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Chapter 1

Overview

These theories, called Bali, model and analyse different aspects of the JavaCard source language.
The basis is an abstract model of the JavaCard source language. On it, a type system, an operational
semantics and an axiomatic semantics (Hoare logic) are built. The execution of a wellformed program
(with respect to the type system) according to the operational semantics is proved to be typesafe.
The axiomatic semantics is proved to be sound and relative complete with respect to the operational
semantics.

We have modelled large parts of the original JavaCard source language. It models features such as:

e The basic “primitive types” of Java

o Classes and related concepts

e Class fields and methods

o Instance fields and methods

o Interfaces and related concepts

o Arrays

e Static initialisation

e Static overloading of fields and methods

e Inheritance, overriding and hiding of methods, dynamic binding
e All cases of abrupt termination

— Exception throwing and handling

— break, continue and return
o Packages

o Access Modifiers (private, protected, public)

A “definite assignment” check

The following features are missing in Bali wrt. JavaCard:
o Some primitive types (byte, short)
o Syntactic variants of statements (do-loop, for-loop)

o Interface fields



e Inner Classes

In addition, features are missing that are not part of the JavaCard language, such as multithreading
and garbage collection. No attempt has been made to model peculiarities of JavaCard such as the
applet firewall or the transaction mechanism.

Overview of the theories:

Basis Some basic definitions and settings not specific to JavaCard but missing in HOL.

Table Definition and some properties of a lookup table to map various names (like class names or
method names) to some content (like classes or methods).

Name Definition of various names (class names, variable names, package names,...)
Value JavaCard expression values (Boolean, Integer, Addresses,...)

Type JavaCard types. Primitive types (Boolean, Integer,...) and reference types (Classes, Inter-
faces, Arrays,...)

Term JavaCard terms. Variables, expressions and statements.

Decl Class, interface and program declarations. Recursion operators for the class and the interface
hierarchy.

TypeRel Various relations on types like the subclass-, subinterface-, widening-, narrowing- and
casting-relation.

DeclConcepts Advanced concepts on the class and interface hierarchy like inheritance, overriding,
hiding, accessibility of types and members according to the access modifiers, method lookup.

WellType Typesystem on the JavaCard term level.
DefiniteAssignment The definite assignment analysis on the JavaCard term level.
WellForm Typesystem on the JavaCard class, interface and program level.

State The program state (like object store) for the execution of JavaCard. Abrupt completion
(exceptions, break, continue, return) is modelled as flag inside the state.

Eval Operational (big step) semantics for JavaCard.

Example An concrete example of a JavaCard program to validate the typesystem and the opera-
tional semantics.

Conform Conformance predicate for states. When does an execution state conform to the static
types of the program given by the typesystem.

DefiniteAssignmentCorrect Correctness of the definite assignment analysis. If the analysis re-
gards a variable as definitely assigned at a certain program point, the variable will actually be
assigned there during execution.

TypeSafe Typesafety proof of the execution of JavaCard. ”"Welltyped programs don’t go wrong”
or more technical: The execution of a welltyped JavaCard program preserves the conformance
of execution states.

Evaln Copy of the operational semantics given in theory Eval expanded with an annotation for
the maximal recursive depth. The semantics is not altered. The annotation is needed for the
soundness proof of the axiomatic semantics.



Trans A smallstep operational semantics for JavaCard.
AxSem An axiomatic semantics (Hoare logic) for JavaCard.

AxSound The soundness proof of the axiomatic semantics with respect to the operational seman-
tics.

AxCompl The proof of (relative) completeness of the axiomatic semantics with respect to the
operational semantics.

AxExample An concrete example of the axiomatic semantics at work, applied to prove some
properties of the JavaCard example given in theory Example.
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Chapter 2

Basis

1 Definitions extending HOL as logical basis of Bali

theory Basis
imports Main
begin

misc

ML «fun strip-tac ctzt i = REPEAT (resolve-tac ctxt [impl, alll] 7))

declare if-split-asm [split] option.split [split] option.split-asm [split]

setup «map-theory-simpset (fn ctat => ctat |> Simplifier.add-loop (split-all-tac, split-all-tac))»
declare if-weak-cong [cong del] option.case-cong-weak [cong del]

declare length-Suc-conv [iff]

lemma Collect-split-eq: {p. P (case-prod f p)} = {(a,b). P (fa b)}
by auto

lemma subset-insertD: A C insertt B— A C BNz ¢ AV (3B A= insert z B’ N B’ C B)
apply (case-tac z € A)
apply (rule disjI2)
apply (rule-tac x = A — {z} in exl)
apply fast+
done

abbreviation nat3 :: nat (<3>) where 3 = Suc 2
abbreviation nat/ :: nat (</)) where 4 = Suc 3

lemma irrefl-trancll: r=* N r* = {} = V. (2, 2) ¢ r*
by (blast elim: tranclE dest: trancl-into-rtrancl)

lemma trancl-rtrancl-trancl: [(z, y) € v (y, 2) € 7*] = (z, 2) € r*
by (auto dest: tranclD rtrancl-trans rtrancl-into-trancl2)

lemma rtrancl-into-trancl3: [(a, b) € r*; a # b] = (a, b) € 7
apply (drule rtranclD)
apply auto
done
lemma rtrancl-into-rtrancl2: [(a, b) € r; (b, ¢) € r*] = (a, ¢) € *
by (auto intro: rtrancl-trans)

11



12

lemma triangle-lemma:
assumes unique: Na b c. [(a,b)er; (a,c)er] = b= ¢
and az: (a,z)er* and ay: (a,y)er*
shows (z,y)er* Vv (y,z)er*
using ax ay
proof (induct rule: converse-rtrancl-induct)
assume (z,y)er*
then show ?thesis by blast
next
fix a v
assume a-v-1: (a, v) € 1
and v-z-1t: (v, ) € 1*
and a-y-rt: (a, y) € *
and hyp: (v, y) € r* = (z, y) € v V (y, z) € r*
from a-y-rt show (z, y) € r* V (y, z) € r*
proof (cases rule: converse-rtranclE)
assume a = y
with a-v-r v-z-rt have (y,z) € r*
by (auto intro: rtrancl-trans)
then show ?thesis by blast
next
fix w
assume a-w-r: (a, w) € T
and w-y-rt: (w, y) € r*
from a-v-r a-w-r unique have v=w by auto
with w-y-rt hyp show ?thesis by blast
qed
qed

lemma rtrancl-cases:
assumes (a,b)er*
obtains (Refl) a = b
| (Trancl) (a,b)er™
apply (rule rtranclE [OF assms])
apply (auto dest: rtrancl-into-trancll)
done

lemma Ball-weaken: [Ball s P; \ . P t—Q z]==Ball s Q
by auto

lemma finite-SetCompr2:
finite {f y x |z y. Py} if finite (Collect P)
Vy. Py — finite (range (f y))

proof —
have {fyz |z y. Py} = (UyeCCollect P. range (f y))
by auto
with that show ?thesis by simp
qed

lemma list-all2-trans: Ya b c. Plab — P2bc — P3ac—
Vas2 xs3. list-all2 P1 xs1 xs2 — list-all2 P2 xs2 xs8 — list-all2 P3 xsl xs3

apply (induct-tac xzs1)

apply simp

apply (rule alll)

apply (induct-tac zs2)

apply simp

apply (rule alll)

apply (induct-tac zs3)



Theory Basis

apply auto
done

pairs

lemma surjective-pairings:

p = (fst p, fst (snd p), fst (snd (snd p)), fst (snd (snd (snd p))),
snd (snd (snd (snd p))))
by auto

lemma fst-splitE [elim!]:
assumes fst s’ = '
obtains z s where s’ = (z,s) and z = z’
using assms by (cases s’) auto

lemma fst-in-set-lemma: (x, y) € set | = = € fst “ set |
by (induct ) auto

quantifiers

lemma All-Ez-refl-eq2 [simp]: (Va. (3b. 2 =fbAN Qb)) — Px)=(Vb. Qb — P (fb))
by auto

lemma ez-ex-miniscopel [simp]: (3w v. Pwo A Qv) = (Fv. 3w. Pwv) A Qv)
by auto

lemma ex-miniscope2 [simp]: (3v. Pv A QA Rv) = (Q A (3v. Pv A R))
by auto

lemma ez-reorder31: (3zzy. Pryz) = (3zyz Payz)
by auto

lemma All-Ez-refl-eql [simp]: (Vz. (3b. 2 = fb) — Px) = (Vb P (fb))
by auto

sums
notation case-sum (infixr <'(+')) 80)

primrec the-Inl :: ‘a + 'b = 'a
where the-Inl (Inl a) = a

primrec the-Inr :: 'a + 'b = 'b
where the-Inr (Inr b) = b

datatype (‘a, ‘b, ‘c) sum3 = Inl 'a | In2 'b | In8 'c

primrec the-Inl :: ('a, 'b, 'c) sum3 = 'a
where the-Inl (Inl a) = a

primrec the-In2 :: (‘a, 'b, '¢) sum3 = 'b
where the-In2 (In2b) = b

primrec the-In3 :: ('a, 'b, '¢) sum3 = 'c
where the-In3 (In3 c¢) = ¢

abbreviation Inil :: ‘al = ('al + 'ar, b, 'c) sum3
where Inll e = Inl (Inl e)
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abbreviation Inir :: ‘ar = (‘al + 'ar, 'b, 'c) sum3
where Inlr ¢ = Inl (Inr ¢)

abbreviation the-Inil :: (al + 'ar, 'b, 'c) sum3 = 'al
where the-Inll = the-Inl o the-Ini

abbreviation the-Inir :: (‘al + 'ar, 'b, 'c) sum3 = 'ar
where the-Inlr = the-Inr o the-Inl

ML «
fun sum3-instantiate ctxt thm =
map (fn s =>
sitmplify (ctzt |> Simplifier.del-simps Q{thms not-None-eq})
(Rule-Insts.read-instantiate ctzt [(((t, 0), Position.none), In ~s ~ z)] [2] thm))
[11,2,3,11]

quantifiers for option type

syntax
-Oall :: [pttrn, 'a option, bool] = bool («(3! -:-:/ -)» [0,0,10] 10)
-Oex :: [pttrn, 'a option, bool] = bool («(37 -:-:/ -)» [0,0,10] 10)

syntax (symbols)
-Oall :: [pttrn, 'a option, bool] = bool
-Oex :: [pttrn, 'a option, bool] = bool

«(8V-e-:/ -)» [0,0,10] 10)
«(83-€-:/ -)» [0,0,10] 10)

—_—

syntax-consts
-Oall = Ball and
-Oex = Bex

translations
VzeA: P = Vze CONST set-option A. P
Jz€A: P = J2€CONST set-option A. P

Special map update

Deemed too special for theory Map.
definition chg-map :: ('b = 'b) = ‘a = ('la — 'b) = (‘la — 'b)
where chg-map f a m = (case m a of None = m | Some b = m(a—f b))

lemma chg-map-new[simp]: m a = None = chg-map f a m = m
unfolding chg-map-def by auto

lemma chg-map-upd[simp]: m a = Some b => chg-map f a m = m(a—fb)
unfolding chg-map-def by auto

lemma chg-map-other [simpl: a # b = chg-map famb=mb
by (auto simp: chg-map-def)

unique association lists
definition unique :: ('a x 'b) list = bool

where unique = distinct o map fst

lemma uniqueD: unique | = (x, y) € set | = (¢, y) € setl =z =2' = y =y’
unfolding unique-def o-def
by (induct 1) (auto dest: fst-in-set-lemma)
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lemma unique-Nil [simp]: unique []
by (simp add: unique-def)

lemma unique-Cons [simp]: unique ((z,y)#1) = (unique | A (Vy. (z,y) ¢ set 1))
by (auto simp: unique-def dest: fst-in-set-lemma)

lemma unique-ConsD: unique (z#xs) = unique xs
by (simp add: unique-def)

lemma unique-single [simpl: A\p. unique [p)
by simp

lemma unique-append [rule-format (no-asm)|: unique I’ = unique | =
(V(z,y)eset I. ¥V (z',y")eset I z' # ©) — unique (I Q ')
by (induct ) (auto dest: fst-in-set-lemma)

lemma unique-map-inj: unique | = inj f = unique (map (A(k,z). (fk, g k z)) I)
by (induct I) (auto dest: fst-in-set-lemma simp add: inj-eq)

lemma map-of-Somel: unique | = (k, ) € set | = map-of | k = Some z
by (induct ) auto

list patterns

definition Isplit :: [['a, 'a list] = 'b, 'a list] = 'b
where Isplit = (Af 1. f (hd 1) (¢ 1))

list patterns — extends pre-defined type "pttrn" used in abstractions

syntax

-lpttrn : [pttrn, pttrn] = pttrn - («-#/- [901,900] 900)
syntax-consts

-lpttrn = Isplit
translations

Ay # z # xs. b = CONST Isplit (A\y x # xs. b)

Az # xs. b = CONST Isplit (Ax xs. b)

lemma Isplit [simp): lsplit ¢ (z#xs) = ¢ z xs
by (simp add: lsplit-def)

lemma [split2 [simp]: Isplit P (x#txs) y z = Prasy z
by (simp add: Isplit-def)

end
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Chapter 3

Table

1 Abstract tables and their implementation as lists

theory Table imports Basis begin

design issues:

o definition of table: infinite map vs. list vs. finite set list chosen, because:

+ a priori finite
+ lookup is more operational than for finite set

- not very abstract, but function table converts it to abstract mapping
 coding of lookup result: Some/None vs. value/arbitrary Some/None chosen, because:

++ makes definedness check possible (applies also to finite set), which is important for the
type standard, hiding/overriding, etc. (though it may perhaps be possible at least for
the operational semantics to treat programs as infinite, i.e. where classes, fields, methods
etc. of any name are considered to be defined)

- sometimes awkward case distinctions, alleviated by operator 'the’

type-synonym (‘a, 'b) table — table with key type ’a and contents type 'b
— g — '

type-synonym (‘a, 'b) tables — non-unique table with key ’a and contents ’b
="'a = 'b set

map of / table of

abbreviation
table-of :: (‘a x 'b) list = ('a, 'b) table — concrete table
where table-of = map-of

translations

(type) (‘a, 'b) table <= (type) 'a — b

lemma map-add-find-left[simp]: n k = None = (m ++ n) k= m k
by (simp add: map-add-def)

Conditional Override

definition cond-override :: ('b ='b = bool) = ('a, 'b)table = ('a, 'b)table = (‘a, 'b) table where

— when merging tables old and new, only override an entry of table old when the condition cond holds

17
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cond-override cond old new =
(Ak.
(case new k of
None = old k
| Some new-val = (case old k of
None = Some new-val
| Some old-val = (if cond new-val old-val
then Some new-val
else Some old-val))))

lemma cond-override-emptyl [simp|: cond-override ¢ Map.empty t = t
by (simp add: cond-override-def fun-eq-iff)

lemma cond-override-empty2|[simpl|: cond-override ¢ t Map.empty = t
by (simp add: cond-override-def fun-eq-iff)

lemma cond-override-None[simp]:
old k = None = (cond-override c old new) k = new k
by (simp add: cond-override-def)

lemma cond-override-override:
[old k = Some ov;new k = Some nv; C nv ov]
= (cond-override C old new) k = Some nv
by (auto simp add: cond-override-def)

lemma cond-override-noQuerride:
[old k = Some ov;new k = Some nv; = (C nv ov)]
= (cond-override C old new) k = Some ov
by (auto simp add: cond-override-def)

lemma dom-cond-override: dom (cond-override C s t) C dom s U dom t
by (auto simp add: cond-override-def dom-def)

lemma finite-dom-cond-override:

[ finite (dom s); finite (dom t) | = finite (dom (cond-override C s t))
apply (rule-tac B=dom s U dom t in finite-subset)

apply (rule dom-cond-override)

by (rule finite-UnlI)

Filter on Tables

definition filter-tab :: (‘a = 'b = bool) = ('a, 'b) table = ('a, 'b) table
where
filter-tab ¢ t = (A\k. (case t k of
None = None
| Some x = if ¢ k « then Some z else None))

lemma filter-tab-empty[simp): filter-tab ¢ Map.empty = Map.empty
by (simp add: filter-tab-def empty-def)

lemma filter-tab-True[simp|: filter-tab (Az y. True) t =t
by (simp add: fun-eq-iff filter-tab-def)

lemma filter-tab-False[simp]: filter-tab (A\x y. False) t = Map.empty
by (simp add: fun-eq-iff filter-tab-def empty-def)

lemma filter-tab-ran-subset: ran (filter-tab ¢ t) C ran t
by (auto simp add: filter-tab-def ran-def)
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lemma filter-tab-range-subset: range (filter-tab ¢ t) C range t U {None}
apply (auto simp add: filter-tab-def)

apply (drule sym, blast)

done

lemma finite-range-filter-tab:

finite (range t) = finite (range (filter-tab c t))
apply (rule-tac B=range t U {None} in finite-subset)
apply (rule filter-tab-range-subset)
apply (auto intro: finite-Unl)
done

lemma filter-tab-SomeD|dest!]:
filter-tab ¢ t k = Some v = (t k = Some ) N c k x
by (auto simp add: filter-tab-def)

lemma filter-tab-Somel: [t k = Some z;C k x] = filter-tab C' t k = Some x
by (simp add: filter-tab-def)

lemma filter-tab-all-True:

Vky thk=Somey— pky=filter-tabpt=1
apply (auto simp add: filter-tab-def fun-eq-iff)
done

lemma filter-tab-all-True-Some:
[V ky. tk= Somey — pky;tk= Somev] = filter-tab p t k = Some v
by (auto simp add: filter-tab-def fun-eq-iff)

lemma filter-tab-all-False:
VY ky. tk= Somey— - pky=filter-tab p t = Map.empty
by (auto simp add: filter-tab-def fun-eq-iff)

lemma filter-tab-None: t k = None = filter-tab p t k = None
apply (simp add: filter-tab-def fun-eq-iff)
done

lemma filter-tab-dom-subset: dom (filter-tab C' t) C dom t
by (auto simp add: filter-tab-def dom-def)

lemma filter-tab-eq: [a=b] = filter-tab C a = filter-tab C' b
by (auto simp add: fun-eq-iff filter-tab-def)

lemma finite-dom-filter-tab:

finite (dom t) = finite (dom (filter-tab C't))
apply (rule-tac B=dom t in finite-subset)
by (rule filter-tab-dom-subset)

lemma filter-tab-weaken:
[Vactk: I besk: Pakb
N kzy. [tk = Somex;s k= Somey] = cond kz — cond k y
] =V a € filter-tab cond t k: 3 b € filter-tab cond s k: P a b
by (force simp add: filter-tab-def)

lemma cond-override-filter:
IA k old new. [s k = Some new; t k = Some old]
= (= overC new old — = filterC k new) A
(overC new old — filterC k old — filterC' k new)
| =
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cond-override overC (filter-tab filterC t) (filter-tab filterC' s)
= filter-tab filterC (cond-override overC't s)
by (auto simp add: fun-eq-iff cond-override-def filter-tab-def )

Misc

lemma Ball-set-table: (V (z,y)€ setl. Pxy) =V z.V y€ map-of lax: Pz y
apply (erule rev-mp)

apply (induct 1)

apply simp

apply (simp (no-asm))

apply auto

done

lemma Ball-set-tableD:

[(V (z,y)€ setl. Pz y); z € set-option (table-of | xa)] = P za x
apply (frule Ball-set-table)
by auto

declare map-of-SomeD [elim]

lemma table-of-Some-in-set:
table-of | k = Some v = (k,z) € set |
by auto

lemma set-get-eq:
unique | => (k, the (table-of 1 k)) € set | = (table-of I k # None)
by (auto dest!: weak-map-of-Somel)

lemma inj-Pair-const2: inj (\k. (k, C))
apply (rule inj-onl)

apply auto

done

lemma table-of-mapconst-Somel:
[table-of t k = Some y’; snd y=y'; fst y=c] =
table-of (map (\(k,x). (k,c,x)) t) k = Some y
by (induct t) auto

lemma table-of-mapconst-Nonel:
[table-of t k = None] =
table-of (map (M(k,x). (k,c,x)) t) k = None
by (induct t) auto

lemmas table-of-map2-Somel = inj-Pair-const2 [THEN map-of-mapk-Somel

lemma table-of-map-Somel: table-of t k = Some r —>
table-of (map (A(k,x). (k, fz)) t) k = Some (f z)
by (induct t) auto

lemma table-of-remap-SomeD:
table-of (map (M((k,k"),x). (k,(k',x))) t) k = Some (k';z) =
table-of t (k, k') = Some x
by (induct t) auto

lemma table-of-mapf-Some:
Vey fe=fy—z=y—
table-of (map (M(k,x). (k,fz)) t) k = Some (f ) = table-of t k = Some z
by (induct t) auto
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lemma table-of-mapf-SomeD [dest!]:
table-of (map (M (k,x). (k, fz)) t) k = Some z = (Fyctable-of t k: z=f y)
by (induct t) auto

lemma table-of-mapf-NoneD [dest!]:
table-of (map (M k,x). (k, fz)) t) k = None = (table-of t k = None)
by (induct t) auto

lemma table-of-mapkey-SomeD [dest!]:
table-of (map (M(k,x). ((k,C),z)) t) (k,D) = Some © = C = D A table-of t k = Some z
by (induct t) auto

lemma table-of-mapkey-SomeD2 [dest!]:
table-of (map (M(k,x). ((k,C),z)) t) ek = Some & =
C = snd ek A table-of t (fst ek) = Some z
by (induct t) auto

lemma table-append-Some-iff: table-of (xsQys) k = Some z =

(table-of s k = Some z V (table-of s k = None A table-of ys k = Some z))
apply (simp)

apply (rule map-add-Some-iff)

done

lemma table-of-filter-unique-SomeD [rule-format (no-asm)]:
table-of (filter P zs) k = Some z = unique xs — table-of xs k = Some z
by (induct zs) (auto del: map-of-SomeD introl: map-of-SomeD)

definition Un-tables :: ('a, 'b) tables set = ('a, 'b) tables
where Un-tables ts = (k. |Jt€ts. t k)

definition overrides-t :: (‘a, 'b) tables = (‘a, 'b) tables = ('a, 'b) tables
(infix] «@®» 100)
where s ®® t = (Ak. if t k = {} then s k else t k)

definition
hidings-entails :: (‘a, 'b) tables = ('a, 'c) tables = ('b = '¢ = bool) = bool
(<- hidings - entails -» 20)
where (¢ hidings s entails R) = (Vk. Vaet k. Vyes k. Rz y)

definition
— variant for unique table:
hiding-entails :: ('a, 'b) table = (a, 'c) table = (b = 'c¢ = bool) = bool
(<- hiding - entails - 20)
where (¢ hiding s entails R) = (Vk. Vzet k: Vyes k: Rz y)

definition
— variant for a unique table and conditional overriding:
cond-hiding-entails :: ('a, 'b) table = ('a, 'c) table
= (b = ‘¢ = bool) = ('b = ¢ = bool) = bool
(¢~ hiding - under - entails -» 20)
where (¢ hiding s under C entails R) = (Vk. Vzet k:Vyesk: Cxy — Ruxy)

Untables

lemma Un-tablesI [intro]: ¢ € ts = x € t k = © € Un-tables ts k
by (auto simp add: Un-tables-def)
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lemma Un-tablesD [dest!]: © € Un-tables ts k = Jt. t € ts AN x € t k
by (auto simp add: Un-tables-def)

lemma Un-tables-empty [simpl: Un-tables {} = (Ak. {})
by (simp add: Un-tables-def)

overrides

lemma empty-overrides-t [simp]: (Ak. {}) ®® m = m
by (simp add: overrides-t-def)

lemma overrides-empty-t [simp]: m &® (Ak. {})
by (simp add: overrides-t-def)

[
3

lemma overrides-t-Some-iff:
(zesdat)k)=(zetkVitk={}ANz€sk)
by (simp add: overrides-t-def)

lemmas overrides-t-SomeD = overrides-t-Some-iff [THEN iffD1, dest!]

lemma overrides-t-right-empty [simp]: nk ={} = (m®® n) k=mk
by (simp add: overrides-t-def)

lemma overrides-t-find-right [simp: nk # {} = (m ®® n) k=nk
by (simp add: overrides-t-def)

hiding entails

lemma hiding-entailsD:
t hiding s entails R = t k = Some x = sk = Somey = Rzy
by (simp add: hiding-entails-def)

lemma empty-hiding-entails [simp): Map.empty hiding s entails R
by (simp add: hiding-entails-def)

lemma hiding-empty-entails [simp]: t hiding Map.empty entails R
by (simp add: hiding-entails-def)

cond hiding entails

lemma cond-hiding-entailsD:
[t hiding s under C entails R; t k = Some z; s k = Some y; Czyl = Rzy
by (simp add: cond-hiding-entails-def)

lemma empty-cond-hiding-entails[simp]: Map.empty hiding s under C entails R
by (simp add: cond-hiding-entails-def)

lemma cond-hiding-empty-entails[simp]: t hiding Map.empty under C entails R
by (simp add: cond-hiding-entails-def)

lemma hidings-entailsD: [t hidings s entails R; x € tk; y € sk] = Rz y
by (simp add: hidings-entails-def)

lemma hidings-empty-entails [introl]: t hidings (Ak. {}) entails R
apply (unfold hidings-entails-def)

apply (simp (no-asm))

done

lemma empty-hidings-entails [introl]:
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(Ak. {}) hidings s entails Rapply (unfold hidings-entails-def)
by (simp (no-asm))

primrec atleast-free :: (‘a — 'b) => nat => bool
where
atleast-free m 0 = True
| atleast-free-Suc: atleast-free m (Suc n) = (Fa. m a = None A (¥ b. atleast-free (m(a—b)) n))

lemma atleast-free-weaken [rule-format (no-asm)]:
Y m. atleast-free m (Suc n) — atleast-free m n

apply (induct-tac n)

apply (simp (no-asm))

apply clarify

apply (simp (no-asm))

apply (drule atleast-free-Suc [THEN iffD1])

apply fast
done

lemma atleast-free-Sucl:
[| b a = None; ¥ obj. atleast-free (h(a|—>0bj)) n |] ==> atleast-free h (Suc n)
by force

declare fun-upd-apply [simp del]

lemma atleast-free-SucD-lemma [rule-format (no-asm)]:

V'm a. m a = None — (V c. atleast-free (m(a—c)) n) —
(Vb d. a # b — atleast-free (m(b—d)) n)

apply (induct-tac n)

apply auto

apply (rule-tac x = a in exl)

apply (rule conjI)

apply (force simp add: fun-upd-apply)

apply (erule-tac V.= m a = None in thin-rl)

apply clarify

apply (subst fun-upd-twist)

apply (erule not-sym)

apply (rename-tac ba)

apply (drule-tac = ba in spec)

apply clarify

apply (tactic smp-tac context 2 1)

apply (erule (1) notE impFE)

apply (case-tac aa = b)

apply fast+

done

declare fun-upd-apply [simp)

lemma atleast-free-SucD: atleast-free h (Suc n) ==> atleast-free (h(a|—>b)) n
apply auto

apply (case-tac aa = a)

apply auto

apply (erule atleast-free-SucD-lemma)

apply auto

done

declare atleast-free-Suc [simp del]

end
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Chapter 4

Name

1 Java names

theory Name imports Basis begin

typedecl tnam — ordinary type name, i.e. class or interface name
typedecl pname — package name
typedecl mname — method name
typedecl vname — variable or field name
typedecl label — label as destination of break or continue
datatype ename — expression name
= VNam vname
| Res — special name to model the return value of methods
datatype Iname — names for local variables and the This pointer
= EName ename
| This
abbreviation VName : vname = Iname

where VName n == EName (VNam n)

abbreviation Result :: Iname
where Result == EName Res

datatype zname — names of standard exceptions
= Throwable
| NullPointer | OutOfMemory | ClassCast
| NegArrSize | IndOutBound | ArrStore

lemma an-cases:
zn = Throwable V xzn = NullPointer V
zn = OutOfMemory V zn = ClassCast V
an = NegArrSize V zn = IndOutBound V xn = ArrStore
apply (induct zn)
apply auto
done

datatype tname — type names for standard classes and other type names
= Object’
| SXept!  zname
| TName tnam

record gtname = — qualified tname cf. 6.5.3, 6.5.4

25
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pid :: pname
tid :: tname

class has-pname =
fixes pname :: 'a = pname

instantiation pname :: has-pname
begin

definition
pname-pname-def: pname (p:pname) = p

instance ..
end

class has-tname =
fixes tname :: 'a = tname

instantiation tname :: has-tname
begin

definition
tname-tname-def: tname (t::tname) = t

instance ..
end

definition
gtname-qtname-def: gtname (g::'a gtname-scheme) = q

translations
(type) gtname <= (type) (pid::pname,tid::tname)

(type) 'a gtname-scheme <= (type) (pid::pname,tid::tname,. . .:

axiomatization java-lang::pname — package java.lang
definition

Object :: qtname

where Object = (pid = java-lang, tid = Object’)

definition SXcpt :: zname = gtname
where SXcpt = (Az. (pid = java-lang, tid = SXcpt’ x)))

lemma Object-neq-SXept [simp]: Object # SXcpt zn
by (simp add: Object-def SXcpt-def)

lemma SXcpt-inject [simp: (SXcept an = SXept am) = (an =
by (simp add: SXcpt-def)

end

/al)

xm)



Chapter 5

Value

1 Java values
theory Value imports Type begin
typedecl loc — locations, i.e. abstract references on objects

datatype val

= Unit — dummy result value of void methods
| Bool bool ~ — Boolean value

| Intg int — integer value

| Null — null reference

| Addr loc — addresses, i.e. locations of objects

primrec the-Bool :: val = bool
where the-Bool (Bool b) = b

primrec the-Intg :: val = int
where the-Intg (Intg i) = i

primrec the-Addr :: val = loc
where the-Addr (Addr a) = a

type-synonym dyn-ty = loc = ty option

primrec typeof :: dyn-ty = val = ty option
where

typeof dt Unit = Some (PrimT Void)
| typeof dt (Bool b) = Some (PrimT Boolean)
| typeof dt (Intg i) = Some (PrimT Integer)
| typeof dt Null = Some NT
| typeof dt (Addr a) = dt a

primrec defpval :: prim-ty = val — default value for primitive types
where
defpval Void = Unit
| defpval Boolean = Bool False
| defpval Integer = Intg 0

primrec default-val :: ty = val — default value for all types
where

default-val (PrimT pt) = defpval pt
| default-val (RefT r ) = Null

27
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end



Chapter 6

Type

1 Java types
theory Type imports Name begin

simplifications:
e only the most important primitive types

e the null type is regarded as reference type

datatype prim-ty — primitive type, cf. 4.2
= Void — result type of void methods
| Boolean
| Integer
datatype ref-ty — reference type, cf. 4.3
= NullT — null type, cf. 4.1

| IfaceT gtname — interface type
| ClassT qtname — class type
| ArrayT ty ~ — array type

and ty — any type, cf. 4.1
= PrimT prim-ty — primitive type
| RefT ref-ty — reference type

abbreviation NT == RefT NullT
abbreviation Iface I == RefT (IfaceT I)
abbreviation Class C == RefT (ClassT C)

abbreviation Array :: ty = ty (<-.[]> [90] 90)
where T.[| == RefT (ArrayT T)
definition

the-Class :: ty = qtname
where the-Class T = (SOME C. T = Class C)

lemma the-Class-eq [simp]: the-Class (Class C)= C
by (auto simp add: the-Class-def)

end
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Chapter 7

Term

1 Java expressions and statements

theory Term imports Value Table begin

design issues:

invocation frames for local variables could be reduced to special static objects (one per
method). This would reduce redundancy, but yield a rather non-standard execution model
more difficult to understand.

method bodies separated from calls to handle assumptions in axiomat. semantics NB: Body
is intended to be in the environment of the called method.

class initialization is regarded as (auxiliary) statement (required for AxSem)

result expression of method return is handled by a special result variable result variable is
treated uniformly with local variables

+ welltypedness and existence of the result /return expression is ensured without extra efford

simplifications:

expression statement allowed for any expression

This is modeled as a special non-assignable local variable

Super is modeled as a general expression with the same value as This
access to field x in current class via This.x

NewA creates only one-dimensional arrays; initialization of further subarrays may be simulated
with nested NewAs

The ’Lit’ constructor is allowed to contain a reference value. But this is assumed to be
prohibited in the input language, which is enforced by the type-checking rules.

a call of a static method via a type name may be simulated by a dummy variable
no nested blocks with inner local variables

no synchronized statements

no secondary forms of if, while (e.g. no for) (may be easily simulated)

no switch (may be simulated with if)

31
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o the try-catch-finally statement is divided into the try-catch statement and a finally statement,
which may be considered as try..finally with empty catch

e the try-catch statement has exactly one catch clause; multiple ones can be simulated with
instanceof

e the compiler is supposed to add the annotations - during type-checking. This transformation
is left out as its result is checked by the type rules anyway

type-synonym locals = (Iname, val) table — local variables

datatype jump
= Break label — break

| Cont label — continue
| Ret — return from method
datatype zcpt — exception
= Loc loc — location of allocated execption object
| Std zname — intermediate standard exception, see Eval.thy

datatype error
= AccessViolation — Access to a member that isn’t permitted
| CrossMethodJump — Method exits with a break or continue

datatype abrupt — abrupt completion
= Xcpt xept — exception
| Jump jump — break, continue, return

| Error error — runtime errors, we wan’t to detect and proof absent in welltyped programms
type-synonym
abopt = abrupt option

Local variable store and exception. Anticipation of State.thy used by smallstep semantics. For a
method call, we save the local variables of the caller in the term Callee to restore them after method
return. Also an exception must be restored after the finally statement

translations
(type) locals <= (type) (Iname, val) table

datatype inv-mode — invocation mode for method calls
= Static — static
| SuperM — super
| IntVir — interface or virtual
record sig = — signature of a method, cf. 8.4.2
name ::mname — acutally belongs to Decl.thy

parTs::ty list
translations
(type) sig <= (type) (name:mname,parTs::ty list))
(type) sig <= (type) (name:mname,parTs::ty list,...::"a|

— function codes for unary operations

datatype unop = UPlus — + unary plus
| UMinus — - unary minus
| UBitNot —  bitwise NOT
| UNot  — ! logical complement

— function codes for binary operations
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datatype binop = Mul  — * multiplication
| Div  — / division
| Mod  — % remainder
| Plus — + addition
| Minus — - subtraction

| LShift — « left shift
| RShift — » signed right shift
| RShiftU — »> unsigned right shift

| Less — < less than

| Le — <= less than or equal

| Greater — > greater than

| Ge — >= greater than or equal
| Eq — == equal

| Neg¢ — !'=not equal

| BitAnd — & bitwise AND

| And  — & boolean AND

| BitXor — = bitwise Xor

| Xor  — " boolean Xor

| BitOr — | bitwise Or

| Or — | boolean Or

| CondAnd — && conditional And
| CondOr — || conditional Or

The boolean operators & and | strictly evaluate both of their arguments. The conditional operators
&& and || only evaluate the second argument if the value of the whole expression isn’t allready
determined by the first argument. e.g.: false && e e is not evaluated; true || e e is not evaluated;

datatype var

= LVar Iname — local variable (incl. parameters)

| FVar gtname gtname bool expr vname (<{-,-,-}-..-»[10,10,10,85,99]90)
— class field
— {accC,statDeclC,stat}e..fn
— accC' accessing class (static class were
— the code is declared. Annotation only needed for
— evaluation to check accessibility)
— statDeclC': static declaration class of field
— stat: static or instance field?
— e: reference to object
— fn: field name

| AVar expr expr (:-.[-]>[90,10 190)
— array component
— el.[e2]: el array reference; €2 index

| InsInitV stmt var
— insertion of initialization before evaluation
— of var (technical term for smallstep semantics.)

and expr
= NewC gtname — class instance creation
| NewA ty expr (<New -[-][99,10 185)
— array creation

| Cast ty expr — type cast
| Inst expr ref-ty (<- InstOf -)[85,99] 85)
— instanceof
| Lit wal — literal value, references not allowed
| UnOp unop expr — unary operation

| BinOp binop expr expr — binary operation

| Super — special Super keyword
| Acc var — variable access
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| Ass war expr (<==- [90,85 1]85)
— variable assign
| Cond expr expr expr (- 7 -: - [85,85,80]80) — conditional
| Call gtname ref-ty inv-mode expr mname (ty list) (expr list)
(«{---}---"( {-}-")[10,10,10,85,99,10,10]85)

— method call

— {accC,statT ,mode} e-mn( {pTs}args) "

— accC': accessing class (static class were

— the call code is declared. Annotation only needed for

— evaluation to check accessibility)

— statT": static declaration class/interface of

— method

— mode: invocation mode

— e: reference to object

— mn: field name

— pTs: types of parameters

— args: the actual parameters/arguments
| Methd gtname sig — (folded) method (see below)
| Body gtname stmt — (unfolded) method body
| InsInitE stmt expr

— insertion of initialization before
— evaluation of expr (technical term for smallstep sem.)
| Callee locals expr — save callers locals in callee-Frame
— (technical term for smallstep semantics)

and stmt
= Skip — empty statement
| Expr expr — expression statement
| Lab  jump stmt (¢ = [ 99,66166)
— labeled statement; handles break
| Comp stmt stmt (¢35 [ 66,65165)
| If " expr stmt stmt (<If'(-') - Else -» [ 80,79,79])70)
| Loop label expr stmt (¢<-- While'(-") -» [ 99,80,79])70)
| Jmp jump — break, continue, return

| Throw expr
| TryC' stmt gtname vname stmt («Try - Catch'(- =) - [79,99,80,79]70)
— Try ¢l Catch(C vn) c2
— c1: block were exception may be thrown
— (' execption class to catch
— on: local name for exception used in c2
— ¢2: block to execute when exception is cateched

| Fin stmt stmt (<- Finally -» [ 79,79]70)
| FinA abopt stmt — Save abruption of first statement

— technical term for smallstep sem.)
| Init gtname — class initialization

datatype-compat var expr stmit

The expressions Methd and Body are artificial program constructs, in the sense that they are not
used to define a concrete Bali program. In the operational semantic’s they are "generated on the
fly" to decompose the task to define the behaviour of the Call expression. They are crucial for the
axiomatic semantics to give a syntactic hook to insert some assertions (cf. AxSem.thy, Eval.thy).
The Init statement (to initialize a class on its first use) is inserted in various places by the semantics.
Callee, InsInitV, InsInitE,FinA are only needed as intermediate steps in the smallstep (transition)
semantics (cf. Trans.thy). Callee is used to save the local variables of the caller for method return.
So ve avoid modelling a frame stack. The InsInitV/E terms are only used by the smallstep semantics
to model the intermediate steps of class-initialisation.

type-synonym term = (expr+stmt,var,expr list) sum3

translations
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(type) sig <= (type) mname x ty list
(type) term <= (type) (expr+stmt,var,expr list) sum3

abbreviation this :: expr
where this == Acc (LVar This)

abbreviation LAcc :: vname = expr (1))
where !lv == Acc (LVar (EName (VNam v)))

abbreviation
LAss :: vname = expr =stmt (s-==-) [90,85] 85)
where v:==e¢ == FExpr (4ss (LVar (EName (VNam v))) e)

abbreviation
Return :: expr = stmt
where Return e == Expr (Ass (LVar (EName Res)) e);; Jmp Ret — Res := e;; Jmp Ret

abbreviation
StatRef :: ref-ty = expr
where StatRef rt == Cast (RefT rt) (Lit Null)

definition
is-stmt :: term = bool
where is-stmt t = (J¢. t=Inlr c)

ML <ML-Thms.bind-thms (is-stmt-rews, sumS-instantiate context Q{thm is-stmt-def})

declare is-stmt-rews [simp]

Here is some syntactic stuff to handle the injections of statements, expressions, variables and ex-
pression lists into general terms.
abbreviation (input)

expr-inj-term :: expr = term («(-)> 1000)

where (e). == Inlle

abbreviation (input)
stmt-inj-term :: stmt = term (<(-)s> 1000)
where (c); == Inlr c

abbreviation (input)
var-ing-term :: var = term (<(-),> 1000)
where (v), == In2 v

abbreviation (input)
Ist-ing-term :: expr list = term (<(-)p 1000)
where (es); == In3 es

It seems to be more elegant to have an overloaded injection like the following.

class inj-term =
fixes inj-term:: 'a = term («(-)» 1000)

How this overloaded injections work can be seen in the theory DefiniteAssignment. Other big
inductive relations on terms defined in theories WellType, Eval, Evaln and AzSem don’t follow this
convention right now, but introduce subtle syntactic sugar in the relations themselves to make a
distinction on expressions, statements and so on. So unfortunately you will encounter a mixture
of dealing with these injections. The abbreviations above are used as bridge between the different
conventions.

instantiation stmt :: inj-term
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begin

definition
stmi-inj-term-def: (c::stmt) = Inlr ¢

instance ..
end

lemma stmi-inj-term-simp: (c:stmt) = Inlr ¢
by (simp add: stmt-inj-term-def)

lemma stmt-inj-term [iff]: (z::stmt) = (y) =z =y
by (simp add: stmt-inj-term-simp)

instantiation ezrpr :: inj-term
begin

definition
expr-inj-term-def: {e::expry = Inll e

instance ..
end

lemma expr-inj-term-simp: (e::expr) = Inll e
by (simp add: expr-inj-term-def)

lemma expr-inj-term [iff]: (z:ezpr) = (y) =z =y
by (simp add: expr-inj-term-simp)

instantiation var :: inj-term
begin

definition
var-ing-term-def: (v:var) = In2 v

instance ..
end

lemma var-inj-term-simp: (v::var) = In2 v
by (simp add: var-inj-term-def)

lemma var-inj-term [iff]: {(z:var) = (y) =z =y
by (simp add: var-inj-term-simp)

class expr-of =
fixes expr-of :: 'a = expr

instantiation expr :: expr-of
begin

definition
expr-of = (A(e:zexpr). e)

instance ..

end



Theory Term

instantiation list :: (expr-of) inj-term
begin

definition
(es::'a listy = In3 (map expr-of es)

instance ..
end

lemma expr-list-inj-term-def:
(es::expr list) = In3 es
by (simp add: inj-term-list-def expr-of-expr-def)

lemma expr-list-inj-term-simp: (es::expr list) = In3 es
by (simp add: expr-list-inj-term-def)

lemma expr-list-inj-term [iff]: (z::expr list) = (y) =z =y
by (simp add: expr-list-inj-term-simp)

lemmas inj-term-simps = stmt-inj-term-simp expr-inj-term-simp var-inj-term-simp
expr-list-inj-term-simp
lemmas inj-term-sym-simps = stmi-inj-term-simp [THEN sym]
expr-inj-term-simp [THEN sym)]
var-ing-term-simp [THEN sym)]
expr-list-inj-term-simp [THEN sym]

lemma stmi-expr-inj-term [iff]: (t::stmt) # (w::expr)
by (simp add: inj-term-simps)

lemma expr-stmt-inj-term [iff]: (¢::expr) # (w::stmt)
by (simp add: inj-term-simps)

lemma stmt-var-inj-term [iff]: (t::stmt) # (w::var)
by (simp add: inj-term-simps)

lemma var-stmt-inj-term [iff]: (t::var) # (w::stmt)
by (simp add: inj-term-simps)

lemma stmi-elist-inj-term [iff]: (t::stmt) # (w::expr list)
by (simp add: inj-term-simps)

lemma elist-stmt-inj-term [iff]: (t::expr list) # (w::stmt)
by (simp add: inj-term-simps)

lemma expr-var-inj-term [iff]: (t::expr) # (w::var)
by (simp add: inj-term-simps)

lemma var-expr-inj-term [iff]: (t::var) # (w::expr)
by (simp add: inj-term-simps)

lemma expr-elist-inj-term [iff]: (t::expr) # (w::expr list)
by (simp add: inj-term-simps)

lemma elist-expr-inj-term [iff]: (t::expr list) # (w::expr)
by (simp add: inj-term-simps)

lemma var-elist-inj-term [iff]: (t::var) # (w:expr list)
by (simp add: inj-term-simps)

lemma elist-var-inj-term [iff]: (t::expr list) # (w:var)
by (simp add: inj-term-simps)

lemma term-cases:
IN v. P (v)u; A\ e. P{e)e;\ c. P{c)s;\ 1. P {1)i]
— Pt
apply (cases t)
apply (rename-tac a, case-tac a)
apply auto
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done

Evaluation of unary operations

primrec eval-unop :: unop = val = val
where
eval-unop UPlus v = Intg (the-Intg v)
| eval-unop UMinus v = Intg (— (the-Intg v))
| eval-unop UBitNot v = Intg 42 — FIXME: Not yet implemented
| eval-unop UNot v = Bool (= the-Bool v)

Evaluation of binary operations

primrec eval-binop :: binop = wval = val = wval
where
eval-binop Mul vl v2 = Intg ((the-Intg v1) * (the-Intg v2))
| eval-binop Div vl v2 = Intg ((the-Intg v1) div (the-Intg v2))
| eval-binop Mod vl v2 = Intg ((the-Intg v1) mod (the-Intg v2))
| eval-binop Plus vl v2 = Intg ((the-Intg v1) + (the-Intg v2))
| eval-binop Minus vl v2 = Intg ((the-Intg v1) — (the-Intg v2))

— Be aware of the explicit coercion of the shift distance to nat

| eval-binop LShift vl v2 = Intg ((the-Intg v1) * (2 (nat (the-Intg v2))))
| eval-binop RShift vl v2 = Intg ((the-Intg v1) div (2 (nat (the-Intg v2))))
| eval-binop RShiftU vl v2 = Intg 42 — FIXME: Not yet implemented

| eval-binop Less vl v2 = Bool ((the-Intg v1) < (the-Intg v2))
| eval-binop Le vl v2 = Bool ((the-Intg v1) < (the-Intg v2))
| eval-binop Greater vl v2 = Bool ((the-Intg v2) < (the-Intg v1))
| eval-binop Ge vl v2 = Bool ((the-Intg v2) < (the-Intg vl))

| eval-binop Eq vl v2 = Bool (v1=v2)

| eval-binop Neq vl v2 = Bool (v1#v2)

| eval-binop BitAnd v1 v2 = Intg 42 — FIXME: Not yet implemented
| eval-binop And vl v2 = Bool ((the-Bool v1) A (the-Bool v2))

| eval-binop BitXor vl v2 = Intg 42 — FIXME: Not yet implemented
| eval-binop Xor vl v2 = Bool ((the-Bool v1) # (the-Bool v2))

| eval-binop BitOr vl v2 = Intg 42 — FIXME: Not yet implemented
| eval-binop Or vl v2 = Bool ((the-Bool v1) V (the-Bool v2))

| eval-binop CondAnd v1 v2 = Bool ((the-Bool v1) A (the-Bool v2))

| eval-binop CondOr vl v2 = Bool ((the-Bool v1) V (the-Bool v2))

definition
need-second-arg :: binop = val = bool where
need-second-arg binop vl = (= ((binop=CondAnd N — the-Bool v1) V
(binop=CondOr A the-Bool v1)))

CondAnd and CondOr only evalulate the second argument if the value isn’t already determined by
the first argument

lemma need-second-arg-CondAnd [simp]: need-second-arg CondAnd (Bool b) = b
by (simp add: need-second-arg-def)

lemma need-second-arg-CondOr [simp]: need-second-arg CondOr (Bool b) = (— b)
by (simp add: need-second-arg-def)

lemma need-second-arg-strict[simp]:
[binop# CondAnd; binop#CondOr] = need-second-arg binop b
by (cases binop)

(simp-all add: need-second-arg-def)
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Chapter 8

Decl

1 Field, method, interface, and class declarations, whole Java programs

theory Decl
imports Term Table

begin
improvements:

o clarification and correction of some aspects of the package/access concept (Also submitted as
bug report to the Java Bug Database: Bug Id: 4485402 and Bug Id: 4493343 http://developer.
java.sun.com/developer/bugParade/index.jshtml )

simplifications:
e the only field and method modifiers are static and the access modifiers
e no constructors, which may be simulated by new + suitable methods
e there is just one global initializer per class, which can simulate all others
e no throws clause
 a void method is replaced by one that returns Unit (of dummy type Void)
e no interface fields
o every class has an explicit superclass (unused for Object)
o the (standard) methods of Object and of standard exceptions are not specified

e 1no main method

2 Modifier

Access modifier

datatype acc-modi
= Private | Package | Protected | Public

We can define a linear order for the access modifiers. With Private yielding the most restrictive
access and public the most liberal access policy: Private < Package < Protected < Public
instantiation acc-modi :: linorder

begin
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definition
less-acc-def: a < b
+— (case a of
Private = (b=Package V b=Protected \V b=Public)
| Package = (b=Protected V b=Public)
| Protected = (b=Public)
| Public =~ = Fulse)

definition
le-acc-def: (a :: acc-modi) < b<+— a<bVa=1b

instance
proof
fix z y z::acc-modi
show s < y¢+—z<yAN-y<zx
by (auto simp add: le-acc-def less-acc-def split: acc-modi.split)
show z < z — reflexivity
by (auto simp add: le-acc-def)
show r < y = y < 2 = z < z — transitivity
by (auto simp add: le-acc-def less-acc-def split: acc-modi.split)
show 2 = yif 2 < yy <z — antisymmetry
proof —
have Vz y. © < (y::acc-modi) N\ y < © —> False
by (auto simp add: less-acc-def split: acc-modi.split)
with that show ?thesis by (unfold le-acc-def) iprover
qed
show 2 < yVvy<z
by (auto simp add: less-acc-def le-acc-def split: acc-modi.split)
qed

end

lemma acc-modi-top [simp]: Public < a => a = Public
by (auto simp add: le-acc-def less-acc-def split: acc-modi.splits)

lemma acc-modi-top! [simp, introl]: a < Public
by (auto simp add: le-acc-def less-acc-def split: acc-modi.splits)

lemma acc-modi-le-Public:
a < Public = a=Private V a = Package V a=Protected \V a=Public
by (auto simp add: le-acc-def less-acc-def split: acc-modi.splits)

lemma acc-modi-bottom: a < Private =—> a = Private
by (auto simp add: le-acc-def less-acc-def split: acc-modi.splits)

lemma acc-modi- Private-le:
Private < a = a=Private V a = Package V a=Protected \/ a=Public
by (auto simp add: le-acc-def less-acc-def split: acc-modi.splits)

lemma acc-modi-Package-le:
Package < a = a = Package V a=Protected \V a=Public
by (auto simp add: le-acc-def less-acc-def split: acc-modi.split)

lemma acc-modi-le- Package:
a < Package =—> a=Private V a = Package
by (auto simp add: le-acc-def less-acc-def split: acc-modi.splits)

lemma acc-modi-Protected-le:
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Protected < a => a=Protected V a=Public
by (auto simp add: le-acc-def less-acc-def split: acc-modi.splits)

lemma acc-modi-le-Protected:
a < Protected = a=Private V a = Package V a = Protected
by (auto simp add: le-acc-def less-acc-def split: acc-modi.splits)

lemmas acc-modi-le-Dests = acc-modi-top acc-modi-le- Public
acc-modi-Private-le  acc-modi-bottom
acc-modi-Package-le  acc-modi-le-Package
acc-modi-Protected-le acc-modi-le-Protected

lemma acc-modi-Package-le-cases:
assumes Package < m
obtains (Package) m = Package
| (Protected) m = Protected
| (Public) m = Public
using assms by (auto dest: acc-modi-Package-le)

Static Modifier

type-synonym stat-modi = bool

3 Declaration (base "class" for member,interface and class declarations

record decl =
access :: acc-modi

translations
(type) decl <= (type) (access::acc-modil)
(type) decl <= (type) (access::acc-modi,. . .::'al)

4 Member (field or method)

record member = decl +
static :: stat-modi

translations
(type) member <= (type) (access::acc-modi,static::bool))
(type) member <= (type) (access::acc-modi,static::bool,. . .::'a))

5 Field

record field = member +
type :: ty
translations
(type) field <= (type) (access::acc-modi, static::bool, type::ty|)
(type) field <= (type) (access::acc-modi, static::bool, type::ty,...::"a))

type-synonym fdecl

= vname X field

translations
(type) fdecl <= (type) vname x field

6 Method

record mhead = member +
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pars :vname list
resT ::ly

record mbody =
lels:: (vname x ty) list
stmt:: stmt

record methd = mhead +
mbody::mbody

type-synonym mdecl = sig X methd

translations

(type) mhead <= (type) (access::acc-modi, static::bool,
pars::vname list, resT::tyl)

(type) mhead <= (type) (access::acc-modi, static::bool,
pars::vname list, resT::ty,. . .::"al)

(type) mbody <= (type) (lcls::(vname x ty) list,stmt::stmi))

(type) mbody <= (type) (lcls::(vname X ty) list,stmt::stmt,. . .::"a))

(type) methd <= (type) (access::acc-modi, static::bool,
pars::vname list, resT::ty,mbody::mbody))

(type) methd <= (type) (access::acc-modi, static::bool,
pars::vname list, resT::ty,mbody::mbody,. . .::'al)

(type) mdecl <= (type) sig x methd

definition
mhead :: methd = mhead
where mhead m = (access=access m, static=static m, pars=pars m, resT=resT m)

lemma access-mhead [simp]:access (mhead m) = access m
by (simp add: mhead-def)

lemma static-mhead [simp]:static (mhead m) = static m
by (simp add: mhead-def)

lemma pars-mhead [simp]:pars (mhead m) = pars m
by (simp add: mhead-def)

lemma resT-mhead [simp]:resT (mhead m) = resT m
by (simp add: mhead-def)

To be able to talk uniformaly about field and method declarations we introduce the notion of a
member declaration (e.g. useful to define accessiblity )

datatype memberdecl = fdecl fdecl | mdecl mdecl
datatype memberid = fid vname | mid sig

class has-memberid =
fixes memberid :: 'a = memberid

instantiation memberdecl :: has-memberid
begin

definition
memberdecl-memberid-def:
memberid m = (case m of

fdecl (vn,f) = fid vn
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| mdecl (sig,m) = mid sig)
instance ..
end

lemma memberid-fdecl-simp[simp|: memberid (fdecl (vn,f)) = fid vn
by (simp add: memberdecl-memberid-def)

lemma memberid-fdecl-simp1: memberid (fdecl f) = fid (fst f)
by (cases f) (simp add: memberdecl-memberid-def)

lemma memberid-mdecl-simp|simp]: memberid (mdecl (sig,m)) = mid sig
by (simp add: memberdecl-memberid-def)

lemma memberid-mdecl-simp1: memberid (mdecl m) = mid (fst m)
by (cases m) (simp add: memberdecl-memberid-def)

instantiation prod :: (type, has-memberid) has-memberid
begin

definition
pair-memberid-def:
memberid p = memberid (snd p)

instance ..
end

lemma memberid-pair-simp|[simp]: memberid (¢,m) = memberid m
by (simp add: pair-memberid-def)

lemma memberid-pair-simp1: memberid p = memberid (snd p)
by (simp add: pair-memberid-def)

definition
is-field :: gtname x memberdecl = bool
where is-field m = (3 declC f. m=(declC,fdecl f))

lemma is-fieldD: is-field m = 3 declC f. m=(declC,fdecl f)
by (simp add: is-field-def)

lemma is-fieldl: is-field (C,fdecl f)
by (simp add: is-field-def)

definition
is-method :: qtname X memberdecl = bool
where is-method membr = (3 declC m. membr=(declC,mdecl m))

lemma is-methodD: is-method membr => 3 declC' m. membr=(declC,mdecl m)
by (simp add: is-method-def)

lemma is-methodl: is-method (C,mdecl m)

by (simp add: is-method-def)

7 Interface

record ibody = decl + — interface body
imethods :: (sig X mhead) list — method heads
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record iface = ibody + — interface
isuperlfs:: qgtname list — superinterface list
type-synonym
idecl — interface declaration, cf. 9.1
= gtname X iface

translations

(type) ibody <= (type) (access::acc-modi,imethods::(sig X mhead) list)

(type) ibody <= (type) (access::acc-modi,imethods::(sig x mhead) list,. . .::"al)

(type) iface <= (type) (access::acc-modi,imethods::(sig x mhead) list,
isuperlfs::qtname list)

(type) iface <= (type) (access::acc-modi,imethods::(sig X mhead) list,
isuperlfs::qgtname list,. . .::'a|)

(type) idecl <= (type) qtname X iface

definition
tbody :: iface = ibody
where ibody i = (access=access i,imethods=imethods i)

lemma access-ibody [simp]: (access (ibody ©)) = access i
by (simp add: ibody-def)

lemma imethods-ibody [simp]: (imethods (ibody i)) = imethods i
by (simp add: ibody-def)

8 Class

record cbody = decl + — class body
cfields:: fdecl list
methods:: mdecl list

init  :: stmt — initializer
record class = cbody + — class
super i qtname — superclass

superlfs:: qtname list — implemented interfaces
type-synonym

cdecl — class declaration, cf. 8.1

= gtname X class

translations

(type) cbody <= (type) (access::acc-modi,cfields::fdecl list,
methods::mdecl list,init::stmt))

(type) cbody <= (type) (access::acc-modi,cfields::fdecl list,
methods::mdecl list,init::stmt,. . .::"al)

(type) class <= (type) (access::acc-modi,cfields::fdecl list,
methods::mdecl list,init::stmt,
super::gtname,superlfs:: gtname list|)

(type) class <= (type) (access::acc-modi,cfields::fdecl list,
methods::mdecl list,init::stmt,
super::qtname,superlfs::gtname list,. . .::'a))

(type) cdecl <= (type) gtname X class

definition
cbody :: class = cbody
where cbody ¢ = (access=access ¢, cfields=cfields c,methods=methods c,init=init c|)

lemma access-cbody [simp]:access (cbody ¢) = access ¢
by (simp add: cbody-def)
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lemma cfields-cbody [simpl:cfields (cbody ¢) = cfields ¢
by (simp add: cbody-def)

lemma methods-cbody [simpl:methods (cbody ¢) = methods ¢
by (simp add: cbody-def)

lemma init-cbody [simp)]:init (cbody c¢) = init ¢
by (simp add: cbody-def)

standard classes

consts
Object-mdecls :: mdecl list — methods of Object
SXcpt-mdecls :: mdecl list — methods of SXcpts

definition
ObjectC :: cdecl — declaration of root class where
ObjectC = (Object,(access=Public,cfields=[],methods= Object-mdecls,
init==Skip,super=undefined,superifs=[]|)

definition
SXcptC ::zname = cdecl — declarations of throwable classes where
SXeptC an = (SXcept zn,(access=Public,cfields=[],methods=SXcpt-mdecls,

init=_Skip,
super=if xn = Throwable then Object
else SXcpt Throwable,

superlfs=[]))

lemma ObjectC-neq-SXcptC [simp]: ObjectC # SXeptC an
by (simp add: ObjectC-def SXcptC-def Object-def SXcpt-def)

lemma SXcptC-inject [simpl: (SXceptC an = SXeptC xm) = (zn = zm)
by (simp add: SXcptC-def)

definition
standard-classes :: cdecl list where
standard-classes = [ObjectC, SXeptC' Throwable,
SXcptC NullPointer, SXcptC OutOfMemory, SXcptC ClassCast,
SXcptC NegArrSize , SXeptC IndOutBound, SXeptC ArrStore]

programs

record prog =
ifaces ::idecl list
classes::cdecl list

translations
(type) prog <= (type) (ifaces::idecl list,classes::cdecl list))
(type) prog <= (type) (ifaces::idecl list,classes::cdecl list,. . .::'al)

abbreviation
iface :: prog = (gtname, iface) table
where iface G I == table-of (ifaces G) I

abbreviation
class :: prog = (gtname, class) table
where class G C == table-of (classes G) C
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abbreviation
is-iface :: prog = qtname = bool
where is-iface G I == iface G I # None

abbreviation
is-class :: prog = qtname = bool
where is-class G C == class G C # None

is type

primrec is-type :: prog = ty = bool
and isrtype :: prog = ref-ty = bool
where
is-type G (PrimT pt) = True
| is-type G (RefT rt) = isrtype G rt
| isrtype G (NullT) = True
| isrtype G (IfaceT tn) = is-iface G tn
| isrtype G (ClassT tn) = is-class G tn
| isrtype G (ArrayT T ) = is-type G T

lemma type-is-iface: is-type G (Iface I) = is-iface G I
by auto

lemma type-is-class: is-type G (Class C) = is-class G C
by auto

subinterface and subclass relation, in anticipation of TypeRel.thy

definition
subintl :: prog = (gtname X gtname) set — direct subinterface
where subint! G = {(I,J). i€iface G I Je€set (isuperlfs i)}

definition
subclsl :: prog = (gtname x gtname) set — direct subclass
where subcls! G = {(C,D). C#O0bject N (3 c€class G C: super ¢ = D)}

abbreviation
subcls1-syntax :: prog => [qtname, gqtname] => bool (<-+-<c1- [71,71,71] 70)
where GHC <¢1 D == (C,D) € subcls1 G

abbreviation
subclseq-syntaz :: prog => [gtname, gtname] => bool («-+-=¢ -» [71,71,71] 70)
where GHC <¢ D == (C,D) €(subcls! G)*

abbreviation
subcls-syntazx :: prog => [gtname, gtname] => bool («-F-<¢ - [71,71,71] 70)
where G-C <¢ D == (C,D) €(subcls1 G)*

notation (ASCII)
subcls1-syntax (<-|—-<:C1-» [71,71,71] 70) and
subclseg-syntax (¢-|—-<=:C' -[71,71,71] 70) and
subels-syntax (<-|—-<:C ->[71,71,71] 70)

lemma subintil: [iface G I = Some i; J € set (isuperlfs i)]
= (I,J) € subintl G

apply (simp add: subint1-def)

done

lemma subclsil:[class G C = Some ¢; C # Object] = (C,(super ¢)) € subclsl1 G
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apply (simp add: subcls1-def)
done

lemma subint1D: (I,J)€subint] G= Jic€iface G I: J€set (isuperlfs 7)
by (simp add: subint1-def)

lemma subclsiD:
(C,D)esubcls1 G = C#Object A (3 c. class G C = Some ¢ A (super ¢ = D))
apply (simp add: subcls1-def)
apply auto
done

lemma subinti-def2:
subintl G = (SIGMA I: {I. is-iface G I}. set (isuperlfs (the (iface G I))))
apply (unfold subinti-def)
apply auto
done

lemma subclsi-def2:
subcls! G =
(SIGMA C: {C. is-class G C}. {D. C#Object A super (the(class G C))=D})
apply (unfold subcls1-def)
apply auto
done

lemma subcls-is-class:
[GFC <¢ D] = 3 ¢. class G C = Some ¢
by (auto simp add: subcls1-def dest: tranclD)

lemma no-subcls1-Object: G- Object<c1 D = P
by (auto simp add: subcls1-def)

lemma no-subcls-Object: GFObject<¢c D =— P
apply (erule trancl-induct)

apply (auto intro: no-subcls1-Object)

done

well-structured programs

definition
ws-idecl :: prog = qtname = gtname list = bool
where ws-idecl G I si = (V Jeset si. is-iface G J A (J,I)&(subintl G)*)

definition
ws-cdecl :: prog = qtname = qtname = bool
where ws-cdecl G C sc = (C#Object — is-class G sc N\ (sc,C)¢(subclsl G)T)

definition
ws-prog :: prog = bool where
ws-prog G = ((V (I,i)eset (ifaces G). ws-idecl G I (isuperIfs 7)) A
(V(C,c)eset (classes G). ws-cdecl G C' (super c)))

lemma ws-progl:
IV (1,i)eset (ifaces G). ¥ J€set (isuperlfs 7). is-iface G J A
(J,I) & (subint1 G)™;
YV (C,c)eset (classes G). C#Object — is-class G (super ¢) A
((super ¢),C) ¢ (subcls!1 G)*+
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] = ws-prog G

apply (unfold ws-prog-def ws-idecl-def ws-cdecl-def)
apply (erule-tac congl)

apply blast

done

lemma ws-prog-ideclD:

[iface G I = Some i; Jeset (isuperlfs i); ws-prog G| =
is-iface G J N (J,I)¢(subintl G)*

apply (unfold ws-prog-def ws-idecl-def)

apply clarify

apply (drule-tac map-of-SomeD)

apply auto

done

lemma ws-prog-cdeclD:

[class G C = Some c¢; C#Object; ws-prog G] =
is-class G (super ¢) A (super ¢,C)¢(subclsl G)*

apply (unfold ws-prog-def ws-cdecl-def)

apply clarify

apply (drule-tac map-of-SomeD)

apply auto

done

well-foundedness

lemma finite-is-iface: finite {I. is-iface G I}
apply (fold dom-def)

apply (rule-tac finite-dom-map-of)

done

lemma finite-is-class: finite {C. is-class G C}
apply (fold dom-def)

apply (rule-tac finite-dom-map-of)

done

lemma finite-subintl: finite (subint! G)
apply (subst subint1-def2)

apply (rule finite-Sigmal)

apply (rule finite-is-iface)

apply (simp (no-asm))

done

lemma finite-subcls1: finite (subclsl G)

apply (subst subcls1-def2)

apply (rule finite-Sigmal)

apply (rule finite-is-class)

apply (rule-tac B = {super (the (class G C))} in finite-subset)
apply auto

done

lemma subinti-irrefl-lemmal:

ws-prog G = (subintl G)~' N (subint!1 G)* = {}
apply (force dest: subint1D ws-prog-ideclD conjunct2)
done

lemma subclsi-irrefl-lemmal:
ws-prog G == (subcls1 G)~! N (subcls1 G)* = {}
apply (force dest: subcls1D ws-prog-cdeclD conjunct?)
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done

lemmas subinti-irrefl-lemma2 = subintl-irrefl-lemmal [THEN irrefl-trancll’]
lemmas subcls1-irrefl-lemma2 = subclsi-irrefl-lemmal [THEN idrrefl-trancll’]

lemma subinti-irrefl: [(z, y) € subint! G; ws-prog G| = z= # y
apply (rule irrefl-trancl-rD)

apply (rule subintl-irrefl-lemma?2)

apply auto

done

lemma subclsi-irrefl: [(z, y) € subclsl G; ws-prog G] = = # y
apply (rule irrefl-trancl-rD)

apply (rule subcls1-irrefl-lemmaZ2)

apply auto

done

lemmas subintl-acyclic = subintl-irrefl-lemma?2 [THEN acyclicI]
lemmas subclsi-acyclic = subclsi-irrefl-lemma2 [THEN acyclicl|

lemma wf-subintl: ws-prog G = wf ((subint1 G)~1)
by (auto intro: finite-acyclic-wf-converse finite-subintl subintl-acyclic)

lemma wf-subcls1: ws-prog G = wf ((subcls1 G)~1)
by (auto intro: finite-acyclic-wf-converse finite-subcls1 subclsl-acyclic)

lemma subinti-induct:
[ws-prog G; Nz. Vy. (z, y) € subint] G — Py =— Pz] = Pa
apply (frule wf-subint1)
apply (erule wf-induct)
apply (simp (no-asm-use) only: converse-iff)
apply blast
done

lemma subclsI-induct [consumes 1]:
[ws-prog G; Nz. Vy. (z, y) € subclsl] G — Py = Pz] = Pa
apply (frule wf-subcls1)
apply (erule wf-induct)
apply (simp (no-asm-use) only: converse-iff)
apply blast
done

lemma ws-subinti-induct:

[is-iface G I; ws-prog G; NI i. [iface G I = Some i A
(VJ € set (isuperlfs 7). (I,J)€subint] G N P J A is-iface G J)] = P I
l= PI

apply (erule rev-mp)

apply (rule subinti-induct)

apply assumption

apply (simp (no-asm))

apply safe

apply (blast dest: subint1l ws-prog-ideclD)

done

lemma ws-subclsi-induct: [is-class G C; ws-prog G;
AC c. [class G C = Some c;
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(C # Object — (C,(super c))€subclsl G N
P (super c) A is-class G (super c¢))] = P C
]= PC
apply (erule rev-mp)
apply (rule subcls1-induct)
apply assumption
apply (simp (no-asm))
apply safe
apply (fast dest: subcls1l ws-prog-cdeclD)
done

lemma ws-class-induct [consumes 2, case-names Object Subcls]:
[class G C = Some c¢; ws-prog G;
N co. class G Object = Some co = P Object;
N Cec. [class G C = Some ¢; C # Object; P (super ¢)] = P C
]=PC
proof —
assume clsC: class G C' = Some c
and  init: A\ co. class G Object = Some co = P Object
and step: A\ C e [class G C = Some ¢; C # Object; P (super ¢)] = P C
assume ws: ws-prog G
then have is-class G C = P C
proof (induct rule: subcls1-induct)
fix C
assume hyp:V S. GFC <¢c1 S — is-class GS — P S
and iscls:is-class G C
show P C
proof (cases C=0bject)
case True with iscls init show P C by auto
next
case Fualse with ws step hyp iscls
show P C by (auto dest: subcls1] ws-prog-cdeclD)
qged
qed
with clsC show ?thesis by simp
qed

lemma ws-class-induct’ [consumes 2, case-names Object Subcls]:
[is-class G C; ws-prog G,

N\ co. class G Object = Some co = P Object;

A Cc. [class G C = Some ¢; C # Object; P (super ¢)] = P C
]=PC
by (auto intro: ws-class-induct)

lemma ws-class-induct”’ [consumes 2, case-names Object Subcls]:
[class G C = Some c; ws-prog G
N co. class G Object = Some co = P Object co;
N Ccsc [class G C = Some c; class G (super ¢) = Some sc;
C # Object; P (super ¢) sc] = P C ¢
]=PCc
proof —
assume clsC: class G C' = Some c
and  init: A co. class G Object = Some co = P Object co
and step: \ Cc sc. [class G C = Some ¢; class G (super ¢) = Some sc;
C # Object; P (super ¢) sc] = P C ¢
assume ws: ws-prog G
then have A c. class G C = Some c= P C¢
proof (induct rule: subclsi-induct)
fix Cc
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assume hyp:V S. G-C <¢1 S — (V s. class G S = Some s — P S s)
and iscls:class G C = Some ¢
show P C ¢
proof (cases C=0bject)
case True with iscls init show P C ¢ by auto
next
case Fulse
with ws iscls obtain sc where
sc: class G (super ¢) = Some sc
by (auto dest: ws-prog-cdeclD)
from iscls False have G-C <1 (super ¢) by (rule subclsil)
with False ws step hyp iscls sc
show P C ¢
by (auto)
qed
qged
with clsC show P C ¢ by auto
qed

lemma ws-interface-induct [consumes 2, case-names Stepl:
assumes is-if-1: is-iface G I and
ws: ws-prog G and
hyp-sub: NI i. [iface G I = Some 1;
YV J € set (isuperlfs 7).
(I,J)esubint]l G AN P J A is-iface G J] = P I
shows P |
proof —
from is-if-I ws
show P |
proof (rule ws-subint1-induct)
fix Ii
assume hyp: iface G I = Some i N
(V Jeset (isuperlfs i). (I,J) €subintl G N P J A is-iface G J)
then have if-I: iface G I = Some @
by blast
show P [
proof (cases isuperlfs i)
case Nil
with if-I hyp-sub
show P I
by auto
next
case (Cons hd tl)
with hyp if-1 hyp-sub
show P I
by auto
qed
qged
qed

general recursion operators for the interface and class hiearchies

function iface-rec :: prog = gtname = (gtname = iface = 'a set = 'a) = a
where
[simp del]: iface-rec G I f =
(case iface G I of
None = undefined
| Some i = if ws-prog G
then f 11
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(M. iface-rec G J f)‘set (isuperlfs i))
else undefined)
by auto
termination
by (relation inv-image (same-fst ws-prog (\G. (subint1 G)™1)) (%(z,y,2). (z,y)))
(auto simp: wf-subintl subintll wf-same-fst)

lemma iface-rec:

[iface G I = Some i; ws-prog G] =

iface-rec G 1 f = f1i ((NJ. iface-rec G J f)‘set (isuperlfs i))
apply (subst iface-rec.simps)

apply simp

done

function
class-rec :: prog = gqtname = 'a = (gtname = class = 'a = 'a) = 'a
where
[simp del]: class-rec G C't f =
(case class G C of
None = undefined
| Some ¢ = if ws-prog G
then f C ¢
(if C = Object then t
else class-rec G (super c) t f)
else undefined)

by auto

termination

by (relation inv-image (same-fst ws-prog (AG. (subclsl G)™1)) (%(x,y,z,w). (7,y)))
(auto simp: wf-subclsl subcls1l wf-same-fst)

lemma class-rec: [class G C = Some ¢; ws-prog G] =
class-rec G C't f =

f C ¢ (if C = Object then t else class-rec G (super ¢) t f)
apply (subst class-rec.simps)
apply simp
done

definition
imethds :: prog = gqtname = (sig,qtname x mhead) tables where
— methods of an interface, with overriding and inheritance, cf. 9.2
tmethds G I = iface-rec G 1
(A i ts. (Un-tables ts) @@
(set-option o table-of (map (A(s,m). (s,I,m)) (imethods 7))))

end



Chapter 9

TypeRel

1 The relations between Java types

theory TypeRel imports Decl begin

simplifications:
e subinterface, subclass and widening relation includes identity
improvements over Java Specification 1.0:

e narrowing reference conversion also in cases where the return types of a pair of methods
common to both types are in widening (rather identity) relation

e one could add similar constraints also for other cases
design issues:

e the type relations do not require 7s-type for their arguments

o the subintl and subclsl relations imply is-iface/is-class for their first arguments, which is
required for their finiteness

definition
implmtl :: prog = (gtname X gitname) set — direct implementation
— direct implementation, cf. 8.1.3
where impimt1 G = {(C,I). C#Object N (3 ceclass G C: I€set (superlfs c))}

abbreviation
subint1-syntaz :: prog => [gtname, gtname] => bool («-+-<11-» [71,71,71] 70)
where GHI <I1 J == (1,J) € subintl G

abbreviation
subint-syntax :: prog => [gtname, gtname] => bool (<-H-=<I -y [71,71,71] 70)
where GHI <IJ == (1,J) €(subint! G)* — cf. 9.1.3

abbreviation
implmt1-syntaz :: prog => [gtname, gtname] => bool («-+=—~»1-y [71,71,71] 70)
where GHC ~1 1 == (C,I) € implmtl G

notation (ASCII)
subintl-syntax (-|—-<:I1-» [71,71,71] 70) and
subint-syntax (s-|—-<=:I -[71,71,71] 70) and
implmt1-syntaz  (s-|—-">1- [71,71,71] 70)

55
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subclass and subinterface relations

lemmas subcls-direct = subcls1I [THEN r-into-rtrancl]

lemma subcls-direct!:

[class G C = Some ¢; C # Object;D=super ] = G-C=¢ D
apply (auto dest: subcls-direct)

done

lemma subcls1l1:

[class G C = Some ¢; C # Object;D=super ] = G-C=<c1 D
apply (auto dest: subcls1I)

done

lemma subcls-direct2:

[class G C = Some ¢; C # Object;D=super ] = G+-C~<¢c D
apply (auto dest: subcls1il)

done

lemma subclseq-trans: [GFA <¢ B; GF-B ¢ C] = G+A =<¢ C
by (blast intro: rtrancl-trans)

lemma subcls-trans: [G-A <¢ B; GFB <¢ C] = GHA <¢ C
by (blast intro: trancl-trans)

lemma SXcpt-subcls- Throwable-lemma:
[class G (SXcpt xn) = Some xc;
super zc = (if zn = Throwable then Object else SXcpt Throwable)]
= GFSXcpt an=<¢c SXcpt Throwable
apply (case-tac an = Throwable)
apply simp-all
apply (drule subcls-direct)
apply (auto dest: sym)
done

lemma subcls-Objectl: [is-class G C; ws-prog G] = GHC=¢ Object
apply (erule ws-subcls1-induct)

apply clarsimp

apply (case-tac C = Object)

apply (fast intro: r-into-rtrancl [THEN rtrancl-trans])+

done

lemma subclseq-ObjectD [dest!]: GFObject<c C = C = Object
apply (erule rtrancl-induct)

apply (auto dest: subcls1D)

done

lemma subcls-ObjectD [dest!]: GFObject<c C = False
apply (erule trancl-induct)

apply (auto dest: subcls1D)

done

lemma subcls-Objectl] [introl]:

[C # Object;is-class G Ciws-prog G] = GHC <¢ Object
apply (drule (1) subcls-ObjectI)

apply (auto intro: rtrancl-into-trancl3)

done

lemma subcls-is-class: (C,D) € (subcls1 G)T = is-class G C
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apply (erule trancl-trans-induct)
apply (auto dest!: subcls1D)
done

lemma subcls-is-class2 [rule-format (no-asm)]:
G-C=¢c D = is-class G D — is-class G C
apply (erule rtrancl-induct)

apply (drule-tac [2] subcls1D)

apply auto

done

lemma single-inheritance:
[GFA <¢c1 B; GFA <¢1 C] = B=C
by (auto simp add: subcls1-def)

lemma subcls-compareable:

[[Gl—A jc X; GHA jc Y

]]:>GFXjC YV GFY <¢ X

by (rule triangle-lemma) (auto intro: single-inheritance)

lemma subclsi-irrefl: [GHC <c1 D; ws-prog G |
= C#D
proof
assume ws: ws-prog G and
subclsl: G-C <c1 D and
eq-C-D: C=D
from subcls1 obtain ¢
where
neq-C-Object: C#Object and
clsC: class G C = Some ¢ and
super-c: super ¢ = D
by (auto simp add: subcls1-def)
with super-c subclsi eq-C-D
have subcls-super-c-C: GFsuper ¢ <o C
by auto
from ws clsC neq-C-Object
have - Gtsuper ¢ <¢ C
by (auto dest: ws-prog-cdeclD)
from this subcls-super-c-C
show Fulse
by (rule notE)
qed

lemma no-subcls-Object: GH-C <o D = C # Object
by (erule converse-trancl-induct) (auto dest: subcls1D)

lemma subcls-acyclic: [GFC <¢ D; ws-prog G] = - GFD <¢ C
proof —
assume ws: ws-prog G
assume subcls-C-D: G-C <¢ D
then show ?thesis
proof (induct rule: converse-trancl-induct)
fix C
assume subcls1-C-D: GFC <¢c1 D
then obtain ¢ where
C#Object and
class G C = Some ¢ and
super ¢ = D
by (auto simp add: subcls1-def)
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with ws
show - GFD <o C
by (auto dest: ws-prog-cdeclD)
next
fix CZ
assume subcls1-C-Z: G-C <¢1 Z and
subcls-Z-D: GFZ <¢ D and
nsubcls-D-Z: - GFD <¢ Z
show - G+D <o C
proof
assume subcls-D-C: GFD <o C
show Fulse
proof —
from subcls-D-C subcls1-C-Z
have G-D <o 7
by (auto dest: r-into-trancl trancl-trans)
with nsubcls-D-Z
show ?thesis
by (rule notE)
qed
ged
qed
qed

lemma subclseq-cases:

assumes G-C <o D

obtains (Eq) C = D | (Subcls) GFC <¢ D
using assms by (blast intro: rtrancl-cases)

lemma subclseq-acyclic:
[G-C =¢ D; GFD =<¢ C; ws-prog G] = C=D
by (auto elim: subclseq-cases dest: subcls-acyclic)

lemma subcls-irrefl: [GFC <¢ D; ws-prog G]
= C#D
proof —
assume ws: ws-prog G
assume subcls: GFC <¢ D
then show ?thesis
proof (induct rule: converse-trancl-induct)
fix C
assume GHC <¢c1 D
with ws
show C#D
by (blast dest: subcls1-irrefl)
next
fix C 7
assume subcls1-C-Z: G-C <¢1 Z and
subcls-Z-D: GFZ <¢ D and
neq-Z-D: 7 # D
show C#D
proof
assume eq-C-D: C=D
show Fulse
proof (rule notE)
from subcls1-C-Z eq-C-D
show GHD <o Z
by (auto)
also
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from subcls-Z-D ws
show = GFD <o Z
by (rule subcls-acyclic)
qed
qed
qged
qed

lemma invert-subclseq:
[GF-C =¢ D; ws-prog G]
— - GFD <o C
proof —
assume ws: ws-prog G and
subclseq-C-D: G-C <¢ D
show ?thesis
proof (cases D=C)
case True
with ws
show ?thesis
by (auto dest: subcls-irrefl)
next
case Fulse
with subclseq-C-D
have GH-C <¢ D
by (blast intro: rtrancl-into-trancl3)
with ws
show ?thesis
by (blast dest: subcls-acyclic)
qed
qed

lemma invert-subcls:
[GF-C <¢ D; ws-prog GJ
— - GFD <X C

proof —
assume ws: ws-prog G and
subcls-C-D: G-C <¢ D
then

have nsubcls-D-C: - GFD <o C
by (blast dest: subcls-acyclic)
show ?thesis
proof
assume G-D <o C
then show Fulse
proof (cases rule: subclseg-cases)
case Fq
with ws subcls-C-D
show ?thesis
by (auto dest: subcls-irrefl)
next
case Subcls
with nsubcls-D-C
show ?thesis
by blast
qed
qed
qed

lemma subcls-superD:

99
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[GFC <¢ Dj; class G C = Some ¢] = GF(super ¢) <¢ D
proof —
assume clsC: class G C = Some ¢
assume subcls-C-C: G-C <¢ D
then obtain S where
GHC <¢1 8 and
subclseq-S-D: G-S <¢ D
by (blast dest: tranclD)
with clsC
have S=super c
by (auto dest: subcls1D)
with subclseq-S-D show ?thesis by simp
qed

lemma subclseq-superD:
[G-C =<¢ D; C#D;class G C = Some ¢] = Gr(super ¢) <¢ D
proof —
assume neq-C-D: C#D
assume clsC: class G C = Some ¢
assume subclseq-C-D: G-C <¢ D
then show ?thesis
proof (cases rule: subclseg-cases)
case Eq with neq-C-D show %thesis by contradiction
next
case Subcls
with clsC show ?thesis by (blast dest: subcls-superD)
qed
qed

implementation relation

lemma implmt1D: G+C~11 = C#Object A (3 c€class G C: I€set (superlfs c))
apply (unfold implmt1-def)

apply auto

done

inductive — implementation, cf. 8.1.4
implmt :: prog = gtname = gtname = bool (<-+-—~»-» [71,71,71] 70)
for G :: prog

where
direct: GFC~1J = GFC~J

| subint: GHC~11 = GHI=I J = G-C~J

| subcls1: GFC<¢c1D = GFD~J — GHC~J

lemma implmtD: G-C~sJ = (31. GFC~1I A GFI=I J) V (3D. G-C=<c1D A G-D~J)
apply (erule implmt.induct)

apply fast+
done

lemma implmt-ObjectE [elim!]: Gt Object~1 — R
by (auto dest!: implmtD implmt1D subcls1D)

lemma subcls-implmt [rule-format (no-asm)]: GFA=c B = G+B~K — GFA~K
apply (erule rtrancl-induct)

apply (auto intro: implmt.subcls1)

done

lemma implmt-subint2: | GFA~J; GHIJ=<I K] = GHA~K
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apply (erule rev-mp, erule implmt.induct)
apply (auto dest: implmt.subint rtrancl-trans implmt.subcls1)
done

lemma implmt-is-class: G-C~1 —> is-class G C
apply (erule implmt.induct)

apply (auto dest: implmt1D subcls1D)

done

widening relation

inductive
— widening, viz. method invocation conversion, cf. 5.3 i.e. kind of syntactic subtyping
widen :: prog = ty = ty = bool («-H-=- [71,71,71] 70)
for G :: prog
where
refl: ~ GFT=T — identity conversion, cf. 5.1.1
| subint: GHI=<IJ = GtIface I=< Iface J— wid.ref.conv.,cf. 5.1.4
| int-obj: GrIface I=X Class Object
| subcls: GFC=¢c D = GFClass C=< Class D
| implmt: GHC~1 = G+Class C=< Iface I
| null:  GF-NT=X RefT R
| arr-obj: GFT.[]= Class Object
| array:  GFRefT S<XRefT T = GFRefT S.[|=X RefT T[]

declare widen.refl [introl]
declare widen.intros [simp]

lemma widen-PrimT: G-PrimT x=3T = (Jy. T = PrimT y)
apply (ind-cases G-PrimT =<T)
by auto

lemma widen-PrimT2: GFS<PrimT x = Jy. S = PrimT y
apply (ind-cases G-S=<PrimT )
by auto

These widening lemmata hold in Bali but are to strong for ordinary Java. They would not work for
real Java Integral Types, like short, long, int. These lemmata are just for documentation and are
not used.

lemma widen-PrimT-strong: G-PrimT x<T = T = PrimT x
by (ind-cases G-PrimT z=<T) simp-all

lemma widen-PrimT2-strong: G-S=<PrimT ¢ = S = PrimT x
by (ind-cases GFS=<PrimT z) simp-all

Specialized versions for booleans also would work for real Java

lemma widen-Boolean: GFPrimT Boolean<T —> T = PrimT Boolean
by (ind-cases G-PrimT Boolean<T) simp-all

lemma widen-Boolean2: GFS=PrimT Boolean =—> S = PrimT Boolean
by (ind-cases GES=<PrimT Boolean) simp-all

lemma widen-RefT: GFRefT RRT —> dt. T=RefT t
apply (ind-cases GFRefT R=T)
by auto
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lemma widen-RefT2: GF-S=RefT R — 3t. S=RefT' t
apply (ind-cases GFS=RefT R)
by auto

lemma widen-Iface: GHIface IRT = T=Class Object V (3J. T=Iface J)
apply (ind-cases G-Iface I=<T)
by auto

lemma widen-Iface2: GFS= Iface J = S = NT Vv (31. S = Iface I) V (3D. S = Class D)
apply (ind-cases GFS= Iface J)
by auto

lemma widen-Iface-Iface: GHIface I=X Iface J — GHI=IJ
apply (ind-cases GFlIface I= Iface J)
by auto

lemma widen-Iface-Iface-eq [simp): GrIface I Iface J = GFI=IJ
apply (rule iffT)

apply (erule widen-Iface-Iface)

apply (erule widen.subint)

done

lemma widen-Class: G-Class C<XT = (3 D. T=Class D) vV (1. T=Iface I)
apply (ind-cases Gt Class C<T)
by auto

lemma widen-Class2: G-S= Class C = C = Object V S = NT vV (3D. S = Class D)
apply (ind-cases GFS= Class C)
by auto

lemma widen-Class-Class: G+Class C=< Class em — GFC=¢c ¢cm
apply (ind-cases GFClass C=< Class ¢cm)
by auto

lemma widen-Class-Class-eq [simp]: GFClass C= Class cm = GFC=¢ c¢m
apply (rule iffI)

apply (erule widen-Class-Class)

apply (erule widen.subcls)

done

lemma widen-Class-Iface: GClass C= Iface | — GFC~1
apply (ind-cases GFClass C= Iface I)
by auto

lemma widen-Class-Iface-eq [simp]: GFClass C=< Iface I = GFC~1
apply (rule iff)

apply (erule widen-Class-Iface)

apply (erule widen.implmit)

done

lemma widen-Array: GHS.[|[XT = T=Class Object V (3 T'. T=T"[] N G-S=<T")
apply (ind-cases G=S.[|<XT)
by auto

lemma widen-Array2: G-S<T.| = S = NT v (35" §=S"[] A GFS'<T)
apply (ind-cases GFS=T.[])
by auto
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lemma widen-ArrayPrimT: G-PrimT t.[|[2T = T=Class Object V T=PrimT t.]
apply (ind-cases GFPrimT t.[|]=<T)
by auto

lemma widen-ArrayRefT":

GFRefT t.[|RT = T=Class Object V (Is. T=RefT s.[]| N GFRefT t=RefT s)
apply (ind-cases G-RefT t.[|=XT)
by auto

lemma widen-ArrayRefT-ArrayRefT-eq [simp):
GrRefT T.]<RefT T'[] = G-RefT T<RefT T'

apply (rule iffI)

apply (drule widen-ArrayRefT)

apply simp

apply (erule widen.array)

done

lemma widen-Array-Array: G-T.[|=XT"[] = GFT=<T’
apply (drule widen-Array)

apply auto

done

lemma widen-Array-Class: G-S.[] < Class C = C=0bject
by (auto dest: widen-Array)

lemma widen-NT2: GFS<NT — § = NT
apply (ind-cases GFS<NT)
by auto

lemma widen-Object:
assumes isrtype G T and ws-prog G
shows GFRefT T < Class Object
proof (cases T)
case (ClassT C) with assms have G-C=¢ Object by (auto intro: subcls-ObjectI)
with ClassT show ?thesis by auto
qed simp-all

lemma widen-trans-lemma [rule-format (no-asm)]:
[GFS=<U; V C. is-class G C — G-C=¢ Object] = VT. GFUXT — G-S<T
apply (erule widen.induct)

apply safe

prefer 5 apply (drule widen-RefT) apply clarsimp
apply (frule-tac [1] widen-Iface)

apply (frule-tac [2] widen-Class)

apply (frule-tac [3] widen-Class)

apply (frule-tac [4] widen-Iface)

apply (frule-tac [5] widen-Class)

apply (frule-tac [6] widen-Array)

apply safe

apply (rule widen.int-obj)

prefer 6 apply (drule implmt-is-class) apply simp
apply (erule-tac [!] thin-rl)

prefer 6 apply simp

apply (rule-tac [9] widen.arr-oby)

apply (rotate-tac [9] —1)

apply (frule-tac [9] widen-RefT)

apply (auto elim!: rtrancl-trans subcls-implmt implmt-subint2)

done
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lemma ws-widen-trans: [GFS=3U; G-U=XT; ws-prog G] = G-S=<T
by (auto intro: widen-trans-lemma subcls-Object])

lemma widen-antisym-lemma [rule-format (no-asm)]: [GFS=T;
VIJ. GFHIZIJNGHIZIT — I = J;

vVCD. GFC2¢ DN GF-D=X¢c C — C = D;

VI . GFObject~1 — False] = GFT=<S — S§=T
apply (erule widen.induct)

apply (auto dest: widen-Iface widen-NT2 widen-Class)

done

lemmas subint-antisym =

subintl-acyclic [THEN acyclic-impl-antisym-rtrancl)
lemmas subcls-antisym =

subclsi-acyclic [THEN acyclic-impl-antisym-rtrancl]

lemma widen-antisym: [GFS=T; G-T=S; ws-prog G| = S=T
by (fast elim: widen-antisym-lemma subint-antisym [THEN antisymD)|
subels-antisym [THEN antisymD))

lemma widen-ObjectD [dest!]: G+ Class Object=T = T=Class Object
apply (frule widen-Class)

apply (fast dest: widen-Class-Class widen-Class-Iface)

done

definition
widens :: prog = [ty list, ty list] = bool («-+-[=]- [71,71,71] 70)
where GHTs[=]|Ts' = list-all2 (AT T'. G=T=<T') Ts Ts’

lemma widens-Nil [simp]: GH[|[X]]]
apply (unfold widens-def)

apply auto

done

lemma widens-Cons [simp]: GH(S#SS)[I|(T#Ts) = (GFS=<T A GFSs[<]Ts)
apply (unfold widens-def)

apply auto

done

narrowing relation

inductive — narrowing reference conversion, cf. 5.1.5
narrow :: prog = ty = ty = bool (-~ [71,71,71] 70)
for G :: prog

where
subcls: GHC=¢c D = G+ Class D> Class C

| implmt: —GHC~I = G+ Class CIface I

| obj-arr: GFClass Object-1T.||

| int-cls: G+ Iface I-Class C

| subint: imethds G I hidings imethds G J entails

(A(md, mh ) (md’;mh’). GFmrt mh=mrt mh') =
-GHI=<IJ = GF Iface I'-Iface J
| array: GFRefT S=RefT T = G+ RefT S.[]>RefT T.|]

lemma narrow-RefT: G-RefT R=T = dt. T=RefT' t
apply (ind-cases G+RefT R-T)
by auto
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lemma narrow-RefT2: GFS>RefT R =—> 3t. S=RefT' t
apply (ind-cases GFS>RefT R)
by auto

lemma narrow-PrimT: G-PrimT pt>-T —> 3t. T=PrimT t
by (ind-cases GFPrimT pt>=T)

lemma narrow-PrimT2: G-S=PrimT pt —
dt. S=PrimT t AN GEPrimT t<PrimT pt
by (ind-cases GHS>PrimT pt)

These narrowing lemmata hold in Bali but are to strong for ordinary Java. They would not work
for real Java Integral Types, like short, long, int. These lemmata are just for documentation and
are not used.

lemma narrow-PrimT-strong: G-PrimT pt=T —> T=PrimT pt
by (ind-cases G+PrimT pt=T)

lemma narrow-PrimT2-strong: GF-S>PrimT pt = S=PrimT pt
by (ind-cases G+S>PrimT pt)

Specialized versions for booleans also would work for real Java

lemma narrow-Boolean: G+PrimT Boolean>=T =—> T=PrimT Boolean
by (ind-cases G+PrimT Boolean>T)

lemma narrow-Boolean2: GFS=PrimT Boolean —> S=PrimT Boolean
by (ind-cases G+S>PrimT Boolean)

casting relation

inductive — casting conversion, cf. 5.5
cast :: prog = ty = ty = bool («-+-=2¢ - [71,71,71] 70)
for G :: prog

where
widen: GFS<XT = GFS=<? T

| narrow: GHS>=T — GHS<? T

lemma cast-RefT: G-RefT R=? T = 3t. T=RefT ¢
apply (ind-cases G-RefT R=<? T)
by (auto dest: widen-RefT narrow-RefT')

lemma cast-RefT2: GFS=? RefT R —> 3t. S=RefT' t
apply (ind-cases G-S=? RefT R)
by (auto dest: widen-RefT2 narrow-RefT2)

lemma cast-PrimT: G-PrimT pt<? T = 3t. T=PrimT t
apply (ind-cases GFPrimT pt=<? T)
by (auto dest: widen-PrimT narrow-PrimT)

lemma cast-PrimT2: GFS=<? PrimT pt = 3t. S=PrimT t A GEPrimT t=<PrimT pt
apply (ind-cases GFS=? PrimT pt)
by (auto dest: widen-PrimT2 narrow-PrimT2)

lemma cast-Boolean:
assumes bool-cast: G-PrimT Boolean<? T
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shows T=PrimT Boolean
using bool-cast
proof (cases)
case widen
hence G+PrimT Boolean=< T
by simp
thus ?thesis by (rule widen-Boolean)
next
case narrow
hence G+PrimT Boolean>=T
by simp
thus ?thesis by (rule narrow-Boolean)
qed

lemma cast-Boolean?2:
assumes bool-cast: GFS=? PrimT Boolean
shows S = PrimT Boolean
using bool-cast
proof (cases)
case widen
hence GFS= PrimT Boolean
by simp
thus ?thesis by (rule widen-Boolean?2)
next
case narrow
hence G+S>PrimT Boolean
by simp
thus ?thesis by (rule narrow-Boolean2)
qed

end



Chapter 10

DeclConcepts

1 Advanced concepts on Java declarations like overriding, inheritance, dynamic
method lookup

theory DeclConcepts imports TypeRel begin

access control (cf. 6.6), overriding and hiding (cf. 8.4.6.1)

definition is-public :: prog = gtname = bool where
is-public G gn = (case class G qn of
None = (case iface G qn of
None = False
| Some i = access i = Public)
| Some ¢ = access ¢ = Public)

2 accessibility of types (cf. 6.6.1)

Primitive types are always accessible, interfaces and classes are accessible in their package or if they
are defined public, an array type is accessible if its element type is accessible

primrec
accessible-in :: prog = ty = pname = bool («-F - accessible’-in -» [61,61,61] 60) and
rt-accessible-in :: prog = ref-ty = pname = bool (<-F - accessible’-in'' - [61,61,61] 60)
where
GH(PrimT p) accessible-in pack = True
| accessible-in-RefT-simp:
GH(RefT r) accessible-in pack = Gkr accessible-in’ pack
| GH(NullT) accessible-in’ pack = True
| G-(IfaceT I) accessible-in’ pack = ((pid I = pack) V is-public G I)
| GE(ClassT C) accessible-in’ pack = ((pid C = pack) V is-public G C')
| GH(ArrayT ty) accessible-in’ pack = Ghty accessible-in pack

declare accessible-in-RefT-simp [simp del]

definition
is-acc-class :: prog = pname = gtname = bool
where is-acc-class G P C = (is-class G C N G-(Class C) accessible-in P)

definition
is-acc-iface :: prog = pname = qtname = bool
where is-acc-iface G P I = (is-iface G I N Gr(Iface I) accessible-in P)

definition

is-acc-type :: prog = pname = ty = bool
where is-acc-type G P T = (is-type G T N G+T accessible-in P)
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definition
is-acc-reftype :: prog = pname = ref-ty = bool
where is-acc-reftype G P T = (isrtype G T A GHT accessible-in’ P)

lemma is-acc-classD:
is-acc-class G P C = is-class G C' N GH(Class C) accessible-in P
by (simp add: is-acc-class-def)

lemma is-acc-class-is-class: is-acc-class G P C = is-class G C
by (auto simp add: is-acc-class-def)

lemma is-acc-ifaceD:
is-acc-iface G P I = is-iface G I N Gr(Iface I) accessible-in P
by (simp add: is-acc-iface-def)
lemma is-acc-typeD:
is-acc-type G P T = is-type G T N GFT accessible-in P
by (simp add: is-acc-type-def)
lemma is-acc-reftypeD:

is-acc-reftype G P T = isrtype G T N G+T accessible-in’ P
by (simp add: is-acc-reftype-def)

3 accessibility of members

The accessibility of members is more involved as the accessibility of types. We have to distinguish
several cases to model the different effects of accessibility during inheritance, overriding and ordinary
member access

Various technical conversion and selection functions

overloaded selector accmodi to select the access modifier out of various HOL types

class has-accmodi =
fixes accmodi:: 'a = acc-modi

instantiation acc-modi :: has-accmodi
begin

definition
acc-modi-accmodi-def: accmodi (a::acc-modi) = a

instance ..
end

lemma acc-modi-accmodi-simp|[simp|: accmodi (a::acc-modi) = a
by (simp add: acc-modi-accmodi-def)

instantiation decl-ext :: (type) has-accmodi
begin

definition
decl-acc-modi-def: accmodi (d::('a:: type) decl-scheme) = access d

instance ..
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end

lemma decl-acc-modi-simp[simp|: accmodi (d::('a::type) decl-scheme) = access d
by (simp add: decl-acc-modi-def)

instantiation prod :: (type, has-accmodi) has-accmodi
begin

definition
pair-acc-modi-def: acemodi p = acemodi (snd p)

instance ..
end

lemma pair-acc-modi-simp[simp|: accmodi (z,a) = (accmodi a)
by (simp add: pair-acc-modi-def)

instantiation memberdecl :: has-accmodi
begin

definition
memberdecl-acc-modi-def: accmodi m = (case m of
fdecl f = accmodi f
| mdecl m = accmodi m)

instance ..
end

lemma memberdecl-fdecl-acc-modi-simp|simp]:
accmodi (fdecl m) = accmodi m
by (simp add: memberdecl-acc-modi-def)

lemma memberdecl-mdecl-acc-modi-simp[simp]:

accmodi (mdecl m) = accmodi m

by (simp add: memberdecl-acc-modi-def)

overloaded selector declclass to select the declaring class out of various HOL types

class has-declclass =
fixes declclass:: 'a = gtname

instantiation gtname-ext :: (type) has-declclass
begin

definition
declclass ¢ = ( pid = pid q, tid = tid q |

instance ..

end

lemma gtname-declclass-def:
declclass ¢ = (q::qtname)

by (induct q) (simp add: declclass-gtname-ext-def)

lemma gtname-declclass-simp[simpl: declclass (g::qtname) = ¢
by (simp add: gtname-declclass-def)
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instantiation prod :: (has-declclass, type) has-declclass
begin

definition
pair-declclass-def: declclass p = declclass (fst p)

instance ..
end

lemma pair-declclass-simp[simp]: declclass (c,x) = declclass ¢
by (simp add: pair-declclass-def)

overloaded selector is-static to select the static modifier out of various HOL types

class has-static =
fixes is-static :: 'a = bool

instantiation decl-ext :: (has-static) has-static
begin

instance ..
end

instantiation member-ext :: (type) has-static
begin

instance ..
end

axiomatization where
static-field-type-is-static-def: is-static (m::("a member-scheme)) = static m

lemma member-is-static-simp: is-static (m::’a member-scheme) = static m
by (simp add: static-field-type-is-static-def)

instantiation prod :: (type, has-static) has-static
begin

definition
pair-is-static-def: is-static p = is-static (snd p)

instance ..
end

lemma pair-is-static-simp [simp]: is-static (z,s) = is-static s
by (simp add: pair-is-static-def)

lemma pair-is-static-simp1: is-static p = is-static (snd p)
by (simp add: pair-is-static-def)

instantiation memberdecl :: has-static
begin

definition
memberdecl-is-static-def:
is-static m = (case m of
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fdecl f = is-static f
| mdecl m = is-static m)

instance ..

end

lemma memberdecl-is-static-fdecl-simp|simp]:
is-static (fdecl f) = is-static f

by (simp add: memberdecl-is-static-def)
lemma memberdecl-is-static-mdecl-simp[simpl:
is-static (mdecl m) = is-static m

by (simp add: memberdecl-is-static-def)

lemma mhead-static-simp [simp]: is-static (mhead m) = is-static m
by (cases m) (simp add: mhead-def member-is-static-simp)

— some mnemotic selectors for various pairs

definition

decliface :: gtname X 'a decl-scheme = gtname where

decliface = fst — get the interface component
definition

mbr :: qgtname X memberdecl = memberdecl where

mbr = snd — get the memberdecl component
definition

mthd :: 'b x 'a = 'a where

mthd = snd — get the method component

— also used for mdecl, mhead

definition
fld :: 'b x 'a decl-scheme = 'a decl-scheme where
fld = snd — get the field component

— also used for ((vname x gtname)x field)
— some mnemotic selectors for (vname x gtname)

definition
fname:: vname X 'a = vname
where fname = fst
— also used for fdecl

definition
declclassf:: (vname X gtname) = gtname
where declclassf = snd

lemma decliface-simp[simp]: decliface (I,m) = I
by (simp add: decliface-def)

lemma mbr-simp[simp]: mbr (C,m) = m
by (simp add: mbr-def)

lemma access-mbr-simp [simp]: (accmodi (mbr m)) = accmodi m
by (cases m) (simp add: mbr-def)
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lemma mthd-simp[simp]: mthd (C,m) = m
by (simp add: mthd-def)

lemma fld-simp[simp): fid (C.f) = f
by (simp add: fld-def)

lemma accmodi-simp[simp): accmodi (C,m) = access m
by (simp )

lemma access-mthd-simp [simp]: (access (mthd m)) = accmodi m
by (cases m) (simp add: mthd-def)

lemma access-fld-simp [simp]: (access (fld f)) = accmodi f
by (cases f) (simp add: fld-def)

lemma static-mthd-simp[simp): static (mthd m) = is-static m
by (cases m) (simp add: mthd-def member-is-static-simp)

lemma mthd-is-static-simp [simp): is-static (mthd m) = is-static m
by (cases m) simp

lemma static-fld-simp[simp]: static (fld f) = is-static f
by (cases f) (simp add: fld-def member-is-static-simp)

lemma ext-field-simp [simpl: (declclass f,fld ) = f
by (cases f) (simp add: fld-def)

lemma ext-method-simp [simpl: (declclass m,mthd m) = m
by (cases m) (simp add: mthd-def)

lemma ext-mbr-simp [simp]: (declclass m,mbr m) = m
by (cases m) (simp add: mbr-def)

lemma fname-simp[simp|:fname (n,c) = n

by (simp add: fname-def)

lemma declclassf-simp[simp)|:declclassf (n,c) = ¢
by (simp add: declclassf-def)

— some mnemotic selectors for (vname X gtname)
definition

fldname :: vname x gtname = vname

where fldname = fst
definition

fldclass :: vname X gtname = gtname

where fldclass = snd

lemma fldname-simp[simp|: fldname (n,c) = n

by (simp add: fldname-def)

lemma fldclass-simp[simp]: fldclass (n,c) = ¢
by (simp add: fldclass-def)

lemma ext-fieldname-simp[simpl: (fldname f,fldclass f) = f
by (simp add: fldname-def fldclass-def)

Convert a qualified method declaration (qualified with its declaring class) to a qualified member
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declaration: methdMembr

definition
methdMembr :: qgtname X mdecl = qtname X memberdecl
where methdMembr m = (fst m, mdecl (snd m))

lemma methdMembr-simp[simp): methdMembr (c,m) = (c,mdecl m)
by (simp add: methdMembr-def)

lemma accmodi-methdMembr-simp[simp|: accmodi (methdMembr m) = accmodi m
by (cases m) (simp add: methdMembr-def)

lemma is-static-methdMembr-simp|[simp): is-static (methdMembr m) = is-static m
by (cases m) (simp add: methdMembr-def)

lemma declclass-methdMembr-simp[simp)|: declclass (methdMembr m) = declclass m
by (cases m) (simp add: methdMembr-def)

Convert a qualified method (qualified with its declaring class) to a qualified member declaration:
method

definition
method :: sig = (gtname x methd) = (gtname x memberdecl)
where method sig m = (declclass m, mdecl (sig, mthd m))

lemma method-simp[simp]: method sig (C,m) = (C,mdecl (sig,m))
by (simp add: method-def)

lemma accmodi-method-simp[simp|: accmodi (method sig m) = accmodi m
by (simp add: method-def)

lemma declclass-method-simp[simp]: declclass (method sig m) = declclass m
by (simp add: method-def)

lemma is-static-method-simp[simp|: is-static (method sig m) = is-static m
by (cases m) (simp add: method-def)

lemma mbr-method-simp|[simpl: mbr (method sig m) = mdecl (sig,mthd m)
by (simp add: mbr-def method-def)

lemma memberid-method-simp|[simp]: memberid (method sig m) = mid sig
by (simp add: method-def)

definition
fieldm :: vname = (gtname x field) = (gtname x memberdecl)
where fieldm n f = (declclass f, fdecl (n, fld f))

lemma fieldm-simp[simp): fieldm n (C.f) = (C,fdecl (n,f))
by (simp add: fieldm-def)

lemma accmodi-fieldm-simp[simp|: accmodi (fieldm n f) = acemodi f
by (simp add: fieldm-def)

lemma declclass-fieldm-simp[simp|: declclass (fieldm n f) = declclass f
by (simp add: fieldm-def)

lemma is-static-fieldm-simp|simp|: is-static (fieldm n f) = is-static f
by (cases f) (simp add: fieldm-def)

lemma mbr-fieldm-simp[simp]: mbr (fieldm n f) = fdecl (n,fld f)
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by (simp add: mbr-def fieldm-def)

lemma memberid-fieldm-simp[simp]: memberid (fieldm n f) = fid n
by (simp add: fieldm-def)
Select the signature out of a qualified method declaration: msig

definition
msig :: (gtname x mdecl) = sig
where msig m = fst (snd m)

lemma msig-simp[simp]: msig (c,(s,m)) = s
by (simp add: msig-def)

Convert a qualified method (qualified with its declaring class) to a qualified method declaration:
gmdecl

definition
gmdecl :: sig = (gtname X methd) = (gtname x mdecl)
where gmdecl sig m = (declclass m, (sig,mthd m))

lemma gmdecl-simp[simp]: gmdecl sig (C,m) = (C,(sig,m))
by (simp add: gmdecl-def)

lemma declclass-gmdecl-simp[simp]: declclass (gmdecl sig m) = declclass m
by (simp add: gmdecl-def)

lemma accmodi-gmdecl-simp[simp]: accmodi (gmdecl sig m) = accmodi m
by (simp add: gmdecl-def)

lemma is-static-gmdecl-simp[simp]: is-static (¢gmdecl sig m) = is-static m
by (cases m) (simp add: gmdecl-def)

lemma msig-gmdecl-simp[simpl: msig (gmdecl sig m) = sig

by (simp add: gmdecl-def)

lemma mdecl-gmdecl-simp[simp]:

mdecl (mthd (gmdecl sig new)) = mdecl (sig, mthd new)
by (simp add: gmdecl-def)

lemma methdMembr-gmdecl-simp [simp):

methdMembr (gmdecl sig old) = method sig old

by (simp add: methdMembr-def gmdecl-def method-def)

overloaded selector resTy to select the result type out of various HOL types

class has-resTy =
fixes resTy:: 'a = ty

instantiation decl-ext :: (has-resTy) has-resTy
begin

instance ..
end

instantiation member-ext :: (has-resTy) has-resTy
begin

instance ..
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end

instantiation mhead-ext :: (type) has-resTy
begin

instance ..
end

axiomatization where
mhead-ext-type-res Ty-def: resTy (m::('b mhead-scheme)) = resT m

lemma mhead-resTy-simp: resTy (m::'a mhead-scheme) = resT m
by (simp add: mhead-ezt-type-resTy-def)

lemma resTy-mhead [simp]:resTy (mhead m) = resTy m
by (simp add: mhead-def mhead-resTy-simp)

instantiation prod :: (type, has-resTy) has-resTy
begin

definition
pair-resTy-def: resTy p = resTy (snd p)

instance ..
end

lemma pair-res Ty-simp[simp]: resTy (z,m) = resTy m
by (simp add: pair-resTy-def)

lemma gmdecl-resTy-simp [simp]: resTy (gmdecl sig m) = resTy m
by (cases m) (simp)

lemma resTy-mthd [simp]:resTy (mthd m) = resTy m
by (cases m) (simp add: mthd-def )

inheritable-in
GFm inheritable-in P: m can be inherited by classes in package P if:

e the declaration class of m is accessible in P and

e the member m is declared with protected or public access or if it is declared with default
(package) access, the package of the declaration class of m is also P. If the member m is
declared with private access it is not accessible for inheritance at all.

definition

inheritable-in :: prog = (gtname x memberdecl) = pname = bool (<- - - inheritable’-in -» [61,61,61] 60)
where
GFmembr inheritable-in pack =

(case (accmodi membr) of

Private = Fulse

| Package = (pid (declclass membr)) = pack

| Protected = True

| Public = True)

abbreviation
Method-inheritable-in-syntax::
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prog = (gtname X mdecl) = pname = bool
(¢- FMethod - inheritable’-in - » [61,61,61] 60)
where GFMethod m inheritable-in p == GFmethdMembr m inheritable-in p

abbreviation
Methd-inheritable-in::
prog = sig = (gtname X methd) = pname = bool
(¢<- FMethd - - inheritable’-in - » [61,61,61,61] 60)
where GHMethd s m inheritable-in p == GF(method s m) inheritable-in p

declared-in/undeclared-in

definition
cdeclaredmethd :: prog = qtname = (sig,methd) table where
cdeclaredmethd G C' =
(case class G C of
None = X sitg. None
| Some ¢ = table-of (methods c))

definition
cdeclaredfield :: prog = gtname = (vname,field) table where
cdeclaredfield G C =
(case class G C of
None = X sig. None
| Some ¢ = table-of (cfields c))

definition
declared-in :: prog = memberdecl = qtname = bool («-+ - declared’-in -» [61,61,61] 60)
where
Grm declared-in C = (case m of
fdecl (fn,f ) = cdeclaredfield G C fn = Some f
| mdecl (sig,m) = cdeclaredmethd G C sig = Some m)

abbreviation

method-declared-in:: prog = (gtname x mdecl) = gtname = bool
(<-+=Method - declared’-in -» [61,61,61] 60)

where GHMethod m declared-in C == Grmdecl (mthd m) declared-in C

abbreviation

methd-declared-in:: prog = sig =(gtname x methd) = gqtname = bool
(«-+Methd - - declared’-in -y [61,61,61,61] 60)

where GHMethd s m declared-in C == GFmdecl (s,mthd m) declared-in C

lemma declared-in-classD:
GFm declared-in C = is-class G C
by (cases m)
(auto simp add: declared-in-def cdeclaredmethd-def cdeclaredfield-def)

definition
undeclared-in :: prog = memberid = gtname = bool (<-+ - undeclared’-in -» [61,61,61] 60)
where
Grm undeclared-in C = (case m of
fid fn = cdeclaredfield G C fn = None
| mid sig = cdeclaredmethd G C sig = None)

members

inductive
members :: prog = (gtname X memberdecl) = gtname = bool
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(<- = - member’-of -» [61,61,61] 60)
for G :: prog
where

Immediate: [GFmbr m declared-in C;declclass m = C]| = GFm member-of C
| Inherited: [GFm inheritable-in (pid C); GFmemberid m undeclared-in C;
GHC <¢1 S; GH(Class S) accessible-in (pid C); GHm member-of S
] = GFm member-of C

Note that in the case of an inherited member only the members of the direct superclass are concerned.
If a member of a superclass of the direct superclass isn’t inherited in the direct superclass (not
member of the direct superclass) than it can’t be a member of the class. E.g. If a member of a class
A is defined with package access it isn’t member of a subclass S if S isn’t in the same package as A.
Any further subclasses of S will not inherit the member, regardless if they are in the same package
as A or not.

abbreviation
method-member-of :: prog = (gtname x mdecl) = gqtname = bool
(¢- FMethod - member'-of -» [61,61,61] 60)
where GFMethod m member-of C == GF(methdMembr m) member-of C

abbreviation

methd-member-of :: prog = sig = (qtname X methd) = gtname = bool
(¢- FMethd - - member’-of - [61,61,61,61] 60)

where GHMethd s m member-of C == GH(method s m) member-of C

abbreviation

fieldm-member-of:: prog = vname = (gtname X field) = gtname = bool
(¢- FField - - member'-of - [61,61,61] 60)

where G+ Field n f member-of C == GFfieldm n f member-of C

definition
inherits :: prog = qtname = (gtname x memberdecl) = bool («- - - inherits -» [61,61,61] 60)
where
Gl C inherits m =
(GEm inheritable-in (pid C) N GF-memberid m undeclared-in C A
(3S. GEC <¢c1 S N GH(Class S) accessible-in (pid C) A G-m member-of S))

lemma inherits-member: G+C inherits m = GFm member-of C
by (auto simp add: inherits-def intro: members.Inherited)

definition
member-in :: prog = (gtname x memberdecl) = gtname = bool (s- = - member’-in - [61,61,61] 60)
where GEm member-in C = (3 provC. G+ C =<¢ provC A G = m member-of provC)

A member is in a class if it is member of the class or a superclass. If a member is in a class we
can select this member. This additional notion is necessary since not all members are inherited to
subclasses. So such members are not member-of the subclass but member-in the subclass.

abbreviation
method-member-in:: prog = (gtname x mdecl) = gtname = bool
(¢- FMethod - member’-in - [61,61,61] 60)
where GHMethod m member-in C == Gt(methdMembr m) member-in C

abbreviation

methd-member-in:: prog = sig = (gtname x methd) = gtname = bool
(¢- FMethd - - member’-in -» [61,61,61,61] 60)

where GHMethd s m member-in C == GF(method s m) member-in C
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lemma member-inD: GF-m member-in C
= 3 provC. G+ C X¢ provC A G F m member-of provC
by (auto simp add: member-in-def)

lemma member-inl: [G F m member-of provC;G+ C =<¢ provC] = GtHm member-in C
by (auto simp add: member-in-def)

lemma member-of-to-member-in: G = m member-of C = G Fm member-in C
by (auto intro: member-inl)

overriding

Unfortunately the static notion of overriding (used during the typecheck of the compiler) and the
dynamic notion of overriding (used during execution in the JVM) are not exactly the same.

Static overriding (used during the typecheck of the compiler)

inductive
stat-overridesR :: prog = (qtname x mdecl) = (gtname x mdecl) = bool
(«<- F - overridess - [61,61,61] 60)
for G :: prog
where

Direct: [ is-static new; msig new = msig old;
G+Method new declared-in (declclass new);
GFMethod old declared-in (declclass old);
GFMethod old inheritable-in pid (declclass new);
GF(declclass new) <¢1 superNew;

G FMethod old member-of superNew
] = Grnew overridess old

| Indirect: [GFnew overridess intr; Grintr overridesg old]
— Gknew overridesg old

Dynamic overriding (used during the typecheck of the compiler)

inductive
overridesR :: prog = (gtname x mdecl) = (gtname x mdecl) = bool
(«- F - overrides -» [61,61,61] 60)
for G :: prog
where

Direct: [ is-static new; — is-static old; accmodi new # Private;
msig new = msig old;
GF(declclass new) <¢ (declclass old);
GFMethod new declared-in (declclass new);
GFMethod old declared-in (declclass old);
GMethod old inheritable-in pid (declclass new);
GtresTy new =< resTy old
] = Grnew overrides old

| Indirect: [GFnew overrides intr; Grintr overrides old]
= Ghnew overrides old

abbreviation (input)
sig-stat-overrides::
prog = sig = (gtname X methd) = (gtname x methd) = bool
(¢-,-F - overridesg - [61,61,61,61] 60)
where G, s-new overridess old == GH(gmdecl s new) overridess (gmdecl s old)
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abbreviation (input)

sig-overrides:: prog = sig = (gtname X methd) = (gtname x methd) = bool
(¢-,-F - overrides -» [61,61,61,61] 60)

where G, sHnew overrides old == GH(gmdecl s new) overrides (gmdecl s old)

Hiding
definition
hides :: prog = (gtname x mdecl) = (gtname x mdecl) = bool (<-+ - hides -» [61,61,61] 60)
where
GFnew hides old =
(is-static new A msig new = msig old A
Gh(declclass new) <¢ (declclass old) N
G+ Method new declared-in (declclass new) A
G+ Method old declared-in (declclass old) A
GFMethod old inheritable-in pid (declclass new))

abbreviation

sig-hides:: prog = sig = (gtname x methd) = (gtname x methd) = bool
(t--F - hides - [61,61,61,61] 60)

where G, s-new hides old == GF(gmdecl s new) hides (gmdecl s old)

lemma hides!:

[is-static new; msig new = msig old;
GF(declclass new) <¢ (declclass old);
GFMethod new declared-in (declclass new);
GFMethod old declared-in (declclass old);
GFMethod old inheritable-in pid (declclass new)

] = GhFnew hides old

by (auto simp add: hides-def)

lemma hidesD:
[GFnew hides old] =
declclass new # Object A is-static new N\ msig new = msig old N
Gr(declclass new) <¢ (declclass old) A
GFMethod new declared-in (declclass new) A
GFMethod old declared-in (declclass old)
by (auto simp add: hides-def)

lemma overrides-commonD:
[GFnew overrides old] =
declclass new # Object N — is-static new N\ — is-static old N
accmodi new # Private A
msig new = msig old A
Gr(declclass new) <¢ (declclass old) A
GFMethod new declared-in (declclass new) A
GFMethod old declared-in (declclass old)
by (induct set: overridesR) (auto intro: trancl-trans)

lemma ws-overrides-commonD:
[GFnew overrides old;ws-prog G] =
declclass new # Object N — is-static new N\ — is-static old N
accmodi new # Private A GFresTy new =< resTy old N
msig new = msig old A
Gr(declclass new) <¢ (declclass old) A
GFMethod new declared-in (declclass new) A
GFMethod old declared-in (declclass old)
by (induct set: overridesR) (auto intro: trancl-trans ws-widen-trans)
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lemma overrides-eq-sigD:
[GFnew overrides old] = msig old=msig new
by (auto dest: overrides-commonD)

lemma hides-eq-sigD:
[GFnew hides old] = msig old=msig new
by (auto simp add: hides-def)

permits access

definition
permits-acc :: prog = (gtname X memberdecl) = qtname = gtname = bool (<- b - in - permits’-acc’-from
5 [61,61,61,61] 60)
where
GFmembr in cls permits-acc-from accclass =
(case (accmodi membr) of
Private = (declclass membr = accclass)
| Package = (pid (declclass membr) = pid accclass)
| Protected = (pid (declclass membr) = pid accclass)
V
(Graceclass <¢ declclass membr
A (Ghrcls 2¢ accclass V is-static membr))
| Public = True)

The subcondition of the Protected case: Graccclass<¢ declclass membr could also be relaxed to:
Graccclass=¢ declclass membr since in case both classes are the same the other condition pid
(declclass membr) = pid accclass holds anyway.

Like in case of overriding, the static and dynamic accessibility of members is not uniform.

« Statically the class/interface of the member must be accessible for the member to be accessible.
During runtime this is not necessary. For Example, if a class is accessible and we are allowed
to access a member of this class (statically) we expect that we can access this member in
an arbitrary subclass (during runtime). It’s not intended to restrict the access to accessible
subclasses during runtime.

o Statically the member we want to access must be "member of' the class. Dynamically it must
only be "member in" the class.

inductive
accessible-fromR :: prog = gtname = (qtname X memberdecl) = qtname = bool
and accessible-from :: prog = (qtname x memberdecl) = gtname = gtname = bool
(¢- F - of - accessible’-from -» [61,61,61,61] 60)
and method-accessible-from :: prog = (gtname x mdecl) = gtname = gtname = bool
(¢<- FMethod - of - accessible’-from -» [61,61,61,61] 60)
for G :: prog and accclass :: gtname
where
GFmembr of cls accessible-from accclass = accessible-fromR G accclass membr cls

| G-Method m of cls accessible-from accclass = accessible-fromR G accclass (methdMembr m) cls

| Immediate: "'membr class.
[GF-membr member-of class;
G (Class class) accessible-in (pid accclass);
GFmembr in class permits-acc-from accclass
] = Grmembr of class accessible-from accclass

| Overriding: "'membr class C new old supr.
[GF-membr member-of class;
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G (Class class) accessible-in (pid accclass);
membr=(C,mdecl new);

GH(C,new) overridesg old;

GlFclass <¢ supr;

GFMethod old of supr accessible-from accclass
|= GEmembr of class accessible-from accclass

abbreviation
methd-accessible-from::
prog = sig = (qtname x methd) = gtname = qtname = bool
(«<- FMethd - - of - accessible’-from -» [61,61,61,61,61] 60)
where
GFMethd s m of cls accessible-from accclass ==
GH(method s m) of cls accessible-from accclass

abbreviation
field-accessible-from::
prog = vname = (gtname X field) = gtname = gtname = bool
(¢<- FField - - of - accessible’-from - [61,61,61,61,61] 60)
where
GFField fn f of C accessible-from accclass ==
Gr(fieldm fn f) of C accessible-from accclass

inductive
dyn-accessible-fromR :: prog = gtname = (gtname x memberdecl) = gtname = bool
and dyn-accessible-from’ :: prog = (gtname X memberdecl) = qtname = gtname = bool
(<- F - in - dyn’-accessible’-from -» [61,61,61,61] 60)
and method-dyn-accessible-from :: prog = (gtname X mdecl) = qtname = gtname = bool
(¢<- FMethod - in - dyn’-accessible’-from - [61,61,61,61] 60)
for G :: prog and accclass :: gtname
where
GFmembr in C dyn-accessible-from accC = dyn-accessible-fromR G accC membr C

| GFMethod m in C dyn-accessible-from accC = dyn-accessible-fromR G accC (methdMembr m) C

| Immediate: !class. [ GFmembr member-in class;
GFmembr in class permits-acc-from accclass
] = Grmembr in class dyn-accessible-from accclass

| Overriding: "class. [ GFmembr member-in class;
membr=(C,mdecl new);
GH(C,new) overrides old,;
GFclass <¢ supr;
GFMethod old in supr dyn-accessible-from accclass
|= Gtmembr in class dyn-accessible-from accclass

abbreviation
methd-dyn-accessible-from::
prog = sig = (gtname X methd) = gtname = gtname = bool
(<- FMethd - - in - dyn’-accessible’-from -y [61,61,61,61,61] 60)
where
GFMethd s m in C dyn-accessible-from accC ==
GH(method s m) in C dyn-accessible-from accC

abbreviation
field-dyn-accessible-from::
prog = vname = (gtname x field) = gtname = gtname = bool
(<- FField - - in - dyn’-accessible’-from -» [61,61,61,61,61] 60)
where
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GFField fn f in dynC dyn-accessible-from accC ==
Gr(fieldm fn f) in dynC dyn-accessible-from accC

lemma accessible-from-commonD: G+m of C accessible-from S
= GFm member-of C' N G+-(Class C) accessible-in (pid S)

by (auto elim: accessible-fromR.induct)

lemma unique-declaration:
[GFm declared-in C; GEn declared-in C; memberid m = memberid n |
= m=n
apply (cases m)
apply (cases n,
auto simp add: declared-in-def cdeclaredmethd-def cdeclaredfield-def)+
done

lemma declared-not-undeclared:
GtFm declared-in C —> — GF memberid m undeclared-in C
by (cases m) (auto simp add: declared-in-def undeclared-in-def)

lemma undeclared-not-declared:
G memberid m undeclared-in C —> — G+ m declared-in C
by (cases m) (auto simp add: declared-in-def undeclared-in-def)

lemma not-undeclared-declared:
- G+ membr-id undeclared-in C = (3 m. Gtm declared-in C' N
membr-id = memberid m)
proof —
assume not-undecl:= G+ membr-id undeclared-in C
show %thesis (is 2P membr-id)
proof (cases membr-id)
case (fid vname)
with not-undecl
obtain fid where
Gtfdecl (vname,fld) declared-in C
by (auto simp add: undeclared-in-def declared-in-def
cdeclaredfield-def)
with fid show ?thesis
by auto
next
case (mid sig)
with not-undecl
obtain mthd where
Grmdecl (sig,mthd) declared-in C
by (auto simp add: undeclared-in-def declared-in-def
cdeclaredmethd-def)
with mid show ?thesis
by auto
qed
qed

lemma unique-declared-in:

[GFm declared-in C; Grn declared-in C; memberid m = memberid n]

= m=n

by (auto simp add: declared-in-def cdeclaredmethd-def cdeclaredfield-def
split: memberdecl.splits)

lemma unique-member-of:
assumes n: G-n member-of C' and
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m: GFm member-of C' and
eqid: memberid n = memberid m
shows n=m
proof —
from n m eqid
show n=m
proof (induct)
case (Immediate n C)
assume member-n: G mbr n declared-in C declclass n = C
assume eqid: memberid n = memberid m
assume G F m member-of C
then show n=m
proof (cases)
case Immediate
with eqid member-n
show ?thesis
by (cases n, cases m)
(auto simp add: declared-in-def
cdeclaredmethd-def cdeclaredfield-def
split: memberdecl.splits)
next
case Inherited
with eqid member-n
show ?thesis
by (cases n) (auto dest: declared-not-undeclared)
qed
next
case (Inherited n C S)
assume undecl: G- memberid n undeclared-in C
assume super: G-C<¢ 1S
assume  hyp: [G + m member-of S; memberid n = memberid m] = n =m
assume eqid: memberid n = memberid m
assume G F m member-of C
then show n=m
proof (cases)
case Immediate
then have G+ mbr m declared-in C by simp
with eqid undecl
show ?thesis
by (cases m) (auto dest: declared-not-undeclared)
next
case Inherited
with super have G+ m member-of S
by (auto dest!: subcls1D)
with eqid hyp
show ?thesis
by blast
qed
qged
qed

lemma member-of-is-classD: G-m member-of C = is-class G C
proof (induct set: members)
case (Immediate m C)
assume GF mbr m declared-in C
then show is-class G C
by (cases mbr m)
(auto simp add: declared-in-def cdeclaredmethd-def cdeclaredfield-def)

next
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case (Inherited m C S)
show is-class G C if GFC=<¢1S and is-class G S
by (rule subcls-is-class2) (use that in auto)
qed

lemma member-of-declC"

GFm member-of C

= GFmbr m declared-in (declclass m)
by (induct set: members) auto

lemma member-of-member-of-declC:
GFm member-of C
= GFm member-of (declclass m)
by (auto dest: member-of-declC intro: members.Immediate)

lemma member-of-class-relation:

GFm member-of C = GFC =¢ declclass m
proof (induct set: members)

case (Immediate m C)

then show GHC =¢ declclass m by simp
next

case (Inherited m C S)

then show GFC <¢ declclass m

by (auto dest: r-into-rtrancl intro: rtrancl-trans)

qed

lemma member-in-class-relation:
GFm member-in C — GHC =<¢ declclass m
by (auto dest: member-inD member-of-class-relation
intro: rtrancl-trans)

lemma stat-override-declclasses-relation:

[GF(declclass new) <1 superNew; G FMethod old member-of superNew |
= Gk(declclass new) <¢ (declclass old)

apply (rule trancl-rtrancl-trancl)

apply (erule r-into-trancl)

apply (cases old)

apply (auto dest: member-of-class-relation)

done

lemma stat-overrides-commonD:
[GFnew overridesg old] =
declclass new # Object N\ — is-static new N\ msig new = msig old A
Gr(declclass new) <¢ (declclass old) A
G*FMethod new declared-in (declclass new) A
GFMethod old declared-in (declclass old)
apply (induct set: stat-overridesR)
apply (frule (1) stat-override-declclasses-relation)
apply (auto intro: trancl-trans)
done

lemma member-of-Package:

assumes GHm member-of C
and accmodi m = Package

shows pid (declclass m) = pid C
using assms

proof induct
case Immediate
then show ?case by simp
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next

case Inherited

then show %case by (auto simp add: inheritable-in-def)
qed

lemma member-in-declC: GFm member-in C=— Gtm member-in (declclass m)
proof —
assume member-in-C: GFm member-in C
from member-in-C
obtain provC where
subclseq-C-provC: G+ C' <¢ provC and
member-of-provC: G F m member-of provC
by (auto simp add: member-in-def)
from member-of-provC
have G + m member-of declclass m
by (rule member-of-member-of-declC')
moreover
from member-in-C
have G+C =<¢ declclass m
by (rule member-in-class-relation)
ultimately
show ?thesis
by (auto simp add: member-in-def)
qed

lemma dyn-accessible-from-commonD: G-m in C dyn-accessible-from S
= GFm member-in C
by (auto elim: dyn-accessible-fromR.induct)

lemma no-Private-stat-override:
[GFnew overridess old] = accmodi old # Private
by (induct set: stat-overridesR) (auto simp add: inheritable-in-def)

lemma no-Private-override: [G-new overrides old] = accmodi old # Private
by (induct set: overridesR) (auto simp add: inheritable-in-def)

lemma permits-acc-inheritance:
[GFm in statC permits-acc-from accC; GFdynC <¢ statC
] = Grm in dynC permits-acc-from accC
by (cases accmodi m)
(auto simp add: permits-acc-def
intro: subclseg-trans)

lemma permits-acc-static-declC'.

