)
apply (case-tac old)
apply (insert Base-declares-foo foo-sig-undeclared-in-Object)
apply (auto simp add: ExtCl-def Ext-foo-def

BaseCl-def Base-foo-def Object-mdecls-def
split-paired-all
member-is-static-simp

dest: declared-not-undeclared unique-declaration)
done

lemma Base-foo-member-of-Base:
tprg`(Base,mdecl Base-foo) member-of Base

by (auto intro!: members.Immediate Base-declares-foo)

lemma Base-foo-member-in-Base:

Theory Example 243

tprg`(Base,mdecl Base-foo) member-in Base
by (rule member-of-to-member-in [OF Base-foo-member-of-Base])

lemma Ext-foo-member-of-Ext:
tprg`(Ext,mdecl Ext-foo) member-of Ext

by (auto intro!: members.Immediate Ext-declares-foo)

lemma Ext-foo-member-in-Ext:
tprg`(Ext,mdecl Ext-foo) member-in Ext

by (rule member-of-to-member-in [OF Ext-foo-member-of-Ext])

lemma Base-foo-permits-acc:
tprg ` (Base, mdecl Base-foo) in Base permits-acc-from S

by (simp add: permits-acc-def Base-foo-def)

lemma Base-foo-accessible [simp]:
tprg`(Base,mdecl Base-foo) of Base accessible-from S

by (auto intro: accessible-fromR.Immediate
Base-foo-member-of-Base Base-foo-permits-acc)

lemma Base-foo-dyn-accessible [simp]:
tprg`(Base,mdecl Base-foo) in Base dyn-accessible-from S

apply (rule dyn-accessible-fromR.Immediate)
apply (rule Base-foo-member-in-Base)
apply (rule Base-foo-permits-acc)
done

lemma accmethd-Base [simp]:
accmethd tprg S Base = methd tprg Base

apply (simp add: accmethd-def)
apply (rule filter-tab-all-True)
apply (simp add: snd-special-simp fst-special-simp)
done

lemma Ext-foo-permits-acc:
tprg ` (Ext, mdecl Ext-foo) in Ext permits-acc-from S

by (simp add: permits-acc-def Ext-foo-def)

lemma Ext-foo-accessible [simp]:
tprg`(Ext,mdecl Ext-foo) of Ext accessible-from S

by (auto intro: accessible-fromR.Immediate
Ext-foo-member-of-Ext Ext-foo-permits-acc)

lemma Ext-foo-dyn-accessible [simp]:
tprg`(Ext,mdecl Ext-foo) in Ext dyn-accessible-from S

apply (rule dyn-accessible-fromR.Immediate)
apply (rule Ext-foo-member-in-Ext)
apply (rule Ext-foo-permits-acc)
done

lemma Ext-foo-overrides-Base-foo:
tprg`(Ext,Ext-foo) overrides (Base,Base-foo)

proof (rule overridesR.Direct, simp-all)
show ¬ is-static Ext-foo

by (simp add: member-is-static-simp Ext-foo-def)
show ¬ is-static Base-foo

by (simp add: member-is-static-simp Base-foo-def)
show accmodi Ext-foo 6= Private

by (simp add: Ext-foo-def)

244

show msig (Ext, Ext-foo) = msig (Base, Base-foo)
by (simp add: Ext-foo-def Base-foo-def)

show tprg`mdecl Ext-foo declared-in Ext
by (auto intro: Ext-declares-foo)

show tprg`mdecl Base-foo declared-in Base
by (auto intro: Base-declares-foo)

show tprg `(Base, mdecl Base-foo) inheritable-in java-lang
by (simp add: inheritable-in-def Base-foo-def)

show tprg`resTy Ext-foo�resTy Base-foo
by (simp add: Ext-foo-def Base-foo-def mhead-resTy-simp)

qed

lemma accmethd-Ext [simp]:
accmethd tprg S Ext = methd tprg Ext

apply (simp add: accmethd-def)
apply (rule filter-tab-all-True)
apply (auto simp add: snd-special-simp fst-special-simp)
done

lemma cls-Ext: class tprg Ext = Some ExtCl
by simp
lemma dynmethd-Ext-foo:
dynmethd tprg Base Ext (|name = foo, parTs = [Class Base]|)
= Some (Ext,snd Ext-foo)

proof −
have methd tprg Base (|name = foo, parTs = [Class Base]|)

= Some (Base,snd Base-foo) and
methd tprg Ext (|name = foo, parTs = [Class Base]|)

= Some (Ext,snd Ext-foo)
by (auto simp add: Ext-foo-def Base-foo-def foo-sig-def)

with cls-Ext ws-tprg Ext-foo-overrides-Base-foo
show ?thesis

by (auto simp add: dynmethd-rec simp add: Ext-foo-def Base-foo-def)
qed

lemma Base-fields-accessible[simp]:
accfield tprg S Base
= table-of ((map (λ((n,d),f).(n,(d,f)))) (DeclConcepts.fields tprg Base))

apply (auto simp add: accfield-def fun-eq-iff Let-def
accessible-in-RefT-simp
is-public-def
BaseCl-def
permits-acc-def
declared-in-def
cdeclaredfield-def

intro!: filter-tab-all-True-Some filter-tab-None
accessible-fromR.Immediate

intro: members.Immediate)
done

lemma arr-member-of-Base:
tprg`(Base, fdecl (arr ,

(|access = Public, static = True, type = PrimT Boolean.[]|)))
member-of Base

by (auto intro: members.Immediate
simp add: declared-in-def cdeclaredfield-def BaseCl-def)

lemma arr-member-in-Base:

Theory Example 245

tprg`(Base, fdecl (arr ,
(|access = Public, static = True, type = PrimT Boolean.[]|)))

member-in Base
by (rule member-of-to-member-in [OF arr-member-of-Base])

lemma arr-member-of-Ext:
tprg`(Base, fdecl (arr ,

(|access = Public, static = True, type = PrimT Boolean.[]|)))
member-of Ext

apply (rule members.Inherited)
apply (simp add: inheritable-in-def)
apply (simp add: undeclared-in-def cdeclaredfield-def ExtCl-def)
apply (auto intro: arr-member-of-Base simp add: subcls1-def ExtCl-def)
done

lemma arr-member-in-Ext:
tprg`(Base, fdecl (arr ,

(|access = Public, static = True, type = PrimT Boolean.[]|)))
member-in Ext

by (rule member-of-to-member-in [OF arr-member-of-Ext])

lemma Ext-fields-accessible[simp]:
accfield tprg S Ext
= table-of ((map (λ((n,d),f).(n,(d,f)))) (DeclConcepts.fields tprg Ext))

apply (auto simp add: accfield-def fun-eq-iff Let-def
accessible-in-RefT-simp
is-public-def
BaseCl-def
ExtCl-def
permits-acc-def

intro!: filter-tab-all-True-Some filter-tab-None
accessible-fromR.Immediate)

apply (auto intro: members.Immediate arr-member-of-Ext
simp add: declared-in-def cdeclaredfield-def ExtCl-def)

done

lemma arr-Base-dyn-accessible [simp]:
tprg`(Base, fdecl (arr , (|access=Public,static=True ,type=PrimT Boolean.[]|)))

in Base dyn-accessible-from S
apply (rule dyn-accessible-fromR.Immediate)
apply (rule arr-member-in-Base)
apply (simp add: permits-acc-def)
done

lemma arr-Ext-dyn-accessible[simp]:
tprg`(Base, fdecl (arr , (|access=Public,static=True ,type=PrimT Boolean.[]|)))

in Ext dyn-accessible-from S
apply (rule dyn-accessible-fromR.Immediate)
apply (rule arr-member-in-Ext)
apply (simp add: permits-acc-def)
done

lemma array-of-PrimT-acc [simp]:
is-acc-type tprg java-lang (PrimT t.[])

apply (simp add: is-acc-type-def accessible-in-RefT-simp)
done

lemma PrimT-acc [simp]:
is-acc-type tprg java-lang (PrimT t)

246

apply (simp add: is-acc-type-def accessible-in-RefT-simp)
done

lemma Object-acc [simp]:
is-acc-class tprg java-lang Object

apply (auto simp add: is-acc-class-def accessible-in-RefT-simp is-public-def)
done

well-formedness

lemma wf-HasFoo: wf-idecl tprg (HasFoo, HasFooInt)
apply (unfold wf-idecl-def HasFooInt-def)
apply (auto intro!: wf-mheadI ws-idecl-HasFoo

simp add: foo-sig-def foo-mhead-def mhead-resTy-simp
member-is-static-simp)

done

declare member-is-static-simp [simp]
declare wt.Skip [rule del] wt.Init [rule del]
ML ‹ML-Thms.bind-thms (wt-intros, map (rewrite-rule context @{thms id-def }) @{thms wt.intros})›
lemmas wtIs = wt-Call wt-Super wt-FVar wt-StatRef wt-intros
lemmas daIs = assigned.select-convs da-Skip da-NewC da-Lit da-Super da.intros

lemmas Base-foo-defs = Base-foo-def foo-sig-def foo-mhead-def
lemmas Ext-foo-defs = Ext-foo-def foo-sig-def

lemma wf-Base-foo: wf-mdecl tprg Base Base-foo
apply (unfold Base-foo-defs)
apply (auto intro!: wf-mdeclI wf-mheadI intro!: wtIs

simp add: mhead-resTy-simp)

apply (rule exI)
apply (simp add: parameters-def)
apply (rule conjI)
apply (rule da.Comp)
apply (rule da.Expr)
apply (rule da.AssLVar)
apply (rule da.AccLVar)
apply (simp)
apply (rule assigned.select-convs)
apply (simp)
apply (rule assigned.select-convs)
apply (simp)
apply (simp)
apply (rule da.Jmp)
apply (simp)
apply (rule assigned.select-convs)
apply (simp)
apply (rule assigned.select-convs)
apply (simp)
apply (simp)
done

lemma wf-Ext-foo: wf-mdecl tprg Ext Ext-foo

Theory Example 247

apply (unfold Ext-foo-defs)
apply (auto intro!: wf-mdeclI wf-mheadI intro!: wtIs

simp add: mhead-resTy-simp)
apply (rule wt.Cast)
prefer 2
apply simp
apply (rule-tac [2] narrow.subcls [THEN cast.narrow])
apply (auto intro!: wtIs)

apply (rule exI)
apply (simp add: parameters-def)
apply (rule conjI)
apply (rule da.Comp)
apply (rule da.Expr)
apply (rule da.Ass)
apply simp
apply (rule da.FVar)
apply (rule da.Cast)
apply (rule da.AccLVar)
apply simp
apply (rule assigned.select-convs)
apply simp
apply (rule da-Lit)
apply (simp)
apply (rule da.Comp)
apply (rule da.Expr)
apply (rule da.AssLVar)
apply (rule da.Lit)
apply (rule assigned.select-convs)
apply simp
apply (rule da.Jmp)
apply simp
apply (rule assigned.select-convs)
apply simp
apply (rule assigned.select-convs)
apply (simp)
apply (rule assigned.select-convs)
apply simp
apply simp
done

declare mhead-resTy-simp [simp add]

lemma wf-BaseC : wf-cdecl tprg (Base,BaseCl)
apply (unfold wf-cdecl-def BaseCl-def arr-viewed-from-def)
apply (auto intro!: wf-Base-foo)
apply (auto intro!: ws-cdecl-Base simp add: Base-foo-def foo-mhead-def)
apply (auto intro!: wtIs)

apply (rule exI)
apply (rule da.Expr)
apply (rule da.Ass)
apply (simp)
apply (rule da.FVar)
apply (rule da.Cast)
apply (rule da-Lit)
apply simp
apply (rule da.NewA)
apply (rule da.Lit)

248

apply (auto simp add: Base-foo-defs entails-def Let-def)
apply (insert Base-foo-no-stat-override, simp add: Base-foo-def ,blast)+
apply (insert Base-foo-no-hide , simp add: Base-foo-def ,blast)
done

lemma wf-ExtC : wf-cdecl tprg (Ext,ExtCl)
apply (unfold wf-cdecl-def ExtCl-def)
apply (auto intro!: wf-Ext-foo ws-cdecl-Ext)
apply (auto simp add: entails-def snd-special-simp)
apply (insert Ext-foo-stat-override)
apply (rule exI ,rule da.Skip)
apply (force simp add: qmdecl-def Ext-foo-def Base-foo-def)
apply (force simp add: qmdecl-def Ext-foo-def Base-foo-def)
apply (force simp add: qmdecl-def Ext-foo-def Base-foo-def)
apply (insert Ext-foo-no-hide)
apply (simp-all add: qmdecl-def)
apply blast+
done

lemma wf-MainC : wf-cdecl tprg (Main,MainCl)
apply (unfold wf-cdecl-def MainCl-def)
apply (auto intro: ws-cdecl-Main)
apply (rule exI ,rule da.Skip)
done

lemma wf-idecl-all: p=tprg =⇒ Ball (set Ifaces) (wf-idecl p)
apply (simp (no-asm) add: Ifaces-def)
apply (simp (no-asm-simp))
apply (rule wf-HasFoo)
done

lemma wf-cdecl-all-standard-classes:
Ball (set standard-classes) (wf-cdecl tprg)

apply (unfold standard-classes-def Let-def
ObjectC-def SXcptC-def Object-mdecls-def SXcpt-mdecls-def)

apply (simp (no-asm) add: wf-cdecl-def ws-cdecls)
apply (auto simp add:is-acc-class-def accessible-in-RefT-simp SXcpt-def

intro: da.Skip)
apply (auto simp add: Object-def Classes-def standard-classes-def

SXcptC-def SXcpt-def)
done

lemma wf-cdecl-all: p=tprg =⇒ Ball (set Classes) (wf-cdecl p)
apply (simp (no-asm) add: Classes-def)
apply (simp (no-asm-simp))
apply (rule wf-BaseC [THEN conjI])
apply (rule wf-ExtC [THEN conjI])
apply (rule wf-MainC [THEN conjI])
apply (rule wf-cdecl-all-standard-classes)
done

theorem wf-tprg: wf-prog tprg
apply (unfold wf-prog-def Let-def)
apply (simp (no-asm) add: unique-ifaces unique-classes)
apply (rule conjI)
apply ((simp (no-asm) add: Classes-def standard-classes-def))
apply (rule conjI)
apply (simp add: Object-mdecls-def)

Theory Example 249

apply safe
apply (cut-tac xn-cases)
apply (simp (no-asm-simp) add: Classes-def standard-classes-def)
apply (insert wf-idecl-all)
apply (insert wf-cdecl-all)
apply auto
done

max spec
lemma appl-methds-Base-foo:
appl-methds tprg S (ClassT Base) (|name=foo, parTs=[NT]|) =
{((ClassT Base, (|access=Public,static=False,pars=[z],resT=Class Base|))
,[Class Base])}

apply (unfold appl-methds-def)
apply (simp (no-asm))
apply (subgoal-tac tprg`NT� Class Base)
apply (auto simp add: cmheads-def Base-foo-defs)
done

lemma max-spec-Base-foo: max-spec tprg S (ClassT Base) (|name=foo,parTs=[NT]|) =
{((ClassT Base, (|access=Public,static=False,pars=[z],resT=Class Base|))
, [Class Base])}

by (simp add: max-spec-def appl-methds-Base-foo Collect-conv-if)

well-typedness
schematic-goal wt-test: (|prg=tprg,cls=Main,lcl=Map.empty(VName e 7→Class Base)|)`test ?pTs::

√

apply (unfold test-def arr-viewed-from-def)

apply (rule wtIs)
apply (rule wtIs)
apply (rule wtIs)
apply (rule wtIs)
apply (simp)
apply (simp)
apply (simp)
apply (rule wtIs)
apply (simp)
apply (simp)
apply (rule wtIs)
prefer 4
apply (simp)
defer
apply (rule wtIs)
apply (rule wtIs)
apply (rule wtIs)
apply (rule wtIs)
apply (simp)
apply (simp)
apply (rule wtIs)
apply (rule wtIs)
apply (simp)
apply (rule wtIs)
apply (simp)
apply (rule max-spec-Base-foo)
apply (simp)
apply (simp)
apply (simp)

250

apply (simp)
apply (simp)
apply (rule wtIs)
apply (rule wtIs)
apply (rule wtIs)
apply (rule wtIs)
apply (rule wtIs)
apply (rule wtIs)
apply (simp)
apply (simp)
apply (simp)
apply (simp)
apply (simp)
apply (rule wtIs)
apply (simp)
apply (rule wtIs)
done

definite assignment

schematic-goal da-test: (|prg=tprg,cls=Main,lcl=Map.empty(VName e 7→Class Base)|)
`{} »〈test ?pTs〉» (|nrm={VName e},brk=λ l. UNIV |)

apply (unfold test-def arr-viewed-from-def)
apply (rule da.Comp)
apply (rule da.Expr)
apply (rule da.AssLVar)
apply (rule da.NewC)
apply (rule assigned.select-convs)
apply (simp)
apply (rule da.Try)
apply (rule da.Expr)
apply (rule da.Call)
apply (rule da.AccLVar)
apply (simp)
apply (rule assigned.select-convs)
apply (simp)
apply (rule da.Cons)
apply (rule da.Lit)
apply (rule da.Nil)
apply (rule da.Loop)
apply (rule da.Acc)
apply (simp)
apply (rule da.AVar)
apply (rule da.Acc)
apply simp
apply (rule da.FVar)
apply (rule da.Cast)
apply (rule da.Lit)
apply (rule da.Lit)
apply (rule da-Skip)
apply (simp)
apply (simp,rule assigned.select-convs)
apply (simp)
apply (simp,rule assigned.select-convs)
apply (simp)
apply simp
apply simp
apply (simp add: intersect-ts-def)
done

Theory Example 251

execution

lemma alloc-one:
∧

a obj. [[the (new-Addr h) = a; atleast-free h (Suc n)]] =⇒
new-Addr h = Some a ∧ atleast-free (h(a 7→obj)) n

apply (frule atleast-free-SucD)
apply (drule atleast-free-Suc [THEN iffD1])
apply clarsimp
apply (frule new-Addr-SomeI)
apply force
done

declare fvar-def2 [simp] avar-def2 [simp] init-lvars-def2 [simp]
declare init-obj-def [simp] var-tys-def [simp] fields-table-def [simp]
declare BaseCl-def [simp] ExtCl-def [simp] Ext-foo-def [simp]

Base-foo-defs [simp]

ML ‹ML-Thms.bind-thms (eval-intros, map
(simplify (context |> Simplifier .del-simps @{thms Skip-eq}
|> Simplifier .add-simps @{thms lvar-def }) o

rewrite-rule context [@{thm assign-def }, @{thm Let-def }]) @{thms eval.intros})›
lemmas eval-Is = eval-Init eval-StatRef AbruptIs eval-intros

axiomatization
a :: loc and
b :: loc and
c :: loc

abbreviation one == Suc 0
abbreviation two == Suc one
abbreviation three == Suc two
abbreviation four == Suc three

abbreviation
obj-a == (|tag=Arr (PrimT Boolean) 2

,values= Map.empty(Inr 0 7→Bool False, Inr 1 7→Bool False)|)

abbreviation
obj-b == (|tag=CInst Ext

,values=(Map.empty(Inl (vee, Base) 7→Null, Inl (vee, Ext)7→Intg 0))|)

abbreviation
obj-c == (|tag=CInst (SXcpt NullPointer),values=CONST Map.empty|)

abbreviation arr-N == Map.empty(Inl (arr , Base) 7→Null)
abbreviation arr-a == Map.empty(Inl (arr , Base) 7→Addr a)

abbreviation
globs1 == Map.empty(Inr Ext 7→(|tag=undefined, values=Map.empty|),

Inr Base 7→(|tag=undefined, values=arr-N |),
Inr Object 7→(|tag=undefined, values=Map.empty|))

abbreviation
globs2 == Map.empty(Inr Ext 7→(|tag=undefined, values=Map.empty|),

Inr Object 7→(|tag=undefined, values=Map.empty|),
Inl a 7→obj-a,
Inr Base 7→(|tag=undefined, values=arr-a|))

abbreviation globs3 == globs2 (Inl b 7→obj-b)
abbreviation globs8 == globs3 (Inl c 7→obj-c)

252

abbreviation locs3 == Map.empty(VName e 7→Addr b)
abbreviation locs8 == locs3 (VName z 7→Addr c)

abbreviation s0 == st Map.empty Map.empty
abbreviation s0 ′ == Norm s0
abbreviation s1 == st globs1 Map.empty
abbreviation s1 ′ == Norm s1
abbreviation s2 == st globs2 Map.empty
abbreviation s2 ′ == Norm s2
abbreviation s3 == st globs3 locs3
abbreviation s3 ′ == Norm s3
abbreviation s7 ′ == (Some (Xcpt (Std NullPointer)), s3)
abbreviation s8 == st globs8 locs8
abbreviation s8 ′ == Norm s8
abbreviation s9 ′ == (Some (Xcpt (Std IndOutBound)), s8)

declare prod.inject [simp del]
schematic-goal exec-test:
[[the (new-Addr (heap s1)) = a;

the (new-Addr (heap ?s2)) = b;
the (new-Addr (heap ?s3)) = c]] =⇒
atleast-free (heap s0) four =⇒
tprg`s0 ′ −test [Class Base]→ ?s9 ′

apply (unfold test-def arr-viewed-from-def)

apply (simp (no-asm-use))
apply (drule (1) alloc-one,clarsimp)
apply (rule eval-Is)
apply (erule-tac V = the (new-Addr -) = c in thin-rl)
apply (erule-tac [2] V = new-Addr - = Some a in thin-rl)
apply (erule-tac [2] V = atleast-free - four in thin-rl)
apply (rule eval-Is)
apply (rule eval-Is)
apply (rule eval-Is)
apply (rule eval-Is)

apply (erule-tac V = the (new-Addr -) = b in thin-rl)
apply (erule-tac V = atleast-free - three in thin-rl)
apply (erule-tac [2] V = atleast-free - four in thin-rl)
apply (erule-tac [2] V = new-Addr - = Some a in thin-rl)
apply (rule eval-Is)
apply (simp)
apply (rule conjI)
prefer 2 apply (rule conjI HOL.refl)+
apply (rule eval-Is)
apply (simp add: arr-viewed-from-def)
apply (rule conjI)
apply (rule eval-Is)
apply (simp)
apply (simp)
apply (rule conjI , rule-tac [2] HOL.refl)
apply (rule eval-Is)
apply (rule eval-Is)
apply (rule eval-Is)
apply (rule init-done, simp)
apply (rule eval-Is)
apply (simp)
apply (simp add: check-field-access-def Let-def)

Theory Example 253

apply (rule eval-Is)
apply (simp)
apply (rule eval-Is)
apply (simp)
apply (rule halloc.New)
apply (simp (no-asm-simp))
apply (drule atleast-free-weaken,drule atleast-free-weaken)
apply (simp (no-asm-simp))
apply (simp add: upd-gobj-def)

apply (rule halloc.New)
apply (drule alloc-one)
prefer 2 apply fast
apply (simp (no-asm-simp))
apply (drule atleast-free-weaken)
apply force
apply (simp)
apply (drule alloc-one)
apply (simp (no-asm-simp))
apply clarsimp
apply (erule-tac V = atleast-free - three in thin-rl)
apply (drule-tac x = a in new-AddrD2 [THEN spec])
apply (simp (no-asm-use))
apply (rule eval-Is)
apply (rule eval-Is)

apply (rule eval-Is)
apply (rule eval-Is)
apply (rule eval-Is)
apply (rule eval-Is)
apply (rule eval-Is)
apply (rule eval-Is)
apply (simp)
apply (simp)
apply (subgoal-tac

tprg`(Ext,mdecl Ext-foo) in Ext dyn-accessible-from Main)
apply (simp add: check-method-access-def Let-def

invocation-declclass-def dynlookup-def dynmethd-Ext-foo)
apply (rule Ext-foo-dyn-accessible)
apply (rule eval-Is)
apply (simp add: body-def Let-def)
apply (rule eval-Is)
apply (rule init-done, simp)
apply (simp add: invocation-declclass-def dynlookup-def dynmethd-Ext-foo)
apply (simp add: invocation-declclass-def dynlookup-def dynmethd-Ext-foo)
apply (rule eval-Is)
apply (rule eval-Is)
apply (rule eval-Is)
apply (rule eval-Is)
apply (rule init-done, simp)
apply (rule eval-Is)
apply (rule eval-Is)
apply (rule eval-Is)
apply (simp)
apply (simp split del: if-split)
apply (simp add: check-field-access-def Let-def)
apply (rule eval-Is)
apply (simp)
apply (rule conjI)

254

apply (simp)
apply (rule eval-Is)
apply (simp)

apply simp
apply (rule sxalloc.intros)
apply (rule halloc.New)
apply (erule alloc-one [THEN conjunct1])
apply (simp (no-asm-simp))
apply (simp (no-asm-simp))
apply (simp add: gupd-def lupd-def obj-ty-def split del: if-split)
apply (drule alloc-one [THEN conjunct1])
apply (simp (no-asm-simp))
apply (erule-tac V = atleast-free - two in thin-rl)
apply (drule-tac x = a in new-AddrD2 [THEN spec])
apply simp
apply (rule eval-Is)
apply (rule eval-Is)
apply (rule eval-Is)
apply (rule eval-Is)
apply (rule eval-Is)
apply (rule init-done, simp)
apply (rule eval-Is)
apply (simp)
apply (simp add: check-field-access-def Let-def)
apply (rule eval-Is)
apply (simp (no-asm-simp))
apply (auto simp add: in-bounds-def)
done
declare prod.inject [simp]

end

Chapter 17

Conform

1 Conformance notions for the type soundness proof for Java
theory Conform imports State begin

design issues:

• lconf allows for (arbitrary) inaccessible values

• ”conforms” does not directly imply that the dynamic types of all objects on the heap are
indeed existing classes. Yet this can be inferred for all referenced objs.

type-synonym env ′ = prog × (lname, ty) table

extension of global store
definition gext :: st ⇒ st ⇒ bool (‹-≤|-› [71 ,71] 70) where

s≤|s ′ ≡ ∀ r . ∀ obj∈globs s r : ∃ obj ′∈globs s ′ r : tag obj ′= tag obj

For the the proof of type soundness we will need the property that during execution, objects are not
lost and moreover retain the values of their tags. So the object store grows conservatively. Note that
if we considered garbage collection, we would have to restrict this property to accessible objects.
lemma gext-objD:
[[s≤|s ′; globs s r = Some obj]]
=⇒ ∃ obj ′. globs s ′ r = Some obj ′ ∧ tag obj ′ = tag obj
apply (simp only: gext-def)
by force

lemma rev-gext-objD:
[[globs s r = Some obj; s≤|s ′]]
=⇒ ∃ obj ′. globs s ′ r = Some obj ′ ∧ tag obj ′ = tag obj

by (auto elim: gext-objD)

lemma init-class-obj-inited:
init-class-obj G C s1≤|s2 =⇒ inited C (globs s2)

apply (unfold inited-def init-obj-def)
apply (auto dest!: gext-objD)
done

lemma gext-refl [intro!, simp]: s≤|s
apply (unfold gext-def)
apply (fast del: fst-splitE)
done

lemma gext-gupd [simp, elim!]:
∧

s. globs s r = None =⇒ s≤|gupd(r 7→x)s

255

256

by (auto simp: gext-def)

lemma gext-new [simp, elim!]:
∧

s. globs s r = None =⇒ s≤|init-obj G oi r s
apply (simp only: init-obj-def)
apply (erule-tac gext-gupd)
done

lemma gext-trans [elim]:
∧

X . [[s≤|s ′; s ′≤|s ′′]] =⇒ s≤|s ′′

by (force simp: gext-def)

lemma gext-upd-gobj [intro!]: s≤|upd-gobj r n v s
apply (simp only: gext-def)
apply auto
apply (case-tac ra = r)
apply auto
apply (case-tac globs s r = None)
apply auto
done

lemma gext-cong1 [simp]: set-locals l s1≤|s2 = s1≤|s2
by (auto simp: gext-def)

lemma gext-cong2 [simp]: s1≤|set-locals l s2 = s1≤|s2
by (auto simp: gext-def)

lemma gext-lupd1 [simp]: lupd(vn 7→v)s1≤|s2 = s1≤|s2
by (auto simp: gext-def)

lemma gext-lupd2 [simp]: s1≤|lupd(vn 7→v)s2 = s1≤|s2
by (auto simp: gext-def)

lemma inited-gext: [[inited C (globs s); s≤|s ′]] =⇒ inited C (globs s ′)
apply (unfold inited-def)
apply (auto dest: gext-objD)
done

value conformance

definition conf :: prog ⇒ st ⇒ val ⇒ ty ⇒ bool (‹-,-`-::�-› [71 ,71 ,71 ,71] 70)
where G,s`v::�T = (∃T ′∈typeof (λa. map-option obj-ty (heap s a)) v:G`T ′�T)

lemma conf-cong [simp]: G,set-locals l s`v::�T = G,s`v::�T
by (auto simp: conf-def)

lemma conf-lupd [simp]: G,lupd(vn 7→va)s`v::�T = G,s`v::�T
by (auto simp: conf-def)

lemma conf-PrimT [simp]: ∀ dt. typeof dt v = Some (PrimT t) =⇒ G,s`v::�PrimT t
apply (simp add: conf-def)
done

lemma conf-Boolean: G,s`v::�PrimT Boolean =⇒ ∃ b. v=Bool b
by (cases v)

(auto simp: conf-def obj-ty-def
dest: widen-Boolean2

split: obj-tag.splits)

Theory Conform 257

lemma conf-litval [rule-format (no-asm)]:
typeof (λa. None) v = Some T −→ G,s`v::�T

apply (unfold conf-def)
apply (rule val.induct)
apply auto
done

lemma conf-Null [simp]: G,s`Null::�T = G`NT�T
by (simp add: conf-def)

lemma conf-Addr :
G,s`Addr a::�T = (∃ obj. heap s a = Some obj ∧ G`obj-ty obj�T)

by (auto simp: conf-def)

lemma conf-AddrI :[[heap s a = Some obj; G`obj-ty obj�T]] =⇒ G,s`Addr a::�T
apply (rule conf-Addr [THEN iffD2])
by fast

lemma defval-conf [rule-format (no-asm), elim]:
is-type G T −→ G,s`default-val T ::�T

apply (unfold conf-def)
apply (induct T)
apply (auto intro: prim-ty.induct)
done

lemma conf-widen [rule-format (no-asm), elim]:
G`T�T ′ =⇒ G,s`x::�T −→ ws-prog G −→ G,s`x::�T ′

apply (unfold conf-def)
apply (rule val.induct)
apply (auto elim: ws-widen-trans)
done

lemma conf-gext [rule-format (no-asm), elim]:
G,s`v::�T −→ s≤|s ′ −→ G,s ′̀ v::�T

apply (unfold gext-def conf-def)
apply (rule val.induct)
apply force+
done

lemma conf-list-widen [rule-format (no-asm)]:
ws-prog G =⇒
∀Ts Ts ′. list-all2 (conf G s) vs Ts

−→ G`Ts[�] Ts ′ −→ list-all2 (conf G s) vs Ts ′

apply (unfold widens-def)
apply (rule list-all2-trans)
apply auto
done

lemma conf-RefTD [rule-format (no-asm)]:
G,s`a ′::�RefT T
−→ a ′ = Null ∨ (∃ a obj T ′. a ′ = Addr a ∧ heap s a = Some obj ∧

obj-ty obj = T ′ ∧ G`T ′�RefT T)
apply (unfold conf-def)
apply (induct-tac a ′)
apply (auto dest: widen-PrimT)
done

258

value list conformance

definition
lconf :: prog ⇒ st ⇒ (′a, val) table ⇒ (′a, ty) table ⇒ bool (‹-,-`-[::�]-› [71 ,71 ,71 ,71] 70)
where G,s`vs[::�]Ts = (∀n. ∀T∈Ts n: ∃ v∈vs n: G,s`v::�T)

lemma lconfD: [[G,s`vs[::�]Ts; Ts n = Some T]] =⇒ G,s`(the (vs n))::�T
by (force simp: lconf-def)

lemma lconf-cong [simp]:
∧

s. G,set-locals x s`l[::�]L = G,s`l[::�]L
by (auto simp: lconf-def)

lemma lconf-lupd [simp]: G,lupd(vn 7→v)s`l[::�]L = G,s`l[::�]L
by (auto simp: lconf-def)

lemma lconf-new: [[L vn = None; G,s`l[::�]L]] =⇒ G,s`l(vn 7→v)[::�]L
by (auto simp: lconf-def)

lemma lconf-upd: [[G,s`l[::�]L; G,s`v::�T ; L vn = Some T]] =⇒
G,s`l(vn 7→v)[::�]L

by (auto simp: lconf-def)

lemma lconf-ext: [[G,s`l[::�]L; G,s`v::�T]] =⇒ G,s`l(vn 7→v)[::�]L(vn 7→T)
by (auto simp: lconf-def)

lemma lconf-map-sum [simp]:
G,s`l1 (+) l2 [::�]L1 (+) L2 = (G,s`l1 [::�]L1 ∧ G,s`l2 [::�]L2)

apply (unfold lconf-def)
apply safe
apply (case-tac [3] n)
apply (force split: sum.split)+
done

lemma lconf-ext-list [rule-format (no-asm)]:∧
X . [[G,s`l[::�]L]] =⇒
∀ vs Ts. distinct vns −→ length Ts = length vns
−→ list-all2 (conf G s) vs Ts −→ G,s`l(vns[7→]vs)[::�]L(vns[7→]Ts)

apply (unfold lconf-def)
apply (induct-tac vns)
apply clarsimp
apply clarify
apply (frule list-all2-lengthD)
apply (clarsimp)
done

lemma lconf-deallocL: [[G,s`l[::�]L(vn 7→T); L vn = None]] =⇒ G,s`l[::�]L
apply (simp only: lconf-def)
apply safe
apply (drule spec)
apply (drule ospec)
apply auto
done

lemma lconf-gext [elim]: [[G,s`l[::�]L; s≤|s ′]] =⇒ G,s ′̀ l[::�]L
apply (simp only: lconf-def)

Theory Conform 259

apply fast
done

lemma lconf-empty [simp, intro!]: G,s`vs[::�]Map.empty
apply (unfold lconf-def)
apply force
done

lemma lconf-init-vals [intro!]:
∀n. ∀T∈fs n:is-type G T =⇒ G,s`init-vals fs[::�]fs

apply (unfold lconf-def)
apply force
done

weak value list conformance

Only if the value is defined it has to conform to its type. This is the contribution of the definite
assignment analysis to the notion of conformance. The definite assignment analysis ensures that the
program only attempts to access local variables that actually have a defined value in the state. So
conformance must only ensure that the defined values are of the right type, and not also that the
value is defined.
definition

wlconf :: prog ⇒ st ⇒ (′a, val) table ⇒ (′a, ty) table ⇒ bool (‹-,-`-[∼::�]-› [71 ,71 ,71 ,71] 70)
where G,s`vs[∼::�]Ts = (∀n. ∀T∈Ts n: ∀ v∈vs n: G,s`v::�T)

lemma wlconfD: [[G,s`vs[∼::�]Ts; Ts n = Some T ; vs n = Some v]] =⇒ G,s`v::�T
by (auto simp: wlconf-def)

lemma wlconf-cong [simp]:
∧

s. G,set-locals x s`l[∼::�]L = G,s`l[∼::�]L
by (auto simp: wlconf-def)

lemma wlconf-lupd [simp]: G,lupd(vn 7→v)s`l[∼::�]L = G,s`l[∼::�]L
by (auto simp: wlconf-def)

lemma wlconf-upd: [[G,s`l[∼::�]L; G,s`v::�T ; L vn = Some T]] =⇒
G,s`l(vn 7→v)[∼::�]L

by (auto simp: wlconf-def)

lemma wlconf-ext: [[G,s`l[∼::�]L; G,s`v::�T]] =⇒ G,s`l(vn 7→v)[∼::�]L(vn 7→T)
by (auto simp: wlconf-def)

lemma wlconf-map-sum [simp]:
G,s`l1 (+) l2 [∼::�]L1 (+) L2 = (G,s`l1 [∼::�]L1 ∧ G,s`l2 [∼::�]L2)

apply (unfold wlconf-def)
apply safe
apply (case-tac [3] n)
apply (force split: sum.split)+
done

lemma wlconf-ext-list [rule-format (no-asm)]:∧
X . [[G,s`l[∼::�]L]] =⇒
∀ vs Ts. distinct vns −→ length Ts = length vns
−→ list-all2 (conf G s) vs Ts −→ G,s`l(vns[7→]vs)[∼::�]L(vns[7→]Ts)

apply (unfold wlconf-def)
apply (induct-tac vns)
apply clarsimp

260

apply clarify
apply (frule list-all2-lengthD)
apply clarsimp
done

lemma wlconf-deallocL: [[G,s`l[∼::�]L(vn 7→T); L vn = None]] =⇒ G,s`l[∼::�]L
apply (simp only: wlconf-def)
apply safe
apply (drule spec)
apply (drule ospec)
defer
apply (drule ospec)
apply auto
done

lemma wlconf-gext [elim]: [[G,s`l[∼::�]L; s≤|s ′]] =⇒ G,s ′̀ l[∼::�]L
apply (simp only: wlconf-def)
apply fast
done

lemma wlconf-empty [simp, intro!]: G,s`vs[∼::�]Map.empty
apply (unfold wlconf-def)
apply force
done

lemma wlconf-empty-vals: G,s`Map.empty[∼::�]ts
by (simp add: wlconf-def)

lemma wlconf-init-vals [intro!]:
∀n. ∀T∈fs n:is-type G T =⇒ G,s`init-vals fs[∼::�]fs

apply (unfold wlconf-def)
apply force
done

lemma lconf-wlconf :
G,s`l[::�]L =⇒ G,s`l[∼::�]L

by (force simp add: lconf-def wlconf-def)

object conformance

definition
oconf :: prog ⇒ st ⇒ obj ⇒ oref ⇒ bool (‹-,-`-::�

√
-› [71 ,71 ,71 ,71] 70) where

(G,s`obj::�
√

r) = (G,s`values obj[::�]var-tys G (tag obj) r ∧
(case r of

Heap a ⇒ is-type G (obj-ty obj)
| Stat C ⇒ True))

lemma oconf-is-type: G,s`obj::�
√

Heap a =⇒ is-type G (obj-ty obj)
by (auto simp: oconf-def Let-def)

lemma oconf-lconf : G,s`obj::�
√

r =⇒ G,s`values obj[::�]var-tys G (tag obj) r
by (simp add: oconf-def)

lemma oconf-cong [simp]: G,set-locals l s`obj::�
√

r = G,s`obj::�
√

r
by (auto simp: oconf-def Let-def)

Theory Conform 261

lemma oconf-init-obj-lemma:
[[
∧

C c. class G C = Some c =⇒ unique (DeclConcepts.fields G C);∧
C c f fld. [[class G C = Some c;

table-of (DeclConcepts.fields G C) f = Some fld]]
=⇒ is-type G (type fld);

(case r of
Heap a ⇒ is-type G (obj-ty obj)

| Stat C ⇒ is-class G C)
]] =⇒ G,s`obj (|values:=init-vals (var-tys G (tag obj) r)|)::�

√
r

apply (auto simp add: oconf-def)
apply (drule-tac var-tys-Some-eq [THEN iffD1])
defer
apply (subst obj-ty-cong)
apply (auto dest!: fields-table-SomeD split: sum.split-asm obj-tag.split-asm)
done

state conformance
definition

conforms :: state ⇒ env ′⇒ bool (‹-::�-› [71 ,71] 70) where
xs::�E =

(let (G, L) = E ; s = snd xs; l = locals s in
(∀ r . ∀ obj∈globs s r : G,s`obj ::�

√
r) ∧ G,s`l [∼::�]L ∧

(∀ a. fst xs=Some(Xcpt (Loc a)) −→ G,s`Addr a::� Class (SXcpt Throwable)) ∧
(fst xs=Some(Jump Ret) −→ l Result 6= None))

conforms
lemma conforms-globsD:
[[(x, s)::�(G, L); globs s r = Some obj]] =⇒ G,s`obj::�

√
r

by (auto simp: conforms-def Let-def)

lemma conforms-localD: (x, s)::�(G, L) =⇒ G,s`locals s[∼::�]L
by (auto simp: conforms-def Let-def)

lemma conforms-XcptLocD: [[(x, s)::�(G, L); x = Some (Xcpt (Loc a))]] =⇒
G,s`Addr a::� Class (SXcpt Throwable)

by (auto simp: conforms-def Let-def)

lemma conforms-RetD: [[(x, s)::�(G, L); x = Some (Jump Ret)]] =⇒
(locals s) Result 6= None

by (auto simp: conforms-def Let-def)

lemma conforms-RefTD:
[[G,s`a ′::�RefT t; a ′ 6= Null; (x,s) ::�(G, L)]] =⇒
∃ a obj. a ′ = Addr a ∧ globs s (Inl a) = Some obj ∧
G`obj-ty obj�RefT t ∧ is-type G (obj-ty obj)

apply (drule-tac conf-RefTD)
apply clarsimp
apply (rule conforms-globsD [THEN oconf-is-type])
apply auto
done

lemma conforms-Jump [iff]:
j=Ret −→ locals s Result 6= None
=⇒ ((Some (Jump j), s)::�(G, L)) = (Norm s::�(G, L))

by (auto simp: conforms-def Let-def)

lemma conforms-StdXcpt [iff]:

262

((Some (Xcpt (Std xn)), s)::�(G, L)) = (Norm s::�(G, L))
by (auto simp: conforms-def)

lemma conforms-Err [iff]:
((Some (Error e), s)::�(G, L)) = (Norm s::�(G, L))

by (auto simp: conforms-def)

lemma conforms-raise-if [iff]:
((raise-if c xn x, s)::�(G, L)) = ((x, s)::�(G, L))

by (auto simp: abrupt-if-def)

lemma conforms-error-if [iff]:
((error-if c err x, s)::�(G, L)) = ((x, s)::�(G, L))

by (auto simp: abrupt-if-def)

lemma conforms-NormI : (x, s)::�(G, L) =⇒ Norm s::�(G, L)
by (auto simp: conforms-def Let-def)

lemma conforms-absorb [rule-format]:
(a, b)::�(G, L) −→ (absorb j a, b)::�(G, L)

apply (rule impI)
apply (case-tac a)
apply (case-tac absorb j a)
apply auto
apply (rename-tac a ′)
apply (case-tac absorb j (Some a ′),auto)
apply (erule conforms-NormI)
done

lemma conformsI : [[∀ r . ∀ obj∈globs s r : G,s`obj::�
√

r ;
G,s`locals s[∼::�]L;
∀ a. x = Some (Xcpt (Loc a)) −→ G,s`Addr a::� Class (SXcpt Throwable);
x = Some (Jump Ret)−→ locals s Result 6= None]] =⇒

(x, s)::�(G, L)
by (auto simp: conforms-def Let-def)

lemma conforms-xconf : [[(x, s)::�(G,L);
∀ a. x ′ = Some (Xcpt (Loc a)) −→ G,s`Addr a::� Class (SXcpt Throwable);

x ′ = Some (Jump Ret) −→ locals s Result 6= None]] =⇒
(x ′,s)::�(G,L)

by (fast intro: conformsI elim: conforms-globsD conforms-localD)

lemma conforms-lupd:
[[(x, s)::�(G, L); L vn = Some T ; G,s`v::�T]] =⇒ (x, lupd(vn 7→v)s)::�(G, L)

by (force intro: conformsI wlconf-upd dest: conforms-globsD conforms-localD
conforms-XcptLocD conforms-RetD

simp: oconf-def)

lemmas conforms-allocL-aux = conforms-localD [THEN wlconf-ext]

lemma conforms-allocL:
[[(x, s)::�(G, L); G,s`v::�T]] =⇒ (x, lupd(vn 7→v)s)::�(G, L(vn 7→T))

by (force intro: conformsI dest: conforms-globsD conforms-RetD
elim: conforms-XcptLocD conforms-allocL-aux
simp: oconf-def)

lemmas conforms-deallocL-aux = conforms-localD [THEN wlconf-deallocL]

Theory Conform 263

lemma conforms-deallocL:
∧

s.[[s::�(G, L(vn 7→T)); L vn = None]] =⇒ s::�(G,L)
by (fast intro: conformsI dest: conforms-globsD conforms-RetD

elim: conforms-XcptLocD conforms-deallocL-aux)

lemma conforms-gext: [[(x, s)::�(G,L); s≤|s ′;
∀ r . ∀ obj∈globs s ′ r : G,s ′̀ obj::�

√
r ;

locals s ′=locals s]] =⇒ (x,s ′)::�(G,L)
apply (rule conformsI)
apply assumption
apply (drule conforms-localD) apply force
apply (intro strip)
apply (drule (1) conforms-XcptLocD) apply force
apply (intro strip)
apply (drule (1) conforms-RetD) apply force
done

lemma conforms-xgext:
[[(x ,s)::�(G,L); (x ′, s ′)::�(G, L); s ′≤|s;dom (locals s ′) ⊆ dom (locals s)]]
=⇒ (x ′,s)::�(G,L)

apply (erule-tac conforms-xconf)
apply (fast dest: conforms-XcptLocD)
apply (intro strip)
apply (drule (1) conforms-RetD)
apply (auto dest: domI)
done

lemma conforms-gupd:
∧

obj. [[(x, s)::�(G, L); G,s`obj::�
√

r ; s≤|gupd(r 7→obj)s]]
=⇒ (x, gupd(r 7→obj)s)::�(G, L)
apply (rule conforms-gext)
apply auto
apply (force dest: conforms-globsD simp add: oconf-def)+
done

lemma conforms-upd-gobj: [[(x,s)::�(G, L); globs s r = Some obj;
var-tys G (tag obj) r n = Some T ; G,s`v::�T]] =⇒ (x,upd-gobj r n v s)::�(G,L)

apply (rule conforms-gext)
apply auto
apply (drule (1) conforms-globsD)
apply (simp add: oconf-def)
apply safe
apply (rule lconf-upd)
apply auto
apply (simp only: obj-ty-cong)
apply (force dest: conforms-globsD intro!: lconf-upd

simp add: oconf-def cong del: old.sum.case-cong-weak)
done

lemma conforms-set-locals:
[[(x,s)::�(G, L ′); G,s`l[∼::�]L; x=Some (Jump Ret) −→ l Result 6= None]]
=⇒ (x,set-locals l s)::�(G,L)

apply (rule conformsI)
apply (intro strip)
apply simp
apply (drule (2) conforms-globsD)
apply simp
apply (intro strip)
apply (drule (1) conforms-XcptLocD)

264

apply simp
apply (intro strip)
apply (drule (1) conforms-RetD)
apply simp
done

lemma conforms-locals:
[[(a,b)::�(G, L); L x = Some T ;locals b x 6=None]]
=⇒ G,b`the (locals b x)::�T

apply (force simp: conforms-def Let-def wlconf-def)
done

lemma conforms-return:∧
s ′. [[(x,s)::�(G, L); (x ′,s ′)::�(G, L ′); s≤|s ′;x ′6=Some (Jump Ret)]] =⇒
(x ′,set-locals (locals s) s ′)::�(G, L)

apply (rule conforms-xconf)
prefer 2 apply (force dest: conforms-XcptLocD)
apply (erule conforms-gext)
apply (force dest: conforms-globsD)+
done

end

Chapter 18

DefiniteAssignmentCorrect

1 Correctness of Definite Assignment

theory DefiniteAssignmentCorrect imports WellForm Eval begin

declare [[simproc del: wt-expr wt-var wt-exprs wt-stmt]]

lemma sxalloc-no-jump:
assumes sxalloc: G`s0 −sxalloc→ s1 and

no-jmp: abrupt s0 6= Some (Jump j)
shows abrupt s1 6= Some (Jump j)

using sxalloc no-jmp
by cases simp-all

lemma sxalloc-no-jump ′:
assumes sxalloc: G`s0 −sxalloc→ s1 and

jump: abrupt s1 = Some (Jump j)
shows abrupt s0 = Some (Jump j)

using sxalloc jump
by cases simp-all

lemma halloc-no-jump:
assumes halloc: G`s0 −halloc oi�a→ s1 and

no-jmp: abrupt s0 6= Some (Jump j)
shows abrupt s1 6= Some (Jump j)

using halloc no-jmp
by cases simp-all

lemma halloc-no-jump ′:
assumes halloc: G`s0 −halloc oi�a→ s1 and

jump: abrupt s1 = Some (Jump j)
shows abrupt s0 = Some (Jump j)

using halloc jump
by cases simp-all

lemma Body-no-jump:
assumes eval: G`s0 −Body D c−�v→s1 and

jump: abrupt s0 6= Some (Jump j)
shows abrupt s1 6= Some (Jump j)

proof (cases normal s0)
case True
with eval obtain s0 ′ where eval ′: G`Norm s0 ′ −Body D c−�v→s1 and

s0 : s0 = Norm s0 ′

by (cases s0) simp
from eval ′ obtain s2 where

265

266

s1 : s1 = abupd (absorb Ret)
(if ∃ l. abrupt s2 = Some (Jump (Break l)) ∨

abrupt s2 = Some (Jump (Cont l))
then abupd (λx. Some (Error CrossMethodJump)) s2 else s2)

by cases simp
show ?thesis
proof (cases ∃ l. abrupt s2 = Some (Jump (Break l)) ∨

abrupt s2 = Some (Jump (Cont l)))
case True
with s1 have abrupt s1 = Some (Error CrossMethodJump)

by (cases s2) simp
thus ?thesis by simp

next
case False
with s1 have s1=abupd (absorb Ret) s2

by simp
with False show ?thesis

by (cases s2 ,cases j) (auto simp add: absorb-def)
qed

next
case False
with eval obtain s0 ′ abr where G`(Some abr ,s0 ′) −Body D c−�v→s1

s0 = (Some abr , s0 ′)
by (cases s0) fastforce

with this jump
show ?thesis

by (cases) (simp)
qed

lemma Methd-no-jump:
assumes eval: G`s0 −Methd D sig−�v→ s1 and

jump: abrupt s0 6= Some (Jump j)
shows abrupt s1 6= Some (Jump j)

proof (cases normal s0)
case True
with eval obtain s0 ′ where G`Norm s0 ′ −Methd D sig−�v→s1

s0 = Norm s0 ′

by (cases s0) simp
then obtain D ′ body where G`s0 −Body D ′ body−�v→s1

by (cases) (simp add: body-def2)
from this jump
show ?thesis

by (rule Body-no-jump)
next

case False
with eval obtain s0 ′ abr where G`(Some abr ,s0 ′) −Methd D sig−�v→s1

s0 = (Some abr , s0 ′)
by (cases s0) fastforce

with this jump
show ?thesis

by (cases) (simp)
qed

lemma jumpNestingOkS-mono:
assumes jumpNestingOk-l ′: jumpNestingOkS jmps ′ c

and subset: jmps ′ ⊆ jmps
shows jumpNestingOkS jmps c

proof −
have True and True and

Theory DefiniteAssignmentCorrect 267

∧
jmps ′ jmps. [[jumpNestingOkS jmps ′ c; jmps ′ ⊆ jmps]] =⇒ jumpNestingOkS jmps c

proof (induct rule: var .induct expr .induct stmt.induct)
case (Lab j c jmps ′ jmps)
note jmpOk = ‹jumpNestingOkS jmps ′ (j· c)›
note jmps = ‹jmps ′ ⊆ jmps›
with jmpOk have jumpNestingOkS ({j} ∪ jmps ′) c by simp
moreover from jmps have ({j} ∪ jmps ′) ⊆ ({j} ∪ jmps) by auto
ultimately
have jumpNestingOkS ({j} ∪ jmps) c

by (rule Lab.hyps)
thus ?case

by simp
next

case (Jmp j jmps ′ jmps)
thus ?case

by (cases j) auto
next

case (Comp c1 c2 jmps ′ jmps)
have jumpNestingOkS jmps c1 by (rule Comp.hyps) (use Comp.prems in auto)
moreover
have jumpNestingOkS jmps c2 by (rule Comp.hyps) (use Comp.prems in auto)
ultimately show ?case by simp

next
case (If ′ e c1 c2 jmps ′ jmps)
have jumpNestingOkS jmps c1 by (rule If ′.hyps) (use If ′.prems in auto)
moreover
have jumpNestingOkS jmps c2 by (rule If ′.hyps) (use If ′.prems in auto)
ultimately show ?case by simp

next
case (Loop l e c jmps ′ jmps)
from ‹jumpNestingOkS jmps ′ (l· While(e) c)› have jumpNestingOkS ({Cont l} ∪ jmps ′) c

by simp
moreover
from ‹jmps ′ ⊆ jmps› have {Cont l} ∪ jmps ′ ⊆ {Cont l} ∪ jmps

by auto
ultimately have jumpNestingOkS ({Cont l} ∪ jmps) c

by (rule Loop.hyps)
thus ?case by simp

next
case (TryC c1 C vn c2 jmps ′ jmps)
have jumpNestingOkS jmps c1 by (rule TryC .hyps) (use TryC .prems in auto)
moreover
have jumpNestingOkS jmps c2 by (rule TryC .hyps) (use TryC .prems in auto)
ultimately show ?case

by simp
next

case (Fin c1 c2 jmps ′ jmps)
have jumpNestingOkS jmps c1 by (rule Fin.hyps) (use Fin.prems in auto)
moreover
have jumpNestingOkS jmps c2 by (rule Fin.hyps) (use Fin.prems in auto)
ultimately show ?case

by simp
qed (simp-all)
with jumpNestingOk-l ′ subset
show ?thesis

by iprover
qed

corollary jumpNestingOk-mono:

268

assumes jmpOk: jumpNestingOk jmps ′ t
and subset: jmps ′ ⊆ jmps

shows jumpNestingOk jmps t
proof (cases t)

case (In1 expr-stmt)
show ?thesis
proof (cases expr-stmt)

case (Inl e)
with In1 show ?thesis by simp

next
case (Inr s)
with In1 jmpOk subset show ?thesis by (auto intro: jumpNestingOkS-mono)

qed
qed (simp-all)

lemma assign-abrupt-propagation:
assumes f-ok: abrupt (f n s) 6= x

and ass: abrupt (assign f n s) = x
shows abrupt s = x

proof (cases x)
case None
with ass show ?thesis

by (cases s) (simp add: assign-def Let-def)
next

case (Some xcpt)
from f-ok
obtain xf sf where f n s = (xf ,sf)

by (cases f n s)
with Some ass f-ok show ?thesis

by (cases s) (simp add: assign-def Let-def)
qed

lemma wt-init-comp-ty ′:
is-acc-type (prg Env) (pid (cls Env)) T =⇒ Env`init-comp-ty T ::

√

apply (unfold init-comp-ty-def)
apply (clarsimp simp add: accessible-in-RefT-simp

is-acc-type-def is-acc-class-def)
done

lemma fvar-upd-no-jump:
assumes upd: upd = snd (fst (fvar statDeclC stat fn a s ′))

and noJmp: abrupt s 6= Some (Jump j)
shows abrupt (upd val s) 6= Some (Jump j)

proof (cases stat)
case True
with noJmp upd
show ?thesis

by (cases s) (simp add: fvar-def2)
next

case False
with noJmp upd
show ?thesis

by (cases s) (simp add: fvar-def2)
qed

lemma avar-state-no-jump:
assumes jmp: abrupt (snd (avar G i a s)) = Some (Jump j)
shows abrupt s = Some (Jump j)

Theory DefiniteAssignmentCorrect 269

proof (cases normal s)
case True with jmp show ?thesis by (auto simp add: avar-def2 abrupt-if-def)

next
case False with jmp show ?thesis by (auto simp add: avar-def2 abrupt-if-def)

qed

lemma avar-upd-no-jump:
assumes upd: upd = snd (fst (avar G i a s ′))

and noJmp: abrupt s 6= Some (Jump j)
shows abrupt (upd val s) 6= Some (Jump j)

using upd noJmp
by (cases s) (simp add: avar-def2 abrupt-if-def)

The next theorem expresses: If jumps (breaks, continues, returns) are nested correctly, we won’t
find an unexpected jump in the result state of the evaluation. For exeample, a break can’t leave its
enclosing loop, an return cant leave its enclosing method. To proove this, the method call is critical.
Allthough the wellformedness of the whole program guarantees that the jumps (breaks,continues
and returns) are nested correctly in all method bodies, the call rule alone does not guarantee that I
will call a method or even a class that is part of the program due to dynamic binding! To be able to
enshure this we need a kind of conformance of the state, like in the typesafety proof. But then we
will redo the typesafty proof here. It would be nice if we could find an easy precondition that will
guarantee that all calls will actually call classes and methods of the current program, which can be
instantiated in the typesafty proof later on. To fix this problem, I have instrumented the semantic
definition of a call to filter out any breaks in the state and to throw an error instead.
To get an induction hypothesis which is strong enough to perform the proof, we can’t just assume
jumpNestingOk for the empty set and conlcude, that no jump at all will be in the resulting state,
because the set is altered by the statements Lab and While.
The wellformedness of the program is used to enshure that for all classinitialisations and methods
the nesting of jumps is wellformed, too.

theorem jumpNestingOk-eval:
assumes eval: G` s0 −t�→ (v,s1)

and jmpOk: jumpNestingOk jmps t
and wt: Env`t::T
and wf : wf-prog G
and G: prg Env = G
and no-jmp: ∀ j. abrupt s0 = Some (Jump j) −→ j ∈ jmps

(is ?Jmp jmps s0)
shows (∀ j. fst s1 = Some (Jump j) −→ j ∈ jmps) ∧

(normal s1 −→
(∀ w upd. v=In2 (w,upd)
−→ (∀ s j val.

abrupt s 6= Some (Jump j) −→
abrupt (upd val s) 6= Some (Jump j))))

(is ?Jmp jmps s1 ∧ ?Upd v s1)
proof −

let ?HypObj = λ t s0 s1 v.
(∀ jmps T Env.

?Jmp jmps s0 −→ jumpNestingOk jmps t −→ Env`t::T −→ prg Env=G−→
?Jmp jmps s1 ∧ ?Upd v s1)

— Variable ?HypObj is the following goal spelled in terms of the object logic, instead of the meta logic. It is
needed in some cases of the induction were, the atomize-rulify process of induct does not work fine, because
the eval rules mix up object and meta logic. See for example the case for the loop.

from eval
have

∧
jmps T Env. [[?Jmp jmps s0 ; jumpNestingOk jmps t; Env`t::T ;prg Env=G]]
=⇒ ?Jmp jmps s1 ∧ ?Upd v s1

(is PROP ?Hyp t s0 s1 v)

270

— We need to abstract over jmps since jmps are extended during analysis of Lab. Also we need to abstract
over T and Env since they are altered in various typing judgements.

proof (induct)
case Abrupt thus ?case by simp

next
case Skip thus ?case by simp

next
case Expr thus ?case by (elim wt-elim-cases) simp

next
case (Lab s0 c s1 jmp jmps T Env)
note jmpOK = ‹jumpNestingOk jmps (In1r (jmp· c))›
note G = ‹prg Env = G›
have wt-c: Env`c::

√

using Lab.prems by (elim wt-elim-cases)
have j∈jmps if ab-s1 : abrupt (abupd (absorb jmp) s1) = Some (Jump j) for j
proof −

from ab-s1 have jmp-s1 : abrupt s1 = Some (Jump j)
by (cases s1) (simp add: absorb-def)

note hyp-c = ‹PROP ?Hyp (In1r c) (Norm s0) s1 ♦›
from ab-s1 have j 6= jmp

by (cases s1) (simp add: absorb-def)
moreover have j ∈ {jmp} ∪ jmps
proof −

from jmpOK
have jumpNestingOk ({jmp} ∪ jmps) (In1r c) by simp
with wt-c jmp-s1 G hyp-c
show ?thesis

by − (rule hyp-c [THEN conjunct1 ,rule-format],simp)
qed
ultimately show ?thesis

by simp
qed
thus ?case by simp

next
case (Comp s0 c1 s1 c2 s2 jmps T Env)
note jmpOk = ‹jumpNestingOk jmps (In1r (c1 ;; c2))›
note G = ‹prg Env = G›
from Comp.prems obtain

wt-c1 : Env`c1 ::
√

and wt-c2 : Env`c2 ::
√

by (elim wt-elim-cases)
have j∈jmps if abr-s2 : abrupt s2 = Some (Jump j) for j
proof −

have jmp: ?Jmp jmps s1
proof −

note hyp-c1 = ‹PROP ?Hyp (In1r c1) (Norm s0) s1 ♦›
with wt-c1 jmpOk G
show ?thesis by simp

qed
moreover note hyp-c2 = ‹PROP ?Hyp (In1r c2) s1 s2 (♦::vals)›
have jmpOk ′: jumpNestingOk jmps (In1r c2) using jmpOk by simp
moreover note wt-c2 G abr-s2
ultimately show j ∈ jmps

by (rule hyp-c2 [THEN conjunct1 ,rule-format (no-asm)])
qed
thus ?case by simp

next
case (If s0 e b s1 c1 c2 s2 jmps T Env)
note jmpOk = ‹jumpNestingOk jmps (In1r (If (e) c1 Else c2))›
note G = ‹prg Env = G›

Theory DefiniteAssignmentCorrect 271

from If .prems obtain
wt-e: Env`e::−PrimT Boolean and

wt-then-else: Env`(if the-Bool b then c1 else c2)::
√

by (elim wt-elim-cases) simp
have j∈jmps if jmp: abrupt s2 = Some (Jump j) for j
proof −

note ‹PROP ?Hyp (In1l e) (Norm s0) s1 (In1 b)›
with wt-e G have ?Jmp jmps s1

by simp
moreover note hyp-then-else =

‹PROP ?Hyp (In1r (if the-Bool b then c1 else c2)) s1 s2 ♦›
have jumpNestingOk jmps (In1r (if the-Bool b then c1 else c2))

using jmpOk by (cases the-Bool b) simp-all
moreover note wt-then-else G jmp
ultimately show j∈ jmps

by (rule hyp-then-else [THEN conjunct1 ,rule-format (no-asm)])
qed
thus ?case by simp

next
case (Loop s0 e b s1 c s2 l s3 jmps T Env)
note jmpOk = ‹jumpNestingOk jmps (In1r (l· While(e) c))›
note G = ‹prg Env = G›
note wt = ‹Env`In1r (l· While(e) c)::T ›
then obtain

wt-e: Env`e::−PrimT Boolean and
wt-c: Env`c::

√

by (elim wt-elim-cases)
have j∈jmps if jmp: abrupt s3 = Some (Jump j) for j
proof −

note ‹PROP ?Hyp (In1l e) (Norm s0) s1 (In1 b)›
with wt-e G have jmp-s1 : ?Jmp jmps s1

by simp
show ?thesis
proof (cases the-Bool b)

case False
from Loop.hyps
have s3=s1

by (simp (no-asm-use) only: if-False False)
with jmp-s1 jmp have j ∈ jmps by simp
thus ?thesis by simp

next
case True
from Loop.hyps

have ?HypObj (In1r c) s1 s2 (♦::vals)
apply (simp (no-asm-use) only: True if-True)
apply (erule conjE)+
apply assumption
done

note hyp-c = this [rule-format (no-asm)]
moreover from jmpOk have jumpNestingOk ({Cont l} ∪ jmps) (In1r c)

by simp
moreover from jmp-s1 have ?Jmp ({Cont l} ∪ jmps) s1 by simp
ultimately have jmp-s2 : ?Jmp ({Cont l} ∪ jmps) s2

using wt-c G by iprover
have ?Jmp jmps (abupd (absorb (Cont l)) s2)
proof −

have j ′ ∈ jmps if abs: abrupt (abupd (absorb (Cont l)) s2)=Some (Jump j ′) for j ′
proof (cases j ′ = Cont l)

272

case True
with abs show ?thesis

by (cases s2) (simp add: absorb-def)
next

case False
with abs have abrupt s2 = Some (Jump j ′)

by (cases s2) (simp add: absorb-def)
with jmp-s2 False show ?thesis

by simp
qed
thus ?thesis by simp

qed
moreover
from Loop.hyps
have ?HypObj (In1r (l· While(e) c))

(abupd (absorb (Cont l)) s2) s3 (♦::vals)
apply (simp (no-asm-use) only: True if-True)
apply (erule conjE)+
apply assumption
done

note hyp-w = this [rule-format (no-asm)]
note jmpOk wt G jmp
ultimately show j∈ jmps

by (rule hyp-w [THEN conjunct1 ,rule-format (no-asm)])
qed

qed
thus ?case by simp

next
case (Jmp s j jmps T Env) thus ?case by simp

next
case (Throw s0 e a s1 jmps T Env)
note jmpOk = ‹jumpNestingOk jmps (In1r (Throw e))›
note G = ‹prg Env = G›
from Throw.prems obtain Te where

wt-e: Env`e::−Te
by (elim wt-elim-cases)

have j∈jmps if jmp: abrupt (abupd (throw a) s1) = Some (Jump j) for j
proof −

from ‹PROP ?Hyp (In1l e) (Norm s0) s1 (In1 a)›
have ?Jmp jmps s1 using wt-e G by simp
moreover
from jmp
have abrupt s1 = Some (Jump j)

by (cases s1) (simp add: throw-def abrupt-if-def)
ultimately show j ∈ jmps by simp

qed
thus ?case by simp

next
case (Try s0 c1 s1 s2 C vn c2 s3 jmps T Env)
note jmpOk = ‹jumpNestingOk jmps (In1r (Try c1 Catch(C vn) c2))›
note G = ‹prg Env = G›
from Try.prems obtain

wt-c1 : Env`c1 ::
√

and
wt-c2 : Env(|lcl := (lcl Env)(VName vn 7→Class C)|)`c2 ::

√

by (elim wt-elim-cases)
have j∈jmps if jmp: abrupt s3 = Some (Jump j) for j
proof −

note ‹PROP ?Hyp (In1r c1) (Norm s0) s1 (♦::vals)›
with jmpOk wt-c1 G

Theory DefiniteAssignmentCorrect 273

have jmp-s1 : ?Jmp jmps s1 by simp
note s2 = ‹G`s1 −sxalloc→ s2 ›
show j ∈ jmps
proof (cases G,s2`catch C)

case False
from Try.hyps have s3=s2

by (simp (no-asm-use) only: False if-False)
with jmp have abrupt s1 = Some (Jump j)

using sxalloc-no-jump ′ [OF s2] by simp
with jmp-s1
show ?thesis by simp

next
case True
with Try.hyps
have ?HypObj (In1r c2) (new-xcpt-var vn s2) s3 (♦::vals)

apply (simp (no-asm-use) only: True if-True simp-thms)
apply (erule conjE)+
apply assumption
done

note hyp-c2 = this [rule-format (no-asm)]
from jmp-s1 sxalloc-no-jump ′ [OF s2]
have ?Jmp jmps s2

by simp
hence ?Jmp jmps (new-xcpt-var vn s2)

by (cases s2) simp
moreover have jumpNestingOk jmps (In1r c2) using jmpOk by simp
moreover note wt-c2
moreover from G
have prg (Env(|lcl := (lcl Env)(VName vn 7→Class C)|)) = G

by simp
moreover note jmp
ultimately show ?thesis

by (rule hyp-c2 [THEN conjunct1 ,rule-format (no-asm)])
qed

qed
thus ?case by simp

next
case (Fin s0 c1 x1 s1 c2 s2 s3 jmps T Env)
note jmpOk = ‹jumpNestingOk jmps (In1r (c1 Finally c2))›
note G = ‹prg Env = G›
from Fin.prems obtain

wt-c1 : Env`c1 ::
√

and wt-c2 : Env`c2 ::
√

by (elim wt-elim-cases)
have j ∈ jmps if jmp: abrupt s3 = Some (Jump j) for j
proof (cases x1=Some (Jump j))

case True
note hyp-c1 = ‹PROP ?Hyp (In1r c1) (Norm s0) (x1 ,s1) ♦›
with True jmpOk wt-c1 G show ?thesis

by − (rule hyp-c1 [THEN conjunct1 ,rule-format (no-asm)],simp-all)
next

case False
note hyp-c2 = ‹PROP ?Hyp (In1r c2) (Norm s1) s2 ♦›
note ‹s3 = (if ∃ err . x1 = Some (Error err) then (x1 , s1)

else abupd (abrupt-if (x1 6= None) x1) s2)›
with False jmp have abrupt s2 = Some (Jump j)

by (cases s2) (simp add: abrupt-if-def)
with jmpOk wt-c2 G show ?thesis

by − (rule hyp-c2 [THEN conjunct1 ,rule-format (no-asm)],simp-all)
qed

274

thus ?case by simp
next

case (Init C c s0 s3 s1 s2 jmps T Env)
note ‹jumpNestingOk jmps (In1r (Init C))›
note G = ‹prg Env = G›
note ‹the (class G C) = c›
with Init.prems have c: class G C = Some c

by (elim wt-elim-cases) auto
have j∈jmps if jmp: abrupt s3 = (Some (Jump j)) for j
proof (cases inited C (globs s0))

case True
with Init.hyps have s3=Norm s0

by simp
with jmp have False

by simp
thus ?thesis ..

next
case False
from wf c G
have wf-cdecl: wf-cdecl G (C ,c)

by (simp add: wf-prog-cdecl)
from Init.hyps
have ?HypObj (In1r (if C = Object then Skip else Init (super c)))

(Norm ((init-class-obj G C) s0)) s1 (♦::vals)
apply (simp (no-asm-use) only: False if-False simp-thms)
apply (erule conjE)+
apply assumption
done

note hyp-s1 = this [rule-format (no-asm)]
from wf-cdecl G have

wt-super : Env`(if C = Object then Skip else Init (super c))::
√

by (cases C=Object)
(auto dest: wf-cdecl-supD is-acc-classD)

from hyp-s1 [OF - - wt-super G]
have ?Jmp jmps s1

by simp
hence jmp-s1 : ?Jmp jmps ((set-lvars Map.empty) s1) by (cases s1) simp
from False Init.hyps
have ?HypObj (In1r (init c)) ((set-lvars Map.empty) s1) s2 (♦::vals)

apply (simp (no-asm-use) only: False if-False simp-thms)
apply (erule conjE)+
apply assumption
done

note hyp-init-c = this [rule-format (no-asm)]
from wf-cdecl
have wt-init-c: (|prg = G, cls = C , lcl = Map.empty|)`init c::

√

by (rule wf-cdecl-wt-init)
from wf-cdecl have jumpNestingOkS {} (init c)

by (cases rule: wf-cdeclE)
hence jumpNestingOkS jmps (init c)

by (rule jumpNestingOkS-mono) simp
moreover
have abrupt s2 = Some (Jump j)
proof −

from False Init.hyps
have s3 = (set-lvars (locals (store s1))) s2 by simp
with jmp show ?thesis by (cases s2) simp

qed
ultimately show ?thesis

Theory DefiniteAssignmentCorrect 275

using hyp-init-c [OF jmp-s1 - wt-init-c]
by simp

qed
thus ?case by simp

next
case (NewC s0 C s1 a s2 jmps T Env)
have j∈jmps if jmp: abrupt s2 = Some (Jump j) for j
proof −

note ‹prg Env = G›
moreover note hyp-init = ‹PROP ?Hyp (In1r (Init C)) (Norm s0) s1 ♦›
moreover from wf NewC .prems
have Env`(Init C)::

√

by (elim wt-elim-cases) (drule is-acc-classD,simp)
moreover
have abrupt s1 = Some (Jump j)
proof −

from ‹G`s1 −halloc CInst C�a→ s2 › and jmp show ?thesis
by (rule halloc-no-jump ′)

qed
ultimately show j ∈ jmps

by − (rule hyp-init [THEN conjunct1 ,rule-format (no-asm)],auto)
qed
thus ?case by simp

next
case (NewA s0 elT s1 e i s2 a s3 jmps T Env)
have j∈jmps if jmp: abrupt s3 = Some (Jump j) for j
proof −

note G = ‹prg Env = G›
from NewA.prems
obtain wt-init: Env`init-comp-ty elT ::

√
and

wt-size: Env`e::−PrimT Integer
by (elim wt-elim-cases) (auto dest: wt-init-comp-ty ′)

note ‹PROP ?Hyp (In1r (init-comp-ty elT)) (Norm s0) s1 ♦›
with wt-init G
have ?Jmp jmps s1

by (simp add: init-comp-ty-def)
moreover
note hyp-e = ‹PROP ?Hyp (In1l e) s1 s2 (In1 i)›
have abrupt s2 = Some (Jump j)
proof −

note ‹G`abupd (check-neg i) s2−halloc Arr elT (the-Intg i)�a→ s3 ›
moreover note jmp
ultimately
have abrupt (abupd (check-neg i) s2) = Some (Jump j)

by (rule halloc-no-jump ′)
thus ?thesis by (cases s2) auto

qed
ultimately show j∈jmps using wt-size G

by − (rule hyp-e [THEN conjunct1 ,rule-format (no-asm)],simp-all)
qed
thus ?case by simp

next
case (Cast s0 e v s1 s2 cT jmps T Env)
have j∈jmps if jmp: abrupt s2 = Some (Jump j) for j
proof −

note hyp-e = ‹PROP ?Hyp (In1l e) (Norm s0) s1 (In1 v)›
note ‹prg Env = G›
moreover from Cast.prems
obtain eT where Env`e::−eT by (elim wt-elim-cases)

276

moreover
have abrupt s1 = Some (Jump j)
proof −

note ‹s2 = abupd (raise-if (¬ G,snd s1`v fits cT) ClassCast) s1 ›
moreover note jmp
ultimately show ?thesis by (cases s1) (simp add: abrupt-if-def)

qed
ultimately show ?thesis

by − (rule hyp-e [THEN conjunct1 ,rule-format (no-asm)], simp-all)
qed
thus ?case by simp

next
case (Inst s0 e v s1 b eT jmps T Env)
have j∈jmps if jmp: abrupt s1 = Some (Jump j) for j
proof −

note hyp-e = ‹PROP ?Hyp (In1l e) (Norm s0) s1 (In1 v)›
note ‹prg Env = G›
moreover from Inst.prems
obtain eT where Env`e::−eT by (elim wt-elim-cases)
moreover note jmp
ultimately show j∈jmps

by − (rule hyp-e [THEN conjunct1 ,rule-format (no-asm)], simp-all)
qed
thus ?case by simp

next
case Lit thus ?case by simp

next
case (UnOp s0 e v s1 unop jmps T Env)
have j∈jmps if jmp: abrupt s1 = Some (Jump j) for j
proof −

note hyp-e = ‹PROP ?Hyp (In1l e) (Norm s0) s1 (In1 v)›
note ‹prg Env = G›
moreover from UnOp.prems obtain eT where Env`e::−eT by (elim wt-elim-cases)
moreover note jmp
ultimately show j∈jmps

by − (rule hyp-e [THEN conjunct1 ,rule-format (no-asm)], simp-all)
qed
thus ?case by simp

next
case (BinOp s0 e1 v1 s1 binop e2 v2 s2 jmps T Env)
have j∈jmps if jmp: abrupt s2 = Some (Jump j) for j
proof −

note G = ‹prg Env = G›
from BinOp.prems
obtain e1T e2T where

wt-e1 : Env`e1 ::−e1T and
wt-e2 : Env`e2 ::−e2T
by (elim wt-elim-cases)

note ‹PROP ?Hyp (In1l e1) (Norm s0) s1 (In1 v1)›
with G wt-e1 have jmp-s1 : ?Jmp jmps s1 by simp
note hyp-e2 =

‹PROP ?Hyp (if need-second-arg binop v1 then In1l e2 else In1r Skip)
s1 s2 (In1 v2)›

show j∈jmps
proof (cases need-second-arg binop v1)

case True with jmp-s1 wt-e2 jmp G
show ?thesis

by − (rule hyp-e2 [THEN conjunct1 ,rule-format (no-asm)],simp-all)
next

Theory DefiniteAssignmentCorrect 277

case False with jmp-s1 jmp G
show ?thesis

by − (rule hyp-e2 [THEN conjunct1 ,rule-format (no-asm)],auto)
qed

qed
thus ?case by simp

next
case Super thus ?case by simp

next
case (Acc s0 va v f s1 jmps T Env)
have j∈jmps if jmp: abrupt s1 = Some (Jump j) for j
proof −

note hyp-va = ‹PROP ?Hyp (In2 va) (Norm s0) s1 (In2 (v,f))›
note ‹prg Env = G›
moreover from Acc.prems
obtain vT where Env`va::=vT by (elim wt-elim-cases)
moreover note jmp
ultimately show j∈jmps

by − (rule hyp-va [THEN conjunct1 ,rule-format (no-asm)], simp-all)
qed
thus ?case by simp

next
case (Ass s0 va w f s1 e v s2 jmps T Env)
note G = ‹prg Env = G›
from Ass.prems
obtain vT eT where

wt-va: Env`va::=vT and
wt-e: Env`e::−eT

by (elim wt-elim-cases)
note hyp-v = ‹PROP ?Hyp (In2 va) (Norm s0) s1 (In2 (w,f))›
note hyp-e = ‹PROP ?Hyp (In1l e) s1 s2 (In1 v)›
have j∈jmps if jmp: abrupt (assign f v s2) = Some (Jump j) for j
proof −

have abrupt s2 = Some (Jump j)
proof (cases normal s2)

case True
from ‹G`s1 −e−�v→ s2 › and True have nrm-s1 : normal s1

by (rule eval-no-abrupt-lemma [rule-format])
with nrm-s1 wt-va G True
have abrupt (f v s2) 6= Some (Jump j)

using hyp-v [THEN conjunct2 ,rule-format (no-asm)]
by simp

from this jmp
show ?thesis

by (rule assign-abrupt-propagation)
next

case False with jmp
show ?thesis by (cases s2) (simp add: assign-def Let-def)

qed
moreover from wt-va G
have ?Jmp jmps s1

by − (rule hyp-v [THEN conjunct1],simp-all)
ultimately show ?thesis using G

by − (rule hyp-e [THEN conjunct1 ,rule-format (no-asm)], simp-all, rule wt-e)
qed
thus ?case by simp

next
case (Cond s0 e0 b s1 e1 e2 v s2 jmps T Env)
note G = ‹prg Env = G›

278

note hyp-e0 = ‹PROP ?Hyp (In1l e0) (Norm s0) s1 (In1 b)›
note hyp-e1-e2 = ‹PROP ?Hyp (In1l (if the-Bool b then e1 else e2)) s1 s2 (In1 v)›
from Cond.prems
obtain e1T e2T

where wt-e0 : Env`e0 ::−PrimT Boolean
and wt-e1 : Env`e1 ::−e1T
and wt-e2 : Env`e2 ::−e2T

by (elim wt-elim-cases)
have j∈jmps if jmp: abrupt s2 = Some (Jump j) for j
proof −

from wt-e0 G
have jmp-s1 : ?Jmp jmps s1

by − (rule hyp-e0 [THEN conjunct1],simp-all)
show ?thesis
proof (cases the-Bool b)

case True
with jmp-s1 wt-e1 G jmp
show ?thesis

by−(rule hyp-e1-e2 [THEN conjunct1 ,rule-format (no-asm)],simp-all)
next

case False
with jmp-s1 wt-e2 G jmp
show ?thesis

by−(rule hyp-e1-e2 [THEN conjunct1 ,rule-format (no-asm)],simp-all)
qed

qed
thus ?case by simp

next
case (Call s0 e a s1 args vs s2 D mode statT mn pTs s3 s3 ′ accC v s4

jmps T Env)
note G = ‹prg Env = G›
from Call.prems
obtain eT argsT

where wt-e: Env`e::−eT and wt-args: Env`args:: .=argsT
by (elim wt-elim-cases)

have j∈jmps if jmp: abrupt ((set-lvars (locals (store s2))) s4) = Some (Jump j) for j
proof −

note hyp-e = ‹PROP ?Hyp (In1l e) (Norm s0) s1 (In1 a)›
from wt-e G
have jmp-s1 : ?Jmp jmps s1

by − (rule hyp-e [THEN conjunct1],simp-all)
note hyp-args = ‹PROP ?Hyp (In3 args) s1 s2 (In3 vs)›
have abrupt s2 = Some (Jump j)
proof −

note ‹G`s3 ′ −Methd D (|name = mn, parTs = pTs|)−�v→ s4 ›
moreover
from jmp have abrupt s4 = Some (Jump j)

by (cases s4) simp
ultimately have abrupt s3 ′ = Some (Jump j)

by − (rule ccontr ,drule (1) Methd-no-jump,simp)
moreover note ‹s3 ′ = check-method-access G accC statT mode

(|name = mn, parTs = pTs|) a s3 ›
ultimately have abrupt s3 = Some (Jump j)

by (cases s3)
(simp add: check-method-access-def abrupt-if-def Let-def)

moreover
note ‹s3 = init-lvars G D (|name=mn, parTs=pTs|) mode a vs s2 ›
ultimately show ?thesis

by (cases s2) (auto simp add: init-lvars-def2)

Theory DefiniteAssignmentCorrect 279

qed
with jmp-s1 wt-args G
show ?thesis

by − (rule hyp-args [THEN conjunct1 ,rule-format (no-asm)], simp-all)
qed
thus ?case by simp

next
case (Methd s0 D sig v s1 jmps T Env)
from ‹G`Norm s0 −body G D sig−�v→ s1 ›
have G`Norm s0 −Methd D sig−�v→ s1

by (rule eval.Methd)
hence

∧
j. abrupt s1 6= Some (Jump j)

by (rule Methd-no-jump) simp
thus ?case by simp

next
case (Body s0 D s1 c s2 s3 jmps T Env)
have G`Norm s0 −Body D c−�the (locals (store s2) Result)

→ abupd (absorb Ret) s3
by (rule eval.Body) (rule Body)+

hence
∧

j. abrupt (abupd (absorb Ret) s3) 6= Some (Jump j)
by (rule Body-no-jump) simp

thus ?case by simp
next

case LVar
thus ?case by (simp add: lvar-def Let-def)

next
case (FVar s0 statDeclC s1 e a s2 v s2 ′ stat fn s3 accC jmps T Env)
note G = ‹prg Env = G›
from wf FVar .prems
obtain statC f where

wt-e: Env`e::−Class statC and
accfield: accfield (prg Env) accC statC fn = Some (statDeclC ,f)
by (elim wt-elim-cases) simp

have wt-init: Env`Init statDeclC ::
√

proof −
from wf wt-e G
have is-class (prg Env) statC

by (auto dest: ty-expr-is-type type-is-class)
with wf accfield G
have is-class (prg Env) statDeclC

by (auto dest!: accfield-fields dest: fields-declC)
thus ?thesis

by simp
qed
note fvar = ‹(v, s2 ′) = fvar statDeclC stat fn a s2 ›
have j∈jmps if jmp: abrupt s3 = Some (Jump j) for j
proof −

note hyp-init = ‹PROP ?Hyp (In1r (Init statDeclC)) (Norm s0) s1 ♦›
have ?Jmp jmps s1

by (rule hyp-init [THEN conjunct1]) (use G wt-init in auto)
moreover
note hyp-e = ‹PROP ?Hyp (In1l e) s1 s2 (In1 a)›
have abrupt s2 = Some (Jump j)
proof −

note ‹s3 = check-field-access G accC statDeclC fn stat a s2 ′›
with jmp have abrupt s2 ′ = Some (Jump j)

by (cases s2 ′)
(simp add: check-field-access-def abrupt-if-def Let-def)

with fvar show abrupt s2 = Some (Jump j)

280

by (cases s2) (simp add: fvar-def2 abrupt-if-def)
qed
ultimately show ?thesis

using G wt-e
by − (rule hyp-e [THEN conjunct1 , rule-format (no-asm)],simp-all)

qed
moreover
from fvar obtain upd w

where upd: upd = snd (fst (fvar statDeclC stat fn a s2)) and
v: v=(w,upd)

by (cases fvar statDeclC stat fn a s2)
(simp, use surjective-pairing in blast)

have abrupt (upd val s) 6= Some (Jump j)
if abrupt s 6= Some (Jump j)
for j val and s::state
using upd that by (rule fvar-upd-no-jump)

ultimately show ?case using v by simp
next

case (AVar s0 e1 a s1 e2 i s2 v s2 ′ jmps T Env)
note G = ‹prg Env = G›
from AVar .prems
obtain e1T e2T where

wt-e1 : Env`e1 ::−e1T and wt-e2 : Env`e2 ::−e2T
by (elim wt-elim-cases) simp

note avar = ‹(v, s2 ′) = avar G i a s2 ›
have j∈jmps if jmp: abrupt s2 ′ = Some (Jump j) for j
proof −

note hyp-e1 = ‹PROP ?Hyp (In1l e1) (Norm s0) s1 (In1 a)›
from G wt-e1
have ?Jmp jmps s1

by − (rule hyp-e1 [THEN conjunct1], auto)
moreover
note hyp-e2 = ‹PROP ?Hyp (In1l e2) s1 s2 (In1 i)›
have abrupt s2 = Some (Jump j)
proof −

from avar have s2 ′ = snd (avar G i a s2)
by (cases avar G i a s2) simp

with jmp show ?thesis by − (rule avar-state-no-jump,simp)
qed
ultimately show ?thesis

using wt-e2 G
by − (rule hyp-e2 [THEN conjunct1 , rule-format (no-asm)],simp-all)

qed
moreover
from avar obtain upd w

where upd: upd = snd (fst (avar G i a s2)) and
v: v=(w,upd)

by (cases avar G i a s2)
(simp, use surjective-pairing in blast)

have abrupt (upd val s) 6= Some (Jump j) if abrupt s 6= Some (Jump j)
for j val and s::state
using upd that by (rule avar-upd-no-jump)

ultimately show ?case using v by simp
next

case Nil
thus ?case by simp

next
case (Cons s0 e v s1 es vs s2 jmps T Env)
note G = ‹prg Env = G›

Theory DefiniteAssignmentCorrect 281

from Cons.prems obtain eT esT
where wt-e: Env`e::−eT and wt-e2 : Env`es:: .=esT
by (elim wt-elim-cases) simp

have j∈jmps if jmp: abrupt s2 = Some (Jump j) for j
proof −

note hyp-e = ‹PROP ?Hyp (In1l e) (Norm s0) s1 (In1 v)›
from G wt-e
have ?Jmp jmps s1

by − (rule hyp-e [THEN conjunct1],simp-all)
moreover
note hyp-es = ‹PROP ?Hyp (In3 es) s1 s2 (In3 vs)›
ultimately show ?thesis

using wt-e2 G jmp
by − (rule hyp-es [THEN conjunct1 , rule-format (no-asm)],

(assumption|simp (no-asm-simp))+)
qed
thus ?case by simp

qed
note generalized = this
from no-jmp jmpOk wt G
show ?thesis

by (rule generalized)
qed

lemmas jumpNestingOk-evalE = jumpNestingOk-eval [THEN conjE ,rule-format]

lemma jumpNestingOk-eval-no-jump:
assumes eval: prg Env` s0 −t�→ (v,s1) and

jmpOk: jumpNestingOk {} t and
no-jmp: abrupt s0 6= Some (Jump j) and

wt: Env`t::T and
wf : wf-prog (prg Env)

shows abrupt s1 6= Some (Jump j) ∧
(normal s1 −→ v=In2 (w,upd)
−→ abrupt s 6= Some (Jump j ′)
−→ abrupt (upd val s) 6= Some (Jump j ′))

proof (cases ∃ j ′. abrupt s0 = Some (Jump j ′))
case True
then obtain j ′ where jmp: abrupt s0 = Some (Jump j ′) ..
with no-jmp have j ′6=j by simp
with eval jmp have s1=s0 by auto
with no-jmp jmp show ?thesis by simp

next
case False
obtain G where G: prg Env = G

by (cases Env) simp
from G eval have G` s0 −t�→ (v,s1) by simp
moreover note jmpOk wt
moreover from G wf have wf-prog G by simp
moreover note G
moreover from False have

∧
j. abrupt s0 = Some (Jump j) =⇒ j ∈ {}

by simp
ultimately show ?thesis

apply (rule jumpNestingOk-evalE)
apply assumption
apply simp
apply fastforce
done

282

qed

lemmas jumpNestingOk-eval-no-jumpE
= jumpNestingOk-eval-no-jump [THEN conjE ,rule-format]

corollary eval-expression-no-jump:
assumes eval: prg Env`s0 −e−�v→ s1 and

no-jmp: abrupt s0 6= Some (Jump j) and
wt: Env`e::−T and
wf : wf-prog (prg Env)

shows abrupt s1 6= Some (Jump j)
using eval - no-jmp wt wf
by (rule jumpNestingOk-eval-no-jumpE , simp-all)

corollary eval-var-no-jump:
assumes eval: prg Env`s0 −var=�(w,upd)→ s1 and

no-jmp: abrupt s0 6= Some (Jump j) and
wt: Env`var ::=T and
wf : wf-prog (prg Env)

shows abrupt s1 6= Some (Jump j) ∧
(normal s1 −→
(abrupt s 6= Some (Jump j ′)
−→ abrupt (upd val s) 6= Some (Jump j ′)))

apply (rule-tac upd=upd and val=val and s=s and w=w and j ′=j ′
in jumpNestingOk-eval-no-jumpE [OF eval - no-jmp wt wf])

by simp-all

lemmas eval-var-no-jumpE = eval-var-no-jump [THEN conjE ,rule-format]

corollary eval-statement-no-jump:
assumes eval: prg Env`s0 −c→ s1 and

jmpOk: jumpNestingOkS {} c and
no-jmp: abrupt s0 6= Some (Jump j) and
wt: Env`c::

√
and

wf : wf-prog (prg Env)
shows abrupt s1 6= Some (Jump j)

using eval - no-jmp wt wf
by (rule jumpNestingOk-eval-no-jumpE) (simp-all add: jmpOk)

corollary eval-expression-list-no-jump:
assumes eval: prg Env`s0 −es .