[GFm in C permits-acc-from accC; GHm member-in C; is-static m
| = GEm in (declclass m) permits-acc-from accC

by (cases accmodi m) (auto simp add: permits-acc-def)

lemma dyn-accessible-from-static-declC"
assumes acc-C: GF-m in C dyn-accessible-from accC and
static: is-static m
shows GFm in (declclass m) dyn-accessible-from accC
proof —
from acc-C static
show Gtm in (declclass m) dyn-accessible-from accC
proof (induct)
case (Immediate m C)
then show ?case
by (auto introl: dyn-accessible-fromR.Immediate
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dest: member-in-declC permits-acc-static-declC')
next
case (Overriding m C declCNew new old sup)
then have - is-static m
by (auto dest: overrides-commonD)
moreover
assume is-static m
ultimately show ?Zcase
by contradiction
qed
qed

lemma field-accessible-fromD:
[GFmembr of C accessible-from accCjis-field membr]
= GFmembr member-of C N
GH(Class C) accessible-in (pid accC) A
GFmembr in C permits-acc-from accC
by (cases set: accessible-fromR)
(auto simp add: is-field-def split: memberdecl.splits)

lemma field-accessible-from-permits-acc-inheritance:

[GFmembr of statC accessible-from accC} is-field membr; G+ dynC <¢ stat(C]
= GFmembr in dynC permits-acc-from accC

by (auto dest: field-accessible-fromD intro: permits-acc-inheritance)

lemma accessible-fieldD:
[GFmembr of C accessible-from accC; is-field membr]
= GFmembr member-of C N
GH(Class C) accessible-in (pid accC) A
GFmembr in C permits-acc-from accC
by (induct rule: accessible-fromR.induct) (auto dest: is-fieldD)

lemma member-of-Private:
[GFm member-of C; accmodi m = Private] = declclass m = C
by (induct set: members) (auto simp add: inheritable-in-def)

lemma member-of-subclseq-declC'.
GFm member-of C = GFC =¢ declclass m
by (induct set: members) (auto dest: r-into-rtrancl intro: rtrancl-trans)

lemma member-of-inheritance:
assumes m: GFm member-of D and
subclseq-D-C: G+-D <¢ C and
subclseq-C-m: G-C =<¢ declclass m and
ws: ws-prog G
shows G+m member-of C
proof —
from m subclseq-D-C' subclseq-C-m
show ?thesis
proof (induct)
case (Immediate m D)
assume declclass m = D and
GFD=<c C and GFC=(¢ declclass m
with ws have D=C
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by (auto intro: subclseq-acyclic)
with Immediate
show GHm member-of C
by (auto intro: members.Immediate)
next
case (Inherited m D S)
assume member-of-D-props:
G + m inheritable-in pid D
G+ memberid m undeclared-in D
G F Class S accessible-in pid D
G + m member-of S
assume super: GFD<¢ 1S
assume hyp: [GFS=¢ C; G-C=¢ declclass m] = G + m member-of C
assume subclseq-C-m: GFC=¢ declclass m
assume G-D=<s C
then show GFm member-of C
proof (cases rule: subclseg-cases)
case Fq
assume D=C
with super member-of-D-props
show ?thesis
by (auto intro: members.Inherited)
next
case Subcls
assume G-D<o C
with super
have GFS=s C
by (auto dest: subcls1D subcls-superD)
with subclseq-C-m hyp show ?thesis
by blast
qed
qged
qed

lemma member-of-subcls:
assumes old: GFold member-of C and
new: GrFnew member-of D and
eqid: memberid new = memberid old and
subclseq-D-C: GFD <¢ C and
subcls-new-old: Grdeclclass new <¢ declclass old and
ws: ws-prog G
shows G+D <o C
proof —
from old
have subclseq-C-old: G+C <¢ declclass old
by (auto dest: member-of-subclseq-declC)
from new
have subclseq-D-new: GFD <¢ declclass new
by (auto dest: member-of-subclseq-declC)
from subcls-new-old ws
have neg-new-old: new#old
by (cases new,cases old) (auto dest: subcls-irrefl)
from subclseq-D-new subclseq-D-C'
have GH(declclass new) <¢ C V GHC <¢ (declclass new)
by (rule subcls-compareable)
then have Gh(declclass new) <¢ C
proof
assume Ghdeclclass new=¢c C then show ?thesis .
next
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assume GHC =¢ (declclass new)
with new subclseq-D-C ws
have GFnew member-of C
by (blast intro: member-of-inheritance)
with eqid old
have new=old
by (blast intro: unique-member-of)
with neg-new-old
show ?thesis
by contradiction
qed
then show ?thesis
proof (cases rule: subclseg-cases)
case FEq
assume declclass new = C
with new have Grnew member-of C
by (auto dest: member-of-member-of-declC')
with eqid old
have new=old
by (blast intro: unique-member-of)
with neg-new-old
show ?thesis
by contradiction
next
case Subcls
assume Gtdeclclass new<¢c C
with subclseq-D-new
show GFD<c C
by (rule rtrancl-trancl-trancl)
qed
qed

corollary member-of-overrides-subcls:

[GHMethd sig old member-of C'; GFMethd sig new member-of D;GFD <¢ C;
G,sigt-new overrides old; ws-prog GJ

= GFD <o C

by (drule overrides-commonD) (auto intro: member-of-subcls)

corollary member-of-stat-overrides-subcls:

[ G Methd sig old member-of C; GFMethd sig new member-of D;G-D <¢ C;
G,sigt-new overridesg old; ws-prog GJ

= G+D <o C

by (drule stat-overrides-commonD) (auto intro: member-of-subcls)

lemma inherited-field-access:
assumes stat-acc: GEmembr of statC accessible-from accC and
is-field: is-field membr and
subclseq: G+ dynC =<¢ statC
shows GFmembr in dynC dyn-accessible-from accC
proof —
from stat-acc is-field subclseq
show ?thesis
by (auto dest: accessible-fieldD
intro: dyn-accessible-fromR.Immediate
member-inl
permits-acc-inheritance)
qed



Theory DeclConcepts

lemma accessible-inheritance:
assumes stat-acc: GFm of statC accessible-from accC and
subclseq: GHdynC =<¢ statC' and
member-dynC: GFm member-of dynC and
dynC-acc: G(Class dynC) accessible-in (pid accC')
shows GFm of dynC accessible-from accC
proof —
from stat-acc
have member-statC: GFm member-of statC
by (auto dest: accessible-from-commonD)
from stat-acc
show ?thesis
proof (cases)
case Immediate
with member-dynC member-statC subclseq dynC-acc
show ?thesis
by (auto intro: accessible-fromR.Immediate permits-acc-inheritance)
next
case Querriding
with member-dynC subclseq dynC-acc
show ?thesis
by (auto intro: accessible-fromR.Overriding rtrancl-trancl-trancl)
qged
qed

fields and methods

type-synonym
fspec = vname x gtname

translations
(type) fspec <= (type) vname X qtname

definition
imethds :: prog = gtname = (sig,qtname X mhead) tables where
imethds G I =
iface-rec G I (M its. (Un-tables ts) &®
(set-option o table-of (map (A(s,m). (s,I,m)) (imethods i))))

methods of an interface, with overriding and inheritance, cf. 9.2

definition
accimethds :: prog = pname = gtname = (sig,qtname x mhead) tables where
accimethds G pack I =
(if GHIface I accessible-in pack
then imethds G I

else (X k. {}))

only returns imethds if the interface is accessible

definition
methd :: prog = gtname = (sig,qtname x methd) table where
methd G C =
class-rec G C' Map.empty
(AC ¢ subcls-mthds.
filter-tab (Asig m. GFC inherits method sig m)
subcls-mthds
++
table-of (map (A(s,m). (s,C,m)) (methods c)))
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methd G C: methods of a class C (statically visible from C), with inheritance and hiding cf. 8.4.6;
Overriding is captured by dynmethd. Every new method with the same signature coalesces the
method of a superclass.

definition
accmethd :: prog = gtname = gqtname = (sig,qtname X methd) table where
accmethd G § C =
filter-tab (Asig m. GFmethod sig m of C accessible-from S) (methd G C)

accmethd G S C: only those methods of methd G C, accessible from S

Note the class component in the accessibility filter. The class where method m is declared (declC)
isn’t necessarily accessible from the current scope S. The method can be made accessible through
inheritance, too. So we must test accessibility of method m of class C' (not declclass m)

definition
dynmethd :: prog = qtname = gtname = (sig,qtname x methd) table where
dynmethd G statC dynC =
(Asig.
(if GrdynC <¢ statC
then (case methd G statC' sig of
None = None
| Some statM
= (class-rec G dynC Map.empty
(AC ¢ subcls-mthds.
subcls-mthds
++
(filter-tab
(X - dynM. G,sigtdynM overrides statM vV dynM=statM)
(methd G C)))
) sig
)
else None))

dynmethd G statC dynC': dynamic method lookup of a reference with dynamic class dynC and static
class statC

Note some kind of duality between methd and dynmethd in the class-rec arguments. Whereas methd
filters the subclass methods (to get only the inherited ones), dynmethd filters the new methods (to
get only those methods which actually override the methods of the static class)

definition
dynimethd :: prog = gqtname = gtname = (sig,qlname x methd) table where
dynimethd G I dynC =
(Asig. if imethds G I sig # {}
then methd G dynC' sig
else dynmethd G Object dynC' sig)

dynimethd G I dynC': dynamic method lookup of a reference with dynamic class dynC and static
interface type I

When calling an interface method, we must distinguish if the method signature was defined in the
interface or if it must be an Object method in the other case. If it was an interface method we search
the class hierarchy starting at the dynamic class of the object up to Object to find the first matching
method (methd). Since all interface methods have public access the method can’t be coalesced due
to some odd visibility effects like in case of dynmethd. The method will be inherited or overridden
in all classes from the first class implementing the interface down to the actual dynamic class.
definition

dynlookup :: prog = ref-ty = qtname = (sig,qtname x methd) table where
dynlookup G statT dynC =
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(case statT of
NullT = Map.empty
| IfaceT I = dynimethd G I dynC
| ClassT statC = dynmethd G statC dynC
| ArrayT ty = dynmethd G Object dynC')

dynlookup G statT dynC': dynamic lookup of a method within the static reference type statT and
the dynamic class dynC. In a wellformd context statT will not be NullT and in case statT is an
array type, dynC=0Object

definition
fields :: prog = qtname = ((vname X gtname) x field) list where
fields G C =
class-rec G C' [| (AC ¢ ts. map (A(n,t). (n,C),t)) (cfields ¢) @ ts)

DeclConcepts.fields G C list of fields of a class, including all the fields of the superclasses (private,
inherited and hidden ones) not only the accessible ones (an instance of a object allocates all these
fields

definition
accfield :: prog = gtname = gtname = (vname, gtname X field) table where
accfield G S C =
(let field-tab = table-of ((map (A((n,d),f).(n,(d,f)))) (fields G C))
in filter-tab (An (declC,f). G& (declC,fdecl (n,f)) of C accessible-from S)
field-tab)

accfield G C S: fields of a class C' which are accessible from scope of class S with inheritance and
hiding, cf. 8.3

note the class component in the accessibility filter (see also methd). The class declaring field f
(declC) isn’t necessarily accessible from scope S. The field can be made visible through inheritance,
too. So we must test accessibility of field f of class C' (not declclass f)

definition
is-methd :: prog = gqtname = sig = bool
where is-methd G = (AC sig. is-class G C' N methd G C sig # None)

definition
efname :: ((vname X gtname) x field) = (vname X gtname)
where efname = fst

lemma efname-simp[simp]:efname (n,f) = n
by (simp add: efname-def)

4 imethds

lemma imethds-rec: [iface G I = Some i; ws-prog G] =
imethds G I = Un-tables ((AJ. imethds G J)‘set (isuperlfs i)) &®
(set-option o table-of (map (A(s,mh). (s,I,mh)) (imethods 7)))
apply (unfold imethds-def)
apply (rule iface-rec [THEN trans])
apply auto
done

lemma imethds-norec:
[iface G md = Some i; ws-prog G; table-of (imethods i) sig = Some mh] =
(md, mh) € imethds G md sig

apply (subst imethds-rec)

apply assumption+
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rule iffD2)

rule overrides-t-Some-iff)

rule disjI1)

auto elim: table-of-map-Somel)

apply
apply
apply
apply
done

P

lemma imethds-decll: [m € imethds G I sig; ws-prog G; is-iface G I] =
(Fi. iface G (decliface m) = Some i N
table-of (imethods i) sig = Some (mthd m)) A
(I,decliface m) € (subintl G)* A m € imethds G (decliface m) sig
apply (erule rev-mp)
apply (rule ws-subinti-induct, assumption, assumption)
apply (subst imethds-rec, erule conjunct!, assumption)
apply (force elim: imethds-norec intro: rtrancl-into-rtrancl?2)
done

lemma imethds-cases:
assumes im: im € imethds G I sig
and ifl: iface G I = Some i
and ws: ws-prog G
obtains (NewMethod) table-of (map (A(s, mh). (s, I, mh)) (imethods 7)) sig = Some im
| (InheritedMethod) J where J € set (isuperlfs i) and im € imethds G J sig
using assms by (auto simp add: imethds-rec)

5 accimethd

lemma accimethds-simp [simp]:
GrIface I accessible-in pack = accimethds G pack I = imethds G I
by (simp add: accimethds-def)

lemma accimethdsD:

im € accimethds G pack I sig

= im € imethds G I sig N G+Iface I accessible-in pack
by (auto simp add: accimethds-def)

lemma accimethdsl:

[¢m € imethds G I sig; G+1Iface I accessible-in pack]
= im € accimethds G pack I sig

by simp

6 methd

lemma methd-rec: [class G C = Some c¢; ws-prog G] =
methd G C
= (if C = Object
then Map.empty
else filter-tab (Asig m. G+C inherits method sig m)
(methd G (super ¢)))
++ table-of (map (A(s,m). (s,C,m)) (methods c))

apply (unfold methd-def)
apply (erule class-rec [THEN trans|, assumption)
apply (simp)
done

lemma methd-norec:

[class G declC = Some c¢; ws-prog G;table-of (methods c) sig = Some m]
= methd G declC sig = Some (declC, m)

apply (simp only: methd-rec)
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apply (rule disjI1 [THEN map-add-Some-iff [THEN iffD2]])
apply (auto elim: table-of-map-Somel)
done

lemma methd-declC"

[methd G C sig = Some m; ws-prog G;is-class G C] =

(Fd. class G (declclass m)=Some d A table-of (methods d) sig=Some (mthd m)) A
GFC =¢ (declclass m) N methd G (declclass m) sig = Some m

apply (erule rev-mp)

apply (rule ws-subcls1-induct, assumption, assumption)

apply (subst methd-rec, assumption)

apply (case-tac Ca=Object)

apply (force elim: methd-norec )

apply simp
apply (case-tac table-of (map (A(s, m). (s, Ca, m)) (methods c)) sig)
apply (force intro: rtrancl-into-rtrancl?)

apply (auto intro: methd-norec)
done

lemma methd-inheritedD:
[class G C = Some c; ws-prog Gymethd G C sig = Some m]
= (declclass m # C — G FC inherits method sig m)
by (auto simp add: methd-rec)

lemma methd-diff-cls:

[ws-prog G; is-class G C; is-class G D;

methd G C sig = m; methd G D sig = n; m#n
] = C#D

by (auto simp add: methd-rec)

lemma method-declared-inI:

[table-of (methods ¢) sig = Some m; class G C = Some (]
= GhFmdecl (sig,m) declared-in C

by (auto simp add: cdeclaredmethd-def declared-in-def)

lemma methd-declared-in-declclass:

[methd G C sig = Some m; ws-prog G;is-class G (]
= GFMethd sig m declared-in (declclass m)

by (auto dest: methd-declC method-declared-inI)

lemma member-methd:
assumes member-of: GFMethd sig m member-of C' and
ws: ws-prog G
shows methd G C sig = Some m
proof —
from member-of
have iscls-C": is-class G C
by (rule member-of-is-classD)
from iscls-C ws member-of
show ?thesis (is ?Methd C')
proof (induct rule: ws-class-induct”)
case (Object co)
assume G FMethd sig m member-of Object
then have GFMethd sig m declared-in Object N declclass m = Object
by (cases set: members) (cases m, auto dest: subcls1D)
with ws Object
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show ?Methd Object
by (cases m)
(auto simp add: declared-in-def cdeclaredmethd-def methd-rec
intro: table-of-mapconst-Somel)
next
case (Subcls C ¢)
assume clsC: class G C = Some c and
neq-C-0bj: C # Object and
hyp: G FMethd sig m member-of super ¢ = ¢Methd (super ¢) and
member-of: G +Methd sig m member-of C
from member-of
show ?Methd C
proof (cases)
case Immediate
with clsC
have table-of (map (A(s, m). (s, C, m)) (methods c)) sig = Some m
by (cases m)
(auto simp add: declared-in-def cdeclaredmethd-def
intro: table-of-mapconst-Somel)
with clsC neq-C-0bj ws
show ?thesis
by (simp add: methd-rec)
next
case (Inherited S)
with clsC
have wundecl: GFmid sig undeclared-in C' and
super: G +Methd sig m member-of (super c)
by (auto dest: subcls1D)
from clsC undecl
have table-of (map (A(s, m). (s, C, m)) (methods c)) sig = None
by (auto simp add: undeclared-in-def cdeclaredmethd-def
intro: table-of-mapconst-Nonel)
moreover
from Inherited have G = C inherits (method sig m)
by (auto simp add: inherits-def)
moreover
note clsC neq-C-Obj ws super hyp
ultimately
show ?thesis
by (auto simp add: methd-rec intro: filter-tab-Somel)
qed
qed
qed

lemma finite-methd:ws-prog G = finite {methd G C sig |sig C. is-class G C}

apply (rule finite-is-class [THEN finite-SetCompr2))

apply (intro strip)

apply (erule-tac ws-subcls1-induct, assumption)

apply (subst methd-rec)

apply (assumption)

apply (auto introl: finite-range-map-of finite-range-filter-tab finite-range-map-of-map-add)
done

lemma finite-dom-methd:

[ws-prog G is-class G C] = finite (dom (methd G C))
apply (erule-tac ws-subclsI-induct)

apply assumption

apply (subst methd-rec)
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apply (assumption)
apply (auto introl: finite-dom-map-of finite-dom-filter-tab)
done

7 accmethd

lemma accmethd-SomeD:

accmethd G S C sig = Some m

= methd G C sig = Some m N GFmethod sig m of C accessible-from S
by (auto simp add: accmethd-def)

lemma accmethd-Somel:

[methd G C sig = Some m; Gr-method sig m of C accessible-from S]
= accmethd G S C sig = Some m

by (auto simp add: accmethd-def intro: filter-tab-Somel)

lemma accmethd-declC:
[acemethd G S C sig = Some m; ws-prog G is-class G O] =
(3d. class G (declclass m)=Some d N

table-of (methods d) sig=Some (mthd m)) A

GFC =¢ (declclass m) N methd G (declclass m) sig = Some m A
GFmethod sig m of C accessible-from S
by (auto dest: accmethd-SomeD methd-declC accmethd-Somel)

lemma finite-dom-accmethd:
[ws-prog G is-class G C] = finite (dom (accmethd G S C))
by (auto simp add: accmethd-def intro: finite-dom-filter-tab finite-dom-methd)

8 dynmethd

lemma dynmethd-rec:
[class G dynC = Some c; ws-prog G] =
dynmethd G statC dynC sig
= (if GHdynC =¢ statC
then (case methd G statC sig of
None = None
| Some statM
= (case methd G dynC sig of
None = dynmethd G statC (super c) sig
| Some dynM =
(if G,sigk dynM overrides statM vV dynM = statM
then Some dynM
else (dynmethd G statC (super c) sig)
)
else None)
(is - = - = ?Dynmethd-def dynC sig = ?Dynmethd-rec dynC c sig)
proof —
assume clsDynC": class G dynC = Some ¢ and
ws: ws-prog G
then show ?Dynmethd-def dynC sig = ?Dynmethd-rec dynC c sig
proof (induct rule: ws-class-induct’’)
case (Object co)
show ?Dynmethd-def Object sig = ?Dynmethd-rec Object co sig
proof (cases GFObject <¢ statC')
case Fulse
then show ?thesis by (simp add: dynmethd-def)
next
case True
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then have eg-statC-O0bj: statC = Object ..
show ?thesis
proof (cases methd G statC sig)
case None then show ?thesis by (simp add: dynmethd-def)
next
case Some
with True Object ws eq-statC-0Obj
show ?thesis
by (auto simp add: dynmethd-def class-rec
intro: filter-tab-Somel)
qed
qed
next
case (Subcls dynC ¢ sc)
show ?Dynmethd-def dynC sig = ?Dynmethd-rec dynC c sig
proof (cases GHdynC =<¢ statC')
case Fulse
then show ?thesis by (simp add: dynmethd-def)
next
case True
note subclseq-dynC-statC = True
show ?thesis
proof (cases methd G statC sig)
case None then show ?thesis by (simp add: dynmethd-def)
next
case (Some statM)
note statM = Some
let ?filter =
AC. filter-tab
(M- dynM. G,sig b dynM overrides statM N dynM = statM)
(methd G C)
let ?class-rec =
AC. class-rec G C Map.empty
(AC ¢ subcls-mthds. subcls-mthds ++ (?filter C))
from statM Subcls ws subclseq-dynC-statC
have dynmethd-dynC-def:
?Dynmethd-def dynC sig =
((Zclass-rec (super c))
++
(?filter dynC)) sig
by (simp (no-asm-simp) only: dynmethd-def class-rec)
auto
show ?thesis
proof (cases dynC = statC)
case True
with subclseq-dynC-statC' statM dynmethd-dynC-def
have ?Dynmethd-def dynC sig = Some statM
by (auto intro: map-add-find-right filter-tab-Somel)
with subclseq-dynC-statC True Some
show ?thesis
by auto
next
case Fulse
with subclseq-dynC-statC Subcls
have subclseq-super-statC: GF(super ¢) 3¢ statC
by (blast dest: subclseg-superD)
show ?thesis
proof (cases methd G dynC sig)
case None
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then have ?filter dynC sig = None
by (rule filter-tab-None)
then have ?Dynmethd-def dynC sig="?class-rec (super c) sig
by (simp add: dynmethd-dynC-def)
with subclseq-super-statC statM None
have ?Dynmethd-def dynC' sig = ¢?Dynmethd-def (super c¢) sig
by (auto simp add: empty-def dynmethd-def)
with None subclseq-dynC-statC' statM
show ?thesis
by simp
next
case (Some dynM)
note dynM = Some
let ?Termination = G + gmdecl sig dynM overrides gmdecl sig statM V
dynM = statM
show ?thesis
proof (cases ?filter dynC' sig)
case None
with dynM
have no-termination: = ?Termination
by (simp add: filter-tab-def)
from None
have ?Dynmethd-def dynC' sig=?class-rec (super c) sig
by (simp add: dynmethd-dynC-def)
with subclseq-super-statC statM dynM no-termination
show ?thesis
by (auto simp add: empty-def dynmethd-def)
next
case Some
with dynM
have termination: ?Termination
by (auto)
with Some dynM
have ?Dynmethd-def dynC sig=Some dynM
by (auto simp add: dynmethd-dynC-def)
with subclseq-super-statC statM dynM termination
show ?thesis
by (auto simp add: dynmethd-def)
qed
qged
qed
qed
qged
qed
qed

lemma dynmethd-C-C:[is-class G C; ws-prog G]
= dynmethd G C C sig = methd G C sig
apply (auto simp add: dynmethd-rec)

done

lemma dynmethdSomeD:

[dynmethd G statC dynC sig = Some dynM; is-class G dynC; ws-prog G]
= GhdynC =<¢ statC A (3 statM. methd G statC sig = Some statM)

by (auto simp add: dynmethd-rec)

lemma dynmethd-Some-cases:
assumes dynM: dynmethd G statC dynC sig = Some dynM
and is-cls-dynC' is-class G dynC

97
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and ws: ws-prog G
obtains (Static) methd G statC sig = Some dynM
| (Overrides) statM
where methd G statC sig = Some statM
and dynM # statM
and G,sigk-dynM overrides statM
proof —
from is-cls-dynC obtain dc where clsDynC: class G dynC = Some dc by blast
from clsDynC ws dynM Static Overrides
show ?thesis
proof (induct rule: ws-class-induct)
case (Object co)
with ws have statC = Object
by (auto simp add: dynmethd-rec)
with ws Object show ?thesis by (auto simp add: dynmethd-C-C')
next
case (Subcls C ¢)
with ws show ?Zthesis
by (auto simp add: dynmethd-rec)
qed
qed

lemma no-override-in-Object:
assumes dynM: dynmethd G statC dynC sig = Some dynM and
is-cls-dynC'" is-class G dynC and
ws: ws-prog G and
statM: methd G statC sig = Some statM and
neq-dynM-statM: dynM#statM
shows dynC # Object
proof —
from is-cls-dynC obtain dc where clsDynC': class G dynC = Some dc by blast
from clsDynC ws dynM statM neq-dynM-statM
show %thesis (is 2P dynC)
proof (induct rule: ws-class-induct)
case (Object co)
with ws have statC = Object
by (auto simp add: dynmethd-rec)
with ws Object show 2P Object by (auto simp add: dynmethd-C-C)
next
case (Subcls dynC c)
with ws show 7P dynC
by (auto simp add: dynmethd-rec)
qed
qed

lemma dynmethd-Some-rec-cases:
assumes dynM: dynmethd G statC dynC sig = Some dynM
and clsDynC' class G dynC = Some ¢
and ws: ws-prog G
obtains (Static) methd G statC sig = Some dynM
| (Override) statM where methd G statC sig = Some statM
and methd G dynC sig = Some dynM and statM # dynM
and G,sigk dynM overrides statM
| (Recursion) dynC # Object and dynmethd G statC (super ¢) sig = Some dynM
proof —
from clsDynC have x: is-class G dynC by simp
from ws clsDynC dynM Static Override Recursion
show ?thesis
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by (auto simp add: dynmethd-rec dest: no-override-in-Object [OF dynM * ws])
qed

lemma dynmethd-declC"

[dynmethd G statC dynC sig = Some m;
is-class G statCiws-prog G

=
(3d. class G (declclass m)=Some d A table-of (methods d) sig=Some (mthd m)) A
GrdynC =<¢ (declclass m) A methd G (declclass m) sig = Some m

proof —
assume is-cls-statC": is-class G statC
assume ws: ws-prog G
assume m: dynmethd G statC dynC sig = Some m
from m

have GHdynC =¢ statC by (auto simp add: dynmethd-def)
from this is-cls-statC
have is-cls-dynC': is-class G dynC by (rule subcls-is-class2)
from is-cls-dynC ws m
show ?thesis (is ¢P dynC)
proof (induct rule: ws-class-induct’)
case (Object co)
with ws have statC'=Object by (auto simp add: dynmethd-rec)
with ws Object
show ?P Object
by (auto simp add: dynmethd-C-C dest: methd-declC)
next
case (Subcls dynC c¢)
assume hyp: dynmethd G statC (super c¢) sig = Some m = ?P (super ¢) and
clsDynC': class G dynC = Some ¢ and
m's dynmethd G statC dynC sig = Some m and
neq-dynC-0bj: dynC # Object
from ws this obtain statM where
subclseq-dynC-statC: GrHdynC =<¢ statC and
statM: methd G statC sig = Some statM
by (blast dest: dynmethdSomeD)
from clsDynC neg-dynC-Obj
have subclseq-dynC-super: GEdynC <¢ (super c)
by (auto intro: subcls1l)
from m’ clsDynC ws
show ?P dynC
proof (cases rule: dynmethd-Some-rec-cases)
case Static
with is-cls-statC ws subclseq-dynC-statC
show ?thesis
by (auto intro: rtrancl-trans dest: methd-declC)
next
case Override
with clsDynC ws
show ?thesis
by (auto dest: methd-declC')
next
case Recursion
with hyp subclseq-dynC-super
show ?thesis
by (auto intro: rtrancl-trans)
qed
qed
qed
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lemma methd-Some-dynmethd-Some:
assumes statM: methd G statC sig = Some statM and
subclseq: G-dynC <¢ statC and
is-cls-statC": is-class G statC and
ws: ws-prog G
shows 3 dynM. dynmethd G statC dynC sig = Some dynM
(is 7P dynC)
proof —
from subclseq is-cls-statC
have is-cls-dynC' is-class G dynC by (rule subcls-is-class2)
then obtain dc where
clsDynC': class G dynC = Some dc by blast
from clsDynC ws subclseq
show ?thesis
proof (induct rule: ws-class-induct)
case (Object co)
with ws have statC = Object
by (auto)
with ws Object statM
show ?P Object
by (auto simp add: dynmethd-C-C')
next
case (Subcls dynC dc)
assume clsDynC": class G dynC = Some dc
assume neg-dynC-0bj: dynC # Object
assume hyp: Grsuper de=<¢ statC = ?P (super dc)
assume subclseq: GdynC=c statC
then
show ?P dynC
proof (cases rule: subclseg-cases)
case Eq
with ws statM clsDynC'’
show ?thesis
by (auto simp add: dynmethd-rec)
next
case Subcls
assume GHdynC<¢ statC
from this clsDynC’
have Gtsuper de=<¢ statC by (rule subcls-superD)
with hyp ws clsDynC’ subclseq’ statM
show ?thesis
by (auto simp add: dynmethd-rec)
qged
qed
qed

lemma dynmethd-cases:
assumes statM: methd G statC sig = Some statM
and subclseq: GHdynC <¢ statC
and is-cls-statC': is-class G statC
and ws: ws-prog G
obtains (Static) dynmethd G statC dynC sig = Some statM
| (Overrides) dynM where dynmethd G statC dynC sig = Some dynM
and dynM # statM and G,sig-dynM overrides statM
proof —
note hyp-static = Static and hyp-override = Owverrides
from subclseq is-cls-statC
have is-cls-dynC' is-class G dynC by (rule subcls-is-class2)
then obtain dc where
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clsDynC': class G dynC = Some dc by blast
from statM subclseq is-cls-statC ws
obtain dynM where dynM: dynmethd G statC dynC sig = Some dynM
by (blast dest: methd-Some-dynmethd-Some)
from dynM is-cls-dynC ws
show ?thesis
proof (cases rule: dynmethd-Some-cases)
case Static
with hyp-static dynM statM show ?thesis by simp
next
case Quverrides
with hyp-override dynM statM show ?thesis by simp
qed
qed

lemma ws-dynmethd:
assumes statM: methd G statC sig = Some statM and
subclseq: GHdynC <¢ statC and
is-cls-statC': is-class G statC and
ws: ws-prog G
shows
3 dynM. dynmethd G statC dynC sig = Some dynM A
is-static dynM = is-static statM N GhrresTy dynM <resTy statM
proof —
from statM subclseq is-cls-statC ws
show ?thesis
proof (cases rule: dynmethd-cases)
case Static
with statM
show ?thesis
by simp
next
case Overrides
with ws
show ?thesis
by (auto dest: ws-overrides-commonD)
qed
qed

9 dynlookup

lemma dynlookup-cases:
assumes dynlookup G statT dynC sig = z
obtains (NullT) statT = NullT and Map.empty sig = «
| (IfaceT) I where statT = IfaceT I and dynimethd G I dynC sig = x

| (ClassT) statC where statT = ClassT statC and dynmethd G statC dynC sig = x
| (ArrayT) ty where statT = ArrayT ty and dynmethd G Object dynC sig = x

using assms by (cases statT) (auto simp add: dynlookup-def)

10 fields

lemma fields-rec: [class G C' = Some c; ws-prog G| =
fields G C = map (A(fn.ft). ((fn,C),ft)) (cfields ¢) @Q
(if C = Object then || else fields G (super c))

apply (simp only: fields-def)

apply (erule class-rec [THEN trans))

apply assumption

apply clarsimp

done
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lemma fields-norec:

[class G fd = Some c; ws-prog G; table-of (cfields ¢) fn = Some f]
= table-of (fields G fd) (fn,fd) = Some f

apply (subst fields-rec)

apply assumption+

apply (subst map-of-append)

apply (rule disjI1 [THEN map-add-Some-iff [THEN iffD2]])
apply (auto elim: table-of-map2-Somel)

done

lemma table-of-fieldsD:

table-of (map (A(fn,ft). ((fn,C),ft)) (cfields c)) efn = Some f

= (declclassf efn) = C A table-of (cfields c) (fname efn) = Some f
apply (case-tac efn)

by auto

lemma fields-declC':

[table-of (fields G C) efn = Some f; ws-prog G; is-class G C] =

(3d. class G (declclassf efn) = Some d N

table-of (cfields d) (fname efn)=Some f) A

GFC =¢ (declclassf efn) A table-of (fields G (declclassf efn)) efn = Some f
apply (erule rev-mp)
apply (rule ws-subclsl-induct, assumption, assumption)
apply (subst fields-rec, assumption)
apply clarify
apply (simp only: map-of-append)
apply (case-tac table-of (map (case-prod (Afn. Pair (fn, Ca))) (cfields c)) efn)
apply (force intro:rtrancl-into-rtrancl2 simp add: map-add-def)

apply (frule-tac fd=Ca in fields-norec)
apply assumption
apply blast
apply (frule table-of-fieldsD)
apply (frule-tac n=table-of (map (case-prod (Afn. Pair (fn, Ca))) (cfields c))
and m=table-of (if Ca = Object then [| else fields G (super c))
in map-add-find-right)
apply (case-tac efn)
apply (simp)
done

lemma fields-emptyl: Ny. [ws-prog G; class G C = Some c;cfields ¢ = [|;
C # Object — class G (super ¢) = Some y A fields G (super ¢) = [|]] =
fields G C =]

apply (subst fields-rec)

apply assumption

apply auto

done

lemma fields-mono-lemma:

[z € set (fields G C); GFD <¢ C; ws-prog GJ
= z € set (fields G D)

apply (erule rev-mp)

apply (erule converse-rtrancl-induct)

apply fast

apply (drule subcls1D)
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apply clarsimp

apply (subst fields-rec)
apply auto

done

lemma ws-unique-fields-lemma:

[(efn.fd) € set (fields G (super c)); fc € set (cfields c); ws-prog G;
fname efn = fname fc; declclassf efn = C,
class G C = Some ¢; C # Object; class G (super ¢) = Some d] = R

apply (frule-tac ws-prog-cdeclD [THEN conjunct2], assumption, assumption)
apply (drule-tac weak-map-of-Somel)
apply (frule-tac subcls1I [THEN subcls1-irrefl], assumption, assumption)

(

apply (auto dest: fields-declC [THEN conjunct2 [THEN conjunctl [THEN rtranclD]]])

done

lemma ws-unique-fields: [is-class G C; ws-prog G,
AC c. [class G C = Some c] = unique (cfields ¢) | =
unique (fields G C)
apply (rule ws-subcls1-induct, assumption, assumption)
apply (subst fields-rec, assumption)
apply (auto introl: unique-map-inj inj-onl
elim!: unique-append ws-unique-fields-lemma fields-norec)
done

11 accfield

lemma accfield-fields:
accfield G S C fn = Some f
= table-of (fields G C) (fn, declclass f) = Some (fld f)
apply (simp only: accfield-def Let-def)
apply (rule table-of-remap-SomeD)
apply auto
done

lemma accfield-declC-is-class:

[is-class G C; accfield G S C en = Some (fd, f); ws-prog G] =
is-class G fd

apply (drule accfield-fields)

apply (drule fields-declC [THEN conjunctl], assumption)

apply auto

done

lemma accfield-accessibleD:
accfield G S C fn = Some f = GFField fn f of C accessible-from S
by (auto simp add: accfield-def Let-def)

12 is methd

lemma is-methdl:

[class G C = Some y; methd G C sig = Some b] = is-methd G C sig
apply (unfold is-methd-def)

apply auto

done

lemma is-methdD:
is-methd G C sig = class G C # None N\ methd G C sig # None
apply (unfold is-methd-def)
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apply auto
done

lemma finite-is-methd:

ws-prog G = finite (Collect (case-prod (is-methd G)))
apply (unfold is-methd-def)

apply (subst Collect-case-prod-Sigma)

apply (rule finite-is-class [THEN finite-Sigmall)

apply (simp only: mem-Collect-eq)

apply (fold dom-def)

apply (erule finite-dom-methd)

apply assumption

done

calculation of the superclasses of a class

definition
superclasses :: prog = qtname = gtname set where
superclasses G C' = class-rec G C {}
(A C ¢ superclss. (if C=0bject
then {}

else insert (super c) superclss))

lemma superclasses-rec: [class G C = Some ¢; ws-prog G] =
superclasses G C
= (if (C=O0bject)
then {}
else insert (super c) (superclasses G (super c)))
apply (unfold superclasses-def)
apply (erule class-rec [THEN trans|, assumption)
apply (simp)
done

lemma superclasses-mono:
assumes clsrel: GFC<¢g D
and ws: ws-prog G
and cls-C: class G C = Some ¢
and wf: AC c. [class G C = Some ¢; C # Object]
= Jsc. class G (super ¢) = Some sc
and z: z€superclasses G D
shows ze€superclasses G C using clsrel cls-C x
proof (induct arbitrary: ¢ rule: converse-trancl-induct)
case (base C)
with wf ws show Zcase
by (auto  intro: no-subcls1-Object
simp add: superclasses-rec subclsi-def)
next
case (step C S)
moreover note wf ws
moreover from calculation
have z€superclasses G S
by (force intro: no-subcls1-Object simp add: subcls1-def)
moreover from calculation
have super ¢ = S
by (auto intro: no-subcls1-Object simp add: subcls1-def)
ultimately show ?case
by (auto intro: no-subcls1-Object simp add: superclasses-rec)
qged
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lemma subclsEval:
assumes clsrel: G-C=<¢o D
and ws: ws-prog G
and cls-C: class G C = Some ¢
and wf: AC c. [class G C = Some ¢; C # Object]
= Jsc. class G (super ¢) = Some sc
shows Desuperclasses G C using clsrel cls-C
proof (induct arbitrary: ¢ rule: converse-trancl-induct)
case (base C)
show ?Zcase
by (use ws wf base in <auto intro: no-subcls1-Object simp add: superclasses-rec subcls1-def>)
next
case (step C S)
show ?Zcase
by (rule superclasses-mono)
(use ws wf step in <auto dest: no-subcls1-Object simp add: subclsi-def»)
qed

end
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Chapter 11

WellType

1 Well-typedness of Java programs
theory WellType
imports DeclConcepts
begin
improvements over Java Specification 1.0:
e methods of Object can be called upon references of interface or array type

simplifications:

e the type rules include all static checks on statements and expressions, e.g. definedness of
names (of parameters, locals, fields, methods)

design issues:
o unified type judgment for statements, variables, expressions, expression lists
o statements are typed like expressions with dummy type Void

e the typing rules take an extra argument that is capable of determining the dynamic type of
objects. Therefore, they can be used for both checking static types and determining runtime
types in transition semantics.

type-synonym lenv
= (Iname, ty) table — local variables, including This and Result

record env =

prg:: prog —— program
cls:: gtname — current package and class name
lel:: lenv — local environment

translations

(type) lenv <= (type) (Iname, ty) table

(type) lenv <= (type) Iname = ty option

(type) env <= (type) (prg::prog,cls::qgtname,lcl::lenv))
(type) env <= (type) (prg::prog,cls::gtname,lcl::lenv,. . .::"a)

abbreviation
pkg :: env = pname — select the current package from an environment
where pkg e == pid (cls €)
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Static overloading: maximally specific methods

type-synonym
emhead = ref-ty x mhead

— Some mnemotic selectors for emhead
definition

declrefT :: emhead = ref-ty

where declrefT = fst

definition
mhd :: emhead = mhead
where mhd = snd

lemma declrefT-simp[simp):declrefT (r,m) = r
by (simp add: declrefT-def)

lemma mhd-simp[simp]:mhd (r,m) = m
by (simp add: mhd-def)

lemma static-mhd-simp[simp]: static (mhd m) = is-static m
by (cases m) (simp add: member-is-static-simp mhd-def)

lemma mhd-resTy-simp [simp]: resTy (mhd m) = resTy m
by (cases m) simp

lemma mhd-is-static-simp [simp]: is-static (mhd m) = is-static m
by (cases m) simp

lemma mhd-accmodi-simp [simp]: accmodi (mhd m) = accmodi m
by (cases m) simp

definition
cmheads :: prog = qtname = gtname = sig = emhead set
where cmheads G S C = (Asig. (A(Cls,mthd). (ClassT Cls,(mhead mthd))) * set-option (accmethd G S C

sig))

definition
Objectmheads :: prog = qtname = sig = emhead set where
Objectmheads G S =
(Asig. (A(Cls,mthd). (ClassT Cls,(mhead mthd)))
‘ set-option (filter-tab (Asig m. accmodi m # Private) (accmethd G S Object) sig))

definition
accObjectmheads :: prog = gtname = ref-ty = sig = emhead set
where
accObjectmheads G S T =
(if GFRefT T accessible-in (pid S)
then Objectmheads G S
else (Asig. {}))

primrec mheads :: prog = qlname = ref-ty = sig = embhead set
where
mheads G S NullT = (Asig. {})
| mheads G S (IfaceT I) = (Asig. (A(I,h).(IfaceT I,h))
“accimethds G (pid S) I sig U
accObjectmheads G S (IfaceT I) sig)
| mheads G S (ClassT C) = cmheads G S C
| mheads G S (ArrayT T) = accObjectmheads G S (ArrayT T)
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definition
— applicable methods, cf. 15.11.2.1
appl-methds :: prog = gtname = ref-ty = sig = (emhead x ty list) set where
appl-methds G S rt = (X sig.
{(mh,pTs") |[mh pTs’. mh € mheads G S rt (name=name sig,parTs=pTs’) A
G (parTs sig)[=]|pTs'})

definition
— more specific methods, cf. 15.11.2.2
more-spec :: prog = emhead X ty list = emhead X ty list = bool where
more-spec G = (A(mh,pTs). A(mh/,pTs’). GrpTs[<]pTs’)

definition
— maximally specific methods, cf. 15.11.2.2
maz-spec :: prog = gtname = ref-ty = sig = (emhead X ty list) set where
maz-spec G S rt sig = {m. m Eappl-methds G S rt sig N
(Vm'eappl-methds G S rt sig. more-spec G m' m — m'=m)}

lemma maz-spec2appl-meths:
x € maz-spec G S T sig = = € appl-methds G S T sig
by (auto simp: maz-spec-def)

lemma appl-methsD: (mh,pTs")Eappl-methds G S T (name=mn,parTs=pTs) =
mh € mheads G S T (name=mn,parTs=pTs') N GFpTs[<]pTs’
by (auto simp: appl-methds-def)

lemma maz-spec2mheads:

maz-spec G S rt (name=mn,parTs=pTs|) = insert (mh, pTs’) A

= mh € mheads G S rt (name=mn,parTs=pTs') N GFpTs[]|pTs’
apply (auto dest: equalityD2 subsetD mazx-spec2appl-meths appl-methsD)
done

definition
empty-dt :: dyn-ty
where empty-dt = (Aa. None)

definition
invmode :: ('a::type)member-scheme = expr = inv-mode where
invmode m e = (if is-static m
then Static
else if e=Super then SuperM else IntVir)

lemma invmode-nonstatic [simp]:
invmode (access=a,static="False,...=z|) (Acc (LVar e)) = IntVir
apply (unfold invmode-def)
apply (simp (no-asm) add: member-is-static-simp)
done

lemma invmode-Static-eq [simp]: (invmode m e = Static) = is-static m
apply (unfold invmode-def)

apply (simp (no-asm))

done
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lemma invmode-IntVir-eq: (invmode m e = IntVir) = (—(is-static m) A e#£Super)
apply (unfold invmode-def)

apply (simp (no-asm))

done

lemma Null-staticD:

a’=Null — (is-static m) = invmode m e = IntVir — a’ # Null
apply (clarsimp simp add: invmode-IntVir-eq)
done

Typing for unary operations

primrec unop-type :: unop = prim-ty
where
unop-type UPlus = Integer
| unop-type UMinus = Integer
| unop-type UBitNot = Integer
| unop-type UNot = Boolean

primrec wt-unop :: unop = ty = bool
where

wt-unop UPlus t = (t = PrimT Integer)
| wt-unop UMinus t = (t = PrimT Integer)
| wt-unop UBitNot t = (t = PrimT Integer)
| wt-unop UNot ¢t = (t = PrimT Boolean)

Typing for binary operations

primrec binop-type :: binop = prim-ty

where

binop-type Mul = Integer
| binop-type Div = Integer
| binop-type Mod = Integer
| binop-type Plus = Integer
| binop-type Minus = Integer

| binop-type LShift = Integer
| binop-type RShift = Integer
| binop-type RShiftU = Integer

| binop-type Less = Boolean
| binop-type Le = Boolean
| binop-type Greater = Boolean
| binop-type Ge = Boolean
| binop-type Eq = Boolean
| binop-type Neq = Boolean
| binop-type BitAnd = Integer
| binop-type And = Boolean
| binop-type BitXor = Integer
| binop-type Xor = Boolean
| binop-type BitOr = Integer
| binop-type Or = Boolean

| binop-type CondAnd = Boolean
| binop-type CondOr = Boolean

primrec wt-binop :: prog = binop = ty = ty = bool
where

wt-binop G Mul  t1 t2 = ((¢1 = PrimT Integer) A (12 = PrimT Integer))
| wt-binop G Div  t1 t2 = ((t1 = PrimT Integer) A (t2 = PrimT Integer))
| wt-binop G Mod  t1 t2 = ((t1 = PrimT Integer) A (t2 = PrimT Integer))
| wt-binop G Plus  t1 t2 = ((t1 = PrimT Integer) A (t2 = PrimT Integer))
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| wi-binop G Minus t1 t2 = ((¢1 = PrimT Integer) A (t2 = PrimT Integer))
| wt-binop G LShift t1 t2 = ((t1 = PrimT Integer) A (t2 = PrimT Integer))
| wt-binop G RShift t1t2 = ((t1 = PrimT Integer) A (12 = PrimT Integer))
| wt-binop G RShiftU t1 t2 = ((t1 = PrimT Integer) A (t2 = PrimT Integer))
| wt-binop G Less  t1 t2 = ((t1 = PrimT Integer) A (t2 = PrimT Integer))
| wi-binop G Le t1 t2 = ((t1 = PrimT Integer) A (t2 = PrimT Integer))
| wt-binop G Greater t1 t2 = ((t1 = PrimT Integer) A (t2 = PrimT Integer))
| wt-binop G Ge t1 t2 = ((t1 = PrimT Integer) A (t2 = PrimT Integer))
| wt-binop G Eq t1t2 = (G112 v GHt2=<t1)
| wt-binop G Neq t1 t2 = (GHt1=<t2 v GHt2=t1)
)

| wt-binop G BitAnd t1 t2 = ((t1 = PrimT Integer) A (t2 = PrimT Integer))
| wt-binop G And  t1 t2 = ((t1 = PrimT Boolean) A (t2 = PrimT Boolean))
| wt-binop G BitXor t1t2 = ((t1 = PrimT Integer) A (t2 = PrimT Integer))
| wt-binop G Xor  t1t2 = ((¢1 = PrimT Boolean) A (t2 = PrimT Boolean))
A (t2 = PrimT Integer))

| wt-binop G BitOr 1 t2 = ((t1 = PrimT Integer)
| wt-binop G Or t1 t2 = ((t1 = PrimT Boolean) A (t2 = PrimT Boolean))

| wi-binop G CondAnd t1 t2 = ((t1 = PrimT Boolean) A (t2 = PrimT Boolean))
| wt-binop G CondOr t1 t2 = ((t1 = PrimT Boolean) A (t2 = PrimT Boolean))

Typing for terms

type-synonym tys = ty + ty list
translations
(type) tys <= (type) ty + ty list

inductive wt :: env = dyn-ty = [term,tys] = bool («-,-F-:- [51,51,51,51] 50)
and wi-stmt 2 env = dyn-ty = stmt = bool («-,-F=-1:1v/» [51,51,51] 50)
and ty-expr :: env = dyn-ty = [expr ,ty | = bool («-,-FE-::—- [51,51,51,51] 50)
and ty-var :: env = dyn-ty = [var ,ty ]| = bool («-,-F=-:=- [51,51,51,51] 50)
and ty-exprs :: env = dyn-ty = [expr list, ty list] = bool

(o= [51,51,51,51] 50)
where

E,dtes::y/ = E,dt=Inlr s:Inl (PrimT Void)
| E.dte:—T = E,dt=Inll exInl T
| E,dtl=e:=T = E,dt=In2 exInl T
| E,dt=e:=T = E,dtE=In3 e:Inr T

— well-typed statements
| Skip: E,dt=Skip::\/

| Expr: [E,dt=e:—T] =
E.dt=FExpr e:y/
— cf. 14.6
| Lab: E,dt=c:y/ =
E,dtE=l e/

| Comp: [E,dtl=cl::v/;
E dt=c2:/] =
E,dt=cl;; c2::4/

—cf. 14.8
| If: [E,dtl=e::—PrimT Boolean;
E.dt=cl:/,

E, dt=c2:/] =
E,dtE=If(e) cl Else c¢2::/
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— cf. 14.10
| Loop: [E,dtl=e::—PrimT Boolean;
E.dtl=c:/] =

E,dt=l- While(e) ¢/
—of. 14.13, 14.15, 14.16
| Jmp: E,dt=Jmp jump::/

— cf. 14.16
| Throw: [E,dtl=e:— Class tn;
prg EFtn=<¢c SXept Throwable] =
E,dt=Throw e::/
— cf. 14.18
| Try: [E,dt=cl:y/; prg EFin=c SXcpt Throwable;
lel E (VName vn)=None; E (lcl := (lcl E)(VName vn— Class tn))),dtl=c2::1/]
_—
E,dt=Try c1 Catch(tn vn) c2::/

— cf. 14.18
| Fin: [E,dt=cl:/; E,dtl=c2:/] =
E.dtl=cl Finally ¢2:/

| Init: [is-class (prg E) C] =
E.dt=Init C:\/
— Init is created on the fly during evaluation (see Eval.thy). The class isn’t necessarily accessible from the
points Init is called. Therefor we only demand is-class and not is-acc-class here.

— well-typed expressions

—cf. 15.8
| NewC': [is-acc-class (prg E) (pkg F) C] =
E,dt=NewC C::—Class C
—cf. 15.9
| NewA: [is-acc-type (prg E) (pkg E) T;
E.,dt=i:—PrimT Integer] =
E,dt=New T[i]:—T.[]

—cf. 15.15
| Cast: [E,dtl=e::—T; is-acc-type (prg E) (pkg E) T
prg EFT<? T =
E.dt=Cast T' e:x:—T'

—cf. 15.19.2
| Inst: [E,dtl=e::—RefT T; is-acc-type (prg E) (pkg E) (RefT T');
prg EFRefT T<? RefT T'] =
E.dtl=e InstOf T'::—PrimT Boolean

—cf. 15.7.1
| Lit: [typeof dt x = Some T] =
E,dtE=Lit z:—T

| UnOp: [E,dt=e::—Te; wt-unop unop Te; T=PrimT (unop-type unop)]
=
E,dtE=UnOp unop e::—T

| BinOp: [E,dtl=el:—T1; E,dt=e2::—T2; wt-binop (prg E) binop T1 T2;
T=PrimT (binop-type binop)]
.
E,dt=BinOp binop el e2:—T



Theory WellType 113

—of. 15.10.2, 15.11.1
| Super: [lcl E This = Some (Class C); C # Object;
class (prg E) C = Some c] =
E,dt=Super::— Class (super c)

—cf. 15.13.1, 15.10.1, 15.12
| Ace: [E,dt=va:=T] =
E.dt=Acc va:—T

— cf. 15.25, 15.25.1
| Ass: [E,dtl=va:=T; va # LVar This;
E dtFv =T
prg EFT'<XT] =
E,dtEva:=v:—T'

— cf. 15.24
| Cond: [E,dtl=e0::— PrimT Boolean;
E dt=el::—T1; E,dt=e2::—T2;
prg EEFTIST2 NT =T2 V prg EFT2<TI AN T = T1] =
E,dtl=e0 ? el : e2:—T

— ¢f. 15.11.1, 15.11.2, 15.11.3
| Call: [E,dtl=e::—RefT statT;
E dtl=ps:=pTs;
maz-spec (prg E) (cls E) statT (name=mn,parTs=pTs)
= {((statDeclT ,m),pTs’)}
| =
E.dt={cls E,statT, invmode m e}e-mn({pTs'}ps)::—(resTy m)

| Methd: [is-class (prg E) C;

methd (prg E) C sig = Some m;

E.dt=Body (declclass m) (stmt (mbody (mthd m))):—T] =

E.dtE=Methd C sig::—T

— The class C' is the dynamic class of the method call (cf. Eval.thy). It hasn’t got to be directly accessible
from the current package pkg E. Only the static class must be accessible (enshured indirectly by Call). Note
that 1 is just a dummy value. It is only used in the smallstep semantics. To proof typesafety directly for the
smallstep semantics we would have to assume conformance of 1 here!

| Body: [is-class (prg E) D;

E dt=blk::n/;

(lcl E) Result = Some T;

is-type (prg E) T] =

E,dt=Body D blk::—T

— The class D implementing the method must not directly be accessible from the current package pkg FE,
but can also be indirectly accessible due to inheritance (enshured in Call) The result type hasn’t got to be
accessible in Java! (If it is not accessible you can only assign it to Object). For dummy value 1 see rule Methd.

— well-typed variables

—cf. 15.13.1
| LVar: [lcl E vn = Some T is-acc-type (prg E) (pkg E) T] =
E,dt=LVar vn:=T
— cf. 15.10.1
| FVar: [E,dt=e::—Class C;
accfield (prg E) (cls E) C fn = Some (statDeclC,f)] =
E.dt={cls E,statDeclCis-static f}e..fn:=(type f)
—cf. 15.12
| AVar: [E,dt=e:—T.[];
E.dtl=i::— PrimT Integer] —
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E.dt=efi]:=T
— well-typed expression lists
— cf. 15.11.777
| Nil: E dt=[]::=][]
— cf. 15.11.777

| Cons: [E,dt=e :—T;
E.dtl=es:=Ts] =
E dtl=e#tes:=T#Ts

abbreviation
wt-syntazx = env = [term,tys] = bool («-F-:- [51,51,51] 50)
where E-i::T == E,empty-dt=t:: T

abbreviation
wt-stmt-syntax = env = stmt = bool («-F-::1v/> [51,51 ] 50)
where Ets::\/ == EFInir s :: Inl (PrimT Void)

abbreviation
ty-expr-syntax :: env = [expr, ty] = bool («-+-i:—-» [51,51,51] 50)
where Ere::—T == ErInlle:: Inl T

abbreviation
ty-var-syntaz :: env = [var, ty] = bool («-+-:=- [51,51,51] 50)
where Ete:=T == EFIn2 e :: Inl T

abbreviation
ty-exprs-syntax :: env = [expr list, ty list] = bool («-+-::=-» [51,51,51] 50)
where Ete:=T == E-In8 e :: Inr T

notation (ASCII)

wt-syntax (<-|—-u:- [51,51,51] 50) and

wt-stmit-syntax (-|—-<>» [51,51 ] 50) and
ty-expr-syntax (¢-|—-—-» [51,51,51] 50) and
ty-var-syntaz («-|—-==- [51,51,51] 50) and

ty-exprs-syntax (<-|—-#- [51,51,51] 50)

declare not-None-eq [simp del]

declare if-split [split del] if-split-asm [split del]

declare split-paired-All [simp del] split-paired-Ex [simp del]

setup «map-theory-simpset (fn ctat => ctat |> Simplifier.del-loop split-all-tac)»

inductive-cases wt-elim-cases [cases set]:
E.,dt=In2 (LVar vn) =T
E,dt=In2 ({accC\statDeclC,s}e..fn):: T
E.dt=In2 (e.[i]) =T
E.dt=In1l (NewC C) =T
E,dt=In1l (New T'[4)) =T
E,dt=In1l (Cast T' e) =T
E,dtE=In1l (e InstOf T =T
E.dt=In1l (Lit x) =T
E.dtl=In1l (UnOp unop e) =T
E,dtE=Inil (BinOp binop el e2) =T
E,dtE=In1l (Super) =T
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E.dt=In1l (Acc va) =T
E.dt=Inl1l (Ass va v) =T
E.dtl=In1l (e0 ? el : e2) =T
E,dt=Inil ({accC,statT,mode}e-mn({pT'}p)):T
( ..
(
(
(

E.dtl=In1l (Methd C sig) =T
E,dtE=In1l (Body D blk) =T
E.dt=In3 ([)) =T
E.dtk=In3 (efes) = Ts
E.dtl=Inir Skip nT
E.dtl=Inir (Ezpr e) e
E.dt=Inir (c1;; ¢2) nT
E,dt=Inir (I ¢) nT
E.dtl=Inir (If(e) c1 Else ¢2) nT
E.dtl=Inir (I- While(e) c) nT
E,dt=Inir (Jmp jump) n
E,dt=Inir (Throw e) n
E.dt=Inlr (Try c1 Catch(tn vn) ¢2):z
E.dtl=Inir (c1 Finally c2) nT
E.dtE=Inir (Init C) nT

declare not-None-eq [simp]

declare if-split [split] if-split-asm [split]

declare split-paired-All [simp] split-paired-Ex [simp]

setup «map-theory-simpset (fn ctat => ctat |> Simplifier.add-loop (split-all-tac, split-all-tac))>

lemma is-acc-class-is-accessible:
is-acc-class G P C = GH(Class C) accessible-in P
by (auto simp add: is-acc-class-def)

lemma is-acc-iface-is-iface: is-acc-iface G P I = is-iface G 1
by (auto simp add: is-acc-iface-def)

lemma is-acc-iface-Iface-is-accessible:
is-acc-iface G P I = Gt(Iface I) accessible-in P
by (auto simp add: is-acc-iface-def)

lemma is-acc-type-is-type: is-acc-type G P T = is-type G T
by (auto simp add: is-acc-type-def)

lemma is-acc-iface-is-accessible:
is-acc-type G P T = GFT accessible-in P
by (auto simp add: is-acc-type-def)

lemma wt-Methd-is-methd:
ErInl1l (Methd C sig):: T = is-methd (prg E) C sig
apply (erule-tac wt-elim-cases)
apply clarsimp
apply (erule is-methdl, assumption)
done

Special versions of some typing rules, better suited to pattern match the conclusion (no selectors in
the conclusion)

lemma wt-Call:
[E,dt=e::—RefT statT; E,dtl=ps::=pTs;
maz-spec (prg E) (cls E) statT (name=mn,parTs=pTs)
= {((statDeclC,m),pTs") };rT=(resTy m);accC=cls E,
mode = invmode m €] = E,dtl={accC,statT ,mode}e-mn({pTs'}ps)::—rT
by (auto elim: wt.Call)
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lemma invocation TypeEzpr-noClassD:
[ EFe:—RefT statT]
= (V statC. statT # ClassT statC) — invmode m e # SuperM
proof —
assume wt: EF-e::—RefT statT
show ?thesis
proof (cases e=Super)
case True
with wt obtain C' where statT = ClassT C by (blast elim: wt-elim-cases)
then show ?thesis by blast
next
case Fulse then show ?thesis
by (auto simp add: invmode-def)
qed
qed

lemma wt-Super:

[lcl E This = Some (Class C); C # Object; class (prg E) C' = Some c¢; D=super c]|
= E,dtl=Super::—Class D

by (auto elim: wt.Super)

lemma wt-FVar:

[E,dt=e::—Class C; accfield (prg E) (cls E) C fn = Some (statDeclC.f);
sf=is-static f; fT=(type f); accC=cls E]

= E,dt={accC,statDeclC,sf }e..fn::=fT

by (auto dest: wt.FVar)

lemma wi-init [iff|: E,dt=Init C::y/ = is-class (prg E) C
by (auto elim: wt-elim-cases intro: wt.Init)

declare wt.Skip [iff]

lemma wt-StatRef:
is-acc-type (prg E) (pkg E) (RefT rt) = E\StatRef rt::—RefT rt
apply (rule wt.Cast)
apply (rule wt.Lit)
apply (simp (no-asm))
apply (simp (no-asm-simp))
apply (rule cast.widen)
apply (simp (no-asm))
done

lemma wt-Inj-elim:
AE. E dt=t::U = case t of
In1 ec = (case ec of
Inle=3T. U=Inl T
| Inr s = U=Inl (PrimT Void))

| n2e= 3T. U=Inl T)

| In8e= 3T. U=Inr T)
apply (erule wt.induct)
apply auto
done

— In the special syntax to distinguish the typing judgements for expressions, statements, variables and
expression lists the kind of term corresponds to the kind of type in the end e.g. An statement (injection
In3 into terms, always has type void (injection Inl into the generalised types. The following simplification
procedures establish these kinds of correlation.
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lemma wt-expr-eq: E,dtl=Inil t::U = (3T. U=Inl T N E,dt=t:—T)
by (auto, frule wt-Inj-elim, auto)

lemma wt-var-eq: E,dt=In2 t::U = (3T. U=Inl T N E,dt=t:=T)
by (auto, frule wt-Inj-elim, auto)

lemma wt-exprs-eq: E,dt=In3 t:U = (3 Ts. U=Inr Ts A E,dt=t::=Ts)
by (auto, frule wt-Inj-elim, auto)

lemma wt-stmt-eq: E,dt=Inlr t::U = (U=Inl(PrimT Void)AE,dti=t::1/)
by (auto, frule wt-Inj-elim, auto, frule wt-Inj-elim, auto)

simproc-setup wt-expr (E,dt=In1l t::U) = <
K (K (fn ct =>
(case Thm.term-of ct of
(-$-%-%-%(Const-$-)) => NONE
| - => SOME (mk-meta-eq Q{thm wt-expr-eq}))))

simproc-setup wt-var (E,dtk=In2 t::U) = «
K (K (fn ct =>
(case Thm.term-of ct of
(-$-$-%-9%(Const-$-)) => NONE
| - => SOME (mk-meta-eq Q{thm wt-var-eq}))))

simproc-setup wt-exprs (E,dt=In3 t::U) = «
K (K (fn ct =>
(case Thm.term-of ct of
(-$-%-%-8%(Const-$-)) => NONE
| - => SOME (mk-meta-eq Q{thm wt-exprs-eq}))))

simproc-setup wt-stmt (E,dt=Inlr t::U) = «
K (K (fn ct =>
(case Thm.term-of ct of
(-$-%-%-%(Const-$-)) => NONE
| - => SOME (mk-meta-eq Q{thm wi-stmt-eq}))))>

lemma wt-elim-BinOp:
[E,dt=In1l (BinOp binop el e2):T;
AT1 T2 T3.
[E,dt=el::—T1; E,dtE=e2:—T2; wt-binop (prg E) binop T1 T2;
E.dtl=(if b then In1l e2 else Inlr Skip)::T3;
T = Inl (PrimT (binop-type binop))]
= P]
= P
apply (erule wt-elim-cases)
apply (cases b)
apply auto
done

lemma Inj-eg-lemma [simp]:
VT.AT. T=InjT'APT) — QT)=NT".PT — Q (Inj T")
by auto

lemma single-valued-tys-lemma [rule-format (no-asm)]:
VS T. GFS<T — GFT=S —» § = T = Edtlt:T —>
G=prgE— (VT EdtEt=T' — T = T')
apply (cases E, erule wt.induct)
apply (safe del: disjE)
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apply (simp-all (no-asm-use) split del: if-split-asm)
apply (safe del: disjE)

apply (tactic tZALLGOALS (fn i =>
if i = 11 then EVERY'
[Rule-Insts.thin-tac context E,dtl=e0::—PrimT Boolean [(binding «E», NONE, NoSyn)],
Rule-Insts.thin-tac context FE. dt=el::—T1 [(binding«E)>, NONE, NoSyn), (bindingT1>, NONE,
NoSyn),
Rule-Insts.thin-tac context E,dtl=e2:—T2 [(binding<«E>, NONE, NoSyn), (binding:T2), NONE,
NoSyn)]] i
else Rule-Insts.thin-tac context All P [(binding<P>, NONE, NoSyn)] i)»)

tactic <ALLGOALS (eresolve-tac context Q{thms wt-elim-cases})))
stmp-all (no-asm-use) split del: if-split-asm)

erule-tac [12] V = All P for P in thin-rl)

blast del: equalityCE dest: sym [THEN trans|)+

apply
apply
apply
apply
done

Py

lemma single-valued-tys:

ws-prog (prg E) = single-valued {(¢,T). E,dtE=t: T}
apply (unfold single-valued-def)

apply clarsimp

apply (rule single-valued-tys-lemma)

apply (auto intro!: widen-antisym)

done

lemma typeof-empty-is-type: typeof (Aa. None) v = Some T = is-type G T
by (induct v) auto
lemma typeof-is-type: (Va. v # Addr a) = 3 T. typeof dt v = Some T A is-type G T

by (induct v) auto

end



Chapter 12

DefiniteAssignment

1 Definite Assignment
theory DefiniteAssignment imports WellType begin

Definite Assignment Analysis (cf. 16)

The definite assignment analysis approximates the sets of local variables that will be assigned at
a certain point of evaluation, and ensures that we will only read variables which previously were
assigned. It should conform to the following idea: If the evaluation of a term completes normally
(no abruption (exception, break, continue, return) appeared) , the set of local variables calculated
by the analysis is a subset of the variables that were actually assigned during evaluation.

To get more precise information about the sets of assigned variables the analysis includes the fol-
lowing optimisations:

« Inside of a while loop we also take care of the variables assigned before break statements, since
the break causes the while loop to continue normally.

o For conditional statements we take care of constant conditions to statically determine the path
of evaluation.

« Inside a distinct path of a conditional statements we know to which boolean value the condition
has evaluated to, and so can retrieve more information about the variables assigned during
evaluation of the boolean condition.

Since in our model of Java the return values of methods are stored in a local variable we also ensure
that every path of (normal) evaluation will assign the result variable, or in the sense of real Java
every path ends up in and return instruction.

Not covered yet:

o analysis of definite unassigned

e special treatment of final fields

Correct nesting of jump statements

For definite assignment it becomes crucial, that jumps (break, continue, return) are nested correctly
i.e. a continue jump is nested in a matching while statement, a break jump is nested in a proper
label statement, a class initialiser does not terminate abruptly with a return. With this we can for
example ensure that evaluation of an expression will never end up with a jump, since no breaks,
continues or returns are allowed in an expression.

primrec jumpNestingOkS :: jump set = stmt = bool

119
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where
jumpNestingOkS jmps (Skip) = True
| jumpNestingOkS jmps (Expr e) = True
| jumpNestingOkS jmps (j- s) = jumpNestingOkS ({j} U jmps) s
| jumpNestingOkS jmps (c1;;¢2) = (jumpNestingOkS jmps ¢l A
jumpNestingOkS jmps ¢2)
| jumpNestingOkS jmps (If(e) c1 Else c¢2) = (jumpNestingOkS jmps c1 A
jumpNestingOkS jmps c2)
| jumpNestingOkS jmps (I- While(e) ¢) = jumpNestingOkS ({Cont I} U jmps) c
— The label of the while loop only handles continue jumps. Breaks are only handled by Lab
| jumpNestingOkS jmps (Jmp j) = (j € jmps)
| jumpNestingOkS jmps (Throw e) = True
| jumpNestingOkS jmps (Try c1 Catch(C vn) c2) = (jumpNestingOkS jmps c1 A
jumpNestingOkS jmps c2)
| jumpNestingOkS jmps (c1 Finally c2) = (jumpNestingOkS jmps c1 A
jumpNestingOkS jmps ¢2)

| jumpNestingOkS jmps (Init C') = True

— wellformedness of the program must enshure that for all initializers jumpNestingOkS holds
— Dummy analysis for intermediate smallstep term FinA
| jumpNestingOkS jmps (FinA a ¢) = False

definition jumpNestingOk :: jump set = term = bool where
jumpNestingOk jmps t = (case t of
Int se = (case se of
Inl e = True
| Inr s = jumpNestingOkS jmps s)
| In2 v = True
| In8 es = True)

lemma jumpNestingOk-expr-simp [simp]: jumpNestingOk jmps (In1l e) = True
by (simp add: jumpNestingOk-def)

lemma jumpNestingOk-expr-simpl [simp]: jumpNestingOk jmps (e::expr) = True
by (simp add: inj-term-simps)

lemma jumpNestingOk-stmt-simp [simp]:
jumpNestingOk jmps (Inlr s) = jumpNestingOkS jmps s
by (simp add: jumpNestingOk-def)

lemma jumpNestingOk-stmt-simp1 [simp]:
jumpNestingOk jmps (s::stmt) = jumpNestingOkS jmps s
by (simp add: inj-term-simps)

lemma jumpNestingOk-var-simp [simp|: jumpNestingOk jmps (In2 v) = True
by (simp add: jumpNestingOk-def)

lemma jumpNestingOk-var-simp1 [simp]: jumpNestingOk jmps (v::var) = True
by (simp add: inj-term-simps)

lemma jumpNestingOk-expr-list-simp [simp]: jumpNestingOk jmps (In3 es) = True
by (simp add: jumpNestingOk-def)

lemma jumpNestingOk-expr-list-simp1 [simp]:
jumpNestingOk jmps (es::expr list) = True
by (simp add: inj-term-simps)
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Calculation of assigned variables for boolean expressions

2 Very restricted calculation fallback calculation

primrec the-LVar-name :: var = Iname
where the-LVar-name (LVar n) = n

primrec assignsE :: expr = Iname set
and assignsV :: var = Iname set
and assignsEs:: expr list = Iname set

where
assignsE (NewC c) ={}
| assignsE (NewA t e) = assignsE e
| assignsE (Cast t e) = assignsE e
| assignsE (e InstOf r) = assignsE e
| assignsE (Lit val) ={}
| assignsE (UnOp unop e) = assignsk e
| assignsE (BinOp binop el e2) = (if binop=CondAnd V binop=CondOr

then (assignsE el)
else (assignsE el) U (assignsE e2))

| assignsE (Super) ={}
| assignsE (Acc v) = assignsV v
| assignsE (v:i=e) = (assignsV v) U (assignsE e) U

(if 3 n. v=(LVar n) then {the-LVar-name v}
else {})
| assignsE (b? el : e2) = (assignsE b) U ((assignsE el) N (assignsE e2))
| assignsE ({accC,statT,mode}objRef-mn({pTs}args))
= (assignsE objRef) U (assignsEs args)
— Only dummy analysis for intermediate expressions Methd, Body, InsInitE and Callee
| assignsE (Methd C sig) = {}

| assignsE (Body Cs) = {}

| assignsE (InsInitE s e) = {}

| assignsE (Callee le) = {}

| assignsV (LVar n) ={}

| assignsV ({accC,statDeclC stat}objRef..fn) = assignsE objRef
| assignsV (el.[e2]) = assignsE el U assignsE e2

| assignsEs || = {}

| assignsEs (e#es) = assignsE e U assignsEs es

definition assigns :: term = Iname set where
assigns t = (case t of
Ini se = (case se of
Inl e = assignsE e
| Inr s = {})
| In2 v = assignsV v
| In3 es = assignsEs es)

lemma assigns-expr-simp [simp]: assigns (Inll e) = assignskE e
by (simp add: assigns-def)

lemma assigns-expr-simpl [simp]: assigns ({e)) = assignsE e
by (simp add: inj-term-simps)

lemma assigns-stmt-simp [simpl: assigns (Inlr s) = {}
by (simp add: assigns-def)

lemma assigns-stmt-simp1 [simp: assigns ((s::stmt)) = {}
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by (simp add: inj-term-simps)

lemma assigns-var-simp [simpl: assigns (In2 v) = assignsV v
by (simp add: assigns-def)

lemma assigns-var-simp1 [simp]: assigns ((v)) = assignsV v
by (simp add: inj-term-simps)

lemma assigns-expr-list-simp [simp]: assigns (In3 es) = assignsEs es
by (simp add: assigns-def)

lemma assigns-expr-list-simp1 [simp]: assigns ({es)) = assignsEs es
by (simp add: inj-term-simps)

3 Analysis of constant expressions

primrec constVal :: expr = wval option

where
constVal (NewC c) = None
| constVal (NewA te) = None
| constVal (Cast t ¢) = None
| constVal (Inst e r) = None
| constVal (Lit val) = Some val
| constVal (UnOp unop e) = (case (constVal €) of

None = None
| Some v = Some (eval-unop unop v))
| constVal (BinOp binop el e2) = (case (constVal el) of
None = None
| Some vl = (case (constVal e2) of
None = None
| Some v2 = Some (eval-binop
binop vl v2)))

| constVal (Super) = None
| constVal (Acc v) = None
| constVal (Ass v e) = None
| constVal (Cond b el e2) = (case (constVal b) of

None = None
| Some bv= (case the-Bool bv of
True = (case (constVal e2) of
None = None
| Some v = constVal el)
| False= (case (constVal el) of
None = None
| Some v = constVal e2)))
— Note that constVal (Cond b el e2) is stricter as it could be. It requires that all tree expressions are
constant even if we can decide which branch to choose, provided the constant value of b
| constVal (Call accC statT mode objRef mn pTs args) = None

| constVal (Methd C sig) = None
| constVal (Body Cs) = None
| constVal (InsInitE s ) = None
| constVal (Callee l e) = None

lemma constVal-Some-induct [consumes 1, case-names Lit UnOp BinOp CondL CondR):
assumes const: constVal e = Some v and
hyp-Lit: \ v. P (Lit v) and
hyp-UnOp: N\ unop e’. P e/ = P (UnOp unop e’) and
hyp-BinOp: N\ binop el e2. [P el; P e2] = P (BinOp binop el e2) and
hyp-CondL: A\ b bv el e2. [constVal b = Some bv; the-Bool bv; P b; P el]
= P (b? el : e2) and
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hyp-CondR: \ b bu el e2. [constVal b = Some bv; —the-Bool bv; P b; P e2]
= P (b7 el : e2)
shows P e
proof —
have A\ v. constVal e = Some v = P e
proof (induct e)
case Lit
show ?case by (rule hyp-Lit)
next
case UnOp
thus ?Zcase
by (auto intro: hyp-UnOp)
next
case BinOp
thus ?Zcase
by (auto intro: hyp-BinOp)
next
case (Cond b el e2)
then obtain v where v: constVal (b ? el : e2) = Some v
by blast
then obtain bv where bv: constVal b = Some bv
by simp
show ?Zcase
proof (cases the-Bool bv)
case True
with Cond show ?thesis using v bv
by (auto intro: hyp-CondL)
next
case Fulse
with Cond show ?thesis using v bv
by (auto intro: hyp-CondR)
qged
qed (simp-all add: hyp-Lit)
with const
show ?thesis
by blast
qed

lemma assignsE-const-simp: constVal e = Some v = assignsE e = {}
by (induct rule: constVal-Some-induct) simp-all

4 Main analysis for boolean expressions

Assigned local variables after evaluating the expression if it evaluates to a specific boolean value.
If the expression cannot evaluate to a Boolean value UNIV is returned. If we expect true/false the
opposite constant false/true will also lead to UNIV.

primrec assigns-if :: bool = expr = Iname set

where
assigns-if b (NewC c¢) = UNIV — can never evaluate to Boolean
| assigns-if b (NewA t e) = UNIV — can never evaluate to Boolean
| assigns-if b (Cast t e) = assigns-if b e
| assigns-if b (Inst e ) = assignsFE e — Inst has type Boolean but e is a reference type
| assigns-if b (Lit val) = (if val=Bool b then {} else UNIV)
| assigns-if b (UnOp unop e) = (case constVal (UnOp unop e) of

None = (if unop = UNot
then assigns-if (—b) e
else UNIV)
| Some v = (if v=Bool b
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then {}
else UNIV))
| assigns-if b (BinOp binop el e2)
= (case constVal (BinOp binop el e2) of
None = (if binop=CondAnd then
(case b of
True = assigns-if True el U assigns-if True e2
| False = assigns-if False el N
(assigns-if True el U assigns-if False e2))

else
(if binop=CondOr then
(case b of

True = assigns-if True el N
(assigns-if False el U assigns-if True e2)
| False = assigns-if False el U assigns-if False e2)
else assignsE el U assignsE e2))
| Some v = (if v=Bool b then {} else UNIV))

| assigns-if b (Super) = UNIV — can never evaluate to Boolean
| assigns-if b (Acc v) = (assignsV v)

| assigns-if b (v:=-¢€) = (assignsE (Ass v e))

| assigns-if b (c? el : e2) = (assignsE ¢) U

(case (constVal ¢) of
None = (assigns-if b el) N
(assigns-if b e2)
| Some bv = (case the-Bool bv of
True = assigns-if b el
| False = assigns-if b e2))
| assigns-if b ({accC,statT,mode}objRef -mn({pTs}args))
= assignsE ({accC,statT ,mode}objRef -mn({pTs}args))
— Only dummy analysis for intermediate expressions Methd, Body, InsInitE and Callee
| assigns-if b (Methd C sig) = {}
| assigns-if b (Body C's) = {}
| assigns-if b (InsInitE s ) = {}
| assigns-if b (Callee l e) = {}

lemma assigns-if-const-b-simp:
assumes boolConst: constVal e = Some (Bool b) (is ?Const b ¢)
shows assigns-if b e = {} (is ?Ass b €)
proof —

have A b. ?Const b e = ?Ass b e

proof (induct €)
case Lit
thus ?case by simp

next
case UnOp
thus “case by simp

next
case (BinOp binop)
thus ?case

by (cases binop) (simp-all)

next
case (Cond c el e2 b)
note hyp-c = <\ b. ?Const b ¢ = ?Ass b ©
note hyp-el = <A\ b. ?Const b el = ?Ass b el»
note hyp-e2 = <\ b. ?Const b e2 —> ?Ass b e2»
note const = <constVal (¢ ? el : e2) = Some (Bool b)»
then obtain bv where bv: constVal ¢ = Some bv

by simp
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hence emptyC: assignsE ¢ = {} by (rule assignsE-const-simp)
show ?Zcase
proof (cases the-Bool bv)
case True
with const bv
have ?Const b el by simp
hence ?Ass b el by (rule hyp-el)
with emptyC bv True
show ?thesis
by simp
next
case Fulse
with const bv
have ?Const b e2 by simp
hence ?Ass b e2 by (rule hyp-e2)
with emptyC bv False
show ?thesis
by simp
qed
qed (simp-all)
with boolConst
show ?thesis

by blast
qed
lemma assigns-if-const-not-b-simp:
assumes boolConst: constVal e = Some (Bool b) (is ?Const b e)
shows assigns-if (—=b) e = UNIV (is ?Ass b e)
proof —

have A b. ?Const b e = ?Ass b e
proof (induct e)
case Lit
thus ?case by simp
next
case UnOp
thus ?case by simp
next
case (BinOp binop)
thus ?case
by (cases binop) (simp-all)
next
case (Cond c el e2 b)
note hyp-c = <\ b. ?Const b ¢ = ?Ass b ¢
note hyp-el = <\ b. ?Const b el = ?Ass b el
note hyp-e2 = <\ b. ?Const b e2 = ?Ass b e2»
note const = «constVal (¢ ? el : e2) = Some (Bool b)»
then obtain bv where bv: constVal ¢ = Some bv
by simp
show ?Zcase
proof (cases the-Bool bv)
case True
with const bv
have ?Const b el by simp
hence ?Ass b el by (rule hyp-el)
with bv True
show ?thesis
by simp
next
case Fulse
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with const bv
have ?Const b e2 by simp
hence ?Ass b e2 by (rule hyp-e2)
with bv False
show ?thesis
by simp
qged
qged (simp-all)
with boolConst
show ?thesis
by blast
qed

5 Lifting set operations to range of tables (map to a set)

definition
union-ts :: ('a,’b) tables = ('a,’b) tables = ('a,’d) tables (x- =U - [67,67] 65)
where A =UB=(Ak. AkUDBE)

definition
intersect-ts :: ('a,’b) tables = ('a,’b) tables = ('a,’d) tables (<- =N - [72,72] 71)
where A =N B = (Ak. AkN Bk)

definition
all-union-ts :: ('a,’d) tables = 'b set = ('a,’b) tables (infixl <=Uy>» 40)
where (4 =Uy B) = (A k. Ak U B)

Binary union of tables
lemma union-ts-iff [simpl: (c € (A =UB)k)=(c€ AkV c€ Bk)
by (unfold union-ts-def) blast

lemma union-tsll [elim?: c € Ak = c€ (A=UB)k
by simp

lemma union-tsI2 [elim?: c € Bk = ce€ (A=U B) k
by simp

lemma union-tsCI [intro!]: (c¢ Bk= c€ Ak) = ce€ (A=UDB)k
by auto

lemma union-tsE [elim!]:
[ce (A=UB)k (cec Ak= P);(ce Bk= P)] = P
by (unfold union-ts-def) blast

Binary intersection of tables
lemma intersect-ts-iff [simp]: c € (A=NB)k=(c€e AkANceBk)
by (unfold intersect-ts-def) blast

lemma intersect-tsI [introl]: [c € Ak;c € Bk] = ce (A=NDB)k
by simp

lemma intersect-tsD1: c € (A =N B) k= ce€ Ak
by simp

lemma intersect-tsD2: ¢ € (A =N B) k= c€ Bk
by simp
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lemma intersect-tsE [elim!]:
[ce (A=nNDB)kJcc Ak;ce Bk] = Pl=P
by simp

All-Union of tables and set

lemma all-union-ts-iff [simp]: (¢ € (A =Uy B) k) =(c€ AkV c€ B)
by (unfold all-union-ts-def) blast

lemma all-union-tsI1 [elim?): c € Ak = c€ (A =Uy B) k
by simp

lemma all-union-tsI2 [elim?): ¢ € B= ¢ € (A =Uy B) k
by simp

lemma all-union-tsCI [introl]: (c ¢ B= c€ A k) = c€ (A=Uy B) k
by auto

lemma all-union-tsE [elim!]:
[ce (A=Uy B)k; (ce Ak= P);(ce B= P)]= P
by (unfold all-union-ts-def) blast

The rules of definite assignment

type-synonym breakass = (label, Iname) tables

— Mapping from a break label, to the set of variables that will be assigned if the evaluation terminates with
this break

record assigned =
nrm :: Iname set — Definetly assigned variables for normal completion
brk :: breakass — Definetly assigned variables for abrupt completion with a break

definition
rmlab :: 'a = ('a,’d) tables = ('a,’d) tables
where rmlab k A = (Az. if x=k then UNIV else A 1)

definition
range-inter-ts :: ('a,’b) tables = 'b set (<=~ 80)
where =NA={z|z.V k. 2 € Ak}

In EF B »t» A, B denotes the ”assigned” variables before evaluating term ¢, whereas A denotes the
“assigned” variables after evaluating term ¢. The environment FE is only needed for the conditional -
¢ - . -. The definite assignment rules refer to the typing rules here to distinguish boolean and other
expressions.

inductive

da :: env = Iname set = term = assigned = bool (<-+ - »-» -» [65,65,65,65] 71)
where

Skip: EnvE B »(Skip)» (nrm=DB,brk=\ I. UNIV)

| Expr: Envk B »(e)» A
N
Envt B »(Expr e)» A
| Lab: [Enve B »{c)» C; nrm A = nrm C N (brk C) I; brk A = rmlab | (brk C)]
.
Envk B »(Break I- ¢)» A

| Comp: [EnvE B »(c1)» C1; Envt nrm C1 »{(c2)» C2;
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nrm A = nrm C2; brk A = (brk C1) =n (brk C2)]
—
Enve B »(cl;; c2)» A

| If:  [Envk B »(e)» E;
Envt (B U assigns-if True e) »(cl)» C1;
Envk (B U assigns-if False €) »(c2)» C2;
nrm A = nrm C1 N nrm C2;
brk A = brk C1 =N brk C2 |
_
EnvE B »(If(e) cl Else c2)» A

— Note that E is not further used, because we take the specialized sets that also consider if the expression
evaluates to true or false. Inside of e there is no break or finally, so the break map of F will be the trivial
one. So Envt B »(e)» E is just used to ensure the definite assignment in expression e. Notice the implicit
analysis of a constant boolean expression e in this rule. For example, if e is constantly True then assigns-if
False e = UNIV and therefor nrm C2 = UNIV. So finally nrm A = nrm C1. For the break maps this trick
workd too, because the trivial break map will map all labels to UNIV. In the example, if no break occurs
in ¢2 the break maps will trivially map to UNIV and if a break occurs it will map to UNIV too, because
assigns-if False e = UNIV. So in the intersection of the break maps the path ¢2 will have no contribution.

| Loop: [Envk B »(€e)» E,

Envk (B U assigns-if True e) »{c)» C,

nrm A = nrm C N (B U assigns-if False e);

brk A = brk C]

_—

EnvE B »(l- While(e) c)» A
— The Loop rule resembles some of the ideas of the If rule. For the nrm A the set B U assigns-if False e will
be UNIV if the condition is constantly true. To normally exit the while loop, we must consider the body ¢
to be completed normally (nrm C) or with a break. But in this model, the label [ of the loop only handles
continue labels, not break labels. The break label will be handled by an enclosing Lab statement. So we don’t
have to handle the breaks specially.

| Jmp: [jump=Ret — Result € B;
nrm A = UNIV;
brk A = (case jump of
Break | = X\ k. if k=1l then B else UNIV
| Contl = X\ k. UNIV
| Ret = X k. UNIV)]
—
Enve B »(Jmp jump)» A
— In case of a break to label [ the corresponding break set is all variables assigned before the break. The
assigned variables for normal completion of the Jmp is UNIV, because the statement will never complete
normally. For continue and return the break map is the trivial one. In case of a return we enshure that the
result value is assigned.

| Throw: [Envt B »(e)» E; nrm A = UNIV; brk A = (A I. UNIV)]
= Envk B »(Throw e)» A

| Try: [Envk B »{cl)» C1;
Env(lcl := (lcl Env)(VName vn— Class C))F (B U { VName vn}) »(c2)» C2;
nrm A = nrm C1 N nrm C2;
brk A = brk C1 =N brk C2]
= Envk B »(Try c1 Catch(C vn) c2)» A

| Fin: [Enve B »(cl)» C1;
Env B »{(c2)» C2;
nrm A = nrm C1 U nrm C2;
brk A = ((brk C1) =Uy (nrm C2)) =N (brk C2)]
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N
Env B »(cl Finally c2)» A

— The set of assigned variables before execution c¢2 are the same as before execution c1, because c1 could
throw an exception and so we can’t guarantee that any variable will be assigned in c1. The Finally statement
completes normally if both ¢! and ¢2 complete normally. If ¢! completes abruptly with a break, then c¢2 also
will be executed and may terminate normally or with a break. The overall break map then is the intersection
of the maps of both paths. If ¢2 terminates normally we have to extend all break sets in brk C1 with nrm
C2 (=Uy). If ¢2 exits with a break this break will appear in the overall result state. We don’t know if cI
completed normally or abruptly (maybe with an exception not only a break) so ¢! has no contribution to
the break map following this path.

— Evaluation of expressions and the break sets of definite assignment: Thinking of a Java expression we
assume that we can never have a break statement inside of a expression. So for all expressions the break
sets could be set to the trivial one: Al. UNIV. But we can’t trivially proof, that evaluating an expression
will never result in a break, allthough Java expressions allready syntactically don’t allow nested stetements
in them. The reason are the nested class initialzation statements which are inserted by the evaluation rules.
So to proof the absence of a break we need to ensure, that the initialization statements will never end up
in a break. In a wellfromed initialization statement, of course, were breaks are nested correctly inside of
Lab or Loop statements evaluation of the whole initialization statement will never result in a break, because
this break will be handled inside of the statement. But for simplicity we haven’t added the analysis of the
correct nesting of breaks in the typing judgments right now. So we have decided to adjust the rules of definite
assignment to fit to these circumstances. If an initialization is involved during evaluation of the expression
(evaluation rules F'Var, NewC and NewA

| Init: Envk B »(Init C)» (nrm=DB,brk=X . UNIV)

— Wellformedness of a program will ensure, that every static initialiser is definetly assigned and the jumps are
nested correctly. The case here for Init is just for convenience, to get a proper precondition for the induction
hypothesis in various proofs, so that we don’t have to expand the initialisation on every point where it is

triggerred by the evaluation rules.
| NewC: Envt B »(NewC C)» (nrm=B,brk=X . UNIV)

| NewA: Env B »(e)» A
=
Envt B »(New Tle])» A

| Cast: Envt B »{e)» A
=
Env B »(Cast T e)» A

| Inst: Envk B »{e)» A
=
Envk B »(e InstOf T)» A

| Lit: Envk B »(Lit v)» (nrm=DB,brk=\ I. UNIV)

| UnOp: Env B »{e)» A
=
Env- B »{UnOp unop e)» A

| CondAnd: [Env B »(el)» E1; Envk (B U assigns-if True el) »(e2)» E2;
nrm A = B U (assigns-if True (BinOp CondAnd el e2) N
assigns-if False (BinOp CondAnd el e2));
brk A = (A L. UNIV) |
_—
Envt B »(BinOp CondAnd el e2)» A

| CondOr: [Envt B »{el)» E1; Envk (B U assigns-if False el) »{(e2)» EZ2;
nrm A = B U (assigns-if True (BinOp CondOr el e2) N
assigns-if False (BinOp CondOr el e2));
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brk A= (A 1. UNIV) ]
=
Envt B »(BinOp CondOr el e2)» A

| BinOp: [EnvE B »{el)» E1; Envk nrm E1 »{(e2)» A;
binop # CondAnd; binop # CondOr]
_—
Envk B »(BinOp binop el e2)» A

| Super: This € B
—
Envt B »(Super)» (nrm=DB,brk=\ I. UNIV)

| AccLVar: [vn € B;

nrm A = B; brk A = (A k. UNIV)]

=

Envt B »(Ace (LVar vn))» A
— To properly access a local variable we have to test the definite assignment here. The variable must occur
in the set B

| Ace: [V wn. v # LVar vn;
Envk B »(v)» A]
—
Enve B »(Acc v)» A

| AssLVar: [Enve B »{(e)» E; nrm A = nrm E U {vn}; brk A = brk F]
=
Envk B »((LVar vn) := e)» A

| Ass: [V wn. v # LVar vn; Envk B »(v)» V; Envk nrm V »(e)» A]
—
Envk B »(v:=¢e)» A

| CondBool: [Envt-(c ? el : e2):—(PrimT Boolean);
Env+ B »(c)» C;
Envt (B U assigns-if True c) »(el)» El;
Envt (B U assigns-if False ¢) »(e2)» E2;
nrm A = B U (assigns-if True (¢ 2 el : e2) N

assigns-if False (¢ ? el : e2));

brk A = (A L. UNIV)]
_—
Envk B »(c ?el : e2)» A

| Cond: [- Envk(c ? el : e2):—(PrimT Boolean);
Envk B »(c)» C,
Envk (B U assigns-if True c) »(el)» El;
Envk (B U assigns-if False c) »(e2)» E2;
nrm A = nrm E1 N nrm E2; brk A = (A I. UNIV)]
—
Envk B »(c 7 el : e2)» A

| Call: [EnvE B »(e)» E; Envk nrm E »{args)» A]
—
EnvE B »({accC,statT,mode}e-mn({pTs}targs))» A

— The interplay of Call, Methd and Body: Why rules for Methd and Body at all? Note that a Java source
program will not include bare Methd or Body terms. These terms are just introduced during evaluation. So
definite assignment of Call does not consider Methd or Body at all. So for definite assignment alone we could
omit the rules for Methd and Body. But since evaluation of the method invocation is split up into three rules
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we must ensure that we have enough information about the call even in the Body term to make sure that
we can proof type safety. Also we must be able transport this information from Call to Methd and then
further to Body during evaluation to establish the definite assignment of Methd during evaluation of Call,
and of Body during evaluation of Methd. This is necessary since definite assignment will be a precondition for
each induction hypothesis coming out of the evaluation rules, and therefor we have to establish the definite
assignment of the sub-evaluation during the type-safety proof. Note that well-typedness is also a precondition
for type-safety and so we can omit some assertion that are already ensured by well-typedness.
| Methd: [methd (prg Env) D sig = Some m;

Envt B »(Body (declclass m) (stmt (mbody (mthd m))))» A

]

N

Envt B »(Methd D sig)» A

| Body: [Envt B »{c)» C; jumpNestingOkS {Ret} ¢; Result € nrm C;
nrm A = B; brk A = (A . UNIV)]

—

Envt B »(Body D c)» A
— Note that A is not correlated to C. If the body statement returns abruptly with return, evaluation of Body
will absorb this return and complete normally. So we cannot trivially get the assigned variables of the body
statement since it has not completed normally or with a break. If the body completes normally we guarantee
that the result variable is set with this rule. But if the body completes abruptly with a return we can’t
guarantee that the result variable is set here, since definite assignment only talks about normal completion
and breaks. So for a return the Jump rule ensures that the result variable is set and then this information
must be carried over to the Body rule by the conformance predicate of the state.
| LVar: Enve B »{(LVar vn)» (nrm=B, brk=X\ l. UNIV)

| FVar: Envk B »{e)» A
—
Envk B »({accC,statDeclC stat}e..fny» A

| AVar: [Enve B »(el)» E1; Envk nrm E1 »{e2)» A]
=
Envk B »(el.[e2])» A

| Nil: Env B »([]::expr list)» (nrm=DB, brk=A l. UNIV)

| Cons: [Envt B »{e:expr)» E; EnvE nrm E »(es)» A]
—
Envt B »(e#es)» A

declare inj-term-sym-simps [simp)

declare assigns-if.simps [simp del]

declare split-paired-All [simp del] split-paired-Ex [simp del]

setup «map-theory-simpset (fn ctat => ctat |> Simplifier.del-loop split-all-tac))

inductive-cases da-elim-cases [cases set]:
Envk B »(Skip)» A
Envte B »Inlr Skipy A
Envt B »(Ezpr e)» A
Enve B »Inlr (Expr e)» A
Envk B »(l- ¢y» A
Envk B »Inlr (I- ¢)» A
Envt B »(cl;; ¢2)» A
Envt B wInlr (cly; c2)» A
Env B »(If(e) c1 Else c2)» A
Env B »Inlr (If(e) cl Else c2)» A
Envk B »(l- While(e) c)» A
Env B »Inlr (I- While(e) ¢)» A
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Envk B »(Jmp jump)» A

Enve B »Inlr (Jmp jump)» A

Env- B »(Throw e)» A

Envk B »Inlr (Throw e)» A

Envk B »(Try c1 Catch(C vn) c2)» A

Enve B »wInlr (Try ¢l Catch(C vn) ¢2)» A

Envk B »(cl Finally c2)» A

Enve B »Inir (c1 Finally ¢2)» A

Env B »(Init C)» A

Envk B wInlr (Init C)» A

Envk B »(NewC C)» A

Envk B »In1l (NewC C)» A

Env+ B »(New Tle])» A

Envk B »Inil (New Tle])» A

Envk B »(Cast T e)» A

Envk B »In1l (Cast T e)» A

Envk B »(e InstOf T)» A

Enve B »Inll (e InstOf T)» A

Env- B »(Lit v)» A

Envk B »Inil (Lit v)» A

Envk B »(UnOp unop e)» A

Env B »Inil (UnOp unop e)» A

Envk B »(BinOp binop el e2)» A

Env B »In1l (BinOp binop el e2)» A

Envk B »(Super)» A

Envk B »Inl1l (Super)» A

Envk B »(Acc v)» A

Envk B »Inl1l (Acc v)» A

Env- B »(v:=¢e)» A

Enve B »In1l (v:=¢e)» A

Envk- B »(c ? el : e2)» A

Envk B »Inil (¢ 2 el : e2)» A

Envk B »({accC,statT,mode}e-mn({pTs}targs))» A

Envk B »Inl1l ({accC,statT ,mode}e-mn({pTs}args))» A

Env+ B »(Methd C sig)» A

Envk B »Inl1l (Methd C sig)» A

Envk B »(Body D c¢)» A

Envk B »In1l (Body D c)» A

Envk B »(LVar vn)» A

Env- B »In2 (LVar vn)» A

Envk B »{{accC,statDeclCstat}e..fn)» A

Envk B »In2 ({accC,statDeclC\stat}e..fn)» A

Envk B »(el.[e2])» A

Envk B »In2 (el.[e2])» A

Enve B »([]::expr list)» A

Envk B »In8 ([]::expr list)» A

Env- B »(e#esy» A

Envk B »In8 (e#es)» A
declare inj-term-sym-simps [simp del]
declare assigns-if.simps [simp)
declare split-paired-All [simp] split-paired-Ex [simp)
setup <map-theory-simpset (fn ctat => ctat |> Simplifier.add-loop (split-all-tac, split-all-tac))

lemma da-Skip: A = (nrm=B,brk=\ |. UNIV|) = Envt B »(Skip)» A
by (auto intro: da.Skip)

lemma da-NewC: A = (nrm=DB,brk=\ . UNIV|) = Env- B »(NewC C)» A
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by (auto intro: da.NewC')

lemma da-Lit: A = (nrm=DB,brk=\ [. UNIV|) = Env- B »(Lit v)» A
by (auto intro: da.Lit)

lemma da-Super: [This € B;A = (nrm=DB,brk=\ l. UNIV|)] = Envk B »(Super)» A
by (auto intro: da.Super)

lemma da-Init: A = (nrm=DB,brk=X . UNIV|) = Envt B »{(Init C)» A
by (auto intro: da.Init)

lemma assignsE-subseteq-assigns-ifs:
assumes boolFEz: Et-e::—PrimT Boolean (is ?Boolean ¢)
shows assignsE e C assigns-if True e N assigns-if False e (is ?Incl e)
proof —
obtain vv where ez-lit: EFLit vv::— PrimT Boolean
using typeof.simps(2) wt.Lit by blast
have ?Boolean e = ?Incl e
proof (induct e)
case (Cast T e)
have Etre::— (PrimT Boolean)
proof —
from (E+(Cast T e)::— (PrimT Boolean)»
obtain Te where Ere::—Te
prg EFTe=<? PrimT Boolean
by cases simp
thus ?thesis
by — (drule cast-Boolean2,simp)
qged
with Cast.hyps
show ?Zcase
by simp
next
case (Lit val)
thus ?Zcase
by — (erule wt-elim-cases, cases val, auto simp add: empty-di-def)
next
case (UnOp unop e)
thus ?Zcase
by — (erule wt-elim-cases,cases unop,
(fastforce simp add: assignsE-const-simp)+)
next
case (BinOp binop el e2)
from BinOp.prems obtain elT e2T
where Etel::—elT and Ebe2::—e2T and wt-binop (prg E) binop elT e2T
and (binop-type binop) = Boolean
by (elim wt-elim-cases) simp
with BinOp.hyps
show ?Zcase
by (cases binop) (auto simp add: assignsE-const-simp)
next
case (Cond c el e2)
note hyp-c = «?Boolean ¢ = ?Incl ¢»
note hyp-el = <?Boolean el = ?Incl el»
note hyp-e2 = <?Boolean e2 = ?Incl e2)
note wt = «(E-(c ? el : e2)::—PrimT Boolean)
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then obtain
boolean-c: EFc::—PrimT Boolean and
boolean-el: Erel::—PrimT Boolean and
boolean-e2: Ete2::—PrimT Boolean
by (elim wt-elim-cases) (auto dest: widen-Boolean2)
show ?Zcase
proof (cases constVal c)
case None
with boolean-el boolean-e2
show ?thesis
using hyp-el hyp-e2
by (auto)
next
case (Some bv)
show ?thesis
proof (cases the-Bool bv)
case True
with Some show ?thesis using hyp-el boolean-el by auto
next
case Fulse
with Some show ?thesis using hyp-e2 boolean-e2 by auto
qed
qed
next
show Az. EFLit vvi:—PrimT Boolean
by (rule ex-lit)
qed (simp-all add: ex-lit)
with boolEx
show ?thesis
by blast
qed

lemma rmilab-same-label [simp]: (rmlab 1 A) | = UNIV
by (simp add: rmlab-def)

lemma rmilab-same-labell [simp): =" = (rmlab | A) ' = UNIV
by (simp add: rmlab-def)

lemma rmilab-other-label [simp]: [#£l'=—> (rmlab 1 A) "= Al
by (auto simp add: rmlab-def)

lemma range-inter-ts-subseteq [intro]: ¥V k. Ak C Bk = =(1AC =B
by (auto simp add: range-inter-ts-def)

lemma range-inter-ts-subseteq. vV k. Ak C Bk —= 2z € =(|A = z € =B
by (auto simp add: range-inter-ts-def)

lemma da-monotone:
assumes da: Env- B »t» A and
B C B’ and
da’: Envk B’ »t» A’
shows (nrm A C nrm A") A (Y 1. (brk A1 C brk A’ 1))
proof —
from da
have A\ B’ A'. [EnvF B’ »t» A'; B
= (nrm A C nrm A’)

B

C
A (Y L (brk A1C brk A’ 1))
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(is PROP ?Hyp Env Bt A)
proof (induct)
case Skip
then show ?case by cases simp
next
case Erpr
from Fxpr.prems Expr.hyps
show ?case by cases simp
next
case (Lab Env Be C A1 B' A’
note A = <nrm A = nrm C N brk C I <brk A = rmlab I (brk C)»
note <PROP ?Hyp Env B (c) C»
moreover
note <B C B
moreover
obtain C’
where Env- B’ »{c)» C’
and A" nrm A’ = nrm C' N brk C' 1 brk A’ = rmlab | (brk C”)
using Lab.prems
by cases simp
ultimately
have nrm C C nrm C’ and hyp-brk: (V1. brk C'1 C brk C’ 1) by auto
then
have nrm C N brk C 1 C nrm C’' N brk C' 1 by auto
moreover
from hyp-brk
have rmlab [ (brk C) 1" C rmlab I (brk C') I’ for I’
by (cases I=1") simp-all
moreover note A A’
ultimately show ?case
by simp
next
case (Comp Env B c1 C1 c2 C2 A B" A')
note A = «nrm A = nrm C2) <brk A = brk C1 =N brk C2»
from «Env- B’ »(cl;; c2)» A
obtain C1’ C2'
where da-c1: Env- B’ »{cl)» C1’'and
da-c2: Envk nrm C1’ »(c2)» C2' and
A nrm A" = nrm C2' brk A’ = brk C1' =N brk C2'
by cases auto
note «PROP ?Hyp Env B (c1) C1»
moreover note <B C B’
moreover note da-cl
ultimately have C1”: nrm C1 C nrm C1' (V1. brk C1 1 C brk C1' 1)
by auto
note <PROP ?Hyp Env (nrm C1) (c2) C2»
with da-c2 C1’
have C2" nrm C2 C nrm C2' (V1. brk C21 C brk C2'1)
by auto
with A4 A’ C1’
show ?Zcase
by auto
next
case (If Env Be Ecl1 C1 c2C2 A B' A
note A = nrm A = nrm C1 N nrm C2»> <brk A = brk C1 =N brk C2»
from <Env- B’ »(If(e) cl Else c2)» A"
obtain C1’ C2’
where da-c1: Env- B’ U assigns-if True e »{cl)» C1’and
da-c2: Envk B' U assigns-if False e »{c2)» C2' and
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A nrm A" = nrm C1' N nrm C2' brk A’ = brk C1' =N brk C2'
by cases auto
note «<PROP ?Hyp Env (B U assigns-if True e) (c1) CI»
moreover note B’ = «B C B)
moreover note da-cl
ultimately obtain C1”: nrm C1 C nrm C1’ (V1. brk C11 C brk C1'1)
by blast
note «<PROP ?Hyp Env (B U assigns-if False €) (c¢2) C2)
with da-c2 B’
obtain C2" nrm C2 C nrm C2' (V1. brk C21 C brk C2'1)
by blast
with A A’ C1'
show Zcase
by auto
next
case (Loop Env Be Ec C Al B' A
note A = <nrm A = nrm C N (B U assigns-if False e)y <brk A = brk C)
from <Env B’ »(l- While(e) c)» A"
obtain C’
where
da-c': Env+ B’ U assigns-if True e »{c)» C'’ and
A nrm A’ = nrm C' N (B’ U assigns-if False e)
brk A’ = brk C'
by cases auto
note <PROP ?Hyp Env (B U assigns-if True e) {c¢) C»
moreover note B’ = <B C B’
moreover note da-c¢’
ultimately obtain C": nrm C C nrm C' (V1. brk C1 C brk C' 1)
by blast
with A A’ B’
have nrm A C nrm A’
by blast
moreover
have brk A l' C brk A’ I’ for I’
proof (cases constVal €)
case None
with 4 A’ C’
show ?thesis
by (cases I=1") auto

next
case (Some bv)
with A A’ C’

show ?thesis
by (cases the-Bool bu, cases I=1") auto
qged
ultimately show Zcase
by auto
next
case (Jmp jump B A Env B' A')
thus ?case by (elim da-elim-cases) (auto split: jump.splits)
next
case Throw thus ?case by (elim da-elim-cases) auto
next
case (Try Env B ¢c1 C1 vn C c2 C2 A B" A')
note A = <nrm A = nrm C1 N nrm C2) <brk A = brk C1 =N brk C2»
from <Envt B’ »(Try c1 Catch(C vn) c2)» A"
obtain C1’ C2’
where da-c1’: Enve B’ »(cl)» C1’ and
da-c2". Env(lcl := (lcl Env)(VName vn— Class C))F B’ U { VName vn}



Theory DefiniteAssignment 137

»(c2)» C2' and
A nrm A" = nrm C1' N nrm C2’
brk A’ = brk C1' =N brk C2’
by cases auto
note <PROP ?Hyp Env B (c1) CI>»
moreover note B’ = (B C B’
moreover note da-c1’
ultimately obtain C1" nrm C1 C nrm C1' (V1. brk C11 C brk C1'1)
by blast
note <PROP ?Hyp (Env(lcl := (lcl Env)(VName vn— Class C)))
(B U {VName vn}) (c2) C2)
with B’ da-c2’
obtain nrm C2 C nrm C2' (VI. brk C21 C brk C2'1)
by blast
with C1' A A’
show Zcase
by auto
next
case (Fin Env B ¢l C1 ¢2 C2 A B' A"
note A = «nrm A = nrm C1 U nrm C2)»
<brk A = (brk C1 =Uy nrm C2) =N (brk C2))
from «Env- B’ »(cl Finally c2)» A"
obtain C1’ C2’
where da-c1”: Env- B’ »{cl)» C1' and
da-c2'. Env+ B’ »(c2)» C2' and
A" nrm A" = nrm C1’ U nrm C2’'
brk A’ = (brk C1' =Uy nrm C2') =N (brk C2’)
by cases auto
note <PROP ?Hyp Env B (c1) C1»
moreover note B’ = «B C B)
moreover note da-c1’
ultimately obtain C1": nrm C1 C nrm C1' (V1. brk C11 C brk C1'1)
by blast
note hyp-c2 = <PROP ?Hyp Env B (c2) C2»
from da-c2’ B’
obtain nrm C2 C nrm C2’' (V1. brk C21 C brk C2'1)
by — (drule hyp-c2,auto)
with A A’ C1'
show Zcase
by auto
next
case Init thus ?case by (elim da-elim-cases) auto
next
case NewC thus ?case by (elim da-elim-cases) auto
next
case NewA thus Zcase by (elim da-elim-cases) auto
next
case Cast thus ?case by (elim da-elim-cases) auto
next
case Inst thus ?case by (elim da-elim-cases) auto
next
case Lit thus Zcase by (elim da-elim-cases) auto
next
case UnOp thus ?Zcase by (elim da-elim-cases) auto
next
case (CondAnd Env B el E1 e2 E2 A B' 4")
note A = <nrm A = B U
assigns-if True (BinOp CondAnd el e2) N
assigns-if False (BinOp CondAnd el e2)»
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<brk A = (Al. UNIV)»
from <Env B’ »(BinOp CondAnd el e2)» A"
obtain A" nrm A’ = B'U
assigns-if True (BinOp CondAnd el e2) N
assigns-if False (BinOp CondAnd el e2)
brk A’ = (Al. UNIV)
by cases auto
note B’ = <B C B’
with A A’ show ?case
by auto
next
case CondOr thus ?case by (elim da-elim-cases) auto
next
case BinOp thus Zcase by (elim da-elim-cases) auto
next
case Super thus ?case by (elim da-elim-cases) auto
next
case AccLVar thus ?Zcase by (elim da-elim-cases) auto
next
case Acc thus ?case by (elim da-elim-cases) auto
next
case AssLVar thus ?case by (elim da-elim-cases) auto
next
case Ass thus %case by (elim da-elim-cases) auto
next
case (CondBool Env c el e2 B C E1 E2 A B' A)
note A = «<nrm A = B U
assigns-if True (¢ 2 el : e2) N
assigns-if False (¢ ? el : e2))
<brk A = (Al. UNIV)»
note <Enuvk (¢ ? el : e2)::— (PrimT Boolean)»
moreover
note <Envk B’ »(c ? el : e2)» A
ultimately
obtain A" nrm A’ = B’ U
assigns-if True (¢ ? el : e2) N
assigns-if False (¢ ? el : e2)
brk A’ = (Al. UNIV)

by (elim da-elim-cases) (auto simp add: inj-term-simps)

note B’ = <B C B’
with A A’ show ?case

by auto

next

case (Cond Env c el e2 B C E1 E2 A B" A')
note A = <nrm A = nrm E1 N nrm E2» <brk A = (Al. UNIV))
note not-bool = - Envk (¢ ? el : e2):— (PrimT Boolean))
from «Envt B’ »(c 7 el : e2)» A"
obtain E1’ E2’

where da-el’: Env- B’ U assigns-if True ¢ »{el)» E1’ and

da-e2’: Envt B’ U assigns-if False ¢ »(e2)» E2' and
A" nrm A" = nrm E1' 0 nrm E2’
brk A’ = (\. UNIV)
using not-bool
by (elim da-elim-cases) (auto simp add: inj-term-simps)

note <PROP ?Hyp Env (B U assigns-if True c) (el) E1»
moreover note B’ = «<B C B)
moreover note da-el’
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ultimately obtain E1": nrm E1 C nrm E1’ (V1. brk E11 C brk E1’1)

by blast
note <PROP ?Hyp Env (B U assigns-if False ¢) (e2) E2)
with B’ da-e2’
obtain nrm E2 C nrm E2' (V1. brk E2 1 C brk F2'1)
by blast
with E1’ A A’
show ?Zcase
by auto
next
case Call
from Call.prems and Call.hyps
show ?case by cases auto
next
case Methd thus Zcase by (elim da-elim-cases) auto
next
case Body thus ?case by (elim da-elim-cases) auto

next

case LVar thus ?case by (elim da-elim-cases) auto
next

case F'Var thus ?case by (elim da-elim-cases) auto
next

case AVar thus ?case by (elim da-elim-cases) auto
next

case Nil thus ?case by (elim da-elim-cases) auto
next

case Cons thus ?case by (elim da-elim-cases) auto
qed
from this [OF da’ <B C B"] show ?thesis .

qed

lemma da-weaken:
assumes da: Env- B »t» A and B C B’
shows 3 A". Env = B’ »t» A’

proof —
note assigned.select-convs [Pure.intro]
from da

have \ B’. B C B'= 3 A’. Env- B’ »t» A’ (is PROP ?Hyp Env B t)

proof (induct)

case Skip thus ?case by (iprover intro: da.Skip)
next

case Ezxpr thus ?case by (iprover intro: da.Expr)
next

case (Lab Env B¢ C Al B

note <PROP ?Hyp Env B (c)»

moreover

note B’ = <B C B’

ultimately obtain C’ where Envk B’ »(c)» C’

by iprover
then obtain A’ where Enuvt B’ »(Break - c)» A’
by (iprover intro: da.Lab)

thus ?case ..
next

case (Comp Env B ¢1 C1 ¢2 C2 A B)

note da-c1 = «Env- B »(cl)» CI»

note <PROP ?Hyp Env B (c1)

moreover

note B’ = <B C B’

ultimately obtain C1’ where da-c1” Env B’ »(c1)» C1’
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by iprover
with da-cl B’
have
nrm C1 C nrm C1'
by (rule da-monotone [elim-format]) simp
moreover
note <PROP ?Hyp Env (nrm C1) (c2)»
ultimately obtain C2’ where Env- nrm C1' »{c2)» C2’
by iprover
with da-c1’ obtain A’ where Envk B’ »(cl;; c2)» A’
by (iprover intro: da.Comp)
thus Zcase ..
next
case (If EnvBe E cl C1c2 C2A B
note B’ = (B C B’
obtain E’where Envk B’ »(e)» E’
proof —
have PROP ?Hyp Env B (e) by (rule If .hyps)
with B’
show ?thesis using that by iprover
ged
moreover
obtain C1’ where Env- (B’ U assigns-if True e) »(c1)» C1'
proof —
from B’
have (B U assigns-if True e) C (B’ U assigns-if True e)
by blast
moreover
have PROP ?Hyp Env (B U assigns-if True e) (c1) by (rule If hyps)
ultimately
show ?thesis using that by iprover
qged
moreover
obtain C2’ where Env- (B’ U assigns-if False e) »{(c2)» C2’
proof —
from B’ have (B U assigns-if False e) C (B’ U assigns-if False e)
by blast
moreover
have PROP ?Hyp Env (B U assigns-if False €) (c2) by (rule If.hyps)
ultimately
show ?thesis using that by iprover
qed
ultimately
obtain A’ where Envk B’ »(If(e) c1 Else c2)» A’
by (iprover intro: da.If)
thus Zcase ..
next
case (Loop Env Be Ec C A1 B
note B’ = «<B C B’
obtain E’ where Fnuv- B’ »(e)» E’
proof —
have PROP ?Hyp Env B (e) by (rule Loop.hyps)
with B’
show ?thesis using that by iprover
qed
moreover
obtain C' where Envk (B’ U assigns-if True e) »{c)» C’
proof —
from B’
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have (B U assigns-if True e¢) C (B’ U assigns-if True e)
by blast

moreover

have PROP ?Hyp Env (B U assigns-if True e) (c) by (rule Loop.hyps)

ultimately

show ?thesis using that by iprover
qed
ultimately
obtain A’ where Envt B’ »(l- While(e) c¢)» A’

by (iprover intro: da.Loop )
thus Zcase ..

next

case (Jmp jump B A Env B’)
note B’ = «B C B’
with Jmp.hyps have jump = Ret — Result € B’

by auto
moreover
obtain A’:assigned

where nrm A’ = UNIV
brk A’ = (case jump of
Break | = Mk. if k = | then B’ else UNIV
| Cont | = \k. UNIV
| Ret = Ak. UNIV)

by iprover
ultimately have Env- B’ »(Jmp jump)» A’
by (rule da.Jmp)
thus Zcase ..
next
case Throw thus %case by (iprover intro: da.Throw )
next
case (Try Env B ¢1 C1 vn C c2 C2 A B
note B’ = «B C B’
obtain C1’where Env- B’ »(c1)» C1’
proof —
have PROP ?Hyp Env B (c1) by (rule Try.hyps)
with B’
show ?thesis using that by iprover
qed
moreover
obtain C2’ where
Env(lcl := (lel Env)(VName vn— Class C))F B’ U { VName vn} »(c2)» C2’
proof —
from B’ have B U {VName vn} C B’ U {VName vn} by blast
moreover
have PROP ?Hyp (Env(lcl := (lcl Env)(VName vn— Class C)))
(B U {VName vn}) (c2)
by (rule Try.hyps)
ultimately
show ?thesis using that by iprover
qed
ultimately
obtain A’ where Envk B’ »(Try c1 Catch(C vn) c2)» A’
by (iprover intro: da.Try )
thus Zcase ..
next
case (Fin Env B ¢l C1 ¢2 C2 A B)
note B’ = <B C B’
obtain C1’where C1" Envt- B’ »(cl)» C1’
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proof —
have PROP ?Hyp Env B (c1) by (rule Fin.hyps)
with B’
show ?thesis using that by iprover
ged
moreover
obtain C2’ where Envk B’ »(c2)» C2’
proof —
have PROP ?Hyp Env B (c2) by (rule Fin.hyps)
with B’
show ?thesis using that by iprover
qed
ultimately
obtain A’ where Fnvk B’ »{cl Finally c2)» A’
by (iprover intro: da.Fin )
thus ?case ..
next
case Init thus ?case by (iprover intro: da.Init)
next
case NewC thus Zcase by (iprover intro: da.NewC)
next
case NewA thus Zcase by (iprover intro: da.NewA)
next
case Cast thus ?case by (iprover intro: da.Cast)
next
case Inst thus ?case by (iprover intro: da.Inst)
next
case Lit thus ?case by (iprover intro: da.Lit)
next
case UnOp thus Zcase by (iprover intro: da.UnOp)
next
case (CondAnd Env B el E1 e2 E2 A B)
note B’ = «<B C B’
obtain E1’ where Envt B’ »(el)» E1’
proof —
have PROP ?Hyp Env B (el) by (rule CondAnd.hyps)
with B’
show ?thesis using that by iprover
qged
moreover
obtain F2’' where Envt B’ U assigns-if True el »(e2)» E2’
proof —
from B’ have B U assigns-if True el C B’ U assigns-if True el
by blast
moreover
have PROP ?Hyp Env (B U assigns-if True el) (e2) by (rule CondAnd.hyps)
ultimately show ?thesis using that by iprover
qged
ultimately
obtain A’ where Envt B’ »(BinOp CondAnd el e2)» A’
by (iprover intro: da.CondAnd)
thus ?case ..
next
case (CondOr Env B el E1 e2 E2 A B
note B’ = <B C B’
obtain E1’ where Envt B’ »(el)» E1’
proof —
have PROP ?Hyp Env B (el) by (rule CondOr.hyps)
with B’
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show ?thesis using that by iprover
qed
moreover
obtain E2’ where Enuvt B’ U assigns-if False el »{e2)» E2’
proof —
from B’ have B U assigns-if False el C B’ U assigns-if False el
by blast
moreover
have PROP ?Hyp Env (B U assigns-if False el) (e2) by (rule CondOr.hyps)
ultimately show ?thesis using that by iprover
qed
ultimately
obtain A’ where Envt B’ »(BinOp CondOr el e2)» A’
by (iprover intro: da.CondOr)
thus ?case ..
next
case (BinOp Env B el E1 e2 A binop B')
note B’ = «B C B’
obtain E1’ where E1’: Envk- B’ »{el)» E1’
proof —
have PROP ?Hyp Env B (el) by (rule BinOp.hyps)
with B’
show ?thesis using that by iprover
qed
moreover
obtain A’ where Envt nrm E1’ »(e2)» A’
proof —
have Env+ B »(el)» E1 by (rule BinOp.hyps)
from this B’ E1’
have nrm E1 C nrm E1’
by (rule da-monotone [THEN conjE))
moreover
have PROP ?Hyp Env (nrm E1) (e2) by (rule BinOp.hyps)
ultimately show ?thesis using that by iprover
qed
ultimately
have Enuvt B’ »(BinOp binop el e2)» A’
using BinOp.hyps by (iprover intro: da.BinOp)
thus ?case ..
next
case (Super B Env B’)
note B’ = <B C B’
with Super.hyps have This € B’
by auto
thus ?case by (iprover intro: da.Super)
next
case (AccLVar vn B A Env B')
note <vn € B»
moreover
note <B C B’
ultimately have vn € B’ by auto
thus ?case by (iprover intro: da.AccLVar)
next
case Acc thus ?case by (iprover intro: da.Acc)
next
case (AssLVar Env B e E A vn B)
note B’ =B C B’
then obtain E’ where Envk B’ »(e)» E’
by (rule AssLVar.hyps [elim-format]) iprover
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then obtain A’ where
Env+ B’ »(LVar vn:=e)» A’
by (iprover intro: da.AssLVar)
thus Zcase ..
next
case (Ass v Env B Ve A B
note B’ = <B C B’
note <Y un. v # LVar vn»
moreover
obtain V' where V' Envt B’ »(v)» V'
proof —
have PROP ?Hyp Env B (v) by (rule Ass.hyps)
with B’
show ?thesis using that by iprover
qed
moreover
obtain A’ where Envk nrm V' »(e)» A’
proof —
have Env- B »(vy» V by (rule Ass.hyps)
from this B’ V'
have nrm V C nrm V'’
by (rule da-monotone [THEN conjE])
moreover
have PROP ?Hyp Env (nrm V) (e) by (rule Ass.hyps)
ultimately show ¢thesis using that by iprover
qed
ultimately
have Env- B’ »(v := e)» A’
by (iprover intro: da.Ass)
thus Zcase ..
next
case (CondBool Env c el e2 B C E1 E2 A B)
note B’ = «<B C B’
note <Envt(c ? el : e2)::—(PrimT Boolean))
moreover obtain C’ where C": Envt B’ »(c)» C’
proof —
have PROP ?Hyp Env B (c) by (rule CondBool.hyps)
with B’
show ?thesis using that by iprover
qged
moreover
obtain EI’ where Env+ B’ U assigns-if True ¢ »{el)» E1’
proof —
from B’
have (B U assigns-if True ¢) C (B’ U assigns-if True c)
by blast
moreover
have PROP ?Hyp Env (B U assigns-if True c) (el) by (rule CondBool.hyps)
ultimately
show ?thesis using that by iprover
qed
moreover
obtain E2’ where Envk B’ U assigns-if False ¢ »{e2)» E2’
proof —
from B’
have (B U assigns-if False ¢) C (B’ U assigns-if False c)
by blast
moreover
have PROP ?Hyp Env (B U assigns-if False c¢) (e2) by(rule CondBool.hyps)
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ultimately
show ?thesis using that by iprover
qed
ultimately
obtain A’ where Envt B’/ »(c ? el : e2)» A’
by (iprover intro: da.CondBool)
thus ?case ..
next
case (Cond Env c el e2 B C E1 E2 A B)
note B’ = <B C B’
note - Envk(c ? el : e2)::—(PrimT Boolean)»
moreover obtain C’ where C”: Env- B’ »(c)» C’
proof —
have PROP ?Hyp Env B (c) by (rule Cond.hyps)
with B’
show ?thesis using that by iprover
qed
moreover
obtain EI’ where Env+ B’ U assigns-if True ¢ »(el)» E1’
proof —
from B’
have (B U assigns-if True ¢) C (B’ U assigns-if True c)
by blast
moreover
have PROP ?Hyp Env (B U assigns-if True c) (el) by (rule Cond.hyps)
ultimately
show ?thesis using that by iprover
qed
moreover
obtain F2’ where Envt B’ U assigns-if False ¢ »(e2)» E2’
proof —
from B’
have (B U assigns-if False ¢) C (B’ U assigns-if False c)
by blast
moreover
have PROP ?Hyp Env (B U assigns-if False c) (e2) by (rule Cond.hyps)
ultimately
show ?thesis using that by iprover
qed
ultimately
obtain A’ where Envk B’ »(c ? el : e2)» A’
by (iprover intro: da.Cond)
thus ?case ..
next
case (Call Env B e E args A accC statT mode mn pTs B')
note B’ = «B C B’
obtain E’ where E’: Envt B’ »{e)» E’
proof —
have PROP ?Hyp Env B (e) by (rule Call.hyps)
with B’
show ?thesis using that by iprover
qed
moreover
obtain A’ where Envk nrm E' »(args)» A’
proof —
have Env- B »(e)» E by (rule Call.hyps)
from this B’ E'
have nrm E C nrm E’
by (rule da-monotone [THEN conjE))
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moreover
have PROP ?Hyp Env (nrm E) (args) by (rule Call.hyps)
ultimately show ¢thesis using that by iprover
qed
ultimately
have Env- B’ »{({accC,statT ,mode}e-mn( {pTs}args))» A’
by (iprover intro: da.Call)
thus Zcase ..
next
case Methd thus Zcase by (iprover intro: da.Methd)
next
case (Body Env B¢ C A D B’)
note B’ = <B C B’
obtain C' where C’: Env- B’ »(c)» C’ and nrm-C". nrm C C nrm C’
proof —
have Env+ B »{(c)» C by (rule Body.hyps)
moreover note B’
moreover
from B’ obtain C’ where da-c: Envk B’ »(c)» C’
by (rule Body.hyps [elim-format]) blast
ultimately
have nrm C C nrm C’
by (rule da-monotone [THEN conjE))
with da-c that show ?thesis by iprover
qed
moreover
note <Result € nrm C»
with nrm-C’ have Result € nrm C’
by blast
moreover note jumpNestingOkS { Ret} c»
ultimately obtain A’ where
Envk B’ »(Body D c)» A’
by (iprover intro: da.Body)
thus ?Zcase ..
next
case LVar thus Zcase by (iprover intro: da.LVar)
next
case FVar thus ?case by (iprover intro: da.FVar)
next
case (AVar Env B el E1 e2 A B)
note B’ = (B C B’
obtain F1’ where E1": Env- B’ »(el)» E1’
proof —
have PROP ?Hyp Env B (el) by (rule AVar.hyps)
with B’
show ?thesis using that by iprover
qed
moreover
obtain A’ where Envk nrm E1’ »(e2)» A’
proof —
have Env- B »(el)» E1 by (rule AVar.hyps)
from this B’ E1’
have nrm E1 C nrm E1’
by (rule da-monotone [THEN conjE])
moreover
have PROP ?Hyp Env (nrm E1) (e2) by (rule AVar.hyps)
ultimately show ?thesis using that by iprover
qed
ultimately
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have Envt B’ »(el.[e2])» A’
by (iprover intro: da.AVar)
thus Zcase ..
next
case Nil thus ?case by (iprover intro: da.Nil)
next
case (Cons Env B e E es A B’)
note B’ = <B C B
obtain E’ where E’: Envt B’ »(e)» E’
proof —
have PROP ?Hyp Env B (€) by (rule Cons.hyps)
with B’
show ?thesis using that by iprover
qed
moreover
obtain A’ where Envk nrm E' »(es)» A’
proof —
have Env- B »(e)» E by (rule Cons.hyps)
from this B’ E’
have nrm E C nrm E’
by (rule da-monotone [THEN conjE))
moreover
have PROP ?Hyp Env (nrm E) (es) by (rule Cons.hyps)
ultimately show ?thesis using that by iprover
qed
ultimately
have Envt B’ »(e # es)y» A’
by (iprover intro: da.Cons)
thus Zcase ..
qed
from this [OF «B C B"] show ?thesis .
qed

corollary da-weakenE [consumes 2]:
assumes da: Env- B »t» A and
B B C B’ and
ex-mono: \ A’. [Envk B’ »t» A’y nrm A C nrm A
AL brkALC brk A'l] = P
shows P
proof —
from da B’
obtain A’ where A" Env- B’ »t» A’
by (rule da-weaken [elim-format]) iprover
with da B’
have nrm A C nrm A’ AN (W 1. brk A 1 C brk A’ 1)
by (rule da-monotone)
with A’ ez-mono
show ?thesis
by iprover
qed

end
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Chapter 13

WellForm

1 Well-formedness of Java programs

theory WellForm imports DefiniteAssignment begin

For static checks on expressions and statements, see WellType.thy

improvements over Java Specification 1.0 (cf. 8.4.6.3, 8.4.6.4, 9.4.1):

o a method implementing or overwriting another method may have a result type that widens to
the result type of the other method (instead of identical type)

o if a method hides another method (both methods have to be static!) there are no restrictions
to the result type since the methods have to be static and there is no dynamic binding of static
methods

o if an interface inherits more than one method with the same signature, the methods need not
have identical return types

simplifications:

e Object and standard exceptions are assumed to be declared like normal classes

well-formed field declarations

well-formed field declaration (common part for classes and interfaces), cf. 8.3 and (9.3)

definition
wf-fdecl :: prog = pname = fdecl = bool
where wf-fdecl G P = (A\(fn,f). is-acc-type G P (type f))

lemma wf-fdecl-def2: \fd. wf-fdecl G P fd = is-acc-type G P (type (snd fd))
apply (unfold wf-fdecl-def)

apply simp
done

well-formed method declarations
A method head is wellformed if:

e the signature and the method head agree in the number of parameters
o all types of the parameters are visible

e the result type is visible
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o the parameter names are unique

definition
wf-mhead :: prog = pname = sig = mhead = bool where
wf-mhead G P = (X sig mh. length (parTs sig) = length (pars mh) A
(V Teset (parTs sig). is-acc-type G P T) A
is-acc-type G P (resTy mh) A
distinct (pars mh))

A method declaration is wellformed if:

the method head is wellformed

e the names of the local variables are unique

e the types of the local variables must be accessible
e the local variables don’t shadow the parameters

o the class of the method is defined

e the body statement is welltyped with respect to the modified environment of local names, were
the local variables, the parameters the special result variable (Res) and This are assoziated
with there types.

definition
callee-lcl :: qgtname = sig = methd = lenv where
callee-lcl C sig m =
(M\k. (case k of
EName e
= (case e of
VNam v
=((table-of (Icls (mbody m)))(pars m [—] parTs sig)) v
| Res = Some (resTy m))
| This = if is-static m then None else Some (Class C')))

definition
parameters :: methd = Iname set where
parameters m = set (map (EName o VNam) (pars m)) U (if (static m) then {} else { This})

definition
wf-mdecl :: prog = qtname = mdecl = bool where
wf-mdecl G C' =
(A(sig,m).
wf-mhead G (pid C) sig (mhead m) A
unique (lcls (mbody m)) A
(V (vn, T)€eset (lels (mbody m)). is-acc-type G (pid C) T) A
(V pneset (pars m). table-of (lcls (mbody m)) pn = None) A
jumpNestingOkS {Ret} (stmt (mbody m)) A
is-class G C' N\
(prg=G,cls=Clcl=callee-lcl C sig m|)-(stmt (mbody m))::y/ A
(3 A. (prg=G,cls=C,lcl=callee-lcl C sig m)
F parameters m »(stmt (mbody m))» A
A Result € nrm A))

lemma callee-lcl-VNam-simp [simp]:
callee-lel C sig m (EName (VNam v))

= ((table-of (lcls (mbody m)))(pars m [—] parTs sig)) v
by (simp add: callee-lcl-def)
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lemma callee-lcl-Res-simp [simpl:
callee-lcl C sig m (EName Res) = Some (resTy m)
by (simp add: callee-lcl-def)

lemma callee-lcl-This-simp [simp]:
callee-lcl C sig m (This) = (if is-static m then None else Some (Class C))
by (simp add: callee-Icl-def)

lemma callee-lcl-This-static-simp:
is-static m = callee-Icl C sig m (This) = None
by simp

lemma callee-lcl-This-not-static-simp:
- is-static m = callee-lcl C sig m (This) = Some (Class C)
by simp

lemma wf-mheadl:

[length (parTs sig) = length (pars m); ¥ T€set (parTs sig). is-acc-type G P T;
is-acc-type G P (resTy m); distinct (pars m)] =
wf-mhead G P sig m

apply (unfold wf-mhead-def)

apply (simp (no-asm-simp))

done

lemma wf-mdecll: |
wf-mhead G (pid C) sig (mhead m); unique (lcls (mbody m));
(V pneset (pars m). table-of (lcls (mbody m)) pn = None);
Y (vn,T)eset (lels (mbody m)). is-acc-type G (pid C) T;
jumpNestingOkS {Ret} (stmt (mbody m));
is-class G C,
(prg=G,cls=C,lcl=callee-lcl C sig m|)F(stmt (mbody m))::/;
(3 A. (prg=G,cls=Clcl=callee-Icl C sig m|) b parameters m »(stmt (mbody m))» A

A Result € nrm A)

| =
wf-mdecl G C (sig,m)

apply (unfold wf-mdecl-def)

apply simp

done

lemma wf-mdeclE [consumes 1]:
[wf-mdecl G C (sig,m);
[wf-mhead G (pid C) sig (mhead m); unique (Icls (mbody m));
V pneset (pars m). table-of (lcls (mbody m)) pn = None;
¥ (vn,T)eset (lels (mbody m)). is-acc-type G (pid C) T;
jumpNestingOkS {Ret} (stmt (mbody m));
is-class G C
(prg=G,cls=C\lcl=callee-lcl C sig m|)F(stmt (mbody m))::+/;
(3 A. (prg=G,cls=Clcl=callee-Icl C sig m| parameters m »{(stmt (mbody m))» A
A Result € nrm A)
=P
]= P
by (unfold wf-mdecl-def) simp

lemma wf-mdeclD1:

wf-mdecl G C (sig,m) =
wf-mhead G (pid C) sig (mhead m) A unique (lcls (mbody m)) A
(Vpneset (pars m). table-of (lels (mbody m)) pn = None) A
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(V (vn,T)eset (lcls (mbody m)). is-acc-type G (pid C) T)
apply (unfold wf-mdecl-def)
apply simp
done

lemma wf-mdecl-bodyD:

wf-mdecl G C (sig,m) =

(3T. (prg=G,cls=C,lcl=callee-lcl C sig m)-Body C (stmt (mbody m)):—T A
GFT=(resTy m))

apply (unfold wf-mdecl-def)

apply clarify

apply (rule-tac z=(resTy m) in exl)

apply (unfold wf-mhead-def)

apply (auto simp add: wf-mhead-def is-acc-type-def intro: wt.Body )

done

lemma rT-is-acc-type:
wf-mhead G P sig m = is-acc-type G P (resTy m)
apply (unfold wf-mhead-def)
apply auto
done

well-formed interface declarations

A interface declaration is wellformed if:

o the interface hierarchy is wellstructured

o there is no class with the same name

e the method heads are wellformed and not static and have Public access
e the methods are uniquely named

« all superinterfaces are accessible

e the result type of a method overriding a method of Object widens to the result type of the
overridden method. Shadowing static methods is forbidden.

o the result type of a method overriding a set of methods defined in the superinterfaces widens
to each of the corresponding result types

definition
wf-idecl :: prog = idecl = bool where
wf-idecl G =
(A(1,).
ws-idecl G I (isuperIfs i) A
—is-class G I A
(V (sig,mh)€set (imethods 7). wf-mhead G (pid I) sig mh A
—is-static mh A
accmodi mh = Public) A
unique (imethods 7) A
(V Jeset (isuperlfs i). is-acc-iface G (pid I) J) A
(table-of (imethods i)
hiding (methd G Object)
under (X new old. accrmodi old # Private)
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entails (Anew old. GrresTy new=resTy old N
is-static new = is-static old)) A
(set-option o table-of (imethods 7)
hidings Un-tables((\J.(imethds G J))‘set (isuperlfs i))
entails (Anew old. GtresTy new=resTy old)))

lemma wf-idecl-mhead: [wf-idecl G (1,7); (sig,mh)€Eset (imethods i)] =
wf-mhead G (pid I) sig mh A —is-static mh A\ accmodi mh = Public

apply (unfold wf-idecl-def)

apply auto

done

lemma wf-idecl-hidings:

wf-idecl G (I, i) =
(As. set-option (table-of (imethods i) s))
hidings Un-tables ((AJ. imethds G J) * set (isuperlfs 7))
entails Anew old. GrresTy new=resTy old

apply (unfold wf-idecl-def o-def)

apply simp

done

lemma wf-idecl-hiding:
wf-idecl G (I, i) =
(table-of (imethods )
hiding (methd G Object)
under (X new old. accmodi old # Private)
entails (Anew old. GrresTy new=resTy old N
is-static new = is-static old))
apply (unfold wf-idecl-def)
apply simp
done

lemma wf-idecl-supD:

[wf-idecl G (1,7); J € set (isuperfs i)]

= is-acc-iface G (pid I) J A (J, I) ¢ (subint! G)*
apply (unfold wf-idecl-def ws-idecl-def)

apply auto

done

well-formed class declarations

A class declaration is wellformed if:

e there is no interface with the same name
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« all superinterfaces are accessible and for all methods implementing an interface method the
result type widens to the result type of the interface method, the method is not static and
offers at least as much access (this actually means that the method has Public access, since

all interface methods have public access)

o all field declarations are wellformed and the field names are unique

e all method declarations are wellformed and the method names are unique

e the initialization statement is welltyped
e the classhierarchy is wellstructured

¢ Unless the class is Object:
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definition
entails ::

the superclass is accessible

for all methods overriding another method (of a superclass )the result type widens to the
result type of the overridden method, the access modifier of the new method provides at
least as much access as the overwritten one.

for all methods hiding a method (of a superclass) the hidden method must be static
and offer at least as much access rights. Remark: In contrast to the Java Language
Specification we don’t restrict the result types of the method (as in case of overriding),
because there seems to be no reason, since there is no dynamic binding of static methods.
(cf. 8.4.6.3 vs. 15.12.1). Stricly speaking the restrictions on the access rights aren’t
necessary to, since the static type and the access rights together determine which method
is to be called statically. But if a class gains more then one static method with the same
signature due to inheritance, it is confusing when the method selection depends on the
access rights only: e.g. Class C declares static public method foo(). Class D is subclass
of C and declares static method foo() with default package access. D.foo() 7 if this call
is in the same package as D then foo of class D is called, otherwise foo of class C.