=�v→ s1 and
no-jmp: abrupt s0 6= Some (Jump j) and
wt: Env`es:: .=T and
wf : wf-prog (prg Env)

shows abrupt s1 6= Some (Jump j)
using eval - no-jmp wt wf
by (rule jumpNestingOk-eval-no-jumpE , simp-all)

lemma union-subseteq-elim [elim]: [[A ∪ B ⊆ C ; [[A ⊆ C ; B ⊆ C]] =⇒ P]] =⇒ P
by blast

lemma dom-locals-halloc-mono:
assumes halloc: G`s0−halloc oi�a→s1
shows dom (locals (store s0)) ⊆ dom (locals (store s1))

proof −
from halloc show ?thesis

by cases simp-all
qed

Theory DefiniteAssignmentCorrect 283

lemma dom-locals-sxalloc-mono:
assumes sxalloc: G`s0−sxalloc→s1
shows dom (locals (store s0)) ⊆ dom (locals (store s1))

proof −
from sxalloc show ?thesis
proof (cases)

case Norm thus ?thesis by simp
next

case Jmp thus ?thesis by simp
next

case Error thus ?thesis by simp
next

case XcptL thus ?thesis by simp
next

case SXcpt thus ?thesis
by − (drule dom-locals-halloc-mono,simp)

qed
qed

lemma dom-locals-assign-mono:
assumes f-ok: dom (locals (store s)) ⊆ dom (locals (store (f n s)))

shows dom (locals (store s)) ⊆ dom (locals (store (assign f n s)))
proof (cases normal s)

case False thus ?thesis
by (cases s) (auto simp add: assign-def Let-def)

next
case True
then obtain s ′ where s ′: s = (None,s ′)

by auto
moreover
obtain x1 s1 where f n s = (x1 ,s1)

by (cases f n s)
ultimately
show ?thesis

using f-ok
by (simp add: assign-def Let-def)

qed

lemma dom-locals-lvar-mono:
dom (locals (store s)) ⊆ dom (locals (store (snd (lvar vn s ′) val s)))

by (simp add: lvar-def) blast

lemma dom-locals-fvar-vvar-mono:
dom (locals (store s))
⊆ dom (locals (store (snd (fst (fvar statDeclC stat fn a s ′)) val s)))

proof (cases stat)
case True
thus ?thesis

by (cases s) (simp add: fvar-def2)
next

case False
thus ?thesis

by (cases s) (simp add: fvar-def2)
qed

284

lemma dom-locals-fvar-mono:
dom (locals (store s))
⊆ dom (locals (store (snd (fvar statDeclC stat fn a s))))

proof (cases stat)
case True
thus ?thesis

by (cases s) (simp add: fvar-def2)
next

case False
thus ?thesis

by (cases s) (simp add: fvar-def2)
qed

lemma dom-locals-avar-vvar-mono:
dom (locals (store s))
⊆ dom (locals (store (snd (fst (avar G i a s ′)) val s)))

by (cases s, simp add: avar-def2)

lemma dom-locals-avar-mono:
dom (locals (store s))
⊆ dom (locals (store (snd (avar G i a s))))

by (cases s, simp add: avar-def2)

Since assignments are modelled as functions from states to states, we must take into account these
functions. They appear only in the assignment rule and as result from evaluating a variable. Thats
why we need the complicated second part of the conjunction in the goal. The reason for the very
generic way to treat assignments was the aim to omit redundancy. There is only one evaluation rule
for each kind of variable (locals, fields, arrays). These rules are used for both accessing variables
and updating variables. Thats why the evaluation rules for variables result in a pair consisting of
a value and an update function. Of course we could also think of a pair of a value and a reference
in the store, instead of the generic update function. But as only array updates can cause a special
exception (if the types mismatch) and not array reads we then have to introduce two different rules
to handle array reads and updates
lemma dom-locals-eval-mono:

assumes eval: G` s0 −t�→ (v,s1)
shows dom (locals (store s0)) ⊆ dom (locals (store s1)) ∧

(∀ vv. v=In2 vv ∧ normal s1
−→ (∀ s val. dom (locals (store s))

⊆ dom (locals (store ((snd vv) val s)))))
proof −

from eval show ?thesis
proof (induct)

case Abrupt thus ?case by simp
next

case Skip thus ?case by simp
next

case Expr thus ?case by simp
next

case Lab thus ?case by simp
next

case (Comp s0 c1 s1 c2 s2)
from Comp.hyps
have dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))

by simp
also
from Comp.hyps

Theory DefiniteAssignmentCorrect 285

have . . . ⊆ dom (locals (store s2))
by simp

finally show ?case by simp
next

case (If s0 e b s1 c1 c2 s2)
from If .hyps
have dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))

by simp
also
from If .hyps
have . . . ⊆ dom (locals (store s2))

by simp
finally show ?case by simp

next
case (Loop s0 e b s1 c s2 l s3)
show ?case
proof (cases the-Bool b)

case True
with Loop.hyps
obtain

s0-s1 :
dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1)) and
s1-s2 : dom (locals (store s1)) ⊆ dom (locals (store s2)) and
s2-s3 : dom (locals (store s2)) ⊆ dom (locals (store s3))
by simp

note s0-s1 also note s1-s2 also note s2-s3
finally show ?thesis

by simp
next

case False
with Loop.hyps show ?thesis

by simp
qed

next
case Jmp thus ?case by simp

next
case Throw thus ?case by simp

next
case (Try s0 c1 s1 s2 C vn c2 s3)
then
have s0-s1 : dom (locals (store ((Norm s0)::state)))

⊆ dom (locals (store s1)) by simp
from ‹G`s1 −sxalloc→ s2 ›
have s1-s2 : dom (locals (store s1)) ⊆ dom (locals (store s2))

by (rule dom-locals-sxalloc-mono)
thus ?case
proof (cases G,s2`catch C)

case True
note s0-s1 also note s1-s2
also
from True Try.hyps
have dom (locals (store (new-xcpt-var vn s2)))

⊆ dom (locals (store s3))
by simp

hence dom (locals (store s2)) ⊆ dom (locals (store s3))
by (cases s2 , simp)

finally show ?thesis by simp
next

case False

286

note s0-s1 also note s1-s2
finally
show ?thesis

using False Try.hyps by simp
qed

next
case (Fin s0 c1 x1 s1 c2 s2 s3)
show ?case
proof (cases ∃ err . x1 = Some (Error err))

case True
with Fin.hyps show ?thesis

by simp
next

case False
from Fin.hyps
have dom (locals (store ((Norm s0)::state)))

⊆ dom (locals (store (x1 , s1)))
by simp

hence dom (locals (store ((Norm s0)::state)))
⊆ dom (locals (store ((Norm s1)::state)))

by simp
also
from Fin.hyps
have . . . ⊆ dom (locals (store s2))

by simp
finally show ?thesis

using Fin.hyps by simp
qed

next
case (Init C c s0 s3 s1 s2)
show ?case
proof (cases inited C (globs s0))

case True
with Init.hyps show ?thesis by simp

next
case False
with Init.hyps
obtain s0-s1 : dom (locals (store (Norm ((init-class-obj G C) s0))))

⊆ dom (locals (store s1)) and
s3 : s3 = (set-lvars (locals (snd s1))) s2

by simp
from s0-s1
have dom (locals (store (Norm s0))) ⊆ dom (locals (store s1))

by (cases s0) simp
with s3
have dom (locals (store (Norm s0))) ⊆ dom (locals (store s3))

by (cases s2) simp
thus ?thesis by simp

qed
next

case (NewC s0 C s1 a s2)
note halloc = ‹G`s1 −halloc CInst C�a→ s2 ›
from NewC .hyps
have dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))

by simp
also
from halloc
have . . . ⊆ dom (locals (store s2)) by (rule dom-locals-halloc-mono)
finally show ?case by simp

Theory DefiniteAssignmentCorrect 287

next
case (NewA s0 T s1 e i s2 a s3)
note halloc = ‹G`abupd (check-neg i) s2 −halloc Arr T (the-Intg i)�a→ s3 ›
from NewA.hyps
have dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))

by simp
also
from NewA.hyps
have . . . ⊆ dom (locals (store s2)) by simp
also
from halloc
have . . . ⊆ dom (locals (store s3))

by (rule dom-locals-halloc-mono [elim-format]) simp
finally show ?case by simp

next
case Cast thus ?case by simp

next
case Inst thus ?case by simp

next
case Lit thus ?case by simp

next
case UnOp thus ?case by simp

next
case (BinOp s0 e1 v1 s1 binop e2 v2 s2)
from BinOp.hyps
have dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))

by simp
also
from BinOp.hyps
have . . . ⊆ dom (locals (store s2)) by simp
finally show ?case by simp

next
case Super thus ?case by simp

next
case Acc thus ?case by simp

next
case (Ass s0 va w f s1 e v s2)
from Ass.hyps
have s0-s1 :

dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))
by simp

show ?case
proof (cases normal s1)

case True
with Ass.hyps
have ass-ok:∧

s val. dom (locals (store s)) ⊆ dom (locals (store (f val s)))
by simp

note s0-s1
also
from Ass.hyps
have dom (locals (store s1)) ⊆ dom (locals (store s2))

by simp
also
from ass-ok
have . . . ⊆ dom (locals (store (assign f v s2)))

by (rule dom-locals-assign-mono [where f = f])
finally show ?thesis by simp

next

288

case False
with ‹G`s1 −e−�v→ s2 ›
have s2=s1

by auto
with s0-s1 False
have dom (locals (store ((Norm s0)::state)))

⊆ dom (locals (store (assign f v s2)))
by simp

thus ?thesis
by simp

qed
next

case (Cond s0 e0 b s1 e1 e2 v s2)
from Cond.hyps
have dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))

by simp
also
from Cond.hyps
have . . . ⊆ dom (locals (store s2))

by simp
finally show ?case by simp

next
case (Call s0 e a ′ s1 args vs s2 D mode statT mn pTs s3 s3 ′ accC v s4)
note s3 = ‹s3 = init-lvars G D (|name = mn, parTs = pTs|) mode a ′ vs s2 ›
from Call.hyps
have dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))

by simp
also
from Call.hyps
have . . . ⊆ dom (locals (store s2))

by simp
also
have . . . ⊆ dom (locals (store ((set-lvars (locals (store s2))) s4)))

by (cases s4) simp
finally show ?case by simp

next
case Methd thus ?case by simp

next
case (Body s0 D s1 c s2 s3)
from Body.hyps
have dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))

by simp
also
from Body.hyps
have . . . ⊆ dom (locals (store s2))

by simp
also
have . . . ⊆ dom (locals (store (abupd (absorb Ret) s2)))

by simp
also
have . . . ⊆ dom (locals (store (abupd (absorb Ret) s3)))
proof −

from ‹s3 =
(if ∃ l. abrupt s2 = Some (Jump (Break l)) ∨

abrupt s2 = Some (Jump (Cont l))
then abupd (λx. Some (Error CrossMethodJump)) s2 else s2)›

show ?thesis
by simp

qed

Theory DefiniteAssignmentCorrect 289

finally show ?case by simp
next

case LVar
thus ?case

using dom-locals-lvar-mono
by simp

next
case (FVar s0 statDeclC s1 e a s2 v s2 ′ stat fn s3 accC)
from FVar .hyps
obtain s2 ′: s2 ′ = snd (fvar statDeclC stat fn a s2) and

v: v = fst (fvar statDeclC stat fn a s2)
by (cases fvar statDeclC stat fn a s2) simp

from v
have ∀ s val. dom (locals (store s))

⊆ dom (locals (store (snd v val s))) (is ?V-ok)
by (simp add: dom-locals-fvar-vvar-mono)

hence v-ok: (∀ vv. In2 v = In2 vv ∧ normal s3 −→ ?V-ok)
by − (intro strip, simp)

note s3 = ‹s3 = check-field-access G accC statDeclC fn stat a s2 ′›
from FVar .hyps
have dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))

by simp
also
from FVar .hyps
have . . . ⊆ dom (locals (store s2))

by simp
also
from s2 ′

have . . . ⊆ dom (locals (store s2 ′))
by (simp add: dom-locals-fvar-mono)

also
from s3
have . . . ⊆ dom (locals (store s3))

by (simp add: check-field-access-def Let-def)
finally
show ?case

using v-ok
by simp

next
case (AVar s0 e1 a s1 e2 i s2 v s2 ′)
from AVar .hyps
obtain s2 ′: s2 ′ = snd (avar G i a s2) and

v: v = fst (avar G i a s2)
by (cases avar G i a s2) simp

from v
have ∀ s val. dom (locals (store s))

⊆ dom (locals (store (snd v val s))) (is ?V-ok)
by (simp add: dom-locals-avar-vvar-mono)

hence v-ok: (∀ vv. In2 v = In2 vv ∧ normal s2 ′ −→ ?V-ok)
by − (intro strip, simp)

from AVar .hyps
have dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))

by simp
also
from AVar .hyps
have . . . ⊆ dom (locals (store s2))

by simp
also
from s2 ′

290

have . . . ⊆ dom (locals (store s2 ′))
by (simp add: dom-locals-avar-mono)

finally
show ?case using v-ok by simp

next
case Nil thus ?case by simp

next
case (Cons s0 e v s1 es vs s2)
from Cons.hyps
have dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))

by simp
also
from Cons.hyps
have . . . ⊆ dom (locals (store s2))

by simp
finally show ?case by simp

qed
qed

lemma dom-locals-eval-mono-elim:
assumes eval: G` s0 −t�→ (v,s1)
obtains dom (locals (store s0)) ⊆ dom (locals (store s1)) and∧

vv s val. [[v=In2 vv; normal s1]]
=⇒ dom (locals (store s))
⊆ dom (locals (store ((snd vv) val s)))

using eval by (rule dom-locals-eval-mono [THEN conjE]) (rule that, auto)

lemma halloc-no-abrupt:
assumes halloc: G`s0−halloc oi�a→s1 and

normal: normal s1
shows normal s0

proof −
from halloc normal show ?thesis

by cases simp-all
qed

lemma sxalloc-mono-no-abrupt:
assumes sxalloc: G`s0−sxalloc→s1 and

normal: normal s1
shows normal s0

proof −
from sxalloc normal show ?thesis

by cases simp-all
qed

lemma union-subseteqI : [[A ∪ B ⊆ C ; A ′ ⊆ A; B ′ ⊆ B]] =⇒ A ′ ∪ B ′ ⊆ C
by blast

lemma union-subseteqIl: [[A ∪ B ⊆ C ; A ′ ⊆ A]] =⇒ A ′ ∪ B ⊆ C
by blast

lemma union-subseteqIr : [[A ∪ B ⊆ C ; B ′ ⊆ B]] =⇒ A ∪ B ′ ⊆ C
by blast

lemma subseteq-union-transl [trans]: [[A ⊆ B; B ∪ C ⊆ D]] =⇒ A ∪ C ⊆ D
by blast

lemma subseteq-union-transr [trans]: [[A ⊆ B; C ∪ B ⊆ D]] =⇒ A ∪ C ⊆ D
by blast

Theory DefiniteAssignmentCorrect 291

lemma union-subseteq-weaken: [[A ∪ B ⊆ C ; [[A ⊆ C ; B ⊆ C]] =⇒ P]] =⇒ P
by blast

lemma assigns-good-approx:
assumes

eval: G` s0 −t�→ (v,s1) and
normal: normal s1

shows assigns t ⊆ dom (locals (store s1))
proof −

from eval normal show ?thesis
proof (induct)

case Abrupt thus ?case by simp
next — For statements its trivial, since then assigns t = {}

case Skip show ?case by simp
next

case Expr show ?case by simp
next

case Lab show ?case by simp
next

case Comp show ?case by simp
next

case If show ?case by simp
next

case Loop show ?case by simp
next

case Jmp show ?case by simp
next

case Throw show ?case by simp
next

case Try show ?case by simp
next

case Fin show ?case by simp
next

case Init show ?case by simp
next

case NewC show ?case by simp
next

case (NewA s0 T s1 e i s2 a s3)
note halloc = ‹G`abupd (check-neg i) s2 −halloc Arr T (the-Intg i)�a→ s3 ›
have assigns (In1l e) ⊆ dom (locals (store s2))
proof −

from NewA
have normal (abupd (check-neg i) s2)

by − (erule halloc-no-abrupt [rule-format])
hence normal s2 by (cases s2) simp
with NewA.hyps
show ?thesis by iprover

qed
also
from halloc
have . . . ⊆ dom (locals (store s3))

by (rule dom-locals-halloc-mono [elim-format]) simp
finally show ?case by simp

next
case (Cast s0 e v s1 s2 T)
hence normal s1 by (cases s1 ,simp)
with Cast.hyps
have assigns (In1l e) ⊆ dom (locals (store s1))

292

by simp
also
from Cast.hyps
have . . . ⊆ dom (locals (store s2))

by simp
finally
show ?case

by simp
next

case Inst thus ?case by simp
next

case Lit thus ?case by simp
next

case UnOp thus ?case by simp
next

case (BinOp s0 e1 v1 s1 binop e2 v2 s2)
hence normal s1 by − (erule eval-no-abrupt-lemma [rule-format])
with BinOp.hyps
have assigns (In1l e1) ⊆ dom (locals (store s1))

by iprover
also
have . . . ⊆ dom (locals (store s2))
proof −

note ‹G`s1 −(if need-second-arg binop v1 then In1l e2
else In1r Skip)�→ (In1 v2 , s2)›

thus ?thesis
by (rule dom-locals-eval-mono-elim)

qed
finally have s2 : assigns (In1l e1) ⊆ dom (locals (store s2)) .
show ?case
proof (cases binop=CondAnd ∨ binop=CondOr)

case True
with s2 show ?thesis by simp

next
case False
with BinOp
have assigns (In1l e2) ⊆ dom (locals (store s2))

by (simp add: need-second-arg-def)
with s2
show ?thesis using False by simp

qed
next

case Super thus ?case by simp
next

case Acc thus ?case by simp
next

case (Ass s0 va w f s1 e v s2)
note nrm-ass-s2 = ‹normal (assign f v s2)›
hence nrm-s2 : normal s2

by (cases s2 , simp add: assign-def Let-def)
with Ass.hyps
have nrm-s1 : normal s1

by − (erule eval-no-abrupt-lemma [rule-format])
with Ass.hyps
have assigns (In2 va) ⊆ dom (locals (store s1))

by iprover
also
from Ass.hyps
have . . . ⊆ dom (locals (store s2))

Theory DefiniteAssignmentCorrect 293

by − (erule dom-locals-eval-mono-elim)
also
from nrm-s2 Ass.hyps
have assigns (In1l e) ⊆ dom (locals (store s2))

by iprover
ultimately
have assigns (In2 va) ∪ assigns (In1l e) ⊆ dom (locals (store s2))

by (rule Un-least)
also
from Ass.hyps nrm-s1
have . . . ⊆ dom (locals (store (f v s2)))

by − (erule dom-locals-eval-mono-elim, cases s2 ,simp)
then
have dom (locals (store s2)) ⊆ dom (locals (store (assign f v s2)))

by (rule dom-locals-assign-mono)
finally
have va-e: assigns (In2 va) ∪ assigns (In1l e)

⊆ dom (locals (snd (assign f v s2))) .
show ?case
proof (cases ∃ n. va = LVar n)

case False
with va-e show ?thesis

by (simp add: Un-assoc)
next

case True
then obtain n where va: va = LVar n

by blast
with Ass.hyps
have G`Norm s0 −LVar n=�(w,f)→ s1

by simp
hence (w,f) = lvar n s0

by (rule eval-elim-cases) simp
with nrm-ass-s2
have n ∈ dom (locals (store (assign f v s2)))

by (cases s2) (simp add: assign-def Let-def lvar-def)
with va-e True va
show ?thesis by (simp add: Un-assoc)

qed
next

case (Cond s0 e0 b s1 e1 e2 v s2)
hence normal s1

by − (erule eval-no-abrupt-lemma [rule-format])
with Cond.hyps
have assigns (In1l e0) ⊆ dom (locals (store s1))

by iprover
also from Cond.hyps
have . . . ⊆ dom (locals (store s2))

by − (erule dom-locals-eval-mono-elim)
finally have e0 : assigns (In1l e0) ⊆ dom (locals (store s2)) .
show ?case
proof (cases the-Bool b)

case True
with Cond
have assigns (In1l e1) ⊆ dom (locals (store s2))

by simp
hence assigns (In1l e1) ∩ assigns (In1l e2) ⊆ . . .

by blast
with e0
have assigns (In1l e0) ∪ assigns (In1l e1) ∩ assigns (In1l e2)

294

⊆ dom (locals (store s2))
by (rule Un-least)

thus ?thesis using True by simp
next

case False
with Cond
have assigns (In1l e2) ⊆ dom (locals (store s2))

by simp
hence assigns (In1l e1) ∩ assigns (In1l e2) ⊆ . . .

by blast
with e0
have assigns (In1l e0) ∪ assigns (In1l e1) ∩ assigns (In1l e2)

⊆ dom (locals (store s2))
by (rule Un-least)

thus ?thesis using False by simp
qed

next
case (Call s0 e a ′ s1 args vs s2 D mode statT mn pTs s3 s3 ′ accC v s4)
have nrm-s2 : normal s2
proof −

from ‹normal ((set-lvars (locals (snd s2))) s4)›
have normal-s4 : normal s4 by simp
hence normal s3 ′ using Call.hyps

by − (erule eval-no-abrupt-lemma [rule-format])
moreover note
‹s3 ′ = check-method-access G accC statT mode (|name=mn, parTs=pTs|) a ′ s3 ›

ultimately have normal s3
by (cases s3) (simp add: check-method-access-def Let-def)

moreover
note s3 = ‹s3 = init-lvars G D (|name = mn, parTs = pTs|) mode a ′ vs s2 ›
ultimately show normal s2

by (cases s2) (simp add: init-lvars-def2)
qed
hence normal s1 using Call.hyps

by − (erule eval-no-abrupt-lemma [rule-format])
with Call.hyps
have assigns (In1l e) ⊆ dom (locals (store s1))

by iprover
also from Call.hyps
have . . . ⊆ dom (locals (store s2))

by − (erule dom-locals-eval-mono-elim)
also
from nrm-s2 Call.hyps
have assigns (In3 args) ⊆ dom (locals (store s2))

by iprover
ultimately have assigns (In1l e) ∪ assigns (In3 args) ⊆ . . .

by (rule Un-least)
also
have . . . ⊆ dom (locals (store ((set-lvars (locals (store s2))) s4)))

by (cases s4) simp
finally show ?case

by simp
next

case Methd thus ?case by simp
next

case Body thus ?case by simp
next

case LVar thus ?case by simp
next

Theory DefiniteAssignmentCorrect 295

case (FVar s0 statDeclC s1 e a s2 v s2 ′ stat fn s3 accC)
note s3 = ‹s3 = check-field-access G accC statDeclC fn stat a s2 ′›
note avar = ‹(v, s2 ′) = fvar statDeclC stat fn a s2 ›
have nrm-s2 : normal s2
proof −

note ‹normal s3 ›
with s3 have normal s2 ′

by (cases s2 ′) (simp add: check-field-access-def Let-def)
with avar show normal s2

by (cases s2) (simp add: fvar-def2)
qed
with FVar .hyps
have assigns (In1l e) ⊆ dom (locals (store s2))

by iprover
also
have . . . ⊆ dom (locals (store s2 ′))
proof −

from avar
have s2 ′ = snd (fvar statDeclC stat fn a s2)

by (cases fvar statDeclC stat fn a s2) simp
thus ?thesis

by simp (rule dom-locals-fvar-mono)
qed
also from s3
have . . . ⊆ dom (locals (store s3))

by (cases s2 ′) (simp add: check-field-access-def Let-def)
finally show ?case

by simp
next

case (AVar s0 e1 a s1 e2 i s2 v s2 ′)
note avar = ‹(v, s2 ′) = avar G i a s2 ›
have nrm-s2 : normal s2
proof −

from avar and ‹normal s2 ′›
show ?thesis by (cases s2) (simp add: avar-def2)

qed
with AVar .hyps
have normal s1

by − (erule eval-no-abrupt-lemma [rule-format])
with AVar .hyps
have assigns (In1l e1) ⊆ dom (locals (store s1))

by iprover
also from AVar .hyps
have . . . ⊆ dom (locals (store s2))

by − (erule dom-locals-eval-mono-elim)
also
from AVar .hyps nrm-s2
have assigns (In1l e2) ⊆ dom (locals (store s2))

by iprover
ultimately
have assigns (In1l e1) ∪ assigns (In1l e2) ⊆ . . .

by (rule Un-least)
also
have dom (locals (store s2)) ⊆ dom (locals (store s2 ′))
proof −

from avar have s2 ′ = snd (avar G i a s2)
by (cases avar G i a s2) simp

thus ?thesis
by simp (rule dom-locals-avar-mono)

296

qed
finally
show ?case

by simp
next

case Nil show ?case by simp
next

case (Cons s0 e v s1 es vs s2)
have assigns (In1l e) ⊆ dom (locals (store s1))
proof −

from Cons
have normal s1 by − (erule eval-no-abrupt-lemma [rule-format])
with Cons.hyps show ?thesis by iprover

qed
also from Cons.hyps
have . . . ⊆ dom (locals (store s2))

by − (erule dom-locals-eval-mono-elim)
also from Cons
have assigns (In3 es) ⊆ dom (locals (store s2))

by iprover
ultimately
have assigns (In1l e) ∪ assigns (In3 es) ⊆ dom (locals (store s2))

by (rule Un-least)
thus ?case

by simp
qed

qed

corollary assignsE-good-approx:
assumes

eval: prg Env` s0 −e−�v→ s1 and
normal: normal s1

shows assignsE e ⊆ dom (locals (store s1))
proof −
from eval normal show ?thesis

by (rule assigns-good-approx [elim-format]) simp
qed

corollary assignsV-good-approx:
assumes

eval: prg Env` s0 −v=�vf→ s1 and
normal: normal s1

shows assignsV v ⊆ dom (locals (store s1))
proof −
from eval normal show ?thesis

by (rule assigns-good-approx [elim-format]) simp
qed

corollary assignsEs-good-approx:
assumes

eval: prg Env` s0 −es .
=�vs→ s1 and

normal: normal s1
shows assignsEs es ⊆ dom (locals (store s1))

proof −
from eval normal show ?thesis

by (rule assigns-good-approx [elim-format]) simp
qed

lemma constVal-eval:

Theory DefiniteAssignmentCorrect 297

assumes const: constVal e = Some c and
eval: G`Norm s0 −e−�v→ s

shows v = c ∧ normal s
proof −

have True and∧
c v s0 s. [[constVal e = Some c; G`Norm s0 −e−�v→ s]]

=⇒ v = c ∧ normal s
and True

proof (induct rule: var .induct expr .induct stmt.induct)
case NewC hence False by simp thus ?case ..

next
case NewA hence False by simp thus ?case ..

next
case Cast hence False by simp thus ?case ..

next
case Inst hence False by simp thus ?case ..

next
case (Lit val c v s0 s)
note ‹constVal (Lit val) = Some c›
moreover
from ‹G`Norm s0 −Lit val−�v→ s›
obtain v=val and normal s

by cases simp
ultimately show v=c ∧ normal s by simp

next
case (UnOp unop e c v s0 s)
note const = ‹constVal (UnOp unop e) = Some c›
then obtain ce where ce: constVal e = Some ce by simp
from ‹G`Norm s0 −UnOp unop e−�v→ s›
obtain ve where ve: G`Norm s0 −e−�ve→ s and

v: v = eval-unop unop ve
by cases simp

from ce ve
obtain eq-ve-ce: ve=ce and nrm-s: normal s

by (rule UnOp.hyps [elim-format]) iprover
from eq-ve-ce const ce v
have v=c

by simp
from this nrm-s
show ?case ..

next
case (BinOp binop e1 e2 c v s0 s)
note const = ‹constVal (BinOp binop e1 e2) = Some c›
then obtain c1 c2 where c1 : constVal e1 = Some c1 and

c2 : constVal e2 = Some c2 and
c: c = eval-binop binop c1 c2

by simp
from ‹G`Norm s0 −BinOp binop e1 e2−�v→ s›
obtain v1 s1 v2

where v1 : G`Norm s0 −e1−�v1→ s1 and
v2 : G`s1 −(if need-second-arg binop v1 then In1l e2

else In1r Skip)�→ (In1 v2 , s) and
v: v = eval-binop binop v1 v2

by cases simp
from c1 v1
obtain eq-v1-c1 : v1 = c1 and

nrm-s1 : normal s1
by (rule BinOp.hyps [elim-format]) iprover

show ?case

298

proof (cases need-second-arg binop v1)
case True
with v2 nrm-s1 obtain s1 ′

where G`Norm s1 ′ −e2−�v2→ s
by (cases s1) simp

with c2 obtain v2 = c2 normal s
by (rule BinOp.hyps [elim-format]) iprover

with c c1 c2 eq-v1-c1 v
show ?thesis by simp

next
case False
with nrm-s1 v2
have s=s1

by (cases s1) (auto elim!: eval-elim-cases)
moreover
from False c v eq-v1-c1
have v = c

by (simp add: eval-binop-arg2-indep)
ultimately
show ?thesis

using nrm-s1 by simp
qed

next
case Super hence False by simp thus ?case ..

next
case Acc hence False by simp thus ?case ..

next
case Ass hence False by simp thus ?case ..

next
case (Cond b e1 e2 c v s0 s)
note c = ‹constVal (b ? e1 : e2) = Some c›
then obtain cb c1 c2 where

cb: constVal b = Some cb and
c1 : constVal e1 = Some c1 and
c2 : constVal e2 = Some c2
by (auto split: bool.splits)

from ‹G`Norm s0 −b ? e1 : e2−�v→ s›
obtain vb s1

where vb: G`Norm s0 −b−�vb→ s1 and
eval-v: G`s1 −(if the-Bool vb then e1 else e2)−�v→ s

by cases simp
from cb vb
obtain eq-vb-cb: vb = cb and nrm-s1 : normal s1

by (rule Cond.hyps [elim-format]) iprover
show ?case
proof (cases the-Bool vb)

case True
with c cb c1 eq-vb-cb
have c = c1

by simp
moreover
from True eval-v nrm-s1 obtain s1 ′

where G`Norm s1 ′ −e1−�v→ s
by (cases s1) simp

with c1 obtain c1 = v normal s
by (rule Cond.hyps [elim-format]) iprover

ultimately show ?thesis by simp
next

case False

Theory DefiniteAssignmentCorrect 299

with c cb c2 eq-vb-cb
have c = c2

by simp
moreover
from False eval-v nrm-s1 obtain s1 ′

where G`Norm s1 ′ −e2−�v→ s
by (cases s1) simp

with c2 obtain c2 = v normal s
by (rule Cond.hyps [elim-format]) iprover

ultimately show ?thesis by simp
qed

next
case Call hence False by simp thus ?case ..

qed simp-all
with const eval
show ?thesis

by iprover
qed

lemmas constVal-eval-elim = constVal-eval [THEN conjE]

lemma eval-unop-type:
typeof dt (eval-unop unop v) = Some (PrimT (unop-type unop))
by (cases unop) simp-all

lemma eval-binop-type:
typeof dt (eval-binop binop v1 v2) = Some (PrimT (binop-type binop))
by (cases binop) simp-all

lemma constVal-Boolean:
assumes const: constVal e = Some c and

wt: Env`e::−PrimT Boolean
shows typeof empty-dt c = Some (PrimT Boolean)

proof −
have True and∧

c. [[constVal e = Some c;Env`e::−PrimT Boolean]]
=⇒ typeof empty-dt c = Some (PrimT Boolean)

and True
proof (induct rule: var .induct expr .induct stmt.induct)

case NewC hence False by simp thus ?case ..
next

case NewA hence False by simp thus ?case ..
next

case Cast hence False by simp thus ?case ..
next

case Inst hence False by simp thus ?case ..
next

case (Lit v c)
from ‹constVal (Lit v) = Some c›
have c=v by simp
moreover
from ‹Env`Lit v::−PrimT Boolean›
have typeof empty-dt v = Some (PrimT Boolean)

by cases simp
ultimately show ?case by simp

next
case (UnOp unop e c)
from ‹Env`UnOp unop e::−PrimT Boolean›
have Boolean = unop-type unop by cases simp

300

moreover
from ‹constVal (UnOp unop e) = Some c›
obtain ce where c = eval-unop unop ce by auto
ultimately show ?case by (simp add: eval-unop-type)

next
case (BinOp binop e1 e2 c)
from ‹Env`BinOp binop e1 e2 ::−PrimT Boolean›
have Boolean = binop-type binop by cases simp
moreover
from ‹constVal (BinOp binop e1 e2) = Some c›
obtain c1 c2 where c = eval-binop binop c1 c2 by auto
ultimately show ?case by (simp add: eval-binop-type)

next
case Super hence False by simp thus ?case ..

next
case Acc hence False by simp thus ?case ..

next
case Ass hence False by simp thus ?case ..

next
case (Cond b e1 e2 c)
note c = ‹constVal (b ? e1 : e2) = Some c›
then obtain cb c1 c2 where

cb: constVal b = Some cb and
c1 : constVal e1 = Some c1 and
c2 : constVal e2 = Some c2
by (auto split: bool.splits)

note wt = ‹Env`b ? e1 : e2 ::−PrimT Boolean›
then
obtain T1 T2

where Env`b::−PrimT Boolean and
wt-e1 : Env`e1 ::−PrimT Boolean and
wt-e2 : Env`e2 ::−PrimT Boolean

by cases (auto dest: widen-Boolean2)
show ?case
proof (cases the-Bool cb)

case True
from c1 wt-e1
have typeof empty-dt c1 = Some (PrimT Boolean)

by (rule Cond.hyps)
with True c cb c1 show ?thesis by simp

next
case False
from c2 wt-e2
have typeof empty-dt c2 = Some (PrimT Boolean)

by (rule Cond.hyps)
with False c cb c2 show ?thesis by simp

qed
next

case Call hence False by simp thus ?case ..
qed simp-all
with const wt
show ?thesis

by iprover
qed

lemma assigns-if-good-approx:
assumes

eval: prg Env` s0 −e−�b→ s1 and
normal: normal s1 and

Theory DefiniteAssignmentCorrect 301

bool: Env` e::−PrimT Boolean
shows assigns-if (the-Bool b) e ⊆ dom (locals (store s1))

proof −
— To properly perform induction on the evaluation relation we have to generalize the lemma to terms not

only expressions.
have generalized: assigns-if (the-Bool (the-In1 val)) (the-In1l t) ⊆ dom (locals (store s1))

if eval ′: prg Env` s0 −t�→ (val,s1)
and bool ′: Env` t::Inl (PrimT Boolean)
and expr : ∃ expr . t=In1l expr

for t val
using eval ′ normal bool ′ expr

proof (induct)
case Abrupt thus ?case by simp

next
case (NewC s0 C s1 a s2)
from ‹Env`NewC C ::−PrimT Boolean›
have False

by cases simp
thus ?case ..

next
case (NewA s0 T s1 e i s2 a s3)
from ‹Env`New T [e]::−PrimT Boolean›
have False

by cases simp
thus ?case ..

next
case (Cast s0 e b s1 s2 T)
note s2 = ‹s2 = abupd (raise-if (¬ prg Env,snd s1`b fits T) ClassCast) s1 ›
have assigns-if (the-Bool b) e ⊆ dom (locals (store s1))
proof −

from s2 and ‹normal s2 ›
have normal s1

by (cases s1) simp
moreover
from ‹Env`Cast T e::−PrimT Boolean›
have Env`e::− PrimT Boolean

by cases (auto dest: cast-Boolean2)
ultimately show ?thesis

by (rule Cast.hyps [elim-format]) auto
qed
also from s2
have . . . ⊆ dom (locals (store s2))

by simp
finally show ?case by simp

next
case (Inst s0 e v s1 b T)
from ‹prg Env`Norm s0 −e−�v→ s1 › and ‹normal s1 ›
have assignsE e ⊆ dom (locals (store s1))

by (rule assignsE-good-approx)
thus ?case

by simp
next

case (Lit s v)
from ‹Env`Lit v::−PrimT Boolean›
have typeof empty-dt v = Some (PrimT Boolean)

by cases simp
then obtain b where v=Bool b

by (cases v) (simp-all add: empty-dt-def)
thus ?case

302

by simp
next

case (UnOp s0 e v s1 unop)
note bool = ‹Env`UnOp unop e::−PrimT Boolean›
hence bool-e: Env`e::−PrimT Boolean

by cases (cases unop,simp-all)
show ?case
proof (cases constVal (UnOp unop e))

case None
note ‹normal s1 ›
moreover note bool-e
ultimately have assigns-if (the-Bool v) e ⊆ dom (locals (store s1))

by (rule UnOp.hyps [elim-format]) auto
moreover
from bool have unop = UNot

by cases (cases unop, simp-all)
moreover note None
ultimately
have assigns-if (the-Bool (eval-unop unop v)) (UnOp unop e)

⊆ dom (locals (store s1))
by simp

thus ?thesis by simp
next

case (Some c)
moreover
from ‹prg Env`Norm s0 −e−�v→ s1 ›
have prg Env`Norm s0 −UnOp unop e−�eval-unop unop v→ s1

by (rule eval.UnOp)
with Some
have eval-unop unop v=c

by (rule constVal-eval-elim) simp
moreover
from Some bool
obtain b where c=Bool b

by (rule constVal-Boolean [elim-format])
(cases c, simp-all add: empty-dt-def)

ultimately
have assigns-if (the-Bool (eval-unop unop v)) (UnOp unop e) = {}

by simp
thus ?thesis by simp

qed
next

case (BinOp s0 e1 v1 s1 binop e2 v2 s2)
note bool = ‹Env`BinOp binop e1 e2 ::−PrimT Boolean›
show ?case
proof (cases constVal (BinOp binop e1 e2))

case (Some c)
moreover
from BinOp.hyps
have

prg Env`Norm s0 −BinOp binop e1 e2−�eval-binop binop v1 v2→ s2
by − (rule eval.BinOp)

with Some
have eval-binop binop v1 v2=c

by (rule constVal-eval-elim) simp
moreover
from Some bool
obtain b where c = Bool b

by (rule constVal-Boolean [elim-format])

Theory DefiniteAssignmentCorrect 303

(cases c, simp-all add: empty-dt-def)
ultimately
have assigns-if (the-Bool (eval-binop binop v1 v2)) (BinOp binop e1 e2)

= {}
by simp

thus ?thesis by simp
next

case None
show ?thesis
proof (cases binop=CondAnd ∨ binop=CondOr)

case True
from bool obtain bool-e1 : Env`e1 ::−PrimT Boolean and

bool-e2 : Env`e2 ::−PrimT Boolean
using True by cases auto

have assigns-if (the-Bool v1) e1 ⊆ dom (locals (store s1))
proof −

from BinOp have normal s1
by − (erule eval-no-abrupt-lemma [rule-format])

from this bool-e1
show ?thesis

by (rule BinOp.hyps [elim-format]) auto
qed
also
from BinOp.hyps
have . . . ⊆ dom (locals (store s2))

by − (erule dom-locals-eval-mono-elim,simp)
finally
have e1-s2 : assigns-if (the-Bool v1) e1 ⊆ dom (locals (store s2)).
from True show ?thesis
proof

assume condAnd: binop = CondAnd
show ?thesis
proof (cases the-Bool (eval-binop binop v1 v2))

case True
with condAnd
have need-second: need-second-arg binop v1

by (simp add: need-second-arg-def)
from ‹normal s2 ›
have assigns-if (the-Bool v2) e2 ⊆ dom (locals (store s2))

by (rule BinOp.hyps [elim-format])
(simp add: need-second bool-e2)+

with e1-s2
have assigns-if (the-Bool v1) e1 ∪ assigns-if (the-Bool v2) e2

⊆ dom (locals (store s2))
by (rule Un-least)

with True condAnd None show ?thesis
by simp

next
case False
note binop-False = this
show ?thesis
proof (cases need-second-arg binop v1)

case True
with binop-False condAnd
obtain the-Bool v1=True and the-Bool v2 = False

by (simp add: need-second-arg-def)
moreover
from ‹normal s2 ›
have assigns-if (the-Bool v2) e2 ⊆ dom (locals (store s2))

304

by (rule BinOp.hyps [elim-format]) (simp add: True bool-e2)+
with e1-s2
have assigns-if (the-Bool v1) e1 ∪ assigns-if (the-Bool v2) e2

⊆ dom (locals (store s2))
by (rule Un-least)

moreover note binop-False condAnd None
ultimately show ?thesis

by auto
next

case False
with binop-False condAnd
have the-Bool v1=False

by (simp add: need-second-arg-def)
with e1-s2
show ?thesis

using binop-False condAnd None by auto
qed

qed
next

assume condOr : binop = CondOr
show ?thesis
proof (cases the-Bool (eval-binop binop v1 v2))

case False
with condOr
have need-second: need-second-arg binop v1

by (simp add: need-second-arg-def)
from ‹normal s2 ›
have assigns-if (the-Bool v2) e2 ⊆ dom (locals (store s2))

by (rule BinOp.hyps [elim-format])
(simp add: need-second bool-e2)+

with e1-s2
have assigns-if (the-Bool v1) e1 ∪ assigns-if (the-Bool v2) e2

⊆ dom (locals (store s2))
by (rule Un-least)

with False condOr None show ?thesis
by simp

next
case True
note binop-True = this
show ?thesis
proof (cases need-second-arg binop v1)

case True
with binop-True condOr
obtain the-Bool v1=False and the-Bool v2 = True

by (simp add: need-second-arg-def)
moreover
from ‹normal s2 ›
have assigns-if (the-Bool v2) e2 ⊆ dom (locals (store s2))

by (rule BinOp.hyps [elim-format]) (simp add: True bool-e2)+
with e1-s2
have assigns-if (the-Bool v1) e1 ∪ assigns-if (the-Bool v2) e2

⊆ dom (locals (store s2))
by (rule Un-least)

moreover note binop-True condOr None
ultimately show ?thesis

by auto
next

case False
with binop-True condOr

Theory DefiniteAssignmentCorrect 305

have the-Bool v1=True
by (simp add: need-second-arg-def)

with e1-s2
show ?thesis

using binop-True condOr None by auto
qed

qed
qed

next
case False
note ‹¬ (binop = CondAnd ∨ binop = CondOr)›
from BinOp.hyps
have

prg Env`Norm s0 −BinOp binop e1 e2−�eval-binop binop v1 v2→ s2
by − (rule eval.BinOp)

moreover note ‹normal s2 ›
ultimately
have assignsE (BinOp binop e1 e2) ⊆ dom (locals (store s2))

by (rule assignsE-good-approx)
with False None
show ?thesis

by simp
qed

qed
next

case Super
note ‹Env`Super ::−PrimT Boolean›
hence False

by cases simp
thus ?case ..

next
case (Acc s0 va v f s1)
from ‹prg Env`Norm s0 −va=�(v, f)→ s1 › and ‹normal s1 ›
have assignsV va ⊆ dom (locals (store s1))

by (rule assignsV-good-approx)
thus ?case by simp

next
case (Ass s0 va w f s1 e v s2)
hence prg Env`Norm s0 −va := e−�v→ assign f v s2

by − (rule eval.Ass)
moreover note ‹normal (assign f v s2)›
ultimately
have assignsE (va := e) ⊆ dom (locals (store (assign f v s2)))

by (rule assignsE-good-approx)
thus ?case by simp

next
case (Cond s0 e0 b s1 e1 e2 v s2)
from ‹Env`e0 ? e1 : e2 ::−PrimT Boolean›
obtain wt-e1 : Env`e1 ::−PrimT Boolean and

wt-e2 : Env`e2 ::−PrimT Boolean
by cases (auto dest: widen-Boolean2)

note eval-e0 = ‹prg Env`Norm s0 −e0−�b→ s1 ›
have e0-s2 : assignsE e0 ⊆ dom (locals (store s2))
proof −

note eval-e0
moreover
from Cond.hyps and ‹normal s2 › have normal s1

by − (erule eval-no-abrupt-lemma [rule-format],simp)
ultimately

306

have assignsE e0 ⊆ dom (locals (store s1))
by (rule assignsE-good-approx)

also
from Cond
have . . . ⊆ dom (locals (store s2))

by − (erule dom-locals-eval-mono [elim-format],simp)
finally show ?thesis .

qed
show ?case
proof (cases constVal e0)

case None
have assigns-if (the-Bool v) e1 ∩ assigns-if (the-Bool v) e2

⊆ dom (locals (store s2))
proof (cases the-Bool b)

case True
from ‹normal s2 ›
have assigns-if (the-Bool v) e1 ⊆ dom (locals (store s2))

by (rule Cond.hyps [elim-format]) (simp-all add: wt-e1 True)
thus ?thesis

by blast
next

case False
from ‹normal s2 ›
have assigns-if (the-Bool v) e2 ⊆ dom (locals (store s2))

by (rule Cond.hyps [elim-format]) (simp-all add: wt-e2 False)
thus ?thesis

by blast
qed
with e0-s2
have assignsE e0 ∪

(assigns-if (the-Bool v) e1 ∩ assigns-if (the-Bool v) e2)
⊆ dom (locals (store s2))

by (rule Un-least)
with None show ?thesis

by simp
next

case (Some c)
from this eval-e0 have eq-b-c: b=c

by (rule constVal-eval-elim)
show ?thesis
proof (cases the-Bool c)

case True
from ‹normal s2 ›
have assigns-if (the-Bool v) e1 ⊆ dom (locals (store s2))

by (rule Cond.hyps [elim-format]) (simp-all add: eq-b-c True wt-e1)
with e0-s2
have assignsE e0 ∪ assigns-if (the-Bool v) e1 ⊆ . . .

by (rule Un-least)
with Some True show ?thesis

by simp
next

case False
from ‹normal s2 ›
have assigns-if (the-Bool v) e2 ⊆ dom (locals (store s2))

by (rule Cond.hyps [elim-format]) (simp-all add: eq-b-c False wt-e2)
with e0-s2
have assignsE e0 ∪ assigns-if (the-Bool v) e2 ⊆ . . .

by (rule Un-least)
with Some False show ?thesis

Theory DefiniteAssignmentCorrect 307

by simp
qed

qed
next

case (Call s0 e a s1 args vs s2 D mode statT mn pTs s3 s3 ′ accC v s4)
hence

prg Env`Norm s0 −({accC ,statT ,mode}e·mn({pTs}args))−�v→
(set-lvars (locals (store s2)) s4)

by − (rule eval.Call)
hence assignsE ({accC ,statT ,mode}e·mn({pTs}args))

⊆ dom (locals (store ((set-lvars (locals (store s2))) s4)))
using ‹normal ((set-lvars (locals (snd s2))) s4)›
by (rule assignsE-good-approx)

thus ?case by simp
next

case Methd show ?case by simp
next

case Body show ?case by simp
qed simp-all — all the statements and variables
from eval bool show ?thesis

by (rule generalized [elim-format]) simp+
qed

lemma assigns-if-good-approx ′:
assumes eval: G`s0 −e−�b→ s1

and normal: normal s1
and bool: (|prg=G,cls=C ,lcl=L|)`e::− (PrimT Boolean)

shows assigns-if (the-Bool b) e ⊆ dom (locals (store s1))
proof −

from eval have prg (|prg=G,cls=C ,lcl=L|)`s0 −e−�b→ s1 by simp
from this normal bool show ?thesis

by (rule assigns-if-good-approx)
qed

lemma subset-Intl: A ⊆ C =⇒ A ∩ B ⊆ C
by blast

lemma subset-Intr : B ⊆ C =⇒ A ∩ B ⊆ C
by blast

lemma da-good-approx:
assumes eval: prg Env`s0 −t�→ (v,s1) and

wt: Env`t::T (is ?Wt Env t T) and
da: Env` dom (locals (store s0)) »t» A (is ?Da Env s0 t A) and
wf : wf-prog (prg Env)

shows (normal s1 −→ (nrm A ⊆ dom (locals (store s1)))) ∧
(∀ l. abrupt s1 = Some (Jump (Break l)) ∧ normal s0

−→ (brk A l ⊆ dom (locals (store s1)))) ∧
(abrupt s1 = Some (Jump Ret) ∧ normal s0

−→ Result ∈ dom (locals (store s1)))
(is ?NormalAssigned s1 A ∧ ?BreakAssigned s0 s1 A ∧ ?ResAssigned s0 s1)

proof −
note inj-term-simps [simp]
obtain G where G: prg Env = G by (cases Env) simp
with eval have eval: G`s0 −t�→ (v,s1) by simp
from G wf have wf : wf-prog G by simp
let ?HypObj = λ t s0 s1 .
∀ Env T A. ?Wt Env t T −→ ?Da Env s0 t A −→ prg Env = G

308

−→ ?NormalAssigned s1 A ∧ ?BreakAssigned s0 s1 A ∧ ?ResAssigned s0 s1
— Goal in object logic variant
let ?Hyp = λt s0 s1 . (

∧
Env T A. [[?Wt Env t T ; ?Da Env s0 t A; prg Env = G]]

=⇒ ?NormalAssigned s1 A ∧ ?BreakAssigned s0 s1 A ∧ ?ResAssigned s0 s1)
from eval and wt da G
show ?thesis
proof (induct arbitrary: Env T A)

case (Abrupt xc s t Env T A)
have da: Env` dom (locals s) »t» A using Abrupt.prems by simp
have ?NormalAssigned (Some xc,s) A

by simp
moreover
have ?BreakAssigned (Some xc,s) (Some xc,s) A

by simp
moreover have ?ResAssigned (Some xc,s) (Some xc,s)

by simp
ultimately show ?case by (intro conjI)

next
case (Skip s Env T A)
have da: Env` dom (locals (store (Norm s))) »〈Skip〉» A

using Skip.prems by simp
hence nrm A = dom (locals (store (Norm s)))

by (rule da-elim-cases) simp
hence ?NormalAssigned (Norm s) A

by auto
moreover
have ?BreakAssigned (Norm s) (Norm s) A

by simp
moreover have ?ResAssigned (Norm s) (Norm s)

by simp
ultimately show ?case by (intro conjI)

next
case (Expr s0 e v s1 Env T A)
from Expr .prems
show ?NormalAssigned s1 A ∧ ?BreakAssigned (Norm s0) s1 A

∧ ?ResAssigned (Norm s0) s1
by (elim wt-elim-cases da-elim-cases)

(rule Expr .hyps, auto)
next

case (Lab s0 c s1 j Env T A)
note G = ‹prg Env = G›
from Lab.prems
obtain C l where

da-c: Env` dom (locals (snd (Norm s0))) »〈c〉» C and
A: nrm A = nrm C ∩ (brk C) l brk A = rmlab l (brk C) and
j: j = Break l

by − (erule da-elim-cases, simp)
from Lab.prems
have wt-c: Env`c::

√

by − (erule wt-elim-cases, simp)
from wt-c da-c G and Lab.hyps
have norm-c: ?NormalAssigned s1 C and

brk-c: ?BreakAssigned (Norm s0) s1 C and
res-c: ?ResAssigned (Norm s0) s1

by simp-all
have ?NormalAssigned (abupd (absorb j) s1) A
proof

assume normal: normal (abupd (absorb j) s1)
show nrm A ⊆ dom (locals (store (abupd (absorb j) s1)))

Theory DefiniteAssignmentCorrect 309

proof (cases abrupt s1)
case None
with norm-c A
show ?thesis

by auto
next

case Some
with normal j
have abrupt s1 = Some (Jump (Break l))

by (auto dest: absorb-Some-NoneD)
with brk-c A
show ?thesis

by auto
qed

qed
moreover
have ?BreakAssigned (Norm s0) (abupd (absorb j) s1) A
proof −

have (brk A l ′ ⊆ dom (locals (store (abupd (absorb j) s1))))
if break: abrupt (abupd (absorb j) s1) = Some (Jump (Break l ′)) for l ′

proof −
from j that have l 6=l ′

by (cases s1) (auto dest!: absorb-Some-JumpD)
hence (rmlab l (brk C)) l ′= (brk C) l ′

by simp
with break brk-c A show ?thesis

by (cases s1) auto
qed
then show ?thesis

by simp
qed
moreover
from res-c have ?ResAssigned (Norm s0) (abupd (absorb j) s1)

by (cases s1) (simp add: absorb-def)
ultimately show ?case by (intro conjI)

next
case (Comp s0 c1 s1 c2 s2 Env T A)
note G = ‹prg Env = G›
from Comp.prems
obtain C1 C2

where da-c1 : Env` dom (locals (snd (Norm s0))) »〈c1 〉» C1 and
da-c2 : Env` nrm C1 »〈c2 〉» C2 and

A: nrm A = nrm C2 brk A = (brk C1) ⇒∩ (brk C2)
by (elim da-elim-cases) simp

from Comp.prems
obtain wt-c1 : Env`c1 ::

√
and

wt-c2 : Env`c2 ::
√

by (elim wt-elim-cases) simp
note ‹PROP ?Hyp (In1r c1) (Norm s0) s1 ›
with wt-c1 da-c1 G
obtain nrm-c1 : ?NormalAssigned s1 C1 and

brk-c1 : ?BreakAssigned (Norm s0) s1 C1 and
res-c1 : ?ResAssigned (Norm s0) s1

by simp
show ?case
proof (cases normal s1)

case True
with nrm-c1 have nrm C1 ⊆ dom (locals (snd s1)) by iprover
with da-c2 obtain C2 ′

310

where da-c2 ′: Env` dom (locals (snd s1)) »〈c2 〉» C2 ′ and
nrm-c2 : nrm C2 ⊆ nrm C2 ′ and
brk-c2 : ∀ l. brk C2 l ⊆ brk C2 ′ l

by (rule da-weakenE) iprover
note ‹PROP ?Hyp (In1r c2) s1 s2 ›
with wt-c2 da-c2 ′ G
obtain nrm-c2 ′: ?NormalAssigned s2 C2 ′ and

brk-c2 ′: ?BreakAssigned s1 s2 C2 ′ and
res-c2 : ?ResAssigned s1 s2

by simp
from nrm-c2 ′ nrm-c2 A
have ?NormalAssigned s2 A

by blast
moreover from brk-c2 ′ brk-c2 A
have ?BreakAssigned s1 s2 A

by fastforce
with True
have ?BreakAssigned (Norm s0) s2 A by simp
moreover from res-c2 True
have ?ResAssigned (Norm s0) s2

by simp
ultimately show ?thesis by (intro conjI)

next
case False
with ‹G`s1 −c2→ s2 ›
have eq-s1-s2 : s2=s1 by auto
with False have ?NormalAssigned s2 A by blast
moreover
have ?BreakAssigned (Norm s0) s2 A
proof (cases ∃ l. abrupt s1 = Some (Jump (Break l)))

case True
then obtain l where l: abrupt s1 = Some (Jump (Break l)) ..
with brk-c1
have brk C1 l ⊆ dom (locals (store s1))

by simp
with A eq-s1-s2
have brk A l ⊆ dom (locals (store s2))

by auto
with l eq-s1-s2
show ?thesis by simp

next
case False
with eq-s1-s2 show ?thesis by simp

qed
moreover from False res-c1 eq-s1-s2
have ?ResAssigned (Norm s0) s2

by simp
ultimately show ?thesis by (intro conjI)

qed
next

case (If s0 e b s1 c1 c2 s2 Env T A)
note G = ‹prg Env = G›
with If .hyps have eval-e: prg Env `Norm s0 −e−�b→ s1 by simp
from If .prems
obtain E C1 C2 where

da-e: Env` dom (locals (store ((Norm s0)::state))) »〈e〉» E and
da-c1 : Env` (dom (locals (store ((Norm s0)::state)))

∪ assigns-if True e) »〈c1 〉» C1 and
da-c2 : Env` (dom (locals (store ((Norm s0)::state)))

Theory DefiniteAssignmentCorrect 311

∪ assigns-if False e) »〈c2 〉» C2 and
A: nrm A = nrm C1 ∩ nrm C2 brk A = brk C1 ⇒∩ brk C2
by (elim da-elim-cases)

from If .prems
obtain

wt-e: Env`e::− PrimT Boolean and
wt-c1 : Env`c1 ::

√
and

wt-c2 : Env`c2 ::
√

by (elim wt-elim-cases)
from If .hyps have
s0-s1 :dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))
by (elim dom-locals-eval-mono-elim)

show ?case
proof (cases normal s1)

case True
note normal-s1 = this
show ?thesis
proof (cases the-Bool b)

case True
from eval-e normal-s1 wt-e
have assigns-if True e ⊆ dom (locals (store s1))

by (rule assigns-if-good-approx [elim-format]) (simp add: True)
with s0-s1
have dom (locals (store ((Norm s0)::state))) ∪ assigns-if True e ⊆ . . .

by (rule Un-least)
with da-c1 obtain C1 ′

where da-c1 ′: Env` dom (locals (store s1)) »〈c1 〉» C1 ′ and
nrm-c1 : nrm C1 ⊆ nrm C1 ′ and
brk-c1 : ∀ l. brk C1 l ⊆ brk C1 ′ l

by (rule da-weakenE) iprover
from If .hyps True have PROP ?Hyp (In1r c1) s1 s2 by simp
with wt-c1 da-c1 ′

obtain nrm-c1 ′: ?NormalAssigned s2 C1 ′ and
brk-c1 ′: ?BreakAssigned s1 s2 C1 ′ and
res-c1 : ?ResAssigned s1 s2

using G by simp
from nrm-c1 ′ nrm-c1 A
have ?NormalAssigned s2 A

by blast
moreover from brk-c1 ′ brk-c1 A
have ?BreakAssigned s1 s2 A

by fastforce
with normal-s1
have ?BreakAssigned (Norm s0) s2 A by simp
moreover from res-c1 normal-s1 have ?ResAssigned (Norm s0) s2

by simp
ultimately show ?thesis by (intro conjI)

next
case False
from eval-e normal-s1 wt-e
have assigns-if False e ⊆ dom (locals (store s1))

by (rule assigns-if-good-approx [elim-format]) (simp add: False)
with s0-s1
have dom (locals (store ((Norm s0)::state)))∪ assigns-if False e ⊆ . . .

by (rule Un-least)
with da-c2 obtain C2 ′

where da-c2 ′: Env` dom (locals (store s1)) »〈c2 〉» C2 ′ and
nrm-c2 : nrm C2 ⊆ nrm C2 ′ and
brk-c2 : ∀ l. brk C2 l ⊆ brk C2 ′ l

312

by (rule da-weakenE) iprover
from If .hyps False have PROP ?Hyp (In1r c2) s1 s2 by simp
with wt-c2 da-c2 ′

obtain nrm-c2 ′: ?NormalAssigned s2 C2 ′ and
brk-c2 ′: ?BreakAssigned s1 s2 C2 ′ and
res-c2 : ?ResAssigned s1 s2

using G by simp
from nrm-c2 ′ nrm-c2 A
have ?NormalAssigned s2 A

by blast
moreover from brk-c2 ′ brk-c2 A
have ?BreakAssigned s1 s2 A

by fastforce
with normal-s1
have ?BreakAssigned (Norm s0) s2 A by simp
moreover from res-c2 normal-s1 have ?ResAssigned (Norm s0) s2

by simp
ultimately show ?thesis by (intro conjI)

qed
next

case False
then obtain abr where abr : abrupt s1 = Some abr

by (cases s1) auto
moreover
from eval-e - wt-e have

∧
j. abrupt s1 6= Some (Jump j)

by (rule eval-expression-no-jump) (simp-all add: G wf)
moreover
have s2 = s1
proof −

from abr and ‹G`s1 −(if the-Bool b then c1 else c2)→ s2 ›
show ?thesis

by (cases s1) simp
qed
ultimately show ?thesis by simp

qed
next

case (Loop s0 e b s1 c s2 l s3 Env T A)
note G = ‹prg Env = G›
with Loop.hyps have eval-e: prg Env`Norm s0 −e−�b→ s1

by (simp (no-asm-simp))
from Loop.prems
obtain E C where

da-e: Env` dom (locals (store ((Norm s0)::state))) »〈e〉» E and
da-c: Env` (dom (locals (store ((Norm s0)::state)))

∪ assigns-if True e) »〈c〉» C and
A: nrm A = nrm C ∩

(dom (locals (store ((Norm s0)::state))) ∪ assigns-if False e)
brk A = brk C

by (elim da-elim-cases)
from Loop.prems
obtain

wt-e: Env`e::−PrimT Boolean and
wt-c: Env`c::

√

by (elim wt-elim-cases)
from wt-e da-e G
obtain res-s1 : ?ResAssigned (Norm s0) s1

by (elim Loop.hyps [elim-format]) simp+
from Loop.hyps have

s0-s1 :dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))

Theory DefiniteAssignmentCorrect 313

by (elim dom-locals-eval-mono-elim)
show ?case
proof (cases normal s1)

case True
note normal-s1 = this
show ?thesis
proof (cases the-Bool b)

case True
with Loop.hyps obtain

eval-c: G`s1 −c→ s2 and
eval-while: G`abupd (absorb (Cont l)) s2 −l· While(e) c→ s3
by simp

from Loop.hyps True
have ?HypObj (In1r c) s1 s2 by simp
note hyp-c = this [rule-format]
from Loop.hyps True
have ?HypObj (In1r (l· While(e) c)) (abupd (absorb (Cont l)) s2) s3

by simp
note hyp-while = this [rule-format]
from eval-e normal-s1 wt-e
have assigns-if True e ⊆ dom (locals (store s1))

by (rule assigns-if-good-approx [elim-format]) (simp add: True)
with s0-s1
have dom (locals (store ((Norm s0)::state))) ∪ assigns-if True e ⊆ . . .

by (rule Un-least)
with da-c obtain C ′

where da-c ′: Env` dom (locals (store s1)) »〈c〉» C ′ and
nrm-C-C ′: nrm C ⊆ nrm C ′ and
brk-C-C ′: ∀ l. brk C l ⊆ brk C ′ l

by (rule da-weakenE) iprover
from hyp-c wt-c da-c ′

obtain nrm-C ′: ?NormalAssigned s2 C ′ and
brk-C ′: ?BreakAssigned s1 s2 C ′ and
res-s2 : ?ResAssigned s1 s2
using G by simp

show ?thesis
proof (cases normal s2 ∨ abrupt s2 = Some (Jump (Cont l)))

case True
from Loop.prems obtain

wt-while: Env`In1r (l· While(e) c)::T and
da-while: Env` dom (locals (store ((Norm s0)::state)))

»〈l· While(e) c〉» A
by simp

have dom (locals (store ((Norm s0)::state)))
⊆ dom (locals (store (abupd (absorb (Cont l)) s2)))

proof −
note s0-s1
also from eval-c
have dom (locals (store s1)) ⊆ dom (locals (store s2))

by (rule dom-locals-eval-mono-elim)
also have . . . ⊆ dom (locals (store (abupd (absorb (Cont l)) s2)))

by simp
finally show ?thesis .

qed
with da-while obtain A ′

where
da-while ′: Env` dom (locals (store (abupd (absorb (Cont l)) s2)))

»〈l· While(e) c〉» A ′

and nrm-A-A ′: nrm A ⊆ nrm A ′

314

and brk-A-A ′: ∀ l. brk A l ⊆ brk A ′ l
by (rule da-weakenE) simp

with wt-while hyp-while
obtain nrm-A ′: ?NormalAssigned s3 A ′ and

brk-A ′: ?BreakAssigned (abupd (absorb (Cont l)) s2) s3 A ′ and
res-s3 : ?ResAssigned (abupd (absorb (Cont l)) s2) s3

using G by simp
from nrm-A-A ′ nrm-A ′

have ?NormalAssigned s3 A
by blast

moreover
have ?BreakAssigned (Norm s0) s3 A
proof −

from brk-A-A ′ brk-A ′

have ?BreakAssigned (abupd (absorb (Cont l)) s2) s3 A
by fastforce

moreover
from True have normal (abupd (absorb (Cont l)) s2)

by (cases s2) auto
ultimately show ?thesis

by simp
qed
moreover from res-s3 True have ?ResAssigned (Norm s0) s3

by auto
ultimately show ?thesis by (intro conjI)

next
case False
then obtain abr where

abrupt s2 = Some abr and
abrupt (abupd (absorb (Cont l)) s2) = Some abr
by auto

with eval-while
have eq-s3-s2 : s3=s2

by auto
with nrm-C-C ′ nrm-C ′ A
have ?NormalAssigned s3 A

by auto
moreover
from eq-s3-s2 brk-C-C ′ brk-C ′ normal-s1 A
have ?BreakAssigned (Norm s0) s3 A

by fastforce
moreover
from eq-s3-s2 res-s2 normal-s1 have ?ResAssigned (Norm s0) s3

by simp
ultimately show ?thesis by (intro conjI)

qed
next

case False
with Loop.hyps have eq-s3-s1 : s3=s1

by simp
from eq-s3-s1 res-s1
have res-s3 : ?ResAssigned (Norm s0) s3

by simp
from eval-e True wt-e
have assigns-if False e ⊆ dom (locals (store s1))

by (rule assigns-if-good-approx [elim-format]) (simp add: False)
with s0-s1
have dom (locals (store ((Norm s0)::state)))∪assigns-if False e ⊆ . . .

by (rule Un-least)

Theory DefiniteAssignmentCorrect 315

hence nrm C ∩
(dom (locals (store ((Norm s0)::state))) ∪ assigns-if False e)
⊆ dom (locals (store s1))

by (rule subset-Intr)
with normal-s1 A eq-s3-s1
have ?NormalAssigned s3 A

by simp
moreover
from normal-s1 eq-s3-s1
have ?BreakAssigned (Norm s0) s3 A

by simp
moreover note res-s3
ultimately show ?thesis by (intro conjI)

qed
next

case False
then obtain abr where abr : abrupt s1 = Some abr

by (cases s1) auto
moreover
from eval-e - wt-e have no-jmp:

∧
j. abrupt s1 6= Some (Jump j)

by (rule eval-expression-no-jump) (simp-all add: wf G)
moreover
have eq-s3-s1 : s3=s1
proof (cases the-Bool b)

case True
with Loop.hyps obtain

eval-c: G`s1 −c→ s2 and
eval-while: G`abupd (absorb (Cont l)) s2 −l· While(e) c→ s3
by simp

from eval-c abr have s2=s1 by auto
moreover from calculation no-jmp have abupd (absorb (Cont l)) s2=s2

by (cases s1) (simp add: absorb-def)
ultimately show ?thesis

using eval-while abr
by auto

next
case False
with Loop.hyps show ?thesis by simp

qed
moreover
from eq-s3-s1 res-s1
have res-s3 : ?ResAssigned (Norm s0) s3

by simp
ultimately show ?thesis

by simp
qed

next
case (Jmp s j Env T A)
have ?NormalAssigned (Some (Jump j),s) A by simp
moreover
from Jmp.prems
obtain ret: j = Ret −→ Result ∈ dom (locals (store (Norm s))) and

brk: brk A = (case j of
Break l ⇒ λ k. if k=l

then dom (locals (store ((Norm s)::state)))
else UNIV

| Cont l ⇒ λ k. UNIV
| Ret ⇒ λ k. UNIV)

by (elim da-elim-cases) simp

316

from brk have ?BreakAssigned (Norm s) (Some (Jump j),s) A
by simp

moreover from ret have ?ResAssigned (Norm s) (Some (Jump j),s)
by simp

ultimately show ?case by (intro conjI)
next

case (Throw s0 e a s1 Env T A)
note G = ‹prg Env = G›
from Throw.prems obtain E where

da-e: Env` dom (locals (store ((Norm s0)::state))) »〈e〉» E
by (elim da-elim-cases)

from Throw.prems
obtain eT where wt-e: Env`e::−eT

by (elim wt-elim-cases)
have ?NormalAssigned (abupd (throw a) s1) A

by (cases s1) (simp add: throw-def)
moreover
have ?BreakAssigned (Norm s0) (abupd (throw a) s1) A
proof −

from G Throw.hyps have eval-e: prg Env`Norm s0 −e−�a→ s1
by (simp (no-asm-simp))

from eval-e - wt-e
have

∧
l. abrupt s1 6= Some (Jump (Break l))

by (rule eval-expression-no-jump) (simp-all add: wf G)
hence

∧
l. abrupt (abupd (throw a) s1) 6= Some (Jump (Break l))

by (cases s1) (simp add: throw-def abrupt-if-def)
thus ?thesis

by simp
qed
moreover
from wt-e da-e G have ?ResAssigned (Norm s0) s1

by (elim Throw.hyps [elim-format]) simp+
hence ?ResAssigned (Norm s0) (abupd (throw a) s1)

by (cases s1) (simp add: throw-def abrupt-if-def)
ultimately show ?case by (intro conjI)

next
case (Try s0 c1 s1 s2 C vn c2 s3 Env T A)
note G = ‹prg Env = G›
from Try.prems obtain C1 C2 where

da-c1 : Env` dom (locals (store ((Norm s0)::state))) »〈c1 〉» C1 and
da-c2 :
Env(|lcl := (lcl Env)(VName vn 7→Class C)|)
` (dom (locals (store ((Norm s0)::state))) ∪ {VName vn}) »〈c2 〉» C2 and

A: nrm A = nrm C1 ∩ nrm C2 brk A = brk C1 ⇒∩ brk C2
by (elim da-elim-cases) simp

from Try.prems obtain
wt-c1 : Env`c1 ::

√
and

wt-c2 : Env(|lcl := (lcl Env)(VName vn 7→Class C)|)`c2 ::
√

by (elim wt-elim-cases)
have sxalloc: prg Env`s1 −sxalloc→ s2 using Try.hyps G

by (simp (no-asm-simp))
note ‹PROP ?Hyp (In1r c1) (Norm s0) s1 ›
with wt-c1 da-c1 G
obtain nrm-C1 : ?NormalAssigned s1 C1 and

brk-C1 : ?BreakAssigned (Norm s0) s1 C1 and
res-s1 : ?ResAssigned (Norm s0) s1

by simp
show ?case
proof (cases normal s1)

Theory DefiniteAssignmentCorrect 317

case True
with nrm-C1 have nrm C1 ∩ nrm C2 ⊆ dom (locals (store s1))

by auto
moreover
have s3=s1
proof −

from sxalloc True have eq-s2-s1 : s2=s1
by (cases s1) (auto elim: sxalloc-elim-cases)

with True have ¬ G,s2`catch C
by (simp add: catch-def)

with Try.hyps have s3=s2
by simp

with eq-s2-s1 show ?thesis by simp
qed
ultimately show ?thesis

using True A res-s1 by simp
next

case False
note not-normal-s1 = this
show ?thesis
proof (cases ∃ l. abrupt s1 = Some (Jump (Break l)))

case True
then obtain l where l: abrupt s1 = Some (Jump (Break l))

by auto
with brk-C1 have (brk C1 ⇒∩ brk C2) l ⊆ dom (locals (store s1))

by auto
moreover have s3=s1
proof −

from sxalloc l have eq-s2-s1 : s2=s1
by (cases s1) (auto elim: sxalloc-elim-cases)

with l have ¬ G,s2`catch C
by (simp add: catch-def)

with Try.hyps have s3=s2
by simp

with eq-s2-s1 show ?thesis by simp
qed
ultimately show ?thesis

using l A res-s1 by simp
next

case False
note abrupt-no-break = this
show ?thesis
proof (cases G,s2`catch C)

case True
with Try.hyps have ?HypObj (In1r c2) (new-xcpt-var vn s2) s3

by simp
note hyp-c2 = this [rule-format]
have (dom (locals (store ((Norm s0)::state))) ∪ {VName vn})

⊆ dom (locals (store (new-xcpt-var vn s2)))
proof −

from ‹G`Norm s0 −c1→ s1 ›
have dom (locals (store ((Norm s0)::state)))

⊆ dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)

also
from sxalloc
have . . . ⊆ dom (locals (store s2))

by (rule dom-locals-sxalloc-mono)
also

318

have . . . ⊆ dom (locals (store (new-xcpt-var vn s2)))
by (cases s2) (simp add: new-xcpt-var-def , blast)

also
have {VName vn} ⊆ . . .

by (cases s2) simp
ultimately show ?thesis

by (rule Un-least)
qed
with da-c2
obtain C2 ′ where

da-C2 ′: Env(|lcl := (lcl Env)(VName vn 7→Class C)|)
` dom (locals (store (new-xcpt-var vn s2))) »〈c2 〉» C2 ′

and nrm-C2 ′: nrm C2 ⊆ nrm C2 ′

and brk-C2 ′: ∀ l. brk C2 l ⊆ brk C2 ′ l
by (rule da-weakenE) simp

from wt-c2 da-C2 ′ G and hyp-c2
obtain nrmAss-C2 : ?NormalAssigned s3 C2 ′ and

brkAss-C2 : ?BreakAssigned (new-xcpt-var vn s2) s3 C2 ′ and
resAss-s3 : ?ResAssigned (new-xcpt-var vn s2) s3

by simp
from nrmAss-C2 nrm-C2 ′ A
have ?NormalAssigned s3 A

by auto
moreover
have ?BreakAssigned (Norm s0) s3 A
proof −

from brkAss-C2 have ?BreakAssigned (Norm s0) s3 C2 ′

by (cases s2) (auto simp add: new-xcpt-var-def)
with brk-C2 ′ A show ?thesis

by fastforce
qed
moreover
from resAss-s3 have ?ResAssigned (Norm s0) s3

by (cases s2) (simp add: new-xcpt-var-def)
ultimately show ?thesis by (intro conjI)

next
case False
with Try.hyps
have eq-s3-s2 : s3=s2 by simp
moreover from sxalloc not-normal-s1 abrupt-no-break
obtain ¬ normal s2

∀ l. abrupt s2 6= Some (Jump (Break l))
by − (rule sxalloc-cases,auto)

ultimately obtain
?NormalAssigned s3 A and ?BreakAssigned (Norm s0) s3 A
by (cases s2) auto

moreover have ?ResAssigned (Norm s0) s3
proof (cases abrupt s1 = Some (Jump Ret))

case True
with sxalloc have s2=s1

by (elim sxalloc-cases) auto
with res-s1 eq-s3-s2 show ?thesis by simp

next
case False
with sxalloc
have abrupt s2 6= Some (Jump Ret)

by (rule sxalloc-no-jump)
with eq-s3-s2 show ?thesis

by simp

Theory DefiniteAssignmentCorrect 319

qed
ultimately show ?thesis by (intro conjI)

qed
qed

qed
next

case (Fin s0 c1 x1 s1 c2 s2 s3 Env T A)
note G = ‹prg Env = G›
from Fin.prems obtain C1 C2 where

da-C1 : Env` dom (locals (store ((Norm s0)::state))) »〈c1 〉» C1 and
da-C2 : Env` dom (locals (store ((Norm s0)::state))) »〈c2 〉» C2 and
nrm-A: nrm A = nrm C1 ∪ nrm C2 and
brk-A: brk A = ((brk C1) ⇒∪∀ (nrm C2)) ⇒∩ (brk C2)
by (elim da-elim-cases) simp

from Fin.prems obtain
wt-c1 : Env`c1 ::

√
and

wt-c2 : Env`c2 ::
√

by (elim wt-elim-cases)
note ‹PROP ?Hyp (In1r c1) (Norm s0) (x1 ,s1)›
with wt-c1 da-C1 G
obtain nrmAss-C1 : ?NormalAssigned (x1 ,s1) C1 and

brkAss-C1 : ?BreakAssigned (Norm s0) (x1 ,s1) C1 and
resAss-s1 : ?ResAssigned (Norm s0) (x1 ,s1)

by simp
obtain nrmAss-C2 : ?NormalAssigned s2 C2 and

brkAss-C2 : ?BreakAssigned (Norm s1) s2 C2 and
resAss-s2 : ?ResAssigned (Norm s1) s2

proof −
from Fin.hyps
have dom (locals (store ((Norm s0)::state)))