("a,’d) table = ('b = bool) = bool («- entails -» 20)

where (¢ entails P) = (Vk.V z € t k: P x)

lemma en

tailsD:

[t entails P; t k = Some ] = Pz
by (simp add: entails-def)

lemma empty-entails[simp|: Map.empty entails P
by (simp add: entails-def)

definition
wf-cdecl :

: prog = cdecl = bool where

wf-cdecl G =

(M Ce

).

—is-iface G C' N
(V Ieset (superlfs ¢). is-acc-iface G (pid C) I A

(Vs.

Y im € imethds G I s.

(3 em € methd G C's: GhresTy ecm=resTy im A

- 4s-static cm A
accmodi im < accmodi ¢cm))) A

(Vfeset (cfields ¢). wf-fdecl G (pid C) f) A unique (cfields c) A
(Vmeset (methods c). wf-mdecl G C m) A unique (methods c) A
jumpNestingOkS {} (init ¢) A
(3 A. (prg=G,cls=C,lcl=Map.empty)- {} »(init c)» A) A
(prg=G,cls=Clcl=Map.empty|(init c)::n/ N ws-cdecl G C (super ¢) A
(C # Object —
(is-acc-class G (pid C) (super ¢) A
(table-of (map (X (s,m). (s,C,m)) (methods c))
entails (A new. ¥ old sig.
(G,sigk-new overridess old
— (GFresTy new=resTy old N
accmodi old < accmodi new N
—is-static old)) A
(G,sigk-new hides old
— (acemodi old < accmodi new A
is-static old))))
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lemma wf-cdeclE [consumes 1]:
[wf-cdecl G (C,c);
[—is-iface G C;
(V Ieset (superlfs c). is-acc-iface G (pid C) I A
(Vs. V im € imethds G I s.
(3 em € methd G C s: GrresTy em=resTy im A
- 4s-static cm A
accmodi im < accmodi ¢cm)));
V feset (cfields c). wf-fdecl G (pid C) f; unique (cfields c);
VY meset (methods ¢). wf-mdecl G C m; unique (methods c);
jumpNestingOkS {} (init c);
3 A. (prg=G,cls=C,lcl=Map.empty)- {} »{init c)» A;
(prg=G,cls=Clcl=Map.empty)l-(init c):\/;
ws-cdecl G C (super ¢);
(C # Object —
(is-acc-class G (pid C) (super ¢) A
(table-of (map (X (s,m). (s,C,m)) (methods c))
entails (A new. V old sig.
(G,sigk-new overridess old
— (GrresTy new=resTy old N
accmodi old < accmodi new A
—is-static old)) A
(G,sigknew hides old
— (acemodi old < accmodi new A
is-static old))))
)] = P
|=r
by (unfold wf-cdecl-def) simp

lemma wf-cdecl-unique:

wf-cdecl G (C,c) = unique (cfields ¢) A unique (methods c)
apply (unfold wf-cdecl-def)

apply auto

done

lemma wf-cdecl-fdecl:

[wf-cdecl G (C,c); feset (cfields ¢)] = wf-fdecl G (pid C) f
apply (unfold wf-cdecl-def)

apply auto

done

lemma wf-cdecl-mdecl:

[wf-cdecl G (C,c); meset (methods ¢)] = wf-mdecl G C m
apply (unfold wf-cdecl-def)

apply auto

done

lemma wf-cdecl-impD:
[wf-cdecl G (C,c); I€set (superlfs c)]
= is-acc-iface G (pid C) I A

(Vs. Vim € imethds G I s.

(Jem € methd G C s: GrresTy em=resTy im A —is-static cm A
accmodi im < accmodi c¢cm))

apply (unfold wf-cdecl-def)
apply auto
done

lemma wf-cdecl-supD:
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[wf-cdecl G (C,c); C # Object] =
is-acc-class G (pid C) (super ¢) A (super ¢,C) ¢ (subcls1 G)* A
(table-of (map (A (s,m). (s,C,m)) (methods c))
entails (A new. ¥ old sig.
(G,sigknew overridess old
— (GFresTy new=resTy old N\
accmodi old < accmodi new A
—is-static old)) A
(G,sigrnew hides old
— (acemodi old < acemodi new A
is-static old))))
apply (unfold wf-cdecl-def ws-cdecl-def)
apply auto
done

lemma wf-cdecl-overrides-SomeD:
[wf-cdecl G (C,c); C # Object; table-of (methods ¢) sig = Some newM;
G,sigk(C newM) overridess old
] = GrresTy newM=<resTy old A
accmodi old < accmodi newM A
- is-static old
apply (drule (1) wf-cdecl-supD)
apply (clarify)
apply (drule entailsD)
apply (blast intro: table-of-map-Somel)
apply (drule-tac z=old in spec)
apply (auto dest: overrides-eq-sigD simp add: msig-def)
done

lemma wf-cdecl-hides-SomeD:
[wf-cdecl G (C,c); C # Object; table-of (methods c) sig = Some newM;
G,sigt-(C,newM) hides old
] = acemodi old < access newM A
is-static old
apply (drule (1) wf-cdecl-supD)
apply (clarify)
apply (drule entailsD)
apply (blast intro: table-of-map-Somel)
apply (drule-tac z=old in spec)
apply (auto dest: hides-eq-sigD simp add: msig-def)
done

lemma wf-cdecl-wt-init:

wf-cdecl G (C, ¢) = (prg=G,cls=Clcl=Map.empty|Finit c::r/
apply (unfold wf-cdecl-def)

apply auto

done

well-formed programs
A program declaration is wellformed if:
o the class ObjectC of Object is defined

e every method of Object has an access modifier distinct from Package. This is necessary since
every interface automatically inherits from Object. We must know, that every time a Object
method is "overriden" by an interface method this is also overriden by the class implementing
the the interface (see implement-dynmethd and class-mheadsD)
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o all standard Exceptions are defined
o all defined interfaces are wellformed

o all defined classes are wellformed

definition
wf-prog :: prog = bool where

wf-prog G = (let is = ifaces G; c¢s = classes G in
ObjectC € set cs N
(V meset Object-mdecls. accmodi m # Package) N
(Van. SXcptC an € set cs) A
(Vieset is. wf-idecl G i) A unique is N
(V ceset cs. wf-cdecl G ¢) A unique cs)

lemma wf-prog-idecl: [iface G I = Some i; wf-prog G] = wf-idecl G (I,i)
apply (unfold wf-prog-def Let-def)

apply simp

apply (fast dest: map-of-SomeD)

done

lemma wf-prog-cdecl: [class G C = Some c; wf-prog G] = wf-cdecl G (C,c)

apply (unfold wf-prog-def Let-def)
apply simp

apply (fast dest: map-of-SomeD)
done

lemma wf-prog-Object-mdecls:

wf-prog G = (V mé&set Object-mdecls. accmodi m # Package)
apply (unfold wf-prog-def Let-def)

apply simp

done

lemma wf-prog-acc-superD:

[wf-prog G; class G C = Some ¢; C' # Object |
= is-acc-class G (pid C) (super c)

by (auto dest: wf-prog-cdecl wf-cdecl-supD)

lemma wf-ws-prog [elim!,simp|: wf-prog G = ws-prog G

apply (unfold wf-prog-def Let-def)

apply (rule ws-progl)

apply (simp-all (no-asm))

apply (auto simp add: is-acc-class-def is-acc-iface-def
dest!: wf-idecl-supD wf-cdecl-supD )+

done

lemma class-Object [simp]:
wf-prog G =
class G Object = Some (access=Public,cfields=][],methods= Object-mdecls,
init==Skip,super=undefined, superlfs=[])
apply (unfold wf-prog-def Let-def ObjectC-def)
apply (fast dest!: map-of-Somel)
done

lemma methd-Object[simp]: wf-prog G = methd G Object =
table-of (map (A(s,m). (s, Object, m)) Object-mdecls)

apply (subst methd-rec)

apply (auto simp add: Let-def)

done
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lemma wf-prog-Object-methd:
[wf-prog G; methd G Object sig = Some m] = accmodi m # Package
by (auto dest!: wf-prog-Object-mdecls) (auto dest!: map-of-SomeD)

lemma wf-prog-Object-is-public[intro):
wf-prog G = is-public G Object
by (auto simp add: is-public-def dest: class-Object)

lemma class-SXcpt [simp):
wf-prog G =
class G (SXcpt an) = Some (access=Public,cfields=[],methods=SXcpt-mdecls,
init=Skip,
super=if zn = Throwable then Object
else SXcpt Throwable,

superIfs=[])

apply (unfold wf-prog-def Let-def SXcptC-def)

apply (fast dest!: map-of-Somel)

done

lemma wf-ObjectC' [simp]:
wf-cdecl G ObjectC = (—is-iface G Object N\ Ball (set Object-mdecls)
(wf-mdecl G Object) N unique Object-mdecls)
apply (unfold wf-cdecl-def ws-cdecl-def ObjectC-def)
apply (auto intro: da.Skip)
done

lemma Object-is-class [simp,elim!]: wf-prog G = is-class G Object
apply (simp (no-asm-simp))
done

lemma Object-is-acc-class [simp,elim!]: wf-prog G = is-acc-class G S Object

apply (simp (no-asm-simp) add: is-acc-class-def is-public-def
accessible-in-RefT-simp)

done

lemma SXcpt-is-class [simp,elim!]: wf-prog G = is-class G (SXcpt zn)
apply (simp (no-asm-simp))
done

lemma SXcpt-is-acc-class [simp,elim]]:

wf-prog G = is-acc-class G S (SXept zn)

apply (simp (no-asm-simp) add: is-acc-class-def is-public-def
accessible-in-RefT-simp)

done

lemma fields-Object [simp]: wf-prog G = DeclConcepts.fields G Object = |]
by (force intro: fields-emptyl)

lemma accfield-Object [simp]:

wf-prog G = accfield G S Object = Map.empty
apply (unfold accfield-def)

apply (simp (no-asm-simp) add: Let-def)

done

lemma fields- Throwable [simp]:
wf-prog G = DeclConcepts.fields G (SXcpt Throwable) = []
by (force intro: fields-emptyl)
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lemma fields-SXcpt [simp]: wf-prog G => DeclConcepts.fields G (SXcpt xn) =
apply (case-tac zn = Throwable)

apply (simp (no-asm-simp))

by (force intro: fields-emptyl)

lemmas widen-trans = ws-widen-trans [OF - - wf-ws-prog, elim)]

lemma widen-trans2 [elim]: [GFU=T; G-S=<U; wf-prog G] = G+S=<T
apply (erule (2) widen-trans)

done

lemma Xcpt-subels- Throwable [simp]:

wf-prog G = GFSXcpt zn=<¢c SXcpt Throwable
apply (rule SXcpt-subcls- Throwable-lemma)
apply auto

done

lemma unique-fields:

[is-class G C; wf-prog G] = unique (DeclConcepts.fields G C)

apply (erule ws-unique-fields)

apply (erule wf-ws-prog)

apply (erule (1) wf-prog-cdecl [THEN wf-cdecl-unique [THEN conjunctl1]])
done

lemma fields-mono:
[table-of (DeclConcepts.fields G C) fn = Some f; GFD=<¢ C;
is-class G D; wf-prog G|
= table-of (DeclConcepts.fields G D) fn = Some f
apply (rule map-of-Somel)
apply (erule (1) unique-fields)
apply (erule (1) map-of-SomeD [THEN fields-mono-lemmal)
apply (erule wf-ws-prog)
done

lemma fields-is-type [elim]:
[table-of (DeclConcepts.fields G C) m = Some f; wf-prog G; is-class G C] =
is-type G (type f)
apply (frule wf-ws-prog)
apply (force dest: fields-declC [THEN conjunct!]
wf-prog-cdecl [THEN wf-cdecl-fdecl]

stmp add: wf-fdecl-def2 is-acc-type-def)

done

lemma imethds-wf-mhead [rule-format (no-asm)]:

[m € imethds G I sig; wf-prog G; is-iface G I| =
wf-mhead G (pid (decliface m)) sig (mthd m) A
- is-static m A accmodi m = Public

apply (frule wf-ws-prog)

apply (drule (2) imethds-decll [THEN conjunct1])

apply clarify

apply (frule-tac I=(decliface m) in wf-prog-idecl,assumption)

apply (drule wf-idecl-mhead)

apply (erule map-of-SomeD)

apply (cases m, simp)

done

lemma methd-wf-mdecl:
[methd G C sig = Some m; wf-prog G; class G C = Some y] =
GFC=¢ (declclass m) A is-class G (declclass m) A

[
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wf-mdecl G (declclass m) (sig,(mthd m))
apply (frule wf-ws-prog)
apply (drule (1) methd-declC)
apply fast
apply clarsimp
apply (frule (1) wf-prog-cdecl, erule wf-cdecl-mdecl, erule map-of-SomeD)
done

lemma methd-rT-is-type:

[wf-prog G;methd G C sig = Some m;
class G C = Some y]

= is-type G (resTy m)

apply (drule (2) methd-wf-mdecl)

apply clarify

apply (drule wf-mdeclD1)

apply clarify

apply (drule rT-is-acc-type)

apply (cases m, simp add: is-acc-type-def)

done

lemma accmethd-rT-is-type:
[wf-prog G;accmethd G S C sig = Some m;
class G C = Some y]
= is-type G (resTy m)
by (auto simp add: accmethd-def
intro: methd-rT-is-type)

lemma methd-Object-SomeD:

[wf-prog G;methd G Object sig = Some m]

= declclass m = Object

by (auto dest: class-Object simp add: methd-rec )

lemmas iface-rec-induct’ = iface-rec.induct [of %z y z. P z y| for P

lemma wf-imethdsD:
[im € imethds G I sig;wf-prog G; is-iface G I]
= —is-static im A accmodi im = Public
proof —
assume asm: wf-prog G is-iface G I im € imethds G I sig

have wf-prog G —
(Y i im. iface G I = Some i — im € imethds G I sig
— —is-static im A accmodi im = Public) (is P G I)
proof (induct G I rule: iface-rec-induct’, intro alll impl)

fix G1iim
assume hyp: A\ i J. iface G I = Some i = ws-prog G = J € set (isuperlfs 7)
= PG J

assume wf: wf-prog G and if-1: iface G I = Some i and
im: im € imethds G I sig
show —is-static im A accmodi im = Public
proof —
let %inherited = Un-tables (imethds G * set (isuperlfs 7))
let ?new = (set-option o table-of (map (A(s, mh). (s, I, mh)) (imethods i)))
from if-I wf im have imethds:im € (%inherited ®® ?new) sig
by (simp add: imethds-rec)
from wf if-I have
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wf-supl: ¥ J. J € set (isuperlfs i) — (3 j. iface G J = Some j)
by (blast dest: wf-prog-idecl wf-idecl-supD is-acc-ifaceD)
from wf if-I have
V im € set (imethods 7). = is-static im A accmodi im = Public
by (auto dest!: wf-prog-idecl wf-idecl-mhead)
then have new-ok: V im. table-of (imethods i) sig = Some im
— — is-static im N accmodi im = Public
by (auto dest!: table-of-Some-in-set)
show ?thesis
proof (cases ?new sig = {})
case True
from True wf wf-supl if-I imethds hyp
show ?thesis by (auto simp del: split-paired-All)
next
case Fulse
from Fulse wf wf-supl if-I imethds new-ok hyp
show ?thesis by (auto dest: wf-idecl-hidings hidings-entailsD)
qed
qed
qed
with asm show ?thesis by (auto simp del: split-paired-All)
qed

lemma wf-prog-hidesD:
assumes hides: G Fnew hides old and wf: wf-prog G
shows
accmodi old < accmodi new A
is-static old
proof —
from hides
obtain ¢ where
clsNew: class G (declclass new) = Some ¢ and
neqObj: declclass new # Object
by (auto dest: hidesD declared-in-classD)
with hides obtain newM oldM where
newM: table-of (methods ¢) (msig new) = Some newM and
new: new = (declclass new,(msig new),newM) and
old: old = (declclass old,(msig old),oldM) and
msig new = msig old
by (cases new,cases old)
(auto dest: hidesD
simp add: cdeclaredmethd-def declared-in-def)
with hides
have hides”:
G,(msig new)r(declclass new,newM) hides (declclass old,oldM)
by auto
from clsNew wf
have wf-cdecl G (declclass new,c) by (blast intro: wf-prog-cdecl)
note wf-cdecl-hides-SomeD [OF this neqObj newM hides’]
with new old
show ?thesis
by (cases new, cases old) auto
qed

Compare this lemma about static overriding G F new overridess old with the definition of dynamic
overriding G' = new overrides old. Conforming result types and restrictions on the access modifiers
of the old and the new method are not part of the predicate for static overriding. But they are
enshured in a wellfromed program. Dynamic overriding has no restrictions on the access modifiers
but enforces confrom result types as precondition. But with some efford we can guarantee the access
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modifier restriction for dynamic overriding, too. See lemma wf-prog-dyn-override-prop.

lemma wf-prog-stat-overridesD:
assumes stat-override: G Fnew overridess old and wf: wf-prog G
shows
GFresTy new=resTy old A
accmodi old < accmodi new A
- is-static old
proof —
from stat-override
obtain ¢ where
clsNew: class G (declclass new) = Some ¢ and
neqObj: declclass new # Object
by (auto dest: stat-overrides-commonD declared-in-classD)
with stat-override obtain newM oldM where
newM: table-of (methods ¢) (msig new) = Some newM and
new: new = (declclass new,(msig new),newM) and
old: old = (declclass old,(msig old),oldM) and
msig new = msig old
by (cases new,cases old)
(auto dest: stat-overrides-commonD
stmp add: cdeclaredmethd-def declared-in-def)
with stat-override
have stat-override”:
G,(msig new)t(declclass new,newM) overridess (declclass old,oldM)
by auto
from clsNew wf
have wf-cdecl G (declclass new,c) by (blast intro: wf-prog-cdecl)
note wf-cdecl-overrides-SomeD [OF this neqObj newM stat-override’]
with new old
show ?%thesis
by (cases new, cases old) auto
qed

lemma static-to-dynamic-overriding:
assumes stat-override: GHnew overridess old and wf : wf-prog G
shows Glnew overrides old
proof —
from stat-override
show ?thesis (is ?Overrides new old)
proof (induct)
case (Direct new old superNew)
then have stat-override: GFnew overridess old
by (rule stat-overridesR.Direct)
from stat-override wf
have resTy-widen: GrresTy new=resTy old and
not-static-old: — is-static old
by (auto dest: wf-prog-stat-overridesD)
have not-private-new: accmodi new # Private
proof —
from stat-override
have accmodi old # Private
by (rule no-Private-stat-override)
moreover
from stat-override wf
have accmodi old < accmodi new
by (auto dest: wf-prog-stat-overridesD)
ultimately
show ?thesis
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by (auto dest: acc-modi-bottom)
qed
with Direct resTy-widen not-static-old
show ?Qverrides new old
by (auto intro: overridesR.Direct stat-override-declclasses-relation)
next
case (Indirect new inter old)
then show ?Qverrides new old
by (blast intro: overridesR.Indirect)
qed
qed

lemma non-Package-instance-method-inheritance:
assumes old-inheritable: GFMethod old inheritable-in (pid C') and
accmodi-old: accmodi old # Package and
instance-method: — is-static old and
subcls: GHC < declclass old and
old-declared: GFMethod old declared-in (declclass old) and
wf: wf-prog G
shows GFMethod old member-of C V
(3 new. GF new overridess old A GFMethod new member-of C')
proof —
from wf have ws: ws-prog G by auto
from old-declared have iscls-declC-old: is-class G (declclass old)
by (auto simp add: declared-in-def cdeclaredmethd-def)
from subcls have iscls-C': is-class G C
by (blast dest: subcls-is-class)
from iscls-C ws old-inheritable subcls
show ?thesis (is 7P C old)
proof (induct rule: ws-class-induct’)
case Object
assume Gt Object<¢ declclass old
then show ?P Object old
by blast
next
case (Subcls C ¢)
assume cls-C: class G C = Some ¢ and
neq-C-0bj: C # Object and
hyp: [G FMethod old inheritable-in pid (super c);
Gk super ¢c<¢ declclass old] = 2P (super ¢) old and
inheritable: G FMethod old inheritable-in pid C and
subclsC: GFC=<¢ declclass old
from cls-C neq-C-0bj
have super: G-C <¢1 super ¢
by (rule subclsiI)
from wf cls-C neq-C-Obj
have accessible-super: GH(Class (super ¢)) accessible-in (pid C)
by (auto dest: wf-prog-cdecl wf-cdecl-supD is-acc-classD)
have hyp-member-super: ?P C old
if member-super: GHMethod old member-of (super c)
and inheritable: G FMethod old inheritable-in pid C
and instance-method: — is-static old
for old
proof —
from member-super
have old-declared: GFMethod old declared-in (declclass old)
by (cases old) (auto dest: member-of-declC')
show ?thesis
proof (cases G-mid (msig old) undeclared-in C')
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case True
with inheritable super accessible-super member-super
have G+Method old member-of C
by (cases old) (auto intro: members.Inherited)
then show ?thesis
by auto
next
case Fulse
then obtain new-member where
GFnew-member declared-in C' and
mid (msig old) = memberid new-member
by (auto dest: not-undeclared-declared)
then obtain new where
new: GFMethod new declared-in C and
eq-stg: msig old = msig new and
declC-new: declclass new = C
by (cases new-member) auto
then have member-new: G+Method new member-of C
by (cases new) (auto intro: members. Immediate)
from declC-new super member-super
have subcls-new-old: Grdeclclass new <o declclass old
by (auto dest!: member-of-subclseg-declC
dest: r-into-trancl intro: trancl-rtrancl-trancl)
show ?thesis
proof (cases is-static new)
case Fulse
with eq-sig declC-new new old-declared inheritable
super member-super subcls-new-old
have GhFnew overridess old
by (auto intro!: stat-overridesR.Direct)
with member-new show ?thesis
by blast
next
case True
with eq-sig declC-new subcls-new-old new old-declared inheritable
have Grnew hides old
by (auto intro: hidesl)
with wf
have is-static old
by (blast dest: wf-prog-hidesD)
with instance-method
show ?thesis
by (contradiction)
qed
qed
qed
from subclsC cls-C
have Gh(super ¢)=¢ declclass old
by (rule subcls-superD)
then
show ?P C old
proof (cases rule: subclseq-cases)
case FEq
assume super ¢ = declclass old
with old-declared
have GFMethod old member-of (super c)
by (cases old) (auto intro: members.Immediate)
with inheritable instance-method
show ?thesis
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by (blast dest: hyp-member-super)
next
case Subcls
assume GFsuper c<¢ declclass old
moreover
from inheritable accmodi-old
have G FMethod old inheritable-in pid (super c)
by (cases accmodi old) (auto simp add: inheritable-in-def)
ultimately
have ?P (super c) old
by (blast dest: hyp)
then show ?thesis
proof
assume G FMethod old member-of super c
with inheritable instance-method
show ?thesis
by (blast dest: hyp-member-super)
next
assume Jnew. G F new overridess old A G +Method new member-of super ¢
then obtain super-new where
super-new-override: G b super-new overridesg old and
super-new-member: G FMethod super-new member-of super c
by blast
from super-new-override wf
have accmodi old < accmodi super-new
by (auto dest: wf-prog-stat-overridesD)
with inheritable accmodi-old
have G FMethod super-new inheritable-in pid C
by (auto simp add: inheritable-in-def
split: acc-modi.splits
dest: acc-modi-le-Dests)
moreover
from super-new-override
have — is-static super-new
by (auto dest: stat-overrides-commonD)
moreover
note super-new-member
ultimately have ?P C super-new
by (auto dest: hyp-member-super)
then show ?thesis
proof
assume G FMethod super-new member-of C
with super-new-override
show ?thesis
by blast
next
assume Jnew. G F new overridesg super-new A
G FMethod new member-of C
with super-new-override show ?thesis
by (blast intro: stat-overridesR.Indirect)
qed
qed
qed
qged
qed

lemma non-Package-instance-method-inheritance-cases:
assumes old-inheritable: GFMethod old inheritable-in (pid C) and
accmodi-old: accmodi old # Package and
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instance-method: — is-static old and
subcls: GHC' <¢ declclass old and
old-declared: G+Method old declared-in (declclass old) and
wf: wf-prog G
obtains (Inheritance) GFMethod old member-of C
| (Overriding) new where G+ new overridess old and GFMethod new member-of C
proof —
from old-inheritable accmodi-old instance-method subcls old-declared wf
Inheritance Overriding
show thesis
by (auto dest: non-Package-instance-method-inheritance)
qed

lemma dynamic-to-static-overriding:
assumes dyn-override: G- new overrides old and
accmodi-old: accmodi old # Package and
wf: wf-prog G
shows G+ new overridesg old
proof —
from dyn-override accmodi-old
show ?thesis (is ?Overrides new old)
proof (induct rule: overridesR.induct)
case (Direct new old)
assume new-declared: GFMethod new declared-in declclass new
assume eq-sig-new-old: msig new = msig old
assume subcls-new-old: Grdeclclass new <¢ declclass old
assume G Method old inheritable-in pid (declclass new) and
accmodi old # Package and
- is-static old and
Gtdeclclass new<¢ declclass old and
GFMethod old declared-in declclass old
from this wf
show ?Qverrides new old
proof (cases rule: non-Package-instance-method-inheritance-cases)
case Inheritance
assume G FMethod old member-of declclass new
then have Gkmid (msig old) undeclared-in declclass new
proof cases
case Immediate
with subcls-new-old wf show ?thesis
by (auto dest: subcls-irrefl)
next
case Inherited
then show ?thesis
by (cases old) auto
qed
with eq-sig-new-old new-declared
show ?thesis
by (cases old,cases new) (auto dest!: declared-not-undeclared)
next
case (OQuerriding new’)
assume stat-override-new’: G F new’ overridess old
then have msig new’ = msig old
by (auto dest: stat-overrides-commonD)
with eg-sig-new-old have eq-sig-new-new’: msig new=msig new’
by simp
assume G Method new’ member-of declclass new
then show ?thesis
proof (cases)
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case Immediate
then have declC-new: declclass new’ = declclass new
by auto
from Immediate
have G+Method new’ declared-in declclass new
by (cases new’) auto
with new-declared eq-sig-new-new’ declC-new
have new=new’
by (cases new, cases new’) (auto dest: unique-declared-in)
with stat-override-new’
show ?thesis
by simp
next
case Inherited
then have Gtmid (msig new”) undeclared-in declclass new
by (cases new’) (auto)
with eq-sig-new-new’ new-declared
show ?thesis
by (cases new,cases new’) (auto dest!: declared-not-undeclared)
qed
qed
next
case (Indirect new inter old)
assume accmodi-old: accmodi old # Package
assume accmodi old # Package = G F inter overridesg old
with accmodi-old
have stat-override-inter-old: G & inter overridess old
by blast
moreover
assume hyp-inter: accmodi inter # Package = G new overridesg inter
moreover
have accmodi inter # Package
proof —
from stat-override-inter-old wf
have accmodi old < accmodi inter
by (auto dest: wf-prog-stat-overridesD)
with stat-override-inter-old accmodi-old
show ?thesis
by (auto dest!: no-Private-stat-override
split: acc-modi.splits
dest: acc-modi-le-Dests)
qed
ultimately show ?Quverrides new old
by (blast intro: stat-overridesR.Indirect)
qed
qed

lemma wf-prog-dyn-override-prop:
assumes dyn-override: G - new overrides old and
wf: wf-prog G
shows accmodi old < accmodi new
proof (cases accmodi old = Package)
case True
note old-Package = this
show ?thesis
proof (cases accmodi old < accmodi new)
case True then show ?thesis .
next
case Fulse
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with old-Package
have accmodi new = Private
by (cases accmodi new) (auto simp add: le-acc-def less-acc-def)
with dyn-override
show ?thesis
by (auto dest: overrides-commonD)
qed
next
case Fulse
with dyn-override wf
have G - new overridess old
by (blast intro: dynamic-to-static-overriding)
with wf
show ?thesis
by (blast dest: wf-prog-stat-overridesD)
qged

lemma owverrides-Package-old:
assumes dyn-override: G F new overrides old and
accmodi-new: accmodi new = Package and
wf: wf-prog G
shows accmodi old = Package
proof (cases acemodi old)
case Private
with dyn-override show ?thesis
by (simp add: no-Private-override)
next
case Package
then show ?thesis .
next
case Protected
with dyn-override wf
have G - new overridess old
by (auto intro: dynamic-to-static-overriding)
with wf
have accmodi old < accmodi new
by (auto dest: wf-prog-stat-overridesD)
with Protected accmodi-new
show ?thesis
by (simp add: less-acc-def le-acc-def)
next
case Public
with dyn-override wf
have G - new overridess old
by (auto intro: dynamic-to-static-overriding)
with wf
have accmodi old < accmodi new
by (auto dest: wf-prog-stat-overridesD)
with Public accmodi-new
show ?thesis
by (simp add: less-acc-def le-acc-def)
qed

lemma dyn-override-Package:
assumes dyn-override: G F new overrides old and
accmodi-old: accmodi old = Package and
accmodi-new: accmodi new = Package and
wf: wf-prog G
shows pid (declclass old) = pid (declclass new)
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proof —
from dyn-override accmodi-old accmodi-new
show ?thesis (is ?EqPid old new)
proof (induct rule: overridesR.induct)
case (Direct new old)
assume accmodi old = Package
G FMethod old inheritable-in pid (declclass new)
then show pid (declclass old) = pid (declclass new)
by (auto simp add: inheritable-in-def)
next
case (Indirect new inter old)
assume accmodi-old: accmodi old = Package and
accmodi-new: accmodi new = Package
assume G F new overrides inter
with accmodi-new wf
have accmodi inter = Package
by (auto intro: overrides-Package-old)
with Indirect
show pid (declclass old) = pid (declclass new)
by auto
qged
qed

lemma dyn-override-Package-escape:
assumes dyn-override: G + new overrides old and
accmodi-old: accmodi old = Package and
outside-pack: pid (declclass old) # pid (declclass new) and
wf: wf-prog G
shows 3 inter. G F new overrides inter A G & inter overrides old A
pid (declclass old) = pid (declclass inter) A
Protected < accmodi inter
proof —
from dyn-override accmodi-old outside-pack
show ?thesis (is 2P new old)
proof (induct rule: overridesR.induct)
case (Direct new old)
assume accmodi-old: accmodi old = Package
assume outside-pack: pid (declclass old) # pid (declclass new)
assume G +Method old inheritable-in pid (declclass new)
with accmodi-old
have pid (declclass old) = pid (declclass new)
by (simp add: inheritable-in-def)
with outside-pack
show 7P new old
by (contradiction)
next
case (Indirect new inter old)
assume accmodi-old: accmodi old = Package
assume outside-pack: pid (declclass old) # pid (declclass new)
assume override-new-inter: G F new overrides inter
assume override-inter-old: G + inter overrides old
assume hyp-new-inter: [accmodi inter = Package;
pid (declclass inter) # pid (declclass new)]
= ?P new inter
assume hyp-inter-old: [accmodi old = Package;
pid (declclass old) # pid (declclass inter)]
= 9P inter old
show ?P new old
proof (cases pid (declclass old) = pid (declclass inter))
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case True
note same-pack-old-inter = this
show ?thesis
proof (cases pid (declclass inter) = pid (declclass new))
case True
with same-pack-old-inter outside-pack
show ?thesis
by auto
next
case Fulse
note diff-pack-inter-new = this
show ?thesis
proof (cases accmodi inter = Package)
case True
with diff-pack-inter-new hyp-new-inter
obtain newinter where
over-new-newinter: G+ new overrides newinter and
over-newinter-inter: G + newinter overrides inter and
eq-pid: pid (declclass inter) = pid (declclass newinter) and
accmodi-newinter: Protected < accmodi newinter
by auto
from over-newinter-inter override-inter-old
have GhFnewinter overrides old
by (rule overridesR.Indirect)
moreover
from eq-pid same-pack-old-inter
have pid (declclass old) = pid (declclass newinter)
by simp
moreover
note over-new-newinter accmodi-newinter
ultimately show ?Zthesis
by blast
next
case Fulse
with override-new-inter
have Protected < accmodi inter
by (cases accmodi inter) (auto dest: no-Private-override)
with override-new-inter override-inter-old same-pack-old-inter
show ?thesis
by blast
qed
qed
next
case Fulse
with accmodi-old hyp-inter-old
obtain newinter where
over-inter-newinter: G F inter overrides newinter and
over-newinter-old: G b newinter overrides old and
eq-pid: pid (declclass old) = pid (declclass newinter) and
accmodi-newinter: Protected < accmodi newinter
by auto
from override-new-inter over-inter-newinter
have G+ new overrides newinter
by (rule overridesR.Indirect)
with eq-pid over-newinter-old accmodi-newinter
show ?thesis
by blast
qed
qed
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qed
lemmas class-rec-induct’ = class-rec.induct [of %z y z w. P z y| for P

lemma declclass-widen|[rule-format):
wf-prog G
— (Ve m. class G C = Some ¢ — methd G C sig = Some m
— GHC =¢ declclass m) (is ?P G C)
proof (induct G C rule: class-rec-induct’, intro alll impl)
fix GCcm
assume Hyp: Ac. class G C = Some ¢ = ws-prog G = C # Object
= ?P G (super c)
assume wf: wf-prog G and cls-C: class G C = Some ¢ and
m: methd G C sig = Some m
show GFC=(¢ declclass m
proof (cases C=Object)
case True
with wf m show ?thesis by (simp add: methd-Object-SomeD)
next
let ?filter=filter-tab (Asig m. G+ C inherits method sig m)
let ?table = table-of (map (A(s, m). (s, C, m)) (methods c))
case Fulse
with cls-C wf m
have methd-C: (?filter (methd G (super c)) ++ ?table) sig = Some m
by (simp add: methd-rec)
show ?thesis
proof (cases ?table sig)
case None
from this methd-C have Zfilter (methd G (super c¢)) sig = Some m
by simp
moreover
from wf cls-C False obtain sup where class G (super ¢) = Some sup
by (blast dest: wf-prog-cdecl wf-cdecl-supD is-acc-class-is-class)
moreover note wf False cls-C
ultimately have GFsuper ¢ <¢ declclass m
by (auto intro: Hyp [rule-format])
moreover from cls-C False have GFC <¢1 super ¢ by (rule subclsiI)
ultimately show ?thesis by — (rule rtrancl-into-rtrancl?2)
next
case Some
from this wf False cls-C methd-C show ?thesis by auto
qed
qged
qed

lemma declclass-methd-Object:
[wf-prog G; methd G Object sig = Some m] = declclass m = Object
by auto

lemma methd-declaredD:

[wf-prog G; is-class G Cymethd G C sig = Some m]

= GF(mdecl (sig,mthd m)) declared-in (declclass m)
proof —

assume  wf: wf-prog G

then have ws: ws-prog G ..

assume clsC': is-class G C

from clsC ws

show methd G C sig = Some m

= Gk (mdecl (sig,mthd m)) declared-in (declclass m)
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proof (induct C rule: ws-class-induct”)
case Object
show ?thesis if methd G Object sig = Some m
by (rule method-declared-inI) (use wf that in auto)
next
case Subcls
fix Cc
assume clsC: class G C' = Some c
and m: methd G C sig = Some m
and  hyp: methd G (super ¢) sig = Some m —> ?thesis
let ?newMethods = table-of (map (A(s, m). (s, C, m)) (methods c))
show ?thesis
proof (cases newMethods sig)
case None
from None ws clsC m hyp
show ?thesis by (auto intro: method-declared-inl simp add: methd-rec)
next
case Some
from Some ws clsC' ' m
show ?thesis by (auto intro: method-declared-inl simp add: methd-rec)
ged
qed
qed

lemma methd-rec-Some-cases:
assumes methd-C: methd G C sig = Some m and
ws: ws-prog G and
clsC: class G C = Some ¢ and
neq-C-0bj: C+# Object
obtains (NewMethod) table-of (map (A(s, m). (s, C, m)) (methods c)) sig = Some m
| (InheritedMethod) G\C inherits (method sig m) and methd G (super c) sig = Some m
proof —
let 2inherited = filter-tab (Asig m. GHC inherits method sig m)
(methd G (super c))
let ?new = table-of (map (A(s, m). (s, C, m)) (methods c))
from ws clsC neq-C-0bj methd-C
have methd-unfold: (?inherited ++ ?new) sig = Some m
by (simp add: methd-rec)
show thesis
proof (cases ?new sig)
case None
with methd-unfold have ?inherited sig = Some m
by (auto)
with InheritedMethod show ?thesis by blast
next
case Some
with methd-unfold have ?new sig = Some m
by auto
with NewMethod show ?thesis by blast
qed
qed

lemma methd-member-of:
assumes wf: wf-prog G
shows
[is-class G C; methd G C sig = Some m]| = G+ Methd sig m member-of C

(is ?Class C = ?Method C' = ?MemberOf C')
proof —



Theory WellForm

from wf have ws: ws-prog G ..
assume defC': is-class G C
from defC ws
show ?Class C = ?Method C = ?MemberOf C
proof (induct rule: ws-class-induct’)
case Object
with wf have declC: Object = declclass m
by (simp add: declclass-methd-Object)
from Object wf have GFMethd sig m declared-in Object
by (auto intro: methd-declaredD simp add: declC')
with declC
show ?MemberOf Object
by (auto introl: members.Immediate
simp del: methd-Object)
next
case (Subcls C ¢)
assume clsC: class G C' = Some ¢ and
neq-C-0bj: C # Object
assume methd: ?Method C
from methd ws clsC neq-C-0bj
show ?MemberOf C
proof (cases rule: methd-rec-Some-cases)
case NewMethod
with clsC show ?Zthesis

by (auto dest: method-declared-inI intro!: members. Immediate)

next
case InheritedMethod
then show ?thesis
by (blast dest: inherits-member)
qed
qed
qed

lemma current-methd:
[table-of (methods ¢) sig = Some new;
ws-prog G; class G C = Some c¢; C' # Object;
methd G (super c) sig = Some old]
= methd G C sig = Some (C,new)
by (auto simp add: methd-rec

intro: filter-tab-Somel map-add-find-right table-of-map-Somel)

lemma wf-prog-staticD:
assumes wf: wf-prog G and
clsC: class G C' = Some ¢ and
neq-C-0bj: C # Object and
old: methd G (super c) sig = Some old and
accmodi-old: Protected < acemodi old and
new: table-of (methods c¢) sig = Some new
shows is-static new = is-static old
proof —
from clsC wf
have wf-cdecl: wf-cdecl G (C,c) by (rule wf-prog-cdecl)
from wf clsC neq-C-0bj
have is-cls-super: is-class G (super c)
by (blast dest: wf-prog-acc-superD is-acc-classD)
from wf is-cls-super old
have old-member-of: GFMethd sig old member-of (super c)
by (rule methd-member-of)
from old wf is-cls-super
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have old-declared: GHMethd sig old declared-in (declclass old)
by (auto dest: methd-declared-in-declclass)
from new clsC
have new-declared: G-Methd sig (C,new) declared-in C
by (auto intro: method-declared-inI)
note trancl-rtrancl-tranc = trancl-rtrancl-trancl [trans]
from clsC neq-C-Obj
have subcls1-C-super: G-C <¢ 1 super c
by (rule subcls1l)
then have GFC <¢ super c ..
also from old wf is-cls-super
have GFsuper ¢ <¢ (declclass old) by (auto dest: methd-declC')
finally have subcls-C-old: G+C <¢ (declclass old) .
from accmodi-old
have inheritable: G+-Methd sig old inheritable-in pid C
by (auto simp add: inheritable-in-def
dest: acc-modi-le-Dests)
show ?thesis
proof (cases is-static new)
case True
with subcls-C-old new-declared old-declared inheritable
have G, sigk-(C,new) hides old
by (auto intro: hidesl)
with True wf-cdecl neq-C-Obj new
show ?thesis
by (auto dest: wf-cdecl-hides-SomeD)
next
case Fulse
with subcls-C-old new-declared old-declared inheritable subclsi-C-super
old-member-of
have G,sigk(C,new) overridess old
by (auto intro: stat-overridesR.Direct)
with False wf-cdecl neq-C-Obj new
show ?thesis
by (auto dest: wf-cdecl-overrides-SomeD)
qed
qed

lemma inheritable-instance-methd:
assumes subclseq-C-D: G+C <o D and
is-cls-D: is-class G D and
wf: wf-prog G and
old: methd G D sig = Some old and
accmodi-old: Protected < accmodi old and
not-static-old: — is-static old
shows
dnew. methd G C sig = Some new A
(new = old V G,sigk-new overridesg old)
(is (Fnew. (?Constraint C new old)))
proof —
from subclseq-C-D is-cls-D
have is-cls-C: is-class G C by (rule subcls-is-class2)
from wf
have ws: ws-prog G ..
from is-cls-C ws subclseq-C-D
show Jnew. ?Constraint C new old
proof (induct rule: ws-class-induct’)
case (Object co)
then have eq-D-0bj: D=0Object by auto
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with old
have ?Constraint Object old old
by auto
with eq-D-0bj
show 3 new. ?Constraint Object new old by auto
next
case (Subcls C ¢)
assume hyp: Gtsuper cX¢ D = Inew. ?Constraint (super c¢) new old
assume clsC: class G C = Some ¢
assume neq-C-0bj: C+# Object
from clsC wf
have wf-cdecl: wf-cdecl G (C,c)
by (rule wf-prog-cdecl)
from ws clsC neq-C-0bj
have is-cls-super: is-class G (super c)
by (auto dest: ws-prog-cdeclD)
from clsC wf neq-C-0bj
have superAccessible: G+(Class (super ¢)) accessible-in (pid C) and
subcls1-C-super: GHC <c1 super c
by (auto dest: wf-prog-cdecl wf-cdecl-supD is-acc-classD
intro: subclsil)
show Jdnew. ?Constraint C new old
proof (cases Gksuper c=<¢ D)
case Fulse
from False Subcls
have eq-C-D: C=D
by (auto dest: subclseq-superD)
with old
have ?Constraint C old old
by auto
with eq-C-D
show 3 new. ?Constraint C new old by auto
next
case True
with hyp obtain super-method
where super: ?Constraint (super ¢) super-method old by blast
from super not-static-old
have not-static-super: — is-static super-method
by (auto dest!: stat-overrides-commonD)
from super old wf accmodi-old
have accmodi-super-method: Protected < accmodi super-method
by (auto dest!: wf-prog-stat-overridesD)
from super accmodi-old wf
have inheritable: G+Methd sig super-method inheritable-in (pid C')
by (auto dest!: wf-prog-stat-overridesD
acc-modi-le-Dests
simp add: inheritable-in-def)
from super wf is-cls-super
have member: GHMethd sig super-method member-of (super c)
by (auto intro: methd-member-of)
from member
have decl-super-method:
GFMethd sig super-method declared-in (declclass super-method)
by (auto dest: member-of-declC')
from super subcls1-C-super ws is-cls-super
have subcls-C-super: G-C <¢ (declclass super-method)
by (auto intro: rtrancl-into-trancl? dest: methd-declC')
show 3 new. ?Constraint C new old
proof (cases methd G C sig)
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case None
have methd G (super c) sig = None
proof —
from clsC ws None
have no-new: table-of (methods c) sig = None
by (auto simp add: methd-rec)
with clsC
have undeclared: GF-mid sig undeclared-in C
by (auto simp add: undeclared-in-def cdeclaredmethd-def)
with inheritable member superAccessible subclsi1-C-super
have inherits: G+C inherits (method sig super-method)
by (auto simp add: inherits-def)
with clsC ws no-new super neg-C-Obj
have methd G C sig = Some super-method
by (auto simp add: methd-rec map-add-def intro: filter-tab-Somel)
with None show ?thesis
by simp
qed
with super show ?thesis by auto
next
case (Some new)
from this ws clsC neq-C-0bj
show ?thesis
proof (cases rule: methd-rec-Some-cases)
case InheritedMethod
with super Some show ?thesis
by auto
next
case NewMethod
assume new: table-of (map (A(s, m). (s, C, m)) (methods c)) sig

= Some new
from new
have declcls-new: declclass new = C
by auto

from wf clsC neg-C-0Obj super new not-static-super accmodi-super-method
have not-static-new: — is-static new
by (auto dest: wf-prog-staticD)
from clsC new
have decl-new: GF-Methd sig new declared-in C
by (auto simp add: declared-in-def cdeclaredmethd-def)
from not-static-new decl-new decl-super-method
member subcls1-C-super inheritable declcls-new subcls-C-super
have G,sigk new overridess super-method
by (auto intro: stat-overridesR.Direct)
with super Some
show ?thesis
by (auto intro: stat-overridesR.Indirect)
qed
qed
qed
qed
qed

lemma inheritable-instance-methd-cases:
assumes subclseq-C-D: G-C <¢ D and
is-cls-D: is-class G D and
wf: wf-prog G and
old: methd G D sig = Some old and
accmodi-old: Protected < accmodi old and
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not-static-old: — is-static old
obtains (Inheritance) methd G C sig = Some old
| (Overriding) new where methd G C sig = Some new and G,sig-new overridess old
proof —
from subclseq-C-D is-cls-D wf old accmodi-old not-static-old
show ?thesis
by (auto dest: inheritable-instance-methd intro: Inheritance Overriding)
qed

lemma inheritable-instance-methd-props:
assumes subclseq-C-D: GFC =<¢ D and
is-cls-D: is-class G D and
wf: wf-prog G and
old: methd G D sig = Some old and
accmodi-old: Protected < accmodi old and
not-static-old: — is-static old
shows
dnew. methd G C sig = Some new A
= is-static new N GhresTy new=resTy old N\ accmodi old <accmodi new
(is (3 new. (?Constraint C new old)))
proof —
from subclseq-C-D is-cls-D wf old accmodi-old not-static-old
show ?thesis
proof (cases rule: inheritable-instance-methd-cases)
case Inheritance
with not-static-old accmodi-old show ?thesis by auto
next
case (Overriding new)
then have — is-static new by (auto dest: stat-overrides-commonD)
with Owverriding not-static-old accmodi-old wf
show ?thesis
by (auto dest!: wf-prog-stat-overridesD)
qed
qed

lemma bexl: z € A = Pz = Jz€A. P z by blast
lemma ballE: Vz€A. Pz = (z ¢ A = Q) = (P z = Q) = Q by blast

lemma subint-widen-imethds:
assumes irel: GHI<IJ
and wf: wf-prog G
and is-iface: is-iface G J
and jm: jm € imethds G J sig
shows Jim € imethds G I sig. is-static im = is-static jm N
accmodi im = accmodi jm N
GrresTy im=resTy jm
using irel jm
proof (induct rule: converse-rtrancl-induct)
case base
then show ?case by (blast elim: bexl’)
next
case (step I SI)
from «GHI <11 SI»
obtain ¢ where
ifl: iface G I = Some i and
SI: SI € set (isuperlfs i)
by (blast dest: subint1D)
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let ?newMethods
= (set-option o table-of (map (A(sig, mh). (sig, I, mh)) (imethods 7)))
show ?Zcase
proof (cases ?newMethods sig = {})
case True
with ifI ST step wf
show ?thesis
by (auto simp add: imethds-rec)
next
case Fulse
from ifI wf False
have imethds: imethds G I sig = ?newMethods sig
by (simp add: imethds-rec)
from Fulse
obtain im where
imdef: im € ?newMethods sig
by (blast)
with imethds
have im: im € imethds G I sig
by (blast)
with im wf ifl
obtain
imStatic: — is-static im and
itmPublic: accmodi im = Public
by (auto dest!: imethds-wf-mhead)
from ifT wf
have wf-I: wf-idecl G (1,7)
by (rule wf-prog-idecl)
with ST wf
obtain si where
ifSI: iface G SI = Some si and
wf-SI: wf-idecl G (SI,si)
by (auto dest!: wf-idecl-supD is-acc-ifaceD
dest: wf-prog-idecl)
from step
obtain sim::qtname X mhead where
sim: sim € imethds G SI sig and
eq-static-sim-jm: is-static sim = is-static jm and
eg-access-sim-jm: accmodi sim = accmodi jm and
res Ty-widen-sim-jm: GkresTy sim=resTy jm
by blast
with wf-I ST imdef sim
have GlrresTy im=resTy sim
by (auto dest!: wf-idecl-hidings hidings-entailsD)
with wf resTy-widen-sim-jm
have resTy-widen-im-jm: GrFresTy im=resTy jm
by (blast intro: widen-trans)
from sim wf ifST
obtain
simStatic: = is-static sim and
simPublic: accmodi sim = Public
by (auto dest!: imethds-wf-mhead)
from im
imStatic simStatic eq-static-sim-jm
imPublic simPublic eq-access-sim-jm
res Ty-widen-im-jm
show ?thesis
by auto
qged
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qed

lemma implmti-methd:
Asig. [GFC~1I; wf-prog G; im € imethds G I sig] =
dem €methd G C sig: — is-static cm A — is-static im A
GtresTy ecm=resTy im A
accmodi im = Public A accmodi cm = Public
apply (drule implmt1D)
apply clarify
apply (drule (2) wf-prog-cdecl [THEN wf-cdecl-impD])
apply (frule (1) imethds-wf-mhead)
apply (simp add: is-acc-iface-def)
apply (force)
done

lemma implmt-methd [rule-format (no-asm)]:

[wf-prog G; GFC~I] = is-iface G I —»

(V im  €imethds G I sig.

3 eméemethd G C sig: —is-static cm A — is-static im A

GFresTy cm=resTy im A
accmodi im = Public A accmodi em = Public)

apply (frule implmit-is-class)

apply (erule implmt.induct)

apply safe

apply (drule (2) implmti-methd)
apply fast

apply (drule (1) subint-widen-imethds)
apply simp

apply assumption

apply clarify

apply (drule (2) implmti-methd)

apply (force)

apply (frule subcls1D)

apply (drule (1) bspec)

apply clarify

apply (drule (3) r-into-rtrancl [THEN inheritable-instance-methd-props,
OF - implmt-is-class))

apply auto

done

lemma mheadsD [rule-format (no-asm)]:
emh € mheads G S t sig — wf-prog G —
(3C D m. t = ClassT C A declrefT emh = ClassT D A
accmethd G S C sig = Some m A
(declclass m = D) A mhead (mthd m) = (mhd emh)) V
(3I.t = IfaceT I A ((Fim. im € accimethds G (pid S) I sig A
mthd im = mhd emh) V
(Im. GHIface I accessible-in (pid S) A accmethd G S Object sig = Some m A
accmodi m # Private A
declrefT emh = ClassT Object A mhead (mthd m) = mhd emh))) V
(3T m. t = ArrayT T N GHArray T accessible-in (pid S) A
accmethd G S Object sig = Some m A accmodi m # Private N\
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declrefT emh = ClassT Object \ mhead (mthd m) = mhd emh)
apply (rule-tac ref-tyl =t in ref-ty-ty.induct [THEN conjunct1])
apply auto
apply (auto simp add: cmheads-def accObjectmheads-def Objectmheads-def)
apply (auto dest!: acemethd-SomeD)
done

lemma mheads-cases:
assumes emh € mheads G S t sig and wf-prog G
obtains (Class-methd) C D m where
t = ClassT C declrefT emh = ClassT D accmethd G S C sig = Some m
declclass m = D mhead (mthd m) = mhd emh
| (Iface-methd) I im where t = IfaceT I
im € accimethds G (pid S) I sig mthd im = mhd emh
| (Iface-Object-methd) I m where
t = IfaceT I GrIface I accessible-in (pid S)
accmethd G S Object sig = Some m accmodi m # Private
declrefT emh = ClassT Object mhead (mthd m) = mhd emh
| (Array-Object-methd) T m where
t = ArrayT T GFArray T accessible-in (pid S)
accmethd G S Object sig = Some m accmodi m # Private
declrefT emh = ClassT Object mhead (mthd m) = mhd emh
using assms by (blast dest!: mheadsD)

lemma declclassD|rule-format]:
[wf-prog G;class G C' = Some c; methd G C sig = Some m;
class G (declclass m) = Some d]
= table-of (methods d) sig = Some (mthd m)
proof —
assume  wf: wf-prog G
then have ws: ws-prog G ..
assume clsC: class G C' = Some c
from clsC ws
show A m d. [methd G C sig = Some m; class G (declclass m) = Some d]
= table-of (methods d) sig = Some (mthd m)
proof (induct rule: ws-class-induct)
case Object
with wf show ?thesis m d by auto
next
case (Subcls C ¢)
let ?newMethods = table-of (map (A(s, m). (s, C, m)) (methods c)) sig
show ?thesis m d
proof (cases ?newMethods)
case None
from None ws Subcls
show ?thesis by (auto simp add: methd-rec) (rule Subcls)
next
case Some
from Some ws Subcls
show ?thesis
by (auto simp add: methd-rec
dest: wf-prog-cdecl wf-cdecl-supD is-acc-class-is-class)
qed
qed
qed

lemma dynmethd-Object:
assumes statM: methd G Object sig = Some statM and
private: accmodi statM = Private and
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is-cls-C' is-class G C' and
wf: wf-prog G
shows dynmethd G Object C sig = Some statM
proof —

from is-cls-C wf
have subclseq: G-C =<¢c Object

by (auto intro: subcls-ObjectI)
from wf have ws: ws-prog G

by simp
from wf
have is-cls-Obj: is-class G Object

by simp
from statM subclseq is-cls-Obj ws private
show ?thesis
proof (cases rule: dynmethd-cases)

case Static then show ?thesis .
next

case Overrides

with private show ?thesis

by (auto dest: no-Private-override)
qged
qed

lemma wf-imethds-hiding-objmethdsD:
assumes old: methd G Object sig = Some old and
is-if-1: is-iface G I and
wf: wf-prog G and
not-private: accmodi old # Private and
new: new € imethds G I sig
shows GFresTy new=resTy old A is-static new = is-static old (is ¢P new)
proof —
from wf have ws: ws-prog G by simp
have hyp-newmethod: ?P (I,new)
if ifl: iface G I = Some
and new: table-of (imethods i) sig = Some new
for I i new
using ifl new not-private wf old
by (auto dest!: wf-prog-idecl wf-idecl-hiding cond-hiding-entailsD
simp del: methd-Object)
from is-if-I ws new
show ?thesis
proof (induct rule: ws-interface-induct)
case (Step I 1)
assume ifl: iface G I = Some i
assume new: new € imethds G I sig
from Step
have hyp: V J € set (isuperlfs i). (new € imethds G J sig — 7P new)
by auto
from new ifl ws
show ?P new
proof (cases rule: imethds-cases)
case NewMethod
with ifl hyp-newmethod
show ?thesis
by auto
next
case (InheritedMethod J)
assume J € set (isuperlfs i)
new € imethds G J sig
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with hyp
show ?thesis
by auto
qed
qed
qed

Which dynamic classes are valid to look up a member of a distinct static type? We have to distinct
class members (named static members in Java) from instance members. Class members are global
to all Objects of a class, instance members are local to a single Object instance. If a member is
equipped with the static modifier it is a class member, else it is an instance member. The following
table gives an overview of the current framework. We assume to have a reference with static type
statT and a dynamic class dynC. Between both of these types the widening relation holds G+ Class
dynC=statT. Unfortunately this ordinary widening relation isn’t enough to describe the valid lookup
classes, since we must cope the special cases of arrays and interfaces,too. If we statically expect an
array or inteface we may lookup a field or a method in Object which isn’t covered in the widening
relation.

statT field instance method static (class) method

NullT / / / Iface / dynC Object Class dynC dynC dynC Array / Object Object

In most cases we con lookup the member in the dynamic class. But as an interface can’t declare
new static methods, nor an array can define new methods at all, we have to lookup methods in the
base class Object.

The limitation to classes in the field column is artificial and comes out of the typing rule for the
field access (see rule F'Var in the welltyping relation wt in theory WellType). I stems out of the fact,
that Object indeed has no non private fields. So interfaces and arrays can actually have no fields at
all and a field access would be senseless. (In Java interfaces are allowed to declare new fields but in
current Bali not!). So there is no principal reason why we should not allow Objects to declare non
private fields. Then we would get the following column:

statT field ————————— NullT / Iface Object Class dynC Array Object

primrec valid-lookup-cls:: prog = ref-ty = qtname = bool = bool
(¢-- F - walid’-lookup’-cls'"-for -» [61,61,61,61] 60)
where
G, NullT + dynC valid-lookup-cls-for static-membr = False
| G,IfaceT I + dynC valid-lookup-cls-for static-membr
= (if static-membr

then dynC=Object

else GFClass dynC= Iface I)
| G,ClassT C + dynC valid-lookup-cls-for static-membr = Gt Class dynC= Class C
| G,ArrayT T v dynC valid-lookup-cls-for static-membr = (dynC=Object)

lemma valid-lookup-cls-is-class:
assumes dynC: G,statT F dynC valid-lookup-cls-for static-membr and
ty-statT: isrtype G statT and
wf: wf-prog G
shows is-class G dynC
proof (cases statT)
case NullT
with dynC ty-statT show ?thesis
by (auto dest: widen-NT2)
next
case (IfaceT I)
with dynC wf show ?thesis
by (auto dest: implmi-is-class)
next

case (ClassT C)
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with dynC ty-statT show ?thesis
by (auto dest: subcls-is-class2)
next
case (ArrayT T)
with dynC wf show ?thesis
by (auto)
qed

declare split-paired-All [simp del] split-paired-Ez [simp del]
setup <map-theory-simpset (fn ctat => ctat |> Simplifier.del-loop split-all-tac))
setup «map-theory-claset (fn ctrt => ctxt delSWrapper split-all-tac)»

lemma dynamic-mheadsD:
[emh € mheads G S statT sig;
G,statT + dynC valid-lookup-cls-for (is-static emh);
isrtype G statT; wf-prog G
] = 3Im € dynlookup G statT dynC' sig:
is-static m=is-static emh N\ GhFresTy m=resTy emh

proof —
assume emh: emh € mheads G S statT sig
and wf: wf-prog G

and dynC-Prop: G, statT b dynC valid-lookup-cls-for (is-static emh)
and istype: isrtype G statT
from dynC-Prop istype wf
obtain y where
dynC': class G dynC = Some y
by (auto dest: valid-lookup-cls-is-class)
from emh wf show ?thesis
proof (cases rule: mheads-cases)
case Class-methd
fix statC statDeclC sm
assume statC: statT = ClassT statC
assume accmethd G S statC sig = Some sm
then have sm: methd G statC sig = Some sm
by (blast dest: accmethd-SomeD)
assume eq-mheads: mhead (mthd sm) = mhd emh
from statC
have dynlookup: dynlookup G statT dynC sig = dynmethd G statC dynC' sig
by (simp add: dynlookup-def)
from wf statC istype dynC-Prop sm
obtain dm where
dynmethd G statC dynC sig = Some dm
is-static dm = is-static sm
GrresTy dm=resTy sm
by (force dest!: ws-dynmethd accmethd-SomeD)
with dynlookup eq-mheads
show ?thesis
by (cases emh type: prod) (auto)
next
case Iface-methd
fix I im
assume  statl: statT = IfaceT I and
eq-mheads: mthd im = mhd emh and
im € accimethds G (pid S) I sig
then have im: im € imethds G I sig
by (blast dest: accimethdsD)
with istype statl eqg-mheads wf
have not-static-emh: — is-static emh
by (cases emh) (auto dest: wf-prog-idecl imethds-wf-mhead)
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from statl im
have dynlookup: dynlookup G statT dynC sig = methd G dynC sig
by (auto simp add: dynlookup-def dynimethd-def)
from wf dynC-Prop statl istype im not-static-emh
obtain dm where
methd G dynC sig = Some dm
is-static dm = is-static im
GFresTy (mthd dm)=<resTy (mthd im)
by (force dest: implmt-methd)
with dynlookup eq-mheads
show ?thesis
by (cases emh type: prod) (auto)
next
case Iface-Object-methd
fix I sm
assume statl: statT = IfaceT I and
sm: accmethd G S Object sig = Some sm and
eq-mheads: mhead (mthd sm) = mhd emh and
nPriv: accmodi sm # Private
show ?thesis
proof (cases imethds G I sig = {})
case True
with statl
have dynlookup: dynlookup G statT dynC sig = dynmethd G Object dynC' sig
by (simp add: dynlookup-def dynimethd-def)
from wf dynC
have subclsObj: GFdynC <¢ Object
by (auto intro: subcls-Objectl)
from wf dynC dynC-Prop istype sm subclsObj
obtain dm where
dynmethd G Object dynC sig = Some dm
is-static dm = is-static sm
GrresTy (mthd dm)=<resTy (mthd sm)
by (auto dest!: ws-dynmethd accmethd-SomeD
intro: class-Object [OF wf] intro: that)
with dynlookup eq-mheads
show ?thesis
by (cases emh type: prod) (auto)
next
case Fulse
with statl
have dynlookup: dynlookup G statT dynC sig = methd G dynC sig
by (simp add: dynlookup-def dynimethd-def)
from istype statl
have is-iface G I
by auto
with wf sm nPriv False
obtain im where
im: im € imethds G I sig and
eq-stat: is-static im = is-static sm and
resProp: GrresTy (mthd im)=<resTy (mthd sm)
by (auto dest: wf-imethds-hiding-objmethdsD accmethd-SomeD)
from im wf statl istype eq-stat eq-mheads
have not-static-sm: — is-static emh
by (cases emh) (auto dest: wf-prog-idecl imethds-wf-mhead)
from im wf dynC-Prop dynC istype statl not-static-sm
obtain dm where
methd G dynC sig = Some dm
is-static dm = is-static im
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GrresTy (mthd dm)=<resTy (mthd im)
by (auto dest: implmt-methd)
with wf eg-stat resProp dynlookup eq-mheads
show ?thesis
by (cases emh type: prod) (auto intro: widen-trans)
qed
next
case Array-Object-methd
fix T sm
assume statArr: statT = ArrayT T and
sm: accmethd G S Object sig = Some sm and
eq-mheads: mhead (mthd sm) = mhd emh
from statArr dynC-Prop wf
have dynlookup: dynlookup G statT dynC sig = methd G Object sig
by (auto simp add: dynlookup-def dynmethd-C-C)
with sm eq-mheads sm
show ?thesis
by (cases emh type: prod) (auto dest: accmethd-SomeD)
qed
qed
declare split-paired-All [simp] split-paired-Ex [simp]
setup «map-theory-claset (fn ctxt => ctxt addSbefore (split-all-tac, split-all-tac))s
setup «map-theory-simpset (fn ctat => ctat |> Simplifier.add-loop (split-all-tac, split-all-tac))>

lemma methd-declclass:
[class G C = Some c; wf-prog G; methd G C sig = Some m]
= methd G (declclass m) sig = Some m
proof —
assume asm: class G C = Some ¢ wf-prog G methd G C sig = Some m
have wf-prog G —
(V ¢ m. class G C = Some ¢ — methd G C sig = Some m
— methd G (declclass m) sig = Some m) (is P G C)
proof (induct G C rule: class-rec-induct’, intro alll impl)
fix GCcm
assume hyp: Ac. class G C = Some ¢ = ws-prog G = C # Object =
7P G (super c)
assume wf: wf-prog G and cls-C: class G C = Some ¢ and
m: methd G C sig = Some m
show methd G (declclass m) sig = Some m
proof (cases C=0bject)
case True
with wf m show Zthesis by (auto intro: table-of-map-Somel)
next
let ?filter=filter-tab (Asig m. G+C inherits method sig m)
let ?table = table-of (map (A(s, m). (s, C, m)) (methods c))
case Fulse
with cls-C wf m
have methd-C: (?filter (methd G (super c)) ++ ?table) sig = Some m
by (simp add: methd-rec)
show ?thesis
proof (cases ?table sig)
case None
from this methd-C have ?filter (methd G (super c)) sig = Some m
by simp
moreover
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from wf cls-C False obtain sup where class G (super ¢) = Some sup
by (blast dest: wf-prog-cdecl wf-cdecl-supD is-acc-class-is-class)
moreover note wf False cls-C
ultimately show ?thesis by (auto intro: hyp [rule-format])
next
case Some
from this methd-C m show ?thesis by auto
qed
qed
qed
with asm show ?thesis by auto
qed

lemma dynmethd-declclass:
[dynmethd G statC dynC sig = Some m;
wf-prog G is-class G statC
] = methd G (declclass m) sig = Some m
by (auto dest: dynmethd-declC)

lemma dynlookup-declC".
[dynlookup G statT dynC sig = Some m; wf-prog G;
is-class G dynC'jisrtype G statT
] = GrdynC =¢ (declclass m) A is-class G (declclass m)
by (cases statT')
(auto simp add: dynlookup-def dynimethd-def
dest: methd-declC dynmethd-declC)

lemma dynlookup-Array-declclassD [simp]:
[dynlookup G (ArrayT T) Object sig = Some dm;wf-prog G]
= declclass dm = Object
proof —
assume dynL: dynlookup G (ArrayT T) Object sig = Some dm
assume wf: wf-prog G
from wf have ws: ws-prog G by auto
from wf have is-cls-Obj: is-class G Object by auto
from dynL wf
show ?thesis
by (auto simp add: dynlookup-def dynmethd-C-C [OF is-cls-Obj ws]
dest: methd-Object-SomeD)
qed

declare split-paired-All [simp del] split-paired-Ex [simp del)]
setup «map-theory-simpset (fn ctat => ctat |> Simplifier.del-loop split-all-tac))
setup «map-theory-claset (fn ctzt => ctxt delSWrapper split-all-tac)»

lemma wt-is-type: E,dt=v::T = wf-prog (prg E) —
dt=empty-dt — (case T of
Inl T = is-type (prg E) T
| Inr Ts = Ball (set Ts) (is-type (prg E)))
apply (unfold empty-dt-def)
apply (erule wt.induct)
apply (auto split del: if-split-asm simp del: snd-conv
simp add: is-acc-class-def is-acc-type-def)
apply (erule typeof-empty-is-type)
apply (frule (1) wf-prog-cdecl [THEN wf-cdecl-supD],
force simp del: snd-conv, clarsimp simp add: is-acc-class-def)
apply (drule (1) maz-spec2mheads [THEN conjunctl, THEN mheadsD])
apply (drule-tac [2] accfield-fields)
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apply (frule class-Object)
apply (auto dest: accmethd-rT-is-type
imethds-wf-mhead [THEN conjunctl, THEN rT-is-acc-type]
dest!:accimethdsD
simp del: class-Object
simp add: is-acc-type-def
)
done
declare split-paired-All [simp)] split-paired-Ex [simp]
setup <map-theory-claset (fn ctzt => ctat addSbefore (split-all-tac, split-all-tac))>
setup <map-theory-simpset (fn ctat => ctat |> Simplifier.add-loop (split-all-tac, split-all-tac))»

lemma ty-expr-is-type:

[Ete:—T; wf-prog (prg E)] = is-type (prg E) T

by (auto dest!: wt-is-type)

lemma ty-var-is-type:

[EFv:=T; wf-prog (prg E)] = is-type (prg E) T

by (auto dest!: wt-is-type)

lemma ty-exprs-is-type:

[Eres::=Ts; wf-prog (prg E)] = Ball (set Ts) (is-type (prg E))
by (auto dest!: wt-is-type)

lemma static-mheadsD:
[ emh € mheads G S t sig; wf-prog G; Ebe:—RefT t; prg E=G ;
invmode (mhd emh) e # IntVir
]=3Im.( (3 C.t= ClassT C A accmethd G S C sig = Some m)
VvV (V C.t# ClassT C A accmethd G S Object sig = Some m )) A
declrefT emh = ClassT (declclass m) A mhead (mthd m) = (mhd emh)
apply (subgoal-tac is-static emh V e = Super)
defer apply (force simp add: invmode-def)
apply (frule ty-expr-is-type)
apply simp
apply (case-tac is-static emh)
apply (frule (1) mheadsD)
apply clarsimp
apply safe
apply blast
apply (auto dest!: imethds-wf-mhead
accmethd-SomeD
accimethdsD
stmp add: accObjectmheads-def Objectmheads-def)

apply (erule wt-elim-cases)
apply (force simp add: cmheads-def)
done

lemma wt-Methdl:
[methd G C sig = Some m; wf-prog G,

class G C = Some ] =

IT. (prg=G,cls=(declclass m),

lel=callee-lcl (declclass m) sig (mthd m))F Methd C sig:—T AN GF-T=resTy m

apply (frule (2) methd-wf-mdecl, clarify)
apply (force dest!: wf-mdecl-bodyD intro!: wt.Methd)
done

2 accessibility concerns

lemma mheads-type-accessible:
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[emh € mheads G S T sig; wf-prog G]
= GFRefT T accessible-in (pid S)
by (erule mheads-cases)
(auto dest: accmethd-SomeD accessible-from-commonD accimethdsD)

lemma static-to-dynamic-accessible-from-aux:
[GFm of C accessible-from accCiwf-prog G]
= GFm in C dyn-accessible-from accC
proof (induct rule: accessible-fromR.induct)
qed (auto intro: dyn-accessible-fromR.intros
member-of-to-member-in
static-to-dynamic-overriding)

lemma static-to-dynamic-accessible-from:
assumes stat-acc: GEm of statC accessible-from accC and
subclseq: GHdynC <¢ statC and
wf: wf-prog G
shows GFm in dynC dyn-accessible-from accC
proof —
from stat-acc subclseq
show ?thesis (is ?Dyn-accessible m)
proof (induct rule: accessible-fromR.induct)
case (Immediate m statC')
then show ?Dyn-accessible m
by (blast intro: dyn-accessible-fromR.Immediate
member-inl
permits-acc-inheritance)
next
case (OQverriding m - -)
with wf show ?Dyn-accessible m
by (blast intro: dyn-accessible-fromR. Qverriding
member-inl
static-to-dynamic-overriding
rtrancl-trancl-trancl
static-to-dynamic-accessible-from-aux)
qed
qed

lemma static-to-dynamic-accessible-from-static:
assumes stat-acc: GFm of statC accessible-from accC and
static: is-static m and
wf: wf-prog G
shows GHm in (declclass m) dyn-accessible-from accC
proof —
from stat-acc wf
have G+m in statC dyn-accessible-from accC
by (auto intro: static-to-dynamic-accessible-from)
from this static
show ?thesis
by (rule dyn-accessible-from-static-declC)
qed

lemma dynmethd-member-in:
assumes m: dynmethd G statC dynC sig = Some m and
iscls-statC': is-class G statC' and
wf: wf-prog G
shows GFMethd sig m member-in dynC
proof —
from m
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have subclseq: G-dynC =<¢ statC
by (auto simp add: dynmethd-def)
from subclseq iscls-statC
have iscls-dynC': is-class G dynC
by (rule subcls-is-class2)
from iscls-dynC' iscls-statC wf m
have GrdynC <¢ (declclass m) A is-class G (declclass m) A
methd G (declclass m) sig = Some m
by — (drule dynmethd-declC, auto)
with wf
show ?thesis
by (auto intro: member-inl dest: methd-member-of)
qed

lemma dynmethd-access-prop:
assumes statM: methd G statC sig = Some statM and

stat-acc: GFMethd sig statM of statC accessible-from accC and

dynM: dynmethd G statC dynC sig = Some dynM and
wf: wf-prog G
shows GFMethd sig dynM in dynC dyn-accessible-from accC
proof —
from wf have ws: ws-prog G ..
from dynM
have subclseq: G-dynC <¢ statC
by (auto simp add: dynmethd-def)
from stat-acc
have is-cls-statC': is-class G statC
by (auto dest: accessible-from-commonD member-of-is-classD)
with subclseq
have is-cls-dynC'" is-class G dynC
by (rule subcls-is-class2)
from is-cls-statC statM wf
have member-statC: GFMethd sig statM member-of statC
by (auto intro: methd-member-of)
from stat-acc
have statC-acc: GFClass statC accessible-in (pid accC)
by (auto dest: accessible-from-commonD)
from statM subclseq is-cls-statC ws
show ?thesis
proof (cases rule: dynmethd-cases)
case Static
assume dynmethd: dynmethd G statC dynC sig = Some statM
with dynM have eq-dynM-statM: dynM=statM
by simp
with stat-acc subclseq wf
show ?thesis
by (auto intro: static-to-dynamic-accessible-from)
next
case (Overrides newM)
assume dynmethd: dynmethd G statC dynC sig = Some newM
assume override: G,sig-newM overrides statM
assume neq: newM#statM
from dynmethd dynM
have eq-dynM-newM: dynM=newM
by simp
from dynmethd eq-dynM-newM wf is-cls-statC
have GFMethd sig dynM member-in dynC
by (auto intro: dynmethd-member-in)
moreover
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from subclseq
have GrdynC<¢ statC
proof (cases rule: subclseg-cases)
case FEq
assume dynC=statC
moreover
from is-cls-statC obtain ¢
where class G statC' = Some ¢
by auto
moreover
note statM ws dynmethd
ultimately
have newM=statM
by (auto simp add: dynmethd-C-C')
with neq show ?thesis
by (contradiction)
next
case Subcls then show Zthesis .
qged
moreover
from stat-acc wf
have GFMethd sig statM in statC dyn-accessible-from accC
by (blast intro: static-to-dynamic-accessible-from)
moreover
note override eq-dynM-newM
ultimately show ?thesis
by (cases dynM cases statM) (auto intro: dyn-accessible-fromR.Overriding)
qed
qed

lemma implmt-methd-access:
fixes accC::qtname
assumes iface-methd: imethds G I sig # {} and
implements: G-dynC~1 and
isif-I: is-iface G I and
wf: wf-prog G
shows 3 dynM. methd G dynC sig = Some dynM A
GFMethd sig dynM in dynC dyn-accessible-from accC
proof —
from implements
have iscls-dynC: is-class G dynC by (rule implmt-is-class)
from iface-methd
obtain im
where im € imethds G I sig
by auto
with wf implements isif-I
obtain dynM
where dynM: methd G dynC sig = Some dynM and
pub: accmodi dynM = Public
by (blast dest: implmt-methd)
with iscls-dynC wf
have G+ Methd sig dynM in dynC dyn-accessible-from accC
by (auto intro!: dyn-accessible-fromR.Immediate
intro: methd-member-of member-of-to-member-in
simp add: permits-acc-def)
with dynM
show ?thesis
by blast
qed
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corollary implmt-dynimethd-access:
fixes accC'::qtname
assumes iface-methd: imethds G I sig # {} and
implements: G-dynC~»1 and
isif-1: is-iface G I and
wf: wf-prog G
shows 3 dynM. dynimethd G I dynC sig = Some dynM A
G+ Methd sig dynM in dynC dyn-accessible-from accC
proof —
from iface-methd
have dynimethd G I dynC sig = methd G dynC sig
by (simp add: dynimethd-def)
with iface-methd implements isif-I wf
show ?thesis
by (simp only:)
(blast intro: implmt-methd-access)
qed

lemma dynlookup-access-prop:
assumes emh: emh € mheads G accC statT sig and
dynM: dynlookup G statT dynC sig = Some dynM and
dynC-prop: G,statT F dynC valid-lookup-cls-for is-static emh and
isT-statT: isrtype G statT and
wf: wf-prog G
shows G +Methd sig dynM in dynC' dyn-accessible-from accC
proof —
from emh wf
have statT-acc: GFRefT statT accessible-in (pid accC')
by (rule mheads-type-accessible)
from dynC-prop isT-statT wf
have iscls-dynC': is-class G dynC
by (rule valid-lookup-cls-is-class)
from emh dynC-prop isT-statT wf dynM
have eq-static: is-static emh = is-static dynM
by (auto dest: dynamic-mheadsD)
from emh wf show ?thesis
proof (cases rule: mheads-cases)
case (Class-methd statC - statM)
assume statT: statT = ClassT statC
assume accmethd G accC statC sig = Some statM
then have statM: methd G statC sig = Some statM and
stat-acc: GFMethd sig statM of statC accessible-from accC
by (auto dest: accmethd-SomeD)
from dynM statT
have dynM': dynmethd G statC dynC sig = Some dynM
by (simp add: dynlookup-def)
from statM stat-acc wf dynM’
show ?thesis
by (auto dest!: dynmethd-access-prop)
next
case (Iface-methd I im)
then have iface-methd: imethds G I sig # {} and
statT-acc: GHRefT statT accessible-in (pid accC')
by (auto dest: accimethdsD)
assume statT: statT = IfaceT I
assume im: im € accimethds G (pid accC) I sig
assume eq-mhds: mthd im = mhd emh
from dynM statT
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have dynM'": dynimethd G I dynC sig = Some dynM
by (simp add: dynlookup-def)
from isT-statT statT
have isif-I: is-iface G I
by simp
show ?thesis
proof (cases is-static emh)
case Fulse
with statT dynC-prop
have widen-dynC: G+ Class dynC < RefT statT
by simp
from statT widen-dynC
have implmnt: G-dynC~~1
by auto
from eq-static False
have not-static-dynM: — is-static dynM
by simp
from iface-methd implmnt isif-I wf dynM’
show ?thesis
by — (drule implmt-dynimethd-access, auto)
next
case True
assume is-static emh
moreover
from wf isT-statT statT im
have — is-static im
by (auto dest: accimethdsD wf-prog-idecl imethds-wf-mhead)
moreover note eg-mhds
ultimately show ?thesis
by (cases emh) auto
qed
next
case (Iface-Object-methd I statM)
assume statT: statT = IfaceT 1
assume accmethd G accC Object sig = Some statM
then have statM: methd G Object sig = Some statM and
stat-acc: GFMethd sig statM of Object accessible-from accC
by (auto dest: accmethd-SomeD)
assume not-Private-statM: accmodi statM # Private
assume eq-mhds: mhead (mthd statM) = mhd emh
from iscls-dynC wf
have widen-dynC-0bj: G-dynC <o Object
by (auto intro: subcls-ObjectI)
show ?thesis
proof (cases imethds G I sig = {})
case True
from dynM statT True
have dynM': dynmethd G Object dynC sig = Some dynM
by (simp add: dynlookup-def dynimethd-def)
from statT
have GFRefT statT <Class Object
by auto
with statM statT-acc stat-acc widen-dynC-0bj statT isT-statT
wf dynM' eq-static dynC-prop
show ?thesis
by — (drule dynmethd-access-prop,force+)
next
case Fulse
then obtain im where
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im: im € imethds G I sig
by auto
have not-static-emh: — is-static emh
proof —
from im statM statT isT-statT wf not-Private-statM
have is-static im = is-static statM
by (fastforce dest: wf-imethds-hiding-objmethdsD)
with wf isT-statT statT im
have — is-static statM
by (auto dest: wf-prog-idecl imethds-wf-mhead)
with eg-mhds
show ?thesis
by (cases emh) auto

qed

with statT dynC-prop
have implmnt: G-dynC~~1
by simp
with isT-statT statT
have isif-1: is-iface G I
by simp
from dynM statT
have dynM'": dynimethd G I dynC sig = Some dynM
by (simp add: dynlookup-def)
from False implmnt isif-I wf dynM'
show ?thesis
by — (drule implmi-dynimethd-access, auto)

qed
next

case (Array-Object-methd T statM)
assume statT: statT = ArrayT T
assume accmethd G accC Object sig = Some statM

then

have statM: methd G Object sig = Some statM and
stat-acc: GFMethd sig statM of Object accessible-from accC

by (auto dest: accmethd-SomeD)

from

statT dynC-prop

have dynC-0bj: dynC = Object
by simp
then
have widen-dynC-0bj: GFClass dynC =< Class Object
by simp
from dynM statT
have dynM': dynmethd G Object dynC sig = Some dynM

by (simp add: dynlookup-def)

from

statM statT-acc stat-acc dynM' wf widen-dynC-Obj

statT isT-statT
show ?thesis
by — (drule dynmethd-access-prop, simp+)

qged
qed

lemma dynlookup-access:
assumes emh: emh € mheads G accC statT sig and

dynC-prop: G,statT b dynC valid-lookup-cls-for (is-static emh) and

isT-statT: isrtype G statT and

shows 3 dynM. dynlookup G statT dynC sig = Some dynM A

proof —

wf: wf-prog G

G+ Methd sig dynM in dynC dyn-accessible-from accC

from dynC-prop isT-statT wf
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have is-cls-dynC'" is-class G dynC
by (auto dest: valid-lookup-cls-is-class)
with emh wf dynC-prop isT-statT
obtain dynM where
dynlookup G statT dynC sig = Some dynM
by — (drule dynamic-mheadsD,auto)
with emh dynC-prop isT-statT wf
show ?thesis
by (blast intro: dynlookup-access-prop)
qed

lemma stat-overrides-Package-old:
assumes stat-override: G+ new overridess old and
accmodi-new: accmodi new = Package and
wf: wf-prog G
shows accmodi old = Package
proof —
from stat-override wf
have accmodi old < acemodi new
by (auto dest: wf-prog-stat-overridesD)
with stat-override accmodi-new show ?thesis
by (cases accmodi old) (auto dest: no-Private-stat-override
dest: acc-modi-le-Dests)
qed

Properties of dynamic accessibility

lemma dyn-accessible-Private:
assumes dyn-acc: G F m in C dyn-accessible-from accC and
priv: accmodi m = Private
shows accC = declclass m
proof —
from dyn-acc priv
show ?thesis
proof (induct)
case (Immediate m C)
from <G F m in C permits-acc-from accC»> and <accmodi m = Private)
show ?Zcase
by (simp add: permits-acc-def)
next
case Querriding
then show ?case
by (auto dest!: overrides-commonD)
qed
qed

dyn-accessible-Package only works with the wf-prog assumption. Without it. it is easy to leaf the
Package!

lemma dyn-accessible-Package:
[GF min C dyn-accessible-from accC; accmodi m = Package;
wf-prog GJ
= pid accC = pid (declclass m)
proof —
assume wf: wf-prog G
assume accessible: G = m in C dyn-accessible-from accC
then show accmodi m = Package
= pid accC = pid (declclass m)
(is ?Pack m = ?P m)
proof (induct rule: dyn-accessible-fromR.induct)
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case (Immediate m C)
assume GHm member-in C
G + m in C permits-acc-from accC
accmodi m = Package

then show ?P m

by (auto simp add: permits-acc-def)

next
case (Overriding new declC newm old Sup C)
assume member-new: G + new member-in C' and
new: new = (declC, mdecl newm) and
override: G+ (declC, newm) overrides old and
subcls-C-Sup: G-C <¢ Sup and
acc-old: G F methdMembr old in Sup dyn-accessible-from accC and
hyp: ?Pack (methdMembr old) = ?P (methdMembr old) and
accmodi-new: accmodi new = Package

from override accmodi-new new wf
have accmodi-old: accmodi old = Package

by (auto dest: overrides-Package-old)
with hyp
have P-sup: ?P (methdMembr old)

by (simp)
from wf override new accmodi-old accmodi-new
have eg-pid-new-old: pid (declclass new) = pid (declclass old)

by (auto dest: dyn-override-Package)
with eg-pid-new-old P-sup show ?P new

by auto

ged
qed

For fields we don’t need the wellformedness of the program, since there is no overriding

lemma dyn-accessible-field- Package:
assumes dyn-acc: G F fin C dyn-accessible-from accC and
pack: accmodi f = Package and
field: is-field f
shows pid accC = pid (declclass f)
proof —
from dyn-acc pack field
show ?thesis
proof (induct)
case (Immediate f C)
from «G F fin C permits-acc-from accC» and <accmodi f = Package>
show ?Zcase
by (simp add: permits-acc-def)
next
case Qverriding
then show ?case by (simp add: is-field-def)
qed
qed

dyn-accessible-instance-field-Protected only works for fields since methods can break the package
bounds due to overriding

lemma dyn-accessible-instance-field-Protected:
assumes dyn-acc: G & fin C dyn-accessible-from accC and
prot: accmodi f = Protected and
field: is-field f and
instance-field: — is-static f and
outside: pid (declclass f) # pid accC
shows GF C =g accC
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proof —
from dyn-acc prot field instance-field outside
show ?thesis
proof (induct)
case (Immediate f C)
note <G + fin C permits-acc-from accC)
moreover
assume accmodi f = Protected and is-field f and — is-static f and
pid (declclass f) # pid accC
ultimately
show G+ C =g accC
by (auto simp add: permits-acc-def)
next
case Quverriding
then show ?Zcase by (simp add: is-field-def)
qed
qed

lemma dyn-accessible-static-field- Protected:
assumes dyn-acc: G F fin C dyn-accessible-from accC and
prot: accmodi f = Protected and
field: is-field f and
static-field: is-static f and
outside: pid (declclass f) # pid accC
shows G+ accC =<¢ declclass f N GHC =<¢ declclass f
proof —
from dyn-acc prot field static-field outside
show ?thesis
proof (induct)
case (Immediate f C)
assume accmodi f = Protected and is-field f and is-static f and
pid (declclass f) # pid accC
moreover
note <G + fin C permits-acc-from accC)»
ultimately
have G+ accC =<¢ declclass f
by (auto simp add: permits-acc-def)
moreover
from «G F f member-in C»
have G+ C =<¢ declclass f
by (rule member-in-class-relation)
ultimately show Zcase
by blast
next
case Overriding
then show Zcase by (simp add: is-field-def)
qed
qed

end
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State

1 State for evaluation of Java expressions and statements

theory State
imports DeclConcepts
begin

design issues:

« all kinds of objects (class instances, arrays, and class objects) are handeled via a general object
abstraction

o the heap and the map for class objects are combined into a single table (recall (loc, obj) table
X (gtname, obj) table ~= (loc + gtname, obj) table)

objects
datatype obj-tag = — tag for generic object
Clnst gtname — class instance

| Arr ty int — array with component type and length
— | CStat gqtname the tag is irrelevant for a class object, i.e. the static fields of a class, since its type is
given already by the reference to it (see below)

type-synonym vn = fspec + int — variable name
record obj =
tag :: obj-tag — generalized object

values :: (vn, val) table

translations
(type) fspec <= (type) vname X glname
(type) vn <= (type) fspec + int
(type) obj <= (type) (tag::obj-tag, values::vn = val option)
(type) obj <= (type) (tag::obj-tag, values::vn = wval option,. . .::'al)
definition

the-Arr :: obj option = ty x int x (vn, val) table
where the-Arr obj = (SOME (T,k,t). obj = Some (tag=Arr T k,values=t))

lemma the-Arr-Arr [simp]: the-Arr (Some (tag=Arr T k,values=cs|)) = (T,k,cs)
apply (auto simp: the-Arr-def)

done

lemma the-Arr-Arrl [simp,intro,dest):
[tag obj = Arr T k] = the-Arr (Some obj) = (T,k,values obj)
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apply (auto simp add: the-Arr-def)
done

definition
upd-obj :: vn = val = obj = obj
where upd-obj n v = (Aobj. obj (values:=(values obj)(n—v)]))

lemma upd-obj-def2 [simp]:

upd-obj n v obj = obj (values:=(values obj)(n—v))
apply (auto simp: upd-obj-def)
done

definition
obj-ty :: obj = ty where
obj-ty obj = (case tag obj of
CInst C = Class C
| Arr Tk = T.])

lemma obj-ty-eq [introl]: obj-ty (tag=oi,values=z|) = obj-ty (tag=oi,values=y)
by (simp add: obj-ty-def)

lemma obj-ty-eql [intro!,dest]:
tag obj = tag obj’ = obj-ty obj = obj-ty obj’
by (simp add: obj-ty-def)

lemma obj-ty-cong [simp]:
obj-ty (obj (values:=vs|)) = obj-ty obj
by auto

lemma obj-ty-Clnst [simp]:
obj-ty (tag=Clnst C,values=vs)) = Class C
by (simp add: obj-ty-def)

lemma obj-ty-Clnst1 [simp,intro!,dest]:
[tag obj = Clnst C| = obj-ty obj = Class C
by (simp add: obj-ty-def)

lemma obj-ty-Arr [simp):
obj-ty (tag=Arr T i,values=vs|) = T.[]
by (simp add: obj-ty-def)

lemma obj-ty-Arrl [simp,introl,dest]:
[tag obj = Arr T i] = obj-ty obj = T.[|
by (simp add: obj-ty-def)

lemma obj-ty-widenD:

Gtobj-ty obj=<RefT t = (3 C. tag obj = CInst C) vV (3T k. tag obj = Arr T k)
apply (unfold obj-ty-def)

apply (auto split: obj-tag.split-asm,)

done

definition
obj-class :: obj = qtname where
obj-class obj = (case tag obj of
CInst C = C
| Arr T k = Object)
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lemma obj-class-Clnst [simp]: obj-class (tag=ClInst C,values=vs|) = C
by (auto simp: obj-class-def)

lemma obj-class-Clnst1 [simp,intro!,dest):
tag obj = Clnst C = obj-class obj = C
by (auto simp: obj-class-def)

lemma obj-class-Arr [simp]: obj-class (tag=Arr T k,values=vs|) = Object
by (auto simp: obj-class-def)

lemma obj-class-Arrl [simp,introl,dest]:
tag obj = Arr T k = obj-class obj = Object
by (auto simp: obj-class-def)

lemma obj-ty-obj-class: Grobj-ty obj= Class statC = GFobj-class obj <¢ statC
apply (case-tac tag obj)

apply (auto simp add: obj-ty-def obj-class-def)

apply (case-tac statC = Object)

apply (auto dest: widen-Array-Class)

done

object references

type-synonym oref = loc + gtname — generalized object reference

translations
(type) oref <= (type) loc + qtname

abbreviation (input)

Heap :: loc = oref where Heap = Inl
abbreviation (input)

Stat :: qtname = oref where Stat = Inr

definition
fields-table :: prog = gtname = (fspec = field = bool) = (fspec, ty) table where
fields-table G C P =
map-option type o table-of (filter (case-prod P) (DeclConcepts.fields G C))

lemma fields-table-Somel:

[table-of (DeclConcepts.fields G C) n = Some f; P n f]
= fields-table G C P n = Some (type f)
apply (unfold fields-table-def)

apply clarsimp

apply (rule exI)

apply (rule conjI)

apply (erule map-of-filter-in)

apply assumption

apply simp

done

lemma fields-table-SomeD’: fields-table G C P fn = Some T —
3f. (fn,f)€set(DeclConcepts.fields G C) A type f = T

apply (unfold fields-table-def)

apply clarsimp

apply (drule map-of-SomeD)

apply auto

done
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lemma fields-table-SomeD:

[fields-table G C' P fn = Some T; unique (DeclConcepts.fields G C)] =
3f. table-of (DeclConcepts.fields G C) fn = Some f A type f = T

apply (unfold fields-table-def)

apply clarsimp

apply (rule exl)

apply (rule conjI)

apply (erule table-of-filter-unique-SomeD)

apply assumption

apply simp

done

definition
in-bounds :: int = int = bool («(-/ in'-bounds -)» [50, 51] 50)
where ¢ in-bounds k = (0 < i AN i < k)

definition
arr-comps :: 'a = int = int = 'a option
where arr-comps T k = (Ai. if © in-bounds k then Some T else None)

definition
var-tys :: prog = obj-tag = oref = (vn, ty) table where
var-tys G oi r =
(case T of
Heap a = (case oi of
Clnst C' = fields-table G C (An f. —static f) (+) Map.empty
| Arr T k = Map.empty (+) arr-comps T k)
| Stat C = fields-table G C (Afn f. declclassf fn = C A static f)
(+) Map.empty)

lemma var-tys-Some-eq:
var-tys G ot r n = Some T
= (case 1 of
Inl a = (case oi of
CInst C = (Int. n = Inl nt A fields-table G C (An f.
—static f) nt = Some T)
| Arrtk = (3 é.n=1Inri Aiinboundsk At =T))
| Inr C = (3nt. n = Inl nt A
fields-table G C' (Mfn f. declclassf fn = C A static f) nt
= Some T))
apply (unfold var-tys-def arr-comps-def)
apply (force split: sum.split-asm sum.split obj-tag.split)
done

stores

type-synonym globs — global variables: heap and static variables
= (oref , obj) table

type-synonym heap
= (loc , obj) table

translations
(type) globs <= (type) (oref , obj) table
(type) heap <= (type) (loc , obj) table

datatype st =
st globs locals
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2 access

definition
globs :: st = globs
where globs = case-st (Ag l. g)

definition
locals :: st = locals
where locals = case-st (Ag l. )

definition heap :: st = heap where
heap s = globs s o Heap

lemma globs-def2 [simp]: globs (st gl) = g
by (simp add: globs-def)

lemma locals-def2 [simp]: locals (st g 1) =1
by (simp add: locals-def)

lemma heap-def2 [simp]: heap s a=globs s (Heap a)
by (simp add: heap-def)

abbreviation val-this :: st = wval
where val-this s == the (locals s This)

abbreviation lookup-obj :: st = val = obj
where lookup-obj s a’ == the (heap s (the-Addr a'))

3 memory allocation

definition
new-Addr :: heap = loc option where
new-Addr h = (if (Ya. h a # None) then None else Some (SOME a. h a = None))

lemma new-AddrD: new-Addr h = Some a = h a = None
apply (auto simp add: new-Addr-def)

apply (erule somel)

done

lemma new-AddrD2: new-Addr h = Some a => Vb. h b # None — b # a
apply (drule new-AddrD)

apply auto

done

lemma new-Addr-Somel: h a = None —> 3b. new-Addr h = Some b A\ h b = None
apply (simp add: new-Addr-def)

apply (fast intro: somel2)

done

4 initialization
abbreviation init-vals :: ('a, ty) table = ('a, val) table
where init-vals vs == map-option default-val o vs

lemma init-arr-comps-base [simp]: init-vals (arr-comps T 0) = Map.empty
apply (unfold arr-comps-def in-bounds-def)

apply (rule ext)

apply auto
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done

lemma init-arr-comps-step [simpl:
0 < j = init-vals (arr-comps T j )=
(init-vals (arr-comps T (j — 1)))(j — 1—default-val T)
apply (unfold arr-comps-def in-bounds-def)
apply (rule ext)
apply auto
done

5 update

definition
gupd :: oref = obj = st = st (<gupd'(-—-")> [10, 10] 1000)
where gupd r obj = case-st (Ag l. st (g(r—o0bj)) )

definition
lupd :: lname = val = st = st (lupd’(+—-")» [10, 10] 1000)
where lupd vn v = case-st (A\g . st g (I(vn—v)))

definition
upd-gobj :: oref = vn = val = st = st
where upd-gobj r n v = case-st (Ag l. st (chg-map (upd-obj n v) r g) 1)

definition
set-locals :: locals = st = st
where set-locals | = case-st (Ag 1. st g 1)

definition
init-obj :: prog = obj-tag = oref = st = st
where init-obj G oi r = gupd(r—(tag=oi, values=init-vals (var-tys G oi r)))

abbreviation
init-class-obj :: prog = qtname = st = st
where init-class-obj G C == init-obj G undefined (Inr C)

lemma gupd-def2 [simp]: gupd(r—obj) (st g 1) = st (g(r—obj)) I
apply (unfold gupd-def)

apply (simp (no-asm))

done

lemma lupd-def2 [simp]: lupd(vn—v) (st g 1) = st g (I(vn—v))
apply (unfold lupd-def)

apply (simp (no-asm))

done

lemma globs-gupd [simp]: globs (gupd(r—obj) s) = (globs s)(r—obj)
apply (induct s)
by (simp add: gupd-def)

lemma globs-lupd [simp]: globs (lupd(vn—v ) s) = globs s
apply (induct s)
by (simp add: lupd-def)

lemma locals-gupd [simp]: locals (gupd(r—o0bj) s) = locals s
apply (induct s)
by (simp add: gupd-def)

lemma locals-lupd [simp]: locals (lupd(vn—v ) s) = (locals s)(vn—uv )
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apply (induct s)
by (simp add: lupd-def)

lemma globs-upd-gobj-new [rule-format (no-asm), simpl:
globs s 1 = None — globs (upd-gobj r n v s) = globs s

apply (unfold upd-gobj-def)

apply (induct s)

apply auto

done

lemma globs-upd-gobj-upd [rule-format (no-asm), simpl:

globs s r=Some obj—> globs (upd-gobj r n v s) = (globs s)(r—upd-obj n v obj)
apply (unfold upd-gobj-def)

apply (induct s)

apply auto

done

lemma locals-upd-gobj [simp]: locals (upd-gobj r n v s) = locals s
apply (induct s)
by (simp add: upd-gobj-def)

lemma globs-init-obj [simp]: globs (init-obj G oi r s) t =
(if t=r then Some (tag=oi,values=init-vals (var-tys G oi )| else globs s t)
apply (unfold init-obj-def)
apply (simp (no-asm))
done

lemma locals-init-obj [simp]: locals (init-obj G oi r s) = locals s
by (simp add: init-obj-def)

lemma surjective-st [simp]: st (globs s) (locals s) = s
apply (induct s)
by auto

lemma surjective-st-init-obj:

st (globs (init-obj G oi r s)) (locals s) = init-obj G 0i r s
apply (subst locals-init-obj [THEN sym)])

apply (rule surjective-st)

done

lemma heap-heap-upd [simp]:
heap (st (g(Inl a—o0bj)) 1) = (heap (st g 1))(a— o0bj)
apply (rule ext)
apply (simp (no-asm))
done
lemma heap-stat-upd [simpl: heap (st (g(Inr Cr—obj)) 1) = heap (st g 1)
apply (rule ext)
apply (simp (no-asm))
done
lemma heap-local-upd [simp]: heap (st g (I(vn—wv))) = heap (st g 1)
apply (rule ext)
apply (simp (no-asm))
done

lemma heap-gupd-Heap [simp|: heap (gupd(Heap a—o0bj) s) = (heap s)(ar— o0bj)
apply (rule ext)

apply (simp (no-asm))

done
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lemma heap-gupd-Stat [simp]: heap (gupd(Stat Cv—obj) s) = heap s
apply (rule ext)

apply (simp (no-asm))

done

lemma heap-lupd [simp]: heap (lupd(vn—v) s) = heap s

apply (rule ext)

apply (simp (no-asm))

done

lemma heap-upd-gobj-Stat [simp]: heap (upd-gobj (Stat C) n v s) = heap s
apply (rule ext)

apply (simp (no-asm))

apply (case-tac globs s (Stat C'))

apply auto

done

lemma set-locals-def2 [simp]: set-locals | (st g 1) = st gl
apply (unfold set-locals-def)

apply (simp (no-asm))

done

lemma set-locals-id [simp]: set-locals (locals s) s = s
apply (unfold set-locals-def)

apply (induct-tac s)

apply (simp (no-asm))

done

lemma set-set-locals [simp): set-locals 1 (set-locals 1" s) = set-locals | s
apply (unfold set-locals-def)

apply (induct-tac s)

apply (simp (no-asm))

done

lemma locals-set-locals [simp]: locals (set-locals | s) = 1
apply (unfold set-locals-def)

apply (induct-tac s)

apply (simp (no-asm))

done

lemma globs-set-locals [simp]: globs (set-locals | s) = globs s
apply (unfold set-locals-def)

apply (induct-tac s)

apply (simp (no-asm))

done

lemma heap-set-locals [simp]: heap (set-locals I s) = heap s
apply (unfold heap-def)

apply (induct-tac s)

apply (simp (no-asm))

done

abrupt completion
primrec the-Xcpt :: abrupt = zcpt
where the-Xcpt (Xept ) = ¢

primrec the-Jump :: abrupt => jump
where the-Jump (Jump j) = j



Theory State

primrec the-Loc :: zcpt = loc
where the-Loc (Loc a) = a

primrec the-Std :: xcpt = zname
where the-Std (Std z) = «

definition
abrupt-if :: bool = abopt = abopt = abopt
where abrupt-if ¢ 2’ © = (if ¢ A (z = None) then z’ else x)

lemma abrupt-if- True-None [simp]: abrupt-if True x None = x
by (simp add: abrupt-if-def)

lemma abrupt-if-True-not-None [simp|: x # None = abrupt-if True z y # None
by (simp add: abrupt-if-def)

lemma abrupt-if-False [simp]: abrupt-if False zy =y
by (simp add: abrupt-if-def)

lemma abrupt-if-Some [simp]: abrupt-if ¢ © (Some y) = Some y
by (simp add: abrupt-if-def)

lemma abrupt-if-not-None [simp]: y # None = abrupt-if cx y =y
apply (simp add: abrupt-if-def)
by auto

lemma split-abrupt-if:
P (abrupt-if ¢ 2’ z) =
((¢ N @ = None — Pz') A (- (¢ A z = None) — P z))
apply (unfold abrupt-if-def)
apply (split if-split)
apply auto
done

abbreviation raise-if :: bool = xname = abopt = abopt
where raise-if ¢ xn == abrupt-if ¢ (Some (Xcpt (Std zn)))

abbreviation np :: val = abopt = abopt
where np v == raise-if (v = Null) NullPointer

abbreviation check-neg :: val = abopt = abopt
where check-neg i’ == raise-if (the-Intg i’<0) NegArrSize

abbreviation error-if :: bool = error = abopt = abopt
where error-if ¢ e == abrupt-if ¢ (Some (Error e))

lemma raise-if-None [simp]: (raise-if ¢ x y = None) = (-c A y = None)
apply (simp add: abrupt-if-def)

by auto

declare raise-if-None [THEN iffD1, dest!]

lemma if-raise-if-None [simp]:
((f b then y else raise-if ¢ x y) = None) = ((¢ — b) A y = None)
apply (simp add: abrupt-if-def)
apply auto
done
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lemma raise-if-SomeD [dest!]:
raise-if ¢ x y = Some z => ¢ A z=(Xcpt (Std x)) A y=None V (y=Some z)
apply (case-tac y)
apply (case-tac c)
apply (simp add: abrupt-if-def)
apply (simp add: abrupt-if-def)
apply auto
done

lemma error-if-None [simp]: (error-if ¢ e y = None) = (—c¢ A y = None)
apply (simp add: abrupt-if-def)

by auto

declare error-if-None [THEN iffD1, dest!]

lemma if-error-if-None [simp]:
((if b then y else error-if ¢ e y) = None) = ((¢ — b) A y = None)
apply (simp add: abrupt-if-def)
apply auto
done

lemma error-if-SomeD [dest!]:
error-if ¢ e y = Some z = ¢ A z=(FError ¢) A y=None V (y=Some z)
apply (case-tac y)
apply (case-tac c)
apply (simp add: abrupt-if-def)
apply (simp add: abrupt-if-def)
apply auto
done

definition
absorb :: jump = abopt = abopt
where absorb j a = (if a=Some (Jump j) then None else a)

lemma absorb-SomeD [dest!]: absorb j a = Some v = a = Some z
by (auto simp add: absorb-def)

lemma absorb-same [simp]: absorb j (Some (Jump j)) = None
by (auto simp add: absorb-def)

lemma absorb-other [simp|: a # Some (Jump j) = absorbja = a
by (auto simp add: absorb-def)

lemma absorb-Some-NoneD: absorb j (Some abr) = None => abr = Jump j
by (simp add: absorb-def)

lemma absorb-Some-JumpD: absorb j s = Some (Jump j') = j'#j
by (simp add: absorb-def)

full program state

type-synonym
state = abopt x st — state including abruption information

translations
(type) abopt <= (type) abrupt option
(type) state <= (type) abopt x st

abbreviation
Norm :: st = state
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where Norm s == (None, s)

abbreviation (input)
abrupt :: state = abopt
where abrupt == fst

abbreviation (input)
store :: state = st
where store == snd

lemma single-stateE: ¥V Z. Z = (s::state) => False
apply (erule-tac x = (Some k,y) for k y in all-dupE)
apply (erule-tac x = (None,y) for y in allE)

apply clarify
done

lemma state-not-single: All ((=) (z::state)) = R

apply (drule-tac x = (if abrupt x = None then Some z' else None, y) for z’ y in spec)
apply clarsimp

done

definition
normal :: state = bool
where normal = (As. abrupt s = None)

lemma normal-def2 [simp]: normal s = (abrupt s = None)
apply (unfold normal-def)

apply (simp (no-asm))

done

definition
heap-free :: nat = state = bool
where heap-free n = (\s. atleast-free (heap (store s)) n)

lemma heap-free-def2 [simp|: heap-free n s = atleast-free (heap (store s)) n
apply (unfold heap-free-def)

apply simp

done

6 update

definition
abupd :: (abopt = abopt) = state = state
where abupd f = map-prod f id

definition
supd :: (st = st) = state = state

where supd = map-prod id

lemma abupd-def2 [simp]: abupd [ (z,s) = (f z,s)
by (simp add: abupd-def)

lemma abupd-abrupt-if-False [simp]: N\ s. abupd (abrupt-if False zo) s = s
by simp

lemma supd-def2 [simp]: supd [ (z,5) = (x,f 3)
by (simp add: supd-def)

lemma supd-lupd [simp]:
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N\ s. supd (lupd vn v ) s = (abrupt s,lupd vn v (store s))
apply (simp (no-asm-simp) only: split-tupled-all)

apply (simp (no-asm))

done

lemma supd-gupd [simp]:

N\ s. supd (gupd r obj) s = (abrupt s,gupd r obj (store s))
apply (simp (no-asm-simp) only: split-tupled-all)

apply (simp (no-asm))

done

lemma supd-init-obj [simp]:

supd (init-obj G oi r) s = (abrupt s,init-obj G oi r (store s))
apply (unfold init-obj-def)

apply (simp (no-asm))

done

lemma abupd-store-invariant [simp]: store (abupd f s) = store s
by (cases s) simp

lemma supd-abrupt-invariant [simpl: abrupt (supd f s) = abrupt s
by (cases s) simp

abbreviation set-lvars :: locals = state = state
where set-lvars | == supd (set-locals I)

abbreviation restore-lvars :: state = state = state
where restore-lvars s’ s == set-lvars (locals (store s')) s

lemma set-set-lvars [simpl: N\ s. set-lvars | (set-lvars I s) = set-lvars 1 s
apply (simp (no-asm-simp) only: split-tupled-all)

apply (simp (no-asm))

done

lemma set-lvars-id [simp]: \ s. set-lvars (locals (store s)) s = s
apply (simp (no-asm-simp) only: split-tupled-all)

apply (simp (no-asm))

done

initialisation test

definition
inited :: gtname = globs = bool
where inited C g = (g (Stat C') # None)

definition
initd :: qtname = state = bool
where initd C' = inited C o globs o store

lemma not-inited-empty [simpl: —inited C Map.empty
apply (unfold inited-def)

apply (simp (no-asm))

done

lemma inited-gupdate [simp]: inited C (g(r—obj)) = (inited C g V r = Stat C)
apply (unfold inited-def)

apply (auto split: st.split)

done
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lemma inited-init-class-obj [introl]: inited C (globs (init-class-obj G C s))

apply (unfold inited-def)

apply (simp (no-asm))
done

lemma not-initedD: — inited C ¢ = g (Stat C) = None
apply (unfold inited-def)

apply (erule notnotD)

done

lemma initedD: inited C ¢ => 3 obj. g (Stat C') = Some obj
apply (unfold inited-def)

apply auto

done

lemma initd-def2 [simp]: initd C' s = inited C (globs (store s))
apply (unfold initd-def)

apply (simp (no-asm))

done

error-free

definition
error-free :: state = bool
where error-free s = (= (3 err. abrupt s = Some (Error err)))

lemma error-free-Norm [simp,intro|: error-free (Norm s)
by (simp add: error-free-def)

lemma error-free-normal [simp,intro]: normal s => error-free s
by (simp add: error-free-def)

lemma error-free-Xcpt [simp: error-free (Some (Xcpt x),s)
by (simp add: error-free-def)

lemma error-free-Jump [simp,introl: error-free (Some (Jump j),s)
by (simp add: error-free-def)

lemma error-free-Error [simp|: error-free (Some (Error e),s) = Fualse
by (simp add: error-free-def)

lemma error-free-Some [simp,intro]:
= (3 err. x=Error err) = error-free ((Some x),s)
by (auto simp add: error-free-def)

lemma error-free-abupd-absorb [simp,intro):
error-free s = error-free (abupd (absord j) s)
by (cases s)
(auto simp add: error-free-def absorb-def
split: if-split-asm,)

lemma error-free-absorb [simp,introl:

error-free (a,s) = error-free (absorb j a, s)

by (auto simp add: error-free-def absorb-def
split: if-split-asm)

lemma error-free-abrupt-if [simp,introl:
[error-free s; = (3 err. x=Error err)]
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= error-free (abupd (abrupt-if p (Some z)) s)
by (cases s)
(auto simp add: abrupt-if-def
split: if-split)

lemma error-free-abrupt-if! [simp,intro:
[error-free (a,s); = (3 err. z=Error err)]
= error-free (abrupt-if p (Some ) a, s)
by (auto simp add: abrupt-if-def

split: if-split)

lemma error-free-abrupt-if-Xcpt [simp,introl:

error-free s

= error-free (abupd (abrupt-if p (Some (Xcept x))) )
by simp

lemma error-free-abrupt-if-Xcptl [simp,intro:
error-free (a,s)

= error-free (abrupt-if p (Some (Xcpt z)) a, )
by simp

lemma error-free-abrupt-if-Jump [simp,introl:

error-free s

= error-free (abupd (abrupt-if p (Some (Jump j))) s)
by simp

lemma error-free-abrupt-if-Jumpl [simp,introl:
error-free (a,s)

= error-free (abrupt-if p (Some (Jump 7)) a, s)
by simp

lemma error-free-raise-if [simp,introl:
error-free s = error-free (abupd (raise-if p x) s)
by simp

lemma error-free-raise-if1 [simp,intro):
error-free (a,s) = error-free ((raise-if p = a), s)
by simp

lemma error-free-supd [simp,intro]:
error-free s = error-free (supd f s)
by (cases s) (simp add: error-free-def)

lemma error-free-supd1 [simp,intro):
error-free (a,s) = error-free (a,f s)
by (simp add: error-free-def)

lemma error-free-set-lvars [simp,intro]:
error-free s = error-free ((set-lvars 1) s)
by (cases s) simp

lemma error-free-set-locals [simp,introl:
error-free (x, )

= error-free (z, set-locals | s')
by (simp add: error-free-def)

end
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Eval

1 Operational evaluation (big-step) semantics of Java expressions and state-

ments

theory Fval imports State DeclConcepts begin

improvements over Java Specification 1.0:

dynamic method lookup does not need to consider the return type (cf.15.11.4.4)

throw raises a NullPointer exception if a null reference is given, and each throw of a standard
exception yield a fresh exception object (was not specified)

if there is not enough memory even to allocate an OutOfMemory exception, evaluation/exe-
cution fails, i.e. simply stops (was not specified)

array assignment checks lhs (and may throw exceptions) before evaluating rhs

fixed exact positions of class initializations (immediate at first active use)

design issues:

evaluation vs. (single-step) transition semantics evaluation semantics chosen, because:

++ less verbose and therefore easier to read (and to handle in proofs)
+ more abstract

+ intermediate values (appearing in recursive rules) need not be stored explicitly, e.g. no
call body construct or stack of invocation frames containing local variables and return
addresses for method calls needed

+ convenient rule induction for subject reduction theorem
- no interleaving (for parallelism) can be described

- stating a property of infinite executions requires the meta-level argument that this prop-
erty holds for any finite prefixes of it (e.g. stopped using a counter that is decremented
to zero and then throwing an exception)

unified evaluation for variables, expressions, expression lists, statements
the value entry in statement rules is redundant

the value entry in rules is irrelevant in case of exceptions, but its full inclusion helps to make
the rule structure independent of exception occurrence.

as irrelevant value entries are ignored, it does not matter if they are unique. For simplicity,
(fixed) arbitrary values are preferred over "free" values.

211
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¢ the rule format is such that the start state may contain an exception.

++ faciliates exception handling
+ symmetry
e the rules are defined carefully in order to be applicable even in not type-correct situations
(yielding undefined values), e.g. the-Addr (Val (Bool b)) = undefined.
++ fewer rules
- less readable because of auxiliary functions like the-Addr

Alternative: "defensive" evaluation throwing some InternalError exception in case of (impos-
sible, for correct programs) type mismatches

e there is exactly one rule per syntactic construct
+ no redundancy in case distinctions

« halloc fails iff there is no free heap address. When there is only one free heap address left, it
returns an OutOfMemory exception. In this way it is guaranteed that when an OutOfMemory
exception is thrown for the first time, there is a free location on the heap to allocate it.

o the allocation of objects that represent standard exceptions is deferred until execution of any
enclosing catch clause, which is transparent to the program.

- requires an auxiliary execution relation

++ avoids copies of allocation code and awkward case distinctions (whether there is enough
memory to allocate the exception) in evaluation rules

o unfortunately new-Addr is not directly executable because of Hilbert operator.
simplifications:

o local variables are initialized with default values (no definite assignment)
o garbage collection not considered, therefore also no finalizers
o stack overflow and memory overflow during class initialization not modelled

o exceptions in initializations not replaced by ExceptionInlnitializerError

type-synonym vvar = val x (val = state = state)
type-synonym vals = (val, vvar, val list) sum3
translations
(type) vvar <= (type) val X (val = state = state)
(type) vals <= (type) (val, vvar, val list) sum3

To avoid redundancy and to reduce the number of rules, there is only one evaluation rule for each
syntactic term. This is also true for variables (e.g. see the rules below for LVar, FVar and AVar).
So evaluation of a variable must capture both possible further uses: read (rule Acc) or write (rule
Ass) to the variable. Therefor a variable evaluates to a special value vvar, which is a pair, consisting
of the current value (for later read access) and an update function (for later write access). Because
during assignment to an array variable an exception may occur if the types don’t match, the update
function is very generic: it transforms the full state. This generic update function causes some
technical trouble during some proofs (e.g. type safety, correctness of definite assignment). There
we need to prove some additional invariant on this update function to prove the assignment correct,
since the update function could potentially alter the whole state in an arbitrary manner. This
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invariant must be carried around through the whole induction. So for future approaches it may be
better not to take such a generic update function, but only to store the address and the kind of
variable (array (+ element type), local variable or field) for later assignment.

abbreviation
dummy-res :: vals (<)
where == In1 Unit

abbreviation (input)
val-inj-vals (<|-]e> 1000)
where |e| == Inl e

abbreviation (input)
var-inj-vals (<|-],> 1000)
where |v|, == In2 v

abbreviation (input)
Ist-ing-vals (<|-|p 1000)
where |es|; == In3 es

definition undefined3 :: (‘al + 'ar, 'b, 'c) sum3 = vals where
undefined3 = case-sum8 (Inl o case-sum (Az. undefined) (Az. Unit))
(Az. In2 undefined) (Az. In3 undefined)

lemma [simp]: undefined3 (In1l x) = Inl undefined
by (simp add: undefined3-def)

lemma [simp]: undefined3 (Inir z) = <
by (simp add: undefined3-def)

lemma [simp]: undefined3 (In2 z) = In2 undefined
by (simp add: undefined3-def)

lemma [simp]: undefined3 (In3 z) = In3 undefined
by (simp add: undefined3-def)

exception throwing and catching

definition
throw :: val = abopt = abopt where
throw a’ © = abrupt-if True (Some (Xcpt (Loc (the-Addr a’)))) (np a’ z)

lemma throw-def2:

throw o’ © = abrupt-if True (Some (Xcpt (Loc (the-Addr a’)))) (np a’ z)
apply (unfold throw-def)

apply (simp (no-asm))

done

definition
fits :: prog = st = wval = ty = bool («-,-+- fits -»[61,61,61,61]60)
where G,ska’ fits T = ((3rt. T=RefT rt) — a’=Null V GFobj-ty(lookup-obj s a")=T)

lemma fits-Null [simp]: G,s-Null fits T
by (simp add: fits-def)

lemma fits-Addr-RefT [simp]:
G,s-Addr a fits RefT t = GFobj-ty (the (heap s a))=<RefT t
by (simp add: fits-def)
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lemma fitsD: AX. G,sta’ fits T = (Ipt. T = PrimT pt) V
(3¢. T = RefT't) A a’ = Null v
(3t. T = RefT t) A a’ # Null A GFobj-ty (lookup-obj s a’)=<T

apply (unfold fits-def)

apply (case-tac Ipt. T = PrimT pt)

apply simp-all

apply (case-tac T)

defer

apply (case-tac a’ = Null)

apply simp-all

done

definition
catch :: prog = state = gtname = bool (¢-,--catch -»[61,61,61]60) where
G,stcatch C = (3 xe. abrupt s=Some (Xcpt zc) A
G,store stAddr (the-Loc xc) fits Class C')

lemma catch-Norm [simp]: =G,Norm st-catch tn
apply (unfold catch-def)

apply (simp (no-asm))

done

lemma catch-XeptLoc [simpl:
G,(Some (Xcpt (Loc a)),s)Fcatch C = G,s-Addr a fits Class C
apply (unfold catch-def)
apply (simp (no-asm))
done

lemma catch-Jump [simp]: = G,(Some (Jump j),s)Fcatch tn
apply (unfold catch-def)

apply (simp (no-asm))

done

lemma catch-Error [simp]: =G,(Some (Error €),s)Fcatch tn
apply (unfold catch-def)

apply (simp (no-asm))

done

definition
new-zcpt-var :: vname = state = state where
new-zept-var vn = (A(z,s). Norm (lupd( VName vn— Addr (the-Loc (the-Xcpt (the x)))) s))

lemma new-zcpt-var-def2 [simpl:
new-zept-var vn (z,8) =
Norm (lupd( VName vn— Addr (the-Loc (the-Xcpt (the z)))) s)
apply (unfold new-zcpt-var-def)
apply (simp (no-asm))
done

misc

definition
assign :: ('a = state = state) = 'a = state = state where
assign f v = (N(z,s). let (z',s") = (if x = None then f v else id) (z,s)
in (z',if x' = None then s’ else s))
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lemma assign-Norm-Norm [simp]:
fv (Norm s) = Norm s’ = assign f v (Norm s) = Norm s’
by (simp add: assign-def Let-def)

lemma assign-Norm-Some [simp]:

labrupt (f v (Norm s)) = Some y]

= assign fv (Norm s) = (Some y,s)
by (simp add: assign-def Let-def split-beta)

lemma assign-Some [simp]:
assign f v (Some x,s) = (Some x,s)
by (simp add: assign-def Let-def split-beta)

lemma assign-Somel [simp]: — normal s => assign fv s = s
by (auto simp add: assign-def Let-def split-beta)

lemma assign-supd [simp]:
assign (Av. supd (fv)) v (z,s)
= (z, if © = None then f v s else s)
apply auto
done

lemma assign-raise-if [simp]:
assign (A (z,s). ((raise-if (b s v) xept) z, fvs)) v (z, s) =
(raise-if (b s v) zept x, if x=None A\ —b s v then fv s else s)
apply (case-tac z = None)
apply auto
done

definition
init-comp-ty :: ty = stmt
where init-comp-ty T = (if (3C. T = Class C) then Init (the-Class T) else Skip)

lemma init-comp-ty-PrimT [simp]: init-comp-ty (PrimT pt) = Skip
apply (unfold init-comp-ty-def)

apply (simp (no-asm))

done

definition
invocation-class :: inv-mode = st = wval = ref-ty = gtname where
invocation-class m s a' statT =
(case m of
Static = if (3 statC. statT = ClassT statC)
then the-Class (RefT statT)
else Object
| SuperM = the-Class (RefT statT)
| IntVir = obj-class (lookup-obj s a’))

definition
invocation-declclass :: prog = inv-mode = st = val = ref-ty = sig = qtname where
invocation-declclass G m s a’ statT sig =
declclass (the (dynlookup G statT
(invocation-class m s o’ statT)
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sig))

lemma invocation-class-IntVir [simp):
invocation-class IntVir s o’ statT = obj-class (lookup-obj s a’)
by (simp add: invocation-class-def)

lemma dynclass-SuperM [simpl:
invocation-class SuperM s o’ statT = the-Class (RefT statT)
by (simp add: invocation-class-def)

lemma invocation-class-Static [simp]:
invocation-class Static s a’ statT = (if (3 statC. statT = ClassT statC')
then the-Class (RefT statT)
else Object)
by (simp add: invocation-class-def)

definition

init-lvars :: prog = qtname = sig = inv-mode = val = wval list = state = state
where

init-lvars G C sig mode a’ pvs =

(A(z,s).
let m = mithd (the (methd G C sig));
l=MXEk.
(case k of

EName e
= (case e of
VNam v = (Map.empty ((pars m)[—]pvs)) v
| Res = None)
| This
= (if mode==Static then None else Some a'))
in set-lvars | (if mode = Static then x else np o’ x,s))

lemma init-lvars-def2: — better suited for simplification
ingt-lvars G C sig mode a’ pvs (x,8) =
set-lvars
(A k.
(case k of
EName e
= (case e of
VNam v
= (Map.empty ((pars (mthd (the (methd G C sig))))[—]pvs)) v
| Res = None)
| This
= (if mode==Static then None else Some a')))
(if mode = Static then z else np a’ x,s)
apply (unfold init-lvars-def)
apply (simp (no-asm) add: Let-def)
done

definition
body :: prog = gtname = sig = expr where
body G C sig =
(let m = the (methd G C sig)
in Body (declclass m) (stmt (mbody (mthd m))))

lemma body-def2: — better suited for simplification
body G C sig = Body (declclass (the (methd G C sig)))
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(stmt (mbody (mthd (the (methd G C sig)))))
apply (unfold body-def Let-def)
apply auto
done

variables

definition
lvar :: lname = st = vvar
where lvar vn s = (the (locals s vn), Av. supd (lupd(vn—v)))

definition
fvar :: gtname = bool = vname = val = state = vvar X state where
fvar C stat fn a’ s =
(let (oref,xf) = if stat then (Stat C,id)
else (Heap (the-Addr a’),np a);
n = Inl (fn,C);
f = (M. supd (upd-gobj oref n v))
in ((the (values (the (globs (store s) oref)) n),f),abupd zf s))

definition
avar :: prog = val = wval = state = vvar x state where
avar Gi'a' s =
(let oref = Heap (the-Addr a’);
i = the-Intg i’
n = Inr i;
(T,k,cs) = the-Arr (globs (store s) oref);
f= (v (z,s). (raise-if (—~G,stv fits T)
ArrStore x
,upd-gobj oref n v s))
in ((the (cs n),f),abupd (raise-if (—i in-bounds k) IndOutBound o np a’) s))

lemma fvar-def2: — better suited for simplification
fvar C stat fn a’ s =
((the
(values
(the (globs (store s) (if stat then Stat C else Heap (the-Addr a"))))
(Il (fn,C)))
,(Av. supd (upd-gobj (if stat then Stat C else Heap (the-Addr a’))
(Inl (fn,C))
v)))

,abupd (if stat then id else np a’) )

apply (unfold fvar-def)
apply (simp (no-asm) add: Let-def split-beta)
done

lemma avar-def2: — better suited for simplification
avar G i’ a’ s =
((the ((snd(snd(the-Arr (globs (store s) (Heap (the-Addr a))))))
(Inr (the-Intg i’)))
S (z,8"). (raise-if (—G,s'Fo fits (fst(the-Arr (globs (store )
(Heap (the-Addr a'))))))
ArrStore x
,upd-gobj (Heap (the-Addr a’))
(Inr (the-Intg i')) v s')))
,abupd (raise-if (—(the-Intg i’) in-bounds (fst(snd(the-Arr (globs (store s)
(Heap (the-Addr o”))))))) IndOutBound o np a’)
s)
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apply (unfold avar-def)
apply (simp (no-asm) add: Let-def split-beta)
done

definition
check-field-access :: prog = qtname = gtname = vname = bool = wval = state = state where
check-field-access G accC statDeclC' fn stat o’ s =
(let oref = if stat then Stat statDeclC
else Heap (the-Addr a');
dynC = case oref of
Heap a = obj-class (the (globs (store s) oref))
| Stat C = C}
[ = (the (table-of (DeclConcepts.fields G dynC) (fn,statDeclC)))
in abupd
(error-if (= GrField fn (statDeclC,f) in dynC dyn-accessible-from accC')
AccessViolation)
5)

definition
check-method-access :: prog = gtname = ref-ty = inv-mode = sig = val = state = state where
check-method-access G accC statT mode sig a’' s =
(let invC = invocation-class mode (store s) a’ statT;
dynM = the (dynlookup G statT invC' sig)
in abupd
(error-if (= GFMethd sig dynM in invC dyn-accessible-from accC')
AccessViolation)
5)

evaluation judgments

inductive
halloc :: [prog,state,obj-tag,loc,state]=bool (<-+- —halloc ---— -»[61,61,61,61,61]60) for G::prog
where — allocating objects on the heap, cf. 12.5

Abrupt:
GF(Some z,s) —halloc oi-undefined— (Some ,s)

| New: [new-Addr (heap s) = Some a;
(z,0i") = (if atleast-free (heap s) (Suc (Suc 0)) then (None,o1)
else (Some (Xept (Loc a)),CInst (SXcpt OutOfMemory)))]
—
GFNorm s —halloc oi-a— (z,init-obj G oi’ (Heap a) s)

inductive szalloc :: [prog,state,state]=bool («-+- —szalloc— -y[61,61,61]60) for G::prog
where — allocating exception objects for standard exceptions (other than OutOfMemory)

Norm: GF Norm s —szalloc— Norm s
| Jmp:  GH(Some (Jump j), s) —szalloc— (Some (Jump 7), s)
| Error: GH(Some (Error e), s) —szalloc— (Some (Error €), s)
| XeptL: GH(Some (Xcept (Loc a) ),s) —szalloc— (Some (Xept (Loc a)),s)
| SXcpt: [GENorm s0 —halloc (Clnst (SXept an))-a— (z,s1)] =

GH(Some (Xept (Std zn)),s0) —szalloc— (Some (Xcpt (Loc a)),s1)

inductive
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eval :: [prog,state,term,vals,state]=bool (<-+- —-=— '(-, -")» [61,61,80,0,0]60)
and ezec :[prog,state,stmt ,state]=bool(<-+- —-— -» [61,61,65, 61]60)

and evar ::[prog,state,var ,vvar,state]=bool(<-+- —-=>-— -»[61,61,90,61,61]60)
and eval’:[prog,state,expr ,val ,state]= bool(<-+- —-—=-— -[61,61,80,61,61]60)
and evals::[prog,state,expr list ,
val list ,state]=bool(<-+- —-=>-— -»[61,61,61,61,61]60)
for G::prog
where

Grs —c —  s'= GFs —Inlr c=— (O, §')
| Gks —e—>=v —»  s'= GFs —Inll e=— (Inl v, §')
| Gks —e=>-vf—  s'= Gks —In2 e-— (In2 of, s')
| GFs —e=~v —  s'= Gks —In3 e-— (In3 v, s')

— propagation of abrupt completion

—cf. 14.1, 15.5
| Abrupt:
GH(Some zc,s) —t—-— (undefined3 t, (Some zc, s))

— execution of statements

— cf. 14.5
| Skip: G+HNorm s —Skip— Norm s

—cf. 14.7
| Expr: [GFNorm s0 —e—>v— s1] =
GFNorm s0 —FExpr e— sl

| Lab: [GFNorm s0 —c¢ — sl1] =
GHNorm s0 —I- c— abupd (absord l) si
—cf. 14.2
| Comp: [GFNorm s0 —cl — s1;
GF 51 —c2 — 2] =
GFNorm s0 —cl;; c2— s2

— cf. 14.8.2
| If: [GFNorm sO0 —e—>=b— s1;
GF  s1—(if the-Bool b then cl else ¢2)— s2] =
GFNorm s0 —If(e) c1 Else c2 — s2

— cf. 14.10, 14.10.1

— A continue jump from the while body c¢ is handled by this rule. If a continue jump with the proper
label was invoked inside ¢ this label (Cont 1) is deleted out of the abrupt component of the state before the
iterative evaluation of the while statement. A break jump is handled by the Lab Statement Lab | (while. . .).
| Loop: [GFNorm s0 —e—>=b— s1;

if the-Bool b
then (GFsl —c— s2 A
GH(abupd (absorb (Cont 1)) s2) —I- While(e) c— s3)
else s8 = sl] =
GFNorm s0 —I- While(e) c— s3

| Jmp: GENorm s —Jmp j— (Some (Jump j), s)
— cf. 14.16

| Throw: [GFNorm s0 —e—>=a'— s1] =
GFNorm s0 — Throw e— abupd (throw a’) si



220

—cf. 14.18.1
| Try: [GENorm s0 —cl1— s1; GFsl —szalloc— s2;
if G,s2Fcatch C then Ghnew-zept-var vn s2 —c2— 83 else 83 = s2] =
GFNorm s0 —Try c1 Catch(C vn) c2— s3

— cf. 14.18.2
| Fin: [GFNorm s0 —cl— (z1,s1);
GFNorm sl —c2— s2;
s3=(if (3 err. x1=Some (Error err))
then (z1,s1)
else abupd (abrupt-if (x1s#None) z1) s2) |
N
GFNorm s0 —cl Finally c2— s3
—cf. 12.4.2, 85
| Init: [the (class G C) = ¢;
if inited C (globs s0) then s8 = Norm s0
else (GFNorm (init-class-obj G C' s0)
—(if C = Object then Skip else Init (super ¢))— s1 A
Gtset-lvars Map.empty s1 —init c— s2 A s8 = restore-lvars sl s2)]
—
GFNorm s0 —Init C— s3
— This class initialisation rule is a little bit inaccurate. Look at the exact sequence: (1) The current
class object (the static fields) are initialised (init-class-obj), (2) the superclasses are initialised, (3) the static
initialiser of the current class is invoked. More precisely we should expect another ordering, namely 2 1 3.
But we can’t just naively toggle 1 and 2. By calling init-class-obj before initialising the superclasses, we
also implicitly record that we have started to initialise the current class (by setting an value for the class
object). This becomes crucial for the completeness proof of the axiomatic semantics AzCompl.thy. Static
initialisation requires an induction on the number of classes not yet initialised (or to be more precise, classes
were the initialisation has not yet begun). So we could first assign a dummy value to the class before superclass
initialisation and afterwards set the correct values. But as long as we don’t take memory overflow into account
when allocating class objects, we can leave things as they are for convenience.
— evaluation of expressions

—cf. 15.8.1, 12.4.1
| NewC: [GFNorm s0 —Init C— s1;
G- sl —halloc (Clnst C)=a— 2] =
GFNorm s0 —NewC C—>Addr a— s2

—cf. 15.9.1, 12.4.1
| NewA: [GFNorm sO —init-comp-ty T— s1; Gksl —e—>i'— s2;
Grabupd (check-neg i') s2 —halloc (Arr T (the-Intg i'))-a— s3] =
GFNorm s0 —New T[e]—>Addr a— s3

— cf. 15.15
| Cast: [GF-Norm s0 —e—»>v— s1;
s2 = abupd (raise-if (—G,store sitwv fits T) ClassCast) s1] =
GF-Norm s0 —Cast T e—>v— 52

—cf. 15.19.2
| Inst: [GFNorm s0 —e—>=v— s1;
b = (v£Null A G,store sitv fits RefT T)] =
GFNorm s0 —e InstOf T—> Bool b— sl

—cf. 15.7.1
| Lit: GFNorm s —Lit v—>=v— Norm s

| UnOp: [GFNorm s0 —e—»v— s1]
= G+Norm s0 —UnOp unop e—>(eval-unop unop v)— s1
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| BinOp: [GFNorm s0 —el—>vl— sl1;
GFs1 —(if need-second-arg binop vl then (Inl1l e2) else (Inir Skip))
=— (Inl v2, s2)

= GFNorm s0 —BinOp binop el e2—=(eval-binop binop vl v2)— s2

— cf. 15.10.2
| Super: G-Norm s —Super—-val-this s— Norm s

—cf. 15.2
| Ace: [GFNorm sO0 —va=>(v,f)— s1] =
GFNorm s0 —Acc va—>=v— sl

—cf. 15.25.1
| Ass: [GFNorm s0 —va=>(w,f)— s1;
G- sl —e—>v — 2] =
GFNorm s0 —va:=e—>=v— assign f v s2

—cf. 15.24
| Cond: [GFNorm s0 —e0—=b— si;
G- sl —(if the-Bool b then el else e2)—>-v— $2] =
GHNorm s0 —e0 ? el : e2—>=v— s2

— The interplay of Call, Methd and Body: Method invocation is split up into these three rules:

Call Calculates the target address and evaluates the arguments of the method, and then performs dynamic
or static lookup of the method, corresponding to the call mode. Then the Methd rule is evaluated on
the calculated declaration class of the method invocation.