⊆ dom (locals (store (x1 ,s1)))
by − (rule dom-locals-eval-mono-elim)

with da-C2 obtain C2 ′

where
da-C2 ′: Env` dom (locals (store (x1 ,s1))) »〈c2 〉» C2 ′ and
nrm-C2 ′: nrm C2 ⊆ nrm C2 ′ and
brk-C2 ′: ∀ l. brk C2 l ⊆ brk C2 ′ l
by (rule da-weakenE) simp

note ‹PROP ?Hyp (In1r c2) (Norm s1) s2 ›
with wt-c2 da-C2 ′ G
obtain nrmAss-C2 ′: ?NormalAssigned s2 C2 ′ and

brkAss-C2 ′: ?BreakAssigned (Norm s1) s2 C2 ′ and
resAss-s2 ′: ?ResAssigned (Norm s1) s2

by simp
from nrmAss-C2 ′ nrm-C2 ′ have ?NormalAssigned s2 C2

by blast
moreover
from brkAss-C2 ′ brk-C2 ′ have ?BreakAssigned (Norm s1) s2 C2

by fastforce
ultimately
show ?thesis

using that resAss-s2 ′ by simp
qed
note s3 = ‹s3 = (if ∃ err . x1 = Some (Error err) then (x1 , s1)

else abupd (abrupt-if (x1 6= None) x1) s2)›
have s1-s2 : dom (locals s1) ⊆ dom (locals (store s2))
proof −

from ‹G`Norm s1 −c2→ s2 ›
show ?thesis

320

by (rule dom-locals-eval-mono-elim) simp
qed

have ?NormalAssigned s3 A
proof

assume normal-s3 : normal s3
show nrm A ⊆ dom (locals (snd s3))
proof −

have nrm C1 ⊆ dom (locals (snd s3))
proof −

from normal-s3 s3
have normal (x1 ,s1)

by (cases s2) (simp add: abrupt-if-def)
with normal-s3 nrmAss-C1 s3 s1-s2
show ?thesis

by fastforce
qed
moreover
have nrm C2 ⊆ dom (locals (snd s3))
proof −

from normal-s3 s3
have normal s2

by (cases s2) (simp add: abrupt-if-def)
with normal-s3 nrmAss-C2 s3 s1-s2
show ?thesis

by fastforce
qed
ultimately have nrm C1 ∪ nrm C2 ⊆ . . .

by (rule Un-least)
with nrm-A show ?thesis

by simp
qed

qed
moreover
have brk A l ⊆ dom (locals (store s3)) if brk-s3 : abrupt s3 = Some (Jump (Break l)) for l
proof (cases normal s2)

case True
with brk-s3 s3
have s2-s3 : dom (locals (store s2)) ⊆ dom (locals (store s3))

by simp
have brk C1 l ⊆ dom (locals (store s3))
proof −

from True brk-s3 s3 have x1=Some (Jump (Break l))
by (cases s2) (simp add: abrupt-if-def)

with brkAss-C1 s1-s2 s2-s3
show ?thesis

by simp
qed
moreover from True nrmAss-C2 s2-s3
have nrm C2 ⊆ dom (locals (store s3))

by − (rule subset-trans, simp-all)
ultimately
have ((brk C1) ⇒∪∀ (nrm C2)) l ⊆ . . .

by blast
with brk-A show ?thesis

by simp blast
next

case False
note not-normal-s2 = this

Theory DefiniteAssignmentCorrect 321

have s3=s2
proof (cases normal (x1 ,s1))

case True with not-normal-s2 s3 show ?thesis
by (cases s2) (simp add: abrupt-if-def)

next
case False with not-normal-s2 s3 brk-s3 show ?thesis

by (cases s2) (simp add: abrupt-if-def)
qed
with brkAss-C2 brk-s3
have brk C2 l ⊆ dom (locals (store s3))

by simp
with brk-A show ?thesis

by simp blast
qed
hence ?BreakAssigned (Norm s0) s3 A

by simp
moreover
have Result ∈ dom (locals (store s3)) if abr-s3 : abrupt s3 = Some (Jump Ret)
proof (cases x1 = Some (Jump Ret))

case True
note ret-x1 = this
with resAss-s1 have res-s1 : Result ∈ dom (locals s1)

by simp
moreover have dom (locals (store ((Norm s1)::state)))

⊆ dom (locals (store s2))
by (rule dom-locals-eval-mono-elim) (rule Fin.hyps)

ultimately have Result ∈ dom (locals (store s2))
by − (rule subsetD,auto)

with res-s1 s3 show ?thesis
by simp

next
case False
with s3 abr-s3 obtain abrupt s2 = Some (Jump Ret) and s3=s2

by (cases s2) (simp add: abrupt-if-def)
with resAss-s2 show ?thesis

by simp
qed
hence ?ResAssigned (Norm s0) s3

by simp
ultimately show ?case by (intro conjI)

next
case (Init C c s0 s3 s1 s2 Env T A)
note G = ‹prg Env = G›
from Init.hyps
have eval: prg Env` Norm s0 −Init C→ s3

apply (simp only: G)
apply (rule eval.Init, assumption)
apply (cases inited C (globs s0))
apply simp
apply (simp only: if-False)
apply (elim conjE ,intro conjI ,assumption+,simp)
done

from Init.prems and ‹the (class G C) = c›
have c: class G C = Some c

by (elim wt-elim-cases) auto
from Init.prems obtain

nrm-A: nrm A = dom (locals (store ((Norm s0)::state)))
by (elim da-elim-cases) simp

show ?case

322

proof (cases inited C (globs s0))
case True
with Init.hyps have s3=Norm s0 by simp
thus ?thesis

using nrm-A by simp
next

case False
from Init.hyps False G
obtain eval-initC :

prg Env`Norm ((init-class-obj G C) s0)
−(if C = Object then Skip else Init (super c))→ s1 and

eval-init: prg Env`(set-lvars Map.empty) s1 −init c→ s2 and
s3 : s3=(set-lvars (locals (store s1))) s2

by simp
have ?NormalAssigned s3 A
proof

show nrm A ⊆ dom (locals (store s3))
proof −

from nrm-A have nrm A ⊆ dom (locals (init-class-obj G C s0))
by simp

also from eval-initC have . . . ⊆ dom (locals (store s1))
by (rule dom-locals-eval-mono-elim) simp

also from s3 have . . . ⊆ dom (locals (store s3))
by (cases s1) (cases s2 , simp add: init-lvars-def2)

finally show ?thesis .
qed

qed
moreover
from eval
have

∧
j. abrupt s3 6= Some (Jump j)

by (rule eval-statement-no-jump) (auto simp add: wf c G)
then obtain ?BreakAssigned (Norm s0) s3 A

and ?ResAssigned (Norm s0) s3
by simp

ultimately show ?thesis by (intro conjI)
qed

next
case (NewC s0 C s1 a s2 Env T A)
note G = ‹prg Env = G›
from NewC .prems
obtain A: nrm A = dom (locals (store ((Norm s0)::state)))

brk A = (λ l. UNIV)
by (elim da-elim-cases) simp

from wf NewC .prems
have wt-init: Env`(Init C)::

√

by (elim wt-elim-cases) (drule is-acc-classD,simp)
have dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s2))
proof −

have dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))
by (rule dom-locals-eval-mono-elim) (rule NewC .hyps)

also
have . . . ⊆ dom (locals (store s2))

by (rule dom-locals-halloc-mono) (rule NewC .hyps)
finally show ?thesis .

qed
with A have ?NormalAssigned s2 A

by simp
moreover
have abrupt s2 6= Some (Jump j) for j

Theory DefiniteAssignmentCorrect 323

proof −
have eval: prg Env` Norm s0 −NewC C−�Addr a→ s2

unfolding G by (rule eval.NewC NewC .hyps)+
from NewC .prems
obtain T ′ where T=Inl T ′

by (elim wt-elim-cases) simp
with NewC .prems have Env`NewC C ::−T ′

by simp
from eval - this
show ?thesis

by (rule eval-expression-no-jump) (simp-all add: G wf)
qed
hence ?BreakAssigned (Norm s0) s2 A and ?ResAssigned (Norm s0) s2

by simp-all
ultimately show ?case by (intro conjI)

next
case (NewA s0 elT s1 e i s2 a s3 Env T A)
note G = ‹prg Env = G›
from NewA.prems obtain

da-e: Env` dom (locals (store ((Norm s0)::state))) »〈e〉» A
by (elim da-elim-cases)

from NewA.prems obtain
wt-init: Env`init-comp-ty elT ::

√
and

wt-size: Env`e::−PrimT Integer
by (elim wt-elim-cases) (auto dest: wt-init-comp-ty ′)

note halloc = ‹G`abupd (check-neg i) s2−halloc Arr elT (the-Intg i)�a→s3 ›
have dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))

by (rule dom-locals-eval-mono-elim) (rule NewA.hyps)
with da-e obtain A ′ where

da-e ′: Env` dom (locals (store s1)) »〈e〉» A ′

and nrm-A-A ′: nrm A ⊆ nrm A ′

and brk-A-A ′: ∀ l. brk A l ⊆ brk A ′ l
by (rule da-weakenE) simp

note ‹PROP ?Hyp (In1l e) s1 s2 ›
with wt-size da-e ′ G obtain

nrmAss-A ′: ?NormalAssigned s2 A ′ and
brkAss-A ′: ?BreakAssigned s1 s2 A ′

by simp
have s2-s3 : dom (locals (store s2)) ⊆ dom (locals (store s3))
proof −

have dom (locals (store s2))
⊆ dom (locals (store (abupd (check-neg i) s2)))

by (simp)
also have . . . ⊆ dom (locals (store s3))

by (rule dom-locals-halloc-mono) (rule NewA.hyps)
finally show ?thesis .

qed
have ?NormalAssigned s3 A
proof

assume normal-s3 : normal s3
show nrm A ⊆ dom (locals (store s3))
proof −

from halloc normal-s3
have normal (abupd (check-neg i) s2)

by cases simp-all
hence normal s2

by (cases s2) simp
with nrmAss-A ′ nrm-A-A ′ s2-s3 show ?thesis

by blast

324

qed
qed
moreover
have abrupt s3 6= Some (Jump j) for j
proof −

have eval: prg Env` Norm s0 −New elT [e]−�Addr a→ s3
unfolding G by (rule eval.NewA NewA.hyps)+

from NewA.prems
obtain T ′ where T=Inl T ′

by (elim wt-elim-cases) simp
with NewA.prems have Env`New elT [e]::−T ′

by simp
from eval - this
show ?thesis

by (rule eval-expression-no-jump) (simp-all add: G wf)
qed
hence ?BreakAssigned (Norm s0) s3 A and ?ResAssigned (Norm s0) s3

by simp-all
ultimately show ?case by (intro conjI)

next
case (Cast s0 e v s1 s2 cT Env T A)
note G = ‹prg Env = G›
from Cast.prems obtain

da-e: Env` dom (locals (store ((Norm s0)::state))) »〈e〉» A
by (elim da-elim-cases)

from Cast.prems obtain eT where
wt-e: Env`e::−eT
by (elim wt-elim-cases)

note ‹PROP ?Hyp (In1l e) (Norm s0) s1 ›
with wt-e da-e G obtain

nrmAss-A: ?NormalAssigned s1 A and
brkAss-A: ?BreakAssigned (Norm s0) s1 A
by simp

note s2 = ‹s2 = abupd (raise-if (¬ G,snd s1`v fits cT) ClassCast) s1 ›
hence s1-s2 : dom (locals (store s1)) ⊆ dom (locals (store s2))

by simp
have ?NormalAssigned s2 A
proof

assume normal s2
with s2 have normal s1

by (cases s1) simp
with nrmAss-A s1-s2
show nrm A ⊆ dom (locals (store s2))

by blast
qed
moreover
have abrupt s2 6= Some (Jump j) for j
proof −

have eval: prg Env` Norm s0 −Cast cT e−�v→ s2
unfolding G by (rule eval.Cast Cast.hyps)+

from Cast.prems
obtain T ′ where T=Inl T ′

by (elim wt-elim-cases) simp
with Cast.prems have Env`Cast cT e::−T ′

by simp
from eval - this
show ?thesis

by (rule eval-expression-no-jump) (simp-all add: G wf)
qed

Theory DefiniteAssignmentCorrect 325

hence ?BreakAssigned (Norm s0) s2 A and ?ResAssigned (Norm s0) s2
by simp-all

ultimately show ?case by (intro conjI)
next

case (Inst s0 e v s1 b iT Env T A)
note G = ‹prg Env = G›
from Inst.prems obtain

da-e: Env` dom (locals (store ((Norm s0)::state))) »〈e〉» A
by (elim da-elim-cases)

from Inst.prems obtain eT where
wt-e: Env`e::−eT
by (elim wt-elim-cases)

note ‹PROP ?Hyp (In1l e) (Norm s0) s1 ›
with wt-e da-e G obtain

?NormalAssigned s1 A and
?BreakAssigned (Norm s0) s1 A and
?ResAssigned (Norm s0) s1
by simp

thus ?case by (intro conjI)
next

case (Lit s v Env T A)
from Lit.prems
have nrm A = dom (locals (store ((Norm s)::state)))

by (elim da-elim-cases) simp
thus ?case by simp

next
case (UnOp s0 e v s1 unop Env T A)
note G = ‹prg Env = G›
from UnOp.prems obtain

da-e: Env` dom (locals (store ((Norm s0)::state))) »〈e〉» A
by (elim da-elim-cases)

from UnOp.prems obtain eT where
wt-e: Env`e::−eT
by (elim wt-elim-cases)

note ‹PROP ?Hyp (In1l e) (Norm s0) s1 ›
with wt-e da-e G obtain

?NormalAssigned s1 A and
?BreakAssigned (Norm s0) s1 A and
?ResAssigned (Norm s0) s1
by simp

thus ?case by (intro conjI)
next

case (BinOp s0 e1 v1 s1 binop e2 v2 s2 Env T A)
note G = ‹prg Env = G›
from BinOp.hyps
have

eval: prg Env`Norm s0 −BinOp binop e1 e2−�(eval-binop binop v1 v2)→ s2
by (simp only: G) (rule eval.BinOp)

have s0-s1 : dom (locals (store ((Norm s0)::state)))
⊆ dom (locals (store s1))

by (rule dom-locals-eval-mono-elim) (rule BinOp)
also have s1-s2 : dom (locals (store s1)) ⊆ dom (locals (store s2))

by (rule dom-locals-eval-mono-elim) (rule BinOp)
finally
have s0-s2 : dom (locals (store ((Norm s0)::state)))

⊆ dom (locals (store s2)) .
from BinOp.prems obtain e1T e2T

where wt-e1 : Env`e1 ::−e1T
and wt-e2 : Env`e2 ::−e2T

326

and wt-binop: wt-binop (prg Env) binop e1T e2T
and T : T=Inl (PrimT (binop-type binop))

by (elim wt-elim-cases) simp
have ?NormalAssigned s2 A
proof

assume normal-s2 : normal s2
have normal-s1 : normal s1

by (rule eval-no-abrupt-lemma [rule-format]) (rule BinOp.hyps, rule normal-s2)
show nrm A ⊆ dom (locals (store s2))
proof (cases binop=CondAnd)

case True
note CondAnd = this
from BinOp.prems obtain

nrm-A: nrm A = dom (locals (store ((Norm s0)::state)))
∪ (assigns-if True (BinOp CondAnd e1 e2) ∩

assigns-if False (BinOp CondAnd e1 e2))
by (elim da-elim-cases) (simp-all add: CondAnd)

from T BinOp.prems CondAnd
have Env`BinOp binop e1 e2 ::−PrimT Boolean

by (simp)
with eval normal-s2
have ass-if : assigns-if (the-Bool (eval-binop binop v1 v2))

(BinOp binop e1 e2)
⊆ dom (locals (store s2))

by (rule assigns-if-good-approx)
have (assigns-if True (BinOp CondAnd e1 e2) ∩

assigns-if False (BinOp CondAnd e1 e2)) ⊆ . . .
proof (cases the-Bool (eval-binop binop v1 v2))

case True
with ass-if CondAnd
have assigns-if True (BinOp CondAnd e1 e2)

⊆ dom (locals (store s2))
by simp

thus ?thesis by blast
next

case False
with ass-if CondAnd
have assigns-if False (BinOp CondAnd e1 e2)

⊆ dom (locals (store s2))
by (simp only: False)

thus ?thesis by blast
qed
with s0-s2
have dom (locals (store ((Norm s0)::state)))

∪ (assigns-if True (BinOp CondAnd e1 e2) ∩
assigns-if False (BinOp CondAnd e1 e2)) ⊆ . . .

by (rule Un-least)
thus ?thesis by (simp only: nrm-A)

next
case False
note notCondAnd = this
show ?thesis
proof (cases binop=CondOr)

case True
note CondOr = this
from BinOp.prems obtain

nrm-A: nrm A = dom (locals (store ((Norm s0)::state)))
∪ (assigns-if True (BinOp CondOr e1 e2) ∩

assigns-if False (BinOp CondOr e1 e2))

Theory DefiniteAssignmentCorrect 327

by (elim da-elim-cases) (simp-all add: CondOr)
from T BinOp.prems CondOr
have Env`BinOp binop e1 e2 ::−PrimT Boolean

by (simp)
with eval normal-s2
have ass-if : assigns-if (the-Bool (eval-binop binop v1 v2))

(BinOp binop e1 e2)
⊆ dom (locals (store s2))

by (rule assigns-if-good-approx)
have (assigns-if True (BinOp CondOr e1 e2) ∩

assigns-if False (BinOp CondOr e1 e2)) ⊆ . . .
proof (cases the-Bool (eval-binop binop v1 v2))

case True
with ass-if CondOr
have assigns-if True (BinOp CondOr e1 e2)

⊆ dom (locals (store s2))
by (simp)

thus ?thesis by blast
next

case False
with ass-if CondOr
have assigns-if False (BinOp CondOr e1 e2)

⊆ dom (locals (store s2))
by (simp)

thus ?thesis by blast
qed
with s0-s2
have dom (locals (store ((Norm s0)::state)))

∪ (assigns-if True (BinOp CondOr e1 e2) ∩
assigns-if False (BinOp CondOr e1 e2)) ⊆ . . .

by (rule Un-least)
thus ?thesis by (simp only: nrm-A)

next
case False
with notCondAnd obtain notAndOr : binop 6=CondAnd binop 6=CondOr

by simp
from BinOp.prems obtain E1

where da-e1 : Env` dom (locals (snd (Norm s0))) »〈e1 〉» E1
and da-e2 : Env` nrm E1 »〈e2 〉» A

by (elim da-elim-cases) (simp-all add: notAndOr)
note ‹PROP ?Hyp (In1l e1) (Norm s0) s1 ›
with wt-e1 da-e1 G normal-s1
obtain ?NormalAssigned s1 E1

by simp
with normal-s1 have nrm E1 ⊆ dom (locals (store s1)) by iprover
with da-e2 obtain A ′

where da-e2 ′: Env` dom (locals (store s1)) »〈e2 〉» A ′ and
nrm-A-A ′: nrm A ⊆ nrm A ′

by (rule da-weakenE) iprover
from notAndOr have need-second-arg binop v1 by simp
with BinOp.hyps
have PROP ?Hyp (In1l e2) s1 s2 by simp
with wt-e2 da-e2 ′ G
obtain ?NormalAssigned s2 A ′

by simp
with nrm-A-A ′ normal-s2
show nrm A ⊆ dom (locals (store s2))

by blast
qed

328

qed
qed
moreover
have abrupt s2 6= Some (Jump j) for j
proof −

from BinOp.prems T
have Env`In1l (BinOp binop e1 e2)::Inl (PrimT (binop-type binop))

by simp
from eval - this
show ?thesis

by (rule eval-expression-no-jump) (simp-all add: G wf)
qed
hence ?BreakAssigned (Norm s0) s2 A and ?ResAssigned (Norm s0) s2

by simp-all
ultimately show ?case by (intro conjI)

next
case (Super s Env T A)
from Super .prems
have nrm A = dom (locals (store ((Norm s)::state)))

by (elim da-elim-cases) simp
thus ?case by simp

next
case (Acc s0 v w upd s1 Env T A)
show ?case
proof (cases ∃ vn. v = LVar vn)

case True
then obtain vn where vn: v=LVar vn..
from Acc.prems
have nrm A = dom (locals (store ((Norm s0)::state)))

by (simp only: vn) (elim da-elim-cases,simp-all)
moreover
from ‹G`Norm s0 −v=�(w, upd)→ s1 ›
have s1=Norm s0

by (simp only: vn) (elim eval-elim-cases,simp)
ultimately show ?thesis by simp

next
case False
note G = ‹prg Env = G›
from False Acc.prems
have da-v: Env` dom (locals (store ((Norm s0)::state))) »〈v〉» A

by (elim da-elim-cases) simp-all
from Acc.prems obtain vT where

wt-v: Env`v::=vT
by (elim wt-elim-cases)

note ‹PROP ?Hyp (In2 v) (Norm s0) s1 ›
with wt-v da-v G obtain

?NormalAssigned s1 A and
?BreakAssigned (Norm s0) s1 A and
?ResAssigned (Norm s0) s1
by simp

thus ?thesis by (intro conjI)
qed

next
case (Ass s0 var w upd s1 e v s2 Env T A)
note G = ‹prg Env = G›
from Ass.prems obtain varT eT where

wt-var : Env`var ::=varT and
wt-e: Env`e::−eT
by (elim wt-elim-cases) simp

Theory DefiniteAssignmentCorrect 329

have eval-var : prg Env`Norm s0 −var=�(w, upd)→ s1
using Ass.hyps by (simp only: G)

have ?NormalAssigned (assign upd v s2) A
proof

assume normal-ass-s2 : normal (assign upd v s2)
from normal-ass-s2
have normal-s2 : normal s2

by (cases s2) (simp add: assign-def Let-def)
hence normal-s1 : normal s1

by − (rule eval-no-abrupt-lemma [rule-format], rule Ass.hyps)
note hyp-var = ‹PROP ?Hyp (In2 var) (Norm s0) s1 ›
note hyp-e = ‹PROP ?Hyp (In1l e) s1 s2 ›
show nrm A ⊆ dom (locals (store (assign upd v s2)))
proof (cases ∃ vn. var = LVar vn)

case True
then obtain vn where vn: var=LVar vn..
from Ass.prems obtain E where

da-e: Env` dom (locals (store ((Norm s0)::state))) »〈e〉» E and
nrm-A: nrm A = nrm E ∪ {vn}
by (elim da-elim-cases) (use vn in auto)

obtain E ′ where
da-e ′: Env` dom (locals (store s1)) »〈e〉» E ′ and
E-E ′: nrm E ⊆ nrm E ′

proof −
have dom (locals (store ((Norm s0)::state)))

⊆ dom (locals (store s1))
by (rule dom-locals-eval-mono-elim) (rule Ass.hyps)

with da-e show thesis
by (rule da-weakenE) (rule that)

qed
from G eval-var vn
have eval-lvar : G`Norm s0 −LVar vn=�(w, upd)→ s1

by simp
then have upd: upd = snd (lvar vn (store s1))

by cases (cases lvar vn (store s1),simp)
have nrm E ⊆ dom (locals (store (assign upd v s2)))
proof −

from hyp-e wt-e da-e ′ G normal-s2
have nrm E ′ ⊆ dom (locals (store s2))

by simp
also
from upd
have dom (locals (store s2)) ⊆ dom (locals (store (upd v s2)))

by (simp add: lvar-def) blast
hence dom (locals (store s2))

⊆ dom (locals (store (assign upd v s2)))
by (rule dom-locals-assign-mono)

finally
show ?thesis using E-E ′

by blast
qed
moreover
from upd normal-s2
have {vn} ⊆ dom (locals (store (assign upd v s2)))

by (auto simp add: assign-def Let-def lvar-def upd split: prod.split)
ultimately
show nrm A ⊆ . . .

by (rule Un-least [elim-format]) (simp add: nrm-A)
next

330

case False
from Ass.prems obtain V where

da-var : Env` dom (locals (store ((Norm s0)::state))) »〈var〉» V and
da-e: Env` nrm V »〈e〉» A
by (elim da-elim-cases) (use False in simp-all)

from hyp-var wt-var da-var G normal-s1
have nrm V ⊆ dom (locals (store s1))

by simp
with da-e obtain A ′

where da-e ′: Env` dom (locals (store s1)) »〈e〉» A ′ and
nrm-A-A ′: nrm A ⊆ nrm A ′

by (rule da-weakenE) iprover
from hyp-e wt-e da-e ′ G normal-s2
obtain nrm A ′ ⊆ dom (locals (store s2))

by simp
with nrm-A-A ′ have nrm A ⊆ . . .

by blast
also have . . . ⊆ dom (locals (store (assign upd v s2)))
proof −

from eval-var normal-s1
have dom (locals (store s2)) ⊆ dom (locals (store (upd v s2)))

by (cases rule: dom-locals-eval-mono-elim)
(cases s2 , simp)

thus ?thesis
by (rule dom-locals-assign-mono)

qed
finally show ?thesis .

qed
qed
moreover
have abrupt (assign upd v s2) 6= Some (Jump j) for j
proof −

have eval: prg Env`Norm s0 −var :=e−�v→ (assign upd v s2)
by (simp only: G) (rule eval.Ass Ass.hyps)+

from Ass.prems
obtain T ′ where T=Inl T ′

by (elim wt-elim-cases) simp
with Ass.prems have Env`var :=e::−T ′ by simp
from eval - this
show ?thesis

by (rule eval-expression-no-jump) (simp-all add: G wf)
qed
hence ?BreakAssigned (Norm s0) (assign upd v s2) A

and ?ResAssigned (Norm s0) (assign upd v s2)
by simp-all

ultimately show ?case by (intro conjI)
next

case (Cond s0 e0 b s1 e1 e2 v s2 Env T A)
note G = ‹prg Env = G›
have ?NormalAssigned s2 A
proof

assume normal-s2 : normal s2
show nrm A ⊆ dom (locals (store s2))
proof (cases Env`(e0 ? e1 : e2)::−(PrimT Boolean))

case True
with Cond.prems
have nrm-A: nrm A = dom (locals (store ((Norm s0)::state)))

∪ (assigns-if True (e0 ? e1 : e2) ∩
assigns-if False (e0 ? e1 : e2))

Theory DefiniteAssignmentCorrect 331

by (elim da-elim-cases) simp-all
have eval: prg Env`Norm s0 −(e0 ? e1 : e2)−�v→ s2

unfolding G by (rule eval.Cond Cond.hyps)+
from eval
have dom (locals (store ((Norm s0)::state)))⊆dom (locals (store s2))

by (rule dom-locals-eval-mono-elim)
moreover
from eval normal-s2 True
have ass-if : assigns-if (the-Bool v) (e0 ? e1 : e2)

⊆ dom (locals (store s2))
by (rule assigns-if-good-approx)

have assigns-if True (e0 ? e1 :e2) ∩ assigns-if False (e0 ? e1 :e2)
⊆ dom (locals (store s2))

proof (cases the-Bool v)
case True
from ass-if
have assigns-if True (e0 ? e1 :e2) ⊆ dom (locals (store s2))

by (simp only: True)
thus ?thesis by blast

next
case False
from ass-if
have assigns-if False (e0 ? e1 :e2) ⊆ dom (locals (store s2))

by (simp only: False)
thus ?thesis by blast

qed
ultimately show nrm A ⊆ dom (locals (store s2))

by (simp only: nrm-A) (rule Un-least)
next

case False
with Cond.prems obtain E1 E2 where
da-e1 : Env` (dom (locals (store ((Norm s0)::state)))

∪ assigns-if True e0) »〈e1 〉» E1 and
da-e2 : Env` (dom (locals (store ((Norm s0)::state)))

∪ assigns-if False e0) »〈e2 〉» E2 and
nrm-A: nrm A = nrm E1 ∩ nrm E2
by (elim da-elim-cases) simp-all

from Cond.prems obtain e1T e2T where
wt-e0 : Env`e0 ::− PrimT Boolean and
wt-e1 : Env`e1 ::−e1T and
wt-e2 : Env`e2 ::−e2T
by (elim wt-elim-cases)

have s0-s1 : dom (locals (store ((Norm s0)::state)))
⊆ dom (locals (store s1))

by (rule dom-locals-eval-mono-elim) (rule Cond.hyps)
have eval-e0 : prg Env`Norm s0 −e0−�b→ s1

unfolding G by (rule Cond.hyps)
have normal-s1 : normal s1

by (rule eval-no-abrupt-lemma [rule-format]) (rule Cond.hyps, rule normal-s2)
show ?thesis
proof (cases the-Bool b)

case True
from True Cond.hyps have PROP ?Hyp (In1l e1) s1 s2 by simp
moreover
from eval-e0 normal-s1 wt-e0
have assigns-if True e0 ⊆ dom (locals (store s1))

by (rule assigns-if-good-approx [elim-format]) (simp only: True)
with s0-s1
have dom (locals (store ((Norm s0)::state)))

332

∪ assigns-if True e0 ⊆ . . .
by (rule Un-least)

with da-e1 obtain E1 ′ where
da-e1 ′: Env` dom (locals (store s1)) »〈e1 〉» E1 ′ and

nrm-E1-E1 ′: nrm E1 ⊆ nrm E1 ′

by (rule da-weakenE) iprover
ultimately have nrm E1 ′ ⊆ dom (locals (store s2))

using wt-e1 G normal-s2 by simp
with nrm-E1-E1 ′ show ?thesis

by (simp only: nrm-A) blast
next

case False
from False Cond.hyps have PROP ?Hyp (In1l e2) s1 s2 by simp
moreover
from eval-e0 normal-s1 wt-e0
have assigns-if False e0 ⊆ dom (locals (store s1))

by (rule assigns-if-good-approx [elim-format]) (simp only: False)
with s0-s1
have dom (locals (store ((Norm s0)::state)))

∪ assigns-if False e0 ⊆ . . .
by (rule Un-least)

with da-e2 obtain E2 ′ where
da-e2 ′: Env` dom (locals (store s1)) »〈e2 〉» E2 ′ and

nrm-E2-E2 ′: nrm E2 ⊆ nrm E2 ′

by (rule da-weakenE) iprover
ultimately have nrm E2 ′ ⊆ dom (locals (store s2))

using wt-e2 G normal-s2 by simp
with nrm-E2-E2 ′ show ?thesis

by (simp only: nrm-A) blast
qed

qed
qed
moreover
have abrupt s2 6= Some (Jump j) for j
proof −

have eval: prg Env`Norm s0 −e0 ? e1 : e2−�v→ s2
unfolding G by (rule eval.Cond Cond.hyps)+

from Cond.prems
obtain T ′ where T=Inl T ′

by (elim wt-elim-cases) simp
with Cond.prems have Env`e0 ? e1 : e2 ::−T ′ by simp
from eval - this
show ?thesis

by (rule eval-expression-no-jump) (simp-all add: G wf)
qed
hence ?BreakAssigned (Norm s0) s2 A and ?ResAssigned (Norm s0) s2

by simp-all
ultimately show ?case by (intro conjI)

next
case (Call s0 e a s1 args vs s2 D mode statT mn pTs s3 s3 ′ accC v s4

Env T A)
note G = ‹prg Env = G›
have ?NormalAssigned (restore-lvars s2 s4) A
proof

assume normal-restore-lvars: normal (restore-lvars s2 s4)
show nrm A ⊆ dom (locals (store (restore-lvars s2 s4)))
proof −

from Call.prems obtain E where
da-e: Env` (dom (locals (store ((Norm s0)::state))))»〈e〉» E and

Theory DefiniteAssignmentCorrect 333

da-args: Env` nrm E »〈args〉» A
by (elim da-elim-cases)

from Call.prems obtain eT argsT where
wt-e: Env`e::−eT and

wt-args: Env`args:: .=argsT
by (elim wt-elim-cases)

note s3 = ‹s3 = init-lvars G D (|name = mn, parTs = pTs|) mode a vs s2 ›
note s3 ′ = ‹s3 ′ = check-method-access G accC statT mode

(|name=mn,parTs=pTs|) a s3 ›
have normal-s2 : normal s2
proof −

from normal-restore-lvars have normal s4
by simp

then have normal s3 ′

by − (rule eval-no-abrupt-lemma [rule-format], rule Call.hyps)
with s3 ′ have normal s3

by (cases s3) (simp add: check-method-access-def Let-def)
with s3 show normal s2

by (cases s2) (simp add: init-lvars-def Let-def)
qed
then have normal-s1 : normal s1

by − (rule eval-no-abrupt-lemma [rule-format], rule Call.hyps)
note ‹PROP ?Hyp (In1l e) (Norm s0) s1 ›
with da-e wt-e G normal-s1
have nrm E ⊆ dom (locals (store s1))

by simp
with da-args obtain A ′ where

da-args ′: Env` dom (locals (store s1)) »〈args〉» A ′ and
nrm-A-A ′: nrm A ⊆ nrm A ′

by (rule da-weakenE) iprover
note ‹PROP ?Hyp (In3 args) s1 s2 ›
with da-args ′ wt-args G normal-s2
have nrm A ′ ⊆ dom (locals (store s2))

by simp
with nrm-A-A ′ have nrm A ⊆ dom (locals (store s2))

by blast
also have . . . ⊆ dom (locals (store (restore-lvars s2 s4)))

by (cases s4) simp
finally show ?thesis .

qed
qed
moreover
have abrupt (restore-lvars s2 s4) 6= Some (Jump j) for j
proof −

have eval: prg Env`Norm s0 −({accC ,statT ,mode}e·mn({pTs}args))−�v
→ (restore-lvars s2 s4)

unfolding G by (rule eval.Call Call)+
from Call.prems
obtain T ′ where T=Inl T ′

by (elim wt-elim-cases) simp
with Call.prems have Env`({accC ,statT ,mode}e·mn({pTs}args))::−T ′

by simp
from eval - this
show ?thesis

by (rule eval-expression-no-jump) (simp-all add: G wf)
qed
hence ?BreakAssigned (Norm s0) (restore-lvars s2 s4) A

and ?ResAssigned (Norm s0) (restore-lvars s2 s4)
by simp-all

334

ultimately show ?case by (intro conjI)
next

case (Methd s0 D sig v s1 Env T A)
note G = ‹prg Env = G›
from Methd.prems obtain m where

m: methd (prg Env) D sig = Some m and
da-body: Env`(dom (locals (store ((Norm s0)::state))))

»〈Body (declclass m) (stmt (mbody (mthd m)))〉» A
by − (erule da-elim-cases)

from Methd.prems m obtain
isCls: is-class (prg Env) D and
wt-body: Env `In1l (Body (declclass m) (stmt (mbody (mthd m))))::T
by − (erule wt-elim-cases,simp)

note ‹PROP ?Hyp (In1l (body G D sig)) (Norm s0) s1 ›
moreover
from wt-body have Env`In1l (body G D sig)::T

using isCls m G by (simp add: body-def2)
moreover
from da-body have Env`(dom (locals (store ((Norm s0)::state))))

»〈body G D sig〉» A
using isCls m G by (simp add: body-def2)

ultimately show ?case
using G by simp

next
case (Body s0 D s1 c s2 s3 Env T A)
note G = ‹prg Env = G›
from Body.prems
have nrm-A: nrm A = dom (locals (store ((Norm s0)::state)))

by (elim da-elim-cases) simp
have eval: prg Env`Norm s0 −Body D c−�the (locals (store s2) Result)

→abupd (absorb Ret) s3
unfolding G by (rule eval.Body Body.hyps)+

hence nrm A ⊆ dom (locals (store (abupd (absorb Ret) s3)))
by (simp only: nrm-A) (rule dom-locals-eval-mono-elim)

hence ?NormalAssigned (abupd (absorb Ret) s3) A
by simp

moreover
from eval have

∧
j. abrupt (abupd (absorb Ret) s3) 6= Some (Jump j)

by (rule Body-no-jump) simp
hence ?BreakAssigned (Norm s0) (abupd (absorb Ret) s3) A and

?ResAssigned (Norm s0) (abupd (absorb Ret) s3)
by simp-all

ultimately show ?case by (intro conjI)
next

case (LVar s vn Env T A)
from LVar .prems
have nrm A = dom (locals (store ((Norm s)::state)))

by (elim da-elim-cases) simp
thus ?case by simp

next
case (FVar s0 statDeclC s1 e a s2 v s2 ′ stat fn s3 accC Env T A)
note G = ‹prg Env = G›
have ?NormalAssigned s3 A
proof

assume normal-s3 : normal s3
show nrm A ⊆ dom (locals (store s3))
proof −

note fvar = ‹(v, s2 ′) = fvar statDeclC stat fn a s2 › and
s3 = ‹s3 = check-field-access G accC statDeclC fn stat a s2 ′›

Theory DefiniteAssignmentCorrect 335

from FVar .prems
have da-e: Env` (dom (locals (store ((Norm s0)::state))))»〈e〉» A

by (elim da-elim-cases)
from FVar .prems obtain eT where

wt-e: Env`e::−eT
by (elim wt-elim-cases)

have (dom (locals (store ((Norm s0)::state))))
⊆ dom (locals (store s1))

by (rule dom-locals-eval-mono-elim) (rule FVar .hyps)
with da-e obtain A ′ where

da-e ′: Env` dom (locals (store s1)) »〈e〉» A ′ and
nrm-A-A ′: nrm A ⊆ nrm A ′

by (rule da-weakenE) iprover
have normal-s2 : normal s2
proof −

from normal-s3 s3
have normal s2 ′

by (cases s2 ′) (simp add: check-field-access-def Let-def)
with fvar
show normal s2

by (cases s2) (simp add: fvar-def2)
qed
note ‹PROP ?Hyp (In1l e) s1 s2 ›
with da-e ′ wt-e G normal-s2
have nrm A ′ ⊆ dom (locals (store s2))

by simp
with nrm-A-A ′ have nrm A ⊆ dom (locals (store s2))

by blast
also have . . . ⊆ dom (locals (store s3))
proof −

from fvar have s2 ′ = snd (fvar statDeclC stat fn a s2)
by (cases fvar statDeclC stat fn a s2) simp

hence dom (locals (store s2)) ⊆ dom (locals (store s2 ′))
by (simp) (rule dom-locals-fvar-mono)

also from s3 have . . . ⊆ dom (locals (store s3))
by (cases s2 ′) (simp add: check-field-access-def Let-def)

finally show ?thesis .
qed
finally show ?thesis .

qed
qed
moreover
have abrupt s3 6= Some (Jump j) for j
proof −

obtain w upd where v: (w,upd)=v
by (cases v) auto

have eval: prg Env`Norm s0−({accC ,statDeclC ,stat}e..fn)=�(w,upd)→s3
by (simp only: G v) (rule eval.FVar FVar .hyps)+

from FVar .prems
obtain T ′ where T=Inl T ′

by (elim wt-elim-cases) simp
with FVar .prems have Env`({accC ,statDeclC ,stat}e..fn)::=T ′

by simp
from eval - this
show ?thesis

by (rule eval-var-no-jump [THEN conjunct1]) (simp-all add: G wf)
qed
hence ?BreakAssigned (Norm s0) s3 A and ?ResAssigned (Norm s0) s3

by simp-all

336

ultimately show ?case by (intro conjI)
next

case (AVar s0 e1 a s1 e2 i s2 v s2 ′ Env T A)
note G = ‹prg Env = G›
have ?NormalAssigned s2 ′ A
proof

assume normal-s2 ′: normal s2 ′

show nrm A ⊆ dom (locals (store s2 ′))
proof −

note avar = ‹(v, s2 ′) = avar G i a s2 ›
from AVar .prems obtain E1 where

da-e1 : Env` (dom (locals (store ((Norm s0)::state))))»〈e1 〉» E1 and
da-e2 : Env` nrm E1 »〈e2 〉» A
by (elim da-elim-cases)

from AVar .prems obtain e1T e2T where
wt-e1 : Env`e1 ::−e1T and
wt-e2 : Env`e2 ::−e2T

by (elim wt-elim-cases)
from avar normal-s2 ′

have normal-s2 : normal s2
by (cases s2) (simp add: avar-def2)

hence normal s1
by − (rule eval-no-abrupt-lemma [rule-format], rule AVar , rule normal-s2)

moreover note ‹PROP ?Hyp (In1l e1) (Norm s0) s1 ›
ultimately have nrm E1 ⊆ dom (locals (store s1))

using da-e1 wt-e1 G by simp
with da-e2 obtain A ′ where

da-e2 ′: Env` dom (locals (store s1)) »〈e2 〉» A ′ and
nrm-A-A ′: nrm A ⊆ nrm A ′

by (rule da-weakenE) iprover
note ‹PROP ?Hyp (In1l e2) s1 s2 ›
with da-e2 ′ wt-e2 G normal-s2
have nrm A ′ ⊆ dom (locals (store s2))

by simp
with nrm-A-A ′ have nrm A ⊆ dom (locals (store s2))

by blast
also have . . . ⊆ dom (locals (store s2 ′))
proof −

from avar have s2 ′ = snd (avar G i a s2)
by (cases (avar G i a s2)) simp

thus dom (locals (store s2)) ⊆ dom (locals (store s2 ′))
by (simp) (rule dom-locals-avar-mono)

qed
finally show ?thesis .

qed
qed
moreover
have abrupt s2 ′ 6= Some (Jump j) for j
proof −

obtain w upd where v: (w,upd)=v
by (cases v) auto

have eval: prg Env`Norm s0−(e1 .[e2])=�(w,upd)→s2 ′

unfolding G v by (rule eval.AVar AVar .hyps)+
from AVar .prems
obtain T ′ where T=Inl T ′

by (elim wt-elim-cases) simp
with AVar .prems have Env`(e1 .[e2])::=T ′

by simp
from eval - this

Theory DefiniteAssignmentCorrect 337

show ?thesis
by (rule eval-var-no-jump [THEN conjunct1]) (simp-all add: G wf)

qed
hence ?BreakAssigned (Norm s0) s2 ′ A and ?ResAssigned (Norm s0) s2 ′

by simp-all
ultimately show ?case by (intro conjI)

next
case (Nil s0 Env T A)
from Nil.prems
have nrm A = dom (locals (store ((Norm s0)::state)))

by (elim da-elim-cases) simp
thus ?case by simp

next
case (Cons s0 e v s1 es vs s2 Env T A)
note G = ‹prg Env = G›
have ?NormalAssigned s2 A
proof

assume normal-s2 : normal s2
show nrm A ⊆ dom (locals (store s2))
proof −

from Cons.prems obtain E where
da-e: Env` (dom (locals (store ((Norm s0)::state))))»〈e〉» E and
da-es: Env` nrm E »〈es〉» A
by (elim da-elim-cases)

from Cons.prems obtain eT esT where
wt-e: Env`e::−eT and
wt-es: Env`es:: .=esT

by (elim wt-elim-cases)
have normal s1

by − (rule eval-no-abrupt-lemma [rule-format], rule Cons.hyps, rule normal-s2)
moreover note ‹PROP ?Hyp (In1l e) (Norm s0) s1 ›
ultimately have nrm E ⊆ dom (locals (store s1))

using da-e wt-e G by simp
with da-es obtain A ′ where

da-es ′: Env` dom (locals (store s1)) »〈es〉» A ′ and
nrm-A-A ′: nrm A ⊆ nrm A ′

by (rule da-weakenE) iprover
note ‹PROP ?Hyp (In3 es) s1 s2 ›
with da-es ′ wt-es G normal-s2
have nrm A ′ ⊆ dom (locals (store s2))

by simp
with nrm-A-A ′ show nrm A ⊆ dom (locals (store s2))

by blast
qed

qed
moreover
have abrupt s2 6= Some (Jump j) for j
proof −

have eval: prg Env`Norm s0−(e # es) .=�v#vs→s2
unfolding G by (rule eval.Cons Cons.hyps)+

from Cons.prems
obtain T ′ where T=Inr T ′

by (elim wt-elim-cases) simp
with Cons.prems have Env`(e # es):: .=T ′

by simp
from eval - this
show ?thesis

by (rule eval-expression-list-no-jump) (simp-all add: G wf)
qed

338

hence ?BreakAssigned (Norm s0) s2 A and ?ResAssigned (Norm s0) s2
by simp-all

ultimately show ?case by (intro conjI)
qed

qed

lemma da-good-approxE :
assumes

prg Env`s0 −t�→ (v, s1) and Env`t::T and
Env` dom (locals (store s0)) »t» A and wf-prog (prg Env)

obtains
normal s1 =⇒ nrm A ⊆ dom (locals (store s1)) and∧

l. [[abrupt s1 = Some (Jump (Break l)); normal s0]]
=⇒ brk A l ⊆ dom (locals (store s1)) and

[[abrupt s1 = Some (Jump Ret);normal s0]]=⇒Result ∈ dom (locals (store s1))
using assms by − (drule (3) da-good-approx, simp)

lemma da-good-approxE ′:
assumes eval: G`s0 −t�→ (v, s1)

and wt: (|prg=G,cls=C ,lcl=L|)`t::T
and da: (|prg=G,cls=C ,lcl=L|)` dom (locals (store s0)) »t» A
and wf : wf-prog G

obtains normal s1 =⇒ nrm A ⊆ dom (locals (store s1)) and∧
l. [[abrupt s1 = Some (Jump (Break l)); normal s0]]

=⇒ brk A l ⊆ dom (locals (store s1)) and
[[abrupt s1 = Some (Jump Ret);normal s0]]

=⇒ Result ∈ dom (locals (store s1))
proof −

from eval have prg (|prg=G,cls=C ,lcl=L|)`s0 −t�→ (v, s1) by simp
moreover note wt da
moreover from wf have wf-prog (prg (|prg=G,cls=C ,lcl=L|)) by simp
ultimately show thesis

using that by (rule da-good-approxE) iprover+
qed

declare [[simproc add: wt-expr wt-var wt-exprs wt-stmt]]

end

Chapter 19

TypeSafe

1 The type soundness proof for Java
theory TypeSafe
imports DefiniteAssignmentCorrect Conform
begin

error free

lemma error-free-halloc:
assumes halloc: G`s0 −halloc oi�a→ s1 and

error-free-s0 : error-free s0
shows error-free s1

proof −
from halloc error-free-s0
obtain abrupt0 store0 abrupt1 store1

where eqs: s0=(abrupt0 ,store0) s1=(abrupt1 ,store1) and
halloc ′: G`(abrupt0 ,store0) −halloc oi�a→ (abrupt1 ,store1) and
error-free-s0 ′: error-free (abrupt0 ,store0)

by (cases s0 ,cases s1) auto
from halloc ′ error-free-s0 ′

have error-free (abrupt1 ,store1)
proof (induct)

case Abrupt
then show ?case .

next
case New
then show ?case

by auto
qed
with eqs
show ?thesis

by simp
qed

lemma error-free-sxalloc:
assumes sxalloc: G`s0 −sxalloc→ s1 and error-free-s0 : error-free s0
shows error-free s1

proof −
from sxalloc error-free-s0
obtain abrupt0 store0 abrupt1 store1

where eqs: s0=(abrupt0 ,store0) s1=(abrupt1 ,store1) and
sxalloc ′: G`(abrupt0 ,store0) −sxalloc→ (abrupt1 ,store1) and
error-free-s0 ′: error-free (abrupt0 ,store0)

by (cases s0 ,cases s1) auto

339

340

from sxalloc ′ error-free-s0 ′

have error-free (abrupt1 ,store1)
proof (induct)
qed (auto)
with eqs
show ?thesis

by simp
qed

lemma error-free-check-field-access-eq:
error-free (check-field-access G accC statDeclC fn stat a s)
=⇒ (check-field-access G accC statDeclC fn stat a s) = s

apply (cases s)
apply (auto simp add: check-field-access-def Let-def error-free-def

abrupt-if-def
split: if-split-asm)

done

lemma error-free-check-method-access-eq:
error-free (check-method-access G accC statT mode sig a ′ s)
=⇒ (check-method-access G accC statT mode sig a ′ s) = s

apply (cases s)
apply (auto simp add: check-method-access-def Let-def error-free-def

abrupt-if-def)
done

lemma error-free-FVar-lemma:
error-free s
=⇒ error-free (abupd (if stat then id else np a) s)

by (case-tac s) auto

lemma error-free-init-lvars [simp,intro]:
error-free s =⇒

error-free (init-lvars G C sig mode a pvs s)
by (cases s) (auto simp add: init-lvars-def Let-def)

lemma error-free-LVar-lemma:
error-free s =⇒ error-free (assign (λv. supd lupd(vn 7→v)) w s)
by (cases s) simp

lemma error-free-throw [simp,intro]:
error-free s =⇒ error-free (abupd (throw x) s)

by (cases s) (simp add: throw-def)

result conformance

definition
assign-conforms :: st ⇒ (val ⇒ state ⇒ state) ⇒ ty ⇒ env ′⇒ bool (‹-≤|-�-::�-› [71 ,71 ,71 ,71] 70)

where
s≤|f�T ::�E =
((∀ s ′ w. Norm s ′::�E −→ fst E ,s ′̀ w::�T −→ s≤|s ′ −→ assign f w (Norm s ′)::�E) ∧
(∀ s ′ w. error-free s ′ −→ (error-free (assign f w s ′))))

definition
rconf :: prog ⇒ lenv ⇒ st ⇒ term ⇒ vals ⇒ tys ⇒ bool (‹-,-,-`-�-::�-› [71 ,71 ,71 ,71 ,71 ,71] 70)

where
G,L,s`t�v::�T =
(case T of

Theory TypeSafe 341

Inl T ⇒ if (∃ var . t=In2 var)
then (∀ n. (the-In2 t) = LVar n

−→ (fst (the-In2 v) = the (locals s n)) ∧
(locals s n 6= None −→ G,s`fst (the-In2 v)::�T)) ∧

(¬ (∃ n. the-In2 t=LVar n) −→ (G,s`fst (the-In2 v)::�T))∧
(s≤|snd (the-In2 v)�T ::�(G,L))

else G,s`the-In1 v::�T
| Inr Ts ⇒ list-all2 (conf G s) (the-In3 v) Ts)

With rconf we describe the conformance of the result value of a term. This definition gets rather
complicated because of the relations between the injections of the different terms, types and values.
The main case distinction is between single values and value lists. In case of value lists, every value
has to conform to its type. For single values we have to do a further case distinction, between
values of variables ∃ var . t = In2 var and ordinary values. Values of variables are modelled as
pairs consisting of the current value and an update function which will perform an assignment to
the variable. This stems form the decision, that we only have one evaluation rule for each kind of
variable. The decision if we read or write to the variable is made by syntactic enclosing rules. So
conformance of variable-values must ensure that both the current value and an update will conform
to the type. With the introduction of definite assignment of local variables we have to do another
case distinction. For the notion of conformance local variables are allowed to be None, since the
definedness is not ensured by conformance but by definite assignment. Field and array variables
must contain a value.
lemma rconf-In1 [simp]:
G,L,s`In1 ec�In1 v ::�Inl T = G,s`v::�T

apply (unfold rconf-def)
apply (simp (no-asm))
done

lemma rconf-In2-no-LVar [simp]:
∀ n. va 6=LVar n =⇒

G,L,s`In2 va�In2 vf ::�Inl T = (G,s`fst vf ::�T ∧ s≤|snd vf�T ::�(G,L))
apply (unfold rconf-def)
apply auto
done

lemma rconf-In2-LVar [simp]:
va=LVar n =⇒

G,L,s`In2 va�In2 vf ::�Inl T
= ((fst vf = the (locals s n)) ∧

(locals s n 6= None −→ G,s`fst vf ::�T) ∧ s≤|snd vf�T ::�(G,L))
apply (unfold rconf-def)
by simp

lemma rconf-In3 [simp]:
G,L,s`In3 es�In3 vs::�Inr Ts = list-all2 (λv T . G,s`v::�T) vs Ts

apply (unfold rconf-def)
apply (simp (no-asm))
done

fits and conf
lemma conf-fits: G,s`v::�T =⇒ G,s`v fits T
apply (unfold fits-def)
apply clarify
apply (erule contrapos-np, simp (no-asm-use))
apply (drule conf-RefTD)
apply auto

342

done

lemma fits-conf :
[[G,s`v::�T ; G`T�? T ′; G,s`v fits T ′; ws-prog G]] =⇒ G,s`v::�T ′

apply (auto dest!: fitsD cast-PrimT2 cast-RefT2)
apply (force dest: conf-RefTD intro: conf-AddrI)
done

lemma fits-Array:
[[G,s`v::�T ; G`T ′.[]�T .[]; G,s`v fits T ′; ws-prog G]] =⇒ G,s`v::�T ′

apply (auto dest!: fitsD widen-ArrayPrimT widen-ArrayRefT)
apply (force dest: conf-RefTD intro: conf-AddrI)
done

gext

lemma halloc-gext:
∧

s1 s2 . G`s1 −halloc oi�a→ s2 =⇒ snd s1≤|snd s2
apply (simp (no-asm-simp) only: split-tupled-all)
apply (erule halloc.induct)
apply (auto dest!: new-AddrD)
done

lemma sxalloc-gext:
∧

s1 s2 . G`s1 −sxalloc→ s2 =⇒ snd s1≤|snd s2
apply (simp (no-asm-simp) only: split-tupled-all)
apply (erule sxalloc.induct)
apply (auto dest!: halloc-gext)
done

lemma eval-gext-lemma [rule-format (no-asm)]:
G`s −t�→ (w,s ′) =⇒ snd s≤|snd s ′ ∧ (case w of

In1 v ⇒ True
| In2 vf ⇒ normal s −→ (∀ v x s. s≤|snd (assign (snd vf) v (x,s)))
| In3 vs ⇒ True)

apply (erule eval-induct)
prefer 26

apply (case-tac inited C (globs s0), clarsimp, erule thin-rl)
apply (auto del: conjI dest!: not-initedD gext-new sxalloc-gext halloc-gext
simp add: lvar-def fvar-def2 avar-def2 init-lvars-def2

check-field-access-def check-method-access-def Let-def
split del: if-split-asm split: sum3 .split)

apply force+
done

lemma evar-gext-f :
G`Norm s1 −e=�vf → s2 =⇒ s≤|snd (assign (snd vf) v (x,s))

apply (drule eval-gext-lemma [THEN conjunct2])
apply auto
done

lemmas eval-gext = eval-gext-lemma [THEN conjunct1]

lemma eval-gext ′: G`(x1 ,s1) −t�→ (w,(x2 ,s2)) =⇒ s1≤|s2
apply (drule eval-gext)
apply auto
done

lemma init-yields-initd: G`Norm s1 −Init C→ s2 =⇒ initd C s2
apply (erule eval-cases , auto split del: if-split-asm)

Theory TypeSafe 343

apply (case-tac inited C (globs s1))
apply (clarsimp split del: if-split-asm)+
apply (drule eval-gext ′)+
apply (drule init-class-obj-inited)
apply (erule inited-gext)
apply (simp (no-asm-use))
done

Lemmas

lemma obj-ty-obj-class1 :
[[wf-prog G; is-type G (obj-ty obj)]] =⇒ is-class G (obj-class obj)

apply (case-tac tag obj)
apply (auto simp add: obj-ty-def obj-class-def)
done

lemma oconf-init-obj:
[[wf-prog G;
(case r of Heap a ⇒ is-type G (obj-ty obj) | Stat C ⇒ is-class G C)
]] =⇒ G,s`obj (|values:=init-vals (var-tys G (tag obj) r)|)::�

√
r

apply (auto intro!: oconf-init-obj-lemma unique-fields)
done

lemma conforms-newG: [[globs s oref = None; (x, s)::�(G,L);
wf-prog G; case oref of Heap a ⇒ is-type G (obj-ty (|tag=oi,values=vs|))

| Stat C ⇒ is-class G C]] =⇒
(x, init-obj G oi oref s)::�(G, L)

apply (unfold init-obj-def)
apply (auto elim!: conforms-gupd dest!: oconf-init-obj

)
done

lemma conforms-init-class-obj:
[[(x,s)::�(G, L); wf-prog G; class G C=Some y; ¬ inited C (globs s)]] =⇒
(x,init-class-obj G C s)::�(G, L)

apply (rule not-initedD [THEN conforms-newG])
apply (auto)
done

lemma fst-init-lvars[simp]:
fst (init-lvars G C sig (invmode m e) a ′ pvs (x,s)) =
(if is-static m then x else (np a ′) x)

apply (simp (no-asm) add: init-lvars-def2)
done

lemma halloc-conforms:
∧

s1 . [[G`s1 −halloc oi�a→ s2 ; wf-prog G; s1 ::�(G, L);
is-type G (obj-ty (|tag=oi,values=fs|))]] =⇒ s2 ::�(G, L)

apply (simp (no-asm-simp) only: split-tupled-all)
apply (case-tac aa)
apply (auto elim!: halloc-elim-cases dest!: new-AddrD

intro!: conforms-newG [THEN conforms-xconf] conf-AddrI)
done

lemma halloc-type-sound:∧
s1 . [[G`s1 −halloc oi�a→ (x,s); wf-prog G; s1 ::�(G, L);
T = obj-ty (|tag=oi,values=fs|); is-type G T]] =⇒
(x,s)::�(G, L) ∧ (x = None −→ G,s`Addr a::�T)

344

apply (auto elim!: halloc-conforms)
apply (case-tac aa)
apply (subst obj-ty-eq)
apply (auto elim!: halloc-elim-cases dest!: new-AddrD intro!: conf-AddrI)
done

lemma sxalloc-type-sound:∧
s1 s2 . [[G`s1 −sxalloc→ s2 ; wf-prog G]] =⇒

case fst s1 of
None ⇒ s2 = s1
| Some abr ⇒ (case abr of

Xcpt x ⇒ (∃ a. fst s2 = Some(Xcpt (Loc a)) ∧
(∀L. s1 ::�(G,L) −→ s2 ::�(G,L)))

| Jump j ⇒ s2 = s1
| Error e ⇒ s2 = s1)

apply (simp (no-asm-simp) only: split-tupled-all)
apply (erule sxalloc.induct)
apply auto
apply (rule halloc-conforms [THEN conforms-xconf])
apply (auto elim!: halloc-elim-cases dest!: new-AddrD intro!: conf-AddrI)
done

lemma wt-init-comp-ty:
is-acc-type G (pid C) T =⇒ (|prg=G,cls=C ,lcl=L|)`init-comp-ty T ::

√

apply (unfold init-comp-ty-def)
apply (clarsimp simp add: accessible-in-RefT-simp

is-acc-type-def is-acc-class-def)
done

declare fun-upd-same [simp]

declare fun-upd-apply [simp del]

definition
DynT-prop :: [prog,inv-mode,qtname,ref-ty] ⇒ bool (‹-`-→-�-›[71 ,71 ,71 ,71]70)

where
G`mode→D�t = (mode = IntVir −→ is-class G D ∧

(if (∃T . t=ArrayT T) then D=Object else G`Class D�RefT t))

lemma DynT-propI :
[[(x,s)::�(G, L); G,s`a ′::�RefT statT ; wf-prog G; mode = IntVir −→ a ′ 6= Null]]
=⇒ G`mode→invocation-class mode s a ′ statT�statT

proof (unfold DynT-prop-def)
assume state-conform: (x,s)::�(G, L)

and statT-a ′: G,s`a ′::�RefT statT
and wf : wf-prog G
and mode: mode = IntVir −→ a ′ 6= Null

let ?invCls = (invocation-class mode s a ′ statT)
let ?IntVir = mode = IntVir
let ?Concl = λinvCls. is-class G invCls ∧

(if ∃T . statT = ArrayT T
then invCls = Object
else G`Class invCls�RefT statT)

show ?IntVir −→ ?Concl ?invCls
proof

assume modeIntVir : ?IntVir
with mode have not-Null: a ′ 6= Null ..
from statT-a ′ not-Null state-conform

Theory TypeSafe 345

obtain a obj
where obj-props: a ′ = Addr a globs s (Inl a) = Some obj

G`obj-ty obj�RefT statT is-type G (obj-ty obj)
by (blast dest: conforms-RefTD)

show ?Concl ?invCls
proof (cases tag obj)

case CInst
with modeIntVir obj-props
show ?thesis

by (auto dest!: widen-Array2)
next

case Arr
from Arr obtain T where obj-ty obj = T .[] by blast
moreover from Arr have obj-class obj = Object

by blast
moreover note modeIntVir obj-props wf
ultimately show ?thesis by (auto dest!: widen-Array)

qed
qed

qed

lemma invocation-methd:
[[wf-prog G; statT 6= NullT ;
(∀ statC . statT = ClassT statC −→ is-class G statC);
(∀ I . statT = IfaceT I −→ is-iface G I ∧ mode 6= SuperM);
(∀ T . statT = ArrayT T −→ mode 6= SuperM);
G`mode→invocation-class mode s a ′ statT�statT ;
dynlookup G statT (invocation-class mode s a ′ statT) sig = Some m]]
=⇒ methd G (invocation-declclass G mode s a ′ statT sig) sig = Some m
proof −

assume wf : wf-prog G
and not-NullT : statT 6= NullT
and statC-prop: (∀ statC . statT = ClassT statC −→ is-class G statC)
and statI-prop: (∀ I . statT = IfaceT I −→ is-iface G I ∧ mode 6= SuperM)
and statA-prop: (∀ T . statT = ArrayT T −→ mode 6= SuperM)
and invC-prop: G`mode→invocation-class mode s a ′ statT�statT
and dynlookup: dynlookup G statT (invocation-class mode s a ′ statT) sig

= Some m
show ?thesis
proof (cases statT)

case NullT
with not-NullT show ?thesis by simp

next
case IfaceT
with statI-prop obtain I

where statI : statT = IfaceT I and
is-iface: is-iface G I and

not-SuperM : mode 6= SuperM by blast

show ?thesis
proof (cases mode)

case Static
with wf dynlookup statI is-iface
show ?thesis

by (auto simp add: invocation-declclass-def dynlookup-def
dynimethd-def dynmethd-C-C

intro: dynmethd-declclass
dest!: wf-imethdsD
dest: table-of-map-SomeI)

346

next
case SuperM
with not-SuperM show ?thesis ..

next
case IntVir
with wf dynlookup IfaceT invC-prop show ?thesis

by (auto simp add: invocation-declclass-def dynlookup-def dynimethd-def
DynT-prop-def

intro: methd-declclass dynmethd-declclass)
qed

next
case ClassT
show ?thesis
proof (cases mode)

case Static
with wf ClassT dynlookup statC-prop
show ?thesis by (auto simp add: invocation-declclass-def dynlookup-def

intro: dynmethd-declclass)
next

case SuperM
with wf ClassT dynlookup statC-prop
show ?thesis by (auto simp add: invocation-declclass-def dynlookup-def

intro: dynmethd-declclass)
next

case IntVir
with wf ClassT dynlookup statC-prop invC-prop
show ?thesis

by (auto simp add: invocation-declclass-def dynlookup-def dynimethd-def
DynT-prop-def

intro: dynmethd-declclass)
qed

next
case ArrayT
show ?thesis
proof (cases mode)

case Static
with wf ArrayT dynlookup show ?thesis

by (auto simp add: invocation-declclass-def dynlookup-def
dynimethd-def dynmethd-C-C

intro: dynmethd-declclass
dest: table-of-map-SomeI)

next
case SuperM
with ArrayT statA-prop show ?thesis by blast

next
case IntVir
with wf ArrayT dynlookup invC-prop show ?thesis

by (auto simp add: invocation-declclass-def dynlookup-def dynimethd-def
DynT-prop-def dynmethd-C-C

intro: dynmethd-declclass
dest: table-of-map-SomeI)

qed
qed

qed

lemma DynT-mheadsD:
[[G`invmode sm e→invC�statT ;

wf-prog G; (|prg=G,cls=C ,lcl=L|)`e::−RefT statT ;
(statDeclT ,sm) ∈ mheads G C statT sig;

Theory TypeSafe 347

invC = invocation-class (invmode sm e) s a ′ statT ;
declC =invocation-declclass G (invmode sm e) s a ′ statT sig
]] =⇒
∃ dm.
methd G declC sig = Some dm ∧ dynlookup G statT invC sig = Some dm ∧
G`resTy (mthd dm)�resTy sm ∧
wf-mdecl G declC (sig, mthd dm) ∧
declC = declclass dm ∧
is-static dm = is-static sm ∧
is-class G invC ∧ is-class G declC ∧ G`invC�C declC ∧
(if invmode sm e = IntVir

then (∀ statC . statT=ClassT statC −→ G`invC �C statC)
else ((∃ statC . statT=ClassT statC ∧ G`statC�C declC)

∨ (∀ statC . statT 6=ClassT statC ∧ declC=Object)) ∧
statDeclT = ClassT (declclass dm))

proof −
assume invC-prop: G`invmode sm e→invC�statT

and wf : wf-prog G
and wt-e: (|prg=G,cls=C ,lcl=L|)`e::−RefT statT
and sm: (statDeclT ,sm) ∈ mheads G C statT sig
and invC : invC = invocation-class (invmode sm e) s a ′ statT
and declC : declC =

invocation-declclass G (invmode sm e) s a ′ statT sig
from wt-e wf have type-statT : is-type G (RefT statT)

by (auto dest: ty-expr-is-type)
from sm have not-Null: statT 6= NullT by auto
from type-statT
have wf-C : (∀ statC . statT = ClassT statC −→ is-class G statC)

by (auto)
from type-statT wt-e
have wf-I : (∀ I . statT = IfaceT I −→ is-iface G I ∧

invmode sm e 6= SuperM)
by (auto dest: invocationTypeExpr-noClassD)

from wt-e
have wf-A: (∀ T . statT = ArrayT T −→ invmode sm e 6= SuperM)

by (auto dest: invocationTypeExpr-noClassD)
show ?thesis
proof (cases invmode sm e = IntVir)

case True
with invC-prop not-Null
have invC-prop ′: is-class G invC ∧

(if (∃T . statT=ArrayT T) then invC=Object
else G`Class invC�RefT statT)

by (auto simp add: DynT-prop-def)
from True
have ¬ is-static sm

by (simp add: invmode-IntVir-eq member-is-static-simp)
with invC-prop ′ not-Null
have G,statT ` invC valid-lookup-cls-for (is-static sm)

by (cases statT) auto
with sm wf type-statT obtain dm where

dm: dynlookup G statT invC sig = Some dm and
resT-dm: G`resTy (mthd dm)�resTy sm and
static: is-static dm = is-static sm

by − (drule dynamic-mheadsD,force+)
with declC invC not-Null
have declC ′: declC = (declclass dm)

by (auto simp add: invocation-declclass-def)
with wf invC declC not-Null wf-C wf-I wf-A invC-prop dm

348

have dm ′: methd G declC sig = Some dm
by − (drule invocation-methd,auto)

from wf dm invC-prop ′ declC ′ type-statT
have declC-prop: G`invC �C declC ∧ is-class G declC

by (auto dest: dynlookup-declC)
from wf dm ′ declC-prop declC ′

have wf-dm: wf-mdecl G declC (sig,(mthd dm))
by (auto dest: methd-wf-mdecl)

from invC-prop ′

have statC-prop: (∀ statC . statT=ClassT statC −→ G`invC �C statC)
by auto

from True dm ′ resT-dm wf-dm invC-prop ′ declC-prop statC-prop declC ′ static
dm

show ?thesis by auto
next

case False
with type-statT wf invC not-Null wf-I wf-A
have invC-prop ′: is-class G invC ∧

((∃ statC . statT=ClassT statC ∧ invC=statC) ∨
(∀ statC . statT 6=ClassT statC ∧ invC=Object))

by (case-tac statT) (auto simp add: invocation-class-def
split: inv-mode.splits)

with not-Null wf
have dynlookup-static: dynlookup G statT invC sig = methd G invC sig

by (case-tac statT) (auto simp add: dynlookup-def dynmethd-C-C
dynimethd-def)

from sm wf wt-e not-Null False invC-prop ′ obtain dm where
dm: methd G invC sig = Some dm and

eq-declC-sm-dm:statDeclT = ClassT (declclass dm) and
eq-mheads:sm=mhead (mthd dm)

by − (drule static-mheadsD, (force dest: accmethd-SomeD)+)
then have static: is-static dm = is-static sm by auto
with declC invC dynlookup-static dm
have declC ′: declC = (declclass dm)

by (auto simp add: invocation-declclass-def)
from invC-prop ′ wf declC ′ dm
have dm ′: methd G declC sig = Some dm

by (auto intro: methd-declclass)
from dynlookup-static dm
have dm ′′: dynlookup G statT invC sig = Some dm

by simp
from wf dm invC-prop ′ declC ′ type-statT
have declC-prop: G`invC �C declC ∧ is-class G declC

by (auto dest: methd-declC)
then have declC-prop1 : invC=Object −→ declC=Object by auto
from wf dm ′ declC-prop declC ′

have wf-dm: wf-mdecl G declC (sig,(mthd dm))
by (auto dest: methd-wf-mdecl)

from invC-prop ′ declC-prop declC-prop1
have statC-prop: ((∃ statC . statT=ClassT statC ∧ G`statC�C declC)

∨ (∀ statC . statT 6=ClassT statC ∧ declC=Object))
by auto

from False dm ′ dm ′′ wf-dm invC-prop ′ declC-prop statC-prop declC ′

eq-declC-sm-dm eq-mheads static
show ?thesis by auto

qed
qed

corollary DynT-mheadsE [consumes 7]:

Theory TypeSafe 349

— Same as DynT-mheadsD but better suited for application in typesafety proof
assumes invC-compatible: G`mode→invC�statT

and wf : wf-prog G
and wt-e: (|prg=G,cls=C ,lcl=L|)`e::−RefT statT
and mheads: (statDeclT ,sm) ∈ mheads G C statT sig
and mode: mode=invmode sm e
and invC : invC = invocation-class mode s a ′ statT
and declC : declC =invocation-declclass G mode s a ′ statT sig
and dm:

∧
dm. [[methd G declC sig = Some dm;

dynlookup G statT invC sig = Some dm;
G`resTy (mthd dm)�resTy sm;
wf-mdecl G declC (sig, mthd dm);
declC = declclass dm;
is-static dm = is-static sm;
is-class G invC ; is-class G declC ; G`invC�C declC ;
(if invmode sm e = IntVir
then (∀ statC . statT=ClassT statC −→ G`invC �C statC)
else ((∃ statC . statT=ClassT statC ∧ G`statC�C declC)

∨ (∀ statC . statT 6=ClassT statC ∧ declC=Object)) ∧
statDeclT = ClassT (declclass dm))]] =⇒ P

shows P
proof −

from invC-compatible mode have G`invmode sm e→invC�statT by simp
moreover note wf wt-e mheads
moreover from invC mode
have invC = invocation-class (invmode sm e) s a ′ statT by simp
moreover from declC mode
have declC =invocation-declclass G (invmode sm e) s a ′ statT sig by simp
ultimately show ?thesis

by (rule DynT-mheadsD [THEN exE ,rule-format])
(elim conjE ,rule dm)

qed

lemma DynT-conf : [[G`invocation-class mode s a ′ statT �C declC ; wf-prog G;
isrtype G (statT);
G,s`a ′::�RefT statT ; mode = IntVir −→ a ′ 6= Null;
mode 6= IntVir −→ (∃ statC . statT=ClassT statC ∧ G`statC�C declC)

∨ (∀ statC . statT 6=ClassT statC ∧ declC=Object)]]
=⇒G,s`a ′::� Class declC

apply (case-tac mode = IntVir)
apply (drule conf-RefTD)
apply (force intro!: conf-AddrI

simp add: obj-class-def split: obj-tag.split-asm)
apply clarsimp
apply safe
apply (erule (1) widen.subcls [THEN conf-widen])
apply (erule wf-ws-prog)

apply (frule widen-Object) apply (erule wf-ws-prog)
apply (erule (1) conf-widen) apply (erule wf-ws-prog)
done

lemma Ass-lemma:
[[G`Norm s0 −var=�(w, f)→ Norm s1 ; G`Norm s1 −e−�v→ Norm s2 ;

G,s2`v::�eT ;s1≤|s2 −→ assign f v (Norm s2)::�(G, L)]]
=⇒ assign f v (Norm s2)::�(G, L) ∧

(normal (assign f v (Norm s2)) −→ G,store (assign f v (Norm s2))`v::�eT)
apply (drule-tac x = None and s = s2 and v = v in evar-gext-f)

350

apply (drule eval-gext ′, clarsimp)
apply (erule conf-gext)
apply simp
done

lemma Throw-lemma: [[G`tn�C SXcpt Throwable; wf-prog G; (x1 ,s1)::�(G, L);
x1 = None −→ G,s1`a ′::� Class tn]] =⇒ (throw a ′ x1 , s1)::�(G, L)

apply (auto split: split-abrupt-if simp add: throw-def2)
apply (erule conforms-xconf)
apply (frule conf-RefTD)
apply (auto elim: widen.subcls [THEN conf-widen])
done

lemma Try-lemma: [[G`obj-ty (the (globs s1 ′ (Heap a)))� Class tn;
(Some (Xcpt (Loc a)), s1 ′)::�(G, L); wf-prog G]]
=⇒ Norm (lupd(vn 7→Addr a) s1 ′)::�(G, L(vn 7→Class tn))

apply (rule conforms-allocL)
apply (erule conforms-NormI)
apply (drule conforms-XcptLocD [THEN conf-RefTD],rule HOL.refl)
apply (auto intro!: conf-AddrI)
done

lemma Fin-lemma:
[[G`Norm s1 −c2→ (x2 ,s2); wf-prog G; (Some a, s1)::�(G, L); (x2 ,s2)::�(G, L);

dom (locals s1) ⊆ dom (locals s2)]]
=⇒ (abrupt-if True (Some a) x2 , s2)::�(G, L)
apply (auto elim: eval-gext ′ conforms-xgext split: split-abrupt-if)
done

lemma FVar-lemma1 :
[[table-of (DeclConcepts.fields G statC) (fn, statDeclC) = Some f ;

x2 = None −→ G,s2`a::� Class statC ; wf-prog G; G`statC�C statDeclC ;
statDeclC 6= Object;
class G statDeclC = Some y; (x2 ,s2)::�(G, L); s1≤|s2 ;
inited statDeclC (globs s1);
(if static f then id else np a) x2 = None]]
=⇒
∃ obj. globs s2 (if static f then Inr statDeclC else Inl (the-Addr a))

= Some obj ∧
var-tys G (tag obj) (if static f then Inr statDeclC else Inl(the-Addr a))

(Inl(fn,statDeclC)) = Some (type f)
apply (drule initedD)
apply (frule subcls-is-class2 , simp (no-asm-simp))
apply (case-tac static f)
apply clarsimp
apply (drule (1) rev-gext-objD, clarsimp)
apply (frule fields-declC , erule wf-ws-prog, simp (no-asm-simp))
apply (rule var-tys-Some-eq [THEN iffD2])
apply clarsimp
apply (erule fields-table-SomeI , simp (no-asm))
apply clarsimp
apply (drule conf-RefTD, clarsimp, rule var-tys-Some-eq [THEN iffD2])
apply (auto dest!: widen-Array split: obj-tag.split)
apply (rule fields-table-SomeI)
apply (auto elim!: fields-mono subcls-is-class2)
done

lemma FVar-lemma2 : error-free state
=⇒ error-free

Theory TypeSafe 351

(assign
(λv. supd

(upd-gobj
(if static field then Inr statDeclC
else Inl (the-Addr a))
(Inl (fn, statDeclC)) v))

w state)
proof −

assume error-free: error-free state
obtain a s where state=(a,s)

by (cases state)
with error-free
show ?thesis

by (cases a) auto
qed

declare split-paired-All [simp del] split-paired-Ex [simp del]
declare if-split [split del] if-split-asm [split del]

option.split [split del] option.split-asm [split del]
setup ‹map-theory-simpset (fn ctxt => ctxt |> Simplifier .del-loop split-all-tac)›
setup ‹map-theory-claset (fn ctxt => ctxt delSWrapper split-all-tac)›

lemma FVar-lemma:
[[((v, f), Norm s2 ′) = fvar statDeclC (static field) fn a (x2 , s2);

G`statC�C statDeclC ;
table-of (DeclConcepts.fields G statC) (fn, statDeclC) = Some field;
wf-prog G;
x2 = None −→ G,s2`a::�Class statC ;
statDeclC 6= Object; class G statDeclC = Some y;
(x2 , s2)::�(G, L); s1≤|s2 ; inited statDeclC (globs s1)]] =⇒
G,s2 ′̀ v::�type field ∧ s2 ′≤|f�type field::�(G, L)

apply (unfold assign-conforms-def)
apply (drule sym)
apply (clarsimp simp add: fvar-def2)
apply (drule (9) FVar-lemma1)
apply (clarsimp)
apply (drule (2) conforms-globsD [THEN oconf-lconf , THEN lconfD])
apply clarsimp
apply (rule conjI)
apply clarsimp
apply (drule (1) rev-gext-objD)
apply (force elim!: conforms-upd-gobj)

apply (blast intro: FVar-lemma2)
done
declare split-paired-All [simp] split-paired-Ex [simp]
declare if-split [split] if-split-asm [split]

option.split [split] option.split-asm [split]
setup ‹map-theory-claset (fn ctxt => ctxt addSbefore (split-all-tac, split-all-tac))›
setup ‹map-theory-simpset (fn ctxt => ctxt |> Simplifier .add-loop (split-all-tac, split-all-tac))›

lemma AVar-lemma1 : [[globs s (Inl a) = Some obj;tag obj=Arr ty i;
the-Intg i ′ in-bounds i; wf-prog G; G`ty.[]�Tb.[]; Norm s::�(G, L)
]] =⇒ G,s`the ((values obj) (Inr (the-Intg i ′)))::�Tb
apply (erule widen-Array-Array [THEN conf-widen])
apply (erule-tac [2] wf-ws-prog)
apply (drule (1) conforms-globsD [THEN oconf-lconf , THEN lconfD])
defer apply assumption

352

apply (force intro: var-tys-Some-eq [THEN iffD2])
done

lemma obj-split: ∃ t vs. obj = (|tag=t,values=vs|)
by (cases obj) auto

lemma AVar-lemma2 : error-free state
=⇒ error-free

(assign
(λv (x, s ′).

((raise-if (¬ G,s ′̀ v fits T) ArrStore) x,
upd-gobj (Inl a) (Inr (the-Intg i)) v s ′))

w state)
proof −

assume error-free: error-free state
obtain a s where state=(a,s)

by (cases state)
with error-free
show ?thesis

by (cases a) auto
qed

lemma AVar-lemma: [[wf-prog G; G`(x1 , s1) −e2−�i→ (x2 , s2);
((v,f), Norm s2 ′) = avar G i a (x2 , s2); x1 = None −→ G,s1`a::�Ta.[];
(x2 , s2)::�(G, L); s1≤|s2]] =⇒ G,s2 ′̀ v::�Ta ∧ s2 ′≤|f�Ta::�(G, L)

apply (unfold assign-conforms-def)
apply (drule sym)
apply (clarsimp simp add: avar-def2)
apply (drule (1) conf-gext)
apply (drule conf-RefTD, clarsimp)
apply (subgoal-tac ∃ t vs. obj = (|tag=t,values=vs|))
defer
apply (rule obj-split)
apply clarify
apply (frule obj-ty-widenD)
apply (auto dest!: widen-Class)
apply (force dest: AVar-lemma1)

apply (force elim!: fits-Array dest: gext-objD
intro: var-tys-Some-eq [THEN iffD2] conforms-upd-gobj)

done

Call

lemma conforms-init-lvars-lemma: [[wf-prog G;
wf-mhead G P sig mh;
list-all2 (conf G s) pvs pTsa; G`pTsa[�](parTs sig)]] =⇒
G,s`Map.empty (pars mh[7→]pvs)

[∼::�](table-of lvars)(pars mh[7→]parTs sig)
apply (unfold wf-mhead-def)
apply clarify
apply (erule (1) wlconf-empty-vals [THEN wlconf-ext-list])
apply (drule wf-ws-prog)
apply (erule (2) conf-list-widen)
done

lemma lconf-map-lname [simp]:
G,s`(case-lname l1 l2)[::�](case-lname L1 L2)

Theory TypeSafe 353

=
(G,s`l1 [::�]L1 ∧ G,s`(λx::unit . l2)[::�](λx::unit. L2))

apply (unfold lconf-def)
apply (auto split: lname.splits)
done

lemma wlconf-map-lname [simp]:
G,s`(case-lname l1 l2)[∼::�](case-lname L1 L2)
=
(G,s`l1 [∼::�]L1 ∧ G,s`(λx::unit . l2)[∼::�](λx::unit. L2))

apply (unfold wlconf-def)
apply (auto split: lname.splits)
done

lemma lconf-map-ename [simp]:
G,s`(case-ename l1 l2)[::�](case-ename L1 L2)
=
(G,s`l1 [::�]L1 ∧ G,s`(λx::unit. l2)[::�](λx::unit. L2))

apply (unfold lconf-def)
apply (auto split: ename.splits)
done

lemma wlconf-map-ename [simp]:
G,s`(case-ename l1 l2)[∼::�](case-ename L1 L2)
=
(G,s`l1 [∼::�]L1 ∧ G,s`(λx::unit. l2)[∼::�](λx::unit. L2))

apply (unfold wlconf-def)
apply (auto split: ename.splits)
done

lemma defval-conf1 [rule-format (no-asm), elim]:
is-type G T −→ (∃ v∈Some (default-val T): G,s`v::�T)

apply (unfold conf-def)
apply (induct T)
apply (auto intro: prim-ty.induct)
done

lemma np-no-jump: x 6=Some (Jump j) =⇒ (np a ′) x 6= Some (Jump j)
by (auto simp add: abrupt-if-def)

declare split-paired-All [simp del] split-paired-Ex [simp del]
declare if-split [split del] if-split-asm [split del]

option.split [split del] option.split-asm [split del]
setup ‹map-theory-simpset (fn ctxt => ctxt |> Simplifier .del-loop split-all-tac)›
setup ‹map-theory-claset (fn ctxt => ctxt delSWrapper split-all-tac)›

lemma conforms-init-lvars:
[[wf-mhead G (pid declC) sig (mhead (mthd dm)); wf-prog G;

list-all2 (conf G s) pvs pTsa; G`pTsa[�](parTs sig);
(x, s)::�(G, L);
methd G declC sig = Some dm;
isrtype G statT ;
G`invC�C declC ;
G,s`a ′::�RefT statT ;
invmode (mhd sm) e = IntVir −→ a ′ 6= Null;
invmode (mhd sm) e 6= IntVir −→

(∃ statC . statT=ClassT statC ∧ G`statC�C declC)

354

∨ (∀ statC . statT 6=ClassT statC ∧ declC=Object);
invC = invocation-class (invmode (mhd sm) e) s a ′ statT ;
declC = invocation-declclass G (invmode (mhd sm) e) s a ′ statT sig;
x 6=Some (Jump Ret)
]] =⇒
init-lvars G declC sig (invmode (mhd sm) e) a ′

pvs (x,s)::�(G,λ k.
(case k of

EName e ⇒ (case e of
VNam v
⇒ ((table-of (lcls (mbody (mthd dm))))

(pars (mthd dm)[7→]parTs sig)) v
| Res ⇒ Some (resTy (mthd dm)))

| This ⇒ if (is-static (mthd sm))
then None else Some (Class declC)))

apply (simp add: init-lvars-def2)
apply (rule conforms-set-locals)
apply (simp (no-asm-simp) split: if-split)
apply (drule (4) DynT-conf)
apply clarsimp

apply (drule (3) conforms-init-lvars-lemma
[where ?lvars=(lcls (mbody (mthd dm)))])

apply (case-tac dm,simp)
apply (rule conjI)
apply (unfold wlconf-def , clarify)
apply (clarsimp simp add: wf-mhead-def is-acc-type-def)
apply (case-tac is-static sm)
apply simp
apply simp

apply simp
apply (case-tac is-static sm)
apply simp
apply (simp add: np-no-jump)
done
declare split-paired-All [simp] split-paired-Ex [simp]
declare if-split [split] if-split-asm [split]

option.split [split] option.split-asm [split]
setup ‹map-theory-claset (fn ctxt => ctxt addSbefore (split-all-tac, split-all-tac))›
setup ‹map-theory-simpset (fn ctxt => ctxt |> Simplifier .add-loop (split-all-tac, split-all-tac))›

2 accessibility
theorem dynamic-field-access-ok:

assumes wf : wf-prog G and
not-Null: ¬ stat −→ a 6=Null and

conform-a: G,(store s)`a::� Class statC and
conform-s: s::�(G, L) and
normal-s: normal s and

wt-e: (|prg=G,cls=accC ,lcl=L|)`e::−Class statC and
f : accfield G accC statC fn = Some f and

dynC : if stat then dynC=declclass f
else dynC=obj-class (lookup-obj (store s) a) and

stat: if stat then (is-static f) else (¬ is-static f)
shows table-of (DeclConcepts.fields G dynC) (fn,declclass f) = Some (fld f)∧

G`Field fn f in dynC dyn-accessible-from accC
proof (cases stat)

case True

Theory TypeSafe 355

with stat have static: (is-static f) by simp
from True dynC
have dynC ′: dynC=declclass f by simp
with f
have table-of (DeclConcepts.fields G statC) (fn,declclass f) = Some (fld f)

by (auto simp add: accfield-def Let-def intro!: table-of-remap-SomeD)
moreover
from wt-e wf have is-class G statC

by (auto dest!: ty-expr-is-type)
moreover note wf dynC ′

ultimately have
table-of (DeclConcepts.fields G dynC) (fn,declclass f) = Some (fld f)

by (auto dest: fields-declC)
with dynC ′ f static wf
show ?thesis

by (auto dest: static-to-dynamic-accessible-from-static
dest!: accfield-accessibleD)

next
case False
with wf conform-a not-Null conform-s dynC
obtain subclseq: G`dynC �C statC and

is-class G dynC
by (auto dest!: conforms-RefTD [of - - - - (fst s) L]

dest: obj-ty-obj-class1
simp add: obj-ty-obj-class)

with wf f
have table-of (DeclConcepts.fields G dynC) (fn,declclass f) = Some (fld f)

by (auto simp add: accfield-def Let-def
dest: fields-mono

dest!: table-of-remap-SomeD)
moreover
from f subclseq
have G`Field fn f in dynC dyn-accessible-from accC

by (auto intro!: static-to-dynamic-accessible-from wf
dest: accfield-accessibleD)

ultimately show ?thesis
by blast

qed

lemma error-free-field-access:
assumes accfield: accfield G accC statC fn = Some (statDeclC , f) and

wt-e: (|prg = G, cls = accC , lcl = L|)`e::−Class statC and
eval-init: G`Norm s0 −Init statDeclC→ s1 and

eval-e: G`s1 −e−�a→ s2 and
conf-s2 : s2 ::�(G, L) and
conf-a: normal s2 =⇒ G, store s2`a::�Class statC and

fvar : (v,s2 ′)=fvar statDeclC (is-static f) fn a s2 and
wf : wf-prog G

shows check-field-access G accC statDeclC fn (is-static f) a s2 ′ = s2 ′

proof −
from fvar
have store-s2 ′: store s2 ′=store s2

by (cases s2) (simp add: fvar-def2)
with fvar conf-s2
have conf-s2 ′: s2 ′::�(G, L)

by (cases s2 ,cases is-static f) (auto simp add: fvar-def2)
from eval-init
have initd-statDeclC-s1 : initd statDeclC s1

by (rule init-yields-initd)

356

with eval-e store-s2 ′

have initd-statDeclC-s2 ′: initd statDeclC s2 ′

by (auto dest: eval-gext intro: inited-gext)
show ?thesis
proof (cases normal s2 ′)

case False
then show ?thesis

by (auto simp add: check-field-access-def Let-def)
next

case True
with fvar store-s2 ′

have not-Null: ¬ (is-static f) −→ a 6=Null
by (cases s2) (auto simp add: fvar-def2)

from True fvar store-s2 ′

have normal s2
by (cases s2 ,cases is-static f) (auto simp add: fvar-def2)

with conf-a store-s2 ′

have conf-a ′: G,store s2 ′̀ a::�Class statC
by simp

from conf-a ′ conf-s2 ′ True initd-statDeclC-s2 ′

dynamic-field-access-ok [OF wf not-Null conf-a ′ conf-s2 ′

True wt-e accfield]
show ?thesis

by (cases is-static f)
(auto dest!: initedD
simp add: check-field-access-def Let-def)

qed
qed

lemma call-access-ok:
assumes invC-prop: G`invmode statM e→invC�statT

and wf : wf-prog G
and wt-e: (|prg=G,cls=C ,lcl=L|)`e::−RefT statT
and statM : (statDeclT ,statM) ∈ mheads G accC statT sig
and invC : invC = invocation-class (invmode statM e) s a statT

shows ∃ dynM . dynlookup G statT invC sig = Some dynM ∧
G`Methd sig dynM in invC dyn-accessible-from accC

proof −
from wt-e wf have type-statT : is-type G (RefT statT)

by (auto dest: ty-expr-is-type)
from statM have not-Null: statT 6= NullT by auto
from type-statT wt-e
have wf-I : (∀ I . statT = IfaceT I −→ is-iface G I ∧

invmode statM e 6= SuperM)
by (auto dest: invocationTypeExpr-noClassD)

from wt-e
have wf-A: (∀ T . statT = ArrayT T −→ invmode statM e 6= SuperM)

by (auto dest: invocationTypeExpr-noClassD)
show ?thesis
proof (cases invmode statM e = IntVir)

case True
with invC-prop not-Null
have invC-prop ′: is-class G invC ∧

(if (∃T . statT=ArrayT T) then invC=Object
else G`Class invC�RefT statT)

by (auto simp add: DynT-prop-def)
with True not-Null
have G,statT ` invC valid-lookup-cls-for is-static statM
by (cases statT) (auto simp add: invmode-def)

Theory TypeSafe 357

with statM type-statT wf
show ?thesis

by − (rule dynlookup-access,auto)
next

case False
with type-statT wf invC not-Null wf-I wf-A
have invC-prop ′: is-class G invC ∧

((∃ statC . statT=ClassT statC ∧ invC=statC) ∨
(∀ statC . statT 6=ClassT statC ∧ invC=Object))

by (case-tac statT) (auto simp add: invocation-class-def
split: inv-mode.splits)

with not-Null wf
have dynlookup-static: dynlookup G statT invC sig = methd G invC sig

by (case-tac statT) (auto simp add: dynlookup-def dynmethd-C-C
dynimethd-def)

from statM wf wt-e not-Null False invC-prop ′ obtain dynM where
accmethd G accC invC sig = Some dynM

by (auto dest!: static-mheadsD)
from invC-prop ′ False not-Null wf-I
have G,statT ` invC valid-lookup-cls-for is-static statM

by (cases statT) (auto simp add: invmode-def)
with statM type-statT wf
show ?thesis

by − (rule dynlookup-access,auto)
qed

qed

lemma error-free-call-access:
assumes
eval-args: G`s1 −args .

=�vs→ s2 and
wt-e: (|prg = G, cls = accC , lcl = L|)`e::−(RefT statT) and

statM : max-spec G accC statT (|name = mn, parTs = pTs|)
= {((statDeclT , statM), pTs ′)} and

conf-s2 : s2 ::�(G, L) and
conf-a: normal s1 =⇒ G, store s1`a::�RefT statT and

invProp: normal s3 =⇒
G`invmode statM e→invC�statT and

s3 : s3=init-lvars G invDeclC (|name = mn, parTs = pTs ′|)
(invmode statM e) a vs s2 and

invC : invC = invocation-class (invmode statM e) (store s2) a statTand
invDeclC : invDeclC = invocation-declclass G (invmode statM e) (store s2)

a statT (|name = mn, parTs = pTs ′|) and
wf : wf-prog G

shows check-method-access G accC statT (invmode statM e) (|name=mn,parTs=pTs ′|) a s3
= s3

proof (cases normal s2)
case False
with s3
have abrupt s3 = abrupt s2

by (auto simp add: init-lvars-def2)
with False
show ?thesis

by (auto simp add: check-method-access-def Let-def)
next

case True
note normal-s2 = True
with eval-args
have normal-s1 : normal s1

by (cases normal s1) auto

358

with conf-a eval-args
have conf-a-s2 : G, store s2`a::�RefT statT

by (auto dest: eval-gext intro: conf-gext)
show ?thesis
proof (cases a=Null −→ (is-static statM))

case False
then obtain ¬ is-static statM a=Null

by blast
with normal-s2 s3
have abrupt s3 = Some (Xcpt (Std NullPointer))

by (auto simp add: init-lvars-def2)
then show ?thesis

by (auto simp add: check-method-access-def Let-def)
next

case True
from statM
obtain

statM ′: (statDeclT ,statM)∈mheads G accC statT (|name=mn,parTs=pTs ′|)
by (blast dest: max-spec2mheads)

from True normal-s2 s3
have normal s3

by (auto simp add: init-lvars-def2)
then have G`invmode statM e→invC�statT

by (rule invProp)
with wt-e statM ′ wf invC
obtain dynM where

dynM : dynlookup G statT invC (|name=mn,parTs=pTs ′|) = Some dynM and
acc-dynM : G `Methd (|name=mn,parTs=pTs ′|) dynM

in invC dyn-accessible-from accC
by (force dest!: call-access-ok)

moreover
from s3 invC
have invC ′: invC=(invocation-class (invmode statM e) (store s3) a statT)

by (cases s2 ,cases invmode statM e)
(simp add: init-lvars-def2 del: invmode-Static-eq)+

ultimately
show ?thesis

by (auto simp add: check-method-access-def Let-def)
qed

qed

lemma map-upds-eq-length-append-simp:∧
tab qs. length ps = length qs =⇒ tab(ps[7→]qs@zs) = tab(ps[7→]qs)

proof (induct ps)
case Nil thus ?case by simp

next
case (Cons p ps tab qs)
from ‹length (p#ps) = length qs›
obtain q qs ′ where qs: qs=q#qs ′ and eq-length: length ps=length qs ′

by (cases qs) auto
from eq-length have (tab(p 7→q))(ps[7→]qs ′@zs)=(tab(p 7→q))(ps[7→]qs ′)

by (rule Cons.hyps)
with qs show ?case

by simp
qed

lemma map-upds-upd-eq-length-simp:∧
tab qs x y. length ps = length qs

=⇒ tab(ps[7→]qs, x 7→y) = tab(ps@[x][7→]qs@[y])

Theory TypeSafe 359

proof (induct ps)
case Nil thus ?case by simp

next
case (Cons p ps tab qs x y)
from ‹length (p#ps) = length qs›
obtain q qs ′ where qs: qs=q#qs ′ and eq-length: length ps=length qs ′

by (cases qs) auto
from eq-length
have (tab(p 7→q))(ps[7→]qs ′, x 7→y) = (tab(p 7→q))(ps@[x][7→]qs ′@[y])

by (rule Cons.hyps)
with qs show ?case

by simp
qed

lemma map-upd-cong: tab=tab ′=⇒ tab(x 7→y) = tab ′(x 7→y)
by simp

lemma map-upd-cong-ext: tab z=tab ′ z=⇒ (tab(x 7→y)) z = (tab ′(x 7→y)) z
by (simp add: fun-upd-def)

lemma map-upds-cong: tab=tab ′=⇒ tab(xs[7→]ys) = tab ′(xs[7→]ys)
by (cases xs) simp+

lemma map-upds-cong-ext:∧
tab tab ′ ys. tab z=tab ′ z =⇒ (tab(xs[7→]ys)) z = (tab ′(xs[7→]ys)) z

proof (induct xs)
case Nil thus ?case by simp

next
case (Cons x xs tab tab ′ ys)
note Hyps = this
show ?case
proof (cases ys)

case Nil
with Hyps
show ?thesis by simp

next
case (Cons y ys ′)
have (tab(x 7→y, xs[7→]ys ′)) z = (tab ′(x 7→y, xs[7→]ys ′)) z

by (iprover intro: Hyps map-upd-cong-ext)
with Cons show ?thesis

by simp
qed

qed

lemma map-upd-override: (tab(x 7→y)) x = (tab ′(x 7→y)) x
by simp

lemma map-upds-eq-length-suffix:
∧

tab qs.
length ps = length qs =⇒ tab(ps@xs[7→]qs) = tab(ps[7→]qs, xs[7→][])

proof (induct ps)
case Nil thus ?case by simp

next
case (Cons p ps tab qs)
then obtain q qs ′ where qs: qs=q#qs ′ and eq-length: length ps=length qs ′

by (cases qs) auto
from eq-length
have tab(p 7→q, ps @ xs[7→]qs ′) = tab(p 7→q, ps[7→]qs ′, xs[7→][])

by (rule Cons.hyps)

360

with qs show ?case
by simp

qed

lemma map-upds-upds-eq-length-prefix-simp:∧
tab qs. length ps = length qs

=⇒ tab(ps[7→]qs, xs[7→]ys) = tab(ps@xs[7→]qs@ys)
proof (induct ps)

case Nil thus ?case by simp
next

case (Cons p ps tab qs)
then obtain q qs ′ where qs: qs=q#qs ′ and eq-length: length ps=length qs ′

by (cases qs) auto
from eq-length
have tab(p 7→q, ps[7→]qs ′, xs[7→]ys) = tab(p 7→q, ps @ xs[7→](qs ′ @ ys))

by (rule Cons.hyps)
with qs
show ?case by simp

qed

lemma map-upd-cut-irrelevant:
[[(tab(x 7→y)) vn = Some el; (tab ′(x 7→y)) vn = None]]

=⇒ tab vn = Some el
by (cases tab ′ vn = None) (simp add: fun-upd-def)+

lemma map-upd-Some-expand:
[[tab vn = Some z]]

=⇒ ∃ z. (tab(x 7→y)) vn = Some z
by (simp add: fun-upd-def)

lemma map-upds-Some-expand:∧
tab ys z. [[tab vn = Some z]]
=⇒ ∃ z. (tab(xs[7→]ys)) vn = Some z

proof (induct xs)
case Nil thus ?case by simp

next
case (Cons x xs tab ys z)
note z = ‹tab vn = Some z›
show ?case
proof (cases ys)

case Nil
with z show ?thesis by simp

next
case (Cons y ys ′)
note ys = ‹ys = y#ys ′›
from z obtain z ′ where (tab(x 7→y)) vn = Some z ′

by (rule map-upd-Some-expand [of tab,elim-format]) blast
hence ∃ z. ((tab(x 7→y))(xs[7→]ys ′)) vn = Some z

by (rule Cons.hyps)
with ys show ?thesis

by simp
qed

qed

lemma map-upd-Some-swap:
(tab(r 7→w, u 7→v)) vn = Some z =⇒ ∃ z. (tab(u 7→v, r 7→w)) vn = Some z

by (simp add: fun-upd-def)

Theory TypeSafe 361

lemma map-upd-None-swap:
(tab(r 7→w, u 7→v)) vn = None =⇒ (tab(u 7→v, r 7→w)) vn = None

by (simp add: fun-upd-def)

lemma map-eq-upd-eq: tab vn = tab ′ vn =⇒ (tab(x 7→y)) vn = (tab ′(x 7→y)) vn
by (simp add: fun-upd-def)

lemma map-upd-in-expansion-map-swap:
[[(tab(x 7→y)) vn = Some z;tab vn 6= Some z]]

=⇒ (tab ′(x 7→y)) vn = Some z
by (simp add: fun-upd-def)

lemma map-upds-in-expansion-map-swap:∧
tab tab ′ ys z. [[(tab(xs[7→]ys)) vn = Some z;tab vn 6= Some z]]

=⇒ (tab ′(xs[7→]ys)) vn = Some z
proof (induct xs)

case Nil thus ?case by simp
next

case (Cons x xs tab tab ′ ys z)
note some = ‹(tab(x # xs[7→]ys)) vn = Some z›
note tab-not-z = ‹tab vn 6= Some z›
show ?case
proof (cases ys)

case Nil with some tab-not-z show ?thesis by simp
next

case (Cons y tl)
note ys = ‹ys = y#tl›
show ?thesis
proof (cases (tab(x 7→y)) vn 6= Some z)

case True
with some ys have (tab ′(x 7→y, xs[7→]tl)) vn = Some z

by (fastforce intro: Cons.hyps)
with ys show ?thesis

by simp
next

case False
hence tabx-z: (tab(x 7→y)) vn = Some z by blast
moreover
from tabx-z tab-not-z
have (tab ′(x 7→y)) vn = Some z

by (rule map-upd-in-expansion-map-swap)
ultimately
have (tab(x 7→y)) vn =(tab ′(x 7→y)) vn

by simp
hence (tab(x 7→y, xs[7→]tl)) vn = (tab ′(x 7→y, xs[7→]tl)) vn

by (rule map-upds-cong-ext)
with some ys
show ?thesis

by simp
qed

qed
qed

lemma map-upds-Some-swap:
assumes r-u: (tab(r 7→w, u 7→v, xs[7→]ys)) vn = Some z

shows ∃ z. (tab(u 7→v, r 7→w, xs[7→]ys)) vn = Some z
proof (cases (tab(r 7→w, u 7→v)) vn = Some z)

362

case True
then obtain z ′ where (tab(u 7→v, r 7→w)) vn = Some z ′

by (rule map-upd-Some-swap [elim-format]) blast
thus ∃ z. (tab(u 7→v, r 7→w, xs[7→]ys)) vn = Some z

by (rule map-upds-Some-expand)
next

case False
with r-u
have (tab(u 7→v, r 7→w, xs[7→]ys)) vn = Some z

by (rule map-upds-in-expansion-map-swap)
thus ?thesis

by simp
qed

lemma map-upds-Some-insert:
assumes z: (tab(xs[7→]ys)) vn = Some z

shows ∃ z. (tab(u 7→v, xs[7→]ys)) vn = Some z
proof (cases ∃ z. tab vn = Some z)

case True
then obtain z ′ where tab vn = Some z ′ by blast
then obtain z ′′ where (tab(u 7→v)) vn = Some z ′′

by (rule map-upd-Some-expand [elim-format]) blast
thus ?thesis

by (rule map-upds-Some-expand)
next

case False
hence tab vn 6= Some z by simp
with z
have (tab(u 7→v, xs[7→]ys)) vn = Some z

by (rule map-upds-in-expansion-map-swap)
thus ?thesis ..

qed

lemma map-upds-None-cut:
assumes expand-None: (tab(xs[7→]ys)) vn = None

shows tab vn = None
proof (cases tab vn = None)

case True thus ?thesis by simp
next

case False then obtain z where tab vn = Some z by blast
then obtain z ′ where (tab(xs[7→]ys)) vn = Some z ′

by (rule map-upds-Some-expand [where ?tab=tab,elim-format]) blast
with expand-None show ?thesis

by simp
qed

lemma map-upds-cut-irrelevant:∧
tab tab ′ ys. [[(tab(xs[7→]ys)) vn = Some el; (tab ′(xs[7→]ys)) vn = None]]

=⇒ tab vn = Some el
proof (induct xs)

case Nil thus ?case by simp
next

case (Cons x xs tab tab ′ ys)
note tab-vn = ‹(tab(x # xs[7→]ys)) vn = Some el›
note tab ′-vn = ‹(tab ′(x # xs[7→]ys)) vn = None›
show ?case
proof (cases ys)

case Nil

Theory TypeSafe 363

with tab-vn show ?thesis by simp
next

case (Cons y tl)
note ys = ‹ys=y#tl›
have (tab(x 7→y)) vn = Some el

by (rule Cons.hyps) (use tab-vn tab ′-vn ys in auto)
moreover from tab ′-vn ys
have (tab ′(x 7→y, xs[7→]tl)) vn = None

by simp
hence (tab ′(x 7→y)) vn = None

by (rule map-upds-None-cut)
ultimately show tab vn = Some el

by (rule map-upd-cut-irrelevant)
qed

qed

lemma dom-vname-split:
dom (case-lname (case-ename (tab(x 7→y, xs[7→]ys)) a) b)
= dom (case-lname (case-ename (tab(x 7→y)) a) b) ∪

dom (case-lname (case-ename (tab(xs[7→]ys)) a) b)
(is ?List x xs y ys = ?Hd x y ∪ ?Tl xs ys)

proof
show ?List x xs y ys ⊆ ?Hd x y ∪ ?Tl xs ys
proof

fix el
assume el-in-list: el ∈ ?List x xs y ys
show el ∈ ?Hd x y ∪ ?Tl xs ys
proof (cases el)

case This
with el-in-list show ?thesis by (simp add: dom-def)

next
case (EName en)
show ?thesis
proof (cases en)

case Res
with EName el-in-list show ?thesis by (simp add: dom-def)

next
case (VNam vn)
with EName el-in-list show ?thesis

by (auto simp add: dom-def dest: map-upds-cut-irrelevant)
qed

qed
qed

next
show ?Hd x y ∪ ?Tl xs ys ⊆ ?List x xs y ys
proof (rule subsetI)

fix el
assume el-in-hd-tl: el ∈ ?Hd x y ∪ ?Tl xs ys
show el ∈ ?List x xs y ys
proof (cases el)

case This
with el-in-hd-tl show ?thesis by (simp add: dom-def)

next
case (EName en)
show ?thesis
proof (cases en)

case Res
with EName el-in-hd-tl show ?thesis by (simp add: dom-def)

364

next
case (VNam vn)
with EName el-in-hd-tl show ?thesis

by (auto simp add: dom-def intro: map-upds-Some-expand
map-upds-Some-insert)

qed
qed

qed
qed

lemma dom-map-upd:
∧

tab. dom (tab(x 7→y)) = dom tab ∪ {x}
by (auto simp add: dom-def fun-upd-def)

lemma dom-map-upds:
∧

tab ys. length xs = length ys
=⇒ dom (tab(xs[7→]ys)) = dom tab ∪ set xs

proof (induct xs)
case Nil thus ?case by (simp add: dom-def)

next
case (Cons x xs tab ys)
note Hyp = Cons.hyps
note len = ‹length (x#xs)=length ys›
show ?case
proof (cases ys)

case Nil with len show ?thesis by simp
next

case (Cons y tl)
have dom (tab(x 7→y, xs[7→]tl)) = dom (tab(x 7→y)) ∪ set xs

by (rule Hyp) (use len Cons in simp)
moreover
have dom (tab(x 7→hd ys)) = dom tab ∪ {x}

by (rule dom-map-upd)
ultimately
show ?thesis using Cons

by simp
qed

qed

lemma dom-case-ename-None-simp:
dom (case-ename vname-tab None) = VNam ‘ (dom vname-tab)
apply (auto simp add: dom-def image-def)
apply (case-tac x)
apply auto
done

lemma dom-case-ename-Some-simp:
dom (case-ename vname-tab (Some a)) = VNam ‘ (dom vname-tab) ∪ {Res}
apply (auto simp add: dom-def image-def)
apply (case-tac x)
apply auto
done

lemma dom-case-lname-None-simp:
dom (case-lname ename-tab None) = EName ‘ (dom ename-tab)
apply (auto simp add: dom-def image-def)
apply (case-tac x)
apply auto
done

lemma dom-case-lname-Some-simp:

Theory TypeSafe 365

dom (case-lname ename-tab (Some a)) = EName ‘ (dom ename-tab) ∪ {This}
apply (auto simp add: dom-def image-def)
apply (case-tac x)
apply auto
done

lemmas dom-lname-case-ename-simps =
dom-case-ename-None-simp dom-case-ename-Some-simp
dom-case-lname-None-simp dom-case-lname-Some-simp

lemma image-comp:
f ‘ g ‘ A = (f ◦ g) ‘ A

by (auto simp add: image-def)

lemma dom-locals-init-lvars:
assumes m: m=(mthd (the (methd G C sig)))
assumes len: length (pars m) = length pvs
shows dom (locals (store (init-lvars G C sig (invmode m e) a pvs s)))

= parameters m
proof −

from m
have static-m ′: is-static m = static m

by simp
from len
have dom-vnames: dom (Map.empty(pars m[7→]pvs))=set (pars m)

by (simp add: dom-map-upds)
show ?thesis
proof (cases static m)

case True
with static-m ′ dom-vnames m
show ?thesis

by (cases s) (simp add: init-lvars-def Let-def parameters-def
dom-lname-case-ename-simps image-comp)

next
case False
with static-m ′ dom-vnames m
show ?thesis

by (cases s) (simp add: init-lvars-def Let-def parameters-def
dom-lname-case-ename-simps image-comp)

qed
qed

lemma da-e2-BinOp:
assumes da: (|prg=G,cls=accC ,lcl=L|)

`dom (locals (store s0)) »〈BinOp binop e1 e2 〉e» A
and wt-e1 : (|prg=G,cls=accC ,lcl=L|)`e1 ::−e1T
and wt-e2 : (|prg=G,cls=accC ,lcl=L|)`e2 ::−e2T
and wt-binop: wt-binop G binop e1T e2T
and conf-s0 : s0 ::�(G,L)
and normal-s1 : normal s1
and eval-e1 : G`s0 −e1−�v1→ s1
and conf-v1 : G,store s1`v1 ::�e1T
and wf : wf-prog G

shows ∃ E2 . (|prg=G,cls=accC ,lcl=L|)` dom (locals (store s1))
»(if need-second-arg binop v1 then 〈e2 〉e else 〈Skip〉s)» E2

proof −
note inj-term-simps [simp]

366

from da obtain E1 where
da-e1 : (|prg=G,cls=accC ,lcl=L|) ` dom (locals (store s0)) »〈e1 〉e» E1
by cases simp+

obtain E2 where
(|prg=G,cls=accC ,lcl=L|)` dom (locals (store s1))

»(if need-second-arg binop v1 then 〈e2 〉e else 〈Skip〉s)» E2
proof (cases need-second-arg binop v1)

case False
obtain S where

daSkip: (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store s1)) »〈Skip〉s» S

by (auto intro: da-Skip [simplified] assigned.select-convs)
thus ?thesis

using that by (simp add: False)
next

case True
from eval-e1 have

s0-s1 :dom (locals (store s0)) ⊆ dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)

consider (condAnd) binop=CondAnd | (condOr) binop=CondOr | (notAndOr) binop 6=CondAnd binop 6=CondOr
by (cases binop) auto

then show ?thesis
proof cases

case condAnd
from da obtain E2 ′ where
(|prg=G,cls=accC ,lcl=L|)
` dom (locals (store s0)) ∪ assigns-if True e1 »〈e2 〉e» E2 ′

by cases (simp add: condAnd)+
moreover
have dom (locals (store s0))
∪ assigns-if True e1 ⊆ dom (locals (store s1))

proof −
from condAnd wt-binop have e1T : e1T=PrimT Boolean

by simp
with normal-s1 conf-v1 obtain b where v1=Bool b

by (auto dest: conf-Boolean)
with True condAnd
have v1 : v1=Bool True

by simp
from eval-e1 normal-s1
have assigns-if True e1 ⊆ dom (locals (store s1))

by (rule assigns-if-good-approx ′ [elim-format])
(use wt-e1 in ‹simp-all add: e1T v1 ›)

with s0-s1 show ?thesis by (rule Un-least)
qed
ultimately show ?thesis

using that by (cases rule: da-weakenE) (simp add: True)
next

case condOr

from da obtain E2 ′ where
(|prg=G,cls=accC ,lcl=L|)

` dom (locals (store s0)) ∪ assigns-if False e1 »〈e2 〉e» E2 ′

by cases (simp add: condOr)+
moreover
have dom (locals (store s0))

∪ assigns-if False e1 ⊆ dom (locals (store s1))
proof −

from condOr wt-binop have e1T : e1T=PrimT Boolean

Theory TypeSafe 367

by simp
with normal-s1 conf-v1 obtain b where v1=Bool b

by (auto dest: conf-Boolean)
with True condOr
have v1 : v1=Bool False

by simp
from eval-e1 normal-s1
have assigns-if False e1 ⊆ dom (locals (store s1))

by (rule assigns-if-good-approx ′ [elim-format])
(use wt-e1 in ‹simp-all add: e1T v1 ›)

with s0-s1 show ?thesis by (rule Un-least)
qed
ultimately show ?thesis

using that by (rule da-weakenE) (simp add: True)
next

case notAndOr
from da notAndOr obtain E1 ′ where

da-e1 : (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store s0)) »〈e1 〉e» E1 ′

and da-e2 : (|prg=G,cls=accC ,lcl=L|)` nrm E1 ′ »In1l e2» A
by cases simp+

from eval-e1 wt-e1 da-e1 wf normal-s1
have nrm E1 ′ ⊆ dom (locals (store s1))

by (cases rule: da-good-approxE ′) iprover
with da-e2 show ?thesis

using that by (rule da-weakenE) (simp add: True)
qed

qed
thus ?thesis ..

qed

main proof of type safety

lemma eval-type-sound:
assumes eval: G`s0 −t�→ (v,s1)
and wt: (|prg=G,cls=accC ,lcl=L|)`t::T
and da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»t»A
and wf : wf-prog G
and conf-s0 : s0 ::�(G,L)

shows s1 ::�(G,L) ∧ (normal s1 −→ G,L,store s1`t�v::�T) ∧
(error-free s0 = error-free s1)

proof −
note inj-term-simps [simp]
let ?TypeSafeObj = λ s0 s1 t v.

∀ L accC T A. s0 ::�(G,L) −→ (|prg=G,cls=accC ,lcl=L|)`t::T
−→ (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»t»A
−→ s1 ::�(G,L) ∧ (normal s1 −→ G,L,store s1`t�v::�T)
∧ (error-free s0 = error-free s1)

from eval
have

∧
L accC T A. [[s0 ::�(G,L);(|prg=G,cls=accC ,lcl=L|)`t::T ;

(|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»t»A]]
=⇒ s1 ::�(G,L) ∧ (normal s1 −→ G,L,store s1`t�v::�T)
∧ (error-free s0 = error-free s1)

(is PROP ?TypeSafe s0 s1 t v
is

∧
L accC T A. ?Conform L s0 =⇒ ?WellTyped L accC T t

=⇒ ?DefAss L accC s0 t A
=⇒ ?Conform L s1 ∧ ?ValueTyped L T s1 t v ∧

?ErrorFree s0 s1)
proof (induct)

368

case (Abrupt xc s t L accC T A)
from ‹(Some xc, s)::�(G,L)›
show (Some xc, s)::�(G,L) ∧
(normal (Some xc, s)
−→ G,L,store (Some xc,s)`t�undefined3 t::�T) ∧
(error-free (Some xc, s) = error-free (Some xc, s))
by simp

next
case (Skip s L accC T A)
from ‹Norm s::�(G, L)› and

‹(|prg = G, cls = accC , lcl = L|)`In1r Skip::T ›
show Norm s::�(G, L) ∧

(normal (Norm s) −→ G,L,store (Norm s)`In1r Skip�♦::�T) ∧
(error-free (Norm s) = error-free (Norm s))

by simp
next

case (Expr s0 e v s1 L accC T A)
note ‹G`Norm s0 −e−�v→ s1 ›
note hyp = ‹PROP ?TypeSafe (Norm s0) s1 (In1l e) (In1 v)›
note conf-s0 = ‹Norm s0 ::�(G, L)›
moreover
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In1r (Expr e)::T ›
then obtain eT

where (|prg = G, cls = accC , lcl = L|)`In1l e::eT
by (rule wt-elim-cases) blast

moreover
from Expr .prems obtain E where
(|prg=G,cls=accC , lcl=L|)`dom (locals (store ((Norm s0)::state)))»In1l e»E
by (elim da-elim-cases) simp

ultimately
obtain s1 ::�(G, L) and error-free s1

by (rule hyp [elim-format]) simp
with wt
show s1 ::�(G, L) ∧

(normal s1 −→ G,L,store s1`In1r (Expr e)�♦::�T) ∧
(error-free (Norm s0) = error-free s1)

by (simp)
next

case (Lab s0 c s1 l L accC T A)
note hyp = ‹PROP ?TypeSafe (Norm s0) s1 (In1r c) ♦›
note conf-s0 = ‹Norm s0 ::�(G, L)›
moreover
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In1r (l· c)::T ›
then have (|prg = G, cls = accC , lcl = L|)`c::

√

by (rule wt-elim-cases) blast
moreover from Lab.prems obtain C where
(|prg=G,cls=accC , lcl=L|)`dom (locals (store ((Norm s0)::state)))»In1r c»C
by (elim da-elim-cases) simp

ultimately
obtain conf-s1 : s1 ::�(G, L) and

error-free-s1 : error-free s1
by (rule hyp [elim-format]) simp

from conf-s1 have abupd (absorb l) s1 ::�(G, L)
by (cases s1) (auto intro: conforms-absorb)

with wt error-free-s1
show abupd (absorb l) s1 ::�(G, L) ∧

(normal (abupd (absorb l) s1)
−→ G,L,store (abupd (absorb l) s1)`In1r (l· c)�♦::�T) ∧
(error-free (Norm s0) = error-free (abupd (absorb l) s1))

Theory TypeSafe 369

by (simp)
next

case (Comp s0 c1 s1 c2 s2 L accC T A)
note eval-c1 = ‹G`Norm s0 −c1→ s1 ›
note eval-c2 = ‹G`s1 −c2→ s2 ›
note hyp-c1 = ‹PROP ?TypeSafe (Norm s0) s1 (In1r c1) ♦›
note hyp-c2 = ‹PROP ?TypeSafe s1 s2 (In1r c2) ♦›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In1r (c1 ;; c2)::T ›
then obtain wt-c1 : (|prg = G, cls = accC , lcl = L|)`c1 ::

√
and

wt-c2 : (|prg = G, cls = accC , lcl = L|)`c2 ::
√

by (rule wt-elim-cases) blast
from Comp.prems
obtain C1 C2

where da-c1 : (|prg=G, cls=accC , lcl=L|)`
dom (locals (store ((Norm s0)::state))) »In1r c1» C1 and

da-c2 : (|prg=G, cls=accC , lcl=L|)` nrm C1 »In1r c2» C2
by (elim da-elim-cases) simp

from conf-s0 wt-c1 da-c1
obtain conf-s1 : s1 ::�(G, L) and

error-free-s1 : error-free s1
by (rule hyp-c1 [elim-format]) simp

show s2 ::�(G, L) ∧
(normal s2 −→ G,L,store s2`In1r (c1 ;; c2)�♦::�T) ∧
(error-free (Norm s0) = error-free s2)

proof (cases normal s1)
case False
with eval-c2 have s2=s1 by auto
with conf-s1 error-free-s1 False wt show ?thesis

by simp
next

case True
obtain C2 ′ where
(|prg=G, cls=accC , lcl=L|)` dom (locals (store s1)) »In1r c2» C2 ′

proof −
from eval-c1 wt-c1 da-c1 wf True
have nrm C1 ⊆ dom (locals (store s1))

by (cases rule: da-good-approxE ′) iprover
with da-c2 show thesis

by (rule da-weakenE) (rule that)
qed
with conf-s1 wt-c2
obtain s2 ::�(G, L) and error-free s2

by (rule hyp-c2 [elim-format]) (simp add: error-free-s1)
thus ?thesis

using wt by simp
qed

next
case (If s0 e b s1 c1 c2 s2 L accC T A)
note eval-e = ‹G`Norm s0 −e−�b→ s1 ›
note eval-then-else = ‹G`s1 −(if the-Bool b then c1 else c2)→ s2 ›
note hyp-e = ‹PROP ?TypeSafe (Norm s0) s1 (In1l e) (In1 b)›
note hyp-then-else =

‹PROP ?TypeSafe s1 s2 (In1r (if the-Bool b then c1 else c2)) ♦›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In1r (If (e) c1 Else c2)::T ›
then obtain

wt-e: (|prg=G, cls=accC , lcl=L|)`e::−PrimT Boolean and
wt-then-else: (|prg=G, cls=accC , lcl=L|)`(if the-Bool b then c1 else c2)::

√

370

by (rule wt-elim-cases) auto
from If .prems obtain E C where

da-e: (|prg=G,cls=accC ,lcl=L|)` dom (locals (store ((Norm s0)::state)))
»In1l e» E and

da-then-else:
(|prg=G,cls=accC ,lcl=L|)`

(dom (locals (store ((Norm s0)::state))) ∪ assigns-if (the-Bool b) e)
»In1r (if the-Bool b then c1 else c2)» C

by (elim da-elim-cases) (cases the-Bool b,auto)
from conf-s0 wt-e da-e
obtain conf-s1 : s1 ::�(G, L) and error-free-s1 : error-free s1

by (rule hyp-e [elim-format]) simp
show s2 ::�(G, L) ∧

(normal s2 −→ G,L,store s2`In1r (If (e) c1 Else c2)�♦::�T) ∧
(error-free (Norm s0) = error-free s2)

proof (cases normal s1)
case False
with eval-then-else have s2=s1 by auto
with conf-s1 error-free-s1 False wt show ?thesis

by simp
next

case True
obtain C ′ where
(|prg=G,cls=accC ,lcl=L|)`
(dom (locals (store s1)))»In1r (if the-Bool b then c1 else c2)» C ′

proof −
from eval-e have

dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)

moreover
from eval-e True wt-e
have assigns-if (the-Bool b) e ⊆ dom (locals (store s1))

by (rule assigns-if-good-approx ′)
ultimately
have dom (locals (store ((Norm s0)::state)))

∪ assigns-if (the-Bool b) e ⊆ dom (locals (store s1))
by (rule Un-least)

with da-then-else show thesis
by (rule da-weakenE) (rule that)

qed
with conf-s1 wt-then-else
obtain s2 ::�(G, L) and error-free s2

by (rule hyp-then-else [elim-format]) (simp add: error-free-s1)
with wt show ?thesis

by simp
qed
— Note that we don’t have to show that b really is a boolean value. With the-Bool we enforce to get a

value of boolean type. So execution will be type safe, even if b would be a string, for example. We might
not expect such a behaviour to be called type safe. To remedy the situation we would have to change the
evaulation rule, so that it only has a type safe evaluation if we actually get a boolean value for the condition.
That b is actually a boolean value is part of hyp-e. See also Loop

next
case (Loop s0 e b s1 c s2 l s3 L accC T A)
note eval-e = ‹G`Norm s0 −e−�b→ s1 ›
note hyp-e = ‹PROP ?TypeSafe (Norm s0) s1 (In1l e) (In1 b)›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In1r (l· While(e) c)::T ›

Theory TypeSafe 371

then obtain wt-e: (|prg = G, cls = accC , lcl = L|)`e::−PrimT Boolean and
wt-c: (|prg = G, cls = accC , lcl = L|)`c::

√

by (rule wt-elim-cases) blast
note da = ‹(|prg=G, cls=accC , lcl=L|)

` dom (locals(store ((Norm s0)::state))) »In1r (l· While(e) c)» A›
then
obtain E C where

da-e: (|prg=G, cls=accC , lcl=L|)
` dom (locals (store ((Norm s0)::state))) »In1l e» E and

da-c: (|prg=G, cls=accC , lcl=L|)
` (dom (locals (store ((Norm s0)::state)))
∪ assigns-if True e) »In1r c» C

by (rule da-elim-cases) simp
from conf-s0 wt-e da-e
obtain conf-s1 : s1 ::�(G, L) and error-free-s1 : error-free s1

by (rule hyp-e [elim-format]) simp
show s3 ::�(G, L) ∧

(normal s3 −→ G,L,store s3`In1r (l· While(e) c)�♦::�T) ∧
(error-free (Norm s0) = error-free s3)

proof (cases normal s1)
case True
note normal-s1 = this
show ?thesis
proof (cases the-Bool b)

case True
with Loop.hyps obtain

eval-c: G`s1 −c→ s2 and
eval-while: G`abupd (absorb (Cont l)) s2 −l· While(e) c→ s3
by simp

have ?TypeSafeObj s1 s2 (In1r c) ♦
using Loop.hyps True by simp

note hyp-c = this [rule-format]
have ?TypeSafeObj (abupd (absorb (Cont l)) s2)

s3 (In1r (l· While(e) c)) ♦
using Loop.hyps True by simp

note hyp-w = this [rule-format]
from eval-e have

s0-s1 : dom (locals (store ((Norm s0)::state)))
⊆ dom (locals (store s1))

by (rule dom-locals-eval-mono-elim)
obtain C ′ where
(|prg=G, cls=accC , lcl=L|)`(dom (locals (store s1)))»In1r c» C ′

proof −
note s0-s1
moreover
from eval-e normal-s1 wt-e
have assigns-if True e ⊆ dom (locals (store s1))

by (rule assigns-if-good-approx ′ [elim-format]) (simp add: True)
ultimately
have dom (locals (store ((Norm s0)::state)))

∪ assigns-if True e ⊆ dom (locals (store s1))
by (rule Un-least)

with da-c show thesis
by (rule da-weakenE) (rule that)

qed
with conf-s1 wt-c
obtain conf-s2 : s2 ::�(G, L) and error-free-s2 : error-free s2

by (rule hyp-c [elim-format]) (simp add: error-free-s1)
from error-free-s2

372

have error-free-ab-s2 : error-free (abupd (absorb (Cont l)) s2)
by simp

from conf-s2 have abupd (absorb (Cont l)) s2 ::�(G, L)
by (cases s2) (auto intro: conforms-absorb)

moreover note wt
moreover
obtain A ′ where
(|prg=G,cls=accC ,lcl=L|)`

dom (locals(store (abupd (absorb (Cont l)) s2)))
»In1r (l· While(e) c)» A ′

proof −
note s0-s1
also from eval-c
have dom (locals (store s1)) ⊆ dom (locals (store s2))

by (rule dom-locals-eval-mono-elim)
also have . . . ⊆ dom (locals (store (abupd (absorb (Cont l)) s2)))

by simp
finally
have dom (locals (store ((Norm s0)::state))) ⊆
with da show thesis

by (rule da-weakenE) (rule that)
qed
ultimately obtain s3 ::�(G, L) and error-free s3

by (rule hyp-w [elim-format]) (simp add: error-free-ab-s2)
with wt show ?thesis

by simp
next

case False
with Loop.hyps have s3=s1 by simp
with conf-s1 error-free-s1 wt
show ?thesis

by simp
qed

next
case False
have s3=s1
proof −

from False obtain abr where abr : abrupt s1 = Some abr
by (cases s1) auto

from eval-e - wt-e have no-jmp:
∧

j. abrupt s1 6= Some (Jump j)
by (rule eval-expression-no-jump

[where ?Env=(|prg=G,cls=accC ,lcl=L|),simplified])
(simp-all add: wf)

show ?thesis
proof (cases the-Bool b)

case True
with Loop.hyps obtain

eval-c: G`s1 −c→ s2 and
eval-while: G`abupd (absorb (Cont l)) s2 −l· While(e) c→ s3
by simp

from eval-c abr have s2=s1 by auto
moreover from calculation no-jmp have abupd (absorb (Cont l)) s2=s2

by (cases s1) (simp add: absorb-def)
ultimately show ?thesis

using eval-while abr
by auto

next
case False

Theory TypeSafe 373

with Loop.hyps show ?thesis by simp
qed

qed
with conf-s1 error-free-s1 wt
show ?thesis

by simp
qed

next
case (Jmp s j L accC T A)
note ‹Norm s::�(G, L)›
moreover
from Jmp.prems
have j=Ret −→ Result ∈ dom (locals (store ((Norm s)::state)))

by (elim da-elim-cases)
ultimately have (Some (Jump j), s)::�(G, L) by auto
then
show (Some (Jump j), s)::�(G, L) ∧

(normal (Some (Jump j), s)
−→ G,L,store (Some (Jump j), s)`In1r (Jmp j)�♦::�T) ∧
(error-free (Norm s) = error-free (Some (Jump j), s))

by simp
next

case (Throw s0 e a s1 L accC T A)
note ‹G`Norm s0 −e−�a→ s1 ›
note hyp = ‹PROP ?TypeSafe (Norm s0) s1 (In1l e) (In1 a)›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In1r (Throw e)::T ›
then obtain tn

where wt-e: (|prg = G, cls = accC , lcl = L|)`e::−Class tn and
throwable: G`tn�C SXcpt Throwable

by (rule wt-elim-cases) (auto)
from Throw.prems obtain E where

da-e: (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm s0)::state))) »In1l e» E

by (elim da-elim-cases) simp
from conf-s0 wt-e da-e obtain

s1 ::�(G, L) and
(normal s1 −→ G,store s1`a::�Class tn) and
error-free-s1 : error-free s1
by (rule hyp [elim-format]) simp

with wf throwable
have abupd (throw a) s1 ::�(G, L)

by (cases s1) (auto dest: Throw-lemma)
with wt error-free-s1
show abupd (throw a) s1 ::�(G, L) ∧

(normal (abupd (throw a) s1) −→
G,L,store (abupd (throw a) s1)`In1r (Throw e)�♦::�T) ∧
(error-free (Norm s0) = error-free (abupd (throw a) s1))

by simp
next

case (Try s0 c1 s1 s2 catchC vn c2 s3 L accC T A)
note eval-c1 = ‹G`Norm s0 −c1→ s1 ›
note sx-alloc = ‹G`s1 −sxalloc→ s2 ›
note hyp-c1 = ‹PROP ?TypeSafe (Norm s0) s1 (In1r c1) ♦›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg=G,cls=accC ,lcl=L|)`In1r (Try c1 Catch(catchC vn) c2)::T ›
then obtain

wt-c1 : (|prg=G,cls=accC ,lcl=L|)`c1 ::
√

and
wt-c2 : (|prg=G,cls=accC ,lcl=L(VName vn 7→Class catchC)|)`c2 ::

√
and

374

fresh-vn: L(VName vn)=None
by (rule wt-elim-cases) simp

from Try.prems obtain C1 C2 where
da-c1 : (|prg=G,cls=accC ,lcl=L|)

` dom (locals (store ((Norm s0)::state))) »In1r c1» C1 and
da-c2 :
(|prg=G,cls=accC ,lcl=L(VName vn 7→Class catchC)|)
` (dom (locals (store ((Norm s0)::state))) ∪ {VName vn}) »In1r c2» C2

by (elim da-elim-cases) simp
from conf-s0 wt-c1 da-c1
obtain conf-s1 : s1 ::�(G, L) and error-free-s1 : error-free s1

by (rule hyp-c1 [elim-format]) simp
from conf-s1 sx-alloc wf
have conf-s2 : s2 ::�(G, L)

by (auto dest: sxalloc-type-sound split: option.splits abrupt.splits)
from sx-alloc error-free-s1
have error-free-s2 : error-free s2

by (rule error-free-sxalloc)
show s3 ::�(G, L) ∧

(normal s3 −→ G,L,store s3`In1r (Try c1 Catch(catchC vn) c2)�♦::�T)∧
(error-free (Norm s0) = error-free s3)

proof (cases ∃ x. abrupt s1 = Some (Xcpt x))
case False
from sx-alloc wf
have eq-s2-s1 : s2=s1

by (rule sxalloc-type-sound [elim-format])
(use False in ‹auto split: option.splits abrupt.splits›)

with False
have ¬ G,s2`catch catchC

by (simp add: catch-def)
with Try
have s3=s2

by simp
with wt conf-s1 error-free-s1 eq-s2-s1
show ?thesis

by simp
next

case True
note exception-s1 = this
show ?thesis
proof (cases G,s2`catch catchC)

case False
with Try
have s3=s2

by simp
with wt conf-s2 error-free-s2
show ?thesis

by simp
next

case True
with Try have G`new-xcpt-var vn s2 −c2→ s3 by simp
from True Try.hyps
have ?TypeSafeObj (new-xcpt-var vn s2) s3 (In1r c2) ♦

by simp
note hyp-c2 = this [rule-format]
from exception-s1 sx-alloc wf
obtain a

where xcpt-s2 : abrupt s2 = Some (Xcpt (Loc a))
by (auto dest!: sxalloc-type-sound split: option.splits abrupt.splits)

Theory TypeSafe 375

with True
have G`obj-ty (the (globs (store s2) (Heap a)))�Class catchC

by (cases s2) simp
with xcpt-s2 conf-s2 wf
have new-xcpt-var vn s2 ::�(G, L(VName vn 7→Class catchC))

by (auto dest: Try-lemma)
moreover note wt-c2
moreover
obtain C2 ′ where
(|prg=G,cls=accC ,lcl=L(VName vn 7→Class catchC)|)
` (dom (locals (store (new-xcpt-var vn s2)))) »In1r c2» C2 ′

proof −
have (dom (locals (store ((Norm s0)::state))) ∪ {VName vn})

⊆ dom (locals (store (new-xcpt-var vn s2)))
proof −

from ‹G`Norm s0 −c1→ s1 ›
have dom (locals (store ((Norm s0)::state)))

⊆ dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)

also
from sx-alloc
have . . . ⊆ dom (locals (store s2))

by (rule dom-locals-sxalloc-mono)
also
have . . . ⊆ dom (locals (store (new-xcpt-var vn s2)))

by (cases s2) (simp add: new-xcpt-var-def , blast)
also
have {VName vn} ⊆ . . .

by (cases s2) simp
ultimately show ?thesis

by (rule Un-least)
qed
with da-c2 show thesis

by (rule da-weakenE) (rule that)
qed
ultimately
obtain conf-s3 : s3 ::�(G, L(VName vn 7→Class catchC)) and

error-free-s3 : error-free s3
by (rule hyp-c2 [elim-format])

(cases s2 , simp add: xcpt-s2 error-free-s2)
from conf-s3 fresh-vn
have s3 ::�(G,L)

by (blast intro: conforms-deallocL)
with wt error-free-s3
show ?thesis

by simp
qed

qed
next

case (Fin s0 c1 x1 s1 c2 s2 s3 L accC T A)
note eval-c1 = ‹G`Norm s0 −c1→ (x1 , s1)›
note eval-c2 = ‹G`Norm s1 −c2→ s2 ›
note s3 = ‹s3 = (if ∃ err . x1 = Some (Error err)

then (x1 , s1)
else abupd (abrupt-if (x1 6= None) x1) s2)›

note hyp-c1 = ‹PROP ?TypeSafe (Norm s0) (x1 ,s1) (In1r c1) ♦›
note hyp-c2 = ‹PROP ?TypeSafe (Norm s1) s2 (In1r c2) ♦›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In1r (c1 Finally c2)::T ›

376

then obtain
wt-c1 : (|prg=G,cls=accC ,lcl=L|)`c1 ::

√
and

wt-c2 : (|prg=G,cls=accC ,lcl=L|)`c2 ::
√

by (rule wt-elim-cases) blast
from Fin.prems obtain C1 C2 where

da-c1 : (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm s0)::state))) »In1r c1» C1 and

da-c2 : (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm s0)::state))) »In1r c2» C2

by (elim da-elim-cases) simp
from conf-s0 wt-c1 da-c1
obtain conf-s1 : (x1 ,s1)::�(G, L) and error-free-s1 : error-free (x1 ,s1)

by (rule hyp-c1 [elim-format]) simp
from conf-s1 have Norm s1 ::�(G, L)

by (rule conforms-NormI)
moreover note wt-c2
moreover obtain C2 ′

where (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm s1)::state))) »In1r c2» C2 ′

proof −
from eval-c1
have dom (locals (store ((Norm s0)::state)))

⊆ dom (locals (store (x1 ,s1)))
by (rule dom-locals-eval-mono-elim)

hence dom (locals (store ((Norm s0)::state)))
⊆ dom (locals (store ((Norm s1)::state)))

by simp
with da-c2 show thesis

by (rule da-weakenE) (rule that)
qed
ultimately
obtain conf-s2 : s2 ::�(G, L) and error-free-s2 : error-free s2

by (rule hyp-c2 [elim-format]) simp
from error-free-s1 s3
have s3 ′: s3=abupd (abrupt-if (x1 6= None) x1) s2

by simp
show s3 ::�(G, L) ∧

(normal s3 −→ G,L,store s3 `In1r (c1 Finally c2)�♦::�T) ∧
(error-free (Norm s0) = error-free s3)

proof (cases x1)
case None with conf-s2 s3 ′ wt error-free-s2
show ?thesis by auto

next
case (Some x)
from eval-c2 have

dom (locals (store ((Norm s1)::state))) ⊆ dom (locals (store s2))
by (rule dom-locals-eval-mono-elim)

with Some eval-c2 wf conf-s1 conf-s2
have conf : (abrupt-if True (Some x) (abrupt s2), store s2)::�(G, L)

by (cases s2) (auto dest: Fin-lemma)
from Some error-free-s1
have ¬ (∃ err . x=Error err)

by (simp add: error-free-def)
with error-free-s2
have error-free (abrupt-if True (Some x) (abrupt s2), store s2)

by (cases s2) simp
with Some wt conf s3 ′ show ?thesis

by (cases s2) auto
qed

Theory TypeSafe 377

next
case (Init C c s0 s3 s1 s2 L accC T A)
note cls = ‹the (class G C) = c›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In1r (Init C)::T ›
with cls have cls-C : class G C = Some c

by − (erule wt-elim-cases, auto)
show s3 ::�(G, L) ∧ (normal s3 −→ G,L,store s3`In1r (Init C)�♦::�T) ∧

(error-free (Norm s0) = error-free s3)
proof (cases inited C (globs s0))

case True
with Init.hyps have s3 = Norm s0

by simp
with conf-s0 wt show ?thesis

by simp
next

case False
with Init.hyps obtain

eval-init-super :
G`Norm ((init-class-obj G C) s0)
−(if C = Object then Skip else Init (super c))→ s1 and

eval-init: G`(set-lvars Map.empty) s1 −init c→ s2 and
s3 : s3 = (set-lvars (locals (store s1))) s2
by simp

have ?TypeSafeObj (Norm ((init-class-obj G C) s0)) s1
(In1r (if C = Object then Skip else Init (super c))) ♦

using False Init.hyps by simp
note hyp-init-super = this [rule-format]
have ?TypeSafeObj ((set-lvars Map.empty) s1) s2 (In1r (init c)) ♦

using False Init.hyps by simp
note hyp-init-c = this [rule-format]
from conf-s0 wf cls-C False
have (Norm ((init-class-obj G C) s0))::�(G, L)

by (auto dest: conforms-init-class-obj)
moreover from wf cls-C have

wt-init-super : (|prg = G, cls = accC , lcl = L|)
`(if C = Object then Skip else Init (super c))::

√

by (cases C=Object)
(auto dest: wf-prog-cdecl wf-cdecl-supD is-acc-classD)

moreover
obtain S where

da-init-super :
(|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm ((init-class-obj G C) s0))::state)))

»In1r (if C = Object then Skip else Init (super c))» S
proof (cases C=Object)

case True
with da-Skip show ?thesis

using that by (auto intro: assigned.select-convs)
next

case False
show ?thesis

by (rule that) (use da-Init False in ‹auto intro: assigned.select-convs›)
qed
ultimately
obtain conf-s1 : s1 ::�(G, L) and error-free-s1 : error-free s1

by (rule hyp-init-super [elim-format]) simp
from eval-init-super wt-init-super wf
have s1-no-ret:

∧
j. abrupt s1 6= Some (Jump j)

378

by − (rule eval-statement-no-jump [where ?Env=(|prg=G,cls=accC ,lcl=L|)],
auto)

with conf-s1
have (set-lvars Map.empty) s1 ::�(G, Map.empty)

by (cases s1) (auto intro: conforms-set-locals)
moreover
from error-free-s1
have error-free-empty: error-free ((set-lvars Map.empty) s1)

by simp
from cls-C wf have wt-init-c: (|prg=G, cls=C ,lcl=Map.empty|)`(init c)::

√

by (rule wf-prog-cdecl [THEN wf-cdecl-wt-init])
moreover from cls-C wf obtain I

where (|prg=G,cls=C ,lcl=Map.empty|)` {} »In1r (init c)» I
by (rule wf-prog-cdecl [THEN wf-cdeclE ,simplified]) blast

then obtain I ′ where
(|prg=G,cls=C ,lcl=Map.empty|)`dom (locals (store ((set-lvars Map.empty) s1)))

»In1r (init c)» I ′

by (rule da-weakenE) simp
ultimately
obtain conf-s2 : s2 ::�(G, Map.empty) and error-free-s2 : error-free s2

by (rule hyp-init-c [elim-format]) (simp add: error-free-empty)
have abrupt s2 6= Some (Jump Ret)
proof −

from s1-no-ret
have

∧
j. abrupt ((set-lvars Map.empty) s1) 6= Some (Jump j)

by simp
moreover
from cls-C wf have jumpNestingOkS {} (init c)

by (rule wf-prog-cdecl [THEN wf-cdeclE])
ultimately
show ?thesis

using eval-init wt-init-c wf
by − (rule eval-statement-no-jump

[where ?Env=(|prg=G,cls=C ,lcl=Map.empty|)],simp+)
qed
with conf-s2 s3 conf-s1 eval-init
have s3 ::�(G, L)

by (cases s2 ,cases s1) (force dest: conforms-return eval-gext ′)
moreover from error-free-s2 s3
have error-free s3

by simp
moreover note wt
ultimately show ?thesis

by simp
qed

next
case (NewC s0 C s1 a s2 L accC T A)
note ‹G`Norm s0 −Init C→ s1 ›
note halloc = ‹G`s1 −halloc CInst C�a→ s2 ›
note hyp = ‹PROP ?TypeSafe (Norm s0) s1 (In1r (Init C)) ♦›
note conf-s0 = ‹Norm s0 ::�(G, L)›
moreover
note wt = ‹(|prg=G, cls=accC , lcl=L|)`In1l (NewC C)::T ›
then obtain is-cls-C : is-class G C and

T : T=Inl (Class C)
by (rule wt-elim-cases) (auto dest: is-acc-classD)

hence (|prg=G, cls=accC , lcl=L|)`Init C ::
√

by auto
moreover obtain I where

Theory TypeSafe 379

(|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm s0)::state))) »In1r (Init C)» I

by (auto intro: da-Init [simplified] assigned.select-convs)

ultimately
obtain conf-s1 : s1 ::�(G, L) and error-free-s1 : error-free s1

by (rule hyp [elim-format]) simp
from conf-s1 halloc wf is-cls-C
obtain halloc-type-safe: s2 ::�(G, L)

(normal s2 −→ G,store s2`Addr a::�Class C)
by (cases s2) (auto dest!: halloc-type-sound)

from halloc error-free-s1
have error-free s2

by (rule error-free-halloc)
with halloc-type-safe T
show s2 ::�(G, L) ∧

(normal s2 −→ G,L,store s2`In1l (NewC C)�In1 (Addr a)::�T) ∧
(error-free (Norm s0) = error-free s2)

by auto
next

case (NewA s0 elT s1 e i s2 a s3 L accC T A)
note eval-init = ‹G`Norm s0 −init-comp-ty elT→ s1 ›
note eval-e = ‹G`s1 −e−�i→ s2 ›
note halloc = ‹G`abupd (check-neg i) s2−halloc Arr elT (the-Intg i)�a→ s3 ›
note hyp-init = ‹PROP ?TypeSafe (Norm s0) s1 (In1r (init-comp-ty elT)) ♦›
note hyp-size = ‹PROP ?TypeSafe s1 s2 (In1l e) (In1 i)›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In1l (New elT [e])::T ›
then obtain

wt-init: (|prg = G, cls = accC , lcl = L|)`init-comp-ty elT ::
√

and
wt-size: (|prg = G, cls = accC , lcl = L|)`e::−PrimT Integer and

elT : is-type G elT and
T : T=Inl (elT .[])

by (rule wt-elim-cases) (auto intro: wt-init-comp-ty dest: is-acc-typeD)
from NewA.prems
have da-e:(|prg=G,cls=accC ,lcl=L|)

` dom (locals (store ((Norm s0)::state))) »In1l e» A
by (elim da-elim-cases) simp

obtain conf-s1 : s1 ::�(G, L) and error-free-s1 : error-free s1
proof −

note conf-s0 wt-init
moreover obtain I where
(|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm s0)::state))) »In1r (init-comp-ty elT)» I

proof (cases ∃C . elT = Class C)
case True
show ?thesis

by (rule that)
(use True in ‹auto intro: da-Init [simplified] assigned.select-convs

simp add: init-comp-ty-def ›)

next
case False
show ?thesis

by (rule that)
(use False in ‹auto intro: da-Skip [simplified] assigned.select-convs

simp add: init-comp-ty-def ›)

qed

380

ultimately show thesis
by (rule hyp-init [elim-format]) (auto intro: that)

qed
obtain conf-s2 : s2 ::�(G, L) and error-free-s2 : error-free s2
proof −

from eval-init
have dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))

by (rule dom-locals-eval-mono-elim)
with da-e
obtain A ′ where
(|prg=G,cls=accC ,lcl=L|)
` dom (locals (store s1)) »In1l e» A ′

by (rule da-weakenE)
with conf-s1 wt-size
show ?thesis

by (rule hyp-size [elim-format]) (simp add: that error-free-s1)
qed
from conf-s2 have abupd (check-neg i) s2 ::�(G, L)

by (cases s2) auto
with halloc wf elT
have halloc-type-safe:

s3 ::�(G, L) ∧ (normal s3 −→ G,store s3`Addr a::�elT .[])
by (cases s3) (auto dest!: halloc-type-sound)

from halloc error-free-s2
have error-free s3

by (auto dest: error-free-halloc)
with halloc-type-safe T
show s3 ::�(G, L) ∧

(normal s3 −→ G,L,store s3`In1l (New elT [e])�In1 (Addr a)::�T) ∧
(error-free (Norm s0) = error-free s3)

by simp
next

case (Cast s0 e v s1 s2 castT L accC T A)
note ‹G`Norm s0 −e−�v→ s1 ›
note s2 = ‹s2 = abupd (raise-if (¬ G,store s1`v fits castT) ClassCast) s1 ›
note hyp = ‹PROP ?TypeSafe (Norm s0) s1 (In1l e) (In1 v)›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In1l (Cast castT e)::T ›
then obtain eT

where wt-e: (|prg = G, cls = accC , lcl = L|)`e::−eT and
eT : G`eT�? castT and
T : T=Inl castT

by (rule wt-elim-cases) auto
from Cast.prems
have (|prg=G,cls=accC ,lcl=L|)

` dom (locals (store ((Norm s0)::state))) »In1l e» A
by (elim da-elim-cases) simp

with conf-s0 wt-e
obtain conf-s1 : s1 ::�(G, L) and

v-ok: normal s1 −→ G,store s1`v::�eT and
error-free-s1 : error-free s1
by (rule hyp [elim-format]) simp

from conf-s1 s2
have conf-s2 : s2 ::�(G, L)

by (cases s1) simp
from error-free-s1 s2
have error-free-s2 : error-free s2

by simp
have G,L,store s2`In1l (Cast castT e)�In1 v::�T

Theory TypeSafe 381

if norm-s2 : normal s2
proof −

from s2 norm-s2 have normal s1
by (cases s1) simp

with v-ok
have G,store s1`v::�eT

by simp
with eT wf s2 T norm-s2
show ?thesis

by (cases s1) (auto dest: fits-conf)
qed
with conf-s2 error-free-s2
show s2 ::�(G, L) ∧

(normal s2 −→ G,L,store s2`In1l (Cast castT e)�In1 v::�T) ∧
(error-free (Norm s0) = error-free s2)

by blast
next

case (Inst s0 e v s1 b instT L accC T A)
note hyp = ‹PROP ?TypeSafe (Norm s0) s1 (In1l e) (In1 v)›
note conf-s0 = ‹Norm s0 ::�(G, L)›
from Inst.prems obtain eT
where wt-e: (|prg = G, cls = accC , lcl = L|)`e::−RefT eT and

T : T=Inl (PrimT Boolean)
by (elim wt-elim-cases) simp

from Inst.prems
have da-e: (|prg=G,cls=accC ,lcl=L|)

` dom (locals (store ((Norm s0)::state))) »In1l e» A
by (elim da-elim-cases) simp

from conf-s0 wt-e da-e
obtain conf-s1 : s1 ::�(G, L) and

v-ok: normal s1 −→ G,store s1`v::�RefT eT and
error-free-s1 : error-free s1
by (rule hyp [elim-format]) simp

with T show ?case
by simp

next
case (Lit s v L accC T A)
then show ?case

by (auto elim!: wt-elim-cases
intro: conf-litval simp add: empty-dt-def)

next
case (UnOp s0 e v s1 unop L accC T A)
note hyp = ‹PROP ?TypeSafe (Norm s0) s1 (In1l e) (In1 v)›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In1l (UnOp unop e)::T ›
then obtain eT

where wt-e: (|prg = G, cls = accC , lcl = L|)`e::−eT and
wt-unop: wt-unop unop eT and

T : T=Inl (PrimT (unop-type unop))
by (auto elim!: wt-elim-cases)

from UnOp.prems obtain A where
da-e: (|prg=G,cls=accC ,lcl=L|)

` dom (locals (store ((Norm s0)::state))) »In1l e» A
by (elim da-elim-cases) simp

from conf-s0 wt-e da-e
obtain conf-s1 : s1 ::�(G, L) and

wt-v: normal s1 −→ G,store s1`v::�eT and
error-free-s1 : error-free s1

by (rule hyp [elim-format]) simp

382

from wt-v T wt-unop
have normal s1−→G,L,snd s1`In1l (UnOp unop e)�In1 (eval-unop unop v)::�T

by (cases unop) auto
with conf-s1 error-free-s1
show s1 ::�(G, L) ∧
(normal s1 −→ G,L,snd s1`In1l (UnOp unop e)�In1 (eval-unop unop v)::�T) ∧
error-free (Norm s0) = error-free s1
by simp

next
case (BinOp s0 e1 v1 s1 binop e2 v2 s2 L accC T A)
note eval-e1 = ‹G`Norm s0 −e1−�v1→ s1 ›
note eval-e2 = ‹G`s1 −(if need-second-arg binop v1 then In1l e2

else In1r Skip)�→ (In1 v2 , s2)›
note hyp-e1 = ‹PROP ?TypeSafe (Norm s0) s1 (In1l e1) (In1 v1)›
note hyp-e2 = ‹PROP ?TypeSafe s1 s2

(if need-second-arg binop v1 then In1l e2 else In1r Skip)
(In1 v2)›

note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In1l (BinOp binop e1 e2)::T ›
then obtain e1T e2T where

wt-e1 : (|prg = G, cls = accC , lcl = L|)`e1 ::−e1T and
wt-e2 : (|prg = G, cls = accC , lcl = L|)`e2 ::−e2T and

wt-binop: wt-binop G binop e1T e2T and
T : T=Inl (PrimT (binop-type binop))

by (elim wt-elim-cases) simp
have wt-Skip: (|prg = G, cls = accC , lcl = L|)`Skip::

√

by simp
obtain S where

daSkip: (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store s1)) »In1r Skip» S

by (auto intro: da-Skip [simplified] assigned.select-convs)
note da = ‹(|prg=G,cls=accC ,lcl=L|)` dom (locals (store ((Norm s0 ::state))))

»〈BinOp binop e1 e2 〉e» A›
then obtain E1 where

da-e1 : (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm s0)::state))) »In1l e1» E1

by (elim da-elim-cases) simp+
from conf-s0 wt-e1 da-e1
obtain conf-s1 : s1 ::�(G, L) and

wt-v1 : normal s1 −→ G,store s1`v1 ::�e1T and
error-free-s1 : error-free s1

by (rule hyp-e1 [elim-format]) simp
from wt-binop T
have conf-v:

G,L,snd s2`In1l (BinOp binop e1 e2)�In1 (eval-binop binop v1 v2)::�T
by (cases binop) auto

— Note that we don’t use the information that v1 really is compatible with the expected type e1T and v2
is compatible with e2T, because eval-binop will anyway produce an output of the right type. So evaluating
the addition of an integer with a string is type safe. This is a little bit annoying since we may regard such
a behaviour as not type safe. If we want to avoid this we can redefine eval-binop so that it only produces
a output of proper type if it is assigned to values of the expected types, and arbitrary if the inputs have
unexpected types. The proof can easily be adapted since we have the hypothesis that the values have a
proper type. This also applies to unary operations.

from eval-e1 have
s0-s1 :dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)

show s2 ::�(G, L) ∧
(normal s2 −→

G,L,snd s2`In1l (BinOp binop e1 e2)�In1 (eval-binop binop v1 v2)::�T) ∧

Theory TypeSafe 383

error-free (Norm s0) = error-free s2
proof (cases normal s1)

case False
with eval-e2 have s2=s1 by auto
with conf-s1 error-free-s1 False show ?thesis

by auto
next

case True
note normal-s1 = this
show ?thesis
proof (cases need-second-arg binop v1)

case False
with normal-s1 eval-e2 have s2=s1

by (cases s1) (simp, elim eval-elim-cases,simp)
with conf-s1 conf-v error-free-s1
show ?thesis by simp

next
case True
note need-second-arg = this
with hyp-e2
have hyp-e2 ′: PROP ?TypeSafe s1 s2 (In1l e2) (In1 v2) by simp
from da wt-e1 wt-e2 wt-binop conf-s0 normal-s1 eval-e1

wt-v1 [rule-format,OF normal-s1] wf
obtain E2 where
(|prg=G,cls=accC ,lcl=L|)` dom (locals (store s1)) »In1l e2» E2
by (rule da-e2-BinOp [elim-format])

(auto simp add: need-second-arg)
with conf-s1 wt-e2
obtain s2 ::�(G, L) and error-free s2

by (rule hyp-e2 ′ [elim-format]) (simp add: error-free-s1)
with conf-v show ?thesis by simp

qed
qed

next
case (Super s L accC T A)
note conf-s = ‹Norm s::�(G, L)›
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In1l Super ::T ›
then obtain C c where

C : L This = Some (Class C) and
neq-Obj: C 6=Object and

cls-C : class G C = Some c and
T : T=Inl (Class (super c))

by (rule wt-elim-cases) auto
from Super .prems
obtain This ∈ dom (locals s)

by (elim da-elim-cases) simp
with conf-s C have G,s`val-this s::�Class C

by (auto dest: conforms-localD [THEN wlconfD])
with neq-Obj cls-C wf
have G,s`val-this s::�Class (super c)

by (auto intro: conf-widen
dest: subcls-direct[THEN widen.subcls])

with T conf-s
show Norm s::�(G, L) ∧

(normal (Norm s) −→
G,L,store (Norm s)`In1l Super�In1 (val-this s)::�T) ∧

(error-free (Norm s) = error-free (Norm s))
by simp

next

384

case (Acc s0 v w upd s1 L accC T A)
note hyp = ‹PROP ?TypeSafe (Norm s0) s1 (In2 v) (In2 (w,upd))›
note conf-s0 = ‹Norm s0 ::�(G, L)›
from Acc.prems obtain vT where

wt-v: (|prg = G, cls = accC , lcl = L|)`v::=vT and
T : T=Inl vT

by (elim wt-elim-cases) simp
from Acc.prems obtain V where

da-v: (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm s0)::state))) »In2 v» V

by (cases ∃ n. v=LVar n) (use da.LVar in ‹auto elim!: da-elim-cases›)
have lvar-in-locals: locals (store s1) n 6= None

if lvar : v=LVar n for n
proof −

from Acc.prems lvar have
n ∈ dom (locals s0)
by (cases ∃ n. v=LVar n) (auto elim!: da-elim-cases)

also
have dom (locals s0) ⊆ dom (locals (store s1))
proof −

from ‹G`Norm s0 −v=�(w, upd)→ s1 ›
show ?thesis

by (rule dom-locals-eval-mono-elim) simp
qed
finally show ?thesis

by blast
qed
from conf-s0 wt-v da-v
obtain conf-s1 : s1 ::�(G, L)

and conf-var : (normal s1 −→ G,L,store s1`In2 v�In2 (w, upd)::�Inl vT)
and error-free-s1 : error-free s1
by (rule hyp [elim-format]) simp

from lvar-in-locals conf-var T
have (normal s1 −→ G,L,store s1`In1l (Acc v)�In1 w::�T)

by (cases ∃ n. v=LVar n) auto
with conf-s1 error-free-s1 show ?case

by simp
next

case (Ass s0 var w upd s1 e v s2 L accC T A)
note eval-var = ‹G`Norm s0 −var=�(w, upd)→ s1 ›
note eval-e = ‹G`s1 −e−�v→ s2 ›
note hyp-var = ‹PROP ?TypeSafe (Norm s0) s1 (In2 var) (In2 (w,upd))›
note hyp-e = ‹PROP ?TypeSafe s1 s2 (In1l e) (In1 v)›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In1l (var :=e)::T ›
then obtain varT eT where

wt-var : (|prg = G, cls = accC , lcl = L|)`var ::=varT and
wt-e: (|prg = G, cls = accC , lcl = L|)`e::−eT and

widen: G`eT�varT and
T : T=Inl eT

by (rule wt-elim-cases) auto
show assign upd v s2 ::�(G, L) ∧

(normal (assign upd v s2) −→
G,L,store (assign upd v s2)`In1l (var :=e)�In1 v::�T) ∧

(error-free (Norm s0) = error-free (assign upd v s2))
proof (cases ∃ vn. var=LVar vn)

case False
with Ass.prems
obtain V E where

Theory TypeSafe 385

da-var : (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm s0)::state))) »In2 var» V and

da-e: (|prg=G,cls=accC ,lcl=L|) ` nrm V »In1l e» E
by (elim da-elim-cases) simp+

from conf-s0 wt-var da-var
obtain conf-s1 : s1 ::�(G, L)

and conf-var : normal s1
−→ G,L,store s1`In2 var�In2 (w, upd)::�Inl varT

and error-free-s1 : error-free s1
by (rule hyp-var [elim-format]) simp

show ?thesis
proof (cases normal s1)

case False
with eval-e have s2=s1 by auto
with False have assign upd v s2=s1

by simp
with conf-s1 error-free-s1 False show ?thesis

by auto
next

case True
note normal-s1=this
obtain A ′ where (|prg=G,cls=accC ,lcl=L|)

` dom (locals (store s1)) »In1l e» A ′

proof −
from eval-var wt-var da-var wf normal-s1
have nrm V ⊆ dom (locals (store s1))

by (cases rule: da-good-approxE ′) iprover
with da-e show thesis

by (rule da-weakenE) (rule that)
qed
with conf-s1 wt-e
obtain conf-s2 : s2 ::�(G, L) and

conf-v: normal s2 −→ G,store s2`v::�eT and
error-free-s2 : error-free s2
by (rule hyp-e [elim-format]) (simp add: error-free-s1)

show ?thesis
proof (cases normal s2)

case False
with conf-s2 error-free-s2
show ?thesis

by auto
next

case True
from True conf-v
have conf-v-eT : G,store s2`v::�eT

by simp
with widen wf
have conf-v-varT : G,store s2`v::�varT

by (auto intro: conf-widen)
from normal-s1 conf-var
have G,L,store s1`In2 var�In2 (w, upd)::�Inl varT

by simp
then
have conf-assign: store s1≤|upd�varT ::�(G, L)

by (simp add: rconf-def)
from conf-v-eT conf-v-varT conf-assign normal-s1 True wf eval-var

eval-e T conf-s2 error-free-s2
show ?thesis

by (cases s1 , cases s2)

386

(auto dest!: Ass-lemma simp add: assign-conforms-def)
qed

qed
next

case True
then obtain vn where vn: var=LVar vn

by blast
with Ass.prems
obtain E where

da-e: (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm s0)::state))) »In1l e» E

by (elim da-elim-cases) simp+
from da.LVar vn obtain V where

da-var : (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm s0)::state))) »In2 var» V

by auto
obtain E ′ where

da-e ′: (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store s1)) »In1l e» E ′

proof −
have dom (locals (store ((Norm s0)::state)))

⊆ dom (locals (store (s1)))
by (rule dom-locals-eval-mono-elim) (rule Ass.hyps)

with da-e show thesis
by (rule da-weakenE) (rule that)

qed
from conf-s0 wt-var da-var
obtain conf-s1 : s1 ::�(G, L)

and conf-var : normal s1
−→ G,L,store s1`In2 var�In2 (w, upd)::�Inl varT

and error-free-s1 : error-free s1
by (rule hyp-var [elim-format]) simp

show ?thesis
proof (cases normal s1)

case False
with eval-e have s2=s1 by auto
with False have assign upd v s2=s1

by simp
with conf-s1 error-free-s1 False show ?thesis

by auto
next

case True
note normal-s1 = this
from conf-s1 wt-e da-e ′

obtain conf-s2 : s2 ::�(G, L) and
conf-v: normal s2 −→ G,store s2`v::�eT and
error-free-s2 : error-free s2
by (rule hyp-e [elim-format]) (simp add: error-free-s1)

show ?thesis
proof (cases normal s2)

case False
with conf-s2 error-free-s2
show ?thesis

by auto
next

case True
from True conf-v
have conf-v-eT : G,store s2`v::�eT

by simp

Theory TypeSafe 387

with widen wf
have conf-v-varT : G,store s2`v::�varT

by (auto intro: conf-widen)
from normal-s1 conf-var
have G,L,store s1`In2 var�In2 (w, upd)::�Inl varT

by simp
then
have conf-assign: store s1≤|upd�varT ::�(G, L)

by (simp add: rconf-def)
from conf-v-eT conf-v-varT conf-assign normal-s1 True wf eval-var

eval-e T conf-s2 error-free-s2
show ?thesis

by (cases s1 , cases s2)
(auto dest!: Ass-lemma simp add: assign-conforms-def)

qed
qed

qed
next

case (Cond s0 e0 b s1 e1 e2 v s2 L accC T A)
note eval-e0 = ‹G`Norm s0 −e0−�b→ s1 ›
note eval-e1-e2 = ‹G`s1 −(if the-Bool b then e1 else e2)−�v→ s2 ›
note hyp-e0 = ‹PROP ?TypeSafe (Norm s0) s1 (In1l e0) (In1 b)›
note hyp-if = ‹PROP ?TypeSafe s1 s2

(In1l (if the-Bool b then e1 else e2)) (In1 v)›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In1l (e0 ? e1 : e2)::T ›
then obtain T1 T2 statT where

wt-e0 : (|prg = G, cls = accC , lcl = L|)`e0 ::−PrimT Boolean and
wt-e1 : (|prg = G, cls = accC , lcl = L|)`e1 ::−T1 and
wt-e2 : (|prg = G, cls = accC , lcl = L|)`e2 ::−T2 and
statT : G`T1�T2 ∧ statT = T2 ∨ G`T2�T1 ∧ statT = T1 and
T : T=Inl statT
by (rule wt-elim-cases) auto

with Cond.prems obtain E0 E1 E2 where
da-e0 : (|prg=G,cls=accC ,lcl=L|)

` dom (locals (store ((Norm s0)::state)))
»In1l e0» E0 and

da-e1 : (|prg=G,cls=accC ,lcl=L|)
` (dom (locals (store ((Norm s0)::state)))

∪ assigns-if True e0) »In1l e1» E1 and
da-e2 : (|prg=G,cls=accC ,lcl=L|)

` (dom (locals (store ((Norm s0)::state)))
∪ assigns-if False e0) »In1l e2» E2

by (elim da-elim-cases) simp+
from conf-s0 wt-e0 da-e0
obtain conf-s1 : s1 ::�(G, L) and error-free-s1 : error-free s1

by (rule hyp-e0 [elim-format]) simp
show s2 ::�(G, L) ∧

(normal s2 −→ G,L,store s2`In1l (e0 ? e1 : e2)�In1 v::�T) ∧
(error-free (Norm s0) = error-free s2)

proof (cases normal s1)
case False
with eval-e1-e2 have s2=s1 by auto
with conf-s1 error-free-s1 False show ?thesis

by auto
next

case True
have s0-s1 : dom (locals (store ((Norm s0)::state)))

∪ assigns-if (the-Bool b) e0 ⊆ dom (locals (store s1))

388

proof −
from eval-e0 have

dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)

moreover
from eval-e0 True wt-e0
have assigns-if (the-Bool b) e0 ⊆ dom (locals (store s1))

by (rule assigns-if-good-approx ′)
ultimately show ?thesis by (rule Un-least)

qed
show ?thesis
proof (cases the-Bool b)

case True
with hyp-if have hyp-e1 : PROP ?TypeSafe s1 s2 (In1l e1) (In1 v)

by simp
from da-e1 s0-s1 True obtain E1 ′ where
(|prg=G,cls=accC ,lcl=L|)` (dom (locals (store s1)))»In1l e1» E1 ′

by − (rule da-weakenE , auto iff del: Un-subset-iff sup.bounded-iff)
with conf-s1 wt-e1
obtain

s2 ::�(G, L)
(normal s2 −→ G,L,store s2`In1l e1�In1 v::�Inl T1)
error-free s2
by (rule hyp-e1 [elim-format]) (simp add: error-free-s1)

moreover
from statT
have G`T1�statT

by auto
ultimately show ?thesis

using T wf by auto
next

case False
with hyp-if have hyp-e2 : PROP ?TypeSafe s1 s2 (In1l e2) (In1 v)

by simp
from da-e2 s0-s1 False obtain E2 ′ where
(|prg=G,cls=accC ,lcl=L|)` (dom (locals (store s1)))»In1l e2» E2 ′

by − (rule da-weakenE , auto iff del: Un-subset-iff sup.bounded-iff)
with conf-s1 wt-e2
obtain

s2 ::�(G, L)
(normal s2 −→ G,L,store s2`In1l e2�In1 v::�Inl T2)
error-free s2
by (rule hyp-e2 [elim-format]) (simp add: error-free-s1)

moreover
from statT
have G`T2�statT

by auto
ultimately show ?thesis

using T wf by auto
qed

qed
next

case (Call s0 e a s1 args vs s2 invDeclC mode statT mn pTs ′ s3 s3 ′ accC ′

v s4 L accC T A)
note eval-e = ‹G`Norm s0 −e−�a→ s1 ›
note eval-args = ‹G`s1 −args .