Methd A syntactic bridge for the folded method body. It is used by the axiomatic semantics to add the proper
hypothesis for recursive calls of the method.

Body An extra syntactic entity for the unfolded method body was introduced to properly trigger class ini-
tialisation. Without class initialisation we could just evaluate the body statement.

— cf. 15.11.4.1, 15.11.4.2, 15.11.4.4, 15.11.4.5
| Call:
[G-Norm s0 —e—=a’— s1; GFsl —args==vs— s2;
D = invocation-declclass G mode (store s2) a’ statT (name=mn,parTs=pTs|;
s3=init-lvars G D (name=mn,parTs=pTs)) mode a’ vs s2;
$3' = check-method-access G accC statT mode (name=mn,parTs=pTs) a’ s3;
GFs3' —Methd D (name=mn,parTs=pTs))—~v— s4]
_—
GF-Norm s0 —{accC,statT ,mode}e-mn({pTs}args)—v— (restore-lvars s2 s4)
— The accessibility check is after init-lvars, to keep it simple. init-lvars already tests for the absence of a
null-pointer reference in case of an instance method invocation.

| Methd: [G-Norm sO0 —body G D sig—=v— s1] =
G+Norm s0 —Methd D sig—»-v— sl

| Body: [GF-Norm s0 —Init D— s1; Gksl —c— 82;
s8 = (if (3 l. abrupt s2 = Some (Jump (Break 1)) V
abrupt s2 = Some (Jump (Cont 1)))

then abupd (A x. Some (Error CrossMethodJump)) s2
else s2)] =

GFNorm s0 —Body D c—>the (locals (store s2) Result)

—abupd (absorb Ret) s3
—of. 14.15, 12.4.1
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— We filter out a break/continue in s2, so that we can proof definite assignment correct, without the need
of conformance of the state. By this the different parts of the typesafety proof can be disentangled a little.

— evaluation of variables

— cf. 15.13.1, 15.7.2
| LVar: G-Norm s —LVar vn=>lvar vn s— Norm s

—cf. 15.10.1, 12.4.1
| FVar: [G-Norm s0 —Init statDeclC— s1; GFsl —e—=a— s2;
(v,827) = fvar statDeclC stat fn a s2;
$8 = check-field-access G accC statDeclC fn stat a s2' ] =
GFNorm s0 —{accC,statDeclC,stat}e..fn=-v— s3
— The accessibility check is after fvar, to keep it simple. fvar already tests for the absence of a null-pointer
reference in case of an instance field

—ef. 15.12.1, 15.25.1
| AVar: [GF- Norm s0 —el—»a— s1; GFsl —e2—>=i— s2;
(v,82") = avar G i a s2] =
GFNorm s0 —el .[e2]=-v— s2’

— evaluation of expression lists

—cf. 15.11.4.2
| NVil:
GFNorm s0 —[|=>[]— Norm s0

—cf. 15.6.4
| Cons: [GF-Norm s —e —= v — s1;
G sl —es=-uvs— s2] =
GFNorm s0 —e#es==v#vs— s2

ML «

ML-Thms.bind-thm (eval-induct, rearrange-prems
[0,1,2,8,4,30,31,27,15,16,
17,18,19,20,21,3,5,25,26,23,6,
7,11,9,13,14,12,22,10,28,

29,24] @{thm eval.induct})

>

declare if-split  [split del] if-split-asm  [split del]

option.split [split del] option.split-asm [split del]
inductive-cases halloc-elim-cases:
GF(Some zc,s) —halloc 0i=a— s’
G+-(Norm  s) —halloc oi-a— s’

inductive-cases szalloc-elim-cases:
G+ Norm s —szalloc— s’
F(Some (Jump j),s) —szalloc— s’
Gr(Some (Error e),s) —szalloc— s’
F(Some (Xcpt (Loc a)),s) —szalloc— s’
GH(Some (Xept (Std zn)),s) —szalloc— s’
inductive-cases szalloc-cases: G+s —szalloc— s’

lemma szalloc-elim-cases2: [Gks —szalloc— s’
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As. [s'= Norm s] = P;
Nj s. [s" = (Some (Jump j),s)] = P;
Ne s. [s" = (Some (Error e),s)] = P;
Na s. [s" = (Some (Xept (Loc a)),s)] = P
=P
apply cut-tac
apply (erule szalloc-cases)
apply blast+
done

declare not-None-eq [simp del]
declare split-paired-All [simp del] split-paired-Ex [simp del]
setup «map-theory-simpset (fn ctat => ctat |> Simplifier.del-loop split-all-tac))

inductive-cases eval-cases: Grs —t=— (v, s')

inductive-cases eval-elim-cases [cases set]:

G+ (Some zc,s) —t =— (v, s)
G+-Norm s —Inlr Skip == (z, s
G+-Norm s —Inlr (Jmp j) == (z, s
G+-Norm s —Inlr (I- c) == (z, s')
GF-Norm s —In3 ([]) =— (v, s')
GF-Norm s —In3 (e#es) =— (v, s%)
G+-Norm s —In1l (Lit w) =— (v, s")
G+-Norm s —In1l (UnOp unop e) == (v, s")
GF-Norm s —Inl1l (BinOp binop el e2) == (v, s')
G+-Norm s —In2 (LVar vn) == (v, §')
Gr-Norm s —In1l (Cast T e) =— (v, s)
G+-Norm s —Inl1l (e InstOf T) =— (v, s')
GF-Norm s —Inl1l (Super) == (v, s')
GF-Norm s —Inl1l (Acc va) =— (v, s
G+-Norm s —Inlr (Ezpr e) == (z, s
Gr-Norm s —Inlr (cl;; ¢2) = (z, s
GF-Norm s —Inl1l (Methd C sig) - (z, s')
G+-Norm s —Inl1l (Body D c) == (z, ')
GH-Norm s —Inl1l (e0 ? el : e2) == (v, s')
G+-Norm s —Inlr (If(e) cl Else c2) == (z, s
Gr-Norm s —Inlr (I- While(e) c) - (z, s
G+-Norm s —Inlr (¢l Finally c2) - (z, s
G+-Norm s —Inlr (Throw e) == (z, s
G+-Norm s —In1l (NewC C) == (v, s)
GF-Norm s —Inl1l (New T[e]) == (v, s)
Gr-Norm s —In1l (Ass va e) =— (v, s")

Gr-Norm s —Inlr (Try c1 Catch(tn vn) c2) -— (z, s")

GFNorm s —In2 ({accC’ statDeclC,stat}e..fn) >— (v, s')
GFNorm s —In2 (el.[e2]) == (v, ')
GH-Norm s —Inl1l ({accC,statT,mode} e- mn({pT}p)) — (v, §')
G+-Norm s —Inlr (Init C) == (z, s

declare not-None-eq [simp]
declare split-paired-All [simp] split-paired-Ex [simp]
declaration <K (Simplifier.map-ss (fn ss => ss |> Simplifier.add-loop (split-all-tac, split-all-tac)))»
declare if-split  [split] if-split-asm  [split]
option.split [split] option.split-asm [split]

lemma eval-Inj-elim:
Grs —t-— (w,s’)
= case t of
Ini ec = (case ec of
Inl e = (3v. w = Inl v)
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| Inr ¢ = w= <)

| In2 e = (3v. w= In2v)

| In3 e = (3v. w= In3v)
apply (erule eval-cases)
apply auto
apply (induct-tac t)
apply (rename-tac a, induct-tac a)
apply auto
done

The following simplification procedures set up the proper injections of terms and their corresponding
values in the evaluation relation: E.g. an expression (injection Inll into terms) always evaluates to
ordinary values (injection In! into generalised values vals).

lemma eval-expr-eq: GFs —In1l t=— (w, s') = (3v. w=Inl v A Grs —t—>v — s’)
by (auto, frule eval-Inj-elim, auto)

lemma eval-var-eq: G-s —In2 t=— (w, s’) = (Fof. w=In2 vf A Grs —t=-vf— s’
by (auto, frule eval-Inj-elim, auto)

lemma eval-exprs-eq: GFs —In3 t-— (w, s') = (Fvs. w=In3 vs A Grs —t=>vs— s’)
by (auto, frule eval-Inj-elim, auto)

lemma eval-stmi-eq: Grs —Inlr t-— (w, s') = (w=0 A Gks —t — &)
by (auto, frule eval-Inj-elim, auto, frule eval-Inj-elim, auto)

simproc-setup eval-expr (Grs —Inll t-— (w, s)) = «
K (K (fn ct =>
(case Thm.term-of ct of
(-$-%-%$-%(Const-$-)$-) => NONF
| - => SOME (mk-meta-eq Q{thm eval-expr-eq}))))»

simproc-setup eval-var (Gks —In2 t=— (w, s')) = «
K (K (fn ct =>
(case Thm.term-of ct of
(-$-%-%$-%(Const-$-)$-) => NONF
| - => SOME (mk-meta-eq Q{thm eval-var-eq}))))

simproc-setup eval-exprs (Gts —In3 t=— (w, s’)) =«
K (K (fn ct =>
(case Thm.term-of ct of
(-$-%$-%$-%(Const-%$-)$-) => NONE
| - => SOME (mk-meta-eq Q{thm eval-exprs-eq}))))>

simproc-setup eval-stmt (Gks —Inlr t-— (w, s')) = «
K (K (fn ct =>
(case Thm.term-of ct of
(-$-%$-%$-%(Const-$-)$-) => NONE
| - => SOME (mk-meta-eq Q{thm eval-stmt-eq}))))

ML «
ML-Thms.bind-thms (Abruptls, sum3-instantiate context Q{thm eval.Abrupt})
)

declare halloc. Abrupt [intro!] eval.Abrupt [intro!] Abruptls [intro!]

Callee,InsInitE, InsInitV, FinA are only used in smallstep semantics, not in the bigstep semantics.
So their is no valid evaluation of these terms

lemma eval-Callee: G+-Norm s— Callee | e—=v— s’ = False
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proof —
have Fulse
if eval: Gks —t=— (v,8)
and normal: normal s
and callee: t=1In1l (Callee [ €)
for st v s’
using that by induct auto
then show ?Zthesis
by (cases s’) fastforce
qed

lemma eval-InsinitE: G-Norm s—InsInitE ¢ e—=v— s’ = False
proof —
have Fualse
if eval: Gks —t-— (v,s")
and normal: normal s
and callee: t=In1l (InsInitE c e)
for stwvs’
using that by induct auto
then show ?thesis
by (cases s) fastforce
qed

lemma eval-InsinitV: G-Norm s—InsinitV ¢ w=>v— s’ = False
proof —
have Fulse
if eval: Grs —t=— (v,s’)
and normal: normal s
and callee: t=In2 (InsInitV ¢ w)
for stwvs’
using that by induct auto
then show ?thesis
by (cases s’) fastforce
qed

lemma eval-FinA: G-Norm s—FinA a c— s’ = Fualse
proof —
have Fualse
if eval: Gks —t=— (v,8)
and normal: normal s
and callee: t=Inir (FinA a c)
for stwvs’
using that by induct auto
then show ?thesis
by (cases s') fastforce
qed

lemma eval-no-abrupt-lemma:
Ns s'. GFs —t=— (w,s") = normal s’ — normal s
by (erule eval-cases, auto)

lemma eval-no-abrupt:
GH(z,8) —t=— (w,Norm s') =
(x = None A GFNorm s —t>— (w,Norm s'))
apply auto
apply (frule eval-no-abrupt-lemma, auto)+
done
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simproc-setup eval-no-abrupt (GH(z,s) —e-— (w,Norm s’)) = «
K (K (fn ct =>
(case Thm.term-of ct of
(- $ - § (Const (const-name «Pair), -) $ (Const (const-name (Noney, -)) $ -) $ - $ -$ -) => NONE
| - => SOME (mk-meta-eq Q{thm eval-no-abrupt}))))

lemma eval-abrupt-lemma:
GFs —t=— (v,s") = abrupt s=Some zc — s'= s A\ v = undefined3 ¢
by (erule eval-cases, auto)

lemma eval-abrupt:
GH(Some zc,s) —t=— (w,s’) =
(s'=(Some xc,s) N w=undefined3 t A
GH(Some zc,s) —t=-— (undefined3 t,(Some xc,s)))
apply auto
apply (frule eval-abrupt-lemma, auto)+
done

simproc-setup eval-abrupt (G-(Some zc,s) —e=— (w,s”)) = ¢
K (K (fnct =>
(case Thm.term-of ct of
(-%3-%3-9%3-%-8% (Const (const-name <Pairs, -) $ (Const (const-name«Somey, -) $ -)$ -)) =>
NONE
| - => SOME (mk-meta-eq Q{thm eval-abrupt}))))
)

lemma Litl: Grs —Lit v—>(if normal s then v else undefined)— s
apply (case-tac s, case-tac a = None)
by (auto introl: eval.Lit)

lemma Skipl [introl]: Gks —Skip— s
apply (case-tac s, case-tac a = None)
by (auto intro!: eval.Skip)

lemma Frprl: Gks —e—»v— s’ = Gts —Expr e— s’
apply (case-tac s, case-tac a = None)
by (auto intro!: eval. Expr)

lemma Compl: [GFs —cl— s1; Grsl —c2— s2] = GFs —cl;; c2— 52
apply (case-tac s, case-tac a = None)
by (auto intro!: eval.Comp)

lemma CondlI:
Nsl. [Grs —e—>=b— s1; GFs1 —(if the-Bool b then el else e2)—=v— s2] =
GFs —e ? el : e2—>(if normal sI then v else undefined)— s2
apply (case-tac s, case-tac a = None)
by (auto intro!: eval.Cond)

lemma IfI: [GFs —e—>=v— s1; Grsl —(if the-Bool v then cl else c2)— s2]
= GFs —If(e) ¢l Else c2— s2

apply (case-tac s, case-tac a = None)

by (auto intro!: eval.If)

lemma Methdl: G+s —body G C sig—=v— s’
= Grs —Methd C sig—=v— s’

apply (case-tac s, case-tac a = None)

by (auto intro!: eval. Methd)
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lemma eval-Call:
[G-Norm s0 —e—=a'— s1; GFsl —ps=>pvs— s2;
D = invocation-declclass G mode (store s2) o’ statT (name=mn,parTs=pTs));
$3 = init-lvars G D (name=mn,parTs=pTs)) mode a’ pvs s2;
$3' = check-method-access G accC statT mode (name=mn,parTs=pTs) a’ s3;
GtFs3'—Methd D (name=mn,parTs=pTs)—= v— s4;
84" = restore-lvars s2 sj]| =
GFNorm s0 —{accC,statT,mode}e-mn({pTs}ps)—=v— s4’
apply (drule eval.Call, assumption)
apply (rule HOL.refl)
apply simp+
done

lemma eval-Init:
[if inited C (globs s0) then s8 = Norm s0
else G-Norm (init-class-obj G C s0)
—(if C = Object then Skip else Init (super (the (class G C))))— s1 A
Gtrset-lvars Map.empty s1 —(init (the (class G C)))— s2 A
$8 = restore-lvars sl s2] =
GFNorm s0 —Init C— s3
apply (rule eval.Init)
apply auto
done

lemma init-done: initd C' s = GFs —Init C— s
apply (case-tac s, simp)

apply (case-tac a)

apply safe

apply (rule eval-Init)

apply auto

done

lemma eval-StatRef:

Grs —StatRef rt—>(if abrupt s=None then Null else undefined)— s
apply (case-tac s, simp)

apply (case-tac a = None)

apply (auto del: eval. Abrupt intro!: eval.intros)

done

lemma SkipD [dest!]: GFs —Skip— s’ = s’ = s
apply (erule eval-cases)
by auto

lemma Skip-eq [simp]: GFs —Skip— s’ = (s = §')
by auto

lemma init-retains-locals [rule-format (no-asm)]: Gks —t-— (w,s’) =
(V C. t=Inlr (Init C) — locals (store s) = locals (store s’))

apply (erule eval.induct)

apply (simp (no-asm-use) split del: if-split-asm option.split-asm)+

apply auto

done

lemma halloc-zept [dest!]:
Ns'. G=(Some xc,s) —halloc oi-a— s = s'=(Some zc,s)
apply (erule-tac halloc-elim-cases)
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by auto

lemma eval-Methd:
Grs —Inil(body G C sig)=— (w,s”)
= Gts —Inll(Methd C sig)=— (w,s’)
apply (case-tac s)
apply (case-tac a)
apply clarsimp+
apply (erule eval.Methd)
apply (drule eval-abrupt-lemma)

apply force
done

lemma eval-Body: [GFNorm s0 —Init D— s1; GFsl —c— s2;
res=the (locals (store s2) Result);
s3 = (if (3 I. abrupt s2 = Some (Jump (Break 1)) V

abrupt s2 = Some (Jump (Cont 1)))

then abupd (A z. Some (Error CrossMethodJump)) s2
else s2);
s4=abupd (absorb Ret) s3] =

GFNorm s0 —Body D c—>res—s4

by (auto elim: eval.Body)

lemma eval-binop-arg2-indep:
= need-second-arg binop vi = eval-binop binop vl x = eval-binop binop vl y
by (cases binop)

(simp-all add: need-second-arg-def)

lemma eval-BinOp-arg2-indepl:
assumes eval-el: GFNorm s0 —el—>vl— sl and
no-need: — need-second-arg binop vl
shows GHNorm s0 —BinOp binop el e2—>(eval-binop binop vl v2)— si
(is ?FvalBinOp v2)
proof —
from eval-el
have ?FvalBinOp Unit
by (rule eval.BinOp)
(simp add: no-need)
moreover
from no-need
have eval-binop binop vl Unit = eval-binop binop vl v2
by (simp add: eval-binop-arg2-indep)
ultimately
show ?thesis
by simp
qed

single valued

lemma unique-halloc [rule-format (no-asm)]:
Gts —halloc oi=a — s' = Gts —halloc oi=a’ — 8" — a’=a N s =35
apply (erule halloc.induct)
apply (auto elim!: halloc-elim-cases split del: if-split if-split-asm)
apply (drule trans [THEN sym], erule sym)
defer
apply (drule trans [THEN sym)], erule sym)

/
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apply auto
done

lemma single-valued-halloc:

single-valued {((s,01),(a,s")). GFs —halloc oi-a — s’}
apply (unfold single-valued-def)
by (clarsimp, drule (1) unique-halloc, auto)

lemma unique-szalloc [rule-format (no-asm)]:
Grs —szalloc— ' = GFs —szalloc— s”" — s = s
apply (erule szalloc.induct)
apply (auto dest: unique-halloc elim!: szalloc-elim-cases
split del: if-split if-split-asm)

/!

done

lemma single-valued-szalloc: single-valued {(s,s"). Grs —szalloc— s’}
apply (unfold single-valued-def)

apply (blast dest: unique-szalloc)

done

lemma split-pairD: (z,y) = p =z = fstp & y = snd p
by auto

lemma unique-eval [rule-format (no-asm)]:
GFs —t-— (w, s') = Vw' s". Grs —t-— (v, s") — w' =wA s""=5s)
apply (erule eval-induct)

apply (tactic tALLGOALS (EVERY'
[strip-tac context, rotate-tac ~ 1, eresolve-tac context Q{thms eval-elim-cases}])»)

prefer 28
apply (simp (no-asm-use) only: split: if-split-asm)

prefer 30

apply (case-tac inited C (globs s0), (simp only: if-True if-False simp-thms)+)
prefer 26

apply (simp (no-asm-use) only: split: if-split-asm, blast)

apply (blast dest: unique-szalloc unique-halloc split-pairD)+
done

lemma single-valued-eval:

single-valued {((s, t), (v, 8)). GFs —t=— (v, s)}
apply (unfold single-valued-def)

by (clarify, drule (1) unique-eval, auto)

end
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Chapter 16

Example

1 Example Bali program

theory FEzample
imports Eval WellForm
begin

The following example Bali program includes:

class and interface declarations with inheritance, hiding of fields, overriding of methods (with
refined result type), array type,

o method call (with dynamic binding), parameter access, return expressions,

e expression statements, sequential composition, literal values, local assignment, local access,
field assignment, type cast,

e exception generation and propagation, try and catch statement, throw statement

o instance creation and (default) static initialization
package java_lang

public interface HasFoo {
public Base foo(Base z);

}

public class Base implements HasFoo {
static boolean arr[] = new boolean[2];
public HasFoo vee;
public Base foo(Base z) {
return z;
}
}

public class Ext extends Base {
public int vee;
public Ext foo(Base z) {
((Ext)z) .vee = 1;
return null;
b
}
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public class Main {
public static void main(String args[]) throws Throwable {
Base e = new Ext();
try {e.foo(null); 2
catch(NullPointerException z) {
while(Ext.arr[2]) ;
}
}
}

declare widen.null [intro]

lemma wf-fdecl-def2: \fd. wf-fdecl G P fd = is-acc-type G P (type (snd fd))
apply (unfold wf-fdecl-def)

apply (simp (no-asm))

done

declare wf-fdecl-def2 [iff]

type and expression names

datatype tnam’ = HasFoo' | Base' | Ext’ | Main’
datatype vnam’ = arr’| vee’ | 2’| €’
datatype label’ = lab1’

axiomatization
tnam' :: tnam’ = tnam and
vnam’ :: vnam’ = vname and

label”:: label’ = label
where

inj-tnam’ [simp]: Az y. (tnam’ z = tnam’ y) = (z
inj-vnam’ [simp]: Nz y. (vnam’ x = vnam’ y) = (z = y) and
ing-label’ [simp]: Nz y. (label’ © = label’ y) = (z = y) and

surj-tnam’ An. Im. n = tnam’ m and
surj-vnam”  An. Im. n = vnam’ m and
surj-label’: An. Im. n = label’ m

abbreviation
HasFoo :: qtname where
HasFoo == (pid=java-lang,tid=TName (tnam’ HasFoo')|

abbreviation
Base :: gtname where
Base == (pid=java-lang,tid=TName (tnam’' Base’))

abbreviation
Ezxt :: gtname where
Exzt == (pid=java-lang,tid=TName (tnam’ Ext')|

abbreviation
Main :: qgtname where
Main == (pid=java-lang,tid=TName (tnam’ Main')|)

abbreviation
arr :: vname where
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arr == (vnam’ arr’)

abbreviation
vee :: vname where
vee == (vnam’ vee’)

abbreviation
z :: vname where
z == (vnam’ 2’)

abbreviation
e :: vname where
e == (vnam’ e’

abbreviation
labl:: label where
labl == label’ lab1’

lemma neq-Base-Object [simp]: Base# Object
by (simp add: Object-def)

lemma neq-Ezt-Object [simp]: Ext#Object
by (simp add: Object-def)

lemma neq-Main-Object [simp]: Main# Object
by (simp add: Object-def)

lemma neq-Base-SXcpt [simp]: Base#£SXcpt an
by (simp add: SXcpt-def)

lemma neq-Ext-SXcpt [simp]: Ext#£SXcpt an
by (simp add: SXcpt-def)

lemma neg-Main-SXcpt [simp]: Main#SXcpt an
by (simp add: SXcpt-def)

classes and interfaces

overloading
Object-mdecls = Object-mdecls
SXecpt-mdecls = SXcpt-mdecls
begin
definition Object-mdecls = ||
definition SXcpt-mdecls = |
end

axiomatization
foo i mname

definition
foo-sig :: sig
where foo-sig = (name=foo,parTs=|Class Basel]))

definition
foo-mhead :: mhead

where foo-mhead = (access=Public,static=False,pars=|[z|,resT=Class Base|)

definition
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Base-foo :: mdecl
where Base-foo = (foo-sig, (access=Public,static=False,pars=[z],resT=Class Base,

mbody=(lcls=[],stmt=Return (112))])

definition Fxt-foo :: mdecl
where Ezxt-foo = (foo-sig,
(access=Public,static=False,pars=|z],resT=Class Ext,
mbody=(lcls=]]
,stmt=Ezpr({ Ext,Ext,False} Cast (Class Ext) (11z2)..vee :=
Lit (Intg 1)) 3;
Return (Lit Null))

D)

definition
arr-viewed-from :: gtname = gtname = var
where arr-viewed-from accC C = {accC,Base, True}StatRef (ClassT C)..arr

definition
BaseCl :: class where

BaseCl = (access=Public,
cfields=[(arr, (access=Public,static=True ,type=PrimT Boolean.[])),

(vee, (access=Public,static=False,type=Iface HasFoo )],
methods=[Base-foo],
init=FEzpr(arr-viewed-from Base Base
:=New (PrimT Boolean)[Lit (Intg 2)]),
super=Object,
superlfs=[HasFool)

definition

EztCl :: class where

ExtCl = (access=Public,
cfields=[(vee, (access=Public,static=False,type= PrimT Integer))],
methods=[Ext-fool,
init=_Skip,
super=DBase,
superlfs=]]|

definition

MainCl :: class where

MainCl = (access=Public,
cfields=]],
methods=[],
init=Skip,
super=Object,
superIfs=[])

definition

HasFoolnt :: iface
where HasFoolnt = (access=Public,imethods=[(foo-sig, foo-mhead))],isuperlfs=|])

definition
Ifaces ::idecl list
where Ifaces = [(HasFoo,HasFoolnt)]

definition

Classes ::cdecl list
where Classes = [(Base,BaseCl),( Ext, ExtCl),( Main,MainCl)|Qstandard-classes
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lemmas table-classes-defs =
Classes-def standard-classes-def ObjectC-def SXcptC-def

lemma table-ifaces [simpl: table-of Ifaces = Map.empty(HasFoo— HasFoolnt)
apply (unfold Ifaces-def)

apply (simp (no-asm))

done

lemma table-classes-Object [simp]:

table-of Classes Object = Some (|access=Public,cfields=|]
,methods= Object-mdecls
Jinit==Skip,super=undefined,superIfs=|])

apply (unfold table-classes-defs)

apply (simp (no-asm) add:Object-def)

done

lemma table-classes-SXcpt [simpl:
table-of Classes (SXcpt xn)
= Some (access=Public,cfields=[],methods=SXcpt-mdecls,

init=_Skip,
super=if zn = Throwable then Object else SXcpt Throwable,
superlfs=[])

apply (unfold table-classes-defs)

apply (induct-tac an)

apply (simp add: Object-def SXcpt-def)+

done

lemma table-classes-HasFoo [simp]: table-of Classes HasFoo = None
apply (unfold table-classes-defs)

apply (simp (no-asm) add: Object-def SXcpt-def)

done

lemma table-classes-Base [simp): table-of Classes Base = Some BaseCl
apply (unfold table-classes-defs )

apply (simp (no-asm) add: Object-def SXcpt-def)

done

lemma table-classes-Ext [simp]: table-of Classes Ext = Some ExtCl
apply (unfold table-classes-defs )

apply (simp (no-asm) add: Object-def SXcpt-def)

done

lemma table-classes-Main [simp]: table-of Classes Main = Some MainCl
apply (unfold table-classes-defs )

apply (simp (no-asm) add: Object-def SXcpt-def)

done

program

abbreviation
tprg :: prog where
tprg == (ifaces=Ifaces,classes=Classes)

definition
test :: (ty)list = stmt where
test pTs = (e:==NewC Ext;;
Try Expr({Main,ClassT Base,IntVir}!e-foo({pTs}|Lit Null]))
Catch((SXept NullPointer) z)
(lab1- While(Acc
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(Ace (arr-viewed-from Main Ext).[Lit (Intg 2)])) Skip))

well-structuredness

lemma not-Object-subcls-any [elim!]: (Object, C) € (subclsl tprg)t = R
apply (auto dest!: tranclD subcls1D)
done

lemma not- Throwable-subcls-SXcpt [elim!]:
(SXcpt Throwable, SXcpt xn) € (subclsl tprg)t = R
apply (auto dest!: tranclD subcls1D)
apply (simp add: Object-def SXcpt-def)
done

lemma not-SXcpt-n-subcls-SXept-n [elim!]:
(SXcpt zn, SXcpt zn) € (subclsl tprg)t = R

apply (auto dest!: tranclD subcls1D)

apply (drule rtranclD)

apply auto

done

lemma not-Base-subcls-Ext [elim!]: (Base, Ext) € (subclsl tprg)t — R
apply (auto dest!: tranclD subcls1D simp add: BaseCl-def)
done

lemma not-TName-n-subcls-TName-n [rule-format (no-asm), elim!]:
((pid=java-lang,tid=TName tn|), (pid=java-lang,tid=TName tn))
€ (subclsl tprg)t — R

apply (rule-tac n1 = tn in surj-tnam’ [THEN ezE))

apply (erule ssubst)

apply (rule tnam’.induct)

apply safe

apply (auto dest!: tranclD subcls1D simp add: BaseCl-def ExtCl-def MainCl-def)

apply (drule rtranclD)

apply auto

done

lemma ws-idecl-HasFoo: ws-idecl tprg HasFoo |]
apply (unfold ws-idecl-def)

apply (simp (no-asm))

done

lemma ws-cdecl-Object: ws-cdecl tprg Object any
apply (unfold ws-cdecl-def)

apply auto

done

lemma ws-cdecl-Throwable: ws-cdecl tprg (SXept Throwable) Object
apply (unfold ws-cdecl-def)

apply auto

done

lemma ws-cdecl-SXcpt: ws-cdecl tprg (SXept xn) (SXept Throwable)
apply (unfold ws-cdecl-def)

apply auto

done

lemma ws-cdecl-Base: ws-cdecl tprg Base Object
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apply (unfold ws-cdecl-def)
apply auto
done

lemma ws-cdecl-Fxt: ws-cdecl tprg Ext Base
apply (unfold ws-cdecl-def)

apply auto

done

lemma ws-cdecl-Main: ws-cdecl tprg Main Object
apply (unfold ws-cdecl-def)

apply auto

done

lemmas ws-cdecls = ws-cdecl-SXcpt ws-cdecl-Object ws-cdecl-Throwable
ws-cdecl-Base ws-cdecl-Ext ws-cdecl-Main

declare not-Object-subcls-any [rule del)
not- Throwable-subcls-SXcpt [rule del]
not-SXept-n-subcls-SXept-n [rule del)
not-Base-subcls-Ext [rule del] not-TName-n-subcls-TName-n [rule del]

lemma ws-idecl-all:

G=tprg = (¥ (I,i)€set Ifaces. ws-idecl G I (isuperlfs 7))
apply (simp (no-asm) add: Ifaces-def HasFoolnt-def)
apply (auto intro!: ws-idecl-HasFoo)
done

lemma ws-cdecl-all: G=tprg = (¥ (C,c)€set Classes. ws-cdecl G C (super c))

apply (simp (no-asm) add: Classes-def BaseCl-def FExtCl-def MainCl-def)

apply (auto introl: ws-cdecls simp add: standard-classes-def ObjectC-def
SXcptC-def)

done

lemma ws-tprg: ws-prog tprg

apply (unfold ws-prog-def)

apply (auto intro!: ws-idecl-all ws-cdecl-all)
done

misc program properties (independent of well-structuredness)

lemma single-iface [simpl: is-iface tprg I = (I = HasFoo)
apply (unfold Ifaces-def)

apply (simp (no-asm))

done

lemma empty-subint! [simpl: subintl tprg = {}
apply (unfold subinti-def Ifaces-def HasFoolnt-def)
apply auto

done

lemma unique-ifaces: unique Ifaces
apply (unfold Ifaces-def)

apply (simp (no-asm))

done

lemma unique-classes: unique Classes
apply (unfold table-classes-defs )

apply (simp )
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done

lemma SXcpt-subcls- Throwable [simp]: tprg-SXept an=<c SXcept Throwable
apply (rule SXcpt-subcls- Throwable-lemma)

apply auto

done

lemma FEzt-subclseq-Base [simp]: tprgtExt <¢ Base
apply (rule subcls-direct1)

apply (simp (no-asm) add: ExtCl-def)

apply (simp add: Object-def)

apply (simp (no-asm))

done

lemma FEuxt-subcls-Base [simp]: tprg-Ezt <o Base
apply (rule subcls-direct2)

apply (simp (no-asm) add: ExtCl-def)

apply (simp add: Object-def)

apply (simp (no-asm))

done

fields and method lookup

lemma fields-tprg-Object [simp]: DeclConcepts.fields tprg Object = ||
by (rule ws-tprg [THEN fields-emptyl], force+)

lemma fields-tprg-Throwable [simp]:
DeclConcepts.fields tprg (SXcpt Throwable) = |]
by (rule ws-tprg [THEN fields-emptyl], force+)

lemma fields-tprg-SXcpt [simp]: DeclConcepts.fields tprg (SXept zn) = ||
apply (case-tac zn = Throwable)

apply (simp (no-asm-simp))

by (rule ws-tprg [THEN fields-emptyl], force+)

lemmas fields-rec’ = fields-rec [OF - ws-tprg]

lemma fields-Base [simp]:
DeclConcepts.fields tprg Base
= [((arr,Base), (access=Public,static=True ,type=PrimT Boolean.[])),
((vee,Base), (access=Public,static=False,type=Iface HasFoo )]
apply (subst fields-rec’)
apply (auto simp add: BaseCl-def)
done

lemma fields-Ext [simp]:
DeclConcepts.fields tprg Ext
= [((vee,Ext), (access=Public,static=False,type= PrimT Integer))]
@ DeclConcepts.fields tprg Base
apply (rule trans)
apply (rule fields-rec’)
apply (auto simp add: ExtCl-def Object-def)
done

lemmas imethds-rec’ = imethds-rec [OF - ws-tprg]
lemmas methd-rec’ = methd-rec [OF - ws-tprg]

lemma imethds-HasFoo [simp]:
imethds tprg HasFoo = set-option o Map.empty(foo-sig—(HasFoo, foo-mhead))
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apply (rule trans)

apply (rule imethds-rec’)

apply (auto simp add: HasFoolnt-def)
done

lemma methd-tprg-Object [simpl: methd tprg Object = Map.empty
apply (subst methd-rec’)

apply (auto simp add: Object-mdecls-def)

done

lemma methd-Base [simp]:
methd tprg Base = table-of [(A(s,m). (s, Base, m)) Base-foo]
apply (rule trans)
apply (rule methd-rec’)
apply (auto simp add: BaseCl-def)
done

lemma memberid-Base-foo-simp [simp]:
memberid (mdecl Base-foo) = mid foo-sig
by (simp add: Base-foo-def)

lemma memberid- Ext-foo-simp [simp):
memberid (mdecl Ext-foo) = mid foo-sig
by (simp add: Ext-foo-def)

lemma Base-declares-foo:
tprg-mdecl Base-foo declared-in Base
by (auto simp add: declared-in-def cdeclaredmethd-def BaseCl-def Base-foo-def)

lemma foo-sig-not-undeclared-in-Base:
= tprgEmid foo-sig undeclared-in Base
proof —
from Base-declares-foo
show ?thesis
by (auto dest!: declared-not-undeclared )
qed

lemma FEzt-declares-foo:
tprg-mdecl Ext-foo declared-in Ext
by (auto simp add: declared-in-def cdeclaredmethd-def ExtCl-def Ext-foo-def)

lemma foo-sig-not-undeclared-in-Ext:
= tprgkmid foo-sig undeclared-in Ext
proof —
from FExt-declares-foo
show ?thesis
by (auto dest!: declared-not-undeclared )
qed

lemma Base-foo-not-inherited-in-FExt:
- tprg b Ext inherits (Base,mdecl Base-foo)
by (auto simp add: inherits-def foo-sig-not-undeclared-in-Ext)

lemma Ezxt-method-inheritance:
filter-tab (Asig m. tprg = Eat inherits method sig m)
(Map.empty(fst ((A(s, m). (s, Base, m)) Base-foo)—
snd ((A(s, m). (s, Base, m)) Base-foo)))
= Map.empty
proof —
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from Base-foo-not-inherited-in-Ext
show ?thesis
by (auto intro: filter-tab-all-False simp add: Base-foo-def)
qed

lemma methd-Ext [simp]: methd tprg Fxt =
table-of [(A(s,m). (s, Ext, m)) Ext-foo]
apply (rule trans)
apply (rule methd-rec’)
apply (auto simp add: ExtCl-def Object-def Ext-method-inheritance)
done

accessibility

lemma classesDefined:
[class tprg C = Some ¢; C#Object] = 3 sc. class tprg (super ¢) = Some sc
apply (auto simp add: Classes-def standard-classes-def
BaseCl-def ExtCl-def MainCl-def
SXcptC-def ObjectC-def)
done

lemma superclassesBase [simp): superclasses tprg Base={Object}
proof —
have ws: ws-prog tprg by (rule ws-tpryg)
then show ?thesis
by (auto simp add: superclasses-rec BaseCl-def)
qed

lemma superclassesExt [simp]: superclasses tprg Ext={Base,Object}
proof —
have ws: ws-prog tprg by (rule ws-tprg)
then show ?thesis
by (auto simp add: superclasses-rec ExtCl-def BaseCl-def)
qed

lemma superclassesMain [simp]: superclasses tprg Main={Object}
proof —
have ws: ws-prog tprg by (rule ws-tprg)
then show ?thesis
by (auto simp add: superclasses-rec MainCl-def)
qed

lemma HasFoo-accessible[simp]:tprgt(Iface HasFoo) accessible-in P
by (simp add: accessible-in-RefT-simp is-public-def HasFoolInt-def)

lemma HasFoo-is-acc-iface]simp): is-acc-iface tprg P HasFoo
by (simp add: is-acc-iface-def)

lemma HasFoo-is-acc-type[simp): is-acc-type tprg P (Iface HasFoo)
by (simp add: is-acc-type-def)

lemma Base-accessible[simp]:tprg-(Class Base) accessible-in P
by (simp add: accessible-in-RefT-simp is-public-def BaseCl-def)

lemma Base-is-acc-class[simp]: is-acc-class tprg P Base
by (simp add: is-acc-class-def)

lemma Base-is-acc-type[simp): is-acc-type tprg P (Class Base)
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by (simp add: is-acc-type-def)

lemma FEzt-accessible[simp|:tprgt-(Class Ext) accessible-in P
by (simp add: accessible-in-RefT-simp is-public-def ExtCl-def)

lemma FEzt-is-acc-class[simp): is-acc-class tprg P Ext
by (simp add: is-acc-class-def)

lemma FEut-is-acc-type[simp): is-acc-type tprg P (Class Ext)
by (simp add: is-acc-type-def)

lemma accmethd-tprg-Object [simp]: accmethd tprg S Object = Map.empty
apply (unfold accmethd-def)

apply (simp)

done

lemma snd-special-simp: snd ((A(s, m). (s, a, m)) z) = (a,snd z)
by (cases x) (auto)

lemma fst-special-simp: fst ((A(s, m). (s, a, m)) x) = fst
by (cases x) (auto)

lemma foo-sig-undeclared-in- Object:
tprgkmid foo-sig undeclared-in Object
by (auto simp add: undeclared-in-def cdeclaredmethd-def Object-mdecls-def)

lemma unique-sig-Base-foo:

tprgk mdecl (sig, snd Base-foo) declared-in Base = sig=/foo-sig

by (auto simp add: declared-in-def cdeclaredmethd-def
Base-foo-def BaseCl-def)

lemma Base-foo-no-override:

tprg,sig-(Base,(snd Base-foo)) overrides old =—> P

apply (drule overrides-commonD)

apply (clarsimp)

apply (frule subclsEval)

apply  (rule ws-tprg)

apply  (simp)

apply  (rule classesDefined)

apply  assumption+

apply (frule unique-sig-Base-foo)

apply (auto dest!: declared-not-undeclared intro: foo-sig-undeclared-in-Object
dest: unique-sig-Base-foo)

done

lemma Base-foo-no-stat-override:

tprg,sig-(Base,(snd Base-foo)) overridess old = P

apply (drule stat-overrides-commonD)

apply (clarsimp)

apply (frule subclsEval)

apply  (rule ws-tprg)

apply  (simp)

apply (rule classesDefined)

apply assumption+

apply (frule unique-sig-Base-foo)

apply (auto dest!: declared-not-undeclared intro: foo-sig-undeclared-in-Object
dest: unique-sig-Base-foo)

done
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lemma Base-foo-no-hide:
tprg,sigk(Base,(snd Base-foo)) hides old = P
by (auto dest: hidesD simp add: Base-foo-def member-is-static-simp)

lemma FEzt-foo-no-hide:
tprg,sigk(Ext,(snd Ext-foo)) hides old = P
by (auto dest: hidesD simp add: Ext-foo-def member-is-static-simp)

lemma unique-sig- Fxt-foo:

tprgt mdecl (sig, snd Ext-foo) declared-in Fxt —> sig=foo-sig

by (auto simp add: declared-in-def cdeclaredmethd-def
Ext-foo-def ExtCl-def)

lemma Ezt-foo-override:
tprg,sigk(Ext,(snd Ext-foo)) overrides old
= old = (Base,(snd Base-fo0))

apply (drule overrides-commonD)

apply (clarsimp)

apply (frule subclsEval)

apply  (rule ws-tprg)

apply  (simp)

apply  (rule classesDefined)

apply assumption+

apply (frule unique-sig-Ext-foo)

apply (case-tac old)

apply (insert Base-declares-foo foo-sig-undeclared-in-Object)

apply (auto simp add: ExtCl-def Ext-foo-def
BaseCl-def Base-foo-def Object-mdecls-def
split-paired-all
member-is-static-simp

dest: declared-not-undeclared unique-declaration)
done

lemma Ezt-foo-stat-override:
tprg,sigk (Exzt,(snd Ext-foo)) overridess old
= old = (Base,(snd Base-foo))

apply (drule stat-overrides-commonD)

apply (clarsimp)

apply (frule subclsEval)

apply  (rule ws-tprg)

apply  (simp)

apply (rule classesDefined)

apply  assumption+

apply (frule unique-sig-Ext-foo)

apply (case-tac old)

apply (insert Base-declares-foo foo-sig-undeclared-in-Object)

apply (auto simp add: ExtCl-def Ext-foo-def
BaseCl-def Base-foo-def Object-mdecls-def
split-paired-all
member-is-static-simp

dest: declared-not-undeclared unique-declaration)

Py

done
lemma Base-foo-member-of-Base:
tprgt(Base,mdecl Base-foo) member-of Base

by (auto intro!: members.Immediate Base-declares-foo)

lemma Base-foo-member-in-Base:
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tprgt-(Base,mdecl Base-foo) member-in Base
by (rule member-of-to-member-in [OF Base-foo-member-of-Base])

lemma Ezt-foo-member-of-Ext:
tprg-(Ext,mdecl Ext-foo) member-of Ext
by (auto introl: members.Immediate Ext-declares-foo)

lemma Ezt-foo-member-in-Ext:
tprgt( Ext,mdecl Ext-foo) member-in Ext
by (rule member-of-to-member-in [OF Ext-foo-member-of-FEut])

lemma Base-foo-permits-acc:
tprg b (Base, mdecl Base-foo) in Base permits-acc-from S
by ( simp add: permits-acc-def Base-foo-def)

lemma Base-foo-accessible [simp):

tprgt-(Base,mdecl Base-foo) of Base accessible-from S

by (auto intro: accessible-fromR.Immediate
Base-foo-member-of-Base Base-foo-permits-acc)

lemma Base-foo-dyn-accessible [simp]:

tprgt(Base,mdecl Base-foo) in Base dyn-accessible-from S
apply (rule dyn-accessible-fromR.Immediate)

apply (rule Base-foo-member-in-Base)

apply (rule Base-foo-permits-acc)

done

lemma accmethd-Base [simp]:
accmethd tprg S Base = methd tprg Base
apply (simp add: accmethd-def)
apply (rule filter-tab-all-True)
apply (simp add: snd-special-simp fst-special-simp)
done

lemma Ext-foo-permits-acc:
tprg & (Ext, mdecl Ext-foo) in Ext permits-acc-from S
by ( simp add: permits-acc-def Ext-foo-def)

lemma FEzt-foo-accessible [simp]:

tprgk( Ext,mdecl Ext-foo) of Ext accessible-from S

by (auto intro: accessible-fromR.Immediate
Ext-foo-member-of-Ext Ext-foo-permits-acc)

lemma FExt-foo-dyn-accessible [simp]:

tprgt( Ext,mdecl Ext-foo) in Ext dyn-accessible-from S
apply (rule dyn-accessible-fromR.Immediate)

apply (rule Ext-foo-member-in-Ext)

apply (rule Ext-foo-permits-acc)

done

lemma Ezt-foo-overrides-Base-foo:
tprgk( Ext,Ext-foo) overrides (Base,Base-foo)
proof (rule overridesR.Direct, simp-all)
show — is-static Ezt-foo
by (simp add: member-is-static-simp Ext-foo-def)
show — is-static Base-foo
by (simp add: member-is-static-simp Base-foo-def)
show accmodi Ext-foo # Private
by (simp add: Ext-foo-def)
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show msig (Ext, Ext-foo) = msig (Base, Base-foo)
by (simp add: Ext-foo-def Base-foo-def)
show tprg-mdecl Ext-foo declared-in Ext
by (auto intro: Ext-declares-foo)
show tprg-mdecl Base-foo declared-in Base
by (auto intro: Base-declares-foo)
show tprg F(Base, mdecl Base-foo) inheritable-in java-lang
by (simp add: inheritable-in-def Base-foo-def)
show tprgt-resTy Ext-foo=<resTy Base-foo
by (simp add: Ext-foo-def Base-foo-def mhead-resTy-simp)
qed

lemma accmethd-Ext [simp):
accmethd tprg S Ext = methd tprg FExt
apply (simp add: accmethd-def)
apply (rule filter-tab-all-True)
apply (auto simp add: snd-special-simp fst-special-simp)
done

lemma cls-Ezt: class tprg Ext = Some ExtCl
by simp
lemma dynmethd-Ezt-foo:
dynmethd tprg Base Ext (name = foo, parTs = [Class Basel]))
= Some (Ext,snd Ext-foo)
proof —
have methd tprg Base (name = foo, parTs = [Class Basel))
= Some (Base,snd Base-foo) and
methd tprg Ext (name = foo, parTs = [Class Basel))
= Some (Ext,snd Ext-foo)
by (auto simp add: Ext-foo-def Base-foo-def foo-sig-def)
with cls-Ext ws-tprg Ext-foo-overrides-Base-foo
show ?thesis
by (auto simp add: dynmethd-rec simp add: Ext-foo-def Base-foo-def)
qed

lemma Base-fields-accessible[simp]:
accfield tprg S Base
= table-of ((map (A((n,d),f).(n,(d,f)))) (DeclConcepts.fields tprg Base))
apply (auto simp add: accfield-def fun-eg-iff Let-def
accessible-in-RefT-simp
1s-public-def
BaseCl-def
permits-acc-def
declared-in-def
cdeclaredfield-def
intro!: filter-tab-all-True-Some filter-tab-None
accessible-fromR. Immediate
intro: members.Immediate)
done

lemma arr-member-of-Base:
tprgt-(Base, fdecl (arr,
(access = Public, static = True, type = PrimT Boolean.])))
member-of Base
by (auto intro: members.Immediate
simp add: declared-in-def cdeclaredfield-def BaseCl-def)

lemma arr-member-in-Base:
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tprgt-(Base, fdecl (arr,
(access = Public, static = True, type = PrimT Boolean.[]))))
member-in Base
by (rule member-of-to-member-in [OF arr-member-of-Base])

lemma arr-member-of-Ext:

tprgt(Base, fdecl (arr,

(access = Public, static = True, type = PrimT Boolean.[]))))
member-of Ext

apply (rule members.Inherited)
apply (simp add: inheritable-in-def)
apply (simp add: undeclared-in-def cdeclaredfield-def ExtCl-def)
apply (auto intro: arr-member-of-Base simp add: subcls1-def ExtCl-def)
done

lemma arr-member-in-Ext:
tprgt-(Base, fdecl (arr,
(access = Public, static = True, type = PrimT Boolean.[]))))
member-in Ext
by (rule member-of-to-member-in [OF arr-member-of-Ext])

lemma FEzt-fields-accessible[simp):
accfield tprg S Ext
= table-of ((map (A((n,d).f).(n,(d,f)))) (DeclConcepts.fields tprg Ext))
apply (auto simp add: accfield-def fun-eq-iff Let-def
accessible-in-RefT-simp
is-public-def
BaseCl-def
ExtCl-def
permits-acc-def
introl: filter-tab-all-True-Some filter-tab-None
accessible-fromR.Immediate)
apply (auto intro: members.Immediate arr-member-of-Ext
simp add: declared-in-def cdeclaredfield-def ExtCl-def)
done

lemma arr-Base-dyn-accessible [simp):

tprgt-(Base, fdecl (arr, (access=Public,static=True ,type=PrimT Boolean.[]))))
in Base dyn-accessible-from S

apply (rule dyn-accessible-fromR.Immediate)

apply (rule arr-member-in-Base)

apply (simp add: permits-acc-def)

done

lemma arr-Ext-dyn-accessible[simp]:

tprgt-(Base, fdecl (arr, (access=Public,static=True ,type=PrimT Boolean.[]))))
in Ext dyn-accessible-from S

apply (rule dyn-accessible-fromR.Immediate)

apply (rule arr-member-in-Ext)

apply (simp add: permits-acc-def)

done

lemma array-of-PrimT-acc [simp]:

is-ace-type tprg java-lang (PrimT t.[])

apply (simp add: is-acc-type-def accessible-in-RefT-simp)
done

lemma PrimT-acc [simp:
is-acc-type tprg java-lang (PrimT t)
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apply (simp add: is-acc-type-def accessible-in-RefT-simp)
done

lemma Object-acc [simp]:

is-acc-class tprg java-lang Object

apply (auto simp add: is-acc-class-def accessible-in-RefT-simp is-public-def)
done

well-formedness

lemma wf-HasFoo: wf-idecl tprg (HasFoo, HasFoolnt)
apply (unfold wf-idecl-def HasFoolnt-def)
apply (auto intro!: wf-mheadl ws-idecl-HasFoo
simp add: foo-sig-def foo-mhead-def mhead-resTy-simp
member-is-static-simp )
done

declare member-is-static-simp [simp]

declare wt.Skip [rule del] wt.Init [rule del]

ML <ML-Thms.bind-thms (wt-intros, map (rewrite-rule context Q{thms id-def}) Q{thms wt.intros})»
lemmas wtls = wt-Call wt-Super wt-FVar wt-StatRef wt-intros

lemmas dals = assigned.select-convs da-Skip da-NewC da-Lit da-Super da.intros

lemmas Base-foo-defs = Base-foo-def foo-sig-def foo-mhead-def
lemmas Ezt-foo-defs = Ext-foo-def foo-sig-def

lemma wf-Base-foo: wf-mdecl tprg Base Base-foo

apply (unfold Base-foo-defs )

apply (auto intro!: wf-mdecll wf-mheadl intro!: wtls
simp add: mhead-resTy-simp)

apply (rule exl)

apply (simp add: parameters-def)
apply (rule conjI)

apply (rule da.Comp)

apply (rule da.Expr)

apply  (rule da.AssLVar)

apply (rule da.AccLVar)

apply (simp)

apply (rule assigned.select-convs)
apply (simp)

apply (rule assigned.select-convs)

apply  (simp)

apply  (simp)

apply  (rule da.Jmp)

apply  (simp)

apply (rule assigned.select-conuvs)
apply  (simp)

apply (rule assigned.select-convs)
apply (simp)

apply (simp)

done

lemma wf-Fxt-foo: wf-mdecl tprg Ext Ext-foo
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apply (unfold Ext-foo-defs )

apply (auto introl: wf-mdecll wf-mheadl intro!: wtls
simp add: mhead-resTy-simp )

apply (rule wt.Cast)

prefer 2

apply simp

apply (rule-tac [2] narrow.subcls [THEN cast.narrow))

apply (auto intro!: wtls)

apply (rule exl)

apply (simp add: parameters-def)
apply (rule conjI)

apply (rule da.Comp)

apply (rule da.Ezpr)

apply  (rule da.Ass)

apply simp

apply (rule da.FVar)

apply (rule da.Cast)

apply (rule da.AccLVar)

apply simp

apply (rule assigned.select-convs)
apply sStmp

apply (rule da-Lit)

apply  (simp)

apply  (rule da.Comp)

apply (rule da.Expr)

apply (rule da.AssLVar)

apply (rule da.Lit)

apply (rule assigned.select-convs)
apply simp

apply (rule da.Jmp)

apply simp

apply (rule assigned.select-convs)
apply simp

apply (rule assigned.select-convs)
apply  (simp)

apply (rule assigned.select-convs)
apply simp

apply simp

done

declare mhead-resTy-simp [simp add)

lemma wf-BaseC': wf-cdecl tprg (Base,BaseCl)

apply (unfold wf-cdecl-def BaseCl-def arr-viewed-from-def)

apply (auto intro!: wf-Base-foo)

apply (auto introl: ws-cdecl-Base simp add: Base-foo-def foo-mhead-def)
apply (auto introl: wtls)

apply (rule exl)
apply (rule da.Ezpr)
apply (rule da.Ass)
apply  (simp)

apply (rule da.FVar)
apply (rule da.Cast)
apply (rule da-Lit)
apply simp

apply (rule da.NewA)
apply (rule da.Lit)
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apply (auto simp add: Base-foo-defs entails-def Let-def)

apply (insert Base-foo-no-stat-override, simp add: Base-foo-def blast)+
apply (insert Base-foo-no-hide , stmp add: Base-foo-def,blast)
done

lemma wf-ExtC: wf-cdecl tprg (Ext,ExtCl)

apply (unfold wf-cdecl-def ExtCl-def)

apply (auto intro!: wf-Ext-foo ws-cdecl-Ext)

apply (auto simp add: entails-def snd-special-simp)

apply (insert Ext-foo-stat-override)

apply (rule exI,rule da.Skip)

apply (force simp add: gmdecl-def Ext-foo-def Base-foo-def)
apply (force simp add: gmdecl-def Ext-foo-def Base-foo-def)
apply (force simp add: qgmdecl-def Ext-foo-def Base-foo-def)
apply (insert Ext-foo-no-hide)

apply (simp-all add: gmdecl-def)

apply blast+

done

lemma wf-MainC: wf-cdecl tprg (Main,MainCl)
apply (unfold wf-cdecl-def MainCl-def)

apply (auto intro: ws-cdecl-Main)

apply (rule exI,rule da.Skip)

done

lemma wf-idecl-all: p=tprg = Ball (set Ifaces) (wf-idecl p)
apply (simp (no-asm) add: Ifaces-def)

apply (simp (no-asm-simp))

apply (rule wf-HasFoo)

done

lemma wf-cdecl-all-standard-classes:

Ball (set standard-classes) (wf-cdecl tprg)
apply (unfold standard-classes-def Let-def

ObjectC-def SXcptC-def Object-mdecls-def SXcpt-mdecls-def)
apply (simp (no-asm) add: wf-cdecl-def ws-cdecls)
apply (auto simp add:is-acc-class-def accessible-in-RefT-simp SXcpt-def
intro: da.Skip)
apply (auto simp add: Object-def Classes-def standard-classes-def
SXcptC-def SXcpt-def)

done

lemma wf-cdecl-all: p=tprg = Ball (set Classes) (wf-cdecl p)
apply (simp (no-asm) add: Classes-def)

apply (simp (no-asm-simp))

apply (rule wf-BaseC [THEN conjI])

apply (rule wf-ExtC [THEN congl))

apply (rule wf-MainC [THEN conjI])

apply (rule wf-cdecl-all-standard-classes)

done

theorem wf-tprg: wf-prog tprg

apply (unfold wf-prog-def Let-def)

apply (simp (no-asm) add: unique-ifaces unique-classes)
apply (rule conjI)

apply ((simp (no-asm) add: Classes-def standard-classes-def))
apply (rule conjI)

apply (simp add: Object-mdecls-def)
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apply safe

apply (cut-tac zn-cases)

apply (simp (no-asm-simp) add: Classes-def standard-classes-def)
apply (insert wf-idecl-all)

apply (insert wf-cdecl-all)

apply auto

done

max spec

lemma appl-methds-Base-foo:
appl-methds tprg S (ClassT Base) (name=foo, parTs=[NT]) =
{((ClassT Base, (access=Public,static=False,pars=|z],resT=Class Base))
,[Class Base])}
apply (unfold appl-methds-def)
apply (simp (no-asm))
apply (subgoal-tac tprg-NT= Class Base)
apply (auto simp add: cmheads-def Base-foo-defs)
done

lemma maz-spec-Base-foo: maz-spec tprg S (ClassT Base) (name=foo,parTs=[NT]) =

{((ClassT Base, (access=Public,static="False,pars=|z|,resT=Class Base)|)

, |Class Base])}
by (simp add: maz-spec-def appl-methds-Base-foo Collect-conv-if)

well-typedness

schematic-goal wt-test: (prg=tprg,cls=Main,lcl=Map.empty( VName e— Class Base)|test ?pTs::y/

apply (unfold test-def arr-viewed-from-def)

apply (rule wtls )
apply (rule wtls )
apply (rule wtls )
apply (rule wtls )
apply  (simp)
apply (simp)
apply  (simp)
apply (rule wtls)
apply (simp)
apply (simp)
apply (rule wtls )
prefer 4

apply  (simp)
defer

apply  (rule wtls )
apply  (rule wtls )

apply (rule wtls)
apply (rule wtls)
apply (simp)
apply (simp)
apply (rule wtls )
apply (rule wtls)
apply (simp)

apply (rule wtls)

apply  (simp)

apply (rule maz-spec-Base-foo)
apply  (simp)

apply (simp)

apply (simp)
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apply (simp)
apply (simp)
apply (rule wtls )
apply (rule wtls)
apply (rule wtls )
apply (rule wtls )
apply (rule wtls )
apply  (rule wtls )

apply  (simp)

apply (simp)
apply (simp )
apply (simp)

apply  (simp)
apply (rule wtls)
apply (simp)
apply (rule wtls )
done

definite assignment

schematic-goal da-test: (prg=tprg,cls=Main,lcl=Map.empty( VName e— Class Base)))
F{} »(test ?pTs)» (nrm={VName e},brk=\ . UNIV))

apply (unfold test-def arr-viewed-from-def)

apply (rule da.Comp)

apply (rule da.Expr)

apply (rule da.AssLVar)

apply (rule da.New()

apply (rule assigned.select-convs)

apply  (simp)

apply (rule da.Try)

apply (rule da.Ezxpr)

apply (rule da.Call)

apply (rule da.AccLVar)

apply (simp)

apply (rule assigned.select-convs)
apply (simp)

apply (rule da.Cons)

apply (rule da.Lit)

apply (rule da.Nil)
apply (rule da.Loop)

apply (rule da.Acc)
apply (simp)

apply (rule da.AVar)
apply (rule da.Acc)
apply simp

apply (rule da.FVar)
apply (rule da.Cast)
apply (rule da.Lit)
apply (rule da.Lit)
apply (rule da-Skip)
apply (simp)

apply (simp,rule assigned.select-convs)

apply  (simp)

apply  (simp,rule assigned.select-convs)
apply (simp)

apply simp

apply simp

apply (simp add: intersect-ts-def)

done
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execution

lemma alloc-one: Na obj. [the (new-Addr h) = a; atleast-free h (Suc n)] =
new-Addr h = Some a A atleast-free (h(a—o0bj)) n

apply (frule atleast-free-SucD)

apply (drule atleast-free-Suc [THEN iffD1])

apply clarsimp

apply (frule new-Addr-Somel)

apply force
done

declare fvar-def2 [simp] avar-def2 [simp] init-lvars-def2 [simp)

declare init-obj-def [simp] var-tys-def [simp)] fields-table-def [simp]

declare BaseCl-def [simp] ExtCl-def [simp] Eaxt-foo-def [simp)
Base-foo-defs [simp]

ML <ML-Thms.bind-thms (eval-intros, map
(simplify (context |> Simplifier.del-simps Q{thms Skip-eq}
|> Simplifier.add-simps Q{thms lvar-def}) o
rewrite-rule context [Q{thm assign-def}, Q{thm Let-def}]) @Q{thms eval.intros})
lemmas eval-Is = eval-Init eval-StatRef Abruptls eval-intros

axiomatization
a :: loc and
b :: loc and

¢ :: loc
abbreviation one == Suc 0
abbreviation two == Suc one
abbreviation three == Suc two
abbreviation four == Suc three
abbreviation

obj-a == (tag=Arr (PrimT Boolean) 2
zvalues= Map.empty(Inr 0— Bool False, Inr 1+ Bool False)))

abbreviation
obj-b == (tag=ClInst Ext
,values=(Map.empty(Inl (vee, Base)— Null, Inl (vee, Ext )—Intg 0)))

abbreviation
obj-¢ == (tag=ClInst (SXcpt NullPointer),values=CONST Map.empty)

abbreviation arr-N == Map.empty(Inl (arr, Base)— Null)
abbreviation arr-a == Map.empty(Inl (arr, Base)— Addr a)

abbreviation
globs1 == Map.empty(Inr Ext —(tag=undefined, values=Map.empty|),
Inr Base —(tag=undefined, values=arr-N|),
Inr Object— (tag=undefined, values=Map.empty)))

abbreviation
globs2 == Map.empty(Inr Fxt — (tag=undefined, values=Map.empty)),
Inr Object— (tag=undefined, values=Map.empty)),
Inl a— obj-a,
Inr Base +—(tag=undefined, values=arr-al))

abbreviation globs3 == globs2(Inl b— 0bj-b)
abbreviation globs8 == globs3(Inl c— obj-c)
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abbreviation locs8 == Map.empty( VName e— Addr b)
abbreviation locs8 == locs3(VName z— Addr c)

abbreviation s0 == st Map.empty Map.empty

abbreviation s0’ == Norm s0

abbreviation s! == st globs! Map.empty

abbreviation sI’ == Norm s1

abbreviation s2 == st globs2 Map.empty

abbreviation s2’' == Norm s2

abbreviation s3 == st globs3 locs3

abbreviation s3’ == Norm s3

abbreviation s7’' == (Some (Xcpt (Std NullPointer)), s3)
abbreviation s8 == st globs8 locs8

abbreviation s8’' == Norm s8

abbreviation s9' == (Some (Xcpt (Std IndOutBound)), s8)

declare prod.inject [simp del]
schematic-goal exec-test:
[the (new-Addr (heap s1)) = a;
the (new-Addr (heap ?s2)) = b;
the (new-Addr (heap ?s3)) = c] =
atleast-free (heap s0) four =
tprgt-s0’ —test [Class Base]— 259’
apply (unfold test-def arr-viewed-from-def)

apply (simp (no-asm-use))

apply (drule (1) alloc-one,clarsimp)

apply (rule eval-Is )

apply (erule-tac V = the (new-Addr -) = ¢ in thin-r{)

apply (erule-tac [2] V = new-Addr - = Some a in thin-rl)
apply (erule-tac [2] V = atleast-free - four in thin-rl)
apply (rule eval-Is )

apply (rule eval-Is )

apply (rule eval-Is )
apply (rule eval-Is)

apply (erule-tac V = the (new-Addr -) = b in thin-rl)
apply (erule-tac V = atleast-free - three in thin-rl)

apply (erule-tac [2] V = atleast-free - four in thin-rl)
apply (erule-tac [2] V = new-Addr - = Some a in thin-rl)
apply (rule eval-Is )

apply (simp)

apply (rule conjI)

prefer 2 apply (rule conjl HOL.refl)+

apply (rule eval-Is )

apply (simp add: arr-viewed-from-def)

apply (rule congl)

apply (rule eval-Is)

apply  (simp)

apply (simp)

apply (rule conjl, rule-tac [2] HOL.refl)

apply (rule eval-Is )
(

apply (rule eval-Is )

apply (rule eval-Is)

apply (rule init-done, simp)
apply (rule eval-Is )

apply (simp)

apply  (simp add: check-field-access-def Let-def)
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apply (rule eval-Is )

apply  (simp)

apply  (rule eval-Is)

apply (simp)

apply (rule halloc. New)

apply  (simp (no-asm-simp))

apply (drule atleast-free-weaken,drule atleast-free-weaken)
apply (simp (no-asm-simp))

apply (simp add: upd-gobj-def)

apply (rule halloc. New)

apply (drule alloc-one)

prefer 2 apply fast

apply (simp (no-asm-simp))

apply (drule atleast-free-weaken)

apply force

apply (simp)

apply (drule alloc-one)

apply (simp (no-asm-simp))

apply clarsimp

apply (erule-tac V. = atleast-free - three in thin-rl)
apply (drule-tac x = a in new-AddrD2 [THEN spec])
apply (simp (no-asm-use))

apply (rule eval-Is )

apply (rule eval-Is )

apply (rule eval-Is )
apply (rule eval-Is )
apply (rule eval-Is )
apply (rule eval-Is )
apply (rule eval-Is )
apply (rule eval-Is )
apply  (simp)
apply  (simp)
apply  (subgoal-tac
tprgt( Ext,mdecl Ext-foo) in Ext dyn-accessible-from Main)
apply (simp add: check-method-access-def Let-def
invocation-declclass-def dynlookup-def dynmethd-Ext-foo)
apply (rule Ext-foo-dyn-accessible)
apply (rule eval-Is )
apply (simp add: body-def Let-def)
apply (rule eval-Is )
apply (rule init-done, simp)
apply (simp add: invocation-declclass-def dynlookup-def dynmethd-Ext-foo)
apply  (simp add: invocation-declclass-def dynlookup-def dynmethd-Ext-foo)
apply  (rule eval-Is)
apply  (rule eval-Is )
apply (rule eval-Is )
apply (rule eval-Is )

apply (rule init-done, simp)
apply (rule eval-Is )

apply (rule eval-Is )

apply (rule eval-Is )

apply (simp)

apply (simp split del: if-split)

apply (simp add: check-field-access-def Let-def)
apply (rule eval-Is )

apply  (simp)

apply  (rule conjI)
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apply  (simp)
apply (rule eval-Is)

apply (simp)

apply simp

apply (rule szalloc.intros)

apply (rule halloc. New)

apply (erule alloc-one [THEN conjunct!])
apply (simp (no-asm-simp))

apply (simp (no-asm-simp))

apply (simp add: gupd-def lupd-def obj-ty-def split del: if-split)
apply (drule alloc-one [THEN conjunctl])

apply (simp (no-asm-simp))

apply (erule-tac V = atleast-free - two in thin-rl)
apply (drule-tac x = a in new-AddrD2 [THEN spec])
apply simp

apply (rule eval-Is )

apply (rule eval-Is )

apply (rule eval-Is )

apply (rule eval-Is)

apply (rule eval-Is )

apply (rule init-done, simp)

apply (rule eval-Is )

apply  (simp)

apply (simp add: check-field-access-def Let-def)
apply (rule eval-Is )

apply (simp (no-asm-simp))

apply (auto simp add: in-bounds-def)

done

declare prod.inject [simp)

end
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Conform

1 Conformance notions for the type soundness proof for Java

theory Conform imports State begin

design issues:

o lconf allows for (arbitrary) inaccessible values

e “conforms” does not directly imply that the dynamic types of all objects on the heap are
indeed existing classes. Yet this can be inferred for all referenced objs.

type-synonym env’ = prog x (lname, ty) table

extension of global store

definition gext :: st = st = bool (-<|- [71,71] 70) where
s<|s’ = Vr. Vobjeglobs s r: Jobj'Eglobs s’ r: tag obj'= tag obj

For the the proof of type soundness we will need the property that during execution, objects are not
lost and moreover retain the values of their tags. So the object store grows conservatively. Note that
if we considered garbage collection, we would have to restrict this property to accessible objects.

lemma gext-objD:

[s<|s’; globs s r = Some obj]

= Jobj’. globs s’ r = Some obj’ A tag obj' = tag obj
apply (simp only: gext-def)

by force

lemma rev-gext-objD:

[globs s 7 = Some obj; s<|s']

= Jobj’. globs s’ r = Some obj’ A tag obj’ = tag obj
by (auto elim: gext-objD)

lemma init-class-obj-inited:
init-class-obj G C s1<|s2 = inited C (globs s2)
apply (unfold inited-def init-obj-def)
apply (auto dest!: gext-objD)
done
lemma gext-refl [introl, simp]: s<|s
apply (unfold gext-def)
apply (fast del: fst-splitE)

done

lemma gext-gupd [simp, elim!]: As. globs s r = None = s<|gupd(r—z)s

255
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by (auto simp: gext-def)

lemma gezt-new [simp, elim!]: As. globs s r = None = s<[init-obj G oi r s
apply (simp only: init-obj-def)

apply (erule-tac gext-gupd)

done

lemma gext-trans [elim]: AX. [s<|s’; s'<|s"] = s<|s”’
by (force simp: gext-def)

lemma gext-upd-gobj [introl]: s<|upd-gobj r n v s
apply (simp only: gext-def)

apply auto

apply (case-tac ra = r)

apply auto

apply (case-tac globs s 1 = None)

apply auto

done

lemma gext-congl [simp]: set-locals | s1<|s2 = s1<]|s2
by (auto simp: gext-def)

lemma gext-cong2 [simp]: s1<|set-locals | s2 = s1<]|s2
by (auto simp: gext-def)

lemma gext-lupdl [simp]: lupd(vn—v)sl1<|s2 = s1<|s2
by (auto simp: gext-def)

lemma gext-lupd2 [simp]: s1<|lupd(vn—v)s2 = s1<|s2
by (auto simp: gext-def)

lemma inited-gext: [inited C' (globs s); s<|s'] = inited C (globs s’)
apply (unfold inited-def)

apply (auto dest: gext-objD)

done

value conformance

definition conf :: prog = st = wval = ty = bool («-,-F-:=~ [71,71,71,71] 70)
where G,skv::<XT = (3 T'etypeof (Aa. map-option obj-ty (heap s a)) v:GFT'<XT)

lemma conf-cong [simp|: G,set-locals | skv:=T = G,stv:=<T
by (auto simp: conf-def)

lemma conf-lupd [simp]: G, lupd(vn—va)stv:=<T = G,skv:=xT
by (auto simp: conf-def)

lemma conf-PrimT [simp]: V dt. typeof dt v = Some (PrimT t) = G,stv:=PrimT t
apply (simp add: conf-def)
done

lemma conf-Boolean: G,stv::=XPrimT Boolean => 3 b. v=Bool b
by (cases v)
(auto simp: conf-def obj-ty-def
dest: widen-Boolean2
split: obj-tag.splits)
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lemma conf-litval [rule-format (no-asm)]:
typeof (Aa. None) v = Some T — G, stv:=T
apply (unfold conf-def)
apply (rule val.induct)
apply auto
done

lemma conf-Null [simp]: G sENull::XT = GFNT<T
by (simp add: conf-def)

lemma conf-Addr:
G,stAddr a::=XT = (3 obj. heap s a = Some obj N Grobj-ty obj=<T)
by (auto simp: conf-def)

lemma conf-Addrl:[heap s a = Some obj; Grobj-ty obj<T]| = G,stAddr a::<XT
apply (rule conf-Addr [THEN iffD2])
by fast

lemma defval-conf [rule-format (no-asm), elim]:
is-type G T — G,sdefault-val T:: =T

apply (unfold conf-def)

apply (induct T)

apply (auto intro: prim-ty.induct)

done

lemma conf-widen [rule-format (no-asm), elim):
G-TT' = G,stx:=3T — ws-prog G — G stx:=3T'
apply (unfold conf-def)
apply (rule val.induct)
apply (auto elim: ws-widen-trans)
done

lemma conf-gext [rule-format (no-asm), elim]:
G,shv:=xT — s<|s’ — G,s+v:=xT

apply (unfold gext-def conf-def)

apply (rule val.induct)

apply force+

done

lemma conf-list-widen [rule-format (no-asm)l:
ws-prog G =

YV Ts Ts'. list-all2 (conf G s) vs Ts

—  GHTs[=] Ts" — list-all2 (conf G s) vs Ts'

apply (unfold widens-def)
apply (rule list-all2-trans)
apply auto
done

lemma conf-RefTD [rule-format (no-asm)]:
G,sha":=XRefT T
— a’= Null vV (3a obj T'. ' = Addr a A heap s a = Some obj A
obj-ty obj = T' AN G-T'<RefT T)
apply (unfold conf-def)
apply (induct-tac a’)
apply (auto dest: widen-PrimT)
done
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value list conformance

definition
leonf :: prog = st = ('a, val) table = ('a, ty) table = bool («-,-+-[::=]-» [71,71,71,71] 70)
where G stvs[:=|Ts = (Vn. VTeTs n: Jvevs n: G,skv:=xT)

lemma lconfD: [G,stvs[::=X]Ts; Ts n = Some T| = G,st(the (vs n)):=xXT
by (force simp: lconf-def)

lemma lconf-cong [simp]: N\s. G,set-locals z s-1[::=X]L = G,st1[::<]L
by (auto simp: lconf-def)

lemma lconf-lupd [simp]: G,lupd(vn—v)s-i[::=<]L = G,stl[::=<]L
by (auto simp: lconf-def)

lemma lconf-new: [L vn = None; G,sHl[:=|L] = G,skl(vn—v)[::=]L
by (auto simp: lconf-def)

lemma lconf-upd: [G,s-1[::<]L; G,stv:=T; L vn = Some T] =
G,s-l(vn—v)[:: <] L
by (auto simp: lconf-def)

lemma lconf-ext: [G,st1[::=]|L; G stv:=XT] = G,stl(vn—v)[::=x]L(vn—T)
by (auto simp: lconf-def)

lemma lconf-map-sum [simp):

G,sHl1 (+) 12[:=X]L1 (+) L2 = (G,sHl1[::=X]L1 A G,sH12[::=]|L2)
apply (unfold lconf-def)

apply safe

apply (case-tac [3] n)

apply (force split: sum.split)+

done

lemma lconf-ext-list [rule-format (no-asm)]:
AX. [G,sH[::=X]L] =
Yous Ts. distinct vns — length Ts = length vns
— list-all2 (conf G s) vs Ts — G,stl(vns[—]vs)[:: =] L(vns[—]Ts)
apply (unfold lconf-def)
apply (induct-tac vns)
apply clarsimp
apply clarify
apply (frule list-all2-lengthD)

apply (clarsimp)
done

lemma lconf-deallocL: [G,sH1[::<X]L(vn—T); L vn = None] = G,sHl[::=]L
apply (simp only: lconf-def)

apply safe

apply (drule spec)

apply (drule ospec)

apply auto

done

lemma lconf-gext [elim]: [G,sH1[::=X]L; s<|s] = G,sHI[::=]L
apply (simp only: lconf-def)
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apply fast
done

lemma lconf-empty [simp, introl]: G,stvs[::<]Map.empty
apply (unfold lconf-def)

apply force
done

lemma lconf-init-vals [introl]:
V.V Tefs niis-type G T = G,stinit-vals fs[::<]fs
apply (unfold lconf-def)

apply force
done

weak value list conformance

Only if the value is defined it has to conform to its type. This is the contribution of the definite
assignment analysis to the notion of conformance. The definite assignment analysis ensures that the
program only attempts to access local variables that actually have a defined value in the state. So
conformance must only ensure that the defined values are of the right type, and not also that the
value is defined.

definition
wlconf :: prog = st = ('a, val) table = ('a, ty) table = bool ((-,-+-[~:=]|- [71,71,71,71] 70)
where G stvs[~:=]|Ts = (Vn. VTETs n: V vewvs n: G,stv:=xT)

lemma wiconfD: [G,stvs[~::=X]Ts; Ts n = Some T; vs n = Some v] = G,skv:=T
by (auto simp: wiconf-def)

lemma wiconf-cong [simpl: Ns. G,set-locals x stl[~::=X]L = G,s-[~:=]L
by (auto simp: wiconf-def)

lemma wiconf-lupd [simp]: G,lupd(vn—v)sti[~:<]|L = G,st{[~:=]L
by (auto simp: wiconf-def)

lemma wiconf-upd: [G,s-l[~:=]L; G,stv:=T; L vn = Some T] =
G,s-l(vn—v)[~:=]L
by (auto simp: wiconf-def)

lemma wiconf-ext: [G,st-l[~::=X]L; G,skv:=T] = G,s-l(vn—v)[~:=]L(vn—T)
by (auto simp: wiconf-def)

lemma wiconf-map-sum [simp]:

G,s-11 (+) 12[~:=]L1 (+) L2 = (G,sHl1[~:=X]L1 A G,sH12[~::=]L2)
apply (unfold wlconf-def)

apply safe

apply (case-tac [3] n)

apply (force split: sum.split)+

done

lemma wiconf-ext-list [rule-format (no-asm)]:
AX. [G,sHl[~:=<]L] =
Vs Ts. distinct vns — length Ts = length vns
— list-all2 (conf G s) vs Ts — G,stl(vns[—]vs)[~::=]|L(vns[—] Ts)
apply (unfold wlconf-def)
apply (induct-tac vns)
apply clarsimp
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apply clarify

apply (frule list-all2-lengthD)
apply clarsimp

done

lemma wiconf-deallocL: [G,st1[~::=]L(vn—T); L vn = None] = G,sHl[~:=]L
apply (simp only: wiconf-def)

apply safe

apply (drule spec)

apply (drule ospec)

defer

apply (drule ospec )

apply auto

done

lemma wiconf-gext [elim]: [G,sHl[~:=]L; s<|s] = G,s+i[~:=]L
apply (simp only: wiconf-def)

apply fast

done

lemma wiconf-empty [simp, introl]: G, stvs[~:=<]|Map.empty
apply (unfold wiconf-def)

apply force
done

lemma wiconf-empty-vals: G,stMap.empty|[~::=<]ts
by (simp add: wlconf-def)

lemma wiconf-init-vals [introl|:
Vn.VTEfs niis-type G T = G,stinit-vals fs[~::=]fs
apply (unfold wiconf-def)

apply force
done

lemma Iconf-wlconf:
G,sHl[:=]L = G,sHl[~:=]L
by (force simp add: lconf-def wiconf-def)

object conformance

definition
oconf :: prog = st = obj = oref = bool («-,-F-:=y/~ [71,71,71,71] 70) where
(G,stobj::=y/1) = (G,stvalues obj[::X]var-tys G (tag obj) r A
(case r of
Heap a = is-type G (obj-ty obj)
| Stat C = True))

lemma oconf-is-type: G,stobj::=/Heap a => is-type G (obj-ty obj)
by (auto simp: oconf-def Let-def)

lemma oconf-lconf: G,stobj::=\/r = G,stvalues obj[::XJvar-tys G (tag obj) r
by (simp add: oconf-def)

lemma oconf-cong [simp]: G,set-locals | s-obj::=<\/r = G,skobj:=</r
by (auto simp: oconf-def Let-def)
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lemma oconf-init-obj-lemma:
INC c. class G C = Some ¢ = unique (DeclConcepts.fields G C);
AC ¢ ffld. [class G C = Some c;
table-of (DeclConcepts.fields G C) f = Some fld |
= is-type G (type fid);
(case T of
Heap a = is-type G (obj-ty obj)
| Stat C' = is-class G C)
] = G,stobj (values:=init-vals (var-tys G (tag obj) r)):=/r
apply (auto simp add: oconf-def)
apply (drule-tac var-tys-Some-eq [THEN 1iffD1])
defer
apply (subst obj-ty-cong)
apply (auto dest!: fields-table-SomeD split: sum.split-asm obj-tag.split-asm)
done

state conformance

definition
conforms :: state = env’ = bool («-::=<-» [71,71] 70) where
zs:=F =
(let (G, L) = E; s = snd zs; | = locals s in
(Vr. Vobjeglobs s r: G,skobj =:=y/1) A G,stl [~:=]L A
(Va. fst zs=Some(Xept (Loc a)) — G,stAddr a::= Class (SXcpt Throwable)) A
(fst zs=Some(Jump Ret) — | Result # None))

conforms

lemma conforms-globsD:
[(z, 8)::=(G, L); globs s r = Some obj] = G,stobj::=/r
by (auto simp: conforms-def Let-def)

lemma conforms-localD: (z, s):=(G, L) = G,stlocals s[~::<]L
by (auto simp: conforms-def Let-def)

lemma conforms-XcptLoeD: [(z, s)::=(G, L); z = Some (Xept (Loc a))] =
G,stAddr a::= Class (SXcpt Throwable)
by (auto simp: conforms-def Let-def)

lemma conforms-RetD: [(z, $)::=(G, L); x = Some (Jump Ret)] =
(locals s) Result # None
by (auto simp: conforms-def Let-def)

lemma conforms-RefTD:

[G,s-a’:=RefT t; o’ # Null; (z,s) ==X(G, L)] =
Ja obj. a’ = Addr a N globs s (Inl a) = Some obj A
GFobj-ty obj=RefT t A is-type G (obj-ty obj)

apply (drule-tac conf-RefTD)

apply clarsimp

apply (rule conforms-globsD [THEN oconf-is-type])
apply auto

done

lemma conforms-Jump [iff]:

j=Ret —> locals s Result # None

= ((Some (Jump j), s)=:=(G, L)) = (Norm s:=(G, L))
by (auto simp: conforms-def Let-def)

lemma conforms-StdXcpt [iff]:
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((Some (Xcpt (Std zn)), s):=2(G, L)) = (Norm s:=(G, L))
by (auto simp: conforms-def)

lemma conforms-Err [iff]:
((Some (Error e), s):=(G, L)) = (Norm s:=(G, L))
by (auto simp: conforms-def)

lemma conforms-raise-if [iff]:
((raise-if ¢ an x, s)=:=(G, L)) = ((z, s)=:=(G, L))
by (auto simp: abrupt-if-def)

lemma conforms-error-if [iff]:
((error-if c err z, s):=(G, L)) = ((z, s)==(G, L))
by (auto simp: abrupt-if-def)

lemma conforms-NormlI: (z, s):=(G, L) = Norm s:=X(G, L)
by (auto simp: conforms-def Let-def)

lemma conforms-absorb [rule-format]:
(a, b):=(G, L) — (absordb j a, b)::=x(G, L)
apply (rule impl)
apply (case-tac a)
apply (case-tac absorb j a)
apply auto
apply (rename-tac a’)
apply (case-tac absorb j (Some a’),auto)
apply (erule conforms-NormlI)
done

lemma conformsl: [V r.V objeglobs s r: G,st0bj::=/r;
G,stlocals s[~::=]L;
Va. z = Some (Xept (Loc a)) — G,stAddr a::< Class (SXept Throwable);
z = Some (Jump Ret)— locals s Result # None] =
(z, $)==(G, L)
by (auto simp: conforms-def Let-def)

lemma conforms-zconf: [(z, s):=(G,L);

Va. ' = Some (Xept (Loc a)) — G, s-Addr a::= Class (SXcpt Throwable);
z' = Some (Jump Ret) — locals s Result # None] =

(z',s):=(G,L)

by (fast intro: conformslI elim: conforms-globsD conforms-localD)

lemma conforms-lupd:
[(z, $):=(G, L); L vn = Some T; G,skv:=xXT]| = (z, lupd(vn—v)s):=(G, L)
by (force intro: conformsI wlconf-upd dest: conforms-globsD conforms-localD
conforms-XcptLocD conforms-RetD
simp: oconf-def)

lemmas conforms-allocL-aux = conforms-localD [THEN wlconf-ext]

lemma conforms-allocL:
[(z, $):=(G, L); G,skv:=XT] = (=, lupd(vn—v)s):=(G, L(vn—T))
by (force intro: conformsI dest: conforms-globsD conforms-RetD
elim: conforms-XcptLocD conforms-allocL-aux
stmp: oconf-def)

lemmas conforms-deallocL-auz = conforms-localD [THEN wlconf-deallocL)]
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lemma conforms-deallocL: Ns.[s:=<(G, L(vn—T)); L vn = None] = s:=<(G,L)
by (fast intro: conformsl dest: conforms-globsD conforms-RetD
elim: conforms-XcptLocD conforms-deallocL-aux)

lemma conforms-gext: [(z, $):=<X(G,L); s<|s%
Vr.Vobjeglobs s’ r: G,s'+obj::=/r;
locals s'=locals s] = (z,s")::=(G,L)
apply (rule conformsI)
apply assumption
apply  (drule conforms-localD) apply force
apply (intro strip)
apply (drule (1) conforms-XcptLocD) apply force
apply (intro strip)
apply (drule (1) conforms-RetD) apply force
done

lemma conforms-zgext:
[(z ,8):=(G,L); (2, $")::=x(G, L); s'<|s;dom (locals s’) C dom (locals s)]
= (z/,5):=(G,L)

apply (erule-tac conforms-zconf)

apply (fast dest: conforms-XcptLocD)

apply (intro strip)

apply (drule (1) conforms-RetD)

apply (auto dest: doml)

done

lemma conforms-gupd: \obj. [(z, s)::=(G, L); G,sto0bj::=\/r; s<|gupd(r— obj)s]
= (z, gupd(r—obj)s)::=(G, L)
apply (rule conforms-gext)

apply auto
apply (force dest: conforms-globsD simp add: oconf-def)+
done

lemma conforms-upd-gobj: [(z,$)::=(G, L); globs s r = Some obj;
var-tys G (tag obj) r n = Some T; G,skv::=XT]| = (x,upd-gobj r n v 8):=(G,L)
apply (rule conforms-gext)
apply auto
apply (drule (1) conforms-globsD)
apply (simp add: oconf-def)
apply safe
apply (rule lconf-upd)
apply auto
apply (simp only: obj-ty-cong)
apply (force dest: conforms-globsD intro!: lconf-upd
stmp add: oconf-def cong del: old.sum.case-cong-weak)
done

lemma conforms-set-locals:
[(z,8):=(G, L); G,stl[~:=]|L; z=Some (Jump Ret) — | Result # None]
= (z,set-locals 1 s)::=3(G,L)

apply (rule conformsI)

apply (intro strip)

apply simp

apply (drule (2) conforms-globsD)

apply simp

apply (intro strip)

apply (drule (1) conforms-XcptLocD)
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apply simp

apply (intro strip)

apply (drule (1) conforms-RetD)
apply simp

done

lemma conforms-locals:
[(a,b)::=(G, L); L = Some T;locals b x #None]
= G,b-the (locals b x):: =T
apply (force simp: conforms-def Let-def wiconf-def)
done

lemma conforms-return:

Ns” [(z,8):=(G, L); (z',8):=(G, L); s<|s’;z'#Some (Jump Ret)] =
(z’,set-locals (locals s) s')::=2(G, L)

apply (rule conforms-zconf)

prefer 2 apply (force dest: conforms-XcptLocD)

apply (erule conforms-gext)

apply (force dest: conforms-globsD)+

done

end



Chapter 18

Definite AssignmentCorrect

1 Correctness of Definite Assignment
theory DefiniteAssignmentCorrect imports WellForm Fval begin
declare [[simproc del: wt-expr wt-var wt-exprs wit-stmt]]

lemma szalloc-no-jump:
assumes szalloc: GFs0 —szalloc— sI and
no-jmp: abrupt s0 # Some (Jump j)
shows abrupt s1 # Some (Jump j)
using szalloc no-jmp
by cases simp-all

lemma szalloc-no-jump’:
assumes szalloc: G-s0 —szalloc— sl and
jump:  abrupt s1 = Some (Jump j)
shows abrupt s0 = Some (Jump j)
using szalloc jump
by cases simp-all

lemma halloc-no-jump:
assumes halloc: G+s0 —halloc oi-a— s1 and
no-jmp: abrupt s0 # Some (Jump j)
shows abrupt s1 # Some (Jump j)
using halloc no-jmp
by cases simp-all

lemma halloc-no-jump”:
assumes halloc: GFs0 —halloc oi-a— s1 and
Jjump:  abrupt s1 = Some (Jump j)
shows abrupt s0 = Some (Jump j)
using halloc jump
by cases simp-all

lemma Body-no-jump:
assumes eval: GFs0 —Body D ¢c—>v—sl and
Jjump: abrupt sO0 # Some (Jump )
shows abrupt s1 # Some (Jump j)
proof (cases normal s0)
case True
with eval obtain s0’ where eval’: G-Norm s0' —Body D c¢—=v—sl and
s0: s0 = Norm s0’
by (cases s0) simp
from eval’ obtain s2 where
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s1: s1 = abupd (absorb Ret)
(¢f A1. abrupt s2 = Some (Jump (Break 1)) V
abrupt s2 = Some (Jump (Cont I))
then abupd (Az. Some (Error CrossMethodJump)) s2 else s2)
by cases simp
show ?thesis
proof (cases 1. abrupt s2 = Some (Jump (Break 1)) V
abrupt s2 = Some (Jump (Cont 1)))
case True
with s! have abrupt s1 = Some (Error CrossMethodJump)
by (cases s2) simp
thus ?thesis by simp
next
case Fulse
with s! have s!=abupd (absorb Ret) s2
by simp
with False show ?thesis
by (cases s2,cases j) (auto simp add: absorb-def)
qed
next
case Fulse
with eval obtain s0’ abr where GH(Some abr,s0") —Body D c¢—»v—>sl
s0 = (Some abr, s0’)
by (cases s0) fastforce
with this jump
show ?thesis
by (cases) (simp)
qed

lemma Methd-no-jump:
assumes eval: GFs0 —Methd D sig—=v— s1 and
Jump: abrupt sO # Some (Jump )
shows abrupt s1 # Some (Jump j)
proof (cases normal s0)
case True
with eval obtain s0’ where GFNorm s0’ —Methd D sig—>=v—ssl
s0 = Norm s0'
by (cases s0) simp
then obtain D’ body where GFs0 —Body D’ body—»v— sl
by (cases) (simp add: body-def2)
from this jump
show ?thesis
by (rule Body-no-jump)
next
case Fulse
with eval obtain s0' abr where GH(Some abr,s0") —Methd D sig—>v— sl
s0 = (Some abr, s0’)
by (cases s0) fastforce
with this jump
show ?thesis
by (cases) (simp)
qed

lemma jumpNestingOkS-mono:
assumes jumpNestingOk-1": jumpNestingOkS jmps’ ¢

and subset: jmps’ C jmps
shows jumpNestingOkS jmps ¢
proof —

have True and True and
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N jmps’ jmps. [jumpNestingOkS jmps’ ¢; jmps’ C jmps] = jumpNestingOkS jmps ¢
proof (induct rule: var.induct expr.induct stmt.induct)
case (Lab j ¢ jmps’ jmps)
note jmpOk = <jumpNestingOkS jmps’ (j- ¢)»
note jmps = jmps’ C jmps»
with jmpOFk have jumpNestingOkS ({j} U jmps’) ¢ by simp
moreover from jmps have ({j} U jmps’) C ({j} U jmps) by auto
ultimately
have jumpNestingOkS ({j} U jmps) ¢
by (rule Lab.hyps)
thus ?Zcase
by simp
next
case (Jmp j jmps’ jmps)
thus ?Zcase
by (cases j) auto
next
case (Comp cl1 c2 jmps’ jmps)
have jumpNestingOkS jmps c1 by (rule Comp.hyps) (use Comp.prems in auto)
moreover
have jumpNestingOkS jmps ¢2 by (rule Comp.hyps) (use Comp.prems in auto)
ultimately show ?case by simp
next
case (If' e c1 ¢2 jmps’ jmps)
have jumpNestingOkS jmps c1 by (rule If".hyps) (use If'.prems in auto)
moreover
have jumpNestingOkS jmps c¢2 by (rule If".hyps) (use If'.prems in auto)
ultimately show ?case by simp
next
case (Loop 1 e ¢ jmps’ jmps)
from <jumpNestingOkS jmps’ (I- While(e) ¢)» have jumpNestingOkS ({Cont I} U jmps’) ¢
by simp
moreover
from <jmps’ C jmps> have {Cont I} U jmps’ C {Cont I} U jmps
by auto
ultimately have jumpNestingOkS ({Cont I} U jmps) c
by (rule Loop.hyps)
thus ?case by simp
next
case (TryC c1 C vn c2 jmps’ jmps)
have jumpNestingOkS jmps c1 by (rule TryC.hyps) (use TryC.prems in auto)
moreover
have jumpNestingOkS jmps c¢2 by (rule TryC.hyps) (use TryC.prems in auto)
ultimately show Zcase
by simp
next
case (Fin cI c2 jmps’ jmps)
have jumpNestingOkS jmps c1 by (rule Fin.hyps) (use Fin.prems in auto)
moreover
have jumpNestingOkS jmps c2 by (rule Fin.hyps) (use Fin.prems in auto)
ultimately show ?case
by simp
qed (simp-all)
with jumpNestingOk-1’ subset
show ?thesis
by iprover
qed

corollary jumpNestingOk-mono:
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assumes jmpOk: jumpNestingOk jmps’
and subset: jmps’ C jmps
shows jumpNestingOk jmps t
proof (cases t)
case (Inl expr-stmt)
show ?thesis
proof (cases expr-stmt)
case (Inl e)
with Inl show ?thesis by simp
next
case (Inr s)
with Inl jmpOk subset show ?thesis by (auto intro: jumpNestingOkS-mono)
qed
qed (simp-all)

lemma assign-abrupt-propagation:
assumes f-ok: abrupt (fn s) # z
and  ass: abrupt (assign fn s) = x
shows abrupt s = x
proof (cases z)
case None
with ass show ?thesis
by (cases s) (simp add: assign-def Let-def)
next
case (Some xcpt)
from f-ok
obtain zf sf where fn s = (af,sf)
by (cases fn s)
with Some ass f-ok show ?thesis
by (cases s) (simp add: assign-def Let-def)
qed

lemma wt-init-comp-ty”:
is-acc-type (prg Env) (pid (cls Env)) T = Envkinit-comp-ty T::\/
apply (unfold init-comp-ty-def)
apply (clarsimp simp add: accessible-in-RefT-simp
is-acc-type-def is-acc-class-def)
done

lemma fvar-upd-no-jump:
assumes upd: upd = snd (fst (fvar statDeclC stat fn a s’))
and noJmp: abrupt s # Some (Jump j)
shows abrupt (upd val s) # Some (Jump j)
proof (cases stat)
case True
with noJmp upd
show ?thesis
by (cases s) (simp add: fvar-def2)
next
case Fulse
with noJmp upd
show ?thesis
by (cases s) (simp add: fvar-def2)
qed

lemma avar-state-no-jump:
assumes jmp: abrupt (snd (avar G i a s)) = Some (Jump j)
shows abrupt s = Some (Jump j)
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proof (cases normal s)

case True with jmp show ?thesis by (auto simp add: avar-def2 abrupt-if-def)
next

case Fulse with jmp show ?thesis by (auto simp add: avar-def2 abrupt-if-def)
qed

lemma avar-upd-no-jump:
assumes upd: upd = snd (fst (avar G i a s'))
and noJmp: abrupt s # Some (Jump j)
shows abrupt (upd val s) # Some (Jump j)
using upd noJmp
by (cases s) (simp add: avar-def2 abrupt-if-def)

The next theorem expresses: If jumps (breaks, continues, returns) are nested correctly, we won’t
find an unexpected jump in the result state of the evaluation. For exeample, a break can’t leave its
enclosing loop, an return cant leave its enclosing method. To proove this, the method call is critical.
Allthough the wellformedness of the whole program guarantees that the jumps (breaks,continues
and returns) are nested correctly in all method bodies, the call rule alone does not guarantee that I
will call a method or even a class that is part of the program due to dynamic binding! To be able to
enshure this we need a kind of conformance of the state, like in the typesafety proof. But then we
will redo the typesafty proof here. It would be nice if we could find an easy precondition that will
guarantee that all calls will actually call classes and methods of the current program, which can be
instantiated in the typesafty proof later on. To fix this problem, I have instrumented the semantic
definition of a call to filter out any breaks in the state and to throw an error instead.

To get an induction hypothesis which is strong enough to perform the proof, we can’t just assume
jumpNestingOk for the empty set and conlcude, that no jump at all will be in the resulting state,
because the set is altered by the statements Lab and While.

The wellformedness of the program is used to enshure that for all classinitialisations and methods
the nesting of jumps is wellformed, too.

theorem jumpNestingOk-eval:

assumes eval: G+ s0 —t>=— (v,s1)

and jmpOk: jumpNestingOk jmps t

and wt: Env-t:: T

and wf: wf-prog G

and G: prg Env = G

and no-jmp: Vj. abrupt s0 = Some (Jump j) — j € jmps

(is 2Jmp jmps s0)
shows (Vj. fst s1 = Some (Jump j) — j € jmps) A
(normal s1 —
(V w upd. v=In2 (w,upd)
— (¥ sjwal
abrupt s # Some (Jump j) —
abrupt (upd val s) # Some (Jump j))))
(is 2Jmp jmps s1 N ?Upd v s1)
proof —
let ?HypObj = X t s0 s1 .
(Y jmps T Env.
2Jmp jmps sO0 — jumpNestingOk jmps t — Env-t:: T — prg Env=G—
2Jmp jmps s1 N ?Upd v s1)

— Variable ?HypObj is the following goal spelled in terms of the object logic, instead of the meta logic. It is
needed in some cases of the induction were, the atomize-rulify process of induct does not work fine, because
the eval rules mix up object and meta logic. See for example the case for the loop.

from eval

have A jmps T Env. [2Jmp jmps s0; jumpNestingOk jmps t; Env-t:: T;prg Env=_G]

= ?2Jmp jmps s1 N ?Upd v s1
(is PROP ?Hyp t s0 s1 v)
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— We need to abstract over jmps since jmps are extended during analysis of Lab. Also we need to abstract
over T and Fnv since they are altered in various typing judgements.
proof (induct)
case Abrupt thus ?case by simp
next
case Skip thus ?case by simp
next
case Fzpr thus ?case by (elim wt-elim-cases) simp
next
case (Lab s0 ¢ s1 jmp jmps T Env)
note jmpOK = <jumpNestingOk jmps (Inlr (jmp- c))
note G = (prg Env = G»
have wt-c: Envkc:y/
using Lab.prems by (elim wt-elim-cases)
have jejmps if ab-s1: abrupt (abupd (absorb jmp) s1) = Some (Jump j) for j
proof —
from ab-s1 have jmp-s1: abrupt s1 = Some (Jump j)
by (cases s1) (simp add: absorb-def)
note hyp-c = «<PROP ?Hyp (Inlr ¢) (Norm s0) s1 b
from ab-s1 have j £ jmp
by (cases s1) (simp add: absorb-def)
moreover have j € {jmp} U jmps
proof —
from jmpOK
have jumpNestingOk ({jmp} U jmps) (Inir c¢) by simp
with wt-c jmp-s1 G hyp-c
show ?thesis
by — (rule hyp-¢ [THEN conjunct! ,rule-format],simp)
qed
ultimately show ?thesis
by simp
qged
thus “case by simp
next
case (Comp s0 cl1 s1 c2 s2 jmps T Env)
note jmpOk = <jumpNestingOk jmps (Inlr (cl;; ¢2))»
note G = «prg Env = G»
from Comp.prems obtain
wt-c1: Envkcl:y/ and wi-c2: Envkc2:y/
by (elim wt-elim-cases)
have jejmps if abr-s2: abrupt s2 = Some (Jump j) for j
proof —
have jmp: ?Jmp jmps s1
proof —
note hyp-c1 = «<PROP ?Hyp (Inlr c1) (Norm s0) s1 b
with wt-c1 jmpOk G
show ?thesis by simp
qged
moreover note hyp-c2 = <PROP ?Hyp (Inlr c2) sl s2 ({::vals))
have jmpOLk’”: jumpNestingOk jmps (Inlr c¢2) using jmpOk by simp
moreover note wi-c2 G abr-s2
ultimately show j € jmps
by (rule hyp-c2 [THEN conjunctl ,rule-format (no-asm)])
qged
thus ?case by simp
next
case (If s0 e b s c1 ¢2 s2 jmps T Env)
note jmpOk = <jumpNestingOk jmps (Inlr (If(e) c1 Else c2))»
note G = «prg Env = G»
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from If.prems obtain
wt-e: Env-e::—PrimT Boolean and
wt-then-else: Envt-(if the-Bool b then cl1 else c2)::y/
by (elim wt-elim-cases) simp
have jejmps if jmp: abrupt s2 = Some (Jump j) for j
proof —
note <PROP ?Hyp (In1l e) (Norm s0) s1 (In1 b)»
with wt-e G have ?Jmp jmps s1
by simp
moreover note hyp-then-else =
«<PROP ?Hyp (Inir (if the-Bool b then cl else c2)) sl s2 {»
have jumpNestingOk jmps (Inlr (if the-Bool b then cl else ¢2))
using jmpOk by (cases the-Bool b) simp-all
moreover note wi-then-else G jmp
ultimately show je jmps
by (rule hyp-then-else [THEN conjunctl ,rule-format (no-asm)))
qed
thus ?case by simp
next
case (Loop s0 e b s1 ¢ s21s3 jmps T Env)
note jmpOk = <jumpNestingOk jmps (Inlr (I- While(e) c))»
note G = «prg Env = G»
note wt = «Env-Inlr (I- While(e) ¢):: T»
then obtain
wt-e: Env-e::—PrimT Boolean and
wt-c¢: Envkciy/
by (elim wt-elim-cases)
have jejmps if jmp: abrupt s8 = Some (Jump j) for j
proof —
note <PROP ?Hyp (Inil e) (Norm s0) s1 (In1 b)»
with wt-e G have jmp-si: ?Jmp jmps s1
by simp
show ?thesis
proof (cases the-Bool b)
case Fulse
from Loop.hyps
have s3=s1
by (simp (no-asm-use) only: if-False False)
with jmp-s1 jmp have j € jmps by simp
thus ?thesis by simp
next
case True
from Loop.hyps

have ?HypObj (Inir c) sl s2 ($:ivals)
apply (simp (no-asm-use) only: True if-True )
apply (erule conjE)+
apply assumption
done
note hyp-c¢ = this [rule-format (no-asm)]
moreover from jmpOk have jumpNestingOk ({Cont I} U jmps) (Inlr c)
by simp
moreover from jmp-s1 have ?Jmp ({Cont I} U jmps) sI by simp
ultimately have jmp-s2: ?Jmp ({Cont I} U jmps) s2
using wt-¢c G by iprover
have ?Jmp jmps (abupd (absorb (Cont 1)) s2)
proof —
have j’ € jmps if abs: abrupt (abupd (absorb (Cont 1)) s2)=Some (Jump j') for j’
proof (cases j' = Cont l)
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case True
with abs show ?thesis
by (cases s2) (simp add: absorb-def)
next
case Fulse
with abs have abrupt s2 = Some (Jump j')
by (cases s2) (simp add: absorb-def)
with jmp-s2 False show ?thesis
by simp
qed
thus ?thesis by simp
qed
moreover
from Loop.hyps
have ?HypObj (Inir (I- While(e) ¢))

(abupd (absorb (Cont 1)) s2) s8 ({::vals)
apply (simp (no-asm-use) only: True if-True)
apply (erule conjE)+
apply assumption
done

note hyp-w = this [rule-format (no-asm)]
note jmpOk wt G jmp
ultimately show je jmps
by (rule hyp-w [THEN conjunct! ,rule-format (no-asm)))
qed
qed
thus ?case by simp
next
case (Jmp s j jmps T Env) thus ?case by simp
next
case (Throw s0 e a sl jmps T Env)
note jmpOk = <jumpNestingOk jmps (Inlr (Throw e))»
note G = (prg Env = G»
from Throw.prems obtain Te where
wt-e: Envle::—Te
by (elim wt-elim-cases)
have jejmps if jmp: abrupt (abupd (throw a) s1) = Some (Jump j) for j
proof —
from «PROP ?Hyp (Inll €) (Norm s0) s1 (Inl a)>
have ?Jmp jmps sl using wt-e G by simp
moreover
from jmp
have abrupt s1 = Some (Jump j)
by (cases s1) (simp add: throw-def abrupt-if-def)
ultimately show j € jmps by simp
qed
thus “case by simp
next
case (Try s0 c1 s1 s2 C vn c2 s3 jmps T Env)
note jmpOk = <jumpNestingOk jmps (Inlr (Try c1 Catch(C vn) c2))»
note G = <prg Env = G»
from Try.prems obtain
wt-c1: Envkcl::y/ and
wt-c2: Env(lel := (lel Env)(VName vn— Class C))Fc2::/
by (elim wt-elim-cases)
have jejmps if jmp: abrupt s8 = Some (Jump j) for j
proof —
note <PROP ?Hyp (Inlr c1) (Norm s0) s1 ({::wvals)y
with jmpOk wt-c1 G
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have jmp-si: 2Jmp jmps sl by simp
note s2 = <Grsl —szalloc— s2»
show j € jmps
proof (cases G,s2Fcatch C)
case Fulse
from Try.hyps have s3=s2
by (simp (no-asm-use) only: False if-False)
with jmp have abrupt s1 = Some (Jump j)
using szalloc-no-jump’ [OF s2] by simp
with jmp-si
show ?thesis by simp
next
case True
with Try.hyps
have ?HypObj (Inir c2) (new-xzcpt-var vn s2) s3 ({$iivals)
apply (simp (no-asm-use) only: True if-True simp-thms)
apply (erule conjE)+
apply assumption
done
note hyp-c2 = this [rule-format (no-asm))
from jmp-s1 szalloc-no-jump’ [OF s2]
have ?Jmp jmps s2
by simp
hence ?Jmp jmps (new-zcpt-var vn s2)
by (cases s2) simp
moreover have jumpNestingOk jmps (Inlr c2) using jmpOk by simp
moreover note wt-c2
moreover from G
have prg (Env(lcl := (lel Env)(VName vn— Class C)))) = G
by simp
moreover note jmp
ultimately show ?thesis
by (rule hyp-c2 [THEN conjunctl,rule-format (no-asm)])
qed
qed
thus ?case by simp
next
case (Fin s0 c1 x1 sl c2 s2 s3 jmps T Env)
note jmpOk = jumpNestingOk jmps (Inlr (c1 Finally c2))»
note G = «prg Env = G»
from Fin.prems obtain
wt-c1: Envkcl:y/ and wt-c2: Envkc2::y/
by (elim wt-elim-cases)
have j € jmps if jmp: abrupt s8 = Some (Jump j) for j
proof (cases x1=Some (Jump j))
case True
note hyp-c1 = <PROP ?Hyp (Inlr c1) (Norm s0) (z1,s1) »
with True jmpOk wt-c1 G show ?thesis
by — (rule hyp-c1 [THEN conjunct! ,rule-format (no-asm)],simp-all)
next
case Fulse
note hyp-c2 = <PROP ?Hyp (Inlr c2) (Norm s1) s2
note «s3 = (if Jerr. x1 = Some (Error err) then (z1, s1)
else abupd (abrupt-if (x1 # None) z1) s2)»
with Fulse jmp have abrupt s2 = Some (Jump j)
by (cases s2) (simp add: abrupt-if-def)
with jmpOk wt-c2 G show ?thesis
by — (rule hyp-c2 [THEN conjunctl ,rule-format (no-asm)],simp-all)
qed
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thus “case by simp
next
case (Init C ¢ s0 s3 s1 s2 jmps T Env)
note <jumpNestingOk jmps (Inlr (Init C))»
note G = «prg Env = G»
note <the (class G C) = o
with Init.prems have c: class G C = Some ¢
by (elim wt-elim-cases) auto
have jejmps if jmp: abrupt s8 = (Some (Jump j)) for j
proof (cases inited C (globs s0))
case True
with Init.hyps have s3=Norm s0
by simp
with jmp have False
by simp
thus ?thesis ..
next
case Fulse
from wfc G
have wf-cdecl: wf-cdecl G (C,c)
by (simp add: wf-prog-cdecl)
from Init.hyps
have ?HypObj (Inir (if C = Object then Skip else Init (super c)))
(Norm ((init-class-obj G C) s0)) s1 ($:ivals)
apply (simp (no-asm-use) only: False if-False simp-thms)
apply (erule conjE)+
apply assumption
done
note hyp-s1 = this [rule-format (no-asm)]
from wf-cdecl G have
wt-super: Envt(if C = Object then Skip else Init (super ¢)):/
by (cases C=Object)
(auto dest: wf-cdecl-supD is-acc-classD)
from hyp-s1 [OF - - wi-super G]
have ?Jmp jmps s1
by simp
hence jmp-s1: ?Jmp jmps ((set-lvars Map.empty) s1) by (cases s1) simp
from Fulse Init.hyps
have ?HypObj (Inlr (init c)) ((set-lvars Map.empty) s1) s2 ($::vals)
apply (simp (no-asm-use) only: False if-False simp-thms)
apply (erule conjE)+
apply assumption
done
note hyp-init-c = this [rule-format (no-asm))
from wf-cdecl
have wi-init-c: (prg = G, cls = C, lcl = Map.empty|)Finit c::\/
by (rule wf-cdecl-wt-init)
from wf-cdecl have jumpNestingOkS {} (init c)
by (cases rule: wf-cdeclE)
hence jumpNestingOkS jmps (init c)
by (rule jumpNestingOkS-mono) simp
moreover
have abrupt s2 = Some (Jump j)
proof —
from Fulse Init.hyps
have s3 = (set-lvars (locals (store s1))) s2 by simp
with jmp show ?thesis by (cases s2) simp
qed
ultimately show %thesis
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using hyp-init-c [OF jmp-s1 - wt-init-c]

by simp
qed
thus ?case by simp
next

case (NewC s0 C s1 a s2 jmps T Env)
have jejmps if jmp: abrupt s2 = Some (Jump j) for j
proof —
note <prg Env = G»
moreover note hyp-init = <PROP ?Hyp (Inlr (Init C')) (Norm s0) s1 »
moreover from wf NewC.prems
have Envt(Init C)::y/
by (elim wt-elim-cases) (drule is-acc-classD,simp)
moreover
have abrupt s1 = Some (Jump j)
proof —
from «GFs1 —halloc Clnst C-a— s2»> and jmp show ?thesis
by (rule halloc-no-jump’)
qed
ultimately show j € jmps
by — (rule hyp-init [THEN conjunctl rule-format (no-asm)],auto)
qed
thus ?case by simp
next
case (NewA s0 elT s1 e i s2 a s8 jmps T Env)
have jejmps if jmp: abrupt s3 = Some (Jump j) for j
proof —
note G = «prg Env = G»
from NewA.prems
obtain wt-init: Envkinit-comp-ty elT::y/ and
wt-size: Env-e::—PrimT Integer
by (elim wt-elim-cases) (auto dest: wt-init-comp-ty’)
note «(PROP ?Hyp (Inlr (init-comp-ty elT)) (Norm s0) s1 >
with wt-init G
have ?Jmp jmps si1
by (simp add: init-comp-ty-def)
moreover
note hyp-e = «(PROP ?Hyp (Inll e) sl s2 (Inl i)
have abrupt s2 = Some (Jump j)
proof —
note «Grabupd (check-neg i) s2—halloc Arr elT (the-Intg i)>a— s3>
moreover note jmp
ultimately
have abrupt (abupd (check-neg i) s2) = Some (Jump j)
by (rule halloc-no-jump’)
thus ?thesis by (cases s2) auto
qed
ultimately show j€jmps using wt-size G
by — (rule hyp-e [THEN conjunctl ,rule-format (no-asm)],simp-all)
qed
thus ?case by simp
next
case (Cast s0 e v s1 s2 cT jmps T Env)
have jejmps if jmp: abrupt s2 = Some (Jump j) for j
proof —
note hyp-e = <PROP ?Hyp (Inl1l e) (Norm s0) s1 (Inl v)»
note <prg Env = G»
moreover from Cast.prems
obtain eT where Envte:—eT by (elim wi-elim-cases)



276

moreover
have abrupt s1 = Some (Jump j)
proof —
note <«s2 = abupd (raise-if (— G,snd sitwv fits ¢T) ClassCast) s1»
moreover note jmp
ultimately show ?thesis by (cases s1) (simp add: abrupt-if-def)
qed
ultimately show ?thesis
by — (rule hyp-e [THEN conjunctl ,rule-format (no-asm)|, simp-all)
qed
thus ?case by simp
next
case (Inst s0 e v s1 b eT jmps T Env)
have jejmps if jmp: abrupt s1 = Some (Jump j) for j
proof —
note hyp-e = <PROP ?Hyp (Inl1l e) (Norm s0) s1 (Inl v)»
note «prg Env = G
moreover from Inst.prems
obtain eT where Envte::—eT by (elim wt-elim-cases)
moreover note jmp
ultimately show jcjmps
by — (rule hyp-e [THEN conjunctl rule-format (no-asm)], simp-all)
qed
thus ?case by simp
next
case Lit thus ?case by simp
next
case (UnOp s0 e v s1 unop jmps T Env)
have jejmps if jmp: abrupt s1 = Some (Jump j) for j
proof —
note hyp-e = <PROP ?Hyp (Inl1l e) (Norm s0) s1 (Inl v))
note <prg Env = G»
moreover from UnOp.prems obtain eT where Envte::—eT by (elim wt-elim-cases)
moreover note jmp
ultimately show jejmps
by — (rule hyp-e [THEN conjunctl ,rule-format (no-asm)], simp-all)
qed
thus ?case by simp
next
case (BinOp s0 el vl s binop e2 v2 s2 jmps T Env)
have jejmps if jmp: abrupt s2 = Some (Jump j) for j
proof —
note G = (prg Env = G»
from BinOp.prems
obtain el7 e2T where
wt-el: Envk-el::—elT and
wt-e2: Env-e2::—e2T
by (elim wt-elim-cases)
note <PROP ?Hyp (In1l el) (Norm s0) s1 (Inl vl)»
with G wt-el have jmp-si: ?Jmp jmps s1 by simp
note hyp-e2 =
«<PROP ?Hyp (if need-second-arg binop v1 then Inl1l e2 else Inlr Skip)
s1 s2 (Inl v2)»
show jecjmps
proof (cases need-second-arg binop v1)
case True with jmp-sI wt-e2 jmp G
show ?thesis
by — (rule hyp-e2 [THEN conjunctl ,rule-format (no-asm)],simp-all)
next
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case Fulse with jmp-s1 jmp G
show ?thesis
by — (rule hyp-e2 [THEN conjunctl ,rule-format (no-asm)],auto)
qed
qed
thus ?case by simp
next
case Super thus ?case by simp
next
case (Acc s0 va v f s1 jmps T Env)
have jejmps if jmp: abrupt s1 = Some (Jump j) for j
proof —
note hyp-va = <PROP ?Hyp (In2 va) (Norm s0) s1 (In2 (v,f))»
note <prg Env = G»
moreover from Acc.prems
obtain vT where Envtva:=vT by (elim wit-elim-cases)
moreover note jmp
ultimately show jcjmps
by — (rule hyp-va [THEN conjunctl ,rule-format (no-asm)], simp-all)
qed
thus ?case by simp
next
case (Ass s0 va w f sl e v s2 jmps T Env)
note G = «prg Env = G»
from Ass.prems
obtain vT eT where
wt-va: Envkva:=vT and
wt-e: Envk-e:—eT
by (elim wt-elim-cases)
note hyp-v = «PROP ?Hyp (In2 va) (Norm s0) s1 (In2 (w,f))
note hyp-e = <PROP ?Hyp (Inl1l e) s1 s2 (Inl v)
have jejmps if jmp: abrupt (assign f v s2) = Some (Jump j) for j
proof —
have abrupt s2 = Some (Jump j)
proof (cases normal s2)
case True
from «(GFsl —e—>v— s2» and True have nrm-si: normal s1
by (rule eval-no-abrupt-lemma [rule-format])
with nrm-s1 wt-va G True
have abrupt (f v s2) # Some (Jump j)
using hyp-v [THEN conjunct2,rule-format (no-asm))
by simp
from this jmp
show ?thesis
by (rule assign-abrupt-propagation)
next
case Fualse with jmp
show ?thesis by (cases s2) (simp add: assign-def Let-def)
qed
moreover from wt-va G
have ?Jmp jmps si1
by — (rule hyp-v [THEN conjunctl],simp-all)
ultimately show %thesis using G
by — (rule hyp-e [THEN conjunctl ,rule-format (no-asm)], simp-all, rule wt-e)
qed
thus ?case by simp
next
case (Cond s0 e0 b s1 el e2 v s2 jmps T Env)
note G = (prg Env = G»
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note hyp-e0 = «<PROP ?Hyp (Inl1l e0) (Norm s0) s1 (Inl b)»
note hyp-el-e2 = «<PROP ?Hyp (Inl1l (if the-Bool b then el else e2)) sl s2 (Inl v)»
from Cond.prems
obtain elT e2T
where wt-e0: Envt-e0::—PrimT Boolean
and wt-el: Envrel:—elT
and wt-e2: Env-e2::—e2T
by (elim wt-elim-cases)
have jejmps if jmp: abrupt s2 = Some (Jump j) for j
proof —
from wt-e0 G
have jmp-s1: 2Jmp jmps sl
by — (rule hyp-e0 [THEN conjunctl],simp-all)
show ?thesis
proof (cases the-Bool b)
case True
with jmp-s1 wt-el G jmp
show ?thesis
by—(rule hyp-e1-e2 [THEN conjunctl rule-format (no-asm)|,simp-all)
next
case False
with jmp-s1 wt-e2 G jmp
show ?thesis
by—(rule hyp-e1-e2 [THEN conjunctl rule-format (no-asm)|,simp-all)
qed
qed
thus ?case by simp
next
case (Call s0 e a s1 args vs s2 D mode statT mn pTs s8 s8" accC v s/
jmps T Env)
note G = «prg Env = G»
from Call.prems
obtain eT argsT
where wt-e: Envte::—eT and wt-args: Envkargs::=argsT
by (elim wt-elim-cases)
have jejmps if jmp: abrupt ((set-lvars (locals (store s2))) s4) = Some (Jump j) for j
proof —
note hyp-e = <PROP ?Hyp (Inl1l e) (Norm s0) sl (Inl a)»
from wt-e G
have jmp-s1: 2Jmp jmps sl
by — (rule hyp-e [THEN conjunctl],simp-all)
note hyp-args = <PROP ?Hyp (In8 args) s1 s2 (Ing vs)»
have abrupt s2 = Some (Jump j)
proof —
note (Grs3' —Methd D (name = mn, parTs = pTs)—=v— s4>
moreover
from jmp have abrupt sj = Some (Jump j)
by (cases s4) simp
ultimately have abrupt s3' = Some (Jump j)
by — (rule ccontr,drule (1) Methd-no-jump,simp)
moreover note (s3’ = check-method-access G accC statT mode
(name = mn, parTs = pTs) a s3>
ultimately have abrupt s8 = Some (Jump j)
by (cases s3)
(simp add: check-method-access-def abrupt-if-def Let-def)
moreover
note <s3 = init-lvars G D (name=mn, parTs=pTs) mode a vs s2»
ultimately show ?thesis
by (cases s2) (auto simp add: init-lvars-def2)
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qed
with jmp-s1 wt-args G
show ?thesis
by — (rule hyp-args [THEN conjunctl rule-format (no-asm)|, simp-all)
qed
thus ?case by simp
next
case (Methd s0 D sig v s1 jmps T Env)
from «GF-Norm s0 —body G D sig—~v— s1)
have G+Norm sO0 —Methd D sig—=v— sl
by (rule eval.Methd)
hence A j. abrupt s1 # Some (Jump j)
by (rule Methd-no-jump) simp
thus ?case by simp
next
case (Body s0 D s1 ¢ s2 s3 jmps T Env)
have G+-Norm s0 —Body D c¢—>the (locals (store s2) Result)
— abupd (absorb Ret) s3
by (rule eval.Body) (rule Body)+
hence A j. abrupt (abupd (absorb Ret) s3) # Some (Jump j)
by (rule Body-no-jump) simp
thus ?case by simp
next
case LVar
thus ?case by (simp add: lvar-def Let-def)
next
case (FVar s0 statDeclC sl e a s2 v s2' stat fn 8 accC jmps T Env)
note G = «prg Env = G»
from wf FVar.prems
obtain statC f where
wt-e: Env-e::—Class statC and
accfield: accfield (prg Env) accC statC fn = Some (statDeclC.f)
by (elim wt-elim-cases) simp
have wt-init: EnvtInit statDeclC::/
proof —
from wf wt-e G
have is-class (prg Env) statC
by (auto dest: ty-expr-is-type type-is-class)
with wf accfield G
have is-class (prg Env) statDeclC
by (auto dest!: accfield-fields dest: fields-declC')
thus ?thesis
by simp
qed
note fvar = (v, s2') = fvar statDeclC stat fn a 2>
have jejmps if jmp: abrupt s8 = Some (Jump j) for j
proof —
note hyp-init = <PROP ?Hyp (Inlr (Init statDeclC)) (Norm s0) s1 {»
have ?Jmp jmps s1
by (rule hyp-init [THEN conjunctl]) (use G wit-init in auto)
moreover
note hyp-e = <PROP ?Hyp (Inl1l e) s1 s2 (Inl a))
have abrupt s2 = Some (Jump j)
proof —
note «s8 = check-field-access G accC statDeclC fn stat a s2"
with jmp have abrupt s2’ = Some (Jump j)
by (cases s2”)
(simp add: check-field-access-def abrupt-if-def Let-def)
with fvar show abrupt s2 = Some (Jump j)
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by (cases s2) (simp add: fvar-def2 abrupt-if-def)
qed
ultimately show ?thesis
using G wt-e
by — (rule hyp-e [THEN conjunctl, rule-format (no-asm)],simp-all)
qged
moreover
from fvar obtain upd w
where upd: upd = snd (fst (fvar statDeclC stat fn a s2)) and
v: v=(w,upd)
by (cases fvar statDeclC' stat fn a s2)
(simp, use surjective-pairing in blast)
have abrupt (upd val s) # Some (Jump j)
if abrupt s # Some (Jump j)
for j val and s::state
using upd that by (rule fvar-upd-no-jump)
ultimately show ?case using v by simp
next
case (AVar s0 el a s1 e2is2v s2’ jmps T Env)
note G = (prg Env = G»
from AVar.prems
obtain e!T e2T where
wt-el: Env-el::—elT and wt-e2: Envke2::—e2T
by (elim wt-elim-cases) simp
note avar = (v, s2’) = avar G i a s2»
have jejmps if jmp: abrupt s2’ = Some (Jump j) for j
proof —
note hyp-el = «<PROP ?Hyp (In1l el) (Norm s0) sl (Inl a)
from G wt-el
have ?Jmp jmps s1
by — (rule hyp-el [THEN conjunctl], auto)
moreover
note hyp-e2 = <PROP ?Hyp (In1l e2) s1 s2 (Inl i)
have abrupt s2 = Some (Jump j)
proof —
from avar have s2' = snd (avar G i a s2)
by (cases avar G i a s2) simp
with jmp show ?thesis by — (rule avar-state-no-jump,simp)
qed
ultimately show ?thesis
using wt-e2 G
by — (rule hyp-e2 [THEN conjunctl, rule-format (no-asm)],simp-all)
qged
moreover
from avar obtain upd w
where upd: upd = snd (fst (avar G i a s2)) and
v: v=(w,upd)
by (cases avar G i a s2)
(simp, use surjective-pairing in blast)
have abrupt (upd val s) # Some (Jump j) if abrupt s # Some (Jump j)
for j val and s:state
using upd that by (rule avar-upd-no-jump)
ultimately show ?case using v by simp
next
case Nil
thus ?case by simp
next
case (Cons s0 e v s1 es vs s2 jmps T Env)
note G = «prg Env = G»
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from Cons.prems obtain eT esT
where wt-e: Envte::—eT and wt-e2: Envkes::=esT
by (elim wt-elim-cases) simp
have jejmps if jmp: abrupt s2 = Some (Jump j) for j
proof —
note hyp-e = <PROP ?Hyp (Inl1l e¢) (Norm s0) s1 (Inl v))
from G wt-e
have ?Jmp jmps si1
by — (rule hyp-e [THEN conjunctl],simp-all)
moreover
note hyp-es = <PROP ?Hyp (In3 es) s1 s2 (In3 vs)»
ultimately show Zthesis
using wt-e2 G jmp
by — (rule hyp-es [THEN conjunct!, rule-format (no-asm)],
(assumption|simp (no-asm-simp))+)
qed
thus ?case by simp
qed
note generalized = this
from no-jmp jmpOk wt G
show ?thesis
by (rule generalized)
qed

lemmas jumpNestingOk-evalEl = jumpNestingOk-eval [THEN conjE, rule-format]

lemma jumpNestingOk-eval-no-jump:
assumes eval: prg Env- s0 —t>=— (v,s1) and
JmpOk: jumpNestingOk {} t and
no-jmp: abrupt s0 # Some (Jump j) and
wt: Envkt::T and
wf: wf-prog (prg Env)
shows abrupt s1 # Some (Jump j) A
(normal s1 — v=In2 (w,upd)
— abrupt s # Some (Jump j")
— abrupt (upd val s) # Some (Jump j"))
proof (cases 3 j'. abrupt s0 = Some (Jump j'))
case True
then obtain j’ where jmp: abrupt s0 = Some (Jump j') ..
with no-jmp have j'#j by simp
with eval jmp have s1=s0 by auto
with no-jmp jmp show ?Zthesis by simp
next
case Fulse
obtain G where G: prg Env = G
by (cases Env) simp
from G eval have G+ s0 —t>— (v,s1) by simp
moreover note jmpOk wt
moreover from G wf have wf-prog G by simp
moreover note G
moreover from Fulse have A j. abrupt sO0 = Some (Jump j) = j € {}
by simp
ultimately show ?thesis
apply (rule jumpNestingOk-evalE)
apply assumption
apply simp
apply fastforce
done
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qed

lemmas jumpNestingOk-eval-no-jumpE
= jumpNestingOk-eval-no-jump [THEN conjE rule-format)

corollary eval-expression-no-jump:
assumes eval: prg Env-s0 —e—>=v— sl and
no-jmp: abrupt s0 # Some (Jump j) and
wt: Envker:—T and
wf: wf-prog (prg Env)
shows abrupt s1 # Some (Jump j)
using eval - no-jmp wt wf
by (rule jumpNestingOk-eval-no-jumpE, simp-all)

corollary eval-var-no-jump:
assumes eval: prg Envt-s0 —var=>(w,upd)— sI and
no-jmp: abrupt s0 # Some (Jump j) and
wt: Envkvar:=T and
wf: wf-prog (prg Env)
shows abrupt s1 # Some (Jump j) A
(normal s1 —
(abrupt s # Some (Jump j')
— abrupt (upd val s) # Some (Jump j')))
apply (rule-tac upd=upd and val=val and s=s and w=w and j'=j’
in jumpNestingOk-eval-no-jumpE [OF eval - no-jmp wt wf))
by simp-all

lemmas eval-var-no-jumpE = eval-var-no-jump [THEN conjE rule-format]

corollary eval-statement-no-jump:
assumes cval: prg Envk-s0 —c— sl and
JmpOk: jumpNestingOkS {} ¢ and
no-jmp: abrupt s0 # Some (Jump j) and
wt: Envkc::/ and
wf: wf-prog (prg Env)
shows abrupt s1 # Some (Jump j)
using eval - no-jmp wt wf
by (rule jumpNestingOk-eval-no-jumpFE) (simp-all add: jmpOk)

corollary eval-expression-list-no-jump:
assumes eval: prg Envk-s0 —es=>v— sI and
no-jmp: abrupt s0 # Some (Jump j) and
wt: Envkes::=T and
wf: wf-prog (prg Env)
shows abrupt s1 # Some (Jump j)
using eval - no-jmp wt wf
by (rule jumpNestingOk-eval-no-jumpE, simp-all)

lemma union-subseteg-elim [elim]: [AU B C C;[AC C; BC C] = P] =P
by blast

lemma dom-locals-halloc-mono:
assumes halloc: GFsO—halloc oi>a—s1
shows dom (locals (store s0)) C dom (locals (store s1))
proof —
from halloc show ?thesis
by cases simp-all
qed
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lemma dom-locals-szalloc-mono:
assumes szalloc: Gts0—szalloc—s1
shows dom (locals (store s0)) C dom (locals (store s1))
proof —
from szalloc show ?thesis
proof (cases)
case Norm thus ?thesis by simp
next
case Jmp thus ?thesis by simp
next
case FError thus ?thesis by simp
next
case XcptL thus ?thesis by simp
next
case SXcpt thus ?thesis
by — (drule dom-locals-halloc-mono,simp)
qed
qed

lemma dom-locals-assign-mono:
assumes f-ok: dom (locals (store s)) C dom (locals (store (f n s)))
shows dom (locals (store s)) C dom (locals (store (assign fn s)))
proof (cases normal s)
case Fulse thus ?thesis
by (cases s) (auto simp add: assign-def Let-def)
next
case True
then obtain s’ where s”: s = (None,s’)
by auto
moreover
obtain z1 s! where fn s = (x1,s1)
by (cases fn s)
ultimately
show ?thesis
using f-ok
by (simp add: assign-def Let-def)
qed

lemma dom-locals-lvar-mono:
dom (locals (store s)) C dom (locals (store (snd (lvar vn s') val s)))
by (simp add: lvar-def) blast

lemma dom-locals-fvar-vvar-mono:
dom (locals (store s))
C dom (locals (store (snd (fst (fvar statDeclC stat fn a s')) val s)))
proof (cases stat)
case True
thus ?thesis
by (cases s) (simp add: fvar-def2)
next
case Fulse
thus ?thesis
by (cases s) (simp add: fvar-def2)
qed
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lemma dom-locals-fvar-mono:
dom (locals (store s))
C dom (locals (store (snd (fvar statDeclC stat fn a s))))
proof (cases stat)
case True
thus ?thesis
by (cases s) (simp add: foar-def2)
next
case Fulse
thus ?thesis
by (cases s) (simp add: fvar-def2)
qed

lemma dom-locals-avar-vvar-mono:
dom (locals (store s))

C dom (locals (store (snd (fst (avar G i a s')) val s)))
by (cases s, simp add: avar-def2)

lemma dom-locals-avar-mono:
dom (locals (store s))

C dom (locals (store (snd (avar G i a ))))
by (cases s, simp add: avar-def2)

Since assignments are modelled as functions from states to states, we must take into account these
functions. They appear only in the assignment rule and as result from evaluating a variable. Thats
why we need the complicated second part of the conjunction in the goal. The reason for the very
generic way to treat assignments was the aim to omit redundancy. There is only one evaluation rule
for each kind of variable (locals, fields, arrays). These rules are used for both accessing variables
and updating variables. Thats why the evaluation rules for variables result in a pair consisting of
a value and an update function. Of course we could also think of a pair of a value and a reference
in the store, instead of the generic update function. But as only array updates can cause a special
exception (if the types mismatch) and not array reads we then have to introduce two different rules
to handle array reads and updates

lemma dom-locals-eval-mono:
assumes eval: G+ sO0 —t=— (v,s1)
shows dom (locals (store s0)) C dom (locals (store s1)) A
(V wv. v=In2 vv A normal sl
— (V s wal. dom (locals (store s))
C dom (locals (store ((snd vv) val 5)))))
proof —
from eval show ?thesis
proof (induct)
case Abrupt thus ?case by simp
next
case Skip thus ?case by simp
next
case Fzxpr thus ?case by simp
next
case Lab thus “case by simp
next
case (Comp s0 cl sl c2 s2)
from Comp.hyps
have dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))
by simp
also
from Comp.hyps
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have ... C dom (locals (store s2))
by simp
finally show ?case by simp
next
case (If sO e b s1 c1 c2 s2)
from If.hyps
have dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))
by simp
also
from If .hyps
have ... C dom (locals (store s2))
by simp
finally show ?case by simp
next
case (Loop s0 e b sl ¢ s21s3)
show Zcase
proof (cases the-Bool b)
case True
with Loop.hyps
obtain
80-s1:
dom (locals (store ((Norm s0)::state))) C dom (locals (store s1)) and
s1-52: dom (locals (store s1)) C dom (locals (store s2)) and
$2-53: dom (locals (store s2)) C dom (locals (store s3))
by simp
note s0-sI also note sI-s2 also note s2-s53
finally show ?thesis
by simp
next
case Fulse
with Loop.hyps show ?thesis
by simp
qed
next
case Jmp thus ?case by simp
next
case Throw thus ?case by simp
next
case (Try s0 c1 s1 s2 C vn c2 s3)
then
have s0-s1: dom (locals (store ((Norm s0)::state)))
C dom (locals (store s1)) by simp
from «GFs1 —szalloc— s2»
have s1-s2: dom (locals (store s1)) C dom (locals (store s2))
by (rule dom-locals-sxalloc-mono)
thus Zcase
proof (cases G,s2Fcatch C)
case True
note s0-s! also note sI-s2
also
from True Try.hyps
have dom (locals (store (new-zept-var vn s2)))
C dom (locals (store s3))
by simp
hence dom (locals (store s2)) C dom (locals (store s3))
by (cases s2, simp )
finally show ?thesis by simp
next
case Fulse
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note s0-s1 also note s1-s2
finally
show ?thesis
using False Try.hyps by simp
ged
next
case (Fin s0 c1 x1 sl c2 s2 s3)
show Zcase
proof (cases Jerr. x1 = Some (Error err))
case True
with Fin.hyps show ?thesis
by simp
next
case Fulse
from Fin.hyps
have dom (locals (store ((Norm s0)::state)))
C dom (locals (store (z1, s1)))
by simp
hence dom (locals (store ((Norm s0)::state)))
C dom (locals (store ((Norm s1)::state)))
by simp
also
from Fin.hyps
have ... C dom (locals (store s2))
by simp
finally show ?thesis
using Fin.hyps by simp
qged
next
case (Init C ¢ s0 s3 s1 s2)
show Zcase
proof (cases inited C (globs s0))
case True
with Init.hyps show ?thesis by simp
next
case Fulse
with Init.hyps
obtain s0-s1: dom (locals (store (Norm ((init-class-obj G C) s0))))
C dom (locals (store s1)) and
$3: 83 = (set-lvars (locals (snd s1))) s2
by simp
from s0-s1
have dom (locals (store (Norm s0))) C dom (locals (store s1))
by (cases s0) simp
with s3
have dom (locals (store (Norm s0))) C dom (locals (store s3))
by (cases s2) simp
thus ?thesis by simp
qged
next
case (NewC s0 C sl a s2)
note halloc = <GFsl —halloc Clnst C'=a— s2»
from NewC'.hyps
have dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))
by simp
also
from halloc
have ... C dom (locals (store s2)) by (rule dom-locals-halloc-mono)
finally show ?case by simp
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next
case (NewA s0 T sl e i s2 a s3)
note halloc = «GFabupd (check-neg i) s2 —halloc Arr T (the-Intg i)>a— s3>
from NewA.hyps
have dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))
by simp
also
from NewA.hyps
have ... C dom (locals (store s2)) by simp
also
from halloc
have ... C dom (locals (store s3))
by (rule dom-locals-halloc-mono [elim-format]) simp
finally show ?case by simp
next
case Cast thus “case by simp
next
case Inst thus ?case by simp
next
case Lit thus ?case by simp
next
case UnOp thus ?case by simp
next
case (BinOp s0 el vl sl binop e2 v2 s2)
from BinOp.hyps
have dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))
by simp
also
from BinOp.hyps
have ... C dom (locals (store s2)) by simp
finally show ?Zcase by simp
next
case Super thus ?case by simp
next
case Acc thus ?case by simp
next
case (Ass s0 va w f s1 e v s2)
from Ass.hyps
have s0-s1:
dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))
by simp
show Zcase
proof (cases normal s1)
case True
with Ass.hyps
have ass-ok:
N s val. dom (locals (store s)) C dom (locals (store (f val s)))
by simp
note s0-s1
also
from Ass.hyps
have dom (locals (store s1)) C dom (locals (store s2))
by simp
also
from ass-ok
have ... C dom (locals (store (assign f v s2)))
by (rule dom-locals-assign-mono [where f = f])
finally show ?thesis by simp
next
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case Fulse
with «(GFsl —e—>v— s2»
have s2=s1
by auto
with s0-s1 False
have dom (locals (store ((Norm s0)::state)))
C dom (locals (store (assign f v s2)))
by simp
thus ?thesis
by simp
qged
next
case (Cond s0 e0 b s1 el e2 v s2)
from Cond.hyps
have dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))
by simp
also
from Cond.hyps
have ... C dom (locals (store s2))
by simp
finally show ?case by simp
next
case (Call s0 e a’ s1 args vs s2 D mode statT mn pTs s8 s3" accC v s4)
note s3 = <83 = init-lvars G D (name = mn, parTs = pTs|) mode a’ vs s2>
from Call.hyps
have dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))
by simp
also
from Call.hyps
have ... C dom (locals (store s2))
by simp
also
have ... C dom (locals (store ((set-lvars (locals (store s2))) s4)))
by (cases s4) simp
finally show ?Zcase by simp
next
case Methd thus ?case by simp
next
case (Body s0 D sl ¢ s2 s3)
from Body.hyps
have dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))

by simp
also
from Body.hyps
have ... C dom (locals (store s2))
by simp
also
have ... C dom (locals (store (abupd (absorb Ret) s2)))
by simp
also
have ... C dom (locals (store (abupd (absorb Ret) s3)))
proof —
from «s3 =

(¢f 1. abrupt s2 = Some (Jump (Break 1)) V
abrupt s2 = Some (Jump (Cont 1))
then abupd (Az. Some (Error CrossMethodJump)) s2 else s2)»
show ?thesis
by simp
qged
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finally show ?case by simp
next
case LVar
thus Zcase
using dom-locals-lvar-mono
by simp
next
case (FVar s0 statDeclC s1 e a s2 v s2' stat fn s3 accC)
from F'Var.hyps
obtain s2” s2’ = snd (fvar statDeclC stat fn a s2) and
v: v = fst (fvar statDeclC stat fn a s2)
by (cases fvar statDeclC' stat fn a s2 ) simp
from v
have Vs val. dom (locals (store s))
C dom (locals (store (snd v val s))) (is ?V-ok)
by (simp add: dom-locals-fvar-vvar-mono)
hence v-ok: (Yvv. In2 v = In2 vv A normal s3 — ?V-ok)
by — (intro strip, simp)
note s3 = «s8 = check-field-access G accC statDeclC fn stat a s2"
from FVar.hyps
have dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))
by simp
also
from F'Var.hyps
have ... C dom (locals (store s2))
by simp
also
from s2’
have ... C dom (locals (store s2'))
by (simp add: dom-locals-fvar-mono)
also
from s3
have ... C dom (locals (store s3))
by (simp add: check-field-access-def Let-def)
finally
show Zcase
using v-ok
by simp
next
case (AVar s0 el a s1 e2 i s2 v s2)
from AVar.hyps
obtain s2” s2’ = snd (avar G i a s2) and
v:v = fst (avar G i a s2)
by (cases avar G i a s2) simp
from v
have V s val. dom (locals (store s))
C dom (locals (store (snd v val s))) (is ?V-ok)
by (simp add: dom-locals-avar-vvar-mono)
hence v-ok: (Vov. In2 v = In2 vv A normal s2' — ?V-ok)
by — (intro strip, simp)
from AVar.hyps
have dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))
by simp
also
from AVar.hyps
have ... C dom (locals (store s2))
by simp
also
from s2’
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have ... C dom (locals (store s2))
by (simp add: dom-locals-avar-mono)
finally
show ?case using v-ok by simp
next
case Nil thus ?case by simp
next

case (Cons s0 e v s1 es vs s2)

from Cons.hyps

have dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))
by simp

also

from Cons.hyps

have ... C dom (locals (store s2))
by simp

finally show ?case by simp

qed
qed

lemma dom-locals-eval-mono-elim:
assumes eval: GF s0 —t>=— (v,s1)
obtains dom (locals (store s0)) C dom (locals (store s1)) and
N vv s val. [v=In2 vv; normal s1]
= dom (locals (store s))
C dom (locals (store ((snd vv) val s)))
using eval by (rule dom-locals-eval-mono [THEN conjE)) (rule that, auto)

lemma halloc-no-abrupt:

assumes halloc: GFsO—halloc oi>a—s1 and

normal: normal s1

shows normal s0
proof —

from halloc normal show ?thesis

by cases simp-all

qed

lemma szalloc-mono-no-abrupt:

assumes szalloc: GFs0—szalloc—s1 and

normal: normal s1

shows normal s0
proof —

from szalloc normal show ¢thesis

by cases simp-all

qed

lemma union-subseteql: [AU B C C; A’C A; B'CB] = A'UB'CC
by blast

lemma union-subseteqll: [AU BC C; A’C A] = A'UBCC
by blast

lemma union-subseteqlr: [AU BC C; B'"C B] = AUB'C(C
by blast

lemma subseteg-union-transl [trans]: [A C By BU C C D] = AU CC D
by blast

lemma subseteg-union-transr [trans]: [A C B; CUBC D] = AU CCD
by blast
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lemma union-subseteq-weaken: [A U B C C;[AC C; BC C] = P] =P
by blast

lemma assigns-good-approz:
assumes
eval: G+ s0 —t~— (v,s1) and
normal: normal s1
shows assigns t C dom (locals (store s1))
proof —
from eval normal show ?thesis
proof (induct)
case Abrupt thus ?case by simp
next — For statements its trivial, since then assigns t = {}
case Skip show ?case by simp

next

case Fzpr show ?case by simp
next

case Lab show ?case by simp
next

case Comp show ?case by simp
next

case If show ?Zcase by simp
next

case Loop show ?Zcase by simp
next

case Jmp show Zcase by simp
next

case Throw show ?case by simp
next

case Try show ?Zcase by simp
next

case Fin show ?case by simp
next

case Init show ?case by simp
next

case NewC show ?Zcase by simp
next

case (NewA s0 T sl e i s2 a s3)
note halloc = «GFabupd (check-neg i) s2 —halloc Arr T (the-Intg i)>a— s3>
have assigns (In1l e) C dom (locals (store s2))
proof —
from NewA
have normal (abupd (check-neg 7) s2)
by — (erule halloc-no-abrupt [rule-format])
hence normal s2 by (cases s2) simp
with NewA.hyps
show ?thesis by iprover
qed
also
from halloc
have ... C dom (locals (store s3))
by (rule dom-locals-halloc-mono [elim-format]) simp
finally show ?case by simp
next
case (Cast s0 e v sl s2 T)
hence normal s1 by (cases s1,simp)
with Cast.hyps
have assigns (In1l e) C dom (locals (store s1))
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by simp
also
from Cast.hyps
have ... C dom (locals (store s2))
by simp
finally
show ?Zcase
by simp
next
case Inst thus ?case by simp
next
case Lit thus Zcase by simp
next
case UnOp thus ?case by simp
next
case (BinOp s0 el vl s1 binop e2 v2 s2)
hence normal s1 by — (erule eval-no-abrupt-lemma [rule-format])
with BinOp.hyps
have assigns (In1l e1) C dom (locals (store s1))

by iprover
also
have ... C dom (locals (store s2))
proof —

note «Grs! —(if need-second-arg binop vl then Inil e2
else Inlr Skip)=— (Inl v2, s2)
thus ?thesis
by (rule dom-locals-eval-mono-elim)
qged
finally have s2: assigns (In1l el) C dom (locals (store s2)) .
show Zcase
proof (cases binop=CondAnd V binop=CondOr)
case True
with s2 show ?thesis by simp
next
case Fulse
with BinOp
have assigns (In1l e2) C dom (locals (store s2))
by (simp add: need-second-arg-def)

with s2
show ?thesis using Fulse by simp
qed
next
case Super thus ?case by simp
next
case Acc thus ?case by simp
next
case (Ass s0 va w f s1 e v s2)
note nrm-ass-s2 = «normal (assign f v s2))

hence nrm-s2: normal s2
by (cases s2, simp add: assign-def Let-def)
with Ass.hyps
have nrm-s1: normal s
by — (erule eval-no-abrupt-lemma [rule-format])
with Ass.hyps
have assigns (In2 va) C dom (locals (store s1))
by iprover
also
from Ass.hyps
have ... C dom (locals (store s2))
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by — (erule dom-locals-eval-mono-elim)
also
from nrm-s2 Ass.hyps
have assigns (In1l e) C dom (locals (store s2))
by iprover
ultimately
have assigns (In2 va) U assigns (In1l ¢) C dom (locals (store s2))
by (rule Un-least)
also
from Ass.hyps nrm-si
have ... C dom (locals (store (f v s2)))
by — (erule dom-locals-eval-mono-elim, cases s2,simp)
then
have dom (locals (store s2)) C dom (locals (store (assign f v s2)))
by (rule dom-locals-assign-mono)
finally
have va-e: assigns (In2 va) U assigns (Inl1l e)
C dom (locals (snd (assign f v s2))) .
show Zcase
proof (cases 3 n. va = LVar n)
case Fulse
with va-e show ?thesis
by (simp add: Un-assoc)
next
case True
then obtain n where va: va = LVar n
by blast
with Ass.hyps
have G+-Norm s0 —LVar n=>(w,f)— sl
by simp
hence (w,f) = lvar n s0
by (rule eval-elim-cases) simp
with nrm-ass-s2
have n € dom (locals (store (assign f v s2)))
by (cases s2) (simp add: assign-def Let-def lvar-def)
with va-e True va
show ?thesis by (simp add: Un-assoc)
qed
next
case (Cond s0 e0 b s1 el e2 v s2)
hence normal s1
by — (erule eval-no-abrupt-lemma [rule-format])
with Cond.hyps
have assigns (In1l e0) C dom (locals (store s1))
by iprover
also from Cond.hyps
have ... C dom (locals (store s2))
by — (erule dom-locals-eval-mono-elim)
finally have e0: assigns (In1l e0) C dom (locals (store s2)) .
show Zcase
proof (cases the-Bool b)
case True
with Cond
have assigns (In1l e1) C dom (locals (store s2))
by simp
hence assigns (In1l e1) N assigns (In1l e2) C ...
by blast
with e0
have assigns (In1l e0) U assigns (In1l e1) N assigns (Inll e2)
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C dom (locals (store s2))
by (rule Un-least)
thus ?thesis using True by simp
next
case False
with Cond
have assigns (In1l e2) C dom (locals (store s2))
by simp
hence assigns (In1l e1) N assigns (In1l e2) C ...
by blast
with el
have assigns (In1l e0) U assigns (In1l el) N assigns (In1l e2)
C dom (locals (store s2))
by (rule Un-least)
thus ?thesis using Fulse by simp
qged
next
case (Call s0 e a’ s1 args vs s2 D mode statT mn pTs s8 s8’ accC v s4)
have nrm-s2: normal s2
proof —
from <normal ((set-lvars (locals (snd s2))) s4)»
have normal-s4: normal s4 by simp
hence normal s3' using Call.hyps
by — (erule eval-no-abrupt-lemma [rule-format])
moreover note
<83’ = check-method-access G accC statT mode (name=mn, parTs=pTs)) a’ s3>
ultimately have normal s3
by (cases s3) (simp add: check-method-access-def Let-def)
moreover
note s8 = ¢s3 = init-lvars G D (name = mn, parTs = pTs|) mode a’ vs s2»
ultimately show normal s2
by (cases s2) (simp add: init-lvars-def2)
qged
hence normal s1 using Call.hyps
by — (erule eval-no-abrupt-lemma [rule-format])
with Call.hyps
have assigns (In1l e) C dom (locals (store s1))
by iprover
also from Call.hyps
have ... C dom (locals (store s2))
by — (erule dom-locals-eval-mono-elim)
also
from nrm-s2 Call.hyps
have assigns (In3 args) C dom (locals (store s2))
by iprover
ultimately have assigns (In1l e) U assigns (In3 args) C ...
by (rule Un-least)
also
have ... C dom (locals (store ((set-lvars (locals (store s2))) s4)))
by (cases s4) simp
finally show ?Zcase
by simp
next
case Methd thus ?case by simp
next
case Body thus ?case by simp
next
case LVar thus “case by simp
next
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case (FVar s0 statDeclC s1 e a s2 v s2’ stat fn $3 accC)
note s8 = (83 = check-field-access G accC statDeclC fn stat a s2'
note avar = «(v, s2) = fvar statDeclC stat fn a s2»
have nrm-s2: normal s2
proof —
note <normal s3>
with s3 have normal s2’
by (cases s2') (simp add: check-field-access-def Let-def)
with avar show normal s2
by (cases s2) (simp add: fvar-def2)
qed
with FVar.hyps
have assigns (In1l e) C dom (locals (store s2))

by iprover
also
have ... C dom (locals (store s2))
proof —

from avar
have s2' = snd (fvar statDeclC stat fn a s2)
by (cases fvar statDeclC stat fn a s2) simp
thus Zthesis
by simp (rule dom-locals-fvar-mono)
qed
also from s3
have ... C dom (locals (store s3))
by (cases s2') (simp add: check-field-access-def Let-def)
finally show ?Zcase
by simp
next
case (AVar s0 el a s1 e2i s2 v s2’)
note avar = (v, s2’) = avar G i a $2»
have nrm-s2: normal s2
proof —
from avar and <normal s2"
show ?thesis by (cases s2) (simp add: avar-def2)
qed
with AVar.hyps
have normal s1
by — (erule eval-no-abrupt-lemma [rule-format])
with AVar.hyps
have assigns (In1l e1) C dom (locals (store s1))
by iprover
also from AVar.hyps
have ... C dom (locals (store s2))
by — (erule dom-locals-eval-mono-elim)
also
from AVar.hyps nrm-s2
have assigns (In1l e2) C dom (locals (store s2))
by iprover
ultimately
have assigns (In1l el) U assigns (In1l e2) C ...
by (rule Un-least)
also
have dom (locals (store s2)) C dom (locals (store s2))
proof —
from avar have s2’ = snd (avar G i a s2)
by (cases avar G i a s2) simp
thus %thesis
by simp (rule dom-locals-avar-mono)
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qged
finally
show Zcase
by simp
next
case Nil show ?case by simp
next
case (Cons s0 e v s1 es vs s2)
have assigns (In1l e) C dom (locals (store s1))
proof —
from Cons
have normal s1 by — (erule eval-no-abrupt-lemma [rule-format])
with Cons.hyps show ?thesis by iprover
qed
also from Cons.hyps
have ... C dom (locals (store s2))
by — (erule dom-locals-eval-mono-elim)
also from Cons
have assigns (In3 es) C dom (locals (store s2))
by iprover
ultimately
have assigns (Inil ) U assigns (In3 es) C dom (locals (store s2))
by (rule Un-least)
thus ?Zcase
by simp
qed
qed

corollary assignsE-good-approx:

assumes

eval: prg Envk s0 —e—>v— sl and
normal: normal s1

shows assignsE e C dom (locals (store s1))
proof —
from eval normal show ?thesis

by (rule assigns-good-approz [elim-format)) simp
qed

corollary assignsV-good-approz:

assumes

eval: prg Env- s —v=»>uvf— sl and

normal: normal s1

shows assignsV v C dom (locals (store s1))
proof —
from eval normal show ?thesis

by (rule assigns-good-approz [elim-format)) simp
qed

corollary assignsEs-good-approz:

assumes

eval: prg Envk s0 —es=>vs— sl and
normal: normal s1

shows assignsEs es C dom (locals (store s1))
proof —
from eval normal show ?thesis

by (rule assigns-good-approzx [elim-format]) simp
qed

lemma constVal-eval:
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assumes const: constVal e = Some ¢ and
eval: GF-Norm sO —e—>v— s
shows v = ¢ A normal s
proof —
have True and
A ¢ v s0s. [ constVal e = Some ¢; G-Norm s0 —e—>=v— §]
= v = ¢ A normal s
and True

proof (induct rule: var.induct expr.induct stmt.induct)

case NewC hence Fulse by simp thus ?case ..
next

case NewA hence Fulse by simp thus ?case ..
next

case Cast hence Fulse by simp thus ?case ..
next

case Inst hence Fulse by simp thus ?case ..
next

case (Lit val ¢ v s0 s)

note <constVal (Lit val) = Some ¢

moreover

from «GFNorm s0 —Lit val—-v— $

obtain v=wval and normal s

by cases simp
ultimately show v=c A normal s by simp

next
case (UnOp unop e ¢ v 0 s)
note const = «constVal (UnOp unop e) = Some c»

then obtain ce where ce: constVal e = Some ce by simp
from «GFNorm s0 —UnOp unop e—>v— $»
obtain ve where ve: G-Norm s0 —e—=ve— s and
v: v = eval-unop unop ve
by cases simp
from ce ve
obtain eq-ve-ce: ve=ce and nrm-s: normal s
by (rule UnOp.hyps [elim-format]) iprover
from eg-ve-ce const ce v
have v=c
by simp
from this nrm-s
show ?case ..
next
case (BinOp binop el e2 c v s0 )
note const = «constVal (BinOp binop el e2) = Some ¢
then obtain c! ¢2 where c1: constVal el = Some c1 and
c2: constVal e2 = Some c2 and
c: ¢ = eval-binop binop c1 c2
by simp
from <GFNorm s0 —BinOp binop el e2—=v— s
obtain v s1 v2
where vl: GFNorm s0 —el —>v1— s1 and
v2: Gksl —(if need-second-arg binop vl then Inl1l e2
else Inir Skip)>=— (Inl v2, s) and
v: v = eval-binop binop vl v2
by cases simp
from c1 v1
obtain eq-vi-cl: vI = ¢l and
nrm-s1: normal s1
by (rule BinOp.hyps [elim-format)) iprover
show ?Zcase
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proof (cases need-second-arg binop v1)
case True
with v2 nrm-s1 obtain s1’
where GHNorm s1’ —e2—=v2— s
by (cases s1) simp
with ¢2 obtain v2 = c2 normal s
by (rule BinOp.hyps [elim-format]) iprover
with ¢ ¢ ¢2 eq-vi-cl v
show ?thesis by simp
next
case Fulse
with nrm-s1 v2
have s=s1
by (cases s1) (auto elim!: eval-elim-cases)
moreover
from False ¢ v eq-vi-cl
have v = ¢
by (simp add: eval-binop-arg2-indep)
ultimately
show ?thesis
using nrm-s1 by simp
qged
next
case Super hence Fulse by simp thus ?case ..
next
case Acc hence Fulse by simp thus ?case ..
next
case Ass hence False by simp thus ?case ..
next
case (Cond b el e2 c v s0 s)
note ¢ = (constVal (b ? el : e2) = Some &
then obtain cb cI c2 where
cb: constVal b = Some cb and
cl: constVal el = Some cI and
c2: constVal e2 = Some c2
by (auto split: bool.splits)
from «GFNorm s0 —b ? el : e2—=v—
obtain vb s
where vb: GFNorm s0 —b—>=vb— s1 and
eval-v: Grs1 —(if the-Bool vb then el else e2)—=v— s
by cases simp
from cb vb
obtain eq-vb-cb: vb = cb and nrm-s1: normal sl
by (rule Cond.hyps [elim-format]) iprover
show ?Zcase
proof (cases the-Bool vb)
case True
with ¢ ¢b c1 eq-vb-cb
have ¢ = c1
by simp
moreover
from True eval-v nrm-s1 obtain s1’
where GHNorm s1’' —el—=v— s
by (cases s1) simp
with c1 obtain cI = v normal s
by (rule Cond.hyps [elim-format]) iprover
ultimately show ?thesis by simp
next
case Fulse
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with ¢ ¢b ¢2 eq-vb-cb
have ¢ = ¢2
by simp
moreover
from False eval-v nrm-s1 obtain s1’
where G-Norm s1’ —e2—=v— s
by (cases s1) simp
with ¢2 obtain c¢2 = v normal s
by (rule Cond.hyps [elim-format]) iprover
ultimately show ¢thesis by simp
qed
next
case Cuall hence False by simp thus ?case ..
qed simp-all
with const eval
show ?thesis
by iprover
qed

lemmas constVal-eval-elim = constVal-eval [THEN conjE)]

lemma eval-unop-type:

typeof dt (eval-unop unop v) = Some (PrimT (unop-type unop))

by (cases unop) simp-all

lemma eval-binop-type:

typeof dt (eval-binop binop vl v2) = Some (PrimT (binop-type binop))

by (cases binop) simp-all

lemma constVal-Boolean:
assumes const: constVal e = Some ¢ and
wt: Envke::—PrimT Boolean
shows typeof empty-dt ¢ = Some (PrimT Boolean)
proof —
have True and

N c. [constVal e = Some c¢;Envke::—PrimT Boolean]
= typeof empty-dt ¢ = Some (PrimT Boolean)

and True

proof (induct rule: var.induct expr.induct stmt.induct)

case NewC hence Fulse by simp thus ?case ..
next

case NewA hence Fulse by simp thus ?case ..
next

case Cast hence Fulse by simp thus ?case ..
next

case Inst hence Fualse by simp thus ?case ..
next

case (Lit v ¢)

from <constVal (Lit v) = Some ¢

have c=v by simp

moreover

from «EnvtLit vi:— PrimT Boolean)

have typeof empty-dt v = Some (PrimT Boolean)

by cases simp

ultimately show ?case by simp
next

case (UnOp unop e c)

from «Env-UnOp unop e::—PrimT Boolean»

have Boolean = unop-type unop by cases simp
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moreover
from <constVal (UnOp unop e) = Some c»
obtain ce where ¢ = eval-unop unop ce by auto
ultimately show ?case by (simp add: eval-unop-type)
next
case (BinOp binop el e2 ¢)
from «EnvtBinOp binop el e2::—PrimT Boolean)
have Boolean = binop-type binop by cases simp
moreover
from <constVal (BinOp binop el e2) = Some ¢
obtain ¢! ¢2 where ¢ = eval-binop binop c1 c2 by auto
ultimately show ?case by (simp add: eval-binop-type)
next
case Super hence Fualse by simp thus ?case ..
next
case Acc hence Fulse by simp thus ?case ..
next
case Ass hence Fulse by simp thus ?case ..
next
case (Cond b el e2 c)
note ¢ = «constVal (b ? el : e2) = Some o
then obtain cb ¢! ¢2 where
cb: constVal b = Some cb and
cl: constVal el = Some c1 and
c2: constVal e2 = Some c2
by (auto split: bool.splits)
note wt = «Envtb ? el : e2::—PrimT Boolean)
then
obtain 71 T2
where Envbb::—PrimT Boolean and
wt-el: Envk-el::—PrimT Boolean and
wt-e2: Envke2::—PrimT Boolean
by cases (auto dest: widen-Boolean?2)
show ?Zcase
proof (cases the-Bool cb)
case True
from cI wt-el
have typeof empty-dt c1 = Some (PrimT Boolean)
by (rule Cond.hyps)
with True ¢ ¢b c1 show ?thesis by simp
next
case Fulse
from c2 wt-e2
have typeof empty-dt c2 = Some (PrimT Boolean)
by (rule Cond.hyps)
with False ¢ cb c¢2 show ?thesis by simp
qed
next
case Cull hence Fulse by simp thus ?Zcase ..
qed simp-all
with const wt
show ?thesis
by iprover
qed

lemma assigns-if-good-approz:
assumes
eval: prg Envk s0 —e—>b— s1 and
normal: normal s1 and
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bool: Envt e::—PrimT Boolean
shows assigns-if (the-Bool b) e C dom (locals (store s1))
proof —
— To properly perform induction on the evaluation relation we have to generalize the lemma to terms not
only expressions.
have generalized: assigns-if (the-Bool (the-Inl val)) (the-In1l t) C dom (locals (store s1))
if eval” prg Envt sO0 —t>=— (val,s)
and bool”: Envt t::Inl (PrimT Boolean)
and expr: 3 expr. t=Inll expr
for t val
using eval’ normal bool’ expr
proof (induct)
case Abrupt thus ?case by simp
next
case (NewC s0 C sl a s2)
from «Env-NewC C::—PrimT Boolean)
have Fulse
by cases simp
thus ?case ..
next
case (NewA s0 T sl e i s2 a s3)
from <Env-New Tle]::—PrimT Boolean)
have Fulse
by cases simp
thus ?case ..
next
case (Cast s0 e b s1 s2 T)
note s2 = «s2 = abupd (raise-if (— prg Env,snd s1tb fits T) ClassCast) s1»
have assigns-if (the-Bool b) e C dom (locals (store s1))
proof —
from s2 and <normal s2»
have normal s1
by (cases s1) simp
moreover
from «EnvtCast T e::—PrimT Boolean»
have Envte::— PrimT Boolean
by cases (auto dest: cast-Boolean?2)
ultimately show Zthesis
by (rule Cast.hyps [elim-format]) auto
qed
also from s2
have ... C dom (locals (store s2))
by simp
finally show ?case by simp
next
case (Inst s0 evs1 b T)
from <«prg Env-Norm s0 —e—=v— s1> and <normal s1>
have assignsE ¢ C dom (locals (store s1))
by (rule assignsE-good-approx)
thus ?case
by simp
next
case (Lit s v)
from <«EnvtLit vi:—PrimT Boolean)
have typeof empty-dt v = Some (PrimT Boolean)
by cases simp
then obtain b where v=DBool b
by (cases v) (simp-all add: empty-dt-def)
thus ?Zcase
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by simp
next
case (UnOp s0 e v s1 unop)
note bool = <Env-UnOp unop e::—PrimT Boolean)
hence bool-e: Env-e::—PrimT Boolean
by cases (cases unop,simp-all)
show ?Zcase
proof (cases constVal (UnOp unop e))
case None
note <normal s1»
moreover note bool-e
ultimately have assigns-if (the-Bool v) e C dom (locals (store s1))
by (rule UnOp.hyps [elim-format]) auto
moreover
from bool have unop = UNot
by cases (cases unop, simp-all)
moreover note None
ultimately
have assigns-if (the-Bool (eval-unop unop v)) (UnOp unop e)
C dom (locals (store s1))
by simp
thus ?thesis by simp
next
case (Some c)
moreover
from «prg Env-Norm s0 —e—=-v— sl>
have prg Env-Norm s0 —UnOp unop e—eval-unop unop v— sl
by (rule eval. UnOp)
with Some
have eval-unop unop v=c
by (rule constVal-eval-elim) simp
moreover
from Some bool
obtain b where c=Bool b
by (rule constVal-Boolean [elim-format])
(cases ¢, simp-all add: empty-di-def)
ultimately
have assigns-if (the-Bool (eval-unop unop v)) (UnOp unop e) = {}
by simp
thus ?thesis by simp
qed
next
case (BinOp s0 el vl s1 binop e2 v2 s2)
note bool = (Envk-BinOp binop el e2::— PrimT Boolean)
show ?Zcase
proof (cases constVal (BinOp binop el e2))
case (Some ¢)
moreover
from BinOp.hyps
have
prg Envk-Norm sO0 —BinOp binop el e2—eval-binop binop vl v2— s2
by — (rule eval.BinOp)
with Some
have eval-binop binop vl v2=c
by (rule constVal-eval-elim) simp
moreover
from Some bool
obtain b where ¢ = Bool b
by (rule constVal-Boolean [elim-format])
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(cases ¢, simp-all add: empty-di-def)
ultimately
have assigns-if (the-Bool (eval-binop binop v1 v2)) (BinOp binop el e2)
={}
by simp
thus ?thesis by simp
next
case None
show ?thesis
proof (cases binop=CondAnd \V binop=CondOr)
case True
from bool obtain bool-el: Envtel::—PrimT Boolean and
bool-e2: Envke2::—PrimT Boolean
using True by cases auto
have assigns-if (the-Bool v1) el C dom (locals (store s1))
proof —
from BinOp have normal sl
by — (erule eval-no-abrupt-lemma [rule-format])
from this bool-el
show ?thesis
by (rule BinOp.hyps [elim-format)]) auto

qed
also
from BinOp.hyps
have ... C dom (locals (store s2))
by — (erule dom-locals-eval-mono-elim,simp)
finally

have e1-s2: assigns-if (the-Bool v1) el C dom (locals (store s2)).
from True show ?thesis
proof
assume condAnd: binop = CondAnd
show ?thesis
proof (cases the-Bool (eval-binop binop vl v2))
case True
with condAnd
have need-second: need-second-arg binop vl
by (simp add: need-second-arg-def)
from <normal 52>
have assigns-if (the-Bool v2) e2 C dom (locals (store s2))
by (rule BinOp.hyps [elim-format))
(simp add: need-second bool-e2)+
with el-s2
have assigns-if (the-Bool v1) el U assigns-if (the-Bool v2) e2
C dom (locals (store s2))
by (rule Un-least)
with True condAnd None show ?thesis
by simp
next
case Fulse
note binop-False = this
show ?thesis
proof (cases need-second-arg binop v1)
case True
with binop-False condAnd
obtain the-Bool vi=True and the-Bool v2 = Fulse
by (simp add: need-second-arg-def)
moreover
from <normal s2>»
have assigns-if (the-Bool v2) e2 C dom (locals (store s2))
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by (rule BinOp.hyps [elim-format]) (simp add: True bool-e2)+
with el-s2
have assigns-if (the-Bool v1) el U assigns-if (the-Bool v2) e2
C dom (locals (store s2))
by (rule Un-least)
moreover note binop-False condAnd None
ultimately show ¢thesis
by auto
next
case False
with binop-False condAnd
have the-Bool vi=Fulse
by (simp add: need-second-arg-def)
with e1-s2
show ?thesis
using binop-False condAnd None by auto
qed

qed
next
assume condOr: binop = CondOr
show ?thesis
proof (cases the-Bool (eval-binop binop vl v2))

case Fulse
with condOr
have need-second: need-second-arg binop vl
by (simp add: need-second-arg-def)
from <normal s2»
have assigns-if (the-Bool v2) e2 C dom (locals (store s2))
by (rule BinOp.hyps [elim-format])
(simp add: need-second bool-e2)+
with el-s2
have assigns-if (the-Bool v1) el U assigns-if (the-Bool v2) e2
C dom (locals (store s2))
by (rule Un-least)
with False condOr None show ?thesis
by simp

next

case True
note binop-True = this
show ?thesis
proof (cases need-second-arg binop v1)
case True
with binop-True condOr
obtain the-Bool vi=Fulse and the-Bool v2 = True
by (simp add: need-second-arg-def)
moreover
from <normal s2>»
have assigns-if (the-Bool v2) e2 C dom (locals (store s2))
by (rule BinOp.hyps [elim-format]) (simp add: True bool-e2)+
with el-s2
have assigns-if (the-Bool v1) el U assigns-if (the-Bool v2) e2
C dom (locals (store s2))
by (rule Un-least)
moreover note binop-True condOr None
ultimately show ¢thesis
by auto
next
case Fualse
with binop-True condOr
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have the-Bool vi="True
by (simp add: need-second-arg-def)
with e1-s2
show ?thesis
using binop-True condOr None by auto
qed
qed
qed
next
case Fulse
note <— (binop = CondAnd V binop = CondOr))
from BinOp.hyps
have
prg Env-Norm s0 —BinOp binop el e2—>eval-binop binop vl v2— s2
by — (rule eval.BinOp)
moreover note <normal s2»
ultimately
have assignsE (BinOp binop el e2) C dom (locals (store s2))
by (rule assignsE-good-approx)
with Fulse None
show ?thesis
by simp
qed
qed
next
case Super
note «EnvtSuper::— PrimT Boolean)
hence Fulse
by cases simp
thus ?case ..
next
case (Acc s0 va v f s1)
from <prg EnvkNorm s0 —va=>(v, f)— s1» and <normal s1»
have assignsV va C dom (locals (store s1))
by (rule assignsV-good-approzx)
thus ?case by simp
next
case (Ass s0 va w f s1 e v s2)
hence prg Env-Norm s0 —va := e—>v— assign fv s2
by — (rule eval.Ass)
moreover note <normal (assign f v s2)»
ultimately
have assignsE (va := e) C dom (locals (store (assign f v s2)))
by (rule assignsE-good-approx)
thus ?case by simp
next
case (Cond s0 e0 b s1 el e2 v s2)
from «Envte0 ? el : e2::—PrimT Boolean»
obtain wt-el: Envkel::—PrimT Boolean and
wt-e2: Envk-e2::—PrimT Boolean
by cases (auto dest: widen-Boolean?2)
note eval-e0 = <prg Env-Norm s0 —e0—>b— sl
have e0-s2: assignsE e0 C dom (locals (store s2))
proof —
note eval-e0
moreover
from Cond.hyps and <normal s2> have normal sl
by — (erule eval-no-abrupt-lemma [rule-format],simp)
ultimately
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have assignsE e0 C dom (locals (store s1))
by (rule assignsE-good-approx)
also
from Cond
have ... C dom (locals (store s2))
by — (erule dom-locals-eval-mono [elim-format],simp)
finally show ?thesis .
qed
show Zcase
proof (cases constVal e0)
case None
have assigns-if (the-Bool v) el N assigns-if (the-Bool v) e2
C dom (locals (store s2))
proof (cases the-Bool b)
case True
from <normal s2»
have assigns-if (the-Bool v) el C dom (locals (store s2))
by (rule Cond.hyps [elim-format]) (simp-all add: wt-el True)
thus ?thesis
by blast
next
case Fulse
from <normal s2>»
have assigns-if (the-Bool v) e2 C dom (locals (store s2))
by (rule Cond.hyps [elim-format]) (simp-all add: wit-e2 False)
thus Zthesis
by blast
qed
with e0-s2
have assignsE e0 U
(assigns-if (the-Bool v) el N assigns-if (the-Bool v) e2)
C dom (locals (store s2))
by (rule Un-least)
with None show ?thesis
by simp
next
case (Some c)
from this eval-e0 have eq-b-c: b=c
by (rule constVal-eval-elim)
show ?thesis
proof (cases the-Bool c)
case True
from <normal 52>
have assigns-if (the-Bool v) el C dom (locals (store s2))
by (rule Cond.hyps [elim-format]) (simp-all add: eg-b-c True wt-el)
with e0-s2
have assignsE e0 U assigns-if (the-Bool v) el C ...
by (rule Un-least)
with Some True show ?thesis
by simp
next
case Fulse
from <normal s2>»
have assigns-if (the-Bool v) e2 C dom (locals (store s2))
by (rule Cond.hyps [elim-format]) (simp-all add: eg-b-c False wt-e2)
with e0-s2
have assignsE e0 U assigns-if (the-Bool v) e2 C ...
by (rule Un-least)
with Some False show ?thesis
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by simp
qed
qed
next
case (Call 50 e a sl args vs s2 D mode statT mn pTs s8 3" accC v s4)
hence
prg EnveNorm s0 —({accC,statT,mode}e-mn( {pTs}targs))—=v—
(set-lvars (locals (store s2)) s4)
by — (rule eval.Call)
hence assignsE ({accC,statT,mode}e-mn( {pTs}args))
C dom (locals (store ((set-lvars (locals (store s2))) s4)))
using <normal ((set-lvars (locals (snd s2))) s4)»
by (rule assignsE-good-approx)
thus ?case by simp
next
case Methd show ?case by simp
next
case Body show ?case by simp
qed simp-all — all the statements and variables
from eval bool show ?thesis
by (rule generalized [elim-format]) simp+
qed

lemma assigns-if-good-approz”:
assumes eval: GFs0 —e—>b— sl
and normal: normal s1
and  bool: (prg=G,cls=C,lcl=L|)e::— (PrimT Boolean)
shows assigns-if (the-Bool b) e C dom (locals (store s1))
proof —
from eval have prg (prg=G,cls=C,lcl=L)Fs0 —e—>=b— s1 by simp
from this normal bool show ?thesis
by (rule assigns-if-good-appror)
qed

lemma subset-Intl: AC C = AN BCC(C
by blast

lemma subset-Intr: BC C = AN BCC(C
by blast

lemma da-good-approx:
assumes eval: prg Envks0 —t=— (v,s1) and
wt: Envkt: T (is Wt Env ¢t T) and
da: Enve dom (locals (store s0)) »t» A (is ?Da Env s0 t A) and
wf: wf-prog (prg Env)
shows (normal s1 — (nrm A C dom (locals (store s1)))) A
(V 1. abrupt s1 = Some (Jump (Break )) A normal sO
— (brk A 1 C dom (locals (store s1)))) A
(abrupt s1 = Some (Jump Ret) A normal s0
— Result € dom (locals (store s1)))
(is ?NormalAssigned s1 A N ?BreakAssigned s0 s1 A N ?ResAssigned s0 s1)
proof —
note inj-term-simps [simp)
obtain G where G: prg Env = G by (cases Env) simp
with eval have eval: GFs0 —t~-— (v,s1) by simp
from G wf have wf: wf-prog G by simp
let ?HypObj = X t s0 s1.
V Env TA. ?Wt Envt T — ?Da EnvsOt A — prg Env = G
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— ?NormalAssigned s1 A N ?BreakAssigned s0 s1 A N ?ResAssigned s0 s1
— Goal in object logic variant
let ?Hyp = Mt s0 s1. (\ Env T A. [?Wt Env ¢ T; ?Da Env s0 t A; prg Env = G]
= ?NormalAssigned s1 A N ?BreakAssigned s0 s1 A \ ?ResAssigned s0 s1)
from eval and wt da G
show ?thesis
proof (induct arbitrary: Env T A)
case (Abrupt zc st Env T A)
have da: Envt dom (locals s) »t» A using Abrupt.prems by simp
have ?NormalAssigned (Some zc,s) A
by simp
moreover
have ?BreakAssigned (Some zc,s) (Some zc,s) A
by simp
moreover have ?ResAssigned (Some xc,s) (Some zc,s)
by simp
ultimately show ?case by (intro conjl)
next
case (Skip s Env T A)
have da: Env dom (locals (store (Norm s))) »(Skip)» A
using Skip.prems by simp
hence nrm A = dom (locals (store (Norm s)))
by (rule da-elim-cases) simp
hence ?NormalAssigned (Norm s) A
by auto
moreover
have ?BreakAssigned (Norm s) (Norm s) A
by simp
moreover have ?ResAssigned (Norm s) (Norm s)
by simp
ultimately show ?case by (intro conjl)
next
case (Ezpr sO e v s1 Env T A)
from Fxpr.prems
show ?NormalAssigned s1 A N\ ¢BreakAssigned (Norm s0) s1 A
N ?ResAssigned (Norm s0) s1
by (elim wt-elim-cases da-elim-cases)
(rule Expr.hyps, auto)
next
case (Lab s0 ¢ s1 j Env T A)
note G = (prg Env = G»
from Lab.prems
obtain ('[! where
da-c: Envt dom (locals (snd (Norm s0))) »{c)» C and
A:nrm A = nrm C N (brk C) 1 brk A = rmlab | (brk C) and
j: j = Break |
by — (erule da-elim-cases, simp)
from Lab.prems
have wt-c: Envkc::y/
by — (erule wt-elim-cases, simp)
from wt-c da-c G and Lab.hyps
have norm-c: ?NormalAssigned s1 C' and
brk-c: ?BreakAssigned (Norm s0) s1 C and
res-c: ?ResAssigned (Norm s0) sl1
by simp-all
have ?NormalAssigned (abupd (absord j) s1) A
proof
assume normal: normal (abupd (absorb j) s1)
show nrm A C dom (locals (store (abupd (absord j) s1)))
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proof (cases abrupt s1)
case None
with norm-c A
show ?thesis
by auto
next
case Some
with normal j
have abrupt s1 = Some (Jump (Break [))
by (auto dest: absorb-Some-NoneD)
with brk-c A
show ?thesis
by auto
qed
qed
moreover
have ?BreakAssigned (Norm s0) (abupd (absorb j) s1) A
proof —
have (brk A I’ C dom (locals (store (abupd (absorb j) s1))))
if break: abrupt (abupd (absordb j) s1) = Some (Jump (Break l’)) for I
proof —
from j that have [£]’
by (cases s1) (auto dest!: absorb-Some-JumpD)
hence (rmilab I (brk C)) U'= (brk C) I
by simp
with break brk-c A show ?thesis
by (cases s1) auto
qed
then show ?thesis
by simp
qed
moreover
from res-c have ?ResAssigned (Norm s0) (abupd (absorb j) s1)
by (cases s1) (simp add: absorb-def)
ultimately show ?case by (intro conjl)
next
case (Comp s0 cl sl ¢2 s2 Env T A)
note G = «prg Env = G»
from Comp.prems
obtain C1 C2
where da-c1: Envt dom (locals (snd (Norm s0))) »(c1)» C1 and
da-c2: Envk nrm C1 »(c2)» C2 and
A: nrm A = nrm C2 brk A = (brk C1) =n (brk C2)
by (elim da-elim-cases) simp
from Comp.prems
obtain wt-c1: Envtcl::y/ and
wt-c2: Envc2:/
by (elim wt-elim-cases) simp
note <PROP ?Hyp (Inir c1) (Norm s0) si»
with wt-cI da-c1 G
obtain nrm-c1: ?NormalAssigned s1 C1 and
brk-c1: ?BreakAssigned (Norm s0) s1 C1 and
res-c1: ?ResAssigned (Norm s0) s1
by simp
show ?Zcase
proof (cases normal s1)
case True
with nrm-c! have nrm C1 C dom (locals (snd s1)) by iprover
with da-c2 obtain C2’
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where da-c2”: Envt dom (locals (snd s1)) »{c2)» C2’ and
nrm-c2: nrm C2 C nrm C2' and
brk-c2: V¥ 1. brk C21 C brk C2'1
by (rule da-weakenE) iprover
note «(PROP ?Hyp (Inlr c¢2) sl s2»
with wt-c2 da-c2’ G
obtain nrm-c2”. ?NormalAssigned s2 C2’ and
brk-c2'. ?BreakAssigned s1 s2 C2' and
res-c2 : ?ResAssigned s1 s2
by simp
from nrm-c2’' nrm-c2 A
have ?NormalAssigned s2 A
by blast
moreover from brk-c2’ brk-c2 A
have ?BreakAssigned sl s2 A
by fastforce
with True
have ?BreakAssigned (Norm s0) s2 A by simp
moreover from res-c2 True
have ?ResAssigned (Norm s0) s2
by simp
ultimately show ?thesis by (intro conjI)
next
case Fulse
with «(GFsl —c2— s2»
have eq-s1-s2: s2=s1 by auto
with False have ?NormalAssigned s2 A by blast
moreover
have ?BreakAssigned (Norm s0) s2 A
proof (cases 3 1. abrupt s1 = Some (Jump (Break l)))

case True
then obtain ! where [: abrupt s1 = Some (Jump (Break 1)) ..
with brk-c1
have brk C1 1 C dom (locals (store s1))
by simp

with A eq-s1-s2
have brk A 1 C dom (locals (store s2))
by auto
with [ eg-s1-s2
show ?thesis by simp
next
case False
with eq-s1-s2 show ?Zthesis by simp
qed
moreover from False res-c1 eq-s1-s2
have ?ResAssigned (Norm s0) s2
by simp
ultimately show ?thesis by (intro conjI)
qged
next
case (If sO e b s1 c1 c2s2 Env T A)
note G = «prg Env = G»
with If.hyps have eval-e: prg Env FNorm s0 —e—>b— s by simp
from If.prems
obtain F C1 C2 where
da-e: Envk dom (locals (store ((Norm s0)::state))) »{e)» E and
da-c1: Envt (dom (locals (store ((Norm s0)::state)))
U assigns-if True e) »{cl)» C1 and
da-c2: Envk (dom (locals (store ((Norm s0)::state)))
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U assigns-if False e) »{c2)» C2 and
A:mrm A = nrm C1 N nrm C2 brk A = brk C1 =N brk C2
by (elim da-elim-cases)
from If.prems
obtain
wt-e:  Envke::— PrimT Boolean and
wt-c1: Envkcl::y/ and
wt-c2: Envkc2:/
by (elim wt-elim-cases)
from If .hyps have
s0-s1:dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))
by (elim dom-locals-eval-mono-elim)
show ?Zcase
proof (cases normal s1)
case True
note normal-s1 = this
show ?thesis
proof (cases the-Bool b)
case True
from eval-e normal-s1 wt-e
have assigns-if True e C dom (locals (store s1))
by (rule assigns-if-good-approx [elim-format]) (simp add: True)
with s0-s1
have dom (locals (store ((Norm s0)::state))) U assigns-if True e C ...
by (rule Un-least)
with da-c1 obtain C1’
where da-c1”: Envk dom (locals (store s1)) »{cl)» C1’and
nrm-cl: nrm C1 C nrm C1’ and
brk-c1:V 1. brk C11C brk C1'1
by (rule da-weakenE) iprover
from If.hyps True have PROP ?Hyp (Inlr c1) sl s2 by simp
with wt-cI da-c1’
obtain nrm-c1’. ?NormalAssigned s2 C1’ and
brk-c1’: ?BreakAssigned s1 s2 C1' and
res-c1: ?ResAssigned s1 s2
using G by simp
from nrm-c1’ nrm-c1 A
have ?NormalAssigned s2 A
by blast
moreover from brk-c1’ brk-c1 A
have ?BreakAssigned s1 s2 A
by fastforce
with normal-s1
have ?BreakAssigned (Norm s0) s2 A by simp
moreover from res-c! normal-s! have ?ResAssigned (Norm s0) s2
by simp
ultimately show ?thesis by (intro conjI)
next
case Fulse
from eval-e normal-s1 wt-e
have assigns-if False e C dom (locals (store s1))
by (rule assigns-if-good-approx [elim-format)]) (simp add: False)
with s0-s1
have dom (locals (store ((Norm s0)::state)))U assigns-if False e C ...
by (rule Un-least)
with da-c2 obtain C2’
where da-c2". Envt dom (locals (store s1)) »(c2)» C2' and
nrm-c2: nrm C2 C nrm C2’' and
brk-c2: ¥ 1. brk C21 C brk C2'1
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by (rule da-weakenE) iprover
from If.hyps False have PROP ?Hyp (Inlr c2) sl s2 by simp
with wi-c2 da-c2’
obtain nrm-c2’ ?NormalAssigned s2 C2' and
brk-c2'. ?BreakAssigned s1 s2 C2' and
res-c2: ?ResAssigned s1 s2
using G by simp
from nrm-c2’ nrm-c2 A
have ?NormalAssigned s2 A
by blast
moreover from brk-c2’ brk-c2 A
have ?BreakAssigned s1 s2 A
by fastforce
with normal-s1
have ?BreakAssigned (Norm s0) s2 A by simp
moreover from res-c2 normal-s! have ?ResAssigned (Norm s0) s2
by simp
ultimately show ?thesis by (intro conjl)
qed
next
case Fulse
then obtain abr where abr: abrupt s1 = Some abr
by (cases s1) auto
moreover
from eval-e - wi-e have A j. abrupt s1 # Some (Jump j)
by (rule eval-expression-no-jump) (simp-all add: G wf)
moreover
have s2 = s1
proof —
from abr and «Grs1 —(if the-Bool b then cl else c2)— s2»
show ?thesis
by (cases s1) simp
qed
ultimately show ?thesis by simp
qed
next
case (Loop s0 e b sl ¢ s21s3 Env T A)
note G = (prg Env = G»
with Loop.hyps have eval-e: prg Env-Norm s0 —e—»>b— sl
by (simp (no-asm-simp))
from Loop.prems
obtain E C where
da-e: Envk dom (locals (store ((Norm s0):state))) »{e)» E and
da-c: Envt (dom (locals (store ((Norm s0)::state)))
U assigns-if True e) »(c)» C and
A:nrm A = nrm C' N
(dom (locals (store ((Norm s0)::state))) U assigns-if False e)
brk A = brk C
by (elim da-elim-cases)
from Loop.prems
obtain
wt-e: Envk-e::—PrimT Boolean and
wt-c¢: Envkciy/
by (elim wt-elim-cases)
from wt-e da-e G
obtain res-s1: ?ResAssigned (Norm s0) s1
by (elim Loop.hyps [elim-format]) simp+
from Loop.hyps have
s0-s1:dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))
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by (elim dom-locals-eval-mono-elim)
show Zcase
proof (cases normal s1)
case True
note normal-s1 = this
show ?thesis
proof (cases the-Bool b)
case True
with Loop.hyps obtain
eval-c: GFsl —c— s2 and
eval-while: GFabupd (absorb (Cont 1)) s2 —I- While(e) c— s8
by simp
from Loop.hyps True
have ?HypObj (Inlr c) sl s2 by simp
note hyp-c = this [rule-format]
from Loop.hyps True
have ?HypObj (Inlr (I- While(e) ¢)) (abupd (absorb (Cont 1)) s2) s3
by simp
note hyp-while = this [rule-format|
from eval-e normal-s1 wt-e
have assigns-if True e C dom (locals (store s1))
by (rule assigns-if-good-approx [elim-format]) (simp add: True)
with s0-s1
have dom (locals (store ((Norm s0)::state))) U assigns-if True e C ...
by (rule Un-least)
with da-c obtain C’
where da-c”: Env dom (locals (store s1)) »{c)» C'and
nrm-C-C": nrm C C nrm C’ and
brk-C-C": ¥ 1. brk C'1 C brk C''1
by (rule da-weakenE) iprover
from hyp-c wt-c da-c’
obtain nrm-C". ?NormalAssigned s2 C' and
brk-C'": ?BreakAssigned s1 s2 C'' and
res-s2: ?ResAssigned s1 s2
using G by simp
show ?thesis
proof (cases normal s2 V abrupt s2 = Some (Jump (Cont 1)))
case True
from Loop.prems obtain
wt-while: Env-Inlr (I- While(e) ¢):: T and
da-while: Envt dom (locals (store ((Norm s0)::state)))
»(l- While(e) c¢)» A
by simp
have dom (locals (store ((Norm s0)::state)))
C dom (locals (store (abupd (absorb (Cont 1)) s2)))
proof —
note s0-s1
also from ewval-c
have dom (locals (store s1)) C dom (locals (store s2))
by (rule dom-locals-eval-mono-elim)
also have ... C dom (locals (store (abupd (absorb (Cont 1)) s2)))

by simp
finally show ?thesis .
qed
with da-while obtain A’
where

da-while’: Envk dom (locals (store (abupd (absorb (Cont 1)) s2)))
»(l- While(e) c)» A’
and nrm-A-A"> nrm A C nrm A’
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and brk-A-A"V 1. brk A1 C brk A’ 1
by (rule da-weakenE) simp
with wt-while hyp-while
obtain nrm-A": ?NormalAssigned s3 A’ and
brk-A’: ?BreakAssigned (abupd (absorb (Cont 1)) s2) s3 A’ and
res-s3: ?ResAssigned (abupd (absorb (Cont 1)) s2) s8
using G by simp
from nrm-A-A’ nrm-A’
have ?NormalAssigned s3 A
by blast
moreover
have ?BreakAssigned (Norm s0) s3 A
proof —
from brk-A-A' brk-A’
have ?BreakAssigned (abupd (absorb (Cont 1)) s2) s8 A
by fastforce
moreover
from True have normal (abupd (absorb (Cont 1)) s2)
by (cases s2) auto
ultimately show ?thesis
by simp
qged
moreover from res-s3 True have ?ResAssigned (Norm s0) s3
by auto
ultimately show ?thesis by (intro conjl)
next
case Fulse
then obtain abr where
abrupt s2 = Some abr and
abrupt (abupd (absorb (Cont 1)) s2) = Some abr
by auto
with eval-while
have eq-s3-s2: s3=s2
by auto
with nrm-C-C’ nrm-C' A
have ?NormalAssigned s3 A
by auto
moreover
from eq-s3-s2 brk-C-C' brk-C' normal-s1 A
have ?BreakAssigned (Norm s0) s3 A
by fastforce
moreover
from eg-s3-s2 res-s2 normal-s1 have ?ResAssigned (Norm s0) s3
by simp
ultimately show ?thesis by (intro conjl)
qed
next
case Fulse
with Loop.hyps have eq-s3-s1: s3=s1
by simp
from eq-s3-s1 res-si
have res-s3: ?ResAssigned (Norm s0) s3
by simp
from eval-e True wt-e
have assigns-if False e C dom (locals (store s1))
by (rule assigns-if-good-approx [elim-format]) (simp add: False)
with s0-s1
have dom (locals (store ((Norm s0)::state)))Uassigns-if False e C ...
by (rule Un-least)
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hence nrm C' N
(dom (locals (store ((Norm s0)::state))) U assigns-if False e)
C dom (locals (store s1))
by (rule subset-Intr)
with normal-s1 A eq-s3-s1
have ?NormalAssigned s8 A
by simp
moreover
from normal-si eq-s3-sl1
have ?BreakAssigned (Norm s0) s3 A
by simp
moreover note res-s3
ultimately show ?thesis by (intro conjl)
qed
next
case Fulse
then obtain abr where abr: abrupt s1 = Some abr
by (cases s1) auto
moreover
from eval-e - wt-e have no-jmp: ) j. abrupt s1 # Some (Jump j)
by (rule eval-expression-no-jump) (simp-all add: wf Q)
moreover
have eq-s3-s1: s8=s1
proof (cases the-Bool b)
case True
with Loop.hyps obtain
eval-c: GFsl —c— s2 and
eval-while: GFabupd (absorb (Cont 1)) s2 —I- While(e) c— s8
by simp
from eval-c¢ abr have s2=s1 by auto

moreover from calculation no-jmp have abupd (absorb (Cont 1)) s2=s2

by (cases s1) (simp add: absorb-def)
ultimately show ?Zthesis
using eval-while abr
by auto
next
case Fulse
with Loop.hyps show ?thesis by simp
qed
moreover
from eq-s3-s1 res-s1
have res-s3: ?ResAssigned (Norm s0) s3
by simp
ultimately show Zthesis
by simp
qed
next
case (Jmp s j Env T A)
have ?NormalAssigned (Some (Jump j),s) A by simp
moreover
from Jmp.prems
obtain ret: j = Ret — Result € dom (locals (store (Norm s))) and
brk: brk A = (case j of
Break | = X\ k. if k=1
then dom (locals (store ((Norm s)::state)))
else UNTV
| Contl = X k. UNIV
| Ret = X k. UNIV)
by (elim da-elim-cases) simp
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from brk have ?BreakAssigned (Norm s) (Some (Jump j),s) A
by simp
moreover from ret have ?ResAssigned (Norm s) (Some (Jump j),s)
by simp
ultimately show ?case by (intro conjl)
next
case (Throw s0 e a s1 Env T A)
note G = <prg Env = G»
from Throw.prems obtain E where
da-e: Envk dom (locals (store ((Norm s0):state))) »(e)» E
by (elim da-elim-cases)
from Throw.prems
obtain eT where wt-e: Envte::—eT
by (elim wt-elim-cases)
have ?NormalAssigned (abupd (throw a) s1) A
by (cases s1) (simp add: throw-def)
moreover
have ?BreakAssigned (Norm s0) (abupd (throw a) s1) A
proof —
from G Throw.hyps have eval-e: prg EnvkNorm s0 —e—>a— sl
by (simp (no-asm-simp))
from eval-e - wt-e
have A 1. abrupt s1 # Some (Jump (Break 1))

by (rule eval-expression-no-jump) (simp-all add: wf G)
hence A . abrupt (abupd (throw a) s1) # Some (Jump (Break 1))

by (cases s1) (simp add: throw-def abrupt-if-def)
thus ?thesis

by simp

qged

moreover

from wt-e da-e G have ?ResAssigned (Norm s0) si
by (elim Throw.hyps [elim-format]) simp+

hence ?ResAssigned (Norm s0) (abupd (throw a) s1)
by (cases s1) (simp add: throw-def abrupt-if-def)

ultimately show ?case by (intro conjI)

next

case (Try s0 c1 s1 s2 C vn ¢2 s8 Env T A)

note G = (prg Env = G»

from Try.prems obtain C1 C2 where
da-c1: Envt dom (locals (store ((Norm s0)::state))) »{cl)» C1 and
da-c2:

Env(lcl := (lcl Env)(VName vn— Class C))

F (dom (locals (store ((Norm s0):state))) U { VName vn}) »{c2)» C2 and
A:nrm A = nrm C1 N nrm C2 brk A = brk C1 =N brk C2
by (elim da-elim-cases) simp

from Try.prems obtain
wt-c1: Envkcl::y/ and
wt-c2: Env(lel := (lel Env)(VName vn— Class C))Fc2::/
by (elim wt-elim-cases)
have sxzalloc: prg Env-s1 —szalloc— s2 using Try.hyps G
by (simp (no-asm-simp))
note <PROP ?Hyp (Inlr c1) (Norm s0) s1»
with wt-cI da-c1 G
obtain nrm-C1: ?NormalAssigned s1 C1 and
brk-C1: ?BreakAssigned (Norm s0) s1 C1 and
res-s1: ?ResAssigned (Norm s0) sl
by simp
show Zcase
proof (cases normal s1)
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case True
with nrm-C1 have nrm C1 N nrm C2 C dom (locals (store s1))
by auto
moreover
have s3=s1
proof —
from sxzalloc True have eq-s2-s1: s2=s1
by (cases s1) (auto elim: sxalloc-elim-cases)
with True have - G,s2tcatch C
by (simp add: catch-def)
with Try.hyps have s3=s2
by simp
with eq-s2-s1 show ?thesis by simp
qed
ultimately show ?thesis
using True A res-s1 by simp
next
case Fulse
note not-normal-s1 = this
show ?thesis
proof (cases 3 1. abrupt s1 = Some (Jump (Break 1)))
case True
then obtain [ where [: abrupt s1 = Some (Jump (Break [))
by auto
with brk-C1 have (brk C1 =N brk C2) | C dom (locals (store s1))
by auto
moreover have s3=s1
proof —
from szalloc | have eq-s2-s1: s2=s1
by (cases s1) (auto elim: szalloc-elim-cases)
with [ have = G,s2Fcatch C
by (simp add: catch-def)
with Try.hyps have s3=s2
by simp
with eq-s2-s1 show ?thesis by simp
qed
ultimately show ?thesis
using | A res-s1 by simp
next
case Fulse
note abrupt-no-break = this
show ?thesis
proof (cases G,s2Fcatch C)
case True
with Try.hyps have ?HypObj (Inlr c2) (new-zcpt-var vn s2) s3
by simp
note hyp-c2 = this [rule-format)
have (dom (locals (store ((Norm s0)::state))) U { VName vn})
C dom (locals (store (new-zcpt-var vn s2)))
proof —
from «GFNorm s0 —cl— si»
have dom (locals (store ((Norm s0)::state)))
C dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)
also
from szalloc
have ... C dom (locals (store s2))
by (rule dom-locals-sxalloc-mono)
also
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have ... C dom (locals (store (new-zcpt-var vn s2)))
by (cases s2) (simp add: new-zcpt-var-def, blast)
also

have { VName vn} C ...
by (cases s2) simp
ultimately show %thesis
by (rule Un-least)
qed
with da-c2
obtain C2’ where
da-C2'": Env(lcl := (lcl Env)(VName vn— Class C))
F dom (locals (store (new-zcept-var vn s2))) »{c2)» C2'
and nrm-C2": nrm C2 C nrm C2’
and brk-C2":V 1. brk C21 C brk C2' 1
by (rule da-weakenE) simp
from wt-c2 da-C2’ G and hyp-c2
obtain nrmAss-C2: ?NormalAssigned s3 C2' and
brkAss-C2: ?BreakAssigned (new-zept-var vn s2) s8 C2' and
resAss-s3: ?ResAssigned (new-zcpt-var vn s2) s3
by simp
from nrmAss-C2 nrm-C2' A
have ?NormalAssigned s8 A
by auto
moreover
have ?BreakAssigned (Norm s0) s3 A
proof —
from brkAss-C2 have ?BreakAssigned (Norm s0) s3 C2'
by (cases s2) (auto simp add: new-zcpt-var-def)
with brk-C2’ A show ?thesis
by fastforce
qed
moreover
from resAss-s3 have ?ResAssigned (Norm s0) s3
by (cases s2) ( simp add: new-zcpt-var-def)
ultimately show ?thesis by (intro conjl)
next
case Fulse
with Try.hyps
have eq-s3-s2: s3=s2 by simp
moreover from szalloc not-normal-s1 abrupt-no-break
obtain — normal s2
V 1. abrupt s2 # Some (Jump (Break 1))
by — (rule szalloc-cases,auto)
ultimately obtain
?NormalAssigned s3 A and ?BreakAssigned (Norm s0) s3 A
by (cases s2) auto
moreover have ?ResAssigned (Norm s0) s3
proof (cases abrupt s1 = Some (Jump Ret))
case True
with szalloc have s2=s1
by (elim szalloc-cases) auto
with res-sl eq-s3-s2 show ?thesis by simp
next
case Fulse
with szalloc
have abrupt s2 # Some (Jump Ret)
by (rule szalloc-no-jump)
with eq-s3-s2 show ?thesis
by simp
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qed
ultimately show ?thesis by (intro conjI)
qed
qed
qed
next

case (Fin s0 c1 x1 s1 ¢2 s2 s3 Env T A)

note G = «prg Env = G»

from Fin.prems obtain C1 C2 where

da-C1: Envt dom (locals (store ((Norm s0)::state))) »(c1)» C1 and
da-C2: Envt dom (locals (store ((Norm s0)::state))) »(c2)» C2 and

nrm-A: nrm A = nrm C1 U nrm C2 and
brk-A: brk A = ((brk C1) =Uy (nrm C2)) =n (brk C2)
by (elim da-elim-cases) simp
from Fin.prems obtain
wt-c1: Envkcl::/ and
wt-c2: Envkc2::y/
by (elim wt-elim-cases)
note <PROP ?Hyp (Inir c1) (Norm s0) (z1,s1)»
with wt-cI da-C1 G
obtain nrmAss-C1: ?NormalAssigned (x1,s1) C1 and
brkAss-C1: ?BreakAssigned (Norm s0) (z1,s1) C1 and
resAss-s1: ?ResAssigned (Norm s0) (z1,s1)
by simp
obtain nrmAss-C2: ?NormalAssigned s2 C2 and
brkAss-C2: ?BreakAssigned (Norm s1) s2 C2 and
resAss-s2: ?ResAssigned (Norm s1) s2
proof —
from Fin.hyps
have dom (locals (store ((Norm s0)::state)))
C dom (locals (store (z1,s1)))
by — (rule dom-locals-eval-mono-elim)
with da-C2 obtain C2’
where

da-C2": Envt dom (locals (store (z1,s1))) »{(c2)» C2’ and

nrm-C2" nrm C2 C nrm C2' and
brk-C2"- ¥ 1. brk C21 C brk C2' 1
by (rule da-weakenE) simp
note <PROP ?Hyp (Inir c2) (Norm s1) s2»
with wt-c2 da-C2' G
obtain nrmAss-C2". ?NormalAssigned s2 C2’ and
brkAss-C2". ?BreakAssigned (Norm s1) s2 C2' and
resAss-s2". ?ResAssigned (Norm s1) s2
by simp
from nrmAss-C2' nrm-C2’ have ?NormalAssigned s2 C2
by blast
moreover

from brkAss-C2' brk-C2’ have ?BreakAssigned (Norm s1) s2 C2

by fastforce
ultimately
show ?thesis
using that resAss-s2' by simp
qed

note s3 = «s8 = (if Jerr. 1 = Some (Error err) then (x1, s1)

else abupd (abrupt-if (x1 # None) x1) s2)»
have s1-s2: dom (locals s1) C dom (locals (store s2))
proof —
from «GFNorm s1 —c2— s2»
show ?thesis

319
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by (rule dom-locals-eval-mono-elim) simp
qed

have ?NormalAssigned s3 A
proof
assume normal-s3: normal s3
show nrm A C dom (locals (snd s3))
proof —
have nrm C1 C dom (locals (snd s3))
proof —
from normal-s3 s3
have normal (z1,s1)
by (cases s2) (simp add: abrupt-if-def)
with normal-s3 nrmAss-C1 s3 s1-s2
show ?thesis
by fastforce
qed
moreover
have nrm C2 C dom (locals (snd s3))
proof —
from normal-s3 s3
have normal s2
by (cases s2) (simp add: abrupt-if-def)
with normal-s3 nrmAss-C2 s3 s1-s2
show ?thesis
by fastforce
qed
ultimately have nrm C1 U nrm C2 C ...
by (rule Un-least)
with nrm-A show ?thesis
by simp
qged
qged
moreover
have brk A | C dom (locals (store s3)) if brk-s3: abrupt s3 = Some (Jump (Break 1)) for [
proof (cases normal s2)
case True
with brk-s3 s3
have s2-s3: dom (locals (store s2)) C dom (locals (store s3))
by simp
have brk C1 1 C dom (locals (store s3))
proof —
from True brk-s3 s3 have z1=Some (Jump (Break 1))
by (cases s2) (simp add: abrupt-if-def)
with brkAss-C1 s1-s2 s2-s3
show ?thesis
by simp
qged
moreover from True nrmAss-C2 s2-s3
have nrm C2 C dom (locals (store s3))
by — (rule subset-trans, simp-all)
ultimately
have ((brk C1) =Uy (nrm C2)) 1 C ...
by blast
with brk-A show ?thesis
by simp blast
next
case Fulse
note not-normal-s2 = this
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have s3=s2
proof (cases normal (z1,s1))
case True with not-normal-s2 s8 show ?thesis
by (cases s2) (simp add: abrupt-if-def)
next
case False with not-normal-s2 s3 brk-s3 show ?thesis
by (cases s2) (simp add: abrupt-if-def)
qed
with brkAss-C2 brk-s3
have brk C2 1 C dom (locals (store s3))
by simp
with brk-A show %thesis
by simp blast
qed
hence ?BreakAssigned (Norm s0) s8 A
by simp
moreover
have Result € dom (locals (store s3)) if abr-s3: abrupt s3 = Some (Jump Ret)
proof (cases v1 = Some (Jump Ret))
case True
note ret-rl = this
with resAss-s1 have res-s1: Result € dom (locals s1)
by simp
moreover have dom (locals (store ((Norm s1)::state)))
C dom (locals (store s2))
by (rule dom-locals-eval-mono-elim) (rule Fin.hyps)
ultimately have Result € dom (locals (store s2))
by — (rule subsetD,auto)
with res-s1 s§ show ?thesis
by simp
next
case Fulse
with s3 abr-s3 obtain abrupt s2 = Some (Jump Ret) and s3=s2
by (cases s2) (simp add: abrupt-if-def)
with resAss-s2 show ?thesis
by simp
qed
hence ?ResAssigned (Norm s0) s3
by simp
ultimately show ?case by (intro conjl)
next
case (Init C ¢ s0 s8 s1 s2 Env T A)
note G = (prg Env = G»
from Init.hyps
have eval: prg Env- Norm sO0 —Init C— s3
apply (simp only: G)
apply (rule eval.Init, assumption)
apply (cases inited C' (globs s0) )
apply simp
apply (simp only: if-False )
apply (elim conjE intro conjl,assumption+,simp)
done
from Init.prems and <the (class G C) = o
have c: class G C = Some ¢
by (elim wt-elim-cases) auto
from Init.prems obtain
nrm-A: nrm A = dom (locals (store ((Norm s0)::state)))
by (elim da-elim-cases) simp
show Zcase
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proof (cases inited C (globs s0))
case True
with Init.hyps have s3=Norm s0 by simp
thus ?thesis
using nrm-A by simp
next
case Fulse
from Init.hyps False G
obtain eval-initC":
prg EnveNorm ((indt-class-obj G C) s0)
—(if C = Object then Skip else Init (super c))— sI and
eval-init: prg Envt(set-lvars Map.empty) sl —init c— s2 and
$3: s3=(set-lvars (locals (store s1))) s2

by simp
have ?NormalAssigned s3 A
proof
show nrm A C dom (locals (store s3))
proof —
from nrm-A have nrm A C dom (locals (init-class-obj G C s0))
by simp
also from eval-initC have ... C dom (locals (store s1))
by (rule dom-locals-eval-mono-elim) simp
also from s3 have ... C dom (locals (store s3))

by (cases s1) (cases s2, simp add: init-lvars-def2)
finally show ?thesis .
qed
qed
moreover
from eval
have A j. abrupt s3 # Some (Jump j)
by (rule eval-statement-no-jump) (auto simp add: wf ¢ G)
then obtain ?BreakAssigned (Norm s0) s8 A
and ?ResAssigned (Norm s0) s3
by simp
ultimately show ?thesis by (intro conjI)
qed
next
case (NewC s0 C s1 a s2 Env T A)
note G = (prg Env = G»
from NewC'.prems
obtain A: nrm A = dom (locals (store ((Norm s0)::state)))
brk A = (A L. UNIV)
by (elim da-elim-cases) simp
from wf NewC.prems
have wt-init: Env-(Init C)::y/
by (elim wt-elim-cases) (drule is-acc-classD,simp)
have dom (locals (store ((Norm s0)::state))) C dom (locals (store s2))
proof —
have dom (locals (store ((Norm s0):state))) C dom (locals (store s1))
by (rule dom-locals-eval-mono-elim) (rule NewC'.hyps)
also
have ... C dom (locals (store s2))
by (rule dom-locals-halloc-mono) (rule NewC.hyps)
finally show ?thesis .
qed
with A have ?NormalAssigned s2 A
by simp
moreover
have abrupt s2 # Some (Jump j) for j
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proof —
have eval: prg EnvE Norm s0 —NewC C—»> Addr a— s2
unfolding G by (rule eval. NewC NewC .hyps)+
from NewC'.prems
obtain T’/ where T=Inl T’
by (elim wt-elim-cases) simp
with NewC.prems have Env-NewC C::—T'
by simp
from ewval - this
show ?thesis
by (rule eval-expression-no-jump) (simp-all add: G wf)
qed
hence ?BreakAssigned (Norm s0) s2 A and ?ResAssigned (Norm s0) s2
by simp-all
ultimately show ?case by (intro conjI)
next
case (NewA s0 elT s1 e i s2 a s8 Env T A)
note G = «prg Env = G»
from NewA.prems obtain
da-e: Envk dom (locals (store ((Norm s0):state))) »{e)» A
by (elim da-elim-cases)
from NewA.prems obtain
wt-ingt: Envtinit-comp-ty elT::/ and
wt-size: Envke::—PrimT Integer
by (elim wt-elim-cases) (auto dest: wt-init-comp-ty’)
note halloc = «GFabupd (check-neg i) s2—halloc Arr elT (the-Intg i)=a— s3>
have dom (locals (store ((Norm s0):state))) C dom (locals (store s1))
by (rule dom-locals-eval-mono-elim) (rule NewA.hyps)
with da-e obtain A’ where
da-e"; Env dom (locals (store s1)) »{e)» A’
and nrm-A-A" nrm A C nrm A’
and brk-A-A"V . brk A1l C brk Al
by (rule da-weakenE) simp
note <PROP ?Hyp (In1l e) sl s2»
with wi-size da-e¢’ G obtain
nrmAss-A": ?NormalAssigned s2 A’ and
brkAss-A': ?BreakAssigned s1 s2 A’
by simp
have s2-s3: dom (locals (store s2)) C dom (locals (store s3))
proof —
have dom (locals (store s2))
C dom (locals (store (abupd (check-neg i) s2)))
by (simp)
also have ... C dom (locals (store s3))
by (rule dom-locals-halloc-mono) (rule NewA.hyps)
finally show #“thesis .
qed
have ?NormalAssigned s3 A
proof
assume normal-s3: normal s3
show nrm A C dom (locals (store s3))
proof —
from halloc normal-s3
have normal (abupd (check-neg i) s2)
by cases simp-all
hence normal s2
by (cases s2) simp
with nrmAss-A’ nrm-A-A’ s2-s3 show ?thesis
by blast
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qed
qed
moreover
have abrupt s3 # Some (Jump j) for j
proof —
have eval: prg Enve Norm s0 —New elT[e]—>Addr a— s3
unfolding G by (rule eval. NewA NewA.hyps)+
from NewA.prems
obtain T’/ where T=Inl T’
by (elim wt-elim-cases) simp
with NewA.prems have Env-New elT|[e]::—T"’
by simp
from ewal - this
show ?thesis
by (rule eval-expression-no-jump) (simp-all add: G wf)
qged
hence ¢BreakAssigned (Norm s0) s3 A and ?ResAssigned (Norm s0) s3
by simp-all
ultimately show ?case by (intro conjI)
next
case (Cast s0 e v s1 s2 ¢T Env T A)
note G = (prg Env = G»
from Cast.prems obtain
da-e: Envk dom (locals (store ((Norm s0)::state))) »{e)» A
by (elim da-elim-cases)
from Cast.prems obtain eT where
wt-e: Envke:—eT
by (elim wt-elim-cases)
note <PROP ?Hyp (Inil e) (Norm s0) si1»
with wt-e da-e G obtain
nrmAss-A: ?NormalAssigned s1 A and
brkAss-A: ?BreakAssigned (Norm s0) s1 A
by simp
note s2 = <s2 = abupd (raise-if (- G,snd sitv fits ¢T) ClassCast) s1»
hence s1-s2: dom (locals (store s1)) C dom (locals (store s2))
by simp
have ?NormalAssigned s2 A
proof
assume normal s2
with s2 have normal s1
by (cases s1) simp
with nrmAss-A s1-s2
show nrm A C dom (locals (store s2))
by blast
qged
moreover
have abrupt s2 # Some (Jump j) for j
proof —
have eval: prg EnvE Norm s0 —Cast ¢T e—=v— s2
unfolding G by (rule eval.Cast Cast.hyps)+
from Cast.prems
obtain T’/ where T=Inl T’
by (elim wt-elim-cases) simp
with Cast.prems have EnvtCast cT e::—T'
by simp
from ewval - this
show ?thesis
by (rule eval-expression-no-jump) (simp-all add: G wf)
qged
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hence ?BreakAssigned (Norm s0) s2 A and ?ResAssigned (Norm s0) s2
by simp-all
ultimately show ?case by (intro conjl)
next
case (Inst sO e v sl biT Env T A)
note G = «prg Env = G»
from Inst.prems obtain
da-e: Envk dom (locals (store ((Norm s0)::state))) »(e)» A
by (elim da-elim-cases)
from Inst.prems obtain eT where
wt-e: Envke:i—eT
by (elim wt-elim-cases)
note <PROP ?Hyp (In1l e) (Norm s0) s1»
with wt-e da-e G obtain
?NormalAssigned s1 A and
?BreakAssigned (Norm s0) s A and
?ResAssigned (Norm s0) sl
by simp
thus ?case by (intro conjl)
next
case (Lit s v Env T A)
from Lit.prems
have nrm A = dom (locals (store ((Norm s)::state)))
by (elim da-elim-cases) simp
thus ?case by simp
next
case (UnOp s0 e v sI unop Env T A)
note G = «prg Env = G»
from UnOp.prems obtain
da-e: Envk dom (locals (store ((Norm s0)::state))) »(e)» A
by (elim da-elim-cases)
from UnOp.prems obtain eT where
wit-e: Envkeii—eT
by (elim wt-elim-cases)
note <PROP ?Hyp (In1l e) (Norm s0) s1»
with wt-e da-e G obtain
?NormalAssigned s1 A and
?BreakAssigned (Norm s0) s1 A and
?ResAssigned (Norm s0) s1
by simp
thus ?case by (intro conjl)
next
case (BinOp s0 el vl s1 binop e2 v2 s2 Env T A)
note G = «prg Env = G»
from BinOp.hyps
have
eval: prg EnveNorm sO0 —BinOp binop el e2—(eval-binop binop vl v2)— s2
by (simp only: G) (rule eval.BinOp)
have s0-s1: dom (locals (store ((Norm s0)::state)))
C dom (locals (store s1))
by (rule dom-locals-eval-mono-elim) (rule BinOp)
also have s1-s2: dom (locals (store s1)) C dom (locals (store s2))
by (rule dom-locals-eval-mono-elim) (rule BinOp)
finally
have s0-s2: dom (locals (store ((Norm s0)::state)))
C dom (locals (store s2)) .
from BinOp.prems obtain elT e2T
where wt-el: Env-el::—elT
and wt-e2: Env-e2::—e2T
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and wt-binop: wt-binop (prg Env) binop elT e2T
and T: T=Inl (PrimT (binop-type binop))
by (elim wt-elim-cases) simp
have ?NormalAssigned s2 A
proof
assume normal-s2: normal s2
have normal-s1: normal s1
by (rule eval-no-abrupt-lemma [rule-format]) (rule BinOp.hyps, rule normal-s2)
show nrm A C dom (locals (store s2))
proof (cases binop=CondAnd)
case True
note CondAnd = this
from BinOp.prems obtain
nrm-A: nrm A = dom (locals (store ((Norm s0)::state)))
U (assigns-if True (BinOp CondAnd el e2) N
assigns-if False (BinOp CondAnd el e2))
by (elim da-elim-cases) (simp-all add: CondAnd)
from T BinOp.prems CondAnd
have Env-BinOp binop el e2::—PrimT Boolean
by (simp)
with eval normal-s2
have ass-if: assigns-if (the-Bool (eval-binop binop vl v2))
(BinOp binop el e2)
C dom (locals (store s2))
by (rule assigns-if-good-approz)
have (assigns-if True (BinOp CondAnd el e2) N
assigns-if False (BinOp CondAnd el e2)) C ...
proof (cases the-Bool (eval-binop binop vl v2))
case True
with ass-if CondAnd
have assigns-if True (BinOp CondAnd el e2)
C dom (locals (store s2))
by simp
thus ?thesis by blast
next
case Fulse
with ass-if CondAnd
have assigns-if False (BinOp CondAnd el e2)
C dom (locals (store s2))
by (simp only: False)
thus ?thesis by blast
qed
with s0-s2
have dom (locals (store ((Norm s0)::state)))
U (assigns-if True (BinOp CondAnd el e2) N
assigns-if False (BinOp CondAnd el e2)) C ...
by (rule Un-least)
thus ?thesis by (simp only: nrm-A)
next
case Fulse
note notCondAnd = this
show ?thesis
proof (cases binop=CondOr)
case True
note CondOr = this
from BinOp.prems obtain
nrm-A: nrm A = dom (locals (store ((Norm s0)::state)))
U (assigns-if True (BinOp CondOr el e2) N
assigns-if False (BinOp CondOr el e2))
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by (elim da-elim-cases) (simp-all add: CondOr)
from T BinOp.prems CondOr
have EnvtBinOp binop el e2::—PrimT Boolean
by (simp)
with eval normal-s2
have ass-if: assigns-if (the-Bool (eval-binop binop vl v2))
(BinOp binop el e2)
C dom (locals (store s2))
by (rule assigns-if-good-approz)
have (assigns-if True (BinOp CondOr el e2) N
assigns-if False (BinOp CondOr el e2)) C ...
proof (cases the-Bool (eval-binop binop vl v2))
case True
with ass-if CondOr
have assigns-if True (BinOp CondOr el e2)
C dom (locals (store s2))
by (simp)
thus ?thesis by blast
next
case Fulse
with ass-if CondOr
have assigns-if False (BinOp CondOr el e2)
C dom (locals (store s2))
by (simp)
thus ?thesis by blast
qed
with s0-s2
have dom (locals (store ((Norm s0)::state)))
U (assigns-if True (BinOp CondOr el e2) N
assigns-if False (BinOp CondOr el e2)) C ...
by (rule Un-least)
thus ?thesis by (simp only: nrm-A)
next
case Fulse
with notCondAnd obtain notAndOr: binop# CondAnd binop# CondOr
by simp
from BinOp.prems obtain F1
where da-el: Envt dom (locals (snd (Norm s0))) »(el)» E1
and da-e2: Envk nrm E1 »(e2)» A
by (elim da-elim-cases) (simp-all add: notAndOr)
note <PROP ?Hyp (In1l el) (Norm s0) si»
with wt-el da-el G normal-s1
obtain ?NormalAssigned s1 E1
by simp
with normal-s1 have nrm E1 C dom (locals (store s1)) by iprover
with da-e2 obtain A’
where da-e2”. Envt dom (locals (store s1)) »{e2)» A’ and
nrm-A-A"s nrm A C nrm A’
by (rule da-weakenE) iprover
from notAndOr have need-second-arg binop vl by simp
with BinOp.hyps
have PROP ?Hyp (Inll e2) sl s2 by simp
with wit-e2 da-e2’ G
obtain ?NormalAssigned s2 A’
by simp
with nrm-A-A'" normal-s2
show nrm A C dom (locals (store s2))
by blast
qed
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qed
qed
moreover
have abrupt s2 # Some (Jump j) for j
proof —
from BinOp.prems T
have EnvtIn1l (BinOp binop el e2)::Inl (PrimT (binop-type binop))
by simp
from eval - this
show ?thesis
by (rule eval-expression-no-jump) (simp-all add: G wf)
qed
hence ?BreakAssigned (Norm s0) s2 A and ?ResAssigned (Norm s0) s2
by simp-all
ultimately show ?case by (intro conjl)
next
case (Super s Env T A)
from Super.prems
have nrm A = dom (locals (store ((Norm s)::state)))
by (elim da-elim-cases) simp
thus “case by simp
next
case (Acc sO0 v w upd s1 Env T A)
show ?Zcase
proof (cases 3 vn. v = LVar vn)
case True
then obtain vn where vn: v=LVar vn..
from Acc.prems
have nrm A = dom (locals (store ((Norm s0)::state)))
by (simp only: vn) (elim da-elim-cases,simp-all)
moreover
from <G-Norm s0 —v=-(w, upd)— si»
have s1=Norm s0
by (simp only: vn) (elim eval-elim-cases,simp)
ultimately show ?thesis by simp
next
case Fulse
note G = «prg Env = G»
from False Acc.prems
have da-v: Envk dom (locals (store ((Norm s0)::state))) »{v)» A
by (elim da-elim-cases) simp-all
from Acc.prems obtain vT where
wt-v: Envkvi=oT
by (elim wt-elim-cases)
note <PROP ?Hyp (In2 v) (Norm s0) s1»
with wt-v da-v G obtain
?NormalAssigned s1 A and
?BreakAssigned (Norm s0) sl A and
?ResAssigned (Norm s0) sl
by simp
thus %thesis by (intro conjI)
qed
next
case (Ass s0 var w upd s1 e v s2 Env T A)
note G = (prg Env = G»
from Ass.prems obtain varT eT where
wt-var: Env-var:=varT and
wt-e:  Envkei—eT
by (elim wt-elim-cases) simp
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have eval-var: prg Env-Norm s0 —var=(w, upd)— sl
using Ass.hyps by (simp only: G)
have ?NormalAssigned (assign upd v s2) A
proof
assume normal-ass-s2: normal (assign upd v s2)
from normal-ass-s2
have normal-s2: normal s2
by (cases s2) (simp add: assign-def Let-def)
hence normal-s1: normal s1
by — (rule eval-no-abrupt-lemma [rule-format], rule Ass.hyps)
note hyp-var = <PROP ?Hyp (In2 var) (Norm s0) s1»
note hyp-e = <PROP ?Hyp (Inl1l e) s1 s2»
show nrm A C dom (locals (store (assign upd v s2)))
proof (cases 3 vn. var = LVar vn)
case True
then obtain vn where vn: var=LVar vn..
from Ass.prems obtain F where
da-e: Envk dom (locals (store ((Norm s0)::state))) »{e)» E and
nrm-A: nrm A = nrm E U {vn}
by (elim da-elim-cases) (use vn in auto)
obtain E’ where
da-e’: Env- dom (locals (store s1)) »(e)» E’ and
E-E": nrm E C nrm E’
proof —
have dom (locals (store ((Norm s0)::state)))
C dom (locals (store s1))
by (rule dom-locals-eval-mono-elim) (rule Ass.hyps)
with da-e show thesis
by (rule da-weakenE) (rule that)
qed
from G eval-var vn
have eval-lvar: G-Norm s0 —LVar vn=>(w, upd)— sl
by simp
then have upd: upd = snd (lvar vn (store s1))
by cases (cases lvar vn (store s1),simp)
have nrm E C dom (locals (store (assign upd v s2)))
proof —
from hyp-e wt-¢ da-e’ G normal-s2
have nrm E’ C dom (locals (store s2))
by simp
also
from upd
have dom (locals (store s2)) C dom (locals (store (upd v s2)))
by (simp add: lvar-def) blast
hence dom (locals (store s2))
C dom (locals (store (assign upd v s2)))
by (rule dom-locals-assign-mono)
finally
show ?thesis using E-FE’'
by blast
qed
moreover
from upd normal-s2
have {vn} C dom (locals (store (assign upd v s2)))
by (auto simp add: assign-def Let-def lvar-def upd split: prod.split)
ultimately
show nrm A C ...
by (rule Un-least [elim-format]) (simp add: nrm-A)
next
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case Fulse
from Ass.prems obtain V where
da-var: Envk dom (locals (store ((Norm s0)::state))) »(var)» V and
da-e:  Envk nrm V »{e)» A
by (elim da-elim-cases) (use False in simp-all)
from hyp-var wt-var da-var G normal-s1
have nrm V C dom (locals (store s1))
by simp
with da-e obtain A’
where da-e": Env dom (locals (store s1)) »{e)» A’ and
nrm-A-A"s nrm A C nrm A’
by (rule da-weakenE) iprover
from hyp-e wt-e da-¢’ G normal-s2
obtain nrm A’ C dom (locals (store s2))

by simp
with nrm-4-A’ have nrm A C ...

by blast
also have ... C dom (locals (store (assign upd v s2)))
proof —

from eval-var normal-s1
have dom (locals (store s2)) C dom (locals (store (upd v s2)))
by (cases rule: dom-locals-eval-mono-elim)
(cases s2, simp)
thus ?thesis
by (rule dom-locals-assign-mono)
qed
finally show ?2thesis .
qed
qged
moreover
have abrupt (assign upd v s2) # Some (Jump j) for j
proof —
have eval: prg Env-Norm s0 —var:=e—>v— (assign upd v s2)
by (simp only: G) (rule eval.Ass Ass.hyps)+
from Ass.prems
obtain 7/ where T=Inl T’
by (elim wt-elim-cases) simp
with Ass.prems have Envvar:=e::—T' by simp
from eval - this
show ?thesis
by (rule eval-expression-no-jump) (simp-all add: G wf)
qed
hence ?BreakAssigned (Norm s0) (assign upd v s2) A
and ?ResAssigned (Norm s0) (assign upd v s2)
by simp-all
ultimately show ?case by (intro conjI)
next
case (Cond s0 e0 b s1 el e2 v s2 Env T A)
note G = (prg Env = G»
have ?NormalAssigned s2 A
proof
assume normal-s2: normal s2
show nrm A C dom (locals (store s2))
proof (cases Env(e0 ? el : e2)::—(PrimT Boolean))
case True
with Cond.prems
have nrm-A: nrm A = dom (locals (store ((Norm s0)::state)))
U (assigns-if True (e0 ? el : e2) N
assigns-if False (e0 ? el : e2))
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by (elim da-elim-cases) simp-all
have eval: prg Env-Norm sO0 —(e0 ? el : e2)—>v— s2
unfolding G by (rule eval.Cond Cond.hyps)+
from eval
have dom (locals (store ((Norm s0)::state)))Cdom (locals (store s2))
by (rule dom-locals-eval-mono-elim)
moreover
from eval normal-s2 True
have ass-if: assigns-if (the-Bool v) (e0 7 el : e2)
C dom (locals (store s2))
by (rule assigns-if-good-approzr)
have assigns-if True (e0 ? el:e2) N assigns-if False (e0 ? el:e2)
C dom (locals (store s2))
proof (cases the-Bool v)
case True
from ass-if
have assigns-if True (e0 ? el:e2) C dom (locals (store s2))
by (simp only: True)
thus ?thesis by blast
next
case Fulse
from ass-if
have assigns-if False (e0 ? el:e2) C dom (locals (store s2))
by (simp only: False)
thus ?thesis by blast
qed
ultimately show nrm A C dom (locals (store s2))
by (simp only: nrm-A) (rule Un-least)
next
case Fulse
with Cond.prems obtain E! F2 where
da-el: Envk (dom (locals (store ((Norm s0):state)))
U assigns-if True e0) »{el)» E1 and
da-e2: Envk (dom (locals (store ((Norm s0)::state)))
U assigns-if False e0) »(e2)» E2 and
nrm-A: nrm A = nrm E1 N nrm E2
by (elim da-elim-cases) simp-all
from Cond.prems obtain elT e2T where
wt-e0: Env-e0::— PrimT Boolean and
wt-el: Env-el::—elT and
wt-e2: Env-e2:—e2T
by (elim wt-elim-cases)
have s0-s1: dom (locals (store ((Norm s0)::state)))
C dom (locals (store s1))
by (rule dom-locals-eval-mono-elim) (rule Cond.hyps)
have eval-e0: prg Env-Norm s0 —e0—>b— s1
unfolding G by (rule Cond.hyps)
have normal-s1: normal s1

by (rule eval-no-abrupt-lemma [rule-format]) (rule Cond.hyps, rule normal-s2)

show ?thesis
proof (cases the-Bool b)
case True
from True Cond.hyps have PROP ?Hyp (Inll el) s1 s2 by simp
moreover
from eval-e0 normal-s1 wt-e0
have assigns-if True e0 C dom (locals (store s1))
by (rule assigns-if-good-approx [elim-format]) (simp only: True)
with s0-s1
have dom (locals (store ((Norm s0)::state)))
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U assigns-if True el C ...
by (rule Un-least)
with da-el obtain F1’ where
da-e1”: Envt dom (locals (store s1)) »{el)» E1'and
nrm-E1-E1": nrm E1 C nrm E1’
by (rule da-weakenE) iprover
ultimately have nrm E1’ C dom (locals (store s2))
using wt-el G normal-s2 by simp
with nrm-F1-E1’ show ?thesis
by (simp only: nrm-A) blast
next
case Fulse
from Fulse Cond.hyps have PROP ?Hyp (Inl1l e2) sl s2 by simp
moreover
from eval-e0 normal-s1 wt-e0
have assigns-if False e0 C dom (locals (store s1))
by (rule assigns-if-good-approx [elim-format]) (simp only: False)
with s0-s1
have dom (locals (store ((Norm s0)::state)))
U assigns-if False e0 C ...
by (rule Un-least)
with da-e2 obtain F2’ where
da-e2": Envt dom (locals (store s1)) »(e2)» E2' and
nrm-E2-E2": nrm E2 C nrm E2’'
by (rule da-weakenE) iprover
ultimately have nrm E2’' C dom (locals (store s2))
using wt-e2 G normal-s2 by simp
with nrm-FE2-E2’ show ?thesis
by (simp only: nrm-A) blast
qed
qed
qged
moreover
have abrupt s2 # Some (Jump j) for j
proof —
have eval: prg Env-Norm s0 —el0 ? el : e2—=v— s2
unfolding G by (rule eval.Cond Cond.hyps)+
from Cond.prems
obtain T’/ where T=Inl T’
by (elim wt-elim-cases) simp
with Cond.prems have Fnut-e0 ? el : e2::—T' by simp
from eval - this
show ?thesis
by (rule eval-expression-no-jump) (simp-all add: G wf)
qged
hence ?BreakAssigned (Norm s0) s2 A and ?ResAssigned (Norm s0) s2
by simp-all
ultimately show ?case by (intro conjl)
next
case (Call s0 e a s1 args vs s2 D mode statT mn pTs s8 s8" accC v s/
Env T A)
note G = «prg Env = G»
have ?NormalAssigned (restore-lvars s2 s4) A
proof
assume normal-restore-lvars: normal (restore-lvars s2 s4)
show nrm A C dom (locals (store (restore-lvars s2 s4)))
proof —
from Call.prems obtain E where
da-e: Envk (dom (locals (store ((Norm s0):state))))»(e)» E and
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da-args: Envk nrm E »{args)» A
by (elim da-elim-cases)
from Call.prems obtain eT argsT where
wt-e: Env-e::—eT and
wt-args: Envk-args::=argsT
by (elim wt-elim-cases)
note s8 = «s8 = init-lvars G D (name = mn, parTs = pTs|) mode a vs s2»
note s3’ = <83’ = check-method-access G accC statT mode
(name=mn,parTs=pTs) a s3>
have normal-s2: normal s2
proof —
from normal-restore-lvars have normal sj
by simp
then have normal 53’
by — (rule eval-no-abrupt-lemma [rule-format], rule Call.hyps)
with s3’ have normal s3
by (cases s3) (simp add: check-method-access-def Let-def)
with s3 show normal s2
by (cases s2) (simp add: init-lvars-def Let-def)

qed
then have normal-s1: normal s1
by — (rule eval-no-abrupt-lemma [rule-format], rule Call.hyps)

note <PROP ?Hyp (Inll e) (Norm s0) s1»
with da-e wt-e G normal-s1
have nrm E C dom (locals (store s1))
by simp
with da-args obtain A’ where
da-args”: Env dom (locals (store s1)) »{args)» A’ and
nrm-A-A" nrm A C nrm A’
by (rule da-weakenE) iprover
note «<PROP ?Hyp (In3 args) s1 s2»
with da-args’ wt-args G normal-s2
have nrm A’ C dom (locals (store s2))

by simp

with nrm-A-A’ have nrm A C dom (locals (store s2))
by blast

also have ... C dom (locals (store (restore-lvars s2 s4)))

by (cases s4) simp
finally show ?thesis .
qed
qed
moreover
have abrupt (restore-lvars s2 s4) # Some (Jump j) for j
proof —
have eval: prg Env-Norm s0 —({accC,statT ,mode}e-mn( {pTs}args))—=v
— (restore-lvars s2 s4)
unfolding G by (rule eval.Call Call)+
from Call.prems
obtain 7' where T=Inl T’
by (elim wt-elim-cases) simp
with Call.prems have Env-({accC,statT,mode}e-mn( {pTs}args)):—T"'
by simp
from eval - this
show ?thesis
by (rule eval-expression-no-jump) (simp-all add: G wf)
qed
hence ?BreakAssigned (Norm s0) (restore-lvars s2 s4) A
and ?ResAssigned (Norm s0) (restore-lvars s2 s4)
by simp-all
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ultimately show ?case by (intro conjl)
next
case (Methd s0 D sig v s1 Env T A)
note G = «prg Env = G»
from Methd.prems obtain m where
m: methd (prg Env) D sig = Some m and
da-body: Env(dom (locals (store ((Norm s0)::state))))
»(Body (declclass m) (stmt (mbody (mthd m))))» A
by — (erule da-elim-cases)
from Methd.prems m obtain
isCls: is-class (prg Env) D and
wt-body: Env FInll (Body (declclass m) (stmt (mbody (mthd m))))::T
by — (erule wt-elim-cases,simp)
note «<PROP ?Hyp (In1l (body G D sig)) (Norm s0) s1»
moreover
from wt-body have Env-Inil (body G D sig)::T
using isCls m G by (simp add: body-def2)
moreover
from da-body have Envt-(dom (locals (store ((Norm s0):state))))
»{body G D sig)» A
using isCls m G by (simp add: body-def2)
ultimately show ?Zcase
using G by simp
next
case (Body s0 D s1 ¢ s2 s3 Env T A)
note G = «prg Env = G»
from Body.prems
have nrm-A: nrm A = dom (locals (store ((Norm s0)::state)))
by (elim da-elim-cases) simp
have eval: prg Env-Norm sO0 —Body D c—>the (locals (store s2) Result)
—abupd (absorb Ret) s3
unfolding G by (rule eval.Body Body.hyps)+
hence nrm A C dom (locals (store (abupd (absorb Ret) s3)))
by (simp only: nrm-A) (rule dom-locals-eval-mono-elim)
hence ?NormalAssigned (abupd (absorb Ret) s3) A
by simp
moreover
from eval have A j. abrupt (abupd (absorb Ret) s3) # Some (Jump j)
by (rule Body-no-jump) simp
hence ?BreakAssigned (Norm s0) (abupd (absorb Ret) s3) A and
?ResAssigned (Norm s0) (abupd (absorb Ret) s3)
by simp-all
ultimately show ?case by (intro conjI)
next
case (LVar s vn Env T A)
from LVar.prems
have nrm A = dom (locals (store ((Norm s)::state)))
by (elim da-elim-cases) simp
thus ?case by simp
next
case (FVar s0 statDeclC s1 e a s2 v s2' stat fn s3 accC Env T A)
note G = «prg Env = G»
have ?NormalAssigned s3 A
proof
assume normal-s3: normal s3
show nrm A C dom (locals (store s3))
proof —
note fvar = «(v, s2’) = fvar statDeclC stat fn a s2> and
58 = <83 = check-field-access G accC statDeclC fn stat a 52"
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from F'Var.prems
have da-e: Envt (dom (locals (store ((Norm s0)::state))))»{e)» A
by (elim da-elim-cases)
from FVar.prems obtain eT where
wt-e: Env-e::—eT
by (elim wt-elim-cases)
have (dom (locals (store ((Norm s0)::state))))
C dom (locals (store s1))
by (rule dom-locals-eval-mono-elim) (rule FVar.hyps)
with da-e obtain A’ where
da-e’: Env- dom (locals (store s1)) »{e)» A’ and
nrm-A-A"s nrm A C nrm A’
by (rule da-weakenE) iprover
have normal-s2: normal s2
proof —
from normal-s3 s3
have normal s2’
by (cases s2') (simp add: check-field-access-def Let-def)
with fvar
show normal s2
by (cases s2) (simp add: fvar-def2)
qed
note <PROP ?Hyp (Inll €) s1 s2»
with da-e’ wt-e G normal-s2
have nrm A’ C dom (locals (store s2))

by simp

with nrm-A-A’" have nrm A C dom (locals (store s2))
by blast

also have ... C dom (locals (store s3))

proof —

from fvar have s2' = snd (fvar statDeclC stat fn a s2)
by (cases fvar statDeclC' stat fn a s2) simp
hence dom (locals (store s2)) C dom (locals (store s27))
by (simp) (rule dom-locals-fvar-mono)
also from s3 have ... C dom (locals (store s3))
by (cases s2') (simp add: check-field-access-def Let-def)
finally show ?thesis .
qed
finally show ?thesis .
qed
qed
moreover
have abrupt s3 # Some (Jump j) for j
proof —
obtain w upd where v: (w,upd)=v
by (cases v) auto
have eval: prg Env-Norm s0—({accC,statDeclC,stat}e..fn)=+(w,upd)—s3
by (simp only: G v) (rule eval.FVar FVar.hyps)+
from FVar.prems
obtain T’/ where T=Inl T’
by (elim wt-elim-cases) simp
with FVar.prems have Env-({accC,statDeclC stat}e..fn):=T"'
by simp
from eval - this
show ?thesis
by (rule eval-var-no-jump [THEN conjunctl]) (simp-all add: G wf)
qed
hence ?BreakAssigned (Norm s0) s3 A and ?ResAssigned (Norm s0) s3
by simp-all
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ultimately show ?case by (intro conjl)
next
case (AVar s0 el a s1 e2is2vs2' Env T A)
note G = «prg Env = G»
have ?NormalAssigned s2' A
proof
assume normal-s2" normal s2'
show nrm A C dom (locals (store s27))
proof —
note avar = «(v, s2') = avar G i a s2»
from AVar.prems obtain EF1 where
da-el: Envk (dom (locals (store ((Norm s0)::state))))»(el)» EI1 and
da-e2: Envk nrm E1 »(e2)» A
by (elim da-elim-cases)
from AVar.prems obtain elT e2T where
wt-el: Envkel::—elT and
wi-e2: Envk-e2::—e2T
by (elim wt-elim-cases)
from avar normal-s2’
have normal-s2: normal s2
by (cases s2) (simp add: avar-def2)
hence normal s1
by — (rule eval-no-abrupt-lemma [rule-format], rule AVar, rule normal-s2)
moreover note <PROP ?Hyp (In1l e1) (Norm s0) s1»
ultimately have nrm E1 C dom (locals (store s1))
using da-el wt-el G by simp
with da-e2 obtain A’ where
da-e2": Envk dom (locals (store s1)) »{e2)» A’ and
nrm-A-A" nrm A C nrm A’
by (rule da-weakenE) iprover
note <PROP ?Hyp (In1l e2) sl s2»
with da-e2’ wt-e2 G normal-s2
have nrm A’ C dom (locals (store s2))

by simp

with nrm-A4-A’ have nrm A C dom (locals (store s2))
by blast

also have ... C dom (locals (store s2))

proof —

from avar have s2' = snd (avar G i a s2)
by (cases (avar G i a s2)) simp
thus dom (locals (store s2)) C dom (locals (store s2'))
by (simp) (rule dom-locals-avar-mono)
qed
finally show ?thesis .
qed
qed
moreover
have abrupt s2’ # Some (Jump j) for j
proof —
obtain w upd where v: (w,upd)=v
by (cases v) auto
have eval: prg EnvtNorm s0—(el.[e2])=>(w,upd)—s2’
unfolding G v by (rule eval. AVar AVar.hyps)+
from AVar.prems
obtain T’/ where T=Inl T’
by (elim wt-elim-cases) simp
with AVar.prems have Envt(el.[e2]):=T'
by simp
from eval - this
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show ?thesis
by (rule eval-var-no-jump [THEN conjunctl]) (simp-all add: G wf)
qed
hence ?BreakAssigned (Norm s0) s2’ A and ?ResAssigned (Norm s0) s2’
by simp-all
ultimately show ?case by (intro congl)
next
case (Nil s0 Env T A)
from Nil.prems
have nrm A = dom (locals (store ((Norm s0)::state)))
by (elim da-elim-cases) simp
thus ?case by simp
next
case (Cons s0 e v s1 es vs s2 Env T A)
note G = «prg Env = G»
have ?NormalAssigned s2 A
proof
assume normal-s2: normal s2
show nrm A C dom (locals (store s2))
proof —
from Cons.prems obtain E where
da-e: Envk (dom (locals (store ((Norm s0):state))))»{e)» E and
da-es: Envk nrm E »(es)» A
by (elim da-elim-cases)
from Cons.prems obtain eT esT where
wt-e: Env-e::—eT and
wt-es: Envkes::=esT
by (elim wt-elim-cases)
have normal s1
by — (rule eval-no-abrupt-lemma [rule-format], rule Cons.hyps, rule normal-s2)
moreover note <PROP ?Hyp (Inll €) (Norm s0) s1»
ultimately have nrm E C dom (locals (store s1))
using da-e wt-e G by simp
with da-es obtain A’ where
da-es”: Envt dom (locals (store s1)) »{es)» A’ and
nrm-A-A"s nrm A C nrm A’
by (rule da-weakenE) iprover
note (PROP ?Hyp (In3 es) s1 s2»
with da-es’ wi-es G normal-s2
have nrm A’ C dom (locals (store s2))
by simp
with nrm-A-A’ show nrm A C dom (locals (store s2))
by blast
qed
qed
moreover
have abrupt s2 # Some (Jump j) for j
proof —
have eval: prg Env-Norm s0—(e # es)=>v#vs—s2
unfolding G by (rule eval.Cons Cons.hyps)+
from Cons.prems
obtain 7'/ where T=Inr T’
by (elim wt-elim-cases) simp
with Cons.prems have Envt-(e # es):=T'
by simp
from ewval - this
show ?thesis
by (rule eval-expression-list-no-jump) (simp-all add: G wf)
qed
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hence ¢BreakAssigned (Norm s0) s2 A and ?ResAssigned (Norm s0) s2
by simp-all
ultimately show ?case by (intro conjI)
qed
qed

lemma da-good-approzE:
assumes
prg Env-s0 —t=— (v, s1) and Env-t::T and
Envk dom (locals (store s0)) »t» A and wf-prog (prg Env)
obtains
normal s1 = nrm A C dom (locals (store s1)) and
N I [abrupt s1 = Some (Jump (Break 1)); normal s0]
= brk A 1 C dom (locals (store s1)) and
labrupt s1 = Some (Jump Ret);normal s0]=Result € dom (locals (store s1))
using assms by — (drule (3) da-good-approz, simp)

lemma da-good-approzE":
assumes eval: GFs0 —t=— (v, s1)
and  wt: (prg=G,cls=C,lcl=L)F¢::T
and da: (prg=G,cls=C,lcl=L)F dom (locals (store s0)) »t» A
and  wf: wf-prog G
obtains normal s1 = nrm A C dom (locals (store s1)) and
N 1. [abrupt s1 = Some (Jump (Break 1)); normal s0]
= brk A 1 C dom (locals (store s1)) and
[abrupt s1 = Some (Jump Ret);normal s0]
= Result € dom (locals (store s1))
proof —
from eval have prg (prg=G,cls=C,lcl=L)Fs0 —t>— (v, s1) by simp
moreover note wt da
moreover from wf have wf-prog (prg (prg=G,cls=Clcl=L)) by simp
ultimately show thesis
using that by (rule da-good-approzE) iprover+
qed

declare [[simproc add: wt-expr wt-var wt-exprs wi-stmt]]

end



Chapter 19
TypeSafe

1 The type soundness proof for Java

theory TypeSafe
imports DefiniteAssignmentCorrect Conform
begin

error free

lemma error-free-halloc:
assumes halloc: GFs0 —halloc oi-a— s1 and
error-free-s0: error-free sO
shows error-free s1
proof —
from halloc error-free-s0
obtain abrupt0 store0 abruptl storel
where egs: s0=(abrupt0,store0) s1=(abrupt!, storel) and
halloc”: G+ (abrupt0,store0) —halloc oi-a— (abruptl,storel) and
error-free-s0': error-free (abrupt0,storeQ)
by (cases s0,cases s1) auto
from halloc’ error-free-s0’
have error-free (abrupt!,storel)
proof (induct)
case Abrupt
then show ?case .
next
case New
then show ?Zcase
by auto
qed
with egs
show ?thesis
by simp
qed

lemma error-free-sxalloc:
assumes szalloc: Gr-s0 —szalloc— s1 and error-free-s0: error-free s0
shows error-free s1
proof —
from szalloc error-free-s0
obtain abrupt0 store0 abrupti storel
where egs: s0=(abrupt0,store0) s1=(abrupt!,storel) and
szalloc”: GH(abrupt0,storel) —szalloc— (abruptl storel) and
error-free-s0': error-free (abrupt0,store0)
by (cases s0,cases s1) auto
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from szalloc’ error-free-s0’
have error-free (abrupti storel)
proof (induct)
qged (auto)
with egs
show ?thesis
by simp
qed

lemma error-free-check-field-access-eq:
error-free (check-field-access G accC statDeclC fn stat a s)
= (check-field-access G accC statDeclC fn stat a 8) = s
apply (cases s)
apply (auto simp add: check-field-access-def Let-def error-free-def
abrupt-if-def
split: if-split-asm)
done

lemma error-free-check-method-access-eq:

error-free (check-method-access G accC' statT mode sig a’ s)

= (check-method-access G accC statT mode sig a’ s) = s

apply (cases s)

apply (auto simp add: check-method-access-def Let-def error-free-def
abrupt-if-def)

done

lemma error-free-FVar-lemma:
error-free s
= error-free (abupd (if stat then id else np a) s)
by (case-tac s) auto

lemma error-free-init-lvars [simp,intro):
error-free s =
error-free (init-lvars G C sig mode a pvs s)
by (cases s) (auto simp add: init-lvars-def Let-def)

lemma error-free-LVar-lemma:
error-free s = error-free (assign (Av. supd lupd(vn—v)) w s)
by (cases s) simp

lemma error-free-throw [simp,intro]:
error-free s = error-free (abupd (throw x) s)
by (cases s) (simp add: throw-def)

result conformance

definition
assign-conforms :: st = (val = state = state) = ty = env’ = bool («-<|-=-:=- [71,71,71,71] 70)
where
s<|f=T:=E =
((Vs" w. Norm s$":XF — fst E,s*w:=XT — s<|s’ — assign f w (Norm s)::<XE) A
(Vs" w. error-free s’ — (error-free (assign f w s'))))

definition
reonf :: prog = lenv = st = term = vals = tys = bool («-,-,-F-=-:=~ [71,71,71,71,71,71] 70)
where
G,L,sHt-v:=xT =
(case T of
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Inl T = if (3 var. t=In2 var)
then (V n. (the-In2 t) = LVar n
— (fst (the-In2 v) = the (locals s n)) A
(locals s n # None — G,stfst (the-In2 v):=<T)) A
(= (3 n. the-In2 t=LVar n) — (G,stfst (the-In2 v)::=<T))A
(s<|snd (the-In2 v)<XT::=<(G,L))
else G,stthe-Inl v::XT
| Inr Ts = list-all2 (conf G s) (the-In3 v) Ts)

With rconf we describe the conformance of the result value of a term. This definition gets rather
complicated because of the relations between the injections of the different terms, types and values.
The main case distinction is between single values and value lists. In case of value lists, every value
has to conform to its type. For single values we have to do a further case distinction, between
values of variables Jwvar. t = In2 var and ordinary values. Values of variables are modelled as
pairs consisting of the current value and an update function which will perform an assignment to
the variable. This stems form the decision, that we only have one evaluation rule for each kind of
variable. The decision if we read or write to the variable is made by syntactic enclosing rules. So
conformance of variable-values must ensure that both the current value and an update will conform
to the type. With the introduction of definite assignment of local variables we have to do another
case distinction. For the notion of conformance local variables are allowed to be None, since the
definedness is not ensured by conformance but by definite assignment. Field and array variables
must contain a value.

lemma rconf-In1 [simp]:

G,L,stInl ec-Inl v :=<XInl T = G,stv::=T
apply (unfold rconf-def)

apply (simp (no-asm))

done

lemma rconf-In2-no-LVar [simp]:
vV n. va#LVar n =
G,L,stIn2 va-In2 vf :xXInl T = (G,skfst of :xXT A s<|snd vf 2 T::=(G,L))
apply (unfold rconf-def)
apply auto
done

lemma rconf-In2-LVar [simp]:
va=LVar n =
G,L,stIn2 var-In2 vf::=<XInl T
= ((fst vf = the (locals s n)) A
(locals s n # None — G,skfst vf:=XT) A s<|snd vf <T::=(G,L))
apply (unfold rconf-def)
by simp

lemma rconf-In3 [simp]:

G,L,s-In3 es-1In3 vs:=Inr Ts = list-all2 (A T. G,skv:=T) vs Ts
apply (unfold rconf-def)

apply (simp (no-asm))

done

fits and conf

lemma conf-fits: G,stv::2T = G,skv fits T
apply (unfold fits-def)

apply clarify

apply (erule contrapos-np, simp (no-asm-use))
apply (drule conf-RefTD)

apply auto
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done

lemma fits-conf:
[G,stv:=T; GET=? T'; G,stv fits T'; ws-prog G] = G,skv:=xXT’
apply (auto dest!: fitsD cast-PrimT?2 cast-RefT2)
apply (force dest: conf-RefTD intro: conf-AddrI)
done

lemma fits-Array:

[G,stv:=T; GET[|XT.[]]; G,stv fits T'; ws-prog G] = G,skv:=<XT’
apply (auto dest!: fitsD widen-ArrayPrimT widen-ArrayRefT)

apply (force dest: conf-RefTD intro: conf-AddrI)

done

gext

lemma halloc-gext: N\s1 s2. GFsl —halloc oi-a— $2 = snd s1<|snd s2
apply (simp (no-asm-simp) only: split-tupled-all)

apply (erule halloc.induct)

apply (auto dest!: new-AddrD)

done

lemma szalloc-gext: \s1 s2. Grsl —szalloc— s2 = snd s1<|snd s2
apply (simp (no-asm-simp) only: split-tupled-all)

apply (erule szalloc.induct)

apply (auto dest!: halloc-gext)

done

lemma eval-gext-lemma [rule-format (no-asm)):
GFs —t=-— (w,s’) = snd s<|snd s’ A\ (case w of
Inil v = True
| In2 vf = normal s — (Vv x s. s<|snd (assign (snd vf) v (,)))
| In3 vs = True)
apply (erule eval-induct)
prefer 26
apply (case-tac inited C (globs s0), clarsimp, erule thin-rl)
apply (auto del: conjl dest!: not-initedD gext-new sxzalloc-gext halloc-gext
simp add: lvar-def fvar-def2 avar-def2 init-lvars-def2
check-field-access-def check-method-access-def Let-def
split del: if-split-asm split: sum3.split)

apply force+
done

lemma evar-gext-f:
GFNorm s1 —e=>vf — s2 = s<|snd (assign (snd vf) v (z,s))
apply (drule eval-gext-lemma [THEN conjunct2])
apply auto
done

lemmas eval-gext = eval-gext-lemma [THEN conjunctl]

lemma eval-gext” GH(z1,s1) —t=— (w,(22,52)) = s1<|s2
apply (drule eval-gext)

apply auto

done

lemma init-yields-initd: GFNorm s1 —Init C— s2 = initd C s2
apply (erule eval-cases , auto split del: if-split-asm,)
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apply (case-tac inited C (globs s1))
apply (clarsimp split del: if-split-asm)+
apply (drule eval-gext’)+

apply (drule init-class-obj-inited)

apply (erule inited-gext)

apply (simp (no-asm-use))

done

A~ N N

Lemmas

lemma obj-ty-obj-class1:

[wf-prog G; is-type G (obj-ty obj)] = is-class G (obj-class obj)
apply (case-tac tag obj)

apply (auto simp add: obj-ty-def obj-class-def)

done

lemma oconf-init-obj:

[wf-prog G;

(case r of Heap a = is-type G (obj-ty obj) | Stat C = is-class G C)
] = G,stobj (values:=init-vals (var-tys G (tag obj) r))::=34/r
apply (auto intro!: oconf-init-obj-lemma unique-fields)
done

lemma conforms-newG: [globs s oref = None; (z, $)::=<(G,L);
wf-prog G; case oref of Heap a = is-type G (obj-ty (tag=oi,values=uvs))
| Stat C' = is-class G C] =
(z, init-obj G oi oref s)::=<(G, L)
apply (unfold init-obj-def)
apply (auto elim!: conforms-gupd dest!: oconf-init-obj

done

lemma conforms-init-class-obj:

[(z,8):=(G, L); wf-prog G; class G C=Some y; = inited C (globs s)] =
(z,ingt-class-obj G C s)::=(G, L)

apply (rule not-initedD [THEN conforms-newG])

apply (auto)
done

lemma fst-init-lvars[simp]:

fst (init-lvars G C sig (invmode m e) a’ puvs (x,s)) =
(if is-static m then z else (np a’) x)

apply (simp (no-asm) add: init-lvars-def2)

done

lemma halloc-conforms: N\s1. [Gksl —halloc oi-a— s2; wf-prog G; s1:=(G, L);
is-type G (obj-ty (tag=oivalues=fs))] = s2:=(G, L)
apply (simp (no-asm-simp) only: split-tupled-all)
apply (case-tac aa)
apply (auto elim!: halloc-elim-cases dest!: new-AddrD
introl: conforms-newG [THEN conforms-xzconf] conf-Addrl)
done

lemma halloc-type-sound:

Asl. [Grsl —halloc oi=-a— (z,s); wf-prog G; s1:=(G, L);
T = obj-ty (tag=oi,values=fs|); is-type G T] =
(z,8):=(G, L) N (x = None — G,s-Addr a::<XT)
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apply (auto elim!: halloc-conforms)

apply (case-tac aa)

apply (subst obj-ty-eq)

apply (auto elim!: halloc-elim-cases dest!: new-AddrD introl: conf-Addrl)
done

lemma szalloc-type-sound:
Nsl s2. [Ghs1l —szalloc— s2; wf-prog G| =
case fst s1 of
None = s2 = sl
| Some abr = (case abr of
Xept © = (Fa. fst s2 = Some(Xept (Loc a)) A
(VL. s1:=(G,L) — s2:=%(G,L)))
| Jump j = s2 = sl
| Error e = s2 = s1)
apply (simp (no-asm-simp) only: split-tupled-all)
apply (erule szalloc.induct)
apply auto
apply (rule halloc-conforms [THEN conforms-zconf])
apply (auto elim!: halloc-elim-cases dest!: new-AddrD introl: conf-Addrl)
done

lemma wt-init-comp-ty:
is-acc-type G (pid C) T = (prg=G,cls=C,lcl=L|)Finit-comp-ty T::/
apply (unfold init-comp-ty-def)
apply (clarsimp simp add: accessible-in-RefT-simp
is-acc-type-def is-acc-class-def)
done

declare fun-upd-same [simp]
declare fun-upd-apply [simp del]

definition
DynT-prop :: [prog,inv-mode,qtname,ref-ty] = bool («-+-—-=2-[71,71,71,71]70)
where
Grmode— D=t = (mode = IntVir — is-class G D N\
(if 3T. t=ArrayT T) then D=O0Object else Gt Class D= RefT t))

lemma DynT-propl:
[(%,8):=X(G, L); G,sta’:=2RefT statT; wf-prog G; mode = IntVir — o’ # Null]
= GFmode—invocation-class mode s a’ statT<statT
proof (unfold DynT-prop-def)
assume state-conform: (z,s):=(G, L)
and statT-a"s G,sta’:=RefT statT
and wf: wf-prog G
and mode: mode = IntVir — a’ # Null
let 2invCls = (invocation-class mode s a’ statT)
let 2IntVir = mode = IntVir
let ?Concl = NinvCls. is-class G invCls N
(if 3T. statT = ArrayT T
then invCls = Object
else GrClass invCls= RefT statT)
show ?IntVir — ?Concl ?invCls
proof
assume modelntVir: ?IntVir
with mode have not-Null: a’ # Null ..
from statT-a’ not-Null state-conform
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obtain a obj
where obj-props: o’ = Addr a globs s (Inl a) = Some obj
Grobj-ty obj=RefT statT is-type G (obj-lty obj)
by (blast dest: conforms-RefTD)
show ?Concl ?invCls
proof (cases tag obj)
case ClInst
with modelntVir obj-props
show ?thesis
by (auto dest!: widen-Array2)
next
case Arr
from Arr obtain T where obj-ty obj = T.[] by blast
moreover from Arr have obj-class obj = Object
by blast
moreover note modelntVir obj-props wf
ultimately show ?thesis by (auto dest!: widen-Array )
qed
qed
qed

lemma invocation-methd:

[wf-prog G; statT # NullT;

(V statC. statT = ClassT statC — is-class G statC);

(v I. statT = IfaceT I — is-iface G I N\ mode # SuperM);
(v T. statT = ArrayT T — mode # SuperM);

GFmode— invocation-class mode s a’ statT=<statT;

dynlookup G statT (invocation-class mode s a’ statT) sig = Some m |
= methd G (invocation-declclass G mode s o’ statT sig) sig = Some m

proof —
assume wf: wf-prog G
and not-NullT: statT # NullT

and statC-prop: (V statC. statT = ClassT statC — is-class G statC')

and statl-prop: (V I. statT = IfaceT I — is-iface G I N mode # SuperM)
and statA-prop: (V T. statT = ArrayT T — mode # SuperM)

and invC-prop: GFmode— invocation-class mode s a’ statT=<statT

and dynlookup: dynlookup G statT (invocation-class mode s o’ statT) sig

= Some m
show ?thesis
proof (cases statT)
case NullT
with not-NullT show ?thesis by simp
next
case IfaceT
with statl-prop obtain [
where  statl: statT = IfaceT I and
is-iface: is-iface G I  and
not-SuperM: mode # SuperM by blast

show ?thesis
proof (cases mode)
case Static
with wf dynlookup statl is-iface
show ?thesis
by (auto simp add: invocation-declclass-def dynlookup-def
dynimethd-def dynmethd-C-C'
intro: dynmethd-declclass
dest!: wf-imethdsD
dest: table-of-map-Somel)
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next
case SuperM
with not-SuperM show ?thesis ..
next
case IntVir
with wf dynlookup IfaceT invC-prop show ?thesis
by (auto simp add: invocation-declclass-def dynlookup-def dynimethd-def
DynT-prop-def
intro: methd-declclass dynmethd-declclass)
qed
next
case ClassT
show ?thesis
proof (cases mode)
case Static
with wf ClassT dynlookup statC-prop
show ?thesis by (auto simp add: invocation-declclass-def dynlookup-def
intro: dynmethd-declclass)
next
case SuperM
with wf ClassT dynlookup statC-prop
show ?thesis by (auto simp add: invocation-declclass-def dynlookup-def
intro: dynmethd-declclass)
next
case IntVir
with wf ClassT dynlookup statC-prop invC-prop
show ?thesis
by (auto simp add: invocation-declclass-def dynlookup-def dynimethd-def
DynT-prop-def
intro: dynmethd-declclass)
qed
next
case ArrayT
show ?thesis
proof (cases mode)
case Static
with wf ArrayT dynlookup show ?thesis
by (auto simp add: invocation-declclass-def dynlookup-def
dynimethd-def dynmethd-C-C
intro: dynmethd-declclass
dest: table-of-map-Somel)
next
case SuperM
with ArrayT statA-prop show Zthesis by blast
next
case IntVir
with wf ArrayT dynlookup invC-prop show Zthesis
by (auto simp add: invocation-declclass-def dynlookup-def dynimethd-def
DynT-prop-def dynmethd-C-C
intro: dynmethd-declclass
dest: table-of-map-Somel)
qed
qed
qed

lemma DynT-mheadsD:

[Grinvmode sm e—invC=<statT;
wf-prog G; (prg=G,cls=Clcl=L|)e::— RefT statT;
(statDeclT,sm) € mheads G C statT sig;
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invC = invocation-class (invmode sm €) s a’ statT;
declC =invocation-declclass G (invmode sm e) s a’ statT sig
| =
3 dm.
methd G declC sig = Some dm N dynlookup G statT invC sig = Some dm A
GrresTy (mthd dm)=<resTy sm A
wf-mdecl G declC (sig, mthd dm) A
declC = declclass dm N
is-static dm = is-static sm A
is-class G invC A is-class G declC N GFinvC=¢o declC N
(if invmode sm e = IntVir
then (V statC. statT=ClassT statC — GHinvC <¢ statC)
else ( (3 statC. statT=ClassT statC A GFstatC=¢ declC)
V (V statC. statT#ClassT statC A declC=Object)) N
statDeclT = ClassT (declclass dm))

proof —
assume nvC-prop: GHinvmode sm e—invC=<statT
and wf: wf-prog G
and wt-e: (prg=G,cls=C,lcl=L)e::—RefT statT
and sm: (statDeclT,sm) € mheads G C statT sig
and invC: invC = invocation-class (invmode sm e) s a’ statT

and declC": declC =
invocation-declclass G (invmode sm e) s o’ statT sig
from wt-e wf have type-statT: is-type G (RefT statT)
by (auto dest: ty-expr-is-type)
from sm have not-Null: statT # NullT by auto
from type-statT
have wf-C: (V statC. statT = ClassT statC — is-class G statC)
by (auto)
from type-statT wt-e
have wf-I: (V1. statT = IfaceT I — is-iface G I A
invmode sm e # SuperM)
by (auto dest: invocation Type Expr-noClassD)
from wt-e
have wf-A: (V T. statT = ArrayT T — invmode sm e # SuperM)
by (auto dest: invocation Type Expr-noClassD)
show ?thesis
proof (cases invmode sm e = IntVir)
case True
with invC-prop not-Null
have invC-prop”: is-class G invC A
(if 3T. statT=ArrayT T) then invC=Object
else GFClass invC=<RefT statT)
by (auto simp add: DynT-prop-def)
from True
have — is-static sm
by (simp add: invmode-IntVir-eq member-is-static-simp)
with invC-prop’ not-Null
have G,statT + invC valid-lookup-cls-for (is-static sm)
by (cases statT) auto
with sm wf type-statT obtain dm where
dm: dynlookup G statT invC sig = Some dm and
resT-dm: GhFresTy (mthd dm)=resTy sm and
static: is-static dm = is-static sm
by — (drule dynamic-mheadsD,force+)
with declC invC not-Null
have declC": declC = (declclass dm)
by (auto simp add: invocation-declclass-def)
with wf invC declC not-Null wf-C wf-I wf-A invC-prop dm
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have dm’: methd G declC sig = Some dm
by — (drule invocation-methd,auto)
from wf dm invC-prop’ declC’ type-statT
have declC-prop: GrinvC <¢ declC A is-class G declC
by (auto dest: dynlookup-declC)
from wf dm’ declC-prop declC’
have wf-dm: wf-mdecl G declC (sig,(mthd dm))
by (auto dest: methd-wf-mdecl)
from invC-prop’
have statC-prop: (V statC. statT=ClassT statC — GrinvC <3¢ statC')
by auto
from True dm’ resT-dm wf-dm invC-prop’ declC-prop statC-prop declC' static
dm
show ?thesis by auto
next
case Fulse
with type-statT wf invC not-Null wf-I wf-A
have invC-prop’: is-class G invC A
(3 statC. statT=ClassT statC A invC=statC) V
(V statC. statT+#ClassT statC A invC=Object))
by (case-tac statT) (auto simp add: invocation-class-def
split: inv-mode.splits)
with not-Null wf
have dynlookup-static: dynlookup G statT invC sig = methd G invC sig
by (case-tac statT) (auto simp add: dynlookup-def dynmethd-C-C
dynimethd-def)
from sm wf wi-e not-Null False invC-prop’ obtain dm where
dm: methd G invC sig = Some dm and
eq-declC-sm-dm:statDeclT = ClassT (declclass dm) and
eq-mheads:sm=mhead (mthd dm)
by — (drule static-mheadsD, (force dest: accmethd-SomeD)+)
then have static: is-static dm = is-static sm by auto
with declC invC dynlookup-static dm
have declC": declC' = (declclass dm)
by (auto simp add: invocation-declclass-def)
from invC-prop’ wf declC’ dm
have dm’: methd G declC sig = Some dm
by (auto intro: methd-declclass)
from dynlookup-static dm
have dm'": dynlookup G statT invC sig = Some dm
by simp
from wf dm invC-prop’ declC' type-statT
have declC-prop: GHinvC <¢ declC A is-class G declC
by (auto dest: methd-declC )
then have declC-prop!: invC=0bject — declC=Object by auto
from wf dm’ declC-prop declC’
have wf-dm: wf-mdecl G declC (sig,(mthd dm))
by (auto dest: methd-wf-mdecl)
from invC-prop’ declC-prop declC-propl
have statC-prop: ( (3 statC. statT=ClassT statC N GrstatC=¢ declC')
V(Y statC. statT#ClassT statC A declC=Object))
by auto
from Fualse dm’ dm' wf-dm invC-prop’ declC-prop statC-prop declC’
eq-declC-sm-dm eq-mheads static
show ?thesis by auto
qed
qed

corollary DynT-mheadsE [consumes 7]:
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— Same as DynT-mheadsD but better suited for application in typesafety proof
assumes invC-compatible: GHmode—invC=<statT
and wf: wf-prog G
and wt-e: (prg=G,cls=C,lcl=L)\e::— RefT statT
and mheads: (statDeclT,sm) € mheads G C statT sig
and mode: mode=invmode sm e
and invC: invC = invocation-class mode s a’ statT
and declC: declC =invocation-declclass G mode s a' statT sig
and dm: A\ dm. [methd G declC sig = Some dm;
dynlookup G statT invC sig = Some dm,;
GrresTy (mthd dm)=<resTy sm;
wf-mdecl G declC (sig, mthd dm);
declC = declclass dm;
is-static dm = is-static sm;
is-class G invC; is-class G declC; GrinvC=<¢ declC,
(if invmode sm e = IntVir
then (V statC. statT=ClassT statC — GHinvC =<¢ statC)
else ( (3 statC. statT=ClassT statC N GFstatC=¢ declC')
V (V statC. statT#ClassT statC A declC=Object)) N
statDeclT = ClassT (declclass dm))] = P
shows P
proof —
from invC-compatible mode have Grinvmode sm e—invC=<statT by simp
moreover note wf wt-e mheads
moreover from invC mode
have invC' = invocation-class (invmode sm €) s a’ statT by simp
moreover from declC mode
have declC =invocation-declclass G (invmode sm e) s a’ statT sig by simp
ultimately show ?thesis
by (rule DynT-mheadsD [THEN ezE,rule-format))
(elim conjE,rule dm)
qed

lemma DynT-conf: [Grinvocation-class mode s a' statT =<¢ declC; wf-prog G;
isrtype G (statT);
G,sta':=XRefT statT; mode = IntVir — a’ # Null;
mode # IntVir — (3 statC. statT=ClassT statC N GFstatC=¢ declC)
V (Y statC. statT+#ClassT statC A declC'=Object)]
= G,ska’:= Class declC
apply (case-tac mode = IntVir)
apply (drule conf-RefTD)
apply (force intro!: conf-Addrl
simp add: obj-class-def split: obj-tag.split-asm)
apply clarsimp
apply safe
apply (erule (1) widen.subcls [THEN conf-widen))
apply (erule wf-ws-prog)

apply  (frule widen-Object) apply (erule wf-ws-prog)
apply (erule (1) conf-widen) apply (erule wf-ws-prog)
done

lemma Ass-lemma:
[ GENorm s0 —var=>(w, f)— Norm s1; G-Norm s1 —e—>v— Norm s2;
G,s2Fv:=eT;s1<|s2 — assign f v (Norm s2):=%(G, L)]
= assign f v (Norm s2):=<(G, L) A
(normal (assign f v (Norm s2)) — G,store (assign f v (Norm s2))Fv::<eT)
apply (drule-tac x = None and s = s2 and v = v in evar-gext-f)
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apply (drule eval-gext’, clarsimp)
apply (erule conf-gext)

apply simp

done

lemma Throw-lemma: [GHtn=<c SXcpt Throwable; wf-prog G; (x1,s1):=(G, L);
zl = None — G,s1ta’:= Class tn] = (throw o’ x1, s1):=(G, L)

apply (auto split: split-abrupt-if simp add: throw-def2)

apply (erule conforms-zconf)

apply (frule conf-RefTD)

apply (auto elim: widen.subcls [THEN conf-widen))

done

lemma Try-lemma: [GFobj-ty (the (globs s1’ (Heap a)))= Class tn;
(Some (Xept (Loc a)), s17):=2(G, L); wf-prog G|

= Norm (lupd(vn— Addr a) s1’)::=(G, L(vn— Class tn))

apply (rule conforms-allocL)

apply (erule conforms-Norml)

apply (drule conforms-XcptLocD [THEN conf-RefTD],rule HOL.refl)
apply (auto introl: conf-Addrl)

done

lemma Fin-lemma:

[GFNorm s1 —c2— (22,s2); wf-prog G; (Some a, s1):=(G, L); (22,52)::=(G, L);
dom (locals s1) C dom (locals s2)]

= (abrupt-if True (Some a) 22, $2):=<(G, L)

apply (auto elim: eval-gext’ conforms-zgext split: split-abrupt-if)

done

lemma F'Var-lemmal:
[table-of (DeclConcepts.fields G statC) (fn, statDeclC) = Some f ;
z2 = None — G,s2Fa::= Class statC; wf-prog G; GFstatC=<¢ statDeclC,
statDeclC # Object;
class G statDeclC = Some y; (22,s2):=(G, L); s1<|s2;
inited statDeclC (globs s1);
(if static f then id else np a) 2 = None]
_—
Fobj. globs s2 (if static f then Inr statDeclC' else Inl (the-Addr a))
= Some obj A
var-tys G (tag obj) (if static f then Inr statDeclC' else Inl(the-Addr a))
(Inl(fn,statDeclC)) = Some (type f)
apply (drule initedD)
apply (frule subcls-is-class2, simp (no-asm-simp))
apply (case-tac static f)
apply clarsimp
apply (drule (1) rev-gext-objD, clarsimp)
apply (frule fields-declC, erule wf-ws-prog, simp (no-asm-simp))
apply (rule var-tys-Some-eq [THEN iffD2])
apply clarsimp
apply (erule fields-table-Somel, simp (no-asm))
apply clarsimp
apply (drule conf-RefTD, clarsimp, rule var-tys-Some-eq [THEN 4ffD2])
apply (auto dest!: widen-Array split: obj-tag.split)
apply (rule fields-table-Somel)
apply (auto elim!: fields-mono subcls-is-class2)
done

lemma FVar-lemma2: error-free state
= error-free
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(assign
(Av. supd
(upd-gobj
(if static field then Inr statDeclC
else Inl (the-Addr a))
(Inl (fn, statDeclC)) v))
w state)
proof —
assume error-free: error-free state
obtain a s where state=(a,s)
by (cases state)
with error-free
show ?thesis
by (cases a) auto
qed

declare split-paired-All [simp del] split-paired-Ez [simp del]
declare if-split  [split del] if-split-asm [split del]
option.split [split del] option.split-asm [split del]
setup <map-theory-simpset (fn ctat => ctat |> Simplifier.del-loop split-all-tac))
setup <map-theory-claset (fn ctzt => ctat delSWrapper split-all-tac)»

lemma FVar-lemma:

[((v, f), Norm s2') = fvar statDeclC (static field) fn a (22, s2);
GrstatC=¢ statDeclC;
table-of (DeclConcepts.fields G statC) (fn, statDeclC') = Some field;
wf-prog G}
z2 = None — G,s2Fa::<XClass statC,
statDeclC # Object; class G statDeclC = Some y;
(22, $2):=(G, L); s1<|s2; inited statDeclC (globs s1)] =
G,s2\v:=<type field N s2'<|f=Ltype field::=(G, L)

apply (unfold assign-conforms-def)

apply (drule sym)

apply (clarsimp simp add: fvar-def2)

apply (drule (9) FVar-lemmal)

apply (clarsimp)

apply (drule (2) conforms-globsD [THEN oconf-lconf, THEN lconfD])

apply clarsimp

apply (rule conjI)

apply clarsimp

apply (drule (1) rev-gext-objD)

apply (force elim!: conforms-upd-goby)

apply (blast intro: FVar-lemma?2)
done
declare split-paired-All [simp] split-paired-Ezx [simp]
declare if-split  [split] if-split-asm  [split]
option.split [split] option.split-asm [split]
setup «map-theory-claset (fn ctxt => ctxt addSbefore (split-all-tac, split-all-tac))s
setup «map-theory-simpset (fn ctat => ctat |> Simplifier.add-loop (split-all-tac, split-all-tac))»

lemma AVar-lemmal: [globs s (Inl a) = Some obj;tag obj=Arr ty i;
the-Intg i’ in-bounds ©; wf-prog G; Grty.[[2Tb.[J; Norm s:=(G, L)

] = G,stthe ((values obj) (Inr (the-Intg i’)))::=Tb

apply (erule widen-Array-Array [THEN conf-widen))

apply (erule-tac [2] wf-ws-prog)

apply (drule (1) conforms-globsD [THEN oconf-lconf, THEN lconfD])
defer apply assumption
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apply (force intro: var-tys-Some-eq [THEN iffD2])
done

lemma obj-split: 3 t vs. obj = (tag=t,values=wvs|)
by (cases obj) auto

lemma AVar-lemmaZ2: error-free state
= error-free
(assign
(A (z, s').
((raise-if (— G,s'‘tv fits T) ArrStore) ,
upd-gobj (Inl a) (Inr (the-Intg 7)) v s’))
w state)
proof —
assume error-free: error-free state
obtain a s where state=(a,s)
by (cases state)
with error-free
show ?thesis
by (cases a) auto
qed

lemma AVar-lemma: [wf-prog G; GH-(z1, s1) —e2—>i— (22, s2);
((v,f), Norm s2') = avar G i a (22, s2); x1 = None — G,slta:=XTa.[];
(22, $2):=%(G, L); s1<|s2] = G,s2"v:=xTa A s2'<|f=<Ta:=(G, L)

apply (unfold assign-conforms-def)

apply (drule sym)

apply (clarsimp simp add: avar-def2)

apply (drule (1) conf-gext)

apply (drule conf-RefTD, clarsimp)

apply (subgoal-tac 3 t vs. obj = (tag=t,values=vs))

defer

apply (rule obj-split)

apply clarify

apply (frule obj-ty-widenD)

apply (auto dest!: widen-Class)

apply (force dest: AVar-lemmal)

apply (force elim!: fits-Array dest: gext-objD
intro: var-tys-Some-eq [THEN iffD2] conforms-upd-gobj)
done

Call

lemma conforms-init-lvars-lemma: [wf-prog G;
wf-mhead G P sig mh;
list-all2 (conf G s) pvs pTsa; GrpTsal=<](parTs sig)] =
G,s-Map.empty (pars mh[—]pvs)
[~::X](table-of lvars)(pars mh[—]parTs sig)
apply (unfold wf-mhead-def)
apply clarify
apply (erule (1) wiconf-empty-vals [THEN wlconf-ext-list])
apply (drule wf-ws-prog)
apply (erule (2) conf-list-widen)
done

lemma [conf-map-lname [simp]:
G,st(case-lname 11 12)[::<](case-Iname L1 L2)



Theory TypeSafe

(G,sHl1[:=]L1 A G,st(Azzunit . 12)[:=](Azunit. L2))
apply (unfold lconf-def)
apply (auto split: Iname.splits)
done

lemma wlconf-map-lname [simp]:

G,s(case-lname 11 12)[~::=](case-lname L1 L2)

(G,sHl1[~:=X]L1 A Gyse(Azzunit . 12)[~:=X](Az:unit. L2))
apply (unfold wiconf-def)
apply (auto split: Iname.splits)
done

lemma lconf-map-ename [simp]:
G, sk (case-ename 11 12)[::=X](case-ename L1 L2)
(G,sHl1[=:=]L1 A G,st(Azunit. 12)[:=](Az:undt. L2))
apply (unfold lconf-def)
apply (auto split: ename.splits)
done

lemma wlconf-map-ename [simp):
G,s(case-ename 11 12)[~::=](case-ename L1 L2)
(G,stl1[~:=X]L1 A Gyse(Azundt. 12)[~:=](Azunit. L2))
apply (unfold wiconf-def)
apply (auto split: ename.splits)
done

lemma defval-conf! [rule-format (no-asm), elim):
is-type G T — (JveSome (default-val T): G,stv:=T)
apply (unfold conf-def)
apply (induct T
apply (auto intro: prim-ty.induct)
done

lemma np-no-jump: z#£Some (Jump j) => (np a’) x # Some (Jump j)
by (auto simp add: abrupt-if-def)

declare split-paired-All [simp del] split-paired-Ez [simp del]
declare if-split  [split del] if-split-asm  [split del]
option.split [split del] option.split-asm [split del]
setup «map-theory-simpset (fn ctat => ctat |> Simplifier.del-loop split-all-tac)>
setup <map-theory-claset (fn ctzt => ctat delSWrapper split-all-tac)»

lemma conforms-init-lvars:
[wf-mhead G (pid declC) sig (mhead (mthd dm)); wf-prog G;
list-all2 (conf G s) pvs pTsa; GrpTsa[=<](parTs sig);
(z, $)==(G, L);
methd G declC sig = Some dm;
isrtype G statT;
GHinvC=¢ declC,
G,sta’:=XRefT statT;
invmode (mhd sm) e = IntVir — a’ # Null;
invmode (mhd sm) e # IntVir —
(3 statC. statT=ClassT statC N GrstatC=¢ declC)
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vV (V statC. statT+#ClassT statC A declC'=Object);

invC = invocation-class (invmode (mhd sm) €) s a’ statT;

declC = invocation-declclass G (invmode (mhd sm) e) s a’ statT sig;

x#Some (Jump Ret)

=

init-lvars G declC sig (invmode (mhd sm) €) a

pus (z,8):=(G A\ k.