=�vs→ s2 ›
note invDeclC = ‹invDeclC

= invocation-declclass G mode (store s2) a statT
(|name = mn, parTs = pTs ′|)›

Theory TypeSafe 389

note init-lvars =
‹s3 = init-lvars G invDeclC (|name = mn, parTs = pTs ′|) mode a vs s2 ›

note check = ‹s3 ′ =
check-method-access G accC ′ statT mode (|name = mn, parTs = pTs ′|) a s3 ›

note eval-methd =
‹G`s3 ′ −Methd invDeclC (|name = mn, parTs = pTs ′|)−�v→ s4 ›

note hyp-e = ‹PROP ?TypeSafe (Norm s0) s1 (In1l e) (In1 a)›
note hyp-args = ‹PROP ?TypeSafe s1 s2 (In3 args) (In3 vs)›
note hyp-methd = ‹PROP ?TypeSafe s3 ′ s4

(In1l (Methd invDeclC (|name = mn, parTs = pTs ′|))) (In1 v)›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg=G, cls=accC , lcl=L|)
`In1l ({accC ′,statT ,mode}e·mn({pTs ′}args))::T ›

from wt obtain pTs statDeclT statM where
wt-e: (|prg=G, cls=accC , lcl=L|)`e::−RefT statT and

wt-args: (|prg=G, cls=accC , lcl=L|)`args:: .=pTs and
statM : max-spec G accC statT (|name=mn,parTs=pTs|)

= {((statDeclT ,statM),pTs ′)} and
mode: mode = invmode statM e and

T : T =Inl (resTy statM) and
eq-accC-accC ′: accC=accC ′

by (rule wt-elim-cases) fastforce+
from Call.prems obtain E where

da-e: (|prg=G,cls=accC ,lcl=L|)
` (dom (locals (store ((Norm s0)::state))))»In1l e» E and

da-args: (|prg=G,cls=accC ,lcl=L|)` nrm E »In3 args» A
by (elim da-elim-cases) simp

from conf-s0 wt-e da-e
obtain conf-s1 : s1 ::�(G, L) and

conf-a: normal s1 =⇒ G, store s1`a::�RefT statT and
error-free-s1 : error-free s1

by (rule hyp-e [elim-format]) simp
have propagate-abnormal-s2 : set-lvars (locals (store s2)) s4 = s2

if abnormal-s2 : ¬ normal s2
proof −

from abnormal-s2 init-lvars
obtain keep-abrupt: abrupt s3 = abrupt s2 and

store s3 = store (init-lvars G invDeclC (|name = mn, parTs = pTs ′|)
mode a vs s2)

by (auto simp add: init-lvars-def2)
moreover
from keep-abrupt abnormal-s2 check
have eq-s3 ′-s3 : s3 ′=s3

by (auto simp add: check-method-access-def Let-def)
moreover
from eq-s3 ′-s3 abnormal-s2 keep-abrupt eval-methd
have s4=s3 ′

by auto
ultimately show

set-lvars (locals (store s2)) s4 = s2
by (cases s2 ,cases s3) (simp add: init-lvars-def2)

qed
show (set-lvars (locals (store s2))) s4 ::�(G, L) ∧

(normal ((set-lvars (locals (store s2))) s4) −→
G,L,store ((set-lvars (locals (store s2))) s4)
`In1l ({accC ′,statT ,mode}e·mn({pTs ′}args))�In1 v::�T) ∧

(error-free (Norm s0) =
error-free ((set-lvars (locals (store s2))) s4))

proof (cases normal s1)

390

case False
with eval-args have s2=s1 by auto
with False propagate-abnormal-s2 conf-s1 error-free-s1
show ?thesis

by auto
next

case True
note normal-s1 = this
obtain A ′ where
(|prg=G,cls=accC ,lcl=L|)` dom (locals (store s1)) »In3 args» A ′

proof −
from eval-e wt-e da-e wf normal-s1
have nrm E ⊆ dom (locals (store s1))

by (cases rule: da-good-approxE ′) iprover
with da-args show thesis

by (rule da-weakenE) (rule that)
qed
with conf-s1 wt-args
obtain conf-s2 : s2 ::�(G, L) and

conf-args: normal s2
=⇒ list-all2 (conf G (store s2)) vs pTs and

error-free-s2 : error-free s2
by (rule hyp-args [elim-format]) (simp add: error-free-s1)

from error-free-s2 init-lvars
have error-free-s3 : error-free s3

by (auto simp add: init-lvars-def2)
from statM
obtain

statM ′: (statDeclT ,statM)∈mheads G accC statT (|name=mn,parTs=pTs ′|) and
pTs-widen: G`pTs[�]pTs ′

by (blast dest: max-spec2mheads)
from check
have eq-store-s3 ′-s3 : store s3 ′=store s3

by (cases s3) (simp add: check-method-access-def Let-def)
obtain invC

where invC : invC = invocation-class mode (store s2) a statT
by simp

with init-lvars
have invC ′: invC = (invocation-class mode (store s3) a statT)

by (cases s2 ,cases mode) (auto simp add: init-lvars-def2)
show ?thesis
proof (cases normal s2)

case False
with propagate-abnormal-s2 conf-s2 error-free-s2
show ?thesis

by auto
next

case True
note normal-s2 = True
with normal-s1 conf-a eval-args
have conf-a-s2 : G, store s2`a::�RefT statT

by (auto dest: eval-gext intro: conf-gext)
show ?thesis
proof (cases a=Null −→ is-static statM)

case False
then obtain not-static: ¬ is-static statM and Null: a=Null

by blast
with normal-s2 init-lvars mode
obtain np: abrupt s3 = Some (Xcpt (Std NullPointer)) and

Theory TypeSafe 391

store s3 = store (init-lvars G invDeclC
(|name = mn, parTs = pTs ′|) mode a vs s2)

by (auto simp add: init-lvars-def2)
moreover
from np check
have eq-s3 ′-s3 : s3 ′=s3

by (auto simp add: check-method-access-def Let-def)
moreover
from eq-s3 ′-s3 np eval-methd
have s4=s3 ′

by auto
ultimately have

set-lvars (locals (store s2)) s4
= (Some (Xcpt (Std NullPointer)),store s2)
by (cases s2 ,cases s3) (simp add: init-lvars-def2)

with conf-s2 error-free-s2
show ?thesis

by (cases s2) (auto dest: conforms-NormI)
next

case True
with mode have notNull: mode = IntVir −→ a 6= Null

by (auto dest!: Null-staticD)
with conf-s2 conf-a-s2 wf invC
have dynT-prop: G`mode→invC�statT

by (cases s2) (auto intro: DynT-propI)
with wt-e statM ′ invC mode wf
obtain dynM where

dynM : dynlookup G statT invC (|name=mn,parTs=pTs ′|) = Some dynM and
acc-dynM : G `Methd (|name=mn,parTs=pTs ′|) dynM

in invC dyn-accessible-from accC
by (force dest!: call-access-ok)

with invC ′ check eq-accC-accC ′

have eq-s3 ′-s3 : s3 ′=s3
by (auto simp add: check-method-access-def Let-def)

from dynT-prop wf wt-e statM ′ mode invC invDeclC dynM
obtain

wf-dynM : wf-mdecl G invDeclC ((|name=mn,parTs=pTs ′|),mthd dynM) and
dynM ′: methd G invDeclC (|name=mn,parTs=pTs ′|) = Some dynM and

iscls-invDeclC : is-class G invDeclC and
invDeclC ′: invDeclC = declclass dynM and

invC-widen: G`invC�C invDeclC and
resTy-widen: G`resTy dynM�resTy statM and

is-static-eq: is-static dynM = is-static statM and
involved-classes-prop:
(if invmode statM e = IntVir

then ∀ statC . statT = ClassT statC −→ G`invC�C statC
else ((∃ statC . statT = ClassT statC ∧ G`statC�C invDeclC) ∨

(∀ statC . statT 6= ClassT statC ∧ invDeclC = Object)) ∧
statDeclT = ClassT invDeclC)

by (cases rule: DynT-mheadsE) simp
obtain L ′ where
L ′:L ′=(λ k.

(case k of
EName e
⇒ (case e of

VNam v
⇒((table-of (lcls (mbody (mthd dynM))))

(pars (mthd dynM)[7→]pTs ′)) v
| Res ⇒ Some (resTy dynM))

392

| This ⇒ if is-static statM
then None else Some (Class invDeclC)))

by simp
from wf-dynM [THEN wf-mdeclD1 , THEN conjunct1] normal-s2 conf-s2 wt-e

wf eval-args conf-a mode notNull wf-dynM involved-classes-prop
have conf-s3 : s3 ::�(G,L ′)

apply −

apply (drule conforms-init-lvars [of G invDeclC
(|name=mn,parTs=pTs ′|) dynM store s2 vs pTs abrupt s2
L statT invC a (statDeclT ,statM) e])

apply (rule wf)
apply (rule conf-args,assumption)
apply (simp add: pTs-widen)
apply (cases s2 ,simp)
apply (rule dynM ′)
apply (force dest: ty-expr-is-type)
apply (rule invC-widen)
apply (force intro: conf-gext dest: eval-gext)
apply simp
apply simp
apply (simp add: invC)
apply (simp add: invDeclC)
apply (simp add: normal-s2)
apply (cases s2 , simp add: L ′ init-lvars

cong add: lname.case-cong ename.case-cong)
done

with eq-s3 ′-s3
have conf-s3 ′: s3 ′::�(G,L ′) by simp
moreover
from is-static-eq wf-dynM L ′

obtain mthdT where
(|prg=G,cls=invDeclC ,lcl=L ′|)
`Body invDeclC (stmt (mbody (mthd dynM)))::−mthdT and

mthdT-widen: G`mthdT�resTy dynM
by − (drule wf-mdecl-bodyD,

auto simp add: callee-lcl-def
cong add: lname.case-cong ename.case-cong)

with dynM ′ iscls-invDeclC invDeclC ′

have
(|prg=G,cls=invDeclC ,lcl=L ′|)
`(Methd invDeclC (|name = mn, parTs = pTs ′|))::−mthdT

by (auto intro: wt.Methd)
moreover
obtain M where
(|prg=G,cls=invDeclC ,lcl=L ′|)
` dom (locals (store s3 ′))

»In1l (Methd invDeclC (|name = mn, parTs = pTs ′|))» M
proof −

from wf-dynM
obtain M ′ where

da-body:
(|prg=G, cls=invDeclC
,lcl=callee-lcl invDeclC (|name = mn, parTs = pTs ′|) (mthd dynM)
|) ` parameters (mthd dynM) »〈stmt (mbody (mthd dynM))〉» M ′ and

res: Result ∈ nrm M ′

by (rule wf-mdeclE) iprover
from da-body is-static-eq L ′ have
(|prg=G, cls=invDeclC ,lcl=L ′|)

Theory TypeSafe 393

` parameters (mthd dynM) »〈stmt (mbody (mthd dynM))〉» M ′

by (simp add: callee-lcl-def
cong add: lname.case-cong ename.case-cong)

moreover have parameters (mthd dynM) ⊆ dom (locals (store s3 ′))
proof −

from is-static-eq
have (invmode (mthd dynM) e) = (invmode statM e)

by (simp add: invmode-def)
moreover
have length (pars (mthd dynM)) = length vs
proof −

from normal-s2 conf-args
have length vs = length pTs

by (simp add: list-all2-iff)
also from pTs-widen
have . . . = length pTs ′

by (simp add: widens-def list-all2-iff)
also from wf-dynM
have . . . = length (pars (mthd dynM))

by (simp add: wf-mdecl-def wf-mhead-def)
finally show ?thesis ..

qed
moreover note init-lvars dynM ′ is-static-eq normal-s2 mode
ultimately
have parameters (mthd dynM) = dom (locals (store s3))

using dom-locals-init-lvars
[of mthd dynM G invDeclC (|name=mn,parTs=pTs ′|) vs e a s2]

by simp
also from check
have dom (locals (store s3)) ⊆ dom (locals (store s3 ′))

by (simp add: eq-s3 ′-s3)
finally show ?thesis .

qed
ultimately obtain M2 where

da:
(|prg=G, cls=invDeclC ,lcl=L ′|)
` dom (locals (store s3 ′)) »〈stmt (mbody (mthd dynM))〉» M2 and

M2 : nrm M ′ ⊆ nrm M2
by (rule da-weakenE)

from res M2 have Result ∈ nrm M2
by blast

moreover from wf-dynM
have jumpNestingOkS {Ret} (stmt (mbody (mthd dynM)))

by (rule wf-mdeclE)
ultimately
obtain M3 where
(|prg=G, cls=invDeclC ,lcl=L ′|) ` dom (locals (store s3 ′))

»〈Body (declclass dynM) (stmt (mbody (mthd dynM)))〉» M3
using da
by (iprover intro: da.Body assigned.select-convs)

from - this [simplified]
show ?thesis

by (rule da.Methd [simplified,elim-format]) (auto intro: dynM ′ that)
qed
ultimately obtain

conf-s4 : s4 ::�(G, L ′) and
conf-Res: normal s4 −→ G,store s4`v::�mthdT and
error-free-s4 : error-free s4
by (rule hyp-methd [elim-format])

394

(simp add: error-free-s3 eq-s3 ′-s3)
from init-lvars eval-methd eq-s3 ′-s3
have store s2≤|store s4

by (cases s2) (auto dest!: eval-gext simp add: init-lvars-def2)
moreover
have abrupt s4 6= Some (Jump Ret)
proof −

from normal-s2 init-lvars
have abrupt s3 6= Some (Jump Ret)

by (cases s2) (simp add: init-lvars-def2 abrupt-if-def)
with check
have abrupt s3 ′ 6= Some (Jump Ret)

by (cases s3) (auto simp add: check-method-access-def Let-def)
with eval-methd
show ?thesis

by (rule Methd-no-jump)
qed
ultimately
have (set-lvars (locals (store s2))) s4 ::�(G, L)

using conf-s2 conf-s4
by (cases s2 ,cases s4) (auto intro: conforms-return)

moreover
from conf-Res mthdT-widen resTy-widen wf
have normal s4

−→ G,store s4`v::�(resTy statM)
by (auto dest: widen-trans)

then
have normal ((set-lvars (locals (store s2))) s4)
−→ G,store((set-lvars (locals (store s2))) s4) `v::�(resTy statM)

by (cases s4) auto
moreover note error-free-s4 T
ultimately
show ?thesis

by simp
qed

qed
qed

next
case (Methd s0 D sig v s1 L accC T A)
note ‹G`Norm s0 −body G D sig−�v→ s1 ›
note hyp = ‹PROP ?TypeSafe (Norm s0) s1 (In1l (body G D sig)) (In1 v)›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In1l (Methd D sig)::T ›
then obtain m bodyT where

D: is-class G D and
m: methd G D sig = Some m and
wt-body: (|prg = G, cls = accC , lcl = L|)

`Body (declclass m) (stmt (mbody (mthd m)))::−bodyT and
T : T=Inl bodyT
by (rule wt-elim-cases) auto

moreover
from Methd.prems m have

da-body: (|prg=G,cls=accC ,lcl=L|)
` (dom (locals (store ((Norm s0)::state))))

»In1l (Body (declclass m) (stmt (mbody (mthd m))))» A
by − (erule da-elim-cases,simp)

ultimately
show s1 ::�(G, L) ∧

(normal s1 −→ G,L,snd s1`In1l (Methd D sig)�In1 v::�T) ∧

Theory TypeSafe 395

(error-free (Norm s0) = error-free s1)
using hyp [of - - (Inl bodyT)] conf-s0
by (auto simp add: Let-def body-def)

next
case (Body s0 D s1 c s2 s3 L accC T A)
note eval-init = ‹G`Norm s0 −Init D→ s1 ›
note eval-c = ‹G`s1 −c→ s2 ›
note hyp-init = ‹PROP ?TypeSafe (Norm s0) s1 (In1r (Init D)) ♦›
note hyp-c = ‹PROP ?TypeSafe s1 s2 (In1r c) ♦›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In1l (Body D c)::T ›
then obtain bodyT where

iscls-D: is-class G D and
wt-c: (|prg = G, cls = accC , lcl = L|)`c::

√
and

resultT : L Result = Some bodyT and
isty-bodyT : is-type G bodyT and

T : T=Inl bodyT
by (rule wt-elim-cases) auto

from Body.prems obtain C where
da-c: (|prg=G,cls=accC ,lcl=L|)

` (dom (locals (store ((Norm s0)::state))))»In1r c» C and
jmpOk: jumpNestingOkS {Ret} c and
res: Result ∈ nrm C
by (elim da-elim-cases) simp

note conf-s0
moreover from iscls-D
have (|prg=G, cls=accC , lcl=L|)`Init D::

√
by auto

moreover obtain I where
(|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm s0)::state))) »In1r (Init D)» I

by (auto intro: da-Init [simplified] assigned.select-convs)
ultimately obtain

conf-s1 : s1 ::�(G, L) and error-free-s1 : error-free s1
by (rule hyp-init [elim-format]) simp

obtain C ′ where da-C ′: (|prg=G,cls=accC ,lcl=L|)
` (dom (locals (store s1)))»In1r c» C ′

and nrm-C ′: nrm C ⊆ nrm C ′

proof −
from eval-init
have (dom (locals (store ((Norm s0)::state))))

⊆ (dom (locals (store s1)))
by (rule dom-locals-eval-mono-elim)

with da-c show thesis by (rule da-weakenE) (rule that)
qed
from conf-s1 wt-c da-C ′

obtain conf-s2 : s2 ::�(G, L) and error-free-s2 : error-free s2
by (rule hyp-c [elim-format]) (simp add: error-free-s1)

from conf-s2
have abupd (absorb Ret) s2 ::�(G, L)

by (cases s2) (auto intro: conforms-absorb)
moreover
from error-free-s2
have error-free (abupd (absorb Ret) s2)

by simp
moreover have abrupt (abupd (absorb Ret) s3) 6= Some (Jump Ret)

by (cases s3) (simp add: absorb-def)
moreover have s3=s2
proof −

from iscls-D

396

have wt-init: (|prg=G, cls=accC , lcl=L|)`(Init D)::
√

by auto
have s1-no-jmp:

∧
j. abrupt s1 6= Some (Jump j)

by (rule eval-statement-no-jump [OF - - - wt-init]) (use eval-init wf in auto)
from eval-c - wt-c wf
have

∧
j. abrupt s2 = Some (Jump j) =⇒ j=Ret

by (rule jumpNestingOk-evalE) (auto intro: jmpOk simp add: s1-no-jmp)
moreover
note ‹s3 =

(if ∃ l. abrupt s2 = Some (Jump (Break l)) ∨
abrupt s2 = Some (Jump (Cont l))

then abupd (λx. Some (Error CrossMethodJump)) s2 else s2)›
ultimately show ?thesis

by force
qed
moreover
have Result ∈ dom (locals (store s2))

if normal-upd-s2 : normal (abupd (absorb Ret) s2)
proof −

from normal-upd-s2
have normal s2 ∨ abrupt s2 = Some (Jump Ret)

by (cases s2) (simp add: absorb-def)
thus ?thesis
proof

assume normal s2
with eval-c wt-c da-C ′ wf res nrm-C ′

show ?thesis
by (cases rule: da-good-approxE ′) blast

next
assume abrupt s2 = Some (Jump Ret)
with conf-s2 show ?thesis

by (cases s2) (auto dest: conforms-RetD simp add: dom-def)
qed

qed
moreover note T resultT
ultimately
show abupd (absorb Ret) s3 ::�(G, L) ∧

(normal (abupd (absorb Ret) s3) −→
G,L,store (abupd (absorb Ret) s3)
`In1l (Body D c)�In1 (the (locals (store s2) Result))::�T) ∧

(error-free (Norm s0) = error-free (abupd (absorb Ret) s3))
by (cases s2) (auto intro: conforms-locals)

next
case (LVar s vn L accC T)
note conf-s = ‹Norm s::�(G, L)› and

wt = ‹(|prg = G, cls = accC , lcl = L|)`In2 (LVar vn)::T ›
then obtain vnT where

vnT : L vn = Some vnT and
T : T=Inl vnT

by (auto elim!: wt-elim-cases)
from conf-s vnT
have conf-fst: locals s vn 6= None −→ G,s`fst (lvar vn s)::�vnT
by (auto elim: conforms-localD [THEN wlconfD]

simp add: lvar-def)
moreover
from conf-s conf-fst vnT
have s≤|snd (lvar vn s)�vnT ::�(G, L)

by (auto elim: conforms-lupd simp add: assign-conforms-def lvar-def)
moreover note conf-s T

Theory TypeSafe 397

ultimately
show Norm s::�(G, L) ∧

(normal (Norm s) −→
G,L,store (Norm s)`In2 (LVar vn)�In2 (lvar vn s)::�T) ∧

(error-free (Norm s) = error-free (Norm s))
by (simp add: lvar-def)

next
case (FVar s0 statDeclC s1 e a s2 v s2 ′ stat fn s3 accC L accC ′ T A)
note eval-init = ‹G`Norm s0 −Init statDeclC→ s1 ›
note eval-e = ‹G`s1 −e−�a→ s2 ›
note fvar = ‹(v, s2 ′) = fvar statDeclC stat fn a s2 ›
note check = ‹s3 = check-field-access G accC statDeclC fn stat a s2 ′›
note hyp-init = ‹PROP ?TypeSafe (Norm s0) s1 (In1r (Init statDeclC)) ♦›
note hyp-e = ‹PROP ?TypeSafe s1 s2 (In1l e) (In1 a)›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg=G, cls=accC ′, lcl=L|)`In2 ({accC ,statDeclC ,stat}e..fn)::T ›
then obtain statC f where

wt-e: (|prg=G, cls=accC , lcl=L|)`e::−Class statC and
accfield: accfield G accC statC fn = Some (statDeclC ,f) and

eq-accC-accC ′: accC=accC ′ and
stat: stat=is-static f and

T : T=(Inl (type f))
by (rule wt-elim-cases) (auto simp add: member-is-static-simp)

from FVar .prems eq-accC-accC ′

have da-e: (|prg=G, cls=accC , lcl=L|)
` (dom (locals (store ((Norm s0)::state))))»In1l e» A

by (elim da-elim-cases) simp
note conf-s0
moreover
from wf wt-e
have iscls-statC : is-class G statC

by (auto dest: ty-expr-is-type type-is-class)
with wf accfield
have iscls-statDeclC : is-class G statDeclC

by (auto dest!: accfield-fields dest: fields-declC)
hence (|prg=G, cls=accC , lcl=L|)`(Init statDeclC)::

√

by simp
moreover obtain I where
(|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm s0)::state))) »In1r (Init statDeclC)» I

by (auto intro: da-Init [simplified] assigned.select-convs)
ultimately
obtain conf-s1 : s1 ::�(G, L) and error-free-s1 : error-free s1

by (rule hyp-init [elim-format]) simp
obtain A ′ where
(|prg=G, cls=accC , lcl=L|) ` (dom (locals (store s1)))»In1l e» A ′

proof −
from eval-init
have (dom (locals (store ((Norm s0)::state))))

⊆ (dom (locals (store s1)))
by (rule dom-locals-eval-mono-elim)

with da-e show thesis
by (rule da-weakenE) (rule that)

qed
with conf-s1 wt-e
obtain conf-s2 : s2 ::�(G, L) and

conf-a: normal s2 −→ G,store s2`a::�Class statC and
error-free-s2 : error-free s2

by (rule hyp-e [elim-format]) (simp add: error-free-s1)

398

from fvar
have store-s2 ′: store s2 ′=store s2

by (cases s2) (simp add: fvar-def2)
with fvar conf-s2
have conf-s2 ′: s2 ′::�(G, L)

by (cases s2 ,cases stat) (auto simp add: fvar-def2)
from eval-init
have initd-statDeclC-s1 : initd statDeclC s1

by (rule init-yields-initd)
from accfield wt-e eval-init eval-e conf-s2 conf-a fvar stat check wf
have eq-s3-s2 ′: s3=s2 ′

by (auto dest!: error-free-field-access)
have conf-v: normal s2 ′ =⇒

G,store s2 ′̀ fst v::�type f ∧ store s2 ′≤|snd v�type f ::�(G, L)
proof −

assume normal: normal s2 ′

obtain vv vf x2 store2 store2 ′

where v: v=(vv,vf) and
s2 : s2=(x2 ,store2) and

store2 ′: store s2 ′ = store2 ′

by (cases v,cases s2 ,cases s2 ′) blast
from iscls-statDeclC obtain c

where c: class G statDeclC = Some c
by auto

have G,store2 ′̀ vv::�type f ∧ store2 ′≤|vf�type f ::�(G, L)
proof (rule FVar-lemma [of vv vf store2 ′ statDeclC f fn a x2 store2

statC G c L store s1])
from v normal s2 fvar stat store2 ′

show ((vv, vf), Norm store2 ′) =
fvar statDeclC (static f) fn a (x2 , store2)

by (auto simp add: member-is-static-simp)
from accfield iscls-statC wf
show G`statC�C statDeclC

by (auto dest!: accfield-fields dest: fields-declC)
from accfield
show fld: table-of (DeclConcepts.fields G statC) (fn, statDeclC) = Some f

by (auto dest!: accfield-fields)
from wf show wf-prog G .
from conf-a s2 show x2 = None −→ G,store2`a::�Class statC

by auto
from fld wf iscls-statC
show statDeclC 6= Object

by (cases statDeclC=Object) (drule fields-declC ,simp+)+
from c show class G statDeclC = Some c .
from conf-s2 s2 show (x2 , store2)::�(G, L) by simp
from eval-e s2 show snd s1≤|store2 by (auto dest: eval-gext)
from initd-statDeclC-s1 show inited statDeclC (globs (snd s1))

by simp
qed
with v s2 store2 ′

show ?thesis
by simp

qed
from fvar error-free-s2
have error-free s2 ′

by (cases s2)
(auto simp add: fvar-def2 intro!: error-free-FVar-lemma)

with conf-v T conf-s2 ′ eq-s3-s2 ′

show s3 ::�(G, L) ∧

Theory TypeSafe 399

(normal s3
−→ G,L,store s3`In2 ({accC ,statDeclC ,stat}e..fn)�In2 v::�T) ∧
(error-free (Norm s0) = error-free s3)

by auto
next

case (AVar s0 e1 a s1 e2 i s2 v s2 ′ L accC T A)
note eval-e1 = ‹G`Norm s0 −e1−�a→ s1 ›
note eval-e2 = ‹G`s1 −e2−�i→ s2 ›
note hyp-e1 = ‹PROP ?TypeSafe (Norm s0) s1 (In1l e1) (In1 a)›
note hyp-e2 = ‹PROP ?TypeSafe s1 s2 (In1l e2) (In1 i)›
note avar = ‹(v, s2 ′) = avar G i a s2 ›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In2 (e1 .[e2])::T ›
then obtain elemT

where wt-e1 : (|prg=G,cls=accC ,lcl=L|)`e1 ::−elemT .[] and
wt-e2 : (|prg=G,cls=accC ,lcl=L|)`e2 ::−PrimT Integer and

T : T= Inl elemT
by (rule wt-elim-cases) auto

from AVar .prems obtain E1 where
da-e1 : (|prg=G,cls=accC ,lcl=L|)

` (dom (locals (store ((Norm s0)::state))))»In1l e1» E1 and
da-e2 : (|prg=G,cls=accC ,lcl=L|)` nrm E1 »In1l e2» A
by (elim da-elim-cases) simp

from conf-s0 wt-e1 da-e1
obtain conf-s1 : s1 ::�(G, L) and

conf-a: (normal s1 −→ G,store s1`a::�elemT .[]) and
error-free-s1 : error-free s1

by (rule hyp-e1 [elim-format]) simp
show s2 ′::�(G, L) ∧

(normal s2 ′ −→ G,L,store s2 ′̀ In2 (e1 .[e2])�In2 v::�T) ∧
(error-free (Norm s0) = error-free s2 ′)

proof (cases normal s1)
case False
moreover
from False eval-e2 have eq-s2-s1 : s2=s1 by auto
moreover
from eq-s2-s1 False have ¬ normal s2 by simp
then have snd (avar G i a s2) = s2

by (cases s2) (simp add: avar-def2)
with avar have s2 ′=s2

by (cases (avar G i a s2)) simp
ultimately show ?thesis

using conf-s1 error-free-s1
by auto

next
case True
obtain A ′ where
(|prg=G,cls=accC ,lcl=L|)` dom (locals (store s1)) »In1l e2» A ′

proof −
from eval-e1 wt-e1 da-e1 wf True
have nrm E1 ⊆ dom (locals (store s1))

by (cases rule: da-good-approxE ′) iprover
with da-e2 show thesis

by (rule da-weakenE) (rule that)
qed
with conf-s1 wt-e2
obtain conf-s2 : s2 ::�(G, L) and error-free-s2 : error-free s2

by (rule hyp-e2 [elim-format]) (simp add: error-free-s1)
from avar

400

have store s2 ′=store s2
by (cases s2) (simp add: avar-def2)

with avar conf-s2
have conf-s2 ′: s2 ′::�(G, L)

by (cases s2) (auto simp add: avar-def2)
from avar error-free-s2
have error-free-s2 ′: error-free s2 ′

by (cases s2) (auto simp add: avar-def2)
have normal s2 ′ =⇒

G,store s2 ′̀ fst v::�elemT ∧ store s2 ′≤|snd v�elemT ::�(G, L)
proof −

assume normal: normal s2 ′

show ?thesis
proof −

obtain vv vf x1 store1 x2 store2 store2 ′

where v: v=(vv,vf) and
s1 : s1=(x1 ,store1) and
s2 : s2=(x2 ,store2) and

store2 ′: store2 ′=store s2 ′

by (cases v,cases s1 , cases s2 , cases s2 ′) blast
have G,store2 ′̀ vv::�elemT ∧ store2 ′≤|vf�elemT ::�(G, L)
proof (rule AVar-lemma [of G x1 store1 e2 i x2 store2 vv vf store2 ′ a,

OF wf])
from s1 s2 eval-e2 show G`(x1 , store1) −e2−�i→ (x2 , store2)

by simp
from v normal s2 store2 ′ avar
show ((vv, vf), Norm store2 ′) = avar G i a (x2 , store2)

by auto
from s2 conf-s2 show (x2 , store2)::�(G, L) by simp
from s1 conf-a show x1 = None −→ G,store1`a::�elemT .[] by simp
from eval-e2 s1 s2 show store1≤|store2 by (auto dest: eval-gext)

qed
with v s1 s2 store2 ′

show ?thesis
by simp

qed
qed
with conf-s2 ′ error-free-s2 ′ T
show ?thesis

by auto
qed

next
case (Nil s0 L accC T)
then show ?case

by (auto elim!: wt-elim-cases)
next

case (Cons s0 e v s1 es vs s2 L accC T A)
note eval-e = ‹G`Norm s0 −e−�v→ s1 ›
note eval-es = ‹G`s1 −es .

=�vs→ s2 ›
note hyp-e = ‹PROP ?TypeSafe (Norm s0) s1 (In1l e) (In1 v)›
note hyp-es = ‹PROP ?TypeSafe s1 s2 (In3 es) (In3 vs)›
note conf-s0 = ‹Norm s0 ::�(G, L)›
note wt = ‹(|prg = G, cls = accC , lcl = L|)`In3 (e # es)::T ›
then obtain eT esT where

wt-e: (|prg = G, cls = accC , lcl = L|)`e::−eT and
wt-es: (|prg = G, cls = accC , lcl = L|)`es:: .=esT and
T : T=Inr (eT#esT)

by (rule wt-elim-cases) blast
from Cons.prems obtain E where

Theory TypeSafe 401

da-e: (|prg=G,cls=accC ,lcl=L|)
` (dom (locals (store ((Norm s0)::state))))»In1l e» E and

da-es: (|prg=G,cls=accC ,lcl=L|)` nrm E »In3 es» A
by (elim da-elim-cases) simp

from conf-s0 wt-e da-e
obtain conf-s1 : s1 ::�(G, L) and error-free-s1 : error-free s1 and

conf-v: normal s1 −→ G,store s1`v::�eT
by (rule hyp-e [elim-format]) simp

show
s2 ::�(G, L) ∧
(normal s2 −→ G,L,store s2`In3 (e # es)�In3 (v # vs)::�T) ∧
(error-free (Norm s0) = error-free s2)

proof (cases normal s1)
case False
with eval-es have s2=s1 by auto
with False conf-s1 error-free-s1
show ?thesis

by auto
next

case True
obtain A ′ where
(|prg=G,cls=accC ,lcl=L|)` dom (locals (store s1)) »In3 es» A ′

proof −
from eval-e wt-e da-e wf True
have nrm E ⊆ dom (locals (store s1))

by (cases rule: da-good-approxE ′) iprover
with da-es show thesis

by (rule da-weakenE) (rule that)
qed
with conf-s1 wt-es
obtain conf-s2 : s2 ::�(G, L) and

error-free-s2 : error-free s2 and
conf-vs: normal s2 −→ list-all2 (conf G (store s2)) vs esT

by (rule hyp-es [elim-format]) (simp add: error-free-s1)
moreover
from True eval-es conf-v
have conf-v ′: G,store s2`v::�eT

apply clarify
apply (rule conf-gext)
apply (auto dest: eval-gext)
done

ultimately show ?thesis using T by simp
qed

qed
from this and conf-s0 wt da show ?thesis .

qed

corollary eval-type-soundE [consumes 5]:
assumes eval: G`s0 −t�→ (v, s1)
and conf : s0 ::�(G, L)
and wt: (|prg = G, cls = accC , lcl = L|)`t::T
and da: (|prg = G, cls = accC , lcl = L|)` dom (locals (snd s0)) »t» A
and wf : wf-prog G
and elim: [[s1 ::�(G, L); normal s1 =⇒ G,L,snd s1`t�v::�T ;

error-free s0 = error-free s1]] =⇒ P
shows P

using eval wt da wf conf
by (rule eval-type-sound [elim-format]) (iprover intro: elim)

402

corollary eval-ts:
[[G`s −e−�v → s ′; wf-prog G; s::�(G,L); (|prg=G,cls=C ,lcl=L|)`e::−T ;
(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»In1l e»A]]

=⇒ s ′::�(G,L) ∧ (normal s ′ −→ G,store s ′̀ v::�T) ∧
(error-free s = error-free s ′)

apply (drule (4) eval-type-sound)
apply clarsimp
done

corollary evals-ts:
[[G`s −es .

=�vs→ s ′; wf-prog G; s::�(G,L); (|prg=G,cls=C ,lcl=L|)`es:: .=Ts;
(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»In3 es»A]]

=⇒ s ′::�(G,L) ∧ (normal s ′ −→ list-all2 (conf G (store s ′)) vs Ts) ∧
(error-free s = error-free s ′)

apply (drule (4) eval-type-sound)
apply clarsimp
done

corollary evar-ts:
[[G`s −v=�vf→ s ′; wf-prog G; s::�(G,L); (|prg=G,cls=C ,lcl=L|)`v::=T ;
(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»In2 v»A]] =⇒
s ′::�(G,L) ∧ (normal s ′ −→ G,L,(store s ′)`In2 v�In2 vf ::�Inl T) ∧
(error-free s = error-free s ′)

apply (drule (4) eval-type-sound)
apply clarsimp
done

theorem exec-ts:
[[G`s −c→ s ′; wf-prog G; s::�(G,L); (|prg=G,cls=C ,lcl=L|)`c::

√
;

(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»In1r c»A]]
=⇒ s ′::�(G,L) ∧ (error-free s −→ error-free s ′)

apply (drule (4) eval-type-sound)
apply clarsimp
done

lemma wf-eval-Fin:
assumes wf : wf-prog G

and wt-c1 : (|prg = G, cls = C , lcl = L|)`In1r c1 ::Inl (PrimT Void)
and da-c1 : (|prg=G,cls=C ,lcl=L|)`dom (locals (store (Norm s0)))»In1r c1»A
and conf-s0 : Norm s0 ::�(G, L)
and eval-c1 : G`Norm s0 −c1→ (x1 ,s1)
and eval-c2 : G`Norm s1 −c2→ s2
and s3 : s3=abupd (abrupt-if (x1 6=None) x1) s2

shows G`Norm s0 −c1 Finally c2→ s3
proof −

from eval-c1 wt-c1 da-c1 wf conf-s0
have error-free (x1 ,s1)

by (auto dest: eval-type-sound)
with eval-c1 eval-c2 s3
show ?thesis

by − (rule eval.Fin, auto simp add: error-free-def)
qed

3 Ideas for the future

In the type soundness proof and the correctness proof of definite assignment we perform induction
on the evaluation relation with the further preconditions that the term is welltyped and definitely

Theory TypeSafe 403

assigned. During the proofs we have to establish the welltypedness and definite assignment of the
subterms to be able to apply the induction hypothesis. So large parts of both proofs are the same
work in propagating welltypedness and definite assignment. So we can derive a new induction rule
for induction on the evaluation of a wellformed term, were these propagations is already done, once
and forever. Then we can do the proofs with this rule and can enjoy the time we have saved. Here
is a first and incomplete sketch of such a rule.
theorem wellformed-eval-induct [consumes 4 , case-names Abrupt Skip Expr Lab

Comp If]:
assumes eval: G`s0 −t�→ (v,s1)
and wt: (|prg=G,cls=accC ,lcl=L|)`t::T
and da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»t»A
and wf : wf-prog G
and abrupt:

∧
s t abr L accC T A.

[[(|prg=G,cls=accC ,lcl=L|)`t::T ;
(|prg=G,cls=accC ,lcl=L|)`dom (locals (store (Some abr ,s)))»t»A
]] =⇒ P L accC (Some abr , s) t (undefined3 t) (Some abr , s)

and skip:
∧

s L accC . P L accC (Norm s) 〈Skip〉s ♦ (Norm s)
and expr :

∧
e s0 s1 v L accC eT E .

[[(|prg=G,cls=accC ,lcl=L|)`e::−eT ;
(|prg=G,cls=accC ,lcl=L|)
`dom (locals (store ((Norm s0)::state)))»〈e〉e»E ;

P L accC (Norm s0) 〈e〉e bvce s1]]
=⇒ P L accC (Norm s0) 〈Expr e〉s ♦ s1

and lab:
∧

c l s0 s1 L accC C .
[[(|prg=G,cls=accC ,lcl=L|)`c::

√
;

(|prg=G,cls=accC , lcl=L|)
`dom (locals (store ((Norm s0)::state)))»〈c〉s»C ;

P L accC (Norm s0) 〈c〉s ♦ s1]]
=⇒ P L accC (Norm s0) 〈l· c〉s ♦ (abupd (absorb l) s1)

and comp:
∧

c1 c2 s0 s1 s2 L accC C1 .
[[G`Norm s0 −c1 → s1 ;G`s1 −c2 → s2 ;
(|prg=G,cls=accC ,lcl=L|)`c1 ::

√
;

(|prg=G,cls=accC ,lcl=L|)`c2 ::
√
;

(|prg=G,cls=accC ,lcl=L|)`
dom (locals (store ((Norm s0)::state))) »〈c1 〉s» C1 ;

P L accC (Norm s0) 〈c1 〉s ♦ s1 ;∧
Q. [[normal s1 ;∧

C2 .[[(|prg=G,cls=accC ,lcl=L|)
`dom (locals (store s1)) »〈c2 〉s» C2 ;

P L accC s1 〈c2 〉s ♦ s2]] =⇒ Q
]] =⇒ Q

]]=⇒ P L accC (Norm s0) 〈c1 ;; c2 〉s ♦ s2
and if :

∧
b c1 c2 e s0 s1 s2 L accC E .

[[G`Norm s0 −e−�b→ s1 ;
G`s1 −(if the-Bool b then c1 else c2)→ s2 ;
(|prg=G,cls=accC ,lcl=L|)`e::−PrimT Boolean;
(|prg=G, cls=accC , lcl=L|)`(if the-Bool b then c1 else c2)::

√
;

(|prg=G,cls=accC ,lcl=L|)`
dom (locals (store ((Norm s0)::state))) »〈e〉e» E ;

P L accC (Norm s0) 〈e〉e bbce s1 ;∧
Q. [[normal s1 ;∧

C . [[(|prg=G,cls=accC ,lcl=L|)` (dom (locals (store s1)))
»〈if the-Bool b then c1 else c2 〉s» C ;

P L accC s1 〈if the-Bool b then c1 else c2 〉s ♦ s2
]] =⇒ Q

]] =⇒ Q
]] =⇒ P L accC (Norm s0) 〈If (e) c1 Else c2 〉s ♦ s2

shows P L accC s0 t v s1

404

proof −
note inj-term-simps [simp]
from eval
have

∧
L accC T A. [[(|prg=G,cls=accC ,lcl=L|)`t::T ;

(|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»t»A]]
=⇒ P L accC s0 t v s1 (is PROP ?Hyp s0 t v s1)

proof (induct)
case Abrupt with abrupt show ?case .

next
case Skip from skip show ?case by simp

next
case (Expr s0 e v s1 L accC T A)
from Expr .prems obtain eT where
(|prg = G, cls = accC , lcl = L|)`e::−eT
by (elim wt-elim-cases)

moreover
from Expr .prems obtain E where
(|prg=G,cls=accC , lcl=L|)`dom (locals (store ((Norm s0)::state)))»〈e〉e»E
by (elim da-elim-cases) simp

moreover from calculation
have P L accC (Norm s0) 〈e〉e bvce s1

by (rule Expr .hyps)
ultimately show ?case

by (rule expr)
next

case (Lab s0 c s1 l L accC T A)
from Lab.prems
have (|prg = G, cls = accC , lcl = L|)`c::

√

by (elim wt-elim-cases)
moreover
from Lab.prems obtain C where
(|prg=G,cls=accC , lcl=L|)`dom (locals (store ((Norm s0)::state)))»〈c〉s»C
by (elim da-elim-cases) simp

moreover from calculation
have P L accC (Norm s0) 〈c〉s ♦ s1

by (rule Lab.hyps)
ultimately show ?case

by (rule lab)
next

case (Comp s0 c1 s1 c2 s2 L accC T A)
note eval-c1 = ‹G`Norm s0 −c1→ s1 ›
note eval-c2 = ‹G`s1 −c2→ s2 ›
from Comp.prems obtain

wt-c1 : (|prg = G, cls = accC , lcl = L|)`c1 ::
√

and
wt-c2 : (|prg = G, cls = accC , lcl = L|)`c2 ::

√

by (elim wt-elim-cases)
from Comp.prems
obtain C1 C2

where da-c1 : (|prg=G, cls=accC , lcl=L|)`
dom (locals (store ((Norm s0)::state))) »〈c1 〉s» C1 and

da-c2 : (|prg=G, cls=accC , lcl=L|)` nrm C1 »〈c2 〉s» C2
by (elim da-elim-cases) simp

from wt-c1 da-c1
have P-c1 : P L accC (Norm s0) 〈c1 〉s ♦ s1

by (rule Comp.hyps)
have thesis

if normal-s1 : normal s1
and elim:

∧
C2 ′.

[[(|prg=G,cls=accC ,lcl=L|)`dom (locals (store s1))»〈c2 〉s»C2 ′;

Theory TypeSafe 405

P L accC s1 〈c2 〉s ♦ s2]] =⇒ thesis
for thesis

proof −
obtain C2 ′ where

da: (|prg=G, cls=accC , lcl=L|)` dom (locals (store s1)) »〈c2 〉s» C2 ′

proof −
from eval-c1 wt-c1 da-c1 wf normal-s1
have nrm C1 ⊆ dom (locals (store s1))

by (cases rule: da-good-approxE ′) iprover
with da-c2 show thesis

by (rule da-weakenE) (rule that)
qed
with wt-c2 have P L accC s1 〈c2 〉s ♦ s2

by (rule Comp.hyps)
with da show ?thesis

using elim by iprover
qed
with eval-c1 eval-c2 wt-c1 wt-c2 da-c1 P-c1
show ?case

by (rule comp) iprover+
next

case (If s0 e b s1 c1 c2 s2 L accC T A)
note eval-e = ‹G`Norm s0 −e−�b→ s1 ›
note eval-then-else = ‹G`s1 −(if the-Bool b then c1 else c2)→ s2 ›
from If .prems
obtain

wt-e: (|prg=G, cls=accC , lcl=L|)`e::−PrimT Boolean and
wt-then-else: (|prg=G, cls=accC , lcl=L|)`(if the-Bool b then c1 else c2)::

√

by (elim wt-elim-cases) auto
from If .prems obtain E C where

da-e: (|prg=G,cls=accC ,lcl=L|)` dom (locals (store ((Norm s0)::state)))
»〈e〉e» E and

da-then-else:
(|prg=G,cls=accC ,lcl=L|)`

(dom (locals (store ((Norm s0)::state))) ∪ assigns-if (the-Bool b) e)
»〈if the-Bool b then c1 else c2 〉s» C

by (elim da-elim-cases) (cases the-Bool b,auto)
from wt-e da-e
have P-e: P L accC (Norm s0) 〈e〉e bbce s1

by (rule If .hyps)
have thesis

if normal-s1 : normal s1
and elim:

∧
C . [[(|prg=G,cls=accC ,lcl=L|)` (dom (locals (store s1)))

»〈if the-Bool b then c1 else c2 〉s» C ;
P L accC s1 〈if the-Bool b then c1 else c2 〉s ♦ s2
]] =⇒ thesis

for thesis
proof −

obtain C ′ where
da: (|prg=G,cls=accC ,lcl=L|)`

(dom (locals (store s1)))»〈if the-Bool b then c1 else c2 〉s » C ′

proof −
from eval-e have

dom (locals (store ((Norm s0)::state))) ⊆ dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)

moreover
from eval-e normal-s1 wt-e
have assigns-if (the-Bool b) e ⊆ dom (locals (store s1))

by (rule assigns-if-good-approx ′)

406

ultimately
have dom (locals (store ((Norm s0)::state)))
∪ assigns-if (the-Bool b) e ⊆ dom (locals (store s1))

by (rule Un-least)
with da-then-else show thesis

by (rule da-weakenE) (rule that)
qed
with wt-then-else
have P L accC s1 〈if the-Bool b then c1 else c2 〉s ♦ s2

by (rule If .hyps)
with da show ?thesis using elim by iprover

qed
with eval-e eval-then-else wt-e wt-then-else da-e P-e
show ?case

by (rule if) iprover+
next

oops

end

Chapter 20

Evaln

1 Operational evaluation (big-step) semantics of Java expressions and state-
ments

theory Evaln imports TypeSafe begin

Variant of eval relation with counter for bounded recursive depth. In principal evaln could replace
eval.
Validity of the axiomatic semantics builds on evaln. For recursive method calls the axiomatic
semantics rule assumes the method ok to derive a proof for the body. To prove the method rule
sound we need to perform induction on the recursion depth. For the completeness proof of the
axiomatic semantics the notion of the most general formula is used. The most general formula right
now builds on the ordinary evaluation relation eval. So sometimes we have to switch between evaln
and eval and vice versa. To make this switch easy evaln also does all the technical accessibility tests
check-field-access and check-method-access like eval. If it would omit them evaln and eval would
only be equivalent for welltyped, and definitely assigned terms.

inductive
evaln :: [prog, state, term, nat, vals, state] ⇒ bool
(‹-`- −-�−-→ ′(-, - ′)› [61 ,61 ,80 ,61 ,0 ,0] 60)

and evarn :: [prog, state, var , vvar , nat, state] ⇒ bool
(‹-`- −-=�-−-→ -› [61 ,61 ,90 ,61 ,61 ,61] 60)

and eval-n:: [prog, state, expr , val, nat, state] ⇒ bool
(‹-`- −-−�-−-→ -› [61 ,61 ,80 ,61 ,61 ,61] 60)

and evalsn :: [prog, state, expr list, val list, nat, state] ⇒ bool
(‹-`- −- .=�-−-→ -› [61 ,61 ,61 ,61 ,61 ,61] 60)

and execn :: [prog, state, stmt, nat, state] ⇒ bool
(‹-`- −-−-→ -› [61 ,61 ,65 , 61 ,61] 60)

for G :: prog
where

G`s −c −n→ s ′ ≡ G`s −In1r c�−n→ (♦ , s ′)
| G`s −e−�v −n→ s ′ ≡ G`s −In1l e�−n→ (In1 v , s ′)
| G`s −e=�vf −n→ s ′ ≡ G`s −In2 e�−n→ (In2 vf , s ′)
| G`s −e .

=�v −n→ s ′ ≡ G`s −In3 e�−n→ (In3 v , s ′)

— propagation of abrupt completion

| Abrupt: G`(Some xc,s) −t�−n→ (undefined3 t,(Some xc,s))

— evaluation of variables

| LVar : G`Norm s −LVar vn=�lvar vn s−n→ Norm s

407

408

| FVar : [[G`Norm s0 −Init statDeclC−n→ s1 ; G`s1 −e−�a−n→ s2 ;
(v,s2 ′) = fvar statDeclC stat fn a s2 ;
s3 = check-field-access G accC statDeclC fn stat a s2 ′]] =⇒
G`Norm s0 −{accC ,statDeclC ,stat}e..fn=�v−n→ s3

| AVar : [[G` Norm s0 −e1−�a−n→ s1 ; G`s1 −e2−�i−n→ s2 ;
(v,s2 ′) = avar G i a s2]] =⇒

G`Norm s0 −e1 .[e2]=�v−n→ s2 ′

— evaluation of expressions

| NewC : [[G`Norm s0 −Init C−n→ s1 ;
G` s1 −halloc (CInst C)�a→ s2]] =⇒

G`Norm s0 −NewC C−�Addr a−n→ s2

| NewA: [[G`Norm s0 −init-comp-ty T−n→ s1 ; G`s1 −e−�i ′−n→ s2 ;
G`abupd (check-neg i ′) s2 −halloc (Arr T (the-Intg i ′))�a→ s3]] =⇒

G`Norm s0 −New T [e]−�Addr a−n→ s3

| Cast: [[G`Norm s0 −e−�v−n→ s1 ;
s2 = abupd (raise-if (¬G,snd s1`v fits T) ClassCast) s1]] =⇒

G`Norm s0 −Cast T e−�v−n→ s2

| Inst: [[G`Norm s0 −e−�v−n→ s1 ;
b = (v 6=Null ∧ G,store s1`v fits RefT T)]] =⇒

G`Norm s0 −e InstOf T−�Bool b−n→ s1

| Lit: G`Norm s −Lit v−�v−n→ Norm s

| UnOp: [[G`Norm s0 −e−�v−n→ s1]]
=⇒ G`Norm s0 −UnOp unop e−�(eval-unop unop v)−n→ s1

| BinOp: [[G`Norm s0 −e1−�v1−n→ s1 ;
G`s1 −(if need-second-arg binop v1 then (In1l e2) else (In1r Skip))
�−n→ (In1 v2 ,s2)]]

=⇒ G`Norm s0 −BinOp binop e1 e2−�(eval-binop binop v1 v2)−n→ s2

| Super : G`Norm s −Super−�val-this s−n→ Norm s

| Acc: [[G`Norm s0 −va=�(v,f)−n→ s1]] =⇒
G`Norm s0 −Acc va−�v−n→ s1

| Ass: [[G`Norm s0 −va=�(w,f)−n→ s1 ;
G` s1 −e−�v −n→ s2]] =⇒

G`Norm s0 −va:=e−�v−n→ assign f v s2

| Cond: [[G`Norm s0 −e0−�b−n→ s1 ;
G` s1 −(if the-Bool b then e1 else e2)−�v−n→ s2]] =⇒

G`Norm s0 −e0 ? e1 : e2−�v−n→ s2

| Call:
[[G`Norm s0 −e−�a ′−n→ s1 ; G`s1 −args .

=�vs−n→ s2 ;
D = invocation-declclass G mode (store s2) a ′ statT (|name=mn,parTs=pTs|);
s3=init-lvars G D (|name=mn,parTs=pTs|) mode a ′ vs s2 ;
s3 ′ = check-method-access G accC statT mode (|name=mn,parTs=pTs|) a ′ s3 ;

Theory Evaln 409

G`s3 ′−Methd D (|name=mn,parTs=pTs|)−�v−n→ s4
]]
=⇒
G`Norm s0 −{accC ,statT ,mode}e·mn({pTs}args)−�v−n→ (restore-lvars s2 s4)

| Methd:[[G`Norm s0 −body G D sig−�v−n→ s1]] =⇒
G`Norm s0 −Methd D sig−�v−Suc n→ s1

| Body: [[G`Norm s0−Init D−n→ s1 ; G`s1 −c−n→ s2 ;
s3 = (if (∃ l. abrupt s2 = Some (Jump (Break l)) ∨

abrupt s2 = Some (Jump (Cont l)))
then abupd (λ x. Some (Error CrossMethodJump)) s2
else s2)]]=⇒

G`Norm s0 −Body D c
−�the (locals (store s2) Result)−n→abupd (absorb Ret) s3

— evaluation of expression lists

| Nil:
G`Norm s0 −[] .=�[]−n→ Norm s0

| Cons: [[G`Norm s0 −e −� v −n→ s1 ;
G` s1 −es .

=�vs−n→ s2]] =⇒
G`Norm s0 −e#es .

=�v#vs−n→ s2

— execution of statements

| Skip: G`Norm s −Skip−n→ Norm s

| Expr : [[G`Norm s0 −e−�v−n→ s1]] =⇒
G`Norm s0 −Expr e−n→ s1

| Lab: [[G`Norm s0 −c −n→ s1]] =⇒
G`Norm s0 −l· c−n→ abupd (absorb l) s1

| Comp: [[G`Norm s0 −c1 −n→ s1 ;
G` s1 −c2 −n→ s2]] =⇒

G`Norm s0 −c1 ;; c2−n→ s2

| If : [[G`Norm s0 −e−�b−n→ s1 ;
G` s1−(if the-Bool b then c1 else c2)−n→ s2]] =⇒

G`Norm s0 −If (e) c1 Else c2 −n→ s2

| Loop: [[G`Norm s0 −e−�b−n→ s1 ;
if the-Bool b

then (G`s1 −c−n→ s2 ∧
G`(abupd (absorb (Cont l)) s2) −l· While(e) c−n→ s3)

else s3 = s1]] =⇒
G`Norm s0 −l· While(e) c−n→ s3

| Jmp: G`Norm s −Jmp j−n→ (Some (Jump j), s)

| Throw:[[G`Norm s0 −e−�a ′−n→ s1]] =⇒
G`Norm s0 −Throw e−n→ abupd (throw a ′) s1

| Try: [[G`Norm s0 −c1−n→ s1 ; G`s1 −sxalloc→ s2 ;
if G,s2`catch tn then G`new-xcpt-var vn s2 −c2−n→ s3 else s3 = s2]]
=⇒

410

G`Norm s0 −Try c1 Catch(tn vn) c2−n→ s3

| Fin: [[G`Norm s0 −c1−n→ (x1 ,s1);
G`Norm s1 −c2−n→ s2 ;
s3=(if (∃ err . x1=Some (Error err))

then (x1 ,s1)
else abupd (abrupt-if (x1 6=None) x1) s2)]] =⇒
G`Norm s0 −c1 Finally c2−n→ s3

| Init: [[the (class G C) = c;
if inited C (globs s0) then s3 = Norm s0
else (G`Norm (init-class-obj G C s0)

−(if C = Object then Skip else Init (super c))−n→ s1 ∧
G`set-lvars Map.empty s1 −init c−n→ s2 ∧
s3 = restore-lvars s1 s2)]]

=⇒
G`Norm s0 −Init C−n→ s3

monos
if-bool-eq-conj

declare if-split [split del] if-split-asm [split del]
option.split [split del] option.split-asm [split del]
not-None-eq [simp del]
split-paired-All [simp del] split-paired-Ex [simp del]

setup ‹map-theory-simpset (fn ctxt => ctxt |> Simplifier .del-loop split-all-tac)›

inductive-cases evaln-cases: G`s −t�−n→ (v, s ′)

inductive-cases evaln-elim-cases:
G`(Some xc, s) −t �−n→ (v, s ′)
G`Norm s −In1r Skip �−n→ (x, s ′)
G`Norm s −In1r (Jmp j) �−n→ (x, s ′)
G`Norm s −In1r (l· c) �−n→ (x, s ′)
G`Norm s −In3 ([]) �−n→ (v, s ′)
G`Norm s −In3 (e#es) �−n→ (v, s ′)
G`Norm s −In1l (Lit w) �−n→ (v, s ′)
G`Norm s −In1l (UnOp unop e) �−n→ (v, s ′)
G`Norm s −In1l (BinOp binop e1 e2) �−n→ (v, s ′)
G`Norm s −In2 (LVar vn) �−n→ (v, s ′)
G`Norm s −In1l (Cast T e) �−n→ (v, s ′)
G`Norm s −In1l (e InstOf T) �−n→ (v, s ′)
G`Norm s −In1l (Super) �−n→ (v, s ′)
G`Norm s −In1l (Acc va) �−n→ (v, s ′)
G`Norm s −In1r (Expr e) �−n→ (x, s ′)
G`Norm s −In1r (c1 ;; c2) �−n→ (x, s ′)
G`Norm s −In1l (Methd C sig) �−n→ (x, s ′)
G`Norm s −In1l (Body D c) �−n→ (x, s ′)
G`Norm s −In1l (e0 ? e1 : e2) �−n→ (v, s ′)
G`Norm s −In1r (If (e) c1 Else c2) �−n→ (x, s ′)
G`Norm s −In1r (l· While(e) c) �−n→ (x, s ′)
G`Norm s −In1r (c1 Finally c2) �−n→ (x, s ′)
G`Norm s −In1r (Throw e) �−n→ (x, s ′)
G`Norm s −In1l (NewC C) �−n→ (v, s ′)
G`Norm s −In1l (New T [e]) �−n→ (v, s ′)
G`Norm s −In1l (Ass va e) �−n→ (v, s ′)
G`Norm s −In1r (Try c1 Catch(tn vn) c2) �−n→ (x, s ′)
G`Norm s −In2 ({accC ,statDeclC ,stat}e..fn) �−n→ (v, s ′)
G`Norm s −In2 (e1 .[e2]) �−n→ (v, s ′)

Theory Evaln 411

G`Norm s −In1l ({accC ,statT ,mode}e·mn({pT}p)) �−n→ (v, s ′)
G`Norm s −In1r (Init C) �−n→ (x, s ′)

declare if-split [split] if-split-asm [split]
option.split [split] option.split-asm [split]
not-None-eq [simp]
split-paired-All [simp] split-paired-Ex [simp]

declaration ‹K (Simplifier .map-ss (fn ss => ss |> Simplifier .add-loop (split-all-tac, split-all-tac)))›

lemma evaln-Inj-elim: G`s −t�−n→ (w,s ′) =⇒ case t of In1 ec ⇒
(case ec of Inl e ⇒ (∃ v. w = In1 v) | Inr c ⇒ w = ♦)
| In2 e ⇒ (∃ v. w = In2 v) | In3 e ⇒ (∃ v. w = In3 v)

apply (erule evaln-cases , auto)
apply (induct-tac t)
apply (rename-tac a, induct-tac a)
apply auto
done

The following simplification procedures set up the proper injections of terms and their corresponding
values in the evaluation relation: E.g. an expression (injection In1l into terms) always evaluates to
ordinary values (injection In1 into generalised values vals).

lemma evaln-expr-eq: G`s −In1l t�−n→ (w, s ′) = (∃ v. w=In1 v ∧ G`s −t−�v −n→ s ′)
by (auto, frule evaln-Inj-elim, auto)

lemma evaln-var-eq: G`s −In2 t�−n→ (w, s ′) = (∃ vf . w=In2 vf ∧ G`s −t=�vf−n→ s ′)
by (auto, frule evaln-Inj-elim, auto)

lemma evaln-exprs-eq: G`s −In3 t�−n→ (w, s ′) = (∃ vs. w=In3 vs ∧ G`s −t .=�vs−n→ s ′)
by (auto, frule evaln-Inj-elim, auto)

lemma evaln-stmt-eq: G`s −In1r t�−n→ (w, s ′) = (w=♦ ∧ G`s −t −n→ s ′)
by (auto, frule evaln-Inj-elim, auto, frule evaln-Inj-elim, auto)

simproc-setup evaln-expr (G`s −In1l t�−n→ (w, s ′)) = ‹
K (K (fn ct =>
(case Thm.term-of ct of
(- $ - $ - $ - $ - $ (Const - $ -) $ -) => NONE
| - => SOME (mk-meta-eq @{thm evaln-expr-eq}))))›

simproc-setup evaln-var (G`s −In2 t�−n→ (w, s ′)) = ‹
K (K (fn ct =>
(case Thm.term-of ct of
(- $ - $ - $ - $ - $ (Const - $ -) $ -) => NONE
| - => SOME (mk-meta-eq @{thm evaln-var-eq}))))›

simproc-setup evaln-exprs (G`s −In3 t�−n→ (w, s ′)) = ‹
K (K (fn ct =>
(case Thm.term-of ct of
(- $ - $ - $ - $ - $ (Const - $ -) $ -) => NONE
| - => SOME (mk-meta-eq @{thm evaln-exprs-eq}))))›

simproc-setup evaln-stmt (G`s −In1r t�−n→ (w, s ′)) = ‹
K (K (fn ct =>
(case Thm.term-of ct of
(- $ - $ - $ - $ - $ (Const - $ -) $ -) => NONE
| - => SOME (mk-meta-eq @{thm evaln-stmt-eq}))))›

ML ‹ML-Thms.bind-thms (evaln-AbruptIs, sum3-instantiate context @{thm evaln.Abrupt})›

412

declare evaln-AbruptIs [intro!]

lemma evaln-Callee: G`Norm s−In1l (Callee l e)�−n→ (v,s ′) = False
proof −

have False
if eval: G`s −t�−n→ (v,s ′)
and normal: normal s
and callee: t=In1l (Callee l e)
for s t v s ′

using that by induct auto
then show ?thesis

by (cases s ′) fastforce
qed

lemma evaln-InsInitE : G`Norm s−In1l (InsInitE c e)�−n→ (v,s ′) = False
proof −

have False
if eval: G`s −t�−n→ (v,s ′)
and normal: normal s
and callee: t=In1l (InsInitE c e)
for s t v s ′

using that by induct auto
then show ?thesis

by (cases s ′) fastforce
qed

lemma evaln-InsInitV : G`Norm s−In2 (InsInitV c w)�−n→ (v,s ′) = False
proof −

have False
if eval: G`s −t�−n→ (v,s ′)
and normal: normal s
and callee: t=In2 (InsInitV c w)
for s t v s ′

using that by induct auto
then show ?thesis

by (cases s ′) fastforce
qed

lemma evaln-FinA: G`Norm s−In1r (FinA a c)�−n→ (v,s ′) = False
proof −

have False
if eval: G`s −t�−n→ (v,s ′)
and normal: normal s
and callee: t=In1r (FinA a c)
for s t v s ′

using that by induct auto
then show ?thesis

by (cases s ′) fastforce
qed

lemma evaln-abrupt-lemma: G`s −e�−n→ (v,s ′) =⇒
fst s = Some xc −→ s ′ = s ∧ v = undefined3 e

apply (erule evaln-cases , auto)
done

lemma evaln-abrupt:∧
s ′. G`(Some xc,s) −e�−n→ (w,s ′) = (s ′ = (Some xc,s) ∧

w=undefined3 e ∧ G`(Some xc,s) −e�−n→ (undefined3 e,(Some xc,s)))
apply auto

Theory Evaln 413

apply (frule evaln-abrupt-lemma, auto)+
done

simproc-setup evaln-abrupt (G`(Some xc,s) −e�−n→ (w,s ′)) = ‹
K (K (fn ct =>
(case Thm.term-of ct of
(- $ - $ - $ - $ - $ - $ (Const (const-name ‹Pair›, -) $ (Const (const-name ‹Some›,-) $ -)$ -))
=> NONE

| - => SOME (mk-meta-eq @{thm evaln-abrupt}))))
›

lemma evaln-LitI : G`s −Lit v−�(if normal s then v else undefined)−n→ s
apply (case-tac s, case-tac a = None)
by (auto intro!: evaln.Lit)

lemma CondI :∧
s1 . [[G`s −e−�b−n→ s1 ; G`s1 −(if the-Bool b then e1 else e2)−�v−n→ s2]] =⇒

G`s −e ? e1 : e2−�(if normal s1 then v else undefined)−n→ s2
apply (case-tac s, case-tac a = None)
by (auto intro!: evaln.Cond)

lemma evaln-SkipI [intro!]: G`s −Skip−n→ s
apply (case-tac s, case-tac a = None)
by (auto intro!: evaln.Skip)

lemma evaln-ExprI : G`s −e−�v−n→ s ′ =⇒ G`s −Expr e−n→ s ′

apply (case-tac s, case-tac a = None)
by (auto intro!: evaln.Expr)

lemma evaln-CompI : [[G`s −c1−n→ s1 ; G`s1 −c2−n→ s2]] =⇒ G`s −c1 ;; c2−n→ s2
apply (case-tac s, case-tac a = None)
by (auto intro!: evaln.Comp)

lemma evaln-IfI :
[[G`s −e−�v−n→ s1 ; G`s1 −(if the-Bool v then c1 else c2)−n→ s2]] =⇒
G`s −If (e) c1 Else c2−n→ s2

apply (case-tac s, case-tac a = None)
by (auto intro!: evaln.If)

lemma evaln-SkipD [dest!]: G`s −Skip−n→ s ′ =⇒ s ′ = s
by (erule evaln-cases, auto)

lemma evaln-Skip-eq [simp]: G`s −Skip−n→ s ′ = (s = s ′)
apply auto
done

evaln implies eval

lemma evaln-eval:
assumes evaln: G`s0 −t�−n→ (v,s1)
shows G`s0 −t�→ (v,s1)

using evaln
proof (induct)

case (Loop s0 e b n s1 c s2 l s3)
note ‹G`Norm s0 −e−�b→ s1 ›
moreover
have if the-Bool b

then (G`s1 −c→ s2) ∧
G`abupd (absorb (Cont l)) s2 −l· While(e) c→ s3

414

else s3 = s1
using Loop.hyps by simp

ultimately show ?case by (rule eval.Loop)
next

case (Try s0 c1 n s1 s2 C vn c2 s3)
note ‹G`Norm s0 −c1→ s1 ›
moreover
note ‹G`s1 −sxalloc→ s2 ›
moreover
have if G,s2`catch C then G`new-xcpt-var vn s2 −c2→ s3 else s3 = s2

using Try.hyps by simp
ultimately show ?case by (rule eval.Try)

next
case (Init C c s0 s3 n s1 s2)
note ‹the (class G C) = c›
moreover
have if inited C (globs s0)

then s3 = Norm s0
else G`Norm ((init-class-obj G C) s0)

−(if C = Object then Skip else Init (super c))→ s1 ∧
G`(set-lvars Map.empty) s1 −init c→ s2 ∧
s3 = (set-lvars (locals (store s1))) s2

using Init.hyps by simp
ultimately show ?case by (rule eval.Init)

qed (rule eval.intros,(assumption+ | assumption?))+

lemma Suc-le-D-lemma: [[Suc n <= m ′; (
∧

m. n <= m =⇒ P (Suc m))]] =⇒ P m ′

apply (frule Suc-le-D)
apply fast
done

lemma evaln-nonstrict [rule-format (no-asm), elim]:
G`s −t�−n→ (w, s ′) =⇒ ∀m. n≤m −→ G`s −t�−m→ (w, s ′)

apply (erule evaln.induct)
apply (tactic ‹ALLGOALS (EVERY ′ [strip-tac context ,

TRY o eresolve-tac context @{thms Suc-le-D-lemma},
REPEAT o smp-tac context 1 ,
resolve-tac context @{thms evaln.intros} THEN-ALL-NEW TRY o assume-tac context])›)

apply (auto split del: if-split)
done

lemmas evaln-nonstrict-Suc = evaln-nonstrict [OF - le-refl [THEN le-SucI]]

lemma evaln-max2 : [[G`s1 −t1�−n1→ (w1 , s1 ′); G`s2 −t2�−n2→ (w2 , s2 ′)]] =⇒
G`s1 −t1�−max n1 n2→ (w1 , s1 ′) ∧ G`s2 −t2�−max n1 n2→ (w2 , s2 ′)

by (fast intro: max.cobounded1 max.cobounded2)

corollary evaln-max2E [consumes 2]:
[[G`s1 −t1�−n1→ (w1 , s1 ′); G`s2 −t2�−n2→ (w2 , s2 ′);
[[G`s1 −t1�−max n1 n2→ (w1 , s1 ′);G`s2 −t2�−max n1 n2→ (w2 , s2 ′)]] =⇒ P]] =⇒ P

by (drule (1) evaln-max2) simp

lemma evaln-max3 :
[[G`s1 −t1�−n1→ (w1 , s1 ′); G`s2 −t2�−n2→ (w2 , s2 ′); G`s3 −t3�−n3→ (w3 , s3 ′)]] =⇒
G`s1 −t1�−max (max n1 n2) n3→ (w1 , s1 ′) ∧
G`s2 −t2�−max (max n1 n2) n3→ (w2 , s2 ′) ∧
G`s3 −t3�−max (max n1 n2) n3→ (w3 , s3 ′)

Theory Evaln 415

apply (drule (1) evaln-max2 , erule thin-rl)
apply (fast intro!: max.cobounded1 max.cobounded2)
done

corollary evaln-max3E :
[[G`s1 −t1�−n1→ (w1 , s1 ′); G`s2 −t2�−n2→ (w2 , s2 ′); G`s3 −t3�−n3→ (w3 , s3 ′);

[[G`s1 −t1�−max (max n1 n2) n3→ (w1 , s1 ′);
G`s2 −t2�−max (max n1 n2) n3→ (w2 , s2 ′);
G`s3 −t3�−max (max n1 n2) n3→ (w3 , s3 ′)
]] =⇒ P
]] =⇒ P

by (drule (2) evaln-max3) simp

lemma le-max3I1 : (n2 ::nat) ≤ max n1 (max n2 n3)
proof −

have n2 ≤ max n2 n3
by (rule max.cobounded1)

also
have max n2 n3 ≤ max n1 (max n2 n3)

by (rule max.cobounded2)
finally
show ?thesis .

qed

lemma le-max3I2 : (n3 ::nat) ≤ max n1 (max n2 n3)
proof −

have n3 ≤ max n2 n3
by (rule max.cobounded2)

also
have max n2 n3 ≤ max n1 (max n2 n3)

by (rule max.cobounded2)
finally
show ?thesis .

qed

declare [[simproc del: wt-expr wt-var wt-exprs wt-stmt]]

eval implies evaln

lemma eval-evaln:
assumes eval: G`s0 −t�→ (v,s1)
shows ∃n. G`s0 −t�−n→ (v,s1)

using eval
proof (induct)

case (Abrupt xc s t)
obtain n where

G`(Some xc, s) −t�−n→ (undefined3 t, (Some xc, s))
by (iprover intro: evaln.Abrupt)

then show ?case ..
next

case Skip
show ?case by (blast intro: evaln.Skip)

next
case (Expr s0 e v s1)
then obtain n where

G`Norm s0 −e−�v−n→ s1
by (iprover)

then have G`Norm s0 −Expr e−n→ s1

416

by (rule evaln.Expr)
then show ?case ..

next
case (Lab s0 c s1 l)
then obtain n where

G`Norm s0 −c−n→ s1
by (iprover)

then have G`Norm s0 −l· c−n→ abupd (absorb l) s1
by (rule evaln.Lab)

then show ?case ..
next

case (Comp s0 c1 s1 c2 s2)
then obtain n1 n2 where

G`Norm s0 −c1−n1→ s1
G`s1 −c2−n2→ s2
by (iprover)

then have G`Norm s0 −c1 ;; c2−max n1 n2→ s2
by (blast intro: evaln.Comp dest: evaln-max2)

then show ?case ..
next

case (If s0 e b s1 c1 c2 s2)
then obtain n1 n2 where

G`Norm s0 −e−�b−n1→ s1
G`s1 −(if the-Bool b then c1 else c2)−n2→ s2
by (iprover)

then have G`Norm s0 −If (e) c1 Else c2−max n1 n2→ s2
by (blast intro: evaln.If dest: evaln-max2)

then show ?case ..
next

case (Loop s0 e b s1 c s2 l s3)
from Loop.hyps obtain n1 where

G`Norm s0 −e−�b−n1→ s1
by (iprover)

moreover from Loop.hyps obtain n2 where
if the-Bool b

then (G`s1 −c−n2→ s2 ∧
G`(abupd (absorb (Cont l)) s2)−l· While(e) c−n2→ s3)

else s3 = s1
by simp (iprover intro: evaln-nonstrict max.cobounded1 max.cobounded2)

ultimately
have G`Norm s0 −l· While(e) c−max n1 n2→ s3

apply −
apply (rule evaln.Loop)
apply (iprover intro: evaln-nonstrict intro: max.cobounded1)
apply (auto intro: evaln-nonstrict intro: max.cobounded2)
done

then show ?case ..
next

case (Jmp s j)
fix n have G`Norm s −Jmp j−n→ (Some (Jump j), s)

by (rule evaln.Jmp)
then show ?case ..

next
case (Throw s0 e a s1)
then obtain n where

G`Norm s0 −e−�a−n→ s1
by (iprover)

then have G`Norm s0 −Throw e−n→ abupd (throw a) s1
by (rule evaln.Throw)

Theory Evaln 417

then show ?case ..
next

case (Try s0 c1 s1 s2 catchC vn c2 s3)
from Try.hyps obtain n1 where

G`Norm s0 −c1−n1→ s1
by (iprover)

moreover
note sxalloc = ‹G`s1 −sxalloc→ s2 ›
moreover
from Try.hyps obtain n2 where

if G,s2`catch catchC then G`new-xcpt-var vn s2 −c2−n2→ s3 else s3 = s2
by fastforce

ultimately
have G`Norm s0 −Try c1 Catch(catchC vn) c2−max n1 n2→ s3

by (auto intro!: evaln.Try max.cobounded1 max.cobounded2)
then show ?case ..

next
case (Fin s0 c1 x1 s1 c2 s2 s3)
from Fin obtain n1 n2 where

G`Norm s0 −c1−n1→ (x1 , s1)
G`Norm s1 −c2−n2→ s2
by iprover

moreover
note s3 = ‹s3 = (if ∃ err . x1 = Some (Error err)

then (x1 , s1)
else abupd (abrupt-if (x1 6= None) x1) s2)›

ultimately
have

G`Norm s0 −c1 Finally c2−max n1 n2→ s3
by (blast intro: evaln.Fin dest: evaln-max2)

then show ?case ..
next

case (Init C c s0 s3 s1 s2)
note cls = ‹the (class G C) = c›
moreover from Init.hyps obtain n where

if inited C (globs s0) then s3 = Norm s0
else (G`Norm (init-class-obj G C s0)

−(if C = Object then Skip else Init (super c))−n→ s1 ∧
G`set-lvars Map.empty s1 −init c−n→ s2 ∧
s3 = restore-lvars s1 s2)

by (auto intro: evaln-nonstrict max.cobounded1 max.cobounded2)
ultimately have G`Norm s0 −Init C−n→ s3

by (rule evaln.Init)
then show ?case ..

next
case (NewC s0 C s1 a s2)
then obtain n where

G`Norm s0 −Init C−n→ s1
by (iprover)

with NewC
have G`Norm s0 −NewC C−�Addr a−n→ s2

by (iprover intro: evaln.NewC)
then show ?case ..

next
case (NewA s0 T s1 e i s2 a s3)
then obtain n1 n2 where

G`Norm s0 −init-comp-ty T−n1→ s1
G`s1 −e−�i−n2→ s2
by (iprover)

418

moreover
note ‹G`abupd (check-neg i) s2 −halloc Arr T (the-Intg i)�a→ s3 ›
ultimately
have G`Norm s0 −New T [e]−�Addr a−max n1 n2→ s3

by (blast intro: evaln.NewA dest: evaln-max2)
then show ?case ..

next
case (Cast s0 e v s1 s2 castT)
then obtain n where

G`Norm s0 −e−�v−n→ s1
by (iprover)

moreover
note ‹s2 = abupd (raise-if (¬ G,snd s1`v fits castT) ClassCast) s1 ›
ultimately
have G`Norm s0 −Cast castT e−�v−n→ s2

by (rule evaln.Cast)
then show ?case ..

next
case (Inst s0 e v s1 b T)
then obtain n where

G`Norm s0 −e−�v−n→ s1
by (iprover)

moreover
note ‹b = (v 6= Null ∧ G,snd s1`v fits RefT T)›
ultimately
have G`Norm s0 −e InstOf T−�Bool b−n→ s1

by (rule evaln.Inst)
then show ?case ..

next
case (Lit s v)
fix n have G`Norm s −Lit v−�v−n→ Norm s

by (rule evaln.Lit)
then show ?case ..

next
case (UnOp s0 e v s1 unop)
then obtain n where

G`Norm s0 −e−�v−n→ s1
by (iprover)

hence G`Norm s0 −UnOp unop e−�eval-unop unop v−n→ s1
by (rule evaln.UnOp)

then show ?case ..
next

case (BinOp s0 e1 v1 s1 binop e2 v2 s2)
then obtain n1 n2 where

G`Norm s0 −e1−�v1−n1→ s1
G`s1 −(if need-second-arg binop v1 then In1l e2

else In1r Skip)�−n2→ (In1 v2 , s2)
by (iprover)

hence G`Norm s0 −BinOp binop e1 e2−�(eval-binop binop v1 v2)−max n1 n2
→ s2

by (blast intro!: evaln.BinOp dest: evaln-max2)
then show ?case ..

next
case (Super s)
fix n have G`Norm s −Super−�val-this s−n→ Norm s

by (rule evaln.Super)
then show ?case ..

next
case (Acc s0 va v f s1)

Theory Evaln 419

then obtain n where
G`Norm s0 −va=�(v, f)−n→ s1
by (iprover)

then
have G`Norm s0 −Acc va−�v−n→ s1

by (rule evaln.Acc)
then show ?case ..

next
case (Ass s0 var w f s1 e v s2)
then obtain n1 n2 where

G`Norm s0 −var=�(w, f)−n1→ s1
G`s1 −e−�v−n2→ s2
by (iprover)

then
have G`Norm s0 −var :=e−�v−max n1 n2→ assign f v s2

by (blast intro: evaln.Ass dest: evaln-max2)
then show ?case ..

next
case (Cond s0 e0 b s1 e1 e2 v s2)
then obtain n1 n2 where

G`Norm s0 −e0−�b−n1→ s1
G`s1 −(if the-Bool b then e1 else e2)−�v−n2→ s2
by (iprover)

then
have G`Norm s0 −e0 ? e1 : e2−�v−max n1 n2→ s2

by (blast intro: evaln.Cond dest: evaln-max2)
then show ?case ..

next
case (Call s0 e a ′ s1 args vs s2 invDeclC mode statT mn pTs ′ s3 s3 ′ accC ′ v s4)
then obtain n1 n2 where

G`Norm s0 −e−�a ′−n1→ s1
G`s1 −args .

=�vs−n2→ s2
by iprover

moreover
note ‹invDeclC = invocation-declclass G mode (store s2) a ′ statT

(|name=mn,parTs=pTs ′|)›
moreover
note ‹s3 = init-lvars G invDeclC (|name=mn,parTs=pTs ′|) mode a ′ vs s2 ›
moreover
note ‹s3 ′=check-method-access G accC ′ statT mode (|name=mn,parTs=pTs ′|) a ′ s3 ›
moreover
from Call.hyps
obtain m where

G`s3 ′ −Methd invDeclC (|name=mn, parTs=pTs ′|)−�v−m→ s4
by iprover

ultimately
have G`Norm s0 −{accC ′,statT ,mode}e·mn({pTs ′}args)−�v−max n1 (max n2 m)→

(set-lvars (locals (store s2))) s4
by (auto intro!: evaln.Call max.cobounded1 le-max3I1 le-max3I2)

thus ?case ..
next

case (Methd s0 D sig v s1)
then obtain n where

G`Norm s0 −body G D sig−�v−n→ s1
by iprover

then have G`Norm s0 −Methd D sig−�v−Suc n→ s1
by (rule evaln.Methd)

then show ?case ..
next

420

case (Body s0 D s1 c s2 s3)
from Body.hyps obtain n1 n2 where

evaln-init: G`Norm s0 −Init D−n1→ s1 and
evaln-c: G`s1 −c−n2→ s2
by (iprover)

moreover
note ‹s3 = (if ∃ l. fst s2 = Some (Jump (Break l)) ∨

fst s2 = Some (Jump (Cont l))
then abupd (λx. Some (Error CrossMethodJump)) s2
else s2)›

ultimately
have

G`Norm s0 −Body D c−�the (locals (store s2) Result)−max n1 n2
→ abupd (absorb Ret) s3

by (iprover intro: evaln.Body dest: evaln-max2)
then show ?case ..

next
case (LVar s vn)
obtain n where

G`Norm s −LVar vn=�lvar vn s−n→ Norm s
by (iprover intro: evaln.LVar)

then show ?case ..
next

case (FVar s0 statDeclC s1 e a s2 v s2 ′ stat fn s3 accC)
then obtain n1 n2 where

G`Norm s0 −Init statDeclC−n1→ s1
G`s1 −e−�a−n2→ s2
by iprover

moreover
note ‹s3 = check-field-access G accC statDeclC fn stat a s2 ′›

and ‹(v, s2 ′) = fvar statDeclC stat fn a s2 ›
ultimately
have G`Norm s0 −{accC ,statDeclC ,stat}e..fn=�v−max n1 n2→ s3

by (iprover intro: evaln.FVar dest: evaln-max2)
then show ?case ..

next
case (AVar s0 e1 a s1 e2 i s2 v s2 ′)
then obtain n1 n2 where

G`Norm s0 −e1−�a−n1→ s1
G`s1 −e2−�i−n2→ s2
by iprover

moreover
note ‹(v, s2 ′) = avar G i a s2 ›
ultimately
have G`Norm s0 −e1 .[e2]=�v−max n1 n2→ s2 ′

by (blast intro!: evaln.AVar dest: evaln-max2)
then show ?case ..

next
case (Nil s0)
show ?case by (iprover intro: evaln.Nil)

next
case (Cons s0 e v s1 es vs s2)
then obtain n1 n2 where

G`Norm s0 −e−�v−n1→ s1
G`s1 −es .

=�vs−n2→ s2
by iprover

then
have G`Norm s0 −e # es .