(case k of
EName e = (case e of
VNam v
= ((table-of (lcls (mbody (mthd dm))))
(pars (mthd dm)[—]parTs sig)) v
| Res = Some (resTy (mthd dm)))
| This = if (is-static (mthd sm))
then None else Some (Class declC)))

apply (simp add: init-lvars-def2)
apply (rule conforms-set-locals)
apply (simp (no-asm-simp) split: if-split)
apply (drule (4) DynT-conf)
apply clarsimp

/!

apply (drule (3) conforms-init-lvars-lemma
[where ?lvars=(lcls (mbody (mthd dm)))])
apply (case-tac dm,simp)
apply (rule conjI)
apply (unfold wiconf-def, clarify)
apply (clarsimp simp add: wf-mhead-def is-acc-type-def)
apply (case-tac is-static sm)
apply simp
apply simp

apply simp
apply (case-tac is-static sm)
apply simp
apply (simp add: np-no-jump)
done
declare split-paired-All [simp] split-paired-FEx [simp]
declare if-split  [split] if-split-asm  [split]
option.split [split] option.split-asm [split]
setup «map-theory-claset (fn ctzt => ctzt addSbefore (split-all-tac, split-all-tac))»
setup <map-theory-simpset (fn ctat => ctat |> Simplifier.add-loop (split-all-tac, split-all-tac))

2 accessibility

theorem dynamic-field-access-ok:
assumes wf: wf-prog G and
not-Null: = stat — a#Null and
conform-a: G,(store s)Fa::= Class statC and
conform-s: s:=<(G, L) and
normal-s: normal s and
wt-e: (prg=G,cls=accC,lcl=L)Fe::— Class statC and
f: accfield G accC statC fn = Some f and
dynC'" if stat then dynC=declclass f
else dynC=obj-class (lookup-obj (store s) a) and
stat: if stat then (is-static f) else (— is-static f)
shows table-of (DeclConcepts.fields G dynC) (fn,declclass f) = Some (fid f)A
GFField fn f in dynC dyn-accessible-from accC
proof (cases stat)
case True
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with stat have static: (is-static f) by simp
from True dynC
have dynC’: dynC=declclass f by simp
with f
have table-of (DeclConcepts.fields G statC) (fn,declclass f) = Some (fld f)
by (auto simp add: accfield-def Let-def intro!: table-of-remap-SomeD)
moreover
from wt-e wf have is-class G statC
by (auto dest!: ty-expr-is-type)
moreover note wf dynC’
ultimately have
table-of (DeclConcepts.fields G dynC) (fn,declclass f) = Some (fld f)
by (auto dest: fields-declC)
with dynC' f static wf
show ?thesis
by (auto dest: static-to-dynamic-accessible-from-static
dest!: accfield-accessibleD )
next
case Fulse
with wf conform-a not-Null conform-s dynC
obtain subclseq: GHdynC <¢ statC and
is-class G dynC
by (auto dest!: conforms-RefTD [of - - - - (fst s) L]
dest: obj-ty-obj-class1
simp add: obj-ty-obj-class )
with wf f
have table-of (DeclConcepts.fields G dynC) (fn,declclass f) = Some (fld f)
by (auto simp add: accfield-def Let-def
dest: fields-mono
dest!: table-of-remap-SomeD)
moreover
from f subclseq
have GFField fn fin dynC dyn-accessible-from accC
by (auto intro!: static-to-dynamic-accessible-from wf
dest: accfield-accessibleD)
ultimately show ?Zthesis
by blast
qed

lemma error-free-field-access:
assumes accfield: accfield G accC statC fn = Some (statDeclC, f) and
wt-e: (prg = G, cls = accC, lcl = L)Fe::—Class statC and
eval-init: GFNorm sO —Init statDeclC— s1 and
eval-e: GFsl —e—>a— s2 and
conf-s2: s2::=2(G, L) and
conf-a: normal s2 = G, store s2ka::=Class statC and
fvar: (v,s2")=fvar statDeclC (is-static f) fn a s2 and
wf: wf-prog G
shows check-field-access G accC statDeclC' fn (is-static f) a s2' = s2'
proof —
from fvar
have store-s2": store s2'=store s2
by (cases s2) (simp add: fvar-def2)
with fvar conf-s2
have conf-s2" s2":<(G, L)
by (cases s2,cases is-static f) (auto simp add: fvar-def2)
from eval-init
have initd-statDeclC-s1: initd statDeclC s1
by (rule init-yields-initd)
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with eval-e store-s2’
have initd-statDeclC-s2": initd statDeclC s2'
by (auto dest: eval-gext intro: inited-gext)
show ?thesis
proof (cases normal s2)
case Fulse
then show ?thesis
by (auto simp add: check-field-access-def Let-def)
next
case True
with fuar store-s2’
have not-Null: — (is-static ) — a#Null
by (cases s2) (auto simp add: fvar-def2)
from True fvar store-s2’
have normal s2
by (cases s2,cases is-static f) (auto simp add: fvar-def2)
with conf-a store-s2'
have conf-a”: G,store s2'+a::=Class statC
by simp
from conf-a’ conf-s2' True initd-statDeclC-s2'
dynamic-field-access-ok [OF wf not-Null conf-a’ conf-s2’
True wt-e accfield |
show ?thesis
by (cases is-static f)
(auto dest!: initedD
stmp add: check-field-access-def Let-def)
qed
qed

lemma call-access-ok:
assumes nvC-prop: GHinvmode statM e—invC=<statT
and wf: wf-prog G
and wt-e: (prg=G,cls=C,lcl=L)e::— RefT statT
and  statM: (statDeclT,statM) € mheads G accC statT sig
and invC: invC = invocation-class (invmode statM e) s a statT
shows 3 dynM. dynlookup G statT invC sig = Some dynM A
GFMethd sig dynM in invC' dyn-accessible-from accC
proof —
from wt-e wf have type-statT: is-type G (RefT statT)
by (auto dest: ty-expr-is-type)
from statM have not-Null: statT # NullT by auto
from type-statT wt-e
have wf-I: (VI. statT = IfaceT I — is-iface G I N
invmode statM e # SuperM)
by (auto dest: invocation TypeExpr-noClassD)
from wt-e
have wf-A: (V T. statT = ArrayT T — invmode statM e # SuperM)
by (auto dest: invocation TypeExpr-noClassD)
show ?thesis
proof (cases invmode statM e = IntVir)
case True
with invC-prop not-Null
have invC-prop”: is-class G invC A
(if 3T. statT=ArrayT T) then invC=Object
else GFClass invC=<RefT statT)
by (auto simp add: DynT-prop-def)
with True not-Null
have G,statT + invC valid-lookup-cls-for is-static statM
by (cases statT) (auto simp add: invmode-def)
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with statM type-statT wf
show ?thesis
by — (rule dynlookup-access,auto)
next
case Fulse
with type-statT wf invC not-Null wf-I wf-A
have invC-prop”: is-class G invC A
((3 statC. statT=ClassT statC A invC=statC) V
(V statC. statT+#ClassT statC A invC=0bject))
by (case-tac statT) (auto simp add: invocation-class-def
split: inv-mode.splits)
with not-Null wf
have dynlookup-static: dynlookup G statT invC sig = methd G invC sig
by (case-tac statT) (auto simp add: dynlookup-def dynmethd-C-C
dynimethd-def)
from statM wf wt-e not-Null False invC-prop’ obtain dynM where
accmethd G accC invC sig = Some dynM
by (auto dest!: static-mheadsD)
from invC-prop’ False not-Null wf-I
have G,statT + invC valid-lookup-cls-for is-static statM
by (cases statT) (auto simp add: invmode-def)
with statM type-statT wf
show ?thesis
by — (rule dynlookup-access,auto)
qed
qed

lemma error-free-call-access:
assumes
eval-args: GFs1 —args==vs— s2 and
wt-e: (prg = G, cls = accC, lel = L)e::—(RefT statT) and
statM: maz-spec G accC statT (name = mn, parTs = pTs)
= {((statDeclT, statM), pTs')} and
conf-s2: s2::=2(G, L) and
conf-a: normal s1 = G, store s1ta::=XRefT statT and
invProp: normal s3 =
Grinvmode statM e—invC=statT and
$3: s3=init-lvars G invDeclC (name = mn, parTs = pTs’)
(invmode statM e) a vs s2 and
invC: invC = invocation-class (invmode statM e) (store s2) a statTand
invDeclC: invDeclC = invocation-declclass G (invmode statM e) (store s2)
a statT (name = mn, parTs = pTs’) and
wf: wf-prog G
shows check-method-access G accC' statT (invmode statM e) (name=mn,parTs=pTs’) a s3
= 53
proof (cases normal s2)
case Fulse
with s3
have abrupt s8 = abrupt s2
by (auto simp add: init-lvars-def2)
with False
show ?thesis
by (auto simp add: check-method-access-def Let-def)
next
case True
note normal-s2 = True
with eval-args
have normal-s1: normal s1
by (cases normal s1) auto
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with conf-a eval-args
have conf-a-s2: G, store s2Fa::=2RefT statT
by (auto dest: eval-gext intro: conf-gext)
show ?thesis
proof (cases a=Null — (is-static statM))
case Fulse
then obtain - is-static statM a=Null
by blast
with normal-s2 s3
have abrupt s3 = Some (Xept (Std NullPointer))
by (auto simp add: init-lvars-def2)
then show ?thesis
by (auto simp add: check-method-access-def Let-def)
next
case True
from statM
obtain
statM": (statDeclT,statM)emheads G accC statT (name=mn,parTs=pTs’)
by (blast dest: max-spec2mheads)
from True normal-s2 s3
have normal s3
by (auto simp add: init-lvars-def2)
then have GHinvmode statM e—invC=<statT
by (rule invProp)
with wt-e statM’ wf invC
obtain dynM where
dynM: dynlookup G statT invC (name=mn,parTs=pTs’) = Some dynM and
acc-dynM: G FMethd (name=mn,parTs=pTs') dynM
in invC dyn-accessible-from accC
by (force dest!: call-access-ok)
moreover
from s3 invC
have invC": invC=(invocation-class (invmode statM e) (store s3) a statT)
by (cases s2,cases invmode statM e)
(simp add: init-lvars-def2 del: invmode-Static-eq)+
ultimately
show ?thesis
by (auto simp add: check-method-access-def Let-def)
qed
qed

lemma map-upds-eq-length-append-simp:
N tab gs. length ps = length gs = tab(ps[—]qsQzs) = tab(ps[—]gs)
proof (induct ps)
case Nil thus ?case by simp
next
case (Cons p ps tab ¢s)
from <length (p#ps) = length ¢s)
obtain ¢ gs’ where ¢s: gs=q#qs’ and eq-length: length ps=length qs’
by (cases gs) auto
from eg-length have (tab(p—q))(ps[—]qs’Qzs)=(tab(p—q))(ps[—]qs’)
by (rule Cons.hyps)
with ¢s show ?case
by simp
qed

lemma map-upds-upd-eq-length-simp:
N tab gs z y. length ps = length gs
= tab(ps[—]gs, z—y) = tab(psQ[z][—]gsQly])
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proof (induct ps)
case Nil thus ?case by simp
next
case (Cons p ps tab qs z y)
from <length (p#ps) = length qs
obtain ¢ gs’ where ¢s: gs=q#qs’ and eq-length: length ps=length qs’
by (cases ¢s) auto
from eq-length
have (tab(p—q))(ps[—]gs
by (rule Cons.hyps)
with ¢s show ?case
by simp
qed

!’

, y) = (tab(pq))(psQ[z][—]gs'Q[y])

lemma map-upd-cong: tab=tab’—> tab(x—y) = tab'(z—y)
by simp

lemma map-upd-cong-ext: tab z=tab’ 2= (tab(z—y)) z = (tad'(z—y)) z
by (simp add: fun-upd-def)

lemma map-upds-cong: tab=tab’—> tab(xzs[—]ys) = tab’(zs[—]ys)
by (cases xs) simp+

lemma map-upds-cong-ext:
N tab tab’ ys. tab z=tab’ z = (tab(xzs[—]ys)) z = (tab'(xs[—]ys)) z
proof (induct xs)
case Nil thus ?case by simp
next
case (Cons z zs tab tab’ ys)
note Hyps = this
show ?Zcase
proof (cases ys)
case Nil
with Hyps
show ?thesis by simp
next
case (Cons y ys’)
have (tab(z—y, xs[—]ys’)) z = (tab(z—y, xs[—]ys’)) z
by (iprover intro: Hyps map-upd-cong-ext)
with Cons show ?thesis
by simp
qged
qed

lemma map-upd-override: (tab(z—y)) z = (tab(z—y)) z
by simp

lemma map-upds-eq-length-suffiz: )\ tab gs.
length ps = length gs = tab(psQus[—]gs) = tab(ps[—]gs, zs[—][])
proof (induct ps)
case Nil thus ?case by simp
next
case (Cons p ps tab gs)
then obtain ¢ gs’ where ¢s: gs=q#q¢s’ and eq-length: length ps=length qs’
by (cases ¢s) auto
from eq-length
have tab(p—q, ps Q zs[—]qs’) = tab(p—q, ps[—]gs’, zs[—][])
by (rule Cons.hyps)
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with ¢s show ?Zcase
by simp
qed

lemma map-upds-upds-eq-length-prefix-simp:
N\ tab gs. length ps = length gs
= tab(ps[—]gs, xs[—]ys) = tab(psQus[—]gsQys)
proof (induct ps)
case Nil thus ?case by simp
next
case (Cons p ps tab ¢s)
then obtain ¢ gs’ where ¢s: gs=q#¢s’ and eg-length: length ps=length qs’
by (cases gs) auto
from eq-length
have tab(p—q, ps[—]qs’, zs[—]ys) = tab(p—q, ps Q zs[—](gs’ Q ys))
by (rule Cons.hyps)
with gs
show ?case by simp
qed

lemma map-upd-cut-irrelevant:

[(tab(z—y)) vn = Some el; (tab'(x—y)) vn = None]
= tab vn = Some el

by (cases tab’ vn = None) (simp add: fun-upd-def)+

lemma map-upd-Some-expand:
[tab vn = Some 7]

= 3 2z (tab(z—y)) vn = Some 2z
by (simp add: fun-upd-def)

lemma map-upds-Some-expand:
N\ tab ys z. [tab vn = Some 7]
= 3 2z (tab(zs[—]ys)) vn = Some z
proof (induct xs)
case Nil thus ?case by simp
next
case (Cons z zs tab ys z)
note z = <tab vn = Some 2»
show ?case
proof (cases ys)
case Nil
with z show ?thesis by simp
next
case (Cons y ys')
note ys = <ys = y#ys"
from z obtain 2’ where (tab(z—y)) vn = Some z’
by (rule map-upd-Some-expand [of tab,elim-format]) blast
hence Jz. ((tab(x—y))(zs[—]ys’)) vn = Some 2z
by (rule Cons.hyps)
with ys show ?thesis
by simp
qed
qed

lemma map-upd-Some-swap:
(tab(r—w, u—v)) vn = Some z = 3 2. (tab(u—v, r—w)) vn = Some z
by (simp add: fun-upd-def)
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lemma map-upd-None-swap:
(tab(r—w, w—v)) vn = None = (tab(u—v, r—w)) vn = None
by (simp add: fun-upd-def)

lemma map-eq-upd-eq: tab vn = tab’ vn = (tab(z—y)) vn = (tab'(x—y)) vn

by (simp add: fun-upd-def)

lemma map-upd-in-expansion-map-swap:
[(tab(x—y)) vn = Some z;tab vn # Some 2]

= (tab'(z—y)) vn = Some z
by (simp add: fun-upd-def)

lemma map-upds-in-expansion-map-swap:
Atab tad’ ys z. [(tab(xs[—]ys)) vn = Some z;tab vn # Some 2]
= (tab'(zs[—]ys)) vn = Some z
proof (induct xs)
case Nil thus ?case by simp
next
case (Cons z s tab tab’ ys z)
note some = «(tab(x # xs[—]ys)) vn = Some 2>
note tab-not-z = <tab vn # Some 2>
show ?Zcase
proof (cases ys)
case Nil with some tab-not-z show ?thesis by simp
next
case (Cons y tl)
note ys = <ys = y#th
show ?thesis
proof (cases (tab(z—y)) vn # Some z)
case True
with some ys have (tab'(z—y, zs[—]tl)) vn = Some z
by (fastforce intro: Cons.hyps)
with ys show ?thesis
by simp
next
case Fulse
hence tabz-z: (tab(z—y)) vn = Some z by blast
moreover
from tabz-z tab-not-z
have (tab'(z—vy)) vn = Some z
by (rule map-upd-in-expansion-map-swap)
ultimately
have (tab(z—y)) vn =(tab'(z—y)) vn
by simp
hence (tab(z—y, xs[—]tl)) vn = (tadb'(z—y, xs[—]t)) vn
by (rule map-upds-cong-ext)
with some ys
show ?thesis
by simp
qed
qed
qed

lemma map-upds-Some-swap:

assumes r-u: (tab(r—w, u—v, zs[—]ys)) vn = Some 2z
shows 3 z. (tab(u—v, r—w, zs[—]ys)) vn = Some z

proof (cases (tab(r—w, u—v)) vn = Some 2)
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case True
then obtain z’ where (tab(u—v, r—w)) vn = Some 2’
by (rule map-upd-Some-swap [elim-format]) blast
thus 3 z. (tab(u—v, r—w, zs[—]ys)) vn = Some 2z
by (rule map-upds-Some-expand)
next
case Fulse
with r-u
have (tab(u—v, r—w, xs[—]ys)) vn = Some z
by (rule map-upds-in-expansion-map-swap)
thus ?thesis
by simp
qed

lemma map-upds-Some-insert:
assumes z: (tab(zs[—]ys)) vn = Some z
shows 3 z. (tab(u—v, zs[—]ys)) vn = Some z
proof (cases 3 z. tab vn = Some z)
case True
then obtain z’ where tab vn = Some 2z’ by blast
then obtain z’’ where (tab(u—v)) vn = Some 2"
by (rule map-upd-Some-expand [elim-format]) blast
thus ?thesis
by (rule map-upds-Some-expand)
next
case Fulse
hence tab vn # Some z by simp
with z
have (tab(u—wv, zs[—]ys)) vn = Some z
by (rule map-upds-in-expansion-map-swap)
thus ?thesis ..
qed

lemma map-upds-None-cut:
assumes ezpand-None: (tab(xs[—]ys)) vn = None
shows tab vn = None
proof (cases tab vn = None)
case True thus ?thesis by simp
next
case Fualse then obtain z where tab vn = Some z by blast
then obtain 2z’ where (tab(zs[—]ys)) vn = Some z’
by (rule map-upds-Some-expand [where ?tab=tab,elim-format]) blast
with expand-None show ?thesis
by simp
qed

lemma map-upds-cut-irrelevant:
N tab tadb’ ys. [(tab(zs[—]ys)) vn = Some el; (tab'(xs[—]ys)) vn = None]
= tab vn = Some el
proof (induct zs)
case Nil thus ?case by simp
next
case (Cons z xs tab tab’ ys)
note tab-vn = «(tab(x # xzs[—]ys)) vn = Some el
note tab’-un = <(tab’(z # xs[—]ys)) vn = None)
show Zcase
proof (cases ys)
case Nil
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with tab-vn show ?thesis by simp
next
case (Cons y tl)
note ys = <ys=y#th
have (tab(z—y)) vn = Some el
by (rule Cons.hyps) (use tab-vn tab’-vn ys in auto)
moreover from tab’-vn ys
have (tab'(z—vy, zs[—]tl)) vn = None
by simp
hence (tab’(z—y)) vn = None
by (rule map-upds-None-cut)
ultimately show tab vn = Some el
by (rule map-upd-cut-irrelevant)
qed
qed

lemma dom-vname-split:
dom (case-lname (case-ename (tab(z—y, xs[—]ys)) a) b)
= dom (case-Iname (case-ename (tab(x—y)) a) b) U
dom (case-Iname (case-ename (tab(xs[—]ys)) a) b)
(is ?List x xs y ys = ?Hd z y U 2Tl xs ys)
proof
show ?List x xs y ys C ?Hd x y U ?TI xs ys
proof
fix el
assume el-in-list: el € ?List © xs y ys
show el € ?Hdxzy U ?Tl zs ys
proof (cases el)
case This
with el-in-list show ?thesis by (simp add: dom-def)
next
case (EName en)
show ?thesis
proof (cases en)
case Res
with EName el-in-list show ?thesis by (simp add: dom-def)
next
case (VNam vn)
with EName el-in-list show ?thesis
by (auto simp add: dom-def dest: map-upds-cut-irrelevant)
qed
qged
qged
next
show ?Hd x y U ?Tlzs ys C ?List x xs y ys
proof (rule subsetl)
fix el
assume el-in-hd-tl: el € ?Hd xy U 2Tl xs ys
show el € ?List x xs y ys
proof (cases el)
case This
with el-in-hd-tl show ?thesis by (simp add: dom-def)
next
case (EName en)
show ?thesis
proof (cases en)
case Res
with EName el-in-hd-tl show ?thesis by (simp add: dom-def)
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next
case (VNam vn)
with EName el-in-hd-tl show ?thesis

by (auto simp add: dom-def intro: map-upds-Some-expand
map-upds-Some-insert)
qed
qged
qed
qed

lemma dom-map-upd: A tab. dom (tab(z—y)) = dom tab U {x}
by (auto simp add: dom-def fun-upd-def)

lemma dom-map-upds: \ tab ys. length xs = length ys
= dom (tab(zs[—]ys)) = dom tab U set xs
proof (induct xs)
case Nil thus ?case by (simp add: dom-def)
next
case (Cons z zs tab ys)
note Hyp = Cons.hyps
note len = <length (x#xs)=length ys
show ?Zcase
proof (cases ys)
case Nil with len show ?thesis by simp
next
case (Cons y tl)
have dom (tab(z—y, zs[—]tl)) = dom (tab(z—y)) U set s
by (rule Hyp) (use len Cons in simp)
moreover
have dom (tab(x—hd ys)) = dom tab U {z}
by (rule dom-map-upd)
ultimately
show ?thesis using Cons
by simp
qed
qed

lemma dom-case-ename-None-simp:
dom (case-ename vname-tab None) = VNam ¢ (dom vname-tab)
apply (auto simp add: dom-def image-def )
apply (case-tac z)
apply auto
done

lemma dom-case-ename-Some-simp:
dom (case-ename vname-tab (Some a)) = VNam ‘ (dom vname-tab) U {Res}
apply (auto simp add: dom-def image-def )
apply (case-tac x)
apply auto
done

lemma dom-case-lname-None-simp:
dom (case-Iname ename-tab None) = EName
apply (auto simp add: dom-def image-def )
apply (case-tac z)
apply auto
done

I3

(dom ename-tab)

lemma dom-case-Iname-Some-simp:
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dom (case-lname ename-tab (Some a)) = EName ¢ (dom ename-tab) U { This}

apply (auto simp add: dom-def image-def)
apply (case-tac z)

apply auto

done

lemmas dom-Iname-case-ename-simps =
dom-case-ename-None-simp dom-case-ename-Some-simp
dom-case-Iname-None-simp dom-case-Iname-Some-simp

lemma image-comp:
frgtA=(foyg) "4
by (auto simp add: image-def)

lemma dom-locals-init-lvars:
assumes m: m=(mthd (the (methd G C sig)))
assumes len: length (pars m) = length puvs
shows dom (locals (store (init-lvars G C sig (invmode m €) a pvs s)))
= parameters m
proof —
from m
have static-m”: is-static m = static m
by simp
from len
have dom-vnames: dom (Map.empty(pars m[—]pvs))=set (pars m)
by (simp add: dom-map-upds)
show ?thesis
proof (cases static m)
case True
with static-m’ dom-vnames m
show ?thesis
by (cases s) (simp add: init-lvars-def Let-def parameters-def
dom-Iname-case-ename-simps image-comp)
next
case Fulse
with static-m’ dom-vnames m
show ?thesis
by (cases s) (simp add: init-lvars-def Let-def parameters-def
dom-Iname-case-ename-simps image-comp)
qed
qed

lemma da-e2-BinOp:
assumes da: (prg=G,cls=accC,lcl=L)
Fdom (locals (store s0)) »(BinOp binop el e2).» A
and wt-el: (prg=G,cls=accC,lcl=L)el::—elT
and wi-e2: (prg=G,cls=accC,lcl=L|)e2::—e2T
and wt-binop: wt-binop G binop elT e2T
and conf-s0: s0::=(G,L)
and normal-s1: normal s1
and eval-el: GFsO —el —»vl— sl
and conf-vl: G,store sitvl::<elT
and wf: wf-prog G
shows 3 E2. (prg=G,cls=accC,lcl=L) dom (locals (store s1))
» (if need-second-arg binop v1 then (e2). else (Skip)s)» E2
proof —
note inj-term-simps [simp)
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from da obtain F1 where
da-el: (prg=G,cls=accC,lcl=L)) - dom (locals (store s0)) »{el)e» E1
by cases simp+
obtain E2 where
(prg=G,cls=accC,lcl=L)F dom (locals (store s1))
» (if need-second-arg binop vl then (e2). else (Skip)s)» E2
proof (cases need-second-arg binop v1)
case Fulse
obtain S where
daSkip: (prg=G,cls=accC,lcl=L)
F dom (locals (store s1)) »{Skip)s» S
by (auto intro: da-Skip [simplified] assigned.select-convs)
thus ?thesis
using that by (simp add: False)
next
case True
from eval-el have
s0-s1:dom (locals (store s0)) C dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)
consider (condAnd) binop=CondAnd | (condOr) binop=CondOr | (notAndOr) binop# CondAnd binop# CondOr
by (cases binop) auto
then show %thesis
proof cases
case condAnd
from da obtain EF2’ where
(prg=G,cls=accC,lcl=L)
F dom (locals (store s0)) U assigns-if True el »{e2).» E2’
by cases (simp add: condAnd)+
moreover
have dom (locals (store s0))
U assigns-if True el C dom (locals (store s1))
proof —
from condAnd wt-binop have elT: e1T=PrimT Boolean
by simp
with normal-s1 conf-vl obtain b where vi=DBool b
by (auto dest: conf-Boolean)
with True condAnd
have v1: vi=DBool True
by simp
from eval-el normal-s1
have assigns-if True el C dom (locals (store s1))
by (rule assigns-if-good-approz’ [elim-format))
(use wt-el in <simp-all add: elT v1»)
with s0-s1 show ?thesis by (rule Un-least)
qed
ultimately show ?thesis
using that by (cases rule: da-weakenFE) (simp add: True)
next
case condOr

from da obtain F2’ where

(prg=G,cls=accC,lcl=L)

F dom (locals (store s0)) U assigns-if False el »{e2).» E2’

by cases (simp add: condOr)+
moreover
have dom (locals (store s0))

U assigns-if False el C dom (locals (store s1))

proof —

from condOr wt-binop have el1T: el T=PrimT Boolean
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by simp
with normal-s1 conf-vl obtain b where vi=DBool b
by (auto dest: conf-Boolean)
with True condOr
have v1: vI=DBool False
by simp
from eval-el normal-si
have assigns-if False el C dom (locals (store s1))
by (rule assigns-if-good-approx’ |elim-format))
(use wt-el in <simp-all add: elT vl1»)
with s0-s1 show ?thesis by (rule Un-least)
qed
ultimately show ¢thesis
using that by (rule da-weakenE) (simp add: True)
next
case notAndOr
from da notAndOr obtain F1’ where
da-el: (prg=G,cls=accC,lcl=L)
F dom (locals (store s0)) »{el)en E1’
and da-e2: (prg=G,cls=accC,lcl=L)F nrm E1’' »Inil e2» A
by cases simp+
from eval-el wt-el da-el wf normal-s1
have nrm E1’ C dom (locals (store s1))
by (cases rule: da-good-approzE") iprover
with da-e2 show ?thesis
using that by (rule da-weakenE) (simp add: True)
qed
qed
thus ?thesis ..
qed

main proof of type safety

lemma eval-type-sound:

assumes eval: GFs0 —t-— (v,s1)

and wt: (prg=G,cls=accC,lcl=L)Ft:: T

and da: (prg=G,cls=accClcl=L)Fdom (locals (store s0))»t» A

and wf: wf-prog G

and conf-s0: s0::=(G,L)

shows s1:<X(G,L) A (normal s1 — G,L,store s1tt=v::<T) A

(error-free s0 = error-free s1)
proof —
note inj-term-simps [simp)
let ?TypeSafeObj = X s0 sl t v.
V' L accCTA. s0:=(G,L) — (prg=G,cls=accC,lcl=L)t::T
— (prg=G,cls=accC,lcl=L)\dom (locals (store s0))»t» A
— s1:=X(G,L) A (normal s1 — G,L,store s1tt=-v:=T)
A (error-free s0 = error-free s1)

from ewval

have A\ L accC T A. [s0:=(G,L);(prg=G,cls=accC,lcl=L|)+t:: T}
(prg=G,cls=accC,lcl=L)Fdom (locals (store s0))»t» A]

= s1:=3(G,L) A (normal s1 — G,L,store s1tt=v::<XT)
A (error-free s0 = error-free s1)
(is PROP ?TypeSafe s0 s1 t v
is A L accC T A. ?Conform L s0 —> ?WellTyped L accC Tt
= ?DefAss L accC s0t A
= ?Conform L s1 N ?ValueTyped L T sl t v A

?ErrorFree s0 s1)

proof (induct)
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case (Abrupt zc s t L accC T A)
from «(Some zc, s)::=(G,L)»
show (Some zc, s):<X(G,L) A
(normal (Some zc, s)
— G,L,store (Some xc,s)Ft-undefined3 t:<XT) A
(error-free (Some zc, s) = error-free (Some zc, s))
by simp
next
case (Skip s L accC T A)
from «Norm s:=(G, L)» and
(prg = G, cls = accC, lcl = L)FInir Skip::T)
show Norm s:=<(G, L) A
(normal (Norm s) — G,L,store (Norm s)FInlr Skip==<T) A
(error-free (Norm s) = error-free (Norm s))
by simp
next
case (Ezpr s0 e v s1 L accC T A)
note <GFNorm s0 —e—>v— sl»
note hyp = <PROP ?TypeSafe (Norm s0) sl (Inll e) (Inl v)»
note conf-s0 = «Norm s0:=(G, L)
moreover
note wt = ¢(prg = G, cls = accC, lcl = L)-Inir (Ezpr e):T)
then obtain eT'
where (prg = G, cls = accC, lel = L)FInl1l e::eT
by (rule wt-elim-cases) blast
moreover
from Ezxpr.prems obtain F where
(prg=G,cls=accC, lcl=L)Fdom (locals (store ((Norm s0)::state)))»Inll e E
by (elim da-elim-cases) simp
ultimately
obtain s1:=(G, L) and error-free s1
by (rule hyp [elim-format]) simp
with wt
show s1:=<(G, L) A
(normal s1 — G,L,store s1t-Inlr (Expr e)={u=T) A
(error-free (Norm s0) = error-free s1)
by (simp)
next
case (Lab s0 ¢ s1 1 L accC T A)
note hyp = <PROP ?TypeSafe (Norm s0) s1 (Inlr c) {»
note conf-s0 = «Norm s0:=(G, L)
moreover
note wt = ¢(prg = G, cls = accC, lel = L)-Intr (I ¢):=:T»
then have (prg = G, cls = accC, lcl = L)Fc::/
by (rule wt-elim-cases) blast
moreover from Lab.prems obtain C where
(prg=G,cls=accC, lel=L)Fdom (locals (store ((Norm s0)::state)))» Inir c» C
by (elim da-elim-cases) simp
ultimately
obtain conf-s1: s1::=%(G, L) and
error-free-s1: error-free sl
by (rule hyp [elim-format]) simp
from conf-s1 have abupd (absorb l) s1:=2(G, L)
by (cases s1) (auto intro: conforms-absorb)
with wt error-free-si1
show abupd (absorb ) s1:=<(G, L) A
(normal (abupd (absorb ) s1)
— G, L,store (abupd (absorb ) s1)-Inir (I- ¢)=Ou=3T) A
(error-free (Norm s0) = error-free (abupd (absorb 1) s1))
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by (simp)
next
case (Comp s0 ¢l s1 ¢2 s2 L accC T A)
note eval-c1 = «G-Norm s0 —cl— sl»
note eval-c2 = (GFsl —c2— s2»
note hyp-c1 = «<PROP ?TypeSafe (Norm s0) s1 (Inir cl)
note hyp-c2 = <PROP ?TypeSafe s1 s2 (Inlr c2) &
note conf-s0 = «Norm s0::=(G, L)
note wt = «(prg = G, cls = accC, lel = L)FInlr (c13; ¢2):T»
then obtain wt-c1: (prg = G, cls = accC, lel = L)cl::4/ and
wt-c2: (prg = G, cls = accC, lcl = L)c2::y/
by (rule wt-elim-cases) blast
from Comp.prems
obtain C1 C2
where da-c1: (prg=G, cls=accC, lel=L)F
dom (locals (store ((Norm s0)::state))) »Inlr c1» C1 and
da-c2: (prg=G, cls=accC, lel=L)F nrm C1 »Inir c2» C2
by (elim da-elim-cases) simp
from conf-s0 wt-c1 da-cl1
obtain conf-s1: s1:=(G, L) and
error-free-s1: error-free sl
by (rule hyp-c1 [elim-format]) simp
show s2:<(G, L) A
(normal s2 — G,L,store s2-Inlr (c1;; ¢2)=$n=T) A
(error-free (Norm s0) = error-free s2)
proof (cases normal s1)
case False
with eval-c2 have s2=s1 by auto
with conf-s1 error-free-s1 False wt show Zthesis
by simp
next
case True
obtain C2’ where
(prg=G, cls=accC, lcl=L)F dom (locals (store s1)) »Inlr c2» C2'
proof —
from eval-c1 wt-c1 da-c1 wf True
have nrm C1 C dom (locals (store s1))
by (cases rule: da-good-approzE’) iprover
with da-c2 show thesis
by (rule da-weakenE) (rule that)
qed
with conf-s1 wt-c2
obtain s2:=<(G, L) and error-free s2
by (rule hyp-c2 [elim-format]) (simp add: error-free-s1)
thus ?thesis
using wt by simp
qed
next
case (If sO e b sl c¢1 ¢2s2 L accC T A)
note eval-e = «GFNorm s0 —e—>b— s1»
note eval-then-else = «GFs1 —(if the-Bool b then cl else ¢2)— s2)
note hyp-e = <PROP ?TypeSafe (Norm s0) s1 (Inll e) (Inl b)»
note hyp-then-else =
<PROP ?TypeSafe s1 s2 (Inlr (if the-Bool b then c1 else ¢2)) »
note conf-s0 = «Norm s0::=(G, L)»
note wt = «(prg = G, cls = accC, lcl = L)-Inlr (If(e) ¢l Else c2)::T»
then obtain
wt-e: (prg=G, cls=accC, lcl=L|)Fe::—PrimT Boolean and
wt-then-else: (prg=G, cls=accC, lcl=L))F(if the-Bool b then cl else c¢2)::y/
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by (rule wit-elim-cases) auto
from If.prems obtain E C' where
da-e: (prg=G,cls=accC,lcl=L)\ dom (locals (store ((Norm s0)::state)))
»Inll e» E and

da-then-else:

(prg=G,cls=accC,lcl=L)F
(dom (locals (store ((Norm s0)::state))) U assigns-if (the-Bool b) e)
»Inlr (if the-Bool b then cl else ¢2)» C

by (elim da-elim-cases) (cases the-Bool b,auto)
from conf-s0 wt-e da-e
obtain conf-s1: s1:=(G, L) and error-free-s1: error-free s1
by (rule hyp-e [elim-format]) simp
show s2:<(G, L) A
(normal s2 — G,L,store s2-Inlr (If(e) c1 Else c2)=u=<T) A
(error-free (Norm s0) = error-free s2)
proof (cases normal s1)
case Fulse
with eval-then-else have s2=s1 by auto
with conf-s1 error-free-s1 False wt show ?thesis
by simp
next
case True
obtain C’ where
(prg=G,cls=accC,lcl=L)F
(dom (locals (store s1)))»Inlr (if the-Bool b then clI else c2)» C’
proof —
from eval-e have
dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)
moreover
from eval-e True wt-e
have assigns-if (the-Bool b) e C dom (locals (store s1))
by (rule assigns-if-good-approx’)
ultimately
have dom (locals (store ((Norm s0)::state)))
U assigns-if (the-Bool b) e C dom (locals (store s1))
by (rule Un-least)
with da-then-else show thesis
by (rule da-weakenE) (rule that)
qed
with conf-s1 wt-then-else
obtain s2:<(G, L) and error-free s2
by (rule hyp-then-else [elim-format]) (simp add: error-free-s1)
with wt show ?thesis
by simp
qged
— Note that we don’t have to show that b really is a boolean value. With the-Bool we enforce to get a
value of boolean type. So execution will be type safe, even if b would be a string, for example. We might
not expect such a behaviour to be called type safe. To remedy the situation we would have to change the
evaulation rule, so that it only has a type safe evaluation if we actually get a boolean value for the condition.
That b is actually a boolean value is part of hyp-e. See also Loop
next
case (Loop sO e b sl ¢ s21s3 L accC T A)
note eval-e = «G-Norm s0 —e—>b— s1»
note hyp-e = <PROP ?TypeSafe (Norm s0) s1 (In1le) (In1 b)»
note conf-s0 = «Norm s0:=(G, L)
note wt = «(prg = G, cls = accC, lel = L)-In1r (I- While(e) ¢):: T»
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then obtain wi-e: (prg = G, cls = accC, lcl = L)Fe::—PrimT Boolean and
wt-c: (prg = G, cls = accC, lcd = L)/
by (rule wt-elim-cases) blast
note da = ((prg=G, cls=accC, lcl=L)
F dom (locals(store ((Norm s0)::state))) »Inir (I- While(e) ¢)» A»
then
obtain £ C' where
da-e: (prg=G, cls=accC, lcl=L)
F dom (locals (store ((Norm s0)::state))) »Inil e» E and
da-c: (prg=G, cls=accC, lcl=L)
F (dom (locals (store ((Norm s0)::state)))
U assigns-if True €) »Inlr ¢y C
by (rule da-elim-cases) simp
from conf-s0 wt-e da-e
obtain conf-s1: s1:=(G, L) and error-free-s1: error-free si
by (rule hyp-e [elim-format]) simp
show s3:<(G, L) A
(normal s3 — G,L,store s8-Inlr (I While(e) ¢)={u=T) A
(error-free (Norm s0) = error-free s3)
proof (cases normal s1)
case True
note normal-s1 = this
show ?thesis
proof (cases the-Bool b)
case True
with Loop.hyps obtain
eval-c: GFsl —c— s2 and
eval-while: GFabupd (absorb (Cont 1)) s2 —I- While(e) c— s8
by simp
have ?TypeSafeObj s1 s2 (Inir c) &
using Loop.hyps True by simp
note hyp-c = this [rule-format]
have ?TypeSafeObj (abupd (absorb (Cont 1)) s2)
s3 (Inlr (I- While(e) c)) <&
using Loop.hyps True by simp
note hyp-w = this [rule-format]
from ewval-e have
s0-s1: dom (locals (store ((Norm s0):state)))
C dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)
obtain C’ where
(prg=G, cls=accC, lcl=L))F(dom (locals (store s1)))»Inlr c» C’
proof —
note s0-s1
moreover
from eval-e normal-s1 wt-e
have assigns-if True e C dom (locals (store s1))
by (rule assigns-if-good-approx’ [elim-format]) (simp add: True)
ultimately
have dom (locals (store ((Norm s0)::state)))
U assigns-if True e C dom (locals (store s1))
by (rule Un-least)
with da-c show thesis
by (rule da-weakenE) (rule that)
qed
with conf-s1 wt-c
obtain conf-s2: s2:=<(G, L) and error-free-s2: error-free s2
by (rule hyp-c [elim-format]) (simp add: error-free-s1)
from error-free-s2
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have error-free-ab-s2: error-free (abupd (absorb (Cont 1)) s2)
by simp
from conf-s2 have abupd (absorb (Cont 1)) s2 ::=(G, L)
by (cases s2) (auto intro: conforms-absorb)
moreover note wt
moreover
obtain A’ where
(prg=G,cls=accC,lcl=L)F
dom (locals(store (abupd (absorb (Cont 1)) s2)))
wInir (I- While(e) ¢)» A’
proof —
note s0-s1
also from eval-c
have dom (locals (store s1)) C dom (locals (store s2))
by (rule dom-locals-eval-mono-elim)
also have ... C dom (locals (store (abupd (absorb (Cont 1)) s2)))
by simp
finally
have dom (locals (store ((Norm s0)::state))) C ... .
with da show thesis
by (rule da-weakenE) (rule that)
qed
ultimately obtain s3::<(G, L) and error-free s3
by (rule hyp-w [elim-format]) (simp add: error-free-ab-s2)
with wt show ?thesis
by simp
next
case Fulse
with Loop.hyps have s3=sI by simp
with conf-s1 error-free-s1 wt
show ?thesis
by simp
qed
next
case Fulse
have s3=s1
proof —
from Fulse obtain abr where abr: abrupt s1 = Some abr
by (cases s1) auto
from eval-e - wt-e have no-jmp: \ j. abrupt s1 # Some (Jump j)
by (rule eval-expression-no-jump
[where ?Env=(prg=G,cls=accC,lcl=L|),simplified))
(simp-all add: wf)

show ?thesis
proof (cases the-Bool b)
case True
with Loop.hyps obtain
eval-c: GFsl —c— s2 and
eval-while: G-abupd (absorb (Cont 1)) s2 —1- While(e) c— s3
by simp
from eval-c¢ abr have s2=s1 by auto
moreover from calculation no-jmp have abupd (absorb (Cont l)) s2=s2
by (cases s1) (simp add: absorb-def)
ultimately show ?thesis
using eval-while abr
by auto
next
case Fulse
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with Loop.hyps show ?thesis by simp
qed
qed
with conf-s1 error-free-s1 wt
show ?thesis
by simp
qed
next
case (Jmp s j L accC T A)
note «Norm s:=(G, L)
moreover
from Jmp.prems
have j=Ret — Result € dom (locals (store ((Norm s)::state)))
by (elim da-elim-cases)
ultimately have (Some (Jump j), s):=(G, L) by auto
then
show (Some (Jump j), s):=(G, L) A
(normal (Some (Jump j), s)
— G,L,store (Some (Jump j), s)FInir (Jmp §)=u=<T) A
(error-free (Norm s) = error-free (Some (Jump j), s))
by simp
next
case (Throw s0 e a s1 L accC T A)
note «G-Norm s0 —e—>a— si»
note hyp = <PROP ?TypeSafe (Norm s0) s1 (Inile) (Inl a)»
note conf-s0 = «Norm s0::=2(G, L)»
note wt = «(prg = G, cls = accC, lcl = L)FInir (Throw e)::T»
then obtain in
where wt-e: (prg = G, cls = accC, lcl = L)Fe::—Class tn and
throwable: GFtn=¢c SXcpt Throwable
by (rule wt-elim-cases) (auto)
from Throw.prems obtain F where
da-e: (prg=G,cls=accC,lcl=L]
F dom (locals (store ((Norm s0)::state))) »Inll en E
by (elim da-elim-cases) simp
from conf-s0 wt-e da-e obtain
s1:=(G, L) and
(normal s1 — G,store s1ta::=<Class tn) and
error-free-s1: error-free s1
by (rule hyp [elim-format]) simp
with wf throwable
have abupd (throw a) s1:=(G, L)
by (cases s1) (auto dest: Throw-lemma)
with wt error-free-si1
show abupd (throw a) s1:=(G, L) A
(normal (abupd (throw a) s1) —
G,L,store (abupd (throw a) s1)-Inlr (Throw e)={n=3T) A
(error-free (Norm s0) = error-free (abupd (throw a) si))
by simp
next
case (Try s0 cl s1 s2 catchC vn ¢2 s3 L accC T A)
note eval-c1 = «G-Norm s0 —cl— sl»
note sz-alloc = «GFs1 —szalloc— $2»
note hyp-c1 = «<PROP ?TypeSafe (Norm s0) s1 (Inlr cl) {»
note conf-s0 = «Norm s0::=(G, L)»
note wt = «(prg=G,cls=accC,lcl=L)FInir (Try c1 Catch(catchC vn) c2):T)
then obtain
wt-c1: (prg=G,cls=accC,lcl=L|)Fc1::y/ and
wt-c2: (prg=G,cls=accC,lcl=L(VName vn— Class catchC))c2::y/ and
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fresh-vn: L(VName vn)=None
by (rule wt-elim-cases) simp
from Try.prems obtain C1 C2 where
da-c1: (prg=G,cls=accC,lcl=L)
F dom (locals (store ((Norm s0):state))) »Inlr c1» C1 and
da-c2:
(prg=G,cls=accC,lcl=L(VName vn— Class catchC)])
F (dom (locals (store ((Norm s0):state))) U { VName vn}) »Inir c2» C2
by (elim da-elim-cases) simp
from conf-s0 wt-c1 da-cl
obtain conf-s1: s1:=(G, L) and error-free-s1: error-free s1
by (rule hyp-c1 [elim-format]) simp
from conf-s1 sxz-alloc wf
have conf-s2: s2:=(G, L)
by (auto dest: sxalloc-type-sound split: option.splits abrupt.splits)
from sz-alloc error-free-si
have error-free-s2: error-free s2
by (rule error-free-szalloc)
show s3:<(G, L) A
(normal s8 — G,L,store s3FInlr (Try c1 Catch(catchC vn) ¢2)=$u=<T)A
(error-free (Norm s0) = error-free s3)
proof (cases 3 z. abrupt s1 = Some (Xept z))
case Fulse
from sx-alloc wf
have eq-s2-s1: s2=s1
by (rule szalloc-type-sound [elim-format])
(use False in <auto split: option.splits abrupt.splits»)
with False
have = G,s2Fcatch catchC
by (simp add: catch-def)
with Try
have s3=s2
by simp
with wt conf-s1 error-free-s1 eq-s2-sl1
show ?thesis
by simp
next
case True
note exception-s1 = this
show ?thesis
proof (cases G,s2Fcatch catchC)
case False
with Try
have s3=s2
by simp
with wt conf-s2 error-free-s2
show ?thesis
by simp
next
case True
with Try have GFnew-zcept-var vn s2 —c2— s3 by simp
from True Try.hyps
have ?TypeSafeObj (new-zcpt-var vn s2) s3 (Inlr c2)
by simp
note hyp-c2 = this [rule-format]
from exception-s1 sz-alloc wf
obtain a
where zcpt-s2: abrupt s2 = Some (Xcpt (Loc a))
by (auto dest!: szalloc-type-sound split: option.splits abrupt.splits)
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with True
have Grobj-ty (the (globs (store s2) (Heap a)))=<Class catchC
by (cases s2) simp
with zcept-s2 conf-s2 wf
have new-zept-var vn s2 :=<(G, L(VName vn— Class catchC))
by (auto dest: Try-lemma)
moreover note wt-c2
moreover
obtain C2’ where
(prg=G,cls=accC,lcl=L( VName vn— Class catchC))
F (dom (locals (store (new-zept-var vn s2)))) »Inlr c2» C2’
proof —
have (dom (locals (store ((Norm s0)::state))) U { VName vn})
C dom (locals (store (new-zcpt-var vn s2)))
proof —
from «GFNorm sO0 —cl— s1»
have dom (locals (store ((Norm s0)::state)))
C dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)
also
from sz-alloc
have ... C dom (locals (store s2))
by (rule dom-locals-sxalloc-mono)

also

have ... C dom (locals (store (new-zcpt-var vn s2)))
by (cases s2) (simp add: new-zept-var-def, blast)

also

have { VName vn} C ...
by (cases s2) simp
ultimately show #thesis
by (rule Un-least)
ged
with da-c2 show thesis
by (rule da-weakenE) (rule that)
qed
ultimately
obtain conf-s8: s3::3(G, L(VName vn— Class catchC)) and
error-free-s3: error-free s3
by (rule hyp-c2 [elim-format])
(cases s2, simp add: zcpt-s2 error-free-s2)
from conf-s3 fresh-un
have s3:<(G,L)
by (blast intro: conforms-deallocL)
with wt error-free-s3
show ?thesis
by simp
qed
qed
next
case (Fin s0 c1 z1 s1 ¢2 s2 s3 L accC T A)
note eval-c! = «GFNorm s0 —cl— (z1, s1)»
note eval-c2 = «G-Norm s1 —c2— s2»
note s3 = «s8 = (if Jerr. z1 = Some (Error err)
then (x1, s1)
else abupd (abrupt-if (x1 # None) x1) s2)»
note hyp-c1 = <PROP ?TypeSafe (Norm s0) (z1,s1) (Inir c1) o
note hyp-c2 = <PROP ?TypeSafe (Norm s1) s2 (Inlr c2) &
note conf-s0 = <Norm s0::<(G, L)
note wt = «(prg = G, cls = accC, lcl = L)FInlr (c1 Finally ¢2)::T»
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then obtain
wt-c1: (prg=G,cls=accC,lel=L)Fc1::y/ and
wt-c2: (prg=G,cls=accC,lcl=L)Fc2::y/
by (rule wt-elim-cases) blast
from Fin.prems obtain C1 C2 where
da-c1: (prg=G,cls=accC,lcl=L)
F dom (locals (store ((Norm s0)::state))) »Inir c1» C1 and
da-c2: (prg=G,cls=accC,lcl=L)
F dom (locals (store ((Norm s0)::state))) »Inlr c2» C2
by (elim da-elim-cases) simp
from conf-s0 wt-c1 da-cl
obtain conf-s1: (z1,s1)::=<(G, L) and error-free-s1: error-free (x1,s1)
by (rule hyp-c1 [elim-format]) simp
from conf-s1 have Norm s1:=<(G, L)
by (rule conforms-Norml)
moreover note wt-c2
moreover obtain C2’
where (prg=G,cls=accC,lcl=L)
F dom (locals (store ((Norm s1)::state))) »Inlr c2» C2'
proof —
from eval-c1
have dom (locals (store ((Norm s0)::state)))
C dom (locals (store (z1,s1)))
by (rule dom-locals-eval-mono-elim)
hence dom (locals (store ((Norm s0)::state)))
C dom (locals (store ((Norm s1)::state)))
by simp
with da-c2 show thesis
by (rule da-weakenE) (rule that)
qed
ultimately
obtain conf-s2: s2::=3(G, L) and error-free-s2: error-free s2
by (rule hyp-c2 [elim-format]) simp
from error-free-s1 s3
have s3" s3=abupd (abrupt-if (z1 # None) z1) s2
by simp
show s3:=<(G, L) A
(normal s3 — G,L,store s3 Finlr (¢l Finally ¢2)=:=<T) A
(error-free (Norm s0) = error-free s3)
proof (cases x1)
case None with conf-s2 s3' wt error-free-s2
show ?thesis by auto
next
case (Some x)
from eval-c2 have
dom (locals (store ((Norm s1)::state))) C dom (locals (store s2))
by (rule dom-locals-eval-mono-elim)
with Some eval-c2 wf conf-s1 conf-s2
have conf: (abrupt-if True (Some z) (abrupt s2), store s2):=(G, L)
by (cases s2) (auto dest: Fin-lemma)
from Some error-free-si
have - (3 err. z=Error err)
by (simp add: error-free-def)
with error-free-s2
have error-free (abrupt-if True (Some x) (abrupt s2), store s2)
by (cases s2) simp
with Some wt conf s3’ show ?thesis
by (cases s2) auto
qged
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next
case (Init C ¢ s0 s3 s1 s2 L accC T A)
note cls = <the (class G C) = ©
note conf-s0 = <Norm s0::<(G, L)
note wt = «(prg = G, cls = accC, lcl = L)-Inlr (Init C)::T»
with cls have cls-C: class G C = Some ¢
by — (erule wt-elim-cases, auto)
show s3::<(G, L) A (normal s8 — G,L,store s3tInlr (Init C)={$n=T) A
(error-free (Norm s0) = error-free s3)
proof (cases inited C (globs s0))
case True
with Init.hyps have s3 = Norm s0
by simp
with conf-s0 wt show ?thesis
by simp
next
case Fulse
with Init.hyps obtain
eval-init-super:
GFNorm ((init-class-obj G C) s0)
—(if C = Object then Skip else Init (super c))— s and
eval-init: GH(set-lvars Map.empty) sl —init c— s2 and
$3: 83 = (set-lvars (locals (store s1))) s2
by simp
have ?TypeSafeObj (Norm ((init-class-obj G C) s0)) sl
(Inir (if C = Object then Skip else Init (super c¢))) &
using Fulse Init.hyps by simp
note hyp-init-super = this [rule-format]
have ?TypeSafeObj ((set-lvars Map.empty) s1) s2 (Inir (init ¢)) &
using Fualse Init.hyps by simp
note hyp-init-c = this [rule-format]
from conf-s0 wf cls-C False
have (Norm ((init-class-obj G C) s0))::=(G, L)
by (auto dest: conforms-init-class-obj)
moreover from wf cls-C have
wi-init-super: (prg = G, cls = accC, lcl = L))
F(if C = Object then Skip else Init (super c))::\/
by (cases C=Object)
(auto dest: wf-prog-cdecl wf-cdecl-supD is-acc-classD)
moreover
obtain S where
da-init-super:
(prg=G,cls=accC,lcl=L)
F dom (locals (store ((Norm ((init-class-obj G C) s0))::state)))
wInlr (if C = Object then Skip else Init (super c¢))» S
proof (cases C=0bject)
case True
with da-Skip show ?thesis
using that by (auto intro: assigned.select-convs)
next
case Fulse
show ?thesis
by (rule that) (use da-Init False in <auto intro: assigned.select-convs))
qed
ultimately
obtain conf-s1: s1:=(G, L) and error-free-s1: error-free s1
by (rule hyp-init-super [elim-format]) simp
from eval-init-super wt-init-super wf
have si-no-ret: A j. abrupt s1 # Some (Jump j7)
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by — (rule eval-statement-no-jump [where ?Env=(prg=G,cls=accC,lcl=L]|)],
auto)
with conf-s1
have (set-lvars Map.empty) s1:=(G, Map.empty)
by (cases s1) (auto intro: conforms-set-locals)
moreover
from error-free-si
have error-free-empty: error-free ((set-lvars Map.empty) s1)
by simp
from cls-C wf have wt-init-c: (prg=G, cls=C,lcl=Map.empty)-(init c)::y/
by (rule wf-prog-cdecl [THEN wf-cdecl-wt-init])
moreover from cls-C wf obtain I
where (prg=G,cls=C,lcl=Map.empty)- {} »Inlr (init ¢)» I
by (rule wf-prog-cdecl [THEN wf-cdeclE,simplified]) blast

then obtain I’ where
(prg=G,cls=Clcl=Map.empty)-dom (locals (store ((set-lvars Map.empty) s1)))
»Inlr (init c)» I’
by (rule da-weakenE) simp
ultimately
obtain conf-s2: s2:=(G, Map.empty) and error-free-s2: error-free s2
by (rule hyp-init-c [elim-format]) (simp add: error-free-empty)
have abrupt s2 # Some (Jump Ret)
proof —
from si-no-ret
have A j. abrupt ((set-lvars Map.empty) s1) # Some (Jump j)
by simp
moreover
from cls-C wf have jumpNestingOkS {} (init c)
by (rule wf-prog-cdecl [THEN wf-cdeclE])
ultimately
show ?thesis
using eval-init wt-init-c wf
by — (rule eval-statement-no-jump
[where ?Env=(prg=G,cls=C,lcl=Map.empty))],simp+)
qed
with conf-s2 s8 conf-s1 eval-init
have s3:<(G, L)
by (cases s2,cases s1) (force dest: conforms-return eval-gext’)
moreover from error-free-s2 s3
have error-free s3
by simp
moreover note wt
ultimately show #thesis
by simp
qed
next
case (NewC s0 C s1 a s2 L accC T A)
note «GFNorm s0 —Init C— si»
note halloc = «GFs1 —halloc Clnst C-a— s2»
note hyp = <PROP ?TypeSafe (Norm s0) s1 (Inir (Init C))
note conf-s0 = «Norm s0:=(G, L)
moreover
note wt = ((prg=G, cls=accC, lcl=L)FIn1l (NewC C)::T»
then obtain is-cls-C: is-class G C and
T: T=Inl (Class C)
by (rule wit-elim-cases) (auto dest: is-acc-classD)
hence (prg=G, cls=accC, lel=L)FInit C::/ by auto
moreover obtain I where
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(prg=G,cls=accC,lcl=L)
F dom (locals (store ((Norm s0)::state))) »Inlr (Init C)» I
by (auto intro: da-Init [simplified] assigned.select-convs)

ultimately
obtain conf-s1: s1:=(G, L) and error-free-s1: error-free s1
by (rule hyp [elim-format]) simp
from conf-s1 halloc wf is-cls-C
obtain halloc-type-safe: s2:<(G, L)
(normal s2 — G,store s2FAddr a::<XClass C)
by (cases s2) (auto dest!: halloc-type-sound)
from halloc error-free-si
have error-free s2
by (rule error-free-halloc)
with halloc-type-safe T
show s2:<(G, L) A
(normal s2 — G,L,store s2tIn1l (NewC C)=In1 (Addr a)::=T) A
(error-free (Norm s0) = error-free s2)
by auto
next
case (NewA s0 elT s1 e is2 a s8 L accC T A)
note eval-init = «G-Norm sO0 —init-comp-ty elT— s1»
note eval-e = <GFsl —e—=i— s2»
note halloc = «GFabupd (check-neg i) s2—halloc Arr elT (the-Intg i)=a— s3>
note hyp-init = «(PROP ?TypeSafe (Norm s0) s1 (Inir (init-comp-ty elT)) »
note hyp-size = (PROP ?TypeSafe s1 s2 (In1l e) (Inl i)
note conf-s0 = <Norm s0::<(G, L)»
note wt = «(prg = G, cls = accC, lcl = L)FIn1l (New elT[e]):: T»
then obtain
wt-ingt: (prg = G, cls = accC, lcl = L)init-comp-ty elT::y/ and
wt-size: (prg = G, cls = accC, lel = L)e::—PrimT Integer and
elT: is-type G elT and
T: T=Inl (elT.]))
by (rule wt-elim-cases) (auto intro: wi-init-comp-ty dest: is-acc-typeD)
from NewA.prems
have da-e:(prg=G,cls=accC,lcl=L)
F dom (locals (store ((Norm s0)::state))) »Inil e» A
by (elim da-elim-cases) simp
obtain conf-s1: s1:=(G, L) and error-free-s1: error-free s1
proof —
note conf-s0 wt-init
moreover obtain I where
(prg=G,cls=accC,lcl=L)
F dom (locals (store ((Norm s0):state))) »Inlr (init-comp-ty elT)» I
proof (cases 3C. elT = Class C)
case True
show ?thesis
by (rule that)
(use True in <auto intro: da-Init [simplified] assigned.select-convs
stmp add: init-comp-ty-def»)

next
case Fulse
show ?thesis
by (rule that)
(use False in <auto intro: da-Skip [simplified] assigned.select-convs
stmp add: init-comp-ty-def»)

qed
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ultimately show thesis

by (rule hyp-init [elim-format]) (auto intro: that)

qed
obtain conf-s2: s2::=2(G, L) and error-free-s2: error-free s2
proof —
from eval-init
have dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))

by (rule dom-locals-eval-mono-elim)

with da-e
obtain A’ where

(

prg=G,cls=accC,lcl=L)
F dom (locals (store s1)) »Inil e» A’
by (rule da-weakenE)

with conf-s1 wt-size
show ?thesis

by (rule hyp-size [elim-format]) (simp add: that error-free-s1)

qged

from conf-s2 have abupd (check-neg i) s2:=(G, L)
by (cases s2) auto

with halloc wf elT

have halloc-type-safe:

$3:=2(G, L) A (normal s3 — G,store s3FAddr a::<elT.[])

by (cases s3) (auto dest!: halloc-type-sound)
from halloc error-free-s2
have error-free s3
by (auto dest: error-free-halloc)
with halloc-type-safe T
show s3:<(G, L) A

(normal s3 — G,L,store s3+-In1l (New elT[e])=In1 (Addr a):=T) A
(error-free (Norm s0) = error-free s3)

by simp

next

case (Cast s0 e v s1 s2 castT L accC T A)
note «G-Norm s0 —e—>v— sl
note s2 = <s2 = abupd (raise-if (- G,store s1t-v fits castT) ClassCast) s1»
note hyp = <PROP ?TypeSafe (Norm s0) sl (Inll e) (Inl v)»
note conf-s0 = «Norm s0:=(G, L)
note wt = «(prg = G, cls = accC, lel = L)FIn1l (Cast castT e):: T
then obtain eT'
where wt-e: (prg = G, cls = accC, lcl = L)e:—eT and

eT: GFeT=? castT and
T: T=1Inl castT

by (rule wt-elim-cases) auto
from Cast.prems
have (prg=G,cls=accC,lcl=L)

F dom (locals (store ((Norm s0)::state))) »Inil e A

by (elim da-elim-cases) simp
with conf-s0 wt-e
obtain conf-s1: s1::=(G, L) and

v-ok: normal s1 — G,store s1-v::<eT and

error-free-s1: error-free sl
by (rule hyp [elim-format]) simp
from conf-s1 s2
have conf-s2: s2:<(G, L)
by (cases s1) simp
from error-free-s1 s2
have error-free-s2: error-free s2
by simp
have G,L,store s2F1Inl1l (Cast castT e€)=Inl v::<XT
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if norm-s2: normal s2
proof —
from s2 norm-s2 have normal s1
by (cases s1) simp
with v-ok
have G,store sitv::<eT
by simp
with eT wf s2 T norm-s2
show ?thesis
by (cases s1) (auto dest: fits-conf)
qed
with conf-s2 error-free-s2
show s2:<(G, L) A
(normal s2 — G,L,store s2F1In1l (Cast castT e)=Inl v:=T) A
(error-free (Norm s0) = error-free s2)
by blast
next
case (Inst s0 e v s1 b instT L accC T A)
note hyp = <PROP ?TypeSafe (Norm s0) s1 (In1le) (Inl v)»
note conf-s0 = <Norm s0::<(G, L)
from Inst.prems obtain eT
where wt-e: (prg = G, cls = accC, lcl = L)Fe::—RefT eT and
T: T=Inl (PrimT Boolean)
by (elim wt-elim-cases) simp
from Inst.prems
have da-e: (prg=G,cls=accC,lcl=L)
F dom (locals (store ((Norm s0):state))) »Inil e» A
by (elim da-elim-cases) simp
from conf-s0 wt-e da-e
obtain conf-s1: s1::=(G, L) and
v-ok: normal s1 — G,store sitv::=XRefT eT and
error-free-s1: error-free s1
by (rule hyp [elim-format]) simp
with T show ?case
by simp
next
case (Lit s v L accC' T A)
then show ?case
by (auto elim!: wt-elim-cases
intro: conf-litval simp add: empty-di-def)
next
case (UnOp s0 e v s1 unop L accC T A)
note hyp = <PROP ?TypeSafe (Norm s0) sl (Inile) (Inl v)»
note conf-s0 = <Norm s0::<(G, L)»
note wt = «(prg = G, cls = accC, lcl = L)FIn1l (UnOp unop e)::T»
then obtain eT
where wt-e: (prg = G, cls = accC, lcl = L)Fe::—eT and
wt-unop: wt-unop unop el and
T: T=Inl (PrimT (unop-type unop))
by (auto elim!: wt-elim-cases)
from UnOp.prems obtain A where
da-e: (prg=G,cls=accC,lcl=L)
F dom (locals (store ((Norm s0):state))) »Inil en A
by (elim da-elim-cases) simp
from conf-s0 wt-e da-e
obtain  conf-sI: s1:=(G, L) and
wt-v: normal s1 — G,store s1tv::<eT and
error-free-s1: error-free sli
by (rule hyp [elim-format]) simp
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from wt-v T wt-unop
have normal s1— G,L,snd s1tIn1l (UnOp unop e)>Inl (eval-unop unop v):<XT
by (cases unop) auto
with conf-s1 error-free-si
show s1:=(G, L) A
(normal s1 — G,L,snd s1+In1l (UnOp unop e)=Inl (eval-unop unop v):=<T) A
error-free (Norm s0) = error-free sl
by simp
next
case (BinOp s0 el vl sl binop e2 v2 s2 L accC T A)
note eval-el = «GF-Norm s0 —el —>vl1— sl
note eval-e2 = «(Grs1 —(if need-second-arg binop vl then Inll e2
else Inlr Skip)=— (Inl v2, s2)»
note hyp-el = (PROP ?TypeSafe (Norm s0) s1 (In1l el) (Inl v1)»
note hyp-e2 = (PROP ?TypeSafe sl s2
(if need-second-arg binop vl then Inil e2 else Inlr Skip)
(In1 v2)»
note conf-s0 = «Norm s0:=(G, L)
note wt = «(prg = G, cls = accC, lcl = L)FIn1l (BinOp binop el e2)::T»
then obtain elT e2T where
wt-el: (prg = G, cls = accC, lcl = L)Fel::—elT and
wt-e2: (prg = G, cls = accC, lcl = L)Fe2::—e2T and
wt-binop: wit-binop G binop elT e2T and
T: T=Inl (PrimT (binop-type binop))
by (elim wt-elim-cases) simp
have wt-Skip: (prg = G, cls = accC, lel = L)FSkip::/
by simp
obtain S where
daSkip: (prg=G,cls=accC,lcl=L)
F dom (locals (store s1)) »Inir Skip» S
by (auto intro: da-Skip [simplified] assigned.select-convs)
note da = ¢(prg=G,cls=accC,lcl=L)F dom (locals (store ((Norm s0::state))))
»(BinOp binop el e2).» A»
then obtain E1 where
da-el: (prg=G,cls=accC,lcl=L)
F dom (locals (store ((Norm s0)::state))) »Inll el» E1
by (elim da-elim-cases) simp+
from conf-s0 wt-el da-el
obtain conf-s1: s1::=(G, L) and
wt-vl: normal s1 — G,store s1-vl::<elT and
error-free-s1: error-free s1
by (rule hyp-el [elim-format]) simp
from wt-binop T
have conf-v:
G,L,snd s2FIn1l (BinOp binop el e2)=Inl (eval-binop binop vl v2):=XT
by (cases binop) auto
— Note that we don’t use the information that v1 really is compatible with the expected type elT and v2
is compatible with e2T, because eval-binop will anyway produce an output of the right type. So evaluating
the addition of an integer with a string is type safe. This is a little bit annoying since we may regard such
a behaviour as not type safe. If we want to avoid this we can redefine eval-binop so that it only produces
a output of proper type if it is assigned to values of the expected types, and arbitrary if the inputs have
unexpected types. The proof can easily be adapted since we have the hypothesis that the values have a
proper type. This also applies to unary operations.
from eval-el have
s0-s1:dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)
show s2:<(G, L) A
(normal s2 —
G,L,snd s2-In1l (BinOp binop el e2)=Inl (eval-binop binop v1 v2):=XT) A
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error-free (Norm s0) = error-free s2
proof (cases normal s1)
case Fulse
with eval-e2 have s2=s1 by auto
with conf-s1 error-free-s1 False show ?thesis
by auto
next
case True
note normal-s1 = this
show ?thesis
proof (cases need-second-arg binop vl)
case Fulse
with normal-s1 eval-e2 have s2=s1
by (cases s1) (simp, elim eval-elim-cases,simp)
with conf-s1 conf-v error-free-s1
show ?thesis by simp
next
case True
note need-second-arg = this
with hyp-e2
have hyp-e2’. PROP ?TypeSafe s1 s2 (In1l e2) (Inl v2) by simp
from da wt-el wt-e2 wt-binop conf-sO normal-s1 eval-el
wt-vl [rule-format, OF normal-s1] wf
obtain E2 where
(prg=G,cls=accC,lcl=L)F dom (locals (store s1)) »Inil e2» E2
by (rule da-e2-BinOp [elim-format))
(auto simp add: need-second-arg )
with conf-sI wt-e2
obtain s2::<(G, L) and error-free s2
by (rule hyp-e2’ [elim-format)]) (simp add: error-free-s1)
with conf-v show ?thesis by simp
qed
qed
next
case (Super s L accC T A)
note conf-s = «Norm s:=(G, L)
note wt = «(prg = G, cls = accC, lcl = L)-In1l Super::T»
then obtain C ¢ where
C: L This = Some (Class C) and
neq-0bj: C#Object and
cls-C: class G C' = Some ¢ and
T: T=Inl (Class (super c))
by (rule wt-elim-cases) auto
from Super.prems
obtain This € dom (locals s)
by (elim da-elim-cases) simp
with conf-s C have G,stval-this s::=Class C
by (auto dest: conforms-localD [THEN wlconfD])
with neq-0bj cls-C wf
have G,stval-this s::=Class (super c)
by (auto intro: conf-widen
dest: subcls-direct| THEN widen.subcls])
with T conf-s
show Norm s:=<(G, L) A
(normal (Norm s) —»
G,L,store (Norm s)FIn1l Super>=In1 (val-this s):=T) A
(error-free (Norm s) = error-free (Norm s))
by simp
next
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case (Acc s0 v w upd s1 L accC T A)
note hyp = <PROP ?TypeSafe (Norm s0) s1 (In2 v) (In2 (w,upd))>
note conf-s0 = «Norm s0:=(G, L)
from Acc.prems obtain vT where
wt-v: (prg = G, cls = accC, lel = L)Fv:=vT and
T: T=Inl vT
by (elim wt-elim-cases) simp
from Acc.prems obtain V where
da-v: (prg=G,cls=accC,lcl=L]
F dom (locals (store ((Norm s0):state))) »In2 vy V
by (cases 3 n. v=LVar n) (use da.LVar in <auto elim!: da-elim-cases))
have lvar-in-locals: locals (store s1) n # None
if lvar: v=LVar n for n
proof —
from Acc.prems lvar have
n € dom (locals s0)
by (cases 3 n. v=LVar n) (auto elim!: da-elim-cases)
also
have dom (locals s0) C dom (locals (store s1))
proof —
from «G-Norm s0 —v=>(w, upd)— s1>
show ?thesis
by (rule dom-locals-eval-mono-elim) simp
qed
finally show ?thesis
by blast
qged
from conf-s0 wt-v da-v
obtain conf-s1: s1:=(G, L)
and conf-var: (normal s1 — G,L,store s1FIn2 v-In2 (w, upd)::=<Inl vT)
and error-free-s1: error-free sl
by (rule hyp [elim-format]) simp
from [var-in-locals conf-var T
have (normal s1 — G,L,store s1FIn1l (Acc v)=Inl w:=T)
by (cases 3 n. v=LVar n) auto
with conf-s1 error-free-s1 show ?case
by simp
next
case (Ass s0 var w upd s1 e v s2 L accC T A)
note eval-var = <G-Norm s0 —var=>(w, upd)— sI»
note eval-e = «Gksl —e—>v— s2»
note hyp-var = <PROP ?TypeSafe (Norm s0) s1 (In2 var) (In2 (w,upd))>
note hyp-e = <PROP ?TypeSafe s1 s2 (Inll e) (Inl v)
note conf-s0 = <Norm s0::=<(G, L)»
note wt = «(prg = G, cls = accC, lcl = L)-In1l (var:==e):T)
then obtain varT eT where
wt-var: (prg = G, cls = accC, lel = L)Fvar:=varT and
wt-e: (prg = G, cls = aceC, lcl = L)Fe::—eT and
widen: GreT=varT and
T: T=Inl eT
by (rule wit-elim-cases) auto
show assign upd v s2:<X(G, L) A
(normal (assign upd v s2) —
G,L,store (assign upd v s2)F-Inll (var:=e)>=1Inl v::=T) A
(error-free (Norm s0) = error-free (assign upd v s2))
proof (cases 3 wvn. var=LVar vn)
case Fulse
with Ass.prems
obtain V E where
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da-var: (prg=G,cls=accC,lcl=L]
F dom (locals (store ((Norm s0):state))) »In2 var» V and
da-e:  (prg=G,cls=accC,lcl=L) - nrm V »Inll e» E
by (elim da-elim-cases) simp+
from conf-s0 wt-var da-var
obtain conf-si: s1:=(G, L)
and conf-var: normal s1
— G,L,store s1FIn2 var=In2 (w, upd)::<Inl varT
and error-free-s1: error-free si
by (rule hyp-var [elim-format]) simp
show ?thesis
proof (cases normal s1)
case Fulse
with eval-e have s2=s1 by auto
with False have assign upd v s2=s1
by simp
with conf-s1 error-free-s1 False show ?thesis
by auto
next
case True
note normal-s1=this
obtain A’ where (prg=G,cls=accC,lcl=L)
F dom (locals (store s1)) »Inil e» A’
proof —
from eval-var wt-var da-var wf normal-s1
have nrm V C dom (locals (store s1))
by (cases rule: da-good-approzE’) iprover
with da-e show thesis
by (rule da-weakenE) (rule that)
qed
with conf-s1 wt-e
obtain conf-s2: s2::%(G, L) and
conf-v: normal s2 — G,store s2Fv::<eT and
error-free-s2: error-free s2
by (rule hyp-e [elim-format]) (simp add: error-free-s1)
show ?thesis
proof (cases normal s2)
case Fulse
with conf-s2 error-free-s2
show ?thesis
by auto
next
case True
from True conf-v
have conf-v-eT: G,store s2F-v::=eT
by simp
with widen wf
have conf-v-varT: G,store s2-v::<varT
by (auto intro: conf-widen)
from normal-s1 conf-var
have G,L,store s1-In2 var>In2 (w, upd)::=Inl varT
by simp
then
have conf-assign: store s1<|upd=<varT::=<(G, L)
by (simp add: rconf-def)
from conf-v-eT conf-v-varT conf-assign normal-s1 True wf eval-var
eval-e T conf-s2 error-free-s2
show ?thesis
by (cases s1, cases s2)



386

(auto dest!: Ass-lemma simp add: assign-conforms-def)
qed
qed
next
case True
then obtain vn where vn: var=LVar vn
by blast
with Ass.prems
obtain F where
da-e: (prg=G,cls=accC,lcl=L]
F dom (locals (store ((Norm s0):state))) »Inll en E
by (elim da-elim-cases) simp+
from da.LVar vn obtain V where
da-var: (prg=G,cls=accC,lcl=L))
F dom (locals (store ((Norm s0):state))) »In2 vary V
by auto
obtain E’ where
da-e': (prg=G,cls=accC,lcl=L)
F dom (locals (store s1)) »Inll e» E’
proof —
have dom (locals (store ((Norm s0)::state)))
C dom (locals (store (s1)))
by (rule dom-locals-eval-mono-elim) (rule Ass.hyps)
with da-e show thesis
by (rule da-weakenE) (rule that)
qed
from conf-s0 wt-var da-var
obtain conf-si: s1:=(G, L)
and conf-var: normal s1
— G,L,store s1+-In2 var=In2 (w, upd)::=<Inl varT
and error-free-s1: error-free sl
by (rule hyp-var [elim-format]) simp
show ?thesis
proof (cases normal s1)
case Fulse
with eval-e have s2=s1 by auto
with False have assign upd v s2=s1
by simp
with conf-s1 error-free-s1 False show Zthesis
by auto
next
case True
note normal-s1 = this
from conf-s1 wt-e da-e’
obtain conf-s2: s2:<(G, L) and
conf-v: normal s2 — G,store s2Fv::=<eT and
error-free-s2: error-free s2
by (rule hyp-e [elim-format]) (simp add: error-free-s1)
show ?thesis
proof (cases normal s2)
case Fulse
with conf-s2 error-free-s2
show ?thesis
by auto
next
case True
from True conf-v
have conf-v-eT: G,store s2Fv::<eT
by simp
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with widen wf
have conf-v-varT: G,store s2+-v::=varT
by (auto intro: conf-widen)
from normal-s1 conf-var
have G,L,store s1-In2 var=In2 (w, upd)::=Inl varT
by simp
then
have conf-assign: store s1<|upd=varT::=<(G, L)
by (simp add: rconf-def)
from conf-v-eT conf-v-varT conf-assign normal-s1 True wf eval-var
eval-e T conf-s2 error-free-s2
show ?thesis
by (cases s1, cases s2)
(auto dest!: Ass-lemma simp add: assign-conforms-def)
qed
qed
qed
next
case (Cond s0 e0 b s1 el e2 v s2 L accC T A)
note eval-e0 = <G-Norm sO —e0—>b— s1»
note eval-el-e2 = «GFsl —(if the-Bool b then el else e2)—-v— $2»
note hyp-e0 = <PROP ?TypeSafe (Norm s0) s1 (Inil e0) (Inl b)»
note hyp-if = «PROP ?TypeSafe sl s2
(In1l (if the-Bool b then el else €2)) (Inl v)»
note conf-s0 = <Norm s0::=<(G, L)
note wt = «(prg = G, cls = accC, lel = L)FIn1l (e0 ? el : e2)::T)
then obtain T1 T2 statT where
wt-e0: (prg = G, cls = accC, lcl = L)Fe0::—PrimT Boolean and
wt-el: (prg = G, cls = accC, lel = L)Fel::—T1 and
wt-e2: (prg = G, cls = accC, lel = L)Fe2::— T2 and
statT: GET1=T2 A statT = T2 vV GFT2=<T1 A statT = T1 and
T : T=Inl statT
by (rule wt-elim-cases) auto
with Cond.prems obtain E0 E1 E2 where
da-e0: (prg=G,cls=accC,lcl=L)
F dom (locals (store ((Norm s0)::state)))
»Inll e0» EO and
da-el: (prg=G,cls=accC,lcl=L)
F (dom (locals (store ((Norm s0)::state)))
U assigns-if True e0) »Inll el1» F1 and
da-e2: (prg=G,cls=accC,lcl=L)
F (dom (locals (store ((Norm s0)::state)))
U assigns-if False e0) »Inll e2» E2
by (elim da-elim-cases) simp+
from conf-s0 wt-e0 da-e0
obtain conf-s1: s1:=(G, L) and error-free-s1: error-free s1
by (rule hyp-e0 [elim-format]) simp
show s2:<(G, L) A
(normal s2 — G,L,store s2tInl1l (e0 ? el : e2)=Inl v::=<T) A
(error-free (Norm s0) = error-free s2)
proof (cases normal s1)
case Fulse
with eval-el-e2 have s2=s1 by auto
with conf-s1 error-free-s1 False show ?thesis
by auto
next
case True
have s0-s1: dom (locals (store ((Norm s0)::state)))
U assigns-if (the-Bool b) e0 C dom (locals (store s1))
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proof —
from eval-e0 have
dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)
moreover
from eval-e0 True wt-e0
have assigns-if (the-Bool b) e0 C dom (locals (store s1))
by (rule assigns-if-good-approzx’)
ultimately show ?thesis by (rule Un-least)
qed
show ?thesis
proof (cases the-Bool b)
case True
with hyp-if have hyp-e1: PROP ?TypeSafe s1 s2 (Inll el) (Inl v)
by simp
from da-el s0-s1 True obtain E1’ where
(prg=G,cls=accClcl=L)F (dom (locals (store s1)))»Inll el» E1’
by — (rule da-weakenE, auto iff del: Un-subset-iff sup.bounded-iff)
with conf-s1 wt-el
obtain
s2:=(G, L)
(normal s2 — G,L,store s2F1Inl1l el=Inl v::=<Inl T1)
error-free s2
by (rule hyp-el [elim-format]) (simp add: error-free-s1)
moreover
from statT
have G+T1=<statT
by auto
ultimately show ¢thesis
using T wf by auto
next
case Fulse
with hyp-if have hyp-e2: PROP ?TypeSafe s1 s2 (Inll e2) (Inl v)
by simp
from da-e2 s0-s1 False obtain E2’ where
(prg=G,cls=accC,lcl=L)F (dom (locals (store s1)))»In1l e2» E2’
by — (rule da-weakenE, auto iff del: Un-subset-iff sup.bounded-iff)
with conf-s1 wt-e2
obtain
s2:=(G, L)
(normal s2 — G,L,store s2-Inl1l e2>Inl v::=Inl T2)
error-free s2
by (rule hyp-e2 [elim-format]) (simp add: error-free-s1)
moreover
from statT
have G+-T2<statT
by auto
ultimately show ?thesis
using T wf by auto
qed
qed
next
case (Call s0 e a sl args vs s2 invDeclC mode statT mn pTs’ s3 s3" accC’
vs4 L accC T A)
note eval-e = <«GF-Norm s0 —e—>a— s1»
note eval-args = <Grsl —args==vs— s2»
note invDeclC = <invDeclC
= invocation-declclass G mode (store s2) a statT
(name = mn, parTs = pTs')»
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note init-lvars =
<83 = init-lvars G invDeclC (name = mn, parTs = pTs’) mode a vs s2»
note check = <s3' =
check-method-access G accC' statT mode (name = mn, parTs = pTs’) a s3>
note eval-methd =
«GFs3" —Methd invDeclC (name = mn, parTs = pTs')—=v— s4>
note hyp-e = <PROP ?TypeSafe (Norm s0) s1 (Inlle) (Inl a))
note hyp-args = <PROP ?TypeSafe s1 s2 (In3 args) (Ing vs)»
note hyp-methd = <PROP ?TypeSafe s3' s4
(In1l (Methd invDeclC (name = mn, parTs = pTs’))) (Inl v)»
note conf-s0 = <Norm s0::=<(G, L)»
note wt = «(prg=G, cls=accC, lcl=L)
FInil ({accC’,statT,mode}e-mn( {pTs'}args)):: T»
from wt obtain pTs statDeclT statM where
wt-e: (prg=G, cls=accC, lcl=L)Fe::—RefT statT and
wt-args: (prg=G, cls=accC, lcl=L|)Fargs::=pTs and
statM: maz-spec G accC statT (name=mn,parTs=pTs)
= {((statDeclT ,statM),pTs’)} and
mode: mode = invmode statM e and
T: T =Inl (resTy statM) and
eg-accC-accC”: accC=accC’
by (rule wt-elim-cases) fastforce+
from Call.prems obtain F where
da-e: (prg=G,cls=accC,lcl=L)
F (dom (locals (store ((Norm s0):state))))»Inil e» E and
da-args: (prg=G,cls=accC,lcl=L)+ nrm E »In8 args» A
by (elim da-elim-cases) simp
from conf-s0 wt-e da-e
obtain conf-s1: s1::=<(G, L) and
conf-a: normal s1 = G, store s1ta::=RefT statT and
error-free-s1: error-free sl
by (rule hyp-e [elim-format]) simp
have propagate-abnormal-s2: set-lvars (locals (store s2)) s4 = s2
if abnormal-s2: — normal s2
proof —
from abnormal-s2 init-lvars
obtain keep-abrupt: abrupt s3 = abrupt s2 and
store s8 = store (init-lvars G invDeclC (name = mn, parTs = pTs')
mode a vs $2)
by (auto simp add: init-lvars-def2)
moreover
from keep-abrupt abnormal-s2 check
have eq-s3’-s3: s3'=s3
by (auto simp add: check-method-access-def Let-def)
moreover
from eg-s3'-s3 abnormal-s2 keep-abrupt eval-methd
have s/=s3'
by auto
ultimately show
set-lvars (locals (store s2)) s4 = s2
by (cases s2,cases s3) (simp add: init-lvars-def2)
qed
show (set-lvars (locals (store s2))) s4:=(G, L) A
(normal ((set-lvars (locals (store s2))) s4) —
G,L,store ((set-lvars (locals (store s2))) s4)
FIn1l ({accC',statT,mode}e-mn( {pTs'}args))=Inl v::=XT) A
(error-free (Norm s0) =
error-free ((set-lvars (locals (store s2))) s4))
proof (cases normal s1)
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case Fulse
with eval-args have s2=s1 by auto
with False propagate-abnormal-s2 conf-s1 error-free-si
show ?thesis
by auto
next
case True
note normal-s1 = this
obtain A’ where
(prg=G,cls=accC,lcl=L)F dom (locals (store s1)) »In3 args» A’
proof —
from eval-e wt-e da-e wf normal-si
have nrm E C dom (locals (store s1))
by (cases rule: da-good-approzE") iprover
with da-args show thesis
by (rule da-weakenE) (rule that)
qed
with conf-s1 wt-args
obtain  conf-s2: s2:=(G, L) and
conf-args: normal s2
= list-all2 (conf G (store s2)) vs pTs and
error-free-s2: error-free s2
by (rule hyp-args [elim-format]) (simp add: error-free-s1)
from error-free-s2 init-lvars
have error-free-s3: error-free s3
by (auto simp add: init-lvars-def2)
from statM
obtain
statM": (statDeclT,statM)emheads G accC statT (name=mn,parTs=pTs’) and
pTs-widen: GrpTs[=<]pTs’
by (blast dest: max-spec2mheads)
from check
have eq-store-s3’-s3: store s3'=store s3
by (cases s3) (simp add: check-method-access-def Let-def)
obtain invC
where invC: invC = invocation-class mode (store s2) a statT
by simp
with init-lvars
have invC" invC = (invocation-class mode (store s3) a statT)
by (cases s2,cases mode) (auto simp add: init-lvars-def2 )
show ?thesis
proof (cases normal s2)
case Fulse
with propagate-abnormal-s2 conf-s2 error-free-s2
show ?thesis
by auto
next
case True
note normal-s2 = True
with normal-s1 conf-a eval-args
have conf-a-s2: G, store s2-a::<XRefT statT
by (auto dest: eval-gext intro: conf-gext)
show ?thesis
proof (cases a=Null — is-static statM)
case Fulse
then obtain not-static: — is-static statM and Null: a=Null
by blast
with normal-s2 init-lvars mode
obtain np: abrupt s3 = Some (Xcpt (Std NullPointer)) and
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store s3 = store (init-lvars G invDeclC
(name = mn, parTs = pTs') mode a vs s2)
by (auto simp add: init-lvars-def2)
moreover
from np check
have eg-s3'-53: s3'=s3
by (auto simp add: check-method-access-def Let-def)
moreover
from eq-s3’-s3 np eval-methd
have s/=s3'
by auto
ultimately have
set-lvars (locals (store s2)) s4
= (Some (Xcpt (Std NullPointer)),store s2)
by (cases s2,cases s3) (simp add: init-lvars-def2)
with conf-s2 error-free-s2
show ?thesis
by (cases s2) (auto dest: conforms-NormI)
next
case True
with mode have notNull: mode = IntVir — a # Null
by (auto dest!: Null-staticD)
with conf-s2 conf-a-s2 wf invC
have dynT-prop: GFmode—invC=<statT
by (cases s2) (auto intro: DynT-propl)
with wt-e statM’ invC mode wf
obtain dynM where
dynM: dynlookup G statT invC (name=mn,parTs=pTs’) = Some dynM and
acc-dynM: G FMethd (name=mn,parTs=pTs') dynM
in invC dyn-accessible-from accC
by (force dest!: call-access-ok)
with invC’ check eq-accC-accC’
have eg-s3'-53: s3'=s3
by (auto simp add: check-method-access-def Let-def)
from dynT-prop wf wt-e statM’ mode invC invDeclC dynM
obtain
wf-dynM: wf-mdecl G invDeclC ((name=mn,parTs=pTs'),mthd dynM) and
dynM': methd G invDeclC (name=mn,parTs=pTs’) = Some dynM and
iscls-invDeclC'": is-class G invDeclC' and
invDeclC": invDeclC = declclass dynM and
invC-widen: GrinvC=¢ invDeclC and
resTy-widen: GrresTy dynM <resTy statM and
is-static-eq: is-static dynM = is-static statM and
involved-classes-prop:
(if invmode statM e = IntVir
then V statC. statT = ClassT statC — GHinvC=¢ statC
else (A statC. statT = ClassT statC N GFstatC=¢ invDeclC) V
(VstatC. statT # ClassT statC' A invDeclC = Object)) A
statDeclT = ClassT invDeclC)
by (cases rule: DynT-mheadsE) simp
obtain L’ where
L:L'=(\ k.
(case k of
EName e
= (case e of
VNam v
=((table-of (lcls (mbody (mthd dynM))))
(pars (mthd dynM)[—]pTs’)) v
| Res = Some (resTy dynM))
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| This = if is-static statM
then None else Some (Class invDeclC)))
by simp
from wf-dynM [THEN wf-mdeclD1, THEN conjunctl] normal-s2 conf-s2 wt-e
wf eval-args conf-a mode notNull wf-dynM involved-classes-prop
have conf-s3: s3::<(G,L")
apply —

apply (drule conforms-init-lvars [of G invDeclC
(name=mn,parTs=pTs’) dynM store s2 vs pTs abrupt s2
L statT invC a (statDeclT,statM) e])

apply (rule wf)

apply (rule conf-args,assumption)

apply (simp add: pTs-widen)

apply (cases s2,simp)

apply (rule dynM")

apply (force dest: ty-expr-is-type)

apply (rule invC-widen)

apply (force intro: conf-gext dest: eval-gext)

apply simp

apply simp

apply (simp add: invC)

apply (simp add: invDeclC)

apply (simp add: normal-s2)

apply (cases s2, simp add: L' init-lvars

cong add: Iname.case-cong ename.case-cong)

PRy

done
with eq-s8'-53
have conf-s3" s3":<(G,L’) by simp
moreover
from is-static-eq wf-dynM L’
obtain mthdT where
(prg=G,cls=invDeclC,lcl=L")
FBody invDeclC (stmt (mbody (mthd dynM)))::—mthdT and
mithdT-widen: GFmthdT<resTy dynM
by — (drule wf-mdecl-bodyD,
auto simp add: callee-lcl-def
cong add: Iname.case-cong ename.case-cong)
with dynM' iscls-invDeclC invDeclC’
have
(prg=G,cls=invDeclC,lcl=L")
F(Methd invDeclC (name = mn, parTs = pTs'))::—mthdT
by (auto intro: wt.Methd)
moreover
obtain M where
(prg=G,cls=invDeclC,lcl=L")
F dom (locals (store s3'))
»Inil (Methd invDeclC (name = mn, parTs = pTs'))» M
proof —
from wf-dynM
obtain M’ where
da-body:
(prg=G, cls=invDeclC
Jcl=callee-lcl invDeclC (name = mn, parTs = pTs') (mthd dynM)
) b parameters (mthd dynM) »{stmt (mbody (mthd dynM)))» M’ and
res: Result € nrm M’
by (rule wf-mdeclE) iprover
from da-body is-static-eq L’ have
(prg=G, cls=invDeclC,lcl=L")
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F parameters (mthd dynM) »{stmt (mbody (mthd dynM)))» M’
by (simp add: callee-lcl-def
cong add: Iname.case-cong ename.case-cong)
moreover have parameters (mthd dynM) C dom (locals (store s3"))
proof —
from is-static-eq
have (invmode (mthd dynM) e) = (invmode statM e)
by (simp add: invmode-def)
moreover
have length (pars (mthd dynM)) = length vs
proof —
from normal-s2 conf-args
have length vs = length pTs
by (simp add: list-all2-iff)
also from pTs-widen
have ... = length pTs’
by (simp add: widens-def list-all2-iff)
also from wf-dynM
have ... = length (pars (mthd dynM))
by (simp add: wf-mdecl-def wf-mhead-def)
finally show ?thesis ..
qed
moreover note init-lvars dynM’ is-static-eq normal-s2 mode
ultimately
have parameters (mthd dynM) = dom (locals (store s3))
using dom-locals-init-lvars
[of mthd dynM G invDeclC (name=mn,parTs=pTs’) vs e a s2]
by simp
also from check
have dom (locals (store s3)) C dom (locals (store s8"))
by (simp add: eg-s8’-s3)
finally show ?thesis .
qed
ultimately obtain M2 where
da:
(prg=G, cls=invDeclC,lcI=L")
F dom (locals (store s8')) »(stmt (mbody (mthd dynM)))» M2 and
M2: nrm M’ C nrm M2
by (rule da-weakenE)
from res M2 have Result € nrm M2
by blast
moreover from wf-dynM
have jumpNestingOkS {Ret} (stmt (mbody (mthd dynM)))
by (rule wf-mdeclE)
ultimately
obtain M3 where
(prg=G, cls=invDeclC,lcl=L") & dom (locals (store s3"))
»(Body (declclass dynM) (stmt (mbody (mthd dynM))))» M3
using da
by (iprover intro: da.Body assigned.select-convs)
from - this [simplified]
show ?thesis
by (rule da.Methd [simplified,elim-format]) (auto intro: dynM’ that)
qed
ultimately obtain
conf-s4: s4:=(G, L) and
conf-Res: normal s4 — G,store s/Fv::=mthdT and
error-free-s4: error-free s4
by (rule hyp-methd [elim-format])
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(simp add: error-free-s3 eq-s3'-5s3)
from init-lvars eval-methd eq-s3'-s3
have store s2<|store s4
by (cases s2) (auto dest!: eval-gext simp add: init-lvars-def2 )
moreover
have abrupt s4 # Some (Jump Ret)
proof —
from normal-s2 init-lvars
have abrupt s8 # Some (Jump Ret)
by (cases s2) (simp add: init-lvars-def2 abrupt-if-def)
with check
have abrupt s3’ # Some (Jump Ret)
by (cases s3) (auto simp add: check-method-access-def Let-def)
with eval-methd
show ?thesis
by (rule Methd-no-jump)
qged
ultimately
have (set-lvars (locals (store s2))) s4::=(G, L)
using conf-s2 conf-s/
by (cases s2,cases s4) (auto intro: conforms-return)
moreover
from conf-Res mthdT-widen resTy-widen wf
have normal s4
— G,store s4Fv:=(resTy statM)
by (auto dest: widen-trans)
then
have normal ((set-lvars (locals (store s2))) s4)
— G, store((set-lvars (locals (store s2))) s4) Fv:=(resTy statM)
by (cases s4) auto
moreover note error-free-s4 T
ultimately
show ?thesis
by simp
qed
qed
qed
next
case (Methd s0 D sig v s1 L accC' T A)
note «G-Norm s0 —body G D sig—>=v— s1»
note hyp = «<PROP ?TypeSafe (Norm s0) s1 (Inil (body G D sig)) (Inl v)
note conf-s0 = «Norm s0:=(G, L)
note wt = ¢(prg = G, cls = accC, lel = L)-In1l (Methd D sig):: T»
then obtain m bodyT where
D: is-class G D and
m: methd G D sig = Some m and
wt-body: (prg = G, cls = accC, lel = L))
FBody (declclass m) (stmt (mbody (mthd m))):—bodyT and
T: T=Inl bodyT
by (rule wt-elim-cases) auto
moreover
from Methd.prems m have
da-body: (prg=G,cls=accC,lcl=L)
F (dom (locals (store ((Norm s0)::state))))
»In1l (Body (declclass m) (stmt (mbody (mthd m))))» A
by — (erule da-elim-cases,simp)
ultimately
show s1:=(G, L) A
(normal s1 — G,L,snd s1+-In1l (Methd D sig)=Inl v:=T) A
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(error-free (Norm s0) = error-free s1)
using hyp [of - - (Inl bodyT)] conf-s0
by (auto simp add: Let-def body-def)
next
case (Body s0 D sl ¢ s2 s8 L accC T A)
note eval-init = <G-Norm sO0 —Init D— si»
note eval-c = (GFsl —c— s2»
note hyp-init = <PROP ?TypeSafe (Norm s0) s1 (Inir (Init D)) {»
note hyp-c = <PROP ?TypeSafe s1 s2 (Inlr c)
note conf-s0 = «Norm s0::=2(G, L)»
note wt = «(prg = G, cls = accC, lcl = L)FInll (Body D ¢)::T»
then obtain bodyT where
iscls-D: is-class G D and
wt-c: (prg = G, cls = accC, lcl = L)Fc::y/ and
resultT: L Result = Some bodyT and
isty-bodyT: is-type G bodyT and
T: T=Inl bodyT
by (rule wt-elim-cases) auto
from Body.prems obtain C where
da-c: (prg=G,cls=accC,lcl=L]
F (dom (locals (store ((Norm s0)::state))))»Inir ¢» C and
JmpOk: jumpNestingOkS {Ret} ¢ and
res: Result € nrm C
by (elim da-elim-cases) simp
note conf-s0
moreover from iscls-D
have (prg=G, cls=accC, lcl=L)FInit D::\/ by auto
moreover obtain I where
(prg=G,cls=accC,lcl=L)
F dom (locals (store ((Norm s0)::state))) »Inir (Init D)» I
by (auto intro: da-Init [simplified] assigned.select-convs)
ultimately obtain
conf-s1: s1::2(G, L) and error-free-s1: error-free sl
by (rule hyp-init [elim-format]) simp
obtain C’ where da-C": (prg=G,cls=accC,lcl=L)
F (dom (locals (store s1)))»Inir c» C'
and nrm-C" nrm C C nrm C'
proof —
from eval-init
have (dom (locals (store ((Norm s0)::state))))
C (dom (locals (store s1)))
by (rule dom-locals-eval-mono-elim)
with da-c show thesis by (rule da-weakenE) (rule that)
qed
from conf-s1 wt-c¢ da-C’
obtain conf-s2: s2:=(G, L) and error-free-s2: error-free s2
by (rule hyp-c [elim-format]) (simp add: error-free-s1)
from conf-s2
have abupd (absorb Ret) s2::X(G, L)
by (cases s2) (auto intro: conforms-absorb)
moreover
from error-free-s2
have error-free (abupd (absorb Ret) s2)
by simp
moreover have abrupt (abupd (absorb Ret) s3) # Some (Jump Ret)
by (cases s3) (simp add: absorb-def)
moreover have s3=s2
proof —
from iscls-D
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have wi-init: (prg=G, cls=accC, lcl=L)F(Init D)::\/

by auto
have sI-no-jmp: A j. abrupt s1 # Some (Jump j)
by (rule eval-statement-no-jump [OF - - - wt-init]) (use eval-init wf in auto)

from ewval-c - wt-c wf
have A j. abrupt s2 = Some (Jump j) = j=Ret
by (rule jumpNestingOk-evalE) (auto intro: jmpOk simp add: s1-no-jmp)
moreover
note «s3 =
(if 3. abrupt s2 = Some (Jump (Break 1)) V
abrupt s2 = Some (Jump (Cont 1))
then abupd (Az. Some (Error CrossMethodJump)) s2 else s2)»
ultimately show ?thesis
by force
qed
moreover
have Result € dom (locals (store s2))
if normal-upd-s2: normal (abupd (absorb Ret) s2)
proof —
from normal-upd-s2
have normal s2 V abrupt s2 = Some (Jump Ret)
by (cases s2) (simp add: absorb-def)
thus ?thesis
proof
assume normal s2
with eval-c¢ wt-c da-C' wf res nrm-C"’
show ?thesis
by (cases rule: da-good-approzE’) blast
next
assume abrupt s2 = Some (Jump Ret)
with conf-s2 show ?thesis
by (cases s2) (auto dest: conforms-RetD simp add: dom-def)
qed
qed
moreover note T resultT
ultimately
show abupd (absorb Ret) s3:=<(G, L) A
(normal (abupd (absorb Ret) s8) —»
G,L,store (abupd (absorb Ret) s3)
FInil (Body D c¢)>Inl (the (locals (store s2) Result)):=T) A
(error-free (Norm s0) = error-free (abupd (absorb Ret) s3))
by (cases s2) (auto intro: conforms-locals)
next
case (LVar s vn L accC T)
note conf-s = «(Norm s:=(G, L)> and
wt = ((prg = G, cls = accC, lcl = L)FIn2 (LVar vn)::T»
then obtain vnT where
wnT: L vn = Some vnT and
T: T=Inl vnT
by (auto elim!: wt-elim-cases)
from conf-s vnT
have conf-fst: locals s vn # None — G,stfst (lvar vn s):=vnT
by (auto elim: conforms-localD [THEN wlconfD]
simp add: lar-def)
moreover
from conf-s conf-fst vnT
have s<|snd (lvar vn s)<vnT:=(G, L)
by (auto elim: conforms-lupd simp add: assign-conforms-def lvar-def)
moreover note conf-s T
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ultimately
show Norm s:=(G, L) A
(normal (Norm s) —
G,L,store (Norm s)lIn2 (LVar vn)=In2 (lvar vn s):=T) A
(error-free (Norm s) = error-free (Norm s))
by (simp add: lvar-def)
next
case (FVar s0 statDeclC s1 e a s2 v s2’ stat fn s3 accC L accC’ T A)
note eval-init = «G-Norm s0 —Init statDeclC— s1»
note eval-e = «GFsl —e—»a— s2»
note fvar = (v, s2') = fvar statDeclC stat fn a s2>
note check = ¢<s3 = check-field-access G accC statDeclC fn stat a s2'
note hyp-init = <PROP ?TypeSafe (Norm s0) s1 (Inlr (Init statDeclC)) »
note hyp-e = (PROP ?TypeSafe s1 s2 (Inl1l e) (Inl a))
note conf-s0 = <Norm s0::<(G, L)»
note wt = «(prg=G, cls=accC’, lel=L)FIn2 ({accC,statDeclC stat}e..fn)::T»
then obtain statC f where
wt-e: (prg=G, cls=accC, lel=L|)Fe::—Class statC and
accfield: accfield G accC statC fn = Some (statDeclC.f) and
eg-accC-accC’: accC=accC’ and
stat: stat=is-static f and
T: T=(Inl (type f))
by (rule wi-elim-cases) (auto simp add: member-is-static-simp)
from FVar.prems eq-accC-accC'’
have da-e: (prg=G, cls=accC, IcI=L)
F (dom (locals (store ((Norm s0):state))))»Inil e» A
by (elim da-elim-cases) simp
note conf-s0
moreover
from wf wt-e
have iscls-statC: is-class G statC
by (auto dest: ty-expr-is-type type-is-class)
with wf accfield
have iscls-statDeclC': is-class G statDeclC
by (auto dest!: accfield-fields dest: fields-declC')
hence (prg=G, cls=accC, lel=L)(Init statDeclC)::/
by simp
moreover obtain / where
(prg=G,cls=accC,lcl=L)
F dom (locals (store ((Norm s0)::state))) »Inlr (Init statDeclC)» I
by (auto intro: da-Init [simplified] assigned.select-convs)
ultimately
obtain conf-s1: s1:=(G, L) and error-free-s1: error-free s1
by (rule hyp-init [elim-format]) simp
obtain A’ where
(prg=G, cls=accC, lel=L|) F (dom (locals (store s1)))»Inil en A’
proof —
from eval-init
have (dom (locals (store ((Norm s0)::state))))
C (dom (locals (store s1)))
by (rule dom-locals-eval-mono-elim)
with da-e show thesis
by (rule da-weakenE) (rule that)
qed
with conf-s1 wt-e
obtain conf-s2: s2::=2(G, L) and
conf-a: normal s2 — G,store s2Fa::=Class statC and
error-free-s2: error-free s2
by (rule hyp-e [elim-format]) (simp add: error-free-s1)
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from fvar
have store-s2': store s2'=store s2
by (cases s2) (simp add: fvar-def2)
with fvar conf-s2
have conf-s2" s2":=%(G, L)
by (cases s2,cases stat) (auto simp add: fvar-def2)
from eval-init
have initd-statDeclC-s1: initd statDeclC s1
by (rule init-yields-initd)
from accfield wt-e eval-init eval-e conf-s2 conf-a fvar stat check wf
have eq-s3-s2": s3=52'
by (auto dest!: error-free-field-access)
have conf-v: normal s2' —
G,store s2'¢fst v:=type f A store s2'<|snd v=type f::=(G, L)
proof —
assume normal: normal s2’
obtain vv vf 72 store2 store2’
where v: v=(vv,vf) and
s2: s2=(x2,store2) and
store2’: store s2' = store2’
by (cases v,cases s2,cases s2') blast
from iscls-statDeclC obtain c
where c: class G statDeclC' = Some ¢
by auto
have G,store2tvv::=Ztype f A store2'<|vf<type f::=2(G, L)
proof (rule FVar-lemma [of vv vf store2’ statDeclC f fn a z2 store2
statC' G ¢ L store s1])
from v normal s2 fuvar stat store2’
show ((vv, vf), Norm store2’) =
fvar statDeclC (static f) fn a (22, store?2)
by (auto simp add: member-is-static-simp)
from accfield iscls-statC wf
show GrstatC=<¢ statDeclC
by (auto dest!: accfield-fields dest: fields-declC')
from accfield
show fld: table-of (DeclConcepts.fields G statC) (fn, statDeclC) = Some f
by (auto dest!: accfield-fields)
from wf show wf-prog G .
from conf-a s2 show 22 = None — G,store2t-a::<XClass statC
by auto
from fid wf iscls-statC
show statDeclC # Object
by (cases statDeclC'=Object) (drule fields-declC simp+)+
from ¢ show class G statDeclC = Some c .
from conf-s2 s2 show (z2, store2)::=X(G, L) by simp
from eval-e s2 show snd s1<|store2 by (auto dest: eval-gext)
from initd-statDeclC-s1 show inited statDeclC (globs (snd s1))
by simp
qed
with v s2 store2’
show ?thesis
by simp
qed
from fvar error-free-s2
have error-free s2’
by (cases s2)
(auto simp add: fvar-def2 introl: error-free-F'Var-lemma)
with conf-v T conf-s2' eq-53-s2'
show s3:<(G, L) A
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(normal s3
— G,L,store s3+In2 ({accC,statDeclC,stat}e..fn)=In2 v::<XT) A
(error-free (Norm s0) = error-free s3)
by auto
next
case (AVar s0 el a s1 e2is2v s2' L accC T A)
note eval-el = <«G-Norm s0 —el—»>a— sl
note eval-e2 = (GFsl —e2—+i— s2»
note hyp-el = «(PROP ?TypeSafe (Norm s0) s1 (In1l el) (Inl a)>
note hyp-e2 = «(PROP ?TypeSafe s1 s2 (In1l e2) (Inl i)
note avar = «(v, s2’) = avar G i a s2»
note conf-s0 = <Norm s0::<(G, L)»
note wt = «(prg = G, cls = accC, lcl = L)-In2 (el.[e2])::T»
then obtain elemT
where wi-el: (prg=G,cls=accC,lcl=L)Fel::—elemT.[] and
wt-e2: (prg=G,cls=accC,lcl=L)Fe2::— PrimT Integer and
T: T= Inl elemT
by (rule wt-elim-cases) auto
from AVar.prems obtain F1 where
da-el: (prg=G,cls=accC,lcl=L)
F (dom (locals (store ((Norm s0)::state))))»Inll el » E1 and
da-e2: (prg=G,cls=accC,lcl=L)F nrm E1 »Inil e2» A
by (elim da-elim-cases) simp
from conf-s0 wt-el da-el
obtain conf-s1: s1:=(G, L) and
conf-a: (normal s1 — G, store s1ta::=elemT.[]) and
error-free-s1: error-free sl
by (rule hyp-el [elim-format]) simp
show s2":<(G, L) A
(normal s2' — G,L,store s2'+In2 (el.[e2])=In2 v:=T) A
(error-free (Norm s0) = error-free s2”)
proof (cases normal s1)
case Fulse
moreover
from Fulse eval-e2 have eq-s2-s1: s2=s1 by auto
moreover
from eq-s2-s1 Fulse have - normal s2 by simp
then have snd (avar G i a s2) = s2
by (cases s2) (simp add: avar-def2)
with avar have s2'=s2
by (cases (avar G i a s2)) simp
ultimately show ?thesis
using conf-s1 error-free-si
by auto
next
case True
obtain A’ where
(prg=G,cls=accC,lcl=L)F dom (locals (store s1)) »Inil e2» A’
proof —
from eval-el wt-el da-el wf True
have nrm E1 C dom (locals (store s1))
by (cases rule: da-good-approzE’) iprover
with da-e2 show thesis
by (rule da-weakenE) (rule that)
qed
with conf-s1 wt-e2
obtain conf-s2: s2:=(G, L) and error-free-s2: error-free s2
by (rule hyp-e2 [elim-format]) (simp add: error-free-s1)
from avar
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have store s2'=store s2
by (cases s2) (simp add: avar-def2)
with avar conf-s2
have conf-s2" s2"::<(G, L)
by (cases s2) (auto simp add: avar-def2)
from avar error-free-s2
have error-free-s2': error-free s2'
by (cases s2) (auto simp add: avar-def2 )
have normal s2' =
G,store s2'-fst vi:=ZelemT A store s2'<|snd v=<elemT::=(G, L)
proof —
assume normal: normal s2’
show ?thesis
proof —
obtain vv vf 1 storel z2 store2 store2’
where v: v=(vv,uf) and
s1: s1=(z1,storel) and
s2: s2=(x2,store2) and
store2’: store2’'=store s2’
by (cases v,cases s1, cases s2, cases s2') blast
have G,store2’Fov::=ZelemT A store2'<|vf<elemT::=(G, L)
proof (rule AVar-lemma [of G 1 storel e2 i x2 store2 vv vf store2’ a,
OF uf))
from s! s2 eval-e2 show GH(z1, storel) —e2—>i— (2, store2)
by simp
from v normal s2 store2’ avar
show ((vv, vf), Norm store2’) = avar G i a (2, store2)
by auto
from s2 conf-s2 show (22, store2)::X(G, L) by simp
from s! conf-a show x1 = None — G,storelta::=<elemT.[| by simp
from eval-e2 s1 s2 show storel <|store2 by (auto dest: eval-gext)
qged
with v s1 s2 store2’
show ?thesis
by simp
qed
qed
with conf-s2' error-free-s2’ T
show ?thesis
by auto
qed
next
case (Nil s0 L accC T)
then show ?case
by (auto elim!: wt-elim-cases)
next
case (Cons s0 e v s1 es vs $2 L accC T A)
note eval-e = (G-Norm s0 —e—»v— sl»
note eval-es = «(GFsl —es=>vs— s2»
note hyp-e = <PROP ?TypeSafe (Norm s0) s1 (Inile) (Inl v)»
note hyp-es = <PROP ¢TypeSafe s1 s2 (In3 es) (In3 vs)»
note conf-s0 = «Norm s0:=(G, L)
note wt = ¢(prg = G, cls = accC, lel = L)-In8 (e # es):T»
then obtain eT esT where
wt-e: (prg = G, cls = accC, lcl = L)Fe:—eT and
wt-es: (prg = G, cls = accC, lcl = L)Fes::=esT and
T: T=Inr (eT#esT)
by (rule wt-elim-cases) blast
from Cons.prems obtain F where
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da-e: (prg=G,cls=accC,lcl=L]
F (dom (locals (store ((Norm s0):state))))»Inil e» E and
da-es: (prg=G,cls=accC,lcl=L)F nrm E »In3 es» A
by (elim da-elim-cases) simp
from conf-s0 wt-e da-e
obtain conf-s1: s1:=(G, L) and error-free-s1: error-free s1 and
conf-v: normal s1 — G, store s1tv:=eT
by (rule hyp-e [elim-format]) simp
show
$2:=%(G, L) A
(normal s2 — G,L,store s2-In8 (e # es)=In3 (v # v$)==T) A
(error-free (Norm s0) = error-free s2)
proof (cases normal s1)
case Fulse
with eval-es have s2=s1 by auto
with Fulse conf-s1 error-free-si
show ?thesis
by auto
next
case True
obtain A’ where
(prg=G,cls=accC,lcl=L)F dom (locals (store s1)) »In3 es» A’
proof —
from eval-e wt-e da-e wf True
have nrm E C dom (locals (store s1))
by (cases rule: da-good-approzE’) iprover
with da-es show thesis
by (rule da-weakenE) (rule that)
qed
with conf-s1 wt-es
obtain conf-s2: s2::=2(G, L) and
error-free-s2: error-free s2 and
conf-vs: normal s2 — list-all2 (conf G (store s2)) vs esT
by (rule hyp-es [elim-format]) (simp add: error-free-s1)
moreover
from True eval-es conf-v
have conf-v": G,store s2+v::=<eT
apply clarify
apply (rule conf-gext)
apply (auto dest: eval-gext)
done
ultimately show ?thesis using T by simp
qged
qged
from this and conf-s0 wt da show ?Zthesis .
qed

corollary eval-type-soundE [consumes 5]:
assumes eval: GFs0 —t~— (v, s1)
and  conf: s0:=(G, L)
and wt: (prg = G, cls = accC, lcl = L)-¢:T
and da: (prg = G, cls = accC, lcl = L)F dom (locals (snd s0)) »t» A
and wf: wf-prog G
and elim: [s1:=(G, L); normal s1 = G,L,snd s1+-t=v:<T;
error-free s0 = error-free s1] = P

shows P
using eval wt da wf conf
by (rule eval-type-sound [elim-format]) (iprover intro: elim)
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corollary eval-ts:
[GFs —e—=v — s'; wf-prog G; s:=X(G,L); (prg=G,cls=C,lcl=L)Fe:—T;
(prg=G,cls=C\lcl=L)Fdom (locals (store s))»Inl1l e» A]
= s:=%(G,L) A (normal s" — G,store stv::=T) A
(error-free s = error-free s')
apply (drule (4) eval-type-sound)
apply clarsimp
done

corollary evals-ts:

[Grs —es==vs— s'; wf-prog G; s:=(G,L); (prg=G,cls=C,lcl=L)les::=Ts;
(prg=G,cls=C,lcl=L)Fdom (locals (store s))»In3 es» A

= $":=(G,L) A (normal 8" — list-all2 (conf G (store s')) vs Ts) A

(error-free s = error-free s)

apply (drule (4) eval-type-sound)

apply clarsimp

done

corollary evar-ts:

[GFs —v=>uvf— s; wf-prog G; s:=X(G,L); (prg=G,cls=C\lcl=L)Fv:=T;
(prg=G,cls=C\lcl=L)Fdom (locals (store $))»In2 v» A] =
s":=(G,L) A (normal s" — G,L,(store s"\-In2 v=In2 vf:=Inl T) A
(error-free s = error-free s')

apply (drule (4) eval-type-sound)

apply clarsimp

done

theorem ezec-ts:

[Grs —c— s'; wf-prog G; s:=2(G,L); (prg=G,cls=C,lcl=L)Fc::/;
(prg=G,cls=Clcl=L)Fdom (locals (store $))»Inlr c» A

= $":=<(G,L) A (error-free s — error-free s’)

apply (drule (4) eval-type-sound)

apply clarsimp

done

lemma wf-eval-Fin:
assumes wf:  wf-prog G
and wt-cl: (prg = G, cls = C, lcl = L)FInir c1::Inl (PrimT Void)
and da-cl: (prg=G,cls=C,lcl=L)Fdom (locals (store (Norm s0)))»Inlr c1»A
and conf-s0: Norm s0::=(G, L)
and eval-c1: GFNorm s0 —cl— (z1,s1)
and eval-c2: G-Norm s1 —c2— s2
and $3: s3=abupd (abrupt-if (x1#None) z1) s2
shows GFNorm s0 —cl Finally c2— s3
proof —
from eval-c1 wt-c1 da-c1 wf conf-s0
have error-free (z1,s1)
by (auto dest: eval-type-sound)
with eval-c1 eval-c2 s3
show ?thesis
by — (rule eval.Fin, auto simp add: error-free-def)
qed

3 Ideas for the future

In the type soundness proof and the correctness proof of definite assignment we perform induction
on the evaluation relation with the further preconditions that the term is welltyped and definitely
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assigned. During the proofs we have to establish the welltypedness and definite assignment of the
subterms to be able to apply the induction hypothesis. So large parts of both proofs are the same
work in propagating welltypedness and definite assignment. So we can derive a new induction rule
for induction on the evaluation of a wellformed term, were these propagations is already done, once
and forever. Then we can do the proofs with this rule and can enjoy the time we have saved. Here
is a first and incomplete sketch of such a rule.

theorem wellformed-eval-induct [consumes /, case-names Abrupt Skip Expr Lab
Comp If]:
assumes eval: GFs0 —t=— (v,s1)
and wt: (prg=G,cls=accC,lcl=L)t:: T
and da: (prg=G,cls=accClcl=L)Fdom (locals (store s0))»t» A
and wf: wf-prog G
and abrupt: \ st abr L accC T A.
[(prg=G,cls=accC,lcl=L|)Ft:: T}
(prg=G,cls=accClcl=L)Fdom (locals (store (Some abr,s)))»t» A
] = P L accC (Some abr, s) t (undefined3 t) (Some abr, s)
and  skip: \ s L accC. P L accC (Norm s) (Skip)s & (Norm s)
and expr: \ e s0 sl v L aceCeT E.
[(prg=G,cls=accC,lcl=L|)Fe::—eT;
(prg=G,cls=accC,lcl=L]
Fdom (locals (store ((Norm s0)::state)))n(€)e» E;
P L accC (Norm s0) {€)e |v]. s1]
= P L accC (Norm s0) (Expr e)s < s1
and  lab: A\ ¢ 180 sl L accC C.
[(prg=G,cls=accClcl=L|)Fc::+/;
(prg=G,cls=accC, lcl=L)
Fdom (locals (store ((Norm s0)::state)))»(c)s» C;
P L accC (Norm s0) {c)s & s1]
= P L accC (Norm s0) (I- ¢)s & (abupd (absorb 1) sI)
and comp: A\ ¢l ¢2 s0 s1 s2 L accC C1.
[G-Norm s0 —c1 — s1;GFsl —c2 — s2;
(prg=G,cls=accClcl=L)Fcl::\/;
(prg=G,cls=accC,lcl=L)Fc2::\/;
(prg=G,cls=accC,lcl=L|)+
dom (locals (store ((Norm s0)::state))) »(cl)s» CI;
P L accC (Norm s0) (cl)s & s1;
N\ Q. [normal si;
N C2.[(prg=G,cls=accC,lcl=L)
Fdom (locals (store s1)) »(c2)s» C2;
P L accC s1 (c2)s & s2] = @
[=@
]= P L accC (Norm s0) {cl;; c2)s & s2
and if: A bclc2es0sls2L accCE.
[GFNorm s0 —e—>=b— sl1;
Grs1 —(if the-Bool b then c1 else c2)— s2;
(prg=G,cls=accC,lcl=L|)Fe::— PrimT Boolean;
(prg=G, cls=accC, lcl=L)F(if the-Bool b then c1 else ¢2)::1/;
(prg=G,cls=accC,lcl=L)F
dom (locals (store ((Norm s0):state))) »(€)e» Ej
P L accC (Norm s0) {(€)e |b]e sI;
N Q. [normal si;
N\ C. [(prg=G,cls=accC,lcl=L)F (dom (locals (store s1)))
» (if the-Bool b then c1 else c2)s» C;
P L accC s1 (if the-Bool b then cI else c2),  s2
| =@
=@
] = P L accC (Norm s0) (If(e) c1 Else c2)s & s2
shows P L accC s0 t v sl
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proof —
note inj-term-simps [simp)
from eval
have AL accC T A. [(prg=G,cls=accC,lcl=L)t:: T;
(prg=G,cls=accC,lcl=L)Fdom (locals (store s0))»t» A]
= P L accC s0 t v sl (is PROP ?Hyp s0 t v s1)
proof (induct)
case Abrupt with abrupt show Zcase .
next
case Skip from skip show ?case by simp
next
case (Ezpr s0 e v s1 L accC T A)
from Fxpr.prems obtain eT where
(prg = G, cls = accC, lcl = L)e::—eT
by (elim wt-elim-cases)
moreover
from FExpr.prems obtain F where
(prg=G,cls=accC, lcl=L)Fdom (locals (store ((Norm s0)::state)))»(e)e» E
by (elim da-elim-cases) simp
moreover from calculation
have P L accC (Norm s0) {(e). |v]. s1
by (rule Expr.hyps)
ultimately show Zcase
by (rule expr)
next
case (Lab s0 ¢ s1 I L accC T A)
from Lab.prems
have (prg = G, cls = accC, lcl = L)Fc::y/
by (elim wt-elim-cases)
moreover
from Lab.prems obtain C' where
(prg=G,cls=accC, lel=L)Fdom (locals (store ((Norm s0)::state)))»{c)s» C
by (elim da-elim-cases) simp
moreover from calculation
have P L accC (Norm s0) (c)s & sl
by (rule Lab.hyps)
ultimately show Zcase
by (rule lab)
next
case (Comp s0 ¢l s1 ¢2 s2 L accC T A)
note eval-c1 = <«G-Norm s0 —cl— s1»
note eval-c2 = «GFsl —c2— s2»
from Comp.prems obtain
wt-c1: (prg = G, cls = accC, lel = L)Fcl::y/ and
wt-c2: (prg = G, cls = accC, lcl = L)Fc2::y/
by (elim wt-elim-cases)
from Comp.prems
obtain C1 C2
where da-cl: (prg=G, cls=accC, lcl=L)F
dom (locals (store ((Norm s0)::state))) »(c1)s» C1 and
da-c2: (prg=G, cls=accC, lcdl=L)F nrm C1 »(c2)s» C2
by (elim da-elim-cases) simp
from wt-c1 da-cl1
have P-c1: P L accC (Norm s0) {(c1)s & sl
by (rule Comp.hyps)
have thesis
if normal-s1: normal s1
and elim: \ C2'.
[(prg=G,cls=accClcl=L)Fdom (locals (store s1))»{(c2)s» C2";
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P L accC s1 (c2)s & s2] = thesis
for thesis
proof —
obtain C2’ where
da: (prg=G, cls=accC, lcl=L)F dom (locals (store s1)) »(c2)s» C2'
proof —
from eval-c1 wt-c1 da-c1 wf normal-s1
have nrm C1 C dom (locals (store s1))
by (cases rule: da-good-approzE’) iprover
with da-c2 show thesis
by (rule da-weakenE) (rule that)
qed
with wit-c2 have P L accC sl (c2)s & s2
by (rule Comp.hyps)
with da show ?Zthesis
using elim by iprover
qed
with eval-c1 eval-c2 wt-c1 wt-c2 da-c1 P-cl1
show Zcase
by (rule comp) iprover+
next
case (If sO e b sl c1 ¢2s2 L accC T A)
note eval-e = «GFNorm s0 —e—>b— s1»
note eval-then-else = «GFs1 —(if the-Bool b then cl else ¢2)— s2)
from If.prems
obtain
wt-e: (prg=G, cls=accC, lcl=L|)Fe::—PrimT Boolean and
wt-then-else: (prg=G, cls=accC, lel=L|)F(if the-Bool b then c1 else ¢2)::y/
by (elim wt-elim-cases) auto
from If.prems obtain E C where
da-e: (prg=G,cls=accC,lcl=L)\ dom (locals (store ((Norm s0)::state)))
»(e)en» E and
da-then-else:
(prg=G,cls=accC,lcl=L)F
(dom (locals (store ((Norm s0)::state))) U assigns-if (the-Bool b) e)
»(if the-Bool b then c1 else ¢2)s» C
by (elim da-elim-cases) (cases the-Bool b,auto)
from wt-e da-e
have P-e: P L accC (Norm s0) (€) | b]e s1
by (rule If .hyps)
have thesis
if normal-s1: normal s1
and elim: \ C. [(prg=G,cls=accC,lcl=L)F (dom (locals (store s1)))
»(if the-Bool b then c1 else c2)s» C;
P L accC s1 (if the-Bool b then cI else c2),  s2
]| = thesis
for thesis
proof —
obtain C’ where
da: (prg=G,cls=accC,lcl=L)+
(dom (locals (store s1)))»{if the-Bool b then cl else c2)s » C’
proof —
from ewval-e have
dom (locals (store ((Norm s0)::state))) C dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)
moreover
from eval-e normal-s1 wt-e
have assigns-if (the-Bool b) e C dom (locals (store s1))
by (rule assigns-if-good-approx’)
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ultimately
have dom (locals (store ((Norm s0)::state)))
U assigns-if (the-Bool b) e C dom (locals (store s1))
by (rule Un-least)
with da-then-else show thesis
by (rule da-weakenE) (rule that)
qed
with wt-then-else
have P L accC sl (if the-Bool b then cI else ¢2)s { s2
by (rule If .hyps)
with da show ?thesis using elim by iprover
qed
with eval-e eval-then-else wt-e wt-then-else da-e P-e
show ?Zcase
by (rule if) iprover+
next
oops

end



Chapter 20

Evaln

1 Operational evaluation (big-step) semantics of Java expressions and state-
ments

theory FEwvaln imports TypeSafe begin

Variant of eval relation with counter for bounded recursive depth. In principal evaln could replace
eval.

Validity of the axiomatic semantics builds on ewvaln. For recursive method calls the axiomatic
semantics rule assumes the method ok to derive a proof for the body. To prove the method rule
sound we need to perform induction on the recursion depth. For the completeness proof of the
axiomatic semantics the notion of the most general formula is used. The most general formula right
now builds on the ordinary evaluation relation eval. So sometimes we have to switch between evaln
and eval and vice versa. To make this switch easy evaln also does all the technical accessibility tests
check-field-access and check-method-access like eval. If it would omit them ewvaln and eval would
only be equivalent for welltyped, and definitely assigned terms.

inductive
evaln :: [prog, state, term, nat, vals, state] = bool
(<-b- —->—-— (-, -")» [61,61,80,61,0,0] 60)
and evarn :: [prog, state, var, vvar, nat, state] = bool
(«-F- —-=>-—-— - [61,61,90,61,61,61] 60)
and eval-n:: [prog, state, expr, val, nat, state] = bool
(¢H- —-—>-—-— - [61,61,80,61,61,61] 60)
and evalsn :: [prog, state, expr list, val list, nat, state] = bool

(b= —==— - [61,61,61,61,61,61] 60)
and ezecn  :: [prog, state, stmt, nat, state] = bool
((h- ———— o [61,61,65, 61,61] 60)
for G :: prog
where
Grs —¢ —n— §'=Grts —Inlr c=—n— (&, &)

| GFs —e—>=v —n— s'= Grs —Inll e=—n— (Inl v, s)
| Gks —e=>vf —n— s’ = Gks —In2 e-—n— (In2 of, s')
| Gks —e=~v —n— s'= Grs —Ing e=—n— (In3v, s

— propagation of abrupt completion

| Abrupt: GH(Some zc,s) —t-—n— (undefined3 t,(Some zc,s))

— evaluation of variables

| LVar: G-Norm s —LVar vn=>lvar vn s—n— Norm s

407
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| FVar: [G-Norm s0 —Init statDeclC—n— s1; GFsl —e—>=a—n— $2;
(v,827) = fvar statDeclC stat fn a s2;
$8 = check-field-access G accC statDeclC fn stat a s2'] =
GFNorm s0 —{accC,statDeclC,stat}e..fn=-v—n— $3

| AVar: [GF- Norm s0 —el—»a—n— sl ; Gksl —e2—>i—n— s2;
(v,527) = avar G i a s2] =
GFNorm s0 —el .[e2]=-v—n— s2’

— evaluation of expressions

| NewC': [GFNorm s0 —Init C—n— s1;
G+ sl —halloc (Clnst C)=-a— s2] =
Gr-Norm s0 —NewC C—>Addr a—n— s2

| NewA: [GFNorm sO —init-comp-ty T—n— s1; Gksl —e—>i'—n— s2;
Grabupd (check-neg i') s2 —halloc (Arr T (the-Intg i'))-a— s3] =
GFNorm s0 —New T[e]—>Addr a—n— s3

| Cast: [GF-Norm s0 —e—»v—n— s1;
s2 = abupd (raise-if (—G,snd s1tv fits T) ClassCast) s1] =
GFNorm s0 —Cast T e—>v—n— s2

| Inst: [GFNorm s0 —e—>v—n— s1;
b= (v£Null A G,store sitv fits RefT T)] =
GFNorm s0 —e InstOf T—> Bool b—n— sl

| Lit: G-Norm s —Lit v—~v—n— Norm s

| UnOp: [GFNorm s0 —e—>=v—n— s1]
= GFNorm s0 —UnOp unop e—>(eval-unop unop v)—n— sl

| BinOp: [GENorm s0 —el—»=vl—n— s1;
Grs1 —(if need-second-arg binop vl then (Inl1l e2) else (Inlr Skip))
=—n— (Inl v2,52)]
= G+Norm s0 —BinOp binop el e2—(eval-binop binop vl v2)—n— s2

| Super: GFNorm s —Super—>=wval-this s—n— Norm s

| Ace: [GHNorm sO0 —va=>(v,f)—n— s1] =
G+Norm s0 —Acc va—>v—n— sl

| Ass: [GFNorm s0 —va=>(w,f)—n— sI;
G- sl —e—>=v —n— 2] =
GFNorm s0 —va:=e—>=v—n— assign f v s2

| Cond: [GFNorm s0 —e0—>-b—n— s1;
GF sl —(if the-Bool b then el else e2)—=v—n— s2] =
GHNorm s0 —e0 ? el : e2—>v—n— s2

| Call:
[G-Norm s0 —e—=a’'—n— s1; GFsl —args==vs—n— s2;
D = invocation-declclass G mode (store s2) a' statT (name=mn,parTs=pTs);
s3=init-lvars G D (name=mn,parTs=pTs) mode a’ vs s2;
s8" = check-method-access G accC statT mode (name=mn,parTs=pTs) a’ s3;
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Gts3'—Methd D (name=mn,parTs=pTs)—=v—n— s/
]
=
GFNorm s0 —{accC,statT,mode} e-mn({pTs}args)—=v—n— (restore-lvars s2 s4)

| Methd:[G-Norm sO0 —body G D sig—-v—n— s1] =
G+Norm s0 —Methd D sig—>v—Suc n— sl

| Body: [G-Norm sO0—Init D—n— s1; Grsl —c—n— s2;
s8 = (if (3 l. abrupt s2 = Some (Jump (Break 1)) V
abrupt s2 = Some (Jump (Cont 1)))
then abupd (A z. Some (Error CrossMethodJump)) s2
else s2)]|—=
GFNorm s0 —Body D ¢
—>the (locals (store s2) Result)—n—abupd (absorb Ret) s3

— evaluation of expression lists

| Nil:
GFNorm s0 —[|=>[]—n— Norm s0

| Cons: [GF-Norm s0 —e —= v —n— s1;
G- sl —es=>=vs—n— $2] =
GFNorm s0 —eftes==v#vs—n— s2

— execution of statements
| Skip: G+Norm s —Skip—n— Norm s

| Expr: [GFNorm s0 —e—-v—n— sl] =
G+-Norm s0 —Expr e—n— sl

| Lab: [GFNorm sO0 —c¢ —n— s1] =
GF-Norm s0 —I- c—n— abupd (absorb 1) s1

| Comp: [GFNorm s0 —cl —n— sl;
G- sl —c2 —n— s2] =
GFNorm s0 —cl;; c2—n— s2

| If: [GFNorm s0 —e—>=b—n— sl;
GF  s1—(if the-Bool b then cl else c2)—n— s2] =
GFNorm s0 —If(e) ¢l Else c2 —n— s2

| Loop: [GFNorm s0 —e—>=b—n— s1;
if the-Bool b
then (GFsl —c—n— s2 A
GH(abupd (absorb (Cont 1)) s2) —I- While(e) c—n— s3)
else s3 = s1] =
GFNorm s0 —I- While(e) c—n— s3

| Jmp: GENorm s —Jmp j—n— (Some (Jump j), s)

| Throw:[GFNorm s0 —e—>a'—n— s1] =
GFNorm s0 — Throw e—n— abupd (throw a’) s1

| Try: [GFNorm s0 —cl—n— s1; Gksl —szalloc— s2;
if G,s2Fcatch tn then Ghnew-zept-var vn s2 —c2—n— s3 else s8 = s2]
=

409
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G+-Norm s0 —Try c1 Catch(tn vn) c2—n— s3

| Fin: [GFNorm s0 —cl—n— (z1,s1);
GHNorm s1 —c2—n— s2;
s8=(if (3 err. x1=Some (Error err))
then (x1,s1)
else abupd (abrupt-if (z1#None) z1) s2)] =
G+Norm s0 —cl Finally c2—n— s3

| Init: [the (class G C) =
if inited C (globs s0) then s8 = Norm s0
else (GFNorm (init-class-obj G C' s0)
—(if C = Object then Skip else Init (super ¢))—n— sI A
GFset-lvars Map.empty s1 —init c—n— s2 A
$8 = restore-lvars s1 s2)]
_—
GFNorm s0 —Init C—n— s3
monos
if-bool-eq-conj

declare if-split  [split del] if-split-asm  [split del]
option.split [split del] option.split-asm [split del]
not-None-eq [simp del]
split-paired-All [simp del] split-paired-Ez [simp del)
setup <map-theory-simpset (fn ctat => ctat |> Simplifier.del-loop split-all-tac)»

inductive-cases cvaln-cases: GFs —t=—n— (v, s’)

inductive-cases evaln-elim-cases:

GH(Some zc, s) —t =—n— (v, s’
GFNorm s —Inlr Skip =—n— (z, s')
GrNorm s —Inlr (Jmp j) =—n— (z, s’)
G+-Norm s —InIr (I- ¢) -—n— (z, s')
G+-Norm s —In3 ([]) =—n— (v, s')
GH-Norm s —In3 (edtes) =—n— (v, s’)
G+-Norm s —Inl1l (Lit w) =—n— (v, s')
GrNorm s —In1l (UnOp unop e) =—n— (v, s')
GF-Norm s —Inl1l (BinOp binop el e2) =—n— (v, s')
G+-Norm s —In2 (LVar vn) =—n— (v, s
Gr-Norm s —Inl1l (Cast T e) =—n— (v, s')
GF-Norm s —Inl1l (e InstOf T) =—n— (v, s
GFNorm s —In1l (Super) =—n— (v, s’)
GrNorm s —In1l (Acc va) =—n— (v, s’)
G+-Norm s —Inlr (Ezpr e) =—n— (z, s')
GF-Norm s —Inlr (cl;; c2) =—n— (z, ')
GH-Norm s —Inl1l (Methd C sig) -—n— (z, s’)
G+-Norm s —Inl1l (Body D c) -—n— (z, s’)
Gr-Norm s —Inll (e0 ? el : e2) =—n— (v, s’)
G+-Norm s —Inlr (If(e) cl Else c2) =—n— (z, s’)
Gr-Norm s —Inlr (I- While(e) c) =—n— (z, ')
GH-Norm s —Inlr (cl Fmally c2) ——n— (z, ')
G+-Norm s —Inlr (Throw e) ——n— (z, ')
Gr-Norm s —In1l (NewC C) =—n— (v, s’)
G+-Norm s —In1l (New T|e]) =—n— (v, s’)
GF-Norm s —Inl1l (Ass va e) =—n— (v, s’)

GFNorm s —Inir (Try c1 Catch(tn vn) c2) =—n— (z, s')
GFNorm s —In2 ({accC,statDeclC,stat}e..fn) =—n— (v, s')
G-Norm s —In2 (el.[e2]) =—n— (v, s
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G+-Norm s —Inl1l ({accC,statT ,mode}e-mn({pT}p)) =—n— (v, s')
Gr-Norm s —Inlr (Init C) ——n— (z, ')

declare if-split  [split] if-split-asm  [split]
option.split [split] option.split-asm [split]
not-None-eq [simp]
split-paired-All [simp] split-paired-Ex [simp)
declaration <K (Simplifier.map-ss (fn ss => ss |> Simplifier.add-loop (split-all-tac, split-all-tac)))»

lemma evaln-Inj-elim: GFs —t-—n— (w,s’) = case t of Inl ec =
(case ec of Inl e = (Fv. w=Inlv) | Int c = w = )
| In2 e = (3v. w=1In2v) | In8 e = (Fv. w= In3v)

apply (erule evaln-cases , auto)

apply (induct-tac t)

apply (rename-tac a, induct-tac a)

apply auto

done

The following simplification procedures set up the proper injections of terms and their corresponding
values in the evaluation relation: E.g. an expression (injection In!l into terms) always evaluates to
ordinary values (injection In! into generalised values vals).

lemma evaln-ezpr-eq: Grs —Inll t-—n— (w, ') = (3v. w=Inl v A Grs —t—>v —n— )
by (auto, frule evaln-Inj-elim, auto)

lemma evaln-var-eq: GFs —In2 t-—n— (w, s') = (3uf. w=In2 vf A Gks —t=-vf—n— s’)
by (auto, frule evaln-Inj-elim, auto)

lemma evaln-exprs-eq: G-s —In3 t-—n— (w, s’) = (Jvs. w=In3 vs A Grs —t=>-vs—n— s')
by (auto, frule evaln-Inj-elim, auto)

lemma evaln-stmt-eq: G-s —Inlr t-—n— (w, s') = (w=O A GFs —t —n— )
by (auto, frule evaln-Inj-elim, auto, frule evaln-Inj-elim, auto)

simproc-setup evaln-expr (Gks —Inll t-—n— (w, s')) = «
K (K (fn ct =>
(case Thm.term-of ct of
(-$-%$-%-%-%(Const-%-)%-) => NONE
| - => SOME (mk-meta-eq Q{thm evaln-expr-eq}))))

simproc-setup evaln-var (Gks —In2 t—=—n— (w, s’)) = «
K (K (fn ct =>
(case Thm.term-of ct of
(-9-$-%-%-%(Const-%-)8%-)=> NONE
| - => SOME (mk-meta-eq Q{thm evaln-var-eq}))))

simproc-setup evaln-exprs (GFs —In3 t—-—n— (w, s')) = «
K (K (fn ct =>
(case Thm.term-of ct of
(-$-%3-%$-%$-3%(Const-%$-)%-) => NONE
| - => SOME (mk-meta-eq Q{thm evaln-exprs-eq}))))»

simproc-setup evaln-stmt (GFs —Inlr t-—n— (w, s')) =«
K (K (fn ct =>
(case Thm.term-of ct of
(-$-%3-%$-%-3%(Const-%$-)8%-) => NONE
| - => SOME (mk-meta-eq Q{thm evaln-stmt-eq}))))

ML <ML-Thms.bind-thms (evaln-Abruptls, sumS-instantiate context Q{thm evaln.Abrupt})
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declare evaln-Abruptls [introl]

lemma evaln-Callee: G-Norm s—Inll (Callee | €)-—n— (v,s’) = False
proof —
have Fulse
if eval: Gks —t=—n— (v,s’)
and normal: normal s
and callee: t=In1l (Callee [ €)
for stovs’
using that by induct auto
then show ?thesis
by (cases s’) fastforce
qed

lemma evaln-InsinitE: G-Norm s—Inil (InsInitE ¢ e)=—n— (v,s’) = False
proof —
have Fulse
if eval: GFs —t-—n— (v,s’)
and normal: normal s
and callee: t=In1l (InsInitE c e)
for stovs’
using that by induct auto
then show ?thesis
by (cases s') fastforce
qed

lemma evaln-InsInitV: G+-Norm s—In2 (InsInitV ¢ w)>=—n— (v,s’) = False
proof —
have Fulse
if eval: Grs —t=—n— (v,s")
and normal: normal s
and callee: t=In2 (InsInitV ¢ w)
for stvs’
using that by induct auto
then show ?thesis
by (cases s') fastforce
qed

lemma evaln-FinA: GFNorm s—Inlr (FinA a ¢)=—n— (v,s’) = False
proof —
have Fulse
if eval: GFs —t-—n— (v,8’)
and normal: normal s
and callee: t=Inir (FinA a c)
for st v s’
using that by induct auto
then show ?thesis
by (cases s) fastforce
qed

lemma evaln-abrupt-lemma: Gts —e=—n— (v,s") =
fst s = Some x¢c — s’ = s A v = undefined3 e
apply (erule evaln-cases , auto)

done

lemma evaln-abrupt:

Ns'. GH(Some zc,s) —e=—n— (w,s") = (s’ = (Some xc,s) A
w=undefined3 e A GH(Some zc,s) —e=—n— (undefineds e,(Some zc,s)))

apply auto
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apply (frule evaln-abrupt-lemma, auto)+
done

simproc-setup evaln-abrupt (GH(Some zc,s) —e=—n— (w,s)) = ¢
K (K (fn ct =>
(case Thm.term-of ct of
(-3-%$-%8-9%-8% -8 (Const (const-name ¢ Pairy, -) $ (Const (const-name <Some),-) $ -)$ -))
=> NONE
| - => SOME (mk-meta-eq Q{thm evaln-abrupt}))))
)

lemma evaln-Litl: GFs —Lit v—>(if normal s then v else undefined)—n— s
apply (case-tac s, case-tac a = None)
by (auto intro!: evaln.Lit)

lemma Condl:

NAsl. [Grs —e—>=b—n— s1; GFsl —(if the-Bool b then el else e2)—>-v—n— s2] =
Grs —e ? el : e2—>(if normal s1 then v else undefined)—n— s2

apply (case-tac s, case-tac a = None)

by (auto intro!: evaln.Cond)

lemma evaln-SkipI [introl]: GFs —Skip—n— s
apply (case-tac s, case-tac a = None)
by (auto intro!: evaln.Skip)

lemma evaln-Exprl: G+s —e—=v—n— s' = GFs —FEzpr e—n— s’
apply (case-tac s, case-tac a = None)
by (auto intro!: evaln.Ezpr)

lemma evaln-Compl: [GFs —cl—n— s1; Grsl —c2—n— s2] = Gks —cl;; ¢2—n— s2
apply (case-tac s, case-tac a = None)
by (auto intro!: evaln.Comp)

lemma evaln-IfI:

[GFs —e—>v—n— s1; GFsl —(if the-Bool v then c1 else c2)—n— s2] =
Grs —If(e) cl Else c2—n— s2

apply (case-tac s, case-tac a = None)

by (auto intro!: evaln.If)

lemma evaln-SkipD [dest!]: Grs —Skip—n— s’ = s’ = s
by (erule evaln-cases, auto)

lemma evaln-Skip-eq [simp]: GFs —Skip—n— s’ = (s = s7)
apply auto
done

evaln implies eval

lemma evaln-eval:
assumes evaln: Gr-s0 —t-—n— (v,s1)
shows GFs0 —t>— (v,s1)
using evaln
proof (induct)
case (Loop sO e bn sl cs21s3)
note «GFNorm s0 —e—>b— si»
moreover
have if the-Bool b
then (GFs1 —c— s2) A
Grabupd (absorb (Cont 1)) s2 —I- While(e) ¢— s3
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else s8 = s1
using Loop.hyps by simp
ultimately show ?case by (rule eval.Loop)
next
case (Try s0 c1 n sl s2 C vn c2 s3)
note «G-Norm s0 —cl1— s1»
moreover
note <GFsl —szalloc— s2»
moreover
have if G,s2Fcatch C then GFnew-zcpt-var vn s2 —c2— s3 else s8 = s2
using Try.hyps by simp
ultimately show ?case by (rule eval. Try)
next
case (Init C ¢ s0 s3 n sl s2)
note <the (class G C) = o
moreover
have if inited C (globs s0)
then s3 = Norm s0
else GFNorm ((init-class-obj G C) s0)
—(if C = Object then Skip else Init (super ¢))— s1 A
Gh(set-lvars Map.empty) s1 —init c— s2 A
s8 = (set-lvars (locals (store s1))) s2
using Init.hyps by simp
ultimately show ?case by (rule eval.Init)
qed (rule eval.intros,(assumption+ | assumption?))+

lemma Suc-le-D-lemma: [Suc n <= m'; (Am. n <= m = P (Suc m)) ] = P m’
apply (frule Suc-le-D)

apply fast
done

lemma evaln-nonstrict [rule-format (no-asm), elim]:
Grs —t=—n— (w, s') = Vm. n<m — Grs —t=—m— (w, s)
apply (erule evaln.induct)
apply (tactic (ZALLGOALS (EVERY' [strip-tac context,
TRY o eresolve-tac context Q{thms Suc-le-D-lemma},
REPEAT o smp-tac context 1,
resolve-tac context Q{thms evaln.intros} THEN-ALL-NEW TRY o assume-tac context]))

apply (auto split del: if-split)
done

lemmas evaln-nonstrict-Suc = evaln-nonstrict [OF - le-refl [THEN le-Sucl]]

lemma evaln-maz2: [Grsl —t1>—nl— (wl, s1'); GFs2 —t2>—n2— (w2, s2')] =
GFsl —t1>=—max nl n2— (wl, s1') A Grs2 —t2=—maz nl n2— (w2, s2’)
by (fast intro: maz.coboundedl max.cobounded?)

corollary evaln-maz2E [consumes 2]:
[GFsl —t1>=—nl— (wl, s1'); GFs2 —t2>=—n2— (w2, s27);
[GFsl —t1>=—maz nl n2— (wl, s1');GFs2 —t2=—max nl n2— (w2, s2)] = P] = P
by (drule (1) evaln-maz2) simp

lemma evaln-max3:

[GFsl —t1>=—nl— (wl, s1); GFs2 —t2-—n2— (w2, s2'); GFs3 —t3=—n3— (w3, s8] =
GFsl —t1>=—maz (maz nl n2) n3— (wl, s1’) A

GFs2 —t2>=—mazx (maz nl n2) n3— (w2, s2) A

GFs3 —t3>=—mazx (maz n1 n2) n3— (w3, s3')
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apply (drule (1) evaln-maz2, erule thin-rl)
apply (fast intro!: mazx.cobounded1 max.cobounded?)
done

corollary evaln-maz3E:

[GFsl —t1>=—nl— (wl, s1'); GFs2 —t2>=—n2— (w2, s2'); GFs3 —t3=—n3— (w3, s3');

[GFs1 —t1>=—mazx (maz nl n2) n3— (wl, s1');
GFs2 —t2>=—max (maz nl n2) n3— (w2, s2');
GFs8 —t3>=—maz (maz nl n2) n3— (w3, s3')
|= P
|]= P
by (drule (2) evaln-maz8) simp

lemma le-maz3l1: (n2:nat) < max nl (maz n2 ns)
proof —
have n2 < maz n2 n3
by (rule maz.coboundedl)
also
have maz n2 n8 < maz nl (mazx n2 n3)
by (rule maz.cobounded2)
finally
show ?thesis .
qed

lemma le-maz3I2: (n3:nat) < max nl (maz n2 ns)
proof —
have n3 < maz n2 n3
by (rule max.cobounded?)
also
have maz n2 n8 < maz n1 (mazx n2 n3)
by (rule maz.cobounded2)
finally
show ?thesis .
qed

declare [[simproc del: wt-expr wt-var wt-exprs wi-stmt]]

eval implies evaln

lemma eval-evaln:
assumes eval: GFs0 —t-— (v,s1)
shows Jn. GHs0 —t>—n— (v,s1)
using eval
proof (induct)
case (Abrupt zc s t)
obtain n where

GH(Some zc, s) —t=—n— (undefined3 t, (Some zc, s))

by (iprover intro: evaln.Abrupt)
then show ?case ..

next

case Skip

show ?case by (blast intro: evaln.Skip)
next

case (Ezpr s0 e v s1)
then obtain n where
GFNorm s0 —e—>v—n— sl
by (iprover)
then have G-Norm s0 —FExpr e—n— sl

415
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by (rule evaln.Expr)
then show ?case ..
next
case (Lab s0 ¢ s11)
then obtain n where
GFNorm s0 —c—n— sl
by (iprover)
then have GFNorm s0 —I- c—n— abupd (absorb 1) s1
by (rule evaln.Lab)
then show ?case ..
next
case (Comp s0 cl sl c2 s2)
then obtain n! n2 where
GFNorm s0 —cl—nl— sl
GFsl —c2—n2— s2
by (iprover)
then have G-Norm s0 —cl;; c2—mazx nl n2— s2
by (blast intro: evaln.Comp dest: evaln-max2 )
then show ?case ..
next
case (If sO e b sl cl1 c2 s2)
then obtain n! n2 where
GFNorm s0 —e—»>b—nl— sl
GFs1 —(if the-Bool b then c1 else c2)—n2— s2
by (iprover)
then have GHNorm s0 —If(e) c1 Else ¢c2—maz nl n2— s2
by (blast intro: evaln.If dest: evaln-max2)
then show ?case ..
next
case (Loop s0 e b sl ¢ s21s3)
from Loop.hyps obtain nl1 where
GFNorm s0 —e—»b—nl— sl
by (iprover)
moreover from Loop.hyps obtain n2 where
if the-Bool b
then (GFsl —c—n2— s2 A
GH(abupd (absorb (Cont 1)) s2)—I1- While(e) c—n2— s3)
else s3 = sl
by simp (iprover intro: evaln-nonstrict maz.cobounded! maz.cobounded?)
ultimately
have Gr-Norm s0 —I- While(e) c—maz nl n2— s3
apply —
apply (rule evaln.Loop)
apply (iprover intro: evaln-nonstrict intro: mazx.coboundedl)
apply (auto intro: evaln-nonstrict intro: maz.cobounded?2)
done
then show ?case ..
next
case (Jmp s j)
fix n have G-Norm s —Jmp j—n— (Some (Jump j), s)
by (rule evaln.Jmp)
then show ?case ..
next
case (Throw s0 e a s1)
then obtain n where
GFNorm s0 —e—»a—n— sl
by (iprover)
then have GHNorm s0 — Throw e—n— abupd (throw a) sl
by (rule evaln. Throw)
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then show ?case ..
next

case (Try s0 ¢l s1 s2 catchC vn c2 s3)

from Try.hyps obtain nl where
GHNorm s0 —cl—nl— sl
by (iprover)

moreover

note szalloc = «GFsl —szalloc— s2»

moreover

from Try.hyps obtain n2 where
if G,s2Fcatch catchC then GFnew-zcpt-var vn s2 —c2—n2— s3 else s8 = s2
by fastforce

ultimately

have G+-Norm s0 —Try c1 Catch(catchC vn) c2—maz nl n2— s3
by (auto intro!: evaln.Try max.coboundedl maz.cobounded?)

then show ?case ..

next

case (Fin s0 c1 x1 sl c2 s2 s3)

from Fin obtain nl n2 where
G+-Norm s0 —cl—nl— (z1, s1)
GFNorm sl —c2—n2— s2

by iprover
moreover
note s3 = <s3 = (if Jerr. 1 = Some (Error err)
then (z1, s1)
else abupd (abrupt-if (x1 # None) z1) s2)
ultimately
have

GFNorm s0 —cl Finally c2—max nl n2— s3
by (blast intro: evaln.Fin dest: evaln-maxz2)
then show “case ..
next
case (Init C ¢ s0 s3 s1 s2)
note cls = <the (class G C) = ©
moreover from Init.hyps obtain n where
if inited C (globs s0) then s3 = Norm s0
else (GFNorm (init-class-obj G C' s0)
—(if C = Object then Skip else Init (super ¢))—n— s1 A
Gt set-lvars Map.empty s1 —init c—n— s2 A
$8 = restore-lvars s1 s2)
by (auto intro: evaln-nonstrict max.coboundedl maz.cobounded?)
ultimately have GHNorm s0 —Init C—n— s3
by (rule evaln.Init)
then show ?Zcase ..
next
case (NewC s0 C sl a s2)
then obtain n where
GFNorm s0 —Init C—n— sl
by (iprover)
with NewC
have GFNorm s0 —NewC C—>Addr a—n— s2
by (iprover intro: evaln.NewC)
then show Zcase ..
next
case (NewA s0 T sl e i s2 a s3)
then obtain n! n2 where
GFNorm s0 —init-comp-ty T—nl— sl
Grsl —e—>i—n2— s2
by (iprover)
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moreover
note «Grabupd (check-neg i) s2 —halloc Arr T (the-Intg i)-a— s3>
ultimately
have G+Norm s0 —New T[e]—>Addr a—maz nl n2— s3
by (blast intro: evaln.NewA dest: evaln-maz2)
then show ?case ..
next
case (Cast s0 e v s1 s2 castT)
then obtain n where
GFNorm s0 —e—»v—n— sl
by (iprover)
moreover
note <s2 = abupd (raise-if (= G,snd sitv fits castT) ClassCast) s1»
ultimately
have G+Norm s0 —Cast castT e—>=v—n— s2
by (rule evaln.Cast)
then show ?case ..
next
case (Inst sO0 e v si b T)
then obtain n where
GFNorm s0 —e—»v—n— sl
by (iprover)
moreover
note b = (v # Null A G,snd s1tv fits RefT T)»
ultimately
have G+Norm s0 —e InstOf T—»>Bool b—n— sl
by (rule evaln.Inst)
then show ?case ..
next
case (Lit s v)
fix n have G-Norm s —Lit v—>=v—n— Norm s
by (rule evaln.Lit)
then show ?case ..
next
case (UnOp s0 e v s1 unop)
then obtain n where
GFNorm s0 —e—»v—n— sl
by (iprover)
hence GF-Norm s0 —UnOp unop e—>eval-unop unop v—n— sl
by (rule evaln.UnOp)
then show ?case ..
next
case (BinOp s0 el vl sl binop e2 v2 s2)
then obtain n! n2 where
GFNorm s0 —el—>vl—nl— sl
Grs1 —(if need-second-arg binop vl then Inil e2
else Inir Skip)=—n2— (Inl v2, s2)
by (iprover)
hence GHNorm s0 —BinOp binop el e2—>(eval-binop binop vl v2)—maz nl n2
— s2
by (blast intro!: evaln.BinOp dest: evaln-maz2)
then show ?case ..
next
case (Super s)
fix n have G+-Norm s —Super—>-wval-this s—n— Norm s
by (rule evaln.Super)
then show ?case ..
next
case (Acc sO va v f s1)
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then obtain n where
GFNorm s0 —va=>(v, f)—n— s1
by (iprover)
then
have G+Norm s0 —Acc va—>v—n— sl
by (rule evaln.Acc)
then show ?case ..
next
case (Ass s0 var w f s1 e v s2)
then obtain ni n2 where
GFNorm s0 —var=»(w, f)—nl— si
Grsl —e—>v—n2— s2
by (iprover)
then
have G+-Norm s0 —var:=e—>=v—max nl n2— assign f v s2
by (blast intro: evaln.Ass dest: evaln-maz2)
then show ?case ..
next
case (Cond s0 e0 b s1 el e2 v s2)
then obtain ni n2 where
GFNorm s0 —e0—>b—nl1— sl
GFs1 —(if the-Bool b then el else e2)—=v—n2— s2
by (iprover)
then
have G+Norm s0 —e0 ? el : e2—»=v—maz nl n2— s2
by (blast intro: evaln.Cond dest: evaln-maz2)
then show ?Zcase ..
next
case (Call s0 e a’ sl args vs s2 invDeclC mode statT mn pTs' s3 s3' accC’ v s4)
then obtain ni n2 where
G+-Norm s0 —e—»=a'—nl— sl
GFsl —args=>vs—n2— s2
by iprover
moreover
note <invDeclC = invocation-declclass G mode (store s2) o’ statT
(name=mn,parTs=pTs')»
moreover
note <s3 = init-lvars G invDeclC (name=mn,parTs=pTs’) mode o’ vs s2)
moreover
note «s3'=check-method-access G accC’ statT mode (name=mn,parTs=pTs’) a’ s3>
moreover
from Call.hyps
obtain m where
GFs3’ —Methd invDeclC (name=mn, parTs=pTs')—=v—m— s4
by iprover
ultimately
have G+Norm s0 —{accC’ statT ,mode}e-mn( {pTs'}args)—-v—maz nl (maz n2 m)—
(set-lvars (locals (store s2))) s4
by (auto intro!: evaln.Call maz.coboundedl le-maz3I1 le-maz312)
thus ?case ..
next
case (Methd s0 D sig v s1)
then obtain n where
GFNorm s0 —body G D sig—-v—n— sl
by iprover
then have GHNorm s0 —Methd D sig—>-v—Suc n— sl
by (rule evaln.Methd)
then show ?case ..
next

419
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case (Body s0 D s1 ¢ s2 s3)
from Body.hyps obtain ni n2 where
evaln-init: GFNorm s0 —Init D—nl— sI and
evaln-c: GFs1 —c—n2— s2
by (iprover)
moreover
note <s3 = (if 3. fst s2 = Some (Jump (Break 1)) V
fst s2 = Some (Jump (Cont 1))
then abupd (Azx. Some (Error CrossMethodJump)) s2
else s2)»
ultimately
have
GFNorm s0 —Body D c—>the (locals (store s2) Result)—maz nl n2
— abupd (absorb Ret) s3
by (iprover intro: evaln.Body dest: evaln-maz2)
then show “case ..
next
case (LVar s vn )
obtain n where
G+Norm s —LVar vn=>lvar vn s—n— Norm s
by (iprover intro: evaln.LVar)
then show ?case ..
next
case (F'Var s0 statDeclC s1 e a s2 v s2' stat fn s3 accC')
then obtain n! n2 where
GFNorm s0 —Init statDeclC—nl— sli
Gksl —e—>a—n2— s2
by iprover
moreover
note «s3 = check-field-access G accC statDeclC fn stat a s2"
and «(v, s2’) = fvar statDeclC stat fn a $2)
ultimately
have GFNorm s0 —{accC,statDeclC stat}e..fn=-v—maz nl n2— s3
by (iprover intro: evaln.FVar dest: evaln-maz2)
then show ?case ..
next
case (AVar s0 el a s1 e2i s2 v s2’)
then obtain n! n2 where
GFNorm s0 —el—>a—nl— sl
Grsl —e2—>i—n2— s2
by iprover
moreover
note «(v, s2) = avar G i a s2»
ultimately
have GF-Norm s0 —el.[e2]=>v—maz nl n2— s2’
by (blast intro!: evaln.AVar dest: evaln-maz2)
then show “case ..
next
case (Nil s0)
show ?case by (iprover intro: evaln.Nil)
next
case (Cons s0 e v s1 es vs $2)
then obtain n! n2 where
GFNorm s0 —e—>v—nl— sl
GFsl —es=>vs—n2— s2
by iprover
then
have GFNorm s0 —e # es==v # vs—max nl n2— s2
by (blast intro!: evaln.Cons dest: evaln-maz2)
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then show ?case ..
qed

end
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Chapter 21

Trans

theory Trans imports FEvaln begin

definition
groundVar :: var = bool where
groundVar v <— (case v of
LVar In = True
| {accC\statDeclC\stat}e..fn = 3 a. e=Lit a
| el.[e2] = 3 ai. el= Lita N e2 = Lit i
| InsInitV ¢ v = False)

lemma groundVar-cases:
assumes ground: groundVar v
obtains (LVar) In where v=LVar In
| (FVar) accC statDeclC stat a fn where v={accC,statDeclC,stat}(Lit a)..fn
| (AVar) a i where v=(Lit a).[Lit 1]
using ground LVar FVar AVar
by (cases v) (auto simp add: groundVar-def)

definition
groundEzprs :: expr list = bool
where groundEzprs es «— (Ve € set es. Jv. e = Lit v)

primrec the-val:: expr = wval
where the-val (Lit v) = v

primrec the-var:: prog = state = var = (vvar x state) where

the-var G s (LVar In) = (lvar In (store s),s)
| the-var-FVar-def: the-var G s ({accC,statDeclC,stat}a..fn) =fvar statDeclC stat fn (the-val a) s
| the-var-AVar-def: the-var G s(a.[7]) =avar G (the-val 7) (the-val a) s

lemma the-var-FVar-simp|simp]:
the-var G s ({accC,statDeclC stat}(Lit a)..fn) = fvar statDeclC stat fn a s

by (simp)
declare the-var-FVar-def [simp del]

lemma the-var-AVar-simp:
the-var G s ((Lit a).[Lit {]) = avar G i a s

by (simp)
declare the-var-AVar-def [simp del]

abbreviation
Ref :: loc = expr
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where Ref a == Lit (Addr a)

abbreviation
SKIP :: expr
where SKIP == Lit Unit

inductive
step :: [prog,term x state,term x state] = bool (<-+- —1 -»[61,82,82] 81)
for G :: prog

where

Abrupt: [Vov. t £ (Lit v);
YV bt # (I Skip);
YV Cunc. t+# (Try Skip Catch(C vn) c);
YV z c. t # (Skip Finally ¢) N\ xc # Xcpt
YV ac. t# (FinA ac)
.
GH(t,Some xc,s) —1 ({Lit undefined),Some zc,s)

| InsInitE: [GH({c),Norm s) —1 ({¢/), s"]
—
GF({InsInitE c e€),Norm s) —1 ({InsInitE c' €), s’)

| NewC: GH((NewC C),Norm s) —1 ({InsInitE (Init C') (NewC C)), Norm s)
| NewClInited: [G+ Norm s —halloc (CInst C)»a— s']

—

Gr({InsInitE Skip (NewC C)),Norm s) —1 ({Ref a), s')

| NewA:

GH((New Te]),Norm s) —1 ({InsInitE (init-comp-ty T) (New T'[e])),Norm s)
| InsInitNewAldz:

[GF({e),Norm s) —1 ({e'), s)]

=

Gr((InsInitE Skip (New Tle])),Norm s) —1 ({InsInitE Skip (New T[e'])),s’)
| InsInitNewA:

[GFabupd (check-neg i) (Norm s) —halloc (Arr T (the-Intg i))=a— s’ ]

_—

GH({InsInitE Skip (New T[Lit i])),Norm s) —1 ({Ref a),s’)

| CastE:
[G-({e),Norm s) —1 ({e'),s")]
_
GH((Cast T e),None,s) —1 ({Cast T e),s’)
| Cast:
[s' = abupd (raise-if (—G,stv fits T) ClassCast) (Norm s)]
.
GH((Cast T (Lit v)),Norm s) —1 ({Lit v),s’)
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| InstE: [GF({e),Norm s) —1 ({(e":expr),s)]
.
GH({e InstOf T),Norm s) —1 ({e'},s")
| Inst: [b = (v#Null A G,stv fits RefT T)]
_
GF({(Lit v) InstOf T),Norm s) —1 ({Lit (Bool b)),s’)

| UnOpE: [GF({e),Norm s) —1 ({€"},s") ]
_—
GH({UnOp unop e),Norm s) —1 ((UnOp unop e’),s’)
| UnOp:  GH({UnOp unop (Lit v)),Norm s) —1 ((Lit (eval-unop unop v)),Norm s)

| BinOpE1: [GH({el),Norm s) —1 ({e1'),s’) ]
_—
GH({(BinOp binop el e2),Norm s) —1 ({BinOp bmop el’ e2),s’)
| BinOpE2: [need-second-arg binop v1; G+((e2),Norm s) —1 ({(e2"),s") ]
_—
GH((BinOp binop (Lit v1) e2),Norm s)
1 ({(BinOp binop (Lit v1) e2’),s’)
| BinOpTerm: [— need-second-arg binop v1]
_
GH((BinOp binop (Lit v1) e2),Norm s)
1 ({(Lit v1),Norm s)
| BinOp:  G+((BinOp binop (Lit v1) (Lit v2)),Norm s)
1 ((Lit (eval-binop binop vl v2)),Norm s)

| Super: GH({Super),Norm s) —1 ({Lit (val-this s)),Norm s)

| AccVA: [GF({va),Norm s) —1 ({va'),s’) ]
=
GH({Acc va),Norm s) —1 ({Acc va'},s")
| Ace: [groundVar va; ((v,vf),s’) = the-var G (Norm s) va]
—
GH((Acc va),Norm s) —1 ((Lit v),s’)

| AssVA: [GF({va),Norm s) —1 ({va'),s")]
_—
GF({va:=e),Norm s) —1 ((va"=e),s’)
| AssE:  [groundVar va; GH({€),Norm s) —1 ({€},s)]
_—
GH({va:=e),Norm s) —1 ({va:=e’),s’)
| Ass: [groundVar va; ((w,f),s’) = the-var G (Norm s) va]
_
GF({va:=(Lit v)),Norm s) —1 ({Lit v),assign f v s’)

| CondC': [GH({e0),Norm s) —1 ({e0),s")]
_—
GH((e0? el:e2),Norm s) —1 ({e0'? el:e2),s")
| Cond: G((Lit b? el:e2),Norm s) —1 ((if the-Bool b then el else e2),Norm s)

| CallTarget: [GF({e),Norm s) —1 ({e'),s")]
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.
GH(({accC,statT,mode}e-mn({pTs}args)),Norm s)
—1 ({{accC,statT,mode} e’ mn({pTs}args)),s’)
| CallArgs:  [GH({args),Norm s) —1 ({args’},s")]
_—
GH({{accC,statT,mode} Lit a-mn({pTs}args)),Norm s)
—1 (({accC,statT ,mode} Lit a-mn({pTs}targs’)),s")
| Call: lgroundEzxprs args; vs = map the-val args;
D = invocation-declclass G mode s a statT (name=mn,parTs=pTs));
s'=init-lvars G D (name=mn,parTs=pTs)) mode a’ vs (Norm s)]
_—
GH({{accC,statT ,mode} Lit a-mn({pTs}args)),Norm s)
—1 ((Callee (locals s) (Methd D (name=mn,parTs=pTs))),s")

| Callee:  [GF({€),Norm s) —1 ({e’:expr),s")]
—
GrH((Callee lcls-caller e),Norm s) —1 ({e),s")

| CalleeRet: Gr({Callee lcls-caller (Lit v)),Norm s)
—1 ((Lit v),(set-lvars lcls-caller (Norm s)))

| Methd: GH({Methd D sig),Norm s) —1 ((body G D sig),Norm s)
| Body: GH-((Body D c),Norm s) —1 ({InsInitE (Init D) (Body D c)),Norm s)

| InsInitBody:
[GH({c),Norm s) —1 ({c'),s")]
—
GH({InsInitE Skip (Body D c)),Norm s) w—1({InsInitE Skip (Body D c¢')),s’)
| InsInitBodyRet:
GH({InsInitE Skip (Body D Skip)),Norm s)
—1 ((Lit (the ((locals s) Result))),abupd (absorb Ret) (Norm s))

| FVar: [— inited statDeclC (globs s)]
_—
GH({{acecC,statDeclC,stat}e..fn), Norm s)
—1 ((InsInitV (Init statDeclC) ({accC,statDeclC,stat}e..fn)),Norm s)
| InsInitFVarkE:
[GH({e),Norm s) —1 ({e”),s)]
_—
GH({InsInitV Skip ({accC,statDeclC,stat}e..fn)),Norm s)
—1 ({InsInitV Skip ({accC,statDeclC stat}e’..fn)),s")
| InsInitF Var:
GF({InsInitV Skip ({accC,statDeclC,stat}Lit a..fn)),Norm s)
—1 ({({accC,statDeclC\stat} Lit a..fn),Norm s)
— Notice, that we do not have literal values for vars. The rules for accessing variables (Aecc) and assigning to
variables (Ass), test this with the predicate groundVar. After initialisation is done and the F'Var is evaluated,
we can’t just throw away the InsInitF'Var term and return a literal value, as in the cases of New or NewC.
Instead we just return the evaluated F'Var and test for initialisation in the rule F'Var.

| AVarE1: [GH({el),Norm s) —1 ({e1'),s")]
_
GH({el.[e2]),Norm s) —1 ({el'[e2]),s")

| AVarE2: GH({e2),Norm s) —1 ({e2"),s")
=
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GH((Lit a.]e2]),Norm s) —1 ((Lit a.[e2]),s’)

— Nil is fully evaluated

| ConsHd: [GF({e::expr),Norm s) —1 ({e":expr),s”)]
.
GH({e#es),Norm s) —1 ({e'#es),s")

| ConsTl: [GH({es),Norm s) —1 ({es'),s")]
_—
GH({(Lit v)#es),Norm s) —1 ({(Lit v)#es’),s’)

| Skip: GH({Skip),Norm s) —1 ({(SKIP),Norm s)

| ExprE: [GF({e),Norm s) —1 ({e'),s")]
.
GF({Ezpr e),Norm s) —1 ((Expr e’),s’)
| Expr: GH({(Ezpr (Lit v)),Norm s) —1 ({Skip),Norm s)

| LabC: [GF({c),Norm s) —1 ({c},s"]
.
GH((l- ¢),Norm s) —1 ({I- ¢},s")
| Lab: GH({I- Skip),s) —1 ({Skip), abupd (absordb 1) s)

| CompC1: [GH({c1),Norm s) —1 ({c1'},s")]
.
GH({cl;; ¢2),Norm s) —1 ({c1%; ¢2),s")

| Comp:  GH({Skip;; c¢2),Norm s) —1 ({(c2),Norm s)

| IfE: [GH({€) ,Norm s) —1 ({€'),s")]
_

GH((If(e) sl Else s2),Norm s) —1 ((If(e’) sl Else s2),s")

| If: GH({If(Lit v) s1 Else s2),Norm s)
—1 ((if the-Bool v then s1 else s2),Norm s)

| Loop: GH({l- While(e) c),Norm s)

—1 ({If(e) (Cont l-c;; I+ While(e) ¢) Else Skip),Norm s)

| Jmp: GH({Jmp j),Norm s) —1 ((Skip),(Some (Jump j7), s))

| ThrowE: [GF({e),Norm s) —1 ({e'),s")]
—
GH({Throw e),Norm s) —1 ({Throw e’),s’)

| Throw: GF({Throw (Lit a)),Norm s) —1 ({Skip),abupd (throw a) (Norm s))

| TryC1: [GH({c1),Norm s) —1 ({c17),s")]
_—
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G-((Try c1 Catch(C vn) ¢2), Norm s) —1 ({(Try c1’ Catch(C vn) c2),s’)
| Try: [Grs —szalloc— s']
.
GH((Try Skip Catch(C vn) c2), )
—1 (if G,s'*catch C then ((c2),new-zcpt-var vn s’)
else ((Skip),s’))

| FinC1: [GH((c1),Norm s) —1 ({(¢1'),s")]
=
GH({c1 Finally c2),Norm s) —1 ({c1’ Finally c2),s’)

| Fin:  GH({Skip Finally c2),(a,s)) —1 ({(FinA a ¢2),Norm s)

| FinAC: [GH({c),s) —1 ({¢'),s")]
_—
GH((FinA a c),s) —1 ((FinA a c’),s")
| FinA: GH({(FinA a Skip),s) —1 ((Skip),abupd (abrupt-if (a#None) a) s)

| Indt1: [inited C (globs s)]
—
GH({Init C'),Norm s) —1 ({Skip),Norm s)
| Init: [the (class G C)=c; — inited C (globs s)]
_—
GH({Init C'),Norm s)
—1 (((if C = Object then Skip else (Init (super c)));;
Ezpr (Callee (locals s) (InsInitE (init ¢) SKIP)))
,Norm (init-class-obj G C's))
— InsInitE is just used as trick to embed the statement init ¢ into an expression
| InsInitESKIP:
GH({InsInitE Skip SKIP),Norm s) —1 ({(SKIP),Norm s)

abbreviation
stepn:: [prog, term X state,nat,term x state] = bool (<-+- - -[61,82,82] 81)
where Gtp —n p’' = (p,p)) € {(z, y). step Gz y} n

abbreviation

steptr:: [prog,term X state,term X state] = bool («-+- —x -»[61,82,82] 81)
where Gtp —x* p’ = (p,p) € {(z, y). step G = y}*

end
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AxSem

1 Axiomatic semantics of Java expressions and statements (see also Eval.thy)

theory AzSem imports Fuvaln TypeSafe begin

design issues:

a strong version of validity for triples with premises, namely one that takes the recursive depth
needed to complete execution, enables correctness proof

o auxiliary variables are handled first-class (-> Thomas Kleymann)

o expressions not flattened to elementary assignments (as usual for axiomatic semantics) but
treated first-class => explicit result value handling

o intermediate values not on triple, but on assertion level (with result entry)
o multiple results with semantical substitution mechnism not requiring a stack

e because of dynamic method binding, terms need to be dependent on state. this is also useful
for conditional expressions and statements

o result values in triples exactly as in eval relation (also for xcpt states)

o validity: additional assumption of state conformance and well-typedness, which is required for
soundness and thus rule hazard required of completeness

restrictions:

o all triples in a derivation are of the same type (due to weak polymorphism)

type-synonym res = vals — result entry

abbreviation (input)
Val where Vol z == Inl z

abbreviation (input)
Var where Var x == In2 ¢

abbreviation (input)
Vals where Vals . == In8 z

syntax

-Val  : [pttrn] => pttrn («Val:- [951] 950)
-Var [pttrn] => pttrn - (<Var:-  [951] 950)
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-Vals :: [pttrn] => pttrn (< Vals:-» [951] 950)

translations
AVal:v . b == (Av. b) o CONST the-In1
AVar:v . b == (Av. b) o CONST the-In2
AVals:v. b == (Av. b) o CONST the-In3

— relation on result values, state and auxiliary variables
type-synonym ’‘a assn = res = state = 'a = bool
translations

(type) 'a assn <= (type) vals = state = 'a = bool

definition
assn-imp :: 'a assn = 'a assn = bool (infixr = 25)
where (P= Q) =NVYsZ. PYsZ — QYs2Z)

lemma assn-imp-def2 [iff|: (P = Q)= (VY sZ. PYsZ — QYsZ)
apply (unfold assn-imp-def)

apply (rule HOL.refl)

done

assertion transformers

2 peek-and

definition
peek-and :: 'a assn = (state = bool) = 'a assn (infixl (A.» 13)
where (PA.p) =AY sZ. PYsZ Aps)

lemma peek-and-def2 [simp): peek-and Pp Y s = (AZ. (P Y s Z AN ps))
apply (unfold peek-and-def)

apply (simp (no-asm))

done

lemma peek-and-Not [simp]: (P A. (As. = fs)) = (P A. Not o f)
apply (rule ext)

apply (rule ext)

apply (simp (no-asm))

done

lemma peek-and-and [simp): peek-and (peek-and P p) p = peek-and P p
apply (unfold peek-and-def)

apply (simp (no-asm))

done

lemma peek-and-commut: (P A. p A. q) = (P A. q A. p)
apply (rule ext)
apply (rule ext)
apply (rule ext)

apply auto

done

abbreviation
Normal :: 'a assn = 'a assn
where Normal P == P A. normal

lemma peek-and-Normal [simpl: peek-and (Normal P) p = Normal (peek-and P p)
apply (rule ext)
apply (rule ext)
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apply (rule ext)
apply auto
done

3 assn-supd

definition
assn-supd :: 'a assn = (state = state) = 'a assn (infixl .» 13)
where (P ;. f) = (A\Y s’ Z.3s. PYsZ Ns'=fs)

lemma assn-supd-def2 [simpl: assn-supd P fY s' Z = (3s. PYsZ Ns' =fs)
apply (unfold assn-supd-def)

apply (simp (no-asm))

done

4 supd-assn

definition
supd-assn :: (state = state) = 'a assn = 'a assn (infixr <.;» 13)
where (f ; P) = (AYs. PY (fs))

lemma supd-assn-def2 [simpl: (f ; P) Ys=PY (fs)
apply (unfold supd-assn-def)

apply (simp (no-asm))

done

lemma supd-assn-supdD [elim]: ((f 5 Q) ;. f) YsZ = QY s Z
apply auto
done

lemma supd-assn-supdl [elim]: Q Y s Z = (f 5 (Q ;. f)) YsZ
apply (auto simp del: split-paired-Ex)
done

5 subst-res

definition
subst-res :: 'a assn = res = 'a assn (s-+-» [60,61] 60)
where P+<w = (A\Y. P w)

lemma subst-res-def2 [simp]: (P<w) Y = Pw
apply (unfold subst-res-def)

apply (simp (no-asm))

done

lemma subst-subst-res [simp]: P+~ w+v = P+w
apply (rule ext)

apply (simp (no-asm))

done

lemma peek-and-subst-res [simp]: (P A. p)<w = (P+w A. p)
apply (rule ext)

apply (rule ext)

apply (simp (no-asm))

done

6 subst-Bool

definition
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subst-Bool :: 'a assn = bool = 'a assn («-+—=-» [60,61] 60)
where P<—=b = (A\Y s Z. 3v. P (Val v) s Z A (normal s — the-Bool v=>0))

lemma subst-Bool-def2 [simp]:

(P+=b) YsZ = 3v. P (Valv) s Z A (normal s — the-Bool v="0))
apply (unfold subst-Bool-def)

apply (simp (no-asm))

done

lemma subst-Bool-the-Booll: P (Val b) s 7 = (P<+=the-Bool b) Y s Z
apply auto
done

7 peek-res

definition
peek-res :: (res = 'a assn) = 'a assn
where peek-res Pf = (A\Y. Pf YY)

syntax

-peek-res :: pttrn = 'a assn = 'a assn (A= - [0,3] 3)
syntax-consts

-peek-res == peek-res
translations

Aw:. P == CONST peek-res (Aw. P)

lemma peek-res-def2 [simp|: peek-res PY = P Y Y
apply (unfold peek-res-def)

apply (simp (no-asm))

done

lemma peek-res-subst-res [simp]: peek-res P<—w = P w«w
apply (rule ext)

apply (simp (no-asm))

done

lemma peek-subst-res-alll:

(Aa. Ta (P (fa)«fa)) = Va. T a (peek-res P+f a)
apply (rule alll)

apply (simp (no-asm))

apply fast

done

8 ign-res

definition
ign-res :: 'a assn = ‘a assn (- [1000] 1000)
where Pl = (A\Y s Z.3Y. P Ys 2Z)

lemma ign-res-def2 [simp]: Pl Y s Z = (3Y.P Y s 2Z)
apply (unfold ign-res-def)

apply (simp (no-asm))

done

lemma ign-ign-res [simp]: Pl} = P|
apply (rule ext)
apply (rule ext)
apply (rule ext)
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apply (simp (no-asm))
done

lemma ign-subst-res [simp]: Pl«w = P
apply (rule ext)

apply (rule ext)

apply (rule ext)

apply (simp (no-asm))

done

lemma peek-and-ign-res [simp]: (P A. p)L = (P} A. p)
apply (rule ext)

apply (rule ext)

apply (rule ext)

apply (simp (no-asm))

done

9 peek-st

definition
peek-st 2 (st = 'a assn) = 'a assn
where peek-st P = (AY s. P (store s) Y s)

syntax

-peek-st  :: pttrn = 'a assn = 'a assn (<A-.. - [0,3] 3)
syntax-consts

-peek-st == peek-st
translations

As.. P == CONST peek-st (As. P)

lemma peek-st-def2 [simp]: (As.. Pfs) Y s = Pf (store s) Y's
apply (unfold peek-st-def)

apply (simp (no-asm))

done

lemma peek-st-triv [simp]: (As.. P) = P
apply (rule ext)

apply (rule ext)

apply (simp (no-asm))

done

lemma peek-st-st [simp]: (As.. As’.. P s s’) = (As.. Pss)
apply (rule ext)

apply (rule ext)

apply (simp (no-asm))

done

lemma peek-st-split [simp]: (As.. AY s'. Ps Y s') = (AY s. P (store s) Y s)

apply (rule ext)
apply (rule ext)
apply (simp (no-asm))
done

lemma peek-st-subst-res [simp]: (As.. P s)<w = (As.. P s¢w)
apply (rule ext)

apply (simp (no-asm))

done

lemma peek-st-Normal [simp]: (As..(Normal (P s))) = Normal (As.. P s)
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apply (rule ext)
apply (rule ext)
apply (simp (no-asm))
done

10 ign-res-eq

definition
ign-res-eq :: 'a assn = res = 'a assn (<-l=-» [60,61] 60)
where Pl=w = (AY:. P] A. (As. Y=w))

lemma ign-res-eq-def2 [simp]: (Pl=w) Y s Z =(3Y.PYsZ) N Y=uw)
apply (unfold ign-res-eq-def)

apply auto

done

lemma ign-ign-res-eq [simp]: (Pl=w)| = P|
apply (rule ext)

apply (rule ext)

apply (rule ext)

apply (simp (no-asm))

done

lemma ign-res-eq-subst-res: Pl=w+w = P
apply (rule ext)

apply (rule ext)

apply (rule ext)

apply (simp (no-asm))

done

lemma subst-Bool-ign-res-eq: (P<—=b)l=x) Y s Z = (P<=b) Y s Z A Y=x)

apply (simp (no-asm))
done

11 RefVar

definition
RefVar :: (state = vvar X state) = 'a assn = 'a assn (infixr <..;» 13)
where (vf ..; P) = (AY s. let (v,8") = vf sin P (Var v) s')

lemma RefVar-def2 [simp]: (vf ..; P) Vs =
P (Var (fst (vf 5))) (snd (vf s))

apply (unfold RefVar-def Let-def)

apply (simp (no-asm) add: split-beta)

done

12 allocation

definition
Alloc :: prog = obj-tag = 'a assn = 'a assn
where Alloc G otag P = (A\Y s Z. Vs’ a. GFs —halloc otag=a— s'— P (Val (Addr a)) s’ Z)

definition
SXAlloc :: prog = 'a assn = 'a assn
where SXAlloc G P = (A\Y s Z.Vs'. GFs —szalloc— s' — P Y s' Z)
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lemma Alloc-def2 [simp]: Alloc G otag P Y s Z =
(Vs" a. Grs —halloc otag=a— s'— P (Val (Addr a)) s’ Z)
apply (unfold Alloc-def)
apply (simp (no-asm))
done

lemma SXAlloc-def2 [simp]:
SXAlloc GPYs Z = (Vs Gks —szalloc— s’ — P Y s’ Z)
apply (unfold SXAlloc-def)
apply (simp (no-asm))
done

validity

definition
type-ok :: prog = term = state = bool where
type-ok G t s =
(3L T C A. (normal s — (prg=G,cls=C,lcl=L)Ft::T A
(prg=G,cls=C,lcl=L)Fdom (locals (store s))»t»A)
A s:=(G,L))

datatype ’a triple = triple ('a assn) term ('a assn)

(L)} =/ {1 [3,65,3] 75)

type-synonym ’a triples = 'a triple set

abbreviation
var-triple  :: ['a assn, var ,Ja assn| = 'a triple
(LY ==/ {1} [3,50,9] 75)
where {P} e=> {Q} == {P} In2 e~ {Q}

abbreviation
expr-triple :: ['a assn, expr ,'a assn| = 'a triple
({1} =/ {1} [3,50,9] 75)
where {P} e—> {Q} == {P} Inll e~ {Q}

abbreviation
exprs-triple :: ['a assn, expr list ,’a assn] = 'a triple
({(1-)}/ ==/ {(1)}  [3,65,3] 75)
where {P} e=> {Q} == {P} In3 e~ {Q}

abbreviation
stmit-triple :: ['a assn, stmt, 'a assn] = 'a triple
(A1} o~/ ()b [5.65,3) 75)
where {P} .c. {Q} == {P} Inlr ¢~ {Q}

notation (ASCII)
triple (<{(1-)}/ >/ {(1-)} [5,65,3]75) and
var-triple («{(1-)}/ =>/ {(1-)p  [3,80,3] 75) and
expr-triple («{(1-)}/ -—>/ {(1-)p  [3,80,3] 75) and
exprs-triple ({(1-)}/ #>/ {(1-)p»  [3,65,3] 75)

lemma inj-triple: inj (A\(P,t,Q). {P} t- {Q})
apply (rule inj-onI)

apply auto

done

lemma triple-inj-eq: ({P} t= {Q} = {P'} t'> {Q'} ) = (P=P' A t=t' A Q=Q")

apply auto
done

435



436

definition mtriples :: ('c = 'sig = 'a assn) = (‘¢ = 'sig = expr) =
(e = 'sig = 'a assn) = ('c x 'sig) set = 'a triples (({{(1-)}/ -—=/ {(1-)} | -}[58,65,5,65]75)
where

{{P} tf—> {Q} | ms} = (A\(C,sig). {Normal(P C sig)} tf C sig—= {Q C sig})‘ms

definition
triple-valid :: prog = nat = 'a triple = bool (<-E-:-» [61,0, 58] 57)
where
GEn:t =
(case t of {P} t~ {Q} =
VYsZ. PYsZ — type-ok Gt s —
VY's GFs —t=—n— (Y's") — Q Y's' 7))

abbreviation
triples-valid:: prog = nat = ’a triples = bool (:-|[=-:- [61,0, 58] 57)
where G|E=n:ts == Ball ts (triple-valid G n)

notation (ASCII)
triples-valid ( «-||=-:-» [61,0, 58] 57)

definition
az-valids :: prog = 'b triples = 'a triples = bool («-,-||=- [61,58,58] 57)
where (G,A4|=ts) = (Vn. GlEnA — G|En:ts)

abbreviation
az-valid :: prog = 'b triples = 'a triple = bool («-,-|=- [61,58,58] 57)
where G, A =t == G, A|={t}

notation (ASCII)
az-valid ( <-,-|=- [61,58,58] 57)

lemma triple-valid-def2: Gl=n:{P} t~ {Q} =
NVYsZ PYsZ
— (3L. (normal s — (3 C T A. (prg=G,cls=C,lcl=L)Ft::T A
(prg=G,cls=C,lcl=L)Fdom (locals (store s))»t»A)) A
s:=(G,L))
— VY’ s GFs —t-—n— (Y's)— Q Y' s’ Z))
apply (unfold triple-valid-def type-ok-def)
apply (simp (no-asm))
done

declare split-paired-All [simp del] split-paired-Ex [simp del]
declare if-split  [split del] if-split-asm  [split del]
option.split [split del] option.split-asm [split del]
setup «map-theory-simpset (fn ctat => ctat |> Simplifier.del-loop split-all-tac)>
setup «map-theory-claset (fn ctzt => ctxt delSWrapper split-all-tac)»

inductive
az-derivs :: prog = 'a triples = 'a triples = bool («-,-|F-» [61,58,58] 57)
and az-deriv :: prog = 'a triples = 'a triple = bool («<-,-+-» [61,58,58] 57)
for G :: prog

where

G.At = G At}
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| empty: G,AF{}
| insert:[G,AFt; G AlFts] =
G,AlFinsert t ts

| asm: tsCA = G,Alts

| weaken:[G,AlFts’; ts C ts'] = G,A|+ts

| conseqVY sZ . P YsZ — (3P’ Q. GAH{P} t~ {Q'} A VY’ 5"
VY Z.P'YsZ — Q' Y's' Z) —
Q Vs 7))
= GAH{P } t-{Q }

| hazard:G,AH{P A. Not o type-ok G t} t- {Q}
| Abrupt: G,AH{P<(undefined3 t) A. Not o normal} t>- {P}

— variables
| LVar: G,AH{Normal (As.. P<Var (lvar vn s))} LVar vn=» {P}

| FVar: [G,A-{Normal P} .Init C. {Q};
G, AH{Q} e—>= {A\Val:a:. fvar C stat fn a ..; R}] =
G,A-{Normal P} {accC,C,stat}e..fn=- {R}

| AVar: [G,AF{Normal P} el—> {Q};
Va. GAFH{Q«Val a} e2—> {AVal:i:. avar Gia ..; R}] =
G,A-{Normal P} el.[e2]=+ {R}

— expressions

| NewC: [G,AF{Normal P} .Init C. {Alloc G (Cnst C) Q}] =
G, A-{Normal P} NewC C—= {Q}

| NewA: [G,A-{Normal P} .init-comp-ty T. {Q}; G, AFH{Q} e—>
{A\Val:i:. abupd (check-neg i) .; Alloc G (Arr T (the-Intg 7)) R}] =
G, AF{Normal P} New T[e]—> {R}

| Cast: [G,A-{Normal P} e—> {AVal:v:. As..
abupd (raise-if (—G,stv fits T) ClassCast) .; Q< Val v}] =
G,A-{Normal P} Cast T e—> {Q}

| Inst: [G,AF{Normal P} e—> {AVal:v:. As..
Q< Val (Bool (v#Null A G,stv fits RefT T))}] =
G,AH{Normal P} e InstOf T—= {Q}

| Lit: G,AF{Normal (P<Val v)} Lit v—> {P}

| UnOp: [G,AF{Normal P} e—~ {AVal:v:. Q< Val (eval-unop unop v)}]
=
G,A-{Normal P} UnOp unop e—+ {Q}

| BinOp:
[G,A-{Normal P} el —> {Q};
Vol. GAH{Q« Val v1}
(if need-second-arg binop vl then (In1l e2) else (Inlr Skip))>
{AVal:v2:. R+ Val (eval-binop binop vl v2)}]
.
G,AH{Normal P} BinOp binop el e2—> {R}
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| Super: G,AF{Normal (As.. P<Val (val-this s))} Super—~ {P}

| Ace: [G,AF{Normal P} va=> {AVar:(v,f):. Q< Val v}] =
G,AF{Normal P} Acc va—> {Q}

| Ass: [G,AF{Normal P} va=> {Q};
Vof. G,AFH{Q« Var vf} e—> {A\Val:v:. assign (snd vf) v .; R}] =
G,A-{Normal P} va:=e—> {R}

| Cond: [G,A F{Normal P} e0—> {P'};
Vb. G, AF{P—=b} (if b then el else e2)—+ {Q}] =
G,A-{Normal P} €0 ? el : e2—> {Q}

| Call:
[G,AF{Normal P} e—= {Q}; Va. G,AH{Q«+Val a} args=> {R a};
Va vs invC declC l. G,AF{(R a+ Vals vs A.
(As. declC=invocation-declclass G mode (store s) a statT (name=mn,parTs=pTs|) A
invC = invocation-class mode (store s) a statT A
I = locals (store s)) ;.
ingt-luars G declC (name=mn,parTs=pTs|) mode a vs) A.
(As. normal s — GFmode—invC=statT)}
Methd declC (name=mn,parTs=pTs)—= {set-lvars | .; S}] =
G,A-{Normal P} {accC,statT ,mode}e-mn({pTs}args)—> {S}

| Methd:[G,AU {{P} Methd—= {Q} | ms} |F {{P} body G—> {Q} | ms}] =
G AFH{{P} Methd—= {Q} | ms}

| Body: [G,A-{Normal P} .Init D. {Q};
G, AH{Q} .c. {Xs.. abupd (absorb Ret) .; R<(Inl (the (locals s Result)))}]
—
G,A-{Normal P} Body D ¢c—~ {R}

— expression lists
| Nil: G,A-{Normal (P<+Vals [])} [|[=> {P}
| Cons: [G,A-{Normal P} e—> {Q};
Vv, GAF{ Q<+ Val v} es=> {AVals:vs:. R Vals (v#vs)}] =
G,AH{Normal P} e#es=- {R}
— statements

| Skip: G,A-{Normal (P<<{)} .Skip. {P}

| Ezpr: [G,AF{Normal P} e—> {Q+{}] =
G,AF{Normal P} .Expr e. {Q}

| Lab: [G,AH{Normal P} .c. {abupd (absord l) .; Q}] =
G,A-{Normal P} .I- c. {Q}

| Comp: [G,AF{Normal P} .c1. {Q};
G,AH{Q} .c2. {R}] =
G,A-{Normal P} .c1;;c2. {R}

| If: [G,A H{Normal P} e—> {P'};
Vb, G,AF{P"+—=b} .(if b then cI else c2). {Q}] =
G,AF{Normal P} .If(e) c1 Else c2. {Q}

| Loop: [G,AF{P} e—> {P’};
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G,A-{Normal (P"+—=True)} .c. {abupd (absorb (Cont 1)) .; P}] =
G,A-{P} .I- While(e) c. {(P'+—=False)|=}

| Jmp: G,A-{Normal (abupd (Aa. (Some (Jump j7))) .; P<<)} Jmp j. {P}

| Throw:[G,AF{Normal P} e—> {AVal:a:. abupd (throw a) .; Q<] =
G,A-{Normal P} .Throw e. {Q}

| Try: [G,AF{Normal P} .c1. {SXAlloc G Q};
G,AH{Q A. (As. G,stcatch C) ;. new-zept-var vn} .c2. {R};
(Q A. (As. =G, stcatch C)) = R] =
G,A-{Normal P} .Try c1 Catch(C vn) c2. {R}

| Fin: [G,A-{Normal P} .c1. {Q};
V. GAH{Q A. (As. z = fst s) ;. abupd (A\z. None)}
.c2. {abupd (abrupt-if (z#None) z) .; R}] =
G,A-{Normal P} .cl Finally c2. {R}

| Done: G,A-{Normal (P<< A. initd C)} .Init C. {P}

| Init: [the (class G C) = ¢;
G,A-{Normal ((P A. Not o initd C) ;. supd (init-class-obj G C))}
.(if C = Object then Skip else Init (super c)). {Q};
Vi GAF{Q A. (As. | = locals (store s)) ;. set-lvars Map.empty}
.nit c. {set-lvars | .; R}] =
G,A-{Normal (P A. Not o initd C)} .Init C. {R}

— Some dummy rules for the intermediate terms Callee, InsinitE, InsInitV, FinA only used by the smallstep
semantics.

| InsInitV: G,AF{Normal P} InsInitV ¢ v=> {Q}

| InsInitE: G,A-{Normal P} InsInitE c e—~ {Q}

| Callee:  G,AF{Normal P} Callee | e—> {Q}

| FinA: G,A-{Normal P} .FinA a c. {Q}

definition
adapt-pre :: 'a assn = 'a assn = 'a assn = 'a assn
where adapt-pre P Q Q' = A\Y s Z.VY's" " 3Z " PYsZ'N(QY's'"Z' — Q' Y's' 7))

rules derived by induction

lemma cut-valid: [G,A'|=ts; GA|EA] = G, A|=ts
apply (unfold ax-valids-def)

apply fast
done

lemma az-thin [rule-format (no-asm)):
G,(A"a triple set)|F(ts::'a triple set) = VA. A’ C A — G,Alts
apply (erule az-derivs.induct)

apply (tactic ALLGOALS (EVERY '[clarify-tac context, REPEAT o smp-tac context 1]))
apply (rule az-derivs.empty)

apply (erule (1) az-derivs.insert)

apply (fast intro: ax-derivs.asm)

apply (fast intro: ax-derivs.weaken)

apply (rule az-derivs.conseq, intro strip, tactic smp-tac context 3 1,clarify,

tactic smp-tac context 1 1,rule exl, rule exl, erule (1) conjl)
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prefer 18

apply (rule az-derivs. Methd, drule spec, erule mp, fast)

apply (tactic <TRYALL (resolve-tac context ((funpow 5 tl) Q{thms az-derivs.intros}))»)
apply auto

done

lemma az-thin-insert: G,(A:’a triple set)l-(t::'a triple) = G,insert x At
apply (erule az-thin)

apply fast
done

lemma subset-mitriples-iff:
ts C {{P} mb—> {Q} | ms} = (3ms". ms'Tms A ts = {{P} mb—> {Q} | ms'})
apply (unfold mtriples-def)
apply (rule subset-image-iff)
done

lemma weaken:
G,(A:a triple set)|-(ts”:'a triple set) = Vis. ts C ts’ — G, A|Fts
apply (erule az-derivs.induct)

apply (tactic ALLGOALS (strip-tac context))

apply (tactic (ALLGOALS(REPEAT o (EVERY '[dresolve-tac context Q{thms subset-singletonD},
eresolve-tac context [disjE],
fast-tac (context addSIs Q{thms az-derivs.empty})]))?)

apply (tactic TRYALL (hyp-subst-tac context))

apply (simp, rule az-derivs.empty)
apply (drule subset-insertD)
apply (blast intro: az-derivs.insert)

apply (fast intro: az-derivs.asm)

apply (fast intro: az-derivs.weaken)
apply (rule az-derivs.conseq, clarify, tactic smp-tac context 3 1, blast)

apply (tactic <TRYALL (resolve-tac context ((funpow 5 tl) Q{thms az-derivs.intros})
THEN-ALL-NEW fast-tac context))

clarsimp simp add: subset-miriples-iff)
rule az-derivs. Methd)

apply (drule spec)

apply (erule impFE)

apply (rule exl)

apply (erule conjl)

apply (rule HOL.refl)

oops

apply
apply

S~~~ ~

rules derived from conseq

In the following rules we often have to give some type annotations like: G,A-{P} t= {Q}. Given
only the term above without annotations, Isabelle would infer a more general type were we could
have different types of auxiliary variables in the assumption set (A) and in the triple itself (P and
Q). But ax-derivs. Methd enforces the same type in the inductive definition of the derivation. So we
have to restrict the types to be able to apply the rules.
lemma conseql12: [G,(A::'a triple set)={P":'a assn} t>- {Q'};
VYsZ. PYsZ—(NY's.(WYZ.P' YsZ — Q' Y's' Z') —
QY's' 7)]
= G,AH{P :'a assn} t> {Q }
apply (rule az-derivs.conseq)
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apply clarsimp
apply blast
done

— Nice variant, since it is so symmetric we might be able to memorise it.
lemma conseq12”: [G,(A::"a triple set)={P":'a assn} t= {Q'}; Vs Y’ s'.
VYZ P YsZ—Q Y's'Z)—
NVYZ P YsZ— Q Y's' Z)]
= G,AH{P:’a assn } t= {Q }
apply (erule conseq12)

apply fast
done

lemma conseql2-from-conseql2’: [G,(A::"a triple set)F-{P":"a assn} t= {Q'};
VYSZ PYsZ— (VY's. (VY Z.P' YsZ — Q' Y's' Z) —
QY's 2)]
= G,AH{P:’a assn} t- {Q }
apply (erule conseq12’)
apply blast
done

lemma conseql: [G,(A::"a triple set)-{P":'a assn} t>- {Q}; P = P’]
= G,AH{P:'a assn} t- {Q}

apply (erule conseq12)

apply blast

done

lemma conseq2: [G,(A::'a triple set)F-{P::'a assn} t- {Q'}; Q' = Q]
= G,AH{P:’a assn} t- {Q}

apply (erule conseq12)

apply blast

done

lemma az-escape:
NYsZ PYsZ
— G,(A::'a triple set)-{\Y' s’ (Z":a). (Y',s") = (Y,s)}
i~
{ANYsZ.QYsZ}
| = G,AH{P:'a assn} t>- {Q::'a assn}
apply (rule az-derivs.conseq)

apply force
done

lemma az-constant: [ C = G,(A::'a triple set)-{P::'a assn} t= {Q}]
= GAF{A\Y s Z. CANPYsZ}t-{Q}

apply (rule az-escape )

apply clarify

apply (rule conseq12)

apply fast

apply auto

done

lemma az-impossible [intro]:

G,(A:"a triple set)-{\Y s Z. False} t> {Q::'a assn}
apply (rule az-escape)
apply clarify



442

done

lemma az-nochange-lemma: [P Y s; All (=) w)] = Pws
apply auto
done

lemma az-nochange:

G,(A::(res x state) triple set)-{\Y s Z. (Y,8)=Z} t>- {\Y s Z. (Y, ,s)=Z}
= G,AH{P::(res x state) assn} t- {P}

apply (erule conseq12)

apply auto

apply (erule (1) az-nochange-lemma)

done

lemma az-trivial: G,(A::'a triple set)-{P::'a assn} t= {\Y s Z. True}
apply (rule az-derivs.conseq)

apply auto

done

lemma az-disj:
[G,(A:a triple set)-{P1::'a assn} t>= {Q1}; G, A-{P2::'a assn} t>- {Q2}]
— GAF{AYSZ. PIYSZNVP2YsZyt-{\YsZ QI YsZV Q2YsZ)
apply (rule az-escape )
apply safe
apply (erule conseql2, fast)+
done

lemma az-supd-shuffie:

(3 Q. G,(A:'a triple set)-{P::'a assn} .cl. {Q} N G, AH{Q ;. f} .c2. {R}) =
3Q". G,AH{P} .c1. {f .; Q"} N G, AH{Q"} .c2. {R})

apply (best elim!: conseql conseq2)

done

lemma az-cases:
[G,(A::"a triple set)={P A. C} t= {Q:"a assn};
G,AH{P A. Not o C} t- {Q}] = G,AH{P} ¢t~ {Q}
apply (unfold peek-and-def)
apply (rule az-escape)
apply clarify
apply (case-tac C s)
apply (erule conseq12, force)+
done

lemma az-adapt: G,(A::'a triple set)-{P::'a assn} t—- {Q}
= G, AH{adapt-pre P Q Q'} t> {Q'}

apply (unfold adapt-pre-def)

apply (erule conseql12)

apply fast
done

lemma adapt-pre-adapts: G,(A::'a triple set)|={P::'a assn} t= {Q}
— G,A={adapt-pre P Q Q'} t- {Q'}

apply (unfold adapt-pre-def)

apply (simp add: az-valids-def triple-valid-def2)
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apply fast
done

lemma adapt-pre-weakest:

VG (A:'a triple set) t. G, AE{P} t~ {Q} — G,AE{P'} t> {Q} =
P’ = adapt-pre P Q (Q":'a assn)

apply (unfold adapt-pre-def)

apply (drule spec)

apply (drule-tac x = {} in spec)

apply (drule-tac x = Inlr Skip in spec)

apply (simp add: az-valids-def triple-valid-def2)

oops

lemma peek-and-forgetl-Normal:
G,(A:'a triple set)-{Normal P} t>- {Q::a assn}
= G,A-{Normal (P A. p)} t~- {Q}
apply (erule conseql)
apply (simp (no-asm))
done

lemma peek-and-forget!:

G,(A::'a triple set)-{P::'a assn} t— {Q}
= G, AH{P A. p} t> {Q}

apply (erule conseql)

apply (simp (no-asm))

done

lemmas az-NormalD = peek-and-forgetl [of - - - - - normal]

lemma peek-and-forget2:

G,(A:'a triple set)-{P::'a assn} t= {Q A. p}
= G,AH{P} t> {Q}

apply (erule conseq2)

apply (simp (no-asm))

done

lemma az-subst-Val-alll:

Yv. G,(A:'a triple set)={(P’ v )« Val v} t- {(Q v)::'a assn}
= V. G, AF{(Aw:. P’ (the-Inl w))+ Val v} t> {Q v}

apply (force elim!: conseql)

done

lemma az-subst-Var-alll:

Vv, G,(A:'a triple set)={(P’ v ) Var v} t- {(Q v)::'a assn}
= V. GAF{(Aw:. P’ (the-In2 w))< Var v} t- {Q v}

apply (force elim!: conseql)

done

lemma az-subst-Vals-alll:

(Vv. G,(A::'a triple set)-{( P’ v ) Vals v} t>= {(Q v)::'a assn})
= V. G, AH{(Qw:. P’ (the-In3 w))+ Vals v} t+= {Q v}

apply (force elim!: conseql)

done

alternative axioms

lemma az-Lit2:
G,(A:'a triple set)-{Normal P::'a assn} Lit v—= {Normal (Pl=Val v)}
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apply (rule az-derivs.Lit [THEN conseql])
apply force
done
lemma ax-Lit2-test-complete:
G,(A:'a triple set)-{Normal (P+ Val v)::'a assn} Lit v—> {P}
apply (rule az-Lit2 [THEN conseq2])

apply force
done

lemma az-LVar2: G,(A::'a triple set)={ Normal P::'a assn} LVar vn=» {Normal (As.. P}=Var (lvar vn s))}
apply (rule az-derivs.LVar [THEN conseql])

apply force
done

lemma az-Super?2: G,(A::’a triple set)-
{Normal P::'a assn} Super—»> {Normal (As.. P{="Val (val-this s))}
apply (rule az-derivs.Super [THEN conseql])

apply force
done

lemma az-Nil2:
G,(A:'a triple set)-{Normal P::'a assn} [|=> {Normal (Pl="Vals [])}
apply (rule az-derivs.Nil [THEN conseql])

apply force
done

misc derived structural rules

lemma az-finite-mtriples-lemma: [F C ms; finite ms; ¥V (C,sig)Ems.

G,(A:'a triple set)-{Normal (P C sig)::'a assn} mb C sig—= {Q C sig}] =
G AFH{{P} mb—-{Q} | F}

apply (frule (1) finite-subset)

apply (erule rev-mp)

apply (erule thin-rl)

apply (erule finite-induct)

apply (unfold mtriples-def)

apply (clarsimp introl: az-derivs.empty az-derivs.insert)+

apply force

done

lemmas az-finite-miriples = az-finite-mtriples-lemma [OF subset-refl]

lemma az-derivs-insertD:

G,(A:'a triple set)|Finsert (t::'a triple) ts = G, At A G,A|ts
apply (fast intro: az-derivs.weaken)

done

lemma az-methods-spec:

[G,(A::"a triple set)|Fcase-prod f < ms; (C,sig) € ms]— G,A-((f C sig)::"a triple)
apply (erule az-derivs.weaken)

apply (force del: image-eql intro: rev-image-eql)

done

lemma az-finite-pointwise-lemma [rule-format]: [F C ms; finite ms] =
((V(C,sig)eF. G,(A:'a triple set)-(f C sig::'a triple)) — (¥ (C,sig)ems. G,AF(g C sig::'a triple))) —
G,Alcase-prod f * F — G,A|Fcase-prod g * F
apply (frule (1) finite-subset)
apply (erule rev-mp)
apply (erule thin-ri)
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apply (erule finite-induct)

apply clarsimp+

apply (drule az-derivs-insertD)

apply (rule az-derivs.insert)

apply (simp (no-asm-simp) only: split-tupled-all)

apply (auto elim: az-methods-spec)

done

lemmas az-finite-pointwise = az-finite-pointwise-lemma [OF subset-refl]

lemma az-no-hazard:

G,(A:'a triple set)={P A. type-ok G t} t= {Q:'a assn} = G, A-{P} t= {Q}
apply (erule az-cases)
apply (rule az-derivs.hazard [THEN conseql])

apply force
done

lemma az-free-wt:

(3T L C. (prg=G,cls=C,lcl=L)1::T)
— G,(A:'a triple set)-{Normal P} t>- {Q::'a assn} =
G, A-{Normal P} t~ {Q}

apply (rule az-no-hazard)

apply (rule az-escape)

apply clarify

apply (erule mp [THEN conseq12])

apply (auto simp add: type-ok-def)

done

ML (ML-Thms.bind-thms (az-Abrupts, sum3-instantiate context Q{thm ax-derivs. Abrupt})

declare ax-Abrupts [intro!]
lemmas az-Normal-cases = az-cases [of - - - normal]

lemma az-Skip [introl]: G,(A::"a triple set)F{P<+<} .Skip. {P::'a assn}
apply (rule az-Normal-cases)

apply (rule az-derivs.Skip)

apply fast

done

lemmas az-Skipl = ax-Skip [THEN conseql1]

derived rules for methd call

lemma az-Call-known-DynT:
[GFIntVir— C=<statT;
Va vsl. GAF{(R a<Vals vs A. (As. | = locals (store s)) ;.
init-lvars G C (name=mn,parTs=pTs|) IntVir a vs)}
Methd C (name=mn,parTs=pTs)—> {set-lvars | .; S};
Va. G,AFH{ Q<+ Val a} args=>
{R a A. (As. C = obj-class (the (heap (store s) (the-Addr a))) A
C = invocation-declclass
G IntVir (store s) a statT (name=mn,parTs=pTs|) )};
G,(A::'a triple set)-{Normal P} e—> {Q::'a assn}]
= G,AH{Normal P} {accC,statT,IntVir}e-mn({pTs}targs)—= {S}
apply (erule az-derivs.Call)
apply safe
apply (erule spec)
apply (rule az-escape, clarsimp)
apply (drule spec, drule spec, drule spec,erule conseql?2)

apply force
done
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lemma az-Call-Static:
[Vawvsl G,A-H{R a+Vals vs A. (As. I = locals (store s)) ;.
ingt-luars G C' (name=mn,parTs=pTs) Static any-Addr vs}
Methd C (name=mn,parTs=pTs)—~ {set-lvars [ .; S};
G,AH{Normal P} e—» {Q};
V a. G,(A:'a triple set)-{ Q< Val a} args=> {(R::val = 'a assn) a
A. (A s. C=invocation-declclass
G Static (store s) a statT (name=mn,parTs=pTs))}
] = G, AH{Normal P} {accC,statT,Static}e-mn({pTs}args)—~ {S}
apply (erule az-derivs.Call)
apply safe
apply (erule spec)
apply (rule az-escape, clarsimp)
apply (erule-tac V.= P — Q for P Q in thin-rl)
apply (drule spec,drule spec,drule spec, erule conseql2)
apply (force simp add: init-lvars-def Let-def)
done

Py

lemma az-MethdI:

[G,AU{{P} Methd—~ {Q} | ms}|- {{P} body G—~ {Q} | ms}; (C,sig)e ms] =
G,A-{Normal (P C sig)} Methd C sig—- {Q C sig}

apply (drule az-derivs. Methd)

apply (unfold mtriples-def)

apply (erule (1) ax-methods-spec)

done

lemma az-MethdN:
G,insert({Normal P} Methd C sig—= {Q}) A+
{Normal P} body G C sig—+ {Q} =

G,A-{Normal P} Methd C sig—~ {Q}

apply (rule az-Methd1)

apply (rule-tac [2] singletonl)

apply (unfold mtriples-def)

apply clarsimp

done

lemma az-StatRef:
G,(A:'a triple set)-{Normal (P<Val Null)} StatRef rt—~ {P::'a assn}
apply (rule az-derivs. Cast)
apply (rule az-Lit2 [THEN conseq2)])
apply clarsimp
done

rules derived from Init and Done

lemma az-InitS: [the (class G C) = ¢; C # Object;
Vi G,AF{Q A. (As. | = locals (store s)) ;. set-lvars Map.empty}
angt c. {set-lvars | .; R};
G, AF{Normal ((P A. Not o initd C) ;. supd (init-class-obj G C))}

Anit (super ¢). {Q}] =

G,(A:'a triple set)-{Normal (P A. Not o initd C)} .Init C. {R::'a assn}
apply (erule az-derivs.Init)
apply (simp (no-asm-simp))
apply assumption
done

lemma az-Init-Skip-lemma:
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Vi G,(A:'a triple set)={P<{ A. (As. | = locals (store s)) ;. set-lvars 1'}
Skip. {(set-lvars 1 .; P)::'a assn}

apply (rule alll)

apply (rule az-SkipI)

apply clarsimp

done

lemma az-triv-InitS: [the (class G C) = c¢;init ¢ = Skip; C' # Object;
P+ = (supd (init-class-obj G C) .; P);
G,A-{Normal (P A. initd C)} .Init (super ¢). {(P A. initd C)+ Y] =
G,(A:'a triple set)-{Normal P<<} Init C. {(P A. initd C)::'a assn}

apply (rule-tac C = initd C in az-cases)

apply (rule conseql, rule az-derivs.Done, clarsimp)

apply (simp (no-asm))

apply (erule (1) ax-InitS)

apply simp

apply (rule az-Init-Skip-lemma)

apply (erule conseql)

apply force
done

lemma az-Init-Object: wf-prog G = G,(A::"a triple set)-
{Normal ((supd (init-class-obj G Object) .; P<—<) A. Not o initd Object)}
Anit Object. {(P A. initd Object)::’a assn}
apply (rule az-derivs.Init)
apply (drule class-Object, force)
apply (simp-all (no-asm))
apply (rule-tac [2] ax-Init-Skip-lemma)
apply (rule az-Skipl, force)
done

lemma az-triv-Init-Object: [wf-prog G,
(P::'a assn) = (supd (init-class-obj G Object) .; P)] =
G,(A:'a triple set)-{Normal P<<} .Init Object. {P A. initd Object}
apply (rule-tac C' = initd Object in ax-cases)
apply (rule conseql, rule az-derivs.Done, clarsimp)
apply (erule ax-Init-Object [THEN conseql])

apply force
done

introduction rules for Alloc and SXAlloc

lemma az-SXAlloc-Normal:

G,(A:'a triple set)={P::'a assn} .c. {Normal Q}

= G,AH{P} .c. {SXAlloc G Q}
apply (erule conseq2)
apply (clarsimp elim!: szalloc-elim-cases simp add: split-tupled-all)
done

lemma az-Alloc:
G,(A:'a triple set)-{P::'a assn} t=-
{Normal (\Y (z,s) Z. (V a. new-Addr (heap s) = Some a —
Q@ (Val (Addr a)) (Norm(init-obj G (CInst C) (Heap a) s)) Z)) A.
heap-free (Suc (Suc 0))}
= G,AH{P} t> {Alloc G (CInst C) Q}
apply (erule conseq2)
apply (auto elim!: halloc-elim-cases)
done
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lemma az-Alloc-Arr:
G,(A:'a triple set)-{P::'a assn} t>
{AVal:i:. Normal (\Y (z,s) Z. —the-Intg i<0 A
(V a. new-Addr (heap s) = Some a —»
Q@ (Val (Addr a)) (Norm (init-obj G (Arr T (the-Intg 7)) (Heap a) s)) Z)) A.
heap-free (Suc (Suc 0))}
_
G,A-{P} t= {AVal:i:. abupd (check-neg i) .; Alloc G (Arr T(the-Intg 7)) Q}
apply (erule conseq2)
apply (auto elim!: halloc-elim-cases)
done

lemma az-SXAlloc-catch-SXcpt:
[G,(A:"a triple set)-{P::'a assn} t-
{(\Y (z,s) Z. z=Some (Xept (Std xn)) A
(V a. new-Addr (heap s) = Some a —
QY (Some (Xept (Loc a)),init-obj G (Clnst (SXcpt zn)) (Heap a) s) Z))
A. heap-free (Suc (Suc 0))}]
_—
G, AH{P} t~ {SXAlloc G (A\Y s Z. Q Y s Z N G,stcatch SXcpt zn)}
apply (erule conseq?)
apply (auto elim!: szalloc-elim-cases halloc-elim-cases)
done

end
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AxSound

1 Soundness proof for Axiomatic semantics of Java expressions and statements

theory AzSound imports AzSem begin

validity

definition
triple-valid2 :: prog = nat = 'a triple = bool («-F=-:-[61,0, 58] 57)
where
GEn:t =
(case t of {P} t~ {Q} =
VYsZ PYsZ—s (VL s:=(G,L)
— (VT C A. (normal s — ((prg=G,cls=C,lcl=L)Ft:T A

(prg=G,cls=C,lcl=L)Fdom (locals (store s))»tnA)) —
VY's Gks —t——n— (Y',s") — Q Y' s’ Z A s:=2(G,L)))))

This definition differs from the ordinary triple-valid-def manly in the conclusion: We also ensures
conformance of the result state. So we don’t have to apply the type soundness lemma all the
time during induction. This definition is only introduced for the soundness proof of the axiomatic
semantics, in the end we will conclude to the ordinary definition.

definition
az-valids2 :: prog = 'a triples = 'a triples = bool (4-,-|E::-» [61,58,58] 57)
where G, A|::ts = (Vn. (Vi€A. GEn:t) — (Victs. GEn:t))

lemma triple-valid2-def2: GE=n:{P} t- {Q} =

VYsZ.PYsZ— (VY's" Grs —t=—n— (Y s)—
(VL. $:=(G,L) — (VT C A. (normal s — ((prg=G,cls=C,lcl=L)Ft::T A

(prg=G,cls=Clcl=L)Fdom (locals (store s))»t»A)) —

QY's'"Z A s":=<(G,L)))))

apply (unfold triple-valid2-def)

apply (simp (no-asm) add: split-paired-All)

apply blast

done

lemma triple-valid2-eq [rule-format (no-asm)]:
wf-prog G ==> triple-valid2 G = triple-valid G
apply (rule ext)
apply (rule ext)
apply (rule triple.induct)
apply (simp (no-asm) add: triple-valid-def2 triple-valid2-def2)
apply (rule iffI)
apply fast
apply clarify
apply (tactic smp-tac context 3 1)
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apply (case-tac normal s)
apply clarsimp

apply (elim conjE impE)
apply blast

apply (tactic smp-tac context 2 1)

apply (drule evaln-eval)

apply (drule (1) eval-type-sound [THEN conjunctl],simp, assumption+)
apply simp

apply clarsimp
done

lemma az-valids2-eq: wf-prog G = G, A|=::ts = G, A|=ts
apply (unfold az-valids-def az-valids2-def)

apply (force simp add: triple-valid2-eq)

done

lemma triple-valid2-Suc [rule-format (no-asm)]: GESuc ni:t — GEn:t
apply (induct-tac t)

apply (subst triple-valid2-def2)

apply (subst triple-valid2-def2)

apply (fast intro: evaln-nonstrict-Suc)

done

lemma Methd-triple-valid2-0: G=0:{ Normal P} Methd C sig—~ {Q}
by (auto elim!: evaln-elim-cases simp add: triple-valid2-def2)

lemma Methd-triple-valid2-Sucl:
[GEn:{Normal P} body G C sig—~{Q}]
= GESuc n:{Normal P} Methd C sig—- {Q}
apply (simp (no-asm-use) add: triple-valid2-def2)
apply (intro strip, tactic smp-tac context 3 1, clarify)
apply (erule wt-elim-cases, erule da-elim-cases, erule evaln-elim-cases)
apply (unfold body-def Let-def)
apply (clarsimp simp add: inj-term-simps)
apply blast
done

lemma triples-valid2-Suc:

Ball ts (triple-valid2 G (Suc n)) = Ball ts (triple-valid2 G n)
apply (fast intro: triple-valid2-Suc)

done

lemma G|E=n:insert t A = (GEn:t A Gll=n:A)

oops

soundness

lemma Methd-sound:
assumes recursive: G,AJ {{P} Methd—> {Q} | ms}|=:{{P} body G—= {Q} | ms}
shows G, A|E:{{P} Methd—> {Q} | ms}
proof —
have VicA. GlEn:t = Vte{{P} Methd—>~ {Q} | ms}. GEn:t
if rec: An. Vte(A U {{P} Methd—> {Q} | ms}). GEn::t
= Vie{{P} body G—> {Q} | ms}. GE=n:t
for n
proof (induct n)
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case (
show Vite{{P} Methd—> {Q} | ms}. GE0:t
proof —
have G=0:{Normal (P C sig)} Methd C sig—= {Q C sig}
if (C,sig) € ms
for C sig
by (rule Methd-triple-valid2-0)
thus Zthesis
by (simp add: mtriples-def split-def)
qed
next
case (Suc m)
note hyp = Vt€A. GEm:t = Vie{{P} Methd—> {Q} | ms}. GEm:b
note prem = Vt€A. GE=Suc m::t
show Vte{{P} Methd—~ {Q} | ms}. GESuc m:t
proof —
have GE=Suc m::{Normal (P C sig)} Methd C sig—+ {Q C sig}
if m: (C,sig) € ms
for C sig
proof —
from prem have prem-m: Vi€ A. GE=m:t
by (rule triples-valid2-Suc)
hence Vte{{P} Methd—+ {Q} | ms}. GEm:t
by (rule hyp)
with prem-m
have Vte(A U {{P} Methd—> {Q} | ms}). G=m:t
by (simp add: ball-Un)
hence Vte{{P} body G—> {Q} | ms}. GEm:t
by (rule rec)
with m have GEm::{Normal (P C sig)} body G C sig—> {Q C sig}
by (auto simp add: mtriples-def split-def)
thus ?thesis
by (rule Methd-triple-valid2-Sucl)
qed
thus ?thesis
by (simp add: mtriples-def split-def)
qed
qged
with recursive show ?thesis
by (unfold az-valids2-def) blast
qed

lemma valids2-inductl: Vs tn Y's'. GFs—t——n— (Y's") — t = ¢ —
Ball A (triple-valid2 Gn) — VY Z. P Y s Z —
(VL. s:=(G,L) —
(VT C A. (normal s — ((prg=G,cls=C,lcl=L)Ft::T) A
(prg=G,cls=C\lcl=L)Fdom (locals (store s))»t» A) —
QY's'"ZAs=(G, L)) =
G Al={ {P} e {Q}}
apply (simp (no-asm) add: ax-valids2-def triple-valid2-def2)
apply clarsimp
done

lemma da-good-approz-evalnE [consumes 4]:
assumes evaln: Gr-s0 —t-—n— (v, s1)
and wt: (prg=G,cls=C,lcl=L)t::T
and  da: (prg=G,cls=C,lcl=L)F dom (locals (store s0)) »t» A
and wf: wf-prog G
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and elim: [normal s1 = nrm A C dom (locals (store s1));
N L [abrupt s1 = Some (Jump (Break 1)); normal s0]
= brk A 1 C dom (locals (store s1));
[abrupt s1 = Some (Jump Ret);normal s0]
= Result € dom (locals (store s1))
|= P
shows P
proof —
from evaln have GFs0 —t>— (v, s1)
by (rule evaln-eval)
from this wt da wf elim show P
by (rule da-good-approxE’) iprover+
qed

lemma validl:
assumes I: A ns0 L accCT CuvslY Z.
[VteA. GEn:t; s0:=%(G,L);
normal s0 = (prg=G,cls=accC,lcl=L)t:: T}
normal s0 = (prg=G,cls=accC,lcl=L)Fdom (locals (store s0))»t» C,
GFs0 —t-—n— (v,81); PY s0Z] = Qv sl Z A s1:=(G,L)
shows G A|E:{ {P} t- {Q} }
apply (simp add: az-valids2-def triple-valid2-def2)
apply (intro alll impI)
apply (case-tac normal s)
apply clarsimp
apply (rule I,(assumption|simp)+)

apply (rule I,auto)
done

declare [[simproc add: wt-expr wt-var wt-exprs wi-stmt]]

lemma valid-stmtl:
assumes I: A ns0 L accC Cs1Y Z.
[VteA. GEn:t; s0:=<(G,L);
normal s0=> (prg=G,cls=accC,lcl=L)lc::+/;
normal s0=(prg=G,cls=accC,lcl=L)Fdom (locals (store s0))»{c)s» C;
GFsO0 —c—n— s1; PY s0Z] = Q $ s1 Z A s1::=(G,L)
shows G, A|=:{ {P} (c)o- {Q} }
apply (simp add: az-valids2-def triple-valid2-def2)
apply (intro alll impI)
apply (case-tac normal s)
apply clarsimp
apply (rule I,(assumption|simp)+)

apply (rule I,auto)
done

lemma valid-stmt-Normall:
assumes I: A ns0 L accC Cs1Y Z.
[VteA. GEn:t; s0:=<(G,L); normal s0; (prg=G,cls=accC,lcl=L)Fc::v/;
(prg=G,cls=accC,lcl=L))Fdom (locals (store s0))»{c)s» C,
GFs0 —c—n— s1; (Normal P) Y s0 7] = Q & s1 Z A s1:=(G,L)
shows G,A|=:{ {Normal P} (c¢)s> {Q} }
apply (simp add: az-valids2-def triple-valid2-def2)
apply (intro alll impl)
apply (elim ezE conjE)
apply (rule I)
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by auto

lemma valid-var-Normall:
assumes I: A ns0 L accC T CufslY Z.
[VteA. GEn:t; s0:=%(G,L); normal s0;
(prg=G,cls=accC,lcl=L)Ft:=T;
(prg=G,cls=accC,lcl=L)Fdom (locals (store s0))»(t),» C;
GFs0 —t=>vf—n— s1; (Normal P) Y s0 Z]
= Q (In2of) s1 Z N s1:=(G,L)
shows G, A|E::{ {Normal P} (t),> {Q} }
apply (simp add: az-valids2-def triple-valid2-def2)
apply (intro alll impI)
apply (elim exE conjFE)
apply simp
apply (rule I)
by auto

lemma valid-expr-Normall:
assumes I: A ns0 L accCT CuvslY Z.
[VteA. GEn:t; s0:=2(G,L); normal s0;
(prg=G,cls=accC,lcl=L)Ft::—T;
(prg=G,cls=accC,lcl=L)Fdom (locals (store s0))»(t)e» C,
GFs0 —t—>=v—n— s1; (Normal P) Y s0 Z]
= Q (In1v) s1 Z N s1::=(G,L)
shows G,A|E:{ {Normal P} (t).> {Q} }
apply (simp add: az-valids2-def triple-valid2-def2)
apply (intro alll impI)
apply (elim exE conjFE)
apply simp
apply (rule I)
by auto

lemma valid-expr-list-Normall :
assumes I: A ns0 L accC T CusslY Z.
[VteA. GEn:t; s0:=2(G,L); normal s0;
(prg=G,cls=accC,lcl=L)Ft:=T;
(prg=G,cls=accC,lcl=L)Fdom (locals (store s0))»(t);» C;
GFs0 —t=>vs—n— s1; (Normal P) Y s0 Z]
= @ (In3 vs) s1 Z A s1:=(G,L)
shows G, A|=::{ {Normal P} (t);> {Q} }
apply (simp add: az-valids2-def triple-valid2-def2)
apply (intro alll impl)
apply (elim exE conjE)
apply simp
apply (rule I)
by auto

lemma validE [consumes 5]:
assumes valid: G AlE=:{ {P} t- {Q} }
and P:PYs0Z
and walid-A: Vi€A. GEn:t
and  conf: s0:=(G,L)
and eval: GFsO —t=—n— (v,s1)
and  wt: normal s0 = (prg=G,cls=accC,lcl=L)Ft::T

and  da: normal s0 = (prg=G,cls=accC,lcl=L)Fdom (locals (store s0))»t» C

and elim: [Q v sl Z; s1:=X(G,L)] = concl
shows concl

using assms

by (simp add: az-valids2-def triple-valid2-def2) fast
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lemma all-empty: (Vz. P) = P
by simp

corollary evaln-type-sound:
assumes evaln: G-s0 —t-—n— (v,s1) and
wt: (prg=G,cls=accC,lcl=L)Ft:: T and
da: (prg=G,cls=accC,lcl=L)\dom (locals (store s0)) »t» A and
conf-s0: s0::=(G,L) and
wf: wf-prog G
shows s1::=<(G,L) A (normal s1 — G,L,store s1+t=v::=T) A
(error-free s0 = error-free s1)
proof —
from evaln have GFs0 —t-— (v,s1)
by (rule evaln-eval)
from this wt da wf conf-sO0 show ?thesis
by (rule eval-type-sound)
qed

corollary dom-locals-evaln-mono-elim [consumes 1]:
assumes
evaln: GF s0 —t-—n— (v,s1) and
hyps: [dom (locals (store s0)) C dom (locals (store s1));
N\ v s val. [v=In2 vv; normal s1]
= dom (locals (store s))
C dom (locals (store ((snd vv) val 5)))] = P
shows P
proof —
from evaln have GF s0 —t>— (v,s1) by (rule evaln-eval)
from this hyps show ?thesis
by (rule dom-locals-eval-mono-elim) iprover+
qed

lemma evaln-no-abrupt:
Ns s’ [GFs —t=—n— (w,s'); normal s'] = normal s
by (erule evaln-cases,auto)

declare inj-term-simps [simp]
lemma az-sound?2:
assumes  wf: wf-prog G
and deriv: G, Alts
shows G,A|[=:ts
using deriv
proof (induct)
case (empty A)
show ?Zcase
by (simp add: az-valids2-def triple-valid2-def2)
next
case (insert A t ts)
note valid-t = «G,A|E=:{th
moreover
note valid-ts = <G, A|[=::ts»
have Vit'cinsert t ts. GEnu:t’
if valid-A: VteA. GEn:t
for n
proof —
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have GEn::t
using valid-A valid-t by (simp add: az-valids2-def)
moreover
have Vitets. GEn:t
using valid-A valid-ts by (unfold az-valids2-def) blast
ultimately show V ¢'€insert t ts. G=n::t’
by simp
qed
thus ?case
by (unfold ax-valids2-def) blast
next
case (asm ts A)
from «ts C A»
show G,A|=::ts
by (auto simp add: az-valids2-def triple-valid2-def)
next
case (weaken A ts’ ts)
note <G, A|l=::ts"
moreover note <ts C ts’
ultimately show G,A|E:ts
by (unfold ax-valids2-def triple-valid2-def) blast
next
case (conseq P A t Q)
note con=«~vVYsZ. PYsZ —
3P Q"

(G AR{P} £~ {Q} N G AlE={ {P'} - {Q} }) A
N — QY

VY's.(YYZ.P'YsZ — Q' Y's'Z

show G A|E=:{ {P} t- {Q} }
proof (rule validl)

fix nsOL accCTCuvslYZ

assume valid-A: Vi€ A. GEn:t

assume conf: s0:=(G,L)

assume wt: normal s0 = (prg=G,cls=accC,lcl=L|)t::T

assume da: normal sO

/

s" Z))»

= (prg=G,cls=accC,lcl=L)Fdom (locals (store s0)) »t» C

assume eval: GHs0 —t=—n— (v, sI)
assume P: P Y s0 Z
show Q v sl Z N s1:=(G, L)
proof —
from wvalid-A conf wt da eval P con
have Q v sl Z
apply (simp add: az-valids2-def triple-valid2-def2)
apply (tactic smp-tac context 3 1)
apply clarify
apply (tactic smp-tac context 1 1)
apply (erule allE, erule allE, erule mp)
apply (intro strip)
apply (tactic smp-tac context 3 1)
apply (tactic smp-tac context 2 1)
apply (tactic smp-tac context 1 1)
by blast
moreover have sI1:=<(G, L)
proof (cases normal s0)
case True
from eval wt [OF True] da [OF True] conf wf
show ?thesis
by (rule evaln-type-sound [elim-format]) simp
next
case Fulse
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with eval have s1=s0
by auto
with conf show ?Zthesis by simp
qed
ultimately show %thesis ..
qged
qed
next
case (hazard A Pt Q)
show G,A|E=::{ {P A. Not o type-ok G t} t- {Q} }
by (simp add: az-valids2-def triple-valid2-def2 type-ok-def) fast
next
case (Abrupt A P t)
show G, A|=::{ {P«undefined3 t A. Not o normal} t= {P} }
proof (rule validl)
fix nsOLaccCTCuvslYZ
assume conf-s0: s0::=%(G, L)
assume eval: GFs0 —t=—n— (v, s1)
assume (P<«undefined3 t A. Not o normal) Y s0 Z
then obtain P: P (undefined3 t) s0 Z and abrupt-s0: — normal s0
by simp
from eval abrupt-s0 obtain sI=s0 and v=undefined3 t
by auto
with P conf-s0
show P v sl Z A s1:=(G, L)
by simp
qed
next
case (LVar A P vn)
show G, A|=::{ {Normal (As.. P<In2 (lvar vn s))} LVar vn=> {P} }
proof (rule valid-var-Normall)
fix nsOL accC T Cufsl Y Z
assume conf-s0: s0::=%(G, L)
assume normal-s0: normal s0
assume wt: (prg = G, cls = accC, lcl = L)-LVar vn:=T
assume da: (prg=G,cls=accC,lcl=L)F dom (locals (store s0)) »{LVar vn),» C
assume eval: GFsO —LVar vn=-vf—n— sl
assume P: (Normal (As.. P<In2 (lvar vn s))) Y s0 Z
show P (In2 vf) s1 Z N s1:=(G, L)
proof
from eval normal-s0 obtain s1=s0 vf=lvar vn (store s0)
by (fastforce elim: evaln-elim-cases)
with P show P (In2 vf) s1 Z
by simp
next
from eval wt da conf-s0 wf
show s1:=<(G, L)
by (rule evaln-type-sound [elim-format]) simp
qged
qed
next
case (FVar A P statDeclC Q e stat fn R accC)
note valid-init = <G, A|E:{ {Normal P} .Init statDeclC. {Q} }
note valid-e = (G, A|E:{ {Q} e—> {AVal:a:. fvar statDeclC stat fn a ..; R} }»
show G,A|=::{ {Normal P} {accC,statDeclC,stat}e..fn=~ {R} }
proof (rule valid-var-Normall)
fix nsOL accC’' TVufs3Y Z
assume valid-A: Vi€ A. GE=n::t
assume conf-s0: s0:=(G,L)
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assume normal-s0: normal s0
assume wt: (prg=G,cls=accC’ lcl=L)F{accC,statDeclC,stat}e..fn:=T
assume da: (prg=G,cls=accC’,lcI=L)

F dom (locals (store s0)) »{{accC,statDeclC,stat}e..fn),» V
assume eval: GHs0 —{accC,statDeclC,stat}e..fn=-uvf—n— s3
assume P: (Normal P) Y s0 Z
show R |uf|, s3 Z A s3:=(G, L)
proof —

from wt obtain statC f where
wt-e: (prg=G, cls=accC, lcl=L)Fe::— Class statC' and
accfield: accfield G accC statC fn = Some (statDeclC,f) and
eq-accC: accC=accC’ and
stat: stat=is-static f{ and
T: T=(type [)
by (cases) (auto simp add: member-is-static-simp)
from da eq-accC
have da-e: (prg=G, cls=accC, lcl=L)Fdom (locals (store s0))»{e)e» V
by cases simp
from eval obtain a s s2 s2’ where
eval-init: GFs0 —Init statDeclC—n— s1 and
eval-e: GFsl —e—>a—n— s2 and
fvar: (vf,s2")=fvar statDeclC' stat fn a s2 and
$8: 88 = check-field-access G accC statDeclC' fn stat a s2'
using normal-s0 by (fastforce elim: evaln-elim-cases)
have wit-init: (prg=G, cls=accC, lel=L)F(Init statDeclC)::\/
proof —
from wf wt-e
have iscls-statC': is-class G statC
by (auto dest: ty-expr-is-type type-is-class)
with wf accfield
have iscls-statDeclC" is-class G statDeclC
by (auto dest!: accfield-fields dest: fields-declC')
thus ?thesis by simp
qed
obtain I where
da-init: (prg=G,cls=accC,lcl=L)
F dom (locals (store s0)) »{(Init statDeclC)s» I
by (auto intro: da-Init [simplified] assigned.select-convs)
from valid-init P valid-A conf-s0 eval-init wt-init da-init
obtain @: Q ¢ s! Z and conf-s1: s1:=<(G, L)
by (rule validFE)
obtain
R: R |vf|, s2’ Z and
conf-s2: s2::%(G, L) and
conf-a: normal s2 — G,store s2-a::=2Class statC
proof (cases normal s1)
case True
obtain V'’ where
da-e":
(prg=G,cls=accC,lcl=L|) tdom (locals (store s1))»(€)e» V'
proof —
from eval-init
have (dom (locals (store s0))) C (dom (locals (store s1)))
by (rule dom-locals-evaln-mono-elim)
with da-e show thesis
by (rule da-weakenE) (rule that)
qed
with valid-e Q valid-A conf-s1 eval-e wt-e
obtain R |uf|, s2’ Z and s2::=(G, L)
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by (rule validE) (simp add: fvar [symmetric])
moreover
from eval-e wt-e da-e’ conf-s1 wf
have normal s2 — G,store s2ta::<Class statC
by (rule evaln-type-sound [elim-format]) simp
ultimately show %thesis ..
next
case Fulse
with valid-e Q valid-A conf-s1 eval-e
obtain R |uf], s2’ Z and s2:<(G, L)
by (cases rule: validE) (simp add: fvar [symmetric])+
moreover from Fulse eval-e have — normal s2
by auto
hence normal s2 — G,store s2Fa::<XClass statC
by auto
ultimately show ?thesis ..
qed
from accfield wt-e eval-init eval-e conf-s2 conf-a fvar stat s3 wf
have eq-s3-s2" s3=s2’
using normal-s0 by (auto dest!: error-free-field-access evaln-eval)
moreover
from eval wt da conf-s0 wf
have s3::<(G, L)
by (rule evaln-type-sound |elim-format]) simp
ultimately show ?thesis using @ R by simp
qed
qed
next
case (AVar A P el Q e2 R)
note valid-el = <G, A|E:{ {Normal P} el—> {Q} b
have valid-e2: \ a. G A|E:{ {Q+Inl a} e2—> {AVal:i:. avar Gia .; R} }
using AVar.hyps by simp
show G, A|=:{ {Normal P} el.[e2]=> {R} }
proof (rule valid-var-Normall)
fixnsOL accCTVufs2'YZ
assume valid-A: Vi€ A. GE=n::t
assume conf-s0: s0::=3(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)Fel.[e2]:=T
assume da: (prg=G,cls=accC,lcl=L)
F dom (locals (store s0)) »(el.[e2]),» V
assume eval: GFs0 —el.[e2]=-vf—n— s2’
assume P: (Normal P) Y s0 Z
show R |vf|, s2' Z N s2":=<(G, L)
proof —
from wt obtain
wt-el: (prg=G,cls=accC,lcl=L|)Fel::—T.[] and
wt-e2: (prg=G,cls=accC,lcl=L)Fe2::— PrimT Integer
by (rule wt-elim-cases) simp
from da obtain EF1 where
da-el: (prg=G,cls=accC,lcl=L|) Fdom (locals (store s0))»(el)e» E1 and
da-e2: (prg=G,cls=accC,lcl=L)F nrm EI1 »(e2)c» V
by (rule da-elim-cases) simp
from eval obtain s a i s2 where
eval-el: GFsO —el—»a—n— sl and
eval-e2: GFsl —e2—»i—n— s2 and
avar: avar G i a s2 =(vf, s2)
using normal-s0 by (fastforce elim: evaln-elim-cases)
from valid-e1 P valid-A conf-s0 eval-el wt-el da-el
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obtain Q: @ |a]. s! Z and conf-s1: s1:=(G, L)
by (rule validFE)
from Q have Q" A\ v. (Q+Inl a) vsl Z
by simp
have R |vf|, s2' Z
proof (cases normal s1)
case True
obtain V'’ where
(prg=G,cls=accC,lcl=L|) Fdom (locals (store s1))»(e2)e» V'
proof —
from eval-el wt-el da-el wf True
have nrm E1 C dom (locals (store s1))
by (cases rule: da-good-approz-evalnE) iprover
with da-e2 show thesis
by (rule da-weakenE) (rule that)
qed
with valid-e2 Q' valid-A conf-s1 eval-e2 wt-e2
show ?thesis
by (rule validE) (simp add: avar)
next
case Fulse
with valid-e2 Q' valid-A conf-s1 eval-e2
show ?thesis
by (cases rule: validE) (simp add: avar)+
qed
moreover
from eval wt da conf-s0 wf
have s2":<(G, L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..
qed
qged
next
case (NewC A P C Q)
note valid-init = <G, All=:{ {Normal P} .Init C. {Alloc G (CInst C) Q} b
show G,A|=::{ {Normal P} NewC C—> {Q} }
proof (rule valid-expr-Normall)
fix nsOLaccCTEvs2YZ
assume valid-A: Vi€ A. GEn:t
assume conf-s0: s0::=(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)FNewC C::—T
assume da: (prg=G,cls=accC,lcl=L)