=�v # vs−max n1 n2→ s2
by (blast intro!: evaln.Cons dest: evaln-max2)

Theory Evaln 421

then show ?case ..
qed

end

422

Chapter 21

Trans

theory Trans imports Evaln begin

definition
groundVar :: var ⇒ bool where
groundVar v ←→ (case v of

LVar ln ⇒ True
| {accC ,statDeclC ,stat}e..fn ⇒ ∃ a. e=Lit a
| e1 .[e2] ⇒ ∃ a i. e1= Lit a ∧ e2 = Lit i
| InsInitV c v ⇒ False)

lemma groundVar-cases:
assumes ground: groundVar v
obtains (LVar) ln where v=LVar ln
| (FVar) accC statDeclC stat a fn where v={accC ,statDeclC ,stat}(Lit a)..fn
| (AVar) a i where v=(Lit a).[Lit i]

using ground LVar FVar AVar
by (cases v) (auto simp add: groundVar-def)

definition
groundExprs :: expr list ⇒ bool
where groundExprs es ←→ (∀ e ∈ set es. ∃ v. e = Lit v)

primrec the-val:: expr ⇒ val
where the-val (Lit v) = v

primrec the-var :: prog ⇒ state ⇒ var ⇒ (vvar × state) where
the-var G s (LVar ln) = (lvar ln (store s),s)
| the-var-FVar-def : the-var G s ({accC ,statDeclC ,stat}a..fn) =fvar statDeclC stat fn (the-val a) s
| the-var-AVar-def : the-var G s(a.[i]) =avar G (the-val i) (the-val a) s

lemma the-var-FVar-simp[simp]:
the-var G s ({accC ,statDeclC ,stat}(Lit a)..fn) = fvar statDeclC stat fn a s
by (simp)
declare the-var-FVar-def [simp del]

lemma the-var-AVar-simp:
the-var G s ((Lit a).[Lit i]) = avar G i a s
by (simp)
declare the-var-AVar-def [simp del]

abbreviation
Ref :: loc ⇒ expr

423

424

where Ref a == Lit (Addr a)

abbreviation
SKIP :: expr
where SKIP == Lit Unit

inductive
step :: [prog,term × state,term × state] ⇒ bool (‹-`- 7→1 -›[61 ,82 ,82] 81)
for G :: prog

where

Abrupt: [[∀ v. t 6= 〈Lit v〉;
∀ t. t 6= 〈l· Skip〉;
∀ C vn c. t 6= 〈Try Skip Catch(C vn) c〉;
∀ x c. t 6= 〈Skip Finally c〉 ∧ xc 6= Xcpt x;
∀ a c. t 6= 〈FinA a c〉]]

=⇒
G`(t,Some xc,s) 7→1 (〈Lit undefined〉,Some xc,s)

| InsInitE : [[G`(〈c〉,Norm s) 7→1 (〈c ′〉, s ′)]]
=⇒
G`(〈InsInitE c e〉,Norm s) 7→1 (〈InsInitE c ′ e〉, s ′)

| NewC : G`(〈NewC C 〉,Norm s) 7→1 (〈InsInitE (Init C) (NewC C)〉, Norm s)
| NewCInited: [[G` Norm s −halloc (CInst C)�a→ s ′]]

=⇒
G`(〈InsInitE Skip (NewC C)〉,Norm s) 7→1 (〈Ref a〉, s ′)

| NewA:
G`(〈New T [e]〉,Norm s) 7→1 (〈InsInitE (init-comp-ty T) (New T [e])〉,Norm s)

| InsInitNewAIdx:
[[G`(〈e〉,Norm s) 7→1 (〈e ′〉, s ′)]]
=⇒
G`(〈InsInitE Skip (New T [e])〉,Norm s) 7→1 (〈InsInitE Skip (New T [e ′])〉,s ′)

| InsInitNewA:
[[G`abupd (check-neg i) (Norm s) −halloc (Arr T (the-Intg i))�a→ s ′]]
=⇒
G`(〈InsInitE Skip (New T [Lit i])〉,Norm s) 7→1 (〈Ref a〉,s ′)

| CastE :
[[G`(〈e〉,Norm s) 7→1 (〈e ′〉,s ′)]]
=⇒
G`(〈Cast T e〉,None,s) 7→1 (〈Cast T e ′〉,s ′)

| Cast:
[[s ′ = abupd (raise-if (¬G,s`v fits T) ClassCast) (Norm s)]]
=⇒
G`(〈Cast T (Lit v)〉,Norm s) 7→1 (〈Lit v〉,s ′)

Theory Trans 425

| InstE : [[G`(〈e〉,Norm s) 7→1 (〈e ′::expr〉,s ′)]]
=⇒
G`(〈e InstOf T 〉,Norm s) 7→1 (〈e ′〉,s ′)

| Inst: [[b = (v 6=Null ∧ G,s`v fits RefT T)]]
=⇒
G`(〈(Lit v) InstOf T 〉,Norm s) 7→1 (〈Lit (Bool b)〉,s ′)

| UnOpE : [[G`(〈e〉,Norm s) 7→1 (〈e ′〉,s ′)]]
=⇒
G`(〈UnOp unop e〉,Norm s) 7→1 (〈UnOp unop e ′〉,s ′)

| UnOp: G`(〈UnOp unop (Lit v)〉,Norm s) 7→1 (〈Lit (eval-unop unop v)〉,Norm s)

| BinOpE1 : [[G`(〈e1 〉,Norm s) 7→1 (〈e1 ′〉,s ′)]]
=⇒
G`(〈BinOp binop e1 e2 〉,Norm s) 7→1 (〈BinOp binop e1 ′ e2 〉,s ′)

| BinOpE2 : [[need-second-arg binop v1 ; G`(〈e2 〉,Norm s) 7→1 (〈e2 ′〉,s ′)]]
=⇒
G`(〈BinOp binop (Lit v1) e2 〉,Norm s)
7→1 (〈BinOp binop (Lit v1) e2 ′〉,s ′)

| BinOpTerm: [[¬ need-second-arg binop v1]]
=⇒
G`(〈BinOp binop (Lit v1) e2 〉,Norm s)
7→1 (〈Lit v1 〉,Norm s)

| BinOp: G`(〈BinOp binop (Lit v1) (Lit v2)〉,Norm s)
7→1 (〈Lit (eval-binop binop v1 v2)〉,Norm s)

| Super : G`(〈Super〉,Norm s) 7→1 (〈Lit (val-this s)〉,Norm s)

| AccVA: [[G`(〈va〉,Norm s) 7→1 (〈va ′〉,s ′)]]
=⇒
G`(〈Acc va〉,Norm s) 7→1 (〈Acc va ′〉,s ′)

| Acc: [[groundVar va; ((v,vf),s ′) = the-var G (Norm s) va]]
=⇒
G`(〈Acc va〉,Norm s) 7→1 (〈Lit v〉,s ′)

| AssVA: [[G`(〈va〉,Norm s) 7→1 (〈va ′〉,s ′)]]
=⇒
G`(〈va:=e〉,Norm s) 7→1 (〈va ′:=e〉,s ′)

| AssE : [[groundVar va; G`(〈e〉,Norm s) 7→1 (〈e ′〉,s ′)]]
=⇒
G`(〈va:=e〉,Norm s) 7→1 (〈va:=e ′〉,s ′)

| Ass: [[groundVar va; ((w,f),s ′) = the-var G (Norm s) va]]
=⇒
G`(〈va:=(Lit v)〉,Norm s) 7→1 (〈Lit v〉,assign f v s ′)

| CondC : [[G`(〈e0 〉,Norm s) 7→1 (〈e0 ′〉,s ′)]]
=⇒
G`(〈e0? e1 :e2 〉,Norm s) 7→1 (〈e0 ′? e1 :e2 〉,s ′)

| Cond: G`(〈Lit b? e1 :e2 〉,Norm s) 7→1 (〈if the-Bool b then e1 else e2 〉,Norm s)

| CallTarget: [[G`(〈e〉,Norm s) 7→1 (〈e ′〉,s ′)]]

426

=⇒
G`(〈{accC ,statT ,mode}e·mn({pTs}args)〉,Norm s)
7→1 (〈{accC ,statT ,mode}e ′·mn({pTs}args)〉,s ′)

| CallArgs: [[G`(〈args〉,Norm s) 7→1 (〈args ′〉,s ′)]]
=⇒
G`(〈{accC ,statT ,mode}Lit a·mn({pTs}args)〉,Norm s)
7→1 (〈{accC ,statT ,mode}Lit a·mn({pTs}args ′)〉,s ′)

| Call: [[groundExprs args; vs = map the-val args;
D = invocation-declclass G mode s a statT (|name=mn,parTs=pTs|);
s ′=init-lvars G D (|name=mn,parTs=pTs|) mode a ′ vs (Norm s)]]
=⇒
G`(〈{accC ,statT ,mode}Lit a·mn({pTs}args)〉,Norm s)
7→1 (〈Callee (locals s) (Methd D (|name=mn,parTs=pTs|))〉,s ′)

| Callee: [[G`(〈e〉,Norm s) 7→1 (〈e ′::expr〉,s ′)]]
=⇒
G`(〈Callee lcls-caller e〉,Norm s) 7→1 (〈e ′〉,s ′)

| CalleeRet: G`(〈Callee lcls-caller (Lit v)〉,Norm s)
7→1 (〈Lit v〉,(set-lvars lcls-caller (Norm s)))

| Methd: G`(〈Methd D sig〉,Norm s) 7→1 (〈body G D sig〉,Norm s)

| Body: G`(〈Body D c〉,Norm s) 7→1 (〈InsInitE (Init D) (Body D c)〉,Norm s)

| InsInitBody:
[[G`(〈c〉,Norm s) 7→1 (〈c ′〉,s ′)]]
=⇒
G`(〈InsInitE Skip (Body D c)〉,Norm s) 7→1 (〈InsInitE Skip (Body D c ′)〉,s ′)

| InsInitBodyRet:
G`(〈InsInitE Skip (Body D Skip)〉,Norm s)
7→1 (〈Lit (the ((locals s) Result))〉,abupd (absorb Ret) (Norm s))

| FVar : [[¬ inited statDeclC (globs s)]]
=⇒
G`(〈{accC ,statDeclC ,stat}e..fn〉,Norm s)
7→1 (〈InsInitV (Init statDeclC) ({accC ,statDeclC ,stat}e..fn)〉,Norm s)

| InsInitFVarE :
[[G`(〈e〉,Norm s) 7→1 (〈e ′〉,s ′)]]
=⇒
G`(〈InsInitV Skip ({accC ,statDeclC ,stat}e..fn)〉,Norm s)
7→1 (〈InsInitV Skip ({accC ,statDeclC ,stat}e ′..fn)〉,s ′)

| InsInitFVar :
G`(〈InsInitV Skip ({accC ,statDeclC ,stat}Lit a..fn)〉,Norm s)
7→1 (〈{accC ,statDeclC ,stat}Lit a..fn〉,Norm s)

— Notice, that we do not have literal values for vars. The rules for accessing variables (Acc) and assigning to
variables (Ass), test this with the predicate groundVar. After initialisation is done and the FVar is evaluated,
we can’t just throw away the InsInitFVar term and return a literal value, as in the cases of New or NewC.
Instead we just return the evaluated FVar and test for initialisation in the rule FVar.

| AVarE1 : [[G`(〈e1 〉,Norm s) 7→1 (〈e1 ′〉,s ′)]]
=⇒
G`(〈e1 .[e2]〉,Norm s) 7→1 (〈e1 ′.[e2]〉,s ′)

| AVarE2 : G`(〈e2 〉,Norm s) 7→1 (〈e2 ′〉,s ′)
=⇒

Theory Trans 427

G`(〈Lit a.[e2]〉,Norm s) 7→1 (〈Lit a.[e2 ′]〉,s ′)

— Nil is fully evaluated

| ConsHd: [[G`(〈e::expr〉,Norm s) 7→1 (〈e ′::expr〉,s ′)]]
=⇒
G`(〈e#es〉,Norm s) 7→1 (〈e ′#es〉,s ′)

| ConsTl: [[G`(〈es〉,Norm s) 7→1 (〈es ′〉,s ′)]]
=⇒
G`(〈(Lit v)#es〉,Norm s) 7→1 (〈(Lit v)#es ′〉,s ′)

| Skip: G`(〈Skip〉,Norm s) 7→1 (〈SKIP〉,Norm s)

| ExprE : [[G`(〈e〉,Norm s) 7→1 (〈e ′〉,s ′)]]
=⇒
G`(〈Expr e〉,Norm s) 7→1 (〈Expr e ′〉,s ′)

| Expr : G`(〈Expr (Lit v)〉,Norm s) 7→1 (〈Skip〉,Norm s)

| LabC : [[G`(〈c〉,Norm s) 7→1 (〈c ′〉,s ′)]]
=⇒
G`(〈l· c〉,Norm s) 7→1 (〈l· c ′〉,s ′)

| Lab: G`(〈l· Skip〉,s) 7→1 (〈Skip〉, abupd (absorb l) s)

| CompC1 : [[G`(〈c1 〉,Norm s) 7→1 (〈c1 ′〉,s ′)]]
=⇒
G`(〈c1 ;; c2 〉,Norm s) 7→1 (〈c1 ′;; c2 〉,s ′)

| Comp: G`(〈Skip;; c2 〉,Norm s) 7→1 (〈c2 〉,Norm s)

| IfE : [[G`(〈e〉 ,Norm s) 7→1 (〈e ′〉,s ′)]]
=⇒
G`(〈If (e) s1 Else s2 〉,Norm s) 7→1 (〈If (e ′) s1 Else s2 〉,s ′)

| If : G`(〈If (Lit v) s1 Else s2 〉,Norm s)
7→1 (〈if the-Bool v then s1 else s2 〉,Norm s)

| Loop: G`(〈l· While(e) c〉,Norm s)
7→1 (〈If (e) (Cont l·c;; l· While(e) c) Else Skip〉,Norm s)

| Jmp: G`(〈Jmp j〉,Norm s) 7→1 (〈Skip〉,(Some (Jump j), s))

| ThrowE : [[G`(〈e〉,Norm s) 7→1 (〈e ′〉,s ′)]]
=⇒
G`(〈Throw e〉,Norm s) 7→1 (〈Throw e ′〉,s ′)

| Throw: G`(〈Throw (Lit a)〉,Norm s) 7→1 (〈Skip〉,abupd (throw a) (Norm s))

| TryC1 : [[G`(〈c1 〉,Norm s) 7→1 (〈c1 ′〉,s ′)]]
=⇒

428

G`(〈Try c1 Catch(C vn) c2 〉, Norm s) 7→1 (〈Try c1 ′ Catch(C vn) c2 〉,s ′)
| Try: [[G`s −sxalloc→ s ′]]

=⇒
G`(〈Try Skip Catch(C vn) c2 〉, s)
7→1 (if G,s ′̀ catch C then (〈c2 〉,new-xcpt-var vn s ′)

else (〈Skip〉,s ′))

| FinC1 : [[G`(〈c1 〉,Norm s) 7→1 (〈c1 ′〉,s ′)]]
=⇒
G`(〈c1 Finally c2 〉,Norm s) 7→1 (〈c1 ′ Finally c2 〉,s ′)

| Fin: G`(〈Skip Finally c2 〉,(a,s)) 7→1 (〈FinA a c2 〉,Norm s)

| FinAC : [[G`(〈c〉,s) 7→1 (〈c ′〉,s ′)]]
=⇒
G`(〈FinA a c〉,s) 7→1 (〈FinA a c ′〉,s ′)

| FinA: G`(〈FinA a Skip〉,s) 7→1 (〈Skip〉,abupd (abrupt-if (a 6=None) a) s)

| Init1 : [[inited C (globs s)]]
=⇒
G`(〈Init C 〉,Norm s) 7→1 (〈Skip〉,Norm s)

| Init: [[the (class G C)=c; ¬ inited C (globs s)]]
=⇒
G`(〈Init C 〉,Norm s)
7→1 (〈(if C = Object then Skip else (Init (super c)));;

Expr (Callee (locals s) (InsInitE (init c) SKIP))〉
,Norm (init-class-obj G C s))

— InsInitE is just used as trick to embed the statement init c into an expression
| InsInitESKIP:

G`(〈InsInitE Skip SKIP〉,Norm s) 7→1 (〈SKIP〉,Norm s)

abbreviation
stepn:: [prog, term × state,nat,term × state] ⇒ bool (‹-`- 7→- -›[61 ,82 ,82] 81)
where G`p 7→n p ′ ≡ (p,p ′) ∈ {(x, y). step G x y}^^n

abbreviation
steptr :: [prog,term × state,term × state] ⇒ bool (‹-`- 7→∗ -›[61 ,82 ,82] 81)
where G`p 7→∗ p ′ ≡ (p,p ′) ∈ {(x, y). step G x y}∗

end

Chapter 22

AxSem

1 Axiomatic semantics of Java expressions and statements (see also Eval.thy)
theory AxSem imports Evaln TypeSafe begin

design issues:

• a strong version of validity for triples with premises, namely one that takes the recursive depth
needed to complete execution, enables correctness proof

• auxiliary variables are handled first-class (-> Thomas Kleymann)

• expressions not flattened to elementary assignments (as usual for axiomatic semantics) but
treated first-class => explicit result value handling

• intermediate values not on triple, but on assertion level (with result entry)

• multiple results with semantical substitution mechnism not requiring a stack

• because of dynamic method binding, terms need to be dependent on state. this is also useful
for conditional expressions and statements

• result values in triples exactly as in eval relation (also for xcpt states)

• validity: additional assumption of state conformance and well-typedness, which is required for
soundness and thus rule hazard required of completeness

restrictions:

• all triples in a derivation are of the same type (due to weak polymorphism)

type-synonym res = vals — result entry

abbreviation (input)
Val where Val x == In1 x

abbreviation (input)
Var where Var x == In2 x

abbreviation (input)
Vals where Vals x == In3 x

syntax
-Val :: [pttrn] => pttrn (‹Val:-› [951] 950)
-Var :: [pttrn] => pttrn (‹Var :-› [951] 950)

429

430

-Vals :: [pttrn] => pttrn (‹Vals:-› [951] 950)

translations
λVal:v . b == (λv. b) ◦ CONST the-In1
λVar :v . b == (λv. b) ◦ CONST the-In2
λVals:v. b == (λv. b) ◦ CONST the-In3

— relation on result values, state and auxiliary variables
type-synonym ′a assn = res ⇒ state ⇒ ′a ⇒ bool
translations
(type) ′a assn <= (type) vals ⇒ state ⇒ ′a ⇒ bool

definition
assn-imp :: ′a assn ⇒ ′a assn ⇒ bool (infixr ‹⇒› 25)
where (P ⇒ Q) = (∀Y s Z . P Y s Z −→ Q Y s Z)

lemma assn-imp-def2 [iff]: (P ⇒ Q) = (∀Y s Z . P Y s Z −→ Q Y s Z)
apply (unfold assn-imp-def)
apply (rule HOL.refl)
done

assertion transformers

2 peek-and
definition

peek-and :: ′a assn ⇒ (state ⇒ bool) ⇒ ′a assn (infixl ‹∧.› 13)
where (P ∧. p) = (λY s Z . P Y s Z ∧ p s)

lemma peek-and-def2 [simp]: peek-and P p Y s = (λZ . (P Y s Z ∧ p s))
apply (unfold peek-and-def)
apply (simp (no-asm))
done

lemma peek-and-Not [simp]: (P ∧. (λs. ¬ f s)) = (P ∧. Not ◦ f)
apply (rule ext)
apply (rule ext)
apply (simp (no-asm))
done

lemma peek-and-and [simp]: peek-and (peek-and P p) p = peek-and P p
apply (unfold peek-and-def)
apply (simp (no-asm))
done

lemma peek-and-commut: (P ∧. p ∧. q) = (P ∧. q ∧. p)
apply (rule ext)
apply (rule ext)
apply (rule ext)
apply auto
done

abbreviation
Normal :: ′a assn ⇒ ′a assn
where Normal P == P ∧. normal

lemma peek-and-Normal [simp]: peek-and (Normal P) p = Normal (peek-and P p)
apply (rule ext)
apply (rule ext)

Theory AxSem 431

apply (rule ext)
apply auto
done

3 assn-supd
definition

assn-supd :: ′a assn ⇒ (state ⇒ state) ⇒ ′a assn (infixl ‹;.› 13)
where (P ;. f) = (λY s ′ Z . ∃ s. P Y s Z ∧ s ′ = f s)

lemma assn-supd-def2 [simp]: assn-supd P f Y s ′ Z = (∃ s. P Y s Z ∧ s ′ = f s)
apply (unfold assn-supd-def)
apply (simp (no-asm))
done

4 supd-assn
definition

supd-assn :: (state ⇒ state) ⇒ ′a assn ⇒ ′a assn (infixr ‹.;› 13)
where (f .; P) = (λY s. P Y (f s))

lemma supd-assn-def2 [simp]: (f .; P) Y s = P Y (f s)
apply (unfold supd-assn-def)
apply (simp (no-asm))
done

lemma supd-assn-supdD [elim]: ((f .; Q) ;. f) Y s Z =⇒ Q Y s Z
apply auto
done

lemma supd-assn-supdI [elim]: Q Y s Z =⇒ (f .; (Q ;. f)) Y s Z
apply (auto simp del: split-paired-Ex)
done

5 subst-res
definition

subst-res :: ′a assn ⇒ res ⇒ ′a assn (‹-←-› [60 ,61] 60)
where P←w = (λY . P w)

lemma subst-res-def2 [simp]: (P←w) Y = P w
apply (unfold subst-res-def)
apply (simp (no-asm))
done

lemma subst-subst-res [simp]: P←w←v = P←w
apply (rule ext)
apply (simp (no-asm))
done

lemma peek-and-subst-res [simp]: (P ∧. p)←w = (P←w ∧. p)
apply (rule ext)
apply (rule ext)
apply (simp (no-asm))
done

6 subst-Bool
definition

432

subst-Bool :: ′a assn ⇒ bool ⇒ ′a assn (‹-←=-› [60 ,61] 60)
where P←=b = (λY s Z . ∃ v. P (Val v) s Z ∧ (normal s −→ the-Bool v=b))

lemma subst-Bool-def2 [simp]:
(P←=b) Y s Z = (∃ v. P (Val v) s Z ∧ (normal s −→ the-Bool v=b))
apply (unfold subst-Bool-def)
apply (simp (no-asm))
done

lemma subst-Bool-the-BoolI : P (Val b) s Z =⇒ (P←=the-Bool b) Y s Z
apply auto
done

7 peek-res
definition

peek-res :: (res ⇒ ′a assn) ⇒ ′a assn
where peek-res Pf = (λY . Pf Y Y)

syntax
-peek-res :: pttrn ⇒ ′a assn ⇒ ′a assn (‹λ-:. -› [0 ,3] 3)

syntax-consts
-peek-res == peek-res

translations
λw:. P == CONST peek-res (λw. P)

lemma peek-res-def2 [simp]: peek-res P Y = P Y Y
apply (unfold peek-res-def)
apply (simp (no-asm))
done

lemma peek-res-subst-res [simp]: peek-res P←w = P w←w
apply (rule ext)
apply (simp (no-asm))
done

lemma peek-subst-res-allI :
(
∧

a. T a (P (f a)←f a)) =⇒ ∀ a. T a (peek-res P←f a)
apply (rule allI)
apply (simp (no-asm))
apply fast
done

8 ign-res
definition

ign-res :: ′a assn ⇒ ′a assn (‹-↓› [1000] 1000)
where P↓ = (λY s Z . ∃Y . P Y s Z)

lemma ign-res-def2 [simp]: P↓ Y s Z = (∃Y . P Y s Z)
apply (unfold ign-res-def)
apply (simp (no-asm))
done

lemma ign-ign-res [simp]: P↓↓ = P↓
apply (rule ext)
apply (rule ext)
apply (rule ext)

Theory AxSem 433

apply (simp (no-asm))
done

lemma ign-subst-res [simp]: P↓←w = P↓
apply (rule ext)
apply (rule ext)
apply (rule ext)
apply (simp (no-asm))
done

lemma peek-and-ign-res [simp]: (P ∧. p)↓ = (P↓ ∧. p)
apply (rule ext)
apply (rule ext)
apply (rule ext)
apply (simp (no-asm))
done

9 peek-st
definition

peek-st :: (st ⇒ ′a assn) ⇒ ′a assn
where peek-st P = (λY s. P (store s) Y s)

syntax
-peek-st :: pttrn ⇒ ′a assn ⇒ ′a assn (‹λ-.. -› [0 ,3] 3)

syntax-consts
-peek-st == peek-st

translations
λs.. P == CONST peek-st (λs. P)

lemma peek-st-def2 [simp]: (λs.. Pf s) Y s = Pf (store s) Y s
apply (unfold peek-st-def)
apply (simp (no-asm))
done

lemma peek-st-triv [simp]: (λs.. P) = P
apply (rule ext)
apply (rule ext)
apply (simp (no-asm))
done

lemma peek-st-st [simp]: (λs.. λs ′.. P s s ′) = (λs.. P s s)
apply (rule ext)
apply (rule ext)
apply (simp (no-asm))
done

lemma peek-st-split [simp]: (λs.. λY s ′. P s Y s ′) = (λY s. P (store s) Y s)
apply (rule ext)
apply (rule ext)
apply (simp (no-asm))
done

lemma peek-st-subst-res [simp]: (λs.. P s)←w = (λs.. P s←w)
apply (rule ext)
apply (simp (no-asm))
done

lemma peek-st-Normal [simp]: (λs..(Normal (P s))) = Normal (λs.. P s)

434

apply (rule ext)
apply (rule ext)
apply (simp (no-asm))
done

10 ign-res-eq
definition

ign-res-eq :: ′a assn ⇒ res ⇒ ′a assn (‹-↓=-› [60 ,61] 60)
where P↓=w ≡ (λY :. P↓ ∧. (λs. Y=w))

lemma ign-res-eq-def2 [simp]: (P↓=w) Y s Z = ((∃Y . P Y s Z) ∧ Y=w)
apply (unfold ign-res-eq-def)
apply auto
done

lemma ign-ign-res-eq [simp]: (P↓=w)↓ = P↓
apply (rule ext)
apply (rule ext)
apply (rule ext)
apply (simp (no-asm))
done

lemma ign-res-eq-subst-res: P↓=w←w = P↓
apply (rule ext)
apply (rule ext)
apply (rule ext)
apply (simp (no-asm))
done

lemma subst-Bool-ign-res-eq: ((P←=b)↓=x) Y s Z = ((P←=b) Y s Z ∧ Y=x)
apply (simp (no-asm))
done

11 RefVar
definition

RefVar :: (state ⇒ vvar × state) ⇒ ′a assn ⇒ ′a assn (infixr ‹..;› 13)
where (vf ..; P) = (λY s. let (v,s ′) = vf s in P (Var v) s ′)

lemma RefVar-def2 [simp]: (vf ..; P) Y s =
P (Var (fst (vf s))) (snd (vf s))

apply (unfold RefVar-def Let-def)
apply (simp (no-asm) add: split-beta)
done

12 allocation
definition

Alloc :: prog ⇒ obj-tag ⇒ ′a assn ⇒ ′a assn
where Alloc G otag P = (λY s Z . ∀ s ′ a. G`s −halloc otag�a→ s ′−→ P (Val (Addr a)) s ′ Z)

definition
SXAlloc :: prog ⇒ ′a assn ⇒ ′a assn
where SXAlloc G P = (λY s Z . ∀ s ′. G`s −sxalloc→ s ′ −→ P Y s ′ Z)

Theory AxSem 435

lemma Alloc-def2 [simp]: Alloc G otag P Y s Z =
(∀ s ′ a. G`s −halloc otag�a→ s ′−→ P (Val (Addr a)) s ′ Z)

apply (unfold Alloc-def)
apply (simp (no-asm))
done

lemma SXAlloc-def2 [simp]:
SXAlloc G P Y s Z = (∀ s ′. G`s −sxalloc→ s ′ −→ P Y s ′ Z)

apply (unfold SXAlloc-def)
apply (simp (no-asm))
done

validity

definition
type-ok :: prog ⇒ term ⇒ state ⇒ bool where
type-ok G t s =
(∃L T C A. (normal s −→ (|prg=G,cls=C ,lcl=L|)`t::T ∧

(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»t»A)
∧ s::�(G,L))

datatype ′a triple = triple (′a assn) term (′a assn)
(‹{(1-)}/ -�/ {(1-)}› [3 ,65 ,3] 75)

type-synonym ′a triples = ′a triple set

abbreviation
var-triple :: [′a assn, var , ′a assn] ⇒ ′a triple

(‹{(1-)}/ -=�/ {(1-)}› [3 ,80 ,3] 75)
where {P} e=� {Q} == {P} In2 e� {Q}

abbreviation
expr-triple :: [′a assn, expr , ′a assn] ⇒ ′a triple

(‹{(1-)}/ -−�/ {(1-)}› [3 ,80 ,3] 75)
where {P} e−� {Q} == {P} In1l e� {Q}

abbreviation
exprs-triple :: [′a assn, expr list , ′a assn] ⇒ ′a triple

(‹{(1-)}/ - .=�/ {(1-)}› [3 ,65 ,3] 75)
where {P} e .

=� {Q} == {P} In3 e� {Q}

abbreviation
stmt-triple :: [′a assn, stmt, ′a assn] ⇒ ′a triple

(‹{(1-)}/ .-./ {(1-)}› [3 ,65 ,3] 75)
where {P} .c. {Q} == {P} In1r c� {Q}

notation (ASCII)
triple (‹{(1-)}/ ->/ {(1-)}› [3 ,65 ,3]75) and
var-triple (‹{(1-)}/ -=>/ {(1-)}› [3 ,80 ,3] 75) and
expr-triple (‹{(1-)}/ -−>/ {(1-)}› [3 ,80 ,3] 75) and
exprs-triple (‹{(1-)}/ -#>/ {(1-)}› [3 ,65 ,3] 75)

lemma inj-triple: inj (λ(P,t,Q). {P} t� {Q})
apply (rule inj-onI)
apply auto
done

lemma triple-inj-eq: ({P} t� {Q} = {P ′} t ′� {Q ′}) = (P=P ′ ∧ t=t ′ ∧ Q=Q ′)
apply auto
done

436

definition mtriples :: (′c ⇒ ′sig ⇒ ′a assn) ⇒ (′c ⇒ ′sig ⇒ expr) ⇒
(′c ⇒ ′sig ⇒ ′a assn) ⇒ (′c × ′sig) set ⇒ ′a triples (‹{{(1-)}/ -−�/ {(1-)} | -}›[3 ,65 ,3 ,65]75)

where
{{P} tf−� {Q} | ms} = (λ(C ,sig). {Normal(P C sig)} tf C sig−� {Q C sig})‘ms

definition
triple-valid :: prog ⇒ nat ⇒ ′a triple ⇒ bool (‹-|=-:-› [61 ,0 , 58] 57)
where

G|=n:t =
(case t of {P} t� {Q} ⇒
∀Y s Z . P Y s Z −→ type-ok G t s −→
(∀Y ′ s ′. G`s −t�−n→ (Y ′,s ′) −→ Q Y ′ s ′ Z))

abbreviation
triples-valid:: prog ⇒ nat ⇒ ′a triples ⇒ bool (‹-||=-:-› [61 ,0 , 58] 57)
where G||=n:ts == Ball ts (triple-valid G n)

notation (ASCII)
triples-valid (‹-||=-:-› [61 ,0 , 58] 57)

definition
ax-valids :: prog ⇒ ′b triples ⇒ ′a triples ⇒ bool (‹-,-||=-› [61 ,58 ,58] 57)
where (G,A||=ts) = (∀n. G||=n:A −→ G||=n:ts)

abbreviation
ax-valid :: prog ⇒ ′b triples ⇒ ′a triple ⇒ bool (‹-,-|=-› [61 ,58 ,58] 57)
where G,A |=t == G,A||={t}

notation (ASCII)
ax-valid (‹-,-|=-› [61 ,58 ,58] 57)

lemma triple-valid-def2 : G|=n:{P} t� {Q} =
(∀Y s Z . P Y s Z
−→ (∃L. (normal s −→ (∃ C T A. (|prg=G,cls=C ,lcl=L|)`t::T ∧

(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»t»A)) ∧
s::�(G,L))

−→ (∀Y ′ s ′. G`s −t�−n→ (Y ′,s ′)−→ Q Y ′ s ′ Z))
apply (unfold triple-valid-def type-ok-def)
apply (simp (no-asm))
done

declare split-paired-All [simp del] split-paired-Ex [simp del]
declare if-split [split del] if-split-asm [split del]

option.split [split del] option.split-asm [split del]
setup ‹map-theory-simpset (fn ctxt => ctxt |> Simplifier .del-loop split-all-tac)›
setup ‹map-theory-claset (fn ctxt => ctxt delSWrapper split-all-tac)›

inductive
ax-derivs :: prog ⇒ ′a triples ⇒ ′a triples ⇒ bool (‹-,-|`-› [61 ,58 ,58] 57)
and ax-deriv :: prog ⇒ ′a triples ⇒ ′a triple ⇒ bool (‹-,-`-› [61 ,58 ,58] 57)
for G :: prog

where

G,A `t ≡ G,A|`{t}

Theory AxSem 437

| empty: G,A|`{}
| insert:[[G,A`t; G,A|`ts]] =⇒

G,A|`insert t ts

| asm: ts⊆A =⇒ G,A|`ts

| weaken:[[G,A|`ts ′; ts ⊆ ts ′]] =⇒ G,A|`ts

| conseq:∀Y s Z . P Y s Z −→ (∃P ′ Q ′. G,A`{P ′} t� {Q ′} ∧ (∀Y ′ s ′.
(∀Y Z ′. P ′ Y s Z ′ −→ Q ′ Y ′ s ′ Z ′) −→

Q Y ′ s ′ Z))
=⇒ G,A`{P } t� {Q }

| hazard:G,A`{P ∧. Not ◦ type-ok G t} t� {Q}

| Abrupt: G,A`{P←(undefined3 t) ∧. Not ◦ normal} t� {P}

— variables
| LVar : G,A`{Normal (λs.. P←Var (lvar vn s))} LVar vn=� {P}

| FVar : [[G,A`{Normal P} .Init C . {Q};
G,A`{Q} e−� {λVal:a:. fvar C stat fn a ..; R}]] =⇒

G,A`{Normal P} {accC ,C ,stat}e..fn=� {R}

| AVar : [[G,A`{Normal P} e1−� {Q};
∀ a. G,A`{Q←Val a} e2−� {λVal:i:. avar G i a ..; R}]] =⇒

G,A`{Normal P} e1 .[e2]=� {R}
— expressions

| NewC : [[G,A`{Normal P} .Init C . {Alloc G (CInst C) Q}]] =⇒
G,A`{Normal P} NewC C−� {Q}

| NewA: [[G,A`{Normal P} .init-comp-ty T . {Q}; G,A`{Q} e−�
{λVal:i:. abupd (check-neg i) .; Alloc G (Arr T (the-Intg i)) R}]] =⇒

G,A`{Normal P} New T [e]−� {R}

| Cast: [[G,A`{Normal P} e−� {λVal:v:. λs..
abupd (raise-if (¬G,s`v fits T) ClassCast) .; Q←Val v}]] =⇒

G,A`{Normal P} Cast T e−� {Q}

| Inst: [[G,A`{Normal P} e−� {λVal:v:. λs..
Q←Val (Bool (v 6=Null ∧ G,s`v fits RefT T))}]] =⇒

G,A`{Normal P} e InstOf T−� {Q}

| Lit: G,A`{Normal (P←Val v)} Lit v−� {P}

| UnOp: [[G,A`{Normal P} e−� {λVal:v:. Q←Val (eval-unop unop v)}]]
=⇒
G,A`{Normal P} UnOp unop e−� {Q}

| BinOp:
[[G,A`{Normal P} e1−� {Q};
∀ v1 . G,A`{Q←Val v1}

(if need-second-arg binop v1 then (In1l e2) else (In1r Skip))�
{λVal:v2 :. R←Val (eval-binop binop v1 v2)}]]

=⇒
G,A`{Normal P} BinOp binop e1 e2−� {R}

438

| Super : G,A`{Normal (λs.. P←Val (val-this s))} Super−� {P}

| Acc: [[G,A`{Normal P} va=� {λVar :(v,f):. Q←Val v}]] =⇒
G,A`{Normal P} Acc va−� {Q}

| Ass: [[G,A`{Normal P} va=� {Q};
∀ vf . G,A`{Q←Var vf } e−� {λVal:v:. assign (snd vf) v .; R}]] =⇒

G,A`{Normal P} va:=e−� {R}

| Cond: [[G,A `{Normal P} e0−� {P ′};
∀ b. G,A`{P ′←=b} (if b then e1 else e2)−� {Q}]] =⇒

G,A`{Normal P} e0 ? e1 : e2−� {Q}

| Call:
[[G,A`{Normal P} e−� {Q}; ∀ a. G,A`{Q←Val a} args .

=� {R a};
∀ a vs invC declC l. G,A`{(R a←Vals vs ∧.
(λs. declC=invocation-declclass G mode (store s) a statT (|name=mn,parTs=pTs|) ∧

invC = invocation-class mode (store s) a statT ∧
l = locals (store s)) ;.

init-lvars G declC (|name=mn,parTs=pTs|) mode a vs) ∧.
(λs. normal s −→ G`mode→invC�statT)}

Methd declC (|name=mn,parTs=pTs|)−� {set-lvars l .; S}]] =⇒
G,A`{Normal P} {accC ,statT ,mode}e·mn({pTs}args)−� {S}

| Methd:[[G,A∪ {{P} Methd−� {Q} | ms} |` {{P} body G−� {Q} | ms}]] =⇒
G,A|`{{P} Methd−� {Q} | ms}

| Body: [[G,A`{Normal P} .Init D. {Q};
G,A`{Q} .c. {λs.. abupd (absorb Ret) .; R←(In1 (the (locals s Result)))}]]
=⇒

G,A`{Normal P} Body D c−� {R}

— expression lists

| Nil: G,A`{Normal (P←Vals [])} [] .=� {P}

| Cons: [[G,A`{Normal P} e−� {Q};
∀ v. G,A`{Q←Val v} es .

=� {λVals:vs:. R←Vals (v#vs)}]] =⇒
G,A`{Normal P} e#es .

=� {R}

— statements

| Skip: G,A`{Normal (P←♦)} .Skip. {P}

| Expr : [[G,A`{Normal P} e−� {Q←♦}]] =⇒
G,A`{Normal P} .Expr e. {Q}

| Lab: [[G,A`{Normal P} .c. {abupd (absorb l) .; Q}]] =⇒
G,A`{Normal P} .l· c. {Q}

| Comp: [[G,A`{Normal P} .c1 . {Q};
G,A`{Q} .c2 . {R}]] =⇒

G,A`{Normal P} .c1 ;;c2 . {R}

| If : [[G,A `{Normal P} e−� {P ′};
∀ b. G,A`{P ′←=b} .(if b then c1 else c2). {Q}]] =⇒

G,A`{Normal P} .If (e) c1 Else c2 . {Q}

| Loop: [[G,A`{P} e−� {P ′};

Theory AxSem 439

G,A`{Normal (P ′←=True)} .c. {abupd (absorb (Cont l)) .; P}]] =⇒
G,A`{P} .l· While(e) c. {(P ′←=False)↓=♦}

| Jmp: G,A`{Normal (abupd (λa. (Some (Jump j))) .; P←♦)} .Jmp j. {P}

| Throw:[[G,A`{Normal P} e−� {λVal:a:. abupd (throw a) .; Q←♦}]] =⇒
G,A`{Normal P} .Throw e. {Q}

| Try: [[G,A`{Normal P} .c1 . {SXAlloc G Q};
G,A`{Q ∧. (λs. G,s`catch C) ;. new-xcpt-var vn} .c2 . {R};

(Q ∧. (λs. ¬G,s`catch C)) ⇒ R]] =⇒
G,A`{Normal P} .Try c1 Catch(C vn) c2 . {R}

| Fin: [[G,A`{Normal P} .c1 . {Q};
∀ x. G,A`{Q ∧. (λs. x = fst s) ;. abupd (λx. None)}

.c2 . {abupd (abrupt-if (x 6=None) x) .; R}]] =⇒
G,A`{Normal P} .c1 Finally c2 . {R}

| Done: G,A`{Normal (P←♦ ∧. initd C)} .Init C . {P}

| Init: [[the (class G C) = c;
G,A`{Normal ((P ∧. Not ◦ initd C) ;. supd (init-class-obj G C))}

.(if C = Object then Skip else Init (super c)). {Q};
∀ l. G,A`{Q ∧. (λs. l = locals (store s)) ;. set-lvars Map.empty}

.init c. {set-lvars l .; R}]] =⇒
G,A`{Normal (P ∧. Not ◦ initd C)} .Init C . {R}

— Some dummy rules for the intermediate terms Callee, InsInitE, InsInitV, FinA only used by the smallstep
semantics.
| InsInitV : G,A`{Normal P} InsInitV c v=� {Q}
| InsInitE : G,A`{Normal P} InsInitE c e−� {Q}
| Callee: G,A`{Normal P} Callee l e−� {Q}
| FinA: G,A`{Normal P} .FinA a c. {Q}

definition
adapt-pre :: ′a assn ⇒ ′a assn ⇒ ′a assn ⇒ ′a assn
where adapt-pre P Q Q ′ = (λY s Z . ∀Y ′ s ′. ∃Z ′. P Y s Z ′ ∧ (Q Y ′ s ′ Z ′ −→ Q ′ Y ′ s ′ Z))

rules derived by induction

lemma cut-valid: [[G,A ′||=ts; G,A||=A ′]] =⇒ G,A||=ts
apply (unfold ax-valids-def)
apply fast
done

lemma ax-thin [rule-format (no-asm)]:
G,(A ′:: ′a triple set)|`(ts:: ′a triple set) =⇒ ∀A. A ′ ⊆ A −→ G,A|`ts

apply (erule ax-derivs.induct)
apply (tactic ALLGOALS (EVERY ′[clarify-tac context , REPEAT o smp-tac context 1]))
apply (rule ax-derivs.empty)
apply (erule (1) ax-derivs.insert)
apply (fast intro: ax-derivs.asm)

apply (fast intro: ax-derivs.weaken)
apply (rule ax-derivs.conseq, intro strip, tactic smp-tac context 3 1 ,clarify,

tactic smp-tac context 1 1 ,rule exI , rule exI , erule (1) conjI)

440

prefer 18
apply (rule ax-derivs.Methd, drule spec, erule mp, fast)
apply (tactic ‹TRYALL (resolve-tac context ((funpow 5 tl) @{thms ax-derivs.intros}))›)
apply auto
done

lemma ax-thin-insert: G,(A:: ′a triple set)`(t:: ′a triple) =⇒ G,insert x A`t
apply (erule ax-thin)
apply fast
done

lemma subset-mtriples-iff :
ts ⊆ {{P} mb−� {Q} | ms} = (∃ms ′. ms ′⊆ms ∧ ts = {{P} mb−� {Q} | ms ′})

apply (unfold mtriples-def)
apply (rule subset-image-iff)
done

lemma weaken:
G,(A:: ′a triple set)|`(ts ′:: ′a triple set) =⇒ ∀ ts. ts ⊆ ts ′ −→ G,A|`ts

apply (erule ax-derivs.induct)

apply (tactic ALLGOALS (strip-tac context))
apply (tactic ‹ALLGOALS(REPEAT o (EVERY ′[dresolve-tac context @{thms subset-singletonD},

eresolve-tac context [disjE],
fast-tac (context addSIs @{thms ax-derivs.empty})]))›)

apply (tactic TRYALL (hyp-subst-tac context))
apply (simp, rule ax-derivs.empty)
apply (drule subset-insertD)
apply (blast intro: ax-derivs.insert)
apply (fast intro: ax-derivs.asm)

apply (fast intro: ax-derivs.weaken)
apply (rule ax-derivs.conseq, clarify, tactic smp-tac context 3 1 , blast)

apply (tactic ‹TRYALL (resolve-tac context ((funpow 5 tl) @{thms ax-derivs.intros})
THEN-ALL-NEW fast-tac context)›)

apply (clarsimp simp add: subset-mtriples-iff)
apply (rule ax-derivs.Methd)
apply (drule spec)
apply (erule impE)
apply (rule exI)
apply (erule conjI)
apply (rule HOL.refl)
oops

rules derived from conseq

In the following rules we often have to give some type annotations like: G,A`{P} t� {Q}. Given
only the term above without annotations, Isabelle would infer a more general type were we could
have different types of auxiliary variables in the assumption set (A) and in the triple itself (P and
Q). But ax-derivs.Methd enforces the same type in the inductive definition of the derivation. So we
have to restrict the types to be able to apply the rules.
lemma conseq12 : [[G,(A:: ′a triple set)`{P ′:: ′a assn} t� {Q ′};
∀Y s Z . P Y s Z −→ (∀Y ′ s ′. (∀Y Z ′. P ′ Y s Z ′ −→ Q ′ Y ′ s ′ Z ′) −→
Q Y ′ s ′ Z)]]
=⇒ G,A`{P :: ′a assn} t� {Q }

apply (rule ax-derivs.conseq)

Theory AxSem 441

apply clarsimp
apply blast
done

— Nice variant, since it is so symmetric we might be able to memorise it.
lemma conseq12 ′: [[G,(A:: ′a triple set)`{P ′:: ′a assn} t� {Q ′}; ∀ s Y ′ s ′.

(∀Y Z . P ′ Y s Z −→ Q ′ Y ′ s ′ Z) −→
(∀Y Z . P Y s Z −→ Q Y ′ s ′ Z)]]

=⇒ G,A`{P:: ′a assn } t� {Q }
apply (erule conseq12)
apply fast
done

lemma conseq12-from-conseq12 ′: [[G,(A:: ′a triple set)`{P ′:: ′a assn} t� {Q ′};
∀Y s Z . P Y s Z −→ (∀Y ′ s ′. (∀Y Z ′. P ′ Y s Z ′ −→ Q ′ Y ′ s ′ Z ′) −→
Q Y ′ s ′ Z)]]
=⇒ G,A`{P:: ′a assn} t� {Q }

apply (erule conseq12 ′)
apply blast
done

lemma conseq1 : [[G,(A:: ′a triple set)`{P ′:: ′a assn} t� {Q}; P ⇒ P ′]]
=⇒ G,A`{P:: ′a assn} t� {Q}

apply (erule conseq12)
apply blast
done

lemma conseq2 : [[G,(A:: ′a triple set)`{P:: ′a assn} t� {Q ′}; Q ′⇒ Q]]
=⇒ G,A`{P:: ′a assn} t� {Q}
apply (erule conseq12)
apply blast
done

lemma ax-escape:
[[∀Y s Z . P Y s Z
−→ G,(A:: ′a triple set)`{λY ′ s ′ (Z ′:: ′a). (Y ′,s ′) = (Y ,s)}

t�
{λY s Z ′. Q Y s Z}

]] =⇒ G,A`{P:: ′a assn} t� {Q:: ′a assn}
apply (rule ax-derivs.conseq)
apply force
done

lemma ax-constant: [[C =⇒ G,(A:: ′a triple set)`{P:: ′a assn} t� {Q}]]
=⇒ G,A`{λY s Z . C ∧ P Y s Z} t� {Q}
apply (rule ax-escape)
apply clarify
apply (rule conseq12)
apply fast
apply auto
done

lemma ax-impossible [intro]:
G,(A:: ′a triple set)`{λY s Z . False} t� {Q:: ′a assn}

apply (rule ax-escape)
apply clarify

442

done

lemma ax-nochange-lemma: [[P Y s; All ((=) w)]] =⇒ P w s
apply auto
done

lemma ax-nochange:
G,(A::(res × state) triple set)`{λY s Z . (Y ,s)=Z} t� {λY s Z . (Y ,s)=Z}
=⇒ G,A`{P::(res × state) assn} t� {P}

apply (erule conseq12)
apply auto
apply (erule (1) ax-nochange-lemma)
done

lemma ax-trivial: G,(A:: ′a triple set)`{P:: ′a assn} t� {λY s Z . True}
apply (rule ax-derivs.conseq)
apply auto
done

lemma ax-disj:
[[G,(A:: ′a triple set)`{P1 :: ′a assn} t� {Q1}; G,A`{P2 :: ′a assn} t� {Q2}]]
=⇒ G,A`{λY s Z . P1 Y s Z ∨ P2 Y s Z} t� {λY s Z . Q1 Y s Z ∨ Q2 Y s Z}

apply (rule ax-escape)
apply safe
apply (erule conseq12 , fast)+
done

lemma ax-supd-shuffle:
(∃Q. G,(A:: ′a triple set)`{P:: ′a assn} .c1 . {Q} ∧ G,A`{Q ;. f } .c2 . {R}) =

(∃Q ′. G,A`{P} .c1 . {f .; Q ′} ∧ G,A`{Q ′} .c2 . {R})
apply (best elim!: conseq1 conseq2)
done

lemma ax-cases:
[[G,(A:: ′a triple set)`{P ∧. C} t� {Q:: ′a assn};

G,A`{P ∧. Not ◦ C} t� {Q}]] =⇒ G,A`{P} t� {Q}
apply (unfold peek-and-def)
apply (rule ax-escape)
apply clarify
apply (case-tac C s)
apply (erule conseq12 , force)+
done

lemma ax-adapt: G,(A:: ′a triple set)`{P:: ′a assn} t� {Q}
=⇒ G,A`{adapt-pre P Q Q ′} t� {Q ′}

apply (unfold adapt-pre-def)
apply (erule conseq12)
apply fast
done

lemma adapt-pre-adapts: G,(A:: ′a triple set)|={P:: ′a assn} t� {Q}
−→ G,A|={adapt-pre P Q Q ′} t� {Q ′}
apply (unfold adapt-pre-def)
apply (simp add: ax-valids-def triple-valid-def2)

Theory AxSem 443

apply fast
done

lemma adapt-pre-weakest:
∀G (A:: ′a triple set) t. G,A|={P} t� {Q} −→ G,A|={P ′} t� {Q ′} =⇒

P ′⇒ adapt-pre P Q (Q ′:: ′a assn)
apply (unfold adapt-pre-def)
apply (drule spec)
apply (drule-tac x = {} in spec)
apply (drule-tac x = In1r Skip in spec)
apply (simp add: ax-valids-def triple-valid-def2)
oops

lemma peek-and-forget1-Normal:
G,(A:: ′a triple set)`{Normal P} t� {Q:: ′a assn}
=⇒ G,A`{Normal (P ∧. p)} t� {Q}

apply (erule conseq1)
apply (simp (no-asm))
done

lemma peek-and-forget1 :
G,(A:: ′a triple set)`{P:: ′a assn} t� {Q}
=⇒ G,A`{P ∧. p} t� {Q}

apply (erule conseq1)
apply (simp (no-asm))
done

lemmas ax-NormalD = peek-and-forget1 [of - - - - - normal]

lemma peek-and-forget2 :
G,(A:: ′a triple set)`{P:: ′a assn} t� {Q ∧. p}
=⇒ G,A`{P} t� {Q}
apply (erule conseq2)
apply (simp (no-asm))
done

lemma ax-subst-Val-allI :
∀ v. G,(A:: ′a triple set)`{(P ′ v)←Val v} t� {(Q v):: ′a assn}
=⇒ ∀ v. G,A`{(λw:. P ′ (the-In1 w))←Val v} t� {Q v}

apply (force elim!: conseq1)
done

lemma ax-subst-Var-allI :
∀ v. G,(A:: ′a triple set)`{(P ′ v)←Var v} t� {(Q v):: ′a assn}
=⇒ ∀ v. G,A`{(λw:. P ′ (the-In2 w))←Var v} t� {Q v}

apply (force elim!: conseq1)
done

lemma ax-subst-Vals-allI :
(∀ v. G,(A:: ′a triple set)`{(P ′ v)←Vals v} t� {(Q v):: ′a assn})
=⇒ ∀ v. G,A`{(λw:. P ′ (the-In3 w))←Vals v} t� {Q v}

apply (force elim!: conseq1)
done

alternative axioms

lemma ax-Lit2 :
G,(A:: ′a triple set)`{Normal P:: ′a assn} Lit v−� {Normal (P↓=Val v)}

444

apply (rule ax-derivs.Lit [THEN conseq1])
apply force
done
lemma ax-Lit2-test-complete:

G,(A:: ′a triple set)`{Normal (P←Val v):: ′a assn} Lit v−� {P}
apply (rule ax-Lit2 [THEN conseq2])
apply force
done

lemma ax-LVar2 : G,(A:: ′a triple set)`{Normal P:: ′a assn} LVar vn=� {Normal (λs.. P↓=Var (lvar vn s))}
apply (rule ax-derivs.LVar [THEN conseq1])
apply force
done

lemma ax-Super2 : G,(A:: ′a triple set)`
{Normal P:: ′a assn} Super−� {Normal (λs.. P↓=Val (val-this s))}

apply (rule ax-derivs.Super [THEN conseq1])
apply force
done

lemma ax-Nil2 :
G,(A:: ′a triple set)`{Normal P:: ′a assn} [] .=� {Normal (P↓=Vals [])}

apply (rule ax-derivs.Nil [THEN conseq1])
apply force
done

misc derived structural rules

lemma ax-finite-mtriples-lemma: [[F ⊆ ms; finite ms; ∀ (C ,sig)∈ms.
G,(A:: ′a triple set)`{Normal (P C sig):: ′a assn} mb C sig−� {Q C sig}]] =⇒

G,A|`{{P} mb−� {Q} | F}
apply (frule (1) finite-subset)
apply (erule rev-mp)
apply (erule thin-rl)
apply (erule finite-induct)
apply (unfold mtriples-def)
apply (clarsimp intro!: ax-derivs.empty ax-derivs.insert)+
apply force
done
lemmas ax-finite-mtriples = ax-finite-mtriples-lemma [OF subset-refl]

lemma ax-derivs-insertD:
G,(A:: ′a triple set)|`insert (t:: ′a triple) ts =⇒ G,A`t ∧ G,A|`ts

apply (fast intro: ax-derivs.weaken)
done

lemma ax-methods-spec:
[[G,(A:: ′a triple set)|`case-prod f ‘ ms; (C ,sig) ∈ ms]]=⇒ G,A`((f C sig):: ′a triple)
apply (erule ax-derivs.weaken)
apply (force del: image-eqI intro: rev-image-eqI)
done

lemma ax-finite-pointwise-lemma [rule-format]: [[F ⊆ ms; finite ms]] =⇒
((∀ (C ,sig)∈F . G,(A:: ′a triple set)`(f C sig:: ′a triple)) −→ (∀ (C ,sig)∈ms. G,A`(g C sig:: ′a triple))) −→

G,A|`case-prod f ‘ F −→ G,A|`case-prod g ‘ F
apply (frule (1) finite-subset)
apply (erule rev-mp)
apply (erule thin-rl)

Theory AxSem 445

apply (erule finite-induct)
apply clarsimp+
apply (drule ax-derivs-insertD)
apply (rule ax-derivs.insert)
apply (simp (no-asm-simp) only: split-tupled-all)
apply (auto elim: ax-methods-spec)
done
lemmas ax-finite-pointwise = ax-finite-pointwise-lemma [OF subset-refl]

lemma ax-no-hazard:
G,(A:: ′a triple set)`{P ∧. type-ok G t} t� {Q:: ′a assn} =⇒ G,A`{P} t� {Q}

apply (erule ax-cases)
apply (rule ax-derivs.hazard [THEN conseq1])
apply force
done

lemma ax-free-wt:
(∃T L C . (|prg=G,cls=C ,lcl=L|)`t::T)
−→ G,(A:: ′a triple set)`{Normal P} t� {Q:: ′a assn} =⇒
G,A`{Normal P} t� {Q}

apply (rule ax-no-hazard)
apply (rule ax-escape)
apply clarify
apply (erule mp [THEN conseq12])
apply (auto simp add: type-ok-def)
done

ML ‹ML-Thms.bind-thms (ax-Abrupts, sum3-instantiate context @{thm ax-derivs.Abrupt})›
declare ax-Abrupts [intro!]

lemmas ax-Normal-cases = ax-cases [of - - - normal]

lemma ax-Skip [intro!]: G,(A:: ′a triple set)`{P←♦} .Skip. {P:: ′a assn}
apply (rule ax-Normal-cases)
apply (rule ax-derivs.Skip)
apply fast
done
lemmas ax-SkipI = ax-Skip [THEN conseq1]

derived rules for methd call

lemma ax-Call-known-DynT :
[[G`IntVir→C�statT ;
∀ a vs l. G,A`{(R a←Vals vs ∧. (λs. l = locals (store s)) ;.
init-lvars G C (|name=mn,parTs=pTs|) IntVir a vs)}

Methd C (|name=mn,parTs=pTs|)−� {set-lvars l .; S};
∀ a. G,A`{Q←Val a} args .

=�
{R a ∧. (λs. C = obj-class (the (heap (store s) (the-Addr a))) ∧

C = invocation-declclass
G IntVir (store s) a statT (|name=mn,parTs=pTs|))};

G,(A:: ′a triple set)`{Normal P} e−� {Q:: ′a assn}]]
=⇒ G,A`{Normal P} {accC ,statT ,IntVir}e·mn({pTs}args)−� {S}

apply (erule ax-derivs.Call)
apply safe
apply (erule spec)
apply (rule ax-escape, clarsimp)
apply (drule spec, drule spec, drule spec,erule conseq12)
apply force
done

446

lemma ax-Call-Static:
[[∀ a vs l. G,A`{R a←Vals vs ∧. (λs. l = locals (store s)) ;.

init-lvars G C (|name=mn,parTs=pTs|) Static any-Addr vs}
Methd C (|name=mn,parTs=pTs|)−� {set-lvars l .; S};

G,A`{Normal P} e−� {Q};
∀ a. G,(A:: ′a triple set)`{Q←Val a} args .

=� {(R::val ⇒ ′a assn) a
∧. (λ s. C=invocation-declclass

G Static (store s) a statT (|name=mn,parTs=pTs|))}
]] =⇒ G,A`{Normal P} {accC ,statT ,Static}e·mn({pTs}args)−� {S}
apply (erule ax-derivs.Call)
apply safe
apply (erule spec)
apply (rule ax-escape, clarsimp)
apply (erule-tac V = P −→ Q for P Q in thin-rl)
apply (drule spec,drule spec,drule spec, erule conseq12)
apply (force simp add: init-lvars-def Let-def)
done

lemma ax-Methd1 :
[[G,A∪{{P} Methd−� {Q} | ms}|` {{P} body G−� {Q} | ms}; (C ,sig)∈ ms]] =⇒

G,A`{Normal (P C sig)} Methd C sig−� {Q C sig}
apply (drule ax-derivs.Methd)
apply (unfold mtriples-def)
apply (erule (1) ax-methods-spec)
done

lemma ax-MethdN :
G,insert({Normal P} Methd C sig−� {Q}) A`

{Normal P} body G C sig−� {Q} =⇒
G,A`{Normal P} Methd C sig−� {Q}

apply (rule ax-Methd1)
apply (rule-tac [2] singletonI)
apply (unfold mtriples-def)
apply clarsimp
done

lemma ax-StatRef :
G,(A:: ′a triple set)`{Normal (P←Val Null)} StatRef rt−� {P:: ′a assn}

apply (rule ax-derivs.Cast)
apply (rule ax-Lit2 [THEN conseq2])
apply clarsimp
done

rules derived from Init and Done

lemma ax-InitS : [[the (class G C) = c; C 6= Object;
∀ l. G,A`{Q ∧. (λs. l = locals (store s)) ;. set-lvars Map.empty}

.init c. {set-lvars l .; R};
G,A`{Normal ((P ∧. Not ◦ initd C) ;. supd (init-class-obj G C))}

.Init (super c). {Q}]] =⇒
G,(A:: ′a triple set)`{Normal (P ∧. Not ◦ initd C)} .Init C . {R:: ′a assn}

apply (erule ax-derivs.Init)
apply (simp (no-asm-simp))
apply assumption
done

lemma ax-Init-Skip-lemma:

Theory AxSem 447

∀ l. G,(A:: ′a triple set)`{P←♦ ∧. (λs. l = locals (store s)) ;. set-lvars l ′}
.Skip. {(set-lvars l .; P):: ′a assn}

apply (rule allI)
apply (rule ax-SkipI)
apply clarsimp
done

lemma ax-triv-InitS : [[the (class G C) = c;init c = Skip; C 6= Object;
P←♦ ⇒ (supd (init-class-obj G C) .; P);
G,A`{Normal (P ∧. initd C)} .Init (super c). {(P ∧. initd C)←♦}]] =⇒
G,(A:: ′a triple set)`{Normal P←♦} .Init C . {(P ∧. initd C):: ′a assn}

apply (rule-tac C = initd C in ax-cases)
apply (rule conseq1 , rule ax-derivs.Done, clarsimp)
apply (simp (no-asm))
apply (erule (1) ax-InitS)
apply simp
apply (rule ax-Init-Skip-lemma)
apply (erule conseq1)
apply force
done

lemma ax-Init-Object: wf-prog G =⇒ G,(A:: ′a triple set)`
{Normal ((supd (init-class-obj G Object) .; P←♦) ∧. Not ◦ initd Object)}

.Init Object. {(P ∧. initd Object):: ′a assn}
apply (rule ax-derivs.Init)
apply (drule class-Object, force)
apply (simp-all (no-asm))
apply (rule-tac [2] ax-Init-Skip-lemma)
apply (rule ax-SkipI , force)
done

lemma ax-triv-Init-Object: [[wf-prog G;
(P:: ′a assn) ⇒ (supd (init-class-obj G Object) .; P)]] =⇒

G,(A:: ′a triple set)`{Normal P←♦} .Init Object. {P ∧. initd Object}
apply (rule-tac C = initd Object in ax-cases)
apply (rule conseq1 , rule ax-derivs.Done, clarsimp)
apply (erule ax-Init-Object [THEN conseq1])
apply force
done

introduction rules for Alloc and SXAlloc

lemma ax-SXAlloc-Normal:
G,(A:: ′a triple set)`{P:: ′a assn} .c. {Normal Q}
=⇒ G,A`{P} .c. {SXAlloc G Q}

apply (erule conseq2)
apply (clarsimp elim!: sxalloc-elim-cases simp add: split-tupled-all)
done

lemma ax-Alloc:
G,(A:: ′a triple set)`{P:: ′a assn} t�
{Normal (λY (x,s) Z . (∀ a. new-Addr (heap s) = Some a −→
Q (Val (Addr a)) (Norm(init-obj G (CInst C) (Heap a) s)) Z)) ∧.
heap-free (Suc (Suc 0))}

=⇒ G,A`{P} t� {Alloc G (CInst C) Q}
apply (erule conseq2)
apply (auto elim!: halloc-elim-cases)
done

448

lemma ax-Alloc-Arr :
G,(A:: ′a triple set)`{P:: ′a assn} t�
{λVal:i:. Normal (λY (x,s) Z . ¬the-Intg i<0 ∧
(∀ a. new-Addr (heap s) = Some a −→
Q (Val (Addr a)) (Norm (init-obj G (Arr T (the-Intg i)) (Heap a) s)) Z)) ∧.
heap-free (Suc (Suc 0))}

=⇒
G,A`{P} t� {λVal:i:. abupd (check-neg i) .; Alloc G (Arr T (the-Intg i)) Q}

apply (erule conseq2)
apply (auto elim!: halloc-elim-cases)
done

lemma ax-SXAlloc-catch-SXcpt:
[[G,(A:: ′a triple set)`{P:: ′a assn} t�
{(λY (x,s) Z . x=Some (Xcpt (Std xn)) ∧
(∀ a. new-Addr (heap s) = Some a −→
Q Y (Some (Xcpt (Loc a)),init-obj G (CInst (SXcpt xn)) (Heap a) s) Z))
∧. heap-free (Suc (Suc 0))}]]

=⇒
G,A`{P} t� {SXAlloc G (λY s Z . Q Y s Z ∧ G,s`catch SXcpt xn)}

apply (erule conseq2)
apply (auto elim!: sxalloc-elim-cases halloc-elim-cases)
done

end

Chapter 23

AxSound

1 Soundness proof for Axiomatic semantics of Java expressions and statements
theory AxSound imports AxSem begin

validity
definition

triple-valid2 :: prog ⇒ nat ⇒ ′a triple ⇒ bool (‹-|=-::-›[61 ,0 , 58] 57)
where

G|=n::t =
(case t of {P} t� {Q} ⇒
∀Y s Z . P Y s Z −→ (∀L. s::�(G,L)
−→ (∀T C A. (normal s −→ ((|prg=G,cls=C ,lcl=L|)`t::T ∧
(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»t»A)) −→
(∀Y ′ s ′. G`s −t�−n→ (Y ′,s ′) −→ Q Y ′ s ′ Z ∧ s ′::�(G,L)))))

This definition differs from the ordinary triple-valid-def manly in the conclusion: We also ensures
conformance of the result state. So we don’t have to apply the type soundness lemma all the
time during induction. This definition is only introduced for the soundness proof of the axiomatic
semantics, in the end we will conclude to the ordinary definition.
definition

ax-valids2 :: prog ⇒ ′a triples ⇒ ′a triples ⇒ bool (‹-,-||=::-› [61 ,58 ,58] 57)
where G,A||=::ts = (∀n. (∀ t∈A. G|=n::t) −→ (∀ t∈ts. G|=n::t))

lemma triple-valid2-def2 : G|=n::{P} t� {Q} =
(∀Y s Z . P Y s Z −→ (∀Y ′ s ′. G`s −t�−n→ (Y ′,s ′)−→
(∀L. s::�(G,L) −→ (∀T C A. (normal s −→ ((|prg=G,cls=C ,lcl=L|)`t::T ∧

(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»t»A)) −→
Q Y ′ s ′ Z ∧ s ′::�(G,L)))))

apply (unfold triple-valid2-def)
apply (simp (no-asm) add: split-paired-All)
apply blast
done

lemma triple-valid2-eq [rule-format (no-asm)]:
wf-prog G ==> triple-valid2 G = triple-valid G

apply (rule ext)
apply (rule ext)
apply (rule triple.induct)
apply (simp (no-asm) add: triple-valid-def2 triple-valid2-def2)
apply (rule iffI)
apply fast
apply clarify
apply (tactic smp-tac context 3 1)

449

450

apply (case-tac normal s)
apply clarsimp
apply (elim conjE impE)
apply blast

apply (tactic smp-tac context 2 1)
apply (drule evaln-eval)
apply (drule (1) eval-type-sound [THEN conjunct1],simp, assumption+)
apply simp

apply clarsimp
done

lemma ax-valids2-eq: wf-prog G =⇒ G,A||=::ts = G,A||=ts
apply (unfold ax-valids-def ax-valids2-def)
apply (force simp add: triple-valid2-eq)
done

lemma triple-valid2-Suc [rule-format (no-asm)]: G|=Suc n::t −→ G|=n::t
apply (induct-tac t)
apply (subst triple-valid2-def2)
apply (subst triple-valid2-def2)
apply (fast intro: evaln-nonstrict-Suc)
done

lemma Methd-triple-valid2-0 : G|=0 ::{Normal P} Methd C sig−� {Q}
by (auto elim!: evaln-elim-cases simp add: triple-valid2-def2)

lemma Methd-triple-valid2-SucI :
[[G|=n::{Normal P} body G C sig−�{Q}]]
=⇒ G|=Suc n::{Normal P} Methd C sig−� {Q}

apply (simp (no-asm-use) add: triple-valid2-def2)
apply (intro strip, tactic smp-tac context 3 1 , clarify)
apply (erule wt-elim-cases, erule da-elim-cases, erule evaln-elim-cases)
apply (unfold body-def Let-def)
apply (clarsimp simp add: inj-term-simps)
apply blast
done

lemma triples-valid2-Suc:
Ball ts (triple-valid2 G (Suc n)) =⇒ Ball ts (triple-valid2 G n)

apply (fast intro: triple-valid2-Suc)
done

lemma G||=n:insert t A = (G|=n:t ∧ G||=n:A)
oops

soundness

lemma Methd-sound:
assumes recursive: G,A∪ {{P} Methd−� {Q} | ms}||=::{{P} body G−� {Q} | ms}
shows G,A||=::{{P} Methd−� {Q} | ms}

proof −
have ∀ t∈A. G|=n::t =⇒ ∀ t∈{{P} Methd−� {Q} | ms}. G|=n::t

if rec:
∧

n. ∀ t∈(A ∪ {{P} Methd−� {Q} | ms}). G|=n::t
=⇒ ∀ t∈{{P} body G−� {Q} | ms}. G|=n::t

for n
proof (induct n)

Theory AxSound 451

case 0
show ∀ t∈{{P} Methd−� {Q} | ms}. G|=0 ::t
proof −

have G|=0 ::{Normal (P C sig)} Methd C sig−� {Q C sig}
if (C ,sig) ∈ ms
for C sig
by (rule Methd-triple-valid2-0)

thus ?thesis
by (simp add: mtriples-def split-def)

qed
next

case (Suc m)
note hyp = ‹∀ t∈A. G|=m::t =⇒ ∀ t∈{{P} Methd−� {Q} | ms}. G|=m::t›
note prem = ‹∀ t∈A. G|=Suc m::t›
show ∀ t∈{{P} Methd−� {Q} | ms}. G|=Suc m::t
proof −

have G|=Suc m::{Normal (P C sig)} Methd C sig−� {Q C sig}
if m: (C ,sig) ∈ ms
for C sig

proof −
from prem have prem-m: ∀ t∈A. G|=m::t

by (rule triples-valid2-Suc)
hence ∀ t∈{{P} Methd−� {Q} | ms}. G|=m::t

by (rule hyp)
with prem-m
have ∀ t∈(A ∪ {{P} Methd−� {Q} | ms}). G|=m::t

by (simp add: ball-Un)
hence ∀ t∈{{P} body G−� {Q} | ms}. G|=m::t

by (rule rec)
with m have G|=m::{Normal (P C sig)} body G C sig−� {Q C sig}

by (auto simp add: mtriples-def split-def)
thus ?thesis

by (rule Methd-triple-valid2-SucI)
qed
thus ?thesis

by (simp add: mtriples-def split-def)
qed

qed
with recursive show ?thesis

by (unfold ax-valids2-def) blast
qed

lemma valids2-inductI : ∀ s t n Y ′ s ′. G`s−t�−n→ (Y ′,s ′) −→ t = c −→
Ball A (triple-valid2 G n) −→ (∀Y Z . P Y s Z −→
(∀L. s::�(G,L) −→
(∀T C A. (normal s −→ ((|prg=G,cls=C ,lcl=L|)`t::T) ∧

(|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»t»A) −→
Q Y ′ s ′ Z ∧ s ′::�(G, L)))) =⇒

G,A||=::{ {P} c� {Q}}
apply (simp (no-asm) add: ax-valids2-def triple-valid2-def2)
apply clarsimp
done

lemma da-good-approx-evalnE [consumes 4]:
assumes evaln: G`s0 −t�−n→ (v, s1)

and wt: (|prg=G,cls=C ,lcl=L|)`t::T
and da: (|prg=G,cls=C ,lcl=L|)` dom (locals (store s0)) »t» A
and wf : wf-prog G

452

and elim: [[normal s1 =⇒ nrm A ⊆ dom (locals (store s1));∧
l. [[abrupt s1 = Some (Jump (Break l)); normal s0]]
=⇒ brk A l ⊆ dom (locals (store s1));

[[abrupt s1 = Some (Jump Ret);normal s0]]
=⇒Result ∈ dom (locals (store s1))
]] =⇒ P

shows P
proof −

from evaln have G`s0 −t�→ (v, s1)
by (rule evaln-eval)

from this wt da wf elim show P
by (rule da-good-approxE ′) iprover+

qed

lemma validI :
assumes I :

∧
n s0 L accC T C v s1 Y Z .

[[∀ t∈A. G|=n::t; s0 ::�(G,L);
normal s0 =⇒ (|prg=G,cls=accC ,lcl=L|)`t::T ;
normal s0 =⇒ (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»t»C ;
G`s0 −t�−n→ (v,s1); P Y s0 Z]] =⇒ Q v s1 Z ∧ s1 ::�(G,L)

shows G,A||=::{ {P} t� {Q} }
apply (simp add: ax-valids2-def triple-valid2-def2)
apply (intro allI impI)
apply (case-tac normal s)
apply clarsimp
apply (rule I ,(assumption|simp)+)

apply (rule I ,auto)
done

declare [[simproc add: wt-expr wt-var wt-exprs wt-stmt]]

lemma valid-stmtI :
assumes I :

∧
n s0 L accC C s1 Y Z .

[[∀ t∈A. G|=n::t; s0 ::�(G,L);
normal s0=⇒ (|prg=G,cls=accC ,lcl=L|)`c::

√
;

normal s0=⇒(|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»〈c〉s»C ;
G`s0 −c−n→ s1 ; P Y s0 Z]] =⇒ Q ♦ s1 Z ∧ s1 ::�(G,L)

shows G,A||=::{ {P} 〈c〉s� {Q} }
apply (simp add: ax-valids2-def triple-valid2-def2)
apply (intro allI impI)
apply (case-tac normal s)
apply clarsimp
apply (rule I ,(assumption|simp)+)

apply (rule I ,auto)
done

lemma valid-stmt-NormalI :
assumes I :

∧
n s0 L accC C s1 Y Z .

[[∀ t∈A. G|=n::t; s0 ::�(G,L); normal s0 ; (|prg=G,cls=accC ,lcl=L|)`c::
√
;

(|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»〈c〉s»C ;
G`s0 −c−n→ s1 ; (Normal P) Y s0 Z]] =⇒ Q ♦ s1 Z ∧ s1 ::�(G,L)

shows G,A||=::{ {Normal P} 〈c〉s� {Q} }
apply (simp add: ax-valids2-def triple-valid2-def2)
apply (intro allI impI)
apply (elim exE conjE)
apply (rule I)

Theory AxSound 453

by auto

lemma valid-var-NormalI :
assumes I :

∧
n s0 L accC T C vf s1 Y Z .

[[∀ t∈A. G|=n::t; s0 ::�(G,L); normal s0 ;
(|prg=G,cls=accC ,lcl=L|)`t::=T ;
(|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»〈t〉v»C ;
G`s0 −t=�vf−n→ s1 ; (Normal P) Y s0 Z]]
=⇒ Q (In2 vf) s1 Z ∧ s1 ::�(G,L)

shows G,A||=::{ {Normal P} 〈t〉v� {Q} }
apply (simp add: ax-valids2-def triple-valid2-def2)
apply (intro allI impI)
apply (elim exE conjE)
apply simp
apply (rule I)
by auto

lemma valid-expr-NormalI :
assumes I :

∧
n s0 L accC T C v s1 Y Z .

[[∀ t∈A. G|=n::t; s0 ::�(G,L); normal s0 ;
(|prg=G,cls=accC ,lcl=L|)`t::−T ;
(|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»〈t〉e»C ;
G`s0 −t−�v−n→ s1 ; (Normal P) Y s0 Z]]
=⇒ Q (In1 v) s1 Z ∧ s1 ::�(G,L)

shows G,A||=::{ {Normal P} 〈t〉e� {Q} }
apply (simp add: ax-valids2-def triple-valid2-def2)
apply (intro allI impI)
apply (elim exE conjE)
apply simp
apply (rule I)
by auto

lemma valid-expr-list-NormalI :
assumes I :

∧
n s0 L accC T C vs s1 Y Z .

[[∀ t∈A. G|=n::t; s0 ::�(G,L); normal s0 ;
(|prg=G,cls=accC ,lcl=L|)`t:: .=T ;
(|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»〈t〉l»C ;
G`s0 −t .=�vs−n→ s1 ; (Normal P) Y s0 Z]]
=⇒ Q (In3 vs) s1 Z ∧ s1 ::�(G,L)

shows G,A||=::{ {Normal P} 〈t〉l� {Q} }
apply (simp add: ax-valids2-def triple-valid2-def2)
apply (intro allI impI)
apply (elim exE conjE)
apply simp
apply (rule I)
by auto

lemma validE [consumes 5]:
assumes valid: G,A||=::{ {P} t� {Q} }
and P: P Y s0 Z
and valid-A: ∀ t∈A. G|=n::t
and conf : s0 ::�(G,L)
and eval: G`s0 −t�−n→ (v,s1)
and wt: normal s0 =⇒ (|prg=G,cls=accC ,lcl=L|)`t::T
and da: normal s0 =⇒ (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»t»C
and elim: [[Q v s1 Z ; s1 ::�(G,L)]] =⇒ concl

shows concl
using assms
by (simp add: ax-valids2-def triple-valid2-def2) fast

454

lemma all-empty: (∀ x. P) = P
by simp

corollary evaln-type-sound:
assumes evaln: G`s0 −t�−n→ (v,s1) and

wt: (|prg=G,cls=accC ,lcl=L|)`t::T and
da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0)) »t» A and

conf-s0 : s0 ::�(G,L) and
wf : wf-prog G

shows s1 ::�(G,L) ∧ (normal s1 −→ G,L,store s1`t�v::�T) ∧
(error-free s0 = error-free s1)

proof −
from evaln have G`s0 −t�→ (v,s1)

by (rule evaln-eval)
from this wt da wf conf-s0 show ?thesis

by (rule eval-type-sound)
qed

corollary dom-locals-evaln-mono-elim [consumes 1]:
assumes
evaln: G` s0 −t�−n→ (v,s1) and

hyps: [[dom (locals (store s0)) ⊆ dom (locals (store s1));∧
vv s val. [[v=In2 vv; normal s1]]

=⇒ dom (locals (store s))
⊆ dom (locals (store ((snd vv) val s)))]] =⇒ P

shows P
proof −

from evaln have G` s0 −t�→ (v,s1) by (rule evaln-eval)
from this hyps show ?thesis

by (rule dom-locals-eval-mono-elim) iprover+
qed

lemma evaln-no-abrupt:∧
s s ′. [[G`s −t�−n→ (w,s ′); normal s ′]] =⇒ normal s

by (erule evaln-cases,auto)

declare inj-term-simps [simp]
lemma ax-sound2 :

assumes wf : wf-prog G
and deriv: G,A|`ts

shows G,A||=::ts
using deriv
proof (induct)

case (empty A)
show ?case

by (simp add: ax-valids2-def triple-valid2-def2)
next

case (insert A t ts)
note valid-t = ‹G,A||=::{t}›
moreover
note valid-ts = ‹G,A||=::ts›
have ∀ t ′∈insert t ts. G|=n::t ′

if valid-A: ∀ t∈A. G|=n::t
for n

proof −

Theory AxSound 455

have G|=n::t
using valid-A valid-t by (simp add: ax-valids2-def)

moreover
have ∀ t∈ts. G|=n::t

using valid-A valid-ts by (unfold ax-valids2-def) blast
ultimately show ∀ t ′∈insert t ts. G|=n::t ′

by simp
qed
thus ?case

by (unfold ax-valids2-def) blast
next

case (asm ts A)
from ‹ts ⊆ A›
show G,A||=::ts

by (auto simp add: ax-valids2-def triple-valid2-def)
next

case (weaken A ts ′ ts)
note ‹G,A||=::ts ′›
moreover note ‹ts ⊆ ts ′›
ultimately show G,A||=::ts

by (unfold ax-valids2-def triple-valid2-def) blast
next

case (conseq P A t Q)
note con = ‹∀Y s Z . P Y s Z −→

(∃P ′ Q ′.
(G,A`{P ′} t� {Q ′} ∧ G,A||=::{ {P ′} t� {Q ′} }) ∧
(∀Y ′ s ′. (∀Y Z ′. P ′ Y s Z ′ −→ Q ′ Y ′ s ′ Z ′) −→ Q Y ′ s ′ Z))›

show G,A||=::{ {P} t� {Q} }
proof (rule validI)

fix n s0 L accC T C v s1 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf : s0 ::�(G,L)
assume wt: normal s0 =⇒ (|prg=G,cls=accC ,lcl=L|)`t::T
assume da: normal s0

=⇒ (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0)) »t» C
assume eval: G`s0 −t�−n→ (v, s1)
assume P: P Y s0 Z
show Q v s1 Z ∧ s1 ::�(G, L)
proof −

from valid-A conf wt da eval P con
have Q v s1 Z

apply (simp add: ax-valids2-def triple-valid2-def2)
apply (tactic smp-tac context 3 1)
apply clarify
apply (tactic smp-tac context 1 1)
apply (erule allE ,erule allE , erule mp)
apply (intro strip)
apply (tactic smp-tac context 3 1)
apply (tactic smp-tac context 2 1)
apply (tactic smp-tac context 1 1)
by blast

moreover have s1 ::�(G, L)
proof (cases normal s0)

case True
from eval wt [OF True] da [OF True] conf wf
show ?thesis

by (rule evaln-type-sound [elim-format]) simp
next

case False

456

with eval have s1=s0
by auto

with conf show ?thesis by simp
qed
ultimately show ?thesis ..

qed
qed

next
case (hazard A P t Q)
show G,A||=::{ {P ∧. Not ◦ type-ok G t} t� {Q} }

by (simp add: ax-valids2-def triple-valid2-def2 type-ok-def) fast
next

case (Abrupt A P t)
show G,A||=::{ {P←undefined3 t ∧. Not ◦ normal} t� {P} }
proof (rule validI)

fix n s0 L accC T C v s1 Y Z
assume conf-s0 : s0 ::�(G, L)
assume eval: G`s0 −t�−n→ (v, s1)
assume (P←undefined3 t ∧. Not ◦ normal) Y s0 Z
then obtain P: P (undefined3 t) s0 Z and abrupt-s0 : ¬ normal s0

by simp
from eval abrupt-s0 obtain s1=s0 and v=undefined3 t

by auto
with P conf-s0
show P v s1 Z ∧ s1 ::�(G, L)

by simp
qed

next
case (LVar A P vn)
show G,A||=::{ {Normal (λs.. P←In2 (lvar vn s))} LVar vn=� {P} }
proof (rule valid-var-NormalI)

fix n s0 L accC T C vf s1 Y Z
assume conf-s0 : s0 ::�(G, L)
assume normal-s0 : normal s0
assume wt: (|prg = G, cls = accC , lcl = L|)`LVar vn::=T
assume da: (|prg=G,cls=accC ,lcl=L|)` dom (locals (store s0)) »〈LVar vn〉v» C
assume eval: G`s0 −LVar vn=�vf−n→ s1
assume P: (Normal (λs.. P←In2 (lvar vn s))) Y s0 Z
show P (In2 vf) s1 Z ∧ s1 ::�(G, L)
proof

from eval normal-s0 obtain s1=s0 vf=lvar vn (store s0)
by (fastforce elim: evaln-elim-cases)

with P show P (In2 vf) s1 Z
by simp

next
from eval wt da conf-s0 wf
show s1 ::�(G, L)

by (rule evaln-type-sound [elim-format]) simp
qed

qed
next

case (FVar A P statDeclC Q e stat fn R accC)
note valid-init = ‹G,A||=::{ {Normal P} .Init statDeclC . {Q} }›
note valid-e = ‹G,A||=::{ {Q} e−� {λVal:a:. fvar statDeclC stat fn a ..; R} }›
show G,A||=::{ {Normal P} {accC ,statDeclC ,stat}e..fn=� {R} }
proof (rule valid-var-NormalI)

fix n s0 L accC ′ T V vf s3 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)

Theory AxSound 457

assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ′,lcl=L|)`{accC ,statDeclC ,stat}e..fn::=T
assume da: (|prg=G,cls=accC ′,lcl=L|)

` dom (locals (store s0)) »〈{accC ,statDeclC ,stat}e..fn〉v» V
assume eval: G`s0 −{accC ,statDeclC ,stat}e..fn=�vf−n→ s3
assume P: (Normal P) Y s0 Z
show R bvf cv s3 Z ∧ s3 ::�(G, L)
proof −

from wt obtain statC f where
wt-e: (|prg=G, cls=accC , lcl=L|)`e::−Class statC and
accfield: accfield G accC statC fn = Some (statDeclC ,f) and
eq-accC : accC=accC ′ and
stat: stat=is-static f and
T : T=(type f)
by (cases) (auto simp add: member-is-static-simp)

from da eq-accC
have da-e: (|prg=G, cls=accC , lcl=L|)`dom (locals (store s0))»〈e〉e» V

by cases simp
from eval obtain a s1 s2 s2 ′ where

eval-init: G`s0 −Init statDeclC−n→ s1 and
eval-e: G`s1 −e−�a−n→ s2 and
fvar : (vf ,s2 ′)=fvar statDeclC stat fn a s2 and
s3 : s3 = check-field-access G accC statDeclC fn stat a s2 ′

using normal-s0 by (fastforce elim: evaln-elim-cases)
have wt-init: (|prg=G, cls=accC , lcl=L|)`(Init statDeclC)::

√

proof −
from wf wt-e
have iscls-statC : is-class G statC

by (auto dest: ty-expr-is-type type-is-class)
with wf accfield
have iscls-statDeclC : is-class G statDeclC

by (auto dest!: accfield-fields dest: fields-declC)
thus ?thesis by simp

qed
obtain I where

da-init: (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store s0)) »〈Init statDeclC 〉s» I

by (auto intro: da-Init [simplified] assigned.select-convs)
from valid-init P valid-A conf-s0 eval-init wt-init da-init
obtain Q: Q ♦ s1 Z and conf-s1 : s1 ::�(G, L)

by (rule validE)
obtain

R: R bvf cv s2 ′ Z and
conf-s2 : s2 ::�(G, L) and
conf-a: normal s2 −→ G,store s2`a::�Class statC

proof (cases normal s1)
case True
obtain V ′ where

da-e ′:
(|prg=G,cls=accC ,lcl=L|) `dom (locals (store s1))»〈e〉e» V ′

proof −
from eval-init
have (dom (locals (store s0))) ⊆ (dom (locals (store s1)))

by (rule dom-locals-evaln-mono-elim)
with da-e show thesis

by (rule da-weakenE) (rule that)
qed
with valid-e Q valid-A conf-s1 eval-e wt-e
obtain R bvf cv s2 ′ Z and s2 ::�(G, L)

458

by (rule validE) (simp add: fvar [symmetric])
moreover
from eval-e wt-e da-e ′ conf-s1 wf
have normal s2 −→ G,store s2`a::�Class statC

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

next
case False
with valid-e Q valid-A conf-s1 eval-e
obtain R bvf cv s2 ′ Z and s2 ::�(G, L)

by (cases rule: validE) (simp add: fvar [symmetric])+
moreover from False eval-e have ¬ normal s2

by auto
hence normal s2 −→ G,store s2`a::�Class statC

by auto
ultimately show ?thesis ..

qed
from accfield wt-e eval-init eval-e conf-s2 conf-a fvar stat s3 wf
have eq-s3-s2 ′: s3=s2 ′

using normal-s0 by (auto dest!: error-free-field-access evaln-eval)
moreover
from eval wt da conf-s0 wf
have s3 ::�(G, L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis using Q R by simp

qed
qed

next
case (AVar A P e1 Q e2 R)
note valid-e1 = ‹G,A||=::{ {Normal P} e1−� {Q} }›
have valid-e2 :

∧
a. G,A||=::{ {Q←In1 a} e2−� {λVal:i:. avar G i a ..; R} }

using AVar .hyps by simp
show G,A||=::{ {Normal P} e1 .[e2]=� {R} }
proof (rule valid-var-NormalI)

fix n s0 L accC T V vf s2 ′ Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`e1 .[e2]::=T
assume da: (|prg=G,cls=accC ,lcl=L|)

` dom (locals (store s0)) »〈e1 .[e2]〉v» V
assume eval: G`s0 −e1 .[e2]=�vf−n→ s2 ′

assume P: (Normal P) Y s0 Z
show R bvf cv s2 ′ Z ∧ s2 ′::�(G, L)
proof −

from wt obtain
wt-e1 : (|prg=G,cls=accC ,lcl=L|)`e1 ::−T .[] and
wt-e2 : (|prg=G,cls=accC ,lcl=L|)`e2 ::−PrimT Integer
by (rule wt-elim-cases) simp

from da obtain E1 where
da-e1 : (|prg=G,cls=accC ,lcl=L|) `dom (locals (store s0))»〈e1 〉e» E1 and
da-e2 : (|prg=G,cls=accC ,lcl=L|)` nrm E1 »〈e2 〉e» V
by (rule da-elim-cases) simp

from eval obtain s1 a i s2 where
eval-e1 : G`s0 −e1−�a−n→ s1 and
eval-e2 : G`s1 −e2−�i−n→ s2 and
avar : avar G i a s2 =(vf , s2 ′)
using normal-s0 by (fastforce elim: evaln-elim-cases)

from valid-e1 P valid-A conf-s0 eval-e1 wt-e1 da-e1

Theory AxSound 459

obtain Q: Q bace s1 Z and conf-s1 : s1 ::�(G, L)
by (rule validE)

from Q have Q ′:
∧

v. (Q←In1 a) v s1 Z
by simp

have R bvf cv s2 ′ Z
proof (cases normal s1)

case True
obtain V ′ where
(|prg=G,cls=accC ,lcl=L|) `dom (locals (store s1))»〈e2 〉e» V ′

proof −
from eval-e1 wt-e1 da-e1 wf True
have nrm E1 ⊆ dom (locals (store s1))

by (cases rule: da-good-approx-evalnE) iprover
with da-e2 show thesis

by (rule da-weakenE) (rule that)
qed
with valid-e2 Q ′ valid-A conf-s1 eval-e2 wt-e2
show ?thesis

by (rule validE) (simp add: avar)
next

case False
with valid-e2 Q ′ valid-A conf-s1 eval-e2
show ?thesis

by (cases rule: validE) (simp add: avar)+
qed
moreover
from eval wt da conf-s0 wf
have s2 ′::�(G, L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (NewC A P C Q)
note valid-init = ‹G,A||=::{ {Normal P} .Init C . {Alloc G (CInst C) Q} }›
show G,A||=::{ {Normal P} NewC C−� {Q} }
proof (rule valid-expr-NormalI)

fix n s0 L accC T E v s2 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`NewC C ::−T
assume da: (|prg=G,cls=accC ,lcl=L|)

` dom (locals (store s0)) »〈NewC C 〉e» E
assume eval: G`s0 −NewC C−�v−n→ s2
assume P: (Normal P) Y s0 Z
show Q bvce s2 Z ∧ s2 ::�(G, L)
proof −

from wt obtain is-cls-C : is-class G C
by (rule wt-elim-cases) (auto dest: is-acc-classD)

hence wt-init: (|prg=G, cls=accC , lcl=L|)`Init C ::
√

by auto
obtain I where

da-init: (|prg=G,cls=accC ,lcl=L|)` dom (locals (store s0)) »〈Init C 〉s» I
by (auto intro: da-Init [simplified] assigned.select-convs)

from eval obtain s1 a where
eval-init: G`s0 −Init C−n→ s1 and
alloc: G`s1 −halloc CInst C�a→ s2 and
v: v=Addr a

460

using normal-s0 by (fastforce elim: evaln-elim-cases)
from valid-init P valid-A conf-s0 eval-init wt-init da-init
obtain (Alloc G (CInst C) Q) ♦ s1 Z

by (rule validE)
with alloc v have Q bvce s2 Z

by simp
moreover
from eval wt da conf-s0 wf
have s2 ::�(G, L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (NewA A P T Q e R)
note valid-init = ‹G,A||=::{ {Normal P} .init-comp-ty T . {Q} }›
note valid-e = ‹G,A||=::{ {Q} e−� {λVal:i:. abupd (check-neg i) .;

Alloc G (Arr T (the-Intg i)) R}}›
show G,A||=::{ {Normal P} New T [e]−� {R} }
proof (rule valid-expr-NormalI)

fix n s0 L accC arrT E v s3 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`New T [e]::−arrT
assume da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0)) »〈New T [e]〉e» E
assume eval: G`s0 −New T [e]−�v−n→ s3
assume P: (Normal P) Y s0 Z
show R bvce s3 Z ∧ s3 ::�(G, L)
proof −

from wt obtain
wt-init: (|prg=G,cls=accC ,lcl=L|)`init-comp-ty T ::

√
and

wt-e: (|prg=G,cls=accC ,lcl=L|)`e::−PrimT Integer
by (rule wt-elim-cases) (auto intro: wt-init-comp-ty)

from da obtain
da-e:(|prg=G,cls=accC ,lcl=L|)` dom (locals (store s0)) »〈e〉e» E
by cases simp

from eval obtain s1 i s2 a where
eval-init: G`s0 −init-comp-ty T−n→ s1 and
eval-e: G`s1 −e−�i−n→ s2 and
alloc: G`abupd (check-neg i) s2 −halloc Arr T (the-Intg i)�a→ s3 and
v: v=Addr a
using normal-s0 by (fastforce elim: evaln-elim-cases)

obtain I where
da-init:
(|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0)) »〈init-comp-ty T 〉s» I

proof (cases ∃C . T = Class C)
case True
show ?thesis

by (rule that)
(use True in

‹auto intro: da-Init [simplified] assigned.select-convs
simp add: init-comp-ty-def ›)

next
case False
show ?thesis

by (rule that)
(use False in

Theory AxSound 461

‹auto intro: da-Skip [simplified] assigned.select-convs
simp add: init-comp-ty-def ›)

qed
with valid-init P valid-A conf-s0 eval-init wt-init
obtain Q: Q ♦ s1 Z and conf-s1 : s1 ::�(G, L)

by (rule validE)
obtain E ′ where
(|prg=G,cls=accC ,lcl=L|)` dom (locals (store s1)) »〈e〉e» E ′

proof −
from eval-init
have dom (locals (store s0)) ⊆ dom (locals (store s1))

by (rule dom-locals-evaln-mono-elim)
with da-e show thesis

by (rule da-weakenE) (rule that)
qed
with valid-e Q valid-A conf-s1 eval-e wt-e
have (λVal:i:. abupd (check-neg i) .;

Alloc G (Arr T (the-Intg i)) R) bice s2 Z
by (rule validE)

with alloc v have R bvce s3 Z
by simp

moreover
from eval wt da conf-s0 wf
have s3 ::�(G, L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (Cast A P e T Q)
note valid-e = ‹G,A||=::{ {Normal P} e−�

{λVal:v:. λs.. abupd (raise-if (¬ G,s`v fits T) ClassCast) .;
Q←In1 v} }›

show G,A||=::{ {Normal P} Cast T e−� {Q} }
proof (rule valid-expr-NormalI)

fix n s0 L accC castT E v s2 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`Cast T e::−castT
assume da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0)) »〈Cast T e〉e» E
assume eval: G`s0 −Cast T e−�v−n→ s2
assume P: (Normal P) Y s0 Z
show Q bvce s2 Z ∧ s2 ::�(G, L)
proof −

from wt obtain eT where
wt-e: (|prg = G, cls = accC , lcl = L|)`e::−eT
by cases simp

from da obtain
da-e: (|prg=G,cls=accC ,lcl=L|)` dom (locals (store s0)) »〈e〉e» E
by cases simp

from eval obtain s1 where
eval-e: G`s0 −e−�v−n→ s1 and
s2 : s2 = abupd (raise-if (¬ G,snd s1`v fits T) ClassCast) s1
using normal-s0 by (fastforce elim: evaln-elim-cases)

from valid-e P valid-A conf-s0 eval-e wt-e da-e
have (λVal:v:. λs.. abupd (raise-if (¬ G,s`v fits T) ClassCast) .;

Q←In1 v) bvce s1 Z

462

by (rule validE)
with s2 have Q bvce s2 Z

by simp
moreover
from eval wt da conf-s0 wf
have s2 ::�(G, L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (Inst A P e Q T)
assume valid-e: G,A||=::{ {Normal P} e−�

{λVal:v:. λs.. Q←In1 (Bool (v 6= Null ∧ G,s`v fits RefT T))} }
show G,A||=::{ {Normal P} e InstOf T−� {Q} }
proof (rule valid-expr-NormalI)

fix n s0 L accC instT E v s1 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`e InstOf T ::−instT
assume da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»〈e InstOf T 〉e» E
assume eval: G`s0 −e InstOf T−�v−n→ s1
assume P: (Normal P) Y s0 Z
show Q bvce s1 Z ∧ s1 ::�(G, L)
proof −

from wt obtain eT where
wt-e: (|prg = G, cls = accC , lcl = L|)`e::−eT
by cases simp

from da obtain
da-e: (|prg=G,cls=accC ,lcl=L|)` dom (locals (store s0)) »〈e〉e» E
by cases simp

from eval obtain a where
eval-e: G`s0 −e−�a−n→ s1 and
v: v = Bool (a 6= Null ∧ G,store s1`a fits RefT T)
using normal-s0 by (fastforce elim: evaln-elim-cases)

from valid-e P valid-A conf-s0 eval-e wt-e da-e
have (λVal:v:. λs.. Q←In1 (Bool (v 6= Null ∧ G,s`v fits RefT T)))

bace s1 Z
by (rule validE)

with v have Q bvce s1 Z
by simp

moreover
from eval wt da conf-s0 wf
have s1 ::�(G, L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (Lit A P v)
show G,A||=::{ {Normal (P←In1 v)} Lit v−� {P} }
proof (rule valid-expr-NormalI)

fix n L s0 s1 v ′ Y Z
assume conf-s0 : s0 ::�(G, L)
assume normal-s0 : normal s0
assume eval: G`s0 −Lit v−�v ′−n→ s1
assume P: (Normal (P←In1 v)) Y s0 Z
show P bv ′ce s1 Z ∧ s1 ::�(G, L)

Theory AxSound 463

proof −
from eval have s1=s0 and v ′=v

using normal-s0 by (auto elim: evaln-elim-cases)
with P conf-s0 show ?thesis by simp

qed
qed

next
case (UnOp A P e Q unop)
assume valid-e: G,A||=::{ {Normal P}e−�{λVal:v:. Q←In1 (eval-unop unop v)} }
show G,A||=::{ {Normal P} UnOp unop e−� {Q} }
proof (rule valid-expr-NormalI)

fix n s0 L accC T E v s1 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`UnOp unop e::−T
assume da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»〈UnOp unop e〉e»E
assume eval: G`s0 −UnOp unop e−�v−n→ s1
assume P: (Normal P) Y s0 Z
show Q bvce s1 Z ∧ s1 ::�(G, L)
proof −

from wt obtain eT where
wt-e: (|prg = G, cls = accC , lcl = L|)`e::−eT
by cases simp

from da obtain
da-e: (|prg=G,cls=accC ,lcl=L|)` dom (locals (store s0)) »〈e〉e» E
by cases simp

from eval obtain ve where
eval-e: G`s0 −e−�ve−n→ s1 and
v: v = eval-unop unop ve
using normal-s0 by (fastforce elim: evaln-elim-cases)

from valid-e P valid-A conf-s0 eval-e wt-e da-e
have (λVal:v:. Q←In1 (eval-unop unop v)) bvece s1 Z

by (rule validE)
with v have Q bvce s1 Z

by simp
moreover
from eval wt da conf-s0 wf
have s1 ::�(G, L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (BinOp A P e1 Q binop e2 R)
assume valid-e1 : G,A||=::{ {Normal P} e1−� {Q} }
have valid-e2 :

∧
v1 . G,A||=::{ {Q←In1 v1}

(if need-second-arg binop v1 then In1l e2 else In1r Skip)�
{λVal:v2 :. R←In1 (eval-binop binop v1 v2)} }

using BinOp.hyps by simp
show G,A||=::{ {Normal P} BinOp binop e1 e2−� {R} }
proof (rule valid-expr-NormalI)

fix n s0 L accC T E v s2 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`BinOp binop e1 e2 ::−T
assume da: (|prg=G,cls=accC ,lcl=L|)

`dom (locals (store s0)) »〈BinOp binop e1 e2 〉e» E

464

assume eval: G`s0 −BinOp binop e1 e2−�v−n→ s2
assume P: (Normal P) Y s0 Z
show R bvce s2 Z ∧ s2 ::�(G, L)
proof −

from wt obtain e1T e2T where
wt-e1 : (|prg=G,cls=accC ,lcl=L|)`e1 ::−e1T and
wt-e2 : (|prg=G,cls=accC ,lcl=L|)`e2 ::−e2T and
wt-binop: wt-binop G binop e1T e2T
by cases simp

have wt-Skip: (|prg = G, cls = accC , lcl = L|)`Skip::
√

by simp

from da obtain E1 where
da-e1 : (|prg=G,cls=accC ,lcl=L|) ` dom (locals (store s0)) »〈e1 〉e» E1
by cases simp+

from eval obtain v1 s1 v2 where
eval-e1 : G`s0 −e1−�v1−n→ s1 and
eval-e2 : G`s1 −(if need-second-arg binop v1 then 〈e2 〉e else 〈Skip〉s)

�−n→ (bv2 ce, s2) and
v: v=eval-binop binop v1 v2
using normal-s0 by (fastforce elim: evaln-elim-cases)

from valid-e1 P valid-A conf-s0 eval-e1 wt-e1 da-e1
obtain Q: Q bv1 ce s1 Z and conf-s1 : s1 ::�(G,L)

by (rule validE)
from Q have Q ′:

∧
v. (Q←In1 v1) v s1 Z

by simp
have (λVal:v2 :. R←In1 (eval-binop binop v1 v2)) bv2 ce s2 Z
proof (cases normal s1)

case True
from eval-e1 wt-e1 da-e1 conf-s0 wf
have conf-v1 : G,store s1`v1 ::�e1T

by (rule evaln-type-sound [elim-format]) (use True in simp)
from eval-e1
have G`s0 −e1−�v1→ s1

by (rule evaln-eval)
from da wt-e1 wt-e2 wt-binop conf-s0 True this conf-v1 wf
obtain E2 where

da-e2 : (|prg=G,cls=accC ,lcl=L|)` dom (locals (store s1))
»(if need-second-arg binop v1 then 〈e2 〉e else 〈Skip〉s)» E2

by (rule da-e2-BinOp [elim-format]) iprover
from wt-e2 wt-Skip obtain T2

where (|prg=G,cls=accC ,lcl=L|)
`(if need-second-arg binop v1 then 〈e2 〉e else 〈Skip〉s)::T2

by (cases need-second-arg binop v1) auto
note ve=validE [OF valid-e2 ,OF Q ′ valid-A conf-s1 eval-e2 this da-e2]

thus ?thesis
by (rule ve)

next
case False
note ve=validE [OF valid-e2 ,OF Q ′ valid-A conf-s1 eval-e2]
with False show ?thesis

by iprover
qed
with v have R bvce s2 Z

by simp
moreover
from eval wt da conf-s0 wf
have s2 ::�(G, L)

Theory AxSound 465

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (Super A P)
show G,A||=::{ {Normal (λs.. P←In1 (val-this s))} Super−� {P} }
proof (rule valid-expr-NormalI)

fix n L s0 s1 v Y Z
assume conf-s0 : s0 ::�(G, L)
assume normal-s0 : normal s0
assume eval: G`s0 −Super−�v−n→ s1
assume P: (Normal (λs.. P←In1 (val-this s))) Y s0 Z
show P bvce s1 Z ∧ s1 ::�(G, L)
proof −

from eval have s1=s0 and v=val-this (store s0)
using normal-s0 by (auto elim: evaln-elim-cases)

with P conf-s0 show ?thesis by simp
qed

qed
next

case (Acc A P var Q)
note valid-var = ‹G,A||=::{ {Normal P} var=� {λVar :(v, f):. Q←In1 v} }›
show G,A||=::{ {Normal P} Acc var−� {Q} }
proof (rule valid-expr-NormalI)

fix n s0 L accC T E v s1 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`Acc var ::−T
assume da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»〈Acc var〉e»E
assume eval: G`s0 −Acc var−�v−n→ s1
assume P: (Normal P) Y s0 Z
show Q bvce s1 Z ∧ s1 ::�(G, L)
proof −

from wt obtain
wt-var : (|prg=G,cls=accC ,lcl=L|)`var ::=T
by cases simp

from da obtain V where
da-var : (|prg=G,cls=accC ,lcl=L|) ` dom (locals (store s0)) »〈var〉v» V
by (cases ∃ n. var=LVar n) (use da.LVar in ‹auto elim!: da-elim-cases›)

from eval obtain upd where
eval-var : G`s0 −var=�(v, upd)−n→ s1
using normal-s0 by (fastforce elim: evaln-elim-cases)

from valid-var P valid-A conf-s0 eval-var wt-var da-var
have (λVar :(v, f):. Q←In1 v) b(v, upd)cv s1 Z

by (rule validE)
then have Q bvce s1 Z

by simp
moreover
from eval wt da conf-s0 wf
have s1 ::�(G, L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (Ass A P var Q e R)
note valid-var = ‹G,A||=::{ {Normal P} var=� {Q} }›

466

have valid-e:
∧

vf .
G,A||=::{ {Q←In2 vf } e−� {λVal:v:. assign (snd vf) v .; R} }

using Ass.hyps by simp
show G,A||=::{ {Normal P} var :=e−� {R} }
proof (rule valid-expr-NormalI)

fix n s0 L accC T E v s3 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`var :=e::−T
assume da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»〈var :=e〉e»E
assume eval: G`s0 −var :=e−�v−n→ s3
assume P: (Normal P) Y s0 Z
show R bvce s3 Z ∧ s3 ::�(G, L)
proof −

from wt obtain varT where
wt-var : (|prg=G,cls=accC ,lcl=L|)`var ::=varT and
wt-e: (|prg=G,cls=accC ,lcl=L|)`e::−T
by cases simp

from eval obtain w upd s1 s2 where
eval-var : G`s0 −var=�(w, upd)−n→ s1 and
eval-e: G`s1 −e−�v−n→ s2 and
s3 : s3=assign upd v s2
using normal-s0 by (auto elim: evaln-elim-cases)

have R bvce s3 Z
proof (cases ∃ vn. var = LVar vn)

case False
with da obtain V where

da-var : (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store s0)) »〈var〉v» V and

da-e: (|prg=G,cls=accC ,lcl=L|) ` nrm V »〈e〉e» E
by cases simp+

from valid-var P valid-A conf-s0 eval-var wt-var da-var
obtain Q: Q b(w,upd)cv s1 Z and conf-s1 : s1 ::�(G,L)

by (rule validE)
hence Q ′:

∧
v. (Q←In2 (w,upd)) v s1 Z

by simp
have (λVal:v:. assign (snd (w,upd)) v .; R) bvce s2 Z
proof (cases normal s1)

case True
obtain E ′ where

da-e ′: (|prg=G,cls=accC ,lcl=L|)` dom (locals (store s1)) »〈e〉e» E ′

proof −
from eval-var wt-var da-var wf True
have nrm V ⊆ dom (locals (store s1))

by (cases rule: da-good-approx-evalnE) iprover
with da-e show thesis

by (rule da-weakenE) (rule that)
qed
note ve=validE [OF valid-e,OF Q ′ valid-A conf-s1 eval-e wt-e da-e ′]
show ?thesis

by (rule ve)
next

case False
note ve=validE [OF valid-e,OF Q ′ valid-A conf-s1 eval-e]
with False show ?thesis

by iprover
qed
with s3 show R bvce s3 Z

Theory AxSound 467

by simp
next

case True
then obtain vn where

vn: var = LVar vn
by auto

with da obtain E where
da-e: (|prg=G,cls=accC ,lcl=L|) ` dom (locals (store s0)) »〈e〉e» E

by cases simp+
from da.LVar vn obtain V where

da-var : (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store s0)) »〈var〉v» V

by auto
from valid-var P valid-A conf-s0 eval-var wt-var da-var
obtain Q: Q b(w,upd)cv s1 Z and conf-s1 : s1 ::�(G,L)

by (rule validE)
hence Q ′:

∧
v. (Q←In2 (w,upd)) v s1 Z

by simp
have (λVal:v:. assign (snd (w,upd)) v .; R) bvce s2 Z
proof (cases normal s1)

case True
obtain E ′ where

da-e ′: (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store s1)) »〈e〉e» E ′

proof −
from eval-var
have dom (locals (store s0)) ⊆ dom (locals (store (s1)))

by (rule dom-locals-evaln-mono-elim)
with da-e show thesis

by (rule da-weakenE) (rule that)
qed
note ve=validE [OF valid-e,OF Q ′ valid-A conf-s1 eval-e wt-e da-e ′]
show ?thesis

by (rule ve)
next

case False
note ve=validE [OF valid-e,OF Q ′ valid-A conf-s1 eval-e]
with False show ?thesis

by iprover
qed
with s3 show R bvce s3 Z

by simp
qed
moreover
from eval wt da conf-s0 wf
have s3 ::�(G, L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (Cond A P e0 P ′ e1 e2 Q)
note valid-e0 = ‹G,A||=::{ {Normal P} e0−� {P ′} }›
have valid-then-else:

∧
b. G,A||=::{ {P ′←=b} (if b then e1 else e2)−� {Q} }

using Cond.hyps by simp
show G,A||=::{ {Normal P} e0 ? e1 : e2−� {Q} }
proof (rule valid-expr-NormalI)

fix n s0 L accC T E v s2 Y Z
assume valid-A: ∀ t∈A. G|=n::t

468

assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`e0 ? e1 : e2 ::−T
assume da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»〈e0 ? e1 :e2 〉e»E
assume eval: G`s0 −e0 ? e1 : e2−�v−n→ s2
assume P: (Normal P) Y s0 Z
show Q bvce s2 Z ∧ s2 ::�(G, L)
proof −

from wt obtain T1 T2 where
wt-e0 : (|prg=G,cls=accC ,lcl=L|)`e0 ::−PrimT Boolean and
wt-e1 : (|prg=G,cls=accC ,lcl=L|)`e1 ::−T1 and
wt-e2 : (|prg=G,cls=accC ,lcl=L|)`e2 ::−T2
by cases simp

from da obtain E0 E1 E2 where
da-e0 : (|prg=G,cls=accC ,lcl=L|)` dom (locals (store s0)) »〈e0 〉e» E0 and
da-e1 : (|prg=G,cls=accC ,lcl=L|)

`(dom (locals (store s0)) ∪ assigns-if True e0)»〈e1 〉e» E1 and
da-e2 : (|prg=G,cls=accC ,lcl=L|)

`(dom (locals (store s0)) ∪ assigns-if False e0)»〈e2 〉e» E2
by cases simp+

from eval obtain b s1 where
eval-e0 : G`s0 −e0−�b−n→ s1 and
eval-then-else: G`s1 −(if the-Bool b then e1 else e2)−�v−n→ s2
using normal-s0 by (fastforce elim: evaln-elim-cases)

from valid-e0 P valid-A conf-s0 eval-e0 wt-e0 da-e0
obtain P ′ bbce s1 Z and conf-s1 : s1 ::�(G,L)

by (rule validE)
hence P ′:

∧
v. (P ′←=(the-Bool b)) v s1 Z

by (cases normal s1) auto
have Q bvce s2 Z
proof (cases normal s1)

case True
note normal-s1=this
from wt-e1 wt-e2 obtain T ′ where

wt-then-else:
(|prg=G,cls=accC ,lcl=L|)`(if the-Bool b then e1 else e2)::−T ′

by (cases the-Bool b) simp+
have s0-s1 : dom (locals (store s0))

∪ assigns-if (the-Bool b) e0 ⊆ dom (locals (store s1))
proof −

from eval-e0
have eval-e0 ′: G`s0 −e0−�b→ s1

by (rule evaln-eval)
hence

dom (locals (store s0)) ⊆ dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)

moreover
from eval-e0 ′ True wt-e0
have assigns-if (the-Bool b) e0 ⊆ dom (locals (store s1))

by (rule assigns-if-good-approx ′)
ultimately show ?thesis by (rule Un-least)

qed
obtain E ′ where

da-then-else:
(|prg=G,cls=accC ,lcl=L|)
`dom (locals (store s1))»〈if the-Bool b then e1 else e2 〉e» E ′

proof (cases the-Bool b)
case True
with that da-e1 s0-s1 show ?thesis

Theory AxSound 469

by simp (erule da-weakenE ,auto)
next

case False
with that da-e2 s0-s1 show ?thesis

by simp (erule da-weakenE ,auto)
qed
with valid-then-else P ′ valid-A conf-s1 eval-then-else wt-then-else
show ?thesis

by (rule validE)
next

case False
with valid-then-else P ′ valid-A conf-s1 eval-then-else
show ?thesis

by (cases rule: validE) iprover+
qed
moreover
from eval wt da conf-s0 wf
have s2 ::�(G, L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (Call A P e Q args R mode statT mn pTs ′ S accC ′)
note valid-e = ‹G,A||=::{ {Normal P} e−� {Q} }›
have valid-args:

∧
a. G,A||=::{ {Q←In1 a} args .

=� {R a} }
using Call.hyps by simp

have valid-methd:
∧

a vs invC declC l.
G,A||=::{ {R a←In3 vs ∧.

(λs. declC =
invocation-declclass G mode (store s) a statT
(|name = mn, parTs = pTs ′|) ∧

invC = invocation-class mode (store s) a statT ∧
l = locals (store s)) ;.

init-lvars G declC (|name = mn, parTs = pTs ′|) mode a vs ∧.
(λs. normal s −→ G`mode→invC�statT)}

Methd declC (|name=mn,parTs=pTs ′|)−� {set-lvars l .; S} }
using Call.hyps by simp

show G,A||=::{ {Normal P} {accC ′,statT ,mode}e·mn({pTs ′}args)−� {S} }
proof (rule valid-expr-NormalI)

fix n s0 L accC T E v s5 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`{accC ′,statT ,mode}e·mn({pTs ′}args)::−T
assume da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))

»〈{accC ′,statT ,mode}e·mn({pTs ′}args)〉e» E
assume eval: G`s0 −{accC ′,statT ,mode}e·mn({pTs ′}args)−�v−n→ s5
assume P: (Normal P) Y s0 Z
show S bvce s5 Z ∧ s5 ::�(G, L)
proof −

from wt obtain pTs statDeclT statM where
wt-e: (|prg=G,cls=accC ,lcl=L|)`e::−RefT statT and

wt-args: (|prg=G,cls=accC ,lcl=L|)`args:: .=pTs and
statM : max-spec G accC statT (|name=mn,parTs=pTs|)

= {((statDeclT ,statM),pTs ′)} and
mode: mode = invmode statM e and

T : T =(resTy statM) and
eq-accC-accC ′: accC=accC ′

470

by cases fastforce+
from da obtain C where

da-e: (|prg=G,cls=accC ,lcl=L|)` (dom (locals (store s0)))»〈e〉e» C and
da-args: (|prg=G,cls=accC ,lcl=L|)` nrm C »〈args〉l» E
by cases simp

from eval eq-accC-accC ′ obtain a s1 vs s2 s3 s3 ′ s4 invDeclC where
evaln-e: G`s0 −e−�a−n→ s1 and
evaln-args: G`s1 −args .

=�vs−n→ s2 and
invDeclC : invDeclC = invocation-declclass

G mode (store s2) a statT (|name=mn,parTs=pTs ′|) and
s3 : s3 = init-lvars G invDeclC (|name=mn,parTs=pTs ′|) mode a vs s2 and
check: s3 ′ = check-method-access G

accC ′ statT mode (|name = mn, parTs = pTs ′|) a s3 and
evaln-methd:

G`s3 ′ −Methd invDeclC (|name=mn,parTs=pTs ′|)−�v−n→ s4 and
s5 : s5=(set-lvars (locals (store s2))) s4
using normal-s0 by (auto elim: evaln-elim-cases)

from evaln-e
have eval-e: G`s0 −e−�a→ s1

by (rule evaln-eval)

from eval-e - wt-e wf
have s1-no-return: abrupt s1 6= Some (Jump Ret)

by (rule eval-expression-no-jump
[where ?Env=(|prg=G,cls=accC ,lcl=L|),simplified])

(use normal-s0 in auto)

from valid-e P valid-A conf-s0 evaln-e wt-e da-e
obtain Q bace s1 Z and conf-s1 : s1 ::�(G,L)

by (rule validE)
hence Q:

∧
v. (Q←In1 a) v s1 Z

by simp
obtain

R: (R a) bvscl s2 Z and
conf-s2 : s2 ::�(G,L) and
s2-no-return: abrupt s2 6= Some (Jump Ret)

proof (cases normal s1)
case True
obtain E ′ where

da-args ′:
(|prg=G,cls=accC ,lcl=L|)` dom (locals (store s1)) »〈args〉l» E ′

proof −
from evaln-e wt-e da-e wf True
have nrm C ⊆ dom (locals (store s1))

by (cases rule: da-good-approx-evalnE) iprover
with da-args show thesis

by (rule da-weakenE) (rule that)
qed
with valid-args Q valid-A conf-s1 evaln-args wt-args
obtain (R a) bvscl s2 Z s2 ::�(G,L)

by (rule validE)
moreover
from evaln-args
have e: G`s1 −args .

=�vs→ s2
by (rule evaln-eval)

from this s1-no-return wt-args wf
have abrupt s2 6= Some (Jump Ret)

by (rule eval-expression-list-no-jump

Theory AxSound 471

[where ?Env=(|prg=G,cls=accC ,lcl=L|),simplified])
ultimately show ?thesis ..

next
case False
with valid-args Q valid-A conf-s1 evaln-args
obtain (R a) bvscl s2 Z s2 ::�(G,L)

by (cases rule: validE) iprover+
moreover
from False evaln-args have s2=s1

by auto
with s1-no-return have abrupt s2 6= Some (Jump Ret)

by simp
ultimately show ?thesis ..

qed

obtain invC where
invC : invC = invocation-class mode (store s2) a statT
by simp

with s3
have invC ′: invC = (invocation-class mode (store s3) a statT)

by (cases s2 ,cases mode) (auto simp add: init-lvars-def2)
obtain l where

l: l = locals (store s2)
by simp

from eval wt da conf-s0 wf
have conf-s5 : s5 ::�(G, L)

by (rule evaln-type-sound [elim-format]) simp
let PROP ?R =

∧
v.

(R a←In3 vs ∧.
(λs. invDeclC = invocation-declclass G mode (store s) a statT

(|name = mn, parTs = pTs ′|) ∧
invC = invocation-class mode (store s) a statT ∧

l = locals (store s)) ;.
init-lvars G invDeclC (|name = mn, parTs = pTs ′|) mode a vs ∧.
(λs. normal s −→ G`mode→invC�statT)

) v s3 ′ Z
have abrupt-s3-lemma: S bvce s5 Z

if abrupt-s3 : ¬ normal s3
proof −

from abrupt-s3 check have eq-s3 ′-s3 : s3 ′=s3
by (auto simp add: check-method-access-def Let-def)

with R s3 invDeclC invC l abrupt-s3
have R ′: PROP ?R

by auto
have conf-s3 ′: s3 ′::�(G, Map.empty)

proof −
from s2-no-return s3
have abrupt s3 6= Some (Jump Ret)

by (cases s2) (auto simp add: init-lvars-def2 split: if-split-asm)
moreover
obtain abr2 str2 where s2 : s2=(abr2 ,str2)

by (cases s2)
from s3 s2 conf-s2 have (abrupt s3 ,str2)::�(G, L)

by (auto simp add: init-lvars-def2 split: if-split-asm)
ultimately show ?thesis

using s3 s2 eq-s3 ′-s3
apply (simp add: init-lvars-def2)

472

apply (rule conforms-set-locals [OF - wlconf-empty])
by auto

qed
from valid-methd R ′ valid-A conf-s3 ′ evaln-methd abrupt-s3 eq-s3 ′-s3
have (set-lvars l .; S) bvce s4 Z

by (cases rule: validE) simp+
with s5 l show ?thesis

by simp
qed

have S bvce s5 Z
proof (cases normal s2)

case False
with s3 have abrupt-s3 : ¬ normal s3

by (cases s2) (simp add: init-lvars-def2)
thus ?thesis

by (rule abrupt-s3-lemma)
next

case True
note normal-s2 = this
with evaln-args
have normal-s1 : normal s1

by (rule evaln-no-abrupt)
obtain E ′ where

da-args ′:
(|prg=G,cls=accC ,lcl=L|)` dom (locals (store s1)) »〈args〉l» E ′

proof −
from evaln-e wt-e da-e wf normal-s1
have nrm C ⊆ dom (locals (store s1))

by (cases rule: da-good-approx-evalnE) iprover
with da-args show thesis

by (rule da-weakenE) (rule that)
qed
from evaln-args
have eval-args: G`s1 −args .

=�vs→ s2
by (rule evaln-eval)

from evaln-e wt-e da-e conf-s0 wf
have conf-a: G, store s1`a::�RefT statT

by (rule evaln-type-sound [elim-format]) (use normal-s1 in simp)
with normal-s1 normal-s2 eval-args
have conf-a-s2 : G, store s2`a::�RefT statT

by (auto dest: eval-gext)
from evaln-args wt-args da-args ′ conf-s1 wf
have conf-args: list-all2 (conf G (store s2)) vs pTs

by (rule evaln-type-sound [elim-format]) (use normal-s2 in simp)
from statM
obtain

statM ′: (statDeclT ,statM)∈mheads G accC statT (|name=mn,parTs=pTs ′|)
and
pTs-widen: G`pTs[�]pTs ′

by (blast dest: max-spec2mheads)
show ?thesis
proof (cases normal s3)

case False
thus ?thesis

by (rule abrupt-s3-lemma)
next

case True
note normal-s3 = this

Theory AxSound 473

with s3 have notNull: mode = IntVir −→ a 6= Null
by (cases s2) (auto simp add: init-lvars-def2)

from conf-s2 conf-a-s2 wf notNull invC
have dynT-prop: G`mode→invC�statT

by (cases s2) (auto intro: DynT-propI)

with wt-e statM ′ invC mode wf
obtain dynM where

dynM : dynlookup G statT invC (|name=mn,parTs=pTs ′|) = Some dynM and
acc-dynM : G `Methd (|name=mn,parTs=pTs ′|) dynM

in invC dyn-accessible-from accC
by (force dest!: call-access-ok)

with invC ′ check eq-accC-accC ′

have eq-s3 ′-s3 : s3 ′=s3
by (auto simp add: check-method-access-def Let-def)

with dynT-prop R s3 invDeclC invC l
have R ′: PROP ?R

by auto

from dynT-prop wf wt-e statM ′ mode invC invDeclC dynM
obtain

dynM : dynlookup G statT invC (|name=mn,parTs=pTs ′|) = Some dynM and
wf-dynM : wf-mdecl G invDeclC ((|name=mn,parTs=pTs ′|),mthd dynM) and

dynM ′: methd G invDeclC (|name=mn,parTs=pTs ′|) = Some dynM and
iscls-invDeclC : is-class G invDeclC and

invDeclC ′: invDeclC = declclass dynM and
invC-widen: G`invC�C invDeclC and

resTy-widen: G`resTy dynM�resTy statM and
is-static-eq: is-static dynM = is-static statM and
involved-classes-prop:
(if invmode statM e = IntVir

then ∀ statC . statT = ClassT statC −→ G`invC�C statC
else ((∃ statC . statT = ClassT statC ∧ G`statC�C invDeclC) ∨

(∀ statC . statT 6= ClassT statC ∧ invDeclC = Object)) ∧
statDeclT = ClassT invDeclC)

by (cases rule: DynT-mheadsE) simp
obtain L ′ where

L ′:L ′=(λ k.
(case k of

EName e
⇒ (case e of

VNam v
⇒((table-of (lcls (mbody (mthd dynM))))

(pars (mthd dynM)[7→]pTs ′)) v
| Res ⇒ Some (resTy dynM))

| This ⇒ if is-static statM
then None else Some (Class invDeclC)))

by simp
from wf-dynM [THEN wf-mdeclD1 , THEN conjunct1] normal-s2 conf-s2 wt-e

wf eval-args conf-a mode notNull wf-dynM involved-classes-prop
have conf-s3 : s3 ::�(G,L ′)

apply −

apply (drule conforms-init-lvars [of G invDeclC
(|name=mn,parTs=pTs ′|) dynM store s2 vs pTs abrupt s2
L statT invC a (statDeclT ,statM) e])

apply (rule wf)
apply (rule conf-args)

474

apply (simp add: pTs-widen)
apply (cases s2 ,simp)
apply (rule dynM ′)
apply (force dest: ty-expr-is-type)
apply (rule invC-widen)
apply (force dest: eval-gext)
apply simp
apply simp
apply (simp add: invC)
apply (simp add: invDeclC)
apply (simp add: normal-s2)
apply (cases s2 , simp add: L ′ init-lvars-def2 s3

cong add: lname.case-cong ename.case-cong)
done

with eq-s3 ′-s3 have conf-s3 ′: s3 ′::�(G,L ′) by simp
from is-static-eq wf-dynM L ′

obtain mthdT where
(|prg=G,cls=invDeclC ,lcl=L ′|)
`Body invDeclC (stmt (mbody (mthd dynM)))::−mthdT and

mthdT-widen: G`mthdT�resTy dynM
by − (drule wf-mdecl-bodyD,

auto simp add: callee-lcl-def
cong add: lname.case-cong ename.case-cong)

with dynM ′ iscls-invDeclC invDeclC ′

have
wt-methd:
(|prg=G,cls=invDeclC ,lcl=L ′|)
`(Methd invDeclC (|name = mn, parTs = pTs ′|))::−mthdT

by (auto intro: wt.Methd)
obtain M where

da-methd:
(|prg=G,cls=invDeclC ,lcl=L ′|)
` dom (locals (store s3 ′))

»〈Methd invDeclC (|name=mn,parTs=pTs ′|)〉e» M
proof −

from wf-dynM
obtain M ′ where

da-body:
(|prg=G, cls=invDeclC
,lcl=callee-lcl invDeclC (|name = mn, parTs = pTs ′|) (mthd dynM)
|) ` parameters (mthd dynM) »〈stmt (mbody (mthd dynM))〉» M ′ and

res: Result ∈ nrm M ′

by (rule wf-mdeclE) iprover
from da-body is-static-eq L ′ have
(|prg=G, cls=invDeclC ,lcl=L ′|)
` parameters (mthd dynM) »〈stmt (mbody (mthd dynM))〉» M ′

by (simp add: callee-lcl-def
cong add: lname.case-cong ename.case-cong)

moreover have parameters (mthd dynM) ⊆ dom (locals (store s3 ′))
proof −

from is-static-eq
have (invmode (mthd dynM) e) = (invmode statM e)

by (simp add: invmode-def)
moreover
have length (pars (mthd dynM)) = length vs
proof −

from normal-s2 conf-args
have length vs = length pTs

by (simp add: list-all2-iff)

Theory AxSound 475

also from pTs-widen
have . . . = length pTs ′

by (simp add: widens-def list-all2-iff)
also from wf-dynM
have . . . = length (pars (mthd dynM))

by (simp add: wf-mdecl-def wf-mhead-def)
finally show ?thesis ..

qed
moreover note s3 dynM ′ is-static-eq normal-s2 mode
ultimately
have parameters (mthd dynM) = dom (locals (store s3))

using dom-locals-init-lvars
[of mthd dynM G invDeclC (|name=mn,parTs=pTs ′|) vs e a s2]

by simp
thus ?thesis using eq-s3 ′-s3 by simp

qed
ultimately obtain M2 where

da:
(|prg=G, cls=invDeclC ,lcl=L ′|)
` dom (locals (store s3 ′)) »〈stmt (mbody (mthd dynM))〉» M2 and

M2 : nrm M ′ ⊆ nrm M2
by (rule da-weakenE)

from res M2 have Result ∈ nrm M2
by blast

moreover from wf-dynM
have jumpNestingOkS {Ret} (stmt (mbody (mthd dynM)))

by (rule wf-mdeclE)
ultimately
obtain M3 where
(|prg=G, cls=invDeclC ,lcl=L ′|) ` dom (locals (store s3 ′))

»〈Body (declclass dynM) (stmt (mbody (mthd dynM)))〉» M3
using da
by (iprover intro: da.Body assigned.select-convs)

from - this [simplified]
show thesis

by (rule da.Methd [simplified,elim-format])
(auto intro: dynM ′ that)

qed
from valid-methd R ′ valid-A conf-s3 ′ evaln-methd wt-methd da-methd
have (set-lvars l .; S) bvce s4 Z

by (cases rule: validE) iprover+
with s5 l show ?thesis

by simp
qed

qed
with conf-s5 show ?thesis by iprover

qed
qed

next
case (Methd A P Q ms)
note valid-body = ‹G,A ∪ {{P} Methd−� {Q} | ms}||=::{{P} body G−� {Q} | ms}›
show G,A||=::{{P} Methd−� {Q} | ms}

by (rule Methd-sound) (rule Methd.hyps)
next

case (Body A P D Q c R)
note valid-init = ‹G,A||=::{ {Normal P} .Init D. {Q} }›
note valid-c = ‹G,A||=::{ {Q} .c.

{λs.. abupd (absorb Ret) .; R←In1 (the (locals s Result))} }›
show G,A||=::{ {Normal P} Body D c−� {R} }

476

proof (rule valid-expr-NormalI)
fix n s0 L accC T E v s4 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`Body D c::−T
assume da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»〈Body D c〉e»E
assume eval: G`s0 −Body D c−�v−n→ s4
assume P: (Normal P) Y s0 Z
show R bvce s4 Z ∧ s4 ::�(G, L)
proof −

from wt obtain
iscls-D: is-class G D and
wt-init: (|prg=G,cls=accC ,lcl=L|)`Init D::

√
and

wt-c: (|prg=G,cls=accC ,lcl=L|)`c::
√

by cases auto
obtain I where

da-init:(|prg=G,cls=accC ,lcl=L|) ` dom (locals (store s0)) »〈Init D〉s» I
by (auto intro: da-Init [simplified] assigned.select-convs)

from da obtain C where
da-c: (|prg=G,cls=accC ,lcl=L|)` (dom (locals (store s0)))»〈c〉s» C and
jmpOk: jumpNestingOkS {Ret} c
by cases simp

from eval obtain s1 s2 s3 where
eval-init: G`s0 −Init D−n→ s1 and
eval-c: G`s1 −c−n→ s2 and
v: v = the (locals (store s2) Result) and
s3 : s3 =(if ∃ l. abrupt s2 = Some (Jump (Break l)) ∨

abrupt s2 = Some (Jump (Cont l))
then abupd (λx. Some (Error CrossMethodJump)) s2 else s2)and

s4 : s4 = abupd (absorb Ret) s3
using normal-s0 by (fastforce elim: evaln-elim-cases)

obtain C ′ where
da-c ′: (|prg=G,cls=accC ,lcl=L|)` (dom (locals (store s1)))»〈c〉s» C ′

proof −
from eval-init
have (dom (locals (store s0))) ⊆ (dom (locals (store s1)))

by (rule dom-locals-evaln-mono-elim)
with da-c show thesis by (rule da-weakenE) (rule that)

qed
from valid-init P valid-A conf-s0 eval-init wt-init da-init
obtain Q: Q ♦ s1 Z and conf-s1 : s1 ::�(G,L)

by (rule validE)
from valid-c Q valid-A conf-s1 eval-c wt-c da-c ′

have R: (λs.. abupd (absorb Ret) .; R←In1 (the (locals s Result)))
♦ s2 Z

by (rule validE)
have s3=s2
proof −

have s1-no-jmp:
∧

j. abrupt s1 6= Some (Jump j)
by (rule eval-statement-no-jump [OF - - - wt-init])
(use eval-init [THEN evaln-eval] wf normal-s0 in auto)

from eval-c [THEN evaln-eval] - wt-c wf
have

∧
j. abrupt s2 = Some (Jump j) =⇒ j=Ret

by (rule jumpNestingOk-evalE) (auto intro: jmpOk simp add: s1-no-jmp)
moreover note s3
ultimately show ?thesis

by (force split: if-split)
qed

Theory AxSound 477

with R v s4
have R bvce s4 Z

by simp
moreover
from eval wt da conf-s0 wf
have s4 ::�(G, L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (Nil A P)
show G,A||=::{ {Normal (P←b[]cl)} []

.
=� {P} }

proof (rule valid-expr-list-NormalI)
fix s0 s1 vs n L Y Z
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume eval: G`s0 −[] .=�vs−n→ s1
assume P: (Normal (P←b[]cl)) Y s0 Z
show P bvscl s1 Z ∧ s1 ::�(G, L)
proof −

from eval obtain vs=[] s1=s0
using normal-s0 by (auto elim: evaln-elim-cases)

with P conf-s0 show ?thesis
by simp

qed
qed

next
case (Cons A P e Q es R)
note valid-e = ‹G,A||=::{ {Normal P} e−� {Q} }›
have valid-es:

∧
v. G,A||=::{ {Q←bvce} es .

=� {λVals:vs:. R←b(v # vs)cl} }
using Cons.hyps by simp

show G,A||=::{ {Normal P} e # es .
=� {R} }

proof (rule valid-expr-list-NormalI)
fix n s0 L accC T E v s2 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`e # es:: .=T
assume da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0)) »〈e # es〉l» E
assume eval: G`s0 −e # es .

=�v−n→ s2
assume P: (Normal P) Y s0 Z
show R bvcl s2 Z ∧ s2 ::�(G, L)
proof −

from wt obtain eT esT where
wt-e: (|prg=G,cls=accC ,lcl=L|)`e::−eT and
wt-es: (|prg=G,cls=accC ,lcl=L|)`es:: .=esT
by cases simp

from da obtain E1 where
da-e: (|prg=G,cls=accC ,lcl=L|)` (dom (locals (store s0)))»〈e〉e» E1 and
da-es: (|prg=G,cls=accC ,lcl=L|)` nrm E1 »〈es〉l» E
by cases simp

from eval obtain s1 ve vs where
eval-e: G`s0 −e−�ve−n→ s1 and
eval-es: G`s1 −es .

=�vs−n→ s2 and
v: v=ve#vs
using normal-s0 by (fastforce elim: evaln-elim-cases)

from valid-e P valid-A conf-s0 eval-e wt-e da-e
obtain Q: Q bvece s1 Z and conf-s1 : s1 ::�(G,L)

478

by (rule validE)
from Q have Q ′:

∧
v. (Q←bvece) v s1 Z

by simp
have (λVals:vs:. R←b(ve # vs)cl) bvscl s2 Z
proof (cases normal s1)

case True
obtain E ′ where

da-es ′: (|prg=G,cls=accC ,lcl=L|)` dom (locals (store s1)) »〈es〉l» E ′

proof −
from eval-e wt-e da-e wf True
have nrm E1 ⊆ dom (locals (store s1))

by (cases rule: da-good-approx-evalnE) iprover
with da-es show thesis

by (rule da-weakenE) (rule that)
qed
from valid-es Q ′ valid-A conf-s1 eval-es wt-es da-es ′

show ?thesis
by (rule validE)

next
case False
with valid-es Q ′ valid-A conf-s1 eval-es
show ?thesis

by (cases rule: validE) iprover+
qed
with v have R bvcl s2 Z

by simp
moreover
from eval wt da conf-s0 wf
have s2 ::�(G, L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (Skip A P)
show G,A||=::{ {Normal (P←♦)} .Skip. {P} }
proof (rule valid-stmt-NormalI)

fix s0 s1 n L Y Z
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume eval: G`s0 −Skip−n→ s1
assume P: (Normal (P←♦)) Y s0 Z
show P ♦ s1 Z ∧ s1 ::�(G, L)
proof −

from eval obtain s1=s0
using normal-s0 by (fastforce elim: evaln-elim-cases)

with P conf-s0 show ?thesis
by simp

qed
qed

next
case (Expr A P e Q)
note valid-e = ‹G,A||=::{ {Normal P} e−� {Q←♦} }›
show G,A||=::{ {Normal P} .Expr e. {Q} }
proof (rule valid-stmt-NormalI)

fix n s0 L accC C s1 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0

Theory AxSound 479

assume wt: (|prg=G,cls=accC ,lcl=L|)`Expr e::
√

assume da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0)) »〈Expr e〉s» C
assume eval: G`s0 −Expr e−n→ s1
assume P: (Normal P) Y s0 Z
show Q ♦ s1 Z ∧ s1 ::�(G, L)
proof −

from wt obtain eT where
wt-e: (|prg = G, cls = accC , lcl = L|)`e::−eT
by cases simp

from da obtain E where
da-e: (|prg=G,cls=accC , lcl=L|)`dom (locals (store s0))»〈e〉e»E
by cases simp

from eval obtain v where
eval-e: G`s0 −e−�v−n→ s1
using normal-s0 by (fastforce elim: evaln-elim-cases)

from valid-e P valid-A conf-s0 eval-e wt-e da-e
obtain Q: (Q←♦) bvce s1 Z and s1 ::�(G,L)

by (rule validE)
thus ?thesis by simp

qed
qed

next
case (Lab A P c l Q)
note valid-c = ‹G,A||=::{ {Normal P} .c. {abupd (absorb l) .; Q} }›
show G,A||=::{ {Normal P} .l· c. {Q} }
proof (rule valid-stmt-NormalI)

fix n s0 L accC C s2 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`l· c::

√

assume da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0)) »〈l· c〉s» C
assume eval: G`s0 −l· c−n→ s2
assume P: (Normal P) Y s0 Z
show Q ♦ s2 Z ∧ s2 ::�(G, L)
proof −

from wt obtain
wt-c: (|prg = G, cls = accC , lcl = L|)`c::

√

by cases simp
from da obtain E where

da-c: (|prg=G,cls=accC , lcl=L|)`dom (locals (store s0))»〈c〉s»E
by cases simp

from eval obtain s1 where
eval-c: G`s0 −c−n→ s1 and
s2 : s2 = abupd (absorb l) s1
using normal-s0 by (fastforce elim: evaln-elim-cases)

from valid-c P valid-A conf-s0 eval-c wt-c da-c
obtain Q: (abupd (absorb l) .; Q) ♦ s1 Z

by (rule validE)
with s2 have Q ♦ s2 Z

by simp
moreover
from eval wt da conf-s0 wf
have s2 ::�(G, L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next

480

case (Comp A P c1 Q c2 R)
note valid-c1 = ‹G,A||=::{ {Normal P} .c1 . {Q} }›
note valid-c2 = ‹G,A||=::{ {Q} .c2 . {R} }›
show G,A||=::{ {Normal P} .c1 ;; c2 . {R} }
proof (rule valid-stmt-NormalI)

fix n s0 L accC C s2 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`(c1 ;; c2)::

√

assume da: (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s0))»〈c1 ;;c2 〉s»C
assume eval: G`s0 −c1 ;; c2−n→ s2
assume P: (Normal P) Y s0 Z
show R ♦ s2 Z ∧ s2 ::�(G,L)
proof −

from eval obtain s1 where
eval-c1 : G`s0 −c1 −n→ s1 and
eval-c2 : G`s1 −c2 −n→ s2
using normal-s0 by (fastforce elim: evaln-elim-cases)

from wt obtain
wt-c1 : (|prg = G, cls = accC , lcl = L|)`c1 ::

√
and

wt-c2 : (|prg = G, cls = accC , lcl = L|)`c2 ::
√

by cases simp
from da obtain C1 C2 where

da-c1 : (|prg=G,cls=accC ,lcl=L|)` dom (locals (store s0)) »〈c1 〉s» C1 and
da-c2 : (|prg=G,cls=accC ,lcl=L|)`nrm C1 »〈c2 〉s» C2
by cases simp

from valid-c1 P valid-A conf-s0 eval-c1 wt-c1 da-c1
obtain Q: Q ♦ s1 Z and conf-s1 : s1 ::�(G,L)

by (rule validE)
have R ♦ s2 Z
proof (cases normal s1)

case True
obtain C2 ′ where
(|prg=G,cls=accC ,lcl=L|)` dom (locals (store s1)) »〈c2 〉s» C2 ′

proof −
from eval-c1 wt-c1 da-c1 wf True
have nrm C1 ⊆ dom (locals (store s1))

by (cases rule: da-good-approx-evalnE) iprover
with da-c2 show thesis

by (rule da-weakenE) (rule that)
qed
with valid-c2 Q valid-A conf-s1 eval-c2 wt-c2
show ?thesis

by (rule validE)
next

case False
from valid-c2 Q valid-A conf-s1 eval-c2 False
show ?thesis

by (cases rule: validE) iprover+
qed
moreover
from eval wt da conf-s0 wf
have s2 ::�(G, L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next

Theory AxSound 481

case (If A P e P ′ c1 c2 Q)
note valid-e = ‹G,A||=::{ {Normal P} e−� {P ′} }›
have valid-then-else:

∧
b. G,A||=::{ {P ′←=b} .(if b then c1 else c2). {Q} }

using If .hyps by simp
show G,A||=::{ {Normal P} .If (e) c1 Else c2 . {Q} }
proof (rule valid-stmt-NormalI)

fix n s0 L accC C s2 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`If (e) c1 Else c2 ::

√

assume da: (|prg=G,cls=accC ,lcl=L|)
`dom (locals (store s0))»〈If (e) c1 Else c2 〉s»C

assume eval: G`s0 −If (e) c1 Else c2−n→ s2
assume P: (Normal P) Y s0 Z
show Q ♦ s2 Z ∧ s2 ::�(G,L)
proof −

from eval obtain b s1 where
eval-e: G`s0 −e−�b−n→ s1 and
eval-then-else: G`s1 −(if the-Bool b then c1 else c2)−n→ s2
using normal-s0 by (auto elim: evaln-elim-cases)

from wt obtain
wt-e: (|prg=G, cls=accC , lcl=L|)`e::−PrimT Boolean and
wt-then-else: (|prg=G,cls=accC ,lcl=L|)`(if the-Bool b then c1 else c2)::

√

by cases (simp split: if-split)
from da obtain E S where

da-e: (|prg=G,cls=accC ,lcl=L|)` dom (locals (store s0)) »〈e〉e» E and
da-then-else:
(|prg=G,cls=accC ,lcl=L|)`

(dom (locals (store s0)) ∪ assigns-if (the-Bool b) e)
»〈if the-Bool b then c1 else c2 〉s» S

by cases (cases the-Bool b,auto)
from valid-e P valid-A conf-s0 eval-e wt-e da-e
obtain P ′ bbce s1 Z and conf-s1 : s1 ::�(G,L)

by (rule validE)
hence P ′:

∧
v. (P ′←=the-Bool b) v s1 Z

by (cases normal s1) auto
have Q ♦ s2 Z
proof (cases normal s1)

case True
have s0-s1 : dom (locals (store s0))

∪ assigns-if (the-Bool b) e ⊆ dom (locals (store s1))
proof −

from eval-e
have eval-e ′: G`s0 −e−�b→ s1

by (rule evaln-eval)
hence

dom (locals (store s0)) ⊆ dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)

moreover
from eval-e ′ True wt-e
have assigns-if (the-Bool b) e ⊆ dom (locals (store s1))

by (rule assigns-if-good-approx ′)
ultimately show ?thesis by (rule Un-least)

qed
with da-then-else
obtain S ′ where
(|prg=G,cls=accC ,lcl=L|)
`dom (locals (store s1))»〈if the-Bool b then c1 else c2 〉s» S ′

482

by (rule da-weakenE)
with valid-then-else P ′ valid-A conf-s1 eval-then-else wt-then-else
show ?thesis

by (rule validE)
next

case False
with valid-then-else P ′ valid-A conf-s1 eval-then-else
show ?thesis

by (cases rule: validE) iprover+
qed
moreover
from eval wt da conf-s0 wf
have s2 ::�(G, L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (Loop A P e P ′ c l)
note valid-e = ‹G,A||=::{ {P} e−� {P ′} }›
note valid-c = ‹G,A||=::{ {Normal (P ′←=True)}

.c.
{abupd (absorb (Cont l)) .; P} }›

show G,A||=::{ {P} .l· While(e) c. {P ′←=False↓=♦} }
proof (rule valid-stmtI)

fix n s0 L accC C s3 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume wt: normal s0 =⇒ (|prg=G,cls=accC ,lcl=L|)`l· While(e) c::

√

assume da: normal s0 =⇒ (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store s0)) »〈l· While(e) c〉s» C

assume eval: G`s0 −l· While(e) c−n→ s3
assume P: P Y s0 Z
show (P ′←=False↓=♦) ♦ s3 Z ∧ s3 ::�(G,L)
proof −

— From the given hypothesises valid-e and valid-c we can only reach the state after unfolding the
loop once, i.e. P ♦ s2 Z, where s2 is the state after executing c. To gain validity of the further execution of
while, to finally get (P ′←=False↓=♦) ♦ s3 Z we have to get a hypothesis about the subsequent unfoldings
(the whole loop again), too. We can achieve this, by performing induction on the evaluation relation, with
all the necessary preconditions to apply valid-e and valid-c in the goal.

have generalized:∧
Y ′ T E .
[[t = 〈l· While(e) c〉s; ∀ t∈A. G|=n::t; P Y ′ s Z ; s::�(G, L);
normal s =⇒ (|prg=G,cls=accC ,lcl=L|)`t::T ;
normal s =⇒ (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s))»t»E
]]=⇒ (P ′←=False↓=♦) v s ′ Z

(is PROP ?Hyp n t s v s ′)
if G`s −t�−n→ (v, s ′)
for t s s ′ v
using that

proof (induct)
case (Loop s0 ′ e ′ b n ′ s1 ′ c ′ s2 ′ l ′ s3 ′ Y ′ T E)
note while = ‹(〈l ′· While(e ′) c ′〉s::term) = 〈l· While(e) c〉s›
hence eqs: l ′=l e ′=e c ′=c by simp-all
note valid-A = ‹∀ t∈A. G|=n ′::t›
note P = ‹P Y ′ (Norm s0 ′) Z ›
note conf-s0 ′ = ‹Norm s0 ′::�(G, L)›
have wt: (|prg=G,cls=accC ,lcl=L|)`〈l· While(e) c〉s::T

using Loop.prems eqs by simp

Theory AxSound 483

have da: (|prg=G,cls=accC ,lcl=L|)`
dom (locals (store ((Norm s0 ′)::state)))»〈l· While(e) c〉s»E

using Loop.prems eqs by simp
have evaln-e: G`Norm s0 ′ −e−�b−n ′→ s1 ′

using Loop.hyps eqs by simp
show (P ′←=False↓=♦) ♦ s3 ′ Z
proof −

from wt obtain
wt-e: (|prg=G,cls=accC ,lcl=L|)`e::−PrimT Boolean and
wt-c: (|prg=G,cls=accC ,lcl=L|)`c::

√

by cases (simp add: eqs)
from da obtain E S where

da-e: (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm s0 ′)::state))) »〈e〉e» E and

da-c: (|prg=G,cls=accC ,lcl=L|)
` (dom (locals (store ((Norm s0 ′)::state)))

∪ assigns-if True e) »〈c〉s» S
by cases (simp add: eqs)

from evaln-e
have eval-e: G`Norm s0 ′ −e−�b→ s1 ′

by (rule evaln-eval)
from valid-e P valid-A conf-s0 ′ evaln-e wt-e da-e
obtain P ′: P ′ bbce s1 ′ Z and conf-s1 ′: s1 ′::�(G,L)

by (rule validE)
show (P ′←=False↓=♦) ♦ s3 ′ Z
proof (cases normal s1 ′)

case True
note normal-s1 ′=this
show ?thesis
proof (cases the-Bool b)

case True
with P ′ normal-s1 ′ have P ′′: (Normal (P ′←=True)) bbce s1 ′ Z

by auto
from True Loop.hyps obtain

eval-c: G`s1 ′ −c−n ′→ s2 ′ and
eval-while:
G`abupd (absorb (Cont l)) s2 ′ −l· While(e) c−n ′→ s3 ′

by (simp add: eqs)
from True Loop.hyps have

hyp: PROP ?Hyp n ′ 〈l· While(e) c〉s
(abupd (absorb (Cont l ′)) s2 ′) ♦ s3 ′

apply (simp only: True if-True eqs)
apply (elim conjE)
apply (tactic smp-tac context 3 1)
apply fast
done

from eval-e
have s0 ′-s1 ′: dom (locals (store ((Norm s0 ′)::state)))

⊆ dom (locals (store s1 ′))
by (rule dom-locals-eval-mono-elim)

obtain S ′ where
da-c ′:
(|prg=G,cls=accC ,lcl=L|)`(dom (locals (store s1 ′)))»〈c〉s» S ′

proof −
note s0 ′-s1 ′

moreover
from eval-e normal-s1 ′ wt-e
have assigns-if True e ⊆ dom (locals (store s1 ′))

by (rule assigns-if-good-approx ′ [elim-format])

484

(simp add: True)
ultimately
have dom (locals (store ((Norm s0 ′)::state)))

∪ assigns-if True e ⊆ dom (locals (store s1 ′))
by (rule Un-least)

with da-c show thesis
by (rule da-weakenE) (rule that)

qed
with valid-c P ′′ valid-A conf-s1 ′ eval-c wt-c
obtain (abupd (absorb (Cont l)) .; P) ♦ s2 ′ Z and

conf-s2 ′: s2 ′::�(G,L)
by (rule validE)

hence P-s2 ′: P ♦ (abupd (absorb (Cont l)) s2 ′) Z
by simp

from conf-s2 ′

have conf-absorb: abupd (absorb (Cont l)) s2 ′ ::�(G, L)
by (cases s2 ′) (auto intro: conforms-absorb)

moreover
obtain E ′ where

da-while ′:
(|prg=G,cls=accC ,lcl=L|)`

dom (locals(store (abupd (absorb (Cont l)) s2 ′)))
»〈l· While(e) c〉s» E ′

proof −
note s0 ′-s1 ′

also
from eval-c
have G`s1 ′ −c→ s2 ′

by (rule evaln-eval)
hence dom (locals (store s1 ′)) ⊆ dom (locals (store s2 ′))

by (rule dom-locals-eval-mono-elim)
also
have . . .⊆dom (locals (store (abupd (absorb (Cont l)) s2 ′)))

by simp
finally
have dom (locals (store ((Norm s0 ′)::state))) ⊆
with da show thesis

by (rule da-weakenE) (rule that)
qed
from valid-A P-s2 ′ conf-absorb wt da-while ′

show (P ′←=False↓=♦) ♦ s3 ′ Z
using hyp by (simp add: eqs)

next
case False
with Loop.hyps obtain s3 ′=s1 ′

by simp
with P ′ False show ?thesis

by auto
qed

next
case False
note abnormal-s1 ′=this
have s3 ′=s1 ′

proof −
from False obtain abr where abr : abrupt s1 ′ = Some abr

by (cases s1 ′) auto
from eval-e - wt-e wf
have no-jmp:

∧
j. abrupt s1 ′ 6= Some (Jump j)

by (rule eval-expression-no-jump

Theory AxSound 485

[where ?Env=(|prg=G,cls=accC ,lcl=L|),simplified])
simp

show ?thesis
proof (cases the-Bool b)

case True
with Loop.hyps obtain

eval-c: G`s1 ′ −c−n ′→ s2 ′ and
eval-while:
G`abupd (absorb (Cont l)) s2 ′ −l· While(e) c−n ′→ s3 ′

by (simp add: eqs)
from eval-c abr have s2 ′=s1 ′ by auto
moreover from calculation no-jmp
have abupd (absorb (Cont l)) s2 ′=s2 ′

by (cases s1 ′) (simp add: absorb-def)
ultimately show ?thesis

using eval-while abr
by auto

next
case False
with Loop.hyps show ?thesis by simp

qed
qed
with P ′ False show ?thesis

by auto
qed

qed
next

case (Abrupt abr s t ′ n ′ Y ′ T E)
note t ′ = ‹t ′ = 〈l· While(e) c〉s›
note conf = ‹(Some abr , s)::�(G, L)›
note P = ‹P Y ′ (Some abr , s) Z ›
note valid-A = ‹∀ t∈A. G|=n ′::t›
show (P ′←=False↓=♦) (undefined3 t ′) (Some abr , s) Z
proof −

have eval-e:
G`(Some abr ,s) −〈e〉e�−n ′→ (undefined3 〈e〉e,(Some abr ,s))
by auto

from valid-e P valid-A conf eval-e
have P ′ (undefined3 〈e〉e) (Some abr ,s) Z

by (cases rule: validE [where ?P=P]) simp+
with t ′ show ?thesis

by auto
qed

qed simp-all
from eval - valid-A P conf-s0 wt da
have (P ′←=False↓=♦) ♦ s3 Z

by (rule generalized) simp-all
moreover
have s3 ::�(G, L)
proof (cases normal s0)

case True
from eval wt [OF True] da [OF True] conf-s0 wf
show ?thesis

by (rule evaln-type-sound [elim-format]) simp
next

case False
with eval have s3=s0

by auto
with conf-s0 show ?thesis

486

by simp
qed
ultimately show ?thesis ..

qed
qed

next
case (Jmp A j P)
show G,A||=::{ {Normal (abupd (λa. Some (Jump j)) .; P←♦)} .Jmp j. {P} }
proof (rule valid-stmt-NormalI)

fix n s0 L accC C s1 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`Jmp j::

√

assume da: (|prg=G,cls=accC ,lcl=L|)
`dom (locals (store s0))»〈Jmp j〉s»C

assume eval: G`s0 −Jmp j−n→ s1
assume P: (Normal (abupd (λa. Some (Jump j)) .; P←♦)) Y s0 Z
show P ♦ s1 Z ∧ s1 ::�(G,L)
proof −

from eval obtain s where
s: s0=Norm s s1=(Some (Jump j), s)
using normal-s0 by (auto elim: evaln-elim-cases)

with P have P ♦ s1 Z
by simp

moreover
from eval wt da conf-s0 wf
have s1 ::�(G,L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (Throw A P e Q)
note valid-e = ‹G,A||=::{ {Normal P} e−� {λVal:a:. abupd (throw a) .; Q←♦} }›
show G,A||=::{ {Normal P} .Throw e. {Q} }
proof (rule valid-stmt-NormalI)

fix n s0 L accC C s2 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`Throw e::

√

assume da: (|prg=G,cls=accC ,lcl=L|)
`dom (locals (store s0))»〈Throw e〉s»C

assume eval: G`s0 −Throw e−n→ s2
assume P: (Normal P) Y s0 Z
show Q ♦ s2 Z ∧ s2 ::�(G,L)
proof −

from eval obtain s1 a where
eval-e: G`s0 −e−�a−n→ s1 and
s2 : s2 = abupd (throw a) s1
using normal-s0 by (auto elim: evaln-elim-cases)

from wt obtain T where
wt-e: (|prg=G,cls=accC ,lcl=L|)`e::−T
by cases simp

from da obtain E where
da-e: (|prg=G,cls=accC ,lcl=L|)` dom (locals (store s0)) »〈e〉e» E
by cases simp

from valid-e P valid-A conf-s0 eval-e wt-e da-e

Theory AxSound 487

obtain (λVal:a:. abupd (throw a) .; Q←♦) bace s1 Z
by (rule validE)

with s2 have Q ♦ s2 Z
by simp

moreover
from eval wt da conf-s0 wf
have s2 ::�(G,L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (Try A P c1 Q C vn c2 R)
note valid-c1 = ‹G,A||=::{ {Normal P} .c1 . {SXAlloc G Q} }›
note valid-c2 = ‹G,A||=::{ {Q ∧. (λs. G,s`catch C) ;. new-xcpt-var vn}

.c2 .
{R} }›

note Q-R = ‹(Q ∧. (λs. ¬ G,s`catch C)) ⇒ R›
show G,A||=::{ {Normal P} .Try c1 Catch(C vn) c2 . {R} }
proof (rule valid-stmt-NormalI)

fix n s0 L accC E s3 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`Try c1 Catch(C vn) c2 ::

√

assume da: (|prg=G,cls=accC ,lcl=L|)
`dom (locals (store s0)) »〈Try c1 Catch(C vn) c2 〉s» E

assume eval: G`s0 −Try c1 Catch(C vn) c2−n→ s3
assume P: (Normal P) Y s0 Z
show R ♦ s3 Z ∧ s3 ::�(G,L)
proof −

from eval obtain s1 s2 where
eval-c1 : G`s0 −c1−n→ s1 and
sxalloc: G`s1 −sxalloc→ s2 and
s3 : if G,s2`catch C

then G`new-xcpt-var vn s2 −c2−n→ s3
else s3 = s2

using normal-s0 by (fastforce elim: evaln-elim-cases)
from wt obtain

wt-c1 : (|prg=G,cls=accC ,lcl=L|)`c1 ::
√

and
wt-c2 : (|prg=G,cls=accC ,lcl=L(VName vn 7→Class C)|)`c2 ::

√

by cases simp
from da obtain C1 C2 where

da-c1 : (|prg=G,cls=accC ,lcl=L|)` dom (locals (store s0)) »〈c1 〉s» C1 and
da-c2 : (|prg=G,cls=accC ,lcl=L(VName vn 7→Class C)|)

` (dom (locals (store s0)) ∪ {VName vn}) »〈c2 〉s» C2
by cases simp

from valid-c1 P valid-A conf-s0 eval-c1 wt-c1 da-c1
obtain sxQ: (SXAlloc G Q) ♦ s1 Z and conf-s1 : s1 ::�(G,L)

by (rule validE)
from sxalloc sxQ
have Q: Q ♦ s2 Z

by auto
have R ♦ s3 Z
proof (cases ∃ x. abrupt s1 = Some (Xcpt x))

case False
from sxalloc wf
have s2=s1

by (rule sxalloc-type-sound [elim-format])

488

(use False in ‹auto split: option.splits abrupt.splits›)
with False
have no-catch: ¬ G,s2`catch C

by (simp add: catch-def)
moreover
from no-catch s3
have s3=s2

by simp
ultimately show ?thesis

using Q Q-R by simp
next

case True
note exception-s1 = this
show ?thesis
proof (cases G,s2`catch C)

case False
with s3
have s3=s2

by simp
with False Q Q-R show ?thesis

by simp
next

case True
with s3 have eval-c2 : G`new-xcpt-var vn s2 −c2−n→ s3

by simp
from conf-s1 sxalloc wf
have conf-s2 : s2 ::�(G, L)

by (auto dest: sxalloc-type-sound
split: option.splits abrupt.splits)

from exception-s1 sxalloc wf
obtain a

where xcpt-s2 : abrupt s2 = Some (Xcpt (Loc a))
by (auto dest!: sxalloc-type-sound

split: option.splits abrupt.splits)
with True
have G`obj-ty (the (globs (store s2) (Heap a)))�Class C

by (cases s2) simp
with xcpt-s2 conf-s2 wf
have conf-new-xcpt: new-xcpt-var vn s2 ::�(G, L(VName vn 7→Class C))

by (auto dest: Try-lemma)
obtain C2 ′ where

da-c2 ′:
(|prg=G,cls=accC ,lcl=L(VName vn 7→Class C)|)
` (dom (locals (store (new-xcpt-var vn s2)))) »〈c2 〉s» C2 ′

proof −
have (dom (locals (store s0)) ∪ {VName vn})

⊆ dom (locals (store (new-xcpt-var vn s2)))
proof −

from eval-c1
have dom (locals (store s0))

⊆ dom (locals (store s1))
by (rule dom-locals-evaln-mono-elim)

also
from sxalloc
have . . . ⊆ dom (locals (store s2))

by (rule dom-locals-sxalloc-mono)
also
have . . . ⊆ dom (locals (store (new-xcpt-var vn s2)))

by (cases s2) (simp add: new-xcpt-var-def , blast)

Theory AxSound 489

also
have {VName vn} ⊆ . . .

by (cases s2) simp
ultimately show ?thesis

by (rule Un-least)
qed
with da-c2 show thesis

by (rule da-weakenE) (rule that)
qed
from Q eval-c2 True
have (Q ∧. (λs. G,s`catch C) ;. new-xcpt-var vn)

♦ (new-xcpt-var vn s2) Z
by auto

from valid-c2 this valid-A conf-new-xcpt eval-c2 wt-c2 da-c2 ′

show R ♦ s3 Z
by (rule validE)

qed
qed
moreover
from eval wt da conf-s0 wf
have s3 ::�(G,L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (Fin A P c1 Q c2 R)
note valid-c1 = ‹G,A||=::{ {Normal P} .c1 . {Q} }›
have valid-c2 :

∧
abr . G,A||=::{ {Q ∧. (λs. abr = fst s) ;. abupd (λx. None)}

.c2 .
{abupd (abrupt-if (abr 6= None) abr) .; R} }

using Fin.hyps by simp
show G,A||=::{ {Normal P} .c1 Finally c2 . {R} }
proof (rule valid-stmt-NormalI)

fix n s0 L accC E s3 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`c1 Finally c2 ::

√

assume da: (|prg=G,cls=accC ,lcl=L|)
`dom (locals (store s0)) »〈c1 Finally c2 〉s» E

assume eval: G`s0 −c1 Finally c2−n→ s3
assume P: (Normal P) Y s0 Z
show R ♦ s3 Z ∧ s3 ::�(G,L)
proof −

from eval obtain s1 abr1 s2 where
eval-c1 : G`s0 −c1−n→ (abr1 , s1) and
eval-c2 : G`Norm s1 −c2−n→ s2 and
s3 : s3 = (if ∃ err . abr1 = Some (Error err)

then (abr1 , s1)
else abupd (abrupt-if (abr1 6= None) abr1) s2)

using normal-s0 by (fastforce elim: evaln-elim-cases)
from wt obtain

wt-c1 : (|prg=G,cls=accC ,lcl=L|)`c1 ::
√

and
wt-c2 : (|prg=G,cls=accC ,lcl=L|)`c2 ::

√

by cases simp
from da obtain C1 C2 where

da-c1 : (|prg=G,cls=accC ,lcl=L|) ` dom (locals (store s0)) »〈c1 〉s» C1 and
da-c2 : (|prg=G,cls=accC ,lcl=L|) ` dom (locals (store s0)) »〈c2 〉s» C2

490

by cases simp
from valid-c1 P valid-A conf-s0 eval-c1 wt-c1 da-c1
obtain Q: Q ♦ (abr1 ,s1) Z and conf-s1 : (abr1 ,s1)::�(G,L)

by (rule validE)
from Q
have Q ′: (Q ∧. (λs. abr1 = fst s) ;. abupd (λx. None)) ♦ (Norm s1) Z

by auto
from eval-c1 wt-c1 da-c1 conf-s0 wf
have error-free (abr1 ,s1)

by (rule evaln-type-sound [elim-format]) (use normal-s0 in simp)
with s3 have s3 ′: s3 = abupd (abrupt-if (abr1 6= None) abr1) s2

by (simp add: error-free-def)
from conf-s1
have conf-Norm-s1 : Norm s1 ::�(G,L)

by (rule conforms-NormI)
obtain C2 ′ where

da-c2 ′: (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm s1)::state))) »〈c2 〉s» C2 ′

proof −
from eval-c1
have dom (locals (store s0)) ⊆ dom (locals (store (abr1 ,s1)))

by (rule dom-locals-evaln-mono-elim)
hence dom (locals (store s0))

⊆ dom (locals (store ((Norm s1)::state)))
by simp

with da-c2 show thesis
by (rule da-weakenE) (rule that)

qed
from valid-c2 Q ′ valid-A conf-Norm-s1 eval-c2 wt-c2 da-c2 ′

have (abupd (abrupt-if (abr1 6= None) abr1) .; R) ♦ s2 Z
by (rule validE)

with s3 ′ have R ♦ s3 Z
by simp

moreover
from eval wt da conf-s0 wf
have s3 ::�(G,L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (Done A P C)
show G,A||=::{ {Normal (P←♦ ∧. initd C)} .Init C . {P} }
proof (rule valid-stmt-NormalI)

fix n s0 L accC E s3 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`Init C ::

√

assume da: (|prg=G,cls=accC ,lcl=L|)
`dom (locals (store s0)) »〈Init C 〉s» E

assume eval: G`s0 −Init C−n→ s3
assume P: (Normal (P←♦ ∧. initd C)) Y s0 Z
show P ♦ s3 Z ∧ s3 ::�(G,L)
proof −

from P have inited: inited C (globs (store s0))
by simp

with eval have s3=s0
using normal-s0 by (auto elim: evaln-elim-cases)

Theory AxSound 491

with P conf-s0 show ?thesis
by simp

qed
qed

next
case (Init C c A P Q R)
note c = ‹the (class G C) = c›
note valid-super =

‹G,A||=::{ {Normal (P ∧. Not ◦ initd C ;. supd (init-class-obj G C))}
.(if C = Object then Skip else Init (super c)).
{Q} }›

have valid-init:∧
l. G,A||=::{ {Q ∧. (λs. l = locals (snd s)) ;. set-lvars Map.empty}

.init c.
{set-lvars l .; R} }

using Init.hyps by simp
show G,A||=::{ {Normal (P ∧. Not ◦ initd C)} .Init C . {R} }
proof (rule valid-stmt-NormalI)

fix n s0 L accC E s3 Y Z
assume valid-A: ∀ t∈A. G|=n::t
assume conf-s0 : s0 ::�(G,L)
assume normal-s0 : normal s0
assume wt: (|prg=G,cls=accC ,lcl=L|)`Init C ::

√

assume da: (|prg=G,cls=accC ,lcl=L|)
`dom (locals (store s0)) »〈Init C 〉s» E

assume eval: G`s0 −Init C−n→ s3
assume P: (Normal (P ∧. Not ◦ initd C)) Y s0 Z
show R ♦ s3 Z ∧ s3 ::�(G,L)
proof −

from P have not-inited: ¬ inited C (globs (store s0)) by simp
with eval c obtain s1 s2 where

eval-super :
G`Norm ((init-class-obj G C) (store s0))
−(if C = Object then Skip else Init (super c))−n→ s1 and

eval-init: G`(set-lvars Map.empty) s1 −init c−n→ s2 and
s3 : s3 = (set-lvars (locals (store s1))) s2
using normal-s0 by (auto elim!: evaln-elim-cases)

from wt c have
cls-C : class G C = Some c
by cases auto

from wf cls-C have
wt-super : (|prg=G,cls=accC ,lcl=L|)

`(if C = Object then Skip else Init (super c))::
√

by (cases C=Object)
(auto dest: wf-prog-cdecl wf-cdecl-supD is-acc-classD)

obtain S where
da-super :
(|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm

((init-class-obj G C) (store s0)))::state)))
»〈if C = Object then Skip else Init (super c)〉s» S

proof (cases C=Object)
case True
with da-Skip show ?thesis

using that by (auto intro: assigned.select-convs)
next

case False
show ?thesis

by (rule that) (use da-Init False in ‹auto intro: assigned.select-convs›)

492

qed
from normal-s0 conf-s0 wf cls-C not-inited
have conf-init-cls: (Norm ((init-class-obj G C) (store s0)))::�(G, L)

by (auto intro: conforms-init-class-obj)
from P
have P ′: (Normal (P ∧. Not ◦ initd C ;. supd (init-class-obj G C)))

Y (Norm ((init-class-obj G C) (store s0))) Z
by auto

from valid-super P ′ valid-A conf-init-cls eval-super wt-super da-super
obtain Q: Q ♦ s1 Z and conf-s1 : s1 ::�(G,L)

by (rule validE)

from cls-C wf have wt-init: (|prg=G, cls=C ,lcl=Map.empty|)`(init c)::
√

by (rule wf-prog-cdecl [THEN wf-cdecl-wt-init])
from cls-C wf obtain I where
(|prg=G,cls=C ,lcl=Map.empty|)` {} »〈init c〉s» I
by (rule wf-prog-cdecl [THEN wf-cdeclE ,simplified]) blast

then obtain I ′ where
da-init:
(|prg=G,cls=C ,lcl=Map.empty|)`dom (locals (store ((set-lvars Map.empty) s1)))

»〈init c〉s» I ′

by (rule da-weakenE) simp
have conf-s1-empty: (set-lvars Map.empty) s1 ::�(G, Map.empty)
proof −

from eval-super have
G`Norm ((init-class-obj G C) (store s0))
−(if C = Object then Skip else Init (super c))→ s1

by (rule evaln-eval)
from this wt-super wf
have s1-no-ret:

∧
j. abrupt s1 6= Some (Jump j)

by − (rule eval-statement-no-jump
[where ?Env=(|prg=G,cls=accC ,lcl=L|)], auto split: if-split)

with conf-s1
show ?thesis

by (cases s1) (auto intro: conforms-set-locals)
qed

obtain l where l: l = locals (store s1)
by simp

with Q
have Q ′: (Q ∧. (λs. l = locals (snd s)) ;. set-lvars Map.empty)

♦ ((set-lvars Map.empty) s1) Z
by auto

from valid-init Q ′ valid-A conf-s1-empty eval-init wt-init da-init
have (set-lvars l .; R) ♦ s2 Z

by (rule validE)
with s3 l have R ♦ s3 Z

by simp
moreover
from eval wt da conf-s0 wf
have s3 ::�(G,L)

by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..

qed
qed

next
case (InsInitV A P c v Q)

Theory AxSound 493

show G,A||=::{ {Normal P} InsInitV c v=� {Q} }
proof (rule valid-var-NormalI)

fix s0 vf n s1 L Z
assume normal s0
moreover
assume G`s0 −InsInitV c v=�vf−n→ s1
ultimately have False

by (cases s0) (simp add: evaln-InsInitV)
thus Q bvf cv s1 Z ∧ s1 ::�(G, L)..

qed
next

case (InsInitE A P c e Q)
show G,A||=::{ {Normal P} InsInitE c e−� {Q} }
proof (rule valid-expr-NormalI)

fix s0 v n s1 L Z
assume normal s0
moreover
assume G`s0 −InsInitE c e−�v−n→ s1
ultimately have False

by (cases s0) (simp add: evaln-InsInitE)
thus Q bvce s1 Z ∧ s1 ::�(G, L)..

qed
next

case (Callee A P l e Q)
show G,A||=::{ {Normal P} Callee l e−� {Q} }
proof (rule valid-expr-NormalI)

fix s0 v n s1 L Z
assume normal s0
moreover
assume G`s0 −Callee l e−�v−n→ s1
ultimately have False

by (cases s0) (simp add: evaln-Callee)
thus Q bvce s1 Z ∧ s1 ::�(G, L)..

qed
next

case (FinA A P a c Q)
show G,A||=::{ {Normal P} .FinA a c. {Q} }
proof (rule valid-stmt-NormalI)

fix s0 v n s1 L Z
assume normal s0
moreover
assume G`s0 −FinA a c−n→ s1
ultimately have False

by (cases s0) (simp add: evaln-FinA)
thus Q ♦ s1 Z ∧ s1 ::�(G, L)..

qed
qed
declare inj-term-simps [simp del]

theorem ax-sound:
wf-prog G =⇒ G,(A:: ′a triple set)|`(ts:: ′a triple set) =⇒ G,A||=ts

apply (subst ax-valids2-eq [symmetric])
apply assumption
apply (erule (1) ax-sound2)
done

lemma sound-valid2-lemma:
[[∀ v n. Ball A (triple-valid2 G n) −→ P v n; Ball A (triple-valid2 G n)]]
=⇒P v n

494

by blast

end

Chapter 24

AxCompl

1 Completeness proof for Axiomatic semantics of Java expressions and state-
ments

theory AxCompl imports AxSem begin

design issues:

• proof structured by Most General Formulas (-> Thomas Kleymann)

set of not yet initialzed classes
definition

nyinitcls :: prog ⇒ state ⇒ qtname set
where nyinitcls G s = {C . is-class G C ∧ ¬ initd C s}

lemma nyinitcls-subset-class: nyinitcls G s ⊆ {C . is-class G C}
apply (unfold nyinitcls-def)
apply fast
done

lemmas finite-nyinitcls [simp] =
finite-is-class [THEN nyinitcls-subset-class [THEN finite-subset]]

lemma card-nyinitcls-bound: card (nyinitcls G s) ≤ card {C . is-class G C}
apply (rule nyinitcls-subset-class [THEN finite-is-class [THEN card-mono]])
done

lemma nyinitcls-set-locals-cong [simp]:
nyinitcls G (x,set-locals l s) = nyinitcls G (x,s)
by (simp add: nyinitcls-def)

lemma nyinitcls-abrupt-cong [simp]: nyinitcls G (f x, y) = nyinitcls G (x, y)
by (simp add: nyinitcls-def)

lemma nyinitcls-abupd-cong [simp]: nyinitcls G (abupd f s) = nyinitcls G s
by (simp add: nyinitcls-def)

lemma card-nyinitcls-abrupt-congE [elim!]:
card (nyinitcls G (x, s)) ≤ n =⇒ card (nyinitcls G (y, s)) ≤ n
unfolding nyinitcls-def by auto

lemma nyinitcls-new-xcpt-var [simp]:
nyinitcls G (new-xcpt-var vn s) = nyinitcls G s

495

496

by (induct s) (simp-all add: nyinitcls-def)

lemma nyinitcls-init-lvars [simp]:
nyinitcls G ((init-lvars G C sig mode a ′ pvs) s) = nyinitcls G s
by (induct s) (simp add: init-lvars-def2 split: if-split)

lemma nyinitcls-emptyD: [[nyinitcls G s = {}; is-class G C]] =⇒ initd C s
unfolding nyinitcls-def by fast

lemma card-Suc-lemma:
[[card (insert a A) ≤ Suc n; a /∈A; finite A]] =⇒ card A ≤ n
by auto

lemma nyinitcls-le-SucD:
[[card (nyinitcls G (x,s)) ≤ Suc n; ¬inited C (globs s); class G C=Some y]] =⇒

card (nyinitcls G (x,init-class-obj G C s)) ≤ n
apply (subgoal-tac

nyinitcls G (x,s) = insert C (nyinitcls G (x,init-class-obj G C s)))
apply clarsimp
apply (erule-tac V=nyinitcls G (x, s) = rhs for rhs in thin-rl)
apply (rule card-Suc-lemma [OF - - finite-nyinitcls])
apply (auto dest!: not-initedD elim!:

simp add: nyinitcls-def inited-def split: if-split-asm)
done

lemma inited-gext ′: [[s≤|s ′;inited C (globs s)]] =⇒ inited C (globs s ′)
by (rule inited-gext)

lemma nyinitcls-gext: snd s≤|snd s ′ =⇒ nyinitcls G s ′ ⊆ nyinitcls G s
unfolding nyinitcls-def by (force dest!: inited-gext ′)

lemma card-nyinitcls-gext:
[[snd s≤|snd s ′; card (nyinitcls G s) ≤ n]]=⇒ card (nyinitcls G s ′) ≤ n

apply (rule le-trans)
apply (rule card-mono)
apply (rule finite-nyinitcls)
apply (erule nyinitcls-gext)
apply assumption
done

init-le

definition
init-le :: prog ⇒ nat ⇒ state ⇒ bool (‹-`init≤-› [51 ,51] 50)
where G`init≤n = (λs. card (nyinitcls G s) ≤ n)

lemma init-le-def2 [simp]: (G`init≤n) s = (card (nyinitcls G s)≤n)
apply (unfold init-le-def)
apply auto
done

lemma All-init-leD:
∀n::nat. G,(A:: ′a triple set)`{P ∧. G`init≤n} t� {Q:: ′a assn}
=⇒ G,A`{P} t� {Q}

apply (drule spec)
apply (erule conseq1)
apply clarsimp
apply (rule card-nyinitcls-bound)
done

Theory AxCompl 497

Most General Triples and Formulas

definition
remember-init-state :: state assn (‹ .=›)
where .