F dom (locals (store s0)) »(NewC C)e» E
assume eval: G-s0 —NewC C—>v—n— s2
assume P: (Normal P) Y s0 Z
show Q |v]. s2 Z A s2:=(G, L)
proof —

from wt obtain is-cls-C: is-class G C

by (rule wit-elim-cases) (auto dest: is-acc-classD)
hence wt-init: (prg=G, cls=accC, lcl=L)FInit C::/

by auto
obtain I where

da-init: (prg=G,cls=accC,lcl=L)F dom (locals (store s0)) »{Init C)s» I

by (auto intro: da-Init [simplified] assigned.select-convs)
from eval obtain s! a where

eval-init: GFs0 —Init C—n— sI and

alloc: GFs1 —halloc Clnst C-a— s2 and

v: v=Addr a
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using normal-s0 by (fastforce elim: evaln-elim-cases)
from walid-init P valid-A conf-s0 eval-init wt-init da-init
obtain (Alloc G (CInst C) Q) & s1 Z
by (rule validE)
with alloc v have Q |v|. s2 Z
by simp
moreover
from eval wt da conf-s0 wf
have s2:<(G, L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show %thesis ..
qed
qed
next
case (NewA A P T Q e R)
note valid-init = <G, A|l=::{ {Normal P} .init-comp-ty T. {Q} b
note valid-e = (G, A|E:{ {Q} e—> {AVal:i:. abupd (check-neg i) .;
Alloc G (Arr T (the-Intg i)) R} }»
show G,A|=::{ {Normal P} New T[e]—> {R} }
proof (rule valid-expr-Normall)
fix nsO L accCarrT Evs3Y Z
assume valid-A: Vi€ A. GEn::t
assume conf-s0: s0::=(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)FNew T[e]::—arrT
assume da: (prg=G,cls=accC,lcl=L))Fdom (locals (store s0)) »(New T[e])e» E
assume eval: GHs0 —New T[e]—>-v—n— s3
assume P: (Normal P) Y s0 Z
show R |v]. s3 Z A s3:=(G, L)
proof —
from wt obtain
wt-init: (prg=G,cls=accClcl=L)Finit-comp-ty T::\/ and
wt-e: (prg=G,cls=accC,lcl=L)e::— PrimT Integer
by (rule wt-elim-cases) (auto intro: wi-init-comp-ty )
from da obtain
da-e:(prg=G,cls=accC,lcl=L)F dom (locals (store s0)) »(e)e» E
by cases simp
from eval obtain si ¢ s2 a where
eval-init: GFs0 —init-comp-ty T—n— s1 and
eval-e: GFsl —e—»>i—n— s2 and
alloc: GFabupd (check-neg i) s2 —halloc Arr T (the-Intg i)>a— s3 and
v: v=Addr a
using normal-s0 by (fastforce elim: evaln-elim-cases)
obtain I where
da-init:
(prg=G,cls=accC,lcl=L)Fdom (locals (store s0)) » (init-comp-ty T)s» I
proof (cases 3C. T = Class C)
case True
show ?thesis
by (rule that)
(use True in
<auto intro: da-Init [simplified] assigned.select-convs
simp add: init-comp-ty-def>)

next
case Fulse
show ?thesis
by (rule that)
(use False in
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cauto intro: da-Skip [simplified] assigned.select-convs
stmp add: init-comp-ty-def»)

qed
with valid-init P valid-A conf-s0 eval-init wt-init
obtain Q: Q & s1 Z and conf-s1: s1:<(G, L)
by (rule validE)
obtain E’ where
(prg=G,cls=accC,lcl=L)F dom (locals (store s1)) »{e)e» E’
proof —
from eval-init
have dom (locals (store s0)) C dom (locals (store s1))
by (rule dom-locals-evaln-mono-elim)
with da-e show thesis
by (rule da-weakenE) (rule that)
qed
with valid-e @ valid-A conf-s1 eval-e wt-e
have (AVal:i:. abupd (check-neg i) .;
Alloc G (Arr T (the-Intg 7)) R) |i]. s2 Z
by (rule validE)
with alloc v have R |v]. s3 Z
by simp
moreover
from eval wt da conf-s0 wf
have s3:<(G, L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..
qed
qed
next
case (Cast A Pe T Q)
note valid-e = <G, A|=::{ {Normal P} e—>-
{AVal:v:. As.. abupd (raise-if (- G,stv fits T) ClassCast) .;
Q«In1 v} b
show G,A|E=::{ {Normal P} Cast T e—> {Q} }
proof (rule valid-expr-Normall)
fix n sO0 L accC castT Evs2Y Z
assume valid-A: Vt€A. GEn:t
assume conf-s0: s0::=(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)FCast T e::—castT
assume da: (prg=G,cls=accC,lcl=L)Fdom (locals (store s0)) »(Cast T e)o» E
assume eval: Gts0 —Cast T e—>v—n— s2
assume P: (Normal P) Y s0 Z
show @ |v]. s2 Z A s2:=(G, L)
proof —
from wt obtain e7T where
wt-e: (prg = G, cls = accC, lcl = L)Fe::—eT
by cases simp
from da obtain
da-e: (prg=G,cls=accC,lcl=L)F dom (locals (store s0)) »(e)en E
by cases simp
from eval obtain s/ where
eval-e: GFs0 —e—>v—n— s1 and
$2: s2 = abupd (raise-if (= G,snd sitv fits T) ClassCast) s1
using normal-s0 by (fastforce elim: evaln-elim-cases)
from walid-e P valid-A conf-s0 eval-e wt-e da-e
have (AVal:v:. As.. abupd (raise-if (— G,stv fits T) ClassCast) .;
Q«In1v) |v|e sl Z
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by (rule validE)
with s2 have Q |v]. s2 Z
by simp
moreover
from eval wt da conf-s0 wf
have s2:<(G, L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..
qed
qed
next
case (Inst APeQT)
assume valid-e: G, A|[=::{ {Normal P} e—>
{AVal:v:. Xs.. Q«In1 (Bool (v # Null N G,stv fits RefT T))} }
show G, A|E::{ {Normal P} e InstOf T—> {Q} }
proof (rule valid-expr-Normall)
fix n sO L accCinstT Evsl Y Z
assume valid-A: Vi€ A. GEn:t
assume conf-s0: s0::=(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)Fe InstOf T::—instT
assume da: (prg=G,cls=accC,lcl=L)Fdom (locals (store s0))»(e InstOf T)o» E
assume eval: GFs0 —e InstOf T—>v—n— sl
assume P: (Normal P) Y s0 Z
show @ |v]. s1 Z A s1::=(G, L)
proof —
from wt obtain e¢T where
wt-e: (prg = G, cls = accC, lcl = L)Fe:—eT
by cases simp
from da obtain
da-e: (prg=G,cls=accC,lcl=L)F dom (locals (store s0)) »{e)e» E
by cases simp
from eval obtain a where
eval-e: GFs0 —e—>a—n— s1 and
v: v = Bool (a # Null N G,store sita fits RefT T)
using normal-s0 by (fastforce elim: evaln-elim-cases)
from wvalid-e P valid-A conf-s0 eval-e wt-e da-e
have (AVal:v:. As.. Q< In1 (Bool (v # Null A G,stv fits RefT T)))
lale s1 Z
by (rule validE)
with v have Q |v]. s1 Z
by simp
moreover
from eval wt da conf-s0 wf
have s1:<(G, L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show %thesis ..
qged
qed
next
case (Lit A P v)
show G,A|=::{ {Normal (P<Inl v)} Lit v—> {P} }
proof (rule valid-expr-Normall)
fixnLsOslv YZ
assume conf-s0: s0::=(G, L)
assume normal-s0: normal s0
assume eval: GHs0 —Lit v—=v'—n— s1
assume P: (Normal (P<Inl v)) Y s0 Z
show P |v'|. s1 Z A s1:=(G, L)
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proof —
from eval have s1=s0 and v'=v
using normal-s0 by (auto elim: evaln-elim-cases)
with P conf-s0 show ?thesis by simp
qed
qged
next
case (UnOp A P e Q unop)
assume valid-e: G, A|=:{ {Normal P}e—~{AVal:v:. Q«1Inl (eval-unop unop v)} }
show G A|E::{ {Normal P} UnOp unop e—= {Q} }
proof (rule valid-expr-Normall)
fix nsOL accCTFEvsl YZ
assume valid-A: Vi€ A. GEn:t
assume conf-s0: s0::=(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)FUnOp unop e:—T
assume da: (prg=G,cls=accC,lcl=L)Fdom (locals (store s0))»(UnOp unop €)e»E
assume eval: GFs0 —UnOp unop e—=v—n— sl
assume P: (Normal P) Y s0 Z
show Q |v]. s1 Z A s1:=(G, L)
proof —
from wt obtain eT where
wt-e: (prg = G, cls = accC, lel = L)Fe::—eT
by cases simp
from da obtain
da-e: (prg=G,cls=accC,lcl=L)F dom (locals (store s0)) »{e)e» E
by cases simp
from eval obtain ve where
eval-e: GFs0 —e—>ve—n— sl and
v: v = eval-unop unop ve
using normal-s0 by (fastforce elim: evaln-elim-cases)
from wvalid-e P valid-A conf-s0 eval-e wt-e da-e
have (AVal:v:. Q«1Inl (eval-unop unop v)) |vel. s1 Z
by (rule validE)
with v have @ |v|. s1 Z
by simp
moreover
from eval wt da conf-s0 wf
have s1:<(G, L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..
qed
qged
next
case (BinOp A P el @Q binop e2 R)
assume valid-e1: G, A|=::{ {Normal P} el—> {Q} }
have valid-e2: \ v1. G,A|l=:{ {Q+Inl vi}
(if need-second-arg binop vl then Inl1l e2 else Inlr Skip)>-
{AVal:v2:. R«1Inl (eval-binop binop vl v2)} }
using BinOp.hyps by simp
show G,A|E=::{ {Normal P} BinOp binop el e2—~ {R} }
proof (rule valid-expr-Normall)
fix nsOLaccCTEvs2YZ
assume valid-A: Vi€ A. GEn:t
assume conf-s0: s0::=(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)FBinOp binop el e2:—T
assume da: (prg=G,cls=accC,lcl=L)
Fdom (locals (store s0)) »(BinOp binop el e2)e» E
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assume cval: GFs0 —BinOp binop el e2—>=v—n— s2
assume P: (Normal P) Y s0 Z
show R |v]. s2 Z A s2:=(G, L)
proof —
from wt obtain elT e2T where
wt-el: (prg=G,cls=accC,lcl=L|)Fel::—elT and
wt-e2: (prg=G,cls=accC,lcl=L)Fe2::—e2T and
wt-binop: wt-binop G binop elT e2T
by cases simp
have wt-Skip: (prg = G, cls = accC, lel = L)FSkip::y/
by simp

from da obtain EI1 where
da-el: (prg=G,cls=accC,lcl=L|) - dom (locals (store s0)) »(el)e» El
by cases simp+
from eval obtain v! s! v2 where
eval-el: GFs0 —el —>vl—n— sl and
eval-e2: Grs1 —(if need-second-arg binop vl then (e2). else (Skip)s)
=—n— ([v2]., s2) and
v: v=eval-binop binop vi v2
using normal-s0 by (fastforce elim: evaln-elim-cases)
from walid-e1 P valid-A conf-s0 eval-el wt-el da-el
obtain Q: @ |v!]. s! Z and conf-s1: s1::=(G,L)
by (rule validE)
from Q have Q" A\ v. (Q+Inl vl)vsl Z
by simp
have (AVal:v2:. R<Inl1 (eval-binop binop v1 v2)) |v2]. s2 Z
proof (cases normal s1)
case True
from eval-el wt-el da-el conf-s0 wf
have conf-vl: G,store sitvi::<elT
by (rule evaln-type-sound [elim-format]) (use True in simp)
from eval-el
have G+s0 —el—>v1— sl
by (rule evaln-eval)
from da wt-el wt-e2 wt-binop conf-sO0 True this conf-vl wf
obtain F2 where
da-e2: (prg=G,cls=accC,lcl=L))F dom (locals (store s1))
» (if need-second-arg binop vl then (e2). else (Skip)s)» E2
by (rule da-e2-BinOp [elim-format]) iprover
from wt-e2 wt-Skip obtain T2
where (prg=G,cls=accC,lcl=L)
F(if need-second-arg binop vl then (e2). else (Skip)s):: T2
by (cases need-second-arg binop v1) auto
note ve=validE [OF valid-e2,0F @' valid-A conf-s1 eval-e2 this da-e2)

thus ?thesis
by (rule ve)
next
case Fulse
note ve=validE [OF wvalid-e2,0F Q' valid-A conf-s1 eval-e2]
with False show ?thesis
by iprover
qed
with v have R |v]. s2 Z
by simp
moreover
from eval wt da conf-s0 wf
have s2:<(G, L)
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by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..
qed
qed
next
case (Super A P)
show G, A|E=::{ {Normal (As.. P<—Inl (val-this s))} Super—>= {P} }
proof (rule valid-expr-Normall)
fixnLsOslv YZ
assume conf-s0: s0::=3(G, L)
assume normal-s0: normal s0
assume eval: GFs0 —Super—-v—n— s1
assume P: (Normal (As.. P<—Inl (val-this s))) Y s0 Z
show P |v|. s1 Z A s1:=(G, L)
proof —
from eval have s1=s0 and v=wval-this (store s0)
using normal-s0 by (auto elim: evaln-elim-cases)
with P conf-s0 show ?thesis by simp
qed
qed
next
case (Acc A P var Q)
note valid-var = <G, A|=:{ {Normal P} var=> {AVar:(v, f):. Q<Inl v} }
show G,A|E=::{ {Normal P} Acc var—> {Q} }
proof (rule valid-expr-Normall)
fixnsOLacCTFEvslYZ
assume valid-A: Vi€ A. GE=n::t
assume conf-s0: s0::=<(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)FAcc var:—T
assume da: (prg=G,cls=accC,lcl=L)\dom (locals (store s0))»{Acc var).»E
assume eval: GFs0 —Acc var—=v—n— sl
assume P: (Normal P) Y s0 Z
show @ |v]. s1 Z A s1:=(G, L)
proof —
from wt obtain
wt-var: (prg=G,cls=accC,lcl=L)rvar:=T
by cases simp
from da obtain V where
da-var: (prg=G,cls=accC,lcl=L|) = dom (locals (store s0)) »{var),» V
by (cases 3 n. var=LVar n) (use da.LVar in <auto elim!: da-elim-cases»)
from eval obtain upd where
eval-var: GFs0 —var=>(v, upd)—n— sl
using normal-s0 by (fastforce elim: evaln-elim-cases)
from valid-var P valid-A conf-s0 eval-var wt-var da-var
have (AVar:(v, f):. Q«Inl v) |(v, upd)|, s1 Z
by (rule validE)
then have Q |v]. sI Z
by simp
moreover
from eval wt da conf-s0 wf
have s1:=<(G, L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show %thesis ..
qed
qed
next
case (Ass A P var Q e R)
note valid-var = «G,A|E::{ {Normal P} var=» {Q} b
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have wvalid-e: N\ of.
G AlEH{ {Q+In2 vf} e—>= {AVal:v:. assign (snd vf) v .; R} }
using Ass.hyps by simp
show G, A|=::{ {Normal P} var:=e—> {R} }
proof (rule valid-expr-Normall)
fix nsOLaccCTEvs3YZ
assume valid-A: Vi€ A. GEn:t
assume conf-s0: s0::=(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)Fvar:=e::—T
assume da: (prg=G,cls=accC,lcl=L)Fdom (locals (store s0))»{var:=e).»E
assume eval: GFs0 —var:=e—>v—n— s3
assume P: (Normal P) Y s0 Z
show R |v]e s3 Z A s3:=(G, L)
proof —
from wt obtain varT where
wt-var: (prg=G,cls=accC,lcl=L)Fvar:=varT and
wt-e: (prg=G,cls=accC,lcl=L)Fe:—T
by cases simp
from eval obtain w upd s1 s2 where
eval-var: GFs0 —var=>(w, upd)—n— sI and
eval-e: GFsl —e—>v—n— s2 and
53: s3=assign upd v s2
using normal-s0 by (auto elim: evaln-elim-cases)
have R |v]. s3 Z
proof (cases 3 vn. var = LVar vn)
case Fulse
with da obtain V where
da-var: (prg=G,cls=accC,lcl=L)
F dom (locals (store s0)) »(var),» V and
da-e:  (prg=G,cls=accC,lcl=L) F nrm V »(e)e» E
by cases simp+
from valid-var P valid-A conf-s0 eval-var wt-var da-var
obtain Q: @ |(w,upd)], s Z and conf-s1: s1:=(G,L)
by (rule validE)
hence Q" A\ v. (Q+In2 (w,upd)) v sl Z
by simp
have (AVal:v:. assign (snd (w,upd)) v ; R) |v]. s2 Z
proof (cases normal s1)
case True
obtain E’ where
da-e": (prg=G,cls=accC,lcl=L)F dom (locals (store s1)) »{e)e» E’
proof —
from eval-var wt-var da-var wf True
have nrm V C dom (locals (store s1))
by (cases rule: da-good-approz-evalnE) iprover
with da-e show thesis
by (rule da-weakenE) (rule that)
qged
note ve=validE [OF valid-e,OF Q' valid-A conf-s1 eval-e wt-e da-e’]
show ?thesis
by (rule ve)
next
case Fulse
note ve=validE [OF wvalid-e,OF Q' valid-A conf-s1 eval-e]
with False show Zthesis
by iprover
qed
with s3 show R |v]. s3 Z
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by simp

next

case True

then obtain vn where
vn: var = LVar vn
by auto

with da obtain F where

da-e:  (prg=G,cls=accC,lcl=L|) = dom (locals (store s0)) »(€)en E

by cases simp+
from da.LVar vn obtain V where
da-var: (prg=G,cls=accC,lcl=L]
F dom (locals (store s0)) »{var),» V
by auto
from valid-var P valid-A conf-s0 eval-var wt-var da-var
obtain @: @ |(w,upd)], s Z and conf-s1: s1::=<(G,L)
by (rule validF)
hence Q" A v. (Q+In2 (w,upd)) v s1 Z
by simp
have (AVal:v:. assign (snd (w,upd)) v .; R) |v]e s2 Z
proof (cases normal s1)
case True
obtain E’ where
da-e': (prg=G,cls=accC,lcl=L)
F dom (locals (store s1)) »{e)e» E'
proof —
from eval-var
have dom (locals (store s0)) C dom (locals (store (s1)))
by (rule dom-locals-evaln-mono-elim)
with da-e show thesis
by (rule da-weakenE) (rule that)
qed

note ve=validE [OF wvalid-e,OF Q' valid-A conf-s1 eval-e wt-e da-e€’]

show ?thesis
by (rule ve)
next
case Fulse
note ve=validE [OF wvalid-e,OF Q' valid-A conf-s1 eval-e]
with False show ?thesis
by iprover
qed
with s3 show R |v]. s8 Z
by simp

qed

moreover

from eval wt da conf-s0 wf
have s3::<(G, L)

by (rule evaln-type-sound [elim-format]) simp

ultimately show ?thesis ..
qed

qed
next

case (Cond A P e0 P’ el e2 Q)
note valid-e0 = «G,A|E::{ {Normal P} e0—> {P'} }»

have valid-then-else:\ b. G,A|=:{ {P'<=0b} (if b then el else e2)—> {Q} }

using Cond.hyps by simp
show G,A|E=::{ {Normal P} €0 ? el : e2—> {Q} }
proof (rule valid-expr-Normall)
fixnsOLacCTEvs2YZ
assume valid-A: Vi€ A. GE=n::t
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assume conf-s0: s0::=(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)Fe0 ? el : e2:—T
assume da: (prg=G,cls=accC,lcl=L)\dom (locals (store s0))»{e0 ? el:e2)e»E
assume eval: GFs0 —e0 ? el : e2—>v—n— s2
assume P: (Normal P) Y s0 Z
show Q |v]. s2 Z A s2:=(G, L)
proof —
from wt obtain T1 T2 where
wt-e0: (prg=G,cls=accC,lcl=L)Fe0::— PrimT Boolean and
wt-el: (prg=G,cls=accC,lcl=L)Fel::—T1 and
wt-e2: (prg=G,cls=accC,lcl=L)Fe2::— T2
by cases simp
from da obtain F0 E1 E2 where
da-e0: (prg=G,cls=accC,lcl=L)\ dom (locals (store s0)) »{e0).» EO and
da-el: (prg=G,cls=accC,lcl=L)
F(dom (locals (store s0)) U assigns-if True e0)»{el)e» E1 and
da-e2: (prg=G,cls=accC,lcl=L]
F(dom (locals (store s0)) U assigns-if False e0)»({e2)c» E2
by cases simp+
from eval obtain b sI where
eval-e0: GFs0 —e0—>b—n— s1 and
eval-then-else: Grs1 —(if the-Bool b then el else e2)—>=v—n— s2
using normal-s0 by (fastforce elim: evaln-elim-cases)
from walid-e0 P valid-A conf-s0 eval-e0 wt-e0 da-e0
obtain P’ |b]. s! Z and conf-s1: s1:=(G,L)
by (rule validE)
hence P": A\ v. (P'+—=(the-Bool b)) v s1 Z
by (cases normal s1) auto
have Q |v]. s2 Z
proof (cases normal s1)
case True
note normal-s1=this
from wt-el wt-e2 obtain T' where
wt-then-else:
(prg=G,cls=accC,lcl=L|)F(if the-Bool b then el else e2)::—T'
by (cases the-Bool b) simp+
have s0-s1: dom (locals (store s0))
U assigns-if (the-Bool b) e0 C dom (locals (store s1))
proof —
from eval-e0
have eval-e0’: Grs0 —e0—>b— sl
by (rule evaln-eval)
hence
dom (locals (store s0)) C dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)
moreover
from eval-e0’ True wi-e0
have assigns-if (the-Bool b) e0 C dom (locals (store s1))
by (rule assigns-if-good-approzx’)
ultimately show ?thesis by (rule Un-least)
qed
obtain E’ where
da-then-else:
(prg=G,cls=accC,lcl=L)
Fdom (locals (store s1))»(if the-Bool b then el else e2).» E’
proof (cases the-Bool b)
case True
with that da-el s0-s1 show ?thesis
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by simp (erule da-weakenFE, auto)
next
case Fulse
with that da-e2 s0-s1 show ?thesis
by simp (erule da-weakenE,auto)
qed
with valid-then-else P’ valid-A conf-s1 eval-then-else wi-then-else
show ?thesis
by (rule validE)
next
case Fulse
with valid-then-else P’ valid-A conf-s1 eval-then-else
show ?thesis
by (cases rule: validE) iprover—+
qed
moreover
from eval wt da conf-s0 wf
have s2:<(G, L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..
qed
qed
next
case (Call A P e Q args R mode statT mn pTs’ S accC’)
note valid-e = <G, A|E:{ {Normal P} e—> {Q} b
have valid-args: \ a. G, A|E:{ {Q«1Inl a} args== {R a} }
using Call.hyps by simp
have wvalid-methd: )\ a vs invC declC' .
G AlE{ {R a+In3 vs A.
(As. declC =
invocation-declclass G mode (store s) a statT
(name = mn, parTs = pTs') A
invC = invocation-class mode (store s) a statT N
I = locals (store s)) ;.
init-lvars G declC (name = mn, parTs = pTs')) mode a vs A.
(As. normal s — GFmode—invC=statT)}
Methd declC (name=mn,parTs=pTs')—> {set-lvars 1 .; S} }
using Call.hyps by simp
show G, A|E=::{ {Normal P} {accC’ statT ,mode}e-mn( {pTs'}args)—>~ {S} }
proof (rule valid-expr-Normall)
fix nsOLaccCTEvsSYZ
assume valid-A: Vi€ A. GE=n::t
assume conf-s0: s0::=3(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)F{accC’ statT ,mode}e-mn( {pTs'}args)::—T
assume da: (prg=G,cls=accC,lcl=L)Fdom (locals (store s0))
»{({accC’ statT ,mode}e-mn( {pTs'}args))e» E
assume eval: GHs0 —{accC’statT,mode}e-mn( {pTs'}args)—-v—n— s5
assume P: (Normal P) Y s0 Z
show S |v]. $5 Z A s5:=X(G, L)
proof —
from wt obtain pTs statDeclT statM where
wt-e: (prg=G,cls=accC,lcl=L|)Fe::— RefT statT and
wt-args: (prg=G,cls=accC,lcl=L)Fargs:=pTs and
statM: maz-spec G accC statT (name=mn,parTs=pTs)
= {((statDeclT,statM),pTs")} and
mode: mode = invmode statM e and
T: T =(resTy statM) and
eg-accC-accC”: accC=accC’
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by cases fastforce+
from da obtain C where
da-e: (prg=G,cls=accC,lcl=L)F (dom (locals (store s0)))»(e).» C and
da-args: (prg=G,cls=accC,lcl=L)F nrm C »{args);» E
by cases simp
from eval eq-accC-accC’ obtain a s vs s2 58 s3' s4 invDeclC where
evaln-e: GFs0 —e—=a—n— sl and
evaln-args: Grs1 —args=-vs—n— s2 and
invDeclC: invDeclC = invocation-declclass
G mode (store s2) a statT (name=mn,parTs=pTs’) and
$8: 88 = init-lvars G invDeclC (name=mn,parTs=pTs’) mode a vs s2 and
check: s8' = check-method-access G
accC’ statT mode (name = mn, parTs = pTs’) a s8 and
evaln-methd:
GFs3' —Methd invDeclC (name=mn,parTs=pTs')—=v—n— s/ and
s5: sb=(set-lvars (locals (store s2))) s4
using normal-s0 by (auto elim: evaln-elim-cases)

from evaln-e
have eval-e: G50 —e—>a— sl
by (rule evaln-eval)

from eval-e - wt-e wf
have si-no-return: abrupt s1 # Some (Jump Ret)
by (rule eval-expression-no-jump
[where ?Env=(prg=G,cls=accC,lcl=L)),simplified])
(use normal-s0 in auto)

from walid-e P valid-A conf-s0 evaln-e wt-e da-e
obtain @ |a|. s Z and conf-s1: s1:=<(G,L)
by (rule validE)
hence Q: A\ v. (Q«1Inl a) vsl Z
by simp
obtain
R: (R a) |vs]; s2 Z and
conf-s2: s2::%(G,L) and
s2-no-return: abrupt s2 # Some (Jump Ret)
proof (cases normal s1)
case True
obtain E’ where
da-args':
(prg=G,cls=accC,lcl=L)\ dom (locals (store s1)) »{args);» E’
proof —
from evaln-e wt-e da-e wf True
have nrm C C dom (locals (store s1))
by (cases rule: da-good-approz-evalnE) iprover
with da-args show thesis
by (rule da-weakenE) (rule that)
qed
with valid-args Q) valid-A conf-s1 evaln-args wt-args
obtain (R a) |vs]; s2 Z s2:<(G,L)
by (rule validE)
moreover
from evaln-args
have e: GFs! —args=-vs— s2
by (rule evaln-eval)
from this s1-no-return wt-args wf
have abrupt s2 # Some (Jump Ret)
by (rule eval-expression-list-no-jump
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[where ?Env=(prg=G,cls=accC,lcl=L)),simplified))
ultimately show ?thesis ..
next
case Fulse
with valid-args @Q valid-A conf-s1 evaln-args
obtain (R a) |vs]; s2 Z s2:=<(G,L)
by (cases rule: validE) iprover+
moreover
from Fulse evaln-args have s2=s1
by auto
with sI-no-return have abrupt s2 # Some (Jump Ret)
by simp
ultimately show ?thesis ..
qed

obtain invC where
invC': invC = invocation-class mode (store s2) a statT
by simp
with s3
have invC": invC = (invocation-class mode (store s3) a statT)
by (cases s2,cases mode) (auto simp add: init-lvars-def2 )
obtain [ where
I: 1 = locals (store s2)
by simp

from eval wt da conf-s0 wf
have conf-s5: s5:<(G, L)
by (rule evaln-type-sound [elim-format]) simp
let PROP ?R = A\ v.
(R a<—In8 vs A.
(As. invDeclC = invocation-declclass G mode (store s) a statT
(name = mn, parTs = pTs') A
invC = invocation-class mode (store s) a statT A
[ = locals (store s)) ;.
ingt-lvars G invDeclC (name = mn, parTs = pTs') mode a vs A.
(As. normal s — GFmode—invC=<statT)
Yvs3' Z
have abrupt-s3-lemma: S |v|. $5 Z
if abrupt-s3: — normal s3
proof —
from abrupt-s3 check have eq-s3'-s3: s3'=s3
by (auto simp add: check-method-access-def Let-def)
with R s8 invDeclC invC | abrupt-s8
have R": PROP ?R
by auto
have conf-s3": s3"::=<(G, Map.empty)

proof —
from s2-no-return s3
have abrupt s3 # Some (Jump Ret)
by (cases s2) (auto simp add: init-lvars-def2 split: if-split-asm)
moreover
obtain abr2 str2 where s2: s2=(abr2,str2)
by (cases s2)
from s3 s2 conf-s2 have (abrupt s3,str2):=<(G, L)
by (auto simp add: init-lvars-def2 split: if-split-asm)
ultimately show ?thesis
using s3 s2 eq-53'-s3
apply (simp add: init-lvars-def2)
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apply (rule conforms-set-locals [OF - wlconf-empty])
by auto
qed
from valid-methd R’ valid-A conf-s3' evaln-methd abrupt-s3 eq-s3'-s3
have (set-lvars 1 .; S) |v]. s4 Z
by (cases rule: validE) simp+
with s5 [ show ?thesis
by simp
qed

have S |v]. $5 Z
proof (cases normal s2)
case Fulse
with s3 have abrupt-s3: = normal s3
by (cases s2) (simp add: init-lvars-def2)
thus ?thesis
by (rule abrupt-s3-lemma)
next
case True
note normal-s2 = this
with evaln-args
have normal-s1: normal sl
by (rule evaln-no-abrupt)
obtain E’ where
da-args':
(prg=G,cls=accC,lcl=L)F dom (locals (store s1)) »{args);» E’
proof —
from evaln-e wt-e da-e wf normal-si
have nrm C C dom (locals (store s1))
by (cases rule: da-good-approz-evalnE) iprover
with da-args show thesis
by (rule da-weakenE) (rule that)
qed
from evaln-args
have eval-args: GFsl —args=>vs— s2
by (rule evaln-eval)
from evaln-e wt-e da-e conf-s0 wf
have conf-a: G, store sit-a::=RefT statT
by (rule evaln-type-sound [elim-format)) (use normal-s1 in simp)
with normal-s1 normal-s2 eval-args
have conf-a-s2: G, store s2-a::=XRefT statT
by (auto dest: eval-gext)
from evaln-args wt-args da-args’ conf-s1 wf
have conf-args: list-all2 (conf G (store s2)) vs pTs
by (rule evaln-type-sound [elim-format]) (use normal-s2 in simp)
from statM
obtain
statM": (statDeclT,statM)€mheads G accC statT (name=mn,parTs=pTs’)
and
pTs-widen: GHpTs[<]pTs’
by (blast dest: max-spec2mheads)
show ?thesis
proof (cases normal s3)
case Fulse
thus ?thesis
by (rule abrupt-s3-lemma)
next
case True
note normal-s3 = this
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with s? have notNull: mode = IntVir — a # Null
by (cases s2) (auto simp add: init-lvars-def2)
from conf-s2 conf-a-s2 wf notNull invC
have dynT-prop: GFmode—invC=<statT
by (cases s2) (auto intro: DynT-propl)

with wt-e statM’ invC mode wf
obtain dynM where
dynM: dynlookup G statT invC (name=mn,parTs=pTs’) = Some dynM and
acc-dynM: G FMethd (name=mn,parTs=pTs’) dynM
in invC dyn-accessible-from accC
by (force dest!: call-access-ok)
with invC’ check eq-accC-accC'’
have eq-s3'-53: s3'=s3
by (auto simp add: check-method-access-def Let-def)

with dynT-prop R s3 invDeclC invC'l
have R: PROP ?R
by auto

from dynT-prop wf wt-e statM’ mode invC invDeclC dynM
obtain
dynM: dynlookup G statT invC (name=mn,parTs=pTs’) = Some dynM and
wf-dynM: wf-mdecl G invDeclC ((name=mn,parTs=pTs'),mthd dynM) and
dynM': methd G invDeclC (name=mn,parTs=pTs’) = Some dynM and
iscls-invDeclC': is-class G invDeclC and
imnvDeclC”: invDeclC = declclass dynM and
mmvC-widen: GrHinvC=¢ invDeclC and
resTy-widen: GtresTy dynM <resTy statM and
is-static-eq: is-static dynM = is-static statM and
involved-classes-prop:
(if invmode statM e = IntVir
then V statC'. statT = ClassT statC — GHinvC=¢ statC
else ((FstatC. statT = ClassT statC N GFstatC=¢ invDeclC) V
(VstatC. statT # ClassT statC A invDeclC = Object)) A
statDeclT = ClassT invDeclC)
by (cases rule: DynT-mheadsE) simp
obtain L’ where
L:L'=(\ k.
(case k of
EName e
= (case e of
VNam v
= ((table-of (lcls (mbody (mthd dynM))))
(pars (mthd dynM)[—]pTs") v
| Res = Some (resTy dynM))
| This = if is-static statM
then None else Some (Class invDeclC)))
by simp
from wf-dynM [THEN wf-mdeclD1, THEN conjunctl] normal-s2 conf-s2 wt-e
wf eval-args conf-a mode notNull wf-dynM involved-classes-prop
have conf-s3: s3:<(G,L’)
apply —

apply (drule conforms-init-lvars [of G invDeclC
(name=mn,parTs=pTs') dynM store s2 vs pTs abrupt s2
L statT invC a (statDeclT,statM) e])

apply (rule wf)
apply (rule conf-args)
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apply (simp add: pTs-widen)
apply (cases s2,simp)
apply (rule dynM")
apply (force dest: ty-expr-is-type)
apply (rule invC-widen)
apply (force dest: eval-gext)
apply simp
apply simp
apply (simp add: invC)
apply (simp add: invDeclC')
apply (simp add: normal-s2)
apply (cases s2, simp add: L' init-lvars-def2 s3
cong add: Iname.case-cong ename.case-cong)
done
with eg-s3’-s3 have conf-s3": s3":<(G,L’) by simp
from is-static-eq wf-dynM L'
obtain mthdT where
(prg=G,cls=invDeclC,lcl=L")
FBody invDeclC (stmt (mbody (mthd dynM)))::—mthdT and
mthdT-widen: G-mthdT<resTy dynM
by — (drule wf-mdecl-bodyD,
auto simp add: callee-lcl-def
cong add: Iname.case-cong ename.case-cong)
with dynM' iscls-invDeclC invDeclC’
have
wt-methd:
(prg=G,cls=invDeclC,lcl=L")
F(Methd invDeclC (name = mn, parTs = pTs'))::—mthdT
by (auto intro: wt.Methd)
obtain M where
da-methd:
(prg=G,cls=invDeclC,lcl=L")
F dom (locals (store s37))
»(Methd invDeclC (name=mn,parTs=pTs’))e» M
proof —
from wf-dynM
obtain M’ where
da-body:
(prg=G, cls=invDeclC
Jcl=callee-lcl invDeclC (name = mn, parTs = pTs') (mthd dynM)
) b parameters (mthd dynM) »(stmt (mbody (mthd dynM)))» M’ and
res: Result € nrm M’
by (rule wf-mdeclE) iprover
from da-body is-static-eq L’ have
(prg=G, cls=invDeclC,lcl=L")
F parameters (mthd dynM) »(stmt (mbody (mthd dynM)))» M’
by (simp add: callee-lcl-def
cong add: Iname.case-cong ename.case-cong)
moreover have parameters (mthd dynM) C dom (locals (store s3'))
proof —
from is-static-eq
have (invmode (mthd dynM) e) = (invmode statM e)
by (simp add: invmode-def)
moreover
have length (pars (mthd dynM)) = length vs
proof —
from normal-s2 conf-args
have length vs = length pTs
by (simp add: list-all2-iff)
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also from pTs-widen
have ... = length pTs’
by (simp add: widens-def list-all2-iff)
also from wf-dynM
have ... = length (pars (mthd dynM))
by (simp add: wf-mdecl-def wf-mhead-def)
finally show ?thesis ..
qed
moreover note s3 dynM' is-static-eq normal-s2 mode
ultimately
have parameters (mthd dynM) = dom (locals (store s3))
using dom-locals-init-lvars
[of mthd dynM G invDeclC (name=mn,parTs=pTs’) vs e a s2]
by simp
thus ?thesis using eq-s3’-s3 by simp
qed
ultimately obtain M2 where
da:
(prg=G, cls=invDeclC,lcl=L’)
F dom (locals (store s87)) »(stmt (mbody (mthd dynM)))» M2 and
M2: nrm M’ C nrm M2
by (rule da-weakenE)
from res M2 have Result € nrm M2
by blast
moreover from wf-dynM
have jumpNestingOkS {Ret} (stmt (mbody (mthd dynM)))
by (rule wf-mdeclE)
ultimately
obtain M3 where
(prg=G, cls=invDeclC,lcl=L") = dom (locals (store s3"))
»(Body (declclass dynM) (stmt (mbody (mthd dynM))))» M3
using da
by (iprover intro: da.Body assigned.select-convs)
from - this [simplified]
show thesis
by (rule da.Methd [simplified,elim-format])
(auto intro: dynM’ that)
qged
from valid-methd R’ valid-A conf-s3’ evaln-methd wt-methd da-methd
have (set-lvars 1 .; S) |v]. s4 Z
by (cases rule: validE) iprover+
with s5 [ show ?thesis
by simp
qed
qed
with conf-s5 show ?thesis by iprover
qed
qged
next
case (Methd A P @) ms)
note valid-body = «G,A U {{P} Methd—> {Q} | ms}|E=:{{P} body G—+ {Q} | ms}
show G, A|=::{{P} Methd—> {Q} | ms}
by (rule Methd-sound) (rule Methd.hyps)
next
case (Body A P D Q ¢ R)
note valid-init = <G, A|l=::{ {Normal P} .Init D. {Q}
note valid-c = <G, AlE:{ {Q} .c.
{As.. abupd (absorb Ret) .; R«Inl1 (the (locals s Result))} }
show G, A|E::{ {Normal P} Body D ¢c—+ {R} }
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proof (rule valid-expr-Normall)
fix nsOL accCTEvsy YZ
assume valid-A: Vi€ A. GEn:t
assume conf-s0: s0::=3(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)FBody D c¢::—T
assume da: (prg=G,cls=accC,lcl=L)Fdom (locals (store s0))»{Body D c).»E
assume cval: GFsO —Body D c—»-v—n— $4
assume P: (Normal P) Y s0 Z
show R |v|. 84 Z A s4:=(G, L)
proof —
from wt obtain
iscls-D: is-class G D and
wt-init: (prg=G,cls=accC,lcl=L)FInit D::y/ and
wt-c: (prg=G,cls=accC,lcl=L)Fc::y/
by cases auto
obtain I where
da-init:(prg=G,cls=accC,lcl=L|) + dom (locals (store s0)) »(Init D)s» I
by (auto intro: da-Init [simplified] assigned.select-conwvs)
from da obtain C' where
da-c: (prg=G,cls=accC,lcl=L)F (dom (locals (store s0)))»{c)s» C and
JmpOk: jumpNestingOkS {Ret} ¢
by cases simp
from eval obtain s s2 s3 where
eval-init: GF-s0 —Init D—n— s1 and
eval-c: GFsl —c—n— s2 and
v: v = the (locals (store s2) Result) and
s8: 88 =(if 1. abrupt s2 = Some (Jump (Break 1)) V
abrupt s2 = Some (Jump (Cont I))
then abupd (Ax. Some (Error CrossMethodJump)) s2 else s2)and
s4: 84 = abupd (absorb Ret) s8
using normal-s0 by (fastforce elim: evaln-elim-cases)
obtain C’ where
da-c": (prg=G,cls=accC,lcl=L)F (dom (locals (store s1)))»{c)s» C’
proof —
from eval-init
have (dom (locals (store s0))) C (dom (locals (store s1)))
by (rule dom-locals-evaln-mono-elim)
with da-c show thesis by (rule da-weakenE) (rule that)
qed
from wvalid-init P valid-A conf-s0 eval-init wt-init da-init
obtain Q: Q ¢ sI Z and conf-s1: s1:=(G,L)
by (rule validE)
from wvalid-c¢ Q valid-A conf-s1 eval-c wt-c da-c’
have R: (As.. abupd (absorb Ret) .; R<«Inl (the (locals s Result)))

A
by (rule validE)
have s3=s2
proof —
have sI-no-jmp: A j. abrupt s1 # Some (Jump j)
by (rule eval-statement-no-jump [OF - - - wt-init])

(use eval-init [THEN evaln-eval] wf normal-s0 in auto)

from eval-¢ [THEN evaln-eval] - wt-¢ wf
have A j. abrupt s2 = Some (Jump j) = j=Ret

by (rule jumpNestingOk-evalE) (auto intro: jmpOk simp add: s1-no-jmp)
moreover note s3
ultimately show ?thesis

by (force split: if-split)

qed
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with R v s/
have R |v]. s4 Z
by simp
moreover
from eval wt da conf-s0 wf
have s/:=<(G, L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..
qed
qed
next
case (Nil A P)
show G, A|E=::{ {Normal (P<|[]]1)} [|[=> {P} }
proof (rule valid-expr-list-Normall)
fix s0stvsnLYZ
assume conf-s0: s0::=3(G,L)
assume normal-s0: normal s0
assume eval: Gks0 —[|=>vs—n— sl
assume P: (Normal (P<|[]]:)) Y s0 Z
show P |vs]; s1 Z A s1:=(G, L)
proof —
from eval obtain vs=[] s1=s0
using normal-s0 by (auto elim: evaln-elim-cases)
with P conf-s0 show ?thesis
by simp
qed
ged
next
case (Cons A P e Q) es R)
note valid-e = <G, A|E:{ {Normal P} e—> {Q} b
have valid-es: \ v. G, A|l=:{ {Q«|v]e} es== {AVals:vs:. R[(v # vs)|:} }
using Cons.hyps by simp
show G,A|E=::{ {Normal P} e # es=> {R} }
proof (rule valid-expr-list-Normall)
fix nsOLaccCTEvs2Y Z
assume valid-A: Vi€ A. GE=n::t
assume conf-s0: s0::=3(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accClcl=L)Fe # es:=T
assume da: (prg=G,cls=accC,lcl=L)Fdom (locals (store s0)) »(e # es)» E
assume ceval: GFsO —e # es==v—n— s2
assume P: (Normal P) Y s0 Z
show R |v]; s2 Z A s2:=%(G, L)
proof —
from wt obtain eT esT where
wt-e: (prg=G,cls=accC,lcl=L)e::—eT and
wt-es: (prg=G,cls=accC,lcl=L|)Fes:=esT
by cases simp
from da obtain F1 where
da-e: (prg=G,cls=accC,lcl=L)F (dom (locals (store s0)))»(e).» EI and
da-es: (prg=G,cls=accC,lcl=L)F nrm E1 »(es);» E
by cases simp
from eval obtain s! ve vs where
eval-e: GFs0 —e—>ve—n— sl and
eval-es: GFsl —es=>vs—n— s2 and
v: v=veFuvs
using normal-s0 by (fastforce elim: evaln-elim-cases)
from wvalid-e P valid-A conf-s0 eval-e wt-e da-e
obtain Q: Q |ve|. sI Z and conf-s1: s1:=(G,L)

477
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by (rule validE)
from @ have Q" A v. (Q+|vel.) vsl Z
by simp
have (A Vals:vs:. R«|[(ve # vs)|;) |vs]; s2 Z
proof (cases normal s1)
case True
obtain F’ where
da-es”: (prg=G,cls=accC,lel=L)F dom (locals (store s1)) »(es);» E’
proof —
from eval-e wt-e da-e wf True
have nrm E1 C dom (locals (store s1))
by (cases rule: da-good-approz-evalnE) iprover
with da-es show thesis
by (rule da-weakenE) (rule that)
qed
from wvalid-es Q' valid-A conf-s1 eval-es wt-es da-es’
show ?thesis
by (rule validE)
next
case Fulse
with valid-es Q' valid-A conf-s1 eval-es
show ?thesis
by (cases rule: validE) iprover+
qed
with v have R |v]; s2 Z
by simp
moreover
from eval wt da conf-s0 wf
have s2::<(G, L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show %thesis ..
qged
qed
next
case (Skip A P)
show G,A|E::{ {Normal (P+<)} .Skip. {P} }
proof (rule valid-stmt-Normall)
fixsOsinlLYZ
assume conf-s0: s0::=(G,L)
assume normal-s0: normal s0
assume cval: GFs0 —Skip—n— sl
assume P: (Normal (P<<)) Y s0 Z
show P {$ s1 Z A s1:=(G, L)
proof —
from eval obtain s1=s0
using normal-s0 by (fastforce elim: evaln-elim-cases)
with P conf-s0 show ?thesis
by simp
qged
qed
next
case (Ezpr A P e Q)
note valid-e = <G, A|E:{ {Normal P} e—> {Q+<{} b
show G,A|=::{ {Normal P} .Expre. {Q} }
proof (rule valid-stmt-Normall)
fix nsO L accC Csl Y Z
assume valid-A: Vi€ A. GE=n:t
assume conf-s0: s0::=3(G,L)
assume normal-s0: normal s0
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assume wt: (prg=G,cls=accC,lcl=L)-FExpr e::\/
assume da: (prg=G,cls=accC,lcl=L)Fdom (locals (store s0)) »(Expr €)s» C
assume eval: GFs0 —Ezpr e—n— sl
assume P: (Normal P) Y s0 Z
show Q ¢ sl Z A s1:=(G, L)
proof —
from wt obtain eT where
wt-e: (prg = G, cls = accC, lel = L)Fe:—eT
by cases simp
from da obtain F where
da-e: (prg=G,cls=accC, lel=L)Fdom (locals (store s0))»(€)e» E
by cases simp
from eval obtain v where
eval-e: GFs0 —e—>v—n— sl
using normal-s0 by (fastforce elim: evaln-elim-cases)
from wvalid-e P valid-A conf-s0 eval-e wt-e da-e
obtain Q: (Q+<) |v]. s1 Z and s1:=<(G,L)
by (rule validFE)
thus ?thesis by simp
qed
qged
next
case (Lab A P ¢l Q)
note valid-c = «G,A|=::{ {Normal P} .c. {abupd (absorb 1) .; Q} b
show G,A|E=::{ {Normal P} .1- c. {Q} }
proof (rule valid-stmt-Normall)
fix nsO L accC Cs2Y Z
assume valid-A: Vi€ A. GEn::t
assume conf-s0: s0::=<(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)Fl- c::y/
assume da: (prg=G,cls=accC,lcl=L)Fdom (locals (store s0)) »(l- c)s» C
assume eval: GF-s0 —I- c—n— s2
assume P: (Normal P) Y s0 Z
show Q & s2 Z A s2:=(G, L)
proof —
from wt obtain
wt-c: (prg = G, cls = accC, lcl = L)Feiy/
by cases simp
from da obtain E where
da-c: (prg=G,cls=accC, lcl=L)-dom (locals (store s0))»(c)s»E
by cases simp
from eval obtain s/ where
eval-c: GFs0 —c—n— s1 and
s2: s2 = abupd (absorb 1) s1
using normal-s0 by (fastforce elim: evaln-elim-cases)
from wvalid-c P valid-A conf-s0 eval-c wt-c da-c
obtain Q: (abupd (absorb 1) .; Q) & s1 Z
by (rule validE)
with s2 have Q { s2 Z
by simp
moreover
from eval wt da conf-s0 wf
have s2::<(G, L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..
qed
qed
next
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case (Comp A P c1 Q c2 R)
note valid-c1 = «G,All=::{ {Normal P} .c1. {Q} }
note valid-c2 = «G,AlE=={ {Q} .c2. {R} b
show G,A|E::{ {Normal P} .cl;; ¢2. {R} }
proof (rule valid-stmt-Normall)
fix nsOL accCCs2YZ
assume valid-A: Vi€ A. GEn:t
assume conf-s0: s0:=(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)F(cl;; ¢2):y/
assume da: (prg=G,cls=accC,lcl=L)Fdom (locals (store s0))»{cl;;c2)s» C
assume cval: GFs0 —cl;; c2—n— s2
assume P: (Normal P) Y s0 Z
show R {$ s2 Z A s2:=%(G,L)
proof —

from eval obtain s! where
eval-c1: GFs0 —cl —n— s1 and
eval-c2: GFs1 —c2 —n— s2
using normal-s0 by (fastforce elim: evaln-elim-cases)
from wt obtain
wt-c1: (prg = G, cls = accC, lel = L)Fcl::y/ and
wt-c2: (prg = G, cls = accC, lcl = L)Fc2::y/
by cases simp
from da obtain C1 C2 where
da-c1: (prg=G,cls=accC,lcl=L)\ dom (locals (store s0)) »{cl)s» CI1 and
da-c2: (prg=G,cls=accC,lcl=L)Fnrm C1 »{c2)s» C2
by cases simp
from walid-c1 P valid-A conf-s0 eval-c1 wt-c1 da-cl
obtain Q: Q & s! Z and conf-s1: s1:=<(G,L)
by (rule validE)
have R < s2 Z
proof (cases normal s1)
case True
obtain C2’ where
(prg=G,cls=accC,lcl=L)F dom (locals (store s1)) »(c2)s» C2’'
proof —
from eval-c1 wt-c1 da-c1 wf True
have nrm C1 C dom (locals (store s1))
by (cases rule: da-good-approz-evalnE) iprover
with da-c2 show thesis
by (rule da-weakenE) (rule that)
qed
with valid-c2 Q valid-A conf-s1 eval-c2 wt-c2
show ?thesis
by (rule validFE)
next
case Fulse
from wvalid-c2 Q valid-A conf-s1 eval-c2 False
show ?thesis
by (cases rule: validE) iprover+
qed
moreover
from eval wt da conf-s0 wf
have s2:<(G, L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show ¢thesis ..

qed
qed

next
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case (If A PeP'clc2 Q)
note valid-e = «G,A|=::{ {Normal P} e—> {P'} b
have valid-then-else: \ b. G,A|E=:{ {P"=b} .(if b then cI else ¢2). {Q} }
using If.hyps by simp
show G,A|E::{ {Normal P} .If(e) cl Else c2. {Q} }
proof (rule valid-stmt-Normall)
fix nsOL accC Cs2YZ
assume valid-A: Vi€ A. GEn:t
assume conf-s0: s0:=<(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)FIf(e) cl Else c2::y/
assume da: (prg=G,cls=accC,lcl=L)
Fdom (locals (store s0))»{If(e) c1 Else c¢2)s»C
assume eval: G-s0 —If(e) c1 Else c2—n— s2
assume P: (Normal P) Y s0 Z
show Q < s2 Z A s2:=<(G,L)
proof —
from eval obtain b s where
eval-e: GFsO —e—>b—n— sI and
eval-then-else: GFs1 —(if the-Bool b then c1 else ¢2)—n— s2
using normal-s0 by (auto elim: evaln-elim-cases)
from wt obtain
wt-e: (prg=G, cls=accC, lel=L|)Fe::—PrimT Boolean and
wi-then-else: (prg=G,cls=accC lcl=L)F(if the-Bool b then cl else c¢2)::y/
by cases (simp split: if-split)
from da obtain E S where
da-e: (prg=G,cls=accC,lcl=L)F dom (locals (store s0)) »{e).» E and
da-then-else:
(prg=G,cls=accC,lcl=L)F
(dom (locals (store s0)) U assigns-if (the-Bool b) e)
» (if the-Bool b then c1 else c2)s» S
by cases (cases the-Bool b,auto)
from walid-e P wvalid-A conf-s0 eval-e wt-e da-e
obtain P’ |b]. s! Z and conf-s1: s1:=(G,L)
by (rule validFE)
hence P’: Av. (P'+—=the-Bool b) v s1 Z
by (cases normal s1) auto
have Q { s2 7
proof (cases normal s1)
case True
have s0-s1: dom (locals (store s0))
U assigns-if (the-Bool b) e C dom (locals (store s1))
proof —
from eval-e
have eval-e¢: GFs0 —e—>b— sl
by (rule evaln-eval)
hence
dom (locals (store s0)) C dom (locals (store s1))
by (rule dom-locals-eval-mono-elim)
moreover
from eval-e’ True wt-e
have assigns-if (the-Bool b) e C dom (locals (store s1))
by (rule assigns-if-good-approzx’)
ultimately show ?thesis by (rule Un-least)
qed
with da-then-else
obtain S’ where
(prg=G,cls=accC,lcl=L)
Fdom (locals (store s1))»{if the-Bool b then cl else ¢2)gs» S’
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by (rule da-weakenkE)
with valid-then-else P’ valid-A conf-s1 eval-then-else wi-then-else
show ?thesis

by (rule validE)

next
case Fulse
with valid-then-else P’ valid-A conf-s1 eval-then-else
show ?thesis

by (cases rule: validE) iprover+

qed
moreover
from eval wt da conf-s0 wf
have s2::<(G, L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show #%thesis ..
qged
qed

next
case (Loop A Pe P'cl)
note valid-e = <G, A|lE=::{ {P} e—> {P'} b
note valid-c = «G,A|lE::{ {Normal (P<=True)}

.C.

{abupd (absorb (Cont 1)) .; P} }»
show G, A|=:{ {P} .I- While(e) c. {P<=Falsel=} }
proof (rule valid-stmtI)

fix nsO L accC Cs3Y Z
assume valid-A: Vi€ A. GE=ne:t
assume conf-s0: s0:=<(G,L)
assume wt: normal s0 = (prg=G,cls=accC,lcl=L|)-1- While(e) c::y/
assume da: normal s0 = (prg=G,cls=accC,lcl=L)
F dom (locals (store s0)) »{l- While(e) c)s» C
assume eval: Gts0 —I- While(e) c—n— s3
assume P: P Y s0 Z
show (P—=Fulsel=3) & s8 Z N s3:=%(G,L)
proof —

— From the given hypothesises valid-e and wvalid-c we can only reach the state after unfolding the
loop once, i.e. P { s2 Z, where s2 is the state after executing c¢. To gain validity of the further execution of
while, to finally get (P’+—="False|l=<) { s3 Z we have to get a hypothesis about the subsequent unfoldings
(the whole loop again), too. We can achieve this, by performing induction on the evaluation relation, with
all the necessary preconditions to apply wvalid-e and wvalid-c in the goal.

have generalized:

AY'TE.

[t = (I- While(e) c)s; VE€A. GEnut; PY' s Z; s:=(G, L);
normal s = (prg=G,cls=accC,lcl=L)\t:: T}
normal s = (prg=G,cls=accC,lcl=L)\dom (locals (store s))»t»E
|= (P’«=Falsel=) vs' Z
(is PROP ?Hyp nt s v s’)
if Gks —t-—n— (v, ')
for t s s’ v
using that
proof (induct)
case (Loop s0' e’ bn’s1'c¢'s2'1's3'"Y' TE)
note while = «({I’- While(e') c¢')s::term) = (I- While(e) ¢)s>
hence egs: I'=1 e'=e c'=c by simp-all
note valid-A = Vt€eA. G=n':b
note P = <P Y’ (Norm s0') Z»
note conf-s0’ = <Norm s0':=(G, L)
have wt: (prg=G,cls=accC,lcl=L)-(I- While(e) c)s:: T
using Loop.prems eqs by simp
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have da: (prg=G,cls=accC,lcl=L|)
dom (locals (store ((Norm s0')::state)))»(l- While(e) c)s»E
using Loop.prems eqs by simp
have evaln-e: G-Norm s0' —e—=b—n'— s1’
using Loop.hyps eqs by simp
show (P«=Fulse|=) { s3' Z
proof —
from wt obtain
wt-e: (prg=G,cls=accC,lcl=L|)\e::— PrimT Boolean and
wt-c: (prg=G,cls=accC,lcl=L)Fc::y/
by cases (simp add: eqs)
from da obtain F S where
da-e: (prg=G,cls=accC,lcl=L)
F dom (locals (store ((Norm s0')::state))) »{e)e» E and
da-c: (prg=G,cls=accC,lcl=L)
F (dom (locals (store ((Norm s0')::state)))
U assigns-if True €) »{c)s» S
by cases (simp add: egs)
from evaln-e
have eval-e: G-Norm s0’' —e—>=b— s1’
by (rule evaln-eval)
from valid-e P valid-A conf-s0’ evaln-e wt-e da-e
obtain P" P’ |b|. s1’ Z and conf-s1" s1":=<(G,L)
by (rule validE)
show (P—=Fulse|=) & s3' Z
proof (cases normal s1”)
case True
note normal-s1 '=this
show ?thesis
proof (cases the-Bool b)
case True
with P’ normal-s1’ have P': (Normal (P+=True)) |bl. s1' Z
by auto
from True Loop.hyps obtain
eval-c: GFs1' —c—n'— s2’ and
eval-while:
Grabupd (absorb (Cont 1)) s2’ —1- While(e) c—n'— s3'
by (simp add: eqs)
from True Loop.hyps have
hyp: PROP ?Hyp n’ (I- While(e) c)
(abupd (absorb (Cont l')) s27) & s8'
apply (simp only: True if-True egqs)
apply (elim conjE)
apply (tactic smp-tac context 3 1)
apply fast
done
from eval-e
have s0’-s1": dom (locals (store ((Norm s0')::state)))
C dom (locals (store s1”))
by (rule dom-locals-eval-mono-elim)
obtain S’ where
da-c":
(prg=G,cls=accC,lcl=L)F(dom (locals (store s1)))»{c)s» S’
proof —
note s0’-s1’
moreover
from eval-e normal-s1’ wit-e
have assigns-if True e C dom (locals (store s1))
by (rule assigns-if-good-approx’ [elim-format])
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(simp add: True)
ultimately
have dom (locals (store ((Norm s0')::state)))
U assigns-if True e C dom (locals (store s1))
by (rule Un-least)
with da-c show thesis
by (rule da-weakenE) (rule that)
qed
with valid-c P valid-A conf-s1' eval-c wt-c
obtain (abupd (absorb (Cont 1)) .; P) < s2’ Z and
conf-s2" s2":=(G,L)
by (rule validE)
hence P-s2”: P < (abupd (absorb (Cont 1)) s2') Z
by simp
from conf-s2’
have conf-absorb: abupd (absorb (Cont 1)) s2' ::=(G, L)
by (cases s2”) (auto intro: conforms-absord)
moreover
obtain E’ where
da-while:
(prg=G,cls=accC,lcl=L)F
dom (locals(store (abupd (absorb (Cont 1)) s27)))
»(l- While(e) c)s» E'
proof —
note s0’-s1’
also
from eval-c
have GFs1’ —c— 52’
by (rule evaln-eval)
hence dom (locals (store s1')) C dom (locals (store s2))
by (rule dom-locals-eval-mono-elim)
also
have ...Cdom (locals (store (abupd (absorb (Cont 1)) s2")))
by simp
finally
have dom (locals (store ((Norm s0')::state))) C ... .
with da show thesis
by (rule da-weakenE) (rule that)
qed
from wvalid-A P-s2’ conf-absorb wt da-while’
show (P«—=Fulsel=0) & s3' Z
using hyp by (simp add: eqs)
next
case Fulse
with Loop.hyps obtain s8'=s1"’
by simp
with P’ False show ?thesis
by auto
qed
next
case Fulse
note abnormal-s1'=this
have s3'=s1’
proof —
from Fualse obtain abr where abr: abrupt s1’ = Some abr
by (cases s1') auto
from eval-e - wt-e wf
have no-jmp: \ j. abrupt s1’ # Some (Jump j)
by (rule eval-expression-no-jump
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[where ?Env=(prg=G,cls=accC,lcl=L)|),simplified))
stmp
show ?thesis
proof (cases the-Bool b)
case True
with Loop.hyps obtain
eval-c: GFs1’ —c—n'— s2’ and
eval-while:
GFabupd (absorb (Cont 1)) s2’ —I- While(e) c—n'— s3’
by (simp add: eqs)
from eval-c abr have s2'=s1’ by auto
moreover from calculation no-jmp
have abupd (absorb (Cont 1)) s2'=s2’
by (cases s1') (simp add: absorb-def)
ultimately show ?thesis
using eval-while abr
by auto
next
case Fulse
with Loop.hyps show ?thesis by simp
qed
qed
with P’ False show ?thesis
by auto
qed
qed
next
case (Abrupt abr st'n’ Y' T E)
note t' = «t' = (I- While(e) c)¢>
note conf = «(Some abr, s):=(G, L)
note P = <P Y' (Some abr, s) Z»
note valid-A = ~VteA. GEn':t
show (P’+=Fulse|=3) (undefined3 t’) (Some abr, s) Z
proof —
have eval-e:
GH(Some abr,s) —(€)e-—n'— (undefined3 (e),(Some abr,s))
by auto
from wvalid-e P valid-A conf eval-e
have P’ (undefined3 (e).) (Some abr,s) Z
by (cases rule: validE [where ?P=P]) simp+
with ¢t/ show ?thesis
by auto
qed
qed simp-all
from eval - valid-A P conf-s0 wt da
have (P«—=Fualsel=3) { s3 Z
by (rule generalized) simp-all
moreover
have s3::<(G, L)
proof (cases normal s0)
case True
from eval wt [OF True] da [OF True] conf-s0 wf
show ?thesis
by (rule evaln-type-sound [elim-format]) simp
next
case Fulse
with eval have s3=s0
by auto
with conf-s0 show ?thesis
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by simp
qed
ultimately show ?thesis ..
qed
qed
next
case (Jmp A j P)
show G,A|=::{ {Normal (abupd (Aa. Some (Jump 7)) .; P<<)} Jmp j. {P} }
proof (rule valid-stmt-Normall)
fix nsOL accC CslY Z
assume valid-A: Vt€A. GEn:t
assume conf-s0: s0:=<(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)FJmp j::\/
assume da: (prg=G,cls=accC,lcl=L)
Fdom (locals (store s0))»{Jmp j)s» C
assume eval: GFs0 —Jmp j—n— sl
assume P: (Normal (abupd (Aa. Some (Jump 7)) .; P<<)) Y s0 Z
show P { s1 Z A s1:=(G,L)
proof —
from eval obtain s where
s: s0=Norm s s1=(Some (Jump j), s)
using normal-s0 by (auto elim: evaln-elim-cases)
with P have P { s1 Z
by simp
moreover
from eval wt da conf-s0 wf
have s1:=<(G,L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show ¢thesis ..
qed
qed
next
case (Throw A P e Q)
note valid-e = (G, A|l=::{ {Normal P} e—> {AVal:a:. abupd (throw a) .; Q@+ b
show G,A|E::{ {Normal P} .Throw e. {Q} }
proof (rule valid-stmt-Normall)
fix nsO L accC Cs2Y Z
assume valid-A: Vi€ A. GEn:t
assume conf-s0: s0:=(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L|)F Throw e::\/
assume da: (prg=G,cls=accC,lcl=L)
Fdom (locals (store s0))»{Throw e)s» C
assume eval: GF-s0 —Throw e—n— s2
assume P: (Normal P) Y s0 Z
show Q ¢ s2 7 A s2:=(G,L)
proof —
from eval obtain s! a where
eval-e: GFs0 —e—»>a—n— s1 and
$2: s2 = abupd (throw a) si
using normal-s0 by (auto elim: evaln-elim-cases)
from wt obtain T where
wt-e: (prg=G,cls=accClcl=L)re:—T
by cases simp
from da obtain F where
da-e: (prg=G,cls=accC,lcl=L)F dom (locals (store s0)) »(e)e» E
by cases simp
from valid-e P wvalid-A conf-s0 eval-e wt-e da-e
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obtain (AVal:a:. abupd (throw a) .; Q«<) |al. s1 Z
by (rule validFE)
with s2 have Q  s2 Z
by simp
moreover
from eval wt da conf-s0 wf
have s2:<(G,L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..
qed
qged
next
case (Try A P cl Q Cwvn c2 R)
note valid-c1 = <G, A|E:{ {Normal P} .c1. {SXAlloc G Q} }
note valid-c2 = «G,AlE:{ {Q A. (As. G,stcatch C) ;. new-xept-var vn}
.c2.
(R} b
note Q-R = «(Q A. (As. = G,stcatch C)) = R»
show G,A|E=::{ {Normal P} .Try c1 Catch(C vn) c2. {R} }
proof (rule valid-stmt-Normall)
fix nsOL accCEs3Y Z
assume valid-A: Vi€ A. GEn:t
assume conf-s0: s0:=<(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)FTry c1 Catch(C vn) c2::/
assume da: (prg=G,cls=accC,lcl=L)
Fdom (locals (store s0)) »(Try c1 Catch(C vn) c2)s» E
assume eval: G-s0 —Try c1 Catch(C vn) c2—n— s3
assume P: (Normal P) Y s0 Z
show R { s8 Z A s3:=(G,L)
proof —
from eval obtain s! s2 where
eval-c1: GFs0 —cl—n— s1 and
szalloc: GFs1 —szalloc— s2 and
s8: if G,s2Fcatch C
then Gtnew-zcpt-var vn s2 —c2—n— s8
else s3 = s2
using normal-s0 by (fastforce elim: evaln-elim-cases)
from wt obtain
wit-c1: (prg=G,cls=accClcl=L)Fc1::y/ and
wt-¢2: (prg=G,cls=accC,lcl=L(VName vn— Class C)|)Fc2::/
by cases simp
from da obtain C1 C2 where
da-c1: (prg=G,cls=accC,lcl=L)F dom (locals (store s0)) »{cl)s» C1 and
da-c2: (prg=G,cls=accC,lcl=L(VName vn— Class C))
F (dom (locals (store s0)) U { VName vn}) »(c2)s» C2
by cases simp
from wvalid-c1 P valid-A conf-s0 eval-c1 wt-c1 da-cl
obtain szQ: (SXAlloc G Q) & sl Z and conf-s1: s1::=2(G,L)
by (rule validE)
from szalloc sx@)
have Q: Q $ s2 Z
by auto
have R  s3 Z
proof (cases 3 z. abrupt s1 = Some (Xcpt x))
case Fulse
from szalloc wf
have s2=s1
by (rule szalloc-type-sound [elim-format])
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(use False in <auto split: option.splits abrupt.splitsy)
with False
have no-catch: = G,s2catch C
by (simp add: catch-def)
moreover
from no-catch s3
have s3=s2
by simp
ultimately show ?thesis
using @ Q-R by simp
next
case True
note exception-s1 = this
show ?thesis
proof (cases G,s2Fcatch C)
case Fulse
with s3
have s3=s2
by simp
with False @ Q-R show ?thesis
by simp
next
case True
with s3 have eval-c2: GFnew-zcpt-var vn s2 —c2—n— s3
by simp
from conf-s1 szalloc wf
have conf-s2: s2:=(G, L)
by (auto dest: szalloc-type-sound
split: option.splits abrupt.splits)
from exception-s1 sxalloc wf
obtain a
where zcpt-s2: abrupt s2 = Some (Xcpt (Loc a))
by (auto dest!: szalloc-type-sound
split: option.splits abrupt.splits)
with True
have Ghobj-ty (the (globs (store s2) (Heap a)))=XClass C
by (cases s2) simp
with zcpt-s2 conf-s2 wf
have conf-new-zcpt: new-zept-var vn s2 :=(G, L(VName vn— Class C))
by (auto dest: Try-lemma)
obtain C2’ where
da-c2"
(prg=G,cls=accC,lcl=L(VName vn— Class C))
F (dom (locals (store (new-zcept-var vn s2)))) »{c2)s» C2'
proof —
have (dom (locals (store s0)) U { VName vn})
C dom (locals (store (new-zcpt-var vn s2)))
proof —
from eval-c1
have dom (locals (store s0))
C dom (locals (store s1))
by (rule dom-locals-evaln-mono-elim)
also
from szalloc
have ... C dom (locals (store s2))
by (rule dom-locals-sxalloc-mono)
also
have ... C dom (locals (store (new-zcpt-var vn s2)))
by (cases s2) (simp add: new-zept-var-def, blast)
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also
have { VName vn} C ...
by (cases s2) simp
ultimately show Zthesis
by (rule Un-least)
qed
with da-c2 show thesis
by (rule da-weakenE) (rule that)
qed
from Q eval-c2 True
have (Q A. (As. G,stcatch C) ;. new-zept-var vn)
& (new-zept-var vn s2) Z
by auto
from wvalid-c2 this valid-A conf-new-zcpt eval-c2 wt-c2 da-c2’
show R  s3 7
by (rule validE)
qed
qed
moreover
from eval wt da conf-s0 wf
have s3:=<(G,L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..
qed
qed
next
case (Fin A P cl Q c2 R)
note valid-c1 = «G,A|lE::{ {Normal P} .c1. {Q} b
have valid-c2: N\ abr. G A|E=:{ {Q A. (As. abr = fst s) ;. abupd (Az. None)}
.c2.
{abupd (abrupt-if (abr # None) abr) .; R} }
using Fin.hyps by simp
show G,A|E::{ {Normal P} .cl Finally c2. {R} }
proof (rule valid-stmt-Normall)
fix nsOL accCEs3Y Z
assume valid-A: Vi€ A. GE=n::t
assume conf-s0: s0:=<(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L|)cl Finally c2::y/
assume da: (prg=G,cls=accC,lcl=L)
Fdom (locals (store s0)) »{cl Finally c2)s» E
assume eval: GFs0 —cl Finally c2—n— s8
assume P: (Normal P) Y s0 Z
show R { s8 Z A $3:=(G,L)
proof —
from eval obtain si abr! s2 where
eval-c1: GFs0 —cl—n— (abri, s1) and
eval-c2: GF-Norm s1 —c2—n— s2 and
s8: 8 = (if Jerr. abrl = Some (Error err)
then (abrl, s1)
else abupd (abrupt-if (abrl # None) abrl) s2)
using normal-s0 by (fastforce elim: evaln-elim-cases)
from wt obtain
wt-c1: (prg=G,cls=accC,lcl=L)Fc1::y/ and
wit-c2: (prg=G,cls=accC,lcl=L)Fc2::/
by cases simp
from da obtain C1 C2 where
da-c1: (prg=G,cls=accC,lcl=L|) + dom (locals (store s0)) »{cl)s» C1 and
da-c2: (prg=G,cls=accC,lcl=L|) + dom (locals (store s0)) »{(c2)s» C2
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by cases simp
from walid-c1 P valid-A conf-s0 eval-c1 wt-c1 da-c1
obtain Q: @ ¢ (abrl,s1) Z and conf-s1: (abrl,s1):=(G,L)
by (rule validE)
from @
have Q" (Q A. (As. abrl = fst s) ;. abupd (Az. None)) & (Norm s1) Z
by auto
from eval-c1 wt-c1 da-c1 conf-s0 wf
have error-free (abrl,s1)
by (rule evaln-type-sound [elim-format]) (use normal-s0 in simp)
with s8 have s3" s8 = abupd (abrupt-if (abrl # None) abrl) s2
by (simp add: error-free-def)
from conf-s1
have conf-Norm-s1: Norm s1:=(G,L)
by (rule conforms-Norml)
obtain C2’ where
da-c2": (prg=G,cls=accC,lcl=L]
F dom (locals (store ((Norm s1)::state))) »(c2)s» C2’'
proof —
from eval-c1
have dom (locals (store s0)) C dom (locals (store (abrl,sl)))
by (rule dom-locals-evaln-mono-elim)
hence dom (locals (store s0))
C dom (locals (store ((Norm s1)::state)))
by simp
with da-c2 show thesis
by (rule da-weakenE) (rule that)
qed
from wvalid-c2 Q' valid-A conf-Norm-s1 eval-c2 wi-c¢2 da-c2’
have (abupd (abrupt-if (abrl # None) abrl) .; R) & s2 Z
by (rule validE)
with s3’ have R  s3 7
by simp
moreover
from eval wt da conf-s0 wf
have s3::<(G,L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show ?thesis ..
qged
qed
next
case (Done A P C)
show G,A|=::{ {Normal (P<< A. initd C)} .Init C. {P} }
proof (rule valid-stmt-Normall)
fix nsOL accCEs3Y Z
assume valid-A: Vi€ A. GEn:t
assume conf-s0: s0:=(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)FInit C::/
assume da: (prg=G,cls=accC,lcl=L)
Fdom (locals (store s0)) »(Init C)s» E
assume eval: GFs0 —Init C—n— s3
assume P: (Normal (P+<{ A. initd C)) Y s0 Z
show P { s8 Z A $3:=2(G,L)
proof —
from P have inited: inited C' (globs (store s0))
by simp
with eval have s3=s0
using normal-s0 by (auto elim: evaln-elim-cases)
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with P conf-s0 show ?Zthesis
by simp
qed
qed
next
case (Init C ¢ A P Q R)
note ¢ = «the (class G C) = o
note valid-super =
«G,A|E:{ {Normal (P A. Not o initd C ;. supd (init-class-obj G C))}
.(if C = Object then Skip else Init (super c)).
[Qr b
have valid-init:
Al GAIE{ {Q A. (As. | = locals (snd s)) ;. set-lvars Map.empty}
.init c.
{set-lvars | .; R} }
using Init.hyps by simp
show G,A|E::{ {Normal (P A. Not o initd C)} .Init C. {R} }
proof (rule valid-stmt-Normall)
fix nsOL accCEs3Y Z
assume valid-A: Vi€ A. GE=n::t
assume conf-s0: $0:=<(G,L)
assume normal-s0: normal s0
assume wt: (prg=G,cls=accC,lcl=L)FInit C::y/
assume da: (prg=G,cls=accC,lcl=L)
Fdom (locals (store s0)) »(Init C)s» E
assume eval: Gts0 —Init C—n— s3
assume P: (Normal (P A. Not o initd C)) Y s0 Z
show R { s8 Z A $3:=(G,L)
proof —
from P have not-inited: — inited C (globs (store s0)) by simp
with eval ¢ obtain sI s2 where
eval-super:
GFNorm ((init-class-obj G C) (store s0))
—(if C = Object then Skip else Init (super ¢))—n— s1 and
eval-init: GH(set-lvars Map.empty) sl —init c—n— s2 and
58: s8 = (set-lvars (locals (store s1))) s2
using normal-s0 by (auto elim!: evaln-elim-cases)
from wt ¢ have
cls-C: class G C = Some ¢
by cases auto
from wf cls-C have
wt-super: (|prg=G,cls=accC,lcl=L]
F(if C = Object then Skip else Init (super c))::y/
by (cases C'=Object)
(auto dest: wf-prog-cdecl wf-cdecl-supD is-acc-classD)
obtain S where
da-super:
(prg=G,cls=accC,lcl=L)
F dom (locals (store ((Norm
((init-class-obj G C') (store s0)))::state)))
»(if C = Object then Skip else Init (super c))s» S
proof (cases C=0bject)
case True
with da-Skip show ?thesis
using that by (auto intro: assigned.select-convs)
next
case Fulse
show ?thesis
by (rule that) (use da-Init False in <auto intro: assigned.select-convs))
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qed

from normal-s0 conf-s0 wf cls-C not-inited

have conf-init-cls: (Norm ((init-class-obj G C) (store s0))):=(G, L)
by (auto intro: conforms-init-class-obj)

from P

have P’: (Normal (P A. Not o initd C ;. supd (init-class-obj G C)))

Y (Norm ((init-class-obj G C) (store s0))) Z

by auto

from wvalid-super P’ valid-A conf-init-cls eval-super wt-super da-super
obtain Q: @ ¢ sI Z and conf-s1: s1:=(G,L)
by (rule validE)

from cls-C wf have wt-init: (prg=G, cls=Clcl=Map.empty)F(init c)::v/
by (rule wf-prog-cdecl [THEN wf-cdecl-wt-init])

from cls-C wf obtain I where
(prg=G,cls=C\lcl=Map.empty)- {} »(init c)s» I
by (rule wf-prog-cdecl [THEN wf-cdeclE simplified]) blast

then obtain I’ where
da-init:
(prg=G,cls=C\lcl=Map.empty)-dom (locals (store ((set-lvars Map.empty) s1)))
»{(init cyg» I’
by (rule da-weakenE) simp
have conf-s1-empty: (set-lvars Map.empty) s1:=<(G, Map.empty)
proof —
from eval-super have
G+ Norm ((init-class-obj G C) (store s0))
—(if C = Object then Skip else Init (super c))— sl
by (rule evaln-eval)
from this wt-super wf
have si-no-ret: A j. abrupt s1 # Some (Jump j7)
by — (rule eval-statement-no-jump
[where ?Env=(prg=G,cls=accC,lcl=L]|)], auto split: if-split)
with conf-s1
show ?thesis
by (cases s1) (auto intro: conforms-set-locals)
qed

obtain | where I: | = locals (store s1)
by simp
with @
have Q" (Q A. (As. I = locals (snd s)) ;. set-lvars Map.empty)
& ((set-lvars Map.empty) s1) Z
by auto
from wvalid-init Q' valid-A conf-s1-empty eval-init wt-init da-init
have (set-lvars | .; R) & s2 Z
by (rule validE)
with s3[ have R $ s3 Z
by simp
moreover
from eval wt da conf-s0 wf
have s3:=<(G,L)
by (rule evaln-type-sound [elim-format]) simp
ultimately show ¢thesis ..

qged
qed
next
case (InsInitV A Pcv Q)



Theory AxSound

show G,A|E::{ {Normal P} InslnitV c v== {Q} }
proof (rule valid-var-Normall)
fix sOvfnsl LZ
assume normal s0
moreover
assume Gts0 —InsInitV ¢ v=-vf—n— sl
ultimately have Fulse
by (cases s0) (simp add: evaln-InsInitV)
thus Q |vf], s Z A s1:=(G, L)..
qed
next
case (InsInitE A P c e Q)
show G,A|E::{ {Normal P} InsInitE c e—> {Q} }
proof (rule valid-expr-Normall)
fix sOvnsiLZ
assume normal s0
moreover
assume GFs0 —InsInitE ¢ e—>v—n— sl
ultimately have Fulse
by (cases s0) (simp add: evaln-InsInitE)
thus Q |v]. s1 Z A s1:=(G, L)..
qed
next
case (Callee A Ple Q)
show G,A|E=::{ {Normal P} Callee l e—> {Q} }
proof (rule valid-expr-Normall)
fixsOvnsiLZ
assume normal s0
moreover
assume Gts0 —Callee | e—~v—n— sl
ultimately have Fulse
by (cases s0) (simp add: evaln-Callee)
thus Q |v]. s1 Z A s1:=(G, L)..
qed
next
case (FinA A Pac Q)
show G, A|E::{ {Normal P} .FinA a c. {Q} }
proof (rule valid-stmt-Normall)
fix sOvnsti L Z
assume normal s0
moreover
assume GFs0 —FinA a c—n— sl
ultimately have Fulse
by (cases s0) (simp add: evaln-FinA)
thus Q $ st Z A s1:=(G, L)..
qed
qed
declare inj-term-simps [simp del]

theorem az-sound:

wf-prog G => G,(A::'a triple set)|F(ts::'a triple set) = G,A|=ts
apply (subst az-valids2-eq [symmetric])

apply assumption

apply (erule (1) ax-sound2)

done

lemma sound-valid2-lemma:
[Vv n. Ball A (triple-valid2 G n) — P v n; Ball A (triple-valid2 G n)]
=Poun
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by blast

end



Chapter 24
AxCompl

1 Completeness proof for Axiomatic semantics of Java expressions and state-
ments

theory AzCompl imports AxzSem begin

design issues:

o proof structured by Most General Formulas (-> Thomas Kleymann)

set of not yet initialzed classes

definition
nyinitcls :: prog = state = qtname set
where nyinitcls G s = {C. is-class G C A — initd C s}

lemma nyinitcls-subset-class: nyinitcls G s C {C. is-class G C}
apply (unfold nyinitcls-def)

apply fast

done

lemmas finite-nyinitcls [simp] =
finite-is-class [THEN nyinitcls-subset-class [THEN finite-subset]]

lemma card-nyinitcls-bound: card (nyinitcls G s) < card {C'. is-class G C}
apply (rule nyinitcls-subset-class [THEN finite-is-class [THEN card-monol])
done

lemma nyinitcls-set-locals-cong [simp):
nyinitcls G (z,set-locals | s) = nyinitcls G (,s)
by (simp add: nyinitcls-def)

lemma nyinitcls-abrupt-cong [simp): nyinitcls G (f z, y) = nyinitcls G (z, y)
by (simp add: nyinitcls-def)

lemma nyinitcls-abupd-cong [simp): nyinitcls G (abupd f s) = nyinitcls G s
by (simp add: nyinitcls-def)

lemma card-nyinitcls-abrupt-congE [eliml]:
card (nyinitcls G (z, s)) < n = card (nyinitcls G (y, 5)) < n
unfolding nyinitcls-def by auto

lemma nyinitcls-new-zept-var [simp):
nyinitcls G (new-zept-var vn ) = nyinitcls G s
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by (induct s) (simp-all add: nyinitcls-def)

lemma nyinitcls-init-lvars [simp):
nyinitcls G ((init-lvars G C sig mode o’ pvs) s) = nyinitcls G s
by (induct s) (simp add: init-lvars-def2 split: if-split)

lemma nyinitcls-emptyD: [nyinitcls G s = {}; is-class G C] = initd C's
unfolding nyinitcls-def by fast

lemma card-Suc-lemma:
[card (insert a A) < Suc n; a¢ A; finite A] = card A < n
by auto

lemma nyinitcls-le-SucD:
[card (nyinitcls G (z,s)) < Suc n; —inited C (globs s); class G C=Some y] =
card (nyinitcls G (z,init-class-obj G C's)) < n
apply (subgoal-tac
nyinitcls G (z,s) = insert C' (nyinitcls G (z,init-class-obj G C's)))
apply clarsimp
apply (erule-tac V=nyinitcls G (z, s) = rhs for rhs in thin-rl)
apply (rule card-Suc-lemma [OF - - finite-nyinitcls))
apply (auto dest!: not-initedD elim!:
simp add: nyinitcls-def inited-def split: if-split-asm)
done

lemma inited-gext”: [s<|s’sinited C (globs s)] = inited C (globs s’)
by (rule inited-gext)

lemma nyinitcls-gext: snd s<|snd s’ = nyinitcls G s’ C nyinitcls G s
unfolding nyinitcls-def by (force dest!: inited-gext’)

lemma card-nyinitcls-gext:
[snd s<|snd s'; card (nyinitcls G s) < n]=> card (nyinitcls G s") < n
apply (rule le-trans)
apply (rule card-mono)
apply (rule finite-nyinitcls)
apply (erule nyinitcls-gext)
apply assumption
done

init-le

definition
ingt-le :: prog = nat = state = bool («-Hinit<- [51,51] 50)
where GHinit<n = (\s. card (nyinitcls G s) < n)

lemma init-le-def2 [simp]: (Grinit<n) s = (card (nyinitcls G s)<n)
apply (unfold init-le-def)

apply auto

done

lemma All-init-leD:

Vnunat. G,(A:'a triple set)-{P A. GFinit<n} t>- {Q::'a assn}
= G, AH{P} t~ {Q}

apply (drule spec)

apply (erule conseql)

apply clarsimp

apply (rule card-nyinitcls-bound)

done
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Most General Triples and Formulas

definition
remember-init-state :: state assn (<=»)
where = =\YsZ.s=7

lemma remember-init-state-def2 [simp]: = Y = (=)
apply (unfold remember-init-state-def)

apply (simp (no-asm))

done

definition
MGF ::[state assn, term, prog] = state triple («{-} -= {-—}[3,65,3]62)
where {P} t- {G—=} = {P} t>- {\Y s’ s. GFs —t>— (Y ,s")}

definition
MGPFn :: [nat, term, prog] = state triple (<{=:-} -~ {-—}[3,65,3]62)
where {=:n} t>- {G—=} = {= A. GFinit<n} t> {G—}

lemma MGF-valid: wf-prog G = G, {}={=} t- {G—}
apply (unfold MGF-def)

apply (simp add: ax-valids-def triple-valid-def2)

apply (auto elim: evaln-eval)

done

lemma MGF-res-eq-lemma [simp]:
VY Ys. Y=Y'APs— Qs)=(Vs. Ps— Q)
by auto

lemma MGFn-def2:
G, A-{=:n} t- {G—} = G, AFH{= A. Grinit<n}
t= {A\Y s's. GFs —t=— (Y,s))}
unfolding MGFn-def MGF-def by fast

lemma MGF-MGFn-iff:

G,(A::state triple set)-{=} t~ {G—} = (Vn. G,AF{=:n} t~ {G—})
apply (simp add: MGFn-def2 MGF-def)

apply safe

apply (erule-tac [2] All-init-leD)

apply (erule conseql)

apply clarsimp

done

lemma MGFnD:

G,(A::state triple set)-{=:n} t~- {G—} =
GAH{(AY  s"s. s' = s A P s) A. Grinit<n}
t— {(AY's"s. GFs—t=—(Y"s") A P s) A. GFinit<n}
apply (unfold init-le-def)

apply (simp (no-asm-use) add: MGFn-def2)

apply (erule conseq12)

apply clarsimp

apply (erule (1) eval-gext [THEN card-nyinitcls-gext])
done

lemmas MGFnD' = MGFnD [of - - - - Az. True]

To derive the most general formula, we can always assume a normal state in the precondition, since
abrupt cases can be handled uniformally by the abrupt rule.
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lemma MGFNormall: G,A-{Normal =} t- {G—} =
G,(A::state triple set)-{=:state assn} t~ {G—}

apply (unfold MGF-def)

apply (rule az-Normal-cases)

apply (erule conseql)

apply clarsimp

apply (rule az-derivs. Abrupt [THEN conseq1])

apply (clarsimp simp add: Let-def)

done

lemma MGFNormalD:

G,(A::state triple set)-{=} t>~ {G—} = G,A-{Normal =} t>- {G—}
apply (unfold MGF-def)

apply (erule conseql)

apply clarsimp

done

Additionally to MGFNormall, we also expand the definition of the most general formula here

lemma MGFn-Normall:

G,(A::state triple set)={ Normal((A\Y' s" s. s'=s A normal s) A. GFinit<n)}t>-
{AY s's. Grs —t-— (V,s)} = G, AH{=mn}t-{G—}

apply (simp (no-asm-use) add: MGFn-def2)

apply (rule az-Normal-cases)

apply (erule conseql)

apply clarsimp

apply (rule az-derivs. Abrupt [THEN conseq1])

apply (clarsimp simp add: Let-def)

done

To derive the most general formula, we can restrict ourselves to welltyped terms, since all others
can be uniformally handled by the hazard rule.

lemma MGFn-free-wt:

(3T L C. (prg=G,cls=C,lcl=L)t::T)

— G,(A:state triple set)-{=:n} t>- {G—}

= G,AH{=n} t>- {G—}
apply (rule MGFn-Normall)
apply (rule az-free-wt)
apply (auto elim: conseq12 simp add: MGFn-def MGF-def)
done

To derive the most general formula, we can restrict ourselves to welltyped terms and assume that
the state in the precondition conforms to the environment. All type violations can be uniformally
handled by the hazard rule.

lemma MGFn-free-wt-NormalConforml:
(Vv TLC. (prg=G,cls=C,lcl=L)+t::T
— G,(A::state triple set)

F{Normal((AY' s’ s. s'=s A normal s) A. Grinit<n) A. (A s. s:=(G, L))}
Tt
{A\Y s’ s. GFs —t=— (Y,s"})

= G, AH{=n}t>-{G—}

apply (rule MGFn-Normall)

apply (rule az-no-hazard)

apply (rule az-escape)

apply (intro strip)

apply (simp only: type-ok-def peck-and-def)

apply (erule conjE)+

apply (erule exE erule exE, erule exE, erule exE, erule conjE,drule (1) mp,
erule conjE)
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apply (drule spec,drule spec, drule spec, drule (1) mp)
apply (erule conseq12)

apply blast

done

To derive the most general formula, we can restrict ourselves to welltyped terms and assume that
the state in the precondition conforms to the environment and that the term is definetly assigned
with respect to this state. All type violations can be uniformally handled by the hazard rule.

lemma MGFn-free-wt-da-NormalConformlI:
(Vv TLCB. (prg=G,cls=C,lcl=L)Ft::T
— G,(A::state triple set)
F{Normal((AY' s’ s. s'=s A normal s) A. Grinit<n) A. (A s. su:=(G, L))
A. (X s. (prg=G,cls=Clcl=L)dom (locals (store s))»t»B)}

t—
{A\Y s’ s. GFs —t=— (Y,s))})

= G AH{=n}t-{G—}

apply (rule MGFn-Normall)

apply (rule az-no-hazard)

apply (rule az-escape)

apply (intro strip)

apply (simp only: type-ok-def peck-and-def)

apply (erule conjE)+

apply (erule exE.erule exE, erule exE, erule exE erule conjE drule (1) mp,
erule conjE)

apply (drule spec,drule spec, drule spec,drule spec, drule (1) mp)

apply (erule conseq12)

apply blast

done

main lemmas

lemma MGFn-Init:
assumes mgf-hyp: Vm. Suc m<n — (Vt. G,AFH{=m} t>- {G—})
shows G,(A::state triple set)-{=:n} (Init C),> {G—}
proof (rule MGFn-free-wt [rule-format],elim exE,rule MGFn-Normall)
fix T L accC
assume (prg=G, cls=accC, lcl= L)-{(Init C)s::T
hence is-cls: is-class G C
by cases simp
show G,AF{Normal (AY' s’ s. s’ = s A normal s) A. GFinit<n)}
Init C.
{\Y s’ 5. GFs —(Init C)s=— (Y, s')}
(is G,AF{Normal ?P} .Init C. {?R})
proof (rule az-cases [where ?C=initd C])
show G,A-{Normal ?P A. initd C} .Init C. {?R}
by (rule az-derivs.Done [THEN conseql]) (fastforce intro: init-done)
next
have G,A-{Normal (?P A. Not o initd C)} .Init C. {?R}
proof (cases n)
case (
show ?thesis
by (rule ax-impossible [THEN conseql]) (use is-cls 0 in <fastforce dest: nyinitcls-emptyD»)
next
case (Suc m)
with mgf-hyp have mgf-hyp” N\ t. G,A-{=m} t>- {G—}
by simp
from is-cls obtain ¢ where c: the (class G C) = ¢
by auto
let 2Q= (\Y s’ (,s) .
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Gr (z,init-class-obj G C's)
— (if C=0bject then Skip else Init (super (the (class G C))))— s’
A xz=None A —inited C (globs s)) A. GFinit<m
from c
show ?thesis
proof (rule az-derivs.Init [where ?Q=7Q)])
let 2P’ = Normal (A\Y s’ s. s’ = supd (init-class-obj G C) s
A normal s A = initd C' s) A. Grinit<m)
show G,A-{Normal (P A. Not o initd C ;. supd (init-class-obj G C))}
.(if C = Object then Skip else Init (super c)).
(20}
proof (rule conseql [where ?P'=%P"))
show G,AFH{?P’} .(if C = Object then Skip else Init (super c)). {?Q}
proof (cases C=Object)
case True
have G,A-{?P"} .Skip. {7Q}
by (rule az-derivs.Skip [THEN conseql])
(auto simp add: True intro: eval.Skip)
with True show ?thesis
by simp
next
case Fulse
from mgf-hyp’
have G,AH{?P'} .Init (super c). {?Q}
by (rule MGFnD' [THEN conseq12]) (fastforce simp add: False c)
with False show ?thesis
by simp
qged
next
from Suc is-cls
show Normal (?P A. Not o initd C ;. supd (init-class-obj G C))
= 7P’
by (fastforce elim: nyinitcls-le-SucD)
qed
next
from mgf-hyp’
show V1. G,AF{?Q A. (As. | = locals (snd s)) ;. set-lvars Map.empty}
it c.
{set-lvars | .; ?R}
apply (rule MGFnD' [THEN conseql2, THEN alll))
apply (clarsimp simp add: split-paired-all)
apply (rule eval.Init [OF c])
using c
apply auto
done
qed
qed
thus G,A-{Normal ?P A. Not o initd C} .Init C. {?R}
by clarsimp
qed
qed
lemmas MGFn-InitD = MGFn-Init [THEN MGFnD, THEN az-NormalD]

lemma MGFn-Call:
assumes mgf-methds:
V C sig. G,(A::state triple set)-{=:n} ((Methd C sig)).>- {G—}
and mgf-e: G,AFH{=:n} (e).> {G—}
and mgf-ps: G,A-{=:n} (ps);> {G—}
and wf: wf-prog G



Theory AxCompl 501

shows G, AH{=:n} ({accC,statT ,mode}e-mn({pTs'}ps))c>~ {G—}
proof (rule MGFn-free-wt-da-NormalConformlI [rule-format],clarsimp)
note inj-term-simps [simp)
fix T L accC’' E
assume wt: (prg=G,cls=accC’,lcl = L)F{({accC\statT ,mode}e-mn( {pTs'}ps)))e:: T
then obtain pTs statDeclT statM where
wt-e: (prg=G,cls=accC,lcl=L)e::— RefT statT and
wt-args: (prg=G,cls=accC,lcl=L)Fps::=pTs and
statM: maz-spec G accC statT (name=mn,parTs=pTs)
= {((statDeclT,statM),pTs")} and
mode: mode = invmode statM e and
T: T =Inl (resTy statM) and
eq-accC-accC’: accC=accC’
by cases fastforce+
let 2Q=(\Y sI (x,8) . © = None A
(3a. GFNorm s —e—>=a— s1 A
(normal s1 — G, store s1t-a::<XRefT statT)
ANY =1Inla) A
(3 P. normal s1
— (prg=G,cls=accC’ lcl=L)-dom (locals (store s1))»(ps);»P))
A. GFinit<n A. (X s. s:=(G, L))::state assn
let YR=MXa. ((\Y (22,s2) (z,s) . z = None A
(3 s1 pvs. GENorm s —e—»a— s1 A
(normal s1 — G, store s1tFa:=<RefT statT)A
Y = |pvs|i A GFsl —ps=>-pus— (22,52)))
A. Grinit<n A. (X s. s:=3(G, L)))::state assn

show G,AF{Normal (A\Y's"s. s’ = s A abrupt s = None) A. GFinit<n A.
(As. s:=(G, L)) A.
(As. (prg=G, cls=accC",lcl=L) + dom (locals (store s))
» ({aceC,statT,mode}e-mn( {pTs'}ps))e» E))}
{accC\statT ,mode}e-mn( {pTs'}ps)—
{AYs's.Fv. Y = |v].A
Grs —{accC,statT,mode}e-mn( {pTs'}ps)—=v— s’}
(is G,AH{Normal ?P} {accC,statT,mode}e-mn( {pTs'}ps)—= {25})
proof (rule az-derivs.Call [where ?Q=7Q and ?R=7R))
from mgf-e
show G,AF-{Normal ?P} e—> {?Q}
proof (rule MGFnD' [THEN conseq12],clarsimp)
fix s0 sl a
assume conf-s0: Norm s0:=(G, L)
assume da: (prg=G,cls=accC’,lcl=L|)F
dom (locals s0) »{{accC,statT ,mode}e-mn( {pTs'}ps))e» E
assume eval-e: GENorm s —e—>a— sl
show (abrupt s1 = None — G, store s1ta:=XRefT statT) A
(abrupt s1 = None —
(3 P. (prg=G,cls=accC’lcl=L)F dom (locals (store s1)) »(psy» P))
A s1:=(G, L)
proof —
from da obtain C where
da-e: (prg=G,cls=accClcl=L)F
dom (locals (store ((Norm s0):state)))»(e).» C and
da-ps: (prg=G,cls=accC,lcl=L)F nrm C »{ps);» E
by cases (simp add: eq-accC-accC”)
from ewval-e conf-s0 wt-e da-e wf
obtain (abrupt s1 = None — G,store s1ta:=RefT statT)
and si:=(G, L)
by (rule eval-type-soundE) simp
moreover have 3 P. (prg=G,cls=accC,lcl=L)F dom (locals (store s1)) »{(psy» P
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if normal-s1: normal s1
proof —
from eval-e wt-e da-e wf normal-sl1
have nrm C C dom (locals (store s1))
by (cases rule: da-good-approzE’) iprover
with da-ps show ?Zthesis
by (rule da-weakenE) iprover
qed
ultimately show ?thesis
using eq-accC-accC’ by simp
qed
qed
next
show Va. G,AF{?Q<Inl a} ps=> {?R a} (isV a. ?PS a)
proof
fix a
show ?PS a
proof (rule MGFnD' [OF mgf-ps, THEN conseq12],
clarsimp simp add: eq-accC-accC’ [symmetric])
fix s0 s1 s2 vs
assume conf-s1: s1:=%(G, L)
assume eval-e: G-Norm s0 —e—»>a— sl
assume conf-a: abrupt s1 = None — G,store sl1ta::=XRefT statT
assume eval-ps: GFs1 —ps==vs— $2
assume da-ps: abrupt s1 = None —
(3 P. (prg=G,cls=accC,lcl=L|)+
dom (locals (store s1)) »(psy» P)
show (3s1. GF-Norm s0 —e—>=a— s1 A
(abrupt s1 = None — G,store s1ta::=RefT statT) A
GhFsl —ps=>vs— s2) A
$2:=X(G, L)
proof (cases normal s1)
case True
with da-ps obtain P where
(prg=G,cls=accC,lcl=L)F dom (locals (store s1)) »{(ps)» P
by auto
from eval-ps conf-s1 wt-args this wf
have s2:<(G, L)
by (rule eval-type-soundF)
with eval-e conf-a eval-ps
show ?thesis
by auto
next
case Fulse
with eval-ps have s2=s1 by auto
with eval-e conf-a eval-ps conf-sl1
show ?thesis
by auto
qed
qed
qed
next
show V a vs invC declC .
G, AH{?R a+|vs|; A.
(As. declC =
invocation-declclass G mode (store s) a statT
(name=mn, parTs=pTs’) A
invC = invocation-class mode (store s) a statT A
I = locals (store s)) ;.
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init-lvars G declC (name=mn, parTs=pTs’) mode a vs A.
(As. normal s — GFmode—invC=<statT)}
Methd declC' (name=mn,parTs=pTs')—>
{set-lvars | .; 25}
(is V a vs invC declC l. METHD a vs invC declC'l)
proof (intro alll)
fix a vs invC declC' I
from mgf-methds [rule-format]
show ?METHD a vs invC declC' |
proof (rule MGFnD' [THEN conseq12],clarsimp)
fix s/ s2 sl::state
fix sO v
let ?D= invocation-declclass G mode (store s2) a statT
(name=mn,parTs=pTs')
let ?s3= init-lvars G ?D (name=mn, parTs=pTs') mode a vs s2
assume nv-prop: abrupt ?s8=None
— GFmode—invocation-class mode (store s2) a statT<statT
assume conf-s2: s2:=%(G, L)
assume conf-a: abrupt s1 = None — G,store s1ta::=XRefT statT
assume cval-e: G-Norm s0 —e—»>a— sl
assume cval-ps: GFsl —ps=>vs— s2
assume eval-mthd: G253 —Methd ?D (name=mn,parTs=pTs’)—~v— s/
show G+Norm sO0 —{accC,statT,mode}e-mn( {pTs'}ps)—=v
— (set-lvars (locals (store s2))) s4
proof —
obtain D where D: D=?D by simp
obtain s8 where s3: s3=7s3 by simp
obtain s3’ where
s8" 88" = check-method-access G accC statT mode
(name=mn,parTs=pTs') a s3
by simp
have eq-s3’-s3: s3'=s3
proof —
from inv-prop s3 mode
have normal s3 —
Grinvmode statM e— invocation-class mode (store s2) a statT=<statT
by auto
with eval-ps wt-e statM conf-s2 conf-a [rule-format)
have check-method-access G accC statT (invmode statM e)
(name=mn,parTs=pTs') a s8 = s3
by (rule error-free-call-access) (auto simp add: s3 mode wf)
thus ?thesis
by (simp add: s3' mode)
qed
with eval-mthd D s3
have Grs3' —Methd D (name=mn,parTs=pTs')—~v— s/
by simp
with eval-e eval-ps D - 53’
show ?thesis
by (rule eval-Call) (auto simp add: s3 mode D)
qed
qed
qed
qged
qed

lemma eval-expression-no-jump’:
assumes eval: GFs0 —e—-v— s1
and no-jmp: abrupt s0 # Some (Jump j)
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and wt: (prg=G, cls=Clcl=L)e:—T
and wf: wf-prog G
shows abrupt s1 # Some (Jump j)
by (rule eval-expression-no-jump [where ?Env=(prg=G, cls=C,lcl=L]|),simplified])
(use eval no-jmp wt wf in auto)

To derive the most general formula for the loop statement, we need to come up with a proper loop
invariant, which intuitively states that we are currently inside the evaluation of the loop. To define
such an invariant, we unroll the loop in iterated evaluations of the expression and evaluations of the
loop body.

definition
unroll :: prog = label = expr = stmt = (stale X state) set where
unroll G le c = {(s,t). 3 v sl s2.
GFs —e—>v— s1 A the-Bool v A normal s1 A
Grs1 —c— s2 A t=(abupd (absorb (Cont 1)) s2)}

lemma unroll-while:
assumes unroll: (s, t) € (unroll Gl e c¢)*
and  eval-e: GHt —e—>=v— s’
and normal-termination: normal s’ — = the-Bool v
and wt: (prg=G,cls=C,lcl=L)Fe:—T
and wf: wf-prog G
shows Gts —I- While(e) ¢— s’
using unroll
proof (induct rule: converse-rtrancl-induct)
show G+t —I- While(e) c— s’
proof (cases normal t)
case Fulse
with eval-e have s'=t by auto
with False show ?thesis by auto
next
case True
note normal-t = this
show ?thesis
proof (cases normal s')
case True
with normal-t eval-e normal-termination
show ?thesis
by (auto intro: eval.Loop)
next
case Fulse
note abrupt-s’ = this
from eval-e - wt wf
have no-cont: abrupt s’ # Some (Jump (Cont 1))
by (rule eval-expression-no-jump’) (use normal-t in simp)
have
if the-Bool v
then (Gks' —c— s’ A
GF(abupd (absorb (Cont 1)) s’) —1- While(e) c— s’)
else s’ = s’
proof (cases the-Bool v)
case Fualse thus ?thesis by simp
next
case True
with abrupt-s’ have Gts’ —c— s’ by auto
moreover from abrupt-s’ no-cont
have no-absorb: (abupd (absorb (Cont 1)) s')=s’
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by (cases s’) (simp add: absorb-def split: if-split)
moreover
from no-absorb abrupt-s’
have Gh(abupd (absorb (Cont 1)) s’) —I- While(e) c— s’
by auto
ultimately show ?Zthesis
using True by simp
qed
with eval-e
show ?thesis
using normal-t by (auto intro: eval.Loop)
qed
qed
next
fix s 53
assume unroll: (s,83) € unroll G le ¢
assume while: GFs3 —I- While(e) ¢c— s’
show Gtrs —I. While(e) ¢c— s’
proof —
from unroll obtain v s1 s2 where
normal-s1: normal sI and
eval-e: GFs —e—>v— sI and
continue: the-Bool v and
eval-c: GFsl —c— s2 and
s8: s3=(abupd (absorb (Cont 1)) s2)
by (unfold unroll-def) fast
from ewval-e normal-s1 have
normal s
by (rule eval-no-abrupt-lemma [rule-format))
with while eval-e continue eval-c s3 show ?thesis
by (auto intro!: eval.Loop)
qged
qed

lemma MGFn-Loop:
assumes mfg-e: G,(A::state triple set)-{=:n} (e)o.> {G—}
and  mfg-c: G, AH{=:n} (c)s> {G—}
and wf: wf-prog G
shows G,AH{=:n} (I- While(e) c¢)s> {G—}
proof (rule MGFn-free-wt [rule-format],elim exE)
fix TLC
assume wt: (prg = G, cls = C, lel = L)-(I- While(e) ¢)s:: T
then obtain eT where
wt-e: (prg = G, cls = C, lcl = L)Fe:—eT
by cases simp
show ?thesis
proof (rule MGFn-Normall)
show G,A-{Normal (A\Y' s’ s. s’ = s A normal s) A. Gkinit<n)}
- While(e) c.
{A\Y s’ s. GFs —Inir (I- While(e) ¢)=— (Y, s)}
proof (rule conseq12
[where ?P'=(\ Y s’ s. (s,8") € (unroll Gl e c)* ) A. GFinit<n
and ?Q'=((A Ys's. (3 tbh (s,t) € (unroll Glec)* A
Y=[bl. N GFt —e—>b— $’))
A. GFinit<n)<=False|=3])
show G,AF{(AY s’ s. (s, ') € (unroll G le c)*) A. GHinit<n}
Ao While(e) c.
{((A\Y 8" s. (3t b. (s, t) € (unroll Glec)* A
Y =1InlbA G-t —e—>b— "))
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A. GHinit<n)+=False|=<}
proof (rule az-derivs. Loop)
from mfg-e
show G, AF{(A\Y s’ s. (s, 8') € (unroll Gl e ¢)*) A. Grinit<n}
e— >
{(AY 8" s. (3t b. (s, t) € (unroll Glec)* A
Y =1Inl1bA G-t —e—>=b— s'))
A. GFinit<n}
proof (rule MGFnD' [THEN conseq12),clarsimp)
fix s Zs' v
assume (7, s) € (unroll Gl e c¢)*
moreover
assume Gts —e—>v— s’
ultimately
show 3t. (Z, t) € (unroll Gl e c)* N GFt —e—>=v— s’
by blast
qed
next
from mfg-c
show G,AH{Normal ((A\Y s’ s. At b. (s, t) € (unroll Gle c)* A
Y = |ble A GHt —e—>b— )
A. GFinit<n)<=True)}
.c.
{abupd (absorb (Cont 1)) .;
(Y s’ s. (s, s") € (unroll Gl e ¢)*) A. GFinit<n)}
proof (rule MGFnD' [THEN conseq12],clarsimp)
fix Zs' svt
assume unroll: (Z, t) € (unroll Gl e ¢)*
assume eval-e: G-t —e—>v— Norm s
assume true: the-Bool v
assume eval-c: G-Norm s —c— s’
show (Z, abupd (absorb (Cont 1)) s’) € (unroll G le c)*
proof —
note unroll
also
from eval-e true eval-c
have (¢,abupd (absorb (Cont 1)) s') € unroll Gl e c
by (unfold unroll-def) force
ultimately show ¢thesis ..
qed
qed
qed
next
show
VYs Z
(Normal (MY’ s"s. s' = s A normal s) A. Grinit<n)) Y s Z
— VY's"
VY Z
((A\Y 5" s. (s, 8") € (unroll Gl e c)*) A. Grinit<n) Y s Z'
— (WY s"s. 3t b. (s,t) € (unroll Gle c)*
A Y=|bl. N GFt —e—>=b— )
A. Gringt<n)<—=Falsel=3) Y' s’ Z')
— GFZ —(l- While(e) ¢)s=— (Y, s"))
proof (clarsimp)
fix Y's's
assume asm:
VZ'. (Z', Norm s) € (unroll G le ¢)*
— card (nyinitcls G s') < n A
(Fv. 3t. (27, t) € (unroll Glec)* N GFt —e—=v— s') A
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(fst s" = None — — the-Bool v)) AN Y/ =&
show Y' = A GENorm s —1- While(e) c— s’
proof —
from asm obtain v t where
— 7' gets instantiated with Norm s
unroll: (Norm s, t) € (unroll Gl e ¢)* and
eval-e: GHt —e—»=v— s’ and
normal-termination: normal s’ — — the-Bool v and
Y'Y =
by auto
from unroll eval-e normal-termination wt-e wf
have G+-Norm s —I- While(e) c— s’
by (rule unroll-while)
with Y’
show ?thesis
by simp
qed
qed
qed
qed
qed

lemma MGFn-FVar:
fixes A :: state triple set
assumes mgf-init: G,AF{=:n} (Init statDeclC) ;> {G—}
and mgf-e: G,AH{=:n} (e).> {G—}
and  wf: wf-prog G
shows G, A-{=:n} ({accC statDeclC,stat}e..fn),= {G—}
proof (rule MGFn-free-wt-da-NormalConformlI [rule-format],clarsimp)
note inj-term-simps [simp)
fix T L accC’'V
assume wt: (prg = G, cls = accC’, lcl = L)F{{accC,statDeclC\stat}e..fn),:: T
then obtain statC f where
wt-e: (prg=G, cls=accC’, lel=L|)\e::— Class statC and
accfield: accfield G accC’ statC fn = Some (statDeclC,f ) and
eg-accC: accC=accC' and
stat: stat=is-static f
by (cases) (auto simp add: member-is-static-simp)
let 7Q=(\Y sI (z,s) . © = None A
(GF-Norm s —Init statDeclC— s1) A
(3 E. (prg=G,cls=accC’lcl=L)dom (locals (store s1)) »{e)e» E))
A. GFinit<n A. (X s. s:=(G, L))
show G,A+{Normal
((ANY’ 8" s. 8" = s A abrupt s = None) A. GHinit<n A.
(As. s:=(G, L)) A.
(As. (prg=G,cls=accC’,lcl=L]
F dom (locals (store s)) » ({accC,statDeclC,stat}e..fn),» V))
} {accC,statDeclC,stat}e..fn=~
{AY s's. Fuf. Y = |vf]s A
Grs —{accC,statDeclC,stat}e..fn=—vf— s’}
(is G,AF{Normal ?P} {accC,statDeclC,stat}e..fn=>~ {?R})
proof (rule az-derivs.FVar [where ?Q=2Q |)
from mgf-init
show G,A+-{Normal ?P} .Init statDeclC. {?Q}
proof (rule MGFnD' [THEN conseq12],clarsimp)
fix s s’
assume conf-s: Norm s:=<(G, L)
assume da: (prg=G,cls=accC’ lcl=L]
F dom (locals s) »{{accC,statDeclC,stat}e..fn),» V
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assume eval-init: G-Norm s —Init statDeclC— s’
show (FE. (prg=G, cls=accC’, lcl=L)F dom (locals (store s')) »(€)en E) A
s":=(G, L)
proof —
from da
obtain F where
(prg=G, cls=accC’, lcl=L)F dom (locals s) »(e)e» E
by cases simp
moreover
from eval-init
have dom (locals s) C dom (locals (store s'))
by (rule dom-locals-eval-mono [elim-format]) simp
ultimately obtain E’ where
(prg=G, cls=accC’, lcl=L)F dom (locals (store s')) »{e)e» E’
by (rule da-weakenFE)

moreover
have s":<(G, L)
proof —
have wt-init: (prg=G, cls=accC, lcl=L)F(Init statDeclC)::/
proof —

from wf wt-e
have iscls-statC: is-class G statC
by (auto dest: ty-expr-is-type type-is-class)
with wf accfield
have iscls-statDeclC" is-class G statDeclC
by (auto dest!: accfield-fields dest: fields-declC')
thus ?thesis by simp
qged
obtain I where
da-init: (prg=G,cls=accC,lcl=L))
F dom (locals (store ((Norm s)::state))) »(Init statDeclC)g» 1
by (auto intro: da-Init [simplified] assigned.select-convs)
from eval-init conf-s wt-init da-init wf
show ?thesis
by (rule eval-type-soundFE)
qed
ultimately show ?thesis by iprover
qed
qged
next
from mgf-e
show G,AH{?Q} e—> {AVal:a:. fvar statDeclC stat fn a ..; ?R}
proof (rule MGFnD' [THEN conseql2],clarsimp)
fix s0 sl s2 Ea
let ?fvar = fvar statDeclC stat fn a s2
assume eval-init: GFNorm s0 —Init statDeclC— s1
assume eval-e: G-s1 —e—>a— s2
assume conf-s1: s1:=(G, L)
assume da-e: (prg=G,cls=accC’,lcl=L)F dom (locals (store s1)) »{e)e» E
show GHNorm s0 —{accC,statDeclC stat}e..fn=—fst ?fvar— snd ?fvar
proof —
obtain v s2’ where
v: v=fst ?fvar and s2": s2'=snd ?fvar
by simp
obtain s3 where
s3: s8= check-field-access G accC’ statDeclC fn stat a s2’
by simp
have eg-s3-52": s3=s2'
proof —
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from ewval-e conf-s1 wt-e da-e wf obtain
conf-s2: s2::=2(G, L) and
conf-a: normal s2 = G,store s2Fa::=<Class statC
by (rule eval-type-soundFE) simp
from accfield wt-e eval-init eval-e conf-s2 conf-a - wf
show ?thesis
by (rule error-free-field-access
[where ?v=v and ?s2'=s2’ elim-format])
(simp add: s3 v s2' stat)+
qed
from eval-init eval-e
show ?thesis
apply (rule eval. FVar [where ?s2'=s2"))
apply (simp add: s2’)
apply (simp add: s8 [symmetric] eq-s3-s2' eq-accC s2' [symmetric])
done
qed
qed
qed
qed

lemma MGFn-Fin:
assumes wf: wf-prog G
and  mgf-cl: G,AFH{=:n} (cl)s> {G—}
and  mgf-c2: G, AF{=:n} (c2)s> {G—}
shows G,(A::state triple set)-{=:n} (cI Finally c2)s> {G—}
proof (rule MGFn-free-wt-da-NormalConformlI [rule-format],clarsimp)
fix T L accC C
assume wt: (prg=G,cls=accC,lcl=L)FInir (c1 Finally c2)::T
then obtain
wt-c1: (prg=G,cls=accC,lcl=L)Fc1::y/ and
wt-c2: (prg=G,cls=accC,lcl=L)Fc2::y/
by cases simp
let 2Q = (A\Y's's. normal s A Gks —cl— s’ A
(3 C1. (prg=G,cls=accC,lcl=L)-dom (locals (store s)) »{cl)s» CI)
A s:=(G, L))
A. GFinit<n
show G,A+{Normal
((AY's"s. s" = s A abrupt s = None) A. GEinit<n A.
(As. s:=(G, L)) A.
(As. (prg=G,cls=accC,lcl =L)
Fdom (locals (store s)) »(cl Finally c2)s» C))}
.cl Finally c2.
{AYs's. Y =3O A Ghs —cl Finally c2— s’}
(is G,A-{Normal ?P} .c1 Finally c2. {?R})
proof (rule az-derivs.Fin [where ?Q=7Q)])
from mgf-c1
show G,A-{Normal ?P} .c1. {?Q}
proof (rule MGFnD' [THEN conseq12],clarsimp)
fix s0
assume (prg=G,cls=accC,lcl=L)F dom (locals s0) »{cl Finally c2)s» C
thus 3 C1. (prg=G,cls=accC,lcl=L)F dom (locals s0) »(c1)s» C1
by cases (auto simp add: inj-term-simps)
qed
next
from mgf-c2
show Vabr. G,AH{?Q A. (As. abr = abrupt s) ;. abupd (Aabr. None)} .c2.
{abupd (abrupt-if (abr # None) abr) .; R}



510

proof (rule MGFnD' [THEN conseql2, THEN alll],clarsimp)
fix s0 s1 s2 C1
assume da-cl:(prg=G,cls=accC,lcl=L)F dom (locals s0) »{c1)s» C1
assume conf-s0: Norm s0:=<(G, L)
assume eval-c1: GFNorm s0 —cl1— sl
assume eval-c2: Grabupd (Aabr. None) s1 —c2— s2
show GFNorm s0 —cl1 Finally c2
— abupd (abrupt-if (y. abrupt s1 = Some y) (abrupt s1)) s2
proof —
obtain abr! strl where si: s1=(abrl,strl)
by (cases s1)
with eval-c1 eval-c2 obtain
eval-c1”: GFNorm s0 —cl1— (abri,strl) and
eval-c2’. GFNorm strl —c2— s2
by simp
obtain s3 where
s8: 8 = (if Jerr. abrl = Some (Error err)
then (abrl, strl)
else abupd (abrupt-if (abrl # None) abrl) s2)
by simp
from eval-c1’ conf-s0 wt-c1 - wf
have error-free (abri strl)
by (rule eval-type-soundE) (insert da-c1,auto)
with s3 have eq-s3: s3=abupd (abrupt-if (abrl # None) abrl) s2
by (simp add: error-free-def)
from eval-c1’ eval-c2’ s3
show ?thesis
by (rule eval.Fin [elim-format]) (simp add: sl eq-s3)
qed
qed
qed
qed

lemma Body-no-break:
assumes eval-init: GENorm s0 —Init D— sl

and eval-c: GFsl —c— s2

and JmpOk: jumpNestingOkS {Ret} ¢
and wt-c: (prg=G, cls=C, lel=L)Fc::y/
and clsD: class G D=Some d

and wf: wf-prog G

shows V [. abrupt s2 # Some (Jump (Break 1)) A
abrupt s2 # Some (Jump (Cont 1))
proof
fix [ show abrupt s2 # Some (Jump (Break 1)) A
abrupt s2 # Some (Jump (Cont 1))

proof —
fix accC
from clsD have wt-init: (prg=G, cls=accC, lcl=L)F(Init D)::/
by auto
have s1-no-jmp: A j. abrupt s1 # Some (Jump j)
by (rule eval-statement-no-jump [OF - - - wt-init]) (use eval-init wf in auto)

from eval-c - wt-¢ wf show ?thesis
by (rule jumpNestingOk-eval [THEN conjE, elim-format]) (use jmpOk sl-no-jmp in auto)
qed
qed

lemma MGFn-Body:
assumes wf: wf-prog G
and mgf-init: G,A-{=:n} (Init D)s> {G—}
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and  mgf-c: G, AH{=:n} (¢)s> {G—}
shows G,(A:state triple set)-{=:n} (Body D c).> {G—}
proof (rule MGFn-free-wt-da-NormalConformlI [rule-format],clarsimp)
fix T L accCE
assume wt: (prg=G, cls=accC,lcl=L)-(Body D c)¢::T
let 7Q=(A\Y"' s’ s. normal s N Grs —Init D— s’ A jumpNestingOkS {Ret} c)
A. GHinit<n
show G,A+{Normal
(WY’ s"s. s"=s A fst s = None) A. GFinit<n A.
(As. s:=(G, L)) A.
(As. (prg=G,cls=accC,lcl=L)
F dom (locals (store s)) »(Body D c)e» E))}
Body D c—»
{AYs's.3v. Y =1Inl v A Grs —Body D c—=v— s'}
(is G,AF{Normal ?P} Body D c—» {?R})
proof (rule az-derivs. Body [where ?Q=7?0Q)])
from mgf-init
show G,A-{Normal P} .Init D. {?Q}
proof (rule MGFnD' [THEN conseql2),clarsimp)
fix s0
assume da: (prg=G,cls=accC,lcl=L)F dom (locals s0) »{Body D c¢).» E
thus jumpNestingOkS {Ret} ¢
by cases simp
qed
next
from mgf-c
show G,AH{?Q}.c.{\s.. abupd (absorb Ret) .; ?R<|the (locals s Result)].}
proof (rule MGFnD' [THEN conseql2],clarsimp)
fix s0 s1 s2
assume eval-init: G-Norm sO0 —Init D— sl
assume ceval-c: GFs1 —c— s2
assume nestingOk: jumpNestingOkS {Ret} ¢
show GHNorm s0 —Body D c—=the (locals (store s2) Result)
— abupd (absorb Ret) s2
proof —
from wt obtain d where
d: class G D=Some d and
wt-c: (prg = G, cls = accC, lcl = L)Fciy/
by cases auto
obtain s3 where
s3: s3= (if 3. fst s2 = Some (Jump (Break 1)) V
fst s2 = Some (Jump (Cont 1))
then abupd (Ax. Some (Error CrossMethodJump)) s2
else s2)
by simp
from eval-init eval-c nestingOk wt-c¢ d wf
have eq-s3-s2: s3=s2
by (rule Body-no-break [elim-format]) (simp add: s3)
from eval-init eval-c s3
show ?thesis
by (rule eval.Body [elim-format]) (simp add: eq-s3-s2)
qed
qed
qged
qed

lemma MGFn-lemma:
assumes mgf-methds:
N\ n.V C sig. G,(A:state triple set)F-{=:n} (Methd C sig).~ {G—}
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and wf: wf-prog G
shows A t. G, AH{=:mn} t- {G—}
proof (induct rule: full-nat-induct)
fix nt
assume hyp: V. m. Suc m < n — (V t. G, AH{=m} t>- {G—})
show G, A-{=:n} t> {G—}
proof —
fix veces
have G,AH{=:n} (v),> {G—} and
G,AF{=:n} (e).> {G—} and
G,AF{=:n} (¢)s> {G—} and
G, AH{=:n} (es);= {G—}
for veces
proof (induct rule: compat-var.induct compat-expr.induct compat-stmt.induct compat-expr-list.induct)
case (LVar v)
show G,AH-{=:n} (LVar v),> {G—}
apply (rule MGFn-Normall)
apply (rule az-derivs.LVar [THEN conseql])
apply (clarsimp)
apply (rule eval.LVar)
done
next
case (FVar accC statDeclC stat e fn)
from MGFn-Init [OF hyp] and <G,AFH{=:n} (e}~ {G—}> and wf
show ?Zcase
by (rule MGFn-FVar)
next
case (AVar el e2)
note mgf-el = <G, AH{=:n} (el).> {G—}
note mgf-e2 = <G, AH{=:n} (e2).> {G—}
show G,AH{=:n} (el.[e2]),> {G—}
apply (rule MGFn-Normall)
apply (rule az-derivs. AVar)
apply (rule MGFnD [OF mgf-el, THEN ax-NormalD])
apply (rule alll)
apply (rule MGFnD' [OF mgf-e2, THEN conseq12])
apply (fastforce intro: eval. AVar)
done
next
case (InsInitV c v)
show ?Zcase
by (rule MGFn-Normall) (rule az-derivs.InsInitV')
next
case (NewC C)
show ?Zcase
apply (rule MGFn-Normall)
apply (rule az-derivs. NewC')
apply (rule MGFn-InitD [OF hyp, THEN conseq?2])
apply (fastforce intro: eval. NewC')
done
next
case (NewA T e)
thus ?Zcase
apply —
apply (rule MGFn-Normall)
apply (rule az-derivs. NewA
[where ?Q) = (A\Y' s" s. normal s A Grs —Inlr (init-comp-ty T)
=— (Y's") A. Grinit<n])
apply (simp add: init-comp-ty-def split: if-split)
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apply (
apply
apply

rule conjl, clarsimp)
(rule MGFn-InitD [OF hyp, THEN conseq?2])
(clarsimp intro: eval.Init)

apply clarsimp

apply (
apply (

rule az-derivs.Skip [THEN conseql])
clarsimp intro: eval.Skip)

apply (erule MGFnD' [THEN conseq12])
apply (fastforce intro: eval. NewA)

done
next

case (Cast C'e)
thus Zcase

apply —

apply (rule MGFn-Normall)

apply (erule MGFnD'|[THEN conseql2, THEN ax-derivs. Cast))

apply (fastforce intro: eval.Cast)

done
next
case (Inst

e C)

thus Zcase

apply —

apply (rule MGFn-Normall)

apply (erule MGFnD'[THEN conseq12, THEN ax-derivs.Inst])

apply (fastforce intro: eval.Inst)

done
next

case (Lit v)
show ?Zcase

apply —

apply (rule MGFn-Normall)
apply (rule az-derivs.Lit [THEN conseql])
apply (fastforce intro: eval.Lit)

done
next

case (UnOp unop e)
thus Zcase

apply —

apply (rule MGFn-Normall)

apply (rule az-derivs. UnOp)

apply (erule MGFnD' [THEN conseq12])
apply (fastforce intro: eval. UnOp)

done
next

case (BinOp binop el e2)
thus Zcase

apply —

apply (rule MGFn-Normall)
apply (rule az-derivs. BinOp)

apply (

erule MGFnD [THEN az-NormalD))

apply (rule alll)
apply (case-tac need-second-arg binop v1)

apply simp

apply (

erule MGFnD' [THEN conseq12])

apply (fastforce intro: eval.BinOp)
apply simp
apply (rule az-Normal-cases)

apply (

rule az-derivs.Skip [THEN conseql])

apply clarsimp

apply (

rule eval-BinOp-arg2-indepl)
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apply simp
apply simp
apply (rule az-derivs. Abrupt [THEN conseql], clarsimp simp add: Let-def)
apply (fastforce intro: eval. BinOp)
done
next
case Super
show ?Zcase
apply —
apply (rule MGFn-Normall)
apply (rule az-derivs.Super [THEN conseql])
apply (fastforce intro: eval.Super)
done
next
case (Acc v)
thus ?Zcase
apply —
apply (rule MGFn-Normall)
apply (erule MGFnD'|THEN conseq12, THEN ax-derivs. Acc])
apply (fastforce intro: eval.Acc simp add: split-paired-all)
done
next
case (Ass v e)
thus G, AH{=:n} (v:=¢€)> {G—}
apply —
apply (rule MGFn-Normall)
apply (rule az-derivs.Ass)
apply (erule MGFnD [THEN az-NormalD])
apply (rule alll)
apply (erule MGFnD'|[THEN conseql2])
apply (fastforce intro: eval.Ass simp add: split-paired-all)
done
next
case (Cond el e2 e3)
thus G, AFH{=:n} (el ? €2 : e3).> {G—}
apply —
apply (rule MGFn-Normall)
apply (rule az-derivs. Cond)
apply (erule MGFnD [THEN az-NormalD))
apply (rule alll)
apply (rule az-Normal-cases)
prefer 2
apply (rule ax-derivs. Abrupt [THEN conseql],clarsimp simp add: Let-def)
apply (fastforce intro: eval.Cond)
apply (case-tac b)
apply simp
apply (erule MGFnD'[THEN conseq12])
apply (fastforce intro: eval.Cond)
apply simp
apply (erule MGFnD'|THEN conseq12])
apply (fastforce intro: eval.Cond)
done
next
case (Call accC statT mode e mn pTs’ ps)
note mgf-e = <G, AH{=:n} (e).> {G—}H
note mgf-ps = «G,A-{=:n} (ps);> {G—}
from mgf-methds mgf-e mgf-ps wf
show G,AH{=:n} ({accC,statT ,mode}e-mn({pTs'}ps))c {G—}
by (rule MGFn-Call)
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next
case (Methd D mn)
from mgf-methds
show G,AH-{=:n} (Methd D mn).> {G—}
by simp
next
case (Body D c)
note mgf-c = <G, AH{=:n} (¢)s> {G—}
from wf MGFn-Init [OF hyp] mgf-c
show G,Ar-{=:n} (Body D c¢).> {G—}
by (rule MGFn-Body)
next
case (InsInitE c e)
show ?case
by (rule MGFn-Normall) (rule az-derivs.InsInitE)
next
case (Callee | )
show ?case
by (rule MGFn-Normall) (rule az-derivs. Callee)
next
case Skip
show ?Zcase
apply —
apply (rule MGFn-Normall)
apply (rule az-derivs.Skip [THEN conseql])
apply (fastforce intro: eval.Skip)
done
next
case (Ezpr e)
thus ?case
apply —
apply (rule MGFn-Normall)
apply (erule MGFnD'|[THEN conseql2, THEN ax-derivs. Expr))
apply (fastforce intro: eval. Expr)
done
next
case (Lab | ¢)
thus G, AFH{=:n} (I- ¢)s> {G—}
apply —
apply (rule MGFn-Normall)
apply (erule MGFnD' [THEN conseql2, THEN az-derivs.Lab])
apply (fastforce intro: eval.Lab)
done
next
case (Comp cl c2)
thus G, AH{=:n} (cI;; c2)s> {G—}
apply —
apply (rule MGFn-Normall)
apply (rule az-derivs. Comp)
apply (erule MGFnD [THEN az-NormalD])
apply (erule MGFnD' [THEN conseq12])
apply (fastforce intro: eval.Comp)
done
next
case (If' e c1 c2)
thus G,A-{=:n} (If(e) ¢l Else c2)s> {G—}
apply —
apply (rule MGFn-Normall)
apply (rule az-derivs.If)
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apply (erule MGFnD [THEN az-NormalD))
apply (rule alll)
apply (rule az-Normal-cases)
prefer 2
apply (rule ax-derivs. Abrupt [THEN conseql],clarsimp simp add: Let-def)
apply (fastforce intro: eval.If)
apply (case-tac b)
apply simp
apply (erule MGFnD' [THEN conseql2))
apply (fastforce intro: eval.If)
apply simp
apply (erule MGFnD' [THEN conseq12])
apply (fastforce intro: eval.If)
done
next
case (Loop 1 e ¢)
note mgf-e = <G, AH{=:n} (e)c> {G—}
note mgf-c = <G, AH{=:n} (¢)s> {G—}
from mgf-e mgf-c wf
show G,AH-{=:n} (I- While(e) ¢)s> {G—}
by (rule MGFn-Loop)
next
case (Jmp j)
thus ?case
apply —
apply (rule MGFn-Normall)
apply (rule az-derivs.Jmp [THEN conseql])
apply (auto intro: eval.Jmp)
done
next
case (Throw e)
thus ?Zcase
apply —
apply (rule MGFn-Normall)
apply (erule MGEFnD' [THEN conseql2, THEN az-derivs. Throw))
apply (fastforce intro: eval. Throw)
done
next
case (TryC c1 C vn c2)
thus G,AFH{=:n} (Try c1 Catch(C vn) c2)s> {G—}
apply —
apply (rule MGFn-Normall)
apply (rule az-derivs. Try [where
2Q = (A\Y's's. normal s A (3s”. Grs —(cl)s=— (Y's") A
Grs'" —szalloc— s')) A. Grinit<n))
apply (erule MGFnD [THEN az-NormalD, THEN conseq2])
apply (fastforce elim: sxalloc-gext [THEN card-nyinitcls-gext))
apply (erule MGFnD'[THEN conseq12])
apply (fastforce intro: eval. Try)
apply (fastforce intro: eval. Try)
done
next
case (Fin cl ¢2)
note mgf-c! = <G, AH{=:n} (cl)s> {G—}
note mgf-c2 = <G, AH{=:n} (c2)s= {G—}
from wf mgf-c1 mgf-c2
show G, A-{=:n} {c1 Finally c2)s> {G—}
by (rule MGFn-Fin)
next
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case (FinA abr c)
show ?Zcase
by (rule MGFn-Normall) (rule az-derivs.FinA)
next
case (Init C)
from hyp
show G,AH{=:n} (Init C)s> {G—}
by (rule MGFn-Init)
next
case Nil-expr
show G,AH{=:n} {[[)i> {G—}
apply —
apply (rule MGFn-Normall)
apply (rule az-derivs.Nil [THEN conseql])
apply (fastforce intro: eval.Nil)
done
next
case (Cons-expr e es)
thus G,A-H{=:n} (e# es);> {G—}
apply —
apply (rule MGFn-Normall)
apply (rule az-derivs. Cons)
apply (erule MGFnD [THEN az-NormalD])
apply (rule alll)
apply (erule MGFnD'|[THEN conseq12))
apply (fastforce intro: eval.Cons)
done
qed
thus ?thesis
by (cases rule: term-cases) auto
qed
qed

lemma MGF-asm:

[V C sig. is-methd G C sig — G,AF{=} Inll (Methd C sig)= {G—}; wf-prog G]
= G,(A::state triple set)-{=} t- {G—}
apply (simp (no-asm-use) add: MGF-MGFn-iff)
apply (rule alll)

apply (rule MGFn-lemma)

apply (intro strip)

apply (rule MGFn-free-wt)

apply (force dest: wt-Methd-is-methd)

apply assumption

done

A~ N S

nested version

lemma nesting-lemma’ [rule-format (no-asm)]:
assumes az-derivs-asm: \A ts. ts C A= P A ts
and MGF-nested-Methd: NA pn. ¥V bebdy pn. P (insert (mgf-call pn) A) {mgf b}
= P A {mgf-call pn}
and MGF-asm: NA t. VpneU. P A {mgf-call pn} = P A {mgf t}
and finU: finite U
and uA: uA = mgf-call’U
shows VA. A C uAd — n < card uA — card A = card uA — n
— (Vt. P A {mgf t})
using finU uA
apply —
apply (induct-tac n)



018

apply (tactic ALLGOALS (clarsimp-tac context))

apply (factic <dresolve-tac context [Thm.permute-prems 0 1 Q{thm card-seteq}| 1»)
apply simp

apply (erule finite-imagel)

apply (simp add: MGF-asm az-derivs-asm)

apply (rule MGF-asm)

apply (rule balll)

apply (case-tac mgf-call pn € A)

apply (fast intro: az-derivs-asm)

apply (rule MGF-nested-Methd)

apply (rule balll)

apply (drule spec, erule impE, erule-tac [2] impE, erule-tac [3] spec)
apply hypsubst-thin

apply fast

apply (drule finite-subset)

apply (erule finite-imagel)

apply auto

done

lemma nesting-lemma [rule-format (no-asm)l:
assumes az-derivs-asm: NA ts. ts C A = P A ts
and MGF-nested-Methd: NA pn. ¥V bebdy pn. P (insert (mgf (f pn)) A) {mgf b}
= P A {mgf (fpn)}
and MGF-asm: NA t.VpneU. P A {mgf (fpn)} = P A {mgf t}
and finU: finite U
shows P {} {mgf t}
using az-derivs-asm MGF-nested-Methd MGF-asm finU
by (rule nesting-lemma’) (auto intro!: le-refl)

lemma MGF-nested-Methd: |

G,insert ({Normal =} (Methd C sig)e ~{G—}) A
H{Normal =} (body G C sig). ={G—}

| = G,A-{Normal =} (Methd C sig)e ={G—}

apply (unfold MGF-def)

apply (rule az-MethdN)

apply (erule conseq2)

apply clarsimp

apply (erule Methdl)

done

lemma MGF-deriv: wf-prog G = G,({}::state triple set)-{=} t- {G—}
apply (rule MGFNormall)
apply (rule-tac mgf = At. {Normal =} t>- {G—} and
bdy = X (C,sig) {({body G C sig). } and
f =X (C,sig) . (Methd C sig). in nesting-lemma)
apply (erule az-derivs.asm)
apply (clarsimp simp add: split-tupled-all)
apply (erule MGF-nested-Methd)
apply (erule-tac [2] finite-is-methd [OF wf-ws-prog|)
apply (rule MGF-asm [THEN MGFNormalD))
apply (auto intro. MGFNormall)
done

simultaneous version

lemma MGF-simult-Methd-lemma: finite ms =
G,A U (A(C,sig). {Normal =} (Methd C sig)e- {G—1}) ‘ms
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[F(A(C,sig). {Normal =} (body G C sig)e {G—}) ‘ ms =
G,AIF(AN(C,sig). {Normal =} (Methd C sig)e= {G—1}) ‘ ms
apply (unfold MGF-def)
apply (rule az-derivs. Methd [unfolded miriples-def])
apply (erule ax-finite-pointwise)
prefer 2
apply (rule az-derivs.asm)
apply fast
apply clarsimp
apply (rule conseq2)
apply (erule (1) az-methods-spec)
apply clarsimp
apply (erule eval-Methd)
done

lemma MGF-simult-Methd: wf-prog G =
G,({}::state triple set)|F(A(C,sig). {Normal =} (Methd C sig).> {G—1})
¢ Collect (case-prod (is-methd G))

apply (frule finite-is-methd [OF wf-ws-prog])

apply (rule MGF-simult-Methd-lemma)

apply assumption

apply (erule az-finite-pointwise)

prefer 2

apply (rule az-derivs.asm)

apply blast

apply clarsimp

apply (rule MGF-asm [THEN MGFNormalD))

apply (auto intro: MGFNormall)

done

corollaries

lemma eval-to-evaln: [Grs —t-— (Y, s");type-ok G t s; wf-prog GJ
= dn. Gks —t=—n— (Y, )

apply (cases normal s)

apply (force simp add: type-ok-def intro: eval-evaln)

apply (force intro: evaln.Abrupt)

done

lemma MGF-complete:
assumes valid: G {}={P} t> {Q}
and  mgf: G,({}::state triple set)-{=} t- {G—}
and wf: wf-prog G
shows G,({}::state triple set)-{P::state assn} t>- {Q}
proof (rule az-no-hazard)

from mgf
have G,({}::state triple set)-{=} t>- {A\Y s’ s. GFs —t>=— (Y, s')}

by (unfold MGF-def)
thus G,({}::state triple set)={P A. type-ok G t} t>- {Q}
proof (rule conseq12,clarsimp)

fix YsZVY's'

assume P: P Y s Z

assume type-ok: type-ok G t s

assume eval-t: Gks —t-— (Y, s')

show Q Y's' Z

proof —

from eval-t type-ok wf
obtain n where evaln: Grs —t>—n— (Y’ ')
by (rule eval-to-evaln [elim-format]) iprover
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from wvalid have
valid-expanded:
VYnYsZ PYsZ — type-ok Gts

— VY’ GFs —t-—n— (Y, s") — Q Y's' 2)

by (simp add: az-valids-def triple-valid-def)

from P type-ok evaln

show Q Y's' Z
by (rule valid-expanded [rule-format])

qed
qed
qed

theorem az-complete:
assumes wf: wf-prog G
and valid: G,{}={P::state assn} t- {Q}
shows G,({}::state triple set)-{P} t>~ {Q}
proof —
from wf have G,({}::state triple set)-{=} t= {G—}
by (rule MGF-deriv)
from wvalid this wf
show %thesis
by (rule MGF-complete)
qed

end
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AxExample

1 Example of a proof based on the Bali axiomatic semantics

theory AzExample
imports AxzSem Ezample
begin

definition
arr-inv :: st = bool where
arr-inv = (As. Jobj a T el. globs s (Stat Base) = Some obj A
values obj (Inl (arr, Base)) = Some (Addr a) A
heap s a = Some (tag=Arr T 2,values=el]))

lemma arr-inv-new-obj:

Na. [arr-inv s; new-Addr (heap s)=Some a] = arr-inv (gupd(Inl a—z) s)
apply (unfold arr-inv-def)

apply (force dest!: new-AddrD2)

done

lemma arr-inv-set-locals [simp]: arr-inv (set-locals | s) = arr-inv s
apply (unfold arr-inv-def)

apply (simp (no-asm))

done

lemma arr-inv-gupd-Stat [simp]:
Base # C = arr-inv (gupd(Stat C—obj) s) = arr-inv s
apply (unfold arr-inv-def)
apply (simp (no-asm-simp))
done

lemma az-inv-lupd [simp]: arr-inv (lupd(z—y) s) = arr-inv s
apply (unfold arr-inv-def)

apply (simp (no-asm))

done

declare if-split-asm [split del)
declare lvar-def [simp)

ML «
fun instl-tac ctxt st xs st =
(case AList.lookup (op =) (rev (Term.add-var-names (Thm.prop-of st) [])) s of
SOME i => PRIMITIVE (Rule-Insts.read-instantiate ctzt [(((s, ©), Position.none), t)] xs) st
| NONE => Seq.empty);

5921
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fun az-tac ctat =
REPFEAT o resolve-tac ctzt [alll] THEN'
resolve-tac ctxt
@{thms ax-Skip ax-StatRef az-MethdN ax-Alloc az-Alloc-Arr az-SXAlloc-Normal az-derivs.intros(8—)};

theorem az-test: tprg,({}::’a triple set)t-
{Normal (\Y s Z::'a. heap-free four s A —initd Base s A — initd Ext s)}
.test [Class Base].
{\Y s Z. abrupt s = Some (Xcpt (Std IndOutBound))}
apply (unfold test-def arr-viewed-from-def)
apply (tactic az-tac context 1)
defer
apply (factic az-tac context 1)
defer
apply (tactic <instl-tac context @)
AY s Z. arr-inv (snd s) A tprg,stcatch SXcpt NullPointer []»)
prefer 2
apply simp
apply (rule-tac P’ = Normal (\Y s Z. arr-inv (snd s)) in conseql)
prefer 2
apply clarsimp
apply (rule-tac Q' = (A\Y s Z. Q Y s Z)+=False]= and Q = Q for Q in conseq?)
prefer 2

apply simp
apply (tactic az-tac context 1)
prefer 2

apply (rule az-impossible [THEN conseql], clarsimp)

apply (rule-tac P’ = Normal P and P = P for P in conseql)
prefer 2

apply clarsimp

apply (tactic az-tac context 1)

apply (tactic az-tac context 1)

prefer 2

apply  (rule az-subst-Val-alll)

apply (tactic <instl-tac context P’ Aa. Normal (PP a+zx) [PP, )
apply (simp del: avar-def2 peek-and-def2)

apply (tactic az-tac context 1)

apply (tactic az-tac context 1)

apply (rule-tac Q' = Normal (AVar:(v, f) u ua. fst (snd (avar tprg (Intg 2) v u)) = Some (Xept (Std
IndOutBound))) in conseq2)

prefer 2

apply (clarsimp simp add: split-beta)

apply (tactic az-tac context 1)

apply (tactic az-tac context 2 )

apply (rule az-derivs.Done [THEN conseql])

apply (clarsimp simp add: arr-inv-def inited-def in-bounds-def)

defer

apply (rule az-SXAlloc-catch-SXcpt)

apply (rule-tac Q' = (A\Y (z, s) Z. x = Some (Xcpt (Std NullPointer)) A arr-inv s) A. heap-free two in
conseq?2)

prefer 2

apply (simp add: arr-inv-new-obj)

apply (tactic az-tac context 1)

apply (rule-tac C = Ezt in az-Call-known-DynT)

apply  (unfold DynT-prop-def)

apply (simp (no-asm))
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apply  (intro strip)

apply  (rule-tac P’ = Normal P and P = P for P in conseql)
apply (tactic az-tac context 1)

apply  (rule az-thin [OF - empty-subsetl))

apply  (simp (no-asm) add: body-def2)

apply (tactic az-tac context 1)

defer

apply (simp (no-asm))

apply (tactic az-tac context 1)
apply (rule-tac (2] az-derivs. Abrupt)

apply (rule az-derivs. Expr)
apply (tactic az-tac context 1)

prefer 2

apply (rule az-subst-Var-alll)

apply (tactic <instl-tac context P’ \a vs | vf. PP a vs | vf<x A. p [PP, x, p)»)

apply (rule alll)

apply (tactic «simp-tac (context |> Simplifier.del-loop split-all-tac |> Simplifier.del-simps [@Q{thm

peek-and-def2}, Q{thm heap-def2}, Q{thm subst-res-def2}, Q{thm normal-def2}]) 1)
apply (rule az-derivs. Abrupt)

apply (simp (no-asm))

apply (tactic az-tac context 1)

apply (tactic az-tac context 2, taclic az-tac context 2, tactic az-tac context 2)
apply (tactic az-tac context 1)

apply (tactic <instl-tac context R Aa’. Normal ((AVals:vs (x, 8) Z. arr-inv s A inited Ext (globs s) A
a’ # Null A vs = [Null]) A. heap-free two) []»)

apply  fastforce

prefer j

apply  (rule ax-derivs. Done [THEN conseql],force)

apply (rule az-subst-Val-alll)

apply (tactic <instl-tac context P’ Aa. Normal (PP a<z) [PP, a]»)

apply (simp (no-asm) del: peek-and-def2 heap-free-def2 normal-def2 o-apply)
apply (tactic az-tac context 1)

prefer 2

apply (rule az-subst-Val-alll)

apply (tactic ¢instl-tac context P’ laa v. Normal (QQ aa v+y) [QQ, y]»)
apply  (simp del: peek-and-def2 heap-free-def2 normal-def2)

apply (tactic az-tac context 1)

apply (tactic az-tac context 1)

apply (tactic az-tac context 1)

apply (tactic az-tac context 1)

apply (simp (no-asm))

apply (rule-tac Q' = Normal (A\Y (z, s) Z. arr-inv s A (Fa. the (locals s (VName e)) = Addr a A obj-class
(the (globs s (Inl a))) = Ext A

invocation-declclass tprg IntVir s (the (locals s (VName ¢€))) (ClassT Base)

(name = foo, parTs = [Class Base]|) = Ext)) A. initd Ext A. heap-free two)

in conseq2)
prefer 2
apply clarsimp
apply (tactic az-tac context 1)
apply (tactic az-tac context 1)
defer
apply (rule az-subst-Var-alll)
apply (tactic <instl-tac context P’ Auf. Normal (PP vf A. p) [PP, p]»)
apply (simp (no-asm) del: split-paired-All peek-and-def2 initd-def2 heap-free-def2 normal-def2)
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apply (tactic az-tac context 1)
apply (tactic az-tac context 1)

apply (rule-tac Q' = Normal (A\Y s Z. arr-inv (store s) A vf=Ilvar (VName e) (store s)) A. heap-free three
A. initd Ext) in conseq2)

prefer 2

apply (simp add: invocation-declclass-def dynmethd-def)

apply (unfold dynlookup-def)

apply (simp add: dynmethd-FEzt-foo)

apply (force elim!: arr-inv-new-obj atleast-free-SucD atleast-free-weaken)

apply (rule az-InitS)

apply  force

apply (simp (no-asm))

apply (tactic <simp-tac (context |> Simplifier.del-loop split-all-tac) 1»)
apply (rule az-Init-Skip-lemma)

apply (tactic <simp-tac (context |> Simplifier.del-loop split-all-tac) 1»)
apply (rule az-InitS [THEN conseql] )

apply force

apply  (simp (no-asm))

apply  (unfold arr-viewed-from-def)

apply  (rule alll)

apply  (rule-tac P’ = Normal P and P = P for P in conseql)

apply (tactic «simp-tac (context |> Simplifier.del-loop split-all-tac) 1»)

apply (tactic az-tac context 1)

apply  (tactic az-tac context 1)

apply  (rule-tac [2] ax-subst-Var-alll)

apply (tactic <instl-tac context P’ Avf | vfa. Normal (P vf | vfa) [P]>)

apply (tactic <simp-tac (context |> Simplifier.del-loop split-all-tac |> Simplifier.del-simps [Q{thm

split-paired-All}, Q{thm peek-and-def2}, Q{thm heap-free-def2}, Q{thm initd-def2}, @{thm normal-def2},
Q@Q{thm supd-lupd}]) 2»)
apply (tactic ax-tac context 2 )

apply (tactic az-tac context 3 )
apply (tactic az-tac context 3)
apply tactic <inst1-tac context P Avf | vfa. Normal (P vof | vfa<<) [P)))

(
apply (tactic «simp-tac (context |> Simplifier.del-loop split-all-tac) 2»)
apply (tactic ax-tac context 2)

apply  (tactic az-tac context 1)

apply (tactic az-tac context 2 )

apply  (rule az-derivs.Done [THEN conseql])

apply (tactic <instl-tac context Q Avf. Normal (\Y s Z. vf=lvar (VName e) (snd s)) A. heap-free four
A. initd Base A. initd Ext) []))

apply (clarsimp split del: if-split)

apply  (frule atleast-free-weaken [THEN atleast-free-weaken))

apply (drule initedD)

apply (clarsimp elim!: atleast-free-SucD simp add: arr-inv-def)

apply force

apply (tactic «simp-tac (context |> Simplifier.del-loop split-all-tac) 1»)

apply (rule az-triv-Init-Object [THEN peek-and-forget2, THEN conseql])

apply (rule wf-tprg)

apply clarsimp

apply (tactic <instl-tac context P Avf. Normal (A\Y s Z. vf = lvar (VName e) (snd s)) A. heap-free four
A. initd Ext) []»)

apply clarsimp

apply (tactic <instl-tac context PP Avf. Normal (A\Y s Z. vf = lvar (VName e) (snd s)) A. heap-free
four A. Not o initd Base) []»)

apply clarsimp

apply (rule conseql)
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apply (tactic az-tac context 1)
apply clarsimp
done

lemma Loop-Xcpt-benchmark:
Q= (\Y (x,8) Z. © # None — the-Bool (the (locals s 7)) =
G,({}::'a triple set)-{Normal (\Y s Z::'a. True)}
dab1- While(Lit (Bool True)) (If(Acc (LVar i) (Throw (Acc (LVar zcpt))) Else
(Expr (Ass (LVar i) (Acc (LVar 7))))). {Q}
apply (rule-tac P' = @Q and Q' = Q<=Falsel=<, in conseql2)
apply safe
apply (tactic az-tac context 1)
apply (rule az-Normal-cases)
prefer 2
apply (rule ax-derivs. Abrupt [THEN conseql], clarsimp simp add: Let-def)
apply (rule conseql)
apply (tactic az-tac context 1)
apply clarsimp
prefer 2
apply clarsimp
apply (tactic az-tac context 1)
apply (tactic
anstl-tac context P’ Normal (As.. (A\Y s Z. True)l="Val (the (locals s i))) []»)
apply (tactic az-tac context 1)
apply (rule conseql)
apply (tactic az-tac context 1)
apply clarsimp
apply (rule alll)
apply (rule az-escape)
apply auto
apply (rule conseql)
apply (tactic az-tac context 1)
apply (tactic az-tac context 1)
apply (tactic az-tac context 1)
apply clarsimp
apply (rule-tac @' = Normal (\Y s Z. True) in conseq2)
prefer 2
apply clarsimp
apply (rule conseql)
apply (tactic az-tac context 1)
apply (tactic az-tac context 1)
prefer 2
apply (rule ax-subst-Var-alll)
apply (tactic <instl-tac context P’ \b Y ba Z vf. \Y (x,s) Z. z=None A snd vf = snd (lvar i s) []»)
apply (rule alll)
apply (rule-tac P’ = Normal P and P = P for P in conseql)
prefer 2
apply clarsimp
apply (tactic az-tac context 1)
apply (rule conseql)
apply (tactic az-tac context 1)
apply clarsimp
apply (tactic az-tac context 1)
apply clarsimp
done

end
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