= ≡ λY s Z . s = Z

lemma remember-init-state-def2 [simp]: .
= Y = (=)

apply (unfold remember-init-state-def)
apply (simp (no-asm))
done

definition
MGF ::[state assn, term, prog] ⇒ state triple (‹{-} -� {-→}›[3 ,65 ,3]62)
where {P} t� {G→} = {P} t� {λY s ′ s. G`s −t�→ (Y ,s ′)}

definition
MGFn :: [nat, term, prog] ⇒ state triple (‹{=:-} -� {-→}›[3 ,65 ,3]62)
where {=:n} t� {G→} = { .= ∧. G`init≤n} t� {G→}

lemma MGF-valid: wf-prog G =⇒ G,{}|={ .=} t� {G→}
apply (unfold MGF-def)
apply (simp add: ax-valids-def triple-valid-def2)
apply (auto elim: evaln-eval)
done

lemma MGF-res-eq-lemma [simp]:
(∀Y ′ Y s. Y = Y ′ ∧ P s −→ Q s) = (∀ s. P s −→ Q s)
by auto

lemma MGFn-def2 :
G,A`{=:n} t� {G→} = G,A`{ .= ∧. G`init≤n}

t� {λY s ′ s. G`s −t�→ (Y ,s ′)}
unfolding MGFn-def MGF-def by fast

lemma MGF-MGFn-iff :
G,(A::state triple set)`{ .=} t� {G→} = (∀n. G,A`{=:n} t� {G→})
apply (simp add: MGFn-def2 MGF-def)
apply safe
apply (erule-tac [2] All-init-leD)
apply (erule conseq1)
apply clarsimp
done

lemma MGFnD:
G,(A::state triple set)`{=:n} t� {G→} =⇒
G,A`{(λY ′ s ′ s. s ′ = s ∧ P s) ∧. G`init≤n}
t� {(λY ′ s ′ s. G`s−t�→(Y ′,s ′) ∧ P s) ∧. G`init≤n}

apply (unfold init-le-def)
apply (simp (no-asm-use) add: MGFn-def2)
apply (erule conseq12)
apply clarsimp
apply (erule (1) eval-gext [THEN card-nyinitcls-gext])
done
lemmas MGFnD ′ = MGFnD [of - - - - λx. True]

To derive the most general formula, we can always assume a normal state in the precondition, since
abrupt cases can be handled uniformally by the abrupt rule.

498

lemma MGFNormalI : G,A`{Normal .
=} t� {G→} =⇒

G,(A::state triple set)`{ .=::state assn} t� {G→}
apply (unfold MGF-def)
apply (rule ax-Normal-cases)
apply (erule conseq1)
apply clarsimp
apply (rule ax-derivs.Abrupt [THEN conseq1])
apply (clarsimp simp add: Let-def)
done

lemma MGFNormalD:
G,(A::state triple set)`{ .=} t� {G→} =⇒ G,A`{Normal .

=} t� {G→}
apply (unfold MGF-def)
apply (erule conseq1)
apply clarsimp
done

Additionally to MGFNormalI, we also expand the definition of the most general formula here
lemma MGFn-NormalI :
G,(A::state triple set)`{Normal((λY ′ s ′ s. s ′=s ∧ normal s) ∧. G`init≤n)}t�
{λY s ′ s. G`s −t�→ (Y ,s ′)} =⇒ G,A`{=:n}t�{G→}

apply (simp (no-asm-use) add: MGFn-def2)
apply (rule ax-Normal-cases)
apply (erule conseq1)
apply clarsimp
apply (rule ax-derivs.Abrupt [THEN conseq1])
apply (clarsimp simp add: Let-def)
done

To derive the most general formula, we can restrict ourselves to welltyped terms, since all others
can be uniformally handled by the hazard rule.
lemma MGFn-free-wt:
(∃T L C . (|prg=G,cls=C ,lcl=L|)`t::T)
−→ G,(A::state triple set)`{=:n} t� {G→}
=⇒ G,A`{=:n} t� {G→}

apply (rule MGFn-NormalI)
apply (rule ax-free-wt)
apply (auto elim: conseq12 simp add: MGFn-def MGF-def)
done

To derive the most general formula, we can restrict ourselves to welltyped terms and assume that
the state in the precondition conforms to the environment. All type violations can be uniformally
handled by the hazard rule.
lemma MGFn-free-wt-NormalConformI :
(∀ T L C . (|prg=G,cls=C ,lcl=L|)`t::T
−→ G,(A::state triple set)
`{Normal((λY ′ s ′ s. s ′=s ∧ normal s) ∧. G`init≤n) ∧. (λ s. s::�(G, L))}
t�
{λY s ′ s. G`s −t�→ (Y ,s ′)})

=⇒ G,A`{=:n}t�{G→}
apply (rule MGFn-NormalI)
apply (rule ax-no-hazard)
apply (rule ax-escape)
apply (intro strip)
apply (simp only: type-ok-def peek-and-def)
apply (erule conjE)+
apply (erule exE ,erule exE , erule exE , erule exE ,erule conjE ,drule (1) mp,

erule conjE)

Theory AxCompl 499

apply (drule spec,drule spec, drule spec, drule (1) mp)
apply (erule conseq12)
apply blast
done

To derive the most general formula, we can restrict ourselves to welltyped terms and assume that
the state in the precondition conforms to the environment and that the term is definetly assigned
with respect to this state. All type violations can be uniformally handled by the hazard rule.
lemma MGFn-free-wt-da-NormalConformI :
(∀ T L C B. (|prg=G,cls=C ,lcl=L|)`t::T
−→ G,(A::state triple set)
`{Normal((λY ′ s ′ s. s ′=s ∧ normal s) ∧. G`init≤n) ∧. (λ s. s::�(G, L))
∧. (λ s. (|prg=G,cls=C ,lcl=L|)`dom (locals (store s))»t»B)}

t�
{λY s ′ s. G`s −t�→ (Y ,s ′)})

=⇒ G,A`{=:n}t�{G→}
apply (rule MGFn-NormalI)
apply (rule ax-no-hazard)
apply (rule ax-escape)
apply (intro strip)
apply (simp only: type-ok-def peek-and-def)
apply (erule conjE)+
apply (erule exE ,erule exE , erule exE , erule exE ,erule conjE ,drule (1) mp,

erule conjE)
apply (drule spec,drule spec, drule spec,drule spec, drule (1) mp)
apply (erule conseq12)
apply blast
done

main lemmas
lemma MGFn-Init:
assumes mgf-hyp: ∀m. Suc m≤n −→ (∀ t. G,A`{=:m} t� {G→})
shows G,(A::state triple set)`{=:n} 〈Init C 〉s� {G→}

proof (rule MGFn-free-wt [rule-format],elim exE ,rule MGFn-NormalI)
fix T L accC
assume (|prg=G, cls=accC , lcl= L|)`〈Init C 〉s::T
hence is-cls: is-class G C

by cases simp
show G,A`{Normal ((λY ′ s ′ s. s ′ = s ∧ normal s) ∧. G`init≤n)}

.Init C .
{λY s ′ s. G`s −〈Init C 〉s�→ (Y , s ′)}

(is G,A`{Normal ?P} .Init C . {?R})
proof (rule ax-cases [where ?C=initd C])

show G,A`{Normal ?P ∧. initd C} .Init C . {?R}
by (rule ax-derivs.Done [THEN conseq1]) (fastforce intro: init-done)

next
have G,A`{Normal (?P ∧. Not ◦ initd C)} .Init C . {?R}
proof (cases n)

case 0
show ?thesis

by (rule ax-impossible [THEN conseq1]) (use is-cls 0 in ‹fastforce dest: nyinitcls-emptyD›)
next

case (Suc m)
with mgf-hyp have mgf-hyp ′:

∧
t. G,A`{=:m} t� {G→}

by simp
from is-cls obtain c where c: the (class G C) = c

by auto
let ?Q= (λY s ′ (x,s) .

500

G` (x,init-class-obj G C s)
− (if C=Object then Skip else Init (super (the (class G C))))→ s ′

∧ x=None ∧ ¬inited C (globs s)) ∧. G`init≤m
from c
show ?thesis
proof (rule ax-derivs.Init [where ?Q=?Q])

let ?P ′ = Normal ((λY s ′ s. s ′ = supd (init-class-obj G C) s
∧ normal s ∧ ¬ initd C s) ∧. G`init≤m)

show G,A`{Normal (?P ∧. Not ◦ initd C ;. supd (init-class-obj G C))}
.(if C = Object then Skip else Init (super c)).
{?Q}

proof (rule conseq1 [where ?P ′=?P ′])
show G,A`{?P ′} .(if C = Object then Skip else Init (super c)). {?Q}
proof (cases C=Object)

case True
have G,A`{?P ′} .Skip. {?Q}

by (rule ax-derivs.Skip [THEN conseq1])
(auto simp add: True intro: eval.Skip)

with True show ?thesis
by simp

next
case False
from mgf-hyp ′

have G,A`{?P ′} .Init (super c). {?Q}
by (rule MGFnD ′ [THEN conseq12]) (fastforce simp add: False c)

with False show ?thesis
by simp

qed
next

from Suc is-cls
show Normal (?P ∧. Not ◦ initd C ;. supd (init-class-obj G C))

⇒ ?P ′

by (fastforce elim: nyinitcls-le-SucD)
qed

next
from mgf-hyp ′

show ∀ l. G,A`{?Q ∧. (λs. l = locals (snd s)) ;. set-lvars Map.empty}
.init c.
{set-lvars l .; ?R}

apply (rule MGFnD ′ [THEN conseq12 , THEN allI])
apply (clarsimp simp add: split-paired-all)
apply (rule eval.Init [OF c])
using c
apply auto
done

qed
qed
thus G,A`{Normal ?P ∧. Not ◦ initd C} .Init C . {?R}

by clarsimp
qed

qed
lemmas MGFn-InitD = MGFn-Init [THEN MGFnD, THEN ax-NormalD]

lemma MGFn-Call:
assumes mgf-methds:

∀C sig. G,(A::state triple set)`{=:n} 〈(Methd C sig)〉e� {G→}
and mgf-e: G,A`{=:n} 〈e〉e� {G→}
and mgf-ps: G,A`{=:n} 〈ps〉l� {G→}
and wf : wf-prog G

Theory AxCompl 501

shows G,A`{=:n} 〈{accC ,statT ,mode}e·mn({pTs ′}ps)〉e� {G→}
proof (rule MGFn-free-wt-da-NormalConformI [rule-format],clarsimp)

note inj-term-simps [simp]
fix T L accC ′ E
assume wt: (|prg=G,cls=accC ′,lcl = L|)`〈({accC ,statT ,mode}e·mn({pTs ′}ps))〉e::T
then obtain pTs statDeclT statM where

wt-e: (|prg=G,cls=accC ,lcl=L|)`e::−RefT statT and
wt-args: (|prg=G,cls=accC ,lcl=L|)`ps:: .=pTs and

statM : max-spec G accC statT (|name=mn,parTs=pTs|)
= {((statDeclT ,statM),pTs ′)} and

mode: mode = invmode statM e and
T : T =Inl (resTy statM) and

eq-accC-accC ′: accC=accC ′

by cases fastforce+
let ?Q=(λY s1 (x,s) . x = None ∧

(∃ a. G`Norm s −e−�a→ s1 ∧
(normal s1 −→ G, store s1`a::�RefT statT)
∧ Y = In1 a) ∧

(∃ P. normal s1
−→ (|prg=G,cls=accC ′,lcl=L|)`dom (locals (store s1))»〈ps〉l»P))

∧. G`init≤n ∧. (λ s. s::�(G, L))::state assn
let ?R=λa. ((λY (x2 ,s2) (x,s) . x = None ∧

(∃ s1 pvs. G`Norm s −e−�a→ s1 ∧
(normal s1 −→ G, store s1`a::�RefT statT)∧
Y = bpvscl ∧ G`s1 −ps .

=�pvs→ (x2 ,s2)))
∧. G`init≤n ∧. (λ s. s::�(G, L)))::state assn

show G,A`{Normal ((λY ′ s ′ s. s ′ = s ∧ abrupt s = None) ∧. G`init≤n ∧.
(λs. s::�(G, L)) ∧.
(λs. (|prg=G, cls=accC ′,lcl=L|) ` dom (locals (store s))

» 〈{accC ,statT ,mode}e·mn({pTs ′}ps)〉e» E))}
{accC ,statT ,mode}e·mn({pTs ′}ps)−�
{λY s ′ s. ∃ v. Y = bvce ∧

G`s −{accC ,statT ,mode}e·mn({pTs ′}ps)−�v→ s ′}
(is G,A`{Normal ?P} {accC ,statT ,mode}e·mn({pTs ′}ps)−� {?S})

proof (rule ax-derivs.Call [where ?Q=?Q and ?R=?R])
from mgf-e
show G,A`{Normal ?P} e−� {?Q}
proof (rule MGFnD ′ [THEN conseq12],clarsimp)

fix s0 s1 a
assume conf-s0 : Norm s0 ::�(G, L)
assume da: (|prg=G,cls=accC ′,lcl=L|)`

dom (locals s0) »〈{accC ,statT ,mode}e·mn({pTs ′}ps)〉e» E
assume eval-e: G`Norm s0 −e−�a→ s1
show (abrupt s1 = None −→ G,store s1`a::�RefT statT) ∧

(abrupt s1 = None −→
(∃P. (|prg=G,cls=accC ′,lcl=L|)` dom (locals (store s1)) »〈ps〉l» P))
∧ s1 ::�(G, L)

proof −
from da obtain C where

da-e: (|prg=G,cls=accC ,lcl=L|)`
dom (locals (store ((Norm s0)::state)))»〈e〉e» C and

da-ps: (|prg=G,cls=accC ,lcl=L|)` nrm C »〈ps〉l» E
by cases (simp add: eq-accC-accC ′)

from eval-e conf-s0 wt-e da-e wf
obtain (abrupt s1 = None −→ G,store s1`a::�RefT statT)

and s1 ::�(G, L)
by (rule eval-type-soundE) simp

moreover have ∃P. (|prg=G,cls=accC ,lcl=L|)` dom (locals (store s1)) »〈ps〉l» P

502

if normal-s1 : normal s1
proof −

from eval-e wt-e da-e wf normal-s1
have nrm C ⊆ dom (locals (store s1))

by (cases rule: da-good-approxE ′) iprover
with da-ps show ?thesis

by (rule da-weakenE) iprover
qed
ultimately show ?thesis

using eq-accC-accC ′ by simp
qed

qed
next

show ∀ a. G,A`{?Q←In1 a} ps .
=� {?R a} (is ∀ a. ?PS a)

proof
fix a
show ?PS a
proof (rule MGFnD ′ [OF mgf-ps, THEN conseq12],

clarsimp simp add: eq-accC-accC ′ [symmetric])
fix s0 s1 s2 vs
assume conf-s1 : s1 ::�(G, L)
assume eval-e: G`Norm s0 −e−�a→ s1
assume conf-a: abrupt s1 = None −→ G,store s1`a::�RefT statT
assume eval-ps: G`s1 −ps .

=�vs→ s2
assume da-ps: abrupt s1 = None −→

(∃P. (|prg=G,cls=accC ,lcl=L|)`
dom (locals (store s1)) »〈ps〉l» P)

show (∃ s1 . G`Norm s0 −e−�a→ s1 ∧
(abrupt s1 = None −→ G,store s1`a::�RefT statT) ∧
G`s1 −ps .

=�vs→ s2) ∧
s2 ::�(G, L)

proof (cases normal s1)
case True
with da-ps obtain P where
(|prg=G,cls=accC ,lcl=L|)` dom (locals (store s1)) »〈ps〉l» P
by auto

from eval-ps conf-s1 wt-args this wf
have s2 ::�(G, L)

by (rule eval-type-soundE)
with eval-e conf-a eval-ps
show ?thesis

by auto
next

case False
with eval-ps have s2=s1 by auto
with eval-e conf-a eval-ps conf-s1
show ?thesis

by auto
qed

qed
qed

next
show ∀ a vs invC declC l.

G,A`{?R a←bvscl ∧.
(λs. declC =

invocation-declclass G mode (store s) a statT
(|name=mn, parTs=pTs ′|) ∧

invC = invocation-class mode (store s) a statT ∧
l = locals (store s)) ;.

Theory AxCompl 503

init-lvars G declC (|name=mn, parTs=pTs ′|) mode a vs ∧.
(λs. normal s −→ G`mode→invC�statT)}

Methd declC (|name=mn,parTs=pTs ′|)−�
{set-lvars l .; ?S}

(is ∀ a vs invC declC l. ?METHD a vs invC declC l)
proof (intro allI)

fix a vs invC declC l
from mgf-methds [rule-format]
show ?METHD a vs invC declC l
proof (rule MGFnD ′ [THEN conseq12],clarsimp)

fix s4 s2 s1 ::state
fix s0 v
let ?D= invocation-declclass G mode (store s2) a statT

(|name=mn,parTs=pTs ′|)
let ?s3= init-lvars G ?D (|name=mn, parTs=pTs ′|) mode a vs s2
assume inv-prop: abrupt ?s3=None
−→ G`mode→invocation-class mode (store s2) a statT�statT

assume conf-s2 : s2 ::�(G, L)
assume conf-a: abrupt s1 = None −→ G,store s1`a::�RefT statT
assume eval-e: G`Norm s0 −e−�a→ s1
assume eval-ps: G`s1 −ps .

=�vs→ s2
assume eval-mthd: G`?s3 −Methd ?D (|name=mn,parTs=pTs ′|)−�v→ s4
show G`Norm s0 −{accC ,statT ,mode}e·mn({pTs ′}ps)−�v

→ (set-lvars (locals (store s2))) s4
proof −

obtain D where D: D=?D by simp
obtain s3 where s3 : s3=?s3 by simp
obtain s3 ′ where

s3 ′: s3 ′ = check-method-access G accC statT mode
(|name=mn,parTs=pTs ′|) a s3

by simp
have eq-s3 ′-s3 : s3 ′=s3
proof −

from inv-prop s3 mode
have normal s3 =⇒
G`invmode statM e→invocation-class mode (store s2) a statT�statT
by auto

with eval-ps wt-e statM conf-s2 conf-a [rule-format]
have check-method-access G accC statT (invmode statM e)

(|name=mn,parTs=pTs ′|) a s3 = s3
by (rule error-free-call-access) (auto simp add: s3 mode wf)

thus ?thesis
by (simp add: s3 ′ mode)

qed
with eval-mthd D s3
have G`s3 ′ −Methd D (|name=mn,parTs=pTs ′|)−�v→ s4

by simp
with eval-e eval-ps D - s3 ′

show ?thesis
by (rule eval-Call) (auto simp add: s3 mode D)

qed
qed

qed
qed

qed

lemma eval-expression-no-jump ′:
assumes eval: G`s0 −e−�v→ s1
and no-jmp: abrupt s0 6= Some (Jump j)

504

and wt: (|prg=G, cls=C ,lcl=L|)`e::−T
and wf : wf-prog G

shows abrupt s1 6= Some (Jump j)
by (rule eval-expression-no-jump [where ?Env=(|prg=G, cls=C ,lcl=L|),simplified])
(use eval no-jmp wt wf in auto)

To derive the most general formula for the loop statement, we need to come up with a proper loop
invariant, which intuitively states that we are currently inside the evaluation of the loop. To define
such an invariant, we unroll the loop in iterated evaluations of the expression and evaluations of the
loop body.

definition
unroll :: prog ⇒ label ⇒ expr ⇒ stmt ⇒ (state × state) set where
unroll G l e c = {(s,t). ∃ v s1 s2 .

G`s −e−�v→ s1 ∧ the-Bool v ∧ normal s1 ∧
G`s1 −c→ s2 ∧ t=(abupd (absorb (Cont l)) s2)}

lemma unroll-while:
assumes unroll: (s, t) ∈ (unroll G l e c)∗
and eval-e: G`t −e−�v→ s ′

and normal-termination: normal s ′ −→ ¬ the-Bool v
and wt: (|prg=G,cls=C ,lcl=L|)`e::−T
and wf : wf-prog G
shows G`s −l· While(e) c→ s ′

using unroll
proof (induct rule: converse-rtrancl-induct)

show G`t −l· While(e) c→ s ′

proof (cases normal t)
case False
with eval-e have s ′=t by auto
with False show ?thesis by auto

next
case True
note normal-t = this
show ?thesis
proof (cases normal s ′)

case True
with normal-t eval-e normal-termination
show ?thesis

by (auto intro: eval.Loop)
next

case False
note abrupt-s ′ = this
from eval-e - wt wf
have no-cont: abrupt s ′ 6= Some (Jump (Cont l))

by (rule eval-expression-no-jump ′) (use normal-t in simp)
have

if the-Bool v
then (G`s ′ −c→ s ′ ∧

G`(abupd (absorb (Cont l)) s ′) −l· While(e) c→ s ′)
else s ′ = s ′

proof (cases the-Bool v)
case False thus ?thesis by simp

next
case True
with abrupt-s ′ have G`s ′ −c→ s ′ by auto
moreover from abrupt-s ′ no-cont
have no-absorb: (abupd (absorb (Cont l)) s ′)=s ′

Theory AxCompl 505

by (cases s ′) (simp add: absorb-def split: if-split)
moreover
from no-absorb abrupt-s ′

have G`(abupd (absorb (Cont l)) s ′) −l· While(e) c→ s ′

by auto
ultimately show ?thesis

using True by simp
qed
with eval-e
show ?thesis

using normal-t by (auto intro: eval.Loop)
qed

qed
next

fix s s3
assume unroll: (s,s3) ∈ unroll G l e c
assume while: G`s3 −l· While(e) c→ s ′

show G`s −l· While(e) c→ s ′

proof −
from unroll obtain v s1 s2 where

normal-s1 : normal s1 and
eval-e: G`s −e−�v→ s1 and
continue: the-Bool v and
eval-c: G`s1 −c→ s2 and
s3 : s3=(abupd (absorb (Cont l)) s2)
by (unfold unroll-def) fast

from eval-e normal-s1 have
normal s
by (rule eval-no-abrupt-lemma [rule-format])

with while eval-e continue eval-c s3 show ?thesis
by (auto intro!: eval.Loop)

qed
qed

lemma MGFn-Loop:
assumes mfg-e: G,(A::state triple set)`{=:n} 〈e〉e� {G→}
and mfg-c: G,A`{=:n} 〈c〉s� {G→}
and wf : wf-prog G

shows G,A`{=:n} 〈l· While(e) c〉s� {G→}
proof (rule MGFn-free-wt [rule-format],elim exE)

fix T L C
assume wt: (|prg = G, cls = C , lcl = L|)`〈l· While(e) c〉s::T
then obtain eT where

wt-e: (|prg = G, cls = C , lcl = L|)`e::−eT
by cases simp

show ?thesis
proof (rule MGFn-NormalI)

show G,A`{Normal ((λY ′ s ′ s. s ′ = s ∧ normal s) ∧. G`init≤n)}
.l· While(e) c.
{λY s ′ s. G`s −In1r (l· While(e) c)�→ (Y , s ′)}

proof (rule conseq12
[where ?P ′=(λ Y s ′ s. (s,s ′) ∈ (unroll G l e c)∗) ∧. G`init≤n

and ?Q ′=((λ Y s ′ s. (∃ t b. (s,t) ∈ (unroll G l e c)∗ ∧
Y=bbce ∧ G`t −e−�b→ s ′))
∧. G`init≤n)←=False↓=♦])

show G,A`{(λY s ′ s. (s, s ′) ∈ (unroll G l e c)∗) ∧. G`init≤n}
.l· While(e) c.
{((λY s ′ s. (∃ t b. (s, t) ∈ (unroll G l e c)∗ ∧

Y = In1 b ∧ G`t −e−�b→ s ′))

506

∧. G`init≤n)←=False↓=♦}
proof (rule ax-derivs.Loop)

from mfg-e
show G,A`{(λY s ′ s. (s, s ′) ∈ (unroll G l e c)∗) ∧. G`init≤n}

e−�
{(λY s ′ s. (∃ t b. (s, t) ∈ (unroll G l e c)∗ ∧

Y = In1 b ∧ G`t −e−�b→ s ′))
∧. G`init≤n}

proof (rule MGFnD ′ [THEN conseq12],clarsimp)
fix s Z s ′ v
assume (Z , s) ∈ (unroll G l e c)∗
moreover
assume G`s −e−�v→ s ′

ultimately
show ∃ t. (Z , t) ∈ (unroll G l e c)∗ ∧ G`t −e−�v→ s ′

by blast
qed

next
from mfg-c
show G,A`{Normal (((λY s ′ s. ∃ t b. (s, t) ∈ (unroll G l e c)∗ ∧

Y = bbce ∧ G`t −e−�b→ s ′)
∧. G`init≤n)←=True)}

.c.
{abupd (absorb (Cont l)) .;
((λY s ′ s. (s, s ′) ∈ (unroll G l e c)∗) ∧. G`init≤n)}

proof (rule MGFnD ′ [THEN conseq12],clarsimp)
fix Z s ′ s v t
assume unroll: (Z , t) ∈ (unroll G l e c)∗
assume eval-e: G`t −e−�v→ Norm s
assume true: the-Bool v
assume eval-c: G`Norm s −c→ s ′

show (Z , abupd (absorb (Cont l)) s ′) ∈ (unroll G l e c)∗
proof −

note unroll
also
from eval-e true eval-c
have (t,abupd (absorb (Cont l)) s ′) ∈ unroll G l e c

by (unfold unroll-def) force
ultimately show ?thesis ..

qed
qed

qed
next

show
∀Y s Z .
(Normal ((λY ′ s ′ s. s ′ = s ∧ normal s) ∧. G`init≤n)) Y s Z
−→ (∀Y ′ s ′.

(∀Y Z ′.
((λY s ′ s. (s, s ′) ∈ (unroll G l e c)∗) ∧. G`init≤n) Y s Z ′

−→ (((λY s ′ s. ∃ t b. (s,t) ∈ (unroll G l e c)∗
∧ Y=bbce ∧ G`t −e−�b→ s ′)

∧. G`init≤n)←=False↓=♦) Y ′ s ′ Z ′)
−→ G`Z −〈l· While(e) c〉s�→ (Y ′, s ′))

proof (clarsimp)
fix Y ′ s ′ s
assume asm:
∀Z ′. (Z ′, Norm s) ∈ (unroll G l e c)∗

−→ card (nyinitcls G s ′) ≤ n ∧
(∃ v. (∃ t. (Z ′, t) ∈ (unroll G l e c)∗ ∧ G`t −e−�v→ s ′) ∧

Theory AxCompl 507

(fst s ′ = None −→ ¬ the-Bool v)) ∧ Y ′ = ♦
show Y ′ = ♦ ∧ G`Norm s −l· While(e) c→ s ′

proof −
from asm obtain v t where

— Z ′ gets instantiated with Norm s
unroll: (Norm s, t) ∈ (unroll G l e c)∗ and
eval-e: G`t −e−�v→ s ′ and
normal-termination: normal s ′ −→ ¬ the-Bool v and
Y ′: Y ′ = ♦

by auto
from unroll eval-e normal-termination wt-e wf
have G`Norm s −l· While(e) c→ s ′

by (rule unroll-while)
with Y ′

show ?thesis
by simp

qed
qed

qed
qed

qed

lemma MGFn-FVar :
fixes A :: state triple set

assumes mgf-init: G,A`{=:n} 〈Init statDeclC 〉s� {G→}
and mgf-e: G,A`{=:n} 〈e〉e� {G→}
and wf : wf-prog G
shows G,A`{=:n} 〈{accC ,statDeclC ,stat}e..fn〉v� {G→}

proof (rule MGFn-free-wt-da-NormalConformI [rule-format],clarsimp)
note inj-term-simps [simp]
fix T L accC ′ V
assume wt: (|prg = G, cls = accC ′, lcl = L|)`〈{accC ,statDeclC ,stat}e..fn〉v::T
then obtain statC f where

wt-e: (|prg=G, cls=accC ′, lcl=L|)`e::−Class statC and
accfield: accfield G accC ′ statC fn = Some (statDeclC ,f) and
eq-accC : accC=accC ′ and
stat: stat=is-static f
by (cases) (auto simp add: member-is-static-simp)

let ?Q=(λY s1 (x,s) . x = None ∧
(G`Norm s −Init statDeclC→ s1) ∧
(∃ E . (|prg=G,cls=accC ′,lcl=L|)`dom (locals (store s1)) »〈e〉e» E))
∧. G`init≤n ∧. (λ s. s::�(G, L))

show G,A`{Normal
((λY ′ s ′ s. s ′ = s ∧ abrupt s = None) ∧. G`init≤n ∧.
(λs. s::�(G, L)) ∧.
(λs. (|prg=G,cls=accC ′,lcl=L|)
` dom (locals (store s)) » 〈{accC ,statDeclC ,stat}e..fn〉v» V))

} {accC ,statDeclC ,stat}e..fn=�
{λY s ′ s. ∃ vf . Y = bvf cv ∧

G`s −{accC ,statDeclC ,stat}e..fn=�vf→ s ′}
(is G,A`{Normal ?P} {accC ,statDeclC ,stat}e..fn=� {?R})

proof (rule ax-derivs.FVar [where ?Q=?Q])
from mgf-init
show G,A`{Normal ?P} .Init statDeclC . {?Q}
proof (rule MGFnD ′ [THEN conseq12],clarsimp)

fix s s ′

assume conf-s: Norm s::�(G, L)
assume da: (|prg=G,cls=accC ′,lcl=L|)

` dom (locals s) »〈{accC ,statDeclC ,stat}e..fn〉v» V

508

assume eval-init: G`Norm s −Init statDeclC→ s ′

show (∃E . (|prg=G, cls=accC ′, lcl=L|)` dom (locals (store s ′)) »〈e〉e» E) ∧
s ′::�(G, L)

proof −
from da
obtain E where
(|prg=G, cls=accC ′, lcl=L|)` dom (locals s) »〈e〉e» E
by cases simp

moreover
from eval-init
have dom (locals s) ⊆ dom (locals (store s ′))

by (rule dom-locals-eval-mono [elim-format]) simp
ultimately obtain E ′ where
(|prg=G, cls=accC ′, lcl=L|)` dom (locals (store s ′)) »〈e〉e» E ′

by (rule da-weakenE)
moreover
have s ′::�(G, L)
proof −

have wt-init: (|prg=G, cls=accC , lcl=L|)`(Init statDeclC)::
√

proof −
from wf wt-e
have iscls-statC : is-class G statC

by (auto dest: ty-expr-is-type type-is-class)
with wf accfield
have iscls-statDeclC : is-class G statDeclC

by (auto dest!: accfield-fields dest: fields-declC)
thus ?thesis by simp

qed
obtain I where

da-init: (|prg=G,cls=accC ,lcl=L|)
` dom (locals (store ((Norm s)::state))) »〈Init statDeclC 〉s» I

by (auto intro: da-Init [simplified] assigned.select-convs)
from eval-init conf-s wt-init da-init wf
show ?thesis

by (rule eval-type-soundE)
qed
ultimately show ?thesis by iprover

qed
qed

next
from mgf-e
show G,A`{?Q} e−� {λVal:a:. fvar statDeclC stat fn a ..; ?R}
proof (rule MGFnD ′ [THEN conseq12],clarsimp)

fix s0 s1 s2 E a
let ?fvar = fvar statDeclC stat fn a s2
assume eval-init: G`Norm s0 −Init statDeclC→ s1
assume eval-e: G`s1 −e−�a→ s2
assume conf-s1 : s1 ::�(G, L)
assume da-e: (|prg=G,cls=accC ′,lcl=L|)` dom (locals (store s1)) »〈e〉e» E
show G`Norm s0 −{accC ,statDeclC ,stat}e..fn=�fst ?fvar→ snd ?fvar
proof −

obtain v s2 ′ where
v: v=fst ?fvar and s2 ′: s2 ′=snd ?fvar
by simp

obtain s3 where
s3 : s3= check-field-access G accC ′ statDeclC fn stat a s2 ′

by simp
have eq-s3-s2 ′: s3=s2 ′

proof −

Theory AxCompl 509

from eval-e conf-s1 wt-e da-e wf obtain
conf-s2 : s2 ::�(G, L) and
conf-a: normal s2 =⇒ G,store s2`a::�Class statC
by (rule eval-type-soundE) simp

from accfield wt-e eval-init eval-e conf-s2 conf-a - wf
show ?thesis

by (rule error-free-field-access
[where ?v=v and ?s2 ′=s2 ′,elim-format])

(simp add: s3 v s2 ′ stat)+
qed
from eval-init eval-e
show ?thesis

apply (rule eval.FVar [where ?s2 ′=s2 ′])
apply (simp add: s2 ′)
apply (simp add: s3 [symmetric] eq-s3-s2 ′ eq-accC s2 ′ [symmetric])
done

qed
qed

qed
qed

lemma MGFn-Fin:
assumes wf : wf-prog G
and mgf-c1 : G,A`{=:n} 〈c1 〉s� {G→}
and mgf-c2 : G,A`{=:n} 〈c2 〉s� {G→}
shows G,(A::state triple set)`{=:n} 〈c1 Finally c2 〉s� {G→}

proof (rule MGFn-free-wt-da-NormalConformI [rule-format],clarsimp)
fix T L accC C
assume wt: (|prg=G,cls=accC ,lcl=L|)`In1r (c1 Finally c2)::T
then obtain

wt-c1 : (|prg=G,cls=accC ,lcl=L|)`c1 ::
√

and
wt-c2 : (|prg=G,cls=accC ,lcl=L|)`c2 ::

√

by cases simp
let ?Q = (λY ′ s ′ s. normal s ∧ G`s −c1→ s ′ ∧

(∃ C1 . (|prg=G,cls=accC ,lcl=L|)`dom (locals (store s)) »〈c1 〉s» C1)
∧ s::�(G, L))
∧. G`init≤n

show G,A`{Normal
((λY ′ s ′ s. s ′ = s ∧ abrupt s = None) ∧. G`init≤n ∧.
(λs. s::�(G, L)) ∧.
(λs. (|prg=G,cls=accC ,lcl =L|)

`dom (locals (store s)) »〈c1 Finally c2 〉s» C))}
.c1 Finally c2 .
{λY s ′ s. Y = ♦ ∧ G`s −c1 Finally c2→ s ′}

(is G,A`{Normal ?P} .c1 Finally c2 . {?R})
proof (rule ax-derivs.Fin [where ?Q=?Q])

from mgf-c1
show G,A`{Normal ?P} .c1 . {?Q}
proof (rule MGFnD ′ [THEN conseq12],clarsimp)

fix s0
assume (|prg=G,cls=accC ,lcl=L|)` dom (locals s0) »〈c1 Finally c2 〉s» C
thus ∃C1 . (|prg=G,cls=accC ,lcl=L|)` dom (locals s0) »〈c1 〉s» C1

by cases (auto simp add: inj-term-simps)
qed

next
from mgf-c2
show ∀ abr . G,A`{?Q ∧. (λs. abr = abrupt s) ;. abupd (λabr . None)} .c2 .

{abupd (abrupt-if (abr 6= None) abr) .; ?R}

510

proof (rule MGFnD ′ [THEN conseq12 , THEN allI],clarsimp)
fix s0 s1 s2 C1
assume da-c1 :(|prg=G,cls=accC ,lcl=L|)` dom (locals s0) »〈c1 〉s» C1
assume conf-s0 : Norm s0 ::�(G, L)
assume eval-c1 : G`Norm s0 −c1→ s1
assume eval-c2 : G`abupd (λabr . None) s1 −c2→ s2
show G`Norm s0 −c1 Finally c2

→ abupd (abrupt-if (∃ y. abrupt s1 = Some y) (abrupt s1)) s2
proof −

obtain abr1 str1 where s1 : s1=(abr1 ,str1)
by (cases s1)

with eval-c1 eval-c2 obtain
eval-c1 ′: G`Norm s0 −c1→ (abr1 ,str1) and
eval-c2 ′: G`Norm str1 −c2→ s2
by simp

obtain s3 where
s3 : s3 = (if ∃ err . abr1 = Some (Error err)

then (abr1 , str1)
else abupd (abrupt-if (abr1 6= None) abr1) s2)

by simp
from eval-c1 ′ conf-s0 wt-c1 - wf
have error-free (abr1 ,str1)

by (rule eval-type-soundE) (insert da-c1 ,auto)
with s3 have eq-s3 : s3=abupd (abrupt-if (abr1 6= None) abr1) s2

by (simp add: error-free-def)
from eval-c1 ′ eval-c2 ′ s3
show ?thesis

by (rule eval.Fin [elim-format]) (simp add: s1 eq-s3)
qed

qed
qed

qed

lemma Body-no-break:
assumes eval-init: G`Norm s0 −Init D→ s1

and eval-c: G`s1 −c→ s2
and jmpOk: jumpNestingOkS {Ret} c
and wt-c: (|prg=G, cls=C , lcl=L|)`c::

√

and clsD: class G D=Some d
and wf : wf-prog G

shows ∀ l. abrupt s2 6= Some (Jump (Break l)) ∧
abrupt s2 6= Some (Jump (Cont l))

proof
fix l show abrupt s2 6= Some (Jump (Break l)) ∧

abrupt s2 6= Some (Jump (Cont l))
proof −

fix accC
from clsD have wt-init: (|prg=G, cls=accC , lcl=L|)`(Init D)::

√

by auto
have s1-no-jmp:

∧
j. abrupt s1 6= Some (Jump j)

by (rule eval-statement-no-jump [OF - - - wt-init]) (use eval-init wf in auto)
from eval-c - wt-c wf show ?thesis

by (rule jumpNestingOk-eval [THEN conjE , elim-format]) (use jmpOk s1-no-jmp in auto)
qed

qed

lemma MGFn-Body:
assumes wf : wf-prog G
and mgf-init: G,A`{=:n} 〈Init D〉s� {G→}

Theory AxCompl 511

and mgf-c: G,A`{=:n} 〈c〉s� {G→}
shows G,(A::state triple set)`{=:n} 〈Body D c〉e� {G→}

proof (rule MGFn-free-wt-da-NormalConformI [rule-format],clarsimp)
fix T L accC E
assume wt: (|prg=G, cls=accC ,lcl=L|)`〈Body D c〉e::T
let ?Q=(λY ′ s ′ s. normal s ∧ G`s −Init D→ s ′ ∧ jumpNestingOkS {Ret} c)

∧. G`init≤n
show G,A`{Normal

((λY ′ s ′ s. s ′ = s ∧ fst s = None) ∧. G`init≤n ∧.
(λs. s::�(G, L)) ∧.
(λs. (|prg=G,cls=accC ,lcl=L|)

` dom (locals (store s)) »〈Body D c〉e» E))}
Body D c−�
{λY s ′ s. ∃ v. Y = In1 v ∧ G`s −Body D c−�v→ s ′}

(is G,A`{Normal ?P} Body D c−� {?R})
proof (rule ax-derivs.Body [where ?Q=?Q])

from mgf-init
show G,A`{Normal ?P} .Init D. {?Q}
proof (rule MGFnD ′ [THEN conseq12],clarsimp)

fix s0
assume da: (|prg=G,cls=accC ,lcl=L|)` dom (locals s0) »〈Body D c〉e» E
thus jumpNestingOkS {Ret} c

by cases simp
qed

next
from mgf-c
show G,A`{?Q}.c.{λs.. abupd (absorb Ret) .; ?R←bthe (locals s Result)ce}
proof (rule MGFnD ′ [THEN conseq12],clarsimp)

fix s0 s1 s2
assume eval-init: G`Norm s0 −Init D→ s1
assume eval-c: G`s1 −c→ s2
assume nestingOk: jumpNestingOkS {Ret} c
show G`Norm s0 −Body D c−�the (locals (store s2) Result)

→ abupd (absorb Ret) s2
proof −

from wt obtain d where
d: class G D=Some d and
wt-c: (|prg = G, cls = accC , lcl = L|)`c::

√

by cases auto
obtain s3 where

s3 : s3= (if ∃ l. fst s2 = Some (Jump (Break l)) ∨
fst s2 = Some (Jump (Cont l))

then abupd (λx. Some (Error CrossMethodJump)) s2
else s2)

by simp
from eval-init eval-c nestingOk wt-c d wf
have eq-s3-s2 : s3=s2

by (rule Body-no-break [elim-format]) (simp add: s3)
from eval-init eval-c s3
show ?thesis

by (rule eval.Body [elim-format]) (simp add: eq-s3-s2)
qed

qed
qed

qed

lemma MGFn-lemma:
assumes mgf-methds:∧

n. ∀ C sig. G,(A::state triple set)`{=:n} 〈Methd C sig〉e� {G→}

512

and wf : wf-prog G
shows

∧
t. G,A`{=:n} t� {G→}

proof (induct rule: full-nat-induct)
fix n t
assume hyp: ∀ m. Suc m ≤ n −→ (∀ t. G,A`{=:m} t� {G→})
show G,A`{=:n} t� {G→}
proof −

fix v e c es
have G,A`{=:n} 〈v〉v� {G→} and

G,A`{=:n} 〈e〉e� {G→} and
G,A`{=:n} 〈c〉s� {G→} and
G,A`{=:n} 〈es〉l� {G→}
for v e c es

proof (induct rule: compat-var .induct compat-expr .induct compat-stmt.induct compat-expr-list.induct)
case (LVar v)
show G,A`{=:n} 〈LVar v〉v� {G→}

apply (rule MGFn-NormalI)
apply (rule ax-derivs.LVar [THEN conseq1])
apply (clarsimp)
apply (rule eval.LVar)
done

next
case (FVar accC statDeclC stat e fn)
from MGFn-Init [OF hyp] and ‹G,A`{=:n} 〈e〉e� {G→}› and wf
show ?case

by (rule MGFn-FVar)
next

case (AVar e1 e2)
note mgf-e1 = ‹G,A`{=:n} 〈e1 〉e� {G→}›
note mgf-e2 = ‹G,A`{=:n} 〈e2 〉e� {G→}›
show G,A`{=:n} 〈e1 .[e2]〉v� {G→}

apply (rule MGFn-NormalI)
apply (rule ax-derivs.AVar)
apply (rule MGFnD [OF mgf-e1 , THEN ax-NormalD])
apply (rule allI)
apply (rule MGFnD ′ [OF mgf-e2 , THEN conseq12])
apply (fastforce intro: eval.AVar)
done

next
case (InsInitV c v)
show ?case

by (rule MGFn-NormalI) (rule ax-derivs.InsInitV)
next

case (NewC C)
show ?case

apply (rule MGFn-NormalI)
apply (rule ax-derivs.NewC)
apply (rule MGFn-InitD [OF hyp, THEN conseq2])
apply (fastforce intro: eval.NewC)
done

next
case (NewA T e)
thus ?case

apply −
apply (rule MGFn-NormalI)
apply (rule ax-derivs.NewA

[where ?Q = (λY ′ s ′ s. normal s ∧ G`s −In1r (init-comp-ty T)
�→ (Y ′,s ′)) ∧. G`init≤n])

apply (simp add: init-comp-ty-def split: if-split)

Theory AxCompl 513

apply (rule conjI , clarsimp)
apply (rule MGFn-InitD [OF hyp, THEN conseq2])
apply (clarsimp intro: eval.Init)
apply clarsimp
apply (rule ax-derivs.Skip [THEN conseq1])
apply (clarsimp intro: eval.Skip)
apply (erule MGFnD ′ [THEN conseq12])
apply (fastforce intro: eval.NewA)
done

next
case (Cast C e)
thus ?case

apply −
apply (rule MGFn-NormalI)
apply (erule MGFnD ′[THEN conseq12 ,THEN ax-derivs.Cast])
apply (fastforce intro: eval.Cast)
done

next
case (Inst e C)
thus ?case

apply −
apply (rule MGFn-NormalI)
apply (erule MGFnD ′[THEN conseq12 ,THEN ax-derivs.Inst])
apply (fastforce intro: eval.Inst)
done

next
case (Lit v)
show ?case

apply −
apply (rule MGFn-NormalI)
apply (rule ax-derivs.Lit [THEN conseq1])
apply (fastforce intro: eval.Lit)
done

next
case (UnOp unop e)
thus ?case

apply −
apply (rule MGFn-NormalI)
apply (rule ax-derivs.UnOp)
apply (erule MGFnD ′ [THEN conseq12])
apply (fastforce intro: eval.UnOp)
done

next
case (BinOp binop e1 e2)
thus ?case

apply −
apply (rule MGFn-NormalI)
apply (rule ax-derivs.BinOp)
apply (erule MGFnD [THEN ax-NormalD])
apply (rule allI)
apply (case-tac need-second-arg binop v1)
apply simp
apply (erule MGFnD ′ [THEN conseq12])
apply (fastforce intro: eval.BinOp)
apply simp
apply (rule ax-Normal-cases)
apply (rule ax-derivs.Skip [THEN conseq1])
apply clarsimp
apply (rule eval-BinOp-arg2-indepI)

514

apply simp
apply simp
apply (rule ax-derivs.Abrupt [THEN conseq1], clarsimp simp add: Let-def)
apply (fastforce intro: eval.BinOp)
done

next
case Super
show ?case

apply −
apply (rule MGFn-NormalI)
apply (rule ax-derivs.Super [THEN conseq1])
apply (fastforce intro: eval.Super)
done

next
case (Acc v)
thus ?case

apply −
apply (rule MGFn-NormalI)
apply (erule MGFnD ′[THEN conseq12 ,THEN ax-derivs.Acc])
apply (fastforce intro: eval.Acc simp add: split-paired-all)
done

next
case (Ass v e)
thus G,A`{=:n} 〈v:=e〉e� {G→}

apply −
apply (rule MGFn-NormalI)
apply (rule ax-derivs.Ass)
apply (erule MGFnD [THEN ax-NormalD])
apply (rule allI)
apply (erule MGFnD ′[THEN conseq12])
apply (fastforce intro: eval.Ass simp add: split-paired-all)
done

next
case (Cond e1 e2 e3)
thus G,A`{=:n} 〈e1 ? e2 : e3 〉e� {G→}

apply −
apply (rule MGFn-NormalI)
apply (rule ax-derivs.Cond)
apply (erule MGFnD [THEN ax-NormalD])
apply (rule allI)
apply (rule ax-Normal-cases)
prefer 2
apply (rule ax-derivs.Abrupt [THEN conseq1],clarsimp simp add: Let-def)
apply (fastforce intro: eval.Cond)
apply (case-tac b)
apply simp
apply (erule MGFnD ′[THEN conseq12])
apply (fastforce intro: eval.Cond)
apply simp
apply (erule MGFnD ′[THEN conseq12])
apply (fastforce intro: eval.Cond)
done

next
case (Call accC statT mode e mn pTs ′ ps)
note mgf-e = ‹G,A`{=:n} 〈e〉e� {G→}›
note mgf-ps = ‹G,A`{=:n} 〈ps〉l� {G→}›
from mgf-methds mgf-e mgf-ps wf
show G,A`{=:n} 〈{accC ,statT ,mode}e·mn({pTs ′}ps)〉e� {G→}

by (rule MGFn-Call)

Theory AxCompl 515

next
case (Methd D mn)
from mgf-methds
show G,A`{=:n} 〈Methd D mn〉e� {G→}

by simp
next

case (Body D c)
note mgf-c = ‹G,A`{=:n} 〈c〉s� {G→}›
from wf MGFn-Init [OF hyp] mgf-c
show G,A`{=:n} 〈Body D c〉e� {G→}

by (rule MGFn-Body)
next

case (InsInitE c e)
show ?case

by (rule MGFn-NormalI) (rule ax-derivs.InsInitE)
next

case (Callee l e)
show ?case

by (rule MGFn-NormalI) (rule ax-derivs.Callee)
next

case Skip
show ?case

apply −
apply (rule MGFn-NormalI)
apply (rule ax-derivs.Skip [THEN conseq1])
apply (fastforce intro: eval.Skip)
done

next
case (Expr e)
thus ?case

apply −
apply (rule MGFn-NormalI)
apply (erule MGFnD ′[THEN conseq12 ,THEN ax-derivs.Expr])
apply (fastforce intro: eval.Expr)
done

next
case (Lab l c)
thus G,A`{=:n} 〈l· c〉s� {G→}

apply −
apply (rule MGFn-NormalI)
apply (erule MGFnD ′ [THEN conseq12 , THEN ax-derivs.Lab])
apply (fastforce intro: eval.Lab)
done

next
case (Comp c1 c2)
thus G,A`{=:n} 〈c1 ;; c2 〉s� {G→}

apply −
apply (rule MGFn-NormalI)
apply (rule ax-derivs.Comp)
apply (erule MGFnD [THEN ax-NormalD])
apply (erule MGFnD ′ [THEN conseq12])
apply (fastforce intro: eval.Comp)
done

next
case (If ′ e c1 c2)
thus G,A`{=:n} 〈If (e) c1 Else c2 〉s� {G→}

apply −
apply (rule MGFn-NormalI)
apply (rule ax-derivs.If)

516

apply (erule MGFnD [THEN ax-NormalD])
apply (rule allI)
apply (rule ax-Normal-cases)
prefer 2
apply (rule ax-derivs.Abrupt [THEN conseq1],clarsimp simp add: Let-def)
apply (fastforce intro: eval.If)
apply (case-tac b)
apply simp
apply (erule MGFnD ′ [THEN conseq12])
apply (fastforce intro: eval.If)
apply simp
apply (erule MGFnD ′ [THEN conseq12])
apply (fastforce intro: eval.If)
done

next
case (Loop l e c)
note mgf-e = ‹G,A`{=:n} 〈e〉e� {G→}›
note mgf-c = ‹G,A`{=:n} 〈c〉s� {G→}›
from mgf-e mgf-c wf
show G,A`{=:n} 〈l· While(e) c〉s� {G→}

by (rule MGFn-Loop)
next

case (Jmp j)
thus ?case

apply −
apply (rule MGFn-NormalI)
apply (rule ax-derivs.Jmp [THEN conseq1])
apply (auto intro: eval.Jmp)
done

next
case (Throw e)
thus ?case

apply −
apply (rule MGFn-NormalI)
apply (erule MGFnD ′ [THEN conseq12 , THEN ax-derivs.Throw])
apply (fastforce intro: eval.Throw)
done

next
case (TryC c1 C vn c2)
thus G,A`{=:n} 〈Try c1 Catch(C vn) c2 〉s� {G→}

apply −
apply (rule MGFn-NormalI)
apply (rule ax-derivs.Try [where

?Q = (λY ′ s ′ s. normal s ∧ (∃ s ′′. G`s −〈c1 〉s�→ (Y ′,s ′′) ∧
G`s ′′ −sxalloc→ s ′)) ∧. G`init≤n])

apply (erule MGFnD [THEN ax-NormalD, THEN conseq2])
apply (fastforce elim: sxalloc-gext [THEN card-nyinitcls-gext])
apply (erule MGFnD ′[THEN conseq12])
apply (fastforce intro: eval.Try)
apply (fastforce intro: eval.Try)
done

next
case (Fin c1 c2)
note mgf-c1 = ‹G,A`{=:n} 〈c1 〉s� {G→}›
note mgf-c2 = ‹G,A`{=:n} 〈c2 〉s� {G→}›
from wf mgf-c1 mgf-c2
show G,A`{=:n} 〈c1 Finally c2 〉s� {G→}

by (rule MGFn-Fin)
next

Theory AxCompl 517

case (FinA abr c)
show ?case

by (rule MGFn-NormalI) (rule ax-derivs.FinA)
next

case (Init C)
from hyp
show G,A`{=:n} 〈Init C 〉s� {G→}

by (rule MGFn-Init)
next

case Nil-expr
show G,A`{=:n} 〈[]〉l� {G→}

apply −
apply (rule MGFn-NormalI)
apply (rule ax-derivs.Nil [THEN conseq1])
apply (fastforce intro: eval.Nil)
done

next
case (Cons-expr e es)
thus G,A`{=:n} 〈e# es〉l� {G→}

apply −
apply (rule MGFn-NormalI)
apply (rule ax-derivs.Cons)
apply (erule MGFnD [THEN ax-NormalD])
apply (rule allI)
apply (erule MGFnD ′[THEN conseq12])
apply (fastforce intro: eval.Cons)
done

qed
thus ?thesis

by (cases rule: term-cases) auto
qed

qed

lemma MGF-asm:
[[∀C sig. is-methd G C sig −→ G,A`{ .=} In1l (Methd C sig)� {G→}; wf-prog G]]
=⇒ G,(A::state triple set)`{ .=} t� {G→}

apply (simp (no-asm-use) add: MGF-MGFn-iff)
apply (rule allI)
apply (rule MGFn-lemma)
apply (intro strip)
apply (rule MGFn-free-wt)
apply (force dest: wt-Methd-is-methd)
apply assumption
done

nested version

lemma nesting-lemma ′ [rule-format (no-asm)]:
assumes ax-derivs-asm:

∧
A ts. ts ⊆ A =⇒ P A ts

and MGF-nested-Methd:
∧

A pn. ∀ b∈bdy pn. P (insert (mgf-call pn) A) {mgf b}
=⇒ P A {mgf-call pn}

and MGF-asm:
∧

A t. ∀ pn∈U . P A {mgf-call pn} =⇒ P A {mgf t}
and finU : finite U
and uA: uA = mgf-call‘U
shows ∀A. A ⊆ uA −→ n ≤ card uA −→ card A = card uA − n

−→ (∀ t. P A {mgf t})
using finU uA
apply −
apply (induct-tac n)

518

apply (tactic ALLGOALS (clarsimp-tac context))
apply (tactic ‹dresolve-tac context [Thm.permute-prems 0 1 @{thm card-seteq}] 1 ›)
apply simp
apply (erule finite-imageI)
apply (simp add: MGF-asm ax-derivs-asm)
apply (rule MGF-asm)
apply (rule ballI)
apply (case-tac mgf-call pn ∈ A)
apply (fast intro: ax-derivs-asm)
apply (rule MGF-nested-Methd)
apply (rule ballI)
apply (drule spec, erule impE , erule-tac [2] impE , erule-tac [3] spec)
apply hypsubst-thin
apply fast
apply (drule finite-subset)
apply (erule finite-imageI)
apply auto
done

lemma nesting-lemma [rule-format (no-asm)]:
assumes ax-derivs-asm:

∧
A ts. ts ⊆ A =⇒ P A ts

and MGF-nested-Methd:
∧

A pn. ∀ b∈bdy pn. P (insert (mgf (f pn)) A) {mgf b}
=⇒ P A {mgf (f pn)}

and MGF-asm:
∧

A t. ∀ pn∈U . P A {mgf (f pn)} =⇒ P A {mgf t}
and finU : finite U

shows P {} {mgf t}
using ax-derivs-asm MGF-nested-Methd MGF-asm finU
by (rule nesting-lemma ′) (auto intro!: le-refl)

lemma MGF-nested-Methd: [[
G,insert ({Normal .

=} 〈Methd C sig〉e �{G→}) A
`{Normal .

=} 〈body G C sig〉e �{G→}
]] =⇒ G,A`{Normal .

=} 〈Methd C sig〉e �{G→}
apply (unfold MGF-def)
apply (rule ax-MethdN)
apply (erule conseq2)
apply clarsimp
apply (erule MethdI)
done

lemma MGF-deriv: wf-prog G =⇒ G,({}::state triple set)`{ .=} t� {G→}
apply (rule MGFNormalI)
apply (rule-tac mgf = λt. {Normal .

=} t� {G→} and
bdy = λ (C ,sig) .{〈body G C sig〉e } and
f = λ (C ,sig) . 〈Methd C sig〉e in nesting-lemma)

apply (erule ax-derivs.asm)
apply (clarsimp simp add: split-tupled-all)
apply (erule MGF-nested-Methd)
apply (erule-tac [2] finite-is-methd [OF wf-ws-prog])
apply (rule MGF-asm [THEN MGFNormalD])
apply (auto intro: MGFNormalI)
done

simultaneous version

lemma MGF-simult-Methd-lemma: finite ms =⇒
G,A ∪ (λ(C ,sig). {Normal .

=} 〈Methd C sig〉e� {G→}) ‘ ms

Theory AxCompl 519

|`(λ(C ,sig). {Normal .
=} 〈body G C sig〉e� {G→}) ‘ ms =⇒

G,A|`(λ(C ,sig). {Normal .
=} 〈Methd C sig〉e� {G→}) ‘ ms

apply (unfold MGF-def)
apply (rule ax-derivs.Methd [unfolded mtriples-def])
apply (erule ax-finite-pointwise)
prefer 2
apply (rule ax-derivs.asm)
apply fast
apply clarsimp
apply (rule conseq2)
apply (erule (1) ax-methods-spec)
apply clarsimp
apply (erule eval-Methd)
done

lemma MGF-simult-Methd: wf-prog G =⇒
G,({}::state triple set)|`(λ(C ,sig). {Normal .

=} 〈Methd C sig〉e� {G→})
‘ Collect (case-prod (is-methd G))

apply (frule finite-is-methd [OF wf-ws-prog])
apply (rule MGF-simult-Methd-lemma)
apply assumption
apply (erule ax-finite-pointwise)
prefer 2
apply (rule ax-derivs.asm)
apply blast
apply clarsimp
apply (rule MGF-asm [THEN MGFNormalD])
apply (auto intro: MGFNormalI)
done

corollaries

lemma eval-to-evaln: [[G`s −t�→ (Y ′, s ′);type-ok G t s; wf-prog G]]
=⇒ ∃n. G`s −t�−n→ (Y ′, s ′)

apply (cases normal s)
apply (force simp add: type-ok-def intro: eval-evaln)
apply (force intro: evaln.Abrupt)
done

lemma MGF-complete:
assumes valid: G,{}|={P} t� {Q}
and mgf : G,({}::state triple set)`{ .=} t� {G→}
and wf : wf-prog G
shows G,({}::state triple set)`{P::state assn} t� {Q}

proof (rule ax-no-hazard)
from mgf
have G,({}::state triple set)`{ .=} t� {λY s ′ s. G`s −t�→ (Y , s ′)}

by (unfold MGF-def)
thus G,({}::state triple set)`{P ∧. type-ok G t} t� {Q}
proof (rule conseq12 ,clarsimp)

fix Y s Z Y ′ s ′

assume P: P Y s Z
assume type-ok: type-ok G t s
assume eval-t: G`s −t�→ (Y ′, s ′)
show Q Y ′ s ′ Z
proof −

from eval-t type-ok wf
obtain n where evaln: G`s −t�−n→ (Y ′, s ′)

by (rule eval-to-evaln [elim-format]) iprover

520

from valid have
valid-expanded:
∀n Y s Z . P Y s Z −→ type-ok G t s

−→ (∀Y ′ s ′. G`s −t�−n→ (Y ′, s ′) −→ Q Y ′ s ′ Z)
by (simp add: ax-valids-def triple-valid-def)

from P type-ok evaln
show Q Y ′ s ′ Z

by (rule valid-expanded [rule-format])
qed

qed
qed

theorem ax-complete:
assumes wf : wf-prog G
and valid: G,{}|={P::state assn} t� {Q}
shows G,({}::state triple set)`{P} t� {Q}

proof −
from wf have G,({}::state triple set)`{ .=} t� {G→}

by (rule MGF-deriv)
from valid this wf
show ?thesis

by (rule MGF-complete)
qed

end

Chapter 25

AxExample

1 Example of a proof based on the Bali axiomatic semantics

theory AxExample
imports AxSem Example
begin

definition
arr-inv :: st ⇒ bool where

arr-inv = (λs. ∃ obj a T el. globs s (Stat Base) = Some obj ∧
values obj (Inl (arr , Base)) = Some (Addr a) ∧
heap s a = Some (|tag=Arr T 2 ,values=el|))

lemma arr-inv-new-obj:∧
a. [[arr-inv s; new-Addr (heap s)=Some a]] =⇒ arr-inv (gupd(Inl a 7→x) s)

apply (unfold arr-inv-def)
apply (force dest!: new-AddrD2)
done

lemma arr-inv-set-locals [simp]: arr-inv (set-locals l s) = arr-inv s
apply (unfold arr-inv-def)
apply (simp (no-asm))
done

lemma arr-inv-gupd-Stat [simp]:
Base 6= C =⇒ arr-inv (gupd(Stat C 7→obj) s) = arr-inv s

apply (unfold arr-inv-def)
apply (simp (no-asm-simp))
done

lemma ax-inv-lupd [simp]: arr-inv (lupd(x 7→y) s) = arr-inv s
apply (unfold arr-inv-def)
apply (simp (no-asm))
done

declare if-split-asm [split del]
declare lvar-def [simp]

ML ‹
fun inst1-tac ctxt s t xs st =
(case AList.lookup (op =) (rev (Term.add-var-names (Thm.prop-of st) [])) s of

SOME i => PRIMITIVE (Rule-Insts.read-instantiate ctxt [(((s, i), Position.none), t)] xs) st
| NONE => Seq.empty);

521

522

fun ax-tac ctxt =
REPEAT o resolve-tac ctxt [allI] THEN ′

resolve-tac ctxt
@{thms ax-Skip ax-StatRef ax-MethdN ax-Alloc ax-Alloc-Arr ax-SXAlloc-Normal ax-derivs.intros(8−)};

›

theorem ax-test: tprg,({}:: ′a triple set)`
{Normal (λY s Z :: ′a. heap-free four s ∧ ¬initd Base s ∧ ¬ initd Ext s)}
.test [Class Base].
{λY s Z . abrupt s = Some (Xcpt (Std IndOutBound))}

apply (unfold test-def arr-viewed-from-def)
apply (tactic ax-tac context 1)
defer
apply (tactic ax-tac context 1)
defer
apply (tactic ‹inst1-tac context Q

λY s Z . arr-inv (snd s) ∧ tprg,s`catch SXcpt NullPointer []›)
prefer 2
apply simp
apply (rule-tac P ′ = Normal (λY s Z . arr-inv (snd s)) in conseq1)
prefer 2
apply clarsimp
apply (rule-tac Q ′ = (λY s Z . Q Y s Z)←=False↓=♦ and Q = Q for Q in conseq2)
prefer 2
apply simp
apply (tactic ax-tac context 1)
prefer 2
apply (rule ax-impossible [THEN conseq1], clarsimp)
apply (rule-tac P ′ = Normal P and P = P for P in conseq1)
prefer 2
apply clarsimp
apply (tactic ax-tac context 1)
apply (tactic ax-tac context 1)
prefer 2
apply (rule ax-subst-Val-allI)
apply (tactic ‹inst1-tac context P ′ λa. Normal (PP a←x) [PP, x]›)
apply (simp del: avar-def2 peek-and-def2)
apply (tactic ax-tac context 1)
apply (tactic ax-tac context 1)

apply (rule-tac Q ′ = Normal (λVar :(v, f) u ua. fst (snd (avar tprg (Intg 2) v u)) = Some (Xcpt (Std
IndOutBound))) in conseq2)
prefer 2
apply (clarsimp simp add: split-beta)
apply (tactic ax-tac context 1)
apply (tactic ax-tac context 2)
apply (rule ax-derivs.Done [THEN conseq1])
apply (clarsimp simp add: arr-inv-def inited-def in-bounds-def)
defer
apply (rule ax-SXAlloc-catch-SXcpt)
apply (rule-tac Q ′ = (λY (x, s) Z . x = Some (Xcpt (Std NullPointer)) ∧ arr-inv s) ∧. heap-free two in
conseq2)
prefer 2
apply (simp add: arr-inv-new-obj)
apply (tactic ax-tac context 1)
apply (rule-tac C = Ext in ax-Call-known-DynT)
apply (unfold DynT-prop-def)
apply (simp (no-asm))

Theory AxExample 523

apply (intro strip)
apply (rule-tac P ′ = Normal P and P = P for P in conseq1)
apply (tactic ax-tac context 1)
apply (rule ax-thin [OF - empty-subsetI])
apply (simp (no-asm) add: body-def2)
apply (tactic ax-tac context 1)

defer
apply (simp (no-asm))
apply (tactic ax-tac context 1)

apply (rule-tac [2] ax-derivs.Abrupt)

apply (rule ax-derivs.Expr)
apply (tactic ax-tac context 1)
prefer 2
apply (rule ax-subst-Var-allI)
apply (tactic ‹inst1-tac context P ′ λa vs l vf . PP a vs l vf←x ∧. p [PP, x, p]›)
apply (rule allI)
apply (tactic ‹simp-tac (context |> Simplifier .del-loop split-all-tac |> Simplifier .del-simps [@{thm
peek-and-def2}, @{thm heap-def2}, @{thm subst-res-def2}, @{thm normal-def2}]) 1 ›)
apply (rule ax-derivs.Abrupt)
apply (simp (no-asm))
apply (tactic ax-tac context 1)
apply (tactic ax-tac context 2 , tactic ax-tac context 2 , tactic ax-tac context 2)
apply (tactic ax-tac context 1)
apply (tactic ‹inst1-tac context R λa ′. Normal ((λVals:vs (x, s) Z . arr-inv s ∧ inited Ext (globs s) ∧
a ′ 6= Null ∧ vs = [Null]) ∧. heap-free two) []›)
apply fastforce
prefer 4
apply (rule ax-derivs.Done [THEN conseq1],force)
apply (rule ax-subst-Val-allI)
apply (tactic ‹inst1-tac context P ′ λa. Normal (PP a←x) [PP, x]›)
apply (simp (no-asm) del: peek-and-def2 heap-free-def2 normal-def2 o-apply)
apply (tactic ax-tac context 1)
prefer 2
apply (rule ax-subst-Val-allI)
apply (tactic ‹inst1-tac context P ′ λaa v. Normal (QQ aa v←y) [QQ, y]›)
apply (simp del: peek-and-def2 heap-free-def2 normal-def2)
apply (tactic ax-tac context 1)
apply (tactic ax-tac context 1)
apply (tactic ax-tac context 1)
apply (tactic ax-tac context 1)

apply (simp (no-asm))

apply (rule-tac Q ′ = Normal ((λY (x, s) Z . arr-inv s ∧ (∃ a. the (locals s (VName e)) = Addr a ∧ obj-class
(the (globs s (Inl a))) = Ext ∧
invocation-declclass tprg IntVir s (the (locals s (VName e))) (ClassT Base)

(|name = foo, parTs = [Class Base]|) = Ext)) ∧. initd Ext ∧. heap-free two)
in conseq2)

prefer 2
apply clarsimp
apply (tactic ax-tac context 1)
apply (tactic ax-tac context 1)
defer
apply (rule ax-subst-Var-allI)
apply (tactic ‹inst1-tac context P ′ λvf . Normal (PP vf ∧. p) [PP, p]›)
apply (simp (no-asm) del: split-paired-All peek-and-def2 initd-def2 heap-free-def2 normal-def2)

524

apply (tactic ax-tac context 1)
apply (tactic ax-tac context 1)

apply (rule-tac Q ′ = Normal ((λY s Z . arr-inv (store s) ∧ vf=lvar (VName e) (store s)) ∧. heap-free three
∧. initd Ext) in conseq2)
prefer 2
apply (simp add: invocation-declclass-def dynmethd-def)
apply (unfold dynlookup-def)
apply (simp add: dynmethd-Ext-foo)
apply (force elim!: arr-inv-new-obj atleast-free-SucD atleast-free-weaken)

apply (rule ax-InitS)
apply force
apply (simp (no-asm))
apply (tactic ‹simp-tac (context |> Simplifier .del-loop split-all-tac) 1 ›)
apply (rule ax-Init-Skip-lemma)
apply (tactic ‹simp-tac (context |> Simplifier .del-loop split-all-tac) 1 ›)
apply (rule ax-InitS [THEN conseq1])
apply force
apply (simp (no-asm))
apply (unfold arr-viewed-from-def)
apply (rule allI)
apply (rule-tac P ′ = Normal P and P = P for P in conseq1)
apply (tactic ‹simp-tac (context |> Simplifier .del-loop split-all-tac) 1 ›)
apply (tactic ax-tac context 1)
apply (tactic ax-tac context 1)
apply (rule-tac [2] ax-subst-Var-allI)
apply (tactic ‹inst1-tac context P ′ λvf l vfa. Normal (P vf l vfa) [P]›)
apply (tactic ‹simp-tac (context |> Simplifier .del-loop split-all-tac |> Simplifier .del-simps [@{thm
split-paired-All}, @{thm peek-and-def2}, @{thm heap-free-def2}, @{thm initd-def2}, @{thm normal-def2},
@{thm supd-lupd}]) 2 ›)
apply (tactic ax-tac context 2)
apply (tactic ax-tac context 3)
apply (tactic ax-tac context 3)
apply (tactic ‹inst1-tac context P λvf l vfa. Normal (P vf l vfa←♦) [P]›)
apply (tactic ‹simp-tac (context |> Simplifier .del-loop split-all-tac) 2 ›)
apply (tactic ax-tac context 2)
apply (tactic ax-tac context 1)
apply (tactic ax-tac context 2)
apply (rule ax-derivs.Done [THEN conseq1])
apply (tactic ‹inst1-tac context Q λvf . Normal ((λY s Z . vf=lvar (VName e) (snd s)) ∧. heap-free four
∧. initd Base ∧. initd Ext) []›)
apply (clarsimp split del: if-split)
apply (frule atleast-free-weaken [THEN atleast-free-weaken])
apply (drule initedD)
apply (clarsimp elim!: atleast-free-SucD simp add: arr-inv-def)
apply force
apply (tactic ‹simp-tac (context |> Simplifier .del-loop split-all-tac) 1 ›)
apply (rule ax-triv-Init-Object [THEN peek-and-forget2 , THEN conseq1])
apply (rule wf-tprg)
apply clarsimp
apply (tactic ‹inst1-tac context P λvf . Normal ((λY s Z . vf = lvar (VName e) (snd s)) ∧. heap-free four
∧. initd Ext) []›)
apply clarsimp
apply (tactic ‹inst1-tac context PP λvf . Normal ((λY s Z . vf = lvar (VName e) (snd s)) ∧. heap-free
four ∧. Not ◦ initd Base) []›)
apply clarsimp

apply (rule conseq1)

Theory AxExample 525

apply (tactic ax-tac context 1)
apply clarsimp
done

lemma Loop-Xcpt-benchmark:
Q = (λY (x,s) Z . x 6= None −→ the-Bool (the (locals s i))) =⇒
G,({}:: ′a triple set)`{Normal (λY s Z :: ′a. True)}
.lab1 · While(Lit (Bool True)) (If (Acc (LVar i)) (Throw (Acc (LVar xcpt))) Else

(Expr (Ass (LVar i) (Acc (LVar j))))). {Q}
apply (rule-tac P ′ = Q and Q ′ = Q←=False↓=♦ in conseq12)
apply safe
apply (tactic ax-tac context 1)
apply (rule ax-Normal-cases)
prefer 2
apply (rule ax-derivs.Abrupt [THEN conseq1], clarsimp simp add: Let-def)
apply (rule conseq1)
apply (tactic ax-tac context 1)
apply clarsimp
prefer 2
apply clarsimp
apply (tactic ax-tac context 1)
apply (tactic

‹inst1-tac context P ′ Normal (λs.. (λY s Z . True)↓=Val (the (locals s i))) []›)
apply (tactic ax-tac context 1)
apply (rule conseq1)
apply (tactic ax-tac context 1)
apply clarsimp
apply (rule allI)
apply (rule ax-escape)
apply auto
apply (rule conseq1)
apply (tactic ax-tac context 1)
apply (tactic ax-tac context 1)
apply (tactic ax-tac context 1)
apply clarsimp
apply (rule-tac Q ′ = Normal (λY s Z . True) in conseq2)
prefer 2
apply clarsimp
apply (rule conseq1)
apply (tactic ax-tac context 1)
apply (tactic ax-tac context 1)
prefer 2
apply (rule ax-subst-Var-allI)
apply (tactic ‹inst1-tac context P ′ λb Y ba Z vf . λY (x,s) Z . x=None ∧ snd vf = snd (lvar i s) []›)
apply (rule allI)
apply (rule-tac P ′ = Normal P and P = P for P in conseq1)
prefer 2
apply clarsimp
apply (tactic ax-tac context 1)
apply (rule conseq1)
apply (tactic ax-tac context 1)
apply clarsimp
apply (tactic ax-tac context 1)
apply clarsimp
done

end

	Overview
	Basis
	Definitions extending HOL as logical basis of Bali

	Table
	Abstract tables and their implementation as lists

	Name
	Java names

	Value
	Java values

	Type
	Java types

	Term
	Java expressions and statements

	Decl
	Field, method, interface, and class declarations, whole Java programs
	Modifier
	Declaration (base "class" for member,interface and class declarations
	Member (field or method)
	Field
	Method
	Interface
	Class

	TypeRel
	The relations between Java types

	DeclConcepts
	Advanced concepts on Java declarations like overriding, inheritance, dynamic method lookup
	accessibility of types (cf. 6.6.1)
	accessibility of members
	imethds
	accimethd
	methd
	accmethd
	dynmethd
	dynlookup
	fields
	accfield
	is methd

	WellType
	Well-typedness of Java programs

	DefiniteAssignment
	Definite Assignment
	Very restricted calculation fallback calculation
	Analysis of constant expressions
	Main analysis for boolean expressions
	Lifting set operations to range of tables (map to a set)

	WellForm
	Well-formedness of Java programs
	accessibility concerns

	State
	State for evaluation of Java expressions and statements
	access
	memory allocation
	initialization
	update
	update

	Eval
	Operational evaluation (big-step) semantics of Java expressions and statements

	Example
	Example Bali program

	Conform
	Conformance notions for the type soundness proof for Java

	DefiniteAssignmentCorrect
	Correctness of Definite Assignment

	TypeSafe
	The type soundness proof for Java
	accessibility
	Ideas for the future

	Evaln
	Operational evaluation (big-step) semantics of Java expressions and statements

	Trans
	AxSem
	Axiomatic semantics of Java expressions and statements (see also Eval.thy)
	peek-and
	assn-supd
	supd-assn
	subst-res
	subst-Bool
	peek-res
	ign-res
	peek-st
	ign-res-eq
	RefVar
	allocation

	AxSound
	Soundness proof for Axiomatic semantics of Java expressions and statements

	AxCompl
	Completeness proof for Axiomatic semantics of Java expressions and statements

	AxExample
	Example of a proof based on the Bali axiomatic semantics

